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Operations in connective K-theory
Alexander Merkurjev and Alexander Vishik

We classify additive operations in connective K-theory with various torsion-free coefficients. We discover
that the answer for the integral case requires understanding of the Ẑ case. Moreover, although integral
additive operations are topologically generated by Adams operations, these are not reduced to infinite
linear combinations of the latter ones. We describe a topological basis for stable operations and relate it to
a basis of stable operations in graded K-theory. We classify multiplicative operations in both theories
and show that homogeneous additive stable operations with Ẑ-coefficients are topologically generated by
stable multiplicative operations. This is not true for integral operations.

1. Introduction

Let k be a field of characteristic 0. An oriented cohomology theory A∗ over k is a functor from the
category Smop

k of smooth quasiprojective varieties over k to the category of Z-graded commutative
rings equipped with a push-forward structure and satisfying certain axioms. In this article, we study the,
so-called, small theories. For these, the appropriate choice is [Vishik 2019, Definition 2.1], which employs
a strong form of the localization axiom and is some breed of the axioms of Panin and Smirnov [Panin
2004, Definition 1.1.7] and that of Levine and Morel [2007, Definition 1.1.2]. In particular, every oriented
cohomology theory A∗ admits a theory of Chern classes cA

n of vector bundles. Among such theories there
is the universal one — the algebraic cobordism of Levine and Morel �∗ [2007]. We will work with the
free theories, i.e., theories obtained from �∗ by a change of coefficients. These are exactly the theories of
rational type for which the results of Vishik [2019] apply.

Examples of free oriented cohomology theories are:

• Chow theory CH∗ that assigns to a smooth variety X over k the Chow ring CH∗(X);

• Graded K-theory K ∗gr that takes X to the Laurent polynomial ring K0(X)[t, t−1
] (graded by the

powers of the Bott element t of degree −1) over the Grothendieck ring K0(X);

• Connective K-theory that takes a smooth variety X to the ring CK∗(X) of X (see [Cai 2008; Dai and
Levine 2014]).

Merkurjev was supported by the NSF grant DMS #1801530.
MSC2020: 19L20, 19L41, 55S25.
Keywords: connective K-theory, additive operations, oriented cohomology theories.

© 2023 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://msp.org/ant/
https://doi.org/10.2140/ant.2023.17-9
https://doi.org/10.2140/ant.2023.17.1595
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


1596 Alexander Merkurjev and Alexander Vishik

The connective K-theory is the “smallest” oriented cohomology theory “living” above Chow theory
and graded K-theory: there are natural graded morphisms

CK∗(X)

xx &&

CH∗(X) K ∗gr(X)

that yield graded isomorphisms

CK∗(X)/t CK∗+1(X)
∼
−→ CH∗(X) and CK∗(X)[t−1

]
∼
−→ K ∗gr(X).

Moreover, multiplication CKn+1(X)
t
−→CKn(X) by the Bott element t ∈ CK−1(k) is an isomorphism

if n < 0. The map CK0(X)→ K 0
gr(X)= K0(X) is also an isomorphism, so we can identify CKn(X) with

K0(X) for all n ⩽ 0.
For any n ⩾ 0, the image of CKn(X)

tn

−→CK0(X)= K0(X) is the subgroup K (n)
0 (X)⊂ K0(X) generated

by the classes of coherent OX -modules with codimension of support at least n. Note that the map tn may
not be injective in general if n > 1.

Let A∗ and B∗ be two oriented cohomology theories. An additive operation G : A∗→ B∗ is a morphism
between functors A∗ and B∗ considered as contravariant functors from Smk to the category of abelian
groups. Examples of additive operations are Adams operations in algebraic K-theory and Steenrod
operations in the Chow groups modulo a prime integer.

If A∗ is an oriented cohomology theory and R is a commutative ring, we write An
R(X) for An(X)⊗Z R

and OP n,m
R (A) for the R-module of R-linear operations An

R→ Am
R .

It is proved in [Vishik 2019, §6.3] that every free oriented cohomology theory A∗ admits the Adams
operations 9 A

m ∈OP n,n
R (A) for all n and m. The operation 9 A

m in OP 1,1
R (A) satisfies

9 A
m (c

A
1 (L))= cA

1 (L
⊗m)

for a line bundle L . Moreover, there is an R-linear map

Adn : R[[x]] →OP n,n
R (A)

taking the power series (1− x)m to the Adams operation 9 A
m for all m ∈ Z.

In general, the map Adn is neither injective nor surjective — see below. But it is shown in [Vishik
2019, §6.1] that Adn is an isomorphism if A∗ is the graded K-theory, thus,

OP n,n
R (Kgr)≃ R[[x]].

Since the power series (1 − x)m generate R[[x]] as a topological R-module in the x-adic topology,
we can say that the R-module OP n,n

R (Kgr) is topologically generated by the Adams operations in the
graded K-theory. Moreover, since multiplication by the Bott element is an isomorphism in K ∗gr, we have
OP n,m

R (Kgr)= R[[x]] · tn−m .
In the present paper, we study the groups OP n,m

R := OP n,m
R (CK) of operations in the connective

K-theory over R. We write, for simplicity, OP n,m for OPn,m
Z .
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The groups CKn(X) for n ⩽ 0 are identified with K0(X), hence translating the above result on the
operations in graded K-theory, we see that Adn : R[[x]] →OP n,n

R is an isomorphism for n ⩽ 0.
The Adams operation 90 is trivial on CKn

R for n ⩾ 1, i.e., Adn(1)= 0, so we consider the restriction
Ad′n : x R[[x]] → OP n,n

R of the map Adn . The R-module CK1
R(X) is a canonical direct summand via

multiplication by t of CK0
R(X)= K0(X)R with the complement R · 1. This leads to a ring isomorphism

OP 0,0
R ≃ R×OP 1,1

R . Moreover, the map Ad′1 : x R[[x]] →OP 1,1
R is an isomorphism.

The structure of the groups OP n,n
R , with n > 1, is much more delicate and depends on the base ring R.

The homomorphisms Ad′n : x R[[x]] →OP n,n
R for n ⩾ 2 are not surjective in general.

It came as a surprise to us that the structure of OP n,n
R is very simple over the ring of profinite integers

Ẑ= lim(Z/nZ):

Theorem. The map Ad′n : xẐ[[x]]→OP n,n
Ẑ

is an isomorphism if n ⩾ 1. In particular, the Ẑ-module OP n,n
Ẑ

is topologically generated by the Adams operations.

Over Z, the map Ad′n is not surjective if n ⩾ 2.

Theorem. The group OP n,n of integral operations is isomorphic, canonically, to a subgroup of OP n,n
Ẑ

.
Moreover, there is an exact sequence

0→ xZ[[x]]
Ad′n
−−→OP n,n

→ (Ẑ/Z)n−1
→ 0

if n ⩾ 1.

Thus, the group Ẑ also shows up in the computation of OP n,n over Z. For example, OP 2,2 as a
subgroup of OP 2,2

Ẑ
= xẐ[[x]] is generated by xZ[[x]] and the power series

∑
i>0((c−ci )/ i)x i for all c ∈ Ẑ

and integers ci such that c− ci is divisible by i for all i > 0, i.e., ci in Z represents congruence class of c
modulo i .

We prove that the rings OP n,n and OP n,n
Ẑ

are commutative. Moreover, the rings OP n,n are “almost”
integral domains: the only zero divisors are the multiples of 91±9−1.

An operation G : A∗ → B∗ is called multiplicative if G is a morphism of functors Smk → Rings.
Examples are twisted Adams operations 9c

b , defined as follows: Let b ∈ Ẑ and c ∈ Ẑ×. Then the
operation 9c

b is homogeneous and equal to c−n
·9bc on CKn

Ẑ
, where 9bc is the (generalized) Adams

operation with the power series (1− x)bc. We classify all multiplicative operations on CK∗
Ẑ

in Section 5.
The notion of “stability” in topology can be considered in an algebraic setting as follows (see [Vishik

2019, §3.1]): Let SmOp be a category whose objects are pairs (X,U ), where X ∈ Smk and U is an open
subvariety of X . Any theory A∗ extends from Smk to SmOp by the rule

A∗((X,U )) := Ker(A∗(X)→ A∗(U )),

and every additive operation A∗→ B∗ on Smk extends uniquely to an operation on SmOp. There is an
identification

σ A
T : A∗((X,U ))

∼=
−→ A∗+1(6T (X,U )),

where 6T (X,U ) := (X,U )∧ (P1,P1
\0)=

(
X ×P1, X × (P1

\0)∪U ×P1
)
.
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For any additive operation G : A∗ → B∗, we define its desuspension as the unique operation
6−1G : A∗→ B∗ such that

G ◦ σ A
T = σ

B
T ◦6

−1G.

A stable additive operation G : A∗→ B∗ is the collection {G(n)
| n ⩾ 0} of operations A∗→ B∗ such

that G(n)
=6−1G(n+1).

In Section 6, we classify stable operations in connective K-theory over Ẑ. We prove that under the
identification

OP n,n
Ẑ
=

{
Ẑ[[x]], if n ⩽ 0,
xẐ[[x]], if n ⩾ 1,

the desuspension map is given by the formula

6−1(G)=
{
8(G), if n ⩽ 1,
8(G)−8(G)(0), if n > 1,

where G ∈ OP n,n
Ẑ

and 8(G) = (x − 1)(dG/dx). Thus, the desuspension map 6−1 yields a tower of
injective maps

Ẑ[[x]] =OP 0,0
Ẑ
←↩OP1,1

Ẑ
←↩ · · · ←↩OP n,n

Ẑ
←↩ · · · .

The group of homogeneous degree 0 stable operations CK∗
Ẑ
→ CK∗

Ẑ
is canonically isomorphic to the

group
S :=

⋂
n

Im(8n)⊂ Ẑ[[x]].

We identify this group in Section 6. In particular, we prove that S is the closure in the x-adic topology
of Ẑ[[x]] of the set of all (finite) Ẑ-linear combinations of the Adams power series Ar , for r ∈ Ẑ×. The
Ẑ-module S and its integral version S0 appear to be of an uncountable rank. We describe a topological
basis for them.

We call a multiplicative operation G stable if the constant sequence (G,G,G, . . . ) is stable. We prove
that stable multiplicative operations CK∗

Ẑ
→ CK∗

Ẑ
are exactly operations 9c

1 , for c ∈ Ẑ×. Thus, we obtain:

Theorem. Homogeneous degree 0 stable additive operations on CK∗
Ẑ

are topologically generated by the
stable multiplicative operations on it.

Similarly, stable multiplicative operations on CK∗ are 9±1
1 . This time though, they don’t generate the

group of stable additive operations which is of uncountable rank.
Recall that additive operations in (graded) K-theory were determined in [Vishik 2019, §6.1]. In the

present paper, we determine stable and multiplicative operations in Kgr. We describe a basis of the group
of stable Kgr-operations and relate it to the basis of stable CK-operations. The ring of stable operations is
dual to the Hopf algebra of co-operations defined over Z, and therefore, has the structure of a (topological)
Hopf algebra. The Hopf algebra of co-operations coincides with K0(K ) in topology and has been studied
in [Adams and Clarke 1977; Adams et al. 1971; Clarke et al. 2001; Johnson 1984; Strong and Whitehouse
2010]. The case of CK was investigated, in particular, in [Kane 1981].
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The main tool used in our proofs is the general result of Vishik [2019, Theorem 6.2] that asserts, when
applied to the connective K-theory, that an operation G ∈ OP n,m

R for n ⩾ 1 is given by a sequence of
symmetric power series Gl ∈ R[[x1, . . . , xl]] for all l ⩾ n satisfying certain conditions. In particular, Gl

divisible by x1 · · · xl and−Gl+1= ∂(Gl), the partial derivative of Gl (see Definition 2.1) for all l ⩾ n, i.e.,
all power series Gl are determined by Gn . We show that if R is torsion free, then Gn can be integrated over
K = R⊗Q: there is a unique power series H ∈ x K [[x]] such that Gn = ∂

n−1(H). Thus, the operation G
is determined by a power series H in one variable over K such that ∂n−1(H) ∈ R[[x1, . . . , xn]].

The article is organized as follows: In Section 2, we prove general results which will permit us
to integrate the multivariate symmetric power series and reduce the classification of operations to the
description of power series in one variable with certain integrality properties. These properties are then
studied and the respective power series are classified in Section 3. In Section 4, we apply the obtained
results in combination with [Vishik 2019, Theorem 6.2] to produce a description of additive operations
in CK with integral and Ẑ-coefficients. We describe the ring structure on the set of homogeneous
operations. The description of operations in Kgr comes as an easy by-product. In the latter case, we
also describe the dual bialgebra of co-operations. Multiplicative operations in CK and Kgr are studied
in Section 5. Finally, Section 6 is devoted to the computation of stable operations.

2. Symmetric power series

2A. Partial derivatives. Let F(x, y) be a (commutative) formal group law over a commutative ring R.
We write x∗y := F(x, y).

Let G(x1, . . . , xn) ∈ R[[x1, . . . , xn]] be a power series in n ⩾ 1 variables.

Definition 2.1. The partial derivative of G (with respect to F) is the power series

(∂G)(x1, x2, . . . , xn+1)

= G(x1 ∗ x2, x3, . . . , xn+1)−G(x1, x3, . . . , xn+1)−G(x2, x3, . . . , xn+1)+G(0, x3, . . . , xn+1),

which lies in R[[x1, . . . , xn+1]].

Note that the partial derivative is always taken with respect to the first variable (in this case x1)
in the list of variables. Write ∂m for the iterated partial derivative. We also set (∂0G)(x1, . . . , xn) =

G(x1, . . . , xn)−G(0, x2, . . . , xn).
For a subset I ⊂ [1,m+1] := {1, . . . ,m+1}, write x I for the ∗-sum of all xi with i ∈ I . In particular,

x∅ = 0. Then

(∂mG)(x1, . . . , xm+n)=
∑

(−1)|I |G(x I , xm+2, . . . , xm+n) ∈ R[[x1, x2, . . . , xm+n]], (2.2)

where the sum is taken over all 2m+1 subsets I ⊂ [1,m+1]. In particular, ∂mG is symmetric with respect
to the first m+ 1 variables.

Observation 2.3. If G ∈ R[[x1, . . . , xn]] is such that ∂G is a symmetric power series, then ∂mG is
symmetric for all m ⩾ 1.
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Indeed, since ∂G is symmetric, ∂mG = ∂m−1(∂G) is symmetric with respect to the last n variables.
But ∂mG is symmetric with respect to the first m+ 1 variables, hence it is symmetric.

Notation 2.4. For any commutative Q-algebra K , write

lg1(x) := log(1− x)=−
∑
i⩾1

x i

i
∈ K [[x]]

and for any n ⩾ 0,
lgn(x) :=

1
n!

(
lg1(x)

)n
∈ K [[x]].

In particular, lg0(x)= 1.

For the rest of this section, ∗ denotes the multiplicative formal group law, i.e., x∗y = x + y− xy.
The power series lg1(x) belongs to the kernel of ∂ . Moreover, we have the following statement:

Proposition 2.5. For any commutative Q-algebra K and any n > 0, the kernel of ∂n−1
: K [[x]] →

K [[x1, . . . , xn]] is equal to ∑
0⩽r<n

K · lgr (x).

Proof. We make the following change of variables:

yi = lg1(xi )= log(1− xi ),

where x1 = x . The multiplicative group law ∗ translates to the additive one. In the new variables, the
partial derivative is homogeneous and lowers the degree in y1 by 1. Therefore, the kernel of ∂n is spanned
by 1, y1, . . . , yn−1

1 . □

The following formula is very useful:

Proposition 2.6. Let K be a Q-algebra, G ∈ K [[x]] and n a positive integer. Then

(∂nG)(x1, x2, . . . xn+1)=

∞∑
k=1

1
k!
∂n−1

(
(1− x)k dk G

dxk

)
(x1, x2, . . . , xn) · xk

n+1.

Proof. Note that both sides don’t contain monomials x̄α := xα1
1 xα2

2 · · · x
αn+1
n+1 if at least one αi is zero.

We prove that for every multiindex α with αi > 0 for all i , the x̄α- coefficients of both sides are equal.
Set k = αn+1.

By (2.2), the x̄α-coefficient of the left-hand side is the same as the x̄α-coefficient of G(x1∗x2∗· · ·∗xn+1).
To determine this coefficient, we differentiate (in the standard way) k times the series G(x1∗x2∗· · ·∗xn+1)

by xn+1, plug in xn+1 = 0 and divide by k!. Since our formal group law is multiplicative, we have
1− x ∗ y = (1− x)(1− y), and so,

d
dxn+1

(x1 ∗ x2 ∗ · · · ∗ xn+1)= (1− x1)(1− x2) · · · (1− xn).

It follows that the xα-coefficient in the left-hand side is equal to the xα1
1 xα2

2 · · · x
αn
n -coefficient of

1
k!
(1− x1)

k(1− x2)
k
· · · (1− xn)

k dk G
dxk (x1 ∗ x2 ∗ · · · ∗ xn).
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On the other hand, the xα-coefficient of the right-hand side is equal to the xα1
1 xα2

2 · · · x
αn
n -coefficient of

(1/k!)∂n−1
(
(1− x)k(dk G/dxk)

)
(x1, x2, . . . , xn). This is the same as the xα1

1 xα2
2 · · · x

αn
n -coefficient of

1
k!
(1− x1 ∗ x2 ∗ · · · ∗ xn)

k G(k)(x1 ∗ x2 ∗ · · · ∗ xn)

=
1
k!
(1− x1)

k(1− x2)
k
· · · (1− xn)

k dk G
dxk (x1 ∗ x2 ∗ · · · ∗ xn). □

For a nonzero power series H ∈ R[[x1, . . . , xn]], denote by v(H) the smallest degree of monomials
in H . Set also v(0)=∞.

Observation 2.7. Suppose that a commutative ring R is torsion free. A direct calculation shows that for
positive integers n and m, we have v(∂n−1(xm)) = m if m ⩾ n. It follows that v(∂n−1(G)) = v(G) for
every G ∈ R[[x]] such that v(G)⩾ n.

2B. Integration of symmetric power series.

Definition 2.8. A power series G ∈ R[[x1, . . . , xn]] is called double-symmetric if G itself and ∂G are
both symmetric.

In the following proposition, we prove that double-symmetric power series can be symmetrically
integrated over any commutative Q-algebra:

Proposition 2.9. Let K be a commutative Q-algebra and G ∈ K [[x1, . . . , xn]], with n ⩾ 2, be a symmetric
power series divisible by x1 · · · xn . The following are equivalent:

(1) G is double-symmetric.

(2) All derivatives ∂m(G), where m ⩾ 0, are symmetric power series.

(3) There is a power series L ∈ K [[x]] such that G = ∂n−1(L).

(4) There is H ∈ K [[x1, . . . , xn−1]] such that ∂(H)= G.

(5) There is a unique symmetric H ∈ K [[x1, . . . , xn−1]], divisible by x1 · · · xn−1, with zero coefficient at
x1 · · · xn−1 and such that ∂(H)= G.

Proof. Note that (1)⇐⇒ (2) by Observation 2.3. We will prove the equivalence of all statements by induc-
tion on n. The implication (3)=⇒ (2) is clear, and the implications (2)=⇒ (1) and (3)=⇒ (4) are trivial.

(5)=⇒ (3): Follows by induction applied to H .

(1) or (4)=⇒ (5): Over a commutative Q-algebra every formal group law is isomorphic to the additive
one. So we may assume that the group law is additive, i.e., the derivative is defined by

(∂G)(x, y, t̄ )= G(x + y, t̄ )−G(x, t̄ )−G(y, t̄ )+G(0, t̄ ).

We first prove uniqueness. Indeed if ∂H = 0, then H is linear in x1, and since H is symmetric and
divisible by x1 · · · xn−1, we must have H = 0.
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Case n = 2: The implication (4)=⇒ (5) is obvious. We prove (1)=⇒ (5). We may assume that G is
a homogeneous polynomial of degree d > 1. The symmetry of the derivative of G(x, y) results in the
following cocycle condition:

G(x + y, z)+G(x, y)= G(x + z, y)+G(x, z).

In particular, we have the following equalities:

G(x + y, x + y)+G(x, y)= G(2x + y, y)+G(x, x + y),

G(2x + y, y)+G(2x, y)= G(2x, 2y)+G(y, y),

G(x, x + y)+G(x, y)= G(2x, y)+G(x, x).
It follows that

∂(G(x, x))(x, y)= G(x + y, x + y)−G(x, x)−G(y, y)

= G(2x, 2y)− 2G(x, y)

= (2d
− 2)(G(x, y)),

hence G(x, y)= ∂(H), where H(x)= G(x, x)/(2d
− 2).

Case n = 3: Write G(x, y, z) =
∑

i⩾1 Gi (x, y)zi . By the very definition, if G satisfies (1), respec-
tively (4), then all Gi (x, y) also satisfy (1), respectively (4). By induction, they satisfy (5). Integrating
each Gi (x, y), we get a power series H =

∑
i, j⩾1 ai, j x i y j in two variables such that ∂H = G.

Note that we can change H by any series
∑

i ci xyi without changing ∂H . This way, we can make
H =

∑
i, j⩾1 ai, j x i y j with ai,1 = a1,i and a1,1 = 0. We claim that H is symmetric. Indeed, from the

symmetry of ∂H , we have ( i+k
i

)
ai+k, j =

( j+k
j

)
a j+k,i ,

for any i, j, k ⩾ 1. This implies that

1
i+l

( i+l
i

)
ai+l−1,1 = al,i ,

and so, ai,l = al,i , for any i, l ⩾ 2. This shows that H is symmetric. Observe that such symmetric
integration is unique provided a1,1 = 0.

Case n > 3: Write G =
∑

i⩾1 Gi · x i
n with Gi ∈ K [[x1, . . . , xn−1]]. Again, by the very definition, the

slices Gi of G are double-symmetric. By the inductive assumption, these can be uniquely integrated to
symmetric power series Hi ∈ K [[x1, . . . , xn−2]] as in (5). Putting these power series together, we obtain

H =
∑
i⩾1

Hi · x i
n−1 ∈ K [[x1, . . . , xn−1]]

such that ∂H = G. Write
H =

∑
i1,...,in−1

ai1,...,in−1 x i1
1 · · · x

in−1
n−1.

Modifying H by x1 · · · xn−1L(xn−1) for an appropriate power series L , we may assume ai,1,...,1 = a1,1,...,i

for all i .
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We claim that H is symmetric. The x i1
1 · · · x

in
n -coefficient of G = ∂H is equal to

(i1+i2
i1

)
ai1+i2,i3,...,in .

Therefore, since G is symmetric, H is symmetric with respect to x2, . . . , xn−1, if i1 > 1. Recall that H
is also symmetric in x1, . . . , xn−2. Therefore, it suffices to show that the coefficient a1,i2,...,in−1 does not
change if we interchange in−1 with ik for some k = 2, . . . , n− 2.

Suppose all indices i1, . . . , in−1 but one are equal to 1. Then the statement follows from the equality
a1,1,...,i = ai,1,...,1 = a1,i,...,1 for all i . Otherwise, at least two indices, say ik = u and il = v with k < l
are greater than 1.

If l < n− 1, set w = in−1. We have (here and below, we indicate only the indices which are permuted,
hidden indices remain unchanged):

a1,u,v,w = av,u,1,w = av,w,1,u = a1,w,v,u,

so we interchanged ik and in−1. If l = n− 1, we can write

a1,u,v = au,1,v = au,v,1 = av,u,1 = av,1,u = a1,v,u,

i.e., we again interchanged ik and in−1. □

3. The groups Qn
R

The formal group law is multiplicative in this section. Let R be a commutative ring and K = R⊗Z Q.
We assume that R is torsion free (as an abelian group), i.e., R can be identified with a subring of K .

Definition 3.1. For any integer n ⩾ 1, let us denote by Qn
R the R-module of the power series G in x K [[x]],

for which ∂n−1(G) ∈ R[[x1, . . . , xn]]. For example, Q1
R = x R[[x]]. We also set Qn

R = R[[x]] if n ⩽ 0.

Note that, in view of Proposition 2.5, x R[[x]] and
∑

0<r<n K · lgr (x) are contained in Qn
R . In

Theorem 4.12 below, we will see that the quotient of Qn
R by the second of these subspaces can be

identified with the space of additive operations on CKn
R .

Lemma 3.2. Suppose R has no nontrivial Z-divisible elements. Then

x R[[x]] ∩
( ∑

0<r<n

K · lgr (x)
)
= 0.

Proof. Consider the operator 8 on K [[x]] mapping R[[x]] to itself:

8(F(x)) := (x − 1) · d
dx
(F(x)).

Observe that 8(lgr (x)) = lgr−1(x). Suppose
∑

0<r<n qr · lgr (x) ∈ x R[[x]], where qr ∈ K , and let r be
the largest index such that qr ̸= 0. Applying 8r−1 to the sum, we see that qr−1+ qr lg1(x) ∈ R[[x]]. Let
n ∈ N be such that nqr−1 ∈ R and nqr ∈ R. It follows that nqr ∈ i R for every integer i > 0, i.e., nqr is a
nonzero Z-divisible element in R, a contradiction. □

Definition 3.3. Let n and m be integers. If n > 0, denote by Qn,m
R the submodule of Qn

R consisting of all
power series G such that v(∂n−1G)⩾ m. If n ⩽ 0, set Qn,m

R = xmax (0,m)
· R[[x]].
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Theorem 4.12 permits us to describe the R-module of operations OP n,m
R in terms of the modules Qn,m

R .
Since v(∂n−1G)⩾ n for every G ∈Qn

R with n > 0, we have Qn,m
R =Qn,n

R =Qn
R if n ⩾ m. Note also

that Q1,m
R = xmax (1,m)

· R[[x]].

3A. The groups Qn
Ẑ
. In this section, we determine the structure of the modules Qn

Ẑ
over the ring

Ẑ= lim(Z/nZ). We write Q̂ for Ẑ⊗Q. Note that Q̂= Ẑ+Q and Z= Ẑ∩Q in Q̂.

Lemma 3.4. Let b1, b2, . . . , bm ∈ Ẑ be such that bi ≡ bj (mod j) for every i divisible by j . Then there is
b ∈ Z such that b ≡ bi (mod i) for all i = 1, . . . ,m.

Proof. Let p1, p2, . . . , ps be all primes that are ≤m. For every k, let qk = prk
k be the largest power of pk

such that qk ⩽ m. By the Chinese remainder theorem, we can find b ∈ Z such that b ≡ bqk (mod qk) for
all k. We claim that b works. Take any i ⩽ m. We prove that b ≡ bi (mod i). Write i as the product
i =

∏
q ′k , where q ′k is a power of pk . Clearly, q ′k divides qk . We have

bq ′k ≡ bi (mod q ′k), by assumption,

bqk ≡ bq ′k (mod q ′k), by assumption,

b ≡ bqk (mod qk), by construction.

It follows that b ≡ bi (mod q ′k) for all k, hence b ≡ bi (mod i). □

Let G(x)=
∑
∞

i=1 ai x i , with ai ∈ Q̂.

Lemma 3.5. For positive integers j ⩽ s, the x j ys-coefficient of ∂G is equal to
j∑

i=0

(−1) j−i
(s+i

s

)( s
j−i

)
as+i .

Proof. We have
1
s!

ds G
dx s =

∞∑
i=0

(s+i
s

)
as+i x i .

The statement follows from Proposition 2.6. □

Set bi = iai for all i ⩾ 1.

Corollary 3.6. If ∂G ∈ Ẑ[[x, y]], then bi −b1 ∈ Ẑ for all i ⩾ 1. In particular, if a1 ∈ Ẑ, then all bi are in Ẑ.

Proof. The xy j -coefficient of ∂G is equal to b j+1− bj . □

Proposition 3.7. Let G ∈Q2
Ẑ

, and let n > 1 be an integer such that ai ∈ Ẑ for all i < n. Let pt < n be a
power of a prime integer p such that pt divides n. Then pt divides bn .

Proof. Take j = pt and s = n− pt ⩾ pt . By Lemma 3.5, the x j ys-coefficient of ∂G is equal to
j∑

i=0

(−1) j−i
(s+i

s

)( s
j−i

)
as+i ∈ Ẑ.

By assumption, all terms in the sum but the last one belong to Ẑ, hence so does the last one:
( n

pt

)
an ∈ Ẑ.

But
( n

pt

)
an =

( n−1
pt−1

)
bn/pt , hence

( n−1
pt−1

)
bn is divisible by pt . As

( n−1
pt−1

)
is prime to p, the coefficient bn
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is divisible by pt (recall that
(a+b

a

)
is relatively prime to p if and only if there is no shift of digits in the

long addition of a and b written in the p-base). □

Proposition 3.8. We have
Q2

Ẑ
= Q̂ · lg1(x)⊕ xẐ[[x]].

Proof. Let G(x)=
∑
∞

i=1ai x i
∈Q2

Ẑ
, and set bi = iai , as before. Adding a1 lg1(x) to G(x), we may assume

that a1 = 0. By Corollary 3.6, we have bi ∈ Ẑ for all i .
We claim that for every positive integer i < n such that i divides n, we have bn ≡ bi modulo i . We

prove this by induction on n. By Lemma 3.4 applied to m = n−1, there is b ∈Z such that b≡ bi modulo i
for all i < n. Subtracting b lg1(x) from G(x), we may assume that bi is divisible by i for all i < n, or
equivalently, ai ∈ Ẑ for all i < n. We prove that bn is divisible by i , for every i < n dividing n.

Case 1: Assume n = pk is a power of a prime p. Then i = pt is a smaller power of p. By Proposition 3.7,
we have that i divides bn .

Case 2: Assume n is not power of a prime. Write n as a product of powers of distinct primes: n=q1q2 · · · qs .
By Proposition 3.7, qk divides bn for every k, hence n divides bn . In particular, i divides bn . The claim
is proved.

Let b ∈ Ẑ be such that b ≡ bn (mod n) for all n. We have

G = b lg1(x)+
∑
n⩾1

bn − b
n

xn
∈ Ẑ · lg1(x)+ xẐ[[x]]. □

Corollary 3.9. Let G(x)= ax+· · · ∈Q2
Ẑ

be a power series with a ∈ Ẑ. Then G(x) ∈ Ẑ · lg1(x)+ xẐ[[x]].

In analogy with partial derivative with respect to the first variable, Definition 2.1, we may define
the partial derivative with respect to any other variable. In the next statement, we will use such partial
derivatives for H(x, y). In particular,

(∂y H)(x, y, z)= H(x, y ∗ z)− H(x, y)− H(x, z)+ H(x, 0).

Lemma 3.10. Let H(x, y)=
∑

i, j⩾1 ai, j x i y j
∈ Q̂[[x, y]] be a power series such that both ∂-partial deriva-

tives of H have coefficients in Ẑ and ai,1, as well as a1,i , are in Ẑ, for all i . Then H(x, y) ∈ Ẑ[[x, y]].

Proof. Consider some j -th row of H : y j
·
∑

i⩾1 ai, j x i. We know that
∑

i⩾1ai, j x i
∈Q2

Ẑ
. By Corollary 3.9,

we have that
∑

i⩾1 ai, j x i is equal to c j ·lg1(x)modulo xẐ[[x]] for some c j ∈ Ẑ. Hence, c j/ i≡ai, j (mod Ẑ)

for all i . Applying the same considerations to the i-th column x i
·
∑

j⩾1 ai, j y j , we obtain

c j

i
≡

di

j
(mod Ẑ),

for certain di ∈ Ẑ. Let us show that all ci (and d j ) are zeros. Indeed, we have

jc j ≡ idi (mod i j).

Hence, jc j is divisible by i , for any i and, hence c j = 0. This implies that ai, j ∈ Ẑ for any i, j . □
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Lemma 3.11. Suppose

H(x1, . . . , xn)=
∑

i1,...,in>0

ai1,...,in x i1
1 · · · x

in
n ∈ Q̂[[x1, . . . , xn]]

is such a power series that all ∂-partial derivatives of H with respect to all variables have coefficients
in Ẑ and ai1,...,in ∈ Ẑ as long as all i j but one are equal to 1. Then H has coefficients in Ẑ.

Proof. Induction on n. For n= 1, there is nothing to prove. For n= 2, this is Lemma 3.10. We can assume
that n ⩾ 3. Suppose we know the statement for r < n. Let L ⊂ [1, n] be some subset. Consider the sum
of monomials of H with i j = 1, for every j ∈ L . Plugging x j = 1 for all j ∈ L , we obtain the power
series in variables x j , j ̸∈ L which we will call the L-cell HL of H . Similarly, considering the sum of the
monomials of H with the given i1 and plugging x1 = 1 into it, we get the power series Hi1(x2, . . . , xn),
which we call the hyperslice of H . Note, that all the cells of H satisfy the conditions of the lemma. By
our assumption, these have all coefficients in Ẑ. That is, ai1,...,in ∈ Ẑ provided, at least, one of the i j is 1.
The hyperslice Hi1 satisfies the conditions of the lemma too (note that n ⩾ 3). Thus, Hi1 has coefficients
in Ẑ and so does H . □

The following theorem is a generalization of Proposition 3.8:

Theorem 3.12. For every n ⩾ 1,

Qn
Ẑ
=

∐
0<r<n

Q̂ · lgr (x)⊕ xẐ[[x]].

Proof. The statement is clear if n ⩽ 0. Now assume that n ⩾ 1. It follows from Lemma 3.2 that∐
0<r<n Q̂ · lgr (x)∩ Ẑ[[x]] = 0.
We prove the rest by induction on n. For n = 1, this follows by definition, and for n = 2, this is given

by Proposition 3.8.

(n⇒ n+ 1): Let G ∈Qn+1
Ẑ

. Consider the power series H(x1, . . . , xn)= ∂
n−1(G). Let

H(x1, . . . , xn)=
∑

i1,...,in⩾1

ai1,...,in x i1
1 · · · x

in
n .

Note that the degreewise smallest term of ∂n−1(lgn(x)) is (−1)nx1 · · · xn . By subtracting an appropriate
Q̂-multiple of lgn(x) from G, we may assume that a1,...,1 = 0.

As ∂(H) has coefficients in Ẑ, the “ray”
∑

i⩾1ai,1,...,1x i
1 is a power series with terms of degree ⩾ 2

whose ∂-derivative is integral. By Corollary 3.9, up to a power series in Ẑ[[x1]], it is equal to c · lg1(x1),
for some c ∈ Ẑ.

Since
∂n−1(lgn)(x1, . . . , xn)= lg1(x1) · · · lg1(xn),

subtracting from G(x) an appropriate multiple of lgn(x), we may assume that the coefficients ai,1,...,1 are
in Ẑ, for all i ⩾ 1. Since H is symmetric, by Lemma 3.11, all coefficients of the power series H are in Ẑ.
By the induction hypothesis, G(x) ∈Qn

=
∐

0<r<n Q̂ · lgr (x)+ xẐ[[x]]. □
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3B. The groups Qn. Write Qn for Qn
Z ⊂Qn

Ẑ
.

We define a homomorphism

ρn :Qn
→ Q̂n−1

for n ⩾ 1 as the composition (see Theorem 3.12)

Qn ↪→Qn
Ẑ
=

∐
0<r<n

Q̂ · lgr (x)⊕ xẐ[[x]]
proj
−−→

∐
0<r<n

Q̂ · lgr (x)≃ Q̂n−1.

We will show that the map ρn is surjective.
Consider the power series

l̃gr (x)= (−1)r
∑

0<i1<···<ir

x ir

i1 · · · ir
≡ (−1)r xr

r !
(mod xr+1).

For a sequence a = (ai )i⩾1 in Ẑ, let us denote by a · l̃gr (x) ∈ Q̂[[x]] the power series

(−1)r
∑

0<i1<···<ir

ai1 · x
ir

i1 · · · ir
≡ (−1)r

a1

r !
xr (mod xr+1).

If all ai ∈ Z, we have a · l̃gr (x) ∈Q[[x]].

Lemma 3.13. For every sequence a, we have

(x − 1) · d
dx
(a · l̃gr (x))= a · l̃gr−1(x).

Proof. Write (−1)r a · l̃gr (x) =
∑

bi x i and (−1)r−1a · l̃gr−1(x) =
∑

ci x i . We need to prove that
(m+ 1)bm+1−mbm = cm for every m. We have

(m+ 1)bm+1 =
∑

0<i1<···<ir−1<m+1

ai1

i1 · · · ir−1
.

The sum of the terms with ir−1 < m is equal to mbm . The sum of the terms with ir−1 = m coincides
with cm . □

In particular, 8(l̃gr (x)) = l̃gr−1(x). Note that we also have 8(lgr (x)) = lgr−1(x) and series l̃gr (x)
and lgr (x) have no constant terms for r ⩾ 1. Since the kernel of 8 consists of constants only and
l̃g1(x)= lg1(x), by definition, it follows by induction on r that l̃gr (x)= lgr (x), for all r . In particular,
we can define the product a · lgr (x) as above.

Lemma 3.14. For every c ∈ Ẑ and every integer r > 0, there is a sequence c̃ = (ci )i⩾1 of integers ci ∈ Z

such that ci ≡ c (mod i) for all i and

(c− c̃) · lgi (x) ∈ Ẑ[[x]]

for all i = 1, . . . , r , where c− c̃ is the sequence (c− ci )i⩾1.
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Proof. Take any collection c̃ = (ci )i⩾1 of integers. Note that for every i ⩾ 1 and k = 1, . . . , r , the
x i+k−1-coefficient of c̃ · lgk(x) is a linear combination of c1, . . . , ci with rational coefficients where the
ci -coefficient is equal to (−1)k/(i(i + 1) · · · (i + k− 1)).

We will modify c1, c2, . . . inductively to make all coefficients of the power series

Gk = (c− c̃) · lgk(x)

integral for all k = 1, . . . , r . Let c1 be an integer congruent to c modulo r !, so the xk-coefficient of Gk is
integer for every k = 1, . . . , r . Suppose we have modified c1, . . . cn so that the x j -coefficient of Gk is
integral for all k = 1, . . . , r and j ⩽ n+ k− 1.

By induction on k = 1, . . . , r , we will modify cn+1 to make integral the xn+k-coefficient of Gk . Note
that the integral x j -coefficients of Gk for j ⩽ n+ k− 1 will not change. If k = 1, we don’t modify cn+1:
the power series G1 is already integral.

k⇒ k+ 1: By Lemma 3.13,

(x − 1) ·
dGk+1

dx
= Gk .

Hence, if Gk =
∑

i⩾k bi x i and Gk+1 =
∑

i⩾k+1 ai x i , then

an+l+1 =
−1

n+l+1
(bk + . . .+ bn+l)

for all l.
By induction, bk, . . . , bn+k are integral. Recall that these are linear combinations of the c′i , where

c′i = c−ci and c′n+1 appear only in bn+k . We modify cn+1 by adding the integer t (n+1)(n+2) · · · (n+k)
to cn+1 with some t ∈ Z. Note that bk, . . . , bn+k−1 remain unchanged and bn+k changes to bn+k + t , so it
stays integral. Choose t to make an+k+1 integral.

Note that c′n+1 comes with coefficient (−1)l/((n+ 1) · · · (n+ l)) in the xn+l-coefficient of Gl . Since
(n + 1) · · · (n + l) divides (n + 1) · · · (n + k) when l ⩽ k, the xn+l-coefficient of Gl remains integral
for l ⩽ k. □

Now we prove that the map ρn : Qn
→ Q̂n−1 is surjective. Since q · lgr ∈ Qn for all q ∈ Q and

r = 1, . . . , n− 1, we have Qn−1
⊂ Im(ρn). It suffices to show that Ẑn−1

⊂ Im(ρn). Choose cr ∈ Ẑ for
r = 1, . . . , n− 1. By Lemma 3.14, there are sequences of integers c̃r such that (cr − c̃r ) · lgr (x) ∈ Ẑ[[x]].

As
c̃r · lgr (x)= cr · lgr (x)− (cr − c̃r ) · lgr (x),

we have ρn
(∑

0<r<n c̃r · lgr (x)
)
= (cr )r=1,...,n−1, proving that ρn is surjective.

Note that the kernel of ρn is equal to xẐ[[x]] ∩Q[[x]] = xZ[[x]]. Thus, we have an exact sequence

0→ xZ[[x]] →Qn ρn
−→ Q̂n−1

→ 0. (3.15)

We have proved that if n ⩾ 1, the group Qn is generated by xZ[[x]] and the power series (c− c̃) · lgr (x),
as in Lemma 3.14, where c ∈ Ẑ and r = 1, . . . , n− 1.
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The power series in Qn can be approximated by polynomials as follows:

Lemma 3.16. For every m > 0 and n, we have

Qn
⊂ Z[x]⩽m−1+

∑
0<r<n

Q · lgr (x)+ xmQ[[x]],

where Z[x]⩽m−1 is the group of integral polynomials of degree at most m− 1.

Proof. We may assume that n > 1. In view of (3.15), the group Qn modulo

xZ[[x]] +
∑

0<r<n

Q · lgr (x)

is generated by power series of the form c̃ · lgr (x), where r = 1, . . . , n − 1 and c̃ is the collection of
integers such that ci ≡ c (mod i) for all i for an element c ∈ Ẑ as in Lemma 3.14.

Let d be an integer congruent to c modulo the least common multiple of the denominators of the
x i -coefficients of lgr (x) for all i = 1, . . . ,m−1. Then the xm-truncation F of (c̃−d) · lgr (x) is contained
in Z[x]⩽m−1 and c̃ · lgr (x) is congruent to F modulo Z · lgr (x)+ xmQ[[x]]. □

4. Operations

Let k be a field of characteristic 0, and write Smk for the category of smooth quasiprojective varieties
over k. An oriented cohomology theory A∗ over k is a functor from Smop

k to the category of Z-graded
commutative rings equipped with a push-forward structure and satisfying certain axioms (see [Vishik
2019, Definition 2.1]). We write

A∗(X)=
∐
n∈Z

An(X)

for a variety X in Smk , and let A∗(k) denote the coefficient ring A∗(Spec k).
Let A∗ be an oriented cohomology theory. There is a (unique) associated formal group law

FA(x, y)=
∑

i, j⩾0

a A
i, j x

i y j
= x + y+ a1,1 · xy+ higher terms ∈ A∗(k)[[x, y]]

that computes the first Chern class of the tensor product of two line bundles L and L ′ (see, for example,
[Panin 2003, p. 3 and Section 3.9], [Panin 2004, Section 2.7], [Levine and Morel 2007, §1.1] or [Vishik
2019, §2.3]):

cA
1 (L ⊗ L ′)= FA

(
cA

1 (L), cA
1 (L

′)
)
.

Example 4.1. The Chow theory CH∗ takes a smooth variety X to the Chow ring CH∗(X) of X . We have
CH∗(k)= Z and FCH(x, y)= x + y is the additive group law.

Example 4.2 (see [Levine and Morel 2007, Example 1.15]). The graded K-theory K ∗gr takes X to the
Laurent polynomial ring K0(X)[t, t−1

], graded by the powers of the Bott element t of degree −1, over
the Grothendieck ring K0(X) of X . We have K ∗gr(k) = Z[t, t−1

] and FKgr(x, y) = x + y − t xy is the
multiplicative group law.
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Example 4.3 (see [Cai 2008; Dai and Levine 2014]). The connective K-theory takes X to the ring CK∗(X)
of X . We have CK∗(k)= Z[t] and FC K (x, y)= x + y− t xy.

All cohomology theories in these examples are of rational type (see [Vishik 2019, §4.1] and [Levine
and Morel 2007]).

If A∗ is an oriented cohomology theory and R a commutative ring, the functor A∗R defined by
A∗R(X) = A∗(X)⊗Z R is also an oriented cohomology theory with values in the category of graded
R-algebras.

Definition 4.4. Let A∗ and B∗ be two oriented cohomology theories. An R-linear operation G : A∗R→ B∗R
is a morphism between functors A∗R and B∗R considered as contravariant functors from Smk to the category
of R-modules (cf. [Vishik 2019, Definition 3.3]). Note that G may not respect the gradings on A∗R and B∗R .

Let n,m ∈ Z. A morphism G : An
R→ Bm

R between contravariant functors from Smk to the category of
R-modules can be viewed as an R-linear operation via the obvious composition A∗R→→ An

R→ Bm
R ↪→ B∗R .

All such operations form an R-module OP n,m
R (A∗, B∗). The composition of operations yields an R-linear

pairing
OP n,m

R (A∗, B∗)⊗R OPm,r
R (B∗,C∗)→OP n,r

R (A∗,C∗).

In particular, OP n,n
R (A∗) :=OP n,n

R (A∗, A∗) has a structure of an R-algebra.

Example 4.5 (see [Cai 2008; Dai and Levine 2014]). Multiplication by t yields an operation CKn+1
R →CKn

R

that is an isomorphism if n < 0. There are graded R-linear operations

CK∗R→ CH∗R and CK∗R→ (K ∗gr)R.

The sequence
CKn+1(X)

t
−→ CKn(X)→ CHn(X)→ 0

is exact for every n and X .
If n ⩾ 0, the image of the homomorphism

CKn(X)→ K n
gr(X)= K0(X)t−n

≃ K0(X)

is generated by the classes of coherent OX -modules with codimension of support at least n. If n ⩽ 0, this
map is an isomorphism.

The following fundamental theorem was proved in [Vishik 2019, Theorem 6.2]:

Theorem 4.6. Let A∗ be a cohomology theory of rational type and B∗ be any oriented cohomology theory
over k. Let R be a commutative ring. Then there is an R-isomorphism between the set OP n,m

R (A∗, B∗) of
R-linear operations G : An

R→ Bm
R and the set consisting of the following data {Gl, l ∈ Z⩾0}:

Gl ∈ HomR
(

An−l(k)⊗ R, B∗(k)[[x1, . . . , xl]](m)⊗ R
)

satisfying

(1) Gl(α) is a symmetric power series for all l and α ∈ An−l(k)⊗ R,

(2) Gl(α) is divisible by x1 · · · xl for all l and α,
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(3) Gl(α)(y+B z, x2, . . . , xl)=
∑

i, j Gi+ j+l−1(α · a A
i, j )(y

×i , z× j , x2, . . . , xl), for l > 0, where a A
i, j are

the coefficients of the formal group law of A∗ and the sum y+B z is taken with respect to the formal
group law of B∗ (here, t×i denotes i copies of t).

Here, B∗(k)[[x1, . . . , xn]](m) is the subgroup in B∗(k)[[x1, . . . , xn]] consisting of all homogeneous
degree m power series (all the xi have degree 1).

The functions Gl are determined by the operation G as follows (see [Vishik 2019, §5]): Write L i for
the pull-back of the canonical line bundle on P∞ with respect to the i-th projection (P∞)l→ P∞. Then

Gl(α)
(
cB

1 (L1), . . . , cB
1 (L l)

)
= G

(
α · cA

1 (L1) · . . . · cA
1 (L l)

)
, (4.7)

where c1 is the first Chern class.

Remark 4.8. Theorem 4.6 was proved in [Vishik 2019, Theorem 6.2] in the case R = Z. The general
case readily follows. Indeed, multiplication by an element r ∈ R yields operations r : An

R → An
R and

r : Bm
R → Bm

R . An additive operation G : An
R→ Bm

R is R-linear if and only if G ◦ r = r ◦G for all r ∈ R.
The latter is equivalent to the equality Gl ◦ r = r ◦Gl for all l, i.e., that all Gl are R-linear.

Example 4.9 (see [Vishik 2019, §6.3]). Let A∗ be a cohomology theory of rational type and m ∈ Z.
Consider the power series [m](x) := x +A · · · +A x ∈ A∗(k)[[x]] (m times). The Adams operation
9 A

m ∈OP∗,∗R is determined by (Gl)l⩾0, where Gl is multiplication by the power series [m](x1) · · · [m](xl)

(l factors), in particular, G0 is the identity. The Adams operations satisfy the relations

9 A
k ◦9

A
m =9

A
km =9

A
m ◦9

A
k

for all k and m.

4A. Operations in connective K-theory. We would like to determine the R-module OP n,m
R of all R-linear

operations G :CKn
R→CKm

R for any pair of integers n and m. By Theorem 4.6, G is given by a collection
of power series Gl(α) ∈ R[t][[x1, . . . , xn]](m), where α ∈ CKn−l

R (k) and l ⩾ 0, satisfying the conditions
of the theorem. The group CKn−l

R (k) is trivial if l < n and CKn−l
R (k)= R · t l−n otherwise. (Recall that t

has degree −1.) In the first case, Gl(α)= 0, and in the latter case, the power series Gl(α) are uniquely
determined by Gl(t l−n). We will simply write Gl for Gl(t l−n).

If l ⩾ max(1, n), Theorem 4.6 (3) reads as follows (here z̄ denotes z2, . . . , zl):

Gl(x + y− t xy, z̄)= Gl(x, z̄)+Gl(y, z̄)−Gl+1(x, y, z̄).

In other words,

Gl+1 =−∂t Gl, (4.10)

where the derivative ∂t is taken with respect to FCK(x, y)= x+y−t xy. Thus, Gl+1 is uniquely determined
by Gl .

If n > 0, then the operation G yields the double-symmetric power series Gn ∈ R[t][[x1, . . . , xn]](m)

that is divisible by x1 · · · xn . Conversely, if we have that H ∈ R[t][[x1, . . . , xn]](m) is a double-symmetric
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power series divisible by x1 · · · xn , then setting Gn+i := (−1)i∂ i
t (H) for all i ⩾ 0, we get a sequence of

power series that determines an R-linear operation G (see Observation 2.3).
If n ⩽ 0, then the operation G is determined by G0 ∈ R[t]m and the power series G1 ∈ R[t][[x]]m that

is uniquely determined by (G1)|t=1 ∈ xmax (1,m)R[[x]]. If m > 0, then G0 = 0, otherwise G0 ∈ R · t−m and
we can combine G0 and G1 together into the power series H = (G0−G1)|t=1 ∈ R[[x]].

If L ∈ R[t][[x1, . . . , xn]](m), then v(L|t=1)⩾m. Conversely, for every J ∈ R[[x1, . . . , xn]]with v(J )⩾m,
there is a unique homogeneous power series L ∈ R[t][[x1, . . . , xn]] of degree m such that L|t=1 = J . If L
is double-symmetric and divisible by x1 · · · xn , then so is L|t=1 (with respect to the derivative ∂ given by
the formal group law x + y− xy) and conversely.

We have proved the following statement:

Proposition 4.11. Let R be a commutative ring, and let n and m be two integers. An R-linear operation
G : CKn

R→ CKm
R is determined by:

(1) A power series H ∈ xmax (0,m)R[[x]], if n ⩽ 0. In this case, G0 = H(0) · t−m and G1 ∈ x R[t][[x]](m)
is a unique homogeneous power series such that H = (G0−G1)|t=1 and Gl = (−1)l−1∂ l−1

t (G1) for
l > 1,

(2) A double-symmetric power series J ∈ R[[x1, . . . , xn]] divisible by x1 · · · xn such that v(J ) ⩾ m, if
n>0. In this case Gl =0 for l=0, . . . , n−1 and Gn ∈ R[t][[x1, . . . , xn]](m) is a unique homogeneous
power series such that Gn|t=1 = J and Gl = (−1)l−n∂ l−n

t (Gn) for l > n.

Let R be a commutative ring that is torsion free as an abelian group. Define an R-module homomorphism

λn,m :Qn,m
R →OP n,m

R ,

see Definition 3.3, as follows: If n ⩽ 0, then λn,m(H) for H ∈Qn,m
= xmax (0,m)

· R[[x]] is the operation
given by Proposition 4.11 (1). If n > 0, then λn,m(H) for H ∈ Qn,m is the operation given by the
polynomial J = (−1)n∂n−1(H) as in Proposition 4.11 (2).

The following theorem determines the R-module of operations OP n,m
R in terms of the modules Qn,m

R

of power series in one variable:

Theorem 4.12. Let R be a commutative ring that is torsion free as an abelian group and K = R⊗Q.
The homomorphisms λn,m yield an R-linear isomorphism between OP n,m

R and the factor module of Qn,m
R

by the K -subspace spanned by lgi (x), where i = 1, . . . , n− 1. In particular, OP n,m
R ≃ xmax (0,m)

· R[[x]],
if n ⩽ 0, and OP1,m

R ≃ xmax (1,m)
· R[[x]].

Proof. The surjectivity of λn,m follows from Propositions 2.9 and 4.11. The kernel of λn,m is determined
in Proposition 2.5. □

Corollary 4.13. The map λn,m yields an isomorphism (see Definition 3.1)

Qn
R ∩ xmax (0,n,m)

· K [[x]]
∼
−→OP n,m

R .

Proof. The case m ⩽ n follows from the theorem. Otherwise, by Observation 2.7, v(∂n−1x i ) = i for
all i ⩾ n. □
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Let n,m ∈ Z and i, j be nonnegative integers. We define an R-linear homomorphism

Qn,m
R →Qn+i,m− j

R

as follows: If n ⩽ 0,m ⩽ 0 and n+ i > 0, the map

Qn,m
R = R[[x]] → x R[[x]] ↪→Qn+i,m− j

R

takes H to ∂0(H)= H − H(0). Otherwise, Qn,m
R ⊂Qn+i,m− j

R , and the map we define is the inclusion.
Multiplication by tk yields an operation CK∗+k

R → CK∗R and, therefore, yields the homomorphisms
OP n,m

R →OP n+i,m− j
R for all i, j ⩾ 0.

Proposition 4.14. The diagram

Qn,m
R

λn,m

��

// Qn+i,m− j
R

λn+i,m− j
��

OP n,m
R

// OP n+i,m− j
R ,

is commutative.

Proof. The case i = 0 follows directly from the definition. It remains to consider the case i = 1 and j = 0.
Suppose first that n > 0. Let H ∈ Qn,m

R ⊂ Qn+i,m− j
R and G = λn,m(H) ∈ OP n,m

R . In particular,
Gn|t=1 = (−1)n−1∂n−1(H). Denote by G ′ the image of G in OP n+1,m

R . Write L i for the pull-back of the
canonical line bundle on P∞ with respect to the i-th projection (P∞)n+1

→ P∞. The power series G ′n+1

is determined by, see (4.7), the equality

G ′n+1
(
c1(L1), . . . , c1(Ln+1)

)
= G ′

(
c1(L1) · · · c1(Ln+1)

)
= G

(
tc1(L1) · · · c1(Ln+1)

)
= Gn+1(t)

(
c1(L1), . . . , c1(Ln+1)

)
= Gn+1

(
c1(L1), . . . , c1(Ln+1)

)
,

hence G ′n+1 = Gn+1. It follows from (4.10) that

G ′n+1|t=1 = Gn+1|t=1 =−(∂t Gn)|t=1 =−∂(Gn|t=1)

=−∂((−1)n∂n−1(H))= (−1)n+1∂n(H),

and therefore, G ′ = λn+1,m(H).
If n < 0 or if n = 0 and m > 0, we have Qn,m

R ⊂ Qn+1,m
R and the statement follows immediately

from the definitions. It remains to consider the case n = 0 and m ⩽ 0. Let H ∈ Q0,m
R = R[[x]] and

G = λ0,m(H) ∈ OP0,m
R . In particular, H = (G0−G1)|t=1. Denote by G ′ the image of G in OP1,m

R . A
computation, as above, shows that G ′1 = G1. Hence,

G ′1|t=1 = G1|t=1 =−(H − H(0)).

Therefore, G ′ = λ1,m(H − H(0)) and H − H(0) is the image of H in Q1,m
R . □
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Corollary 4.13 and Proposition 4.14 yield:

Corollary 4.15. If m ⩽ n then the map OP n,n
R →OP n,m

R is an isomorphism.

In particular, there is a canonical ring homomorphism

OP n,n
R →OP n+1,n

R
∼
−→OP n+1,n+1

R .

Example 4.16. Note that the identification OP 0,0
R = R[[x]] is not a ring isomorphism. The corresponding

ring structure on R[[x]] will be described in Section 4E. The natural surjective homomorphism

R[[x]] =OP 0,0
R →OP 1,1

R = x R[[x]]

takes a power series G(x) to G(x)−G(0). Its kernel is generated by 1. The complementary operation
G(x) 7→ G(0) on CK0

= K0 is an idempotent that takes the class of a vector bundle E to rank(E) · 1,
where 1 is the identity in K0. In particular, we get a natural R-algebra isomorphism OP 0,0

R ≃ R×OP 1,1
R .

4B. Adams operations. Let R be a torsion free ring. We define the composition

Adn : R[[x]] →Qn
R
λn,n
−−→OP n,n

R ,

where the first map is the identity if n ⩽ 0 and it is the composition of the projection ∂0
: R[[x]]→ x R[[x]]

and the inclusion of x R[[x]] into Qn
R . The image of Adn is denoted OP n,n

R,cl and called the submodule of
classical operations.

If n ⩽ 0, we have OP n,n
R,cl =OP n,n

R = R[[x]]. If n ⩾ 1, it follows from Lemma 3.2 and Theorem 4.12
that in the case R has no nontrivial Z-divisible elements (for example, R = Z or Ẑ), the restriction of Adn

on x R[[x]] is injective and, therefore, OP n,n
R,cl ≃ x R[[x]].

Let m be an integer. In the notation of the Example 4.9, [m](x) = (1− (1− t x)m)/t . In view of
Proposition 4.11, the Adams operations 9m ∈OP n,n

R,cl are defined by

9m = Adn((1− x)m). (4.17)

Since the power series (1− x)m generate R[[x]] as topological R-module in the x-adic topology, the group
of classical operations OP n,n

R,cl is topologically generated by the Adams operations.
By Proposition 4.14, we have that the operations9k are compatible with the canonical homomorphisms

OP n,n
R →OP n+1,n+1

R .
For every k ⩾ 0, consider the additive operations ϒk =

∑k
i=0(−1)i

(k
i

)
9i . Then ϒk = λn,n(xk) if k ⩾ 0.

Recall that ϒ0 = 0 if n ⩾ 1. It follows that the R-module OP n,n
R,cl consists of all linear combinations∑

k⩾0 αk ·ϒk with αk ∈ R (cf. [Vishik 2019, Theorem 6.8]). If R has no nontrivial Z-divisible elements,
the coefficients αk , (where k ⩾ 0 if n ⩽ 0 and k ⩾ 1 if n ⩾ 1) are uniquely determined by the operation.

4C. Operations over Ẑ. In Section 3, we determined the modules Qn
R over the ring R= Ẑ. Theorems 3.12

and 4.12 yield:
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Theorem 4.18. There are canonical isomorphisms

OP n,n
Ẑ
=OPn,n

Ẑ,cl
≃

{
Ẑ[[x]], if n ⩽ 0,
xẐ[[x]], if n ⩾ 1.

In particular, the natural map OP n,n
Ẑ
→OPn+1,n+1

Ẑ
is an isomorphism for all n ⩾ 1. It follows from

Theorem 4.12 that for any two integers n and m,

OPn,m
Ẑ
≃

{
xmax (0,m)

· Ẑ[[x]], if n ⩽ 0,
{G ∈ xẐ[[x]] | v(∂n−1(G))⩾ m}, if n ⩾ 1.

4D. Operations over Z. Now we turn to the case R = Z and, for simplicity, write OP n,m for OP n,m
Z .

Corollary 4.13 implies that the natural homomorphism OP n,m
→OP n,m

Ẑ
is injective. In particular, we

can identify OP n,n with a subgroup of OP n,n
Ẑ
= xẐ[[x]] for all n ⩾ 1, so we have a sequence of subgroups

OP1,1
⊂OP 2,2

⊂ · · · ⊂OP n,n
⊂ · · · ⊂ xẐ[[x]].

Recall (Theorem 4.12) that OP n,m
≃ xmax (0,m)

· Z[[x]] if n ⩽ 0 and OP n,m
≃ OP n,n if m ⩽ n by

Corollary 4.15.
Let m ⩾ n ⩾ 1. By Theorem 4.12, we can identify OP n,m with the factor group of Qn,m by the

subgroup
∑n−1

r=1 Q · lgr (x). It follows that the map ρn in (3.15) yields a homomorphism

OP n,m
→ (Q̂/Q)n−1

= (Ẑ/Z)n−1.

By the proof of Lemma 3.16, this map is surjective. Its kernel is denoted OP n,m
cl and called the subgroup of

classical operations. In the case n =m, this group coincides with the group of classical operation defined
earlier. In view of Corollary 4.13, OP n,m

cl is identified with the group
(∐n−1

r=1 Q·lgr (x)+xZ[[x]]
)
∩xmQ[[x]].

We view the group xZ[x]⩽m−1 of integral polynomials of degree at most m − 1 as a lattice in the
Q-space xQ[[x]]/(xm). Denote by Ln,m the intersection of xZ[x]⩽m−1 with the image in xQ[[x]]/(xm) of
the space

∐n−1
r=1 Q · lgr (x). Then Ln,m is a subgroup of xZ[x]⩽m−1 of rank n− 1.

We get the following description of the group of classical operations:

OP n,m
cl = Ln,m

⊕ xmZ[[x]].

If m = n ⩾ 1, the map of Q-spaces is an isomorphism and Ln,n
= xZ[x]⩽n−1. It follows that

OP n,n
cl = xZ[[x]].

Recall that OP n,n
cl =OP n,n

= Z[[x]] if n ⩽ 0 and OP n,m
=OP n,n if m ⩽ n.

We summarize our results in the following statement:

Theorem 4.19. The natural homomorphism OP n,m
→OP n,m

Ẑ
is injective. For any integers m ⩾ n ⩾ 1,

there is an exact sequence

0→OP n,m
cl →OP n,m

→ (Ẑ/Z)n−1
→ 0,

where OP n,m
cl = Ln,m

⊕ xmZ[[x]]. Moreover, OP n,n
cl = xZ[[x]].
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Remark 4.20. Similar arguments yield the following formula for m ⩾ n ⩾ 1:

OP n,m
Ẑ
= Ln,m

Ẑ
⊕ xmẐ[[x]],

where Ln,m
Ẑ
= Ln,m

⊗ Ẑ.

4E. Composition. The R-module homomorphism Adn : R[[x]] →OP n,n
R is not a ring homomorphism.

In this section we introduce a new product on R[[x]] so that Adn becomes an R-algebra homomorphism.
Let H, H ′ ∈ R[[x]], write H ′ =

∑
i⩾0 ai x i and define the composition in H and H ′ by the formula

H ◦ H ′ = a0 · H(0)+
∑
i⩾1

(−1)i ai · (∂
i−1 H)(x×i ).

The composition ◦ is distributive in H and H ′ with respect to addition. (Note that the usual substitution
of power series is only one-sided distributive.) The polynomial 1− x is the identity for the composition
(1− x) ◦ H = H = H ◦ (1− x) for all H . We view R[[x]] as an R-algebra with product given by the
composition.

Lemma 4.21. The maps Adn : R[[x]] →OP n,n
R are R-algebra homomorphisms.

Proof. In view of Proposition 4.14, it suffices to consider the case n = 0. Let H, H ′ ∈ R[[x]] and write
H ′ =

∑
i⩾0 ai x i . If G0,G1, . . . ∈ R[t][[x]] is the sequence of power series corresponding to Ad0(H) (see

Proposition 4.11), then G0 = H(0) ∈ R, H = (G0−G1)|t=1 and Gi = (−1)i−1∂ i−1
t (G1) for i > 1. Note

that G1(t, x)=−H(t x)+ H(0).
Write L for the canonical line bundle on P∞. By (4.7) and (4.10),

Ad0(H)(c1(L)i )= Gi (c1(L)×i )= (−1)i−1(∂ i−1
t G1)(c1(L)×i )= (−1)i (∂ i−1 H)(tc1(L)×i ).

Therefore, we have(
Ad0(H) ◦Ad0(H ′)

)
(c1(L))=−Ad0(H)

(∑
i⩾1

ai c1(L)i
)
=−

∑
i⩾1

ai (Ad0(H))(c1(L)i )

=

∑
i⩾1

(−1)i−1ai · (∂
i−1 H)

(
tc1(L)×i).

On the other hand, write H ◦ H ′ = (G ′′0 −G ′′1)|t=1, where G ′′0 = a0 · H(0) and

G ′′1 =
∑
i⩾1

(−1)i−1ai · (∂
i−1 H)(t x×i ).

It follows that

Ad0(H ◦ H ′)(c1(L))= G ′′1(c1(L))=
∑
i⩾1

(−1)i−1ai · (∂
i−1 H)(tc1(L)×i )= (Ad0(H)◦Ad0(H ′))(c1(L)).

If r ∈ R = CK0
R(k), then

Ad0(H ◦ H ′)(r)= G ′′0 · r = a0 · H(0) · r = Ad0(H)(a0 · r)= (Ad0(H) ◦Ad0(H ′))(r).

Overall, Ad0(H ◦ H ′)= Ad0(H) ◦Ad0(H ′). □
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The polynomials Am := (1− x)m satisfy Adn(Am)=9m in OP n,n
R . It follows from Lemma 4.21 and

Example 4.9 that
Ak ◦ Am = Akm = Am ◦ Ak

for all k and m.

Proposition 4.22. Let R be a commutative ring and K a Q-algebra. Then

(1) The composition ◦ in R[[x]] is commutative.

(2) The power series lgr (x) ∈ K [[x]], r ⩾ 0, are orthogonal idempotents that partition the identity, that
is, lgn(x) ◦ lgm(x)= δn,m · lgn(x) and 1− x =

∑
r⩾0 lgr (x).

Proof. (1) It follows from the definition that the power series xn
◦G and G ◦ xn are contained in xn R[[x]]

for all n and G. Let H,G ∈ R[[x]]. Fix an integer n > 0 and write H = H1 + H2 and G = G1 +G2,
where H1 and G1 are linear combinations of the Adams polynomials Ai and H2,G2 ∈ xn R[[x]]. As H1

and G1 commute, the remark above yields H ◦G−G ◦ H ∈ xn R[[x]]. Since this holds for all n, we have
H ◦G = G ◦ H .

(2) The iterated derivative ∂ i (lgn(x)) is zero if i ⩾ n and

(∂n−1 lgn)(x1, . . . , xn)=

n∏
i=1

log(1− xi ).

It follows that lgn(x) ◦ xm
= 0 if m > n and

lgn(x) ◦ xn
= (−1)n(∂n−1 lgn)(x

×n)= (−1)n(log(1− x))n = (−1)nn! lgn(x).

This calculation together with the first part of the proposition and the fact that the lowest term of lgr (x) is
xr/r ! show that the power series lgr (x) are orthogonal idempotents.

Finally,
∑

n⩾1 lgn(x)= elg1(x) = (1− x). □

Since lgr (x) are orthogonal idempotents which form a topological basis of the power series ring, from
the continuity and distributivity of ◦ , we obtain that our composition is associative.

Theorems 4.18 and 4.19 together with Proposition 4.22 yield the following corollary:

Corollary 4.23. The rings OP n,n
Ẑ

and OP n,n are commutative.

Let K be a Q-algebra. We view K [[x]] as a ring with respect to addition and composition. Let
G ∈ K [[x]] and write G =

∑
i⩾0 ai lgi for (unique) ai ∈ K . Denote as K [n,∞) the ring of K -sequences,

parametrized by integers ⩾ n under pointwise operations. It follows from Proposition 4.22 that the map

b : K [[x]] → K [0,∞), (4.24)

taking G to the sequence (ai)i⩾0, is a ring isomorphism. It takes xnK[[x]] onto K [n,∞) for every n.

Example 4.25. The image of the polynomial Am(x)= (1− x)m is equal to (1,m,m2, . . . ). Indeed, by
substituting y = log(1− x) into the equality emy

=
∑

i⩾0mi yi/i !, we get Am(x)=
∑

i⩾0mi lgi (x).
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4F. Topology. In this section, we introduce three topologies on Ẑ[[x]].

Proposition 4.26. Let G ∈OP n,n
R and m ⩾ n. The following conditions are equivalent:

(1) G ∈ Im(OP n,m
R →OP n,n

R );

(2) G is zero on every smooth variety of dimension < m.

Proof. (1)=⇒ (2): Since CKm
R(X)= 0, for any variety X of dimension <m, the operation G is zero on X .

(2)=⇒ (1): Let n ⩾ 1. By Proposition 4.11 (2), the operation G is given by a double-symmetric power
series H(x1, . . . , xn) ∈ R[[x1, . . . , xn]](n) such that H = (Gn)|t=1. We need to prove that v(H)⩾ m. We
will show that any monomial x̄ r̄

= xr1
1 · · · x

rn
n of H with

∑
i ri < m is zero.

Consider X r̄ :=
∏

i Pri . This is a variety of dimension<m. Write xi for the first Chern class in CK1
R(X r̄ )

of the pull-back of the canonical line bundle on Pri with respect to the i-th projection X r̄→Pri . By (4.7),

0= G(x1 · · · xn)= Gn(x1, . . . , xn) ∈ CKn
R(X r̄ ).

By the projective bundle theorem,

CKn
R(X r̄ )= R[[x1, . . . , xn]]/(x

r1+1
1 , . . . , xrn+1

n ).

Therefore, the monomial x̄ r̄ of H is trivial.
The case n ⩽ 0 follows similarly (and easier) from Proposition 4.11 (1). □

Corollary 4.27. Let d ⩾ 0 be an integer and G ∈OP n,n . Then there is a Z-linear combination G ′ ∈OP n,n

of the Adams operations 9k with k = 0, . . . , d such that G and G ′ agree on CKn(X) for all smooth
varieties X of dimension ⩽ d.

Proof. By Lemma 3.16 applied to m = d + 1, there is a polynomial G ′ ∈ Z[x] of degree at most d
such that G −G ′ ∈

∑
0<r<n Q · lgr (x)+ xd+1Q[[x]]. Let X be a smooth variety of dimension ⩽ d. As

v(∂n−1(G−G ′))⩾ d+ 1, in view of Theorem 4.12, we have G−G ′ ∈ Im(OPn,m
→OPn,n). Therefore,

by Proposition 4.26, it follows that G − G ′ is trivial on X . Finally, G ′ is a linear combination of the
Adams polynomials Ak with k = 0, . . . , d. □

Definition 4.28. We introduce three topologies on Ẑ[[x]]:

• τs is generated by the neighborhoods of zero Um consisting of power series divisible by xm , for
some m ⩾ 0, i.e., τs is the x-adic topology.

• τw is generated by the neighborhoods of zero Um + VN , where VN consists of all power series
divisible by some N ∈ N.

• τo is generated by the neighborhoods of zero Wm consisting of power series, where the respective
operation acts trivially on varieties of dimension < m.

Recall, that a topology ϕ is coarser than the topology ψ , denoted ϕ ⩽ ψ , if any set open with respect
to ϕ is also open with respect to ψ .
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Proposition 4.29. τw ⩽ τo ⩽ τs .

Proof. The inequality v(G(x)) ⩾ m implies v(∂n−1G(x)) ⩾ m, and therefore, by Theorem 4.12,
G ∈ Im(OPn,m

Ẑ
→OPn,n

Ẑ
). Therefore, it follows from Proposition 4.26 that τo ⩽ τs .

Note that the topology τw is generated by the neighborhoods of zero UN ,m = (N , xm) ⊂ Ẑ[[x]], and
the topology τo is generated by the neighborhoods of zero Wk = {G ∈ Ẑ[[x]] | v(∂n−1(G)) ⩾ k} by
Proposition 4.26. We need to show that for every N and m there is k with Wk ⊂UN ,m .

We have similar compact (Hausdorff) topology τw on Ẑ[[x1, . . . , xn]] so that the map ∂n−1 is continuous
in τw. Note that the map ∂n−1

: Ẑ[[x]]→ Ẑ[[x1, . . . , xn]] is injective and the induced map from Ẑ[[x]] to the
image of ∂n−1 is a homeomorphism (since the image of every closed subset is closed as Ẑ[[x]] is compact
and the target is Hausdorff). In particular, if Gk ∈ Ẑ[[x]] is a sequence such that the sequence ∂n−1(Gk)

converges to 0, then the sequence Gk converges to 0 in Ẑ[[x]].
Now we prove that for every N and m there is k with Wk ⊂UN ,m . Assume on the contrary that for

every k we can find Gk ∈Wk , but Gk /∈UN ,m . Then ∂n−1(Gk) converges to 0, but Gk does not converge
to 0 in Ẑ[[x]], a contradiction. □

Observation 4.30. (1) For n = 1, we have τo = τs .

(2) For n > 1, we have τw ̸= τo ̸= τs .

Proof. (1) This follows from Proposition 4.26, since n = 1.

(2) For n > 1, Wm contains, in particular, all power series
∑

i ai x i
∈ Ẑ[[x]], where a1 = iai , for all

0< i < m, which is not contained in any Ul , for l > 1. Thus, τo ̸= τs .
For m > n ⩾ 1, Wm/Um is a free Ẑ-module of rank (n− 1), while (Um + VN )/Um is a free Ẑ-module

of rank (m− 1). Hence, τw ̸= τo. □

We view OP n,n and OP n,n
Ẑ

as the topological rings for the topologies τw, τo and τs , respectively,
via the inclusions OP n,n ↪→OP n,n

Ẑ
↪→ Ẑ[[x]].

Note that the x-adic topology τs can be defined on R[[x]] for every R.
Consider the restriction b : R[[x]] → K [0,∞) of the map (4.24). We view K [0,∞) as a topological ring

with the basis of neighborhoods of zero given by the ideals K [n,∞) for all n > 0, so that the map is
continuous.

Proposition 4.31. The image of the map b : R[[x]] → K [0,∞) is contained in R[0,∞).

Proof. By Example 4.25, the image of the Adams polynomial Am under the map (4.24) is contained
in R[0,∞). But the set of all linear combinations of Adams polynomials is dense in R[[x]] in the topology τs .
The statement follows since R[0,∞) is closed in K [0,∞). □

Proposition 4.31 identifies the ring OP n,n
Ẑ
⊂ Ẑ[[x]] with a subring of Ẑ[n,∞) and OP n,n with a subring

of Z[n,∞) if n ⩾ 0. Indeed, if n ⩾ 1, the kernel of the composition

Qn
Ẑ

λn,n
−↠ OP n,n

Ẑ

b
−→ Ẑ[0,∞)→ Ẑ[n,∞)



1620 Alexander Merkurjev and Alexander Vishik

is generated by lgr , with 0< r < n, and all these logarithms are contained in the kernel of λn,n .
The ring OP n,n is not a domain: we have (91+9−1)(91−9−1)= 0. Let

e± = 1
2(91±9−1) ∈OP n,n[ 1

2

]
,

so e+ and e− are orthogonal idempotents and e++ e− = 1. There is an embedding

OP n,n ↪→OP n,n[ 1
2

]
=OP n,n[ 1

2

]
e+×OP n,n[ 1

2

]
e−.

Proposition 4.32. If n ⩾ 1, the rings OP n,n[ 1
2

]
e± are domains.

Proof. Recall that there is an injective ring homomorphism

b :OP n,n ↪→ Z[1,∞)

such that b(9m)= (m,m2,m3, . . . ) for all m. In particular,

b(e+)= (0, 1, 0, 1, . . . ) and b(e−)= (1, 0, 1, 0, . . . ).

Lemma 4.33. Let (a1, a2, . . . ) ∈ Im(b). Then for any prime integer p, we have that ai ≡ a j modulo p
if i ≡ j modulo p− 1.

Proof. It suffices to prove the statement for b(9m). We have ai − a j = mi
−m j

= m j (mi− j
− 1). If m is

not divisible by p, then mi− j
− 1 is divisible by p. □

Let G ·H = 0 in OP n,n . Set (a1, a2, . . . )= b(G) and (b1, b2, . . . )= b(H). We have ai bi = 0 for all i .
To prove the statement, it suffices to show that if ai ̸= 0 for some i , then bj = 0 for all j ≡ i modulo 2.

Choose an odd prime p that does not divide ai . By Lemma 4.33, a j is not divisible by p for all j such
that i ≡ j modulo p− 1. In particular, a j ̸= 0, hence bj = 0. Thus, we have proved that bj = 0 for all
j ≡ i modulo p− 1.

Lemma 4.34. There are infinitely many primes q such that gcd(q − 1, p− 1)= 2.

Proof. Let c be the odd part of p− 1 (that is, (p− 1)/c is a 2-power). By Dirichlet, there are infinitely
many primes q such that q ≡ 3 modulo 4 and q ≡ 2 modulo c. Clearly, gcd(q − 1, p − 1) = 2 for
such q . □

Let j be such that j ≡ i modulo 2. We need to prove that bj = 0. Take any prime q as in Lemma 4.34.
There are positive integers k and m such that

t := i + (p− 1)k = j + (q − 1)m.

We have proved that bt = 0 since t ≡ i modulo p− 1. By Lemma 4.33, 0= bt ≡ bj modulo q , i.e., bj is
divisible by q . We have proved that bj is divisible by infinitely many primes q , hence bj = 0. □
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4G. Operations in graded K-theory. In this section, we will determine the R-module of all R-linear
operations G : K n

grR → K m
grR for any pair of integers n and m denoted by OP n,m

R (K ∗gr). Recall that
K n

grR = K 0
grR · t

−n
= CK0

R ·t
−n , hence by Theorem 4.12, we get:

Corollary 4.35. OPn,m
R (K ∗gr)=OP0,0

R (K ∗gr) · t
m−n
=OP0,0

R (CK∗) · tm−n
= R[[x]] · tm−n.

Recall that the product operation in the ring OP n,m
R (K ∗gr)= R[[x]] is the composition ◦ (see Section 4E).

Moreover, R[[x]] is a (topological) bialgebra over R with coproduct defined by the rule

(1− x)n→ (1− x)n ⊗ (1− x)n

for all n ⩾ 0 that reads 9 7→9⊗9 in the language of operations.
Let us describe the dual bialgebra A (over Z) of co-operations as follows: Let A be the subring of

the polynomial ring Q[s] consisting of all polynomials f such that f (a) ∈ Z for all a ∈ Z. In particular,
Z[s] ⊂ A. The polynomials

en :=
1
n!
(−s)(1− s) · · · (n− 1− s)= (−1)n

( s
n

)
∈ A

for all n ⩾ 0 form a basis of A as an abelian group. Consider a pairing

A⊗ R[[x]] → R, a⊗G 7→ ⟨a,G⟩ ∈ R,

such that ⟨en, xm
⟩ = δn,m . This pairing identifies R[[x]] with the dual coalgebra for A via the isomorphism

HomZ(A, R)
∼
−→ R[[x]],

taking a homomorphism α : A→ R to the power series
∑

n⩾0 α(en)xn .

Lemma 4.36. For every polynomial f ∈ A, we have ⟨ f, (1− x)m⟩ = f (m).

Proof. We may assume that f = en for some n. Then

⟨ f, (1− x)m⟩ = ⟨en, (1− x)m⟩ = (−1)n
(m

n

)
= en(m)= f (m). □

The lemma shows that a co-operation f evaluated at the Adams operation 9m is equal to f (m).
It follows from Lemma 4.36 that

⟨sn, (1− x)km
⟩ = (km)n = kn

·mn
= ⟨sn, (1− x)k⟩ · ⟨sn, (1− x)m⟩.

As the composition in R[[x]] satisfies (1− x)k ◦ (1− x)m = (1− x)km , the composition in R[[x]] is dual to
the coproduct of A taking sn to sn

⊗ sn in A⊗ A.
The equality

⟨si+ j , (1− x)m⟩ = mi+ j
= mi

·m j
= ⟨si , (1− x)m⟩ · ⟨s j , (1− x)m⟩

shows that the product in A is dual to the coproduct in R[[x]]. Thus, the bialgebra R[[x]] of operations is
dual to the bialgebra A of co-operations.
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Remark 4.37. The polynomial ring Z[s] is a bialgebra with respect to the coproduct s→ s⊗ s. The dual
bialgebra over R is R[0,∞). The dual of the embedding Z[s]→ A is the homomorphism b : R[[x]]→ R[0,∞)

defined in Proposition 4.31, since by Lemma 4.36,

⟨sn, (1− x)m⟩ = mn
=

〈
sn, b((1− x)m)

〉
as b((1− x)m)= (1,m, . . . ,mn, . . . ).

5. Multiplicative operations

Definition 5.1. A multiplicative operation G : A∗→ B∗ is a morphism of functors from Smk to the
category of rings. That is, the ring structure is respected. (We don’t assume that G is a graded ring
homomorphism.)

As was noticed in topology and then in the algebrogeometric context in [Panin 2004, §2.7.5] there is
a functor from the category of oriented cohomology theories and their multiplicative operations to the
category of formal group laws. Let us briefly describe this functor.

If A∗ and B∗ are oriented cohomology theories over k, to any multiplicative operation G : A∗→ B∗

one can assign the morphism

(ϕG, γG) : (A∗(k), FA)→ (B∗(k), FB)

of the respective formal group laws, where ϕG : A∗(k)→ B∗(k) is the restriction of G to Spec(k) and
γG(x) ∈ x B∗(k)[[x]] is defined by the condition

G
(
cA

1 (O(1))
)
= γG

(
cB

1 (O(1))
)
∈ B∗(P∞)= B∗(k)[[x]].

In the algebrogeometric context, the power series γG(x)/x was introduced in this generality in [Panin
2004, Definition 2.5.1] and [Smirnov 2006] in order to state and prove Riemann–Roch type theorems
[Panin 2004, Theorems 2.5.3 and 2.5.4] for a multiplicative operation G. This series is called the inverse
Todd genus of G.

The following theorem permits us to reduce the classification of multiplicative operations to algebra.

Theorem 5.2 [Vishik 2019, Theorem 6.9]. Let A∗ be a theory of rational type and B∗ be any oriented
cohomology theory. Then the assignment G 7→ (ϕG, γG) is a bijection between the set of multiplicative
operations G : A∗→ B∗ and the set of morphisms of formal group laws.

Example 5.3. Let R be either Z, Zp or Ẑ and b ∈ R. The Adams operation 9b : CK∗R → CK∗R is
homogeneous and multiplicative. The corresponding map ϕ is the identity and γ = (1− (1− t x)b)/t .
If c ∈ R×, write 9c

b for the homogeneous multiplicative twisted Adams operation with ϕ(t) = ct and
γ = (1− (1− t x)bc)/ct (in particular, 91

b =9b). It follows from the equality

9c
b(t x)=9c

b(t)9
c
b(x)= ct · γ (x)= 1− (1− t x)bc
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that on CKn
R the operation9c

b is equal to c−n
·9bc. For any c∈ R, let9c

0 be the homogeneous multiplicative
operation with ϕ(t)= ct and γ = 0. This operation is zero in positive degrees and is equal to cn

· rank on
CK−n

R = (K0)R for n ⩾ 0.
Write 2 for the multiplicative operation CK∗R→ CK∗R which is the identity on CK0

R , multiplication by
tn
:CKn

R→CK0
R if n ⩾ 0 and the canonical isomorphism CKn

R→CK0
R (inverse to multiplication by t−n)

if n⩽0. This operation is not homogeneous and its image is CK0
R . Set 9̃c

b :=2◦9
c
b . This is a multiplicative

operation with image in CK0
R . The corresponding function ϕ(t)= c and γ = (1− (1− t x)bc)/c.

The introduced operations satisfy the following relations (use Theorem 5.2): 90
0 = 9̃

0
0 and

9c
b ◦9

e
d =9

ce
bd , 9c

b ◦ 9̃
e
d = 9̃

e
cbd , 9̃c

b ◦9
e
d = 9̃

ce
bd , 9̃c

b ◦ 9̃
e
d = 9̃

e
cbd .

Over Q, every formal group law is isomorphic to the additive one. Hence, for every theory C∗, we
have isomorphisms of formal group laws.

(id, expC) : (C
∗
⊗Z Q, FC)

..

(C∗⊗Z Q, Fadd) : (id, logC)nn

Suppose that (in the context of Definition 5.1) the coefficient ring B∗(k) of the target theory has
no torsion. Then the composition (id, expB) ◦ (ϕG, γG) ◦ (id, logA) identifies the set of multiplicative
operations A∗→ B∗ with a subset of morphisms of formal group laws

(A∗⊗Z Q, Fadd)→ (B∗⊗Z Q, Fadd).

The latter morphism is defined by (ψ, γ ), where, in our case, ψ = ϕ⊗Z Q, for some ring homomorphism
ϕ = ϕG : A∗(k)→ B∗(k) and γ (x)= b · x , for some b ∈ B∗(k). In other words,

(ϕG, γG)= (id, logB) ◦ (ϕG, γ ) ◦ (id, expA).

Then

γG(x)= ϕG(expA)(b · logB(x)).

5A. Multiplicative operations in CK. For A∗= B∗=CK∗
Ẑ

, we have A= B= Ẑ[t], FA= FB= x+y−t xy
and

logCK(x)=
log(1− t x)

t
, expCK(z)=

1−ezt

t
.

Note that a ring homomorphism ϕ from Ẑ[t] to a ring T such that
⋂

n>0 nT = 0 is uniquely determined
by ϕ(t) in T (such a choice is realized by a homomorphism, if Ẑ can be mapped to T ). Indeed, suppose
that ϕ and ψ satisfy ϕ(t)= ψ(t). For any f ∈ Ẑ[t] and n > 0, write f = g+ nh for some g ∈ Z[t] and
h ∈ Ẑ[t]. Then ϕ(g) = ψ(g) and hence ϕ( f )−ψ( f ) ∈ nT . Since this holds for all n > 0, we have
ϕ( f )−ψ( f )= 0 for all f .

Thus, the map ϕG : Ẑ[t] → Ẑ[t] is determined by ϕG(t) = c(t) ∈ Ẑ[t]. Let b = b(t) ∈ Ẑ[t]. Note
that any choice of b(t) and c(t) gives a morphism of rational formal group laws and so, a multiplicative
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operation G : CK∗
Ẑ
⊗ZQ→ CK∗

Ẑ
⊗ZQ with

γG(t, x)=
1− (1− t x)b(t)c(t)/t

c(t)
=

∑
n⩾1

(−1)n−1(t x)n
(b(t)c(t)/t

n

)
c(t)

,

which lifts to an operation CK∗
Ẑ
→ CK∗

Ẑ
if and only if the coefficients of our power series belong to Ẑ.

The coefficient at xn is

an = (−1)n−1 b(t)
∏n−1

k=1
(
b(t)c(t)− kt

)
n!

. (5.4)

Denote by bp(t) and cp(t) the Zp-components of our polynomials. If we have deg(bp(t)cp(t)) > 1 for
some p, the leading term of our t-polynomial will be clearly nonintegral (for some n). Similarly, if for
some p, the constant term of bp(t)cp(t) is nonzero, then the smallest term of the p-component of our
t-polynomial will be nonintegral, for some n. Hence, the polynomial b(t)c(t) is linear. Then, for a given
prime p, either bp(t)= bp and cp(t)= cpt , or bp(t)= bpt and cp(t)= cp, for some bp, cp ∈ Zp. Then
the Zp- component of our coefficient is:

(an)p = (−1)n−1tmbp

(bpcp−1
n−1

)
n

, where m = n− 1 or m = n.

If bp ̸=0, then this will be integral for all n if and only if cp ∈Z×p , while if bp=0, then cp can be an arbitrary
element from Zp. Let us denote the (Zp-components of ) operations with m = n− 1 as 9cp

bp
, while the

ones with m = n as 9̃cp
bp

(see Example 5.3; we suppress p from notations). Here, 9cp
bp

respects the grading
on CK∗Zp

, while 9̃cp
bp

maps CK∗Zp
to CK0

Zp
. The pairs (bp, cp) run over the set (Zp\0)×Z×p ∪ {0}×Zp

and, in addition, we have that 90
0 = 9̃

0
0 .

Thus, any multiplicative operation G on CK∗
Ẑ

splits into the product ×pG(p) of operations on CK∗Zp
,

where each G(p) is one of the 9cp
bp

or 9̃cp
bp

. Let P be the set of prime numbers and J ⊂ P be the subset of
those primes, for which (bp, cp) ̸= (0, 0) and G(p) is 9̃. Then the data (J, b, c), where the p-components
of b, c ∈ Ẑ are bp and cp, determines our operation G. Let us call it J9c

b . Here, (J, b, c) runs over all
possible triples satisfying (1) bp ̸= 0=⇒ cp ∈ Z×p and (2) (bp, cp)= (0, 0)=⇒ p /∈ J .

The operations ∅91
b are (nontwisted) Adams operations with ϕG = id, which naturally form a ring

isomorphic to Ẑ. These operations commute with every other operation. The operations ∅9c
1 are invertible

and form a group isomorphic to Ẑ×. Below we will suppress J =∅ from the notation and will denote
the respective operations simply as 9c

b .
The formulas in Example 5.3 show that the monoid of multiplicative operations is noncommutative.

5B. Multiplicative operations in Kgr over Z. For A∗ = B∗ = K ∗gr, we have A = B = Z[t, t−1
] and

FA = FB = x + y − t xy. Similar calculations, as in the previous section, show that the coefficient an

in (5.4) will belong to Z[t, t−1
] for every n if and only if b(t)c(t) is linear in t . Thus, c(t) = ct l , for

c =±1 and l ∈ Z, and b(t)= bt1−l , for some b ∈ Z.
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Then the coefficient an is

(−1)n−1tn−l

(bc
n

)
c
.

Denote this operation as l9c
b . It scales the grading on K ∗gr by the coefficient l. So, only the operations 19c

b

are homogeneous.
The case c(t)= t and b(t)= b, that is, 191

b corresponds to the Adams operation 9b, see [Vishik 2019,
§6.3]. In this case, ϕG = id. The operation −191

1 is an automorphism of order 2 acting identically on K 0
gr

and mapping t to t−1.
We will omit l and c from the notation l9c

b when these will be equal to 1.

6. Stable operations

The purpose of this section is to describe stable operations in CK and Kgr with integral and Ẑ-coefficients.
The spaces of such operations appear to have countable topological bases, which we describe in Theorems
6.25 and 6.34. We also describe stable multiplicative operations and show that these generate additive
ones only in the case of Ẑ-coefficients.

To be able to discuss stability of operations, we need the notion of a suspension. Following Voevodsky,
Panin [2003] and Smirnov [2006] we can introduce the category of pairs SmOp whose objects are pairs
(X,U ), where X ∈ Smk and U is an open subvariety of X , see [Vishik 2019, Definition 3.1], with the
smash product

(X,U )∧ (Y, V ) := (X × Y, X × V ∪U × Y )

and the natural functor Smk→ SmOp given by X 7→ (X,∅). Then suspension can be defined as

6T (X,U ) := (X,U )∧ (P1,P1
\0).

Any theory A∗ extends from Smk to SmOp by the rule

A∗((X,U )) := Ker(A∗(X)→ A∗(U )).

Any additive operation A∗→ B∗ on Smk extends uniquely to an operation on SmOp.
An element εA

= cA
1 (O(1)) ∈ A∗((P1,P1

\0)) defines an identification

σ A
T : A∗((X,U ))

∼=
−→A∗+1(6T (X,U )),

given by x 7→ x ∧ εA.

Definition 6.1. For any additive operation G : A∗ → B∗, we define its desuspension as the unique
operation 6−1G : A∗→ B∗ such that

G ◦ σ A
T = σ

B
T ◦6

−1G.

Definition 6.2. A stable additive operation G : A∗→ B∗ is the collection {G(n)
| n ⩾ 0} of operations

A∗→ B∗ such that G(n)
=6−1G(n+1).
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Proposition 6.3. Suppose that G : A∗→ B∗ is a multiplicative operation with γG(x)≡ bx modulo x2 for
some b ∈ B∗(k). Then 6−1G = b ·G.

Proof. We have

G(σ A
T (u))= G(u ∧ εA)= G(u)∧G(εA)= G(u)∧ (b · εB)= σ B

T (b ·G(u)). □

We call a multiplicative operation G stable if the constant sequence (G,G,G, . . . ) is stable. By
Proposition 6.3, G is stable if and only if the linear coefficient of γG is equal to 1 (see [Vishik 2019,
Proposition 3.8]).

For a commutative ring R, define the operator

8=8R : R[[x]] → R[[x]], 8(G)= (x − 1)dG
dx
,

6A. Stable operations in CK over Ẑ. Recall that when A∗= B∗=CK∗
Ẑ

, the group of additive operations
OP n,n

Ẑ
, for n ⩽ 0 and n ⩾ 1, can be identified with Ẑ[[x]], respectively, xẐ[[x]].

Proposition 6.4. The desuspension operator 6−1
:OP n,n

Ẑ
→OPn−1,n−1

Ẑ
is given by the rule

6−1(G)=
{
8(G), if n ⩽ 1,
∂0(8(G))=8(G)−8(G)(0), if n > 1.

Proof. The Adams operation 9k is identified with the power series Ak(x)= (1− x)k if n ⩽ 0 and with
(1− x)k − 1 if n > 0. By Proposition 6.3, we have 6−19k = k9k , so the formula holds for G =9k .

The map 6−1 is continuous in τo, and the map 8 is continuous in τs . Hence, both maps are continuous
as the maps τs→ τo. Since τo is Hausdorff (as τw is), it follows that the set of power series, where 6−1

and 8 coincide, is closed in τs . But the set of linear combinations of Adams operations is everywhere
dense in τs . □

It follows from Proposition 6.4 that the desuspension map 6−1 is injective and yields a tower of
injective maps in the other direction:

Ẑ[[x]] =OP 0,0
Ẑ

6−1

←−−OP1,1
Ẑ

6−1

←−− · · ·
6−1

←−−OP n,n
Ẑ

6−1

←−− · · · . (6.5)

Moreover, the group OPst
Ẑ

of homogeneous degree 0 stable operations CK∗
Ẑ
→ CK∗

Ẑ
that is the limit of

the sequence (6.5) is naturally isomorphic to the group

S := ∩n Im(8n)= ∩n Im((6−1)n)⊂ Ẑ[[x]].

Indeed, if {G(n)
|n⩾0} is a stable operation, then G(0)

=8n(G(n)) for every n, hence G(0)
∈ S. Conversely,

given G ∈ S, write G =8n(H (n)) for every n. Since Ker(8n) consists of constant power series only, the
sequence G(n)

=8(H (n+1)) is a stable operation.

Lemma 6.6. Let G ∈ xẐ[[x]] and n ⩾ 1. Then

(1) ∂n(G) has coefficients in Z if and only if ∂n−1(8(G)) has coefficients in Z.

(2) v(∂n(G))⩾ m for some m if and only if v(∂n−1(8(G)))⩾ m− 1.
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Proof. (⇒): Follows from Proposition 2.6 for both (1) and (2).

(⇐): Simply write Hk for (x − 1)k(dk G/dxk). We claim that ∂n−1(Hk) has coefficients in Z in case (1)
and v(∂n−1(Hk)) ⩾ m − k in case (2) for every k ⩾ 1. We prove the statements by induction on k. To
show (k⇒ k+ 1): We have Hk+1 =8(Hk)− k Hk , hence

∂n−1(Hk+1)= ∂
n−1(8(Hk)

)
− k∂n−1(Hk).

Then k∂n−1(Hk) has coefficients in Z in case (1) and v(k∂n−1(Hk))⩾ m− k in case (2) by the induction
hypothesis. As the derivative ∂n(Hk) has coefficients in Z in case (1) and v(∂n(Hk))⩾ m− k in case (2),
it follows from Proposition 2.6, applied to the power series Hk , that ∂n−1(8(Hk)) also has coefficients
in Z in case (1) and v

(
∂n−1(8(Hk))

)
⩾ m−k−1 in case (2). It follows that ∂n−1(Hk+1) has coefficients

in Z in case (1) and v(∂n−1(Hk+1))⩾ m− k− 1 in case (2). The claim is proved.
Note that all coefficients of Hk are divisible by k! in Ẑ. It follows that the power series (1/k!)∂n−1(Hk)

have coefficients in Z in case (1). By Proposition 2.6, ∂n(G) has coefficients in Z in case (1) and
v(∂n(G))⩾ m in case (2). □

In particular, we can describe the integral operations OP n,m as follows:

Proposition 6.7. Let G ∈ xẐ[[x]] and m ⩾ n ⩾ 1. Then G ∈ OP n,m if and only if 8n(G) ∈ Z[[x]] and
v(8n(G))⩾ m− n.

Proof. Theorem 4.12 and iterated applications of Lemma 6.6 show that G ∈ OP n,m if and only if
∂0(8n−1(G)) ∈ Z[[x]] and v(∂0(8n−1(G))) ⩾ m − n+ 1. Thus, it suffices to prove the following for a
power series H ∈ Ẑ[[x]] and integer k ⩾ 0:

(1) ∂0(H) ∈ Z[[x]] ⇐⇒8(H) ∈ Z[[x]],

(2) v(∂0(H))⩾ k+ 1⇐⇒ v(8(H))⩾ k.

If ∂0(H) ∈ Z[[x]], then clearly 8(H) ∈ Z[[x]]. Conversely, if 8(H) ∈ Z[[x]], then

∂0(H) ∈Q[[x]] ∩ Ẑ[[x]] = Z[[x]].

The second statement follows from the obvious equality v(∂0(H))= v(8(H))+ 1. □

Let m a positive integer. It follows from Lemma 6.6 (2) that there is a tower of inclusions as in (6.5):

xmẐ[[x]] =OP0,m
Ẑ
←↩OP1,m+1

Ẑ
←↩ · · · ←↩OPn,n+m

Ẑ
←↩ · · · . (6.8)

Additionally, for every n, we have OP n,n+m
Ẑ

∩OP n+1,n+1
Ẑ

in OP n,n
Ẑ

coincides with OP n+1,n+m+1
Ẑ

. There-
fore, we obtain:

Proposition 6.9. The group of homogeneous degree m stable operations CK∗
Ẑ
→ CK∗+m

Ẑ
is naturally

isomorphic to the intersection xmax(0,m)Ẑ[[x]] ∩ S.
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The map 8 : Ẑ[[x]] → Ẑ[[x]] is continuous in τw, and the space Ẑ[[x]] is compact Hausdorff. Hence,
Im(8n) is closed in Ẑ[[x]] for any n. It follows that the set S is also closed in Ẑ[[x]] in the topology τw,
and hence in τo and τs .

It follow from Proposition 4.26 and Lemma 6.6 that the topology on OPst
Ẑ

induced by τo is generated
by the neighborhoods of zero Wm consisting of all collections {G(n)

| n ⩾ 0} such that G(n) acts trivially
on varieties of dimension < n+m. We still denote this topology by τo.

Let Ar (x)= (1− x)r ∈ Ẑ[[x]] for r ∈ Ẑ. Note that 8(Ar )= r · Ar . In particular, if r is invertible in Ẑ,
then Ar ∈ S.

We can describe the set S via divisibility conditions on the coefficients of the power series.

Theorem 6.10. The set S =∩r Im(8r )⊂ Ẑ[[x]] consists of all power series G =
∑

i⩾0 ai x i satisfying the
following property: for every prime p and every positive integers n and m such that m is divisible by pn ,
for every nonnegative j < m divisible by p, the sum

∑m−1
i= j

(i
j

)
ai is divisible by pn .

Proof. Let n be a positive integer, G ∈ S and write G =8n(H) for some H ∈ Ẑ[[x]]. Consider the ideal
I = (pn, xm)⊂ Ẑ[[x]], where m is divisible by pn . Note that 8(I )⊂ I since pn divides m.

Let G ′ be the xm-truncation of G and H ′ the xm-truncation of H . As G−G ′ ∈ I and H − H ′ ∈ I , we
have G ′−8n(H ′) ∈ I . Since G ′ and 8n(H ′) are polynomials of degree less than m, we conclude that
G ′ and 8n(H ′) are congruent modulo pn .

We write G ′ and H ′ as polynomials in y = x − 1. Since 8n(yi )= in yi , the yi -coefficients of 8n(H ′)
are divisible by pn for all i divisible by p. It follows that the same property holds for G ′. As

G ′ =
m−1∑
i=0

ai x i
=

m−1∑
i=0

ai (y+ 1)i =
m−1∑
i=0

ai

i∑
j=0

( i
j

)
y j
=

m−1∑
j=0

y j
m−1∑
i= j

( i
j

)
ai ,

the divisibility condition holds.
Conversely, as Ẑ =

∏
Zp, it suffices to prove the statement over Zp. Let G ∈ Zp[[x]] satisfy the

divisibility condition in the theorem. Choose n and m such that m is divisible by pn and set I =
(pn, xm)⊂ Zp[[x]] as above. Recall that 8(I )⊂ I . Let F be the xm-truncation of G. By assumption, we
can write F ≡

∑
bi yi modulo pn , where the sum is taken over i < m that are prime to p. In particular,

G ≡
∑

bi yi modulo I .
Choose r > 0 and set F ′ =

∑
(bi/ ir )yi . Then 8r (F ′) =

∑
bi yi
≡ G modulo I , i.e., G is in the

image of 8r modulo I . As Im(8r ) is closed in Zp[[x]] in the topology τw, we have G ∈ Im(8r ) for all r ,
i.e., G ∈ S. □

6B. Stable operations in CK over Z. Now we turn to the study of stable operations over Z.

Proposition 6.11. The preimage of OP n,n under 6−1
:OP n+1,n+1

Ẑ
→OP n,n

Ẑ
is equal to OP n+1,n+1 for

every n ⩾ 0.

Proof. As 6−1
= ∂0
◦8, for n ⩾ 1, and 6−1

=8, for n = 0, this follows from Proposition 6.7. □
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Thus, we have a tower

Z[[x]] =OP 0,0
←↩OP1,1

←↩ · · · ←↩OP n,n
←↩ · · · ,

given by the desuspension and the group OPst of stable homogeneous degree 0 integral operations is
identified with S0 := S ∩Z[[x]], where S is described by Theorem 6.10. Applying Proposition 6.7 again,
we get:

Proposition 6.12. The group of homogeneous degree m stable operations CK∗→ CK∗+m is naturally
isomorphic to the intersection xmax(0,m)Z[[x]] ∩ S0.

We would like to determine the structure of S0.

Lemma 6.13. For every n ⩾ 0, there is a positive integer d such that dxn
∈ S+ xn+1Ẑ[[x]].

Proof. Choose distinct elements r0, . . . , rn ∈ Ẑ× such that ri − r j ∈ Z for all i and j . The x i -coefficients
with i = 0, 1, . . . , n of the power series Ar j (x)= (1− x)r j ∈ S form an (n+1)× (n+1) Van der Monde
type matrix

[
(−1)i

(r j
i

)]
. Its determinant d is a nonzero integer since all ri − r j are integers. It follows

that there is a Ẑ-linear combination of the Ar j that is equal to dxn modulo xn+1. □

Note that any ideal in Ẑ that contains a nonzero integer is generated by a positive integer (the smallest
positive integer in the ideal). It follows from Lemma 6.13 that for every n ⩾ 0, there exists a unique
positive integer dn such that the ideal of all a ∈ Ẑ with the property axn

∈ S+ xn+1Ẑ[[x]] is generated
by dn . We will determine the integers dn below.

For every n ⩾ 0, choose a power series Gn ∈ S such that Gn ≡ dnxn modulo xn+1.

Lemma 6.14. Let G =
∑

i⩾0 ai x i
∈ S be such that a0, . . . , an−1 ∈ Z. Then there exist bi ∈ Ẑ for all i ⩾ n

such that G−
∑

i⩾nbi Gi ∈ S0.

Proof. Find an integer a′n such that an−a′n is divisible by dn , thus, an = a′n+dnbn for some bn ∈ Ẑ. Then
the x i -coefficients of G − bnGn are integer for i = 0, . . . , n. Continuing this procedure, we determine
all bi for i ⩾ n, so that all coefficients of G−

∑
i⩾n bi Gi are integers. □

Theorem 6.15. For all n ⩾ 0, there are power series Fn ∈ S0 such that Fn ≡ dnxn modulo xn+1. Moreover:

(1) The group S0 consists of all infinite linear combinations
∑

n⩾0 an Fn with an ∈ Z.

(2) The group of homogeneous degree m stable operations CK∗→ CK∗+m is naturally isomorphic to
the group of all infinite linear combinations

∑
n⩾max(0,m)an Fn with an ∈ Z.

Proof. Fix n ⩾ 0. The coefficient dn of Gn is an integer. Applying Lemma 6.14, we find bi ∈ Ẑ for
i ⩾ n+ 1 such that Fn := Gn −

∑
i⩾n+1 bi Gi ∈ S0. Statements (1) and (2) are clear. □

6C. The integers dn. Our next goal is to determine the integers dn . Let n > 0 be an integer. For an
integer r write Lr for the n-tuple of binomial coefficients((r

0

)
,
(r

1

)
, . . . ,

( r
n−1

))
= (1, r, . . . ) ∈ Zn.
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For an n-sequence ā = (a1, . . . , an) of positive integers, let d(ā) be the determinant of the n×n matrix
with columns La1, La2, . . . , Lan . We have

d(ā)=
(∏

s>t

(as − at)

)/ n−1∏
k=1

k! ∈ Z. (6.16)

Let p be a prime integer. An n-sequence ā is called p-prime if all its terms are prime to p. Let ā(n)min be
the “smallest” strictly increasing p-prime n-sequence

(1, 2, . . . , p− 1, p+ 1, . . . ).

Lemma 6.17. Let ā be a p-prime n-sequence that differs from ā(n)min at one term only. Then d(ā(n)min) divides
d(ā) in the ring of p-adic integers Zp.

Proof. Suppose ā is obtained from ā(n)min by replacing a term a by b. It follows from (6.16) that

d(ā)

d(ā(n)min)
=

∏
(b− a′)∏
(a− a′)

,

where the products are taken over all terms a′ of āmin, except a. Since a is prime to p, the product∏
(a−a′) generates the same ideal in Zp as a!(c−a)! , where c is the last term of āmin. Similarly, as b is

prime to p, the product
∏
(b− a′) generates the same ideal in Zp as

b(b− 1) · · · (b− a+ 1) · (b− a− 1) · · · (b− c+ 1)(b− c)= (−1)c−aa!(c− a)!
(b

a

)(c−b
c−a

)
. □

Corollary 6.18. The integer d(ā(n)min) divides d(ā(n+1)
min ) in Zp.

Proof. In the cofactor expansion (Laplace’s formula) of the determinant d(ā(n+1)
min ) along the last row, all

minors are divisible by d(ā(n)min) in view of Lemma 6.17. □

Let Mn be the Zp-submodule of (Zp)
n that is generated by the tuples La1, La2, . . . , Lan , where

(a1, a2, . . . , an)= ā(n)min.

Lemma 6.19. Let b be an integer prime to p. Then the n-tuple Lb is contained in Mn . In others words,
the Zp-submodule of (Zp)

n generated by Lb for all integers b > 0 prime to p coincides with Mn .

Proof. By Cramer’s rule, the solutions of the equation Lb = x1La1+· · ·+ xn Lan are given by the formula
xi = d(ā(i))/d(ā

(n)
min), where the sequence ā(i) is obtained from ā(n)min by replacing the i-th term with b. By

Lemma 6.17, we have xi ∈ Zp. □

The following statement is a generalization of Lemma 6.17:

Corollary 6.20. Let ā be any p-prime n-sequence. Then d(ā(n)min) divides d(ā) in Zp.

Set

dn = d(p)n :=
d(ā(n+1)

min )

d(ā(n)min)
.

By Corollary 6.18, we have dn ∈ Zp.
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Write n in the form n = (p− 1)k+ i , where i = 0, 1 . . . , p− 2 and k =
⌊

n/(p− 1)
⌋

. Then it follows
from (6.16) that

dnZp =
pk
· k!

n!
Zp, or, equivalently, vp(dn)= k+ vp(k!)− vp(n!), (6.21)

where vp is the p-adic discrete valuation.
Note that vp((n+k)!)= vp((pk+i)!)= vp((pk)!)= k+vp(k!), hence dnZp = (n+k)!/n!Zp. Observe

that the function n 7→ vp(dn) is not monotonic.

Proposition 6.22. An (n+1)-tuple (0, 0, . . . , 0, d) is contained in Mn+1 if and only if d is divisible by dn

in Zp.

Proof. As in the proof of Lemma 6.19, (0, 0, . . . , 0, d) ∈ Mn+1 if and only if d · d(ā(i)) is divisible by
d(ā(n+1)

min ) in Zp for all i , where the sequence ā(i) is obtained from ā(n)min by deleting the i-th term in ā(n+1)
min .

We have d(ā(i))= d(ā(n)min) if i = n+1, and by Corollary 6.20, all d(ā(i)) are divisible by d(ā(n)min), whence
the result. □

For an integer r , let as before Ar (x)= (1− x)r . Note that the n-tuple Lr is the tuple of coefficients
(after appropriate change of signs) of the xn-truncation of the polynomial Ar . Denote by N (p) the
Zp-submodule of Zp[x] generated by Ar for all integers r > 0 prime to p. We get an immediate corollary
from Lemma 6.19 and Proposition 6.22.

Proposition 6.23. Let d ∈ Zp and n ⩾ 0. Then dxn
∈ N (p)

+ xn+1Zp[x] if and only if d is divisible by dn .
Moreover, there is a Zp-linear combination Gn of the Adams polynomials Aa1, Aa2, . . . , Aan+1 , where
(a1, a2, . . . , an+1)= ā(n+1)

min , such that Gn ≡ dnxn (mod xn+1).

Proposition 6.24. The set SZp =
⋂

r Im(8r
Zp
) contains a power series ≡ dxn (mod xn+1) if and only if

d is divisible by dn in Zp.

Proof. Suppose that G ∈ SZp and G ≡ dxn modulo xn+1. Choose integers k > 0 such that pk is divisible
by d(ā(n+1)

min ) and m > n is divisible by pk , and consider the ideal I = (pk, xm) ⊂ Zp[[x]]. We have
G =8k(G ′) for some G ′ ∈ Zp[[x]] and write

G ′ =
m−1∑
i=0

bi Ai modulo xmZp[[x]]

for some bi ∈ Zp. Applying 8k and taking into account 8k(Ai )= ik Ai , we get G =8k(G ′) ∈ N (p)
+ I .

Taking the xn+1-truncations, we see that

dxn
∈ N (p)

+ xn+1Zp[x] + pkZp[x].

As pk is divisible by d(ā(n+1)
min ), we conclude that pkZp[x] ⊂ N (p)

+ xn+1Zp[x]. Therefore, we have
dxn
∈ N (p)

+ xn+1Zp[x]. By Proposition 6.23, d is divisible by dn . □
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Now we turn to the ring Ẑ. The integers dn defined before Lemma 6.14 are the products of primary
parts of dn = d(p)n determined as above for every prime p. In view of (6.21), we have

vp(dn)=
⌊ n

p−1

⌋
+ vp

(⌊ n
p− 1

⌋
!

)
− vp(n!)

for every prime p. For example, d0= 1, d1= 2, d2= 22
·3, d3= 23, d4= 24

·3 ·5, d5= 25
·3, d6= 26

·32
·7

and d7 = 27
· 32.

Propositions 6.23 and 6.24 yield:

Theorem 6.25. Let n ⩾ 0 be an integer. Then:

(1) There exists a Ẑ-linear combination Gn of the Adams polynomials Aa1, Aa2, . . . , Aan+1 for some
a1, a2, . . . , an+1 ∈ Ẑ× such that Gn ≡ dnxn modulo xn+1.

(2) The set S =
⋂

r Im(8r
Ẑ
) contains a power series ≡ dxn (mod xn+1) if and only if d is divisible by dn

in Ẑ. It consists of all (infinite) linear combinations of Gn .

Remark 6.26. It follows from Proposition 6.23 that a1, a2, . . . , an+1 ∈ Ẑ× can be chosen so that for
every prime p, we have ((a1)p, (a2)p, . . . , (an+1)p)= ā(n+1)

min with respect to p. In particular, a1 = 1.

Proposition 6.27. The set S =∩r Im(8r ) is the closure in the topology τs , and hence, in the topologies τo

and τw of the set of all ( finite) Ẑ-linear combinations of the power series Ar for r ∈ Ẑ×.

Proof. Denote as Ts, Tw, To the closures of the mentioned set of linear combinations in our three topologies.
As S is closed in τw, we have Ts ⊂ To ⊂ Tw ⊂ S.

Let G ∈ xkẐ[[x]]∩S. Then by Theorem 6.25, G≡dxk (mod xk+1), where d=dk ·c, for some c∈ Ẑ. We
know that there exists a Ẑ-linear combination Gk of the power series Aa1, Aa2, . . . , Aak (with invertible ai )
such that Gk ≡ dk xk (mod xk+1). Hence, G − c · Gk ∈ xk+1Ẑ[[x]] ∩ S. Applying this inductively, we
obtain that, for any G ∈ S and any positive integer m, there exists a finite Ẑ-linear combination H of
invertible Ar , such that G− H ∈ xmẐ[[x]] ∩ S. Therefore, Ts = S, and hence Ts = To = Tw = S. □

6D. Stable operations in Kgr. In Section 4G, we defined the bialgebra A of co-operations in Kgr

with a canonical element s ∈ A. Recall that for a commutative ring R, the bialgebra of operations
OP n,n

R (Kgr) = OP0,0
R (CK) = R[[x]] is dual to A. The same proof as in Proposition 6.4 shows that the

desuspension operator

6−1
: R[[x]] =OPn,n

R (Kgr)→OPn−1,n−1
R (Kgr)= R[[x]]

coincides with 8. It follows that

OPst
R(Kgr)= lim(R[[x]]

8
←− R[[x]]

8
←− R[[x]]

8
←− · · · ).

Lemma 6.28. The desuspension operator 8 is dual to the multiplication by s in A.

Proof. As 8((1− x)m)= m(1− x)m , in view of Lemma 4.36, we have〈
en,8((1− x)m)

〉
= ⟨en,m(1− x)m⟩ = m · en(m)= ⟨sen, (1− x)m⟩. □
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The localization A[1/s] can be identified with colim(A
s
−→A

s
−→· · · ). Therefore,

OPst
R(Kgr)≃ Hom

(
A
[1

s

]
, R

)
,

i.e., the bialgebra OPst
R(Kgr) of stable operations is dual to A[1/s].

The bialgebra A[1/s] coincides with the algebra of degree 0 stable operations K0(K ) in topology (see
[Johnson 1984, Proposition 3] and [Adams et al. 1971]). Moreover, A[1/s] is a free abelian group of
countable rank [Adams and Clarke 1977, Theorem 2.2] and can be described as the set of all Laurent
polynomials f ∈Q[s, s−1

] such that f (a/b) ∈ Z[1/(ab)] for all integers a and b ̸= 0.
It follows that the bialgebra A[1/s] admits an antipode s 7→ s−1 that makes A[1/s] a Hopf algebra. It

follows that OPst
R(Kgr) is a (topological) Hopf algebra.

Remark 6.29. We have a diagram of homomorphisms of bialgebras and its dual:

Z[s]

��

// A

��

R[0,∞) R[[x]]b
oo

Z[s, s−1
] // A

[1
s

]
RZ

OO

OPst
R(Kgr)

OO

oo

The bottom maps are homomorphisms of Hopf algebras. The antipode of RZ takes a sequence ri to r−i .

The group of degree 0 stable operations OPst
Ẑ
(Kgr) coincides with OPst

Ẑ
(CK)= S, whose structure was

described in Theorem 6.25. Our nearest goal is to determine the structure of OPst
Z(Kgr). We remark that

this group is different from OPst
Z(CK)= S ∩Z[[x]].

Let R be one of the following rings: Z, Zp or Ẑ. Recall that we have an injective homomorphism
bR : R[[x]] → R[0,∞) taking (1 − x)m to the sequence (1,m,m2, . . . ). The operation 8 on R[[x]]
corresponds to the shift operation 5 on R[0,∞) defined by 5(a)i = ai+1.

An n-interval of a sequence a in R[0,∞) or RZ is the n-tuple (ai , ai+1, . . . , ai+n−1) for some i . We
say that this interval starts at i .

For every n ⩾ 1, let Mn be the R-submodule of Rn generated by the n-tuples r̄ := (1, r, r2, . . . , rn−1)

for all integers r > 0. Note that Mn is of finite index in Rn .

Lemma 6.30. A sequence a ∈ R[0,∞) belongs to the image of bR if and only if for every n > 0, the
n-interval of a starting at 0 is contained in Mn .

Proof. (⇒): This is clear.
(⇐): Note that by assumption a is contained in the closure of Im(bR). On the other hand, if R = Zp or Ẑ,
the space R[[x]] is compact in τw and R[0,∞) is Hausdorff, hence Im(bR) is closed, i.e., a ∈ Im(bR). If
R = Z, it follows from the case R = Ẑ that a = b

Ẑ
(G) for some G ∈ Ẑ[[x]]. Since at the same time

G ∈Q[[x]], we have G ∈ Z[[x]]. □

Let TR ⊂ RZ be the R-submodule of all sequences a ∈ RZ such that every n-interval of a is contained
in Mn for all n ⩾ 1. If a ∈ TR , by Lemma 6.30, for every n ⩾ 0, there is Gn ∈ R[[x]] such that bR(Gn)=

(a−n, a−n+1, . . . ). Since8(Gn+1)=Gn , the sequence (Gn)n⩾0 determines an element in OPst
R(Kgr). This

construction establishes an isomorphism OPst
R(Kgr)≃ TR . Note that T

Ẑ
=OPst

Ẑ
(CK)= S =

⋂
r Im(8r ).
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For every n ⩾ 1, let Nn be the R-submodule of Rn generated by the n-tuples r̄ for all r ∈ R×. Then
Nn is of finite index in Rn if R = Zp or Ẑ.

Note that every n-tuple r̄ , with r ∈ R×, extends to the sequence a with ai = r i that is contained in TR .

Lemma 6.31. The module Nn ⊂ Mn for all n ⩾ 1.

Proof. It suffices to consider the case R=Zp. Choose an integer m> 0 such that pm
·Zn

p⊂Mn . Let r ∈Z×p .
Find an integer r ′ > 0 congruent to r modulo pm . Then the tuple r̄ = (1, r, r2, . . . , rn−1) is congruent
to r̄ ′ modulo pm . Hence, r̄ = r̄ ′+ (r̄ − r̄ ′) ∈ Mn + pmZn

p ⊂ Mn . □

It follows from Lemma 6.31 that every element in Nn is an n-interval of a sequence in TR .

Proposition 6.32. If R = Zp or Ẑ, the R-module TR consists of all sequences a ∈ RZ such that every
n-interval of a is contained in Nn for all n ⩾ 1.

Proof. We may assume that R = Zp. Let a ∈ TR . In view of Lemma 6.31, it suffices to show that every
n-interval v of a starting at i is contained in Nn for all n ⩾ 1. Take an integer m > 0 and consider the
(n+m)-interval w of 5−m(a) starting at i , so that v is the part of w on the right. Write w as a (finite)
linear combination

∑
tr r̄ over positive integers r , where tr ∈ Zp and r̄ = (1, r, r2, . . . , rn+m−1) ∈ Mn+m .

Applying 5m to 5−m(a), we see that v =
∑

trrm r̂ , where r̂ = (1, r, r2, . . . , rn−1) ∈ Mn . As rm is
divisible by pm if r is divisible by p, it follows from the definition of Nn that v ∈ Nn + pm Mn . Since Nn

is of finite index in Mn , we can choose m such that pm Mn ⊂ Nn , hence a ∈ Nn . □

Denote by θ : RZ
→ RZ the reflection operation taking a sequence a to the sequence θ(a)i = a−i .

Corollary 6.33. The module TR is invariant under θ .

Proof. In the case R = Zp or Ẑ, it suffice to notice that if r ∈ R×, the symmetric n-tuple

(rn−1, rn−2, . . . , r, 1)= rn−1(1, r−1, (r−1)2, . . . , (r−1)n−1)
is contained in Nn . If R = Z, the statement follows from the equality TZ = T

Ẑ
∩ZZ. □

Now let R = Ẑ and n ⩾ 0. The ideal of all t ∈ Ẑ such that (0, . . . , 0, t) ∈ Nn is generated by a (unique)
positive integer d̃n = n! · dn , where the integers dn were introduced in Section 6C. We know that

vp(d̃n)= vp((n+ kp)!)

for all primes p, where kp = ⌊n/(p− 1)⌋. By Theorem 6.15, there are power series Fn ∈ S0 = S ∩Z[[x]]
such that Fn ≡ dnxn modulo xn+1.

Let f (n) ∈ T
Ẑ

be the image of Fn under the map S = OPst
Ẑ
(Kgr)→ ẐZ. Thus, (0, . . . , 0, d̃n) is the

n-interval of f (n) starting at 0. For example, we can choose

f (0) = ( . . . , 1, 1, 1, 1, . . . ),

f (1) = ( . . . , 0, 2, 0, 2, . . . ).

As in the proof of Theorem 6.15, modifying f (n) by adding multiples of the shifts of f (m) for m > n and
their reflections, we can obtain f (n) ∈ ZZ for all n.
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Theorem 6.34. Every sequence a ∈ TZ ≃OPst
Z(Kgr) can be written in the form

a =
∞∑

i=0

[
b2i5

−iθ( f (2i))+ b2i+15
i ( f (2i+1))

]
for unique b0, b1, . . . ∈ Z.

Proof. We determine the integers b0, b1, . . . inductively so that for every m ⩾ 0 the sum
∑m

i=0 of the
terms in the right-hand side and the sequence a have the same (2m+ 2)-intervals starting at −m. □

Remark 6.35. Observe that {5−iθ( f (2i)), 5i ( f (2i+1)) | i ∈Z⩾0} is also a topological basis of OPst
Ẑ
(Kgr).

Note that, at the same time, { f ( j)
| j ∈ Z⩾0} forms a topological basis for OPst

Z(CK) and OPst
Ẑ
(CK). This

shows the relation between operations in CK and those in Kgr. In particular, there are substantially more
operations in the former theory.

6E. Stable multiplicative operations. We first consider stable multiplicative operations on CK∗
Ẑ

. From
Proposition 6.3, we obtain:

Proposition 6.36. Stable multiplicative operations CK∗
Ẑ
→ CK∗

Ẑ
are exactly operations 9c

1 , for c ∈ Ẑ×.
These operations are invertible and form a group isomorphic to Ẑ×. Similarly, stable multiplicative
operations on CK∗ form a group isomorphic to Z×.

Restricted to CK0
Ẑ
, the operation 9c

1 is given by G0 = 1 (as it is multiplicative and so, maps 1 to 1),
while G(t x) = G(t)G(x) = ct · γG(x) = 1− (1− t x)c and so, our operation corresponds to the power
series Ac = (1− x)c. In other words, on CK0

Ẑ
, the operation 9c

1 coincides with the Adams operation 9c.
Then on CKn

Ẑ
, it is equal to c−n

·9c.
Proposition 6.27 gives:

Corollary 6.37. The set of homogeneous stable additive operations on CK∗
Ẑ

is the closure in the topology
τo of the set of (finite) Ẑ-linear combinations of stable multiplicative operations.

Remark 6.38. Note that the respective statement for Z-coefficients is not true, as there are only two stable
multiplicative operations on CK∗, namely, 91

1 and 9−1
1 , while the group of stable additive operations

there has infinite (uncountable) rank.

Now we consider stable multiplicative operations on K ∗gr over Z.

Proposition 6.39. Stable multiplicative operations K ∗gr→ K ∗gr are exactly operations 9c
1 , for c = ±1.

These are invertible and form a group isomorphic to Z× ∼= Z/2Z.

Proof. The linear coefficient of γG for the operation l9c
b is t1−lb, see Section 5B. This will be equal to 1

exactly when l = 1 and b = 1. □

As above, the operation 9c
1 corresponds to the power series Ac = (1 − x)c. On K n

gr it coincides
with c−n

·91
c .
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