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Degree growth for tame automorphisms of an affine
quadric threefold

Dang Nguyen-Bac

We consider the degree sequences of the tame automorphisms preserving an affine quadric threefold.
Using some valuative estimates derived from the work of Shestakov and Umirbaev and the action of this
group on a CAT(0), Gromov-hyperbolic square complex constructed by Bisi, Furter and Lamy, we prove
that the dynamical degrees of tame elements avoid any value strictly between 1 and 4

3 . As an application,
these methods allow us to characterize when the growth exponent of the degree of a random product of
finitely many tame automorphisms is positive.

Introduction

Fix a projective variety X of dimension n defined over an algebraically closed field k of characteristic
zero and a rational map f on X . We are interested in the complexity associated to the dynamical system
induced by f , more precisely on the growth of the degrees of the p-fold composition f p

= f ◦ · · · ◦ f .
This general problem was addressed in the work of Russakovski and Shiffman [1997] when X = Pn in
which they related the asymptotic behavior of the images by f of the linear subvarieties of Pn with the
degree sequences. The asymptotic ratios of these sequences, denoted λi ( f ) for i ⩽ n, and referred as
dynamical degrees, control the topological entropy of those maps [Dinh and Sibony 2005] and are crucial
for the construction of an invariant measure of maximal entropy [Bedford and Smillie 1992; Bedford and
Diller 2005; Guedj 2005].

When f is a birational surface map, the situation is completely classified [Blanc and Cantat 2016; Cantat
2011; Diller and Favre 2001; Gizatullin 1980]. For general rational maps on surfaces, the behavior of the
degree is known for morphisms of the affine plane [Favre and Jonsson 2011] and when λ1( f )2 > λ2( f )

[Boucksom et al. 2008].
From the dimension three on, only the degree growth of monomial maps [Favre and Wulcan 2012;

Lin 2012], regular morphisms, pseudoautomorphisms [Bedford 2015; Oguiso and Truong 2014; 2015;
Truong 2016; 2017], birational maps on hyperkähler varieties [Lo Bianco 2019], dominant rational maps
satisfying λ1( f )2 > λ2( f ) [Dang and Favre 2021] and sporadic examples [Abarenkova et al. 1999a;
1999b; Anglès d’Auriac et al. 2006; Bedford and Truong 2010; Bedford and Kim 2014] were studied.
Recently, new constraints on slow degree growth appeared for polynomial maps of the affine space [Urech
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2018], birational mappings [Cantat and Xie 2020] and nonregularizable birational transformations [Lonjou
and Urech 2021], however the general problem of understanding the degree of the iterates of birational
transformations of P3 remains open. The main reason is that we usually rely on the construction of a
good birational model (e.g., an algebraically stable model in the sense of Fornaess and Sibony [1995])
to find the degree sequences, but the structure of the set of birational models of threefolds is far more
complicated than its analog for surfaces. It is thus natural to ask whether we can find a large class of
birational transformations of P3 for which this sequence is fully understood.

A first natural choice would be the group of polynomial automorphisms of the three dimensional
affine space. Even though there has been some recent work on particular subgroups of this group [Lamy
2019; Lamy and Przytycki 2021; Wright 2015], their dynamical degrees were computed explicitly for
degree 2 maps [Maegawa 2001], for degree 3 maps [Blanc and van Santen 2019]. Recently, the author
proved with C. Favre that the dynamical degrees of polynomial automorphisms of A3 are all algebraic
numbers [Dang and Favre 2021]. However, the problem of classifying all the dynamical degrees and
all the possible degree growths remain open. We have thus turned our attention to a simpler situation,
namely the subgroup of tame automorphisms of the affine quadric threefold.

We denote by (x, y, z, t) the affine coordinates in A4 and consider the affine quadric Q given by

Q = V (xt − yz − 1).

Observe that the Picard group of the closure Q of Q in P4 is generated by H = c1(O(1)
|Q) so that one

can define the algebraic degree of an automorphism by

deg( f ) := deg1( f ) = (π∗

1 H 2
· π∗

2 H),

where π1 and π2 are the projections of the graph of the birational map induced by f in Q×Q onto the
first and the second factor respectively. Observe that by definition deg2( f ) = (π∗

1 H ·π∗

2 H 2) = deg( f −1)

since f is an automorphism.
The group of automorphism naturally contains the subgroup O4 ⊂ GL4(k) of linear maps of A4

preserving the quadric Q. The subgroup of tame automorphisms, denoted Tame(Q), is defined as the
subgroup generated by O4 and transformations induced by

(x, y, z, t) 7→ (x, y, z + x P(x, y), t + y P(x, y)),

with P ∈ k[x, y].

Theorem 1. Let f be a tame automorphism, then one of the following possibilities occur:

(i) The sequence (deg( f n), deg( f −n)) is bounded. Moreover, f is conjugated to an element of O4 or
f 2 is conjugated to an automorphism of the form

(x, y, z, t) 7→ (ax, by + x R(x), b−1z + x P(x, y), a−1(t + y P(x, y) + z R(x) + x R(x)P(x, y)))

with a, b ∈ k∗, P ∈ k[x, y] and R ∈ k[x].
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(ii) There exists a constant C > 0 such that

1
C n ⩽ deg( f ϵn) ⩽ Cn,

for all ϵ ∈ {+1, −1} and f is conjugated to an automorphism of the form

(x, y, z, t) 7→ (ax, b−1(z + x R(x)), b(y + x P(x)z), a−1(t + z2 P(x) + y R(x) + xz P(x)R(x))),

with a, b ∈ k∗, R ∈ k[x] and P ∈ k[x] \ k.

(iii) The sequences deg( f n) and deg( f −n) grow at least exponentially and there exists a constant C( f ) >

0 such that

min(deg( f −n), deg( f n)) ⩾ C( f )
( 4

3

)n
.

Theorem 1 is a first step towards an understanding of the dynamical degrees of these particular
automorphisms.

Corollary 2. The following inclusion is satisfied:

{λ1( f ) | f ∈ Tame(Q)} ⊂ {1} ∪
[ 4

3 , +∞
[
.

This result is reminiscent of a theorem of Blanc and Cantat [2016, Corollary 2.7] stating that the set of
first dynamical degrees of any birational surface maps is included in {1}∪ [λL , ∞) where λL ≃ 1.176280
denotes the Lehmer number. We conjecture however that the gap should be bigger and that there should
be no dynamical degree of Tame(Q) in the interval ]1, 2[. The verification of such a conjecture would
suggest that the dynamical degrees of tame automorphisms of the quadric are always integers.

Another immediate consequence of Theorem 1 is the following corollary.

Corollary 3. Any tame automorphism f ∈ Tame(Q) satisfying λ1( f ) = 1 preserves a fibration or belongs
to O4 and both sequences deg( f n), deg( f −n) are either bounded or linear.

The above result gives a positive answer to a question by Urech [2018, Question 4] in this special
situation.

The proof of Theorem 1 exploits extensively the structure of the group of tame automorphisms. We use
the natural action of Tame(Q) on a square complex C which was introduced and studied by Bisi, Furter
and Lamy [Bisi et al. 2014]. This action is faithful, transitive on squares, and isometric. The complex C
plays the same role for Tame(Q) as the Bass–Serre tree for Aut[k2

].
One of the main result of [Bisi et al. 2014] is that C is a geodesic space which is both CAT(0) and

Gromov-hyperbolic. As a result, a tame automorphism induces an action on the complex which is rather
constrained: either it is elliptic and fixes a vertex in the complex C; or it is hyperbolic and acts by
translation on an invariant geodesic line.

Using an explicit description of the stabilizer subgroups of each vertices, we compute the degree
sequences of all elliptic tame automorphisms.
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The crucial point of the proof is the study in Section 5 of the degree growth of hyperbolic automorphisms.
In this case, we show that the sequence of degrees is bounded from below by C

( 4
3

)n for some positive
constant C > 0 and where n depends on the distance of translation on an invariant geodesic line. Let us
state a weaker statement which summarizes the overall idea of our proof and which relates the degree
with the displacement by f of a vertex v0 fixed by the linear group.

Theorem 4. For any tame automorphisms f ∈ Tame(Q) for which f is not in O4, the following inequality
holds:

log(deg( f )) ⩾
log(4/3)

2
√

2
dC( f · v0, v0) − 2 log

( 4
3

)
,

where dC denotes the distance in the complex.

This phenomenon already appears in the case of plane automorphisms since one can bound from below
the logarithm of the degree of a plane automorphism by log(2) multiplied by the distance between two
vertices in the Bass–Serre tree associated to the group Aut(A2). Also in the case of Bir(P2), there is a
relationship between the degree and the distance on a suitable hyperbolic space. The above result does
not imply Theorem 1 and one needs to prove a more refined statement to obtain that the degree of f n is
indeed larger than

( 4
3

)n . Let us explain how this is done.
Let f ∈ Tame(Q) be any hyperbolic automorphism. First we show that by conjugating with an

appropriate automorphism, we can suppose that v0 lies at distance ≤ 2 of an f -invariant geodesic line.
Suppose that v0 is contained in an invariant geodesic of f . Our goal is to prove that

deg( f n) ⩾
( 4

3

)dC(v0, f n
·v0) for all n ∈ N. (1)

The sequence of large squares (i.e., isometric to [0, 2]
2) cut by the geodesic segment [v0, f n

· v0] allows
us to write

f n
= gp ◦ gp−1 · · · ◦ g1 (2)

as a composition of elementary automorphisms and linear transformations (in O4) preserving the quadric.
This decomposition is not unique in general and ideally, one would hope to prove that the degree is
multiplicative so that deg( f n) ≥

∏p
i=1 deg(gi ). The obstruction to this property is the presence of

resonances, which are explained as follows. Two regular functions P, R ∈ k[Q] are resonant if there
exists λ ∈ k∗ and two integers p, q such that deg(P p

−λRq) < p deg(P) = q deg(R) and they are called
critical if p = 1 or q = 1.

When these resonances are not critical, we show that one can apply the so-called parachute inequalities
(recalled in Section 4E) to deduce (1). These inequalities are elementary valuative estimates on the values
of partial derivatives of suitable polynomials, and are derived from the proof of Nagata’s conjecture by
Shestakov and Umirbaev; see [Kuroda 2016; Lamy and Vénéreau 2013; Shestakov and Umirbaev 2003].

To get around the appearance of critical resonances, we exploit the structure of the tame group to prove
that f n always admits an appropriate factorization for which the parachute inequalities can be applied
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inductively. In other words, we write f n
= g′

p ◦ · · · ◦ g′

1 where g′

i are tame automorphisms such that for
each i ⩽ p, g′

i+1 and (g′

i ◦ · · · ◦ g′

1) do not have critical resonances.
Using the correspondence between the factorizations of f and the sequences of large squares cut out by

the invariant geodesic, we are reduced to proving that one can modify inductively our initial sequence of
large squares to avoid critical resonances. The essential point is to choose a valuation ν of monomial type
(i.e., with different weights on the coordinate axis x, y, z, t) such that one of the vertex of our initial large
square has ν-value strictly less than the three others. The dissymmetry induced by ν will be propagated
along any sequence of squares following our geodesic. We then argue that this minimality property on
each large square allows us to choose another square with no critical resonances. As a result, the core
of our approach relies deeply on the structure of the tame group which is reflected by the geometric
properties of the square complex. Our proof is presented using purely combinatorial arguments.

In the last part of this paper, we shall give a random version of Theorem 1. Consider a finitely generated
subgroup G of the tame group and an atomic probability measure µ on G such that∫

G
log(deg(g)) dµ(g) < +∞.

The random walk on G with transition law µ is the Markov chain starting at Id with transition law µ. The
state of the Markov chain gn at the time n is equal to the product of n independent, identically distributed
random variable on G with distribution law µ. Its distribution law νn is the n-fold convolution of µ. Since
the degree is submultiplicative, Kingman’s subadditivity asserts that the degree exponents given by

λ1(µ) := lim sup
n→+∞

1
n

∫
G

log(deg(g)) dνn(g) and λ2(µ) := lim sup
n→+∞

1
n

∫
G

log(deg(g−1)) dνn(g)

are finite. These numbers measure the complexity of our random walk and one recovers the first and
second dynamical degrees of f when µ is equal to the Dirac measure at f .

Since the degree is equal to the norm of the pullback operator induced by f on the Neron–Severi group
of the quadric, these quantities play the same role as the Lyapounov exponents of a random products
of matrices [Furstenberg 1963; Furstenberg and Kesten 1960] for this group and the existence of these
exponents can thus be interpreted as a law of large number [Benoist and Quint 2016, Theorem 0.6].

We now state the following result on the behavior of any symmetric random walks on this particular
group.

Theorem 5. Let G be a finitely generated subgroup of the tame group and let µ be a symmetric atomic
measure on G satisfying the condition∫

G
log(deg(g)) dµ(g) < +∞.

Then the degree exponents λ1(µ) = λ2(µ) are positive if and only if G contains two automorphisms with
dynamical degree strictly larger than 1 generating a free group of rank 2.

Moreover, we also obtain the following classification.
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Corollary 6. When λ1(µ) = λ2(µ) = 0 then G satisfies one of the following properties:

(i) The group G is conjugated to a subgroup of the linear group O4.

(ii) There exists a G-equivariant morphism ϕ : Q → A2
\ {(0, 0)} where G acts on A2

\ {(0, 0)} linearly.

(iii) The group G contains an automorphism h with λ1(h) > 1 and there exists an integer M such that
any automorphism f ∈ G can be decomposed into g ◦ h p where p is an integer and g has a degree
bounded by M.

(iv) There exists a G-equivariant morphism ϕ : Q → A1 where G acts on A1 by multiplication and any
automorphism of G has dynamical degree 1.

In other words, the degree exponents detect whenever the random walk has a chaotic behavior.
These last two results essentially follow from a classification of the finitely generated subgroups of the

tame group and a theorem due to Maher and Tiozzo [2018, Theorem 1.2] which asserts that a random
walk on a subgroup G of isometries of a CAT(0) space will drift to the boundary whenever G contains
two noncommuting hyperbolic elements. When this happens, we obtain using Theorem 4 that the degree
exponent is bounded below by a multiplicative factor of the drift and is thus positive. Otherwise, we prove
that G preserves a vertex in the complex or a geodesic line. We then determine the degree sequences
explicitly and conclude.

If we pursue the analogy with the random walk on groups, it is natural to ask whether one can obtain
a central limit theorem analog to the one for random products of matrices [Benoist and Quint 2016,
Theorem 0.7] or for random products of mapping classes [Dahmani and Horbez 2018]. We state it as
follows.

Conjecture 7. Take µ a symmetric atomic measure on the tame group. Then the limit

σ 2
:= lim

n→+∞

1
n

∫
G
(log deg(g) − λ(µ)n)2 dνn(g)

exists where νn = µ∗n denotes the n-fold convolution of µ and the sequence of random variables

log deg(gn) − λ(µ)n
√

n

converges to the normal distribution law N (0, σ 2).

Structure of the paper. In Section 1, we recall some general facts on the tame group and then review
in Section 2 the construction of the associated square complex. In Section 3, we focus on the global
properties of the complex and exploit them to describe the degree sequences of particular automorphisms
whose action fix a vertex on the complex. We then state in Section 4 the main valuative estimates needed
for our proofs of Theorems 1 and 4 which are presented in Section 5. Finally, we apply the previous
result to deduce Theorem 5 and Corollary 6 in the last section.
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([0, 1], [0, 1]) = [0, 0, 0, 1, 0] ∈ Q

([0, 1], [1, 0]) = [0, 0, 1, 0, 0] ([1, 0], [1, 0]) = [1, 0, 0, 0, 0]

([1, 0], [0, 1]) = [0, 1, 0, 0, 0]

horizontal line P1
× {λ}

vertical line {λ} × P1

Figure 1. Vertical and horizontal lines in H∞.

1. General facts on the tame group of the quadric

We work over an algebraically closed field k of characteristic zero. Take some affine coordinates
(x, y, z, t) ∈ A4 and consider the smooth affine quadric threefold Q given by

Q := V (xt − yz − 1) ⊂ A4.

Let us also fix an open embedding A4
⊂ P4 so that A4

= P4
\ V (w) in the homogeneous coordinates

[x, y, z, t, w] ∈ P4.
In this section, we briefly describe the geometry of the affine quadric and give some preliminary

properties of its elementary and orthogonal group of automorphism.

1A. The geometry of a quadric threefold and its compactification in P4. The affine variety Q ⊂ A4 is a
smooth quadric threefold. The Zariski closure Q of the affine quadric is also smooth in P4 and has Picard
rank one by Lefschetz hyperplane theorem. A birational map from Q to P3 is given by choosing a point
p0 ∈ Q and sending a point p ∈ Q to the intersection of the line (pp0) with a hyperplane in P4 which
does not contain p0.

We denote by H∞ := Q \Q the hyperplane section at infinity. It is a smooth quadric surface given in
homogeneous coordinates by

H∞ := V (xt − yz, w) ⊂ P4.

We identify H∞ with P1
× P1 by the isomorphism induced by the composition of the Segre embedding

P1
× P1 ↪→ P3 with the inclusion P3

= V (w) ↪→ P4. In homogeneous coordinates, it is given by

([ξ0, ξ1], [η0, η1]) 7→ [ξ0η0, ξ0η1, ξ1η0, ξ1η1, 0]. (3)

Any line in H∞ of the form {λ} × P1 (resp. P1
× {λ}) where λ ∈ P1 is said to be vertical (resp.

horizontal); see Figure 1.
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The two projection maps πx : Q → A1 and πy : Q → A1 given by

πx : (x, y, z, t) ∈ Q 7→ x,

πy : (x, y, z, t) ∈ Q 7→ y,

induce algebraic fibrations which are trivial over A1
\ {0} such that π−1

x (A1
\ {0}) and π−1

y (A1
\ {0}) are

isomorphic to A1
\{0}×A2. Observe that the fibers over 0 are both isomorphic to A1

×A1
\{0} so that the

fibrations are not locally trivial over a neighborhood of the origin. Observe that the intersection with H∞

of the closure of the fiber over 0 in Q is the union of a vertical line and a horizontal line. The projection
on the two components

πx,y : (x, y, z, t) → (x, y)

induces a surjective morphism πx,y : Q → A2
\ (0, 0) which is also trivial over A2

\ {x = 0}.
The affine quadric Q carries naturally a volume form � which is the Poincaré residue of the rational

4-form dx ∧ dy ∧ dz ∧ dt/ f along Q. More explicitly, � is defined by

� =
dx∧dy∧dz

x
∣∣
Q =

dy∧dz∧dt
t

∣∣
Q =

dx∧dz∧dt
z

∣∣
Q.

One checks that � extends as a rational 3-form � on Q such that its divisors of poles and zeros satisfies

div(�) = −3[H∞].

1B. The orthogonal group. A regular automorphism f of Q is determined by a morphism f ♯ of
the k-algebra k[Q] and hence by its image on the four regular functions x, y, z, t . If we denote by
fx , fy, fz, ft ∈ k[Q] the image of x, y, z, t by f ♯, it is convenient to adopt a matrix-like notation for f
as follows:

f =

(
fx fy

fz ft

)
.

Observe that fx ft − fz fy =1 since f ♯ is a morphism of the k-algebra k[Q] and that any such automorphism
preserves the volume form � (up to a constant).

Denote by q(x, y, z, t) = xt − yz the quadratic form defined on the vector space V = k4. The group
O4 is the subgroup of linear automorphisms of k4 which leave the quadratic form q invariant

O4 = { f ∈ GL4(k) | q ◦ f = q}.

An element of O4 naturally defines an automorphism of the quadric hypersurface Q. As a consequence,
we have that for any f ∈ O4,

f ∗� = ϵ( f )�,

where ϵ : O4 → k∗ is a morphism of groups. Since � is the Poincaré residue of the form dx ∧ dy ∧

dz ∧ dt/(xt − yz − 1) to Q, this implies that for any f ∈ O4, ϵ( f ) is equal to the determinant of the
endomorphism of k4 associated to f , hence ϵ( f ) ∈ {+1, −1}. The subgroup SO4 is the kernel of ϵ and
has index 2 in O4.



Degree growth for tame automorphisms of an affine quadric threefold 9

Observe that every element of O4 extends as regular automorphism of Q which leaves the hyperplane
at infinity invariant. In particular, the restriction map onto H∞ induces a morphism of groups from O4

onto Aut(P1
× P1).

The main properties of O4 and SO4 are summarized in the following proposition.

Proposition 1.1. The following properties are satisfied:

(i) The group SO4 acts transitively on the set of horizontal and vertical lines at infinity respectively, and
on the set of points at infinity.

(ii) Any element of f ∈ O4 which does not belong to SO4 exchanges the horizontal lines at infinity with
the vertical lines at infinity.

(iii) The following sequence is exact:

1 → {+1, −1} → O4 → Aut(P1
× P1) → 1.

(iv) For any element f ∈ O4, we have

f ∗� = ϵ( f )�,

where ϵ( f ) ∈ {+1, −1} and Ker(ϵ) = SO4.

Proof. Observe that (iii) follows directly from the following exact sequence:

1 → {+1, −1} → O4 → PSO4 → 1,

and the fact that PSO4 ≃ PGL2 × PGL2 which is given in [Fulton and Harris 1991, Section 23.1].
In particular, (iii) directly implies (i). □

1C. Elementary transformations. The group EV (resp. EH ) of vertical (resp. horizontal) elementary
transformations is defined by

EV :=

{(
ax by

b−1(z + x P(x, y)) a−1(t + y P(x, y))

) ∣∣∣ P ∈ k[x, y], a, b ∈ k∗

}
,

EH :=

{(
ax b(y + x P(x, z))

b−1z a−1(t + z P(x, z))

) ∣∣∣ P ∈ k[x, y], a, b ∈ k∗

}
.

The terminology comes from the fact that these transformations are restrictions to the quadric of transfor-
mations of A4 of the form

(x, y, z, t) → (x, y + P(x), z + R(x, y), t + S(x, y, z))

where P ∈ k[x], R ∈ k[x, y], S ∈ k[x, y, z], which are elementary in the sense of [Shestakov and Umirbaev
2003].

Any automorphism in EV fix the two fibrations πx : (x, y, z, t) → x and πy : (x, y, z, t) → y and
this geometric property characterizes the group EV ; see [Dang 2018, Proposition 3.2.3.1]. An explicit
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computation proves that any elementary automorphism f preserves the volume form �:

f ∗� = �.

We will not focus on the action of these elementary transformations on the compactification Q. For
more details on the study of the birational transformations induced by these transformations, we refer to
[Dang 2018, Chapter 3, Section 3.2.3].

2. The square complex associated to the tame group

The tame group, denoted Tame(Q), is the subgroup of Aut(Q) generated by EV and O4. It is naturally
included in Bir(P3) since the variety Q is rational.

Observe that any tame automorphism f fixes the volume form � up to a sign, i.e., there exists a group
morphism ϵ : Tame(Q) → {+1, −1} such that

f ∗� = ϵ( f )�.

This allows us to identify the kernel STame(Q) of ϵ as the group generated by SO4 and EV . It has index
2 in Tame(Q).

The tame group Tame(Q) is a strict subgroup of Aut(Q) [Lamy and Vénéreau 2013] and satisfies the
Tits alternative; see [Bisi et al. 2014, Theorem C]. The proof of this last fact is due to Bisi, Furter and
Lamy and relies on the construction of a square complex on which the group acts by isometry.

The plan of this section is as follows. In Section 2A we detail the construction of the square complex
due to Bisi, Furter and Lamy. Then, following the presentation in [Bisi et al. 2014] we shall review in
Sections 2B, 2C and 2D the properties of the stabilizer of each vertex of this complex. We will focus
particularly on the stabilizer of the vertices which we call of type I in Sections 2C and 2D, for which the
analysis is more involving. Finally, we state in Section 2E five technical lemmas on how four squares
glue together near each vertices. As before, the situation is also more delicate near the vertices of type I
and we need to introduce more terminology to describe the local geometry at those vertices. For a more
detailed explanation of the results in this section, we refer to [Bisi et al. 2014, Sections 2, and 3.1] and to
[Dang 2018, Chapter 3, Section 3.3].

2A. Construction of the square complex. The square complex, denoted C, is a 2-dimensional polyhedral
complex where the cells of dimension 2 are squares and where the cells of dimension 0 and 1 have some
special markings.

We say that a regular function f1 ∈ k[Q] is a component of an automorphism if there exists f2, f3, f4 ∈

k[Q] such that f = ( f1, f2, f3, f4) defines an automorphism of the quadric. One similarly defines the
notion of components for a pair ( f1, f2) or for a triple ( f1, f2, f3) of regular functions on Q when they
can be completed to a 4-tuple defining an automorphism of the affine quadric.

We distinguish three types of vertices for the complex C:
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[ f1]
◦

[(
f1 f2

f3 f4

)]■
[ f1, f3]

•

[ f1, f2]
•

Figure 2. A cell of dimension 2.

• Type I vertices are equivalence classes of components f1 ∈ k[Q] of a tame automorphism, where
two components f1 and f2 are identified if there exists an element a ∈ k∗ such that f1 = a f2. A
vertex induced by a component f1 ∈ k[Q] is denoted by [ f1].

• Type II vertices are equivalence class of components ( f1, f2) of an automorphism where f1 =

x ◦ f, f2 = y ◦ f ∈ k[Q] for f ∈ Tame(Q) and where one identifies two components ( f1, f2) with
(g1, g2) if (g1, g2) = (a f1 + b f2, c f1 + d f2) for some matrix(

a b
c d

)
∈ GL2 .

A vertex induced by a component ( f1, f2) is denoted by [ f1, f2]. Denote by f3 = z ◦ f and
f4 = t ◦ f , the vertices [ f1, f2], [ f1, f3], [ f2, f4], [ f3, f4] are well-defined since the automorphisms
( f1, f3, f2, f4), (− f2, − f4, f1, f3) and (− f3, f4, − f1, f2) are also tame. Moreover, given a com-
ponent ( f1, f2) and an invertible matrix

(a
c

b
d

)
∈ GL2, there exists an automorphism g such that

x ◦ g = a f1 + b f2 and y ◦ g = c f1 + d f2. Let us insist on the fact that on the contrary, there are no
vertices of the form [ f1, f4] or [ f2, f3].

• Type III vertices are equivalence classes of automorphisms f ∈ Tame(Q) where two tame automor-
phisms f and g are equivalent if there exists h ∈ O4 such that f = h ◦ g. An equivalence class of
f ∈ Tame(Q) is denoted by [ f ].

The edges of the complex C are of two types:

• Type I edges join a vertex of type I of the form [ f1] with a vertex of type II of the form [ f1, f2]

where ( f1, f2) are the components of a tame automorphism.

• Type III edges join a vertex of type II of the form [ f1, f2] with a vertex of type III [ f ] where ( f1, f2)

are the components of the automorphism given by f .

The cells of dimension 2 are squares containing two type II vertices of the form [ f1, f2], [ f1, f3],
one vertex of type I given by [ f1] and one vertex of type III given by [ f ] where ( f1, f2, f3) are the
components of the automorphism f ∈ Tame(Q). We have the figure of a square given in Figure 2. As in
[Bisi et al. 2014], we adopt the following convention for the pictures: the vertices of type I, II and III are
represented by the symbol ◦, • and ■ respectively.
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The square complex C is obtained by the quotient of the disjoint union of all cells by the equivalence
relation ∼ where any two cells C1, C2 are identified along C1 ∩ C2.

Each square of the complex is endowed with the euclidean metric d so that each square is isometric to
[0, 1] × [0, 1]. For any points p and q in C, define by

dC(p, q) = inf
{ N∑

i=0

d(pi , pi+1)

}
,

where the infimum is taken over all sequence of points p0 = p, . . . , pN = q where pi and pi+1 lie on
the same square in C. As any cell of the complex C has only finitely many isometries, we may apply a
general result from [Bridson and Haefliger 1999, Section I.7] and conclude that the function dC induces a
metric on the complex and turns (C, dC) into a complete metric space. We will explain in Section 3 the
global properties on the complex induced by this metric.

Let us define the action of the tame group Tame(Q) on the complex C. Pick any two automorphisms
f, g ∈ Tame(Q). We define the action of g on the each vertices of the complex by setting

g · [ f1] := [ f1 ◦ g−1
],

g · [ f1, f2] := [ f1 ◦ g−1, f2 ◦ g−1
],

g · [ f ] := [ f ◦ g−1
].

The action on vertices induces a morphism of the square complex which preserves the type of vertices
and edges and preserves the distance.

Remark 2.1. Although, this is not clear at this stage, the action of the tame group on this complex will
act transitively on the set of squares and the precise study of the stabilizer of type III vertices will result
from the geometry of the complex near a vertex of type III done in Proposition 2.3. As a result of the
study, a square is determined uniquely once it contains a vertex of type III and a vertex of type I, or by
three vertices.

Recall that the subgroup STame(Q) generated by SO4 and elementary transformations has index 2 in
Tame(Q).

Definition 2.2. An edge E of the complex is called horizontal (resp. vertical) if there exists an element
f ∈ STame(Q) such that f · E is equal to the edge joining [x, y] with [x] (resp. [x, z] with [x]) or to the
edge between [Id] and [x, z] (resp. [Id] and [x, y]).

We will see that the set of vertical and horizontal edges form a partition of the set of edges (see (iii)
and (iv) of Proposition 2.7).

2B. Stabilizer of vertices of type III, II and the properties of the action. In this section, we shall first
review the properties of the stabilizer of type II and III vertices then deduce from these the global properties
of the action of the group on this complex. To do so, we shall exploit the relationship between the local
geometry near each vertices and their respective stabilizer subgroups. The geometry near a given vertex v
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is encoded in its link L(v) which is constructed as follows. The vertices of L(v) are in bijection with the
vertices v′ such that [v, v′

] is an edge of the complex C. And we draw an edge joining v′ and v′′ in L(v)

if the vertices v, v′, v′′ belong to the same square.
Observe that the action of the tame group on the vertices of type III is transitive. As a result, we shall

focus on the stabilizer subgroup of the vertex [Id], which is by construction O4. Its action on the complex
induces an action on the link L([Id]).

Proposition 2.3. The link L([Id]) is a complete bipartite graph and there exists an O4-equivariant
bijection between the set of vertices of the link L([Id]) to the set of lines at infinity such that the vertices
which belong to a vertical (resp. horizontal) edge of type III are mapped to vertical (resp. horizontal)
lines at infinity in H∞. Moreover, this bijection induces an O4-equivariant bijection from the edges of
L([Id]) to the set of points at infinity H∞.

Remark 2.4. Observe that Proposition 1.1 and Proposition 2.3 imply that the group O4 acts faithfully
and transitively on the link L([Id]).

Proof. We identify two types of vertices in the link of [Id], the vertices which belong to a horizontal edge
containing [Id] or those which are contained in a vertical edge containing [Id].

We define a map ϕ from the vertices of the link L([Id]) to the set of lines in H∞. Take a vertex v in the
link L([Id]) and a component ( f1, f2) such that [ f1, f2]= v. By definition, there exists an element f ∈ O4

such that f1 = x ◦ f and f2 = y ◦ f since the stabilizer of [Id] is O4. The zero locus V ( f1)∩ V ( f2)∩ H∞

in Q is the line at infinity corresponding to the preimage of {x = y = 0} ∩Q by f . Observe that the line
V ( f1)∩ V ( f2)∩ H∞ does not depend on the choice of representative of the equivalence class v since any
two other component in the same class defines the same homogeneous ideal ⟨ f1, f2, xt − yz −w2

⟩. We
thus define ϕ(v) to be the line V ( f1) ∩ V ( f2) ∩ H∞. Observe that if v is a vertex of type II such that the
edge containing v and [Id] is vertical, then f ∈ SO4. Hence the line at infinity V (x ◦ f )∩ V (y ◦ f )∩ H∞

is vertical. Observe also that ϕ is naturally O4-equivariant. The same argument holds for the vertices of
type II which belong to horizontal edges containing [Id].

Let us prove that the map ϕ is surjective. Consider a vertical line L ⊂ H∞ at infinity, then there exists
by Proposition 1.1(i) an automorphism f in SO4 such that the image of the vertical line at infinity given
by [0, 1]× P1 is L . Since ϕ([x, y]) corresponds to the line [0, 1]× P1, the vertex of type II [x ◦ f, y ◦ f ]

defines a component of an automorphism which belongs to the link L([Id]) such that ϕ([x ◦ f, y ◦ f ]) = L .
Hence, ϕ is surjective.

Let us prove that ϕ is injective. Consider two vertices v1, v2 such that their image by ϕ is equal, we prove
that v1 = v2. Consider two components ( f1, f2), (g1, g2) such that [ f1, f2] = v1 and [g1, g2] = v2. We
must prove that ( f1, f2) and (g1, g2) belong to the same equivalence class. By symmetry, we can suppose
that the line ϕ(v1) is vertical. Hence, there exists f, g ∈ SO4 such that f1 = x ◦ f, g1 = x ◦ g, f2 = y ◦ f
and g2 = y◦g. In particular, this implies that f ◦g−1 fixes the vertical line at infinity given by {[0, 1]}×P1.
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Using Proposition 1.1(iii), we conclude that f ◦ g−1 is of the form

f ◦ g−1
=

(
ax + by cx + dy
a′z + b′t c′z + d ′t

)
,

where the matrices
(a

c
b
d

)
,
( d ′

−c′

−b′

a′

)
∈ M2(k) satisfy(

a b
c d

)
·

(
d ′

−b′

−c′ a′

)
=

(
1 0
0 1

)
.

In particular, this implies that the components ( f1, f2) and (g1, g2) are equivalent since f1 = ag1 + bg2,
f2 = cg1 + dg2.

One similarly defines a bijection from the edges of the link L([Id]) to H∞. The link is complete since
a horizontal and a vertical line in H∞ always intersect at a point in H∞, hence for any vertices v1, v2

in L([Id]) which are mapped by ϕ to a vertical and a horizontal line respectively, there exists an edge
joining v1 and v2. □

Proposition 2.5. The following properties are satisfied:

(1) The stabilizer of a vertex of type III in STame(Q) is conjugated in STame(Q) to SO4.

(2) The stabilizer of an edge of type III is conjugated in Tame(Q) to the subgroup

A ·

(
x y
z t

)
· B t ,

where A ∈ SL2(k) is a lower triangular matrix and B ∈ SL2(k).

(3) The stabilizer of a 1 × 1 square is conjugated in Tame(Q) to{(
ax b(y + cx)

b−1(z + dx) a−1(t + cz + dy + dcx)

) ∣∣∣ (a, b, c, d) ∈ k∗
× k∗

× k × k
}
⋊

{(
x z
y t

)
, Id

}
(4) The pointwise stabilizer of the union of the four squares containing [Id] and [x], [y], [z] and [t]

respectively is equal to {(
ax by

b−1z a−1t

) ∣∣∣ a, b ∈ k∗

}
.

Proof. Observe that (i) follows directly from the definition of the definition. Moreover, the next assertions
(ii), (iii) and (iv) are exactly the content of [Bisi et al. 2014, Lemmas 2.5(2), 2.7 and 2.11]. □

We focus on the stabilizer subgroups of vertices of type II. For that, we also define some special
subgroups of EV , EH where the constant are all 1. Set ẼH the subgroup of EH of elements of the form(

x y + x P(x, z)
z t + z P(x, z)

)
,

with P ∈ k[x, y] and respectively elements in ẼV are of the form(
x y

z + x P(x, y) t + y P(x, y)

)
.
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Proposition 2.6. The following properties are satisfied:

(i) The stabilizer of a vertex of type II in Tame(Q) is conjugated in Tame(Q) to the semidirect product
ẼV ⋊GL2 where the group GL2 is identified with the elements of the form(

ax + by cx + dy
a′z + b′t c′z + d ′t

)
where a, b, c, d, a′, b′, c′, d ′

∈ k such that det
(a′

c′

b′

d ′

)
̸= 0 and(

a b
c d

)
=

1
a′d ′ − b′c′

(
a′ b′

c′ d ′

)
.

(ii) The stabilizer of a vertical edge of type I is conjugated in STame(Q) to the subgroup

ẼH ⋊
{(

ax d−1 y
dz + cx a−1t + ca−1d−1 y

) ∣∣∣ (a, c, d) ∈ k∗
× k × k∗

}
.

(iii) The pointwise stabilizer of the geodesic segment of length 2 joining the vertices [ f1], [ f3] and [ f1, f3]

where f = ( f1, f2, f3, f4) ∈ STame(Q) is conjugated in STame(Q) to

ẼH ⋊
{(

ax by
b−1z a−1t

)
, a, b ∈ k∗

}
.

Proof. Assertion (i), (ii) and (iii) are given in [Bisi et al. 2014, Lemmas 2.3, 2.5(1) and 2.6(1)] respectively.
□

From the description of the previous stabilizer subgroups, we state the following consequences on the
action of the group on this complex.

Proposition 2.7. The tame group Tame(Q) acts by isometry on the complex C and this action satisfies the
following properties:

(i) The action preserves the types of vertices and the types of edges.

(ii) The action is faithful and transitive on the set of vertices of type I , II and III respectively.

(iii) The subgroup STame(Q) acts transitively on the set of vertical (resp. horizontal) edges of type I
and III.

(iv) Any automorphism f ∈ Tame(Q) which does not belong to the subgroup STame(Q) sends a vertical
edge to a horizontal edge of the same type.

(v) The subgroup STame(Q) acts transitively on the set of 1 × 1 squares.

(vi) The group Tame(Q) acts transitively on the union of 4 squares which is isometric to [0, 2] × [0, 2]

and which contains a common vertex of type III.

Proof. The transitive of the action on the set of vertices of type I, II and III and assertions (i) and (iv)
follow from [Bisi et al. 2014, Lemmas 2.1 and 2.4].
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To prove (ii), we need to explain why the action is also faithful. Observe that if a tame automorphism
fixes every vertices of type III, or type II or type I, then it fixes the whole complex since every vertex of
type III (resp. type II or I) is the middle point of a geodesic segment joining type I or type II points. Then
the faithfulness follows from the faithfulness of the action on the link L([Id]).

The assertions (iii), (v) and (vi) are exactly the content of [Bisi et al. 2014, Lemmas 2.4 and 2.7,
Corollary 2.10] respectively. □

2C. Bass–Serre tree associated to plane automorphisms. We consider the field K = k(x). We define
the graph Tk(x) which is a bipartite metric graph:

(1) Vertices of type I are equivalence classes of components f1 ∈ k(x)[y, z] of plane automorphisms
where one identifies two components f1 and g1 if there exists a ∈ k(x)∗ and b ∈ k(x) such that
f1 = ag1 + b. An equivalence class induced by a component f1 is denoted [ f1].

(2) Vertices of type II are equivalence classes of automorphisms f of A2
k(x) where one identifies two

automorphisms f = ( f1, f2) and g = (g1, g2) if there exists an affine automorphism h ∈ A2
k(x) whose

coefficients are given by the matrix a b c
a′ b′ c′

0 0 1


such that ( f1, f2) = (ag1 + bg2 + c, a′g1 + b′g2 + c). An equivalence class induced by a plane
automorphism f = ( f1, f2) is denoted [ f1, f2].

(3) Edges link a vertex v1 of type I with a vertex v2 of type II if there exists a polynomial automorphism
f = ( f1, f2) such that [ f1] = v1 and [ f1, f2] = v2.

We endow this graph Tk(x) with the distance such that each edge is of length 1. This graph Tk(x) is thus
a complete geodesic metric space.

The action of an automorphism g ∈ A2
k(x) on Tk(x) is defined as follows

g · [ f1] = [ f1 ◦ g−1
] and g · [ f1, f2] = [ f1 ◦ g−1, f2 ◦ g−1

]

for any automorphism f = ( f1, f2) ∈ Aut(A2
k(x)).

A classical theorem from Jung [1942] proves that the graph Tk(x) is a tree and that the group of plane
automorphism acts faithfully, by isometry and transitively on the set of type I and II vertices respectively.

2D. Link over a vertex of type I. In this subsection, we study the link over the vertex of type I given
by [x]. Observe that the stabilizer subgroup of the vertex [x] acts naturally in the link of the vertex [x].

Lemma 2.8. The group Stab([x]) acts transitively, faithfully on the set of vertices in the link of [x]

induced by the edges joining [x] and the vertices of type II of C.

Proof. By Proposition 2.7(v), the group STame(Q) acts transitively on the set of 1×1 squares and since a
1×1 square containing [x] defines an edge in the link L([x]), the induced action of Stab([x]) is transitive
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on the edges of the link L([x]). Observe also that the involution σ : (x, y, z, t) 7→ (x, z, y, t) induces an
action on the link which exchanges the vertices [x, y], [x, z] in the link and fixes the edge between these
two vertices. This proves that the action of the stabilizer Stab([x]) is transitive on the link of [x].

Let us prove that the action is faithful. Suppose f ∈ Stab([x]) acts by the identity map in the link over
[x], then in particular, f must fix pointwise the square containing [Id] and [x]. By Proposition 2.5(iii), f
is of the form

f =

(
ax d−1(y + bx)

d(z + cx) a−1(t + cy + bz + bcx)

)
,

where a, d ∈ k∗ and b, c ∈ k. Since f must also fix the vertices of type II [x, y+x P(x)] and [x, z+x P(x)]

where P ∈ k[x], we have that a = d = 1 and c = b = 0 as required. □

In the following arguments, we will use the fact that the link L([x]) is connected [Bisi et al. 2014,
Lemma 3.2], which is a highly nontrivial argument which relies deeply on the reduction theory inspired
by the work of Shestakov and Umirbaev; see [Bisi et al. 2014, Corollary 1.5].

Recall that the general fiber of the projection πx : Q → A1 defined in Section 1C is isomorphic to A2.
We fix an identification of π−1

x (A1
\ {0}) with A1

\ {0} × A2 given by

(x, y, z) 7→ (x, y, z, (yz + 1)/x). (4)

The relationship between the stabilizer of the vertex [x] and Aut(A2
k(x)) is realized explicitly as follows.

Denote by L([x])′ the first barycentric division of L([x]). We shall define a simplicial map π :

L([x])′ → Tk(x) as follows.
Let v be a vertex of type II in C which defines a vertex in the link of [x], then since the action of

Stab([x]) on the link L([x]) is transitive by Lemma 2.8, there exists an element f ∈ Stab([x]) such that
f ·[x, z]= v. Since f naturally fixes the fibration πx , under the identification π−1

x (A1
\{0})≃ A1

\{0}×A2

given by (4), the regular map f is given by

(x, y, z) 7→ (x ◦ f, y ◦ f, z ◦ f ).

Under this identification, (y ◦ f, z ◦ f ) induces an element of A2
k(x). We thus define

π(v) = [z ◦ f −1
] ∈ Tk(x).

Observe that π(v) does not depend on the choice of f . Indeed, if g ∈ Stab([x]) is another automorphism
such that g · [x, z] = f · [x, z], there are a, b ∈ k∗ such that x ◦ f −1

= ax , x ◦ g−1
= bx and [x, z ◦ f −1

] =

[x, z◦g−1
]. Then z◦g−1

= cz◦ f −1
+dx for some c ∈ k∗, d ∈ k. We obtain that [z◦g−1

]= [z◦ f −1
] ∈Tk(x).

Let m ∈ L([x])′ be the middle point of an edge E of L([x]) and let m0 be the middle point of the
geodesic joining [x, y] and [x, z] in L([x])′. Since the action of Stab([x]) in the link L([x]) is transitive
by Lemma 2.8, there exists an element f ∈ Stab([x]) such that f ◦ m0 = m. Since f naturally fixes the
fibration πx , it induces an automorphism of π−1

x (A1
\ {0}) and under the identification given by (4), it is

of the form
(x, y, z) 7→ (x ◦ f, y ◦ f, z ◦ f ).
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We thus define

π(m) = [y ◦ f −1, z ◦ f −1
].

Observe also that π(m) does not depend on the choice of f . If g ∈ Stab([x]) such that g · m0 = m, then
g−1

◦ f belongs to the subgroup{(
ax b(y + cx)

b−1(z + dx) a−1(t + dy + cz + cdx)

) ∣∣∣ a, b ∈ k∗, c, d ∈ k
}
⋊

{
Id,

(
x z
y t

)}
,

hence [y ◦ g−1, z ◦ g−1
] = [y ◦ f −1, z ◦ f −1

] ∈ Tk(x) and π(m) is well-defined.
If E is an edge of L([x])′ of length 1, then we define the image of E by π as the geodesic joining

the image of the endpoints of E by π . As a result,the map π is a simplicial map between L([x])′ and
Tk(x) such that the action of Stab([x]) descends into an action on the image π(L([x])′) ⊂ Tk(x) (one can
prove that π : L([x])′ → π(L([x])′) is the unique Stab([x])-equivariant map for which π([x, y]) = [y]

and π([x, z]) = [z]). To simplify the next statement, we denote by Tπ,k(x) the image in Tk(x) of L([x])′

by π .

Definition 2.9. The subgroup AS
[x]

of Stab([x]) is the intersection of STame(Q) with the stabilizer of the
vertices [y], [z], [y, z] in Tπ,k(x) where S is the standard 2 × 2 square containing [x], [y], [z], [t]. More
generally, if v is any vertex of type I contained in a 2×2 square S′, the subgroup AS′

v is equal to g AS
[x]

g−1

where g ∈ STame(Q) such that g · S = S′ and g · [x] = v.

Proposition 2.10. Denote by m ∈ L([x])′ the middle point between the point [x, y] and [x, z]. The
simplicial map π : L([x])′ → Tπ,k(x) satisfies the following properties:

(i) The image of the edge between the point [x, y] and m by π is a fundamental domain of Tπ,k(x).

(ii) The image π(L([x])′) = Tπ,k(x) is a subtree of Tk(x).

(iii) The preimage by π of the segment of length 2 joining [z] and [y] is a bipartite graph.

(iv) The subgroup AS
[x]

⊂ Stab([x]) ∩ STame(Q) is the set of elements of the form(
ax b(y + x P(x))

b−1(z + xT (x)) a−1(t + z P(x) + yT (x) + x P(x)T (x))

)
,

where P, T ∈ k[x] and a, b ∈ k∗.

(v) The group Stab([x]) is the amalgamated product Ẽ ∗ Ã along their intersection where Ẽ is the group
generated by elements of the form(

ax b(y + x P(x, z))
b−1(z + xT (x)) a−1(t + z P(x, z) + yT (x))

)
, (5)

where a, b ∈ k∗, P ∈ k[x, z], T ∈ k[x], and Ã is the group generated by AS
[x]

and the involution
(x, y, z, t) 7→ (x, z, y, t).
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Remark 2.11. In fact, the action of Stab([x]) on Tπ,k(x) can be extended to an action on the whole tree
Tk(x). One can view this since the fundamental domain of the tree Tk(x) is the image of an edge of L([x])′

by π . Another way is to identify the general fiber Qη using (4) with A2
k(x) = Spec(k(x)[y, z]). So for

every g, h ∈ k(x)[y, z] such that (g, h) defines an automorphism, we can define f · [g] = [g ◦ f −1
] and

f · [g, h] = [g ◦ f −1, h ◦ f −1
] for any f ∈ Stab([x]).

Proof. Assertion (i), (ii), (iii) and (v) are the content of [Bisi et al. 2014, Lemmas 3.4(1), 3.5(1) and (2),
Proposition 4.11] respectively.

Let us prove statement (iv). Let us denote by φ : Stab([x]) → Aut(Tπ,k(x)) the morphism of groups
induced by the simplicial map π : L([x])′ → Tπ,k(x) where Aut(Tπ,k(x)) denotes the induced simplicial
map on the tree. It is clear that any element of the form(

ax b(y + x P(x))

b−1(z + xT (x)) a−1(t + z P(x) + yT (x) + x P(x)T (x))

)
,

where P, T ∈ k[x] and a, b ∈ k∗ induces an action which preserves the vertices [y], [z] and [y, z] on
Tπ,k(x). Conversely, we prove that any element of AS

[x]
has this form. Pick g ∈ AS

[x]
, since φ(g) fixes

the vertices [y], [z] and [y, z] of Tπ,k(x), As φ(g) fixes every vertex of type I and since it belongs to the
image of φ, the components in x, y, z of the automorphism g must be of the form

g = (x, y, z) → (ax, b(y + x P(x)), c(z + xT (x))),

where P, T ∈ k[x] and where a, b, c ∈ k∗. In particular, as g ∈ Tame(Q), b = c−1 and g is of the form(
ax b(y + x P(x))

b−1(z + xT (x)) a−1(t + z P(x) + yT (x) + x P(x)T (x))

)
,

proving (iv). □

Proposition 2.12. Any element of Stab([x]) whose action on Tπ,k(x) is hyperbolic is conjugated to a
composition of automorphisms of the form(

ax b(z + x P(x, y))

b−1(y + x R(x)) a−1(t + z R(x) + y P(x, y) + x P(x, y)R(x))

)
,

where R ∈ k[x] and P ∈ k[x, y] such that degy(P) ⩾ 2.

Proof. Let us fix an element f ∈ Stab([x]) whose action on Tπ,k(x) is loxodromic. Using assertion (v) of
Proposition 2.10, up to conjugation, we can assume f is decomposed into

f = a1 ◦ e1 ◦ · · · ◦ an ◦ en,

where ai ∈ Ã \ Ẽ and ei ∈ Ẽ \ Ã. Let σ be the involution (x, y, z, t) 7→ (x, z, y, t). Every element of Ã
preserve the set of vertices [y], [z] in Tπ,k(x). Observe that the elements in AS

[x]
fix each vertex [y], [z] in

Tπ,k(x) and belong to Ẽ . Moreover, an element belongs to Ã ∩ Ẽ if it preserves the vertex [z], hence it
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must be in AS
[x]

. We deduce that the elements ai are of the form(
ax b(z + xT (x))

b−1(y + x P(x)) a−1(t + z P(x) + yT (x) + x P(x)T (x))

)
, (6)

where a, b ∈ k∗, P, T ∈ k[x]. This shows that we can decompose ai into ai =σ ◦a′

i where a′

i ∈ AS
[x]

⊂ Ã∩ Ẽ .
We can thus absorb the element a′

i in the term in Ẽ :

f = σ ◦ (a′

1 ◦ e1) ◦ σ ◦ (a′

2 ◦ e2) ◦ · · · ◦ σ ◦ (a′

n ◦ en).

We then conclude since the product σ ◦ (a′

i ◦ ei ) is of the required form. □

2E. Five technical consequences on the local geometry at each vertex. We say that a subset S ⊂ C is a
2 × 2 square of C if S is the union of four distinct 1 × 1 squares such that S isometric to [0, 2] × [0, 2].
Moreover, we say that a 2 × 2 square is centered on a vertex v if the vertex v corresponds to the image of
the point (1, 1) by an isometry from [0, 2] × [0, 2] to S.

Two 1 × 1 (resp. 2 × 2) squares S, S′ are said to be adjacent if their union S ∪ S′ is isometric to
[0, 2] × [0, 1] (resp. [0, 4] × [0, 2]). Two 1 × 1 squares S and S′ are adjacent along a vertical (resp.
horizontal) edge if they are adjacent and their intersection S ∩ S′ is a vertical edge (resp. horizontal).
Similarly, two 2 × 2 squares are said to be adjacent along a horizontal (resp. vertical) if they intersect
along a boundary segment (i.e., {0} × [0, 2], {2} × [0, 2], [0, 2] × {0} or [0, 2] × {2}) isometric to [0, 2]

which is the union of two horizontal edges (resp. vertical edges).
Two 1 × 1 (resp. 2 × 2) squares S1 and S2 are said to be adherent if they are not adjacent but their

intersection is reduced to a vertex which is in a corner of each respective square (i.e., one of the extremal
point of each square). If a vertex v ∈ C belongs to the intersection of two adherent squares S1 ∩ S2, then
S1 and S2 are said to be adherent along the vertex v.

We say that two 1 × 1 (resp. 2 × 2) squares S, S′ are flat if there exists two 1 × 1 (resp. 2 × 2) squares
S1, S2 such that the union S1 ∪ S2 ∪ S ∪ S′ is isometric to [0, 2] × [0, 2] (resp. [0, 4] × [0, 4]). Similarly,
three 1 × 1 (resp. 2 × 2) squares are flat if we can find another 1 × 1 (resp. 2 × 2) square such that
their union is isometric to [0, 2] × [0, 2] (resp. [0, 4] × [0, 4]). Once Lemma 2.16 and Lemma 2.15 are
obtained, they will allow us to work only with 2 × 2 squares centered around vertices of type III, instead
of 1 × 1 squares.

We will prove that three 1×1 squares S1, S2, S3 such that S1 and S2, S2 and S3 are adjacent and contain
a common vertex of type II or III are necessarily flat; see Lemmas 2.15 and 2.16 below. However, this
property does not necessarily hold when the squares contain a common vertex of type I (see Lemma 2.17
below), we prove that they are either flat or contained in a spiral staircase. We explain this terminology
below.

A collection (S, S′) of 1 × 1 or 2 × 2 squares is contained in a spiral staircase around v (see 2.14
for an example) if they contain a common vertex v of type I and such that any minimal sequence
S1 = S, . . . , Sk = S′ of squares containing v and connecting S to S′ satisfies the following conditions:
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[y, x]•

[z, x]
•

[y + x P1(x, y), x]•

[z + x P2(x, y + x P1(x, y)), x]
•[y + x P1(x, y) + x P3(x, y + x P1(x, y)), x]•

[x]
◦

[Id]
■

[ f ]
■

■S′

S

Figure 3. Example of horizontal spiral staircase.

(1) For all integer i ⩽ k − 1, the squares Si and Si+1 are alternatively adjacent along a vertical or
horizontal edge containing v.

(2) Any three consecutive squares (Si , Si+1, Si+2) for i ⩽ k − 2 is not flat.

When the first two squares S1 and S2 are adjacent along a horizontal edge (containing v), we say that the
spiral staircase around v is vertical. Otherwise the squares S1 and S2 are adjacent along a vertical edge
and we have a horizontal spiral staircase around v.

Remark 2.13. We conjecture that there cannot be any spiral staircase that is both vertical and horizontal
but do not need such a statement in our proofs.

When two squares S, S′ are flat, then the collection (S, S′) is not contained in a spiral staircase.

Example 2.14. Consider P1, P2, P3 ∈ k[x, y] \ k[x], denote by S the square containing [x] and [Id] and
S′ the square containing [x] and [ f ] where f ∈ Tame(Q) is given by

f =

(
x y + x P1(x, y) + x P3(x, z + x P2(x, y + x P1(x, y)))

z + x P2(x, y + x P1(x, y)) f4

)
,

where f4 = t + y(P1(x, y)+ P3(x, z + x P2(x, y + x P1(x, y))))+ y P2(x, y + x P1(x, y))+ x(P1(x, y)+

P3(x, z+x P2(x, y+x P1(x, y))))P2(x, y+x P1(x, y))). Then the pair (S, S′) is contained in a horizontal
spiral staircase and one has the Figure 3.

The next lemmas describe when three squares containing a common vertex are flat.

Lemma 2.15. Let v be a vertex of type III and let S1, S2, S3 be three distinct 1 × 1 squares such that S1 is
adjacent to S2 along an edge containing v, and S2 is adjacent to S3 along an edge containing v. Then the
three squares can be completed into a 2 × 2 square centered along v:

◦

◦◦

◦

•

•

•

•■
S1

S2 S3

S4
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Proof. Since the group acts transitively on the vertices of type III by Proposition 2.7, we can reduce by
conjugating by a tame element to the case where the vertex [Id] is a common point of the three squares.
By Proposition 2.3(i) and (ii), the three squares determine 3 distinct points p1, p2, p3 at infinity such that
p1 and p2 are on a same line at infinity L12, and p2, p3 lie on another line L23 which is transverse to L12.
Denote by p4 the intersection of the line passing through p1 transverse to L12 with the line passing through
p3 transverse to L23. This point determines a unique square S4 containing [Id] by Proposition 2.3(ii) and
the union S1 ∪ S2 ∪ S3 ∪ S4 is isometric to [0, 2] × [0, 2] since p1, p2, p3 and p4 lie on a cycle of four
lines at infinity. □

Lemma 2.16. Let v be a vertex of type II and let S1, S2, S3 be three distinct 1 × 1 squares such that S1 is
adjacent to S2 along an edge containing v, and S2 is adjacent to S3 along an edge containing v. Then the
three squares can be completed into a 2 × 2 square centered along v:

•

• •

◦ ◦

■

■

•

•

S1

S4 S3

S2

Proof. Since the tame group and PGL2 act transitively on the vertices of type III and on the pairs of points
on P1 respectively, we are reduced by conjugating with an appropriate tame automorphism to the situation
where the squares S1 and S2 contain [Id] and the points [y] and [x] respectively. Take f ∈ STame(Q) a
tame automorphism such that the vertex f · S2 = S3. Note that since S2 and S3 are adjacent, f preserve
the edge S2 ∩ S3. By Proposition 2.6(ii), f belongs to

EV ⋊
{(

ax dy + cx
d−1z a−1t + ca−1d−1z

) ∣∣∣ (a, c, d) ∈ k∗
× k × k∗

}
.

In particular, f can be decomposed as f = g ◦ e where e ∈ EV and g belongs to the subgroup{(
ax dy + cx

d−1z a−1t + ca−1d−1z

) ∣∣∣ (a, c, d) ∈ k∗
× k × k∗

}
.

The vertex of type III in S3 is determined by [ f ] = O4 f = O4g ◦ e = O4e = [e]. Set S4 = e−1
· [S1], by

construction, S4 is adjacent to S1 and since it also contains the vertices e−1
· [Id] = [e] and [x, y], it is

adjacent to S3. We have thus proved that S1, S2, S3 are flat. □

The important consequence of the above two lemmas is the following: Assume S is a 2 × 2 square
centered around a vertex of type III and that S̃′ is a 1 × 1 square adjacent to S along an edge of type I.
Then using Lemma 2.16 and Lemma 2.15, there exists another 2 × 2 square S′ containing S̃′, centered on
a vertex of type III, adjacent to S. This is synthesized in Figure 4.
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◦

◦◦

◦ ◦

◦

•

•

•

•

• •

•

■ ■
S

S̃′

Figure 4. A 2 × 2 square S centered around a type III vertex with a 1 × 1 square S̃′

adjacent to S along a type I edge where S̃′ is contained in another 2 × 2 square S′.

Lemma 2.17. Let v be a vertex of type I and let S, S1, S2 be three distinct 1 × 1 squares such that S is
adjacent to S1 along an edge containing v, and S is adjacent to S2 along an edge containing v. Let g1

and g2 ∈ STame(Q) such that g1S = S1 and g2S = S2. Then the three squares can be completed into a
2 × 2 square centered along v if and only if g1 or g2 belongs to AS

v :

■

■ ■

■

• •

•

•

◦

S1

S2

S

Proof. Since the group STame(Q) is transitive on the set of 1 × 1 squares, we can suppose that the
common vertex v is [x] and that S contains the vertex [Id]. We are thus in the following situation:

[x]

[x, z]

[x, y]

[x, z + x P(x, y)]

[x, y + x R(x, z)]

■ ■

■

• •

•

•

◦

S1

S2

S

where P, R ∈ k[x, y].
Let us prove the reverse implication (⇐). Assume g1 or g2 ∈ AS

[x]
. Let us assume that g1 ∈ AS

[x]
, then

this implies that R(x, z) ∈ k[x, z] and P(x) ∈ k[x] and g1, g2 can be taken to be

g1 =

(
x y − x R(x)

z t − z R(x)

)
and g2 =

(
x y

z − x P(x, y) t − y P(x, y)

)
.

Set S′
= g1g2S, since g1 ◦g2 = g2 ◦g1, we obtain that S′ is adjacent to S2 and S1, and contains [x] because

g1 ∈ AS
[x]

⊂ Stab([x]). In particular, S, S1, S2 are flat.
Let us prove the first implication (⇒). Suppose that the squares S1, S2, S3 are flat. Then there exists a

component f4 ∈ k[Q] such that the element f given by

f =

(
x y + x R(x, z)

z + x P(x, y) f4

)
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belongs to Tame(Q). In particular, it must fix the volume form �, this implies that

∂y P(x, y)∂z R(x, z) = 0 ∈ k[Q] .

This implies that ∂y P(x, y) = 0 or ∂z R(x, z) = 0 hence g1 or g2 belongs to AS
[x]

as required. □

Lemma 2.18. Take S and S′ two 2 × 2 squares centered at a vertex of type III which are adherent along a
vertex of type I. Then S and S′ satisfy one of the following properties:

(i) Either the pair (S, S′) is flat.

(ii) Either the pair of squares (S, S′) is contained in a horizontal or vertical spiral staircase.

Proof. Consider two squares S, S′ such that the pair of square (S, S′) is not flat. Up to a conjugation by
an element of STame(Q), we can suppose that S and S′ are adherent along the vertex [x]. Since the group
Tame(Q) acts transitively on the set of 2 × 2 squares centered on type III vertices by Proposition 2.7(vi),
there exists an element g ∈ STame(Q) such that g · S = S′. Using the fact that the link of type I vertices
is connected, we can choose any minimal sequence Si of adjacent 2 × 2 squares centered along a vertex
of type III all containing [x] such that S1 = S, . . . , Sk = S′. Observe that we can always construct such a
sequence by taking a sequence of S̃1, . . . , S̃k of 1 × 1 squares containing the same vertex of type I and
such that S̃1 ⊂ S, S̃k ⊂ S′. We apply Lemmas 2.16 and 2.15 inductively to Si , S̃i+1 for i = 1, . . . , k − 1
and we obtain that there exists a square Si+1 containing S̃i+1 centered around a vertex of type III, which
is adjacent to Si for each i = 1, . . . , k − 1.

Since the sequence of square S1, . . . , Sk is minimal, we claim that the squares Si and Si+2 are
adherent along the vertex [x] but the sequence Si , Si+1, Si+2 is not flat. Indeed, if it were the case, there
exists a 2 × 2 square S̃i containing [x] such that S̃i is adjacent to Si and Si+2 and such that the union
Si , Si+1, Si+2, S̃i is isometric to [0, 4] × [0, 4]. Observe that the edge Si ∩ Si−1 and Si ∩ S̃i are equal so
the sequence S1, . . . , Si−1, S̃i , Si+2, . . . , Sk is a sequence of squares connecting S and S′ of length k − 1.
This contradicts the fact that the sequence S1, . . . , Sk is minimal.

Moreover, the squares Si and Si+1 are alternatively adjacent along vertical and horizontal edges. Hence
the pair (S, S′) is contained in a horizontal or vertical spiral staircase, as required. □

In practice, we will use the following explicit characterization to determine whether two squares
adherent along a vertex of type I are flat.

Lemma 2.19. Consider two 2 × 2 adjacent squares S1, S2 along a horizontal edge containing [x1], [y1]

and a polynomial P ∈ k[x, y] \ k. Denote by [z1], [t1] the other vertices of S1 such that [x1], [z1] belong
to a vertical edge of S1 and by [z1 + x1 P(x1, y1)], [t1 + y1 P(x1, y1)] the two other vertices of S2. Let g
be the tame automorphism defined by

g =

(
x y

z + x P(x, y) t + y P(x, y)

)
so that g · S1 = S2.
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S1

S2

◦
[t1]

◦
[z1]

◦
[x1]

◦[y1]

◦
[t1 + y1 P(x1, y1)]

◦
[z1 + x1 P(x1, y1)]

• •

•

• ◦

◦

S′•

• •

•

•

•

Figure 5. The initial situation of Lemma 2.19.

The following assertions hold:

(i) We have g ∈ AS1
[x1]

if and only if P ∈ k[x] \ k.

(ii) For any square S′ adjacent to S1 along the vertical edge containing [x1], [z1], the squares S1, S′, S2

are flat if and only if P ∈ k[x] \ k.

Figure 5 summarizes the initial situation in the previous lemma.

Proof. By conjugation, we can suppose that x1 = x, y1 = y, z1 = z and t1 = t . Assertion (i) follows
directly from the definition of AS1

[x]
.

Let us prove assertion (ii). Choose a square S′ such that g′S1 = S′ where g′ /∈ AS1
[x]

. Using successively
Lemma 2.17, Lemma 2.16 and Lemma 2.15, we obtain that the squares S1, S2, S′ are flat if and only if g
or g′ are in AS1

[x]
. Since g′ /∈ AS1

[x]
, then we deduce that S1, S2, S′ are flat if and only if g ∈ AS1

[x]
. Finally

the condition g ∈ AS1
[x]

is equivalent to the fact that P ∈ k[x] \ k by assertion (i). □

3. Global geometry of the complex

In this section, we first review the results due to Bisi, Furter and Lamy regarding the global geometric
properties of the metric square complex (C, dC) introduced in Section 2. We then describe the degree of
iterates of a tame automorphism fixing a vertex of the complex.

3A. Gromov curvature and Gromov-hyperbolicity. Recall that a map γ : [0, l] → (C, dC) defines a
geodesic segment of length l if γ induces an isometry from [0, l] to γ ([0, l]). A map γ : R → C which is
an isometry onto its image is called a geodesic line and a map γ : R+

→ C which is an isometry onto
its image is called a geodesic half-line. Recall also that γ : I → C where I = [0, l] or I = R, R+ is a
quasigeodesic if there exists λ > 0, M > 0 such that for any s, s ′

∈ I , the following inequality is satisfied:

1
λ
|s − s ′

| − M ⩽ dC(γ (s), γ (s ′)) ⩽ λ|s − s ′
| + M.
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As a result, a geodesic line is also a quasigeodesic. When any two points on a metric space can be joined
by a geodesic segment, we say that the space is a geodesic metric space.

A geodesic space (X, d) is CAT(0) (see [Bridson and Haefliger 1999, Section II.1]) if its triangles are
thinner than euclidean triangles. In other words, (X, d) satisfies the following condition. For any three
points p, q, r in X , take a triangle in the euclidean plane (R2, ∥·∥) with vertices p̄, q̄, r̄ ∈ R2 such that
d(p, q) = ∥ p̄ − q̄∥, d(q, r) = ∥q̄ − r̄∥ and d(r, p) = ∥r̄ − p̄∥. Then for any point m1 ∈ X and m2 ∈ X in
the geodesic segment [p, q] and [q, r ] respectively, one has

d(m1, m2) ⩽ ∥m̄1 − m̄2∥,

where m̄1 and m̄2 are the unique points on the segments [ p̄, q̄] and [q̄, r̄ ] respectively such that d(m1, p)=

∥ p̄ − m̄1∥ and d(r, m2) = ∥r̄ − m̄2∥.
Let us recall the notion of Gromov-hyperbolic metric space. Let δ > 0 be a positive real number. A

metric space (X, d) is δ-hyperbolic if for any geodesic triangle T = [p, q] ∪ [q, r ] ∪ [r, p] in X and for
any point m ∈ [p, q], we have

d(m, [q, r ] ∪ [r, p]) ⩽ δ

Theorem 3.1 [Bisi et al. 2014, Theorem A]. The square complex C, endowed with the distance dC , is a
geodesic metric space which is simply connected, CAT(0) and Gromov-hyperbolic.

The previous result has important consequences on the behavior of the isometries of the complex, i.e.,
distance preserving maps. Recall that the translation length, denoted l( f ), of an isometry f : C → C is
defined by

l( f ) = inf
v∈C

dC(v, f (v)).

Observe that for any isometry f , the points in the complex where the infimum is reached is invariant
by f . We denote by Min( f ) the subset of C on which the infimum is reached.

Theorem 3.2. Let f : C → C be an isometry of C which is also a morphism of complex. Then either
l( f ) = 0 and f fixes a vertex in the complex, either l( f ) > 0 and one can find f -invariant geodesic line
on which f acts by translation by l( f ).

In other words, a tame automorphism f is either elliptic (when l( f ) = 0) or hyperbolic.

Proof. Take f an isometry of the complex C. Then Min( f ) is nonempty by [Bridson and Haefliger 1999,
II.6.6(2)]. Suppose that l( f ) > 0, then f satisfies the hypothesis of [loc. cit., II.Theorem 6.8]. More
precisely, [loc. cit., II.Theorem 6.8(1)] asserts that an isometry f of a CAT(0) space satisfies l( f ) > 0 if
and only if f translates by l( f ) on an invariant geodesic line, as required.

Otherwise l( f ) = 0, we prove that there exists a vertex which is fixed by f . Define a cell of C to be a
vertex, an edge or a square. We note that the intersection of two cells of C is a cell. Since Min( f ) ̸= ∅
pick v ∈ Min( f ), then dC(v, f (v)) = 0: So f (v) = v. Let S be the minimal cell of C which contains v.
Then v is the intersection of all cells of C which contains v and we get f (S) = S. If S is a vertex, v is a
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vertex. If S is an edge, since the two vertices of S are of different types, f fixes every vertex of S. Now
assume that S is a square. Then f fix the unique type III point of S. □

3B. Degree growths of elliptic automorphisms. In this section, we apply the results of the previous
section to study the degree growth of particular tame automorphisms. Recall from the previous section
that a tame automorphism is elliptic or hyperbolic if its action on the complex fixes a vertex or preserves
a geodesic line of the complex on which it acts by translation respectively.

The following result classifies the degree growth of any elliptic tame automorphisms.

Theorem 3.3. Let f ∈ Tame(Q) be any tame automorphism of Q fixing a vertex in the square complex.
Then we are in one of the following situations:

(i) The sequence (deg( f n), deg( f −n)) is bounded and f is linear or f 2 is conjugate via a birational
map Q 99K A3 to an automorphism of the form (x, y, z) 7→ (ax, by + x R(x), b−1z + x P(x, y)) with
a, b ∈ k∗, P ∈ k[x, y] and R ∈ k[x].

(ii) There exists a constant C > 0 such that

1
C n ⩽ deg( f ϵn) ⩽ Cn,

where ϵ ∈ {+1, −1} and f is conjugated via a birational map Q 99K A3 to an automorphism of the
form

(x, y, z) 7→ (ax, b−1(z + x R(x)), b(y + x P(x)z)),

with a, b ∈ k∗, R ∈ k[x] and P ∈ k[x] \ k.

(iii) There exists a constant C > 0 and an integer d such that

1
C dn ⩽ deg( f ϵn) ⩽ Cdn,

where ϵ ∈ {+1, −1} and f is conjugated via a birational map Q 99K A3 to a composition of elements
of the form

(x, y, z) 7→ (ax, b(z + x P(x, y)), b−1(y + x R(x))),

where a, b ∈ k∗, R ∈ k[x] and P ∈ k[x, y] such that degy(P) ⩾ 2.

Remark 3.4. In case (iii) of the previous theorem, suppose f is a normal form, then deg( f p) = Cd p
+C0

where C > 0 and C0 ∈ Z.

Remark 3.5. The growth of the degree of elliptic automorphisms is summarized in Table 1.

The proof of the theorem relies on the comparison to some reference tame automorphism, for which
one computes the degree growth explicitly.
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fixed vertex action on the link fibration behavior on the fiber deg( f n)

Type III bounded
Type II over P2 flow of a vector field bounded
Type I trivial on T over P1 flow of a vector field bounded
Type I involution on T over P1 affine linear
Type I hyperbolic on T over P1 composition of Henon dn

C ⩽ deg( f n) ⩽ Cndn

Table 1. Summary of the degree growth for an elliptic automorphism.

Lemma 3.6. The following properties hold:

(i) If f is belongs to the semidirect product Stab([x, z]) = ẼH ⋊ N where

N =

{(
ax + bz a′y + b′t
cx + dz c′y + d ′t

) ∣∣∣ (
a b
c d

) (
d ′

−b′

−c′ a′

)
= I2 ∈ M2(k)

}
,

then the sequence (deg( f n), deg( f −n)) is bounded.

(ii) If f is of the form

f =

(
ax b(y + x P(x))

b−1(z + x S(x)) a−1(t + z P(x) + yS(x) + x P(x)S(x))

)
where P, S ∈ k[x] \ k, a, b ∈ k∗, then the sequence (deg( f n), deg( f −n)) is bounded.

(iii) If f is of the form

f =

(
ax b(y + x P(x, z))

b−1(z + x R(x)) a−1(t + z P(x, z) + y R(x))

)
with P ∈ k[x, z]\k and degz(P) = 1, R ∈ k[x] and a, b ∈ k∗, then the sequence (deg( f n), deg( f −n))

is bounded.

(iv) If f is of the form

f =

(
ax b−1(z + x R(x))

b(y + x P(x)z) a−1(t + z2 P(x) + y R(x))

)
with P ∈ k[x] \ k, R ∈ k[x], a, b ∈ k∗, then both sequences (deg( f n)), (deg( f −n)) grow linearly.

(v) If f is of the form

f =

(
ax b(y + x P(x, z))

b−1(z + x R(x)) a−1(t + z2 P(x) + y R(x))

)
with P ∈ k[x, y], R ∈ k[x] \ k, a, b ∈ k∗, then the sequence (deg( f n), deg( f −n)) is bounded.
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(vi) If f is a composition of automorphism of the form(
ax b(z + x P(x, y))

b−1(y + x R(x)) a−1(t + z R(x) + y P(x, y) + x P(x, y)R(x))

)
,

where R ∈ k[x] and P ∈ k[x, y] such that degy(P) ⩾ 2, then we have

dn ⩽ deg( f ±n) ⩽ Cdn, (7)

where C > 0 and d ≥ 2 is an integer.

Proof. During the whole proof, we will consider the valuation ν : k[Q] → R−
∪ {+∞} corresponding to

− deg. It is defined by the formula

ν(P) = sup{− deg(R) | R ∈ k[x, y, z, t], R = P ∈ k[Q]}.

The fact that such a function gives a valuation will be proved in Proposition 4.2. In each case except the
last one, we will also express f n as f n

= (xn, yn, zn, tn) where xn, yn, zn, tn ∈ k[Q].
Let us prove assertion (i). Denote by N the subgroup

N =

{(
ax + bz a′y + b′t
cx + dz c′y + d ′t

) ∣∣∣ (
a b
c d

) (
d ′

−b′

−c′ a′

)
= I2 ∈ M2(k)

}
.

Take f ∈ ẼH ⋊ N , then it can be decomposed into

f = e ◦ g,

where e ∈ ẼH and g ∈ N . Since ẼH is a normal subgroup, we can consider the elements e1 = geg−1
∈

ẼH , ek+1 = geek g−1 for all k ≥ 1. We have

f n
= (eg)n

= (eg)n−2(egeg)

= (eg)n−2ee1g2

= (eg)n−3e(gee1)g2

= (eg)n−3ee2g3

= · · ·

f n
= een−1gn.

Note that since N ⊂ O4, the degree remain unchanged if we postcompose by elements in this subgroup.
In particular, we have deg ek+1 = deg(eek) for all k ≥ 2. we get

deg( f n) = deg(een−1).

Now we write e as

e =

(
ax b(y + x P(x, z))

b−1z a−1(t + z P(x, z))

)
, (8)
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where a, b ∈ k∗ and P ∈ k[x, z], and ek is of the form

ek =

(
x ′

k y′

k
z′

k t ′

k

)
,

where x ′

k, y′

k, z′

k, t ′

k ∈ k[Q]. We claim that the degree of ek is bounded. We have ν(x ′

1) = ν(z′

1) = −1,
ν(y′

1) = ν(t ′

1) = − deg(P) − 1 and an immediate induction gives

ν(x ′

k+1) = ν(ax ′

k) = ν(x ′

k),

ν(y′

k+1) = ν(b(y′

k + x ′

k P(x ′

k, z′

k))) = ν(y′

k + x ′

k P(x ′

k, z′

k)) ≥ − deg(P) − 1,

ν(z′

k+1) = ν(bz′

k) = ν(z′

k),

ν(t ′

k+1) = ν(a−1(t ′

k + z′

k P(x ′

k, z′

k))) ≥ − deg(P) − 1.

This shows that deg( f n) = deg(een−1) is bounded. A similar argument will also show that deg( f −n) is
bounded and assertion (i) holds.

Let us prove assertion (ii). Assume f is given by

f =

(
ax b(y + x P(x))

b−1(z + x S(x)) a−1(t + z P(x) + yS(x) + x P(x)S(x))

)
where P, S ∈ k[x] \ k and a, b ∈ k∗. The sequence ν(xn) is constant equal to −1 because ν(xn+1) =

ν(axn) = ν(xn) = ν(x) = −1. We have ν(y1) = − deg(P) − 1, deg(z1) = − deg(S) − 1. Observe that
ν(yn+1) = ν(b(yn + xn P(xn))) ≥ − deg(P) − 1 for all n ≥ 1, and ν(zn+1) = ν(b−1(zn + xn S(xn))) ≥

− deg(S)−1 for all n ≥ 1. Since ν(xntn − ynzn) = ν(1) = 0, and since ν(xn), ν(yn), ν(zn) are all bounded
and always negative, we deduce that ν(tn) = ν(yn) + ν(zn) − ν(xn) is also bounded. This shows that
deg( f n) is bounded. Since the inverse f −1 can be obtained by replacing P by −P , S by −S and a, b by
a−1, b−1 respectively, we conclude that deg( f −n) is also bounded.

Let us prove assertion (iii). Assume f is of the form

f =

(
ax b(y + x P(x, z))

b−1(z + x R(x)) a−1(t + z P(x, z) + y R(x) + x P(x, z)R(x))

)
with R ∈ k[x], a, b ∈ k∗, P ∈ k[x, z] and degz P = 1. We first decompose P into

P(x, z) = P0(x) + z P1(x),

where P0, P1 ∈ k[x] and P1 ̸= 0.
Observe that ν(xn) = −1 for all n. Observe that ν(z1) = − deg(R) − 1, we obtain by induction

ν(zn+1) = ν(b−1(zn + xn R(xn))) ≥ − deg(R) − 1.
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so that ν(zn) ≥ − deg(R) − 1 for all n ≥ 1. Observe that ν(y1) = − deg(P) − 2, we now estimate ν(yn)

inductively:
ν(yn+1) = ν(b(yn + xn P0(xn) + xnzn P1(xn)))

= ν(yn + xn P0(xn) + xnzn P1(xn))

≥ min(ν(yn), − deg(P0) − 1, ν(zn) − 1 − deg(P1))

≥ min(ν(yn), − deg(P0) − 1, − deg(P1) − deg(R) − 2).

We thus obtain that ν(yn) ≥ − deg(P) − deg(R) − 2 for all n ≥ 1. Using the fact that xntn = 1 + ynzn ,
we deduce that ν(tn) is also bounded since ν(xn), ν(yn), ν(zn) are all bounded. Since f −1 has a similar
form, we deduce that both deg( f n) and deg( f −n) are bounded.

Let us prove assertion (iv). Assume f is of the form

f =

(
ax b−1(z + x R(x))

b(y + x P(x)z) a−1(t + z2 P(x) + y R(x))

)
with P ∈ k[x] \ k, R ∈ k[x], a, b ∈ k∗. In the case where R = 0 one sees easily that the sequence of
degrees grows linearly deg( f n) ∼ Cn. Let us now assume R ̸= 0. We have

f 2
=

(
a2x b−1(b(y + x P(x)z) + ax R(ax))

b(b−1(z + x R(x)) + ax P(ax)b(y + x P(x)z)) t2

)
. (9)

Observe that ν(xn) = −1 for all n ≥ 1. We have (using Lemma 4.7 to evaluate the valuation) ν(y1) =

min(−1, −1 − deg(R)), ν(z1) = − deg(P) − 2, ν(y2) = min(−1, −2 − deg(P), −1 − deg(R)), ν(z2) =

min(−1, −1 − deg(R), −2 deg(P) − 3) and the inductive relation{
ν(yn+1) = ν(b−1(zn + xn R(xn))) ≥ min(ν(zn), − deg(R) − 1),

ν(zn+1) = ν(b(yn + xn P(xn)zn)) ≥ min(ν(yn), − deg(P) − 1 + ν(zn)).

Let us show by induction on n ≥ 2 that:

(a) ν(zn) ≤ ν(yn).

(b) ν(zn) ≤ min(−1, − deg(R) − 1).

The case n = 2 was treated above. Let us assume that (a), (b) hold for n ≥ 2. Since ν(znxn P(xn)) < ν(yn),
we have

ν(zn+1) = ν(yn + xn P(xn)zn) = − deg(P) − 1 + ν(zn). (10)

Since ν(zn) ≤ min(−1, − deg(R) − 1), we have, by the previous relation,

ν(yn+1) ≥ min(ν(zn), − deg(R) − 1) ≥ ν(zn) > ν(zn+1). (11)

We have thus showed (a) and (b) for n + 1.
Relation (a) shows that ν(zn+1)=ν(zn)−deg(P)−1 for all n ≥2, so ν(zn) grows linearly. Starting from

n ≥ 3, we would have ν(zn)< min(−1, − deg(R)−1). And this implies that ν(yn)= ν(zn−1) for all n ≥ 4.
Overall, both ν(yn), ν(zn) grow linearly for n ≥4. Since ν(tn)=ν(1+ynzn)−ν(xn)=ν(yn)+ν(zn)−ν(xn)
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for n ⩾ 1, we deduce that ν(tn) also grows linearly for large enough n. Overall deg( f n) grows linearly.
Similarly, f −1 is also of the same form, so we also conclude that deg( f −n) also grows linearly.

Let us prove assertion (v). Assume f is of the form

f =

(
ax b(y + x P(x, z))

b−1(z + x R(x)) a−1(t + z2 P(x) + y R(x))

)
with P ∈ k[x, y], R ∈ k[x] \ k, a, b ∈ k∗. We observe that ν(xn) = −1 and ν(zn) = − deg(R) − 1 for all
n ≥ 1. We also have

ν(yn+1) = ν(yn + xn P(xn, zn)) ≥ min(ν(yn), ν(xn) + ν(P(xn, zn))).

Write P =
∑

ai j x i y j . Since ν(P(xn, zn)) ≥ min{−i + j (− deg(R) − 1) | ai j ̸= 0}, the above formula
also yields that ν(yn) is bounded. We then conclude that ν(tn) = ν(ynzn)−ν(xn) is also bounded. Finally
deg( f n) is bounded, and so is its inverse which is of a similar form.

Let us prove assertion (vi). Assume f = gk · · · g1 is a composition of automorphisms of the form

gi =

(
ai x bi (z + x Pi (x, y))

b−1
i (y + x Ri (x)) a−1

i (t + z Ri (x) + y Pi (x, y) + x Pi (x, y)Ri (x))

)
,

where Ri ∈ k[x] and Pi ∈ k[x, y] such that degy(Pi ) ⩾ 2. For simplicity, let us reset xn, yn, zn, tn ∈ k[Q]

defined by

gi · · · g2g1 f n
=

(
xnk+i ynk+i

znk+i tnk+i

)
(12)

for all i ⩽ k. We also set gnk+i := gi for all n, i so that we repeat the same sequence of automorphism
periodically.

We will first show that the sequences ν(yn), ν(zn) are unbounded.
Let us consider the following valuation ν0 : k[Q]→R−

∪{+∞} which gives the weight (0, −1, −1, −2)

on (x, y, z, t) (see Proposition 4.2 for a precise definition). This valuation gives no weight to x whereas
it gives the weight −1 to y, z and the weight −2 to t . By construction, we have 2ν(P) ⩽ ν0(P) for all
P ∈ k[Q].

Recall from Section 2D that an automorphism of the form

gn =

(
anx bn(z + x Pn(x, y))

b−1
n (y + xn R(x)) a−1

n (t + z R(x) + y P(x, y) + x P(x, y)R(x))

)
,

induces an element i(gn) of Autk(x) A2. Namely, the associated element is

(y, z) 7→ (bn(z + x Pn(x, y)), b−1
n (y + x Rn(x))). (13)

One can see that given gn, gm of this form, one can find some automorphism g̃n,m, g̃m of the same form
determined by some polynomials P̃n = λ−1

n Pn(x/λn, y), R̃n = λ−1
n R(x/λn) where λn ∈ k∗ (λn depends

on gm for n ⩾ m) such that i(gngm) = i(g̃n)i(g̃m). We thus find them inductively as follows, we first
find g̃2 such that i(g2g1) = i(g̃2)i(g1). Now we find g̃3 such that i(g3(g2g1)) = i(g̃3)i(g̃2)i(g1) and so
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on, observe that g̃n+1 depends on all the preceding gn, gn−1 . . . , g1. However the degree in y of those
elements remains the same. We thus obtain

i(gn · · · g1) = i(g̃n) · · · i(g̃2)i(g1).

The elements i(gn), i(g̃n) are Henon-like automorphism of A2
k[x]

and by [Friedland and Milnor 1989,
Theorem 2.1] the degree in (y, z) of a composition i(g1 · · · gn) = i(g̃1) · · · i(g̃n) of n such elements is a
product dn =

∏n
i=1 degy Pi of n integers larger or equal to 2. This implies that ν0(yn) ∼ dn, ν0(zn) ∼ dn−1

grow exponentially fast, and we obtain that 2ν(yn) ⩽ ν0(yn), 2ν(zn) ⩽ ν0(zn) are unbounded and that

deg(gn · · · g1) ≥ dn/2 (14)

hence deg( f n) ≥ dn
k /2.

We will now prove the second inequality deg(gn · · · g1) ⩽ C ′dn for a constant C ′ > 0. Let us first
reduce our problem, to any f ∈ Stab([x]) of the form

f =

(
ax f2

f3 f4

)
,

where a ∈ k∗, f2, f3, f4 ∈ k[Q]. We set

r( f ) =

(
x f2

f3 a f4

)
.

By construction, r( f ) is a tame automorphism which is also in Stab([x]) and one has deg(r( f ))= deg( f ).
Moreover, one can find some automorphism g′

i of the same form as gi such that

r(gn · · · g1) = r(g′

n) · · · r(g′

1).

We can thus replace g1, . . . , gn by r(g′

1), . . . , r(g′
n) and assume that the coefficient ai are all equal to 1.

Let us introduce some particular notations. For any polynomial P ∈ k[x, y] \ k[x] and b ∈ k∗, we write
by h(P) the automorphism given by

h(P, b) :=

(
x b(z + x P(x, y))

b−1 y t + y P(x, y)

)
.

We also set for all R, S ∈ k[x] and b ∈ k∗,

u(R, S, b) :=

(
x b(y + x R(x))

b−1(z + x S(x)) t + z R(x) + yS(x) + x R(x)S(x)

)
. (15)

We will use some particular relations via the following lemma:

Lemma 3.7. For any P ∈ k[x, y] \ k such that degy P ≥ 2 and any R, S ∈ k[x], there exist T ∈ k[x],
P̃ ∈ k[x, y] \ k such that the following are satisfied:

(1) degy P̃ = degy P − 1.

(2) degx P̃ ⩽ degx P + (degy P − 1)(1 + deg R).
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(3) deg T ⩽ max(deg S, (degy P)(deg R + 1) + deg P).

(4) h(P, β) ◦ u(R, S, b) = u(T, R, βb−1) ◦ h(y P̃, 1).

Proof. The proof follows easily from the Taylor expansion:

P(x, b(y + x R(x))) = P(x, by)+
(bx R(x))degy P

(degy P)!
∂

degy P
2 P(x, by)+

degy P−1∑
k=1

(bx R(x))k

k!
∂k

2 P(x, by). □

Let us decompose gi into as gi = u(Ri , Si , bi ) ◦ h(ypi , βi ), where pi ∈ k[x, y] such that degy pi =

degy Pi − 1 and bi , βi ∈ k∗. Note that since the polynomials Pi , Ri are chosen periodically from
{P1, . . . , Pk}, {R1, . . . , Rk} respectively, the polynomials Ri , Si , pi are also chosen among finitely many
polynomials. Let us consider

M := max
i

(deg(Ri ), deg Si ),

Mp := max(M, max
i

(1 + deg pi )).

Observe also that dn =
∏n

i=1 degy Pi =
∏n

1(1 + degy pi ) and that M ≤ Mp by construction.
We prove by induction on n ≥ 1 that there exists Tn, Un ∈ k[x], β ′

n ∈ k∗ and P̃1, . . . , P̃n ∈ k[x, y] \ k
such that

gn · · · g1 = u(Tn, Un, β
′

n)h(y P̃n, 1) . . . h(y P̃1),

and satisfying the conditions

deg Un ⩽ M and ∀n ≥ 2, degx P̃n ⩽ degx pn + degy(pn)(1 + deg Tn−1), (16)

and for all n ≥ 2

deg Tn ⩽ dn deg T1 +

n−1∑
i=1

dn

di
+ Mp

n∑
i=2

dn

di
. (17)

The case where n = 1 is immediate. Let us assume that gn . . . g1 can be decomposed into u(Tn, Un, β
′
n) ◦

h(y P̃n, 1) ◦ · · · ◦ h(y P̃1, 1). Using the above lemma to R = Tn, S = Un and P = ypn+1, we obtain
β̃n+1 ∈ k∗, some polynomials T̃ ∈ k[x] and P̃n+1 ∈ k[x, y] and get

gn+1gn · · · g1 = u(Rn+1, Sn+1, bn)h(ypn+1, βn+1)u(Tn, Un, β
′

n)h(y P̃n, 1) · · · h(y P̃1),

= u(Rn+1, Sn+1, βn+1)u(T̃ , Rn+1, β̃n+1)h(y P̃n+1, 1)h(y P̃n, 1) · · · h(y P̃1, 1),

and we conclude by setting Tn+1 = T̃ + β̃−1
n+1 Rn+1, Un+1 = Rn+1 + β̃−1

n+1Sn+1, β ′

n+1 = βn+1β̃n+1. We
check the bounds on the degree of Tn+1, Un+1. The lemma directly implies

deg(Un+1) ⩽ max(deg Rn+1, deg Sn+1) ⩽ M and degx P̃n+1 ⩽ degx pn+1 + degy(pn+1)(1 + deg Tn).
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Using the induction hypothesis deg Un ⩽ M , the inequality (17) and the fact that deg Rn+1 ⩽ M ⩽

Mp, (1 + deg pn+1) ≤ Mp, we get

deg(Tn+1) ⩽ max(deg Rn+1, deg(T̃ )),

⩽ max(deg Rn+1, deg Un, (1 + degy pn+1)(deg Tn + 1) + 1 + deg pn+1),

⩽ max(M, (1 + degy pn+1) deg Tn + Mp + (1 + degy pn+1)),

⩽ max
(

M,
dn+1

dn

(
dn deg T1 +

n−1∑
i=1

dn

di
+ Mp

n∑
i=2

dn

di

)
+ Mp +

dn+1

dn

)
,

⩽ dn+1 deg T1 +

n∑
i=1

dn+1

di
+ Mp

n+1∑
i=2

dn+1

di
.

This finishes the proof by induction.
Using the fact that dn+1/dn is an integer larger or equal to 2, the inequality (17) implies that for all

n ≥ 2, we have dn/di ⩽
( 1

2

)i−1dn/d1, for all i ⩽ n,

deg Tn ⩽ dn deg T1 + (2 + Mp)
dn

d1
⩽ Cdn, (18)

where C = deg(T1) + (2 + Mp)/d1. Now (16) simplifies as

degx P̃n ⩽ degx pn + degy(pn)(1 + deg Tn−1),

⩽ degx pn + degy(pn)(1 + Cdn−1),

⩽ dn
(
C +

1
2

)
+ degx pn,

and we choose an integer N0 such that for all n ≥ N0, max(degx pi ) ⩽ dn . We then get

degx P̃n ⩽ C ′dn (19)

where C ′
= C +

3
2 for all n ≥ N0.

Let us now prove that deg(h(y P̃n, 1) . . . h(y P̃1, 1)) ⩽ C ′dn where C ′ > 0. For this particular product,
we reproduce the standard arguments for product of Henon transformations.

Let us write

h(y P̃n, 1) . . . h(y P̃1, 1) =

(
x y′

n
z′

n t ′
n

)
,

where y′
n, z′

n, t ′
n ∈ k[Q].

We have the following inductive relation for n ⩾ 1:

ν(z′

n+1) = ν(y′

n) and ν(y′

n+1) = ν(z′

n + xy′

n P̃n+1(x, y′

n)).

We prove by induction on n ≥ 1 that ν(y′
n) ⩽ ν(z′

n).
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Indeed, it is clear for n = 1 and assume by induction that ν(y′
n)⩽ ν(z′

n) for n ≥ 1, then since P̃n+1 ̸= 0,
we get

ν(y′

n+1) = ν(z′

n + xy′

n P̃n+1(x, y′

n)) = ν(xy′

n P̃n+1(x, y′

n)) < ν(y′

n) = ν(z′

n+1),

as required. Moreover, by applying (19), we have for all n ≥ N0,

ν(y′

n+1) ⩾ min(− degx P̃n+1, (degy P̃n + 1)ν(y′

n))

⩾ min(−C ′dn+1, (degy P̃n + 1)ν(y′

n))

⩾ min
(

−C ′dn+1,
dn+1

dn
ν(y′

n)

)
.

An immediate induction using the previous inequality shows that

ν(y′

n) ⩾ min
(

−C ′dn,
dn

dN0

ν(y′

N0
)

)
, (20)

for all n ≥ N0 and this shows that deg(h(y P̃n) . . . h(y P̃1)) ⩽ C̃dn .
Finally, we conclude

deg(gn . . . g1) = deg(u(Tn, Un)h(y P̃n) · · · h(y P̃1))

⩽ max(deg Tn, deg Un, deg(h(y P̃n) · · · h(y P̃1))) ⩽ C ′′dn, (21)

where C ′′ > 0, as required. □

Proof of Theorem 3.3. Take f ∈ Tame(Q) an elliptic automorphism. Since f fixes a vertex on the complex,
we will distinguish three cases depending on the type of vertices f fixes. Moreover, recall that the degree
growth is an invariant of conjugation and that by Proposition 2.7, the tame group acts transitively on the
set of vertices of type I, II and III respectively. We are thus reduced to compute the degree growth for f
in the subgroups Stab([Id]), Stab([x, z]) and Stab([x]) respectively.

First case: If f ∈ Stab([Id]) = O4, the sequence (deg( f n), deg( f −n)) is bounded.

Second case: Suppose that f ∈ Stab([x, z]). By Proposition 2.6, one has

Stab([x, z]) = EH ⋊
{(

ax + bz a′y + b′t
cx + dz c′y + d ′t

) ∣∣∣ (
a b
c d

) (
d ′

−b′

−c′ a′

)
= I2 ∈ M2(k)

}
.

Denote by πxz : Q → A2
\ {(0, 0)} the map induced by the projection

(x, y, z, t) → (x, z),

then f naturally preserves the fibration πxz . Recall that π−1
xz (A2

\ ({0}×A1)) is isomorphic to A2
\ ({0}×

A1)× A1 and f induces a birational self map. If the induced (linear) action on A2
\ {0} is diagonalizable,

then f can be conjugate to an element of the form

f : (x, z, y) 7→ (ax, b−1z, b(y + x P(x, z))).
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Otherwise, the action on A2 has Jordan form and f is birationally conjugate to

f : (x, z, y) 7→ (ax, b−1x + az, b(y + x P(x, z))),

with a, b ∈k∗, P ∈k[x, z]. Moreover, using assertion (i) of Lemma 3.6, the sequence (deg( f n), deg( f −n))

is bounded and f satisfies assertion (i).

Third case: Consider f ∈ Stab([x]) such that f /∈ Stab([x, y]) ∪ Stab([x, z]). By definition, there exists
a constant a ∈ k∗ such that x ◦ f = ax . Naturally, f preserves the fibration πx : Q → A1 and since
π−1

x (A1
\ {0}) is isomorphic to A1

\ {0} × A2, the automorphism f is of the form

f : (x, y, z) → (ax, f1, f2),

where ( f1, f2) defines an element of Aut(A2
k[x,x−1]

).
By Proposition 2.10, f induces an action on the tree Tπx ,k(x). If f induces an action on this tree which

fixes the three vertices [y], [z] and [y, z], then f belongs to AS
[x]

where S is the 2 × 2 square containing
[x], [y], [z], [t]. By Proposition 2.10(iv), f is then of the form(

ax b(y + x P(x))

b−1(z + x S(x)) a−1(t + z P(x) + yS(x) + x P(x)S(x))

)
where P, S ∈ k[x] \ k. By Lemma 3.6 (ii), the sequences (deg( f n)) and deg( f −n)) are bounded and f
satisfies assertion (i) since in the fixed trivialization, f is of the form

(x, y, z) 7→ (ax, b(y + x P(x)), b−1(z + x S(x))).

Recall that the vertices of type II in the Bass–Serre tree Tπ,k(x) were equivalence classes of components
( f1, f2) of automorphisms in Aut(A2

k(x)) where two components ( f1, f2) ≃ (g1, g2) if and only if there
exists a b c

a′ b′ c′

0 0 1

 ∈ GL2(k(x))

such that (g1, g2) = (a f1 + b f2 + c, a′ f1 + b′ f2 + c′).
Suppose that f, f 2 are not conjugate in Stab([x]) to elements in A(y,z)

[x]
and the action of f on the

subtree Tπ,k(x) of Tk(x) fixes a vertex. If the fixed vertex in the tree Tπ,k(x) is of type II, then using
Proposition 2.10(i) we can suppose that f fixes the vertex given by [y, z]. In particular, this implies that
f is conjugated to(

ax b(y+x P(x, z))
b−1(z+x R(x)) a−1(t+z P(x, z)+y R(x))

)
or

(
ax b−1(z+x R(x))

b(y+x P(x, z)) a−1(t+z P(x, z)+y R(x))

)
with P ∈ k[x, z] \ k where degz(P) = 1 and R ∈ k[x]. Using Lemma 3.6(iii) and (iv), the sequences
deg( f n) and deg( f −n) are bounded in the first case and grow linearly in the second. In the first case, f
satisfies assertion (i) and f satisfies assertion (ii) in the second.
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If f, f 2 are not conjugate in Stab([x]) to elements in AS
[x]

and the action f on Tπ,k(x) fixes a vertex of
type I but no vertices of type II, then using Proposition 2.10(i), f is conjugate (in Stab([x])) to an element
which fixes the vertex [z] in the Bass–Serre tree, hence it is an element of the subgroup Ẽ defined in
assertion (v) of Proposition 2.10. This shows that f is of the form(

ax b(y + x P(x, z))
b−1(z + x R(x)) a−1(t + z2 P(x) + y R(x))

)
with P ∈ k[x, y], R ∈ k[x] \ k. By Lemma 3.6(v), the degrees of both f n and f −n are bounded and f
satisfies assertion (i).

The remaining case is when the action on the subtree Tπ,k(x) is hyperbolic. By Proposition 2.12, f is
conjugated to a composition of elements of the form(

ax b(z + x P(x, y))

b−1(y + x R(x)) a−1(t + z R(x) + y P(x, y) + x P(x, y)R(x))

)
,

where R ∈ k[x] and P ∈ k[x, y] such that degy(P) ⩾ 2. By Lemma 3.6 (vi), the degree sequences
(deg( f n)), (deg( f −n) satisfy

dn ⩽ deg( f ±n) ≤ Cdn,

where d ≥ 2 is an integer and f satisfies assertion (iii). □

4. Valuative estimates

This section is devoted to the generalization of the so-called parachute inequalities; see [Bisi et al. 2014,
Minoration A.2]. Our proof extends the method of [Lamy and Vénéreau 2013] to more general valuations.
The plan of the section is as follows. First we recall some general facts on valuations (Section 4A), then
we consider a particular class of valuations in Section 4B. For these particular valuations, we introduce
the parachute associated to a pair of regular functions on the quadric allowing us to estimate the degree of
a derivative on a given direction (Section 4C). Using this and some elementary facts on key polynomials
(Section 4D), we finally deduce our key estimates in Section 4E.

4A. Valuations on affine and projective varieties. Let X be an affine variety of dimension n over k.
By convention for us, a valuation on X is a map ν : k[X ] → R ∪ {+∞} which satisfies the following
properties:

(1) We have ν−1({+∞}) = {0}.

(2) The function ν is not constant on k[X ] \ {0}.

(3) For any a ∈ k∗, one has ν(a) = 0.

(4) For any f1, f2 ∈ k[X ], one has ν( f1 f2) = ν( f1) + ν( f2).

(5) For any f1, f2 ∈ k[X ], one has ν( f1 + f2) ⩾ min(ν( f1), ν( f2)).
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When the subset ν−1({+∞}) is not reduced to {0}, we say that ν is a semivaluation. We endow the space
of valuations with the coarsest topology for which all evaluation maps ν 7→ ν( f ) are continuous where
f ∈ k[X ].

The group R∗
+

naturally acts on the set of valuations by multiplication.
The main examples of valuations are monomial valuations. We recall their definition below. Fix

a smooth point p on X , an algebraic system of (local) coordinates u = (u0, . . . , un−1) at this point
and some nonnegative weights α = (α1, . . . , αn) ∈ (R+)n . We shall denote by u I

=
∏n

j=0 ui j
j when

I = (i0, . . . , in−1) ∈ Nn and by ⟨I, α⟩ = α0i0 + · · ·+ αn−1in−1 the usual scalar product. The monomial
valuation ν with weight α with respect to the system of coordinates u is defined by

ν

( ∑
I∈Nn

aI u I
)

= min{⟨I, α⟩ | aI ̸= 0},

where aI ∈ k.
When f ∈ Op,X is a regular function at the point p, then one defines ν( f ) as

ν( f ) = ν

(∑
aI ( f )u I

)
,

where
∑

aI ( f )u I is a formal expansion of f near p. The fact that ν( f ) does not depend on the choice
of the formal expansion of f near p is proved in [Jonsson and Mustaţă 2012, Proposition 3.1].

Observe that when α = (1, 0, . . . , 0), then the associated valuation coincides with the order of vanishing
along {u0 = 0}. Furthermore, when X = Spec(k[x, y, z, t]), the valuation − deg coincides with the
monomial valuation on k[x, y, z, t] with weight (−1, −1, −1, −1) with respect to (x, y, z, t) using the
same formula.

Consider a regular morphism f : X → Y where Y is an affine variety and a valuation ν on X . The
pushforward of the valuation ν on X by f is denoted f∗ν is given by the formula

f∗ν = ν ◦ f ♯,

where f ♯ denotes the morphism of k-algebra corresponding to f .
We also recall the notion of center of a valuation ν.
For any projective variety X containing X as a Zariski open subset, when there exists a regular function

P ∈ k[X ] for which ν(P) < 0, the center of ν in X is a nonempty Zariski closed irreducible subset which
is contained in X \ X . Denote by Rν the valuation ring and by Mν its maximal ideal, then the center
Z(ν) of ν is a subvariety of X defined as follows

Z(ν) = {p ∈ X | Op,X ⊂ Rν,Mp,X = Mν ∩Op,X },

where Op,X denotes the local ring of regular functions at the point p and where Mp,X is its maximal
ideal. The fact that Z(ν) is nonempty follows from the valuative criterion of properness and we shall
refer to [Vaquié 2000] for the general properties of this set.
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4B. Valuations V0 on the quadric. We denote by q ∈ k[x, y, z, t] the polynomial q = xt − yz and by
π : k[x, y, z, t] → k[Q] the canonical projection. Our objective is to define a subset of the set of all
valuations on the quadric Q, with different weights on some coordinate axis.

Take a point p = (x0, y0, z0, t0) ∈ k4 and a weight α = (α0, α1, α2, α3) ∈ (R−)4, we write by να
p the

monomial valuation on k[x, y, z, t] with weight α with respect to the system of coordinates (x − x0, y −

y0, z − z0, t − t0).
We first show that να

p does not depend on p.

Lemma 4.1. For any weight (α0, α1, α2, α3) ∈ (R−)4, we have να
p = να

p′ for any p, p′
∈ k4.

Proof. For any multiindices I = (i0, i1, i2, i3), J = ( j0, j1, j2, j3) ∈ Z4
≥0, denote by

( I
J

)
:= 5s

s=0

(is
js

)
.

Set να
:= vα

0 . We only need to show that for every polynomial P(x) ∈ k[x0, x1, x2, x3] and b =

(b0, b1, b2, b3) ∈ k4, να(P(x)) = να(P(x + b)). We may assume that P ̸= 0: Write P(x) =
∑

I aI x I ,
Then να(P) = min{⟨I, α⟩aI ̸= 0}. Then

P(x + b) =

∑
I

aI (x + b)I
=

∑
I

∑
J≤I

(
I
J

)
bI−J aI x J

=

∑
J

(∑
I⩾J

aI

(
I
J

)
bI−J

)
x J . (22)

Then

να(P(x + b)) = min
{
⟨J, α⟩

∣∣∣ ∑
I⩾J

(
I
J

)
aI bI−J

̸= 0
}
. (23)

If
∑

I⩾J

( I
J

)
aI bI−J

̸= 0, there is I ≥ J such that aI ̸= 0. Since α ⩽ 0, ⟨I, α⟩ ⩽ ⟨J, α⟩. This implies that

να(P(x + b)) ≥ να(P(x)). (24)

for every P ∈ k[x0, x1, x2, x3] \ {0} and b ∈ k4. Apply this for P(x + b) ∈ k[x0, x1, x2, x3] \ {0} and
−b ∈ k4, we get να(P(x)) = να(P(x + b − b)) ≥ να(P(x + b)) which concludes the proof. □

Set να
:= να

0 .

Proposition 4.2. For any weight α = (α0, α1, α2, α3) ∈ (R−
\ {0})4 such that α0 +α3 = α2 +α1, the map

ν : k[Q] → R−
∪ {+∞} given by

ν( f ) := sup{να(R) | R ∈ k[x, y, z, t], π(R) = f },

for any f ∈ k[Q] is a valuation on the quadric which is centered at infinity (i.e., whose center is in
Q \Q ⊂ P4).

Moreover, suppose ν ′
: k[Q] → R−

∪ {+∞} is a valuation such that ν(π(x)) = ν ′(π(x)), ν(π(y)) =

ν ′(π(y)), ν(π(z)) = ν ′(π(z)) and ν(π(t)) = ν ′(π(t)), then

ν ′( f ) ⩾ ν( f ),

for any regular function f ∈ k[Q].
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Definition 4.3. The set V0 is set of all valuations ν : k[Q] → R−
∪ {+∞} defined by

ν( f ) := sup{να(R) | π(R) = f },

for any f ∈ k[Q] and where α = (α0, α1, α2, α3) ∈ (R−
\{0})4 is a multiindex for which α0 +α3 = α1 +α2.

The group R+,∗ acts naturally by multiplication on the set of valuations on the quadric and this action
descends on an action on V0.

Remark 4.4. Observe that for α1 = α2 = α3 = α4 = −1, the corresponding valuation on the quadric is
the order of vanishing along the hyperplane at infinity.

Example 4.5. Consider α =
(
−

1
2 , − 3

5 , − 9
10 , −1

)
, then the associated valuation ν is the monomial

valuation at the point [0, 0, 0, 1, 0] ∈ Q with weight
( 2

5 , 1
10 , 1

)
with respect to the coordinate chart

(u, v, w) 7→ [w2
+ uv, u, v, 1, w] ∈ Q. In particular, its center is the point [0, 0, 0, 1, 0] ∈ Q.

Example 4.6. Consider α=
(
−

1
2 , − 3

5 , − 9
10 , −1

)
, then the associated valuation ν is the monomial valuation

at the point [6, 2, 3, 1, 0] ∈ Q with weight
( 2

5 , 1
10 , 1

)
with respect to the coordinate chart (u, v, w) 7→

[w2
+ (2 + u)(3 + v), 2 + u, 3 + v, 1, w] ∈ Q. In particular, its center is the point [6, 2, 3, 1, 0] ∈ Q.

To prove the proposition, we shall need the following technical lemma.

Lemma 4.7. Let ν ′
: k[x, y, z, t] → R−

∪{+∞} be a monomial valuation with respect to (x, y, z, t) such
that ν ′

|k[x,y,z,t]\k < 0 and such that ν ′(xt) = ν ′(yz). For any polynomial R ∈ k[x, y, z, t] given by

R =

∑
i jmn

ai jmnx i y j zm tn,

with ai jmn ∈ k, the following assertions are equivalent:

(i) There exists a polynomial R1 ∈ k[x, y, z, t] such that π(R1) = π(R) ∈ k[Q] and such that ν ′(R1) >

ν ′(R).

(ii) The polynomial q divides Rw where Rw is the weighted homogeneous polynomial given by

Rw
=

∑
iν′(x)+ jν′(y)+mν′(z)+nν′(t)=ν′(R)

ai jmnx i y j zm tn.

Proof. The implication (ii) ⇒ (i) is straightforward. If q | Rw then we can decompose R as

R = q R1 + S,

where R1, S ∈ k[x, y, z, t] such that ν ′(S) > ν ′(q R1). Hence π(R1 + S) = π(R) and ν ′(R1 + S) ⩾

min(ν ′(R1), ν
′(S)) > ν ′(R) as required.

Let us prove the implication (i) ⇒ (ii). Take a polynomial R1 which satisfies (i). Then we can write

R1 = R + (q − 1)S,

where S ∈ k[x, y, z, t]. Let us prove that Rw
+ q Sw

= 0. As ν ′(R1) > ν ′(R), the above equality implies
that ν ′(q S) = ν ′(R). Since α0 +α3 = α1 +α2, the polynomial q is weighted homogeneous and we have
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(R + (q − 1)S)w = Rw
+ q Sw. Let us suppose by contradiction that Rw

+ q Sw
̸= 0. This implies that

ν ′(Rw
1 ) = ν ′(Rw

+ q Sw) = ν ′(Rw) which also contradicts our assumption. Hence Rw
+ q Sw

= 0 and
q | Rw as required. □

The above lemma proves that the supremum ν( f ) in Proposition 4.2 is a maximum which is reached
on a value R ∈ k[x, y, z, t] such that π(R) = f and such that q does not divide Rw.

Proof of Proposition 4.2. Fix α ∈ (R−
\ {0})4. Observe that for any f1 ∈ k[Q] \{0}, the value ν( f1) is

smaller or equal than 0. If a ∈ k∗, then by definition ν(a) = ν ′(a) = 0.
Fix f1, f2 ∈ k[Q] and let us prove that ν( f1 + f2) ⩾ min(ν( f1), ν( f2)). Take R1, R2 ∈ k[x, y, z, t]

such that ν ′(R1) = ν(π(R1)) and ν ′(R2) = ν(π(R2)).
As να is a valuation on k[x, y, z, t], we have by definition

ν ′(R1 + R2) ⩾ min(ν ′(R1), ν
′(R2)) = min(ν(π(R1)), ν(π(R2))).

In particular, the maximal value in the right hand side yields

ν( f1 + f2) ⩾ min(ν( f1), ν( f2)).

We prove that ν(π( f1 f2))= ν(π( f1))+ν(π( f2)). Take two polynomials R1 and R2 ∈ k[x, y, z, t] such
that π(R1) = f1, π(R2) = f2 and ν( f1) = να(R1), ν( f2) = να(R2). Observe that (R1 R2)

w
= Rw

1 Rw
2 . As

the polynomial q does not divide either Rw
1 or Rw

2 , it does not divide (R1 R2)
w since the ideal generated by

q is a prime ideal. Hence by Lemma 4.7, one has ν( f1 f2)=να(R1 R2)=να(Rw
1 )+να(Rw

2 )=ν( f1)+ν( f2)

as required.
By construction, the valuation ν is centered at infinity since ν takes negative values on nonzero regular

functions on the quadric.
Let us prove that the valuation ν is minimal, take another valuation ν ′

: k[Q] → R−
∪ {+∞} such

that ν ′(π(x)) = ν(x), ν ′(π(y)) = ν(π(y)), ν ′(π(z)) = ν(π(z)) and ν ′(π(t)) = ν(π(t)). Then the map
ν̂ ′

: R ∈ k[x, y, z, t] → ν ′(π(R)) defines a semivaluation on k[x, y, z, t]. Remark that the monomial
valuation να is minimal in k[x, y, z, t], in the sense that for any R ∈ k[x, y, z, t]

ν̂ ′(R) ⩾ να(R).

Take f ∈ k[Q] and choose a polynomial R ∈ k[x, y, z, t] such that να
p(R) = ν( f ), the above inequality

implies
ν ′( f ) ⩾ ν( f ),

hence, ν is also minimal. □

4C. Parachute. In this subsection, we define the parachute associated to a component of a tame auto-
morphism. For any 4-tuple (R1, R2, R3, R4) ∈ k[x, y, z, t] of polynomials, we write

d R1 ∧ d R2 ∧ d R3 ∧ d R4 = Jac(R1, R2, R3, R4)dx ∧ dy ∧ dz ∧ dt,

with Jac(R1, R2, R3, R4) ∈ k[x, y, z, t].
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Definition 4.8. The pseudojacobian of a triple ( f1, f2, f3) of regular functions on Q is defined by

j ( f1, f2, f3) := Jac(q, R1, R2, R3))|Q,

where Ri ∈ k[x, y, z, t] are polynomials such that π(Ri ) = fi for i = 1, 2, 3.

Observe that the pseudojacobian j ( f1, f2, f3) is well-defined since any two representatives R1, R2 ∈

k[x, y, z, t] of the same equivalence class in k[Q] are equal modulo (q − 1).

Lemma 4.9. Let ν ∈ V0 be a valuation. For any f1, f2, f3 ∈ k[Q], we have

ν( j ( f1, f2, f3)) ⩾ ν( f1) + ν( f2) + ν( f3) − ν(xt).

Proof. Fix f1, f2, f3 ∈ k[Q] and a valuation ν ∈ V0. The valuation ν ′
: k[x, y, z, t] → R−

∪ {+∞} is
monomial for the coordinates (x, y, z, t) with weight (α0, α1, α2, α3) ∈ (R−)4 such that α0 +α3 = α1 +α2.
We have ν(P) = sup{ν ′(R) | π(R) = P} for any P ∈ k[Q] where π : k[x, y, z, t] → k[Q] is the canonical
projection. Take R1, R2, R3, R4 ∈ k[x, y, z, t]. We first claim that

ν ′(Jac(R1, R2, R3, R4)) ⩾ ν ′(R1) + ν ′(R2) + ν ′(R3) + ν ′(R4) − ν ′(xyzt).

Let a(k)
I ∈ k be the coefficients of Rk for k = 1, 2, 3, 4 so that

Rk =

∑
I=(i1,i2,i3,i4)

a(k)
I x i1 yi2 zi3 t i4 .

One obtains by linearity that Jac(R1, R2, R3, R4) is a sum of monomials where the valuation of each term
is greater or equal to

ν ′(R1) + ν ′(R2) + ν ′(R3) + ν ′(R4) − ν ′(xyzt).

Hence

ν ′(Jac(R1, R2, R3, R4)) ⩾ ν ′(R1) + ν ′(R2) + ν ′(R3) + ν ′(R4) − ν ′(xyzt).

In particular, we apply to R4 = q and obtain

ν ′(Jac(R1, R2, R3, q)) ⩾ ν ′(R1) + ν ′(R2) + ν ′(R3) − ν ′(xt),

since ν ′(q)=ν ′(xt)=ν ′(yz). Take f1, f2, f3 ∈k[Q], by Lemma 4.7, there exists R1, R2, R3 ∈ k[x, y, z, t]
such that π(Ri ) = fi ∈ k[Q] and ν( fi ) = ν ′(Ri ) for all i = 1, 2, 3, the above inequality implies

ν( j ( f1, f2, f3)) ⩾ ν ′(Jac(q, R1, R2, R3)) ⩾ ν ′(R1) + ν ′(R2) + ν ′(R3) − ν ′(xt),

where the first inequality follows from the definition of ν. Observe that ν ′(xt) = ν(xt) by Lemma 4.7,
hence we have proven that

ν( j ( f1, f2, f3)) ⩾ ν( f1) + ν( f2) + ν( f3) − ν(xt),

as required. □
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The regular function j ( f1, f2, f3) may vanish so that ν( j ( f1, f2, f3)) may be equal to +∞, even if
ν ∈ V0.

Lemma 4.10. For any algebraically independent functions f1, f2 ∈ k[Q], one of the four regular functions
j (x, f1, f2), j (y, f1, f2), j (z, f1, f2), j (t, f1, f2) is not identically zero. In particular,

min(ν( j (x, f1, f2)), ν( j (y, f1, f2)), ν( j (z, f1, f2)), ν( j (t, f1, f2))) < +∞,

for any valuation ν ∈ V0.

Proof. Consider two algebraically independent regular functions f1, f2 ∈ k[Q] and suppose by contra-
diction that j (x, f1, f2) = j (y, f1, f2) = j (z, f1, f2) = j (t, f1, f2) = 0. If K ⊂ L are two fields of
characteristic zero, then [Lang 2002, Section VIII.5, Proposition 5.5] states that

trdegK L = dimL DerK (L), (25)

where DerK (L) denotes the vector space of K derivations of L . When K = k( f1, f2) and L = k(Q), the
above equality implies that any two k( f1, f2)-derivations are proportional. The conditions j (x, f1, f2) =

j (y, f1, f2)= j (z, f1, f2)= j (t, f1, f2)= 0 imply that j (x, f1, · ), j (y, f1, · ), j (z, f1, · ) and j (t, f1, · )

are k( f1, f2)-derivations, this translates as

j (x, f1, x) j (y, f1, y) − j (x, f1, y) j (y, f1, x) = 0 ∈ k[Q] .

Hence,

j (x, f1, y) = 0 ∈ k(Q).

The same argument also yields

j ( f1, x, y) = j ( f1, x, z) = j ( f1, x, t) = j ( f1, y, z) = j ( f1, y, t) = j ( f1, z, t) = 0.

Hence the maps j (x, y, · ), j (x, z, · ), j (y, z, · ) are also k( f1)-derivations. By (25) applied to K = k( f1)

and to L = k(Q), the space of k( f1) derivations is 2-dimensional and there exists a, b, c ∈ k(Q) such that

aj (x, y, · ) + bj (x, z, · ) + cj (y, z, · ) = 0,

where a, b and c are not all equal to zero. Suppose that a ̸= 0, we then conclude that

aj (x, y, z) = 0 ∈ k(Q),

which in turn implies that j (x, y, z) = x = 0 ∈ k[Q] and this is impossible. □

Definition 4.11. For any monomial valuation ν ∈ V0 and for any algebraically independent regular
functions f1, f2 ∈ k[Q], the parachute ∇( f1, f2) with respect to the valuation ν is defined by the following
formula

∇( f1, f2) = min(ν( j (x, f1, f2)), ν( j (y, f1, f2)), ν( j (z, f1, f2)), ν( j (t, f1, f2))) − ν( f1) − ν( f2).
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Observe that Lemmas 4.10 and 4.9 imply that ∇( f1, f2) is finite and is strictly greater than zero.
For any polynomial R ∈ k[x, y], we write by ∂2 R ∈ k[x, y] the partial derivative with respect to y. The

next identity is similar to [Lamy and Vénéreau 2013, Lemma 5] and is one of the main ingredient to find
an upper bound on the value of a valuation.

Lemma 4.12. Let ν ∈ V0, let R ∈ k[x, y] \ k and let f1, f2 ∈ k[Q] be two algebraically independent
elements. Suppose that there exists an integer 1 ⩽ n ⩽ degy R − 1 such that ν(∂n

2 R( f1, f2)) is equal to
the value on ∂n

2 R of the monomial valuation in two variables having weight ν( f1) and ν( f2) on x and y
respectively. Then

ν(R( f1, f2)) < degy(R)ν( f2) + n∇( f1, f2).

Proof. Lemma 4.9 proves that ν( j (x, f1, f2)) ⩾ ν( f1)+ ν( f2)− ν(t) for any f1, f2 ∈ k[Q]. Using this
and the fact that j (x, f1, · ) is a derivation, we obtain

ν(∂2 R( f1, f2) j (x, f1, f2)) = ν( j (x, f1, R( f1, f2))) ⩾ ν( f1) + ν(R( f1, f2)) + ν(x) − ν(xt).

In particular since ν(x) − ν(xt) = −ν(t) > 0, this yields

ν(∂2 R( f1, f2)) > −(ν( j (x, f1, f2)) − ν( f1) − ν( f2)) + ν(R( f1, f2)) − ν( f2).

A similar argument with y, z and t also gives

ν(∂2 R( f1, f2)) > −∇( f1, f2) + ν(R( f1, f2)) − ν( f2). (26)

We apply (26) inductively and obtain the following inequalities:

ν(∂2
2 R( f1, f2)) > −∇( f1, f2) + ν(∂2 R( f1, f2)) − ν( f2),

...

ν(∂n
2 R( f1, f2)) > −∇( f1, f2) + ν(∂n−1

2 R( f1, f2)) − ν( f2).

This implies that

ν(∂n
2 R( f1, f2)) > −n∇( f1, f2) − nν( f2) + ν(R( f1, f2)).

As ν(∂n
2 R( f1, f2)) is equal to the value of the monomial valuation with weight (ν( f1), ν( f2)) applied to

∂n
2 (R), the last inequality rewrites as

(degy R − n)ν( f2) ≥ ν(∂n
2 R( f1, f2)) > −n∇( f1, f2) − nν( f2) + ν(R( f1, f2)).

Hence,

ν(R( f1, f2)) < degy(R)ν( f2) + n∇( f1, f2),

as required. □
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4D. Key polynomials. Let us explain how one can find a polynomial which satisfies the hypothesis of
Lemma 4.12.

Consider µ : k[x, y] → R−
∪ {+∞} any valuation and µ0 : k[x, y] → R−

∪ {+∞} the monomial
valuation having weight µ(x) and µ(y) on x and y respectively. For any polynomial R ∈ k[x, y], we
write by R ∈ k[x, y] the weighted homogeneous polynomial given by

R =

∑
iµ(x)+ jµ(y)=µ0(R)

ai j x i y j ,

with ai j ∈ k such that R =
∑

i j ai j x i y j .

Proposition 4.13. Consider µ : k[x, y] → R−
∪ {+∞} any valuation and µ0 the monomial valuation

having weights µ(x) and µ(y) on x and y respectively. The following properties are satisfied:

(i) For any R ∈ k[x, y], one has µ(R) ⩾ µ0(R).

(ii) If µ ̸= µ0, then there exists two coprime integers s1, s2 satisfying s1µ(x) = s2µ(y) and a unique
constant λ ∈ k for which the polynomial H = x s1 −λys2 satisfies µ(H) > µ0(H). Moreover, for any
R ∈ k[x, y], one has µ(R) > µ0(R) if and only if H | R.

The polynomial H associated to µ is called a key polynomial associated to µ.

Proof. Let us prove assertion (i). Write R ∈ k[x, y] as R =
∑

ai j x i y j where ai j ∈ k. Recall that the fact
that µ0 is monomial implies that

µ0(R) = min{iµ0(x) + jµ0(y) | ai j ̸= 0}.

Also, µ is a valuation, hence

µ(R) ⩾ min{iµ0(x) + jµ0(y) | ai j ̸= 0} = µ0(R).

We have thus proved that µ(R) ⩾ µ0(R), as required.

Step 1: Fix s1, s2 two coprime integers and λ ∈ k. Suppose that s1µ(x) = s2µ(y) and that the polynomial
H = x s1 − λys2 satisfies µ(H) > µ0(H), we prove that λ is unique. Take λ′

̸= λ ∈ k, then

µ(x s1 − λ′ys2) = µ(H + (λ − λ′)ys2) = s2µ(y),

since µ(H) > µ((λ − λ′)ys2). Hence µ(x s1 − λ′ys2) = µ0(x s1 − λ′ys2) for any λ′
̸= λ.

Step 2: Choose two integers s1, s2 such that s1µ(x) = s2µ(y). We prove that there exists λ ∈ k∗

such that µ(x s1 − λys2) > s1µ(x) = s2µ(y). Suppose by contradiction that for any λ ∈ k, one has
µ(x s1 − λys2) = s1µ(x). We claim that µ(R) = µ0(R) for any polynomial R ∈ k[x, y]. Fix R ∈ k[x, y].
Observe that if R is a homogeneous polynomial with respect to the weight (µ(x), µ(y)), then R is of the
form

R = αxk0
∏

i

(x s1 − λi ys2)
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where α, λi ∈ k∗ and k0 ∈ N. Our assumption implies that µ(R) = µ0(R) for any homogeneous
polynomial R.

If R is a general polynomial, then R can be decomposed into R =
∑

i Ri where each polynomial Ri is
homogeneous with respect to the weight (µ(x), µ(y)). Since µ(Ri ) = µ0(Ri ) for each i , this proves that
µ(R) = µ0(R) for any R ∈ k[x, y], which contradicts our assumption. We have thus proven the first part
of assertion (ii).

Step 3: We prove the second part of assertion (ii). The argument in Step 2 showed that when µ ̸= µ0 and
R is homogeneous with respect to the weight (µ(x), µ(y)), then µ(R) > µ0(R) if H | R. For a general
polynomial R ∈ k[x, y], write R = R + S. We have

µ0(R) = µ0(R) < µ0(S) ⩽ µ(S).

If H | R, then µ(R) > µ0(R) = µ0(R). Then µ(R) = µ(R + S) ⩾ min(µ(R), µ(S)) > µ0(R). If H ∤R,
we have µ(R) = µ0(R) < µ0(S) ⩽ µ(S). So µ(R) = µ(R + S) = µ(R) = µ0(R) = µ0(R). □

4E. Parachute inequalities. We introduce various notions of resonances of components of a tame
automorphism. These notions will play an important role in the theorem below. Consider a valuation
ν ∈V0 and a component ( f1, f2) of a tame automorphism. We are interested in the value of ν on R( f1, f2)

where R ∈ k[x, y]. The estimates of the value ν(R( f1, f2)) will depend on the possible values of the pair
(ν( f1), ν( f2)). We shall distinguish the following three cases:

(1) The family (ν( f1), ν( f2)) is Q-independent and we say that the component ( f1, f2) is nonresonant
with respect to ν.

(2) There exists two coprime integers s1, s2 such that s1 > s2 ⩾2 or s2 > s1 ⩾2 such that s1ν( f1)= s2ν( f2)

and we say in this case that the component ( f1, f2) is properly resonant with respect to ν.

(3) Either ν( f1) is a multiple of ν( f2) or ν( f2) is a multiple of ν( f1) and there exists a polynomial
H ∈ k[x, y] of the form x −λyk where k ∈ N∗, λ ∈ k∗ such that ν(H( f1, f2)) > ν( f1) = kν( f2). In
this case, the component ( f1, f2) is called critically resonant with respect to ν.

Example 4.14. When ν = − deg : k[Q] → R−
∪ {+∞}, the family (x, y) is not critically resonant, but

it is neither properly resonant nor nonresonant (in particular there is no alternative). However, (x, y) is
nonresonant for the monomial valuation with weight (−

√
2, −

√
3, −

√
2, −

√
3) on (x, y, z, t).

Example 4.15. Take f1 = x, f2 = y + x2
∈ k[Q], then ( f1, f2) is critically resonant with respect to the

valuation ordH∞
= − deg.

Example 4.16. Take f1 = z + x2, f2 = y + x3
∈ k[Q], then ( f1, f2) is properly resonant with respect the

valuation ordH∞
= − deg.

For ν ∈ V0 and ( f1, f2) a component of a tame automorphism, the following theorem allows us to
estimate the value of ν on R( f1, f2) only when ( f1, f2) is not critically resonant.
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Theorem 4.17. Let ν ∈ V0 be a valuation and let ν0 be the monomial valuation on k[x, y] with weight
(ν( f1), ν( f2)) with respect to (x, y). The following assertions hold:

(i) For any polynomial R ∈ k[x, y], one has the lower bound ν(R( f1, f2)) ⩾ ν0(R(x, y)).

(ii) If the component ( f1, f2) is nonresonant with respect to ν, then for any polynomial R ∈ k[x, y], one
has ν(R( f1, f2)) = ν0(R(x, y)).

(iii) Suppose that the component ( f1, f2) is properly resonant with respect to ν and let s1, s2 be two
coprime positive integers such that s1ν( f1) = s2ν( f2), then for any polynomial R ∈ k[x, y], either
ν(R( f1, f2)) = ν0(R(x, y)) or ν(R( f1, f2)) > ν0(R(x, y)) and we have

ν(R( f1, f2)) <

(
s1 − 1 −

s1

s2

)
ν( f1) =

(
s2 − 1 −

s2

s1

)
ν( f2).

Remark that the inequalities in Theorem 4.17 are strict and this fact is crucial in our proof. Before
giving the proof of Theorem 4.17, we state two consequences of this theorem below.

Corollary 4.18. Let ν ∈ V0 be a monomial valuation and let f = ( f1, f2, f3, f4) be an element of
Tame(Q). We suppose that ν( f1) < ν( f2) and that ( f1, f2) is not critically resonant with respect to ν.
Then for any polynomial R ∈ k[x, y] \ k[y], we have

ν( f2 R( f1, f2)) < ν( f1).

Proof. Two cases appear. Either ν(R( f1, f2)) = ν0(R(x, y)) where ν0 is the monomial valuation
with weight (ν( f1), ν( f2)) with respect to (x, y), and we are finished since R ∈ k[x, y] \ k[y]. Or
ν(R( f1, f2)) > ν0(R(x, y)) and there exists some integers s1, s2 such that s1ν( f1) = s2ν( f2) where
s2 > s1 ⩾ 2. Using Theorem 4.17(iii) and the fact that s1 ⩾ 2, we have thus

ν( f2 R( f1, f2)) < (s1 − 1)ν( f1) < ν( f1),

as required. □

We state the second corollary for which the constant 4
3 appears naturally.

Corollary 4.19. Let ν ∈ V0 be a valuation and let ( f1, f2) a properly resonant component with respect to
ν such that ν( f1) < ν( f2). Then for any polynomial R ∈ k[x, y] \ k[y], one has

ν( f1 R( f1, f2)) < 4
3ν( f1).

Similarly,

ν( f2 R( f1, f2)) < 3
2ν( f2) < 4

3ν( f2).

Proof. Denote by ν0 : k[x, y] → R−
∪ {+∞} the monomial valuation with weight (ν( f1), ν( f2))

with respect to (x, y). Two cases appear, either ν(R( f1, f2)) = ν0(R(x, y)) and we are done since
ν( f1 R( f1, f2))⩽ 2ν( f1) as R ∈ k[x, y] \ k[y] or ν(R( f1, f2)) > ν0(R(x, y)). In the latter case, consider
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two coprime integers s1, s2 such that s1ν( f1) = s2ν( f2). Since ν( f1) < ν( f2) and the component ( f1, f2)

is properly resonant, the inequality s2 > s1 ⩾ 2 holds. Using Theorem 4.17(iii), we obtain

ν( f1 R( f1, f2)) <
(

s1 −
s1

s2

)
ν( f1).

Since s2 ⩾ 3 and s1 ≥ 2, we have s1 − s1/s2 = s1(1 − 1/s2) ≥ 2
(
1 −

1
3

)
=

4
3 . Since ν( f1) < 0, we get

ν( f1 R( f1, f2)) <
(

s1 −
s1

s2

)
ν( f1) ⩽

4
3ν( f1),

as required. The second inequality follows from a similar argument ν( f2 R( f1, f2)) < 3
2ν( f2) < 4

3ν( f2).
□

Proof of Theorem 4.17. Let us denote by R =
∑

ai j x i y j . Consider the projection πxy : Q → A2 induced
by the embedding of Q into A4 composed with the projection onto A2 of the form

πxy : (x, y, z, t) ∈ Q(k) 7→ (x, y).

Choose an automorphism f such that f = ( f1, f2, f3, f4) where f3, f4 ∈ k[Q]. We denote by µ the
valuation on k[x, y] given by µ = πxy∗

f∗ν.
Observe that for any polynomial R ∈ k[x, y], we have ν(R( f1, f2)) = µ(R(x, y)) and assertion (i)

follows directly from Proposition 4.13(i). Observe also that assertion (ii) follows immediately from the
fact that ν( f1) and ν( f2) are Q-independent.

Let us prove assertion (iii). We can suppose by symmetry that ν( f1) < ν( f2). Since the component
( f1, f2) is properly resonant, there exists two coprime integers s1, s2 such that s1ν( f1) = s2ν( f2) and
such that s2 > s1 ⩾ 2.

By Proposition 4.13 applied to µ, there exists λ ∈ k∗ such that the polynomial H = x s1 −λys2 satisfies

µ(H(x, y)) = ν(H( f1, f2)) > ν0(H) = s1ν( f1).

For any polynomial R ∈ k[x, y], denote by R be the polynomial given by

R =

∑
iµ(x)+ jµ(y)=ν0(R(x,y))

ai j x i y j .

By construction, we have that there exists an integer n ⩾ 1 such that R ∈ (H n) \ (H n+1).
We shall use the following lemma (proved at the end of this section):

Lemma 4.20. Let R ∈ k[x, y] such that H | R. Consider the integer n = max{k | H k divides R} ⩾ 1.
Then the following properties are satisfied:

(i) For any integer k ⩽ n, we have ∂k
2 (R) = ∂k

2 R.

(ii) For any integer k ⩽ n, we have H n−k
| ∂k

2 R but H n−k+1 ∤∂k
2 R.
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The above lemma implies that ∂k
2 R = ∂k

2 R and that H n−k
| ∂k

2 R but H n−k+1 ∤∂k
2 R for any k ≤ n. In

particular, H does not divide ∂n
2 R and Proposition 4.13(ii) implies that

µ(∂n
2 R(x, y)) = ν0(∂

n
2 R) = ν0(∂

n
2 R).

The previous equation translates as

ν((∂n
2 R)( f1, f2)) = ν0(∂

n
2 R)

and R satisfies the conditions of Lemma 4.12 (for the same integer n), which in turn asserts that

ν(R( f1, f2)) < degy(R)ν( f2) + n∇( f1, f2).

Since H n
| R, one has degy(R) ⩾ degy(R) ⩾ s2n, we get

ν(R( f1, f2)) < n(s2ν( f2) + ∇( f1, f2)).

As n ⩾ 1 and ∇( f1, f2) ⩽ −ν( f1) − ν( f2) by Lemma 4.10, the above implies that

ν(R( f1, f2)) < s2ν( f2) − ν( f1) − ν( f2).

Since s1ν( f1) = s2ν( f2), we finally prove that

ν(R( f1, f2)) < ν( f1)
(

s1 − 1 −
s1

s2

)
,

as required. □

Proof of Lemma 4.20. Consider a monomial valuation ν0 : k[x, y] → R−
∪ {+∞} with weight (α, β) ∈

(R−,∗)2 with respect to (x, y) and H = x s1 − λys2 where s1, s2 are coprime integers such that s1α = s2β.
Let us prove assertion (i) for k = 1. Fix R ∈ k[x, y] and write R as

R =

∑
i j

ai j x i y j ,

where ai j ∈ k. The partial derivative is given explicitly by

∂2 R =

∑
i≥0, j≥1

jai j x i y j−1.

Since H | R, one has R ∈ k[x, y]\k[x] and ν0(R)=ν0(R). Take (i, j) such that ai j ̸=0 and iα+( j−1)β =

ν0(∂2 R). Then iα + jβ = ν0(∂2 R)+ ν0(y) ≤ ν0(R). Conversely, since H | R, there exists (i, j) such that
iα+ jβ = ν0(R) where j ≥ 1, hence we have that iα+ ( j −1)β ≥ ν0(∂2 R). Hence, ν0(∂2 R) = ν0(R)−β

and ∂2 R = ∂2 R.
Let us prove assertion (ii) for k = 1. We have that H n

| R but H n+1 ∤R, then we have

R = H n S,
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where S ∈ k[x, y] is a homogeneous polynomial such that H ∤S. By definition,

∂2 R = ns2 H n−1 ys2−1S + H n∂2S.

Hence H n−1
| ∂2 R. Suppose by contradiction that H n

| ∂2 R, then this implies that H | ys2−1S which is
impossible since H does not divide S. We have thus proven that H n−1

| ∂2 R but H n ∤∂2 R, as required.
An immediate induction on k ⩽ n proves assertion (i) and (ii). □

5. Proof of Theorem 1 and Theorem 4

This section is devoted to the proof of Theorems 1 and 4. The proof of these two results are very similar
and rely on a lower bound of the degree of an automorphism f by

( 4
3

)p where p is an integer that we
determine.

Let us explain our general strategy. Take an automorphism f /∈ O4.

Step 1: We choose an appropriate valuation ν.
We consider a geodesic line γ in the complex joining [Id] and [ f ]. Recall from Proposition 2.3

that the set of 1 × 1 squares containing [Id] is in bijection with the points on the hyperplane at infinity
H∞ ⊂ Q ⊂ P4. Depending on which 1 × 1 square the geodesic γ near the vertex [Id] is contained, we
choose accordingly a valuation ν in V0 centered on the corresponding point at infinity in Q.

Step 2 (see Section 5A): We define an integer p according to the geometry of some geodesics in the
complex and according to the choice of the valuation ν.

Recall that a path in the 1-skeleton of C induces a sequence of numbers obtained by evaluating the
valuation ν on the consecutive vertices. The integer p is defined as the distance in a graph denoted Cν

and encodes the shortest path in the 1-skeleton with minimal degree sequence.

Step 3: We prove that deg( f ) ⩾
( 4

3

)p.
Consider the graph Cν associated to ν and denote by dν the distance in this graph. This step is the

content of the following theorem. Recall that the standard 2 × 2 square S0 is the square whose vertices
are [x], [y], [z] and [t].

Theorem 5.1. Pick any valuation ν ∈ V0 satisfying

max(2ν(t), ν(y) + ν(t), ν(z) + ν(t)) < ν(x) < min(ν(y), ν(z), ν(t)). (27)

Consider any geodesic segment of C joining [Id] to a vertex v of type I which intersects an edge of the
square S0, then the following assertions hold:

(1) We have

ν(v) ⩽
( 4

3

)dν([t],v)−1 max(ν(x), ν(y), ν(z), ν(t)).

(2) For any valuation ν ′
∈ V0 satisfying (27), we have

dν([t], v) = dν′([t], v).
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The proof of Theorem 5.1 basically proceeds by induction on the distance between [t] and v in the
graph Cν . The essential ingredient to bound below the degree inductively are the parachute inequalities
stated in Theorem 4.17. We explain in Section 5B how to arrive to the situation where these inequalities
can be applied using the local geometry near the vertices of type I (i.e., the geometry of its link). We then
use these arguments to compute the degree or estimate the valuation ν when one passes from one square
to another in each possible situation, this is done successively in Sections 5C, 5D, 5E and 5F.

Once we conjugate appropriately to arrive to the situation of Theorem 5.1, we then deduce directly
both Theorem 1 and Theorem 4.

5A. The graph Cν associated to a valuation and the orientation of certain edges of the complex. Fix a
valuation ν ∈ V0. Given any automorphism f = ( f1, f2, f3, f4) ∈ Tame(Q), we remark that ν( f1) does
not depend on the choice of representative of the class [ f1] so that ν induces a function on the vertices of
type I of C.

We say that a vertex v ∈ C of type I is ν-minimal (resp. ν-maximal) in a 2 × 2 square S if ν(v) is
strictly smaller (resp. greater) than the value of the valuation ν on every other vertices of type I of S.
Observe that for some valuations, two vertices of type I can have the same value on ν, hence there can be
no ν-minimal or ν-maximal vertices.

We now define a graph Cν associated to a valuation ν ∈ V0 as follows:

(1) The vertices are the vertices of C type I.

(2) One draws an edge between two vertices v1 and v2 of C′ if there exists a 2×2 square S centered at a
vertex of type III in C containing v1, v2 such that the vertices v1, v2 belong to an edge of S or v1 and
v2 are the ν-minimal and ν-maximal vertices of S respectively.

Observe that whenever there is no ν-maximal or minimal vertex in a 2 × 2 square S centered at a point
of type III, then we only draw the four edges of the square S.

The graph Cν is endowed with the distance dν such that its the edges have length 1.

Lemma 5.2. The graph Cν is a connected metric graph.

Proof. This follows from the fact that the 1-skeleton of C is connected and the fact that to any path
between type I vertices in the 1-skeleton of C, we can find an alternate path in the 1-skeleton of C with
the same endpoints and which takes only edges joining type I and II vertices. If one has a local path in
the skeleton passing successively to a type II, then to a type III and then to a type II vertex in the same
1 × 1 square, then we replace by a path that goes through the vertex of type I within the same square. For
path that go through different squares, we use Lemma 2.16 and Lemma 2.15 to modify locally our path
so that it takes a corner of a 2 × 2 square centered at a type III vertex. □

Since we will exploit the properties of this function on the vertices of type I, we introduce the following
convention on the figures. Take an edge of length 2 between two type I vertices v1, v2, then we put an
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arrow pointing to v2 if ν(v2) < ν(v1) as in the following following:

◦v1 ◦v2

Lemma 5.3. Let ν : k[Q] → R ∪ {+∞} be a valuation which is trivial over k∗ and such that ν(x), ν(y),
ν(z), ν(t) < 0. Let S be a 2 × 2 square of the complex C centered at a type III vertex. Suppose S has
a ν-maximal vertex (resp. ν-minimal), then there exists a ν-minimal (resp. ν-maximal) vertex and the
ν-minimal and ν-maximal vertices are at distance 2

√
2 in C.

Let S be a 2 × 2 square centered at a vertex of type III which satisfies the conditions of Lemma 5.3.
and let φ be the associated isometry. Denote by [x1], [y1], [z1] and [t1] the vertices of type I of the square
S where x1, y1, z1, t1 ∈ k[Q] such that the vertex [x1] is ν-minimal and [t1] is ν-maximal in S. Then there
exists a unique isometry φ : S → [0, 2]

2 such that

φ([x1]) = (2, 2) and φ([t1]) = (0, 0),

and such that the horizontal edges of S are given the geodesic segments between [x1] and [y1], and
between [z1] and [t1].

Using this convention, Lemma 5.3 implies that we are in the following situation:

[x1]

[z1][t1]

[y1]

◦ ◦

◦◦

■

In particular, the subgraph of C′ containing the vertices of S looks as follows:

◦[x1]

◦[z1]◦[t1]

◦[y1]

Proof of Lemma 5.3. Let S be a 2 × 2 square satisfying the hypothesis of the Lemma. Denote [t1] the
ν-maximal vertex of S. Denote also by [z1], [y1], [x1] the type I vertices of S such that the edges between
[t1] and [z1], between [t1] and [y1] are horizontal and vertical respectively.

Observe that ν(x1), ν(y1), ν(z1), ν(t1) < 0 and that

ν(x1t1 − y1z1) = ν(1) = 0.

This implies that

ν(x1) + ν(t1) = ν(y1) + ν(z1).
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In particular, ν(t1) > ν(y1) implies that

ν(x1) < ν(z1).

By symmetry, we also prove that ν(x1) < ν(y1) and this implies that [x1] is the unique ν-minimal vertex
of S, as required. □

Observe that for two distinct valuations ν1, ν2 ∈ V0, the graphs Cν1 and Cν2 are not in general equal.

Lemma 5.4. Fix any valuation ν ∈ V0, and any two adjacent 2 × 2 squares S, S′ centered at a vertex of
type III. Suppose that v is a vertex in S ∩ S′ which is ν-minimal in S.

Then the unique vertex v′
∈ S′

\ S which belongs to an edge containing v is also ν-minimal in S′.

One has the following:

S

v

S′

v′

◦ ◦ ◦

◦ ◦ ◦

Proof of Lemma 5.4. Take x1, y1, z1, t1 ∈ k[Q] such that v = [x1], [z1] ∈ S ∩ S′ and [y1], [t1] ∈ S are the
four distinct vertices of S. We claim that we are in the following situation:

S

◦
[x1]

◦
[z1]

S′

◦
[t1]

◦
[y1]

◦
[t1 + z1 P(x1, z1)]

◦
[y1 + x1 P(x1, z1)]

where P ∈ k[x, y] \ k. Indeed, recall that the tame group acts as g · [ f ] = [ f ◦ g−1
]. In particular, if S0 is

the standard 2×2 square containing [x], [y], [z], [t] and [Id] and if f = (x1, y1, z1, t1), then S = f −1
· S0.

Since S and S′ are adjacent along an two edges of type I, there exists an element e ∈ EH such that
S′

= ( f −1
◦ e ◦ f ) · S. This proves that S′

= ( f −1
◦ e) · S0, and the vertex v′ is given by

v′
= [y ◦ e−1

◦ f ],

as required.
Since ν(x1) < ν(y1) and since ν(P(x1, z1)) < 0, this implies that

ν(y1 + x1 P(x1, z1)) = ν(x1 P(x1, z1)) < ν(x1).

Similarly, one has

ν(t1 + z1 P(x1, z1)) = ν(z1 P(x1, z1)) < ν(z1).
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Hence since the vertex [z1] is ν-maximal, we have that v′
= [y1 + x1 P(x1, z1)] is the ν-minimal vertex in

S′ by Lemma 5.3, as required. □

The following proposition compares the distance dν with the distance dC .

Proposition 5.5. The distance dν and the distance dC are equivalent, i.e., there exists a constant C > 0
such that for any vertices v1, v2 ∈ C of type I, one has

1

2
√

2
dC(v1, v2) ⩽ dν(v1, v2) ⩽ 2dC(v1, v2).

Proof. For each 2×2 square S centered at a vertex of type III in C, the restriction to S ∩Cν of the distance
in Cν and the distance dC are bi-Lipschitz equivalent. More precisely, for any v1, v2 ∈ S∩Cν , the following
inequality holds:

dC(v1, v2)

2
√

2
⩽ dν(v1, v2) ⩽ 2dC(v1, v2).

Hence, if we apply the previous inequality to a chain of points which belong successively to the same
square, we obtain the distance in C is equivalent to the distance dν and for any vertices v1, v2 of type I in
C, we have

dC(v1, v2)

2
√

2
⩽ dν(v1, v2) ⩽ 2dC(v1, v2),

as required. □

5B. Avoiding critical resonances. Fix a valuation ν ∈ V0 and fix a 2 × 2 square S. Consider a vertex
[x1] of type I in S which is ν-minimal in S where x1 ∈ k[Q] and denote by [z1] another vertex of type I
in S such that [x1] and [z1] belong to a vertical edge of the square S. For any square S′ which is adjacent
to S along the edge containing [x1] and [z1], Lemma 5.4 implies that the function induced by ν on the
vertices is as follows:

S

◦
[x1]

◦
[y1]

◦
[t1]

◦
[z1]

◦
[y1 + x1 P(x1, z1)]

◦
[t1 + z1 P(x1, z1)]

S′

where y1, t1, ∈ k[Q] and P ∈ k[x, y] \ k.
If P ∈ k[y], then using the fact that ν(x1) < ν(y1) and ν(x1) < ν(z1) < ν(t1), we have ν(y1 +

x1 P(x1, z1)) = ν(x1)+ deg(P)ν(z1) < (deg(P)+ 1)ν(z1) and ν(t1 + z1 P(x1, z1)) = (deg(P)+ 1)ν(z1).
This degenerate case can be formulated as follows. Take g ∈ STame(Q)∩ Stab([z1]) such that g · S = S′,
Lemma 2.19 shows that g ∈ AS

[z1]
.
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Otherwise, we can suppose that P ∈ k[x, y] \ k[y]. The main observation is that when the component
(x1, z1) is not critically resonant with respect to ν, then by Corollary 4.19, one has

ν(x1 P(x1, z1)) = max(ν(y1 + x1 P(x1, z1), ν(t1 + z1 P(x1, z1))) < 4
3ν(z1).

Following the discussion when P ∈ k[y], we deduce that the previous inequality also holds regardless of
the condition P ∈ k[y] or P ∈ k[x, y] \ k[y].

Moreover, when P ∈ k[x, y] \ k[y] the same argument combined with Corollary 4.18 yields

max(ν(y1 + x1 P(x1, z1), ν(t1 + z1 P(x1, z1))) < ν(x1).

We have summarized the above argument in the following lemma.

Lemma 5.6. Fix ν ∈ V0 and S, S′ two adjacent 2×2 squares. Consider v1, v2 two vertices of the common
edge of these squares and suppose that v1 is ν-minimal in S. Suppose that the edge joining v1 and v2

corresponds to a component ( f1, f2) which is not critically resonant. Then for any vertex v′
∈ S′ distinct

from v1, v2, we have

ν(v′) < 4
3ν(v2).

Moreover, if g ∈ Stab(v2) ∩ STame(Q) such that g · S = S′ and g /∈ AS
v2

, then

ν(v′) < min
( 4

3ν(v2), ν(v1)
)
.

When the component (x1, z1) in the previous figure is critically resonant, then the previous arguments
do not necessarily hold since we cannot apply Corollary 4.19.

Our key observation is that the previous inequality remains valid whenever there exists a square S1

adjacent to S along the edge containing [t1], [z1], such that its other edge containing [z1] is not critically
resonant and such that [t1] is ν-maximal in S1. If we choose S1 so that the squares S1, S, S′ are flat,
we arrive at the following situation where a blue edge means that the corresponding component is not
critically resonant and a red edge that the component is critically resonant:

◦
[x1]

◦
[z1]

S1

S S′

S′′

◦
[x ′

1]
◦[y′

1]

◦[t1]

◦[y1]

◦[y′

1 + x ′

1 Q(x ′

1, z1)]

◦[t1 + z1 P(x1, z1)] = [t1 + z1 Q(x ′

1, z1)]

◦[y1 + x1 P(x1, z1)]
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where Q ∈ k[x, y] \ k and where S′′′ is a 2 × 2 square adjacent to S1 and S′. We can thus apply the
previous argument to the square S1 and S′′′, we obtain

ν(y′

1 + x ′

1 Q(x ′

1, z1)) < ν(t1 + z1 P(x1, z1)) < ν(z1).

and furthermore

ν(t1 + z1 P(x1, z1)) = max(ν(y′

1 + x ′

1 Q(x ′

1, z1)), ν(t1 + z1 P(x1, z1))) < 4
3ν(z1).

In other words, we obtain that the vertex [z1] is ν-maximal in S′′′, which implies that it is also ν-maximal
in S′. Overall, the previous inequality with the ν-maximality of [z1] in S′ finally yields

ν(t1 + z1 P(x1, z1)) = max(ν(t1 + z1 P(x1, z1)), ν(y1 + x1 P(x1, z1))) < 4
3ν(z1). (28)

In the rest of section, we keep the same convention on the colors of the edges.
The proposition below is the key ingredient in our proof and explains how one can find a square which

has an edge which is not critically resonant.

Proposition 5.7. Fix a valuation ν ∈ V0. Let S be any 2 × 2 square having a unique ν-minimal vertex,
and let [ f1], [ f2] be any horizontal (resp. vertical) edge of S. Suppose that ν( f1) < ν( f2), that ( f1, f2) is
critically resonant and that for any polynomial R ∈ k[x] \ k, one has

ν( f1 − f2 R( f2)) < ν( f2).

Then there exists a square S1 adjacent to S along the vertical (resp. horizontal) edge containing [ f2]

which satisfies the following properties:

(i) For any square S2 adjacent to S along the edge containing [ f1], [ f2], the squares S1, S, S2 are flat.

(ii) The horizontal (resp. vertical) edge in S1 containing [ f2] is not critically resonant.

(iii) There exists an element g ∈ AS
[ f2]

such that g · S = S1.

Proof. Statement (i) and (iii) follow from Lemma 2.19(ii) and (i) respectively. Indeed pick any polynomial
R ∈ k[x] \ k, and let SR be the square containing [ f2], [ f1 − f2 R( f2)] which is adjacent to S along the
vertical edge containing [ f2]. Since R depends on a single variable, it follows that for any square S2

adjacent to S along the edge containing [ f1], [ f2], the squares SR, S2, S are flat.
We now prove (ii), and produce a polynomial R ∈ k[x] \ k such that the component ( f2, f1 − f2 R( f2))

is not critically resonant. Since the component ( f1, f2) is critically resonant, there exists a constant λ ∈ k∗

and an integer n ⩾ 1 such that

ν( f1 − λ f n
2 )) > ν( f1) = nν( f2).

Since ν( f1) < ν( f2), we get n ⩾ 2 so that R1 := λxn−1
∈ k[x] \ k.

If the component ( f2, f1 − f2 R1( f2)) is not critically resonant, then the square S1 containing [ f2],
[ f1 − f2 R1( f2)] which is adjacent to S along the vertical edge containing [ f2] satisfies assertion (ii) and
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we are done. Otherwise, ( f2, f1 − f2 R1( f2)) is critically resonant. Observe that by assumption, we have

ν( f1 − f2 R1( f2)) < ν( f2),

so that ν( f1 − f2 R1( f2)) = n2ν( f2) for some n2 ⩾ 2, and ν( f1 − f2 R2( f2)) > n2ν( f2) for some
polynomial R2 ∈ k[x] \ k of the form R2(x) = R1(x) + λ′xn2−1. Repeating this argument we get a
sequence of polynomials Ri ∈ k[x] \ k, and either ( f2, f1 − f2 Ri ( f2)) is not critically resonant for some
index i ; or ( f2, f1 − f2 Ri ( f2)) is critically resonant for all i . However in the latter case, the sequence
(ν( f1 − f2 Ri ( f2)) is strictly increasing and (ν( f1 − f2 Ri ( f2)) are all multiples of ν( f2) which yields a
contradiction. The proof is complete. □

5C. Degree estimates between adjacent squares.

Theorem 5.8. Take a valuation ν ∈ V0. Let v be any ν-maximal vertex of a 2 × 2 square S and let S′ be
an adjacent square which does not contain v and let v2 be the vertex in S ∩ S′ which is not ν-minimal in S.
Suppose that the vertex v is also ν-maximal in any square S̃ adjacent to S along the edge joining v and v2.
Then S′ admits a ν-minimal vertex and for any vertex v′

∈ S′
\ S, one has

ν(v′) < 4
3ν(v2).

Proof. Observe that Lemma 5.4 implies that S′ has a unique ν-minimal vertex. If the edge S ∩ S′ is not
critically resonant, then Lemma 5.6 implies the conclusion of the theorem. Otherwise, the edge S ∩ S′ is
critically resonant and we check that the squares S and S′ satisfy the hypothesis of Proposition 5.7.

Denote by [ f1] the ν-minimal vertex in S and by [ f2] = v2. For any polynomial R ∈ k[x] \ k, take
SR to be the square containing [ f1 − f2 R( f2)], [ f2] and v. By construction, the square SR is adjacent
to S along an edge containing v, hence the vertex v is ν-maximal in SR and this implies that the vertex
[ f1 − f2 R( f2)] is ν-minimal in SR . In particular, we have proved that ν( f1 − f2 R( f2)) < ν( f2). By
Proposition 5.7, there exists two squares S′

1, S′

2 such that the union S ∩ S′

1 ∪ S′
∪ S′

2 forms a 4 × 4 square
centered along the vertex [v2] and such that the edge S′

1 ∩ S′

2 is not critically resonant. We thus arrive at
the following situation (with the same convention on colors as in the previous section):

S S′

[v2]
[v]

S′

1 S′

2

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦
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◦ ◦

• •

•

S

S1

S′

◦
[t1]

◦
[z1]

◦
[x1]

◦
[y1]

◦
[z′

]

◦
[t ′

]

◦
[y′

]

Figure 6. The initial situation of Theorem 5.9.

In particular, by applying Lemma 5.4 to the square S′

1 and S′

2, we find that

ν(v′) < 4
3ν(v2),

for any vertex v′
∈ S′

\ S as required. □

5D. Degree estimates at a ν-maximal vertex. In this section, we analyze the situation of two 2 × 2
squares adherent at a vertex of type I .

Recall from Section 2E that a pair of adherent squares (S, S′) is contained in a spiral staircase around
v = S ∩ S′ if there exists a sequence of squares S0 = S, . . . , Sp = S′ connecting S and S′, all containing v,
which are adjacent alternatively along vertical and horizontal edges and such that any three consecutive
squares Si , Si+1, Si+2 are not flat for i ⩽ p − 2. When the intersection between S0 and S1 is a horizontal
(resp. vertical) edge, we say that the staircase is vertical (resp. horizontal).

Theorem 5.9. Fix a valuation ν ∈ V0.
Consider three 2 × 2 squares S, S1 and S′ having a vertex [x1] of type I in common. We assume that

S and S1 have a common horizontal edge [x1], [y1], and that the pair (S, S′) is contained in a vertical
spiral staircase containing S1. Denote by [z1] the vertex in S1 which forms a vertical edge with [x1].

Assume that [x1] is ν-maximal in S1, that the component (x1, z1) is not critically resonant, that
ν(z1) < ν(y1) and ν(z1) <

( 4
3

)
ν(x1). Then for any vertex v ∈ S′ distinct from [x1], one has

ν(v) < 4
3ν(x1).

Figure 6 summarizes the situation of Theorem 5.9 (with the convention of Section 5B on the color of
the edges).

We shall use repeatedly the following lemma, whose proof is given at the end of this section.
Recall from Section 2D the definition of the subgroup AS

v of the stabilizer of a vertex v of type I, where
S is a 2 × 2 square containing v.
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Lemma 5.10. Take three 2 × 2 squares S1, S2, S3 containing [x1] and which are adjacent alternatively
along vertical and horizontal edges. Suppose that S1, S2 and S3 are not flat. Then the following assertions
hold:

(i) Suppose that S′

1 is a 2 × 2 square which is adjacent to S2 along S1 ∩ S2 such that there exists an
element g ∈ AS1

[x1]
for which g · S1 = S′

1. Then the squares S′

1, S2, S3 are not flat.

(ii) For any 2 × 2 squares S′

1, S′

2 such that S1, S2, S′

1, S′

2 are flat, the squares S′

1, S′

2, S3 are not flat.
Moreover, given any g1, g2 ∈ Stab([x1]) ∩ STame(Q) such that g1S1 = S′

1, and g2S2 = S′

2, we have
g1 ∈ AS1

[x1]
and g2 ∈ AS2

[x1]
.

This lemma will allow us to consider alternative spiral staircase around the vertex [x1]. We thus have
the following figures in each situation:

S′

1

S3

S1S2

◦

◦ ◦

◦
[x1]

◦

◦◦

◦

◦

◦

•

•

•

•

•

•

• •

•

•

•

• S′

2 S′

1

S3

S1S2

[x1]

•

•

•

•

•

•

• •

◦

◦

◦

◦

◦

◦

◦

◦

◦ ◦ ◦

• • •

• •

•

Proof of Theorem 5.9. Take a valuation ν ∈ V0 and three squares S, S1, S′ satisfying the conditions of the
theorem. By assumption, there exists an integer p ⩾ 2 and a sequence of adjacent squares S2, . . . , Sp−1

such that S0 = S, S1, S2, . . . , Sp = S′ forms a vertical staircase.
We denote by [y1], [z1], [t1], [x1] and [z′

], [y′
], [t ′

] the vertices of S1 and S′ respectively so that the
edges [x1], [y1] and [x1], [y′

] are horizontal and the edges [x1], [z1] and [x1], [z′
] are vertical. We are

thus in the following situation:

S

S1

S′

◦
[t1]

◦
[z1]

◦
[x1]

◦
[y1]

◦
[z′

]

◦
[t ′

]

◦
[y′

]

◦ ◦•

• • •

•

•

•
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Recall that S and S′ are connected by a vertical staircase S = S0, S1, . . . , Sp−1, Sp = S′.

Lemma 5.11. The theorem holds whenever the edges Si ∩ Si+1 are not critically resonant for all i ≥ 1.

Lemma 5.12. For any vertex v such that [x1], v is an edge of S′, there exists a vertical staircase
S = S0, S̃1, S̃2, . . . , S̃q−1, S̃q such that

• S̃1 = S1;

• S̃q and S′ are adjacent along the edge [x1], v;

• the edges S̃i ∩ S̃i+1 are not critically resonant for all i ≥ 1.

Take any vertex v of S′ such that [x1], v is an edge of S′. By Lemma 5.12 we get a sequence of squares
S̃i connecting S to S̃q and satisfying the assumptions of Lemma 5.11. This proves ν(v) < 4

3ν(x1) as
required. □

Proof of Lemma 5.11. We prove by induction on i the following two properties:

(P1) For any vertex v ̸= [x1] in Si \ S0, one has ν(v) < 4
3ν(x1).

(P2) Let v1 ̸= [x1] be the unique vertex which is contained in the edge Si ∩ Si−1 and let v2 be the other
vertex in Si which belongs to an edge containing [x1]. Then one has ν(v2) < ν(v1).

Observe that (P1) and (P2) are satisfied when i = 1 by our standing assumption on S1.
Let us prove the induction step. For all i , denote by ti the unique vertex of Si which does not lie in

Si−1 ∪ Si+1; by yi the vertex in Si ∩ Si−1 distinct from x1. We also write zi for the vertex in Si ∩ Si+1

distinct from x1 (so that yi+1 = zi ). We thus have the following picture:

Si

Si−1

[ti−1] [zi−1]

Si+1

[x1] [yi + x1 P(x1, zi )]
[yi ]

[ti ] [zi ] [ti+1]

◦

◦

◦

◦

◦

◦

◦

◦

•

•

•

By our induction hypothesis, we have

ν(zi ) < ν(yi ) < ν(x1).

Observe that yi+1 is given by
yi+1 = yi + x1 P(x1, zi ).

for some polynomial P ∈ k[x, y]. Since the squares (Si−1, Si , Si+1) is not flat, Lemma 2.19(i) and
Lemma 2.17 imply that P /∈ k[x].
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Since the component (x1, zi ) is not critically resonant, Corollary 4.18 applied to f1 = zi and f2 = x1

implies

ν(x1 P(x1, zi )) < ν(zi ) ⩽ min
( 4

3ν(x1), ν(zi )
)
,

where the second inequality follows from the induction hypothesis ν(zi ) < 4
3ν(x1), hence

ν(yi+1) = ν(yi + x1 P(x1, zi )) = ν(x1 P(x1, zi )) < min
( 4

3ν(x1), ν(zi )
)
.

This proves that [x1] is ν-maximal in Si+1, hence [ti+1] is ν-minimal in Si+1 by Lemma 5.3 and assertion
(P1) and (P2) hold for i + 1, as required. □

Proof of Lemma 5.12. We show that for any vertex v such that [x1], v is an edge of S′, there exists a
vertical staircase S = S0, S̃1, S̃2, . . . , S̃p−1, S̃p around [x1](of exactly same length) such that:

• S̃1 = S1.

• S̃p and S′ are adjacent along the edge [x1], v, and there exists an element g ∈ AS′

[x1]
for which

g · S̃q = S′.

• The edges S̃i ∩ S̃i+1 are not critically resonant for all i ≥ 1.

We construct a sequence of spiral staircase S(k)
0 = S, S(k)

1 , . . . , S(k)
p of length p indexed by k as follows.

We pick an initial spiral staircase S(1)
0 = S, S(1)

1 = S1, . . . , S(1)
p = S′ around [x1] of length p joining S

and S′. Observe that the edge S(1)
1 ∩ S(1)

2 is not critically resonant by our assumption and the sequence
(S(1))i⩽2 defines a spiral staircase that satisfies the conclusion of the lemma.

Our aim is to construct (S(k)
i )i⩽p inductively so that the conclusion of the lemma holds for (S(k)

i )i⩽k+1

for all k ⩽ p.
For k = 1, there is nothing to prove since [x1], [z1] is not critically resonant by our standing assumption.
For k ≥ 1, assume that (S(k)

i )i⩽p is constructed. If the edge S(k)
k ∩ S(k)

k+1 is not critically resonant, then
we set S(k+1)

i = S(k)
i for all i . Otherwise, it is critically resonant and we will replace the two squares

S(k)
k , S(k)

k+1 and keep all the other squares.
Denote by [zk] and v′ the vertices in S(k)

k distinct from x1 and lying in S′ and S̃p−1 respectively. Using
the property P2 from the proof of Lemma 5.11, we have ν(zk) < ν(v′) < ν(x1), and we have the following
picture:

S(k)
k−1

S(k)
k+1S(k)

k

zk

[x1]
v′ v′′

◦

◦

◦

◦

◦

◦

◦

◦

•

•

•
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We claim that

ν(zk − x1 R(x1)) < ν(x1),

for any polynomial R ∈ k[x] \ k. Taking this claim for granted we conclude the proof of the lemma. By
Proposition 5.7, we may find a square S(k+1)

k adjacent to S(k)
k along the edge containing [x1], v

′ whose
edges containing [x1] are not critically resonant and such that the triple S(k)

k , S(k+1)
k , S(k)

k+1 is flat. Let
S(k+1)

k+1 be the 2 × 2 square completing the 4 × 4 square containing S(k)
k , S(k+1)

k , S(k)
k+1.

Since the squares S(k)
k−1, S(k)

k and S(k)
k+1 are not flat, Lemma 5.10(ii) implies that the triple S(k)

k−1, S(k+1)
k

and S(k+1)
k+1 is also not flat, so that the sequence (S(k)

1 , S(k)
2 , . . . , S(k)

k−1, S(k+1)
k , S(k+1)

k+1 ) is a spiral staircase
such that any edge lying in two consecutive squares is not critically resonant.

Let us set S(k+1)
i = S(k)

i for all i ̸= k, k + 1. We now show that (S(k+1)
1 , . . . , S(k+1)

p ) defines a spiral
staircase. Observe that S(k)

k , S(k)
k+1, S(k+1)

k , S(k+1)
k+1 are flat, since S(k)

k , S(k)
k+1, S(k)

k+2 are not flat, assertion (ii)
of Lemma 5.10 implies that S(k+1)

k , S(k+1)
k+1 , S(k)

k+2 = S(k+1)
k+2 are not flat. This shows that (S(k+1)

1 , . . . , S(k+1)
p )

defines a spiral staircase, as required.
We now prove our claim. Fix a polynomial R ∈ k[x] \ k, and consider the square SR containing

[x1], [zk − x1 R(x1)] and v′. Since x R(x) ∈ k[x], the squares SR, S(k)
k and S(k)

k+1 are flat by Lemma 2.19(ii).
We thus have the following picture:

S(k)
k−1

S(k)
k+1S(k)

k

[zk]

[x1]
v′

[zk − x1 R(x1)]

◦

◦

◦

◦

◦

◦

◦

◦

◦ ◦ ◦

•

•

•

• •

• • •

By Lemma 2.19, there exists an element g ∈ A
S(k)

k
[x1]

such that g · S(k)
k = SR . By Lemma 5.10(i) the triple

S(k)
k−2, S(k)

k−1, SR are not flat since S(k)
k−2, S(k)

k−1, S(k)
k are not flat. We have thus proven that the sequence

(S, S1, S(k)
2 , . . . , S(k)

k−1, SR) is contained in a spiral staircase for which any edge lying in two consecutive
squares is not critically resonant. By Lemma 5.11 the vertex [x1] is ν-maximal in SR , hence

ν(zk − x1 R(x1)) < ν(x1),

as required. □

Proof of Lemma 5.10. By transitivity of the action of STame(Q) on the 2 × 2 squares, we can suppose
that S2 is the standard 2 × 2 square containing [x], [t], [y], [z] and that S1 and S3 are adjacent along the



64 Dang Nguyen-Bac

vertical and horizontal edge containing [x] respectively. Take g1, g3 ∈ Stab([x]) ∩ STame(Q) such that
g1 · S2 = S1 and g3S2 = S3.

Let us prove assertion (i). Since S1, S2, S3 are not flat, Lemma 2.17 implies that g1, g3 /∈ AS2
[x]

. Observe
that gg1 · S2 = S′

1 and g3 · S2 = S3 where g ◦ g1 /∈ AS2
[x]

, hence the squares S′

1, S2, S3 are also not flat by
Lemma 2.17.

Let us prove assertion (ii). We assume S1 is the standard square and that [x] = [x1].
Consider g ∈ Stab([x])∩STame(Q) such that g · S1 = S2. Note that g1 · S1 = S′

1, g2 · S2 = S′

2. Assume
by contradiction that g1 /∈ AS1

[x]
. Since the squares S′

1, S1, S2 are flat, Lemma 2.17 implies that g ∈ AS1
[x]

.
However, Lemma 2.17 applied to S1, S2, S3 together with the fact that g−1

∈ AS2
[x]

shows that S1, S2, S3

are flat, we have thus obtained a contradiction. We have thus shown that g1 ∈ AS1
[x]

and a similar argument
also gives g2 ∈ AS2

[x]
.

Let us prove that S′

1, S′

2, S3 are not flat, consider the element g3 ∈ Stab([x]) ∩ STame(Q) such that
g3S2 = S3. Assume by contradiction that S′

1, S′

2, S3 are flat. We have g1g−1g−1
2 ·S′

2 = S′

1 and g3g−1
2 ·S′

2 = S3

so Lemma 2.17 shows that one of the element g1g−1g−1
2 , g3g−1

2 belongs to A
S′

2
[x]

. Since g3 /∈ AS2
[x]

, so
g3g−1

2 /∈ A
S′

2
[x]

. We deduce that g1g−1g−1
2 ∈ A

S′

2
[x]

, thus g1g−1
∈ AS2

[x]
. However gg1g−1

∈ AS2
[x]

since g1 ∈ AS1
[x]

and we get that g ∈ AS2
[x]

which contradicts the fact that S1, S2, S3 are not flat. □

5E. Degree at a nonextremal vertex.

Theorem 5.13. Take a valuation ν ∈ V0. Consider two 2×2 adherent squares S and S′ at a vertex of type
I given by [x1] with x1 ∈ k[Q] such that the pair (S, S′) is contained in a vertical spiral staircase. Assume
[y1] is the ν-minimal vertex in S distinct from [x1] which belongs to the horizontal edge containing [x1]

and that the edge containing [x1], [y1] is not critically resonant. Then for any vertex v distinct from [x1]

in S′ one has
ν(v) < 4

3ν(x1).

One has the following picture:

S

S′

◦
[t1]

◦
[z1]

◦
[x1]

◦
[y1]

◦
[z′

]

◦
[t ′

]

◦
[y′

]

•

•

•

•

Remark 5.14. By symmetry, observe that the same assertion holds if [z1] is ν-minimal in S and the pair
(S, S′) is contained in a horizontal spiral staircase.
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Proof. Consider two squares S, S′ and the vertices [x1], [y1] ∈ S satisfying the conditions of the Theorem.
By definition, there exists an integer p and p adjacent squares S0 = S, . . . , Sp = S′ containing [x1]

connecting S and S′.
Since S0 = S and S1 are adjacent, the vertex [x1] is ν-maximal in S1 by Lemma 5.4.
Denote by [z1] the vertex in S1 such that the vertices [x1] and [z1] are contained in the vertical edge of

S1 so that we are in the following situation:

S

S′

[y1]
[x1]

S1

[z1]

◦ ◦

◦ ◦

◦ ◦ ◦ ◦

◦

• •

•

•

Fix any polynomial R ∈ k[x] \ k. Consider SR the square containing [x1], [y1] and [z1 − x1 R(x1)]. By
Lemma 2.19, the squares S1, SR, S2 are flat. Take S̃R the 2×2 square completing the 4×4 square containing
S1, SR, S2. Lemma 5.10(ii) implies that S, SR, S̃R are not flat since S, S1, S2 are not flat. Moreover, the
fact that S, S1 belong to a spiral staircase shows that any element g ∈ Stab([x1])∩ STame(Q) such that
g · S = S1 cannot belong to AS

[x1]
by Lemma 2.17. Because S ∩ SR is the noncritically resonant edge

containing [x1], [y1], Lemma 5.4 applied to S and SR gives

ν(z1 − x1 R(x1)) < ν(x1).

By Proposition 5.7, there exists a square S′

1 adjacent to S along [x1], [y1] such that the squares S′

1, S1, S2

are flat and such that the vertical edge in S′

1 containing [x1] is not critically resonant. Consider the square
S′

2 completing the 4 × 4 square containing S′

1, S1, S2. By construction, the edge S′

1 ∩ S′

2 is not critically
resonant. Observe also that Lemma 5.6 implies that for any vertex v ∈ S′

1 distinct from [x1] and [y1], one
has

ν(v) < max
(
ν(y1),

4
3ν(x1)

)
.

Suppose that p ⩾ 3, then the triple (S, S′

1, S′) satisfies the assumptions of Theorem 5.9 by considering
the spiral staircase (S, S′

1, S′

2, S3, . . . , S′) and we conclude that for any vertex v distinct from [x1] in S′:

ν(v) < 4
3ν(x1).

We have thus proven the theorem.
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Suppose that p = 2 and the squares S′ and S1 are adjacent. We are thus in the following situation:

S′

1 S′

2

S

S′S1

[z1]

[x1]
[y1] v

◦

◦

◦

◦

◦

◦

◦

◦

◦ ◦ ◦

•

•

•

• •

• • •

where v is the unique vertex in S′ distinct from [x1] which belongs to the horizontal edge containing [x1].
By Theorem 5.9, [x1] is ν-maximal in S′

2, hence it is also ν-maximal in S′ and ν(v) < 4
3ν(x1). Observe

also that Lemma 5.6 implies that

ν(z1) < 4
3ν(x1).

This proves that for any v ∈ S′ distinct from [x1], one has

ν(v) < 4
3ν(x1),

by Lemma 5.4 and the theorem holds. □

5F. Degree estimates at a ν-minimal vertex.

Theorem 5.15. Consider any valuation ν ∈ V0. Let S and S′ be two adherent 2 × 2 squares intersecting
at a vertex v which is ν-minimal in S. Then the following holds:

(i) The vertex v is the ν-maximal vertex of S′.

(ii) If v′ is a vertex in S′ which does not belong to any square adjacent to S, then we have

ν(v′) < 4
3ν(v)

Remark 5.16. Suppose that the vertex v ∈ S′ belongs to a square adjacent to S, then we will apply the
estimates in Theorem 5.8 instead.

Proof. Let us prove assertions (i) and (ii).
Suppose first that S and S′ belong to a 4 × 4 squares containing S, S′, S1 and S2 as in the figure below.

Since S, S1 and S, S2 are adjacent along an edge containing v, Lemma 5.4 implies that we are in the
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following situation:

S

S1 S′

[z1 + x1 R(x1, y1)]

v

v′

[y1 + x P(x1, z1)][y1]

[z1][t1]

S2

◦ ◦ ◦

◦◦ ◦

◦ ◦ ◦

where v = [x1], [y1], [z1], [t1] ∈ S and P, R ∈ k[x, y] \ k. Observe that v is ν-maximal in S′ and we
have proved assertion (i). Since the squares S, S1, S2 are flat, Lemma 2.19 and Lemma 2.17 imply that
P ∈ k[x] \ k or R ∈ k[x] \ k. Suppose that P ∈ k[x] \ k, then we have

( 4
3

)
ν(x1) > ν(y1 + x1 P(x1)) =

(deg(P) + 1)ν(x1) > ν(v′) proving (ii) as required.
Suppose next that (S, S′) is contained in a spiral staircase. Choose a sequence of squares S0 =

S, . . . , Sp = S′ of squares containing v and connecting S and S′ such that each triple of consecutive
squares is not flat. By symmetry, we can suppose that S0 and S1 are adjacent along a horizontal edge
containing v. Observe that Lemma 5.4 applied to S, S1 implies that the edge S1∩S2 contains the ν-minimal
vertex in S1.

If the edge S1 ∩ S2 is not critically resonant, then the pair (S1, S′) is contained in a horizontal staircase
so that one has the following picture:

S

S1 S′

v3

v

◦ ◦

◦ ◦

◦ ◦ ◦ ◦

◦

• •

•

•

By Theorem 5.13, the vertex v is ν-maximal in S′ and one has ν(v′) <
( 4

3

)
ν(v) for all v′

̸= v in S′.
We have thus proved assertion (i) and (ii).

We now suppose that the edge S1 ∩ S2 is critically resonant. Denote by [ f1] the ν-minimal vertex in S1

and by v = [ f2]. Fix any polynomial R ∈ k[x] \ k and take SR the square containing [ f1 − f2 R( f2)], [ f2]

and the edge S1 ∩ S0. Lemma 2.19(ii) implies that the squares S1, SR, S2 are flat. Take S′

R the 2×2 square
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completing the 4 × 4 square containing S1, SR, S2. Since the squares S, S1, S2 are not flat, Lemma 5.10
implies that S, SR, S′

R are also not flat. In particular, the squares S and SR intersect along an edge
containing v, Lemma 5.4 implies that

ν( f1 − f2 R( f2)) < ν( f2).

By Proposition 5.7 applied to the edge [ f1], [ f2], we can find a square S′

1 adjacent to S along S ∩ S1 and
g ∈ Av such that g · S1 = S′

1 and such that the vertical edge containing v in S′

1 is not critically resonant.
By Lemma 2.17, the squares S1, S′

1, S2 are flat. Take S′

2 the 2 × 2 square completing the 4 × 4 square
containing S1, S2, S′

1. As the three squares S, S1, S2 are not flat, Lemma 5.10 implies that the squares
S, S′

1, S′

2 are also not flat.
If p ⩾ 3, then the pair (S′

1, Sp) is contained in a horizontal spiral staircase (S′

1, S′

2, S3, . . . , Sp) and the
edge S′

1 ∩ S′

2 is not critically resonant. Hence, by Theorem 5.13, the vertex v is ν-maximal in S′ and for
any vertex v′ distinct from v in S′, one has

ν(v′) < 4
3ν(v),

proving (i) and (ii) as required.
Suppose that p = 2 so that S2 = S′. Observe that S′

2 and S′ are adjacent along a horizontal edge
containing v. By Lemma 5.6 applied to S′

1, S′

2, v is ν-maximal in S′

2, it is also ν-maximal on the edge
S′

2 ∩ S′. Since v is ν-maximal on the vertical edge S1 ∩ S′, we have thus proven that v is ν-maximal in S′

and assertion (i) holds. Take v2 the vertex contained in S′
∩ S′

2 distinct from v. Since the edge S′

1 ∩ S′

2 is
not critically resonant, Lemma 5.6 implies that ν(v2) < 4

3ν(v). Hence, for any vertex v′
∈ S′ not contained

in the same band as S, one has ν(v′) <
( 4

3

)
ν(v) proving (ii) as required. □

5G. Proof of Theorem 5.1. Take S0 the standard square containing [x], [y], [z], [t]. Fix a valuation
ν ∈ V0 such that

max(2ν(t), ν(y) + ν(t), ν(z) + ν(t)) < ν(x) < min(ν(y), ν(z), ν(t)).

Pick any vertex v of type I such that the geodesic segment in C joining [Id] to v intersects an edge of the
standard square. Choose any geodesic segment γ : [0, n] → Cν joining [t] to v such that the sequence
(ν(γ (i)))0≤i≤n is maximal for the lexicographic order in Rn+1 among all geodesic segments joining [t]
to v. Pick any sequence S̃0, . . . , S̃n−1 of 2 × 2 squares such that γ (i), γ (i + 1) ∈ S̃i for all i ⩽ n − 1. We
claim that the following properties hold:

(A) The vertex γ (i) is the unique ν-maximal vertex in S̃i for all 0 ≤ i ≤ n − 1.

(B) We have ν(γ (i + 1)) < 4
3ν(γ (i)) for all 1 ⩽ i ⩽ n − 1.

(C) For any other valuation ν ′
∈ V0 satisfying (27), the vertex γ (i) is also ν ′-maximal in S̃i for all

0 ≤ i ≤ n − 1.

Observe first that these properties (A), (B) and (C) imply Theorem 5.1(1) and (2).
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Observe the slight discrepancy in the indices between (A), (C) and (B). We do not claim that ν(γ (1)) <
4
3ν([t]) in general. This claim is however sufficient to imply Theorem 5.1(1) and (2).

Observe that assertion (C) implies that dν([t], v) ≥ dν′([t], v) and we conclude by symmetry that
dν([t], v)=dν′([t], v) for any other valuation ν ′

∈V0 satisfying (27). This proves assertion 2 of the theorem.
We shall prove the claim by induction on n ⩾ 1. Fix another valuation ν ′

∈ V0 satisfying (27).
Suppose n = 1. There is only one square S̃0 containing [t] and v (it may not be the standard square).

Since n = 1, we only need to prove assertions (A) and (C).

Lemma 5.17. Take any 2 × 2 square S adjacent to the standard square S0 along an edge containing [t].
Then the vertex [t] is ν-maximal in S.

Moreover, denote by v1 the vertex in S ∩ S0 distinct from [t] in S and by v2 the vertex distinct from v1

for which the vertices [t], v2 form an edge of S. Then one has ν(v2) < ν(v1).

Grant this lemma. If S̃0 = S0, then (A) and (C) automatically hold. If S̃0 and S0 are adjacent along an
edge containing [t] Lemma 5.17 implies assertions (A) and (C) immediately. Suppose now that S̃0 and S0

are adherent at [t]. If the squares S̃0 and S0 are flat, then Lemma 5.17 applied to the two squares adjacent
to both S0 and S̃0 again implies that [t] is also ν-maximal and ν ′-maximal in S̃0.

Otherwise (S0, S̃0) are contained in a spiral staircase. Take an integer p ⩾ 2 and a sequence of squares
S0, S′

1, . . . , S′
p = S̃0 connecting S0 to S̃0 such that each three consecutive squares are not flat. We claim that

we can choose some squares S′′

1 , S′′

2 such that S0, S′′

1 , S′′

2 , S′

3, . . . , S̃0 is a spiral staircase and such that S′′

1 ∩

S′′

2 is not critically resonant. If the edge S′

2 ∩ S′

1 is not critically resonant, then we set S′′

2 = S′

2 and S′′

1 = S′

1.
Otherwise, S′

1∩S′

2 is critically resonant. Take [ f1] the vertex distinct from [t] of the edge S′

2∩S′

1. Denote
by [ f2] the vertex in S0 ∩ S′

1 distinct from [t]. By Lemma 5.17, one has ν( f1) < ν(t) and ν( f1) < ν( f2).
Take any polynomial R ∈ k[x] \ k, denote by SR the square containing [ f1 − t R(t)], [t], [ f2]. By
construction, SR is adjacent to S0 and Lemma 5.17 implies that ν( f1 − t R(t)) < ν(t). By Proposition 5.7,
we can find a square S′′

1 = g · S′

1 with g ∈ A
S′

1
[t] such that S′

1, S′′

1 , S′

2 are flat and the edge containing [t] in
S′′

1 distinct from S0 ∩ S′

1 is not critically resonant. Take S′′

2 the 2 × 2 square completing the 4 × 4 square
containing S′

1, S′

2, S′′

1 .
If p⩾3, the triple S0, S′

1, S′

2 is not flat by Lemma 5.10(ii), hence S0, S′′

1 , S′′

2 are also not flat. The squares
(S0, S′′

1 , S̃0) thus satisfy the conditions of Theorem 5.9, and [t] is ν-maximal in S̃0. If p = 2, then S′

2 = S̃0

and by Theorem 5.9 applied to (S0, S′′

1 , S′′

2 ), the vertex [t] is ν-maximal in S′′

2 . Since S′′

2 and S̃0 are adjacent
along an edge containing [t] and [t] is also ν-maximal in S′

1, it is also ν-maximal in S̃0, proving assertion
(A) as required. Observe that the same argument also applies for ν ′

∈ V0, hence assertion (C) also holds.
We have thus proven the claim for n = 1.
Let us suppose that the claim is true for n ⩾ 1. We shall prove it for n + 1. Choose any geodesic

γ : [0, n + 1] → Cν joining [t] to a vertex v for which the sequence (ν(γ (i)))0≤i≤n is maximal. Denote
by vi = γ (i). Take any sequence of squares S̃0, . . . , S̃n for which vi , vi+1 ∈ S̃i .

By our induction hypothesis applied to the vertex vn , the sequence S̃0, . . . , S̃n−1 satisfy assertions (A),
(B) and (C).
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Suppose first that S̃n−1 and S̃n are adjacent or equal. Observe that assertion (A) implies that v = γn+1

cannot belong to the square S̃n−1, otherwise it would contradict the fact that γ is a geodesic in Cν (recall
that in this graph we draw an edge joining the ν-maximal to the ν-minimal vertex). This implies that
S̃n−1 and S̃n are adjacent along an edge containing the ν-minimal vertex in S̃n−1. Lemma 5.4 shows that
the vertex in S̃n−1 ∩ S̃n which is not ν-minimal in S̃n−1 is ν-maximal in S̃n . By the maximality of the
sequence (ν(γ (i)))0≤i≤n the vertex vn cannot be ν-minimal in S̃n−1, hence is ν-maximal in S̃n , proving
assertion (A). The following figure summarizes the situation:

vn−1 vn

S̃nS̃n−1

◦ ◦ ◦

◦ ◦ ◦

Since vn−1 is also ν ′-maximal in S̃n−1, the vertex vn is also ν ′-maximal in S̃n by Lemma 5.4. We have
thus proven assertion (C).

Let us check that S̃n−1 satisfies the condition of Theorem 5.8. Take another square S̃ adjacent to S̃n−1

containing vn−1, vn . Observe that the sequence S̃0, . . . , S̃n−2, S̃ satisfies the conditions of the theorem and
contains vn which is at distance n. We apply our induction hypothesis to the vertex vn and to the sequence
of squares S̃0, . . . , S̃n−2, S̃. Assertion (A) implies that the vertex vn−1 is ν-maximal in S̃, as required.

We may thus apply Theorem 5.8 to the band S̃n−1 ∪ S̃n which yields ν(vn+1) < 4
3ν(vn), proving (B),

as required.
Suppose that the squares S̃n−1, S̃n are adherent and flat. If vn, vn−1 form an edge of S̃n−1, then we

can find a band of two squares containing vn−1, vn, vn+1, which corresponds to the previous situation.
Otherwise (vn, vn−1) is not an edge of S̃n−1, and since vn−1 is ν-maximal and ν ′-maximal in S̃n−1 by
assertions (A) and (C), the vertex vn is ν-minimal and ν ′-minimal in S̃n−1. Observe that the vertex vn+1

cannot belong to a band containing vn, vn−1 since we have chosen a geodesic γ for which the sequence
(ν(γ (i)))0≤i≤n is maximal. We thus arrive at the following situation:

S̃n−1

vn−1

vn

vn+1

S̃n

◦ ◦ ◦

◦◦ ◦

◦ ◦ ◦

•

•

•

• • •

• •

•
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By Theorem 5.15(i) and (ii) applied to S̃n−1 and S̃n , the vertex νn is ν-maximal and ν ′-maximal in S̃n

(hence (A), (C) hold), and one has ν(vn+1) < 4
3ν(vn), and assertion (B) holds.

Suppose that the squares S̃n−1, S̃n are contained in a spiral staircase.
Let us suppose first that the vertices vn−1, vn do not belong to the same edge of S̃n−1. By assertions

(A) and (C) applied to vn−1, the vertex vn−1 is ν-maximal and ν ′-maximal in S̃n−1, hence vn is ν-minimal
and ν ′-minimal in S̃n−1. We thus have the following:

S̃n−1

vn−1

vn

S̃n

◦ ◦

◦ ◦

◦ ◦ ◦•

•

• •

•

In particular, by Theorem 5.15(i) applied to the squares S̃n−1, S̃n implies that vn is ν-maximal and ν ′-
maximal in S̃, proving (A) and (C). Observe that vn+1 cannot belong to a band containing vn−1, vn since
we have chosen the geodesic such that ν(γ (i)) is maximal. In particular, Theorem 5.15(ii) implies that

ν(vn+1) < 4
3ν(vn),

proving (B) as required.
Let us suppose that the vertices vn−1, vn belong to an edge of S̃n−1. Since the argument are similar for

horizontal edges, we can suppose that the edge joining vn−1, vn is vertical, and the pair (S̃n−1, S̃n) belongs
to a vertical spiral staircase. Indeed, if (S̃n−1, S̃n) belongs to a horizontal spiral staircase, then we can
choose a square S̃′

n−1 adjacent to S̃n−1 along the edge containing vn−1, vn which belongs to the horizontal
staircase (S̃n−1, S̃′

n−1, . . . , S̃n). We can thus replace S̃n−1 by S̃′

n−1 and the squares (S̃′

n−1, S̃n) belong to a
vertical spiral staircase or S̃′

n−1 and S̃n are adjacent. The later case have been treated previously.
Write by vn = [ f2] and let [ f1] be the vertex distinct from vn in S̃n−1 which belongs to the horizontal

edge containing vn . If ( f1, f2) is not critically resonant, then we can directly apply Theorem 5.13, the
vertex vn is ν-maximal and ν ′-maximal in S̃n and

ν(vn+1) < 4
3ν(vn),

proving (A), (B) and (C) as required.
Assume now that ( f1, f2) is critically resonant. We shall replace the square S̃n−1 by an adjacent square

S′ along the edge joining vn and vn−1 such that the horizontal edge in S′ containing vn is not critically
resonant.
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For any polynomial R ∈ k[x] \ k, denote by SR the 2 × 2 containing [ f2], [ f1 − f2 R( f2)], vn−1. We
thus have the following:

[ f1 − f2 R( f2)]

SR

S̃n

S̃n−1

vn−1

[ f2][ f1]

◦ ◦

◦ ◦

◦ ◦ ◦•

•

• •

•

◦

◦

•

•

•

Using our induction hypothesis for the vertex vn and to the sequence of squares S̃0, . . . , S̃n−2, SR , assertions
(A) and (C) imply that the vertex vn−1 is ν-maximal and ν ′-maximal in SR , hence ν( f1− f2 R( f2))<ν( f2)

and ν ′( f1 − f2 R( f2)) < ν ′( f2). By Proposition 5.7, we can find a square S′ containing vn−1, vn for which
the horizontal edge containing vn is not critically resonant and such that there exists g ∈ Avn such that
g · S′

= S̃n−1. By Lemma 5.10, since (S̃n−1, S̃n) is contained in a vertical spiral staircase, this implies
that the pair (S′, S̃n) is also contained in a vertical spiral staircase. Since vn is neither ν-maximal nor
ν-minimal in S′, the pair (S′, S̃n) satisfies the conditions of Theorem 5.13.

One has the following:

S′

S̃n

S̃n−1

vn−1

vn[ f2]

◦ ◦

◦ ◦

◦ ◦ ◦•

•

• •

•

◦

◦

Observe that the same argument applies for ν ′ and we can find another square S′′ adjacent to S̃n−1 along
vn, vn−1 such that S′′, S̃n−1 is contained in a vertical spiral staircase and such that the horizontal edge
in S′′ containing vn is not critically resonant for ν ′. By Theorem 5.13, the vertex vn is ν-maximal and
ν ′-maximal in S̃n and ν(vn+1) <

( 4
3

)
ν(vn), proving (A), (B) and (C) as required.

We have thus proven that our induction step is valid, and the theorem is proved.
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Proof of Lemma 5.17 . Fix a valuation ν ∈ V0 satisfying (27) and take a square S adjacent to S0 along an
edge containing [t].

Observe that the edge S ∩ S0 is either vertical or horizontal. Since the proof is similar for both cases,
we can suppose that S ∩ S0 is vertical so that S and S0 intersect along the edge containing [y], [t]. Remark
that in this case, we have v1 = [y] and v2 is the vertex distinct from [t] which belongs to the horizontal
edge in S containing [t].

We are thus in the following situation:

S S0

v2 = [z + t P(y, t)]

[x]

[z][t]

v1 = [y][x + y P(y, t)]

◦ ◦ ◦

◦ ◦ ◦

where P ∈ k[x, y] \ k.
Since ν(P(y, t))⩽ min(ν(y), ν(t)) because P is nonconstant and ν is a quasimonomial valuation, and

since (27) implies that 2ν(t) < ν(z) and ν(y) + ν(t) < ν(z), we get

ν(t P(y, t)) < ν(z),

hence ν(z + t P(y, t)) < ν(z) and the vertex [t] is ν-maximal in S. Because ν is monomial satisfying
(27), we also have

ν(z + t P(y, t)) < ν(y),

hence ν(v2) < ν(v1), as required. □

5H. Proof of Theorem 1. Consider a tame automorphism f ∈ Tame(Q). Since the complex C is CAT(0)

and since the action of f is an isometry and a morphism of complex, the action of f on the complex
either fixes a vertex or a geodesic line. In the first case, f is elliptic and by Theorem 3.3, the sequences
(deg( f n)), (deg( f −n)) are either both bounded, both linear or satisfy

C−1dn ⩽ deg( f ±n) ⩽ Cdn,

where C > 0 and d ∈ N.
We are thus reduced to prove the theorem in the case where f induces an action which fixes a geodesic

line γ : R → C. Take an hyperbolic automorphism f and a geodesic line γ : R → C fixed by f . Denote
by S0 the standard 2 × 2 square containing [x], [y], [z] and [t]. Since for any tame automorphism
h ∈ Tame(Q), there exists a constant C > 0 such that

1
C

⩽
deg( f n)

deg(h−1 f nh)
⩽ C,
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by taking an appropriate conjugate of f , we can suppose that γ starts in S0 and intersects an edge of S0.
Consider the geodesic segment γ ′

n joining [Id] and [x ◦ f −n
]. By construction, γ ′

n intersects an edge of
the standard square S0 as γ starts in S0.

Fix any valuation ν such that (27) is satisfied. There are infinitely many valuations in V0 satisfying (27)
arbitrarily close to − deg. Indeed, consider the sequence of weight αi = (−1, −1+2/ i, −1+5/ i, −1+7/ i),
then by Proposition 4.2, there exists a sequence of valuations νi with weight αi on (x, y, z, t) which
converges to − deg.

All assumptions of Theorem 5.1 are then satisfied and we get

νi ( f n
· [x]) = νi (x ◦ f −n) ⩽

( 4
3

)dνi ([t],[x◦ f −n
])−1 max(νi (y), νi (z), νi (x), νi (t)).

Observe that νi tends to − deg, moreover, assertion (2) of Theorem 5.1 implies that the distance
dνi ([t], [x ◦ f −n

]) are all equal for all i which implies

deg( f −n) ⩾
( 4

3

)dν([t],[x◦ f −n
])−1

,

for a given valuation ν satisfying (27).
We now prove that the sequence (dν([t], [x ◦ f −n

]))n grows at least linearly. Indeed since the invariant
geodesic γ passes through S0, then it passes through all the squares f i

· S0 for all i ⩽ n. We claim that all
the squares f i S0 are distinct, so there are at least n squares. Indeed each iterate f i S0 is a 2 × 2 square
containing a piece of the invariant geodesic and the type III vertex in f i S0 are all distinct otherwise f
would be in O4.

Consider a geodesic segment γ1n in Cν joining [t] and [x ◦ f −n
] and a shortest path γ2n in Cν contained

in a sequence of squares containing the geodesic γ between these two vertices. The path γ1n, γ2n are
all in Cν which contains the 1-skeleton of C. The image of those path in C are both at bounded distance
(for the distance dC) from the geodesic γn joining [t] and [x ◦ f n

] in C. For γ2n this is because γ2n goes
through the squares that contain γn . For γ1n , this is because γ1n is a geodesic path in (Cν, dν), which is
quasiisometric to (C, dC). In particular, the farthest point in between γ1n and γ2n are apart by a finite
number M of squares, which only depends on the distance dC(γ1n, γ2n). We get

l(γ2n) ⩾ l(γ1n) − M.

Since the path γ2n goes through at least the n distinct squares f i S0 for i ⩽ n, the length of γ2n in Cν is
larger or equal than n, hence

dν([t], [x ◦ f −n
]) ⩾ n − M.

Hence
deg( f −n) ⩾ C

( 4
3

)n−1
,

where C > 0. Since the argument is similar for deg( f n), we have thus proven that

min(deg( f n), deg( f −n)) ⩾ C
( 4

3

)n

where C > 0.
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5I. Proof of Theorem 4. Take f ∈ Tame(Q). Consider γ the geodesic in C joining v0 = [Id] to [x ◦ f ].
Since the stabilizer of [Id] is the group O4 by Proposition 2.7 and since the group O4 acts transitively on
the 1 × 1 squares containing v0 = [Id] by Proposition 2.3, we can suppose that the geodesic γ intersects
an edge of type I containing [x] of the 1 × 1 square containing [x], [Id], [z, x] and [x, y]. In particular,
the geodesic γ intersects an edge of the standard square S0.

We have proved that the vertex v = [x ◦ f ] satisfies the conditions of Theorem 5.1, and by considering
a sequence of valuations νp ∈ V0 converging to − deg satisfying (27), we have

νp(x ◦ f ) ⩽
( 4

3

)dνp ([t],[x◦ f ])−1 max(νp(y), νp(z), νp(x), νp(t)).

By Proposition 5.5, we have, for all integer p,

1
2
√

2
dC(v1, v2) ⩽ dνp(v1, v2).

for any vertices v1, v2 of type I. Since dC([t], [x ◦ f ])⩾ dC([Id], [ f ])−2
√

2, we thus obtain, after taking
the limit as p → +∞,

log deg( f ) ⩾ CdC([ f ], [Id]) − C ′,

where C ′
= 2 log

( 4
3

)
and C = log

( 4
3

)
/(2

√
2) as required.

6. Application to random walks on the tame group

In this section, we consider a random walk on the tame group and its associated degree sequence. After
recalling some general facts on random walks on groups (Section 6A), we then discuss when the degree
exponents of a random walk are well-defined and their properties (Section 6B). We then classify in
Section 6C the finitely generated subgroup of Tame(Q). Finally we prove Theorem 5, which asserts that
the degree exponent of a symmetric random walk on a finitely generated group G is strictly positive if
and only if it contains two noncommuting automorphisms with dynamical degree strictly larger than 1
generating a free group of rank 2.

6A. General facts on random walks on groups. Let G be a finitely generated subgroup of the tame
group and let µ be an atomic probability measure on G. The (left) random walk on G with respect
to the measure µ is the Markov chain whose initial distribution is the Dirac mass at Id with transition
matrix p(g, g′) = µ({g′g−1

}) for all g, g′
∈ G. We denote by � = (GN∗

, µ⊗N∗

) the product probability
space which encodes the successive increments of the random walk on G with respect to the measure µ.
Consider an element s = (s1, . . . , sn, . . . ) ∈ �, set g0(s) = Id and

gn(s) = snsn−1 · · · s1,

for all n ⩾ 1. The image P of the map s ∈ � 7→ (Id, g1(s), . . . , gn(s), . . . ) ∈ GN∗ is called the path
space and an element of P is a path in the group G. We naturally endow P with the probability measure
P defined on the σ -algebra of cylinders as the pushforward of the product measure on � by the map
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s ∈ � 7→ (gi (s))i . More explicitly, consider the probability measure νn of the projection of P onto the
(n+1)-th component gn , then νn is equal to the n-fold convolution µ∗n

∗ δId so that for all g ∈ G, one has

νn({g}) = P(gn = g) =

∑
s1,...,sn

sn ···s1=g

n∏
i=1

µ(si ).

Fix a reference vertex v0 = [Id] in the complex C. Since the tame group acts on the complex, a path
in the group (Id, g1, . . . , gn, . . . ) induces an element in CN∗ given by (v0, g1 · v0, . . . , gn · v0, . . . ). The
sequence (v0, g1 · v0, . . . , gn · v0, . . . ) is called a path in the complex.

6B. Degree exponents of a random walk. Let G be a finitely generated subgroup of the tame group and
let µ be an atomic probability measure on G. We shall define in this section the degree exponents of a
random walk with respect to the measure µ. To do so, the measure µ must satisfy a finiteness condition
on its first moment ∫

g∈G
log(deg(g)) dµ(g) < +∞. (29)

Let us define the two degree exponents λ1(µ), λ2(µ) by

λ1(µ) := lim sup
n→+∞

1
n

∫
g∈G

log(deg(g)) dνn(g), and λ2(µ) := lim sup
n→+∞

1
n

∫
g∈G

log(deg(g−1)) dνn(g),

where νn is the probability measure of gn .
The following proposition proves that these quantities are finite and give a few basic properties of

these numbers.

Proposition 6.1. Take G a countably generated subgroup of the tame group and µ an atomic probability
measure on G satisfying condition (29). Then the following properties are satisfied:

(i) The degree exponents λ1(µ), λ2(µ) are finite and are equal to

λ1(µ) = lim
n→+∞

1
n

∫
g∈G

log(deg(g)) dνn(g), and λ2(µ) = lim
n→+∞

1
n

∫
g∈G

log(deg(g−1)) dνn(g),

(ii) The following inequality holds

λ1(µ) ⩾
λ2(µ)

2
.

(iii) Consider σ : G → G the inverse map, then λ2(µ) = λ1(σ∗µ).

(iv) The degree exponents are invariant by conjugation, i.e., for any h ∈ Tame(Q), we have

λi (Conj(h)∗µ) = λi (µ),

where Conj(h) : Tame(Q) → Tame(Q) denotes the conjugation by h in G.
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Proof. Let us first prove (i). Since g is an automorphism on a threefold, we have deg2(g) = deg1(g
−1)

and the Khovanski–Teissier inequalities imply deg1(g)2 ⩾ deg2(g) = deg1(g
−1); see e.g., [Dang 2020]

for a precise definition of the k-degree. We obtain a finiteness condition on the inverse∫
g∈G

log(deg(g−1))dµ(g) ⩽ 2
∫

g∈G
log(deg(g)) dµ(g) < +∞.

Since the function deg is submultiplicative, the random variables

s ∈ � 7→ log(deg(gn(s)))

form a subadditive sequence. The previous equation shows that the average of log(deg(g1( · ))) is finite
and we can apply Kingman’s subadditivity theorem [Kingman 1973, Theorem 1] which implies that the
limits

lim
n→+∞

1
n

∫
G

log deg(g) dνn(g) and dνn(g),

exist and are finite. This proves assertion (i).
Assertion (ii) follows from the fact that deg(g)2 ⩾ deg(g−1) for all g ∈ Tame(Q). To prove assertion

(iii), observe that for all (s1, . . . , sn, . . . ) ∈ �, we have

s−1
n s−1

n−1 · · · s−1
1 = (s1s2 · · · sn)

−1.

In particular, we obtain

lim
n→+∞

1
n

∫
�

log(deg((s1s2 · · · sn)
−1))) dµ⊗n

= lim
n→+∞

1
n

∫
�

log(deg(snsn−1 · · · s1)) dσ∗µ
⊗n.

Since the right hand side of the equality is equal to λ1(σ∗µ) and the left hand side to λ2(µ), we have thus
proven (iii).

Finally, let us prove assertion (iv). Fix h ∈ Tame(Q), recall that there exists a constant C(h) > 0 such
that for all g ∈ Tame(Q), we have

deg(g)

C(h)
⩽ deg(hgh−1) ⩽ C(h) deg(g).

The last inequality directly implies that λi (Conj(h)∗µ) = λi (µ) for all i = 1, 2 and all h ∈ Tame(Q). □

6C. Classification of finitely generated subgroups. In this section, we give a classification of the finitely
generated subgroups of the tame group. To that end, we recall the terminology due to Gromov [1987] on
subgroups of isometries of a hyperbolic space.

Fix a Gromov hyperbolic space X and a group G acting on it by isometry. The action of G on X
is called elementary if it does not contain two hyperbolic isometries whose action do not fix the same
geodesic line. We call the action of G on X elliptic if it globally fixes a point in X and we shall say that
the action of G is lineal if there exists an elliptic subgroup H of G, a geodesic line γ on X invariant by
G, pointwise fixed by H on which the quotient G/H acts faithfully by translation.
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In our case, any element of the tame group induces an isometry of the complex. We will also need to
distinguish among the subgroups which fix a vertex in the complex, more particularly when the fixed
vertex is of type I. Remark that a subgroup G of the tame group which fixes a vertex of type I is conjugated
to a subgroup of Stab([x]) and recall that we have constructed in Section 2D a natural action from the
stabilizer subgroup Stab([x]) on a subtree of the Bass–Serre tree. We have the following classification.

Theorem 6.2. Let G be a finitely generated subgroup of the tame group. Then one of the following
situation occurs:

(i) The action of G on the complex is nonelementary.

(ii) There exists an automorphism h in G whose action in the complex is hyperbolic and such that any
automorphism f ∈ G can be decomposed into f = g◦h p where p is an integer and where g belongs to
a subgroup H. Moreover, the subgroup H is conjugated in Tame(Q) to a subgroup of O4 or to one of

EH ⋊
{(

ax by
b−1z a−1t

) ∣∣∣ a, b ∈ k∗

}
.

(iii) The group G is conjugated to a subgroup of the linear group O4.

(iv) There exists a G-equivariant morphism ϕ : Q → A2
\ {(0, 0)} where G acts on A2

\ {(0, 0)} linearly.

(v) The group G contains two noncommuting automorphisms with dynamical degree larger or equal
than 2 and there exists a G-equivariant morphism ϕ : Q → A1 where G acts on A1 by multiplication.

(vi) The group G contains an automorphism h with λ1(h)⩾ 2 and there exists a G-equivariant morphism
ϕ : Q →A1 on which G acts on A1 by multiplication and an isomorphism ϕ−1(A1

\{0})≃A1
\{0}×A2

such that any automorphisms f ∈ G can be decomposed into g ◦ h p where p is an integer and g is
of the form

g : (x, y, z) ∈ A1
\ {0} × A2

7→ (ax, by, cz) ∈ A1
\ {0} × A2,

where a, b, c ∈ k∗.

(vii) There exists a G-equivariant morphism ϕ : Q → A1 where G acts on A1 by multiplication and any
automorphism of G has dynamical degree 1.

Proof. Figure 7 gives a tree summarizing how our proof proceeds where each end of the tree corresponds
to a conclusion of the previous theorem. Denote by T the associated Bass–Serre tree constructed in
Section 2C.

Theorem 6.3. Let G be a finitely generated subgroup of the tame group whose action on the complex
C is elementary. The following possibilities occur:

(i) The action of G on the complex is elliptic, i.e., G fixes globally a vertex in the complex.

(ii) The action of G is lineal on the complex, i.e., there exists an elliptic subgroup H of G, a geodesic line
γ on C invariant by G pointwise fixed by H on which the quotient G/H acts faithfully by translation.



Degree growth for tame automorphisms of an affine quadric threefold 79

nonelementary in C elliptic in T nonelementary in T lineal in T

conjugated to a subgroup of Stab([x])

jj OO 44

G

OO

//

��

elliptic in C

44

//

**

conjugated to a subgroup of Stab([x, y])

lineal in C conjugated to a subgroup ofO4

Figure 7. Outline scheme of the proof of Theorem 6.2.

Moreover, the subgroup H is conjugated in Tame(Q) to a subgroup of O4 or to one of

EH ⋊
{(

ax by
b−1z a−1t

) ∣∣∣ a, b ∈ k∗

}
.

Assume that the above theorem holds, we prove that our classification holds. If G is lineal on the
complex, then assertion (ii) in Theorem 6.3 implies that there exists an hyperbolic automorphism h ∈ G
such that any f ∈ G can be decomposed into f = g ◦ h p where p is an integer and g ∈ H . This falls
into situation (ii) of the theorem.

Let us extend the case (i) of Theorem 6.3. Take a group G whose action fixes a vertex of type III, then
it is naturally conjugated to a subgroup of O4 by Proposition 2.5 and assertion (iii) holds. If G fixes a
vertex of type II in the complex, then by Proposition 2.6, G satisfies assertion (iv) of the Theorem.

Suppose now that G fixes a vertex of type I then G is conjugated to a subgroup of Stab([x]) by
transitivity of the action on the vertices of type I (Proposition 2.7(ii)). In this situation, recall that we
have constructed in Section 2D a natural action from the stabilizer subgroup Stab([x]) on a subtree of
the Bass–Serre tree, in particular, there exists a G-equivariant morphism ϕ : Q → A1 where the action
of G on A1 is multiplicative. In the case where the group G fixes a vertex of type I, its action on the
corresponding subtree of the Bass–Serre tree is either nonelementary or elementary. If the action of
G is nonelementary on the subtree, then equivalently G contains two noncommuting morphisms with
dynamical degree larger or equal to two and G satisfies assertion (v) in our classification.

Suppose that the action of G on the corresponding subtree of the Bass–Serre tree is elementary. Let us
fix an isomorphism ϕ−1(A1

\{0})≃ A1
\{0}×A2. Since G induces an action on A1 which is multiplicative,

the open subset ϕ−1(A1
\ {0}) is preserved by each element of G. Assume that G contains only elliptic

elements on the subtree. We reproduce some standard arguments for groups acting on trees. Since G is
finitely generated, write G =⟨g1, . . . , gn⟩ where gi are the generators of G. Since G is elliptic, any product
gi g j is elliptic, hence admits a fixed point on Tπ,k(x). By [Serre 1977, Proposition 26 page 89], the group G
has a global fixed point in Tπ,k(x). Conjugating by an element in Stab([x]), we can suppose the fixed point
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in Tπ,k(x) is either [z] or [y, z]. In the first case, this implies that G ⊂ Ẽ and G ⊂ Ã in the second, where
Ã, Ẽ are the groups defined in assertion (v) of Proposition 2.10. This shows that assertion (vii) holds.

Otherwise, the action of G on the subtree is lineal. In particular, there exists an automorphism h ∈ G
whose action on the subtree is hyperbolic such that any f ∈ G can be decomposed into f = g ◦ h p where
p is an integer and where g is an automorphism whose action on the subtree is elliptic and fixes pointwise
the geodesic line on the subtree fixed by h.

We have thus proved that assertion (vi) holds. □

Proof of Theorem 6.3. Take G a finitely generated subgroup of the tame group. By [Ballmann and
Świątkowski 1999, Theorem 2], the subgroup G ′ must satisfy one of the following three cases:

(a) The group G ′ is elliptic.

(b) There exists an integer 2 ⩾ k ⩾ 1, an elliptic subgroup H ⊂ G and a subspace E ⊂ C which is
isometric to a k-dimensional euclidean space, is pointwise fixed by H and on which the group G/H
acts as a cocompact lattice of translation.

(c) Every automorphism of G is elliptic and there exists a geodesic half-line and a sequence of vertices
vn on this half-line for which the subgroups Gn = G ∩ Stab(vn) form an increasing filtration which
satisfy G = ∪Gn .

Since the complex C is Gromov hyperbolic, it cannot contain any euclidean plane. As a result, the
case k = 2 in (b) is excluded. The remaining possibility is when k = 1 and there exists a geodesic
line E globally invariant by G in the complex, a subgroup H of G fixing E pointwise such that G/H
acts faithfully transitive by translation on E . Remark also that (c) cannot hold. Indeed, if there was an
increasing sequence of subgroups Gn whose union is G, then the each generator would belong to a certain
subgroup. Since G is finitely generated, this would mean that G = Gn for a certain n, which contradicts
our assumption.

To prove that (ii) holds amounts in proving that in case (b) the elliptic subgroup H is conjugated to a
subgroup of O4 or to a subgroup of

EH ⋊
{(

ax by
b−1z a−1t

) ∣∣∣ a, b ∈ k∗

}
.

Since H fixes, pointwise, a geodesic line E , we can choose a sequence vn of distinct vertices near E all
fixed by H lying on a quasigeodesic line. Consider γn a geodesic path in the 1-skeleton of C joining vn

and vn+1. Since the group G fixes the type of vertices and the endpoint of γn , the geodesic γn must be
fixed pointwise. If one of the geodesic γn contains a vertex of type III, then G is conjugated to a subgroup
of O4 and statement (ii) is proved.

Assume now that the geodesics γn contain only type I and II vertices. We prove that (ii) also holds. For
simplicity, we can assume that v0, v1, v2 pointwise fixed by G are consecutive vertices on a geodesic line
of the 1-skeleton of C. Assume also that v0, v2 are of type I and that v1 is of type II. Conjugating with
an element of Tame(Q), we can assume that v0 = [z], v1 = [x, z] and v2 = [x]. Since G fixes [x], [x, z]
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and [z], it implies by Proposition 2.6(iii) that G is conjugated to a subgroup of

EH ⋊
{(

ax by
b−1z a−1t

) ∣∣∣ a, b ∈ k∗

}
,

proving (ii) as required. □

6D. Proof of Theorem 5 and Corollary 6. Take G a finitely generated subgroup of the tame group and
take µ a symmetric atomic measure on G whose support generates G and such that∫

G
log(deg(g)) dµ(g) < +∞.

We denote by gn the state of our random walk at the time n. Observe that since µ is symmetric,
Proposition 6.1(iii) implies that λ2(µ) = λ1(µ).

Let us explain how we proceed to prove our result. By Theorem 6.2, the group G satisfies one of the
following conditions:

(i) The action of G on the complex is nonelementary in C.

(ii) There exists an automorphism h in G whose action in the complex is hyperbolic and such that any
automorphism f ∈ G can be decomposed into f = g ◦h p where p is an integer and where g belongs
to a subgroup H .

Moreover, the subgroup H is conjugated in Tame(Q) to a subgroup of O4 or to one of

EH ⋊
{(

ax by
b−1z a−1t

) ∣∣∣ a, b ∈ k∗

}
.

(iii) The group G is conjugated to a subgroup of the linear group O4.

(iv) There exists a G-equivariant morphism ϕ : Q → A2
\ {(0, 0)} where G acts on A2

\ {(0, 0)} linearly.

(v) The group G contains two noncommuting automorphisms with dynamical degree larger or equal to
2 and there exists a G-equivariant morphism ϕ : Q → A1 where G acts on A1 by multiplication.

(vi) The group G contains an automorphism h with λ1(h)⩾ 2 and there exists a G-equivariant morphism
ϕ : Q →A1 on which G acts on A1 by multiplication and an isomorphism ϕ−1(A1

\{0})≃A1
\{0}×A2

such that any automorphisms f ∈ G can be decomposed into g ◦ h p where p is an integer and g is
of the form

g : (x, y, z) ∈ A1
\ {0} × A2

7→ (ax, by, cz) ∈ A1
\ {0} × A2,

where a, b, c ∈ k∗.

(vii) There exists a G-equivariant morphism ϕ : Q → A1 where G acts on A1 by multiplication and any
automorphism of G has dynamical degree 1.

Denote by λ = λ1(µ) = λ2(µ). We shall prove successively the following implications: (i) ⇒ (λ > 0),
(v) ⇒ (λ > 0), ((ii), (iv) or (vi)) ⇒ (λ = 0), ((iii) or (vii)) ⇒ (λ = 0). If all the above implications hold,
then both Theorem 5 and Corollary 6 hold.
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The essential ingredient to compute the degree exponents in situation (i) and (v) is the following result.
Suppose that G acts on a Gromov-hyperbolic space (X, d) and fix a reference vertex x0 in X , then a random
path (Id, g1, . . . , gn, . . . ) in the group G induces a random path in X given by (x0, g1 ·x0, . . . , gn ·x0, . . . ).
The following theorem is due to Maher and Tiozzo [2018, Theorem 1.2].

Theorem 6.4. Let G be a nonelementary countable subgroup of the tame group and let µ be an atomic
measure on G whose support generates G and such that the integral∫

G
d(g · v0, v0) dµ(g)

is finite. Then there exists a constant L > 0 such that for almost every sample path in the group, one has

lim
n→+∞

d(gn · v0, v0)

n
= L .

We will apply this result for X = C and X = T in situation (i) and (v) respectively.
Let us prove the implication (i) ⇒ (λ > 0). Suppose that G is nonelementary in C. By Theorem 4,

there exists C, C ′ > 0 such that for any g ∈ G

log(deg(g)) ⩾ CdC([Id], g · [Id]) log
(4

3

)
+ C ′. (30)

In particular, the previous inequality and (29) imply that

C log
( 4

3

) ∫
dC([Id], g · [Id]) dµ(g) + C ′ ⩽

∫
G

log(deg(g)) dµ(g) < +∞.

As G is nonelementary, Theorem 6.4 states that there exists a constant L > 0 such that for almost
every sample path

lim inf
n→+∞

dC([Id], gn · [Id])

n
= L . (31)

Moreover, by Theorem 4, the following inequality holds:

log deg(gn) ⩾ CdC([Id], gn · [Id]) log
(4

3

)
+ C ′, (32)

where C, C ′ > 0. As a result, (31) and (32) imply that

log deg(gn)

n
⩾

C
n

dC([Id], gn · [Id]) log
( 4

3

)
+

C ′

n
,

hence taking the limit as n → +∞ yields

λ ⩾ C L log
( 4

3

)
> 0,

and we have proved that λ > 0, as required. The implication (i) ⇒ (λ > 0) holds.
Let us prove the implication (v) ⇒ (λ > 0). Suppose that G satisfies condition (v). By conjugation,

we can suppose that G is a subgroup of Stab([x]). We first relate the distance in the tree Tπ,k(x) with the
degree. Recall from Proposition 2.10(v) that the group Stab([x]) is the amalgamated product Ẽ ∗ Ã. Any
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element g which is neither conjugated to an element of Ẽ or Ã can be decomposed by an alternating
product:

g = e1 ◦ a1 ◦ e2 ◦ a2 · · · ◦ ap−1 ◦ ep

where ei ∈ Ẽ \ Ã, ai /∈ Ã \ Ẽ . This decomposition reflects the length of the geodesic joining [Id] = [y, z]
and g[Id] in the sense that

dTπ,k(x)
(g · [Id], [Id]) = 2p. (33)

Note that when g is elementary or affine, then the above inequality is also true, so we obtain that it holds
for any g ∈ G. Using the proof of assertion (vi) of Lemma 3.6 (more precisely (14)), we have

deg
(∏

i = 1kei ◦ ai

)
⩾

k∏
i=1

di ⩾ 2k,

where di are the degree in y of the polynomials defining ei .
In particular, using the fact that G contains two noncommuting hyperbolic isometries on Tπ,k(x) and

Theorem 6.4, we obtain similarly that

1
n

∫
G

log deg(g) dνn(g) ⩾
1

2n

∫
G

dT (g · [Id], [Id]) dνn(g) →
L
2

,

as n → +∞ where L > 0 is the drift of the associated to the random walk on the tree T . We have thus
proven that λ > 0 and the implication (v) ⇒ (λ > 0) holds.

Let us prove that the implication ((ii) or (vi)) ⇒ (λ = 0) holds. Since the proof of the two implications
(ii) ⇒ (λ = 0) and (vi) ⇒ (λ = 0) are very similar, we will only give the proof of (ii) ⇒ (λ = 0).
Suppose that there exists an hyperbolic automorphism h ∈ G such that any automorphism f ∈ G can be
decomposed into f = u( f ) ◦ h p( f ) where p( f ) is an integer and u( f ) belongs to H . We thus have

1
n

∫
G

log deg(g) dνn(g) =
1
n

∫
G

log deg(u(g) ◦ h p(g)) dνn(g).

By the submultiplicativity of the degree, we have

deg(u(g) ◦ h p(g)) ⩽ C deg(u(g)) deg(h p(g))

where C > 0. In particular, we obtain

1
n

∫
G

log deg(g) dνn(g) ⩽
C
n

+
1
n

∫
G

log(deg(u(g))) dνn(g) +
1
n

∫
G

log deg(h p(g)) dνn(g). (34)

Since the map p : G → Z is a morphism of groups, the random walk on G induces a random walk on Z

with transition given by the distribution p∗µ. As the measure p∗µ is also symmetric, the law of large
numbers implies that

1
n

∫
G

log deg(h p(g)) dνn(g) → 0,
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as n → +∞. Observe also that there exists a constant M > 0 such that deg(u(g)) ⩽ M for all g ∈ G. In
particular, the integral

1
n

∫
G

log deg(u(g)) dνn(g) → 0,

as n → +∞. Since each term on the right hand side of (34) tends to zero, we have thus proven that

λ = lim
n→+∞

1
n

∫
G

log deg(g) dνn(g) = 0

and the implication (ii) ⇒ (λ = 0) holds.
Let us prove that the implication ((iii), (iv) or (vii)) ⇒ (λ = 0) holds. Observe that if G satisfies

assertion (iii) or (iv) or (vi) then the degree of any element of G is uniformly bounded, hence the degree
exponent is zero. We have thus proved the implication ((iii), (iv) or (vii)) ⇒ (λ = 0).
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