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A short resolution of the diagonal
for smooth projective toric varieties of Picard rank 2

Michael K. Brown and Mahrud Sayrafi

Given a smooth projective toric variety X of Picard rank 2, we resolve the diagonal sheaf on X × X by
a linear complex of length dim X consisting of finite direct sums of line bundles. As applications, we
prove a new case of a conjecture of Berkesch, Erman and Smith that predicts a version of Hilbert’s syzygy
theorem for virtual resolutions, and we obtain a Horrocks-type splitting criterion for vector bundles over
smooth projective toric varieties of Picard rank 2, extending a result of Eisenbud, Erman and Schreyer.
We also apply our results to give a new proof, in the case of smooth projective toric varieties of Picard
rank 2, of a conjecture of Orlov concerning the Rouquier dimension of derived categories.

1. Introduction

Beilinson’s resolution [1978] of the diagonal over a projective space is a powerful tool in algebraic
geometry. For instance, this resolution may be used to show that the bounded derived category Db(Pn) is
generated by the line bundles O,O(1), . . . ,O(n). Additionally, taking a Fourier–Mukai transform with
kernel given by Beilinson’s resolution yields a representation of any object in Db(Pn) as a complex of
vector bundles, called a Beilinson monad, which has been used to great effect in computational algebraic
geometry, e.g., [Eisenbud and Schreyer 2003; 2009].

We aim to construct a Beilinson-type resolution of the diagonal over a smooth projective toric variety
X of Picard rank 2. More specifically, with a view toward proving a new case of a conjecture of Berkesch,
Erman and Smith (Conjecture 1.2 below), we construct such a resolution of length dim X — the shortest
possible length — whose terms are finite direct sums of line bundles. While the existence of a full strong
exceptional collection of line bundles [Costa and Miró-Roig 2004; Borisov and Hua 2009] implies that
X admits a resolution of the diagonal via a tilting bundle construction [King 1997, Proposition 3.1], it
follows from a result of Ballard and Favero [2012, Proposition 3.33] that this resolution may have length
greater than dim X . Our main result is as follows:

Theorem 1.1. Let X be the projective bundle P(O⊕O(a1)⊕ · · ·⊕O(as)) over Pr , where 1≤ r, s and
0 ≤ a1 ≤ · · · ≤ as . Denote by Fas the Hirzebruch surface of type as , and equip Pic(Fas )

∼= Z2 with the
basis described in Convention 3.1 below. There is a complex R of finitely generated graded free modules
over the Cox ring of X × X such that:
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(1) R is exact in positive degrees.

(2) R is linear, in the sense that there exists a basis of R with respect to which the differentials of R are
matrices whose entries are k-linear combinations of the variables.

(3) We have rank Rn =
(r+s

n

)
dimk H 0(Fas ,O(r, s)). In particular, R has length dim X = r + s, and the

equality rank Rn = rank Rr+s−n holds.

(4) The sheafification R of R is a resolution of the diagonal sheaf O1 on X × X.

We note that, by a result of Kleinschmidt [1988], every smooth projective toric variety of Picard rank 2
arises as a projective bundle as in the hypothesis of Theorem 1.1. We construct the resolution R in
Theorem 1.1 using a variant of Weyman’s “geometric technique” [2003, Section 5] for building free
resolutions. In a bit more detail: let xi and x ′i refer to the variables corresponding to the first and second
copy of X , respectively, in the Cox ring S of X × X . A first, naive, idea is that the diagonal sheaf O1

ought to be defined by the relations xi − x ′i in S. The problem is that these relations are not homogeneous
with respect to the Z4-grading on S. To fix this, we homogenize the relations xi − x ′i in the Cox ring of a
certain toric fiber bundle E over X × X with fiber given by Fas . Our resolution R is obtained by taking
the Koszul complex on these homogenized relations over E , twisting it by a certain line bundle, and
pushing it forward to X × X . Choosing the toric fiber bundle E is delicate; not only do the degrees of the
variables in the Cox ring of E need to be suitable for homogenizing the relations xi − x ′i , but the terms of
the Koszul complex on these homogenized relations must enjoy appropriate cohomological vanishing
properties in order to conclude that R is a resolution of the required form. See Section 3C for details.

The simplest case of Theorem 1.1 is the Hirzebruch surface

Fa = P(O⊕O(a)),

where r = s = 1 and a = a1. As detailed in Example 3.9, the construction above yields a resolution
of the diagonal for Fa whose terms R0, R1, and R2 are sums of a+ 4, 2a+ 8, and a+ 4 line bundles,
respectively; cf. [Buchdahl 1987, Section 1].

As we explain in Section 2, the resolution R in Theorem 1.1 should be considered as a natural
extension of Beilinson’s resolution over projective space and similar resolutions due to Buchdahl [1987]
for Hirzebruch surfaces, Canonaco and Karp [2008] for weighted projective stacks, and Kapranov [1988]
for quadrics and flag varieties. See [Brown and Erman 2021, Section 4] for a related idea, where a
resolution of the diagonal — with terms given by infinite direct sums of line bundles — is obtained for
any projective toric stack.

We apply Theorem 1.1 to make progress on a conjecture concerning virtual resolutions in commutative
algebra, a notion introduced by Berkesch, Erman and Smith [Berkesch et al. 2020]. We recall that a
virtual resolution of a graded module M over the Cox ring S of a toric variety Y is a complex F of graded
free S-modules such that the associated complex of sheaves F̃ on Y is a locally free resolution of M̃ . The
following conjecture predicts a version of Hilbert’s syzygy theorem for virtual resolutions:
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Conjecture 1.2 [Berkesch et al. 2020, Question 6.5]. If Y is a smooth toric variety with Cox ring S
and irrelevant ideal B, and M is a finitely generated, B-saturated S-module, then M admits a virtual
resolution of length at most dim(Y ).

This conjecture was proven by Berkesch and Erman and Smith [2020] for products of projective spaces
(see also [Eisenbud et al. 2015, Corollary 2.14]) and for monomial ideals in Cox rings of smooth toric
varieties by Yang [2021]. As a consequence of Theorem 1.1, we prove the following:

Corollary 1.3. Conjecture 1.2 holds for smooth projective toric varieties of Picard rank 2.

Theorem 1.1 also yields a new proof, in the case of smooth projective toric varieties of Picard rank 2,
of the following conjecture of Orlov:

Conjecture 1.4 [Orlov 2009, Conjecture 10]. Let Y be a smooth quasiprojective scheme. The Rouquier
dimension of the bounded derived category Db(Y ) is equal to dim(Y ).

We refer the reader to the original paper of Rouquier [2008] for background on his notion of dimension
for triangulated categories. Since the resolution of the diagonal R in Theorem 1.1 has length dim X ,
and each term Ri is a sum of box products of vector bundles on X , it is an immediate consequence of
[loc. cit., Proposition 7.6] that Theorem 1.1 implies Conjecture 1.4 for smooth projective toric varieties
of Picard rank 2. Conjecture 1.4 was first proven in this case by Ballard, Favero and Katzarkov [Ballard
et al. 2019, Corollary 5.2.6] using an entirely different approach: they first observe that the conjecture
holds for a smooth projective Picard rank 2 toric variety that is weakly Fano, and then they apply descent
along admissible subcategories. See the discussion beneath [Bai and Côté 2023, Conjecture 1.1] for a list
of known cases of Conjecture 1.4.

We also apply Theorem 1.1 to obtain a splitting criterion for vector bundles on smooth projective toric
varieties of Picard rank 2. A famous result of Horrocks [1964] states that if a vector bundle on projective
space has no intermediate cohomology, then it splits as a sum of line bundles. This splitting criterion has
been generalized in many different directions: for instance, to products of projective spaces [Costa and
Miró-Roig 2005; Eisenbud et al. 2015; Schreyer 2022], to Grassmannians and quadrics [Ottaviani 1989],
and to rank 2 vector bundles on Hirzebruch surfaces [Fulger and Marchitan 2011; Yasutake 2015], among
others. Our splitting criterion for smooth projective toric varieties of Picard rank 2 extends Eisenbud,
Erman and Schreyer’s for products of projective spaces [Eisenbud et al. 2015, Theorem 7.2].

To state the result, we must fix some notation. Given (a, b), (c, d) ∈ Z2, we write (a, b) ≤ (c, d) if
a ≤ c and b ≤ d. For a sheaf F on X , let γ (F) denote its cohomology table

γ (F)= (dimk H i (X,F(a, b)))i≥0,(a,b)∈Z2 .

Here, as in Theorem 1.1, we identify Pic X with Z2 via the choice of basis described in Convention 3.1
below. Our splitting criterion is as follows:
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Theorem 1.5. Let E be a vector bundle on X. Suppose we have

γ (E)=

t∑
i=1

γ (O(bi , ci )
mi ).

If (bt , ct)≤ (bt−1, ct−1)≤ · · · ≤ (b1, c1), then E ∼=
⊕t

i=1 O(bi , ci )
mi .

Our proof of Theorem 1.5 uses a Beilinson-type spectral sequence built from the resolution of the
diagonal in Theorem 1.1. This approach is similar to the technique used by Fulger and Marchitan
[2011] to obtain a splitting criterion for rank 2 vector bundles on Hirzebruch surfaces, which involves a
Beilinson-type spectral sequence built from Buchdahl’s resolution [1987] of the diagonal for Hirzebruch
surfaces. See also Aprodu and Marchitan’s triviality criterion [2011, Theorem 2] for vector bundles on
Hirzebruch surfaces, whose proof also involves a Beilinson-type spectral sequence.

When X = Pr
×Ps , Theorem 1.5 recovers (a special case of) [Eisenbud et al. 2015, Theorem 7.2].

We note that the nef cone of X is given by Nef X = {O(a, b) ∈ Pic X : a, b ≥ 0}, and so (a, b)≤ (c, d) if
and only if the line bundle O(c− a, d − b) is nef. Theorem 1.5 therefore adds a new wrinkle that is not
present on products of projective spaces: we require the twists (bi , ci ) to be ordered with respect to the
nef cone, rather than the effective cone. This distinction is invisible in [loc. cit., Theorem 7.2], as the nef
and effective cones of a product of projective spaces coincide.

Motivated by the applications of Theorem 1.1 described above, we pose the following:

Question 1.6. Can Theorem 1.1 be generalized to any smooth projective toric variety X?

The difficulty in generalizing Theorem 1.1 is in choosing an appropriate toric fiber bundle E over
X×X . A positive answer to Question 1.6 would immediately resolve the projective case of Conjecture 1.2
and imply a large swath of new cases of Conjecture 1.4.

Overview. We begin in Section 2 by constructing a resolution of the diagonal over Pn as the pushforward
of a Koszul complex over a certain projective bundle, which illustrates our main approach. We prove
Theorem 1.1 and Corollary 1.3 in Section 3, and we prove Theorem 1.5 in Section 4.

2. Warm-up: the case of Pn

Throughout the paper, we work over a base field k. Let TPn denote the tangent bundle on Pn and W the
vector bundle OPn (1)⊠ TPn (−1) on Pn

×Pn . There is a canonical section s ∈ H 0(Pn
×Pn,W) whose

vanishing cuts out the diagonal in Pn
×Pn; see [Huybrechts 2006, Section 8.3]. The Koszul complex

associated to s yields Beilinson’s resolution of the diagonal

0←O1←OPn×Pn ←31W∨← · · · ←3nW∨← 0.

In this section, we construct another resolution of the diagonal sheaf on Pn
×Pn , whose terms are direct

sums of line bundles; cf. [Canonaco and Karp 2008, Remark 3.3]. We explain in Remark 2.3(3) a sense
in which this resolution resembles Beilinson’s. As discussed in the introduction, our approach is similar
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to Weyman’s “geometric technique” [2003, Section 5]. In Section 3, we explain how the approach in this
section extends to smooth projective toric varieties of Picard rank 2.

Let E denote the projective bundle P(O⊕O(−1, 1)) on Pn
×Pn and let π : E → Pn

×Pn be the
canonical map. The projective bundle E is a toric variety with Z3-graded Cox ring

SE = k[x0, . . . , xn, y0, . . . , yn, u0, u1],

where deg(xi ) = (1, 0, 0), deg(yi ) = (0, 1, 0), deg(u0) = (1,−1, 1), and deg(u1) = (0, 0, 1). Set αi =

u1xi−u0 yi for all i ; the intuition here is that u0 and u1 are homogenizing variables for the nonhomogeneous
equations xi − yi . Let K denote the Koszul complex on α0, . . . , αn , considered as a complex of sheaves
on E , and set V =O(−1, 0, 0)n+1. Twisting K by O(0, 0, n) yields a complex of the form

O(0, 0, n)← (31V)(0, 0, n− 1)← · · · ←3nV← (3n+1V)(0, 0,−1).

Using [Hartshorne 1977, Chapter III, Exercise 8.4(a)] and the projection formula, R= π∗K(0, 0, n) has
the form

Symn Q←31P ⊗Symn−1 Q← · · · ←3n−1P ⊗Sym1 Q←3nP, (2-1)

where P = O(−1, 0)n+1 and Q = O ⊕ O(−1, 1). Notice that applying π∗ to the n + 1-th term
(3n+1V)(0, 0,−1) of K(0, 0, n) gives 0, hence the complex (2-1) has length n.

Proposition 2.1. The complex R is a resolution of the diagonal sheaf on Pn
×Pn . Moreover, the complex

R is isomorphic to (the sheafification of ) the n-th symmetric power of the complex

S(−1, 1)⊕ S

−y0 −y1 · · · −yn

x0 x1 · · · xn


←−−−−−−−−−−−−−− S(−1, 0)n+1, (2-2)

concentrated in homological degrees 0 and 1, where S denotes the Cox ring of Pn
×Pn .

Proof. One can use a slight variation of the proof of Theorem 1.1 below to show that R is a resolution
of the diagonal. As for the second statement: let K denote the Koszul complex on the regular sequence
α0, . . . , αn , considered as a complex of SE -modules. Let R be the complex of S-modules given by
K (0, 0, n)(∗,∗,0). Since K is exact in positive homological degrees, R is as well. It follows from the
description of R in (2-1) that R sheafifies to R. Let R′ denote the n-th symmetric power of (2-2). We
observe that R′ has exactly the same terms as R. The complex R′ is precisely the generalized Eagon–
Northcott complex of type Cn , as defined in [Eisenbud 1995, A2.6], associated to the map (2-2). It
therefore follows from [loc. cit., Theorem A2.10(c)] that R′ is exact in positive homological degrees. By
the uniqueness of minimal free resolutions, we need only check that the cokernels of the first differentials
of R and R′ are isomorphic, and this can be verified by direct computation. □

We now compute a well-known example using this approach; cf. [King 1997, Example 5.2].
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Example 2.2. Suppose n = 2. The monomials in the ui give bases for the symmetric powers of Q, and
the exterior monomials in the αi give bases for the terms of K, which correspond to the exterior powers
of P . Hence, we may index the summands of (2-1) by monomials in u0, u1, α0, α1, α2. With this in mind,
the complex (2-1) has terms

O(−2, 2)︸ ︷︷ ︸
u2

0

⊕O(−1, 1)︸ ︷︷ ︸
u0u1

⊕ O︸︷︷︸
u2

1

∂1
←− O(−2, 1)3︸ ︷︷ ︸

α0u0,α1u0,α2u0

⊕ O(−1, 0)3︸ ︷︷ ︸
α0u1,α1u1,α2u1

∂2
←− O(−2, 0)3︸ ︷︷ ︸

α0α1,α0α2,α1α2

and differentials

∂1 =

−y0 −y1 −y2 0 0 0
x0 x1 x2 −y0 −y1 −y2

0 0 0 x0 x1 x2

 and ∂2 =



y1 y2 0
−y0 0 y2

0 −y0 −y1

−x1 −x2 0
x0 0 −x2

0 x0 x1


.

Remark 2.3. We conclude this section with the following observations:

(1) We have rankRi = rankRn−i , just as in Theorem 1.1.

(2) The resolutions in Theorem 1.1 cannot arise as symmetric powers of complexes, in general; this
follows immediately from rank considerations.

(3) Let us explain a sense in which our resolution R is modeled on Beilinson’s resolution of the diagonal.
Consider the external tensor product of O(1) with the Euler sequence

0←O(1)⊠ T (−1)←O(1, 0)n+1 (y0···yn)T
←−−−−−O(1,−1)← 0.

Letting C denote the subcomplex O(1, 0)n+1
←O(1,−1) concentrated in degrees 0 and 1, there is a

quasiisomorphism C ≃
−→O(1)⊠ T (−1). The morphism s : O (x0···xn)T

−−−−−→ C, where O lies in degree
0, gives a hypercohomology class in H0(Pn

×Pn, C), which is isomorphic to H 0(Pn
×Pn,O(1)⊠

T (−1)). By Proposition 2.1, the n-th symmetric power of the dual of s, i.e., the n-th Koszul complex
of the dual of s [Köck 2001, Definition 2.3], is isomorphic to the resolution R. In short: the resolution
R is a Koszul complex on a section of O(1)⊠ T (−1), just like Beilinson’s resolution.

3. Smooth projective toric varieties of Picard rank 2

In this section, we extend the construction in Section 2 and prove the main theorem. Let X denote the
projective bundle P(O ⊕O(a1)⊕ · · · ⊕O(as)) over Pr , where a1 ≤ · · · ≤ as . As discussed in [Cox
et al. 2011, Section 7.3], the fan 6X ⊆ Zr+s of X has r + s+ 2 ray generators given by the rows of the
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(r + s+ 2)× (r + s) matrix

P =



−1 −1 · · · −1 a1 a2 · · · as

1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0
...

...
...

...
...

...

0 0 · · · 1 0 0 · · · 0
0 0 · · · 0 −1 −1 · · · −1
0 0 · · · 0 1 0 · · · 0
0 0 · · · 0 0 1 · · · 0
...

...
...

...
...

...

0 0 · · · 0 0 0 · · · 1



=



ρ0

ρ1

ρ2
...

ρr

σ0

σ1

σ2
...

σs



(3-1)

and maximal cones generated by collections of rays of the form

{ρ0, . . . , ρ̂i , . . . , ρr , σ0, . . . , σ̂ j , . . . , σs}.

Convention 3.1. Throughout the paper, we equip Pic X ∼= coker(P) ∼= Z2 with the basis given by the
divisors corresponding to ρ0 and σ0. With this choice of basis, we may view the Cox ring of X as the
Z2-graded ring k[x0, . . . , xr , y0, . . . , ys] whose variables have degrees given by the columns of the matrix

A =
(

1 1 · · · 1 0 −a1 · · · −as

0 0 · · · 0 1 1 · · · 1

)
.

A main reason we use this convention is that it is also used by the function kleinschmidt in
Macaulay2, which produces any smooth projective toric variety of Picard rank 2 as an object of
type NormalToricVariety.

3A. Vanishing of sheaf cohomology. We will need a calculation of the cohomology of a line bundle
on X :

Proposition 3.2. Let E be the vector bundle O⊕O(a1)⊕· · ·⊕O(as) on Pr , where a1 ≤ · · · ≤ as , so that
X = P(E). Write m =

∑s
i=1 ai , and consider a line bundle O(k, ℓ) on X. For each 0 ≤ j ≤ r + s, we

have:

H j (X,O(k, ℓ))∼=


H j (Pr ,OPr (k)⊗Symℓ(E)), ℓ≥ 0;
H j−s(Pr ,OPr (k−m)⊗Sym−ℓ−s−1(E)∨), ℓ≤−s− 1;
0, otherwise.

Proof. Let π : X→ Pr denote the projective bundle map. It follows from a well-known calculation (see
e.g., [Thomason and Trobaugh 1990, 4.5(e)]) and the projection formula that

Riπ∗(O(k, ℓ))=


OPr (k)⊗Symℓ(E), i = 0;
OPr (k−m)⊗Sym−ℓ−s−1(E)∨, i = s;
0, 0 < i < s.
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The conclusion follows from the observation that the second page of the Grothendieck spectral sequence

E p,q
2 = H p(Pr , Rqπ∗(O(k, ℓ)))⇒ H p+q(X,O(k, ℓ))

collapses to row q = 0 when ℓ≥ 0 and to row q = s when ℓ≤−s− 1. □

The following result is an immediate consequence of Proposition 3.2. It will play a key role in the
proofs of Theorems 1.1 and 1.5.

Corollary 3.3. Let X be the projective bundle P(O⊕O(a1)⊕ · · · ⊕O(as)) over Pr as above, where
a1 ≤ · · · ≤ as . Write m =

∑s
i=1 ai , and consider a line bundle O(k, ℓ) on X :

(1) We have:

(a) H i (X,O(k, ℓ))= 0 if i /∈ {0, r, s, r + s}.
(b) H 0(X,O(k, ℓ))= 0 if and only if ℓ < 0 or k+ asℓ < 0.
(c) If r ̸= s then

(i) H r (X,O(k, ℓ))= 0 if and only if −r − 1 < k or ℓ < 0, and
(ii) H s(X,O(k, ℓ))= 0 if and only if −s− 1 < ℓ or k < m.

(d) If r = s then H r (X,O(k, ℓ))= 0 if and only if both of the following hold:

(i) −r − 1 < k or ℓ < 0.
(ii) −s− 1 < ℓ or k < m.

(e) Lastly, H r+s(X,O(k, ℓ))= 0 if and only if either of the following hold:

(i) −r − 1− as(ℓ+ s+ 1)+m < k.
(ii) −s− 1 < ℓ;

(2) In particular, the line bundle O(k, ℓ) is acyclic (H i (X,O(k, ℓ))= 0 for i > 0) if and only if one of
the following holds:

(a) −s− 1 < ℓ < 0.
(b) −r − 1 < k and 0≤ ℓ.
(c) −r − 1− as(ℓ+ s+ 1)+m < k < m and ℓ≤−s− 1.

Remark 3.4. Conditions (1b) and (1e) are Serre dual to one another. Ditto for the two conditions in (1c),
as well as the conditions (i) and (ii) in (1d). These calculations are surely well-known; see, for instance,
[Lasoń and Michałek 2011, Proposition 3.9] for a criterion for acyclicity of line bundles on toric varieties.
We refer the reader to [Brown and Erman 2021, Example 3.14] for a depiction of the regions of Z2 where
each H i (X,O(k, ℓ)) vanishes for the Hirzebruch surface X = P(OP1 ⊕OP1(3)).

3B. Toric fiber bundles. Let E and Y be smooth projective toric varieties of dimensions dE and dY

associated to fans 6E and 6Y . Let π̄ : ZdE → ZdY be a Z-linear surjection that is compatible with the
fans 6E and 6Y , in the sense of [Cox et al. 2011, Definition 3.3.1], so that it induces a morphism
π : E → Y . We denote by F the toric variety associated to the fan 6F = {σ ∈ 6E : σ ⊆ ker(π̄)R},
and write dF = dim F . Let us assume that the fan 6E is split by the fans 6Y and 6F , in the sense of
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[loc. cit., Definition 3.3.18]. In this case, the map π : E → Y is a fibration with fiber F ; see [loc. cit.,
Theorem 3.3.19].

Writing the Cox rings of Y and F as SY = k[x1, . . . , xn1] and SF = k[u1, . . . , un2], the Cox ring of E
has the form SE =k[x1, . . . , xn1, u1, . . . , un2]. We have presentations PY : ZdY→Zn1 and PF : ZdF→Zn2

of Pic Y and Pic F whose rows are given by the ray generators of 6Y and 6F , respectively. The analogous
presentation of Pic E is of the form (

PY Q
0 PF

)
for some n1× dF matrix Q. One may use this presentation to equip SE with a Ze

⊕Z f -grading such that
degSE

(xi )= (degSY
(xi ), 0), and degSE

(ui )= (ti , degSF
(ui )) for some ti ∈ Ze.

Lemma 3.5 (cf. [Hartshorne 1977, Chapter III, Exercise 8.4(a)]). Let L=OE(b1, . . . , be, c1, . . . , c f ),
and let B be a k-basis of H 0(F,OF (c1, . . . , c f )) given by monomials in SF . Given m ∈ B, denote its
degree in SE by (dm

1 , . . . , dm
e , c1, . . . , c f ). We have π∗(L)∼=

⊕
m∈B OY (b1−dm

1 , . . . , be−dm
e ). Moreover,

if H i (F,OF (c1, . . . , c f ))= 0, then Riπ∗(L)= 0.

Proof. Let g :
⊕

m∈B OY (b1 − dm
1 , . . . , be − dm

e )→ π∗(L) be the morphism given on the component
corresponding to m ∈ B by multiplication by m. Let U be an affine open subset of Y over which the
fiber bundle E is trivializable; abusing notation slightly, we denote by π the map π−1(U )→U induced
by π . To prove the first statement, it suffices to show that the restriction gU :

⊕
m∈Bi

OU → π∗(L|U ) of
g to U is an isomorphism. Without loss of generality, we may assume that π−1(U )=U × F and that
π : π−1(U )→U is the projection onto U . Letting γ : π−1(U )→ F denote the projection, we have that
L|U = γ ∗(OF (c1, . . . , c f )). Finally, we observe that gU coincides with the base change isomorphism⊕

m∈B

OU =OU ⊗k H 0(F,OF (c1, . . . , c f ))
∼=−→ π∗(γ

∗(OF (c1, . . . , c f ))= π∗(L|U ).

As for the last statement: it suffices to observe that, by base change,

Riπ∗(L|U )∼=OU ⊗k H i (F,OF (c1, . . . , c f ))= 0. □

3C. Constructing the resolution of the diagonal. Let X be as defined at the beginning of this section.
We will construct our resolution of the diagonal for X as the pushforward of a certain Koszul complex on
a fibration E over X × X whose fiber is the Hirzebruch surface Fas . We begin by constructing the fiber
bundle π : E→ X×X . The ray generators of E are given by the rows of the (2r+2s+8)×(2r+2s+2)

matrix 

P 0 v −w

0 P −v w

0 0 −1 as

0 0 0 1
0 0 1 0
0 0 0 −1


, (3-2)
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where P is as in (3-1), and v (resp. w) is the (r + s+ 2)× 1 matrix with unique nonzero entry given by a
1 in the first (resp. (r + 2)-th) position. Notice that the rows in the top-left quadrant of this matrix are the
ray generators of X × X , and the rows in the bottom-right quadrant are the ray generators of Fas .

Let π̄ : Z2r+2s+2
→Z2r+2s denote the projection onto the first 2r+2s coordinates. We define the cones

of E to be those of the form γ + γ ′, where γ is a cone corresponding to a cone of Fas and is spanned by
a subset of the bottom 4 rows of (3-2), and γ ′ is a cone spanned by a collection of the top 2r + 2s+ 4
rows of (3-2) such that π̄R(γ ′) is a cone of X × X . By [Cox et al. 2011, Theorem 3.3.19], the map π̄

induces a fibration π : E→ X with fiber Fas .
In order to describe the Cox ring of E , first recall the matrix A from Convention 3.1 whose columns

are the degrees of the variables of the Cox ring of X , and consider the matrices

B =
(

1 −as 0 0
0 1 0 0

)
and C =

(
1 −as 1 0
0 1 0 1

)
.

Notice that the columns of C are the degrees of the variables in the Cox ring of Fas . We choose a basis of
Pic E ∼= Z6 so that the degrees of the variables in the Cox ring

SE = k[x0, . . . xr , y0, . . . , ys, x ′0, . . . , x ′r , y′0, . . . , y′s, u0, . . . , u3]

of E are given by the columns of the Gale dual of (3-2), which is the 6× (2r + 2s+ 8) matrix

A 0 B
0 A −B
0 0 C

=


1 · · · 1 0 −a1 · · · −as 0 · · · 0 0 0 · · · 0 1 −as 0 0
0 · · · 0 1 1 · · · 1 0 · · · 0 0 0 · · · 0 0 1 0 0
0 · · · 0 0 0 · · · 0 1 · · · 1 0 −a1 · · · −as −1 as 0 0
0 · · · 0 0 0 · · · 0 0 · · · 0 1 1 · · · 1 0 −1 0 0
0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 1 −as 1 0
0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 1 0 1

 .

Let K be the Koszul complex corresponding to the regular sequence α0, . . . , αr , β0, . . . , βs given by
the homogeneous binomials

αi = u2xi − u0x ′i for 0≤ i ≤ r and

βi = u3 yi − uas−ai
0 u1uai

2 y′i for 0≤ i ≤ s (a0 := 0)

in the Cox ring SE . Observe that deg(αi )= (1, 0, 0, 0, 1, 0) and deg(βi )= (−ai , 1, 0, 0, 0, 1). Here, we
are using that the columns of B span the effective cone of X to homogenize the relations xi − x ′i and
yi − y′i . Denote by K the complex of sheaves on E corresponding to K . The following proposition shows
that K twisted by OE(0, 0, 0, 0, r, s) is π∗-acyclic.

Proposition 3.6. The higher direct images Riπ∗(K(0, 0, 0, 0, r, s)) vanish for i > 0.

Proof. It suffices to show that Riπ∗(K j (0, 0, 0, 0, r, s)) = 0 for i > 0 and all j . Each term of
K(0, 0, 0, 0, r, s) is a direct sum of line bundles of the form OE(a, b, 0, 0, k, ℓ)) for some a, b ∈ Z,
−1≤ k ≤ r , and −1≤ ℓ≤ s. By Lemma 3.5, we need only show that H i (Fas ,O(k, ℓ))= 0 for i > 0 and
such k and ℓ, which follows from Corollary 3.3(2)(a-b). □
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Let S denote the Cox ring of X × X and R the complex of graded S-modules given by the subcomplex
K (0, 0, 0, 0, r, s)(∗,∗,∗,∗,0,0) of the Koszul complex K twisted by SE(0, 0, 0, 0, r, s). We will show that R
satisfies the requirements of Theorem 1.1. Observe that, by Lemma 3.5, one can alternatively construct R
by applying the twisted global sections functor:

R =
⊕

L∈Pic(X×X)

H 0(X × X,L⊗π∗K(0, 0, 0, 0, r, s)).

In particular, writing R for the complex of sheaves on X × X corresponding to R, we have R ∼=
π∗K(0, 0, 0, 0, r, s). Note that Proposition 3.6 implies that π∗K(0, 0, 0, 0, r, s) is quasiisomorphic to
Rπ∗(K(0, 0, 0, 0, r, s)).

Before discussing some examples, we must establish a bit of notation:

Notation 3.7. Let SF = k[u0, u1, u2, u3] denote the Cox ring of the Hirzebruch surface Fas , equipped
with the Z2-grading so that the degrees of the variables correspond to the columns of the matrix C
above. Given i, j ∈ Z, let Mi, j denote the set of monomials in SF of degree (i, j). For m ∈ Mi, j , let
(dm

1 , dm
2 , dm

3 , dm
4 ) ∈ Z4 denote the first four coordinates of the degree of m as an element of the Z6-graded

ring SE ; notice that dm
3 =−dm

1 , and dm
4 =−dm

2 .

Example 3.8. Let us compute the first differential in R. Using the notation above, we have

R0 =
⊕

m∈Mr,s

S(−dm
1 ,−dm

2 , dm
1 , dm

2 ) ·m and R1 = Rα
1 ⊕ Rβ

1 ,

where

Rα
1=

r⊕
i=0

⊕
m∈Mr−1,s

S(−dm
1 −1,−dm

2 ,dm
1 ,dm

2 )·αi m, Rβ

1 =

s⊕
i=0

⊕
m∈Mr,s−1

S(−dm
1 +ai ,−dm

2 −1,dm
1 ,dm

2 )·βi m.

Here, the decorations “·m” in our description of R0 are just for bookkeeping, and similarly for the
“·αi m” and “·βi m” in R1. Viewing the differential ∂1 : R1→ R0 as a matrix with respect to the above
basis, the column corresponding to αi m has exactly two nonzero entries: an entry of xi corresponding
to the monomial u2m ∈ Mr,s and an entry of −x ′i corresponding to u0m ∈ Mr,s . Similarly, the column
corresponding to βi m has exactly two nonzero entries: an entry of yi corresponding to u3m and an entry
of −y′i corresponding to uas−ai

0 u1uai
2 m. That is, the matrix ∂1 has the following form:

0 0
−x ′i 0

0 0
0 −y′i

· · · 0 · · · 0 · · ·

xi 0
0 0
0 yi

0 0



...
u0m

...
uas−ai

0 u1uai
2 m

...
u2m

...
u3m

...
αi m · · · βi m
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Example 3.9. Suppose X is the Hirzebruch surface of type a, i.e., the projective bundle P(O⊕O(a))

over P1. We have r = s = 1 and a1 = a. The Koszul complex K on α0, α1, β0, β1, twisted by
(0, 0, 0, 0, 1, 1), looks like

SE(0, 0, 0, 0, 1, 1)︸ ︷︷ ︸
1

← SE(−1, 0, 0, 0, 0, 1)2︸ ︷︷ ︸
α0, α1

⊕ SE(0,−1, 0, 0, 1, 0)︸ ︷︷ ︸
β0

⊕ SE(a,−1, 0, 0, 1, 0)︸ ︷︷ ︸
β1

← SE(−2, 0, 0, 0,−1, 1)︸ ︷︷ ︸
α0α1

⊕ SE(−1,−1, 0, 0, 0, 0)2︸ ︷︷ ︸
α0β0, α1β0

⊕ SE(a− 1,−1, 0, 0, 0, 0)2︸ ︷︷ ︸
α0β1, α1β1

⊕ SE(a,−2, 0, 0, 1,−1)︸ ︷︷ ︸
β0β1

← SE(a− 2,−1, 0, 0,−1, 0)︸ ︷︷ ︸
α0α1β1

⊕ SE(−2,−1, 0, 0,−1, 0)︸ ︷︷ ︸
α0α1β0

⊕ SE(a− 1,−2, 0, 0, 0,−1)2︸ ︷︷ ︸
α0β0β1, α1β0β1

← SE(a− 2,−2, 0, 0,−1,−1)︸ ︷︷ ︸
α0α1β0β1

.

Letting Mi, j be as in Notation 3.7 (with as = a), we have:

M0,0 = {1},

M1,0 = {u0, u2},

M0,1 = {u3} ∪ {uk
0u1uℓ

2 : k+ ℓ= a},

M−1,1 = {uk
0u1uℓ

2 : k+ ℓ= a− 1},

M1,1 = {u0u3, u2u3} ∪ {uk
0u1uℓ

2 : k+ ℓ= a+ 1},

Mi, j =∅ for (i, j) ∈ {(1,−1), (−1, 0), (0,−1), (−1,−1)}.

It follows that the complex R has terms as follows:

R0 = S(−1,−1, 1, 1)︸ ︷︷ ︸
ua+1

0 u1

⊕ S(0,−1, 0, 1)︸ ︷︷ ︸
ua

0u1u2

⊕ · · ·⊕ S(a,−1,−a, 1)︸ ︷︷ ︸
u1ua+1

2

⊕ S(−1, 0, 1, 0)︸ ︷︷ ︸
u0u3

⊕ S(0, 0, 0, 0)︸ ︷︷ ︸
u2u3

,

R1 = S(−1,−1, 0, 1)2︸ ︷︷ ︸
α0ua

0u1, α1ua
0u1

⊕ S(0,−1,−1, 1)2︸ ︷︷ ︸
α0ua−1

0 u1u2, α1ua−1
0 u1u2

⊕ · · ·⊕ S(a− 1,−1,−a, 1)2︸ ︷︷ ︸
α0u1ua

2, α1u1ua
2

⊕ S(−1, 0, 0, 0)2︸ ︷︷ ︸
α0u3, α1u3

⊕ S(−1,−1, 1, 0)︸ ︷︷ ︸
β0u0

⊕ S(a− 1,−1, 1, 0)︸ ︷︷ ︸
β1u0

⊕ S(0,−1, 0, 0)︸ ︷︷ ︸
β0u2

⊕ S(a,−1, 0, 0)︸ ︷︷ ︸
β1u2

,

R2 = S(−1,−1,−1, 1)︸ ︷︷ ︸
α0α1ua−1

0 u1

⊕ S(0,−1,−2, 1)︸ ︷︷ ︸
α0α1ua−2

0 u1u2

⊕ . . .

⊕ S(a− 2,−1,−a, 1)︸ ︷︷ ︸
α0α1u1ua−1

2

⊕ S(−1,−1, 0, 0)2︸ ︷︷ ︸
α0β0, α1β0

⊕ S(a− 1,−1, 0, 0)2︸ ︷︷ ︸
α0β1, α1β1

.



A short resolution of the diagonal for smooth projective toric varieties of Picard rank 2 1935

The differentials ∂1 : R0← R1 and ∂2 : R1← R2 are given, respectively, by the matrices

∂1 =



−x ′0 −x ′1 0 0 0 0 · · · 0 0 0 0 0 0 −y′0 0 0 0
x0 x1 −x ′0 −x ′1 0 0 · · · 0 0 0 0 0 0 0 0 −y′0 0
0 0 x0 x1 −x ′0 −x ′1 · · · 0 0 0 0 0 0 0 0 0 0
0 0 0 0 x0 x1 · · · 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 · · · −x ′0 −x ′1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 · · · x0 x1 −x ′0 −x ′1 0 0 0 −y′1 0 0
0 0 0 0 0 0 · · · 0 0 x0 x1 0 0 0 0 0 −y′1
0 0 0 0 0 0 · · · 0 0 0 0 −x ′0 −x ′1 y0 y1 0 0
0 0 0 0 0 0 · · · 0 0 0 0 x0 x1 0 0 y0 y1


and

∂2 =



x ′1 0 · · · 0 y′0 0 0 0
−x ′0 0 · · · 0 0 y′0 0 0
−x1 x ′1 · · · 0 0 0 0 0
x0 −x ′0 · · · 0 0 0 0 0
0 −x1 · · · 0 0 0 0 0
0 x0 · · · 0 0 0 0 0
...

...
...

...
...

...

0 0 · · · x ′1 0 0 0 0
0 0 · · · −x ′0 0 0 0 0
0 0 · · · −x1 0 0 y′1 0
0 0 · · · x0 0 0 0 y′1
0 0 · · · 0 −y0 0 −y1 0
0 0 · · · 0 0 −y0 0 −y1

0 0 · · · 0 −x ′0 −x ′1 0 0
0 0 · · · 0 0 0 −x ′0 −x ′1
0 0 · · · 0 x0 x1 0 0
0 0 · · · 0 0 0 x0 x1



.

As predicted by Theorem 1.1 parts (2) and (3), the differentials in R are linear; and the ranks of R0, R1,
and R2 are a+ 4, 2a+ 8, and a+ 4, respectively.

3D. A Fourier–Mukai transform. Let π1 and π2 denote the projections of X × X onto X , and let 8R

denote the following Fourier–Mukai transform:

8R : Db(X)
π∗1−→ Db(X × X)

·⊗R
−−→ Db(X × X)

Rπ2∗
−−→ Db(X).

We will prove that R is a resolution of the diagonal by showing that 8R is isomorphic to the identity
functor, and we will do so by directly exhibiting a natural isomorphism 8ν : 8R→ 8O1

. In fact, we
show this by proving that 8ν induces a quasiisomorphism on a full exceptional collection. To perform
this calculation, we will need an explicit model for the functor 8R, which we present in this section. We
refer the reader to [Huybrechts 2006, Section 8.3] for further background.
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Let coh(X) denote the category of coherent sheaves on X , and suppose F1,F2 ∈ coh(X), where F1 is
locally free. By the projection formula and base change, we have canonical isomorphisms

Rπ2∗(F1 ⊠F2)∼= Rπ2∗π
∗

1 (F1)⊗OX F2 ∼= R0(X,F1)⊗k F2

in Db(X). Given F ∈ coh(X), we can use this to explicitly compute 8R(F) as follows. Given G ∈ coh(X),
let ČG denote the Čech complex of G associated to the affine open cover of X arising from the maximal
cones in its fan. Consider the following bicomplex, where the horizontal maps are induced by the
differentials in R, the vertical maps are induced by the Čech differentials, N is the length of R, and
“L1 ⊠L2 ∈Ri ” is shorthand for “L1 ⊠L2 is a summand of Ri ”:

0←
⊕

L1⊠L2∈R0

ČF⊗L1 ⊗L2← · · · ←
⊕

L1⊠L2∈RN

ČF⊗L1 ⊗L2← 0. (3-3)

Since the differentials of ČG have entries in k, the columns of (3-3) split. Thus, we may apply [Eisenbud
et al. 2003, Lemma 3.5] to conclude that the totalization of (3-3) is homotopy equivalent to a complex
B(F) concentrated in degrees k =−N , . . . , N with terms

B(F)k =
⊕

i− j=k

⊕
L1⊠L2∈Ri

H j (X,F ⊗L1)⊗L2 ∼=
⊕

i− j=k

R jπ2∗(π
∗

1F ⊗Ri ). (3-4)

The terms of B(F) arise from the totalization of the vertical homology of (3-3).
Over projective space, the analogue of this Fourier–Mukai transform involving Beilinson’s resolution of

the diagonal is called the Beilinson monad (see e.g., [Eisenbud et al. 2003]), hence the notation B(−). Note
that “the” complex B(F) is only well-defined up to homotopy equivalence, since the differential depends
on a choice of splitting of the columns in the bicomplex (3-3). More precisely, for each term Yi, j of (3-3),
choose a decomposition Yi, j = Bi, j ⊕ Hi, j ⊕ L i, j such that Bi, j ⊕ Hi, j = Zvert

i, j , where Zvert
i, j denotes the

vertical cycles in Yi, j . Notice that there is a canonical isomorphism Hi, j ∼=
⊕

L1⊠L2∈Ri
H− j (F⊗L1)⊗L2.

Let σH : Y•,• → H•,• and σB : Y•,• → B•,• denote the projections, let g : L•,•
∼=−→ B•,•−1 denote the

isomorphism induced by the vertical differential, and let π = g−1σB . By [loc. cit., Lemma 3.5], the
differential on B(F) is given by

∂B(F) =

∑
i≥0

σH (dhorπ)i dhor,

where dhor is the horizontal differential in the bicomplex (3-3).

Remark 3.10. The i = 0 term in the formula for ∂B(F) is simply the map induced by the differential on
R; it is independent of the choices of splittings of the columns of (3-3). Since this is the only part of the
differential on B(F) that we will need to explicitly compute, we will ignore the ambiguity of B(F) up to
homotopy equivalence from now on.

3E. Proof of Theorem 1.1.

Proof. To prove parts (1) and (2), first recall that R is the direct sum of the degree (d1, d2, d3, d4, 0, 0)

components of K (0, 0, 0, 0, r, s) for all d1, . . . , d4 ∈ Z. Thus, since K is exact in positive homological
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degrees, R is as well; moreover, the differentials of R are linear.1 We now check that R has property (3).
For all k, ℓ ∈ Z, we have

dimk H 0(Fas ,O(k, ℓ))=

{
(k+ 1)(ℓ+ 1)+

(
ℓ+1

2

)
as, ℓ≥ 0;

0, ℓ < 0.
(3-5)

We now compute

rankRn =

n∑
i=0

(r+1
i

)(s+1
n−i

)
dimk H 0(Fas ,O(r − i, s− (n− i)))

=

r∑
i=0

(r+1
i

)(s+1
n−i

)(
(r − i + 1)(s− (n− i)+ 1)+

(s−(n−i)+1
2

)
as

)
+

( s+1
n−(r+1)

)(s−(n−(r+1))+1
2

)
as

=

r∑
i=0

(r
i

)( s
n−i

)
(r + 1)(s+ 1)+

r∑
i=0

(r+1
i

)(s−1
n−i

)(s+1
2

)
as +

( s−1
n−(r+1)

)(s+1
2

)
as

=

r∑
i=0

(r
i

)( s
n−i

)
(r + 1)(s+ 1)+

r+1∑
i=0

(r+1
i

)(s−1
n−i

)(s+1
2

)
as

=

(r+s
n

)
dimk H 0(Fas ,O(r, s)).

The first equality follows from the definition of R, the second from (3-5), the third from some straightfor-
ward manipulations, the fourth by combining the second and third terms, and the last by Vandermonde’s
identity and the equality dimk H 0(Fas ,O(r, s))= (r + 1)(s+ 1)+

(s+1
2

)
as . This proves (3).

Finally, we check property (4): namely, that the cokernel of the differential ∂1 : R1→R0 is O1. Just
as in the proof of [Canonaco and Karp 2008, Proposition 3.2], we will prove that R is a resolution of
O1 by showing there is a chain map R→ O1 that induces a natural isomorphism on certain Fourier–
Mukai transforms. In detail: given any i, j ∈ Z, there is a natural map O(i, j,−i,− j)→O1 given by
multiplication. These maps determine a natural map ν0 : R0→O1, and it is clear from the description of
∂1 in Example 3.8 that ν0 determines a chain map ν : R→O1. Recall that 8R denotes the Fourier–Mukai
transform associated to R. To show that ν is a quasiisomorphism, we need only prove that the induced
natural transformation 8ν : 8R→8O1

on Fourier–Mukai transforms is a natural isomorphism; indeed,
this immediately implies that 8cone(ν) is isomorphic to the 0 functor, and so cone(ν) = 0 by [loc. cit.,
Lemma 2.1].

The category Db(X) is generated by the line bundles O(b, c) with 0≤ b≤ r and 0≤ c≤ s; in fact, these
bundles form a full exceptional collection in Db(X) [Orlov 1992, Corollary 2.7]. Since 8O1

is the identity
functor, we need only show that the map 8R(O(b, c))→O(b, c) induced by 8ν is an isomorphism in
Db(X).

1Free complexes that are linear in the sense of Theorem 1.1(2) are called strongly linear in [Brown and Erman 2024].
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Say O(d1, d2, d3, d4) is a summand of R. We first show that the line bundle O(d1+ b, d2+ c) on X is
acyclic, i.e., H i (X,O(d1+b, d2+c))= 0 for i > 0. Say the summand O(d1, d2, d3, d4) of R corresponds
to the monomial αi1 · · ·αik β j1 · · ·β jℓm, where k ≤ r + 1, ℓ ≤ s + 1, and m ∈ Mr−k,s−ℓ. It follows that
d1=−k− t1 and d2=−ℓ− t2 for some t1 ≤ r−k and t2 ≤ s−ℓ. In particular, we have d1+b≥ d1 ≥−r ,
and d2 + c ≥ d2 ≥ −s. Thus, O(d1 + b, d2 + c) satisfies either (a) or (b) in Corollary 3.3(2), and so
O(d1+ b, d2+ c) is acyclic.

Recall from Section 3D that, given any sheaf F on X , 8R(F) may be modeled explicitly as the complex
B(F). The previous paragraph implies that the terms in B(O(b, c)) involving higher cohomology vanish;
that is, the nonzero terms of B(O(b, c)) are of the form H 0(L1(b, c))⊗L2, where L1 ⊠L2 is a summand
of R. In particular, B(O(b, c)) is concentrated in nonnegative degrees, the map B0(O(b, c))→O(b, c)
induced by ν is the natural multiplication map, and the differential on B(O(b, c)) is induced by the
differential on R. It follows that B(O(b, c)) is exact in positive degrees, since R has this property. We
now show, by direct computation, that the induced map H0(B(O(b, c)))→O(b, c) is an isomorphism.

It follows from our explicit descriptions of the terms R0 and R1 in Example 3.8 that

B(O(b, c))0 =
⊕

m∈Mr,s

H 0(X,O(b− dm
1 , c− dm

2 ))⊗O(dm
1 , dm

2 ) ·m, and

B(O(b, c))1 = B(O(b, c))α1 ⊕ B(O(b, c))β1 ,

where

B(O(b, c))α1 =
r⊕

i=0

⊕
m∈Mr−1,s

H 0(X,O(b− dm
1 − 1, c− dm

2 ))⊗O(dm
1 , dm

2 ) ·αi m,

B(O(b, c))β1 =
s⊕

i=0

⊕
m∈Mr,s−1

H 0(X,O(b− dm
1 + ai , c− dm

2 − 1))⊗O(dm
1 , dm

2 ) ·βi m.

We represent the first differential on B(O(b, c)) as a matrix with respect to the above decomposition,
along with the monomial bases of each cohomology group. The column of this matrix corresponding to
αi m and a monomial z in the Cox ring S = k[x0, . . . , xr , y0, . . . , ys] of X of degree (b−dm

1 −1, c−dm
2 )

has exactly two nonzero entries:

• An entry of 1 for u2m ∈ Mr,s and xi z ∈ H 0(X,O(b− du2m
1 , c− du2m

2 )).

• An entry of −x ′i for u0m ∈ Mr,s and z ∈ H 0(X,O(b− du0m
1 , c− du0m

2 )).

Similarly, the column corresponding to βi m and a monomial w ∈ S of degree (b− dm
1 + ai , c− dm

2 − 1)

has exactly two nonzero entries:

• An entry of 1 for u3m and yiw ∈ H 0(X,O(b− du3m
1 , c− du3m

2 )).

• An entry of −y′i for uas−ai
0 u1uai

2 m and w ∈ H 0(X,O(b− d
u

as−ai
0 u1u

ai
2 m

1 , c− d
u

as−ai
0 u1u

ai
2 m

2 )).
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That is, the first differential on B(O(b, c)) has the following form:

0 0
−x ′i 0

0 0
0 −y′i

· · · 0 · · · 0 · · ·

1 0
0 0
0 1
0 0



...
z⊗ u0m

...
w⊗ uas−ai

0 u1uai
2 m

...
xi z⊗ u2m

...
yiw⊗ u3m

...

z⊗αi m · · · w⊗βi m

Now observe: every column of this matrix contains exactly one “1”, and there is exactly one row that does
not contain a “1”: namely, the row corresponding to the summand H 0(X,O)⊗O(b, c)·ub+cas

0 uc
1ur−b

2 us−c
3 .

It follows immediately that the cokernel of this matrix is isomorphic to the summand H 0(X,O)⊗O(b, c),
and the multiplication map induced by ν from this summand to O(b, c) is clearly an isomorphism. □

Remark 3.11. Our construction of the resolution R realizes it as a subcomplex of the (infinite rank)
resolution of the diagonal obtained in [Brown and Erman 2021, Theorem 4.1] and therefore yields a
positive answer to [loc. cit., Conjecture 7.2] for smooth projective toric varieties of Picard rank 2.

Corollary 3.12. Given a coherent sheaf F on X , we have B(F)∼= F in Db(X).

Corollary 3.13. Consider the ideal I = (α0, . . . , αr , β0, . . . , βs)⊆ SE , and let D denote the sheaf S̃E/I
on E. We have an isomorphism π∗D(0, 0, 0, 0, r, s)∼=O1 of sheaves on X × X.

Proof. Recall that K is the sheafification of the Koszul complex on the generators of I , which form a regular
sequence. Therefore K is a locally free resolution of D, and using Proposition 3.6 and Theorem 1.1(4)
we have π∗D(0, 0, 0, 0, r, s)∼= π∗K(0, 0, 0, 0, r, s)∼=R∼=O1. □

We will now prove Conjecture 1.2 for X as in Theorem 1.1.

Proof of Corollary 1.3. Our proof is nearly the same as that of [Berkesch et al. 2020, Proposition 1.2].
Given a finitely generated graded module M over the Cox ring of X , let F be the associated sheaf
on X . Applying the Fujita Vanishing Theorem, choose i, j ≫ 0 such that, for all summands L1 ⊠L2

of the resolution of the diagonal R from Theorem 1.1, we have Hq(X,F(i, j)⊗ L1) = 0 for q > 0.
The complex B(F(i, j)) is a resolution of F(i, j) of length at most dim(X) consisting of finite sums
of line bundles, and twisting back by (−i,− j) gives a resolution of F . Now applying the functor
G 7→

⊕
(k,ℓ)∈Z2 H 0(X,G(k, ℓ)) to the complex B(F(i, j))(−i,− j) gives a virtual resolution of M . □

4. A Horrocks-type splitting criterion

Let X denote the projective bundle P(O⊕O(a1)⊕ · · ·⊕O(as)) over Pr , where a1 ≤ · · · ≤ as . Given a
coherent sheaf F on X , let B(F) be the complex of sheaves on X defined in Section 3D. Recall from
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the introduction the notation γ (F) for the cohomology table of F . We will need the following technical
result.

Lemma 4.1 (cf. [Eisenbud et al. 2015, Lemma 7.3]). Let E be a vector bundle on X , and suppose we
have γ (E)= γ (Om)+ γ (E ′) for some vector bundle E ′ on X with B(E ′)1 = 0. There is an isomorphism
E ∼=Om

⊕ E ′′ for some vector bundle E ′′ such that γ (E ′′)= γ (E ′).

Proof. Let R be the resolution of the diagonal for X constructed in Section 3C. We have a Beilinson-type
spectral sequence

E−i, j
1 (E)= R jπ2∗(π

∗

1 E ⊗Ri )⇒ Ri− jπ2∗(π
∗

1 E ⊗R)∼=

{
E, i = j;
0, i ̸= j.

The first page looks as follows:

...
...

...

R2π2∗(π
∗

1 E ⊗R0) R2π2∗(π
∗

1 E ⊗R1) R2π2∗(π
∗

1 E ⊗R2) · · ·

R1π2∗(π
∗

1 E ⊗R0) R1π2∗(π
∗

1 E ⊗R1) R1π2∗(π
∗

1 E ⊗R2) · · ·

π2∗(π
∗

1 E ⊗R0) π2∗(π
∗

1 E ⊗R1) π2∗(π
∗

1 E ⊗R2) · · ·

k=2k=1k=0

(4-1)

Notice that E−i, j
1 (E)∼=

⊕
H j (X, E⊗L1)⊗L2, where the direct sum ranges over the summands L1 ⊠L2

of Ri . It follows that B(E)1 =
⊕

i− j=1 E−i, j
1 (E). Moreover, since the terms of the first page only depend

on γ (E), we have

E−i, j
1 (E)= E−i, j

1 (O)m
⊕ E−i, j

1 (E ′).

Observe that E0,0
1 (O) = O, and E−i, j

1 (O) = 0 when either i ̸= 0 or j ̸= 0. In particular, we have
E0,0

1 (E)=Om
⊕ E0,0

1 (E ′), and it follows from the hypothesis B(E ′)1 = 0 that the terms along the k = 1
diagonal in (4-1) (colored in red) vanish. Thus, every differential in the spectral sequence with either
source or target given by E0,0

r (E) for some r vanishes. We conclude that Om is a summand of E0,0
∞

(E),
and hence E as well. □

Remark 4.2. A similar technique was recently utilized by Bruce, Cranton Heller, and Sayrafi [Bruce et al.
2021] to give a characterization of multigraded Castelnuovo–Mumford regularity on products of projective
spaces. An interesting question is whether there is a similar result for smooth projective varieties of
Picard rank 2 using the resolution R.

We will now prove our splitting criterion.

Proof of Theorem 1.5. By induction, it suffices to show that O(b1, c1)
m1 is a summand of E . Without loss

of generality, we may assume (b2, c2) < (b1, c1). We may also twist E so that b1 = c1 = 0, which implies



A short resolution of the diagonal for smooth projective toric varieties of Picard rank 2 1941

(bi , ci ) < 0 for all i > 1. Suppose (a, b) < 0. By Lemma 4.1, it suffices to show that B(O(a, b))1 = 0.
This amounts to showing that, for 0 < n ≤ r + s, we have

H n−1(X,O(a, b)⊗L1)= 0, when L1 ⊠L2 is a summand of Rn. (4-2)

By Corollary 3.3(1)(a), we need only show that (4-2) holds for n ∈ {1, r + 1, s+ 1}. We recall that any
summand of Rn corresponds to a monomial of the form

αi1 · · ·αie ·β j1 · · ·β j f ·m, (4-3)

where e + f = n, and m ∈ Mr−e,s− f (using Notation 3.7). Writing m = uc0
0 uc1

1 uc2
2 uc3

3 , we have that
the summand of Rn corresponding to (4-3) is O(−e− d1,− f − d2, d1, d2), where d1 = c0− asc1 and
d2 = c1. In particular, we have 0≤ d2 ≤ s− f , which immediately implies that −s ≤− f −d2 ≤ 0. When
− f − d2 < 0, (4-2) holds for n ∈ {1, r + 1, s + 1} by Corollary 3.3(1)(b - d). Suppose − f − d2 = 0.
Since f, d2 ≥ 0, we have f = 0= d2. It follows that e= n and d1 = c0 ≥ 0. Corollary 3.3(1)(b) therefore
implies that (4-2) holds when n = 1. Corollary 3.3(1)(c) implies that (4-2) holds for n = s + 1 when
r ̸= s; we may thus reduce to the case where n = r + 1. But this case cannot occur, since there is no
m ∈ M−1,s of the form uc0

0 uc2
2 uc3

3 . □

Remark 4.3. If we replace the nef ordering with the effective ordering in the statement of Theorem 1.5,
our proof fails. The problem arises in the final step: there exist line bundles O(b, c) ∈ Pic X such that
−(b, c) is effective but B(O(b, c))1 ̸= 0. For instance, over a Hirzebruch surface of type a, the divisor
−(a,−1) is effective, and B(O(a,−1))1 ̸= 0.
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