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We prove that the Galois equidistribution of torsion points of the algebraic torus Gd
m extends to the singular

test functions of the form log |P|, where P is a Laurent polynomial having algebraic coefficients that
vanishes on the unit real d-torus in a set whose Zariski closure in Gd

m has codimension at least 2. Our
result includes a power-saving quantitative estimate of the decay rate of the equidistribution. It refines an
ergodic theorem of Lind, Schmidt, and Verbitskiy, of which it also supplies a purely Diophantine proof.
As an application, we confirm Ih’s integrality finiteness conjecture on torsion points for a class of atoral
divisors of Gd

m .
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1. Introduction

1A. Main results. Let d ≥ 1 be an integer and let Gd
m denote the d-dimensional algebraic torus. We will

identify Gd
m with (C\{0})d , the group of its C-points.

Let ζ ∈ Gd
m be a torsion point, i.e., a point of a finite order. We define

δ(ζ )= inf{|a| : a ∈ Zd
\{0} with ζ a

= 1} (1-1)

where, here and throughout the article, |·| denotes the maximum-norm; we refer to Section 2 for the
notation ζ a .
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It is well-known that the Galois orbit

{ζ σ : σ ∈ Gal(Q(ζ )/Q)}

becomes equidistributed in Gd
m with respect to the Haar measure as δ(ζ ) → ∞. More precisely, if

f : Gd
m → R is a continuous function with compact support, then

1
[Q(ζ ) : Q]

∑
σ∈Gal(Q(ζ )/Q)

f (ζ σ )→

∫
[0,1)d

f (e(x)) dx (1-2)

as δ(ζ )→ ∞ where

e(x)= (e2π
√

−1x1, . . . , e2π
√

−1xd ) (1-3)

for x = (x1, . . . , xd) ∈ Rd .
Our aim is to investigate the equidistribution result for test functions f = log|P| where P is a nonzero

Laurent polynomial in d unknowns and with algebraic coefficients. Such P may vanish on (S1)d , where
S1

= {z ∈ C : |z| = 1} is the unit circle, and so f is not defined everywhere. But for δ(ζ ) large in terms
of P , Laurent’s theorem [1984] also known as the Manin–Mumford conjecture for Gd

m , implies that P
does not vanish at any conjugate of ζ ; see also [Sarnak and Adams 1994] for another proof. Moreover,
the integral of f over (S1)d exists as the singularity is merely logarithmic. It is known as the Mahler
measure

m(P)=

∫
[0,1)d

log|P(e(x))| dx, (1-4)

see for instance Section 3.4 in [Schinzel 2000] for the convergence of this integral for arbitrary P ∈

C[X±1
1 , . . . , X±1

d ]\{0}.
A torsion coset of Gd

m is the translate of a connected algebraic subgroup of Gd
m by a point of finite

order. We call a torsion coset proper if it does not equal Gd
m .

We call P ∈ C[X±1
1 , . . . , X±1

d ]\{0} essentially atoral if the Zariski closure of

{(z1, . . . , zd) ∈ (S1)d : P(z1, . . . , zd)= 0}

in Gd
m is a finite union of irreducible algebraic sets of codimension at least 2 and proper torsion cosets.

For example, if d = 1 then P is essentially atoral if and only if it does not vanish at any point of infinite
multiplicative order in S1.

Lind, Schmidt and Verbitskiy [Lind et al. 2013, Definition 2.1] define the notion of an atoral Laurent
polynomial P ∈ Z[X±1

1 , . . . , X±1
d ]\{0}. An atoral Laurent polynomial is essentially atoral in our sense.

Moreover, if P is irreducible then it is atoral if and only if the intersection of its zero locus with (S1)d

has dimension at most d − 2 as a semialgebraic set, see Proposition 2.2 [Lind et al. 2013]. A related, but
not quite equivalent, definition of atoral Laurent polynomials with complex coefficients was introduced
earlier by Agler, McCarthy and Stankus [Agler et al. 2006].

Let Q denote the algebraic closure of Q in C. We are ready to state our first result.
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Theorem 1.1. For each essentially atoral P ∈ Q[X±1
1 , . . . , X±1

d ]\{0} there exists κ > 0 with the following
property. Suppose ζ ∈ Gd

m has finite order with δ(ζ ) sufficiently large. Then P(ζ σ ) ̸= 0 for all σ ∈

Gal(Q(ζ )/Q) and

1
[Q(ζ ) : Q]

∑
σ∈Gal(Q(ζ )/Q)

log|P(ζ σ )| = m(P)+ O(δ(ζ )−κ)

as δ(ζ )→ ∞, where the implicit constant depends only on d and P.

Theorem 8.8 below is a more precise version of this result. In particular, we allow σ to range over
subgroups of Gal(Q(ζ )/Q) whose index and conductor grow sufficiently slow, the conductor is defined
in Section 3. Moreover, κ depends only on d and the number of nonzero terms appearing in P . Our
method of proof allows one to determine an explicit value for κ .

Torsion points in Gd
m are characterized as the algebraic points of height zero; see Section 2 for the

definition of the height h : Gn
m(Q)→ [0,∞). Bilu [1997] proved that Galois orbits of algebraic points

α ∈ Gd
m of small height satisfy an analogous equidistribution statement as (1-2), asymptotically as

h(α) → 0 and δ(α) → ∞; the definition (1-1) extends naturally to nontorsion points and may take
infinity as a value. It is natural to ask whether Theorem 1.1 admits a suitable generalization to points
of small height. Autissier’s example [2006] rules out the verbatim generalization already for Gm . He
constructed a sequence (αn)n∈N of pairwise distinct algebraic numbers whose height tends to 0 but such
that (1/[Q(αn) : Q])

∑
σ log|σ(αn)− 2| tends to 0 for n → ∞. But the integral of the corresponding

test function against the unit circle is log 2. An interesting problem still arises if the test function
has at worst a logarithmic singularity of real codimension at least 2 on (S1)d . Suppose that | f (z)| is
O

(∣∣log(|P(z)|2 + |Q(z)|2)
∣∣) on an open neighborhood of (S1)d in Gd

m , where P and Q are nonconstant
and coprime Laurent polynomials with algebraic coefficients, and that f vanishes on the complement
of a compact set in Gd

m . One may then ask about comparing the average of f over the Galois orbit of
α ∈ Gd

m(Q) with the average of f over (S1)d : is their difference bounded by ≪ f (h(α)+ δ(α)−1)κ , for
some κ > 0 depending only on P and Q? We also mention Chambert-Loir and Thuillier’s Théorème 1.2
[2009] which is a general equidistribution result for points of small height, allowing log|P| as a test
function if the zero locus of P in Gd

m is a finite union of torsion cosets. In this paper we allow log |P| as
a test function if P is essentially atoral but we average over points of finite order.

Our Theorem 1.1 recovers a variant of the result of Lind, Schmidt and Verbitskiy [2013]. In their work,
the sum is not over the Galois orbit of a single point of finite order but rather over a finite subgroup G
of Gd

m . For this purpose we define

δ(G)= inf{|a| : a ∈ Zd
\{0} such that ζ a

= 1 for all ζ ∈ G}. (1-5)

Each finite subgroup of Gd
m is a disjoint union of Galois orbits. This observation allows us to recover

the theorem of Lind, Schmidt, and Verbitskiy with an estimate on the decay rate.
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Theorem 1.2. Let P ∈ Q[X±1
1 , . . . , X±1

d ]\{0} be essentially atoral. There exists κ > 0 such that for any
finite subgroup G ⊂ Gd

m we have

1
#G

∑
ζ∈G

P(ζ ) ̸=0

log|P(ζ )| = m(P)+ O(δ(G)−κ) (1-6)

where the implicit constant depends only on d and P.

To relate (1-6) to the expression in Lind, Schmidt, and Verbitskiy’s Theorem 1.3 [Lind et al. 2013] we
refer to [Lind et al. 2010, Lemma 2.1] as well as the comments on pages 1063 and 1064 of [Lind et al.
2013]. Note that G is �0 and #G is |Zd/0| in the notation of [Lind et al. 2013].

Lind, Schmidt, and Verbitskiy’s approach is based on an in-depth study [Schmidt and Verbitskiy
2009; Lind et al. 2010; 2013] of an associated dynamical system: the algebraic Zd-action on a closed,
shift-invariant subgroup of (S1)Z

d
whose dual is Z[X±1

1 , . . . , X±1
d ]/(P). The atoral condition, in the sense

of [Lind et al. 2013], turns out to be equivalent to the existence of a nontrivial summable homoclinic point.
Theorem 1.2 may be read as a strong quantitative estimate on the growth of periodic points for such

dynamical systems. The refinement to Galois orbits, Theorem 1.1, does not seem to be directly possible
by the homoclinic method, nor does it seem to follow formally from the case (1-6) of finite subgroups,
which is where the dynamical method applies.

Our method of proof draws its origins in work of Duke [2007]. It differs from the method of Lind,
Schmidt, and Verbitskiy. However, it is striking that the notion of atoral appears crucially in both
approaches.

The first-named author [Dimitrov 2016] was able to prove Theorem 1.2 for a general Laurent polynomial
when G equals the group of N -torsion elements in Gd

m .
Let us return to Galois orbits. We believe that the hypothesis on P being essentially atoral is also

unnecessary in Theorem 1.1 on Galois orbits. The next conjecture sums up our expectations. It is related
to Schmidt’s conjecture [1995, Remark 21.16(2)].

Conjecture 1.3. For each P ∈ Q[X±1
1 , . . . , X±1

d ]\{0} there exists κ > 0 with the following property.
Suppose ζ ∈ Gd

m has finite order with δ(ζ ) sufficiently large. Then P(ζ σ ) ̸= 0 for all σ ∈ Gal(Q(ζ )/Q) and

1
[Q(ζ ) : Q]

∑
σ∈Gal(Q(ζ )/Q)

log|P(ζ σ )| = m(P)+ O(δ(ζ )−κ)

as δ(ζ )→ ∞, where the implicit constant depends only on d and P.

For d = 1 this conjecture follows from work of M. Baker, Ih, and Rumely [Baker et al. 2008], see their
statement around (6). They use a version of A. Baker’s deep estimates on linear forms in logarithms. Our
Theorem 1.1 in the case d = 1 does not cover polynomials that vanish at a point of infinite order on the
unit circle and therefore avoids the use of linear forms in logarithms. The conjecture is open already for
d = 2 and

P = X1 + X−1
1 + X2 + X−1

2 − 3.
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1B. Ih’s conjecture on integral torsion points. As another application of our results we derive a special
case of Ih’s conjecture [Baker et al. 2008] in the multiplicative setting. Let P ∈ Q[X±1

1 , . . . , X±1
d ]. Ih’s

conjecture predicts that the set of torsion points ζ ∈ Gd
m such that P(ζ ) is an algebraic unit is not Zariski

dense in Gd
m , unless the zero set of P in Gd

m is itself a finite union of proper torsion cosets. M. Baker, Ih,
and Rumely [2008] cover the case d = 1 for arbitrary polynomials using their work on Conjecture 1.3.
Here we mimic the approach of M. Baker, Ih, and Rumely and solve a case of Ih’s conjecture for essentially
atoral polynomials with integral coefficients and any d .

Corollary 1.4. Let K ⊂ C be a number field with ring of integers ZK and let P ∈ ZK [X±1
1 , . . . , X±1

d ]\{0}.
Suppose that the zero set of P in Gd

m is not a finite union of torsion cosets. Suppose in addition that τ(P)
is essentially atoral for all field embeddings τ : K → C. Then there exists B ≥ 1 such that if ζ ∈ Gd

m has
finite order and P(ζ ) is an algebraic unit, then δ(ζ )≤ B.

Ih’s conjecture expects the existence of B without assuming that each τ(P) is essentially atoral.
Observe that the result of M. Baker, Ih, and Rumely is not a direct consequence of this corollary, as we
do not allow univariate polynomials that vanish at a point of infinite multiplicative order on the unit circle.
Our approach does not depend on the theory of linear forms in logarithms.

A special class of atoral polynomials, to which our results apply a fortiori, are the irreducible integer
Laurent polynomials P ∈ Z[X±1

1 , . . . , X±1
n ] \ {0} that are not fixed up to a monomial factor and up to

a sign by the involution sending each X i to 1/X i . We call these P asymmetric. They are atoral in the
sense of Lind, Schmidt and Verbitskiy, see the proof of [Lind et al. 2013, Proposition 2.2]. Hence an
asymmetric Laurent polynomial is essentially atoral. The converse is false as the Laurent polynomial

X1 + X−1
1 + X2 + X−1

2 − 4.

is essentially atoral; indeed, its zero locus on (S1)2 consists of the single point (1, 1).
If K = Q, Corollary 1.4 in the case of an asymmetric, and thus necessarily irreducible Laurent

polynomial P , can be deduced as follows from the Manin–Mumford conjecture for Gd
m . Indeed, if γ is a

unit in the ring of algebraic integers of a cyclotomic field, then η = γ /γ is an algebraic integer whose
Galois conjugates lie on S1. So η is a root of unity by Kronecker’s theorem, see [Bombieri and Gubler
2006, Theorem 1.5.9]. We consider the zero (η, ζ ) of P(X−1

1 , . . . , X−1
d )− X0 P(X1, . . . , Xd), which is

irreducible and defines an algebraic subset of Gd+1
m none of whose geometric irreducible components is a

torsion coset. A similar argument applies if K is a totally real number field.

1C. Overview of the proof. We close the introduction by describing the method of proof of Theorem 1.1,
which builds upon work of the second-named author [Habegger 2018] and is related to the approach of
Duke [2007]. The basic idea is to reduce the multivariate statement in Theorem 1.1 to the univariate case.
Whereas we worked with torsion points of prime order in [Habegger 2018], a new technical difficulty in
this paper is that we allow torsion points of arbitrary order.

Any torsion point ζ ∈ Gd
m of order N takes on the form (ζ a1, . . . , ζ ad ) where ζ = e(1/N ) is a root

of unity of order N and a = (a1, . . . , ad) ∈ Zd . The precise manner how the nonunique a is chosen is
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delicate and will be discussed below. The notation ζ = ζ a will be quite useful. A nonboldface ζ denotes
a root of unity and boldface ζ suggests a torsion point of Gd

m .
If P is as in Theorem 1.1, but for simplicity with coefficients in K = Q, we define the univariate

polynomial

Q(X)= P(Xa)= P(Xa1, . . . , Xad ) ∈ Q[X±1
]. (1-7)

Multiplying Q by a power of X turns out to be harmless, so one can assume that Q is a polynomial. The
values |P(ζ σ )| equal the values of |Q(ζ σ )| as σ ranges over Gal(Q(ζ )/Q).

The univariate case and root separation (Section 4). Let us suppose for the moment that ζ = ζ is a root
of unity. It is classical that the Galois conjugates of ζ are equidistributed around the unit circle; we recall
of these facts in Section 3. So (1-2) holds for f (z)= log|Q(z)| provided Q has no zero on the unit circle.
In Proposition 4.5 we make convergence quantitative for such Q. Roughly speaking, for all ϵ > 0 we
have

1
[Q(ζ ) : Q]

∑
σ

log|Q(ζ σ )| = m(Q)+ OP,ϵ

(
|a|

1+ϵ

N 1−ϵ

)
(1-8)

where σ runs over Gal(Q(ζ )/Q). Actually, the hypothesis on Q is slightly weaker as we allow it to
vanish at roots of unity, if all Q(ζ σ ) ̸= 0. This hypothesis is ultimately a reflection of the hypothesis that
the multivariate P is essentially atoral in Theorem 1.1. Indeed, in the univariate case, being essentially
atoral boils down to not vanishing at any point of infinite multiplicative order in S1. The hypothesis on Q
is crucial for our method to work. The main difficulty we encounter in the average (1-8) are exceptionally
small values of Q at some ζ σ . The burden is to show, in a uniform sense, that no complex root z of Q
can be too close to ζ σ in a suitable sense.

If z is itself a root of unity, doing this is straightforward as |z − 1| ≫ 1/ ord(z).
The difficulty lies in the case when z has infinite multiplicative order. Here it is tempting to apply

a version of Baker’s theorem on linear forms in logarithms, as did M. Baker, Ih, and Rumely [2008].
However, and as already discussed by Duke [2007, Section 3] this seems unhelpful for the problem at
hand. Indeed, estimates on linear forms in two logarithms such as [Laurent et al. 1995] lead to a factor
[Q(z) : Q]

2
= O(|a|

2) in a bound for any member of the sum in (1-8). This is not good enough for our
application as |a|

2/[Q(ζ ) : Q] may spoil the average in (1-8).
Our solution is to use the banal inequality |z − ζ | ≥

∣∣|z| − 1
∣∣ which lies at the heart of the method

here and in [Habegger 2018]. As z is no root of unity, and as Q does not vanish at points of infinite
multiplicative order on S1, we have |z| ̸= 1 and so the banal inequality provides a nontrivial lower bound.
We now explain how it leads to a useful estimate on |z − ζ | via lower bounding

∣∣|z| − 1
∣∣.

If z is close to the unit circle, then
∣∣|z| − 1

∣∣ is approximately |z − 1/z̄|. In [Habegger 2018] a result
of Mahler [1964] on the separation of roots of an integer polynomial led to a suitable lower bound for
|z − 1/z̄|. In that paper, Habegger used his counting result on approximations to a set definable in an
o-minimal structure. This allowed to make Mahler’s estimate uniform over the various zeros z of Q.
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The main tool of the present paper is a uniform generalization of Mahler’s inequality for the separation
of several pairs of roots of Q. Such a generalization was obtained by Mignotte [1995]. In Section 4 we
give a variant of Mignotte’s theorem that is tailored to our application and is self-contained. We thus
bypass the o-minimal theory used in [Habegger 2018]. We still require Bombieri, Masser, and Zannier’s
theorem [Bombieri et al. 2007] to be mentioned below. Moreover, our Theorem 1.1 is effective in nature.

A possible approach towards Conjecture 1.3 lies in extending (1-8) to Q that are allowed to vanish at
any point of S1. As observed, we lack a suitable lower bound for |z − ζ | if z is an algebraic number of
infinite multiplicative order on the unit circle. As suggested in the similar setting of [Habegger 2018,
Lemma 4.2], it turns out that the z of interest have small height h(z). We therefore propose the following
conjecture.

Conjecture 1.5. For all B ≥ 1 and ϵ > 0 there exists a constant c = c(B, ϵ) > 0 with the following
property. Let z ∈ C be an algebraic number with |z| = 1 and h(z) ≤ B/D where D = [Q(z) : Q]. If
ζ ∈ C\{z} is a root of unity of order N , then log|ζ − z| ≥ −cD1+ϵN ϵ .

The crux of this conjecture is its dependency on the degree D. In comparison, the state-of-the-art
results in the theory of linear forms in two logarithms of algebraic numbers in the D-aspect, such as
Laurent, Mignotte, and Nesterenko’s Théorème 3 [Laurent et al. 1995], have only a quadratic dependency
on D.

Equidistribution of torsion points (Section 3). We return to the case ζ = ζ a of a general torsion point in
Gd

m of order N . The exponent vector a used to define Q as in (1-7) depends on ζ . For this reason it is
important that the error term in Proposition 4.5 is explicit in terms of Q. Moreover, it is important to
choose a with |a| as small as possible. For fixed ζ the exponent a is well-defined up to addition of an
element in NZd . So clearly we may assume |a| ≤ N , although this is not good enough in view of (1-8).
Fortunately, there is a second degree of freedom, namely we can replace ζ by any Galois conjugate of
itself.

This leads us to classical questions of equidistribution of the Galois orbit of ζ ; we compile the necessary
statements in Section 3. Using the Erdös–Turán theorem and the theory of Gauss sums, Lemma 3.7
produces a with |a| = O(Nδ(ζ )−1/(3d)) such that ζ a is a Galois conjugate of ζ .

Let us return to the error term in (1-8). One factor N cancels out and the error term becomes
N 2ϵδ(ζ )−(1+ϵ)/(3d). The innocuous ϵ in (1-8) is ultimately responsible for the factor N 2ϵ . Although
δ(ζ )≤ N , there is no nontrivial bound in the reverse direction and N 2ϵδ(ζ )−(1+ϵ)/(3d) could explode.

Factoring ζ (Section 5). The solution to this problem is described in Section 5. In Proposition 5.1 we
factor ζ into a product ηξ where ξ has finite order M such that ξ = e(a/M) where |a| = O(M1−κ).
Moreover, the order of η is bounded from above by a small power of N . The power saving obtained in
the exponent of N is small even when compared to the saving obtained for |a|. The methods employed
come from the geometry of numbers and slopes of lattices in Rd .



1952 Vesselin Dimitrov and Philipp Habegger

We will replace ζ by ξ and the univariate polynomial Q(X)= P(Xa) by P(ηa Xa). This last transfor-
mation does not change the height or the monomial structure of Q. But it can change the field generated
by its coefficients as the order of η and hence its field of definition vary as ζ varies. For this reason, we
must keep track of the base field of Q throughout the whole argument.

Putting everything together (Sections 6, 7, 8). In Sections 6 and 8 we put all ingredients together to prove
the final result. Here we apply a result of Bombieri, Masser, and Zannier [2007] on the intersections of a
subvariety in Gd

m of codimension at least 2 with all 1-dimensional algebraic subgroups of Gd
m . Roughly

speaking, this result shows that if P is essentially atoral, then for “most” choices of a the univariate
polynomial Q as in (1-7) does not vanish at any point of infinite multiplicative order on S1. Recall that
this property of Q was crucial to deduce (1-8). Bombieri, Masser, and Zannier’s result is related to the
study of unlikely intersections, for an overview we refer to Zannier’s book [2012]. Another tool that
makes an appearance is Lawton’s theorem [1983].

The intermediate Section 7 contains a weak version of a result of Hlawka [1971] on the numerical
integration of a continuous, multivariate function. The results obtained there are useful in connection
with the function attaching the Mahler measure to a nonzero polynomial.

Appendices. In Appendix A we give a quantitative version of Lawton’s theorem [1983] regarding the
convergence of a sequence of Mahler measures. Unfortunately, we are not able to use the very closely
related theorem in [Habegger 2018] as we require additional uniformity. The arguments in this appendix
follow closely Lawton’s strategy. After this paper was submitted, Brunault, Guilloux, Mehrabdollahi,
and Pengo proved a higher dimensional generalization of our version of Lawton’s theorem with explicit
constants [Brunault et al. 2022].

Finally, in Appendix B we show how to deduce Theorem 1.2, the theorem of Lind, Schmidt and
Verbitskiy, from our Theorem 1.1.

1D. Final remarks. The results mentioned above, in particular the theorem of Bombieri, Masser, and
Zannier, also play an important role in Le’s approach [2014]. The question on how small a sum of roots
of unity can be was raised by Myerson [1986] in connection with a combinatorial question [Myerson
1979; 1980] which was later studied by Duke [2007]. Dubickas [2018] has more recent work in this
direction for sums of 2 and 3 roots of unity of prime order.

2. Notation and preliminaries

Apart from the notation already introduced we use N to denote the natural numbers {1, 2, 3, . . . }. If
x = (x1, . . . , xm) with all xi elements in an abelian group G and if A = (ai, j )i, j ∈ Matm,n(Z) we write
x A

= (xa1,1
1 · · · xam,1

m , . . . , xa1,n
1 · · · xam,n

m )∈ Gn . So if B ∈Matn,p(Z), then (x A)B
= x AB . For a commutative

ring R with 1 we let R× denote its group of units. Euler’s function ϕ maps N ∈ N to the cardinality of
(Z/NZ)×. The group of all roots of unity in C× is µ∞. We often identify Gd

m with the set of its complex
points (C×)d and let 1 denote the unit element (1, . . . , 1) ∈ Gd

m . If ζ ∈ Gd
m is a torsion point, we write
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ord(ζ ) for its order. We write ⟨ · , · ⟩ for the Euclidean inner product on Rd , |·|2 for the Euclidean norm
on Rd , and |·| for the maximum-norm on Rd and Matm,n(R). We define log+ x = log max{1, x} for all
x ≥ 0.

The constants implicit in Vinogradov’s notation ≪x,y,z,...,≫x,y,z,..., and in Ox,y,z,...( · · · ) depend only
on the values x, y, z, . . . appearing in the subscript.

Let P ∈ C[X±1
1 , . . . , X±1

d ]\{0}, then |P| denotes the maximum-norm of the coefficient vector of P
and we set |0| = 0. Recall that m(P) is the Mahler measure of P . It follows from Corollaries 4 and 6 in
Chapter 3.4 of [Schinzel 2000] that exp(m(P)) is at most the Hermitian norm of the coefficient vector
of P . Suppose P has at most k ≥ 1 nonzero terms, we find

m(P)≤ log|P| +
1
2 log k. (2-1)

The following result of Dobrowolski and Smyth [2017, Corollary 2] provides a reverse inequality of the
same quality.

Theorem 2.1 (Dobrowolski and Smyth). Suppose P ∈ C[X±1
1 , . . . , X±1

d ]\{0} has at most k ≥ 2 nonzero
terms with k an integer. Then m(P)≥ log|P| − (k − 2) log 2.

Therefore,

|m(P)− log|P|| ≪ k (2-2)

with absolute implied constant. Observe that if P is a polynomial, then

m(P)≥ log|P| − log(2)
d∑

i=1

degX i
P

by the classical Lemma 1.6.10 of [Bombieri and Gubler 2006]. So (2-2) is stronger when the number of
terms in P is known to be bounded, which is often the case in our work.

Let x be an element of a number field K . The absolute logarithmic Weil height, or just height, of x is

h(x)=
1

[K : Q]

∑
v

[Kv : Qv] log max{1, |x |v}; (2-3)

here v runs over all places of K normalized such that |2|v = 2 for an infinite place v and |p|v = 1/p if
v lies above the rational prime p, the completion of K with respect to v is Kv and the completion of
Q with respect to the restriction of v is Qv. Let P be a nonzero Laurent polynomial with coefficients
x0, . . . , xn ∈ K . The absolute logarithmic Weil height, or just height, of P is

h(P)=
1

[K : Q]

∑
v

[Kv : Qv] log max{|x0|v, . . . , |xn|v}. (2-4)

See [Bombieri and Gubler 2006, Chapter 1] for more details on heights. For example, h(x) and h(P) are
well-defined for x ∈ Q and P ∈ Q[X±1

1 , . . . , X±1
d ], i.e., the values do not depend on the number field K

containing x and the coefficients of P , respectively. Moreover h(P)= h(λP) for all λ ∈ Q×.
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3. Quantitative Galois equidistribution for torsion points

We need a strong enough quantitative version of the Galois equidistribution of torsion points ζ of Gd
m ,

with a power saving discrepancy in δ(ζ ) defined in (1-1).
Different approaches are possible and we opt to use the Erdös–Turán–Koksma bound. This reduces

the problem to the estimation of certain exponential sums, which happen to be Gauss sums that can be
explicitly evaluated.

Let N ∈ N. For a divisor f ∈ N of N we work with the canonical surjective, homomorphism
(Z/NZ)× → (Z/ f Z)× induced by reducing modulo f .

The conductor fG of a subgroup G of (Z/NZ)× is the least positive integer f | N such that G contains
ker((Z/NZ)× → (Z/ f Z)×).

Certainly, fG is well-defined as ker((Z/NZ)× → (Z/NZ)×) is the trivial subgroup. Moreover,
f(Z/NZ)× = 1. But one should take care as the conductor of G = {1} is N/2 for N ≡ 2 (mod 4).
Observe that [(Z/NZ)× : G] ≤ ϕ( fG).

The group (Z/NZ)× is naturally isomorphic to the Galois group of Q(ζ )/Q, where ζ is a root of unity of
order N . Let L ⊂Q(ζ ) be the fixed field of G. Then L lies in the fixed field of ker((Z/NZ)× → (Z/ fGZ)×)

which equals Q(ζ fG ) where ζ fG is a root of unity of order fG .
Let f ≥ 1 be an integer and ζ f of order f . We claim L ⊂ Q(ζ f ) if and only if fG | f . Indeed, if the

inclusion holds, then L ⊂ Q(ζ f )∩ Q(ζ fG ). It is well-known that the intersection is generated by a root
of unity of order gcd( f, fG). By minimality of fG we find fG | f . The converse direction follows as
Q(ζ fG )⊂ Q(ζ f ) if fG | f .

So fG is the greatest common divisor of all f , for which L ⊂ Q(ζ f ). Equivalently fG is the greatest
common divisor of all f | N , for which ker((Z/NZ)× → (Z/ f Z)×)⊂ G.

By class field theory, fG is the finite part of the conductor of the abelian extension L/Q.
The next lemma collects some classical facts on Gauss sums. We write fχ = fkerχ for a character

χ : (Z/NZ)× → C×. We recall that e( · ) was defined in (1-3).

Lemma 3.1. Let N ∈ N and say χ : (Z/NZ)× → C× is a character. For k ∈ Z we define τ =∑
σ∈(Z/NZ)× χ(σ)e(kσ/N ), then the following hold true:

(i) If gcd(k, N )= 1 then |τ | ≤ f 1/2
χ .

(ii) For unrestricted k we set N ′
= N/ gcd(k, N ). Then

|τ | ≤
ϕ(N )
ϕ(N ′)

f 1/2
χ .

Proof. If k = 1, part (i) follows directly from [Iwaniec and Kowalski 2004, Lemma 3.1, Section 3.4]. The
more general case gcd(k, N ) = 1 follows as

∑
σ∈(Z/NZ)× χ(σ)e(kσ/N ) =

∑
σ∈(Z/NZ)× χ(k

′σ)e(σ/N )
where kk ′

≡ 1 (mod N ) and since χ is completely multiplicative.
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To prove (ii) set N ′
= N/ gcd(k, N ) and k ′

= k/ gcd(k, N ). Then τ is∑
σ∈(Z/NZ)×

χ(σ)e
(

k ′

N ′
σ

)
=

∑
σ ′∈(Z/N ′Z)×

( ∑
σ∈(Z/NZ)×

σ≡σ ′ (mod N ′)

χ(σ)

)
e
(

k ′

N ′
σ

)
.

The inner sum on the right runs over a coset of the kernel of (Z/NZ)× → (Z/N ′Z)×. Since χ is a
character, the inner sum equals 0 if the said kernel does not lie in the kernel of χ . In this case, τ = 0 and
we are done.

Otherwise, ker((Z/NZ)× → (Z/N ′Z)×)⊂ kerχ , and then fχ | N ′. We find moreover that χ factors
through a character χ ′

: (Z/N ′Z)× → C× and fχ ′ | fχ . As the kernel of (Z/NZ)× → (Z/N ′Z)× has
order ϕ(N )/ϕ(N ′) we have

τ =
ϕ(N )
ϕ(N ′)

∑
σ ′∈(Z/N ′Z)×

χ ′(σ ′)e
(

k ′

N ′
σ

)
.

Part (ii) now follows from (i) since gcd(k ′, N ′)= 1. □

Lemma 3.2. Let N ∈ N, let G be a subgroup of (Z/NZ)×, and let k ∈ Z. We define N ′
= N/ gcd(k, N ),

then
1

#G

∣∣∣∣∑
σ∈G

e(kσ/N )
∣∣∣∣ ≤

[(Z/NZ)× : G]

ϕ(N ′)
f 1/2
G .

Proof. Let χ ′

1, . . . , χ
′
m : (Z/NZ)×/G →C× be all characters and m =[(Z/NZ)× :G]. Then

∑m
i=1 χ

′

i (σ )=

0 for all σ ∈ (Z/NZ)×/G expect for the neutral element, where this sum equals m. Write χi for
(Z/NZ)× → (Z/NZ)×/G composed with χ ′

i . Then
∑m

i=1 χi (σ ) = 0 if and only if σ ∈ (Z/NZ)×\G,
otherwise this sum is m. Therefore,∑

σ∈G

e(kσ/N )=
1
m

m∑
i=1

∑
σ∈(Z/NZ)×

χi (σ )e(kσ/N ) (3-1)

and Lemma 3.1(ii) implies ∣∣∣∣ ∑
σ∈(Z/NZ)×

χi (σ )e(kσ/N )
∣∣∣∣ ≤

ϕ(N )
ϕ(N ′)

f 1/2
χi
.

Note that G ⊂ kerχi because χi factors through (Z/NZ)× → (Z/NZ)×/G. So fχi ≤ fG , by the
minimality of fχi . The current lemma now follows from (3-1). □

Let d, n ∈ N and x1, . . . , xn ∈ [0, 1)d . The discrepancy of (x1, . . . , xn) is

D(x1, . . . , xn)= sup
B

∣∣∣∣#{i : xi ∈ B}

n
− vol(B)

∣∣∣∣ (3-2)

where B ranges over all products
∏d

i=1[αi , βi ) with 0 ≤ αi < βi ≤ 1. Note that the discrepancy lies in
[0, 1]. In some references such as [Harman 1998], the discrepancy is not normalized by dividing by n
and can be greater than 1.
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In the next proposition we bound from above the discrepancy of the Galois orbit of a point of finite
order in Gd

m using the Gauss sum estimates above. Below, d0(N ) denotes the number of divisors of a
natural number N .

Proposition 3.3. Let ζ ∈ Gd
m have order N and let G be a subgroup of (Z/NZ)× such that {ζ σ : σ ∈

G} = {e(xi ) : 1 ≤ i ≤ #G} with all xi in [0, 1)d :

(i) We have

D(x1, . . . , x#G)≪d [(Z/NZ)× : G] f 1/2
G
(log 2δ(ζ ))d−1 log log 3δ(ζ )

δ(ζ )1/2
.

(ii) If d = 1, then

D(x1, . . . , x#G)≪ [(Z/NZ)× : G] f 1/2
G

log(2N )d0(N )
ϕ(N )

.

Proof. We abbreviate n = #G. We fix a ∈ Zd with ζ = e(a/N ). Then N and the entries of a are coprime.
Let H ≥ 4 be an integer. We use the Erdös–Turán–Koksma inequality [Harman 1998, Theorem 5.21], to
bound the discrepancy D = D(x1, . . . , xn) as follows

D ≪d
1
H

+

∑
b∈Zd

\{0}

|b|≤H

1
r(b)

∣∣∣∣1
n

∑
σ∈G

e
(

⟨a, b⟩

N
σ

)∣∣∣∣ (3-3)

here r(b1, . . . , bd)= max{1, |b1|} · · · max{1, |bd |}.
By Lemma 3.2, the expression inside the modulus is at most C/ϕ(N/ gcd(⟨a, b⟩, N )) with C =

[(Z/NZ)× : G] f 1/2
G . We have ϕ(M)≫ M/ log log(3 + M) for all integers M ≥ 1 with an absolute and

effective implicit constant, see for example [Rosser and Schoenfeld 1962, Theorem 15]. Therefore,

D ≪d
1
H

+ C
∑

b∈Zd
\{0}

|b|≤H

1
r(b)

gcd(⟨a, b⟩, N )
N

log log(3 + N/ gcd(⟨a, b⟩, N )).

If b ∈ Zd
\{0}, then 〈

a,
N

gcd(⟨a, b⟩, N )
b
〉
= N

⟨a, b⟩

gcd(⟨a, b⟩, N )
∈ NZ

which implies ζ bN/ gcd(⟨a,b⟩,N )
= 1. So N/ gcd(⟨a, b⟩, N )≥ δ/|b|>0 where δ= δ(ζ ). As t 7→ (log log(3+

t))/t is decreasing on t > 0 we find

D ≪d
1
H

+ C
1
δ

∑
b∈Zd

\{0}

|b|≤H

|b|

r(b)
log log(3 + δ).

The sum of |b|/r(b) over all b ∈ Zd with 1 ≤ |b| ≤ H is ≪d H(log H)d−1, so we find

D ≪d
1
H

+ C
log log(3δ)

δ
H(log H)d−1.

Part (i) follows by fixing H to be the least integer with H ≥ δ1/2 and H ≥ 4.
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In part (ii) we have d = 1. We may assume N ≥ 4 as the discrepancy is at most 1. Here a is coprime to
N and so gcd(ab, N )= gcd(b, N ). In (3-3) we take H = N and use again Lemma 3.2 with C as before
to find

D ≪
1
N

+

N∑
b=1

C
bϕ(N/ gcd(b, N ))

≤
1
N

+

∑
g|N

C
gϕ(N/g)

N/g∑
e=1

1
e
.

In the sum over g we have gϕ(N/g) ≥ ϕ(N ) and the harmonic sum is ≪ log N . So D ≪ 1/N +

C(log N )d0(N )/ϕ(N ), which implies (ii). □

A variant of the case d = 1 already appears in [Baker et al. 2008, Lemma 1.3] which is attributed to
Pomerance.

The discrepancy bound in (i) depends on δ(ζ ). But δ(ζ ) is always bounded above by N . So estimates
that decay in N are stronger than estimates that decay in δ(ζ ). However, there can be no upper bound for
the discrepancy in terms of the order N .

Let us assume for the moment d = 1. Then we have δ(ζ )= N . If [(Z/NZ)× : G] and fG are fixed,
the decay of the discrepancy is 1/N up to terms of subpolynomial growth by part (ii) of the preceding
proposition and standard estimates for Euler’s function ϕ.

The total variation on [a, b] of a real valued function F whose domain contains the interval [a, b]

with a ≤ b is

Varb
a(F)= sup

a≤x0≤···≤xm≤b

m∑
i=1

|F(xi )− F(xi−1)|.

For a = 0 and b = 1 we abbreviate Var(F)= Varb
a(F).

The next lemma requires Koksma’s inequality.

Lemma 3.4. Let F : [0, 1] → R be a function with Var(F) < ∞. If N ≥ 1 is an integer and G is a
subgroup of (Z/NZ)× such that {ζ σ : σ ∈ G} = {e(xi ) : 1 ≤ i ≤ #G} with all xi in [0, 1), then∣∣∣∣ 1

#G

#G∑
i=1

F(xi )−

∫ 1

0
F(x) dx

∣∣∣∣ ≪ [(Z/NZ)× : G] f 1/2
G

log(2N )d0(N )
ϕ(N )

Var(F).

Proof. The claim follows from Theorems 1.3 and 5.1 in Chapter 2 of [Kuipers and Niederreiter 1974]
together with Proposition 3.3(ii). □

3A. A univariate average.

Lemma 3.5. Let α ∈ C and r > 0. For x ∈ [0, 1] we define

Fα,r (x)= log max(r, |e(x)−α|).

Then Fα,r : [0, 1] → R satisfies Var(Fα,r )≤ 3 log(1 + 2/r).

Proof. We abbreviate F = Fα,r . By elementary geometry we can find m ≤ 3 and 0 = x0 < x1 <

· · · < xm = 1 such that F is monotone on all [xi−1, xi ]. Then Varxi
xi−1
(F) = |F(xi ) − F(xi−1)| and
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Var(F)=
∑m

i=1 Varxi
xi−1
(F). We have log max{r, |α| − 1} ≤ F(x)≤ log max{r, |α| + 1} for all x ∈ [0, 1].

Hence Varxi
xi−1
(F) ≤ log(max{r, |α| + 1}/max{r, |α| − 1}) which we see is at most log(1 + 2/r) by

considering the cases |α| ≥ 1 + r and |α|< 1 + r . Thus Var(F)≤ 3 log(1 + 2/r). □

The value r serves as a truncation parameter. We now apply Koksma’s inequality to Fα,r .

Lemma 3.6. Let ζ ∈ µ∞ have order N and let G be a subgroup of (Z/NZ)×. Let α ∈ C and r ∈ (0, 1],
then

1
#G

∑
σ∈G

|ζ σ−α|>r

log |ζ σ −α| = log+
|α| + O

((
[(Z/NZ)× : G] f 1/2

G
log(2N )d0(N )

ϕ(N )
+ r

)∣∣∣∣log
r
2

∣∣∣∣). (3-4)

Proof. We let I denote the left-hand side of (3-4). Then I = I1 + I2 with

I1 =
1

#G

#G∑
i=1

Fα,r (xi ) and I2 =
1

#G

∑
i

|e(xi )−α|≤r

− log r

with the xi ∈ [0, 1) as in Lemma 3.4 and Fα,r as in Lemma 3.5. The integrals below are understood to be
over subsets of [0, 1]. Applying Lemmas 3.4 and 3.5 to Fα,r yields

I1 =

∫ 1

0
Fα,r (x) dx + O

(
[(Z/NZ)× : G] f 1/2

G
log(2N )d0(N )

ϕ(N )

∣∣∣∣log
r
2

∣∣∣∣). (3-5)

The set of x ∈ [0, 1] with |e(x)−α| ≤ r is of the form ∅, [a, b], or [0, a] ∪ [b, 1]. So its characteristic
function has total variation at most 2. Lemma 3.4 applied to this characteristic function yields

I2 = −

∫
|e(x)−α|≤r

log r dx + O
(

[(Z/NZ)× : G] f 1/2
G

log(2N )d0(N )
ϕ(N )

)
. (3-6)

The sum of the integrals in (3-5) and (3-6) equals∫ 1

0
log|e(x)−α| dx −

∫
|e(x)−α|≤r

log|e(x)−α| dx .

Jensen’s formula [Bombieri and Gubler 2006, Proposition 1.6.5] implies that the first integral equals
log+

|α|. To complete the proof it suffices to show that the second integral is O(r |log r/2|).
The integral is nonpositive as r ≤ 1 and we may assume that it is nonzero. First assume, |α| ≤

1
2 . In

this case |e(x)−α| ≥
1
2 and the integral is O(r). Second, say |α|> 1

2 . [Rahman and Schmeisser 2002,
Lemma 11.6.1] implies |e(x)− α| ≥ |α|

1/2
|e(x)− e(y)| ≥ 2−1/2

|e(x − y)− 1| where α = |α|e(y) and
|x − y| ≤

1
2 . There is an absolute and effectively computable constant C > 0 with |e(x − y)−1| ≥ C |x − y|

and thus |e(x)− α| ≥ 2−1/2C |x − y|. In the integral we have r ≥ |e(x)− α| and so the desired bound
follows from elementary analysis. □
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3B. A Galois conjugate near 1. We will also need an estimate on the minimal distance of a Galois
conjugate of a torsion point to the unit element.

Lemma 3.7. Let ζ ∈ Gd
m have order N and let G be a subgroup of (Z/NZ)×. There exist σ ∈ G and

a ∈ Zd with ζ = e(aσ/N ), |a|< N , and

|a|

N
≪d

[(Z/NZ)× : G]
1/d f 1/(2d)

G

δ(ζ )1/(3d) . (3-7)

Proof. Let ζ = e(b/N ) with b ∈ Zd , the entries of b and N have no common prime divisor. Suppose
x1, . . . , xn are as in Proposition 3.3 coming from the ζ σ as σ ranges over G where n = #G. There
exists c(d) > 0 depending only on d with D(x1, . . . , xn) ≤ c(d)[(Z/NZ)× : G] f 1/2

G δ(ζ )−1/3; note that
δ(ζ ) = N if d = 1. We set κ = 2c(d)1/d [(Z/NZ)× : G]

1/d f 1/(2d)
G δ(ζ )−1/(3d). If κ ≥ 1 we take σ the

identity and fix a ∈ Zd with |a|< N and ζ = e(a/N ). Otherwise, by the definition of the discrepancy the
hypercube [0, κ)d contains some xi = a/N . Hence a satisfies, |a| < N , (3-7), and e(a/N ) = ζ σ

−1
for

some σ ∈ G. □

4. Theorem of Mahler and Mignotte

In this section, we establish the separation of pairs of roots of an integer polynomial. Theorem 4.1 below
was shown by Mahler [1964] for the case k = 1 of a single pair of roots. Mignotte [1995] generalized
Mahler’s inequality to products over several disjoint pairs of roots (see his Theorem 1). We reproduce
here a lightened version of Mignotte’s theorem that is suitable for our needs. The proof is an adaptation of
Mahler’s original argument about a single pair, guided by the principle that Liouville’s Inequality bounds
an algebraic number at an arbitrary set of places in terms of the height. Let us also mention Güting’s
proof [1961] of a less precise earlier result involving the length of a polynomial instead of the Mahler
measure.

Let Q ∈ C[X ] be a nonzero univariate polynomial. By Jensen’s formula its Mahler measure equals

m(Q)= log|a0| +

D∑
i=1

log+
|zi | (4-1)

if Q = a0(X − z1) · · · (X − zD) and where the zi are complex. If Q is nonconstant, we let disc(Q) denote
its discriminant as a degree deg Q polynomial.

Theorem 4.1. Let Q ∈ C[X ] \ C be of degree D and with no repeated roots. If z1, . . . , zk, z′

1, . . . , z′

k are
pairwise distinct complex roots of Q, then

k∑
j=1

− log|z j − z′

j | ≤
1
2(D + 2k) log D −

k
2 log 3 + (D − 1)m(Q)− 1

2 log|disc(Q)| (4-2)

with strict inequality for k ≥ 1.
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Proof. We modify Mahler’s and Mignotte’s argument as follows.
Both sides of (4-2) are invariant under multiplication Q by a nonzero scalar. So we may assume that

Q is monic. After possibly swapping z j with z′

j we may assume |z j | ≥ |z′

j | for all j .
We augment z1, . . . , zk to all complex roots z1, . . . , zD of Q. Then we consider the Vandermonde

determinant

V = det


1 1 · · · 1
z1 z2 · · · zD
...

...
...

zD−1
1 zD−1

2 · · · zD−1
D

 ,

which is nonzero as z1, . . . , zD are pairwise distinct. For j ∈ {1, . . . , k}, let i j > k be the index with
z′

j = zi j . For these j , we subtract the i j -th column from the j-th column and factoring each difference
z j − zi j out of the determinant with the identities zm

j − zm
i j

= (z j − zi j )(z
m−1
j + zm−2

j zi j + · · · + zm−1
i j

),
1 ≤ m ≤ D − 1. We obtain an expression

V = W
k∏

j=1

(z j − zi j )= W
k∏

j=1

(z j − z′

j ), (4-3)

where W ̸= 0 is the determinant of the matrix having
0
1

z j + z′

j
...

zD−2
j + zD−3

j z′

j + · · · + z′

j
D−2


for its j-th column, j ∈ {1, . . . , k}, and the same entries as in the Vandermonde matrix in the remaining
columns. By Hadamard’s inequality, |W | is bounded from above by the product of the Hermitian norms
of all these columns. The j-th column, for some j ∈ {1, . . . , k}, has Hermitian norm√√√√D−2∑

m=0

|zm
j + zm−1

j z′

j + · · · + z′

j
m
|2 ≤

√√√√D−2∑
m=0

(m + 1)2 max{1, |z j |, |z′

j |}
D−2 <

√
D3/3 · max{1, |z j |}

D−1

where we used |z′

j | ≤ |z j |. The Hermitian norm of the j-th column with j ∈ {k + 1, . . . , D} is at most
√

D max{1, |z j |}
D−1.

Applying Hadamard’s inequality, using these two bounds, and taking the logarithm yields

log|W | ≤
k
2

log
(

D3

3

)
+

D − k
2

log D + (D − 1)
D∑

j=1

log+
|z j |

=
D + 2k

2
log D −

k
2

log 3 + (D − 1)m(Q)

as Q is monic; the inequality is strict for k ≥ 1. If k = 0 no column operations are necessary and V = W .
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The monic polynomial Q has discriminant disc(Q) = V 2. Consequently |V | = |disc(Q)|1/2, and in
view of (4-3) we have

k∑
j=1

− log|z j − z′

j | = log|W | − log|V | ≤
1
2(D + 2k) log D −

k
2 log 3 + (D − 1)m(Q)− 1

2 log|disc(Q)|

with a strict inequality for k ≥ 1. This concludes the proof. □

While Theorem 4.1 suffices for our needs here, we remark that it is possible to relax the hypothesis
to having z1, . . . , zk pairwise distinct and {z1, . . . , zk} ∩ {z′

1, . . . , z′

k} = ∅, at the cost of a slightly worse
upper bound (4-2).

The following corollary holds for integral polynomials that are not necessarily squarefree.

Corollary 4.2. Let Q ∈ Z[X ] \ Z be of degree D. If z1, . . . , zk, z′

1, . . . , z′

k are pairwise distinct complex
roots of Q, then

k∑
j=1

− log|z j − z′

j | ≤
D + 2k

2
log D −

k
2

log 3 + (D − 1)m(Q) (4-4)

with strict inequality for k ≥ 1.

Proof. We may assume k ≥ 1. We begin by splitting off the squarefree part of Q. More precisely, we factor
Q = Q̃ R where Q̃, R ∈ Z[X ] and Q̃ is squarefree and vanishes at all complex roots of Q. The discriminant
disc(Q̃) is a nonzero integer, and so |disc(Q̃)| ≥ 1. Moreover, m(Q̃)≥ 0. Theorem 4.1 applied to Q̃ and
1 ≤ deg Q̃ ≤ D implies that the sum on the left of (4-4) is at most 1

2(D+2k) log D−
k
2 log 3+(D−1)m(Q̃).

The corollary follows from m(Q̃)= m(Q)− m(R)≤ m(Q). □

4A. A repulsion property of the unit circle. A key point in [Habegger 2018] is that while Mahler’s
theorem does not give a strong enough bound for the distance of a complex root of Q ∈ Z[X ] \ {0} to an
N -th root of unity (the product (X N

− 1)Q(X) has an exceedingly large degree), it can be used to bound
the distance from the unit circle to the locus of roots of P lying off the unit circle. With Corollary 4.2,
this repulsion property of the unit circle can be strengthened as follows.

Lemma 4.3. Let Q ∈ Z[X ] \ Z and Q = a0(X − z1) · · · (X − zD) where z1, . . . , zD ∈ C. Then
D∑

j=1
|z j |̸=1

log+
1∣∣|z j | − 1

∣∣ ≤ D log
(

3 +
√

5
2

)
+ 2D log(2D)+ 4Dm(Q)≤ 4D(log(2D)+ m(Q)). (4-5)

Before we come to the proof let us remark that ||z| − 1| is the distance dist(z, S1) of z ∈ C to the unit
circle S1. Thus inequality (4-5) can be restated as providing

1
D

D∑
j=1

|z j |̸=1

log+
1

dist(z j , S1)
≤ log

(
3 +

√
5

2

)
+ 2 log(2D)+ 4m(Q).

Our result suggests that the unit circle repels roots of Q that lie off the unit circle. Related estimates are
implicit in work of Dubickas [1997], see his Theorem 2.
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Proof. The second bound in (4-5) is elementary, so it suffices to prove the first one.
Say Q = a0 Q1 · · · Qn where each Qi ∈ Z[X ] is irreducible of positive degree with a0 ∈ Z. Observe

that 0 ≤ m(Qi )≤ m(Q) and
∑

i deg Qi = deg Q. So it suffices to prove (4-5) for Q irreducible in Z[X ].
We may also assume Q(0) ̸= 0.

We will apply Corollary 4.2 to the polynomial Q̃ ∈ Z[X ] constructed from Q in the following manner.
If Q(1/X)X D

̸= ±Q we take Q̃ = Q(X)Q(1/X)X D and Q̃ = Q otherwise. So D̃ = deg Q̃ = δD and
m(Q̃)= δm(Q) with δ = 2 in the first case and δ = 1 in the second case. Indeed, a polynomial and its
reciprocal have the same Mahler measure. For any root z of Q̃ we also have Q̃(1/z̄)= 0.

The following basic observation for a complex number z will prove useful. We have |z − 1/z̄| ≤ 1 if
and only if φ−1

≤ |z| ≤ φ with φ = (1 +
√

5)/2 the golden ratio.
Let w1, . . . , wk be the roots of Q̃ without repetition such that φ−1

≤ |w j |< 1. Then w′

j = 1/w j is a
root of Q̃ for each j ∈ {1, . . . , k} with |w′

j |> 1. Corollary 4.2 yields

k∑
j=1

log+
1

|w j − 1/w j |
≤ δD log(δD)+ δ2 Dm(Q) (4-6)

because k ≤ D̃/2 = δD/2 and m(Q)≥ 0.
Suppose z j is a root of Q with |z j | ̸= 1 and φ−1

≤ |z j | ≤ φ. Then z j ∈ {wl, 1/wl} for some unique l.
The mapping j 7→ l is at worst 2-to-1 and injective if δ = 2 as Q is irreducible.1 This leads to the factor
2/δ in ∑

|z j |̸=1
1/φ≤|z j |≤φ

log+
1

|z j − 1/z j |
≤

2
δ

k∑
l=1

log+
1

|wl − 1/wl |
(4-7)

For a complex number z with |z| ≥ φ−1 we have |z − 1/z̄| =
|z|+1
|z|

∣∣|z| − 1
∣∣ ≤ (1 + φ)

∣∣|z| − 1
∣∣. This

allows us to get ∑
|z j |̸=1

1/φ≤|z j |≤φ

log+
1∣∣|z j | − 1

∣∣ ≤ s log(1 +φ)+
∑

|z j |̸=1
1/φ≤|z j |≤φ

log+
1

|z j − 1/z̄ j |

where s is the number of terms in the first sum. There are D − s remaining roots of Q and if |z j |< φ
−1

or |z j |> φ we get log+ 1/
∣∣|z| − 1

∣∣ ≤ log(1 +φ). Together with (4-6) and (4-7) we find∑
|z j |̸=1

log+
1∣∣|z j | − 1

∣∣ ≤ D log(1 +φ)+ 2D log(δD)+ 2δDm(Q).

We have established (4-5) for Q as δ ≤ 2. □

Next we generalize our bound to a polynomial with coefficients in a number field. Recall that h(Q) is
the absolute logarithmic projective Weil height of a nonzero polynomial Q with algebraic coefficients.

1Indeed, if z j , zk ∈ {wl , 1/wl } with z j ̸= zk , then z j = 1/zk . So Q̃ = Q and hence δ = 1 in this case.
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Corollary 4.4. Let F ⊂ C be a number field and let Q ∈ F[X ] \ F and Q = a0(X − z1) · · · (X − zD)

where z1, . . . , zD ∈ C. Then

D∑
j=1

|z j |̸=1

log+
1∣∣|z j | − 1

∣∣ ≤ 10[F : Q]
2 D(log(2D)+ h(Q)).

Proof. Let Q̃ be the product of the Q-Galois conjugates of Q. Then Q̃ has rational coefficients and
degree D̃ ≤ D[F : Q]. Let λ ∈ N such that λQ̃ is integral with content 1. For the projective height
we find h(Q̃) = log|λQ̃|. Together with [Bombieri and Gubler 2006, Lemma 1.6.7] we get m(λQ̃) ≤

1
2 log(1+ D̃)+h(Q̃). As all Q-Galois conjugates of Q have the same projective height we use elementary
estimates at local places, see [Bombieri and Gubler 2006, Remark 1.6.14], to find

h(Q̃)≤ [F : Q] log(1 + D)+ [F : Q]h(Q).

By Lemma 4.3 applied to λQ̃, the sum
∑D

j=1:|z j |̸=1 log+ 1/
∣∣|z j | − 1

∣∣ is at most

4D̃
(
log(2D̃)+ 1

2 log(1 + D̃)+ [F : Q] log(1 + D)+ [F : Q]h(Q)
)
.

We use 1 + D̃ ≤ 2D̃ ≤ 2D[F : Q] ≤ (2D)[F :Q] to complete the proof. □

4B. Averages over roots of unity. In this subsection we apply the repulsion property of the unit circle,
Corollary 4.4, to estimate the norm of cyclotomic integers of the form Q(ζ ), where ζ is a varying root
of unity and Q is a moderately controlled univariate polynomial with algebraic coefficients and without
zeros in S1

\µ∞. This gives a fairly uniform solution of the one dimensional essentially atoral case and
forms the basis for the higher dimensional case to be taken up in the next sections.

Proposition 4.5. Let F ⊂ C be a number field and let Q ∈ F[X ]\{0} be of degree at most D ≥ 1 with no
roots in S1

\µ∞. Let ζ ∈ µ∞ be of order N and G a subgroup of (Z/NZ)× such that Q(ζ σ ) ̸= 0 for all
σ ∈ G. Then

1
#G

∑
σ∈G

log |Q(ζ σ )|

= m(Q)+ O
(

[F : Q]
2
[(Z/NZ)× : G] f 1/2

G D(log(2D)+ h(Q))
(log 2N )3d0(N )

N

)
. (4-8)

Proof. We may assume that Q is nonconstant and D = deg Q. Let Q = a0(X − z1) · · · (X − zD). The
idea is that each given root z j may get within distance of ≤ 1/N 2 to at most a single conjugate of ζ .

We call z j exceptional if |ζ σ j − z j | ≤ 1/N 2 for some σ j ∈ G. As |ξ − ξ ′
| ≥ 4/N for distinct roots

of unity ξ, ξ ′ of order N we see that σ j is uniquely determined by z j . Note that ζ σ j ̸= z j because
Q(ζ σ j ) ̸= 0 = Q(z j ).
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We apply Lemma 3.6 with α = z j and r = 1/N 2. Thus

1
#G

∑
σ∈G

log |ζ σ − z j |

= log+
|z j | +

1
#G

log |ζ σ j − z j | + O
(

[(Z/NZ)× : G] f 1/2
G
(log 2N )2d0(N )

ϕ(N )
+

log 2N
N 2

)
, (4-9)

if z j is exceptional, otherwise the same bound without the term (#G)−1 log|ζ σ j − z j | holds true. As
1/N 2

≤ 1/ϕ(N ) we merge (log 2N )/N 2 into the first term of the error term. Summing (4-9) over all
j ∈ {1, . . . , D} and adding log|a0| gives

1
#G

∑
σ∈G

log|Q(ζ σ )|

= m(Q)−
1

#G

D∑′

j=1

log
1

|ζ σ j − z j |
+ O

(
[(Z/NZ)× : G] f 1/2

G D
(log 2N )2d0(N )

ϕ(N )

)
, (4-10)

the dash signifies that we only sum over those j for which z j is exceptional.
To bound the dashed sum we require Corollary 4.4. If z j is exceptional, then |ζ σ j − z j | ≤ 1. Therefore,

the dashed sum is nonnegative.
First, we consider the subsum over all exceptional z j ̸∈ µ∞. Then |z j | ̸= 1 and |ζ σ j − z j | ≥ ||z j | − 1|

by the reverse triangle inequality. By Corollary 4.4 we find

0 ≤

D∑′

j=1
z j ̸∈µ∞

log
1

|ζ σ j − z j |
≤

D∑′

j=1
z j ̸∈µ∞

log+
1

||z j | − 1|
= O([F : Q]

2 D(log(2D)+ h(Q))). (4-11)

Second, we consider the subsum over all exception z j ∈ µ∞, which is harmless. Recall that ζ σ j ̸= z j .
Since the order of z j is ≪ [Q(z j ) : Q]

2
≤ (D[F : Q])2 and the order of ζ σ j is N we find |ζ σ j − z j | ≫

N−1(D[F : Q])−2. On the other hand, |ζ σ j − z j | ≤ N−2 and hence N ≪ (D[F : Q])2. We obtain the
crude estimate |ζ σ j − z j | ≫ (D[F : Q])−4

≫ (2D)−4[F :Q] and finally bound the at most D terms below
separately to get

0 ≤

D∑′

j=1
z j ∈µ∞

log
1

|ζ σ j − z j |
= O([F : Q]D log(2D)). (4-12)

We divide the sum of (4-11) and (4-12) by #G to find

0 ≤
1

#G

D∑′

j=1

log
1

|ζ σ j − z j |
= O

(
[F : Q]

2 D(log(2D)+ h(Q))
[(Z/NZ)× : G]

ϕ(N )

)
.

The proposition follows from (4-10) and ϕ(N )≫ N/ log log(3N ), a consequence of [Rosser and Schoen-
feld 1962, Theorem 15]. □
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Proposition 4.5 and ultimately Theorem 4.1 may be viewed as our input from transcendence theory. If
this or a comparable bound held without the restrictive condition that Q has no roots in S1

\µ∞ then it
could be used to attack Conjecture 1.3. We were unable to prove or disprove that a suitable version of
Proposition 4.5 extends to general polynomials. Progress on Conjecture 1.5 could indicate a path towards
this goal.

5. Geometry of numbers

Let d ≥ 1 and suppose ζ ∈ Gd
m has order N . It would be useful if ζ had a Galois conjugate close to the

unit element 1. If the distance were at most a small power of N−1, this conjugate could be used to help
reduce the multivariate Theorem 1.1 to the univariate Proposition 4.5, see [Habegger 2018].

Unfortunately, such a conjugate need not exist. Take for example ζ = e(1/p, 1/pn) where p is a prime
and n ∈ N, here N = pn . Any conjugate of ζ has distance ≫ 1/p to 1 regardless of the value of n. The
problem is that ζ is up to a point of order p contained in the algebraic subgroup {1} × Gm .

We overcome this difficult by constructing a factorization ζ = ηξ into torsion points η and ξ that satisfy
the following properties for prescribed ϵ > 0. First, the order of η is small relative to N , more precisely it
is Od,ϵ(N ϵ). Second, some Galois conjugate of ξ is at distance at most Od,ϵ(N−κ(ϵ)) to 1. Here κ(ϵ) is
expected to be small for small ϵ. But we will see that κ(ϵ)/ϵ is large. This is of central importance for
our application.

We use the geometry of numbers to construct this factorization. An important tool is the slope of a
lattice.

A lattice 3 in Rd is a finitely generated and discrete subgroup of Rd . The rank of 3 is denoted by
rk(3) and its determinant by det(3). We consider the set

A = {(r, log det(�)) : r ∈ Z and � is a subgroup of 3 with rk(�)= r}

and use the convention det({0})= 1. In contrast to the convention in Arakelov theory, we have no sign
in front of log det(3). Observe that the second coordinate is bounded from below on A. Stuhler [1976,
Proposition 1] proved that for each j ∈ {0, . . . , rk(3)} there exists a sublattice 3 j ⊂3 of rank j , possibly
nonunique, with log det(3 j ) minimal among all sublattices of rank j . The lower boundary of the convex
hull of A is the graph of a piecewise linear, continuous, convex function P : [0, rk(3)] → R. As 30 = {0}

and 3rk(3) =3 we find P(0)= 0 and P(rk(3))= log det(3).
For each j ∈ {1, . . . , rk(3)}, the slope of P on [ j − 1, j] is

µ j (3)= P( j)− P( j − 1).

By convexity we have

µ1(3)≤ µ2(3)≤ · · · ≤ µrk(3)(3).

Moreover, µ1(3)+ · · · +µ j (3)= P( j)− P(0)= P( j) for all j as P(0)= log det(30)= 0.
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Assume 3 ̸= {0} and let ν ∈
(
0, 1

2

]
be a parameter. Suppose that

µ j (3) < ν
rk(3)− j+1 log det(3)

for all j ∈ {1, . . . , rk(3)}. Taking the sum yields

log det(3) < (ν+ ν2
+ · · · + νrk(3)) log det(3).

As ν ∈
(
0, 1

2

]
we must have det(3) < 1.

Let us now assume det(3)≥ 1, then there exists a unique j0 ∈ {0, . . . , rk(3)− 1} such that

µk(3) < ν
rk(3)−k+1 log det(3) for all 1 ≤ k ≤ j0 and µ j0+1(3)≥ νrk(3)− j0 log det(3). (5-1)

We write 3(ν) for the rank j0 lattice 3 j0 , indicating its dependency on ν. It satisfies rk(3/3(ν))≥ 1.
Note that µ j0(3(ν)) < µ j0+1(3(ν)) if j0 ≥ 1. Therefore, 3(ν) appears in the Harder–Narasimhan

filtration of 3 as considered by Stuhler [1976] and Grayson [1984], if we include {0} as a member of the
filtration. In particular, 3(ν) is the unique lattice in 3 of rank rk(3(ν)) and minimal determinant.

Here are two simple properties:
First, for the Euclidean norm |·|2 we claim

log|v|2 ≥ νrk(3/3(ν)) log det(3) for all v ∈3\3(ν). (5-2)

Indeed, the lattice 3′ generated by 3(ν) and v contains 3(ν) strictly. We must have rk(3′) > rk(3(ν)),
as det(3′) would otherwise be strictly less than det3(ν). (This shows in particular that 3/3(ν) is
torsion free; a well-known property of the Harder–Narasimhan filtration.) So rk(3′) = rk(3)+ 1 and
by convexity of P we find log det(3′) ≥ log det(3(ν)) + µ j0+1(3). On the other hand, det(3′) ≤

det(3′) det(3(ν)∩vZ)≤ det(3(ν)) det(vZ) is well-known, for a proof see [Stuhler 1976, Proposition 2].
We conclude log det(vZ)≥ µ j0+1(3). Now det(vZ)= |v|2, so (5-2) follows from (5-1).

Second, (5-1) and ν ∈
[
0, 1

2

)
imply

log det(3(ν))≤ µ1(3)+ · · · +µ j0(3)≤ 2ν1+rk(3/3(ν)) log det(3). (5-3)

We now make things more concrete. Let ζ ∈ Gd
m have order N and set

3ζ = {u ∈ Zd
: ζ u

= 1}. (5-4)

We consider the homomorphism Zd
→ Gm defined by u 7→ ζ u and see that Zd/3ζ is isomorphic to the

finite subgroup of Gm generated by the coordinates of ζ . So Zd/3ζ is cyclic of order N . In particular,
3ζ is a lattice in Rd of rank d with det(3ζ )= [Zd

:3ζ ] = N ≥ 1. The saturation

3̃ζ (ν)= {u ∈ Zd
: there is n ∈ Z\{0} such that nu ∈3ζ (ν)} (5-5)

of 3ζ in Zd will also be useful for us. It is a lattice of the same rank as 3ζ (ν).
For any lattice 3⊂ Rd of positive rank, we set

λ1(3)= min{|u| : u ∈3\{0}} (5-6)

where as usual |·| denotes the maximum-norm. It is convenient to define λ1({0})= ∞.
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Proposition 5.1. Let ν ∈
(
0, 1

4

]
and let ζ ∈ Gd

m be of order N. There exists V ∈ GLd(Z) and a decompo-
sition ζ = ηξ with η and ξ in Gd

m of finite order E and M , respectively, such that the following holds. We
abbreviate r = rk(3ζ/3ζ (ν)) ∈ {1, . . . , d}:

(i) We have E | N ,M | N , and E ≤ N 2ν1+r
. In particular, Q(η, ξ)= Q(ζ ).

(ii) We have |V | ≪d N 2ν1+r
with ξ V

= (1, . . . , 1, ξ ′) and ξ ′
∈ Gr

m .

(iii) If G is a subgroup of (Z/MZ)× there exist a ∈ Zr and σ ∈ G such that ξ ′
= e(aσ/M),

|a|< M and
|a|

M
≪d

[(Z/MZ)× : G] f 1/2
G

N νr/(6d) . (5-7)

(iv) With the definition (1-1) we have δ(ξ)≥ d−1/2 min{λ1(3̃ζ (ν)), N νd/2
}.

Moreover, if r = d, or equivalently 3(ν)= {0}, then V is the identity matrix.

Proof. We abbreviate 3=3ζ as well as 3(ν)=3ζ (ν) and 3̃(ν)= 3̃ζ (ν). Note det(3)= N .
We can find a collection of d − r = rk(3̃(ν)) linearly independent vectors in 3̃(ν) whose norms are at

most ≪d det(3̃(ν)) by applying Minkowski’s second theorem, see Theorem V in Chapter VIII of [Cassels
1959], and using λ1(3) ≥ 1. By appending suitable standard basis vectors of Zd we find d linearly
independent vectors in Zd . By Corollary 2, Chapter I.2 of [loc. cit.] applied to Zd and these vectors we
get a basis of Zd whose entries have norm ≪d det(3̃(ν)). By the said corollary, the original linearly
independent vectors can be expressed via an triangular matrix in terms of the new basis vectors. So the
first rk(3̃(ν)) entries of this basis are a basis of the saturated group 3̃(ν). Thus there exists V ∈ GLd(Z)

whose first rk(3̃(ν)) columns constitute a basis of 3̃(ν) and

|V | ≪d det(3̃(ν)). (5-8)

As det(3̃(ν))≤ det(3(ν)), the bound for |V | in (ii) follows from (5-3).
We write ζ V

= (η′, ξ ′) where η′
∈ Gd−r

m and ξ ′
∈ Gr

m both have finite order dividing N . We take η and
ξ from the assertion to equal (η′, 1, . . . , 1)V

−1
and (1, . . . , 1, ξ ′)V

−1
, respectively. So ζ = ηξ .

Observe that [3̃(ν) : 3(ν)]3̃(ν) ⊂ 3(ν) ⊂ 3. So the first rk(3̃(ν)) entries of ζ [3̃(ν):3(ν)]V are
η′[3̃(ν):3(ν)]

= 1. This implies that E = ord(η) from the assertion satisfies E | [3̃(ν) : 3(ν)] and thus
E ≤ det(3(ν))≤ N 2ν1+r

by (5-3).
To verify (iii) let us fix v ∈ Zr

\{0} such that ξ ′v
= 1 and |v|= δ(ξ ′). Then ξ V ′v

= 1 where V ′
∈ Matdr (Z)

consists of the final r columns of V . Raising to the E-th power to kill η yields ζ EV ′v
= 1. Therefore,

EV ′v ∈ 3. Note that EV ′v ̸∈ 3(ν), indeed otherwise V ′v would lie in the saturation 3̃(ν). This is
impossible as no nontrivial linear combination of columns of V ′ lies in 3̃(ν) which is generated by the
first rk(3̃(ν)) columns of V . Thus (5-2) implies |EV ′v|2 ≥ N νr

. By (5-8) we have

|EV ′v| ≪d E |V ′
||v| ≪d E |V ||v| ≪d [3̃(ν) :3(ν)] det(3̃(ν))|v| = det(3(ν))|v|

we conclude N νr
≪d det(3(ν))|v|. The determinant bound in (5-3) gives

δ(ξ ′)= |v| ≫d N νr
−2ν1+r

≫d N νr/2

and the last inequality used ν ≤
1
4 .
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To complete the proof of (iii) let G be a subgroup of (Z/MZ)× where M = ord(ξ) = ord(ξ ′). By
Lemma 3.7 applied to ξ ′ there are σ ∈ G and a ∈ Zr with ξ ′

= e(aσ/M), |a|< M , and

|a|

M
≪d

[(Z/MZ)× : G]
1/r f 1/(2r)

G

δ(ξ ′)1/(3r) ≪d
[(Z/MZ)× : G] f 1/2

G

N νr/(6d) .

It remains to check (iv). Say v ∈ Zd
\{0} with ξ v = 1 and |v| = δ(ξ). Then ζ v = ηvξ v = ηv. Thus

Ev ∈ 3 and there are two cases to consider. If v ∈ 3̃(ν), then
√

d|v| ≥ |v|2 ≥ λ1(3̃(ν)) by definition.
Otherwise, v ̸∈ 3̃(ν) in which case Ev ̸∈3(ν) by saturation. Here we can use (5-2) and the bound for E
from (i) to conclude |v|2 ≥ E−1 N νr

≥ N νr
−2ν1+r

≥ N νr/2. So |v| ≥ |v|2/
√

d ≥ N νr/2/
√

d ≥ N νd/2/
√

d,
as claimed in (iv). □

The situation simplifies in the following two cases. If r = d , then ξ = ζ , η = 1,M = N , E = 1, and V
is the identity matrix. If N is a prime, then E = 1 as E | N and E ≤ N 2ν1+r

< N by part (i) above. Thus
again ξ = ζ and η = 1.

6. A preliminary result

Let d ≥ 1 be an integer.

Definition 6.1. We use the convention inf∅ = ∞. For u ∈ Zd we define

ρ(u)= inf{|v| : v ∈ Zd
\{0} and ⟨u, v⟩ = 0}, (6-1)

as usual |·| is the maximum-norm on Rd . Let P ∈ Q[X±1
1 , . . . , X±1

d ] be a Laurent polynomial. If the
equation P(ηzu)= 0 has no solution in η ∈ (µ∞)

d , z ∈ S1
\µ∞, and u ∈ Zd , we set B(P)= 1. Else wise

we set

B(P)= inf{B ∈ N : if η ∈ (µ∞)
d , z ∈ S1

\µ∞ is algebraic, and u ∈ Zd with P(ηzu)= 0 then ρ(u)≤ B}.

Let us spell this out for d = 1. Then ρ(u)= 1 for u = 0 and ρ(u)= ∞ otherwise. If P vanishes at a
point S1 of infinite order, then B(P)= ∞. Conversely, if P does not vanish at any point of S1

\µ∞ then
we have B(P)= 1. In particular, if d = 1 and P is essentially atoral, then B(P)= 1.

Let ζ ∈ Gd
m have order N and say ν ∈

(
0, 1

4

]
. Below we make use of the canonically determined lattice

3ζ (ν) attached to (ζ , ν) as in Section 5. Recall that λ1(3̃ζ (ν)) is the least positive Euclidean norm of a
vector in the saturation of 3ζ (ν) in Zd . For technical reasons we work with

λ̃(ζ ; ν)= min{λ1(3̃ζ (ν)), N νd/2
}. (6-2)

For example, if 3ζ (ν) is {0}, then the minimum equals N νd/2.
An important goal is to generalize Proposition 4.5 to multivariate polynomials. Proposition 6.2 below

is a step in this direction.
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Proposition 6.2. Let K ⊂ C be a number field, 0< ν ≤ 1/(128d2), and suppose P ∈ K [X1, . . . , Xd ]\{0}

has at most k nonzero terms for an integer k ≥ 2 and satisfies B(P) <∞. Let ζ ∈ Gd
m have order N and

suppose G is a subgroup of (Z/NZ)× with P(ζ σ ) ̸= 0 for all σ ∈ G. Then the following properties hold
true with r = d − rk(3ζ (ν))≥ 1:

(i) If d = 1, then

1
#G

∑
σ∈G

log|P(ζ σ )| = m(P)+ Od,k

(
[K : Q]

2
[(Z/NZ)× : G]

2 fG deg(P)2(1 + h(P))
N νr/(20d)

)
.

(ii) If d ≥ 2 and λ̃(ζ ; ν) > d1/2 max{B(P), deg P}, then

1
#G

∑
σ∈G

log|P(ζ σ )|

= m(P)+ Od,k,ν

(
[K : Q]

2
[(Z/NZ)× : G]

2 fG deg(P)2(1 + h(P))
N νr/(20d) +

deg(P)16d2

λ̃(ζ ; ν)1/(16(k−1))

)
. (6-3)

Proof. We may assume that P is nonconstant. Part (i) follows with ample margin from Proposition 4.5
with Q = P and F = K . Indeed, we require the standard estimate d0(N ) ≪ϵ N ϵ which holds for all
ϵ > 0. We refrain from stating better bounds in (i) for the purpose of better comparability with the bounds
in part (ii).

We split the proof of part (ii) up into 5 steps:

Step 1: Reduction to the univariate case. We write L for the fixed field of G in Q(ζ ). Note that G is
the Galois group of Gal(Q(ζ )/L)= Gal(L(ζ )/L).

By Proposition 5.1 applied to ζ we obtain V ∈ GLd(Z) and a decomposition ζ = ηξ . Let E = ord(η)
and M = ord(ξ). By (i) of Proposition 5.1 we find

E ≤ N 2ν1+r
and thus M ≥ N/E ≥ N 1−2ν1+r

. (6-4)

The group used in Proposition 5.1(iii) is obtained as follows; we denote it with H to avoid a clash of no-
tation with G from above. Let H be the subgroup of (Z/MZ)× corresponding to Gal(Q(ξ)/Q(ξ)∩ L(η)).
By Galois theory, see for example [Lang 2002, Theorem VI.1.12], the restriction homomorphism
Gal(L(ξ)/L(ξ)∩ L(η)) → Gal(Q(ξ)/Q(ξ)∩ L(η)) is an isomorphism. Using this isomorphism we
will identify H with Gal(L(ξ)/L(ξ)∩ L(η)).

For future reference we estimate the conductor of H ⊂ (Z/MZ)×. The fixed field of H in Q(ξ) is
Q(ξ)∩ L(η). By the characterization of fG , the field L is contained in Q(e(1/ fG)). So Q(ξ)∩ L(η)⊂

Q(e(1/M)) ∩ Q(e(1/ fG), e(1/E)) since ξ has order M and η has order E . This final intersection is
generated by a root of unity of order gcd(M, lcm( fG, E)). We conclude

fH ≤ lcm( fG, E)≤ fG E ≤ fG N 2ν1+r
(6-5)

having used (6-4).
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We use basic Galois theory to compute

1
#G

∑
σ∈G

log|P(ζ σ )| =
1

[L(η) : L]

∑
τ∈Gal(L(η)/L)

∑
σ∈Gal(L(ξ)/L)

τ |L(η)∩L(ξ)=σ |L(η)∩L(ξ)

1
#H

log|P(ητ ξσ )|.

Observe that the inner sum is over a coset of τ̃H of H inside (Z/MZ)×; here τ̃ ∈ (Z/MZ)× restricts to
the restriction τ |L(η)∩L(ξ). Below, τ is as in the outer sum. The inner sum equals

Sτ =
1

#H

∑
σ∈τ̃H

log|P(ητ ξσ )| =
1

#H

∑
σ∈H

log|P(ητ ξ τ̃ σ )|, (6-6)

and the complete sum is

1
#G

∑
σ∈G

log|P(ζ σ )| =
1

[L(η) : L]

∑
τ∈Gal(L(η)/L)

Sτ . (6-7)

By Proposition 5.1(iii) applied to H we get a ∈ Zr satisfying (5-7) and σ0 ∈ H with

ξ V
= (1, . . . , 1, e(aσ0/M)).

We extend a to the left by d − r zeros and obtain a row vector (0, a) ∈ Zd . We set u = (0, a)V −1
∈ Zd

and use Proposition 5.1(ii) to get ξ = e(uσ0/M). Let us set

Q = P(ητ Xu)X l (6-8)

in the unknown X ; it depends on τ and the exponent l is chosen to make sure that Q is a polynomial.
So 0 ̸= |P(ητ ξ τ̃ σ )| = |Q(e(̃τσσ0/M))| and in particular Q ̸= 0. We may assume that Q(0) ̸= 0. The
coefficients of Q lie in F = K (η) and Q has at most k nonzero terms as P has at most this many nonzero
terms. All this allows us to rewrite (6-6) using a univariate polynomial, σ0 above is absorbed by the sum

Sτ =
1

#H

∑
σ∈H

log|Q(e(τ̃σ/M))|. (6-9)

Step 2: Nonvanishing of Q on S1
\µ∞. Suppose w ∈ Zd

\{0} satisfies ⟨u, w⟩ = 0 and |w| = ρ(u). Recall
that ξ = e(uσ0/M), so ξw = 1. Thus |w| ≥ δ(ξ) and Proposition 5.1(iv) together with (6-2) yield

ρ(u)= |w| ≥ d−1/2λ̃(ζ ; ν). (6-10)

Let z ∈ S1
\µ∞ be algebraic. If Q(z) = 0 then P(ητ zu) = 0 by (6-8). By Definition 6.1 we have

ρ(u)≤ B(P). This and (6-10) contradict the lower bound λ̃(ζ ; ν) > d1/2B(P) in the hypothesis. Hence
Q(z) ̸= 0.

Thus Q, having algebraic coefficients, does not vanish at any point of S1
\µ∞. As ρ(u) > 1 we also

have u ̸= 0.
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Step 3: Bounding quantities in preparation for Proposition 4.5. This step is mainly bookkeeping.
We aim to apply Proposition 4.5 to Q, the root of unity e(τ̃ /M), and the subgroup H ⊂ (Z/MZ)× to
determine the asymptotic behavior of Sτ . To proceed we bound the various quantities below separately:

[(Z/MZ)× : H ] ≤ [(Z/NZ)× : G]N 2ν1+r
,

fH ≤ fG N 2ν1+r
,

deg(Q)≪d deg(P)min{[(Z/NZ)× : G] f 1/2
G N 1−νr/(10d), N 2

},

h(Q)= h(P),

[K (η) : Q] = [F : Q] ≤ [K : Q]N 2ν1+r
.

(6-11)

Note that #H = [Q(ξ) : Q(ξ)∩ L(η)] = [Q(ξ) : Q]/[Q(ξ)∩ L(η) : Q] ≥ [Q(ξ) : Q]/[L(η) : Q] and
since [Q(ξ) : Q] = #(Z/MZ)× we find [(Z/MZ)× : H ] ≤ [L(η) : Q] ≤ [L : Q]E . The first bound follows
from (6-4) and as [L : Q] = [(Z/NZ)× : G].

We already proved the bound for fH in (6-5).
Next comes deg(Q). Observe that

deg(Q)≪d |a||V −1
| deg(P)≪d |a||V |

d−1 deg(P)

≪d [(Z/MZ)× : H ] f 1/2
H deg(P)N 1+2(d−1)ν1+r

−νr/(6d)

≪d [(Z/NZ)× : G] f 1/2
G deg(P)N 1+2ν1+r

+ν1+r
+2(d−1)ν1+r

−νr/(6r)

having used the bounds in Proposition 5.1, M ≤ N , and the first two bounds in (6-11). As ν ≤ 1/(128d2)

the exponent of N is at most 1 + (2d + 1)ν1+r
− νr/(6d)≤ 1 − νr/(10d) and thus we obtain

deg(Q)≪d [(Z/NZ)× : G] f 1/2
G deg(P)N 1−νr/(10d)

which is part of the third inequality in (6-11). The bound deg(Q)≪d deg(P)N 2 is proved similarly, but
requires only the trivial estimate |a|< M ≤ N from (5-7) and |V −1

| ≪d N 2dν1+r
.

We claim that the coefficients of P(ητ Xu) are equal to the coefficients of P up to multiplication by a
root of unity. In view of the definition of the height (2-4) this will imply the fourth claim in (6-11). Indeed,
it suffices to rule out that two distinct monomials in P lead to the same power of X after the substitution.
Hence it suffices to verify ρ(u) > deg P . But this follows from (6-10) and as λ̃(ζ ; ν) > d1/2 deg P by
hypothesis.

The degree of the number field F containing the coefficients of Q satisfies

[F : Q] = [K (η) : Q] ≤ [K : Q][Q(η) : Q] ≤ [K : Q]E ≤ [K : Q]N 2ν1+r

where we used (6-4). This implies the fifth claim in (6-11).

Step 4: Applying Proposition 4.5 in the univariate case. Our aim is to determine the asymptotics of
(6-9). We use the bounds from the last step to control the error term in (4-8) arise in Proposition 4.5
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applied to F, Q, e(τ̃ /M) of order M , and to H . By (6-11) the error is

≪ [F : Q]
2
[(Z/MZ)× : H ] f 1/2

H deg(Q)(log(2 deg Q)+ h(Q))
(log 2M)3d0(M)

M

≪d [K : Q]
2
[(Z/NZ)× : G]

2 fG deg(P)(log(2N 2 deg P)+ h(P))N 9ν1+r
+1−νr/(10d) (log 2M)3d0(M)

N

where we use deg Q ≪ N 2 deg P to bound log(2 deg Q) from above and the lower bound for M in (6-4).
The exponent of N is 9ν1+r

− νr/(10d) ≤ −νr/(19d) as ν ≤ 1/(128d2) ≤ 1/(256d). As M | N we
find d0(M)≤ d0(N ). As in the proof of (i) we use d0(N )≪ϵ N ϵ for all ϵ. We also anticipate log(2N 2)

coming from log(2N 2 deg P) to find

log(2N 2)N 9ν1+r
−νr/(10d)

(log 2M)3d0(M)≪d,ν N−νr/(20d).

Using the crude inequality log deg P ≤ deg P the error term is thus

≪d,ν [K : Q]
2
[(Z/NZ)× : G]

2 fG deg(P)2(1 + h(P))N−νr/(20d).

Applying Proposition 4.5 and recalling m(Q)= m(P(ητ Xu)) we find

Sτ = m(P(ητ Xu))+ Od,ν

(
[K : Q]

2
[(Z/NZ)× : G]

2 fG deg(P)2(1 + h(P))
N νr/(20d)

)
. (6-12)

Step 5: Applying a quantitative version of Lawton’s theorem. To determine the asymptotics of the
Mahler measure we apply our quantitative variant of Lawton’s theorem, Theorem A.1 to P(ητ (X1, . . . , Xd))

̸= 0 and u. This polynomial has the same degree and number of terms as P . The exponent vector satisfies
ρ(u)≥ d−1/2λ̃(ζ ; ν) by (6-10). Our hypothesis implies ρ(u) > deg P , as required by Theorem A.1. We
find

m(P(ητ Xu))= m(P(ητ (X1, . . . , Xd)))+ Od,k

(
deg(P)16d2

λ̃(ζ ; ν)1/(16(k−1))

)
. (6-13)

The Mahler measure of P and P(ητ (X1, . . . , Xd)) are equal as translating by ητ ∈ (S1)d does not
affect the value of the integral (1-4).

By combining (6-12) and (6-13) we conclude

Sτ = m(P)+ Od,k,ν

(
[K : Q]

2
[(Z/NZ)× : G]

2 fG deg(P)2(1 + h(P))
N νr/(20d) +

deg(P)16d2

λ̃(ζ ; ν)1/(16(k−1))

)
.

Part (ii) of the proposition follows from (6-7). □

We now explain why the situation simplifies when the order N of ζ is a prime number. In this case,
after the proof of Proposition 5.1 we observed that η = 1 and ζ = ξ . In the proof above, inequality (6-10)
can be replaced by ρ(u) ≥ δ(ζ ). So the hypothesis on ζ in (ii) of the proposition can be replaced by
δ(ζ ) >max{B(P), deg P}; see also the argument near (6-13). This is certainly satisfied for δ(ζ )→ ∞.
Moreover, λ̃(ζ ; ν) can be replaced by δ(ζ ) in (6-3). From this point it is not difficult to deduce Theorem 1.1
when N is a prime.
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The remaining argument is required to treat general N . We need to keep track of extra information such
as [K : Q], [(Z/NZ)× : G], fG , and the dependency on P to anticipate a monomial change of coordinates.

7. Equidistribution

Proposition 6.2 closes in on Theorem 1.1. Indeed, suppose that for some choice of ν the value λ̃(ζ ; ν)

grows polynomially in δ(ζ ). Then the error term of (6-3) tends to 0 as δ(ζ )→ ∞ and we are done.
However, consider the following example, already found in the beginning of Section 5. Suppose n ≥ 2

and ζp and ζpn are roots of unity of order p and pn , respectively. Say ζ = (ζp, ζpn ), it has order pn .
The lattice 3ζ contains (p, 0)t and this vector has minimal positive Euclidean norm in 3ζ . For n large
enough in terms of ν we have 3(ν)= (p, 0)t Z and 3̃(ν)= (1, 0)t Z. Thus λ1(3̃ζ (ν))= 1 and this yields
λ̃(ζ ; ν)= 1.

This example suggests a monomial change of coordinates which we will do in the next section. In the
current section we lay the groundwork for this change of coordinates.

7A. Numerical integration. We require a higher dimensional replacement of the Koksma bound [Harman
1998, Theorem 5.4]. The classical analog is called the Koksma–Hlawka Inequality and applies to functions
of bounded variation in the sense of Hardy and Krause. Let θ : U → R be a function whose domain U is
a nonempty subset of Rd . In this subsection we use the modulus of continuity of θ defined by

ω(θ; t)= sup
x,y∈U

|x−y|≤t

|θ(x)− θ(y)| (7-1)

for all t ≥ 0; as usual |·| denotes the maximum-norm on Rd . We define ω(θ; t)= 0 if U = ∅. We will
use it to estimate a mean in terms of the corresponding integral in Proposition 7.1. Hlawka [1971] has
a related and more precise result. For the reader’s convenience we give a self-contained treatment that
suffices for our purposes.

Proposition 7.1. Let θ : [0, 1]
d
→ R be a continuous function and let x1, . . . , xn ∈ [0, 1)d with discrepancy

D = D(x1, . . . , xn). Then∣∣∣∣1
n

n∑
i=1

θ(xi )−

∫
[0,1)d

θ(x) dx
∣∣∣∣ ≤ (1 + 2d+1)ω(θ,D1/(d+1)). (7-2)

Proof. Both sides of (7-2) are invariant under adding a constant function to θ . So we may assume θ(0)= 0.
Let T ≥ 1 be an integral parameter to be determined below. We write [0, 1)d as a disjoint union of T d

half-open hypercubes Q j with side length 1/T . Let Q j denote the closure of Q j in [0, 1]
d . The mean value

theorem tells us that for each j there exists y j ∈ Q j such that
∫

Q j
θ(x) dx = vol(Q j )θ(y j )= T −dθ(y j ).

For each j we write n j = #{i ∈ {1, . . . , n} : xi ∈ Q j }. So

1
n

∣∣∣∣ n∑
i=1

θ(xi )−
∑

j

n jθ(y j )

∣∣∣∣ ≤
1
n

∑
j

n∑
i=1

xi ∈Q j

|θ(xi )− θ(y j )| ≤
1
n

∑
j

ω(θ; 1/T )n j = ω(θ; 1/T ). (7-3)
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On the other hand, 1
n

∑
j n jθ(y j ) equals

∑
j

n j

n
T d

∫
Q j

θ(x) dx =

∑
j

(1 + δ j T d)

∫
Q j

θ(x) dx =

∫
[0,1)d

θ(x) dx + T d
∑

j

δ j

∫
Q j

θ(x) dx

where δ j = n j/n − T −d . The definition of discrepancy implies |δ j | ≤ D. Hence∣∣∣∣1
n

∑
j

n jθ(y j )−

∫
[0,1)d

θ(x) dx
∣∣∣∣ ≤ T dD

∫
[0,1)d

|θ(x)| dx ≤ T d+1Dω(θ; 1/T ) (7-4)

where we used |θ(x)| ≤ Tω(θ; 1/T ) for all x ∈ [0, 1]
d ; recall that θ(0)= 0.

We apply the triangle inequality to (7-3) and (7-4) and conclude that the left-hand side of (7-2) is at
most (1 + T d+1D)ω(θ; 1/T ). To complete the proof observe that 0 < D ≤ 1 and fix T = ⌈D−1/(d+1)

⌉

which satisfies D−1/(d+1)
≤ T ≤ D−1/(d+1)

+ 1. □

7B. Averaging the Mahler measure. This subsection is purely in the complex setting. Let P ∈

C[X1, . . . , Xd ]\{0} have at most k ≥ 2 nonzero terms, where k is an integer.
Let l ∈ {1, . . . , d −1}. For x ∈ Rl we define Pe(x) = P(e(x), X1, . . . , Xd−l) ∈ C[X1, . . . , Xd−l]. Next

we construct an auxiliary Laurent polynomial P̂ in l variables whose value at e(x) is comparable to
|Pe(x)|. For i ∈ Zd−l we denote pi ∈ C[X1, . . . , Xl] the coefficients of P , taken as a Laurent polynomial
in Xl+1, . . . , Xd , and define

P̂ =

∑
i

pi (X1, . . . , Xl)pi (X−1
1 , . . . , X−1

l ) ∈ C[X±1
1 , . . . , X±1

l ] (7-5)

where the bar denotes complex conjugation.

Lemma 7.2. In the notation above the following properties hold true:

(i) The Laurent polynomial P̂ has at most k2 nonzero terms.

(ii) The product (X1 · · · Xl)
deg P P̂ is a polynomial of degree at most (l + 1) deg P.

Proof. If each pi consists of ki nonzero terms, then P̂ consists of at most
∑

i k2
i terms. Since

∑
i ki ≤ k

we find that P̂ has at most k2 nonzero terms. This implies part (i).
Part (ii) follows from (7-5). □

Observe that P̂(e(x))=
∑

i |pi (e(x))|2 ≥ 0. As |Pe(x)| is the maximum of |pi (e(x))| as i varies, we
find

1
k1/2 P̂(e(x))1/2 ≤ |Pe(x)| ≤ P̂(e(x))1/2. (7-6)

So Pe(x) = 0 if and only if P̂(e(x))= 0.
The main result of this subsection is:
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Proposition 7.3. Assume P ∈ C[X1, . . . , Xd ]\C has at most k nonzero terms for an integer k ≥ 2. Let
l ∈ {1, . . . , d−1} and let P̂ be as above. Suppose x1, . . . , xn ∈ [0, 1)l with discrepancy D=D(x1, . . . , xn).
If Pe(xi ) ̸= 0 for all i ∈ {1, . . . , n}, then

1
n

n∑
i=1

m(Pe(xi ))= m(P)+ Od,k

(
deg(P)D1/(16(d+1)k2)

+

∣∣∣∣m(P̂)− 1
n

n∑
i=1

log P̂(e(xi ))

∣∣∣∣). (7-7)

By a theorem of Boyd [1998], the Mahler measure is a continuous function in the coefficients of a
nonzero polynomial of fixed degree (below in Lemma A.5 we prove that it is even Hölder continuous).
Therefore, if the Pe(xi ) in the proposition above are uniformly bounded away from 0, then the average
on the left in (7-7) converges to the integral

∫
[0,1)l m(Pe(x)) dx as the discrepancy tends to 0. But even

when |P| = 1 it is conceivable that |Pe(xi )| is small for some xi , then Pe(xi ) is near the Mahler measure’s
logarithmic singularity. This happens if and only if P̂(e(xi )) is small by (7-6). The proposition states that
we can handle the mean for arbitrary xi if we can control the logarithmic mean of P̂ over the e(xi ).

The proof follows a series of lemmas. We first note a useful property of the modulus of continuity as
defined in (7-1). Let θ : [0, 1]

d
→ R ∪ {−∞} be a function and c ∈ R, such that θc(x) = max{c, θ(x)}

defines a continuous function [0, 1]
d

→ R. We claim that

ω(θc; t)≤ ω(θ |θ−1((c,∞)); t) for all t ≥ 0. (7-8)

This inequality follows by definition if θ−1((c,∞)) is empty. Say x, y ∈ [0, 1]
d with |x − y| ≤ t . To

bound |θc(x)− θc(y)| from above by the right-hand side of (7-8) we may assume θc(x) > c = θc(y). By
continuity of θc there is for all small enough ϵ > 0 a z ∈ [0, 1]

d on the line segment connecting x and y with
c+ϵ= θc(z)= θ(z). Then |θc(x)−θc(y)| = |θ(x)−c| ≤ |θ(x)−θ(z)|+|θ(z)−c| ≤ω(θ |θ−1((c,∞)); t)+ϵ.
Our claim (7-8) follows as ϵ can be made arbitrarily small.

Let P and k be as in Proposition 7.3 and assume in addition that |P| = 1.

Lemma 7.4. let x1, . . . , xn ∈ [0, 1)d have discrepancy D = D(x1, . . . , xn). If r ∈ (0, 1], then

1
n

#{i ∈ {1, . . . , n} : |P(e(xi ))| ≤ r} ≪d,k r1/(2k)
+ deg(P)D1/(d+1)/r. (7-9)

Proof. For x ∈ [0, 1]
d we set

χ(x)= max{0, 2 − |P(e(x))|/r}

and this defines a continuous function on [0, 1]
d with values in [0, 2].

We note that χ(x)≥ 1 if |P(e(x))| ≤ r . As χ is nonnegative the average 1
n

∑n
i=1 χ(xi ) is at least the

proportion of the i among {1, . . . , n} such that |P(e(xi ))| ≤ r . On the other hand, Lemma A.3(i) implies∫
[0,1)d

χ(x) dx ≤ 2vol({x ∈ [0, 1)d : |P(e(x))|< 2r})≪d,k r1/(2(k−1))
≪d,k r1/(2k). (7-10)

We will apply Proposition 7.1 to bound the proportion on the left in (7-9). Say t > 0, let us verify

ω(χ; t)≪d,k deg(P)t/r. (7-11)
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We apply (7-8) to θ(x)=2−|P(e(x))|/r and c=0. Say x, y ∈θ−1((0,∞))with |x−y|≤ t , so in particular
|P(e(x))|< 2r and |P(e(y))|< 2r . Then |θ(x)−θ(y)| = |P(e(x))− P(e(y))|/r ≪d,k deg(P)t/r , where
we used |x − y| ≤ t and |P| = 1. We obtain (7-11).

Let us set t = D1/(d+1). We apply numerical integration, Proposition 7.1, and use (7-10) to conclude
the proof. □

In the next lemma we truncate the singularity of x 7→ log|P(e(x))| using a parameter r and bound the
modulus of continuity of the resulting function.

Lemma 7.5. Let r ∈ (0, 1], for x ∈ [0, 1]
d we define ψ(x) = max{log r, log|P(e(x))|} as above (7-8).

Then ψ : [0, 1]
d

→ R is continuous and for all t > 0 we have

ω(ψ; t)≪d,k
deg(P)t

r
.

Proof. Clearly, ψ is continuous on [0, 1]
d . We apply (7-8) to θ(x) = log|P(e(x))| and c = log r . Say

x, y ∈ [0, 1]
d with |P(e(x))| ≥ |P(e(y))| ≥ r and |x − y| ≤ t . Then as in the proof of Lemma 7.4 we find∣∣|P(e(x))/P(e(y))| − 1

∣∣ ≪d,k deg(P)t/|P(e(y))| ≪d,k deg(P)t/r . Applying the logarithm and using
0 ≤ log s ≤ s − 1 for all s ≥ 1 yields∣∣log|P(e(x))| − log|P(e(y))|

∣∣ ≪d,k
deg(P)t

r
,

as desired. □

Lemma 7.6. We keep the notation of Lemma 7.5. Then∣∣∣∣m(P)− ∫
[0,1)d

ψ(x) dx
∣∣∣∣ ≪d,k r1/(4k).

Proof. The absolute value in question is

E =

∣∣∣∣∫
6

log|P(e(x))| dx − vol(6) log r
∣∣∣∣

where 6= S(P, r)= {x ∈ [0, 1)d : |P(e(x))|< r} in the notation of (A-2). Hence vol(6)≪d,k r1/(2(k−1))

by Lemma A.3(i). So

E ≪d,k

∫
6

∣∣log|P(e(x))|
∣∣ dx + r1/(2k)

as r ≤ 1. To bound the final integral we use Lemma A.4 which implies E ≪d,k r1/(4(k−1))
+ r1/(2k)

≪d,k

r1/(4k). □

Lemma 7.7. Let x1, . . . , xn ∈ [0, 1)d with P(e(xi )) ̸= 0 for all i and discrepancy D = D(x1, . . . , xn). We
set

ϵ =

∣∣∣∣m(P)− 1
n

n∑
i=1

log|P(e(xi ))|

∣∣∣∣.
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If r ∈ (0, 1], then

1
n

∑
|P(e(xi ))|<r

∣∣log|P(e(xi ))|
∣∣ ≪d,k deg(P)D1/(d+1)r−2

+ r1/(4k)
+ ϵ.

Proof. By the triangle inequality and with ψ as in Lemma 7.5 we have∣∣∣∣1
n

n∑
i=1

ψ(xi )− log|P(e(xi ))|

∣∣∣∣ ≤

∣∣∣∣1
n

n∑
i=1

ψ(xi )−

∫
[0,1)d

ψ(x) dx
∣∣∣∣ + ∣∣∣∣∫

[0,1)d
ψ(x) dx − m(P)

∣∣∣∣ + ϵ.
We use Proposition 7.1 and Lemma 7.5 with t = D1/(d+1) to bound the first term on the right by
≪d,k deg(P)D1/(d+1)/r . The second term is ≪d,k r1/(4k) by Lemma 7.6.

The term on the left equals 1
n

∑
|P(e(xi ))|<r (log r − log|P(e(xi ))|). Observe that − log|P(e(xi ))| =∣∣log|P(e(xi ))|

∣∣ in this sum as r ≤ 1. We rearrange and find

1
n

∑
|P(e(xi ))|<r

∣∣log|P(e(xi ))|
∣∣ ≪d,k deg(P)D1/(d+1)r−1

+ r1/(4k)
+

|log r |

n

( ∑
|P(e(xi ))|<r

1
)

+ ϵ.

By Lemma 7.4, the term corresponding to the sum over i on the right is

≪d,k r1/(2k)
|log r | + deg(P)D1/(d+1)r−1

|log r |.

Combining our bounds and absorbing |log r | in an appropriate power of r−1 we find

1
n

∑
|P(e(xi ))|<r

∣∣log|P(e(xi ))|
∣∣ ≪d,k deg(P)D1/(d+1)r−2

+ r1/(4k)
+ ϵ,

as desired. □

After this warming-up we prove variants of Lemmas 7.5 and 7.6 where log|·| is replaced by the Mahler
measure. We also truncate at the parameter r .

Lemma 7.8. Let r ∈ (0, 1], for x ∈ [0, 1]
l we define µ(x)= max{log r,m(Pe(x))} as above (7-8) where we

interpret the Mahler measure of 0 as −∞. Then µ : [0, 1]
l
→ R is continuous and for all t > 0 we have

ω(µ; t)≪d,k

(
deg(P)t

r

)1/(8k)

(1 + |log r |).

Proof. By Boyd’s theorem [1998] the Mahler measure is continuous on the space of nonzero polynomials
of bounded degree. Thus µ is continuous on [0, 1]

l . Observe that ω(µ; t)≪k 1+|log r | as m(Pe(x))≪k 1
by (2-1) and |P| = 1. So we may assume that deg(P)t/r is sufficiently small in terms of d and k.

We again use (7-8), this time with θ(x)=m(Pe(x)) and c = log r . Let x, y ∈[0, 1]
d with m(Pe(x))≥ log r

and m(Pe(y)) ≥ log r and |x − y| ≤ t . Then |Pe(x)| ≫k r and |Pe(y)| ≫k r by (2-1). As in the proof
of Lemma 7.4 we find |Pe(x) − Pe(y)| ≪d,k deg(P)t . Since deg(P)t/r is smaller than some prescribed
constant depending only on d and k we may assume |Pe(x)− Pe(y)|/min{|Pe(x)|, |Pe(y)|} ≤

1
2 . Lemma A.5
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implies

|m(Pe(x))− m(Pe(y))| ≪d,k

(
|Pe(x) − Pe(y)|

min{|Pe(x)|, |Pe(y)|}

)1/(8(k−1))

≪d,k

(
deg(P)t

r

)1/(8(k−1))

,

as desired. □

Before continuing we recall the pi and the auxiliary Laurent polynomial P̂ determined by P and l in
(7-5). By Lemma 7.2(i) P̂ has at most k2 nonzero terms, so supx∈[0,1]l |P̂(e(x))| ≤ k2

|P̂|. There exists i
with |pi | = |P| = 1. The definition of the Mahler measure implies

m(pi )≤ sup
x∈[0,1]l

log|pi (e(x))| ≤
1
2 sup

x∈[0,1]l
log|P̂(e(x))| ≤

1
2(2 log k + log|P̂|).

Using |pi | = 1 and the theorem of Dobrowolski and Smyth, Theorem 2.1, we conclude m(pi ) ≥

−(k − 2) log 2. Thus |P̂| ≫k 1. Bounding |P̂| from above is more straight-forward. Indeed, |P̂| ≪k 1 by
(7-5) and since |P| = 1. Therefore,

1 ≪k |P̂| ≪k 1. (7-12)

We let P̃ denote the polynomial from Lemma 7.2(ii) divided by |P̂|, so |P̃| = 1.

Lemma 7.9. We keep the notation of Lemma 7.8. Then∣∣∣∣m(P)− ∫
[0,1)l

µ(x) dx
∣∣∣∣ ≪d,k r1/(2k2).

Proof. We recall that |P̂|P̃ equals P̂ up to a monomial factor. By (7-6), (7-12), and Theorem 2.1 there
exists c> 0 depending only on k such that |P̃(e(x))| ≥ cr2 implies m(Pe(x))≥ log r . By Fubini’s theorem
we have

∫
[0,1)l m(Pe(x)) dx = m(P), so the absolute value in question is

E =

∣∣∣∣∫
6

m(Pe(x)) dx − vol(6) log r
∣∣∣∣

where 6 = S(P̃, cr2); indeed m(Pe(x))= µ(x) for all x ∈ [0, 1]
l
\6.

Note that vol(6)≪d,k r1/(k2
−1) by Lemma A.3(i) applied to P̃ . So

E ≪d,k r1/(k2
−1)

|log r | +

∣∣∣∣∫
6

m(Pe(x)) dx
∣∣∣∣ ≪d,k r1/k2

+

∫
6

|m(Pe(x))| dx . (7-13)

To bound the integral in (7-13) from above we will replace m(Pe(x)) by log|Pe(x)|. Say x ∈ 6 and
Pe(x) ̸= 0, then

∣∣m(Pe(x))− log|Pe(x)|
∣∣ ≪k 1 by (2-2) and thus |m(Pe(x))| ≪k 1+

∣∣log|Pe(x)|
∣∣. The function

x 7→
∣∣log|Pe(x)|

∣∣ is integrable over [0, 1)l in the sense of Lebesgue and so is x 7→ |m(Pe(x))|; both take
the value +∞ on a measure zero subset of [0, 1)l . We find

E ≪d,k r1/k2
+

∫
6

(
1 +

∣∣log|Pe(x)|
∣∣) dx .
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From (7-6) and (7-12) we deduce
∣∣log|Pe(x)|

∣∣ ≪k
∣∣log|P̃(e(x))|

∣∣ + 1 if P̂(e(x)) ̸= 0. So E ≪d,k r1/k2
+∫

6

(
1 +

∣∣log|P̃(e(x))|
∣∣) dx . By Lemma A.4 applied to P̃ and the volume estimate for 6, the integral on

the right is ≪d,k r1/(k2
−1)

+ r1/(2(k2
−1))

≪d,k r1/(2k2), as desired. □

Proof of Proposition 7.3. If we scale P by a factor λ, then P̂ , defined in (7-5), is scaled by |λ|2. So the
proposition is invariant under nonzero scaling and we may assume |P| = 1. Later on we will choose the
parameter r in terms of deg(P) and D. In the meantime we assume that r ∈

(
0, 1

2

]
.

We want to bound E = |m(P)−n−1 ∑n
i=1 m(Pe(xi ))| from above. We replace the Mahler measure with

µ( · ) coming from Lemma 7.8. Indeed, the triangle inequality implies

E ≤

∣∣∣∣m(P)− ∫
[0,1)l

µ(x) dx
∣∣∣∣ + ∣∣∣∣∫

[0,1)l
µ(x) dx −

1
n

n∑
i=1

µ(xi )

∣∣∣∣ + ∣∣∣∣1
n

n∑
i=1

µ(xi )− m(Pe(xi ))

∣∣∣∣.
The first term on the right is ≪d,k r1/(2k2) by Lemma 7.9 applied to P . By Proposition 7.1 applied to µ
and t = D1/(d+1) and Lemma 7.8 the second term is ≪d,k (deg(P)D1/(d+1)r−1)1/(8k)

|log r |. So

E ≪d,k r1/(2k2)
+ (deg(P)D1/(d+1)r−2)1/(8k)

+ E ′ (7-14)

after absorbing |log r | in a multiple r−1/(8k) and where E ′ is the third term above. Only terms with
m(Pe(xi ))≤ log r contribute to the average, so E ′ equals∣∣∣∣1

n

∑
m(Pe(xi ))≤log r

log r − m(Pe(xi ))

∣∣∣∣ ≤
|log r |

n
#{i : m(Pe(xi ))≤ log r} +

1
n

∑
m(Pe(xi ))≤log r

|m(Pe(xi ))|.

By Theorem 2.1 we may replace m(Pe(xi )) by log|Pe(xi )| at the cost of introducing a constant c1 > 0
depending only on k, i.e.,

E ′
≪d,k

|log r |

n
#{i : |Pe(xi )| ≤ c1r} +

1
n

∑
|Pe(xi )|≤c1r

(
1 +

∣∣log|Pe(xi )|
∣∣).

Recall that P̃ was defined after the proof of Lemma 7.8. If |Pe(xi )| ≤ c1r , then |P̃(e(xi ))| =

|P̂(e(xi ))|/|P̂| ≤ c2r2 for some c2 depending only on k by (7-6) and (7-12). The same inequalities
imply

∣∣log|Pe(xi )|
∣∣ ≪k

∣∣log|P̃(e(xi ))|
∣∣ + 1, the “+1” is absorbed in the first term in

E ′
≪d,k

|log r |

n
#{i : |P̃(e(xi ))| ≤ c2r2

} +
1
n

∑
|P̃(e(xi ))|≤c2r2

∣∣log|P̃(e(xi ))|
∣∣.

Recall that deg P̃ ≪d deg P and that P̃ has at most k2 terms and norm 1. Lemma 7.4 applied to P̃ and
c2r2 implies

E ′
≪d,k r1/k2

|log r | + deg(P)D1/(l+1)r−2
|log r | +

1
n

∑
|P̃(e(xi ))|≤c2r2

∣∣log|P̃(e(xi ))|
∣∣.
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We use Lemma 7.7, applied to P̃ and c2r2, to bound the final sum and thus obtain

E ′
≪d,k r1/k2

|log r | + deg(P)D1/(l+1)r−2
|log r | + deg(P)D1/(l+1)r−4

+ r1/(2k2)
+ ϵ,

here ϵ =
∣∣m(P̂)− 1

n

∑n
i=1 log|P̂(e(xi ))|

∣∣; note that multiplying P̂ with a nonzero scalar and a monomial
leaves ϵ invariant.

We return to the total error term E . By (7-14) together with l ≤ d, r ≤ 1, and D ≤ 1 we get

E ≪d,k r1/(2k2)
+ (deg(P)D1/(d+1)r−4)1/(8k)

+ deg(P)D1/(d+1)r−4
+ ϵ.

We choose r =
1
2D

1/(8(d+1)), then the proposition follows as D ≤ 1. □

8. Endgame

In this section we prove a stronger version of Theorem 1.1 from the introduction.

8A. Preliminaries. Suppose P ∈ Q[X±1
1 , . . . , X±1

d ]\{0}. For V ∈ GLd(Z) we set Q ∈ Q[X1, . . . , Xd ]

to be P(X V −1
) multiplied by a suitable monomial in X1, . . . , Xd such that Q is coprime to X1 · · · Xd .

Let l ∈ {0, . . . , d − 1}. For z = (z1, . . . , zl) ∈ Cl we set

PV,z = Q(z1, . . . , zl, X1, . . . , Xd−l) (8-1)

this is a polynomial in d − l variables. Note that PV,e(x) = Qe(x) ∈ C[X1, . . . , Xd−l] in the notation
introduced near the beginning of Section 7B. It is useful to allow l = 0 in which case PV,z = Q. In
our typical application ζ ∈ Gd

m has finite order. We write ζ V
= (η, ξ) where η ∈ Gl

m, ξ ∈ Gd−l
m and see

|PV,η(ξ)| = |P(ζ )|.
The following lemma requires a result of Bombieri, Masser, and Zannier [2007] and relies crucially on

the hypothesis that P is essentially atoral.

Lemma 8.1. Suppose P ∈ Q[X±1
1 , . . . , X±

d ]\{0} is essentially atoral. There exists c ≥ 1 depending
only on P and d such that for all ζ ∈ Gd

m of finite order with δ(ζ ) ≥ c, for all V ∈ GLd(Z), and all
l ∈ {0, . . . , d − 1}, we have PV,η ̸= 0 and B(PV,η)≤ c|V −1

| where ζ V
= {η} × Gd−l

m .

Proof. The Zariski closure W in Gd
m of all algebraic zeros of P in (S1)d is defined over Q.

By hypothesis, P is essentially atoral. So each irreducible component of the Zariski closure of all
complex roots of P on (S1)d is of codimension at least 2 in Gd

m or a proper torsion coset of Gd
m . Therefore,

each irreducible component of W is also of this type.
Let ζ ∈ Gd

m be of finite order with δ(ζ )≥ c, where c is to be determined, and ζ V
= {η}× Gd−l

m with V
and l as in the hypothesis.

Let η′
∈ Gd−l

m be of finite order, z ∈ S1
\µ∞ be algebraic, and u ∈ Zd−l with PV,η(η

′zu)= 0. We must
find v′′

∈ Zd−l
\{0} with |v′′

| ≤ c|V −1
| such that ⟨u, v′′

⟩ = 0. The existence of such a v′′ establishes in
particular PV,η ̸= 0 (as c depends only on P and d).

Now P(x) = 0 for the algebraic point x = (η, η′zu)V
−1

∈ (S1)d . So x is contained in an irreducible
component W ′ of W and in a 1-dimensional algebraic subgroup of Gd

m .
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If dim W ′
≤ d − 2, we apply Bombieri, Masser, and Zannier’s Theorem 1.5 [2007] to X = W ′. We get

a proper torsion coset of Gd
m containing x and coming from a finite set depending only on W ′, and thus

only on P . We find v ∈ Zd
\{0} with |v| ≪d,P 1 and xv = 1.

If W ′ is a proper torsion coset of Gd
m there exists v ∈ Zd

\{0}, depending only on W ′ such that yv = 1
holds for all y ∈ W ′. Again we find |v| ≪d,P 1 and xv = 1.

In either case we have

1 = xv = (η, η′zu)V
−1v

= ηv
′

(η′zu)v
′′

where V −1v =

(
v′

v′′

)
∈ Zl

× Zd−l . (8-2)

In particular, ⟨u, v′′
⟩ = 0 as z has infinite order.

If v′′
̸= 0, then we are done. Indeed, |v′′

| ≤ |V −1v| ≤ d|V −1
||v| and |v| is bounded from above solely

in terms of P and d .
Let us assume v′′

= 0 and derive a contradiction for c large in terms of P and d . Note l ≥ 1 as v cannot
be 0. Then v′

̸= 0 and by equality (8-2) we find ηv
′

= 1. Recall that η consists of the first l coordinates
of ζ V . Thus ζ v = 1 and hence δ(ζ ) ≤ |v| where |v| ≪d,P 1. But δ(ζ ) ≥ c, a contradiction for large
enough c. □

Definition 8.2. Let c ≥ 1 be a real number. Suppose P ∈ Q[X±1
1 , . . . , X±1

d ]\{0} and ζ ∈ Gd
m is of finite

order. The pair (P, ζ ) is called c-admissible if for all V ∈ GLd(Z) and all l ∈ {0, . . . , d − 1}, we have
PV,η ̸= 0 and B(PV,η)≤ c|V −1

| where ζ V
∈ {η} × Gd−l

m .

The case l = 0 yields in particular B(P)≤ c if there exists ζ such that (P, ζ ) is c-admissible; indeed
take V as the identity matrix.

Let P be an essentially atoral Laurent polynomial with algebraic coefficient. By Lemma 8.1 there
exists c ≥ 1 such that (P, ζ ) is c-admissible for all ζ ∈ Gd

m of finite order with δ(ζ )≥ c.
In the definition of admissibility, it will be useful to keep track of ζ when passing it down in an

induction step. The next lemma makes this precise.

Lemma 8.3. Let P ∈ Q[X±1
1 , . . . , X±1

d ]\{0} and let ζ ∈ Gd
m be of finite order such that (P, ζ ) is c-

admissible with c ≥ 1. Say l ∈ {0, . . . , d − 1}, V ∈ GLd(Z), and ζ V
= (η, ξ) with η ∈ Gl

m and ξ ∈ Gd−l
m .

Then (PV,η, ξ) is (cd|V −1
|)-admissible.

Proof. Throughout the proof we use that |·| is the maximum-norm on matrices.
We abbreviate R = P((η, X1, . . . , Xd−l)

V −1
) which equals PV,η up to a monomial factor. It suffices

to show that (R, ξ) is (cd|V |
−1)-admissible.

To this end say k ∈ {0, . . . , d − l −1},W ∈ GLd−l(Z), and ξW
= {η′

}×Gd−l−k
m with η′

∈ Gk
m . We must

bound B(RW,η′). So say z ∈ S1
\µ∞, u ∈ Zd−l−k , and η′′

∈ Gd−l−k
m is of finite order with RW,η′(η′′zu)= 0.

Thus R((η′, η′′zu)W
−1
) = 0 and hence P((η, (η′, η′′zu)W

−1
)V

−1
) = 0. We abbreviate W ′

=
( El

0
0
W

)
with

El the l × l identity matrix. So P((η, η′, η′′zu)(V W ′)−1
)= 0 which means PV W ′,(η,η′)(η

′′zu)= 0.
Observe that ζ V W ′

= (η, ξ)W
′

= (η, ξW )= (η, η′, ∗). By hypothesis (P, ζ ) is c-admissible. Therefore,
B(PV W ′,(η,η′)) ≤ c|(V W ′)−1

| = c|W ′−1V −1
| ≤ cd|V −1

||W ′−1
| = cd|V −1

||W −1
|. In other words, there
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exists v ∈ Zd−l−k
\{0} with |v| ≤ cd|V −1

||W −1
| and ⟨u, v⟩ = 0. Thus B(RW,η′) ≤ cd|V −1

||W −1
|, as

desired. Moreover, RW,η′ ̸= 0. □

Lemma 8.4. Let P ∈ Q[X±1
1 , . . . , X±1

d ]\{0} and let ζ ∈ Gd
m be of finite order such that (P, ζ ) is

c-admissible with c ≥ 1. Say l ∈ {1, . . . , d − 1} and let P̂ ∈ Q[X±1
1 , . . . , X±1

l ] be as in (7-5) and
ζ ∈ {η} × Gd−l

m . Then (P̂, η) is c-admissible.

Proof. Suppose V ∈ GLl(Z) such that ηV
= (η′, ∗) where η ∈ Gl ′

m and l ′ ∈ {0, . . . , l − 1}. Following the
definition of admissibility and recalling (8-1) we are in the following situation. There is η′′

∈ Gl−l ′
m , z ∈

S1
\µ∞ algebraic, and u′

∈ Zl−l ′ such that

P̂((η′, η′′zu′

)V
−1
)= 0.

It follows from the definition of P̂ that P((η′, η′′zu′

)V
−1
, Xl+1, . . . , Xd) = 0 as a polynomial in

Xl+1, . . . , Xd . We extend Ṽ =
( V

0
0

Ed−l

)
where Ed−l is the (d − l) × (d − l) identity matrix. Then

P((η′, η′′zu′

, zu′′

)Ṽ
−1
)= 0 for all u′′

∈ Zd−l .
By hypothesis, (P, ζ ) is c-admissible and ζ Ṽ

= (ηV , ∗) = (η′, ∗, ∗). Now PṼ ,η′(η′′zu′

, zu′′

) = 0,
so by definition there exist v′

∈ Zl−l ′, v′′
∈ Zd−l , not both zero, such that ⟨u′, v′

⟩ + ⟨u′′, v′′
⟩ = 0 and

|(v′, v′′)| ≤ c|Ṽ −1
| = c|V −1

| for the maximum-norm.
As we are free to vary u′′ we see that {u′

} × Qd−l is contained in a finite union of proper vector
subspaces of Qd , each defined as the kernel of ⟨·, (v′, v′′)⟩ with v′, v′′ as above. So {u′

} × Qd−l
⊂ V for

one of these vector spaces V defined by some (v′, v′′). We must have v′′
= 0 and hence ⟨u′, v′

⟩ = 0. Then
v′

̸= 0 and as |v′
| ≤ c|V −1

| we conclude that P̂ is c-admissible. □

Here are some basic estimates involving PV,η.

Lemma 8.5. Let P ∈ Q[X1, . . . , Xd ]\{0}, l ∈ {0, . . . , d − 1}, and V ∈ GLd(Z). Say η ∈ Gl
m has finite

order and PV,η ̸= 0: The following hold true.

(i) We have deg PV,η ≪d |V |
d−1 deg P.

(ii) We have h(PV,η)≤ log(k)+ h(P) where k ≥ 2 is an upper bound for the number of nonzero terms
of P.

Proof. Both parts follow are elementary consequences of the degree and the height of a polynomial. For
(i) we require |V −1

| ≪d |V |
d−1. For (ii) we note that Q from the beginning of this subsection has the

same coefficients and thus the same height as P . We decompose h(PV,η) in local heights as in (2-4). The
triangle inequality at the archimedean places leads to log k. □

We continue with further basic estimates involving P̂ as in (7-5).

Lemma 8.6. Let K ⊂ C be a number field and suppose P ∈ K [X1, . . . , Xd ]\{0} has at most k ≥ 2 terms,
where k is an integer. Say l ∈ {1, . . . , d − 1} with P̂ ∈ C[X±1

1 , . . . , X±1
l ] as in (7-5). Then the following

properties hold true:
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(i) We have P̂ ∈ K ′
[X±1

1 , . . . , X±1
l ] where K ′ is a number field such that K ⊂ K ′

⊂ C and [K ′
: Q] ≤

[K : Q]
2.

(ii) We have h(P̂)≪k 1 + h(P).

Proof. The coefficients of P̂ are contained in the subfield K ′ of C generated by a primitive element of
K/Q and its complex conjugate. So [K ′

: Q] ≤ [K : Q]
2 and (i) follows. For (ii) we remark that each pi

as in (7-5) has at most k terms and that there are at most k nonzero pi . Using the local decomposition of
the height together with the ultrametric and archimedean triangle inequality yields the claim. □

8B. Completion of proof. The next lemma will setup a monomial change of coordinates. We recall that
3ξ was defined in (5-4), 3̃ξ (ν) was defined in (5-5) and λ1(3̃ξ (ν)) is as in (5-6).

Lemma 8.7. Suppose ζ ∈ Gd
m has order N and let δ ≥ 1, ϵ ∈

(
0, 1

2

]
, ν1, . . . , νd−1 ∈

(
0, 1

2

]
with ν1 +· · ·+

νd−1 ≤
1
2 . Then there exist l ∈ {0, . . . , d − 1} and V ∈ GLd(Z) such that the following hold:

(i) We have |V | ≪d δ
2ϵd−l

and V is the identity matrix if l = 0.

(ii) We have ζ V
= (η, ξ) where η ∈ Gl

m, ξ ∈ Gd−l
m , ord(η) ≤ N ν1+···+νl , ξ has finite order at least N 1/2.

Finally, if l ≤ d − 2 then λ1(3̃ξ (νl+1)) > δ
ϵd−l−1

.

Proof. Set ξ1 = ζ and let V0 be the identity matrix in GLd(Z). For all l ∈ {1, . . . , d −1} with λ1(3̃ξl (νl))≤

δϵ
d−l

we will construct inductively Vl ∈ GLd(Z), ξl+1 ∈ Gd−l
m of order at most N , and ηl ∈ Gm of order at

most N νl such that ζ Vl = (η1, . . . , ηl, ξl+1) and

|Vl | ≪d δ
ϵd−1

+···+ϵd−l
. (8-3)

Suppose λ1(3̃ξl (νl))≤ δϵ
d−l

, there exists v ∈ 3̃ξl (νl)\{0} such that |v| ≤ δϵ
d−l

and v is primitive. Note
that [3̃ξl (νl) :3ξl (νl)]v lies in 3ξl , so ord(ξ vl )≤ [3̃ξl (νl) :3ξl (νl)] ≤ det(3ξl (νl))≤ N 2ν2

l ≤ N νl by (5-3)
and since det(3ξl ) = ord(ξl) ≤ N . We can realize v as the first column of a matrix V ′

l ∈ GLd−l+1(Z)

with |V ′

l | ≪d |v| ≪d δ
ϵd−l

, see the proof of Proposition 5.1. Let El−1 denote the (l − 1)× (l − 1) identity
matrix and set

Vl = Vl−1

(
El−1 0

0 V ′

l

)
∈ GLd(Z).

By step l −1 we have ζ Vl−1 = (η1, . . . , ηl−1, ξl). We define ηl and ξl+1 via ζ Vl = (η1, . . . , ηl, ξl+1). Note
ηl = ξ vl , so ord(ηl)≤ N νl by the bound above. Finally, |Vl | ≪d |Vl−1||V ′

l | ≪d δ
ϵd−1

+···+ϵd−l
, and ξ N

l = 1.
This completes our construction.

Otherwise, fix the largest l ∈ {1, . . . , d −1} for which λ1(3̃ξl (νl))≤ δ
ϵd−l

; if no l satisfies the inequality
we take l = 0. Then define V = Vl . Thus V is the identity matrix if l = 0 and claims (i) and (ii)
are immediate as ξ = ζ . So say l ≥ 1. Then (i) holds by (8-3) as ϵ ≤

1
2 . To verify (ii) observe that

ζ V
= (η1, . . . , ηl, ξ) with ξ = ξl+1 ∈ Gd−l

m and (η1, . . . , ηl) has order at most N ν1+···+νl ≤ N 1/2. Thus ξ

has finite order at least N 1/2 since ζ V has order N . If l ≤ d −2, then λ1(3̃ξ (νl+1)) > δ
ϵd−l−1

, because the
construction does not continue. □
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We are ready to prove a theorem that will quickly imply our Theorem 1.1 and its refinements.

Theorem 8.8. Let c ≥ 1, let K ⊂ C be a number field, and suppose P ∈ K [X1, . . . , Xd ]\{0} has at most
k terms for an integer k ≥ 2. There are constants C = C(d, k)≥ 1 and κ = κ(d, k) > 0 depending only
on d and k with the following property. Let ζ ∈ Gd

m have finite order N and suppose G is a subgroup of
(Z/NZ)× with P(ζ σ ) ̸= 0 for all σ ∈ G. If (P, ζ σ ) is c-admissible for all σ ∈ G and if

δ(ζ )≥ C max{c, deg P}
C (8-4)

then

1
#G

∑
σ∈G

log|P(ζ σ )| = m(P)+ Od,k

(
[K : Q]

2d
[(Z/NZ)× : G]

2 fG deg(P)16d2
(1 + h(P))

δ(ζ )κ

)
.

Proof. The case d = 1 follows from Proposition 6.2(i) as δ(ζ )= N in this case and as B(P) <∞. So we
may assume d ≥ 2. We may also assume that P is nonconstant.

We work with the parameters ν1, . . . , νd−1 ∈ (0, 1/(128d2)], ϵ ∈
(
0, 1

2

]
in this proof. They are assumed

to be small in terms of d and k but independent of P and ζ . We may assume that ϵ is small in terms of
the νl , e.g., ϵ ≤ νd

l /4 for all l. We determine them during the argument.
We apply Lemma 8.7 to ζ , δ = δ(ζ ), ϵ, and the νl . Say l, V, η, and ξ are given by this lemma, in

particular ζ V
= (η, ξ) and |V | ≪d δ(ζ )

2ϵd−l
. We have

ord(η)≤ N ν1+···+νl and ord(ξ)≥ N 1/2. (8-5)

The case l = 0 is straightforward. Here V is the identity matrix, ξ = ζ , and λ1(3̃ζ (ν1)) > δ(ζ )
ϵd−1

as
we are in case d − l = d ≥ 2 of Lemma 8.7(ii). So λ̃(ζ ; ν1)≥ δ(ζ )

min{ϵd−1,νd
1 /2} using (6-2) and δ(ζ )≤ N .

As (P, ζ ) is c-admissible we have B(P)≤ c. We will apply Proposition 6.2(ii) to P and ν = ν1, so we
must verify λ̃(ζ ; ν1) > d1/2 max{c, deg P}. This inequality is satisfied if δ(ζ ) is as in (8-4) with C large
in terms of ϵ, ν1, d , and k. So if l = 0, the theorem follows from (6-3).

Step 1: A monomial change of coordinates. From now on we assume l ≥ 1, i.e., l ∈ {1, . . . , d −1}. We
fix σ ∈ G throughout this set. We have ζ σV

= (ησ , ξσ ) ∈ Gl
m × Gd−l

m and |P(ζ σ )| = |PV,ησ (ξ
σ )|. This

time we apply Proposition 6.2 to PV,ησ ∈ K (η)[X1, . . . , Xd−l], ξ
σ , and νl+1. We often use that δ( · ) is

Galois invariant, i.e., δ(ζ σ )= δ(ζ ).
If d − l = 1 we will apply Proposition 6.2(i) and there is nothing further to check.
But for d − l ≥ 2 we must verify the hypothesis in the second part of this proposition. This step is

similar as in the case l = 0.
Note that PV,ησ ̸= 0 as (P, ζ σ ) is c-admissible; this polynomial has at most k nonzero terms. By

Lemma 8.3 the pair (PV,ησ , ξ
σ ) is (cd|V −1

|)-admissible. Observe |V −1
| ≪d |V |

d−1
≪d δ(ζ )

2ϵd−l (d−1).
So the said pair is c1cδ(ζ )2ϵ

d−l d-admissible; here and below c1, c2, . . . denote positive constants that
depend only on d. In particular, B(PV,ησ )≤ c1cδ(ζ )2ϵ

d−l d . A similar argument and Lemma 8.5(i) yield

max{B(PV,ησ ), deg PV,ησ } ≤ c2δ(ζ )
2ϵd−l d max{c, deg P}.
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In conclusion, to apply Proposition 6.2(ii) we must verify the inequality in

λ̃(ξσ ; νl+1)= max{λ1(3̃ξσ (νl+1)), ord(ξσ )ν
d−l
l+1 /2}> c2

√
dδ(ζ )2ϵ

d−l d max{c, deg P}.

But 3ξσ =3ξ and the order are Galois invariant, see (5-4) and (5-5). So it suffices to prove the lower
bound for λ̃(ξ ; νl+1). By Lemma 8.7(ii) we have

λ̃(ξ ; νl+1)≥ min{δ(ζ )ϵ
d−l−1

, N νd−l
l+1 /4} ≥ δ(ζ )min{ϵd−l−1,νd

l+1/4}
= δ(ζ )ϵ

d−l−1
(8-6)

as ϵ ≤ νd
l+1/4. We may assume ϵd−l−1

− 2ϵd−ld ≥ ϵd−l−1/2; this is equivalent to ϵ ≤ 1/(4d). By (8-4)
and (8-6) the desired inequality is satisfied when C is large in terms of ϵ, d, and k. We may thus apply
Proposition 6.2.

We collect the following bounds from Lemmas 8.5 and 8.7:

deg PV,ησ ≪d,k δ(ζ )
2ϵd−l d deg P,

h(PV,ησ )≪k 1 + h(P),

[K (η) : Q] ≤ ord(η)[K : Q] ≤ N ν1+···+νl [K : Q], and

ord(ξ)≥ N 1/2

(8-7)

Recall that ζ V
= (η, ξ). So ξ u

= 1 for some u ∈ Zd−l with |u| = δ(ξ), hence ζ
V
(

0
u

)
= 1. We conclude

δ(ζ )≤
∣∣V ( 0

u

)∣∣ ≤ d|V |δ(ξ). We find

δ(ξσ )= δ(ξ)≫d δ(ζ )
1−2ϵd−l

≫d δ(ζ )
1/2 (8-8)

as we may assume ϵd−l
≤

1
4 .

We must specify a subgroup G ⊂ (Z/MZ)× in Proposition 6.2 where M = ord(ξ); we will denote it by
H here. Let L denote the fixed field of G in Q(ζ ). Let H be the subgroup of (Z/MZ)× = Gal(Q(ξ)/Q)
corresponding to Gal(Q(ξ)/Q(ξ)∩ L(η)). We identify H with Gal(L(ζ )/L(η)) under the isomorphism
Gal(L(ζ )/L(η)) → Gal(Q(ξ)/Q(ξ) ∩ L(η)) induced by restriction. The fixed field of H in Q(ξ) is
contained in L(η), so

[(Z/MZ)× : H ] ≤ [L(η) : Q] ≤ ord(η)[L : Q] = ord(η)[(Z/NZ)× : G] ≤ N ν1+···+νl [(Z/NZ)× : G]

having used the bound for the order of η from (8-5). Moreover, the conductor of H satisfies

fH ≤ lcm( fG, ord(η))≤ fG ord(η)≤ fG N ν1+···+νl .

If τ ∈ H , then ητ = η. Therefore, |P(ζ τσ )| = |PV,ητσ (ξ
τσ )| = |PV,ησ (ξ

τσ )| ̸= 0 for all τ ∈ H . To
cover the case l = d −1 it is useful to set νd = 1/(128d2). By applying Proposition 6.2 to PV,ησ , ξ

σ , νl+1,
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and H while using the various estimates above, include (8-6) and (8-7), we find

1
#H

∑
τ∈H

log|PV,ησ (ξ
τσ )|

=
1

#H

∑
τ∈H

log|P(ζ τσ )|

= m(PV,ησ )+ Od,k

(
[K : Q]

2
[(Z/NZ)× : G]

2 fG deg(P)2(1 + h(P))N (2+2+1)(ν1+···+νl )δ(ζ )4ϵ
d−l d

N νd
l+1/(40d)

)
+ Od,k

(
deg(P)16d2

δ(ζ )ϵ
d−l−1/(16k)−32ϵd−l d3

)
here we used r ≤ d and M ≥ N 1/2; the second error term, which appears in the their line of the expression,
can be omitted if l = d − 1 as then we apply Proposition 6.2(i).

At this point we reap the benefit of having split the error term in Proposition 6.2 into a part depending
on N and a part depending on δ(ζ ). Indeed, the order of η, which we bound in terms of N , does not
affect the second error term above. Recall that δ(ζ )≤ N , but there can be no meaningful lower bound for
δ(ζ ) in terms of N . Introducing a dependency on N in the second error term δ(ζ ) would spoil the result.

We use the crude bound δ(ζ )≤ N and we may assume the parameters satisfy

5(ν1 + · · · + νl)+ 4ϵd−ld ≤
νd

l+1

80d
,

for all l ∈ {1, . . . , d − 1}, and

32ϵd−ld3
≤
ϵd−l−1

32k
.

Such a choice is possible. Indeed, we may fix νd , νd−1, . . . , ν1 to decay quickly enough and ϵ is allowed
to be small in terms of ν1, . . . , νd−1 and d, k.

We now combine both contributions to the error term and get

1
#H

∑
τ∈H

log|P(ζ τσ )| = m(PV,ησ )+ Od,k

(
[K : Q]

2
[(Z/NZ)× : G]

2 fG deg(P)16d2
(1 + h(P))

δ(ζ )κ

)
(8-9)

if

κ ≤ min
{
νd

l+1

80
,
ϵd−l−1

32k

}
.

Later we may shrink κ .

Step 2: Induction on d. Let ζ be as in the hypothesis. Recall that ζ V
= (η, ξ). We still assume l ≥ 1

and we find that

1
#G

∑
σ∈G

log|P(ζ σ )| =
1

[L(η) : L]

∑
τ∈Gal(L(η)/L)

1
#H

∑
σ∈H

log|P(ζ τ̃ σ )|
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with τ̃ a fixed lift of τ to Gal(L(ζ )/L) = Gal(Q(ζ )/L) = G, recall that H = Gal(L(ζ )/L(η)). Thus
(8-9) with τ̃ for σ implies

1
#G

∑
σ∈G

log|P(ζ σ )|

=
1

[L(η) : L]

∑
τ∈Gal(L(η)/L)

m(PV,ητ )+Od,k

(
[K : Q]

2
[(Z/NZ)× : G]

2 fG deg(P)16d2
(1+h(P))

δ(ζ )κ

)
. (8-10)

We set Q to equal P(X V −1
) times a monomial such that Q is a polynomial coprime to X1 · · · Xd . We

apply the construction (7-5) to Q and l and obtain Q̂. Recall Lemma 7.2 and write Q̃ for Q̂ times the
monomial from part (ii) of this lemma. Then Q̃ has at most k2 nonzero terms and using also Lemma 8.6
we find

Q̃ ∈ K ′
[X±1

1 , . . . , X±1
l ] where [K ′

: Q] ≤ [K : Q]
2,

deg Q̃ ≪d deg Q ≪d |V −1
| deg P ≪d |V |

d−1 deg P ≪d δ(ζ )
2ϵd−l d deg P, and

h(Q̃)≪k 1 + h(Q)≪k 1 + h(P).

(8-11)

By Lemma 8.3, with l = 0, the pair (Q, (ησ , ξσ )) is c3cδ(ζ )2ϵ
d−l d-admissible for all σ ∈ G. Now

(Q̃, ησ ) is also c3cδ(ζ )2ϵ
d−l d-admissible by Lemma 8.4 for all σ ∈ G (multiplying a polynomial by a

monomial has no effect on admissibility).
We want to apply the current theorem to Q̃ and η ∈ Gl

m by induction on the number of variables, recall
l ≤ d − 1. For this we must verify

δ(η)≥ c4C(l, k2)δ(ζ )2ϵ
d−l dC(l,k2) max{c, deg P}

C(l,k2)

having used the bound for deg Q̃ in (8-11). As above and in (8-8), the bound δ(η)≥ δ(ζ )/|V | ≫d δ(ζ )
1/2.

So it suffices to check

δ(ζ )1−4ϵd−l dC(l,k2)
≥ c5C(l, k2)2 max{c, deg P}

2C(l,k2). (8-12)

We may assume that 1 − 4ϵd−ldC(l, k2)≥
1
2 as we may choose ϵ small in terms of d and C(l, k2). So

(8-12) follows from (8-4) if C = C(d, k) is large enough in terms of d and k.
To apply this theorem by induction we must specify a subgroup of H ′

⊂ (Z/EZ)× = Gal(Q(η)/Q) with
E = ord(η). We take H ′ as identified with Gal(Q(η)/Q(η)∩ L)∼= Gal(L(η)/L) under the isomorphism
induced by restriction. For all τ ∈ Gal(L(η)/L) we have PV,ητ ̸= 0 and so Q̃(ητ ) ̸= 0 by (7-6). By
induction and (8-11) we have

1
#H ′

∑
τ∈H ′

log|Q̃(ητ )|=m(Q̃)+Od,k

(
[K : Q]

2d
[(Z/EZ)× : H ′

]
2 fH ′ deg(P)16d2

δ(ζ )32ϵd−l d3
(1 + h(P))

δ(η)κ(l,k
2)

)
.
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Note that [(Z/EZ)× : H ′
] = [Q(η) ∩ L : Q] ≤ [L : Q] = [(Z/NZ)× : G] and fH ′ ≤ fG . Using again

δ(η)≫d δ(ζ )
1/2 we get

1
#H ′

∑
τ∈H ′

log|Q̂(ητ )| = m(Q̂)+ Od,k

(
[K : Q]

2d
[(Z/NZ)× : G]

2 fG deg(P)16d2
(1 + h(P))

δ(ζ )κ(l,k
2)/2−32ϵd−l d3

)
(8-13)

as passing from Q̃ to Q̂ is harmless. We may assume that κ(l, k2)/4 ≥ 32ϵd−ld3.
Recall that Q equals P(X V −1

) up to a monomial factor. We will soon apply Proposition 7.3 to Q.
Consider (x1, . . . , x#H ′), with each xi ∈ [0, 1)l , a tuple of discrepancy D as in (3-2), where the e(xi ) are
the ητ . So PV,ητ = PV,e(xi ) = Qe(xi ). Proposition 7.3 together with (8-13) imply

1
#H ′

∑
τ∈H ′

m(PV,ητ )

= m(Q)+ Od,k

(
deg(Q)D1/(16(d+1)k2)

+
[K : Q]

2d
[(Z/NZ)× : G]

2 fG deg(P)16d2
(1 + h(P))

δ(ζ )κ(l,k
2)/4

)
.

By Proposition 3.3(i) for η and H ′ and estimates used above we find

D ≪d [(Z/EZ)× : H ′
] f 1/2

H ′ δ(η)
−1/3

≪d [(Z/NZ)× : G] f 1/2
G δ(ζ )−1/6.

From above we find deg Q ≪d |V −1
| deg P ≪d δ(ζ )

2ϵd−l d deg P . The Mahler measure is invariant under
a monomial change of coordinates by [Schinzel 2000, Corollary 8, Chapter 3.4], thus m(P)= m(Q). As
H ′ is identified with Gal(L(η)/L) we get

1
[L(η) : L]

∑
τ∈Gal(L(η)/L)

m(PV,ητ )=m(P)+Od,k

(
[K : Q]

2d
[(Z/NZ)× : G]

2 fG deg(P)16d2
(1 + h(P))

δ(ζ )min{1/(96(d+1)k2)−2ϵd−l d,κ(l,k2)/4}

)
.

We shrink ϵ a final time to achieve 1/(96(d +1)k2)−2ϵd−ld > 1/(100(d +1)k2). The theorem follows
on combining this asymptotic estimate with (8-10), when κ = κ(d, k) is small in terms of κ(l, k2), d,
and k. □

To prove Theorem 1.1 we can multiply P by any monomial, so we may assume that it is a polynomial.
Thus the theorem is a direct consequence of the following more precise corollary one taking G = 0N

which has conductor 1.

Corollary 8.9. Let K ⊂ C be a number field and suppose P ∈ K [X1, . . . , Xd ]\{0} is essentially atoral
and has at most k nonzero terms for an integer k ≥ 2. There exists κ = κ(d, k) > 0 with the following
property. Suppose ζ ∈ Gd

m has finite order N and suppose G is a subgroup of (Z/NZ)× and δ(ζ ) is large
in terms of d, P, [K : Q], fG , and [(Z/NZ)× : G]. Then P(ζ σ ) ̸= 0 for all σ ∈ G and

1
#G

∑
σ∈G

log|P(ζ σ )| = m(P)+ Od,k

(
[K : Q]

2d
[(Z/NZ)× : G]

2 fG deg(P)16d2
(1 + h(P))

δ(ζ )κ

)
.

Proof. By Lemma 8.1 there is c ≥ 1, depending only on P , such that (P, ζ ) is c-admissible for all ζ ∈ Gd
m

of finite order with δ(ζ )≥ c.
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Suppose ζ ∈ Gd
m has finite order and P(ζ )= 0. By the Manin–Mumford conjecture, δ(ζ ) is bounded

in terms of d and P only. Hence for δ(ζ ) sufficiently large in terms of these quantities we have P(ζ ) ̸= 0.
The same also holds with ζ replaced by a Galois conjugate as δ( · ) is Galois invariant. Our corollary now
follows from Theorem 8.8. □

Proof of Corollary 1.4. We may assume that K/Q is Galois and, after multiplying with a suitable
monomial, that P is a polynomial. Our hypothesis implies that P is not a monomial. The product P ′

for τ(P) as τ ranges over Gal(K/Q) has rational coefficients. The coefficients are even integers as the
coefficients of P lie in ZK .

The Mahler measure of any nonzero, integral polynomial is nonnegative. By a theorem attributed to
Boyd [1981], Lawton [1977], and Smyth [1981], the fact that the zero set of P in Gd

m has an irreducible
component not equal to the translate of an algebraic subgroup by a point of finite order implies m(P ′) > 0.

Suppose ζ ∈Gd
m has order N . Take for G the subgroup of (Z/NZ)× associated to Gal(Q(ζ )/K ∩ Q(ζ )).

Then [(Z/NZ)× : G] ≤ [K : Q]. As ζ varies, there are only finitely many possibilities for the number
field K ∩ Q(ζ ), being a subfield of the field K . So there is a fixed n ∈ N, independent of ζ , such that
K ∩ Q(ζ ) is contained in the number field generated by a root of unity of order n. So fG is bounded
from above solely in terms of K . For any τ ∈ Gal(K/Q) choose an extension τ̃ ∈ Gal(K (ζ )/Q). We
apply Corollary 8.9 to the polynomial τ(P) which is essentially atoral by hypothesis. If δ(ζ τ̃ )= δ(ζ ) is
large enough in terms of the fixed data, then

1
#G

∑
σ∈G

log|τ(P)(ζ τ̃ σ )| = m(τ (P))+ o(1)

as δ(ζ )→ ∞, here and below the implied constant is independent of ζ .
The average of the left-hand side over τ ∈ Gal(K/Q) equals the left-hand side in

1
[K (ζ ) : Q]

∑
σ :K (ζ )→C

log|σ(P(ζ ))| =
1

[K : Q]

∑
τ∈Gal(K/Q)

m(τ (P))+ o(1).

As the Mahler measure is additive, the average on the right-hand side is m(P ′)/[K : Q] > 0. But
the left-hand side vanishes if P(ζ ) is an algebraic unit. In this case, we see that δ(ζ ) is bounded from
above. □

Appendix A. A theorem of Lawton re-revisited

The following theorem makes explicit a result of Lawton [1983]. It is a more precise version of a result
of Habegger [2018] which is unfortunately insufficient for our purposes. We closely follow the proof
presented in [Habegger 2018] which itself is based on Lawton’s approach [1983]. We also show how to
correct an inaccuracy in the proof of [Habegger 2018, Lemma A.4(i)].

Recall the definition of ρ( · ) in (6-1) where d ≥ 1 is an integer.
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Theorem A.1. Suppose P ∈ C[X1, . . . , Xd ]\{0} has at most k nonzero terms for an integer k ≥ 2. For
a = (a1, . . . , ad) ∈ Zd

\{0} with ρ(a) > deg P we have

m(P(Xa1, . . . , Xad ))= m(P)+ Od,k

(
deg(P)16d2

ρ(a)1/(16(k−1))

)
(A-1)

where the implicit constant depends only on d and k.

In the univariate case d = 1 we have ρ(a)=∞ for all a ∈ Z\{0} by definition. Then we should interpret
(A-1) as stating m(P(Xa))= m(P). This identity is an easy consequence of (4-1). So throughout this
subsection we assume d ≥ 2.

We did not strive to obtain the best-possible exponent in ρ(a)1/(16(k−1)) that our method can produce.
We must assume ρ(a) > deg P to avoid interaction of coefficients in P(Xa1, . . . , Xad ). Indeed, take

for example P = X1(X2 −1+ϵ) with ϵ ∈ (0, 1) small and a = (1, 0). Then P(X, 1)= Xϵ whose Mahler
measure is log ϵ. On the other hand m(P)= m(X2 −1+ϵ)= log max{1, |1−ϵ|} = 0 by Jensen’s formula.
The difference

m(P(X, 1))− m(P)= log ϵ

is unbounded as ϵ → 0. This does not contradict our theorem as ρ(a)= 1.
The Lebesgue measure on Rd is denoted by vol(·). For P ∈ C[X±1

1 , . . . , X±1
d ] and r > 0 we define

S(P, r)= {x ∈ [0, 1)d : |P(e(x))|< r} (A-2)

where e is as in (1-3).
Dobrowolski extended Lawton’s Theorem 1 [1983] to polynomials that are not necessarily monic.

Theorem A.2 [Dobrowolski 2017, Theorem 1.1]. Suppose P ∈ C[X ]\{0} has at most k nonzero terms
for an integer k ≥ 2. Then vol(S(P, r))≪k min{1, r/|P|}

1/(k−1) for all r > 0.

Dobrowolski requires that P as at least 2 nonzero terms. But it is convenient to allow P to have a
single term, as above. It is also convenient to apply the estimate in the case P = 0, we then interpret the
minimum to be 1.

Until the end of this appendix and if not stated otherwise we assume that P ∈ C[X1, . . . , Xd ]\C has at
most k nonzero terms for an integer k ≥ 2 and |P| = 1.

Lemma A.3. (i) If r > 0 then vol(S(P, r))≪d,k r1/(2(k−1)).

(ii) We have
∫
[0,1)d

∣∣log|P(e(x))|
∣∣2 dx ≪d,k 1.

Proof. To ease notation we drop d, k in the subscript ≪d,k .
Because of the trivial bound vol(S(P, r))≤ 1 we may assume r ≤ 1.
The case d = 1 follows from Theorem A.2. So let us now assume d ≥ 2. We consider P as a polynomial

in the unknown Xd and coefficients among C[X1, . . . , Xd−1]. We pick a coefficient Pi with maximal
norm, i.e., P has a term Pi X i

d such that Pi ∈ C[X1, . . . , Xd−1] and |Pi | = |P| = 1.
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For x ′
∈ Rd−1 we let Pe(x ′) denote P(e(x ′), X) ∈ C[X ]. Recall that

S(P, r)= {(x ′, t) ∈ [0, 1)d−1
× [0, 1) : |Pe(x ′)(e(t))|< r}.

We splice the hypercube and apply Fubini’s theorem to find

vol(S(P, r))=

∫
[0,1)d−1

vol(S(Pe(x ′), r)) dx ′.

The measure zero set of x ′
∈ [0, 1)d−1 with Pe(x ′) = 0 is harmless. By Theorem A.2 we find

vol(S(P, r))≪

∫
[0,1)d−1

min
{

1,
r

|Pe(x ′)|

}1/(k−1)

dx ′.

The coefficient of X i in Pe(x ′) is Pi (e(x ′)). So |Pe(x ′)| ≥ |Pi (e(x ′))| and

vol(S(P, r))≪

∫
[0,1)d−1

min
{

1,
r

|Pi (e(x ′))|

}1/(k−1)

dx ′
= I1 + r1/(k−1) I2 (A-3)

where

I1 =

∫
|Pi (e(x ′))|<r

dx ′ and I2 =

∫
|Pi (e(x ′))|≥r

dx ′

|Pi (e(x ′))|1/(k−1) ;

both integrals are over subsets of [0, 1)d−1. We will bound I1 and I2 from above.
We have I1 = vol(S(Pi , r)). This lemma applied by induction to Pi , a polynomial in d − 1 variables

with at most k nonzero terms and |Pi | = 1, yields

I1 ≪ r1/(2(k−1)). (A-4)

To bound I2 we consider real numbers r = r0 < r1 < · · · < rN+1 = k + 1, with rn+1 ≤ rn + δ where
δ ∈ (0, 1] is a small parameter. We split the domain of integration up into measurable parts

6n = {x ′
∈ [0, 1)d−1

: rn ≤ |Pi (e(x ′))|< rn+1} for n ∈ {0, . . . , N }.

Observe that |Pi (e(x ′))| ≤ k < rN+1 for all x ′. Thus

I2 =

N∑
n=0

∫
6n

dx ′

|Pi (e(x ′))|1/(k−1) ≤

N∑
n=0

vol(6n)

r1/(k−1)
n

=

N∑
n=0

anbn (A-5)

where an = r−1/(k−1)
n and bn = vol(6n).

As the 6n are pairwise disjoint, the partial sums satisfy

Bn =

n∑
l=0

bl = vol
( n⋃

l=0

6l

)
≤ vol({x ′

∈ [0, 1)d−1
: |Pi (e(x ′))|< rn+1})= vol(S(Pi , rn+1)).

In particular, we have the trivial bound Bn ≤ 1. As in the bound for I1 we apply this lemma by induction
to Pi and find

0 ≤ Bn ≤ vol(S(Pi , rn+1))≪ r1/(2(k−1))
n+1 . (A-6)
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Summation by parts implies

I2 ≤

N∑
n=0

anbn = aN BN −

N−1∑
n=0

Bn(an+1 − an)≤ 1 +

N−1∑
n=0

Bn(an − an+1);

we used aN = r−1/(k−1)
N ≤ 1 as rN ≥ rN+1 − δ ≥ 1 and BN ≤ 1. By (A-6) and the definition of an we find

I2 ≪ 1 +

N−1∑
n=0

r1/(2(k−1))
n+1 (r−1/(k−1)

n − r−1/(k−1)
n+1 ).

We use the mean value theorem to bound

r−1/(k−1)
n − r−1/(k−1)

n+1 ≪ r−1/(k−1)−1
n (rn+1 − rn)≪ r−1/(k−1)−1

n+1 (rn+1 − rn);

for the second bound we assume, as we may, that δ ≤ r and so rn+1 ≤ rn + δ ≤ 2rn . Thus I2 ≪

1 +
∫ k+1

r t−1/(2(k−1))−1dt ≪ r−1/(2(k−1)).
This bound together with (A-4) implies I1 + r1/(k−1) I2 ≪ r1/(2(k−1)). Therefore, vol(S(P, r)) ≪

r1/(2(k−1)) by (A-3), completing the induction step and the proof of (i).
We define pn(x) = min{n, |log|P(e(x))||2} ≥ 0 where n ≥ 0 is an integer. We must find an upper

bound for the nondecreasing sequence In =
∫
[0,1)d pn(x) dx . Observe that |P(e(x))| ≤ k|P| = k, so if

n ≥ (log k)2, then |P(e(x))| ≤ e
√

n . We fix m to be the least integer with m ≥ 1+ (log k)2, so m ≥ 2. Say
n ≥ m. Then pn equals n on S(P, e−

√
n) and it equals pn+1 outside this set. Thus

In+1 − In =

∫
S(P,e−

√
n)

(pn+1(x)− pn(x)) dx ≤ vol(S(P, e−
√

n))≪ e−λ
√

n

from part (i), here λ= 1/(2(k − 1)). A telescoping sum trick shows

In − Im ≪

∑
l≥m

e−λ
√

l
≪

∫
∞

m−1
e−λ

√
ldl ≪ 1.

The initial term satisfies Im ≤ m ≪ 1 as m depends only on k, this completes the proof. □

A more careful analysis should lead to vol(S(P, r))≪d,k (1 + |log r |)d−1r1/(k−1) for all r > 0 in part
(i) of Lemma A.3. But this improvement has little effect on the main results of the current work.

Brunault, Guilloux, Mehrabdollahi, and Pengo pointed out that the argument for second-named author’s
[Habegger 2018, Lemma A.4(i)] leads (for k ≥ 2) to an estimate O(y f (n)/(2(k−1))) where f (n) depends
on the number of variables n, as opposed to the claimed bound O(y1/(2(k−1))). However, the claimed
bound holds true by Lemma A.3(i). Alternatively and in the proof of Lemma A.3(i) one can replace
Dobrowolski’s Theorem 1.1 [2017] by Lawton’s Theorem 1 [1983] which is sufficient for the applications
in [Habegger 2018].

Lemma A.4. If r > 0 then ∫
S(P,r)

∣∣log|P(e(x))|
∣∣ dx ≪d,k r1/(4(k−1)).



Galois orbits of torsion points near atoral sets 1993

Proof. As |P(e(x))| ≤ |P|k ≤ k for all x ∈ [0, 1)d we may assume r ≤ 1 by the Cauchy–Schwarz
inequality and Lemma A.3(ii).

With 6 = S(P, r) we find

0≤−

∫
6

log|P(e(x))| dx =−

∞∑
n=0

∫
r/2n+1≤|P(e(x))|<r/2n

log|P(e(x))| dx ≤

∞∑
n=0

log
(

2n+1

r

)
vol(S(P, r/2n)).

Let λ = 1/(2(k − 1)) ≤
1
2 . We use Lemma A.3(i) to bound vol(S(P, r/2n)) ≪d,k (r/2n)λ. Note that

log(2t)≪k tλ/2 on t ∈ [1,∞). We take t = 2n/r ≥ 1 and conclude

−

∫
6

log|P(e(x))| dx ≪d,k

∞∑
n=0

(
r
2n

)λ/2
≪d,k rλ/2. □

Boyd [1998] proved that the Mahler measure is continuous on the nonzero polynomials of fixed degree.
Here we show that the Mahler measure is Hölder continuous away from 0. For the next lemma we
momentarily drop our usual assumptions on P .

Lemma A.5. Suppose P, Q ∈ C[X1, . . . , Xd ]\{0} such that P and Q both have at most k nonzero terms
for an integer k ≥ 2. If δ = |P − Q|/|Q| ≤

1
2 , then

m(P)≤ m(Q)+ C(d, k)δ1/(8(k−1))

where C(d, k) > 0 is effective and depends only on d and k.

Proof. It suffices to prove the lemma when |Q| = 1; indeed, just replace P and Q by P/|Q| and Q/|Q|,
respectively, to reduce to this case.

Suppose for the moment that x ∈ Rd with P(e(x))Q(e(x)) ̸= 0. Then |P(e(x)) − Q(e(x))| ≤

2k|P − Q| = 2kδ and so

log
∣∣∣∣ P(e(x))

Q(e(x))

∣∣∣∣ ≤

∣∣∣∣ P(e(x))
Q(e(x))

∣∣∣∣ − 1 ≤ 2k
δ

|Q(e(x))|
(A-7)

where the first inequality used log t ≤ t − 1 for all t > 0.
The difference of Mahler measures m(P)− m(Q) can be written as∫

[0,1)d\6

(log|P(e(x))| − log|Q(e(x))|) dx +

∫
6

(log|P(e(x))| − log|Q(e(x))|) dx

with 6 = S(Q, δ1/2).
The first integral is at most 2kδ1/2 by (A-7). We proceed by bounding the second integral I from above.

First, we note that |P(e(x))| ≤ k|P| ≤ 3k/2 as |P − Q| ≤ δ ≤
1
2 and thus |P| ≤

3
2 . So

I ≤ log(3k/2)vol(6)−
∫
6

log|Q(e(x))| dx ≤ log(3k/2)vol(6)+ cδ1/(8(k−1))
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where we applied Lemma A.4 to Q and δ1/2, the case Q constant being trivial; here c = c(d, k) > 0
depends only on d and k. Finally, Lemma A.3(i) yields vol(6) = vol(S(Q, δ1/2))≪d,k δ

1/(4(k−1)) and
the lemma follows as δ ≤ 1. □

Let N0 = N∪{0}. For b ∈ N0 let Cb(Rd) denote the set of real valued functions on Rd whose derivatives
exist and are continuous up to and including order b. For a multiindex i = (i1, . . . , id) ∈ Nd

0 we set
ℓ(i)= i1 + · · · + id . If g ∈ Cb(Rd) and ℓ(i)≤ b, we set ∂ i g = (∂/∂x1)

i1 · · · (∂/∂xd)
id g ∈ C0(Rd) and

|g|Cb = max
i∈Nd

0
ℓ(i)≤b

sup
x∈Rd

|∂ i g(x)| ∈ R ∪ {∞}.

We recall here the construction of fr ∈ Cb(Rd) as in [Habegger 2018] where r ∈
(
0, 1

2

]
is a parameter.

This function equals log|P( · ))| away from the singularity, i.e., the locus where P(e( · )) vanishes.
We fix the antiderivative φ of xb(1− x)b on [0, 1] with φ(0)= 0 and multiply it with a positive number

to ensure φ(1) = 1. Then we extend it by 0 on x < 0 and by 1 for x > 1 to obtain a nondecreasing
step function φ ∈ Cb(R) whose derivative φ′ has support [0, 1]. Finally, we rescale and define φr (x)=

φ(((2/r)2x − 1)/3). So φr is a nondecreasing function which vanishes on (−∞, (r/2)2], equals 1 on
[r2,∞), and satisfies∣∣∣∣d iφr

dx i

∣∣∣∣
C0

≪b r−2i for all 0 ≤ i ≤ b, hence |φr |Cb ≪b r−2b.

The function φr takes values in [0, 1]. Moreover, we define

ψr (x)=

{1
2φr (x) log x, x > 0,
0, x ≤ 0.

.

Then ψr vanishes on (−∞, (r/2)2], coincides with 1
2 log x on [r2,∞), and satisfies

|ψr |Cb ≪b r−2b
|log r |. (A-8)

We consider g : x 7→ |P(e(x))|2, then

|g|Cb ≪k,b (deg P)b; (A-9)

recall that |P| = 1. Next we compose fr = ψr ◦ g ∈ Cb(Rd), so for x ∈ Rd we have

fr (x)=

{
0, if |P(e(x))| ≤ r/2,
log|P(e(x))|, if |P(e(x))| ≥ r.

.

By [Habegger 2018, Lemma A.5], which follows from the chain rule, together with (A-8) and (A-9) we
find

| fr |Cb ≪k,b r−2b
|log r |(deg P)b

2
. (A-10)

For the following lemmas we suppose b ≥ d + 1. As above we have r ∈
(
0, 1

2

]
.
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Lemma A.6. Suppose a ∈ Zd
\{0}, then∫ 1

0
fr (as) ds =

∫
[0,1)d

fr (x) dx + Od,k,b

(
|log r |

r2b

(deg P)b
2

ρ(a)b−d

)
.

We follow and adapt the proof of [Habegger 2018, Lemma A.6].

Proof. For m ∈ Zd let f̂r (m) denote the Fourier coefficient of fr . By [Grafakos 2014, Theorem 3.2.9(a)]
with derivative up to order b and using |∂̂ i fr (m)| ≤ |∂ i fr |C0 ≤ | fr |Cb where ℓ(i) = b we conclude
| f̂r (m)| ≪d,k,b | fr |Cb |m|

−b if m ̸= 0. So | f̂r (m)| ≪d,k,b r−2b
|log r |(deg P)b

2
|m|

−b for all m ∈ Zd
\{0} by

(A-10). Then ∑
|m|≥ρ(a)

| f̂r (m)| ≪d,k,b
|log r |

r2b (deg P)b
2 ∑

|m|≥ρ(a)

1
|m|b

≪d,k,b
|log r |

r2b

(deg P)b
2

ρ(a)b−d (A-11)

as b ≥ d + 1. In particular, the Fourier coefficients of fr are absolutely summable and the Fourier series
converges absolutely and uniformly to fr , see [Grafakos 2014, Proposition 3.1.14]. Hence∫ 1

0
fr (as) ds =

∑
m∈Zd

∫ 1

0
f̂r (m)e2π

√
−1⟨a,m⟩s ds =

∫
[0,1)d

fr (x) dx +

∑
m∈Zd

\{0}

⟨a,m⟩=0

f̂r (m).

The lemma follows from (A-11) as only those m with |m| ≥ ρ(a) contribute to the final sum. □

Lemma A.7. Suppose a ∈ Zd
\{0} such that ρ(a)>deg P. For all s ∈ [0, 1), up to finitely many exceptions,

we have |P(e(as))| ̸= 0 and∫ 1

0
log|P(e(as)))| ds =

∫ 1

0
fr (as) ds + Ok(r1/(k−1)

|log r |).

We follow and adapt the proof of [Habegger 2018, Lemma A.7].

Proof. Say a = (a1, . . . , ad) with ρ(a)>deg P . Then the coefficients of the univariate Laurent polynomial
Q = P(Xa1, . . . , Xad ) are precisely the coefficients of P . Hence |Q| = |P| = 1 and Q has at most k
nonzero terms.

The first claim follows as P(e(as))= Q(e(s)) for all s ∈ R and since Q ̸= 0.
To prove the second claim we note that the difference of the two integrals equals∫

S(Q,r)
(log|Q(e(s))| − fr (as)) ds

with S(Q, r) as in (A-2). Note that
∫

S(Q,r) log|Q(e(s))| ds ≤ 0 as r ≤ 1. Recall Theorem A.2 which
yields vol(S(Q, r))≪k r1/(k−1). As in the proof of [Lawton 1983, Lemma 4 ], see also [Schinzel 2000,
Theorem 7, Appendix G], we find∫

S(Q,r)
log|Q(e(s))| ds ≥ −Cr1/(k−1)

|log r |,
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where C > 0 depends only on k. Finally, by the definition of fr we find log(r/2) ≤ fr (as) ≤ 0 if
|Q(e(s))|< r . Thus

∫
S(Q,r) fr (as) ds is also Ok(r1/(k−1)

|log r |). □

Lemma A.8. We have ∣∣∣∣∫
[0,1)d

( fr (x)− log|P(e(x))|) dx
∣∣∣∣ ≪d,k r1/(4(k−1)).

We follow and adapt the proof of [Habegger 2018, Lemma A.8].

Proof. We have∣∣∣∣∫
[0,1)d

( fr (x)−log|P(e(x))|)dx
∣∣∣∣ = ∣∣∣∣∫

[0,1)d
(φr (|P(e(x))|2)−1) log|P(e(x))|dx

∣∣∣∣
≤

∫
[0,1)d

∣∣φr (|P(e(x))|2)−1
∣∣∣∣log|P(e(x))|

∣∣dx

≤

(∫
[0,1)d

∣∣φr (|P(e(x))|2)−1
∣∣2 dx

)1/2(∫
[0,1)d

∣∣log|P(e(x))|
∣∣2 dx

)1/2

by the definition of fr and where we used the Cauchy–Schwarz inequality in the last step. The second
integral on the final line is ≪d,k 1 by Lemma A.3(ii). The first integral is∫

S(P,r)

∣∣φr (|P(e(x))|2)− 1
∣∣2 dx ≤ vol(S(P, r))≪d,k r1/(2(k−1))

by Lemma A.3(i). We take the square root to complete the proof. □

Proof of Theorem A.1. As stated below Theorem A.1 we may assume d ≥ 2. We may also assume that
P is nonconstant. As we have seen in the proof of Lemma A.7, the condition ρ(a) > deg P guarantees
P(Xa1, . . . , Xad ) ̸= 0. Moreover, replacing P by P/|P| leaves m(P(Xa1, . . . , Xad ))− m(P) invariant.
So it suffices to prove the theorem if |P| = 1.

We fix the parameters b = 4d ≥ d + 1 and r = ρ(a)−1/4/2 ≤
1
2 .

We write |m(P(Xa1, . . . , Xad ))−m(P)| as
∫ 1

0 log|P(e(as))| ds −
∫
[0,1)d log|P(e(x))| dx and find that

it is at most∣∣∣∣∫ 1

0
fr (as) ds−

∫
[0,1)d

fr (x) dx
∣∣∣∣+∣∣∣∣∫ 1

0
(log|P(e(as))|− fr (as)) ds

∣∣∣∣+∣∣∣∣∫
[0,1)d

( fr (x)−log|P(e(x))|) dx
∣∣∣∣.

Then by Lemmas A.6, A.7, and A.8 this sum is

≪d,k
|log r |

r2b

(deg P)b
2

ρ(a)b−d + r1/(k−1)
|log r | + r1/(4(k−1)).

By our choice of r and ρ(a)≥ 2, the sum is

≪d,k
log ρ(a)

ρ(a)b−d−b/2 (deg P)b
2
+

log ρ(a)
ρ(a)1/(4(k−1)) +

1
ρ(a)1/(16(k−1)) .
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Finally, as b = 4d the sum is

≪d,k (deg P)16d2 log ρ(a)
ρ(a)d

+
log ρ(a)

ρ(a)1/(4(k−1)) +
1

ρ(a)1/(16(k−1)) . □

Appendix B. Recovering the theorem of Lind, Schmidt, and Verbitskiy

In this appendix we recover from our work a variant of Lind, Schmidt, and Verbitskiy’s Theorem 1.1
[2013]. This variant is stated in the introduction as Theorem 1.2. Let d ∈ N. For a finite subgroup
G ⊂ Gd

m , recall that we defined δ(G) in (1-5).

Lemma B.1. Let G be a finite subgroup of Gd
m . If a ∈ Zd

\{0}, then

1
#G

#{ζ ∈ G : ζ a
= 1} ≤

|a|

δ(G)
.

Proof. We will detect ζ a
= 1 using the character χ(ζ )= ζ a of G. The image χ(G) is a cyclic subgroup

of C× of order N , say. For ζ ∈ G, the sum
∑N−1

k=0 χ(ζ )
k
= 0 equals N if ζ a

= 1 and vanishes otherwise.
The number of solutions ζ ∈ G of ζ a

= 1 is thus

∑
ζ∈G

1
N

N−1∑
k=0

χ(ζ k)=
1
N

N−1∑
k=0

∑
ζ∈G

χ(ζ )k =
1
N

N−1∑
k=0

#G
N

∑
ξ∈χ(G)

ξ k
=

#G
N
.

We conclude the proof as ζ aN
= χ(ζ )N

= 1 for all ζ ∈ G and hence N ≥ δ(G)/|a|. □

Lemma B.2. Let G be a finite subgroup of Gd
m :

(i) If T ≥ 1, then
1

#G
#{ζ ∈ G : δ(ζ )≤ T } ≤

3d T d+1

δ(G)
.

(ii) If κ > 0, then
1

#G

∑
ζ∈G

δ(ζ )−κ ≤
4d

δ(G)κ/(d+1+κ)
.

Proof. Any ζ ∈ G with δ(ζ )≤ T satisfies ζ a
= 1 for some a ∈ Zd

\{0} and |a| ≤ T . The number of such
a is at most (2T + 1)d ≤ 3d T d and each a leads to at most |a|#G/δ(G) ≤ T #G/δ(G) different ζ by
Lemma B.1. This implies (i).

For the second assertion we split up the elements in G into those with δ(ζ ) ≤ T and those with
δ(ζ ) > T ; here T ≥ 1 is a parameter to be chosen.

For the lower range, we use the trivial lower bound δ(ζ )≥ 1 and part (i) to obtain

1
#G

∑
ζ∈G
δ(ζ )≤T

δ(ζ )−κ ≤
3d T d+1

δ(G)
.
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For the higher range, we have

1
#G

∑
ζ∈G
δ(ζ )>T

δ(ζ )−κ ≤
1

T κ
.

The lemma follows by taking the sum of these two bounds with T = δ(G)1/(d+1+κ). □

Proof of Theorem 1.2. Without loss of generality we can assume that P is a polynomial.
Any finite subgroup of Gd

m is defined over Q, i.e., it is mapped to itself under the action of the absolute
Galois group of Q, see [Bombieri and Gubler 2006, Corollary 3.2.15]. We decompose G into a disjoint
union G1 ∪ · · · ∪ Gm of Galois orbits. It is useful to fix a representative ζi ∈ Gi for each i ∈ {1, . . . ,m}

and define Ni = ord(ζi ). All elements in Gi have the same order and the Galois action is the natural
action of (Z/Ni Z)

× on Gi . Moreover, #Gi = ϕ(Ni ). Note that δ is constant on each Gi as δ(ζ σ )= δ(ζ )

for all field automorphisms σ . Moreover, P(ζi ) ̸= 0 if and only if P does not vanish at any point of Gi ;
indeed P has rational coefficients by hypothesis.

Let T ≥ 1 be a parameter depending on δ(G) and large in terms of P, d which we will fix in due time.
We split our average (1-6) up into those ζ with δ(ζ )≤ T and those with δ(ζ ) > T .

First, we will show that the sum

1
#G

∑
ζ∈G

δ(ζ )≤T,P(ζ ) ̸=0

log|P(ζ )| =
1

#G

m∑
i=1

δ(ζi )≤T,P(ζi ) ̸=0

∑
σ∈(Z/Ni Z)×

log|P(ζ σi )| (B-1)

is negligible. Say P(ζi ) ̸= 0. Then P(ζi ) lies in a number field of degree ϕ(Ni ) over Q. So∣∣∣∣ ∑
σ∈(Z/Ni Z)×

log|P(ζ σi )|
∣∣∣∣ ≤

∑
σ∈(Z/Ni Z)×

∣∣log|P(ζ σi )|
∣∣ ≤ 2ϕ(Ni )h(P(ζi ))≪P ϕ(Ni )

where we used basic properties of the height (2-3) and P(ζ σi )= P(ζi )
σ for all σ ∈ Gal(Q(ζi )/Q). So

the absolute value of (B-1) is at most

≪P
1

#G

m∑
i=1

δ(ζi )≤T

ϕ(Ni )≪P
1

#G

∑
ζ∈G
δ(ζ )≤T

1 ≪d,P
T d+1

δ(G)
. (B-2)

by Lemma B.2(i).
The remaining sum is

1
#G

m∑
i=1

δ(ζi )>T

∑
σ∈(Z/Ni Z)×

log|P(ζ σi )|;
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note that P(ζ σi ) ̸= 0 for T large enough by the Manin–Mumford conjecture for Gd
m . Using Theorem 1.1

we have

1
#G

m∑
i=1

δ(ζi )>T

ϕ(Ni )(m(P)+ Od,P(δ(ζi )
−κ))=

1
#G

( ∑
ζ∈G:δ(ζ )>T

1
)

m(P)+ Od,P

(
1

#G

∑
ζ∈G:δ(ζ )>T

δ(ζ )−κ
)

=

(
1 −

1
#G

∑
ζ∈G,δ(ζ )≤T

1
)

m(P)+ Od,P

(
δ(G)−κ/(d+1+κ)

)

where we used Lemma B.2(ii). The remaining average in the last line is Od(T d+1/δ(G)) by Lemma B.2(i).
We combine this estimate with the first bound (B-2) to conclude that the average (1-6) equals

m(P)+ Od,P(T d+1δ(G)−1
+ δ(G)−κ/(d+1+κ))

The theorem follows with the choice T = cδ(G)1/(2(d+1)) where c ≥ 1 is sufficiently large in terms of d
and P . The exponent κ in (1-6) is min

{1
2 , κ/(d + 1 + κ)

}
in the notation here. □

We leave to the interested reader the task of generalizing the previous theorem to polynomials defined
over an arbitrary number field.
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