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Rooted tree maps for multiple L-values
from a perspective of harmonic algebras

Hideki Murahara, Tatsushi Tanaka and Noriko Wakabayashi

We show the image of rooted tree maps forms a subspace of the kernel of the evaluation map of multiple
L-values. To prove this, we define the diamond product as a modified harmonic product and describe its
properties. We also show that t-conjugate rooted tree maps are their antipodes.

1. Introduction

In [8] the second author found the Connes—Kreimer’s Hopf algebra of rooted trees H acts on $ = Q(x, y),
the noncommutative polynomial ring in two indeterminates. We refer to the elements in End($)) assigned
to rooted trees as rooted tree maps. Rooted tree maps possess the rules coming from their coproducts. In
particular, to primitive elements in H, derivations in End($)) are assigned. Rooted tree maps give rise to a
broad class of relations (including duality, derivation relation, and Ohno’s relation) among multiple zeta
values. It is then shown that the class of relations coming from rooted tree maps is equivalent to the linear
part of Kawashima’s relation [2]. A pending issue is that the map assigned to the antipode of a rooted
tree is nothing but the conjugation of the original map by t, the antiautomorphism on $) characterized by
interchanging x and y, which is shown in [7] by using additional algebraic properties of rooted tree maps
and harmonic algebras.

The second and the third authors generalize the domain of such rooted tree maps so that they must
induce a broad class of relations among multiple L-values [9]. Unlike the case of multiple zeta values,
they only show that the maps assigned to the antipodes of rooted trees induce relations among multiple
L-values. We show in this paper that their first prospect is true owing to further algebraic properties of
rooted tree maps and harmonic algebras to establish the basics of rooted tree maps for multiple L-values.

To be more precise, let «, be the set of r-th roots of unity. For an index set (k; ) = (k1, ..., k;; 81, ...,57)
withky, ..., k> 1,s1,...,8 € u, (ky, s1) # (1, 1), the multiple L-value of shuffle type (abbreviated as
MLV) is defined in [1] by the convergent series

my—my mj_y—mjp _m

SN S S i
L(k;s)= lim Z - -

m>myp>--->m;>0 my---my
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If r = 1, this is nothing but the multiple zeta value (abbreviated as MZV). The MZVs and the MLVs have
been well-studied in the last three decades.

The index set (k; s) is often identified with the word zx s 1= zx, .5 - - - 2k.5» Where zx s stands for
x¥=1ys, in the noncommutative polynomial algebra A, := Q(x, y; | s € i1,,). Then MLVs are algebraically
discussed via the @-linear map L : A(,) — C defined by £(1) =1 and L(zk s) = L(k; ). (A? is a subalgebra
of A, generated by admissible words, detailed in the next section.)

On the other hand, (nonplanar) rooted trees are finite and connected graphs with no cycles and a special

vertex called the root. For example,

cn b AL A A A

and so on. The topmost vertex of each rooted tree represents the root. The algebra generated by them has
a Hopf algebra structure known as the Connes—Kreimer Hopf algebra of rooted trees, which appeared in
[4] by Arne Diir. (One can even trace it back to the work by J. Butcher in the 1960s.) In [3], it is used in
the study of perturbative quantum field theory and is well-studied in the last quarter century.

Rooted tree maps (abbreviated as RTMs), first defined in [8] based on the Connes—Kreimer Hopf
algebra of rooted trees, induce a certain class of relations among MZVs. In other words, a part of ker £
comes from the RTMs if » = 1. Although this phenomenon is expected to be extended naturally to any
positive integer r, the only result proved in [9] is for RTMs taken conjugation by a certain involution 7.
We study some algebraic properties of RTMs for MLVs using the harmonic algebra as are studied in [7]
in the MZVs case. We then show the aforementioned expectation is true and t-conjugate RTM is nothing
but its antipode.

2. Main results
Let A! and AY be subalgebras of A, given by
A DA =00A DA=00A",

A},_;_ = @ Ay ys, A9,+ = @ XA ys @ @ VeArYs.

SEMUy SEy S, LEUy

t#1

where

Each word z; 5 € AS’ 4 is called admissible and corresponds to the index set (k; s) with (ky, s1) # (1, 1).
Letz =x+yy, zf =x+4+68(s)ys € Ay, where §(1) =0 and 6(s) =1 if s £ 1.

Denote by H the Q-vector space generated by rooted forests, i.e., disjoint unions of rooted trees.
This #H has a structure of a connected Hopf algebra, which is briefly described in the next section. We
assign to any rooted tree ¢ a linear map 7 € Endg(A,), which we call a RTM, elaborated in Section 4.
The assignment ~ is known to be an algebra homomorphism, and hence we can assign to any f € H a
linear map f € Endg(A,). Using the notation of the diamond product ¢, (s € u,), which is described in
Section 5, we have the following result.
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Theorem 2.1. For f € H, there exists a unique Fy € A% such that
f(sz) = zf(Ff O W)
forany s € u, and any w € A,.

The product ¢; is a variation of the harmonic product. Indeed, Proposition 5.4 below asserts that

vosw = Yy (p(v) * ¥ L (w)), (1)

where v € A, w € A,, and * is the harmonic product. Here, ¥y = ¢ZM,, where ¢ is the automorphism
on A, determined by ¢(x) =z and ¢(y;) = zf, —z2(=08(s)ys — yy1) for s € u,, and Z and Ms(s € u,) are
linear maps on 4, defined by

I(stsxa) = Zky,51%ky,s150 * " ° Zkhsl"uwxa, M (Zk,sx“) = Zky.s5Zkousy * Zk],slxa
for a > 0. Note that ¢ is an involution. According to [6], we have
) 1 1
g " WS(AL"» *‘Ar,+) CkerL (2)

for any s € u,. Hence, for s € u,, w € A}’ 4> and f € Aug(#H), where Aug(#) denotes the augmentation
ideal of H, i.e., H = Q & Aug(H), we have

Fw) =22 (Frosw) =22 - Y (0(Fp) ¥ N (w)) € ker L.
Thus we have the following:
Corollary 2.2. For f € Aug(H), we have f(A?,) C ker L.

Remark 2.3. This result was expected but not proved in [9]. Still we do not know the way to prove this
directly from the definition of RTM (except that the case of r = 1, the MZV case, which is done in [8]).

Let S be the antipode of 7. Then, for f € #, we find that the antipode S(f) is described similarly by
using the diamond product ©.

Theorem 2.4. For f € H, there exists a unique Gy € A% such that
S(N(zw) = z5(Gr o5 w)
forany s € u, and any w € A,.

As is defined in [9], let T be the antiautomorphism on A, defined by t(x) = y;, 7(y;) = x, and
T(ys) = —ys (s # 1). Note that t is an involution. Then we show the following result, which is a
generalization of [7, Theorem 1.5].

Theorem 2.5. For f € H, we have S(f) =1 ft.
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Hence, for s € u,, w € A},Jr, and f € Aug(#), we have

tfr@w) = S(HEw) = 22(Gr oy w) = 20 - Y (9(Gy) * ¥, (w)) € ker £

because of (1), (2), and Theorems 2.4 and 2.5. Thus again we have the following, proved first in [9,
Theorem 2.4]:

Corollary 2.6. For f € Aug(H), we have T ft (A(,), 4+) Cker L.

3. Connes—-Kreimer Hopf algebra of rooted trees

We briefly review the Connes—Kreimer Hopf algebra of rooted trees [3]. A rooted tree is a finite, connected,
acyclic, and oriented graph with a special vertex called the root from which every edge directly or indirectly
originates. A rooted forest is a product (disjoint union) of rooted trees. The empty forest (with no tree
in it) denoted by [ is the neutral element for the product. We denote by 7 the Q-vector space freely
generated by rooted trees.

As is mentioned in the previous section, we denote by #H the Q-algebra generated by rooted trees. As
a vector space, H is freely generated by rooted forests. The Q-linear map called the grafting operator
B :H — T is defined by B () =« and, for a rooted forest f of positive degree, all the roots of connected
components of f are grafted to a single new vertex, which becomes the new root. For example, we have

Bi(+A)=<pn . Bi(eee—21D) =N -2(}.

In particular, the map B increases the degree of the graph by 1.
We define the coproduct A on H recursively by multiplicativity and

A =11+ 0®BH)A(f) 3)

for t = By (f). In terms of Hochschild cohomology of bialgebras, the grafting operator B, satisfies the
Hochschild 1-cocycle condition. For example, we have

A =1x1,
A(e) =eQ1+1®e,
A(se)=2e@1+2e@e+1@s0,
A()=1®I+e®@+13],
AAN)=AQl+ee®@e+2.0 +I0A,.
It is known that the coproduct A is coassociative but not cocommutative.

The counit [ : % — @ is defined by vanishing on Aug(#) and 1(1) = 1. If we denote the product by
m:HQH — H, we define the antipode S by the antiautomorphism on H satisfying

mo(S®id)oA=lol=mo(d®S)oA.
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Then the tuple (H, m, [, A, ﬁ, S) forms a Hopf algebra known as the Connes—Kreimer Hopf algebra of
rooted trees.

4. Rooted tree maps

We introduce rooted tree maps developed in [9]. Let the identity map on A, be assigned to the empty
forest [, i.e., I =id. For any rooted forest f of positive degree, we define the Q-linear map f A — A,
by the following four conditions:

D) if f=e, f() =22z —2%) and f(z) =0,

(D) Bo(F)(z) = Ry Ry R, f(2)) and B1.(f)(2) =0,
(D) if f = gh, f(v) =g(h()) forv ez, 2} |5 € ur),
aV) f(wv) = M(A(F)(w®v)) forw € A,, v € {z, 2| € url,

where s € u,, Ry, denotes the right multiplication map by w, that is, R,,(v) = vw for v, w € A,, M :
A, ® A, — A, denotes the concatenation product, and A(f) = 2 F'® " when A(f) = Y fer
As a matter of fact, the assignment ~ : H — Endg(A,) is an algebra homomorphism. We find that f (zf)
always ends with z — z%, and hence the condition (II) is well-defined. We also find that the image f(v) in
the condition (III) does not depend on how to decompose f into g and 4 because of the commutativity
property of RTMs which is proved by induction on graph order. We can also show the conditions (III)
and (IV) hold for any v € A,; see [8, Theorem 1.2] or [9, Theorem 2.2]. We call f the RTM assigned to
feH.

Example 4.1 (calculations of images of RTMs). Since 7(zf) = zf (z— zf) and A(e) =eRI+1RQe,
@) =V =@+ @ =) =L@ — )+ (@) e —2D).
Then we calculate
AN @) =B 0)@)=R,_Ry_ Rz—_lzg:“- 20 =2 (22222 -0 (z—20)+(2)* (22— 2°) (z=20).
5. Harmonic product and diamond product

The harmonic product * : A, x A, — A, is defined by Q-bilinearity and
D Ixw=wxl=w,
D vys x wyr = (v wy) ys + (W5 * w)yr + (v W)XV,

dII) vxxw =v*xwx = (V*w)x

forv, w e A,, s, t € u,. It is associative and commutative. The tuples (.A}, *) and (A?, x) are subalgebras
of (A,, *). The composition £Z is known as the evaluation map of MLVs of harmonic type. It is an
algebra homomorphism with respect to * (see [1]).

Lemma 5.1. Fork,l>1,s,t € u,,and v, w € A,, we have
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(1) vzks*xwz = (W *wzy)2es + W2k s * W21+ (U W)kt 515
(i) zZp sV * 2w = Zk s (V* 27, W) + 201 (Th sV % W) + Zhey 50 (V% ).

Proof. Because of the condition (III), it is enough to show when v, w € Al
To show (i), substitute vx*~! and wx/~! into v and w, respectively, in the condition (IT) and then use
the condition (III).
We show (ii) by induction on total degree of words. If v = w = 1, it follows from (i) for v = w = 1.
Ifv=0v'z,, (V€ .Al, m>1,a € u,)and w = 1, the left-hand side equals

(ks V' * 200 Zm,a + Zh,s V200 + ZhosV Ztmota 4)

because of (i). The first term turns into

(Zhs (V' *210) + 210 2k.5V 4 2kt 5tV )T

by induction, and hence we have

@) =2k (V' *20.)Zm.a + V2 + V' Ztmora) + 20 Zh.sV + Tkl st V-

Again by (i), we see that this coincides with the right-hand side. The proof goes similarly if v =1 and
w=wz,p (W eA,n>1,bepu,).
If v=1z;y,4 and w = w'z, p, the left-hand side equals

(ks V" % 20, W)Zm,a + (Zh,sV * 20, W) Zn b + (ks V' * 200 W) Zingnab

because of (i). This turns into

(2k,s (V" % 20,0w) + 22,0 2k, V% W) + 2ot 1,50 (V5% W) Zm
+ (25 (U 2,w") 210 (2 sV * W) A Zhpr 50 (VE W) 20
+ (ks (V' # 21,w") + 22,0 (2a sV * W) + Zhg 50 (V% W) Znn ab
by induction. Again by (i), we see that this coincides with the right-hand side. U
From now on, let y = y; for simplicity. For s € u,, we define the Q-bilinear map ¢, : A; x A, — A, by
logw=w,
vos I =Ys0(v),
VX Oy wx = (Vo5 wx)x — (vy o5 w)x,
VY 05 wx = (v O; wx)y + (Vy ©5 W)X,
vx o5 wy = (v oy wY)x + (vx o5 w)y, )
vy o5 wy = (V oy wy)y — (VX o5 W)y,
VX O5 WY = (Vo5 WYX + (v Og W)y — (VY O5 W)Yy,

vy 05 wy; = (Vo5 wy )y — (v Oy wz )y + (Vy 05 w)yy,
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forve A, we A, and 1 #1¢ € u,. When r = 1, the product ¢ corresponds to the one defined in [5] and
is commutative. In general, 1 is the left unit but not the right unit. For example, one checks y o, 1 =z —2z°.

Lemma 5.2. Fors € u,, v € A, and w € A,, we have
VZOs W =v o, wz = (V Oy w)Z.

Proof. By definition, we easily see vz o5 w = (v o5 w)z.
We prove v oy wz = (v o5 w)z for words v, w by induction on d = deg(v). It is obvious if d = 0.
Assume d > 1. If v = v'x, by definition (in particular, adding the third and fifth identities in (5)), we have

Vx ogwz = o5 wz)x — W'y o w)x + (V'x o5 w)y
= oy wz)x — (V'z o5 w)x + (Vx o5 w)z.

By the induction hypothesis, the first two terms cancel out, and hence we obtain the assertion. The proof
goes similarly when v = v'y. O

Lemma 5.3. Fors,t € u,, v € Ay, and w € A,, we have
(i) vx oy wzd = (v o, wzd)zd — (vy o5 w)2?,
(i) vy oy wzd = (v o, wzd)(y o 1) + (vy o5 w)zZl.

Proof. By the third and seventh identities in (5), we have (i). By (i), Lemma 5.2, and y ¢, 1 =z — Zf, we

have (ii). U
We put z; = x + y; for simplicity (and hence z; = z). Note that ¢(z,) = zf.

Proposition 5.4. Fors € u,, v € Ay, and w € A,, we have

VOsw = lﬁs(fp(v) * W;l(w))'

Proof. If v =1 or w = 1, it is obvious. Otherwise, the proof goes by induction on deg(v) + deg(w).
If v = v'z, by definitions, the right-hand side turns into

Vs ((v'2) %Y, (W) = Yy (0(0)x % ¥ ' (w)) = ¥ (9 (V) % ¥y (w))x) = P (p (V) % ¥y (w))z.

Then, by the induction hypothesis, this equals (v’ ¢; w)z, which equals the left-hand side because of
Lemma 5.2.
Similarly, if w = w’z, the right-hand side turns into

Vs (@) % Y, (W'2) = s (0(v) % ¥, (w)x) = ¥ (((0) % ¥, (w))x) = P (@ (v) % ¥y (w))z,

which equals the left-hand side.
To complete the proof, we show when v = v'x and w = w’ zf. In this case, the right-hand side turns into

Vs (p(W)zx ¥ (w'2d)). (6)
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Without loss of generality, suppose @(w') = zk, s, * - * Zk,.1,- Then, by definitions, we find
v w'e) = v Wz,
Hence, we have
(6) = ¥ ((()y * ¥y W zegs, + (@) 5y W)y, )z + () 59 W)xzi ). (N

Since ¢(v') € Aj, %—1 (W) = Zy.11/sZkasta/t1 * * * Thootn /11 » 0D the harmonic product has combinatorial
meaning of overlapping shuffle, the subscript of ‘y’ in the last z;/;, or z changes into

| 1) Iy t 1 1) t, t
SX|—X—X-+-+X X —=f Oor §X|—X—X--X X — | =1,
§ 51 In—1 Iy s 141 -1 In

respectively, after the map 1, applies. Therefore we have
(D) = Y@@y = ¥y W) + @) 5 W)y, + (@) % ¥ w))x)zy
= Yo (—p'y) # ¥y W) + o) ¥ (w'2))z)
= (—v'yo,w +v oy w'z?)z.
The last equality is by the induction hypothesis. By Lemma 5.3(i), this coincides with the left-hand side. [J
Lemma 5.5. The product ¢ gives a left A-module structure to A, for any s € [i,.
Proof. For s € u,, u,v € Ay and w € A,, We have
(101 v) 05w = (@(@(u) x p(v))) o5 w
= U (0 * () * ¥y~ (w)
= Y5 (9@ * (9(v) + ¥ (w)))
= Y5 (9() % (Y (v oy w))) = u o5 (vo, w)
by Proposition 5.4 and the associativity of . (I

Lemma 5.6. Fors,t € u, and v, w € A,, we have
yosviw = (y o5 )22 w 4+ vz (y 05 w) + 022 (22 — 2D)w.
Proof. We prove the lemma by induction on deg(w). When w = 1, we have
Yoy vzl = (y o, 0)z + (Logvz))(y o 1) (8)
by Lemma 5.3(ii). Since y o, 1 =y o5 1+ (z% —z2), we have
(8) = (y o5 V)z; + vz} (y o5 ) + 020 (2] — 27)
and the assertion. If w = w'z (w’ € A,), by the induction hypothesis and Lemma 5.2, we have

LH.S. = (yo; vzlw')z

= (yos 2wz +v (yosw)z+vzd (22 — 2)w'z =RH.S.
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Ifw=uw' zf, (w” € A,), by Lemma 5.3(ii) and the induction hypothesis, we have

LHS. = (1o,020w'z5)(yor 1) + (y o5 vz w25
= (1os 2w 25 (yor 1) + (y o5 )22 w +v20 (v 0y w20 +v22 (2 — 2D)w
=R.H.S.

This finishes the proof. O

Now write R = RyRy12y R, !, For rooted forests f, we define polynomials F JAS A% recursively by
s [1=1,
s F.=y,
e F;=R(Fy)ift =B, (f)and f #1,
o Fr=Fy01 Fjif f=gh.
The subscript of F is extended linearly.

Proposition 5.7. For f € H, put A(f) = Z(f) ' ® f". Then, fors,s € u, and v, w € A,, we have
Frog vzf/w = Z (Ffr o v)zf/(Ffu Oy W).
N

Proof. It is enough to consider the case that f is a monomial, i.e., a rooted forest. If f =1, it is obvious.
If f =e, by Lemma 5.6, we find the proposition holds.

Assume deg(f) > 2 and the proposition holds for any elements in # of degree less than deg(f). If
f=gh(g,h #10), we have

Fr o vzf/w = (Fy01 Fy) o vzf/w = F, o5 (F) 0 vzf/w) )
because of Lemma 5.5. Since deg(g), deg(h) < deg(f), we have
)= D Fy o (Fy o, )20 (Fyy oy w) = ) Y~ (Fyr 05 (Fiy 05 )20 (Fyr 09 (Fyr oy w)) — (10)
(h) & M
by the induction hypothesis. Again by Lemma 5.5, we have

(10) =Y " " ((Fy 01 Fiy) 05 )25 ((Fgr 01 Fiyr) 0y w) = (Fyr 05 )25 (Fpr 0 w),
(& M N

and hence the assertion.

If fisatree and f = B, (g), we have Fy = R(Fy). In this case, the proof goes inductively on deg(w).
When w =1, we have

Fr o, vz = R(Fy) o5 vz5
= (R, (Fg)x +2F,)y o, vz},
= (Ff 05 0)z) + (R} (Fo)x +2F,) 05 v2))(z — 23) (11)
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because of Lemma 5.3. Since deg(g) < deg(f), we have
Fyo vz = Z (Fy 05 0)22/(Fgr 09 1)
(9]
by the induction hypothesis. Then we have
(11) = (Fy 05 0)2% + (R, (F)x 05 v28) @ = 20) 42 ) (Fgr 03 0)23(Fyr 09 1)(z2 — 2))

(€3]
= (Ff o v)zf, + ((Ry_l(Fg) Oy vzf/)zf/ — (Fy oy v)zf/)(z - zf/)

+2(Fy 05 0)20 (y oy D)+ Y (Fy 0, )20 (R(Fgr) = Ry (Fg)xy) og 1) (12)

(8)
g'#l

because of Lemma 5.3(1), yoy 1 =z — Zf,, and
(Fg// <>S/ 1)(Z — Zf,) = Fg//y <>S/ 1 = %(R(Fg//) — R;I(Fg//)xy) <>S/ 1
We find

D (Fpos )b (Froy 1) =Y (Fprog v)z8(Fpr oy 1) + (Ff 05 v)25

) e(f)
s

=Y (Fgr 05 0)20(Fp, (g7 05 1) + (Ff 05 )2}
(g)

=) (Fy 0 )20 (R(Fyr) 05 1) + (Fg 05 )25 (y 0 1) + (Fy 0 0)2),
g”#ﬂ
because of (3). Therefore we have

(12) =Y (Frog0)2d (Fproy D+H(R; (Fy)osvzi) 2l (z=20) = > (Fyow)2h (Ry (Fyxyogl).  (13)

f (&)
g'#l

We now see that the second and third terms in (13) cancel out. To see this, we need to show

D (Fy o )Ry (Fyr) 09 1) = Ry (Fp) 05 vz,
(&)
g"#l
because of Ry (Fgr)xy oy 1= (Ry!(Fgr) oy DZ8(z —25). By Ry (Fgr) oy 1 = R;lza/ (Fgr oy 1), the

induction hypothesis, and Lemma 5.3, we have

Z (Fgosv)zl (R (Fgnogl) = RZ__1Z§, ( Z (Fg/osv)zf/(Fg//os/l)) = RZ__IZ5/(Fgosvzf,—(Fgos/v)zf,)

(&) (&)
g"#l g"#l

=R, (R, (Fposvz)) (z—=20) = Ry (Fp)o,vzy..
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Thus we conclude

(13) =" (Fp 05 v)20 (Fpr 0y 1).
N

Now we proceed to the case when deg(w) > 1. If w = w'z (w’ € A,), we have
Fr o vzf,w = (Fy oy vzf,w/)z = Z (Fpr o v)zf,,(an oy W)z = Z (Fpr oy v)zf,,(an O/ W)
N N
by Lemma 5.2 and the induction hypothesis. If w = w'z, (w' € A,, s” € ), since we have already

proved the identity when w = 1, we have

Frogvziw =Y (Fp o vziw)zh (Fpr o 1)
N

- Z Z (Fy; o5 v)Zf-f(Ff}; Oy W)z (Fyr 0y 1),
) ("

where we put A(f") =3 1) fu ® f,. We also have
Z (Fpr 05 0) 25 (Fpr oy w) = Z (Fpr o5 0) 25 (Fpr oy w'z5))
@)) D)

=Y (Fp oy 0)zl (Fpy oy w20 (Fpy o9 1),
o U

where we put A(f") =3 #m fd ® fy . By coassociativity of A, these two coincide, and hence we have
conclusion. 0

The following property plays an important role in our proof of Theorem 2.5 in Section 8.

Proposition 5.8. Fors,t € u,, v € Ay, and w € A,, we have
Dwyoswz—20)) =—1(T@)y o T(w)(z —2))(z —29).

Proof. By Lemmas 5.3(ii) and 5.9(ii), it is equivalent to show the identity

vy 05 w — v o5 wz = T(t(v) 0 T(W)Z — T(V)y o T(W)). (14)

We prove this by induction on deg(v) + deg(w). We consider five cases.
Case l:v=1.Ifw=1,z,z— zﬁ (u € ), we calculate that both sides turn into

5.8 8 8 5_ .8 B 8y,
2—2,—2, 2z—z))—z5z, (2—z2,—z)@&—2z,)—(2—2,)z;,

respectively. If w = w’z, we calculate

T(RH.S) =zt (w)z) — (y o D10 zt(w) — 2(y o (W) 4+ 2(y o D (1o, T(w"))
=7((y os w)z) — T(w'zz}) = T(L.H.S.)
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by Lemma 5.9(iii) and the induction hypothesis. If w = w'(z — zg), we have
LHS. =(o,w)z—20)—w'z(z—20) —w'(z —2°)2°
by Lemma 5.9(ii), and
T(RH.S.) =22t (w)z? — (y o Dt (w) — 22 (v o, T(w))
=zbt(yo,w —logw'z)) — (v o, Ddt(w)
by Lemma 5.9(iv) and the induction hypothesis. Thus (14) holds.

Case2:v=z.Ifw=1,z,z— zf,, we calculate that both sides turn into

-2 -7, 2e-22-2Dz, P -2 -2z -) - (-2,
respectively. If w = w’z, we calculate

T(RH.S.) = z(z 0, T(w)zZ%) — zZ(yort(w)+zy o t(w) —z(y o T(w)))
=zr(zy o, w —zo,w'z)) —z(y o T(w) — z2(y o T(W)))

by Lemma 5.9(v) and the induction hypothesis. Applying Lemma 5.9(iii) to the third term, we find that
this is 7(L.H.S.). Note that

XV Oy sz:zf(vos sz)—i—zf(xvot w)—zzf(vot w) (15)
by Lemma 5.9(iv) and (vi). If w = w'(z — z%), we have

T(RH.S.) =22 (20, T(w)2}) — 2(y oy 2T (W) — 22 (zy 04 T(W)) + 225 (v 0, T(W))
=2 t(zyosw —zosw'zd) —z(y o, (1 o, 22T (w))

by (15) and the induction hypothesis. This is 7(L.H.S.) because of Lemma 5.9(ii). Thus (14) holds.
s

u’

Case3: v=y. l[fw=1,z, z—z°, we calculate that both sides turn into

58 B 8y,8 8y2 8y, .8 8 B
(z—2zy—2)(z—z)) —(z—zy)zy, (z—2z0) 72— (z—2z0)z8; — 22, (2 —Z)),
58 8 58 E) 8 8y, 8
(z—z2,—z2)@—7)(z—z —z) — (2 —z)z(z —zy) — (2 — 2,0z, (2 — 2}),
respectively. Note that

XU Og ZW =zf(v Os ZW) + z(xv O w)—zzf(v Oy W) (16)

by Lemma 5.9(iii) and (v). If w = w'z, we calculate
T(RH.S) =22 (10, 27 (w)2%) 4+ z(x o, T(w)2?) — 220 (1 0, T(w')Z0)
— (2 (yor zr (") +2(xy o T(W)) — 22} (y o T(W)))

=t(yo,w—1lo,wd)+zt(y> o, w —yo,w'z)) —zzl (o, w' — Logw'z))
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by (16) and the induction hypothesis. Hence, applying T and using Lemma 5.3(ii), we find (14) also
holds in this case. If w = w’(z — z%), we have
(RHS.) = zf(l 4 r(w)zf) + zf,(x Ou r(w’)zf) — zzﬁ(l Oy r(w’)zf)
— (2 (v or T(w)) + 25, (xy 04 TW) = 22 (y 04 T(W))
=t(yosw—Tloywzd) +22t(y? osw —yo,w'zd) —zz28t(y oy w' — 1oy w'zd)
by (15) and the induction hypothesis. This is 7(L.H.S.) because of Lemmas 5.9(ii) and 5.3(ii). Thus (14)
holds.

Case4:v=1vz. Ifw=1,

T(RH.S) = z2(t(v)) 0, 22) + (222 — 222) (T (v) 05 1) — 2(z (V) y o, 1)
=20zt (v oy 1) — T (v oy 20)

by Lemma 5.9(i), (vi), and (vii) and the induction hypothesis. This is t(L.H.S.) because of Lemmas 5.2
and 5.9(). If w =z,

T(RHS) =z(t(v) 0,222 + T(0) 0, 20 — 2(x (V) 0, 22)) — 2(T(W)y o, 2+ T()y 0r 1 —2(T (W) y o, 1))
=z2t(Vy o,z — v 0y22)) + 2Ty o 1 —v o, 2)) — 2Ty oy 1 —v 0, 20)

8

u’

by Lemma 5.9(v) and the induction hypothesis. This is 7(L.H.S.) because of Lemma 5.2. If w =z —z

T(RH.S) =z(t (V) ¢; zflzf) + zﬁ (t(v) oy zf) — sz,(f(v/) Ou Zf)
— (2@ @)y o ) + 7Ty ou 1) = 225 (T (V) y 0, 1))
=21V yos (z—2)) — v o5 (z—2))z) + 2Ty os 1 —vog ) —zzhT(Vy o 1 =/ 0, 2))
by Lemma 5.9(vi) and the induction hypothesis. This is 7(L.H.S.) because of Lemmas 5.2 and 5.3(ii). If
w=uw'zg,
T(RH.S.) = z(r(v/) O r(w)z‘sS +7(v) 0 r(w/)z;S —z2(t (V) o, r(w/)zf))
—z(t @)y or t(w) + )y o T(w) —2(z (W) y o T(W))

=72ty o, w — v oy wzd) +zT(vy oy w' —vos w'z) —zT(Vy oy w — v o5 w'Zd)

by Lemma 5.9(v) and the induction hypothesis. This is 7 (L.H.S.) because of Lemma 5.2. If w = w’ (z—zi),
T(RH.S.) = 2(t(v)) o, T(w)Z}) + 22 (r (v) 0, T(W)Z%) — 222 (T (V) 0 T(W)ZP)

— (2 @)y o T(Ww)) + 25 (t(v)y 0 T(W)) — 225 (T (V)Y 04 T(W)))

=72ty o, w—v oswzd) + 2 T(vy oy w —vo,w'zd) — 220t (Wy oy w' — v o5 w'Zd)

by Lemma 5.9(vi) and the induction hypothesis. This is 7(L.H.S.) because of Lemmas 5.2 and 5.3(ii).
Thus (14) holds.
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Case 5:v=v'y. fw=1,

T(RHS) =2 (t(v) 0, 22) + 22 (r(v) 05 1) = 222 (z (') 05 1) = 22 (z () y o, 1)
=t(Wyo, 1 —v' 0, 20) + 22 (t() 05 1) — 222 (r (V') 05 1)
by (15), Lemma 5.9(1), xo, 1 = zf, and the induction hypothesis. This is T (L.H.S.) because of Lemmas 5.9(i)
and 5.3(ii). If w =z,
T(RH.S.) =22 (r () 0, 220) + 2(r (v) 0, 2%) — 222 (x (V) 0 20)
— 22ty orz) +z(t()y o 1) — 225 (z (V) y o, 1)
=221y o,z 0,220) +zt(y oy 1 —v 0, 20) — 20Ty oy 1 — v 0, 20)
by (16) and the induction hypothesis. This is 7 (L.H.S.) because of Lemmas 5.2 and 5.3(ii). f w =z — zi,
T(RHS) =2 (W) 0, 222 + () 0, 2) — 225 (r (V') 0, 20)
— (2 @@y o 2) + 2, (T )y 04 1) = 22, (T W)y o, 1)
=22t(Wyo, (z—20) —v oy (2 =222+ Lty os 1 —vo, ) =z t(Wy oy 1 —v 05 20)
by (15) and the induction hypothesis. This is 7(L.H.S.) because of Lemmas 5.2 and 5.3(ii). If w = w'z,
T(RH.S) =22 (r (V') o, T(w)2?) + 2(T(v) 0 T(w)Z0) — 220 (T (V') o, T(w)Z?)
— (5 (x @)y or T(w)) +2(t W)y o T(W) = 22 (T (V)y o T(W)))
= zfr(v oW — U O wzf) +zt(vyosw —v o w’zf) — zzfr(v oy w — v o w’zf)
by (16) and the induction hypothesis. This is 7(L.H.S.) because of Lemmas 5.2 and 5.3(ii). If w =
w'(z —29),
T(RH.S.) =22 (z () o T(w)Z?) + 22 (r (v) 0 T(w)Z?) — 222 (z (V) 0, T(W')20)
— (2 @)y o T(w) + 23 (T W)y 04 TW) = 22, (T (V)Y 04 T(W))
=22t(Wyo,w—v oy wzd) + 2ty osw —vosw'z’) — 220ty oy w — v oy w'z’)
by (15) and the induction hypothesis. This is 7(L.H.S.) because of Lemmas 5.2 and 5.3(ii). Thus (14)
holds and we complete the proof. U
Lemma 5.9. Fors,t € u,, v, v € Ay, and w € A,, the following equalities hold:
@A) vv' o1 =(@o, DN o4 1.

(i) vy oy w(z — zf) =Wy o, w— v O wzf)(y o 1).

(i) yvoyzw = (y o5 (v oy zw) + z(yv oy w) — z2(y 05 1) (v 05 w).

(iv) yvos 2w = (y o5 (v oy 22w) + 22 (yv o, w).

V) zvogzw = z(V oy ZW + ZV Oy w — Z(V O5 W)).

(i) zv o5 22w = z(v oy Z2w) + 22 (zv o w) — 222 (v o ).

(vil) T(vog 1) =1(V) O 1.
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Proof. (i): If v =1 or v/ = 1, it is obvious. Otherwise, it is enough to show when v = &1~y ... kn—1

=1y ... gh

y

and v/ =z ~1y. One calculates

o l=7""1r =20 =) =20 T = 2D,

which is clearly equal to (v oy 1)(v' o5 1).
(i1): This is a direct consequence of Lemmas 5.2 and 5.3(ii).
(iii): We first consider the case v = 1. If w = 1, it is obvious because of Lemma 5.2. If w = w’z (w’ € 4,),
the left-hand side turns into
(yoszw )z = ((y o5 Dzw' +z(y o5 w') — z(y o5 Dw')z

by Lemma 5.2 and the induction hypothesis on degree of words. This is equal to the right-hand side again
by Lemma 5.2. If w = w’z§S (w' € A,, t € ), the left-hand side turns into

(y o5 2wz} +zw(y o 1) = (v 05 Dzw +2(y 05wz} — 2(y 05 Dw +zw(y o; 1)

by Lemma 5.3(ii) and the induction hypothesis. This is equal to the right-hand side again by Lemma 5.3(ii).
If v=2z, by Lemma 5.2, we have
LHS. = (yoszw)z
and
RH.S. = ((y 05 D(1 05 zw) +z(y o5 w) — z(y o5 (1 05 w))z,
which are equal as shown just before. If v = y, we need to show when w =1, w’z, w/zf (w' €A, teu,).
Ifw=1,
LHS. = (3% 0o; Dz = (yos D(yoy52)
and
RHS. = (yo, D(yoy2) +200* oy 1) —2(y o5 %,
which coincide. If w = w’z, by induction on degree of words, the left-hand side turns into

(v o5 zw)z = (y 05 D(y 05 2wz + 2(y* 05 w)z — 2(y 05 D (y 05 W)z,

which is equal to the right-hand side due to Lemma 5.2. If w = w'z%, by using Lemma 5.3(ii) and the
induction hypothesis, one calculates

LHS. = (yoyzw)(yo; 1) + (y* 05 zw) 2
=((osDzw+z(y o, w) —z(y os Dw)(y or 1)
+((yos D(yos zw) +z2(y? o5 w) — 2(y 05 D(y 05 w))zP
and

RH.S. = (y o, Dw(y o 1)+ (y 05 2w)20) +2((y 05 w) (y o, 1) + (3?05 w')2?)
—z2(yos D(w(y o 1)+ (y o5 w)zd),
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which are equal. If v = v'z, it is obvious by Lemma 5.2 and the induction hypothesis. If v = v'y, we
need to show when w = 1, w'z, u/z;S weAd,ten) Ifw=1,
LHS.=yvo,z=0Qvos 1)z
and
RHS.=(yos DWwosz) +z(yvos 1) —z(yos D(wos 1),
which are equal. If w = w'z, it is obvious by Lemma 5.2 and the induction hypothesis. If w = w’zf, by
using Lemma 5.3(ii) and the induction hypothesis, one calculates

LHS. = (v oy zw)(y o, 1) + (yv 05 zw') 2
= ((y os DV o5 zw) +z(yv" o5 w) — z(y o5 D 05 w))(y oy 1)
+((yos Doszw) +z(yvos w) —z(y o5 D(w oy w'))z

and

RH.S. = (y 05 1)((v/ 05 zw) (y or 1) 4+ (v 05 zw")20) 4+ 2((yv" 05 w) (¥ 0; 1) + (yv 05 w')z0)
—z2(y oy D(QW oy w)(y or 1) + (v oy w)z)),
which coincide.

(iv): We first consider the case v = 1. If w = 1, it is obvious because of Lemma 5.3(ii). If w = w’'z
(w’ € A,), the left-hand side turns into

(yos 2wz = ((yos DZ2w' + 22 (y oy w))z

by Lemma 5.2 and the induction hypothesis on degree of words. This is equal to the right-hand side again
by Lemma 5.2. If w = w'z% (w’ € A,, u € u,), the left-hand side turns into

(yos 22wz + 2wy o, 1) = (yos DZ2w + 20 (y oy w2 +22w(y o, 1)

by Lemma 5.3(ii) and the induction hypothesis. This is equal to the right-hand side again by Lemma 5.3(ii).
If v=_z, by Lemma 5.2, we have

LHS. = (yo,2w)z
and
RH.S. = ((y oy D(1 05 22w) + 22 (y 0, w))z,

which are equal as shown just before. If v = y, we need to show when w =1, w'z, w’zft (w' €Ay, ueu,).
fw=1,

LHS. = oy z2) (o )+ 2oy D2
and

RH.S. = (yo, D(yos 2) +22(y* o, 1),
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which are equal because of Lemma 5.3(ii). If w = w’z, it is obvious by Lemma 5.2 and the induction
hypothesis. If w = w'z3, by the induction hypothesis, one calculates
LHS. = (y o, 22w)(y 0, 1) + (3 05 22w")zd
= ((yos Dzjw+2/(y or w)(y 0 D + (v 05 Dy 05 zyw') +2, (3% 0 w))z,,
and

RH.S. = (yos D(@w(y o, 1)+ (yos 22w)z0) + 20 ((y or w)(y o 1) + (v2 0, w)2d),

which coincide. If v = v'z, it is obvious by Lemma 5.2 and the induction hypothesis. If v =v’y, we need
to show when w =1, w'z, w'z8 (w' € A, u € ). fw =1,

LHS. = (v o;22)(yor D)4 (yv o, 1)
and

RHS. = (yo, Do, 20) + 20 (yvo, 1),

which are equal by Lemma 5.3(ii) and the induction hypothesis. If w = w’z, it is obvious by Lemma 5.2
and the induction hypothesis. If w = w’z’, by using Lemma 5.3(ii) and the induction hypothesis, one
calculates

LHS. = (yv' o; 22w)(y o, 1) + (Yv oy 20w')z’
= ((yos D 05 22w) + 22 (Y0 0, w)) (¥ oy 1) + ((y 05 D o5 22w + 25 (yv o, w')2)
and

RH.S. = (y o5 D((V/ 05 22w)(y 0, 1) + (v 0y 22w)28) + 22 (30 0 w) (y 0, 1) + (yv o, w20,

which coincide.

(v): If v =1, by using Lemma 5.2, the right-hand side turns into
2w+ zwz — 22w = zwz,

which is equal to the left-hand side. If v = z, we have

LHS. =(zo5zw)z = wz?

and

RH.S. = z(zwz + wz* — zwz) = zwz>,

which coincide. If v = y, we need to show when w =1, w'z, w/z;S (weA,teu) fw=1,

LHS. =zy¢osz=12yz
and

RHS.=z(yosz+zyos 1l —z(yos 1)) =2zyz,
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which coincide. If w = w’z, by induction on degree of words, the left-hand side turns into
(zy o5 zw)z = z(y 05 2w + 2y 05 w' — z(y 05 W)z,
which is equal to the right-hand side due to Lemma 5.2. If w = w'z?, by using Lemma 5.3(ii) and the
induction hypothesis, one calculates
LH.S. = (20, zw)(y o; 1) + (zy 05 2w 2> = zwz(y or 1) 4+ 2(y 05 2w’ 4 2y 05 w' — 2(y 05 w'))z?
and
RH.S. = z(zw(y o 1) + (y 05 zw)z) + wz(y o 1) 4 (2y o5 w)z) —z(w(y o 1) + (v 05 w)z))),

which are equal.
If v =z, it is obvious by Lemma 5.2 and the induction hypothesis. If v =v’y, we need to show when
w=1,wzwzWweA,teu) fw=1,
LHS. =zvosz=72zvz
and

RHS. =z(vosz4+zv0, 1 —z(v o, 1)) = zvz,

which coincide. If w = w’z, it is obvious by Lemma 5.2 and the induction hypothesis. If w = w’zf, by
using Lemma 5.3(ii) and the induction hypothesis, one calculates

LH.S. = (z2v o5 zw)(y o; 1) + (zv 05 zw) 2

=72(V' 05 zw + 20 05 w — (v 05 w)) (¥ 0; 1) + 2(v 05 zw 4+ zv 05 W' — z(v o5 W)’
and

RHS. = z((v/ s zW) (¥ 0; 1) + (v 0y zw/)z;S + (v o5 w)(yo; 1)
+ (20 05 w)z) — 2((V 05 W) (y o1 1) + (v 05 w)zy)),

which are equal.

(vi): If v =1, by using Lemma 5.2, the right-hand side turns into
2w+ (2o w) — 228w = Lwg,
which is equal to the left-hand side. If v = z, we have

L.H.S. = (z ¢ sz)z = szzz

and

R.HS. = zszz + szzz - zszz = szzz,

which coincide. If v = y, we need to show when w =1, w'z, w’zﬁ weAdA,uecu) Ifw=1,

LHS. =zyo,20 =202(t 0, 1) + (zy o, D2



Rooted tree maps for multiple L-values from a perspective of harmonic algebras 2021

and
RHS. =z(yos ) +20(zyor 1) — 222 (v o, 1)

=2z (o D+ oy D) +7z(v oy ) =2z (v o 1),
which coincide. If w = w'z, it is obvious by Lemma 5.2 and the induction hypothesis. If w = w'z%, by
using Lemma 5.3(ii) and the induction hypothesis, one calculates
LHS. = (zoyz20w)(y o, 1)+ (zy o5 22wz’

= zZjwz(y ou 1) +2(y 05 22w, + 20 (zy o w)zl, — 220 (y 05 w2,

and
RHS. =z w(you D)+ (yos 20w)z8) + 22 (wz(y o, 1)+ (zy o, w)z5) — 222 (w(y o, 1)+ (y oy w)2d),

which are equal. If v = v'z, it is obvious by Lemma 5.2 and the induction hypothesis. If v = vy, we
need to show when w = 1, w'z, w'z} (w' € A,, u € u,). If w = 1, by Lemma 5.3(ii) and the induction
hypothesis, one calculates

LH.S. = (zv' 0, 22)(y o, 1) + (zv o5 1)2?

= (z(V 0y ) + 2020/ 0, 1) — 222 (Vo 1)) (¥ 0 1) +2(v 05 1)
and
RH.S. =z(vo,20) + 20 (zv o, 1) — 220 (v oy 1)

=2((W oy 2)(yor D+ (o, D2+ 2220 o D(y oy 1) — 222 (v o, D(y o 1),

which are equal. If w = w'z, it is obvious by Lemma 5.2 and the induction hypothesis. If w = w'z%, by
using Lemma 5.3(ii) and the induction hypothesis, one calculates

LH.S. = (zv' 0,2 w) (yo, D+ (zvos 20wz’

= (z(V/ o5 20 w) +2 (20 0, w) — 220 (V0 ) (Yo 1)+ (z(v o, 22 w') +2° (zvo,w) — 220 (vo, w')) 2]

and

RH.S. = 2((V/ 03 22w) (y 0, 1) 4+ (v 05 22w)22) + 22 (20 0 w) (y 04 1) + (zv 0, w')2)
—222((V o w)(y oy 1) + (o, w)zd),

which are equal.

1 km -1

(vii): If v =1, it is obvious. Otherwise, putting v = el Y-z y, one calculates

fn—1 k-1

- Z

8
<

tvo, D=1z - z‘g) Y T Zf)) = Zfz
and

r(v) <>S 1 = ’lﬁs(zka_l tt Zxkl_l) = q)(zsxkﬂl_l e stkl—l)’

which are equal. U
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6. Proof of Theorem 2.1

We prove that the polynomial F defined just before Proposition 5.7 satisfies the theorem. The proof goes
by induction on deg( f) for rooted forests f and deg(w) for words w. First, we prove the theorem when
f=e If w=1, we have

f@=22:-2)
and

L(Fros =2 (yo, ) =2z -2,

which are equal. Suppose deg(w) > 1. If w = w'z (w’ € A,), by [9, Theorem 2.2(d)], which asserts that
R, and any RTM commute, the induction hypothesis, and Lemma 5.2, we have

f@w'z) = fZw)z = 20(Fy os w')z =20 (Fy o5 w). (17)
Ifw= w’z;S (w’ € A,), we have
fEw'z) = fFE@w)l + 2wzl (z —20)
and, by Lemma 5.3,
Dyosw'zd) =2 (o, w)zd + 2wzl (z - 20),

which are equal by the induction hypothesis.
Next, suppose deg(f) > 2. If f =gh (g, h #1[), we have

F(Z2w) = gh(2Pw) = g2 (Fy o5 ) = 22(Fy 05 (Fp 05 w)) = 22 ((Fg 01 Fp) 05 w) = 20 (Ff o5 w)

since deg(g), deg(h) < deg(f) and Lemma 5.5. Let f be a rooted tree and put f = B;(g). When w =1,
we have

f(zf) = szzﬁ R2zfzf, Rz__lzgg(ztss) = szzf, RZZ*ZE Rz__lzgztss(Fg o5 1) (18)
by the induction hypothesis. Since Y59 Ry = Rs¥s¢ and Y59 Ry = R,_sY¢ on Al we have
(18) = 20 (Vs (Ry Ruyay Ry (F)) = 20 (F o 1). (19)

Suppose deg(w) > 1. If w = w'z (w’ € A,), we have (17) again (but this time we consider deg(f) > 2).
If w=w'z’ (w € A)and A(f) = Z(f) f'® f”, we have

FEw) =Y FEEw) @D =Y 2 (Fposw)zd (Fprog 1)
N N

by the induction hypothesis on degree of words and (19). This is equal to zf(F 'r 05 w) by Proposition 5.7.
Uniqueness of Fy is shown as follows. If F ,’c € .A% also satisfies the theorem, we have

(Ff—F})OSwZO
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for any s € , and any w € A,. In particular, putting w = 1 we have

(Fy— Fp) oy 1=0,

and hence

Ff—F{ =gy, '(0)=0. O

7. Proof of Theorem 2.4

For rooted forests f, we define polynomials G, € A% recursively by
e G=1,
e G.=—y,
e G, =Ly (Gp)ift =B, (f) and f #1,
e Gy =Gg01Gyif f=gh,
where L, denotes the left multiplication map by v, i.e., L,(w) = vw (v, w € A,). The subscript of G is

extended linearly. In [7], we find that Gy = Fg(y).
Lemma 7.1. For f € Aug(H), put A(f) = Z(f) f'® f". Then we have

Z Ff/ 1 Gf// =0.
0

Proof. See [7, Proposition 4.5]. O

Proof of Theorem 2.4. If f = o, the theorem holds since S(f) = —e, Gy = —y, and Theorem 2.1 for
f =-e. Assume deg(f) > 2. If f =gh (g, h #1), we have

S(f) = S(gh) = S(h)S(g) = S(h)S(g) = S(8)S(h)

because the antipode S is an antiautomorphism, ~ is an algebra homomorphism, and RTMs commute
with each other. Then, since deg(g), deg(h) < deg(f) and Lemma 5.5, we have

S(H(Z2w) = S(@)(S(h) (22w)) = 25(G 4 05 (G og w)) = 22((G4 01 Gp) 05 w) = 22 (G o5 w)).

If f is a tree, by letting A(f) = Z(f) f'® f” and Lemma 7.1, we have

B(Grogw) =—22 Y (Fpro1 Gpr) oy w. (20)

)
Fi#

By Lemma 5.5, Theorem 2.1, and the induction hypothesis, we have

Q0)==2 Y Fpog(Gposw)==Y_ f(22(Gprogw) ==Y F(S(fEw).

) ) )
Fi# Fi# Fi#

Since } nlt 'S(f") =0, we get the theorem. O



2024 Hideki Murahara, Tatsushi Tanaka and Noriko Wakabayashi

8. Proof of Theorem 2.5
Lemma 8.1. For f € Aug(H), we have
Fyp=—R,TR; (Fs(s)).
Proof. See [7, Proposition 5.1]. O

Proof of Theorem 2.5. First, we prove the theorem when w = z5w'(z —2°) € 22 A, (z—z?). By Theorem 2.4,
we have

S(F)(w) =23 (Fs(p) 05 w'(z = 2)).
We also have
T fr(w) =1 f (W) (@ —2D) = (2} (Fr o T(w)(z —22))) 21)
by Theorem 2.1. Then, by Lemma 8.1, we have
Q1) =—1(z(RyTR, (Fs(p)) & T(w)(z —22))),

which is equal to zﬁ(FS( nHoswi(z— zf)) because of Proposition 5.8.
Next, we consider when w = w’z € A, z. Since R, and RTMs commute, we have

S(Hw) = S(FH(xw')z
and

tfr(w)=tfr(xw'z) =1 fr(xw)z,

which are equal by the induction hypothesis. Similarly, since L, and RTMs commute, we have the same
consequence when w = zw’ € zA,. O
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