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Word measures on GLN(q) and free group algebras
Danielle Ernst-West, Doron Puder and Matan Seidel

Fix a finite field K of order q and a word w in a free group F on r generators. A w-random element in
GLN (K ) is obtained by sampling r independent uniformly random elements g1, . . . , gr ∈ GLN (K ) and
evaluating w(g1, . . . , gr ). Consider Ew[fix], the average number of vectors in K N fixed by a w-random
element. We show that Ew[fix] is a rational function in q N . If w = ud with u a nonpower, then the limit
limN→∞ Ew[fix] depends only on d and not on u. These two phenomena generalize to all stable characters
of the groups {GLN (K )}N .

A main feature of this work is the connection we establish between word measures on GLN (K )
and the free group algebra K [F]. A classical result of Cohn (1964) and Lewin (1969) is that every
one-sided ideal of K [F] is a free K [F]-module with a well-defined rank. We show that for w a nonpower,
Ew[fix] = 2 +

C
q N + O

( 1
q2N

)
, where C is the number of rank-2 right ideals I ≤ K [F] which contain w− 1

but not as a basis element. We describe a full conjectural picture generalizing this result, featuring a new
invariant we call the q-primitivity rank of w.

In the process, we prove several new results about free group algebras. For example, we show that
if T is any finite subtree of the Cayley graph of F, and I ≤ K [F] is a right ideal with a generating set
supported on T , then I admits a basis supported on T . We also prove an analog of Kaplansky’s unit
conjecture for certain K [F]-modules.
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1. Introduction

Fix r ∈ Z≥1. We let F denote the free group on r generators. A word w ∈ F induces a map on any finite
group, w : Gr

→ G, by substituting the letters of w with elements of G. This map defines a distribution
on the group G: the pushforward of the uniform distribution on Gr . Equivalently, this distribution is
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the normalized number of times each element in G is obtained by a substitution in w. We call such a
distribution a word measure on G, and if w is given, the w-measure on G. For example, if w = abab−2,
a w-random element in G is ghgh−2 where g, h are independent, uniformly random elements of G.

The study of word measures on various families of groups revealed structural depth with surprising
connections to objects in combinatorial and geometric group theory (see, e.g., [Puder 2014; Puder and
Parzanchevski 2015; Magee and Puder 2019; 2021; 2024; Hanany and Puder 2023]). It has proven
useful for many questions regarding free groups and their automorphism groups (see, e.g., [Puder and
Parzanchevski 2015; Hanany et al. 2020]), as well as for questions about random Schreier graphs and their
expansion (see, e.g., [Puder 2015; Hanany and Puder 2023]). Previous works in the subject study word
measures on the groups Sym(N ), U (N ), O(N ), Sp(N) and generalized symmetric groups. Section 1E
explains how some of the results in the current paper relate to the established structure in other families
of groups.

We focus on word measures on GLN (K ), the general linear group over a fixed finite field K of order q .
As seen in other families of groups, word measures on this family demonstrate structural depth. Most
interestingly, we show that the analysis of word measures on GLN (K ) is intertwined with the theory of
free group algebras.

1A. The average number of fixed vectors. We consider various families of real- or complex-valued
functions defined on GLN (K ), and study their expected value under word measures. Our core example
is the function fix : GLN (K )→ Z≥0 counting elements in the vector space V = K N which are fixed by
a given matrix in GLN (K ). Not only does this special case illustrate our more general results, but is also
a case in which our understanding goes deeper. The function fix is, in fact, a family of functions, one for
every value of N ∈ Z≥1. We let Ew[fix] denote the expected value of fix under the w-measure on GLN (K ),
so Ew[fix] is also a sequence of numbers, one for every value of N ∈ Z≥1. Our first result is the following.

Theorem 1.1. For every w ∈ F and every large enough N , Ew[fix] is given by a rational function in q N

with rational coefficients.

For example, if w = [a, b] = aba−1b−1 is the commutator of two basis elements, then

Ew[fix] = 2 +
(q − 1)2q N

− (q − 1)3

(q N − 1)(q N − q)

for every N ≥ 2 (recall that q = |K | is fixed throughout, so this expression is indeed a rational function
in q N with coefficients in Q). Consult Table 1 for further examples. For general words, the rational
expression is valid for every N ≥ |w|. See Section 2 for a tighter lower bound on N . Theorem 1.1 is a
special case of Theorem 1.11.

Our second result alludes to a result of Nica [1994]. Let 1 ̸=w= ud where d ∈ N≥1 and u a nonpower.
Nica proved, inter alia, that the distribution of the number of fixed points in a w-random permutation
in Sym(N ) has a limit distribution as N → ∞ which depends solely on d and not on u. A similar
phenomenon was later shown to hold in various other families of groups. We add the groups {GLN (K )}N
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w q Ew[fix] valid for

a every q 2 N ≥ 1

a2 q even 3 N ≥ 2
q odd 4

a3 q ≡ 0, 2 (mod 3) 4 N ≥ 3
q ≡ 1 (mod 3) 8

[a, b] every q 2 +
(q−1)2q N

−(q−1)3

(q N −1)(q N −q) N ≥ 2

a2b3 q = 2 2 +
2

2N −2 N ≥ 3
q = 3 2 +

4
3N −3

[a, b]
2 q = 2 3 +

2(22N
−9·2N

+26)
(2N −1)(2N −2)(2N −8) N ≥ 4

a2b2c2 q = 2 2 +
1

(2N −2)2 N ≥ 2

q = 3 2 +
8(32N

−4·3N
+5)

(3N −1)2(3N −3)2

Table 1. The rational expressions giving Ew[fix] for various words w ∈ F(a, b, c) and
various values of q = |K |. For the first four words, rational expressions are given for
all values of q. For the remaining three words, rational expressions are given only for
particular values of q .

as such a family. In our illustrative special case, this is captured by the following result, which first
appeared in [Ernst-West 2019]. It also appeared independently in [Eberhard and Jezernik 2022, Section 8].

Theorem 1.2. Let 1 ̸= w = ud with d ≥ 1 and u a nonpower. Then

lim
N→∞

Ew[fix] = #{p ∈ K [x] : p | xd
− 1 and p monic}. (1-1)

In particular, the limit does not depend on u.

Combined with Theorem 1.1, if cd is the number of monic divisors of xd
− 1 ∈ K [x], we get that

Ew[fix] = cd + O
( 1

q N

)
. In particular, for nonpowers, Ew[fix] = 2 + O

( 1
q N

)
, and for proper powers cd ≥ 3

(if d ≥ 2, then xd
− 1 admits at least three distinct monic divisors: 1, x − 1 and xd

− 1). Theorem 1.2
is analogous to the result in the symmetric group Sym(N ), where this limit is equal to the number of
positive divisors of d in Z [Nica 1994]. In fact, it is sufficient to prove that the limit in (1-1) depends
only on d and not on u, and then the left-hand side of (1-1) is equal to limN→∞ Ead [fix]. This number
can then be extracted from the analysis of uniformly random elements in GLN (K )— see, for example,
[Fulman and Stanton 2016]. Theorem 1.2 is a special case of the more general Theorem 1.12 below.

1B. The q-primitivity rank. The analysis of Ew[fix], yielding Theorems 1.1 and 1.2, can be performed
using elementary linear algebraic arguments. In fact, this is how they were first derived in the [Ernst-West
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2019]. However, it turns out to be extremely useful to analyze these quantities using the theory of free
group algebras.

Denote by A def
= K [F] the free group algebra over K : its elements are finite linear combinations of

elements of the free group F with coefficients from the finite field K . It is a classical result of Cohn
[1964] and Lewin1 [1969] that right ideals of A are free right A-modules with a well-defined rank.2 An
analogous result holds for left ideals, but here we use right ideals only — in fact, from now on, we write
“ideals” to mean “right ideals”. In Section 2 below we derive a formula for Ew[fix] as a sum over a finite
set of finitely generated ideals of A, and Section 3 shows that the contribution of every such ideal is of
order determined by its rank.

In particular, this algebraic perspective allows a further understanding of the deviation of Ew[fix] from
Ea[fix], the analogous expectation under the uniform measure. Namely, as the action GLN (K )↷ K N

admits two orbits (the zero vector and all nonzero vectors), the expected number of vectors in K N fixed
by a uniformly random element of GLN (K ) is Ea[fix] = 2, and we consider the difference Ew[fix] − 2.
Theorems 1.1 and 1.2 imply that if w is a proper power, then Ew[fix]− 2 is of order 2(1), and otherwise,
it is of order O

( 1
q N

)
. Next, we provide a more refined and accurate description of this difference in the

nonpower case. To state our result and conjecture, we first define the notion of primitivity of elements in
ideals. Recall that by Cohn and Lewin’s result, every ideal I ≤ A is a free A-module and so admits a
basis. All bases of I have the same cardinality, called the rank of I and denoted rk I .

Definition 1.3. Let I ≤ A be an ideal and let f ∈ I . We say that f is a primitive element of I if it is
contained in some basis of I (considering I as a free right A-module). Otherwise, f is imprimitive in I .

This is analogous to the notion of a primitive element in a free group: an element belonging to some
basis of this group. Our next central result captures the 1

q N -term of the Laurent expansion of Ew[fix].

Theorem 1.4. Let 1 ̸= w ∈ F be a nonpower. Then the expected number of vectors in K N fixed by a
w-random element of GLN (K ) is

Ew[fix] = 2 +
|Crit2q(w)|

q N + O
(

1
q2N

)
,

where Crit2q(w) is the set of ideals I ≤ A of rank two which contain the element w− 1 as an imprimitive
element.

As implied by the theorem, the set Crit2q(w) is indeed finite for every nonpower w. We prove this fact
directly in Corollary 3.11. To illustrate, consider the commutator word w = [a, b]. As mentioned above,

E[a,b][fix] = 2 +
(q − 1)2q N

− (q − 1)3

(q N − 1)(q N − q)
= 2 +

(q − 1)2

q N + O
(

1
q2N

)
.

1Some claim that the first correct proof of this result (stated formally below as Theorem 3.1) is due to Lewin [1969] — see
[Hog-Angeloni 1990, Footnote 5].

2For example, it can be shown that the augmentation ideal IF =
{∑

αww |
∑
αw = 0

}
⊆A is of rank r = rk F. For instance,

when F = F(a, b, c), IF = (a − 1)A⊕ (b − 1)A⊕ (c − 1)A.
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In this case there are exactly (q − 1)2 distinct ideals of rank two containing [a, b]− 1 as an imprimitive
element: these are (δa −1, εb −1) with δ, ε ∈ K ∗. We conjecture a more general phenomenon, for which
we make the following definition.

Definition 1.5. The q-primitivity rank of w ∈ F, denoted πq(w), is the smallest rank of a proper ideal of
A containing w− 1 as an imprimitive element. Namely,

πq(w)
def
= min{rk I | I ≨A, I ∋ w− 1 and w− 1 is imprimitive in I }.

If this set is empty, we set πq(w)= ∞. A critical ideal for w is a proper ideal of rank πq(w) containing
w− 1 as an imprimitive element. We denote by Critq(w) the set of critical ideals for w.

Corollary 3.17 shows that πq(w) takes values only in {0, 1, . . . , r} ∪ {∞}, where r is the rank of F.
Note that πq(w)= 0 if and only if w = 1: the only rank-0 ideal is (0), whose only basis is the empty set.
In Section 4A below, we prove that πq(w)= 1 if and only if w ∈ F is a proper power (Corollary 4.6),
and that in this case, if one writes w = ud with d ≥ 2 and u a nonpower, the set of critical ideals of w is

Critq(ud)= {(p(u)) : p | xd
− 1 ∈ K [x], p monic and p ̸= 1, xd

− 1}.

For example, if |K | = q = 3 and w = u4, the critical ideals of w are in one-to-one correspondence
with the six nontrivial monic divisors the polynomial x4

− 1 ∈ K [x]. These rank-1 ideals are (u − 1),
(u + 1), (u2

− 1), (u2
+ 1), (u3

− u2
+ u − 1) and (u3

+ u2
+ u + 1). The trivial monic divisors of x4

− 1
correspond to the ideal (1)= A which is not proper, and to the ideal (u4

− 1) in which w− 1 is primitive.
By Proposition 3.16, πq(w)= ∞ if and only if w is a primitive element of F.

The following conjecture thus generalizes Theorems 1.2 and 1.4.

Conjecture 1.6. Let w ∈ F and let π = πq(w). Then the expected number of vectors in K N fixed by a
w-random element of GLN (K ) is

Ew[fix] = 2 +
|Critq(w)|
q N ·(π−1) + O

(
1

q N ·π

)
. (1-2)

Corollary 3.11 yields that Critq(w) is indeed finite. If π := πq(w) = 0 (namely, if w = 1), then
Critq(w)= {(0)} and (1-2) is obvious. Theorem 1.2 proves (1-2) when π = 1, and Theorem 1.4 proves
it when π = 2. As mentioned above, πq(w)= ∞ if and only if w is primitive in F, and in this case a
w-random element of GLN (K ) distributes uniformly [Puder and Parzanchevski 2015, Observation 1.2],
and so (1-2) holds. In particular, Conjecture 1.6 holds for the free group of rank 2 as the possible values
of πq(w) are {0, 1, 2,∞} (Corollary 3.17). We conclude the following analog of a result about SN [Puder
2014, Theorem 1.5].

Corollary 1.7. Let w ∈ F2. Then w induces the uniform measure on GLN (K ) for all N if and only if w is
primitive.

Another important background for Conjecture 1.6 is an analogous result in the case of the symmetric
group SN . The primitivity rank of a word w ∈ F, denoted π(w) and introduced in [Puder 2014], is the
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smallest rank of a subgroup of F containing w as an imprimitive element. Let CritF(w) denote the set
of subgroups of F of rank π(w) which contain w as an imprimitive element. Then the SN -analog of
Conjecture 1.6 is [Puder and Parzanchevski 2015, Theorem 1.8]: the expected number of fixed points in a
w-random permutation in SN is

1 +
|CritF(w)|

Nπ(w)−1 + O
(

1
Nπ(w)

)
.

Alongside its role in word measures on SN , the original primitivity rank π(w) seems to play a universal
role in word measures on groups (see [Hanany and Puder 2023, Conjecture 1.13]), it has connections with
stable commutator length (see Section 1.6 in the same article) and was recently found relevant to the study
of one-relator groups (see, for example, [Louder and Wilton 2022]). Definition 1.5 seemingly introduces
a family of related invariants of words — one for every prime power q . In fact, the same definition can be
applied to arbitrary fields — see Section 7. However, it is possible that all these invariants coincide for a
given word. We are able to show one inequality and conjecture a full equality.

Proposition 1.8. For every word w ∈ F and every prime power q, πq(w)≤ π(w).

Conjecture 1.9. For every word w ∈ F and every prime power q, πq(w)= π(w).

Conjecture 1.9, along with Conjecture 1.6, are in line with a universal conjecture — [Hanany and Puder
2023, Conjecture 1.13] — about the role of the primitivity rank π(w) in word measures on groups. For
more background, see Section 1.6 in the same article.

As part of our study of word measures in GLN (K ) employing the free group algebras, we also prove
some results about these algebras which may be of independent interest. For example, suppose that T is a
subtree of the Cayley graph of F with respect to some basis. If I ≤ A is a finitely generated ideal with a
generating set supported on T , then I admits a basis which is supported on T (Theorem 3.8). We also
analyze the A-module A/(w− 1) obtained as the quotient of the right A-module A by its submodule
(w− 1). Theorem 5.4 proves an analog of Kaplansky’s unit conjecture for these modules and shows that
if w is a nonpower, then the only cyclic generators of A/(w− 1) are the trivial ones. See Section 7 for a
further discussion of this line of research.

1C. General stable class functions and characters. As mentioned above, some of the results concerning
the function fix and its expectation under word measures are only an illustrative special case of more
general results. The variety of functions we consider are those relating to stable representations of
the family GL•(K ) (see [Putman and Sam 2017; Gan and Watterlond 2018]). Below we present the
generalizations of Theorems 1.1 and 1.2 and of Conjecture 1.6.

First, we must remark on the unconventional definition we make in this paper. Formal words in group
theory are usually read from left to right: this is why one usually considers right Cayley graphs. As a
consequence, we consider here the slightly nonstandard right action of GLN (K ) on VN

def
= K N , namely,

we consider VN as row vectors, and the action of g ∈ GLN (K ) on v ∈ VN is given by (v, g) 7→ vg. Thus,
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the action of w(g1, . . . , gr ) on a vector v ∈ VN can be thought of as the composition of the action, letter
by letter, from left to right — the natural direction in which the word is read.

Rather than considering only the number of vectors fixed by g, we consider more generally the number
of subspaces of V of a fixed dimension which are invariant under g and on which g acts in a prescribed
way. This is formalized as follows:

Definition 1.10. Let m ∈ Z≥1 and B ∈ GLm(K ). We define a map B̃ : GLN (K ) → Z≥0 (valid for
arbitrary N ) as follows. For g ∈ GLN (K ) we let B̃(g) be the number of m-tuples of vectors v1, . . . , vm ∈

VN = K N on which the (right) action of g can be described by a multiplication from the left by the
matrix B. Namely,

B̃(g)= #{M ∈ Mm×N (K ) | Mg = BM}.

For example, if B = (1) ∈ GL1(K ), then B̃ = fix. For B = (λ) ∈ GL1(K ), the function B̃ gives the size
of the eigenspace Vλ ≤ VN of an element. If B = Im ∈ GLm(K ), then B̃(g)= fix(g)m , and if

B =


1

1
. . .

1
1

 ∈ GLm(K ),

then B̃(g)= fix(gm). The following two theorems are the generalization of Theorems 1.1 and 1.2:

Theorem 1.11. Suppose that w ∈ F, m ∈ Z≥1 and B ∈ GLm(K ). Then for every large enough N , the
expectation Ew[B̃] is given by a rational function in q N .

Theorem 1.12. Let 1 ̸= w = ud with d ≥ 1 and u a nonpower. For every m ∈ Z≥1 and B ∈ GLm(K ), the
limit limN→∞ Ew[B̃] exists and depends only on d and not on u.

In the special case of B̃ = Im ∈ GLm(K ), Theorem 1.11 appeared in [Ernst-West 2019]. The same
special case of Theorem 1.12 first appeared in the same thesis, and then, independently, in [Eberhard and
Jezernik 2022, Section 8].

In particular, Theorem 1.12 captures all moments of the number of fixed vectors under the w-measure.
So if w = ud , all these moments converge, as N → ∞, to the same limits as for w = ad , namely as for a
d-th power of a uniformly random element of GLN (K ). Denote the number of fixed vectors in K N of
a w-random element of GLN (K ) by fixw,N . When w = a, a limit distribution as N → ∞ is known to
exist [Fulman and Stanton 2016, Theorem 2.1].3 Although this limit distribution is not determined by its
moments, we do prove the following in the Appendix:

Theorem 1.13. Let 1 ̸=w ∈ F be a nonpower. Then the random variables fixw,N have a limit distribution,
and this limit distribution is identical to the one of fixa,N described in [Fulman and Stanton 2016,
Theorem 2.1].

3This was originally proved by Rudvalis and Shinoda — see [Fulman and Stanton 2016].
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Theorem 1.13 is analogous to the L = d = 1 case of Nica’s main Theorem 1.1 [1994], which revolves
around the limit distribution of the number of fixed point in w-random permutations. We suspect that
Theorem 1.13 can be generalized to a full analog of Nica’s result (and see Section 7).

Remark 1.14. One can further generalize Theorem 1.11 to more than one word. For example, for any
tuple of words w1, . . . , wℓ ∈ F, consider an ℓ-tuple of random elements

w1 = w1(g1, . . . , gr ), . . . , wℓ = wℓ(g1, . . . , gr ) ∈ GLN (K ),

where g1, . . . , gr are independent, uniformly random elements of GLN (K ), and consider expressions
like E[fix(w1) · fix(w2) · · · fix(wℓ)]. The same argument given in the proof of Theorem 1.11 shows that
this expectation is given by a rational expression in q N . Also, Corollary 1.3 in [Ernst-West 2019] shows
that the difference E[fix(w1) · · · fix(wℓ)] − Ew1[fix] · · · Ewℓ[fix] = O

( 1
q N

)
if and only if no pair of words

is conjugated into the same cyclic subgroup of F.

We further introduce a generalization of Conjecture 1.6. Consider

R def
= C

[
{B̃ | B ∈ GLm(K ), m ∈ Z≥0}

]
,

the C-algebra generated by all functions B̃ from Definition 1.10. Every element of R is a (class) function
defined on GLN (K ) for every N . Rather than formal polynomials in the B̃’s, the elements of R are
functions on GL•(K ), so two elements giving the same function on GLN (K ) for every N are identified.
For example, every conjugate of B gives rise to the same function as B. In fact, this is the only case where
two elements give the same function: B̃1 = B̃2 if and only if B1 and B2 belong to GLm(K ) for the same m
and are conjugates — see [Ernst-West et al. 2024, Corollary 3.1]. If we also include the constant function 1,
thought of as B̃ where B = e ∈ GL0(K )

def
= {e}, then R is the C-span of the B̃’s: indeed, if B1 ∈ GLm1(K )

and B2 ∈ GLm2(K ), then B̃1 · B̃2 =
∼B1 ⊕B2 where B1 ⊕B2 ∈ GLm1+m2(K ) is the suitable block-diagonal

matrix. In the same article, it is shown that R is, in fact, a graded algebra and admits a linear basis consisting
of {B̃}, where B goes over exactly one representative from every conjugacy class in all GLm(K ) (m ≥ 0).

Some of the functions in R coincide, for large enough N , with irreducible characters of GLN (K ). For
example, for N ≥ 2, the action of GLN (K ) on the projective space PN−1(K ) decomposes to the trivial
representation and an irreducible representation whose character we denote χP. Then for every N ≥ 2,
the character χP is equal to an element in R:

χP
=

1
q − 1

∑
λ∈K ∗

(λ̃− 1)− 1

(here λ̃ is the function corresponding to λ ∈ GL1(K )). In [Ernst-West et al. 2024] it is shown that the
set of families of irreducible characters {χN ∈ GLN (K )}N≥N0 which coincide with elements of R is
precisely the set of stable irreducible representations of GL•(K ) as in [Gan and Watterlond 2018]. Our
generalization of Conjecture 1.6 deals with these families of irreducible characters.
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Conjecture 1.15. Let χ be a stable character of GL•(K ), namely, an element of R which coincides, for
every large enough N , with some irreducible character of GLN (K ). Then

Ew[χ ] = O((dimχ)1−πq (w)).

By Theorem 1.11 (with w = 1), dimχ = χ(1) is a rational function in q N . Conjecture 1.15, together
with a positive answer to Conjecture 1.9, constitute a special case of the more general, albeit not as
precise, [Hanany and Puder 2023, Conjecture 1.13]. (See also [Ernst-West et al. 2023, Conjecture A.4]
for a slightly more ambitious version of Conjecture 1.15.)

For N ≥ 2, the decomposition of the function fix to irreducible characters is

fix = 2 · triv +χP
+ ξ1 + · · · + ξq−2,

where ξ1, . . . , ξq−2 are distinct irreducible characters, each of dimension q N
−1

q−1 , all belonging to R. Thus,
they all fall into the framework of Conjecture 1.15, and we get that this conjecture implies, in particular,
that Ew[fix]= 2+O((q N )1−πq (w)). In particular, Conjecture 1.15 generalizes (a slightly weaker version of)
Conjecture 1.6. Some background for Conjecture 1.15 can be found in [Hanany and Puder 2023, Section 1].

1D. Reader’s guide.

Notation. The free group F has rank r and a fixed basis B = {b1, . . . , br }. Recall that all ideals in this
paper are one-sided right ideals unless stated otherwise, and we write I ≤ A to mean that I is an ideal
of the free group algebra A = K [F]. More generally, we write M ≤ Am if M is a submodule of the
free right A-module Am . For any set S ⊆ Am , we denote by (S) the submodule generated by S, and if
S = {s1, . . . , st } we may also write (s1, . . . , st).

We denote by E = {e1, . . . , em} a basis for the free A-module Am . The elements of the form ez
with e ∈ E and z ∈ F are called monomials. For a subset Q of the monomials, we write M ≤Q Am

to mean that M has a generating set in Am such that each of its elements is supported on Q. Usually,
for ideals inside A, we consider subsets of F corresponding to the vertices in some subtree T of the
(right) Cayley graph C def

= Cay(F, B) of F with respect to the basis B. In this case, instead of I ≤vert(T ) A
(here, of course, vert(T ) denotes the set of vertices of T ), we simply write I ≤T A. More generally,
for submodules of Am , we usually consider m disjoint copies C1, . . . , Cm of Cay(F, B), with origins
e1, . . . , em , respectively, and consider a collection of (possibly empty) subtrees T = T1 ∪ · · · ∪ Tm , with
Ti ⊂ Ci . We write M ≤T Am to mean that M is generated by elements supported on the vertices of T.

For a submodule M ≤ Am and a set S of monomials in Am , we let M |S denote the set of elements of
M which are supported on S. This is a vector space over K .

Paper organization. After a very brief survey of related works in Section 1E, Section 2 proves that Ew[fix],
and likewise Ew[B̃], are given by rational functions in q N (Theorems 1.1 and 1.11, respectively). In
Section 3 we study the free group algebra and its ideals, show how the computation of Ew[fix] is related to
“exploration” processes in the Cayley graph of F, and prove some basic properties of the q-primitivity rank
including Proposition 1.8. We then study limN→∞ Ew[fix] and limN→∞ Ew[B̃] and prove Theorems 1.2 and
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1.12 in Section 4. Section 5 studies the right A-module A/(w−1) and specifies its cyclic generators, and
also gives a criterion to detect when w−1 is primitive in a given rank-2 ideal in A. Section 6 deals with the
coefficient of 1

q N in the Laurent expansion of Ew[fix] and proves Theorem 1.4. Section 7 gathers the many
open questions that are raised by this work. Finally, the Appendix contains the proof of Theorem 1.13.

1E. Related works. As mentioned above, the two phenomena described in Theorems 1.11 and 1.12 are
found in other families of groups. The fact that the expectation under word measures of “natural” class
functions over certain families of groups are given by rational functions was first established for the
symmetric group [Nica 1994; Linial and Puder 2010]. It was later established for the classical groups U (N )
[Magee and Puder 2019] and O(N ) and Sp(N ) [Magee and Puder 2024] based on Weingarten calculus
(see, for instance, [Collins and Śniady 2006]), and also in the wreath product G ≀ SN for an arbitrary
finite group G [Magee and Puder 2021; Shomroni 2023a]. A related phenomenon appears when free
groups are replaced by surface groups (fundamental groups of compact closed surfaces). Indeed, there is
a natural definition of a measure induced by an element of a surface group on finite groups and certain
compact groups, and the expected value of certain characters of the symmetric group Sym(N ) under such
measures can be approximated to any degree by a rational function [Magee and Puder 2023]. A similar
result holds for measures induced by elements of surface groups on SU(N ) [Magee 2022].

The phenomenon described in Theorems 1.2 and 1.12, that if w = ud then the limit expectation of
natural class functions in the family under the w-measure depends only on d and not on u, is also found
in many of the above mentioned cases. It is true in Sym(N ) [Nica 1994; Linial and Puder 2010], in U (N )
[Mingo et al. 2007; Rădulescu 2006], as well as in O(N ) and in Sp(N ) [Magee and Puder 2024]. It
also holds in the characters analyzed in [Magee and Puder 2023] for measures on Sym(N ) induced by
elements of surface groups [ibid., Theorem 1.2].

Finally, there are analogs to Theorem 1.4 and Conjectures 1.6 and 1.15, which give an interpretation to
the order of Ew[ f ] − Ex [ f ], an interpretation which lies in invariants of w as an element of the abstract
free group F. We mentioned previously that there are very similar results in the case of Sym(N ) [Puder
and Parzanchevski 2015; Hanany and Puder 2023]. There are other invariants of w explaining the leading
order (and sometimes much more than the leading order) in the expected values of class functions in
U (N ), O(N ), Sp(N ) and G ≀ SN [Magee and Puder 2019; 2021; 2024; Brodsky 2024; Shomroni 2023a;
2023b]. A more detailed summary may be found in [Hanany and Puder 2023, Section 1.3].

2. Rational expressions

We prove Theorems 1.1 and 1.11, which show that the expectations under word measures of the class
functions we consider on GLN (K ) are given by rational functions in q N . The proof uses only linear
algebra and can be written in completely elementary terms. While we start with this approach, we then
“translate” the proof to the language of ideals and modules of the free group algebra A = K [F]. Given
our additional results and conjectures, the latter language is much more fruitful.

2A. The function fix and Theorem 1.1.
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The elementary approach. We first illustrate the proof in the somewhat simpler special case considered
in Theorem 1.1: the function fix. Let VN = K N be the vector space of row vectors of length N . Given
w ∈ F, one needs to count all g1, . . . , gr ∈ GLN (K ) and v ∈ VN such that v.w(g1, . . . , gr ) = v. We
consider the entire trajectory of v when the letters of w are applied one by one. Namely, assume that w is
written in the basis B = {b1, . . . , br } of F as w = bε1

i1
. . . bεℓiℓ (where i j ∈ {1, . . . , r} and ε j ∈ {±1}). We

consider the vectors

v0 def
= v, v1 def

= v0.gε1
i1
, v2 def

= v1.gε2
i2
, . . . , vℓ−1 def

= vℓ−2.gεℓ−1
iℓ−1

, vℓ
def
= vℓ−1.gεℓiℓ = v0. (2-1)

We denote this trajectory by v̄= (v0, . . . , vℓ). Given that the entire trajectory is determined by g1, . . . , gr

and v = v0, we do not change our goal by counting (g1, . . . , gr ; v̄) satisfying the equations in (2-1)
instead of (g1, . . . , gr ; v) satisfying v.w(g1, . . . , gr )= v.

The basic idea behind our counting is grouping together solutions (g1, . . . , gr ; v̄) according to the
linear relations over K which v0, . . . , vℓ satisfy. There are finitely many options here (trivially, at most
the number of linear subspaces of K ℓ+1), and, as we show below, for each subspace of K ℓ+1 the number
of solutions (g1, . . . , gr ; v̄) corresponding to it is either identically zero for every N , or its contribution
to Ew[fix] is given by a rational function in q N for every large enough N .

Denote by [1, w] the subtree of C = Cay(F, B) corresponding to the path from the origin to the
vertex w. For every b ∈ B, denote by Db(w) the vertices of [1, w] with an outgoing b-edge (within
[1, w]), and denote by eb(w) the number of b-edges in [1, w], so eb(w) = |Db(w)|. Now consider a
subspace 1 ≤ K ℓ+1 thought of as a set of equations on the vectors v0, . . . , vℓ, or, equivalently, on the
vertices of [1, w]. Below we denote these vertices by the corresponding prefix of w in F, and write
elements of K [1,w] def

= K vert([1,w]) ∼= K ℓ+1 as linear combinations of these vertices. We have

Ew[fix] =
#{g1, . . . ,gr ∈ GLN (K ), v ∈ VN | v.w(g1, . . . ,gr )= v}

|GLN (K )|r

=
#{g1, . . . ,gr ∈ GLN (K ), v̄ ∈ V ℓ+1

N | v̄ and g1, . . . ,gr satisfy (2-1)}
|GLN (K )|r

=

∑
1≤K [1,w]

#{g1, . . . ,gr ∈ GLN (K ), v̄ ∈ V ℓ+1
N | v̄ satisfies precisely 1, v̄,g1, . . . ,gr satisfy (2-1)}

|GLN (K )|r
(2-2)

If there are solutions (g1, . . . , gr ; v̄) which satisfy precisely 1, then the following two conditions hold:

C1: w− 1 ∈1 (here w− 1 is the equation w− 1 = 0, or, equivalently, vℓ − v0
= 0).

C2: 1 is “closed under multiplication by b±1”. Namely, for every b ∈ B and every equation δ =∑
z∈Db(w)

λzz (λz ∈ K ) supported on Db(w), denote by δb def
=

∑
z∈Db(w)

λzzb the corresponding equation
on the vertices on the termini of the corresponding b-edges. Then

δ ∈1 ⇐⇒ δb ∈1.

Conversely, if 1 satisfies conditions C1 and C2, then for every large enough N there exist solutions
(g1, . . . , gr ; v̄) satisfying precisely 1, and the contribution of 1 in (2-2) is given by a rational function
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in q N . Indeed, denote by dim(1) the dimension of the subspace 1, and by dimb(1) the dimension of
the subspace of 1 consisting of equations supported on Db(w). First, we choose a trajectory v̄ ∈ V ℓ+1

N

satisfying precisely 1. The number of choices for such v̄ is precisely indepℓ+1−dim(1)(VN ), where

indeph(VN )
def
= (q N

− 1)(q N
− q) · · · (q N

− qh−1)

is the number of h-tuples of independent vectors in VN .4

Second, given a trajectory v̄ satisfying precisely 1, we choose the tuple g1, . . . , gr ∈ GLN (K ) so
that v̄, g1, . . . , gr satisfy (2-1). We choose gi separately for every i = 1, . . . , r . Let b = bi . The vectors
of v̄ at the starting points of b-edges in [1, w], namely, in Db(w), span a subspace of V of dimension
eb(w)−dimb(1). (Such a trajectory may exist only if eb(w)−dimb(1)≤ N ). In this case, the element gi

should map a subspace of dimension eb(w)− dimb(1) in a prescribed way, and condition C2 guarantees
this prescribed way is valid and can be realized by a linear transformation. The number of elements in
GLN (K ) satisfying this constraint is

(q N
− qeb(w)−dimb(1))(q N

− qeb(w)−dimb(1)+1) · · · (q N
− q N−1).

If g1, . . . , gr satisfy these constraints and as C1 holds, v̄ and g1, . . . , gr satisfy (2-1). Overall, if
N ≥ eb(w)− dimb(1) for every b ∈ B, the term corresponding to 1 in (2-2) is

indepℓ+1−dim(1)(VN ) ·
∏
b∈B

(q N
− qeb(w)−dimb(1))(q N

− qeb(w)−dimb(1)+1) · · · (q N
− q N−1)

(q N − 1)(q N − q) · · · (q N − q N−1)

=
indepℓ+1−dim(1)(VN )∏

b∈B indepeb(w)−dimb(1)
(VN )

,

which is rational in q N . Overall, we obtain

Ew[fix] =

∑
1≤K [1,w]:1 satisfies C1,C2

indepℓ+1−dim(1)(VN )∏
b∈B indepeb(w)−dimb(1)

(VN )
, (2-3)

which completes the proof of Theorem 1.1.

The free-group-algebra approach. The key observation that leads to the free-group-algebra approach
is that condition C2 above is a feature of (as always, right) ideals of the free group algebra A = K [F]:
a right ideal I ≤ A is a K -linear subspace of A satisfying C2 on the entire Cayley graph C (rather than
on [1, w] alone). To make this formal, let us recall some notation. For a subtree T of the Cayley graph
C=Cay(F, B), denote by Db(T ) the set of vertices in the subtree T ⊂C with an outgoing b-edge (inside T ),
and by eb(T )= |Db(T )| the number of such edges. For any ideal I ≤ A, its restriction to T , denoted

I |T
def
= I ∩ K vert(T ),

4We could not find a conventional notation for the quantity indeph(VN ), but it is closely related to existing common notation.
For example, indeph(v)= q Nh

· (q−N
; q)h , where (t; q)h

def
= (1 − t)(1 − tq) · · · (1 − tqh−1) is the q-shifted factorial.
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is a linear subspace of K vert(T ). We say that a K -linear subspace 1≤ K vert(T ) satisfies C2(T ) if for every
δ ∈ K vert(T ) supported on Db(T ), we have δ ∈1 if and only if δ.b ∈1.

Lemma 2.1. Assume that1≤ K vert(T ) is a K -linear subspace satisfying C2(T ). Then (1)≤A, the ideal
generated by 1, does not introduce any new elements supported on T , namely

(1)|T =1. (2-4)

Proof. It is clear that (1)|T ⊇1, so it is enough to show the converse inclusion. We may assume that T is
finite: Every element of A has finite support, and every element of (1) is generated by finitely many ele-
ments of1. So if T is not finite and (2-4) fails, replace T with the finite subtree S ⊆ T which is the convex
hull of the support of an element in (1)|T \1 and its finitely many generators in1 and replace1 with1|S .

As in the proof of Theorem 1.1 above, for large enough N , there are g1, . . . , gr ∈ GLN (K ) and
v̄ = {vz ∈ VN }z∈vert(T ) such that for every b-edge z1 b−→ z2 in T , we have vz1 .gb = vz2 , and such that
the equations over K satisfied by the vectors v̄ are precisely the elements of 1. The tuple g1, . . . , gr

defines a group homomorphism F → GLN (K ) by bi 7→ gi . This group homomorphism defines, in turn, a
homomorphism of K -algebras A→ End(VN ). Equivalently, such a homomorphism of K -algebras defines
a structure of an A-module on VN . Pick an arbitrary z0 ∈ vert(T )⊆ F. Now A is itself an A-module and,
moreover, it is a free A-module with basis {z0}. There is a unique A-module homomorphism φ :A→ VN

such that φ(z0) = vz0 . Since φ is an A-module homomorphism and T is connected, the choice of the
gi ’s guarantees that φ(z)= vz for every z ∈ vert(T )⊆ F.

Finally, kerφ ≤ A is a submodule, or an ideal, and the equations it satisfies on vert(T ) are precisely
those satisfied by v̄, namely, 1. Thus

(1)|T ≤ [kerφ]|T =1. □

Returning to the case T = [1, w], recall that we write I ≤[1,w] A if I is an ideal of A with generating
set supported on [1, w]. Lemma 2.1 yields that there is a one-to-one correspondence

{1≤ K [1,w] satisfying C1 and C2} ⇐⇒ {I ≤[1,w] A | w− 1 ∈ I }.

For an ideal I ≤ A and every finite subtree T of C, define

dT (I ) def
= dimK (I |T ).

Similarly, for every basis element b ∈ B, denote by Db(T ) the set of vertices in the subtree T ⊂ C with
an outgoing b-edge (inside T ), and let

dT
b (I )

def
= dimK (I |Db(T )).

With this notation, (2-3) is equivalent to

Ew[fix] =

∑
I≤[1,w]A:I∋w−1

indep|w|+1−d [1,w](I )(VN )∏
b∈B indepeb(w)−d [1,w]

b (I )(VN )
. (2-5)
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The advantage of translating (2-3) to the language of ideals as in (2-5) will soon be apparent. For example,
Corollary 3.9 below shows that the summand in (2-5) corresponding to I ≤[1,w] A is of order (q N )1−rk I .

2B. The general case: Theorem 1.11. Fix w ∈ F, m ∈ Z≥1 and B ∈ GLm(K ). Our goal is to prove that
for every large enough N , the expectation Ew[B̃] is a rational function in q N . Now we need to count
tuples v1, . . . , vm ∈ VN and g1, . . . , gr ∈ GLN (K ) such that, defining ui

def
= vi .w(g1, . . . , gr ), we haveu1

...

um

 = B ·

v1
...

vm

 . (2-6)

As above, we consider the entire trajectories of v1, . . . , vm through the letters of w, namely,

v0
1 = v1, v1

1 = v1.g
ε1
i1
, . . . , vℓ1 = v1.w(g1, . . . , gr ),

...

v0
m = vm, v1

m = vm .g
ε1
i1
, . . . , vℓm = vm .w(g1, . . . , gr ),

which we denote by v̄. Again we group the solutions (g1, . . . , gr ; v̄) according to the equations over K
satisfied by v̄. This time, the equations are not given by ideals in A, but rather by submodules of the right
free A-module Am . Formally, let E = {e1, . . . , em} be a basis of the free module Am . Every element
of Am is a finite linear combination, with coefficients from K , of monomials ez with e ∈ E and z ∈ F.
These monomials are identified with the vertices of m disjoint copies C1, . . . , Cm of Cay(F, B), with
origins e1, . . . , em , respectively.

Let W denote the union of the paths [1, w] in C1, . . . , Cm , so W =
⋃

e∈E [e, ew]. Recall that M ≤W Am

means that M is a submodule of Am with a generating set supported on W. If the equations satis-
fied by the trajectory v̄ are precisely M |W, then M must, in particular, contain the elements dictated
by (2-6), which we denote by EQB,w ⊆ Am . For example, if B =

( 2
7

1
3

)
∈ GL2(K ), then EQB,w equals

{e1w− 2e1 − e2, e2w− 7e1 − 3e2}.
Generalizing the notation from above, if T = T1 ∪ · · · ∪ Tm is a union of (possibly empty) subtrees

Ti ⊆ Ci , and M ≤ Am , define

dT(M) def
= dimK (M |T),

dT
b (M)

def
= dimK (M |Db(T)), b ∈ B,

eb(T)
def
= |Db(T)|.

So |Db(W)| = m · eb(w). The same argument as above shows that for every N ≥ maxb∈B eb(W),

Ew[B̃] =

∑
M≤WAm :M⊇EQB,w

indepm(|w|+1)−dW(M)(VN )∏
b∈B indepeb(W)−dW

b (M)
(VN )

. (2-7)

As there are finitely many submodules M ≤W Am , the expression (2-7) is rational in q N . This completes
the proof of Theorem 1.11.
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3. The free group algebra and its ideals

We gather some known results and some new results about the free group algebra A = K [F] and its (as
always in this text, right) ideals, and more generally the free right A-module Am and its submodules.
Although we assume throughout this paper that K is a fixed finite field, most results of the current section
apply to an arbitrary field (not necessarily finite).

The starting point of the story is a paper of Cohn [1964] and a paper of Lewin [1969] (see note 1)
which prove that A is a free ideal ring, in the following sense:

Theorem 3.1 [Cohn 1964; Lewin 1969]. Every ideal I ≤ A is a free A-module. More generally, every
submodule of a free A-module is free. Every free A-module M has a unique rank: all bases of M have the
same cardinality.

See [Hog-Angeloni 1990; Rosenmann and Rosset 1994; Rosenmann 1993] for additional proofs of
this result.

There are two main new results in Section 3. In Theorem 3.8 below it is shown that if an ideal I ≤T A
has a generating set supported on some finite subtree T of Cay(F, B), then it also admits a basis supported
on T . Our analysis also leads to Corollary 3.9: the order of contribution of every ideal I ≤[1,w] A with
w− 1 ∈ I to the summation (2-5) of Ew[fix] is given by its rank.

Recall that E = {e1, . . . , em} is a basis of the free right module Am , that the elements of Am are
K -linear combinations of monomials {ez}e∈E,z∈F , and that we identify these monomials with the vertices
of m disjoint copies C1, . . . , Cm of Cay(F, B). Let T = T1∪· · ·∪Tm be a union of m finite, possibly empty,
subtrees Ti ⊂ Ci , and let M ≤T Am be a submodule generated on T. In order to study M , we expose the
vertices of T one-by-one and with them the elements of M which are supported on the already-exposed
vertices. Denote by vt the vertex exposed in step t , where t = 1, . . . , #vert(T), and let Mt denote the
submodule generated by M |{v1,...,vt }, so

(0)= M0 ≤ M1 ≤ · · · ≤ M#vert(T) = M.

The order by which we expose the vertices of T should have the property that as often as possible, we
expose neighbors of already-exposed vertices. Formally, it should be the restriction to T of a full order on
the vertices of C1 ∪ · · · ∪ Cm which abides to the following assumption.

Definition 3.2 (exploration). We call a full order ≤ on the vertices of C1 ∪· · ·∪Cm an exploration if it is an
enumeration of the vertices (so every vertex has finitely many smaller vertices), and every vertex is either

(1) a neighbor of a smaller vertex, or

(2) the smallest vertex in some Ci .

An order on a collection T = T1 ∪ · · · ∪ Tm of (possibly empty) subtrees Ti ⊆ Ci is called an exploration
if it is the restriction of an exploration of C1 ∪ · · · ∪ Cm .

Note that an order on T is an exploration if and only if it is an enumeration of the vertices of T which
satisfies that every vertex is either a neighbor of a smaller vertex of T or the first vertex visited in some Ti .



2062 Danielle Ernst-West, Doron Puder and Matan Seidel

Given a finite T and M ≤T Am as above, every step is either free, forced or a coincidence, according
to the following conventions.5 Assume first that vt is a neighbor of an already-exposed vertex u, and that
the edge from u to vt is labeled by b ∈ B ∪ B−1

= {b±1
1 , . . . , b±1

r }:

u b−→ vt . (3-1)

Denote by Dt
b the set of already-exposed vertices with an outgoing b-edge leading to another already-

exposed vertex. This set should include the vertex u. If M |Dt
b

contains an element with u in its support,
we say the t-th step is forced. If vt is the first vertex we expose in some Ti , the t-th step is not forced.
If a step is not forced, it is a coincidence if there is an element of M |{v1,...,vt } with vt in its support, and
otherwise it is free.

Lemma 3.3. Let T and M ≤T Am be as above and let v1, v2, . . . be an exploration of vert(T). Then step t
in the exposure of M along T is

forced ⇐⇒ Mt−1 = Mt and M |{v1,...,vt−1} ≨ M |{v1,...,vt },

free ⇐⇒ Mt−1 = Mt and M |{v1,...,vt−1} = M |{v1,...,vt },

a coincidence ⇐⇒ Mt−1 ≨ Mt .

If step t is a coincidence and f is an element of M |{v1,...,vt } with vt in its support, then Mt is generated by
Mt−1 and f .

Of course, if Mt−1 ≨ Mt , then, in particular, M |{v1,...,vt−1} ≨ M |{v1,...,vt }.

Proof. First assume step t is forced. There is some f ∈ M |Dt
b

with u in its support, and then f.b ∈

M |{v1,...,vt } \ M |{v1,...,vt−1}. Yet f.b ∈ Mt−1 and any other element of M |{v1,...,vt }, by subtracting a suitable
K -multiple of f.b, becomes an element of Mt−1. Hence Mt−1 = Mt .

If the step is free, then M |{v1,...,vt−1} = M |{v1,...,vt } by definition, and so Mt−1 = Mt .
Finally, assume that step t is a coincidence. Fix N ≥ t , and consider (row) vectors u1, . . . , ut−1 ∈ VN =

K N with dependencies corresponding exactly to the elements of M |{v1,...,vt−1}, namely,
∑t−1

i=1 αi ui = 0 if
and only if

∑t−1
i=1 αivi ∈ M . Let ut ∈ VN be some vector which is linearly independent of u1, . . . , ut−1.

For every b ∈ B, there is an element gb ∈ GL(VN ) with u.gb = u′ for every b-edge (u, u′) with u, u′
∈

{u1, . . . , ut } (here we rely on that the step is not forced). As in the proof of Lemma 2.1, these gb’s
determine a K -algebra homomorphism ϕ : A → End(VN ). This ϕ gives VN a structure of an A-module.
For every e ∈ E with Te already visited, pick an arbitrary ve ∈ Te∩{v1, . . . , vt }. Then these monomials {ve}

form a subbasis of the free A-module Am , and there is a homomorphism of A-modules ψ : Am
→ V

mapping ve to ue. By design, the linear dependencies among u1, . . . , ut correspond precisely to the

5This terminology is inspired by [Eberhard and Jezernik 2022], which, in turn, was inspired by earlier works dealing with
random Schreier graphs of symmetric groups (see, for example, [Broder and Shamir 1987]). The analog in [Eberhard and
Jezernik 2022] of our free step is a free step which is not a coincidence, and the analog in the same article of our coincidence is a
free step which is also a coincidence.
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elements of kerψ supported on {v1, . . . , vt }. As ut is independent of the rest, we get that

Mt−1 ≤ kerψ yet Mt ≰ kerψ,

proving that Mt−1 ≨ Mt .
If step t is a coincidence and f ∈ M |{v1,...,vt } has vt in its support, then any other element g ∈ M{v1,...,vt }

satisfies that g −α f ∈ M |{v1,...,vt−1} for some α = α(g) ∈ K . Hence the final part of the statement of the
lemma follows. □

Lemma 3.4. Let T and M ≤T Am be as above. In every exposure process of M along T as above, the
number of coincidences is the same: it does not depend on the order of exposure (as long as it is a valid
exploration à la Definition 3.2).

Proof. Similarly to the definition of dT(M) and dT
b (M) from Section 2, let d t def

= dimK (M |{v1,...,vt }) and
d t

b
def
= dimK (M |Dt

b
). Obviously, d0

= d0
b = 0. We now trace how d t and

∑
b∈B d t

b change with t , depending
on the three types of steps defined above. According to the definitions and to Lemma 3.3:

• In a forced step, both d t and
∑

b d t
b increase by one (compared to d t−1 and

∑
b d t−1

b , respectively).

• In a free step, both d t and
∑

b d t
b do not change.

• In a coincidence, d t increases by one, while
∑

b d t
b does not change.

Therefore, the difference dT(M)−
∑

b dT
b (M), which is, of course, independent of the order of exposure,

is equal to the number of coincidences. □

The proof of Lemma 3.4 actually shows that the number of forced and free steps is also independent
of the order of exposure, but that is not as useful. The proof also gives the following.

Corollary 3.5. Consider the expression (2-7) giving Ew[B̃] as a sum over submodules M ≤W Am with
M ⊇ EQB,w. The summand corresponding to such a submodule M is

(q N )m−#coincidences
(

1 + O
(

1
q N

))
,

where we count coincidences in an exposure process of M along W.

Proof. The numerator in the summand corresponding to M in (2-7) is

indepm(|w|+1)−dW(M)(VN )= (q N )m(|w|+1)−dW(M)
(

1 + O
(

1
q N

))
.

The denominator is∏
b

indepeb(W)−dW
b (M)

(VN )= (q N )
∑

b(eb(W)−dW
b (M))

(
1 + O

(
1

q N

))
.

The result follows as
∑

b eb(W)= m |w| and as dW(M)−
∑

b dW
b (M) is equal to the number of coinci-

dences. □
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Next, we show that the number of coincidences is identical to the rank of the module M . The proof
relies on the main theorem of [Lewin 1969], which makes use of the following notion.

Definition 3.6. A Schreier transversal of a submodule M ≤ Am is a set ST of monomials of Am which
satisfies

(i) ST is closed under prefixes: if ez ∈ ST with e ∈ E and 1 ̸= z ∈ F, and b ∈ B ∪ B−1 is the last letter
of z, then ezb−1

∈ ST, and

(ii) the linear span spanK (ST) of ST contains exactly one representative of every coset of Am/M .

It is not hard to show that every M ≤Am admits Schreier transversals — see [Lewin 1969, pp. 456–457]
for an argument as well as for a concrete construction. A Schreier transversal ST consists of the vertices
in a collection of (possibly infinite) subtrees, one in Ci for every i = 1, . . . ,m. The main theorem of
[Lewin 1969] is that one may construct a basis for M which is, roughly, in one-to-one correspondence
with the outgoing directed edges from ST to its complement. Although a version of this theorem holds
for any submodule of any free A-module, we only need the case of finitely generated A-modules.

Theorem 3.7 [Lewin 1969, Theorem 1]. Let M ≤Am be a submodule, and let ST be a Schreier transversal
of M. For every f ∈ Am , denote by φ( f ) the representative of f + M in spanK (ST). Then the set

{ezb −φ(ezb) | ez ∈ ST, b ∈ B, ezb /∈ ST} ∪ {e −φ(e) | e ∈ E \ ST} (3-2)

is a basis for M (as a free A-module).

We stress that in (3-2), b is a proper basis element and not the inverse of one.

Theorem 3.8. Let T = T1 ∪ · · ·∪ Tm be a collection of finite, possibly empty, subtrees Ti ⊂ Ci and assume
that M ≤T Am . Then the number of coincidences in an exposure of M along T is equal to rk M.

Moreover, M admits a basis supported on T. In fact, every set of elements f1, . . . , frk M supported on
T with the leading vertex6 of fi being the monomial exposed in the i-th coincidence is a basis of M.

Proof. Let s = rk M . Let ST be a Schreier transversal for M . Then the basis (3-2) contains s elements.
Let S be the smallest collection of finite subtrees (one in each Ci ) which contain the whole support of
these s basis elements. Note that S contains exactly s vertices (monomials) outside ST, and all these
vertices are either leaves or isolated in S (namely, these are vertices of degree 1 or 0 in S). Consider
an exposure process of M along S according to some exploration such that the vertices of S ∩ ST are
exposed first and only then the remaining s vertices. Because there is no nonzero element of M supported
on ST, the first |S| − s steps are all free.

We claim that the remaining s steps are all coincidences. Indeed,

(0)= M|S|−s ≤ M|S|−s+1 ≤ · · · ≤ M|S|−1 ≤ M|S| = M.

For i =1, . . . , s, let fi ∈ M|S|−s+i be the basis element from (3-2) with the vertex exposed in step |S|−s+i
in its support. Clearly, fi ∈ M|S|−s+i . By induction, M|S|−s+i = ( f1, . . . , fi ). Indeed, M|S|−s+1 = ( f1), and

6The leading vertex of f ∈ M is the last vertex in the support of f to be exposed in the exploration process on T.
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if M|S|−s+i−1 = ( f1, . . . , fi−1) then either step i is a coincidence and then M|S|−s+i = (M|S|−s+i−1, fi )

by Lemma 3.3, or step i is not a coincidence and then M|S|−s+i = M|S|−s+i−1. But { f1, . . . , fs} is a basis
by Theorem 3.7, so fi /∈ ( f1, . . . , fi−1)= M|S|−s+i−1. We conclude that M|S|−s+i−1 ≨ M|S|−s+i so all
these s steps are indeed coincidences by Lemma 3.3.

Now consider the collection of finite trees U, which is the collection of smallest subtrees (one in
each Ci ) which contains both S and the given T. Expose M along U by two different explorations. In
the first order, expose S first and then the remaining vertices of U. There are exactly s coincidences:
after we exposed all of S, we have M|S| = M , so no more coincidences are possible, by Lemma 3.3. By
Lemma 3.4, s is also the number of coincidences when we first expose T and then the remaining vertices
of U\T. But again, because M is generated on T, we have M |T = M and there are no more coincidences
after exposing T. This shows there are exactly s = rk M coincidences in an exposure of M along T.

For the second statement, assume that M ≤T Am and consider an exposure of M along T. If step t is a
coincidence, then by Lemma 3.3, Mt = (Mt−1, ft) where ft ∈ M |{v1,...,vt } with vt in its support. Hence
M = ( ft1, . . . , fts ) where t1, . . . , ts are the s coincidences. But every set of size s = rk M which generates
M is a basis [Cohn 1964, Proposition 2.2]. □

From Theorem 3.8 and Corollary 3.5 we immediately obtain that the order of contribution of a given
ideal to Ew[fix] is given by its rank:

Corollary 3.9. Consider the expression (2-7) giving Ew[B̃] as a sum over submodules M ≤W Am with
M ⊇ EQB,w. The summand corresponding to such a submodule M is

(q N )m−rk M
(

1 + O
(

1
q N

))
.

In Section 4B we show that there are no submodules of rank < m containing EQB,w, and so
limN→∞ Ew[B̃], the limit from Theorem 1.12, is equal to the number of rank-m submodules supported
on W and containing EQB,w. Using Corollary 3.10, one can show that the restriction to submodules
supported on W is redundant — we elaborate in Section 4.

Recall that Definition 1.5 introduced πq(w) and Critq(w) for every w ∈ F. Theorem 3.8 can also be
used to show that the set Critq(w) is always finite. If N is a free A-module and L ≤ N a submodule (and
therefore free as well), we say that L is a free factor of N if some basis (and hence every basis) of L can
be extended to a basis of N .

Corollary 3.10. Let M ≤ N ≤ Am be two finitely generated submodules of Am , and assume that there is
no intermediate submodule which is a proper free factor of N.7 Namely, if M ≤ L ≤ N and L is a free
factor of N then L = N. If M ≤T Am with T a union of subtrees as above, then N ≤T Am .

Proof. Take a collection S of subtrees which contains T and such that N ≤S Am . Expose N along S

according to some exploration which first exposes T and then the remaining vertices. Let N|T| = (N |T)

7In analogy with subgroups of the free group F, one may say that N is an algebraic extension of M — see, e.g., [Puder and
Parzanchevski 2015, Definition 2.1].
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denote the submodule of N generated by the elements of N supported on T. Clearly, M ≤ N|T|, and using
Theorem 3.8 to construct a basis for N from the coincidences of this exposure process, we get that N|T| is
a free factor of N . By assumption we therefore have N|T| = N , so N ≤T Am . □

In the following corollary we use the fact that K is finite. For example, the element xyx−1 y−1
−1 ∈A

has critical ideals {(αx − 1, βy − 1) | α, β ∈ K ∗
}, which is an infinite set if K is infinite. For a general

element f ∈ A, we say that an ideal I ≤ A is critical for f if it contains f as an imprimitive element,
and it has minimal rank among all such ideals.

Corollary 3.11. Let f ∈ A, and suppose that the subtree T ⊆ Cay(F, B) supports f . Then any critical
ideal of f is generated on T . In particular, Critq(w) is finite for every word w ∈ F and every prime
power q.

Proof. Assume that I ≤A is critical for f , namely, that it is an ideal of minimal rank which contains f as
an imprimitive element. Assume that f ∈ J ≤ I and that J is a free factor of I . In particular, rk J ≤ rk I .
If f is primitive in J , it is also primitive in I , which is impossible. So f is imprimitive in J . But I
is critical for f , and so rk J = rk I and J = I . Therefore the assumption of Corollary 3.10 applies to
( f ) ≤ I , and for every finite subtree T ⊆ Cay(F, B) supporting f , we have I ≤T A. For every f ∈ A
we may take T finite, and if K is finite, there are only finitely many ideals supported on T . □

3A. Properties of the q-primitivity rank. We prove some basic properties of the q-primitivity rank of
words. Let H be a subgroup of the free group F. We associate to H two (right) ideals of interest. The
first is its augmentation ideal IH ≤ K [H ], defined as the kernel of the augmentation map εH : K [H ] → K
where εH

(∑
h∈H αhh

)
=

∑
h∈H αh . If {hβ}β∈B is a basis for H then {hβ−1}β∈B is a basis for IH [Cohen

1972, Proposition 4.8], and in particular rk IH = rk H . The second, when considering H as a subgroup
of F, is the (right) ideal JH of A = K [F] generated by {h − 1}h∈H . The following proposition also
follows from [Cohen 1972, Chapter 4], but as it is not stated there explicitly, we add a short proof.

Proposition 3.12. If {hβ}β∈B is a basis for H then {hβ − 1}β∈B is a basis for JH . In particular, rk JH =

rk H.

Proof. Since {hβ − 1}β∈B already generates IH in K [H ], it generates h − 1 for any h ∈ H , and is thus a
generating set for JH . Let T be a right transversal for H in F (i.e., a set of representatives of the right
cosets of H ). Then for every t ∈ T the set K [H ]t of elements of A supported on the coset Ht forms a left
K [H ]-module, and the group algebra A admits a left K [H ]-module decomposition A =

⊕
t∈T K [H ]t .

Let PHt : A → K [H ]t be the projections induced by this decomposition. Suppose now that there is a
relation

∑
β∈B(hβ − 1)aβ = 0 for some coefficients {aβ}β∈B in A. For every t ∈ T , applying the left

K [H ]-module map PHt to both sides yields the relation
∑

β∈B(hβ − 1)PHt(aβ) = 0, and multiplying
by t−1 gives

∑
β∈B(hβ − 1)(PHt(aβ)t−1) = 0. Since PHt(aβ)t−1

∈ K [H ] and {hβ − 1}β∈B is a basis
(for IH ), we deduce that PHt(aβ)= 0 for every β ∈ B. Thus, aβ =

∑
t∈T PHt(aβ)= 0 for every β ∈ B. □

Proposition 3.13. Let H ≤ F be finitely generated and let w ∈ F. If w− 1 is primitive in JH then w is
primitive in H.
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Proof. Assume that w− 1 is primitive in JH . As w− 1 ∈ JH , by [Cohen 1972, Lemma 4.1], w lies in H .
Fix a basis h1, h2, . . . , hk for H . Then {hi − 1}

k
i=1 is a basis for IH and w− 1 ∈ IH , so we can write

(uniquely) w− 1 =
∑k

i=1(hi − 1)ai for some coefficients ai ∈ K [H ]. By a theorem of Umirbaev8 [1994,
Corollary on page 184], to deduce that w is primitive in H it is enough to show that the coefficients {ai }

k
i=1

form a left-invertible column in the sense that there exist u1, u2, . . . , uk ∈ K [H ] such that
∑k

i=1 ui ai = 1.
Since w− 1 is primitive in JH , there exist some elements f2, . . . , fk ∈ JH completing w− 1 to a basis
of JH . By Proposition 3.12, {hi − 1}

k
i=1 is, too, a basis for JH . Let C ∈ Mkk(A) be a change-of-basis

matrix satisfying (h1 −1, h2 −1, . . . , hk −1)C = (w−1, f2, . . . , fk), where by uniqueness of presenting
w− 1 in the basis {hi − 1}

k
i=1 the first column of C isa1

...

ak

 .

As one can also change basis in the other direction, there exists some D ∈ Mkk(A) such that

(h1 − 1, h2 − 1, . . . , hk − 1)= (w− 1, f2, . . . , fk)D.

Thus, (w− 1, f2, . . . , fk)DC = (w− 1, f2, . . . , fk), which by the uniqueness of presentation implies
that DC is the identity matrix. In particular, the first row of D which we denote by (d1, d2, . . . , dk) is a
left inverse to the first column of C in the sense that

k∑
i=1

di ai = 1. (3-3)

We next show that the elements {di }
k
i=1 can be replaced by elements {ui }

k
i=1 lying in K [H ]. Let T be a

left transversal for H in F. Then as a right K [H ]-module, A decomposes as A =
⊕

t∈T t K [H ]. Denote
by Pt H the projection onto the summand corresponding to t . Then applying the right K [H ]-module
map PH to (3-3) gives

∑k
i=1 PH (di )ai = 1. We finish by letting ui = PH (di ). □

Lemma 3.14. Let J ≤ A be an ideal and f ∈ J a primitive element. Then f is primitive in every
intermediate ideal f ∈ I ≤ J .

Proof. Since f is primitive in J we can write J = ( f )⊕ M for some ideal M . We claim that I =

( f )⊕ (M ∩ I ). The directness is obvious (M already intersects ( f ) trivially). It remains to show that I is
indeed the sum of the two summands. Let a ∈ I . Then a ∈ J and thus can be decomposed as a = a1 + m
where a1 ∈ ( f ) and m ∈ M . But then m = a − a1 ∈ I and so m ∈ M ∩ I . □

In the following corollary we do not assume that H is finitely generated.

Corollary 3.15. Let H ≤ F and let w ∈ F. Then w is primitive in H if and only if w− 1 is primitive
in JH .

8Umirbaev’s result is actually stated for free group rings over the integers. However, the proof uses no specific properties of
Z and hence also applies, mutatis mutandis, to the field K .
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Proof. One implication is immediate from Proposition 3.12. For the other implication, suppose that
w− 1 is primitive in JH . Let S be a basis for H . When writing w− 1 in the basis {s − 1}s∈S of JH ,
only finitely many basis elements appear, so there exist some h1, . . . , hk ∈ S and a1, . . . , ak ∈ A such
that w− 1 =

∑k
i=1(hi − 1)ai . Let H ′

= ⟨h1, h2, . . . , hk⟩. Then w− 1 lies in JH ′ and by Lemma 3.14 it
is primitive in it. Since H ′ is finitely generated, Proposition 3.13 guarantees that w is primitive in H ′.
Since the relation of being a free factor is transitive and ⟨w⟩

∗

≤ H ′
∗

≤ H we are done. □

We can now prove Proposition 1.8 stating that for every prime power q, the q-primitivity rank is
bounded from above by the ordinary primitivity rank, namely, πq(w)≤ π(w) for every w ∈ F.

Proof of Proposition 1.8. Let w ∈ F. The ordinary primitivity rank of a word is a nonnegative integer
or ∞. We first deal with two trivial cases: if π(w)= ∞ then there is nothing to prove, and if π(w)= 0
then w = 1 and so w− 1 = 0 is contained in the rank-0 trivial ideal of A as an imprimitive element, so
πq(w)= 0 as well. Suppose now that π(w)= k /∈ {0,∞} and let H be a critical subgroup for w in F,
i.e., a subgroup of F of rank k containing w as an imprimitive element. The ideal JH ≤ A contains w−1
by its definition as w ∈ H , it contains w− 1 as an imprimitive element by Corollary 3.15, it has rank
rk JH = k by Proposition 3.12, and it is a proper ideal of A since it is contained in the augmentation ideal
IF ≨A. We conclude that πq(w)≤ k = π(w). □

Ifw∈ F is primitive, then (analogously to Lemma 3.14), w is primitive in any subgroup of F containing
it (see, e.g., [Puder 2014, Claim 2.5]). In particular, it has primitivity rank π(w) = ∞. Furthermore,
any imprimitive word w ∈ F must have π(w) ≤ rk F since it is already not primitive in F. Thus, the
primitivity rank of words in F takes values in {0, 1, 2, . . . , rk F} ∪ {∞}. We next show that analogous
statements hold when π is replaced with πq .

Proposition 3.16. For every w ∈ F and prime power q, πq(w)= ∞ if and only if w is primitive in F.

Proof. If πq(w)= ∞ then w− 1 must be primitive in JF , which implies by Proposition 3.13 that w is
primitive in F. Conversely, let w ∈ F be primitive. Then there exists some automorphism ψ ∈ Aut F
such that ψ(w) = b1 (recall that {b1, . . . , br } is our fixed basis of F). The automorphism ψ naturally
extends (linearly) to an automorphism of the group ring ψ : A → A. Since ψ maps ideals to ideals and
bases to bases, it is enough to show that ψ(w − 1) = b1 − 1 is primitive in every ideal containing it.
Suppose it is not, and let I be a critical ideal for b1 − 1. By Corollary 3.11, I is generated on T = {1, b1}.
Let f ∈ I |T . Then f = βb1 − α for some α, β ∈ K . By the definition of a critical ideal, I is a proper
ideal and so α, β must be equal because their difference lies in I :

β −α = f − (b1 − 1)β ∈ I.

Thus, I |T = spanK {b1 −1} and since I is supported on T , I must be the right principal ideal I = (b1 −1)
in which b1 − 1 is primitive, a contradiction. □

Corollary 3.17. For every w ∈ F and every prime power q, πq(w) ∈ {0, 1, 2, . . . , rk F} ∪ {∞}.
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Proof. Let w ∈ F. If w is primitive in F then by Proposition 3.16 πq(w) = ∞. Otherwise, by
Corollary 3.15, w− 1 is already imprimitive in JF and so πq(w)≤ rk JF = rk F. □

4. Powers and the limit of expected values of stable functions

We prove Theorems 1.2 and 1.12: if w ̸= 1, then limN→∞ Ew[fix] and, more generally, limN→∞ Ew[B̃],
exist. If we write w= ud with u a nonpower and d ≥ 1, then the limit depends only on d , and, in particular,
limN→∞ Ew[fix] is equal to the number of monic divisors of the polynomial xd

− 1 ∈ K [x].
As mentioned in Section 1, a special case of Theorem 1.12, which includes Theorem 1.2, first appeared

in [Ernst-West 2019] and, independently, in [Eberhard and Jezernik 2022]. Here, we prove the full version
of the theorem while following the strategy from [Eberhard and Jezernik 2022], which is more elegant
than the one in [Ernst-West 2019]. We use here slightly different notions and give more details than in
[Eberhard and Jezernik 2022]. As the proof is subtle, and for the sake of readability, we first describe the
proof of the special case which is Theorem 1.2.

4A. limN→∞ Ew[fix] and the proof of Theorem 1.2. From (2-5) and Corollary 3.9 it follows that

Ew[fix] =

∑
I≤[1,w]A:I∋w−1

(q N )1−rk I
(

1 + O
(

1
q N

))
.

Clearly, as w ̸= 1, an ideal containing w− 1 has rank at least 1. So

Ew[fix] = |{I ≤[1,w] A | I ∋ w− 1 and rk I = 1}| + O
(

1
q N

)
. (4-1)

By Definition 1.5, the only noncritical rank-1 ideals containing w−1 are (w−1) and (1), which are both
generated on [1, w]. Any other rank-1 ideal containing w− 1 is critical, and Corollary 3.11 guarantees
that such ideals are supported on [1, w]. We obtain that

Ew[fix] = |{I ≤ A | I ∋ w− 1 and rk I = 1}| + O
(

1
q N

)
. (4-2)

This proves:

Corollary 4.1. Conjecture 1.6 holds in the case πq(w)= 1. Namely, in this case

Ew[fix] = 2 + |Critq(w)| + O
(

1
q N

)
.

In order to prove Theorem 1.2, it remains to show that if w = ud with u a nonpower and d ≥ 1, then
the ideals I in (4-2) are precisely

{
(p(u)) : p | xd

− 1 ∈ K [x], p monic
}
. First, as any automorphism

of F gives rise to an automorphism of A, we may replace w by any element in its Aut F-orbit, and, in
particular, assume that w is cyclically reduced.

Throughout Section 4, we use the ShortLex order on monomials in Am and their finite subsets.
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Definition 4.2. Fix an arbitrary full order on the basis E of Am , say e1 < e2 < · · ·< em . Fix an arbitrary
full order on B ∪ B−1, say b1 < b−1

1 < b2 < · · ·< b−1
r . The ShortLex order on the monomials {ez}e∈E,z∈F

is defined by first comparing the length of z (shorter words are smaller) and using lexicographic order
to compare ez with e′z′ when |z| = |z′

|. This order induces a full order on finite sets of monomials by
comparing the leading monomial in each set, breaking ties by looking at the second monomials, and
so on (the empty set is the smallest of all finite sets of monomials). Finally, we get a preorder on the
elements of Am by comparing their supports. An element f ∈ Am is called monic if the K -coefficient of
the leading monomial is 1.

For example, αe2b−1
1 b2 < βe2b−1

1 b2 + e3b1 and e1b1b2 < e1b3b1 < e2b1b2 (here α, β ∈ K ∗). This
ShortLex order is the same one used in [Rosenmann 1993]. (The order used in [Lewin 1969] is not quite
the same: it uses length and then reverse lexicographic order, and it also fixes a full order on K resulting
in a full order on Am , rather than a mere preorder.)

Now, let I ≤ A be a rank-1 ideal containing w− 1. As noted above, I is generated on [1, w]. In the
notation of Section 3, consider the exposure of I along the subtree [1, w], starting with the monomial 1
and ending with the monomial w. (This happens to be the restriction of ShortLex to [1, w].) We shift the
indices of the vertices by one with respect to Section 3, and define v0 = 1, . . . , v|w| =w. By Theorem 3.8,
there is exactly one coincidence is this exposure.9 In an exposure along a path, a free step is followed by
either another free step or by a coincidence, and in this particular path, the last step is not free. Thus,
the first nonfree step must be a coincidence, and the following steps must all be forced. Namely, if vt

is exposed in a coincidence, t ∈ {0, 1, . . . , |w|}, then v0, . . . , vt−1 are free steps and vt+1, . . . , v|w| are
forced. Denote by f I ∈ I the monic element supported on [1, w] with vt its leading monomial. By
Theorem 3.8, I = ( f I ). Thus, the map

I 7→ f I (4-3)

is a one-to-one correspondence.

Lemma 4.3. The ideals I for which f I is supported on ⟨u⟩ are in one-to-one correspondence with monic
polynomials in K [x] dividing xd

− 1.

Proof. Consider the subalgebra K [⟨u⟩] of A = K [F], the elements of which are linear combinations
of the elements in ⟨u⟩ = {ui

| i ∈ Z}. For every z ∈ F and f ∈ K [⟨u⟩], if z /∈ ⟨u⟩ then f z is supported
on ⟨u⟩z, which is disjoint from ⟨u⟩. Thus, if f ∈ K [⟨u⟩] and w− 1 = ud

− 1 ∈ ( f ) def
= f A, then w− 1 is

also an element of f K [⟨u⟩], the ideal generated by f inside K [⟨u⟩]. Now

K [⟨u⟩] ∼= K [Z] ∼= K [x, x−1
]

is a commutative ring (a principal ideal domain, in fact). If p ∈ K [x, x−1
] satisfies (p) ∋ xd

− 1, we
may assume, by multiplying p by a unit element if need be, that p ∈ K [x], p monic, and p | xd

− 1

9We remark that to analyze limN→∞ Ew[fix], one does not really need to go through Theorem 3.8, nor even consider the
rank of ideals. Rather, it is enough to rely on Corollary 3.5.
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in K [x]. Moreover, such p ∈ K [x] is determined uniquely by the ideal (p). This completes the proof of
the lemma. □

It remains to show that for every I in (4-2), f I is supported on ⟨u⟩.

Lemma 4.4. The support of f I contains v0 = 1.

Proof. Recall that t denotes the coincidence step in the exposure of I along [1, w]. If t = |w|, then
f I = w− 1 and the lemma holds. Assume that t < |w| and that the support of f I does not contain 1. For
every s ≥ t , the vertex vs is (exposed in) a nonfree step, and let fs ∈ I be the ShortLex-minimal element
among all monic elements in I with vs their leading monomial and which are supported on {v0, . . . , vs}.
(This definition is unambiguous: if f ̸= g are two different monic elements with the exact same support,
then there is some linear combination λ f + (1 − λ)g which is strictly smaller). In particular, ft = f I and
f|w| =w−1. Now fix s ∈ {t +1, . . . , |w|} to be the smallest index for which v0 = 1 is in the support of fs .
There is no element in I |{v0,...,vs−1} with v0 in its support, because I |{v0,...,vs−1} = spanK { ft , . . . , fs−1}.
Let b ∈ B ∪ B−1 denote the label of the edge from vs−1 to vs . As step s is forced, there is some monic
g ∈ I |{v1,...,vs−1} with leading monomial vs−1 such that g.b is supported on {v0, . . . , vs}. This g.b must
have v0 in its support, for if not, fs −g.b does, and the latter is supported on {v0, . . . , vs−1}. We conclude
that the first edge of w must be b−1. As w is cyclically reduced, s < |w|.

Now consider the vertex vs+1, and assume the edge from vs to vs+1 is c ∈ B ∪ B−1, c ̸= b−1:

vs−1
b

−→ vs
c

−→ vs+1.

As I |{v0,...,vs} = spanK { ft , . . . , fs}, every element g ∈ I |{v0,...,vs} with leading monomial vs must have v0

in its support. But then, g cannot possibly be supported on starting points of c-edges, contradicting the
fact that step s + 1 is also forced. Thus f I contains v0 in its support. □

If t = 0 then f I = 1 and I = (1). If t = |w|, then f I = w− 1 and I = (w− 1). So assume from now
on that 0< t < |w|. Also, denote by b ∈ B ∪ B−1 the first letter of w.

Lemma 4.5. The letter from vt to vt+1 is b, and f I must be supported on Dt+1
b .

Proof. Assume the edge from vt to vt+1 is c. The step exposing vt+1 is forced, but f I is the only monic
element in I |{v0,...,vt }. Thus the corresponding element in Dt+1

c must be f I . As f I has v0 in its support,
we must have c = b. □

Completing the proof of Theorem 1.2. Recall that we now assume that I is a rank-1 ideal containing w−1
with I ̸= (1), (w− 1), and that we need to show that I is supported on ⟨u⟩. As I contains w− 1 if and
only if it contains wb−b, the argument above (and Corollary 3.11) show that I ≤[b,wb] A. Expose I along
[b, wb] according to the restriction of ShortLex, and denote the vertices by v1, . . . , v|w|+1 (so keeping
the same labels as before). As f I is the only monic element in I |{v0,...,vt }, we have that I |{v1,...,vt } = 0,
that vt+1 is the first (and only) coincidence in the exposure along [b, wb], and that the coincidence is
given by f I .b. Clearly, f I .b has v1 in its support. If b′ is the second letter of w, then the same argument
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as in Lemma 4.5 shows that f I .b is supported on vertices with an outgoing b′-edge in [b, wb], and that
the edge from vt+1 to vt+2 is b′.

By iterating the same argument we get that for every prefix w′ of w, f I .w
′ is supported on [1, w2

].
Moreover, the direction in which one can read a prefix of w from some v j in the support of f I along
[1, w2

] is necessarily forward: if it goes backward, then after
⌊ j

2

⌋
step this path would collide with the

path reading w coming from v0 (a letter in [1, w] cannot be equal to its own inverse or to the inverse of
the following letter). We obtain that if f I has some v j = z ∈ F in its support, then zw = wz, and so z
belongs to the centralizer of w in F, which is ⟨u⟩. This completes the proof. □

Corollary 4.6. Let 1 ̸= w ∈ F. Then πq(w)= 1 if and only if w is a proper power.

Proof. Write w = ud with u a nonpower and d ≥ 1. The discussion above shows that the rank-1 critical
ideals of w− 1 are in one-to-one correspondence with the monic divisors of xd

− 1 ∈ K [x], except for 1
and xd

− 1. If d = 1, there are no such divisors, and so πq(w) ≥ 2. If d ≥ 2, there is at least one such
divisor: the polynomial x − 1, and so πq(w)= 1. □

Recall that if λ ∈ GL1(K )∼= K ∗, then λ̃ : GLN (K )→ Z≥0 counts, for every element g ∈ GLN (K ), the
number of vectors v ∈ V = K N satisfying v.g = λv. The same argument given above for fix = 1̃ applies
to all λ ∈ K ∗ and gives the following result.

Corollary 4.7. Let λ ∈ GL1(K )∼= K ∗, let 1 ̸= w ∈ F and write w = ud with u a nonpower and d ≥ 1.
Then,

lim
N→∞

Ew[λ̃] =
∣∣{p ∈ K [x] : p | xd

− λ and p monic}
∣∣.

4B. limN→∞ Ew[B̃] and the proof of Theorem 1.12. Our next goal is proving Theorem 1.12, which
states that for any fixed B ∈ GLm(K ), the limit limN→∞ Ew[B̃] exists and depends only on d, where
w = ud

̸= 1 as before. As in the proof of Theorem 1.2, we may assume that w is cyclically reduced.
From (2-7) and Corollary 3.9 it follows that

Ew[B̃] =

∑
M≤WAm :M⊇EQB,w

(q N )m−rk M
(

1 + O
(

1
q N

))
, (4-4)

where W is the union of the paths [ei , eiw] ∈ Ci for i = 1, . . . ,m. Throughout this Section 4B we continue
using ShortLex from Definition 4.2 and its restriction to collections of subtrees such as W.

Lemma 4.8. The smallest rank of a submodule M ≤W Am containing EQB,w is m. In particular,
limN→∞ Ew[B̃] exists and

lim
N→∞

Ew[B̃] = |{M ≤W Am
| M ⊇ EQB,w and rk M = m}|. (4-5)

Proof. Let M ≤W Am contain EQB,w. We expose M along W in the order induced on W from ShortLex.
So we first expose e1, . . . , em , then, if the first letter of w is b ∈ B ∪ B−1, we expose e1b, . . . , emb, and
so on. By definition, the last m steps, where e1w, . . . , emw are exposed, are not free: EQB,w contains an
element supported on {eiw, e1, . . . , em} with eiw its leading monomial. We claim that for every e ∈ E ,
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the first nonfree step in [e, ew] is a coincidence. In particular, there are at least m coincidences and so by
Theorem 3.8, rk M ≥ m.

Indeed, assume that the first nonfree vertex in [ei , eiw] is ei z for some prefix z of w. If z = 1, then ei z
is a coincidence by definition. Now assume that z ̸= 1 and that b ∈ B ∪ B−1 is the last letter of z. As ei z
is the first nonfree step in [ei , eiw], we have that ei zb−1 was free, so there is no element of M |W with
leading monomial ei zb−1. Between the exposure of ei zb−1 and that of ei z, the vertices exposed do not
admit outgoing b-edges (in the already-exposed part of W): these vertices are either e j zb−1 for j > i ,
where the only outgoing edge is headed backwards and cannot be b as w is reduced; or e j z for j < i ,
where the only outgoing edge is b−1. Thus, when exposing ei z at step t , the largest monomial in Dt

b is
ei zb−1, but as ei zb−1 is free, there are no elements of M |Dt

b
⊆ M |W with leading monomial ei zb−1. So

step t cannot be forced and must be a coincidence. □

The proof of Lemma 4.8 actually shows that a free vertex in [e, ew] cannot be followed by a forced
vertex in the same path. As the last vertex in [e, ew] is nonfree, we get the following.

Corollary 4.9. If M ≤W Am has rank m and contains EQB,w, then for every e ∈ E , the first nonfree step
in [e, ew] is a coincidence, and all later steps in [e, ew] are forced.

Remark 4.10. It is possible to extend Corollary 3.11 from elements and ideals in A to subsets and
submodules in Am , and conclude that every rank-m submodule of Am containing EQB,w is supported on W.

Lemma 4.11. Assume that 1 ̸=w= ud with d ≥ 1 and u a nonpower. To prove Theorem 1.12, it is enough
to show that every submodule M ≤W Am of rank m with M ⊇ EQB,w is generated on {eu j

}e∈E, j∈{0,...,d}.

Proof. Assume that every submodule M from (4-5) is generated on {eu j
}e∈E, j∈{0,...,d}. Then, as in the

proof of Lemma 4.3, these submodules are in one-to-one correspondence with rank-m submodules of
K [⟨u⟩]

m containing EQB,w (and generated on {eu j
}e∈E, j∈{0,...,d}), where K [⟨u⟩]

m is the rank-m free
module over K [⟨u⟩]. As before, K [⟨u⟩] ∼= K [Z] ∼= K [x, x−1

], and the image of EQB,w ⊆ K [⟨u⟩]
m in

K [Z]
m through the corresponding isomorphism does not depend on u but only on d . Hence, the number

of submodules in (4-5) does not depend on u, proving Theorem 1.12. □

Remark 4.12. It is quite straightforward to show that every submodule of K [⟨u⟩]
m containing EQB,w

must be of rank exactly m: after the first coincidence in each of the m paths, all remaining steps are
clearly forced.

Now fix M ≤W Am of rank m containing EQB,w. For every f ∈ M |W, denote by θ( f ) the projection of
f to the monomials e1, . . . , em , so θ( f ) is a K -linear combination of e1, . . . , em . For t = 0, . . . , |W|, let

2t
def
= spanK {θ( f ) | f ∈ M |Dt (W)} ≤ spanK {e1, . . . , em}

(recall that Dt(W) is the set of first t monomials exposed in W through ShortLex). So we have

{0} =20 ≤21 ≤ · · · ≤2|W| = spanK {e1, . . . , em},
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where the last equality is due to the fact that M ⊇ EQB,w, the equations in EQB,w are supported on W,
the linear combinations of e1, . . . , em given by the m equations in EQB,w are precisely the rows of B, and
B is regular by definition. Recall (Corollary 4.9) that there is a sole coincidence in [ei , eiw] for every
i = 1, . . . ,m, and let zi denote the prefix of w so that ei zi is the step in which the coincidence of [ei , eiw]

takes place.

Lemma 4.13. We have 2t−1 ≨2t if and only if step t is a coincidence. In particular, if gi ∈ M |W is a
(monic) element with leading monomial ei zi , then the vectors θ(g1), . . . , θ(gm) are linearly independent.

Proof. We already explained why dim(2|W|)= m. Note that dim2t − dim2t−1 ∈ {0, 1}, because every
two monic elements g1, g2 ∈ M |W with leading monomial vt satisfy θ(g1)− θ(g2)= θ(g1 − g2) ∈2t−1.
As there are exactly m coincidences, it is enough to prove that 2t−1 =2t whenever step t is forced or
free. If step t is free, then M |Dt−1(W) = M |Dt (W) and obviously 2t−1 =2t . It thus remains to show that
this is the case also if step t is forced.

Let ez be the monomial exposed in step t which is forced, and let b ∈ B ∪ B−1 be the edge leading
to ez. There exists some g ∈ M |Dt

b(W) with ezb−1 in its support (in fact, its leading monomial), such
that the coefficient of ezb−1 in g is 1 ∈ K . If θ(g.b) ∈ 2t−1, then every other monic f ∈ M |W with
leading monomial ez satisfies θ( f ) = θ( f − g.b)+ θ(g.b) ∈ 2t−1 and we are done. So assume that
θ(g.b) /∈ 2t−1. In particular, θ(g.b) ̸= 0, so g.b has some e′

∈ E in its support, and so b−1 is the first
letter of w. As w is assumed to be cyclically reduced, z is a proper prefix of w.

Now consider the monomial following ez in [e, ew]. Say it is ezc for some b−1
̸= c ∈ B ∪ B−1, and it is

exposed at time s (so s = t + m). Because step t is forced, so is step s (by Corollary 4.9). As in the proof
of Lemma 4.8, the monomials exposed between ez and ezc do not belong to Ds

c(W), so Ds
c(W)⊆ Dt(W).

As step s is forced, there exists some monic f ∈ M |Ds
c(W) ⊆ M |Dt (W) with ez its leading monomial.

As before, as θ( f − g.b) ∈ 2t−1 but θ(g.b) /∈ 2t−1, we get θ( f ) = θ( f − g.b)+ θ(g.b) /∈ 2t−1. In
particular, θ( f ) ̸= 0. But c ̸= b−1 is not the first letter of w, so f cannot have any e ∈ E in its support —
a contradiction. This completes the proof of the first statement of the lemma. This also shows there
exist gi ∈ M |W with leading monomial ei zi , for i = 1, . . . ,m, such that θ(g1), . . . , θ(gm) are linearly
independent. The second statement of the lemma now follows from the fact that if f, g ∈ M |W are both
monic with leading monomial the t-th vertex, then θ( f )− θ(g) ∈2t−1. □

Define W2 def
= [e1, e1w

2
] ∪ · · · ∪ [em, emw

2
], and let b ∈ B ∪ B−1 be the first letter of w. For every

i = 1, . . . ,m, let fei zi ∈ M |W be the minimal monic element with leading monomial ei zi .

Lemma 4.14. For every i = 1, . . . ,m, fei zi is supported on Db(W
2), and the outgoing b-edge at ei zi is

headed forward (towards eiw
2).

Proof. We proceed by induction on the order induced by ShortLex on {ei zi }i=1,...,m . The argument
that follows works for both the base case and the induction step. If zi = w, then there is an element
in EQB,w with leading monomial eiw which is supported on E ∪ {eiw}, so fei zi is also supported on
E ∪ {eiw} and the claim is clear. So assume that |zi |< |w|, and that ei zi is exposed at time t and admits
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an outgoing c-edge towards eiw. Then step t + m, in which ei zi c is exposed, is forced, and there exists
some g ∈ M |Dt+m

c (W) ⊆ M |Dt (W) with leading monomial ei zi . By Lemma 4.13, θ(g) /∈ 2t−1 so g has
some e ∈ E in its support, and therefore c = b.

Moreover, we may assume that g is supported on free steps and coincidences only. Indeed, the
submodule Mt+m−1 is generated on the free steps and coincidences exposed up to step t + m − 1 (this is
always the case in every valid exposure process), but by Corollary 4.9, in our case these vertices form
a valid collection of subtrees T (T = T1 ∪ · · · ∪ Tm , where T j = [e j , e j z j ] ∩ [e j , e j zi ] for j ≥ i and
T j = [e j , e j z j ] ∩ [e j , e j zi b] for j < i). But ei zi b is forced, so every element with leading monomial
ei zi b belongs to Mt+m−1, and if we extend T to ei zi b it is still a forced step (by Lemma 3.3). Thus there
is some g ∈ M |Db(T∪{ei zi b}) with leading monomial ei zi .

If g has some coincidence e j z j in its support other than ei zi , then as e j z j < ei zi , our induction
hypothesis applies and fe j z j ∈ Db(W

2). Hence we may subtract α fe j z j from g for some α ∈ K ∗ to
decrease g, and g − α fe j z j ∈ Db(W

2). If we repeat such subtractions as long as we can, we end up
with a monic element f which is supported entirely on free vertices inside Db(W

2) along with its
leading monomial ei zi . Because all its nonleading monomials are free, this f is exactly fei zi (otherwise
f − fei zi ̸= 0 is supported on free vertices, which is impossible), and we are done. □

Completing the proof of Theorem 1.12. Recall that M ≤W Am is a fixed submodule satisfying rk M = m
and M ⊇ EQB,w. By Lemma 4.11, it is enough to show that M is generated by elements supported
on {eu j

}e∈E, j∈{0,...,d}. By Theorem 3.8, M = ( fe1z1, . . . , fem zm ), so it is enough to show that fei zi is
supported on {eu j

}e∈E, j∈Z for all i .
Recall that b is the first letter of w. The submodule M contains EQB,w if and only if it contains

EQB,w.b
def
= { f.b | f ∈ EQB,w}. Define

Wb def
=

⋃
e∈E

[b, wb],

and consider the exposure of M along Wb in the order induced from ShortLex. Clearly, the monomials
that were free in the exposure along W are free now as well. We claim that the former coincidences ei zi

are now also free: as above, if f ∈ M |Wb is monic with leading monomial ei zi , then fei zi − f ∈ M is
an element with θ( fei zi − f )= θ( fei zi ) but with leading monomial smaller than ei zi , which contradicts
Lemma 4.13. On the other hand, by Lemma 4.14, fei zi .b ∈ M |Wb has leading monomial ei zi b, and so
ei zi b is a coincidence in the exposure of M along Wb. Moreover, the nonleading monomials of fei zi .b
are all free in the exposure along Wb, so fei zi .b is the minimal monic element in M |Wb with leading
monomial ei zi b. The same argument as in Lemma 4.14 shows that fei zi .b is supported on Dc(W

2) and
the outgoing c-edge at ei zi b is headed towards eiw

2, where c ∈ B ∪ B−1 is the second letter of w.
This argument can now go on to the exposure of M along Wbc and so on, and shows that for every

prefix w′ of w and every i , fei zi .w
′ is supported on [1, w2

]. This completes the proof exactly as in the
proof of Theorem 1.2 in Section 4A. □
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5. The quotient module K [F]/(w − 1)

Fix w ∈ F, and consider the right A-module obtained as a quotient of the A-module A by its submodule
(w− 1). We denote this quotient by

Aw
def
= K [F]/(w− 1)= A/(w− 1).

We study this module and prove two main results about it. First, we show that if w is a nonpower, then the
only cyclic generators of Aw are the “obvious ones” (Theorem 5.4). Second, we prove that whenever a
subtree T ⊆ Cay(F, B) supports both w−1 and a rank-2 ideal I ≤T A in which w−1 is primitive, there
is an element f ∈ A supported on T so that { f, w− 1} is a basis of I (Corollary 5.2). In particular, the
latter result yields an algorithm to test whether w− 1 is primitive in a given rank-2 ideal (Corollary 5.3).
We need these two results for our proof of Theorem 1.4 in Section 6, but we also find them interesting for
their own right. See Section 7 for a discussion on potential generalizations of these results.

Consider the Schreier graph

Sw
def
= Sch(F ↷ ⟨w⟩\F, B)= ⟨w⟩\Cay(F, B).

This is a graph whose vertices correspond to the right cosets of the subgroup ⟨w⟩ in F. For every
vertex ⟨w⟩z and every b ∈ B, there is a directed b-edge from the vertex ⟨w⟩z to the vertex ⟨w⟩zb. In other
words, this is the quotient of Cay(F, B) by the action of ⟨w⟩ from the left. Note that Sw is made of a
cycle (reading the cyclic reduction of w) with infinite trees hanging from it (unless rk F = 1, in which
case Sw is a mere cycle). This is illustrated in Figure 1.

An element f ∈ A belongs to the ideal (w− 1) if and only if for every z ∈ F, the coefficients in f of
the elements in the right coset ⟨w⟩z sum up to zero. Therefore, the elements of Aw are given by K -linear
combinations of right cosets of ⟨w⟩, namely, K -linear combinations of the vertices of Sw. This can also

a
b

a

b

a
Cw

a
b b

a

b

a
b

Figure 1. The Schreier graph Sw for w= a[a, b]a−1. The unique simple cycle is marked
by Cw.
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be seen by the fact that a possible Schreier transversal of the ideal (w− 1) is obtained by considering
Cay(F, B), cutting the axis10 of w on both sides of one period of the cyclic reduction of w, and taking
the connected component of this period.

Now consider the quotient map
ρ : A↠Aw,

which, by abuse of notation, we also regard as the graph morphism

ρ : Cay(F, B)→ Sw.

Whenever a subtree T ⊆ Cay(F, B) contains [1, w], its image ρ(T )⊆ Sw contains the cycle in Sw. In
fact, it suffices that T contains any interval in the axis of w of length at least the length of the cyclic
reduction of w.

Lemma 5.1. Let G ⊆ Sw be a connected subgraph which contains the cycle of Sw. Let f ∈ Aw satisfy
that none of { f.z | z ∈ F} is supported on G. Then the submodule f A ≤ Aw does not contain any nonzero
element supported on G.

Proof. On the vertices of Sw \ G define an “exploration” as in Definition 3.2: this is an enumeration
of these vertices such that every vertex is a neighbor of some vertex in G or of a smaller vertex. This
exploration induces a preorder on the orbit { f.z | z ∈ F} obtained by comparing the largest vertex in
their support with respect to this exploration order (by assumption, every element f.z in this orbit has at
least one vertex outside G in its support). Assume without loss of generality that f is an element of the
orbit with the smallest possible maximal vertex in its support. Denote this vertex vmax. Denote by G the
(connected) subgraph of Sw consisting of G together with the prefix {v ∈ vert(Sw\G) | v ≤ vmax} of the
exploration order on Sw \ G.

Now consider the element f g ∈ Aw for an arbitrary g ∈ A not supported on the identity e ∈ F. It
suffices to show that f g is not supported on G (let alone on G). Write f = α1 f1 + · · · + αm fm with
α1, . . . , αm ∈ K ∗ and distinct f1, . . . , fm ∈vert(Sw), and write g =β1g1+· · ·+βℓgℓ with β1, . . . , βℓ∈ K ∗

and distinct g1, . . . , gℓ ∈ F and so that |g1| ≥ |g2| ≥ · · · ≥ |gℓ|. Denote by b ∈ B ∪ B−1 the first letter
in g1. Then f.b cannot be supported on G: otherwise, f.b would be supported on G together with vertices
strictly smaller than vmax in Sw \ G (we use here the fact that vmax is a leaf in G), contradicting our
assumption about f . So there is a monomial fi in the support of f such that fi .b is a monomial outside G.
But then fi g1 is at distance |g1| from G, with the closest vertex of G being fi . Clearly, fi g1 ̸= f j gk for
every ( j, k) ̸= (i, 1), because the only path of length |g1| from G to fi g1 in Sw, is the path starting at fi

and reading g1. Thus fi g1 belongs to the support of f g, and f g is not supported on G. □

Corollary 5.2. Let 1 ̸= w ∈ F and T ⊆ Cay(F, B) be a subtree which contains [1, w]. Assume that
I ≤T A is a rank-2 ideal supported on T which contains w− 1 as a primitive element. Then there is an
element f ∈ A supported on T so that { f, w− 1} is a basis for I .

10The axis of w is composed of the points in Cay(F, B) moved by left multiplication by w by the least distance.
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Proof. As w− 1 is primitive in I , there is some f ∈ A which completes it to a basis of I . Consider
T = ρ(T ), the image of T in Sw and let f̄ = ρ( f ) ∈ Aw. If { f, w − 1} is a basis for I , then so is
{g, w − 1} for every g ∈ ρ−1( f̄ ), because in this case f − g ∈ (w − 1). So if f̄ .z is supported on T
for some z ∈ F, we are done: if { f, w− 1} is a basis then so is { f.z, w− 1}. Otherwise, we are in the
situation of Lemma 5.1, and f̄ A does not contain any element supported on T . But f̄ A contains ρ(I ) (in
fact f̄ A = ρ(I )), and as I is generated on T , I contains an element h ∈ I \ (w− 1) which is supported
on T . Then f̄ A ∋ ρ(h), which is a contradiction as ρ(h) ̸= 0 and is supported on T . □

Corollary 5.3. If the field K is finite,11 there is an algorithm to test, given a (generating set of a) rank-2
ideal I ≤ Am and a word w ∈ F, whether w− 1 is primitive in I .

Proof. By [Cohn 1964, Proposition 2.2], every pair of generators of I is a basis. So { f, w− 1} is a basis
for I if and only if f, w− 1 ∈ I and ( f, w− 1) contains the given generating set of I . By Corollary 5.2,
w− 1 is primitive in I if and only if there exists an element f supported on T such that { f, w− 1} is a
basis of I . As K is finite, there are finitely many elements supported on T . Finally, Rosenmann [1993]
describes an algorithm to test whether a given element belongs to a given ideal in A (where the ideal is
given by a finite generating set). □

Corollaries 5.2 and 5.3 naturally raise the question to what extent they can be generalized for ideals
of rank larger than two and for elements of A which are not of the form w− 1 — see Section 7 for a
discussion around it.

5A. Cyclic generators of K [F]/(w − 1) . The group algebra A = K [F] has only trivial units — a scalar
times an element of the group12 (this property was conjectured by Kaplansky to hold in all group algebras
of torsion-free groups over fields but a counterexample has recently been found [Gardam 2021]). The
goal of this subsection is to prove a similar result for Aw = A/(w − 1). While Aw is not a ring and
therefore does not admit units, it does admit cyclic generators as an A-module: elements f ∈ Aw such
that f A = Aw. Clearly, for every unit of A, its image in Aw is a cyclic generator. Here we prove that
provided that w is not a power, all cyclic generators of Aw are of this sort.

Theorem 5.4. Assume that 1 ̸= w ∈ F is a nonpower. Then every cyclic generator of the right A-module
Aw = A/(w− 1) is an image of a unit of A.

Namely, every cyclic generator of Aw is a coset of the form αz + (w− 1) for some α ∈ K ∗ and z ∈ F.

Remark 5.5. Theorem 5.4 is false for proper powers. For example, if |K | = 3 and w = a3, then
ρ(a + 1) ∈ Aw is not a ρ-image of a unit of A: its support in Sw is of size two. Yet a3

+ 1 ∈ (a + 1) and
so ρ(2)= ρ(a3

+ 1) ∈ ρ(a + 1)A. Thus ρ(a + 1) is a cyclic generator of Aw.

11We assume throughout the paper that K is finite, but some of the results about free group algebras, such as Corollary 5.2,
hold for infinite fields just as well. In contrast, Corollary 5.3 relies on K being finite.

12This is well known. It can also be seen, for example, by an argument similar to the one in the proof of Lemma 5.1: for any
0 ̸= f ∈ A with support of size at least 2, take a minimal subtree T of C = Cay(F, B) which supports an element in the orbit
{ f.z | z ∈ F}. Then the argument in the proof of Lemma 5.1 shows that f A does not contain elements supported on T except for
scalar multiples of f .
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Figure 2. Let w = a[a, b]a−1. The Cayley graph of F = F(a, b) is on the left with
[1, w] marked. The middle graph is Sw, and the graph at the right side is a piece of the
Cayley graph of F/⟨⟨w⟩⟩. In all graphs, the vertex corresponding to the identity element
or its ρ-image is marked with ⊗.

First we show that cyclic generators in Aw may be assumed to be supported on the cycle of Sw.

Lemma 5.6. If f ∈ Aw is a cyclic generator of Aw, then there is some z ∈ F such that f z is supported
on the cycle in Sw.

Proof. This follows immediately from Lemma 5.1 applied to G being the cycle in Sw. □

Let w ∈ F be a nonpower. If w′ is the cyclic reduction of w then the automorphism of F mapping w
to w′ extends to an automorphism of A and induces isomorphisms Aw

∼=−→ Aw′ and Sw
∼=−→ Sw′ . Thus

we may assume without loss of generality that w is cyclically reduced. Denote by ⟨⟨w⟩⟩ the normal
closure of w in F, and denote by ((w− 1)) the two-sided ideal of A generated by w− 1. Since we have
{0} ⊆ (w− 1)⊆ ((w− 1)), we get canonical epimorphisms of right A-modules

A ρ
−↠Aw τ

−↠A/((w− 1)).

See Figure 2.

Lemma 5.7. Let p : F → F/⟨⟨w⟩⟩ be the canonical projection. The map ϕ :A/((w− 1))→ K [F/⟨⟨w⟩⟩]

defined by
∑

z∈F αzz + ((w− 1)) 7→
∑

z∈F αz p(z) is an isomorphism of K -algebras.

Proof. The proof is a standard argument in algebra, but we include it for completeness. By the universal
property of group rings, the group homomorphism p : F → F/⟨⟨w⟩⟩ ⊆ K [F/⟨⟨w⟩⟩] extends to a unique
K -algebra epimorphism ψ : A↠ K [F/⟨⟨w⟩⟩]. The ideal ((w− 1)) lies in the kernel of ψ : it is enough
to show that u(w− 1)v ∈ kerψ for u, v ∈ F, and

ψ(u(w− 1)v)= ψ(uwv− uv)= ψ(uwv)−ψ(uv)= p(uwv)− p(uv)= 0,

where the last equality is because uwv and uv lie in the same coset of ⟨⟨w⟩⟩. Thus, the homomorphism ψ

induces an epimorphismψ ′
:A/((w− 1))↠ K [F/⟨⟨w⟩⟩]. For every z ∈ F, ψ ′ satisfiesψ ′(z+((w−1)))=

ψ(z)= p(z), and so by linear extension ψ ′ agrees with ϕ from the statement of the lemma (in particular,
ϕ is a well-defined epimorphism of K -algebras).
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It is left to show that ϕ is injective. Suppose that

ϕ

( ∑
z∈F

αzz + ((w− 1))
)

=

∑
z∈F

αz p(z)= 0.

For every coset C of ⟨⟨w⟩⟩ we have
∑

z∈C αz = 0. We complete the proof by showing that this implies that∑
z∈C αzz ∈ ((w− 1))— and then the sum over all cosets would also lie in ((w− 1)). Such a finite sum

can always be decomposed as a sum over elements of the form α(z2 − z1) where α ∈ K and z1, z2 ∈ C .
In every such element, z2 can be obtained from z1 by a finite sequence of multiplications from the right
by conjugates of w or w−1, and so it is enough to show that z2 − z1 ∈ ((w− 1)) for z2 = z1 · uwεu−1

where u ∈ F and ε ∈ {±1}. And indeed we have z2 − z1 = z1u(wε − 1)u−1
∈ ((w− 1)). □

In our proof of Theorem 5.4 we use the following well-known concept.

Definition 5.8. A right order on a group 0 is a linear order on 0 such that for every r, s, t ∈ 0 with r < s
we have r t < st . A group is called right-orderable if it admits a right order.

It is well-known that Kaplansky’s unit conjecture, mentioned above, is true for right orderable groups —
see, e.g., [Clay and Rolfsen 2016, Theorem 1.58]. We add a proof for completeness.

Lemma 5.9. Let K be a field and 0 a right-orderable group. If ts = 1 for t, s ∈ K [0] then t = λg for
some λ ∈ K ∗ and g ∈ 0.

Proof. Write t =
∑n

i=1 λi gi for λi ∈ K ∗ and g1, . . . , gn ∈ 0 distinct. Since ts = 1 we know that n ̸= 0.
Now assume towards contradiction that n ≥ 2. Let < be a right order for 0. Assume without loss of
generality that g1 < g2 < · · ·< gn . Write similarly s =

∑m
j=1 µ j h j for h1 < h2 < · · ·< hm and µ j ∈ K ∗.

Then we have 1 = ts =
∑

i, j λiµ j gi h j .
We now find two elements of 0 such that their coefficients in ts are nonzero. Let jmin be the index

such that g1h jmin = min{g1h1, g1h2, . . . , g1hm}. In particular, g1h jmin is strictly smaller than any other
g1h j for j ̸= jmin. In addition, if i ̸= 1 then g1h jmin ≤ g1h j < gi h j . Thus, the coefficient of g1h jmin in
ts is λ1µ jmin ̸= 0. Similarly, let jmax be the index such that gnh jmax = max{gnh1, gnh2, . . . , gnhm}. A
similar argument shows that the coefficient of gnh jmax in ts is λnµ jmax ̸= 0. Finally, since n ≥ 2, we have
g1h jmin < gnh jmin ≤ gnh jmax and so g1h jmin and gnh jmax are distinct elements of 0 with nonzero coefficients
in ts = 1 — a contradiction. □

The following theorem is a well-known result in the theory of one-relator groups.

Theorem 5.10. If 1 ̸= w ∈ F is a nonpower then the one-relator group F/⟨⟨w⟩⟩ is right-orderable.

Proof. As w is a nonpower, we deduce that F/⟨⟨w⟩⟩ is torsion-free by a theorem of Karass, Magnus
and Solitar [Karrass et al. 1960, Theorem 1]. By a theorem proven independently by Brodskii [1984,
Corollary 2.3] and Howie [1982, Corollary 4.3], every torsion-free one-relator group has the property of
being locally indicable, which means that each of its nontrivial finitely generated subgroups admits a
nontrivial homomorphism to Z. Finally, the Burns–Hale theorem [1972, Theorem 2] states that a group H
is right-orderable if and only if any nontrivial finitely generated subgroup of H admits a nontrivial
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homomorphism to some right-orderable group. Since Z is right-orderable (the usual order on Z is a
right order), the Burns–Hale theorem implies that every locally indicable group is right-orderable. The
combination of the theorems above gives that F/⟨⟨w⟩⟩ is right-orderable. □

Proof of Theorem 5.4. Let 1 ̸= w ∈ F be a nonpower and suppose that f̄ ∈ Aw generates Aw. Since ρ is
surjective, there exists some f ∈ A such that ρ( f ) = f̄ . As f̄ generates Aw, there exists some s ∈ A
such that f̄ s = ρ(1) or, equivalently, ρ( f s)= ρ(1). Applying τ to both sides of the equation and using
the fact that τ ◦ ρ is a homomorphism of K -algebras we obtain τρ( f ) · τρ(s)= τρ(1), and in particular
τρ( f ) has a right inverse in the quotient K -algebra A/((w− 1)). Now, since τρ( f ) has a right inverse
in A/((w− 1)), its image under the isomorphism ϕ from Lemma 5.7 has a right inverse in K [F/⟨⟨w⟩⟩].
By Theorem 5.10, as w is not a power, F/⟨⟨w⟩⟩ is right-orderable. Lemma 5.9 applied for 0 = F/⟨⟨w⟩⟩,
implies that ϕ(τρ( f ))= λg for some λ ∈ K ∗ and g ∈ F/⟨⟨w⟩⟩.

Without loss of generality, by Lemma 5.6, we may assume that f̄ = ρ( f ) is supported on cosets of ⟨w⟩

belonging to the unique simple cycle of Sw. The Weinbaum subword theorem [1972, Theorem 2] asserts
that none of the nontrivial proper subwords of the cyclic reduction of w lies in its normal closure ⟨⟨w⟩⟩.
This implies that two distinct vertices of the cycle of Sw have distinct images through τ , namely, their
images belong to different elements of F/⟨⟨w⟩⟩. But the τ -image of f̄ is λg, which is supported on a
single element g ∈ K [F/⟨⟨w⟩⟩]. Thus f̄ itself is supported on a single element of the cycle of Sw and
can be lifted to an element f ∈ A supported on a single element of F. □

6. Critical ideals of rank 2

Throughout this section fix a nonpower 1 ̸= w ∈ F and assume without loss of generality that it is
cyclically reduced. Theorems 1.1 and 1.2 yield that Ew[fix] = 2 +

c
q N + O

( 1
q2N

)
for some constant c. Our

goal is to prove Theorem 1.4:
c = |Crit2q(w)|,

where Crit2q(w) is the set of rank-2 ideals I ≤ A containing w− 1 as an imprimitive element.
Recall our formula (2-5) for Ew[fix] and Corollary 3.9. It follows that the 1

q N -coefficient of Ew[fix]

consists of the contributions of the rank-1 and rank-2 ideals in the set

I def
= {I ≤[1,w] A | I ∋ w− 1}.

As w ̸= 1 and is a nonpower, by Corollary 4.6 the rank-1 ideals in I are precisely (1) and (w− 1). The
contribution of (1) to (2-5) is precisely 1, so it does not affect c. Denote by βw the coefficient of 1

q N in the
contribution of (w−1), namely, this contribution is 1+

βw
q N +O

( 1
q2N

)
. The summand in (2-5) corresponding

to a rank-2 ideal is 1
q N + O

( 1
q2N

)
, so such an ideal contributes exactly 1 to c. Recall that all the ideals in

Crit2q(w) are in I, by Corollary 3.11. Denote by Prim2(w) the set of rank-2 ideals in I in which w− 1 is
primitive. With this notation, the coefficient c of 1

q N in Ew[fix] is c = βw + |Prim2(w)| + |Crit2q(w)|. Our
goal is, thus, to prove that

βw + |Prim2(w)| = 0.
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Recall from Section 5 the quotient A-module Aw
def
=A/(w−1), the projection ρ :A→Aw and the Schreier

graph Sw = ⟨w⟩\Cay(F, B). The elements of Aw are K -linear combinations of the vertices of Sw, and
we use ρ to denote also the quotient in the graph level ρ : Cay(F, B)→ Sw. Let Cw = ρ([1, w]) denote
the unique simple cycle in Sw (here we use the fact that w is assumed to be cyclically reduced).

Lemma 6.1. The 1
q N -coefficient of the summand corresponding to I = (w− 1) in (2-5) is

βw = −
qv(Cw) − 1

q − 1
+

∑
b∈B

qeb(Cw) − 1
q − 1

. (6-1)

Proof. Recall that βw is the 1
q N -coefficient of the Laurent expansion of

indep|w|+1−d [1,w](I )(VN )∏
b∈B indepeb(w)−d [1,w]

b (I )(VN )
, (6-2)

for I = (w− 1). Because f ∈ A|[1,w] belongs to I = (w− 1) if and only if its coefficients in every fiber
over Cw sum up to zero, the dimension over K of I |[1,w] is precisely d [1,w](I )= v([1, w])− v(Cw)= 1.
Similarly, the dimension over K of I |Db([1,w]) is precisely d [1,w]

b (I )= eb([1, w])− eb(Cw)= 0. Hence,
(6-2) is equal to

indepv(Cw)(VN )∏
b∈B indepeb(Cw)(VN )

=
(q N

− 1)(q N
− q) · · · (q N

− qv(Cw)−1)∏
b∈B(q N − 1)(q N − q) · · · (q N − qeb(Cw)−1)

. (6-3)

Because Cw is a cycle, the number of vertices is identical to the total number of edges. Hence (6-3) is
equal to (

1 −
1

q N

)(
1 −

q
q N

)
· · ·

(
1 −

qv(Cw)−1

q N

)
∏

b∈B

(
1 −

1
q N

)(
1 −

q
q N

)
· · ·

(
1 −

qeb(Cw)−1

q N

) ,
and the 1

q N -coefficient of the Laurent expansion of this expression is

(−1 − q − · · · − qv(Cw)−1)−
∑
b∈B

(−1 − q − · · · − qeb(Cw)−1),

which is equal to (6-1). □

Denote by Dw the set of proper nontrivial cyclic submodules13 of Aw generated by some element
supported on the cycle Cw:

Dw
def
= {gA≨Aw | 0 ̸= g ∈ Aw and g supported on Cw}.

Lemma 6.2. There is a one-to-one correspondence between Dw and Prim2(w).

13Recall that a cyclic submodule is a submodule generated by a single element.
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Proof. By Corollary 5.2, the rank-2 ideals I ≤[1,w] A containing w− 1 as a primitive element are exactly
the rank-2 ideals of the form (w−1, f ) with f supported on [1, w] (here we use again the fact that every
pair of generators of a rank-2 ideal is a basis — [Cohn 1964, Proposition 2.2]). Now g ∈ Aw is supported
on Cw if and only if there is some f ∈ A supported on [1, w] with ρ( f )= g. Note that

(w− 1, f )= ρ−1(ρ( f )A),

where ρ( f )A is the submodule of Aw generated by the image of f in Aw. Because the only rank-1 ideals
containing w− 1 are (1) and (w− 1), we have that (w− 1, f ) is of rank 2 if and only if ρ( f )A is a
nonzero proper submodule of Aw. □

Next, we study the different elements g ∈ Aw supported on Cw. In order to understand when two
different elements g, g′ generate the same submodule, we construct a graph ϒ . The vertices of ϒ are
the 1-dimensional linear subspaces of K vert(Cw), so their number is v(ϒ) =

qv(Cw)−1
q−1 . For every b ∈ B

and every 1-dimensional subspace U ≤ K b-edges(Cw) (here K b-edges is the space of K -linear combinations
of the b-edges in Cw), the subspace U corresponds to a 1-dimensional subspace o(U ) of the vertices
supported on the origins of the b-edges, as well as a 1-dimensional subspace t (U ) supported on the
termini of the b-edges. For every such U we draw a directed b-edge from the vertex o(U ) to the vertex
t (U ) in ϒ . Note that e(ϒ)=

∑
b∈B

qeb(Cw)−1
q−1 , so overall

χ(ϒ)
def
= v(ϒ)− e(ϒ)= −βw, (6-4)

where the second equality is by Lemma 6.1. Denote by C(ϒ) the connected components of ϒ . Because
gA = g.bA for every g ∈ Aw and b ∈ B, there is a well-defined surjective map

8 : C(ϒ)↠ {gA | 0 ̸= g ∈ Aw supported on Cw} = Dw ∪ {Aw}.

One of the connected components of ϒ is isomorphic to Cw: this is the component consisting of vertices
and edges of ϒ corresponding to 1-dimensional subspaces supported on a single vertex or on a single
edge. Denote this component by C0. Clearly, 8(C0)= Aw.

Lemma 6.3. All connected components of ϒ except for C0 are paths.

Proof. The degree of every vertex in ϒ is at most 2, so every connected component is a path or a cycle.
Assume that some component C0 ̸= C ∈ C(ϒ) is a cycle. Let U be a vertex in C , and assume that this cycle
reads the (cyclically reduced) word z ∈ F starting (and ending) at U . Recall that U is a 1-dimensional
subspace of K vert(Cw) supported on at least two vertices of Cw, and denote the support of U by supp(U ),
so |supp(U )| ≥ 2. In particular, for every s ∈ supp(U ), there is a path in Cw reading z leaving s and
reaching some s ′

∈ supp(U ). Hence, some power zk of z is a path from s to itself for every s ∈ supp(U ).
Because w is not conjugate to w−1, every such copy of zk has the same orientation along Cw. We get
that there is some y ∈ F \ ⟨w⟩ so that ywy−1

=w. This is not possible unless w is a proper power, which
is not the case. □

Lemma 6.4. The map 8 : C(ϒ)→ Dw ∪ {Aw} is one-to-one.
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Proof. Theorem 5.4 states the only cyclic generators of Aw are elements supported on a single vertex
of Sw, and so C0 is the only connected component in ϒ mapped to Aw. It remains to show that every
element of Dw has a single preimage in C(ϒ). Suppose that g, g′

∈ Aw, both supported on Cw, so that
g′A = gA ∈ Dw, namely, {0} ̸= gA = g′A ≨ Aw. Let f, f ′

∈ A be preimages of g, g′, respectively,
through ρ−1, which are supported on [1, w]. Then ( f, w−1)= ( f ′, w−1) is a rank-2 ideal by Lemma 6.2.
Thus there are p1, p2, q1, q2 ∈ A such that

f ′
= f p1 + (w− 1)p2, f = f ′q1 + (w− 1)q2,

so

f = ( f p1 + (w− 1)p2)q1 + (w− 1)q2 = f · p1q1 + (w− 1)(p2q1 + q2).

But { f, w− 1} is a basis, so by uniqueness we get p1q1 = 1 (and p2q1 +q2 = 0). The only units of A are
scalar product of monomials of the form αz with α ∈ K ∗ and z ∈ F (this was mentioned and explained in
Section 5A). By multiplying g′ by a scalar if necessary, we may thus assume that p1 ∈ F is a word, and
we get that

g′
= ρ( f ′)= ρ( f p1 + (w− 1)p2)= ρ( f p1)= ρ( f )p1 = gp1.

But Cw contains every reduced path between every two of its vertices, so inside ϒ there is a path
(reading p1) from the vertex corresponding to g to the one corresponding to g′. In particular, they both
belong to the same connected component. □

Completing the proof of Theorem 1.4. Recall that we need to show that βw+|Prim2(w)| = 0. Consider the
above mentioned map 8 : C(ϒ)→ Dw ∪ {Aw}. As C0 is a cycle isomorphic to Cw, we have χ(C0)= 0.
By Lemma 6.3, χ(C)= 1 for any C0 ̸= C ∈ C(ϒ), so |C(ϒ) \ {C0}| = χ(ϒ). Thus

|Prim2(w)| = |Dw| = |C(ϒ) \ {C0}| = χ(ϒ)= −βw,

where the first equality is by Lemma 6.2, the second equality is by Lemma 6.4, and the fourth equality is
by (6-4). □

7. Open questions

This paper raises quite a few questions and directions for future research, and we gather the main ones
here. As above, A = K [F] and πq(w) is the q-primitivity rank of w ∈ F (see Definition 1.5).

Expected number of fixed vectors. As stated in Conjecture 1.6, is it true that for every w ∈ F, we have
Ew[fix] = 2 +

|Critq (w)|
q N (π−1) + O

( 1
q Nπ

)
where π = πq(w)? If true, this would generalize Corollary 1.7 and

yield that in free groups of arbitrary finite rank the words inducing the uniform measure on GLN (K )
for every N are precisely the primitive words — a result analogous to [Puder and Parzanchevski 2015,
Theorem 1.1] dealing with SN .
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The q-primitivity rank. Recall Conjecture 1.9: is it true that πq(w)= π(w) for every w ∈ F and every
prime power q? What is the value for a generic word (compare with [Puder 2015, Corollary 8.3] and
[Kapovich 2022])? The Cohn–Lewin theorem applies to the free group algebra over an arbitrary field, not
necessarily finite, and one can analogously define the K -primitivity rank of w for an arbitrary field K
(and even for certain rings). Is it true that the K -primitivity rank is equal to π(w) for every field K ?

What about general elements of A? One can define the primitivity rank πA( f ) of arbitrary f ∈ A as
the rank of critical ideals, so πq(w)= πA(w−1) (and see the paragraph preceding Corollary 3.11). What
are the possible values of πA( f ) for f ∈ A? Does this number have any combinatorial meaning (à la
Conjecture 1.6)?

The expected value of stable irreducible characters. Recall Conjecture 1.15 which says that for every
stable irreducible character χ of GL•(K ), Ew[χ ] = O((dimχ)1−πq (w)). This conjecture should be quite
difficult to tackle, as it is not even known in the somewhat simpler case of the symmetric group. It is
more conceivable that one may be able to prove the weaker result that Ew[χ ] = O(q−N ·πq (w)) for every
nonpower w and every stable irreducible character of dimension �(q2N ). This kind of result was proved
for stable irreducible characters of {SN }N [Hanany and Puder 2023, Corollary 1.7], for {U (N )}N [Brodsky
2024] and for {G ≀ SN }N for any finite group G [Shomroni 2023b]. (See also [Ernst-West et al. 2023,
Appendix A] for further discussion and a more refined conjecture.)

Spectral gap in random Schreier graphs of GLN(K ). Part of the original motivation for studying word
measures on GLN (K ) lies in questions regarding expansion and spectral gaps in random Schreier graphs
of the groups GLN (K ) when K is fixed and N → ∞. A recent milestone here is [Eberhard and Jezernik
2022]. Still, the following question is still open: Consider a random Schreier graph depicting the linear
action of GLN (K ) on K N

\ {0} with respect to two random generators. Do these graphs admit a uniform
spectral gap with probability → 1 as N → ∞? If so, is the spectral gap optimal? It is plausible that
the results and conjectures in this paper may contribute to obtaining such results, in a fashion similar to
analogous proofs for Schreier graphs of SN [Linial and Puder 2010; Puder 2015; Friedman and Puder
2023; Hanany and Puder 2023].

Limit distributions. Theorem 1.13 states that for w a nonpower, the distribution of the number of fixed
vectors in a w-random element of GLN (K ) converges in distribution, as N → ∞, to a limit distribution
which is independent of w. Is this true for powers too? Is this true for an arbitrary stable class function
in the ring R from page 2054? (This is known for SN — see [Nica 1994, Theorem 1.1] and [Puder and
Zimhoni 2024, Theorem 1.14] for a more general result about cycles of bounded length.)

Free group algebras. This paper gives rise to quite a few questions about the free group algebra A. First,
it is natural to guess that Corollary 5.2 can be generalized as follows: if T ⊆ Cay(F, B) is a subtree
and f , supported on T , is a primitive element of I ≤T A, can { f } be extended to a basis of I which is
supported on T ?
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Recall Theorem 5.4 that when w is a nonpower, the only cyclic generators of the right A-module
A/(w−1) are images of unit elements of A. Is this true for general subgroups of F? Namely, let H ≤ F
be a finitely generated subgroup which is not contained in any other subgroup of equal or smaller rank
(in the language of [Puder 2014], this is π(H) > rk H ). Let JH

def
= IHA = ({h − 1 | h ∈ H}) (see [Cohen

1972, Chapter 4]). Is it true that the only cyclic generators of the quotient A-module A/JH are images of
unit elements of A? This would be a Kaplansky-type result for such modules.

There are many other famous theorems and algorithms about free groups and their subgroups and we
wonder if they have versions that apply to the free group algebra and its ideals. For example, is there an
analog of Whitehead’s cut vertex criterion which may detect efficiently whether a given element belongs
to a free factor of a given ideal? See the recent survey [Delgado and Ventura 2022] giving a list of results
about free groups and their subgroups using Stalling core graphs.

Appendix: The limit distribution of fix

Fix a nonpower 1 ̸=w∈ F. Recall that fixw,N denotes the number of fixed vectors of aw-random element in
GLN (K ). We explain why the method of moments is applicable for proving convergence in distribution for
fixw,N , thus proving Theorem 1.13. We begin by recalling some basic definitions for the moment problem.

Given a sequence of real numbers (mn)n≥0 and an interval I ⊆ R, a solution to the associated moment
problem is a positive Borel measure θ supported on I with moments

∫
I xn dθ(x) = mn . When I = R

(respectively, I = [0,∞)), the problem is called a Hamburger (respectively, Stieltjes) moment problem.
If a solution exists, the moment problem is said to be solvable. A solvable moment problem is further
categorized by the number of solutions: if a unique solution exists, the moment problem is said to be
determinate and otherwise it is called indeterminate, in which case there are infinitely many solutions
since the set of solutions is convex.

The limiting measure of fixw,N is a special case of a well-studied family of measures in the field of
orthogonal polynomials. We next recall this family of measures, and then explain how previous analysis
of the determinacy of its associated moment problems allows us to deduce the desired convergence in
distribution.

Let p ∈ (0, 1) and a> 0. The Al-Salam Carlitz polynomials of the second kind V (a)
n (x; p) (see [Chihara

1978, pp. 195–198; Koekoek et al. 2010, Section 14.24; Christiansen 2004, pp. 30-33]) are orthogonal
with respect to the probability measure supported on the sequence {p−k

}k≥0 with masses

wAC(p−k
; a; p)= (ap; p)∞

ak pk2

(p; p)k(ap; p)k
, (A-1)

where (x; y)n =
∏n−1

j=0 (1 − xy j ) is the q-shifted factorial, or q-Pochhammer symbol, and (x; y)∞ =∏
∞

j=0 (1 − xy j ).
Let q be a prime power. The limiting measure ν of fixw,N is a special case of the family of measures (A-1)

with parameters p = q−1 and a = 1. Explicitly, ν =
∑

∞

k=0wAC(qk
; 1; q−1)δqk . The n-th moment of ν is
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equal to the number of linear subspaces of an n-dimensional vector space over a field with q elements
(see [Fulman and Stanton 2016, Proposition 5.7] or [Chihara 1978, Equation 10.10]).

Let ν ′ be the pushforward of ν under the translation map x 7→ x − 1, i.e.,

ν ′
=

∞∑
k=0

wAC(qk
; 1; q−1)δqk−1.

The measure ν ′ exhibits the interesting phenomenon of having its Hamburger moment problem be
indeterminate while its Stieltjes moment problem is determinate (see [Berg and Valent 1994, Section 4]).
Since the moments of a random variable Z determine the moments of Z−1 and vice versa, the pushforward
map induced by x 7→ x − 1 forms a bijection between solutions to the moment problem associated to ν
on I = [1,∞) and solutions to the Stieltjes moment problem associated to ν ′. In particular, any measure
supported on [1,∞) with the same moments as ν must be equal to ν.

Let νn be a sequence of Borel probability measures on R supported on [1,∞), and suppose that for every
k ∈ N the k-th moment of νn converges as k → ∞ to the k-th moment of ν, as Theorem 1.12 applied with
B= Ik ∈GLk(K ) yields for fixw,N . We are now ready to deduce that νn converges weakly14 to ν. The set of
Borel probability measures on R equipped with the topology of weak convergence is metrizable (the Lévy
metric, for example; see [Durrett 2019, Exercise 3.2.6]), and so it is enough to show that every subsequence
of νn has a further subsequence converging weakly to ν. Let νnk be such a subsequence. The convergence
of the second moments implies that the sequence (νn)n∈N is tight [Durrett 2019, Theorem 3.2.14], and
by Prokhorov’s theorem [Billingsley 1999, Theorem 5.1], νnk has a further subsequence νnkl

converging
weakly to some probability measure ν̃. The convergence of moments of νn to the moments of ν implies
that ν̃ has the same sequence of moments as ν [Durrett 2019, Exercise 3.2.5]. Furthermore, using the
Portmanteau theorem [Durrett 2019, Theorem 3.2.11] on the closed set [1,∞)⊆ R, we get

ν̃([1,∞))≥ lim sup
l→∞

νnkl
([1,∞))= lim sup

l→∞

1 = 1,

and so ν̃ must also be supported on [1,∞). The determinacy of the moment problem associated to ν
on I = [1,∞) implies that ν̃ = ν, finishing the argument.
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