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We investigate the distribution of the maximum of character sums over the family of primitive quadratic
characters attached to fundamental discriminants |d| ≤ x . In particular, our work improves results of
Montgomery and Vaughan, and gives strong evidence that the Omega result of Bateman and Chowla
for quadratic character sums is optimal. We also obtain similar results for real characters with prime
discriminants up to x , and deduce the interesting consequence that almost all primes with large Legendre
symbol sums are congruent to 3 modulo 4. Our results are motivated by a recent work of Bober,
Goldmakher, Granville and Koukoulopoulos, who proved similar results for the family of nonprincipal
characters modulo a large prime. However, their method does not seem to generalize to other families of
Dirichlet characters. Instead, we use a different and more streamlined approach, which relies mainly
on the quadratic large sieve. As an application, we consider a question of Montgomery concerning the
positivity of sums of Legendre symbols.

1. Introduction

Character sums play a central role in modern number theory through their numerous applications in the
study of various arithmetic, analytic, algebraic and geometric objects. One important and basic example
is that of quadratic Dirichlet characters, which include the Legendre symbol. The study of such characters
and related sums has a long and rich history stretching back to the work of Gauss on binary quadratic
forms. Let χ be a Dirichlet character modulo q . One quantity that was extensively studied over the past
century is

M(χ) := max
t≤q

∣∣∣∣∑
n≤t

χ(n)
∣∣∣∣.

In 1918, Pólya and Vinogradov independently proved that

M(χ)≪
√

q log q.
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On the other hand, an easy argument (based on applying Parseval’s theorem to the Pólya Fourier series (2-1)
attached to χ ) shows that M(χ)≫

√
q for all primitive characters modulo q . Though one can establish

the Pólya–Vinogradov inequality using only basic Fourier analysis, improving on it has proved to be
a very difficult problem, and resisted substantial progress outside of special cases. We should also
note that any such improvement would have important consequences on several important quantities in
analytic number theory, including class numbers of quadratic fields, short character sums, and the least
quadratic nonresidue (see, for example, [Bober and Goldmakher 2016; Granville and Mangerel 2023;
Mangerel 2020]). Granville and Soundararajan [2007] made an important breakthrough by showing that
the Pólya–Vinogradov inequality can substantially be improved for characters of a fixed odd order. Further
improvements to this case were obtained by Goldmakher [2012], and Lamzouri and Mangerel [2022].

Since
√

q ≪ M(χ)≪
√

q log q for all primitive characters modulo q , a natural question is to determine
the maximal order of M(χ). Assuming the generalized Riemann hypothesis (GRH), Montgomery and
Vaughan [1977] proved that M(χ)≪

√
q log log q . This turns out to be optimal (up to a constant factor)

in view of an older result of Paley [1932] who proved the existence of an infinite family of quadratic
characters for which M(χ) is that large. Granville and Soundararajan [2007] refined Montgomery and
Vaughan’s conditional result and showed that

M(χ)≤ (2Cχ + o(1))
√

q log log q, (1-1)

for all primitive characters χ modulo q , where Cχ = eγ /π if χ is odd, and Cχ = eγ /(
√

3π) if χ is even.
On the other hand, Paley’s result was refined by Bateman and Chowla [1950], who proved the existence
of an infinite sequence of moduli q , and primitive quadratic characters χ mod q, such that

M(χ)≥

(eγ

π
+ o(1)

)
√

q log log q. (1-2)

This result was extended to the family of primitive characters modulo a large prime q by several authors (see,
for example, Theorem 3 of [Granville and Soundararajan 2007]). Finally, we should note that Granville
and Soundararajan [2007] conjectured that Bateman and Chowla’s Omega result should correspond to the
true extreme values of M(χ), namely that

M(χ)≤ (Cχ + o(1))
√

q log log q, (1-3)

for all primitive characters χ .

1A. The distribution of character sums. In view of (1-1), (1-2) and (1-3) it is natural to renormalize M(χ)
by defining

m(χ) :=
e−γπ
√

q
M(χ).

Montgomery and Vaughan [1979] were the first to study the distribution of m(χ) over families of Dirichlet
characters. In particular, they showed that m(χ) is bounded (and hence M(χ)≪

√
q) for most characters.
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Let q be a large prime and

8q(τ ) :=
1

ϕ(q)
|{χ ̸= χ0 (mod q) : m(χ) > τ }|,

where ϕ(q) is Euler’s totient function. It follows from [Montgomery and Vaughan 1979] that

8q(τ )≪A τ
−A,

for any constant A ≥ 1. This estimate was improved by Bober and Goldmakher [2013] for fixed τ , and
subsequently by Bober, Goldmakher, Granville and Koukoulopoulos [Bober et al. 2018] who showed that
uniformly for 2 ≤ τ ≤ log log q − M (where M ≥ 4 is a parameter) we have

exp
(

−
eτ+A0−η

τ

(
1 + O(E1(τ,M))

))
≤8q(τ )≤ exp

(
−

eτ−2−η

τ

(
1 + O(E2(τ ))

))
, (1-4)

where E1(τ,M)= (log τ)2/
√
τ + e−M/2, E2(τ )= (log τ)/τ , η := e−γ log 2, and A0 = 0.088546 . . . is

an explicit constant which can be expressed as a sum of integrals over the modified Bessel function of the
first kind. In particular, this result gives strong evidence to the Granville–Soundararajan conjecture (1-3)
for odd primitive characters modulo a large prime q .

Although the family of quadratic characters was the first for which large character sums were exhibited
by Paley [1932], and then later by Bateman and Chowla [1950], no such distribution results are known in
this case. In fact, the only known result for real characters is a result of Montgomery and Vaughan [1979]
who showed that maxt

∣∣∑
n≤t

( n
p

)∣∣ ≪
√

p for most primes p ≤ x . The main reason which explains why
the results of [Bober and Goldmakher 2013; Bober et al. 2018] do not carry over to this setting is the fact
that they rely heavily on the orthogonality relations for characters modulo q . Indeed, the key ingredient
in the proof of (1-4) is to estimate the off-diagonal terms when bounding large moments of the tail of
the sum in Pólya’s Fourier expansion (2-1) below, which the authors of [Bober et al. 2018] successfully
achieved using intricate estimates involving divisor functions.

In this paper, we overcome this problem for the family of quadratic characters by using a different
and more streamlined approach which relies on the quadratic large sieve. Before stating our results we
need some notation. For a fundamental discriminant d we let χd( · ) =

( d
·

)
be the Kronecker symbol

modulo |d|. It is useful here to consider the cases of positive and negative discriminants separately, since
as Theorems 1.1 and 1.2 below show, the distribution of large values of m(χd) behaves differently in each
case. The difference between these cases lies in the fact that the character χd is even if d is positive, and
is odd if d is negative. Thus, in view of Conjecture (1-3) we expect the extreme values of m(χd) for d > 0
to be smaller by a factor of

√
3 compared to the case d < 0. We denote by F(x) the set of fundamental

discriminants d such that |d| ≤ x , and let F+(x) (respectively F−(x)) be the subset of F(x) consisting
of positive (respectively negative) discriminants. Then we have the following standard estimates (see, for
example, Lemma 4.1 of [Granville and Soundararajan 2006])

|F±(x)| =
3
π2 x + Oε(x1/2+ε).
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Our goal is to estimate the distribution functions

9±

x (τ ) :=
1

|F±(x)|
|{d ∈ F±(x) : m(χd) > τ }|,

uniformly for τ in the range 2 ≤ τ ≤ (1 + o(1)) log log x in the case of 9−
x (τ ), and the range 2 ≤ τ ≤

(1/
√

3+o(1)) log log x in the case of 9+
x (τ ). Conjecture (1-3) implies that these ranges are best possible

up to the term o(log log x). Here and throughout we shall denote by logk the k-th iteration of the natural
logarithm. We prove the following results.

Theorem 1.1. Let η = e−γ log 2, and x be a large real number. Uniformly for τ in the range 2 ≤ τ ≤

log2 x + log5 x − log4 x − C (where C > 0 is a suitably large constant) we have

exp
(

−
eτ−η−B0

τ

(
1 + O

(
(log τ)2

√
τ

)))
≤9−

x (τ )≤ exp
(

−
eτ−η−log 2−2

τ

(
1 + O

(
log τ
τ

)))
,

where

B0 =

∫ 1

0

tanh y
y

dy +

∫
∞

1

tanh y − 1
y

dy = 0.8187 . . . (1-5)

Theorem 1.2. Let B0 be the constant in Theorem 1.1. There exists positive constants C1 and C2 such that
uniformly for τ in the range 2 ≤ τ ≤ (log2 x + log5 x − log4 x − C1)/

√
3 we have

exp
(

−
e
√

3τ−B0

√
3τ

(
1 + O

(
1
τ

)))
≤9+

x (τ )≪ exp
(

−
e
√

3τ

τC2

)
.

Remark 1.3. Theorems 1.1 and 1.2 (the latter is the analogue of Theorem 1.3 of [Bober et al. 2018]) give
strong evidence to the Granville–Soundararajan conjecture (1-3) for the family of quadratic characters.
Moreover, a direct consequence of these results is the fact that almost all fundamental discriminants
|d| ≤ x for which M(χd) is large are negative.

Remark 1.4. The lower bounds in (1-4) and Theorems 1.1 and 1.2 are consequences of the works of
Granville and Soundararajan [2003; 2006] on the distribution of |L(1, χ)| (over nonprincipal characters
modulo q) in the case of (1-4), and L(1, χd) (over fundamental discriminants |d| ≤ x) in the case of
Theorems 1.1 and 1.2 (see Section 2 for more details). Moreover, note that we obtain a slightly different
constant in the upper bound of Theorem 1.1 compared to (1-4). We believe that this is caused by the
different nature of the family of quadratic characters. Indeed in our case, the difference between the
constants in the upper and lower bounds of Theorem 1.1 is 2 + log 2 − B0 ≈ 1.8744, which is slightly
smaller than the analogous difference 2 + A0 ≈ 2.0885 for the family of nonprincipal characters modulo
a large prime q in (1-4). Finally, we note that by using our approach, we can derive an easier proof of the
upper bound of (1-4) in the range 2 ≤ τ ≤ log2 q + log5 q − log4 q − C . This is achieved by following
the exact same argument of the proof of the upper bound of Theorem 1.1, and replacing the quadratic



The distribution of large quadratic character sums and applications 2095

large sieve inequalities of Heath-Brown and Elliott (see Lemma 4.1 below) by the following large sieve
estimate of [Montgomery 1971, Theorem 6.2]∑

χ mod q

∣∣∣∣∑
n≤N

anχ(n)
∣∣∣∣2

≪ (q + N )
∑
n≤N

|an|
2,

which holds for an arbitrary complex sequence {an}n≥1, and all integers q ≥ 2. Although our approach
gives a slightly smaller range of τ in this case, it has the advantage of extending the upper bound of (1-4)
to all moduli q.

Remark 1.5. Using our work we can show that the structure results for large character sums obtained by
Bober, Goldmakher, Granville and Koukoulopoulos in Section 2 of [Bober et al. 2018] for the family of
nonprincipal characters modulo a large prime q , hold verbatim for the family of quadratic characters χd

attached to fundamental discriminants |d| ≤ x . Since these results are technical, and the statements are
exactly the same, we prefer to not state them here and refer the reader to the exact statements in [Bober
et al. 2018]. The proofs follow along the same lines of [Bober et al. 2018] by using the auxiliary lemmas
therein which hold for all primitive characters (and are derived using the “pretentious” theory of character
sums developed by Granville and Soundararajan [2007]), and replacing the ingredients of the proof of
Theorem 1.1 in [Bober et al. 2018] by those of the proof of Theorem 1.1 of our paper.

1B. Analogous results for prime discriminants. Using our approach we establish similar results to
Theorems 1.1 and 1.2 over prime discriminants. The analogous lower bounds are direct consequences
of newly established results on the distribution of L

(
1,

(
·
p

))
, which we shall describe in the next

section. Furthermore, the analogous upper bounds will be obtained using the same methods of proofs of
Theorems 1.1 and 1.2, together with the large sieve inequality of Montgomery and Vaughan [1979] for
prime discriminants (see Lemma 5.1 below). Since the Legendre symbol modulo p is even if p ≡ 1 mod 4,
and is odd if p ≡ 3 mod 4, we shall consider the cases of primes congruent to 1 and 3 modulo 4 separately.
For a ∈ {1, 3}, let 9 prime

x,a (τ ) be the proportion of primes p ≤ x such that p ≡ a mod 4 and m
((

·
p

))
> τ .

Theorem 1.6. Let η and B0 be the constants in Theorem 1.1. There exists positive constants C1,C2

such that:

1. Uniformly in the range 2 ≤ τ ≤ log2 x + log5 x − log4 x − C1 we have

9
prime

x,3 (τ )≤ exp
(

−
eτ−η−log 2−2

τ

(
1 + O

(
log τ
τ

)))
.

2. Uniformly in the range 2 ≤ τ ≤ (log2 x)/2 − 2 log3 x we have

9
prime

x,3 (τ )≥ exp
(

−
eτ−η−B0

τ
(1 + o(1))

)
. (1-6)

3. Uniformly in the range (log2 x)/2 − 2 log3 x ≤ τ ≤ log2 x − log3 x − C1 we have

9
prime

x,3 (τ )≥ exp(−C2τeτ ).
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Theorem 1.7. Let B0 be the constant in Theorem 1.1. There exists positive constants C1,C2 and C3

such that:

1. Uniformly in the range 2 ≤ τ ≤ (log2 x − log3 x − C1)/
√

3 we have

exp(−C3τe
√

3τ )≤9
prime

x,1 (τ )≪ exp
(

−
e
√

3τ

τC2

)
.

2. Moreover, uniformly in the smaller range 2 ≤ τ ≤
(
(log2 x)/2 − 2 log3 x

)
/
√

3 we have the improved
lower bound

9
prime

x,1 (τ )≥ exp
(

−
e
√

3τ−B0

√
3τ

(1 + o(1))
)
. (1-7)

Remark 1.8. An interesting consequence of Theorems 1.6 and 1.7 is that almost all primes p ≤ x for
which M

((
·
p

))
is large are congruent to 3 modulo 4. Moreover, we note that conditionally on the GRH,

the lower bound (1-6) (respectively (1-7)) holds in the extended range 2 ≤ τ ≤ log2 x − 2 log3 x − C4

(respectively 2 ≤ τ ≤ (log2 x −2 log3 x −C4)/
√

3), for some positive constant C4. See Remark 6.1 below
for a justification of this fact.

Remark 1.9. Theorem 1.4 of [Bober et al. 2018] establishes the existence of a limiting distribution
for m(χ), as χ varies over nonprincipal characters modulo a large prime q, when q → ∞. In [Hussain
and Lamzouri 2023], we established an analogous result for M

((
·
p

))
as p varies over the primes in a

large dyadic interval [Q, 2Q] and Q → ∞.

1C. The distribution of L
(
1,

(
·

p
))

. In order to prove the lower bounds of Theorems 1.6 and 1.7 we
need estimates on the distribution of L

(
1,

(
·
p

))
, as p varies over the primes. It turns out that this case

is harder than the case of the bigger family of primitive quadratic characters attached to fundamental
discriminants d , which was investigated by Granville and Soundararajan [2003] (see the precise statement
of their result in Theorem 2.2 below). By the law of quadratic reciprocity, this is due to the fact that
current bounds on character sums over primes are much weaker than analogous bounds for character
sums over the integers.1 In particular, such bounds are heavily affected by the possible existence of a
Landau–Siegel exceptional discriminant.

Joshi [1970] extended Littlewood’s Omega result [1928], by establishing the existence of infinitely
many primes p such that

L
(

1,
(

·

p

))
≥ (eγ + o(1)) log log p.

1Bounds for character sums over primes are ultimately connected to the distribution of primes in arithmetic progressions.
The weakness of such bounds explains for example why the strongest version of the prime number theorem for arithmetic
progressions, namely the Siegel–Walfisz theorem, only holds for very small moduli.
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We improve on this result by obtaining estimates for the proportion of primes p ≤ x such that L
(
1,

(
·
p

))
>

eγ τ uniformly for τ in the range 2 ≤ τ ≤ (1 − o(1)) log log p, which is believed to be best possible
up to the factor o(log log p) (see for example the conjectures of Montgomery and Vaughan [1999] and
Granville and Soundararajan [2003]). For τ > 0 and a ∈ {1, 3} we define

Fx,a(τ ) :=
2

π(x)

∣∣∣{p ≤ x : p ≡ a mod 4, L
(

1,
(

·

p

))
> eγ τ

}∣∣∣.
Theorem 1.10. Let a ∈ {1, 3} and x be large. In the range 2 ≤ τ ≤ (log2 x)/2 − 2 log3 x we have

Fx,a(τ )= exp
(

−
eτ−B0

τ
(1 + o(1))

)
. (1-8)

Moreover, there exists positive constants C1,C2 > 0 such that in the range (log2 x)/2 − 2 log3 x ≤ τ ≤

log2 x − log3 x − C2 we have

exp(−C1τeτ )≤ Fx,a(τ )≤ exp
(

−
eτ+log 2−2

τ

(
1 + O

(
log τ
τ

)))
. (1-9)

Furthermore, the same estimates hold for the proportion of primes p ≤ x such that p ≡ a mod 4 and
L
(
1,

(
·
p

)
χ−3

)
> (2eγ /3)τ , where χ−3 is the nonprincipal character modulo 3.

Remark 1.11. One can compare our results with those of [Granville and Soundararajan 2003] for the
distribution of L(1, χd) over fundamental discriminants |d| ≤ x (see Theorem 2.2 below). In this case, the
same estimate (1-8) holds for the proportion of fundamental discriminants |d|≤ x such that L(1, χd)>eγ τ ,
uniformly for τ in the larger range 2≤ τ ≤ log2 x+(1−o(1)) log4 x . We should also note that conditionally
on GRH, the estimate (1-8) holds in the extended range 2 ≤ τ ≤ log2 x − 2 log3 x −C2 (for some positive
constant C2) by a result of Holmin, Jones, Kurlberg, McLeman and Petersen [Holmin et al. 2019] (see
Remark 6.1 below). Finally, we note that in the case a = 3, our proof yields a better constant in the upper
bound of (1-9) than if we just apply Theorem 1.6 directly (using the inequality (2-8) below).

To prove the precise estimate (1-8) in the smaller range 2 ≤ τ ≤ (1/2−o(1)) log2 x , we use our previous
work [Lamzouri 2017], where we established asymptotic formulas for the complex moments of L

(
1,

(
·
p

))
involving a secondary term which is coming from a possible Landau–Siegel exceptional discriminant.
Although we could not rule out that this term might be as large as the main term, we were able to show
that it does not affect the leading term in the tail of the distribution of L

(
1,

(
·
p

))
. However, we note that

the error term o(1) inside the estimate (1-8) is not effective, due to the use of Siegel’s theorem. The
upper bound of (1-9) will be a consequence of Theorem 2.7 below, which is the key ingredient in the
proofs of the upper bounds of Theorems 1.6 and 1.7. Finally, to obtain the lower bound of (1-9), we
combine Theorem 2.7 with a strong form of Linnik’s theorem established by Bombieri [1987] using his
zero density estimates for Dirichlet L-functions.
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1D. An application to a question of Montgomery. As an application of our results we consider the
problem of the positivity of sums of the Legendre symbol. Let p ≥ 3 be a prime and

Sp(t)=

∑
n≤t

( n
p

)
.

The question of determining when Sp(t) is positive was considered by several mathematicians including
Fekete, Chowla, Montgomery and others. Since Sp(t) is periodic of period p, one can renormalize the
variable t and define for α ≥ 0 the function

f p(α) :=

∑
0≤n≤αp

( n
p

)
,

which is periodic of period 1. One can extend f p to all α ∈ R by periodicity. Montgomery [1976]
studied the following natural question: How frequently is f p(α) positive for a prime p ≡ 3 mod 4? More
precisely, he investigated the quantity

λ(p) := µ
({
α ∈ [0, 1) : f p(α) > 0

})
,

for such primes2, where µ(C) denotes the Lebesgue measure of a measurable set C. He proved in
[Montgomery 1976] that for all primes p ≡ 3 mod 4 we have λ(p) > 1/50. He also established the
existence of infinitely many such primes such that λ(p) < 1/3 + ε for any fixed ε > 0. In her Master’s
thesis, Mehkari [2005] slightly improved the constant 1/50 in the first result of Montgomery. She
also ran extensive numerical computations which suggest that the value 1/3 for his second result is
optimal. Furthermore, she proved conditionally on GRH that λ(p)≤ 0.764 for a positive proportion of
the primes p ≡ 3 mod 4, and that λ(p) ≥ 0.285 for a positive proportion of the primes p ≡ 3 mod 4.
Montgomery [1976] also wrote “the ideas found in our proof can also be used to show that there are
infinitely many primes p ≡ 3 mod 4 such that λ(p) > 1 − ε.” Using a different method, based on the
proof of Theorem 1.6, we improve on these results by showing that for any ε > 0, both inequalities
λ(p) > 1 − ε and λ(p) < 1/3 + ε hold for a positive proportion of the primes p ≡ 3 mod 4. We also
quantify these proportions in terms of ε and consider the question of uniformity by letting ε→ 0 slowly
as a function of x , if we vary over the primes p ≤ x such that p ≡ 3 mod 4.

Theorem 1.12. Let ν > 0 be a small fixed constant. Let x be large and

1< T ≤ exp
(
(1 − ν) log2 x log3 x/(log4 x)

)
be a real number. The number of primes p ≤ x with p ≡ 3 mod 4 and such that λ(p) > 1 − 1/T is

≫ π(x) exp
(

− exp
(

log T log3 T
log2 T

(1 + o(1))
))
. (1-10)

2Note that f p is even if p ≡ 3 mod 4 and is odd if p ≡ 1 mod 4. The analogous question in the latter case becomes: how
often is f p(α) > 0 for 0< α < 1/2? We shall only consider the former case in this paper since our methods can be extended to
handle the case of primes p ≡ 1 mod 4.
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In particular, this quantity is

≫ν π(x) exp(−T ν).

Theorem 1.13. Let x be large and T > 1. There exists positive constants c1, c2, c3 such that the number
of primes p ≤ x with p ≡ 3 mod 4 and such that λ(p) < 1/3 + 1/T is at least

π(x) exp(−c1T 2(log T )3), (1-11)

if 1< T ≤ c2(log2 x)1/2/(log3 x)2, and is at least

π(x) exp(−c1T 2(log T )5), (1-12)

if c2(log2 x)1/2/(log3 x)2 ≤ T ≤ c3(log x)1/2/(log2 x)5/2.

1E. Further applications. We should note that our method could be adapted to investigate the distribution
of M(χ) over the family of primitive cubic Dirichlet characters with conductor up to x . We are planning
to pursue this direction in a future paper. Moreover, we mention that the ideas of the proof of Theorem 1.6
are used in [Hussain and Lamzouri 2023], concerning the limiting distribution of character paths attached
to the family of Legendre symbols modulo primes. Hussain [2022b] previously established a similar
result for character paths attached to nonprincipal characters modulo a large prime q . Furthermore, in her
PhD thesis [Hussain 2022a], she proved conditionally on GRH that character paths attached to the family
of Legendre symbols converge in law (in the space of continuous functions) to a random Fourier series
constructed using Rademacher random multiplicative functions. Our forthcoming work will establish this
result unconditionally.

2. Outline and key ingredients of the proofs of Theorems 1.1, 1.2 and 1.6

2A. The overall strategy of the proof of Theorem 1.1. We first start by describing the strategy and key
ideas of the proof of Theorem 1.1, since the method for proving Theorems 1.2, 1.6 and 1.7 is similar.
In particular, it will be useful to compare the argument with [Bober et al. 2018]. The character sum∑

n≤t χd(n) has a simple Fourier expansion first obtained by Pólya in the following quantitative form
[Montgomery and Vaughan 2007, equation (9.19), p. 311]∑

n≤t

χd(n)=
G(χd)

2π i

∑
1≤|n|≤Z

χd(n)(1 − e(−nt/|d|))

n
+ O

(
1 +

|d| log |d|

Z

)
, (2-1)

where G(χd) is the Gauss sum attached to χd . Let δ :=1/100, and define F∗(x) to be the set of fundamental
discriminants x1−δ

≤ |d| ≤ x . We note that the proportion of those discriminants d with |d| ≤ x1−δ

is ≪ x−δ , which is much smaller than the distribution function 9−
x (τ ) in the range τ ≤ log log x . Hence,

we will only focus on the fundamental discriminants d ∈ F∗(x). For these discriminants we have

m(χd)=
e−γ

2
max
α∈[0,1)

∣∣∣∣ ∑
1≤|n|≤Z

χd(n)(1 − e(αn))
n

∣∣∣∣ + O(x−δ), (2-2)
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where Z = x21/40. We first describe a heuristic argument that will help us isolate the key ingredient in
the proof of Theorem 1.1. This will also explain why we should expect the tail of the distribution of
m(χd) to behave like exp(−eτ/τ). A standard idea, which goes back to the work of Montgomery and
Vaughan [1977] on exponential sums with multiplicative coefficients, is to split the sum on the right-hand
side of (2-2) into two parts∑

1≤|n|≤Z

χd(n)(1 − e(αn))
n

=

∑
1≤|n|≤Z
P+(n)≤y

χd(n)(1 − e(αn))
n

+

∑
1≤|n|≤Z
P+(n)>y

χd(n)(1 − e(αn))
n

, (2-3)

and show that uniformly over α, the bulk of the distribution comes from the first part, over y-friable
integers, with a suitable choice of the parameter y. Here P+(n) is the largest prime factor of n, and an
integer n is called y-friable (or y-smooth) if P+(n)≤ y. To understand what choice of the parameter y
we should make we observe that

max
α∈[0,1)

∣∣∣∣ ∑
1≤|n|≤Z
P+(n)≤y

χd(n)(1 − e(αn))
n

∣∣∣∣ ≪

∑
n≥1

P+(n)≤y

1
n

≪ log y (2-4)

by Mertens’ theorem. Hence, if the main part of the contribution to m(χd) > τ is coming from y-friable
integers, we should aim for a choice of y such that3 y ≈ eτ . Heuristically, for small y (y ≤ log x say)
we can prescribe the values of χd(p) for p ≤ y with probability4 2−π(y)

= exp(−(log 2 + o(1))y/ log y)
by the prime number theorem. Therefore, if y ≍ eτ this probability looks like exp(−c1eτ/τ) for some
positive constant c1, which agrees with the statement of Theorem 1.1. Thus, in order for this heuristic to
work, we need to efficiently control the second part in (2-3) uniformly over α ∈ [0, 1). We achieve this in
the following theorem, which is the key ingredient in the proofs of Theorems 1.1 and 1.2.

Theorem 2.1. Let h(n) be a completely multiplicative function such that |h(n)| ≤ 1 for all n. Let x
be large and put Z = x21/40. There exists a constant c > 0 such that for all real numbers 2 ≤ y ≤

c log x log4 x/(log3 x) and 1/ log y ≤ A ≤ 4, the number of fundamental discriminants |d| ≤ x such that

max
α∈[0,1)

∣∣∣∣ ∑
1≤n≤Z

P+(n)>y

χd(n)h(n)e(nα)
n

∣∣∣∣> eγ A

is

≪ x exp
(

−
A2 y

2 log y

(
1 + O

(
log2 y
log y

+
log4 x

A log2 x log3 x

)))
.

3This is not completely correct, since the above argument shows that we rather have y ≈ ecτ for some constant c > 0.
However, it turns out that the optimal choice of c is c = 1.

4This is correct in the range y ≤ log log x , as proved in Lemma 7.1 below. It also follows from GRH in the larger range
y ≤ c log x log log x for some small constant c > 0; see Theorem 13.5 of [Montgomery 1971].
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Bober, Goldmakher, Granville and Koukoulopoulos [Bober et al. 2018] proved a similar result in the
case of nonprincipal characters modulo a large prime q . However our proof differs from theirs as we shall
now explain. Let z = q21/40. In order to prove the analogue of Theorem 2.1 for the family of nonprincipal
characters modulo q , the authors of [Bober et al. 2018] established nontrivial upper bounds for the 2k-th
moment of

max
α∈[0,1)

∣∣∣∣ ∑
1≤n≤z

P+(n)>y

χ(n)e(nα)
n

∣∣∣∣ (2-5)

for k roughly up to log q. By decoupling the α from the character χ and expanding the 2k-th moment
of the inner sum in (2-5), one needs to control terms which have size as large as zk > qk/2 with k up
to log q. This was possible in the case of the family of nonprincipal characters modulo q thanks to the
orthogonality relations of characters, which imply that the off-diagonal terms in these moments are given
by m ≡ n mod q with m ̸= n and m, n ≤ zk . The authors of [Bober et al. 2018] proceed to bound these
off-diagonal terms using intricate estimates involving the k-th divisor function.

This argument is no longer valid for families of quadratic characters, since in this case only “quasi-
orthogonality relations” are known (see, for example, Lemma 4.1 of [Granville and Soundararajan 2003]),
which allow one to control terms up to size xc for some c < 1, if we run over fundamental discriminants
|d| ≤ x . To overcome this problem, we made the key observation that when N < n < 2N and N is very
large, one only needs to compute a small moment over the corresponding sum over the interval [N , 2N ],
in order to show that this sum is small for most characters. More specifically, our approach consists of
first splitting the sum in (2-5) (in the case of quadratic characters associated to fundamental discriminants
|d| ≤ x) into two parts: the first over n ≤ Y and the second over Y < n ≤ Z , where Y = (log x)W (x) is
relatively “small” (our method allows one to choose W (x)= log3 x/(log4 x)). We first bound the 2k-th
moments of the first sum over n ≤ Y and show that only the diagonal terms contribute5 to these moments
if k ≤ (log x)/(3 log Y ) say. We then proceed to show that the second part over the large n’s is very small
for most characters. To this end, we split it in dyadic intervals N ≤ n ≤ 2N and then bound the 2ℓN

moment of

max
α∈[0,1)

∣∣∣∣ ∑
N<n<2N

χ(n)e(nα)
n

∣∣∣∣
where ℓN is chosen such that N ℓN is roughly of size x . This allows us to show that each of these parts is
small for most characters using tailored moments according to the size of N . In the range Y < N < xε

we use (4-1) below, which is an easy version of the quadratic large sieve first due to Elliott, while in the
remaining range xε < N < Z we use the quadratic large sieve of Heath-Brown (see (4-2) below).

5We prefer to do this using an easy version of the quadratic large sieve (see (4-1) below), rather than employing the
quasiorthogonality relations, in order to get a clean argument.
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Deducing the upper bound of Theorem 1.1 from Theorem 2.1. Let Z = x21/40 and δ = 1/100. By (2-2)
we have

m(χd)≤
e−γ

2
max
α∈[0,1)

∣∣∣∣ ∑
1≤|n|≤Z
P+(n)≤y

χd(n)(1 − e(αn))
n

∣∣∣∣ + 2e−γ max
α∈[0,1)

∣∣∣∣ ∑
1≤n≤Z

P+(n)>y

χd(n)e(nα)
n

∣∣∣∣ + O(x−δ), (2-6)

for any fundamental discriminant −x ≤ d ≤ −x1−δ . Since we do not have control over the first part over
y-friable integers, we shall bound it using Corollary 3.5 of [Bober et al. 2018] which gives

max
α∈[0,1)

∣∣∣∣ ∑
1≤|n|≤Z
P+(n)≤y

χd(n)(1 − e(αn))
n

∣∣∣∣ ≤ 2eγ log y + 2 log 2 + O
(

log log y
log y

)
. (2-7)

We now set y = eτ−e−γ log 2−2B , where B > 0 is a parameter to be chosen. Combining this last estimate
with (2-6) and (2-7) we deduce that

m(χd)≤ τ − 2B + 2e−γ max
α∈[0,1)

∣∣∣∣ ∑
1≤n≤Z

P+(n)>y

χd(n)e(αn)
n

∣∣∣∣ + O
(

log τ
τ

)
.

Thus, the proportion of fundamental discriminants −x ≤ d ≤ −x1−δ such that m(χd) > τ is bounded by
the proportion of fundamental discriminants |d| ≤ x such that

max
α∈[0,1)

∣∣∣∣ ∑
1≤n≤Z

P+(n)>y

χd(n)e(αn)
n

∣∣∣∣> eγ
(

B − C0
log τ
τ

)
,

for some suitably large constant C0 > 0. Choosing B = 1 and appealing to Theorem 2.1 completes the
proof. □

We now turn our attention to the lower bound of Theorem 1.1 which is easier. For d < 0 one has the
identity (see Theorem 9.21 of [Montgomery and Vaughan 2007])∑

n≤|d|/2

χd(n)= (2 −χ(2))
G(χd)

iπ
L(1, χd),

which implies

m(χd)≥ e−γ L(1, χd). (2-8)

Therefore, one can immediately deduce a corresponding lower bound for the distribution function
9−

x (τ ) from the following result, which follows from a straightforward adaptation of the work of Granville
and Soundararajan [2003] on the distribution of L(1, χd).
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Theorem 2.2 (Granville–Soundararajan). Let B0 be the constant in Theorem 1.1, ψ be a character modulo
some b ∈ {1, 3}, and 1 ≤ τ ≤ log2 x + log4 x − 20 − M for some M ≥ 0. Then we have

1
|F±(x)|

∣∣∣∣{d ∈ F±(x) : L(1, χdψ) >
φ(b)

b
eγ τ

}∣∣∣∣ = exp
(

−
eτ−B0

τ

(
1 + O

(
1
τ

+ e−eM
)))

.

One can do a little better by combining our Theorem 2.1 with the following result, which we extract
from the proof of Theorem 1.2 of [Bober et al. 2018].

Theorem 2.3 (Bober, Goldmakher, Granville and Koukoulopoulos). Let C be a positive constant. Let q
be a large positive integer, and y ≤ (log q)2 be a large real number. Let χ be a primitive odd character
modulo q such that

|L(1, χ)|> eγ log y − C and max
α∈[0,1)

∣∣∣∣ ∑
n≥1

P+(n)>y

χ(n)e(nα)
n

∣∣∣∣ ≤ 1.

Then we have

m(χ) > e−γ
(
|L(1, χ)| + log 2

)
+ O

(
(log log y)2√

log y

)
.

Remark 2.4. We note that q is assumed to be prime in the statement of Theorem 1.2 of [Bober et al. 2018].
However, this is only used to show that many nonprincipal characters χ mod q satisfying the assumptions
of Theorem 2.3 exist. Indeed, the proof of Theorem 2.3 (see the end of Section 4 of [Bober et al. 2018])
only uses estimates on exponential sums over y-friable integers [Bober et al. 2018, Lemmas 3.2 and 3.4]
together with ideas of [Bober 2014] on averages of character sums to arbitrary moduli.

Deducing the lower bound of Theorem 1.1 from Theorems 2.1, 2.2 and 2.3. Let Z = x21/40 and δ = 1/100.
By partial summation and the Pólya–Vinogradov inequality, it follows that

max
α∈[0,1)

∣∣∣∣∑
n>Z

χd(n)e(nα)
n

∣∣∣∣ ≪

√
|d| log |d|

Z
≪ x−δ, (2-9)

for any fundamental discriminant |d| ≤ x . Furthermore, by Lemma 3.2 of [Bober et al. 2018] we have

max
α∈[0,1)

∣∣∣∣ ∑
n>Z

P+(n)≤y

χd(n)e(nα)
n

∣∣∣∣ ≤

∑
n>Z

P+(n)≤y

1
n

≪ e−

√
log y, (2-10)

for any real number 2 ≤ y ≤ (log x)2. Combining these estimates implies that

max
α∈[0,1)

∣∣∣∣ ∑
n>Z

P+(n)>y

χd(n)e(nα)
n

∣∣∣∣ ≪ e−

√
log y, (2-11)

for any fundamental discriminant |d| ≤ x and any real number 2 ≤ y ≤ (log x)2.
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Let C1,C2 > 0 be suitably large constants and put y = eτ+C1 . If C1 is large enough, then combining
Theorems 2.1 and 2.2 we deduce that the number of fundamental discriminants −x < d < 0 such that

L(1, χd) > eγ τ − log 2 + C1
(log τ)2

√
τ

and max
α∈[0,1)

∣∣∣∣ ∑
1≤n≤Z

P+(n)>y

χd(n)e(nα)
n

∣∣∣∣ ≤ 1 −
C2

τ

is

≥ exp
(

−
eτ−η−B0

τ

(
1 + O

(
(log τ)2

√
τ

)))
.

By (2-11) we deduce that for any such discriminant d we have

max
α∈[0,1)

∣∣∣∣ ∑
n≥1

P+(n)>y

χd(n)e(nα)
n

∣∣∣∣ ≤ 1,

and hence it follows from Theorem 2.3 that m(χd)> τ if C1 is suitably large. This completes the proof. □

2B. The case of positive discriminants: Proof of Theorem 1.2. Recall that χd is an even character if d
is a positive fundamental discriminant. In this case, we shall appeal to the following structure result for
even characters with large sums, which we extract from the proof of Theorem 2.3 of [Bober et al. 2018].

Theorem 2.5 (Bober, Goldmakher, Granville and Koukoulopoulos). Let C be a positive constant. Let
q be a large positive integer and y ≤ (log q)2 be a large real number. Let ψ mod q be a primitive even
character such that

max
α∈[0,1)

∣∣∣∣ ∑
n≥1

P+(n)≤y

ψ(n)e(nα)
n

∣∣∣∣> eγ
√

3
log y − C log log y, and max

α∈[0,1)

∣∣∣∣ ∑
n≥1

P+(n)>y

ψ(n)e(nα)
n

∣∣∣∣ ≤ 1.

Then we have

m(ψ)=
e−γ

√
3

2

∣∣L(1, ψχ−3)
∣∣ + O(log log y).

Remark 2.6. Here again we note that q is assumed to be prime in Theorem 2.3 of [Bober et al. 2018],
but this is only used to show that many nonprincipal characters ψ mod q satisfying the assumptions
of Theorem 2.5 exist. Indeed, all of the ingredients of the proof of Theorem 2.5 hold for an arbitrary
primitive even character ψ (see Section 8 of [Bober et al. 2018]), and are derived using the “pretentious”
theory of character sums developed by Granville and Soundararajan [2007], along with estimates of
Montgomery and Vaughan [1977] on exponential sums with multiplicative coefficients.

Deducing Theorem 1.2 from Theorems 2.1, 2.2 and 2.5. The lower bound follows immediately from
Theorem 2.2 together with the standard inequality (see for example the beginning of Section 4 of [Bober
et al. 2018])

M(ψ)≥

√
3q

2π
|L(1, ψχ−3)|, (2-12)

which is valid for any primitive even character ψ modulo q .



The distribution of large quadratic character sums and applications 2105

We now prove the upper bound. First, it follows from (2-1) that for all fundamental discriminants
0< d < x we have

m(χd)= e−γ max
α∈[0,1)

∣∣∣∣ ∑
1≤n≤Z

χd(n) sin(2πnα)
n

∣∣∣∣ + O(1), (2-13)

since χd is even. Let C1,C2 > 0 be suitably large constants, y = e
√

3τ+C1 , and define D+(x, y) to be the
set of fundamental discriminants 0< d ≤ x such that

m(χd) > τ and max
α∈[0,1)

∣∣∣∣ ∑
1≤n≤Z

P+(n)>y

χd(n)e(nα)
n

∣∣∣∣ ≤ 1 −
C2

τ
.

By combining the lower bound of Theorem 1.2 with Theorem 2.1 we deduce that if C1 is suitably large
then

|D+(x, y)|
|F+(x)|

=9+

x (τ )(1 + o(1)). (2-14)

Now, let d ∈ D+(x, y). By (2-10) and (2-13) together with our assumption on d we have

m(χd)= e−γ max
α∈[0,1)

∣∣∣∣ ∑
1≤n≤Z

P+(n)≤y

χd(n)sin(2πnα)
n

∣∣∣∣+ O(1)= e−γ max
α∈[0,1)

∣∣∣∣ ∑
n≥1

P+(n)≤y

χd(n)sin(2πnα)
n

∣∣∣∣+ O(1).

Since m(χd) > τ we deduce that

max
α∈[0,1)

∣∣∣∣ ∑
n≥1

P+(n)≤y

χd(n)e(αn)
n

∣∣∣∣ ≥ eγm(χd)+ O(1) >
eγ
√

3
log y − C3,

for some positive constant C3. Moreover, by (2-11) and our assumption on d we get

max
α∈[0,1)

∣∣∣∣ ∑
n≥1

P+(n)>y

χd(n)e(nα)
n

∣∣∣∣ ≤ 1 −
C2

τ
+ O(e−

√
τ )≤ 1,

if C2 is suitably large. Thus χd satisfies the conditions of Theorem 2.5, which implies that

m(χd)=
e−γ

√
3

2
|L(1, χdχ−3)| + O(log τ).

Therefore, for all d ∈ D+(x, y) we have

|L(1, χdχ−3)|>
2eγ
√

3
τ − C4 log τ,

for some constant C4 > 0. Hence, it follows from Theorem 2.2 that

|D+(x, y)| ≪ |F+(x)| exp
(

−
e
√

3τ

τC5

)
,

for some constant C5 > 0. Combining this estimate with (2-14) completes the proof. □
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2C. The family of Legendre symbols: Outline of the proofs of Theorems 1.6 and 1.7. In order to prove
the upper and lower bounds of Theorems 1.6 and 1.7, we shall follow the same strategy of the proofs
of Theorems 1.1 and 1.2. To this end we establish the following key result, which is the analogue of
Theorem 2.1 for prime discriminants. To shorten our notation, we let ψp denote the Legendre symbol
modulo p throughout the remaining part of the paper.

Theorem 2.7. Let h(n) be a completely multiplicative function such that |h(n)| ≤ 1 for all n. Let x
be large and put Z = x21/40. There exists a constant c > 0 such that for all real numbers 2 ≤ y ≤

c log x log4 x/(log3 x) and 1/ log y ≤ A ≤ 4, the number of primes p ≤ x such that

max
α∈[0,1)

∣∣∣∣ ∑
1≤n≤Z

P+(n)>y

ψp(n)h(n)e(nα)
n

∣∣∣∣> eγ A

is

≪ π(x) exp
(

−
A2 y

2 log y

(
1 + O

(
log2 y
log y

+
log4 x

A log2 x log3 x

)))
.

We end this section by deducing Theorems 1.6 and 1.7 from this result along with Theorem 1.10 on
the distribution of large values of L(1, ψp).

Proof of Theorem 1.6 assuming Theorems 1.10 and 2.7. First, Part 1 of Theorem 1.6 can be derived along
the same lines of the proof of the upper bound of Theorem 1.1 by replacing Theorem 2.1 by Theorem 2.7.

Now, the proof of Part 2 follows along the same lines of the proof of the lower bound of Theorem 1.1
by replacing Theorems 2.1 and 2.2 by Theorem 2.7 and the estimate (1-8) respectively. Finally, the proof
of Part 3 follows from (1-9) together with the lower bound (2-8). □

Proof of Theorem 1.7 assuming Theorems 1.10 and 2.7. Part 2 and the lower bound of Part 1 of Theorem 1.7
follow immediately from Theorem 1.10 together with the lower bound (2-12). Finally, the upper bound of
Part 1 can be derived along the same lines of the proof of the upper bound of Theorem 1.2 with the choice
y = τ 2e

√
3τ+C1 for some suitably large constant C1, by using Theorem 2.5 and replacing Theorems 2.1

and 2.2 by Theorems 2.7 and 1.10 respectively. □

2D. The plan of the paper. The plan of the paper is as follows. In Section 3 we gather several preliminary
results on sums of divisor functions and moments of Random multiplicative functions, which will shall
use throughout the paper. Section 4 will be devoted to the proof of Theorem 2.1. Theorem 2.7 will be
established in Section 5. In Section 6 we investigate the distribution of large values of L(1, ψp) and
prove Theorem 1.10. Finally, in Section 7, we investigate the positivity of sums of Legendre symbols and
prove Theorems 1.12 and 1.13.

3. Sums of divisor functions and random multiplicative functions

In this section we gather together several preliminary results concerning sums of divisor functions, which
are related to certain moments over random multiplicative functions. We let {X(n)}n≥1 be Rademacher
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random multiplicative functions, that is {X(p)}p prime are I.I.D. random variables taking the values ±1
with equal probability 1/2, and we extend X(n) multiplicatively to all positive integers by setting X(1)= 1
and X(n)=

∏
pℓ||n X(p)ℓ. We start with the following lemma.

Lemma 3.1. Let k be a large real number. Then for any 0 ≤ α ≤ log3 k/(2 log k) we have
∞∑

n=1

dk(n)2

n2−α
= exp

(
O(k log log k)

)
, (3-1)

and
∞∑

n=1

dk(n2)

n2−α
= exp

(
O(k log log k)

)
. (3-2)

Moreover, for all y > k we have ∑
P−(n)>y

dk(n2)

n2 = exp
(

O
(

k2

y log y

))
, (3-3)

where here and throughout P−(n) denotes the smallest prime factor of n.

Proof. The bound (3-1) follows from Lemma 3.3 of [Lamzouri 2011]. Furthermore, the estimate (3-2)
follows from (3-1) upon noting that dk(n2) ≤ dk(n)2. We now establish (3-3). Let p > y be a prime
number. Then we have

E

((
1 −

X(p)
p

)−k )
=

1
2

((
1 −

1
p

)−k

+

(
1 +

1
p

)−k )
=

1
2

(
exp

(
k
p

+ O
(

k
p2

))
+ exp

(
−

k
p

+ O
(

k
p2

)))
= 1 + O

(
k2

p2

)
. (3-4)

Hence we derive ∑
P−(n)>y

dk(n2)

n2 = E

( ∑
P−(n)>y

dk(n)X(n)
n

)
=

∏
p>y

E

((
1 −

X(p)
p

)−k )

= exp
(

O
(

k2
∑
p>y

1
p2

))
= exp

(
O

(
k2

y log y

))
,

as desired. □

In order to prove Theorems 2.1 and 2.7 we need a uniform bound for the moments

My(k) := E

(∣∣∣∣ ∑
n>1

P−(n)>y

X(n)
n

∣∣∣∣2k)
. (3-5)

To this end we establish the following result.
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Proposition 3.2. Let k ≥ 2 be a positive integer and (k log k)/10< y be real numbers. Then we have

My(k)≤ eO(k log log y/ log y)
(

2k
ey log y

)k

.

Remark 3.3. A similar bound was obtained by Bober, Goldmakher, Granville and Koukoulopoulos in
the case of Steinhaus Random multiplicative functions (see the end of Section 5 of [Bober et al. 2018]).
However, our argument is easier, and can be adapted to recover this case as well.

Proof of Proposition 3.2. By expanding the moment and using that

E(X(n))=

{
1 if n is a square,
0 otherwise,

we get

My(k)= E

( ∑
P−(n)>y

d̃2k(n)
n

X(n)
)

=

∑
P−(n)>y

d̃2k(n2)

n2 , (3-6)

where
d̃k(n) :=

∣∣{(n1, . . . , nk) ∈ Nk, such that n j > 1 for all j, and n1 · · · nk = n
}∣∣ .

Therefore, it follows from (3-3) that

My(k)≤

∑
P−(n)>y

d2k(n2)

n2 = exp
(

O
(

k2

y log y

))
. (3-7)

To obtain a better bound for My(k) we consider the following “good” event

A := {|Y| ≤ ε}, where Y :=

∑
p>y

X(p)
p
,

and 0< ε < 1 is a small parameter to be chosen. Note that

P(Ac)≤ ε−2ℓE(|Y|
2ℓ)≪

(
3ℓ

eε2 y log y

)ℓ
,

since

E(|Y|
2ℓ)=

∑
p1,...,p2ℓ>y
p1···p2ℓ=□

1
p1 . . . p2ℓ

≤
(2ℓ)!
2ℓℓ!

(∑
p>y

1
p2

)ℓ
≪ eO(ℓ/ log y)

(
2ℓ

ey log y

)ℓ
, (3-8)

which follows from the bounds (2ℓ)!/(2ℓℓ!)≪ (2ℓ/e)ℓ by Stirling’s formula, and∑
p>y

1/p2
= 1/(y log y)+ O

(
1/(y(log y)2)

)
by the prime number theorem. Choosing ℓ= ⌊(ε2 y log y)/3⌋ gives

P(Ac)≪ exp
(

−
ε2 y log y

3

)
. (3-9)
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We now split the moment My(k) into two parts

My(k)= E

(∣∣∣∣ ∑
n>1

P−(n)>y

X(n)
n

∣∣∣∣2k

· 1A

)
+ E

(∣∣∣∣ ∑
n>1

P−(n)>y

X(n)
n

∣∣∣∣2k

· 1Ac

)
, (3-10)

where 1B is the indicator function of the event B. By the Cauchy–Schwarz inequality and the estimates (3-7)
and (3-9), the contribution of the second part is

E

(∣∣∣∣ ∑
n>1

P−(n)>y

X(n)
n

∣∣∣∣2k

· 1Ac

)
≤ My(2k)1/2 · P(Ac)1/2 ≪ exp

(
−
ε2 y log y

6
+ O

(
k2

y log y

))
. (3-11)

Next, we shall estimate the contribution of the first part in (3-10). Note that on the event A we have
|eY

− 1| ≤ eε|Y| and∑
n>1

P−(n)>y

X(n)
n

= −1 +

∏
p>y

(
1 −

X(p)
p

)−1

= −1 + eY+O(1/y log y)
= eY

− 1 + O
(

1
y log y

)
.

Therefore, using Minkowski’s inequality and (3-8) we derive

E

(∣∣∣∣ ∑
n>1

P−(n)>y

X(n)
n

∣∣∣∣2k

· 1A

)1/2k

≤ eεE(|Y|
2k)1/2k

+ O
(

1
y log y

)
≤ eε+O(1/ log y)

√
2k

ey log y
.

Choosing ε = (log log y)/ log y and combining this estimate with (3-11) completes the proof. □

4. The distribution of the tail in Pólya’s Fourier expansion: Proof of Theorem 2.1

We start by recording two large sieve inequalities for quadratic characters, the most important of which is
due to Heath-Brown [1995].

Lemma 4.1. Let x, N ≥ 2. Then for arbitrary complex numbers an we have∑
d∈F(x)

∣∣∣∣∑
n≤N

anχd(n)
∣∣∣∣2

≪ (x + N 2 log N )
∑

m,n≤N
mn=□

|aman|, (4-1)

and for any ε > 0 we have∑
d∈F(x)

∣∣∣∣∑
n≤N

anχd(n)
∣∣∣∣2

≪ε (x N )ε(x + N )
∑

m,n≤N
mn=□

|aman|. (4-2)

Proof. The first inequality is standard and is a straightforward application of the Pólya–Vinogradov
inequality. It can be found for example in Lemma 1 of [Baker and Montgomery 1990], and can be
traced back to [Elliott 1970]. The second inequality, which is deeper, was established by Heath-Brown
[1995, Corollary 2]. □
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Let Y := exp(C log2 x log3 x/ log4 x), where C > 0 is a suitably large constant, and Y ≤ N ≤ x21/40

be a real number. Using Lemma 4.1, we shall first prove that for all fundamental discriminants |d| ≤ x
except for a small exceptional set E(x), the quantity

max
α∈[0,1)

∣∣∣∣ ∑
N≤n≤2N

χd(n)ane(nα)
n

∣∣∣∣ (4-3)

is small, where {an}n≥1 is an arbitrary sequence of complex numbers such that |an| ≤ 1 for all n. We shall
use Heath-Brown’s large sieve (4-2) if N is in the range xε ≤ N ≤ x21/40, and Elliott’s large sieve (4-1)
in the remaining range Y ≤ N ≤ xε.

Proposition 4.2. Let A, ε > 0 be fixed and put δ= 1/100. Let {an}n≥1 be an arbitrary sequence of complex
numbers such that |an| ≤ 1 for all n. Let N1, N2 be real numbers such that xε ≤ N1 < N2 ≤ 2N1 ≤ x21/40

be real numbers. Then there are at most Oε,A(x1−δ) fundamental discriminants |d| ≤ x such that

max
α∈[0,1)

∣∣∣∣ ∑
N1≤n≤N2

χd(n)ane(αn)
n

∣∣∣∣ ≥
1

(log N1)A .

Proposition 4.3. Let A> 0 be a fixed constant. Let {an}n≥1 be an arbitrary sequence of complex numbers
such that |an| ≤ 1 for all n. There exist positive constants ε and C (which depend at most on A) such that
for all real numbers N1, N2 verifying exp(C log2 x log3 x/ log4 x)≤ N1 < N2 ≤ 2N1 ≤ xε, the number of
fundamental discriminants |d| ≤ x such that

max
α∈[0,1)

∣∣∣∣ ∑
N1≤n≤N2

χd(n)ane(αn)
n

∣∣∣∣ ≥
1

(log N1)A

is

≪ x exp
(

−
log x log4 x

10 log2 x

)
.

To prove these results we shall bound suitable moments of (4-3). We start with the following easy lemma
which reduces the problem of bounding these moments to a setting where we can apply the large sieve.

Lemma 4.4. Let {an}n≥1 be an arbitrary sequence of complex numbers such that |an| ≤ 1 for all n. Let D
be a set of Dirichlet characters, and 2 ≤ N1 < N2 ≤ R be real numbers. Define A = {b/R : 1 ≤ b ≤ R}.
Then for any positive integer k ≥ 1 we have( ∑
χ∈D

max
α∈[0,1)

∣∣∣∣ ∑
N1≤n≤N2

χ(n)ane(αn)
n

∣∣∣∣2k)1/2k

≤

( ∑
α∈A

∑
χ∈D

∣∣∣∣ ∑
N k

1 ≤n≤N k
2

χ(n)gN1,N2,k(n, α)
n

∣∣∣∣2)1/2k

+ O
(
|D|

1/2k N2 R−1),
where

gN1,N2,k(n, α) :=

∑
N1≤n1,...,nk≤N2

n1···nk=n

k∏
j=1

an j e(αn j ), (4-4)

and the implicit constant in the error term is absolute.
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Proof. First, we observe that for all α ∈ [0, 1) there exists βα ∈ A such that |α−βα| ≤ 1/R. In this case
we have e(αn)= e(βαn)+ O(n/R), and hence

max
α∈[0,1)

∣∣∣∣ ∑
N1≤n≤N2

χ(n)ane(αn)
n

∣∣∣∣ = max
β∈A

∣∣∣∣ ∑
N1≤n≤N2

χ(n)ane(βn)
n

∣∣∣∣ + O
(

N2

R

)
.

Therefore, it follows from Minkowski’s inequality that( ∑
χ∈D

max
α∈[0,1)

∣∣∣∣ ∑
N1≤n≤N2

χ(n)ane(αn)
n

∣∣∣∣2k)1/2k

≤

( ∑
χ∈D

max
α∈A

∣∣∣∣ ∑
N1≤n≤N2

χ(n)ane(αn)
n

∣∣∣∣2k)1/2k

+ O
(
|D|

1/2k N2 R−1)
≤

( ∑
α∈A

∑
χ∈D

∣∣∣∣ ∑
N1≤n≤N2

χ(n)ane(αn)
n

∣∣∣∣2k)1/2k

+ O
(
|D|

1/2k N2 R−1). (4-5)

The lemma follows upon noting that∣∣∣∣ ∑
N1≤n≤N2

χ(n)ane(αn)
n

∣∣∣∣2k

=

∣∣∣∣ ∑
N k

1 ≤n≤N k
2

χ(n)gN1,N2,k(n, α)
n

∣∣∣∣2

. □

Proof of Proposition 4.2. Let

k :=

{
2 if

√
x ≤ N1 ≤ x21/40,

⌊log x/ log N1⌋ if xε ≤ N1 <
√

x .

We observe that 2 ≤ k ≤ 1/ε by our assumption on N1, and that |gN1,N2,k(n, α)| ≤ dk(n) for all N1, N2

and α. Let δ = 1/100 and ν > 0 be a small parameter to be chosen. Using Lemma 4.4 with the choice
R = N 1+δ

1 together with the large sieve inequality (4-2) and the easy inequality |a + b|
k
≤ 2k(|a|

k
+|b|

k)

we obtain∑
d∈F(x)

max
α∈[0,1)

∣∣∣∣ ∑
N1≤n≤N2

χd(n)ane(αn)
n

∣∣∣∣2k

≪ε

∑
α∈A

∑
d∈F(x)

∣∣∣∣ ∑
N k

1 ≤n≤N k
2

χd(n)gN1,N2,k(n, α)
n

∣∣∣∣2

+
x

N 2kδ
1

≪ε,ν (N k
2 x)ν(x + N k

2 )
∑
α∈A

∑
N k

1 ≤n1,n2≤N k
2

n1n2=□

|gN1,N2,k(n1, α)gN1,N2,k(n2, α)|

n1n2
+

x
N 2kδ

1

≪ε,ν x21/20+3νN 1+δ
1

∑
N k

1 ≤n1,n2≤N k
2

n1n2=□

dk(n1)dk(n2)

n1n2
+

x
N 2kδ

1

, (4-6)
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since N k
2 ≪ε x21/20 by our assumption on k and N1. Now, writing n1n2 = n2, we get

∑
N k

1 ≤n1,n2≤N k
2

n1n2=□

dk(n1)dk(n2)

n1n2
≤

∑
n≥N k

1

d2k(n2)

n2 ≤ N−k(1−ν)
1

∞∑
n=1

d2k(n2)

n1+ν
≪ε,ν N−k(1−ν)

1 . (4-7)

Now, since k ≥ 2, then N 3k/2
1 ≥ N k+1

1 ≥ x , by our definition of k, which implies that N k
1 ≥ x2/3. Thus,

choosing ν to be suitably small, and combining this estimate with (4-6) gives

∑
d∈F(x)

max
α∈[0,1)

∣∣∣∣∣∣
∑

N1≤n≤N2

χd(n)ane(αn)
n

∣∣∣∣∣∣
2k

≪ε,ν x21/20+3νN 1+δ
1 x−2/3(1−ν)

+
x

N 2kδ
1

≪ε x1−4δ/3.

Finally, the number of fundamental discriminants d ∈ F(x) such that

max
α∈[0,1)

∣∣∣∣ ∑
N1≤n≤N2

χd(n)ane(αn)
n

∣∣∣∣ ≥
1

(log N1)A

is

≤ (log N1)
2Ak

∑
d∈F(x)

max
α∈[0,1)

∣∣∣∣ ∑
N1≤n≤N2

χd(n)ane(αn)
n

∣∣∣∣2k

≪ε,A x1−δ,

which completes the proof. □

Proof of Proposition 4.3. We proceed similarly to the proof of Proposition 4.2 but we choose k =

⌊log x/(3 log N1)⌋ in this case. Then we have

1/(3ε)− 1 ≤ k ≤ (log x log4 x)/(3C log2 x log3 x)

by our assumption on N1. Using Lemma 4.4 with R = N 2
1 together with the large sieve inequality (4-1)

and the easy inequality |a + b|
k
≤ 2k(|a|

k
+ |b|

k) we obtain

∑
d∈F(x)

max
α∈[0,1)

∣∣∣∣ ∑
N1≤n≤N2

χd(n)ane(αn)
n

∣∣∣∣2k

≪ eO(k)
∑
α∈A

∑
d∈F(x)

∣∣∣∣ ∑
N k

1 ≤n≤N k
2

χd(n)gN1,N2,k(n, α)
n

∣∣∣∣2

+
xeO(k)

N 2k
1

≪ xeO(k)
∑
α∈A

∑
N k

1 ≤n1,n2≤N k
2

n1n2=□

|gN1,N2,k(n1, α)gN1,N2,k(n2, α)|

n1n2
+

xeO(k)

N 2k
1

≪ x N 2
1 eO(k)

∑
n≥N k

1

d2k(n2)

n2 +
x

N 2k
1

(4-8)
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by (4-7), since |gN1,N2,k(n, α)| ≤ dk(n) for all N1, N2 and α. To bound the sum over n, we shall use
Rankin’s trick. Choosing ν = log3 k/(2 log k) and using (3-2) we obtain

∑
n≥N k

1

d2k(n2)

n2 ≤ N−kν
1

∞∑
n=1

d2k(n2)

n2−ν
≪ exp

(
−

k log3 k log N1

2 log k
+ O(k log2 k)

)
.

Inserting this estimate in (4-8) we deduce that

∑
d∈F(x)

max
α∈[0,1)

∣∣∣∣ ∑
N1≤n≤N2

χd(n)ane(αn)
n

∣∣∣∣2k

≪ x exp
(

−
k log3 k log N1

2 log k
+ O(k log2 k + log N1)

)
.

Therefore, the number of fundamental discriminants d ∈ F(x) such that

max
α∈[0,1)

∣∣∣∣ ∑
N1≤n≤N2

χd(n)ane(αn)
n

∣∣∣∣ ≥
1

(log N1)A

is

≤ (log N1)
2Ak

∑
d∈F(x)

max
α∈[0,1)

∣∣∣∣ ∑
N1≤n≤N2

χd(n)ane(αn)
n

∣∣∣∣2k

≪ x exp
(

−
k log3 k log N1

2 log k
+ O(k log2 k + Ak log2 N1 + log N1)

)
≪ x exp

(
−

log x log4 x
10 log2 x

)
by our assumption on N1 and k, if ε is suitably small and C is suitably large. This completes the proof. □

Using Propositions 4.2 and 4.3 reduces the proof of Theorem 2.1 to studying the distribution of the
maximum over α ∈ [0, 1) of the very short sum∣∣∣∣ ∑

1≤n≤Y
P+(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣.
To this end we shall use the large sieve to bound its 2k-th moments for every k ≤ (log x)/(3 log Y ).

Proposition 4.5. Let h(n) be a completely multiplicative function such that |h(n)| ≤ 1 for all n. Let
C > 0 be a suitably large constant and put Y = exp(C log2 x log3 x/ log4 x). For any positive integer
2 ≤ k ≤ log x/(3 log Y ) and real number (k log k)/10 ≤ y ≤ k2 we have

∑
d∈F(x)

max
α∈[0,1)

∣∣∣∣ ∑
1≤n≤Y

P+(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣2k

≪ x
(

e
O
( k log2 k

log k

)(
2e2γ k log y

ey

)k

+ O
(

1
(log k)10k

))
.
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Proof of Proposition 4.5. We first define

Sd(y, Y )= max
α∈[0,1)

∣∣∣∣ ∑
2≤n≤Y

P−(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣. (4-9)

Then we have ∑
1≤n≤Y

P+(n)>y

χd(n)h(n)e(αn)
n

=

∑
1≤a≤Y

P+(a)≤y

χd(a)h(a)
a

∑
1<b≤Y/a
P−(b)>y

χd(b)h(b)e(αab)
b

,

and hence

max
α∈[0,1)

∣∣∣∣ ∑
1≤n≤Y

P+(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣ ≤

∑
1≤a≤Y

P+(a)≤y

Sd(y, Y/a)
a

.

Therefore, using Hölder’s inequality we obtain∑
d∈F(x)

max
α∈[0,1)

∣∣∣∣ ∑
1≤n≤Y

P+(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣2k

≤

∑
d∈F(x)

( ∑
P+(a)≤y

1
a

)2k−1 ∑
1≤a≤Y

P+(a)≤y

Sd(y,Y/a)2k

a

≤
(
eγ log y+O(1)

)2k−1 ∑
1≤a≤Y

P+(a)≤y

1
a

∑
d∈F(x)

Sd(y,Y/a)2k . (4-10)

by Mertens’ theorem. We shall now bound the moments∑
d∈F(x)

Sd(y, z)2k

uniformly in 2 ≤ y < z ≤ Y . To this end we split the inner sum over n into two parts y < n ≤ N , and
N < n ≤ z, where

N = min
(
z, exp(C log k log2 k/ log3 k)

)
. (4-11)

Note that the second part will be empty unless z > exp(C log k log2 k/ log3 k). Using Minkowski’s
inequality we get( ∑

d∈F(x)

Sd(y, z)2k
)1/2k

≤

( ∑
d∈F(x)

max
α∈[0,1)

∣∣∣∣ ∑
2≤n≤N
P−(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣2k)1/2k

+

( ∑
d∈F(x)

max
α∈[0,1)

∣∣∣∣ ∑
N<n≤z

P−(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣2k)1/2k

. (4-12)

We start by bounding the first term. By Lemma 4.4 with R := exp(2C log k log2 k/ log3 k) and

an =

{
h(n) if P−(n) > y

0 otherwise,
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we obtain

( ∑
d∈F(x)

max
α∈[0,1)

∣∣∣∣ ∑
2≤n≤N
P−(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣2k)1/2k

≤

( ∑
α∈A

∑
d∈F(x)

∣∣∣∣ ∑
n≤N k

P−(n)>y

χd(n)g2,N ,k(n, α)
n

∣∣∣∣2)1/2k

+ O
(
x1/2k R−1/2), (4-13)

where A = {b/R : 1 ≤ b ≤ R}. We now proceed similarly to the proof of (4-8). Using the large sieve
inequality (4-1), and noting that N k

≤ x1/3 and |g2,N ,k(n, α)| ≤ d̃k(n) for all α and N we derive

∑
d∈F(x)

∣∣∣∣ ∑
n≤N k

P−(n)>y

χd(n)g2,N ,k(n, α)
n

∣∣∣∣2

≪ x
∑

n1,n2≤N k

P−(n1n2)>y
n1n2=□

d̃k(n1)d̃k(n2)

n1n2
≤ x

∑
P−(n)>y

d̃2k(n2)

n2

≪ xeO(k log log y/ log y)
(

2k
ey log y

)k

, (4-14)

where the last inequality follows from (3-6) and Proposition 3.2. Inserting this estimate in (4-13) implies
that

( ∑
d∈F(x)

max
α∈[0,1)

∣∣∣∣ ∑
2≤n≤N
P−(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣2k)1/2k

≤x1/(2k)
(

eO(log2 k/ logk)
(

2k
ey log y

)1/2

+O
(

1
R1/2

))
. (4-15)

We now assume that z > exp(C log k log2 k/ log3 k) and bound the second term on the right-hand
side of (4-12). We shall split the inner sum over n into dyadic intervals. Let J1 = ⌊log N/ log 2⌋,
J2 = ⌊log z/ log 2⌋, and define tJ1 = N , tJ2+1 = z, and t j := 2 j for J1 + 1 ≤ j ≤ J2. Using Hölder’s
inequality we obtain

∣∣∣∣ ∑
N<n≤z

P−(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣2k

=

∣∣∣∣ ∑
J1≤ j≤J2

1
j2

(
j2

∑
t j<n≤t j+1
P−(n)>y

χd(n)h(n)e(αn)
n

)∣∣∣∣2k

≤

( ∑
J1≤ j≤J2

1

j
4k

2k−1

)2k−1 ∑
J1≤ j≤J2

j4k
∣∣∣∣ ∑

t j<n≤t j+1
P−(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣2k

≤

(
C1

log N

)2k+1 ∑
J1≤ j≤J2

j4k
∣∣∣∣ ∑

t j<n≤t j+1
P−(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣2k

, (4-16)
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for some constant C1 > 0. Therefore, this reduces the problem to bounding the following moments over
dyadic intervals [t j , t j+1]: ∑

d∈F(x)

max
α∈[0,1)

∣∣∣∣ ∑
t j<n≤t j+1
P−(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣2k

.

Let B j = {b/4 j
: 1 ≤ b ≤ 4 j

}. By the easy inequality |a + b|
k
≤ 2k(|a|

k
+ |b|

k) together with Lemma 4.4
with R = 4 j and the same choice of an as before, we derive∑
d∈F(x)

max
α∈[0,1)

∣∣∣∣ ∑
t j<n≤t j+1
P−(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣2k

≪ eO(k)
∑
α∈B j

∑
d∈F(x)

∣∣∣∣ ∑
tk

j<n≤tk
j+1

P−(n)>y

χd(n)gt j ,t j+1,k(n, α)
n

∣∣∣∣2

+
xeO(k)

22 jk , (4-17)

since t j ≍ t j+1 ≍ 2 j . Furthermore, similarly to the proof of (4-8), it follows from the large sieve
inequality (4-1) that the main term on the right-hand side of (4-17) is

≪ xeO(k)
∑
α∈B j

∑
tk

j<n1,n2≤tk
j+1

P−(n1n2)>y
n1n2=□

|gt j ,t j+1,k(n1, α)gt j ,t j+1,k(n2, α)|

n1n2
≪ eO(k)4 j x

∑
n≥tk

j

d2k(n2)

n2 , (4-18)

since tk
j+1 ≤ zk

≤ Y k
≤ x1/3. We now put ν = log3 k/(2 log k) and use (3-2) to get

∑
n≥tk

j

d2k(n2)

n2 ≤ t−kν
j

∞∑
n=1

d2k(n2)

n2−ν
≪ exp

(
−

jk log3 k
4 log k

+ O(k log2 k)
)
. (4-19)

Inserting these estimates in (4-17) gives∑
d∈F(x)

max
α∈[0,1)

∣∣∣∣ ∑
t j<n≤t j+1
P−(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣2k

≪ x exp
(

−
jk log3 k
5 log k

+ O(k log2 k)
)
.

Using this last estimate together with (4-16), and noting that j4
≤ exp( j log3 k/(20 log k)) for all j ≥ J1

by our choice of N if C is suitably large, we derive∑
d∈F(x)

max
α∈[0,1)

∣∣∣∣ ∑
N<n≤z

P−(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣2k

≪ xeO(k log2 k)
∑

J1≤ j≤J2

exp
(

−
jk log3 k
20 log k

)

≪ x exp
(

−
(log N )k log3 k

20 log k
+ O(k log2 k)

)
≪ x exp

(
−

C
40

k log2 k
)
.
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Combining this estimate with (4-12) and (4-15) we obtain∑
d∈F(x)

Sd(y, z)2k
≪ x

(
eO(log2 k/ log k)

(
2k

ey log y

)1/2

+ O
(

1
(log k)C/80

))2k

,

uniformly for y < z ≤ Y . Therefore, inserting this estimate in (4-10) we deduce∑
d∈F(x)

max
α∈[0,1)

∣∣∣∣ ∑
n≤Y

P+(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣2k

≪ x
(

eO
( log2 k

log k

)(
2e2γ k log y

ey

)1/2

+ O
(

1
(log k)C/80−1

))2k

.

The result follows upon choosing C to be suitably large, and using the basic inequality6 (a + b)2m
≤

(a2m
+

√
b

2m
)(1 +

√
b)2m

≤ (a2m
+ bm)e2m

√
b, which is valid for all real numbers a, b > 0 and positive

integers m. □

We end this section by deducing Theorem 2.1 from Propositions 4.2, 4.3, and 4.5.

Proof of Theorem 2.1. Let Y := exp(C log2 x log3 x/ log4 x) for some suitably large constant C > 0. Let
L1 :=⌊log Y/ log 2⌋, L2 :=⌊log Z/ log 2⌋, and define sL1 :=Y , sL2+1 := Z , and sℓ :=2ℓ for L1+1≤ℓ≤ L2.
Then we have

max
α∈[0,1)

∣∣∣∣ ∑
1≤n≤Z

P+(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣
≤ max
α∈[0,1)

∣∣∣∣ ∑
1≤n≤Y

P+(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣ + ∑
L1≤ℓ≤L2

max
α∈[0,1)

∣∣∣∣ ∑
sℓ≤n≤sℓ+1
P+(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣. (4-20)

Using Propositions 4.2 and 4.3 with A = 2 and

an =

{
h(n) if P+(n) > y,

0 otherwise,

we deduce that ∑
L1≤ℓ≤L2

max
α∈[0,1)

∣∣∣∣ ∑
sℓ≤n≤sℓ+1
P+(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣ ≪

∑
L1≤ℓ≤L2

1
ℓ2 ≪

log4 x
log2 x log3 x

, (4-21)

for all fundamental discriminants |d| ≤ x except for a set E(x) of size

|E(x)| ≪ L2x exp
(

−
log x log4 x

10 log2 x

)
≪ x exp

(
−

log x log4 x
20 log2 x

)
.

For B > 0 we let 9̃x,y(B) be the proportion of fundamental discriminants |d| ≤ x such that

max
α∈[0,1)

∣∣∣∣ ∑
1≤n≤Y

P+(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣> eγ B.

6This inequality simply follows by considering the two cases a ≤
√

b and a ≥
√

b.
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Let k be a positive integer satisfying the assumptions of Proposition 4.5. Then, it follows from this
result that

9̃x,y(B)≤ (eγ B)−2k 1
|F(x)|

∑
d∈F(x)

max
α∈[0,1)

∣∣∣∣ ∑
1≤n≤Y

P+(n)>y

χd(n)h(n)e(αn)
n

∣∣∣∣2k

≪ eO
( k log2 k

log k

)(
2k log y
eB2 y

)k

+ O
(

1
(eγ B(log k)5)2k

)
.

We now assume that 1/(log y)2 ≤ B ≤
√

20 and choose k = ⌊(B2 y)/(2 log y)⌋. This gives

9̃x,y(B)≪ exp
(

−
B2 y

2 log y

(
1 + O

(
log2 y
log y

)))
. (4-22)

Combining this estimate with (4-20) and (4-21) and choosing B = A−C0 log4 x/(log2 x log3 x) for some
suitably large constant C0 completes the proof. □

5. The distribution of the tail of the Pólya Fourier series for prime discriminants:
Proof of Theorem 2.7

In order to prove Theorem 2.7 we follow the same lines of the proof of Theorem 2.1 but we replace
the large sieve inequality (4-1) by the following large sieve inequality for prime discriminants, which
is a special case of Lemma 9 of [Montgomery and Vaughan 1979] (see also Lemma 1 of [Baker and
Montgomery 1990]).

Lemma 5.1 [Montgomery and Vaughan 1979, Lemma 9]. Let x, N be real numbers such that x ≥ 2 and
2 ≤ N ≤ x1/3. Then for arbitrary complex numbers a1, . . . , aN we have∑

p≤x

∣∣∣∣∑
n≤N

anψp(n)
∣∣∣∣2

≪
x

log x

∑
m,n≤N
mn=□

|aman|.

Since the number of primes up to x is smaller by a factor of size log x compared to the number of
fundamental discriminants up to x , it suffices to establish the analogue of Proposition 4.5 for prime
discriminants. Indeed, the savings in Propositions 4.2 and 4.3 are much larger than log x , and hence we
can use these results in this setting as well by simply embedding the set of primes p ≤ x in the set of
fundamental discriminants d with |d| ≤ x .

Proposition 5.2. Let h(n) be a completely multiplicative function such that |h(n)| ≤ 1 for all n. Let
Y = exp(C log2 x log3 x/ log4 x), for some suitably large constant C. Then, for any positive integer
2 ≤ k ≤ log x/(3 log Y ) and real number (k log k)/10 ≤ y ≤ k2 we have∑

p≤x

max
α∈[0,1)

∣∣∣∣ ∑
1≤n≤Y

P+(n)>y

ψp(n)h(n)e(αn)
n

∣∣∣∣2k

≪ π(x)
(

eO
( k log2 k

log k

)(
2e2γ k log y

ey

)k

+ O
(

1
(log k)10k

))
.
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Proof. We shall closely follow the proof of Proposition 4.5 and only indicate where the main changes
occur. First we define

S̃p(y, Y )= max
α∈[0,1)

∣∣∣∣ ∑
2≤n≤Y

P−(n)>y

ψp(n)h(n)e(αn)
n

∣∣∣∣. (5-1)

Then, similarly to (4-10) we have∑
p≤x

max
α∈[0,1)

∣∣∣∣ ∑
n≤Y

P+(n)>y

ψp(n)h(n)e(αn)
n

∣∣∣∣2k

≤
(
eγ log y + O(1)

)2k−1 ∑
a≤Y

P+(a)≤y

1
a

∑
p≤x

S̃p(y, Y/a)2k . (5-2)

Let y < z ≤ Y be a real number and N be defined by (4-11). Using Minkowski’s inequality as in (4-12)
we get(∑

p≤x

S̃p(y, z)2k
)1/2k

≤

(∑
p≤x

max
α∈[0,1)

∣∣∣∣ ∑
2≤n≤N
P−(n)>y

ψp(n)h(n)e(αn)
n

∣∣∣∣2k)1/2k

+

(∑
p≤x

max
α∈[0,1)

∣∣∣∣ ∑
N<n≤z

P−(n)>y

ψp(n)h(n)e(αn)
n

∣∣∣∣2k)1/2k

. (5-3)

We start by bounding the first term. Let R = exp(2C log k log2 k/ log3 k). Using the same argument
leading to (4-15) and replacing the large sieve inequality (4-1) by Lemma 5.1 we obtain(∑

p≤x

max
α∈[0,1)

∣∣∣∣ ∑
2≤n≤N
P−(n)>y

ψp(n)h(n)e(αn)
n

∣∣∣∣2k)1/2k

≤ π(x)1/(2k)
(

eO(log2 k/ log k)
(

2k
ey log y

)1/2

+ O
(

1
R1/2

))
. (5-4)

We now assume that z > exp(C log k log2 k/ log3 k) and bound the second term on the right-hand side
of (5-3). By (4-16) we have∣∣∣∣ ∑

N<n≤z
P−(n)>y

ψp(n)h(n)e(αn)
n

∣∣∣∣2k

≤

(
C1

log N

)2k+1 ∑
J1≤ j≤J2

j4k
∣∣∣∣ ∑

t j<n≤t j+1
P−(n)>y

ψp(n)h(n)e(αn)
n

∣∣∣∣2k

, (5-5)

for some constant C1 > 0, where J1 = ⌊log N/ log 2⌋, J2 = ⌊log z/ log 2⌋, tJ1 = N , tJ2+1 = z, and t j = 2 j

for J1 + 1 ≤ j ≤ J2. As before we let B j = {b/4 j
: 1 ≤ b ≤ 4 j

}. Combining Lemmas 4.4 and 5.1
with (4-18) and (4-19) we deduce that∑
p≤x

max
α∈[0,1)

∣∣∣∣ ∑
t j<n≤t j+1
P−(n)>y

ψp(n)h(n)e(αn)
n

∣∣∣∣2k

≪ eO(k)
∑
α∈B j

∑
p≤x

∣∣∣∣ ∑
tk

j<n≤tk
j+1

P−(n)>y

ψp(n)gt j ,t j+1,k(n, α)
n

∣∣∣∣2

+
π(x)eO(k)

22 jk

≪ π(x) exp
(

−
jk log3 k
5 log k

+ O(k log2 k)
)
.
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Using this last estimate together with (5-5) we derive

∑
p≤x

max
α∈[0,1)

∣∣∣∣ ∑
N<n≤z

P−(n)>y

ψp(n)h(n)e(αn)
n

∣∣∣∣2k

≪ π(x) exp
(

−
C1

40
k log2 k

)
.

We have now established the key estimates over prime discriminants. Thus we continue the proof along
the exact same lines as the proof of Proposition 4.5, by combining this last estimate with (5-2), (5-3)
and (5-4). This yields the desired result. □

Proof of Theorem 2.7. As before we let Y = exp(C log2 x log3 x/ log4 x) for some suitably large constant
C>0, and put L1 =⌊log Y/ log 2⌋, L2 =⌊log Z/ log 2⌋, sL1 =Y , sL2+1 = Z , and sℓ=2ℓ for L1+1≤ℓ≤ L2.
By (4-20) we have

max
α∈[0,1)

∣∣∣∣ ∑
1≤n≤Z

P+(n)>y

ψp(n)h(n)e(αn)
n

∣∣∣∣
≤ max
α∈[0,1)

∣∣∣∣ ∑
1≤n≤Y

P+(n)>y

ψp(n)h(n)e(αn)
n

∣∣∣∣ + ∑
L1≤ℓ≤L2

max
α∈[0,1)

∣∣∣∣ ∑
sℓ≤n≤sℓ+1
P+(n)>y

ψp(n)h(n)e(αn)
n

∣∣∣∣.
By embedding the set of primes 3 ≤ p ≤ x into the set of fundamental discriminants |d| ≤ x (since for
any such prime, p or −p is a fundamental discriminant), it follows from (4-21) that∑

L1≤ℓ≤L2

max
α∈[0,1)

∣∣∣∣ ∑
sℓ≤n≤sℓ+1
P+(n)>y

ψp(n)h(n)e(αn)
n

∣∣∣∣ ≪
log4 x

log2 x log3 x
, (5-6)

for all primes p ≤ x except for a set E1(x) of size

|E1(x)| ≪ x exp
(

−
log x log4 x

20 log2 x

)
.

The result follows along the same exact lines of the proof of Theorem 2.1, by replacing Proposition 4.5
by Proposition 5.2. □

6. The distribution of L(1, ψ p): proof of Theorem 1.10

6A. Proof of the estimate (1-8). In the range 2 ≤ τ ≤ (log2 x)/2−2 log3 x , we shall use [Lamzouri 2017]
where we proved an asymptotic formula for complex moments of L(1, ψp) involving a secondary term
coming from a possible Laudau–Siegel exceptional discriminant. Indeed, it follows from Theorem 1.2 of
[Lamzouri 2017] that for all real numbers 2 ≤ k ≤

√
log x/(log2 x)2 we have

2
Li(x)

∑
p≤x

p≡3 mod 4

L(1, ψp)
k
= E

(
L(1,X)k

)
+ E1 + O

(
exp

(
−

√
log x

10 log log x

))
, (6-1)
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where

|E1| ≤
∣∣E(

X(|d1|)L(1,X)k
)∣∣,

and where d1 is the possible “exceptional” discriminant7 with |d1| ≤ exp(
√

log x), and

L(1,X) :=

∏
q prime

(
1 −

X(q)
q

)−1

,

with the X(q) being I.I.D. random variables taking the values ±1 with probability 1/2. We cannot rule
out that the term E1 is of the same size as the main term, but we will prove that it will not heavily affect
the size of the k-th moment of L(1, ψp) if k is large. Indeed, we observe that

E
(
X(|d1|)L(1,X)k

)
E
(
L(1,X)k

) =

∏
q|d1

(
1 −

1
q

)−k
−

(
1 +

1
q

)−k(
1 −

1
q

)−k
+

(
1 +

1
q

)−k =

∏
q|d1

1 − δq

1 + δq
, (6-2)

where δq =
(
1 −

2
q+1

)k . Let ε > 0 be a suitably small constant. Let q1 be the largest prime factor of d1.
Since d1 is square-free and d1 > (log x)10/ε, if x is large enough, by Siegel’s theorem, we must have
q1 > (log |d1|)/2 > (5/ε) log log x , since otherwise |d1| <

∏
q≤(log |d1|)/2 q = |d1|

1/2+o(1) by the prime
number theorem, which is a contradiction. Inserting this estimate in (6-2) gives

0<
E
(
X(|d1|)L(1,X)k

)
E
(
L(1,X)k

) ≤ 1 − δq1 = 1 −

(
1 −

2
q1 + 1

)k

≤ 1 − exp
(

−ε
k

log k

)
, (6-3)

for all real numbers 2 ≤ k ≤
√

log x/(log2 x)2. On the other hand, it follows from Proposition 1.2 of
[Lamzouri 2010] that

E
(
L(1,X)k

)
= exp

(
k log2 k + kγ +

k
log k

(
B0 − 1 + O

(
1

log k

)))
. (6-4)

Combining this estimate with (6-1) and (6-3) we obtain

2
π(x)

∑
p≤x

p≡3 mod 4

L(1, ψp)
k
= exp

(
k log2 k + kγ +

k
log k

(
B0 − 1 + O(ε)

))
. (6-5)

Finally, the estimate for the distribution function (1-8) follows from the proof of Theorem 0.1 of
[Lamzouri 2010] (which holds for general random models of this type), with the choice τ = log k + B0.
This completes the proof of (1-8) in the case a = 3. We also note that the case a = 1 is similar, since one
can derive the same estimate as (6-1) over the primes p ≡ 1 mod 4 using the method of [Lamzouri 2017].

7By the Landau–Page Theorem (see Chapter 20 of [Davenport 2000]), there is at most one square-free integer d1 such that
|d1| ≤ exp(

√
log x) and L(s, χd1) has a zero in the region Re(s) > 1 − c/

√
log x, for some positive constant c. If it exists, we

refer to such d1 as the exceptional discriminant in the range |d1| ≤ exp(
√

log x).
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We now show how to obtain the same estimate for the proportion of primes p ≡ a mod 4 such that
L(1, ψpχ−3) > (2eγ /3)τ . First, by a slight adaptation of the proof of Theorem 1.2 of [Lamzouri 2017]
we get

2
Li(x)

∑
p≤x

p≡a mod 4

L(1, ψpχ−3)
k
= E

(
L(1,Xχ−3)

k)
+ E2 + O

(
exp

(
−

√
log x

10 log log x

))
, (6-6)

where

|E2| ≤
∣∣E(

X(|d1|)L(1,Xχ−3)
k)∣∣,

and where d1 is the exceptional discriminant (if it exists) with |d1| ≤ exp(
√

log x), and

L(1,Xχ−3) :=

∏
q prime

(
1 −

X(q)χ−3(q)
q

)−1

.

By the independence of the X(q)’s we observe that

E
(
L(1,Xχ−3)

k)
=

∏
q ̸=3

E

((
1 −

X(q)
q

)−k )
=

(
2
3

)k( 2
1 + 2−k

)
E
(
L(1,X)k

)
.

Furthermore, if we fix a suitably small constant ε > 0, then a similar argument leading to (6-3) gives

|E2| ≤

(
1 − exp

(
−ε

k
log k

))
E
(
L(1,Xχ−3)

k), (6-7)

if x is large enough. Thus by (6-4) we deduce that

2
π(x)

∑
p≤x

p≡a mod 4

(
3
2

L(1, ψpχ−3)

)k

= exp
(

k log2 k + kγ +
k

log k

(
B0 − 1 + O(ε)

))
.

Finally, the result follows from the proof of Theorem 0.1 of [Lamzouri 2010].

Remark 6.1. We observe that assuming GRH, Holmin, Jones, Kurlberg, McLeman and Petersen [Holmin
et al. 2019] established the asymptotic formula (6-1) without the term E1 in the larger range k ≤

(log x)/(50(log log x)2). This justifies Remark 1.8.

6B. Proof of (1-9). In the range (log2 x)/2 − 2 log3 x ≤ τ ≤ log2 x − log3 x − C2, we need to use a
different argument since asymptotic formulas for very large moments of L(1, ψp) are not known, due to
the lack of strong unconditional bounds on character sums over primes. In this case, our strategy is to use
Theorem 2.7 to truncate L(1, ψp) over y-friable integers, and then control the behaviour of ψp(q) over
the primes q ≤ y. To this end we establish the following lemma which follows from Bombieri’s proof
[1987, Chapter 6] of Linnik’s theorem.
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Lemma 6.2. Let {εq}q prime be a sequence of ±1, and a ∈ {1, 3}. Let x be large and 3 ≤ y ≤ c0 log x be a
real number, where c0 is a suitably small constant. Let P(x, y, a, {εq}) be the set of primes p ≡ a mod 4
with p ≤ x such that ψp(q)= εq for all primes q ≤ y. Then we have

|P(x, y, a, {εq})| ≫ π(x) exp
(

−3y + O
(

y
log y

))
.

Proof. First recall that if p ≡ 3 mod 4 then ψp(2) = 1 if p ≡ 7 mod 8, and equals −1 if p ≡ 3 mod 8.
Similarly, if p ≡ 1 mod 4 then ψp(2)= 1 if p ≡ 1 mod 8, and ψp(2)= −1 if p ≡ 5 mod 8. Let 3 ≤ q ≤ y
be a prime number. By the law of quadratic reciprocity, there exists a residue class bq mod q such that
if p ≡ bq mod q then ψp(q) = εq . We now define Q := 8

∏
3≤q≤y q. Then, by the Chinese remainder

theorem there exists a residue class b mod Q such that if p ≡ b mod Q then p ≡ a mod 4 and ψp(q)= εq

for all primes q ≤ y. By Bombieri’s proof [1987, Chapter 6] of Linnik’s theorem we deduce that there
exists a small constant c > 0 such that if x > Q1/c then

|P(x, y, a, {εq})| ≥ π(x; Q, b)≫
π(x)
Q3 .

The result follows upon noting that Q = exp(y(1 + O(1/ log y))) by the prime number theorem. □

Proof of the lower bound (1-9). Let Z = x21/40. By (2-9) we have

L(1, ψp)=

∑
n≤Z

ψp(n)
n

+ O(1),

for all primes p ≤ x . Let c0 be the constant in Lemma 6.2, and 3 ≤ y ≤ c0 log x be a parameter to be chosen.
Define P(y) to be the set of primes p ≤ x such that p ≡ a mod 4, ψp(q)= 1 for all primes q ≤ y and∣∣∣∣ ∑

1≤n≤Z
P+(n)>y1

ψp(n)
n

∣∣∣∣ ≤ eγ , (6-8)

where y1 := 10y log y. Combining Lemma 6.2 with Theorem 2.7 yields

|P(y)| ≫ π(x) exp(−4y). (6-9)

On the other hand, by (2-10) and (6-8) we deduce that for every prime p ∈ P(y) we have

L(1, ψp)=

∑
1≤n≤Z

P+(n)≤y1

ψp(n)
n

+ O(1)=

∑
n≥1

P+(n)≤y1

ψp(n)
n

+ O(1)

=

∏
q≤y

(
1 −

1
q

)−1

exp
( ∑

y<q≤y1

ψp(q)
q

+ O
(

1
y

))
+ O(1)

≥ eγ log y · exp
(

−

∑
y<q≤y1

1
q

)(
1 + O

(
1

log y

))
+ O(1)

≥ eγ log y − eγ log log y + O(1),
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by Mertens’ theorem. Combining the above estimates and choosing y = Cτeτ for some large constant C ,
implies that L(1, ψp) > eγ τ whenever p ∈ P(y). Appealing to (6-9) completes the proof. □

We end this section by proving the upper bound of (1-9) which we deduce from Theorem 2.7.

Proof of the upper bound of (1-9). Let Z = x21/40 and δ = 1/100. Let y = eτ−B , where B is a parameter
to be chosen later. First by (2-9) we observe that

L(1, ψp)=

∑
n≤Z

ψp(n)
n

+ O(x−δ)≤

∑
n≥1

P+(n)≤y

1
n

+

∣∣∣∣ ∑
1≤n≤Z

P+(n)>y

ψp(n)
n

∣∣∣∣ + O(x−δ)

≤ eγ τ − eγ B +

∣∣∣∣ ∑
1≤n≤Z

P+(n)>y

ψp(n)
n

∣∣∣∣ + O
(

1
τ

)
. (6-10)

since
∏

p≤y(1−1/p)−1
= eγ log y + O(1/ log y) by the prime number theorem. Therefore, there exists a

positive constant c such that the proportion of primes p ≤ x with p ≡a mod 4 and such that L(1, ψp)≥eγ τ
is bounded by the proportion of primes p ≤ x such that∣∣∣∣ ∑

1≤n≤Z
P+(n)>y

ψp(n)
n

∣∣∣∣ ≥ eγ
(

B −
c
τ

)
.

Thus, appealing to Theorem 2.7 with B = 2 + c/τ completes the proof of (1-9) for L(1, ψp). Finally, the
analogous result for L(1, ψpχ−3) follows along the same lines upon taking h(n)=χ−3(n) in Theorem 2.7
and noting that ∣∣∣∣ ∑

1≤n≤Z
P+(n)≤y

ψp(n)χ−3(n)
n

∣∣∣∣ ≤

∏
q ̸=3
q≤y

(
1 −

1
q

)−1

=
2eγ

3
log y + O

(
1

log y

)
,

by the prime number theorem. □

7. Positivity of sums of the Legendre symbol: Proof of Theorems 1.12 and 1.13

Let Z = x21/40 and δ = 1/100. Let p ≤ x be a prime number such that p ≡ 3 mod 4. Since ψp is odd
and τ(ψp)= i

√
p, then by (2-1) we have for any α ∈ (0, 1)∑

n≤αp

ψp(n)=

√
p
π

∑
1≤n≤Z

ψp(n)(1 − cos(2πnα))
n

+ O
(

p1/2−1/40 log p
)
. (7-1)

We shall now focus on the sum

F(α, p) :=

∑
1≤n≤Z

ψp(n)(1 − cos(2πnα))
n

.
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Our strategy for proving Theorems 1.12 and 1.13 consists in using Theorem 2.7 to bound the part of this
sum over nonfriable integers uniformly over α ∈ [0, 1), for all primes p ≤ x except for a small set of
exceptions, and then prescribe the signs of ψp(q) for the small primes q .

Proof of Theorem 1.12. We start by proving (1-10). Let Z = x21/40 and 2 ≤ y ≤ log x be a parameter to
be chosen. Let E1(x) be the set of primes

√
x ≤ p ≤ x such that p ≡ 3 mod 4 and

max
α∈[0,1)

∣∣∣∣ ∑
1≤n≤Z

P+(n)>y

ψp(n)(1 − cos(2πnα))
n

∣∣∣∣> 2eγ .

Then it follows from Theorem 2.7 that

|E1(x)| ≪ π(x) exp
(

−
y

3 log y

)
. (7-2)

We now define A(y) to be the set of primes
√

x ≤ p ≤ x such that p ≡ 3 mod 4 and ψp(q)= 1 for all
primes q ≤ y0, where y0 := y/(20 log y). Moreover, we put D(y) := A(y) \ E1(x). By Lemma 6.2 and
the estimate (7-2) we have |D(y)| ≫ π(x) exp(−y/(4 log y)). Moreover, if p ∈ D(y) then it follows
from (2-10) that for all α ∈ (0, 1) we have

F(α, p)=

∑
1≤n≤Z

P+(n)≤y

ψp(n)(1 − cos(2πnα))
n

+ O(1)=

∑
n≥1

P+(n)≤y

ψp(n)(1 − cos(2πnα))
n

+ O(1)

=

∑
n≥1

P+(n)≤y0

1 − cos(2πnα)
n

+ O(log2 y)=

∑
n≥1

P+(n)≤y

1 − cos(2πnα)
n

+ O(log2 y), (7-3)

since ∑
n≥1

y0<P+(n)≤y

1
n

=

∏
p≤y

(
1 −

1
p

)−1

−

∏
p≤y0

(
1 −

1
p

)−1

≪ log2 y,

by Mertens’ theorem. Furthermore, by Lemma 3.4 of [Bober et al. 2018] we have∣∣∣∣ ∑
n≥1

P+(n)≤y

cos(2πnα)
n

∣∣∣∣ ≤

∣∣∣∣ ∑
n≥1

P+(n)≤y

e(nα)
n

∣∣∣∣ =

∑
n≤1/∥α∥

P+(n)≤y

1
n

+ O(1), (7-4)

where ∥ · ∥ denotes the distance to the nearest integer. We now write ∥α∥ = y−u for some u > 0. By
Lemma 3.3 of [Bober et al. 2018] we get∑

n≤1/∥α∥

P+(n)≤y

1
n

=

∑
n≤yu

P+(n)≤y

1
n

= (log y)
∫ u

0
ρ(t) dt + O(1),
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where ρ is the Dickman–de Bruijn function, defined by ρ(t) for 0 ≤ t ≤ 1, and tρ ′(t) = −ρ(t − 1)
for t > 1. Combining this estimate with (7-3) and (7-4) we obtain

F(α, p)≥ log y
(

eγ −

∫ u

0
ρ(t) dt

)
+ O(log2 y), (7-5)

for all p ∈ D(y) and all α ∈ (0, 1), where u = − log∥α∥/ log y. Note that
∫ u

0 ρ(t) dt is increasing in u
and that

∫
∞

0 ρ(t) dt = eγ . Moreover, one has the estimate

eγ −

∫ u

0
ρ(t) dt =

∫
∞

u
ρ(t) dt =

1
uu(1+o(1)) , (7-6)

which follows from the standard estimate ρ(t)= t−t (1+o(1)). Let C be a suitably large constant, and u0

be the solution of the equation ∫
∞

u0

ρ(t) dt =
C log2 y

log y
. (7-7)

Then, it follows from (7-5) that for all p ∈ D(y) and ∥α∥> y−u0 we have F(α, p)≥ 10 if C is suitably
large, and hence ∑

n≤αp

ψp(n) >
√

p

by (7-1) if x is large enough. To finish the proof, we choose y such that T = yu0/2, which implies
that λ(p) > 1 − 1/T for all p ∈ D(y). Moreover, it follows from the estimates (7-6) and (7-7) that
u0 = (1 + o(1)) log2 y/ log3 y, and hence we get

y = exp
(
(1 + o(1)) log T log3 T

log2 T

)
,

as desired. □

In order to prove (1-11) for small T , we require a more precise estimate than the one provided by
Lemma 6.2. To this end we prove the following result, which gives an asymptotic formula for the
cardinality of the set P(x, y, a, {εq}) in Lemma 6.2, in the smaller range 3 ≤ y ≤ log log x .

Lemma 7.1. Let {εq}q prime be a sequence of ±1, and a ∈ {1, 3}. Let x be large and 3 ≤ y ≤ log log x be
a real number. Let P(x, y, a, {εq}) be the set in Lemma 6.2. Then we have

|P(x, y, a, {εq})| =
π(x)

2π(y)+1 + O(xe−c
√

log x),

for some positive constant c.

Proof. Let Q =
∏

q≤y q. Note that by the prime number theorem and our assumption we have Q =

ey+o(y)
≤ (log x)1+o(1). We observe that for a prime y < p ≤ x we have

1
2π(y)+1 (1 +χ−4(a)χ−4(p))

∏
q≤y

(1 + εqψp(q))=

{
1 if p ∈ P(x, y, a, {εq}),

0 otherwise,
(7-8)
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where χ−4 is the nonprincipal character modulo 4. We extend the sequence εq multiplicatively to all
square-free numbers ℓ by letting εℓ =

∏
q|ℓ εq . Therefore, expanding the product on the left-hand side

of (7-8) we deduce that

|P(x, y, a, {εq})| =
1

2π(y)+1

∑
y<p≤x

(1 +χ−4(a)χ−4(p))
∏
q≤y

(1 + εqψp(q))+ O(y)

=
1

2π(y)+1

∑
p≤x

(1 +χ−4(a)χ−4(p))
∑
ℓ|Q

εℓψp(ℓ)+ O(y)

=
1

2π(y)+1

(∑
ℓ|Q

εℓ
∑
p≤x

(
ℓ

p

)
+χ−4(a)

∑
ℓ|Q

εℓ
∑
p≤x

χ−4(p)
(
ℓ

p

))
+ O(y). (7-9)

If ℓ ̸= 1, then the law of quadratic reciprocity implies that ξ1 =
(
ℓ
·

)
is a nonprincipal character of

conductor ℓ or 4ℓ. Similarly, for all ℓ the character ξ2 = χ−4ξ1 is a nonprincipal character of conductor 4ℓ.
Furthermore, note that 4ℓ≤ 4Q ≤ (log x)2 if x is large enough. Thus, it follows from Corollary 11.18 of
[Montgomery and Vaughan 2007] that for j = 1 if ℓ ̸= 1 and ℓ | Q, and for j = 2 for all ℓ | Q we have∑

p≤x

ξ j (p)≪ x exp(−c
√

log x). (7-10)

Inserting these bounds in (7-9) completes the proof. □

Proof of Theorem 1.13. We start by proving (1-11). Let Z = x21/40 and δ = 1/100. By (7-1) we have∑
n≤αp

ψp(n)=

√
p
π

F(α, p)+ O(p1/2−δ),

for all primes
√

x ≤ p ≤ x and all α ∈ (0, 1). Let 3 ≤ y ≤ (log2 x)(log3 x)2 be a parameter to be chosen,
and E2(x) be the set of primes

√
x ≤ p ≤ x such that p ≡ 3 mod 4 and

max
α∈[0,1)

∣∣∣∣ ∑
1≤n≤Z

P+(n)>y

ψp(n)(1 − cos(2πnα))
n

∣∣∣∣> 2eγ

log y
.

By Theorem 2.7 we have

|E2(x)| ≪ π(x) exp
(

−
y

3(log y)3

)
. (7-11)

We will use the same choice as Montgomery [1976] for the values of ψp(q) for small q. Let h(n) be
the completely multiplicative function such that h(q) = χ−3(q) for all primes q ̸= 3 and h(3) = −1.
Montgomery [1976] showed that for all α ∈ (0, 1) such that ∥α∥< 1/3 we have

U (α) :=

∞∑
n=1

h(n) cos(2πnα)
n

>
π

8
√

3
. (7-12)
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Let y0 := y/(3 log y)2 and 3 ≤ H ≤ y0 be a parameter to be chosen. Let B(y, H) be the set of primes
√

x ≤ p ≤ x such that p ≡ 3 mod 4 and

ψp(q)=

{
h(q) if q ≤ H,
−1 if H < q ≤ y0.

We define T (y) := B(y, H) \ E2(x). Then we have |T (y)| ≫ π(x)/2π(y0) by Lemma 7.1 and the
estimate (7-11). We now let p be a prime in T (y). By (2-10) and our assumption on p we get

F(α, p)=

∑
1≤n≤Z

P+(n)≤y

ψp(n)(1 − cos(2πnα))
n

+ O
(

1
log y

)

=

∑
n≥1

P+(n)≤y

ψp(n)(1 − cos(2πnα))
n

+ O
(

1
log y

)
. (7-13)

Furthermore, we have∑
n≥1

P+(n)≤y

ψp(n)
n

=

∏
q≤y

(
1 −

ψp(q)
q

)−1

=
3
4

∏
q≤H

(
1 −

χ−3(q)
q

)−1 ∏
H<q≤y0

(
1 +

1
q

)−1 ∏
y0<q≤y

(
1 −

ψp(q)
q

)−1

. (7-14)

By the prime number theorem in arithmetic progressions we have∑
q≤t

χ−3(q)≪ t exp(−c
√

log t),

for some constant c > 0. Therefore, by partial summation we obtain∑
q>H

χ−3(q)
q

≪ exp
(

−
c
2

√
log H

)
.

This implies that

∏
q≤H

(
1 −

χ−3(q)
q

)−1

= L(1, χ−3)+ O
(

exp
(

−
c
2

√
log H

))
=

π

3
√

3
+ O

(
exp

(
−

c
2

√
log H

))
.

Inserting this estimate in (7-14) and using Mertens’ theorem we deduce that

0<
∑
n≥1

P+(n)≤y

ψp(n)
n

≤
π

4
√

3

log H log y
(log y0)2

(
1 + O

(
1

log H

))
.
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We now choose H =
√

y/(C1(log y)2) where C1 is a suitably large constant. This gives∑
n≥1

P+(n)≤y

ψp(n)
n

≤
π

8
√

3
−

log C1

log y
. (7-15)

On the other hand, by Parseval’s identity we have∫ 1

0

∣∣∣∣ ∑
n≥1

P+(n)≤y

ψp(n) cos(2πnα)
n

− U (α)
∣∣∣∣2

dα =

∑
n≥1

P+(n)≤y

(ψp(n)− h(n))2

n2 +

∑
n≥1

P+(n)>y

h(n)2

n2

≪

∑
n≥1

P+(n)>H

1
n2 ≪

log y
√

y
,

since ∑
n≥1

P+(n)>H

1
n2 =

π2

6
−

∑
n≥1

P+(n)≤H

1
n2 =

π2

6

(
1 −

∏
q>H

(
1 −

1
q2

))
≪

∑
q>H

1
q2 ≪

1
H log H

.

Let Sp be the set of α ∈ (0, 1) such that∣∣∣∣ ∑
n≥1

P+(n)≤y

ψp(n) cos(2πnα)
n

− U (α)
∣∣∣∣> 1

log y
.

Then

µ(Sp)≤ (log y)2
∫ 1

0

∣∣∣∣ ∑
n≥1

P+(n)≤y

ψp(n) cos(2πnα)
n

− U (α)
∣∣∣∣2

dα ≪
(log y)3

√
y

.

Thus, recalling the definitions of the sets T (y) and Sp and using the estimate (7-12) we deduce that if
p ∈ T (y) and α ∈ (0, 1/3)∪ (2/3, 1) \Sp then∑

n≥1
P+(n)≤y

ψp(n) cos(2πnα)
n

>
π

8
√

3
−

1
log y

.

Combining this estimate with (7-13) and (7-15) gives

F(α, p)=

∑
n≥1

P+(n)≤y

ψp(n)
n

−

∑
n≥1

P+(n)≤y

ψp(n) cos(2πnα)
n

+ O
(

1
log y

)
≤ −

C2

log y
,

for some positive constant C2 if C1 is suitably large. This in turn implies that∑
n≤αp

ψp(n) <−

√
p

log3 p
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by (7-1), if x is large enough. Hence for p ∈ T (y) we have

λ(p)≤
1
3

+µ(Sp)≤
1
3

+ C3
(log y)3

√
y

,

for some absolute constant C3 > 0. Choosing y = C4T 2(log T )6 for some suitably large constant C4

completes the proof of (1-11).
To prove (1-12) we follow the exact same lines, and replace Lemma 7.1 by Lemma 6.2. In this case we

make the following choices of the parameters: y0 = y/(3 log y)3 ≤ c0 log x (where c0 is the constant in
Lemma 6.2), H =

√
y/(C5(log y)3), and y = C6T 2(log T )8 for some suitably large constants C5 and C6.

This completes the proof. □
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