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Moduli of linear slices
of high degree smooth hypersurfaces

Anand Patel, Eric Riedl and Dennis Tseng

We study the variation of linear sections of hypersurfaces in Pn . We completely classify all plane curves,
necessarily singular, whose line sections do not vary maximally in moduli. In higher dimensions, we
prove that the family of hyperplane sections of any smooth degree d hypersurface in Pn varies maximally
for d ≥ n +3. In the process, we generalize the classical Grauert–Mülich theorem about lines in projective
space, both to k-planes in projective space and to free rational curves on arbitrary varieties.

1. Introduction

A fundamental technique for studying a degree d complex hypersurface X in projective space Pn is to
intersect it with hyperplanes. The family of varieties thus obtained can be represented by a map to moduli

φ : Pn∗ 99K PH 0(OPn−1(d))// SLn, [3] 7→ [3 ∩ X ].

Basic properties of φ are still not understood, even under regularity assumptions on X . Take, for instance,
the problem of determining the dimension of its image. If X is assumed to be general, then φ can directly
be shown to have maximal rank, i.e., its image is as large as possible, as done in [van Opstall and Veliche
2007]. However, once we assume X is an arbitrary hypersurface, the story becomes more complicated,
with several authors studying special cases in the last few decades. Even in the case of a reduced plane
curve X , showing maximal variation is not a trivial task. Thirty years ago, while studying PGL3-orbits of
plane curves, Aluffi and Faber [1993, Proposition 4.2] cleverly exploited the classical Plücker formulas to
prove that smooth plane curves of degree at least 5 always have maximum variation of linear sections.
However, if the curve X is singular, then φ can fail to have maximal rank, and Aluffi and Faber were not
able to completely analyze this case.

Quite generally, if the dimension of the projective automorphism group of X is larger than expected
(e.g., if X is a cone), then linear slices must fail to vary maximally in moduli. Outside this class of
hypersurfaces, we are unaware of any other examples where φ fails to have maximal rank, so we pose the
following question:

Question 1.1. If φ fails to have maximal rank, must X have a positive-dimensional projective automor-
phism group?
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Figure 1. Singular curves for which φ fails to have maximal rank. Left: union of orbits
under Gm action. Right: union of orbits under Ga action (quadritangent conics).

We are concerned exclusively with the case where X is a hypersurface, although one can ask similar
questions for other subvarieties of Pn , such as in [Mckernan 1991]. Our first result is to answer Question 1.1
affirmatively when X ⊂ P2 is a plane curve:

Theorem 1.2. If X ⊂ P2
C

is an arbitrary plane curve and if φ fails to have maximal rank, then X has
infinitely many projective automorphisms.

Given Theorem 1.2, we see that of all curves where φ fails to have maximal rank have stabilizer
containing Gm or Ga , where typical examples are depicted in Figure 1.

The map φ is even more difficult to understand for larger-dimensional hypersurfaces — we restrict
our attention primarily to smooth hypersurfaces. Beauville [1990] investigated the case where φ is a
constant map and classified the smooth hypersurfaces X for which the family of hyperplane sections has
constant moduli. This phenomenon happens only for very special hypersurfaces in positive characteristic.
In contrast, we prove:

Theorem 1.3. If X ⊂ Pn
C

is a smooth hypersurface of degree d ≥ n + 3, then φ has maximal rank.

We can also intersect a hypersurface X with k-planes for smaller k, obtaining natural analogues

φk : G(k, n) 99K PH 0(OPk (d))// SLk+1, [3] 7→ [3 ∩ X ],

and ask similar questions about φk . Harris, Mazur, and Pandharipande [Harris et al. 1998], and then
later Starr [2006], studied the situation where φk is expected to be dominant, relating the problem of
establishing dominance to the question of unirationality of low degree hypersurfaces. When φk is expected
to be generically finite and dominant, the problem of establishing its degree has also appeared in the
literature. In this direction, see [Cadman and Laza 2008; Lee et al. 2020; 2023].

We are able to generalize Theorem 1.3, and prove that φk has maximal rank under some restrictions on k:

Theorem 1.4. If X ⊂ Pn
C

is a smooth hypersurface of degree d , then φk has maximal rank assuming
d ≥ n + 3 and k ≥

2
3 n.

For k < 2
3 n, we obtain similar statements, but with d forced to be larger (see Theorems 5.8 and 5.9).
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Broadening the topic even further, we can intersect X with other types of varieties, for example, rational
curves of degree e. In this way, we obtain a map from the variety of degree e rational curves in Pn to the
moduli space of ed points on P1. Our methods provide results in this context — see Theorems 4.2 and 5.2.

1A. Methods. The log tangent sheaf TPn (−log X) and the Grauert–Mülich theorem play key roles in
our approach. We identify the tangent space of the fiber of φ at a point [3] with sections of the log
tangent sheaf TPn (−log X) restricted to 3. Then, we adapt the argument in the usual Grauert–Mülich
theorem [Okonek et al. 1980, Theorem 2.1.4] to produce sections or subsheaves of the log tangent sheaf
TPn (−log X). In the plane curve case, this forces X to be an integral curve for a vector field on P2, leading
to the classification in Theorem 4.2. In the higher dimensional case, we appeal to a result of Guenancia
regarding the semistability of TPn (−log X), when (Pn, X) is a log-canonical pair and d ≥ n + 2. In
particular, all our results in this case actually hold when (Pn, X) is a log-canonical pair, not only when X
is smooth.

Our methods will produce results in other contexts, for example, if we replace Pn with a homogeneous
space G/P .

2. Preliminaries

We introduce conventions and basic definitions.

2A. Notation and conventions. We will work over the complex numbers. We identify vector bundles
with locally free sheaves throughout, and all our sheaves are coherent. A subbundle of a vector bundle V
is a locally free subsheaf W ⊂ V such that V/W is also locally free. For us, a variety is an integral
scheme of finite type. If F is a coherent sheaf on a scheme X , we denote by ev : H 0(X, F) ⊗ OX → F
the natural evaluation map.

We denote by More(P
k, Pn) the variety parameterizing morphisms f : Pk

→ Pn with f ∗O(1) =

O(e). Explicitly, More(P
k, Pn) is a Zariski open subset of P

(
H 0(OPk (e))⊕n+1

)
parameterizing tuples

(A0, . . . , An) of homogeneous degree e forms on Pk which do not vanish simultaneously anywhere on Pk .
More generally, Mor(X, Y ) denotes the (not finite-type) scheme parameterizing morphisms from the
scheme X to the scheme Y .

Given a torsion-free sheaf E on a projective variety X , we let its slope µ(E) denote the ratio deg(E)

rank(E)
,

where deg(E) =
∫

X c1(E)OX (1)dim(X)−1. We call E semistable (respectively stable) if there is no proper
subsheaf F with µ(F) > µ(E) (respectively µ(F) ≥ µ(E)). In general, the Harder–Narasimhan filtration
of E is

0 = E0 ⊊ E1 ⊊ E2 ⊊ · · · ⊊ Ea = E,

where the subquotients E1/E0, E2/E1, . . . , Ea/Ea−1 are semistable and have strictly decreasing slopes.
Finally, if E , F are two coherent sheaves, then Hom(E, F) will denote the vector space of global
homomorphisms E → F while Hom(E, F) will denote the sheaf of local homomorphisms.
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2B. The map to moduli 8. Suppose X ∈ Pn is a degree d hypersurface. After fixing integers e ≥ 1,
k ≤ n − 1, we get the induced map to moduli

8 : More(P
k, Pn) 99K PH 0(Pk, OPk (de)), ι 7→ [ι−1(X)].

We say that 8 has maximal rank if the dimension of its image is

max
{
dim(More(P

k, Pn)), PH 0(Pk, OPk (de))
}
.

Equivalently, since we are working over C, the derivative of 8 at a general point has maximum rank.
Though our methods give results for all e, k, we are primarily interested in the cases where e = 1 or

k = 1. Therefore, we have only stated our results in these cases. In the case e = 1, 8 having maximal
rank is equivalent to the map

G(k, n) 99K PH 0(Pk, OPk (d))// SLk, [3] 7→ [3 ∩ X ],

having maximal rank, assuming the general k-plane slice of X has no infinitesimal automorphisms.
Whenever our results apply, this condition will always be satisfied.

2C. Log tangent sheaves. We now introduce the main tool of the paper. We suspect Lemma 2.2 is
well-known to experts but include a proof for want of a suitable reference. Everything in this section
should work for a reduced divisor in an arbitrary smooth ambient variety, but we will focus on the case
that the ambient variety is projective space.

Let D ⊂ Pn be a reduced hypersurface. Viewing D as a divisor in the smooth ambient variety Pn , we
get the log tangent sheaf TPn (−log D), which sits inside the exact sequence

0 → TPn (−log D) → TPn → OD(D) → ODsing(D) → 0,

where Dsing is the singular subscheme cut out of Pn by the equation for D and its partials. In terms of
background, we only assume what is covered in [Liao 2013, 2.1.2], but see [Saito 1980] for the original
reference. One can check that TPn (−log D) is a vector bundle when D is smooth using local coordinates;
in general TPn (−log D) is a reflexive sheaf.

Remark 2.1. Informally, local sections of TPn (−log D) represent local vector fields which are tangent
to D. This can be seen explicitly by noting that the map TPn → OD(D) in the exact sequence above is
given by θ 7→ θ( f ), where θ is a vector field and f is the (local) equation for D. If we identify OD(D)

with ND/Pn , the map TPn → OD(D) is also TPn → TPn |D → ND/Pn .

Let Pk ι
−→ Pn be a map defined by degree e homogeneous forms, and suppose Z ⊂ Pn is a subscheme.

We say an infinitesimal deformation ιϵ : Pk
× Spec C[ϵ]/(ϵ2) → Pn preserves ι−1(Z) if ι−1

ϵ (Z) ⊂

Pk
× Spec C[ϵ]/(ϵ2) is the trivial deformation ι−1(Z) × Spec C[ϵ]/(ϵ2). The point of this section is to

prove the following lemma.
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Lemma 2.2. Let Pk ι
−→ Pn be a map defined by degree e homogeneous forms whose image is not

contained in D. Global sections of ι∗TPn (−log D) correspond to deformations of the map ι preserving
the hypersurface ι−1(D).

Proof. First, sections of ι∗TPn correspond to deformations of ι. More explicitly, ι is defined by an
(n+1)-tuple of degree e forms in k +1 variables A0(s0, . . . , sk), . . . , An(s0, . . . , sk) sending [s0 : · · · : sk]

to [A0(s0, . . . , sk) : · · · : An(s0, . . . , sk)].
A deformation ιϵ of ι is given by another (n+1)-tuple of degree e forms in k+1 variables B0(s0, . . . , sk),

. . . , Bn(s0, . . . , sk). Explicitly, as a map from Spec(C[ϵ]/(ϵ2)) × Pk
→ Pn this is given in coordinates

by ϵ, [s0, . . . , sk] mapping to [A0(s0, . . . , sk)+ ϵB0(s0, . . . , sk) : · · · : An(s0, . . . , sk) + ϵBn(s0, . . . , sk)].
The vector space of deformations is given by the quotient space of (n+1)-tuples of degree e forms
(B0, . . . , Bn) modulo the 1-dimensional vector space generated by (A0, . . . , An).

Let D be defined by F = 0 where F is a reduced homogeneous form in n + 1 variables. If we pull
back the form F under the deformed map ιϵ , we obtain

F(A0(s0, . . . , sk) + ϵB0(s0, . . . , sk), . . . , An(s0, . . . , sk) + ϵBn(s0, . . . , sk))

= F(A0(s0, . . . , sk), . . . , An(s0, . . . , sk))+ϵ
n∑

i=0
Bi (s0, . . . , sk) ·∂i F(A0(s0, . . . , sk), . . . , An(s0, . . . , sk)).

Therefore, deformations ιϵ that preserve ι−1(D) correspond to choices of B0, . . . , Bn such that
n∑

i=0
Bi (s0, . . . , sk) · ∂i F(A0(s0, . . . , sk), . . . , An(s0, . . . , sk)) (2-1)

is a scalar multiple of F .
Now, we wish to realize this latter condition as producing sections of the pulled back log tangent sheaf.

First, the sections of the pulled back tangent sheaf ι∗TPn can be computed via the Euler sequence

0 → OPk → OPk (e)n+1
→ ι∗TPn → 0

to be the quotient space of (n+1)-tuples of linear forms (B0, . . . , Bn) modulo the 1-dimensional vector
space generated by (A0, . . . , An).

The restricted vector field corresponding to (B0, . . . , Bn) is
∑n

i=0 Bi
∂

∂xi
. Recall that TPn (−log D) is

the kernel of the map TPn → OD(D) sending a vector field θ :=
∑n

i=0 Bi
∂

∂xi
to θ(F).

In other words, the defining equation is
n∑

i=0
Bi

∂

∂xi
F ≡ 0 (mod F).

Pulling back this under ι yields exactly (2-1). □

3. Grauert–Mülich

The goal of this section is to generalize the classical Grauert–Mülich theorem [Okonek et al. 1980,
Theorem 2.1.4] in two directions:



2138 Anand Patel, Eric Riedl and Dennis Tseng

Proposition 3.1. Let Z ⊂ PN be a smooth projective variety and f : P1
→ Z be a general map in an

open subset M of Mor(P1, Z) such that P1
×M → Z has connected fibers. Suppose f ∗TZ is globally

generated.
Let E be a torsion free sheaf on Z and write f ∗E as

⊕b
i=1 O(ai ) with a1 ≥ · · · ≥ ab. If a j > a j+1 + 1

for some j , then E has a subsheaf of rank j and degree 1
deg( f )

∑ j
i=1 ai . In particular, if E is semistable,

then the bundle f ∗E can be written as
⊕

i O(ai ) with |ai − ai+1| ≤ 1.

For applications to slicing by k-planes, we will use Proposition 3.3.

Definition 3.2. Given a torsion free sheaf E on a smooth projective variety, let µmax(E) denote the
maximum slope of a nontrivial subsheaf of E . It is also the slope of the first subsheaf appearing in its
Harder–Narasimhan filtration. Similarly let µmin(E) denote the minimum slope of a nontrivial quotient
of E . It is also the slope of the quotient of the last two subsheaves appearing in its Harder–Narasimhan
filtration.

Proposition 3.3. Let E be a torsion free sheaf on Pn . Let 3 be a k-plane in Pn , general with respect to E.
Let S ⊊ E |3 be a sheaf appearing in the Harder–Narasimhan filtration of E |3 and suppose

µmin(S) −
1
k

> µmax(E |3/S).

Then E is not semistable.

The proofs of Propositions 3.1 and 3.3 are very similar in spirit to standard proofs of Grauert–Mülich,
such as the one found in [Okonek et al. 1980]. The argument relies crucially on the following lemma.

Lemma 3.4 (descent lemma from [Okonek et al. 1980, Lemma 2.1.2]). Let Y and Z be smooth varieties
and π : Y → Z be a surjective smooth morphism with connected fibers. Let E be a vector bundle on Z
such that π∗E has a vector subbundle S with quotient vector bundle Q. If

Hom(TY/Z , Hom(S, Q)) = 0,

then S is the pullback of a subbundle of E on Z.

The key technical lemma of this section is Lemma 3.6, whose proof will use the following simple fact.

Lemma 3.5. Let Y be a variety and E and F be two sheaves on Y . Suppose every semistable subquotient
in the Harder–Narasimhan filtration of E has greater slope than every semistable subquotient of F , i.e.,
that µmin(E) > µmax(F). Then, Hom(E, F) = 0.

Proof. Let 0 = E0 ⊂ E1 ⊂ · · · ⊂ Ea = E be the Harder–Narasimhan filtration for E and 0 = F0 ⊂ F1 ⊂

· · · ⊂ Fb = F be the Harder–Narasimhan filtration for F . Consider a map φ : E → F . We show φ = 0.
First, φ induces a map E1 → Fb/Fb−1, which is zero since the source is semistable and has slope

greater than the target, which is also semistable. Therefore, φ induces a map E1 → Fb−1/Fb−2, which
again is zero for the same reason. Continuing this, we find the map E1 → F is zero.

Then, we consider the induced map E2/E1 → Fb/Fb−1 and repeat the argument above to find E2/E1 →

F must be the zero map. Continuing this for E3/E2 and so on shows that the map φ is zero. □
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Lemma 3.6. Let Z be a smooth projective variety and let U → M be a smooth family of projective
varieties with a smooth surjective map π : U → Z having connected fibers. Let E be a torsion free
sheaf on Z and let Up be a general fiber of U → M. Let S be a subsheaf of π∗E |Up appearing in the
Harder–Narasimhan filtration of π∗E |Up such that

µmin(S) + µmin(TU/Z |Up) > µmax(π∗E |Up/S).

Then there is a subsheaf S̃ on Z of E such that π∗ S̃|Up agrees with S on the locus where S is a vector
bundle.

Proof. By [Shatz 1977, Lemmas 5 and 7], we can replace M by a dense open subset so that the members of
the Harder–Narasimham filtration of π∗E |Up extend to a family over U. Namely, there exists a sequence
of subsheaves 0 = S0 ⊂ S1 ⊂ · · · ⊂ Sa = π∗E that restrict to the Harder–Narasimhan filtration of E |Up

for all p ∈ M, so in particular S = Si |Up for some i . If E and all S j ’s are locally free, then we can
immediately apply Lemma 3.4 to conclude. The next paragraphs deal with the possibility that E or the
S j ’s are not locally free by passing to a general curve in Up.

We have an open subset U0
⊂ U whose complement has codimension at least 2 and consists of the

points over which Si and π∗E/Si are both vector bundles. The image of U0 in Z is an open subset Z0

(by flatness of π ) whose complement must also have codimension at least 2.
Now, we can apply Lemma 3.4 in the case Y = U0 and Z = Z0. In order to do so, we must show that

Hom
(
TU0/Z0, Hom(Si |U0, (π∗E/Si )|U0)

)
= 0. (3-1)

For this, observe that because all sheaves appearing in (3-1) are locally free, it suffices to show the lack of
homomorphisms when we restrict to a general fiber Up. Then, we use the same idea and restrict to a general
complete intersection curve C ⊂Up of sufficiently high degree. Restricting the Harder–Narasimhan filtra-
tion of π∗E |Up to C results in a sequence of vector subbundles because each semistable subquotient on Up

is in particular torsion-free, so the Harder–Narasimhan filtration is a sequence of vector subbundles away
from a set of codimension at least 2 in Up. Since C can be chosen to avoid this set, restricting a sequence of
subbundles yields a sequence of subbundles. By [Mehta and Ramanathan 1982], this sequence of sub vector
bundles on C is the Harder–Narasimhan filtration of π∗E |C . To show (3-1), it therefore suffices to show

Hom
(
TU/Z |C , Hom(S|C , (π∗E |Up/S)|C)

)
= Hom

(
TU/Z |C ⊗ S|C , (π∗E |Up/S)|C

)
= 0.

We conclude by applying Lemma 3.5, keeping in mind that S|C is part of the Harder–Narasimhan
filtration of π∗E |C , and that the following slope equalities hold:

µmax((π∗E |Up/S)|C) = deg(C)µmax(π∗E |Up/S),

µmin(S|C) = deg(C)µmin(S),

µmin(TU/Z |C) = deg(C)µmin(TU/Z ),

µmin(TU/Z |C ⊗ S|C) = µmin(S|C) + µmin(TU/Z |C),

where deg(C) can be defined using any projective embedding of Up. □
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In order for us to apply Lemma 3.6, it is necessary to understand the sheaf TU/Z |Up . Lemmas 3.8
and 3.9 identify the sheaf in two common situations.

Definition 3.7. Let Y be a variety and V be a globally generated vector bundle on Y . Then, the Lazarsfeld–
Mukai bundle of V is the kernel of the evaluation map OY ⊗ H 0(V ) → V .

Lemma 3.8. Let Z be a smooth projective variety and M be a smooth open subset of a component of
the Hilbert scheme of varieties on Z. Let U be the universal family, and suppose that the natural map
π :U→ Z is smooth. Let Up be a general fiber of U→M. Then TU/Z |Up is the Lazarsfeld–Mukai bundle
for the normal bundle NUp/Z , defined by the short exact sequence

0 → TU/Z |Up → H 0(NUp/Z ) ⊗ OUp → NUp/Z → 0.

Proof. First we compare the normal sheaf of U in M× Z to the normal sheaf NUp/Z . We have the diagram

0 0

O N
Up

O N
Up

0 TU|Up TM×Z |Up NU/M×Z |Up 0

0 TUp TZ |Up NUp/Z 0

0 0

=

∼=

In this diagram, we have written H 0(NUp/Z ) ⊗ OUp as O N
Up

, where N = h0(NUp/Z ). We see that
NU/M×Z |Up is isomorphic to NUp/Z by the eight lemma. Next we relate NU/M×Z |Up to the Lazarsfeld–
Mukai bundle. Consider the diagram, where the lower right entry is computed by the eight lemma,

0 0

TZ |Up TZ |Up

0 TU|Up TM×Z |Up NU/M×Z |Up 0

0 TU/Z |Up π∗TM|Up NU/M×Z |Up 0

0 0

=

∼=
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Then since π∗TM is constant on Up and NU/M×Z |Up
∼= NUp/Z , we see that the last row becomes

0 → TU/Z |Up → H 0(NUp/Z ) ⊗ O → NUp/Z → 0.

The result follows. □

Lemma 3.9. Let Y and Z be smooth projective schemes and M be an open subset of Mor(Y, Z). Let
π : Y ×M → Z be the universal map. For f : Y → Z in M, suppose f ∗TZ is globally generated. Then,
the restriction TY×M/Z |Y×{[ f ]} is an extension of TY by the Lazersfeld–Mukai bundle of f ∗TZ .

Proof. We have the relative tangent sequence

0 → TY×M/Z |Y×{[ f ]} → TY×M|Y×{[ f ]} → f ∗TZ → 0.

We have the natural decomposition TY×M/Z |Y×{[ f ]}
∼= H 0( f ∗TZ ) ⊗ O ⊕ TY , with respect to which the

natural map TY×M/Z |Y×{[ f ]} → f ∗TZ is ev +d f . Consider the following commutative diagram, where K
is the Lazarsfeld–Mukai bundle of f ∗TZ :

0 0 0

0 TY TY 0 0

0 TY×M/Z |Y×{[ f ]} H 0( f ∗TZ ) ⊗ O ⊕ TY f ∗TZ 0

0 K H 0( f ∗TZ ) ⊗ O f ∗TZ 0

0 0 0

ev +d f

ev

The rows and columns are exact and the left column gives TY×M/Z |Y×{[ f ]} as an extension of K by TY . □

Lemma 3.10. The Lazarsfeld–Mukai bundle of any globally generated vector bundle on P1 is a direct
sum of O(−1)’s.

Proof. Taking Lazarsfeld–Mukai bundles behaves well with respect to direct sum, so it remains to show
the result for line bundles O(a) with a ≥ 0. The Lazarsfeld–Mukai bundle M satisfies

0 → M → O ⊗ H 0(O(a)) → O(a) → 0.

It follows that M has rank a, degree −a and no global sections, so that M = O(−1)a . The result
follows. □

Proof of Proposition 3.1. We apply Lemma 3.6 to our situation, where M is an open subset of Mor(P1, Z)

containing [ f ] and U = P1
×M. Then, applying Lemma 3.9 shows TP1×M/Z |P1×{[ f ]} an extension of

TP1 by the Lazersfeld–Mukai bundle of f ∗TZ . By Lemma 3.10, the Lazersfeld–Mukai bundle of f ∗TZ
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is a sum of O(−1)’s, so TP1×M/Z |P1×{[ f ]} is an extension of O(2) by a direct sum of O(−1)’s implying
µmin(TP1×M/Z |P1×{[ f ]}) ≥ −1.

Suppose f ∗E splits as
⊕

i O(ai ) with a1 ≥· · ·≥ar and a j ≤a j+1−2. Letting S =
⊕

i≤ j O(ai ), we find

a j + (−1) > a j+1,

µmin(S) + µmin(TP1×M/Z |P1×{[ f ]}) > µmax(( f ∗E)/S),

Therefore, we can apply Lemma 3.6 and conclude. □

Proof of Proposition 3.3. This follows from Lemma 3.6 with Z = Pn , M = G(k, n) and U the universal
k-plane. The only thing to check is µmin(TU/Pn |3) = −

1
k . By Lemma 3.8, TU/Pn |3 lies in the sequence

0 → TU/Pn |3 → H 0(O3(1)n−k) ⊗ O3 → O3(1)n−k
→ 0,

and so is isomorphic to �3(1)n−k by the Euler sequence. Since �3(1) is semistable with slope −
1
k

[Okonek et al. 1980, Theorem 1.3.2], the result follows. □

4. Plane curves

We now apply the results from the previous section to analyze the map to moduli 8 introduced in
Section 2B in the case of plane curves. Throughout this section, C in P2 denotes a reduced plane curve.
(In the nonreduced case, we simply pass to the reduction and apply the results of this section.) Our main
results in this section are stated below.

Theorem 4.1. Let C be a reduced plane curve of degree d. Then, the map

8 : More(P
1, P2) 99K P(H 0(OP1(ed))), [ι] 7→ [ι−1(C)],

has maximal rank if C has finite stabilizer under the action of PGL3.

In fact, we can classify all cases in Theorem 4.1 where 8 does not have maximal rank.

Theorem 4.2. We get a complete classification of cases when 8 in Theorem 4.1 does not have maximal
rank:

(1) d ≥ 5: C is a union of orbits under an action of Gm or Ga on P2.

(2) d = 4:

(a) e = 1 and C is the union of four concurrent lines.
(b) e ≥ 2 and C is a union of orbits under an action of Gm or Ga on P2.

(3) d = 3: e ≥ 2 and C is union of concurrent lines.

Before giving the proofs of these theorems, we need the following two propositions.

Proposition 4.3. If C is a reduced plane curve and TP2(−log C) admits a nontrivial homomorphism from
OP2(1), then C is a union of concurrent lines.
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Proof. First, a nontrivial map from OP2(1) → TP2(−log C) induces a nontrivial map OP2(1) → TP2 .
Consider the Euler sequence

0 → OP2 → OP2(1)3
→ TP2 → 0.

Applying Hom(OP2(1), · ) to the Euler sequence, we find

Hom(OP2(1), TP2) ∼= Hom(OP2(1), OP2(1)3)

and that the composite map OP2(1) → TP2(−log C) → TP2 lifts to a map OP2(1) → OP2(1)3.
After a change of coordinates, we can assume the map OP2(1) → OP2(1)3 is inclusion into the first

factor. The map OP2(1)3
→ TP2 sends a tuple of linear forms (L1, L2, L3) to

(
L1

∂
∂X

, L2
∂
∂Y

, L3
∂
∂Z

)
, so we

conclude that L ∂
∂X

is a section of TP2(−log C) for all linear forms L .
By Remark 2.1, we see that away from the point [1 : 0 : 0], the tangent vector ∂

∂X
is in the tangent space of

C for every point of C . Restricting to the affine chart {Z ̸= 0} with coordinates (x, y) and dehomogenizing,
this means C restricts to a union of lines parallel to the x-axis. Since these lines and the line at infinity
are precisely the lines passing through [1 : 0 : 0], we conclude C is a union of concurrent lines. □

Proposition 4.4. If C is a reduced plane curve and TP2(−log C) has a section, then C is equivalent to a
union of orbits under one of the two actions by Gm and Ga as follows:

Gm → GL3, t 7→

ta 0 0
0 tb 0
0 0 1

, a, b ∈ N,

Ga → GL3, t 7→ exp

t

0 1 0
0 0 1
0 0 0

 =

1 t 1
2 t2

0 1 t
0 0 1

.

Explicitly, there are two cases:

(1) C is projectively equivalent to a union of curves of the form X pY q
= cZ p+q , c ∈ C×, and possibly a

subset of the three coordinate lines.

(2) C is projectively equivalent to a union of members of the family {X Z − Y 2
+ cZ2

| c ∈ C} of conics
quadritangent to {X Z − Y 2

= 0} at [0 : 0 : 1], and possibly the line {Z = 0}.

Proof. Let s be a section of TP2(−log C). Then, s is also a section of TP2 and can be written as
L X

∂
∂X

+ LY
∂
∂Y

+ L Z
∂
∂Z

where L X , LY , L Z are homogenous linear forms in X , Y and Z .
Let C0 be a component of C and let p ∈ C be a smooth point of C0. We lift p ∈ P2 to a point

p̃ ∈ C3
\ {0}. Then, C0 contains the projection under C3

\ {0} → P2 of the integral curve C̃ through p̃
which is the solution to the matrix differential equation

d
dt

X (t)
Y (t)
Z(t)

 = A

X (t)
Y (t)
Z(t)

,

X (0)

Y (0)

Z(0)

 = p̃. (4-1)
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Here A is the 3×3 matrix with complex entries such that

A

X
Y
Z

 =

L X (X, Y, Z)

LY (X, Y, Z)

L Z (X, Y, Z)

.

If the projection of C̃ to P2 is not a single point, then the image is dense in C0. Therefore, C must be
(the closure of) a finite union of projections of integral curves in C3

\ {0} and 1-dimensional components
of the zero locus of s.

After a linear change of coordinates, we can assume that A is in Jordan block form. We keep this
choice of coordinates from now on. We let p̃ = (c1, c2, c3) ∈ C3 denote a lift of a point on C0 (to be
determined separately in each case) and we let P(X, Y, Z) be a homogenous polynomial defining C0.

Case 1: A is diagonal. We will show that the first case of Proposition 4.4 happens, so we can assume that
c1, c2, c3 ̸= 0 or else p̃ is contained in a coordinate line. Let λ1, λ2, λ3 be the eigenvalues of A. Then,
the solution to (4-1) is (X (t) Y (t) Z(t))T

= (eλ1t c1 eλ2t c2 eλ3t c3)
T , where ( · )T denotes the transpose.

The defining equation P(X, Y, Z) of C0 is a homogenous polynomial of minimal degree satisfying

P(c1eλ1t , c2eλ2t , c3eλ3t) = 0. (4-2)

We can choose a new grading on C[X, Y, Z ] by the complex numbers C where the monomial XaY b Z c

has the grade aλ1 + bλ2 + cλ3. Let Pω be the homogenous component of P with grade ω ∈ C. By
linear independence of characters, the elements in {eωt

| ω ∈ C} are linearly independent, and hence
Pω(c1eλ1t , c2eλ2t , c3eλ3t) = 0. Therefore, P divides Pω for all ω ∈ C so Pω can be nonzero for only one
value of ω.

We cannot have λ1, λ2, λ3 all equal or else s would be a multiple of X ∂
∂X

+ Y ∂
∂Y

+ Z ∂
∂Z

which induces
the zero vector field on P2. The monomials XaY b Z c that can appear in P with nonzero coefficients must
be the solution to the two linear equations

a + b + c = deg(C0), (4-3)

λ1a + λ2b + λ3c = ω (4-4)

for some fixed ω. The solution set to (4-3) is some 1-dimensional complex line ℓ in C3 and we are
interested in the integer solutions ℓ∩Z3. If ℓ∩Z3 is empty or a single point, then P is a monomial, hence
degree 1 by irreducibility. So the only remaining case is if ℓ∩ Z3 is a 1-dimensional lattice, which can be
written in the form {(a0, b0, c0) + m(a1, b1, c1) | m ∈ Z}.

Thus, we know that the monomials XaY b Z c that can appear with nonnegative coefficients in P must
be in S = {(a0, b0, c0)+m(a1, b1, c1) | m ∈ Z}∩Z3

≥0. If S contains exactly one element, then P is degree
one by irreducibility. If S contains exactly two elements, then P is a binomial and must then be of the
form XaY b

+ k Za+b for some k ̸= 0, because P is irreducible. Finally, one can check S cannot contain
three or more elements assuming P is irreducible.
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Case 2: A has exactly two Jordan blocks Let λ1 be the eigenvalue of the 2×2 block and λ2 be the
eigenvalue of the 1×1 block. We will show that the first case of Proposition 4.4 happens. We can assume
C0 is not contained in a coordinate line, and therefore assume p̃ is such that c2, c3 ̸= 0. Then, a solution
to (4-1) is (X (t) Y (t) Z(t))T

= (eλ1t c1+c2teλ1t eλ1t c2 eλ2t c3)
T for p̃ = (c1, c2, c3).

This means P(eλ1t c1+c2teλ1t , eλ1t c2, eλ2t c3)=0. Dividing by edeg(P)λ1t and letting λ=λ2−λ1, we find

P(c1 + c2t, c2, eλt c3) = 0.

Reparameterizing t by t −
c1
c2

, we can assume c1 = 0. We claim now that the map C[X, Y, Z ] → C[[t]]
sending P(X, Y, Z) to P(c2t, c2, eλt c3) is an injection because c2t, c2, eλt c3 are algebraically independent.
The latter claim follows from the fact that the functions {tmeωt

| m ∈ Z≥0, ω ∈ C} are linearly independent.
Therefore, P = 0, i.e., C0 must be contained in either the {Y = 0} or {Z = 0} coordinate lines, establishing
this case.

Case 3: A has exactly one Jordan block Let λ be the unique eigenvalue of A. Subtracting a diagonal
matrix from A is equivalent to subtracting the Euler vector field X ∂

∂X
+ Y ∂

∂Y
+ Z ∂

∂Z
from the vector field s,

so we can assume λ = 0. Then, a solution to (4-1) is (X (t) Y (t) Z(t))T
=

(
c1+c2t+c3

1
2 t2 c2+c3t c3

)T

for p̃ = (c1, c2, c3). We will show that the second case of Proposition 4.4 happens, so we can assume
that c3 ̸= 0 or else C0 is contained in {Z = 0}.

We know that P
(
c1+c2t+c3

1
2 t2, c2+c3t, c3

)
=0. We change coordinates on t . Letting t 7→ t− c2

c3
yields

P
(

c1 +
1
2

c2
2

c3
+ c3

1
2

t2, c3t, c3

)
= 0.

Dividing out by a power of c3 and replacing c1 with another constant c′

1, we find

P
(

c′

1 +
1
2

t2, t, 1
)

= 0.

As t varies, the curve
(
c′

1 +
1
2 t2, t, 1

)
parameterizes the conic X Z −

1
2 Y 2

− c′

1 Z2 in P2, settling this
case. □

Proofs of Theorems 4.1 and 4.2. We will prove Theorem 4.2 which implies Theorem 4.1. Let f : P1
→ P2

be a general map of degree e. The log tangent sheaf TP2(−log C) is a vector bundle since it is a reflexive
sheaf on a surface. Pulling back TP2(−log C) to P1 yields a rank-2 vector bundle E of degree (3 − d)e.
We split our analysis into cases.

Case: d ≥ 5 or d = 4 and e ≥ 2. If 8 is not of maximal rank, then E ∼= O(a) ⊕ O(b) where a ≥ 0.
Since the total degree of E is at most −2, we get a − b ≥ 2 and we can apply Proposition 3.1 to find
a line subbundle of TP2(−log C) of nonnegative degree. This means TP2(−log C) has a section and we
conclude by Proposition 4.4.

Case: d = 4 and e = 1. If 8 is not of maximal rank, then h0(E) ≥ 2. This means E ∼= O(a) ⊕ O(b)

where a ≥ 1. In this case a − b ≥ 3, so we can apply Proposition 3.1 to find a line subbundle O(a) of
TP2(−log C). Applying Proposition 4.3, we are done.
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Case: d = 3 and e ≥ 2. In this case, deg(E) = 0 and a dimension count shows that 8 is not of maximal
rank whenever h0(E) ≥ 3. Hence, we can apply Proposition 3.1 to find a line subbundle of TP2(−log C)

of positive degree, so we again conclude using Proposition 4.3.

Case: d = 3 and e = 1. We can find a line ℓ meeting C in three distinct points. This means 8 is
automatically surjective, so it is of maximal rank.

Case: d = 2. In this case, deg(E)= e and 8 is not of maximal rank if and only if E ∼= O(a)⊕O(b) where
a ≥ e+2 and b ≤−2. Applying Proposition 3.1, we find a line subbundle of TP2(−log C) of degree at least⌈ e+2

e

⌉
= 2. However, there are no nontrivial maps O(2) → TP2 , showing 8 must have maximal rank. □

5. Hyperplane sections

We let X be a smooth degree d hypersurface in Pn . Using the notation from Section 2B, our objective is
to prove that 8 has maximal rank when k = n − 1 and e = 1. Unlike the plane curve case, we are unable
to obtain a complete classification statement like Theorem 4.2. However, we are able to prove that if d is
larger than n + 1, the hyperplane sections of X vary maximally in moduli. We prove Theorem 1.4 and
some generalizations, captured below in Theorems 5.8 and 5.9.

Our results all rely on a stability result from Guenancia [2016]. The following version comes from
Guenancia’s Theorem A by observing that the canonical bundle of a degree d hypersurface in Pn is ample
when d ≥ n + 2.

Theorem 5.1 [Guenancia 2016, Theorem A]. If X is a smooth hypersurface of degree d ≥ n + 2, then
TPn (−log X) is semistable.

Using Theorem 5.1, the basic strategy is to understand how large the degree d can be such that the restric-
tion of TPn (−log X) to the curve or k-plane can have a section. We use results from Section 3 to do this.

Theorem 5.2. If X in Pn is a smooth hypersurface of degree d , then the space of degree e rational curve
sections of X vary maximally in modulus when d > n(n−1)

2e + n + 1.

Proof. Consider the bundle TPn (−log X). By Theorem 5.1, this bundle is semistable. For d larger
than n + 1, we see that a section of this bundle would give a destabilizing subsheaf, so we know that
TPn (−log X) has no sections.

Let M = More(P
1, Pn) be the space of parameterized degree e rational curves in Pn . Given a choice

of F with X = V (F), there is a natural map 8 : M → H 0(OP1(ed)) sending a map f : P1
→ Pn to the

pullback f ∗F ∈ H 0(P1, OP1(de)). We know by Lemma 2.2 that the tangent space to the fiber of 8 at a
given map f : P1

→ Pn is simply H 0( f ∗TPn (−log X)). To show that 8 is generically finite, we need
only show that h0( f ∗TPn (−log X)) = 0.

By Proposition 3.1, we see that f ∗TPn (−log X) is a direct sum of line bundles
⊕

O(ai ) with consecutive
ai differing by at most 1. Thus, any such bundle on P1 that has a section will have degree larger than that
of the bundle O ⊕ O(−1)⊕ · · ·⊕ O(−n + 1). From this it follows that any semistable bundle E on Pn

such that f ∗E has a section for a general map f : P1
→ Pn will have degree at least −

n(n−1)
2 . Thus, if
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deg f ∗TPn (−log X) < −
n(n−1)

2 then h0( f ∗TPn (−log X)) = 0. Since deg f ∗TPn (−log X) = e(n + 1 − d),
the result follows. □

We now consider k-plane sections of smooth hypersurfaces. By Proposition 3.3, we need to understand
torsion free sheaves on Pk whose Harder–Narasimhan filtration has subquotients whose slopes do not
decrease too quickly, namely µ1 > µ2 > · · · > µa with µi −µi+1 ≤

1
k for all i . Understanding the possible

slopes that may appear in the Harder–Narasimhan filtration is an interesting combinatorial problem, which
we describe below.

Definition 5.3. Let a sequence (d1, r1), (d2, r2), . . . , (da, ra) in Z≥0 × Z>0 be k-admissible if d1 ≤ 0 and
0 ≤

di+1
ri+1

−
di
ri

≤
1
k for each i . Let Ak,n denote the set of k-admissible sequences with

∑
i ri = n (where a

is arbitrary).

Definition 5.4. Define Bk(n) to be max
{∑a

i=1 di | (d1, r1), . . . , (da, ra) in Ak,n
}
.

Lemma 5.5. If E is a semistable sheaf on Pn of rank n such that its restriction to a general k-plane has a
section, then deg E ≥ −Bk(n).

Proof. Let 3 be a general k-plane and 0 = E0 ⊂ E1 ⊂ · · · ⊂ Ea = E |3 be the Harder–Narasimhan
filtration of E |3. Let −di be the degree of Ei/Ei−1 and ri be the rank of Ei/Ei−1. Since E |3 has
a section, we see that d1 ≤ 0. Since E is semistable, by Proposition 3.3 it follows that the sequence
(−d1, r1), . . . , (−da, ra) will be k-admissible. The result follows. □

We can compute a bound for when k-plane sections of a degree d hypersurface in Pn will vary
maximally in moduli in terms of Bk(n).

Theorem 5.6. Let X be a smooth, degree d hypersurface in Pn with d > Bk(n) + n + 1. Then,

8 : Mor1(P
k, Pn) 99K PH 0(Pk, OPk (d)), ι 7→ [ι−1(X)],

is of maximal rank.

Proof. By Theorem 5.1, TPn (−log X) will be semistable. By Proposition 3.3, TPn (−log X)|3 will have
Harder–Narasimhan filtration as described in the statement of the theorem. Given a hypersurface X
together with a choice of defining equation f , we get a map φ : Mor1(P

k, Pn) → H 0(OPk (d)) sending a
k-plane to the pull-back of f by the k-plane. We wish to show that φ is generically finite.

To get a contradiction, suppose φ has only positive-dimensional fibers. By Lemma 2.2, the tangent
space to a fiber of φ at a general point 3 is H 0(TPn (−log X)|3), so we know that TPn (−log X)|3 has a
global section. Thus, by Theorem 5.1 and Lemma 5.5, the degree of TPn (−log X) will be at least −Bk(n).
It follows that

n + 1 − d ≥ −Bk(n).

This is impossible given the assumptions in the statement of the theorem. □

Then, Theorem 1.4 follows from the following result on Bk(n).

Proposition 5.7. If k ≥
2n
3 , then Bk(n) = 1.
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Proof. Let (d1, r1), . . . , (da, ra) be an admissible sequence of total degree Bk(n). Without loss of
generality, we may assume d1 = 0, di > 0 for i > 1. Then it follows that r2 ≥ k, since d2

r2
≤

1
k . Since

d3
r3

≤
2
k , we see that r3 ≥

k
2 , provided that there are at least three terms in the sequence. However, in this

case, r1 + r2 + r3 ≥ 1 + k +
k
2 = 1 +

3k
2 > n, which is impossible. Thus, a ≤ 2.

Next, we observe that d2 ≤ 1, since if d2 ≥ 2, then r2 ≥ d2k ≥ 2k > n, a contradiction. It follows
that the sum of the di is at most 1, and since we know that 1 is achievable with the admissible sequence
(0, n − k), (1, k), the result follows. □

We defer more detailed analysis of Bk(n) to the Appendix. From the results in the Appendix and
Theorem 5.6 we get the following results.

Theorem 5.8. If X ⊂ Pn is a smooth hypersurface of degree d with d > 4
( n2

k3/2 + k3/2
)
, then the map

8 : Mor1(P
k, Pn) 99K PH 0(Pk, OPk (d)), ι 7→ [ι−1(X)],

is of maximal rank.

Proof. This follows from Proposition A.1, where it is shown Bk(n) ≤ 3
( n2

k3/2 + k3/2
)
. To finish, one checks

that n2

k3/2 + k3/2
≥ 2n ≥ n + 2. This follows from the AM-GM equality and the fact n ≥ 2. □

In Theorem 5.8, we prioritized giving a clean statement and proof over giving an optimal constant.
Still, one can wonder what the optimal constant by computing Bk(n) for small k and all n. In this case,
Corollary A.5 gives the following result:

Theorem 5.9. If k ≤ 5, then there is a linear function ℓ(n) and an integer Ck such that |Bk(n)− n2

Ck
| ≤ ℓ(n).

Here, C2 = 3, C3 = 7, C4 = 11, C5 = 19. In particular, the map

8 : Mor1(P
k, Pn) 99K PH 0(Pk, OPk (d)), ι 7→ [ι−1(X)],

is of maximal rank if X ⊂ Pn is smooth and has degree d ≥ Ckn2
+ ℓ(n) + n + 2.

We expect Theorem 5.9 to hold for all values of k, but we can only check a finite number of cases with
a computer. Roughly up to k = 100 is what is reasonable with our methods.

Given Theorem 5.9, one can ask how fast Ck grows with k. We trivially know Ck = O(k2) by relaxing
the condition that the di are integers in the definition of an admissible sequence to compute Bk(n) (in
which case we let all the ri be equal to 1). We also get Ck = �(k3/2) from Proposition A.1. From
experimental evidence, we think that the actual answer is strictly between k3/2 and k2 but closer to k3/2.

Appendix: Bounds and computations for Bk(n)

We will bound Bk(n) for all k, n in Proposition A.1. We also compute Bk(n) for k small and arbitrary n,
and give some conjectures about Bk(n) in general.

To give an idea of how the function Bk(n) behaves, we note the results in the Appendix can show
B5(39) = 39, corresponding to the admissible sequence

(0, 1), (1, 5), (1, 3), (1, 2), (2, 3), (4, 5), (1, 1), (6, 5), (4, 3), (3, 2), (5, 3), (9, 5), (2, 1).
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There are a couple of features of this admissible sequence we believe hold in general that we will only
prove in special cases. First, this admissible sequence can be generated greedily, where we use greed to max-
imize the ratio d

r of the last piece of the sequence. Second, the admissible sequence is essentially periodic in
that the (1, 1), (6, 5), (4, 3), (3, 2), (5, 3), (9, 5) is obtained from (0, 1), (1, 5), (1, 3), (1, 2), (2, 3), (4, 5)

by replacing each (d, r) with (d + r, r). We give a finite criterion that can be applied to show both the
greedy property and the periodicity in Lemma A.4.

We expect there are many other interesting patterns that can be found. For example, the segment
(0, 1), (1, 5), (1, 3), (1, 2), (2, 3), (4, 5), (1, 1) of the admissible sequence above is preserved under revers-
ing the order and replacing each (d, r) with (r −d, r). This pattern continues to hold for larger k and sug-
gests that these optimal admissible sequences can also be generated greedily backwards as well as forwards.

Proposition A.1. We have Bk(n) ≤ 3
( n2

k3/2 + k3/2
)

Proof. Let (d1, r1), . . . , (da, ra) be an admissible sequence with
∑

i di = Bk(n). Let µi =
di
ri

. Let n( j)
be the sum of the ri such that µi ∈ [ j − 1, j).

Since the µi contributing to n( j) are all less than j , we observe that

Bk(n) ≤

∞∑
j=1

jn( j).

Thus, understanding the n( j) allows us to bound Bk(n). The sum of all of the n( j) is n. Let J be the last
nonzero n( j), so Bk(n) ≤

∑J
j=1 jn( j).

Let nmin
k be a positive number that is at most n( j) for any j < J . Then we obtain an upper bound

for Bk(n)

Bk(n) ≤

J∑
i=1

jn( j) ≤ nmin
k + 2nmin

k + · · · +

⌈
n

nmin
k

⌉
nmin

k

= nmin
k

⌈ n
nmin

k

⌉(
1 +

⌈ n
nmin

k

⌉)
2

≤ nmin
k

( n
nmin

k
+ 1

)( n
nmin

k
+ 2

)
2

.

Thus, it remains to give a bound for nmin
k . Fix j < J and let (di j +1, ri j +1), . . . , (di j +c( j), ri j +c( j)) be

the part of the admissible sequence with slopes
di j +1

ri j +1
, . . . ,

di j +c( j)

ri j +c( j)
in [ j − 1, j). By definition,

ri j +1 + · · · + ri j +c( j) = n( j).

First, we show c( j) ≥ k: Note that
di j +1

ri j +1
< ( j − 1) +

1
k . If j = 1, then this is true because

di j +1

ri j +1
≤ 0 by

definition. If j > 1, then this is true because
di j +1

ri j +1
≤

di j
ri j

+
1
k < ( j − 1) +

1
k .

Since
di j +1

ri j +1
< ( j − 1) +

1
k
,
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we then see that
di j +2

ri j +2
≤

di j +1

ri j +1
+

1
k

< ( j − 1) +
2
k

...
...

di j +k

ri j +k
≤

di j +k−1

ri j +k−1
+

1
k

< j,

so c( j) ≥ k.
Now, we want to bound ri j +1 + · · · + ri j +c( j) = n( j). In the multiset {ri j +1, . . . , ri j +c( j)}, we know

that there is at most element that is equal to 1, fewer than two elements that are equal to 2, fewer
than three elements that are equal to 3 and so on. Therefore, if m is the largest integer such that
1 + (1 + · · · + m − 1) = 1 +

m(m−1)
2 is at most k, then (m−1)2

2 < m(m1)
2 + 1 ≤ k, so m ≤

√
2k + 1. Thus,

n( j) = ri j +1 + · · · + ri j +c( j) ≥ 1 + (2 · 1 + 3 · 2 + · · · m · (m − 1))

= 1 + 2
((2

2

)
+

(3
2

)
+ · · · +

(m
2

))
= 1 +

(m + 1)m(m − 1)

3

≥

(√
2k + 2

)(√
2k + 1

)√
2k

3
>

2
√

2
3

k3/2.

Thus, choosing nmin
k to be 2

√
2

3 k3/2 suffices. Plugging into our earlier bound, we get an upper bound for
Bk(n) as

nmin
k

( n
nmin

k
+ 1

)( n
nmin

k
+ 2

)
2

=
n2

2nmin
k

+
3n
2

+ nmin
k =

n2

k3/2

9

4
√

2
+

3n
2

+
2
√

2
3

k3/2,

which is at most 2
( n2

k3/2 + n + k3/2
)
. Applying the AM-GM inequality yields

n2

k3/2 + k3/2
≥ 2n,

yielding the claimed bound. □

We now move on to computing exact values of Bk(n) for small k. Our strategy is a recursive algorithm
that requires some conditions to be met, and we suspect that these conditions are always met. In the course
of our proof, we will use the three quantities µmax(n), Bupper

k (n) and B lower
k (n). We define µmax(n) by

µmax(n) := max
{

ra

da

∣∣∣ (d1, r1), . . . , (da, ra) in An

}
.

Lemma A.2. We can compute µmax(n) inductively by µmax(1) = 0 and

µmax(n) = max
{⌊(

µmax(i) +
1
k

)
(n − i)

⌋
n − i

∣∣∣ 0 < i < n
}
.
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Proof. Let

µmax′

n = max
{⌊(

µmax(i) +
1
k

)
(n − i)

⌋
n − i

∣∣∣ 0 < i < n
}
.

We use induction. The base case n = 1 is vacuous, so assume n > 1. First, we show that µmax ′
n ≤

µmax
n . Given any 0 < i < n, ⌊(µmax ′

i +
1
k )(n−i)⌋

n−i is a slope achieved by taking an admissible sequence
(d1, r1), . . . , (da, ra) in Ai and appending

(⌊(
µmax ′

i +
1
k

)
(n − i)

⌋
, n − i

)
. So by definition µmax ′

n ≤ µmax
n .

Now we show µmax ′
n ≥ µmax

n . Let (d1, r1), . . . , (da, ra) be an admissible sequence in An achieving
da
ra

= µmax
n . If a = 1, then da = 0 so µmax

n = 0 while µmax ′
n is by definition nonnegative. Otherwise, let

i =r1+· · ·+ra−1, so da−1
ra−1

≤µmax
i =µmax ′

i by definition and the assumption hypothesis. Then, ra =n−i and

da

ra
≤ µmax ′

i +
1
k
,

so da ≤
⌊(

µmax ′

i +
1
k

)
(n−i)

⌋
. Then, by definition µmax ′

n ≥µmax
n . Therefore, we are done and µmax ′

n =µmax
n

for all n. □

We define Bupper
k (n) recursively by Bupper

k (1) = 0 and

Bupper
k (n) = max

{
Bupper

k (i) +

⌊(
µmax

i +
1
k

)
(n − i)

⌋ ∣∣∣ 0 < i < n
}
.

For B lower
k , we let B lower

k (1) = 0 and let i(n) be the smallest i that maximizes ⌊(µmax(i)+ 1
k )(n−i)⌋

n−i . Then
define B lower

k inductively by

B lower
k (n) = B lower

k (i(n)) +

⌊(
µmax(i(n)) +

1
k

)
(n − i(n))

⌋
.

We now show that Bk(n) is bounded by Bupper
k (n) and B lower

k (n).

Lemma A.3. We have B lower
k (n) ≤ Bk(n) ≤ Bupper

k (n).

Proof. First we show B lower
k (n) ≤ Bk(n) by induction. To do this, we show by induction that B lower

k (n) is
always achieved by an admissible sequence (d1, r1), . . . , (da, ra) with da

ra
= µmax(n) and d1 + · · ·+ da =

B lower
k (n). The base case n = 1 vacuous, so we assume n > 1. Let i be the minimal index maximizing⌊(

µmax
i +

1
k

)
(n − i)

⌋
n − i

.

By the induction assumption, there is an admissible sequence (d1, r1), . . . , (da−1, ra−1) achieving da−1
ra−1

=

µmax
i and d1 + · · · + da−1 = B lower

k (i). By appending
(⌊(

µmax
i +

1
k

)
(n − i)

⌋
, n − i

)
to the sequence we

get an admissible sequence (d1, r1), . . . , (da, ra) with da
ra

= µmax
n and d1 + · · · + da = B lower

k (n).
Finally, we show Bupper

k (n) ≥ Bk(n) by induction. The base case n = 1 is vacuous, so assume n > 1.
Let (d1, r1), . . . , (da, ra) be an admissible sequence in An achieving d1 +· · ·+da = Bk(n). If a = 1, then
Bk(n) = 0 and Bupper

k (n) is always nonnegative by definition. If a > 1, then let i = r1 + · · · + ra−1 so
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(d1, r1), . . . , (da−1, ra−1) is an admissible sequence in Ai . By the inductive hypothesis, d1 +· · ·+da−1 ≤

Bupper
k (i). We have ra = n − i and the maximum da can be is

⌊(
µmax(i) +

1
k

)
(n − i)

⌋
. Therefore,

d1 + · · · + da ≤ Bupper
k (i) +

⌊(
µmax(i) +

1
k

)
(n − i)

⌋
≤ Bupper

k (n),

finishing the proof. □

From experimental evidence, we suspect B lower
k (n) and Bupper

k (n) always coincide, which would give a
recursive algorithm for Bk(n). However, to give results for small values of k and all n, we want to have a
finite criterion that can be verified by a computer. We believe admissible sequences achieving Bk(n) will
always following a periodic structure in n with k fixed reflected in Lemma A.4 below.

Lemma A.4. Suppose µmax(i0) =
k−1

k for some i0. Then µmax(n) = µmax(n − i0) + 1 all n ≥ i0. If in
addition Bupper

k (i) = B lower
k (i) for each i ≤ 3i0, then B lower

k (n) = Bk(n) = Bupper
k (n) for all n.

Using Lemma A.4, one can show Bk(n + i0) = Bk(n) + n + Bk(i0). Iterating this shows

Bk(n + Ni0) = Bk(n) + nN + NBk(i0) +
N (N − 1)i0

2

for 1 < n ≤ i0 and N ≥ 0. In particular, Bk(n) = 2
( 1

i0
N 2

)
.

Proof. First note that if µmax(i) = m +
k−1

k for m an integer, then

µmax(i + 1) = max
j

{⌊(
µmax( j) +

1
k

)
(i + 1 − j)

⌋
i + 1 − j

∣∣∣ 0 < j ≤ i
}

(A-1)

=

⌊
m +

k − 1
k

+
1
k

⌋
= m + 1. (A-2)

In particular, there is a unique i0 for which µmax(i0) =
k−1

k and µmax(i0 + 1) = 1 = 1 + µmax(1).
We will now show µmax(n) = µmax(n − i0) + 1 for all n ≥ i0 using induction on n. For the case

n = i0 + 1, µmax(i0 + 1) = 1 from above.
Now suppose n > i0 + 1. We first note that

µmax
(

i0

⌊
n − 1

i0

⌋)
=

(⌊
n − 1

i0

⌋
− 1

)
+

k − 1
k

is k−1
k by induction.

Now, we claim that µmax(i) < µmax
(
i0

⌊ n−1
i0

⌋)
for all i < i0

⌊ n−1
i0

⌋
. Since µmax( j) is weakly increasing

in j , the point is to prove they are not equal. If µmax(i) was equal to µmax
(
i0

⌊ n−1
i0

⌋)
, then µmax(i + 1) =

µmax(i), which contradicts (A-1).

By Lemma A.2, µmax(n) will be determined by the i between 0 and n such that ⌊(µmax(i)+ 1
k )(n−i)⌋

n−i
is maximized. Let i(n) be this i . We claim i(n) ≥ i0

⌊n−1
i0

⌋
. To get a contradiction, suppose that

i(n) < i0
⌊n−1

i0

⌋
.
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Since we have shown above that µmax(i(n)) < µmax
(
i0

⌊ n−1
i0

⌋)
,

µmax(i(n)) +
1
k

< µmax
(

i0

⌊
n − 1

i0

⌋)
+

1
k

=

⌊
n − 1

i0

⌋
,

contradicting i(n) < i0
⌊ n−1

i0

⌋
.

Since i(n) ≥ i0
⌊ n

i0

⌋
,

µmax(n) =

⌊(
µmax(i(n)) +

1
k

)
(n − i(n))

⌋
n − i(n)

=

⌊(
µmax(i(n) − i0) + 1 +

1
k

)
(n − i(n))

⌋
n − i(n)

=

⌊(
µmax(i(n) − i0) +

1
k

)
((n − i0) − (i(n) − i0))

⌋
(n − i0) − (i(n) − i0)

+ 1

= max
j

{⌊(
µmax( j) +

1
k

)
(n − i0 − j)

⌋
n − i0 − j

∣∣∣ 0 < j ≤ n − i0

}
+ 1

= µmax(n − i0) + 1,

where the second and fourth line are by induction and the fifth line is by definition. This concludes our
induction for µmax. From our proof, we also see that

i(n) − i0 = i(n − i0). (A-3)

Next, we want to show the statement regarding Bk(n). It suffices to show that B lower
k (n) = Bupper

k (n) for
all n. We will show this by induction and can assume n > 3i0 and B lower

k (i) = Bupper
k (i) for all 0 < i < n.

As before, let i(n) be the minimum i that maximizes ⌊(µmax(i)+ 1
k )(n−i)⌋

n−i . By definition, we want to show

Bk(i(n))+

⌊(
µmax(i(n))+

1
k

)
(n−i(n))

⌋
= max

{
Bk(i)+

⌊(
µmax(i)+

1
k

)
(n−i)

⌋ ∣∣∣ 0 < i < n
}
. (A-4)

The inequality ≤ is clear as the left side is one of the terms on the right side. Let i ′ be an index maximizing
the right side. We want to show that i ′ > i0. If i ′

≤ i0, then Bupper
k (i ′) +

⌊(
µmax(i ′) +

1
k

)
(n − i ′)

⌋
is less

than n as µmax
i ′ +

1
k ≤ 1 and Bupper(i ′) ≤ µmax(i ′)i ′ < i ′. We also crudely bound B lower

k (n) from below.
To do so, we first bound B lower

k (3i0) by 3i0. From the statement of Lemma A.4 regarding µmax, we
know µmax( j) ≥ m for all i > m · i0. Then,

B lower
k (n) ≥ 0 · i0 + 1 · i0 + 2 · i0 + 3(n − 3i0).

Since n > 3i0,

3i0 + 3(n − 3i0) = 2(n − 3i0) + n > n,

yielding a contradiction.
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Since i ′ > i0, the right side of (A-4) is

max
{

Bk(i) +

⌊(
µmax(i) +

1
k

)
(n − i)

⌋ ∣∣ 0 < i < n
}

= max
{

Bk(i) +

⌊(
µmax(i) +

1
k

)
(n − i)

⌋ ∣∣ i0 < i < n
}

= max
{

Bk(i + i0) +

⌊(
µmax(i + i0) +

1
k

)
(n − i − i0)

⌋ ∣∣ 0 < i < n − i0

}
= max

{
Bk(i) + i + Bk(i0) +

⌊(
µmax(i) + 1 +

1
k

)
(n − i − i0)

⌋ ∣∣ 0 < i < n − i0

}
= max

{
Bk(i) +

⌊(
µmax(i) +

1
k

)
(n − i − i0)

⌋ ∣∣ 0 < i < n − i0

}
+ n − i0 + Bk(i0).

But

max
{

Bk(i) +

⌊(
µmax(i) +

1
k

)
(n − i − i0)

⌋ ∣∣ 0 < i < n − i0

}
= B(n − i0)

by induction. Looking at the left side of (A-4), we get

Bk(i(n)) +

⌊(
µmax(i(n)) +

1
k

)
(n − i(n))

⌋
= Bk(i(n) − i0) + (i(n) − i0) + Bk(i0) +

⌊(
µmax(i(n) − i0 + i0) +

1
k

)
(n − i(n))

⌋
= Bk(i(n) − i0) + (i(n) − i0) + Bk(i0) +

⌊(
µmax(i(n) − i0) + 1 +

1
k

)
(n − i(n))

⌋
= Bk(i(n) − i0) +

⌊(
µmax(i(n) − i0) +

1
k

)
(n − i0 − (i(n) − i0)

⌋
+ n − i0 + Bk(i0)

= Bk(n − i0) + Bk(i0) + n − i0,

where the last line is by (A-3). Therefore, both sides of (A-4) are equal, which is what we wanted. □

We can verify the conditions of Lemma A.4 using a Python program for small k. For example, the
answer for k = 2, 3, 4, 5 are given below.

Corollary A.5. We have the following closed-form expressions for Bk(n) for k = 2, 3, 4, 5. For k = 2 and
n ≥ 0,

B2(3n + 1) =
3n2

+n
2

, B2(3n + 2) =
3n2

+3n
2

, B2(3n + 3) =
3n2

+5n+2
2

.

For k = 3,

B3(7n + 1) =
7n2

+n
2

, B3(7n + 2) =
7n2

+3n
2

, B3(7n + 3) =
7n2

+5n
2

,

B3(7n + 4) =
7n2

+7n+2
2

, B3(7n + 5) =
7n2

+9n+2
2

, B3(7n + 6) =
7n2

+11n+4
2

,

B3(7n + 7) =
7n2

+13n+6
2

.
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For k = 4,

B4(11n + 1) =
11n2

+n
2

, B4(11n + 2) =
11n2

+3n
2

, B4(11n + 3) =
11n2

+5n
2

,

B4(11n + 4) =
11n2

+7n
2

, B4(11n + 5) =
11n2

+9n+2
2

, B4(11n + 6) =
11n2

+11n+2
2

,

B4(11n + 7) =
11n2

+13n+4
2

, B4(11n + 8) =
11n2

+15n+4
2

, B4(11n + 9) =
11n2

+17n+6
2

,

B4(11n + 10) =
11n2

+19n+8
2

, B4(11n + 11) =
11n2

+21n+10
2

.

For k = 5,

B5(19n + 1) =
19n2

+n
2

, B5(19n + 2) =
19n2

+3n
2

, B5(19n + 3) =
19n2

+5n
2

,

B5(19n + 4) =
19n2

+7n
2

, B5(19n + 5) =
19n2

+9n
2

, B5(19n + 6) =
19n2

+11n+2
2

,

B5(19n + 7) =
19n2

+13n+2
2

, B5(19n + 8) =
19n2

+15n+2
2

, B5(19n + 9) =
19n2

+17n+4
2

,

B5(19n + 10) =
19n2

+19n+4
2

, B5(19n + 11) =
19n2

+21n+6
2

, B5(19n + 12) =
19n2

+23n+6
2

,

B5(19n + 13) =
19n2

+25n+8
2

, B5(19n + 14) =
19n2

+27n+10
2

, B5(19n + 15) =
19n2

+29n+10
2

,

B5(19n + 16) =
19n2

+31n+12
2

, B5(19n + 17) =
19n2

+33n+14
2

, B5(19n + 18) =
19n2

+35n+16
2

,

B5(19n + 19) =
19n2

+37n+18
2

.

Acknowledgements

The authors would like to thank Paolo Aluffi, Izzet Coskun, Carel Faber and Joe Harris for helpful
conversations, and the anonymous referee for helpful comments.

References

[Aluffi and Faber 1993] P. Aluffi and C. Faber, “Linear orbits of smooth plane curves”, J. Algebraic Geom. 2:1 (1993), 155–184.
MR Zbl

[Beauville 1990] A. Beauville, “Sur les hypersurfaces dont les sections hyperplanes sont à module constant”, pp. 121–133 in
The Grothendieck Festschrift, I, edited by P. Cartier et al., Progr. Math. 86, Birkhäuser, Boston, MA, 1990. MR Zbl

[Cadman and Laza 2008] C. Cadman and R. Laza, “Counting the hyperplane sections with fixed invariants of a plane quintic:
three approaches to a classical enumerative problem”, Adv. Geom. 8:4 (2008), 531–549. MR Zbl

[Guenancia 2016] H. Guenancia, “Semistability of the tangent sheaf of singular varieties”, Algebr. Geom. 3:5 (2016), 508–542.
MR Zbl

[Harris et al. 1998] J. Harris, B. Mazur, and R. Pandharipande, “Hypersurfaces of low degree”, Duke Math. J. 95:1 (1998),
125–160. MR Zbl

[Lee et al. 2020] M. Lee, A. Patel, H. Spink, and D. Tseng, “Orbits in (Pr )n and equivariant quantum cohomology”, Adv. Math.
362 (2020), art. id. 106951. MR Zbl

[Lee et al. 2023] M. Lee, A. Patel, and D. Tseng, “Equivariant degenerations of plane curve orbits”, Trans. Amer. Math. Soc.
376:10 (2023), 6799–6843. MR Zbl

http://msp.org/idx/mr/1185610
http://msp.org/idx/zbl/0804.14015
https://doi.org/10.1007/978-0-8176-4574-8_5
http://msp.org/idx/mr/1086884
http://msp.org/idx/zbl/0723.14031
https://doi.org/10.1515/ADVGEOM.2008.033
https://doi.org/10.1515/ADVGEOM.2008.033
http://msp.org/idx/mr/2456636
http://msp.org/idx/zbl/1185.14048
https://doi.org/10.14231/AG-2016-024
http://msp.org/idx/mr/3568336
http://msp.org/idx/zbl/1379.32010
https://doi.org/10.1215/S0012-7094-98-09504-7
http://msp.org/idx/mr/1646558
http://msp.org/idx/zbl/0991.14018
https://doi.org/10.1016/j.aim.2019.106951
http://msp.org/idx/mr/4046073
http://msp.org/idx/zbl/1471.14109
https://doi.org/10.1090/tran/8733
http://msp.org/idx/mr/4636678
http://msp.org/idx/zbl/07735074


2156 Anand Patel, Eric Riedl and Dennis Tseng

[Liao 2013] X. Liao, Chern classes of sheaves of logarithmic vector fields for free divisors, Ph.D. thesis, Florida State University,
2013, available at https://www.proquest.com/docview/1468444341.

[Mckernan 1991] J. Mckernan, On the hyperplane sections of a variety in projective space, Ph.D. thesis, Harvard University,
1991, available at https://www.proquest.com/docview/303940435.

[Mehta and Ramanathan 1982] V. B. Mehta and A. Ramanathan, “Semistable sheaves on projective varieties and their restriction
to curves”, Math. Ann. 258:3 (1982), 213–224. MR Zbl

[Okonek et al. 1980] C. Okonek, M. Schneider, and H. Spindler, Vector bundles on complex projective spaces, Progr. Math. 3,
Birkhäuser, Boston, MA, 1980. MR Zbl

[van Opstall and Veliche 2007] M. A. van Opstall and R. Veliche, “Variation of hyperplane sections”, pp. 255–260 in Algebra,
geometry and their interactions, edited by A. Corso et al., Contemp. Math. 448, Amer. Math. Soc., Providence, RI, 2007. MR
Zbl

[Saito 1980] K. Saito, “Theory of logarithmic differential forms and logarithmic vector fields”, J. Fac. Sci. Univ. Tokyo Sect. IA
Math. 27:2 (1980), 265–291. MR Zbl

[Shatz 1977] S. S. Shatz, “The decomposition and specialization of algebraic families of vector bundles”, Compos. Math. 35:2
(1977), 163–187. MR Zbl

[Starr 2006] J. M. Starr, “Fano varieties and linear sections of hypersurfaces”, preprint, 2006. arXiv math/0607133

Communicated by Gavril Farkas
Received 2020-09-20 Revised 2023-05-31 Accepted 2023-10-12

anand.patel@okstate.edu Department of Mathematics, Oklahoma State University, Stillwater, OK,
United States

eriedl@nd.edu Department of Mathematics, University of Notre Dame, Notre Dame, IN,
United States

dennisctseng@gmail.com Department of Mathematics, University of Harvard, Cambridge, MA,
United States

mathematical sciences publishers msp

https://www.proquest.com/docview/1468444341
https://www.proquest.com/docview/303940435
https://doi.org/10.1007/BF01450677
https://doi.org/10.1007/BF01450677
http://msp.org/idx/mr/649194
http://msp.org/idx/zbl/0473.14001
https://doi.org/10.1007/978-3-0348-0151-5
http://msp.org/idx/mr/561910
http://msp.org/idx/zbl/0438.32016
https://doi.org/10.1090/conm/448/08670
http://msp.org/idx/mr/2389247
http://msp.org/idx/zbl/1134.14027
http://msp.org/idx/mr/586450
http://msp.org/idx/zbl/0496.32007
http://www.numdam.org/item?id=CM_1977__35_2_163_0
http://msp.org/idx/mr/498573
http://msp.org/idx/zbl/0371.14010
http://msp.org/idx/arx/math/0607133
mailto:anand.patel@okstate.edu
mailto:eriedl@nd.edu
mailto:dennisctseng@gmail.com
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Antoine Chambert-Loir
Université Paris-Diderot

France

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Jason P. Bell University of Waterloo, Canada

Bhargav Bhatt University of Michigan, USA

Frank Calegari University of Chicago, USA

J-L. Colliot-Thélène CNRS, Université Paris-Saclay, France

Brian D. Conrad Stanford University, USA

Samit Dasgupta Duke University, USA

Hélène Esnault Freie Universität Berlin, Germany

Gavril Farkas Humboldt Universität zu Berlin, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Wee Teck Gan National University of Singapore

Andrew Granville Université de Montréal, Canada

Ben J. Green University of Oxford, UK

Christopher Hacon University of Utah, USA

Roger Heath-Brown Oxford University, UK

János Kollár Princeton University, USA

Michael J. Larsen Indiana University Bloomington, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Martin Olsson University of California, Berkeley, USA

Irena Peeva Cornell University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Bjorn Poonen Massachusetts Institute of Technology, USA

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Michael Singer North Carolina State University, USA

Vasudevan Srinivas SUNY Buffalo, USA

Shunsuke Takagi University of Tokyo, Japan

Pham Huu Tiep Rutgers University, USA

Ravi Vakil Stanford University, USA

Akshay Venkatesh Institute for Advanced Study, USA

Melanie Matchett Wood Harvard University, USA

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2024 is US $525/year for the electronic version, and $770/year (+$65, if shipping outside the US) for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University
of California, Berkeley, CA 94720-3840 is published continuously online.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2024 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 18 No. 12 2024

2133Moduli of linear slices of high degree smooth hypersurfaces
ANAND PATEL, ERIC RIEDL and DENNIS TSENG

2157Separating G2-invariants of several octonions
ARTEM LOPATIN and ALEXANDR N. ZUBKOV

2179Scattering diagrams for generalized cluster algebras
LANG MOU

2247Matrix Kloosterman sums
MÁRTON ERDÉLYI and ÁRPÁD TÓTH

A
lgebra

&
N

um
ber

Theory
2024

Vol.18,
N

o.12

http://dx.doi.org/10.2140/ant.2024.18.2133
http://dx.doi.org/10.2140/ant.2024.18.2157
http://dx.doi.org/10.2140/ant.2024.18.2179
http://dx.doi.org/10.2140/ant.2024.18.2247

	1. Introduction
	1A. Methods

	2. Preliminaries
	2A. Notation and conventions
	2B. The map to moduli 
	2C. Log tangent sheaves

	3. Grauert–Mülich
	4. Plane curves
	5. Hyperplane sections
	Appendix: Bounds and computations for Bk(n)
	Acknowledgements
	References
	
	

