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Separating G2-invariants of several octonions
Artem Lopatin and Alexandr N. Zubkov

We describe separating G2-invariants of several copies of the algebra of octonions over an algebraically
closed field of characteristic two. We also obtain a minimal separating and a minimal generating set for
G2-invariants of several copies of the algebra of octonions in case of a field of odd characteristic.

1. Introduction

All vector spaces and algebras are considered over an algebraically closed field F of arbitrary characteristic
p = char F ≥ 0.

We continue the study of the invariants of the diagonal action of the exceptional simple group G2 on
the space of several octonions, over a field of positive characteristic. Over the field of complex numbers,
this was done in [20]. This result has been generalized to an arbitrary infinite field of odd characteristic
in [23], using a much finer technique of modules with good filtration, together with some results from the
theory of groups with triality.

Unfortunately, the technique of modules with good filtration no longer works over a field of characteristic
two and the complete description of the generating invariants in this case seems to be an extremely difficult
problem. Thus, it makes sense to describe separating invariants, since they satisfy the most important
property of ordinary invariants to separate closed orbits in the Zariski topology. The latter problem is
usually more accessible and it does not require extremely technical methods. We describe the separating
invariants over an algebraically closed field of characteristic two, using a detailed description of the
subalgebras of the octonion algebra (up to the action of G2) and the Hilbert–Mumford criterion (the “if”
part; see Section 3B).

The article is organized as follows. In Sections 2A and 2B we define the octonion algebra O, the
group G2 and the algebra of G2-invariants F[On

]
G2 of n copies of the algebra of octonions O. We

use notation from [23]. Generators and relations between generators for F[On
]
G2 were described by

Schwarz [20] over F = C. Zubkov and Shestakov described generators for F[On
]
G2 over an arbitrary field

with char F ̸= 2 (see Section 2D), but generators for the algebra F[On
]
G2 are still not known in case p = 2.

The invariants for the action of F4 on several copies of the split Albert algebra were studied in [10]. Our
results are formulated in Section 2E. In Section 3 some definitions and notation are given. In Section 4
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we describe a minimal generating and a minimal separating set for F[On
]
G2 in case p ̸= 2. In Section 5 a

minimal generating set is constructed for the subalgebra Tn ⊂ F[On
]
G2 of trace invariants in case p = 2.

In Section 6 subalgebras of O of dimension ≤ 3 are described modulo G2-action in case p = 2. This
result is applied in Section 7 to obtain our main result which is the description of a separating set for
F[On

]
G2 in case p = 2.

2. Invariants of octonions

2A. Octonions. The octonion algebra O = O(F), also known as the split Cayley algebra, is the vector
space of all matrices

a =

(
α u
v β

)
with α, β ∈ F and u, v ∈ F3,

endowed with the multiplication

aa′
=

(
αα′

+ u · v′ αu′
+ β ′u − v × v′

α′v + βv′
+ u × u′ ββ ′

+ v · u′

)
, where a′

=

(
α′ u′

v′ β ′

)
,

u · v = u1v1 + u2v2 + u3v3 and u × v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1). For short, define
c1 = (1, 0, 0), c2 = (0, 1, 0), c3 = (0, 0, 1), 0 = (0, 0, 0) from F3. Consider the following basis of O:

e1 =

(
1 0
0 0

)
, e2 =

(
0 0
0 1

)
, ui =

(
0 ci

0 0

)
, vi =

(
0 0
ci 0

)
for i = 1, 2, 3. The unity of O is denoted by 1O = e1 + e2. We identify octonions

α1O,

(
0 u
0 0

)
,

(
0 0
v 0

)
with α ∈ F, u, v ∈ F3, respectively. Similarly to O(F) we define the algebra of octonions O(A) over any
commutative associative F-algebra A.

The algebra O has a linear involution

ā =

(
β −u

−v α

)
, satisfying aa′ = a′ā,

a norm n(a) = aā = αβ − u · v, and a nondegenerate symmetric bilinear form

q(a, a′) = n(a + a′) − n(a) − n(a′) = αβ ′
+ α′β − u · v′

− u′
· v.

Define the linear function trace by tr(a) = a + ā = α + β. The subspace {a ∈ O | tr(a) = 0} of traceless
octonions is denoted by O0. Notice that

tr(aa′) = tr(a′a) and n(aa′) = n(a)n(a′). (2-1)

The following quadratic equation holds:

a2
− tr(a)a + n(a) = 0. (2-2)



Separating G2-invariants of several octonions 2159

Since
n(a + a′) = n(a) + n(a′) − tr(aa′) + tr(a) tr(a′), (2-3)

the linearization of (2-2) implies

aa′
+ a′a − tr(a)a′

− tr(a′)a − tr(aa′) + tr(a) tr(a′) = 0. (2-4)

The algebra O is a simple alternative algebra, i.e., the following identities hold for a, b ∈ O:

a(ab) = (aa)b, (ba)a = b(aa). (2-5)

The linearization implies that

a(a′b) + a′(ab) = (aa′
+ a′a)b, (ba)a′

+ (ba′)a = b(aa′
+ a′a). (2-6)

The trace is associative, i.e., for all a, b, c ∈ O we have

tr((ab)c) = tr(a(bc)). (2-7)

Note that
2n(a) = −tr(a2) + tr2(a) for each a ∈ O. (2-8)

More details on O can be found in Sections 1 and 3 of [23].

2B. The group G2. The group G2 = G2(F) is known to be the group Aut(O) of all automorphisms of
the algebra O. The group G2 contains a Zariski closed subgroup SL3 = SL3(F). Namely, every g ∈ SL3

defines the following automorphism of O:

a →

(
α ug

vg−T β

)
,

where g−T stands for (g−1)T and u, v ∈ F3 are considered as row vectors. In what follows SL3 is regarded
as this subgroup of G2. For every u, v ∈ O define δ1(u), δ2(v) from Aut(O) as

δ1(u)(a′) =

(
α′

− u · v′ (α′
− β ′

− u · v′)u + u′

v′
− u′

× u β ′
+ u · v′

)
, δ2(v)(a′) =

(
α′

+ u′
· v u′

+ v′
× v

(−α′
+ β ′

− u′
· v)v + v′ β ′

− u′
· v

)
.

The group G2 is generated by SL3 and δ1(tui ), δ2(tvi ) for all t ∈ F and i = 1, 2, 3 (for example, see
Section 3 of [23]). By straightforward calculations we can see that

h̄ : O → O, defined by a →

(
β −v

−u α

)
, (2-9)

belongs to G2 (see also the proof of Lemma 1 of [23]).
The action of G2 on O satisfies the properties

ga = gā, tr(ga) = tr(a), n(ga) = n(a), q(ga, ga′) = q(a, a′).

Thus, O0 is a G2-submodule of O.
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Consider the diagonal action of G2 on the vector space On
= O ⊕ · · · ⊕ O (n copies), that is,

g(a1, . . . , an) = (ga1, . . . , gan) for all g ∈ G2 and a1, . . . , an ∈ O. The coordinate ring of the affine
variety On is the polynomial F-algebra Kn = F[On

] = F[zi j | 1 ≤ i ≤ n, 1 ≤ j ≤ 8], where zi j : On
→ F

is defined by (a1, . . . , an) → αi j for

ai =

(
αi1 (αi2, αi3, αi4)

(αi5, αi6, αi7) αi8

)
∈ O. (2-10)

The action of GL(O) on O induces the action on Kn by (g f )(a) = f (g−1a) for all g ∈ GL(O), f ∈ Kn ,
a ∈ On .

To explicitly describe the action of G2 on Kn consider the generic octonions

Zi =

(
zi1 (zi2, zi3, zi4)

(zi5, zi6, zi7) zi8

)
∈ O(Kn)

for 1 ≤ i ≤ n. Given g ∈ G2, denote by g • Zi the octonion(
gzi1 (gzi2, gzi3, gzi4)

(gzi5, gzi6, gzi7) gzi8

)
∈ O(Kn).

For any commutative algebra A, the action of G2 on O extends for O(A) by A-linearity. In particular,
G2 acts on O(Kn). It is easy to see that

g • Zi = g−1 Zi , (2-11)

where g−1 Zi stands for the action of g−1 on the octonion Zi ∈ O(Kn).
The algebra of G2-invariants of several octonions (octonion G2-invariants, for short) is

K G2
n = F[On

]
G2 = { f ∈ F[On

] | g f = f for all g ∈ G2}.

In other words,
K G2

n = { f ∈ F[On
] | f (ga) = f (a) for all g ∈ G2, a ∈ On

}.

Similarly we can define F[On
0 ]

G2 , since O0 ⊂ O is invariant with respect to G2-action. Namely, the
coordinate ring of the affine variety On

0 is K0,n = F[On
0 ] = F[zi j | 1 ≤ i ≤ n, 1 ≤ j ≤ 7]. The generic

traceless octonions are

X i =

(
zi1 (zi2, zi3, zi4)

(zi5, zi6, zi7) −zi1

)
.

The analogue of formula (2-11) also holds for the generic traceless octonions, namely, g • X i = g−1 X i

for all g ∈ G2 and 1 ≤ i ≤ n. The algebra of G2-invariants of several traceless octonions is K G2
0,n .

2C. Separating sets. Consider a finite-dimensional vector space V and a linear group G < GL(V). In
2002, Derksen and Kemper [2] introduced the notion of separating invariants as a weaker concept than
generating invariants. Given a subset S of F[V]

G and u, v of V , we write S(u) ̸= S(v) if there exists
an invariant f ∈ S with f (u) ̸= f (v). In this case we say that u, v are separated by S. If u, v ∈ V
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are separated by F[V]
G , then we say that they are separated. A subset S ⊂ F[V]

G of the invariant ring
is called separating if for any u, v from V that are separated we have that they are separated by S. It
is well-known that there always exists a finite separating set (see [2, Theorem 2.3.15]). We say that a
separating set is minimal if it is minimal w.r.t. inclusion. Obviously, any generating set is also separating.
Minimal separating sets and upper bounds on degrees of elements of a separating set for different actions
were constructed in [1; 3; 4; 5; 7; 11; 12; 14; 16; 21].

2D. Known results. Denote by algF{Z}n the nonassociative F-algebra generated by the generic octonions
Z1, . . . , Zn and 1O . Any product of the generic octonions is called a word of algF{Z}n . The unit
1O ∈ algF{Z}n is called the empty word. For every A, B ∈ algF{Z}n we have

tr(g A) = tr(A), n(g A) = n(A), g(AB) = (g A)(gB). (2-12)

Lemma 2.1. (a) The trace of any (nonassociative) product of X1, . . . , Xn and n(X i ) belongs to K G2
0,n .

(b) The trace of any (nonassociative) product of Z1, . . . , Zn and n(Zi ) belongs to K G2
n .

(c) The trace of any (nonassociative) product of Z1, . . . , Zn, Z1, . . . , Zn belongs to K G2
n .

Proof. Let w = w(Z1, . . . , Zn) be some (nonassociative) product of Z1, . . . , Zn . Given g ∈ G2, equalities
(2-11), (2-12) imply that

g tr(w) = tr(w(g • Z1, . . . , g • Zn)) = tr(w(g−1 Z1, . . . , g−1 Zn)) = tr(g−1w) = tr(w).

The case of n(Zi ) is considered similarly. Part (b) is proven. The proof of part (a) is the same. Part (c)
follows from part (b) and formulas

tr(ā) = tr(a), n(ā) = n(a), tr(āb) = tr(a) tr(b) − tr(ab)

for all a, b ∈ O. □

In case F = Q for every A1, . . . , A4 ∈ algF{Z}n denote by Q′(A1, A2, A3, A4) the complete skew
symmetrization of tr

(
((A1 A2)A3)A4

)
with respect to its arguments, i.e.,

Q′(A1, A2, A3, A4) =
1
24

∑
σ∈S4

(−1)σ tr
(
((Aσ(1) Aσ(2))Aσ(3))Aσ(4)

)
.

In [23] it was shown that all coefficients of Q′(X1, X2, X3, X4) belong to Z
[ 1

2

]
. Lemma 4.1 (see below)

implies that all coefficients of Q′(Z1, Z2, Z3, Z4) also belong to Z
[1

2

]
. Thus Q′(A1, A2, A3, A4) is

well-defined over an arbitrary field of odd characteristic.
In case char F ̸= 2,

• the algebra of invariants K G2
0,n is generated by tr(X i X j ), tr((X i X j )Xk), Q′(X i , X j , Xk, Xl);

• the algebra of invariants K G2
n is generated by tr(Zi ), tr(Zi Z j ), tr((Zi Z j )Zk), Q′(Zi , Z j , Zk, Zl)

for all 1 ≤ i, j, k, l ≤ n (see [23, Corollary 9 and Section 1]).
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2E. New results. Denote by S0,n the set

{n(X i ) | 1 ≤ i ≤ n} ∪
{
tr
((

· · · ((X i1 X i2)X i3) · · ·
)
X ik

)
| 1 ≤ i1 < · · · < ik ≤ n, k > 1

}
and by Sn the set

{n(Zi ) | 1 ≤ i ≤ n} ∪
{
tr
((

· · · ((Zi1 Zi2)Zi3) · · ·
)
Zik

)
| 1 ≤ i1 < · · · < ik ≤ n, k > 0

}
.

Given 1 ≤ k ≤ n, denote by S(k)
0,n and S(k)

n the subset of S0,n and Sn (respectively) of elements of degree
less or equal to k.

In case char F = 2 generators for the algebras K G2
0,n and K G2

n are not known. We introduce the algebra of
trace G2-invariants of octonions Tn ⊂ K G2

n , i.e., the algebra Tn is generated by n(Z1), . . . , n(Zn) and the
traces of all (nonassociative) products of Z1, . . . , Zn (see Lemma 2.1). In case char F ̸= 2 we obviously
have that Tn = K G2

n . We obtain the following results:

• S(4)
n is a minimal (w.r.t. inclusion) generating set for K G2

n in case char F ̸= 2 (see Proposition 4.3).

• S(4)
n is a minimal (w.r.t. inclusion) separating set for K G2

n in case char F ̸= 2 (see Proposition 4.5).

• Tn is minimally generated by Sn in case char F = 2 (see Theorem 5.2).

• S(8)
n is a separating set for K G2

n in case char F = 2 (see Theorem 7.11).

3. Auxiliaries

3A. Indecomposable invariants. Denote by F{X}n the free nonassociative and noncommutative unital
F-algebra with free generators x1, . . . , xn , which are called letters. A word w is a nonempty product
of letters. The number of letters in w is the degree deg(w) of w. The degree of w in xi is denoted by
degxi

(w) and the total degree of w is denoted by deg(w). The multidegree of a word w is mdeg(w) =

(degx1
(w), . . . , degxn

(w)). A word w with degxi
(w) ≤ 1 for all i is called multilinear. An element

f =
∑

i αiwi of F{X}n , where αi ∈ F and wi is a word, is N-homogeneous (Nn-homogeneous, respectively)
if there exists d (1 ∈ Nn , respectively) such that deg(wi ) = d (mdeg(wi ) = 1, respectively) for all i ,
where N stands for nonnegative integers. Define homomorphisms of F-algebras φ0 : F{X}n → algF{X}n

and φ : F{X}n → algF{Z}n by xi → X i and xi → Zi (respectively) for all i . In other words, for
f = f (x1, . . . , xn) ∈ F{X}n we have φ( f ) = f (Z1, . . . , Zn) ∈ algF{Z}n . We write xi1 ◦ · · · ◦ xik for some
nonassociative product of xi1, . . . , xik . Similar notation we use for nonassociative products in algF{Z}n .

For f ∈ Kn denote by deg( f ) its degree and by mdeg( f ) its multidegree, i.e., mdeg( f ) = (t1, . . . , tn),
where ti is the total degree of the polynomial f in zi j , 1 ≤ j ≤ 8, and deg( f ) = t1 +· · ·+ tn . For f ∈ K0,n

the degree and multidegree are defined as above. It is well-known that the algebras K G2
0,n and K G2

n have
N-gradings by degrees and Nn-gradings by multidegrees.

Consider an Nn-graded unital (possibly, nonassociative) algebra A with the component of degree zero
equal to F. Denote by A+ the subalgebra generated by homogeneous elements of positive degree. A set
{ai } ⊆ A is a minimal (by inclusion) Nn-homogeneous generating set (m.h.g.s.) of A as a unital algebra
if and only if the ai ’s are Nn-homogeneous and {ai } ∪ {1} is a basis of the vector space A = A/(A+)2.



Separating G2-invariants of several octonions 2163

We say that an element a ∈ A is decomposable and we write a ≡ 0 if a ∈ (A+)2. In other words, a
decomposable element is equal to a polynomial in elements of strictly less degree. Therefore, the largest
degree of indecomposable elements of A is equal to the least upper bound for the degrees of elements of
a m.h.g.s. for A.

3B. One-parameter subgroups of G2. Consider a finite-dimensional vector space V and a linear (closed)
group G < GL(V). For a point v ∈ V and for a one-parameter subgroup θ : F×

→ G we have θ(t)v =∑
i∈I (v) t iv(i) for all t ∈ F×, where I (v) = {i ∈ Z | v(i)

̸= 0}. Following [13] we say that limt→0 θ(t)v
exists if and only if I (v) consists of nonnegative integers. Then limt→0 θ(t)v = 0 if and only if I (v)

consists of positive integers only, otherwise limt→0 θ(t)v = v(0). It is clear that if limt→0 θ(t)v exists,
then it is contained in Gv. Indeed, if f is a polynomial function on V , that vanishes on the G-orbit of v,
then h(t) = f (θ(t)v) is a polynomial in t , such that h(t) = 0 for any t ̸= 0. Since F is infinite, h(t) is
identically zero, that is, h(0) = f (v(0)) = 0.

Given λ ∈ Z3 with λ1 + λ2 + λ3 = 0, the standard one-parameter subgroup θλ of G2 is defined by

θλ(t)ei = ei , θλ(t)u j = tλ j u j , θλ(t)v j = t−λ j v j ,

for all i = 1, 2 and 1 ≤ j ≤ 3.

4. Minimal generating and separating sets

In this section we write tr(i1, . . . , ik) for tr(( · · · ((Zi1 Zi2)Zi3) · · · )Zik ), where 1 ≤ i1, . . . , ik ≤ n. The
following lemma can be proven by straightforward calculations.

Lemma 4.1. Assume that char F ̸= 2. Then

Q′(Z1, Z2, Z3, Z4)

= tr(1234) +
1
2

(
−tr(1) tr(2) tr(3) tr(4) − tr(1) tr(234) − tr(2) tr(134) − tr(3) tr(124)

− tr(4) tr(123) − tr(12) tr(34) + tr(13) tr(24) − tr(14) tr(23) tr(1) tr(2) tr(34)

+ tr(1) tr(4) tr(23) + tr(2) tr(3) tr(14) + tr(3) tr(4) tr(12)
)
.

Recall that the definition of Tn was given in Section 2E.

Lemma 4.2. Let w ∈ F{X}n be a word.

1. If w is not multilinear and deg(w) > 2, then tr(w(Z1, . . . , Zn)) ≡ 0 in Tn .

2. If w is multilinear and w is a product of letters xi1, . . . , xik for 1 ≤ i1 < · · · < ik ≤ n, then

tr(w(Z1, . . . , Zn)) ≡ ±tr(i1, . . . , ik) in Tn.

3. For all 1 ≤ i1 < · · · < ik ≤ n with k ≥ 3 and every permutation σ ∈ Sk we have

tr(iσ(1), . . . , iσ(k)) ≡ (−1)σ tr(i1, . . . , ik) in Tn.
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Proof. Combining (2-4) and (2-6) we obtain that

a(a′b) + a′(ab) = (tr(a)a′
+ tr(a′)a + tr(aa′) − tr(a) tr(a′))b

for all a, a′, b ∈ O. Since F is infinite, the same equality holds for the generic octonions. We multiply it
from the left and from the right by the generic octonions and then apply the trace. Since the trace is a
linear function, we obtain that

tr
(
C1 ◦ · · · ◦ Cr ◦ (A(A′B)) ◦ Cr+1 ◦ · · · ◦ Cs

)
≡ −tr

(
C1 ◦ · · · ◦ Cr ◦ (A′(AB)) ◦ Cr+1 ◦ · · · ◦ Cs

)
(4-1)

for all products of the generic octonions A, A′, B, C1, . . . , Cs with 0 ≤ r ≤ s and s ≥ 0. Similarly, we
obtain that

tr
(
C1 ◦ · · · ◦ Cr ◦ ((B A)A′) ◦ Cr+1 ◦ · · · ◦ Cs

)
≡ −tr

(
C1 ◦ · · · ◦ Cr ◦ ((B A′)A) ◦ Cr+1 ◦ · · · ◦ Cs

)
. (4-2)

In the same manner as above, (2-2) and (2-4) imply that

tr(C1 ◦ · · · ◦ Cr ◦ (A2) ◦ Cr+1 ◦ · · · ◦ Cs) ≡ 0, (4-3)

tr(C1 ◦ · · · ◦ Cr ◦ (AA′) ◦ Cr+1 ◦ · · · ◦ Cs) ≡ −tr(C1 ◦ · · · ◦ Cr ◦ (A′ A) ◦ Cr+1 ◦ · · · ◦ Cs), (4-4)

where in both cases 0 ≤ r ≤ s and s > 0. We claim that

If W = Zi1 ◦ · · · ◦ Zik is a product of generic octonions where 1 ≤ i1, . . . , ik ≤ n,
then tr(W ) ≡ ±tr(iσ(1), . . . , iσ(k)) for some σ ∈ Sk . (4-5)

Assume that claim (4-5) does not hold. Then there exists τ ∈ Sk and the maximal 2 ≤ r < k such that
some product W ′

= Ziτ(1)
◦ · · · ◦ Ziτ(k)

satisfies tr(W ) ≡ ±tr(W ′) and

W ′
= C1 ◦ · · · ◦ (U (V1V2)) ◦ · · · ◦ Cs or W ′

= C1 ◦ · · · ◦ (V U ) ◦ · · · ◦ Cs,

where

• U =
(
· · · ((Z j1 Z j2)Z j3) · · ·

)
Z jr for some 1 ≤ j1, . . . , jr ≤ n,

• V, V1, V2 are some products of generic octonions,

• C1, . . . , Cs are generic octonions with s ≥ 0.

By (2-1) and (4-4), we can assume that W ′
= C1 ◦ · · · ◦ (U (V1V2)) ◦ · · · ◦ Cs . Consequently, applying

equivalence (4-1) and equivalence (2-1) or (4-4), we obtain that

tr
(
C1◦· · ·◦(U (V1V2))◦· · ·◦Cs

)
≡−tr

(
C1◦· · ·◦(V1(U V2))◦· · ·◦Cs

)
≡±tr

(
C1◦· · ·◦((U V2)V1)◦· · ·◦Cs

)
.

If V2 is a product of more than one generic octonions, then V2 = V ′

2V ′′

2 for some products V ′

2, V ′′

2 of
generic octonions and we repeat the reasoning for C1 ◦ · · · ◦ (U (V ′

2V ′′

2 )) ◦ · · · ◦ Cs , and so on. Finally, we
can assume that V2 = Z j for some j ; a contradiction to the maximality of r .

Equivalences (4-2) and (4-4) imply that part 3 is valid for 1 ≤ i1, . . . , ik ≤ n, where k ≥ 3. This fact
together with claim (4-5) imply part 2. Similarly, this fact together with claim (4-5) and formula (4-3)
imply part 1. □
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Proposition 4.3. In case char F ̸= 2 the algebra of invariants K G2
n is minimally generated by S(4)

n .

Proof. The description of generators for K G2
n from [23] (see Section 2D for the details) together with

Lemmas 4.1, 4.2 and formula (2-8) imply that the set S(4)
n generates the algebra K G2

n . By Corollary 1 of
[23] and formula (2-8), the invariants

tr(i), n(Zi ), tr(12), tr(13), tr(23), tr(123),

where 1 ≤ i ≤ 3, are algebraically independent over F. Thus the required statement is proven for n ≤ 3.
Assume n ≥ 4. Thus S(4)

n \{ f } is not a generating set for any f ∈ S(4)
n with deg( f ) ̸= 4.

Assume that S(4)
n \{tr(1234)} is a generating set. Then tr(1234) is a linear combination of tr(12) tr(34),

tr(13) tr(24), tr(14) tr(23) and products containing tr(i) for some 1 ≤ i ≤ 4. Considering substitutions

Z1 → v1, Z2 → v2, Z3 → v3, Z4 → e1 − e2

and using equalities tr(((v1v2)v3)(e1 − e2)) = −1 and tr(vi (e1 − e2)) = 0 for 1 ≤ i ≤ 3, we obtain a
contradiction. The proposition is proven. □

Remark 4.4. 1. By (2-8), in the formulation of Proposition 4.3 we can replace n(Zi ) by tr(Z2
i ) for all

1 ≤ i ≤ n.

2. It easily follows from the proof of Proposition 4.3 (see also Section 1 of [23]) that K G2
0,n is minimally

generated by S(4)
0,n when char F ̸= 2.

Proposition 4.5. Assume char F ̸= 2. Then S(4)
0,n and S(4)

n are minimal separating sets for K G2
0,n and K G2

n

(respectively) for all n > 0.

Proof. By Proposition 4.3 and Remark 4.4, the sets S(4)
0,n and S(4)

n are separating for K G2
0,n and K G2

n

(respectively). For a = 0, b = u1 +v1 we have tr(a) = n(a) = tr(b) = 0, but n(b) = −1. For a = 0, b = e1

we have tr(a) = n(a) = n(b) = 0, but tr(b) = 1. Hence, S1 is a minimal separating set for K G2
1 . Claims 1,

2, 3 (see below) imply that S(4)
0,n is a minimal separating set for K G2

0,n . Therefore, S(4)
n is also a minimal

separating set for K G2
n .

Claim 1. Let n = 2. Then S0,2\{tr(X1 X2)} is not separating K G2
0,2.

To prove this claim consider a = (0, 0) and b = (u1, v1) from O2
0 . Then tr(a1a2) ̸= tr(b1b2).

Claim 2. Let n = 3. Then S0,3\{tr((X1 X2)X3)} is not separating for K G2
0,3.

To prove this claim we consider a = (0, 0, 0) and b = (v1, v2, v3) from O3
0 . Then tr(ai a j )= tr(bi b j )= 0

for all 1 ≤ i < j ≤ 3, but tr(a1a2a3) ̸= tr(b1b2b3).

Claim 3. Let n = 4. Then S0,4\
{
tr
(
((X1 X2)X3)X4

)}
is not separating for K G2

0,4.
To prove this claim we consider a = (u1, v1, c, u2) and b = (u1, v1, c, −v2) from O4

0 , where c =

e1 +u2 −v2 −e2. Then tr(ai a4) = tr(bi b4) for 1 ≤ i ≤ 3 and tr((ai a j )a4) = tr((bi b j )b4) for 1 ≤ i < j ≤ 3,
but tr

(
((a1a2)a3)a4

)
= 0 and tr

(
((b1b2)b3)b4

)
= −1. □
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5. Trace invariants

The group GL2 = GL2(F) acts on Mn
2 = M2(F)⊕n diagonally by conjugation. The coordinate ring

F[Mn
2 ] = F[zi1, zi2, zi5, zi8 | 1 ≤ i ≤ n] is also a GL2-module, where the generic matrices are

Ẑi =

(
zi1 zi2

zi5 zi8

)
.

We consider F[Mn
2 ] as a subalgebra of Kn . In [6] it was shown that

{det(Ẑi ) | 1 ≤ i ≤ n} ∪ {tr(Ẑi1 · · · Ẑik ) | 1 ≤ i1 < · · · < ik ≤ n, k > 0}, (5-1)

is a minimal generating set for F[Mn
2 ]

GL2 , where k ≤ 3 in case char F ̸= 2. In particular, all elements from
set (5-1) are indecomposable. A minimal separating set for F[Mn

2 ]
GL2 was obtained in [11].

Define a surjective homomorphism of F-algebras 9 : Kn → F[Mn
2 ] as follows: zi3 → 0, zi4 → 0,

zi6 → 0, zi7 → 0 for all i . We can naturally extend 9 to the linear map 9̂ : O(Kn) → O(F[Mn
2 ]) by

9̂

(
f1 ( f2, f3, f4)

( f5, f6, f7) f8

)
=

(
9( f1) (9( f2), 9( f3), 9( f4))

(9( f5), 9( f6), 9( f7)) 9( f8)

)
for f1, . . . , f8 ∈ Kn .

For an associative commutative F-algebra A define a map F : M2(A) → O(A) by(
a1 a2

a3 a4

)
→

(
a1 (a2, 0, 0)

(a3, 0, 0) a4

)
for a1, . . . , a4 ∈ A. It is easy to see that F is an injective homomorphism of algebras preserving the
trace, since (a, 0, 0) × (b, 0, 0) = 0 for all a, b ∈ A. In what follows, we consider A = Kn . Since the
homomorphism 9̂ commutes with the trace and the norm, we obtain the following lemma.

Lemma 5.1. For all 1 ≤ i, i1, . . . , ik ≤ n we have

(a) 9̂
(
· · · ((Zi1 Zi2)Zi3) · · ·

)
Zik ) = F(Ẑi1 · · · Ẑik );

(b) 9
(
tr
((

· · · ((Zi1 Zi2)Zi3) · · ·
)
Zik

))
= tr(Ẑi1 · · · Ẑik );

(c) 9(n(Zi )) = det(Ẑi ).

Lemmas 2.1, 5.1 and the description of generators of F[Mn
2 ]

GL2 imply that

F[Mn
2 ]

GL2 ⊂ 9(K G2
n ), (5-2)

where we have equality in case char F ̸= 2.

Theorem 5.2. In case char F = 2 the algebra of trace G2-invariants Tn is minimally generated by Sn .

Proof. By Lemma 4.2 and formula (2-8), the algebra Tn is generated by Sn . To show that Sn is a minimal
generating set, it is enough to prove that every element f ∈ Sn is indecomposable in Tn . Assume the
contrary. If f = tr

((
· · · ((Zi1 Zi2)Zi3) · · ·

)
Zik

)
from Sn were decomposable in Tn , then by parts (b), (c)

of Lemma 5.1, 9( f ) = tr(Ẑi1 · · · Ẑik ) would be decomposable in F[Mn
2 ]

GL2 ; a contradiction. Similarly,
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if f = n(Zi ) were decomposable in Tn , then 9( f ) = det(Ẑi ) would be decomposable in F[Mn
2 ]

GL2 ; a
contradiction. □

6. Subalgebras of O of low dimension

The group G2 acts naturally on the set of subalgebras of O. For a subalgebra A of O we denote by [A]

the G2-orbit of A and we say that [A] is the equivalence class of A. Obviously, all algebras in [A] are
isomorphic to A. Denote by �(O) the set of G2-orbits (i.e., equivalence classes) in the set of subalgebras
of O. Since all algebras from a given equivalence class A∈ �(O) have the same dimension, we call it the
dimension of A. A set of (linearly independent) octonions is said to be a basis of A, provided they form a
basis of an algebra from A. An equivalence class A ∈ �(O) is called closed if there exists a subalgebra
A of O with [A] = A and there is an F-basis a1, . . . , an of A such that the G2-orbit of (a1, . . . , an) is
closed in On . More details on the definition of a closed equivalence class can be found in Remark 7.3
(see below). Denote by

M =

(
∗ (∗, 0, 0)

(∗, 0, 0) ∗

)
and S =

(
∗ (∗, ∗, 0)

(∗, 0, ∗) ∗

)
,

the subalgebra of quaternions and sextonions of O, respectively, where the term sextonions was introduced
in [15]. Note that F : M2(F) → M is an isomorphism of F-algebras (see Section 5 for the details).

The main result of this section is the following statement.

Proposition 6.1. Assume char F = 2 and an equivalence class A ∈ �(O) has dimension d ≤ 3. Then one
of the following sets is a basis for A:

d = 1: {1O}, {u1}, {e1};

d = 2: {1O, u1}, {u1, v2}, {e1, u1}, {e1, v1}, {e1, e2};

d = 3: {1O, u1, v2}, {e1, e2, u1}, {e1, u1, v2}, {u1, v2, v3}.

We do not require for a subalgebra of O to be unital. The proof of Proposition 6.1 will be given in a
series of propositions and lemmas, which are interesting on their own.

Proposition 6.2 [17, Proposition 3.3]. For each a ∈ O there exists g ∈ G2 such that ga is a canonical
octonion of one of the following types:

(D)
(

α1
0

0
α8

)
,

(K1)
(

α1
0

(1,0,0)
α1

)
,

for some α1, α8 ∈ F. These canonical octonions are unique modulo permutation α1 ↔ α8 for type (D).

Proposition 6.3 [17, Theorem 4.4]. Assume char F = 2. For each (a, b) ∈ O2
0 there exists g ∈ G2 such

that g(a, b) is a pair of one of the following types:

(EE) (α11O, β11O),

(EK1)
(
α11O,

(
β1
0

(1,0,0)
β1

))
,
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(K1E)
((

α1
0

(1,0,0)
α1

)
, β11O

)
,

(K1L1)
((

α1
0

(1,0,0)
α1

)
,
(

β1
0

(β2,0,0)
β1

))
with β2 ̸= 0,

(K1L⊤

1 )
((

α1
0

(1,0,0)
α1

)
,
(

β1
(β5,0,0)

0
β1

))
with β5 ̸= 0,

(K1M1)
((

α1
0

(1,0,0)
α1

)
,
(

β1
0

(0,1,0)
β1

))
,

(K1M⊤

1 )
((

α1
0

(1,0,0)
α1

)
,
(

β1
(0,1,0)

0
β1

))
,

where α1, β1, β2, β5 ∈ F.

Remark 6.4 [17, Lemma 3.2]. Assume a =
(

α
v

u
β

)
∈ O. Then:

(a) If u ̸= 0, then there exists g ∈ SL3 such that ga =
(

α
v′

(1,0,0)
β

)
, where v′

= (∗, 0, 0) or v′
= (0, 1, 0).

(b) If v ̸= 0, then there exists g ∈ SL3 such that ga =
(

α
(1,0,0)

u′

β

)
, where u′

= (∗, 0, 0) or u′
= (0, 1, 0).

(c) There exist g, g′, g′′
∈ SL3 such that

g(u1, v1, u2, v3) = (u1, v1, u3, −v2),

g′(u2, v2, u1, v3) = (u2, v2, u3, −v1),

g′′(u3, v3, u1, v2) = (u3, v3, u2, −v1).

(d) If u = (γ1, γ2, γ3) with γ2 ̸= 0 or γ3 ̸= 0 and v = (δ, 0, 0), then there exists g ∈ SL3 such that
ga =

(
α

(δ,0,0)
(γ1,1,0)

β

)
and g(u1, v1) = (u1, v1).

(e) If v = (γ1, γ2, γ3) with γ2 ̸= 0 or γ3 ̸= 0 and u = (δ, 0, 0), then there exists g ∈ SL3 such that
ga =

(
α

(γ1,1,0)
(δ,0,0)

β

)
and g(u1, v1) = (u1, v1).

The following lemma is an immediate consequence of the Cayley–Dickson doubling process (see also
Section 2.1 of [22]). Its analogue over a finite field is part (ii) of Lemma 3.3 from [9].

Lemma 6.5. Every automorphism of the F-algebra M can be extended to an automorphism of the
algebra O.

Lemma 6.6. If A⊂ O is a nonzero subalgebra, then there exists g ∈ G2 such that 1O ∈ gA or u1 ∈ gA or
e1 ∈ gA. In particular, if char F = 2 and A ̸⊂ O0 is a nonzero subalgebra of O, then there exists g ∈ G2

such that e1 ∈ gA.

Proof. This follows from Proposition 6.2, the known corresponding statement for the algebra M ≃ M2(F)

and Lemma 6.5. □

6A. The case of traceless subalgebra. In this section we assume that char F = 2 and A ⊂ O is a
subalgebra of traceless octonions, that is, A ⊂ O0.

Remark 6.7. If a =
(

α
v

u
β

)
∈ A is triangular (i.e., u = 0 or v = 0), and α ̸= 0 or β ̸= 0, then 1O ∈ A.

Proof. Since α = β is nonzero, considering a2
= α21O completes the proof. □

Lemma 6.8. If dimA ≥ 2, then there exists g ∈ G2 such that one of the following possibilities holds:
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(a) {1O, u1} ⊂ gA;

(b) {u1, v2} ⊂ gA and 1O ̸∈ gA.

Proof. By Lemma 6.6, we assume that one of the following alternatives holds:

1. 1O ∈ A. There exists a ∈ A such that {1O, a} are linearly independent. Since G21O = 1O , by
Proposition 6.2, we can assume that a = αe1 + βe2 or a = α1O + u1 for some α, β ∈ F. In the first case
we have α = β and {1O, a} are linearly dependent; a contradiction. In the second case we obtain that
u1 = a − α1O lies in A.

2. u1 ∈ A and 1O ̸∈ A. There exists b ∈ A such that {u1, b} are linearly independent. Consider g ∈ G2

such that g(u1, b) = (a′, b′) is one of the pairs from Proposition 6.3. Since tr(a′) = n(a′) = 0 and a′
̸= 0,

one easily sees that a′
= u1. By Remark 6.7 and the fact that 1O ̸∈A one sees that both diagonal entries of

b′ are equal to zero. Using the fact that {u1, b′
} are linearly independent, we obtain that the pair (u1, b′)

has one of the following types:

(K1L⊤

1 ) b′
= βv1, where β ∈ F \ {0}. Since u1b′

= βe1 and tr(e1) ̸= 0, we obtain a contradiction.

(K1M1) b′
= u2. Since u1b′

= v3, acting by a suitable element of SL3 and using part (c) of Remark 6.4,
we obtain case (b).

(K1M⊤

1 ) b′
= v2, i.e., we have case (b). □

Lemma 6.9. If dimA ≥ 3, then there exists g ∈ G2 such that one of the following possibilities holds:

(a) {1O, u1, v2} ⊂ gA;

(b) {u1, v2, v3} ⊂ gA and 1O ̸∈ gA.

Proof. By Lemma 6.8, one can assume that one of the following possibilities holds:

1. {1O, u1} ⊂A. There exists b ∈A such that {1O, u1, b} are linearly independent. Consider g ∈ G2 such
that g(u1, b) = (a′, b′) is one of the pairs from Proposition 6.3. Since tr(a′) = n(a′) = 0 and a′

̸= 0, one
easily sees that a′

= u1. Let β ′ be the diagonal element of b′. Since G21O = 1O , taking b′′
= b′

− β ′1O

instead of b′, we can assume that {1O, u1, b′′
} ⊂ A are linearly independent and (u1, b′′) has one of types

from Proposition 6.3, where the diagonal elements of b′′ are zeros. Consider the possible types for (u1, b′′):

(K1L⊤

1 ) {1O, u1, βv1} ⊂ A for some nonzero β ∈ F. Since u1v1 = e1, we obtain a contradiction.

(K1M1) {1O, u1, u2} ⊂ A. Since u1u2 = v3, acting by a suitable element of SL3 from part (c) of
Remark 6.4 we obtain case (a).

(K1M⊤

1 ) {1O, u1, v2} ⊂ A, i.e., we have case (a).

2. {u1, v2} ⊂ A and 1O ̸∈ A. Consider b ∈ A such that {u1, v2, b} are linearly independent. One can
assume that b =

(
β1

(β5,0,β7)
(0,β3,β4)

β1

)
for some βi ∈ F. Since

u1b =

(
β5 (β1, 0, 0)

(0, −β4, β3) 0

)
and v2b =

(
0 (−β7, 0, β5)

(0, β1, 0) β3

)
,
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we have β3 = β5 = 0. The equality b2
= (β2

1 +β4β7)1O implies that {u1, v2, b} ⊂ A, where the element
b = β11O + β4u3 + β7v3 is nonzero and β2

1 = β4β7.
Let β1 =0. Then u3 lies in A or case (b) holds. If u3 ∈A, then {u1, v2, u3}⊂A; thus, {v1, u2, v3}⊂ h̄ A

and part (c) of Remark 6.4 implies that case (b) holds.
Let β1 ̸= 0. Then β4, β7 ̸= 0 and for g = δ1(0, 0, β1/β7) from G2 we have

g(u1, v2, b) =

(
u1 +

β1

β7
v2, v2, β7u3

)
.

Therefore, {u1, v2, u3} ⊂ gA and case (b) holds (see above). □

6B. The case of nontraceless subalgebra. In this section we assume that char F = 2 and A ̸⊂ O0 is a
subalgebra of O.

Lemma 6.10. If dimA ≥ 2, then there exists g ∈ G2 such that one of the following possibilities holds:

(a) {e1, u1} ⊂ gA;

(b) {e1, v1} ⊂ gA;

(c) {e1, e2} ⊂ gA.

Proof. By Lemma 6.6 we can assume that e1 ∈ A. There exists b ∈ A such that {e1, b} are linearly
independent. One can also assume that b =

( 0
v

u
β

)
for some u, v ∈ F3 and β ∈ F.

Assume u ̸= 0. Since e1b =
( 0

0
u
0

)
, by part (a) of Remark 6.4 there exists g ∈ SL3 such that g(e1, e1b) =

(e1, u1), i.e., the case (a) holds.
Assume v ̸= 0. Since b e1 =

( 0
v

0
0

)
, by part (b) of Remark 6.4 there exists g ∈ SL3 such that g(e1, b e1)=

(e1, v1), i.e., the case (b) holds.
In case u = v = 0 we have β ̸= 0, i.e., the case (c) holds. □

Lemma 6.11. If dimA ≥ 3, then there exists g ∈ G2 such that one of the following possibilities holds:

(a) {e1, e2, u1} ⊂ gA;

(b) {e1, u1, v2} ⊂ gA.

Before the proof of this lemma we formulate the following remark.

Remark 6.12. (a) {e1, e2, u1} ⊂ A if and only if {e1, e2, v1} ⊂ h̄ A.

(b) {e1, u1, v2} ⊂ A if and only if {e1, u2, v1} ⊂ gA for some g ∈ G2 (see part (c) of Remark 6.4).

Proof of Lemma 6.11. By Lemma 6.10, we assume that one of the following possibilities holds:

1. {e1, u1} ⊂ A. There exists b ∈ A such that {e1, u1, b} are linearly independent. We can assume that
b =

( 0
v

u
β

)
for some u = (0, ∗, ∗) ∈ F3, v = (γ1, γ2, γ3) ∈ F3 and β ∈ F.

Assume u ̸= 0. Since e1b =
( 0

0
u
0

)
, by part (d) of Remark 6.4 there exists g ∈ SL3 such that

g(e1, u1, e1b) = (e1, u1, u2). By part (c) of Remark 6.4 there exists g′
∈ SL3 such that g′(e1, u1, e1b) =

(e1, u1, u3). The equality u1u3 = −v2 implies that the case (b) holds.
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Assume u = 0. Note that b e1 =
( 0

v
0
0

)
lies in A.

Let γ1 ̸= 0. The equality b u1 = γ1e2 implies that the case (a) holds.
Otherwise, γ1 = 0. In case γ2 ̸= 0 or γ3 ̸= 0, by part (e) of Remark 6.4 there exists g ∈ SL3 such that

g(e1, u1, b e1) = (e1, u1, v2), that is, the case (b) holds. If γ2 = γ3 = 0, then β ̸= 0 and e2 ∈ A, that is,
the case (a) holds.

2. The case {e1, v1} ⊂ A is similar to case 1.

3. {e1, e2} ⊂A. There exists b =
(

α
v

u
β

)
in A such that {e1, e2, b} are linearly independent. We can assume

that α = β = 0.
Assume u ̸= 0. Since e1b =

( 0
0

u
0

)
, by part (a) of Remark 6.4 there exists g ∈ SL3 such that

g(e1, e2, e1b) = (e1, e2, u1), equivalently, the case (a) holds.
Otherwise, v ̸= 0. Since b =

( 0
v

0
0

)
by part (b) of Remark 6.4 there exists g ∈ SL3 such that g(e1, e2, b)=

(e1, e2, v1). By part (a) of Remark 6.12 we obtain that case (a) holds. □

6C. Proof of Proposition 6.1. Assume A = [A] for some subalgebra A of O. Lemmas 6.6, 6.8, 6.9,
6.10, 6.11 imply that there exist g ∈ G2 such that gA contains one of the sets from the formulation of
Proposition 6.1. Since the F-span of each of these sets is an algebra, the proof is completed.

7. Separating invariants in case char F = 2

In this section we assume that char F = 2. We introduce some notation for a ∈ On:

• the rank rk(a) is the dimension of the subspace of O spanned by a1, . . . , an;

• alg(a) is the F-algebra (in general, nonunital) generated by a1, . . . , an .

Obviously, rk(ga) = rk(a) for every g ∈ G2. The following remark is well-known (for example, see
Corollary 2.3.6 of [2]).

Remark 7.1. Assume a ∈ On . Then there exists a unique closed G2-orbit O = Oa in the closure of G2a,
and Oa is the only closed orbit in the fiber

{c ∈ On
| f (a) = f (c) for all f ∈ K G2

n }.

In particular, f (a) = f (c) for every f ∈ K G2
n and c ∈ Oa .

Observe that the group GLn acts naturally on On on the right as follows: for any A = (αi j ) ∈ GLn and
a ∈ On we set

(a A)i =

∑
1≤k≤n

αki ak for 1 ≤ i ≤ n.

This action commutes with the left G2-action.

Lemma 7.2. Given a, b ∈ On , define a′
= a A and b′

= bA for some A ∈ GLn . Then:

(a) G2a = G2b if and only if G2a′
= G2b′.
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(b) Given some d ≥ 2, we have that a and b are not separated by S(d)
n if and only if a′ and b′ are not

separated by S(d)
n .

(c) G2a is closed if and only if G2a′ is closed.

Proof. Since A is invertible, for each part of this lemma it is sufficient to prove the “only if” implication.

(a) For each g ∈ G2 the equality ga = b implies ga′
= b′, hence our claim follows.

(b) Assume that a and b are not separated by S(d)
n , i.e., f (a) = f (b) for all f ∈ S(d)

n . The linearity of the
trace together with Lemma 4.2 and formulas (2-3), (2-8) imply that h(a′) = h(b′) for all h ∈ S(d)

n .

(c) The right action by A on On gives a homeomorphism of On with respect to the Zariski topology.
Hence it sends closed subsets to closed subsets. Moreover, it maps G2-orbits to G2-orbits. □

The following remark is a consequence of part (c) of Lemma 7.2.

Remark 7.3. An equivalence class A ∈ �(O) is closed if and only if for every subalgebra A of O with
[A] = A we have that if A is the F-span of some a1, . . . , an , then the G2-orbit of (a1, . . . , an) is closed
in On .

Proposition 7.4. The set S(8)
m ⊂ K G2

m is separating for every m > 0 if and only if S(8)
n separates different

closed G2-orbits of a = (a1, . . . , al, 0, . . . , 0) ∈ On and b ∈ On for all n > 0, where

• a1, . . . , al is a basis of some subalgebra A of O,

• b1, . . . , bn of O linearly generate some subalgebra B of O,

• dimA ≥ dimB.

Proof. We only have to prove the “if” part of the statement. Assume that a, b ∈ On are not separated by
S(8)

n for some n > 0. To obtain the required, we will show that G2a = G2b.
By Remark 7.1 we can assume that G2a and G2b are closed.

Claim 1. Given an F-basis a′

1, . . . , a′

l of F-span of a1, . . . , an , without loss of generality, we can assume
that a = (a′

1, . . . , a′

l , 0, . . . , 0) ∈ On .
To prove claim 1, we consider A ∈ GLn such that a A = (a′

1, . . . , a′

l , 0, . . . , 0). Parts (a), (b), (c) of
Lemma 7.2 imply that we can consider a A, bA instead of a, b and claim 1 is proven.

Denote by A the algebra generated by a1, . . . , an and by B the algebra generated by b1, . . . , bn . Without
loss of generality we can assume that dimA ≥ dimB.

Claim 2. Without loss of generality, we can assume that F-span of a1, . . . , an is A and F-span of b1, . . . , bn

is B.
Let us prove claim 2. It is an easy exercise in linear algebra to show that there exists A ∈ GLn such

that a A = (a′

1, . . . , a′

l , 0, . . . , 0) and bA = (0, . . . , 0, b′

d , . . . , b′
t , 0, . . . , 0), where a′

1, . . . , a′

l is a basis
for F-span of a1, . . . , an and b′

d , . . . , b′
t is a basis for b1, . . . , bn . Similarly to claim 1, without loss of

generality, we can take a A, bA instead of a, b, that is, we assume that

a = (a1, . . . , al, 0, . . . , 0) and b = (0, . . . , 0, bd , . . . , bt , 0, . . . , 0),
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where l ≤ 8 = dim O and t − d + 1 ≤ 8. There exist words v1, . . . , vr of F{X}n such that the F-span of
the set a1, . . . , an, v1(a), . . . , vr (a) is A. Similarly, there exist words w1, . . . , ws of F{X}n such that the
F-span of the set b1, . . . , bn, w1(b), . . . , ws(b) is B.

Since the map On
→ Or+s given by x → (v1(x), . . . , vr (x), w1(x), . . . , ws(x)) is a morphism of

affine algebraic varieties, the G2-orbits of

c1 = (a1, . . . , an, v1(a), . . . , vr (a), w1(a), . . . , ws(a)),

c2 = (b1, . . . , bn, v1(b), . . . , vr (b), w1(b), . . . , ws(b))

are closed. Obviously, G2a = G2b if and only if G2c1 = G2c2. By Lemma 4.2 and formula (2-8), for
any f ∈ S(8)

n+r+s we have that f (c1) is a nonassociative polynomial in tr
(
(. . . (ai1ai2) . . .)aik

)
and n(ai )

for 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ i ≤ n. But this trace is zero in case k > 8 by the construction of a. The
same fact holds also for f (c2). Thus, a and b are not separated by S(8)

n if and only if c1 and c2 are not
separated by S(8)

n+r+s . Therefore, we can consider c1, c2 instead of a, b and claim 2 is proven.
Since claims 1 and 2 imply that a, b satisfy conditions from the formulation of the lemma, we obtain

that G2a = G2b. □

Lemma 7.5. 1. For every a ∈M with tr(a)=1 and n(a)=0 there exists g from the stabilizer StabG2(M)=

{g ∈ G2 | g M ⊂ M} such that ga = e1.

2. For every a ∈ M with tr(a) = 0 and n(a) = 1 there exists g ∈ StabG2(M) such that ga ∈ {1O, 1O + u1}.

3. Given nonzero γ ∈ F, there exists ξγ ∈ StabG2(M) such that for every α1, . . . , α4 ∈ F we have

ξγ

(
α1 (α2, 0, 0)

(α3, 0, 0) α4

)
=

(
α1 (γα2, 0, 0)

(γ −1α3, 0, 0) α4

)
.

4. Assume that a = (e1, e2) and b ∈ M2 satisfy S(2)
n (a) = S(2)

n (b). Then there exists g ∈ StabG2(M) such
that gb1 = e1 and gb2 ∈ {e2, e2 + u1, e2 + v1}.

5. If b ∈ M satisfies tr(b) = n(b) = tr(e1b) = 0, then b ∈ Fu1 or b ∈ Fv1.

Proof. 1. For A = F−1(a) we have tr(A) = 1 and det(A) = 0. Hence there exists g ∈ GL2 such that
g−1 Ag =

( 1
0

0
0

)
and Lemma 6.5 completes the proof.

2. For A =F−1(a) we have tr(A)=0 and det(A)=1. Hence there exists g ∈GL2 such that g−1 Ag =
(

λ
0

1
λ

)
or g−1 Ag =

(
λ1
0

0
λ2

)
for some λ, λ1, λ2 and Lemma 6.5 completes the proof.

3. Given g =
(1

0
0
γ

)
∈ GL2, we have

g−1
(

α1 α2

α3 α4

)
g =

(
α1 γα2

γ −1α3 α4

)
.

Lemma 6.5 concludes the proof.

4. By part 1 we assume that b1 = e1. Define F−1(b2) = B2 =
(

β1
β3

β2
β4

)
. Since 0 = tr(a1a2) = tr(b1b2), we

obtain β1 = 0. The equalities tr(b2) = 1 and n(b2) = 0 imply β4 = 1 and β2β3 = 0. Part 3 concludes the
proof.
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5. Define F−1(b) = B =
(

β1
β3

β2
β4

)
. Since 0 = tr(e1b) = β1, the equalities tr(b) = n(b) = 0 conclude the

proof. □

Lemma 7.6. Assume that a = (a1, 0, . . . , 0) ∈ Mn and b ∈ Mn are not separated by S(2)
n , where a1 ∈

{1O, e1} and dim(alg(b)) ≤ 1. Then G2 a = G2 b.

Proof. 1. Let a1 = 1O . Since tr(b1) = 0 and n(b1) = 1, by part 2 of Lemma 7.5 we can assume that
b1 = 1O or b1 = 1O + u1.

In the first case, dim(alg(b)) ≤ 1 implies b = (1O, β21O, . . . , βn1O) for some β2, . . . , βn ∈ F. Since
0 = n(bi ) = β2

i for all 1 < i ≤ n, we have a = b.
In the second case we have that b1 and b2

1 = 1O are linearly independent; a contradiction.

2. Let a1 = e1. Since tr(b1) = 1 and n(b1) = 0, by part 1 of Lemma 7.5 we can assume that b1 = e1.
Then the condition dim(alg(b)) ≤ 1 implies that b = (e1, β2e1, . . . , βne1) for some β2, . . . , βn ∈ F. For
each 1 < i ≤ n we have 0 = tr(a10) = tr(b1bi ) = βi . Therefore, a = b. □

Lemma 7.7. Assume that a = (e1, e2, 0, . . . , 0) ∈ Mn and b ∈ Mn are not separated by S(2)
n and

dim(alg(b)) ≤ 2. Then G2 a = G2 b.

Proof. By part 4 of Lemma 7.5 we can assume that b1 = e1 and b2 ∈ {e2, e2 + u1, e2 + v1}.
Let b2 = e2. For 3 ≤ i ≤ n part 5 of Lemma 7.5 implies that bi ∈ Fu1 or bi ∈ Fv1, since tr(bi ) = n(bi ) =

tr(b1bi ) = 0. It follows from dim(alg(b)) ≤ 2 that bi = 0 for all 3 ≤ i ≤ n. Therefore, a = b.
In case b2 = e2 + u1 we consider b1b2 = u1 and obtain that {e1, u1, e2} ⊂ alg(b); a contradiction.
In case b2 = e2 + v1 we consider b2b1 = v1 and obtain that {e1, v1, e2} ⊂ alg(b); a contradiction. □

Lemma 7.8. If a = (e1, e2, u1, v1, 0, . . . , 0)∈ Mn and b ∈ Mn are not separated by S(3)
n , then G2 a = G2 b.

Proof. By part 4 of Lemma 7.5 we can assume that b1 = e1 and b2 ∈ {e2, e2 + u1, e2 + v1}. Assume
3 ≤ i ≤ n. We have tr(bi ) = n(bi ) = tr(b1bi ) = 0, since tr(a1a3) = tr(a1a4) = 0. Thus part 5 of Lemma 7.5
implies that bi = βi u1 or bi = βiv1 for some βi ∈ F. Since tr(b3b4) = tr(a3a4) = 1, we obtain that β3β4 = 1
and either b3 = β3u1, b4 = β4v1 or b3 = β3v1, b4 = β4u1 for some nonzero β3, β4 ∈ F with β3β4 = 1.
Hence equalities tr(b3b2) = tr(b4b2) = 0 imply that b2 = e2.

1. Let b3 = β3u1, b4 = β−1
3 v1. By part 3 of Lemma 7.5 we can assume that β3 = 1.

Consider 5 ≤ i ≤ n. If bi = βi u1, then 0 = tr(a4ai ) = tr(b4bi ) = βi . If bi = βiv1, then 0 = tr(a3ai ) =

tr(b3bi ) = βi . Therefore, a = b.

2. If b3 = β3v1, b4 = β−1
3 u1, we have 0 = tr((b1b3)b4) = tr((a1a3)a4) = tr(u1v1) = 1; a contradiction. □

Lemma 7.9. If a = (e1, e2, u1, v1, u2, v2, u3, v3, 0, . . . , 0) ∈ On and b ∈ On are not separated by S(3)
n ,

then G2 a = G2 b.

Proof. Given c1, . . . , c8, denote by Mc1,...,c8 the Gram matrix (tr(ci c j ))1≤i, j≤8. Since the trace is a
bilinear nondegenerate form on O and a1, . . . , a8 are linearly independent, we obtain that det(Ga1,...,a8) =

det(Gb1,...,b8) is nonzero. Hence, b1, . . . , b8 are also linearly independent. In particular, F-span of
b1, . . . , b8 is O.
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For every 1 ≤ i ≤ 8 and 8 < j ≤ n we have that tr(ai a j ) = tr(bi b j ) is zero. Therefore, tr(bb j ) = 0 for
all b ∈ O. Since tr is nondegenerate on O, we obtain b = (b1, . . . , b8, 0, . . . , 0).

For every 1 ≤ i, j ≤ 8 there exists 1 ≤ ki j ≤ 8 and ηi j ∈ F such that ai a j = ηi j aki j . Therefore, for each
1 ≤ l ≤ 8 we have that tr((ai a j −ηi j aki j )al)= tr((bi b j −ηi j bki j )bl) is zero. Hence, bi b j =ηi j bki j . Consider
a linear map f : O → O defined on the basis of O by f (ai ) = bi for all 1 ≤ i ≤ 8. Since the multiplication
table for a1, . . . , a8 is the same as for b1, . . . , b8, we can see that f ∈ G2. The required is proven. □

The following statement is a corollary of Proposition 6.1.

Corollary 7.10. Assume char F = 2 and a closed equivalence class A ∈ �(O) has the dimension d ≤ 3.
Then one of the following sets is a basis for A:

d = 1: {1O}, {e1};

d = 2: {e1, e2}.

Proof. We need to show that any basis {a1, . . . , an} from Proposition 6.1, different from the above bases,
generates nonclosed equivalence class. For each a = (a1, . . . , an) the arguments are the same: we find an
element a′ in the closure of G2a such that rk(a′) < rk(a), which obviously implies that G2a is not closed.

• If a = (u1) ∈ O1, then for the standard one-parameter subgroup θλ with λ = (1, −1, 0) the element
a′

= limt→0 θλ(t)a = (0) lies in G2a (see Section 3B for more details).

• If a = (1O, u1), then a′
= limt→0 θ(1,−1,0)(t)a = (1O, 0) lies in G2a.

• If a = (u1, v2), then a′
= limt→0 θ(1,−1,0)(t)a = (0, 0) lies in G2a.

• If a = (e1, u1), then a′
= limt→0 θ(1,−1,0)(t)a = (e1, 0) lies in G2a.

• If a = (e1, v1), then a′
= limt→0 θ(−1,1,0)(t)a = (e1, 0) lies in G2a.

• If a = (1O, u1, v2), then a′
= limt→0 θ(1,−1,0)(t)a = (1O, 0, 0) lies in G2a.

• If a = (e1, e2, u1), then a′
= limt→0 θ(1,−1,0)(t)a = (e1, e2, 0) lies in G2a.

• If a = (e1, u1, v2), then a′
= limt→0 θ(1,−1,0)(t)a = (e1, 0, 0) lies in G2a.

• If a = (u1, v2, v3), then a′
= limt→0 θ(1,−1,0)(t)a = (0, 0, v3) lies in G2a. □

Theorem 7.11. The set S(8)
n is a separating set for K G2

n in case char F = 2.

Proof. We will apply Proposition 7.4 to obtain the required statement. Assume that G2-orbits of
a = (a1, . . . , al, 0, . . . , 0) ∈ On , b ∈ On are closed, a1, . . . , al is a basis of some subalgebra A of O,
octonions b1, . . . , bn linearly generate some subalgebra B of O, and dimA ≥ dimB. We assume that a
and b are not separated by S(8)

n .
Let dimA = 8. We may choose that a = (e1, e2, u1, v1, u2, v2, u3, v3, 0, . . . , 0) by Lemma 7.2. Then

Lemma 7.9 implies that G2 a = G2 b.
Let dimA < 8. Then A lies in a maximal proper subalgebra of O. By Theorem 5 of [19], the algebra

of sextonions S is the unique maximal proper subalgebra of O modulo G2-action (see also Remark 7.12
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below). So A ⊂ S, that is, for all 1 ≤ i ≤ l we have

ai =

(
αi1 (αi2, αi3, 0)

(αi4, 0, αi5) αi6

)
for some αi j ∈ F. Similarly, we can assume that B ⊂ S.

Since for the standard one-parameter subgroup θλ with λ = (0, 1, −1) we have

θλ(t)ai =

(
αi1 (αi2, tαi3, 0)

(αi4, 0, tαi5) αi6

)
,

the limit a′
= limt→0 θλ(t)a exists (see Section 3B for more details). Obviously, a′

= (a′

1, . . . , a′

l , 0, . . . , 0)

lies in Mn . The orbit G2a is closed, therefore, a′
∈ G2 a. Replacing a by a′ we may assume that a ⊂ Mn .

Therefore, A ⊂ M. In the same manner we can assume that B ⊂ M.
In case dimA = 4 by Lemma 7.2 we may choose that a = (e1, e2, u1, v1, 0, . . . , 0) and Lemma 7.8

implies that G2 a = G2 b.
Let dimA ≤ 3. By Corollary 7.10 and Lemma 7.2 we can assume that a is one of the next elements:

(1O), (e1), (e1, e2). If a = (1O) or a = (e1), then Lemma 7.6 implies that G2 a = G2 b. If a = (e1, e2),
then Lemma 7.7 implies that G2 a = G2 b.

Finally, by Proposition 7.4 the set S(8)
n is separating for K G2

n . □

Remark 7.12. In the proof of Theorem 5 of [19], which claims that S is the unique maximal proper
subalgebra of O modulo G2-action, there is a small error, but this does not interfere with the case of an
algebraically closed field. See [8; 18] for more details.

Remark 7.13. It follows from Theorem 7.11 that the set S(8)
0,n is a separating set for K G2

0,n in case char F = 2.
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