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Scattering diagrams for generalized cluster algebras
Lang Mou

We construct scattering diagrams for Chekhov–Shapiro generalized cluster algebras where exchange
polynomials are factorized into binomials, generalizing the cluster scattering diagrams of Gross, Hacking,
Keel and Kontsevich. They turn out to be natural objects arising in Fock and Goncharov’s cluster duality.
Analogous features and structures (such as positivity and the cluster complex structure) in the ordinary
case also appear in the generalized situation. With the help of these scattering diagrams, we show that
generalized cluster variables are theta functions and hence have certain positivity property with respect to
the coefficients in the binomial factors.
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1. Introduction

We study generalized cluster algebras in the sense of [Chekhov and Shapiro 2014]. These algebras are
generalizations of the (ordinary) cluster algebras introduced by Fomin and Zelevinsky [2002], allowing
more general exchange polynomials (as opposed to only binomials) in mutations.

We will see that generalized cluster algebras cannot only be studied in a similar way as cluster algebras
[Fomin and Zelevinsky 2002; 2003; 2007; Berenstein et al. 2005], but that they also naturally appear in
the context of the cluster duality proposed by Fock and Goncharov [2009]. A modified version of Fock
and Goncharov’s cluster duality was formulated and proved by Gross, Hacking, Keel and Kontsevich
[Gross et al. 2018]. In this paper, we extend the scheme therein to study generalized cluster algebras.

Generalized cluster algebras come in a family containing ordinary cluster algebras. Each algebra in
this family can be viewed as (a subalgebra of) the algebra of regular functions of a generalized A-cluster
variety. The (generalized version of) cluster duality says this family is in a sense dual to another family
of generalized X -cluster varieties. In this paper, we demonstrate this duality by reconstructing a family
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of generalized cluster algebras with principal coefficients A prin from a general fiber of the corresponding
dual family of X -cluster varieties.

In the ordinary case, the reconstruction is done through a cluster scattering diagram, the main technical
tool developed in [Gross et al. 2018], which is a mathematical structure associated to the dual X -
cluster variety. For our purpose of studying generalized cluster algebras, we construct generalized cluster
scattering diagrams. This is done by allowing more general wall-crossing functions on the initial incoming
walls. It turns out that many features (such as the positivity property of wall-crossings and the cluster
complex structure) in the ordinary case still hold in the generalized situation; see Theorems 6.31 and 7.10.

Using the techniques of scattering diagrams (and related objects such as broken lines) transplanted from
[Gross et al. 2018], we are able to prove that generalized cluster monomials are theta functions. As a result,
they have certain positivity property coming from that of the scattering diagram. We remark that this
positivity is with respect to the coefficients appearing in the binomial factors of exchange polynomials, thus
weaker than a conjectural positivity of Chekhov and Shapiro (Conjecture 8.13) with respect to the coeffi-
cients of exchange polynomials themselves; See Theorem 8.12 and Section 8.5 for the precise statements.

We next describe the contents of the paper in more detail.

1.1. Generalized cluster algebras. Our way of generalizing cluster algebras is slightly different from
[Chekhov and Shapiro 2014], in the way we deal with coefficients. In a sense, one can go from one
formulation to the other, in particular when the coefficients are evaluated in some algebraically closed
field; see Sections 3.2, 3.5 and also 8.5. We replace Fomin and Zelevinsky’s binomial exchange relation

x ′k xk = p+k
n∏

i=1
x [bik ]+

i + p−k
n∏

i=1
x [−bik ]+

i

with a more general polynomial exchange relation

x ′k xk =
rk∏

j=1

(
p+k, j

n∏
i=1

x [bik/rk ]+
i + p−k, j

n∏
i=1

x [−bik/rk ]+
i

)
.

We require the coefficients p±k, j (in some semifield (P,⊕, · )) to satisfy the normalized condition
p+k, j ⊕ p−k, j = 1. The normalization makes mutations deterministic and a particular choice of coefficients
named principal coefficients (as in [Fomin and Zelevinsky 2007]) available in the generalized situation.

It turns out many algebraic and combinatorial features of cluster algebras are also inherited by
generalized cluster algebras. The same finite type classification as for cluster algebras [Fomin and
Zelevinsky 2003] and the generalized Laurent phenomenon have already been obtained in [Chekhov
and Shapiro 2014]. We show that the dependence on coefficients in the generalized case behaves very
much like the ordinary case [Fomin and Zelevinsky 2007]. In particular, a generalized version of the
separation formula, Theorem 3.20, is made available through an analogous notion of principal coefficients.
The well-known sign coherence of c-vectors (see Section 3.3) is also extended to the generalized case
in Proposition 3.17. We note that there is a rather different version of normalized generalized cluster
algebras with a certain reciprocal restriction in [Nakanishi 2015] where some results on the structures of
seeds parallel to [Fomin and Zelevinsky 2007] were also established.



Scattering diagrams for generalized cluster algebras 2181

Another remarkable feature of an ordinary cluster algebra is the positivity of its cluster variables,
i.e., they are all Laurent polynomials in the initial variables xi and coefficients p±i with nonnegative
integer coefficients. This was proved by Lee and Schiffler [2015] for skew-symmetric types and by Gross,
Hacking, Keel, and Kontsevich [Gross et al. 2018] for the more general skew-symmetrizable types. We
extend the positivity to our generalized case (see Theorem 3.8), showing that the Laurent expression
of any cluster variable in xi and p±k, j has nonnegative integer coefficients. We note that the positivity
obtained here is (in the reciprocal case) a weak form of a positivity conjecture of Chekhov and Shapiro
(which we reformulated in Conjecture 8.13); see Remark 3.9 and Section 8.5.

1.2. Generalized cluster varieties. Let L be a lattice of finite rank. Fix an algebraically closed field k of
characteristic zero. The (ordinary) cluster varieties of [Fock and Goncharov 2009] are schemes of the form

V =
⋃
s

TL ,s

where each TL ,s is a copy of the torus L ⊗ k∗ and they are glued together via birational maps called
cluster mutations. Here s runs over a set of seeds (a seed roughly being a labeled basis of L) iteratively
generated by mutations. A cluster mutation is give by the birational map

µ(m,n) : TL 99K TL , µ∗(m,n)(z
ℓ)= zℓ(1+ zm)⟨ℓ,n⟩, ℓ ∈ L∗,

for a pair of vectors (n,m) ∈ L × L∗, where ⟨ ·, · ⟩ denotes the natural paring between L∗ and L . It has
a natural dual by switching the roles of m and n, µ(−n,m) : TL∗→ TL∗ . Gluing TL∗ via these maps gives
the dual cluster variety V∨ :=

⋃
s TL∗,s.

Depending on the types of seeds and mutations chosen, one obtains either Fock–Goncharov A-cluster
varieties or X -cluster varieties, which are dual constructions as above. A cluster algebra A can be
embedded into the upper cluster algebra A , defined to be the algebra of regular functions on the
corresponding A-variety, while the dual X -variety encodes the so-called Y -variables; see Section 4.

One can actually encode coefficients in each cluster mutation, the above construction thus leading
to families of cluster varieties. They mutate along with seeds under certain rules. In the A-case, they
mutate as Y -variables (see [Fomin and Zelevinsky 2007; Fock and Goncharov 2009]). In the X -case, the
mutation rule of the coefficients has been worked out by Bossinger, Frías-Medina, Magee and Nájera
Chávez [Bossinger et al. 2020].

We extend these dynamics of coefficients to the generalized situation for both the A- and X -cases. We
define a generalized cluster mutation as

µ∗(zℓ)= zℓ
r∏

j=1
(t−j + t+j zm)⟨ℓ,n⟩,

which depends on some coefficients t±j in k∗; see Section 4. Thus an ordinary cluster mutation can be
viewed as a specialization of a generalized one. Generalized cluster varieties are then defined by gluing
tori via the generalized mutations. We obtain two families of generalized cluster varieties

πA :A→ Spec(R), πX : X → Spec(R),

where the coefficients vary in some torus Spec(R)= (Gm)
d .
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One key observation of Gross, Hacking and Keel [Gross et al. 2015] is that a cluster variety can
be investigated through its toric models, and mutations between seeds are basically switching between
neighboring toric models. A toric model is a construction of a log Calabi–Yau variety by blowing up a
hypersurface on the toric boundary of some toric variety. In the cluster situation, the toric variety depends
on the choice of a seed s which also tells us where on the toric boundary to blow up. The resulting
log Calabi–Yau variety is shown in [Gross et al. 2015] (under certain nice conditions) to be isomorphic
to the corresponding cluster variety up to codimension two subsets. We extend this description to the
generalized case, for both A- and X -type varieties; see Theorem 5.4 and Section 5.3.

1.3. Scattering diagrams. Cluster scattering diagrams are the main technical tool in [Gross et al. 2018].
They have their origin in [Kontsevich and Soibelman 2006; Gross and Siebert 2011] in mirror symmetry.
Roughly speaking, in the cluster case, a scattering diagram is a collection of walls in a real vector space
with attached wall-crossing functions (some of them giving information on mutations). Similar to a cluster
algebra which starts with one cluster with information to perform mutations in n directions iteratively, its
scattering diagram can be constructed by initially setting up n incoming walls and letting them propagate,
generating only outgoing walls.

To get a generalized cluster scattering diagram, we replace ordinary wall-crossings (which correspond
to ordinary cluster mutations) on the initial incoming walls by the generalized ones of the form

f =
r∏

j=1
(1+ t j zm),

where the t j are treated as formal parameters. Given a seed s (in the generalized sense), the associated data
of incoming walls uniquely determines a consistent scattering diagram Ds, which we call the generalized
cluster scattering diagram.

We show that the behavior of Ds under mutations is analogous to that of the ordinary case, in a way it is
canonically associated to a mutation equivalence class of seeds. This is called the mutation invariance in
[Gross et al. 2018, Theorem 1.24]. See Theorem 6.27 for the precise description of the following theorem.

Theorem 1.1 (Theorem 6.27). There is a piecewise linear operation Tk such that Tk(Ds) is equivalent
to Dµk(s), where µk(s) denotes the mutation in direction k of the seed s.

In analogy with the ordinary case, the mutation invariance leads to the cluster complex structure of Ds.

Theorem 1.2 (Theorem 7.10). There is the cluster cone complex 1+s such that Ds is a union of codimen-
sion one cones of 1+s (with explicit attached wall-crossing functions) and walls outside 1+s .

We observe in Lemma 6.19 that Ds is equivalent to the tropical vertex scattering diagram D(X6 ,H) of
[Argüz and Gross 2022] associated to the corresponding X -type toric model associated to s. It is shown
in [Argüz and Gross 2022, Theorem 6.1] that D(X6 ,H) is further equivalent (after a certain piecewise
linear operation) to the canonical scattering diagram D(X,D) (see [Gross and Siebert 2022; Argüz and
Gross 2022, Section 2]) of the log Calabi–Yau pair (X, D) from the toric model. We thus see that Ds
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is canonically associated to the corresponding X -cluster variety, with a different seed s′ simply giving
another representative Ds′ .

1.4. Cluster dualities. The cluster duality of Fock and Goncharov predicts that, in the ordinary case, the
varieties A and X (see Section 4 for our convention as we do not need the Langlands dual data) are dual
in the sense that the upper cluster algebra A has a basis parametrized by the tropical set X trop(Z) (see
[Gross et al. 2018, Section 2] for a definition) and vice versa. A modified version of this duality (and
when it is true) is the main subject of study of [Gross et al. 2018].

The strategy of [Gross et al. 2018] to get the desired basis is as follows. First the tropical set X trop(Z)

(resp. X trop(R)) can be identified with the cocharacter lattice M (resp. MR := M ⊗R) of a chosen seed
torus TM,s=M⊗k∗ contained in the variety X . By the mutation invariance, the ordinary cluster scattering
diagram Dord

s (see Section 6.3) naturally lives in X trop(R). Denote by 1+ the set of integral points inside
the cluster complex (which is again a canonical subset of X trop(Z) by mutation invariance).

For any integral point m ∈ X trop(Z), using the scattering diagram Dord
s , one can construct the theta

function ϑm , which in general is only a formal power series in a completion
∧

k[M]s which depends on s.
However, it is shown in [Gross et al. 2018, Theorem 4.9] that for m ∈ 1+, ϑm is indeed a Laurent
polynomial in k[M] and corresponds to a cluster monomial. Furthermore, there is a canonically defined
(i.e., independent of s) subset 2 of X trop(Z) containing 1+ such that for any m ∈ 2, ϑm is a Laurent
polynomial on every seed torus. It is also shown in [Gross et al. 2018] that the vector space

mid(A) :=
⊕

m∈2
ϑm

has an associative algebra structure whose structure constants are defined through broken lines. This
algebra mid(A) can be embedded in A so that for m ∈ 1+, ϑm is sent to the corresponding cluster
monomial. While we do not know in general when mid(A) equals A (see [Gross et al. 2018, Theorem 0.3]),
we do have a basis of mid(A) parametrized by the subset 2. Strictly speaking, this process is done
through the principal coefficients case.

Our insight is that it is natural to consider the above cluster duality for generalized cluster varieties. In
the principal coefficients case, we take a general fiber X prin

λ := π−1
X (λ) of the family

πX : X prin
→ Spec(R).

The generalized cluster scattering diagram Ds then lives in the tropical set (X prin
λ )trop(R)which is identified

with MR given a chosen seed s. Towards a generalized version of the cluster duality, we show:

Theorem 1.3 (Theorem 8.12). For any m ∈1+s , the theta function ϑm constructed from the generalized
cluster scattering diagram Ds corresponds to the cluster monomial of the generalized cluster algebra
A prin(s) whose g-vector is m. Moreover, it is a Laurent polynomial in the initial cluster variables xi and
coefficients pi, j with nonnegative integer coefficients.
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It follows from the above theorem that the family

πA :Aprin
→ Spec(R)

can be reconstructed from a general fiber X prin
λ (through any of its toric models); see Proposition 8.3.

In principle, in the generalized case, one could consider the subset 2 as in [Gross et al. 2018] and
the corresponding generalized middle cluster algebra mid(Aprin). This would lead to a formulation of
generalized cluster duality similar to the ordinary case in [Gross et al. 2018, Theorem 0.3]. Then the
usual problem on when the full Fock–Goncharov conjecture is true remains and can be discussed as in
[Gross et al. 2018, Section 8].

1.5. Relations to other works. There are examples of generalized cluster scattering diagrams from
representation theory, where they are realized as Bridgeland’s stability scattering diagrams [2017] for
quivers (with loops) with potentials; see [Labardini-Fragoso and Mou 2024] for such examples arising
from surfaces with orbifold points.

In rank two, the scattering diagram Ds has already appeared in [Gross et al. 2010; Gross and Pand-
haripande 2010] from origins other than cluster algebras. There the wall-crossing functions are shown
to encode relative Gromov–Witten invariants on certain log Calabi–Yau surfaces. Some conjectural
wall-crossing functions in [Gross and Pandharipande 2010] were later verified in [Reineke and Weist
2013] using techniques from quiver representations; see Example 6.22.

The recent paper of Cheung, Kelley and Musiker [Cheung et al. 2023] (outlined in [Cheung et al. 2021])
and some part of Kelley’s PhD thesis [2021] have significant overlaps with this paper and the author’s PhD
thesis [Mou 2020, Chapter 8]. We in the following highlight the differences and relationships concerning
scattering diagrams.

In [Mou 2020, Chapter 8], a class of generalized cluster scattering diagrams were constructed and
properties including mutation invariance and cluster complex structure were proved. In that work, a
palindromic and monic restriction (termed reciprocal in [Chekhov and Shapiro 2014]) on the coefficients
was imposed. Such a scattering diagram can be obtained from applying to Ds of the current paper an
evaluation λ such that the initial wall-crossings are specialized to reciprocal polynomials, i.e., of the form

f = 1+ a1zw + · · ·+ ar−1z(r−1)w
+ zrw,

where r ∈Z≥0, w ∈M , and ak = ar−k in some ground field k; see Section 6.4. Scattering diagrams almost
identical to these (with the reciprocal restriction) were later considered by Cheung, Kelley and Musiker
[Cheung et al. 2021], with more details provided in [Kelley 2021]. The authors treat the coefficients ai as
formal variables. They also outlined the construction of theta functions, following [Gross et al. 2018].

The current paper aims to fill in gaps and missing details in [Mou 2020], enhance the setup therein
to include more general coefficients, and discuss the positivity of generalized cluster algebras using
scattering diagram techniques. Shortly after this paper was posted on the arXiv, [Cheung et al. 2023]
appeared on the arXiv, completing the program [Cheung et al. 2021]. Despite many similarities between
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the current paper and [Cheung et al. 2023], our approaches of treating coefficients differ somewhat. In
[Cheung et al. 2023], the y-variables in a generalized seed and the coefficients a = (ai ) in a generalized
exchange polynomial are treated separately. The coefficients a are assumed to be reciprocal and remain
unchanged under mutations. In contrast, we view the coefficients a as deriving from the y-variables
(denoted as p in our notation) by factorizing an exchange polynomial into binomials, with each binomial
governed by one coefficient in the style of Fomin and Zelevinsky. This approach allows us to realize more
general exchange polynomials (beyond just reciprocal ones), at least for an algebraically closed ground
field, by specialization from principal coefficients (see Sections 3.5 and 8.5). This setup also enables
us to formulate and prove a form of positivity for generalized cluster algebras, a topic not extensively
discussed in [Cheung et al. 2023].

2. Preliminaries

In this section, we review some preliminaries commonly used in the theory of cluster algebras [Fomin
and Zelevinsky 2002].

2.1. Semifields.

Definition 2.1. A semifield (P,⊕, · ) is a torsion free (multiplicative) abelian group P with a binary
operation addition ⊕ which is commutative, associative and distributive.

We denote by ZP the group ring of P and by NP ⊂ ZP the subset of linear combinations with
coefficients in N. Denote by QP the field of fractions of ZP.

For an element p ∈ P, we define in P two elements:

p+ :=
p

p⊕ 1
and p− :=

1
p⊕ 1

.

Definition 2.2. Let I be a finite set. We define Trop(si | i ∈ I ) to be the (multiplicative) abelian group
with free generators si indexed by I , with the operation addition ⊕:∏

i∈I
sai

i ⊕
∏
i∈I

sbi
i :=

∏
i∈I

smin{ai ,bi }
i .

It is clear that Trop(si | i ∈ I ) is a semifield. Such a semifield is called a tropical semifield.

For n ∈ Z, we write [n]+ :=max{n, 0}. The elements s± for

s =
∏
i∈I

sai
i ∈ Trop(si | i ∈ I )

has the following simple expressions:

s+ =
∏
i∈I

s[ai ]+
i and s− =

∏
i∈I

s[−ai ]+
i .

Definition 2.3. Denote by Qsf(u1, . . . , ul) the set of all rational functions in l independent variables
which can be written as subtraction-free rational expressions in u1, . . . , ul . Then the set Qsf(u1, . . . , ul)

is a semifield with respect to the usual addition and multiplication.
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We call such Qsf(u1, . . . , ul) a universal semifield since for another arbitrary semifield P and its
elements p1, . . . , pl , there exists a unique map of semifields from Qsf(u1, . . . , ul) to P sending ui to pi ;
see [Berenstein et al. 1996, Lemma 2.1.6].

2.2. Mutations of matrices.

Definition 2.4. A matrix B ∈Matn×n(Z) is called (left) skew-symmetrizable if there exists a diagonal
matrix D = diag(di | 1≤ i ≤ n) with di ∈ Z>0 such that

DB+ (DB)T = 0.

Such a matrix D is called a (left) skew-symmetrizer of B.

Definition 2.5 [Fomin and Zelevinsky 2002, Definition 4.2]. Let B = (bi j ) ∈ Matn×n(Z) be a skew-
symmetrizable matrix. For k = 1, . . . , n, we define µk(B) = (b′i j ) ∈ Matn×n(Z) the mutation of B in
direction k by setting

(1) b′ik =−bik and b′k j =−bk j for 1≤ i, j ≤ n;

(2) for i ̸= k and j ̸= k,

b′i j =


bi j + bikbk j if bik > 0 and b jk < 0;
bi j − bikbk j if bik < 0 and b jk > 0;

bi j otherwise.

It is clear that the matrix µk(B) is again skew-symmetrizable with the same set of skew-symmetrizers
of B. One can easily check that a mutation is involutive in the same direction, i.e., µk ◦µk(B)= B.

3. Generalized cluster algebras

3.1. Generalized cluster algebras. Cluster algebras were originally invented by Fomin and Zelevinsky
[2002], which we later refer to as ordinary cluster algebras. A generalization of cluster algebras has been
provided by Chekhov and Shapiro [2014]. Our definition of generalized cluster algebras below may be
considered as a special case (of a slight generalization) of theirs but with a normalization analogous to
the one in [Fomin and Zelevinsky 2002, Definition 5.3] for ordinary cluster algebras. The relation and
difference will be explained in Section 3.2.

We follow the pattern of [Fomin and Zelevinsky 2007] to define generalized cluster algebras. Most of
the key notions here are the generalized versions of their correspondents in the ordinary case.

Definition 3.1. A (generalized) labeled seed 6 of rank n ∈ N is a triple (x, p, B), where:

• p = ( p1, . . . , pn) is an n-tuple of collections of elements, where each pi = (pi,1, . . . , pi,ri ) is a
ri -tuple of elements in a semifield (P,⊕, · ) for some positive integer ri .

• x={x1, . . . , xn} is a collection of algebraically independent rational functions of n variables over QP.
In other words, the x1, . . . xn are elements in some field of rational functions F =QP(u1, . . . , un)

such that F =QP(x1, . . . , xn).
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• B ∈Matn×n(Z) is skew-symmetrizable such that for any i = 1, . . . , n, its i-th column is divisible
by ri . The diagonal matrix D = diag(ri ) is not necessarily a skew-symmetrizer of B.

For convenience, let I be the index set {1, . . . , n}. For an arbitrary positive integer k, we use the
interval [1, k] to represent the set {1, . . . , k}. We will often call a labeled seed simply a seed if there is no
confusion.

Associated to a labeled seed 6 = (x, p, B), for each i ∈ I , there is the exchange polynomial

θi (u, v)= θ [ pi ](u, v) :=
ri∏

l=1
(p+i,lu+ p−i,lv) ∈ ZP[u, v].

Write βi j = bi j/r j ∈ Z. We put

u j;+ :=
∏

i :bi j>0
xβi j

i , u j;− :=
∏

i :bi j<0
x−βi j

i

pi;+ :=
ri∏

l=1
p+i,l, pi;− :=

ri∏
l=1

p−i,l ∈ P.

Note that all the above notions are with respect to 6.

Definition 3.2. For any k ∈ I , we define the mutation of a seed 6 = (x, p, B) in direction k as a new
labeled seed µk(x, p, B) := ((x ′i ), ( p′i ), B ′), where p′i = (p

′

i, j | j ∈ [1, ri ]) in the following way:

(1) B ′ = µk(B);

(2) p′k, j = p−1
k, j for j ∈ [1, rk];

(3) for i ̸= k, j ∈ [1, ri ], p′i, j =

{
pi, j · (pk;−)

βki if βik > 0,
pi, j · (pk;+)

βki if βik ≤ 0,

or equivalently

for i ̸= k, p′i, j = pi, j

( rk∏
l=1
(1⊕ psgn(βik)

k,l )
)−βki
;

(4) x ′i =
{

xi if i ̸= k,
x−1

k θ [ pk](uk;+, uk;−) if i = k.

Lemma 3.3. The mutation µk is involutive, i.e., µk ◦µk(6)=6.

Proof. We check that µk is involutive on each component of a seed. We denote

µk ◦µk(6)= ((x ′′i ), (p
′′

i, j | j ∈ [1, ri ])i∈I , B ′′).

For this seed, we simply denote the relevant objects appearing in Definition 3.2 by adding a double prime
to the old symbols, while for µk(6), we add a single prime.

(1) First of all, the matrix mutation µk is an involution, as shown in [Fomin and Zelevinsky 2002].

(2) We have for j ∈ [1, rk],
p′′k, j = (p

′

k, j )
−1
= pk, j .
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(3) For i ̸= k, we have for j ∈ [1, ri ],

p′′i, j =

{
p′i, j · (p

′

k;−)
β ′ki if β ′ik > 0,

p′i, j · (p
′

k;+)
β ′ki if β ′ik ≤ 0

=

{
pi, j · (pk;+)

βki · (p′k;−)
−βki if βik < 0,

pi, j · (pk;−)
βki · (p′k;+)

−βki if βik ≥ 0
= pi, j .

The last equality is because p′k;+ = pk;− and p′k;− = pk;+.

(4) Finally for the x part, we have

x ′′i =
{

x ′i if i ̸= k,
(x ′k)

−1θ [ p′k](u
′

k;+, u′k;−) if i = k

=

{
xi if i ̸= k,

xk · θ [ pk](uk;+, uk;−)
−1θ [ p′k](u

′

k;+, u′k;−) if i = k
= xi .

The last equality is because that θ [ p′k](u, v)= θ [ pk](v, u) and u′k;± = uk;∓.

So overall we have proven that µk ◦µk(6)=6. □

Fix a positive integer n. We consider the (nonoriented) n-regular tree Tn whose edges are labeled by
the numbers 1, . . . , n as in [Fomin and Zelevinsky 2002]. Lemma 3.3 makes the following definition
well-defined.

Definition 3.4. A (generalized) cluster pattern is an assignment of a labeled seed 6t = (xt , pt , B t) to
every vertex t ∈ Tn , such that for any k-labeled edge with endpoints t and t ′, the seed 6t ′ is the mutation
in direction k of 6t , i.e., 6t ′ = µk(6t).

The elements in 6t are written as follows:

xt = (xi;t | i ∈ I ), pi;t = (pi, j;t | j ∈ [1, ri ]), B t
= (bt

i j ).

The part x of a labeled seed is called a (labeled) cluster, elements xi are called cluster variables,
elements pi, j are called coefficients and B is called exchange matrix.

Two seeds are mutation-equivalent if one is obtained from the other by a sequence of mutations. If
a seed 6 appears in a cluster pattern, then by definition any seeds mutation-equivalent to 6 must also
appear. On the other hand, assigning a seed of rank n to any vertex of Tn would uniquely determine a
cluster pattern.

By definition, all cluster variables live in some ambient field F of rational functions of n variables.
One may identify F with QP(x1, · · · , xn) where (x1, . . . , xn) is a cluster.
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Definition 3.5. Given a generalized cluster pattern, the (generalized) cluster algebra A is defined to be
the ZP-subalgebra of the ambient field F generated by all cluster variables xi;t in all seeds that appear in
the cluster pattern. Since a cluster pattern is determined by any of its seed, we denote A = A (6) where
6 = (x, p, B) is any seed in this cluster pattern.

Remark 3.6. In the case where ri = 1 for any i ∈ I , all the above generalized notions recover the original
versions of [Fomin and Zelevinsky 2007].

For convenience, one can specify one vertex t0 ∈ Tn to be initial, thus the associated seed being called
the initial seed with the initial cluster, cluster variables, coefficients and exchange matrix. All other seeds
are obtained by applying mutations iteratively to the initial one. For the following two theorems, we
denote by (x1, . . . , xn) the initial cluster.

Theorem 3.7 (generalized Laurent phenomenon, cf. [Fomin and Zelevinsky 2002] and [Chekhov and
Shapiro 2014]). Let (x, p, B) be a generalized labeled seed. Then any cluster variable of A (x, p, B) is
a Laurent polynomial over ZP in the initial cluster variables xi , i.e., an element in ZP[x±1 , . . . , x±n ].

Proof. The generalized Laurent phenomenon was already obtained in [Chekhov and Shapiro 2014,
Theorem 2.5]. Since our setting is slightly different, we give a proof for completeness.

The proof completely follows from the discussion in [Fomin and Zelevinsky 2002, Section 3]. The
generalized Laurent property is a direct corollary of [loc. cit., Theorem 3.2]. One only needs to check the
following hypothesis required by [loc. cit., Theorem 3.2]: for any subgraph

t0 t1 t2 t3i j i

in the tree Tn , if we define the following three exchange polynomial in n variables x1, . . . , xn by writing

P(xt0)= θ [ pi;t0](u
t0
i;+, ut0

i;−), Q(xt1)= θ [ p j;t1](u
t1
j;+, ut1

j;−), R(xt2)= θ [ pi;t2](u
t2
i;+, ut2

i;−),

then they satisfy R = C · (P|x j←Q0/x j ), where Q0 = Q|xi=0 for some C ∈ NP[x1, . . . xn].

Notice that since t0 t1,i we have

P =
ri∏

l=1

(
p+i,l;t1

∏
k

x
[β

t1
ki ]+

k + p−i,l;t1
∏
k

x
[−β

t1
ki ]+

k

)
.

When β t1
i j = 0, β t0

j i =−β
t1
i j = 0. So x j does not appear in P , implying P = P|x j←Q0/x j . In this case,

we have for any l ∈ [1, ri ]

pi,l;t0 = p−1
i,l;t2, β

t0
li =−β

t2
li .

Thus we have R = P .
When β t1

i j < 0 (implying β t1
j i > 0), then

Q0/x j = p j;+;t1 x−1
j

∏
k

x
[b

t1
k j ]+

k

and
P|x j←Q0/x j =

ri∏
l=1

(
p+i,l;t1 p

β
t1
j i

j;+;t1 x
−β

t1
j i

j
∏

k ̸= j
x
[β

t1
ki ]++β

t1
j i ·[b

t1
k j ]+

k + p−i,l;t1
∏
k

x
[−β

t1
ki ]+

k

)



2190 Lang Mou

We take the ratio of the two monomials in each factor of the above product to obtain monomials

pi,l;t1 · p
β

t1
j i

j;+;t1 ·
∏
k

x
β

t2
ki

k .

We get exactly the same monomials if we do the same for R. So R and P|x j←Q0/x j only differ by a
monomial factor in NP[x1, . . . , xn]. The case when β t1

i j > 0 is analogous. Hence the hypothesis is checked
and the Laurent phenomenon follows from [Fomin and Zelevinsky 2002, Theorem 3.2]. □

The following Theorem 3.8 is a generalization of the well-known positivity for ordinary cluster
algebras. In the case of ordinary cluster algebras, the positivity was originally conjectured by Fomin
and Zelevinsky [2002]. It has been proved by Lee and Schiffler [2015] when the exchange matrix B
is skew-symmetric and by Gross, Hacking, Keel, and Kontsevich [Gross et al. 2018] when B is more
generally skew-symmetrizable.

Theorem 3.8 (positivity). In a generalized cluster algebra, each of the coefficients in the Laurent
polynomial corresponding to any cluster variable from Theorem 3.7 is a nonnegative integer linear
combination of elements in P. In other words, any cluster variable is an element in NP[x±1 , . . . , x±n ].

Proof. By the separation formula Theorem 3.20 and Remark 3.21, we only need to show the positivity in
the principal coefficients case (to be defined in Definition 3.13). In this case, we prove the positivity in
Theorem 8.12. □

Remark 3.9. Chekhov and Shapiro [2014, Conjecture 5.1] conjectured a positivity for generalized cluster
algebras under a reciprocal condition; see also the formulation in Conjecture 8.13. In the reciprocal case,
this positivity implies Theorem 3.8. We do not know how to show this stronger positivity in general; see
the discussion in Section 8.5.

3.2. Relation to Chekhov and Shapiro’s definition. Chekhov and Shapiro [2014] defined generalized
cluster algebras by considering more general exchange polynomials. Precisely, a labeled seed in that setting
is a triple (x, (αi | i ∈ I ), B), where x and B are the same as in Definition 3.1 and αi = (αi,k ∈P |0≤ k≤ ri )

for i ∈ I . Here we only take P as a multiplicative abelian group. The coefficients αi,k are responsible for
expressing the exchange polynomial defined as

θi (u, v) :=
ri∑

k=0
αi,kuri−kvk

∈ ZP[u, v].

The mutation (x′, (α′i ), B ′)= µk(x, (αi ), B) is defined in the following way:

(1) B ′ = µk(B).

(2) α′k, j = αk,rk− j and for i ̸= k, the coefficients satisfy

α′i, j/α
′

i,0 =

{
α

jβki
k,0 ·αi, j/αi,0 if βik > 0

α
jβki
k,rk
·αi, j/αi,0 if βik ≤ 0.

(3) x ′i = xi for i ̸= k and
x ′k xk = θi (uk;+, uk;−).
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Remark 3.10. In this setting, it does no harm to allow the coefficients αi,k to be elements of ZP, as long
as the above rule (2) is satisfied. For example, one may check that the Laurent phenomenon still holds for
cluster variables.

Now assume the multiplicative abelian group P has an addition ⊕ so that it is a semifield. In our
setting the exchange polynomials are given by θ [ pi ](u, v), thus the coefficients αi, j corresponding to the
coefficients of θ [ pi ](u, v)when expanded as polynomial of u and v. Under Definition 3.2, the polynomials
θ [ pi ](u, v) mutate in a way satisfying the rule (2) above. In fact, when talking about coefficients αi, j/αi,0,
we can normalize our polynomial

θ̃ [ pi ](u, v)=
∏

j∈[1,ri ]

(pi, j u+ v).

So when expanded as a sum of monomials in u and v, the coefficients of θ̃ [ pi ] are
∏

j∈J pi, j for a subset
J ⊂ [1, ri ]. According to the mutation formula in Definition 3.2, under µk , we have∏

j∈J
p′i, j = p|J |βki

k;±
∏
j∈J

pi, j ,

which satisfies the rule (2). So our definition of generalized cluster algebras can be viewed as a special
case of [Chekhov and Shapiro 2014] if we ease the condition αi,k ∈ P into αi,k ∈ ZP.

We note that the above rule (2) in [Chekhov and Shapiro 2014] is not enough to uniquely determine the
coefficients (α′i ) after mutation, whereas the mutation formula in Definition 3.2 is deterministic because
of the normalization condition p+i, j ⊕ p−i, j = 1.

One advantage of our definition is the availability of principal coefficients analogous to [Fomin and
Zelevinsky 2007, Definition 3.1], to be discussed in the next section.

3.3. Principal coefficients. As in [Fomin and Zelevinsky 2007] for ordinary cluster algebras, we have
the notion of principal coefficients for generalized cluster algebras.

Definition 3.11. We say a generalized cluster algebra A is of geometric type if P is a tropical semifield

Trop(sa | a ∈ I ′),

where I ′ is a finite index set.

Proposition 3.12. Let A be a generalized cluster algebra of geometric type. For each seed 6 in A ’s
cluster pattern and i ∈ I , we introduce matrices

C (i)
= C (i)

6 = (c
(i)
aj ) ∈Mat|I ′|×ri (Z)

to encode the coefficients pi, j by columns of C (i):

pi, j =
∏

a∈I ′
s

c(i)aj
a ∈ P.
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Denote by (c(i)aj ) the matrices corresponding to the seed µk(6) for some k ∈ I . Then we have

c(i)aj =



−c(i)aj if i = k;

c(i)aj +

( rk∑
j=1
[−c(k)aj ]+

)
βki if i ̸= k and βik > 0;

c(i)aj +

( rk∑
j=1
[c(k)aj ]+

)
βki if i ̸= k and βik ≤ 0.

Proof. In the tropical semifield Trop(sa | a ∈ I ′), we have the expressions

p+i, j =
∏

a∈I ′
s
[c(i)aj ]+
a and p−i, j =

∏
a∈I ′

s
[−c(i)aj ]+
a .

Then the result follows by spelling out the mutation formula of coefficients ((3) of Definition 3.2). □

The matrices and their dynamics in Proposition 3.12 have led to a remarkable combinatorial phenomenon
in cluster theory known as the sign coherence of c-vectors. We shall explain it below.

Definition 3.13. We say a generalized cluster algebra A has principal coefficients at a vertex t0 ∈ Tn if P

is the tropical semifield
Trop( p) := Trop(pi, j | i ∈ I, j ∈ [1, ri ]),

and the seed 6t0 has coefficients pi = (pi,1, . . . pi,ri ). In this case, the cluster algebra, denoted as
A prin(6t0), is by definition a subalgebra of

Z[x±i;t0, p±i, j | i ∈ I, j ∈ [1, ri ]].

In the case of principal coefficients, the columns of the matrices C (i)
6t

are called generalized c-vectors. At
the initial seed 6 =6t0 with principal coefficients, each C (i)

6 is an identity matrix Iri extended (vertically)
by zeros.

Theorem 3.14 (sign coherence of generalized c-vectors). In the principal coefficients case, for any t ∈Tn ,
for any i ∈ I and any j ∈ [1, ri ], the entries of the j-th column of C (i)

6t
are either all nonnegative or all

nonpositive.

When ri = 1 for each i ∈ I , i.e., in the case of ordinary cluster algebras, each C (i)
= C (i)

6t
is just a

column vector with n entries, altogether forming a matrix C = (C (1), . . . ,C (n)). They are the so-called
C-matrices in [Fomin and Zelevinsky 2007] whose columns are c-vectors. In this case, Theorem 3.14 then
says that each column of any C is either nonnegative or nonpositive. This is well-known in the theory of
cluster algebras as the sign coherence of c-vectors, which has already been proved by Derksen, Weyman
and Zelevinsky [Derksen et al. 2010] for skew-symmetric exchange matrices and by Gross, Hacking,
Keel and Kontsevich [Gross et al. 2018] for skew-symmetrizable ones. We will see in Proposition 3.17
that Theorem 3.14 follows from the already established sign coherence of c-vectors.

We set the index set
I ′ =

⊔
i∈I

I ′i , I ′i := {(i, j) | j ∈ [1, ri ]}.
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Lemma 3.15. Let 6 =6t0 be a seed with principal coefficients. We have the following properties for the
matrices C (i)

6t
for any seed 6t , t ∈ Tn .

(1) Let i, k ∈ I such that k ̸= i . Then for any a, a′ ∈ I ′k and any 1≤ j, j ′ ≤ ri , we have

c(i)a, j = c(i)a′, j ′ .

(2) Let i ∈ I . We have
c(i)(i,1),1 = c(i)(i,2),2 = · · · = c(i)(i,ri ),ri

= c± 1

and
c(i)(i,k), j = c for k ̸= j

for some integer c.

Proof. We prove this lemma by induction on the distance from t to t0 in Tn . The base case is for C (i)
6

where the entries in (1) are all zeroes and the ones in (2) are 1 when k = j and 0 otherwise. Then the
properties stated in the lemma are preserved under the mutation formula given in Proposition 3.12. □

Let P be the tropical semifield Trop(pi | i ∈ I ). There is a group homomorphism

π : P→ P, pi, j 7→ pi .

For t ∈ Tn , denote the image of pi, j;t in P by pi;t (which is independent of j by Lemma 3.15) and the
image of

∏ri
j=1 pi, j;t in P by pi;t = pri

i;t .

Lemma 3.16. The elements pi;t behave in the following way under the mutation µk . If t ′ k
−− t and we

write p′i = pi;t ′ and pi = pi;t , then we have

p′i =


p−1

i if i = k;
pi · (p−k )

bki if i ̸= k and βik > 0;
pi · (p+k )

bki if i ̸= k and βik ≤ 0.

So they behave under mutations in the same way as pi,1;t in the case where ri = 1, i ∈ I , i.e., the case of
ordinary cluster algebras.

Proof. By the generalized mutation formula of coefficients, we have

ri∏
j=1

p′i, j =



ri∏
j=1

p−1
i, j if i = k;

ri∏
j=1

pi, j ·

( rk∏
j=1

p−k, j

)bki
if i ̸= k and βik > 0;

ri∏
j=1

pi, j ·

( rk∏
j=1

p+k, j

)bki
if i ̸= k and βik ≤ 0.

By the matrix description of the elements pk, j in Lemma 3.15, we have that
rk∏

j=1
p±k, j =

( rk∏
j=1

pk, j

)±
∈ P, π

( rk∏
j=1

p±k, j

)
= p±k ∈ P.

The result then follows. □
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Proposition 3.17. The sign coherence of c-vectors implies the sign coherence of generalized c-vectors.

Proof. In the case where all ri = 1, the sign coherence then says each column of the matrix C =
(C (1), . . . ,C (n)) is either nonnegative or nonpositive.

On the other hand, by Lemma 3.16, the elements pi behave under mutations in the exact same way as
the coefficients in seeds when all ri = 1 (thus we only have one pi for each i). Thus the column C (i)

of 6t serves as the coordinates of pi;t in terms of the initial coefficients pi . Then the sign coherence tells
that one of p+i and p−i is 1. It then follows from Lemma 3.15 that the corresponding p+i, j or p−i, j for each
j ∈ [1, ri ] is also 1, hence the generalized sign coherence. □

The following lemma will be useful later.

Lemma 3.18. In the principal coefficient case, for any t ∈ Tn , the set of coefficients in seed 6t

{pi, j;t | i ∈ I, j ∈ [1, ri ]}

form a Z-basis of P∼= Zd where d =
∑

i∈I ri .

Proof. This follows directly from the mutation formula Proposition 3.12 and Lemma 3.15. □

3.4. Separation formula. In this section, we describe the separation formula for generalized cluster
variables, which can be derived in the exact same way as [Fomin and Zelevinsky 2007, Theorem 3.7], so
we omit the proof.

Definition 3.19. Let A prin(6t0) be a generalized cluster algebra with principal coefficients at6t0=(x, p,B).
We define the rational function

Xl;t ∈Qsf(x, p)

corresponding to the subtraction-free rational expression of the cluster variable xl;t by iterating exchange
relations. Here (x, p) denote the set of all variables in x and p.

Define the rational function

Fl;t( p)= Xl;t((1, . . . , 1), p) ∈Qsf( p).

In general, for a subtraction free expression F in Qsf(x1, . . . , xn) and an arbitrary semifield P, we use
the notation

F |P (y1, . . . yn) ∈ P

for the evaluation at xi = yi . This evaluation is well-defined (i.e., independent of the expression used)
because of the universal property of the semifield Qsf(x1, . . . , xn); see Section 2.1.

Theorem 3.20 (cf. [Fomin and Zelevinsky 2007, Proposition 3.6, Theorem 3.7]).

(1) We have

Xl;t ∈ Z[x±i ; pi, j | i ∈ I, j ∈ [1, ri ]], Fl;t ∈ Z[pi, j | i ∈ I, j ∈ [1, ri ]].
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(2) Let A be a generalized cluster algebra over an arbitrary semifield P′, with an initial seed 6t0 =

(x, p, B). Then the cluster variables in A can be expressed in the initial cluster as

xl;t =
Xl;t |F (x, p)

Fl;t |P′ ( p)
,

where F is the ambient field for A .

Remark 3.21. Suppose the positivity for xl;t in the principal coefficients case (where we denote the
semifield by P) has been established. This means Xl;t has a subtraction free expression as a Laurent
polynomial (i.e., whose coefficients are in NP). Then the evaluation Xl;t |F (x, p) also has positive
coefficients in NP′, while Fl;t |P′ ( p) is an element in P′. Thus it follows by Theorem 3.20 that xl;t has
positive coefficients in the case of arbitrary P′.

3.5. Cluster algebras with specialized coefficients. We fix a field k of characteristic 0 and consider the
case of geometric coefficients. In this case, the generalized cluster algebra A (6) for 6 = (x, p, B) can
be viewed as a subring of kP[x±1 , . . . , x±n ] where kP is the group algebra of P over k.

Let λ :P→ k∗ be a group homomorphism (which we will later refer to as an evaluation). It extends to
a k-algebra homomorphism

λ : kP[x±1 , . . . , x±n ] → k[x±1 , . . . , x±n ].

We denote the image of A (6)⊗k by A (6, λ). So we have a family of k-algebras parametrized by (k∗)l

if the free abelian group P is of rank l. Each A (6, λ) is in fact the k-subalgebra generated by cluster
variables (with coefficients specialized by λ) within k[x±1 , . . . , x±n ]. These are what we call (generalized)
cluster algebras with specialized coefficients.

We point out that an ordinary cluster algebra with trivial coefficients (i.e., when P is trivial) is actually
a generalized cluster algebra with specialized coefficients. Suppose B is a skew-symmetrizable matrix and
let ri be the gcd of the i-th column (if that column is nonzero). Let A prin(6) be the generalized cluster
algebra with principal coefficients where 6 has exchange matrix B. Choose a group homomorphism
λ : Trop( p)→ k∗ such that the specialized exchange polynomials equals the usual cluster exchange
binomial, i.e.,

ri∏
j=1
(λ(pi, j )u+ v)= uri + vri .

Of course such λ always exists assuming k is algebraically closed. Then it is easy to check that every
generalized mutation becomes an ordinary mutation: if t k

−− t ′,

xk;t ′ = x−1
k;t

( ∏
i∈I

x
[bt

ik ]+
i +

∏
i∈I

x
[−bt

ik ]+
i

)
.

Thus the algebra A prin(6, λ) has the exact same cluster variables as the ordinary cluster algebra with
trivial coefficients, and can thus be viewed as an ordinary cluster algebra.
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t B t p1,1;t p2,1;t p2,2;t x1;t x2;t

0
[ 0

1
−2
0

]
t11 t21 t22 A1 A2

1
[ 0
−1

2
0

]
t−1
11 t21 t22 A−1

1 (1+ t11 A2) A2

2
[ 0

1
−2
0

]
t−1
11 t−1

21 t−1
22 A−1

1 (1+ t11 A2)
A−1

2

(
1+ t21 A−1

1 (1+ t11 A2)
)

×
(
1+ t22 A−1

1 (1+ t11 A2)
)

3
[ 0
−1

2
0

]
t11 t−1

11 t−1
21 t−1

11 t−1
22

A1 A−1
2

(
(1+ t21 A−1

1 )(1+ t22 A−1
1 )

+t11t21t22 A−2
1 A2

) A−1
2

(
1+ t21 A−1

1 (1+ t11 A2)
)

×
(
1+ t22 A−1

1 (1+ t11 A2)
)

4
[ 0

1
−2
0

]
t−1
11 t−1

21 t−1
22 t11t21 t11t22

A1 A−1
2

(
(1+ t21 A−1

1 )(1+ t22 A−1
1 )

+t11t21t22 A−2
1 A2

) A−1
2 (t21+ A1)(t22+ A1)

5
[ 0
−1

2
0

]
t11t21t22 t−1

22 t−1
21 A1 A−1

2 (t21+ A1)(t22+ A1)

6
[ 0

1
−2
0

]
t11 t22 t21 A1 A2

Table 1. Labeled seeds of A prin.

3.6. An example in type B2 with principal coefficients. We consider A prin(x, p, B) with principal
coefficients for B =

[0
1
−2
0

]
which is of type B2 in the finite type classification [Fomin and Zelevinsky

2003; Chekhov and Shapiro 2014, Theorem 2.7]. We write xi;t0 = Ai , and pi, j;t0 = ti j . For the subgraph

t0
1
−− t1

2
−− t2

1
−− t3

2
−− t4

1
−− t5

2
−− t6

of T2, we have the associated labeled seeds calculated in Table 1
We note that the 6t6 is not exactly the same as the 6t0 but up to a switch of p2,1 and p2,2.

3.7. Generalized Y-seeds. We define generalized Y -seeds (with coefficients) and their mutations. The
formulation to including coefficients in Y -seeds comes from [Bossinger et al. 2020]. The following
definition is a generalization of [Bossinger et al. 2020, Definition 2.15], which is an enhancement of a
Y -seed of [Fomin and Zelevinsky 2007].

Definition 3.22. A generalized labeled Y -seed (with coefficients) 1 is a triple ( y, q, B), where

• q= (q1, . . . , qn) is an n-tuple of ri -tuples qi = (qi,1, . . . qi,ri ) of elements in a semifield P for positive
integers ri , 1≤ i ≤ n;

• y = {y1, . . . , yn} is a collection of elements in some universal semifield QPsf(u1, . . . , ul);

• B is a left skew-symmetrizable integer matrix such that the i-th column is divisible by ri for every i .
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Definition 3.23. For k ∈ {1, . . . , n}, we define the mutation of a Y -seed ( y, q, B) in direction k as a new
Y -seed µk( y, q, B) := ((y′i ), (q

′

i ), B ′) in the following way:

B ′ = µk(B); (3-1)

q ′k, j = q−1
k, j for j ∈ [1, rk];

for i ̸= k, j ∈ [1, ri ], q ′i, j =


qi, j ·

( rk∏
l=1

q−k,l
)−βik

if −βki > 0,

qi, j ·

( rk∏
l=1

q+k,l
)−βik

if −βki ≤ 0,
(3-2)

or equivalently

for i ̸= k, q ′i, j = qi, j

rk∏
l=1
(1⊕ qsgn(−βki )

k,l )βik ;

y′i =

yi

rk∏
l=1
(qsgn(βik)

k,l ysgn(βik)

k + qsgn(−βik)

k,l )βik if i ̸= k,

y−1
k if i = k.

(3-3)

As in Lemma 3.3, it is straightforward to check that the mutation µk on a generalized Y -seed is
involutive in the same direction.

Definition 3.24. A generalized Y -pattern is an association

t 7→1t = ( yt , qt , B t)

to every vertex t ∈ Tn a generalized labeled Y -seed 1t such that if t and t ′ are connected by an edge
labeled by k ∈ I , then we have

1t ′ = µk(1t).

Definition 3.25. We say that a generalized Y -pattern has principal coefficients at a vertex t0 ∈ Tn if P is
the tropical semifield

Trop(qi, j;t0 | i ∈ I, j ∈ [1, ri ]).

Given a Y -pattern, the elements yi;t for t ∈ Tn are called Y -variables.

Remark 3.26. In the case that for any i ∈ I ,

qi,1 = qi,2 = · · · = qi,ri ,

a generalized Y -seed with coefficients as in Definition 3.22 becomes a labeled Y -seed with coefficients in
[Bossinger et al. 2020]. In this case, the mutation formula of Y -variables is independent of the choice ri .
So we get back to the nongeneralized version by letting the coefficients qi, j , j ∈ [1, ri ], equal. While
in the cluster case, one recovers the nongeneralized seed mutation by choosing ri = 1. This asymmetry
suggests that our generalization is a natural one.
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To the best knowledge of the author, the generalized version of Y -patterns has not been considered in
the literature. It is interesting to see if these generalized patterns appear naturally anywhere.

4. Generalized cluster varieties

Cluster varieties were introduced by Fock and Goncharov [2009], giving a geometric view to cluster
algebras (of geometric types). We follow [Gross et al. 2015] to define relevant notions such as fixed data
and seeds. However, in order to deal with generalized coefficients, some new gadgets are needed.

Definition 4.1. We recall the fixed data 0 from [Gross et al. 2015]. The fixed data 0 consists of

• a lattice N of finite rank with a skew-symmetric bilinear form ω : N × N →Q;

• an unfrozen sublattice Nuf ⊂ N , a saturated sublattice of N ;

• an index set I = {1, . . . , rank N } and a subset Iuf = {1, . . . , rank Nuf};

• positive integers di for i ∈ I with greatest common divisor 1;

• a sublattice N ◦ ⊂ N of finite index such that ω(Nuf, N ◦)⊂ Z, ω(N , Nuf ∩ N ◦)⊂ Z;

• M = Hom(N ,Z), M◦ = Hom(N ◦,Z);

4.1. Generalized A-cluster variety.

Definition 4.2. Given fixed data 0, an A-seed with (generalized) coefficients is a pair s= (e, p) consisting
of a seed e= (ei )i∈I which is a labeled collection of elements in N and a labeled collection of tuples of
coefficients p= ( pi )i∈Iuf , where pi = (pi, j ) j∈[1,r j ] and pi, j belongs to some tropical semifield P such that

(1) {ei | i ∈ I } is a basis for N ;

(2) {ei | i ∈ Iuf} is a basis for Nuf ;

(3) {di ei | i ∈ I } is a basis for N ◦;

(4) for i ∈ Iuf, the elements wi := ω(−, di ei )/ri belong to M .

For such a seed s, we define two matrices B = B(s)= (bi j ) and B̃ = B̃(s)= (βi j ) by setting

bi j := ω(ei , d j e j ) and βi j := ⟨ei , w j ⟩ = bi j/r j .

Definition 4.3. Given s an A-seed with coefficients, for k ∈ Iuf, we define the mutation in direction k,
µk(s)= (e′, p′) by

e′i =
{

−ek if i = k,
ei + [⟨ei ,−rkwk⟩]+ek if i ̸= k;

and
p′k, j = p−1

k, j for j ∈ [1, rk];

for i ̸= k, j ∈ [1, ri ], p′i, j =

{
pi, j · (pk;−)

βki if βik > 0,
pi, j · (pk;+)

βki if βik ≤ 0.
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Remark 4.4. If we write w′i = ω
(
−,

di
ri

e′i
)

as the mutations of wi , then they are given by

w′i =

{
−wk, if i = k;

wi + [⟨rkek, wi ⟩]+wk, if i ̸= k.

Denote the dual basis of (ei ) by (e∗i ) and the dual of (e′i )= µk(e) by (e′,∗i ). We have

e′,∗i =

{
−e∗k +

∑
j
[⟨e j ,−rkwk⟩]+e∗j if i = k;

e∗i if i ̸= k.

If there is no confusion, we will call an A-seed with coefficients simply a seed.
Let R = kP, the group algebra of P over the ground field k. To any A-seed s, we associate a copy of

the R-torus TN ,s(R) := Spec(k[M]⊗k R).

Definition 4.5. To the mutation µk from s to µk(s), there is an associated birational morphism (over R)

µk : TN ,s(R) 99K TN ,µk(s)(R), µ∗k(z
m)= zm f −⟨ek ,m⟩

k ,

where

fk :=
rk∏

j=1
(p−k, j + p+k, j z

wk ) ∈ R[M].

We call this birational transformation the A-cluster mutation associated to the mutation µk of seeds.

Definition 4.6. We define the oriented rooted tree Tn (where n = |Iuf|) as in [Gross et al. 2015]. It is the
infinite tree generated from a root v0 such that

(1) v0 has outgoing edges labeled by Iuf = {1, . . . , n};

(2) any other vertex has one unique incoming edge, and outgoing edges labeled by Iuf.

Let v0 ∈ Tn be the root. Then for any other vertex v ∈ Tn , there is a unique oriented path from v0 to v.
We associate a seed s to the root v0, the unique path from v to v0 determines a seed sv by applying the
mutations in directions of the labelings in the path to the initial seed s. Therefore we have an association
v 7→ sv for v ∈ Tn \ {v0} and v0 7→ s such that for an edge v k

−→ v′ in Tn , then

sv′ = µk(sv).

Suppose the unique path from v0 to v walks through edges labeled by k1, k2, . . . , kl . There is then the
birational map

µv0,v := µkl ◦ · · · ◦µk2 ◦µk1 : TN ,s(R) 99K TN ,sv (R).

For arbitrary two vertices v and v′ in Tn , there is the birational map

µv,v′ := µv0,v′ ◦µ
−1
v0,v
: TN ,sv (R) 99K TN ,sv′ (R).

These birational maps surely satisfy the cocycle condition. We use the following lemma to glue TN ,sv
together.
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Lemma 4.7 [Bossinger et al. 2020, Lemma 3.10; Gross et al. 2015, Proposition 2.4]. Let I be a set
and {Si | i ∈ I } be a collection of integral separated schemes of finite type over a locally Noetherian
ring R, with birational maps (of R-schemes) fi j : Si 99K S j for all i, j , verifying the cocycle condition
f jk ◦ fi j = fik as rational maps and such that fi i is the identity map. Let Ui j ⊂ Si be the largest open
subscheme such that fi j :Ui j → fi j (Ui j ) is an isomorphism. Then there is an R-scheme

S =
⋃
i∈I

Si

obtained by gluing the Si along the open sets Ui j via the maps fi j .

Definition 4.8. Let 0 be fixed data and s be an A-seed with coefficients. We apply Lemma 4.7 to glue
together the collection of tori indexed by Tn to get the generalized A-cluster variety associated to s (as
an R-scheme)

As =A0,s :=
⋃
v∈T

TN ,sv (R).

We now explain how to obtain a generalized cluster pattern from As, justifying the name generalized
A-cluster variety. We assume Nuf = N , thus Iuf = I .1

Recall we have the association v 7→ sv = µv0,v(s) for v ∈ Tn . We write sv = (ev, pv) where ev =
(ei;v | i ∈ I ), pv = ( pi;v | i ∈ I ) and pi;v = (pi, j;v | j ∈ [1, ri ]).

Sending v0 to any vertex t0 in the n-regular tree Tn gives a unique surjective map

π : Tn→ Tn, v0 7→ t0

such that the labeling on edges is preserved.
For any seed v ∈ Tn , there is the corresponding labeled seed with coefficients (in the sense of

Definition 3.1)
6v =6(sv) := (xv, pv, Bv),

where
xi,v := µ

∗

v0,v
(ze∗i;v ) ∈QP(x1, . . . , xn), bvi j := ω(ei;v, d j e j;v),

where xi = xi,v0 .

Lemma 4.9. If two vertices v and v′ vertices of Tn descend to the same vertex in Tn , i.e., π(v)= π(v′),
then their corresponding labeled seeds with coefficients are identical, i.e., 6v =6v′ .

Proof. Suppose the unique path in Tn from v0 to v goes through edges labeled by k1, . . . , kl in order. We
show in the following by induction that

µkl ◦ · · · ◦µk1(6v0)=6v,

where the operation µk is the mutation in direction k of labeled seeds with coefficients in the sense of
Definition 3.2.

1This is because we do not define cluster patterns with frozen directions. This can be done by making mutations only available
at a subset of a given cluster, leaving the rest variables frozen. However, one can always treat the frozen variables as making up
coefficients in a cluster pattern.
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Let v1
k
−→ v2 be in Tn . Then one checks Bv2 = µk(Bv1) using the fact that ev2 = µk(ev1), which is

standard from [Gross et al. 2015]. The coefficients parts pv1 and pv2 are related by the mutation µk by
definition. So we only need to check that xv1 and xv2 are also related by µk .

Note that µ∗v0,v2
= µ∗v0,v1

◦µ∗k . So we have for i ̸= k

xi;v2 = µ
∗

v0,v1
(µ∗k(z

e∗i;v2 ))= µ∗v0,v1
(ze∗i;v1 )= xi;v1,

xk;v2 = µ
∗

v0,v1
(µ∗k(z

e∗k;v2 ))

= µ∗v0,v1

(
z−e∗k;v1+

∑
[−b

v1
ik ]+e∗i;v1

rk∏
j=1
(p−k, j;v1

+ p+k, j;v1
zwk;v1 )

)
= µ∗v0,v1

(
z−e∗k;v1

rk∏
j=1
(p−k, j;v1

zw
−

k;v1 + p+k, j;v1
zw
+

k;v1 )
)

= µ∗v0,v1
(z−e∗k;v1 )

rk∏
j=1

(
p−k, j;v1

µ∗v0,v1
(zw

−

k;v1 )+ p+k, j;v1
µ∗v0,v1

(zw
+

k;v1 )
)

= x−1
k;v1

rk∏
j=1

(
p−k, j;v1

∏
i∈I

x [−βik ]+
i;v1

+ p+k, j;v1

∏
i∈I

x [βik ]+
i;v1

)
.

The only unexplained notation in the above equations is that for any w =
∑

i∈I ai e∗i ∈ M , we write

w− :=
∑
i∈I
[−ai ]+e∗i and w+ :=

∑
i∈I
[ai ]+e∗i .

Now we have checked that µk(6v1) = 6v2 . By induction on the distance from v to the root v0, we
conclude that µkl ◦· · ·◦µk1(6v0)=6v for any v ∈Tn . Since µk is involutive, we can reduce the sequence
(k1, · · · , kl) by deleting pairs of consecutive identical indices until there is none. So 6v only depends
on the reduced sequence of edge labels from v0 to v. Now notice that two vertices v and v′ in Tn have
the same projection t in Tn if and only if they have the same reduced sequence of edge labels from v0,
meaning the same labeled seed with coefficients 6t :=6v =6v′ . □

Proposition 4.10. According to the above lemma, we have that the labeled seeds 6v and 6v′ are equal if
π(v)= π(v′)= t ∈ Tn . So we can denote them all by 6t . The association t 7→6t for every t ∈ Tn is a
cluster pattern.

Proof. Suppose the unique path from t0 to some t ∈ Tn walks through edges in order of k1, . . . , kl . Then
already in the proof of the above lemma, we have

6t = µkl ◦ · · · ◦µk1(6t0).

This association by definition gives a cluster pattern. □

Definition 4.11. The (generalized) upper cluster algebra A (s) (of an A-seed s with coefficients) is
defined to be the R-algebra

H 0(As,OAs)=
⋂
v∈Tn

H 0(TN ,sv (R),OTN ,sv (R)),

the ring of regular functions on the (generalized) A-cluster variety As.
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By definition the upper cluster algebra is the algebra of all Laurent polynomials that remains Laurent
polynomials after an arbitrary sequence of mutations. It follows from the Laurent phenomenon that all
cluster variables are elements in the upper cluster algebra, thus the inclusion

A (s)⊂ A (s),

where the former denotes the subalgebra generated by cluster variables, i.e., the cluster algebra (over R).
The notion of principal coefficients can be easily translated into the current setting.

Definition 4.12. An A-seed s is said to have principal coefficients if the associated labeled seed 6(s) has
principal coefficients.

The associated cluster pattern with t0 7→ 6(s), t 7→ 6(sv) (where t = π(v)) then has principal
coefficients at t0. In this case, we denote the corresponding cluster variety by Aprin

s .

4.2. Generalized X -cluster variety. Given fixed data 0 as in the last section, we define the notion of
(generalized) X -seeds with coefficients.

Definition 4.13. An X -seed with (generalized) coefficients s = (e, q) is the same as an A-seed. We use
the symbol q instead of p to stress that it is an X -seed.

What distinguish X -seeds with A-seeds is the mutation.

Definition 4.14. Given an X -seed s = (e, q), we define the mutation in direction k, µk(s)= (e′, q ′) by

e′i =
{

−ek if i = k,
ei + [⟨ei ,−rkwk⟩]+ek if i ̸= k;

and

q ′k, j = q−1
k, j for j ∈ [1, rk];

for i ̸= k, j ∈ [1, ri ], q ′i, j =

{
qi, j · (qk;−)

−βik if −βki > 0,
qi, j · (qk;+)

−βik if −βki ≤ 0,

So the pure seed part e behaves in the same way under mutation as in an A-seed while the coefficients
part q mutates differently, but same as the coefficients in a labeled Y -seed. Roughly, if in A-seeds, the
matrix B governs the mutation of coefficients, then in X -seeds, −BT does the job.

Definition 4.15. Let s = (e, q) be an X -seed with coefficients. Then there is the associated X -cluster
mutation

µk : TM(R) 99K TM(R), µ∗k(z
n)= zn

·

( rk∏
l=1
(q−k,l + q+k,l z

ek )
)−⟨n,−wk⟩

,

where TM(R) is the R-torus Spec(k[N ]⊗ R).
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Definition 4.16. Let s be an X -seed for 0. Then there is a unique association v 7→ sv for every v ∈ Tn

such that v0 7→ s and adjacent associated seeds are related by mutations of X -seeds in corresponding
directions. Define the generalized X -cluster variety associated to s to be the R-scheme

Xs = X0,s :=
⋃
v∈Tn

TM,sv (R)

obtained by gluing TM,sv (R) via X -cluster mutations using Lemma 4.7.

Write sv = ((ei;v), (qi;v)). Let us keep track of the monomials zei;v ∈ k[N ] (instead of ze∗i;v in the
A-case). We define

yi;v := µ
∗

v,v0
(zei;v ) ∈ Frac(k[N ]⊗ R).

It turns out that these yi;v are the Y -variables of the Y -pattern induced by the X -seed s described as
follows. We take s as the initial seed. Analogous to the A-situation, any vertex v ∈ Tn descends to a
vertex t = π(v) ∈ Tn .

Proposition 4.17. For v ∈ Tn , define the generalized labeled Y -seed 1v = ((yi;v), (qi;v), Bv). Then
we have 1v = 1v′ if π(v) = π(v′) = t ∈ Tn . Then the association t 7→ 1t for t ∈ Tn is a generalized
Y -pattern with coefficients where 1t :=1v for any v such that t = π(v).

Proof. We first note that the Y -variables yi;v live in the universal semifield QPsf(y1, . . . , yn) where
yi = zei are the initial Y -variables. The proof is completely analogous to Proposition 4.10. We leave the
details to the reader. □

4.3. Special coefficients. By construction, given an A-seed (resp. X -seed) s, there is the flat family

πA :As→ Spec R (resp. πX : Xs→ Spec R).

Let λ be a k-point of Spec R. Then the special fiber π−1(λ) is a k-scheme and can be viewed as a
generalized cluster variety with special coefficients, denoted by As,λ (resp. Xs,λ). They are also glued
together by tori via birational morphisms (namely the A- or X -mutations specialized at λ)

As,λ =
⋃
v∈Tn

TN ,v, Xs,λ =
⋃
v∈Tn

TM,v.

The A-type varieties (resp. X -type varieties) lead to cluster patterns (resp. Y -patterns) with specialized
coefficients. We have as before in the A-case the inclusion of algebras

A (s, λ)⊂ A (s, λ) := H 0(As,λ,OAs,λ).

4.4. Cluster duality. The cluster duality of Fock and Goncharov predicts, in the ordinary case, that the
varieties As and Xs are dual in the sense that the upper cluster algebra A (s) has a basis parametrized
by the tropical set X trop(Z) (and vice versa). Note here s is viewed as a seed without coefficients so
we do not need to distinguish between A- and X -seeds. Strictly speaking, this statement is not true
as in some cases Xs may have too few regular functions [Gross et al. 2015]. This duality (named the
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Fock–Goncharov full conjecture) is the main subject of study (on a precise modified formulation and
when it is true) in [Gross et al. 2018].

Our point of view of is that it is more natural to include generalized cluster varieties in cluster dualities,
which we will demonstrate in the principal coefficients case. We denote the X -cluster variety with
principal coefficients by X prin

s , where the coefficient group is the tropical semifield

P= Trop(qi j | i ∈ I, j ∈ [1, ri ]).

The scheme X prin
s is over Spec(R) where R = kP. There are evaluations λ sending qi j to λi j ∈ k∗. Each λ

specifies an X -cluster variety with special coefficients as in the following diagram:

X prin
s,λ X prin

s

Spec(k) Spec(R)

πX

λ

With a general choice coefficients, X prin
s,λ should be considered mirror dual to the family

πA :Aprin
s → Spec(R),

where s is viewed as an A-seed with coefficients. We shall not fully justify this statement in this paper,
but instead will show that the family πA : A

prin
s → Spec(R) (as well as the generalized cluster algebra

A prin(s)) can be reconstructed from X prin
s,λ , through a consistent wall-crossing structure (or scattering

diagram) Ds associated to X prin
s,λ ; see Section 8.

5. Toric models and mutations

This section is a generalization of [Gross et al. 2015, Section 3] aiming for generalized cluster varieties. A
log Calabi–Yau pair (X, D) is a smooth projective variety X (over an algebraically closed field k) with a
reduced simple normal crossing divisor D such that K X + D = 0 where K X is the canonical divisor of X .
A log Calabi–Yau variety U is the interior of a log Calabi–Yau pair (X, D), i.e., U = X \D. Described in
[Gross et al. 2015], particularly relevant in cluster theory are log Calabi–Yau pairs (X, D) obtained from
a blow-up π : X→ X6 where X6 is the toric variety associated to a fan 6 in Rn . The blow-up is along a
hypersurface in the toric boundary of X6 , and D is given by the strict transform of the toric boundary.
We will see that both generalized X - and A-varieties can be realized as log Calabi–Yau varieties obtained
this way (up to codimension two subsets).

5.1. Toric models. Fix a lattice N ∼= Zn and let M be its dual. Suppose for i ∈ I = [1, l] we have pairs
of vectors (ei , wi ) ∈ N ×M such that ⟨ei , wi ⟩ = 0. We assume that all nonzero ei are primitive, but some
of them may equal. For each i , we fix a positive integer ri . We also take functions (elements in k[M])

fi = ai,0+ ai,1zwi + · · ·+ ai,ri z
riwi

with nonzero ai,0 and ai,ri .
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We construct in below a log Calabi–Yau variety U3 using the data

3 := ((ei )i∈I , (wi )i∈I , ( fi )i∈I ).

The following construction is what we mean by a toric model for U3 and we call such3 a toric model data.

Construction 5.1 (cf. [Gross et al. 2015, Construction 3.4]). Given the data 3, consider the fan

6 =63 := {R≥0ei | i ∈ I } ∪ {0}

in NR. Let X6 be the toric variety defined by 6, and Di be the irreducible toric boundary divisor
corresponding to R≥0ei . Note that since ⟨ei , wi ⟩ = 0, zwi does not vanish on Di . Let Zi be the zero locus
of fi on Di , i.e., the closed subscheme V ( fi )∩ Di , which is a hypersurface. Blow up X6 along

⋃l
i=1 Zi

to obtain

π : X̃6→ X6.

Let D̃i be the strict transform of Di in X̃6 . Then the open subscheme U3 := X̃6 \
⋃

i D̃i is a log
Calabi–Yau variety.

Definition 5.2. For k ∈ I , we say a toric model data 3 k-mutable if the pairs (ei , wi ) satisfy the condition

⟨ei , wk⟩ = 0=⇒ ⟨ek, wi ⟩ = 0

for any i ∈ I .

We define mutations of a k-mutable toric model data.

Definition 5.3. Let 3 be a k-mutable toric model data and 3′ = ((e′i ), (w
′

i ), ( f ′i )) be another set of data.
Write βi j = ⟨ei , w j ⟩. We write 3′ = µk(3) (or say they are µk-equivalent) if they satisfy the following
conditions:

• e′k =−ek and w′k =−w
′

k ;

• if i ̸= k and βik ≥ 0, e′i = ei and w′i = wi ;

• if i ̸= k and βik ≤ 0, e′i = ei −⟨ei , rkwk⟩ek and w′i = wi +⟨ek, wi ⟩rkwk ;

and if writing f ′i = a′i,0+ a′i,1zw
′

i + · · ·+ a′i,ri
zriw

′

i ,

• a′k, j = ak,rk− j for j ∈ [1, rk];

• for i ̸= k, j ∈ [1, ri ],

a′i, j/a
′

i,0 =

{
(ak,0)

jβki · ai, j/ai,0 if βik > 0,
(ak,rk )

jβki · ai, j/ai,0 if βik ≤ 0.
(5-1)

We note that the mutation µk is not deterministic for the ( fi ) part, and is not involutive for the
((ei ), (wi )) part.
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Applying Construction 5.1 to 3′ = µk(3), we obtain another log Calabi–Yau variety U3′ . Note that
both U3 and U3′ contain the torus TN . Consider the birational morphism

µk : TN 99K TN , µ∗k(z
m)= zm

· f −⟨m,ek⟩
k .

The following theorem is a generalization of the results in [Gross et al. 2015, Section 3].

Theorem 5.4. The birational morphismµk extends to an isomorphismµk :U3→U3′ outside codimension
two subsets if dim V ( fk)∩ Zi < dim Zi whenever ⟨ei , wk⟩ = 0 for i ∈ I .

Proof. We first make up some auxiliary varieties. Let 6+ =6 ∪ {R≥0e′k} and 6− =6′ ∪ {R≥0ek}. We
can blow up X6+ (resp. X6−) in the same way as we do so for Xσ (resp. X6′) to obtain X̃+ (resp. X̃−).
Removing the strict transforms of the toric boundaries, we can still get U3 and U3′ . Following Lemma 3.6
in [Gross et al. 2015], we show that µk extends to an isomorphism (outside codimension two subsets)
between X̃+ and X̃−, mapping the toric boundary of one to that of the other.

Suppose we only blow up X6+ along Zk and X6− along Z ′k . Then the blow-up X̃+ has a covering of
open subsets

X̃+ = P̃+ ∪
( ⋃

i ̸=k
Ui

)
(5-2)

where P̃+ is the blow-up along Zk of the toric variety of the fan {R≥0e′k,R≥0ek} and Ui is the standard
open toric chart corresponding to the ray R≥0ei . Replacing Ui with Ui \ V ( fk) for i ̸= k, (5-2) is still a
covering but up to codimension two (with V ( fk)∩ Di missing). More precisely, fk is a regular function
on Ui if ⟨wk, ei ⟩ ≥ 0. In this case, V ( fk)∩ Di is just the zero locus of the restriction of fk on Di , i.e.,
V ( fk)∩ Di . As zwk vanishes on Zi when ⟨wk, ei ⟩> 0, V ( fk)∩ Di =∅ since fk has nonzero constant
term. When ⟨wk, ei ⟩< 0, then V ( fk)∩Di = V (z−rkwk fk)∩Di where z−rkwk fk = f ′k is a regular function
on Ui . So V ( fk) ∩ Di is still empty since f ′k has nonzero constant. Therefore we only fail to cover
V ( fk)∩ Di when ⟨wk, ei ⟩ = 0, which is a codimension two subset.

By Lemma 3.2 of [Gross et al. 2015], µk extends to a regular isomorphism from P̃+ to P̃−. Here P̃−

is the blow-up along Z ′k of the toric variety defined by the fan {R≥0e′k,R≥0ek}. We check that µk also
extends to a regular isomorphism from Ui \V ( fk) to U ′i \V ( f ′k). Note that these are affine schemes so we
check that µ∗k extends to an isomorphism between their rings of regular functions. There are two cases.

(1) If ⟨ei , wk⟩ ≥ 0, then e′i = ei . Note that fk is a regular function on Ui as well as on U ′i . Thus we have

Ui \ V ( fk)=Ui \ V ( fk) and U ′i \ V ( f ′k)=U ′i \ V ( fk).

For ⟨m, ei ⟩ ≥ 0, zm defines a regular function on U ′i and

µ∗k(z
m)= zm f −⟨m,ek⟩

k

is a regular function on Ui \ V ( fk).
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(2) If ⟨ei , wk⟩ < 0, then e′i = ei − ⟨ei , rkwk⟩ek . Instead of fk , the function f ′k = z−rkwk fk is a regular
function on Ui and V ( fk)= V ( f ′k). For ⟨m, e′i ⟩ ≥ 0 and zm a regular function on U ′i , we have

µ∗k(z
m)= zm f −⟨m,ek⟩

k = zm−rkwk⟨m,ek⟩( f ′k)
−⟨m,ek⟩.

We check that ⟨m − rkwk⟨m, ek⟩, ei ⟩ = ⟨m − rkwk⟨m, ek⟩, e′i + ⟨ei , rkwk⟩ek⟩ = ⟨m, e′i ⟩ > 0. Thus
µ∗k(z

m) is a regular function on Ui \ V ( fk)=Ui \ V ( f ′k).

Therefore µ∗k is a morphism between regular functions. In all the cases above, one checks that sending zm

to zm f ⟨m,ek⟩
k is the inverse of µ∗k . Summarizing, we have so far proven that there is an isomorphism

µk :U+ := P̃+ ∪
( ⋃

i ̸=k
Ui \ V ( fk)

)
→U− := P̃− ∪

( ⋃
i ̸=k

U ′i \ V ( f ′k)
)

extending the birational morphism µk between tori.
Now we analyze the impact of blowing up the hypersurfaces Zi (and Z ′i ) for i ̸= k. When ⟨wk, ei ⟩ ̸= 0,

as discussed Di ∩V ( fk)=∅, so Zi ⊂ Di is contained in U+. Since ⟨w′k, e′i ⟩ =−⟨wk, ei ⟩ ̸= 0, the same is
true for Z ′i , i.e., Z ′i ⊂U−. We would like to show that µk(Zi )= Z ′i when ⟨wk, ei ⟩ ̸= 0. There are two cases.

(1) Suppose ⟨wk, ei ⟩ > 0. In this case, e′i = ei and w′i = wi . By definition Z ′i = D′i ∩ V ( f ′i ) =
V (zm0)∩V ( f ′i )⊂U ′i for some m0 such that ⟨m0, e′i ⟩ = 1. Now we have µ∗k(z

m0)= zm0 f −⟨m0,ek⟩
k and

µ∗k( f ′i )= a′i,0+ a′i,1zwi f −⟨wi ,ek⟩
k + · · ·+ a′i,ri

zriwi f −⟨riwi ,ek⟩
k .

Note that fk is invertible on Ui \ V ( fk) and restricts to constant pk0 on Di . So V (µ∗k(z
m0)) is just

the divisor Di and

µ∗k( f ′i )|Di = a′i,0+ a′i,1a−βki
k,0 zwi + · · · a′i,ri

a−riβki
k,0 zriwi = λ · fi |Di .

for some nonzero λ ∈ k by the µk-equivalence assumption on 3 and 3′. Therefore µk(Zi )= Z ′i .

(2) Suppose ⟨wk, ei ⟩< 0. In this case we have e′i = vi −⟨rkwk, ei ⟩ek and w′i = wi +⟨wi , ek⟩rkwk . Still
Z ′i = V (zm0)∩V ( f ′i ). Now instead of fk , the function f ′k = z−rkwk fk is a regular function on Ui and
restricts to constant ak,rk on Di . First, µ∗k(z

m0)= zm0−⟨m0,ek⟩rkwk ( f ′k)
⟨m0,ek⟩. Since f ′k is invertible on

Ui \ V ( fk), V (µ∗k(z
m0))= Di as ⟨m0+⟨m0, ek⟩rkwk, ei ⟩ = 1. Secondly we have

µ∗k( f ′i )= a′i,0+ a′i,1zw
′

i f −⟨wi ,ek⟩
k + · · ·+ a′i,ri

zriw
′

i f −⟨riwi ,ek⟩
k

= a′i,0+ a′i,1zw
′

i−⟨wi ,ek⟩rkwk ( f ′k)
−⟨wi ,ek⟩+ · · ·+ a′i,ri

zriw
′

i−⟨riwi ,ek⟩rkwk ( f ′k)
−⟨riwi ,ek⟩.

Hence

µ∗k( f ′i ) |Di = a′i,0+ a′i,1a−βki
k,rk

zwi + · · ·+ a′i,ri
a−riβki

k,rk
zriwi = λ · fi |Di

for some nonzero λ ∈ k again by the µk-equivalence assumption. Therefore in this case we also
have µk(Zi )= Z ′i .
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Finally we consider the case ⟨wk, ei ⟩ = 0. The argument we need is exactly the same as in the last
paragraph of the proof in [Gross et al. 2015]. By the assumption ⟨wk, ei ⟩ = 0=⇒ ⟨wi , ek⟩ = 0, so we have

µ∗k( f ′i )= fi ,

and thus µk(Zi )= Z ′i . The problem is that Zi may not be fully contained in Di \V ( fk), with V ( fk)∩ Zi

missing. If V ( fk)∩ Zi contains a irreducible component of Zi , then U3 would contain the corresponding
exceptional divisor while blowing up in U+ does not. However the isomorphism µk : U+ → U−
need not extend as isomorphism across this exceptional divisor. Now we need the further hypothesis
dim V ( fk)∩ Zi < dim Zi so that the missing part in the blow-up center is of at least codimension three
in Ui . After blowing up the corresponding locus in U+ and U+, we have the diagram

Ũ+ Ũ−

U+ U−

µk

π π

µk

where vertical arrows are blow-ups and horizontal arrows are genuine isomorphisms. Removing the strict
transform of the toric boundary, we have immersions

Ũ+ \ D̃ ⊂U3 and Ũ− \ D̃ ⊂U3′

missing codimension two loci. Summarizing, the birational map µk can be extended to an isomorphism
µk :U3 99K U3′ outside sets of codimension two. □

A sufficient condition for the assumption in Theorem 5.4 to hold is

∀⟨ei , wk⟩ = 0, dim V ( fk)∩ Zi < dim Zi .

Definition 5.5 (cf. [Berenstein et al. 2005, Definition 1.4]). A toric model data 3= ((ei ), (wi ), ( fi )) is
said to be coprime if the functions fi are pairwise coprime as elements in the ring k[M].

Corollary 5.6. The result in Theorem 5.4 holds if 3 is coprime.

Proof. Note that Zi = V ( fi )∩ Di . If needed, multiply some monomial zm to fi so that f̃i = zm fi is a
regular function on Di . Do the same to fk to get f̃k . By the coprime condition on 3, f̃i and f̃k are still
coprime, so we have

dim V ( f̃k)∩ V ( f̃i ) < dim V ( f̃i ),

where the above subschemes are taken inside Di . □

The following is an easy-to-check condition on 3 for the coprimeness to hold.

Lemma 5.7. If the vectors wi are linear independent, then 3 is coprime.
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5.2. The upper bound. Suppose we are given the data3= ((ei ), (wi ), ( fi )). Assume that3 is i-mutable
for any i ∈ I . For i ∈ I , let T (i)

N be a copy of the torus TN . Then we have birational maps for each i ∈ I ,

µi : TN 99K T (i)
N , µ∗i (z

m)= zm f −⟨ei ,m⟩
i .

We glue the |I | + 1 tori along the maps µi to obtain a scheme X3.
In previous section, we know that not only the torus TN , U3 also contains the torus T (i)

N , that is, we
have the following diagram for every i ∈ I :

TN T (i)
N

U6

µi

These diagrams determine a unique morphism ψ : X3→U3.

Lemma 5.8 [Gross et al. 2015, Lemma 3.5]. The morphismψ : X3→U3 satisfies the following properties:

(1) If dim Zi ∩ Z j < dim Zi for all i ̸= j , then ψ is an isomorphism outside a set of codimension at
least two.

(2) If Zi ∩ Z j =∅ for all i ̸= j , then ψ is an open immersion. In particular, in this case, X3 is separated.

In the A-cluster case to be explained later, the variety X3 may be named the upper bound according to
[Fomin and Zelevinsky 2007].

5.3. Toric models for cluster varieties. In this section, we realize generalize cluster varieties as log
Calabi–Yau varieties utilizing Construction 5.1.

5.3.1. A-cluster cases. Suppose we have fixed data 0 and an A-seed with coefficients s = (e, p). We
further choose an evaluation λ : P→ k∗. This amounts to pick a k-point of Spec(kP). These lead to the
generalized A-cluster variety As,λ with special coefficients.

Meanwhile consider the toric model data

3(s, λ) := ((ei )i∈Iuf, (wi )i∈Iuf, ( fi )i∈Iuf)

defined as follows. The vectors (ei )i∈Iuf are taken from the seed s. Recall that we have the exchange
matrix B = (bi j ) where bi j := ω(ei , d j e j ). Write βi j = bi j/r j . Note that {ei | i ∈ I } form a basis of the
lattice N and we denote by e∗i the dual basis of M . Then define

wi := ω(−, di ei/ri )=
∑
j∈I
βi j e∗i ∈ M, fi := λ(θ [ pi ](zwi , 1)) ∈ k[M].

Then Construction 5.1 applies to the toric model data 3(s, λ), and thus there is the associated log Calabi–
Yau variety U3(s,λ). Recall that we also have the scheme X3(s,λ) obtained by gluing n+ 1 copies of the
torus TN as in Section 5.2. We call X3(s,λ) the upper bound for (s, λ), which by definition is an open
subscheme of As,λ.
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The following lemma is easy to verify by direct computations.

Lemma 5.9. We have µk(3(s, λ)) = 3(µk(s), λ) in the sense of Definition 5.3. The latter µk is the
mutation of an A-seed with coefficients.

Proposition 5.10. (1) The morphism ψ : X3(s,λ)→U3(s,λ) is an open immersion with image an open
subset whose complement has codimension at least two.

(2) The birational map µk :U3(s,λ) 99K U3(µk(s),λ) is an isomorphism outside codimension two in each
of the listed situations:

A. The functions fi have general coefficients.
B. The seed s is mutation equivalent to one with principal coefficients, and λ ∈ (k∗)|I

′
| is general

enough.

Proof. (1) follows from Lemma 5.8, part (2) — as we only need to check the hypothesis Zi ∩ Z j = ∅
for all i ̸= j . In fact, in A-cluster case, since ei ̸= e j , we have TN/⟨ei ⟩ ∩ TN/⟨e j ⟩ = ∅ for all i ̸= j ,
where TN/⟨ei ⟩ is viewed as the dense torus contained in the divisor Di . As Zi is a closed subset of TN/⟨ei ⟩,
the hypothesis holds.

(2) follows from Theorem 5.4. We need to check that whenever ⟨ei , uk⟩ = 0,

dim V ( fk)∩ V ( fi )∩ Di < dim V ( fi )∩ Di .

A sufficient condition is the functions fi being coprime. Note that for i ∈ I ,

fi =
ri∏

j=1
(λ(p+i, j )z

wi + λ(p−i, j )).

When these fi have general coefficients (case A), they are coprime. In case B, one may replace fi by

f̃i =
ri∏

j=1
(λ(pi, j )zwi + 1).

Since the elements pi, j for i ∈ I and j ∈ [1, ri ] form a Z basis in P (by Lemma 3.18) when s is mutation
equivalent to one with principal coefficients, these f̃i are coprime as long as λ is general. □

Remark 5.11. Suppose we are in the situation of case B of Proposition 5.10(2). Then we have isomor-
phisms of the rings of regular functions

k[X3(s,λ)] ∼= k[U3(s,λ)] ∼= k[U3(µk(s),λ)].

The equality then extends to any seed sv that is mutation equivalent to s. It then follows that they are all
isomorphic to the upper cluster algebra

A (s, λ)= k[As,λ].
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The cluster variables in seed s are xi,s := ze∗i . Each xi,s extends to a regular function on the toric variety X6
corresponding to the toric model data3(s, λ). Then xi,s pulls back to the blow-up X̃6 and restricts to a reg-
ular function on the open subvariety U3(s,λ). It follows from (2) of Proposition 5.10 that xi,s is also a regular
function on X3(sv,λ) and in particular is a Laurent polynomial if restricted to TN ,sv . This explains the gener-
alized Laurent phenomenon Theorem 3.7, which was observed in [Gross et al. 2015] for the ordinary case.

5.3.2. X -cluster cases. Suppose we have fixed data 0 and an X -seed with coefficients s = (e, q). Let us
make the assumption that for any j ∈ Iuf,

r j = gcd(bi j , i ∈ I ).

This is equivalent to say that each w j for j ∈ Iuf is primitive as an element of M =Hom(N ,Z). Switching
the roles of (ei ) and (wi ), we obtain the toric model data

�(s, λ)= ((−wi ), (ei ), (gi ))

for M instead of N , where

gi := λ(θ [qi ](zei , 1)) ∈ k[N ]

with some chosen evaluation λ. Since the matrix B is skew-symmetrizable, �(s, λ) is k-mutable for
any k ∈ Iuf.

Lemma 5.12. The assumption that r j = gcd(bi j , i ∈ I ) is invariant under mutations.

Proof. This is because if the j-th column of B is divisible by r j then the same is true for the matrix
µk(B)= (b′i j ). Thus we have

gcd(bi j , i ∈ I )= gcd(b′i j , i ∈ I )

as µk is involutive on B. □

The above lemma shows that we have well-defined data �(µk(s), λ).

Lemma 5.13. We have µk(�(s, λ)) = �(µk(s), λ), where the later µk is the mutation for an X -seed
with coefficients.

Proof. This lemma is analogous to Lemma 5.9 and is also easy to check. However, to show that the
carefully chosen signs and conventions are the correct ones, we record some details here.

In the notations of Definition 5.3, for the data �(s, λ), we take ei = −wi and wi = ei . So after the
mutation µk in sense of Definition 5.3, for i ̸= k

(−wi )
′
=

{
−wi −⟨(−wi ), rkek⟩(−wk) if ⟨−wi , ek⟩ ≤ 0,

−wi if ⟨−wi , ek⟩> 0.
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Note that the two conditions are equivalent to βik ≤ 0 and βik > 0 respectively. And in these two cases,
we have

(−wi )
′
=−wi −⟨ek, wi ⟩rkwk and −wi

respectively. This is exactly −w′i for w′i = ω(−, di e′i/ri ) from the seed µk(s). Similarly, one checks that
the e part is also compatible with mutations.

As for coefficients, for the data �(µk(s), λ), we have

g′i (u, v)= λ(θ [q
′

i ](u, v).

Here q ′i, j is obtain from X -type mutations for coefficients (see Definition 4.14) which coincides with
Definition 5.3. □

Recall that X�(s,λ) is the upper bound for �(s, λ) as defined in Section 5.2.

Proposition 5.14. For the X -type constructions,

(1) the morphism ψ : X�(s,λ)→U�(s,λ) is an open immersion with image being an open subset whose
complement has codimension at least two;

(2) the birational map µk :U�(s,λ) 99K U�(µk(s),λ) is an isomorphism outside codimension two subsets.

Proof. The proof of (1) is completely analogous to that of (1) of Proposition 5.10. For (2), it follows
from that for any X -seed s, the data �(s, λ) is always coprime by Lemma 5.7 as the vectors ei form a
basis of N . □

6. Scattering diagrams

This section deals with scattering diagrams. Our main objects of study generalized cluster scattering
diagrams will be defined in Section 6.2.

6.1. The tropical vertex. We start with a more general setup of scattering diagrams as in [Argüz and
Gross 2022, Section 5.1.1]. Let N be a lattice of finite rank, M = HomZ(N ,Z) and MR = M ⊗Z R.
Let P be a monoid with a monoid map r : P → M . Denote by P× the groups of units of P and let
mP = P \ P×. An ideal of the monoid P induces a monomial ideal of the ring k[P], where k is a ground
field. So we use the same letter to denote both. For any monomial ideal I ⊂ k[P], define the ring

RI := k[P]/I.

Denote by k̂[P] the completion of k[P]/mn
P for n ∈ N.

For I such that its radical
√

I is equal to mP (e.g., I =mn
P for some n ∈ N), define the module of log

derivations 2(RI ) := RI ⊗Z N as follows.
If we write the element z p

⊗ n as z p∂n for p ∈ P and n ∈ N , then it acts on RI by

z p∂n(z p′)= ⟨n, r(p′)⟩z p+p′, p′ ∈ P.
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Then the submodule mP2(RI ) is a Lie algebra with the commutator bracket

[z p1∂n1, z p2∂n2] = z p1+p2∂⟨r(p2),n1⟩n2−⟨r(p1),n2⟩n1 .

Taking exponential of elements in this Lie algebra, we get group elements in Aut(RI ). There is a nilpotent
Lie subalgebra of mP2(RI ) defined by

vI :=
⊕

m∈P\I,r(m) ̸=0
zm(k⊗ r(m)⊥).

Since it is nilpotent, this Lie subalgebra (as a set) is in bijection with the corresponding algebraic group
VI := exp(vI )⊂Aut(RI ). Taking the projective limit with respect to the ideals mn

P for n ∈N, we get a pro-
unipotent group V̂, which is in bijection with the pro-nilpotent Lie algebra v̂ := lim

←−−
vmn

P
. The group V̂ is

called the higher-dimensional tropical vertex group, acts by automorphisms on k̂[P]. We also denote
(without completion)

v :=
⊕

m∈P, r(m )̸=0
zm(k⊗ r(m)⊥).

Definition 6.1. A scattering diagram in MR over RI is a finite set D of walls where each wall (d, fd)
is a rational polyhedral cone d ⊂ MR of codimension one along with an attached element called
wall-crossing function

fd =
∑

m∈P\I
r(m)∈3d

cmzm
∈ RI ,

where 3d ⊂ M is the integral tangent space of any point in d, i.e., 3d = M ∩ R⟨d⟩. We require that
fd ≡ 1 mod mP .

Remark 6.2. Upon choosing a generator n0 of 3⊥d ∩N , the wall-crossing function fd induces an element
in VI ⊂ Aut(RI ) by the action

z p
7→ z p f ⟨r(p),n0⟩

d .

So this wall-crossing automorphism depends on how one crosses the wall. One may view that this
wall-crossing automorphism depends on the direction in which one transversally crosses the wall. With n0

chosen, such an automorphism can be equivalently represented by the corresponding Lie algebra element
log( fd)∂n0 ∈ vI .

Let Supp(D) be the union of all walls in D. Let Sing(D) be the union of at least codimension two
intersections of every pair of walls and the boundary of every wall. Let γ : [0, 1] → MR be a piecewise
smooth proper map such that the end points γ (0) and γ (1) avoid Supp(D) and whose image is disjoint
from Sing(D). We also assume that γ meets walls transversally.

Suppose that γ crosses walls d1, . . . , ds in D at times

0< t1 ≤ t2 ≤ · · · ≤ ts < 1.
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These numbers ti are obtained by considering the finite set γ−1(Supp(D))⊂ [0, 1] as γ is proper. It is
possible that ti = t j as walls may overlap. Suppose γ crosses a wall (d, fd) at time t . Denote by ξγ,d the
element in VI with the action

z p
7→ z p f ⟨r(p),n0⟩

d , p ∈ P \ I

where n0 is chosen such that ⟨n0, γ
′(ti )⟩> 0.

Definition 6.3. We define the path-ordered product of γ in D to be the element

pγ,D := ξγ,dsξγ,ds−1 · · · ξγ,d1 ∈ VI .

Definition 6.4. A scattering diagram D over RI is consistent if the path-ordered product pγ,D only
depends on the endpoints γ (0) and γ (1) for any path γ : [0, 1] → MR for which pγ,D is well-defined.

Recall that we have the completed algebra k̂[P] := lim
←−−

Rmk
P
. For an element f ∈ k̂[P], denote by f <k

its projection in Rmk
P
.

Definition 6.5. A scattering diagram in MR over k̂[P] is a (possibly infinite) set D of walls (d, fd) with d

a rational polyhedral cone of codimension one and the wall-crossing function

fd =
∑

m∈P
r(m)∈3d

cmzm
∈ k̂[P],

such that modulo the ideal mn
p, the collection D<n

:= {(d, f <n
d )} is a scattering diagram over Rmn

P
. A

scattering diagram D is consistent if D<n is consistent for any n ∈ N.

The path-ordered product for D over k̂[P] is defined through the projective limit of path-ordered
products for D<n:

pγ,D := lim
←−−

pγ,D<n ∈ V̂⊂ Aut(k̂[P]).

Definition 6.6. We say two scattering diagrams D and D′ (over the same algebra) are equivalent if for
any γ , we have pγ,D = pγ,D′ whenever both path-ordered products are well-defined.

Definition 6.7. We say a wall d has direction m0 for some m0∈M if the attached wall-crossing function fd
only contains monomials z p such that r(p)=−km0 for some k ∈ N. A wall (d, fd) with direction m0 is
called incoming if d= d−R≥0m0.

Next we explain how to assign a scattering diagram to an X -type toric model. We are actually in a
particular situation within the more general framework of [Argüz and Gross 2022], which works for any
log Calabi–Yau variety obtained from blowing-up a toric variety along hypersurfaces in the toric boundary.

Let s= (e, q) be an X -seed with principal coefficients for some fixed data 0. We assume that Nuf= N to
avoid frozen directions. As usual, write e= (ei ). We assume the condition that r j = gcd(bi j | i ∈ I ) for any
j ∈ I . This assumption implies any wi :=

di
ri
ω(−, ei ) ∈ M is primitive. Recall that we have used the fan

60 := {0} ∪ {−R≥0wi }
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to describe the toric model of U =U�(s,λ). The functions (in the data �(s, λ) to define U ) are then

gi =
ri∏

j=1
(1+ λi j zei ) ∈ k[N ].

We pick a complete fan 6 in MR containing 60. For example, we may take a refinement of (the cone
complex induced by) the hyperplane arrangement {e⊥i | i ∈ I }. Let X6 be the corresponding (complete) toric
variety, with Di being the boundary toric divisor corresponding to the ray−R≥0wi . Let H =

⋃
i Hi , where

Hi =
⋃

j∈[1,ri ]

Hi j :=
⋃

j∈[1,ri ]

V (1+ λi j zei )∩ Di

which is a union of disjoint hypersurfaces in Di (as the coefficients λi j ∈ k∗ are general). These
hypersurfaces are exactly where we blow up X6 to obtain the log Calabi–Yau variety U�(s,λ).

Take the monoid

P := M ⊕
∏
i∈I

Nri ,

with the natural projection r : P→ M . We write multiplicatively ti,1, ti,2, . . . ti,ri for the generators of Nri .
For each ray ρi :=−R≥0wi and Hi j , there is a finite scattering diagram Di j called a widget from a certain
tropical hypersurface [Argüz and Gross 2022, Definition 5.3 and Section 5.1.3]. In our case, they are
given by:

Lemma 6.8. The widget Di j consists of all codimension one cones of the fan 6 contained in the
hyperplane e⊥i containing ρi , with the same wall-crossing function (1+ ti, j zwi ). In other words, we have

Di j = {(σ, 1+ ti, j zwi ) | σ ∈6, dim σ = n− 1, σ ⊂ e⊥i , ρi ⊂ σ }.

Proof. By definition [Argüz and Gross 2022, Definition 5.3 and Section 5.1.3], Di j consists of walls
(σ,(1+ti, j zwi )ωσ) where σ runs through all codimension one cones in 6 containing ρi and ωσ = Hi j ·Dσ

is the intersection number computed in the divisor Di . Here Dσ is the one-dimensional toric stratum in
Di corresponding to σ . Note that if ei /∈ σ

⊥, then zei or z−ei vanishes along Dσ . So Hi j = V (1+ λi j zei )

does not intersect Dσ and thus ωσ = 0. If σ ⊂ e⊥i , as ei is primitive, the intersection is at the point
zei =−1/λi j , where zei can be viewed as the coordinate on Dσ . Thus the multiplicity ωσ is 1. □

Note that by Definition 6.7 every wall in Di j is incoming since −wi is contained in every σ .

Theorem 6.9 [Argüz and Gross 2022, Theorem 5.6 and Section 5.1.3]. Consider the scattering diagram
(with only incoming walls)

D(X6 ,H),in :=
⋃
i∈I

⋃
j∈[1,ri ]

Di j .

There exists a unique (up to equivalence) consistent scattering diagram D(X6 ,H) over k̂[P] containing
D(X6 ,H),in such that D(X6 ,H) \D(X6 ,H),in consists only of nonincoming walls.
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6.2. Generalized cluster scattering diagrams. Instead of applying Theorem 6.9 to (X6, H), there is
another way to obtain the same scattering diagram by generalizing the construction of cluster scattering
diagrams in [Gross et al. 2018].

Given fixed data 0 and an A-seed s = (e, p) with principal coefficients, we are going to define the
generalized cluster scattering diagram Ds.

Recall that we have the semifield P=Trop( p), isomorphic to
∏

i∈I Zri as an abelian group. Let P = Ps

as before be M ⊕
∏

i∈I Nri , but regarded as a submonoid of M ⊕P generated by M and p. There is a
submonoid P⊕ = P⊕s ⊂ P generated by elements

{(wi , pi, j ) | i ∈ I, j ∈ [1, ri ]}.

One could take the completion of P⊕ with respect to the ideal P+ := P⊕ \{0}, giving that
∧

k[P⊕] ⊂ k̂[P].
In N , there is a submonoid N⊕s = N⊕ generated by {ei | i ∈ I }. Denote N+ = N⊕ \ {0}. We also consider
the monoid map

π : P⊕→ N⊕, (wi , pi, j ) 7→ ei .

Let n =
∑

i∈I αi ei ∈ N . Define

n :=
∑
i∈I
αi ·

di

ri
ei ∈ NR.

These n form a sublattice N of NR isomorphic to N . We have the similar notion N+, the monoid generated
by ei .

There is a subspace g of the tropical vertex lie algebra v defined as

g= gs :=
⊕

n∈N+
gn, gn :=

⊕
π(p)=n
p∈P+

z p
· (k⊗ n).

Lemma 6.10. The subspace g is an N+-graded Lie subalgebra of v.

Proof. For any n =
∑

i∈I αi ei ∈ N+, consider the elements∏
i, j

pci, j
i, j · z

p∗(n)

such that
∑

j∈[1,ri ]
ci, j = αi and

p∗(n) := ω(−, n)=
∑
i∈I
αiω(−, di ei/ri )=

∑
i∈I
αiwi .

Those elements form a basis of the vector space gn . We check that for two such elements

[p1z p∗(n1)∂n1, p2z p∗(n2)∂n2] = p1 p2 · z p∗(n1+n2)∂ω(n1,n2)n2−ω(n2,n1)n1

= ω(n1, n2)p1 p2 · z p∗(n1+n2)∂n1+n2 ∈ gn1+n2 . □

Remark 6.11. One may also view the above Lie algebra g as being N+-graded where both N and N
are sublattices of NR. When later considering a scattering diagram D over an N+-graded Lie algebra g

(instead of N+-graded), the walls live in MR with integral normal vectors in N+.
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Consider the ideals (N+)k ⊂ N+ for k ≥ 1. These correspond to the monomial ideals (P+)k . Then we
have quotient Lie algebras (and their corresponding groups G<k)

g<k
:= g/g(N+)k =

⊕
n∈N+\(N+)k

gn,

and their projective limits
ĝ=

∏
n∈N+

gn and G := exp(ĝ).

The group G<k acts on k[P⊕]/(P+)k by automorphisms as in Remark 6.2.
For n0 ∈ N+ primitive, we define as in [Gross et al. 2018] a Lie algebra (and its corresponding

pro-unipotent group)
g∥n0
:=

⊕
k>0

gk·n0 ⊂ g and G∥n0
:= exp(ĝ∥n0

)⊂ G.

There is a general framework for scattering diagrams over an N+-graded Lie algebra (as opposed to the
tropical vertex case); see [Kontsevich and Soibelman 2014, Section 2.1; Gross et al. 2018, Section 1.1].
In this case, one could make use of an existence-and-uniqueness theorem of [Kontsevich and Soibelman
2014] (see also [Gross et al. 2018, Theorem 1.21]) to obtain a consistent scattering diagram with certain
prescribed incoming data. The cluster scattering diagram of [Gross et al. 2018] can be defined this way,
which we will extend to the generalized case in Definition 6.17.

Definition 6.12. A wall in MR (for N+ and an N+-graded Lie algebra g) is a pair (d, gd) such that

(1) gd belongs to G∥n0 for some primitive n0 ∈ N+;

(2) d⊂ n⊥0 ⊂ MR is a codimension one convex rational polyhedral cone.

Remark 6.13. The above definition works for general N+-graded Lie algebras. In the case that g is a
Lie subalgebra of the tropical vertex Lie algebra v, the group G∥n0 is embedded in Aut(

∧

k[P⊕]). Then the
wall-crossing element gd can be equivalently represented by a function fd ∈

∧

k[P⊕].

Now every wall has a direction −p∗(n0) ∈ M in the sense of Definition 6.7. We call a wall (d, gd)
with direction m0 incoming if d= d−R≥0m0 and nonincoming (or outgoing) otherwise.

Definition 6.14. A scattering diagram over an N+-graded algebra g in MR is a collection of walls such
that for every degree k > 0, there are only a finite number of (d, gd) ∈D with the image of gd in G<k not
being identity.

The path-ordered product of a path γ : [0, 1] → MR for a scattering diagram D over g can be defined
similarly as in Definition 6.3. We note that when γ crosses a wall (d, gd) at time t , then the element ξγ,d
also depends on γ ′(t):

ξγ,d =

{
gd if ⟨n0, γ

′(t)⟩> 0,
g−1
d if ⟨n0, γ

′(t)⟩< 0.

The consistency for these scattering diagrams is defined using path-ordered products in the same way as
Definition 6.3.
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Theorem 6.15 [Kontsevich and Soibelman 2014, Proposition 2.1.12; Gross et al. 2018, Theorem 1.21].
Let Din be a scattering diagram over g consisting only of incoming walls. Then there exists a unique
(up to equivalence) consistent scattering diagram D containing Din such that D \Din consists only of
outgoing walls.

Now we get back to the cluster situation. Suppose given fixed data 0 and s an A-seed with principal
coefficients. Unlike the previous section, here we do not assume the maximality of the positive integers
ri , i.e., ri needs not to be gcd(bki | k ∈ I ).

We calculate in the following how the group G∥n0 is embedded in Aut(
∧

k[P⊕]). Suppose n0=
∑

i∈I αi ei ,
a primitive element in N+. Consider any element

x =
∑
k>0

∑
p∈P⊕

π(p)=kn0

cp · p · zkp∗(n0)∂kn0 ∈ ĝ
∥

n0
, cp ∈ k.

For nonzero n ∈ NQ, denote by ind(n) the largest number in Q≥0 such that n/ ind(n)∈ N . Thus n/ ind(n)
is primitive in N .

Lemma 6.16. The group element exp(x) ∈ G∥n0 acts on
∧

k[P⊕] as an automorphism by

zm
7→ zm exp

( ∑
k>0

∑
p∈P⊕

π(p)=kn0

ind(n0)kcp · p · zkp∗(n0)
)⟨r(m),n0/ind(n0)⟩

, m ∈ P⊕.

Proof. This follows by rewriting x as

x =
( ∑

k>0

∑
p∈P⊕

π(p)=kn0

ind(n0)kcp · p · zkp∗(n0)
)
∂n0/ind(n0). □

Due to Lemma 6.16, any exp(x) ∈ G∥n0 can be represented by a function f as in Lemma 6.16 such that
the action of exp(x) sends zm to zm f ⟨r(m),n0/ind(n0)⟩.

Given s = (e, p), for each i ∈ I , consider the hyperplane e⊥i with the attached wall-crossing function

fi =
ri∏

j=1
(1+ pi, j zwi ) ∈ k[P⊕].

As discussed, the function fi represents an element in G∥ei .

Definition 6.17. Let Ds,in be the scattering diagram over g in MR consisting only of the incoming walls
of the form di := (e⊥i , fi ), i.e.,

Ds,in := {(e⊥i , fi ) | i ∈ I }.

We define the generalized cluster scattering Ds to be the unique (up to equivalence) consistent scattering
diagram associated to Ds,in guaranteed by Theorem 6.15.
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Remark 6.18. One may tend to think of Ds as a scattering diagram over
∧

k[P⊕] or over k̂[P] (as g is a
Lie subalgebra of v) in Definition 6.5. However there is one subtle issue. Suppose that there is a wall
(d⊂ n⊥0 , fd) in Ds for some n0 ∈ N+ primitive. Then the wall-crossing action is given by

ξ fd(z
p)= z p f ⟨n0/ind(n0),r(p)⟩

d .

Since in general n0 may not be proportional to n0, the cone d may not be contained in n⊥0 . In this case,
the wall (d, fd) does not qualify as a wall in Definition 6.5. This issue can be resolved in the following
two ways (so that one can view Ds as a scattering diagram of Definition 6.5).

(1) We could regard g as graded by N+ ⊂ NQ (rather than N+-graded) and modify Definition 6.12 (the
definition of a wall (d, gd)) so that d is a codimension one cone in some hyperplane n⊥0 for n0 ∈ N+

and gd belongs to G∥n0 .

(2) Another way to resolve the issue is to consider the dual η∗ : MR→ MR of the linear map

η : NR→ NR, n 7→ n.

We then apply (η∗)−1 to every wall (d, fd) to get the collection

(η∗)−1(Ds) := {((η
∗)−1(d), fd) | (d, fd) ∈Ds}

Then the cone (η∗)−1(d) is indeed contained in n⊥0 . So this collection of walls is a scattering diagram
in Definition 6.5.

From now on, to avoid any further confusion, the notation Ds is reserved for the consistent scattering
diagram (η∗)−1(Ds) over

∧

k[P⊕].

Lemma 6.19. Let s be a seed with principal coefficients for some generalized fixed data 0 (viewed of
both A- and X -type) with the condition that for each i ∈ I , the element

wi = ω(−, di ei/ri )

is primitive in M. In this case, we have defined both scattering diagrams D(X6 ,H) (with a chosen general
evaluation λ) and Ds. Identify the parameters ti, j with pi, j . Then D(X6 ,H) and Ds are equivalent as
scattering diagrams over k̂[P].

Proof. We require ωi to be primitive so that D(X6 ,H) is defined. According to Remark 6.18, Ds is viewed
as a scattering diagram over k̂[P] in the same MR as D(X6 ,H) so it is legitimate to compare them. Let D̃
be the consistent scattering diagram over g obtained using the initial data D(X6 ,H),in. Notice that the walls
in D(X6 ,H),in are parts of the hyperplanes e⊥i . We then subdivide the walls in Ds,in so that D(X6 ,H),in

becomes the subset of incoming walls. Thus D̃ is equivalent to Ds by Theorem 6.15.
On the other hand, D̃ is also a scattering diagram over k̂[P]. By Theorem 6.9, It is also equivalent

to D(X6 ,H) since they have the same incoming walls. Therefore we have D(X6 ,H)
∼= D̃∼=Ds. □
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6.3. The cluster scattering diagrams of GHKK. The ordinary cluster scattering diagram Dord
s corresponds

to the case where ri = 1 for each i ∈ I . Thus there is only one parameter pi := pi,1 for each i ∈ I . The
lattice N is generated by ei = di ei . The initial incoming walls are then

{(e⊥i , 1+ pi zwi ) | i ∈ I },

where wi = ω(−, ei ) ∈ M .
This scattering diagram is closely related to the cluster scattering diagram DGHKK

s of Gross, Hacking,
Keel and Kontsevich [Gross et al. 2018, Theorem 1.12]. We explain the difference and relation here.
The scattering diagram DGHKK

s is actually defined for N and M := Hom(N ,Z) (in the ordinary case
equal to N ◦ and M◦ respectively). Under the injectivity assumption [Gross et al. 2018, Section 1.1], the
incoming walls are

{(e⊥i , 1+ zω(ei ,−)) | i ∈ I },

where ω(ei ,−) is in M◦. The injectivity assumption means that ω(ei ,−) generate a strict convex cone.
If this is not the case, we may extend M◦ to M◦⊕P (identified with M◦⊕ N in [Gross et al. 2018]) and
let incoming walls be

{(e⊥i , 1+ pi zω(ei ,−)) | i ∈ I }.

It lives in (M◦⊕ N )⊗R, or in M◦⊗R if regarding pi as formal parameters as we do. Then DGHKK
s is

defined to be the unique consistent scattering diagram over k̂[P] with only these incoming walls, where
P ⊂ M◦ ⊕ N is a submonoid contained in a strictly convex cone and containing the cone generated
by (pi , ω(ei ,−)). The Lie algebra g, however, is naturally graded by N+ (generated by ei ’s), not N+

(generated by ei ’s). Thus if one uses Theorem 6.15 to define DGHKK
s , the same rescaling issue in

Remark 6.18 still exists and can be resolved in a similar way. In [Gross et al. 2018], DGHKK
s is regarded

as living in M◦R with the integral normal vectors of walls being in N ◦.
The structures of DGHKK

s and Dord
s are very much alike. For example, they both admit cluster complex

structures; see [Gross et al. 2018, Theorem 2.13] and Theorem 7.10. It turns out that in the convention
of [Fomin and Zelevinsky 2007] (e.g., the definition of g-vectors), DGHKK

s corresponds to the cluster
algebra associated to −BT while Dord

s corresponds to the one associated to B, where B = (bi j ) with
bi j = ω(ei , e j ).

6.4. Scattering diagrams with special coefficients. Just as specializing a cluster algebra A at some
evaluation λ : P→ k∗, one can do the same to Ds, obtaining a consistent scattering diagram with special
coefficients.

We consider another monoid Q = M ⊕
∏

i∈I N
(
with ti being the standard generators of

∏
i∈I N

)
. Let

λ : P→ k∗, pi, j 7→ λi, j be an evaluation. Define the map (abusing the same notation λ)

λ : k[P] → k[Q], zm
7→ zm for m ∈ M, pi, j 7→ λi, j ti .
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Lemma 6.20. The collection

λ(Ds) := {(d, λ( fd)) | (d, fd) ∈Ds}

obtained by applying the algebra homomorphism λ to every wall-crossing function fd is a consistent
scattering diagram over k̂[Q].

Proof. The algebra homomorphism λ respects the completions of k[P] and k[Q]. So λ( fd) belongs to
k̂[Q]. Recall we have the monoid map r : P→ M which forgets the components in

⊕
i∈I Nri . We use

the same notation r : Q→ M for the analogous map on Q. Then (d, λ( fd)) becomes a wall over k̂[Q],
and λ(Ds) is a scattering diagram over k̂[Q].

The consistency of λ(Ds) follows from the consistency of Ds as λ is an algebra homomorphism. □

We call λ(Ds) the (generalized) cluster scattering diagram of s with special coefficients λ. In fact, the
ordinary cluster scattering diagram Ds when ri = 1 can be obtained this way. We denote the ordinary one
by Dord

s . Its incoming walls are

(e⊥i , 1+ pi zω(−,di ei )).

If there exist coefficients λi j ∈ k∗ such that

ri∏
j=1
(1+ λi j ti zwi )= 1+ tri

i zriwi = 1+ tri
i zω(−,di ei ),

then we can apply the corresponding morphism λ : k[P] → k[Q] to Ds so that

λ(Ds)∼=Dord
s

as they have the exact same set of incoming walls. Here tri
i is identified with pi . The existence of such an

evaluation λ amounts to find the ri roots of the polynomial 1+ xri in k, which is always possible if k is
algebraically closed.

6.5. Examples. We illustrate some examples of generalized cluster scattering diagrams in this section.

Example 6.21. Consider the fixed data 0 consisting of

• the lattice N = Z2 with the standard basis e1 = (1, 0) and e2 = (0, 1), and the skew-symmetric form
ω be determined by ω(e1, e2)=−1;

• Nuf = N ;

• the rank r = 2 and I = Iuf = {1, 2};

• positive integers d1 = 1 and d2 = 2;

• the sublattice N ◦ generated by e1 and 2e2;

• M = Hom(N ,Z), M◦ = Hom(N ◦,Z).
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1+ t11 A2

1+ t11 A2

(1+ t21 A−1
1 )(1+ t22 A−1

1 )(1+ t21 A−1
1 )(1+ t22 A−1

1 )

(1+ t11t21 A−1
1 A2)(1+ t11t22 A−1

1 A2)

1+ t11t21t22 A−2
1 A2

Figure 1. The generalized cluster scattering diagram for Example 6.21.

Let s be a seed consisting of e= (e1, e2) and p1 = (t11), p2 = (t21, t22). We have matrices

B =
(

0 −2
1 0

)
and β =

(
0 −1
1 0

)
.

In this case we have ei = di ei/ri = ei . So N = N and we shall not worry about the rescaling issue. Then
w1 = e∗2 and w2 =−e∗1 . We write Ai = ze∗i for i = 1, 2. The coefficients group is P= Z3 with generators
{t11, t21, t22}. The initial incoming scattering diagram is

Ds,in = {(e⊥1 , 1+ t11 A2), (e⊥2 , (1+ t21 A−1
1 )(1+ t22 A−1

1 ))}.

The resulting generalized cluster scattering diagram is

Ds =Ds,in ∪ {(R>0(1,−1), f(1,−1)), (R>0(2,−1), f(2,−1))},

where
f(1,−1) = (1+ t11t21 A−1

1 A2)(1+ t11t22 A−1
1 A2) and f(2,−1) = 1+ t11t21t22 A−2

1 A2.

The scattering diagram Ds is depicted in Figure 1.

Example 6.22. Consider the fixed data 0 consisting of

• the lattice N = Z2 with the standard basis e1 = (1, 0) and e2 = (0, 1), and the skew-symmetric form
ω be determined by ω(e1, e2)=−1;

• Nuf = N ;

• the rank r = 2 and I = Iuf = {1, 2};

• positive integers λ1 = 1 and λ2 = 1;

• the sublattice N ◦ generated by e1 and e2;

• M = Hom(N ,Z), M◦ = Hom(N ◦,Z).
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(1+ s1 X)(1+ s2 X)

(1+ t1Y )(1+ t2Y )

(1+ s1s2t1 X2Y )(1+ s1s2t2 X2Y )

(1+ s2
1 s2t1t2 X3Y 2)(1+ s1s2

2 t1t2 X3Y 2)

(1+ s1s2t2
1 t2 X2Y 3)(1+ s1s2t1t2

2 X2Y 3)

(1+ s1t1t2 XY 2)(1+ s2t1t2 XY 2)

(1+ t1Y )(1+ t2Y )

(1+ s1 X)(1+ s2 X)

fR≥0(1,−1)

· · ·

· · ·

Figure 2. The generalized cluster scattering diagram for Example 6.22.

The seed is given by e= (e1, e2) and p1 = (s1, s2), p2 = (t1, t2). The corresponding Ds is depicted in
Figure 2. We write X = ze∗2 and Y = z−e∗1 . The five rays depicted in the fourth quadrant are in the directions
(2,−1), (3,−2), (1,−1), (2,−3) and (1,−2) in clockwise order. In fact, in the fourth quadrant there
are additional nontrivial walls whose underlying cones are R≥0(n,−(n + 1)) and R≥0(n + 1,−n) for
each positive integer n ≥ 3 (which we omit in the figure below). The wall-crossing function, for example
for R≥0(2k,−(2k+ 1)) for k ∈ Z>0, is

fR≥0(2k,−(2k+1)) = (1+ sk+1
1 sk

2 tk
1 tk

2 X2k+1Y 2k)(1+ sk
1 sk+1

2 tk
1 tk

2 X2k+1Y 2k),

which can be obtained using Theorem 7.10.
The wall-crossing function attached to the ray R≥0(1,−1)

fR≥0(1,−1) =
(1+ s1t1 XY )(1+ s1t2 XY )(1+ s2t1 XY )(1+ s2t2 XY )

(1− s1s2t1t2 X2Y 2)4

is much more difficult to calculate. This was explicitly obtained by Reineke and Weist [2013] by relating
the wall-crossing functions to quiver representations.

6.6. Mutation invariance of Ds. A first step to investigate the structure of Ds is through a comparison
with Dµk(s). For the ordinary case, this is called the mutation invariance in [Gross et al. 2018]. In the
generalized situation, we show an analogous mutation invariance still holds. One just needs to take care
of the generalized coefficients pi, j .

Notice that the definition of Ds does not involve the semifield structure of P. So one can view that
the coefficients part p actually provides a Z-basis of the multiplicative abelian group P (grouped and
labeled in a certain way). Thus even though µk(s) no longer has principal coefficients in P, Dµk(s) is still
defined. To stress that the coefficients are no longer semifield elements, we use ti, j instead of pi, j .
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Now s = (e, t) consists of e a labeled basis of N and tuples of coefficients t = (ti ).

Definition 6.23. Define the mutationµ+k (s)= (e
′, t ′) such that e′=µk(e) as before and for the coefficients,

t ′i, j =


t−1
k, j if i = k,

ti, j ·
rk∏

l=1
t [βki ]+
k,l if i ̸= k.

Remark 6.24. Note that this mutation does not depend on any semifield structure on P. So it is different
from the µk from Definition 4.3 for mutations of many steps. For this reason, we call s = (e, p) a seed
with coefficients (avoiding the type A- or X -) and use the new symbol µ+k for mutations in this context
(as we will see in Section 7.1 the meaning of the sign +).

Definition 6.25. We set

Hk,+ := {m ∈ MR | ⟨ek,m⟩ ≥ 0}, Hk,− := {m ∈ MR | ⟨ek,m⟩ ≤ 0}.

For k ∈ I , define the piecewise linear transformation Tk : MR→ MR by

Tk(m) :=
{

m+⟨ek,m⟩rkwk, m ∈Hk,+,

m, m ∈ Hk,−.

One sees that in the two half spaces, the map Tk is actually the restriction of two linear maps Tk,+ and
Tk,− respectively. The map Tk is with respect to the seed s and thus sometimes will be denoted as T s

k .
The vector rkwk can also be expressed as rkwk = ω(−, dkek)=

∑n
i=1 bike∗i . One checks that

Tk,+(wi )= wi +βkirkwk .

Recall we have the projection r : M ⊕P→ M . The transformation Tk can be lifted to M ⊕P by

T̃k(m, p) :=
{
(m+⟨ek,m⟩rkwk, p · t ⟨ek ,m⟩

k ), m ∈Hk,+,

(m, p), m ∈Hk,−,

where tk =
∏rk

l=1 tk,l . Note that T̃k on its domain of linearity is the restriction of two linear transformations
T̃k,ε respectively.

Construction 6.26. We define the scattering diagram Tk(Ds) as in [Gross et al. 2018, Definition 1.22]
(but taking care of the parameters ti, j here) in the following steps.

(1) Replace each wall in Ds not fully contained in e⊥k if necessary by splitting it into two new walls

(d∩Hk,+, fd) and (d∩Hk,−, fd).

Regard this new collection of walls as the current representative of Ds.

(2) For a wall (d, fd) contained in Hk,ε, define the wall Tk,ε(d, fd)= (Tk,ε(d), T̃k,ε( fd)) where the new
wall-crossing function T̃k,ε( fd) is the one obtained from fd by replacing each monomial of the form

pzm by T̃k,ε(pzm),
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where the later is the monomial corresponding to T̃k,ε(m, p) ∈ M ⊕P. For example, we have

T̃k,+(ti, j zwi )= ti, j t
βki
k zwi+βki rkwk , while T̃k,−(ti, j zwi )= ti, j zwi .

We call these walls uniformly by Tk(d, fd) no matter which half they belong to. We stress that the
sign ε in Tk,ε is determined by which half space the wall d lies in.

(3) Consider the collection of walls

Tk(Ds) :=
{

Tk(d, fd)
∣∣∣ (d, fd) ∈D(s) \

(
e⊥k ,

rk∏
j=1
(1+ tk, j zwk )

)}
∪

{(
e⊥k ,

rk∏
j=1
(1+ t−1

k, j z−wk )
)}
.

Denote the monoid (P ′)⊕ := P⊕
µ+k (s)
⊂ M ⊕P. While Ds is over

∧

k[P⊕s ], Dµ+k (s)
is over
∧

k[(P ′)⊕].

Theorem 6.27 (cf. [Gross et al. 2018, Theorem 1.24]). The set of walls Tk(Ds) is indeed a consistent
scattering diagram over
∧

k[(P ′)⊕], and furthermore is equivalent to Dµ+k (s)
.

We find it most natural to understand the mutation invariance by making connection to the canonical
wall structure (or canonical scattering diagram) [Gross and Siebert 2022] via [Argüz and Gross 2022,
Theorem 6.1], where Ds can be viewed as associated to the toric model U�(s,λ) for general λ. However,
as in Section 5.3.2, this would require the condition

ri = gcd(bi j , i ∈ I ).

Fortunately, we can prove the mutation invariance following the same strategy in [Gross et al. 2018]
without this condition. The proof occupies the rest of the section.

First define a monoid P containing both P⊕ and (P ′)⊕. Let σ be the cone in (M ⊕P)R generated by

{(wi , ti, j ) | i ∈ I, j ∈ [1, ri ]} ∪ {(−wk,−tk, j ) | 1≤ j ≤ rk}.

Take P = σ ∩ (M ⊕P) and we tend to talk about scattering diagrams over
∧

k[P]. However the ideal mP

misses the elements (wk, tk, j ). This means a wall such as

(e⊥k , (1+ tk, j zwk ))

in Ds does not qualify as a wall over
∧

k[P]. For this reason, we extend the definition of scattering diagram
as in [Gross et al. 2018, Definition 1.27] (slightly generalizing the slab for our needs).

Define
N+,ks :=

{ ∑
i∈I

ai ei

∣∣∣ ai ∈ Z≥0 for i ̸= k, ak ∈ Z, and
∑

i∈I\{k}
ai > 0

}
⊂ N .

Since N+,ks = N+,k
µ+k (s)

, we denote them by N+,k .

Definition 6.28 (cf. [Gross et al. 2018, Definition 1.27]). A wall for P is a pair (d, fd) with d as before
but with primitive normal vector n0 in N+,k and

fd = 1+
∑

k≥1,π(t)=kn0

ck,t · t zkω(−,n0) ≡ 1 mod mP .
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The slab for s and k ∈ I means the pair

dk :=

(
e⊥k ,

rk∏
j=1
(1+ tk, j zwk )

)
.

A scattering diagram D for P is a collection of walls and possibly this single slab, with the condition that
for each k > 0, fd ≡ 1 mod mk

P
for all but finitely many walls in D.

We quote the following very hard theorem from [Gross et al. 2018]. The objects here are understood
in our definitions so there are minor differences. However, one can still prove the theorem in the exact
same way. So we omit its proof here.

Theorem 6.29 [Gross et al. 2018, Theorem 1.28]. There exists a unique (up to equivalence) consistent
scattering diagram Ds in the sense of Definition 6.28 such that

(1) Ds ⊇Ds,in,

(2) Ds \Ds,in consists only of outgoing walls.

Furthermore, Ds is also a scattering diagram for the N+s -graded Lie algebra gs. As such, it is equivalent
to Ds.

Proof of Theorem 6.27. First we choose a representative for Ds given by Theorem 6.29. Now Tk(Ds)

becomes a scattering diagram in the sense of Definition 6.28 for the seed s′ = µ+k (s). This is because

(1) the operation Tk removes the old slab dk and adds the new slab

d′k :=
(

e⊥k ,
rk∏

j=1
(1+ t−1

k, j z−wk )
)
;

(2) for a wall (contained in either Hk,+ or Hk,−), T̃k sends a monomial of the form
∏

i, j (ti, j zwi )ai j in its
wall-crossing function to∏

i, j
(ti, j t

βki
k zwi+βki rkwk )ai j or

∏
i, j
(ti, j zwi )ai j .

So if t zm
∈mi

P
for some i , so is T̃k(t zm).

We next show that

(1) Tk(Ds) and Ds′ have the same set of slabs and incoming walls;

(2) Tk(Ds) is consistent as a scattering diagram with a slab.

Then by the uniqueness statement of Theorem 6.29, Tk(Ds) and Ds′ are equivalent.
Statement (1) follows from the same argument in Step I of [Gross et al. 2018, Proof of Theorem 1.24].
For (2), we check the consistency of Tk(Ds), that is, for any loop γ , pγ,Tk(Ds)= id whenever it is defined.
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If γ is confined in one of the half spaces, the path-ordered product is identity because of the consistency
of Ds. So we assume that γ crosses the slab d′k . Split γ into four subpaths γ1, γ2, γ3 and γ4 such that

(1) γ1 starts at a point in Hk,− and only crosses the slab d′k ;

(2) γ2 is contained entirely in Hk,+;

(3) γ3 only crosses d′k back to Hk,−;

(4) γ4 is contained entirely in Hk,−.

Let T̃k,+ : k[M ⊕ P] → k[M ⊕ P] be the algebra automorphism induced by T̃k,+ (see (2) in the
Construction 6.26 the action of T̃k,+ on monomials). Denote by pd′k the wall-crossing automorphism

zm
7→ zm

rk∏
j=1
(1+ t−1

k, j z−wk )−⟨ek ,m⟩.

So we have

pγ1,Tk(Ds) = pd′k , (6-1)

pγ2,Tk(Ds) = T̃k,+ ◦ pγ2,Ds ◦ T̃−1
k,+, (6-2)

pγ3,Tk(Ds) = p−1
d′k
, (6-3)

pγ4,Tk(Ds) = pγ4,Ds . (6-4)

All the above equalities except (6-2) are by definitions. To show (6-2), we see that it suffices to show the
case where γ2 only crosses one wall d contained in n⊥0 with the wall-crossing function f (m0). We write
T̃ = T̃k,+ and T = Tk,+. Then we compute the action of the right-hand side of (6-2) on zm :

zm
7→ T̃−1(zm) 7→ T̃−1(zm) f (zm0)⟨T

−1(m),n0⟩ 7→ zm f (T̃ (zm0))⟨m,(T
−1)∗(n0)⟩.

Note that the wall d gets transformed under Tk to be contained in (T−1)∗(n0) with f (T̃ (zm0)). So the
above action is the same as pγ2,Tk(Ds)(z

m).
To show pγ,Tk(Ds) = id, it suffices to show that

T̃−1
k,+ ◦ pd′k = pdk , (6-5)

so that pγ,Tk(Ds) = pγ,Tk(Ds) = id.
Letting the left-hand side act on some monomial, we have

T̃−1
k,+ ◦ pd′k (t zm)= T̃−1

k,+

(
t zm

rk∏
j=1
(1+ t−1

k, j z−wk )−⟨ek ,m⟩
)

= t · t−⟨ek ,m⟩
k · zm−⟨ek ,m⟩rkwk

rk∏
j=1
(1+ t−1

k, j z−wk )−⟨ek ,m⟩

= t zm
rk∏

j=1
(1+ t−1

k, j zwk )−⟨ek ,m⟩

= pdk (t zm). (6-6)

This finishes the proof. □
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Figure 3. The generalized cluster scattering diagram for Example 6.30.

Example 6.30. In this example we compute T2(Ds) for the scattering diagram Ds in Example 6.21.
Recall that the exchange matrix for s is B =

( 0
1
−2
0

)
. So we have T2,+(e∗2)= e∗2 − 2e∗1 , which determines

the ray R≥0(e∗2 − 2e∗1) of Figure 3.

6.7. Positivity. The scattering diagram Ds has the following positivity.

Theorem 6.31 (cf. [Gross et al. 2018, Theorem 1.28]). The scattering diagram Ds is equivalent to a
scattering diagram all of whose walls (d, fd) satisfy fd= (1+ t zm)c for some m =ω(−, n), n ∈ N+, some
t ∈ P such that π(t)= n, and c being a positive integer. In other words, if we write n =

∑
i∈I αi ei , then

(1) d is contained in n⊥ ⊂ MR where n =
∑

i∈I αi
di
ri

ei ;

(2) m =
∑

i∈I αiwi = ω(−, n);

(3) if writing t =
∏

i, j tαi, j
i, j , then

∑ri
j=1 αi j = αi .

Proof. This theorem essentially follows from [Gross et al. 2018, Appendix C.3], the proof of the positivity
of DGHKK

s . We use a representative of Ds constructed in the same algorithm used to produce DGHKK
s in

the proof of [Gross et al. 2018, Theorem 1.28]. We will construct order by order a sequence of finite
scattering diagrams D1 ⊂D2 ⊂ · · · (over

∧

k[P⊕s ] or the graded Lie algebra gs) such that their union

D=
∞⋃

k=1
Dk

is equivalent to Ds. We then prove inductively that every wall in Dk has the positivity property.
Let D1 =Ds,in. Note that D1 is equivalent to Ds modulo (P+)2. Suppose that we have defined up

to Dk which is equivalent to D modulo (P+)k+1, and assume that every wall in Dk has wall-crossing
function of the form (1+ t zm)c for some positive integer c. We construct Dk+1 as follows, and show that
it is equivalent to D modulo (P+)k+2 and furthermore that it still has the same positivity property for its
wall-crossing functions.
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There is a finite rational polyhedral cone complex that underlies the support of Dk (which is true for
any scattering diagram with finitely many walls). We call the codimension two cells joints. Let j be a
joint of Dk . Then by [Gross et al. 2018, Definition-Lemma C.2], it falls into two classes:

(1) Parallel, if every wall with the normal vector n containing j has ω(−, n) tangent to j.

(2) Perpendicular, if every wall with the normal vector n containing j has ω(−, n) not tangent to j.

Let γj be a simple loop around j small enough so that it only intersects walls containing j. By our
assumption, the path-ordered product pγj,Dk is identity modulo (P+)k+1, but modulo (P+)k+2, it can be
written as

pγj,Dk = exp
( ∑

d(t,m)=k+1
ct,m t zm∂n(t,m)

)
,

where ct,m ∈ k. Here we define the degree d(t,m) := k+1 if (t,m) ∈ (P+)k+1
\ (P+)k+2, and n(t,m) is

primitive in N+ uniquely determined by (t,m).
If j is perpendicular, we define a set of walls

D[j] := {(j−R≥0m, (1+ t zm)±ct,m ) | d(t,m)= k+ 1},

where j− R≥0m is of codimension one since m is not tangent to j. Here the function (1+ t zm)±ct,m

makes sense as a power series. The sign ± in the power is chosen so that when γj crosses j−R≥0m, the
wall-crossing automorphism is

exp(−ct,m t zm∂n(t,m)).

In this way, if we add the walls in D[j] to Dk , we have the path-ordered product pγj,Dk∪D[j] = id modulo
(P+)k+2. We then define

Dk+1 =Dk ∪
⋃
j

D[j],

where the union is over all perpendicular joints of Dk .
There are two things we need to show in the induction:

(1) Dk+1 is equivalent to Ds modulo (P+)k+2.

(2) All the walls in Dk+1 have wall-crossing functions of the form (1+ t zm)c for some positive integer c.

Part (1) follows from the argument in [Gross et al. 2018, Lemma C.6 and Lemma C.7]. This part
guarantees that the constructed union D is equivalent to Ds.

Part (2) is about the positivity of wall-crossings. By the construction of Dk+1, we only need to examine
the new walls emerging from perpendicular joints of Dk . Let j be a perpendicular joint of Dk . The
integral normal space j⊥ ∩ N is a rank two saturated sublattice O of N . Locally at j, Dk ∪D[j] induces a
scattering diagram living in O∨R = MR/(3 j ⊗R). Precisely, consider the set of walls

D′ = {((d+3j⊗R)/(3j⊗R), fd) | j⊂ d, (d, fd) ∈Dk ∪D[j]}.
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The wall-crossing functions fd are all of the form

(1+ t zm)c,

c ∈ k ( fd makes sense as a power series). The wall d has some primitive normal vector o ∈ O ∩ N+,
and m is proportional to ω(−, o). We also know since j is perpendicular, m ̸= 0 (the image of m under the
quotient M→ O∨) in O∨R . And the one-dimensional wall d̄= (d+3j⊗R)/(3j⊗R) is contained in R(m),
orthogonal to the normal vector o. Then D′ is a rank two scattering diagram in O∨R over k̂[P+], with the
monoid map from P+ to O∨ being r : P→M postcomposed by the quotient from M to O∨. It is consistent
up to modulo (P+)k+2. Then by [Gross et al. 2018, Proposition C.13], the wall-crossing functions admit
the positivity property, i.e., the power c is always a positive integer. This shows the positivity for Dk+1

assuming that of Dk . Therefore, the union D is also positive by induction; hence so is Ds. □

7. The cluster complex structure

In this section, we study the cluster complex structure of the scattering diagram Ds, which is a description
of parts of the walls of Ds. The construction of such a structure of Ds is analogous to [Gross et al. 2018,
Construction 1.30].

7.1. The cluster complex. Take a representative for the scattering diagram Ds with minimal support
(which always exists). By Theorem 6.29, one can choose such a representative Ds so that there are no
other walls contained in the initial incoming ones di .

Define

C+ = C+s := {m ∈ MR | ⟨ei ,m⟩ ≥ 0 ∀i ∈ I },

C− = C−s := {m ∈ MR | ⟨ei ,m⟩ ≤ 0 ∀i ∈ I }.

The closed cones C±s are closures of connected components of MR \ Supp(Ds). They are thus called
chambers. By the mutation invariance Theorem 6.27, we have that the cones

T−1
k (C±

µ+k (s)
)⊂ MR \Supp(Ds)

are also closures of connected components. Applying mutations on seeds provides an iterative way to
construct chambers of MR \Supp(Ds) as follows.

Note again that the coefficients part of s = (e, t) does not mutate as in Definition 4.3, which requires
setting the tropical semifield P from the initial seed and once for all. Instead, we regard the coefficients
part t as in the multiplicative group P and mutates in the way specified by Section 6.6. In this way, we
can apply mutations iteratively on s.

Let us consider the rooted tree Tn from Definition 4.6. There is an association v 7→ sv such that v0 7→ s
and adjacent seeds with coefficients are related by the corresponding mutation (in the sense of Section 6.6)
of the labeled edges. Once this association is done, we denote the rooted tree by Ts.
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Suppose the unique path from v0 to a vertex v goes through the arrows labeled by {k1, k2, . . . , kl}.
Define the piecewise linear map

Tv0,v = Tkl ◦ · · · ◦ Tk2 ◦ Tk1 : MR→ MR.

Since C±s are chambers of the scattering diagram Ds, then again due to the mutation invariance, we
have that

C±v := T−1
v0,v
(C±sv )

are chambers of Ds.
Each C±v is a simplicial (rational polyhedral) cone of maximal dimension, as each Tk is a linear

isomorphism on its domains of linearity. The intersection C+s ∩ C
+

µ+k (s)
is their common facet generated by

{e∗i | i ̸= k}. Each facet of Cv is canonically labeled by an index i ∈ I . Inductively, for any two vertices v
and v′ connected by an arrow labeled by k ∈ I , then C+v and C+v′ share a common facet labeled by k.

We borrow the following notation from [Gross et al. 2018]: we use the short-hand subscription notation
v ∈ s for an object parametrized by a vertex v ∈Ts with the root v0 labeled by s. This is done to emphasize
the dependence on the initial seed s.

Definition 7.1. We denote by C±v∈s the chambers C±v of ⊂ MR \ Supp(Ds). We write 1±s for the set of
chambers C±v∈s for v running over all vertices of Ts. We call elements in 1+s cluster chambers.

Remark 7.2. As we have pointed out, C+v ∩ C
+

v′ is a common facet if v and v′ are adjacent in Ts. More
generally, by adding all the faces of every C+v to the set 1+s , we obtain a collection of cones which form a
cone complex, still denoted by 1+s . For this reason, we call 1+s the cluster (cone) complex and 1−s the
negative cluster (cone) complex.

The simplicial cone C±v∈s is determined by (the generators of) its one-dimensional faces. The cone C+sv
is generated by the dual vectors {e∗i;v | i ∈ I }. These are pulled back by T−1

v0,v
to be the generators of C+v∈s.

Definition 7.3. We define the g-vectors for v ∈ Ts as a tuple

gv = (gi;v | i ∈ I ), where gi;v := T−1
v0,v
(e∗i;v) ∈ M.

We will use the notation gv∈s to emphasize the initial seed s.

Remark 7.4. Denote the dual vectors (in N ) of gv by g∗v = (g∗i;v | i ∈ I ). They are normal vectors of
the facets of C+v . Since the walls of Ds only have normal vectors in N+s or −N+s , the vector g∗i;v has a
well-defined sign

εi;v = sgn(g∗i;v)=
{
+ if g∗i;v ∈ N+s ,
− if g∗i;v ∈ N−s .

We will show later the vectors gv can be calculated iteratively by a variant of mutations as defined below.
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Definition 7.5. Let e = (ei | i ∈ I ) be a seed (without coefficients) for 0. Define the signed mutation
µεk(e)= (e

′

i | i ∈ I ) for ε ∈ ± as follows:

e′i =
{

−ek if i = k,
ei + [−εω(ei , dkek)]+ek if i ̸= k.

So the signed mutation µ+k coincides with our previous Definition 6.23 (ignoring the coefficients part).
On the mutation of the dual of e, we use the same notation µεk(e

∗)= ( f ′i | i ∈ I ) where e∗= ( fi | i ∈ I ).
Then

f ′i =

{
fi if i ̸= k

− fk +
∑
i∈I
[−εω(ei , dkek)]+ fk if i = k.

There is another tuple of vectors in M that changes under signed mutations. For a seed s, let
w = (wi | i ∈ I ), where

wi := ω
(
−,

dk

rk
ek

)
=

∑
j∈I

b j i fi ∈ M.

Let w′ = (w′i ) associated to µεk(e). Then we have

w′i =

{
−wk if i = k,

wi + [εω(ek, dkei )]+wk if i ̸= k.

We will later denote µεk(w)= w′.
There are also signed mutations for coefficients. Recall we have fixed a multiplicative abelian group

P=
∏

i∈I Zri . The coefficients t = (ti, j | i ∈ I, j ∈ [1, ri ]) are a basis of P.

Definition 7.6. For s = (e, t), a seed e together with coefficients t = (ti, j ) in P, we define its signed
mutation in direction k, µεk(e, (ti, j ))= (e′, (t ′i, j )) for ε ∈ ± by setting s′ = µεk(s) and

t ′i, j =


t−1
k, j if i = k,

ti, j ·
rk∏

l=1
t [εω(ek ,ei )]+
k,l if i ̸= k.

Proposition 7.7 (cf. [Mou 2020, Proposition 4.4.9]). For every v ∈ Ts, the dual of g-vectors g∗v is a seed
of N . These seeds and their duals, i.e., the g-vectors, can obtained iteratively as follows:

(1) gv0 = e∗ and g∗v0
= e.

(2) For any v k
−→ v′ in Ts, we have

g∗v′ = µ
εk;v
k (g∗v), gv′ = µ

εk;v
k (gv).

Proof. We prove this proposition by induction on the distance from v to v0. The base case is when v = v0,
in which we have

g∗v′ = µ
+

k (e)= µ
+

k (g
∗

v0
), gv′ = µ+k (e

∗)= µ+k (gv0).
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Now assuming that v ̸= v0 and suppose that the unique path from v0 to v starts with v0
i
−→ v1 for some

i ∈ I . Write s1 = sv1 = µ
+

i (s). By induction, we assume that the proposition holds for g-vectors with
respect to the seed s1:

gv′∈s1 = µ
ε
k(gv∈s1),

where ε = εk;v∈s1 = sgn(g∗k;v∈s1
) with respect to s1. Note that by definition

gv′∈s = (T s
i )
−1(gv′∈s1), gv∈s = (T s

i )
−1(gv∈s1),

and we want to prove

gv′∈s = µ
δ
k(gv∈s),

where δ = εk;v∈s with respect to s.
Then it amounts to show that

(T s
i )
−1
◦µεk(gv∈s1)= µ

δ
k ◦ (T

s
i )
−1(gv∈s1). (7-1)

We split the discussion into the following two cases. The codimension one skeletons of the chambers
C+v∈s1

and C+v′∈s1
are in the essential support of Ds1 . As v and v′ are adjacent, these two chambers share a

common facet. Therefore they are either separated by the hyperplane e⊥i or contained in the same half
space (since the hyperplane is also in the essential support).

Case 1. The two groups of g-vectors gv∈s1 and gv′∈s1 are separated by e⊥i . In this case, the normal vector
g∗k;v∈s1

is in the direction of ei . The signs δ and ε on the two sides of (7-1) are then different. We assume
that ε = sgn(g∗k;v∈s1

)=+; the other case is analogous. By our assumption, g∗v∈s1
qualifies as a seed of

fixed data 0, thus forming a basis of N , which implies g∗k;v∈s1
= ei . Since {λ j g∗j;v∈s1

| j ∈ I } form a basis
of the sublattice N ◦, we have di = dk . We note that the map T s

i is actually determined by the vectors ei

and di ei . On the left-hand side of (7-1), T s
i is the identity, while on the right-hand side, it is T s

i,+. So we
need to show the equality

µ+k (gv∈s1)= µ
−

k ◦ (T
s

i,+)
−1(gv∈s1).

To simplify the notation, we denote g = gv∈s1 and gi = gi;v∈s1 . On the left side of the equality, the tuple
µ+k (g)= (g

′

i ) differs with g by only one vector

g′k =−gk +
∑
i∈I
[−bvik]+gi .

On the right-hand side, we first have

(T s
i,+)
−1(gk)=−gk +

∑
i∈I
−bvik gi ,

while other g-vectors remain unchanged under (T s
i,+)
−1. It is easy to check that the dual of (T s

i,+)
−1 is an

automorphism of (N , ω), that is, it is a linear automorphism on N preserving the form ω. Thus we have,
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if writing µ−k ◦ (T
s

i,+)
−1(gv∈s1)= (g

′′

i ),

g′′k =−gk +
∑
i∈I
−bvik gi +

∑
i∈I
[bvik]+gi = g′k, and g′′i = gi for i ̸= k.

This finishes the proof of the desired equality.

Case 2. The g-vectors gv∈s1 and gv′∈s1 are all contained in the same half Hs
i,+ or Hs

i,−. Again we need to
prove (7-1). We observe that the two signs δ and ε are equal. In fact, the sign ε of g∗k;v∈s1

depends on
its coordinates in e j;v1 for j ̸= i since g∗k;v∈s1

is not purely proportional to ei . The same is true for the
sign δ which only depends on g∗k;v∈s’s coordinates in e j for j ̸= i . Since g∗k;v∈s only differ in the direction
of ei , and also because e j;v1 and e j also differ by multiples of ei , we conclude that ε = δ. The equality
(7-1) then directly follows from a fact we already mentioned in Case 1 that the dual of (T s

i,ε)
−1 acts as an

automorphism on (N , ω). □

A direct corollary of Proposition 7.7 is another description of c-vectors mentioned in Section 3.3.
Recall that we have π : P→ P, pi, j 7→ pi . We write the group operation in P and P by addition instead
of multiplication.

Corollary 7.8. We identify the lattice N with P by ei =
di
ri

ei 7→ pi . Then we have for any i ∈ I and v ∈Ts,

di

ri
g∗i;v = pi;v, di g∗i;v = ri pi;v = pi;v.

Proof. For the initial vertex v0, this is given by the identification ei 7→ pi . The iteration of g∗i;v is provided
by signed mutations according to Proposition 7.7. We have if v k

−→ v′ in Ts,

g∗i;v′ =
{

−g∗k;v if i = k,
g∗i;v + [−εb

v
ik]+g∗i;v if i ̸= k,

where ε = sgn(g∗k;v). What is implicit is that we have already known that g∗i;k is either nonnegative or
nonpositive. On the other hand, the mutation of pi;v is given by

pi;v′ =


−pk;v if i = k,

pi;v + bvki · p
+

k;v if i ̸= k and bik ≤ 0,
pi;v + bvki · p

−

k;v if i ̸= k and bik > 0.

Thus assuming di g∗i;v = pi;v for all i ∈ I would imply di g∗i;v′ = pi;v′ for all i ∈ I as they have the same
mutation formula when pk;v has a well-defined sign. Therefore the result is proved by induction on the
distance from v to v0. □

Lemma 7.9. The generalized coefficients pi, j;v have the following signed mutation formula. If v k
−→ v′

in Ts, then

pi, j;v′ =


−pk, j;v if i = k,

pi, j;v + [εβ
v
ki ]+ ·

rk∑
j=1

pk, j;v if i ̸= k

where ε = sgn(g∗k;v).
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Proof. By Corollary 7.8, pi;v is sign coherent because g∗i;v is so. As we have already shown in
Proposition 3.17 that the sign coherence of pi;v implies that of pi, j;v , the result follows by induction. □

7.2. Wall-crossings. We next study the wall-crossing functions attached to walls of the cluster chambers.
Each cluster chamber C+v∈s has exactly n facets di;v∈s naturally indexed by I (a facet has the same index as
its normal vector g∗i,v∈s). The wall (di;v∈s, fi;v∈s) is pulled back by T−1

v0,v
from the scattering diagram Dsv

(with coefficients tv). The wall-crossing function fi;v has the following description. Here we identify the
initial coefficients ti, j with pi, j , and endow P the semifield structure Trop( p).

Theorem 7.10. The scattering diagram Ds has a representative in its equivalent class such that it is the
union of the scattering diagram

D(1+s ) := {(di;v, fi;v) | i ∈ I, v ∈ Ts}, where fi;v =
ri∏

j=1

(
1+ pεi;v

i, j;v · z
εi;v

n∑
j=1

βvj i g j;v)
and another one whose support is disjoint from 1+s .

Proof. We prove this theorem by induction on the distance from v to v0. We first note that by Lemma 7.9
the coefficients pi, j;v ∈ P can be computed iteratively by signed mutations. The vectors

wi;v :=
n∑

j=1
βvj i g j;v = ω

(
−,

di

ri
g∗i;v

)
∈ M

can also be computed iteratively by signed mutations since the g-vectors do by Proposition 7.7.
Assume that the result is true for the distance between two vertices no greater v0 and v. Suppose we

have that v k
−→ v′ ∈ Ts and that the unique path from v0 to v1 starts from v0

i0
−→ v1.

Let’s look at the chambers τ := C+v∈s1
and τ ′ := C+v′∈s1

in Ds1 . They have g-vectors satisfying

gv′∈s1 = µ
ε
k(gv∈s1),

where ε = εk;v∈s1 := sgn(g∗k;v∈s1
). For the wall-crossing functions, by our assumption, for i ∈ I , we have

fi;v∈s1 =

ri∏
j=1
(1+ p

εi;v∈s1
i, j;v∈s1

zεi;v∈s1wi;v∈s1 ),

fi;v′∈s1 =

ri∏
j=1
(1+ p

εi;v′∈s1
i, j;v′∈s1

zεi;v′∈s1
wi;v′∈s1 ).

These two functions are related by the signed mutation µεk . More precisely, we have

µεk(g
∗

v∈s1
, pv∈s1)= (g

∗

v′∈s1
, pv′∈s1), µεk(wv∈s1)= wv′∈s1 .

We want to pull back the chambers C+v∈s1
and C+v′∈s1

, as well as the wall-crossing functions fi;v∈s1 and
fi;v′∈s1 to Ds via the operation (T s

i0
)−1 to get the chambers σ := C+v∈s, σ

′
:= C+v′∈s and the wall-crossing

functions fi := fi;v∈s and f ′i := fi;v′∈s by the mutation invariance Theorem 6.27. We want to show that fi

and f ′i are also related by signed mutations. In the following, we calculate fi and f ′i in detail by applying
T̃−1

i0
to fi;v∈s1 and fi;v′∈s1 . This depends on the following two cases as in the proof of Proposition 7.7:
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(1) The two chambers τ and τ ′ are separated by the hyperplane e⊥i0
.

(2) They are contained in the same half space Hi0,+ or Hi0,−.

Case 1. In this case, the normal vector g∗k;v∈s1
is either ei0 or −ei0 . Assume it is ei0 ; the other case is

similar. Then the chamber τ is in Hi0,+ while τ ′ is in Hi0,−. First of all, we have fk = f ′k obtained simply
by reversing the monomials in fk;v∈s1 = fk;v′∈s1 . Since Ti0 (as well as T̃i0) is identity on Hi0,−, we have
for i ̸= k, f ′i = fi;v′∈s1 . Note that for the signs, for i ∈ I ,

εi;v′∈s1 = εi;v′∈s

unless g∗i;v′∈s1
is proportional to ei0 , which only happens for g∗k;v′∈s1

=−g∗k;v∈s1
, where we have

εk;v′∈s1 =−, εk;v′∈s =+.

So we conclude for any i ∈ I ,

f ′i =
ri∏

j=1
(1+ (pi, j;v′∈s1 zwi;v′∈s1 )εi;v′∈s).

For fi;v∈s1 and fi , we first consider the signs εi;v∈s1 and εi;v∈s. Since the dual of T−1
i0

on N only shifts
in the direction of ei0 , we have for i ̸= k

εi;v∈s1 = εi;v∈s,

as the vectors g∗i;v∈s1
and g∗i;v∈s must have the same sign in all the other directions except for ei0 , and the

only one proportional to ei0 is g∗k;v∈s1
. Thus we have for i ̸= k,

fi =
ri∏

j=1
(1+ T̃−1

i0
(pi, j;v∈s1 zwi;v∈s1 )εi;v∈s)

We want to show that fi and f ′i are related by the mutation µδk . Precisely, it amounts to show that

µδk(T̃
−1

i0
(pi, j;v∈s1 zwi;v∈s1 | i ∈ I, j ∈ [1, ri ]))= µ

ε
k(pi, j;v∈s1 zwi;v∈s1 | i ∈ I, j ∈ [1, ri ]), (7-2)

where δ is the sign εk;v∈s. Here we abuse the notation µ±k which acts on a tuple of functions, but it should
be clear what it means. By our assumption, ε =+ and δ =−ε =−. Then this follows from the general
fact that for any seed (e, t) and k ∈ I , we have

µ−k (T̃
−1

k (ti, j zwi | i ∈ I, j ∈ [1, ri ])= µ
+

k (ti, j zwi | i ∈ I, j ∈ [1, ri ]).

Case 2. Suppose τ and τ ′ are both contained in the same half space. According to our above discussion,
as in the notation of (7-2), it then amounts to check that

T̃−1
i0
(µεk(pi, j;v∈s1 zwi;v∈s1 | i ∈ I, j ∈ [1, ri ]))= µ

δ
k(T̃
−1

i0
(pi, j;v∈s1 zwi;v∈s1 | i ∈ I, j ∈ [1, ri ])),

where δ = εk;v∈s. As we have discussed in the Case 2 of the proof of Proposition 7.7, the signs are equal:
δ = ε. Then the rest follows immediately from the fact that the dual of Ti0,ε acts as an automorphism on
the data (N , ω). □
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8. Reconstructing A prin

In this section, we see how to reconstruct the generalized cluster algebra A prin(s) as well as the variety
Aprin(s) from Xs,λ through Ds.

8.1. Reconstructing A prin(s) from Ds. Given fixed data 0 and an A-seed with principal coefficients
s = (e, p), denote by A prin(s) the corresponding generalized cluster algebra. Recall that we denote by
xi;v the cluster variables associated to the seed sv.

Consider the generalized cluster scattering diagram Ds, whose wall-crossings act on k̂[P] by auto-
morphisms. For two vertices v, v′ ∈ Ts, let γ be a path from the chamber C+v∈s to C+v′∈s and consider the
path-ordered product

pv,v′ = ps
v,v′ := pγ,Ds : k̂[P] → k̂[P].

Since Ds is consistent and one can always choose some γ contained in the cluster complex, the path-
ordered product pv,v′ can also be viewed as an automorphism of Frac(M ⊕P).

Proposition 8.1. Let C+v∈s be a cluster chamber and gv the set of g-vectors. Then for any i ∈ I ,

xi;v = pv,v0(z
gi;v ) ∈ Frac(M ⊕P).

Proof. We prove this by induction on the distance from v to v0 in Ts. Suppose the statement is true for a
vertex v ∈ Ts and we have v i

−→ v′ in Ts. Then the chambers C+v and C+v′ are separated by the wall di;v

with the wall-crossing fi;v given in Theorem 7.10. Denote ε = sgn(g∗i;v) ∈ {+,−}. Then we have

pv′,v(zgi;v′ )= zgi;v′
ri∏

j=1

(
1+ pεi, j;sv · z

n∑
j=1

εβvj i g j;v)−⟨gi;v′ ,g
∗

i;v⟩.

By Proposition 7.7, we have

gi;v′ =−gi;v +
n∑

j=1
[−εriβ

v
j i ]+g j;v.

This leads to

pv′,v(zgi;v′ )= z−gi;v
ri∏

j=1

(
z

∑
j∈I
[−εβvj i ]+g j;v

+ pεi, j;sv · z

∑
j∈I
[εβvj i ]+g j;v)

.

Note that by sign coherence, pi, j;sv has the same sign as ε. So the above equation is exactly the exchange
relation of cluster variables. Applying the path-ordered product pv,v0 on both sides of the above equality
finishes the induction. □

By the generalized Laurent phenomenon Theorem 3.7, we know that xi;v actually lives in k[M ⊕P].

Corollary 8.2. The set of cluster variables of A prin(s) is in bijection with the set of g-vectors.

Proof. We send a cluster variable xi;v to the g-vector gi;v. To show that xi;v is uniquely determined
by gi;v , we observe that the formula pv,v0(z

gi;v ) is independent of the choice of v. Suppose there is another
chamber C+v′∈s such that gi;v is one of the generators. Choose a path γ from C+v∈s to C+v′∈s close enough
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to the ray R+gi;v so that it only crosses walls containing R+gi;v. The two path-ordered products pv,v0

and pv′,v0 differ by pγ , which acts on zgi;v by identity. Thus pv,v0(z
gi;v )= pv′,v0(z

gi;v ). □

8.2. Reconstructing Aprin
s from Ds. Recall that there is a surjective map from Ts to 1+s (the set of

cluster chambers) sending v to C+v∈s. For each vertex v ∈ Ts, we associate a torus TN ,v(R)= TN (R). To
a pair of vertices v and v′, we associate the birational morphism

qv,v′ = qs
v,v′ : TN ,v(R) 99K TN ,v′(R), q∗v,v′ := pv′,v.

Then there is an R-scheme obtained by gluing TN ,v(R), v ∈ Ts via these birational morphisms

Aprin
scat,s :=

⋃
v∈Ts

TN ,v(R).

One can actually relate Aprin
scat,s to the previously defined cluster variety

Aprin
s :=

⋃
v∈Ts

TN ,sv (R),

which is obtained by gluing together the same set of tori via A-cluster mutations.
Recall the piecewise linear map Tv0,v : MR→ MR that sends the cluster chamber C+v∈s to C+sv . When

restricted to a domain of linearity, Tv0,v becomes a linear automorphism on M . Denote the restriction
of Tv0,v on C+v∈s by Tv0,v|C+v∈s

. In particular, Tv0,v0 |C+s is the identity map. These linear isomorphisms
induce isomorphisms (or R-schemes) between tori

ψv0,v : TN ,sv (R)→ TN ,v∈s(R), ψ∗v0,v
(zm)= zTv0,v |C+v∈s

(m)
.

Proposition 8.3. The isomorphisms ψv0,v glue to be an isomorphism

ψv0 :A
prin
s →Aprin

scat,s.

Proof. The morphisms µv,v′ (resp. qv,v′) are generated µv0,v (resp. qv0,v) for all v in Ts. So the statement
is equivalent to the commutativity of the following diagram (for any v).

TN ,s TN ,v0∈s

TN ,sv TN ,v∈s

µv0,v

ψv0,v0=id

qv0,v

ψv0,v

To show qv0,v = ψv0,v ◦ µv0,v, we pull back the functions zgi;v (for all i ∈ I ) via these birational
morphisms. On the left-hand side, we get the cluster variables

xi;v = q∗v0,v
(zgi;v )
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by Proposition 8.1. On the right-hand side, these zgi;v get pulled back to ze∗i;v by ψ∗v0,v
as Tv0,v|C+v∈s

sends
the chamber C+v∈s to the chamber C+sv . Then via µ∗v0,v

, we still get cluster variables

xi;v = µ
∗

v0,v
(ze∗i;v ).

As {gi;v | i ∈ I } form a basis of M , we conclude that qv0,v = ψv0,v ◦µv0,v, which finishes the proof. □

We next see in a certain sense the variety Aprin
s is independent of s. This is a subtle issue as for

the cluster algebra A prin(s), the initial seed 6(s) is distinguished from others since it has principal
coefficients.

To resolve this, we again treat P as only a multiplicative abelian group. Consider s′ = µ+k (s) in the
sense of Theorem 6.27. The tree Ts′ is naturally embedded in Ts, along with the association of seeds
with coefficients. First of all, it is clear that the inclusion⋃

v∈Ts′

TN ,v∈s ⊂Aprin
scat,s

is an equality. The gluing maps are given by path-ordered products of Ds.
Consider for v ∈ Ts′ , the isomorphism (of R-schemes)

ϕv : TN ,v∈s′→ TN ,v∈s

such that ϕ∗v : k[M ⊕P] → k[M ⊕P] is given by the linear transformation

Tk |C+v∈s
: M ⊕P→ M ⊕P.

Proposition 8.4. The maps ϕv for v ∈ Ts′ glue together to have an isomorphism of k[P]-schemes

ϕ :Aprin
scat,s′→Aprin

scat,s.

Proof. Let v and v′ be two vertices in Ts′ . Since each ϕv is an isomorphism, the statement is equivalent
to the commutativity of the following diagram (for any v and v′).

TN ,v∈s′ TN ,v∈s

TN ,v′∈s′ TN ,v′∈s

qs′
v,v′

ϕv

qs
v,v′

ϕv′

In terms of algebras, this amounts to showing that

Tk |C+v∈s
◦ps
v,v′ = ps′

v,v′ ◦ Tk |C+
v′∈s
: k[M ⊕P] 99K k[M ⊕P].

If the two chambers C+v∈s and C+v′∈s are on the same side of the hyperplane e⊥k , the above equality is
just (6-2). If they are separated by e⊥k , it is the same as (6-5) and has been checked in (6-6). □
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Combined with Proposition 8.3, we see that the construction Aprin
s is independent of s. In terms of the

corresponding cluster algebra A prin(s), once it has principal coefficients on some seed s, it can be made
to do so at any seed mutation equivalent to s.

8.3. Broken lines and theta functions. This section is a recast of [Gross et al. 2018, Section 3] in the
generalized situation. Recall the setting of scattering diagrams in Definition 6.5.

Definition 8.5 (broken line, cf. [Gross et al. 2018, Definition 3.1]). Let D be a scattering diagram
over k̂[P] with a monoid map r : P→ M . Let p0 ∈ P \ ker(r) and Q ∈ MR \ Supp(D). A broken line
for p0 with endpoint Q is a piecewise linear continuous proper map

γ : (−∞, 0] → MR \Sing(D)

with a finite number of domains of linearity L1, L2, . . . , Lk (open intervals in (−∞, 0]), where each
L = L i ⊂ (−∞, 0] is labeled by a monomial cL z pL ∈ k[P] with pL ∈ P . This data should satisfy:

(1) γ (0)= Q.

(2) If L = L1 is the first domain of linearity of γ , i.e., L = (−∞, t) for some t ≤ 0, then cL z pL = z p0 .

(3) For t ∈ L any domain of linearity, mL := r(pL)=−γ
′(t).

(4) For two consecutive domains of linearity L = (a, t) (a can be −∞) and L ′ = (t, b), the monomial
cL ′z pL′ is a term in the formal power series

pγ (t),D(cL z pL )= cL z pL
∏
(d, fd)
γ (t)∈d

f −⟨n0,mL ⟩
d .

Here n0 ∈ N is primitive, serving as a normal vector of every d appearing in the product such that
⟨n0, γ

′(t)⟩> 0. So the power −⟨n0,mL⟩ is always a positive integer.

Definition 8.6 (theta function, [Gross et al. 2018, Definition 3.3]). Let D be a scattering diagram over k̂[P].
Let p0 ∈ P \ ker(r) and Q ∈ MR \Supp(D). For a broken line γ for p0 with end point Q, define

Mono(γ ) := cQz pQ ,

where (by abuse of notation) Q stands for the last linear segment of γ . We define the theta function for p0

with endpoint Q as the formal sum

ϑQ,p0 :=
∑
γ

Mono(γ ),

where the sum is over the set of all broken lines for p0 with endpoint Q.
For p0 = ker(r), we define for any endpoint Q

ϑQ,p0 = z p0 .

We collect some important properties for theta functions from [Gross et al. 2018].



Scattering diagrams for generalized cluster algebras 2241

Theorem 8.7. (1) The theta function ϑQ,p0 is in k̂[P].

(2) Suppose that D is consistent. Then for Q, Q′ ∈ MR \ Supp(D) whose coordinates are linearly
independent over Q, and p0 ∈ P ,

ϑQ′,p0 = pγ,D(ϑQ,p0),

where γ is a path in D from Q to Q′ such that its path-ordered product is well-defined.

Proof. Part (1) essentially follows from the proof of [Gross et al. 2018, Proposition 3.4]. We are using a
different monoid P here, but the same proof still works with J :=mP = P \M .

Part (2), as pointed out in the proof of [Gross et al. 2018, Theorem 3.5], is again a special case of
[Carl et al. 2024, Section 4]. Here the generic condition on the coordinates of Q and Q′ is just to make
sure that any broken line does not cross any joint of D. Modulo mk

P , the independence of ϑQ,m0 on Q
within one chamber follows from [Carl et al. 2024, Lemma 4.7]. The compatibility between Q and Q′ in
different chambers follows from [Carl et al. 2024, Lemma 4.9]. See also a more general discussion on
the global property of theta functions in [Gross et al. 2022, Section 3.3]. □

In the case of generalized cluster scattering diagrams Ds (see Definition 6.17), the monoid P is
M⊕

⊕
i∈I Nri (contained in M⊕P) with the natural projection r to the direct summand M . We have the

following properties of theta functions.

Proposition 8.8 (mutation invariance of broken line, cf. [Gross et al. 2018, Proposition 3.6]). The
piecewise linear transformation Tk :MR→MR (with a lift on M⊕P) defines a one-to-one correspondence
γ 7→ Tk(γ ) between broken lines for p0 with endpoint Q for Ds and broken lines for Tk(p0) with endpoint
Tk(Q) for Dµk(s). This correspondence satisfies, depending on whether Q ∈Hk,+ or Hk,−,

Mono(Tk(γ ))= Tk,±(Mono(γ )),

where Tk,± acts on a monomial as in Theorem 6.27. In particular, we have

ϑ
µk(s)
Tk(Q),Tk(p0)

= Tk,±(ϑ
s
Q,p0

).

Proof. We use Tk(γ ) to denote the piecewise linear map Tk ◦ γ : (−∞, 0]→ MR. Suppose L is a domain
of linearity of γ labeled with monomial cL z pL . If γ (L) is contained in one of the half spaces Hk,±, L
is also a domain of linearity for Tk(γ ). We apply the action of Tk,± on the monomial cL z pL (where the
sign is chosen depending on which half space L is in). If γ (L) crosses e⊥k , split L into L+ and L−, and
apply Tk,± respectively to the monomial cL z pL . One then needs to check the piecewise linear path Tk ◦ γ

together with the new monomial data we just obtained is a broken line for Tk(p0) with endpoint Tk(Q)
in Dµk(s) as in [Gross et al. 2018, Proposition 3.6]. The inverse of the operation γ 7→ Tk ◦ γ is also clear.
The rest of the statement follows easily. □
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Proposition 8.9 (cf. [Gross et al. 2018, Proposition 3.8]). Consider the scattering diagram Ds.

(1) Let Q ∈ Int(C+s ) be an end point, and let p ∈ P be such that r(p) ∈ C+s ∩M. Then ϑQ,p = z p.

(2) Let C+v ∈ 1+s be a cluster chamber for some v ∈ Ts, and Q ∈ int(C+v ) and m ∈ C+v ∩ M. Then
ϑQ,p = z p if r(p)= m.

Proof. Part (1) is essentially [Gross et al. 2018, Proposition 3.8], although there the scattering diagram
is actually different from Ds in terms of wall-crossing functions. However, the bending behavior of a
broken line on a wall is totally analogous, so the exact same argument still applies.

Part (2) is the generalized version of [Gross et al. 2018, Corollary 3.9]. By Proposition 8.8, the
transformation Tv0,v : MR→ MR defines a one-to-one correspondence between the broken lines for p
with r(p) ∈ C+v ∩M and Q ∈ int(C+v ) in Ds, and the ones for Tv0,v(p) with r(Tv0,v(p)) ∈ C+sv ∩M and
Tv0,v(Q) ∈ int(C+sv ). However the only broken lines of the later is labeled by the final monomial z p′ for
p′ = Tv0,v(p) by part (1). The result follows. □

8.4. Cluster monomials as theta functions.

Definition 8.10. Let s be a generalized A-seed with principal coefficients. Then for v ∈ Ts, a cluster
monomial in this seed is a monomial on the torus TN ,v(R)⊂Aprin

s of the form zm where m is a nonnegative
N-linear combination of {e∗i;v | i ∈ I }. By the Laurent phenomenon, such a monomial extends to a regular
function on the whole cluster variety Aprin

s .

Remark 8.11. One may regard a cluster monomial as a function on the initial torus TN ,v0(R). While being
a monomial on the cluster variables xi;v , it is also a Laurent polynomial in the initial cluster variables xi

by the Laurent phenomenon.

The following description of cluster monomials is a generalized version of [Gross et al. 2018, Theo-
rem 4.9]. It proves the positivity (see Theorem 3.8) of generalized cluster monomials.

Theorem 8.12. Let Ds be the generalized cluster scattering diagram of a seed s. Let Q ∈ int(C+s ) a
general end point and m ∈ C+v ∩M for some v ∈Ts. Then the theta function ϑQ,m is an element in zm

·N[P]
which expresses the cluster monomial associated to m of the algebra A prin(s) in the initial seed s.

Proof. We first note that m is regarded as a point in P through the inclusion of M in P . Let Q′ be a base
point in int(C+v ) and γ be a path going from Q′ to Q. By part (2) of Theorem 8.7, we have

ϑm,Q = pγ (ϑm,Q′).

As a theta function, ϑm,Q is a (formal) sum of monomials belonging to zm∧k[P]. By the positivity
Theorem 6.31 of Ds, ϑm,Q has positive integer coefficients, thus an element in zm∧N[P]. By part (2) of
Proposition 8.9, ϑm,Q′ = zm . We know that the cone C+v has integral generators {gi;v | i ∈ I } in M . Thus m
is a nonnegative linear combination of these g-vectors.

On the other hand, by Proposition 8.1, we have the following expression of a cluster variable

xi;v = pγ (zgi;v ).
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It follows immediately that ϑm,Q is a monomial of these xi;v , thus expressing a cluster monomial. Finally
by the generalized Laurent phenomenon Theorem 3.7, we have ϑm,Q ∈ zm

·N[P]. □

Since ϑm,Q does not depend on Q as long as it is chosen generally in the positive chamber, we simply
write it as ϑm . Consider the set of functions

{ϑm | m ∈1+s (Z)},

where 1+s (Z)=
⋃
v∈Ts

C+v ∩M . These are all cluster monomials. In general, they do not form an R-basis
of the cluster algebra A prin(s) or the upper cluster algebra A prin(s). But one can follow [Gross et al.
2018, Section 7.1] to define the set 2⊂ M such that for any m ∈2, ϑm is only a sum of monomials from
finitely many broken lines. Consider the free R-module

mid(Aprin
s ) :=

⊕
m∈2

R ·ϑm .

It is shown in [Gross et al. 2018, Theorem 7.5] that in the ordinary case there are natural inclusions of
R-modules

A prin(s)⊂mid(Aprin
s )⊂ A prin(s)

such that for the first inclusion, cluster monomials are sent to the corresponding theta functions, and
for the second inclusion, any theta function is sent to the corresponding universal Laurent polynomials
on Aprin

s (see [Gross et al. 2018, Proposition 7.1]). We expect that this is also true in the generalized case.

8.5. More on positivity. Chekhov and Shapiro [2014] proposed a positivity conjecture which is stronger
than Theorem 3.8. We formulate a version here.

A generalized cluster algebra in the sense of [Chekhov and Shapiro 2014] (see Section 3.2) is called
reciprocal if any of its exchange polynomials θi (u, v) is monic and palindromic, i.e., θi (u, v)= θi (v, u)
and has leading coefficient 1. In this way, the exchange polynomials do not change under mutations. Note
that θi (u, v) can have coefficients in ZP (rather than just in P) in general.

Conjecture 8.13 (cf. [Chekhov and Shapiro 2014, Conjecture 5.1]). Any cluster variable of a reciprocal
generalized cluster algebra whose exchange polynomials have coefficients in P (or more generally in NP)
is expressed as a positive Laurent polynomial in the initial cluster, i.e., an element in NP[x±1 , . . . , x±n ]
where the xi’s are the initial cluster variables.

Chekhov and Shapiro [2014, Section 5] pointed out that this conjecture is true for any generalized
cluster algebra associated to a surface with arbitrary orbifold points (see also [Banaian and Kelley 2020]
for a proof using snake graphs). The rank two case of this conjecture has been resolved in [Rupel 2013].

We consider here a related situation where the reciprocal assumption is not required. Let P be an abelian
group of finite rank. Consider an algebraic closure k = QP of the field of rational functions QP. Let
A prin(6) be a generalized cluster algebra with principal coefficients as of Definition 3.13. The coefficients
group is the tropical semifield Trop( p). Recall that the initial exchange polynomials have the form

θi (u, v)=
ri∏

j=1
(pi, j u+ v).
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Let λ : Trop( p)→ k∗ be an evaluation (as in Section 3.5) such that each λ(θi (u, v)) satisfies:

(A) All its coefficients are in ZP (in NP if assuming positivity).

(B) λ
(∏ri

j=1 pi, j
)

is an element in P.

By the mutation formula of coefficients, the exchange polynomials after any steps of mutations still satisfy
these two conditions. Therefore the cluster algebra with special coefficients A prin(6, λ) can be viewed
as a generalized cluster algebra of [Chekhov and Shapiro 2014] (with the coefficients group P). Note
that any reciprocal generalized cluster algebra can be obtained this way.

The scattering diagram λ(Ds) (see Section 6.4) is responsible for A prin(6, λ). It is over
∧

k
[
M ⊕

∏
i∈I N

]
with formal parameters ti . Note that by the generalized Laurent phenomenon, the cluster variables of
A prin(6, λ) are all in ZP[x±1 , . . . , x±n ].

Theorem 8.14. Let A prin(6, λ) be a generalized cluster algebra as above assuming (A), (B), and that
the initial exchange polynomials have coefficients in NP. Let s be an A-seed such that 6(s) = 6. If
there exists a representative of λ(Ds) such that every wall-crossing function is in

∧

NP
[
M ⊕

∏
i∈I N

]
, then

any cluster variable is expressed as a positive Laurent polynomial in the initial cluster, i.e., an element
in NP[x±1 , . . . , x±n ].

Proof. As in Theorem 8.12, the positivity of cluster variables follows from the positivity of the scattering
diagram λ(Ds) since every broken line ends with a monomial with coefficients in NP⊂ k. Expressing
a cluster variable as a theta function for λ(Ds)

(
and evaluated at ti = 1 where the ti’s are the standard

generators of
∏

i∈I N
)
, the result follows. □

If A prin(6, λ) is of finite type (i.e. there are only finitely many distinguished cluster variables), then
the cluster complex 1+s is finite and complete in MR by Corollary 8.2. By Theorem 7.10, we have that
Ds =D(1+s ) and the wall-crossing function on any facet of any cluster chamber has coefficients in NP

under the evaluation λ if assuming so for the initial ones. Then the positivity follows in this case from
Theorem 8.14. It is not hard to check that in Example 6.22 the expansion of the wall-crossing function
fR≥0(1,−1) has every coefficient in N[s1s2, s1+ s2, t1t2, t1+ t2]. By the description in Example 6.22 of all
other walls, all wall-crossings functions in this scattering diagram are positive in this sense. This then
implies all cluster variables are positive, i.e., have coefficients in N[s1s2, s1+ s2, t1t2, t1+ t2].
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