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Moduli of linear slices
of high degree smooth hypersurfaces

Anand Patel, Eric Riedl and Dennis Tseng

We study the variation of linear sections of hypersurfaces in Pn . We completely classify all plane curves,
necessarily singular, whose line sections do not vary maximally in moduli. In higher dimensions, we
prove that the family of hyperplane sections of any smooth degree d hypersurface in Pn varies maximally
for d ≥ n +3. In the process, we generalize the classical Grauert–Mülich theorem about lines in projective
space, both to k-planes in projective space and to free rational curves on arbitrary varieties.

1. Introduction

A fundamental technique for studying a degree d complex hypersurface X in projective space Pn is to
intersect it with hyperplanes. The family of varieties thus obtained can be represented by a map to moduli

φ : Pn∗ 99K PH 0(OPn−1(d))// SLn, [3] 7→ [3 ∩ X ].

Basic properties of φ are still not understood, even under regularity assumptions on X . Take, for instance,
the problem of determining the dimension of its image. If X is assumed to be general, then φ can directly
be shown to have maximal rank, i.e., its image is as large as possible, as done in [van Opstall and Veliche
2007]. However, once we assume X is an arbitrary hypersurface, the story becomes more complicated,
with several authors studying special cases in the last few decades. Even in the case of a reduced plane
curve X , showing maximal variation is not a trivial task. Thirty years ago, while studying PGL3-orbits of
plane curves, Aluffi and Faber [1993, Proposition 4.2] cleverly exploited the classical Plücker formulas to
prove that smooth plane curves of degree at least 5 always have maximum variation of linear sections.
However, if the curve X is singular, then φ can fail to have maximal rank, and Aluffi and Faber were not
able to completely analyze this case.

Quite generally, if the dimension of the projective automorphism group of X is larger than expected
(e.g., if X is a cone), then linear slices must fail to vary maximally in moduli. Outside this class of
hypersurfaces, we are unaware of any other examples where φ fails to have maximal rank, so we pose the
following question:

Question 1.1. If φ fails to have maximal rank, must X have a positive-dimensional projective automor-
phism group?

MSC2020: 14J10, 14J70.
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Figure 1. Singular curves for which φ fails to have maximal rank. Left: union of orbits
under Gm action. Right: union of orbits under Ga action (quadritangent conics).

We are concerned exclusively with the case where X is a hypersurface, although one can ask similar
questions for other subvarieties of Pn , such as in [Mckernan 1991]. Our first result is to answer Question 1.1
affirmatively when X ⊂ P2 is a plane curve:

Theorem 1.2. If X ⊂ P2
C

is an arbitrary plane curve and if φ fails to have maximal rank, then X has
infinitely many projective automorphisms.

Given Theorem 1.2, we see that of all curves where φ fails to have maximal rank have stabilizer
containing Gm or Ga , where typical examples are depicted in Figure 1.

The map φ is even more difficult to understand for larger-dimensional hypersurfaces — we restrict
our attention primarily to smooth hypersurfaces. Beauville [1990] investigated the case where φ is a
constant map and classified the smooth hypersurfaces X for which the family of hyperplane sections has
constant moduli. This phenomenon happens only for very special hypersurfaces in positive characteristic.
In contrast, we prove:

Theorem 1.3. If X ⊂ Pn
C

is a smooth hypersurface of degree d ≥ n + 3, then φ has maximal rank.

We can also intersect a hypersurface X with k-planes for smaller k, obtaining natural analogues

φk : G(k, n) 99K PH 0(OPk (d))// SLk+1, [3] 7→ [3 ∩ X ],

and ask similar questions about φk . Harris, Mazur, and Pandharipande [Harris et al. 1998], and then
later Starr [2006], studied the situation where φk is expected to be dominant, relating the problem of
establishing dominance to the question of unirationality of low degree hypersurfaces. When φk is expected
to be generically finite and dominant, the problem of establishing its degree has also appeared in the
literature. In this direction, see [Cadman and Laza 2008; Lee et al. 2020; 2023].

We are able to generalize Theorem 1.3, and prove that φk has maximal rank under some restrictions on k:

Theorem 1.4. If X ⊂ Pn
C

is a smooth hypersurface of degree d , then φk has maximal rank assuming
d ≥ n + 3 and k ≥

2
3 n.

For k < 2
3 n, we obtain similar statements, but with d forced to be larger (see Theorems 5.8 and 5.9).
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Broadening the topic even further, we can intersect X with other types of varieties, for example, rational
curves of degree e. In this way, we obtain a map from the variety of degree e rational curves in Pn to the
moduli space of ed points on P1. Our methods provide results in this context — see Theorems 4.2 and 5.2.

1A. Methods. The log tangent sheaf TPn (−log X) and the Grauert–Mülich theorem play key roles in
our approach. We identify the tangent space of the fiber of φ at a point [3] with sections of the log
tangent sheaf TPn (−log X) restricted to 3. Then, we adapt the argument in the usual Grauert–Mülich
theorem [Okonek et al. 1980, Theorem 2.1.4] to produce sections or subsheaves of the log tangent sheaf
TPn (−log X). In the plane curve case, this forces X to be an integral curve for a vector field on P2, leading
to the classification in Theorem 4.2. In the higher dimensional case, we appeal to a result of Guenancia
regarding the semistability of TPn (−log X), when (Pn, X) is a log-canonical pair and d ≥ n + 2. In
particular, all our results in this case actually hold when (Pn, X) is a log-canonical pair, not only when X
is smooth.

Our methods will produce results in other contexts, for example, if we replace Pn with a homogeneous
space G/P .

2. Preliminaries

We introduce conventions and basic definitions.

2A. Notation and conventions. We will work over the complex numbers. We identify vector bundles
with locally free sheaves throughout, and all our sheaves are coherent. A subbundle of a vector bundle V
is a locally free subsheaf W ⊂ V such that V/W is also locally free. For us, a variety is an integral
scheme of finite type. If F is a coherent sheaf on a scheme X , we denote by ev : H 0(X, F) ⊗ OX → F
the natural evaluation map.

We denote by More(P
k, Pn) the variety parameterizing morphisms f : Pk

→ Pn with f ∗O(1) =

O(e). Explicitly, More(P
k, Pn) is a Zariski open subset of P

(
H 0(OPk (e))⊕n+1

)
parameterizing tuples

(A0, . . . , An) of homogeneous degree e forms on Pk which do not vanish simultaneously anywhere on Pk .
More generally, Mor(X, Y ) denotes the (not finite-type) scheme parameterizing morphisms from the
scheme X to the scheme Y .

Given a torsion-free sheaf E on a projective variety X , we let its slope µ(E) denote the ratio deg(E)

rank(E)
,

where deg(E) =
∫

X c1(E)OX (1)dim(X)−1. We call E semistable (respectively stable) if there is no proper
subsheaf F with µ(F) > µ(E) (respectively µ(F) ≥ µ(E)). In general, the Harder–Narasimhan filtration
of E is

0 = E0 ⊊ E1 ⊊ E2 ⊊ · · · ⊊ Ea = E,

where the subquotients E1/E0, E2/E1, . . . , Ea/Ea−1 are semistable and have strictly decreasing slopes.
Finally, if E , F are two coherent sheaves, then Hom(E, F) will denote the vector space of global
homomorphisms E → F while Hom(E, F) will denote the sheaf of local homomorphisms.
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2B. The map to moduli 8. Suppose X ∈ Pn is a degree d hypersurface. After fixing integers e ≥ 1,
k ≤ n − 1, we get the induced map to moduli

8 : More(P
k, Pn) 99K PH 0(Pk, OPk (de)), ι 7→ [ι−1(X)].

We say that 8 has maximal rank if the dimension of its image is

max
{
dim(More(P

k, Pn)), PH 0(Pk, OPk (de))
}
.

Equivalently, since we are working over C, the derivative of 8 at a general point has maximum rank.
Though our methods give results for all e, k, we are primarily interested in the cases where e = 1 or

k = 1. Therefore, we have only stated our results in these cases. In the case e = 1, 8 having maximal
rank is equivalent to the map

G(k, n) 99K PH 0(Pk, OPk (d))// SLk, [3] 7→ [3 ∩ X ],

having maximal rank, assuming the general k-plane slice of X has no infinitesimal automorphisms.
Whenever our results apply, this condition will always be satisfied.

2C. Log tangent sheaves. We now introduce the main tool of the paper. We suspect Lemma 2.2 is
well-known to experts but include a proof for want of a suitable reference. Everything in this section
should work for a reduced divisor in an arbitrary smooth ambient variety, but we will focus on the case
that the ambient variety is projective space.

Let D ⊂ Pn be a reduced hypersurface. Viewing D as a divisor in the smooth ambient variety Pn , we
get the log tangent sheaf TPn (−log D), which sits inside the exact sequence

0 → TPn (−log D) → TPn → OD(D) → ODsing(D) → 0,

where Dsing is the singular subscheme cut out of Pn by the equation for D and its partials. In terms of
background, we only assume what is covered in [Liao 2013, 2.1.2], but see [Saito 1980] for the original
reference. One can check that TPn (−log D) is a vector bundle when D is smooth using local coordinates;
in general TPn (−log D) is a reflexive sheaf.

Remark 2.1. Informally, local sections of TPn (−log D) represent local vector fields which are tangent
to D. This can be seen explicitly by noting that the map TPn → OD(D) in the exact sequence above is
given by θ 7→ θ( f ), where θ is a vector field and f is the (local) equation for D. If we identify OD(D)

with ND/Pn , the map TPn → OD(D) is also TPn → TPn |D → ND/Pn .

Let Pk ι
−→ Pn be a map defined by degree e homogeneous forms, and suppose Z ⊂ Pn is a subscheme.

We say an infinitesimal deformation ιϵ : Pk
× Spec C[ϵ]/(ϵ2) → Pn preserves ι−1(Z) if ι−1

ϵ (Z) ⊂

Pk
× Spec C[ϵ]/(ϵ2) is the trivial deformation ι−1(Z) × Spec C[ϵ]/(ϵ2). The point of this section is to

prove the following lemma.
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Lemma 2.2. Let Pk ι
−→ Pn be a map defined by degree e homogeneous forms whose image is not

contained in D. Global sections of ι∗TPn (−log D) correspond to deformations of the map ι preserving
the hypersurface ι−1(D).

Proof. First, sections of ι∗TPn correspond to deformations of ι. More explicitly, ι is defined by an
(n+1)-tuple of degree e forms in k +1 variables A0(s0, . . . , sk), . . . , An(s0, . . . , sk) sending [s0 : · · · : sk]

to [A0(s0, . . . , sk) : · · · : An(s0, . . . , sk)].
A deformation ιϵ of ι is given by another (n+1)-tuple of degree e forms in k+1 variables B0(s0, . . . , sk),

. . . , Bn(s0, . . . , sk). Explicitly, as a map from Spec(C[ϵ]/(ϵ2)) × Pk
→ Pn this is given in coordinates

by ϵ, [s0, . . . , sk] mapping to [A0(s0, . . . , sk)+ ϵB0(s0, . . . , sk) : · · · : An(s0, . . . , sk) + ϵBn(s0, . . . , sk)].
The vector space of deformations is given by the quotient space of (n+1)-tuples of degree e forms
(B0, . . . , Bn) modulo the 1-dimensional vector space generated by (A0, . . . , An).

Let D be defined by F = 0 where F is a reduced homogeneous form in n + 1 variables. If we pull
back the form F under the deformed map ιϵ , we obtain

F(A0(s0, . . . , sk) + ϵB0(s0, . . . , sk), . . . , An(s0, . . . , sk) + ϵBn(s0, . . . , sk))

= F(A0(s0, . . . , sk), . . . , An(s0, . . . , sk))+ϵ
n∑

i=0
Bi (s0, . . . , sk) ·∂i F(A0(s0, . . . , sk), . . . , An(s0, . . . , sk)).

Therefore, deformations ιϵ that preserve ι−1(D) correspond to choices of B0, . . . , Bn such that
n∑

i=0
Bi (s0, . . . , sk) · ∂i F(A0(s0, . . . , sk), . . . , An(s0, . . . , sk)) (2-1)

is a scalar multiple of F .
Now, we wish to realize this latter condition as producing sections of the pulled back log tangent sheaf.

First, the sections of the pulled back tangent sheaf ι∗TPn can be computed via the Euler sequence

0 → OPk → OPk (e)n+1
→ ι∗TPn → 0

to be the quotient space of (n+1)-tuples of linear forms (B0, . . . , Bn) modulo the 1-dimensional vector
space generated by (A0, . . . , An).

The restricted vector field corresponding to (B0, . . . , Bn) is
∑n

i=0 Bi
∂

∂xi
. Recall that TPn (−log D) is

the kernel of the map TPn → OD(D) sending a vector field θ :=
∑n

i=0 Bi
∂

∂xi
to θ(F).

In other words, the defining equation is
n∑

i=0
Bi

∂

∂xi
F ≡ 0 (mod F).

Pulling back this under ι yields exactly (2-1). □

3. Grauert–Mülich

The goal of this section is to generalize the classical Grauert–Mülich theorem [Okonek et al. 1980,
Theorem 2.1.4] in two directions:
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Proposition 3.1. Let Z ⊂ PN be a smooth projective variety and f : P1
→ Z be a general map in an

open subset M of Mor(P1, Z) such that P1
×M → Z has connected fibers. Suppose f ∗TZ is globally

generated.
Let E be a torsion free sheaf on Z and write f ∗E as

⊕b
i=1 O(ai ) with a1 ≥ · · · ≥ ab. If a j > a j+1 + 1

for some j , then E has a subsheaf of rank j and degree 1
deg( f )

∑ j
i=1 ai . In particular, if E is semistable,

then the bundle f ∗E can be written as
⊕

i O(ai ) with |ai − ai+1| ≤ 1.

For applications to slicing by k-planes, we will use Proposition 3.3.

Definition 3.2. Given a torsion free sheaf E on a smooth projective variety, let µmax(E) denote the
maximum slope of a nontrivial subsheaf of E . It is also the slope of the first subsheaf appearing in its
Harder–Narasimhan filtration. Similarly let µmin(E) denote the minimum slope of a nontrivial quotient
of E . It is also the slope of the quotient of the last two subsheaves appearing in its Harder–Narasimhan
filtration.

Proposition 3.3. Let E be a torsion free sheaf on Pn . Let 3 be a k-plane in Pn , general with respect to E.
Let S ⊊ E |3 be a sheaf appearing in the Harder–Narasimhan filtration of E |3 and suppose

µmin(S) −
1
k

> µmax(E |3/S).

Then E is not semistable.

The proofs of Propositions 3.1 and 3.3 are very similar in spirit to standard proofs of Grauert–Mülich,
such as the one found in [Okonek et al. 1980]. The argument relies crucially on the following lemma.

Lemma 3.4 (descent lemma from [Okonek et al. 1980, Lemma 2.1.2]). Let Y and Z be smooth varieties
and π : Y → Z be a surjective smooth morphism with connected fibers. Let E be a vector bundle on Z
such that π∗E has a vector subbundle S with quotient vector bundle Q. If

Hom(TY/Z , Hom(S, Q)) = 0,

then S is the pullback of a subbundle of E on Z.

The key technical lemma of this section is Lemma 3.6, whose proof will use the following simple fact.

Lemma 3.5. Let Y be a variety and E and F be two sheaves on Y . Suppose every semistable subquotient
in the Harder–Narasimhan filtration of E has greater slope than every semistable subquotient of F , i.e.,
that µmin(E) > µmax(F). Then, Hom(E, F) = 0.

Proof. Let 0 = E0 ⊂ E1 ⊂ · · · ⊂ Ea = E be the Harder–Narasimhan filtration for E and 0 = F0 ⊂ F1 ⊂

· · · ⊂ Fb = F be the Harder–Narasimhan filtration for F . Consider a map φ : E → F . We show φ = 0.
First, φ induces a map E1 → Fb/Fb−1, which is zero since the source is semistable and has slope

greater than the target, which is also semistable. Therefore, φ induces a map E1 → Fb−1/Fb−2, which
again is zero for the same reason. Continuing this, we find the map E1 → F is zero.

Then, we consider the induced map E2/E1 → Fb/Fb−1 and repeat the argument above to find E2/E1 →

F must be the zero map. Continuing this for E3/E2 and so on shows that the map φ is zero. □
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Lemma 3.6. Let Z be a smooth projective variety and let U → M be a smooth family of projective
varieties with a smooth surjective map π : U → Z having connected fibers. Let E be a torsion free
sheaf on Z and let Up be a general fiber of U → M. Let S be a subsheaf of π∗E |Up appearing in the
Harder–Narasimhan filtration of π∗E |Up such that

µmin(S) + µmin(TU/Z |Up) > µmax(π∗E |Up/S).

Then there is a subsheaf S̃ on Z of E such that π∗ S̃|Up agrees with S on the locus where S is a vector
bundle.

Proof. By [Shatz 1977, Lemmas 5 and 7], we can replace M by a dense open subset so that the members of
the Harder–Narasimham filtration of π∗E |Up extend to a family over U. Namely, there exists a sequence
of subsheaves 0 = S0 ⊂ S1 ⊂ · · · ⊂ Sa = π∗E that restrict to the Harder–Narasimhan filtration of E |Up

for all p ∈ M, so in particular S = Si |Up for some i . If E and all S j ’s are locally free, then we can
immediately apply Lemma 3.4 to conclude. The next paragraphs deal with the possibility that E or the
S j ’s are not locally free by passing to a general curve in Up.

We have an open subset U0
⊂ U whose complement has codimension at least 2 and consists of the

points over which Si and π∗E/Si are both vector bundles. The image of U0 in Z is an open subset Z0

(by flatness of π ) whose complement must also have codimension at least 2.
Now, we can apply Lemma 3.4 in the case Y = U0 and Z = Z0. In order to do so, we must show that

Hom
(
TU0/Z0, Hom(Si |U0, (π∗E/Si )|U0)

)
= 0. (3-1)

For this, observe that because all sheaves appearing in (3-1) are locally free, it suffices to show the lack of
homomorphisms when we restrict to a general fiber Up. Then, we use the same idea and restrict to a general
complete intersection curve C ⊂Up of sufficiently high degree. Restricting the Harder–Narasimhan filtra-
tion of π∗E |Up to C results in a sequence of vector subbundles because each semistable subquotient on Up

is in particular torsion-free, so the Harder–Narasimhan filtration is a sequence of vector subbundles away
from a set of codimension at least 2 in Up. Since C can be chosen to avoid this set, restricting a sequence of
subbundles yields a sequence of subbundles. By [Mehta and Ramanathan 1982], this sequence of sub vector
bundles on C is the Harder–Narasimhan filtration of π∗E |C . To show (3-1), it therefore suffices to show

Hom
(
TU/Z |C , Hom(S|C , (π∗E |Up/S)|C)

)
= Hom

(
TU/Z |C ⊗ S|C , (π∗E |Up/S)|C

)
= 0.

We conclude by applying Lemma 3.5, keeping in mind that S|C is part of the Harder–Narasimhan
filtration of π∗E |C , and that the following slope equalities hold:

µmax((π∗E |Up/S)|C) = deg(C)µmax(π∗E |Up/S),

µmin(S|C) = deg(C)µmin(S),

µmin(TU/Z |C) = deg(C)µmin(TU/Z ),

µmin(TU/Z |C ⊗ S|C) = µmin(S|C) + µmin(TU/Z |C),

where deg(C) can be defined using any projective embedding of Up. □
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In order for us to apply Lemma 3.6, it is necessary to understand the sheaf TU/Z |Up . Lemmas 3.8
and 3.9 identify the sheaf in two common situations.

Definition 3.7. Let Y be a variety and V be a globally generated vector bundle on Y . Then, the Lazarsfeld–
Mukai bundle of V is the kernel of the evaluation map OY ⊗ H 0(V ) → V .

Lemma 3.8. Let Z be a smooth projective variety and M be a smooth open subset of a component of
the Hilbert scheme of varieties on Z. Let U be the universal family, and suppose that the natural map
π :U→ Z is smooth. Let Up be a general fiber of U→M. Then TU/Z |Up is the Lazarsfeld–Mukai bundle
for the normal bundle NUp/Z , defined by the short exact sequence

0 → TU/Z |Up → H 0(NUp/Z ) ⊗ OUp → NUp/Z → 0.

Proof. First we compare the normal sheaf of U in M× Z to the normal sheaf NUp/Z . We have the diagram

0 0

O N
Up

O N
Up

0 TU|Up TM×Z |Up NU/M×Z |Up 0

0 TUp TZ |Up NUp/Z 0

0 0

=

∼=

In this diagram, we have written H 0(NUp/Z ) ⊗ OUp as O N
Up

, where N = h0(NUp/Z ). We see that
NU/M×Z |Up is isomorphic to NUp/Z by the eight lemma. Next we relate NU/M×Z |Up to the Lazarsfeld–
Mukai bundle. Consider the diagram, where the lower right entry is computed by the eight lemma,

0 0

TZ |Up TZ |Up

0 TU|Up TM×Z |Up NU/M×Z |Up 0

0 TU/Z |Up π∗TM|Up NU/M×Z |Up 0

0 0

=

∼=
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Then since π∗TM is constant on Up and NU/M×Z |Up
∼= NUp/Z , we see that the last row becomes

0 → TU/Z |Up → H 0(NUp/Z ) ⊗ O → NUp/Z → 0.

The result follows. □

Lemma 3.9. Let Y and Z be smooth projective schemes and M be an open subset of Mor(Y, Z). Let
π : Y ×M → Z be the universal map. For f : Y → Z in M, suppose f ∗TZ is globally generated. Then,
the restriction TY×M/Z |Y×{[ f ]} is an extension of TY by the Lazersfeld–Mukai bundle of f ∗TZ .

Proof. We have the relative tangent sequence

0 → TY×M/Z |Y×{[ f ]} → TY×M|Y×{[ f ]} → f ∗TZ → 0.

We have the natural decomposition TY×M/Z |Y×{[ f ]}
∼= H 0( f ∗TZ ) ⊗ O ⊕ TY , with respect to which the

natural map TY×M/Z |Y×{[ f ]} → f ∗TZ is ev +d f . Consider the following commutative diagram, where K
is the Lazarsfeld–Mukai bundle of f ∗TZ :

0 0 0

0 TY TY 0 0

0 TY×M/Z |Y×{[ f ]} H 0( f ∗TZ ) ⊗ O ⊕ TY f ∗TZ 0

0 K H 0( f ∗TZ ) ⊗ O f ∗TZ 0

0 0 0

ev +d f

ev

The rows and columns are exact and the left column gives TY×M/Z |Y×{[ f ]} as an extension of K by TY . □

Lemma 3.10. The Lazarsfeld–Mukai bundle of any globally generated vector bundle on P1 is a direct
sum of O(−1)’s.

Proof. Taking Lazarsfeld–Mukai bundles behaves well with respect to direct sum, so it remains to show
the result for line bundles O(a) with a ≥ 0. The Lazarsfeld–Mukai bundle M satisfies

0 → M → O ⊗ H 0(O(a)) → O(a) → 0.

It follows that M has rank a, degree −a and no global sections, so that M = O(−1)a . The result
follows. □

Proof of Proposition 3.1. We apply Lemma 3.6 to our situation, where M is an open subset of Mor(P1, Z)

containing [ f ] and U = P1
×M. Then, applying Lemma 3.9 shows TP1×M/Z |P1×{[ f ]} an extension of

TP1 by the Lazersfeld–Mukai bundle of f ∗TZ . By Lemma 3.10, the Lazersfeld–Mukai bundle of f ∗TZ
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is a sum of O(−1)’s, so TP1×M/Z |P1×{[ f ]} is an extension of O(2) by a direct sum of O(−1)’s implying
µmin(TP1×M/Z |P1×{[ f ]}) ≥ −1.

Suppose f ∗E splits as
⊕

i O(ai ) with a1 ≥· · ·≥ar and a j ≤a j+1−2. Letting S =
⊕

i≤ j O(ai ), we find

a j + (−1) > a j+1,

µmin(S) + µmin(TP1×M/Z |P1×{[ f ]}) > µmax(( f ∗E)/S),

Therefore, we can apply Lemma 3.6 and conclude. □

Proof of Proposition 3.3. This follows from Lemma 3.6 with Z = Pn , M = G(k, n) and U the universal
k-plane. The only thing to check is µmin(TU/Pn |3) = −

1
k . By Lemma 3.8, TU/Pn |3 lies in the sequence

0 → TU/Pn |3 → H 0(O3(1)n−k) ⊗ O3 → O3(1)n−k
→ 0,

and so is isomorphic to �3(1)n−k by the Euler sequence. Since �3(1) is semistable with slope −
1
k

[Okonek et al. 1980, Theorem 1.3.2], the result follows. □

4. Plane curves

We now apply the results from the previous section to analyze the map to moduli 8 introduced in
Section 2B in the case of plane curves. Throughout this section, C in P2 denotes a reduced plane curve.
(In the nonreduced case, we simply pass to the reduction and apply the results of this section.) Our main
results in this section are stated below.

Theorem 4.1. Let C be a reduced plane curve of degree d. Then, the map

8 : More(P
1, P2) 99K P(H 0(OP1(ed))), [ι] 7→ [ι−1(C)],

has maximal rank if C has finite stabilizer under the action of PGL3.

In fact, we can classify all cases in Theorem 4.1 where 8 does not have maximal rank.

Theorem 4.2. We get a complete classification of cases when 8 in Theorem 4.1 does not have maximal
rank:

(1) d ≥ 5: C is a union of orbits under an action of Gm or Ga on P2.

(2) d = 4:

(a) e = 1 and C is the union of four concurrent lines.
(b) e ≥ 2 and C is a union of orbits under an action of Gm or Ga on P2.

(3) d = 3: e ≥ 2 and C is union of concurrent lines.

Before giving the proofs of these theorems, we need the following two propositions.

Proposition 4.3. If C is a reduced plane curve and TP2(−log C) admits a nontrivial homomorphism from
OP2(1), then C is a union of concurrent lines.
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Proof. First, a nontrivial map from OP2(1) → TP2(−log C) induces a nontrivial map OP2(1) → TP2 .
Consider the Euler sequence

0 → OP2 → OP2(1)3
→ TP2 → 0.

Applying Hom(OP2(1), · ) to the Euler sequence, we find

Hom(OP2(1), TP2) ∼= Hom(OP2(1), OP2(1)3)

and that the composite map OP2(1) → TP2(−log C) → TP2 lifts to a map OP2(1) → OP2(1)3.
After a change of coordinates, we can assume the map OP2(1) → OP2(1)3 is inclusion into the first

factor. The map OP2(1)3
→ TP2 sends a tuple of linear forms (L1, L2, L3) to

(
L1

∂
∂X

, L2
∂
∂Y

, L3
∂
∂Z

)
, so we

conclude that L ∂
∂X

is a section of TP2(−log C) for all linear forms L .
By Remark 2.1, we see that away from the point [1 : 0 : 0], the tangent vector ∂

∂X
is in the tangent space of

C for every point of C . Restricting to the affine chart {Z ̸= 0} with coordinates (x, y) and dehomogenizing,
this means C restricts to a union of lines parallel to the x-axis. Since these lines and the line at infinity
are precisely the lines passing through [1 : 0 : 0], we conclude C is a union of concurrent lines. □

Proposition 4.4. If C is a reduced plane curve and TP2(−log C) has a section, then C is equivalent to a
union of orbits under one of the two actions by Gm and Ga as follows:

Gm → GL3, t 7→

ta 0 0
0 tb 0
0 0 1

, a, b ∈ N,

Ga → GL3, t 7→ exp

t

0 1 0
0 0 1
0 0 0

 =

1 t 1
2 t2

0 1 t
0 0 1

.

Explicitly, there are two cases:

(1) C is projectively equivalent to a union of curves of the form X pY q
= cZ p+q , c ∈ C×, and possibly a

subset of the three coordinate lines.

(2) C is projectively equivalent to a union of members of the family {X Z − Y 2
+ cZ2

| c ∈ C} of conics
quadritangent to {X Z − Y 2

= 0} at [0 : 0 : 1], and possibly the line {Z = 0}.

Proof. Let s be a section of TP2(−log C). Then, s is also a section of TP2 and can be written as
L X

∂
∂X

+ LY
∂
∂Y

+ L Z
∂
∂Z

where L X , LY , L Z are homogenous linear forms in X , Y and Z .
Let C0 be a component of C and let p ∈ C be a smooth point of C0. We lift p ∈ P2 to a point

p̃ ∈ C3
\ {0}. Then, C0 contains the projection under C3

\ {0} → P2 of the integral curve C̃ through p̃
which is the solution to the matrix differential equation

d
dt

X (t)
Y (t)
Z(t)

 = A

X (t)
Y (t)
Z(t)

,

X (0)

Y (0)

Z(0)

 = p̃. (4-1)
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Here A is the 3×3 matrix with complex entries such that

A

X
Y
Z

 =

L X (X, Y, Z)

LY (X, Y, Z)

L Z (X, Y, Z)

.

If the projection of C̃ to P2 is not a single point, then the image is dense in C0. Therefore, C must be
(the closure of) a finite union of projections of integral curves in C3

\ {0} and 1-dimensional components
of the zero locus of s.

After a linear change of coordinates, we can assume that A is in Jordan block form. We keep this
choice of coordinates from now on. We let p̃ = (c1, c2, c3) ∈ C3 denote a lift of a point on C0 (to be
determined separately in each case) and we let P(X, Y, Z) be a homogenous polynomial defining C0.

Case 1: A is diagonal. We will show that the first case of Proposition 4.4 happens, so we can assume that
c1, c2, c3 ̸= 0 or else p̃ is contained in a coordinate line. Let λ1, λ2, λ3 be the eigenvalues of A. Then,
the solution to (4-1) is (X (t) Y (t) Z(t))T

= (eλ1t c1 eλ2t c2 eλ3t c3)
T , where ( · )T denotes the transpose.

The defining equation P(X, Y, Z) of C0 is a homogenous polynomial of minimal degree satisfying

P(c1eλ1t , c2eλ2t , c3eλ3t) = 0. (4-2)

We can choose a new grading on C[X, Y, Z ] by the complex numbers C where the monomial XaY b Z c

has the grade aλ1 + bλ2 + cλ3. Let Pω be the homogenous component of P with grade ω ∈ C. By
linear independence of characters, the elements in {eωt

| ω ∈ C} are linearly independent, and hence
Pω(c1eλ1t , c2eλ2t , c3eλ3t) = 0. Therefore, P divides Pω for all ω ∈ C so Pω can be nonzero for only one
value of ω.

We cannot have λ1, λ2, λ3 all equal or else s would be a multiple of X ∂
∂X

+ Y ∂
∂Y

+ Z ∂
∂Z

which induces
the zero vector field on P2. The monomials XaY b Z c that can appear in P with nonzero coefficients must
be the solution to the two linear equations

a + b + c = deg(C0), (4-3)

λ1a + λ2b + λ3c = ω (4-4)

for some fixed ω. The solution set to (4-3) is some 1-dimensional complex line ℓ in C3 and we are
interested in the integer solutions ℓ∩Z3. If ℓ∩Z3 is empty or a single point, then P is a monomial, hence
degree 1 by irreducibility. So the only remaining case is if ℓ∩ Z3 is a 1-dimensional lattice, which can be
written in the form {(a0, b0, c0) + m(a1, b1, c1) | m ∈ Z}.

Thus, we know that the monomials XaY b Z c that can appear with nonnegative coefficients in P must
be in S = {(a0, b0, c0)+m(a1, b1, c1) | m ∈ Z}∩Z3

≥0. If S contains exactly one element, then P is degree
one by irreducibility. If S contains exactly two elements, then P is a binomial and must then be of the
form XaY b

+ k Za+b for some k ̸= 0, because P is irreducible. Finally, one can check S cannot contain
three or more elements assuming P is irreducible.
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Case 2: A has exactly two Jordan blocks Let λ1 be the eigenvalue of the 2×2 block and λ2 be the
eigenvalue of the 1×1 block. We will show that the first case of Proposition 4.4 happens. We can assume
C0 is not contained in a coordinate line, and therefore assume p̃ is such that c2, c3 ̸= 0. Then, a solution
to (4-1) is (X (t) Y (t) Z(t))T

= (eλ1t c1+c2teλ1t eλ1t c2 eλ2t c3)
T for p̃ = (c1, c2, c3).

This means P(eλ1t c1+c2teλ1t , eλ1t c2, eλ2t c3)=0. Dividing by edeg(P)λ1t and letting λ=λ2−λ1, we find

P(c1 + c2t, c2, eλt c3) = 0.

Reparameterizing t by t −
c1
c2

, we can assume c1 = 0. We claim now that the map C[X, Y, Z ] → C[[t]]
sending P(X, Y, Z) to P(c2t, c2, eλt c3) is an injection because c2t, c2, eλt c3 are algebraically independent.
The latter claim follows from the fact that the functions {tmeωt

| m ∈ Z≥0, ω ∈ C} are linearly independent.
Therefore, P = 0, i.e., C0 must be contained in either the {Y = 0} or {Z = 0} coordinate lines, establishing
this case.

Case 3: A has exactly one Jordan block Let λ be the unique eigenvalue of A. Subtracting a diagonal
matrix from A is equivalent to subtracting the Euler vector field X ∂

∂X
+ Y ∂

∂Y
+ Z ∂

∂Z
from the vector field s,

so we can assume λ = 0. Then, a solution to (4-1) is (X (t) Y (t) Z(t))T
=

(
c1+c2t+c3

1
2 t2 c2+c3t c3

)T

for p̃ = (c1, c2, c3). We will show that the second case of Proposition 4.4 happens, so we can assume
that c3 ̸= 0 or else C0 is contained in {Z = 0}.

We know that P
(
c1+c2t+c3

1
2 t2, c2+c3t, c3

)
=0. We change coordinates on t . Letting t 7→ t− c2

c3
yields

P
(

c1 +
1
2

c2
2

c3
+ c3

1
2

t2, c3t, c3

)
= 0.

Dividing out by a power of c3 and replacing c1 with another constant c′

1, we find

P
(

c′

1 +
1
2

t2, t, 1
)

= 0.

As t varies, the curve
(
c′

1 +
1
2 t2, t, 1

)
parameterizes the conic X Z −

1
2 Y 2

− c′

1 Z2 in P2, settling this
case. □

Proofs of Theorems 4.1 and 4.2. We will prove Theorem 4.2 which implies Theorem 4.1. Let f : P1
→ P2

be a general map of degree e. The log tangent sheaf TP2(−log C) is a vector bundle since it is a reflexive
sheaf on a surface. Pulling back TP2(−log C) to P1 yields a rank-2 vector bundle E of degree (3 − d)e.
We split our analysis into cases.

Case: d ≥ 5 or d = 4 and e ≥ 2. If 8 is not of maximal rank, then E ∼= O(a) ⊕ O(b) where a ≥ 0.
Since the total degree of E is at most −2, we get a − b ≥ 2 and we can apply Proposition 3.1 to find
a line subbundle of TP2(−log C) of nonnegative degree. This means TP2(−log C) has a section and we
conclude by Proposition 4.4.

Case: d = 4 and e = 1. If 8 is not of maximal rank, then h0(E) ≥ 2. This means E ∼= O(a) ⊕ O(b)

where a ≥ 1. In this case a − b ≥ 3, so we can apply Proposition 3.1 to find a line subbundle O(a) of
TP2(−log C). Applying Proposition 4.3, we are done.
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Case: d = 3 and e ≥ 2. In this case, deg(E) = 0 and a dimension count shows that 8 is not of maximal
rank whenever h0(E) ≥ 3. Hence, we can apply Proposition 3.1 to find a line subbundle of TP2(−log C)

of positive degree, so we again conclude using Proposition 4.3.

Case: d = 3 and e = 1. We can find a line ℓ meeting C in three distinct points. This means 8 is
automatically surjective, so it is of maximal rank.

Case: d = 2. In this case, deg(E)= e and 8 is not of maximal rank if and only if E ∼= O(a)⊕O(b) where
a ≥ e+2 and b ≤−2. Applying Proposition 3.1, we find a line subbundle of TP2(−log C) of degree at least⌈ e+2

e

⌉
= 2. However, there are no nontrivial maps O(2) → TP2 , showing 8 must have maximal rank. □

5. Hyperplane sections

We let X be a smooth degree d hypersurface in Pn . Using the notation from Section 2B, our objective is
to prove that 8 has maximal rank when k = n − 1 and e = 1. Unlike the plane curve case, we are unable
to obtain a complete classification statement like Theorem 4.2. However, we are able to prove that if d is
larger than n + 1, the hyperplane sections of X vary maximally in moduli. We prove Theorem 1.4 and
some generalizations, captured below in Theorems 5.8 and 5.9.

Our results all rely on a stability result from Guenancia [2016]. The following version comes from
Guenancia’s Theorem A by observing that the canonical bundle of a degree d hypersurface in Pn is ample
when d ≥ n + 2.

Theorem 5.1 [Guenancia 2016, Theorem A]. If X is a smooth hypersurface of degree d ≥ n + 2, then
TPn (−log X) is semistable.

Using Theorem 5.1, the basic strategy is to understand how large the degree d can be such that the restric-
tion of TPn (−log X) to the curve or k-plane can have a section. We use results from Section 3 to do this.

Theorem 5.2. If X in Pn is a smooth hypersurface of degree d , then the space of degree e rational curve
sections of X vary maximally in modulus when d > n(n−1)

2e + n + 1.

Proof. Consider the bundle TPn (−log X). By Theorem 5.1, this bundle is semistable. For d larger
than n + 1, we see that a section of this bundle would give a destabilizing subsheaf, so we know that
TPn (−log X) has no sections.

Let M = More(P
1, Pn) be the space of parameterized degree e rational curves in Pn . Given a choice

of F with X = V (F), there is a natural map 8 : M → H 0(OP1(ed)) sending a map f : P1
→ Pn to the

pullback f ∗F ∈ H 0(P1, OP1(de)). We know by Lemma 2.2 that the tangent space to the fiber of 8 at a
given map f : P1

→ Pn is simply H 0( f ∗TPn (−log X)). To show that 8 is generically finite, we need
only show that h0( f ∗TPn (−log X)) = 0.

By Proposition 3.1, we see that f ∗TPn (−log X) is a direct sum of line bundles
⊕

O(ai ) with consecutive
ai differing by at most 1. Thus, any such bundle on P1 that has a section will have degree larger than that
of the bundle O ⊕ O(−1)⊕ · · ·⊕ O(−n + 1). From this it follows that any semistable bundle E on Pn

such that f ∗E has a section for a general map f : P1
→ Pn will have degree at least −

n(n−1)
2 . Thus, if
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deg f ∗TPn (−log X) < −
n(n−1)

2 then h0( f ∗TPn (−log X)) = 0. Since deg f ∗TPn (−log X) = e(n + 1 − d),
the result follows. □

We now consider k-plane sections of smooth hypersurfaces. By Proposition 3.3, we need to understand
torsion free sheaves on Pk whose Harder–Narasimhan filtration has subquotients whose slopes do not
decrease too quickly, namely µ1 > µ2 > · · · > µa with µi −µi+1 ≤

1
k for all i . Understanding the possible

slopes that may appear in the Harder–Narasimhan filtration is an interesting combinatorial problem, which
we describe below.

Definition 5.3. Let a sequence (d1, r1), (d2, r2), . . . , (da, ra) in Z≥0 × Z>0 be k-admissible if d1 ≤ 0 and
0 ≤

di+1
ri+1

−
di
ri

≤
1
k for each i . Let Ak,n denote the set of k-admissible sequences with

∑
i ri = n (where a

is arbitrary).

Definition 5.4. Define Bk(n) to be max
{∑a

i=1 di | (d1, r1), . . . , (da, ra) in Ak,n
}
.

Lemma 5.5. If E is a semistable sheaf on Pn of rank n such that its restriction to a general k-plane has a
section, then deg E ≥ −Bk(n).

Proof. Let 3 be a general k-plane and 0 = E0 ⊂ E1 ⊂ · · · ⊂ Ea = E |3 be the Harder–Narasimhan
filtration of E |3. Let −di be the degree of Ei/Ei−1 and ri be the rank of Ei/Ei−1. Since E |3 has
a section, we see that d1 ≤ 0. Since E is semistable, by Proposition 3.3 it follows that the sequence
(−d1, r1), . . . , (−da, ra) will be k-admissible. The result follows. □

We can compute a bound for when k-plane sections of a degree d hypersurface in Pn will vary
maximally in moduli in terms of Bk(n).

Theorem 5.6. Let X be a smooth, degree d hypersurface in Pn with d > Bk(n) + n + 1. Then,

8 : Mor1(P
k, Pn) 99K PH 0(Pk, OPk (d)), ι 7→ [ι−1(X)],

is of maximal rank.

Proof. By Theorem 5.1, TPn (−log X) will be semistable. By Proposition 3.3, TPn (−log X)|3 will have
Harder–Narasimhan filtration as described in the statement of the theorem. Given a hypersurface X
together with a choice of defining equation f , we get a map φ : Mor1(P

k, Pn) → H 0(OPk (d)) sending a
k-plane to the pull-back of f by the k-plane. We wish to show that φ is generically finite.

To get a contradiction, suppose φ has only positive-dimensional fibers. By Lemma 2.2, the tangent
space to a fiber of φ at a general point 3 is H 0(TPn (−log X)|3), so we know that TPn (−log X)|3 has a
global section. Thus, by Theorem 5.1 and Lemma 5.5, the degree of TPn (−log X) will be at least −Bk(n).
It follows that

n + 1 − d ≥ −Bk(n).

This is impossible given the assumptions in the statement of the theorem. □

Then, Theorem 1.4 follows from the following result on Bk(n).

Proposition 5.7. If k ≥
2n
3 , then Bk(n) = 1.
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Proof. Let (d1, r1), . . . , (da, ra) be an admissible sequence of total degree Bk(n). Without loss of
generality, we may assume d1 = 0, di > 0 for i > 1. Then it follows that r2 ≥ k, since d2

r2
≤

1
k . Since

d3
r3

≤
2
k , we see that r3 ≥

k
2 , provided that there are at least three terms in the sequence. However, in this

case, r1 + r2 + r3 ≥ 1 + k +
k
2 = 1 +

3k
2 > n, which is impossible. Thus, a ≤ 2.

Next, we observe that d2 ≤ 1, since if d2 ≥ 2, then r2 ≥ d2k ≥ 2k > n, a contradiction. It follows
that the sum of the di is at most 1, and since we know that 1 is achievable with the admissible sequence
(0, n − k), (1, k), the result follows. □

We defer more detailed analysis of Bk(n) to the Appendix. From the results in the Appendix and
Theorem 5.6 we get the following results.

Theorem 5.8. If X ⊂ Pn is a smooth hypersurface of degree d with d > 4
( n2

k3/2 + k3/2
)
, then the map

8 : Mor1(P
k, Pn) 99K PH 0(Pk, OPk (d)), ι 7→ [ι−1(X)],

is of maximal rank.

Proof. This follows from Proposition A.1, where it is shown Bk(n) ≤ 3
( n2

k3/2 + k3/2
)
. To finish, one checks

that n2

k3/2 + k3/2
≥ 2n ≥ n + 2. This follows from the AM-GM equality and the fact n ≥ 2. □

In Theorem 5.8, we prioritized giving a clean statement and proof over giving an optimal constant.
Still, one can wonder what the optimal constant by computing Bk(n) for small k and all n. In this case,
Corollary A.5 gives the following result:

Theorem 5.9. If k ≤ 5, then there is a linear function ℓ(n) and an integer Ck such that |Bk(n)− n2

Ck
| ≤ ℓ(n).

Here, C2 = 3, C3 = 7, C4 = 11, C5 = 19. In particular, the map

8 : Mor1(P
k, Pn) 99K PH 0(Pk, OPk (d)), ι 7→ [ι−1(X)],

is of maximal rank if X ⊂ Pn is smooth and has degree d ≥ Ckn2
+ ℓ(n) + n + 2.

We expect Theorem 5.9 to hold for all values of k, but we can only check a finite number of cases with
a computer. Roughly up to k = 100 is what is reasonable with our methods.

Given Theorem 5.9, one can ask how fast Ck grows with k. We trivially know Ck = O(k2) by relaxing
the condition that the di are integers in the definition of an admissible sequence to compute Bk(n) (in
which case we let all the ri be equal to 1). We also get Ck = �(k3/2) from Proposition A.1. From
experimental evidence, we think that the actual answer is strictly between k3/2 and k2 but closer to k3/2.

Appendix: Bounds and computations for Bk(n)

We will bound Bk(n) for all k, n in Proposition A.1. We also compute Bk(n) for k small and arbitrary n,
and give some conjectures about Bk(n) in general.

To give an idea of how the function Bk(n) behaves, we note the results in the Appendix can show
B5(39) = 39, corresponding to the admissible sequence

(0, 1), (1, 5), (1, 3), (1, 2), (2, 3), (4, 5), (1, 1), (6, 5), (4, 3), (3, 2), (5, 3), (9, 5), (2, 1).
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There are a couple of features of this admissible sequence we believe hold in general that we will only
prove in special cases. First, this admissible sequence can be generated greedily, where we use greed to max-
imize the ratio d

r of the last piece of the sequence. Second, the admissible sequence is essentially periodic in
that the (1, 1), (6, 5), (4, 3), (3, 2), (5, 3), (9, 5) is obtained from (0, 1), (1, 5), (1, 3), (1, 2), (2, 3), (4, 5)

by replacing each (d, r) with (d + r, r). We give a finite criterion that can be applied to show both the
greedy property and the periodicity in Lemma A.4.

We expect there are many other interesting patterns that can be found. For example, the segment
(0, 1), (1, 5), (1, 3), (1, 2), (2, 3), (4, 5), (1, 1) of the admissible sequence above is preserved under revers-
ing the order and replacing each (d, r) with (r −d, r). This pattern continues to hold for larger k and sug-
gests that these optimal admissible sequences can also be generated greedily backwards as well as forwards.

Proposition A.1. We have Bk(n) ≤ 3
( n2

k3/2 + k3/2
)

Proof. Let (d1, r1), . . . , (da, ra) be an admissible sequence with
∑

i di = Bk(n). Let µi =
di
ri

. Let n( j)
be the sum of the ri such that µi ∈ [ j − 1, j).

Since the µi contributing to n( j) are all less than j , we observe that

Bk(n) ≤

∞∑
j=1

jn( j).

Thus, understanding the n( j) allows us to bound Bk(n). The sum of all of the n( j) is n. Let J be the last
nonzero n( j), so Bk(n) ≤

∑J
j=1 jn( j).

Let nmin
k be a positive number that is at most n( j) for any j < J . Then we obtain an upper bound

for Bk(n)

Bk(n) ≤

J∑
i=1

jn( j) ≤ nmin
k + 2nmin

k + · · · +

⌈
n

nmin
k

⌉
nmin

k

= nmin
k

⌈ n
nmin

k

⌉(
1 +

⌈ n
nmin

k

⌉)
2

≤ nmin
k

( n
nmin

k
+ 1

)( n
nmin

k
+ 2

)
2

.

Thus, it remains to give a bound for nmin
k . Fix j < J and let (di j +1, ri j +1), . . . , (di j +c( j), ri j +c( j)) be

the part of the admissible sequence with slopes
di j +1

ri j +1
, . . . ,

di j +c( j)

ri j +c( j)
in [ j − 1, j). By definition,

ri j +1 + · · · + ri j +c( j) = n( j).

First, we show c( j) ≥ k: Note that
di j +1

ri j +1
< ( j − 1) +

1
k . If j = 1, then this is true because

di j +1

ri j +1
≤ 0 by

definition. If j > 1, then this is true because
di j +1

ri j +1
≤

di j
ri j

+
1
k < ( j − 1) +

1
k .

Since
di j +1

ri j +1
< ( j − 1) +

1
k
,
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we then see that
di j +2

ri j +2
≤

di j +1

ri j +1
+

1
k

< ( j − 1) +
2
k

...
...

di j +k

ri j +k
≤

di j +k−1

ri j +k−1
+

1
k

< j,

so c( j) ≥ k.
Now, we want to bound ri j +1 + · · · + ri j +c( j) = n( j). In the multiset {ri j +1, . . . , ri j +c( j)}, we know

that there is at most element that is equal to 1, fewer than two elements that are equal to 2, fewer
than three elements that are equal to 3 and so on. Therefore, if m is the largest integer such that
1 + (1 + · · · + m − 1) = 1 +

m(m−1)
2 is at most k, then (m−1)2

2 < m(m1)
2 + 1 ≤ k, so m ≤

√
2k + 1. Thus,

n( j) = ri j +1 + · · · + ri j +c( j) ≥ 1 + (2 · 1 + 3 · 2 + · · · m · (m − 1))

= 1 + 2
((2

2

)
+

(3
2

)
+ · · · +

(m
2

))
= 1 +

(m + 1)m(m − 1)

3

≥

(√
2k + 2

)(√
2k + 1

)√
2k

3
>

2
√

2
3

k3/2.

Thus, choosing nmin
k to be 2

√
2

3 k3/2 suffices. Plugging into our earlier bound, we get an upper bound for
Bk(n) as

nmin
k

( n
nmin

k
+ 1

)( n
nmin

k
+ 2

)
2

=
n2

2nmin
k

+
3n
2

+ nmin
k =

n2

k3/2

9

4
√

2
+

3n
2

+
2
√

2
3

k3/2,

which is at most 2
( n2

k3/2 + n + k3/2
)
. Applying the AM-GM inequality yields

n2

k3/2 + k3/2
≥ 2n,

yielding the claimed bound. □

We now move on to computing exact values of Bk(n) for small k. Our strategy is a recursive algorithm
that requires some conditions to be met, and we suspect that these conditions are always met. In the course
of our proof, we will use the three quantities µmax(n), Bupper

k (n) and B lower
k (n). We define µmax(n) by

µmax(n) := max
{

ra

da

∣∣∣ (d1, r1), . . . , (da, ra) in An

}
.

Lemma A.2. We can compute µmax(n) inductively by µmax(1) = 0 and

µmax(n) = max
{⌊(

µmax(i) +
1
k

)
(n − i)

⌋
n − i

∣∣∣ 0 < i < n
}
.
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Proof. Let

µmax′

n = max
{⌊(

µmax(i) +
1
k

)
(n − i)

⌋
n − i

∣∣∣ 0 < i < n
}
.

We use induction. The base case n = 1 is vacuous, so assume n > 1. First, we show that µmax ′
n ≤

µmax
n . Given any 0 < i < n, ⌊(µmax ′

i +
1
k )(n−i)⌋

n−i is a slope achieved by taking an admissible sequence
(d1, r1), . . . , (da, ra) in Ai and appending

(⌊(
µmax ′

i +
1
k

)
(n − i)

⌋
, n − i

)
. So by definition µmax ′

n ≤ µmax
n .

Now we show µmax ′
n ≥ µmax

n . Let (d1, r1), . . . , (da, ra) be an admissible sequence in An achieving
da
ra

= µmax
n . If a = 1, then da = 0 so µmax

n = 0 while µmax ′
n is by definition nonnegative. Otherwise, let

i =r1+· · ·+ra−1, so da−1
ra−1

≤µmax
i =µmax ′

i by definition and the assumption hypothesis. Then, ra =n−i and

da

ra
≤ µmax ′

i +
1
k
,

so da ≤
⌊(

µmax ′

i +
1
k

)
(n−i)

⌋
. Then, by definition µmax ′

n ≥µmax
n . Therefore, we are done and µmax ′

n =µmax
n

for all n. □

We define Bupper
k (n) recursively by Bupper

k (1) = 0 and

Bupper
k (n) = max

{
Bupper

k (i) +

⌊(
µmax

i +
1
k

)
(n − i)

⌋ ∣∣∣ 0 < i < n
}
.

For B lower
k , we let B lower

k (1) = 0 and let i(n) be the smallest i that maximizes ⌊(µmax(i)+ 1
k )(n−i)⌋

n−i . Then
define B lower

k inductively by

B lower
k (n) = B lower

k (i(n)) +

⌊(
µmax(i(n)) +

1
k

)
(n − i(n))

⌋
.

We now show that Bk(n) is bounded by Bupper
k (n) and B lower

k (n).

Lemma A.3. We have B lower
k (n) ≤ Bk(n) ≤ Bupper

k (n).

Proof. First we show B lower
k (n) ≤ Bk(n) by induction. To do this, we show by induction that B lower

k (n) is
always achieved by an admissible sequence (d1, r1), . . . , (da, ra) with da

ra
= µmax(n) and d1 + · · ·+ da =

B lower
k (n). The base case n = 1 vacuous, so we assume n > 1. Let i be the minimal index maximizing⌊(

µmax
i +

1
k

)
(n − i)

⌋
n − i

.

By the induction assumption, there is an admissible sequence (d1, r1), . . . , (da−1, ra−1) achieving da−1
ra−1

=

µmax
i and d1 + · · · + da−1 = B lower

k (i). By appending
(⌊(

µmax
i +

1
k

)
(n − i)

⌋
, n − i

)
to the sequence we

get an admissible sequence (d1, r1), . . . , (da, ra) with da
ra

= µmax
n and d1 + · · · + da = B lower

k (n).
Finally, we show Bupper

k (n) ≥ Bk(n) by induction. The base case n = 1 is vacuous, so assume n > 1.
Let (d1, r1), . . . , (da, ra) be an admissible sequence in An achieving d1 +· · ·+da = Bk(n). If a = 1, then
Bk(n) = 0 and Bupper

k (n) is always nonnegative by definition. If a > 1, then let i = r1 + · · · + ra−1 so
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(d1, r1), . . . , (da−1, ra−1) is an admissible sequence in Ai . By the inductive hypothesis, d1 +· · ·+da−1 ≤

Bupper
k (i). We have ra = n − i and the maximum da can be is

⌊(
µmax(i) +

1
k

)
(n − i)

⌋
. Therefore,

d1 + · · · + da ≤ Bupper
k (i) +

⌊(
µmax(i) +

1
k

)
(n − i)

⌋
≤ Bupper

k (n),

finishing the proof. □

From experimental evidence, we suspect B lower
k (n) and Bupper

k (n) always coincide, which would give a
recursive algorithm for Bk(n). However, to give results for small values of k and all n, we want to have a
finite criterion that can be verified by a computer. We believe admissible sequences achieving Bk(n) will
always following a periodic structure in n with k fixed reflected in Lemma A.4 below.

Lemma A.4. Suppose µmax(i0) =
k−1

k for some i0. Then µmax(n) = µmax(n − i0) + 1 all n ≥ i0. If in
addition Bupper

k (i) = B lower
k (i) for each i ≤ 3i0, then B lower

k (n) = Bk(n) = Bupper
k (n) for all n.

Using Lemma A.4, one can show Bk(n + i0) = Bk(n) + n + Bk(i0). Iterating this shows

Bk(n + Ni0) = Bk(n) + nN + NBk(i0) +
N (N − 1)i0

2

for 1 < n ≤ i0 and N ≥ 0. In particular, Bk(n) = 2
( 1

i0
N 2

)
.

Proof. First note that if µmax(i) = m +
k−1

k for m an integer, then

µmax(i + 1) = max
j

{⌊(
µmax( j) +

1
k

)
(i + 1 − j)

⌋
i + 1 − j

∣∣∣ 0 < j ≤ i
}

(A-1)

=

⌊
m +

k − 1
k

+
1
k

⌋
= m + 1. (A-2)

In particular, there is a unique i0 for which µmax(i0) =
k−1

k and µmax(i0 + 1) = 1 = 1 + µmax(1).
We will now show µmax(n) = µmax(n − i0) + 1 for all n ≥ i0 using induction on n. For the case

n = i0 + 1, µmax(i0 + 1) = 1 from above.
Now suppose n > i0 + 1. We first note that

µmax
(

i0

⌊
n − 1

i0

⌋)
=

(⌊
n − 1

i0

⌋
− 1

)
+

k − 1
k

is k−1
k by induction.

Now, we claim that µmax(i) < µmax
(
i0

⌊ n−1
i0

⌋)
for all i < i0

⌊ n−1
i0

⌋
. Since µmax( j) is weakly increasing

in j , the point is to prove they are not equal. If µmax(i) was equal to µmax
(
i0

⌊ n−1
i0

⌋)
, then µmax(i + 1) =

µmax(i), which contradicts (A-1).

By Lemma A.2, µmax(n) will be determined by the i between 0 and n such that ⌊(µmax(i)+ 1
k )(n−i)⌋

n−i
is maximized. Let i(n) be this i . We claim i(n) ≥ i0

⌊n−1
i0

⌋
. To get a contradiction, suppose that

i(n) < i0
⌊n−1

i0

⌋
.
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Since we have shown above that µmax(i(n)) < µmax
(
i0

⌊ n−1
i0

⌋)
,

µmax(i(n)) +
1
k

< µmax
(

i0

⌊
n − 1

i0

⌋)
+

1
k

=

⌊
n − 1

i0

⌋
,

contradicting i(n) < i0
⌊ n−1

i0

⌋
.

Since i(n) ≥ i0
⌊ n

i0

⌋
,

µmax(n) =

⌊(
µmax(i(n)) +

1
k

)
(n − i(n))

⌋
n − i(n)

=

⌊(
µmax(i(n) − i0) + 1 +

1
k

)
(n − i(n))

⌋
n − i(n)

=

⌊(
µmax(i(n) − i0) +

1
k

)
((n − i0) − (i(n) − i0))

⌋
(n − i0) − (i(n) − i0)

+ 1

= max
j

{⌊(
µmax( j) +

1
k

)
(n − i0 − j)

⌋
n − i0 − j

∣∣∣ 0 < j ≤ n − i0

}
+ 1

= µmax(n − i0) + 1,

where the second and fourth line are by induction and the fifth line is by definition. This concludes our
induction for µmax. From our proof, we also see that

i(n) − i0 = i(n − i0). (A-3)

Next, we want to show the statement regarding Bk(n). It suffices to show that B lower
k (n) = Bupper

k (n) for
all n. We will show this by induction and can assume n > 3i0 and B lower

k (i) = Bupper
k (i) for all 0 < i < n.

As before, let i(n) be the minimum i that maximizes ⌊(µmax(i)+ 1
k )(n−i)⌋

n−i . By definition, we want to show

Bk(i(n))+

⌊(
µmax(i(n))+

1
k

)
(n−i(n))

⌋
= max

{
Bk(i)+

⌊(
µmax(i)+

1
k

)
(n−i)

⌋ ∣∣∣ 0 < i < n
}
. (A-4)

The inequality ≤ is clear as the left side is one of the terms on the right side. Let i ′ be an index maximizing
the right side. We want to show that i ′ > i0. If i ′

≤ i0, then Bupper
k (i ′) +

⌊(
µmax(i ′) +

1
k

)
(n − i ′)

⌋
is less

than n as µmax
i ′ +

1
k ≤ 1 and Bupper(i ′) ≤ µmax(i ′)i ′ < i ′. We also crudely bound B lower

k (n) from below.
To do so, we first bound B lower

k (3i0) by 3i0. From the statement of Lemma A.4 regarding µmax, we
know µmax( j) ≥ m for all i > m · i0. Then,

B lower
k (n) ≥ 0 · i0 + 1 · i0 + 2 · i0 + 3(n − 3i0).

Since n > 3i0,

3i0 + 3(n − 3i0) = 2(n − 3i0) + n > n,

yielding a contradiction.
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Since i ′ > i0, the right side of (A-4) is

max
{

Bk(i) +

⌊(
µmax(i) +

1
k

)
(n − i)

⌋ ∣∣ 0 < i < n
}

= max
{

Bk(i) +

⌊(
µmax(i) +

1
k

)
(n − i)

⌋ ∣∣ i0 < i < n
}

= max
{

Bk(i + i0) +

⌊(
µmax(i + i0) +

1
k

)
(n − i − i0)

⌋ ∣∣ 0 < i < n − i0

}
= max

{
Bk(i) + i + Bk(i0) +

⌊(
µmax(i) + 1 +

1
k

)
(n − i − i0)

⌋ ∣∣ 0 < i < n − i0

}
= max

{
Bk(i) +

⌊(
µmax(i) +

1
k

)
(n − i − i0)

⌋ ∣∣ 0 < i < n − i0

}
+ n − i0 + Bk(i0).

But

max
{

Bk(i) +

⌊(
µmax(i) +

1
k

)
(n − i − i0)

⌋ ∣∣ 0 < i < n − i0

}
= B(n − i0)

by induction. Looking at the left side of (A-4), we get

Bk(i(n)) +

⌊(
µmax(i(n)) +

1
k

)
(n − i(n))

⌋
= Bk(i(n) − i0) + (i(n) − i0) + Bk(i0) +

⌊(
µmax(i(n) − i0 + i0) +

1
k

)
(n − i(n))

⌋
= Bk(i(n) − i0) + (i(n) − i0) + Bk(i0) +

⌊(
µmax(i(n) − i0) + 1 +

1
k

)
(n − i(n))

⌋
= Bk(i(n) − i0) +

⌊(
µmax(i(n) − i0) +

1
k

)
(n − i0 − (i(n) − i0)

⌋
+ n − i0 + Bk(i0)

= Bk(n − i0) + Bk(i0) + n − i0,

where the last line is by (A-3). Therefore, both sides of (A-4) are equal, which is what we wanted. □

We can verify the conditions of Lemma A.4 using a Python program for small k. For example, the
answer for k = 2, 3, 4, 5 are given below.

Corollary A.5. We have the following closed-form expressions for Bk(n) for k = 2, 3, 4, 5. For k = 2 and
n ≥ 0,

B2(3n + 1) =
3n2

+n
2

, B2(3n + 2) =
3n2

+3n
2

, B2(3n + 3) =
3n2

+5n+2
2

.

For k = 3,

B3(7n + 1) =
7n2

+n
2

, B3(7n + 2) =
7n2

+3n
2

, B3(7n + 3) =
7n2

+5n
2

,

B3(7n + 4) =
7n2

+7n+2
2

, B3(7n + 5) =
7n2

+9n+2
2

, B3(7n + 6) =
7n2

+11n+4
2

,

B3(7n + 7) =
7n2

+13n+6
2

.
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For k = 4,

B4(11n + 1) =
11n2

+n
2

, B4(11n + 2) =
11n2

+3n
2

, B4(11n + 3) =
11n2

+5n
2

,

B4(11n + 4) =
11n2

+7n
2

, B4(11n + 5) =
11n2

+9n+2
2

, B4(11n + 6) =
11n2

+11n+2
2

,

B4(11n + 7) =
11n2

+13n+4
2

, B4(11n + 8) =
11n2

+15n+4
2

, B4(11n + 9) =
11n2

+17n+6
2

,

B4(11n + 10) =
11n2

+19n+8
2

, B4(11n + 11) =
11n2

+21n+10
2

.

For k = 5,

B5(19n + 1) =
19n2

+n
2

, B5(19n + 2) =
19n2

+3n
2

, B5(19n + 3) =
19n2

+5n
2

,

B5(19n + 4) =
19n2

+7n
2

, B5(19n + 5) =
19n2

+9n
2

, B5(19n + 6) =
19n2

+11n+2
2

,

B5(19n + 7) =
19n2

+13n+2
2

, B5(19n + 8) =
19n2

+15n+2
2

, B5(19n + 9) =
19n2

+17n+4
2

,

B5(19n + 10) =
19n2

+19n+4
2

, B5(19n + 11) =
19n2

+21n+6
2

, B5(19n + 12) =
19n2

+23n+6
2

,

B5(19n + 13) =
19n2

+25n+8
2

, B5(19n + 14) =
19n2

+27n+10
2

, B5(19n + 15) =
19n2

+29n+10
2

,

B5(19n + 16) =
19n2

+31n+12
2

, B5(19n + 17) =
19n2

+33n+14
2

, B5(19n + 18) =
19n2

+35n+16
2

,

B5(19n + 19) =
19n2

+37n+18
2

.
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Separating G2-invariants of several octonions
Artem Lopatin and Alexandr N. Zubkov

We describe separating G2-invariants of several copies of the algebra of octonions over an algebraically
closed field of characteristic two. We also obtain a minimal separating and a minimal generating set for
G2-invariants of several copies of the algebra of octonions in case of a field of odd characteristic.

1. Introduction

All vector spaces and algebras are considered over an algebraically closed field F of arbitrary characteristic
p = char F ≥ 0.

We continue the study of the invariants of the diagonal action of the exceptional simple group G2 on
the space of several octonions, over a field of positive characteristic. Over the field of complex numbers,
this was done in [20]. This result has been generalized to an arbitrary infinite field of odd characteristic
in [23], using a much finer technique of modules with good filtration, together with some results from the
theory of groups with triality.

Unfortunately, the technique of modules with good filtration no longer works over a field of characteristic
two and the complete description of the generating invariants in this case seems to be an extremely difficult
problem. Thus, it makes sense to describe separating invariants, since they satisfy the most important
property of ordinary invariants to separate closed orbits in the Zariski topology. The latter problem is
usually more accessible and it does not require extremely technical methods. We describe the separating
invariants over an algebraically closed field of characteristic two, using a detailed description of the
subalgebras of the octonion algebra (up to the action of G2) and the Hilbert–Mumford criterion (the “if”
part; see Section 3B).

The article is organized as follows. In Sections 2A and 2B we define the octonion algebra O, the
group G2 and the algebra of G2-invariants F[On

]
G2 of n copies of the algebra of octonions O. We

use notation from [23]. Generators and relations between generators for F[On
]
G2 were described by

Schwarz [20] over F = C. Zubkov and Shestakov described generators for F[On
]
G2 over an arbitrary field

with char F ̸= 2 (see Section 2D), but generators for the algebra F[On
]
G2 are still not known in case p = 2.

The invariants for the action of F4 on several copies of the split Albert algebra were studied in [10]. Our
results are formulated in Section 2E. In Section 3 some definitions and notation are given. In Section 4
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we describe a minimal generating and a minimal separating set for F[On
]
G2 in case p ̸= 2. In Section 5 a

minimal generating set is constructed for the subalgebra Tn ⊂ F[On
]
G2 of trace invariants in case p = 2.

In Section 6 subalgebras of O of dimension ≤ 3 are described modulo G2-action in case p = 2. This
result is applied in Section 7 to obtain our main result which is the description of a separating set for
F[On

]
G2 in case p = 2.

2. Invariants of octonions

2A. Octonions. The octonion algebra O = O(F), also known as the split Cayley algebra, is the vector
space of all matrices

a =

(
α u
v β

)
with α, β ∈ F and u, v ∈ F3,

endowed with the multiplication

aa′
=

(
αα′

+ u · v′ αu′
+ β ′u − v × v′

α′v + βv′
+ u × u′ ββ ′

+ v · u′

)
, where a′

=

(
α′ u′

v′ β ′

)
,

u · v = u1v1 + u2v2 + u3v3 and u × v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1). For short, define
c1 = (1, 0, 0), c2 = (0, 1, 0), c3 = (0, 0, 1), 0 = (0, 0, 0) from F3. Consider the following basis of O:

e1 =

(
1 0
0 0

)
, e2 =

(
0 0
0 1

)
, ui =

(
0 ci

0 0

)
, vi =

(
0 0
ci 0

)
for i = 1, 2, 3. The unity of O is denoted by 1O = e1 + e2. We identify octonions

α1O,

(
0 u
0 0

)
,

(
0 0
v 0

)
with α ∈ F, u, v ∈ F3, respectively. Similarly to O(F) we define the algebra of octonions O(A) over any
commutative associative F-algebra A.

The algebra O has a linear involution

ā =

(
β −u

−v α

)
, satisfying aa′ = a′ā,

a norm n(a) = aā = αβ − u · v, and a nondegenerate symmetric bilinear form

q(a, a′) = n(a + a′) − n(a) − n(a′) = αβ ′
+ α′β − u · v′

− u′
· v.

Define the linear function trace by tr(a) = a + ā = α + β. The subspace {a ∈ O | tr(a) = 0} of traceless
octonions is denoted by O0. Notice that

tr(aa′) = tr(a′a) and n(aa′) = n(a)n(a′). (2-1)

The following quadratic equation holds:

a2
− tr(a)a + n(a) = 0. (2-2)
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Since
n(a + a′) = n(a) + n(a′) − tr(aa′) + tr(a) tr(a′), (2-3)

the linearization of (2-2) implies

aa′
+ a′a − tr(a)a′

− tr(a′)a − tr(aa′) + tr(a) tr(a′) = 0. (2-4)

The algebra O is a simple alternative algebra, i.e., the following identities hold for a, b ∈ O:

a(ab) = (aa)b, (ba)a = b(aa). (2-5)

The linearization implies that

a(a′b) + a′(ab) = (aa′
+ a′a)b, (ba)a′

+ (ba′)a = b(aa′
+ a′a). (2-6)

The trace is associative, i.e., for all a, b, c ∈ O we have

tr((ab)c) = tr(a(bc)). (2-7)

Note that
2n(a) = −tr(a2) + tr2(a) for each a ∈ O. (2-8)

More details on O can be found in Sections 1 and 3 of [23].

2B. The group G2. The group G2 = G2(F) is known to be the group Aut(O) of all automorphisms of
the algebra O. The group G2 contains a Zariski closed subgroup SL3 = SL3(F). Namely, every g ∈ SL3

defines the following automorphism of O:

a →

(
α ug

vg−T β

)
,

where g−T stands for (g−1)T and u, v ∈ F3 are considered as row vectors. In what follows SL3 is regarded
as this subgroup of G2. For every u, v ∈ O define δ1(u), δ2(v) from Aut(O) as

δ1(u)(a′) =

(
α′

− u · v′ (α′
− β ′

− u · v′)u + u′

v′
− u′

× u β ′
+ u · v′

)
, δ2(v)(a′) =

(
α′

+ u′
· v u′

+ v′
× v

(−α′
+ β ′

− u′
· v)v + v′ β ′

− u′
· v

)
.

The group G2 is generated by SL3 and δ1(tui ), δ2(tvi ) for all t ∈ F and i = 1, 2, 3 (for example, see
Section 3 of [23]). By straightforward calculations we can see that

h̄ : O → O, defined by a →

(
β −v

−u α

)
, (2-9)

belongs to G2 (see also the proof of Lemma 1 of [23]).
The action of G2 on O satisfies the properties

ga = gā, tr(ga) = tr(a), n(ga) = n(a), q(ga, ga′) = q(a, a′).

Thus, O0 is a G2-submodule of O.
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Consider the diagonal action of G2 on the vector space On
= O ⊕ · · · ⊕ O (n copies), that is,

g(a1, . . . , an) = (ga1, . . . , gan) for all g ∈ G2 and a1, . . . , an ∈ O. The coordinate ring of the affine
variety On is the polynomial F-algebra Kn = F[On

] = F[zi j | 1 ≤ i ≤ n, 1 ≤ j ≤ 8], where zi j : On
→ F

is defined by (a1, . . . , an) → αi j for

ai =

(
αi1 (αi2, αi3, αi4)

(αi5, αi6, αi7) αi8

)
∈ O. (2-10)

The action of GL(O) on O induces the action on Kn by (g f )(a) = f (g−1a) for all g ∈ GL(O), f ∈ Kn ,
a ∈ On .

To explicitly describe the action of G2 on Kn consider the generic octonions

Zi =

(
zi1 (zi2, zi3, zi4)

(zi5, zi6, zi7) zi8

)
∈ O(Kn)

for 1 ≤ i ≤ n. Given g ∈ G2, denote by g • Zi the octonion(
gzi1 (gzi2, gzi3, gzi4)

(gzi5, gzi6, gzi7) gzi8

)
∈ O(Kn).

For any commutative algebra A, the action of G2 on O extends for O(A) by A-linearity. In particular,
G2 acts on O(Kn). It is easy to see that

g • Zi = g−1 Zi , (2-11)

where g−1 Zi stands for the action of g−1 on the octonion Zi ∈ O(Kn).
The algebra of G2-invariants of several octonions (octonion G2-invariants, for short) is

K G2
n = F[On

]
G2 = { f ∈ F[On

] | g f = f for all g ∈ G2}.

In other words,
K G2

n = { f ∈ F[On
] | f (ga) = f (a) for all g ∈ G2, a ∈ On

}.

Similarly we can define F[On
0 ]

G2 , since O0 ⊂ O is invariant with respect to G2-action. Namely, the
coordinate ring of the affine variety On

0 is K0,n = F[On
0 ] = F[zi j | 1 ≤ i ≤ n, 1 ≤ j ≤ 7]. The generic

traceless octonions are

X i =

(
zi1 (zi2, zi3, zi4)

(zi5, zi6, zi7) −zi1

)
.

The analogue of formula (2-11) also holds for the generic traceless octonions, namely, g • X i = g−1 X i

for all g ∈ G2 and 1 ≤ i ≤ n. The algebra of G2-invariants of several traceless octonions is K G2
0,n .

2C. Separating sets. Consider a finite-dimensional vector space V and a linear group G < GL(V). In
2002, Derksen and Kemper [2] introduced the notion of separating invariants as a weaker concept than
generating invariants. Given a subset S of F[V]

G and u, v of V , we write S(u) ̸= S(v) if there exists
an invariant f ∈ S with f (u) ̸= f (v). In this case we say that u, v are separated by S. If u, v ∈ V
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are separated by F[V]
G , then we say that they are separated. A subset S ⊂ F[V]

G of the invariant ring
is called separating if for any u, v from V that are separated we have that they are separated by S. It
is well-known that there always exists a finite separating set (see [2, Theorem 2.3.15]). We say that a
separating set is minimal if it is minimal w.r.t. inclusion. Obviously, any generating set is also separating.
Minimal separating sets and upper bounds on degrees of elements of a separating set for different actions
were constructed in [1; 3; 4; 5; 7; 11; 12; 14; 16; 21].

2D. Known results. Denote by algF{Z}n the nonassociative F-algebra generated by the generic octonions
Z1, . . . , Zn and 1O . Any product of the generic octonions is called a word of algF{Z}n . The unit
1O ∈ algF{Z}n is called the empty word. For every A, B ∈ algF{Z}n we have

tr(g A) = tr(A), n(g A) = n(A), g(AB) = (g A)(gB). (2-12)

Lemma 2.1. (a) The trace of any (nonassociative) product of X1, . . . , Xn and n(X i ) belongs to K G2
0,n .

(b) The trace of any (nonassociative) product of Z1, . . . , Zn and n(Zi ) belongs to K G2
n .

(c) The trace of any (nonassociative) product of Z1, . . . , Zn, Z1, . . . , Zn belongs to K G2
n .

Proof. Let w = w(Z1, . . . , Zn) be some (nonassociative) product of Z1, . . . , Zn . Given g ∈ G2, equalities
(2-11), (2-12) imply that

g tr(w) = tr(w(g • Z1, . . . , g • Zn)) = tr(w(g−1 Z1, . . . , g−1 Zn)) = tr(g−1w) = tr(w).

The case of n(Zi ) is considered similarly. Part (b) is proven. The proof of part (a) is the same. Part (c)
follows from part (b) and formulas

tr(ā) = tr(a), n(ā) = n(a), tr(āb) = tr(a) tr(b) − tr(ab)

for all a, b ∈ O. □

In case F = Q for every A1, . . . , A4 ∈ algF{Z}n denote by Q′(A1, A2, A3, A4) the complete skew
symmetrization of tr

(
((A1 A2)A3)A4

)
with respect to its arguments, i.e.,

Q′(A1, A2, A3, A4) =
1
24

∑
σ∈S4

(−1)σ tr
(
((Aσ(1) Aσ(2))Aσ(3))Aσ(4)

)
.

In [23] it was shown that all coefficients of Q′(X1, X2, X3, X4) belong to Z
[ 1

2

]
. Lemma 4.1 (see below)

implies that all coefficients of Q′(Z1, Z2, Z3, Z4) also belong to Z
[1

2

]
. Thus Q′(A1, A2, A3, A4) is

well-defined over an arbitrary field of odd characteristic.
In case char F ̸= 2,

• the algebra of invariants K G2
0,n is generated by tr(X i X j ), tr((X i X j )Xk), Q′(X i , X j , Xk, Xl);

• the algebra of invariants K G2
n is generated by tr(Zi ), tr(Zi Z j ), tr((Zi Z j )Zk), Q′(Zi , Z j , Zk, Zl)

for all 1 ≤ i, j, k, l ≤ n (see [23, Corollary 9 and Section 1]).
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2E. New results. Denote by S0,n the set

{n(X i ) | 1 ≤ i ≤ n} ∪
{
tr
((

· · · ((X i1 X i2)X i3) · · ·
)
X ik

)
| 1 ≤ i1 < · · · < ik ≤ n, k > 1

}
and by Sn the set

{n(Zi ) | 1 ≤ i ≤ n} ∪
{
tr
((

· · · ((Zi1 Zi2)Zi3) · · ·
)
Zik

)
| 1 ≤ i1 < · · · < ik ≤ n, k > 0

}
.

Given 1 ≤ k ≤ n, denote by S(k)
0,n and S(k)

n the subset of S0,n and Sn (respectively) of elements of degree
less or equal to k.

In case char F = 2 generators for the algebras K G2
0,n and K G2

n are not known. We introduce the algebra of
trace G2-invariants of octonions Tn ⊂ K G2

n , i.e., the algebra Tn is generated by n(Z1), . . . , n(Zn) and the
traces of all (nonassociative) products of Z1, . . . , Zn (see Lemma 2.1). In case char F ̸= 2 we obviously
have that Tn = K G2

n . We obtain the following results:

• S(4)
n is a minimal (w.r.t. inclusion) generating set for K G2

n in case char F ̸= 2 (see Proposition 4.3).

• S(4)
n is a minimal (w.r.t. inclusion) separating set for K G2

n in case char F ̸= 2 (see Proposition 4.5).

• Tn is minimally generated by Sn in case char F = 2 (see Theorem 5.2).

• S(8)
n is a separating set for K G2

n in case char F = 2 (see Theorem 7.11).

3. Auxiliaries

3A. Indecomposable invariants. Denote by F{X}n the free nonassociative and noncommutative unital
F-algebra with free generators x1, . . . , xn , which are called letters. A word w is a nonempty product
of letters. The number of letters in w is the degree deg(w) of w. The degree of w in xi is denoted by
degxi

(w) and the total degree of w is denoted by deg(w). The multidegree of a word w is mdeg(w) =

(degx1
(w), . . . , degxn

(w)). A word w with degxi
(w) ≤ 1 for all i is called multilinear. An element

f =
∑

i αiwi of F{X}n , where αi ∈ F and wi is a word, is N-homogeneous (Nn-homogeneous, respectively)
if there exists d (1 ∈ Nn , respectively) such that deg(wi ) = d (mdeg(wi ) = 1, respectively) for all i ,
where N stands for nonnegative integers. Define homomorphisms of F-algebras φ0 : F{X}n → algF{X}n

and φ : F{X}n → algF{Z}n by xi → X i and xi → Zi (respectively) for all i . In other words, for
f = f (x1, . . . , xn) ∈ F{X}n we have φ( f ) = f (Z1, . . . , Zn) ∈ algF{Z}n . We write xi1 ◦ · · · ◦ xik for some
nonassociative product of xi1, . . . , xik . Similar notation we use for nonassociative products in algF{Z}n .

For f ∈ Kn denote by deg( f ) its degree and by mdeg( f ) its multidegree, i.e., mdeg( f ) = (t1, . . . , tn),
where ti is the total degree of the polynomial f in zi j , 1 ≤ j ≤ 8, and deg( f ) = t1 +· · ·+ tn . For f ∈ K0,n

the degree and multidegree are defined as above. It is well-known that the algebras K G2
0,n and K G2

n have
N-gradings by degrees and Nn-gradings by multidegrees.

Consider an Nn-graded unital (possibly, nonassociative) algebra A with the component of degree zero
equal to F. Denote by A+ the subalgebra generated by homogeneous elements of positive degree. A set
{ai } ⊆ A is a minimal (by inclusion) Nn-homogeneous generating set (m.h.g.s.) of A as a unital algebra
if and only if the ai ’s are Nn-homogeneous and {ai } ∪ {1} is a basis of the vector space A = A/(A+)2.
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We say that an element a ∈ A is decomposable and we write a ≡ 0 if a ∈ (A+)2. In other words, a
decomposable element is equal to a polynomial in elements of strictly less degree. Therefore, the largest
degree of indecomposable elements of A is equal to the least upper bound for the degrees of elements of
a m.h.g.s. for A.

3B. One-parameter subgroups of G2. Consider a finite-dimensional vector space V and a linear (closed)
group G < GL(V). For a point v ∈ V and for a one-parameter subgroup θ : F×

→ G we have θ(t)v =∑
i∈I (v) t iv(i) for all t ∈ F×, where I (v) = {i ∈ Z | v(i)

̸= 0}. Following [13] we say that limt→0 θ(t)v
exists if and only if I (v) consists of nonnegative integers. Then limt→0 θ(t)v = 0 if and only if I (v)

consists of positive integers only, otherwise limt→0 θ(t)v = v(0). It is clear that if limt→0 θ(t)v exists,
then it is contained in Gv. Indeed, if f is a polynomial function on V , that vanishes on the G-orbit of v,
then h(t) = f (θ(t)v) is a polynomial in t , such that h(t) = 0 for any t ̸= 0. Since F is infinite, h(t) is
identically zero, that is, h(0) = f (v(0)) = 0.

Given λ ∈ Z3 with λ1 + λ2 + λ3 = 0, the standard one-parameter subgroup θλ of G2 is defined by

θλ(t)ei = ei , θλ(t)u j = tλ j u j , θλ(t)v j = t−λ j v j ,

for all i = 1, 2 and 1 ≤ j ≤ 3.

4. Minimal generating and separating sets

In this section we write tr(i1, . . . , ik) for tr(( · · · ((Zi1 Zi2)Zi3) · · · )Zik ), where 1 ≤ i1, . . . , ik ≤ n. The
following lemma can be proven by straightforward calculations.

Lemma 4.1. Assume that char F ̸= 2. Then

Q′(Z1, Z2, Z3, Z4)

= tr(1234) +
1
2

(
−tr(1) tr(2) tr(3) tr(4) − tr(1) tr(234) − tr(2) tr(134) − tr(3) tr(124)

− tr(4) tr(123) − tr(12) tr(34) + tr(13) tr(24) − tr(14) tr(23) tr(1) tr(2) tr(34)

+ tr(1) tr(4) tr(23) + tr(2) tr(3) tr(14) + tr(3) tr(4) tr(12)
)
.

Recall that the definition of Tn was given in Section 2E.

Lemma 4.2. Let w ∈ F{X}n be a word.

1. If w is not multilinear and deg(w) > 2, then tr(w(Z1, . . . , Zn)) ≡ 0 in Tn .

2. If w is multilinear and w is a product of letters xi1, . . . , xik for 1 ≤ i1 < · · · < ik ≤ n, then

tr(w(Z1, . . . , Zn)) ≡ ±tr(i1, . . . , ik) in Tn.

3. For all 1 ≤ i1 < · · · < ik ≤ n with k ≥ 3 and every permutation σ ∈ Sk we have

tr(iσ(1), . . . , iσ(k)) ≡ (−1)σ tr(i1, . . . , ik) in Tn.
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Proof. Combining (2-4) and (2-6) we obtain that

a(a′b) + a′(ab) = (tr(a)a′
+ tr(a′)a + tr(aa′) − tr(a) tr(a′))b

for all a, a′, b ∈ O. Since F is infinite, the same equality holds for the generic octonions. We multiply it
from the left and from the right by the generic octonions and then apply the trace. Since the trace is a
linear function, we obtain that

tr
(
C1 ◦ · · · ◦ Cr ◦ (A(A′B)) ◦ Cr+1 ◦ · · · ◦ Cs

)
≡ −tr

(
C1 ◦ · · · ◦ Cr ◦ (A′(AB)) ◦ Cr+1 ◦ · · · ◦ Cs

)
(4-1)

for all products of the generic octonions A, A′, B, C1, . . . , Cs with 0 ≤ r ≤ s and s ≥ 0. Similarly, we
obtain that

tr
(
C1 ◦ · · · ◦ Cr ◦ ((B A)A′) ◦ Cr+1 ◦ · · · ◦ Cs

)
≡ −tr

(
C1 ◦ · · · ◦ Cr ◦ ((B A′)A) ◦ Cr+1 ◦ · · · ◦ Cs

)
. (4-2)

In the same manner as above, (2-2) and (2-4) imply that

tr(C1 ◦ · · · ◦ Cr ◦ (A2) ◦ Cr+1 ◦ · · · ◦ Cs) ≡ 0, (4-3)

tr(C1 ◦ · · · ◦ Cr ◦ (AA′) ◦ Cr+1 ◦ · · · ◦ Cs) ≡ −tr(C1 ◦ · · · ◦ Cr ◦ (A′ A) ◦ Cr+1 ◦ · · · ◦ Cs), (4-4)

where in both cases 0 ≤ r ≤ s and s > 0. We claim that

If W = Zi1 ◦ · · · ◦ Zik is a product of generic octonions where 1 ≤ i1, . . . , ik ≤ n,
then tr(W ) ≡ ±tr(iσ(1), . . . , iσ(k)) for some σ ∈ Sk . (4-5)

Assume that claim (4-5) does not hold. Then there exists τ ∈ Sk and the maximal 2 ≤ r < k such that
some product W ′

= Ziτ(1)
◦ · · · ◦ Ziτ(k)

satisfies tr(W ) ≡ ±tr(W ′) and

W ′
= C1 ◦ · · · ◦ (U (V1V2)) ◦ · · · ◦ Cs or W ′

= C1 ◦ · · · ◦ (V U ) ◦ · · · ◦ Cs,

where

• U =
(
· · · ((Z j1 Z j2)Z j3) · · ·

)
Z jr for some 1 ≤ j1, . . . , jr ≤ n,

• V, V1, V2 are some products of generic octonions,

• C1, . . . , Cs are generic octonions with s ≥ 0.

By (2-1) and (4-4), we can assume that W ′
= C1 ◦ · · · ◦ (U (V1V2)) ◦ · · · ◦ Cs . Consequently, applying

equivalence (4-1) and equivalence (2-1) or (4-4), we obtain that

tr
(
C1◦· · ·◦(U (V1V2))◦· · ·◦Cs

)
≡−tr

(
C1◦· · ·◦(V1(U V2))◦· · ·◦Cs

)
≡±tr

(
C1◦· · ·◦((U V2)V1)◦· · ·◦Cs

)
.

If V2 is a product of more than one generic octonions, then V2 = V ′

2V ′′

2 for some products V ′

2, V ′′

2 of
generic octonions and we repeat the reasoning for C1 ◦ · · · ◦ (U (V ′

2V ′′

2 )) ◦ · · · ◦ Cs , and so on. Finally, we
can assume that V2 = Z j for some j ; a contradiction to the maximality of r .

Equivalences (4-2) and (4-4) imply that part 3 is valid for 1 ≤ i1, . . . , ik ≤ n, where k ≥ 3. This fact
together with claim (4-5) imply part 2. Similarly, this fact together with claim (4-5) and formula (4-3)
imply part 1. □
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Proposition 4.3. In case char F ̸= 2 the algebra of invariants K G2
n is minimally generated by S(4)

n .

Proof. The description of generators for K G2
n from [23] (see Section 2D for the details) together with

Lemmas 4.1, 4.2 and formula (2-8) imply that the set S(4)
n generates the algebra K G2

n . By Corollary 1 of
[23] and formula (2-8), the invariants

tr(i), n(Zi ), tr(12), tr(13), tr(23), tr(123),

where 1 ≤ i ≤ 3, are algebraically independent over F. Thus the required statement is proven for n ≤ 3.
Assume n ≥ 4. Thus S(4)

n \{ f } is not a generating set for any f ∈ S(4)
n with deg( f ) ̸= 4.

Assume that S(4)
n \{tr(1234)} is a generating set. Then tr(1234) is a linear combination of tr(12) tr(34),

tr(13) tr(24), tr(14) tr(23) and products containing tr(i) for some 1 ≤ i ≤ 4. Considering substitutions

Z1 → v1, Z2 → v2, Z3 → v3, Z4 → e1 − e2

and using equalities tr(((v1v2)v3)(e1 − e2)) = −1 and tr(vi (e1 − e2)) = 0 for 1 ≤ i ≤ 3, we obtain a
contradiction. The proposition is proven. □

Remark 4.4. 1. By (2-8), in the formulation of Proposition 4.3 we can replace n(Zi ) by tr(Z2
i ) for all

1 ≤ i ≤ n.

2. It easily follows from the proof of Proposition 4.3 (see also Section 1 of [23]) that K G2
0,n is minimally

generated by S(4)
0,n when char F ̸= 2.

Proposition 4.5. Assume char F ̸= 2. Then S(4)
0,n and S(4)

n are minimal separating sets for K G2
0,n and K G2

n

(respectively) for all n > 0.

Proof. By Proposition 4.3 and Remark 4.4, the sets S(4)
0,n and S(4)

n are separating for K G2
0,n and K G2

n

(respectively). For a = 0, b = u1 +v1 we have tr(a) = n(a) = tr(b) = 0, but n(b) = −1. For a = 0, b = e1

we have tr(a) = n(a) = n(b) = 0, but tr(b) = 1. Hence, S1 is a minimal separating set for K G2
1 . Claims 1,

2, 3 (see below) imply that S(4)
0,n is a minimal separating set for K G2

0,n . Therefore, S(4)
n is also a minimal

separating set for K G2
n .

Claim 1. Let n = 2. Then S0,2\{tr(X1 X2)} is not separating K G2
0,2.

To prove this claim consider a = (0, 0) and b = (u1, v1) from O2
0 . Then tr(a1a2) ̸= tr(b1b2).

Claim 2. Let n = 3. Then S0,3\{tr((X1 X2)X3)} is not separating for K G2
0,3.

To prove this claim we consider a = (0, 0, 0) and b = (v1, v2, v3) from O3
0 . Then tr(ai a j )= tr(bi b j )= 0

for all 1 ≤ i < j ≤ 3, but tr(a1a2a3) ̸= tr(b1b2b3).

Claim 3. Let n = 4. Then S0,4\
{
tr
(
((X1 X2)X3)X4

)}
is not separating for K G2

0,4.
To prove this claim we consider a = (u1, v1, c, u2) and b = (u1, v1, c, −v2) from O4

0 , where c =

e1 +u2 −v2 −e2. Then tr(ai a4) = tr(bi b4) for 1 ≤ i ≤ 3 and tr((ai a j )a4) = tr((bi b j )b4) for 1 ≤ i < j ≤ 3,
but tr

(
((a1a2)a3)a4

)
= 0 and tr

(
((b1b2)b3)b4

)
= −1. □
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5. Trace invariants

The group GL2 = GL2(F) acts on Mn
2 = M2(F)⊕n diagonally by conjugation. The coordinate ring

F[Mn
2 ] = F[zi1, zi2, zi5, zi8 | 1 ≤ i ≤ n] is also a GL2-module, where the generic matrices are

Ẑi =

(
zi1 zi2

zi5 zi8

)
.

We consider F[Mn
2 ] as a subalgebra of Kn . In [6] it was shown that

{det(Ẑi ) | 1 ≤ i ≤ n} ∪ {tr(Ẑi1 · · · Ẑik ) | 1 ≤ i1 < · · · < ik ≤ n, k > 0}, (5-1)

is a minimal generating set for F[Mn
2 ]

GL2 , where k ≤ 3 in case char F ̸= 2. In particular, all elements from
set (5-1) are indecomposable. A minimal separating set for F[Mn

2 ]
GL2 was obtained in [11].

Define a surjective homomorphism of F-algebras 9 : Kn → F[Mn
2 ] as follows: zi3 → 0, zi4 → 0,

zi6 → 0, zi7 → 0 for all i . We can naturally extend 9 to the linear map 9̂ : O(Kn) → O(F[Mn
2 ]) by

9̂

(
f1 ( f2, f3, f4)

( f5, f6, f7) f8

)
=

(
9( f1) (9( f2), 9( f3), 9( f4))

(9( f5), 9( f6), 9( f7)) 9( f8)

)
for f1, . . . , f8 ∈ Kn .

For an associative commutative F-algebra A define a map F : M2(A) → O(A) by(
a1 a2

a3 a4

)
→

(
a1 (a2, 0, 0)

(a3, 0, 0) a4

)
for a1, . . . , a4 ∈ A. It is easy to see that F is an injective homomorphism of algebras preserving the
trace, since (a, 0, 0) × (b, 0, 0) = 0 for all a, b ∈ A. In what follows, we consider A = Kn . Since the
homomorphism 9̂ commutes with the trace and the norm, we obtain the following lemma.

Lemma 5.1. For all 1 ≤ i, i1, . . . , ik ≤ n we have

(a) 9̂
(
· · · ((Zi1 Zi2)Zi3) · · ·

)
Zik ) = F(Ẑi1 · · · Ẑik );

(b) 9
(
tr
((

· · · ((Zi1 Zi2)Zi3) · · ·
)
Zik

))
= tr(Ẑi1 · · · Ẑik );

(c) 9(n(Zi )) = det(Ẑi ).

Lemmas 2.1, 5.1 and the description of generators of F[Mn
2 ]

GL2 imply that

F[Mn
2 ]

GL2 ⊂ 9(K G2
n ), (5-2)

where we have equality in case char F ̸= 2.

Theorem 5.2. In case char F = 2 the algebra of trace G2-invariants Tn is minimally generated by Sn .

Proof. By Lemma 4.2 and formula (2-8), the algebra Tn is generated by Sn . To show that Sn is a minimal
generating set, it is enough to prove that every element f ∈ Sn is indecomposable in Tn . Assume the
contrary. If f = tr

((
· · · ((Zi1 Zi2)Zi3) · · ·

)
Zik

)
from Sn were decomposable in Tn , then by parts (b), (c)

of Lemma 5.1, 9( f ) = tr(Ẑi1 · · · Ẑik ) would be decomposable in F[Mn
2 ]

GL2 ; a contradiction. Similarly,
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if f = n(Zi ) were decomposable in Tn , then 9( f ) = det(Ẑi ) would be decomposable in F[Mn
2 ]

GL2 ; a
contradiction. □

6. Subalgebras of O of low dimension

The group G2 acts naturally on the set of subalgebras of O. For a subalgebra A of O we denote by [A]

the G2-orbit of A and we say that [A] is the equivalence class of A. Obviously, all algebras in [A] are
isomorphic to A. Denote by �(O) the set of G2-orbits (i.e., equivalence classes) in the set of subalgebras
of O. Since all algebras from a given equivalence class A∈ �(O) have the same dimension, we call it the
dimension of A. A set of (linearly independent) octonions is said to be a basis of A, provided they form a
basis of an algebra from A. An equivalence class A ∈ �(O) is called closed if there exists a subalgebra
A of O with [A] = A and there is an F-basis a1, . . . , an of A such that the G2-orbit of (a1, . . . , an) is
closed in On . More details on the definition of a closed equivalence class can be found in Remark 7.3
(see below). Denote by

M =

(
∗ (∗, 0, 0)

(∗, 0, 0) ∗

)
and S =

(
∗ (∗, ∗, 0)

(∗, 0, ∗) ∗

)
,

the subalgebra of quaternions and sextonions of O, respectively, where the term sextonions was introduced
in [15]. Note that F : M2(F) → M is an isomorphism of F-algebras (see Section 5 for the details).

The main result of this section is the following statement.

Proposition 6.1. Assume char F = 2 and an equivalence class A ∈ �(O) has dimension d ≤ 3. Then one
of the following sets is a basis for A:

d = 1: {1O}, {u1}, {e1};

d = 2: {1O, u1}, {u1, v2}, {e1, u1}, {e1, v1}, {e1, e2};

d = 3: {1O, u1, v2}, {e1, e2, u1}, {e1, u1, v2}, {u1, v2, v3}.

We do not require for a subalgebra of O to be unital. The proof of Proposition 6.1 will be given in a
series of propositions and lemmas, which are interesting on their own.

Proposition 6.2 [17, Proposition 3.3]. For each a ∈ O there exists g ∈ G2 such that ga is a canonical
octonion of one of the following types:

(D)
(

α1
0

0
α8

)
,

(K1)
(

α1
0

(1,0,0)
α1

)
,

for some α1, α8 ∈ F. These canonical octonions are unique modulo permutation α1 ↔ α8 for type (D).

Proposition 6.3 [17, Theorem 4.4]. Assume char F = 2. For each (a, b) ∈ O2
0 there exists g ∈ G2 such

that g(a, b) is a pair of one of the following types:

(EE) (α11O, β11O),

(EK1)
(
α11O,

(
β1
0

(1,0,0)
β1

))
,
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(K1E)
((

α1
0

(1,0,0)
α1

)
, β11O

)
,

(K1L1)
((

α1
0

(1,0,0)
α1

)
,
(

β1
0

(β2,0,0)
β1

))
with β2 ̸= 0,

(K1L⊤

1 )
((

α1
0

(1,0,0)
α1

)
,
(

β1
(β5,0,0)

0
β1

))
with β5 ̸= 0,

(K1M1)
((

α1
0

(1,0,0)
α1

)
,
(

β1
0

(0,1,0)
β1

))
,

(K1M⊤

1 )
((

α1
0

(1,0,0)
α1

)
,
(

β1
(0,1,0)

0
β1

))
,

where α1, β1, β2, β5 ∈ F.

Remark 6.4 [17, Lemma 3.2]. Assume a =
(

α
v

u
β

)
∈ O. Then:

(a) If u ̸= 0, then there exists g ∈ SL3 such that ga =
(

α
v′

(1,0,0)
β

)
, where v′

= (∗, 0, 0) or v′
= (0, 1, 0).

(b) If v ̸= 0, then there exists g ∈ SL3 such that ga =
(

α
(1,0,0)

u′

β

)
, where u′

= (∗, 0, 0) or u′
= (0, 1, 0).

(c) There exist g, g′, g′′
∈ SL3 such that

g(u1, v1, u2, v3) = (u1, v1, u3, −v2),

g′(u2, v2, u1, v3) = (u2, v2, u3, −v1),

g′′(u3, v3, u1, v2) = (u3, v3, u2, −v1).

(d) If u = (γ1, γ2, γ3) with γ2 ̸= 0 or γ3 ̸= 0 and v = (δ, 0, 0), then there exists g ∈ SL3 such that
ga =

(
α

(δ,0,0)
(γ1,1,0)

β

)
and g(u1, v1) = (u1, v1).

(e) If v = (γ1, γ2, γ3) with γ2 ̸= 0 or γ3 ̸= 0 and u = (δ, 0, 0), then there exists g ∈ SL3 such that
ga =

(
α

(γ1,1,0)
(δ,0,0)

β

)
and g(u1, v1) = (u1, v1).

The following lemma is an immediate consequence of the Cayley–Dickson doubling process (see also
Section 2.1 of [22]). Its analogue over a finite field is part (ii) of Lemma 3.3 from [9].

Lemma 6.5. Every automorphism of the F-algebra M can be extended to an automorphism of the
algebra O.

Lemma 6.6. If A⊂ O is a nonzero subalgebra, then there exists g ∈ G2 such that 1O ∈ gA or u1 ∈ gA or
e1 ∈ gA. In particular, if char F = 2 and A ̸⊂ O0 is a nonzero subalgebra of O, then there exists g ∈ G2

such that e1 ∈ gA.

Proof. This follows from Proposition 6.2, the known corresponding statement for the algebra M ≃ M2(F)

and Lemma 6.5. □

6A. The case of traceless subalgebra. In this section we assume that char F = 2 and A ⊂ O is a
subalgebra of traceless octonions, that is, A ⊂ O0.

Remark 6.7. If a =
(

α
v

u
β

)
∈ A is triangular (i.e., u = 0 or v = 0), and α ̸= 0 or β ̸= 0, then 1O ∈ A.

Proof. Since α = β is nonzero, considering a2
= α21O completes the proof. □

Lemma 6.8. If dimA ≥ 2, then there exists g ∈ G2 such that one of the following possibilities holds:
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(a) {1O, u1} ⊂ gA;

(b) {u1, v2} ⊂ gA and 1O ̸∈ gA.

Proof. By Lemma 6.6, we assume that one of the following alternatives holds:

1. 1O ∈ A. There exists a ∈ A such that {1O, a} are linearly independent. Since G21O = 1O , by
Proposition 6.2, we can assume that a = αe1 + βe2 or a = α1O + u1 for some α, β ∈ F. In the first case
we have α = β and {1O, a} are linearly dependent; a contradiction. In the second case we obtain that
u1 = a − α1O lies in A.

2. u1 ∈ A and 1O ̸∈ A. There exists b ∈ A such that {u1, b} are linearly independent. Consider g ∈ G2

such that g(u1, b) = (a′, b′) is one of the pairs from Proposition 6.3. Since tr(a′) = n(a′) = 0 and a′
̸= 0,

one easily sees that a′
= u1. By Remark 6.7 and the fact that 1O ̸∈A one sees that both diagonal entries of

b′ are equal to zero. Using the fact that {u1, b′
} are linearly independent, we obtain that the pair (u1, b′)

has one of the following types:

(K1L⊤

1 ) b′
= βv1, where β ∈ F \ {0}. Since u1b′

= βe1 and tr(e1) ̸= 0, we obtain a contradiction.

(K1M1) b′
= u2. Since u1b′

= v3, acting by a suitable element of SL3 and using part (c) of Remark 6.4,
we obtain case (b).

(K1M⊤

1 ) b′
= v2, i.e., we have case (b). □

Lemma 6.9. If dimA ≥ 3, then there exists g ∈ G2 such that one of the following possibilities holds:

(a) {1O, u1, v2} ⊂ gA;

(b) {u1, v2, v3} ⊂ gA and 1O ̸∈ gA.

Proof. By Lemma 6.8, one can assume that one of the following possibilities holds:

1. {1O, u1} ⊂A. There exists b ∈A such that {1O, u1, b} are linearly independent. Consider g ∈ G2 such
that g(u1, b) = (a′, b′) is one of the pairs from Proposition 6.3. Since tr(a′) = n(a′) = 0 and a′

̸= 0, one
easily sees that a′

= u1. Let β ′ be the diagonal element of b′. Since G21O = 1O , taking b′′
= b′

− β ′1O

instead of b′, we can assume that {1O, u1, b′′
} ⊂ A are linearly independent and (u1, b′′) has one of types

from Proposition 6.3, where the diagonal elements of b′′ are zeros. Consider the possible types for (u1, b′′):

(K1L⊤

1 ) {1O, u1, βv1} ⊂ A for some nonzero β ∈ F. Since u1v1 = e1, we obtain a contradiction.

(K1M1) {1O, u1, u2} ⊂ A. Since u1u2 = v3, acting by a suitable element of SL3 from part (c) of
Remark 6.4 we obtain case (a).

(K1M⊤

1 ) {1O, u1, v2} ⊂ A, i.e., we have case (a).

2. {u1, v2} ⊂ A and 1O ̸∈ A. Consider b ∈ A such that {u1, v2, b} are linearly independent. One can
assume that b =

(
β1

(β5,0,β7)
(0,β3,β4)

β1

)
for some βi ∈ F. Since

u1b =

(
β5 (β1, 0, 0)

(0, −β4, β3) 0

)
and v2b =

(
0 (−β7, 0, β5)

(0, β1, 0) β3

)
,
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we have β3 = β5 = 0. The equality b2
= (β2

1 +β4β7)1O implies that {u1, v2, b} ⊂ A, where the element
b = β11O + β4u3 + β7v3 is nonzero and β2

1 = β4β7.
Let β1 =0. Then u3 lies in A or case (b) holds. If u3 ∈A, then {u1, v2, u3}⊂A; thus, {v1, u2, v3}⊂ h̄ A

and part (c) of Remark 6.4 implies that case (b) holds.
Let β1 ̸= 0. Then β4, β7 ̸= 0 and for g = δ1(0, 0, β1/β7) from G2 we have

g(u1, v2, b) =

(
u1 +

β1

β7
v2, v2, β7u3

)
.

Therefore, {u1, v2, u3} ⊂ gA and case (b) holds (see above). □

6B. The case of nontraceless subalgebra. In this section we assume that char F = 2 and A ̸⊂ O0 is a
subalgebra of O.

Lemma 6.10. If dimA ≥ 2, then there exists g ∈ G2 such that one of the following possibilities holds:

(a) {e1, u1} ⊂ gA;

(b) {e1, v1} ⊂ gA;

(c) {e1, e2} ⊂ gA.

Proof. By Lemma 6.6 we can assume that e1 ∈ A. There exists b ∈ A such that {e1, b} are linearly
independent. One can also assume that b =

( 0
v

u
β

)
for some u, v ∈ F3 and β ∈ F.

Assume u ̸= 0. Since e1b =
( 0

0
u
0

)
, by part (a) of Remark 6.4 there exists g ∈ SL3 such that g(e1, e1b) =

(e1, u1), i.e., the case (a) holds.
Assume v ̸= 0. Since b e1 =

( 0
v

0
0

)
, by part (b) of Remark 6.4 there exists g ∈ SL3 such that g(e1, b e1)=

(e1, v1), i.e., the case (b) holds.
In case u = v = 0 we have β ̸= 0, i.e., the case (c) holds. □

Lemma 6.11. If dimA ≥ 3, then there exists g ∈ G2 such that one of the following possibilities holds:

(a) {e1, e2, u1} ⊂ gA;

(b) {e1, u1, v2} ⊂ gA.

Before the proof of this lemma we formulate the following remark.

Remark 6.12. (a) {e1, e2, u1} ⊂ A if and only if {e1, e2, v1} ⊂ h̄ A.

(b) {e1, u1, v2} ⊂ A if and only if {e1, u2, v1} ⊂ gA for some g ∈ G2 (see part (c) of Remark 6.4).

Proof of Lemma 6.11. By Lemma 6.10, we assume that one of the following possibilities holds:

1. {e1, u1} ⊂ A. There exists b ∈ A such that {e1, u1, b} are linearly independent. We can assume that
b =

( 0
v

u
β

)
for some u = (0, ∗, ∗) ∈ F3, v = (γ1, γ2, γ3) ∈ F3 and β ∈ F.

Assume u ̸= 0. Since e1b =
( 0

0
u
0

)
, by part (d) of Remark 6.4 there exists g ∈ SL3 such that

g(e1, u1, e1b) = (e1, u1, u2). By part (c) of Remark 6.4 there exists g′
∈ SL3 such that g′(e1, u1, e1b) =

(e1, u1, u3). The equality u1u3 = −v2 implies that the case (b) holds.
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Assume u = 0. Note that b e1 =
( 0

v
0
0

)
lies in A.

Let γ1 ̸= 0. The equality b u1 = γ1e2 implies that the case (a) holds.
Otherwise, γ1 = 0. In case γ2 ̸= 0 or γ3 ̸= 0, by part (e) of Remark 6.4 there exists g ∈ SL3 such that

g(e1, u1, b e1) = (e1, u1, v2), that is, the case (b) holds. If γ2 = γ3 = 0, then β ̸= 0 and e2 ∈ A, that is,
the case (a) holds.

2. The case {e1, v1} ⊂ A is similar to case 1.

3. {e1, e2} ⊂A. There exists b =
(

α
v

u
β

)
in A such that {e1, e2, b} are linearly independent. We can assume

that α = β = 0.
Assume u ̸= 0. Since e1b =

( 0
0

u
0

)
, by part (a) of Remark 6.4 there exists g ∈ SL3 such that

g(e1, e2, e1b) = (e1, e2, u1), equivalently, the case (a) holds.
Otherwise, v ̸= 0. Since b =

( 0
v

0
0

)
by part (b) of Remark 6.4 there exists g ∈ SL3 such that g(e1, e2, b)=

(e1, e2, v1). By part (a) of Remark 6.12 we obtain that case (a) holds. □

6C. Proof of Proposition 6.1. Assume A = [A] for some subalgebra A of O. Lemmas 6.6, 6.8, 6.9,
6.10, 6.11 imply that there exist g ∈ G2 such that gA contains one of the sets from the formulation of
Proposition 6.1. Since the F-span of each of these sets is an algebra, the proof is completed.

7. Separating invariants in case char F = 2

In this section we assume that char F = 2. We introduce some notation for a ∈ On:

• the rank rk(a) is the dimension of the subspace of O spanned by a1, . . . , an;

• alg(a) is the F-algebra (in general, nonunital) generated by a1, . . . , an .

Obviously, rk(ga) = rk(a) for every g ∈ G2. The following remark is well-known (for example, see
Corollary 2.3.6 of [2]).

Remark 7.1. Assume a ∈ On . Then there exists a unique closed G2-orbit O = Oa in the closure of G2a,
and Oa is the only closed orbit in the fiber

{c ∈ On
| f (a) = f (c) for all f ∈ K G2

n }.

In particular, f (a) = f (c) for every f ∈ K G2
n and c ∈ Oa .

Observe that the group GLn acts naturally on On on the right as follows: for any A = (αi j ) ∈ GLn and
a ∈ On we set

(a A)i =

∑
1≤k≤n

αki ak for 1 ≤ i ≤ n.

This action commutes with the left G2-action.

Lemma 7.2. Given a, b ∈ On , define a′
= a A and b′

= bA for some A ∈ GLn . Then:

(a) G2a = G2b if and only if G2a′
= G2b′.
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(b) Given some d ≥ 2, we have that a and b are not separated by S(d)
n if and only if a′ and b′ are not

separated by S(d)
n .

(c) G2a is closed if and only if G2a′ is closed.

Proof. Since A is invertible, for each part of this lemma it is sufficient to prove the “only if” implication.

(a) For each g ∈ G2 the equality ga = b implies ga′
= b′, hence our claim follows.

(b) Assume that a and b are not separated by S(d)
n , i.e., f (a) = f (b) for all f ∈ S(d)

n . The linearity of the
trace together with Lemma 4.2 and formulas (2-3), (2-8) imply that h(a′) = h(b′) for all h ∈ S(d)

n .

(c) The right action by A on On gives a homeomorphism of On with respect to the Zariski topology.
Hence it sends closed subsets to closed subsets. Moreover, it maps G2-orbits to G2-orbits. □

The following remark is a consequence of part (c) of Lemma 7.2.

Remark 7.3. An equivalence class A ∈ �(O) is closed if and only if for every subalgebra A of O with
[A] = A we have that if A is the F-span of some a1, . . . , an , then the G2-orbit of (a1, . . . , an) is closed
in On .

Proposition 7.4. The set S(8)
m ⊂ K G2

m is separating for every m > 0 if and only if S(8)
n separates different

closed G2-orbits of a = (a1, . . . , al, 0, . . . , 0) ∈ On and b ∈ On for all n > 0, where

• a1, . . . , al is a basis of some subalgebra A of O,

• b1, . . . , bn of O linearly generate some subalgebra B of O,

• dimA ≥ dimB.

Proof. We only have to prove the “if” part of the statement. Assume that a, b ∈ On are not separated by
S(8)

n for some n > 0. To obtain the required, we will show that G2a = G2b.
By Remark 7.1 we can assume that G2a and G2b are closed.

Claim 1. Given an F-basis a′

1, . . . , a′

l of F-span of a1, . . . , an , without loss of generality, we can assume
that a = (a′

1, . . . , a′

l , 0, . . . , 0) ∈ On .
To prove claim 1, we consider A ∈ GLn such that a A = (a′

1, . . . , a′

l , 0, . . . , 0). Parts (a), (b), (c) of
Lemma 7.2 imply that we can consider a A, bA instead of a, b and claim 1 is proven.

Denote by A the algebra generated by a1, . . . , an and by B the algebra generated by b1, . . . , bn . Without
loss of generality we can assume that dimA ≥ dimB.

Claim 2. Without loss of generality, we can assume that F-span of a1, . . . , an is A and F-span of b1, . . . , bn

is B.
Let us prove claim 2. It is an easy exercise in linear algebra to show that there exists A ∈ GLn such

that a A = (a′

1, . . . , a′

l , 0, . . . , 0) and bA = (0, . . . , 0, b′

d , . . . , b′
t , 0, . . . , 0), where a′

1, . . . , a′

l is a basis
for F-span of a1, . . . , an and b′

d , . . . , b′
t is a basis for b1, . . . , bn . Similarly to claim 1, without loss of

generality, we can take a A, bA instead of a, b, that is, we assume that

a = (a1, . . . , al, 0, . . . , 0) and b = (0, . . . , 0, bd , . . . , bt , 0, . . . , 0),
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where l ≤ 8 = dim O and t − d + 1 ≤ 8. There exist words v1, . . . , vr of F{X}n such that the F-span of
the set a1, . . . , an, v1(a), . . . , vr (a) is A. Similarly, there exist words w1, . . . , ws of F{X}n such that the
F-span of the set b1, . . . , bn, w1(b), . . . , ws(b) is B.

Since the map On
→ Or+s given by x → (v1(x), . . . , vr (x), w1(x), . . . , ws(x)) is a morphism of

affine algebraic varieties, the G2-orbits of

c1 = (a1, . . . , an, v1(a), . . . , vr (a), w1(a), . . . , ws(a)),

c2 = (b1, . . . , bn, v1(b), . . . , vr (b), w1(b), . . . , ws(b))

are closed. Obviously, G2a = G2b if and only if G2c1 = G2c2. By Lemma 4.2 and formula (2-8), for
any f ∈ S(8)

n+r+s we have that f (c1) is a nonassociative polynomial in tr
(
(. . . (ai1ai2) . . .)aik

)
and n(ai )

for 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ i ≤ n. But this trace is zero in case k > 8 by the construction of a. The
same fact holds also for f (c2). Thus, a and b are not separated by S(8)

n if and only if c1 and c2 are not
separated by S(8)

n+r+s . Therefore, we can consider c1, c2 instead of a, b and claim 2 is proven.
Since claims 1 and 2 imply that a, b satisfy conditions from the formulation of the lemma, we obtain

that G2a = G2b. □

Lemma 7.5. 1. For every a ∈M with tr(a)=1 and n(a)=0 there exists g from the stabilizer StabG2(M)=

{g ∈ G2 | g M ⊂ M} such that ga = e1.

2. For every a ∈ M with tr(a) = 0 and n(a) = 1 there exists g ∈ StabG2(M) such that ga ∈ {1O, 1O + u1}.

3. Given nonzero γ ∈ F, there exists ξγ ∈ StabG2(M) such that for every α1, . . . , α4 ∈ F we have

ξγ

(
α1 (α2, 0, 0)

(α3, 0, 0) α4

)
=

(
α1 (γα2, 0, 0)

(γ −1α3, 0, 0) α4

)
.

4. Assume that a = (e1, e2) and b ∈ M2 satisfy S(2)
n (a) = S(2)

n (b). Then there exists g ∈ StabG2(M) such
that gb1 = e1 and gb2 ∈ {e2, e2 + u1, e2 + v1}.

5. If b ∈ M satisfies tr(b) = n(b) = tr(e1b) = 0, then b ∈ Fu1 or b ∈ Fv1.

Proof. 1. For A = F−1(a) we have tr(A) = 1 and det(A) = 0. Hence there exists g ∈ GL2 such that
g−1 Ag =

( 1
0

0
0

)
and Lemma 6.5 completes the proof.

2. For A =F−1(a) we have tr(A)=0 and det(A)=1. Hence there exists g ∈GL2 such that g−1 Ag =
(

λ
0

1
λ

)
or g−1 Ag =

(
λ1
0

0
λ2

)
for some λ, λ1, λ2 and Lemma 6.5 completes the proof.

3. Given g =
(1

0
0
γ

)
∈ GL2, we have

g−1
(

α1 α2

α3 α4

)
g =

(
α1 γα2

γ −1α3 α4

)
.

Lemma 6.5 concludes the proof.

4. By part 1 we assume that b1 = e1. Define F−1(b2) = B2 =
(

β1
β3

β2
β4

)
. Since 0 = tr(a1a2) = tr(b1b2), we

obtain β1 = 0. The equalities tr(b2) = 1 and n(b2) = 0 imply β4 = 1 and β2β3 = 0. Part 3 concludes the
proof.
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5. Define F−1(b) = B =
(

β1
β3

β2
β4

)
. Since 0 = tr(e1b) = β1, the equalities tr(b) = n(b) = 0 conclude the

proof. □

Lemma 7.6. Assume that a = (a1, 0, . . . , 0) ∈ Mn and b ∈ Mn are not separated by S(2)
n , where a1 ∈

{1O, e1} and dim(alg(b)) ≤ 1. Then G2 a = G2 b.

Proof. 1. Let a1 = 1O . Since tr(b1) = 0 and n(b1) = 1, by part 2 of Lemma 7.5 we can assume that
b1 = 1O or b1 = 1O + u1.

In the first case, dim(alg(b)) ≤ 1 implies b = (1O, β21O, . . . , βn1O) for some β2, . . . , βn ∈ F. Since
0 = n(bi ) = β2

i for all 1 < i ≤ n, we have a = b.
In the second case we have that b1 and b2

1 = 1O are linearly independent; a contradiction.

2. Let a1 = e1. Since tr(b1) = 1 and n(b1) = 0, by part 1 of Lemma 7.5 we can assume that b1 = e1.
Then the condition dim(alg(b)) ≤ 1 implies that b = (e1, β2e1, . . . , βne1) for some β2, . . . , βn ∈ F. For
each 1 < i ≤ n we have 0 = tr(a10) = tr(b1bi ) = βi . Therefore, a = b. □

Lemma 7.7. Assume that a = (e1, e2, 0, . . . , 0) ∈ Mn and b ∈ Mn are not separated by S(2)
n and

dim(alg(b)) ≤ 2. Then G2 a = G2 b.

Proof. By part 4 of Lemma 7.5 we can assume that b1 = e1 and b2 ∈ {e2, e2 + u1, e2 + v1}.
Let b2 = e2. For 3 ≤ i ≤ n part 5 of Lemma 7.5 implies that bi ∈ Fu1 or bi ∈ Fv1, since tr(bi ) = n(bi ) =

tr(b1bi ) = 0. It follows from dim(alg(b)) ≤ 2 that bi = 0 for all 3 ≤ i ≤ n. Therefore, a = b.
In case b2 = e2 + u1 we consider b1b2 = u1 and obtain that {e1, u1, e2} ⊂ alg(b); a contradiction.
In case b2 = e2 + v1 we consider b2b1 = v1 and obtain that {e1, v1, e2} ⊂ alg(b); a contradiction. □

Lemma 7.8. If a = (e1, e2, u1, v1, 0, . . . , 0)∈ Mn and b ∈ Mn are not separated by S(3)
n , then G2 a = G2 b.

Proof. By part 4 of Lemma 7.5 we can assume that b1 = e1 and b2 ∈ {e2, e2 + u1, e2 + v1}. Assume
3 ≤ i ≤ n. We have tr(bi ) = n(bi ) = tr(b1bi ) = 0, since tr(a1a3) = tr(a1a4) = 0. Thus part 5 of Lemma 7.5
implies that bi = βi u1 or bi = βiv1 for some βi ∈ F. Since tr(b3b4) = tr(a3a4) = 1, we obtain that β3β4 = 1
and either b3 = β3u1, b4 = β4v1 or b3 = β3v1, b4 = β4u1 for some nonzero β3, β4 ∈ F with β3β4 = 1.
Hence equalities tr(b3b2) = tr(b4b2) = 0 imply that b2 = e2.

1. Let b3 = β3u1, b4 = β−1
3 v1. By part 3 of Lemma 7.5 we can assume that β3 = 1.

Consider 5 ≤ i ≤ n. If bi = βi u1, then 0 = tr(a4ai ) = tr(b4bi ) = βi . If bi = βiv1, then 0 = tr(a3ai ) =

tr(b3bi ) = βi . Therefore, a = b.

2. If b3 = β3v1, b4 = β−1
3 u1, we have 0 = tr((b1b3)b4) = tr((a1a3)a4) = tr(u1v1) = 1; a contradiction. □

Lemma 7.9. If a = (e1, e2, u1, v1, u2, v2, u3, v3, 0, . . . , 0) ∈ On and b ∈ On are not separated by S(3)
n ,

then G2 a = G2 b.

Proof. Given c1, . . . , c8, denote by Mc1,...,c8 the Gram matrix (tr(ci c j ))1≤i, j≤8. Since the trace is a
bilinear nondegenerate form on O and a1, . . . , a8 are linearly independent, we obtain that det(Ga1,...,a8) =

det(Gb1,...,b8) is nonzero. Hence, b1, . . . , b8 are also linearly independent. In particular, F-span of
b1, . . . , b8 is O.
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For every 1 ≤ i ≤ 8 and 8 < j ≤ n we have that tr(ai a j ) = tr(bi b j ) is zero. Therefore, tr(bb j ) = 0 for
all b ∈ O. Since tr is nondegenerate on O, we obtain b = (b1, . . . , b8, 0, . . . , 0).

For every 1 ≤ i, j ≤ 8 there exists 1 ≤ ki j ≤ 8 and ηi j ∈ F such that ai a j = ηi j aki j . Therefore, for each
1 ≤ l ≤ 8 we have that tr((ai a j −ηi j aki j )al)= tr((bi b j −ηi j bki j )bl) is zero. Hence, bi b j =ηi j bki j . Consider
a linear map f : O → O defined on the basis of O by f (ai ) = bi for all 1 ≤ i ≤ 8. Since the multiplication
table for a1, . . . , a8 is the same as for b1, . . . , b8, we can see that f ∈ G2. The required is proven. □

The following statement is a corollary of Proposition 6.1.

Corollary 7.10. Assume char F = 2 and a closed equivalence class A ∈ �(O) has the dimension d ≤ 3.
Then one of the following sets is a basis for A:

d = 1: {1O}, {e1};

d = 2: {e1, e2}.

Proof. We need to show that any basis {a1, . . . , an} from Proposition 6.1, different from the above bases,
generates nonclosed equivalence class. For each a = (a1, . . . , an) the arguments are the same: we find an
element a′ in the closure of G2a such that rk(a′) < rk(a), which obviously implies that G2a is not closed.

• If a = (u1) ∈ O1, then for the standard one-parameter subgroup θλ with λ = (1, −1, 0) the element
a′

= limt→0 θλ(t)a = (0) lies in G2a (see Section 3B for more details).

• If a = (1O, u1), then a′
= limt→0 θ(1,−1,0)(t)a = (1O, 0) lies in G2a.

• If a = (u1, v2), then a′
= limt→0 θ(1,−1,0)(t)a = (0, 0) lies in G2a.

• If a = (e1, u1), then a′
= limt→0 θ(1,−1,0)(t)a = (e1, 0) lies in G2a.

• If a = (e1, v1), then a′
= limt→0 θ(−1,1,0)(t)a = (e1, 0) lies in G2a.

• If a = (1O, u1, v2), then a′
= limt→0 θ(1,−1,0)(t)a = (1O, 0, 0) lies in G2a.

• If a = (e1, e2, u1), then a′
= limt→0 θ(1,−1,0)(t)a = (e1, e2, 0) lies in G2a.

• If a = (e1, u1, v2), then a′
= limt→0 θ(1,−1,0)(t)a = (e1, 0, 0) lies in G2a.

• If a = (u1, v2, v3), then a′
= limt→0 θ(1,−1,0)(t)a = (0, 0, v3) lies in G2a. □

Theorem 7.11. The set S(8)
n is a separating set for K G2

n in case char F = 2.

Proof. We will apply Proposition 7.4 to obtain the required statement. Assume that G2-orbits of
a = (a1, . . . , al, 0, . . . , 0) ∈ On , b ∈ On are closed, a1, . . . , al is a basis of some subalgebra A of O,
octonions b1, . . . , bn linearly generate some subalgebra B of O, and dimA ≥ dimB. We assume that a
and b are not separated by S(8)

n .
Let dimA = 8. We may choose that a = (e1, e2, u1, v1, u2, v2, u3, v3, 0, . . . , 0) by Lemma 7.2. Then

Lemma 7.9 implies that G2 a = G2 b.
Let dimA < 8. Then A lies in a maximal proper subalgebra of O. By Theorem 5 of [19], the algebra

of sextonions S is the unique maximal proper subalgebra of O modulo G2-action (see also Remark 7.12
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below). So A ⊂ S, that is, for all 1 ≤ i ≤ l we have

ai =

(
αi1 (αi2, αi3, 0)

(αi4, 0, αi5) αi6

)
for some αi j ∈ F. Similarly, we can assume that B ⊂ S.

Since for the standard one-parameter subgroup θλ with λ = (0, 1, −1) we have

θλ(t)ai =

(
αi1 (αi2, tαi3, 0)

(αi4, 0, tαi5) αi6

)
,

the limit a′
= limt→0 θλ(t)a exists (see Section 3B for more details). Obviously, a′

= (a′

1, . . . , a′

l , 0, . . . , 0)

lies in Mn . The orbit G2a is closed, therefore, a′
∈ G2 a. Replacing a by a′ we may assume that a ⊂ Mn .

Therefore, A ⊂ M. In the same manner we can assume that B ⊂ M.
In case dimA = 4 by Lemma 7.2 we may choose that a = (e1, e2, u1, v1, 0, . . . , 0) and Lemma 7.8

implies that G2 a = G2 b.
Let dimA ≤ 3. By Corollary 7.10 and Lemma 7.2 we can assume that a is one of the next elements:

(1O), (e1), (e1, e2). If a = (1O) or a = (e1), then Lemma 7.6 implies that G2 a = G2 b. If a = (e1, e2),
then Lemma 7.7 implies that G2 a = G2 b.

Finally, by Proposition 7.4 the set S(8)
n is separating for K G2

n . □

Remark 7.12. In the proof of Theorem 5 of [19], which claims that S is the unique maximal proper
subalgebra of O modulo G2-action, there is a small error, but this does not interfere with the case of an
algebraically closed field. See [8; 18] for more details.

Remark 7.13. It follows from Theorem 7.11 that the set S(8)
0,n is a separating set for K G2

0,n in case char F = 2.
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Scattering diagrams for generalized cluster algebras
Lang Mou

We construct scattering diagrams for Chekhov–Shapiro generalized cluster algebras where exchange
polynomials are factorized into binomials, generalizing the cluster scattering diagrams of Gross, Hacking,
Keel and Kontsevich. They turn out to be natural objects arising in Fock and Goncharov’s cluster duality.
Analogous features and structures (such as positivity and the cluster complex structure) in the ordinary
case also appear in the generalized situation. With the help of these scattering diagrams, we show that
generalized cluster variables are theta functions and hence have certain positivity property with respect to
the coefficients in the binomial factors.
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1. Introduction

We study generalized cluster algebras in the sense of [Chekhov and Shapiro 2014]. These algebras are
generalizations of the (ordinary) cluster algebras introduced by Fomin and Zelevinsky [2002], allowing
more general exchange polynomials (as opposed to only binomials) in mutations.

We will see that generalized cluster algebras cannot only be studied in a similar way as cluster algebras
[Fomin and Zelevinsky 2002; 2003; 2007; Berenstein et al. 2005], but that they also naturally appear in
the context of the cluster duality proposed by Fock and Goncharov [2009]. A modified version of Fock
and Goncharov’s cluster duality was formulated and proved by Gross, Hacking, Keel and Kontsevich
[Gross et al. 2018]. In this paper, we extend the scheme therein to study generalized cluster algebras.

Generalized cluster algebras come in a family containing ordinary cluster algebras. Each algebra in
this family can be viewed as (a subalgebra of) the algebra of regular functions of a generalized A-cluster
variety. The (generalized version of) cluster duality says this family is in a sense dual to another family
of generalized X -cluster varieties. In this paper, we demonstrate this duality by reconstructing a family
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of generalized cluster algebras with principal coefficients A prin from a general fiber of the corresponding
dual family of X -cluster varieties.

In the ordinary case, the reconstruction is done through a cluster scattering diagram, the main technical
tool developed in [Gross et al. 2018], which is a mathematical structure associated to the dual X -
cluster variety. For our purpose of studying generalized cluster algebras, we construct generalized cluster
scattering diagrams. This is done by allowing more general wall-crossing functions on the initial incoming
walls. It turns out that many features (such as the positivity property of wall-crossings and the cluster
complex structure) in the ordinary case still hold in the generalized situation; see Theorems 6.31 and 7.10.

Using the techniques of scattering diagrams (and related objects such as broken lines) transplanted from
[Gross et al. 2018], we are able to prove that generalized cluster monomials are theta functions. As a result,
they have certain positivity property coming from that of the scattering diagram. We remark that this
positivity is with respect to the coefficients appearing in the binomial factors of exchange polynomials, thus
weaker than a conjectural positivity of Chekhov and Shapiro (Conjecture 8.13) with respect to the coeffi-
cients of exchange polynomials themselves; See Theorem 8.12 and Section 8.5 for the precise statements.

We next describe the contents of the paper in more detail.

1.1. Generalized cluster algebras. Our way of generalizing cluster algebras is slightly different from
[Chekhov and Shapiro 2014], in the way we deal with coefficients. In a sense, one can go from one
formulation to the other, in particular when the coefficients are evaluated in some algebraically closed
field; see Sections 3.2, 3.5 and also 8.5. We replace Fomin and Zelevinsky’s binomial exchange relation

x ′k xk = p+k
n∏

i=1
x [bik ]+

i + p−k
n∏

i=1
x [−bik ]+

i

with a more general polynomial exchange relation

x ′k xk =
rk∏

j=1

(
p+k, j

n∏
i=1

x [bik/rk ]+
i + p−k, j

n∏
i=1

x [−bik/rk ]+
i

)
.

We require the coefficients p±k, j (in some semifield (P,⊕, · )) to satisfy the normalized condition
p+k, j ⊕ p−k, j = 1. The normalization makes mutations deterministic and a particular choice of coefficients
named principal coefficients (as in [Fomin and Zelevinsky 2007]) available in the generalized situation.

It turns out many algebraic and combinatorial features of cluster algebras are also inherited by
generalized cluster algebras. The same finite type classification as for cluster algebras [Fomin and
Zelevinsky 2003] and the generalized Laurent phenomenon have already been obtained in [Chekhov
and Shapiro 2014]. We show that the dependence on coefficients in the generalized case behaves very
much like the ordinary case [Fomin and Zelevinsky 2007]. In particular, a generalized version of the
separation formula, Theorem 3.20, is made available through an analogous notion of principal coefficients.
The well-known sign coherence of c-vectors (see Section 3.3) is also extended to the generalized case
in Proposition 3.17. We note that there is a rather different version of normalized generalized cluster
algebras with a certain reciprocal restriction in [Nakanishi 2015] where some results on the structures of
seeds parallel to [Fomin and Zelevinsky 2007] were also established.
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Another remarkable feature of an ordinary cluster algebra is the positivity of its cluster variables,
i.e., they are all Laurent polynomials in the initial variables xi and coefficients p±i with nonnegative
integer coefficients. This was proved by Lee and Schiffler [2015] for skew-symmetric types and by Gross,
Hacking, Keel, and Kontsevich [Gross et al. 2018] for the more general skew-symmetrizable types. We
extend the positivity to our generalized case (see Theorem 3.8), showing that the Laurent expression
of any cluster variable in xi and p±k, j has nonnegative integer coefficients. We note that the positivity
obtained here is (in the reciprocal case) a weak form of a positivity conjecture of Chekhov and Shapiro
(which we reformulated in Conjecture 8.13); see Remark 3.9 and Section 8.5.

1.2. Generalized cluster varieties. Let L be a lattice of finite rank. Fix an algebraically closed field k of
characteristic zero. The (ordinary) cluster varieties of [Fock and Goncharov 2009] are schemes of the form

V =
⋃
s

TL ,s

where each TL ,s is a copy of the torus L ⊗ k∗ and they are glued together via birational maps called
cluster mutations. Here s runs over a set of seeds (a seed roughly being a labeled basis of L) iteratively
generated by mutations. A cluster mutation is give by the birational map

µ(m,n) : TL 99K TL , µ∗(m,n)(z
ℓ)= zℓ(1+ zm)⟨ℓ,n⟩, ℓ ∈ L∗,

for a pair of vectors (n,m) ∈ L × L∗, where ⟨ ·, · ⟩ denotes the natural paring between L∗ and L . It has
a natural dual by switching the roles of m and n, µ(−n,m) : TL∗→ TL∗ . Gluing TL∗ via these maps gives
the dual cluster variety V∨ :=

⋃
s TL∗,s.

Depending on the types of seeds and mutations chosen, one obtains either Fock–Goncharov A-cluster
varieties or X -cluster varieties, which are dual constructions as above. A cluster algebra A can be
embedded into the upper cluster algebra A , defined to be the algebra of regular functions on the
corresponding A-variety, while the dual X -variety encodes the so-called Y -variables; see Section 4.

One can actually encode coefficients in each cluster mutation, the above construction thus leading
to families of cluster varieties. They mutate along with seeds under certain rules. In the A-case, they
mutate as Y -variables (see [Fomin and Zelevinsky 2007; Fock and Goncharov 2009]). In the X -case, the
mutation rule of the coefficients has been worked out by Bossinger, Frías-Medina, Magee and Nájera
Chávez [Bossinger et al. 2020].

We extend these dynamics of coefficients to the generalized situation for both the A- and X -cases. We
define a generalized cluster mutation as

µ∗(zℓ)= zℓ
r∏

j=1
(t−j + t+j zm)⟨ℓ,n⟩,

which depends on some coefficients t±j in k∗; see Section 4. Thus an ordinary cluster mutation can be
viewed as a specialization of a generalized one. Generalized cluster varieties are then defined by gluing
tori via the generalized mutations. We obtain two families of generalized cluster varieties

πA :A→ Spec(R), πX : X → Spec(R),

where the coefficients vary in some torus Spec(R)= (Gm)
d .
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One key observation of Gross, Hacking and Keel [Gross et al. 2015] is that a cluster variety can
be investigated through its toric models, and mutations between seeds are basically switching between
neighboring toric models. A toric model is a construction of a log Calabi–Yau variety by blowing up a
hypersurface on the toric boundary of some toric variety. In the cluster situation, the toric variety depends
on the choice of a seed s which also tells us where on the toric boundary to blow up. The resulting
log Calabi–Yau variety is shown in [Gross et al. 2015] (under certain nice conditions) to be isomorphic
to the corresponding cluster variety up to codimension two subsets. We extend this description to the
generalized case, for both A- and X -type varieties; see Theorem 5.4 and Section 5.3.

1.3. Scattering diagrams. Cluster scattering diagrams are the main technical tool in [Gross et al. 2018].
They have their origin in [Kontsevich and Soibelman 2006; Gross and Siebert 2011] in mirror symmetry.
Roughly speaking, in the cluster case, a scattering diagram is a collection of walls in a real vector space
with attached wall-crossing functions (some of them giving information on mutations). Similar to a cluster
algebra which starts with one cluster with information to perform mutations in n directions iteratively, its
scattering diagram can be constructed by initially setting up n incoming walls and letting them propagate,
generating only outgoing walls.

To get a generalized cluster scattering diagram, we replace ordinary wall-crossings (which correspond
to ordinary cluster mutations) on the initial incoming walls by the generalized ones of the form

f =
r∏

j=1
(1+ t j zm),

where the t j are treated as formal parameters. Given a seed s (in the generalized sense), the associated data
of incoming walls uniquely determines a consistent scattering diagram Ds, which we call the generalized
cluster scattering diagram.

We show that the behavior of Ds under mutations is analogous to that of the ordinary case, in a way it is
canonically associated to a mutation equivalence class of seeds. This is called the mutation invariance in
[Gross et al. 2018, Theorem 1.24]. See Theorem 6.27 for the precise description of the following theorem.

Theorem 1.1 (Theorem 6.27). There is a piecewise linear operation Tk such that Tk(Ds) is equivalent
to Dµk(s), where µk(s) denotes the mutation in direction k of the seed s.

In analogy with the ordinary case, the mutation invariance leads to the cluster complex structure of Ds.

Theorem 1.2 (Theorem 7.10). There is the cluster cone complex 1+s such that Ds is a union of codimen-
sion one cones of 1+s (with explicit attached wall-crossing functions) and walls outside 1+s .

We observe in Lemma 6.19 that Ds is equivalent to the tropical vertex scattering diagram D(X6 ,H) of
[Argüz and Gross 2022] associated to the corresponding X -type toric model associated to s. It is shown
in [Argüz and Gross 2022, Theorem 6.1] that D(X6 ,H) is further equivalent (after a certain piecewise
linear operation) to the canonical scattering diagram D(X,D) (see [Gross and Siebert 2022; Argüz and
Gross 2022, Section 2]) of the log Calabi–Yau pair (X, D) from the toric model. We thus see that Ds
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is canonically associated to the corresponding X -cluster variety, with a different seed s′ simply giving
another representative Ds′ .

1.4. Cluster dualities. The cluster duality of Fock and Goncharov predicts that, in the ordinary case, the
varieties A and X (see Section 4 for our convention as we do not need the Langlands dual data) are dual
in the sense that the upper cluster algebra A has a basis parametrized by the tropical set X trop(Z) (see
[Gross et al. 2018, Section 2] for a definition) and vice versa. A modified version of this duality (and
when it is true) is the main subject of study of [Gross et al. 2018].

The strategy of [Gross et al. 2018] to get the desired basis is as follows. First the tropical set X trop(Z)

(resp. X trop(R)) can be identified with the cocharacter lattice M (resp. MR := M ⊗R) of a chosen seed
torus TM,s=M⊗k∗ contained in the variety X . By the mutation invariance, the ordinary cluster scattering
diagram Dord

s (see Section 6.3) naturally lives in X trop(R). Denote by 1+ the set of integral points inside
the cluster complex (which is again a canonical subset of X trop(Z) by mutation invariance).

For any integral point m ∈ X trop(Z), using the scattering diagram Dord
s , one can construct the theta

function ϑm , which in general is only a formal power series in a completion
∧

k[M]s which depends on s.
However, it is shown in [Gross et al. 2018, Theorem 4.9] that for m ∈ 1+, ϑm is indeed a Laurent
polynomial in k[M] and corresponds to a cluster monomial. Furthermore, there is a canonically defined
(i.e., independent of s) subset 2 of X trop(Z) containing 1+ such that for any m ∈ 2, ϑm is a Laurent
polynomial on every seed torus. It is also shown in [Gross et al. 2018] that the vector space

mid(A) :=
⊕

m∈2
ϑm

has an associative algebra structure whose structure constants are defined through broken lines. This
algebra mid(A) can be embedded in A so that for m ∈ 1+, ϑm is sent to the corresponding cluster
monomial. While we do not know in general when mid(A) equals A (see [Gross et al. 2018, Theorem 0.3]),
we do have a basis of mid(A) parametrized by the subset 2. Strictly speaking, this process is done
through the principal coefficients case.

Our insight is that it is natural to consider the above cluster duality for generalized cluster varieties. In
the principal coefficients case, we take a general fiber X prin

λ := π−1
X (λ) of the family

πX : X prin
→ Spec(R).

The generalized cluster scattering diagram Ds then lives in the tropical set (X prin
λ )trop(R)which is identified

with MR given a chosen seed s. Towards a generalized version of the cluster duality, we show:

Theorem 1.3 (Theorem 8.12). For any m ∈1+s , the theta function ϑm constructed from the generalized
cluster scattering diagram Ds corresponds to the cluster monomial of the generalized cluster algebra
A prin(s) whose g-vector is m. Moreover, it is a Laurent polynomial in the initial cluster variables xi and
coefficients pi, j with nonnegative integer coefficients.
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It follows from the above theorem that the family

πA :Aprin
→ Spec(R)

can be reconstructed from a general fiber X prin
λ (through any of its toric models); see Proposition 8.3.

In principle, in the generalized case, one could consider the subset 2 as in [Gross et al. 2018] and
the corresponding generalized middle cluster algebra mid(Aprin). This would lead to a formulation of
generalized cluster duality similar to the ordinary case in [Gross et al. 2018, Theorem 0.3]. Then the
usual problem on when the full Fock–Goncharov conjecture is true remains and can be discussed as in
[Gross et al. 2018, Section 8].

1.5. Relations to other works. There are examples of generalized cluster scattering diagrams from
representation theory, where they are realized as Bridgeland’s stability scattering diagrams [2017] for
quivers (with loops) with potentials; see [Labardini-Fragoso and Mou 2024] for such examples arising
from surfaces with orbifold points.

In rank two, the scattering diagram Ds has already appeared in [Gross et al. 2010; Gross and Pand-
haripande 2010] from origins other than cluster algebras. There the wall-crossing functions are shown
to encode relative Gromov–Witten invariants on certain log Calabi–Yau surfaces. Some conjectural
wall-crossing functions in [Gross and Pandharipande 2010] were later verified in [Reineke and Weist
2013] using techniques from quiver representations; see Example 6.22.

The recent paper of Cheung, Kelley and Musiker [Cheung et al. 2023] (outlined in [Cheung et al. 2021])
and some part of Kelley’s PhD thesis [2021] have significant overlaps with this paper and the author’s PhD
thesis [Mou 2020, Chapter 8]. We in the following highlight the differences and relationships concerning
scattering diagrams.

In [Mou 2020, Chapter 8], a class of generalized cluster scattering diagrams were constructed and
properties including mutation invariance and cluster complex structure were proved. In that work, a
palindromic and monic restriction (termed reciprocal in [Chekhov and Shapiro 2014]) on the coefficients
was imposed. Such a scattering diagram can be obtained from applying to Ds of the current paper an
evaluation λ such that the initial wall-crossings are specialized to reciprocal polynomials, i.e., of the form

f = 1+ a1zw + · · ·+ ar−1z(r−1)w
+ zrw,

where r ∈Z≥0, w ∈M , and ak = ar−k in some ground field k; see Section 6.4. Scattering diagrams almost
identical to these (with the reciprocal restriction) were later considered by Cheung, Kelley and Musiker
[Cheung et al. 2021], with more details provided in [Kelley 2021]. The authors treat the coefficients ai as
formal variables. They also outlined the construction of theta functions, following [Gross et al. 2018].

The current paper aims to fill in gaps and missing details in [Mou 2020], enhance the setup therein
to include more general coefficients, and discuss the positivity of generalized cluster algebras using
scattering diagram techniques. Shortly after this paper was posted on the arXiv, [Cheung et al. 2023]
appeared on the arXiv, completing the program [Cheung et al. 2021]. Despite many similarities between
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the current paper and [Cheung et al. 2023], our approaches of treating coefficients differ somewhat. In
[Cheung et al. 2023], the y-variables in a generalized seed and the coefficients a = (ai ) in a generalized
exchange polynomial are treated separately. The coefficients a are assumed to be reciprocal and remain
unchanged under mutations. In contrast, we view the coefficients a as deriving from the y-variables
(denoted as p in our notation) by factorizing an exchange polynomial into binomials, with each binomial
governed by one coefficient in the style of Fomin and Zelevinsky. This approach allows us to realize more
general exchange polynomials (beyond just reciprocal ones), at least for an algebraically closed ground
field, by specialization from principal coefficients (see Sections 3.5 and 8.5). This setup also enables
us to formulate and prove a form of positivity for generalized cluster algebras, a topic not extensively
discussed in [Cheung et al. 2023].

2. Preliminaries

In this section, we review some preliminaries commonly used in the theory of cluster algebras [Fomin
and Zelevinsky 2002].

2.1. Semifields.

Definition 2.1. A semifield (P,⊕, · ) is a torsion free (multiplicative) abelian group P with a binary
operation addition ⊕ which is commutative, associative and distributive.

We denote by ZP the group ring of P and by NP ⊂ ZP the subset of linear combinations with
coefficients in N. Denote by QP the field of fractions of ZP.

For an element p ∈ P, we define in P two elements:

p+ :=
p

p⊕ 1
and p− :=

1
p⊕ 1

.

Definition 2.2. Let I be a finite set. We define Trop(si | i ∈ I ) to be the (multiplicative) abelian group
with free generators si indexed by I , with the operation addition ⊕:∏

i∈I
sai

i ⊕
∏
i∈I

sbi
i :=

∏
i∈I

smin{ai ,bi }
i .

It is clear that Trop(si | i ∈ I ) is a semifield. Such a semifield is called a tropical semifield.

For n ∈ Z, we write [n]+ :=max{n, 0}. The elements s± for

s =
∏
i∈I

sai
i ∈ Trop(si | i ∈ I )

has the following simple expressions:

s+ =
∏
i∈I

s[ai ]+
i and s− =

∏
i∈I

s[−ai ]+
i .

Definition 2.3. Denote by Qsf(u1, . . . , ul) the set of all rational functions in l independent variables
which can be written as subtraction-free rational expressions in u1, . . . , ul . Then the set Qsf(u1, . . . , ul)

is a semifield with respect to the usual addition and multiplication.
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We call such Qsf(u1, . . . , ul) a universal semifield since for another arbitrary semifield P and its
elements p1, . . . , pl , there exists a unique map of semifields from Qsf(u1, . . . , ul) to P sending ui to pi ;
see [Berenstein et al. 1996, Lemma 2.1.6].

2.2. Mutations of matrices.

Definition 2.4. A matrix B ∈Matn×n(Z) is called (left) skew-symmetrizable if there exists a diagonal
matrix D = diag(di | 1≤ i ≤ n) with di ∈ Z>0 such that

DB+ (DB)T = 0.

Such a matrix D is called a (left) skew-symmetrizer of B.

Definition 2.5 [Fomin and Zelevinsky 2002, Definition 4.2]. Let B = (bi j ) ∈ Matn×n(Z) be a skew-
symmetrizable matrix. For k = 1, . . . , n, we define µk(B) = (b′i j ) ∈ Matn×n(Z) the mutation of B in
direction k by setting

(1) b′ik =−bik and b′k j =−bk j for 1≤ i, j ≤ n;

(2) for i ̸= k and j ̸= k,

b′i j =


bi j + bikbk j if bik > 0 and b jk < 0;
bi j − bikbk j if bik < 0 and b jk > 0;

bi j otherwise.

It is clear that the matrix µk(B) is again skew-symmetrizable with the same set of skew-symmetrizers
of B. One can easily check that a mutation is involutive in the same direction, i.e., µk ◦µk(B)= B.

3. Generalized cluster algebras

3.1. Generalized cluster algebras. Cluster algebras were originally invented by Fomin and Zelevinsky
[2002], which we later refer to as ordinary cluster algebras. A generalization of cluster algebras has been
provided by Chekhov and Shapiro [2014]. Our definition of generalized cluster algebras below may be
considered as a special case (of a slight generalization) of theirs but with a normalization analogous to
the one in [Fomin and Zelevinsky 2002, Definition 5.3] for ordinary cluster algebras. The relation and
difference will be explained in Section 3.2.

We follow the pattern of [Fomin and Zelevinsky 2007] to define generalized cluster algebras. Most of
the key notions here are the generalized versions of their correspondents in the ordinary case.

Definition 3.1. A (generalized) labeled seed 6 of rank n ∈ N is a triple (x, p, B), where:

• p = ( p1, . . . , pn) is an n-tuple of collections of elements, where each pi = (pi,1, . . . , pi,ri ) is a
ri -tuple of elements in a semifield (P,⊕, · ) for some positive integer ri .

• x={x1, . . . , xn} is a collection of algebraically independent rational functions of n variables over QP.
In other words, the x1, . . . xn are elements in some field of rational functions F =QP(u1, . . . , un)

such that F =QP(x1, . . . , xn).



Scattering diagrams for generalized cluster algebras 2187

• B ∈Matn×n(Z) is skew-symmetrizable such that for any i = 1, . . . , n, its i-th column is divisible
by ri . The diagonal matrix D = diag(ri ) is not necessarily a skew-symmetrizer of B.

For convenience, let I be the index set {1, . . . , n}. For an arbitrary positive integer k, we use the
interval [1, k] to represent the set {1, . . . , k}. We will often call a labeled seed simply a seed if there is no
confusion.

Associated to a labeled seed 6 = (x, p, B), for each i ∈ I , there is the exchange polynomial

θi (u, v)= θ [ pi ](u, v) :=
ri∏

l=1
(p+i,lu+ p−i,lv) ∈ ZP[u, v].

Write βi j = bi j/r j ∈ Z. We put

u j;+ :=
∏

i :bi j>0
xβi j

i , u j;− :=
∏

i :bi j<0
x−βi j

i

pi;+ :=
ri∏

l=1
p+i,l, pi;− :=

ri∏
l=1

p−i,l ∈ P.

Note that all the above notions are with respect to 6.

Definition 3.2. For any k ∈ I , we define the mutation of a seed 6 = (x, p, B) in direction k as a new
labeled seed µk(x, p, B) := ((x ′i ), ( p′i ), B ′), where p′i = (p

′

i, j | j ∈ [1, ri ]) in the following way:

(1) B ′ = µk(B);

(2) p′k, j = p−1
k, j for j ∈ [1, rk];

(3) for i ̸= k, j ∈ [1, ri ], p′i, j =

{
pi, j · (pk;−)

βki if βik > 0,
pi, j · (pk;+)

βki if βik ≤ 0,

or equivalently

for i ̸= k, p′i, j = pi, j

( rk∏
l=1
(1⊕ psgn(βik)

k,l )
)−βki
;

(4) x ′i =
{

xi if i ̸= k,
x−1

k θ [ pk](uk;+, uk;−) if i = k.

Lemma 3.3. The mutation µk is involutive, i.e., µk ◦µk(6)=6.

Proof. We check that µk is involutive on each component of a seed. We denote

µk ◦µk(6)= ((x ′′i ), (p
′′

i, j | j ∈ [1, ri ])i∈I , B ′′).

For this seed, we simply denote the relevant objects appearing in Definition 3.2 by adding a double prime
to the old symbols, while for µk(6), we add a single prime.

(1) First of all, the matrix mutation µk is an involution, as shown in [Fomin and Zelevinsky 2002].

(2) We have for j ∈ [1, rk],
p′′k, j = (p

′

k, j )
−1
= pk, j .
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(3) For i ̸= k, we have for j ∈ [1, ri ],

p′′i, j =

{
p′i, j · (p

′

k;−)
β ′ki if β ′ik > 0,

p′i, j · (p
′

k;+)
β ′ki if β ′ik ≤ 0

=

{
pi, j · (pk;+)

βki · (p′k;−)
−βki if βik < 0,

pi, j · (pk;−)
βki · (p′k;+)

−βki if βik ≥ 0
= pi, j .

The last equality is because p′k;+ = pk;− and p′k;− = pk;+.

(4) Finally for the x part, we have

x ′′i =
{

x ′i if i ̸= k,
(x ′k)

−1θ [ p′k](u
′

k;+, u′k;−) if i = k

=

{
xi if i ̸= k,

xk · θ [ pk](uk;+, uk;−)
−1θ [ p′k](u

′

k;+, u′k;−) if i = k
= xi .

The last equality is because that θ [ p′k](u, v)= θ [ pk](v, u) and u′k;± = uk;∓.

So overall we have proven that µk ◦µk(6)=6. □

Fix a positive integer n. We consider the (nonoriented) n-regular tree Tn whose edges are labeled by
the numbers 1, . . . , n as in [Fomin and Zelevinsky 2002]. Lemma 3.3 makes the following definition
well-defined.

Definition 3.4. A (generalized) cluster pattern is an assignment of a labeled seed 6t = (xt , pt , B t) to
every vertex t ∈ Tn , such that for any k-labeled edge with endpoints t and t ′, the seed 6t ′ is the mutation
in direction k of 6t , i.e., 6t ′ = µk(6t).

The elements in 6t are written as follows:

xt = (xi;t | i ∈ I ), pi;t = (pi, j;t | j ∈ [1, ri ]), B t
= (bt

i j ).

The part x of a labeled seed is called a (labeled) cluster, elements xi are called cluster variables,
elements pi, j are called coefficients and B is called exchange matrix.

Two seeds are mutation-equivalent if one is obtained from the other by a sequence of mutations. If
a seed 6 appears in a cluster pattern, then by definition any seeds mutation-equivalent to 6 must also
appear. On the other hand, assigning a seed of rank n to any vertex of Tn would uniquely determine a
cluster pattern.

By definition, all cluster variables live in some ambient field F of rational functions of n variables.
One may identify F with QP(x1, · · · , xn) where (x1, . . . , xn) is a cluster.
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Definition 3.5. Given a generalized cluster pattern, the (generalized) cluster algebra A is defined to be
the ZP-subalgebra of the ambient field F generated by all cluster variables xi;t in all seeds that appear in
the cluster pattern. Since a cluster pattern is determined by any of its seed, we denote A = A (6) where
6 = (x, p, B) is any seed in this cluster pattern.

Remark 3.6. In the case where ri = 1 for any i ∈ I , all the above generalized notions recover the original
versions of [Fomin and Zelevinsky 2007].

For convenience, one can specify one vertex t0 ∈ Tn to be initial, thus the associated seed being called
the initial seed with the initial cluster, cluster variables, coefficients and exchange matrix. All other seeds
are obtained by applying mutations iteratively to the initial one. For the following two theorems, we
denote by (x1, . . . , xn) the initial cluster.

Theorem 3.7 (generalized Laurent phenomenon, cf. [Fomin and Zelevinsky 2002] and [Chekhov and
Shapiro 2014]). Let (x, p, B) be a generalized labeled seed. Then any cluster variable of A (x, p, B) is
a Laurent polynomial over ZP in the initial cluster variables xi , i.e., an element in ZP[x±1 , . . . , x±n ].

Proof. The generalized Laurent phenomenon was already obtained in [Chekhov and Shapiro 2014,
Theorem 2.5]. Since our setting is slightly different, we give a proof for completeness.

The proof completely follows from the discussion in [Fomin and Zelevinsky 2002, Section 3]. The
generalized Laurent property is a direct corollary of [loc. cit., Theorem 3.2]. One only needs to check the
following hypothesis required by [loc. cit., Theorem 3.2]: for any subgraph

t0 t1 t2 t3i j i

in the tree Tn , if we define the following three exchange polynomial in n variables x1, . . . , xn by writing

P(xt0)= θ [ pi;t0](u
t0
i;+, ut0

i;−), Q(xt1)= θ [ p j;t1](u
t1
j;+, ut1

j;−), R(xt2)= θ [ pi;t2](u
t2
i;+, ut2

i;−),

then they satisfy R = C · (P|x j←Q0/x j ), where Q0 = Q|xi=0 for some C ∈ NP[x1, . . . xn].

Notice that since t0 t1,i we have

P =
ri∏

l=1

(
p+i,l;t1

∏
k

x
[β

t1
ki ]+

k + p−i,l;t1
∏
k

x
[−β

t1
ki ]+

k

)
.

When β t1
i j = 0, β t0

j i =−β
t1
i j = 0. So x j does not appear in P , implying P = P|x j←Q0/x j . In this case,

we have for any l ∈ [1, ri ]

pi,l;t0 = p−1
i,l;t2, β

t0
li =−β

t2
li .

Thus we have R = P .
When β t1

i j < 0 (implying β t1
j i > 0), then

Q0/x j = p j;+;t1 x−1
j

∏
k

x
[b

t1
k j ]+

k

and
P|x j←Q0/x j =

ri∏
l=1

(
p+i,l;t1 p

β
t1
j i

j;+;t1 x
−β

t1
j i

j
∏

k ̸= j
x
[β

t1
ki ]++β

t1
j i ·[b

t1
k j ]+

k + p−i,l;t1
∏
k

x
[−β

t1
ki ]+

k

)
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We take the ratio of the two monomials in each factor of the above product to obtain monomials

pi,l;t1 · p
β

t1
j i

j;+;t1 ·
∏
k

x
β

t2
ki

k .

We get exactly the same monomials if we do the same for R. So R and P|x j←Q0/x j only differ by a
monomial factor in NP[x1, . . . , xn]. The case when β t1

i j > 0 is analogous. Hence the hypothesis is checked
and the Laurent phenomenon follows from [Fomin and Zelevinsky 2002, Theorem 3.2]. □

The following Theorem 3.8 is a generalization of the well-known positivity for ordinary cluster
algebras. In the case of ordinary cluster algebras, the positivity was originally conjectured by Fomin
and Zelevinsky [2002]. It has been proved by Lee and Schiffler [2015] when the exchange matrix B
is skew-symmetric and by Gross, Hacking, Keel, and Kontsevich [Gross et al. 2018] when B is more
generally skew-symmetrizable.

Theorem 3.8 (positivity). In a generalized cluster algebra, each of the coefficients in the Laurent
polynomial corresponding to any cluster variable from Theorem 3.7 is a nonnegative integer linear
combination of elements in P. In other words, any cluster variable is an element in NP[x±1 , . . . , x±n ].

Proof. By the separation formula Theorem 3.20 and Remark 3.21, we only need to show the positivity in
the principal coefficients case (to be defined in Definition 3.13). In this case, we prove the positivity in
Theorem 8.12. □

Remark 3.9. Chekhov and Shapiro [2014, Conjecture 5.1] conjectured a positivity for generalized cluster
algebras under a reciprocal condition; see also the formulation in Conjecture 8.13. In the reciprocal case,
this positivity implies Theorem 3.8. We do not know how to show this stronger positivity in general; see
the discussion in Section 8.5.

3.2. Relation to Chekhov and Shapiro’s definition. Chekhov and Shapiro [2014] defined generalized
cluster algebras by considering more general exchange polynomials. Precisely, a labeled seed in that setting
is a triple (x, (αi | i ∈ I ), B), where x and B are the same as in Definition 3.1 and αi = (αi,k ∈P |0≤ k≤ ri )

for i ∈ I . Here we only take P as a multiplicative abelian group. The coefficients αi,k are responsible for
expressing the exchange polynomial defined as

θi (u, v) :=
ri∑

k=0
αi,kuri−kvk

∈ ZP[u, v].

The mutation (x′, (α′i ), B ′)= µk(x, (αi ), B) is defined in the following way:

(1) B ′ = µk(B).

(2) α′k, j = αk,rk− j and for i ̸= k, the coefficients satisfy

α′i, j/α
′

i,0 =

{
α

jβki
k,0 ·αi, j/αi,0 if βik > 0

α
jβki
k,rk
·αi, j/αi,0 if βik ≤ 0.

(3) x ′i = xi for i ̸= k and
x ′k xk = θi (uk;+, uk;−).
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Remark 3.10. In this setting, it does no harm to allow the coefficients αi,k to be elements of ZP, as long
as the above rule (2) is satisfied. For example, one may check that the Laurent phenomenon still holds for
cluster variables.

Now assume the multiplicative abelian group P has an addition ⊕ so that it is a semifield. In our
setting the exchange polynomials are given by θ [ pi ](u, v), thus the coefficients αi, j corresponding to the
coefficients of θ [ pi ](u, v)when expanded as polynomial of u and v. Under Definition 3.2, the polynomials
θ [ pi ](u, v) mutate in a way satisfying the rule (2) above. In fact, when talking about coefficients αi, j/αi,0,
we can normalize our polynomial

θ̃ [ pi ](u, v)=
∏

j∈[1,ri ]

(pi, j u+ v).

So when expanded as a sum of monomials in u and v, the coefficients of θ̃ [ pi ] are
∏

j∈J pi, j for a subset
J ⊂ [1, ri ]. According to the mutation formula in Definition 3.2, under µk , we have∏

j∈J
p′i, j = p|J |βki

k;±
∏
j∈J

pi, j ,

which satisfies the rule (2). So our definition of generalized cluster algebras can be viewed as a special
case of [Chekhov and Shapiro 2014] if we ease the condition αi,k ∈ P into αi,k ∈ ZP.

We note that the above rule (2) in [Chekhov and Shapiro 2014] is not enough to uniquely determine the
coefficients (α′i ) after mutation, whereas the mutation formula in Definition 3.2 is deterministic because
of the normalization condition p+i, j ⊕ p−i, j = 1.

One advantage of our definition is the availability of principal coefficients analogous to [Fomin and
Zelevinsky 2007, Definition 3.1], to be discussed in the next section.

3.3. Principal coefficients. As in [Fomin and Zelevinsky 2007] for ordinary cluster algebras, we have
the notion of principal coefficients for generalized cluster algebras.

Definition 3.11. We say a generalized cluster algebra A is of geometric type if P is a tropical semifield

Trop(sa | a ∈ I ′),

where I ′ is a finite index set.

Proposition 3.12. Let A be a generalized cluster algebra of geometric type. For each seed 6 in A ’s
cluster pattern and i ∈ I , we introduce matrices

C (i)
= C (i)

6 = (c
(i)
aj ) ∈Mat|I ′|×ri (Z)

to encode the coefficients pi, j by columns of C (i):

pi, j =
∏

a∈I ′
s

c(i)aj
a ∈ P.
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Denote by (c(i)aj ) the matrices corresponding to the seed µk(6) for some k ∈ I . Then we have

c(i)aj =



−c(i)aj if i = k;

c(i)aj +

( rk∑
j=1
[−c(k)aj ]+

)
βki if i ̸= k and βik > 0;

c(i)aj +

( rk∑
j=1
[c(k)aj ]+

)
βki if i ̸= k and βik ≤ 0.

Proof. In the tropical semifield Trop(sa | a ∈ I ′), we have the expressions

p+i, j =
∏

a∈I ′
s
[c(i)aj ]+
a and p−i, j =

∏
a∈I ′

s
[−c(i)aj ]+
a .

Then the result follows by spelling out the mutation formula of coefficients ((3) of Definition 3.2). □

The matrices and their dynamics in Proposition 3.12 have led to a remarkable combinatorial phenomenon
in cluster theory known as the sign coherence of c-vectors. We shall explain it below.

Definition 3.13. We say a generalized cluster algebra A has principal coefficients at a vertex t0 ∈ Tn if P

is the tropical semifield
Trop( p) := Trop(pi, j | i ∈ I, j ∈ [1, ri ]),

and the seed 6t0 has coefficients pi = (pi,1, . . . pi,ri ). In this case, the cluster algebra, denoted as
A prin(6t0), is by definition a subalgebra of

Z[x±i;t0, p±i, j | i ∈ I, j ∈ [1, ri ]].

In the case of principal coefficients, the columns of the matrices C (i)
6t

are called generalized c-vectors. At
the initial seed 6 =6t0 with principal coefficients, each C (i)

6 is an identity matrix Iri extended (vertically)
by zeros.

Theorem 3.14 (sign coherence of generalized c-vectors). In the principal coefficients case, for any t ∈Tn ,
for any i ∈ I and any j ∈ [1, ri ], the entries of the j-th column of C (i)

6t
are either all nonnegative or all

nonpositive.

When ri = 1 for each i ∈ I , i.e., in the case of ordinary cluster algebras, each C (i)
= C (i)

6t
is just a

column vector with n entries, altogether forming a matrix C = (C (1), . . . ,C (n)). They are the so-called
C-matrices in [Fomin and Zelevinsky 2007] whose columns are c-vectors. In this case, Theorem 3.14 then
says that each column of any C is either nonnegative or nonpositive. This is well-known in the theory of
cluster algebras as the sign coherence of c-vectors, which has already been proved by Derksen, Weyman
and Zelevinsky [Derksen et al. 2010] for skew-symmetric exchange matrices and by Gross, Hacking,
Keel and Kontsevich [Gross et al. 2018] for skew-symmetrizable ones. We will see in Proposition 3.17
that Theorem 3.14 follows from the already established sign coherence of c-vectors.

We set the index set
I ′ =

⊔
i∈I

I ′i , I ′i := {(i, j) | j ∈ [1, ri ]}.
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Lemma 3.15. Let 6 =6t0 be a seed with principal coefficients. We have the following properties for the
matrices C (i)

6t
for any seed 6t , t ∈ Tn .

(1) Let i, k ∈ I such that k ̸= i . Then for any a, a′ ∈ I ′k and any 1≤ j, j ′ ≤ ri , we have

c(i)a, j = c(i)a′, j ′ .

(2) Let i ∈ I . We have
c(i)(i,1),1 = c(i)(i,2),2 = · · · = c(i)(i,ri ),ri

= c± 1

and
c(i)(i,k), j = c for k ̸= j

for some integer c.

Proof. We prove this lemma by induction on the distance from t to t0 in Tn . The base case is for C (i)
6

where the entries in (1) are all zeroes and the ones in (2) are 1 when k = j and 0 otherwise. Then the
properties stated in the lemma are preserved under the mutation formula given in Proposition 3.12. □

Let P be the tropical semifield Trop(pi | i ∈ I ). There is a group homomorphism

π : P→ P, pi, j 7→ pi .

For t ∈ Tn , denote the image of pi, j;t in P by pi;t (which is independent of j by Lemma 3.15) and the
image of

∏ri
j=1 pi, j;t in P by pi;t = pri

i;t .

Lemma 3.16. The elements pi;t behave in the following way under the mutation µk . If t ′ k
−− t and we

write p′i = pi;t ′ and pi = pi;t , then we have

p′i =


p−1

i if i = k;
pi · (p−k )

bki if i ̸= k and βik > 0;
pi · (p+k )

bki if i ̸= k and βik ≤ 0.

So they behave under mutations in the same way as pi,1;t in the case where ri = 1, i ∈ I , i.e., the case of
ordinary cluster algebras.

Proof. By the generalized mutation formula of coefficients, we have

ri∏
j=1

p′i, j =



ri∏
j=1

p−1
i, j if i = k;

ri∏
j=1

pi, j ·

( rk∏
j=1

p−k, j

)bki
if i ̸= k and βik > 0;

ri∏
j=1

pi, j ·

( rk∏
j=1

p+k, j

)bki
if i ̸= k and βik ≤ 0.

By the matrix description of the elements pk, j in Lemma 3.15, we have that
rk∏

j=1
p±k, j =

( rk∏
j=1

pk, j

)±
∈ P, π

( rk∏
j=1

p±k, j

)
= p±k ∈ P.

The result then follows. □
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Proposition 3.17. The sign coherence of c-vectors implies the sign coherence of generalized c-vectors.

Proof. In the case where all ri = 1, the sign coherence then says each column of the matrix C =
(C (1), . . . ,C (n)) is either nonnegative or nonpositive.

On the other hand, by Lemma 3.16, the elements pi behave under mutations in the exact same way as
the coefficients in seeds when all ri = 1 (thus we only have one pi for each i). Thus the column C (i)

of 6t serves as the coordinates of pi;t in terms of the initial coefficients pi . Then the sign coherence tells
that one of p+i and p−i is 1. It then follows from Lemma 3.15 that the corresponding p+i, j or p−i, j for each
j ∈ [1, ri ] is also 1, hence the generalized sign coherence. □

The following lemma will be useful later.

Lemma 3.18. In the principal coefficient case, for any t ∈ Tn , the set of coefficients in seed 6t

{pi, j;t | i ∈ I, j ∈ [1, ri ]}

form a Z-basis of P∼= Zd where d =
∑

i∈I ri .

Proof. This follows directly from the mutation formula Proposition 3.12 and Lemma 3.15. □

3.4. Separation formula. In this section, we describe the separation formula for generalized cluster
variables, which can be derived in the exact same way as [Fomin and Zelevinsky 2007, Theorem 3.7], so
we omit the proof.

Definition 3.19. Let A prin(6t0) be a generalized cluster algebra with principal coefficients at6t0=(x, p,B).
We define the rational function

Xl;t ∈Qsf(x, p)

corresponding to the subtraction-free rational expression of the cluster variable xl;t by iterating exchange
relations. Here (x, p) denote the set of all variables in x and p.

Define the rational function

Fl;t( p)= Xl;t((1, . . . , 1), p) ∈Qsf( p).

In general, for a subtraction free expression F in Qsf(x1, . . . , xn) and an arbitrary semifield P, we use
the notation

F |P (y1, . . . yn) ∈ P

for the evaluation at xi = yi . This evaluation is well-defined (i.e., independent of the expression used)
because of the universal property of the semifield Qsf(x1, . . . , xn); see Section 2.1.

Theorem 3.20 (cf. [Fomin and Zelevinsky 2007, Proposition 3.6, Theorem 3.7]).

(1) We have

Xl;t ∈ Z[x±i ; pi, j | i ∈ I, j ∈ [1, ri ]], Fl;t ∈ Z[pi, j | i ∈ I, j ∈ [1, ri ]].
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(2) Let A be a generalized cluster algebra over an arbitrary semifield P′, with an initial seed 6t0 =

(x, p, B). Then the cluster variables in A can be expressed in the initial cluster as

xl;t =
Xl;t |F (x, p)

Fl;t |P′ ( p)
,

where F is the ambient field for A .

Remark 3.21. Suppose the positivity for xl;t in the principal coefficients case (where we denote the
semifield by P) has been established. This means Xl;t has a subtraction free expression as a Laurent
polynomial (i.e., whose coefficients are in NP). Then the evaluation Xl;t |F (x, p) also has positive
coefficients in NP′, while Fl;t |P′ ( p) is an element in P′. Thus it follows by Theorem 3.20 that xl;t has
positive coefficients in the case of arbitrary P′.

3.5. Cluster algebras with specialized coefficients. We fix a field k of characteristic 0 and consider the
case of geometric coefficients. In this case, the generalized cluster algebra A (6) for 6 = (x, p, B) can
be viewed as a subring of kP[x±1 , . . . , x±n ] where kP is the group algebra of P over k.

Let λ :P→ k∗ be a group homomorphism (which we will later refer to as an evaluation). It extends to
a k-algebra homomorphism

λ : kP[x±1 , . . . , x±n ] → k[x±1 , . . . , x±n ].

We denote the image of A (6)⊗k by A (6, λ). So we have a family of k-algebras parametrized by (k∗)l

if the free abelian group P is of rank l. Each A (6, λ) is in fact the k-subalgebra generated by cluster
variables (with coefficients specialized by λ) within k[x±1 , . . . , x±n ]. These are what we call (generalized)
cluster algebras with specialized coefficients.

We point out that an ordinary cluster algebra with trivial coefficients (i.e., when P is trivial) is actually
a generalized cluster algebra with specialized coefficients. Suppose B is a skew-symmetrizable matrix and
let ri be the gcd of the i-th column (if that column is nonzero). Let A prin(6) be the generalized cluster
algebra with principal coefficients where 6 has exchange matrix B. Choose a group homomorphism
λ : Trop( p)→ k∗ such that the specialized exchange polynomials equals the usual cluster exchange
binomial, i.e.,

ri∏
j=1
(λ(pi, j )u+ v)= uri + vri .

Of course such λ always exists assuming k is algebraically closed. Then it is easy to check that every
generalized mutation becomes an ordinary mutation: if t k

−− t ′,

xk;t ′ = x−1
k;t

( ∏
i∈I

x
[bt

ik ]+
i +

∏
i∈I

x
[−bt

ik ]+
i

)
.

Thus the algebra A prin(6, λ) has the exact same cluster variables as the ordinary cluster algebra with
trivial coefficients, and can thus be viewed as an ordinary cluster algebra.
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t B t p1,1;t p2,1;t p2,2;t x1;t x2;t

0
[ 0

1
−2
0

]
t11 t21 t22 A1 A2

1
[ 0
−1

2
0

]
t−1
11 t21 t22 A−1

1 (1+ t11 A2) A2

2
[ 0

1
−2
0

]
t−1
11 t−1

21 t−1
22 A−1

1 (1+ t11 A2)
A−1

2

(
1+ t21 A−1

1 (1+ t11 A2)
)

×
(
1+ t22 A−1

1 (1+ t11 A2)
)

3
[ 0
−1

2
0

]
t11 t−1

11 t−1
21 t−1

11 t−1
22

A1 A−1
2

(
(1+ t21 A−1

1 )(1+ t22 A−1
1 )

+t11t21t22 A−2
1 A2

) A−1
2

(
1+ t21 A−1

1 (1+ t11 A2)
)

×
(
1+ t22 A−1

1 (1+ t11 A2)
)

4
[ 0

1
−2
0

]
t−1
11 t−1

21 t−1
22 t11t21 t11t22

A1 A−1
2

(
(1+ t21 A−1

1 )(1+ t22 A−1
1 )

+t11t21t22 A−2
1 A2

) A−1
2 (t21+ A1)(t22+ A1)

5
[ 0
−1

2
0

]
t11t21t22 t−1

22 t−1
21 A1 A−1

2 (t21+ A1)(t22+ A1)

6
[ 0

1
−2
0

]
t11 t22 t21 A1 A2

Table 1. Labeled seeds of A prin.

3.6. An example in type B2 with principal coefficients. We consider A prin(x, p, B) with principal
coefficients for B =

[0
1
−2
0

]
which is of type B2 in the finite type classification [Fomin and Zelevinsky

2003; Chekhov and Shapiro 2014, Theorem 2.7]. We write xi;t0 = Ai , and pi, j;t0 = ti j . For the subgraph

t0
1
−− t1

2
−− t2

1
−− t3

2
−− t4

1
−− t5

2
−− t6

of T2, we have the associated labeled seeds calculated in Table 1
We note that the 6t6 is not exactly the same as the 6t0 but up to a switch of p2,1 and p2,2.

3.7. Generalized Y-seeds. We define generalized Y -seeds (with coefficients) and their mutations. The
formulation to including coefficients in Y -seeds comes from [Bossinger et al. 2020]. The following
definition is a generalization of [Bossinger et al. 2020, Definition 2.15], which is an enhancement of a
Y -seed of [Fomin and Zelevinsky 2007].

Definition 3.22. A generalized labeled Y -seed (with coefficients) 1 is a triple ( y, q, B), where

• q= (q1, . . . , qn) is an n-tuple of ri -tuples qi = (qi,1, . . . qi,ri ) of elements in a semifield P for positive
integers ri , 1≤ i ≤ n;

• y = {y1, . . . , yn} is a collection of elements in some universal semifield QPsf(u1, . . . , ul);

• B is a left skew-symmetrizable integer matrix such that the i-th column is divisible by ri for every i .
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Definition 3.23. For k ∈ {1, . . . , n}, we define the mutation of a Y -seed ( y, q, B) in direction k as a new
Y -seed µk( y, q, B) := ((y′i ), (q

′

i ), B ′) in the following way:

B ′ = µk(B); (3-1)

q ′k, j = q−1
k, j for j ∈ [1, rk];

for i ̸= k, j ∈ [1, ri ], q ′i, j =


qi, j ·

( rk∏
l=1

q−k,l
)−βik

if −βki > 0,

qi, j ·

( rk∏
l=1

q+k,l
)−βik

if −βki ≤ 0,
(3-2)

or equivalently

for i ̸= k, q ′i, j = qi, j

rk∏
l=1
(1⊕ qsgn(−βki )

k,l )βik ;

y′i =

yi

rk∏
l=1
(qsgn(βik)

k,l ysgn(βik)

k + qsgn(−βik)

k,l )βik if i ̸= k,

y−1
k if i = k.

(3-3)

As in Lemma 3.3, it is straightforward to check that the mutation µk on a generalized Y -seed is
involutive in the same direction.

Definition 3.24. A generalized Y -pattern is an association

t 7→1t = ( yt , qt , B t)

to every vertex t ∈ Tn a generalized labeled Y -seed 1t such that if t and t ′ are connected by an edge
labeled by k ∈ I , then we have

1t ′ = µk(1t).

Definition 3.25. We say that a generalized Y -pattern has principal coefficients at a vertex t0 ∈ Tn if P is
the tropical semifield

Trop(qi, j;t0 | i ∈ I, j ∈ [1, ri ]).

Given a Y -pattern, the elements yi;t for t ∈ Tn are called Y -variables.

Remark 3.26. In the case that for any i ∈ I ,

qi,1 = qi,2 = · · · = qi,ri ,

a generalized Y -seed with coefficients as in Definition 3.22 becomes a labeled Y -seed with coefficients in
[Bossinger et al. 2020]. In this case, the mutation formula of Y -variables is independent of the choice ri .
So we get back to the nongeneralized version by letting the coefficients qi, j , j ∈ [1, ri ], equal. While
in the cluster case, one recovers the nongeneralized seed mutation by choosing ri = 1. This asymmetry
suggests that our generalization is a natural one.
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To the best knowledge of the author, the generalized version of Y -patterns has not been considered in
the literature. It is interesting to see if these generalized patterns appear naturally anywhere.

4. Generalized cluster varieties

Cluster varieties were introduced by Fock and Goncharov [2009], giving a geometric view to cluster
algebras (of geometric types). We follow [Gross et al. 2015] to define relevant notions such as fixed data
and seeds. However, in order to deal with generalized coefficients, some new gadgets are needed.

Definition 4.1. We recall the fixed data 0 from [Gross et al. 2015]. The fixed data 0 consists of

• a lattice N of finite rank with a skew-symmetric bilinear form ω : N × N →Q;

• an unfrozen sublattice Nuf ⊂ N , a saturated sublattice of N ;

• an index set I = {1, . . . , rank N } and a subset Iuf = {1, . . . , rank Nuf};

• positive integers di for i ∈ I with greatest common divisor 1;

• a sublattice N ◦ ⊂ N of finite index such that ω(Nuf, N ◦)⊂ Z, ω(N , Nuf ∩ N ◦)⊂ Z;

• M = Hom(N ,Z), M◦ = Hom(N ◦,Z);

4.1. Generalized A-cluster variety.

Definition 4.2. Given fixed data 0, an A-seed with (generalized) coefficients is a pair s= (e, p) consisting
of a seed e= (ei )i∈I which is a labeled collection of elements in N and a labeled collection of tuples of
coefficients p= ( pi )i∈Iuf , where pi = (pi, j ) j∈[1,r j ] and pi, j belongs to some tropical semifield P such that

(1) {ei | i ∈ I } is a basis for N ;

(2) {ei | i ∈ Iuf} is a basis for Nuf ;

(3) {di ei | i ∈ I } is a basis for N ◦;

(4) for i ∈ Iuf, the elements wi := ω(−, di ei )/ri belong to M .

For such a seed s, we define two matrices B = B(s)= (bi j ) and B̃ = B̃(s)= (βi j ) by setting

bi j := ω(ei , d j e j ) and βi j := ⟨ei , w j ⟩ = bi j/r j .

Definition 4.3. Given s an A-seed with coefficients, for k ∈ Iuf, we define the mutation in direction k,
µk(s)= (e′, p′) by

e′i =
{

−ek if i = k,
ei + [⟨ei ,−rkwk⟩]+ek if i ̸= k;

and
p′k, j = p−1

k, j for j ∈ [1, rk];

for i ̸= k, j ∈ [1, ri ], p′i, j =

{
pi, j · (pk;−)

βki if βik > 0,
pi, j · (pk;+)

βki if βik ≤ 0.
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Remark 4.4. If we write w′i = ω
(
−,

di
ri

e′i
)

as the mutations of wi , then they are given by

w′i =

{
−wk, if i = k;

wi + [⟨rkek, wi ⟩]+wk, if i ̸= k.

Denote the dual basis of (ei ) by (e∗i ) and the dual of (e′i )= µk(e) by (e′,∗i ). We have

e′,∗i =

{
−e∗k +

∑
j
[⟨e j ,−rkwk⟩]+e∗j if i = k;

e∗i if i ̸= k.

If there is no confusion, we will call an A-seed with coefficients simply a seed.
Let R = kP, the group algebra of P over the ground field k. To any A-seed s, we associate a copy of

the R-torus TN ,s(R) := Spec(k[M]⊗k R).

Definition 4.5. To the mutation µk from s to µk(s), there is an associated birational morphism (over R)

µk : TN ,s(R) 99K TN ,µk(s)(R), µ∗k(z
m)= zm f −⟨ek ,m⟩

k ,

where

fk :=
rk∏

j=1
(p−k, j + p+k, j z

wk ) ∈ R[M].

We call this birational transformation the A-cluster mutation associated to the mutation µk of seeds.

Definition 4.6. We define the oriented rooted tree Tn (where n = |Iuf|) as in [Gross et al. 2015]. It is the
infinite tree generated from a root v0 such that

(1) v0 has outgoing edges labeled by Iuf = {1, . . . , n};

(2) any other vertex has one unique incoming edge, and outgoing edges labeled by Iuf.

Let v0 ∈ Tn be the root. Then for any other vertex v ∈ Tn , there is a unique oriented path from v0 to v.
We associate a seed s to the root v0, the unique path from v to v0 determines a seed sv by applying the
mutations in directions of the labelings in the path to the initial seed s. Therefore we have an association
v 7→ sv for v ∈ Tn \ {v0} and v0 7→ s such that for an edge v k

−→ v′ in Tn , then

sv′ = µk(sv).

Suppose the unique path from v0 to v walks through edges labeled by k1, k2, . . . , kl . There is then the
birational map

µv0,v := µkl ◦ · · · ◦µk2 ◦µk1 : TN ,s(R) 99K TN ,sv (R).

For arbitrary two vertices v and v′ in Tn , there is the birational map

µv,v′ := µv0,v′ ◦µ
−1
v0,v
: TN ,sv (R) 99K TN ,sv′ (R).

These birational maps surely satisfy the cocycle condition. We use the following lemma to glue TN ,sv
together.
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Lemma 4.7 [Bossinger et al. 2020, Lemma 3.10; Gross et al. 2015, Proposition 2.4]. Let I be a set
and {Si | i ∈ I } be a collection of integral separated schemes of finite type over a locally Noetherian
ring R, with birational maps (of R-schemes) fi j : Si 99K S j for all i, j , verifying the cocycle condition
f jk ◦ fi j = fik as rational maps and such that fi i is the identity map. Let Ui j ⊂ Si be the largest open
subscheme such that fi j :Ui j → fi j (Ui j ) is an isomorphism. Then there is an R-scheme

S =
⋃
i∈I

Si

obtained by gluing the Si along the open sets Ui j via the maps fi j .

Definition 4.8. Let 0 be fixed data and s be an A-seed with coefficients. We apply Lemma 4.7 to glue
together the collection of tori indexed by Tn to get the generalized A-cluster variety associated to s (as
an R-scheme)

As =A0,s :=
⋃
v∈T

TN ,sv (R).

We now explain how to obtain a generalized cluster pattern from As, justifying the name generalized
A-cluster variety. We assume Nuf = N , thus Iuf = I .1

Recall we have the association v 7→ sv = µv0,v(s) for v ∈ Tn . We write sv = (ev, pv) where ev =
(ei;v | i ∈ I ), pv = ( pi;v | i ∈ I ) and pi;v = (pi, j;v | j ∈ [1, ri ]).

Sending v0 to any vertex t0 in the n-regular tree Tn gives a unique surjective map

π : Tn→ Tn, v0 7→ t0

such that the labeling on edges is preserved.
For any seed v ∈ Tn , there is the corresponding labeled seed with coefficients (in the sense of

Definition 3.1)
6v =6(sv) := (xv, pv, Bv),

where
xi,v := µ

∗

v0,v
(ze∗i;v ) ∈QP(x1, . . . , xn), bvi j := ω(ei;v, d j e j;v),

where xi = xi,v0 .

Lemma 4.9. If two vertices v and v′ vertices of Tn descend to the same vertex in Tn , i.e., π(v)= π(v′),
then their corresponding labeled seeds with coefficients are identical, i.e., 6v =6v′ .

Proof. Suppose the unique path in Tn from v0 to v goes through edges labeled by k1, . . . , kl in order. We
show in the following by induction that

µkl ◦ · · · ◦µk1(6v0)=6v,

where the operation µk is the mutation in direction k of labeled seeds with coefficients in the sense of
Definition 3.2.

1This is because we do not define cluster patterns with frozen directions. This can be done by making mutations only available
at a subset of a given cluster, leaving the rest variables frozen. However, one can always treat the frozen variables as making up
coefficients in a cluster pattern.
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Let v1
k
−→ v2 be in Tn . Then one checks Bv2 = µk(Bv1) using the fact that ev2 = µk(ev1), which is

standard from [Gross et al. 2015]. The coefficients parts pv1 and pv2 are related by the mutation µk by
definition. So we only need to check that xv1 and xv2 are also related by µk .

Note that µ∗v0,v2
= µ∗v0,v1

◦µ∗k . So we have for i ̸= k

xi;v2 = µ
∗

v0,v1
(µ∗k(z

e∗i;v2 ))= µ∗v0,v1
(ze∗i;v1 )= xi;v1,

xk;v2 = µ
∗

v0,v1
(µ∗k(z

e∗k;v2 ))

= µ∗v0,v1

(
z−e∗k;v1+

∑
[−b

v1
ik ]+e∗i;v1

rk∏
j=1
(p−k, j;v1

+ p+k, j;v1
zwk;v1 )

)
= µ∗v0,v1

(
z−e∗k;v1

rk∏
j=1
(p−k, j;v1

zw
−

k;v1 + p+k, j;v1
zw
+

k;v1 )
)

= µ∗v0,v1
(z−e∗k;v1 )

rk∏
j=1

(
p−k, j;v1

µ∗v0,v1
(zw

−

k;v1 )+ p+k, j;v1
µ∗v0,v1

(zw
+

k;v1 )
)

= x−1
k;v1

rk∏
j=1

(
p−k, j;v1

∏
i∈I

x [−βik ]+
i;v1

+ p+k, j;v1

∏
i∈I

x [βik ]+
i;v1

)
.

The only unexplained notation in the above equations is that for any w =
∑

i∈I ai e∗i ∈ M , we write

w− :=
∑
i∈I
[−ai ]+e∗i and w+ :=

∑
i∈I
[ai ]+e∗i .

Now we have checked that µk(6v1) = 6v2 . By induction on the distance from v to the root v0, we
conclude that µkl ◦· · ·◦µk1(6v0)=6v for any v ∈Tn . Since µk is involutive, we can reduce the sequence
(k1, · · · , kl) by deleting pairs of consecutive identical indices until there is none. So 6v only depends
on the reduced sequence of edge labels from v0 to v. Now notice that two vertices v and v′ in Tn have
the same projection t in Tn if and only if they have the same reduced sequence of edge labels from v0,
meaning the same labeled seed with coefficients 6t :=6v =6v′ . □

Proposition 4.10. According to the above lemma, we have that the labeled seeds 6v and 6v′ are equal if
π(v)= π(v′)= t ∈ Tn . So we can denote them all by 6t . The association t 7→6t for every t ∈ Tn is a
cluster pattern.

Proof. Suppose the unique path from t0 to some t ∈ Tn walks through edges in order of k1, . . . , kl . Then
already in the proof of the above lemma, we have

6t = µkl ◦ · · · ◦µk1(6t0).

This association by definition gives a cluster pattern. □

Definition 4.11. The (generalized) upper cluster algebra A (s) (of an A-seed s with coefficients) is
defined to be the R-algebra

H 0(As,OAs)=
⋂
v∈Tn

H 0(TN ,sv (R),OTN ,sv (R)),

the ring of regular functions on the (generalized) A-cluster variety As.
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By definition the upper cluster algebra is the algebra of all Laurent polynomials that remains Laurent
polynomials after an arbitrary sequence of mutations. It follows from the Laurent phenomenon that all
cluster variables are elements in the upper cluster algebra, thus the inclusion

A (s)⊂ A (s),

where the former denotes the subalgebra generated by cluster variables, i.e., the cluster algebra (over R).
The notion of principal coefficients can be easily translated into the current setting.

Definition 4.12. An A-seed s is said to have principal coefficients if the associated labeled seed 6(s) has
principal coefficients.

The associated cluster pattern with t0 7→ 6(s), t 7→ 6(sv) (where t = π(v)) then has principal
coefficients at t0. In this case, we denote the corresponding cluster variety by Aprin

s .

4.2. Generalized X -cluster variety. Given fixed data 0 as in the last section, we define the notion of
(generalized) X -seeds with coefficients.

Definition 4.13. An X -seed with (generalized) coefficients s = (e, q) is the same as an A-seed. We use
the symbol q instead of p to stress that it is an X -seed.

What distinguish X -seeds with A-seeds is the mutation.

Definition 4.14. Given an X -seed s = (e, q), we define the mutation in direction k, µk(s)= (e′, q ′) by

e′i =
{

−ek if i = k,
ei + [⟨ei ,−rkwk⟩]+ek if i ̸= k;

and

q ′k, j = q−1
k, j for j ∈ [1, rk];

for i ̸= k, j ∈ [1, ri ], q ′i, j =

{
qi, j · (qk;−)

−βik if −βki > 0,
qi, j · (qk;+)

−βik if −βki ≤ 0,

So the pure seed part e behaves in the same way under mutation as in an A-seed while the coefficients
part q mutates differently, but same as the coefficients in a labeled Y -seed. Roughly, if in A-seeds, the
matrix B governs the mutation of coefficients, then in X -seeds, −BT does the job.

Definition 4.15. Let s = (e, q) be an X -seed with coefficients. Then there is the associated X -cluster
mutation

µk : TM(R) 99K TM(R), µ∗k(z
n)= zn

·

( rk∏
l=1
(q−k,l + q+k,l z

ek )
)−⟨n,−wk⟩

,

where TM(R) is the R-torus Spec(k[N ]⊗ R).
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Definition 4.16. Let s be an X -seed for 0. Then there is a unique association v 7→ sv for every v ∈ Tn

such that v0 7→ s and adjacent associated seeds are related by mutations of X -seeds in corresponding
directions. Define the generalized X -cluster variety associated to s to be the R-scheme

Xs = X0,s :=
⋃
v∈Tn

TM,sv (R)

obtained by gluing TM,sv (R) via X -cluster mutations using Lemma 4.7.

Write sv = ((ei;v), (qi;v)). Let us keep track of the monomials zei;v ∈ k[N ] (instead of ze∗i;v in the
A-case). We define

yi;v := µ
∗

v,v0
(zei;v ) ∈ Frac(k[N ]⊗ R).

It turns out that these yi;v are the Y -variables of the Y -pattern induced by the X -seed s described as
follows. We take s as the initial seed. Analogous to the A-situation, any vertex v ∈ Tn descends to a
vertex t = π(v) ∈ Tn .

Proposition 4.17. For v ∈ Tn , define the generalized labeled Y -seed 1v = ((yi;v), (qi;v), Bv). Then
we have 1v = 1v′ if π(v) = π(v′) = t ∈ Tn . Then the association t 7→ 1t for t ∈ Tn is a generalized
Y -pattern with coefficients where 1t :=1v for any v such that t = π(v).

Proof. We first note that the Y -variables yi;v live in the universal semifield QPsf(y1, . . . , yn) where
yi = zei are the initial Y -variables. The proof is completely analogous to Proposition 4.10. We leave the
details to the reader. □

4.3. Special coefficients. By construction, given an A-seed (resp. X -seed) s, there is the flat family

πA :As→ Spec R (resp. πX : Xs→ Spec R).

Let λ be a k-point of Spec R. Then the special fiber π−1(λ) is a k-scheme and can be viewed as a
generalized cluster variety with special coefficients, denoted by As,λ (resp. Xs,λ). They are also glued
together by tori via birational morphisms (namely the A- or X -mutations specialized at λ)

As,λ =
⋃
v∈Tn

TN ,v, Xs,λ =
⋃
v∈Tn

TM,v.

The A-type varieties (resp. X -type varieties) lead to cluster patterns (resp. Y -patterns) with specialized
coefficients. We have as before in the A-case the inclusion of algebras

A (s, λ)⊂ A (s, λ) := H 0(As,λ,OAs,λ).

4.4. Cluster duality. The cluster duality of Fock and Goncharov predicts, in the ordinary case, that the
varieties As and Xs are dual in the sense that the upper cluster algebra A (s) has a basis parametrized
by the tropical set X trop(Z) (and vice versa). Note here s is viewed as a seed without coefficients so
we do not need to distinguish between A- and X -seeds. Strictly speaking, this statement is not true
as in some cases Xs may have too few regular functions [Gross et al. 2015]. This duality (named the
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Fock–Goncharov full conjecture) is the main subject of study (on a precise modified formulation and
when it is true) in [Gross et al. 2018].

Our point of view of is that it is more natural to include generalized cluster varieties in cluster dualities,
which we will demonstrate in the principal coefficients case. We denote the X -cluster variety with
principal coefficients by X prin

s , where the coefficient group is the tropical semifield

P= Trop(qi j | i ∈ I, j ∈ [1, ri ]).

The scheme X prin
s is over Spec(R) where R = kP. There are evaluations λ sending qi j to λi j ∈ k∗. Each λ

specifies an X -cluster variety with special coefficients as in the following diagram:

X prin
s,λ X prin

s

Spec(k) Spec(R)

πX

λ

With a general choice coefficients, X prin
s,λ should be considered mirror dual to the family

πA :Aprin
s → Spec(R),

where s is viewed as an A-seed with coefficients. We shall not fully justify this statement in this paper,
but instead will show that the family πA : A

prin
s → Spec(R) (as well as the generalized cluster algebra

A prin(s)) can be reconstructed from X prin
s,λ , through a consistent wall-crossing structure (or scattering

diagram) Ds associated to X prin
s,λ ; see Section 8.

5. Toric models and mutations

This section is a generalization of [Gross et al. 2015, Section 3] aiming for generalized cluster varieties. A
log Calabi–Yau pair (X, D) is a smooth projective variety X (over an algebraically closed field k) with a
reduced simple normal crossing divisor D such that K X + D = 0 where K X is the canonical divisor of X .
A log Calabi–Yau variety U is the interior of a log Calabi–Yau pair (X, D), i.e., U = X \D. Described in
[Gross et al. 2015], particularly relevant in cluster theory are log Calabi–Yau pairs (X, D) obtained from
a blow-up π : X→ X6 where X6 is the toric variety associated to a fan 6 in Rn . The blow-up is along a
hypersurface in the toric boundary of X6 , and D is given by the strict transform of the toric boundary.
We will see that both generalized X - and A-varieties can be realized as log Calabi–Yau varieties obtained
this way (up to codimension two subsets).

5.1. Toric models. Fix a lattice N ∼= Zn and let M be its dual. Suppose for i ∈ I = [1, l] we have pairs
of vectors (ei , wi ) ∈ N ×M such that ⟨ei , wi ⟩ = 0. We assume that all nonzero ei are primitive, but some
of them may equal. For each i , we fix a positive integer ri . We also take functions (elements in k[M])

fi = ai,0+ ai,1zwi + · · ·+ ai,ri z
riwi

with nonzero ai,0 and ai,ri .
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We construct in below a log Calabi–Yau variety U3 using the data

3 := ((ei )i∈I , (wi )i∈I , ( fi )i∈I ).

The following construction is what we mean by a toric model for U3 and we call such3 a toric model data.

Construction 5.1 (cf. [Gross et al. 2015, Construction 3.4]). Given the data 3, consider the fan

6 =63 := {R≥0ei | i ∈ I } ∪ {0}

in NR. Let X6 be the toric variety defined by 6, and Di be the irreducible toric boundary divisor
corresponding to R≥0ei . Note that since ⟨ei , wi ⟩ = 0, zwi does not vanish on Di . Let Zi be the zero locus
of fi on Di , i.e., the closed subscheme V ( fi )∩ Di , which is a hypersurface. Blow up X6 along

⋃l
i=1 Zi

to obtain

π : X̃6→ X6.

Let D̃i be the strict transform of Di in X̃6 . Then the open subscheme U3 := X̃6 \
⋃

i D̃i is a log
Calabi–Yau variety.

Definition 5.2. For k ∈ I , we say a toric model data 3 k-mutable if the pairs (ei , wi ) satisfy the condition

⟨ei , wk⟩ = 0=⇒ ⟨ek, wi ⟩ = 0

for any i ∈ I .

We define mutations of a k-mutable toric model data.

Definition 5.3. Let 3 be a k-mutable toric model data and 3′ = ((e′i ), (w
′

i ), ( f ′i )) be another set of data.
Write βi j = ⟨ei , w j ⟩. We write 3′ = µk(3) (or say they are µk-equivalent) if they satisfy the following
conditions:

• e′k =−ek and w′k =−w
′

k ;

• if i ̸= k and βik ≥ 0, e′i = ei and w′i = wi ;

• if i ̸= k and βik ≤ 0, e′i = ei −⟨ei , rkwk⟩ek and w′i = wi +⟨ek, wi ⟩rkwk ;

and if writing f ′i = a′i,0+ a′i,1zw
′

i + · · ·+ a′i,ri
zriw

′

i ,

• a′k, j = ak,rk− j for j ∈ [1, rk];

• for i ̸= k, j ∈ [1, ri ],

a′i, j/a
′

i,0 =

{
(ak,0)

jβki · ai, j/ai,0 if βik > 0,
(ak,rk )

jβki · ai, j/ai,0 if βik ≤ 0.
(5-1)

We note that the mutation µk is not deterministic for the ( fi ) part, and is not involutive for the
((ei ), (wi )) part.
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Applying Construction 5.1 to 3′ = µk(3), we obtain another log Calabi–Yau variety U3′ . Note that
both U3 and U3′ contain the torus TN . Consider the birational morphism

µk : TN 99K TN , µ∗k(z
m)= zm

· f −⟨m,ek⟩
k .

The following theorem is a generalization of the results in [Gross et al. 2015, Section 3].

Theorem 5.4. The birational morphismµk extends to an isomorphismµk :U3→U3′ outside codimension
two subsets if dim V ( fk)∩ Zi < dim Zi whenever ⟨ei , wk⟩ = 0 for i ∈ I .

Proof. We first make up some auxiliary varieties. Let 6+ =6 ∪ {R≥0e′k} and 6− =6′ ∪ {R≥0ek}. We
can blow up X6+ (resp. X6−) in the same way as we do so for Xσ (resp. X6′) to obtain X̃+ (resp. X̃−).
Removing the strict transforms of the toric boundaries, we can still get U3 and U3′ . Following Lemma 3.6
in [Gross et al. 2015], we show that µk extends to an isomorphism (outside codimension two subsets)
between X̃+ and X̃−, mapping the toric boundary of one to that of the other.

Suppose we only blow up X6+ along Zk and X6− along Z ′k . Then the blow-up X̃+ has a covering of
open subsets

X̃+ = P̃+ ∪
( ⋃

i ̸=k
Ui

)
(5-2)

where P̃+ is the blow-up along Zk of the toric variety of the fan {R≥0e′k,R≥0ek} and Ui is the standard
open toric chart corresponding to the ray R≥0ei . Replacing Ui with Ui \ V ( fk) for i ̸= k, (5-2) is still a
covering but up to codimension two (with V ( fk)∩ Di missing). More precisely, fk is a regular function
on Ui if ⟨wk, ei ⟩ ≥ 0. In this case, V ( fk)∩ Di is just the zero locus of the restriction of fk on Di , i.e.,
V ( fk)∩ Di . As zwk vanishes on Zi when ⟨wk, ei ⟩> 0, V ( fk)∩ Di =∅ since fk has nonzero constant
term. When ⟨wk, ei ⟩< 0, then V ( fk)∩Di = V (z−rkwk fk)∩Di where z−rkwk fk = f ′k is a regular function
on Ui . So V ( fk) ∩ Di is still empty since f ′k has nonzero constant. Therefore we only fail to cover
V ( fk)∩ Di when ⟨wk, ei ⟩ = 0, which is a codimension two subset.

By Lemma 3.2 of [Gross et al. 2015], µk extends to a regular isomorphism from P̃+ to P̃−. Here P̃−

is the blow-up along Z ′k of the toric variety defined by the fan {R≥0e′k,R≥0ek}. We check that µk also
extends to a regular isomorphism from Ui \V ( fk) to U ′i \V ( f ′k). Note that these are affine schemes so we
check that µ∗k extends to an isomorphism between their rings of regular functions. There are two cases.

(1) If ⟨ei , wk⟩ ≥ 0, then e′i = ei . Note that fk is a regular function on Ui as well as on U ′i . Thus we have

Ui \ V ( fk)=Ui \ V ( fk) and U ′i \ V ( f ′k)=U ′i \ V ( fk).

For ⟨m, ei ⟩ ≥ 0, zm defines a regular function on U ′i and

µ∗k(z
m)= zm f −⟨m,ek⟩

k

is a regular function on Ui \ V ( fk).
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(2) If ⟨ei , wk⟩ < 0, then e′i = ei − ⟨ei , rkwk⟩ek . Instead of fk , the function f ′k = z−rkwk fk is a regular
function on Ui and V ( fk)= V ( f ′k). For ⟨m, e′i ⟩ ≥ 0 and zm a regular function on U ′i , we have

µ∗k(z
m)= zm f −⟨m,ek⟩

k = zm−rkwk⟨m,ek⟩( f ′k)
−⟨m,ek⟩.

We check that ⟨m − rkwk⟨m, ek⟩, ei ⟩ = ⟨m − rkwk⟨m, ek⟩, e′i + ⟨ei , rkwk⟩ek⟩ = ⟨m, e′i ⟩ > 0. Thus
µ∗k(z

m) is a regular function on Ui \ V ( fk)=Ui \ V ( f ′k).

Therefore µ∗k is a morphism between regular functions. In all the cases above, one checks that sending zm

to zm f ⟨m,ek⟩
k is the inverse of µ∗k . Summarizing, we have so far proven that there is an isomorphism

µk :U+ := P̃+ ∪
( ⋃

i ̸=k
Ui \ V ( fk)

)
→U− := P̃− ∪

( ⋃
i ̸=k

U ′i \ V ( f ′k)
)

extending the birational morphism µk between tori.
Now we analyze the impact of blowing up the hypersurfaces Zi (and Z ′i ) for i ̸= k. When ⟨wk, ei ⟩ ̸= 0,

as discussed Di ∩V ( fk)=∅, so Zi ⊂ Di is contained in U+. Since ⟨w′k, e′i ⟩ =−⟨wk, ei ⟩ ̸= 0, the same is
true for Z ′i , i.e., Z ′i ⊂U−. We would like to show that µk(Zi )= Z ′i when ⟨wk, ei ⟩ ̸= 0. There are two cases.

(1) Suppose ⟨wk, ei ⟩ > 0. In this case, e′i = ei and w′i = wi . By definition Z ′i = D′i ∩ V ( f ′i ) =
V (zm0)∩V ( f ′i )⊂U ′i for some m0 such that ⟨m0, e′i ⟩ = 1. Now we have µ∗k(z

m0)= zm0 f −⟨m0,ek⟩
k and

µ∗k( f ′i )= a′i,0+ a′i,1zwi f −⟨wi ,ek⟩
k + · · ·+ a′i,ri

zriwi f −⟨riwi ,ek⟩
k .

Note that fk is invertible on Ui \ V ( fk) and restricts to constant pk0 on Di . So V (µ∗k(z
m0)) is just

the divisor Di and

µ∗k( f ′i )|Di = a′i,0+ a′i,1a−βki
k,0 zwi + · · · a′i,ri

a−riβki
k,0 zriwi = λ · fi |Di .

for some nonzero λ ∈ k by the µk-equivalence assumption on 3 and 3′. Therefore µk(Zi )= Z ′i .

(2) Suppose ⟨wk, ei ⟩< 0. In this case we have e′i = vi −⟨rkwk, ei ⟩ek and w′i = wi +⟨wi , ek⟩rkwk . Still
Z ′i = V (zm0)∩V ( f ′i ). Now instead of fk , the function f ′k = z−rkwk fk is a regular function on Ui and
restricts to constant ak,rk on Di . First, µ∗k(z

m0)= zm0−⟨m0,ek⟩rkwk ( f ′k)
⟨m0,ek⟩. Since f ′k is invertible on

Ui \ V ( fk), V (µ∗k(z
m0))= Di as ⟨m0+⟨m0, ek⟩rkwk, ei ⟩ = 1. Secondly we have

µ∗k( f ′i )= a′i,0+ a′i,1zw
′

i f −⟨wi ,ek⟩
k + · · ·+ a′i,ri

zriw
′

i f −⟨riwi ,ek⟩
k

= a′i,0+ a′i,1zw
′

i−⟨wi ,ek⟩rkwk ( f ′k)
−⟨wi ,ek⟩+ · · ·+ a′i,ri

zriw
′

i−⟨riwi ,ek⟩rkwk ( f ′k)
−⟨riwi ,ek⟩.

Hence

µ∗k( f ′i ) |Di = a′i,0+ a′i,1a−βki
k,rk

zwi + · · ·+ a′i,ri
a−riβki

k,rk
zriwi = λ · fi |Di

for some nonzero λ ∈ k again by the µk-equivalence assumption. Therefore in this case we also
have µk(Zi )= Z ′i .
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Finally we consider the case ⟨wk, ei ⟩ = 0. The argument we need is exactly the same as in the last
paragraph of the proof in [Gross et al. 2015]. By the assumption ⟨wk, ei ⟩ = 0=⇒ ⟨wi , ek⟩ = 0, so we have

µ∗k( f ′i )= fi ,

and thus µk(Zi )= Z ′i . The problem is that Zi may not be fully contained in Di \V ( fk), with V ( fk)∩ Zi

missing. If V ( fk)∩ Zi contains a irreducible component of Zi , then U3 would contain the corresponding
exceptional divisor while blowing up in U+ does not. However the isomorphism µk : U+ → U−
need not extend as isomorphism across this exceptional divisor. Now we need the further hypothesis
dim V ( fk)∩ Zi < dim Zi so that the missing part in the blow-up center is of at least codimension three
in Ui . After blowing up the corresponding locus in U+ and U+, we have the diagram

Ũ+ Ũ−

U+ U−

µk

π π

µk

where vertical arrows are blow-ups and horizontal arrows are genuine isomorphisms. Removing the strict
transform of the toric boundary, we have immersions

Ũ+ \ D̃ ⊂U3 and Ũ− \ D̃ ⊂U3′

missing codimension two loci. Summarizing, the birational map µk can be extended to an isomorphism
µk :U3 99K U3′ outside sets of codimension two. □

A sufficient condition for the assumption in Theorem 5.4 to hold is

∀⟨ei , wk⟩ = 0, dim V ( fk)∩ Zi < dim Zi .

Definition 5.5 (cf. [Berenstein et al. 2005, Definition 1.4]). A toric model data 3= ((ei ), (wi ), ( fi )) is
said to be coprime if the functions fi are pairwise coprime as elements in the ring k[M].

Corollary 5.6. The result in Theorem 5.4 holds if 3 is coprime.

Proof. Note that Zi = V ( fi )∩ Di . If needed, multiply some monomial zm to fi so that f̃i = zm fi is a
regular function on Di . Do the same to fk to get f̃k . By the coprime condition on 3, f̃i and f̃k are still
coprime, so we have

dim V ( f̃k)∩ V ( f̃i ) < dim V ( f̃i ),

where the above subschemes are taken inside Di . □

The following is an easy-to-check condition on 3 for the coprimeness to hold.

Lemma 5.7. If the vectors wi are linear independent, then 3 is coprime.
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5.2. The upper bound. Suppose we are given the data3= ((ei ), (wi ), ( fi )). Assume that3 is i-mutable
for any i ∈ I . For i ∈ I , let T (i)

N be a copy of the torus TN . Then we have birational maps for each i ∈ I ,

µi : TN 99K T (i)
N , µ∗i (z

m)= zm f −⟨ei ,m⟩
i .

We glue the |I | + 1 tori along the maps µi to obtain a scheme X3.
In previous section, we know that not only the torus TN , U3 also contains the torus T (i)

N , that is, we
have the following diagram for every i ∈ I :

TN T (i)
N

U6

µi

These diagrams determine a unique morphism ψ : X3→U3.

Lemma 5.8 [Gross et al. 2015, Lemma 3.5]. The morphismψ : X3→U3 satisfies the following properties:

(1) If dim Zi ∩ Z j < dim Zi for all i ̸= j , then ψ is an isomorphism outside a set of codimension at
least two.

(2) If Zi ∩ Z j =∅ for all i ̸= j , then ψ is an open immersion. In particular, in this case, X3 is separated.

In the A-cluster case to be explained later, the variety X3 may be named the upper bound according to
[Fomin and Zelevinsky 2007].

5.3. Toric models for cluster varieties. In this section, we realize generalize cluster varieties as log
Calabi–Yau varieties utilizing Construction 5.1.

5.3.1. A-cluster cases. Suppose we have fixed data 0 and an A-seed with coefficients s = (e, p). We
further choose an evaluation λ : P→ k∗. This amounts to pick a k-point of Spec(kP). These lead to the
generalized A-cluster variety As,λ with special coefficients.

Meanwhile consider the toric model data

3(s, λ) := ((ei )i∈Iuf, (wi )i∈Iuf, ( fi )i∈Iuf)

defined as follows. The vectors (ei )i∈Iuf are taken from the seed s. Recall that we have the exchange
matrix B = (bi j ) where bi j := ω(ei , d j e j ). Write βi j = bi j/r j . Note that {ei | i ∈ I } form a basis of the
lattice N and we denote by e∗i the dual basis of M . Then define

wi := ω(−, di ei/ri )=
∑
j∈I
βi j e∗i ∈ M, fi := λ(θ [ pi ](zwi , 1)) ∈ k[M].

Then Construction 5.1 applies to the toric model data 3(s, λ), and thus there is the associated log Calabi–
Yau variety U3(s,λ). Recall that we also have the scheme X3(s,λ) obtained by gluing n+ 1 copies of the
torus TN as in Section 5.2. We call X3(s,λ) the upper bound for (s, λ), which by definition is an open
subscheme of As,λ.
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The following lemma is easy to verify by direct computations.

Lemma 5.9. We have µk(3(s, λ)) = 3(µk(s), λ) in the sense of Definition 5.3. The latter µk is the
mutation of an A-seed with coefficients.

Proposition 5.10. (1) The morphism ψ : X3(s,λ)→U3(s,λ) is an open immersion with image an open
subset whose complement has codimension at least two.

(2) The birational map µk :U3(s,λ) 99K U3(µk(s),λ) is an isomorphism outside codimension two in each
of the listed situations:

A. The functions fi have general coefficients.
B. The seed s is mutation equivalent to one with principal coefficients, and λ ∈ (k∗)|I

′
| is general

enough.

Proof. (1) follows from Lemma 5.8, part (2) — as we only need to check the hypothesis Zi ∩ Z j = ∅
for all i ̸= j . In fact, in A-cluster case, since ei ̸= e j , we have TN/⟨ei ⟩ ∩ TN/⟨e j ⟩ = ∅ for all i ̸= j ,
where TN/⟨ei ⟩ is viewed as the dense torus contained in the divisor Di . As Zi is a closed subset of TN/⟨ei ⟩,
the hypothesis holds.

(2) follows from Theorem 5.4. We need to check that whenever ⟨ei , uk⟩ = 0,

dim V ( fk)∩ V ( fi )∩ Di < dim V ( fi )∩ Di .

A sufficient condition is the functions fi being coprime. Note that for i ∈ I ,

fi =
ri∏

j=1
(λ(p+i, j )z

wi + λ(p−i, j )).

When these fi have general coefficients (case A), they are coprime. In case B, one may replace fi by

f̃i =
ri∏

j=1
(λ(pi, j )zwi + 1).

Since the elements pi, j for i ∈ I and j ∈ [1, ri ] form a Z basis in P (by Lemma 3.18) when s is mutation
equivalent to one with principal coefficients, these f̃i are coprime as long as λ is general. □

Remark 5.11. Suppose we are in the situation of case B of Proposition 5.10(2). Then we have isomor-
phisms of the rings of regular functions

k[X3(s,λ)] ∼= k[U3(s,λ)] ∼= k[U3(µk(s),λ)].

The equality then extends to any seed sv that is mutation equivalent to s. It then follows that they are all
isomorphic to the upper cluster algebra

A (s, λ)= k[As,λ].
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The cluster variables in seed s are xi,s := ze∗i . Each xi,s extends to a regular function on the toric variety X6
corresponding to the toric model data3(s, λ). Then xi,s pulls back to the blow-up X̃6 and restricts to a reg-
ular function on the open subvariety U3(s,λ). It follows from (2) of Proposition 5.10 that xi,s is also a regular
function on X3(sv,λ) and in particular is a Laurent polynomial if restricted to TN ,sv . This explains the gener-
alized Laurent phenomenon Theorem 3.7, which was observed in [Gross et al. 2015] for the ordinary case.

5.3.2. X -cluster cases. Suppose we have fixed data 0 and an X -seed with coefficients s = (e, q). Let us
make the assumption that for any j ∈ Iuf,

r j = gcd(bi j , i ∈ I ).

This is equivalent to say that each w j for j ∈ Iuf is primitive as an element of M =Hom(N ,Z). Switching
the roles of (ei ) and (wi ), we obtain the toric model data

�(s, λ)= ((−wi ), (ei ), (gi ))

for M instead of N , where

gi := λ(θ [qi ](zei , 1)) ∈ k[N ]

with some chosen evaluation λ. Since the matrix B is skew-symmetrizable, �(s, λ) is k-mutable for
any k ∈ Iuf.

Lemma 5.12. The assumption that r j = gcd(bi j , i ∈ I ) is invariant under mutations.

Proof. This is because if the j-th column of B is divisible by r j then the same is true for the matrix
µk(B)= (b′i j ). Thus we have

gcd(bi j , i ∈ I )= gcd(b′i j , i ∈ I )

as µk is involutive on B. □

The above lemma shows that we have well-defined data �(µk(s), λ).

Lemma 5.13. We have µk(�(s, λ)) = �(µk(s), λ), where the later µk is the mutation for an X -seed
with coefficients.

Proof. This lemma is analogous to Lemma 5.9 and is also easy to check. However, to show that the
carefully chosen signs and conventions are the correct ones, we record some details here.

In the notations of Definition 5.3, for the data �(s, λ), we take ei = −wi and wi = ei . So after the
mutation µk in sense of Definition 5.3, for i ̸= k

(−wi )
′
=

{
−wi −⟨(−wi ), rkek⟩(−wk) if ⟨−wi , ek⟩ ≤ 0,

−wi if ⟨−wi , ek⟩> 0.
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Note that the two conditions are equivalent to βik ≤ 0 and βik > 0 respectively. And in these two cases,
we have

(−wi )
′
=−wi −⟨ek, wi ⟩rkwk and −wi

respectively. This is exactly −w′i for w′i = ω(−, di e′i/ri ) from the seed µk(s). Similarly, one checks that
the e part is also compatible with mutations.

As for coefficients, for the data �(µk(s), λ), we have

g′i (u, v)= λ(θ [q
′

i ](u, v).

Here q ′i, j is obtain from X -type mutations for coefficients (see Definition 4.14) which coincides with
Definition 5.3. □

Recall that X�(s,λ) is the upper bound for �(s, λ) as defined in Section 5.2.

Proposition 5.14. For the X -type constructions,

(1) the morphism ψ : X�(s,λ)→U�(s,λ) is an open immersion with image being an open subset whose
complement has codimension at least two;

(2) the birational map µk :U�(s,λ) 99K U�(µk(s),λ) is an isomorphism outside codimension two subsets.

Proof. The proof of (1) is completely analogous to that of (1) of Proposition 5.10. For (2), it follows
from that for any X -seed s, the data �(s, λ) is always coprime by Lemma 5.7 as the vectors ei form a
basis of N . □

6. Scattering diagrams

This section deals with scattering diagrams. Our main objects of study generalized cluster scattering
diagrams will be defined in Section 6.2.

6.1. The tropical vertex. We start with a more general setup of scattering diagrams as in [Argüz and
Gross 2022, Section 5.1.1]. Let N be a lattice of finite rank, M = HomZ(N ,Z) and MR = M ⊗Z R.
Let P be a monoid with a monoid map r : P → M . Denote by P× the groups of units of P and let
mP = P \ P×. An ideal of the monoid P induces a monomial ideal of the ring k[P], where k is a ground
field. So we use the same letter to denote both. For any monomial ideal I ⊂ k[P], define the ring

RI := k[P]/I.

Denote by k̂[P] the completion of k[P]/mn
P for n ∈ N.

For I such that its radical
√

I is equal to mP (e.g., I =mn
P for some n ∈ N), define the module of log

derivations 2(RI ) := RI ⊗Z N as follows.
If we write the element z p

⊗ n as z p∂n for p ∈ P and n ∈ N , then it acts on RI by

z p∂n(z p′)= ⟨n, r(p′)⟩z p+p′, p′ ∈ P.
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Then the submodule mP2(RI ) is a Lie algebra with the commutator bracket

[z p1∂n1, z p2∂n2] = z p1+p2∂⟨r(p2),n1⟩n2−⟨r(p1),n2⟩n1 .

Taking exponential of elements in this Lie algebra, we get group elements in Aut(RI ). There is a nilpotent
Lie subalgebra of mP2(RI ) defined by

vI :=
⊕

m∈P\I,r(m) ̸=0
zm(k⊗ r(m)⊥).

Since it is nilpotent, this Lie subalgebra (as a set) is in bijection with the corresponding algebraic group
VI := exp(vI )⊂Aut(RI ). Taking the projective limit with respect to the ideals mn

P for n ∈N, we get a pro-
unipotent group V̂, which is in bijection with the pro-nilpotent Lie algebra v̂ := lim

←−−
vmn

P
. The group V̂ is

called the higher-dimensional tropical vertex group, acts by automorphisms on k̂[P]. We also denote
(without completion)

v :=
⊕

m∈P, r(m )̸=0
zm(k⊗ r(m)⊥).

Definition 6.1. A scattering diagram in MR over RI is a finite set D of walls where each wall (d, fd)
is a rational polyhedral cone d ⊂ MR of codimension one along with an attached element called
wall-crossing function

fd =
∑

m∈P\I
r(m)∈3d

cmzm
∈ RI ,

where 3d ⊂ M is the integral tangent space of any point in d, i.e., 3d = M ∩ R⟨d⟩. We require that
fd ≡ 1 mod mP .

Remark 6.2. Upon choosing a generator n0 of 3⊥d ∩N , the wall-crossing function fd induces an element
in VI ⊂ Aut(RI ) by the action

z p
7→ z p f ⟨r(p),n0⟩

d .

So this wall-crossing automorphism depends on how one crosses the wall. One may view that this
wall-crossing automorphism depends on the direction in which one transversally crosses the wall. With n0

chosen, such an automorphism can be equivalently represented by the corresponding Lie algebra element
log( fd)∂n0 ∈ vI .

Let Supp(D) be the union of all walls in D. Let Sing(D) be the union of at least codimension two
intersections of every pair of walls and the boundary of every wall. Let γ : [0, 1] → MR be a piecewise
smooth proper map such that the end points γ (0) and γ (1) avoid Supp(D) and whose image is disjoint
from Sing(D). We also assume that γ meets walls transversally.

Suppose that γ crosses walls d1, . . . , ds in D at times

0< t1 ≤ t2 ≤ · · · ≤ ts < 1.
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These numbers ti are obtained by considering the finite set γ−1(Supp(D))⊂ [0, 1] as γ is proper. It is
possible that ti = t j as walls may overlap. Suppose γ crosses a wall (d, fd) at time t . Denote by ξγ,d the
element in VI with the action

z p
7→ z p f ⟨r(p),n0⟩

d , p ∈ P \ I

where n0 is chosen such that ⟨n0, γ
′(ti )⟩> 0.

Definition 6.3. We define the path-ordered product of γ in D to be the element

pγ,D := ξγ,dsξγ,ds−1 · · · ξγ,d1 ∈ VI .

Definition 6.4. A scattering diagram D over RI is consistent if the path-ordered product pγ,D only
depends on the endpoints γ (0) and γ (1) for any path γ : [0, 1] → MR for which pγ,D is well-defined.

Recall that we have the completed algebra k̂[P] := lim
←−−

Rmk
P
. For an element f ∈ k̂[P], denote by f <k

its projection in Rmk
P
.

Definition 6.5. A scattering diagram in MR over k̂[P] is a (possibly infinite) set D of walls (d, fd) with d

a rational polyhedral cone of codimension one and the wall-crossing function

fd =
∑

m∈P
r(m)∈3d

cmzm
∈ k̂[P],

such that modulo the ideal mn
p, the collection D<n

:= {(d, f <n
d )} is a scattering diagram over Rmn

P
. A

scattering diagram D is consistent if D<n is consistent for any n ∈ N.

The path-ordered product for D over k̂[P] is defined through the projective limit of path-ordered
products for D<n:

pγ,D := lim
←−−

pγ,D<n ∈ V̂⊂ Aut(k̂[P]).

Definition 6.6. We say two scattering diagrams D and D′ (over the same algebra) are equivalent if for
any γ , we have pγ,D = pγ,D′ whenever both path-ordered products are well-defined.

Definition 6.7. We say a wall d has direction m0 for some m0∈M if the attached wall-crossing function fd
only contains monomials z p such that r(p)=−km0 for some k ∈ N. A wall (d, fd) with direction m0 is
called incoming if d= d−R≥0m0.

Next we explain how to assign a scattering diagram to an X -type toric model. We are actually in a
particular situation within the more general framework of [Argüz and Gross 2022], which works for any
log Calabi–Yau variety obtained from blowing-up a toric variety along hypersurfaces in the toric boundary.

Let s= (e, q) be an X -seed with principal coefficients for some fixed data 0. We assume that Nuf= N to
avoid frozen directions. As usual, write e= (ei ). We assume the condition that r j = gcd(bi j | i ∈ I ) for any
j ∈ I . This assumption implies any wi :=

di
ri
ω(−, ei ) ∈ M is primitive. Recall that we have used the fan

60 := {0} ∪ {−R≥0wi }
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to describe the toric model of U =U�(s,λ). The functions (in the data �(s, λ) to define U ) are then

gi =
ri∏

j=1
(1+ λi j zei ) ∈ k[N ].

We pick a complete fan 6 in MR containing 60. For example, we may take a refinement of (the cone
complex induced by) the hyperplane arrangement {e⊥i | i ∈ I }. Let X6 be the corresponding (complete) toric
variety, with Di being the boundary toric divisor corresponding to the ray−R≥0wi . Let H =

⋃
i Hi , where

Hi =
⋃

j∈[1,ri ]

Hi j :=
⋃

j∈[1,ri ]

V (1+ λi j zei )∩ Di

which is a union of disjoint hypersurfaces in Di (as the coefficients λi j ∈ k∗ are general). These
hypersurfaces are exactly where we blow up X6 to obtain the log Calabi–Yau variety U�(s,λ).

Take the monoid

P := M ⊕
∏
i∈I

Nri ,

with the natural projection r : P→ M . We write multiplicatively ti,1, ti,2, . . . ti,ri for the generators of Nri .
For each ray ρi :=−R≥0wi and Hi j , there is a finite scattering diagram Di j called a widget from a certain
tropical hypersurface [Argüz and Gross 2022, Definition 5.3 and Section 5.1.3]. In our case, they are
given by:

Lemma 6.8. The widget Di j consists of all codimension one cones of the fan 6 contained in the
hyperplane e⊥i containing ρi , with the same wall-crossing function (1+ ti, j zwi ). In other words, we have

Di j = {(σ, 1+ ti, j zwi ) | σ ∈6, dim σ = n− 1, σ ⊂ e⊥i , ρi ⊂ σ }.

Proof. By definition [Argüz and Gross 2022, Definition 5.3 and Section 5.1.3], Di j consists of walls
(σ,(1+ti, j zwi )ωσ) where σ runs through all codimension one cones in 6 containing ρi and ωσ = Hi j ·Dσ

is the intersection number computed in the divisor Di . Here Dσ is the one-dimensional toric stratum in
Di corresponding to σ . Note that if ei /∈ σ

⊥, then zei or z−ei vanishes along Dσ . So Hi j = V (1+ λi j zei )

does not intersect Dσ and thus ωσ = 0. If σ ⊂ e⊥i , as ei is primitive, the intersection is at the point
zei =−1/λi j , where zei can be viewed as the coordinate on Dσ . Thus the multiplicity ωσ is 1. □

Note that by Definition 6.7 every wall in Di j is incoming since −wi is contained in every σ .

Theorem 6.9 [Argüz and Gross 2022, Theorem 5.6 and Section 5.1.3]. Consider the scattering diagram
(with only incoming walls)

D(X6 ,H),in :=
⋃
i∈I

⋃
j∈[1,ri ]

Di j .

There exists a unique (up to equivalence) consistent scattering diagram D(X6 ,H) over k̂[P] containing
D(X6 ,H),in such that D(X6 ,H) \D(X6 ,H),in consists only of nonincoming walls.
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6.2. Generalized cluster scattering diagrams. Instead of applying Theorem 6.9 to (X6, H), there is
another way to obtain the same scattering diagram by generalizing the construction of cluster scattering
diagrams in [Gross et al. 2018].

Given fixed data 0 and an A-seed s = (e, p) with principal coefficients, we are going to define the
generalized cluster scattering diagram Ds.

Recall that we have the semifield P=Trop( p), isomorphic to
∏

i∈I Zri as an abelian group. Let P = Ps

as before be M ⊕
∏

i∈I Nri , but regarded as a submonoid of M ⊕P generated by M and p. There is a
submonoid P⊕ = P⊕s ⊂ P generated by elements

{(wi , pi, j ) | i ∈ I, j ∈ [1, ri ]}.

One could take the completion of P⊕ with respect to the ideal P+ := P⊕ \{0}, giving that
∧

k[P⊕] ⊂ k̂[P].
In N , there is a submonoid N⊕s = N⊕ generated by {ei | i ∈ I }. Denote N+ = N⊕ \ {0}. We also consider
the monoid map

π : P⊕→ N⊕, (wi , pi, j ) 7→ ei .

Let n =
∑

i∈I αi ei ∈ N . Define

n :=
∑
i∈I
αi ·

di

ri
ei ∈ NR.

These n form a sublattice N of NR isomorphic to N . We have the similar notion N+, the monoid generated
by ei .

There is a subspace g of the tropical vertex lie algebra v defined as

g= gs :=
⊕

n∈N+
gn, gn :=

⊕
π(p)=n
p∈P+

z p
· (k⊗ n).

Lemma 6.10. The subspace g is an N+-graded Lie subalgebra of v.

Proof. For any n =
∑

i∈I αi ei ∈ N+, consider the elements∏
i, j

pci, j
i, j · z

p∗(n)

such that
∑

j∈[1,ri ]
ci, j = αi and

p∗(n) := ω(−, n)=
∑
i∈I
αiω(−, di ei/ri )=

∑
i∈I
αiwi .

Those elements form a basis of the vector space gn . We check that for two such elements

[p1z p∗(n1)∂n1, p2z p∗(n2)∂n2] = p1 p2 · z p∗(n1+n2)∂ω(n1,n2)n2−ω(n2,n1)n1

= ω(n1, n2)p1 p2 · z p∗(n1+n2)∂n1+n2 ∈ gn1+n2 . □

Remark 6.11. One may also view the above Lie algebra g as being N+-graded where both N and N
are sublattices of NR. When later considering a scattering diagram D over an N+-graded Lie algebra g

(instead of N+-graded), the walls live in MR with integral normal vectors in N+.
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Consider the ideals (N+)k ⊂ N+ for k ≥ 1. These correspond to the monomial ideals (P+)k . Then we
have quotient Lie algebras (and their corresponding groups G<k)

g<k
:= g/g(N+)k =

⊕
n∈N+\(N+)k

gn,

and their projective limits
ĝ=

∏
n∈N+

gn and G := exp(ĝ).

The group G<k acts on k[P⊕]/(P+)k by automorphisms as in Remark 6.2.
For n0 ∈ N+ primitive, we define as in [Gross et al. 2018] a Lie algebra (and its corresponding

pro-unipotent group)
g∥n0
:=

⊕
k>0

gk·n0 ⊂ g and G∥n0
:= exp(ĝ∥n0

)⊂ G.

There is a general framework for scattering diagrams over an N+-graded Lie algebra (as opposed to the
tropical vertex case); see [Kontsevich and Soibelman 2014, Section 2.1; Gross et al. 2018, Section 1.1].
In this case, one could make use of an existence-and-uniqueness theorem of [Kontsevich and Soibelman
2014] (see also [Gross et al. 2018, Theorem 1.21]) to obtain a consistent scattering diagram with certain
prescribed incoming data. The cluster scattering diagram of [Gross et al. 2018] can be defined this way,
which we will extend to the generalized case in Definition 6.17.

Definition 6.12. A wall in MR (for N+ and an N+-graded Lie algebra g) is a pair (d, gd) such that

(1) gd belongs to G∥n0 for some primitive n0 ∈ N+;

(2) d⊂ n⊥0 ⊂ MR is a codimension one convex rational polyhedral cone.

Remark 6.13. The above definition works for general N+-graded Lie algebras. In the case that g is a
Lie subalgebra of the tropical vertex Lie algebra v, the group G∥n0 is embedded in Aut(

∧

k[P⊕]). Then the
wall-crossing element gd can be equivalently represented by a function fd ∈

∧

k[P⊕].

Now every wall has a direction −p∗(n0) ∈ M in the sense of Definition 6.7. We call a wall (d, gd)
with direction m0 incoming if d= d−R≥0m0 and nonincoming (or outgoing) otherwise.

Definition 6.14. A scattering diagram over an N+-graded algebra g in MR is a collection of walls such
that for every degree k > 0, there are only a finite number of (d, gd) ∈D with the image of gd in G<k not
being identity.

The path-ordered product of a path γ : [0, 1] → MR for a scattering diagram D over g can be defined
similarly as in Definition 6.3. We note that when γ crosses a wall (d, gd) at time t , then the element ξγ,d
also depends on γ ′(t):

ξγ,d =

{
gd if ⟨n0, γ

′(t)⟩> 0,
g−1
d if ⟨n0, γ

′(t)⟩< 0.

The consistency for these scattering diagrams is defined using path-ordered products in the same way as
Definition 6.3.
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Theorem 6.15 [Kontsevich and Soibelman 2014, Proposition 2.1.12; Gross et al. 2018, Theorem 1.21].
Let Din be a scattering diagram over g consisting only of incoming walls. Then there exists a unique
(up to equivalence) consistent scattering diagram D containing Din such that D \Din consists only of
outgoing walls.

Now we get back to the cluster situation. Suppose given fixed data 0 and s an A-seed with principal
coefficients. Unlike the previous section, here we do not assume the maximality of the positive integers
ri , i.e., ri needs not to be gcd(bki | k ∈ I ).

We calculate in the following how the group G∥n0 is embedded in Aut(
∧

k[P⊕]). Suppose n0=
∑

i∈I αi ei ,
a primitive element in N+. Consider any element

x =
∑
k>0

∑
p∈P⊕

π(p)=kn0

cp · p · zkp∗(n0)∂kn0 ∈ ĝ
∥

n0
, cp ∈ k.

For nonzero n ∈ NQ, denote by ind(n) the largest number in Q≥0 such that n/ ind(n)∈ N . Thus n/ ind(n)
is primitive in N .

Lemma 6.16. The group element exp(x) ∈ G∥n0 acts on
∧

k[P⊕] as an automorphism by

zm
7→ zm exp

( ∑
k>0

∑
p∈P⊕

π(p)=kn0

ind(n0)kcp · p · zkp∗(n0)
)⟨r(m),n0/ind(n0)⟩

, m ∈ P⊕.

Proof. This follows by rewriting x as

x =
( ∑

k>0

∑
p∈P⊕

π(p)=kn0

ind(n0)kcp · p · zkp∗(n0)
)
∂n0/ind(n0). □

Due to Lemma 6.16, any exp(x) ∈ G∥n0 can be represented by a function f as in Lemma 6.16 such that
the action of exp(x) sends zm to zm f ⟨r(m),n0/ind(n0)⟩.

Given s = (e, p), for each i ∈ I , consider the hyperplane e⊥i with the attached wall-crossing function

fi =
ri∏

j=1
(1+ pi, j zwi ) ∈ k[P⊕].

As discussed, the function fi represents an element in G∥ei .

Definition 6.17. Let Ds,in be the scattering diagram over g in MR consisting only of the incoming walls
of the form di := (e⊥i , fi ), i.e.,

Ds,in := {(e⊥i , fi ) | i ∈ I }.

We define the generalized cluster scattering Ds to be the unique (up to equivalence) consistent scattering
diagram associated to Ds,in guaranteed by Theorem 6.15.
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Remark 6.18. One may tend to think of Ds as a scattering diagram over
∧

k[P⊕] or over k̂[P] (as g is a
Lie subalgebra of v) in Definition 6.5. However there is one subtle issue. Suppose that there is a wall
(d⊂ n⊥0 , fd) in Ds for some n0 ∈ N+ primitive. Then the wall-crossing action is given by

ξ fd(z
p)= z p f ⟨n0/ind(n0),r(p)⟩

d .

Since in general n0 may not be proportional to n0, the cone d may not be contained in n⊥0 . In this case,
the wall (d, fd) does not qualify as a wall in Definition 6.5. This issue can be resolved in the following
two ways (so that one can view Ds as a scattering diagram of Definition 6.5).

(1) We could regard g as graded by N+ ⊂ NQ (rather than N+-graded) and modify Definition 6.12 (the
definition of a wall (d, gd)) so that d is a codimension one cone in some hyperplane n⊥0 for n0 ∈ N+

and gd belongs to G∥n0 .

(2) Another way to resolve the issue is to consider the dual η∗ : MR→ MR of the linear map

η : NR→ NR, n 7→ n.

We then apply (η∗)−1 to every wall (d, fd) to get the collection

(η∗)−1(Ds) := {((η
∗)−1(d), fd) | (d, fd) ∈Ds}

Then the cone (η∗)−1(d) is indeed contained in n⊥0 . So this collection of walls is a scattering diagram
in Definition 6.5.

From now on, to avoid any further confusion, the notation Ds is reserved for the consistent scattering
diagram (η∗)−1(Ds) over

∧

k[P⊕].

Lemma 6.19. Let s be a seed with principal coefficients for some generalized fixed data 0 (viewed of
both A- and X -type) with the condition that for each i ∈ I , the element

wi = ω(−, di ei/ri )

is primitive in M. In this case, we have defined both scattering diagrams D(X6 ,H) (with a chosen general
evaluation λ) and Ds. Identify the parameters ti, j with pi, j . Then D(X6 ,H) and Ds are equivalent as
scattering diagrams over k̂[P].

Proof. We require ωi to be primitive so that D(X6 ,H) is defined. According to Remark 6.18, Ds is viewed
as a scattering diagram over k̂[P] in the same MR as D(X6 ,H) so it is legitimate to compare them. Let D̃
be the consistent scattering diagram over g obtained using the initial data D(X6 ,H),in. Notice that the walls
in D(X6 ,H),in are parts of the hyperplanes e⊥i . We then subdivide the walls in Ds,in so that D(X6 ,H),in

becomes the subset of incoming walls. Thus D̃ is equivalent to Ds by Theorem 6.15.
On the other hand, D̃ is also a scattering diagram over k̂[P]. By Theorem 6.9, It is also equivalent

to D(X6 ,H) since they have the same incoming walls. Therefore we have D(X6 ,H)
∼= D̃∼=Ds. □
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6.3. The cluster scattering diagrams of GHKK. The ordinary cluster scattering diagram Dord
s corresponds

to the case where ri = 1 for each i ∈ I . Thus there is only one parameter pi := pi,1 for each i ∈ I . The
lattice N is generated by ei = di ei . The initial incoming walls are then

{(e⊥i , 1+ pi zwi ) | i ∈ I },

where wi = ω(−, ei ) ∈ M .
This scattering diagram is closely related to the cluster scattering diagram DGHKK

s of Gross, Hacking,
Keel and Kontsevich [Gross et al. 2018, Theorem 1.12]. We explain the difference and relation here.
The scattering diagram DGHKK

s is actually defined for N and M := Hom(N ,Z) (in the ordinary case
equal to N ◦ and M◦ respectively). Under the injectivity assumption [Gross et al. 2018, Section 1.1], the
incoming walls are

{(e⊥i , 1+ zω(ei ,−)) | i ∈ I },

where ω(ei ,−) is in M◦. The injectivity assumption means that ω(ei ,−) generate a strict convex cone.
If this is not the case, we may extend M◦ to M◦⊕P (identified with M◦⊕ N in [Gross et al. 2018]) and
let incoming walls be

{(e⊥i , 1+ pi zω(ei ,−)) | i ∈ I }.

It lives in (M◦⊕ N )⊗R, or in M◦⊗R if regarding pi as formal parameters as we do. Then DGHKK
s is

defined to be the unique consistent scattering diagram over k̂[P] with only these incoming walls, where
P ⊂ M◦ ⊕ N is a submonoid contained in a strictly convex cone and containing the cone generated
by (pi , ω(ei ,−)). The Lie algebra g, however, is naturally graded by N+ (generated by ei ’s), not N+

(generated by ei ’s). Thus if one uses Theorem 6.15 to define DGHKK
s , the same rescaling issue in

Remark 6.18 still exists and can be resolved in a similar way. In [Gross et al. 2018], DGHKK
s is regarded

as living in M◦R with the integral normal vectors of walls being in N ◦.
The structures of DGHKK

s and Dord
s are very much alike. For example, they both admit cluster complex

structures; see [Gross et al. 2018, Theorem 2.13] and Theorem 7.10. It turns out that in the convention
of [Fomin and Zelevinsky 2007] (e.g., the definition of g-vectors), DGHKK

s corresponds to the cluster
algebra associated to −BT while Dord

s corresponds to the one associated to B, where B = (bi j ) with
bi j = ω(ei , e j ).

6.4. Scattering diagrams with special coefficients. Just as specializing a cluster algebra A at some
evaluation λ : P→ k∗, one can do the same to Ds, obtaining a consistent scattering diagram with special
coefficients.

We consider another monoid Q = M ⊕
∏

i∈I N
(
with ti being the standard generators of

∏
i∈I N

)
. Let

λ : P→ k∗, pi, j 7→ λi, j be an evaluation. Define the map (abusing the same notation λ)

λ : k[P] → k[Q], zm
7→ zm for m ∈ M, pi, j 7→ λi, j ti .
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Lemma 6.20. The collection

λ(Ds) := {(d, λ( fd)) | (d, fd) ∈Ds}

obtained by applying the algebra homomorphism λ to every wall-crossing function fd is a consistent
scattering diagram over k̂[Q].

Proof. The algebra homomorphism λ respects the completions of k[P] and k[Q]. So λ( fd) belongs to
k̂[Q]. Recall we have the monoid map r : P→ M which forgets the components in

⊕
i∈I Nri . We use

the same notation r : Q→ M for the analogous map on Q. Then (d, λ( fd)) becomes a wall over k̂[Q],
and λ(Ds) is a scattering diagram over k̂[Q].

The consistency of λ(Ds) follows from the consistency of Ds as λ is an algebra homomorphism. □

We call λ(Ds) the (generalized) cluster scattering diagram of s with special coefficients λ. In fact, the
ordinary cluster scattering diagram Ds when ri = 1 can be obtained this way. We denote the ordinary one
by Dord

s . Its incoming walls are

(e⊥i , 1+ pi zω(−,di ei )).

If there exist coefficients λi j ∈ k∗ such that

ri∏
j=1
(1+ λi j ti zwi )= 1+ tri

i zriwi = 1+ tri
i zω(−,di ei ),

then we can apply the corresponding morphism λ : k[P] → k[Q] to Ds so that

λ(Ds)∼=Dord
s

as they have the exact same set of incoming walls. Here tri
i is identified with pi . The existence of such an

evaluation λ amounts to find the ri roots of the polynomial 1+ xri in k, which is always possible if k is
algebraically closed.

6.5. Examples. We illustrate some examples of generalized cluster scattering diagrams in this section.

Example 6.21. Consider the fixed data 0 consisting of

• the lattice N = Z2 with the standard basis e1 = (1, 0) and e2 = (0, 1), and the skew-symmetric form
ω be determined by ω(e1, e2)=−1;

• Nuf = N ;

• the rank r = 2 and I = Iuf = {1, 2};

• positive integers d1 = 1 and d2 = 2;

• the sublattice N ◦ generated by e1 and 2e2;

• M = Hom(N ,Z), M◦ = Hom(N ◦,Z).
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1+ t11 A2

1+ t11 A2

(1+ t21 A−1
1 )(1+ t22 A−1

1 )(1+ t21 A−1
1 )(1+ t22 A−1

1 )

(1+ t11t21 A−1
1 A2)(1+ t11t22 A−1

1 A2)

1+ t11t21t22 A−2
1 A2

Figure 1. The generalized cluster scattering diagram for Example 6.21.

Let s be a seed consisting of e= (e1, e2) and p1 = (t11), p2 = (t21, t22). We have matrices

B =
(

0 −2
1 0

)
and β =

(
0 −1
1 0

)
.

In this case we have ei = di ei/ri = ei . So N = N and we shall not worry about the rescaling issue. Then
w1 = e∗2 and w2 =−e∗1 . We write Ai = ze∗i for i = 1, 2. The coefficients group is P= Z3 with generators
{t11, t21, t22}. The initial incoming scattering diagram is

Ds,in = {(e⊥1 , 1+ t11 A2), (e⊥2 , (1+ t21 A−1
1 )(1+ t22 A−1

1 ))}.

The resulting generalized cluster scattering diagram is

Ds =Ds,in ∪ {(R>0(1,−1), f(1,−1)), (R>0(2,−1), f(2,−1))},

where
f(1,−1) = (1+ t11t21 A−1

1 A2)(1+ t11t22 A−1
1 A2) and f(2,−1) = 1+ t11t21t22 A−2

1 A2.

The scattering diagram Ds is depicted in Figure 1.

Example 6.22. Consider the fixed data 0 consisting of

• the lattice N = Z2 with the standard basis e1 = (1, 0) and e2 = (0, 1), and the skew-symmetric form
ω be determined by ω(e1, e2)=−1;

• Nuf = N ;

• the rank r = 2 and I = Iuf = {1, 2};

• positive integers λ1 = 1 and λ2 = 1;

• the sublattice N ◦ generated by e1 and e2;

• M = Hom(N ,Z), M◦ = Hom(N ◦,Z).
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(1+ s1 X)(1+ s2 X)

(1+ t1Y )(1+ t2Y )

(1+ s1s2t1 X2Y )(1+ s1s2t2 X2Y )

(1+ s2
1 s2t1t2 X3Y 2)(1+ s1s2

2 t1t2 X3Y 2)

(1+ s1s2t2
1 t2 X2Y 3)(1+ s1s2t1t2

2 X2Y 3)

(1+ s1t1t2 XY 2)(1+ s2t1t2 XY 2)

(1+ t1Y )(1+ t2Y )

(1+ s1 X)(1+ s2 X)

fR≥0(1,−1)

· · ·

· · ·

Figure 2. The generalized cluster scattering diagram for Example 6.22.

The seed is given by e= (e1, e2) and p1 = (s1, s2), p2 = (t1, t2). The corresponding Ds is depicted in
Figure 2. We write X = ze∗2 and Y = z−e∗1 . The five rays depicted in the fourth quadrant are in the directions
(2,−1), (3,−2), (1,−1), (2,−3) and (1,−2) in clockwise order. In fact, in the fourth quadrant there
are additional nontrivial walls whose underlying cones are R≥0(n,−(n + 1)) and R≥0(n + 1,−n) for
each positive integer n ≥ 3 (which we omit in the figure below). The wall-crossing function, for example
for R≥0(2k,−(2k+ 1)) for k ∈ Z>0, is

fR≥0(2k,−(2k+1)) = (1+ sk+1
1 sk

2 tk
1 tk

2 X2k+1Y 2k)(1+ sk
1 sk+1

2 tk
1 tk

2 X2k+1Y 2k),

which can be obtained using Theorem 7.10.
The wall-crossing function attached to the ray R≥0(1,−1)

fR≥0(1,−1) =
(1+ s1t1 XY )(1+ s1t2 XY )(1+ s2t1 XY )(1+ s2t2 XY )

(1− s1s2t1t2 X2Y 2)4

is much more difficult to calculate. This was explicitly obtained by Reineke and Weist [2013] by relating
the wall-crossing functions to quiver representations.

6.6. Mutation invariance of Ds. A first step to investigate the structure of Ds is through a comparison
with Dµk(s). For the ordinary case, this is called the mutation invariance in [Gross et al. 2018]. In the
generalized situation, we show an analogous mutation invariance still holds. One just needs to take care
of the generalized coefficients pi, j .

Notice that the definition of Ds does not involve the semifield structure of P. So one can view that
the coefficients part p actually provides a Z-basis of the multiplicative abelian group P (grouped and
labeled in a certain way). Thus even though µk(s) no longer has principal coefficients in P, Dµk(s) is still
defined. To stress that the coefficients are no longer semifield elements, we use ti, j instead of pi, j .
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Now s = (e, t) consists of e a labeled basis of N and tuples of coefficients t = (ti ).

Definition 6.23. Define the mutationµ+k (s)= (e
′, t ′) such that e′=µk(e) as before and for the coefficients,

t ′i, j =


t−1
k, j if i = k,

ti, j ·
rk∏

l=1
t [βki ]+
k,l if i ̸= k.

Remark 6.24. Note that this mutation does not depend on any semifield structure on P. So it is different
from the µk from Definition 4.3 for mutations of many steps. For this reason, we call s = (e, p) a seed
with coefficients (avoiding the type A- or X -) and use the new symbol µ+k for mutations in this context
(as we will see in Section 7.1 the meaning of the sign +).

Definition 6.25. We set

Hk,+ := {m ∈ MR | ⟨ek,m⟩ ≥ 0}, Hk,− := {m ∈ MR | ⟨ek,m⟩ ≤ 0}.

For k ∈ I , define the piecewise linear transformation Tk : MR→ MR by

Tk(m) :=
{

m+⟨ek,m⟩rkwk, m ∈Hk,+,

m, m ∈ Hk,−.

One sees that in the two half spaces, the map Tk is actually the restriction of two linear maps Tk,+ and
Tk,− respectively. The map Tk is with respect to the seed s and thus sometimes will be denoted as T s

k .
The vector rkwk can also be expressed as rkwk = ω(−, dkek)=

∑n
i=1 bike∗i . One checks that

Tk,+(wi )= wi +βkirkwk .

Recall we have the projection r : M ⊕P→ M . The transformation Tk can be lifted to M ⊕P by

T̃k(m, p) :=
{
(m+⟨ek,m⟩rkwk, p · t ⟨ek ,m⟩

k ), m ∈Hk,+,

(m, p), m ∈Hk,−,

where tk =
∏rk

l=1 tk,l . Note that T̃k on its domain of linearity is the restriction of two linear transformations
T̃k,ε respectively.

Construction 6.26. We define the scattering diagram Tk(Ds) as in [Gross et al. 2018, Definition 1.22]
(but taking care of the parameters ti, j here) in the following steps.

(1) Replace each wall in Ds not fully contained in e⊥k if necessary by splitting it into two new walls

(d∩Hk,+, fd) and (d∩Hk,−, fd).

Regard this new collection of walls as the current representative of Ds.

(2) For a wall (d, fd) contained in Hk,ε, define the wall Tk,ε(d, fd)= (Tk,ε(d), T̃k,ε( fd)) where the new
wall-crossing function T̃k,ε( fd) is the one obtained from fd by replacing each monomial of the form

pzm by T̃k,ε(pzm),
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where the later is the monomial corresponding to T̃k,ε(m, p) ∈ M ⊕P. For example, we have

T̃k,+(ti, j zwi )= ti, j t
βki
k zwi+βki rkwk , while T̃k,−(ti, j zwi )= ti, j zwi .

We call these walls uniformly by Tk(d, fd) no matter which half they belong to. We stress that the
sign ε in Tk,ε is determined by which half space the wall d lies in.

(3) Consider the collection of walls

Tk(Ds) :=
{

Tk(d, fd)
∣∣∣ (d, fd) ∈D(s) \

(
e⊥k ,

rk∏
j=1
(1+ tk, j zwk )

)}
∪

{(
e⊥k ,

rk∏
j=1
(1+ t−1

k, j z−wk )
)}
.

Denote the monoid (P ′)⊕ := P⊕
µ+k (s)
⊂ M ⊕P. While Ds is over

∧

k[P⊕s ], Dµ+k (s)
is over
∧

k[(P ′)⊕].

Theorem 6.27 (cf. [Gross et al. 2018, Theorem 1.24]). The set of walls Tk(Ds) is indeed a consistent
scattering diagram over
∧

k[(P ′)⊕], and furthermore is equivalent to Dµ+k (s)
.

We find it most natural to understand the mutation invariance by making connection to the canonical
wall structure (or canonical scattering diagram) [Gross and Siebert 2022] via [Argüz and Gross 2022,
Theorem 6.1], where Ds can be viewed as associated to the toric model U�(s,λ) for general λ. However,
as in Section 5.3.2, this would require the condition

ri = gcd(bi j , i ∈ I ).

Fortunately, we can prove the mutation invariance following the same strategy in [Gross et al. 2018]
without this condition. The proof occupies the rest of the section.

First define a monoid P containing both P⊕ and (P ′)⊕. Let σ be the cone in (M ⊕P)R generated by

{(wi , ti, j ) | i ∈ I, j ∈ [1, ri ]} ∪ {(−wk,−tk, j ) | 1≤ j ≤ rk}.

Take P = σ ∩ (M ⊕P) and we tend to talk about scattering diagrams over
∧

k[P]. However the ideal mP

misses the elements (wk, tk, j ). This means a wall such as

(e⊥k , (1+ tk, j zwk ))

in Ds does not qualify as a wall over
∧

k[P]. For this reason, we extend the definition of scattering diagram
as in [Gross et al. 2018, Definition 1.27] (slightly generalizing the slab for our needs).

Define
N+,ks :=

{ ∑
i∈I

ai ei

∣∣∣ ai ∈ Z≥0 for i ̸= k, ak ∈ Z, and
∑

i∈I\{k}
ai > 0

}
⊂ N .

Since N+,ks = N+,k
µ+k (s)

, we denote them by N+,k .

Definition 6.28 (cf. [Gross et al. 2018, Definition 1.27]). A wall for P is a pair (d, fd) with d as before
but with primitive normal vector n0 in N+,k and

fd = 1+
∑

k≥1,π(t)=kn0

ck,t · t zkω(−,n0) ≡ 1 mod mP .
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The slab for s and k ∈ I means the pair

dk :=

(
e⊥k ,

rk∏
j=1
(1+ tk, j zwk )

)
.

A scattering diagram D for P is a collection of walls and possibly this single slab, with the condition that
for each k > 0, fd ≡ 1 mod mk

P
for all but finitely many walls in D.

We quote the following very hard theorem from [Gross et al. 2018]. The objects here are understood
in our definitions so there are minor differences. However, one can still prove the theorem in the exact
same way. So we omit its proof here.

Theorem 6.29 [Gross et al. 2018, Theorem 1.28]. There exists a unique (up to equivalence) consistent
scattering diagram Ds in the sense of Definition 6.28 such that

(1) Ds ⊇Ds,in,

(2) Ds \Ds,in consists only of outgoing walls.

Furthermore, Ds is also a scattering diagram for the N+s -graded Lie algebra gs. As such, it is equivalent
to Ds.

Proof of Theorem 6.27. First we choose a representative for Ds given by Theorem 6.29. Now Tk(Ds)

becomes a scattering diagram in the sense of Definition 6.28 for the seed s′ = µ+k (s). This is because

(1) the operation Tk removes the old slab dk and adds the new slab

d′k :=
(

e⊥k ,
rk∏

j=1
(1+ t−1

k, j z−wk )
)
;

(2) for a wall (contained in either Hk,+ or Hk,−), T̃k sends a monomial of the form
∏

i, j (ti, j zwi )ai j in its
wall-crossing function to∏

i, j
(ti, j t

βki
k zwi+βki rkwk )ai j or

∏
i, j
(ti, j zwi )ai j .

So if t zm
∈mi

P
for some i , so is T̃k(t zm).

We next show that

(1) Tk(Ds) and Ds′ have the same set of slabs and incoming walls;

(2) Tk(Ds) is consistent as a scattering diagram with a slab.

Then by the uniqueness statement of Theorem 6.29, Tk(Ds) and Ds′ are equivalent.
Statement (1) follows from the same argument in Step I of [Gross et al. 2018, Proof of Theorem 1.24].
For (2), we check the consistency of Tk(Ds), that is, for any loop γ , pγ,Tk(Ds)= id whenever it is defined.
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If γ is confined in one of the half spaces, the path-ordered product is identity because of the consistency
of Ds. So we assume that γ crosses the slab d′k . Split γ into four subpaths γ1, γ2, γ3 and γ4 such that

(1) γ1 starts at a point in Hk,− and only crosses the slab d′k ;

(2) γ2 is contained entirely in Hk,+;

(3) γ3 only crosses d′k back to Hk,−;

(4) γ4 is contained entirely in Hk,−.

Let T̃k,+ : k[M ⊕ P] → k[M ⊕ P] be the algebra automorphism induced by T̃k,+ (see (2) in the
Construction 6.26 the action of T̃k,+ on monomials). Denote by pd′k the wall-crossing automorphism

zm
7→ zm

rk∏
j=1
(1+ t−1

k, j z−wk )−⟨ek ,m⟩.

So we have

pγ1,Tk(Ds) = pd′k , (6-1)

pγ2,Tk(Ds) = T̃k,+ ◦ pγ2,Ds ◦ T̃−1
k,+, (6-2)

pγ3,Tk(Ds) = p−1
d′k
, (6-3)

pγ4,Tk(Ds) = pγ4,Ds . (6-4)

All the above equalities except (6-2) are by definitions. To show (6-2), we see that it suffices to show the
case where γ2 only crosses one wall d contained in n⊥0 with the wall-crossing function f (m0). We write
T̃ = T̃k,+ and T = Tk,+. Then we compute the action of the right-hand side of (6-2) on zm :

zm
7→ T̃−1(zm) 7→ T̃−1(zm) f (zm0)⟨T

−1(m),n0⟩ 7→ zm f (T̃ (zm0))⟨m,(T
−1)∗(n0)⟩.

Note that the wall d gets transformed under Tk to be contained in (T−1)∗(n0) with f (T̃ (zm0)). So the
above action is the same as pγ2,Tk(Ds)(z

m).
To show pγ,Tk(Ds) = id, it suffices to show that

T̃−1
k,+ ◦ pd′k = pdk , (6-5)

so that pγ,Tk(Ds) = pγ,Tk(Ds) = id.
Letting the left-hand side act on some monomial, we have

T̃−1
k,+ ◦ pd′k (t zm)= T̃−1

k,+

(
t zm

rk∏
j=1
(1+ t−1

k, j z−wk )−⟨ek ,m⟩
)

= t · t−⟨ek ,m⟩
k · zm−⟨ek ,m⟩rkwk

rk∏
j=1
(1+ t−1

k, j z−wk )−⟨ek ,m⟩

= t zm
rk∏

j=1
(1+ t−1

k, j zwk )−⟨ek ,m⟩

= pdk (t zm). (6-6)

This finishes the proof. □
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1 A2

1+ t11 A2

(1+ t−1
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22 A1)(1+ t−1
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(1+ t11t21 A−1
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1 A2)

1+ t11t21t22 A−2
1 A2

Figure 3. The generalized cluster scattering diagram for Example 6.30.

Example 6.30. In this example we compute T2(Ds) for the scattering diagram Ds in Example 6.21.
Recall that the exchange matrix for s is B =

( 0
1
−2
0

)
. So we have T2,+(e∗2)= e∗2 − 2e∗1 , which determines

the ray R≥0(e∗2 − 2e∗1) of Figure 3.

6.7. Positivity. The scattering diagram Ds has the following positivity.

Theorem 6.31 (cf. [Gross et al. 2018, Theorem 1.28]). The scattering diagram Ds is equivalent to a
scattering diagram all of whose walls (d, fd) satisfy fd= (1+ t zm)c for some m =ω(−, n), n ∈ N+, some
t ∈ P such that π(t)= n, and c being a positive integer. In other words, if we write n =

∑
i∈I αi ei , then

(1) d is contained in n⊥ ⊂ MR where n =
∑

i∈I αi
di
ri

ei ;

(2) m =
∑

i∈I αiwi = ω(−, n);

(3) if writing t =
∏

i, j tαi, j
i, j , then

∑ri
j=1 αi j = αi .

Proof. This theorem essentially follows from [Gross et al. 2018, Appendix C.3], the proof of the positivity
of DGHKK

s . We use a representative of Ds constructed in the same algorithm used to produce DGHKK
s in

the proof of [Gross et al. 2018, Theorem 1.28]. We will construct order by order a sequence of finite
scattering diagrams D1 ⊂D2 ⊂ · · · (over

∧

k[P⊕s ] or the graded Lie algebra gs) such that their union

D=
∞⋃

k=1
Dk

is equivalent to Ds. We then prove inductively that every wall in Dk has the positivity property.
Let D1 =Ds,in. Note that D1 is equivalent to Ds modulo (P+)2. Suppose that we have defined up

to Dk which is equivalent to D modulo (P+)k+1, and assume that every wall in Dk has wall-crossing
function of the form (1+ t zm)c for some positive integer c. We construct Dk+1 as follows, and show that
it is equivalent to D modulo (P+)k+2 and furthermore that it still has the same positivity property for its
wall-crossing functions.
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There is a finite rational polyhedral cone complex that underlies the support of Dk (which is true for
any scattering diagram with finitely many walls). We call the codimension two cells joints. Let j be a
joint of Dk . Then by [Gross et al. 2018, Definition-Lemma C.2], it falls into two classes:

(1) Parallel, if every wall with the normal vector n containing j has ω(−, n) tangent to j.

(2) Perpendicular, if every wall with the normal vector n containing j has ω(−, n) not tangent to j.

Let γj be a simple loop around j small enough so that it only intersects walls containing j. By our
assumption, the path-ordered product pγj,Dk is identity modulo (P+)k+1, but modulo (P+)k+2, it can be
written as

pγj,Dk = exp
( ∑

d(t,m)=k+1
ct,m t zm∂n(t,m)

)
,

where ct,m ∈ k. Here we define the degree d(t,m) := k+1 if (t,m) ∈ (P+)k+1
\ (P+)k+2, and n(t,m) is

primitive in N+ uniquely determined by (t,m).
If j is perpendicular, we define a set of walls

D[j] := {(j−R≥0m, (1+ t zm)±ct,m ) | d(t,m)= k+ 1},

where j− R≥0m is of codimension one since m is not tangent to j. Here the function (1+ t zm)±ct,m

makes sense as a power series. The sign ± in the power is chosen so that when γj crosses j−R≥0m, the
wall-crossing automorphism is

exp(−ct,m t zm∂n(t,m)).

In this way, if we add the walls in D[j] to Dk , we have the path-ordered product pγj,Dk∪D[j] = id modulo
(P+)k+2. We then define

Dk+1 =Dk ∪
⋃
j

D[j],

where the union is over all perpendicular joints of Dk .
There are two things we need to show in the induction:

(1) Dk+1 is equivalent to Ds modulo (P+)k+2.

(2) All the walls in Dk+1 have wall-crossing functions of the form (1+ t zm)c for some positive integer c.

Part (1) follows from the argument in [Gross et al. 2018, Lemma C.6 and Lemma C.7]. This part
guarantees that the constructed union D is equivalent to Ds.

Part (2) is about the positivity of wall-crossings. By the construction of Dk+1, we only need to examine
the new walls emerging from perpendicular joints of Dk . Let j be a perpendicular joint of Dk . The
integral normal space j⊥ ∩ N is a rank two saturated sublattice O of N . Locally at j, Dk ∪D[j] induces a
scattering diagram living in O∨R = MR/(3 j ⊗R). Precisely, consider the set of walls

D′ = {((d+3j⊗R)/(3j⊗R), fd) | j⊂ d, (d, fd) ∈Dk ∪D[j]}.
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The wall-crossing functions fd are all of the form

(1+ t zm)c,

c ∈ k ( fd makes sense as a power series). The wall d has some primitive normal vector o ∈ O ∩ N+,
and m is proportional to ω(−, o). We also know since j is perpendicular, m ̸= 0 (the image of m under the
quotient M→ O∨) in O∨R . And the one-dimensional wall d̄= (d+3j⊗R)/(3j⊗R) is contained in R(m),
orthogonal to the normal vector o. Then D′ is a rank two scattering diagram in O∨R over k̂[P+], with the
monoid map from P+ to O∨ being r : P→M postcomposed by the quotient from M to O∨. It is consistent
up to modulo (P+)k+2. Then by [Gross et al. 2018, Proposition C.13], the wall-crossing functions admit
the positivity property, i.e., the power c is always a positive integer. This shows the positivity for Dk+1

assuming that of Dk . Therefore, the union D is also positive by induction; hence so is Ds. □

7. The cluster complex structure

In this section, we study the cluster complex structure of the scattering diagram Ds, which is a description
of parts of the walls of Ds. The construction of such a structure of Ds is analogous to [Gross et al. 2018,
Construction 1.30].

7.1. The cluster complex. Take a representative for the scattering diagram Ds with minimal support
(which always exists). By Theorem 6.29, one can choose such a representative Ds so that there are no
other walls contained in the initial incoming ones di .

Define

C+ = C+s := {m ∈ MR | ⟨ei ,m⟩ ≥ 0 ∀i ∈ I },

C− = C−s := {m ∈ MR | ⟨ei ,m⟩ ≤ 0 ∀i ∈ I }.

The closed cones C±s are closures of connected components of MR \ Supp(Ds). They are thus called
chambers. By the mutation invariance Theorem 6.27, we have that the cones

T−1
k (C±

µ+k (s)
)⊂ MR \Supp(Ds)

are also closures of connected components. Applying mutations on seeds provides an iterative way to
construct chambers of MR \Supp(Ds) as follows.

Note again that the coefficients part of s = (e, t) does not mutate as in Definition 4.3, which requires
setting the tropical semifield P from the initial seed and once for all. Instead, we regard the coefficients
part t as in the multiplicative group P and mutates in the way specified by Section 6.6. In this way, we
can apply mutations iteratively on s.

Let us consider the rooted tree Tn from Definition 4.6. There is an association v 7→ sv such that v0 7→ s
and adjacent seeds with coefficients are related by the corresponding mutation (in the sense of Section 6.6)
of the labeled edges. Once this association is done, we denote the rooted tree by Ts.
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Suppose the unique path from v0 to a vertex v goes through the arrows labeled by {k1, k2, . . . , kl}.
Define the piecewise linear map

Tv0,v = Tkl ◦ · · · ◦ Tk2 ◦ Tk1 : MR→ MR.

Since C±s are chambers of the scattering diagram Ds, then again due to the mutation invariance, we
have that

C±v := T−1
v0,v
(C±sv )

are chambers of Ds.
Each C±v is a simplicial (rational polyhedral) cone of maximal dimension, as each Tk is a linear

isomorphism on its domains of linearity. The intersection C+s ∩ C
+

µ+k (s)
is their common facet generated by

{e∗i | i ̸= k}. Each facet of Cv is canonically labeled by an index i ∈ I . Inductively, for any two vertices v
and v′ connected by an arrow labeled by k ∈ I , then C+v and C+v′ share a common facet labeled by k.

We borrow the following notation from [Gross et al. 2018]: we use the short-hand subscription notation
v ∈ s for an object parametrized by a vertex v ∈Ts with the root v0 labeled by s. This is done to emphasize
the dependence on the initial seed s.

Definition 7.1. We denote by C±v∈s the chambers C±v of ⊂ MR \ Supp(Ds). We write 1±s for the set of
chambers C±v∈s for v running over all vertices of Ts. We call elements in 1+s cluster chambers.

Remark 7.2. As we have pointed out, C+v ∩ C
+

v′ is a common facet if v and v′ are adjacent in Ts. More
generally, by adding all the faces of every C+v to the set 1+s , we obtain a collection of cones which form a
cone complex, still denoted by 1+s . For this reason, we call 1+s the cluster (cone) complex and 1−s the
negative cluster (cone) complex.

The simplicial cone C±v∈s is determined by (the generators of) its one-dimensional faces. The cone C+sv
is generated by the dual vectors {e∗i;v | i ∈ I }. These are pulled back by T−1

v0,v
to be the generators of C+v∈s.

Definition 7.3. We define the g-vectors for v ∈ Ts as a tuple

gv = (gi;v | i ∈ I ), where gi;v := T−1
v0,v
(e∗i;v) ∈ M.

We will use the notation gv∈s to emphasize the initial seed s.

Remark 7.4. Denote the dual vectors (in N ) of gv by g∗v = (g∗i;v | i ∈ I ). They are normal vectors of
the facets of C+v . Since the walls of Ds only have normal vectors in N+s or −N+s , the vector g∗i;v has a
well-defined sign

εi;v = sgn(g∗i;v)=
{
+ if g∗i;v ∈ N+s ,
− if g∗i;v ∈ N−s .

We will show later the vectors gv can be calculated iteratively by a variant of mutations as defined below.
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Definition 7.5. Let e = (ei | i ∈ I ) be a seed (without coefficients) for 0. Define the signed mutation
µεk(e)= (e

′

i | i ∈ I ) for ε ∈ ± as follows:

e′i =
{

−ek if i = k,
ei + [−εω(ei , dkek)]+ek if i ̸= k.

So the signed mutation µ+k coincides with our previous Definition 6.23 (ignoring the coefficients part).
On the mutation of the dual of e, we use the same notation µεk(e

∗)= ( f ′i | i ∈ I ) where e∗= ( fi | i ∈ I ).
Then

f ′i =

{
fi if i ̸= k

− fk +
∑
i∈I
[−εω(ei , dkek)]+ fk if i = k.

There is another tuple of vectors in M that changes under signed mutations. For a seed s, let
w = (wi | i ∈ I ), where

wi := ω
(
−,

dk

rk
ek

)
=

∑
j∈I

b j i fi ∈ M.

Let w′ = (w′i ) associated to µεk(e). Then we have

w′i =

{
−wk if i = k,

wi + [εω(ek, dkei )]+wk if i ̸= k.

We will later denote µεk(w)= w′.
There are also signed mutations for coefficients. Recall we have fixed a multiplicative abelian group

P=
∏

i∈I Zri . The coefficients t = (ti, j | i ∈ I, j ∈ [1, ri ]) are a basis of P.

Definition 7.6. For s = (e, t), a seed e together with coefficients t = (ti, j ) in P, we define its signed
mutation in direction k, µεk(e, (ti, j ))= (e′, (t ′i, j )) for ε ∈ ± by setting s′ = µεk(s) and

t ′i, j =


t−1
k, j if i = k,

ti, j ·
rk∏

l=1
t [εω(ek ,ei )]+
k,l if i ̸= k.

Proposition 7.7 (cf. [Mou 2020, Proposition 4.4.9]). For every v ∈ Ts, the dual of g-vectors g∗v is a seed
of N . These seeds and their duals, i.e., the g-vectors, can obtained iteratively as follows:

(1) gv0 = e∗ and g∗v0
= e.

(2) For any v k
−→ v′ in Ts, we have

g∗v′ = µ
εk;v
k (g∗v), gv′ = µ

εk;v
k (gv).

Proof. We prove this proposition by induction on the distance from v to v0. The base case is when v = v0,
in which we have

g∗v′ = µ
+

k (e)= µ
+

k (g
∗

v0
), gv′ = µ+k (e

∗)= µ+k (gv0).
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Now assuming that v ̸= v0 and suppose that the unique path from v0 to v starts with v0
i
−→ v1 for some

i ∈ I . Write s1 = sv1 = µ
+

i (s). By induction, we assume that the proposition holds for g-vectors with
respect to the seed s1:

gv′∈s1 = µ
ε
k(gv∈s1),

where ε = εk;v∈s1 = sgn(g∗k;v∈s1
) with respect to s1. Note that by definition

gv′∈s = (T s
i )
−1(gv′∈s1), gv∈s = (T s

i )
−1(gv∈s1),

and we want to prove

gv′∈s = µ
δ
k(gv∈s),

where δ = εk;v∈s with respect to s.
Then it amounts to show that

(T s
i )
−1
◦µεk(gv∈s1)= µ

δ
k ◦ (T

s
i )
−1(gv∈s1). (7-1)

We split the discussion into the following two cases. The codimension one skeletons of the chambers
C+v∈s1

and C+v′∈s1
are in the essential support of Ds1 . As v and v′ are adjacent, these two chambers share a

common facet. Therefore they are either separated by the hyperplane e⊥i or contained in the same half
space (since the hyperplane is also in the essential support).

Case 1. The two groups of g-vectors gv∈s1 and gv′∈s1 are separated by e⊥i . In this case, the normal vector
g∗k;v∈s1

is in the direction of ei . The signs δ and ε on the two sides of (7-1) are then different. We assume
that ε = sgn(g∗k;v∈s1

)=+; the other case is analogous. By our assumption, g∗v∈s1
qualifies as a seed of

fixed data 0, thus forming a basis of N , which implies g∗k;v∈s1
= ei . Since {λ j g∗j;v∈s1

| j ∈ I } form a basis
of the sublattice N ◦, we have di = dk . We note that the map T s

i is actually determined by the vectors ei

and di ei . On the left-hand side of (7-1), T s
i is the identity, while on the right-hand side, it is T s

i,+. So we
need to show the equality

µ+k (gv∈s1)= µ
−

k ◦ (T
s

i,+)
−1(gv∈s1).

To simplify the notation, we denote g = gv∈s1 and gi = gi;v∈s1 . On the left side of the equality, the tuple
µ+k (g)= (g

′

i ) differs with g by only one vector

g′k =−gk +
∑
i∈I
[−bvik]+gi .

On the right-hand side, we first have

(T s
i,+)
−1(gk)=−gk +

∑
i∈I
−bvik gi ,

while other g-vectors remain unchanged under (T s
i,+)
−1. It is easy to check that the dual of (T s

i,+)
−1 is an

automorphism of (N , ω), that is, it is a linear automorphism on N preserving the form ω. Thus we have,
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if writing µ−k ◦ (T
s

i,+)
−1(gv∈s1)= (g

′′

i ),

g′′k =−gk +
∑
i∈I
−bvik gi +

∑
i∈I
[bvik]+gi = g′k, and g′′i = gi for i ̸= k.

This finishes the proof of the desired equality.

Case 2. The g-vectors gv∈s1 and gv′∈s1 are all contained in the same half Hs
i,+ or Hs

i,−. Again we need to
prove (7-1). We observe that the two signs δ and ε are equal. In fact, the sign ε of g∗k;v∈s1

depends on
its coordinates in e j;v1 for j ̸= i since g∗k;v∈s1

is not purely proportional to ei . The same is true for the
sign δ which only depends on g∗k;v∈s’s coordinates in e j for j ̸= i . Since g∗k;v∈s only differ in the direction
of ei , and also because e j;v1 and e j also differ by multiples of ei , we conclude that ε = δ. The equality
(7-1) then directly follows from a fact we already mentioned in Case 1 that the dual of (T s

i,ε)
−1 acts as an

automorphism on (N , ω). □

A direct corollary of Proposition 7.7 is another description of c-vectors mentioned in Section 3.3.
Recall that we have π : P→ P, pi, j 7→ pi . We write the group operation in P and P by addition instead
of multiplication.

Corollary 7.8. We identify the lattice N with P by ei =
di
ri

ei 7→ pi . Then we have for any i ∈ I and v ∈Ts,

di

ri
g∗i;v = pi;v, di g∗i;v = ri pi;v = pi;v.

Proof. For the initial vertex v0, this is given by the identification ei 7→ pi . The iteration of g∗i;v is provided
by signed mutations according to Proposition 7.7. We have if v k

−→ v′ in Ts,

g∗i;v′ =
{

−g∗k;v if i = k,
g∗i;v + [−εb

v
ik]+g∗i;v if i ̸= k,

where ε = sgn(g∗k;v). What is implicit is that we have already known that g∗i;k is either nonnegative or
nonpositive. On the other hand, the mutation of pi;v is given by

pi;v′ =


−pk;v if i = k,

pi;v + bvki · p
+

k;v if i ̸= k and bik ≤ 0,
pi;v + bvki · p

−

k;v if i ̸= k and bik > 0.

Thus assuming di g∗i;v = pi;v for all i ∈ I would imply di g∗i;v′ = pi;v′ for all i ∈ I as they have the same
mutation formula when pk;v has a well-defined sign. Therefore the result is proved by induction on the
distance from v to v0. □

Lemma 7.9. The generalized coefficients pi, j;v have the following signed mutation formula. If v k
−→ v′

in Ts, then

pi, j;v′ =


−pk, j;v if i = k,

pi, j;v + [εβ
v
ki ]+ ·

rk∑
j=1

pk, j;v if i ̸= k

where ε = sgn(g∗k;v).
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Proof. By Corollary 7.8, pi;v is sign coherent because g∗i;v is so. As we have already shown in
Proposition 3.17 that the sign coherence of pi;v implies that of pi, j;v , the result follows by induction. □

7.2. Wall-crossings. We next study the wall-crossing functions attached to walls of the cluster chambers.
Each cluster chamber C+v∈s has exactly n facets di;v∈s naturally indexed by I (a facet has the same index as
its normal vector g∗i,v∈s). The wall (di;v∈s, fi;v∈s) is pulled back by T−1

v0,v
from the scattering diagram Dsv

(with coefficients tv). The wall-crossing function fi;v has the following description. Here we identify the
initial coefficients ti, j with pi, j , and endow P the semifield structure Trop( p).

Theorem 7.10. The scattering diagram Ds has a representative in its equivalent class such that it is the
union of the scattering diagram

D(1+s ) := {(di;v, fi;v) | i ∈ I, v ∈ Ts}, where fi;v =
ri∏

j=1

(
1+ pεi;v

i, j;v · z
εi;v

n∑
j=1

βvj i g j;v)
and another one whose support is disjoint from 1+s .

Proof. We prove this theorem by induction on the distance from v to v0. We first note that by Lemma 7.9
the coefficients pi, j;v ∈ P can be computed iteratively by signed mutations. The vectors

wi;v :=
n∑

j=1
βvj i g j;v = ω

(
−,

di

ri
g∗i;v

)
∈ M

can also be computed iteratively by signed mutations since the g-vectors do by Proposition 7.7.
Assume that the result is true for the distance between two vertices no greater v0 and v. Suppose we

have that v k
−→ v′ ∈ Ts and that the unique path from v0 to v1 starts from v0

i0
−→ v1.

Let’s look at the chambers τ := C+v∈s1
and τ ′ := C+v′∈s1

in Ds1 . They have g-vectors satisfying

gv′∈s1 = µ
ε
k(gv∈s1),

where ε = εk;v∈s1 := sgn(g∗k;v∈s1
). For the wall-crossing functions, by our assumption, for i ∈ I , we have

fi;v∈s1 =

ri∏
j=1
(1+ p

εi;v∈s1
i, j;v∈s1

zεi;v∈s1wi;v∈s1 ),

fi;v′∈s1 =

ri∏
j=1
(1+ p

εi;v′∈s1
i, j;v′∈s1

zεi;v′∈s1
wi;v′∈s1 ).

These two functions are related by the signed mutation µεk . More precisely, we have

µεk(g
∗

v∈s1
, pv∈s1)= (g

∗

v′∈s1
, pv′∈s1), µεk(wv∈s1)= wv′∈s1 .

We want to pull back the chambers C+v∈s1
and C+v′∈s1

, as well as the wall-crossing functions fi;v∈s1 and
fi;v′∈s1 to Ds via the operation (T s

i0
)−1 to get the chambers σ := C+v∈s, σ

′
:= C+v′∈s and the wall-crossing

functions fi := fi;v∈s and f ′i := fi;v′∈s by the mutation invariance Theorem 6.27. We want to show that fi

and f ′i are also related by signed mutations. In the following, we calculate fi and f ′i in detail by applying
T̃−1

i0
to fi;v∈s1 and fi;v′∈s1 . This depends on the following two cases as in the proof of Proposition 7.7:
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(1) The two chambers τ and τ ′ are separated by the hyperplane e⊥i0
.

(2) They are contained in the same half space Hi0,+ or Hi0,−.

Case 1. In this case, the normal vector g∗k;v∈s1
is either ei0 or −ei0 . Assume it is ei0 ; the other case is

similar. Then the chamber τ is in Hi0,+ while τ ′ is in Hi0,−. First of all, we have fk = f ′k obtained simply
by reversing the monomials in fk;v∈s1 = fk;v′∈s1 . Since Ti0 (as well as T̃i0) is identity on Hi0,−, we have
for i ̸= k, f ′i = fi;v′∈s1 . Note that for the signs, for i ∈ I ,

εi;v′∈s1 = εi;v′∈s

unless g∗i;v′∈s1
is proportional to ei0 , which only happens for g∗k;v′∈s1

=−g∗k;v∈s1
, where we have

εk;v′∈s1 =−, εk;v′∈s =+.

So we conclude for any i ∈ I ,

f ′i =
ri∏

j=1
(1+ (pi, j;v′∈s1 zwi;v′∈s1 )εi;v′∈s).

For fi;v∈s1 and fi , we first consider the signs εi;v∈s1 and εi;v∈s. Since the dual of T−1
i0

on N only shifts
in the direction of ei0 , we have for i ̸= k

εi;v∈s1 = εi;v∈s,

as the vectors g∗i;v∈s1
and g∗i;v∈s must have the same sign in all the other directions except for ei0 , and the

only one proportional to ei0 is g∗k;v∈s1
. Thus we have for i ̸= k,

fi =
ri∏

j=1
(1+ T̃−1

i0
(pi, j;v∈s1 zwi;v∈s1 )εi;v∈s)

We want to show that fi and f ′i are related by the mutation µδk . Precisely, it amounts to show that

µδk(T̃
−1

i0
(pi, j;v∈s1 zwi;v∈s1 | i ∈ I, j ∈ [1, ri ]))= µ

ε
k(pi, j;v∈s1 zwi;v∈s1 | i ∈ I, j ∈ [1, ri ]), (7-2)

where δ is the sign εk;v∈s. Here we abuse the notation µ±k which acts on a tuple of functions, but it should
be clear what it means. By our assumption, ε =+ and δ =−ε =−. Then this follows from the general
fact that for any seed (e, t) and k ∈ I , we have

µ−k (T̃
−1

k (ti, j zwi | i ∈ I, j ∈ [1, ri ])= µ
+

k (ti, j zwi | i ∈ I, j ∈ [1, ri ]).

Case 2. Suppose τ and τ ′ are both contained in the same half space. According to our above discussion,
as in the notation of (7-2), it then amounts to check that

T̃−1
i0
(µεk(pi, j;v∈s1 zwi;v∈s1 | i ∈ I, j ∈ [1, ri ]))= µ

δ
k(T̃
−1

i0
(pi, j;v∈s1 zwi;v∈s1 | i ∈ I, j ∈ [1, ri ])),

where δ = εk;v∈s. As we have discussed in the Case 2 of the proof of Proposition 7.7, the signs are equal:
δ = ε. Then the rest follows immediately from the fact that the dual of Ti0,ε acts as an automorphism on
the data (N , ω). □
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8. Reconstructing A prin

In this section, we see how to reconstruct the generalized cluster algebra A prin(s) as well as the variety
Aprin(s) from Xs,λ through Ds.

8.1. Reconstructing A prin(s) from Ds. Given fixed data 0 and an A-seed with principal coefficients
s = (e, p), denote by A prin(s) the corresponding generalized cluster algebra. Recall that we denote by
xi;v the cluster variables associated to the seed sv.

Consider the generalized cluster scattering diagram Ds, whose wall-crossings act on k̂[P] by auto-
morphisms. For two vertices v, v′ ∈ Ts, let γ be a path from the chamber C+v∈s to C+v′∈s and consider the
path-ordered product

pv,v′ = ps
v,v′ := pγ,Ds : k̂[P] → k̂[P].

Since Ds is consistent and one can always choose some γ contained in the cluster complex, the path-
ordered product pv,v′ can also be viewed as an automorphism of Frac(M ⊕P).

Proposition 8.1. Let C+v∈s be a cluster chamber and gv the set of g-vectors. Then for any i ∈ I ,

xi;v = pv,v0(z
gi;v ) ∈ Frac(M ⊕P).

Proof. We prove this by induction on the distance from v to v0 in Ts. Suppose the statement is true for a
vertex v ∈ Ts and we have v i

−→ v′ in Ts. Then the chambers C+v and C+v′ are separated by the wall di;v

with the wall-crossing fi;v given in Theorem 7.10. Denote ε = sgn(g∗i;v) ∈ {+,−}. Then we have

pv′,v(zgi;v′ )= zgi;v′
ri∏

j=1

(
1+ pεi, j;sv · z

n∑
j=1

εβvj i g j;v)−⟨gi;v′ ,g
∗

i;v⟩.

By Proposition 7.7, we have

gi;v′ =−gi;v +
n∑

j=1
[−εriβ

v
j i ]+g j;v.

This leads to

pv′,v(zgi;v′ )= z−gi;v
ri∏

j=1

(
z

∑
j∈I
[−εβvj i ]+g j;v

+ pεi, j;sv · z

∑
j∈I
[εβvj i ]+g j;v)

.

Note that by sign coherence, pi, j;sv has the same sign as ε. So the above equation is exactly the exchange
relation of cluster variables. Applying the path-ordered product pv,v0 on both sides of the above equality
finishes the induction. □

By the generalized Laurent phenomenon Theorem 3.7, we know that xi;v actually lives in k[M ⊕P].

Corollary 8.2. The set of cluster variables of A prin(s) is in bijection with the set of g-vectors.

Proof. We send a cluster variable xi;v to the g-vector gi;v. To show that xi;v is uniquely determined
by gi;v , we observe that the formula pv,v0(z

gi;v ) is independent of the choice of v. Suppose there is another
chamber C+v′∈s such that gi;v is one of the generators. Choose a path γ from C+v∈s to C+v′∈s close enough
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to the ray R+gi;v so that it only crosses walls containing R+gi;v. The two path-ordered products pv,v0

and pv′,v0 differ by pγ , which acts on zgi;v by identity. Thus pv,v0(z
gi;v )= pv′,v0(z

gi;v ). □

8.2. Reconstructing Aprin
s from Ds. Recall that there is a surjective map from Ts to 1+s (the set of

cluster chambers) sending v to C+v∈s. For each vertex v ∈ Ts, we associate a torus TN ,v(R)= TN (R). To
a pair of vertices v and v′, we associate the birational morphism

qv,v′ = qs
v,v′ : TN ,v(R) 99K TN ,v′(R), q∗v,v′ := pv′,v.

Then there is an R-scheme obtained by gluing TN ,v(R), v ∈ Ts via these birational morphisms

Aprin
scat,s :=

⋃
v∈Ts

TN ,v(R).

One can actually relate Aprin
scat,s to the previously defined cluster variety

Aprin
s :=

⋃
v∈Ts

TN ,sv (R),

which is obtained by gluing together the same set of tori via A-cluster mutations.
Recall the piecewise linear map Tv0,v : MR→ MR that sends the cluster chamber C+v∈s to C+sv . When

restricted to a domain of linearity, Tv0,v becomes a linear automorphism on M . Denote the restriction
of Tv0,v on C+v∈s by Tv0,v|C+v∈s

. In particular, Tv0,v0 |C+s is the identity map. These linear isomorphisms
induce isomorphisms (or R-schemes) between tori

ψv0,v : TN ,sv (R)→ TN ,v∈s(R), ψ∗v0,v
(zm)= zTv0,v |C+v∈s

(m)
.

Proposition 8.3. The isomorphisms ψv0,v glue to be an isomorphism

ψv0 :A
prin
s →Aprin

scat,s.

Proof. The morphisms µv,v′ (resp. qv,v′) are generated µv0,v (resp. qv0,v) for all v in Ts. So the statement
is equivalent to the commutativity of the following diagram (for any v).

TN ,s TN ,v0∈s

TN ,sv TN ,v∈s

µv0,v

ψv0,v0=id

qv0,v

ψv0,v

To show qv0,v = ψv0,v ◦ µv0,v, we pull back the functions zgi;v (for all i ∈ I ) via these birational
morphisms. On the left-hand side, we get the cluster variables

xi;v = q∗v0,v
(zgi;v )
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by Proposition 8.1. On the right-hand side, these zgi;v get pulled back to ze∗i;v by ψ∗v0,v
as Tv0,v|C+v∈s

sends
the chamber C+v∈s to the chamber C+sv . Then via µ∗v0,v

, we still get cluster variables

xi;v = µ
∗

v0,v
(ze∗i;v ).

As {gi;v | i ∈ I } form a basis of M , we conclude that qv0,v = ψv0,v ◦µv0,v, which finishes the proof. □

We next see in a certain sense the variety Aprin
s is independent of s. This is a subtle issue as for

the cluster algebra A prin(s), the initial seed 6(s) is distinguished from others since it has principal
coefficients.

To resolve this, we again treat P as only a multiplicative abelian group. Consider s′ = µ+k (s) in the
sense of Theorem 6.27. The tree Ts′ is naturally embedded in Ts, along with the association of seeds
with coefficients. First of all, it is clear that the inclusion⋃

v∈Ts′

TN ,v∈s ⊂Aprin
scat,s

is an equality. The gluing maps are given by path-ordered products of Ds.
Consider for v ∈ Ts′ , the isomorphism (of R-schemes)

ϕv : TN ,v∈s′→ TN ,v∈s

such that ϕ∗v : k[M ⊕P] → k[M ⊕P] is given by the linear transformation

Tk |C+v∈s
: M ⊕P→ M ⊕P.

Proposition 8.4. The maps ϕv for v ∈ Ts′ glue together to have an isomorphism of k[P]-schemes

ϕ :Aprin
scat,s′→Aprin

scat,s.

Proof. Let v and v′ be two vertices in Ts′ . Since each ϕv is an isomorphism, the statement is equivalent
to the commutativity of the following diagram (for any v and v′).

TN ,v∈s′ TN ,v∈s

TN ,v′∈s′ TN ,v′∈s

qs′
v,v′

ϕv

qs
v,v′

ϕv′

In terms of algebras, this amounts to showing that

Tk |C+v∈s
◦ps
v,v′ = ps′

v,v′ ◦ Tk |C+
v′∈s
: k[M ⊕P] 99K k[M ⊕P].

If the two chambers C+v∈s and C+v′∈s are on the same side of the hyperplane e⊥k , the above equality is
just (6-2). If they are separated by e⊥k , it is the same as (6-5) and has been checked in (6-6). □
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Combined with Proposition 8.3, we see that the construction Aprin
s is independent of s. In terms of the

corresponding cluster algebra A prin(s), once it has principal coefficients on some seed s, it can be made
to do so at any seed mutation equivalent to s.

8.3. Broken lines and theta functions. This section is a recast of [Gross et al. 2018, Section 3] in the
generalized situation. Recall the setting of scattering diagrams in Definition 6.5.

Definition 8.5 (broken line, cf. [Gross et al. 2018, Definition 3.1]). Let D be a scattering diagram
over k̂[P] with a monoid map r : P→ M . Let p0 ∈ P \ ker(r) and Q ∈ MR \ Supp(D). A broken line
for p0 with endpoint Q is a piecewise linear continuous proper map

γ : (−∞, 0] → MR \Sing(D)

with a finite number of domains of linearity L1, L2, . . . , Lk (open intervals in (−∞, 0]), where each
L = L i ⊂ (−∞, 0] is labeled by a monomial cL z pL ∈ k[P] with pL ∈ P . This data should satisfy:

(1) γ (0)= Q.

(2) If L = L1 is the first domain of linearity of γ , i.e., L = (−∞, t) for some t ≤ 0, then cL z pL = z p0 .

(3) For t ∈ L any domain of linearity, mL := r(pL)=−γ
′(t).

(4) For two consecutive domains of linearity L = (a, t) (a can be −∞) and L ′ = (t, b), the monomial
cL ′z pL′ is a term in the formal power series

pγ (t),D(cL z pL )= cL z pL
∏
(d, fd)
γ (t)∈d

f −⟨n0,mL ⟩
d .

Here n0 ∈ N is primitive, serving as a normal vector of every d appearing in the product such that
⟨n0, γ

′(t)⟩> 0. So the power −⟨n0,mL⟩ is always a positive integer.

Definition 8.6 (theta function, [Gross et al. 2018, Definition 3.3]). Let D be a scattering diagram over k̂[P].
Let p0 ∈ P \ ker(r) and Q ∈ MR \Supp(D). For a broken line γ for p0 with end point Q, define

Mono(γ ) := cQz pQ ,

where (by abuse of notation) Q stands for the last linear segment of γ . We define the theta function for p0

with endpoint Q as the formal sum

ϑQ,p0 :=
∑
γ

Mono(γ ),

where the sum is over the set of all broken lines for p0 with endpoint Q.
For p0 = ker(r), we define for any endpoint Q

ϑQ,p0 = z p0 .

We collect some important properties for theta functions from [Gross et al. 2018].
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Theorem 8.7. (1) The theta function ϑQ,p0 is in k̂[P].

(2) Suppose that D is consistent. Then for Q, Q′ ∈ MR \ Supp(D) whose coordinates are linearly
independent over Q, and p0 ∈ P ,

ϑQ′,p0 = pγ,D(ϑQ,p0),

where γ is a path in D from Q to Q′ such that its path-ordered product is well-defined.

Proof. Part (1) essentially follows from the proof of [Gross et al. 2018, Proposition 3.4]. We are using a
different monoid P here, but the same proof still works with J :=mP = P \M .

Part (2), as pointed out in the proof of [Gross et al. 2018, Theorem 3.5], is again a special case of
[Carl et al. 2024, Section 4]. Here the generic condition on the coordinates of Q and Q′ is just to make
sure that any broken line does not cross any joint of D. Modulo mk

P , the independence of ϑQ,m0 on Q
within one chamber follows from [Carl et al. 2024, Lemma 4.7]. The compatibility between Q and Q′ in
different chambers follows from [Carl et al. 2024, Lemma 4.9]. See also a more general discussion on
the global property of theta functions in [Gross et al. 2022, Section 3.3]. □

In the case of generalized cluster scattering diagrams Ds (see Definition 6.17), the monoid P is
M⊕

⊕
i∈I Nri (contained in M⊕P) with the natural projection r to the direct summand M . We have the

following properties of theta functions.

Proposition 8.8 (mutation invariance of broken line, cf. [Gross et al. 2018, Proposition 3.6]). The
piecewise linear transformation Tk :MR→MR (with a lift on M⊕P) defines a one-to-one correspondence
γ 7→ Tk(γ ) between broken lines for p0 with endpoint Q for Ds and broken lines for Tk(p0) with endpoint
Tk(Q) for Dµk(s). This correspondence satisfies, depending on whether Q ∈Hk,+ or Hk,−,

Mono(Tk(γ ))= Tk,±(Mono(γ )),

where Tk,± acts on a monomial as in Theorem 6.27. In particular, we have

ϑ
µk(s)
Tk(Q),Tk(p0)

= Tk,±(ϑ
s
Q,p0

).

Proof. We use Tk(γ ) to denote the piecewise linear map Tk ◦ γ : (−∞, 0]→ MR. Suppose L is a domain
of linearity of γ labeled with monomial cL z pL . If γ (L) is contained in one of the half spaces Hk,±, L
is also a domain of linearity for Tk(γ ). We apply the action of Tk,± on the monomial cL z pL (where the
sign is chosen depending on which half space L is in). If γ (L) crosses e⊥k , split L into L+ and L−, and
apply Tk,± respectively to the monomial cL z pL . One then needs to check the piecewise linear path Tk ◦ γ

together with the new monomial data we just obtained is a broken line for Tk(p0) with endpoint Tk(Q)
in Dµk(s) as in [Gross et al. 2018, Proposition 3.6]. The inverse of the operation γ 7→ Tk ◦ γ is also clear.
The rest of the statement follows easily. □
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Proposition 8.9 (cf. [Gross et al. 2018, Proposition 3.8]). Consider the scattering diagram Ds.

(1) Let Q ∈ Int(C+s ) be an end point, and let p ∈ P be such that r(p) ∈ C+s ∩M. Then ϑQ,p = z p.

(2) Let C+v ∈ 1+s be a cluster chamber for some v ∈ Ts, and Q ∈ int(C+v ) and m ∈ C+v ∩ M. Then
ϑQ,p = z p if r(p)= m.

Proof. Part (1) is essentially [Gross et al. 2018, Proposition 3.8], although there the scattering diagram
is actually different from Ds in terms of wall-crossing functions. However, the bending behavior of a
broken line on a wall is totally analogous, so the exact same argument still applies.

Part (2) is the generalized version of [Gross et al. 2018, Corollary 3.9]. By Proposition 8.8, the
transformation Tv0,v : MR→ MR defines a one-to-one correspondence between the broken lines for p
with r(p) ∈ C+v ∩M and Q ∈ int(C+v ) in Ds, and the ones for Tv0,v(p) with r(Tv0,v(p)) ∈ C+sv ∩M and
Tv0,v(Q) ∈ int(C+sv ). However the only broken lines of the later is labeled by the final monomial z p′ for
p′ = Tv0,v(p) by part (1). The result follows. □

8.4. Cluster monomials as theta functions.

Definition 8.10. Let s be a generalized A-seed with principal coefficients. Then for v ∈ Ts, a cluster
monomial in this seed is a monomial on the torus TN ,v(R)⊂Aprin

s of the form zm where m is a nonnegative
N-linear combination of {e∗i;v | i ∈ I }. By the Laurent phenomenon, such a monomial extends to a regular
function on the whole cluster variety Aprin

s .

Remark 8.11. One may regard a cluster monomial as a function on the initial torus TN ,v0(R). While being
a monomial on the cluster variables xi;v , it is also a Laurent polynomial in the initial cluster variables xi

by the Laurent phenomenon.

The following description of cluster monomials is a generalized version of [Gross et al. 2018, Theo-
rem 4.9]. It proves the positivity (see Theorem 3.8) of generalized cluster monomials.

Theorem 8.12. Let Ds be the generalized cluster scattering diagram of a seed s. Let Q ∈ int(C+s ) a
general end point and m ∈ C+v ∩M for some v ∈Ts. Then the theta function ϑQ,m is an element in zm

·N[P]
which expresses the cluster monomial associated to m of the algebra A prin(s) in the initial seed s.

Proof. We first note that m is regarded as a point in P through the inclusion of M in P . Let Q′ be a base
point in int(C+v ) and γ be a path going from Q′ to Q. By part (2) of Theorem 8.7, we have

ϑm,Q = pγ (ϑm,Q′).

As a theta function, ϑm,Q is a (formal) sum of monomials belonging to zm∧k[P]. By the positivity
Theorem 6.31 of Ds, ϑm,Q has positive integer coefficients, thus an element in zm∧N[P]. By part (2) of
Proposition 8.9, ϑm,Q′ = zm . We know that the cone C+v has integral generators {gi;v | i ∈ I } in M . Thus m
is a nonnegative linear combination of these g-vectors.

On the other hand, by Proposition 8.1, we have the following expression of a cluster variable

xi;v = pγ (zgi;v ).
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It follows immediately that ϑm,Q is a monomial of these xi;v , thus expressing a cluster monomial. Finally
by the generalized Laurent phenomenon Theorem 3.7, we have ϑm,Q ∈ zm

·N[P]. □

Since ϑm,Q does not depend on Q as long as it is chosen generally in the positive chamber, we simply
write it as ϑm . Consider the set of functions

{ϑm | m ∈1+s (Z)},

where 1+s (Z)=
⋃
v∈Ts

C+v ∩M . These are all cluster monomials. In general, they do not form an R-basis
of the cluster algebra A prin(s) or the upper cluster algebra A prin(s). But one can follow [Gross et al.
2018, Section 7.1] to define the set 2⊂ M such that for any m ∈2, ϑm is only a sum of monomials from
finitely many broken lines. Consider the free R-module

mid(Aprin
s ) :=

⊕
m∈2

R ·ϑm .

It is shown in [Gross et al. 2018, Theorem 7.5] that in the ordinary case there are natural inclusions of
R-modules

A prin(s)⊂mid(Aprin
s )⊂ A prin(s)

such that for the first inclusion, cluster monomials are sent to the corresponding theta functions, and
for the second inclusion, any theta function is sent to the corresponding universal Laurent polynomials
on Aprin

s (see [Gross et al. 2018, Proposition 7.1]). We expect that this is also true in the generalized case.

8.5. More on positivity. Chekhov and Shapiro [2014] proposed a positivity conjecture which is stronger
than Theorem 3.8. We formulate a version here.

A generalized cluster algebra in the sense of [Chekhov and Shapiro 2014] (see Section 3.2) is called
reciprocal if any of its exchange polynomials θi (u, v) is monic and palindromic, i.e., θi (u, v)= θi (v, u)
and has leading coefficient 1. In this way, the exchange polynomials do not change under mutations. Note
that θi (u, v) can have coefficients in ZP (rather than just in P) in general.

Conjecture 8.13 (cf. [Chekhov and Shapiro 2014, Conjecture 5.1]). Any cluster variable of a reciprocal
generalized cluster algebra whose exchange polynomials have coefficients in P (or more generally in NP)
is expressed as a positive Laurent polynomial in the initial cluster, i.e., an element in NP[x±1 , . . . , x±n ]
where the xi’s are the initial cluster variables.

Chekhov and Shapiro [2014, Section 5] pointed out that this conjecture is true for any generalized
cluster algebra associated to a surface with arbitrary orbifold points (see also [Banaian and Kelley 2020]
for a proof using snake graphs). The rank two case of this conjecture has been resolved in [Rupel 2013].

We consider here a related situation where the reciprocal assumption is not required. Let P be an abelian
group of finite rank. Consider an algebraic closure k = QP of the field of rational functions QP. Let
A prin(6) be a generalized cluster algebra with principal coefficients as of Definition 3.13. The coefficients
group is the tropical semifield Trop( p). Recall that the initial exchange polynomials have the form

θi (u, v)=
ri∏

j=1
(pi, j u+ v).
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Let λ : Trop( p)→ k∗ be an evaluation (as in Section 3.5) such that each λ(θi (u, v)) satisfies:

(A) All its coefficients are in ZP (in NP if assuming positivity).

(B) λ
(∏ri

j=1 pi, j
)

is an element in P.

By the mutation formula of coefficients, the exchange polynomials after any steps of mutations still satisfy
these two conditions. Therefore the cluster algebra with special coefficients A prin(6, λ) can be viewed
as a generalized cluster algebra of [Chekhov and Shapiro 2014] (with the coefficients group P). Note
that any reciprocal generalized cluster algebra can be obtained this way.

The scattering diagram λ(Ds) (see Section 6.4) is responsible for A prin(6, λ). It is over
∧

k
[
M ⊕

∏
i∈I N

]
with formal parameters ti . Note that by the generalized Laurent phenomenon, the cluster variables of
A prin(6, λ) are all in ZP[x±1 , . . . , x±n ].

Theorem 8.14. Let A prin(6, λ) be a generalized cluster algebra as above assuming (A), (B), and that
the initial exchange polynomials have coefficients in NP. Let s be an A-seed such that 6(s) = 6. If
there exists a representative of λ(Ds) such that every wall-crossing function is in

∧

NP
[
M ⊕

∏
i∈I N

]
, then

any cluster variable is expressed as a positive Laurent polynomial in the initial cluster, i.e., an element
in NP[x±1 , . . . , x±n ].

Proof. As in Theorem 8.12, the positivity of cluster variables follows from the positivity of the scattering
diagram λ(Ds) since every broken line ends with a monomial with coefficients in NP⊂ k. Expressing
a cluster variable as a theta function for λ(Ds)

(
and evaluated at ti = 1 where the ti’s are the standard

generators of
∏

i∈I N
)
, the result follows. □

If A prin(6, λ) is of finite type (i.e. there are only finitely many distinguished cluster variables), then
the cluster complex 1+s is finite and complete in MR by Corollary 8.2. By Theorem 7.10, we have that
Ds =D(1+s ) and the wall-crossing function on any facet of any cluster chamber has coefficients in NP

under the evaluation λ if assuming so for the initial ones. Then the positivity follows in this case from
Theorem 8.14. It is not hard to check that in Example 6.22 the expansion of the wall-crossing function
fR≥0(1,−1) has every coefficient in N[s1s2, s1+ s2, t1t2, t1+ t2]. By the description in Example 6.22 of all
other walls, all wall-crossings functions in this scattering diagram are positive in this sense. This then
implies all cluster variables are positive, i.e., have coefficients in N[s1s2, s1+ s2, t1t2, t1+ t2].
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1. Introduction

1A. The subject of the paper. We derive nontrivial bounds for certain exponential sums that are natural
generalizations of the classical Kloosterman sum to the noncommutative algebra Mn(Fq) of n×n matrices
over a finite field Fq with q = p f elements.

To define these sums let Fp be the prime field of Fq , and F be an algebraic closure of Fq so that for
m ≥ 1 Fqm ⊂ F is the unique degree-m extension of Fq . Let

ϕ0 : Fp → C∗

be the additive character which maps 1 ∈ Fp to ζ = exp(1/p)= e2π i/p, and fix the additive characters

ϕ = ϕ0 ◦ TrFq/Fp and ϕm = ϕ0 ◦ TrFqm /Fp

of Fq and Fqm .
Let Mn(Fqm ) be the algebra of n×n matrices over Fqm , and GLn(Fqm )= M∗

n (Fqm )⊂ Mn(Fqm ) be the
general linear group. Let ψ (resp. ψm) be the additive character of Mn(Fq) (resp. Mn(Fqm )) defined by

ψ = ϕ ◦ tr
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(resp. ψm = ϕm ◦ tr), where tr = trn : Mn(Fqm )→ Fqm is the matrix trace. For a ∈ Mn(Fqm ) define the sum

Kn(a, Fqm )=

∑
x∈GLn(Fqm )

ψm(ax + x−1), (1)

generalizing the classical Kloosterman sum [1927]

K1(α, Fqm )= K (α, F∗

qm )=

∑
x∈F∗

qm

ϕm(αx + x−1). (2)

When the field in question is clear, or when the arguments used do not depend on it, we will write Mn

and Kn(a) for Mn(Fq) and Kn(a, Fq).
The interest in these sums arose in connection with a conjecture of Marklof concerning the equidistri-

bution of certain special points associated to expanding horospheres. This conjecture, originally motivated
by Marklof’s work on Frobenius numbers [2010], was proved by Einsiedler, Moses, Shah and Shapira
[2016] using methods of ergodic theory. In the case of SL2 the connection to classical Kloosterman sums
was known already to Marklof (see Section 2.1 of [Einsiedler et al. 2016]) and together with Lee [2018]
they proved an effective version of the conjecture for SL3. This proof strongly hinted that nontrivial
bounds of the sums in (1) could yield a proof of Marklof’s conjecture with an effective power saving for
higher rank situations as well. One of the main purposes of this paper is to provide such bounds; they
are formulated in Theorems 1.8 and 1.10. These bounds, together with further extensions in [Erdélyi
et al. 2024b], were then recently used by El-Baz, Lee and Strömbergsson for realizing the above goal in
[El-Baz et al. 2022].

There is however also intrinsic interest in these sums as natural generalizations1 of Kloosterman’s sum.
The relevance and widespread use in analytic number theory of K1(α) (see, for example, [Heath-Brown
2000]) is immediate from the fact that it is the additive Fourier transform of the function x 7→ ϕ(x−1)

on F∗
q (extended by 0),

ϕ(x−1)=
1
q

∑
α∈Fq

K1(−α)ϕ(αx),

and that suitable estimates are available for K1(α). In fact one knows [Weil 1948a] (see also [Carlitz
1969]) that if α is not 0, then the associated zeta-function is rational,

Z(T )= exp
(

−

∑
m⩾1

K1(α, F∗
qm )

m
T m

)
=

1
1 − K1(α)T + qT 2 ,

from which

K1(α, F∗

qm )= −(λm
1 + λm

2 )

1The special case when a is a scalar matrix was first considered by Hodges [1956] and reappeared again in various other
contexts. See, for example, [Kim 1998; Fulman 2001; Chae and Kim 2003]. We thank Ofir Gorodetsky for bringing our attention
to these earlier works.
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for some λ1, λ2 ∈ C. Weil’s proof [1948b] of the Riemann hypothesis over function fields shows, using
[1948a], that |λi | =

√
q which gives the optimal bound

|K1(α, F∗

qm )| ≤ 2qm/2

for α not 0. (The explicit description of the connection between exponential sums of this type and the
Riemann hypothesis for curves over function fields goes back to [Hasse 1935].)

There are a number of extensions of these results in the commutative setting especially the so called
hyper-Kloosterman sums [Mordell 1963; SGA 41/2 1977; Luo et al. 1995; Kowalski et al. 2017], and
both these and the classical Kloosterman sums are ubiquitous in the theory of exponential sums [Katz
1988]. There is also a deep connection between Kloosterman sums and modular forms [Poincaré 1911;
Petersson 1932; Linnik 1963; Selberg 1965; Deshouillers and Iwaniec 1982; Goldfeld and Sarnak 1983],
and the notion of Kloosterman sum is extended to GLn [Friedberg 1987; Stevens 1987], as well as to
other algebraic groups [Dabrowski 1993; Dabrowski and Reeder 1998], with many applications.

The sums Kn(a) considered in this paper are more natural from a ring-theoretic point of view. If A
is a finite-dimensional algebra over a finite field, then by the Wedderburn–Artin theorem the additive
Fourier transform of ψ(x−1) (extended from A∗ to A by 0) leads naturally to the matrix Kloosterman
sums of (1). These of course are also related to the group GLn but at the same time they are very strongly
tied to the standard representation of this group. From this ring-theoretic point of view we have again

ψ(x−1)=
1

qn2

∑
a∈Mn(Fq )

Kn(−a)ψ(ax)

in the simple ring of n×n matrices over a finite field.
The other main goal of the paper is then to generalize the classical results above from the Kloosterman

sums K1 to Kn , especially to understand the associated cohomology. The difficulty of this task stems
from the fact that when Kn(a) is viewed as an exponential sum on the affine variety

V = {(x,1) ∈ Mn(Fq)× Fq : det(x)1= 1},

the part at infinity of the projective closure of V , defined by the equation det x = 0, is singular. However
the sums Kn(a) provide a rare example for which their cohomology and so their zeta function is explicitly
expressible in terms of one-dimensional exponential sums and so the weights in the sense of Deligne
[1980] can be understood in elementary terms. This realization that exponential sums on algebraic groups
can be treated rather explicitly is the other main achievement of the paper. The evaluations for the matrix
Kloosterman sums in concrete terms, especially the semisimple case in Theorem 1.1, is reminiscent of
Herz’s work on Bessel functions of matrix arguments [1955]. This link to transcendental special functions
continues a long line of similar connections, for example, those of the Gauss, Jacobi, and Kloosterman
sums to the gamma, beta and Bessel functions. As an important by-product the concrete nature of these
evaluations lead automatically to the estimates required for the equidistribution problem mentioned above.
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1B. Statements of the results. The statements below refer to a fixed finite field Fq , and so we will write
Kn(a) for the sum Kn(a, Fq) in (1). We start with the following reduction. Let a1, a2 be matrices of size
n1×n1 and n2×n2, and let a1 ⊕ a2 denote the block matrix

(a1
0

0
a2

)
of size (n1+n2)×(n1+n2).

Theorem 1.1. (i) Assume that a1 ∈ Mn1(Fq), a2 ∈ Mn2(Fq) and that their characteristic polynomials
pai (λ) are relatively prime. Then

Kn1+n2(a1 ⊕ a2)= qn1n2 Kn1(a1)Kn2(a2).

(ii) Assume that a ∈ Mn(Fq) has characteristic polynomial pa(λ) =
∏n

i=1(λ− αi ), with αi ∈ Fq all
different. Then

Kn(a)= qn(n−1)/2
n∏

i=1

K1(αi ),

where K1(αi ) is as in (2).

Now assume that all roots of the characteristic polynomial of a are in Fq . By the theorem above we
may assume that a has a unique eigenvalue α. Our first result in this direction is for nilpotent matrices.

Theorem 1.2. Assume that a ∈ Mn(Fq) is nilpotent. Then

Kn(a)= Kn(0)= (−1)nqn(n−1)/2. (3)

In general we have:

Theorem 1.3. Assume that a ∈ GLn(Fq) has a unique eigenvalue α ̸= 0. Denote by λ the partition
of n consisting of the sizes of the blocks in the Jordan normal form of a. There exists a polynomial
Pλ(A,G, K ) ∈ Z[A,G, K ], that depends only on the block partition λ, such that

Kn(a)= Pλ(q, q − 1, K1(α)).

Remark 1. While irrelevant for estimates, the separation of q and q − 1 in the above polynomial is
natural from the cohomological point of view, as these correspond to sums over the additive group A1

and the multiplicative group Gm .

The proof of Theorem 1.3 is constructive and allows one to express the Kloosterman sums Kn(a)
recursively as a polynomial in q, q − 1 and K1(αi ), where αi runs through the eigenvalues of a. For
example, if In denotes the identity matrix of size n×n then we have:

Theorem 1.4. Assume that a = α In , α ̸= 0. Then

Kn(α In)= qn−1K1(α)Kn−1(α In−1)+ q2n−2(qn−1
− 1) Kn−2(α In−2). (4)

The recursion formulas for a general partition are somewhat complicated to state but easy to describe
algorithmically. See Section 5B, which also contains further examples. These formulas are based on a
parabolic Bruhat decomposition (Section 2B). Using the finer decomposition via a Borel subgroup, one
can derive closed form expressions. For example, we have:
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Theorem 1.5. If α ∈ F∗
q then

Kn(α In)=

∑
w∈Sn
w2

=I

qn(n−1)/2+Nw(q − 1)ew K1(α)
fw ,

where Sn is the symmetric group and where for an involution w ∈ Sn , fw (resp. ew) is the number of fixed
points (resp. involution pairs) of w (i.e., n = 2e + f ) and

Nw =
∣∣{(i, j) | 1 ≤ i < j ≤ n, w( j) < w(i)≤ j}

∣∣.
One can similarly express Kn(a) for a =α I +

∑n−1
i=1 ei,i+1, when α ̸= 0 and where ei, j is the elementary

matrix with 1 in the (i, j)-th position and 0 everywhere else; see (58) in Section 5E.
The use of the Borel subgroup Bruhat decomposition is also very suitable for deriving estimates for

these generalized Kloosterman sums. As a first step we have the following.

Theorem 1.6. If a has a unique eigenvalue α then

|Kn(a)| ≤ |Kn(α I )| ≤ 4q(3n2
−δ(n))/4,

where δ(n)= 0 if n is even and δ(n)= 1 if n is odd.

Thus if the characteristic polynomial of a splits over Fq , then the estimates do not require much
input from étale cohomology. However to bound the sum Kn(a) in general it seems unavoidable to use
cohomological methods. The main input from étale cohomology is Lemma 3.16 from which we can
derive the following.

Theorem 1.7. Let a ∈ GLn(Fq) be a regular semisimple element (i.e., the characteristic polynomial pa

has no multiple roots over F ). Then the exponential sum Kn(a) is cohomologically pure — that is, all the
cohomology groups are trivial but the middle one and all the weights are n2.

In particular for these regular semisimple elements, we have “square-root cancellation”

|Kn(a)| ≤ 2nqn2/2.

Remark 2. The conditions on the multiplicities of the roots of pa can be formulated as polynomial
equations with integral coefficients in the variables ai, j ; thus Theorem 1.7 is a concrete illustration of the
theorems on “generic purity” of Katz and Laumon [1985] and Fouvry and Katz [2001, Theorem 1.1].

It is an intriguing question if the set of regular semisimple elements is the actual purity locus. The
methods of Theorem 1.3, at least for low ranks, allow one to see that matrices, whose Jordan normal
form over the algebraic closure has an eigenvalue with more than one Jordan block, are too large for
square root cancellations as can be seen by inspection. Interestingly matrices with only one block for
each eigenvalue do exhibit square root cancellation. Our methods do not yield enough information to
decide whether these sums are cohomologically pure; see Section 5E.
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Remark 3. Will Sawin suggested to us a geometric approach that could shed even more light on these
sums. The sum Kn(a) may be viewed as the trace of Frobenius on the stalk at a of a complex of sheaves
(in fact, a perverse sheaf). The geometry of this complex is linked to the Springer correspondence, in the
sense that the stalk at a should be related to the cohomology of the fixed points of a acting on various
flag varieties. This is an interesting and promising approach whose exact shape can be conjectured from
the recursion formulas. While the paper was going through publication this suggestion was elaborated in
[Erdélyi et al. 2024a], settling the purity question in the previous remark in the positive.

Our main theorem for bounding Kn(a) is as follows.

Theorem 1.8. For all a ∈ GLn(Fq) we have

|Kn(a)| ≪n q(3n2
−δ(n))/4,

where δ(n)= 0 if n is even and δ(n)= 1 if n is odd.

Remark 4. It is possible to refine the statement based on the characteristic polynomial of a. If the
characteristic polynomial is pa(t)=

∏r
i=1(t −αi )

ni for some pairwise distinct αi ∈ F, then

|Kn(a)| ≪n

r∏
i=1

q(3n2
i −δ(ni ))/4

∏
1≤i< j≤r

qni n j .

In the classical picture it is natural to look at the more general expression

K1(α, β)= K (α, β, F∗

q)=

∑
γ∈F∗

q

ϕ(αγ +βγ−1), (5)

which, in the case β ̸= 0, immediately reduces to K1(αβ
−1) by the simple identity

K1(α, β)= K1(αδ, βδ
−1)

valid for any δ ∈ F∗
q . However the case β = 0 is again interesting in its own way as it is the Fourier

transform of the characteristic function of the set of invertible elements. While trivial to evaluate it is also
unavoidable in the analytic applications.

We will look at these sums for n×n matrices and so we let

Kn(a, b)= Kn(a, b, Fq)=

∑
x∈GLn(Fq )

ψ(ax + bx−1). (6)

It is easy to see that just like as above, we have Kn(a, b)= Kn(b, a) and for any invertible g, h

Kn(gah−1, hbg−1)= Kn(a, b). (7)

Therefore if det a or det b is nonzero, we may use the results above to obtain the bound |Kn(a, b)|≪q3n2/4.
However unlike in dimension 1, the other cases are not settled completely by Theorem 1.2, as the orbit
structure of pairs of matrices (a, b) under the GLn×GLn-action given in (7) gets more intricate when
n > 1. We start with the most natural case of b = 0.
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Theorem 1.9. Assume that a ∈ Mn(Fq) has rank r. Then

Kn(a, 0, Fq)= (−1)r q−r(r+1)/2qrn
|GLn−r (Fq)|.

Since for an r-dimensional subspace the Moebius function of the poset of subspaces evaluates to
(−1)r qr(r−1)/2 by the q-binomial theorem [Stanley 1986, Formula (1.87)], this result is vaguely reminis-
cent to the evaluation of the Ramanujan sums∑

1≤x≤q
(x,q)=1

e2π iax/q
=

∑
d|(a,q)

µ(d)
q
d
.

One can see that the sums Kn(a, b) can get significantly larger than q3n2/4 since for rank a = 1 we
have |Kn(a, 0)| ≫ qn2

−n . The next theorem shows that this is close to the worst case scenario.

Theorem 1.10. Let a, b ∈ Mn(Fq) be singular n×n matrices such that

r = rk(b)≥ s = rk(a).

Then
|Kn(a, b, Fq)| ≤ 2qn2

−rn+r2
+(min(r,n−r)

2 ).

Corollary 1.11. If a, b ∈ Mn(Fq) are not both 0, we have the general estimate

|Kn(a, b, Fq)| ≤ 2qn2
−n+1.

Remark 5. Apart from the constant 2 which can probably be replaced by 1 + o(1) as qn
→ ∞, this

bound is sharp, since

Kn(e1,n, e1,n)= q2n−2
|GLn−2(Fq)| + (q − 1)qn−1

|GLn−1(Fq)| ∼ qn2
−n+1. (8)

(Here again ei, j stands for the elementary matrix with 1 in the (i, j)-th position and 0 everywhere else.)

1C. The organization of the paper. The paper naturally splits into four parts. The first deals with
matrices a all of whose eigenvalues are in the ground field Fq with the aim of evaluating the generalized
Kloosterman sums in terms of classical ones. Later sections deal with the nonsplit case using cohomology,
and the entirely different and more combinatorial case of degenerate matrices. These are included because
they are needed for the equidistribution problem in [El-Baz et al. 2022]. The final part provides some
examples and highlights some open questions. The material bifurcates on several occasions and this may
somewhat obscure the insight one gains from the results. Therefore we first highlight the generic case of
regular semisimple matrices before further details.

To treat regular semisimple elements in concrete terms we need to assume that they are split over the
ground field. The calculation to reduce to block upper diagonal a with the blocks having no common
eigenvalue is presented in Section 2A. We show here that in that case the Kloosterman sum Kn(a)
factors as a product of Kloosterman sums of smaller ranks corresponding to the diagonal blocks. This is
elementary and leads immediately to Theorem 1.1. If one is merely interested in this generic case then
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one can jump to Section 3F which shows how to circumvent the problem when the eigenvalues are only
defined in a field extension. In this regard one is also naturally lead to Conjecture 5.9 which suggests that
an evaluation might be possible even in the nonsplit case.

The finer picture of the non semisimple case is both of natural interest and required by the applications.
We spend a great deal of the paper on them. After the proof of Theorem 1.1, Section 2 and parts of
Section 3 handle this case still under the assumption that the eigenvalues are in the ground field Fq . To
reach our goals we will evaluate the subsums of Kn(a) restricted to Bruhat cells in various decompositions.

While the calculations in Section 2 are somewhat lengthy the overall structure is simple. We use Bruhat
decomposition with respect to a maximal parabolic fixing a line. In Sections 2B and 2C we introduce
the necessary notation for this task. This decomposition is the first step in the plain old Gauss–Jordan
elimination and it is natural to expect that this process should lead to an inductive structure for matrix
Kloosterman sums. An elementary computation in Section 2C justifies this expectation.

Since nilpotent matrices can be put into Jordan normal form over any field this step immediately
shows that Theorem 1.3 holds, at least if the polynomial in the statement is allowed to depend on the
characteristic p. It is easy to see that in the simplest case of Theorem 1.4 there is a recursion that works
over all primes simultaneously. The bounds in Section 3 are based only on this result and if one is only
interested in the estimates the rest of the section can be skipped.

However from the exponential sum point of view independence on the characteristic is of great interest
in itself. Therefore it is important that the recursions to lower rank can be done across all finite fields
universally for matrices whose eigenvalues are in that field. The rest of Section 2 is then devoted to show
this. Section 2D presents the technical core by showing that one may restrict to matrices with entries 1
and 0. These matrices can be lifted to Z and can be put into Jordan normal form over Q. In effect this
establishes that Theorem 1.3 holds for almost all primes simultaneously. The final step in the proof is
then a simple criterion for the existence of a Jordan normal form over Z in Section 2F. While this Jordan
normal form reduction can be made explicit, the rather technical calculations are postponed to Section 5B.

The second main part of the paper, Section 3, is about estimates. This again starts with an elementary
but structural observation that repeated applications of the reduction in Section 2 is equivalent to the use
of the Bruhat decomposition with respect to a Borel subgroup. We are able to refine the usual Bruhat
decompositions just enough to establish the first bound in Theorem 1.6.

While the proof of the above estimates are still group-theoretic in nature, in general one needs methods
from cohomology. Conversely the cohomological apparatus relies on these more classical arguments. The
connection is given by a key lemma, Lemma 3.16, whose simple proof somewhat disguises its importance.
This statement allows one to push “trivial cancellations” over a field extension back to the original field.

In Section 3E we review the cohomological apparatus by listing the necessary tools for the linear
algebra that follows. Sections 3F and 3G then give the proofs of the main theorems, including the special
case that the sums Kn(a) are “pure” when a is a regular semisimple element. These results are based on
the fact that the cohomology groups attached to the subsum restricted to a Bruhat cell vanishes in large
enough degree.
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The third part deals with Kn(a, b) in the degenerate cases. After dealing with the case b = 0 the general
situation is reduced to this special case when b = 0. Again one needs a double coset decomposition
suitable for this task. The machinery here is combinatorial in nature using Gaussian binomials [Stanley
1986].

In the last part we provide examples to illustrate our results. We give explicit evaluations for low ranks.
The case K2(a, b) is explicitly computed for any a, b ∈ M2(Fq) including the nonsplit semisimple case.
There are further calculations that illustrate the difficulties to get explicit results for n ≥ 4. These sections
also contain some observations and open questions that are interesting on their own.

Notational conventions. Letters of the Greek alphabet α, . . . , λ, . . . , ξ will denote scalars, that is, elements
of the field Fq , or its algebraic closure. Lower case letters of the Latin alphabet a, . . . , g, . . . , x will denote
matrices, but their entries, while scalars, will usually be denoted with Latin characters ai j , . . . , gi j , . . . , xi j

as well. Upper case letters A, . . . ,G, . . . , X will denote sets of matrices, usually but not necessarily
subgroups. While these depend on n, that dependence is usually suppressed for better readability. There
are a few exceptions that should not cause confusion: a general partition will be denoted λ, I will denote
the identity matrix (In if the size is not clear from the context), K will denote Kloosterman sums, and on
occasion S1, S2, . . . will denote some auxiliary sums.

For the cohomological arguments in Sections 3E–3G we have to work with algebraic varieties, so then
by A, . . . ,G, . . . , X we will also denote the affine algebraic varieties of Mn defined by simple algebraic
equations in the matrix entries.

There are two notions of a trace in the paper: Tr = TrFqm /Fq will denote the trace from an overfield to
the ground field, while tr = trn will denote the trace of a matrix of size n×n.

If u is a unipotent matrix that is upper triangular, we will denote ū = u − I the strictly upper triangular
part of u. Similarly, if U is the group of upper triangular unipotent matrices and V ⊂ U , then V denotes
the set (or variety) {v̄ | v ∈ V }.

An important role is played by the Weyl group W ≃ N (T )/T of GLn . Here T is the set of diagonal
matrices in GLn , and N (T ) is its normalizer. If Sn is the group of permutations on the letters {1, . . . , n}

then W ≃ Sn , and we will choose a specific isomorphism in Section 3A.
Cohomology will mean ℓ-adic cohomology with compact support, with some unspecified ℓ ̸= p.

2. Identities via reduction of rank

2A. Splitting to primary components. We start with some elementary but important observations. Recall
from (5) and (2) that

Kn(a, b)=

∑
x∈GLn(Fq )

ψ(ax + bx−1) and Kn(a)= Kn(a, I ).

The sum is clearly unchanged if x is replaced by x−1, or if x is replaced by cx for some c ∈ GLn(Fq).
This leads immediately to:
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Lemma 2.1. If a, b ∈ Mn(Fq) and c ∈ GLn(Fq) then we have

Kn(a, b)= Kn(b, a), Kn(ac, b)= Kn(a, cb) and Kn(a)= Kn(cac−1).

Therefore, Kn(a) only depends on the conjugacy class of a and so using conjugation we can put a into
Jordan normal form over F. To exploit this we recall the following result of Sylvester [1885] whose proof
is given here for the convenience of the reader.

Lemma 2.2. Let Mk,l be the vector space of k×l matrices over an arbitrary field F. If ak ∈ Mk(F) and
al ∈ Ml(F) are matrices with no common eigenvalue over the algebraic closure F of F then the linear
endomorphism of Mk,l given by

v 7→ val − akv

is an isomorphism.

Proof. It suffices to prove that this map is injective. Assume that

val − akv = 0

for some v. Then for any polynomial p(t)

vp(al)= p(ak)v.

Let pk(t) ∈ F[t] (resp. pl(t)) be the characteristic polynomial of ak (resp. al). Then by the Cayley–
Hamilton theorem we have

0 = pk(ak)v = vpk(al) and 0 = vpl(al).

By our assumption on the eigenvalues we have that pk(t) and pl(t) are relatively prime in F[t]. Thus there
are polynomials rk(t), rl(t) such that pk(t)rk(t)+ pl(t)rl(t)= 1 which implies 0 = v; hence our claim. □

To use this observation let U[k,l] be the linear subgroup of GLn whose set of points for any ring R is

U[k,l](R)=

{(
Ik v

0 Il

) ∣∣∣ v ∈ Mk,l(R)
}
.

The fact that this is a subvariety will play a role in the cohomological arguments, but for now we will only
use the particular subgroup Uk,l(Fq)⊂ GLn(Fq). As usual since the field Fq is fixed, for easier reading
we will write Kn(a) for Kn(a, Fq), and G and Uk,l for the sets GLn(Fq) and Uk,l(Fq).

Proposition 2.3. Assume that

a =

(
ak b
0 al

)
with ak ∈ Mk(Fq), al ∈ Ml(Fq), b ∈ Mk,l(Fq) for some k, l ∈ N such that k + l = n and ak and al have no
common eigenvalue in F. Then

Kn(a)= qkl Kk(ak)Kl(al).
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Proof. Since tr is invariant under conjugation, we have

Kn(a)=

∑
x∈G

ψ(ax + x−1)=
1

qkl

∑
x∈G

∑
u∈U[k,l]

ψ(a(u−1xu)+ (u−1xu)−1)

=
1

qkl

∑
x∈G

∑
u∈U[k,l]

ψ((uau−1)x + x−1).

Now

uau−1
=

(
ak b + val − akv

0 al

)
and so

Kn(a)=
1

qkl

∑
x∈G

ψ(ax + x−1)

( ∑
v∈Fk×l

q

ψk((val − akv)x ′)

)
,

where x ′ is the l×k matrix which we get by deleting the first k rows and last l columns of x and ψk is the
k×k matrix trace composed with ϕ.

From Lemma 2.2 we have∑
v∈Fk×l

q

ψk((val − akv)x ′)=

∑
v∈Fk×l

q

ψk(vx ′)=

{
0 if x ′

̸= 0,
qkl if x ′

= 0.

This immediately yields

Kn(a)=

∑
x∈G
x ′

=0

ψ(ax + x−1)= qkl Kk(ak)Kl(al). □

Proof of Theorem 1.1. The first claim was proved above. For the second using the invariance under
conjugation we may assume that a = diag(α1, . . . , αn). By Proposition 2.3 we have

Kn(a)= qn−1K1(αn)Kn−1(a′),

where a′
= diag(α1, . . . , αn−1). The result follows by induction. □

2B. A parabolic Bruhat decomposition. We prepare the proofs of Theorems 1.3 and 1.4. Our goal is to
express the Kloosterman sum Kn(a) in terms of sums Kn−1(a′) and Kn−2(a′′) where the matrices a′ and
a′′ are derived from a by deleting one or two rows and columns.

When a has a single eigenvalue α, it is conjugate to

a = α I + ā, (9)

where ā is strictly upper triangular. Since Kn(a) is conjugacy invariant, we will assume that a itself is in the
above form. Our reductions are then based on a parabolic Bruhat decomposition for GLn . While it can be
deduced from general facts — see [Springer 1998, Theorem 8.3.8; Borel 1991, Proposition IV.14.21(iii)] —
it is easier to work them out explicitly for the special case at hand.
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Let P be the closed subgroup of GLn defined by the vanishing of gn,1, . . . , gn,n−1. If F is a field, P
may be described alternatively as follows. Let GLn(F) act on row vectors by multiplication on the right:
v 7→ vg. Then P(F) is the stabilizer of the line {λ en : λ ∈ F} where en is the row vector (0, . . . , 0, 1):

P(F)= {g ∈ GLn(F) | eng = λen, λ ∈ F∗
}. (10)

Since the arguments in this and the following sections will not be used in the cohomological proofs we
will only concentrate on the set P(Fq).

Then as sets G = GLn(Fq) =
⊔n

k=1 P(Fq)w(kn)P(Fq), where w(kn) is the permutation matrix corre-
sponding to the transposition (kn). To make this a parameterization let

Uk =

{
I +

n∑
j=k+1

u j ek, j

∣∣∣ uk, j ∈ F
}

(11)

be the set of unipotent matrices with nonzero elements only in the k-th row. (While this is again an
algebraic group scheme, this fact will not play any role.)

We will only deal with F = Fq and from here on we will write P and Uk for P(Fq) and Uk(Fq). We
then have the following decomposition into disjoint sets.

Lemma 2.4. Let Xk = Ukw(kn)P. The map Uk × P → Xk , (u, g) 7→ uw(kn)g, is a bijection and
G =

⊔n
k=1 Ukw(kn)P.

Proof. Let x be a matrix in G = GLn(Fq) with rows xi , and write

en =

n∑
j=1

u j x j ,

where en = (0, . . . , 0, 1). We claim that

Xk =
{

x ∈ G | min{ j | u j ̸= 0} = k
}
.

It is clear that Xk P = Xk and that Ukw ⊂ Xk with w = w(kn). Conversely if we let

u = I +

n∑
j=k+1

(u j/uk)ek, j

then we have ux ∈ wP .
Finally it is enough to show that if u1wp1 = u2wp2, then u1 = u2. To this effect note that the above

implies that enwu−1
2 u1 = en p2 p−1

1 w. However enw = ek and so the k-th rows of u1 and u2 are the same,
which implies u1 = u2. □

By the lemma we have

Kn(a)=

∑
g∈GLn(Fq )

ψ(ag + g−1)=

n∑
k=1

∑
x∈Xk

ψ(ax + x−1). (12)
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When summing over Xk , the case of k = n, when Xn = P , is trivial. To see this we will give an explicit
Levi decomposition of P = P(Fq). This fixes notation and will also be used in our further calculations
on Xk for k < n. Note that again we will be working not with the algebraic groups but the fixed finite
groups that they give rise to for Fq .

For h ∈ GLn−1(Fq) and µ ∈ GL1(Fq) let

[h, µ] =

[
h 0
0 µ

]
∈ GLn(Fq) (13)

and let

L = {[h, µ] : h ∈ GLn−1(Fq), µ ∈ GL1(Fq)} ⊂ GLn(Fq). (14)

Also let

V =

{
I +

n−1∑
l=1

vl el,n : vl ∈ Fq

}
. (15)

Then

P = LV = VL .

Proposition 2.5. If a is as in (9) then∑
x∈Xn

ψ(ax + x−1)= qn−1K1(α)Kn−1(a′),

where a′ is the matrix one gets by deleting the last row and column of a.

Proof. Since ∑
x∈Xn

ψ(ax + x−1)=

∑
g∈L
v∈V

ψ(agv+ (gv)−1)= qn−1
∑
g∈L

ψ(ag + g−1),

the claim follows from the description of L in (14) and that

tr(agv+ (gv)−1)= tr(ag + g−1)= tr(a′h + h−1)+αλ+ λ−1. □

2C. The sum over the nontrivial cells. We continue to assume that a = α In + ā, with ā strictly upper
triangular, so that a has a unique eigenvalue α. We will show that for k < n the sum∑

x∈Xk

ψ(ax + x−1)

can be expressed as a sum over the subvariety

Lk(α)= {g ∈ L | gk, j = 0 for all j ̸= k and αgk,k = g−1
n,n}. (16)

However we will only work over the set of points in Fq and write L l(α) for Lk(α)(Fq). For α = 0 these
sets are empty, while for α ∈ F∗

q they are subvarieties of L isomorphic to GLn−2 × GL1 × An−2 that can
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be visualized as elements g ∈ L of the form

g =


h11 ∗ h12 0
0 µ 0 0

h21 ∗ h22 0
0 0 0 1/(αµ)

 . (17)

Here the blocks correspond to the partition

{1, . . . , n} = {1, . . . , k − 1} ⊔ {k} ⊔ {k + 1, . . . , n − 1} ⊔ {n}

for 1< k < n − 1, while for k = 1 and n − 1 we have to adapt (17) to 3×3 blocks

g =

µ 0 0
∗ h′′ 0
0 0 1/(αµ)

 , g =

h′′
∗ 0

0 µ 0
0 0 1/(αµ)

 . (18)

This is merely a preliminary step in the reduction to rank n − 2, but is already quite useful, a fact that
we will illustrate by proving Theorems 1.2 and 1.4.

The reduction to the special form in (17) is based on the following calculation.

Proposition 2.6. For a fixed g ∈ L ,∑
v∈V

ψ(αw(kn)gv+ (w(kn)gv)−1)= 0

unless

gk, j = 0 for all j ̸= k and αgk,k = g−1
n,n.

When these conditions hold∑
v∈V

ψ(αw(kn)gv+ (w(kn)gv)−1)= qn−1ψ(αw(kn)g + (w(kn)g)−1).

Proof. Let V = {v̄ =
∑n−1

l=1 vl el,n : vl ∈ Fq}. If v = I + v̄ ∈ V then v−1
= I − v̄. The sum in question then

becomes∑
v∈V

ψ(αw(kn)gv+ (w(kn)gv)−1)= ψ(αw(kn)g + (w(kn)g)−1)
∑
v̄∈V

ψ(αw(kn)gv̄− v̄(w(kn)g)−1),

which vanishes unless the linear function

v 7→ tr(αw(kn)gv̄− v̄(w(kn)g)−1)= α

n−1∑
l=1

gk,lvl − g−1
n,nvk

is trivial. □

We can now prove the following claim about the sum over Xk .
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Proposition 2.7. Let a = α I + ā, where ā is strictly upper triangular, k < n, Xk is as in Lemma 2.4 and
Lk(α) is as in (16). Then we have∑

x∈Xk

ψ(ax + x−1)= qn−1
∑

g∈Lk(α)

∑
u∈Uk

ψ(auw(kn)g + (w(kn)g)−1),

where au
= u−1au.

Proof. Since Pu = P for any u ∈ Uk , we have

Xk =

⊔
u∈Uk

uw(kn)P =

⊔
u∈Uk

uw(kn)Pu−1,

and so by u−1au = α I + u−1āu we have∑
x∈Xk

ψ(ax + x−1)=

∑
g∈L
v∈V
u∈Uk

ψ(αw(kn)gv+ (w(kn)gv)−1)ψ(u−1āuwgv).

A direct calculation, based on the fact that the last row of ā = a −α I is identically 0, then shows that

tr(u−1āuwgv)= tr(u−1āuwg) (19)

is independent of v. Therefore∑
x∈Xk

ψ(ax + x−1)=

∑
g∈L
u∈Uk

ψ(u−1āuwg)
∑
v∈V

ψ(αw(kn)gv+ (w(kn)gv)−1).

The inner sum is identical to the one in Proposition 2.6; thus the proposition is proven. □

Remark 6. We comment briefly on identity (19). The calculations are simplified by using Mn(Fq),
writing v = I + v̄, and observing that tr x v̄ =

∑n
l=1 xn,lvl which clearly vanishes if the last row of the

matrix x is identically 0.
However one may argue alternatively via interpreting these matrices as linear transformations as

follows. The group P is the parabolic subgroup fixing the 1-dimensional subspace M = {λen | λ ∈ Fq}

and so its elements also preserve the flag {0} ⊂ M ⊂ Fn
q . Any element g of P then gives rise to a linear

transformation g′ of M ′
= Fn

q/M . The subgroup V itself is characterized by the property that its elements
act trivially both on M and on M ′. Let x = u−1āuwg. Since enx = 0, the linear transformation x also
induces a map x ′ on M ′ and tr x = tr x ′. Since enxv = 0 as well, tr xv = tr(xv)′ = tr x ′v′

= tr x ′.
In general all our calculations can easily be proved using block matrices, either by hand or by using a

symbolic algebra package. Since this gives an easy way to check the validity of these statements, we will
present most of the identities in this matrix interpretation.

As a corollary to Proposition 2.7 we immediately have:
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Proof of Theorem 1.2. If α = 0 then the set Lk(α) is empty, and so for k < n∑
x∈Xk

ψ(ax + x−1)= 0.

Since K1(0)= −1, Proposition 2.5 gives

Kn(a)= −qn−1Kn−1(a′),

where a′ is the matrix one gets by deleting the last rows and columns of a. Since by assumption a is
upper triangular nilpotent, so is a′ and the theorem follows by induction. □

Proof of Theorem 1.4. If a = α I , with α ∈ F∗
q a scalar matrix, then ā = 0 and au

= α I . If 1< k< n−1 and
g is as in (17) then g is invertible if and only if g′′

=
[ g11

g21

g12
g22

]
is invertible, in which case (g−1)′′ = (g′′)−1.

It follows that for such k ∑
x∈Xk

ψ(ax + x−1)= q2n−3(q − 1)Kn−2(α I )qn−k,

and it is easy to see that this relation holds for k = 1, n − 1 as well. This gives

Kn(α I )=

n∑
k=1

∑
x∈Xk

ψ(αx + x−1)= qn−1K1(α)Kn−1(α I )+ q2n−3(q − 1)Kn−2(α I )
n−1∑
k=1

qn−k

from which the desired formula follows. □

2D. Reduction to GLn−2. Assume that a = α I + ā has a unique eigenvalue α ̸= 0, and that ā is strictly
upper triangular. Since the results of the previous section take care of the case when n = 2 or a = α I , we
will assume that n ≥ 3 and that ā ̸= 0.

Recall that
∑

x∈Xk
ψ(ax + x−1) = qn−1 ∑

u,g ψ(a
uw(kn)g + (w(kn)g)−1), the sums over u ∈ Uk and

g ∈ Lk(α). We will use the fact that as a variety Lk(α) is isomorphic to GLn−2(Fq)×F∗
q ×Fn−2

q to express∑
x∈Xk

ψ(ax + x−1) as a linear combination of Kloosterman sums of rank n − 2.
To state the reduction step we denote by m′′

̸k, ̸n the matrix one gets by deleting the k-th and n-th rows and
columns of a matrix m. For us n will be fixed, and the value of k will be clear from the context, in which case
we will often simply write m′′. For any matrix m let m(k) denote its k-th row, and m(l) denote its l-th column.

Proposition 2.8. Assume that n > 2, a = α I + ā with ā strictly upper triangular and let u = I + ū ∈ Uk .
Then we have that ∑

g∈Lk(α)

ψ(auw(kn)g + (w(kn)g)−1)= 0

unless ū(k)ā( j)
= āk, j for j = k + 1, . . . , n − 1. When this condition holds∑

g∈Lk(α)

ψ(auw(kn)g + (w(kn)g)−1)= qn−1Kn−2(a′′
+ z)

∑
λ∈F∗

q

ϕ(λξ),

where z = (ā(k)ū(k))′′ ∈ Mn−2 and ξ = ak,n − ū(k)ā(n).
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Remark 7. When k = 1 or n − 1 the perturbation z vanishes for any u.

Proof. A direct calculation shows that

au
= (I − ū)a(I + ū)= a − ūā + āū. (20)

First assume that 1< k < n − 1 and that

g =


g11 y1 g12 0
0 µ 0 0

g21 y2 g22 0
0 0 0 1/(αµ)

 ∈ Lk(α)

as in (17), in which case g′′
=

[ g11
g21

g12
g22

]
is invertible. Let trn denote the n×n matrix trace. Then

trn((wg)−1)= trn−2((g′′)−1).

Moreover

trn(awg)= trn−2(a′′g′′)+µak,n and trn(āūwg)= trn−2((a(k)u(k))′′g′′),

where we have used the fact that ū has only one nonzero row ū(k).
Finally note that tr(auwg + (wg)−1) does not depend on the (k−1)×1 matrix y1, and as a function of

y2 only depends on tr(ūāwg). The function

y2 7→ tr(ūāwg)

is constant if and only if

ū(k)ā( j)
= 0

for j = k +1, . . . , n −1, and if this condition does not hold the sum over g ∈ Lk(α) vanishes. This proves
the claim for 1< k < n − 1. The remaining cases are treated similarly. □

We will now specify the result in the case a = α I + ā is in Jordan normal form. There is a partition λ
associated to a, i.e., a sequence of positive integers n1 ≤ n2 ≤ · · · ≤ nl , such that n1 + n2 + · · ·+ nl = n.
Conversely, given a partition λ= [n1, . . . , nl] let

Ni = n1 + · · · + ni (21)

so that 1 ≤ N1 < N2 < · · ·< Nl = n, and form

ā(λ)=

n−1∑
j=1

ε j (λ)e j, j+1, where ε j (λ)=

{
0 if j = Ni , for some i,
1 otherwise.

(22)

Any a with a single eigenvalue α is conjugate to one of the matrices α I + ā(λ) and we will assume from
now on that a is already in that form. Since scalar matrices were already dealt with, we will also assume
that λ ̸= [1, 1, . . . , 1], which ensures that εn−1 = 1.
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Theorem 2.9. Assume that n > 2, α ̸= 0, a = α I + ā(λ) with ε j = ε j (λ) ∈ {0, 1} as in (22) with εn−1 = 1.
Then:

(i) We have ∑
x∈Xn−1

ψ(ax + x−1)= −q2n−2Kn−2(a′′),

where a′′
= a′′

��n-1,̸n — the matrix obtained by deleting the last two rows and columns of a.

(ii) If k ≤ n − 2 then ∑
x∈Xk

ψ(ax + x−1)= 0

unless k = Ni for one of the Ni in (21) for which ni > 1.

(iii) When k = Ni = n1 + · · · + ni < n − 1 and ni > 1, we have∑
x∈Xk

ψ(ax + x−1)= q2n−2
∑
z∈Z
µ∈F∗

q

Kn−2(a′′
+ z)ϕ(µξl), (23)

where a′′
= a′′

̸k ,̸n and

Z =

{ l−1∑
j=i+1

ξ j ek−1,N j −1 + ξl ek−1,n−2

∣∣∣ ξ j ∈ Fq for i + 1 ≤ j ≤ l
}

⊂ Mn−2.

In Z the elementary matrices e∗,∗ are of size (n−2)×(n−2).

Proof. The statements are easy corollaries of Proposition 2.8 except for the fact in (ii) that ni must be
greater than 1, which is equivalent to εk−1 ̸= 0. Since k < n − 1 and εk−1 = 0 imply that the parameters
in Proposition 2.8 are very simple, all z = 0, and ξ = −ūk,n−1. Therefore∑

x∈Xk

ψ(ax + x−1)= q2n−2
∑

u

Kn−2(a′′)
∑
µ∈F∗

q

ϕ(−µūk,n−1)

vanishes. □

While the matrices a′′
+ z are not in Jordan normal form, they are again matrices with a single

eigenvalue α. Therefore collecting them according to their conjugacy classes gives a reduction algorithm,
in fact, a characteristic p version of Theorem 1.3 (see Proposition 2.13). In the next two sections we will
explicate this strategy and prove that the polynomials that arise this way do not depend on p.

2E. Jordan normal forms over Z. The proof of Theorem 1.3 will be based on proving that the perturba-
tions arising from the reduction to Mn−2 can be collected into Jordan normal forms that do not depend on
the characteristic p. For this we will need some details about Jordan normal forms for integral nilpotent
matrices. This of course is a trivial task over Q, but requires a little care when one works over Z.

Assume, for example, that x is an n×n nilpotent matrix, and g ∈ GLn(Z) is such that gxg−1 is in
Jordan normal form as in (22). A moment’s thought reveals that {vx | v ∈ Zn

}, the row space of x , must
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be a direct summand of Zn , which we also think of as row vectors. This by itself is not sufficient for the
existence of a Jordan normal form over Z but we have the following.

Theorem 2.10. Let ā be an n×n nilpotent matrix with integral entries. There exist g ∈ GLn(Z) such that
gāg−1

=
∑n−1

j=1 ε j e j, j+1, ε j ∈ {0, 1} if and only if

{vāk
| v ∈ Zn

}

is a direct summand of Zn (as an abelian group) for any k ∈ N.
This is equivalent to the conditions that

{ākvT
| v ∈ Zn

}

is a direct summand of (Zn)T for any k (here ·
T is the matrix transpose).

The following examples illustrate the situation.

Example 2.11. Let x =
[ 0

0
2
0

]
. Its Jordan normal form over Q is y =

[ 0
0

1
0

]
. If g =

[a
c

b
d

]
, the equation

gx = yg leads to c = 0 and d = 2a. Therefore the equation gxg−1
= y has no solution in SL2(Z), or

even SL2(Q).

Example 2.12. Let

x =


0 1 0 0
0 0 0 2
0 0 0 1
0 0 0 0


with normal form

y =


0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .
The Z-span of the rows of x is clearly a direct summand. If gxg−1

= y then also gx2
= y2g, but

x2
=


0 0 0 2
0 0 0 0
0 0 0 0
0 0 0 0

 and y2
=


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,
and so a Jordan normal form over Z does not exist.

Theorem 2.10 follows along the lines of the standard proofs in the case of a vector space over a field.
For completeness we present such a proof below, but for both this proof and the applications of the
theorem it is more convenient to work with linear transformations than matrices.

Let R be either Fq or Z and V a free R-module of finite rank n. If A : V → V is an R-homomorphism,
then it gives rise to an R[T ]-module structure on V , where R[T ] is the polynomial ring over R, and
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T v := A(v). If needed we will denote these R[T ]-modules by VA to distinguish modules corresponding
to different transformations.

We will be interested in the situation when A is nilpotent: An
= 0. If v ∈ V let k be minimal such that

Akv = 0 and let
⟨v⟩ = Rv+ R(Av)+ · · · + R(Ak−1v) (24)

denote the cyclic submodule generated by v. In this case we will call V cyclic if VA = ⟨v⟩ for some
v ∈ VA. This happens exactly when the R[T ] module VA is isomorphic to Cn = R[T ]/(T n). If R is a
field, then any VA is a direct sum of cyclic modules, but this fails for R = Z, and in general when R[T ] is
not a principal ideal domain.

Proof of Theorem 2.10. The theorem is equivalent to the following statement: if V ≃ Zn , and A : V → V
is a nilpotent homomorphism, then the Z[T ] module VA is a direct sum of cyclic modules if and only if
Ak(V ) is a direct summand of V (as an abelian group) for all k ∈ N.

By the structure theorem for finitely generated abelian groups a subgroup V ′ of V is a direct summand
if and only if for k ∈ Z, v ∈ V , kv ∈ V ′ implies that v ∈ V ′. This immediately shows that ker A is a
direct summand of V , and A(V )∩ ker A is a direct summand of ker A. Let V0 be a complementary direct
summand so that

ker A = V0 ⊕ (A(V )∩ ker A). (25)

Since A is nilpotent, the rank of A(V ) is strictly less than that of V . The condition on A descends
to A(V ), and so by induction we have that A : A(V )→ A(V ) has a cyclic basis, i.e., there are v1, . . . , vl

such that A(V )≃ ⟨Av1⟩ ⊕ · · · ⊕ ⟨Avl⟩. If we let di be the smallest integer k such that Akvi = 0, then we
have that the set

{A jvi | i = 1, . . . , l, j = 1, . . . , di − 1} (26)

is a basis of the free abelian group A(V ).
Let vl+1, . . . , vr be such that V0 =

⊕r
i=l+1 Zvi , where V0 is as in (25). Extending the notation from

above we let di = 1 for i = l + 1, . . . , r .
We claim that

VA ≃

r⊕
j=1

⟨v j ⟩.

We need to prove that for each v ∈ V , there is a unique choice of αi, j ∈ Z such that

v =

r∑
i=1

di −1∑
j=0

αi, j A jvi . (27)

To see uniqueness assume that v = 0 is expressed this way. Then Av = 0 as well, and the linear
independence of the set in (26) shows that αi, j = 0 for all i = 1, . . . , l and j = 0, . . . , di − 2. Since by
(25) we have that Adi −1vi , for i = 1, . . . , l, and vl+1, . . . , vr are linearly independent, this shows that
αi,di −1 = 0 as well for all i = 1, . . . , r .
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It remains to show that every v ∈ V can be expressed as an integral linear combination as in (27). By
(26) this is clearly true for Av:

Av =

l∑
i=1

di −2∑
j=0

αi, j Ai (Av j )

for some αi, j ∈ Z. Let v′
=

∑l
i=1

∑di −2
j=0 αi, j Aiv j . Then v− v′

∈ ker A; thus proving the claim. □

2F. The proof of Theorem 1.3. The proof of Theorem 1.3 relies on the following two propositions.

Proposition 2.13. Assume that n ≥ 2, α ∈ F∗
q , a = α I + ā(λ) with ε j ∈ {0, 1} as in (22) with εn−1 = 1.

Also assume that z1 =
∑l−1

j=i+1 ξ j ek−1,N j −1 + ξl ek−1,n2 , and that

z2 =

l−1∑
j=i+1

η j ek−1,N j −1 + ηl ek−1,n2, where η j =

{
0 if ξ j = 0,
1 if ξ j ̸= 0.

Then a′′
+ z1 and a′′

+ z2 are conjugate in GLn−2(Fq), and so Kn−2(a′′
+ z1)= Kn−2(a′′

+ z2).

As a corollary of Proposition 2.13 one immediately has that for k = Ni as above∑
x∈Xk

ψ(ax + x−1)= q2n−2
∑
z∈Z0

(q − 1)J+1(Kn−2(a′′
+ z)− Kn−2(a′′

+ z + ek−1,n−2)), (28)

where a′′
= a′′

̸k ,̸n , and where z runs over

Z0 =

{
z =

l−1∑
j=i+1

η j ek−1,N j −1

∣∣∣ η j ∈ {0, 1} for i + 1 ≤ j ≤ l
}
, (29)

with J = J (z)= |{ j | η j = 1}|.
This in itself proves a version of Theorem 1.3 valid for almost all primes. The matrices a′′

+ z,
a′′

+ z + ek−1,n−2 can obviously be lifted to Z where they can be put into Jordan normal form after a
rational change of basis. This shows there are well-defined partitions λ′′(z), λ′′(z + ek,n−2) of n − 2
associated to the partition λ, the value k = Ni and z which are independent of p except for the finitely
many primes dividing the determinant of the change of base matrix. The next proposition shows that
such exceptions do not arise.

Proposition 2.14. Let ā ∈ Mn(Z) be as in Proposition 2.13 and z ∈ Z0 be as in (29). There exists a
unique partition λ′′

⊢ n − 2 such that for any prime p and finite field Fq of characteristic p the partition
λ′′(z) ⊢ n − 2 associated to the nilpotent matrix ā′′

+ z equals λ′′.
Similarly there exist a partition µ′′

⊢ n − 2 such that the block partition of the matrix ā′′
+ z + ek−1,n−2

is µ′′.

Proof of Proposition 2.13. Again we will use the language of linear transformations. Let V be a
finite-dimensional vector-space over Fq , and A : V → V a nilpotent linear transformation such that

VA ≃ ⟨v0⟩ ⊕ ⟨v1⟩ ⊕ · · ·⊕ ⟨vl⟩.
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Let di = dim ⟨vi ⟩. We are interested in perturbations A + Z1, A + Z2 of A, where Z1, Z2 are such that

Z1(A jvi )= Z2(A jvi )= 0 for i = 1, . . . , l, j = 0, . . . , di − 1,

Z1(A jv0)= Z2(A jv0)= 0 for j = 0, . . . , n0 − 2,
and

Z1(Ad0−1v0)=

l∑
i=1

ξi Adi −1vi and Z2(Ad0−1v0)=

l∑
i=1

ηi Adi −1vi ,

where ηi = 0 or 1 depending on whether ξ = 0 or not.
Let φ : VA → VA be the A-linear (φ ◦ A = A ◦φ) isomorphism for which

φ(vi )=

{ 1
ξi
vi for 1 ≤ i ≤ l, ξi ̸= 0,

vi for 1 ≤ i ≤ l, ξi = 0.

Then φ(Z1(v))= Z2(φ(v)) as well, showing that the modules VA+Z1 and VA+Z2 are isomorphic. □

Proof of Proposition 2.14. The statement is only meaningful if n > 2. Lift the matrix ā′′ which only
has entries 0 and 1 to a matrix ã over Z by lifting 0Fq to 0Z and 1Fq to 1Z. Identify Zn−2 with 1×(n−2)
matrices (row vectors) and let A : Zn−2

→ Zn−2 be the linear transformation

v 7→ vã.

In a similar fashion we may lift the matrix z or z + ek−1,n−2 to a linear transformation Z : Zn−2
→ Zn−2.

In both cases a simple change of the standard generators shows that (A + Z)(Zn−2)= A(Zn−2) is a
direct summand. One also has that AZ = Z2

= 0 and so

(A + Z)k = (A + Z)Ak−1.

It also follows that (A + Z)k(Zn−2) is a direct summand and by Theorem 2.10 has a Jordan normal form
over Z. □

Proof of Theorem 1.3. Assume that a = α I + ā, where ā = ā(λ) as in (22). By (12),

Kn(a)=

n∑
k=1

∑
x∈Xk

ψ(ax + x−1).

It is enough to prove that each of the sums
∑

x∈Xk
ψ(ax + x−1) is expressible as a polynomial in q , q −1

and K = K1(α).This was already established when ā = 0, so we may assume that εn−1 ̸= 0.
Proposition 2.5 and (i) of Theorem 2.9 take care of the cells Xn and Xn−1. For the other cells we may

refer to statements (ii) and (iii) in Theorem 2.9 which reduce the sum down to the case when k = Ni

for one of the Ni = n1 + · · · + ni , in which case Proposition 2.13 gives (28). Induction on the rank and
Proposition 2.14 then shows that the resulting Kloosterman sums of rank n −1 and n −2 can be expressed
as polynomials in q, q − 1 and K independently of p = char Fq . □

It is possible to make this recursion more concrete; see Section 5B for examples.
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3. Estimates

3A. Kloosterman sums over Bruhat cells: reduction to involutions. We will move on to setup the
technical background for the proof of Theorem 1.6. We will pursue a path which establishes both of the
estimates in Theorem 1.6 as well as Theorem 1.5 simultaneously and which will also allow us to analyze
these sums cohomologically.

This approach is based on the Bruhat decomposition of the algebraic group GLn as well as its
specialization in the finite group G = GLn(Fq) with respect to the Borel subgroup Bn of upper triangular
matrices, with

Bn = TnUn,

where Un is the algebraic subgroup of upper triangular unipotent matrices, and Tn is the maximal torus
(diagonal matrices). Since in this section n is fixed we will simply write B, T and U . Let W be the Weyl
group of GLn . We then have

G = GLn(Fq)=

⊔
w∈W

Cw(Fq), Cw(Fq)= U ♭(Fq)wB(Fq), (30)

with U ♭
= {u ∈ U | w−1uw ∈ U T

}, where U T is the unipotent subgroup of the opposite Borel subgroup
of lower triangular matrices. It is clear from Gaussian elimination that for a field F all x ∈ Cw(F) have
a unique decomposition x = uwb with u ∈ U ♭(F) and b ∈ B(F). This remains true for the algebraic
variety GLn canonically [Springer 1998, Chapter 8]. (Alternatively, given any field F one may work
over an algebraic closure of F , say F , as in [Borel 1991, IV.14.12, Theorem (a)]. It is clear from the
uniqueness that once representatives for W as permutation matrices are fixed, the decomposition above
is invariant under any Galois automorphism of F fixing F . The same argument shows that the map
U ♭

× B → Cw is an isomorphism of algebraic varieties, defined over F .)
We will work with

K (w)
n (a, Fq)=

∑
x∈Cw(Fq )

ψ(ax + x−1). (31)

As a first step we will prove that the above sum vanishes unless w2
= I and analyze the cells Cw to

simplify these sums for w2
= I .

The Weyl group, W = Wn , is isomorphic to Sn , the permutation group on n letters. For later calculations
we make this identification explicit as follows. For a permutation matrix w we associate the permutation π
such that i = π( j) if wi, j = 1. Conversely given π , we let

wπ =

n∑
j=1

eπ( j), j (32)

so that wπ1wπ2 = wπ1π2 . To ease reading the arguments that will follow, we overload the notation and
write w(i) for π(i) if w = wπ . This convention leads to

(gw)i j = gi,w( j) and (wg)i j = gw−1(i), j (33)

for any g ∈ G, which will be frequently used without further mention.
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Proposition 3.1. Let a ∈ Mn(Fq) be an upper triangular matrix, such that det a ̸= 0, and assume w ∈ W
is such that w2

̸= I . Then

K (w)
n (a, Fq)= 0.

Proof. Let i be minimal such that i ̸= w2(i) and let j = w(i). If k = w( j) then w2(k) ̸= k and so k > i .
Consider now the one parameter subgroup

{xi, j (s)= I + sei, j : s ∈ Fq} ⊂ B.

Clearly we have xi j (s)B(Fq)= B(Fq) and so

K (w)
n (a, Fq)=

∑
u∈U ♭(Fq )

b∈B(Fq )

ψ(auwb + (uwb)−1)=
1
q

∑
s∈Fq

∑
u∈U ♭(Fq )

b∈B(Fq )

ψ(auwxi, j (s)b + (uwxi, j (s)b)−1).

Note that
∂

∂s
Tr(auwxi, j (s)b)= Tr(bauwei, j )= (bauw) j,i = (bau) j, j

since j = w(i). By the assumption det a ̸= 0 we have (bau) j, j ̸= 0.
On the other hand

∂

∂s
Tr(b−1xi, j (−s)w−1u−1)= −Tr(ei, jw

−1u−1b−1)= −(w−1u−1b−1) j,i = −(u−1b−1)w( j),i = 0

since w( j) > i . Since ψ(b−1xi, j (−s)w−1u−1) is linear in s, it is equal to ψ(b−1w−1u−1) for any s.
Writing ψ(auwxi, j (s)b) = ψ(auwb)ψ(auwei, j bs) and using that ψ is invariant under conjugation

we have ψ(auwei, j bs)= ψ(bauwei, j s)= ψ((bau) j, j s). This gives∑
s∈Fq

ψ(auwxi, j (s)b + b−1xi, j (−s)w−1u−1)= ψ(auwb + b−1w−1u−1)
∑
s∈Fq

ψ((bau) j, j s)= 0. □

We can also prove Theorems 1.1 and 1.2 this way. For example, for nilpotent matrices we may prove
that K (w)

n (a)= 0, unless w = I . First we may assume that a is strictly upper triangular.
Let j = max(k | w(k) ̸= k) and i = w( j) < j and consider the one parameter subgroup

{xi, j (s)= I + sei, j | s ∈ Fq} ≤ B(Fq).

We have xi, j (s)B(Fq)= B(Fq) and so

K (w)
n (a)=

∑
u∈Uw(Fq )

b∈B(Fq )

ψ(auwb + (uwb)−1)=
1
q

∑
s∈Fq

∑
u∈Uw(Fq )

b∈B(Fq )

ψ(auwxi, j (s)b + (uwxi, j (s)b)−1).

By the definition of j for any u ∈ Uw(Fq) and b ∈ B(Fq)

∂

∂s
tr(auwxi, j (s)b)= tr(ei, j bauw)= 0.
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On the other hand
∂

∂s
tr((uwxi, j (s)b)−1)= tr(ei, jw

−1u−1b−1)= b−1
i,i ̸= 0.

This gives∑
s∈Fq

ψ(auwxi, j (s)b + b−1xi, j (−s)w−1u−1)= ψ(auwb + b−1w−1u−1)
∑
s∈Fq

ψ(b−1
i,i s)= 0.

So

Kn(a, Fq)= K (I )
n (a, Fq)=

∑
b∈B(Fq )

ψ(ab+b−1)=
∑

b∈B(Fq )

ψ(b−1)=|U |

∑
t∈T (Fq )

n∏
i=1

ϕ(t−1
i,i )=(−1)nqn(n−1)/2

as ψ(b−1)= ψ(t−1)=
∏n

i=1 ϕ(t
−1
i,i ) if b = tu ∈ T U = B.

3B. Finer decomposition of individual Bruhat cells. We will give a decomposition of the algebraic
group U of unipotent upper triangular matrices in GLn . To show that the underlying maps are morphisms
we will work over a general commutative ring R. Therefore the letter U will denote the algebraic group
itself, and not its set of points U (Fq). Similarly further subsets of U denoted with various markings will
define affine subvarieties of U and not their set of points in Fq .

The motivation for this refinement of the Bruhat decomposition is as follows. The Bruhat cells
Cw(Fq)= U ♭(Fq)wB(Fq) are already of the form Fd

q × (F∗
q)

e when using the entries of the matrices in
U ♭(Fq), T (Fq) and U (Fq) as coordinates, and exponential sums over such spaces have a well-established
theory [Adolphson and Sperber 1989; Denef and Loeser 1991]. Also, tr(ax + x−1) as a function on Fd

q

(using the entries as coordinates of x) is degree 1 in each of these variables. However they have to be
collected the right way to use this observation. Therefore we will fiber up the cells Cw into finer (affine)
subspaces that are more suitable for this purpose. For later arguments that rely on cohomology it will be
important that this refinement gives an isomorphism of affine varieties. While for this purpose one could
restrict to Fq-algebras, the results are true over an arbitrary commutative ring. Also this refinement has
potential applications elsewhere and so we first set it up for a general element w ∈ W which is assumed
to be fixed.

This section mainly consists in developing a nomenclature for these simple but numerous subsets
(many of them subgroups). These subsets are defined under various actions of W on the affine variety U
of strictly upper triangular nilpotent matrices, whose set of points in any ring is

U (R)= {y ∈ Mn(R) | I + y ∈ U (R)} (34)

Clearly U is isomorphic to An(n−1)/2 as an algebraic variety.
The subsets we are going to define depend on w but we will not work with more than one w at a time,

so we drop w from the notation. For example, the subgroups

U ♭
= {u ∈ U | w−1uw ∈ U T

} and U ♯
= {u ∈ U | w−1uw ∈ U }



2272 Márton Erdélyi and Árpád Tóth

that satisfy U ♯
∩ U ♭

= {I } and U = U ♯U ♭
= U ♭U ♯ can be defined as

U ♭
= I + U ♭ and U ♯

= I + U ♯

where
U ♭

= U ∩wU Tw−1 and U ♯
= U ∩wUw−1.

The further refinement comes from exploiting the action of W , the group of permutation matrices on Mn

via left multiplication and so it is tied to the standard representation of GLn .

Definition 3.2. For a fixed w ∈ W let

Ua = U ∩w−1U , Ub = U ∩w−1U T and Uo = U ∩w−1 D, (35)

where D is the set of possibly singular diagonal matrices. Using these subvarieties define

Ua = I + Ua, Ub = I + Ub and Uo = I + Uo. (36)

Remark 8. The subscripts “a”, “b” and “o” denote the fact that these are the elements ū ∈ U for which
the nonzero entries in wū are strictly “above”, “below” or “on” the diagonal. Clearly, for any ring R,
U (R)= Ua(R)⊕ Ub(R)⊕ Uo(R).

We will see below that the map x 7→ tr(ax+x−1) is linear on Ua which leads to immediate cancellations.
However for this purpose we first need to setup further notation.

Definition 3.3. Let

U ♯
a = U ♯

∩ Ua, U ♯
b = U ♯

∩ Ub, U ♭
a = U ♭

∩ Ua, U ♭
b = U ♭

∩ Ub.

Remark 9. These subvarieties are defined via their nonvanishing entries. In general let

I = {(i, j) | 1 ≤ i < j ≤ n},

and for J ⊂ I define the affine variety

UJ = {ū ∈ U | ūi, j ̸= 0 =⇒ (i, j) ∈ J }.

Note that UJ = I + UJ is an algebraic subgroup of U if and only if J is transitive in the sense that

(i, j), ( j, k) ∈ J =⇒ (i, k) ∈ J .

For example, Ua = UJa where Ja = {(i, j)∈ I |w(i) < j}, which is transitive, and so Ua is a subgroup.

Example 3.4. Consider the case n = 5. We indicate below the indices with the different properties for
two involutions:

w = (14)(25) gives


b b o a

b b o
a a

a

 , while w = (15)(23) gives


b b b o

o a a
a a

a

 .



Matrix Kloosterman sums 2273

To state the main result of this section we need to introduce one more piece of notation. Let

U b/o = Ub ⊕ Uo

be the subset of U of elements ū for which wū has nonzero elements only below or on the diagonal, and let

U ♯
b/o = I + U ♯

b/o and U ♭
b/o = I + U ♭

b/o,

where U ♯
b/o = U ♯

∩ U b/o, and U ♭
b/o = U ♭

∩ U b/o.

Proposition 3.5. (i) Ua , U ♯Ua and U ♭
b/o are algebraic subgroups of U and U ♯Ua ∩ U ♭

b/o = {I }.

(ii) The morphism
U ♯

b/o × Ua × U ♭
b/o → U, (u1, y, u2) 7→ u1 yu2,

is an isomorphism.

(iii) If w2
= I , then Uo ⊂ U ♭ is a subgroup, and the morphism

U ♯
b × Ua × Uo × U ♭

b → U, (u1, y, uo, u2) 7→ u1 yuou2,

is an isomorphism.

There are many alternative versions of the statement in (i) as, for example, Ua/o = UaUo = UoUa is
a subgroup of U as well. Also if one is merely interested in a bijection over Fq , the statements in (ii)
and (iii) can easily be proved by a counting argument. One may argue similarly to see that the set U ♯

b/o

is a complement of Ua in U ♯Ua . To prove that these maps are isomorphisms it is possible to adapt the
reasoning of Lemma 8.2.2 in [Springer 1998] but given the concrete nature of the statement we give a
self-contained proof here, based on the fact that affine varieties and their maps are determined by their
functor of points.

Lemma 3.6. We have the following:

(i) If u ∈ U (R) and x ∈ Ua(R) then xu ∈ Ua(R).

(ii) If u ∈ U ♯(R) and x ∈ Ua(R) then ux ∈ Ua(R).

(iii) If u1 ∈ U ♯(R) and u2 ∈ U ♭(R) then

u1u2 + Ua(R)= u1Ua(R)u2.

Proof. Since Ua(R) = U (R) ∩w−1U (R), the first and second claims are obvious from the fact that
U (R)U (R)= U (R)U (R)= U (R), and that for u ∈ U ♯(R), w−1uw ∈ U (R).

By the first two claims, if u1 ∈ U ♯(R) and u2 ∈ U ♭(R) then u1Ua(R)u2 = Ua(R), from which the
third claim is obvious. □

Proof of Proposition 3.5. It is enough to prove that for any commutative ring R the sets Ua(R),
U ♯(R)Ua(R) and U ♭

b/o(R) are subgroups of U (R), and that the maps

U ♯
b/o(R)× Ua(R)× U ♭

b/o(R) → U (R), (u1, y, u2) 7→ u1 yu2,
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and
U ♯

b (R)× Ua(R)× Uo(R)× U ♭
b(R) → U (R), (u1, y, uo, u2) 7→ u1 yuou2,

are bijections.
Define on U (R) the equivalence relation

u1 ∼Ua
u2 ⇐⇒ u1 − u2 ∈ Ua(R). (37)

We start with the proof of the claim about the group property of the three sets in (i). By (i) of the previous
lemma, if u1 ∼Ua

u2, and u ∈ U (R), then u1u ≃Ua
u2u. Therefore Ua(R), the stabilizer of the equivalence

class of the identity I , is a subgroup.
By (ii) of the same lemma U ♯(R) normalizes Ua(R) and so U ♯(R)Ua(R) is a subgroup. Finally,

J = {(i, j) | j ≤ w(i), w( j)≤ w(i)} and J ′
= I \J = {(i, j) ∈ I | w(i) < j or w(i) < w( j)},

are disjoint transitive subsets. This shows that U ♭
b/o(R)=UJ (R) is a subgroup, and since U ♯(R),Ua(R)⊂

UJ ′ we have that U ♯(R)Ua(R)∩ U ♭
b/o(R)= {I }.

Now to prove the claim that every u ∈ U (R) can be represented in a unique way as

u = u1 yu2, u1 ∈ U ♯
b/o(R), y ∈ Ua(R), u2 ∈ U ♭

b/o(R),

we will first show that U (R) = U ♯
b/o(R)Ua(R)U

♭
b/o(R). Let u ∈ U (R). We know [Springer 1998,

Chapter 8, Proposition 8.2.1] that there are v1 ∈ U ♯(R) and v2 ∈ U ♭(R) such that u = v1v2.
Let u1 ∈ U ♯

b/o(R) be the matrix whose entries agree with v1 for (i, j) ∈ I when w(i) ≥ j and are 0
otherwise. Then we have that

v1 ∈ u1 + Ua(R) and so v1Ua(R)= u1Ua(R).

Similarly let u2 ∈ U ♭
b(R) be such that v2 ∈ u2 + Ua(R), so that Ua(R)u2 = Ua(R)v2. We have that

u = v1v2 ∈ v1Ua(R)v2 = u1Ua(R)u2.

Now for the injectivity assume that u1, u′

1 ∈U ♯
b/o(R), y, y′

∈Ua(R), and u2, u′

2 ∈U ♭
b/o(R) are such that

u1 yu2 = u′

1 y′u′

2.

Since U ♯(R)Ua(R)∩ U ♭
b/o(R) = {I } we have that u2 = u′

2 and so u1 y = u′

1 y′. By (iii) of the previous
lemma u1 ∼Ua

u′

1 which can only happen in U ♯
b/o(R) if u1 = u′

1.
The very last claim about the case w2

= I is elementary. □

For convenience we will parameterize Cw using the following lemma.

Lemma 3.7. Assume that w2
= I . Then Uo = U ♭

o and the morphisms

(i) U ♭
× T × U → Cw, (v, t, u) 7→ vwtuv−1,

(ii) U ♯
b × Ua × U ♭

o × U ♭
b → U , (u1, y, uo, u2) 7→ u1(I + y)−1uou2,

are isomorphisms.
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Proof. The first claim follows from (30) and the fact that the morphism U ♭
× T × U → U ♭

× T × U ,
(v, t, u) 7→ (v, t, uv−1) is an isomorphism of varieties. The second claim is merely a restatement of (iii)
of Proposition 3.5. □

The advantage of the parameterization in (i) is obvious: if x = vwtuv−1
∈ Cw(Fq) then

tr(ax + x−1)= tr(avwtu + (wtu)−1),

where av = v−1av = α I + āv, with āv = v−1āv still strictly upper triangular.

3C. Some trace calculations. From now on we will specify to the finite field Fq and so B, U , U etc.
will mean B(Fq), U (Fq), U (Fq) etc. Assume again that a is a matrix with a unique eigenvalue α ∈ F∗

q :

a = α I + ā ∈ Mn(Fq), where ā is strictly upper triangular. (38)

With (ii) of Lemma 3.7 it is now easy to bound
∑

x∈Cw ψ(ax + x−1). However the cohomological
methods used in the proofs of Theorems 1.7 and 1.8 require repeated use of Lemma 3.16, which in turn
relies on understanding

x 7→ tr(ax + x−1)

itself as a function on Cw. This is achieved in Propositions 3.8 and 3.9.

Proposition 3.8. Assume that w ∈ W satisfies w2
= I and let Ua , U ♯

b , U ♭
b , Uo be as in Definitions 3.2 and

3.3 with values in Fq .
Assume that av = α I + ā′

∈ Mn(Fq) with α ∈ F∗
q , ā′

∈ U , and that u1 ∈ U ♯
b , uo ∈ Uo and u2 ∈ U ♭

b . If
y ∈ Ua , let g(y)= u1(I + y)−1uou2. Then the function

y 7→ tr(avwtg(y)+ (wtg(y))−1)

is affine linear on Ua . This map is nonconstant unless u2 = I .
When the map is constant its value is

tr(avwtu1uo + (wtu1uo)
−1).

Further reductions are given by:

Proposition 3.9. Assume w ∈ W satisfies w2
= I , and that a′

= α I + ā′
∈ Mn(Fq) with α ∈ F∗

q , ā′
∈ U.

Let u1 ∈ U ♯
b and t = diag(t1, . . . , tn) ∈ T . For uo = I + ūo ∈ Uo the map

uo 7→ tr(a′wtu1(I + ūo)+ (wtu1(I + ūo))
−1)

is affine linear on U0. This map is nonconstant unless t−1
w(i) = αti for all i ̸= w(i). When the map is

constant its value is ∑
i=w(i)

(αti + t−1
i )+ tr(ā′wdu1),

where d =
∑

i<w(i) ti ei,i .
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The proof of the above facts rely on some simple lemmas that we present first.

Lemma 3.10. If a′ is upper triangular, y ∈ Ua , u1 ∈ U ♯ and u2 ∈ U , then

tr(a′wtu1(I + y)−1u2)= tr(a′wtu1u2) (39)

is independent of y.

Proof. By Proposition 3.5 (I + y)−1
= I + y′ for some y′

∈ Ua and so wy′ is strictly upper triangular. By
the assumptions on a′, u1 and u2 we have that a′, wtu1w

−1 and u2 are upper triangular, so

tr(a′wtu1 y′u2)= tr(a′(wtu1w
−1)(wy′)u2)= 0. □

Lemma 3.11. For any u ∈ U , t ∈ T
y 7→ wyu−1t−1

is a linear automorphism of Ua .

Proof. The map y 7→ wyu−1t−1 is clearly linear, and a bijection to its image. Since wUa = Ua and
Uaut = Ua this image is Ua . □

Proof of Proposition 3.8. First by Lemma 3.10 we have

tr(avwtg(y)+ (wtg(y))−1)= tr(avwtu1uou2)+ tr((wtu1uou2)
−1)+ tr((u2uo)

−1 yu−1
1 t−1w)

showing instantly that the map y 7→ tr(avwtg(y)+ (wtg(y))−1) is affine linear. Also

tr((u2uo)
−1 yu−1

1 t−1w)= tr(w(u2uo)
−1wy′),

where y′
= wyu−1

1 t−1
∈ U , and so by Lemma 3.11 it is enough to show that the map

y′
7→ tr(w(u2uo)

−1wy′)

is nonconstant unless u2 = I .
Assume that u2 ̸= I , and let z = (u2uo)

−1. Since U ♭
b and U ♭

o are subgroups, z is in U ♭
bU ♭

o , but not in
U ♭

o and so there exist (i, j) such that

i < j, w(i) > j and zi, j ̸= 0.

Also, by the fact that U ♭
b ⊂ U ♭, we have that w(i) > w( j), and so

ew( j),w(i) ∈ Ua.

Now let
Y0 = {y ∈ Ua : yw( j),w(i) = 0}

so that any element y ∈ Ua may be written as y = y0 + sew( j),w(i), where y0 ∈ Y0. Then

tr(wzw(y0 + sew( j),w(i)))= tr(wzwy0)+ s tr(wzwew( j),w(i))= tr(wzwy0)+ szi, j .

This proves the proposition. □
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For the proof of Proposition 3.9 we need an explicit evaluation:

Lemma 3.12. Assume w ∈ W satisfies w2
= I , α ∈ F∗

q , ā′
∈ U and that t = diag(t1, . . . , tn) ∈ T satisfies

t−1
w(i) = αti for all i <w(i). Then

tr(w(αt + t−1))=

∑
i=w(i)

αti + t−1
i .

If u ∈ U , then
tr(ā′wtu)= tr(ā′wdu),

where d =
∑

i<w(i) ti ei,i .

Proof. First observe that

wt =

∑
i=w(i)

ti ei,i +

∑
i<w(i)

(ti ew(i),i + (αti )−1ei,w(i)),

from which the first claim follows immediately. The second is a slight variant, using that ā′

i,i = 0, from
the assumption ā′

∈ U . □

Proof of Proposition 3.9. It is easy to check that Uo = U ♭
o =

{
I +

∑
i<w(i) si ei,w(i) | si ∈ Fq

}
and it is

abelian. Using that we have that (I + ūo)
−1

= I − ūo. Therefore

tr(a′wtu1(I + ūo)+ (wtu1(I + ūo))
−1)= tr(a′wtu1 + (wtu1)

−1)+ tr((a′wtu1 − (wtu1)
−1)ūo)

is clearly affine linear as a function of ūo. To see when it is nonconstant write ūo as
∑

i<w(i) si ei,w(i) so
that by the conventions in (33)

ūow =

∑
i<w(i)

si ei,i and wūo =

∑
i<w(i)

si ew(i),w(i).

This leads to

tr(a′wtu1ūo)= tr((a′wtu1w)wūo)=

∑
i<w(i)

si (a′wtu1w)w(i),w(i) =
∑

i<w(i)

siαti

since wu1w ∈ U , and w diag(ti )w = diag(tw(i)). In a similar manner

tr((wtu1)
−1ūo)= tr((tu1)

−1wūo)=

∑
i<w(i)

si ((tu1)
−1)w(i),w(i) =

∑
i<w(i)

si t−1
w(i).

Finally, since u1 ∈ U ♯
b ⊂ U ♯, u−1

1 ∈ U ♯ as well, and for any u ∈ U ♯ we have

ui,w(i) = 0 in the case i <w(i).

Hence for u = I + ū ∈ U ♯, tr(wt ū)= 0, and tr(twū)= 0. This gives

tr(a′wtu1 +wu−1
1 t−1)= tr(αwt +wt−1)+ tr(ā′wtu1).

This finishes the proof of the proposition in view of Lemma 3.12. □
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3D. The proofs of Theorems 1.5 and 1.6. We again interpret the notation for all affine varieties as the
set of their Fq -rational points, so Cw stands for Cw(Fq), etc. Recall that

K (w)
n (a)=

∑
x∈Cw

ψ(ax + x−1).

Proposition 3.13. Assume that a = α I + ā ∈ Mn(Fq) with α ∈ F∗
q , ā ∈ U. Then

K (w)
n (a)= qna

∑
v

∑
t,uo,u1

ψ(avwtu1uo + (wtu1uo)
−1),

where v ∈ U ♭, av = v−1av, t ∈ T , uo ∈ Uo, u1 ∈ U ♯
b and

na = dim Ua = |{Ja}| =
∣∣{(i, j) | i, w(i) < j}

∣∣.
Proof. By Lemma 3.7(ii)

K (w)
n (a)=

∑
v

∑
t,uo,u1,u2

∑
y

ψ(a′wtg(y)+ (wtg(y))−1),

where g(y)= u1(I + y)−1u0u2 and the inner sum is∑
y

ψ(a′wtg(y)+ (wtg(y))−1)=

{
0 if u2 ̸= I,
qnaψ(a′wtu1uo + (wtu1uo)

−1) if u2 = I,

by Proposition 3.8. □

Proposition 3.14. We have

K (w)
n (a)= qna+no K1(α)

f
∑
v,d,u

ψ(āvwdu),

where v ∈ U ♭, u ∈ U ♯
b , āv = v−1āv, no = e =

∣∣{i | i < w(i)}
∣∣ is the number of involution pairs in w,

f =
∣∣{i | w(i)= i}

∣∣ is the number of fixed points of w and d ∈ D(w)=
{∑

i<w(i) ti ei,i | ti ∈ F∗
q
}
.

Proof. Let

T (w)= {t ∈ T | t−1
w(i) = αti if i <w(i)}.

By Proposition 3.9, ∑
uo

ψ(avwtu1uo + (wtu1uo)
−1)= 0

unless t ∈ T ′(w), in which case∑
uo

ψ(avwtu1uo + (wtu1uo)
−1)= qno

∏
i=w(i)

φ(αti + t−1
i )ψ(āvwdu1),

with d =
∑

i<w(i) ti ei,i .
The proposition follows after summing over t ∈ T (w). □
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Proof of Theorem 1.5. We will show that for α ̸= 0 and w2
= I we have

K (w)
n (α I )= qn(n−1)/2+N (q − 1)e K1(α)

f , (40)

where N = n♭a/o = dim U ♭
a + dim U ♭

o .
Since ā = 0 now, āv = v−1āv = 0 as well, and so ψ(āvwdu1) = ψ(0) = 1. To get the exponent of

q note that na + no + n♭ + n♯b = na + no + nb + n♭a/o, where these are denoting the dimension of the
corresponding subspaces of U . Then we also have na + no + nb = n(n − 1)/2. □

Proof of Theorem 1.6. If a = α I + ā, ā ∈ U , w2
= I , then by Proposition 3.14

|K (w)
n (a)| = qna+no |K1(α)

f
|

∣∣∣∣∑
v,d,u

ψ(āvwdu)
∣∣∣∣ ≤ qna+no |K1(α)

f
|

∑
v,d,u

|ψ(āvwdu)| = |K (w)
n (α I )|

since |ψ(āvwdu1)| = 1.
Since w2

= I , every element is either fixed by w or is in an involution pair, and so n = f + 2no. So
while f depends on w,

K1(α)
f
= K1(α)

n K1(α)
−2no = sign(K1(α))

n
|K1(α)|

n K1(α)
−2no = ε |K1(α)|

f ,

with the sign

ε = (sign(K1(α)))
n

independent of w. Here we have used the fact that K1(α) is real. Thus we immediately have that

|K (w)
n (α I )| = εK (w)

n (α I ).

Therefore

|Kn(a)| ≤

∑
w2=I

|K (w)
n (a)| ≤

∑
w2=I

|K (w)
n (α I )| = ε

∑
w2=I

K (w)
n (α I )= εKn(α I )= |Kn(α I )|.

It remains to prove that cn = |Kn(α I )|/q(3n2
−δ(n))/4

≤ 4. By the recursion formula (4) we have

cn+1 ≤ cn|K1(α)|q−n/2q(δ(n+1)−δ(n)−3)/4
+ cn−1.

Recall that

δ(n)=

{
0 if n is even,
1 if n is odd.

Thus

δ(n + 1)− δ(n)=

{
1 if n is even,
−1 if n is odd.

If n = 2k this gives c2k+1 − c2k−1 ≤ 2c2kq−k , and so

c2k+1 ≤ c1 + 2
k∑

j=1

c2 j q− j .
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Similarly

c2k ≤ 2
k−1∑
j=1

c2 j+1q− j

from which the claim follows easily for q ≥ 3. The case q = 2 is easily checked by hand. □

The sum
∑

v,d,u ψ(ā
vwdu) gives rise to some intriguing questions on its own; see the problems

mentioned Section 5C.

3E. Review of cohomology. With the results of the previous section, for a fixed a ∈ Mn the bounds can
be proven over those extensions of Fq in which a can be conjugated to Jordan normal form. However, to
get the general result, we need to understand certain cohomology groups attached to the sum — which are
independent of the field extension. In the rest of this section we will consider a subset of the matrix group
X ⊂ Mn defined by algebraic equations of the matrix entries as the corresponding algebraic variety.

We first introduce the notation and the main tools, then prove cohomological versions of Propositions 2.3
and 3.14. This enables us to prove Theorems 1.7 and 1.8.

Let ℓ ̸= p be a prime, and Qℓ be an algebraic closure of the field Qℓ of ℓ-adic numbers, such that there
is a p-th primitive root of unity ζ contained in Qℓ. Fix the field embedding ι0 : Q(ζ )→ C which sends ζ
to e(1/p) and let Lϕ be the Artin–Schreier sheaf on A1

= A1
Fq

corresponding to the additive character ϕ.
For a quasiprojective scheme X/Fq and a morphism f : X → A1 the Grothendieck trace formula

[1965] yields ∑
x∈X (Fqm )

ϕ( f (x))=

2 dim X∑
i=0

(−1)i Tr(Frobm
q , H i

c (X , f ∗Lϕ)),

where X = X ⊗Fq F, H i
c is the ℓ-adic cohomology group with compact support in degree i . We use

the notation H•
c for the “complex” of cohomologies. These cohomology groups are finite-dimensional

Qℓ-vector spaces and Frobq ∈ Gal(F/Fq) is the geometric Frobenius acting on them. By Deligne’s
work [1980] (see also [Kiehl and Weissauer 2001; Milne 1980; 2016]) we know that each Frobenius
eigenvalue λi

k on H i
c (for 1 ≤ k ≤ di = dim H i

c ) is a Weil number of weight j for some j ≤ i , that is,

|ι(λi
k)| = q j/2 (41)

for all embeddings ι : Q(λ)→ C, and thus

∑
x∈X (Fqm )

ϕ( f (x))=

2 dim X∑
i=0

(−1)i
di∑

j=1

(λi
j )

m .

To simplify the notation we write H i
c (Y, f )= H i

c (Y , ( f ∗Lϕ)|Y ) for arbitrary subschemes Y ≤ X . As
a corollary of the above we have that if

H i
c (Y, f )= 0 for i > d
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then ∣∣∣∣ ∑
x∈X (Fqm )

ϕ( f (x))
∣∣∣∣ ≤ Cqmd/2, (42)

with C =
∑d

i=0 dim H i
c (Y, f ). We will consider the cohomologies of the sums in the previous section:

the sum Kn(a) corresponds to the scheme X = G = GLn and the morphism f = g : x 7→ tr(ax + x−1)

(and also the embedding of ι0 : Q(ζ )→ C).
In the previous sections we derived bounds for the general Kloosterman sums over a finite extension

where the eigenvalues of the coefficient matrix are defined. However bounds over an extension field do
not imply that the weights are small. Consider, for example, X = (A1

\ {1})⊔ A0 and the regular function
f : X → A1 defined by

f (x)=

{
x if x ∈ A1

\ {1},

0 if x ∈ A0.

Then
∑

x∈X (Fqm ) ϕ( f (x))= 1 − ζm which vanishes if p | m but only in that case.
The reason for this phenomenon is that the Frobenius eigenvalues on different cohomologies differ by a

multiple of a root of unity, and thus cancel in some extensions: here dim H 1
c (X, f )= dim H 0

c (X, f )= 1,
dim H 2

c (X, f )= 0 and the Frobenius eigenvalues are λ1
1 = ζ and λ0

1 = 1.
Thus, to get the general bound, we will prove that the cohomologies H i

c (G, g) vanish if i is large
enough; hence the weights are not too large.

We will use the following properties of H•
c (for an overview, see, e.g., [Katz 1980] especially Chap-

ters 3.5. and 4.1-3 and [Laumon 2000; Fresán and Jossen 2020]):

Excision. If f : X → A1 is a regular function, Z → X is a closed immersion and U → X is the
complementary open immersion, then there exists a long exact sequence in the form

· · · → H i
c (U, f )→ H i

c (X, f )→ H i
c (Z , f )→ H i+1

c (U, f )→ · · · .

Künneth formula. If fi : X i → A1 for i = 1, 2, πi is the canonical map X = X1 ×Spec(Fq ) X2 → X i , and
f1 + f2 := π∗

1 f1 +π∗

2 f2, then

( f ∗

1 Lϕ)⊠ ( f ∗

2 Lϕ)≃ ( f1 + f2)
∗Lϕ

and

H•

c (X, f1 + f2)≃ H•

c (X1, f1)⊗ H•

c (X2, f2),

that is, for all i

H i
c (X, f1 + f2)≃

⊕
j+k=i

H j
c (X1, f1)⊗ H k

c (X2, f2).

We will also need some knowledge of the cohomologies in simple situations. They are listed in the
following theorem.
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Theorem 3.15 (cohomology of some basic sheaves). (i) Cohomology of some basic sheaves on A1.

(a) H i
c (A

1, id)= 0 for all i .

(b) If 0 : A1
→ A1 is the zero map, then L0 = f ∗

0 Lϕ is the constant sheaf and

dim H i
c (A

1, 0)=

{
1 if i = 2,
0 if i ̸= 2.

The Frobenius eigenvalue on H 2
c is q (which is of weight 2).

(ii) Cohomology of some basic sheaves on A1
\ A0.

(a) We have

dim H i
c (A

1
\ A0, id)=

{
1 if i = 1,
0 if i ̸= 1.

The Frobenius eigenvalue on H 1
c is 1 (which is of weight 0).

(b) We have

dim H i
c (A

1
\ A0, 0)=

{
1 if i = 1, 2,
0 if i ̸= 1, 2.

The Frobenius eigenvalue on H 2
c is q (which is of weight 2) and on H 1

c is 1 (weight 0).

(iii) Cohomology of sheaves corresponding to Kloosterman sums; see [Weil 1948a]. If α ∈ F∗
q and

fα : Gm = A1
\ A0

→ A1 is the morphism which corresponds to the map

fα(t)= α · t + 1/t

then

dim H i
c (A

1
\ A0, fα)=

{
2 if i = 1,
0 if i ̸= 1,

and on H 1
c both weights are 1.

The next observation is essential in what follows.

Lemma 3.16. Let f, g : X → A1 be regular functions, X0 = f −1({0}) and consider f · idA1 + g :

X ×Spec(Fq ) A1
→ A1. Then

H•

c (X ×Spec(Fq ) A1, f · idA1 + g)≃ H•

c (X0, g)⊗ H•

c (A
1, 0);

thus
H i+2

c (X ×Spec(Fq ) A1, f · idA1 + g)≃ H i
c (X0, g)⊗ H 2

c (A
1, 0) for all i. (43)

Proof. Let V = X \ X0 and consider the morphism j = idV ⊗ (idA1 − g)/ f : V × A1
→ V × A1.

This is clearly an isomorphism and j ◦ ( f · idA1 + g) = 0V + idA1 ; thus by the Künneth formula,
H•

c (V × A1, j ◦ ( f · idA1 + g))≡ 0.
Let Z = X0 × A1 and U = X × A1

\ Z . From the previous argument, H•
c (U, f · idA1 + g) ≡ 0. By

excision H i
c (X ×Spec(Fq )A

1, f ·idA1 +g)≃ H i
c (Z , f ·idA1 +g), but ( f ·idA1)|Z ≡0; hence ( f ·idA1 +g)|Z =

g|Z = g|X0 + 0|A1 and applying the Künneth formula we get the lemma. □
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Remark 10. This lemma is the cohomological form of the straightforward computation∑
(x,t)∈X (F)×F

ϕ(t f (x)+ g(x))=

∑
x∈X (F)

ϕ(g(x))
∑
t∈F

ϕ(t f (x))= q
∑

x∈X0(F)

ϕ(g(x)).

A similar argument as in the proof appears in motivic context in [Fresán and Jossen 2020, Lemma 6.5.3
and Remark 6.5.4].

Applying the lemma repeatedly we get:

Corollary 3.17. Let π j : Am
→ A1 be the projection

(x1, x2, . . . , xm) 7→ x j .

For f j , g : X → A1, 1 ≤ j ≤ m, let h : X ×Spec(Fq ) Am
→ A1 be defined by

h =

m∑
j=1

f j ·π j + g.

Consider X0 = {x ∈ X | h(x, · )≡ 0} ≤ X as a subscheme. Then

H•

c (X ×Spec(Fq ) Am, h)≃ H•

c (X0, g)⊗
( m⊗

j=1

H•

c (A
1, 0)

)
;

thus

H i+2m
c (X ×Spec(Fq ) Am, h)≃ H i

c (X0, g)⊗
( m⊗

j=1

H 2
c (A

1, 0)
)

for all i.

We will now show the vanishing of cohomologies of high enough degree for the exponential sums that
were used in the previous sections.

3F. The proof of Theorem 1.7. We first start with the reduction to Jordan blocks as in Proposition 2.3.
Let G = GLn , Gk = GLk , Gl = GLl for some n = k + l. Let

a =

(
ak b
0 al

)
∈ An×n

be block upper triangular with ak ∈ Ak×k, al ∈ Al×l . Let g : G → A1, x 7→ tr(ax + x−1), and for the
diagonal blocks denote by gk and gl the morphisms xk 7→ trk(ak xk + x−1

k ) and xl 7→ trl(al xl + x−1
l ),

respectively. Let H•
= H•

c (G, g) and similarly H•

k = H•
c (Gk, gk), H•

l = H•
c (Gl, gl).

Proposition 3.18. If ak and al have no common eigenvalues, then

H•
≃ H•(Ak×l, 0)⊗ H•

k ⊗ H•

l , that is, H i
≃ H 2kl(Ak×l, 0)⊗

( ⊕
j+ j ′=i−2kl

H j
k ⊗ H j ′

l

)
,

where H•(Ak×l, 0)=
(⊗kl

i=1 H•
c (A

1, 0)
)
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Proof. The morphism U[k,l] → Akl , u 7→ (ui, j )1≤i≤k,1≤ j≤l , is an isomorphism, so we apply Corollary 3.17
with m = kl and X = G on X ×Spec(Fq ) U[k,l] and

h : (x, u) 7→ tr(a(u−1xu)+ (u−1xu)−1).

From the proof of Proposition 2.3 it is clear that h(x, · ) is cohomologically nontrivial if and only if x ′
= 0,

that is, x ∈ X0 with X0 ≤ X the subscheme of “block upper triangular” matrices and by Corollary 3.17

H•

c (X ⊗Spec(Fq ) U[k,l], h)≃ H•

c (X0, g)⊗ H•(Ak×l, 0)≃ H•

c (Gk, gk)⊗ H•

c (Gl, gl)⊗ H•(Ak×l, 0),

where the second isomorphism is a consequence of a being a block matrix. Thus

X0 ≃ Gk ×Spec(Fq ) Gl ×Spec(Fq ) Ak×l, g|X0 = gk + gl + 0Ak×l

and the Künneth formula.
On the other hand j : X → X , (u, x) 7→ (u, uxu−1), is an isomorphism and j∗h = 0Uk + g so

H•

c (X ⊗Spec(Fq ) U[k,l], h)≃ H•

c (G, g)⊗
( kl⊗

i=1

H•

c (A
1, 0)

)
;

hence the proposition. □

Proof of Theorem 1.7. Since cohomology does not depend on the finite field in question we may assume
that a is a diagonal matrix with nonzero and unequal entries αi on the diagonal. As above let g : G → A1,
x 7→ tr(ax+x−1). Also let H•

K (αi )
= H•

c (A
1
\A0, fα). Repeated applications of the proposition above gives

H•

c (G, g)= H n(n−1)(An(n−1)/2, 0)⊗
n⊗

i=1

H•

K (αi )
.

By Theorem 3.15(i) and the Künneth formula, dim H n(n−1)(An(n−1)/2, 0) = 1, with Frobenius eigen-
value qn(n−1). Similarly by Theorem 3.15(iii)

⊗n
i=1 H•

K (αi )
is concentrated in degree n where it equals⊗n

i=1 H 1
K (αi )

.
The claim now follows from the purity of the classical Kloosterman sums K1(αi ). □

3G. Bounding the weights in the nonsplit case. For the proof of Theorem 1.8 we need to bound the
degrees of the nontrivial cohomology groups. Recall that for w2

= I we defined in Theorem 1.5

N = N (w)=
∣∣{(i, j) | 1 ≤ i < j ≤ n, w( j) < w(i)≤ j}

∣∣.
Theorem 3.19. Assume that a = α I + ā, with α ∈ F∗

q and ā nilpotent, and consider the cohomology
H•

c (Cw, x 7→ tr(ax + x−1)) associated to the exponential sum (31).

(i) If w2
̸= I , then H•

c (Cw, x 7→ tr(ax + x−1))≡ 0.

(ii) If w2
= I , then H i

c (Cw, x 7→ tr(ax + x−1)) = 0 for i > n2
+ 2N (w); thus all weights of the sum∑

x∈Cw ψ(ax + x−1) are at most n2
+ 2N (w).
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Proof. (i) We may assume that ā is upper triangular. The case w2
̸= I follows from the proof of

Proposition 3.1. Let the pair (i, j) be chosen as in there: i is minimal such that i ̸= w2(i) and j = w(i).
Consider the subvarieties Y = {I + sei, j | s ∈ Fq} ≃ A1, X1 = Ub and X2 = {x ∈ B | xi j = 0}. Then we
have the decomposition Cw = X1 ×Y × X2 by mapping x1 ∈ X1, x2 ∈ X2, s ∈ Fq to g = x1w(I + sei, j )x2

(this is indeed an isomorphism of algebraic varieties). If X = X1 × X2 then the proof of Proposition 3.1
shows that the map g tr a + (uwb)−1 is of the form f (x)s + g(x) with X0 = {x ∈ X | f (x)= 0} empty.
Hence Lemma 3.16 implies the vanishing of cohomology.

Assume now thatw2
= I . By Lemma 3.7, Cw ≃U ♭

×T ×U ♯
b ×Ua ×Uo×U ♭

b and this is an isomorphism
of algebraic varieties.

We can apply Corollary 3.17 in the setting of Proposition 3.8. We have Am
= Ua with m = na ,

h : x 7→ tr(ax + x−1) and

X0 = Ub × T × U ♯
b × Uo ↪→ X = U ♭

× T × U ♯
b × Uo × U ♭

b,

where the embedding maps the last coordinate to I . We obtain

H•

c (Cw, x 7→ tr(ax + x−1))≃ H•

c (U
♭
× T × U ♯

b × Uo, g1)⊗

( na⊗
i=1

H•

c (A
1, 0)

)
,

where g1 = tr(avwtu1uo + (wtu1uo)
−1) with the notation of Section 3C.

Applying Corollary 3.17 in the setting of Proposition 3.9 with Am
≃ Uo, m = no, h : x 7→ tr(ax + x−1)

and
X0 = U ♭

× T (w)× U ♯
b ↪→ X = U ♭

× T × U ♯
b ,

where T (w) is as in the proof of Proposition 3.14, we obtain

H•

c (Cw, x 7→ tr(ax + x−1))≃ H•

c (U
♭
× T (w)× U ♯

b , g2)⊗

( na+no⊗
i=1

H•

c (A
1, 0)

)
,

where g2 =
∑

i=w(i)(αti + t−1
i )+ tr(āvwdu1).

The Künneth formula yields

H•

c (Cw, x 7→ tr(ax + x−1))

≃ H•

c (U
♭
× U ♯

b , g3)⊗

( na+no⊗
i=1

H•

c (A
1, 0)

)
⊗

( e⊗
j=1

H•

c (A
1
\ A0, 0)

)
⊗

( f⊗
k=1

H•

c (A
1
\ A0, fα)

)
,

with g3 = tr(āvwdu1) and fα : x 7→ αx + x−1.
Now it is enough to observe that the maximal nontrivial cohomology group is of degree

2 dim U ♭
× U ♯

b + 2(na + no)+ 2e + f,

where e is the number of involution pairs, and f is the number fixed elements in w. It is clear that
n = 2e + f and the calculation in the proof of (40) shows that the rest is equal to n(n − 1)+ 2N (w). □
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To show the vanishing of cohomologies of the Bruhat cells in higher degrees, we need one more
combinatorial lemma. For this the Weyl group W is identified with the symmetric group Sn viewed as the
group of permutations of the set {1, . . . , n} as in (32). In the notation of Remark 9 we let for any w ∈ W

J ♭
a/o(w)= {(i, j) | 1 ≤ i < j ≤ n, w( j) < w(i)≤ j}

Recall that N (w)= |J ♭
a/o(w)| = dim U ♭

a/o.

Lemma 3.20. Let e be a positive integer such that e ≤ ⌊n/2⌋ and we ∈ Sn be the involution for which

we( j)=

{
n − j + 1 if j = 1, . . . , e,
j if j = e + 1, . . . , n − e.

We then have the following:

(i) If w2
= I and w is a product of e disjoint transpositions then N (w)≤ N (we) with equality only if

w = we.

(ii) N (we) = e(n − e). In particular N (w) is maximal for the long element w⌊n/2⌋, and we have
N (w⌊n/2⌋)= (n2

− δ(n))/4.

Proof. We proceed by induction on e. Let k = w(n) and first assume that k > 1. Let v = (12 . . . k) ∈ Sn ,
that is,

v( j)=


j + 1 if j < k,
1 if j = k,
j if j > k,

and w′
= v−1wv ∈ Sn . We claim that (i, j) ∈ J ♭

a/o(w)⇒ (v(i), v( j)) ∈ J ♭
a/o(w

′); thus N (w)≤ N (w′).
To see this, first assume that {i, j} ∩ {k, n} = ∅. In this case the claim is clear since v respects the

ordering of X = {1, 2, . . . , n} \ {k, n} and w(X)⊆ X .
Now the case (i, k)∈J ♭

a/o(w) does not arise since w(k)= n. There is a single j such (k, j)∈J ♭
a/o(w),

namely j = n, but then (v(k), v(n))= (1, n) ∈ J ♭
a/o(w

′). Finally (i, n) ∈ J ♭
a/o(w

′) for all i ; thus for all
(i, n) ∈ J ♭

a/o(w) we have (v(i), v(n)) ∈ J ♭
a/o(w

′).
If w(n) ̸= 1, then the last case of the above argument shows N (w) is strictly smaller than N (w′).
We now move to the induction step. Let w′ be as above if w(n) ̸= 1 and w′

= w otherwise. Let also
w′′

∈ Sn−2 be the element which arises from the permutation w′ restricted to {2, . . . , n − 1} which we
identify with {1, . . . , n − 2} using j 7→ j − 1. Then w′′ is a product of e − 1 transpositions and the
induction hypothesis shows that N (w′′) is maximal if and only if w′′ arises from w′

= we.
To prove the second part note that if w(n) = 1, then (i, n) ∈ J ♭

a/o(w) for all i < n. Again let now
w′′

∈ Sn−2 be the element which we obtain by deleting the first and last rows and columns of w′. Then
N (w′′)= N (w)+n−1. This time induction again shows that N (we)= (n−1)+(n−3)+· · ·+(n−2e+1)
from which the statements follow. □

The following lemma enables us to work on the individual groups GLn j :
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Lemma 3.21. Let G = GLm for some m and g : GLm(Fq)→ A1, x 7→ tr(ax + x−1), where a = α I + ā,
with ā nilpotent. Then H i (GLm, g) vanishes if i > m2

+ (m2
− δ(m))/2.

Proof. We may assume that ā is upper triangular. For an involution w2
= I again let e = e(w) be the

number of involution pairs in w. By Theorem 3.19 and Lemma 3.20

H i
c (Cw, g)=


0 for any i, if w2

̸= I,
0 for i > m2

+ 2e(m − e), if w ̸= I, w2
= I,

0 for i ̸= m2, if w = I.
(44)

Let l be the standard length function on W = Sm [Borel 1991, 21.21] and consider

Yl =

⊔
l(w)=l

Cw.

We also let Y0 = B corresponding to the unit element of W .
If l(w)= l then Cw is an open subscheme of

Xl =

⊔
l(w)≤l

Cw = Yl ⊔ Xl−1.

Clearly for any w we have H i
c (Cw, g)= 0 if i > m2

+ (m2
− δ(m))/2 and so this remain true for Yl :

H i
c (Yl, g)= 0 if i > m2

+ (m2
− δ(m))/2.

We will now apply induction in the excision long exact sequence on the disjoint union Xl = Yl ⊔ Xl−1:

· · · → H i
c (Xl−1, f )→ H i

c (Xl, f )→ H i
c (Yl, f )→ H i+1

c (Xl−1, f )→ · · · .

For l = 0 we have that X0 = Y0 and so

H i
c (X0, g)= 0

already for i > m2. Assume now that H i
c (Xl−1, g) = 0 if i > m2

+ (m2
− δ(m))/2. From the excision

long exact sequence we then also have that H i
c (Xl, g)= 0 for i > m2

+ (m2
− δ(m))/2. □

Proof of Theorem 1.8. Fix a ∈ Mn . As the weights do not change after base change, we might work over
a sufficiently large finite extension of Fq , say Fqm(a) , over which a is conjugate to a block diagonal matrix,
where the blocks on the diagonal are square matrices a j ∈ Mn j in Jordan normal form with a unique
eigenvalue α j .

Then by Proposition 3.18 we have

H•

c (G, g)≃

( r⊗
j=1

H•

c (GLn j , g j )

)
⊗

( ⊗
1≤i< j≤r

ni n j⊗
k=1

H•

c (A
1, 0)

)
,

where g j : GLn j (Fq)→ A1, x 7→ tr(a j x + x−1).
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We apply the lemma with m = ni and g = gi for 1 ≤ i ≤ r , respectively. By (42) and Lemma 3.21 we
have that Kn(a)≪ qd , with

d =

r∑
i=1

(3n2
i − δ(ni ))/4 +

∑
1≤i< j≤r

ni n j .

To conclude the proof note that

max
( r∑

i=1

(3n2
i − δ(ni ))/4 +

∑
1≤i< j≤r

ni n j

∣∣∣ r, ni ∈ N :

r∑
i=1

ni = n
)

= (3n2
− δ(n))/4. □

4. Degenerate cases

4A. Preliminary observations on Kn(a, b). The results in this section are combinatorial in nature and
will not require cohomology. Therefore from now on we work solely over Fq and Mn = Mn(Fq).

Let a and b singular n×n matrices such that

r = rk(b)≥ s = rk(a). (45)

This section contains some elementary observations about the generalized Kloosterman sums

Kn(a, b)=

∑
x∈GLn(Fq )

ψ(ax + bx−1).

First, we clearly have

Kn(a, b)= Kn(c1ac−1
2 , c2bc−1

1 ) for any c1, c2 ∈ GLn(Fq). (46)

In this, and the following sections, when we write a block matrix a =
(a11

a21

a12
a22

)
∈ Fn×n

q , we always
mean the blocks to correspond to the partition {1, 2, . . . , n} = {1, . . . , r} ⊔ {r + 1, . . . , n}, r as in (45).
For example, by (46) we may assume that b = Er , where

Er =

(
Ir 0
0 0

)
(47)

is a standard idempotent, but an exact description of the equivalence classes is a delicate question.
However all we need is a reasonable set of representatives for the action (a, b) 7→ (c1ac−1

2 , c2bc−1
1 ) that

are suitable for handling the Kloosterman sums. This is most conveniently achieved via a parabolic Bruhat
decomposition of G =GLn(Fq)with respect to the subgroups Pr = Pr (Fq) consisting of elements that when
acting on row vectors map the subspace Vr = ⟨er+1, . . . , en⟩ to itself. In block matrix notation we have

Pr = Pr (Fq)=

{
g ∈ GLn(Fq)

∣∣∣ g =

(
g11 g12

0 g22

)}
.

Let Qr = PT
r =

{
g ∈ GLn(Fq) | g =

( g11
g21

0
g22

)}
be the stabilizer of the columns space ⟨eT

1 , . . . , eT
r ⟩, the

subspace of linear functionals vanishing on Vr . Then we have the following Bruhat decomposition for the
group G = GLn(Fq).
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Proposition 4.1. Let G = GLn(Fq) with Pr , Qr as above. Then

G =

⋃
w∈WP\W/WP

QrwPr ,

where WP = W ∩ Pr = W ∩ Qr and WP\W/WP denotes the set of double cosets.

Proof. From G =
⋃
w∈W BwB it is clear that G =

⋃
w∈W Pn−rwPr . Letwl =

∑n
i=1 ei,n−i be the matrix that

corresponds to the longest element (1, n)(2, n −1) · · · ∈ W = Sn . Then wl Pn−rwl = Qr , from which G =

wl G =
⋃
w∈W QrwPr . It is obvious that if w′

=w1ww2 with w1, w2 ∈ WP , then Qrw
′ Pr = QrwPr . □

The following lemma is well known; see, for example, Section 1.3 in [James and Kerber 1981].

Lemma 4.2. Let W = S1,2,...,n , WP = S1,2,...,r × Sr+1,r+2,...,n and m = min(r, n −r). A set of double coset
representatives of WP \ W/WP is

W r = {wk | k = 1, . . . ,m},

where for k ≤ m, wk is the permutation matrix

wk =

k∑
i=1

ei,i+r +

r∑
i=k+1

ei,i +

n∑
i=r+k+1

ei,i , (48)

which we also identify with wk = (1, r + 1)(2, r + 2) · · · (k, r + k) ∈ W = Sn .

Recall that we have Er =
( Ir

0
0
0

)
.

Proposition 4.3. Let a and b as in (45). Then there exist matrices d and w ∈ W r such that

Kn(a, b)= Kn(Er · d, Er ·w).

Proof. First we can write a = c1 Esd1 and b = d2 Er c2 for some ci , d j ∈ GLn , and thus Kn(a, b) =

Kn(Er d0, Er c0), where d0 = Esd1d2, c0 = c2c1. Here we have used that Er Es = Es , since r ≥ s.
Now we have that c0 = qwp, where q ∈ Qr , p ∈ Pr are as in Proposition 4.1, and w ∈ W r as in

Lemma 4.2. Let

Ur =

{
g ∈ GLn(Fq)

∣∣∣ g =

(
Ir g12

0 In−r

)}
(49)

be the unipotent radical of Pr , and

Lr = Pr ∩ Qr =

{
g ∈ GLn(Fq)

∣∣∣ g =

(
g11 0
0 g22

)}
,

so that Pr = LrUr and Qr = LrU T
r .

We have Lr = H1 H2, where

H1 =

{
g ∈ GLn(Fq)

∣∣∣ g =

(
g11 0
0 In−r

)}
, H2 =

{
g ∈ GLn(Fq)

∣∣∣ g =

(
Ir 0
0 g22

)}
. (50)
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For g ∈ Lr ,

Er g = gEr ,

and for u ∈ Ur we have

uEr = Er and Er uT
= Er .

Therefore writing q = g1uT
1 , p = g2u2 we have

Kn(Er d0, Er g1uT
1wg2u2)= Kn(g2u2 Er d0, g1 Er uT

1w)= Kn(Er d, w),

where d = g2d0g1. □

4B. The proof of Theorem 1.9 and a preliminary bound. We will give a proof of Theorem 1.9 on
Kn(a, 0) with a of rank r , namely

K (a, 0)= Kn(Er , 0)= (−1)r q−(r+1
2 )qrn

|GLn−r (Fq)|. (51)

While this evaluation is trivial, for singular a, b it is the basis of our bounds for the general Kloosterman
sums given in Proposition 4.4 below.

Proof of Theorem 1.9. We have that

Kn(Er , 0)=

∑
x∈GLn(Fq )

ψ(Er x)=
1

qr(n−r)

∑
u∈Ur

∑
x∈GLn(Fq )

ψ(Er ux),

where Ur =
{
u ∈ GLn(Fq) | u =

( Ir
0

u12
In−r

)}
as in (49). Let x =

( x11
x21

x12
x22

)
. It is clear that when summing

over u first, ∑
u∈Ur

ψ(Er ux)=

{
0 if x21 ̸= 0,
qr(n−r) if x21 = 0.

Therefore

Kn(Er , 0)= qr(n−r)
|GLn−r (Fq)|Kr (Ir , 0),

which leads immediately to the claim, in view of Theorem 1.2. □

Proposition 4.4. Let w = wk ∈ W r be as in Lemma 4.2, and d ∈ Mn . Then

|Kn(Er d, Erw)| ≤

k∑
j=0

q j (n−r− j)−( j
2)

|GLn−r− j (Fq)|

|GLn−r (Fq)|
Rw( j),

where Rw( j)=
∣∣{x ∈ GLn(Fq) | x Erw =

( y11
0

y12
y22

)
, rk(y22)= j

}∣∣.
Proof. First swap the parameters

Kn(Er d, Erw)= Kn(Erw, Er d)
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and then use the action of Ur as above to get

Kn(Erw, Er d)=

∑
x∈GLn(Fq )

ψ(Erwx + Er dx−1)

=
1

qr(n−r)

∑
u∈Ur

∑
x∈GLn(Fq )

ψ(Erwux + Er dx−1u−1)

=
1

qr(n−r)

∑
x∈GLn(Fq )

∑
u∈Ur

ψ(Erwux + Er dx−1).

This shows that

Kn(Erw, Er d)=

∑
x∈Rw

ψ(Erwx + Er dx−1),

where Rw =
{

x ∈ GLn(Fq) | x Erw =
( y11

0
y12
y22

)
for some y11, y12, y22

}
.

Let

Rw( j)=

{
x ∈ GLn(Fq)

∣∣∣ x Erw =

(
y11 y12

0 y22

)
, rk(y22)= j

}
(52)

so that Rw =
⊔

j Rw( j). Since in x Erw the last n −r −k columns are 0, Rw( j) is empty if j > k and so

Kn(Erw, Er d)=

k∑
j=1

∑
x∈Rw( j)

ψ(Erwx + Er dx−1).

Clearly if x ∈ Rw( j) then gx ∈ Rw( j) for any g ∈ Pr . Therefore let

H2 =

{
g ∈ Lr

∣∣∣ g =

(
Ir 0
0 h

)
, h ∈ GLn−r (Fq)

}
as in (50) and note that for g ∈ H2, x ∈ Rw( j)

tr(Erwgx)= tr(r)(y11)+ tr(n−r)(y22h) and tr(Er d(gx)−1)= tr(Er dx−1),

where tr( j) is the j× j matrix trace and y11, y22 are as in (52). This immediately implies that for x ∈Rw( j)∑
g∈H2

ψ(Erwgx + Er d(gx)−1)= Kn−r (E j , 0)ϕ(tr(r)(y11)+ tr(Er dx−1)),

and this gives∑
x∈Rw( j)

ψ(Erwx + Er dx−1)=
1

|GLn−r (Fq)|

∑
g∈H2

∑
x∈Rw( j)

ψ(Erwxg + Er d(xg)−1)

=

∑
x∈Rw( j)

ϕ(tr(r)(y11)+ tr(Er dx−1))
Kn−r (E j , 0)
|GLn−r (Fq)|

.

The proposition follows from trivially estimating the last sum using |ϕ( · )| ≤ 1 and the evaluation (51). □
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4C. The proof of Theorem 1.10. We restate the theorem and its corollary. We need to prove that if a
and b are singular n×n matrices such that s = rk(a)≤ r = rk(b) < n and m = min(r, n − r), then

(i) Kn(a, b)≤ 2qn2
−rn+r2

+(m
2),

(ii) if a, b are not both 0 then Kn(a, b)≤ 2qn2
−n+1, and

(iii) this bound is sharp, since

Kn(e1,n, e1,n)= q2n−2
|GLn−2(Fq)| + (q − 1)qn−1

|GLn−1(Fq)| ∼ qn2
−n+1.

Here (ii) is an obvious corollary of (i), and we start with the proof of that claim (Theorem 1.10). By
Proposition 4.4 this will require some estimates for the number Rw( j)= |Rw( j)|.

Lemma 4.5. Let w = wk ∈ W r and Rw( j) be as in (52). Then

Rw( j)= Prw j Ps,

where Pr = LrUr as in (49), and Ps = H ′

1 H2Ur with H1, H2 as in (50) and H ′

1 = H1 ∩wk H1wk .

Proof. First, if y ∈ Rw( j)Erw then gy ∈ Rw( j)Erw for any g ∈ Pr . This immediately shows that
PrRw( j)= Rw( j).

On the other hand if g = h1h2u with h1 ∈ H ′

1, h2 ∈ H2 and u ∈ Ur then

xgErw = xh1 Erw = x Er h1w = (x Erw)wh1w = yh′

1

for some h′

1 ∈ H1 and y =
( y11

0
y12
y22

)
, rk(y22)= j as in (52), which shows that Rw( j)Ps = Rw( j) as well.

The fact that there is a unique orbit represented by w j is a direct calculation based on the definition of
Rw( j) which implies that x21 has rank j , and the last r − k columns of x21 are identically 0. □

Lemma 4.6. In the notation above

Rw( j)= |Rw( j)| = cn−r,k( j)cr,r− j (r − j)qr( j+n−r)
|GLn−r (Fq)|,

where ck,l( j)=
∣∣{x ∈ Fk×l

q | rk(x)= j}
∣∣.

Proof. Assume that x =
( x11

x21

x12
x22

)
∈ Rw( j), and that x ′

=
( x11

x21

x ′

12
x ′

22

)
∈ GLn(Fq). Then x ′

∈ Rw( j) as well,
and there is u ∈ Ur , h ∈ H2, such that x ′

= xuh.
It follows that Rw( j)=qr(n−r)

|GLn(Fq)|·|R′
w( j)|, where R′

w( j) consists of those n×r matrices
{( x11

x21

)}
,

which have rank r , and for which the (n−r)×r matrix x21 is such that it has rank j and its last r − k
columns are identically 0.

The number of choices for x21 for x =
( x11

x21

)
∈ R′

w( j) is cn−r,k( j).
From the transitivity Rw( j) = PrRw( j) in Lemma 4.5 for each x21 there are the same number of

possible x11. For x21 the matrix with a I j in the top left corner and zeros everywhere else, it is readily
seen that the number of possible x11’s is qr j cr,r− j (r − j) which proves the claim. □
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In view of the description in Lemma 4.5 it may seem that Proposition 4.4 is wasteful and a more exact
evaluation is possible. While it is true that one can push this approach to get more precise information,
we will see below that there are cases when the estimates are of the right order of magnitude. Still we
will use some enumerative combinatorics, but merely for getting a good constant to match the q-power in
the estimate that arises from Proposition 4.4. To do this it is convenient to use the Gaussian binomial
coefficients (q binomials) [Cameron 2017]. For k ∈ N let

[k]q =
qk

− 1
q − 1

, [k]q ! =

k∏
j=1

[ j]q , and
(

k
l

)
q

=
[k]q !

[l]q ! · [k − l]q !
.

With this notation we have |GLk(Fq)| = (q − 1)kq(
k
2)[k]q ! and the number of matrices of fixed size

and rank ([Landsberg 1893, Formula (B)]; see also [Morrison 2006, Section 1.7])

ck,l( j)=
∣∣{x ∈ Fk×l

q | rk(x)= j}
∣∣ = (q − 1) j q(

j
2)

[k]q ! · [l]q !

[k − j]q ! · [l − j]q ! · [ j]q !
. (53)

We may therefore rephrase Lemma 4.6 as

Rw( j)= |Rw( j)| = (q − 1)nq(
n
2)+ j2 [k]q ! · [r ]q ! · [n − r ]q !

2

[k − j]q ! · [n − r − j]q ! · [ j]q !2
. (54)

(Here w = wk ∈ W r and Rw( j) is as in (52).)

Proof of Theorem 1.10. By Lemma 4.6, (53) and (54) we have that the summands in Proposition 4.4 are
equal to

(q − 1)n− j q(
n
2)+ j2 [k]q ! · [r ]q ! · [n − r ]q !

[k − j]q ! · [ j]q !2
,

and thus

|Kn(Er d, Erw)| ≤ (q − 1)n−r q(
n
2)[n − r ]q !

k∑
j=0

q j2
(

k
j

)
q

r∏
j ′= j+1

(q j ′

− 1).

Using the trivial identity q j ′

− 1 ≤ q j ′

we have for the inner sum

k∑
j=0

q j2
(

k
j

)
q

r∏
j ′= j+1

(q j ′

− 1) <
k∑

j=0

q j2
(

k
j

)
q
q(

r+1
2 )−(

j+1
2 ) = q(

r+1
2 )

k∑
j=0

q(
j
2)

(
k
j

)
q

= 2q(
r+1

2 )
k−1∏
j=1

(1 + q j )

by the q-binomial theorem [Stanley 1986, Formula (1.87)]. From this,

|Kn(Er d, Erw)| ≤ 2q(
n
2)+(

r+1
2 )

k−1∏
j=1

(q2 j
− 1)

n−r∏
j ′=k

(q j ′

− 1)

< 2q(
n
2)+(

r+1
2 )+2(k

2)+k(n−r−k+1)+(n−r−k+1
2 ) = 2qn2

−rn+r2
+(k

2).

Recall that m = min(r, n − r), and thus by Lemma 4.2 we have 1 ≤ k ≤ m, so

|Kn(Er d, Erw)| ≤ 2qn2
−rn+r2

+(m
2). □
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Finally we prove the claim about Kn(e1,n, e1,n). Using the Bruhat decomposition with the maximal
parabolic subgroup P as in (10) we get

Kn(e1,n, e1,n)=

n∑
k=1

∑
u∈Uk

∑
p∈P

ϕ((uw(kn) p)n,1 + (uw(kn) p)−1
n,1).

Write p =
( h

0
v
λ

)
with h ∈ GLn−1(Fq), v ∈ F

(n−1)×1
q and λ ∈ F∗

q . Then

(uw(kn) p)n,1 =

{
hk1 if k < n,
0 if k = n,

(uw(kn) p)−1
n,1 =

{
λ−1 if k = 1,
0 if k > 1,

and thus

∑
g∈Ukw(kn)P

ϕ((x)n,1 + (x)−1
n,1)=


−qn−1

|U1|Kn−1(e1,1, 0) if k = 1,
(q − 1)qn−1

|Uk |Kn−1(e1,k, 0) if 1< k < n,
|P| if k = n.

Since Kn−1(e1,k, 0)= Kn−1(e1,1, 0)= −qn−2
|GLn−2(Fq)| by Theorem 1.9, we get

Kn(e1,n, e1,n)= −q2n−3
|GLn−2(Fq)|

(
−qn−1

+ (q − 1)
n−1∑
k=2

qn−k
)

+ (q − 1)qn−1
|GLn−1(Fq)|

= q2n−2
|GLn−2(Fq)| + (q − 1)qn−1

|GLn−1(Fq)| ∼ qn2
−n+1.

5. Examples

5A. Kloosterman sums of 2×2 matrices. Let a ∈ M2(Fq). Since the Kloosterman sum is invariant under
conjugation, K2(a) = K2(gag−1) for any g ∈ GL2(Fq), we may assume that a is in Frobenius normal
form, a =

( 0
−d

1
t

)
, where t = tr(a), d = det a. The Kloosterman sum is then

K2(a)=

∑
x11x22−x12x21 ̸=0

ϕ(−dx12 + t x22)ϕ(x21 + (x11 + x22)/(x11x22 − x12x21)).

From this presentation it is not at all clear that this sum should behave differently depending on whether
t2

− 4d is or is not a nonzero square or 0, showing that brute force calculations without using the finer
group structure are unlikely to highlight any of the features of these sums.

For n = 2 the maximal parabolic of Section 2B is also the Borel subgroup, and the two approaches
given earlier are the same. They lead in an elementary way to the following evaluations:

a
(
α
0

0
β

)
, α ̸= β

(
α
0

0
α

)
, α ̸= 0

(
α
0

1
α

)
, α ̸= 0

(0
0

0
0

) ( 0
0

1
0

)
K2(a) q K1(α)K1(β) q3

− q2
+ K1(α)

2q −q2
+ K1(α)

2q q q

The nonsplit case, a =
(
α
β
δβ
α

)
, with β ̸= 0 and δ /∈ (F∗

q)
2, can also be evaluated explicitly, although this

requires some effort. We have
K2(a)= −q K1

(
α+β

√
δ, F∗

q2

)
.

See the proof of Proposition 5.10 below.
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It is also possible to deal directly with the more general sum K2(a, b). Of course if either rk(a) or
rk(b) is 2, say rk(b)= 2, this leads to the previous evaluation by

K2(a, b)= K2(ab−1, I2).

If one of them, but not both are 0, say b = 0, and rk(a)= 1, then

K2(a, 0)= −q(q − 1).

If both of a and b have rank 1, then we may assume that a = e1 =
( 1

0
0
0

)
, and that b is one of b1 =

(
α
0

0
0

)
for which

K2(e1, b1)= K1(α)q(q − 1),

or b2 =
( 0

0
1
0

)
for which

K2(e1, b2)= −q(q − 1),

or b3 =
( 0

0
0
1

)
for which

K2(e1, b3)= q3
− q2

+ q.

Finally one trivially has that K2(0, 0)= (q2
− 1)(q2

− q).

5B. The recursion in closed form. We will describe an algorithm for calculating the polynomials that
express Kn(a) when a = α In + ā(λ) for some fixed α ̸= 0 and some partition λ = [n1, . . . , nl]. As
usual the fact that n1 + · · · + nl = n is denoted by λ ⊢ n. We will rely on the notation of Sections 2B
and 2C, where we made the assumption that ni ≤ ni+1. If an element ni repeats k times we will write
[ . . . , nk

i , . . . ] instead of [ . . . , ni , . . . , ni , . . . ], so, for example, we will write [1n
] for the partition that

corresponds to the matrix α I .
Also we will denote the polynomials by Kλ as well, instead of the notation Pλ in Theorem 1.3. However

we will still write K for K[1] = K[1](α)= K1(α), so, for example, Theorem 1.4 can be stated as

K[1n] = qn−1K K[1n−1] + q2n−2(qn−1
− 1)K[1n−2].

It is clear from the proof of Theorem 5.1 below that if nl−1 < nl , the recursion is particularly simple,
and has only two terms corresponding to the sums over the cells Xn−1 and Xn . Therefore in the case
nl−1 < nl

Kλ = qn−1K Kλ′ − q2n−2Kλ′′,

where

λ′
= [n1, . . . , nl−1, nl − 1] and λ′′

= [n1, . . . , nl−1, nl − 2]

possibly reordered into a monotonic sequence, if nl−1 = nl − 1. If nl = 2, then the entries corresponding
to nl − 2 = 0 are simply deleted. For example, for λ= [1, 2] this gives

K[1,2] = q2K K[12] − q4K .
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The situation is more interesting when the last entry is repeated. This can be handled by the following
explicit recursion, which gives an alternative proof of Theorem 1.3.

Theorem 5.1 (recursion algorithm). Assume that λ= [nk1
1 , . . . , nkl−1

l−1 , nkl
l ], with kl > 1. Then

Kλ = qn−1K Kλ′ − q2n−2Kλ′′ − (qkl−1
− 1)q2n−2(Kλ′′ − Kλ′′′),

where
λ′

= [nk1
1 , . . . , nkl−1

l−1 , nl − 1, nkl−1
l ],

λ′′
= [nk1

1 , . . . , nkl−1
l−1 , nl − 2, nkl−1

l ],

λ′′′
= [nk1

1 , . . . , nkl−1
l−1 , (nl − 1)2, nkl−2

l ],

reordered into a monotonic sequence, if needed.

Note that λ′
⊢ n − 1 and λ′′, λ′′′

⊢ n − 2. It is essential that the “reduced” partitions λ′, λ′′, λ′′′ are put
into the canonical nondecreasing form we are using. This process is somewhat inconvenient to express in
notation, but easy to do so in practice. For example, if λ= [1, 2, 32

] then λ′
= [1, 22, 3], λ′′

= [12, 2, 3]

and λ′′′
= [1, 23

], while for λ= [1, 2, 42
], λ′

= [1, 2, 3, 4], λ′′
= [1, 22, 4] and λ′′′

= [1, 2, 32
], etc.

The algorithm can be used to express Kn(a) for any a with a split characteristic polynomial when n is
small, by first using Theorem 1.1. For example, for n = 3, a = α I + ā(λ), α ̸= 0, it gives

λ [13
] [1, 2] [3]

Kλ q3K 3
+ (q5

+ 2q4)(q − 1)K q3K 3
+ q4(q − 2)K q3K 3

− 2q4K
.

The first nontrivial example when λ′′′ appears is [22
] ⊢ 4, for which

K[22] = q3K K[1,2] − q6K[2] − q6(q − 1)(K[2] − K[12])= q6K 4
+ q7(q − 3)K 2

+ q8(q2
− q + 1).

To see a more intricate situation we illustrate the algorithm for n = 6 and λ= [1, 2, 3], when we have

K[1,2,3] = q5K K[1,22] − q10K[12,2], K[1,22] = q4K[12,2] − 2q8K[1,2]

and so on.
There are many families where the recursion may be stated in simple terms, for example, if there is

only one block, λ= [n], when we have

K[n] = K qn−1K[n−1] − q2n−2K[n−2].

From this one can get a closed formula for K[n]; see Section 5E below.
Theorem 5.1 is an easy corollary of the following two propositions. As usual we assume α ̸= 0, and

a = α I + ā(λ) with ε j ∈ {0, 1} as in (22) with εn−1 = 1 and use a′′ to denote a′′

̸k ,̸n .

Proposition 5.2. Let Z =
{
z =

∑l−1
j=i+1 ξ j ek−1,N j −1 | ξ j ∈ Fq

}
. In the above notation,

(i) a′′
+ z and a′′ are conjugate over Fq ,

(ii) a′′
+ z + ek−1,n−2 and a′′

+ ek−1,n−2 are conjugate over Fq .
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As an immediate corollary of (28) we get that
∑

x∈Xk
ψ(ax + x−1)= 0, unless k = Ni for some k < l

such that nk = nl and then∑
x∈Xk

ψ(ax + x−1)= q2n+k−l−3(q − 1)(Kn−2(a′′)− Kn−2(a′′
+ ek−1,n−2)).

The second step in the proof is the following:

Proposition 5.3. (i) If ni < nl then a′′
+ ek−1,n−2 and a′′ are conjugate over Fq .

(ii) If ni = nl , a′′
+ ek−1,n−2 is conjugate to a′′′, where a′′′ is built from the partition λ′′′ as in (22).

While not needed, we remark that the proposition remains true over Z.
The proof of the claims in the propositions will use the linear transformation interpretation from

Section 2F. We start with an easy observation.

Lemma 5.4. Let VA = ⟨v0⟩⊕ · · ·⊕ ⟨vl⟩ ≃ Cn0 ⊕· · ·⊕Cnl . If v ∈ VA is such that Akv = 0 for k < n0, then
VA = ⟨v0 + v⟩ ⊕ · · ·⊕ ⟨vl⟩ as well.

Proof. One easily checks that ⟨v0+v⟩∩(⟨v1⟩⊕· · ·⊕⟨vl⟩)={0} and that ⟨v0+v⟩+(⟨v1⟩⊕· · ·⊕⟨vl⟩)=VA. □

Remark 11. It follows that there is an isomorphism φ : VA → VA which is trivial on ⟨v1⟩ ⊕ · · · ⊕ ⟨vl⟩

and extends v0 7→ v0 + v. Clearly, it satisfies Aφ = φA.

The question for us is to determine how a module structure given by A : V → V changes if A is
perturbed by another map Z : V → V . For example, Propositions 5.2 and Proposition 5.3(i) are easy
consequences of the following lemma.

Lemma 5.5. Assume that VA ≃ ⟨v0⟩ ⊕ ⟨v1⟩ ⊕ · · · ⊕ ⟨vl⟩ ≃ Cn0 ⊕ Cn1 ⊕ · · · ⊕ Cnl , that Z : V → V is such
that for i = 1, . . . , l

Z(A jvi )= 0 for j = 0, . . . , ni − 1

and that for i = 0 we have

Z(A jv0)= 0 for j = 0, . . . , n0 − 2,

Z(An0−1v0)=

l∑
i=1

ξi Ani −1vi .

If n0 < ni for all i = 1, . . . , l then VA+Z ≃ VA as Fq [T ]-modules.

Proof. Let v =
∑l

i=1 ξi Ani −n0vi . Clearly An0v = 0, and so by Lemma 5.4 there is an A-linear isomor-
phism φ, for which φ(v0) = v0 − v. One easily checks that Z ◦ φ = 0 and so φ provides the claimed
isomorphism. □
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Lemma 5.6. Assume that VA ≃ ⟨v0⟩ ⊕ ⟨v1⟩ ≃ Cm ⊕ Cm and that Z : V → V is such that

Z(A jv1)= 0 for j = 0, . . . ,m − 1,

Z(A jv0)= 0 for j = 0, . . . ,m − 2,

Z(Am−1v0)= ξ Am−1v1 for some ξ ∈ F∗

q .

Then VA+Z ≃ Cm−1 ⊕ Cm+1 as Fq [T ]-modules.

Proof. It is easy to see that (A + Z) jv0 = A jv0, for j = 0, . . . ,m − 1 and that (A + Z)mv0 = ξ Am−1v1.
Moreover if we replace v1 by v′

1 = v1 −
1
ξ
v0, then (A + Z)m−1v′

1 = 0. □

Proofs of Propositions 5.2 and 5.3. The two lemmas above give exactly this. □

5C. Examples for the Kloosterman sums over Borel Bruhat cells. Let B be the standard Borel subgroup
of invertible upper triangular matrices, w ∈ W an element of the Weyl group, and Cw = BwB. We will
consider here the sums

K (w)
n (a)=

∑
x∈Cw

ψ(ax + x−1),

where a = α I + ā, with ā ∈ U , where U is the set of strictly upper triangular matrices. We will first
comment on the nature of these sums and then derive some of the properties that will be used below in
the section on purity.

As in the proof of Theorem 1.3 in Section 2D one can show that these sums satisfy a recursion that
connects them to similar sums of rank n − 1 or n − 2, depending on whether w(n)= n or w(n) < n. To
see this, recall from Proposition 3.14 that

K (w)
n (a)= qna+no K1(α)

f S(w)n (ā), (55)

where no is the number of involution pairs in w, f is the number of fixed points of w and where the
auxiliary sum is given by

S(w)n (ā)=

∑
v,d,u1

ψ(āvwdu),

with v ∈ U ♭, u ∈ U ♯
b , d ∈ D(w)=

{∑
i<w(i) ti ei,i | ti ∈ F∗

q
}

and āv = v−1āv. The recursion then proceeds
on the sum S(w)n (a). For example, when w(n)= k < n we again let m′′

= m′′

̸k ,̸n denote the matrix one gets
by deleting the k-th and n-th rows and columns of an n×n matrix m. To describe the set of perturbations
Z ⊂ Mn−2 that arise in the reduction, we let ā(i) and ā(i) denote the i-th row, respectively the i-th column,
of ā and consider the set

Y = {y ∈ Fn
q | yi = 0 for i ≤ k and yā = ā(k)}.

Using this notation we have the following proposition whose proof goes along the lines of Proposition 2.8
and is omitted here.
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Proposition 5.7. The following equation holds:

S(w)n (ā)= qn−k−1
∑
y∈Y

S(w
′′)

n−2 (ā
′′
+ (ā(k)y)′′)

∑
t∈F∗

q

ϕ(t yā(n)). (56)

The set Y may be empty, and then so is the set of perturbations which arise from the collection of
rank-1 matrices

Z = {ā(k)y ∈ Mn | y ∈ Y },

in which case the sum is interpreted as 0.
What makes the sums S(w)n (ā) harder to deal with is that as functions of a they are no longer invariant

under conjugation by GLn . They are invariant under conjugation by elements of B in virtue of (55) and
the fact that

K (w)
n (a)= K (w)

n (b−1ab)

for any b ∈ B, since b−1Cwb = Cw. However the B-orbits in the set U of strictly upper triangular matrices
under the adjoint action are not well understood. It is easy to see that one can no longer straighten out
partitions into a nondecreasing order, or even assume that an orbit is represented by a matrix in Jordan
normal form. For example, {te1,3 | t ̸= 0} is one of the orbits in the 3×3 case. When n = 6, there is even
a one-parameter family of orbits, found by Kashin [1990]. In general a full description of the orbits is
hard even in low ranks [Bürgstein and Hesselink 1987; Hille and Röhrle 1997].

Returning to the sums K (w)
n (a), it is still quite likely that these can be expressed as polynomials in q

and K , independently of the characteristic p since the perturbations arising in the reduction calculations are
of a very special nature. In what follows we will provide some low-rank examples, when the independence
is easy to establish directly. We will do this by stating certain special cases when the above reduction is
sufficient, most importantly the case when w = (i j). There are a number of other special cases when the
reduction for S(w)n (a) can be treated in a simple manner; for example, when w(n)= 1 or n − 1.

Again we assume that a = α I + ā is of the form as in (9), ā =
∑n−1

j=1 ε j e j, j+1, and λ⊢ n is the partition
corresponding to a. Define

K (w)
λ (α)=

∑
x∈Cw

ψ(ax + x−1).

Theorem 5.8. Let i < j and (i j) ∈ W and α ̸= 0. Then

K (i j)
λ (α)= qn(n−1)/2K n−2

·


(q − 1)q if j = i + 1 and εi = 0,
−q if j = i + 1 and εi = 1,
(q − 1)q j−i−d if j > i + 1 and εi = ε j−1 = 0,

where d = |{k ∈ N | i < k < j − 1 and εk ̸= 0}|.
If j > i + 1 and either εi or ε j−1 ̸= 0 then K (i j)

λ (α)= 0.

This allows us to compute the Bruhat cell polynomials for n ≤ 3; see Tables 1 and 2.
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λ w = (12) I

[1, 1] q2(q − 1) q K 2

[2] −q2 q K 2

Table 1. The n = 2 case.

λ w = (13) (12) (23) I

[1, 1, 1] q5(q − 1)K q4(q − 1)K q4(q − 1)K q3K 3

[2, 1] 0 q4(q − 1)K −q4K q3K 3

[1, 2] 0 −q4K q4(q − 1)K q3K 3

[3] 0 −q4K −q4K q3K 3

Table 2. The n = 3 case.

With a little more work one can calculate all the Bruhat cell polynomials for n = 4. We summarize the
result in Tables 3 and 4.

The polynomials are not merely a permutation for different rearrangements of a partition; see, for
example, the case λ= [1, 2, 1] and w = (14)(23).

We finish this section by giving the cell polynomials for the full block (λ = [n]) case for general n.
Let w = (i1, j1)(i2, j2) · · · (ir , jr ) ∈ W such that ik < jk for any k. Then

Kw
[n]
(α)=

{
(−1)r K n−2r qn(n−1)/2+r if jk − ik = 1 for any k,
0 otherwise.

λ w = (14)(23) (13)(24) (12)(34) (14) (13)

[1, 1, 1, 1] q10(q − 1)2 q9(q − 1)2 q8(q − 1)2 q9(q − 1)K 2 q8(q − 1)K 2

[2, 1, 1] 0 0 −q8(q − 1) 0 0

[1, 2, 1] −q9(q − 1) 0 q8(q − 1)2 q8(q − 1)K 2 0

[1, 1, 2] 0 0 −q8(q − 1) 0 q8(q − 1)K 2

[3, 1] 0 0 −q8(q − 1) 0 0

[2, 2] 0 q9(q − 1) q8 0 0

[1, 3] 0 0 −q8(q − 1) 0 0

[4] 0 0 q8 0 0

Table 3. The n = 4 case (continued below).
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λ w = (24) (12) (23) (34) I

[1, 1, 1, 1] q8(q − 1)K 2 q7(q − 1)K 2 q7(q − 1)K 2 q7(q − 1)K 2 q6K 4

[2, 1, 1] q8(q − 1)K 2
−q7K 2 q7(q − 1)K 2 q7(q − 1)K 2 q6K 4

[1, 2, 1] 0 q7(q − 1)K 2
−q7K 2 q7(q − 1)K 2 q6K 4

[1, 1, 2] 0 q7(q − 1)K 2 q7(q − 1)K 2
−q7K 2 q6K 4

[3, 1] 0 −q7K 2
−q7K 2 q7(q − 1)K 2 q6K 4

[2, 2] 0 −q7K 2 q7(q − 1)K 2
−q7K 2 q6K 4

[1, 3] 0 q7(q − 1)K 2
−q7K 2

−q7K 2 q6K 4

[4] 0 −q7K 2
−q7K 2

−q7K 2 q6K 4

Table 4. The n = 4 case (continued).

Since this is merely for illustration we only give a sketch of the argument. For those w ∈ W such that
Kw

n (α)= 0 one can find (i, j) ∈ I such that tr(v−1avwdu) is nonconstant and linear in vi, j .

5D. Regular semisimple matrices. We have seen that for an n×n matrix a, whose characteristic poly-
nomial Pa have no multiple roots, the cohomology associated to the Kloosterman sum Kn(a) is pure.
Assume now that this characteristic polynomial Pa is irreducible over Fq . Let α ∈ Fqn be an eigenvalue
of a, Pa(α)= 0. The argument in Section 3E shows that over Fqn

H•
= H•

c (GLn, x 7→ tr(ax + x−1))=

( n(n−1)/2⊗
i=1

H•

c (A
1, 0)

)
⊗

( n⊗
j=1

H•

c (A
1
\ A0, fα)

)
,

where for x ∈ (A1
\ A0)(Fqn ), fα(x) = αx + x−1, that corresponds to the scalar Kloosterman sum

K1(α, Fqn )= λ1 + λ2. Here λ1 and λ2 = λ̄1 are the Fqn -Frobenius eigenvalues on H•
c (A

1
\ A0, fα).

Then, clearly, over Fqn the Frobenius eigenvalues on the 2n-dimensional space
⊗n

j=1 H 1
c (A

1
\ A0, fα)

are of the form
(∏

i∈I λ1
)(∏

i /∈I λ2
)

= λ
|I |
1 λ

n−|I |
2 , where I ⊂ {1, . . . , n} — therefore each of λ|I |

1 λ
n−|I |
2

has multiplicity
(n

j

)
. If we fix some n-th roots of the λi , say ηn

i = λi , then we have that the Frobenius
eigenvalues on H n2

are of the form ζI qn(n−1)/2η
|I |
1 η

n−|I |
2 where again I ⊂ {1, . . . , n}, and the ζI are n-th

roots of unity, ζ n
I = 1 for all I . It is natural to make the following conjecture.2

Conjecture 5.9. If p is large enough, and the characteristic polynomial Pa is irreducible over Fq then

Kn(a, Fq)= (−1)n+1qn(n−1)/2K1(α, Fqn ).

The conjecture would follow if, for I = ∅ and {1, . . . , n}, the Fq-Frobenius eigenvalues were
(−1)n+1qn(n−1)/2λ1, (−1)n+1qn(n−1)/2λ2 and the others canceled after summing. For example, when

2While this paper was in print, Elad Zelingher [2023] announced a proof of this conjecture.
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n = 3, this can happen if the eigenvalues µi for 1 ≤ i ≤ 8 are the eight summands in the expansion of the
product (η1 + η2)(ωη1 +ω2η2)(ω

2η1 +ωη2)q3 for ω3
= 1; this leads to

Kn(a, Fq)=

8∑
i=1

µi = q3(λ1 + λ2)= (−1)4q3K1(α, Fq3),

exactly as desired.
The conjecture is partly based on the observation that if we let K = Fq [a] ⊂ Mn , then K is a field

naturally isomorphic to Fqn . K acts on Mn by left multiplication and it is easy to describe the K -algebra
that arises for any n. We will use this below to handle the case n = 2, but such elementary methods get
cumbersome and are unlikely to give a proof, or even offer any insight already for n = 3.

We now give a few numerical examples for Mn(Fpn ) for small n and p checked with computer algebra
systems pari/gp and Sage.

(i) Let n = 3, p = 5 and α ∈ F125 be one of the roots of x3
+ x2

+ 1. Then K1(α, F125)=
(
3 +

√
5

)
/2.

On the other hand if

A =

 0 1 0
0 0 1

−1 0 −1


then K3(A, F5)= 327.2542 which agrees with 125K1(α, F125).

(ii) Let n = 4, p = 3 and α ∈ F81 be a root of x4
+ 2x3

+ 2, and

A =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1

 .
Then K4(A, F3)= 11664 which agrees with −729K1(α, F81).

(iii) Let n = 3, p ≡ 1 (3) and

A =

0 1 0
0 0 1
µ 0 0

 ,
where µ ∈ F∗

p \ (F∗
p)

3. If α ∈ Fp3 is such that α3
= µ then one can check that

K (α)=

∑
e(3µc + (3a2

− 3µcb)/1(a, b, c)),

where e(x) = e2π i x , 1(a, b, c) = a3
− 3µcba + (µb3

+ µ2c3) and where the sum is over (a, b, c) ∈

F3
p \ {(0, 0, 0)}.
A direct calculation using Bruhat decomposition shows that the conjecture in this case is equivalent to

K (α)= K13(A)+ (1 + (µ/p))q,
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where (µ/p) is the Legendre symbol and where

K13(A)=

∑
t1,t2,t3∈F∗

p

e(µt2
1 t2

3 + t2
1 t3 +µt3 + 1/t2 − 1/(µt1t2

3 )).

Up to about p ≤ 200, this can be checked fast even on a personal computer. For example, the order of
2 mod 199 is 99, and we have that

K
( 3
√

2, F1993
)
= 3869.8269,

while for

A =

0 1 0
0 0 1
2 0 0


we have

K13(A)= 4267.8269

with a difference of 398, which shows that K3(A, F199)= K
( 3
√

2, F1993
)
. On the other hand 3 mod 199 is

a primitive root, and so for

A =

0 1 0
0 0 1
3 0 0


we have

K
( 3
√

3, F1993
)
= K13(A)= −2875.1994.

We also checked all p = 3k + 1 ≤ 200, for which 2 is not a cube mod p and found that K
( 3
√

2, Fp3
)
=

K3(A, Fp) holds for all of them.

Proposition 5.10. Assume that q is odd and let α ∈ Fq2 \ Fq and a =
( 0

−N (α)
1

−Tr(α)

)
, where N and Tr are

the norm and trace of the field extension Fq2/Fq . Then

K2(a,M2(Fq))= −q K1(α, F∗

q2).

Remark 12. The cohomology complex H•
c corresponding to the sum K2(a,M2(Fq)) satisfies

dim H i
c =

{
0 if i ̸= 4,
4 if i = 4,

and the Frobenius eigenvalues µi on H 4
c satisfy µ2

1 = q2λ2
1, µ2

2 = q4, µ2
3 = q4, and µ2

4 = q2λ2
2 where

λ2 = λ̄1 are the eigenvalues corresponding to K1(α, F∗

q2). Apart from permutations the proposition
determines the sign of the square roots, we have µ1 = −qλ1, µ2 = q2, µ3 = −q2 and µ4 = −qλ2. Thus
K2(a,M2(Fqm ))=

∑4
i=1 µ

m
i . Here again we have cancellation: µm

2 +µm
3 = 0 ⇐⇒ 2∤m.

Proof of Proposition 5.10. As above let K = Fq [a] be the subring of M2 generated by a. K is isomorphic
to Fq2 by the assumption on α. Also, the vector space F2

q as an Fq [a]-module is isomorphic to the Fq vector
space Fq2 , with a acting via multiplication by α. For the moment denote this action by Lα , Lα : β 7→ αβ.
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Let Fq2⟨τ ⟩ be the noncommutative ring of twisted polynomials,
∑

i ξiτ
i , subject to τξ = F(ξ)τ , where

F(ξ)= ξq is the Frobenius automorphism of Fq2/Fq .
There is an obvious map from M2 = Fq2⟨τ ⟩/(τ 2

− 1) to M2(Fq), sending ξ1 + ξ2τ to the Fq-linear
transformation Lξ0 + Lξ1 F . It is not difficult to see that this linear map is injective, and so by dimension
count, an isomorphism. This identifies M2 with M2, and it is easy to check that under this identification
ψ(Lξ0 + Lξ1 F)= ϕ2(ξ0), where ϕ2 = ϕ ◦ TrFq2/Fq . It follows that∑

x∈M2(Fq )∗

ψ(ax + x−1)=

∑
ξ0+ξ1τ∈M∗

2

ϕ2(αξ0 + (ξ0 + ξ1τ)
−1).

An easy calculations shows that (1 + ξτ) ∈ M∗

2 exactly when N (ξ) ̸= 1, and then (1 + ξτ)−1
=

1
1−N (ξ)(1 − ξτ). One also has that (ξτ )−1

= F(ξ−1)τ and so

M∗

2 = {ξ1τ | ξ1 ∈ F∗

q2} ∪ {ξ0(1 + ξ1τ) | ξ0 ∈ F∗

q2, ξ1 ∈ Fq2, N (ξ1) ̸= 1}.

Therefore ∑
x∈GL2(Fq )

ψ(ax + x−1)= q2
− 1 +

∑
ξ0∈F∗

q2

ξ1∈Fq2

N (ξ1) ̸=1

ϕ2
(
αξ0 + (1 − N (ξ1))

−1ξ−1
0

)
.

Now the norm map N is a surjective homomorphism from F∗

q2 → F∗
q , with a kernel of size q + 1 and

so for γ ∈ Fq

∣∣{ξ ∈ Fq2 | (1 − N (ξ))−1
= γ

}∣∣ =


0 if γ = 0,

1 if γ = 1,

q + 1 if γ ̸= 0, 1.

This gives∑
x∈GL2(Fq )

ψ(ax + x−1)= q2
− 1 + (q + 1)

∑
ξ0∈F∗

q2

γ∈F∗
q

ϕ2(αξ0 + γ ξ−1
0 )− q

∑
ξ0∈F∗

q2

ϕ2(αξ0 + ξ−1
0 ).

Finally ∑
ξ0∈F∗

q2

γ∈F∗
q

ϕ2(αξ0 + γ ξ−1
0 )=

∑
ξ0∈F∗

q2

γ∈F∗
q

ϕ2(αξ0)φ(γ Tr ξ−1
0 )= −

∑
ξ0∈F∗

q2

Tr ξ−1
0 =0

ϕ2(αξ0)= −(q − 1). □

5E. The purity locus. We have seen that for a regular semisimple element a ∈ Mn(Fq) the Kloosterman
sum Kn(a) is pure. The tables above already suggest that for a matrix a with more than one Jordan block
for an eigenvalue, that sum cannot be pure. This can be seen without reference to cohomology. To see
this assume that a has a single eigenvalue α. Recall that

Kn(a)= P(A,G, K )=

∑
2 f ≤n

c f (q, q − 1)K n−2 f ,
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where c f are polynomials. We give the A and G weight 1, and K weight 1
2 , so the polynomial P has a

weighted degree, which determines the order of magnitude (in q) of its value. Now f = 1 corresponds to
simple transpositions, and by Theorem 5.8 one sees that these sums are too large in magnitude to be pure
if not all εi are 0.

It is an intriguing question what happens for K[n] when a has only one Jordan block. The recursion
formula gives

K[n] = qn−1K K[n−1] − q2n−2K[n−2],

where K = K1(α). Let kn = q−n(n−1)/2K[n], so that we have

kn = K kn−1 − qkn−2.

It follows that there exist c1, c2 such that

kn = c1λ
n
1 + c2λ

n
2,

where λ1, λ2 are the roots of X2
− K X + q . These are exactly the eigenvalues of Frobenius acting on the

cohomology of the Kloosterman sheaf. Using that K = λ1 + λ2, and that K[2] = −q2
+ K 2

1 q we get that
k1 = λ1 + λ2, and that k2 = k2

1 − q = λ2
1 + λ1λ2 + λ2

2. Therefore c1 =
λ1

λ1−λ2
, c2 = −

λ2
λ1−λ2

and

kn =
λn+1

1 − λn+1
2

λ1 − λ2
=

n∑
j=0

λ
j
1λ

n− j
2 . (57)

This evaluation has an interesting interpretation. Let X2
− K1 X + q = (X − λ1)(X − λ2), with

λ1,2 = q1/2e±iθ , so that K1 = 2q1/2 cos θ . We have that

kn =
λn+1

1 − λn+1
2

λ1 − λ2
= qn/2 e(n+1)θ

− e−(n+1)θ

eθ − e−θ
=

sin(n + 1)θ
sin θ

.

Therefore

K[n] = qn(n−1)/2Un(cos θ), (58)

where Un is the Chebyshev polynomial of the second kind. The Sato–Tate distribution of the angles of
K1(α) over the valuations of a global field is then equivalent to nontrivial cancellation in the sums∑

N (v)≤x

Kn(a, Fv)/N (v)n(n−1)/2,

where a = α I +
∑n−1

i=1 ei,i+1.
Getting back to the question of purity these sums are pure from a numerical point of view, but this in

itself does not rule out a cohomology with a nilpotent Frobenius action.
For example, in the case n = 2 it is easy to see that the cohomologies corresponding to the Bruhat

cells are as follows.
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On C I = B the trace of αx + x−1 can be written as a product of two Kloosterman sums over the
diagonal elements; thus we have

H•

C I
= H•(C I , x 7→ tr(ax + x−1))= H•

c (A
1
− A0, fα)⊗ H•

c (A
1
− A0, fα)⊗ H•

c (A
1, 0).

That implies dim H i
C I

= 0 unless i = 4 and dim H 4
C I

= 4.
On the nontrivial cell Cw = UwB we have seen that the sum (and the cohomology) cancels on the

subvariety α det b ̸= 1 and on the rest we have

H•

Cw = H•(Cw, x 7→ tr(ax + x−1))= H•

c (A
1
− A0, id)⊗ H•

c (A
1, 0)⊗ H•

c (A
1, 0).

That implies dim H i
Cw = 0 unless i = 5 and dim H 5

Cw = 1.
Thus the long exact sequence of the excision (Cw = G \ C I ) gives

0 → H 4
G → H 4

C I
→ H 5

Cw → H 5
G → 0.

Either dim H 4
G = 4 and dim H 5

G = 1 or dim H 4
G = 3 and dim H 5

G = 0 seems to be possible.
The same problem exists for higher-degree cases.
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