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Differentially large fields
Omar León Sánchez and Marcus Tressl

We introduce the notion of differential largeness for fields equipped with several commuting derivations
(as an analogue to largeness of fields). We lay out the foundations of this new class of “tame” differential
fields. We state several characterizations and exhibit plenty of examples and applications. Our results
strongly indicate that differentially large fields will play a key role in differential field arithmetic. For
instance, we characterize differential largeness in terms of being existentially closed in their power series
field (furnished with natural derivations), we give explicit constructions of differentially large fields in
terms of iterated powers series, we prove that the class of differentially large fields is elementary, and
we show that differential largeness is preserved under algebraic extensions, therefore showing that their
algebraic closure is differentially closed.
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1. Introduction

Recall that a field K is called large (or ample) if every irreducible variety defined over K with a smooth
K -rational point has a Zariski-dense set of K -rational points. Equivalently, every variety defined over
K that has a K ((t))-rational point also has a K -rational point. Large fields constitute one of the widest
classes of tame fields: namely, every class of fields that serves as a locality, in the sense that universal
local-global principles hold, consists entirely of large fields; see [3; 28]. For example, all local fields are
large and so are pseudoclassically closed fields (like PAC or PRC fields), the field of totally real numbers,
as well as the quotient field of any local Henselian domain [27]. On the other hand, number fields and
algebraic function fields are not large by Faltings’ theorem and its function field version.

One of the most remarkable Galois-theoretic applications of large fields, due to Pop [26], states every
finite split embedding problem over large fields has proper regular solutions. In particular, the regular
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inverse Galois problem is solvable over all large fields. Pop’s work (and the work of many others)
demonstrates that “over large fields one can do a lot of interesting mathematics”. For instance, large fields
have been widely used to tackle long-standing problems in field arithmetic: inverse Galois theory, torsors
of finite groups, elementary theory of function fields, extremal-valued fields, to name a few. We refer the
reader to Pop’s survey [28] for earlier and current developments on the subject, and to [3] for a list of
open problems.

In this paper we introduce the notion of differential largeness in the class of differential fields of
characteristic zero in several commuting derivations. We lay out the foundations of this new and exciting
class of “tame” differential fields, prove several characterizations (see Theorem 4.3, Proposition 4.7), and
exhibit many examples (see Proposition 4.7, Corollary 4.8(ii), Theorems 5.12 and 5.18, and 5.2) and
applications (see Corollaries 4.8(iii) and 5.13, Theorems 5.7 and 5.12, Lemma 5.9, Proposition 5.16, and
5.14 and 5.19). An outline of these is given in the rest of the introduction.

In order to give the definition of a differentially large field we need one piece of terminology. We say
that a field K is existentially closed (e.c.) in L if every variety defined over K that has an L-rational point
also has a K -rational point. Hence, a field is large just if it is e.c. in its Laurent series field. Similarly, a
differential field K (of characteristic zero throughout, in m ≥ 1 commuting derivations) is e.c. in a differ-
ential field extension L if every differential variety defined over K that has an L-rational differential point
also has a K -rational differential point. (See Proposition 2.2 for other characterizations of this property.)

A differential field is differentially large if it is large as a pure field, and for every differential field
extension L/K , if K is e.c. in L as a field, then it is e.c. in L as a differential field. For example
differentially closed fields (a.k.a. constrainedly closed in Kolchin terminology) and closed ordered
differential fields in the sense of [32] are differentially large.

In Theorem 4.3, we establish several equivalent formulations of differential largeness that justify why
indeed this is the right differential analogue of largeness. For instance, we characterize them in terms of
differential varieties having a Kolchin-dense set of rational points as long as they have suitable “smooth”
rational points. In addition, we prove (in analogy to the characterization of largeness in terms of being
e.c. in its Laurent series field) that a differential field K is differentially large just if it is e.c. in its power
series field K ((t1, . . . , tm)) as differential fields. The derivations on the power series field are given by
the unique commuting derivations δ1, . . . , δm extending the ones on K that are compatible with infinite
sums and satisfy δi (t j )= dt j/dti .

A key tool in establishing our formulations of differential largeness (and further results) is the in-
troduction of a twisted version of the classical Taylor morphism associated to a ring homomorphism
ϕ : A → B for a given differential ring A. We explain this briefly in the case of one derivation δ.
Recall that the Taylor morphism Tϕ(a)=

∑
k≥0

(
ϕ(δk(a))/k!

)
tk defines a differential ring homomorphism

(A, δ) → (B[[t]], d/dt). Typically this is applied when A is a differential K -algebra for a differential
field K and ϕ is a (not necessarily differential) K -algebra homomorphism A → K (so B = K ). If
the derivation on K is trivial, then Tϕ is in fact a (differential) K -algebra homomorphism and in this
context it was used by Seidenberg, for example, to establish his embedding theorem for differential fields
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into meromorphic functions. However, if the derivation on K is not trivial, then Tϕ is not a K -algebra
homomorphism, i.e, it is not an extension of ϕ. On the other hand, Tϕ can be “twisted” in order to obtain a
natural differential K -algebra homomorphism T ∗

ϕ : (A, δ)→ (K [[t]], ∂), where ∂ is the natural derivation
extending the given one on K and satisfying ∂(t)=1. This is established in Proposition 3.5, where we use it
to derive the following result that is of independent interest (for instance, in the analysis of formal solutions
to PDEs; see [30]), and is deployed in most parts of this article (in the more general form Corollary 3.6).

Theorem. Let (K , δ) be a differential field of characteristic zero that is large as a field and let (S, δ) be
a differentially finitely generated K -algebra. If there is a K -algebra homomorphism S → L for some
field extension L/K in which K is e.c. (as a field), then there is a differential K -algebra homomorphism
(S, δ)→ (K [[t]], ∂).

Differentially large fields will play a very similar role in differential field arithmetic to that played by
large fields in field arithmetic (of characteristic zero). The principal indicators for this are established in
this paper (in Sections 4 and 5). We show that:

(a) A differential field K is differentially large if and only if it is existentially closed in its power series
field K ((t1, . . . , tm)) furnished with m natural derivations extending those on K satisfying ∂i (t j )= dt j/dti ;
see Theorem 4.3.

(b) Every large field equipped with commuting derivations has an extension to a differentially large
field L such that K is e.c. in L as a pure field; see Corollary 4.8.

(c) Differentially large fields are first-order axiomatizable (see Proposition 4.7 and also Theorem 6.4 for
a concrete algebro-geometric description), and the elimination theory of the underlying field transfers to
the differential field; see Corollary 4.8.

(d) Differential largeness is preserved under algebraic extensions. Thus, the algebraic closure of a
differentially large field is differentially closed. This provides many new differential fields with minimal
differential closures; see Theorem 5.12.

(e) Differentially large fields (and differentially closed fields) can be produced by iterated power series
constructions; see 5.2.

(f) The existential theory of the class of differentially large fields is the existential theory of the differential
field Q((t1))((t2)) equipped with its natural derivations; see Theorem 5.7.

(g) Differentially large fields are Picard–Vessiot closed; see Lemma 5.9.

(h) Connected differential algebraic groups defined over differentially large fields have a Kolchin-dense
set of rational points; see 5.15.

(i) A differentially large field is PAC (at the field level) if and only if it is pseudodifferentially closed; see
Theorem 5.18.

Large fields have also made an appearance in the (inverse) Picard–Vessiot theory of linear ordinary
differential equations. In [2], it is shown that if K is a large field of infinite transcendence degree, then
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every linear algebraic group over K is a Picard–Vessiot group over (K (x), d/dx). We envisage that
differentially large fields will make a similar appearance in the parameterized Picard–Vessiot theory and
its differential (constrained) coholomogy. The first application in this direction already appears in a paper
of the first author with A. Pillay [18] using an earlier draft of the present paper. They show that if an
ordinary differential field (K , δ) is differentially large and bounded as a field (that is, has finitely many
extensions of degree n, for each n ∈ N), then for any linear differential algebraic group G over K the
differential Galois cohomology H 1

δ (K ,G) is finite. This can be thought of as a differential analogue of
the classical result of Serre stating that if a field K is bounded then the Galois cohomology H 1(K ,G) is
finite for any linear algebraic group over K .

2. Preliminaries

All rings and algebras in this article are assumed to be commutative and unital. We also assume that all
our fields are of characteristic zero.

We briefly summarize the key notions and terminology, mostly from differential algebra, that we will
freely use throughout the paper (especially in Section 4 where we give several equivalent formulations
of differential largeness). We make a few remarks on the notion of existentially closed differential ring
extensions, we recall the structure theorem for finitely generated differential algebras, and give a quick
review of jets and prolongation spaces.

Recall that a derivation on a ring R is an additive map δ : R → R satisfying the Leibniz rule

δ(rs)= δ(r)s + rδ(s) for all r, s ∈ R.

Throughout, a differential ring R = (R,1) is a ring R equipped with a distinguished set of commuting
derivations 1= {δ1, . . . , δm}. Usually the order of the derivations does matter, but it will either be clear
from the context or we will make it explicit. We also allow the case when m = 0, in which case we are
simply talking of rings with no additional structure.

Given a differential ring R, a differential R-algebra A is an R-algebra equipped with derivations
1= {δ1, . . . , δm} such that the structure map R → A is a differential ring homomorphism. If L is another
differential R-algebra which is also a field, then an L-rational point of A is a differential R-algebra
homomorphism A → L . This terminology is in line with the standard language of algebraic geometry,
where A is thought of as R{x1, . . . , xn}/I , with I a differential ideal of the differential polynomial ring
R{x1, . . . , xn}, and the differential R-algebra homomorphisms A → L are coordinate free descriptions of
the common differential zeroes a ∈ Ln of the polynomials from I (via evaluation at a).

For the basics in differential algebra, such as differential field extensions and differentially closed fields
(also called constrainedly closed which is the differential analogue of algebraically closed), we refer the
reader to the excellent book of Kolchin [12].

2.1. Definition (existentially closed extensions). Fix m ≥ 0. Let B = (B, δ1, . . . , δm) be a differential
ring and let A be a differential subring of B. (If m = 0, B is just a ring and A is a subring.) Then A is



Differentially large fields 253

said to be existentially closed (e.c.) in B if for every n ∈ N and all finite collections 6,0⊆ A{x1, . . . , xn}

of differential polynomials in m derivations and n differential variables, if there is a common solution in
Bn of P = 0 and Q ̸= 0 (P ∈6, Q ∈ 0), then such a solution may also be found in An .

We are mainly interested in the case when A = K is a differential field and in this case we will use the
following properties (in the case m = 0, differentially finitely generated, differential field, etc. should
be understood as finitely generated, field, etc., and differentially closed field should be understood as
algebraically closed field and Kolchin topology should be understood as Zariski topology). We make
heavy use of the following properties.

2.2. Proposition. In the notation of Definition 2.1:

(i) If K is e.c. in B, then one easily checks that B is a domain and that K is also e.c. in qf(B).

(ii) If B is also a differential field, then K is e.c. in B if and only if every differentially finitely generated
K -algebra S that possesses a differential point S → B, also possesses a differential point S → K . The
reason is that if B is a field then the inequalities Q ̸= 0 in the definition of existentially closed above may
be replaced by the equality y·Q(x)− 1 = 0, where y is a new variable.

(iii) If B is a differentially finitely generated K -algebra then the following are equivalent:

(a) K is e.c. in B.
(b) B is a domain and for each b ∈ B, if f (b) = 0 for every differential K -rational point f : B → K ,

then b = 0.1 (In particular B has a differential K -rational point.) We refer to this property as B has
a Kolchin-dense set of differential K-rational points.

(c) For all n ∈ N, each differential prime ideal p of K {x}, x = (x1, . . . , xn), with B ∼=K K {x}/p and each
differential field L containing K , the set VK ={a ∈ K n

| p(a)= 0} is dense in VL ={a ∈ Ln
| p(a)= 0}

for the Kolchin topology of Ln (having zero sets of differential polynomials from L{x} as a basis of
closed sets).

(d) There is some n ∈ N, a differential prime ideal p of K {x}, x = (x1, . . . , xn), with B ∼=K K {x}/p and
a differentially closed field M containing K such that the set VK is dense in VM for the K -Kolchin
topology of Mn (having the zero sets in Mn of differential polynomials from K {x} as a basis of closed
sets).

(iv) If m = 0 and B is a finitely generated K -algebra then K is e.c. in B if and only if B is a domain and
the set of smooth K -rational points of B is Zariski dense in the L-rational points for any field L containing
K . This is a statement in classical algebraic geometry (using the formulation (c) of e.c. in (iii)). If in
addition K is a large field, then K is e.c. in B if and only if B is a domain that has a smooth K -rational
point.

Proof of (iii). We may assume that B is a domain throughout and write B = K {x}/p, x = (x1, . . . , xn).
The arguments below go through for any choice of these data. By the differential basis theorem there is

1In other words, in the subspace of Spec(B) consisting of differential prime ideals, the set of maximal and differential ideals
with residue field K , is dense.
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some finite 8⊆ K {x} such that p is the radical differential ideal d
√
8 generated by 8. For a differential

field L containing K we write VL = {a ∈ Ln
| p(a) = 0} and IL = {Q ∈ L{x} | Q|VL = 0}. If L is

differentially closed, then the differential Nullstellensatz [12, Chapter IV, section 3, Theorem 2, p. 147]
says IL = d

√
p (in L{x}).

(a)⇒ (b). If K is e.c. in B and b ∈ B \ {0}, then take Q ∈ K {x} with b = Q(x + p). Since in B we have
a solution of 8= 0 and Q ̸= 0, there is also a solution a ∈ K n and evaluation K {x} → K at a factors
through a differential K -rational point B → K that is nonzero at b.

(b)⇒ (c). Let M be a differentially closed field containing L such that the fixed field of the group of
differential K -automorphisms of M is K (for example, M could be a sufficiently saturated differentially
closed field or, in Kolchin’s terminology, a universal differential extension of K ). It suffices to show that
VK is dense in VM for the Kolchin topology of Mn . Let W be the closure of VK in Mn for the Kolchin
topology of Mn and let J = {Q ∈ M{x} | Q|W = 0}. Then every differential K -automorphism of M fixes
W setwise and so also fixes J setwise. Using our assumption on M we see that the differential field of
definition of J is contained in K ; hence, the differential ideal J is generated as an ideal by J ∩ K {x}. On
the other hand, we have IM ∩ K {x} = p. As W ⊆ VM we get p⊆ IM ⊆ J and we claim that p= J ∩ K {x}.
Take P ∈ J ∩ K {x}. Then P vanishes on VK , which says that the element P + p ∈ B is mapped to 0 by
all differential K -rational points of B. By (b), this implies P + p = 0 in B, in other words P ∈ p. We
have shown that p = IM ∩ K {x} = J ∩ K {x}, which implies W = VM as required.

(c)⇒ (d). This is trivial.

(d)⇒ (a). Let 6 = {P1, . . . , Ps}, 0 ⊆ K {y} be finite, y = (y1, . . . , yr ), and assume there is some c ∈ Br

with 6(c)= 0 and 0(c) ̸= 0. We need to find some a ∈ K r with 6(a)= 0 and 0(a) ̸= 0. Since B is a
domain we may assume that 0 = {Q(y)} is a singleton. We write ci = Hi (x + p) with Hi ∈ K {x} and
H = (H1, . . . , Hr ). Then 6(c)= 0 and Q(c) ̸= 0 means P1(H), . . . , Ps(H) ∈ p and Q(H) /∈ p. Since
M is differentially closed and Q(H) /∈ p = K {x} = IM ∩ K {x} there is some d ∈ VM with Q(H(d)) ̸= 0.
By (d) and because Q(H) ∈ K {x}, there is some b ∈ VK with Q(H(b)) ̸= 0. Since Pi (H) ∈ p we also
know Pi (H(b))= 0. Hence, the tuple a = (H1(b), . . . , Hr (b)) ∈ K r solves the given system. □

If B is a differential K -algebra we will say that K is existentially closed in B as a field if it is e.c. in
B when we forget about the derivations; hence if the above condition holds true for systems 6,0 of
ordinary (nondifferential) polynomials. If we want to emphasize that the derivations are to be taken into
account we say K is existentially closed in B as a differential field.

2.3. Theorem (structure theorem for finitely generated differential algebras). Let K be a differential field
(of characteristic zero) and let S be a differential K -algebra that is differentially finitely generated and
a domain. Then, by [33], there are K -subalgebras A, P of S and an element h ∈ A \ {0} such that A
is a finitely generated K -algebra, P is a polynomial K -algebra (P ∼=K K [T ] for some possibly infinite
set T of indeterminates) and the natural homomorphism Ah ⊗K P → Sh given by multiplication is an
isomorphism. Note that in general neither Ah nor P is differential.
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2.4. Definition. Let K be a differential field and let S be a differentially finitely generated K -algebra that
is a domain. A decomposition of S consists of (not necessarily differential) K -subalgebras A, P such that

(a) A is a finitely generated K -algebra and P is a polynomial K -algebra, and

(b) the natural map A ⊗K P → S given by multiplication is an isomorphism.

If S possesses a decomposition we say that S is composite and we indicate the data of a decomposition
by writing S = A ⊗ P .

2.5. Corollary. Let K be a differential field and let S be a differentially finitely generated K -algebra. Let
f : S → L be a differential K -algebra homomorphism to some differential field extension L of K .

(i) There is a differential K -subalgebra S0 ⊆ L that is composite and contains the image of f .

(ii) If K is e.c. in L as a field, then there is a K -algebra homomorphism S → K .

Proof. (i). Let p be the kernel of f . Then S/p is again a differentially finitely generated K -algebra and so
we may assume that p = 0 and S ⊆ L . By Theorem 2.3, Sh ∼=K Ah ⊗K P where A is a finitely generated
K -subalgebra of S, h ∈ A, and P is a polynomial K -algebra, P ⊆ S. As S ⊆ L , we have Ah ⊆ L . Hence,
we may take S0 = Sh .

(ii). Take S0 as in (i) and A, P for S0 as in Definition 2.4. Since A is a finitely generated K -subalgebra
of L and K is e.c. in L as a field, there is a K -algebra homomorphism A → K . Since P is a polynomial
K -algebra there is also a K -algebra homomorphism P → K . Hence, by the universal property of the
tensor product there is a K -algebra homomorphism S → K . □

We recall the basic objects of differential algebraic geometry in the sense of Kolchin [12], and the
constructions of jets and prolongations. Some parts are notationally heavy but we try to only introduce
those that we will need (and freely use) in coming sections.

2.6. Definition (differential varieties, jets and prolongations). We work inside a (sufficiently saturated or
universal) differentially closed field (U,1), and K denotes a differential subfield of U. A Kolchin-closed
subset of Un is the common zero set of a set of differential polynomials over U in n differential variables;
such sets are also called affine differential varieties. If the defining polynomials can be chosen with
coefficients in K we say the set is defined over K .

By a differential variety V we mean a topological space which has as finite open cover V1, . . . , Vs with
each Vi homeomorphic to an affine differential variety (inside some power of U) such that the transition
maps are regular as differential morphisms; see [15, Chapter 1, section 7]. We will say that the differential
variety is over K when all objects and morphisms can be defined over K . This definition also applies to
our use of algebraic varieties, replacing Kolchin-closed with Zariski-closed in powers of U (recall that U

is algebraically closed and a universal domain for algebraic geometry in Weil’s “foundations” sense).

2.7. Notation. We fix integers n > 0 and r ≥ 0, and set

0n(r)=

{
(ξ, i) ∈ Nm

× {1, . . . , n} |

m∑
i=1

ξi ≤ r
}
.
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The r-th nabla map ∇r : Un
→ Uα(n,r) with α(n, r) := |0n(r)| = n ·

(r+m
m

)
is defined by

∇r (x)= (δξ xi : (ξ, i) ∈ 0n(r)),

where x = (x1, . . . , xn) and δξ = δ
ξ1
1 · · · δ

ξm
m . We order the elements of the tuple (δξ xi : (ξ, i) ∈ 0n(r))

according to the canonical orderly ranking of the indeterminates δξ xi ; that is,

δξ xi < δ
ζ x j ⇐⇒

(∑
ξk, i, ξ1, . . . , ξm

)
<lex

(∑
ζk, j, ζ1, . . . , ζm

)
. (2-1)

Let Ur := U[ϵ1, . . . , ϵm]/(ϵ1, . . . , ϵm)
r+1 where the ϵi ’s are indeterminates, and let e : U → Ur denote

the ring homomorphism

x 7→

∑
ξ∈01(r)

1
ξ1! · · · ξm !

δξ (x) ϵξ1
1 · · · ϵξm

m .

We call e the exponential U-algebra structure of Ur . To distinguish between the standard and the
exponential algebra structure on Ur , we denote the latter by Ue

r .

2.8. Definition. Given an algebraic variety X the r -th prolongation τ X is the algebraic variety given by
taking the U-rational points of the classical Weil descent (or Weil restriction) of X ×U Ue

r from Ur to U.
Note that the base change V ×U Ue

r is with respect to the exponential structure while the Weil descent is
with respect to the standard U-algebra structure.

For details and properties of prolongation spaces we refer to [21, §2]; for a more general presentation,
see [20]. In particular, it is pointed out there that the prolongation τr X always exist when X is quasipro-
jective (an assumption that we will adhere to later on). A characterizing feature of the prolongation is
that for each point a ∈ X = X (U) we have ∇r (a) ∈ τr X . Thus, the map ∇r : X → τr X is a differential
regular section of πr : τr X → X the canonical projection induced from the residue map Ur → U. We
note that if X is defined over the differential field K then τr X is defined over K as well.

In fact, τr as defined above is a functor from the category of algebraic varieties over K to itself, and the
maps πr : τr X → X and ∇r : X → τr X are natural. The latter means that for any morphism of algebraic
varieties f : X → Y we get

f ◦πr,X = πr,Y ◦ τr f and τr f ◦ ∇r,X = ∇r,Y ◦ f. (2-2)

If G is an algebraic group, then τr G also has the structure of an algebraic group. Indeed, since τr

commutes with products, the group structure is given by

τr (∗) : τr G × τr G → τr G,

where ∗ denotes multiplication in G. By the right-most equality in (2-2), the map ∇r : G → τr G is an
injective group homomorphism. Hence, ∇r (G) is a differential algebraic subgroup of τr G. We will use
this in 5.15 below.
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Assume that V is a differential variety which is given as a differential subvariety of a quasiprojective
algebraic variety X . We define the r-th jet of V to be the Zariski-closure of the image of V under the
r -th nabla map ∇r : X → τr X ; that is,

Jetr V = ∇r (V )Zar
⊆ τr X.2

The jet sequence of V is defined as (Jetr V : r ≥ 0). Note that this sequence determines V . Indeed,

V = {a ∈ X : ∇r (a) ∈ Jetr V for all r ≥ 0}.

2.9. General Assumption. Throughout we assume, whenever necessary for the existence of jets, that our
differential varieties are given as differential subvarieties of quasiprojective algebraic varieties. Of course,
in the affine case this is always the case. It is worth noting, as it will be used in 5.15, that for connected
differential algebraic groups this is also true. Indeed, by [23, Corollary 4.2(ii)] every such group embeds
into a connected algebraic group and the latter is quasiprojective by Chevalley’s theorem.

3. The Taylor morphism

In parallel to the characterization of large fields in terms of being e.c. in Laurent series, we will prove in
Theorem 4.3 that differential largeness can be characterized similarly. For this, we will make use of a
twisted Taylor morphism. In this section, we give a description of this morphism and use it to construct
solutions in power series to systems of differential equations (see Corollary 3.6).

3.1. Setup. Let (A,1) be a differential ring with commuting derivations 1= {δ1, . . . , δm}. Recall that
given a ring homomorphism ϕ : A → B (where B is a Q-algebra), the Taylor morphism. T ϕ

1 : A → B[[t]],
where t = (t1, . . . , tm), is defined as

a 7→

∑
α

ϕ(δαa)
α!

tα,

where we make use of multi-index notation. Namely, α = (α1, . . . , αm) ∈ Nm , α! = α1! · · ·αm !, δα =

δ
α1
1 · · · δ

αm
m , and tα = tα1 · · · tαm

m . It is a straightforward computation to check that T ϕ
1 is a differential ring

homomorphism

(A,1)→

(
B[[t]],

d
dt1
, . . . ,

d
dtm

)
.

For every such family of commuting derivations 1 on A, there is a unique extension to A[[t]] such
that the derivations commute with meaningful sums3 and map all ti ’s to 0. We continue to denote these
derivations on A[[t]] by 1= {δ1, . . . , δm}; note that they still commute with each other. We work with the
derivations δi +d/dti , for i =1, . . . ,m, on A[[t]]; again these commute with each other. Assuming that A is

2Notice that Jetr V is not the jet space defined in [20, 5.3].
3In the sense of [12, Chapter 0, section 13, p. 30]; specifically, if ( fi )i∈N is a sequence that converges to 0 in the (t)-adic

topology of K [[t]], then
∑

i fi is meaningful.
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a Q-algebra, we now study the algebraic properties of the Taylor morphism associated to the evaluation map

ev : A[[t]] → A[[t]], f 7→ f (0, . . . , 0).

For instance, we show that the map from Der(A) to ring endomorphisms of A[[t]] given by δ 7→ T ev
δ+d/dt

is a monoid homomorphism when restricted to any submonoid of commuting derivations. Here the
monoid structure on Der(A) is just addition of derivations (and so is indeed a group), while the monoid
structure on ring endomorphisms is composition. Note that as a consequence T ev

δ+d/dt is a differential ring
isomorphism, because T ev

δ+d/dt has compositional inverse T ev
−δ+d/dt and T ev

d/dt is the identity map on A[[t]].
We state all this more generally below.

We first introduce some convenient notation and terminology. Let 1 = {δ1, . . . , δm} and � =

{∂1, . . . , ∂m} be families of commuting derivations on A. We say that these families commute if δi

commutes with ∂ j for all 1 ≤ i, j ≤ m; when this is the case, we denote by1+� the family of commuting
derivations on A given by {δ1 + ∂1, . . . , δm + ∂m}. Note that the natural extensions of 1 and � to A[[t]],
as discussed above, commute with the family

d
dt :=

{ d
dt1
, . . . ,

d
dtm

}
.

Therefore, the family of derivations 1+�+ d/dt on A[[t]] is a commuting family.

3.2. Theorem. Let A be a Q-algebra, and let 1 and � be families of m-many commuting derivations
on A. If 1 and � commute, then

T ev
1+�+d/dt = T ev

1+d/dt ◦ T ev
�+d/dt . (3-1)

Proof. For α ∈ Nm we use the multi-index notation

(δ+ ∂)α = (δ1 + ∂1)
α1 · · · (δm + ∂m)

αm ,(
δ+ ∂ +

d
dt

)α
=

(
δ1 + ∂1 +

d
dt1

)α1
· · ·

(
δm + ∂m +

d
dtm

)αm
.

We use the product order ≤ on Nm given by β ≤ α if and only if βi ≤ αi for 1 ≤ i ≤ m. As the derivations
commute, we have the usual binomial identities

(δ+ ∂)α =

∑
β≤α

(
α

β

)
δβ∂α−β

=

∑
β+γ=α

(
α

β

)
δβ∂γ ,

(
δ+ ∂ +

d
dt

)α
=

∑
ξ≤α

∑
β+γ=ξ

(
α

ξ

)(
ξ

β

)
δβ∂γ

dα−ξ

dt

=

∑
β+γ≤α

(
α

β+γ

)(
β+γ

β

)
δβ∂γ

dα−β−γ

dt .

Now take f =
∑

ξ aξ tξ ∈ A[[t]]. We show that both sides of (3-1) applied to f are equal to∑
α

( ∑
β+γ≤α

1
β!·γ !

δβ∂γ (aα−β−γ )
)

tα. (3-2)
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We begin with the left-hand-side. By definition, the coefficient at tα of T ev
1+�+d/dt

(∑
ξ aξ tξ

)
is given by

1
α!

ev
[(
δ+ ∂ +

d
dt

)α(∑
ξ

aξ tξ
)]

=
1
α!

ev
[ ∑
β+γ≤α

(
α

β+γ

)(
β+γ

β

)
δβ∂γ

dα−β−γ

dt

(∑
ξ

aξ tξ
)]

=
1
α!

ev
[ ∑
β+γ≤α

∑
ξ

(
α

β+γ

)(
β+γ

β

)
δβ∂γ (aξ )

dα−β−γ

dt
(tξ )

]
=

1
α!

∑
β+γ≤α

(
α

β+γ

)(
β+γ

β

)
δβ∂γ (aα−β−γ ) · (α−β − γ )!

=

∑
β+γ≤α

1
β!·γ !

δβ∂γ (aα−β−γ ),

which is the term in (3-2). We now compute the right-hand-side of (3-1), when applied to f . The
coefficient at tα is

1
α!

ev
[(
δ+

d
dt

)α(
T ev
�+d/dt

(∑
ξ

aξ tξ
))]

=
1
α!

ev
[(
δ+

d
dt

)α(∑
ζ

1
ζ !

ev
((
∂+

d
dt

)ζ(∑
ξ

aξ tξ
))

tζ
)]

=
1
α!

ev
[(
δ+

d
dt

)α(∑
ζ

1
ζ !

ev
( ∑
γ≤ζ

(
ζ

γ

)
∂γ

dζ−γ

dt

(∑
ξ

aξ tξ
))

tζ
)]

=
1
α!

ev
[(
δ+

d
dt

)α(∑
ζ

1
ζ !
(
∑
γ≤ζ

(
ζ

γ

)
∂γ (aζ−γ )·(ζ−γ )!)tζ

)]
=

1
α!

ev
[(
δ+

d
dt

)α(∑
ζ

∑
γ≤ζ

1
γ !
∂γ (aζ−γ )tζ

)]
=

1
α!

ev
[∑
ζ

∑
β≤α

∑
γ≤ζ

1
γ !

(
α

β

)
δβ∂γ (aζ−γ )

dα−β

dt
(tζ )

]
=

1
α!

∑
β≤α

∑
γ≤α−β

1
γ !

(
α

β

)
δβ∂γ (aα−β−γ )·(α−β)!

=

∑
β≤α

∑
γ≤α−β

1
β!·γ !

δβ∂γ (aα−β−γ )

=

∑
β+γ≤α

1
β!·γ !

δβ∂γ (aα−β−γ ),

which is the term in (3-2), as required. □

What will be important to us is the following consequence.

3.3. Corollary. For any family of commuting derivations 1= {δ1, . . . , δm} on a Q-algebra A, the Taylor
morphism of the evaluation map ev : A[[t]] → A at 0 is an isomorphism of differential rings

T ev
1+d/dt :

(
A[[t]],1+

d
dt

)
→

(
A[[t]],

d
dt

)
.
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Its compositional inverse is T ev
−1+d/dt , where −1 is the family of commuting derivations {−δ1, . . . ,−δm}.

Furthermore, T ev
1+d/dt is a differential isomorphism

(A[[t]],1)→ (A[[t]],1).

Proof. We recall that T ev
1+d/dt is a differential homomorphism (A[[t]],1+ d/dt) → (A[[t]], d/dt). By

Theorem 3.2, we have

T ev
1+d/dt ◦ T ev

−1+d/dt = T ev
d/dt = T ev

−1+d/dt ◦ T ev
1+d/dt .

It is easy to check that T ev
d/dt is the identity on A[[t]]. Hence, T ev

−1+d/dt is the compositional inverse of
T ev
1+d/dt .

It follows that T ev
−1+d/dt is also a differential isomorphism (A[[t]], d/dt)→ (A[[t]],1+d/dt)— in other

words, that T ev
−1+d/dt ◦d/dti = (δi +d/dti )◦ T ev

−1+d/dt . Now d/dti ◦ T ev
−1+d/dt = T ev

−1+d/dt ◦ (−δi +d/dti ),
because T ev

−1+d/dt is a differential isomorphism (A[[t]],−1+ d/dt)→ (A[[t]], d/dt). It follows that

T ev
−1+d/dt ◦

d
dti

= δi ◦ T ev
−1+d/dt + T ev

−1+d/dt ◦

(
−δi +

d
dti

)
,

which implies T ev
−1+d/dt ◦ δi = δi ◦ T ev

−1+d/dt , as claimed in the “furthermore” part. □

We now use Corollary 3.3 to introduce a twisting of the Taylor morphism.

3.4. Definition (the twisted Taylor morphism). We assume all derivations commute. Let A be a differential
ring with derivations 1= {δ1, . . . , δm} and let B be a Q-algebra and a differential ring with derivations
�={∂1, . . . , ∂m}. Let ϕ : A → B be a (not necessarily differential) ring homomorphism. We write ∂i again
for the extension of ∂i to B[[t]], t = (t1, . . . , tm), obtained from differentiating coefficients as explained in
Setup 3.1. Let ev : B[[t]] → B be the evaluation map at 0. If we equip B[[t]] with the derivations �+d/dt
as in Setup 3.1 and apply Corollary 3.3 for (B, �), we get a differential ring isomorphism

T ev
�+d/dt :

(
B[[t]], �+

d
dt

)
→

(
B[[t]],

d
dt

)
with compositional inverse T ev

−�+d/dt . Consequently, the map

T ∗

ϕ := T ev
−�+d/dt ◦ T ϕ

1 : (A,1)
T ϕ1
−→

(
B[[t]],

d
dt

)
T ev

−�+d/dt
−−−−→

(
B[[t]], �+

d
dt

)
is a differential ring homomorphism (A,1)→ (B[[t]], �+ d/dt), called the twisted Taylor morphism of
ϕ. Writing T ∗

ϕ (a)=
∑

α bα tα, the bα’s are explicitly computed as

bα =
1
α!

∑
β≤α

(−1)α−β

(
α

β

)
∂α−β

(
ϕ(δβ(a))

)
.

3.5. Proposition. We use the same assumptions and notation as in Definition 3.4. If a ∈ A and Z{a}

denotes the differential subring generated by a in A, one checks readily that:

(i) T ϕ
1(a)= ϕ(a)⇐⇒ δα(a) ∈ ker(ϕ) for all nonzero α ∈ Nm .
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(ii) T ∗
ϕ (a)= T ϕ

1(a)⇐⇒ ϕ(Z{a}) is contained in the ring of �-constants of B.

(iii) T ∗
ϕ (a)= ϕ(a)⇐⇒ the restriction of ϕ to Z{a} is a differential homomorphism.

Hence, by the implication ⇐ in (iii), if R is a differential subring of A such that the restriction ϕ|R

is a differential ring homomorphism (R,1|R)→ (B, �), then T ∗
ϕ extends ϕ and the part showing solid

arrows in the following diagram commutes:

(
B[[t]], d

dt
) (

B[[t]], �+
d
dt

)

(A,1) (B, �)

(R,1|R)

T ev
�+d/dt

∼=

ev

T ∗
ϕ

ϕ

T ϕ1

ϕ|R

Notice that all solid arrows in this diagram are differential homomorphisms. The main case for us is when
R = K is a field and B is a K -algebra such that ϕ is a K -algebra homomorphism. In this case the twisted
Taylor morphism T ∗

ϕ is in fact a differential K -algebra homomorphism.

3.6. Corollary. Let (K ,1) be a differential field that is large as a field and let S be a differentially finitely
generated K -algebra. If there is a K -algebra homomorphism S → L for some field extension L/K in
which K is e.c. (as a field, there are no derivations on L given), then there is a differential K -algebra
homomorphism S → K [[t]], where the derivations on K [[t]] are 1+ d/dt as described above.

Proof. Since K as a field is e.c. in L , there is a field extension L ′ of L which is an elementary extension
of the field K . We replace L by L ′ if necessary and assume that L is an elementary extension of the field
underlying K . As K is large, also L is large. We equip L with a set of commuting derivations extending
those on K (this is chosen arbitrarily and can always be done).

By Proposition 3.5, there is a differential K -algebra homomorphism S → L((t)). As L is large and
also an elementary extension of the field K , we know that K is e.c. as a field in L((t)). Hence, by
Corollary 2.5(ii) there is a K -algebra homomorphism S → K . By Proposition 3.5 there is a differential
K -algebra homomorphism S → K [[t]]. □

4. Differentially large fields and algebraic characterizations

We introduce the notion of differential largeness and characterize it in multiple ways; see Theorem 4.3
and Proposition 4.7. First we recall the notion of largeness of fields.
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4.1. Definition. A field K is said to be large (or ample in [6, Remark 16.12.3]) if every irreducible affine
algebraic variety V over K with a smooth K -point has a Zariski-dense set of K -points (equivalently, K
is e.c. in the function field K (V )).

Another equivalent formulation of largeness is that K is e.c. in the formal Laurent series field K ((t)).
Examples of large fields are pseudoalgebraically closed fields, pseudoreal closed fields and pseudo
p-adically closed fields. By [27] the fraction field of any Henselian local ring is large; in particular, for
every field K and all n ≥ 1, the power series field K ((t1, . . . , tn)) is large.

Convention. Recall that for us a differential field always means a differential field in m commuting
derivations 1 = {δ1, . . . , δm} and of characteristic zero. For a differential field (K ,1), we equip the
Laurent series field K ((t)) with the natural derivations extending those on K ; namely, 1 + d/dt as
described in the previous section.

4.2. Definition. A differential field K is said to be differentially large if it is large as a pure field and for
every differential field extension L of K the following implication holds:

If K is e.c. in L as a field, then K is e.c. in L as a differential field.

We now provide several algebraic characterizations of differential largeness. These characterizations
resemble to some extent the characterizations of largeness of a field and serve as justification for the
terminology “differentially large”. A further characterization will be given in Proposition 4.7.

4.3. Theorem (characterizations of differential largeness). Let K = (K ,1) be a differential field. The
following conditions are equivalent:

(i) K is differentially large.

(ii) K is e.c. in K ((t)) as a differential field, where the derivations on K ((t)) are the natural ones extending
those on K .

(iii) K is e.c. in K ((t1)) . . . ((tk)) as a differential field for every k ≥ 1.

(iv) K is large as a field and every differentially finitely generated K -algebra that has a K -rational point
also has a differential K -rational point.

(v) K is large and every composite K -algebra in which K is e.c. as a field has a differential K -rational
point.

(vi) Every composite differential K -subalgebra S of K ((t)) has a differential K -rational point.

(vii) K is large as a field and for every composite K -algebra S = A ⊗K P , if A has a K -rational point,
then S has a differential K -rational point.

(viii) K is large as a field and for every composite K -algebra S = A ⊗K P , if the variety defined by A is
smooth and if A has a K -rational point A → K , then S has a differential K -rational point.

(ix) K is large as a field and for every composite K -algebra S = A ⊗K P , if A has a smooth K -rational
point, then S has a Kolchin-dense set of differential K -rational points (see Proposition 2.2(iii)(b)).
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(x) K is large as a field and for every irreducible differential variety V over K such that for infinitely
many r ≥ 0 the algebraic variety Jetr (V ) has a smooth K -point, the set of differential K -rational points
of V is Kolchin dense in V ; in other words, for every proper closed differential subvariety W ⊆ V there is
a differential K -point in V \ W .

Proof. (i)⇒ (iii). In the tower K ⊆ K ((t1))⊆ K ((t1))((t2))⊆ · · · ⊆ K ((t1)) . . . ((tk)) all fields are large
and therefore K is e.c. in K ((t1)) . . . ((tk)) as a field. So by definition of differential largeness, K is e.c.
in K ((t1)) . . . ((tk)) as a differential field.

(iii)⇒ (ii). This is trivial.

(ii)⇒ (iv). Since K is e.c. in K ((t)) as a differential field it is also e.c. in K ((t)) as a field and so K
is large as a field. Let S be a differentially finitely generated K -algebra and assume there is a point
S → K . Then by Proposition 3.5, there is a differential K -algebra homomorphism S → K [[t]]. By
Proposition 2.2(ii) applied to K ⊆ K ((t)), (ii) entails a differential K -algebra homomorphism S → K .

(iv)⇒ (v). Take A, P for S as in Definition 2.4. Since K is also e.c. in A as a field and A is a finitely
generated K -algebra, there is a K -algebra homomorphism g : A → K . Since S ∼=K A ⊗K P and P is a
polynomial K -algebra, g can be extended to a K -algebra homomorphism S → K . Hence, (iv) applies.

(v)⇒ (i). Let L be a differential field extension of K and suppose K is e.c. in L as a field. Let S be a
differentially finitely generated K -algebra, which has a differential point f : S → L . By Proposition 2.2(ii)
it suffices to find a differential point S → K . By Corollary 2.5(i) we may replace S by a composite
K -algebra contained in L and assume that f is the inclusion map S ↪→ L . Now (v) applies.

Hence we know that conditions (i)–(v) are equivalent.

(iv)⇒ (vii). If S = A ⊗K P is composite and A has a K -rational point, then as P is a polynomial
K -algebra we may extend this point to a point S → K . By (iv), S has a differential K -rational point.

(vii)⇒ (vi). If S = A ⊗K P is a composite K -subalgebra of K ((t)), then as K is a large field, K is e.c.
in A as a field and thus A has a K -rational point. Now (vii) applies.

(vi)⇒ (ii). This follows from Corollary 2.5(i) using the characterization Proposition 2.2(ii) of e.c.
Hence we know that conditions (i)–(vii) are equivalent.

(i)⇒ (ix). If S = A ⊗K P is composite and A has a smooth K -rational point, then as a large field, K is
e.c. in A as a field. Since P is a polynomial K -algebra we know that S is a polynomial A-algebra and so
A is e.c. in S as a ring. It follows that K is e.c. in S as a field and by (i) (invoke Proposition 2.2(i)) it is
then also e.c. in S as a differential field. By Proposition 2.2(iii) we see that S has a Kolchin-dense set of
differential K -rational points.

(ix)⇒ (viii). This is trivial.

(viii)⇒ (v). Let S = A ⊗K P be a composite K -algebra in which K is e.c. as a field. Then K is also e.c.
in A as a field and therefore it possesses a smooth K -rational point f : A → K (see Proposition 2.2(iv)).
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Pick h ∈ A with f (h) ̸= 0 such that the variety defined by the localization Ah is smooth. We may now
apply (viii) to the composite algebra Sh = Ah ⊗K P .

Hence we know that (i)–(ix) are equivalent. Property (x) is just a reformulation of the definition of
differential largeness in geometric form as follows. Let S = K {x}/p, x = (x1, . . . , xn), be a differentially
finitely generated K -algebra and a domain with quotient map π : K {x} → S. Let V be the differential
variety defined by S. Hence, V = {a ∈ Mn

| p(a)= 0}, where M is the differential closure of K . Then V
is a K -irreducible differential variety defined over K . Now for r ∈ N, the variety Jetr (V ) has coordinate
ring Ar := π(K {x}≤r ) and S is the union of the chain (Ar )r of K -subalgebras of S.4 Clearly K is e.c.
in S as a field if and only if K is e.c. in Ar as a field for all (or infinitely many) r . Since K is large,
this is equivalent to saying that Jetr (V ) has a smooth K -point for all (or infinitely many) r . Hence, the
assumption about V in (x) precisely says that K is e.c. in S as a field.

On the other hand, the conclusion about V in (x) precisely says that K is e.c. in S as a differential
field (use Proposition 2.2(iii)).

This shows that differential largeness is equivalent to (x) formulated for affine differential varieties.
But obviously the affine case implies (x) in full. □

4.4. Corollary. If K = (K , δ1, . . . , δm, ∂1, . . . , ∂k) is a differentially large field, m, k ≥ 0, then also
K = (K , δ1, . . . , δm) is differentially large.

Proof. This is immediate from the power series characterization in Theorem 4.3(ii). □

4.5. Corollary. Let K = (K , δ1, . . . , δm, ∂1, . . . , ∂k) be a differentially large field, m ≥ 0, k ≥ 1 and let
C = {a ∈ K | ∂1(a)= · · · = ∂k(a)= 0} be the constant field of (∂1, . . . , ∂k).

(i) C is closed under the derivations δ1, . . . , δm and (C, δ1, . . . , δm) is e.c. in (K , δ1, . . . , δm).

(ii) (C, δ1, . . . , δm) is differentially large; when m = 0, this just says that C is a large field.

Proof. We write δ = (δ1, . . . , δm) and by a trivial induction we may assume that k = 1. Set ∂ = ∂1.

(i). Since all derivations commute, C is closed under all derivations. Let (S, δ̂) be a (C, δ)-algebra that is
finitely generated as such. Suppose we are given a differential K -rational point λ : (S, δ̂)→ (K , δ) (in fact
we will only need that S has a K -rational point). It suffices to find a differential C-algebra homomorphism
(S, δ̂)→ (C, δ). We expand (S, δ̂) by the trivial derivation and obtain a differentially finitely generated
(C, δ, ∂)-algebra (S, δ̂, 0) (note that ∂ is trivial on C).

A straightforward calculation shows that (S, δ̂, 0)⊗C (K , δ, ∂) is a differential (K , δ, ∂)-algebra (the
derivations are given by δ̂i ⊗δi and 0⊗∂) that is finitely generated as such, and λ⊗ id : S ⊗C K → K is a
(not necessarily differential) K -algebra homomorphism; also see [19, §3.1] for generalities on derivations
and tensor products.

Since (K , δ, ∂) is differentially large, there is a differential point µ : (S, δ̂, 0)⊗C (K , δ, ∂)→ (K , δ, ∂)
by Theorem 4.3(iv), and we get a C-algebra homomorphism µ0 : S → S ⊗C K µ

−→ K . Since the natural
map S → S ⊗C K is differential for δ, also µ0 is a differential homomorphism (S, δ̂) → (K , δ). But

4Here K {x}≤r denotes the subring of K {x} of all polynomials in θxi , where ord(θ)≤ r .
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µ0 has values in C because for s ∈ S we have ∂(µ0(s))= ∂(µ(s ⊗ 1))= µ((0 ⊗ ∂)(s ⊗ 1))= µ(0)= 0.
Hence, indeed, µ0(s) ∈ C as required.

(ii) Since (K , δ, ∂) is differentially large, it is e.c. in K ((t1, . . . , tm+1)) when the latter is furnished with
the natural derivations; see Theorem 4.3(ii). By (i), (C, δ) is e.c. in (K , δ). If m = 0 it follows that C is
e.c. as a field in K ((t1)), hence C is a large field. If m ≥ 1, we see that (C, δ) is e.c. in C((t1, . . . , tm)),
which shows that it is differentially large by Theorem 4.3(ii). □

At the end of this section we show that differentially large fields are first-order axiomatizable; in other
words, the class of differentially large fields is an elementary class in the language of differential rings. We
show this implicitly in Proposition 4.7, by proving that differentially large fields are precisely those large
and differential fields satisfying the axiom scheme UC in [34, 4.5]; thus, we refer to this paper for explicit
axioms. The proof of Proposition 4.7 only uses properties of models of UC and results from this paper.

4.6. Remark. It is worth mentioning (for the nonlogician) the benefits of knowing that a class of
structures is elementary (first-order axiomatizable). In our context this means that two properties hold: (1)
ultraproducts of differentially large fields are again differentially large, and (2) differential fields that are
existentially closed in some differentially large field are themselves differentially large. Property (2) is
obvious from the characterization Theorem 4.3(ii). So it is only property (1) that needs to be established.
Being an elementary class opens up the model theoretic toolbox to the analysis of differentially large fields,
and it implies, for example, the following transfer principle (phrased in technical terms in Corollary 4.8
below):

If K is a differentially large field and K as a pure field has “good” elimination theory, then the
differential field K also has good elimination theory.

To illustrate what “good” elimination theory means, we look at classical examples of “good” elementary
classes of fields. Algebraically closed fields have good elimination theory; this is due to Chevalley’s
theorem which says that the projection of a variety is constructible. If K is a real closed field or a p-adically
closed field, then projections of K -varieties (by which we mean here Zariski closed subset of some K n)
are generally not constructible; however, the following weaker statement holds: the complement of a
projection of a K -variety is again the projection of a K -variety (this property of a field is called “model-
completeness”; see [10, section 8.3]). So then the transfer principle above says that for a differentially
large field K the following holds: if K is algebraically closed as a field, then the projection of a differential
variety is differentially constructible (a finite Boolean combination of Kolchin closed sets); if K is real
closed or p-adically closed, then the complement of a projection of a differential variety is again the
projection of a differential variety.

4.7. Proposition. Let K be a differential field that is large as a field. Then K is differentially large if and
only if it satisfies the axiom scheme UC from [34, 4.5].

Proof. First assume that K is differentially large. By [34, Theorem 6.2(II)], there is a differential field
extension L of K such that L |H UC and such that K is elementary in L as a field. In particular K is e.c. in
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L as a field. Since K is differentially large, K is e.c. in L as a differential field. By [34, Proposition 6.3],
UC has an inductive axiom system in the language of differential rings. But then K also satisfies these
axioms. Hence K |H UC.

For the converse assume that K is a model of UC. We verify the definition of differentially large.
Let L be a differential field extension of K such that K is e.c. in L as a field. Then there is a field M
extending L such that K is elementary in M as a field. In particular M is a large field. We may now
extend the derivations of L arbitrarily to commuting derivations of M . Hence, we may replace L by M
furnished with these derivations and assume that L is large as a field. By [34, Theorem 6.2(II)] again,
there is a differential field extension F of L such that F |H UC and such that L is elementary in F as a
field. Then K is e.c. in F as a field and K , F |H UC. By [34, Theorem 6.2(I)], this shows that K is e.c.
in F (as a differential field), showing the assertion. □

By Proposition 4.7 we may now record important properties of differentially large fields (that follow
from being models of UC; see [34]).

4.8. Corollary. (i) If L and M are differentially large fields and K is a common differential subfield,
then L and M have the same existential theory over K (meaning they solve the same systems of
differential equations with coefficients in K ) if and only if they have the same existential theory over
K as fields.

(ii) If K is a differential field that is large as a field, then there is a differential field extension L of K
such that L is differentially large and an elementary extension of K as a field.

(iii) Let K be a differentially large field and let A ⊆ K . Suppose K is model complete as a field in the
language Lri(A) of rings extended by constant symbols naming the elements of A.

Then also K is model complete in the language Ldiff(A) of differential rings extended by all
constant symbols naming the elements of A. If L̂ is a language extending Lri and K̂ is an expansion
of K to L̂diff such that the new symbols are A-definable in the field K and such that the restriction of
K̂ to L ∗(A) has quantifier elimination5, then K̂ has quantifier elimination in the language L̂diff(A).

5. Fundamental properties, constructions and applications

We show that algebraic extensions of differentially large fields are again differentially large by invoking
the differential Weil descent in 5.12. Specifically differentially closed fields are identified as precisely the
algebraic closures of differentially large fields; in a similar way, M. Singer’s closed ordered differential
fields are characterized; see 5.13. We show that a differentially large field is pseudoalgebraically closed
just if it is pseudodifferentially closed; see 5.18. We characterize the existential theory of differentially
large fields in 5.7. We show that differentially large fields are Picard–Vessiot closed in 5.9. In 5.15 we
establish Kolchin-denseness of rational points in differential algebraic groups.

5An example of L̂ is the language Lri(≤) of ordered rings, K = (K , δ) is a real closed field furnished with commuting
derivations, A = ∅ and K̂ = (K ,≤, δ). The restriction of K̂ to Lri(A) then is the ordered field (K ,≤).
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We start with a concrete method to construct differentially large fields. This is deployed in 5.14 to
obtain concrete constructions of differentially closed fields.

5.1. Proposition. Let (Ki , fi j )i, j∈I be a directed system of differential fields and differential embeddings
with the following properties:

(a) All Ki are large as fields.

(b) All embeddings fi j : Ki → K j are isomorphisms onto a subfield of K j that is e.c. in K j as a field.

(c) For all i ∈ I there exist j ≥ i and a differential homomorphism Ki [[t]] → K j extending fi j .

Then the direct limit L of the directed system is a differentially large field.

Proof. We write fi : Ki → L for the natural map into the limit, which obviously is a differential
homomorphism between differential fields. We use the characterization Theorem 4.3(vii) to show that
L is differentially large. Firstly, L is large as a field, because if C is a curve defined over L that has a
smooth L-rational point then take i ∈ I such that C is defined over Ki (via fi ) and such that C has a
smooth Ki -rational point. By (a), the curve C has infinitely many Ki -rational points and so it also has
infinitely many L-rational points.

Now let S be a differentially finitely generated L-algebra and a domain that has a point S → L .
Pick r ∈ N and a differential prime ideal p of L{x}, x = (x1, . . . , xr ), such that S = L{x}/p. By the
Ritt–Raudenbusch basis theorem there is a finite6⊆ p whose differential radical is p. By Theorem 4.3(vii)
it suffices to find a differential zero of 6 in L . Take i ∈ I with 6⊆ fi (Ki ){x} and let S0 := Ki {x}/ f −1

i (p).
Then S0 is a differentially finitely generated Ki -algebra and the composition of the natural embedding
S0 → S with a point S → L is a homomorphism S0 → L extending fi . We now want to invoke Corollary 3.6
and here we need (b). Namely, with this condition one readily verifies Proposition 2.2 and checks that Ki

is existentially closed in L as a field (via fi ).
Hence, we may apply Corollary 3.6 to obtain a differential K -algebra homomorphism S0 → Ki [[t]].

Finally (c) gives us a differential Ki -algebra homomorphism S0 → K j for some j ≥ i . This yields a
differential solution of 6 in L . □

Concretely, Proposition 5.1 may be used to produce differentially large fields via iterated power series
constructions using standard power series, Puiseux series or generalized power series. Here are a few
instances; see 5.14 for applications.

5.2. Differentially large power series fields. Let K be a differential field. We write K0 = K .

(i) We define by induction on n ≥ 0, the differential field extension Kn+1 of Kn as Kn+1 = Kn((tn)), where
tn = (tn1, . . . , tnm); the derivations on Kn+1 are the natural ones, extending those on Kn and satisfying
δ j (tnk) = (d/dtnj )(tnk). Then K∞ =

⋃
n∈N Kn is differentially large. If K is large as a field, then K is

e.c. in K∞ as a field.
To see this we apply Proposition 5.1 to the family of all Kn , n > 0 together with the inclusion maps

Ki ↪→ K j for i ≤ j . Hence, K∞ is differentially large. Since all Kn are large fields we know that they
are e.c. in K∞ as a field. Hence, if K happens to be large as a field, then K is also e.c. in K∞ as a field.
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This construction is discussed further in 5.14.

(ii) Assume here that the number m of derivations is 1. Then the generalized power series field K ((tQ))

carries a derivation defined by (d/dt)
(∑

aγ tγ
)

=
∑

aγ ·γ ·tγ−1 and the given derivation δ on K can
be extended to a derivation ∂ by ∂

(∑
aγ tγ

)
=

∑
δ(aγ )tγ . We consider K ((tQ)) as a differential field

extension of K ((t)), equipped with the derivation d/dt + ∂ .
Now define Kn+1 = Kn((tQ

n )). Since Kn carries a Henselian valuation for n > 0 we know that Kn is a
large field. Hence, Proposition 5.1(a) and (c) hold for the family of all Kn , n > 0, and the inclusion maps
Ki ↪→ K j when i ≤ j .

If K is algebraically closed, real closed or p-adically closed, then so are all Kn and by standard
theorems from model theory, Proposition 5.1(b) holds in each case. Thus K∞ =

⋃
n Kn is a differentially

large field. Also, K∞ =
⋃

n Kn is again algebraically closed, real closed or p-adically closed, respectively.
To be precise: if K is algebraically closed, then K∞ is a differentially closed field; if K is real closed,
then K∞ is a closed ordered differential field in the sense of [32]; and if K is p-adically closed, then
K∞ is an existentially closed differential field in the class of p-adically valued and differential fields as
considered in [8].

(iii) The differentially large field K∞ in (ii) has various interesting differentially large subfields: for
example, in each step of the construction we can work with Puiseux series only. More precisely, if Pn+1

is defined to be the Puiseux series field over Pn , namely

Pn+1 = Pn((t1/∞))=

⋃
k∈N

Pn((t1/k)),

then P∞ =
⋃

n Pn is a differentially large subfield of K∞. Another example is given by working with
completions of Puiseux series. More precisely, if Cn+1 is defined to be the completion of the Puiseux
series field over Cn , namely

Cn+1 = { f ∈ Cn((tQ)) | supp( f ) is finite, or supp( f ) is unbounded in Q and of order type ω},

then C∞ =
⋃

n Cn is a differentially large subfield of K∞.
Again the fields P∞ and C∞ as pure fields, are algebraically closed, real closed, or p-adically closed

if K has this property. By applying Corollary 4.8(iii) and model completeness of algebraically closed,
real closed, and p-adically closed fields, we see that the differential fields P∞ and C∞ are elementary
substructures of K∞ in these cases.

5.3. Counterexample. Let L be the differential subfield K ((t1, t2, . . .)) of the differential field K∞ from
5.2(i) and let Lalg be its algebraic closure. Then none of the t−1

nj has an integral in Lalg, and hence Lalg is
not differentially large and so obviously neither is K ((t1, t2, . . .)). Notice that the latter is large as a pure
field by [27].

For the proof we may restrict to the case of one derivation. For k ∈ N, the derivation δ of K∞ restricts
to a derivation of L0 = K ((t1, . . . , tk)). The definition of the derivation, restricted to K [[t1, . . . , tk]],
shows that the K -automorphism of this ring permuting the variables is differential; obviously such an
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automorphism extends uniquely to a differential automorphism of Lalg
0 . Hence, in order to show that none

of the t−1
n , n ≤ k, has an integral in Lalg

0 we may assume that n = k. We write t = tk and let F be the
algebraic closure of the differential subfield K ((t1, . . . , tk−1)). Then Lalg

0 is a differential subfield of the
Puiseux series field P = F((t1/∞)), the latter being equipped with the natural derivation extending the one
on F and mapping t to 1. It remains to show that t−1 has no integral in P . Suppose for a contradiction
that δ( f ) = t−1 for some f ∈ P . Then the order of f is −q for some q ∈ Q, q > 0. Hence, tq

· f has
order 0 and so by definition of the derivation of P we see that the order of δ(tq

· f ) is >−1. On the other
hand δ(tq

· f )= q·tq−1
· f + tq

·t−1
= tq−1

·(q· f + 1) has order −1, a contradiction.

5.4. Remark. In view of Counterexample 5.3 it is of interest to see integrals of t−1
1 in the differential

field K∞ from 5.2(i) in the ordinary case: take k ≥ 2 and let fk =
∑

n≥1(1/ntn
1 )·t

n
k (resembling −log(1−

(tk/t1))). One readily checks that δ( fk)= t−1
1 .

5.5. Iterating algebraic power series. A further natural question related to the field K∞ of 5.2(i) asks
what type of differential equations can be solved when we iterate only algebraic Laurent series instead of
all Laurent series. Let K be an ordinary differential field and let L =

⋃
n K ((t1))alg . . . ((tn))alg, where the

derivation is chosen as in 5.2(i). Thus L is a differential subfield of K (t1, t2, . . .)alg, where δ(ti )= 1 for
all i . Notice that L is large as a pure field, because algebraic power series are a local henselian domain
and so [27] applies again. Since L is a differential subfield of the algebraic closure of K ((t1, t2, . . .)) we
already know from Counterexample 5.3 that L is not differentially large. Here we show that L is not
even Picard–Vessiot closed in general.

If L were Picard–Vessiot closed, then L has nontrivial solutions of the differential equation δx = x .
However, we show that this is in general not the case even for M = K (t1, t2, . . .)alg. To see this, consider
the following property of a differential field F :

(†) ∀x ∈ F, n ∈ N : δ(x)= n·x ⇒ x = 0.

Then, if F has property (†) so does its algebraic closure Falg and its function field F(t), where δ(t)= 1.
Hence, if we start with K being a differential field with trivial derivation, then by induction, property (†)
passes to K (t1, . . . , tn)alg and so also passes to M .

For the proof that (†) passes to F(t), assume that δ( f/g)= n· f/g with g monic and f with leading
coefficient a. Then n f g = δ( f )g − f δ(g)= ( f δ + f ′)g − f (gδ + g′) and comparing leading coefficients
shows that n·a = δ(a). Hence, by (†) for F we get a = 0 as required.

For the proof that (†) passes to Falg, one first checks that it passes to F(C), where C is the constant
field of Falg. Hence, we may replace F by F(C) and assume that F and Falg have the same constant
field. Let α be algebraic over F with minimal polynomial f and assume δ(α) = n·α. Then any other
root β of f also satisfies this equation, which implies that δ(α/β) is a constant; thus it is in F . Hence,
F(α) is the splitting field of f and so F(α)/F is Galois. Let d be the order of the Galois group and let
σ ∈ Gal(F(α)/F). As we have seen, σ(α)= c·α for some constant c. Hence, α = σ d(α)= cd

·α and so
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cd
= 1. But then σ(αd)= (cα)d = αd , which shows that αd is in the fixed field F . Since δ(αd)= d·n·αd ,

we get α = 0 from (†) for F .

5.6. The existential theory of differentially large fields. The existential theory of the class of all
large fields of characteristic zero is the existential theory of the field Q((t)) (see [29, Proposition 2.25]).
This follows essentially from the fact that Q((t)) is itself a large field. Since the existential theory of
a differentially large field is uniquely determined by its existential theory of its field structure — in the
sense of Corollary 4.8(i) — one is led to the question on whether the existential theory of the class of
differentially large fields is the existential theory of Q((t)), equipped with its natural derivations.

However, Q((t)) does not satisfy the existential theory of the class of differentially large fields (and so
it is not differentially large either). To see an example, let C be the curve defined by x3

+ y3
= 1. Then

(1, 0) and (0, 1) are the only rational points on C (and they are regular points). Hence, the sentence ϕ
saying that there is a point (x, y) on C with x ̸= 0, y ̸= 0 and x ′

= y′
= 0 fails in the differential field

Q((t)) (we work with m = 1 here). On the other hand ϕ is true in every differentially large field K ,
because the constants of K are large as a field by Corollary 4.5.

On the positive side we now show:

5.7. Theorem. The existential theory of the class of differentially large fields is the existential theory of
Q((t1))((t2)).

Proof. Let 6 ⊆ Z{x1, . . . , xn} be a system of differential polynomials in n variables and m commuting
derivations. If 6 has a solutions in Q((t1))((t2)) and K is a differentially field, then 6 also has a solution
in K ((t1))((t2)). Hence, if K is differentially large, then by Theorem 4.3(iii), 6 also has a solution in K .

Conversely, suppose 6 has a solution in every differentially large field. By Corollary 4.8(ii) there is a
differentially large field K containing Q((t1)) as a differential subfield such that the extension K/Q((t1))
of fields is elementary. Let S0 = Q{x1, . . . , xn}/

d
√
6 and let f : S0 → K be a differential point of

S0. Let p = Ker( f ) and let S = S0/p. It suffices to find a differential point S → Q((t1))((t2)). Write
S = Ah ⊗Q P as in Theorem 2.3. The restriction f |Ah is a K -rational point of Ah . Since Ah is a finitely
generated Q-algebra and Q((t1)) is e.c. in K as a field, there is also a point g0 : Ah → Q((t1)). Since P
is a polynomial Q-algebra, g0 can be extended to a point g : S → Q((t1)). By Corollary 3.6, there is a
differential point S → Q((t1))[[t2]]. □

5.8. Differentially large fields are PV-closed. We prove that differentially large fields solve plenty
of algebraic differential equations. Namely, we prove that they solve all consistent systems of linear
differential equations. We first show that they are Picard–Vessiot closed (or PV-closed).

Let (K , δ1, . . . , δm) be a differential field, and let Ai ∈ Matn(K ), for i = 1, . . . ,m, satisfying what is
called the integrability condition; namely

δi A j − δ j Ai = [Ai , A j ],
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where δ j A j denotes the n×n matrix obtained by applying δi to A j entrywise. The differential field K is
said to be PV-closed if for each such tuple (A1, . . . , Am) of matrices there is a Z ∈ GLn(K ) such that

δi Z = Ai Zi for i = 1, . . . ,m.

5.9. Lemma. Every differentially large field is PV-closed.

Proof. Suppose K is a differentially large field. Suppose A1, . . . , Am are elements in Matn(K ) satisfying
the integrability condition. Let X be an n×n matrix of variables and define derivations on K (X) that
extend the ones in K and satisfy

δi X = Ai X.

Then, by the integrability condition, these derivations commute in all of K (X). Since K is e.c. in K (X)
as fields, by differential largeness, it is also e.c. as differential fields. This yields the desired (fundamental)
solution in K . □

In differentially large fields, Lemma 5.9 is a special case of a stronger property:

5.10. Proposition. Let 6 and 0 be finite collections of differential polynomials in K {x1, . . . , xn}. Assume
that the system

P = 0 and Q ̸= 0 for P ∈6 and Q ∈ 0

is consistent (i.e., it has a solution in some differential field extension of K ). If 6 consists of linear
differential polynomials and K is differentially large, then the system has a solution in K .

Proof. Since the system is assumed to be consistent, the differential ideal generated by6 in K {x1, . . . , xn},
denoted by [6], is prime. Thus, the differential field extension L = qf(K {x1, . . . , xn}/[6]) has a solution
to the system. Since [6] is generated, as an ideal of K {x1, . . . , xn}, by linear terms, we get that K is e.c.
in L as fields, and, by differential largeness, also as differential fields. The result follows. □

5.11. A glimpse on the differential Weil descent. If K is a large field, then every algebraic field
extension of K is again large. This follows from an argument involving Weil descent in the case when
L/K is finite; see [29, Theorem 2.14; 26, Proposition 1.2]. For differentially large fields, this can also be
carried out. We will explain a special case of the differential Weil descent suitable for our purpose and
refer to [19, Theorem 3.4] for the general assertion and for proofs.

We will be working with a finite extension L/K of differential fields and a differential L-algebra S.
Then the classical Weil descent W (S) of the underlying L-algebra of S is a K -algebra and there is a
“natural” bijection

HomK -Alg(W (S), K )→ HomL-Alg(S, L).

Here homomorphisms are algebra homomorphisms over K and L , respectively. Now in [19, Theorem 3.4]
it is shown that the ring W (S) can be naturally expanded to a differential K -algebra W diff(S) such that
the bijection above restricts to a bijection

Homdiff. K -Alg(W diff(S), K )→ Homdiff. L-Alg(S, L).
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This time, homomorphisms are differential algebra homomorphisms over K and L , respectively. The
terminology “natural” in both bijections refers to the fact that W and W diff are indeed functors defined on
categories of algebras and differential algebras, respectively. However for our application below only the
existence of the bijections above are needed. We refer to [19, Section 3] for a self contained exposition
of the matter, where all data are constructed explicitly. In particular the construction there shows that
W diff(S) is a differentially finitely generated K -algebra if S is a differentially finitely generated L-algebra.

5.12. Theorem. If K is differentially large, then so is every algebraic extension (equipped with the
induced derivations).

Proof. Let L/K be an algebraic extension. We first deal with the case when L/K is finite. We verify
Theorem 4.3(iv) for L . So let S be a differentially finitely generated L-algebra that has an L-rational
point. Let W diff(S) be the differential Weil descent as explained in 5.11. Thus, W diff(S) is a differentially
finitely generated K -algebra and we have a bijection

HomK -Alg(W (S), K )→ HomL-Alg(S, L),

which restricts to a bijection

Homdiff. K -Alg(W diff(S), K )→ Homdiff. L-Alg(S, L).

Since S has an L-rational point we may use the first bijection and see that W (S) has a K -rational point.
Since K is differentially large there is a differential K -rational point W diff(S)→ K . Using the second
bijection we see that S has a differential L-rational point.

Hence, we know the assertion when L/K is finite. In general, let S = A ⊗ P be a composite L-
algebra such that the affine variety defined by A is smooth. Suppose there is an L-rational point A → L .
By Theorem 4.3(viii) it suffices to show that there is a differential point S → L . Write S = L{x}/p,
x = (x1, . . . , xr ), for a prime differential ideal p of L{x} and let 6 ⊆ p be finite with p =

d
√
6. It suffices

to find a differential solution of 6 = 0 in L . Choose a finite extension K0/K in L with 6 ⊆ K0{x}.
Let S0 = K0{x}/p∩ K0{x}, which we consider as a subring of S. By Theorem 2.3 there are a finitely
generated K0-subalgebra A0 of S0, a polynomial K0-subalgebra P0 of S0 and an element h ∈ A0 such
that (S0)h ∼= (A0)h ⊗K0 P0.

Since A0 ⊆ S is finitely generated we may write P = P1 ⊗L P2 for some polynomial L-algebras Pi ,
P1 finitely generated such that A0 ⊆ A ⊗L P1. Then A ⊗L P1 is again finitely generated, the affine variety
defined by A ⊗L P1 is again smooth and still has an L-rational point. Since L is large, there is also
an L-rational point (A ⊗L P1)h → L . Via restriction we get an L-rational point f : (A0)h → L . Since
(A0)h is finitely generated as a K0-algebra, there is a finite extension K1/K0 contained in L such that
f has values in K1. Since P0 is a polynomial K0-algebra, f can be extended to a K1-rational point
(S0)h → K1. Tensoring with K1 gives a K1-rational point of (S0)h ⊗K0 K1. The latter is a differentially
finitely generated K1-algebra. By what we have shown, K1 is differentially large. By Theorem 4.3(iv)
there is a differential point (S0)h ⊗K0 K1 → K1. Since 6 ⊆ K1{x} this gives rise to a differential solution
of 6 = 0 in K1 ⊆ L . □
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As an application, we see from 5.12 and Corollary 4.8(iii) that the algebraic closure of a differentially
large field is differentially closed. Hence, differentially large fields have minimal differential closures:

5.13. Corollary. The algebraic closure of a differentially large field is differentially closed. In particular,
if K |H CODFm , the theory of closed ordered differential fields in m commuting derivations, then
K (i) |H DCF0,m .

The result above has already been deployed in [1] making reference to an earlier draft of this paper.
Previously known examples of differential fields with minimal differential closures are models of CODF
(which we denote as CODF1), see [31], and fixed fields of models of DCF0,m A, the theory differentially
closed fields with a generic differential automorphism; see [16]. The corollary delivers a vast variety of
new differential fields with this property, namely all differentially large fields; see also Corollary 4.8(ii).

We also get new and explicit models of DCF0,m and CODFm :

5.14. Construction of differentially closed fields. We continue with the constructions in 5.2(i). If K is a
differential field, then the algebraic closure of the differentially large field K∞ =

⋃
n∈N K ((t1)) . . . ((tn))

from 5.2(i) is differentially closed. If K is an ordered field and the order is extended to L in some way,
then the real closure of L is a model of CODFm .

Observe that these models are different from those obtained using iterated Puiseux series or generalized
power series constructions in 5.2(ii) and (iii).

5.15. Kolchin-denseness of rational points in differential algebraic groups. In the classical case of a
connected linear algebraic group G over any field F of characteristic zero, the unirationality theorem
implies that the F-rational points of G are Zariski-dense. In the differential situation the corresponding
statement does not hold. For example, the linear differential algebraic group defined by δx = x does in
general not have a Kolchin-dense set of rational points. However, as a further application, we prove that
in differentially large fields this is true again:

5.16. Proposition. Assume K is differentially large. If G is a connected differential algebraic group
over K , then the set of K -rational points of G, denoted G(K ), is Kolchin dense in G = G(U).

Proof. We verify Theorem 4.3(x), and hence it suffices to show that for infinitely many values of r the
jet Jetr G has a smooth K -rational point. By [23, Corollary 4.2(ii)], G embeds over K into a connected
algebraic group H defined over K . As we saw in Definition 2.6, for each r , ∇r G is a differential algebraic
subgroup of τr H . As a result, Jetr G is an algebraic subgroup of τr H , and so Jetr G is smooth. If e denotes
the identity of G, which is a K -point, then, for each r , the K -point ∇r (e) is a smooth point of Jetr G. □

The result above has already been deployed in [18] making reference to an earlier draft of this paper.

5.17. Pseudodifferentially closed fields. Recall that a field K is pseudoalgebraically closed (PAC) if
every absolutely irreducible algebraic variety over K has a K -point. It is easy to see and well known
that PAC fields are large and that the PAC property is equivalent to saying that K is e.c. in every regular
field extension L (meaning that K is algebraically closed in L). From model theoretic literature one can
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formulate several notions of pseudodifferentially closed fields; see [11; 24]. We show that they are all
equivalent to the property “PAC + differentially large”.

5.18. Theorem (pseudodifferentially closed fields). Let K be a differential field. The following are
equivalent:

(i) K is PAC (as a field) and K is differentially large.

(ii) Every absolutely irreducible differential variety over K has a differential K -point. Recall that a
differential variety V over K is absolutely irreducible if it is irreducible in the Kolchin topology of a
differential closure K diff and this is equivalent to saying that V is irreducible over K alg.

(iii) K is e.c. in every differential field extension L in which K is R-regular (that is, tp(a/K ) is stationary
for every tuple a from L , where the type tp(a/K ) is with respect to the stable theory DCF0,m).

(iv) K is e.c. in every differential field extension L in which K is H-regular (that is, K alg
∩ L = K ).

If these equivalent conditions hold we call K pseudodifferentially closed.

Proof. We use [11, Lemma 3.35], which says in our situation that for a tuple a from U (the monster
model of DCF0,m), the type tp(a/K ) is stationary if and only if the differential field extension K ⟨a⟩ over
K is H -regular. Clearly this characterization implies that H -regularity and R-regularity are equivalent.
In particular, (iii) is equivalent to (iv).

(i)⇒ (iv). Let K be PAC and differentially large. Let L/K be an H-regular extension of K . Then K is
algebraically closed in L as a field and because K is PAC, it is e.c. in L as a field. Since K is differentially
large, it follows that it is e.c. in L as a differential field.

(iv)⇒ (ii). This follows from the fact that a type tp(a/K ) is stationary if and only if the Kolchin-locus
of a over K is absolutely irreducible. Let V be an absolutely irreducible differential variety over K . Then
the generic type p = tp(a/K ) of V over K is stationary, and hence, by the quoted characterization of
stationarity, the differential field L = K ⟨a⟩ is an H -regular extension of K . By (iv), K is e.c. in L as a
differential field and so there is a differential K -point in V , as required.

(ii)⇒ (i). Suppose V is a K -irreducible differential variety such that all jets of V have a smooth K -point.
Then all these jets are absolutely Zariski irreducible (as they are Zariski K -irreducible and contain a
smooth K -point). It follows that V is absolutely irreducible. Hence, V has a K -point. In fact, V has
Kolchin-dense many K -points; indeed, we can take any open differential subvariety O of V and argue
similarly (using the fact that K is large, as it is PAC, to produce smooth K -points in the jets of O). This
shows (i) using the equivalence (i)⇐⇒ (x) of Theorem 4.3. □

5.19. Pseudodifferentially closed fields are axiomatizable. An application of Theorem 5.18 is that the
class of pseudodifferentially closed fields is first-order axiomatizable (so far this had only been established
in the case of one derivation in [24, Proposition 5.6]). Indeed, being a PAC field is a first-order condition
(see [6, 11.3.2]) and we have seen in Proposition 4.7 that differential largeness is too. The fact that being
pseudodifferentially closed is a first-order property has very interesting model-theoretic consequences: (i)
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by [25, §3] it implies that the theory of a bounded pseudodifferentially closed field is supersimple, and (ii)
by [5, Theorem 5.11] it implies that the elementary equivalence theorem holds for pseudodifferentially
closed fields.

6. Algebraic-geometric axioms

We present algebraic-geometric axioms for differentially large fields in the spirit of the classical Pierce–
Pillay axioms for differentially closed fields in one derivation [22] (see Remark 6.6(i) below). While this
section might seem mostly of interest to model theorists, the general reader should keep in mind that
Theorem 6.4 is a general statement on systems of algebraic PDEs that have solutions in differentially
large fields.

Our presentation here follows the recent algebraic-geometric axiomatization of differentially closed
fields in several commuting derivations established in [17]. In particular, we will use the recently developed
theory of differential kernels for fields with several commuting derivations from [7]. One significant
difference with the arguments in [17] is that theirs only requires the existence of regular realizations
of differential kernels, while here we need the existence of principal realizations; see Remark 6.1 and
Fact 6.2. We carry on the notation and conventions from previous sections.

We use two different orders ≤ and ⊴ on Nm
× {1, . . . , n}. Given two elements (ξ, i) and (τ, j) of

Nm
× {1, . . . , n}, we set (ξ, i)≤ (τ, j) if and only if i = j and ξ ≤ τ in the product order of Nm . We set

(ξ, i)⊴ (τ, j) if and only if(∑
ξk, i, ξ1, . . . , ξm

)
≤lex

(∑
τk, j, τ1, . . . , τm

)
Note that if x = (x1, . . . , xn) are differential indeterminates and we identify (ξ, i)with δξ xi := δ

ξ1
1 · · · δ

ξm
m xi ,

then ≤ induces an order on the set of algebraic indeterminates given by δξ xi ≤ δτ x j if and only if δτ x j is
a derivative of δξ xi (in particular this implies that i = j). On the other hand, the ordering ⊴ induces the
canonical orderly ranking on the set of algebraic indeterminates.

We will look at field extensions of K of the form

L := K (aξi : (ξ, i) ∈ 0n(r)) (6-1)

for some fixed r ≥ 0. Here we use aξi as a way to index the generators of L over K . The element
(τ, j) ∈ Nm

×{1, . . . , n} is said to be a leader of L if there is η ∈ Nm with η ≤ τ and
∑
ηk ≤ r such that

aηj is algebraic over K (aξi : (ξ, i)◁ (η, j)). A leader (τ, j) is a minimal leader of L if there is no leader
(ξ, i) with (ξ, i) < (τ, j). Observe that the notions of leader and minimal leader make sense even when
r = ∞.

A (differential) kernel of length r over K is a field extension of the form

L = K (aξi : (ξ, i) ∈ 0n(r))
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such that there exist derivations

Dk : K (aξi : (ξ, i) ∈ 0n(r − 1))→ L

for k = 1, . . . ,m extending δk and Dkaξi = aξ+k
i for all (ξ, i) ∈ 0n(r − 1), where k denotes the m-tuple

whose k-th entry is one and zeroes elsewhere.
Given a kernel (L , D1, . . . , Dk) of length r , we say that it has a prolongation of length s ≥ r if

there is a kernel (L ′, D′

1, . . . , D′

k) of length s over K such that L ′ is a field extension of L and each
D′

k extends Dk . We say that (L , D1, . . . , Dk) has a regular realization if there is a differential field
extension (M,1′

= {δ′1, . . . , δ
′
m}) of (K ,1 = {δ1, . . . , δm}) such that M is a field extension of L and

δ′kaξi = aξ+k
i for all (ξ, i) ∈ 0n(r − 1) and k = 1, . . . ,m. In this case we say that g := (a0

1, . . . , a0
n) is a

regular realization of L . If in addition the minimal leaders of L and those of the differential field K ⟨g⟩

coincide we say that g is a principal realization of L .

6.1. Remark. If g is a principal realization of the differential kernel L , then L is existentially closed in
K ⟨g⟩ as fields. Indeed, since the minimal leaders of L and K ⟨g⟩ coincide, for every (ξ, i)∈Nm

×{1, . . . , n}

we have that either δξgi is in L or it is algebraically independent from K (δηg j : (η, j)◁ (ξ, i)). In other
words, the differential ring generated by g over L , namely L{g}, is a polynomial ring over L . The claim
follows.

In general, it is not the case that every kernel has a principal realization (not even regular). In [7], an
upper bound Cn

r,m was obtained for the length of a prolongation of a kernel that guarantees the existence
of a principal realization. This bound depends only on the data (r,m, n) and is constructed recursively as

C1
0,m = 0, C1

r,m = A(m − 1,C1
r−1,m), and Cn

r,m = C1
Cn−1

r,m ,m
,

where A(x, y) is the Ackermann function. For example,

Cn
r,1 = r, Cn

r,2 = 2nr and C1
r,3 = 3(2r

− 1).

6.2. Fact [7, Theorem 18]. If a differential kernel L = K (aξi : (ξ, i)∈0n(r)) of length r has a prolongation
of length Cn

r,m , then there is r ≤ h ≤ Cn
r,m such that the differential kernel K (aξi : (ξ, i) ∈ 0n(h)) has a

principal realization.

6.3. Remark. Note that in the ordinary case 1= {δ} (i.e., m = 1), we have Cn
r,1 = r by definition, and

so the fact above shows that in this case every differential kernel has a principal realization (this is a
classical result of Lando [13]).

The fact above is the key to our algebraic-geometric axiomatization of differential largeness. We need
some additional notation. For a given positive integer n, we set

α(n)= n ·

(
Cn

1,m+m
m

)
and β(n)= n ·

(
Cn

1,m−1+m
m

)
.
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We write π : Uα(n) → Uβ(n) for the projection onto the first β(n) coordinates; i.e., setting (xξi )(ξ,i)∈0n(Cn
1,m)

to be coordinates for Uα(n) then π is the map

(xξi )(ξ,i)∈0n(Cn
1,m)

7→ (xξi )(ξ,i)∈0(Cn
1,m−1).

It is worth noting here that α(n) = |0n(Cn
1,m)| and β(n) = |0n(Cn

1,m − 1)|. We also use the projection
ψ : Uα(n) → Un·(m+1) onto the first n · (m + 1) coordinates, that is,

(xξi )(ξ,i)∈0n(Cn
1,m)

7→ (xξi )(ξ,i)∈0n(1).

Finally, we use the embedding ϕ : Uα(n) → Uβ(n)·(m+1) given by

(xξi )(ξ,i)∈0n(Cn
1,m)

7→
(
(xξi )(ξ,i)∈0n(Cn

1,m−1), (x
ξ+1
i )(ξ,i)∈0n(Cn

1,m−1), . . . . . . , (x
ξ+m
i )(ξ,i)∈0n(Cn

1,m−1)
)
.

Recall from Definition 2.6 that for a Zariski-constructible set X of Un , the first prolongation of X is
denoted by τ X = τ1 X ⊆ Un(m+1). For the first prolongation it is easy to give the defining equations: τ(X)
is the Zariski-constructible set given by the conditions

x ∈ X and
n∑

i=1

∂ f j

∂xi
(x) · yi,k + f δk

j (x)= 0 for 1 ≤ j ≤ s, 1 ≤ k ≤ m,

where f1, . . . , fs are generators of the ideal of polynomials over U vanishing at X , and each f δk
j is

obtained by applying δk to the coefficients of f j . Note that (a, δ1a, . . . , δma) ∈ τ X for all a ∈ X . Further,
if X is defined over the differential field K then so is τ X .

6.4. Theorem. Assume K is a differential field that is large as a field. Then, K is differentially large if
and only if

(♦) for every K -irreducible Zariski-closed set W of Uα(n) with a smooth K -point such that ϕ(W ) ⊆

τ(π(W )), the set of K -points of ψ(W ) of the form (a, δ1a, . . . , δma) is Zariski-dense in ψ(W ).

Proof. The proof follows the strategy of [17], but here regular realizations are replaced by principal
realizations with the appropriate adaptations. As the set up is technically somewhat intricate we give
details.

Assume K is differentially large. Let W be as in condition (♦), we must find Zariski-dense many
K -points in ψ(W ) of the form (a, δ1a, . . . , δma). Let b = (bξi )(ξ,i)∈0n(Cn

1,m)
be a Zariski-generic point of

W over K . Then (bξi )(ξ,i)∈0n(Cn
1,m−1) is a Zariski-generic point of π(W ) over K , and

ϕ(b)=
(
(bξi )(ξ,i)∈0n(Cn

1,m−1), (b
ξ+1
i )(ξ,i)∈0n(Cn

1,m−1), . . . , (b
ξ+m
i )(ξ,i)∈0n(Cn

1,m−1)
)

∈ τ(π(W )).

By the standard argument for extending derivations (see [14, Chapter 7, Theorem 5.1], for instance), there
are derivations

D′

k : K (bξi : (ξ, i) ∈ 0n(Cn
1,m − 1))→ K (bξi : (ξ, i) ∈ 0n(Cn

1,m))
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for k = 1, . . . ,m extending δk and such that D′

kbξi = bξ+k
i for all (ξ, i) ∈ 0n(Cn

1,m − 1). Thus, L ′
=

K (bξi : (ξ, i) ∈ 0n(Cn
1,m)) is a differential kernel over K and, also, it is a prolongation of length Cn

1,m

of the differential kernel L = K (bξi : (ξ, i) ∈ 0n(1)) of length 1 with Dk = D′

k |L . By Fact 6.2, there is
r ≤ h ≤ Cn

1,m such that L ′′
= K (bξi : (ξ, i) ∈ 0n(h)) has a principal realization; in particular, there is a

differential field extension (M,1′) of (K ,1) containing L ′′ such that δ′kb0
= bk, where b0

= (b0
1, . . . , b0

n)

and similarly for bk. Then

(∗) (b0, δ′1b0, . . . , δ′mb0) is a generic point of ψ(W ) over K .

Now, since W has a smooth K -point and K is large, K is e.c. in L ′ as fields; in particular, K is e.c. in
L ′′ as fields. By Remark 6.1, L ′′ is e.c. in the differential field K ⟨b0

⟩ as fields, and so K is e.c. in K ⟨b0
⟩

as fields. Since K is differentially large, the latter implies that K is e.c. in K ⟨b0
⟩ as differential fields as

well. The conclusion now follows using (∗).
For the converse, assume K is e.c. as a field in a differential field extension F . We must show that

K is also e.c. in F as differential field. Let ρ(x) be a quantifier-free formula over K (in the language of
differential rings with m derivations) in variables x = (x1, . . . , xt) with a realization c in F . We may write

ρ(x)= γ (δξ xi : (ξ, i) ∈ 0t(r)),

where γ ((xξ )(ξ,i)∈0t (r)) is a quantifier-free formula in the language of rings over K for some r . If r = 0,
then ρ is a formula in the language of rings, and so ρ(x) has a realization in K since K is e.c. in F as
a field. Now assume r > 0. Let n := t ·

(r−1+m
m

)
, d := (δξci )(ξ,i)∈0t (r−1), and

W := Zar-locK (δ
ξdi : (ξ, i) ∈ 0n(Cn

1,m))⊆ Uα(n).

We have that ϕ(W ) ⊆ τ(π(W )). Since W has a smooth F-point (namely (δξdi )(ξ,i)∈0n(Cn
1,m)

) and K

is e.c. in F as fields, W has a smooth K -point. By (♦), there is a = (aξi )(ξ,i)∈0t (r−1) ∈ K n such that
(a, δ1a, . . . , δma) ∈ ψ(W ). This implies that aξi = δξa0

i for all (ξ, i) ∈ 0t(r − 1). Thus,

(δξa0
i )(ξ,i)∈0t (r) ∈ Zar-locK ((δ

ξci )(ξ,i)∈0t (r))⊆ Ut ·(r+m
m ),

and so, since (δξci )(ξ,i)∈0t (r) realizes γ , the point (δξa0
i )(ξ,i)∈0t (r) also realizes γ . Consequently, K |H

ρ(a0), as desired. □

In the ordinary case (m = 1) we get the values α(n)= 2n and β(n)= n. Also, in this case, π : U2n
→ Un

is just the projection onto the first n coordinates, and ψ, ϕ : U2n
→ U2n are both the identity map. We

thus get the following:

6.5. Corollary. Assume that (K , δ) is an ordinary differential field of characteristic zero which is large as
a field. Then, (K , δ) is differentially large if and only if

(♦′) for every K -irreducible Zariski-closed set W of U2n with a smooth K -point such that W ⊆ τδ(π(W )),
the set of K -points of W of the form (a, δa) is Zariski dense in W .
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6.6. Remark. (i) If K is algebraically closed of characteristic zero, then Corollary 6.5 yields the
classical algebraic-geometric axiomatization of DCF0 given by Pierce and Pillay in [22].

(ii) If K has a model complete theory T in the language of fields and if K is large, then Corollary 6.5
yields a slight variation of the geometric axiomatization of TD given by Brouette, Cousins, Pillay
and Point in [4, Lemma 1.6].

(iii) For large and topological fields with a single derivation, an alternative description of differentially
large fields with reference to the topology may be found in [9].

References

[1] M. Aschenbrenner, A. Chernikov, A. Gehret, and M. Ziegler, “Distality in valued fields and related structures”, Trans. Amer.
Math. Soc. 375:7 (2022), 4641–4710. MR Zbl

[2] A. Bachmayr, D. Harbater, J. Hartmann, and F. Pop, “Large fields in differential Galois theory”, J. Inst. Math. Jussieu 20:6
(2021), 1931–1946. MR Zbl

[3] L. Bary-Soroker and A. Fehm, “Open problems in the theory of ample fields”, pp. 1–11 in Geometric and differential
Galois theories, edited by D. Bertrand et al., Sémin. Congr. 27, Soc. Math. France, Paris, 2013. MR

[4] Q. Brouette, G. Cousins, A. Pillay, and F. Point, “Embedded Picard–Vessiot extensions”, Comm. Algebra 46:11 (2018),
4609–4615. MR Zbl

[5] J. Dobrowolski, D. M. Hoffmann, and J. Lee, “Elementary equivalence theorem for PAC structures”, J. Symb. Log. 85:4
(2020), 1467–1498. MR Zbl

[6] M. D. Fried and M. Jarden, Field arithmetic, 3rd ed., Ergebnisse der Math. (3) 11, Springer, 2008. MR Zbl

[7] R. Gustavson and O. L. Sánchez, “Effective bounds for the consistency of differential equations”, J. Symbolic Comput. 89
(2018), 41–72. MR Zbl

[8] N. Guzy and F. Point, “Topological differential fields”, Ann. Pure Appl. Logic 161:4 (2010), 570–598. MR

[9] N. Guzy and C. Rivière, “Geometrical axiomatization for model complete theories of differential topological fields”, Notre
Dame J. Formal Logic 47:3 (2006), 331–341. MR Zbl

[10] W. Hodges, Model theory, Encyclopedia of Mathematics and its Applications 42, Cambridge University Press, 1993. MR
Zbl

[11] D. M. Hoffmann, “Model theoretic dynamics in Galois fashion”, Ann. Pure Appl. Logic 170:7 (2019), 755–804. MR Zbl

[12] E. R. Kolchin, Differential algebra and algebraic groups, Pure and Applied Mathematics 54, Academic Press, New York,
1973. MR Zbl

[13] B. A. Lando, “Jacobi’s bound for the order of systems of first order differential equations”, Trans. Amer. Math. Soc. 152
(1970), 119–135. MR

[14] S. Lang, Algebra, 3rd ed., Graduate Texts in Mathematics 211, Springer, 2002. MR Zbl

[15] O. León Sánchez, Contributions to the model theory of partial differential fields, Ph.D. thesis, University of Waterloo, 2013,
available at http://hdl.handle.net/10012/7752.

[16] O. León Sánchez, “On the model companion of partial differential fields with an automorphism”, Israel J. Math. 212:1
(2016), 419–442. MR Zbl

[17] O. León Sánchez, “Algebro-geometric axioms for DCF0,m”, Fund. Math. 243:1 (2018), 1–8. MR Zbl

[18] O. León Sánchez and A. Pillay, “Differential Galois cohomology and parameterized Picard–Vessiot extensions”, Commun.
Contemp. Math. 23:8 (2021), 2050081. MR

[19] O. León Sánchez and M. Tressl, “Differential Weil descent”, Comm. Algebra 50:1 (2022), 104–114. MR Zbl

[20] R. Moosa and T. Scanlon, “Jet and prolongation spaces”, J. Inst. Math. Jussieu 9:2 (2010), 391–430. MR Zbl

http://dx.doi.org/10.1090/tran/8661
http://msp.org/idx/mr/4439488
http://msp.org/idx/zbl/1498.03073
http://dx.doi.org/10.1017/S1474748020000018
http://msp.org/idx/mr/4332781
http://msp.org/idx/zbl/1481.12007
http://msp.org/idx/mr/3203546
http://dx.doi.org/10.1080/00927872.2018.1448848
http://msp.org/idx/mr/3864252
http://msp.org/idx/zbl/1496.03157
http://dx.doi.org/10.1017/jsl.2020.61
http://msp.org/idx/mr/4243750
http://msp.org/idx/zbl/1485.03094
http://msp.org/idx/mr/2445111
http://msp.org/idx/zbl/1145.12001
http://dx.doi.org/10.1016/j.jsc.2017.11.003
http://msp.org/idx/mr/3804806
http://msp.org/idx/zbl/1395.12002
http://dx.doi.org/10.1016/j.apal.2009.08.001
http://msp.org/idx/mr/2584734
http://dx.doi.org/10.1305/ndjfl/1163775440
http://msp.org/idx/mr/2264702
http://msp.org/idx/zbl/1113.03033
http://dx.doi.org/10.1017/CBO9780511551574
http://msp.org/idx/mr/1221741
http://msp.org/idx/zbl/0789.03031
http://dx.doi.org/10.1016/j.apal.2019.02.002
http://msp.org/idx/mr/3958324
http://msp.org/idx/zbl/1439.03073
http://msp.org/idx/mr/568864
http://msp.org/idx/zbl/0264.12102
http://dx.doi.org/10.2307/1995642
http://msp.org/idx/mr/279079
http://dx.doi.org/10.1007/978-1-4613-0041-0
http://msp.org/idx/mr/1878556
http://msp.org/idx/zbl/0984.00001
http://hdl.handle.net/10012/7752
http://dx.doi.org/10.1007/s11856-016-1292-y
http://msp.org/idx/mr/3504332
http://msp.org/idx/zbl/1367.12004
http://dx.doi.org/10.4064/fm228-11-2017
http://msp.org/idx/mr/3835587
http://msp.org/idx/zbl/1459.03047
http://dx.doi.org/10.1142/S0219199720500819
http://msp.org/idx/mr/4348941
http://dx.doi.org/10.1080/00927872.2021.1955898
http://msp.org/idx/mr/4370416
http://msp.org/idx/zbl/1501.12001
http://dx.doi.org/10.1017/S1474748010000010
http://msp.org/idx/mr/2602031
http://msp.org/idx/zbl/1196.14008


280 Omar León Sánchez and Marcus Tressl

[21] R. Moosa, A. Pillay, and T. Scanlon, “Differential arcs and regular types in differential fields”, J. Reine Angew. Math. 620
(2008), 35–54. MR Zbl

[22] D. Pierce and A. Pillay, “A note on the axioms for differentially closed fields of characteristic zero”, J. Algebra 204:1
(1998), 108–115. MR

[23] A. Pillay, “Some foundational questions concerning differential algebraic groups”, Pacific J. Math. 179:1 (1997), 179–200.
MR Zbl

[24] A. Pillay and D. Polkowska, “On PAC and bounded substructures of a stable structure”, J. Symbolic Logic 71:2 (2006),
460–472. MR Zbl

[25] N. M. Polkowska, “On simplicity of bounded pseudoalgebraically closed structures”, J. Math. Log. 7:2 (2007), 173–193.
MR Zbl

[26] F. Pop, “Embedding problems over large fields”, Ann. of Math. (2) 144:1 (1996), 1–34. MR Zbl

[27] F. Pop, “Henselian implies large”, Ann. of Math. (2) 172:3 (2010), 2183–2195. MR Zbl

[28] F. Pop, “Little survey on large fields — old & new”, pp. 432–463 in Valuation theory in interaction, edited by A. Campillo
et al., Eur. Math. Soc., Zürich, 2014. MR Zbl

[29] T. Sander, “Aspects of algebraic geometry over non algebraically closed fields”, ICSI technical report, 1996, available at
http://www.icsi.berkeley.edu/icsi/publication_details?n=1063.

[30] J. Sanz, “Asymptotic analysis and summability of formal power series”, pp. 199–262 in Analytic, algebraic and geometric
aspects of differential equations, edited by G. Filipuk et al., Springer, 2017. MR Zbl

[31] M. F. Singer, “A class of differential fields with minimal differential closures”, Proc. Amer. Math. Soc. 69:2 (1978), 319–322.
MR Zbl

[32] M. F. Singer, “The model theory of ordered differential fields”, J. Symbolic Logic 43:1 (1978), 82–91. MR Zbl

[33] M. Tressl, “A structure theorem for differential algebras”, pp. 201–206 in Differential Galois theory (Będlewo, 2001),
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