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We prove that the k-th positive integer moment of partial sums of Steinhaus random multiplicative
functions over the interval (x, x + H ] matches the corresponding Gaussian moment, as long as H ≪

x/(log x)2k2
+2+o(1) and H tends to infinity with x . We show that properly normalized partial sums of

typical multiplicative functions arising from realizations of random multiplicative functions have Gaussian
limiting distribution in short moving intervals (x, x + H ] with H ≪ X/(log X)W (X) tending to infinity
with X , where x is uniformly chosen from {1, 2, . . . , X}, and W (X) tends to infinity with X arbitrarily
slowly. This makes some initial progress on a recent question of Harper.

1. Introduction

We are interested in the partial sums behavior of a family of completely multiplicative functions f
supported on moving short intervals. Formally, for positive integers X , let [X ] := {1, 2, . . . , X} and

FX := { f : [X ] → {|z| = 1} : f is completely multiplicative}.

For f ∈FX , the function values f (n) for all n ⩽ X are uniquely determined by ( f (p))p⩽X . The Steinhaus
random multiplicative function is defined by selecting f (p) uniformly at random from the complex unit
circle and defining f (n) completely multiplicatively. One may view FX as the family of all Steinhaus
random multiplicative functions.

Let H be another positive integer. We are interested in for a typical f ∈ FX+H , whether the random
partial sums

AH ( f, x) :=
1

√
H

∑
x<n⩽x+H

f (n), (1-1)

where x is uniformly chosen from [X ], behave like a complex standard Gaussian. In this note, we provide
a positive answer (Theorem 1.2) when H ≪A X/ logA X holds for all A > 0. As we explain in Section 4,
the answer is negative for H ≫ X exp(−(log log X)1/2−ε), but the question remains open between these
two thresholds.
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We formalize the question by explaining how to measure the elements in FX . Via complete multiplica-
tivity of f ∈ FX , define on FX the product measure

νX :=

∏
p⩽X

µp,

where for any given prime p, we let µp denote the uniform distribution on the set { f (p)} = {|z| = 1}.
For example, νX (FX ) = 1.

Question 1.1 [Harper 2022, open question (iv)]. What is the distribution of the normalized random sum
defined in (1-1) (for most f ) as x is uniformly chosen from [X ]?

1A. Main results. In this note, we make some progress on Question 1.1. We use the notation d
−→ to

denote convergence in distribution.

Theorem 1.2. Let integer X be large and W (X) tend to infinity arbitrarily slowly as X tends to infinity.
Let H := H(X) ≪ X (log X)−W (X) and H → +∞ as X → +∞. Then, for almost all f ∈ FX+H , as
X → +∞,

1
√

H

∑
x<n⩽x+H

f (n)
d

−→ CN (0, 1), (1-2)

where x is chosen uniformly from [X ].

Here “almost all” means the total measure of such f is 1 − oX→+∞(1) under νX+H .1 Also, CN (0, 1)

denotes the standard complex normal distribution; a standard complex normal random variable Z (with
mean 0 and variance 1) can be written as Z = X + iY , where X and Y are independent real normal
random variables with mean 0 and variance 1

2 . Recall that a real normal random variable W with mean 0
and variance σ 2 satisfies

P(W ⩽ t) =
1

σ
√

2π

∫ t

−∞

e−x2/(2σ 2) dx .

To prove Theorem 1.2, we establish moment statistics in several situations. We first show that the
integer moments of random multiplicative functions f supported on suitable short intervals match the
corresponding Gaussian moments. We write E f to mean “average over f ∈FX with respect to νX ” (where
FX is always clear from context).

Theorem 1.3. Let x, H, k ⩾ 1 be integers. Let f ∈ Fx+H . Let E(k) = 2k2
+ 2. Then

E f

∣∣∣∣ 1
√

H

∑
x<n⩽x+H

f (n)

∣∣∣∣2k

= k! + Ok

(
H−1

+
H 1/2

max(x, H)1/2 +
H · (log x + log H)E(k)

max(x, H)

)
,

with an implied constant depending only on k.

1More precisely, there exist nonempty measurable sets GX,H ⊆ FX+H of measure 1 − oX→+∞(1) (under νX+H ) such that
for every sequence of functions fX ∈ GX,H (X ⩾ 1), the random variable on the left-hand side of (1-2) (with f = fX ) converges
in distribution to CN (0, 1) as X → +∞.
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Notice that k! is the 2k-th moment of the standard complex Gaussian distribution. Given an integer
k ⩾ 1, let E ′(k) be the smallest real number r ⩾ 0 such that for every ε > 0, we have E f |AH ( f, x)|2k

→ k!

whenever
x → +∞ and (log x)ε ⩽ H ⩽ x/(log x)r+ε.

Theorem 1.3 shows that E ′(k) ⩽ E(k).2 The paper [Chatterjee and Soundararajan 2012] studies the
case k = 2, showing in particular that E ′(2) ⩽ 1. In the case that f is supported on {1, 2 . . . , x}, the
2k-th moments for general k were studied in [Batyrev and Tschinkel 1998; de la Bretèche 2001a; 2001b;
Granville and Soundararajan 2001; Heap and Lindqvist 2016; Harper 2019; Harper et al. 2015] and
it is known that the moments there do not match Gaussian moments: for instance, by [Harper 2019,
Theorem 1.1], there exists some constant c > 0 such that for all positive integers k ⩽ c(log x/ log log x)

(assuming x is large),

E f

∣∣∣∣ 1
√

x

∑
n⩽x

f (n)

∣∣∣∣2k

= e−k2 log(k log(2k))+O(k2)(log x)(k−1)2
. (1-3)

While (1-3) is quite uniform over k, it is unclear how uniform in k one could make our Theorem 1.3. (See
Remark 2.3 for some discussion of the k-aspect in our work.)

Remark 1.4. The powers of log x above are significant. For instance, Theorem 1.3 in the range H ≫ x
follows directly from (1-3), since (k−1)2 ⩽ E(k). One may also wonder how far our bound E ′(k)⩽ E(k) is
from the truth. Based on a circle method heuristic for (1-4) along the lines of [Hooley 1986, Conjecture 2],
with a Hardy–Littlewood contribution on the order of (H 2k/H xk−1)(log x)(k−1)2

, and an additional
contribution of roughly k!H k from trivial solutions, it is plausible that one could improve the right-hand
side in Theorem 1.3 to k! + Ok((H k−1/xk−1)(log x)(k−1)2

) for H ∈ [x1−δ, x]. If true, this would suggest
that E ′(k)⩽ k −1 and we believe this might be the true order. For a discussion of how one might improve
on Theorem 1.3, see the beginning of Section 4.

By orthogonality, Theorem 1.3 is a statement about the Diophantine point count

#{(n1, n2, . . . , n2k) ∈ (x, x + H ]
2k

: n1n2 · · · nk = nk+1nk+2 · · · n2k}. (1-4)

The circle method, or modern versions thereof such as [Duke et al. 1993; Heath-Brown 1996], might
lead to an asymptotic for (1-4) uniformly over H ∈ [x1−δ, x] for k = 2, unconditionally (compare [Heath-
Brown 1996, Theorem 6]), or for k = 3, conditionally on standard number-theoretic hypotheses (compare
[Wang 2021]). Alternatively, “multiplicative” harmonic analysis along the lines of [de la Bretèche 2001b;
Harper et al. 2015; Heap and Lindqvist 2016] may in fact lead to an unconditional asymptotic over
H ∈ [x1−δ, x] for all k, with many main terms involving different powers of log x, log H . Nonetheless,
for all k, we obtain an unconditional asymptotic for (1-4) uniformly over H ≪ x/(log x)Ck2

, by replacing

2After writing the paper, the authors learned that for H ⩽ x/ exp(Ck log x/ log log x), the Diophantine statement underlying
Theorem 1.3 has essentially appeared before in the literature; see [Bourgain et al. 2014, proof of Theorem 34]. However, we
handle a more delicate range of the form H ⩽ x/(log x)Ck2

.
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the complicated “off-diagonal” contribution to (1-4) with a larger but simpler quantity; see Section 2 for
details.

Remark 1.5. An analog of (1-4) for polynomial values P(ni ) is studied in [Klurman et al. 2023; Wang
and Xu 2022], and a similar flavor counting question to (1-4) is studied in [Fu et al. 2021] using the
decoupling method.

After Theorem 1.3, our next step towards Theorem 1.2 is to establish concentration estimates for the
moments of the random sums (1-1). We write Ex to denote “expectation over x uniformly chosen from
[X ]” (where X is always clear from context).

Theorem 1.6. Let X, k ⩾ 1 be integers with X large. Suppose that H := H(X) → +∞ as X → +∞.
There exists a large absolute constant A > 0 such that the following holds as long as H ≪ X (log X)−Ck

with Ck = Ak Ak Ak
. Let f ∈ FX+H ; then

E f

(
Ex

∣∣∣∣ 1
√

H

∑
x<n⩽x+H

f (n)

∣∣∣∣2k

− k!

)2

= oX→+∞(1). (1-5)

Furthermore, for any fixed positive integer ℓ < k, we have

E f

∣∣∣∣Ex

(
1

√
H

∑
x<n⩽x+H

f (n)

)k( 1
√

H

∑
x<n⩽x+H

f (n)

)ℓ∣∣∣∣2

= oX→+∞(1). (1-6)

We prove Theorem 1.3 in Section 2, and then we prove Theorem 1.6 in Section 3.

Proof of Theorem 1.2, assuming Theorem 1.6. We use the notation AH ( f, x) from (1-1). By Markov’s
inequality, Theorem 1.6 implies that there exists a set of the form

GX,H :=
{

f ∈ FX+H : Ex |AH ( f, x)|2k
− k! = oX→+∞(1) for all k ⩽ V (X),

Ex [AH ( f, x)k AH ( f, x)ℓ] = oX→+∞(1) for all distinct k, ℓ ⩽ V (X)
}

for some V (X) → +∞ (making a choice of V (X) based on W (X)) such that

νX+H (GX,H ) = 1 − oX→+∞(1).

Since the distribution CN (0, 1) is uniquely determined by its moments (see e.g., [Billingsley 2012,
Theorem 30.1 and Example 30.1]), Theorem 1.2 follows from the method of moments [Gut 2005,
Chapter 5, Theorem 8.6] (applied to sequences of random variables AH ( f, x) indexed by f ∈ GX,H as
X → +∞). □

We believe results similar to our theorems above should also hold in the (extended) Rademacher case,
though we do not pursue that case in this paper.
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1B. Notation. For any two functions f, g : R → R, we write f ≪ g, g ≫ f, g = �( f ) or f = O(g) if
there exists a positive constant C such that | f | ⩽ Cg, and we write f ≍ g or f = 2(g) if f ≪ g and
g ≫ f . We write Ok to indicate that the implicit constant depends on k. We write oX→+∞(g) to denote a
quantity f such that f/g tends to zero as X tends to infinity.

2. Moments of random multiplicative functions in short intervals

In this section, we prove Theorem 1.3. For integers k, n ⩾ 1, let τk(n) denote the number of positive integer
solutions (d1, . . . , dk) to the equation d1 · · · dk = n. It is known that (see [Norton 1992, Theorem 1.29
and Corollary 1.36])

τk(n) ≪ nO(log k/ log log n) as n → +∞, provided k = on→+∞(log n). (2-1)

As we mentioned before, when H ⩾ x , Theorem 1.3 is implied by (1-3). From now on, we focus on
the case H ⩽ x . We split the proof into two cases: small H and large H . For small H , we illustrate the
general strategy and carelessly use divisor bounds; for large H , we take advantage of bounds of Shiu
[1980] and Henriot [2012] on mean values and correlations of multiplicative functions over short intervals,
together with a decomposition idea.

2A. Case 1: H ⩽ x1−εk−1 . Here we take ε to be a small absolute constant, e.g., ε =
1

100 .
We begin with the following proposition.

Proposition 2.1. Let k, y, H ⩾ 1 be integers. Suppose y is large and k ⩽ log log y. Then Nk(H ; y), the
number of integer tuples (h1, h2, . . . , hk) ∈ [−H, H ]

k with y | h1h2 · · · hk and h1h2 · · · hk ̸= 0, is at most
(2H)k

· O(H O(k log k/log log y)/y).

Proof. The case k = 1 is trivial; one has N1(H ; y)⩽ 2H/y. Suppose k ⩾ 2. Whenever y | h1h2 · · · hk ̸= 0,
there exists a factorization y = u1u2 · · · uk where ui are positive integers such that ui | hi ̸= 0 for all
1⩽ i ⩽ k. (Explicitly, one can take u1 = gcd(h1, y) and ui = gcd(hi , y/gcd(y, h1h2 · · · hi−1)).) It follows
that Nk(H ; y) = 0 if y > H k , and

Nk(H ; y) ⩽
∑

u1u2···uk=y

N1(H ; u1)N1(H ; u2) · · · N1(H ; uk) ⩽ τk(y) · (2H)k/y (2-2)

if y ⩽ H k . By the divisor bound (2-1), Proposition 2.1 follows. □

Corollary 2.2. Let k, H, x ⩾ 1 be integers. Suppose x is large and k ⩽ log log x. Then Sk(x, H), the set
of integer tuples (h1, h2, . . . , hk, y) ∈ [−H, H ]

k
× (x, x + H ] with y | h1h2 · · · hk and h1h2 · · · hk ̸= 0,

has size at most (2H)k
· O(H 1+O(k log k/log log x)/x).

Proof. #Sk(x, H) =
∑

x<y⩽x+H Nk(H ; y). But here Nk(H ; y) ≪ (2H)k
· H O(k log k/log log x)/x . □

The 2k-th moment in Theorem 1.3 is H−k times the point count (1-4) for the Diophantine equation

n1n2 · · · nk = nk+1nk+2 · · · n2k . (2-3)
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There are k!H k(1 + O(k2/H)) = k!H k
+ Ok(H k−1) trivial solutions. (We call a solution to (2-3) trivial

if the tuple (nk+1, . . . n2k) equals a permutation of (n1, . . . nk).) The number of trivial solutions is clearly
⩾ k!H(H − 1) · · · (H − k + 1), and ⩽ k!H k .) It remains to bound Nk(x, H), the number of nontrivial
solutions (n1, . . . , n2k) ∈ (x, x + H ]

2k to (2-3).
We will show that Nk(x, H)≪ H k

·(H/x)1/2. To this end, let N ′

k(x, H) denote the number of nontrivial
solutions in (x, x + H ]

2k with the further constraint that

n2k /∈ {n1, n2, . . . , nk}. (2-4)

Then for any k ⩾ 2, we have

Nk(x, H) ⩽ N ′

k(x, H) + k · (H + 1) · Nk−1(x, H), (2-5)

since for each (n1, . . . , n2k) ∈ (x, x + H ]
2k , either (2-4) holds or there exists i ∈ [k] satisfying ni = n2k ∈

(x, x + H ].
A key observation is that for nontrivial solutions to (2-3) with constraint (2-4),3

n2k | (n1 − n2k)(n2 − n2k) · · · (nk − n2k),

and if we write hi := ni − n2k then hi ∈ [−H, H ] are nonzero. Given h1, h2, . . . , hk, y, let

Ch1,...,hk ,y :=

∏
1⩽i⩽k

(hi + y).

Then N ′

k(x, H) is (upon changing variables from n1, . . . , nk to h1, . . . , hk) at most

∑
(h1,...,hk ,n2k)∈Sk(x,H)

hi +n2k>0

#
{
(nk+1, . . . , n2k−1) ∈ (x, x + H ]

k−1
:

(k−1∏
i=1

nk+i

) ∣∣∣ Ch1,...,hk ,n2k

}
. (2-6)

If x is large and k is fixed (or k ⩽ log log x , say), then by the divisor bound (2-1), the quantity (2-6) is at
most

≪ (H + x)O(k log k/log log x)
· #Sk(x, H) ≪ O(H)k

· O(H · x−1+O(k log k/log log x)),

where in the last step we used Corollary 2.2.
By (2-5), it follows that x is large and k is fixed (or k ⩽ log log x , say), then

Nk(x, H) ⩽ k · max
1⩽ j⩽k

(O(k H)k− j
· N ′

j (x, H)) ≪ k · O(k H)k
· O(H · x−1+O(k log k/log log x)). (2-7)

(Note that N1(x, H) = 0.) So in particular, Nk(x, H) ≪ H k
· (H/x)1/2 for fixed k (or for x large and

k ⩽ (log log x)1/2−δ, say), since H ⩽ x1−εk−1
. This suffices for Theorem 1.3.

3After writing the paper, the authors learned that this observation has appeared before in the literature (see [Bourgain et al.
2014, proof of Lemma 22]); however, we take the idea further, both in Section 2 and in Section 3.
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Remark 2.3. The argument above in fact gives, in Case 1, a version of Theorem 1.3 with an implied
constant of O(k!k2), uniformly over k ⩽ (log log x)1/2−δ , say. However, in Case 2 below, our proof relies
on a larger body of knowledge for which the k-dependence does not seem easy to work out; this is why
we essentially keep k fixed in Theorem 1.3.

2B. Case 2: x1−2εk−1
⩽ H ⩽ x. Again, one can assume ε =

1
100 . In this case, we employ the following

tool due to Henriot [2012, Theorem 3]. For the multiplicative functions f in (2-8) (and in similar places
below), we let f (m) := 0 if m ⩽ 0.

Definition 2.4. Given a real A1 ⩾1 and a function A2 = A2(ϵ)⩾1 (defined for reals ϵ >0), let M(A1, A2)

denote the set of nonnegative multiplicative functions f (n) such that f (pℓ) ⩽ Aℓ
1 (for all primes p and

integers ℓ ⩾ 1) and f (n) ⩽ A2nϵ (for all n ⩾ 1).

Lemma 2.5. Let f1, f2 ∈ M(A1, A2) and β ∈ (0, 1). Let a, q ∈ Z with |a|, q ⩾ 1 and gcd(a, q) = 1. If
x, y ⩾ 2 are reals with xβ ⩽ y ⩽ x and x ⩾ max(q, |a|)β , then∑

x⩽n⩽x+y

f1(n) f2(qn + a) ≪β,A1,A2 1D · y ·

∑
n1n2⩽x

f1(n1) f2(n2)

n1n2
, (2-8)

where 1D ⩽
∏

p | a2(1 + (2A1 + A2
1)p−1). Furthermore,

1D ⩽

(
|a|

φ(|a|)

)2A1+A2
1

(where φ denotes Euler’s totient function). (2-9)

Proof. Everything but (2-9) follows from [Henriot 2012, Theorem 3] and the unraveling of definitions
done in [Matomäki et al. 2019, proof of Lemma 2.3(ii)]; in the notation of [Henriot 2012, Theorem 3],
we take

(k, Q1(n), Q2(n), α, δ, A, B, F(n1, n2)) =
(
2, n, qn + a, 9

10β, 9
10β, A1, A2(ϵ)

2, f1(n1) f2(n2)
)
,

where ϵ =α/(100(2+δ−1)).4 The inequality (2-9) then follows from the fact that 1+r p−1 ⩽ (1+ p−1)r ⩽

(1 − p−1)−r for every prime p and real r ⩾ 1. □

Also useful to us will be the following immediate consequence of Shiu [1980, Theorem 1].

Lemma 2.6. Let f ∈ M(A1, A2) and β ∈ (0, 1). If x, y ⩾ 2 are reals with xβ ⩽ y ⩽ x , then∑
x⩽n⩽x+y

f (n) ≪β,A1,A2

y
log x

exp
(∑

p⩽x

f (p)

p

)
.

We will apply the above results to f = τk over intervals of the form [x, x + y] with y ≫ x1/2k , say.
Here τk ∈ M(k, Ok,ϵ(1)), by (2-1) and the fact that τk(p) = k and

τk(mn) ⩽ τk(m)τk(n) for arbitrary integers m, n ⩾ 1. (2-10)

4In fact, one could extract a more complicated version of (2-8) from [Henriot 2012, Theorem 3], which in some cases (e.g., if
f1 = f2 = τk ) would improve the right-hand side of (2-8) by roughly a factor of log x .
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Also, recall, for integers k ⩾ 1 and reals x ⩾ 2, the standard bound∑
n⩽x

τk(n) ≪k
x

log x
exp

(∑
p⩽x

k
p

)
≪k x(log x)k−1 (2-11)

(see e.g., [Matomäki et al. 2019, Section 2.2]) and the consequence∑
n1n2⩽x

τk(n1)τk(n2) =

∑
n⩽x

τ2k(n) ≪k x(log x)2k−1. (2-12)

(See [Norton 1992] for a version of (2-11) with an explicit dependence on k. For Lemmas 2.5 and 2.6,
we are not aware of any explicit dependence on β, A1, A2 in the literature.)

Lemma 2.7. Let V, U, q ⩾ 1 be integers with q ⩽ U k−2, where k ⩾ 2. Let ρ ∈ {−1, 1}. Then∑
u∈[U,2U )
1⩽v⩽V

τk(u)τk(ρv + uq) ≪k V U (1 + log V U )3k .

Proof. First suppose V ⩾ U . If u ∈ [U, 2U ), then I := {ρv + uq : 1 ⩽ v ⩽ V } is an interval of length
V ⩾ max(V, U ) contained in [−V, V + 2U k−1

], so by Lemma 2.6 and (2-11), we obtain the bound∑
1⩽v⩽V

τk(ρv + uq) ≪k V (1 + log V )k−1.

(We consider the cases 0 ∈ I and 0 /∈ I separately. The former case follows directly from (2-11); the
latter case requires Lemma 2.6.) Then sum over u using (2-11). Since (1 + log V )k−1(1 + log U )k−1 ⩽

(1 + log V U )2k−2, Lemma 2.7 follows.
Now suppose V ⩽ U . By casework on d := gcd(v, q) ⩽ q, we have∑

u∈[U,2U )
1⩽v⩽V

τk(u)τk(ρv + uq) ⩽
∑
d | q

τk(d)
∑

u∈[U,2U )
1⩽a⩽V/d

gcd(a,q/d)=1

τk(u)τk(ρa + uq/d).

Since d | q and 1 ⩽ a ⩽ V/d , we have U ⩾ max(a, q1/k). Now for any fixed 1 ⩽ a ⩽ V/d ,

∑
u∈[U,2U )

τk(u)τk(ρa + uq/d) ≪k

(
a

φ(a)

)2k+k2

· U · (1 + log U )2k

by Lemma 2.5 and (2-12), provided gcd(a, q/d)=1. Upon summing over 1⩽a⩽V/d using [Montgomery
and Vaughan 2007, page 61, (2.32)], it follows that∑

u∈[U,2U )
1⩽v⩽V

τk(u)τk(ρv + uq) ≪k

∑
d | q

τk(d) ·
V
d · U · (1 + log U )2k .

Since
∑

d⩽q(τk(d)/d) ≪k (1 + log q)k (by (2-11)) and q ⩽ U k−2, Lemma 2.7 follows. □
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Lemma 2.8. Let V1, U2, . . . , Uk ⩾ 1 be integers, where k ⩾ 2. Let ε1 ∈ {−1, 1}. Then∑
v1,u2,...,uk⩾1
ui ∈[Ui ,2Ui )

v1⩽V1

τk(u2) · · · τk(uk)τk(ε1v1 + u2 · · · uk) ≪k Lk(V1U2 · · · Uk),

where Lk(r) := r · (1 + log r)3k+(k−2)(k−1)
= r · (1 + log r)k2

+2 for r ⩾ 1.

Proof. We may assume U2 ⩾ · · · ⩾ Uk . Let q := u3 · · · uk ⩽ U k−2
2 and apply Lemma 2.7 (with

(V, U ) = (V1, U2)) to sum over u2, v1. Then sum over the k − 2 variables u3, . . . , uk using (2-11). □

With the lemmas above in hand, we now build on the strategy from Case 1 to attack Case 2. As before,
we let N ′

k(x, H) denote the number of nontrivial solutions (n1, . . . , nk, nk+1, . . . , n2k) ∈ (x, x + H ]
2k to

(2-3) with constraint (2-4). Again, for such solutions we write hi = ni − n2k ∈ [−H, H ] \ {0}, and there
exist positive integers ui (1 ⩽ i ⩽ k) such that ui | hi with u1u2 · · · uk = n2k ∈ (x, x + H ]; so ui ⩽ H , and
there exist signs εi ∈ {−1, 1} and positive integers vi ⩽ H/Ui with hi = εi uivi , whence

Ch1,...,hk ,n2k :=

k∏
i=1

(hi + n2k) =

∏
1⩽i⩽k

(εi uivi + u1u2 · · · uk).

As before, the quantity N ′

k(x, H) is at most (2-6). Upon splitting the range [H ] for each ui into
⩽ 1 + log2 H ≪ 1 + log x dyadic intervals, we conclude that

N ′

k(x, H) ⩽
∑
εi ,Ui

∑
ui ∈[Ui ,2Ui )
vi⩽H/Ui

x<n2k⩽x+H
hi +n2k>0

τk(Ch1,...,hk ,n2k ) ⩽ 2k
· O(1 + log x)k

·S(x, H), (2-13)

where we let n2k := u1u2 · · · uk and hi := εi uivi in the sum over ui , vi (for notational brevity), and where
S(x, H) denotes the maximum of the quantity

S(ε⃗, U⃗ ) :=

∑
ui ∈[Ui ,2Ui )
vi⩽H/Ui

x<n2k⩽x+H
hi +n2k>0

τk(Ch1,...,hk ,n2k ) =

∑
ui ∈[Ui ,2Ui )
vi⩽H/Ui

x<n2k⩽x+H
hi +n2k>0

τk

( ∏
1⩽i⩽k

(εi uivi + u1u2 · · · uk)

)

over all tuples ε⃗ = (ε1, . . . , εk) ∈ {−1, 1}
k and U⃗ = (U1, . . . , Uk) where each Ui ∈ [H ]∩ {1, 2, 4, 8, . . . }

with 2−k x < U1 · · · Uk ⩽ x + H . Now, for the rest of Section 2, fix a choice of ε1, . . . , εk, U1, . . . , Uk

with

S(x, H) = S(ε⃗, U⃗ ).

By symmetry, we may assume that U1 ⩾ U2 ⩾ · · · ⩾ Uk .
We now bound S(ε⃗, U⃗ ), assuming k ⩾ 2. (For k = 1, we can directly note that N ′

1(x, H) = 0.) A
key observation is that since U1U2 · · · Uk ⩽ x + H ⩽ 2x and U1 ⩾ U2 ⩾ · · · ⩾ Uk ⩾ 1, we have (since
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H ⩾ x1−2ε and k ⩾ 2)

H
Uk

⩾
H

Uk−1
⩾ · · · ⩾

H
U2

⩾
H

(U1U2)1/2 ⩾
x1−2ε

(2x)1/2 ≫ x1/3.

By the submultiplicativity property (2-10), we have that S(ε⃗, U⃗ ) is at most∑
ui ∈[Ui ,2Ui )

x<u1u2···uk⩽x+H

∑
vi⩽H/ui

τk(u1)τk(u2) · · · τk(uk)
∏

1⩽i⩽k

τk(εivi + u1u2 · · · u−i · · · uk), (2-14)

where u−i means that the factor ui is not included. But for each i ⩾ 2 and ui ∈ [Ui , 2Ui ), Lemma 2.6
and (2-11) imply (since u1u2 · · · u−i · · · uk ⩽ u1 · · · uk ≪ x and H/ui ≫ x1/3)∑

vi⩽H/ui

τk(εivi + u1u2 · · · u−i · · · uk) ≪k (H/Ui ) · (1 + log x)k−1
; (2-15)

compare the use of Lemma 2.6 and (2-11) in the proof of Lemma 2.7. By (2-15) (multiplied over 2⩽ i ⩽ k)
and Lemma 2.8 (with V1 = H/U1), we conclude that the quantity (2-14) (and thus S(ε⃗, U⃗ )) is at most

≪k
H k−1(1 + log x)(k−1)2

U2 · · · Uk
· Lk((H/U1) · U2 · · · Uk) · max

u2,...,uk⩾1
ui ∈[Ui ,2Ui )

∑
u1∈[U1,2U1)

x<u1u2···uk⩽x+H

τk(u1).

For the innermost sum, first note that (U2 · · · Uk)
1/(k−1) ⩽ (U1 · · · Uk)

1/k ⩽ (2x)1/k which implies that

H/(u2 · · · uk) ≫k H/(U2 · · · Uk) ≫k x1−2εk−1
/x (k−1)/k ⩾ x1/2k

(since H ⩾ x1−2εk−1
); then by Lemma 2.6 and (2-11), we have (for any given u2, . . . , uk)∑

u1⩾1
x<u1u2···uk⩽x+H

τk(u1) ≪k
H

U2 · · · Uk
· (1 + log x)k−1.

It follows that S(ε⃗, U⃗ ) is at most

≪k
H k−1(1 + log x)(k−1)2

U2 · · · Uk
·

H
U1

· U2 · · · Uk(1 + log x)k2
+2

·
H

U2 · · · Uk
· (1 + log x)k−1,

which simplifies to Ok(1) · H k
· (H/x) · (1 + log x)2k2

−k+2.
Plugging the above estimate into (2-13), we have (assuming k ⩾ 2)

N ′

k(x, H) ≪k O(1 + log x)k
·S(x, H) ≪k H k

· (H/x) · (1 + log x)2k2
+2, (2-16)

in the given range of H . Then by using the first part of (2-7) (and noting that N1(x, H) = N ′

1(x, H) = 0)
as before, we have (for arbitrary k ⩾ 1)

Nk(x, H) ⩽ k · max
1⩽ j⩽k

(O(k H)k− j
· N ′

j (x, H)) ≪k H k
· (H/x) · (1 + log x)2k2

+2,

which suffices for Theorem 1.3.
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3. Proof of Theorem 1.6

In this section, we prove Theorem 1.6. Let radk be the multiplicative function

radk(n) = min
n1···nk=n

[n1, . . . , nk],

where [n1, . . . , nk] denotes the least common multiple of n1, . . . , nk . In particular, for prime powers pℓ

we have

radk(pℓ) = p⌈ℓ/k⌉. (3-1)

Recall that we use τk(n) to denote the k-folder divisor function as defined in (2-6). We begin with the
following sequence of lemmas.

Lemma 3.1. Let k, y, X, H ⩾ 1 be integers. Then Mk(X, H ; y) := {(x, t1, t2, . . . , tk) ∈ [X ]× [H ]
k
: y |

(x + t1)(x + t2) · · · (x + tk)} has size at most H kτk(y) · (1 + X/ radk(y)).

Proof. Suppose that y | (x + t1) . . . (x + tk). Then there exist integers y1, . . . , yk ⩾ 1 with y1 · · · yk = y
and yi | x + ti (1 ⩽ i ⩽ k).

For any given choice of y1, . . . , yk, t1, . . . , tk , the conditions yi | x + ti , when satisfiable, impose on
x a congruence condition modulo [y1, . . . , yk]. It follows that for any given t1, . . . , tk , the number of
values of x ∈ [X ] with (x, t1, . . . , tk) ∈ Mk(X, H ; y) is at most∑

y1···yk=y

(1 + X/[y1, . . . , yk]) ⩽ τk(y) · (1 + X/ radk(y)).

Lemma 3.1 follows upon summing over t1, . . . , tk ∈ [H ]. □

Remark 3.2. For a typical value of y ⩽ X , Lemma 3.1 saves a factor of roughly y over the trivial bound
H k X , even if H ⩽ X1−δ , say. Lemma 3.1 is close to optimal on average over y ⩽ X , as one can prove by
considering prime values of y, for instance. In some regimes, one can do better by other arguments: one
can first fix a choice of yi (then select x and choose ti ≡ −x mod yi ) to get

|Mk(X, H ; y)| ⩽
∑

y1···yk=y

X
∏

i

(1 + H/yi ) ⩽ τk(y)X max
y1···yk=y

∏
i

(1 + H/yi ),

which beats Lemma 3.1 when H ⩾ y and y/ radk(y) is large, but not in general.

Lemma 3.3. Let k, y, X, H ⩾ 1 be integers. Then Bk(X, H ; y), which denotes the set of integer tuples
(x, t1, . . . , tk, h1, . . . , hk) ∈ [X ] × [H ]

k
× [−H, H ]

k with y | (x + t1)(x + t2) · · · (x + tk)h1h2 · · · hk and
h1h2 · · · hk ̸= 0, has size at most O(H)2k

· τ2(y)τk(y)2
· O(1 + X/ radk(y)).

Proof. We write y = uv with u | (x + t1)(x + t2) · · · (x + tk) and v | h1h2 · · · hk (where u, v ⩾ 1). The
number of choices of (u, v) is ⩽ τ2(y). Using the notation in Lemma 3.1 and Proposition 2.1, we then
find that

|Bk(X, H ; y)| ⩽
∑
uv=y

|Mk(X, H ; u)| · Nk(H ; v) ⩽ τ2(y) max
uv=y

|Mk(X, H ; u)| · Nk(H ; v).
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Now for any fixed u, v, we apply Lemma 3.1 to bound |Mk(X, H ; u)| and (2-2) to bound Nk(H ; v),
getting

|Mk(X, H ; u)| ⩽ H kτk(u) · (1 + X/ radk(u)) and Nk(H ; v) ⩽ (2H)kτk(v)/v,

respectively. This leads to the total bound

|Bk(X, H ; y)| ≪ τ2(y)H 2kτk(y)2
·

(
1 +

X
v radk(u)

)
.

For any uv = y, we have

v radk(u) ⩾ radk(y),

by the multiplicativity of radk , the formula (3-1), and the inequality pℓ2 p⌈ℓ1/k⌉ ⩾ p⌈(ℓ1+ℓ2)/k⌉ (valid for
all primes p and integers ℓ1, ℓ2 ⩾ 0). Thus we complete the proof. □

If we allowed h1h2 · · · hk = 0, we would have X · O(H)2k−1 tuples in Bk(X, H ; y). Lemma 3.3 gives
a relative saving of roughly y/H on average over y ≪ X ; this follows from (the proof of) Lemma 3.5
below, whose proof requires the following lemma.

Lemma 3.4. Let K , k ⩾ 2 be integers. For integers i ⩾ 1, let

ci :=

∑
(i−1)k< j⩽ik

(
j + K − 1

K − 1

)
.

Then ci ⩽ K K (ik)K . Furthermore, for all primes p and reals s > 1, we have∑
j⩾1

τK (p j )
p j

radk(p j )
p− js ⩽ 1 +

c1

ps +
c2

p2s + · · · .

Proof. The first part is clear, since ci ⩽
∑

0⩽ j⩽ik

( j+K−1
K−1

)
=

(ik+K
K

)
⩽ (K + ik)K ⩽ K K (ik)K (since

K , k ⩾ 2). The second part follows from the inequality

∑
(i−1)k< j⩽ik

τK (p j )p j

radk(p j )p js =

∑
(i−1)k< j⩽ik

( j+K−1
K−1

)
p⌈ j/k⌉ p j (s−1)

⩽
∑

(i−1)k< j⩽ik

( j+K−1
K−1

)
pi pi(s−1)

=
ci

pis ,

which holds because we have ⌈ j/k⌉ = i and j ⩾ i whenever (i − 1)k < j ⩽ ik. □

It turns out that to prove the key Lemma 3.7 (below) for Theorem 1.6, we need a bound of the form
(3-2).

Lemma 3.5. Let k, X, H ⩾ 1 be integers with X large and H ⩽ X. There exists a positive integer
Ck = O(kO(kO(k))) (depending only on k) such that the following holds:

Ex∈[X ]

∑
y∈(x,x+H ]

τ2k(y)2k
· τ2(y)τk(y)2

· (1 + X/ radk(y)) ≪k H(log X)Ck . (3-2)
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Proof. The case k = 1 is clear by (2-11) (since rad1(y) = y), so suppose k ⩾ 2 for the remainder of this
proof. Let K := (2k)2k

· 2k2 ⩽ k4k+3. Then τ2k(y)2kτ2(y)τk(y)2 ⩽ τK (y), since for all integers j1, j2 ⩾ 1
we have τ j1(y)τ j2(y) ⩽ τ j1 j2(y) by [Benatar et al. 2022, (3.2)]. By Rankin’s trick, the left-hand side of
(3-2) is therefore at most H times∑

y⩽x+H

τK (y) · (X−1
+ radk(y)−1) ≪K (log X)K−1

+

∑
n⩾1

τK (n)
n

radk(n)
n−1−1/ log X .

By Lemma 3.4 and the multiplicativity of τK and radk , we find that for s > 1, we have∑
n⩾1

τK (n)
n

radk(n)
n−s ⩽

∏
p⩾2

(
1 +

c1

ps +
c2

p2s + · · ·

)
, (3-3)

where ci ⩽ K K (ik)K ⩽ K 2K (2K )K 2i/2 (since k ⩽ K and i K /2i/2 ⩽ (2K/ log 2)K /eK , and e log 2 ⩾ 1).
But then

c2

p2 +
c3

p3 + · · · ≪
K 4K

p2 .

Therefore, the right-hand side of (3-3) is at most

∏
p⩾2

(
1 +

1
ps

)c1 ∏
p⩾2

(
1 +

1
p2

)O(K 4K )

.

After plugging in s = 1 + 1/ log X and the bound c1 ⩽ K 2K , Lemma 3.5 follows. □

We also need a simple but finicky combinatorial estimate.

Lemma 3.6. Let k, x, H ⩾ 1 be integers. Let A1,2(x, H) be the number of tuples (a1, . . . , a2k) ∈

(x, x + H ]
2k satisfying both

(1) {a1, . . . , ak} = {ak+1, . . . , a2k} (in the usual sense, without multiplicities), and

(2) a1 · · · ak = ak+1 · · · a2k .

Let A1(x, H) be the number of tuples (a1, . . . , a2k) ∈ (x, x + H ]
2k satisfying (1) (but not necessarily (2)).

Then A1,2(x, H) ⩾ k!H k
− Ok(H k−1) and A1(x, H) ⩽ k!H k

+ Ok(H k−1).

Proof. Call a tuple (a1, . . . , a2k) ∈ (x, x + H ]
2k good if it satisfies (1). Let A⋆

1 be the number of good
tuples where a1, . . . , ak are pairwise distinct. Let A†

1 be the number of remaining good tuples, namely
good tuples where

∏
1⩽i< j⩽k(ai − a j ) = 0. Then A1 ⩽A⋆

1 +A†
1.

Clearly A⋆
1 = k!H(H −1) · · · (H −k +1) (since when the ai are all different for 1⩽ i ⩽ k, condition (1)

implies that (ak+1, . . . , a2k) is a permutation of (a1, . . . , ak); and conversely, when (ak+1, . . . , a2k) is a
permutation of (a1, . . . , ak), both (1) and (2) hold). Furthermore, A1,2 ⩾A⋆

1.
On the other hand, A†

1 ⩽
( H

k−1

)
· (k − 1)2k (since if

∏
1⩽i< j⩽k(ai − a j ) = 0, then {a1, . . . , ak} must lie

in some (k − 1)-element subset S ⊆ (x, x + H ], and then condition (1) implies that each of a1, . . . , a2k is
an element of S).
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We now know A⋆
1 = k!H k

+ Ok(H k−1) and A†
1 ≪k H k−1. So A1,2 ⩾ A⋆

1 ⩾ k!H k
− Ok(H k−1), and

A1 ⩽A⋆
1 +A†

1 ⩽ k!H k
+ Ok(H k−1). □

Given integers x1, x2, H ⩾ 1, let I j = (x j , x j + H ] for j ∈ {1, 2}. We are now ready to estimate the
size of the set

{(n1, n2, . . . , n2k; m1, m2, . . . , m2k) ∈ I 2k
1 × I 2k

2 : n1 · · · nkm1 · · · mk = nk+1 · · · n2kmk+1 · · · m2k}. (3-4)

Lemma 3.7. Fix an integer k ⩾ 1; let Ck be as in Lemma 3.5. Let X, H be large integers with H :=

H(X) → +∞ as X → +∞. Suppose H ≪ X (log X)−2Ck . Then in expectation over x1, x2 ∈ [X ], the size
of the set (3-4) is k!

2 H 2k
+ oX→+∞(H 2k).

Proof. We roughly follow the proof from Section 2 of Theorem 1.3; however, the present situation is
more complicated in some aspects, which we address using some new symmetry tricks.

First, let T ⋆
k (I1, I2) be the subset of (3-4) satisfying the following conditions:

(1) If u ∈ {mk+1, . . . , m2k}, then u ∈ {m1, . . . , mk}.

(2) If u ∈ {m1, . . . , mk}, then u ∈ {mk+1, . . . , m2k}.

(3) If u ∈ {nk+1, . . . , n2k}, then u ∈ {n1, . . . , nk}.

(4) If u ∈ {n1, . . . , nk}, then u ∈ {nk+1, . . . , n2k}.

In the notation of Lemma 3.6, applied with a = m and a = n (separately), we have #T ⋆
k (I1, I2) ⩾

A1,2(x1, H)A1,2(x2, H) and #T ⋆
k (I1, I2) ⩽A1(x1, H)A1(x2, H), so

#T ⋆
k (I1, I2) = (k!H k

+ Ok(H k−1))2
= k!

2 H 2k
+ Ok(H 2k−1). (3-5)

In general, given an element n ∈ I 2k
1 × I 2k

2 of (3-4), let U be the set of integers u that violate at least
one of the conditions (1)–(4) above. Then n ∈ T ⋆

k (I1, I2) if and only if U = ∅. This simple observation
will help us estimate the size of (3-4).

Let N ⋆
k (I1, I2) be the subset of (3-4) satisfying the following conditions:

(1) n2k /∈ {n1, . . . , nk}. (This implies, but is not equivalent to, n2k ∈ U .)

(2) If u ∈ U , then τ2k(u) ⩽ τ2k(n2k).

Then (3-4) has size at least #T ⋆
k (I1, I2) and we claim that (3-4) has size at most

⩽ #T ⋆
k (I1, I2) + 2k · #N ⋆

k (I1, I2) + 2k · #N ⋆
k (I2, I1).

First note that for each element n of (3-4) lying outside of T ⋆
k (I1, I2), there exist v ∈ U and (a, b, c) ∈

{m, n} × {0, k} × [k], with τ2k(v) = maxu∈U τ2k(u), such that ab+c = v and ab+c /∈ {a(k−b)+i : i ∈ [k]};
the existence of v with τ2k(v) = maxu∈U τ2k(u) follows from the fact that U ̸= ∅, and the existence of
(a, b, c) then follows from the definition of U . The claim then follows from the definitions of N ⋆

k (I1, I2)

and N ⋆
k (I2, I1), upon summing over all possibilities for a, b, c.



Partial sums of typical multiplicative functions over short moving intervals 403

It follows that in expectation over x1, x2 ∈ [X ], the size of (3-4) is

Ex1,x2#T ⋆
k (I1, I2) + O(2k · Ex1,x2#N ⋆

k (I1, I2)). (3-6)

The projection I 2k
1 × I 2k

2 ∋ (n1, . . . , n2k; m1, . . . , m2k) 7→ (n1, . . . , nk; m1, . . . , mk; n2k)∈ I k
1 × I k

2 × I1,
i.e., “forgetting” nk+1, . . . , n2k−1, mk+1, . . . , m2k , defines a map π from N ⋆

k (I1, I2) to the set

D⋆
k(I1, I2) := {(n1, . . . , nk; m1, . . . , mk; n2k)∈ I k

1 × I k
2 × I1 : n2k | n1 · · · nkm1 · · · mk, n2k /∈ {n1, . . . , nk}}.

We now bound the fibers of π . Suppose (n1, . . . , n2k; m1, . . . , m2k) ∈ N ⋆
k (I1, I2). Let S1 := {i ∈

{k + 1, . . . , 2k} : ni /∈ U} and S2 := { j ∈ {k + 1, . . . , 2k} : m j /∈ U}, and let

z :=

∏
i∈{k+1,...,2k}\S1

ni

∏
j∈{k+1,...,2k}\S2

m j =
n1 · · · nkm1 · · · mk∏

i∈S1
ni

∏
j∈S2

m j
.

Then the following hold:

• ni ∈ {n1, . . . , nk} for all i ∈ S1, and m j ∈ {m1, . . . , mk} for all j ∈ S2.

• z depends only on n1, . . . , nk, m1, . . . , mk, (ni )i∈S1, (m j ) j∈S2 .

• τ2k−|S1|−|S2|(z)⩽ τ2k(z)⩽ τ2k(n2k)
2k−|S1|−|S2|. (The upper bound on τ2k(z) arises as follows: since z

is the product of 2k−|S1|−|S2| elements ul of U , we have an upper bound ⩽
∏

1⩽l⩽2k−|S1|−|S2|
τ2k(ul),

which is ⩽
∏

1⩽l⩽2k−|S1|−|S2|
τ2k(n2k).)

Therefore, the fiber of π over (n1, . . . , nk; m1, . . . , mk; n2k) ∈ D⋆
k(I1, I2) has size at most∑

S1,S2⊆{k+1,...,2k}

k|S1| · k|S2| · τ2k(n2k)
2k−|S1|−|S2| =

∑
0⩽l⩽2k

(
2k
l

)
klτ2k(n2k)

2k−l, (3-7)

where each St (1 ⩽ t ⩽ 2) runs through all possible subsets of {k + 1, . . . , 2k}.
The right-hand side of (3-7) equals (k + τ2k(n2k))

2k ⩽ (k + 1)2kτ2k(n2k)
2k , so upon summing over

(n1, . . . , nk; m1, . . . , mk; n2k) ∈ D⋆
k(I1, I2), we conclude that

#N ⋆
k (I1, I2) ⩽ (k + 1)2k

∑
(n1,...,nk ;m1,...,mk ;n2k)∈D⋆

k (I1,I2)

τ2k(n2k)
2k . (3-8)

We use (3-8) to bound Ex2#N ⋆
k (I1, I2). Note that if (n1, . . . , nk; m1, . . . , mk; n2k) ∈ D⋆

k(I1, I2) and
y :=n2k (so that in particular, mi −x2 ∈[H ] and ni −y ∈[−H, H ]\{0} for all i ∈[k]), then y ∈ (x1, x1+H ]

and

(x2, m1 − x2, . . . , mk − x2, n1 − y, . . . , nk − y) ∈ Bk(X, H ; y),

in the notation of Lemma 3.3. Therefore, summing (3-8) over x2 ∈ [X ] gives the inequality

X · Ex2#N ⋆
k (I1, I2) =

∑
x2∈[X ]

#N ⋆
k (I1, I2) ≪k

∑
y∈(x1,x1+H ]

τ2k(y)2k
· |Bk(X, H ; y)|.
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We next apply Lemma 3.3 to give an upper bound on |Bk(X, H ; y)|, which leads to

X · Ex2#N ⋆
k (I1, I2) ≪k

∑
y∈(x1,x1+H ]

τ2k(y)2k O(H)2k
· τ2(y)τk(y)2

· O(1 + X/ radk(y)).

Average over x1 by using Lemma 3.5, to get

Ex1,x2#N ⋆
k (I1, I2) ≪k O(H)2k

· H · X−1(log X)Ck . (3-9)

This is ≪k H 2k(log X)−Ck in our range of H . By (3-5) and (3-9), quantity (3-6) is k!
2 H 2k

+ Ok(H 2k−1)+

Ok(H 2k(log X)−Ck ). Lemma 3.7 follows. □

Proof of Theorem 1.6. Assume A is large and H ≪ X (log X)−Ck , where Ck = Ak Ak Ak
. Let C := 10, so

that the quantity E(k) = 2k2
+ 2 in Theorem 1.3 satisfies

E(k) ⩽ 4Ck2, E(k + ℓ) ⩽ 5Ck2 for all 1 ⩽ ℓ ⩽ k − 1. (3-10)

(This is just for uniform notational convenience.)

(a) We prove (1-5), a bound on the quantity

E f (Ex |AH ( f, x)|2k
− k!)2, (3-11)

where AH ( f, x) is defined as in (1-1). By expanding the square, we can rewrite (3-11) as

E f (Ex |AH ( f, x)|2k)2 − 2k!E f Ex |AH ( f, x)|2k
+ k!

2. (3-12)

The subtracted term in (3-12) can be computed by switching the summation: it equals

−2k!Ex E f |AH ( f, x)|2k . (3-13)

We estimate (3-13) by a combination of trivial bounds (based on the divisor bound (2-1)) and the moment
estimate in Theorem 1.3. We split the sum Ex E f |AH ( f, x)|2k into two ranges, and apply Theorem 1.3
and (3-10), to get that X · Ex E f |AH ( f, x)|2k equals∑
1⩽x⩽H(log X)5Ck2

E f |AH ( f, x)|2k
+

∑
H(log X)5Ck2⩽x⩽X

E f |AH ( f, x)|2k

=

∑
1⩽x⩽H(log X)5Ck2

O((log X)4Ck2
) +

∑
H(log X)5Ck2⩽x⩽X

(k! + O((log X)−Ck2
)).

Upon summing over both ranges of x above, it follows that Ex E f |AH ( f, x)|2k
= k! + oX→+∞(1) in the

given range of H (provided A is large enough that Ck ⩾ 10Ck2).
We next focus on the first term in (3-12). We expand out the expression and switch the expectations to

get that the first term in (3-12) is

Ex1Ex2E f |AH ( f, x1)|
2k

|AH ( f, x2)|
2k . (3-14)
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Now we use orthogonality and apply Lemma 3.7 to see that (3-14) is k!
2
+ oX→+∞(1) in the given range

of H (if A is sufficiently large). Combining the above together, (1-5) follows.

(b) We prove (1-6), a bound on the quantity (in the notation AH ( f, x) from (1-1))

E f |Ex [AH ( f, x)k AH ( f, x)ℓ]|2 = X−2
∑

x1,x2∈[X ]

BH (x1, x2), (3-15)

where 1⩽ ℓ⩽ k −1 and BH (x1, x2) := E f AH ( f, x1)
k AH ( f, x1)ℓ AH ( f, x2)k AH ( f, x2)

ℓ. This is the same
as counting solutions to

n1n2 · · · nk · m1m2 · · · mℓ = nk+1nk+2 · · · nk+ℓ · mℓ+1mℓ+2 · · · mℓ+k, (3-16)

where x1 ⩽ ni ⩽ x1 + H and x2 ⩽ mi ⩽ x2 + H for all 1 ⩽ i ⩽ k +ℓ. Suppose that x1 ⩾ x2. The left-hand
side in (3-16) is

n1n2 · · · nk · m1m2 · · · mℓ ⩾ xk
1 xℓ

2,

while the right-hand side in (3-16) is

nk+1nk+2 · · · nk+ℓ · mℓ+1mℓ+2 · · · mℓ+k ⩽ (x1 + H)ℓ(x2 + H)k ⩽ xℓ
1 xk

2
(
1 +

H
x2

)k+ℓ
.

To make them equal, we must have

x1/x2 ⩽ (x1/x2)
k−ℓ ⩽

(
1 +

H
x2

)2k
,

which implies that (under the assumption Hk = o(x2))

x2 ⩽ x1 ⩽ x2 + O(k H).

From now on, we only need to consider two cases:

(1) min(x1, x2) ≪ k H .

(2) |x1 − x2| = O(k H).

We first deal with case (1): min(x1, x2) ≪ k H . By the Cauchy–Schwarz inequality,

|BH (x1, x2)|
2
≪k (E f |AH ( f, x1)|

2(k+ℓ)) · (E f |AH ( f, x2)|
2(k+ℓ)).

Theorem 1.3 and (3-10) imply that BH (x1, x2) ≪k (log X)5Ck2
. So the contribution to (3-15) over all pairs

(x1, x2) with min{x1, x2} ⩽ H is at most ≪ 1/(log X)Ck−10Ck2
, which is oX→+∞(1) by our choice of Ck .

We next deal with case (2): |x1 − x2| = O(k H). Assume x2 < x1. Then all the variables mi , n j are in
[x2, x1 + H ], so by Theorem 1.3 and (3-10), the contribution in this case to (3-16) over x1, x2 is at most

≪k X H(log X)10Ck2
· H k+ℓ(log X)5Ck2

≪ X2(log X)15Ck2
−Ck · H k+ℓ

= X2
· oX→+∞(H k+ℓ),

by our choice of Ck . After dividing by X2 H k+ℓ, we see that the total contribution to (3-15) in this case
is oX→+∞(1).

Combining the two cases above, we obtain the desired (1-6). □
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4. Concluding remarks

Recall the exponent E ′(k) defined after Theorem 1.3. As we mentioned before, Theorem 1.3 implies
E ′(k) ⩽ E(k) = 2k2

+ 2, and the truth may be that E ′(k) grows linearly in k. The method used in [de la
Bretèche 2001b; Harper et al. 2015; Heap and Lindqvist 2016] may help to extend Theorem 1.3, i.e.,
to improve on the bound E ′(k) ⩽ E(k). Alternatively, one might try to improve on Theorem 1.3 via
Hooley’s 1-function technique [1979]; note that (x, x + H ] ⊆ (x, ex] if H ⩽ x .

The true threshold in the problem studied in Theorem 1.2 is more delicate. A closely related problem
is to understand for what range of H , as X → +∞, the following holds:

1
√

H

∑
X<n⩽X+H

f (n)
d

−→ CN (0, 1), (4-1)

where f is a Steinhaus random multiplicative function over the short interval (X, X +H ]. In contrast to the
problem we studied in this paper, X is first fixed in (4-1) and the random multiplicative function f varies.
For this question, it is known that [Soundararajan and Xu 2022] if H →+∞ and H ≪ X/(log X)2 log 2−1+ε,
then such a central limit theorem holds. In the other direction, by using Harper’s remarkable results and
methods [2020] one may be able to show that

E f

∣∣∣∣ 1
√

H

∑
X<n⩽X+H

f (n)

∣∣∣∣ = oX→+∞(1), if H ≫
X

exp((log log X)1/2−ε)
; (4-2)

see [Soundararajan and Xu 2022] for more discussions. Thus, in the above range of H , the
√

H -
normalized partial sums do not have Gaussian limiting distribution. It would be interesting to know if
another choice of normalization would lead to a Gaussian distribution. Now we return to the question
we studied in Theorem 1.2. We established “typical Gaussian behavior” over a range of the form
H ≪ X/(log X)W (X)

= X/(exp(W (X) log log X)) (where H → +∞). It seems that to extend the range
of H so that such a Gaussian behavior holds, significant new ideas would be needed. It would be
interesting to understand the whole story for all ranges of H , for both the question studied in Theorem 1.2
and that in (4-1).
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