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Subconvexity bound for GL(3) × GL(2) L-functions:
Hybrid level aspect

Sumit Kumar, Ritabrata Munshi and Saurabh Kumar Singh

Let F be a GL(3) Hecke–Maass cusp form of prime level P1 and let f be a GL(2) Hecke–Maass cuspform
of prime level P2. We will prove a subconvex bound for the GL(3)× GL(2) Rankin–Selberg L-function
L(s, F × f ) in the level aspect for certain ranges of the parameters P1 and P2.

1. Introduction

In this paper we continue our study of the subconvexity problem for the degree six GL(3) × GL(2)

Rankin–Selberg L-functions using the delta symbol approach [Munshi 2018]. In the first paper on this
theme Munshi [2022] established subconvex bounds in the t-aspect for these L-functions. Since then the
method has been extended by Kumar and Singh together with Sharma and Mallesham (see [Kumar 2023;
Kumar et al. 2020; 2022; Sharma and Sawin 2022]), to produce various instances of subconvexity in the
spectral aspect and twist aspect. Indeed the delta symbol approach has worked quite well in the t-aspect
and the spectral aspect. However its effectiveness and adaptability in the more arithmetic problem of level
aspect remains a point of deliberation. In particular, it seems that new inputs are required to tackle the
level aspect problem for such L-functions, especially when one of the forms is kept fixed and the level of
the other varies. However, as was shown in the lower rank case of Rankin–Selberg convolution of two
GL(2) forms [Holowinsky and Munshi 2013], the problem can be more tractable when both the forms
vary in certain relative range. The aim of the present paper is to prove such a result for GL(3)× GL(2)

Rankin–Selberg convolution.

Theorem 1. Let P1 and P2 be two distinct primes. Let F be a Hecke–Maass cusp form for the congruence
subgroup 00(P1) of SL(3, Z) with trivial nebentypus. Let f be a holomorphic or Maass cusp form for
the congruence subgroup 00(P2) of SL(2, Z) with trivial nebentypus. Let Q = P2

1 P3
2 be the arithmetic

conductor of the Rankin–Selberg convolution of the above two forms. Then we have

L
( 1

2 , F × f
)
≪ Q1/4+ε

(
P1/4

1

P3/8
2

+
P1/8

2

P1/4
1

)
.
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Note that the convexity bound is given by Q1/4+ε. Thus the above bound is subconvex in the range

P1/2+ϵ

2 < P1 < P3/2−ϵ

2 .

This provides the first instance of a subconvex bound in the level aspect for a degree six L-function which
is not a character twist of a fixed L-function. The bound is strongest when P1 and P2 are roughly of same
size P1 ≈ P2, in which case Theorem 1 gives

L
( 1

2 , F × f
)
≪ Q1/4−1/40+ε.

The exponent 1
4 −

1
40 appears in other contexts as well and it seems to be the limit of the delta symbol

approach. We also note that our proof with some suitable modifications works even in the case of
composite levels P1 and P2. But to keep the exposition simple and clean we will only give full details for
the case of prime levels.

For a detailed introduction to automorphic forms on higher rank groups and for basic analytic properties
of Rankin–Selberg convolution L-functions we refer the readers to Goldfeld’s book [2006]. Our treatment
will be at the level of L-functions, and the Voronoi summation formulae for GL(2) and GL(3) are the only
input that we need from the theory of automorphic forms. For a broader introduction to the subconvexity
problem and its applications we refer the readers to [Michel 2007; Munshi 2018].

Historically the level aspect subconvexity problem has proved to be more challenging compared to the
spectral aspect or the t-aspect, regardless of the method adopted. Indeed Weyl shift is all one needs to
prove the t-aspect subconvexity for ζ(s); see [Weyl 1921]. Whereas Burgess had to nontrivially extend
Weyl’s ideas and had to invoke Riemann hypothesis for curves over finite fields, to obtain the first level
aspect subconvexity result L

( 1
2 , χ

)
≪ q3/16+ε; see [Burgess 1963]. In the 1990s Duke, Friedlander

and Iwaniec [Duke et al. 1993; 1994; 2000] used the amplification technique to obtain the level aspect
subconvexity for GL(2) L-functions. The amplification method was extended by Kowalski, Michel and
Vanderkam [Kowalski et al. 2002] to Rankin–Selberg convolutions GL(2)× GL(2). Venkatesh [2010]
used ergodic theory to study orbital integrals, and thus obtained level aspect subconvex bounds for triple
products GL(2)×GL(2)×GL(2), where two forms are fixed and one varies. A similar technique was also
adopted by Michel and Venkatesh [2010] for GL(2) × GL(2) L-functions over any number fields. The
level aspect subconvexity problem for any genuine GL(d) L-function with d > 2 remains an important
open problem.

Our interest in the subconvexity problem for GL(3)× GL(2) Rankin–Selberg convolution is kindled
by two factors. First there is a structural advantage which makes the GL(n)× GL(n − 1) L-functions a
suitable candidate for analytic number theoretic exploration. Indeed the case of n = 2 has been extensively
studied in the literature, as we will see below, and we want to extend to the next level n = 3. Secondly,
GL(3)× GL(2) Rankin–Selberg convolutions appear in important applications, like the quantum unique
ergodicity, and so it is important to analyze different aspects of the subconvexity problem for these
L-functions with the aim of developing techniques that will eventually work in the required scenarios,
e.g., spectral aspect subconvexity for symmetric square L-functions. Finally, let us also stress, that we are
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motivated to explore the scope of the delta symbol approach to subconvexity and other related problems.
After initial success of Munshi [2018], the method has been extended, simplified and generalized by several
researchers, e.g., see [Holowinsky and Nelson 2018; Aggarwal 2020; Aggarwal et al. 2020a; 2020b;
Kowalski et al. 2020; Kumar 2023; Munshi and Singh 2019; Sharma and Sawin 2022; Lin et al. 2023].

The twists of GL(2) L-functions by Dirichlet characters, or in other words GL(2)×GL(1) L-functions
have been studied extensively in the literature, ever since the breakthrough work of Duke, Friedlander
and Iwaniec [1993]. Hybrid subconvexity have also been studied for these L-functions. Since this is the
lower rank analogue of the L-function we are investigating in this paper, we briefly recall some results in
this basic case. Let f be a GL(2) new form of level P2 and let χ be a primitive Dirichlet character of
modulus P3. Suppose (P2, P3) = 1, then Q= P2 P2

3 is the arithmetic conductor of L
( 1

2 , f ⊗χ
)
. Different

methods are now available to prove hybrid subconvexity bound, when the levels of forms vary in a relative
range, say P2 ∼ Pη

3 . Blomer and Harcos [2008] used amplification technique to prove

L
( 1

2 , f ⊗ χ
)
≪ Q1/4+ϵ(Q−1/(8(2+η))

+ Q−1−η/(4(2+η)))

for 0 < η < 1. Aggarwal, Jo and Nowland [Aggarwal et al. 2018] used classical delta method to prove

L
( 1

2 , f ⊗ χ
)
≪ Q1/4−(2−5η)/(20(2+η))+ϵ

for 0 < η < 2
5 . Computing the average of the second moment of L

( 1
2 , f ⊗χ

)
over a family of forms, Hou

and Chen [2019] extended the range of η to 0 < η < 3
2 − θ , where θ is any admissible exponent towards

the Petersson–Ramanujan conjecture for the Fourier coefficients. Currently, the result of Hou and Chen
yields the widest range P2 ≪ P3/2−δ

3 , but it falls short of the Burgess bound. In a recent work, Khan
[2021] not only extended the range of P2, but also obtained the Weyl bound in the case of P2 ∼ P3. By
computing the second moment over a family of GL(2) forms, Khan proved, in the range P3 ≫ P1/2

2 , that∑
f ∈B⋆

k (P2)

∣∣L( 1
2 f ⊗ χ

)∣∣2
≪k,ϵ Qϵ(P2 + P3),

where B⋆
k (P2) denote a basis of holomorphic newforms of level P2 and weight k, and Q= P2 P2

3 . Recently,
during an AIM workshop “Delta symbol and subconvexity”, the first and the third author used the delta
symbol approach to prove

L
( 1

2 , f ⊗ χ
)
≪ϵ Qϵ

√
P2 P3

min{
√

P2,
√

P3}
.

This is of same strength as [Khan 2021].

2. The set-up

Let F and f be as in Theorem 1. We will denote the normalized Fourier coefficients of f by λ f (n), and
that of F by λF (n, r). The Rankin–Selberg convolution is given by the absolutely converging Dirichlet
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series

L(s, F × f ) =

∞∑ ∑
n,r=1

λF (n, r)λ f (n)

(nr2)s

in the right half plane Re(s) = σ > 1. Here it is also given by a degree six Euler product. This function ex-
tends to an entire function and satisfies a functional equation of Riemann type. It is known that this Rankin–
Selberg convolution is the standard L-function of a GL(6) automorphic form [Kim and Shahidi 2002].

2A. Approximate functional equation. The functional equation gives an expression of the central value
L
( 1

2 , F× f
)

in terms of rapidly decaying series, the so called approximate functional equation [Iwaniec and
Kowalski 2004, Theorem 5.3]. Taking a smooth dyadic subdivision of this expression we get the following.

Lemma 2.1. Let Q = P2
1 P3

2 be the arithmetic conductor attached to the L-function L
( 1

2 , F × f
)
. Then,

as Q → ∞, we have

L
( 1

2 , F × f
)
≪ϵ Qϵ

∑
r≤Q(1+2ϵ)/4

1
r sup

N≤Q1/2+ϵ/r2

|Sr (N )|

N 1/2 +Q−2021, (1)

where Sr (N ) is a sum of the form

Sr (N ) :=

∞∑
n=1

λF (n, r)λ f (n)V
(

n
N

)
, (2)

for some smooth function V supported in [1, 2] and satisfying V ( j)(x) ≪ j 1.

This is the usual starting point of the delta symbol approach. Thus, to get subconvexity, it is enough to
get some cancellation in the sum

Sr (N ) =

∞∑
n=1

λF (n, r)λ f (n)V (n/N ),

for N near the generic range N ≍ Q1/2.

2B. Delta symbol. Next we separate the oscillations involved in Sr (N ). For this we will use a Fourier
expansion of the Kronecker delta symbol. For any Q > 1 one has

δ(n) =
1
Q

∑
1≤q≤Q

1
q

∑⋆

a mod q

e
(

an
q

) ∫
R

g(q, x)e
(

nx
q Q

)
dx,

where g(q, x) is a smooth function of x satisfying

g(q, x) = 1 + h(q, x), with h(q, x) = O
( Q

q

( q
Q + |x |

)B)
,

x j ∂ j

∂x j g(q, x) ≪ log Q min
{

Q
q

,
1
|x |

}
,

g(q, x) ≪ |x |
−B, (3)
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for any B > 1 and j ≥ 1. (Here e(z) = e2π i z .) This expansion of δ is due to Duke, Friedlander and
Iwaniec, and one can find details of this in [Iwaniec and Kowalski 2004]. Using the third property of
g(q, x), we observe that the effective range of the integration over x is [−Qε, Qε

]. Also it follows that if
q ≪ Q1−ε and x ≪ Q−ε, then g(q, x) can be replaced by 1 at the cost of a negligible error term. In the
complimentary range, using second property, we have

x j ∂ j

∂x j g(q, x) ≪ Qε.

Finally as in [Munshi 2022], by Parseval and Cauchy, we get∫
R

(|g(q, x)| + |g(q, x)|2) dx ≪ Qε,

i.e., g(q, x) has average size “one” in the L1 and L2 sense. Applying this expansion and choosing
Q = N 1/2, we get

Sr (N ) =

∞∑ ∑
m,n=1

λF (n, r)λ f (m)V (n/N )W (m/N )δ(n − m)

=
1
Q

∫
R

∑
1≤q≤Q

g(q, x)

q

∑⋆

a mod q

∞∑
n=1

λF (n, r)e
(

na
q

)
e
(

nx
q Q

)
V

(
n
N

)

×

∞∑
m=1

λ f (m)e
(

−ma
q

)
e
(

−mx
q Q

)
W

(
m
N

)
dx . (4)

2C. Ideas behind the proof. In this section, we will discuss the method and present a sketch of the proof.
For simplicity, let’s consider the generic case, i.e., N =

√
P2

1 P3
2 , r = 1 and q ≍ Q =

√
N . Thus Sr (N ) in

(4) looks like
1

Q2

∑
q∼Q

∑⋆

a mod q

∑
n∼N

λF (n, 1)e
(

an
q

) ∑
m∼N

λ f (m)e
(

−am
q

)
.

On applying GL(3) Voronoi to the n-sum, the dual length becomes

n⋆
∼

Conductor
Initial Length

=
Q3 P1

N
= P1 N 1/2,

and we save
Initial Length
√

Conductor
=

N

Q3/2 P1/2
1

.

Next we apply GL(2) Voronoi formula to the sum over m. In this case, the dual length (generic) is given
by

m⋆
∼

Q2 P2

N
= P2,
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and we save N/(Q
√

P2) in this step. The resulting character sum is given by∑⋆

a mod q

S(−ā P1, n⋆
; q)e

(
m⋆ā P2

q

)
= qe

(
P1m⋆ P2n⋆

q

)
.

This reduction of the character sum into an additive character with respect to the GL(3) variable n⋆ drives
the rest of the argument. We save

√
Q from the sum over a. Hence, in total, we have saved

N

Q3/2 P1/2
1

×
N

Q
√

P2
×

√
Q =

N
√

P1 P2
.

In the next step, we apply Cauchy’s inequality to the n⋆-sum in the following resulting expression:∑
q∼Q

∑
n⋆∼P1

√
N

λF (n, 1)
∑

m⋆∼P2

λ f (m)e
(

P1m⋆ P2n⋆

q

)
.

After Cauchy, we arrive at

(P1
√

N )1/2
( ∑

n⋆∼P1
√

N

∣∣∣∣∑
q∼Q

∑
m⋆∼P2

λ f (m)e
(

P1m⋆ P2n⋆

q

)∣∣∣∣2)1/2

,

in which we seek to save
√

P1 P2 and a little more. In the final step, we apply Poisson summation formula
to the n⋆-sum. In the zero frequency(n⋆

= 0), we save (Q P2)
1/2 which is sufficient provided

(Q P2)
1/2 > (P1 P2)

1/2
⇐⇒ Q > P1 ⇐⇒ P3/2

2 > P1.

In the nonzero frequency, we save (P1
√

N/
√

Q2)1/2. From the additive character inside the modulus,
which arises due to a specific feature of GL(3)× GL(2) L-functions, we also save

√
Q. Thus we save

(P1
√

N )1/2, which is sufficient if

(P1
√

N )1/2 > (P1 P2)
1/2

⇐⇒ P1 > P1/2
2 .

Hence, we obtain subconvexity in the range P1/2
2 < P1 < P3/2

2 . Optimal saving, from Poisson, can be
chosen by taking the minimum of the zero and nonzero frequencies savings. Hence

S(N ) ≪
N

√
P1 P2

min{
√

Q P2,
√

P1
√

N }

=
N

min{N 1/4/P1/2
1 , N 1/4/P1/2

2 }

,

and consequently

L
( 1

2 , F × f
)
≪

(P2
1 P3

2 )1/4

min{P3/8
2 /P1/4

1 , P1/4
1 /P1/8

2 }

,

which is best possible when P1 ≍ P2(:= P) and P1 ̸= P2. In this case we get

L
(1

2 , F × f
)
≪ϵ (P5)1/4−1/40+ϵ .
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3. Voronoi summation formula

Our next step involves applications of summation formulas.

3A. GL(3) Voronoi. In this section, we analyze the sum over n using GL(3) Voronoi summation formula.
The following Lemma, except for the notations, is taken from [Zhou 2018]. Let F be a Hecke–Maass
cusp form of type (ν1, ν2) for the congruent subgroup 00(P1) of SL(3, Z) with the trivial character. The
Fourier coefficients of F and that of its dual F̃ are related by

λF (r, n) = λF̃ (n, r),

for (nr, P1) = 1. Let

α1 = −ν1 − 2ν2 + 1, α2 = −ν1 + ν2, α3 = 2ν1 + ν2 − 1

be the Langlands parameters for F ; see [Goldfeld 2006] for more details. Let g be a compactly supported
smooth function on (0, ∞) and g̃(s) =

∫
∞

0 g(x)x s−1 dx be its Mellin transform. For ℓ = 0 and 1, we
define

γℓ(s) := iℓε(F)P1/2+s
1

π−3s−3/2

2

3∏
i=1

0((1 + s + αi + ℓ)/2)

0((−s − αi + ℓ)/2)
,

with |ε(F)| = 1. Set γ±(s) = γ0(s) ∓ γ1(s) and let

H±(y) =
1

2π i

∫
(σ )

y−s π−3s−3/2

2
γ±(s)g̃(−s) ds,

where σ > −1+max{− Re(α1), − Re(α2), − Re(α3)}. Let G±(y) = P1/2
1 H±(y/P1). With the aid of the

above terminology, we now state the GL(3) Voronoi summation formula in the following lemma.

Lemma 3.1. Let g(x) and λF (n, r) be as above. Let a, q ∈ Z with q > 0, (a, q) = 1, and let ā be the
multiplicative inverse of a modulo q. Suppose (qr, P1) = 1. Then we have

∞∑
n=1

λF (n, r)e
(

an
q

)
g(n) = q

∑
±

∑
n1 | qr

∞∑
n2=1

λF (n1, n2)

n1n2
S(r ā P1, ±n2; qr/n1)G±

(
n2

1n2

q3r

)
where S(a, b; q) is the Kloosterman sum which is defined as

S(a, b; q) =

∑⋆

x mod q

e
(

ax + bx̄
q

)
.

Proof. See [Zhou 2018] for the proof. □

To apply Lemma 3.1 in our setup, we need to extract the oscillations of the integral transform. To this
end, we state the following lemma.
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Lemma 3.2. Let g be supported in the interval [X, 2X ] and let H± be defined as above. Then for any
fixed integer K ≥ 1 and x X ≫ 1, we have

H±(x) = x
∫

∞

0
g(y)

K∑
j=1

c j (±)e(3(xy)1/3) + d j (±)e(−3(xy)1/3)

(xy) j/3 dy + O((x X)(−K+2)/3),

where c j (±) and d j (±) are some absolute constants depending on αi , for i = 1, 2, 3.

Proof. See Lemma 6.1 of [Li 2009]. □

Plugging the leading term of Lemma 3.2 in Lemma 3.1 and using the resulting expression in (4) we
see that the sum over n gets transformed into

N 2/3

P1/6
1 qr2/3

∑
±

∑
n1 | qr

n1/3
1

∞∑
n2=1

λF (n1, n2)

n1/3
2

S(r ā P1, ±n2; qr/n1)I( · ), (5)

where

I( · ) =

∫
∞

0
V (z)e

(
N xz
q Q

±
3(Nn2

1n2z)1/3

P1/3
1 qr1/3

)
dz.

We observe that, using integration by parts repeatedly, the above integral is negligibly small if

n2
1n2 ≫ N ϵ

√
N P1r = N ϵ P1 Q3r

N
=: N0.

In the case when P1 | qr , an appropriate Voronoi summation from [Zhou 2018] can still be used. In
fact it turns out that our analysis in this paper still goes through with slight modification and the final
bound is even better. As such we proceed to present our analysis only in the coprime case.

3B. GL(2) Voronoi. In this section, we dualize the sum over m using GL(2) Voronoi summation formula.

Lemma 3.3. Let f ∈ Hk(P2) be a holomorphic Hecke cuspform with Fourier coefficients λ f (n) and
trivial nebentypus. Let a and q be integers with (a P2, q) = 1. Let g be a compactly supported smooth
bump function on R. Then we have

∞∑
m=1

λ f (m)e
(

−am
q

)
g(n) =

1
q

η f (P2)
√

P2

∞∑
n=1

λ f (m)e
(

ma P2

q

)
H

(
m

P2q2

)
, (6)

where aā ≡ 1 (mod q), |η f (P2)| = 1 and

H(y) = 2π ik
∫

∞

0
g(x)Jk−1(4π

√
xy) dx,

where Jk−1 is the J -Bessel function and k is the weight of f .

Proof. See the appendix of [Kowalski et al. 2002]. □

Extracting the oscillations of Jk−1,

Jk−1(2πx) = e(x)Wk−1(x) + e(−x)W k−1(x),
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with

x j d j

dx j Wk−1(x) ≪ j,k 1/
√

x,

we see that H(y) can be essentially replaced by

H(y) =
2π ik

y1/4

∫
∞

0
g1(x)e(±2

√
xy) dx,

in our analysis, where g1 is the new weight function which has compact support and x j g( j)
1 (x) ≪ j 1,

j ≥ 0. Applying the above lemma, the sum over m in (4) reduces to

N 3/4η f (P2)

P1/4
2

√
q

∞∑
m=1

λ f (m)

m1/4 e
(

ma P2

q

) ∫
∞

0
W (y)e

(
−yN x

q Q

)
e
(

±2
√

Nmy

q P1/2
2

)
dy. (7)

Notice the abuse of notation: the weight function W is different from the one in (4). Using stationary
phase analysis we observe that the above integral is negligibly small unless

m ≪ N ϵ P2 = N ϵ Q2 P2

N
=: M0.

Again we will ignore the degenerate case where P2 | q and proceed with the analysis of the generic
case. Indeed our analysis works in the degenerate case as well, and the bound that we obtain is even
better (as one will expect).

Now plugging (5) and (7) in (4), we arrive at

N 17/12η f (P2)

P1/6
1 P1/4

2 Qr2/3

∑
1≤q≤Q

1
q5/2

∑
±

∑
n1 | qr

n1/3
1

∑
n2≪N0/n2

1

λF (n1, n2)

n1/3
2

∑
m≪M0

λ f (m)

m1/4 C( · )I( · ), (8)

where the integral transform is given by

I( · ) =

∫
R

W (x)g(q, x)

∫
∞

0
W (y)

∫
∞

0
V (z)e

(
N x(z − y)

q Q
±

2
√

Nmy

q P1/2
2

±
3(Nn2

1n2z)1/3

P1/3
1 qr1/3

)
dz dy dx,

and the character sum is given by

C( · ) :=

∑⋆

a mod q

S(r ā P1, ±n2; qr/n1)e
(

mā P2

q

)
=

∑
d | q

dµ

(
q
d

) ∑⋆

α mod qr/n1
P1n1α≡−m P2 mod d

e
(

±
αn2

qr/n1

)
.

4. Cauchy and Poisson

4A. Cauchy inequality. Now we apply Cauchy’s inequality to the n2-sum in (8). To this end, we split
the sum over q into dyadic blocks q ∽ C and further writing q = q1q2 with q1 | (n1r)∞, (n1r, q2) = 1,
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we see that Sr (N ) is bounded by

sup
C≪Q

N 17/12

P1/4
2 P1/6

1 Qr2/3C5/2

∑
±

∑
n1

(n1,r)
≪C

n1/3
1

∑
n1

(n1,r)
|q1|(n1r)∞

∑
n2≪N0/n2

1

|λF (n1, n2)|

n1/3
2

×

∣∣∣∣ ∑
q2∽C/q1

∑
m≪M0

λ f (m)

m1/4 C( · )I( · )

∣∣∣∣, (9)

On applying the Cauchy’s inequality to the n2-sum we arrive at

Sr (N ) ≪ sup
C≪Q

N 17/12

P1/4
2 P1/6

1 Qr2/3C5/2

∑
±

∑
n1

(n1,r)
≪C

n1/3
1 21/2

∑
n1

(n1,r)
|q1|(n1r)∞

√
�, (10)

where

2 =

∑
n2≪N0/n2

1

|λF (n1, n2)|
2

n2/3
2

, (11)

and

� =

∑
n2≪N0/n2

1

∣∣∣∣ ∑
q2∽C/q1

∑
m≪M0

λ f (m)

m1/4 C( · )I( · )

∣∣∣∣2

. (12)

4B. Poisson. We now apply the Poisson summation formula to the n2-sum in (12). To this end, we
smooth out the n2-sum, i.e., we plug in an appropriate smooth bump function, say, W . Opening the
absolute value square, we get

� =

∑ ∑
q2,q ′

2∽C/q1

∑ ∑
m,m′≪M0

λ f (m)λ f (m′)

(mm′)1/4 ×

∑
n2∈Z

W
(

n2

N0/n2
1

)
C( · )C( · )I( · )I( · ).

Reducing n2 modulo q1q2q ′

2r/n1 := γ , and using the change of variable

n2 7→ n2q1q2q ′

2r/n1 + β, with 0 ≤ β < q1q2q ′

2r/n1,

followed by the Poisson summation formula, we arrive at

� =

∑ ∑
q2,q ′

2∽C/q1

∑ ∑
m,m′≪M0

λ f (m)λ f (m′)

(mm′)1/4

∑
n2∈Z

∑
β mod γ

C( · )C( · )J , (13)

where

J =

∫
R

W
(

wγ + β

N0/n2
1

)
I( · )I( · )e(−n2w) dw.

Now changing the variable
wγ + β

N0/n2
1

7→ w,

we arrive at

J =
N0

n2
1γ

e
(

n2β

γ

) ∫
R

W (w)I( · )I( · )e
(

−n2 N0w

n2
1γ

)
dw.
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Plugging this back in (13), and executing the sum over β, we arrive at

� =
N0

n2
1

∑ ∑
q2,q ′

2∽C/q1

∑ ∑
m,m′≪M0

λ f (m)λ f (m′)

(mm′)1/4

∑
n2∈Z

CI, (14)

where

C =

∑ ∑
d | q

d ′
| q ′

dd ′µ

(
q
d

)
µ

(
q ′

d ′

) ∑⋆

α mod qr/n1
P1n1α≡−m P2 mod d

∑⋆

α′ mod q ′r/n1
P1n1α

′
≡−P2m′ mod d ′

±αq ′

2∓α′q2≡−n2 mod q1q2q ′

2r/n1

1 (15)

and

I =

∫
R

W (w)I( · )I( · )e
(

−n2 N0w

n1q1q2q ′

2r

)
dw. (16)

On applying integration by parts, we see that the above integral is negligibly small if

n2 ≫
Q
q

n1q1q2q ′

2r
N0

:= N2. (17)

5. Bounding the integral

In this section we will analyze the integral I given in (16). Recall that the integral I( · ) is given by

I( ·) =

∫
R

W (x)g(q, x)

∫
∞

0
W (y)

∫
∞

0
V (z)e

(
N x(z−y)

q Q
±

2
√

Nmy

q P1/2
2

±
3(N N0wz)1/3

P1/3
1 qr1/3

)
dz dy dx . (18)

Let’s first focus on x-integral, i.e.,∫
R

W (x)g(q, x)e
(

N x(z − y)

q Q

)
dx .

In the case, q ≪ Q1−ϵ , we split the above integral as follows:(∫
|x |≪Q−ϵ

+

∫
|x |≫Q−ϵ

)
W (x)g(q, x)e

(
N x(z − y)

q Q

)
dx .

For the first part, we can replace g(q, x) by 1 at the cost of a negligible error term (see (3)) so that we
essentially have ∫

|x |≪Q−ϵ

W (x)e
(

N x(z − y)

q Q

)
dx .

Using integration by parts, we observe that the above integral is negligibly small unless

|z − y| ≪
q
Q

Qϵ .

For the second part, using g( j)(q, x) ≪ Qϵ j , we get the restriction |z − y| ≪
q
Q Qϵ . In the other case, i.e.,

q ≫ Q1−ϵ , the condition |z − y| ≪
q
Q Qϵ is trivially true. Now we write z as z = y + u, with |u| ≪

q
Q Qϵ .
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Thus the integral I( · ) up to a negligible error term is given by∫
R

W (x)g(q, x)

∫
∞

0

∫
|u|≪q Qϵ/Q

V (y + u)W (y)e
(

N xu
q Q

)
× e

(
±

2
√

Nmy

q P1/2
2

±
3(N N0w(y + u))1/3

P1/3
1 qr1/3

)
du dy dx . (19)

Now we consider the y-integral∫
R

V (y + u)W (y)e
(

±
2
√

Nmy

q P1/2
2

±
3(N N0w(y + u))1/3

P1/3
1 qr1/3

)
dy.

Expanding (y + u)1/3 into the Taylor series

(y + u)1/3
= y1/3

+
u

3y2/3 −
u2

9y5/3 + · · · ,

we observe that it is enough to consider only the leading term as

3(N N0)
1/3

P1/3
1 qr1/3

u
3y2/3 ≪

Qu
q

≪ Qε.

Thus we are required to analyze the integral

I =

∫
R

W (y)e
(

±
2
√

Nmy

q P1/2
2

±
3(N N0wy)1/3

P1/3
1 qr1/3

)
dy. (20)

By stationary phase analysis we see that the integral is negligibly small unless

2
√

Nm

q P1/2
2

≍
3(N N0)

1/3

P1/3
1 qr1/3

≈
Q
q

.

Thus the above integral is negligibly small unless m ∼ M0 (with M0 as in Section 3B), in which case the
above y-integral is bounded by

I ≪

√
q

√
Q

.

Hence, executing the remaining integrals trivially, and using∫
R

|g(q, x)| dx ≪ Qϵ,

we see that I is bounded by
I( · ) ≪ q3/2/Q3/2.

On substituting this bound in (16), we get

I ≪ q3/Q3. (21)

We record the above discussion in the following lemma.
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Lemma 5.1. Let I , I( · ) and I be as in (20), (18) and (16) respectively. Then we have

I ≪

√
q

√
Q

, I( · ) ≪ q3/2/Q3/2, and I ≪ q3/Q3.

6. Character sums

In this section, we will estimate the character sum C given in (15),

C =

∑ ∑
d | q

d ′
| q ′

dd ′µ

(
q
d

)
µ

(
q ′

d ′

) ∑⋆

α mod qr/n1
P1n1α≡−m P2 mod d

∑⋆

α′ mod q ′r/n1
P1n1α

′
≡−P2m′ mod d ′

±αq ′

2∓α′q2≡−n2 mod q1q2q ′

2r/n1

1. (22)

In the case, n2 = 0, the congruence condition

±αq ′

2 ∓ α′q2 ≡ 0 mod q1q2q ′

2r/n1

implies that q2 = q ′

2 and α = α′. So we can bound the character sum C as

C ≪

∑ ∑
d,d ′

| q

dd ′
∑⋆

α mod qr/n1

P1n1α≡−m P2 mod d
P1n1α≡−P2m′ mod d ′

1 ≪

∑ ∑
d,d ′

| q
(d,d ′) | (m−m′)

dd ′
qr

[d, d ′]
. (23)

For n2 ̸= 0, we have the following lemma.

Lemma 6.1. Let C be as in (15). Then, for n2 ̸= 0, we have

C ≪
q2

1r(m, n1)

n1

∑ ∑
d2 | (q2,n1q ′

2∓mn2 P1 P2)

d ′

2 | (q ′

2,n1q2±m′n2 P1 P2)

d2d ′

2.

Proof. Let’s recall from (15) that

C =

∑ ∑
d | q

d ′
| q ′

dd ′µ

(
q
d

)
µ

(
q ′

d ′

) ∑⋆

α mod qr/n1
P1n1α≡−m P2 mod d

∑⋆

α′ mod q ′r/n1
P1n1α

′
≡−P2m′ mod d ′

±αq ′

2∓α′q2≡−n2 mod q1q2q ′

2r/n1

1.

Using the Chinese remainder theorem, we observe that C can be dominated by a product of two sums
C ≪ C(1)C(2), where

C(1)
=

∑ ∑
d1,d ′

1 | q1

d1d ′

1

∑⋆

β mod q1r
n1

n1β≡−m P1 P2 mod d1

∑⋆

β ′ mod q1r
n1

n1β
′
≡−m′ P1 P2 mod d ′

1

±βq ′

2∓β ′q2+n2≡0 mod q1r/n1

1
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and

C(2)
=

∑ ∑
d2 | q2
d ′

2 | q ′

2

d2d ′

2

∑⋆

β mod q2
n1β≡−m P1 P2 mod d2

∑⋆

β ′ mod q ′

2
n1β

′
≡−m′ P1 P2 mod d ′

2

±βq ′

2∓β ′q2+n2≡0 mod q2q ′

2

1.

In the second sum C(2), since (n1, q2q ′

2) = 1, we get β ≡ −mn1 P1 P2 mod d2 and β ′
≡ −m′n1 P1 P2

mod d ′

2. Now using the congruence modulo q2q ′

2, we conclude that

C(2)
≪

∑ ∑
d2 | (q2,n1q ′

2∓mn2 P1 P2)

d ′

2 | (q ′

2,n1q2±m′n2 P1 P2)

d2d ′

2.

In the first sum C(1), the congruence condition determines β ′ uniquely in terms of β, and hence

C(1)
≪

∑ ∑
d1,d ′

1 | q1

d1d ′

1

∑⋆

β mod q1r/n1
n1β≡−m P1 P2 mod d1

1 ≪
rq2

1 (m, n1)

n1
.

Hence we have the lemma. □

7. Zero frequency

In this section we will estimate the contribution of the zero frequency n2 = 0 to � in (14), and thus
estimate its total contribution to Sr (N ). We have the following lemma.

Lemma 7.1. Let Sr (N ) be as in (10). The total contribution of the zero frequency n2 = 0 to Sr (N ) is
dominated by O(r1/2 N 3/4√P1).

Proof. On substituting bounds for I and C from Lemma 5.1 and (23) respectively into (14), we see that
the contribution of n2 = 0 to �, is bounded by

≪
N0C3

n2
1 M1/2

0 Q3

∑
q2∼C/q1

qr
∑ ∑

d,d ′
| q

(d, d ′)
∑ ∑
m,m′

∼M0
(d,d ′) | (m−m′)

1

≪
N0C3

n2
1 M1/2

0 Q3

∑
q2∼C/q1

qr
∑ ∑

d,d ′
| q

(M0(d, d ′) + M2
0 )

≪
N0C5r M1/2

0

n2
1 Q3q1

(C + M0).
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Upon substituting this bound for � in (10), we get

sup
C≪Q

N 17/12

P1/4
2 P1/6

1 Qr2/3C5/2

∑
±

∑
n1

(n1,r)
≪C

n1/3
1 21/2

∑
n1

(n1,r)
|q1|(n1r)∞

(
N0C5r M1/2

0

n2
1 Q3q1

(C + M0)

)1/2

≪
N 17/12

P1/4
2 P1/6

1 Qr2/3

N 1/2
0 r1/2 M1/4

0

Q3/2

∑
n1

(n1,r)
≪C

21/2

n2/3
1

∑
n1

(n1,r)
|q1|(n1r)∞

1
√

q1
(
√

Q +

√
M0)

≪
N 17/12

P1/4
2 P1/6

1 Qr2/3

N 1/2
0 r1/2 M1/4

0

Q3/2

√
Q

∑
n1

(n1,r)
≪C

21/2

n7/6
1

√
(n1, r).

Note that (as in [Munshi 2022]) we have∑
n1≪Cr

(n1, r)1/2

n7/6
1

21/2
≪

[ ∑
n1≪Cr

(n1, r)

n1

]1/2[∑ ∑
n2

1n2≤N0

|λF (n1, n2)|
2

(n2
1n2)2/3

]1/2

≪ N 1/6
0 . (24)

Using this bound, we see that the contribution of n2 = 0 to Sr (N ) is bounded by

Sr (N ) ≪
N 17/12

P1/4
2 P1/6

1 Qr2/3

N 1/2
0 r1/2 M1/4

0

Q3/2

√
QN 1/6

0 ≪ r1/2 N 3/4
√

P1. □

8. Nonzero frequencies

In this section we will estimate the contribution of the nonzero frequencies n2 ̸= 0 to � in (14). We have
the following lemma.

Lemma 8.1. Let Sr (N ) be as in (10). The total contribution of n2 ̸= 0, to Sr (N ) is dominated by
O(

√
r N 3/4√P2).

Proof. On plugging in the bounds for the character sums and the integrals from Lemmas 6.1 and 5.1
respectively into (14), we see that the contribution of n2 ̸= 0 to � (which we denote by � ̸=0) is bounded
by

q2
1 N0rC3

n3
1 M1/2

0 Q3

∑ ∑
q2,q ′

2∼
C
q1

∑ ∑
d2 | q2
d ′

2 | q ′

2

d2d ′

2

∑ ∑∑
m,m′∼M00̸=n2≪N2

n1q ′

2∓mn2 P1 P2≡0 mod d2

n1q2±m′n2 P1 P2≡0 mod d ′

2

(m, n1).

Further writing q2d2 in place of q2 and q ′

2d ′

2 in place of q ′

2, we arrive at

�̸=0 ≪
q2

1 N0rC3

n3
1 M1/2

0 Q3

∑ ∑
d2,d ′

2≪C/q1

d2d ′

2

∑ ∑
q2∼

C
d2q1

q ′

2∼
C

d′
2q1

∑ ∑∑
m,m′∼M00̸=n2≪N2

n1q ′

2d ′

2∓mn2 P1 P2≡0 mod d2

n1q2d2±m′n2 P1 P2≡0 mod d ′

2

(m, n1). (25)
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Let’s first assume that Cn1/q1 ≪ M0. In this case, we count the number of m in the above expression as
follows: ∑

m∼M0
n1q ′

2d ′

2∓mn2 P1 P2≡0 mod d2

(m, n1) =

∑
ℓ | n1

ℓ
∑

m∼M0/ℓ

n1q ′

2d ′

2ℓ̄∓mn2 P1 P2≡0 mod d2

1 ≪ (d2, n2)

(
n1 +

M0

d2

)
.

In the above estimate we have used the fact (d2, n1) = 1. Counting the number of m′ in a similar fashion
we get that the m-sum and m′-sum in (25) is dominated by

(d ′

2, n1q2d2)(d2, n2)

(
n1 +

M0

d2

)(
1 +

M0

d ′

2

)
.

Now substituting the above bound in (25), we arrive at

q2
1 N0rC3

n3
1 M1/2

0 Q3

∑ ∑
d2,d ′

2≪
C
q1

d2d ′

2

∑ ∑
q2∼

C
d2q1

q ′

2∼
C

d′
2q1

∑
0<|n2|≪N2

(d ′

2, n1q2d2)(d2, n2)

(
n1 +

M0

d2

)(
1 +

M0

d ′

2

)
.

Now summing over n2 and q ′

2, we get the following expression:

q1 N0r N2C4

n3
1 M1/2

0 Q3

∑ ∑
d2,d ′

2≪C/q1

d2
∑

q2∼
C

d2q1

(d ′

2, n1q2d2)

(
n1 +

M0

d2

)(
1 +

M0

d ′

2

)
.

Next we sum over d ′

2 to arrive at

q1 N0r N2C4

n3
1 M1/2

0 Q3

∑
d2≪C/q1

d2
∑

q2∼
C

d2q1

(
n1 +

M0

d2

)(
C
q1

+ M0

)
.

Finally executing the remaining sums, we get

�̸=0 ≪
q1 N0r N2C4

n3
1 M1/2

0 Q3

C
q1

(
Cn1

q1
+ M0

)(
C
q1

+ M0

)
≪

rC5

n3
1 M1/2

0 Q3

C Qn1r
q1

(
Cn1

q1
+ M0

)(
C
q1

+ M0

)

≪
r2C6 QM2

0

Q3 M1/2
0

(
1

n2
1q1

)
≪

r2C5 Q2 M2
0

Q3 M1/2
0

(
1

n2
1q1

)
.

Upon substituting this bound in place of � in (10), we arrive at

sup
C

N 17/12

P1/4
2 P1/6

1 Qr2/3C5/2

rC5/2 M3/4
0

√
Q

∑
±

∑
n1

(n1,r)
≪C

n1/3
1 21/2

∑
n1

(n1,r)
|q1|(n1r)∞

1√
n2

1q1

.
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Note that (for details see [Munshi 2022])∑
n1

(n1,r)
≪C

n1/3
1 21/2

∑
n1

(n1,r)
|q1|(n1r)∞

1√
n2

1q1

≪

∑
n1≪Cr

(n1, r)1/2

n7/6
1

21/2
≪ N 1/6

0 .

On plugging in this estimate, we get

sup
C

N 17/12

P1/4
2 P1/6

1 Qr2/3C5/2

rC5/2 M3/4
0

√
Q

N 1/6
0 ≪

√
r N 3/4

√
P2.

Next we consider the case where Cn1/q1 ≫ M0. Here our count for m modulo d2 is not precise and so
we need to adopt a different strategy for counting. We consider the first congruence relation in (25)

n1q ′

2d ′

2 ∓ mn2 P1 P2 ≡ 0 mod d2.

Note that

n1q ′

2d ′

2 P2 ∓ mn2 P1 ≪ C P2n1/q1 + M0 N2 P1 ≪ C P2n1/q1 + C P2n1/q1 ≪ C P2n1/q1.

Let

n1q ′

2d ′

2 P2 − mn2 P1 = hd2, with h ≪ P2n1. (26)

Similarly, we write the second congruence relation as

n1q2d2 P2 + m′n2 P1 = h′d ′

2, with h′
≪ P2n1. (27)

Using this congruence, we see that the number of d ′

2 is given by O((d2, h′)). Next we multiply h′ and
P2q ′

2n1 into (26) and (27) respectively to arrive at the following equation:

mn2 P1h′
+ hh′d2 = n2

1q2q ′

2d2 P2
2 + P2q ′

2n1m′n2 P1. (28)

We now rearrange the above equation as follows:

P2q ′

2n1m′
− mh′

=
(hh′

− n2
1q2q ′

2 P2
2 )d2

P1n2
:=

ξ

P1n2
.

Reducing this equation modulo h′, the number of m′ turns out to be

O
(

(P2q ′

2n1, h′)

(
1 +

P2

h′

))
.

Thus we arrive at the following bound for �:

q2
1 N0rC3

n3
1 M1/2

0 Q3

∑
d2∼

C
q1

C2

q2
1

∑ ∑
q2∼Cϵ

q ′

2∼Cϵ

∑ ∑∑ ∑
h,h′≪P2n1m∼M0,n2≪N2

ξ≡0 mod P1n2
mh′

−ξ/P1n2≡0 mod P2

(m, n1)(d2, h′)(P2q ′

2n1, h′)

(
1 +

P2

h′

)
.
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Next we count the number of m to get∑
m∼M0

mh′
−ξ/P1n2≡0 mod P2

(m, n1) =

∑
ℓ | n1

ℓ
∑

m∼M0/ℓ
mh′

−ξ/ℓP1n2≡0 mod P2

1 ≪

∑
ℓ | n1

ℓ.

Also given any ξ (necessarily nonzero) the congruence

ξ = (hh′
− n2

1q2q ′

2 P2
2 )d2 ≡ 0 mod n2,

implies that there are O(N ε) many n2. We are left with the following expression:

� ̸=0 ≪
N0rC5

n3
1 M1/2

0 Q3

∑
ℓ | n1

ℓ
∑

d2∼
C
q1

∑ ∑
q2∼Cϵ

q ′

2∼Cϵ

∑ ∑
h,h′≪P2n1

ξ≡0 mod P1ℓ

(d2, h′)(P2q ′

2n1, h′)

(
1 +

P2

h′

)
.

We now consider the congruence

ξ = (hh′
− n2

1q2q ′

2 P2
2 )d2 ≡ 0 mod P1ℓ.

Let’s first assume that d2 ≡ 0 mod P1. Then first counting the number of d2 followed by h and h′, we see
that the number of tuples (h, h′, d2) is given by O((P2

2 n2
1C)/(P1q1ℓ)). Lastly executing the sum over ℓ,

we arrive at
N0rC5

n2
1 M1/2

0 Q3

P2
2 n2

1C
P1q1

.

Now let (d2, P1ℓ) = 1. Then we have

hh′
− n2

1q2q ′

2 P2
2 ≡ 0 mod P1ℓ,

from which the number of h turns out to be P2n1/P1ℓ. Next counting the number of d2 followed by
number of h′, we see that the number of tuples (h, h′, d2) is given by O((P2

2 n2
1C)/(P1q1ℓ)). Hence, in

this case also, we get the same bound. Thus we conclude that

� ̸=0 ≪
N0rC5

n2
1 M1/2

0 Q3

P2
2 n2

1C
P1q1

.

Upon substituting this bound in (10), we arrive at

sup
C≪Q

N 17/12

P1/4
2 P1/6

1 Qr2/3C5/2

(
N0rC5

Q3 M1/2
0

P2
2 C
P1

)1/2 ∑
±

∑
n1

(n1,r)
≪C

n1/3
1 21/2

∑
n1

(n1,r)
|q1|(n1r)∞

1
√

n1q1

≪
N 17/12

P1/4
2 P1/6

1 Qr2/3

(
N0r

Q3 M1/2
0

P2
2 Q
P1

)1/2 ∑
n1

(n1,r)
≪C

21/2

n2/3
1

(n1, r)1/2.
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Now following the argument of [Munshi 2022], we conclude that∑
n1

(n1,r)
≪C

21/2

n2/3
1

(n1, r)1/2
≪ N 1/6

0

∑
n1

(n1,r)
≪C

(n1, r)1/2

n1
≪ N 1/6

0 .

Hence the contribution of the nonzero frequency to Sr (N ) is dominated by

N 17/12

P1/4
2 P1/6

1 Qr2/3

(
N0r

Q3 M1/2
0

P2
2 Q
P1

)1/2

N 1/6
0 ≪

√
r N 3/4

√
P2. □

9. Conclusion

Finally, plugging bounds from Lemmas 7.1 and 8.1 into Lemma 2.1, we get

L
( 1

2 , F × f
)
≪ϵ Qϵ

∑
r≤Q(1+2ϵ)/4

1
r sup

N≤Q1/2+ϵ/r2

√
r N 1/4(

√
P1 +

√
P2)

≪

∑
r≤Q(1+2ϵ)/4

1
r Q

1/8+ϵ(
√

P1 +

√
P2)

≪ Q1/8+ϵ(
√

P1 +

√
P2) ≪ Q1/4+ϵ

(
P1/4

1

P3/8
2

+
P1/8

2

P1/4
1

)
.

This establishes Theorem 1.
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