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The pro-étale fundamental group of a scheme, introduced by Bhatt and Scholze, generalizes formerly
known fundamental groups — the usual étale fundamental group π ét

1 defined in SGA1 and the more
general πSGA3

1 . It controls local systems in the pro-étale topology and leads to an interesting class of
“geometric coverings” of schemes, generalizing finite étale coverings.

We prove exactness of the fundamental sequence for the pro-étale fundamental group of a geometrically
connected scheme X of finite type over a field k, i.e., that the sequence

1→ π
proét
1 (X k̄)→ π

proét
1 (X)→ Galk→ 1

is exact as abstract groups and the map πproét
1 (X k̄)→ π

proét
1 (X) is a topological embedding.

On the way, we prove a general van Kampen theorem and the Künneth formula for the pro-étale
fundamental group.
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1. Introduction

Bhatt and Scholze [2015] introduced the pro-étale topology for schemes. The main motivation was that the
definitions of ℓ-adic sheaves and cohomologies in the usual étale topology are rather indirect. In contrast,
the naive definition of, e.g., a constant Qℓ-sheaf in the pro-étale topology as Xproét ∋U 7→Mapscts(U,Qℓ)

is a sheaf and if X is a variety over an algebraically closed field, then H i (Xét,Qℓ) = H i (Xproét,Qℓ),
where the right-hand side is defined “naively” by applying the derived functor R0(Xproét,−) to the
described constant sheaf.

Along with the new topology, Bhatt and Scholze [2015] introduced a new fundamental group — the
pro-étale fundamental group. It is defined for a connected locally topologically noetherian scheme X with
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a geometric point x̄ and denoted πproét
1 (X, x̄). The name “pro-étale” is justified by the fact that there is an

equivalence πproét
1 (X, x̄)−Sets≃ LocXproét between the categories of (possibly infinite) discrete sets with

continuous action by πproét
1 (X, x̄) and locally constant sheaves of (discrete) sets in Xproét. This is analogous

to the classical fact that π ét
1 (X, x̄)− FSets is equivalent to the category of lcc sheaves on Xét, where

G−FSets denotes finite sets with a continuous G action. This is the first striking difference between these
fundamental groups: πproét

1 allows working with sheaves of infinite sets. In fact, Bhatt and Scholze [2015]
study abstract “infinite Galois categories”, which are pairs (C, F) satisfying certain axioms that (together
with an additional tameness condition) turn out to be equivalent to a pair (G−Sets, FG :G−Sets→ Sets)
for a Hausdorff topological group G and the forgetful functor FG . In fact, one takes G = Aut(F) with a
suitable topology. This generalizes the usual Galois categories, introduced by Grothendieck to define
π ét

1 (X, x̄). In Grothendieck’s approach, one takes the category FÉtX of finite étale coverings together
with the fiber functor Fx̄ and obtains that π ét

1 (X, x̄)− FSets ≃ FÉtX . Discrete sets with a continuous
π

proét
1 (X, x̄)-action correspond to a larger class of coverings, namely “geometric coverings”, which are

defined to be schemes Y over X such that Y → X :

(1) Is étale (not necessarily quasicompact!).

(2) Satisfies the valuative criterion of properness.

We denote the category of geometric coverings by CovX (seen as a full subcategory of SchX ). It is
clear that FÉt⊂ CovX . As Y is not assumed to be of finite type over X , the valuative criterion does not
imply that Y → X is proper (otherwise we would get finite étale morphisms again) and so in general
we get more. A basic example of a nonfinite covering in CovX can be obtained by viewing an infinite
chain of (suitably glued) P1

k’s as a covering of the nodal curve X = P1/{0, 1} obtained by gluing 0 and
1 on P1

k (to formalize the gluing one can use [Schwede 2005]). Then, if k = k̄, πproét
1 (X, x̄) = Z and

π ét
1 (X, x̄)= Ẑ. In this example, the prodiscrete group πSGA3

1 defined in Chapter X.6 of [SGA 3 II 1970]
would give the same answer. This is essentially because our infinite covering is a torsor under a discrete
group in Xét. However, for more general schemes (e.g., an elliptic curve with two points glued), the
category CovX contains more. So far, all the new examples were coming from nonnormal schemes. This
is not a coincidence, as for a normal scheme X , any Y ∈ CovX is a (possibly infinite) disjoint union
of finite étale coverings. In this case, πproét

1 (X, x̄) = πSGA3
1 (X, x̄) = π ét

1 (X, x̄). In general π ét
1 can be

recovered as the profinite completion of πproét
1 and πSGA3

1 is the prodiscrete completion of πproét
1 .

The groups πproét
1 belong in general to a class of Noohi groups. These can be characterized as

Hausdorff topological groups G that are Raı̆kov complete and such that the open subgroups form a
basis of neighborhoods at 1G . However, open normal subgroups do not necessarily form a basis of
open neighborhoods of 1G in a Noohi group. In the case of πproét

1 , this means that there might exist a
connected Y ∈ CovX that do not have a Galois closure. Examples of Noohi groups include: profinite
groups, (pro)discrete groups, but also Qℓ and GLn(Qℓ). A slightly different example would be Aut(S),
where S is a discrete set and Aut has the compact-open topology.
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The fact that groups like GLn(Qℓ) are Noohi (but not profinite or prodiscrete) makes πproét
1 better

suited to work with Qℓ (or Qℓ) local systems. Indeed, denoting by LocXproét(Qℓ) the category of Qℓ-local
systems on Xproét, i.e., locally constant sheaves of finite-dimensional Qℓ-vector spaces (again, the “naive”
definition works in Xproét), one has an equivalence Repcts,Qℓ

(π
proét
1 (X, x̄)) ≃ LocXproét(Qℓ). This fails

for π ét
1 , as any Qℓ-representation of a profinite group must stabilize a Zℓ-lattice, while Qℓ-local systems

(in the above sense) stabilize lattices only étale locally. The group πSGA3
1 is not enough either; as shown

by [Bhatt and Scholze 2015, Example 7.4.9] (due to Deligne), if X is the scheme obtained by gluing two
points on a smooth projective curve of suitably large genus, there are Qℓ-local systems on X that do not
come from a representation of πSGA3

1 (X).
We will often drop x̄ from the notation for brevity. This usually does not matter much, as a different

choice of the base point leads to an isomorphic group.

Classical results. In [SGA 1 1971], Grothendieck proved some foundational results regarding the étale
fundamental group. Among them:

(1) The fundamental exact sequence, i.e., the comparison between the “arithmetic” and “geometric”
fundamental groups:

Theorem 1.1 [SGA 1 1971, Exposé IX, Théorème 6.1]. Let k be a field with algebraic closure k̄. Let X
be a quasicompact and quasiseparated scheme over k. If the base change X k̄ is connected, then there is a
short exact sequence

1→ π ét
1 (X k̄)→ π ét

1 (X)→ Galk→ 1

of profinite topological groups.

(2) The homotopy exact sequence:

Theorem 1.2 [SGA 1 1971, Exposé X, Corollaire 1.4]. Let f : X→ S be a flat proper morphism of finite
presentation whose geometric fibers are connected and reduced. Assume S is connected and let s̄ be a
geometric point of S. Then there is an exact sequence

π ét
1 (X s̄)→ π ét

1 (X)→ π ét
1 (S)→ 1

of fundamental groups.

(3) “Künneth formula”:

Proposition 1.3 [SGA 1 1971, Exposé X, Corollary 1.7]. Let X, Y be two connected schemes locally of
finite type over an algebraically closed field k and assume that Y is proper. Let x̄, ȳ be geometric points
of X and Y respectively with values in the same algebraically closed field extension K of k. Then the map
induced by the projections is an isomorphism

π ét
1 (X ×k Y, (x̄, ȳ)) ∼−→ π ét

1 (X, x̄)×π ét
1 (Y, ȳ).
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(4) Invariance of π ét
1 under extensions of algebraically closed fields for proper schemes [SGA 1 1971,

Exposé X, Corollaire 1.8].

(5) General van Kampen theorem (proved in a special case in [SGA 1 1971, IX Section 5] and generalized
in [Stix 2006]).

The aim of this and the subsequent article [Lara 2022] is to generalize statements (1) and (2), corre-
spondingly, to the case of πproét

1 . In the present article, we also establish the generalizations of all the
other points besides (2). The main difficulties in trying to directly generalize the proofs of Grothendieck
are as follows:

• Geometric coverings of schemes (i.e., elements of CovX defined above) are often not quasicompact,
unlike elements of FÉtX . For example, for X a variety over a field k and connected Y ∈ CovX k̄

,
there may be no finite extension l/k such that Y would be defined over l. Similarly, some useful
constructions (like Stein factorization) no longer work (at least without significant modifications).

• For a connected geometric covering Y ∈ CovX , there is in general no Galois geometric covering
dominating it. Equivalently, there might exist an open subgroup U < π

proét
1 (X) that does not contain

an open normal subgroup. This prevents some proofs that would work for πSGA3
1 to carry over

to πproét
1 .

• The topology of πproét
1 is more complicated than the one of π ét

1 , e.g., it is not necessarily compact,
which complicates the discussion of exactness of sequences.

Our results. Our main theorem is the generalization of the fundamental exact sequence. More precisely,
we prove the following:

Theorem (Theorem 4.14). Let X be a geometrically connected scheme of finite type over a field k. Then
the sequence

1→ π
proét
1 (X k̄)→ π

proét
1 (X)→ Galk→ 1

is exact as abstract groups.
Moreover, the map πproét

1 (X k̄)→ π
proét
1 (X) is a topological embedding and the map πproét

1 (X)→Galk
is a quotient map of topological groups.

The most difficult part is showing that πproét
1 (X k̄) → π

proét
1 (X) is injective or, more precisely, a

topological embedding. This is Theorem 4.13.
As in the case of usual Galois categories, statements about exactness of sequences of Noohi groups

translate to statements on the corresponding categories of G−Sets. If the groups involved are the pro-étale
fundamental groups, this translates to statements about geometric coverings. We give a detailed dictionary
in Proposition 2.37. As Noohi groups are not necessarily compact, the statements on coverings are
equivalent to some weaker notions of exactness (e.g., preserving connectedness of coverings is equivalent
to the map of groups having dense image). In fact, we first prove a “near-exact” version of Theorem 4.14
and obtain the above one as a corollary using an extra argument.
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For πproét
1 (X k̄)→ π

proét
1 (X) to be a topological embedding boils down to the following statement:

Every geometric covering Y of X k̄ can be dominated by a covering Y ′ that embeds into a base-change to
k̄ of a geometric covering Y ′′ of X (i.e., defined over k):

Y ′ ⊂ Y ′′
k̄

//

����

Y ′′

Y

For finite coverings, the analogous statement is easy to prove; by finiteness, the given covering is
defined over a finite field extension l/k and one concludes quickly. This is also the case for infinite
coverings detected by πSGA3

1 , see Proposition 4.8. But for general geometric coverings, the situation is
much less obvious; as we show by counterexamples (Examples 4.5 and 4.6), it is not true in general that
a connected geometric covering of X k̄ is isomorphic to a base-change of a covering of Xl for some finite
extension l/k. This property is crucially used in the proof of [SGA 1 1971, Exposé IX, Theorem 6.1],
and thus trying to carry the classical proof of SGA over to πproét

1 fails. This last statement is, however,
stronger than what we need to prove, and so does not contradict our theorem.

A useful technical tool across the article is the van Kampen theorem for πproét
1 . Its abstract form is

proven by adapting the proof in [Stix 2006] to the case of Noohi groups and infinite Galois categories.
For a morphism of schemes X ′↠ X of effective descent for Cov (satisfying some extra conditions), it
allows one to write the pro-étale fundamental group of X in terms of the pro-étale fundamental groups
of the connected components of X ′ and certain relations. By the results of [Rydh 2010], one can take
X ′ = Xν

→ X to be the normalization morphism of a Nagata scheme X . As πproét
1 and π ét

1 coincide for
normal schemes, this allows us to present πproét

1 (X) in terms of π ét
1 (X

ν
w), where Xν

=
⊔
w Xν

w, and the
(discrete) topological fundamental group of a suitable graph. In this case, the van Kampen theorem takes
on concrete form and generalizes [Lavanda 2018, Theorem 1.17].

Theorem (van Kampen theorem, Corollary 3.19, Remark 3.21, Proposition 3.12; compare [Stix 2006]).
Let X be a Nagata scheme and Xν

=
⊔
w Xν

w its normalization written as a union of connected components.
Then, after a choice of geometric points, étale paths between them and a maximal tree T within a suitable

“intersection” graph 0, there is an isomorphism

π
proét
1 (X, x̄)≃

((
∗

top
w π

ét
1 (X

ν
w, x̄w) ∗top π

top
1 (0, T )

)
/⟨R1, R2⟩

)Noohi

where R1, R2 are two sets of relations described in Corollary 3.19 and (−)Noohi is the Noohi completion
defined in Section 2.

In the proof of the main theorem, the van Kampen theorem allows us to construct πproét
1 (X k̄)- and

π
proét
1 (X)-sets in more concrete terms of graphs of groups involving the π ét

1 . We “explicitly” construct a
Galois invariant open subgroup of a given open subgroup U < π

proét
1 (X k̄, x̄) in terms of “regular loops”

(with respect to U ), see Definition 4.20.



636 Marcin Lara

In fact, the existence of elements that are too far from being a product of regular loops is tacitly behind
the counterexamples Examples 4.5 and 4.6, while the fact that, despite this, there is still an abundance of
(products of) regular loops (i.e., their closure is open) is behind our main proof. We also sketch a quicker
but less constructive approach in Remark 4.27.

Another interesting result proven with the help of the van Kampen theorem is the Künneth formula.

Proposition (Künneth formula for πproét
1 , Proposition 3.29). Let X, Y be two connected schemes locally

of finite type over an algebraically closed field k and assume that Y is proper. Let x̄, ȳ be geometric points
of X and Y respectively with values in the same algebraically closed field extension K of k. Then the map
induced by the projections is an isomorphism

π
proét
1 (X ×k Y, (x̄, ȳ)) ∼−→ π

proét
1 (X, x̄)×πproét

1 (Y, ȳ).

Along the way, we prove the invariance of πproét
1 under extensions of algebraically closed fields for

proper schemes (see Proposition 3.31) and give a short direct proof of the fact that πSGA3
1 (X k̄, x̄) ↪→

πSGA3
1 (X, x̄), see Corollary 4.10.
In a separate article [Lara 2022], we discuss the homotopy exact sequence for πproét

1 . It is proven
by constructing an infinite (i.e., nonquasicompact) analogue of the Stein factorization. Although the
construction does not use the main results of this article, the auxiliary results on Noohi groups and πproét

1

have proven to be very handy.
We hope that our techniques, with some extra tweaks and work, will allow to draw similar conclusions

about other Noohi fundamental groups arising from the infinite Galois formalism. One such example
could be the de Jong fundamental group πdJ

1 , defined in the rigid-analytic setting in [de Jong 1995]. In
a later joint work [Achinger et al. 2022], we have proven the existence of a specialization morphism
between πproét

1 and πdJ
1 , relating πproét

1 to this more established fundamental group.

1A. Conventions and notations.

• For us, compact = quasicompact + Hausdorff.

• H <◦ G will mean that H is an open subgroup of G.

• For subgroups H < G, H nc will denote the normal closure of H in G, i.e., the smallest normal
subgroup of G containing H . We will use ⟨⟨−⟩⟩ to denote the normal closure of the subgroup
generated by some subset of G, i.e., ⟨⟨−⟩⟩ = ⟨−⟩nc.

• For a field k, we will use k̄ to denote its (fixed) algebraic closure and ksep or ks to denote its separable
closure (in k̄).

• The topological groups are assumed to be Hausdorff unless specified otherwise or appearing in a
context where it is not automatically satisfied (e.g., as a quotient by a subgroup that is not necessarily
closed). We will usually comment whenever a non-Hausdorff group appears.

• We assume (almost) every base scheme to be locally topologically noetherian. This does not cause
problems when considering geometric coverings, as a geometric covering of a locally topologically
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noetherian scheme is locally topologically noetherian again — this is [Bhatt and Scholze 2015,
Lemma 6.6.10].

• A “G-set” for a topological group G will mean a discrete set with a continuous action of G unless
specified otherwise. We will denote the category of G-sets by G−Sets. We will denote the category
of sets by Sets.

• We will often omit the base points from the statements and the discussion; by Corollary 3.18, this
usually does not change much. In some proofs (e.g., involving the van Kampen theorem), we keep
track of the base points.

2. Infinite Galois categories, Noohi groups and π
proét
1

2A. Overview of the results in [Bhatt and Scholze 2015]. Throughout the entire article we use the
language and results of [Bhatt and Scholze 2015], especially of Chapter 7, as this is where the pro-étale
fundamental group was defined. Some familiarity with the results of [loc. cit., Section 7] is a prerequisite
to read this article. We are going to give a quick overview of some of these results below, but we
recommend keeping a copy of [loc. cit.] at hand.

Definition 2.1 [Bhatt and Scholze 2015, Definition 7.1.1]. Fix a topological group G. Let G−Sets be the
category of discrete sets with a continuous G-action, and let FG :G−Sets→ Sets be the forgetful functor.
We say that G is a Noohi group if the natural map induces an isomorphism G→ Aut(FG) of topological
groups. Here, S ∈ Sets are considered with the discrete topology, Aut(S) with the compact-open topology
and Aut(FG) is topologized using Aut(FG(S)) for S ∈G−Sets. More precisely, the stabilizers StabAut(FG)

F(S),s

for connected S ∈ G−Sets, s ∈ F(S), form a basis of neighborhoods of 1 ∈ Aut(FG).

In particular, it follows from the definition that open subgroups form a basis of neighborhoods of 1 in
a Noohi group. Now, by [Bhatt and Scholze 2015, Proposition 7.1.5], it follows that a topological group
is Noohi if and only if it satisfies the following conditions:

• Its open subgroups form a basis of open neighborhoods of 1 ∈ G.

• It is Raı̆kov complete.

A topological group G is Raı̆kov complete if it is complete for its two-sided uniformity (see [Dikranjan
2013] or [Arhangel’skii and Tkachenko 2008, Chapter 3.6] for an introduction to the Raı̆kov completion).
Using the above proposition it is easy to give examples of Noohi groups.

Example 2.2. The following classes of topological groups are Noohi: discrete groups, profinite groups,
Aut(S) with the compact-open topology for S a discrete set (see [Bhatt and Scholze 2015, Lemma 7.1.4]),
groups containing an open subgroup which is Noohi; see [loc. cit., Lemma 7.1.8].

The following groups are Noohi: Qℓ, Qℓ for the colimit topology induced by expressing Qℓ as a union
of finite extensions (in contrast with the situation for the ℓ-adic topology), GLn(E) for any algebraic
extension E/Qℓ and the colimit topology on GLn(E); see [loc. cit., Example 7.1.7].
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The notion of a Noohi group is tightly connected to a notion of an infinite Galois category, which we
are about to introduce. Here, an object X ∈ C is called connected if it is not empty (i.e., initial), and for
every subobject Y → X (i.e., Y ∼

−→ Y ×X Y ), either Y is empty or Y = X .

Definition 2.3 [Bhatt and Scholze 2015, Definition 7.2.1]. An infinite Galois category C is a pair
(C, F : C→ Sets) satisfying:

(1) C is a category admitting colimits and finite limits.

(2) Each X ∈ C is a disjoint union of connected (in the sense explained above) objects.

(3) C is generated under colimits by a set of connected objects.

(4) F is faithful, conservative, and commutes with colimits and finite limits.

The fundamental group of (C, F) is the topological group π1(C, F) := Aut(F), topologized by the
compact-open topology on Aut(S) for any S ∈ Sets.

An infinite Galois category (C, F) is tame if for any connected X ∈ C, π1(C, F) acts transitively
on F(X).

Example 2.4. If G is a topological group, then (G−Sets, FG) is a tame infinite Galois category.

Theorem 2.5 [Bhatt and Scholze 2015, Theorem 7.2.5]. Fix an infinite Galois category (C, F) and a
Noohi group G. Then:

(1) π1(C, F) is a Noohi group.

(2) There is a natural identification of Homcont(G, π1(C, F)) with the groupoid of functors C→G−Sets
that commute with the fiber functors.

(3) If (C, F) is tame, then F induces an equivalence C ≃ π1(C, F)−Sets.

The “tameness” assumption cannot be dropped as there exist infinite Galois categories that are not of
the form (G− Sets, FG); see [Bhatt and Scholze 2015, Example 7.2.3]. This was overlooked in [Noohi
2008], where a similar formalism was considered.

Remark 2.6. The above formalism was also studied in [Lepage 2010, Chapter 4] under the names of
“quasiprodiscrete” groups and “pointed classifying categories”.

In Section 2B below we will study “Noohi completion” and the dictionary between Noohi groups and
G−Sets (see Section 2C). For now, let us return to gathering the results from [Bhatt and Scholze 2015].

Pro-étale topology and the definition of πproét
1 (X).

Definition 2.7. Let X be a locally topologically noetherian scheme. Let Y → X be a morphism of
schemes such that:

(1) It is étale (not necessarily quasicompact!).

(2) It satisfies the valuative criterion of properness.

We will call Y a geometric covering of X . We will denote the category of geometric coverings by CovX .
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As Y is not assumed to be of finite type over X , the valuative criterion does not imply that Y → X is
proper (otherwise we would simply get a finite étale morphism).

Example 2.8. For an algebraically closed field k̄, the category CovSpec(k̄) consists of (possibly infinite)
disjoint unions of Spec(k̄) and we have CovSpec(k̄) ≃ Sets.

More generally, one has:

Lemma 2.9 [Bhatt and Scholze 2015, Lemma 7.3.8]. If X is a henselian local scheme, then any Y ∈CovX

is a disjoint union of finite étale X-schemes.

Let us choose a geometric point x̄ : Spec(k̄)→ X on X . By Example 2.8, this gives a fiber functor
Fx̄ : CovX → Sets. By [Bhatt and Scholze 2015, Lemma 7.4.1], the pair (CovX , Fx̄) is a tame infinite
Galois category. Then one defines:

Definition 2.10. The pro-étale fundamental group is defined as

π
proét
1 (X, x̄)= π1(CovX , Fx̄).

In other words, πproét
1 (X, x̄)=Aut(Fx̄) and this group is topologized using the compact-open topology

on Aut(S) for any S ∈ Sets.
One can compare the groups πproét

1 (X, x̄), π ét
1 (X, x̄) and πSGA3

1 (X, x̄), where the last group is the
group introduced in Chapter X.6 of [SGA 3 II 1970].

Lemma 2.11. For a scheme X , the following relations between the fundamental groups hold:

(1) The group π ét
1 (X, x̄) is the profinite completion of πproét

1 (X).

(2) The group πSGA3
1 (X, x̄) is the prodiscrete completion of πproét

1 (X, x̄).

Proof. This follows from [Bhatt and Scholze 2015, Lemma 7.4.3 and 7.4.6]. □

As shown in [loc. cit., Example 7.4.9], πproét
1 (X, x̄) is indeed more general than πSGA3

1 (X, x̄). This
can be also seen by combining Example 4.5 with Proposition 4.8 below.

The following lemma is extremely important to keep in mind and will be used many times throughout
the paper. Recall that, for example, a normal scheme is geometrically unibranch.

Lemma 2.12 [Bhatt and Scholze 2015, Lemma 7.4.10]. If X is geometrically unibranch, then

π
proét
1 (X, x̄)≃ π ét

1 (X, x̄).

There is another way of looking at the pro-étale fundamental group, which justifies the name “pro-étale”.

Definition 2.13. (1) A map f : Y → X of schemes is called weakly étale if f is flat and the diagonal
1 f : Y → Y ×X Y is flat.

(2) The pro-étale site Xproét is the site of weakly étale X -schemes, with covers given by fpqc covers.

This definition of the pro-étale site is justified by a foundational theorem — part (c) of the following
fact.
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Fact 2.14. Let f : A→ B be a map of rings:

(a) f is étale if and only if f is weakly étale and finitely presented.

(b) If f is ind-étale, i.e., B is a filtered colimit of étale A-algebras, then f is weakly étale.

(c) [Bhatt and Scholze 2015, Theorem 2.3.4] If f is weakly étale, then there exists a faithfully flat
ind-étale g : B→ C such that g ◦ f is ind-étale.

Definition 2.15 [Bhatt and Scholze 2015, Definition 7.3.1]. We say that F ∈Shv(Xproét) is locally constant
if there exists a cover {Yi → X} in Xproét with F |Yi constant. We write LocX for the corresponding full
subcategory of Shv(Xproét).

We are ready to state the following important result.

Theorem 2.16 [Bhatt and Scholze 2015, Lemma 7.3.9]. Let X to be locally topologically noetherian
scheme. One has LocX = CovX as subcategories of Shv(Xproét).

Topological invariance of the pro-étale fundamental group. We note that universal homeomorphisms of
schemes induce equivalences on the corresponding categories of geometric coverings.

Proposition 2.17 [Bhatt and Scholze 2015, Lemma 5.4.2]. Let h : X ′→ X be a universal homeomorphism
of topologically noetherian schemes (i.e., induces a homeomorphism of topological spaces after any
base-change). Then the pullback

h∗ : CovX → CovX ′, Y 7→ Y ′ = Y ×X X ′

is an equivalence of categories.

Proof. As CovX ≃ LocX , the theorem follows by the same proof as in [loc. cit., Lemma 5.4.2].
Alternatively, one can argue more directly (i.e., avoiding the equivalence with LocX ) as follows. By

[Stacks 2020, Theorem 04DZ], V 7→ V ′ = V ×X X ′ induces an equivalence of categories of schemes
étale over X and schemes étale over X ′. By [Rydh 2010, Proposition 5.4.], this induces an equivalence
between schemes étale and separated over respectively X and X ′. The only thing left to be shown is
that if for an étale separated scheme Y → X , the map Y ×X X ′→ X ′ satisfies the existence part of the
valuative criterion of properness, then so does Y → X . But this property can be characterized in purely
topological terms (see [Stacks 2020, Lemma 01KE]) and so the result follows from the fact that h is a
universal homeomorphism. □

2B. Noohi completion. Let HausdGps denote the category of Hausdorff topological groups (recall that
we assume all topological groups to be Hausdorff, unless stated otherwise) and NoohiGps to be the full
subcategory of Noohi groups. Let G be a topological group. Denote CG =G−Sets and let FG : CG→Sets
be the forgetful functor. Observe that (CG, FG) is a tame infinite Galois category. Thus, the group Aut(FG)

is a Noohi group. It is easy to see that a morphism G → H defines an induced morphism of groups
Aut(FG)→ Aut(FH ) and check that it is continuous. Let ψN : HausdGps→ NoohiGps be the functor
defined by G 7→ Aut(FG). Denote also the inclusion iN : NoohiGps→ HausdGps.
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Definition 2.18. We call ψN (G) the Noohi completion of G and will denote it GNoohi.

Example 2.19. In [Bhatt and Scholze 2015, Example 7.2.6], it was explained that the category of Noohi
groups admits coproducts. Let G1,G2 be two Noohi groups and let G1 ∗

N G2 denote their coproduct as
Noohi groups. Let G1 ∗

top G2 be their topological coproduct. It exists and it is a Hausdorff group [Graev
1948]. Then G1 ∗

N G2 = (G1 ∗
top G2)

Noohi.

Let αG : G→ Aut(FG)= GNoohi denote the obvious morphism.

Proposition 2.20. For a topological group G, the functor FG induces an equivalence of categories

F̃G : G−Sets ∼−→ GNoohi
−Sets .

Moreover, α∗G ◦ F̃G ≃ id, and thus α∗ is an equivalence of categories, too.

Proof. The first part follows directly from [Bhatt and Scholze 2015, Theorem 7.2.5]. The natural
isomorphism α∗G ◦ F̃G ≃ id is clear from the definitions. It follows that α∗G is an equivalence. □

The following lemma is in contrast with [Noohi 2008, Remark 2.13], but agrees with [Lepage 2010,
Proposition 4.1.1].

Lemma 2.21. For any topological group G, the image of αG : G→ GNoohi is dense.

Proof. Let U ⊂ GNoohi be open. As GNoohi is Noohi, there exists q ∈ GNoohi and an open subgroup
V <◦ GNoohi such that qV ⊂U . The quotient GNoohi/V gives a GNoohi-set. It is connected in the category
GNoohi

−Sets and, by Proposition 2.20, α∗G(G
Noohi/V ) is connected. Thus, the action of G on GNoohi/V

is transitive and so there exists g ∈ G such that αG(g) · [V ] = [qV ], i.e., αG(g) ∈ qV . Thus, the image of
αG is dense. □

Observation. Let f : H → G be a map of topological groups. Directly from the definitions, one sees
that the following diagram commutes:

H
f

//

αH
��

G

αG
��

H Noohi f Noohi
// GNoohi

Lemma 2.22 (universal property of Noohi completion). Let f : H → G be a continuous morphism
from a topological group to a Noohi group. Then there exists a unique map f ′ : H Noohi

→ G such that
f ′ ◦αH = f .

Proof. By the definition of a Noohi group, αG is an isomorphism. Defining f ′ := α−1
G ◦ f Noohi gives

the existence. The uniqueness follows from αH having dense image. Alternatively, one can combine
Proposition 2.20 with [Bhatt and Scholze 2015, Theorem 7.2.5(2)]. □

Corollary 2.23. The functor ψN is a left adjoint of iN .
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Remark 2.24. There are few places, where we write GNoohi for a non-Hausdorff group G. This is mostly
to avoid a large overline sign over a subgroup described by generators. In these cases, we mean

GNoohi
:= (GHausd)Noohi

where GHausd is the maximal Hausdorff quotient. As (−)Hausd is a left adjoint as well, this usually does
not cause problems. This also provides a left adjoint to the forgetful functor NoohiGps→ TopGps to all
topological groups.

We now move towards a more explicit description of the Noohi completion.

Lemma 2.25. Let (G, τ ) be a topological group. Denote by B the collection of sets of the form

x101 y1 ∩ x202 y2 ∩ · · · ∩ xm0m ym

where m ∈N, xi , yi ∈ G and 0i < G are open subgroups of G. Then B is a basis of a group topology τ ′

on G that is weaker than τ and open subgroups of (G, τ ) form a basis of open neighborhoods of 1G in
(G, τ ′).

Moreover, the natural map i ′ : (G, τ )→ (G, τ ′) induces an equivalence of categories (G, τ ′)−Sets→
(G, τ )−Sets. If {1G} ⊂ (G, τ ) is thickly closed, i.e.,

⋂
U<◦G U = {1G} (see Definition 2.30), then (G, τ ′)

is Hausdorff and (G, τ )Noohi ∼
−→ (G, τ ′)Noohi is an isomorphism.

Proof. The first statement follows from [Bourbaki 1966, Proposition III.1.1] by taking the filter of subsets
of G containing an open subgroup. It is also proven in [Lavanda 2018, Lemma 1.13] (the proposition is
stated there in a particular case, but the proof works for any topological group). The second statement
follows from the fact that for a discrete set S, any continuous morphism (G, τ )→ Aut(S) factorizes
through i ′ : (G, τ )→ (G, τ ′). □

Fact 2.26 [Bhatt and Scholze 2015, Proposition 7.1.5]. Let G be a topological group such that its open
subgroups form a basis of open neighborhoods of 1G . Then GNoohi

≃ Ĝ, where Ĝ denotes the Raı̆kov
completion of G.

Proposition 2.27. Let (G, τ ) be a topological group. Assume that {1G} ⊂ (G, τ ) is thickly closed (see
Definition 2.30). Then there is a natural isomorphism of groups

GNoohi
≃ (̂G, τ ′),

where τ ′ denotes the topology described in the previous lemma and ·̂ · · denotes the Raı̆kov completion.

Proof. We combine Fact 2.26 with the last lemma and get (G, τ )Noohi
≃ (G, τ ′)Noohi

≃ (̂G, τ ′). □

Observation 2.28. Let G be a topological group and H a normal subgroup. Then the full subcategory of
G−Sets of objects on which H acts trivially is equal to the full subcategory of G−Sets on which its
closure H acts trivially and it is equivalent to the category of G/H − Sets. So, it is an infinite Galois
category with the fundamental group equal to (G/H)Noohi.
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Lemma 2.29. Let X be a connected, locally path-connected, semilocally simply connected topological
space and x ∈ X a point. Let Fx be the functor taking a covering space Y→ X to the fiber Yx over the point
x ∈ X. Then (TopCov(X), Fx) is a tame infinite Galois category and π1(TopCov(X), Fx)= π

top
1 (X, x),

where we consider π top
1 (X, x) with the discrete topology. Here, TopCov(X) denotes the category of

covering spaces of X.

Proof. We first claim that there is an isomorphism: (TopCov(X), Fx) ≃ (π
top
1 (X, x)− Sets, F

π
top
1 (X,x)).

This is in fact a classical result in algebraic topology, which can be recovered from [Fulton 1995,
Chapter 13] or [Hatcher 2002, Chapter 1] and is stated explicitly in [Çakar 2014, Corollary 4.1]. This
finishes the proof, as discrete groups are Noohi. □

2C. Dictionary between Noohi groups and G − Sets.

Definition 2.30. Let H ⊂ G be a subgroup of a topological group G. Then we define a “thick closure”
H of H in G to be the intersection of all open subgroups of G containing H , i.e., H :=

⋂
H⊂U<◦GU. If a

subgroup satisfies H = H we will call it thickly closed in G.

In a topological group open subgroups are also closed, so a thickly closed subgroup is also an intersection
of closed subgroups, so it is closed in G. Observe also that an arbitrary intersection of thickly closed
subgroups is thickly closed. This justifies, for example, the existence of the smallest normal thickly closed
subgroup containing a given group. In fact, we can formulate a more precise observation.

Observation 2.31. Let H < G be a subgroup of a topological group G. Then the smallest normal thickly
closed subgroup of G containing H is equal to (H nc), where H nc is the normal closure of H in G.

Observation 2.32. Let G be a topological group such that the open subgroups form a local base at 1G .
Let W ⊂ G be a subset. Then the topological closure of W can be written as W =

⋂
V<◦G W V .

The following lemma can be found on page 79 of [Lepage 2010].

Lemma 2.33. Let G be a topological group such that the open subgroups form a basis of neighborhoods
of 1G . Let H ◁G be a normal subgroup. Then

H = H

i.e., the usual topological closure and the thick closure coincide.

Proof. We compute that H =
⋂

V<◦G H V
(∗)
⊃

⋂
H<U<◦G U = H ⊃ H . The inclusion (∗) follows from the

fact that H V is an (open) subgroup of G as H is normal. □

Let us make an easy observation, that will be useful to keep in mind while reading the proof of the
technical proposition below.

Observation 2.34. Let U < G be an open subgroup of a topological group and let g0 ∈ G. Then the
mapping G/g0Ug−1

0 → G/U given by [gg0Ug−1
0 ] 7→ [gg0U ] is an isomorphism of G-sets.



644 Marcin Lara

Given open subgroups U, V < G and some surjective map of G-sets φ : G/V ↠ G/U we can assume
that it is the standard quotient map (i.e., V ⊂U ) up to replacing U by a conjugate open subgroup (more
precisely by g0Ug−1

0 , where g0 is such that φ([V ])= [g0U ]).

Remark 2.35. A map Y ′→ Y in an infinite Galois category (C, F) is an epimorphism/monomorphism if
and only if the map F(Y ′)→ F(Y ) is surjective/injective. Similarly Y is an initial object if and only if
F(Y )=∅ and so on. The proofs of those facts are the same as the proofs in [Stacks 2020, Tag 0BN0].
This justifies using words “injective” or “surjective” when speaking about maps in (C, F).

Recall the following fact.

Observation. Let f : G ′→ G be a surjective map of topological groups. Then the induced morphism
G ′/ ker( f )→ G is an isomorphism if and only if f is open. In such case, we say that f is a quotient
map. In the language of [Bourbaki 1966, III.2.8] we would call f strict and surjective.

Definition 2.36. We will say that an object of a tame infinite Galois category is completely decomposed
if it is a (possibly infinite) disjoint union of final objects.

Proposition 2.37. Let G ′′ h′
−→ G ′ h

−→ G be maps between Noohi groups and CG ′′
H ′
←− CG ′

H
←− CG the

corresponding maps of the infinite Galois categories. Then the following hold:

(1) The map h′ : G ′′→ G ′ is a topological embedding if and only if for every connected object X in CG ′′ ,
there exist connected objects X ′ ∈ CG ′′ and Y ∈ CG ′ and maps X ′↠ X and X ′ ↪→ H ′(Y ).

(2) The following are equivalent:

(a) The morphism h : G ′→ G has dense image.
(b) The functor H maps connected objects to connected objects.
(c) The functor H is fully faithful.

(3) The thick closure of Im(h′) ⊂ G ′ is normal if and only if for every connected object Y of CG ′ such
that H ′(Y ) contains a final object of CG ′′ , H ′(Y ) is completely decomposed.

(4) h′(G ′′)⊂ Ker(h) if and only if the composition H ′ ◦ H maps any object to a completely decomposed
object.

(5) Assume that h′(G ′′)⊂ ker(h) and that h : G ′→ G has dense image. Then the following conditions
are equivalent:

(a) The induced map (G ′/ ker(h))Noohi
→ G is an isomorphism and the smallest normal thickly

closed subgroup containing Im(h′) is equal to ker(h).
(b) For any connected Y ∈ CG ′ such that H ′(Y ) is completely decomposed, Y is in the essential

image of H.
(c) The induced map (G ′/ ker(h))Noohi

→ G is an isomorphism and for any connected Y ∈ CG ′ such
that H ′(Y ) is completely decomposed, there exists Z ∈ CG and an epimorphism H(Z)↠ Y .

Proof. (1) The proof is virtually the same as for usual Galois categories, but there every injective map
is automatically a topological embedding (as profinite groups are compact). Assume that G ′′ → G ′



Fundamental exact sequence for the pro-étale fundamental group 645

is a topological embedding. Let X ∈ CG ′′ be connected and write X ≃ G ′′/U for an open subgroup
U < G ′′. Then there exists an open subset Ṽ ⊂ G ′ such that Ṽ ∩G ′′ =U (as G ′′→ G ′ is a topological
embedding) and an open subgroup V < G ′ such that V ⊂ Ṽ (as G ′ is Noohi). Denote W = V ∩ G ′′.
Then X ′ := G ′′/W ↠ X and X ′ ↪→ H ′(G ′/V ), so we conclude by setting Y := G ′/V . For the other
implication: we want to prove that G ′′→ G ′ is a topological embedding under the assumption from the
statement. It is enough to check that the set of preimages h′−1

(B) of some basis B of opens of eG ′ forms
a basis of opens of eG ′′ . Indeed, assume that this is the case. Firstly, observe that it implies that h′ is
injective, as both G ′′ and G ′ are Hausdorff (and in particular T0). If U is an open subset of G ′′, then
we can write U =

⋃
g′′αUα for some g′′α ∈ G ′′ and Uα ∈ h′−1

(B). We can write Uα = h′−1(Vα) for some
Vα ∈ B. Then V =

⋃
h′(g′′α)Vα satisfies h′−1

(V ) = U because h′−1
(h′(g′′α)Vα) = g′′αUα (by injectivity

of h′). So this will prove that the topology on G ′′ is induced from G ′ via h′. Let B= {U <G |U is open}.
This is a basis of opens of eG ′ (as G ′ is Noohi). We want to check that h′−1(B) is a basis of opens of eG ′′ .
As open subgroups of G ′′ form a basis of opens of eG ′′ it is enough to show that for any open subgroup
U < G ′′ there exists an open subgroup V < G ′ such that h′−1(V )⊂U . From the assumption we know
that there exist open subgroups Ũ <G ′′ and V <G ′ such that G ′′/Ũ ↠G ′′/U and G ′′/Ũ ↪→G ′/V . The
surjectivity of the first map means that we can assume (up to replacing Ũ by a conjugate) Ũ ⊂U . The
injectivity of the second means that we can assume (up to replacing V by a conjugate) that h′−1(V )⊂ Ũ .
Indeed, the injectivity implies that if h′(g′′)V = V , then g′′Ũ = Ũ which translates immediately to
h′−1(V )⊂ Ũ . So we have also h′−1(V )⊂U , which is what we wanted to prove.

(2) The equivalence between (a) and (b) follows from the observation that a map between Noohi groups
G ′ → G has a dense image if and only if for any open subgroup U of G, the induced map on sets
G ′→ G/U is surjective. Here, we only use that open subgroups form a basis of open neighborhoods of
1G ∈ G.

Now, the functor H is automatically faithful and conservative (because FG ′ ◦ H = FG is faithful and
conservative). Assume that (b) holds. Let S, T ∈ G − Sets and let g ∈ HomG ′−Sets(H(S), H(T )). We
have to show that g comes from g0 ∈ HomG−Sets(S, T ). We can and do assume S, T connected for that.
Let 0g ⊂ H(S)×H(T ) be the graph of g. It is a connected subobject. As H(S)×H(T )= H(S×T ), the
assumption (b) implies that each connected component of H(S)× H(T ) is the pullback of a connected
component 00 of S × T . Thus, 0g is the pullback of some 00 ⊂ S × T . By conservativity of H , the
projection p00 : 00 → S is an isomorphism, as this is true for p0g : 0g → H(S). The composition
q00 ◦ p−1

00
: S→ T maps via H to g.

Conversely, assume (c) holds. Let S ∈G−Sets be connected. We want to show that H(S) is connected.
Suppose on the contrary that H(S) = A ⊔ B with A, B ∈ G ′ − Sets. Let T = • ⊔ • ∈ G − Sets be
a two-element set with a trivial G-action. Then HomG−Sets(S, T ) has precisely two elements, while
HomG ′−Sets(H(S), H(T ))= HomG ′−Sets(A ⊔ B, •⊔ •) has at least four.

(3) Assume first that the thick closure of im(h′) is normal. Let Y = G ′/U be an element of CG ′ whose
pull-back to G ′′−Sets contains the final object. This means that G ′′ fixes one of the classes, let’s say [g′U ].
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This is equivalent to g′−1h′(G ′′)g′ fixing [U ], i.e., g′−1h′(G ′′)g′ ⊂U . But this implies immediately that
(g′−1h′(G ′′)g′)⊂U . Let g̃ ∈ G ′ be any element. We have (g′−1h′(G ′′)g′)= g′−1h′(G ′′)g′ = h′(G ′′)=
g̃−1h′(G ′′)g̃ from the assumption that h′(G ′′) is normal. So g̃−1h′(G ′′)g̃ ⊂ g̃−1h′(G ′′)g̃ ⊂ U and we
conclude that h′(G ′′) fixes an arbitrary class [̃gU ]. This shows that G ′/U pulls back to a completely
decomposed object.

The other way round: assume that for every connected object Y of CG ′ such that H ′(Y ) contains a final
object, H ′(Y ) is completely decomposed. Let U be an open subgroup of G ′ containing h′(G ′′). Then
G ′′ fixes [U ] ∈ G/U and so, by assumption, fixes every [g′U ] ∈ G/U . This implies that for any g′ ∈ G ′

g′−1h′(G ′′)g′ ⊂ U which easily implies that also h′(G ′′)nc
⊂ U . As this is true for any U containing

h′(G ′′) we get that h′(G ′′)= (h′(G ′′)nc) and the last group is the smallest normal thickly closed subgroup
of G ′ containing h′(G ′′) (Observation 2.31).

(4) The same as for usual Galois categories, we use that
⋂

U<◦G U = 1G .

(5) (b)⇒ (c): Assume (b). We only need to show, that (G ′/ ker(h))Noohi
→G is an isomorphism. This is

equivalent to showing that H induces an equivalence G ′/ ker(h)−Sets≃G−Sets. As G ′/ ker(h)−Sets≃
{S ∈G ′−Sets | ker(h) acts trivially on S} ⊂ {S ∈G−Sets |G ′′ acts trivially on S}, the assumption of (b)
implies that the functor G−Sets→ G ′/ ker(h)−Sets is essentially surjective. By the global assumption
that G ′→ G has dense image, it is fully faithful (see (2)).

(c)⇒ (b): Assume (c). Let Y ∈ CG ′ be connected and such that H ′(Y ) is completely decomposed. We
have Z ∈ CG and an epimorphism H(Z)↠ Y . As ker(h) acts trivially on H(Z), we conclude that it
also acts trivially on Y . Thus, by abuse of notation, Y ∈ G ′/ ker(h)− Sets. But G ′/ ker(h)− Sets ≃
(G ′/ ker(h))Noohi

− Sets≃ G− Sets from the assumption. Thus, we see that Y is in the essential image
of H .

(b)⇒ (a): Assume (b). We give two proofs of this fact.

First proof. We have proven above that (b) ⇒ (G ′/ ker(h))Noohi
≃ G. Let N be the smallest normal

thickly closed subgroup of G ′ containing h′(G ′′). Observe that N ⊂ ker h (as ker(h) is thickly closed).
Let U be an open subgroup containing N . We want to show that U contains ker h. This will finish the
proof as both N and ker h are thickly closed. Write Y = G ′/U . Observe that G ′/U pulls back to a
completely decomposed G ′′-set if and only if for any g′ ∈ G ′ there is g′h′(G ′′)g′−1

⊂U . Indeed, h′(G ′′)
fixes [g′U ] ∈ G ′/U if and only if g′h′(G ′′)g′−1 fixes [U ]. So N ⊂ U implies that Y pulls back to a
completely decomposed G ′′-set and, by assumption, Y is isomorphic to a pull-back of some G-set and so
ker(h) acts trivially on Y . This implies that ker h ⊂U , which finishes the proof. □

Alternative proof. We already know that (b) ⇒ (G ′/ ker(h))Noohi
≃ G. Let N ⊂ ker(h) be as in the

first proof above. Consider the map G/N ↠ G/ ker(h). The assumption (b) and full faithfulness of
H (by the global assumption and using (2)) imply that (G ′/N )Noohi

→ G is an isomorphism. Thus,
(G ′/N )Noohi

≃ (G ′/ ker(h))Noohi. Using Proposition 2.27, we check that the canonical maps G ′/N →



Fundamental exact sequence for the pro-étale fundamental group 647

(G ′/N )Noohi and G ′/ ker(h)→ (G ′/ ker(h))Noohi are injective. Thus, G ′/N↠G ′/ ker(h) is injective and
so N = ker(h). □

(a) ⇒ (b): Assume (a). Let Y = G ′/U be a connected G ′-set that pulls back via h′ to a completely
decomposed object. As we have seen while proving “(b) ⇒ (a)”, this implies that for any g′ ∈ G ′

g′h′(G ′′)g′−1
⊂U , so H nc

⊂U and so also (H nc)⊂U . But, by Observation 2.31, there is N = (H nc).
By assumption, we have N = ker h and so we conclude that ker h ⊂ U . But then, by assumption
(G ′/ ker(h))Noohi

≃ G, Y is in the essential image of H . □

To distinguish between exactness in the usual sense (i.e., on the level of abstract groups) and notions of
exactness appearing in Proposition 2.37, we introduce a new notion. It will be mainly used in the context
of Noohi groups.

Definition 2.38. Let G ′′ h′
−→G ′ h

−→G→ 1 be a sequence of topological groups such that im(h′)⊂ker(h).
Then we will say that the sequence is:

(1) Nearly exact on the right if h has dense image,

(2) Nearly exact in the middle if im(h′)= ker(h), i.e., the thick closure of the image of h′ in G ′ is equal
to the kernel of h.

(3) Nearly exact if it is both nearly exact on the right and nearly exact in the middle.

We end this subsection with a lemma on topological groups and their Noohi completions that will be
used later in the proof of the main theorem.

Lemma 2.39. Let G be a topological group and G̃ be a subgroup of GNoohi such that the canonical map
G→ GNoohi factorizes through G̃:

G→ G̃ ⊂ GNoohi.

Let V0 < G̃ be a subgroup. Let S = (G̃/V0, discr) be the discrete set that comes naturally with an abstract
action by G̃.

If the induced abstract G-action on S is continuous, then V0 is open in G̃. Moreover, in such case,
denoting V = StabGNoohi([V0] ∈ G̃/V0), there is

V = V Noohi
0 = V0

GNoohi
and V0 = V ∩ G̃.

Proof. By the universal property, the G-action on S extends to GNoohi and this action is transitive. Then
V0 is the preimage of the stabilizer V = StabGNoohi([V0] ∈ G̃/V0), which is open.

The group V is open in a Noohi group, thus Noohi; see [Bhatt and Scholze 2015, Lemma 7.1.8.]. By
the universal property, there is a factorization V Noohi

0 → V . But as V0 is a subgroup of a Noohi group, its
open subgroups form a basis of 1V0 . Thus, the Noohi completion of V0 is just the Raı̆kov completion. But
as the canonical map from a group to its Raı̆kov completion is a topological embedding, [Arhangel’skii
and Tkachenko 2008, Corollary 3.6.18] implies that V Noohi

0 → V is a topological embedding. By a
characterization of Raı̆kov completeness (see [Dikranjan 2013, Proposition 6.2.7]), it follows that V Noohi

0
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is closed in V . But as G̃ contains the image of G, it is dense in GNoohi, and from the definition of V it
follows that V0 has to be dense in V . Putting this together, we get that V Noohi

0 = V = V0
GNoohi

. □

2D. A remark on valuative criteria. We will sometimes shorten “the valuative criterion of properness”
to “VCoP”. It is useful to keep in mind the precise statements of different parts of the valuative criterion,
see [Stacks 2020, Lemmas 01KE, 01KC and Section 01KY]. Let us prove a lemma (which is implicit in
[Bhatt and Scholze 2015]), that VCoP can be checked fpqc-locally.

Lemma 2.40. Let g : X→ S be a map of schemes. The properties

(a) g is étale,

(b) g is separated,

(c) g satisfies the existence part of VCoP,

can be checked fpqc-locally on S. Moreover, property (c) can be also checked after a surjective proper
base-change.

Proof. The cases of étale and separated morphisms are proven in [Stacks 2020, Section 02YJ]. For the last
part, satisfying the existence part of VCoP is equivalent to specializations lifting along any base-change
of g [Stacks 2020, Lemma 01KE]. It is easy to see that this property can be checked Zariski locally. Thus,
if S′→ S is an fpqc cover such that the base-change g′ : X ′→ S′ satisfies specialization lifting for any
base-change, we can assume that S, S′ are affine with S′→ S faithfully flat. Let T → S be any morphism.
Consider the diagram:

X ′

��

S′×S X ×S Too //

��

T ×S X

��

S′ S′×S Too // T

Let ξ ′ ∈ T ×S X , let ξ be its image in T and let t ∈ T be such that ξ⇝ t . We need to find t ′ ∈ T ×S X over
t such that ξ ′⇝ t ′. Let Z = {ξ ′} ⊂ T ×S X be the closure of {ξ ′}. We need to show that the set-theoretic
image W ⊂ T of Z in T contains t . It is enough to show, that W is stable under specialization or,
equivalently, that T \W is stable under generalization. But, from flatness [Stacks 2020, Lemma 03HV],
generalizations lift along S′×S T → T . Thus, it is enough to show that the preimage of T \W in S′×S T
is stable under generalizations or, equivalently (using the surjectivity of S′×S T → T ), that the preimage
of W in S′×S T is closed under specializations. But an easy diagram chasing (using the fact that the
right square of the diagram above is cartesian) shows that the preimage of W in S′×S T is the image of a
closed subset of S′×S X × T . We conclude, because specializations lift along S′×S X ×S T → S′×S T
by assumption.

The last part of the statement is proven in an analogous way. □
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Lemma 2.41. Let f : Y → X be a geometric covering of a locally topologically noetherian scheme. Then
f is separated.

Proof. By [Bhatt and Scholze 2015, Remark 7.3.3], f is quasiseparated. A quasiseparated morphism
satisfying VCoP is separated; see [Stacks 2020, Tag 01KY]. □

3. Seifert–van Kampen theorem for π
proét
1 and its applications

3A. Abstract Seifert–van Kampen theorem for infinite Galois categories. We aim at recovering a general
version of van Kampen theorem, proven in [Stix 2006], in the case of the pro-étale fundamental group.
Most of the definitions and proofs are virtually the same as in [loc. cit.], after replacing “Galois category”
with “(tame) infinite Galois category” and “profinite” with “Noohi”, but still some additional technical
difficulties appear here and there. We make the necessary changes in the definitions and deal with those
difficulties below.

Denote by 1≤2 a category whose objects are [0] = {0}, [1] = {0, 1}, [2] = {0, 1, 2} and has strictly
increasing maps as morphisms. There are face maps ∂i : [n− 1] → [n] for n = 1, 2 and 0≤ i ≤ n which
omit the value i and vertices vi : [0] → [2] with image i .

The category of 2-complexes in a category C is the category of contravariant functors T• :1≤2→ C .
We denote Tn = T•([n]) and call it the n-simplices of T•. T (∂i ) is called the i -th boundary map.

By a 2-complex E we mean a 2-complex in the category of sets. We often think of E as a category: its
objects are the elements of En for n = 0, 1, 2 and its morphisms are obtained by defining ∂ : s→ t where
s ∈ En and t = E(∂)(s). Let 1n =

{∑n
i=0 λi ei ∈ Rn+1

≥0 |
∑

i λi = 1
}

denote the topological n-simplex.
Then we define |E | =

⊔
En×1n/∼, where ∼ identifies (s, d(x)) with (E(∂)(s), x) for all ∂ : [m]→ [n]

and its corresponding linear map d :1m→1n sending ei to e∂(i), and s ∈ En and x ∈1m . We call E
connected if |E | is a connected topological space.

Definition 3.1. Noohi group data (G , α) on a 2-complex E consists of the following:

(1) A mapping (not necessarily a functor!) G from the category E to the category of Noohi groups: to a
complex s ∈ En is attributed a Noohi group G (s) and to a map ∂ : s→ t is attached a continuous
morphism G (∂) : G (s)→ G (t).

(2) For every triple v ∈ E0, e ∈ E1, f ∈ E2 and boundary maps ∂ ′, ∂ such that ∂ ′( f ) = e, ∂(e) = v,
an element αve f ∈ G (v) (its existence is a part of the definition) such that the following diagram
commutes:

G ( f )
G (∂ ′)

//

G (∂∂ ′)

��

G (e)

G (∂)

��

G (v)
αve f ( · )α

−1
ve f
// G (v)

Definition 3.2. Let (G , α) be Noohi group data on the 2-complex E . A (G , α)-system M on E consists
of the following:
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(1) For every simplex s ∈ E a G (s)-set Ms .

(2) For every boundary map ∂ : s→ t a map of G (s)-sets m∂ : Ms→ G (∂)∗(Mt), such that.

(3) For every triple v ∈ E0, e ∈ E1, f ∈ E2 and boundary maps ∂ ′, ∂ such that ∂ ′( f )= e, ∂(e)= v the
following diagram commutes:

M f

m∂∂′

��

m∂′
// Me

m∂

��

Mv

αve f ·
// Mv

Definition 3.3. A (G , α)-system is called locally constant if all the maps m∂ are bijections.

Observe that α· : m 7→ αm is a G (v)-equivariant map Mv→ (α()α−1)∗Mv. Observe that there is an
obvious notion of a morphism of (G , α)-systems: a collection of G (s)-equivariant maps that commute
with the m. Let us denote by lcs(E, (G , α)) the category of locally constant (G , α)-systems.

Let M ∈ lcs(G , α) for Noohi group data (G , α) on some 2-complex E . We define oriented graphs E≤1

and M≤1 (which will be an oriented graph over E≤1) as in [Stix 2006], but our graphs M≤1 are possibly
infinite. For E≤1 the vertices are E0 and edges E1 such that ∂0 (resp. ∂1) map an edge to its target (resp.
origin). For M≤1 the vertices are

⊔
v∈E0

Mv and edges are
⊔

e∈E1
Me serves as the set of edges. The

target/origin maps are induced by the m∂ and the map M≤1→ E≤1 is the obvious one.
There is an obvious topological realization functor for graphs |·|. By applying this functor to the above

construction we get a topological covering (because M is locally constant) |M≤1| → |E≤1|. This gives a
functor

|·≤1| : lcs(E, (G , α))→ TopCov(|E≤1|).

Choosing a maximal subtree T of |E≤1| gives a fiber functor FT :TopCov(|E≤1|)→Sets by (p :Y→|E≤1|)

7→ π0(p−1(|T |)). The pair (TopCov(|E≤1|), FT ) is an infinite Galois category and the resulting fun-
damental group π1(Cov(|E≤1|), FT )) is isomorphic to π top

1 (|E≤1|) (see Lemma 2.29) which is in turn
isomorphic to Fr(E1)/⟨⟨{e⃗|e ∈ T }Fr(E1)⟩⟩ = Fr(e⃗|e ∈ E1 \ T ), where Fr( · ) denotes a free group on the
given set of generators and ⟨⟨{e⃗ | e ∈ T }Fr(E1)⟩⟩ denotes the normal closure in Fr(E1) of the subgroup
generated by {e⃗ ∈ T }. Here, e⃗ acts on FT (M) via

π0(p−1(|T |))∼= π0(p−1(∂0(e)))∼= π0(p−1(|e|))∼= π0(p−1(∂1(e))∼= π0(p−1(|T |)).

As in [Stix 2006], for every s ∈ E0 and M ∈ lcs(E, (G , α)) we have that FT (M) can be seen canonically
as a G (s)-module by Ms = π0(p−1(s))∼= π0(p−1(T )). Denote π1(E≤1, T )= Fr(E1)/⟨⟨{e⃗ | e ∈ T }Fr(E1)⟩⟩.
Putting the above together we get a functor

Q : lcs(E, (G , α))→ (∗N
v∈E0

G (v) ∗N π1(E≤1, T ))− sets.

Remark 3.4. In the setting of usual (“finite”) Galois categories, it is usually enough to say that a particular
morphism between two Galois categories is exact, because of the following fact [Stacks 2020, Tag 0BMV]:
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Let G be a topological group. Let F : Finite−G−Sets→ Sets be an exact functor with F(X) finite for
all X . Then F is isomorphic to the forgetful functor.

As we do not know if an analogous fact is true for infinite Galois categories, given two infinite Galois
categories (C, F), (C′, F ′) and a morphism φ : C→ C′, we are usually more interested in checking whether
F ≃ F ′ ◦φ. If φ satisfies this condition, it also commutes with finite limits and arbitrary colimits. Indeed,
we have a map colimφ(X i )→ φ(colim X i ) that becomes an isomorphism after applying F ′ (as F ′ and
F = F ′ ◦φ commute with colimits) and we conclude by conservativity of F ′. Similarly for finite limits.

Proposition 3.5. Let (E, (G , α)) be a connected 2-complex with Noohi group data. Define a functor
F : lcs(E, (G , α))→ Sets in the following way: pick any simplex s and define F by M 7→ Ms . Then
(lcs(E, (G , α)), F) is a tame infinite Galois category.

Moreover, the obtained functor

Q : lcs(E, (G , α))→ (∗N
v∈E0

G (v) ∗N π1(E≤1, T ))− sets

satisfies F ≃ Fforget ◦ Q and maps connected objects to connected objects.

Proof. We first check conditions (1), (2) and (4) of [Bhatt and Scholze 2015, Definition 7.2.1]. Then we
show that Q maps connected objects to connected objects and we use the proof of this last fact to show
the condition (3).

Colimits and finite limits: they exist simplex-wise and taking limits and colimits is functorial so we get
a system as candidate for a colimit/finite limit. This will be a locally constant system, as the colimit/finite
limit of bijections between some G-sets is a bijection.

Each M is a disjoint union of connected objects: let us call N ∈ lcs(G , α) a subsystem of M if there
exists a morphism N → M such that for any simplex s the map Ns→ Ms is injective (we then identify,
for any simplex s, Ns with a subset of Ms). We can intersect such subsystems in an obvious way and
observe that it gives another subsystem. So for any element a ∈ Mv there exists the smallest subsystem
N of M such that a ∈ Nv. We see readily that for any vertices v, v′ and a ∈ Mv, a′ ∈ Mv′ the smallest
subsystems N and N ′ containing one of them are either equal or disjoint (in the sense that, for each
simplex s, Ns and N ′s are disjoint as subsets of Ms). It is easy to see that in this way we have obtained a
decomposition of M into a disjoint union of connected objects.

F is faithful, conservative and commutes with colimits and finite limits. Observe that φs :lcs(E, (G ,α))∋
M 7→Ms∈G (s)−Sets is faithful, conservative and commutes with colimits and finite limits and F= Fs◦φs ,
where Fs is the usual forgetful functor on G (s)−Sets.

It is obvious that F ≃ Fforget ◦ Q. We are now going to show that Q preserves connected objects. Take
a connected object M ∈ lcs(E, (G , α)) and suppose that N is a nonempty subset of FT (M) stable under
the action of π1(E≤1, T ) and G (v) for v ∈ E0. Stability under the action of π1(E≤1, T ) shows that N
can be extended to a subgraph N≤1 ⊂ M≤1: for an edge e of M≤1 we declare it to be an edge of N≤1 if
one of its ends touches a connected component of p−1(|T |) corresponding to an element of N . This is
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well defined, as in this case both ends touch such a component — this is because the action of m∂1m−1
∂0

equals the action of e⃗ ∈ π1(E≤1, T ).
Now we want to show that it extends to 2-simplexes. This is a local question and we can restrict to

simplices in the boundary of a given face f ∈ E2. Define N f as a preimage of Ns via any ∂ such that
∂( f )= s. We see that if the choice is independent of s, then we have extended N to a locally constant
system. To see the independence it is enough to prove that if (ve f ) is a barycentric subdivision (i.e., we
have ∂ and ∂ ′ such that ∂ ′( f )= e and ∂(e)= v), then m−1

∂∂ ′(Nv)=m−1
∂ ′ (Ne). But from the G (v)-invariance

we have Nv = α−1
ve f (Nv) and so

m−1
∂∂ ′(Nv)= m−1

∂∂ ′(α
−1
ve f (Nv))= m−1

∂ ′ m−1
∂ (Nv)= m∂ ′(Ne)

and thus N can be seen as an element of lcs(E, (G , α)) which is a subobject of M , which contradicts
connectedness of M .

To see that lcs(E, (G , α)) is generated under colimits by a set of connected objects, observe that in the
above proof of the fact that Q preserves connected objects, we have in fact shown the following statement.

Fact 3.6. Let M ∈ lcs(G , α) and let Z be a connected component of Q(M). Then there exists a subsystem
W ⊂ M such that Q(W )= Z .

We want to show that there exists a set of connected objects in lcs(G , α) such that any connected
object of lcs(G , α) is isomorphic to an element in that set. As an analogous fact is true in (∗N

v∈E0
G (v) ∗N

π1(E≤1, T ))− sets, it is easy to see that it is enough to check that, for any X, Y , if Q X ≃ QY , then
X ≃ Y . Let X, Y ∈ lcs(G , α) be connected. Assume that Q X ≃ QY . Looking at the graph of this
isomorphism, we find a connected subobject Z ⊂ Q X × QY that maps isomorphically on Q X and QY
via the respective projections. By the above fact, we know that there exists W ⊂ X×Y such that QW = Z .
Because F ≃ Fforget ◦ Q and F is conservative, we see that the projections W → X and W → Y must be
isomorphisms. This shows X ≃ Y as desired.

The only claim left is that lcs(E(G , α)) is tame, but this follows from tameness of (∗N
v∈E0

G (v) ∗N

π1(E≤1, T ))−Sets, the equality F ≃ Fforget ◦Q and the fact that Q maps connected objects to connected
objects. □

Let us denote by π1(E,G , s) the fundamental group of the infinite Galois category (lcs(E,G ), Fs). The
proposition above tells us that there is a continuous map of Noohi groups with dense image ∗N

v∈E0
G (v)∗N

π1(E≤1, T ))→ π1(E,G , s). We now proceed to describe the kernel.
Recall that π1(E≤1, T )= Fr(E1)/⟨⟨{e⃗ | e ∈ T }Fr(E1)⟩⟩.

Theorem 3.7 (abstract Seifert–van Kampen theorem for infinite Galois categories). E be a connected
2-complex with group data (G , α). With notations as above, the functor Q induces an isomorphism of
Noohi groups

(∗N
v∈E0

G (v) ∗N π1(E≤1, T )/H)Noohi
→ π1(E,G , s)



Fundamental exact sequence for the pro-étale fundamental group 653

where H is the closure of the group

H =
〈〈

G (∂1)(g)e⃗ = e⃗G (∂0)(g)
−−−→
(∂2 f )α( f )

102(α
( f )
120)
−1−−−→(∂0 f )α( f )

210(α
( f )
201)
−1(
−−−→
(∂1 f ))−1α

( f )
021(α

( f )
012)
−1

∣∣∣ e ∈ E1, g ∈ G (e)
f ∈ E2

〉〉
where ⟨⟨−⟩⟩ denotes the normal closure of the subgroup generated by the indicated elements and the α
come from the definition of a (G , α)-system for each given f .

Proof. The same proof as the proof of [Stix 2006, Theorem 3.2(2)] shows that Q induces an equivalence
of categories between the infinite Galois categories (lcs(E,G ), Fs) and the full subcategory of objects of
∗

N
v∈E0

G (v) ∗N π1(E≤1, T )−Sets on which H acts trivially. We conclude by Observation 2.28. □

Remark 3.8. It is important to note that we can replace free Noohi products by free topological products
in the statement above, as we take the Noohi completion of the quotient anyway. More precisely, the
canonical map

(∗
top
v∈E0

G (v) ∗top π1(E≤1, T )/H 1)
Noohi
→ (∗N

v∈E0
G (v) ∗N π1(E≤1, T )/H)Noohi

is an isomorphism, where H1 is the normal closure in ∗top
v∈E0

G (v) ∗top π1(E≤1, T ) of a group having the
same generators as H . This is because the categories of G − Sets are the same for those two Noohi
groups.

Fact 3.9. The topological free product ∗top
i Gi of topological groups has as an underlying space the free

product of abstract groups ∗i Gi . This follows from the original construction of Graev [1948].

3B. Application to the pro-étale fundamental group.

Descent data. Let T• be a 2-complex in a category C and let F → C be a category fibered over C , with
F (S) as a category of sections above the object S.

Definition 3.10. The category DD(T•,F ) of descent data for F/C relative T• has as objects pairs (X ′, φ)
where X ′ ∈ F (T0) and φ is an isomorphism ∂∗0 X ′ ∼−→ ∂∗1 X ′ in F (T1) such that the cocycle condition
holds, i.e., the following commutes in F (T2):

v∗2 X ′
∂∗0φ

//

∂∗1φ ""

v∗1 X ′

∂∗2φ||

v∗0 X ′

Morphisms F : (X ′, φ)→ (Y ′, ψ) in DD(T•,F ) are morphisms F : X ′→ Y ′ in F (T0) such that its two
pullbacks ∂∗0 f and ∂∗1 f are compatible with φ, ψ , i.e., ∂∗1 f ◦φ = ψ ◦ ∂∗0 f .

Let h : S′→ S be a map of schemes. There is an associated 2-complex of schemes

S•(h) : S′⇔ S′×S S′ ←−←−←− S′×S S′×S S′.
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The value of ∂i is the projection under omission of the i-th component. We abbreviate DD(S•(h),F ) by
DD(h,F ). Observe that h∗ gives a functor h∗ :F (S)→ DD(h,F ).

Definition 3.11. In the above context h : S′→ S is called an effective descent morphism for F if h∗ is an
equivalence of categories.

Proposition 3.12 [Lavanda 2018, Proposition 1.16]. Let g : S′→ S be a proper, surjective morphism of
finite presentation, then g is a morphism of effective descent for geometric coverings.

Proof. This was proven by Lavanda and relies on the results of [Rydh 2010]. More precisely, this follows
from Proposition 5.4 and Theorem 5.19 of [loc. cit.], then checking that the obtained algebraic space is
a scheme (using étaleness and separatedness, see [Stacks 2020, Tag 0417]) and that it still satisfies the
valuative criterion (see Lemma 2.40). □

Discretization of descent data. We would like to apply the procedure described in [Stix 2006, Section 4.3]
but to the pro-étale fundamental group. However, in the classical setting of Galois categories, given a
category C and functors F, F ′ : C→ Sets such that (C, F) and (C, F ′) are Galois categories (i.e., F, F ′

are fiber functors), there exists an isomorphism (not unique) between F and F ′. Choosing such an
isomorphism is called “choosing a path” between F and F ′. However, it is not clear whether an analogous
statement is true for tame infinite Galois categories as the proof does not carry over to this case (see the
proof of [Stacks 2020, Lemma 0BN5] or in [SGA 1 1971] — these proofs are essentially the same and
rely on the pro-representability result of Grothendieck [1960, Proposition A.3.3.1]).

Question 3.13. Let C be a category and F, F ′ : C→ Sets be two functors such that (C, F) and (C, F ′)
are tame infinite Galois categories. Is it true that F and F ′ are isomorphic?

As we do not know the answer to this question, we have to make an additional assumption when trying
to discretize the descent data. Fortunately, it will always be satisfied in the geometric setting, which is
our main case of interest.

Definition 3.14. Let (C, F), (C′, F ′) be two infinite Galois categories and let φ : C→ C′ be a functor. We
say that φ is compatible if there exists an isomorphism of functors F ≃ F ′ ◦φ.

Let F → C be fibered in tame infinite Galois categories. More precisely, we have a notion of
connected objects in C and any T ∈ C is a coproduct of connected components. Over connected objects
F takes values in tame infinite Galois categories (i.e., over a connected Y ∈ C there exists a functor
FY :F (Y )→ Sets such that (F (Y ), FY ) is a tame infinite Galois category but we do not fix the functor).

Definition 3.15. Let T• be a 2-complex in C . Let E = π0(T•) be its 2-complex of connected components:
the 2-complex in Sets built by degree-wise application of the connected component functor. We will say
that T• is a compatible 2-complex if one can fix fiber functors Fs of F (s) for each simplex s ∈ E such
that (F (s), Fs) is tame and for any boundary map ∂ : s→ s ′ there exists an isomorphism of fiber functors
Fs ◦ T (∂)∗ ∼−→ Fs′ .
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The 2-complexes that will appear in the (geometric) applications below will always be compatible.
From now on, we will assume all 2-complexes to be compatible, even if not stated explicitly. Let T• be a
compatible 2-complex in C . Fix fiber functors Fs and isomorphisms between them as in the definition of
a compatible 2-complex. For any ∂ , denote the fixed isomorphism by ∂⃗ . For a 2-simplex (ve f ) of the
barycentric subdivision with ∂ ′ : f → e and ∂ : e→ v we define

αve f = ∂⃗ ′∂⃗(
−→
∂∂ ′)−1

or, more precisely,

αve f = T (∂)(∂⃗ ′)∂⃗(
−→
∂∂ ′)−1

∈ Aut(Fv)= π1(F (s), Fs).

We define Noohi group data (G , α) on E in the following way: G (s)=π1(F (s), Fs) for any simplex s ∈ E
and to ∂ : s→ s ′ is associated G (∂) : π1(F (s), Fs)

T (∂)∗
−−→ π1(F (s ′), Fs ◦ T (∂)∗) ∂⃗( )∂⃗

−1
−−→ π1(F (s ′), Fs′).

We define elements α as described above and we easily check that this gives Noohi group data.

Proposition 3.16. The choice of functors Fs and the choice of ∂⃗ as above fix a functor

discr : DD(T•,F )→ lcs(E, (G , α))

which is an equivalence of categories.

Proof. Given a descent datum (X ′, φ) relative T• we have to attach a locally constant (G , α)-system on E
in a functorial way. For v ∈ E0, e ∈ E1 and f ∈ E2, the definition of suitable G (v) (or G (e) or G ( f ))
sets and maps m∂ between them can be given by the same formulas as in [Stix 2006, Proposition 4.4]
and also the same computations as in [loc. cit., Proposition 4.4] show that we obtain an element of
lcs(E, (G , α)). Again, the reasoning of [loc. cit., Proposition 4.4] gives a functor in the opposite direction:
given M ∈ lcs(E, (G , α)) we define X ′ ∈F (T0)=

∏
v∈E0

F (v) as X ′
|v corresponding to Mv for all v ∈ E0.

Maps from edges to vertices define a map φ : T (∂0)
∗X ′→ T (∂1)

∗X ′ and to check the cocycle condition
one reverses the argument of the proof that discr gives a locally constant system. □

To apply the last proposition we need to know that the compatibility condition holds in the setting we
are interested in.

Lemma 3.17 [Bhatt and Scholze 2015, Lemma 7.4.1]. Let f : X ′→ X be a morphism of two connected
locally topologically noetherian schemes and let x̄ ′, x̄ be geometric points on X ′, X , correspondingly.
Then the functor f ∗ :CovX→CovX ′ is a compatible functor between infinite Galois categories (CovX , Fx̄)

and (CovX ′, Fx̄ ′), i.e., the functors Fx̄ and Fx̄ ′ ◦ f ∗ are isomorphic.

Proof. Looking at the image of x̄ ′ (as a geometric point) on X , we reduce to the case when both x̄ ′ and
x̄ lie on the same scheme X . In that case we proceed as in the second part of the proof of [loc. cit.,
Lemma 7.4.1]. □

Corollary 3.18 [Bhatt and Scholze 2015, Lemma 7.4.1]. Let X be a connected topologically noetherian
scheme. Let x̄1, x̄2 be two geometric points on X. Then there is an isomorphism π

proét
1 (X, x̄1) ≃

π
proét
1 (X, x̄2). It is unique (only) up to an inner automorphism.
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The above results combine to recover the analogue of [Stix 2006, Corollary 5.3] in the pro-étale setting.

Corollary 3.19. Let h : S′→ S be an effective descent morphism for geometric coverings. Assume that S
is connected and S, S′, S′×S S′, S′×S S′×S S′ are locally topologically noetherian. Let S′ =

⊔
v S′v be

the decomposition into connected components. Let s̄ be a geometric point of S, let s̄(t) be a geometric
point of the simplex t ∈ π0(S•(h)), and let T be a maximal tree in the graph 0 = π0(S•(h))≤1. For every
boundary map ∂ : t → t ′ let γt ′,t : s̄(t ′)→ S•(h)(∂)s̄(t) be a fixed path (i.e., an isomorphism of fiber
functors as in Lemma 3.17). Then canonically with respect to all these choices

π
proét
1 (S, s̄)∼=

((
∗

N
v∈E0

π
proét
1 (S′v, s̄(v)) ∗N π1(0, T )

)
/H

)Noohi

where H is the normal subgroup generated by the cocycle and edge relations

π
proét
1 (∂1)(g)e⃗ = e⃗πproét

1 (∂0)(g), (1)
−−−→
(∂2 f )α( f )

102(α
( f )
120)
−1−−−→(∂0 f )α( f )

210(α
( f )
201)
−1(
−−−→
(∂1 f ))−1α

( f )
021(α

( f )
012)
−1
= 1, (2)

for all parameter values e ∈ S1(h), g ∈ πproét
1 (e, s̄(e)), and f ∈ S2(h). The map πproét

1 (∂i ) uses the fixed
path γ∂i (e),e and α( f )

i jk is defined using v ∈ S0(h) and e ∈ S1(h) determined by vi ( f )= v, {∂0(e), ∂1(e)} =
{vi ( f ), v j ( f )} as

α
( f )
i jk = γv,eγe, f γ

−1
v, f ∈ π

proét
1 (v, s̄(v)).

Remark 3.20. Similarly as in Remark 3.8, we could replace ∗N by ∗top in the above, as we take the
Noohi completion of the whole quotient anyway.

Remark 3.21. We will often use Corollary 3.19 for h — the normalization map (or similar situations),
where the connected components S′v are normal. In this case πproét

1 (S′v, s̄(v))= π ét
1 (S

′
v, s̄v). This implies

that πproét
1 (∂1) factorizes through the profinite completion of πproét

1 (e, s̄(e)), which can be identified with
π ét

1 (e, s̄(e)). Moreover, the map πproét
1 (e, s̄(e))→ π ét

1 (e, s̄(e)) has dense image and, in the end, we take
the closure H of H . The upshot of this discussion is that in the definition of generators of H we might
consider g ∈ π ét

1 (e, s̄(e)) instead of g ∈ πproét
1 (e, s̄(e)) and π ét

1 (∂i ) instead of πproét
1 (∂i ), i ∈ {0, 1}, i.e.,

π
proét
1 (S, s̄)∼=

((
∗

top
v∈E0

π ét
1 (S

′

v, s̄(v)) ∗top π1(0, T )
)
/H

)Noohi

where H is the normal subgroup generated by

π ét
1 (∂1)(g)e⃗π ét

1 (∂0)(g)−1e⃗−1 for all e ∈ S1(h), g ∈ π ét
1 (e, s̄(e)) (R1)

and
−−−→
(∂2 f )α( f )

102(α
( f )
120)
−1−−−→(∂0 f )α( f )

210(α
( f )
201)
−1(
−−−→
(∂1 f ))−1α

( f )
021(α

( f )
012)
−1 for all f ∈ S2(h). (R2)

Let us move on to some applications.
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Ordered descent data. Let F be a category fibered over C (with a fixed cleavage, for convenience).
Assume that C is some subcategory of the category of locally topologically noetherian schemes with
the property that finite fiber products in C are the same as the finite fiber products as schemes. Let
h =

⊔
i∈I hi : S′ =

⊔
i S′i∈I → S be a morphism of schemes and let < be a total order on the set of

indices I . Let S<
•
(h)⊂ S•(h) be the open and closed sub-2-complex of schemes in C of ordered partial

products
S<0 (h)= S′, S<1 (h)=

⊔
i< j

S′i ×S S′j , S<2 (h)=
⊔

i< j<k

S′i ×S S′j ×S S′k .

Proposition 3.22. Let h =
⊔

i∈I hi : S′ =
⊔

i S′i∈I → S be a morphism of schemes such that, for every
i, j ∈ I , the maps induced by the diagonal morphisms 1∗i : F (S

′

i ×S S′i )→ F (S′i ) and (1i × idS′j )
∗
:

F (S′i ×S S′j ×S S′i ) → F (S′i × S′j ) are fully faithful. Then the natural open and closed immersion
S<
•
(h) ↪→ S•(h) induces an equivalence of categories

DD(h,F ) ∼=−→ DD(S<
•
(h),F ).

Proof. For the problem at hand, we can and do replace F by an equivalent category that admits
a splitting cleavage (i.e., the associated pseudofunctor is a functor). Let Y ∈ F (S′i ) and consider
∂∗0 Y, ∂∗1 Y ∈F (S′i ×S S′i ) obtained via maps induced by the projections F (S′i )→F (S′i ×S S′i ). We first
claim that there is exactly one isomorphism ∂0|

∗

Si×S Si
Y → ∂1|

∗

Si×S Si
Y as in the definition of descent data.

Observe that 1∗i ∂
∗

0 Y = Y , 1∗i ∂
∗

1 Y = Y and from the assumption any isomorphism φ : ∂∗0 Y |Si → ∂∗1 Y |Si

corresponds to precisely one isomorphism ψ ∈ HomSi (Y |Si , Y |Si ). Pulling back the cocycle condition
via the diagonal 1∗2,i : F (S

′

i ×S S′i ×S S′i )→ F (S′i ) we get ψ = idY |Si
, so there is at most one map

φ as above. Moreover, our assumptions imply that 1∗2,i is fully faithful as well, which shows that
φ : ∂∗0 Y |Si → ∂∗1 Y |Si corresponding to idY |Si

will satisfy the condition. A similar reasoning shows that if
we have φi j specified for i < j , then φ j i is uniquely determined and if the φi j satisfy the cocycle condition
on Si jk for i < j < k, then the φi j together with the φ j i obtained will satisfy the cocycle condition on any
Sαβγ , α, β, γ ∈ {i, j, k}. □

Observation 3.23. If the map of schemes S′i → S is injective, i.e., if the diagonal map S′i → S′i ×S S′i is
an isomorphism, then the assumptions of the proposition are satisfied.

Two examples.

Example 3.24. Let k be a field and C be P1
k with two k-rational closed points p0 and p1 glued (see

[Schwede 2005] for results on gluing schemes). Denote by p the node (i.e., the image of the pi in C).
We want to compute πproét

1 (C). By the definition of C , we have a map h : C̃ = P1
→ C (which is also

the normalization). It is finite, so it is an effective descent map for geometric coverings. Thus, we can use
the van Kampen theorem. This goes as follows:

• Check that C̃ ×C C̃ ≃ C̃ ⊔ p01 ⊔ p10 as schemes over C , where pαβ are equal to Spec(k) and map to
the node of C via the structural map. This can be done by checking that HomC(Y, C̃ ⊔ p01 ⊔ p10) ≃

HomC(Y, C̃)×HomC(Y, C̃).
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• Similarly, check that C̃ ×C C̃ ×C C̃ ≃ C̃ ⊔ p001 ⊔ p010 ⊔ p011 ⊔ p100 ⊔ p101 ⊔ p110, where the projection
C̃ ×C C̃ ×C C̃→ C̃ ×C C̃ omitting the first factor maps pabc to pbc and so on.

• We fix a geometric point b̄= Spec(k̄) over the base scheme Spec(k) and fix geometric points p̄0 and p̄1

over p0 and p1 that map to b̄. Then we fix geometric points on C̃, p01, p10⊂ C̃ ⊔ p01⊔ p10≃ C̃×C C̃ in a
compatible way and similarly for connected components of C̃×C C̃×C C̃ (i.e., let us say that p̄αβγ 7→ p̄α
via v0 and p̄αβ 7→ p̄α). We fix a path γ from p̄0 to p̄1 that becomes trivial on Spec(k) via the structural
map (this can be done by viewing p̄0 and p̄1 as geometric points on C̃k̄ , choosing the path on C̃k̄ first
and defining γ to be its image). Let p̄ be the fixed geometric point on C given by the image of p̄0 (or,
equivalently, p̄1).

• We want to use Corollary 3.19 to compute πproét
1 (C, p̄). We choose p̄0 as the base point s̄(C̃) for

C̃ ∈ π0(S0(h)), C̃ ∈ π0(S1(h)) and C̃ ∈ π0(S2(h)). Then for any t, t ′ ∈ π0(S•(h)) and the boundary map
∂ : t→ t ′, we use either the identity or γ to define γt ′,t : s̄(t ′)→ S•(h)(∂)s̄(t) as all the points p̄abc map
ultimately either to p̄0 or p̄1.

With this setup, the α( f )
i jk (defined as in Corollary 3.19) are trivial for any f and so the relation (2)

in this corollary reads
−−−→
(∂2 f )

−−−→
(∂0 f )(

−−−→
(∂1 f ))−1

= 1. Applying this to different faces f ∈ π0(C̃ ×C C̃ ×C C̃)
gives that the image of π1(0, T ) ≃ Z∗3 in πproét

1 (C, p̄) is generated by a single edge (in our case only
one maximal tree can be chosen – containing a single vertex). The choice of paths made guarantees
π

proét
1 (∂0)(g) = π

proét
1 (∂1)(g) in πproét

1 (C̃, p̄0) for any g ∈ πproét
1 (pab, p̄ab) = Gal(k). So relation (1) in

Corollary 3.19 implies that the image of πproét
1 (C̃, p̄0) ≃ Gal(k) in πproét

1 (C, p̄0) commutes with the
elements of the image of π1(0, T ). Putting this together we get

π
proét
1 (C, p̄)

≃
(
(π

proét
1 (C̃, p̄0) ∗

top π1(0, T ))/⟨⟨πproét
1 (∂1)(g)e⃗ = e⃗πproét

1 (∂2)(g),
−−−→
(∂2 f )

−−−→
(∂0 f )(

−−−→
(∂1 f ))−1

= 1⟩⟩
)Noohi

≃ (Galk ×Z)Noohi

= Galk ×Z.

Example 3.25. Let X1, . . . , Xm be geometrically connected normal curves over a field k and let
Ym+1, . . . , Yn be nodal curves over k as in Example 3.24. Let xi : Spec(k)→ X i be rational points
and let y j denote the node of Y j . Let X := ∪•X i ∪• Y j be a scheme over k obtained via gluing of the X i

and Y j along the rational points xi and y j (in the sense of [Schwede 2005]). The notation ∪• denotes
gluing along the obvious points. The point of gluing gives a rational point x : Spec(k)→ X . We choose a
geometric point b̄=Spec(k̄) over the base Spec(k) and choose a geometric point x̄ over x such that it maps
to b̄. The maps X i→ X and Y j→ X are closed immersions (this is basically [Schwede 2005, Lemma 3.8]).
We also get geometric points x̄i and ȳ j over xi and y j that map to b̄ as well. Denote X i = (X i )k̄ . Let
Galk,i = π ét

1 (xi , x̄i ). It is a copy of Galk in the sense that the induced map π ét
1 (xi , x̄i )→ π ét

1 (Spec(k), b̄)
is an isomorphism. Let us denote by ιi : Galk → Galk,i the inverse of this isomorphism. The group
π ét

1 (xi , x̄i ) acts on π ét
1 (X i , x̄i ) and allows to write π ét

1 (X i , x̄i )≃ π
ét
1 (X i , x̄i )⋊Galk,i .
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After some computations (as in the previous example), using Corollary 3.19 and Example 3.24, one
gets

π
proét
1 (X, x̄)

≃
(
∗

N
1≤i≤m(π

ét
1 (X i , x̄i )⋊Galk,i )∗N

m+1≤ j≤n(Z×Galk, j )/⟨⟨ιi (σ )= ιi ′(σ )|σ ∈Galk, i, i ′= 1, . . . ,n⟩⟩
)Noohi

.

Let us describe the category of group-sets:(
∗

N
1≤i≤m(π

ét
1 (X i , x̄i )⋊Galk,i )∗N

m+1≤ j≤n(Z×Galk, j )/⟨⟨ιi (σ )=ιi ′(σ )|σ ∈Galk, i, i ′=1, . . . ,n⟩⟩
)Noohi

−Sets

≃
{

S ∈
(
∗

N
1≤i≤m(π

ét
1 (X i , x̄i )⋊Galk,i )∗N

m+1≤ j≤n(Z×Galk, j )
)Noohi

−Sets | ∀i,i ′,σ∀s∈Sιi (σ )·s= ιi ′(σ )·s
}

≃
{

S ∈
(
∗

N
1≤i≤mπ

ét
1 (X i , x̄i )∗

N Z∗n−m
∗

N Galk
)Noohi

−Sets | (♠)
}

where the condition (♠) reads

∀σ∈Galk ,s∈S,1⩽i⩽m∀γ∈π ét
1 (X i ,x̄i ),w∈Z∗n−m

(
σ · (γ · s)=σ γ · (σ · s) and σ · (w · s)= w · (σ · s)

)
.

We have used Observation 2.28 and Lemma 3.26 below.

Lemma 3.26. Let K and Q be topological groups and assume we have a continuous action K × Q→ K
respecting multiplication in K . Then K ⋊ Q with the product topology (on K × Q) is a topological group
and there is an isomorphism

K ∗top Q/⟨⟨qkq−1
=

qk⟩⟩ → K ⋊ Q.

Proof. That K ⋊Q becomes a topological group is easy from the continuity assumption of the action. The
isomorphism is obtained as follows: from the universal property we have a continuous homomorphism
K ∗top Q→ K ⋊ Q and the kernel of this map is the smallest normal subgroup containing the elements
qkq−1(qk)−1 (this follows from the fact that the underlying abstract group of K ∗top Q is the abstract
free product of the underlying abstract groups, similarly for K ⋊ Q and that we know the kernel in this
case). So we have a continuous map that is an isomorphism of abstract groups. We have to check that
the inverse map K ⋊ Q ∋ kq 7→ kq ∈ K ∗top Q/⟨⟨qkq−1

=
q k⟩⟩ is continuous. It is enough to check that

the map K × Q ∋ (k, q) 7→ kq ∈ K ∗top Q (of topological spaces) is continuous, but this follows from
the fact that the maps K → K ∗top Q and Q→ K ∗top Q are continuous and that the multiplication map
(K ∗top Q)× (K ∗top Q)→ K ∗top Q is continuous. □

Let us also state a technical lemma concerning the “functoriality” of the van Kampen theorem. It is
important that the diagram formed by the schemes X1, X2, X̃ , X̃1 in the statement is cartesian.

Lemma 3.27. Let f : X1→ X2 be a morphism of connected schemes and h : X̃ → X2 be a morphism
of schemes. Denote by h1 : X̃1→ X1 the base-change of h via f . Assume that h and h1 are effective
descent morphisms for geometric coverings and that local topological noetherianity assumptions are
satisfied for the schemes involved as in the statement of Corollary 3.19. Assume that for any connected
component W ∈ π0(S•(h)), the base-change W1 of W via f is connected. Choose the geometric points
on W1 ∈ π0(S•(h1)) and paths between the obtained fiber functors as in Corollary 3.19 and choose the
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geometric points and paths on W ∈ π0(S•(h)) as the images of those chosen for X̃1. Identify the graphs
0 = π0(S•(h))⩽1 and 01 = π0(S•(h1))⩽1 (it is possible thanks to the assumption made) and choose a
maximal tree T in 0. Using the above choices, use Corollary 3.19. to write the fundamental groups

π
proét
1 (X1)≃

(
(∗

top
W∈π0(X̃)

π
proét
1 (W1)) ∗

top π1(01, T )/⟨R′⟩
)Noohi

and

π
proét
1 (X2)≃

(
(∗

top
W∈π0(X̃)

π
proét
1 (W )) ∗top π1(0, T )/⟨R⟩

)Noohi
.

Then the map of fundamental groups πproét
1 ( f ) : πproét

1 (X1)→ π
proét
1 (X2) is the Noohi completion of

the map(
(∗

top
W∈π0(X̃)

π
proét
1 (W1)) ∗

top π1(01, T )
)
/⟨R′⟩ →

(
∗

top
W∈π0(X̃)

π
proét
1 (W ) ∗top π1(0, T )

)
/⟨R⟩,

which is induced by the maps πproét
1 (W1)→ π

proét
1 (W ) and the identity on π1(01, T ) (which makes sense

after identification of 01 with 0).

Proof. It is clear that on (the image of) πproét
1 (W1) (in πproét

1 (X1)) the map is the one induced from
fW :W1→W . The part about π1(01, T ) follows from the fact that π1(01, T )<πproét

1 (X1) acts in the same
way as π1(0, T )<πproét

1 (X2) on any geometric covering of X2. This follows from the choice of points and
paths on W ∈π0(S•(h)) as the images of the points and paths on the corresponding connected components
W1∈π0(S•(h1)). The maps as in the statement give a morphism φ : (∗

top
W∈π0(X̃)

π
proét
1 (W1))∗

topπ1(01, T )→

(∗
top
W∈π0(X̃)

π
proét
1 (W )) ∗top π1(0, T ) and it is easy to check that φ(R′)⊂ R, which finishes the proof. □

3C. Künneth formula. In this subsection we use the van Kampen formula to prove the Künneth formula
for πproét

1 .
Let X, Y be two connected schemes locally of finite type over an algebraically closed field k and

assume that Y is proper. Let x̄, ȳ be geometric points of X and Y respectively with values in the same
algebraically closed field extension K of k. With these assumptions, the classical statement says that the
“Künneth formula” for π ét

1 holds, i.e., the following fact:

Fact 3.28 [SGA 1 1971, Exposé X, Corollary 1.7]. With the above assumptions, the map induced by the
projections is an isomorphism

π ét
1 (X ×k Y, (x̄, ȳ)) ∼−→ π ét

1 (X, x̄)×π ét
1 (Y, ȳ).

We want to establish analogous statement for πproét
1 .

Proposition 3.29. Let X, Y be two connected schemes locally of finite type over an algebraically closed
field k and assume that Y is proper. Let x̄, ȳ be geometric points of X and Y respectively with values
in the same algebraically closed field extension K of k. Then the map induced by the projections is an
isomorphism

π
proét
1 (X ×k Y, (x̄, ȳ)) ∼−→ π

proét
1 (X, x̄)×πproét

1 (Y, ȳ).
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Choosing a path between (x̄, ȳ) and some fixed k-point of X ×k Y (seen as a geometric point) and
looking at the images of this path via projections onto X and Y reduces us (by Corollary 3.18 and
compatibility of the chosen paths), to the situation where we can assume that x̄ and ȳ are k-points. We
are going to assume this in the proof. Before we start, let us state and prove the surjectivity of the above
map as a lemma. Properness is not needed for this.

Lemma 3.30. Let X, Y be two connected schemes over an algebraically closed field k with k-points on
them: x̄ on X and ȳ on Y . Then the map induced by the projections

π
proét
1 (X ×k Y, (x̄, ȳ))→ π

proét
1 (X, x̄)×πproét

1 (Y, ȳ)

is surjective.

Proof. Consider the map (idX , ȳ) : X = X ×k ȳ→ X ×k Y . It is easy to check that the map induced
on fundamental groups πproét

1 (X, x̄)→ π
proét
1 (X ×k Y, (x̄, ȳ))→ π

proét
1 (X, x̄)×πproét

1 (Y, ȳ) is given by
(id

π
proét
1 (X,x̄), 1

π
proét
1 (Y,ȳ)) : π

proét
1 (X, x̄)→ π

proét
1 (X, x̄)×πproét

1 (Y, ȳ). Analogous fact holds if we consider

(x̄, idY ) : Y → X ×k Y . As a result, the image im(πproét
1 (X ×k Y, (x̄, ȳ))→ π

proét
1 (X, x̄)×πproét

1 (Y, ȳ))
contains the set (πproét

1 (X, x̄)× {1
π

proét
1 (Y,ȳ)})∪ ({1πproét

1 (X,x̄)} × π
proét
1 (Y, ȳ)). This finishes the proof, as

this set generates πproét
1 (X, x̄)×πproét

1 (Y, ȳ). □

Proof of Proposition 3.29. As X, Y are locally of finite type over a field, the normalization maps are finite
and we can apply Proposition 3.12. Let X̃ → X be the normalization of X and let X̃ =

⊔
v X̃v be its

decomposition into connected components and let us fix a closed point xv ∈ X̃v for each v. Similarly, let⊔
u Ỹu = Ỹ → Y be the decomposition into connected components of the normalization of Y with closed

points yu ∈ Ỹu .
We first deal with a particular case.

Claim. The statement of Proposition 3.29 holds under the additional assumption that

• either, for any v, the projections induce isomorphisms

π
proét
1 (X̃v ×k Y, (xv, ȳ)) ∼−→ π

proét
1 (X̃v, xv)×π

proét
1 (Y, ȳ),

• or, for any u, the projections induce isomorphisms

π
proét
1 (X ×k Ỹu, (x̄, yu))

∼
−→ π

proét
1 (X, x̄)×πproét

1 (Ỹu, yu).

Proof of the claim. Apply Corollary 3.19 to h : X̃→ X . We choose x̄ and xv’s as geometric points s̄(t)
of the corresponding simplexes t ∈ π0(S•(h))0 and choose s̄(t) to be arbitrary closed points (of suitable
double and triple fiber products) for t ∈ π0(S•(h))2. We fix a maximal tree T in 0 = π0(S•(h))≤1 and fix
paths γt ′,t : s̄(t ′)→ S•(h)(∂)s̄(t). Thus, we get πproét

1 (X, x̄)∼=
((
∗

N
v π

proét
1 (X̃v, xv) ∗N π1(0, T )

)
/H

)Noohi

where H is defined as in Corollary 3.19.
Observe now that X̃v×k Y are connected (as k is algebraically closed) and that h×idY : X̃×Y→ X×Y is

an effective descent morphism for geometric coverings. So we might use Corollary 3.19 in this setting. As
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(X̃v×Y )×X×Y (X̃w×Y )= (X̃v×X Xw)×k Y , and similarly for triple products, we can identify in a natural
way i−1

: π0(S•(h× idY ))
∼
−→ π0(S•(h)). In particular we can identify the graph 0Y = π0(S•(h× idY ))≤1

with 0 and we choose the maximal tree TY of 0Y as the image of T via this identification. For t ∈π0(S•(h))
choose (s̄(t), ȳ) as the closed base points for i(t) ∈ π0(S•(h× idY )). Denote by αi jk elements of various
π

proét
1 (X̃v) defined as in Corollary 3.19 and by e⃗ elements of π1(0, T ). By the choices and identifications

above we can identify π1(0Y , TY ) with π1(0, T ). Using van Kampen and the assumption, we write

π
proét
1 (X × Y, (x̄, ȳ))∼=

((
∗

N
v π

proét
1 (X̃v × Y, (xv, ȳ)) ∗N π1(0Y , TY )

)
/HY

)Noohi

∼=
((
∗

N
v (π

proét
1 (X̃v, xv)×π

proét
1 (Y, ȳ)v) ∗N π1(0, T )

)
/HY

)Noohi
.

Here πproét
1 (Y, ȳ)v denotes a “copy” of πproét

1 (Y, ȳ) for each v. By Lemma 3.30, for T ∈ π0(S•(h)) the
natural map πproét

1 (T × Y, (s̄(T ), ȳ))→ π
proét
1 (T, s̄(T ))× πproét

1 (Y, ȳ) is surjective. It follows that the
relations defining HY (as in Corollary 3.19) can be written as

π
proét
1 (∂1)(g)h y,1e⃗ = e⃗πproét

1 (∂0)(g)h y,0,

for e ∈ e(0), g ∈ πproét
1 (e, s̄(e)), e ∈ S1(h), h y ∈ π

proét
1 (Y, ȳ), and

−−−→
(∂2 f )α102α

−1
120
−−−→
(∂0 f )α210α

−1
201(
−−−→
(∂1 f ))−1α021α

−1
012 = 1,

for f ∈ S2(h), where the α in the second relation are elements of suitable the πproét
1 (X̃v) and are the same

as in the corresponding generators of H . The h y,i denotes a copy of element h y ∈π
proét
1 (Y, ȳ) in a suitable

π
proét
1 (Y, ȳ)v . Varying e and h y while choosing g= 1∈πproét

1 (e, s̄(e)) for every e, gives that h y,1e⃗= e⃗h y,0.
For e ∈ T we have e⃗ = 1 and so the first relation reads h y,1 = h y,0, i.e., it identifies πproét

1 (Y, ȳ)v with
π

proét
1 (Y, ȳ)w for v,w— the ends of the edge e. As T is a maximal tree in 0, it contains all the vertices, so

the first relation identifies πproét
1 (Y, ȳ)v = π

proét
1 (Y, ȳ)w for any two vertices v,w and we will denote this

subgroup (of the quotient) by πproét
1 (Y, ȳ). This way h y,1e⃗ = e⃗h y,0 reads simply h y e⃗ = e⃗h y , so elements

of πproét
1 (Y, ȳ) commute with elements of π1(0, T ). Moreover, elements of πproét

1 (Y, ȳ) commute with
elements of each πproét

1 (X̃v, xv), as this was true for πproét
1 (Y, ȳ)v . On the other hand, choosing h y = 1 in

the first relation and looking at the second relation, we see that HY contains all the relations of H . Using
notations from the above discussion, we can sum it up by writing

HY = ⟨⟨relations generating H, h y,0 = h y,1, h y e⃗ = e⃗h y, h yg = gh y(g ∈ π
proét
1 (X̃v, xv))⟩⟩.

Putting this together, we get equivalences of categories((
∗

N
v (π

proét
1 (X̃v, xv)×π

proét
1 (Y, ȳ)v) ∗N π1(0, T )

)
/HY

)
−Sets

∼=
{

S ∈
(
∗

N
v (π

proét
1 (X̃v, xv)×π

proét
1 (Y, ȳ)v) ∗N π1(0, T )

)
−Sets | HY acts trivially on S

}
♠
∼=

{
S ∈

(
(∗N
v π

proét
1 (X̃v, xv) ∗N π1(0, T ))×πproét

1 (Y, ȳ)
)
−Sets | H acts trivially on S

}
∼=

((
(∗N
v π

proét
1 (X̃v, xv) ∗N π1(0, T ))/H

)
×π

proét
1 (Y, ȳ)

)
−Sets

∼= (π
proét
1 (X, x̄)×πproét

1 (Y, ȳ))−Sets,
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where equality ♠ follows from the fact that for topological groups G1,G2 there is an equivalence
(G1×G2)−Sets∼= {S ∈ G1 ∗

N G2−Sets | ∀g1∈G1,g2∈G2∀s∈Sg1g2s = g2g1s} (see Lemma 3.26).
This finishes the proof of the Claim in the “either” case. After noting that each Ỹu is still proper, the

“or” case follows in a completely symmetrical manner. We have proven a particular case of the proposition.
Let us now go ahead and prove the full statement. □

General case. The general case follows from the claim proven above in the following way: Let⊔
v X̃v= X̃→ X and

⊔
u Ỹu= Ỹ→Y be decompositions into connected components of the normalizations

of X and Y . Fix v and note that πproét
1 (X̃v ×k Y ) = πproét

1 (X̃v)× π
proét
1 (Y ) by applying the claim to Y

and X̃v. This is possible, as the Ỹu , X̃v and the products Ỹu ×k X̃v (for all u) are normal varieties and
so their pro-étale fundamental groups are equal to the usual étale fundamental groups (by Lemma 2.12)
for which the equality π ét

1 (Ỹu ×k X̃v)= π ét
1 (Ỹu)×π

ét
1 (X̃v) is known (see Fact 3.28). Thus, for any v, we

have that πproét
1 (X̃v ×k Y )= πproét

1 (X̃v)×π
proét
1 (Y ). We can now apply the claim to X and Y and finish

the proof in the general case. □

3D. Invariance of π
proét
1 of a proper scheme under a base-change K ⊃ k of algebraically closed fields.

Proposition 3.31. Let X be a proper scheme over an algebraically closed field k. Let K ⊃ k be another
algebraically closed field. Then the pullback induces an equivalence of categories

F : CovX → CovX K .

In particular, if X is connected, X K → X induces an isomorphism

π
proét
1 (X K )

∼
−→ π

proét
1 (X).

Proof. Let Xν
→ X be the normalization. It is finite, and thus a morphism of effective descent for

geometric coverings. Let us show that the functor F is essentially surjective. Let Y ′ ∈ CovX K . As k
is algebraically closed and Xν is normal, we conclude that Xν is geometrically normal, and thus the
base change (Xν)K is normal as well; see [Stacks 2020, Tag 038O]. Pulling Y ′ back to (Xν)K we get a
disjoint union of schemes finite étale over (Xν)K with a descent datum. It is a classical result [SGA 1
1971, Exposé X, Corollary 1.8] that the pullback induces an equivalence FétXν → FétXνK of finite étale
coverings and similarly for the double and triple products Xν

2 = Xν
×X Xν , Xν

3 = Xν
×X Xν

×X Xν .
These equivalences obviously extend to categories whose objects are (possibly infinite) disjoint unions of
finite étale schemes (over Xν , Xν

2 , Xν
3 respectively) with étale morphisms as arrows. These categories can

be seen as subcategories of CovXν and so on. These subcategories are moreover stable under pullbacks
between CovXνi . Putting this together we see, that Y ′′=Y ′×X K (X

ν)K with its descent datum is isomorphic
to a pullback of a descent datum from Xν . Thus, we conclude that there exists Y ∈ CovX such that
Y ′ ≃ YK . Full faithfulness of F is shown in the same way. If X is connected, it can be also proven more
directly, as F being fully faithful is equivalent to preserving connectedness of geometric coverings, but any
connected Y ∈ CovX is geometrically connected, and thus YK remains connected by Proposition 2.37(2).
Note that in the above argument we do not claim that the double and triple intersections Xν

2, Xν
3 are
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normal, as this is in general false. Instead, we are only using that all the considered geometric coverings
of those schemes came as pullbacks from Xν , and thus were already split-to-finite. □

4. Fundamental exact sequence

4A. Statement of the results and examples. The main result of this chapter is the following theorem.

Theorem (see Theorem 4.14 below). Let k be a field and fix an algebraic closure k̄. Let X be a
geometrically connected scheme of finite type over k. Then the sequence of abstract groups

1→ π
proét
1 (X k̄)→ π

proét
1 (X)→ Galk→ 1

is exact.
Moreover, the map πproét

1 (X k̄)→ π
proét
1 (X) is a topological embedding and the map πproét

1 (X)→Galk
is a quotient map of topological groups.

One shows the near exactness first and obtains the above version as a corollary with an extra argument.
The most difficult part of the sequence is exactness on the left. We will prove it as a separate theorem and
its proof occupies an entire subsection.

Theorem (see Theorem 4.13 below). Let k be a field and fix an algebraic closure k̄ of k. Let X be a
scheme of finite type over k such that the base change X k̄ is connected. Then the induced map

π
proét
1 (X k̄)→ π

proét
1 (X)

is a topological embedding.

By Proposition 2.37, it translates to the following statement in terms of coverings: every geometric
covering of X k̄ can be dominated by a covering that embeds into a base-change to k̄ of a geometric
covering of X (i.e., defined over k). In practice, we prove that every connected geometric covering of X k̄

can be dominated by a (base-change of a) covering of Xl for l/k finite.
For finite coverings, the analogous statement is very easy to prove simply by finiteness condition.

But for general geometric coverings this is nontrivial and maybe even slightly surprising as we show by
counterexamples (Examples 4.5 and 4.6) that it is not always true that a connected geometric covering of
X k̄ is isomorphic to a base-change of a covering of Xl for some finite extension l/k. This last statement
is, however, stronger than what we need to prove, and thus does not contradict our theorem. Observe,
that the stronger statement is true for finite coverings and, even more generally, whenever πproét

1 (X k̄) is
prodiscrete, as proven in Proposition 4.8.

Let us proceed to proving the easier part of the sequence first.

Observation 4.1. By Proposition 2.17, the category of geometric coverings is invariant under universal
homeomorphisms. In particular, for a connected X over a field and k ′/k purely inseparable, there is
π

proét
1 (Xk′) = π

proét
1 (X). Similarly, we can replace X by Xred and so assume X to be reduced when

convenient. In this case, base change to separable closure Xks is reduced as well. We will often use this
observation without an explicit reference.
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We start with the following lemmas.

Lemma 4.2. Let k be a field. Let k ⊂ k ′ be a (possibly infinite) Galois extension. Let X be a connected
scheme over k. Let T 0 ⊂ π0(Xk′) be a nonempty closed subset preserved by the Gal(k ′/k)-action. Then
T 0 = π0(Xk′).

Proof. Let T be the preimage of T 0 in Xk′ (with the reduced induced structure). By [Stacks 2020,
Lemma 038B], T is the preimage of a closed subset T ⊂ X via the projection morphism p : Xk′→ X .
On the other hand, by [loc. cit., Lemma 04PZ], the image p(T ) equals the entire X . Thus, T = X and
T = Xk′ , and so T 0 = π0(Xk′). □

Lemma 4.3. Let X be a connected scheme over a field k with an l ′-rational point with l ′/k a finite field
extension. Then π0(Xksep) is finite, the Galk action on π0(Xksep) is continuous and there exists a finite
separable extension l/k such that the induced map π0(Xksep)→ π0(Xl) is a bijection. Moreover, there
exists the smallest field (contained in ksep) with this property and it is Galois over k.

Proof. Let us first show the continuity of the Galk-action. The morphism Spec(l ′)→ X gives a Galk-
equivariant morphism Spec(l ′ ⊗k ksep) → Xksep and a Galk-equivariant map π0(Spec(l ′ ⊗k ksep)) →

π0(Xksep). Denote by M ⊂ π0(Xksep) the image of the last map. It is finite and Galk-invariant, and by
Lemma 4.2, M=π0(Xk′). We have tacitly used that M is closed, as π0(Xk′) is Hausdorff (as the connected
components are closed). As Galk acts continuously on π0(Spec(l ′⊗k ksep)) (for example by [Stacks 2020,
Lemma 038E]), we conclude that it acts continuously on π0(Xksep) as well. From Lemma 4.2 again and
from [loc. cit., Tag 038D], we easily see that the fields l ⊂ ksep such that π0(Xksep)→ π0(Xl) is a bijection
are precisely those that Gall acts trivially on π0(Xksep). To get the minimal field with this property we
choose l such that Gall = ker(Galk→ Aut(π0(Xksep))). □

Theorem 4.4. Let k be a field and fix an algebraic closure k̄. Let X be a geometrically connected scheme
of finite type over k. Let x̄ : Spec(k̄)→ X k̄ be a geometric point on X k̄ . Then the induced sequence

π
proét
1 (X k̄, x̄) ι

−→ π
proét
1 (X, x̄) p

−→ Galk→ 1

of topological groups is nearly exact in the middle (i.e., the thick closure of im(ι) equals ker(p)) and
π

proét
1 (X)→ Galk is a topological quotient map.

Proof. (1) The map p is surjective and open: let U < π
proét
1 (X) be an open subgroup. There is a

geometric covering Y of X with a k̄-point ȳ such that the morphism π
proét
1 (Y, ȳ)→ π

proét
1 (X, x̄) is equal

to U ⊂ πproét
1 (X, x̄). As Y is locally of finite type over k, the image of ȳ in Y has a finite extension l of k

as the residue field. Thus, we get Gall→ π
proét
1 (Y )→ Galk and we see that the image πproét

1 (Y )→ Galk
contains an open subgroup, so is open. We have shown that p is an open morphism. In particular the
image of πproét

1 (X) in Galk is open and so also closed. On the other hand, this image is dense as we have
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the following diagram:
π

proét
1 (X)

��

// π
proét
1 (Spec(k))

∧

π
proét
1 (X)prof

= π ét
1 (X) // // π ét

1 (Spec(k))

where ·̂ · ·prof means the profinite completion. In the diagram, the left vertical map has dense image and
the lower horizontal is surjective. This shows that πproét

1 (X)→ Galk is surjective.

(2) The composition πproét
1 (X k̄, x̄)→π

proét
1 (X, x̄)→Galk is trivial — this is clear thanks to Proposition 2.37

and the fact that the map X k̄→ Spec(k) factorizes through Spec(k̄).

(3) The thick closure of im(ι) is normal: as remarked above, πproét
1 (X k̄)= π

proét
1 (Xks ), where ks denotes

the separable closure. Thus, we are allowed to replace k̄ with ks in the proof of this point. Moreover, by
the same remark, we can and do assume X to be reduced. Let Y → X be a connected geometric covering
such that there exists a section s : Xks → Y ×X Xks = Yks over Xks . Observe that any such section is a
clopen immersion: this follows immediately from the equivalence of categories of πproét

1 (Xks )− Sets and
geometric coverings. Define T :=

⋃
σ∈Gal(k)

σ s(Xks )⊂ Yks . Observe that two images of sections in the
sum either coincide or are disjoint as Xks is connected and they are clopen. Now, T is obviously open,
but we claim that it is also a closed subset. This follows from Lemma 4.3 (which implies that π0(Yks ) is
finite), but one can also argue directly by using that Yks is locally noetherian and σ s(Xks ) are clopen. Now
by [Stacks 2020, Tag 038B], T descends to a closed subset T ⊂ Y . It is also open as T is the image of T
via projection Yks → Y which is surjective and open map. Indeed, surjectivity is clear and openness is
easy as well and is a particular case of a general fact, that any map from a scheme to a field is universally
open [loc. cit., Tag 0383] By connectedness of Y we see that T = Y . So Yks = T . But this last one is a
disjoint union of copies of Xks , which is what we wanted to show by Proposition 2.37.

(4) The smallest normal thickly closed subgroup of πproét
1 (X) containing im(ι) is equal to ker(p): as we

already know that this image is contained in the kernel and that the map πproét
1 (X)→ Galk is a quotient

map of topological groups, we can apply Proposition 2.37. Let Y be a connected geometric covering of
X such that Yk̄ = Y ×X X k̄ splits completely. Denote Yk̄ =

⊔
α X k̄,α, where by X k̄,α we label different

copies of X k̄ . By Lemma 4.3, π0(Yk̄) is finite, and thus the indexing set {α} and the covering Y → X
are finite. But in this case, the statement follows from the classical exact sequence of étale fundamental
groups due to Grothendieck. □

As promised above, we give examples of geometric coverings of X k̄ that cannot be defined over any
finite field extension l/k.

Example 4.5. Let X i = Gm,Q, i = 1, 2. Define X to be the gluing X = ∪•X i of these schemes at the
rational points 1i : Spec(Q)→ X i corresponding to 1. Fix an algebraic closure Q of Q and so a geometric
point b̄ over the base Spec(Q). This gives geometric points x̄i on X i = X i,Q and X i lying over 1i , which
we choose as base points for the fundamental groups involved. Similarly, we get a geometric point x̄
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over the point of gluing x that maps to b̄. Then Example 3.25 gives us a description of the fundamental
group πproét

1 (X, x̄)≃
(
∗

top
i=1,2(π

ét
1 (X i , x̄i )⋊GalQ,i )/⟨⟨ι1(σ )= ι2(σ ) | σ ∈ GalQ⟩⟩

)Noohi and of its category
of sets:

π
proét
1 (X, x̄)−Sets

≃
{

S ∈
(
∗

topπ ét
1 (X1) ∗

top π ét
1 (X2) ∗

top GalQ
)
−Sets | ∀σ∈GalQ∀i∀γ∈π ét

1 (X i )
∀s∈Sσ · (γ · s)= σγ · (σ · s)

}
.

For the base change X to Q, we have πproét
1 (X , x̄)≃ π ét

1 (X1, x̄1)∗
N π ét

1 (X2, x̄2). Recall that the groups
π ét

1 (X i , x̄i ) are isomorphic to Ẑ(1) = lim
←−−

µn as GalQ-modules. Fix these isomorphisms. Let S = N>0.
Let us define a πproét

1 (X , x̄)-action on S, which means giving actions by π ét
1 (X1, x̄1) and π ét

1 (X2, x̄2) (no
compatibilities of the actions required). Let ℓ be a fixed odd prime number (e.g., ℓ= 3). We will give
two different actions of Zℓ(1) on S which will define actions of Ẑ(1) by projections on Zℓ(1). We start
by dividing S into consecutive intervals labeled a1, a3, a5, . . . of cardinality ℓ1, ℓ3, ℓ5, . . . respectively.
These will be the orbits under the action of π ét

1 (X1, x̄1). Similarly, we divide S into consecutive intervals
b2, b4, b6, . . . of cardinality ℓ2, ℓ4, . . . .

a1︷ ︸︸ ︷︸ ︷︷ ︸
b2

• • •

a3︷ ︸︸ ︷
• • • • • • ︸ ︷︷ ︸

b4

• • • • • • • • • · · · · · ·

We still have to define the action on each am and bm . We choose arbitrary identifications bm ≃ µℓm

as Zℓ(1)-modules. Now, fix a compatible system of ℓn-th primitive roots of unity ζ = (ζℓn ) ∈ Z(1). For
am’s, we choose the identifications with µℓm arbitrarily with one caveat: we demand that for any even
number m, the intersection bm ∩am+1 contains the elements 1, ζℓm+1 ∈ µℓm+1 via the chosen identification
am+1 ≃ µℓm+1 . As |bm ∩ am+1|> 0 and |bm ∩ am+1| ≡ 0 mod ℓ, the intersection bm ∩ am+1 contains at
least two elements and we see that choosing such a labeling is always possible.

Assume that S corresponds to a covering that can be defined over a finite Galois extension K/Q. Fix
s0 ∈ a1∩ b2. By increasing K , we might and do assume that GalK fixes s0. Let p be a prime number ̸= ℓ
that splits completely in K and p be a prime of OK lying above p. Let φp ∈GalK be a Frobenius element
(which depends on the choice of the decomposition group and the coset of the inertia subgroup). It acts
on Zℓ(1) via t 7→ t p and this action is independent of the choice of φp. Choose N > 0 such that pN

≡ 1
mod ℓ2 and let m be the biggest number such that pN

≡ 1 mod ℓm . If m is odd, we look at pℓN instead.
In this case m+1 is the biggest number such that pℓN

≡ 1 mod ℓm+1 and so, by changing N if necessary,
we can assume that m is even, > 1. The whole point of the construction is the following: if s ∈ ai ∩ b j

with i, j < m is fixed by φN
p , then so are g · s and h · s (for h ∈ π ét

1 (X1, x̄1) and g ∈ π ét
1 (X2, x̄2)). Then

moving such s with the g and h to bm ∩ am+1 leads to a contradiction. Indeed, let s1 ∈ bm ∩ am+1 ⊂ S
correspond to 1 ∈ µℓm+1 ≃ am+1 (it is possible by the choices made in the construction of S). Write
s1= gmhm−1 · · · h3g2h1 ·s0 with hi ∈π

ét
1 (X1, x̄1) and g j ∈π

ét
1 (X2, x̄2) (this form is not unique, of course).

This is possible thanks to the fact that the sets ai , b j form consecutive intervals separately such that b j

intersects nontrivially a j−1 and a j+1. By the construction of S again, there is an element s2 ∈ bm ∩ am+1
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corresponding to ζℓm+1 ∈ µℓm+1 via am+1 ≃ µℓm+1 . We can now write s2 in two ways:

s2 = ζ · s1 = g · s1,

where g ∈π ét
1 (X2, x̄2) and ζ is the chosen element in π ét

1 (X1, x̄1)≃ Ẑ(1). By the choices made, the action
of φN

p fixes the elements s1 and g · s1, while it moves ζ · s1. Indeed, φN
p · (ζ · s1)= (φ

N
p ζφ

−N
p ) · (φN

p · s1)=

ζ pN
· (φN

p · s1)= ζ
pN
· s1 = ζ

pN

ℓm+1 ̸= ζℓm+1 = ζ · s1 ∈ µℓm+1 ≃ am+1 — a contradiction.

Example 4.6. Let X i = Gm,Q, i = 1, 2, 3 and let X4, X5 be the nodal curves obtained from gluing 1
and −1 on P1

Q
(see Example 3.24). Define X to be the gluing X = ∪•X i of all these schemes at the

rational points corresponding to 1 (or the image of 1 in the case of the nodal curves). We fix an algebraic
closure Q of Q and so fix a geometric point b̄ over the base Spec(Q). We get geometric points x̄i on
X i = X i×Q Q lying over 1. We have and fix the following isomorphisms of GalQ-modules. For 1≤ i ≤ 3,
π ét

1 (X i , x̄i )≃ Ẑ(1) and for 4≤ j ≤ 5, we have πproét
1 (X j , x̄ j )≃ ⟨tZ

⟩ (i.e., Z written multiplicatively). Let
ti ∈ π

proét
1 (X i , x̄i ) be the elements corresponding via these isomorphisms to a fixed inverse system of

primitive roots ζ ∈ Ẑ(1) (for i = 1, 2, 3) and to t ∈ ⟨tZ
⟩ (for i = 4, 5). Example 3.25 gives a description

of the fundamental group

π
proét
1 (X, x̄)≃

(
∗

N
i=1,2,3(Ẑ(1)i⋊GalQ,i )∗N

j=4,5(⟨t
Z
⟩×GalQ, j )

/〈〈
ιi (σ )= ιi ′(σ )

∣∣ σ ∈ GalQ
i, i ′ = 1, . . . , 5

〉〉)Noohi

and of its category of sets:

π
proét
1 (X, x̄)−Sets≃

{
S ∈

(
∗

top
1≤i≤3Ẑ(1) ∗top

⟨tZ
⟩
∗2
∗

top GalQ
)
−Sets |

∀σ∈GalQ∀1≤i≤3∀ γ∈Z(1)i
w∈⟨tZ

⟩
∗2
∀s∈Sσ · (γ · s)=σ γ · (σ · s) and σ · (w · s)= w · (σ · s)

}
.

Let G =
{(
∗ ∗

∗

)}
⊂GL2(Qℓ) be the subgroup of upper triangular matrices. Fix u1 ∈ Z×ℓ such that u p

1 ̸= u1.
Let H = ∗top

i π ét
1 (X i , x̄i ) and define a continuous homomorphism ψ : H → G by:

ψ(t1)=
(

u1

1

)
, ψ(t2)=

(
1

u1

)
, ψ(t3)=

(
1 1

1

)
, ψ(t4)=

(
ℓ

1

)
, ψ(t5)=

(
1
ℓ

)
.

It is easy to see that ψ is surjective.
Let U ⊂G be the subgroup of matrices with elements in Zℓ, i.e., U =

{(
∗ ∗

∗

)}
⊂GL2(Zℓ). It is an open

subgroup of G. Thus, using ψ and the fact that H Noohi
= π

proét
1 (X , x̄), we get that S := G/U defines a

π
proét
1 (X , x̄)-set. It is connected (i.e., transitive) and so corresponds to a connected geometric covering

of X . Assume that it can be defined over a finite extension L of Q. We can assume L/Q is Galois. By
the description above, it means that there is a compatible action of groups Z(1)i , Z∗2 and GalL on S. By
increasing L , we can assume moreover that GalL fixes [U ].

Choose p ̸= ℓ that splits completely in GalL , fix a prime p of L dividing p and let φp ∈ GalL denote a
fixed Frobenius element. Let tu1

3 denote the unique element of ψ−1
|π ét

1 (X3,x̄3)

((1 u1
1

))
. Let n≫ 0. An easy

calculation shows that ψ(t−n
4 t1t3t−1

1 t−u1
3 tn

4 )= 1GL2(Qℓ) ∈U . Then φp ·[U ]=φp ·(t−n
4 t1t3t−1

1 t−u1
3 tn

4 ·[U ])=
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φp(t−n
4 t1t3t−1

1 t−u1
3 tn

4 ) · (φp · [U ])= t−n
4 t p

1 t p
3 t−p

1 t−pu1
3 tn

4 · [U ]. But

ψ(t−n
4 t p

1 t p
3 t−p

1 t−pu1
3 tn

4 )=

(
ℓ−n

1

) (
u p

1
1

) (
1 p

1

) (
u−p

1
1

) (
1 −pu1

1

) (
ℓn

1

)
=

(
1 ℓ−n p(u p

1 − u1)

1

)
/∈U.

As n≫ 0 and u p
1 ̸= u1, it follows that φp · [U ] ̸= [U ]— a contradiction.

It is important to note, that the above (counter)examples are possible only when considering the
geometric coverings that are not trivialized by an étale cover (but one really needs to use the pro-étale
cover to trivialize them). In [Bhatt and Scholze 2015], the category of geometric coverings trivialized by
an étale cover on X is denoted by LocXét and the authors prove the following

Fact 4.7 [Bhatt and Scholze 2015, Lemma 7.4.5]. Under LocX ≃ π
proét
1 (X)− Sets, the full subcategory

LocXét ⊂ LocX corresponds to the full subcategory of those πproét
1 (X)− Sets where an open subgroup

acts trivially.

We are now going to prove:

Proposition 4.8. Let X be a geometrically connected separated scheme of finite type over a field k. Let
Y ∈ CovX k̄

be such that Y ∈ Loc(X k̄)ét . Then there exists a finite extension l/k such and Y0 ∈ CovXl such
that Y ≃ Y0×Xl X k̄ .

Proof. By the topological invariance (Proposition 2.17), we can replace k̄ by ksep if desired. By the
assumption Y ∈ Loc(X k̄)ét , there exists an étale cover of finite type that trivializes Y . Being of finite
type, it is a base-change X ′

k̄
= X ′ ×Spec(l) Spec(k̄)→ X k̄ of an étale cover X ′ → Xl for some finite

extension l/k. Thus, Y|X ′
k̄

is constant (i.e., ≃
⊔

s∈S X ′ = S) and the isomorphism between the pull-
backs of Y|X ′

k̄
via the two projections X ′

k̄
×X k̄

X ′
k̄
⇒ X ′

k̄
is expressed by an element of a constant sheaf

Aut(S)(X ′
k̄
×X k̄

X ′
k̄
)=Aut(S)(X ′

k̄
×X k̄

X ′
k̄
) (we use the fact that X ′

k̄
is étale over X k̄ , and thus π0(X ′k̄×X k̄

X ′
k̄
)

is discrete, in this case even finite). By enlarging l, we can assume that the connected components of
the schemes involved: X ′, X ′ ×Xl X ′ etc. are geometrically connected over l. Define Y ′0 =

⊔
s∈S X ′.

The discussion above shows that the descent datum on Y|X ′
k̄

with respect to X ′
k̄
→ X k̄ is in fact the

pull-back of a descent datum on Y ′0 with respect to X ′→ Xl . As étale covers are morphisms of effective
descent for geometric coverings (this follows from the fpqc descent for fpqc sheaves and the equivalence
CovXl ≃ LocXl of [Bhatt and Scholze 2015, Lemma 7.3.9]), the proof is finished. □

Remark 4.9. Over a scheme with a nondiscrete set of connected components, Aut(S) might not be equal
to Aut(S).

Proposition 4.8 shows that our main theorem is significantly easier for πSGA3
1 .
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Corollary 4.10. Let X be a geometrically connected separated scheme of finite type over a field k. Fix an
algebraic closure k̄ of k. Then

πSGA3
1 (X k̄)→ πSGA3

1 (X)

is a topological embedding.

4B. Preparation for the proof of Theorem 4.13. We are going to use the following proposition.

Proposition 4.11. Let X be a scheme of finite type over a field k with a k-rational point x0 and assume
that X k̄ is connected. Let Y1, . . . , YN be a set of connected finite étale coverings of X k̄ . Then there exists
a finite Galois covering Y of X k̄ that dominates each Yi and such that the corresponding normal subgroup
of π ét

1 (X k̄, x̄0) is normalized by Galk = π ét
1 (x0, x̄0) in π ét

1 (X, x̄0).

Proof. There is a finite connected Galois covering of X k̄ dominating Y1, . . . , YN . Thus, we can assume
N = 1 and Y1 is Galois. Fix a geometric point x̄0 over x0. The splitting s :Galk =π ét

1 (x0, x̄0)→π ét
1 (X, x̄0)

allows us to write π ét
1 (X, x̄0) ≃ π

ét
1 (X k̄, x̄0)⋊Galk . Fix a geometric point ȳ on Y1 over x̄0. The group

U =π ét
1 (Y1, ȳ) is a normal open subgroup of π ét

1 (X k̄, x̄0). As the pair (Y1, ȳ) is defined over a finite Galois
field extension l/k (contained in k̄), it is easy to check that Gall ⊂Galk fixes U , i.e., σU =U for σ ∈Gall .
It follows that the set of conjugates σU is finite, of cardinality bounded by [l : k]. Define V =

⋂
σ∈Galk

σU .
It follows that this is an open subgroup of π ét

1 (X k̄, x̄0) fixed by the action of Galk . Moreover, it is
normal in π ét

1 (X k̄, x̄0), as for any g ∈ π ét
1 (X k̄, x̄0), there is g

(⋂
σ∈Galk

σU
)
g−1
=

⋂
σ∈Galk gσUg−1

=⋂
σ∈Galk

σ ((σ
−1

g)U (σ
−1

g−1))=
⋂
σ∈Galk

σU , due to normality of U . This open subgroup V <π ét
1 (X k̄, x̄0)

corresponds to a covering with the desired properties. □

Before starting the proof, we need to collect some facts about the Galois action on the geometric π ét
1 .

They are discussed, for example, in [Stix 2013, Chapter 2]. The existence, functoriality and compatibility
with compositions of the action can be readily seen to generalize to πproét

1 as well, but note (see the
last point below) that one has to be careful when discussing continuity. For a connected topologically
noetherian scheme W and geometric points w̄1, w̄2, let πproét

1 (W, w̄1, w̄2)= IsomCovWk̄
(Fw̄1, Fw̄2) denote

the set of isomorphisms of the two fiber functors, topologized in a way completely analogous to the case
when w̄1 = w̄2. By Corollary 3.18, it is a bitorsor under πproét

1 (W, w̄1) and πproét
1 (W, w̄2). The bitorsors

under profinite groups π ét
1 (W, w̄1, w̄2) are defined similarly and are rather standard. For a geometrically

unibranch W , the two notions match.

Lemma 4.12. For a scheme W of finite type over k and two geometric points w̄1, w̄2 on W lying over
k-points, there is an abstract Galk-action on π ét

1 (Wk̄, w̄1, w̄2) and πproét
1 (Wk̄, w̄1, w̄2) such that:

(a) It is given by ψσ = π ét
1 (idW ×Spec(k) Spec(σ−1), w̄1, w̄2) or an analogously defined automorphism of

π
proét
1 (Wk̄, w̄1, w̄2). This makes sense as w̄1, w̄2 are Galk-invariant.

(b) The morphism π
proét
1 (Wk̄, w̄1, w̄2) → π ét

1 (Wk̄, w̄1, w̄2) is Galk-equivariant. Similarly, maps of
schemes (W, w̄1, w̄2)→ (W ′, w̄1, w̄2) induce Galk-equivariant maps on π ét

1 and πproét
1 .
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(c) For three geometric points w̄1, w̄2, w̄3, the Galois action is compatible with the composition maps,
i.e., for any σ ∈ Galk , the following diagram commutes:

π
proét
1 (Wk̄, w̄2, w̄3)×π

proét
1 (Wk̄, w̄1, w̄2)

(−)◦(−)
//

(ψσ ,ψσ )
��

π
proét
1 (Wk̄, w̄1, w̄3)

ψσ
��

π
proét
1 (Wk̄, w̄2, w̄3)×π

proét
1 (Wk̄, w̄1, w̄2)

(−)◦(−)
// π

proét
1 (Wk̄, w̄1, w̄3)

Similarly for π ét
1 . Inductively, this also holds for arbitrary (finite) composition maps.

(d) Let sw1, sw2 be the sections of the maps π ét
1 (W, w̄i )→ Galk coming from rational points w1, w2.

Then ψσ (γ )= sw2(σ )◦γ ◦sw1(σ
−1) for γ ∈π ét

1 (Wk̄, w̄1, w̄2)⊂π
ét
1 (W, w̄1, w̄2). Note that, while ψσ

is defined for πproét
1 , the right-hand side of this formula only makes sense thanks to the fundamental

exact sequence for π ét
1 (and its version for the sets of paths, see [Stix 2013, Proposition 18]). Thus,

at this stage, we cannot make an analogous statement for πproét
1 .

In terms of continuity of ψσ , there is a priori a huge difference in how much we can say about π ét
1

and πproét
1 :

(e) For each σ , the mapψσ is continuous as an automorphism of π ét
1 (Wk̄, w̄1, w̄2) and πproét

1 (Wk̄, w̄1, w̄2).

(f) The action Galk ×π ét
1 (Wk̄, w̄1, w̄2)→ π ét

1 (Wk̄, w̄1, w̄2) is continuous. Note, however, that at this
stage of the proof we do not know whether this is true for π

proét
1 . In fact, this is closely related to

the main result we need to prove.

4C. Proof that π
proét
1 (X k̄) → π

proét
1 (X) is a topological embedding. In this subsection we finally prove

our main result.

Theorem 4.13. Let k be a field and fix an algebraic closure k̄ of k. Let X be a scheme of finite type over k
such that the base-change X k̄ is connected. Let x̄ be a Spec(k̄)-point on X k̄ . Then the induced map

π
proét
1 (X k̄, x̄)→ π

proét
1 (X, x̄)

is a topological embedding.

Then, we will derive the final form of the fundamental exact sequence.

Theorem 4.14. With the assumptions as in Theorem 4.13, the sequence of abstract groups

1→ π
proét
1 (X k̄, x̄)→ π

proét
1 (X, x̄)→ Galk→ 1

is exact.
Moreover, the map πproét

1 (X k̄, x̄)→π
proét
1 (X, x̄) is a topological embedding and the map πproét

1 (X, x̄)→
Galk is a quotient map of topological groups.
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In the proof, after some preparatory steps (e.g., extending the field k), we define the set of regular loops
in πproét

1 (X k̄) with respect to a fixed open subgroup U <◦ π
proét
1 (X k̄, x̄) and use it to construct an Galois

invariant open subgroup V inside of U (see Steps II and III below). There is also an alternative approach
to proving the existence of V that avoids the direct construction involving regular loops. We sketch it in
Remark 4.27. While this latter approach is quicker, it is less instructive: as explained in Remark 4.26 below,
the notion of a regular loop provides an insight of what goes wrong in the counterexample Example 4.5.
Still, it might be worth having a look at, as our main approach is rather lengthy.

Step I: Setting things up and applying van Kampen. For any finite extension k̄/ l/k of k, the
map πproét

1 (Xl, x̄)→ π
proét
1 (X, x̄) is an embedding of an open subgroup and we have a factorization

π
proét
1 (X k̄, x̄)→ π

proét
1 (Xl, x̄)→ π

proét
1 (X, x̄). Here, we have tacitly lifted x̄ to Xl . Thus, we can start

by replacing k by a finite extension. Considering the normalization Xν
→ X , base-changing the whole

problem to a finite extension l of k, considering the factorization l/ l ′/k into separable and purely
inseparable extension of fields, and using first that the base-change along a separable field extension of a
normal scheme is normal and then the topological invariance of πproét

1 , we can assume that we have a
surjective finite morphism h : X̃→ X such that the connected components of X̃ , X̃ ×X X̃ , X̃ ×X X̃ ×X X̃
are geometrically connected, have rational points and for each W ∈ π0(X̃), there is πproét

1 (W )= π ét
1 (W )

and πproét
1 (Wk̄)= π

ét
1 (Wk̄).

Let X̃ =
⊔
v∈Vert X̃v be the decomposition into connected components. Note that the indexing set Vert

is finite. For each t ∈ π0(X̃)∪π0(X̃ ×X X̃)∪π0(X̃ ×X X̃ ×X X̃), we fix a k-rational point x(t) on t and
a k̄-point x̄(t̄) on t̄ = tk̄ lying over x(t). We will often write x̄t to mean x̄(t). Let us fix vx̄ ∈ Vert for the
rest of the text and say that the image of x̄(X̃vx̄ ,k̄) in X k̄ will be the fixed geometric point x̄ of X k̄ and
its image in X the fixed geometric point of X . For any Wk̄,W ′

k̄
∈ π0(S•(h̄)) and every boundary map

∂̄ :Wk̄→W ′
k̄
, we fix paths γW ′

k̄
,Wk̄
∈ π

proét
1 (W ′

k̄
, x̄W ′

k̄
, ∂̄(x̄Wk̄

)) between the chosen geometric points, as in
Corollary 3.19. This is possible thanks to Lemma 3.17. We define γW ′,W to be the image of this path.

Let h̄ : X̃ k̄ → X k̄ be the base-change of h. We choose a maximal tree T (resp. T ′) in the graph
0= π0(S•(h))⩽1 (resp. 0′ = π0(S•(h̄))⩽1). After making these choices, we can apply Corollary 3.19 with
Remark 3.21 to write the fundamental groups of (X, x̄) and (X k̄, x̄). This way we get a diagram

((
(∗

top
v π

ét
1 (X̃v,k̄, x̄v)) ∗top π1(0

′, T ′)
)
/⟨R′1, R′2⟩

nc
)Noohi ≃

//

��

π
proét
1 (X k̄, x̄)

��((
(∗

top
v π

ét
1 (X̃v, x̄v)) ∗top π1(0, T )

)
/⟨R1, R2⟩nc

)Noohi ≃
// π

proét
1 (X, x̄)

where ( · ) denotes the topological closure, ⟨R⟩nc denotes the normal subgroup generated by the set R,
and R1, R′1, R2, R′2 are as in Remark 3.21.

Note that, while the (connected components of the) fiber products X̃ ×X X̃ , X̃ ×X X̃ ×X X̃ are not
necessarily normal nor satisfy πproét

1 (W )= π ét
1 (W ), we can effectively work as if this was the case, see

Remark 3.21.
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Observation 4.15. The maps and groups above enjoy the following properties:

(a) By Lemma 3.27, the left vertical map is the Noohi completion of the obvious map of the underlying
quotients of free topological products.

(b) By geometrical connectedness of the schemes in sight, we can (and do) identify

π0(S•(h))= π0(S•(h̄)), 0′ = 0 and T ′ = T .

(c) As the γW,W are chosen to be the images of the γW ′
k̄
,Wk̄

, we see that α( f )
abc’s appearing in R2, and so a

priori elements of the π ét
1 (X̃v, x̄v), are in fact in π ét

1 (X̃v,k̄, x̄v). It follows that

R′2 = R2.

(d) The k-rational points x(W ) give identification

π ét
1 (W, x̄W )≃ π

ét
1 (Wk̄, x̄W )⋊Galk .

When W = X̃v for v ∈ Vert, we will write Galk,v in the identification above to distinguish between
different copies of Galk in the van Kampen presentation of πproét

1 (X, x̄).

(e) As γW ′,W is the image of the path γW ′
k̄
,Wk̄

on W ′
k̄
, it maps to the trivial element of Galk =

π ét
1 (Spec(k), x̄(W ), x̄(W ′)). It implies, that the following diagram commutes:

π ét
1 (Wk̄, x̄(W )) //

��

π ét
1 (W, x̄(W ))

��

))
Galk

π ét
1 (W

′

k̄
, x̄(W ′)) // π ét

1 (W
′, x̄(W ′))

55

Let P be a walk in 0, i.e., a sequence of consecutive edges (with possible repetitions) e1, . . . , em in 0
with an orientation such that the terminal vertex of ei is the initial vertex of ei+1. Using the orientation of
0, it can be written as ϵ1e1 · · · ϵmem with ϵi ∈ {±} indicating whether the orientation agrees or not. This
will come handy as follows: define ∂+0 = ∂0, ∂

−

0 = ∂1, ∂
+

1 = ∂1, ∂
−

1 = ∂0.
For each P as above with a vertex sequence (v1, v2, . . . , vm+1), there is a map

π ét
1 (X̃vm+1,k̄,∂

ϵm
1 (x̄em ), x̄vm+1)×π

ét
1 (X̃vm ,k̄, x̄vm ,∂

ϵm
0 (x̄em ))×

·· ·×π ét
1 (X̃v2,k̄,∂

ϵ1
1 (x̄e1), x̄v2)×π

ét
1 (X̃v1,k̄, x̄v1,∂

ϵ1
0 (x̄e1))→π

proét
1 (X k̄, x̄v1, x̄vm+1)

where
(γ2m, . . . , γ1) 7→ γ2m ◦ · · · ◦ γ1.

In the following, we will use ◦? to denote the “composition of étale paths” and •? to denote the
multiplication in some group(oid) ?. When ?= πproét

1 (X k̄, x̄) or πproét
1 (X, x̄), we will skip the subscript.

While we could just use ◦? everywhere, it is sometimes convenient to keep track of when some paths
“have been closed” by using •?.
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Step II: Defining regular loops in πproét
1 (X k̄, x̄).

Definition 4.16. An element γ ∈ IsomCovXk̄
(Fx̄w , Fx̄v ) is called an étale path of special form supported

on P if it lies in the image of the composition map above for some walk P starting in w and ending in v.
Any element (γ2m, . . . , γ1) in the preimage of such γ will be called a presentation of γ with respect

to P .

For a walk P , denote by l(P) the length of P , i.e., the number of consecutive edges (not necessarily
different) it is composed of.

Observation 4.17. A useful example of a path of special form is the following. In the van Kampen
presentation, the maps π ét

1 (X̃v,k̄, x̄v)= π
proét
1 (X̃v,k̄, x̄v)→ π

proét
1 (X k̄, x̄) are given by

ρv(−)= γ
−1
v ◦ (−) ◦ γv

where γv ∈ π
proét
1 (X̃v,k̄, x̄, x̄v) is defined as follows: if Pvx̄ ,v ⊂ T denotes the unique shortest path in the

tree T ⊂0 (forgetting the orientation) from vx̄ to v, then the choices of paths γW ′
k̄
,Wk̄

made when applying
the van Kampen theorem give a unique étale path of special form γv supported on Pvx̄ ,v.

Before introducing the main objects of the proof, we note a simple result.

Lemma 4.18. For a fixed path γ ∈ πproét
1 (X k̄, x̄, ȳ) of special form, the map Galk ∋ σ 7→ ψσ (γ ) ∈

π
proét
1 (X k̄, x̄, ȳ) is continuous.

Proof. This follows from the continuity of the composition maps of paths and the fact that the statement
is true for π ét

1 . □

To prove Theorem 4.13, it is enough to prove the following statement: any connected geometric
covering Y of X k̄ can be dominated by a covering defined over a finite separable extension l/k.

Indeed, let Y ′ ∈ CovXl be a connected covering that dominates Y after base-change to k̄. By looking
at the separable closure of k in l and using the topological invariance of πproét

1 , we can assume l/k is
separable. The composition Y ′′= Y ′→ Xl→ X is an element of CovX and there is a diagonal embedding
Y ′×Spec(l) Spec(k̄)→ Y ′′×Spec(k) Spec(k̄). By Proposition 2.37(5), the proof will be finished.

Let us fix a connected Y ∈ Cov till the end of the proof and denote by S = Yx̄ the corresponding
π

proét
1 (X k̄, x̄)-set. Fix some point s0 ∈ S and let U = Stab

π
proét
1 (X k̄ ,x̄)

(s0).

Definition 4.19. For each v ∈ Vert, define

O N
v = {s ∈ Fx̄v (Y ) | ∃walk P,

l(P)≤N
∃γ of sp. form,

supp. on P
s = γ · s0}

and call it the set of “elements at v reachable in at most N steps”.

The following is a crucial observation regarding O N
v .

Lemma. For any v and N , the set O N
v is finite.
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Proof. We proceed by induction on N . For N = 1, the walks of length not greater than N starting in v0

(are either trivial or) consist of a single edge whose initial vertex is necessarily vx̄ . As 0 is finite, there are
only finitely many such edges. Let us fix one, named e, with vertices v0, w. We need to show that the set

{(θ ◦ δ) · s0 ∈ Fx̄w(Y ) | δ ∈ π
ét
1 (X̃vx̄ ,k̄, x̄, ∂ϵ(e)1 (x̄e)), θ ∈ π

ét
1 (X̃w,k̄, ∂

ϵ(e)
0 (x̄e), x̄w)}

is finite. However, as in general the sets π ét
1 (W, x̄1, x̄2) are (bi)torsors under profinite groups (namely

π ét
1 (W, x̄1) and π ét

1 (W, x̄2)) and the maps and actions in sight are continuous, we see that the finiteness
of this last set follows directly from finiteness of orbits of points in discrete sets under an action by a
profinite group.

Now, to see the inductive step, assume that the claim is true for N . To prove it for N + 1, note that any
element in O N+1

v can be connected by a single edge to an element of O N
w (for some vertex w). As O N

w is
finite and as we have just explained that, starting from a fixed point, one can only reach finitely many
points by applying étale paths of special forms supported on a single edge, the result follows. □

Now, for each v ∈ Vert and N ∈ N, define C N
v ∈ π

ét
1 (X̃v,k̄, x̄v)−FSets so that:

(1) It is Galois.

(2) It dominates each of the π ét
1 (X̃v,k̄, x̄v)-orbits of elements of O N

v .

(3) The corresponding open normal subgroup ker(π ét
1 (X̃v,k̄, x̄v)→AutSets(C N

v )) is normalized by Galk,v ,
where we use the action Galk,v ∋ σ 7→ ψσ ∈ Aut(π ét

1 (X̃v,k̄, x̄v)) or, equivalently by Lemma 4.12(d),
conjugation by sx̄v (σ ) in π ét

1 (X̃v, x̄v).

(4) There is a surjection C N+1
v ↠ C N

v of π ét
1 (X̃v, x̄v)-sets.

We can find sets satisfying the first three conditions by applying Proposition 4.11, and the last condition
can be guaranteed by choosing the C N

v ’s inductively (for a given v).
We now proceed to define a subgroup of πproét

1 (X, x̄) that will lead to the desired πproét
1 (X, x̄)-set. For

that we need to find a suitably large subgroup of elements of U that are well behaved under the Galois
action.

Definition 4.20. We will call an element g ∈ πproét
1 (X k̄, x̄) a regular loop (with respect to U ) if there

exists v,m, a walk P of length m from v1 = vx̄ to vm+1 = v, étale paths γ, γ ′ of special form supported
on P and P−1, respectively, and β ∈ π ét

1 (X̃v,k̄, x̄v) such that:

• g = γ ′ ◦β ◦ γ .

• β acts trivially on Cm
v , i.e.,

β ∈ ker(π ét
1 (X̃v,k̄, x̄v)→ Aut(Cm

v )).

• There exist presentations (γ2m, . . . , γ1) and (γ ′1, . . . , γ
′

2m) of γ and γ ′ such that the following
condition is satisfied. For any 1⩽ i ⩽ m, there is

γ ′2i−1 ◦ γ2i−1 ∈ ker(π ét
1 (X̃vi ,k̄, x̄vi )→ Aut(C i

vi
))

and
γ2i ◦ γ

′

2i ∈ ker(π ét
1 (X̃vi+1,k̄, x̄vi+1)→ Aut(C i

vi+1
)).
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The following picture might be useful to visualize the definition:

•

γ1
((
•

γ ′1

hh

γ2
--
• · · ·•

γ ′2

ii

γ2m−1
))
•

γ ′2m−1

mm

γ2m
((
•

γ ′2m

hh β
ff

Here, the larger bullets correspond to the x̄vi and the smaller ones to ∂ϵ0 or 1(x̄(ei )).

Remark 4.21. We find the definition involving the C N
v quite convenient. One could, however, avoid

introducing the C N
v and make a slightly different definition. Define O N ,+

v to be the set of (isomorphism
classes of) Galk-conjugates of the π ét

1 (X̃v,k̄, x̄v)-sets in O N
v . Proposition 4.11 then implies that O N ,+

v are
finite as well. Moreover, for each v, both O N

v and O N ,+
v are increasing with N . We could then require the

β and the (γ ′2i−1 ◦ γ2i−1) as above to act trivially on each element of Om,+
v and O i,+

vi
, correspondingly.

Step III: Defining the desired open subgroup V , checking its properties and finishing the proof. We
make the following central definition:

Let V0 < π
proét
1 (X k̄, x̄) denote the subgroup generated by the set of regular loops and let V be

its topological closure.

Let G =
(
(∗

top
v π

ét
1 (X̃v,k̄, x̄v))∗topπ1(0

′, T ′)
)
/⟨R′1, R′2⟩

nc denote the topological group appearing in the
van Kampen presentation above. We have that GNoohi

= π
proét
1 (X k̄, x̄). Let G̃ ⊂ πproét

1 (X k̄, x̄) denote the
subgroup of all étale paths (or “loops”, rather) of special form, supported on walks from vx̄ to vx̄ .

Observation 4.22. By Observation 4.17, the map G → π
proét
1 (X k̄, x̄) = GNoohi factorizes through G̃.

Directly from the definitions, there is V0 < G̃. We are thus in the situation of Lemma 2.39. We will use it
below.

For brevity, let us denote Gv = π
ét
1 (X̃v,k̄, x̄v) and Gv = π

ét
1 (X̃v, x̄v)≃ Gv ⋊Galk in the proofs below.

Proposition 4.23. The following statements about the subgroup V hold:

(1) There is a containment V <U.

(2) It is an open subgroup.

(3) The groups V0 and V are invariant under the Galois action, i.e., ψσ (V0)= V0 and ψσ (V )= V for
all σ ∈ Galk .

Proof. (1) As any open subgroup is automatically closed, it is enough to show that any regular loop lies
in U . Let g be a regular loop and write g = γ ′ ◦β ◦ γ with γ, γ ′ étale paths of special form supported on
some walk (and its inverse) from vx̄ to v of length m, with presentations (γ1, . . . , γ2m) and (γ ′2m, . . . , γ

′

1)

of γ and γ ′, and β ∈ ker(π ét
1 (X̃v,k̄, x̄v)→ Cm

v ), as in the definition of a regular loop. Let us introduce the
following notation (and analogously for γ ′)

γi←1 = γi ◦ · · · ◦ γ2 ◦ γ1.

By definition, there is
γ2i←1 · s0 ∈ O i

vi
.
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For i =m, it follows from the condition on β that (β ◦γ ) ·s0= γ ·s0. Similarly, the condition on γ2m ◦γ
′

2m

implies that (γ ′−1
2m ◦ γ

−1
2m ) ◦ γ2m←1 · s0 = γ2m←1 · s0, and thus

(γ ′ ◦β ◦ γ ) · s0 = (γ
′
◦ γ ) · s0 = ((γ

′

1←2m−1 ◦ γ
′

2m ◦ γ2m←1)) · s0 = γ
′

1←2m−1 ◦ γ2m−1←1 · s0.

The process continues in a similar fashion to show that g stabilizes s0, and thus belongs to U .

(2) By Lemma 2.39, it is enough to check that the map G→ Aut(G̃/V0) is continuous when G̃/V0 is
considered with the discrete topology.

Using the universal property of free topological products, continuity can be checked separately for
Gv and D. For D, this is automatic, as D is discrete. To see the result for Gv’s, we need to show that
the stabilizers of the action of Gv on G̃/V0 induced by Gv→ G are open. Fix [gV0] ∈ G̃/V0 and g ∈ G̃
representing it. The element g is represented by some étale path (or a “loop”, in fact) of special form ρ

supported on a walk Pρ of length l(Pρ). By Observation 4.17, the morphism Gv→ G̃ ⊂ πproét
1 (X k̄, x̄)

is also defined using an étale path of special form γv supported on a walk Pvx̄ ,v in the tree T ⊂ 0. Let
Hv = ker(Gv→ Aut(C l(Pρ)+l(Pv)

v )) < Gv. Then Hv is open in Gv and its image in G̃ can be written as
{γ−1
v ◦β ◦ γv|β ∈ Hv}. It follows from the setup that for β ∈ Hv,

g−1
◦ γ−1

v ◦β ◦ γv ◦ g ∈ V0

and so any element in the image of Hv fixes [gV0] in G/V . Thus, the stabilizer of [gV0] in Gv is also
open, as desired.

(3) For each σ , the map ψσ is continuous. As V = V0
GNoohi

, it is thus enough to prove that V0 is Galk-
invariant. By Lemma 4.12, it follows that under the action of Galk , an étale path of special form supported
on a walk P is mapped again to an étale path of special form supported on P . Consequently, checking
that the action of σ ∈ Galk maps a regular loop g to another regular loop boils down to checking the
following fact. If g has a presentation g = γ ′ ◦β ◦ γ as in the definition of a regular loop, then

• ψσ (β) still acts trivially on C l(P)
v ;

• ψσ (γ
′

i ◦ γi ) or ψσ (γi ◦ γ
′

i ), depending on parity, still acts trivially on C⌈i⌉v⌊i⌋+1 for every i .

However, this follows from property (3) in the definition of the C j
v j . □

Denote by S′ the quotient πproét
1 (X k̄, x̄)/V considered as a πproét

1 (X k̄, x̄)-set.
Let ρv : π

proét
1 (X k̄, x̄v)→ π

proét
1 (X k̄, x̄) be the isomorphism defined using the fixed (étale) path γv

between x̄v and x̄ , as in Observation 4.17. We have an action given by σ 7→ ψσ on both πproét
1 (X k̄, x̄)

and πproét
1 (X k̄, x̄v). We already know that V < π

proét
1 (X k̄, x̄) is invariant under this action, but this is not

necessarily true for ρ−1
v (V ) < πproét

1 (X k̄, x̄v). This holds after a finite base field extension.

Lemma 4.24. For each v ∈ Vert, define an (abstract) Galk,v-action on πproét
1 (X k̄, x̄) to be

σvg = ρv(ψσ (ρ−1
v (g))).

Then there exists a finite extension l/k, such that for all v ∈ Vert, there is:



678 Marcin Lara

(a) Gall,v fixes V .

(b) The obtained induced Gall,v-action on S′ can be written as

σv · [gV ] = [(γ−1
v ◦ψσ (γv)) •ψσ (g)V ].

(c) The induced Gall,v action on S′ is continuous and compatible with the Gv-action.

Proof. As there are finitely many vertices v, it is enough to prove the statements for a single fixed v. Let
g ∈ V . By definition of ρv, there is

σvg = γ−1
v ◦ (ψσ (γv ◦ g ◦ γ−1

v )) ◦ γv = (γ
−1
v ◦ψσ (γv)) •ψσ (g) • (ψσ (γ

−1
v ) ◦ γv).

By Proposition 4.23, we haveψσ (g)∈V and we only need to show that γ−1
v ◦ψσ (γv)∈V . By Lemma 4.18

and Observation 4.17, the map Galk ∋ σ 7→ ψσ (γv) ∈ π
proét
1 (X k̄, x̄, x̄v) is continuous, and we conclude

that for an open subgroup of σ ∈ Galk we have the desired containment.
It follows from the previous point that we get an induced action of Gall,v on S′. Using that γ−1

v ◦ψσ (γv)∈

V , the alternative formula in the statement follows from the computation

σv ·[gV ]=[ρv(ψσ (ρ−1
v (g)))V ]=[(γ−1

v ◦ψσ (γv))•ψσ (g)•(ψσ (γv)
−1
◦γv)V ]=[(γ−1

v ◦ψσ (γv))•ψσ (g)V ].

Let us move to the last point. Compatibility with the Gv-action follows from Lemma 4.12(d) and the
fact that the map Gv→ π

proét
1 (X k̄, x̄) is defined by postcomposing with ρv . To check continuity, fix [gV ].

By Lemma 2.39, this class is represented by a path (loop) of special form, and so we can assume this
about g. Checking that the stabilizer of [gV ] is open boils down to checking that for an open subgroup of
the σ in Gall,v , one has g−1

• (γ−1
v ◦ψσ (γv)) •ψσ (g) ∈ V . However, this follows from the openness of V

and Lemma 4.18. □

Proposition 4.25. There is a (continuous) πproét
1 (Xl, x̄)-action on S′ that extends the πproét

1 (X k̄, x̄)-action.

Proof. By the van Kampen theorem for πproét
1 (Xl, x̄), it is enough to show that there are continuous

actions of the Gv ⋊Gall,v and D compatible with the Gv and D actions that S′ is already equipped with,
and such that the van Kampen relations are satisfied. We already have a continuous action by D on S′,
and by Lemma 4.24, we get an action of Gv ⋊Gall,v.

Let us now check that the van Kampen relations are preserved. In the case of relation R2, this is
automatic by Observation 4.15(c). This is because we have left the Gv-actions intact. To check that
relation R1 is respected, it suffices to check that π ét

1 (∂1)(σ )E⃗ = E⃗π ét
1 (∂0)(σ ) for σ ∈ Gall,E and E an

edge in 0 with vertices v−, v+. Let δW ′,W = γW ′,W denote the fixed paths from the van Kampen setup in
the computation below to make the distinction from the γv clearer. Using Lemma 4.12(d), we compute
that

π ét
1 (∂0)(σ )= δ

−1
v+,E ◦Gv+

σE ◦Gv+
δv+,E = δ

−1
v+,E◦Gv+

ψσ (δv+,E)◦Gv+
σv+= (δ

−1
v+,E ◦Gv+

ψσ (δv+,E))•Gv+
σv+.

The image of (δ−1
v+,E ◦Gv+

ψσ (δv+,E)) in πproét
1 (X, x̄) via ρv+ is γ−1

v+ ◦ δ
−1
v+,E ◦ψσ (δv+,E) ◦ γv+.
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By definition, E⃗ ∈ πproét
1 (X, x̄) can be written as E⃗ = γ−1

v− ◦ δ
−1
v−,E ◦ δv+,E ◦ γv+. Putting this together

and using the formula of Lemma 4.24, we have that E⃗ •π ét
1 (∂0)(σ ) · [hV ] equals

(γ−1
v− ◦ δ

−1
v−,E ◦ δv+,E ◦ γv+) ◦ (γ

−1
v+ ◦ δ

−1
v+,E ◦ψσ (δv+,E) ◦ γv+) · [(γ

−1
v+ ◦ψσ (γv+)) •ψσ (h)V ]

= [(γ−1
v− ◦ δ

−1
v−,E ◦ψσ (δv+,E ◦ γv+)) •ψσ (h)V ].

A similar computation (left to the reader) shows that

π ét
1 (∂1)(σ ) • E⃗ · [hV ] = [(γ−1

v− ◦ δ
−1
v−,E ◦ψσ (δv+,E ◦ γv+)) •ψσ (h)V ]

as well. This finishes the proof of the proposition. □

End of the proof of Theorem 4.13. We have proven that for a transitive πproét
1 (X k̄, x̄)-set S there exists

a finite extension l/k and a transitive πproét
1 (Xl, x̄)-set S′ that dominates S as πproét

1 (X k̄, x̄)-sets. As
explained above, this finishes the proof. □

We have finished our main proof, and thus the most difficult part of the exact sequence is now proven.
We now obtain the final form of the fundamental exact sequence.

End of the proof of Theorem 4.14. We already know the statements of the “moreover” part and the near
exactness in the middle of the sequence. All we have to prove is that πproét

1 (X k̄, x̄) is thickly closed in
π

proét
1 (X, x̄). As πproét

1 (X k̄, x̄)→ π
proét
1 (X, x̄) is a topological embedding of Raı̆kov complete groups,

π
proét
1 (X k̄, x̄) is a closed subgroup of πproét

1 (X, x̄); see, e.g., [Dikranjan 2013, Proposition 6.2.7.]. By
Lemma 2.33, the proof will be finished if we show that πproét

1 (X k̄, x̄) is normal in πproét
1 (X, x̄). Observe

that checking whether πproét
1 (X k̄, x̄) = πproét

1 (X k̄, x̄) can be performed after replacing πproét
1 (X, x̄) by

any open subgroup U such that πproét
1 (X k̄, x̄) < U <◦ π

proét
1 (X, x̄). Choosing a suitably large finite

field extension l/k and looking at U = πproét
1 (Xl, x̄), we are reduced to the situation as in the proof of

Theorem 4.13, i.e., we have enough rational points on the connected components we are interested in when
applying van Kampen. Let G̃ <π

proét
1 (X k̄, x̄) be the dense subgroup defined above Proposition 4.23. Note

that by the van Kampen theorem applied to πproét
1 (X, x̄) together with the observations in Observation 4.15,

it follows that the subgroup generated by G̃ and the Galk,v is dense in πproét
1 (X, x̄). Putting this together,

it follows that it is enough to check that, for each v, conjugation by elements of Galk,v fixes G̃ in
π

proét
1 (X, x̄). This, however, follows from Lemma 4.12(c), (d) and the fact that Galk,v→ π

proét
1 (X, x̄)

is defined as the composition Galk,v→ π
proét
1 (X, x̄v)

ρv
−→ π

proét
1 (X, x̄), where ρv = γ−1

v ◦ (−) ◦ γv with
γv ∈ π

proét
1 (X k̄, x̄, x̄v) of special form. □

Remark 4.26. Let us revisit the counterexample of Example 4.5 from the point of view of the proof
above. We will freely use the notation set there. In this example, we have started from the fixed point
s0, and used the group elements to reach the point s1 = gmhm−1 · · · h3g2h1 · s0. We have then concluded
that s2 = ζℓm+1 · s1 = g · s1 and justified that the setup forces that this equality contradicts the possibility
of extending the Galois action to the set S. The problem here is caused by the fact that, denoting



680 Marcin Lara

b2

b2

b2
a1

a3
a3

Figure 1. Graphical interpretation of S′.

γ = gmhm−1 · · · h3g2h1, the element

γ−1
◦ g−1

◦ ζℓm+1 ◦ γ

stabilizes s0, but it is not a “regular loop” in the language introduced above. Of course, this only means
that this particular “obvious” presentation is not as in the definition of a regular loop. But, by now, we
know that it provably cannot be a regular loop with any presentation.

Let us now apply the construction of our main proof in the context of this Example. Let X, x̄ and the
π

proét
1 (X , x̄)-set S be as in Example 4.5. Recall that S decomposes S =

⊔
i≥1 a2i−1 (resp. S =

⊔
i≥1 b2i )

as π ét
1 (X1, x̄1)-set (resp. π ét

1 (X2, x̄2)-set), where we have fixed identifications π ét
1 (X i , x̄i )≃ Ẑ(1), a j =

µℓ j , b j = µℓ j .
The 2-simplex obtained from the normalization X̃ = X1 ⊔ X2 of X has two vertices. Let O N

1 , O N
2

denote the corresponding sets of “elements reachable in at most N steps”, as in Definition 4.19. Then
one checks that

O N
1 = a1 ∪ · · · ∪ a2N+1, O N

2 = b2 ∪ · · · ∪ b2N .

Let us denote a′i := a2i−1 \ {1}, b′i := b2i \ {1} (using the fixed identifications with the µ j ). Let
6 =

⋃
i≥1(a

′

i ∪ b′i ) be the alphabet consisting of all the elements of all the a′j and b′j . Let S′ ⊂words(6)
be the subset of words on 6 of the following form:

S′={∅}∪{βmαm−1 · · ·β3α2β2α1}∪{αmβm · · ·β3α2β2α1}∪{αmβm−1 · · ·α3β2α2β1}∪{βmαm · · ·α2β2α1},

where m runs over N⩾1 and α j ∈ a′j , β j ∈ b′j for each j . Geometrically, S′ can be thought of as an infinite
tree: at the element ∅ we glue copies of a1 and b2 so that 1 ∈ a1 and 1 ∈ b2 are identified at ∅. Now, to
each element of a1 \ 1 we glue a copy of b2 at 1 ∈ b2 and to each element of the initial b2 \ {1}, we glue a
copy of a3 at 1 ∈ a3. Now, to each copy of the recently glued b2’s, we glue a copy of a3, and to each
copy of previously glued a3’s, we glue b4. The procedure continues; see Figure 1.

There is an obvious action on such a tree by Galk , compatible with the πproét
1 (X , x̄)-action; via the

description of S′ in terms of words on 6, it corresponds to applying the Galk-action to each letter via the
identifications with theµ j . There is moreover a πproét

1 (X , x̄)-equivariant surjective map S′→ S; Indeed, an
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element of the form, for example, αmβm · · ·β3α2β2α1 ∈ S′ is mapped to the element αmβm · · ·β3α2β2α1 ·

s0 ∈ S, where the multiplication makes sense thanks to how the ai , b j grow with i and j . The constructed
set S′ thus satisfies the desired properties of the set sought in the proof of Theorem 4.13. Up to some
minor tweaking, it will correspond to the set obtained by following the proof of the theorem. We will not,
however, try to give a precise proof of that last claim here.

While this “tree construction” example is much more enlightening in the simple cases of schemes
glued at one point, it proved to be rather difficult to turn this intuition into a formal proof that would work
for arbitrary schemes (i.e., where the normalization might no longer have such a pleasant form). For that
reason, we have opted for a proof that is less geometric in nature.

Remark 4.27. We sketch a slightly different approach to the central part of the main proof. It is a
bit quicker, but less constructive, i.e., does not “explicitly” construct the desired Galois invariant open
subgroup in terms of regular loops. We will freely use the fact that a surjective map from a compact space
onto a Hausdorff space is a quotient map.

Assume that we have already done the preparatory steps of the main proof, i.e., we have increased the
base field to have many rational points and applied the van Kampen theorem. We want to prove that the
action

Galk ×π
proét
1 (X k̄, x̄)→ π

proét
1 (X k̄, x̄)

given by ψσ is continuous. Let G, G̃ be as introduced above Observation 4.22.
Firstly, one checks that any element of G̃, so a path of special form, can be in fact rewritten with

a presentation that makes it visibly an image of an element of G, at the expense of the presentation
possibly getting longer. Another words, the map G→ G̃ is surjective. By default, G̃ is considered with
the subspace topology from π

proét
1 (X k̄, x̄). Let us denote (G̃, quot) the same group but considered with

the quotient topology from G. We thus have a continuous bijection (G̃, quot)→ G̃.
The group G is a topological quotient of the free topological product of finitely many compact groups

Gv and a finitely generated free group D ≃ Z∗r . One checks from the universal properties that this
free product can be written as a quotient of the free topological group F(Z) (see [Arhangel’skii and
Tkachenko 2008, Chapter 7]) on a compact space of generators Z =

⊔
v Gv

⊔
{1,...,r} ∗, i.e., the disjoint

union of the Gv and r singletons.
By [Arhangel’skii and Tkachenko 2008, Theorem 7.4.1], F(Z) is, as a topological space, a colimit of

an increasing union · · · ⊂ Bn ⊂ Bn+1⊂ · · · of compact subspaces. These spaces are explicitly described as
words of bounded length in F(Z) (this makes sense, as the underlying group of F(Z) is the abstract free
group on Z ). From this, it follows that (as a topological space) (G̃, quot)= colim Kn , with Kn = im(Bn).

Working directly with the Kn is inconvenient for our purposes, as these sets are not necessarily preserved
by the Galois action. The reason is that the van Kampen presentation as a quotient of a free product uses
fixed paths, while applying Galois action will usually move the paths. One then has to conjugate by a
suitable element to “return” to the paths fixed in van Kampen, possibly increasing the length of the word.
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Instead, we can consider subsets K ′n ⊂ G̃ of elements that are paths of special form of length ⩽ n, i.e.,
possessing a presentation as a path of special form of length ⩽ n (see Definition 4.16). By a reasonably
simple combinatorics, one can cook up “brute force” bounds f (n, d), g(n, d) ∈ N in terms of n and the
diameter d = diam(0) of 0 such that there is

Kn ⊂ K ′f (n,d) and K ′n ⊂ Kg(n,d).

In conclusion, (G̃, quot)= colim K ′n in Top.
By Lemma 4.12, the Galk-action preserves the sets K ′n and Galk ×K ′n → K ′n is continuous. As

Galk is compact, Galk ×(−) has a right adjoint Mapscts(Galk,−) in Top and so Galk ×(colimn∈N K ′n)=
colimn∈N(Galk ×K ′n). From this, we immediately get that Galk ×(G̃, quot)→ (G̃, quot) is continuous.
As Galk-action respects the group action of G̃, it quickly follows that the action is still continuous when
(G̃, quot) is equipped with the weakened topology τ making open subgroups a base at 1, as in Lemma 2.25.
By (the easier part of) Lemma 2.39, this weakened topology on (G̃, quot) matches that of G̃. It follows
that Galk ×G̃→ G̃ is continuous.

By Lemma 2.25 again, one has to check that the continuity is not lost when passing to the Raı̌kov
completion of the maximal Hausdorff quotient of (G, τ ). This in turn can be justified by similar
arguments as in the proof of Lemma 2.39. This finishes the sketch. See also [Bhatt and Scholze 2015,
Proposition 4.3.3].
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