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On Ozaki’s theorem realizing prescribed p-groups as
p-class tower groups

Farshid Hajir, Christian Maire and Ravi Ramakrishna

We give a streamlined and effective proof of Ozaki’s theorem that any finite p-group 0 is the Galois
group of the p-Hilbert class field tower of some number field F. Our work is inspired by Ozaki’s and
applies in broader circumstances. While his theorem is in the totally complex setting, we obtain the result
in any mixed signature setting for which there exists a number field k0 with class number prime to p. We
construct F/k0 by a sequence of Z/p-extensions ramified only at finite tame primes and also give explicit
bounds on [F : k0] and the number of ramified primes of F/k0 in terms of #0.

1. Introduction

For a number field k, define Lp(k) to be the compositum of all finite unramified Galois p-extensions of k.
The extension Lp(k)/k is called the p-Hilbert class field tower of k, and its Galois group Gal(Lp(k)/k) is
its p-class tower group. Ozaki [2011] proved that every finite p-group 0 occurs as Gal(Lp(F)/F) for
some totally complex number field F. His strategy is as follows.

As finite p-groups are solvable, it is natural to proceed by induction. After establishing the base case
(realizing Z/p as a p-class tower group), it remains to show that given any short exact sequence of finite
p-groups

1 → Z/p → G′
→ G → 1 (1)

where G := Gal(Lp(k)/k), one can realize G′ as Gal(Lp(k′)/k′) for some number field k′. Ozaki constructs
such a k′/k via a sequence of carefully chosen Z/p-extensions.

In this paper, we provide a streamlined and effective proof of Ozaki’s theorem. Some differences
between our work and Ozaki’s are:

• He must start with a totally complex k0 and then construct a field F/k0 whose p-Hilbert class field
tower has the given 0 as its Galois group, while we start with a number field k0 of arbitrary signature
whose class number is prime to p.
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• Our result is effective and we are able to obtain explicit upper bounds on [F : k0] and the number of
ramified primes in F/k0, all of which are tame and finite.

• Moreover, we bypass some of the most delicate and involved arguments of [Ozaki 2011].

We prove:

Theorem. Let 0 be a finite p-group and k0 a number field with (# Clk0, p) = 1. There exist infinitely
many number fields F/k0 such that Gal(Lp(F)/F) ≃ 0 and

• if µp ̸⊂ k0 then F/k0 is of degree at most p2
·#0 and is ramified at at most 2+2 logp(#0) finite tame

primes,

• if µp ⊂ k0 then F/k0 is of degree at most p · (#0)2 and is ramified at at most 1 + 3 logp(#0) finite
tame primes.

Remark. If our starting field k0 has infinite p-Hilbert class field tower, there is no hope of solving the
problem with a finite extension of k0. If on the other hand the tower is finite, one can simply pass to
the number field Lp(k0), which has the same signature ratio as k0, and use that as the starting point to
realize 0.

As any (topologically) countably generated pro-p group 0 is the inverse limit of finite p-groups, Ozaki
shows any such 0 is the Galois group of the maximal unramified p-extension of some infinite extension
of Q. The corresponding corollary of our theorem is:

Corollary. Any (topologically) countably generated pro-p group 0, including p-adic analytic 0, can be
realized as Gal(Lp(F)/F) for a totally real tamely ramified infinite extension F/Q.

We now give details about the structure of our proof and the difference between our methods and
Ozaki’s, though we were very much inspired by Ozaki’s beautiful theorem and techniques.

We start the base case of the inductive process with any number field k0, of any signature, whose
class number is prime to p. Referring to the group extension (1) with G being trivial, one has to find
an extension k′/k0 such that k′ has p-class group tower exactly Z/p, which is equivalent to the p-class
group being Z/p. This is a standard argument and is part of Proposition 2.15.

The base case being done, we proceed to the inductive step (with our base field relabeled k). There are
two cases, depending on whether (1) splits or not. For the sake of brevity, we only outline the nonsplit
case in this introduction; the split case is handled similarly. For a set of places of k, we say that an
extension k′/k is exactly ramified at S if it is ramified at all the places in S and nowhere else.

We need to find a suitable tame prime v1 of k such that:

• v1 splits completely in Lp(k)/k.

• There is no Z/p-extension of k exactly ramified at v1.

• The maximal p-extension Lp(k){v1}/Lp(k) exactly ramified at the primes of Lp(k) above v1 is of
degree p and solves the embedding problem (1).
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Arranging this and its split analog are the main technical difficulties. One then chooses a second prime
v2 that also solves the embedding problem as above and remains prime in Lp(k){v1}/Lp(k). The existence
of v1 and v2 will follow from Chebotarev’s theorem. The compositum of these two solutions, after a
Z/p-base change k′/k ramified at both v1 and v2 (which exists!), gives the unramified solution to the
embedding problem (1) which we show is Lp(k′). This is done in the proof of Theorem 3.3.

Our ability to choose primes vi as above depends upon the existence of Minkowski units in the tower
Lp(k)/k, namely on the condition that O×

Lp(k) ⊗ Fp ≃ Fp[G]
λ
⊕ N where N is an Fp[G]-torsion module

and λ is a large enough integer. In some situations, Minkowski units are rare; see Section 5.3 of [Hajir
et al. 2021]. By contrast, both for Ozaki’s proof (implicitly) and ours (explicitly), much of the work
involves seeking fields for which they exist in abundance.

If µp ⊂ k, we may not be able to make our choices of vi as above to both split completely in Lp(k)/k
and solve the nonsplit embedding problem (1). In this case we need to perform an extra base change k̃/k
to shift the obstruction to the embedding problem so that we can proceed as above. The base change k̃/k
must preserve the tower, that is Lp(k̃) = Lp(k)k̃. Theorem 3.2 provides such a k̃.

Finally we check that the condition “λ is large enough” persists, that is there are enough Minkowski
units to keep the induction going. Proposition 2.14 guarantees this. To sum up, the key ingredients of the
proof of the above theorem and corollary are Theorems 3.2 and 3.3 and Proposition 2.14.

We now explain in some detail Ozaki’s approach and our simplifications:

• Using a result of Horie [1987], Ozaki starts with a quadratic imaginary field with class number prime
to p in which p is inert. He then chooses a suitable layer k in the cyclotomic Zp-extension as the starting
point of his induction. Assuming the problem solved for G in (1) and relabelling k as his base field, he
proceeds inductively with the goal to find a k′

⊃ k whose p-Hilbert class field tower has Galois group G′.
For the induction to go forward, Ozaki needs r2(k) ≥ Bp(k) (implicit in this inequality is the existence of
enough Minkowski units) where Bp(k) is a certain explicit quantity depending on k, G and the p-part
of the class group of K := Lp(k)(µp). This involves delicate estimates in Section 4 of [Ozaki 2011].
We replace r2(k) ≥ Bp(k) with f (k) ≥ 2h1(G) + 3 where hi (G) := dim H i (G, Z/p) and f (k), which is
a lower bound for the number of Minkowski units in Lp(k)/k, depends only on h1(G), h2(G) and the
signature of k. We neither consider K nor invoke the estimates of Section 4 of [loc. cit.].

• Ozaki [2011, Section 6] proves his base change Proposition 1, namely he shows there exists a ramified
Z/p-extension k̃/k such that Gal(Lp(k̃)/k̃) ≃ Gal(Lp(k)/k). He uses this repeatedly when solving each
embedding problem (1). Several tame primes are ramified in k̃/k and he also needs that K and Kk̃ have
the same p-class group. This makes the proof significantly more involved. Theorem 3.2 of this paper, our
version of his Proposition 1, has only one tame prime of ramification and K plays no role. We only invoke
Theorem 3.2 when µp ⊂ k. In particular, for p odd, our Corollary above makes no use of Theorem 3.2.

• To solve the embedding problem (1), Ozaki base changes several times (to a field relabeled k) and then
uses a wildly ramified Z/p-extension L/Lp(k) to solve (1). After more base changes this is switched
to a solution ramified at one tame prime. He then proceeds as in the description of this work using two
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such solutions and a base change that absorbs the ramification at both tame primes to find a k′ such that
Gal(Lp(k′)/k′) = G′. We go directly to this last step and require at most two Z/p-base changes to solve
the embedding problem. This allows us to quantify explicitly both the degree and number of ramified
primes of F/k0.

Notations. Let p be a prime number:

• L is a number field, OL its ring of integers, O×

L its units and ClL and ClL[p∞
] are, respectively, the

class group of L and its p-Sylow subgroup.

• For a finite set S of primes of L, set

VL,S = {x ∈ L×, (x) = I p, x ∈ (L×

v )p
∀v ∈ S}.

In particular, one has the exact sequence

1 → O×

L ⊗ Fp → VL,∅/(L×)p
→ ClL[p] → 1.

• The superscript ∧ indicates the Kummer dual of an object Z defined over a number field L, though we
never work with the Gal(L(µp)/L) action on Z∧.

• LS is the maximal pro-p-extension of L unramified outside S, GS := Gal(LS/L) and Lp(L) := L∅, the
maximal unramified pro-p-extension of L, as it will ease notation at various points.

• hi (H) := dim H i (H, Z/p).

• Gov(L):=L(µp)(
p
√

VL,∅), the governing field of L. The span of {Frv}v∈S in M(L):=Gal(Gov(L)/L(µp))

controls dim H 1(GS).

The following may be helpful in orienting the reader:

• We frequently use finite tame primes with desired splitting properties in number field extensions. We
always use Chebotarev’s theorem for the existence of such primes.

• Our Z/p-extensions L′/L of number fields are only ramified at (one or two) finite tame primes so
ri (L′) = p · ri (L) and µp ⊂ L′

⇔ µp ⊂ L.

• Note that k0 is our given base field, whereas k is a field used in the inductive process with p-class tower
group G from (1). Our task is to construct k′ with p-class tower group G′. Finally, k̃/k is an extension
having p-class tower group G, the same as for k.

2. Tools for the proof

2A. F p[G]-modules and Minkowski units. Let G be a finite group, a p-group in our situation. We record
a few basic facts about finitely generated Fp[G]-modules M ; see [Curtis and Reiner 1962, Section 62].

Fact 2.1. Any finitely generated Fp[G]-module M is isomorphic to Fp[G]
λ
⊕ N where N is a torsion

Fp[G]-module (every n ∈ N is a torsion element) and where λ depends only on M.
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Proof. As free modules are clearly projective, Theorem 62.3 of [Curtis and Reiner 1962] implies they
are injective. It follows immediately that if Fp[G] is a submodule of an Fp[G]-module M , we have the
Fp[G]-module decomposition M = Fp[G] ⊕ M (1). Apply the same argument to M (1) and iterate until, at
the λ-th stage there are no copies of Fp[G] in M (λ). Thus for every m0 ∈ M (λ) we have Fp[G]·m0 ̸= Fp[G]

and thus m0 has nontrivial annihilator. The result is established. □

Set TG :=
∑

g∈G g. Denote by IG the augmentation ideal of Fp[G]. For x ∈ M set AnnG(x) := {α ∈

Fp[G] | α · x = 0}. Let {s1, . . . , sh1(G)} be a system of minimal generators of G. By Nakayama’s lemma
and the fact that IG/I 2

G ≃ G/Gp
[G, G], IG can be generated, as G-(right or left)-module, by the elements

xi := si − 1.

Proposition 2.2. With the xi as above, let M = Fp[G]
h1(G) and x = (x1, x2, . . . , xh1(G)) ∈ M. Then

AnnG(x) = FpTG.

Proof. AnnG(x) =
⋂

i AnnG(xi ) = AnnG(⟨xi ⟩
h1(G)
i=1 ) = AnnG(IG) = FpTG. □

Proposition 2.3. Let M = Fp[G]
λ
⊕ N be a finitely generated Fp[G]-module where N is torsion. Then

TG(M) ≃ Fλ
p.

Proof. It is clear that TG(Fp[G]
λ) ≃ Fλ

p. We now show TG(N ) = 0.
Let n ∈ N so AnnG(n) ̸= 0. Note that AnnG(n) ⊂ Fp[G] is a p-group stable under the action of the

p-group G and thus has a fixed point. But it is easy to see the only fixed points of Fp[G] are multiples of
TG so TG ∈ AnnG(n) as desired. □

Definition 2.4. We say the tower Lp(k)/k with Galois group G has λ Minkowski units if, as Fp[G]-
modules, VLp(k),∅/Lp(k)×p

= O×

Lp(k) ⊗ Fp ≃ Fp[G]
λ
⊕ N where N is an Fp[G]-torsion module.

2B. Extensions ramified at a tame set of primes. We recall a standard formula on the number of Z/p-
extensions of a number field with given tame ramification; see Section 11.3 of [Koch 2002] for a proof.
Recall that for a field L,

δ(L) =

{
0, µp ̸⊂ L,

1, µp ⊂ L.

Proposition 2.5. Let L be a number field, p a prime number and X a set of tame primes of L prime to p.
Then

dim H 1(GL,X , Z/p) = dim(VL,X/L×p) − r1(L) − r2(L) − δ(L) + 1 +

∑
v∈X

δ(Lv). (2)

Our v ∈ X are always finite and have norm congruent to 1 mod p so δ(Lv) = 1.

Fact 2.6. Let S be a set of tame primes of L as above. For each v∈ S let Frv∈M(L):=Gal(Gov(L)/L(µp)).
If the set {Frv, v ∈ S} spans an (#S − d)-dimensional subspace of M(L), then

dim H 1(GL,S, Z/p) = d + dim H 1(GL,∅, Z/p).

When µp ̸⊂ L, Frv is only well-defined up to nonzero scalar multiplication.
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Proof. In (2), as we vary X from ∅ to S, we are adding
∑

v∈S δ(Lv) = #S to the right side, but also
subtracting dim(VL,∅/L×p) − dim(VL,X/L×p) from the right side. This last quantity is #S − d . □

Fact 2.7. Let L be a number field such that (# ClL, p) = 1. Let L′/L be a Z/p-extension exactly ramified
at S = {v1, . . . , vr } where the vi are finite and tame. Then (# ClL′, p) = 1 if and only if L′/L is the unique
Z/p-extension of L unramified outside S. In particular, that is the case when |S| = 1.

Proof. Indeed, (# ClL′, p) ̸= 1 if and only if there exists an unramified Z/p-extension H/L′ such that
H/L is Galois (use the fact the action of a p-group on a p-group always has fixed points). Observe that
H/L cannot be cyclic of degree p2 as all inertial elements of Gal(H/L) have order p and they would
thus fix an unramified extension of L, a contradiction. So Gal(H/L) ≃ Z/p × Z/p, and L has at least
two disjoints Z/p-extension unramified outside S, also a contradiction. □

Set BL,S = (VL,S/L×p)∧. Recall X2
L,S := Ker(H 2(GS, Z/p) → ⊕v∈S H 2(Gv, Z/p)). Fact 2.8 below

is well-known; see Theorem 11.3 of [Koch 2002].

Fact 2.8. X2
L,S ↪→ BL,S .

Let λL be the number of Minkowski units in Lp(L)/L.

Fact 2.9. If µp ̸⊂L then λL =r1(L)+r2(L)−1+h1(G)−h2(G). If µp ⊂L then λL ≥r1(L)+r2(L)−h2(G).

This result is Theorem 2.9 of [Hajir et al. 2021], but we sketch the proof for the sake of keeping this
paper self-contained.

Proof. Set G = Gal(Lp(L)/L). We consider two “norm maps” induced by the norm map on units
O×

Lp(L) → O×

L :

• NG sending O×

Lp(L) ⊗ Fp to O×

L /(O×

L ∩ (O×

Lp(L))
p) ⊂ O×

Lp(L) ⊗ Fp.

• N ′

G : O×

Lp(L) ⊗ Fp → O×

L ⊗ Fp.

One easily sees N ′

G(O×

Lp(L)⊗Fp)↠NG(O×

Lp(L)⊗Fp) and this is an isomorphism provided O×

L ∩(O×

Lp(L))
p
=

(O×

L )p: in particular this is the case when µp ̸⊂ L; see Proposition 2.8 of [Hajir et al. 2021].
Write O×

Lp(L) ⊗ Fp ≃ Fp[G]
λL ⊕ N , where N is an Fp[G]-torsion module. By Proposition 2.3 one has

NG(O×

Lp(L) ⊗ Fp) ≃ FλL
p . Hence, when µp ̸⊂ L

dim
(

O×

L ⊗ Fp

N ′

G(O×

Lp(L) ⊗ Fp)

)
= dim(O×

L ⊗ Fp) − λL.

When µp ⊂ L, note that the “difference” between the images of NG and N ′

G has p-rank at most dim(O×

L ∩

O×p
Lp(L)/(O

×

L )p) ≤ h1(G), so

dim
(

O×

L ⊗ Fp

N ′

G(O×

Lp(L) ⊗ Fp)

)
≥ dim(O×

L ⊗ Fp) − λL − h1(G).
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To conclude, we use the well-known equality (see [Roquette 1967, Lemma 9])

h2(G) − h1(G) = dim
(

O×

L ⊗ Fp

N ′

G(O×

Lp(L) ⊗ Fp)

)
. □

2C. Solving the ramified embedding problem with one tame prime. We start with our nonsplit exact
sequence

1 → Z/p → G′
→ G → 1. (3)

given by the element 0 ̸= ε ∈ H 2(G, Z/p).
We assume that G = Gal(Lp(k)/k).
Set S = {v} where v is a finite tame prime of k. We first show the existence of a lift of G to G′ in some

kS/k for certain v of k. We call this solving the embedding problem (3) in kS .
Recall that X2

k,S ↪→ Bk,S by Fact 2.8. Here X2
k,∅ ≃ H 2(Gk,∅, Z/p) ≃ H 2(G, Z/p). Let InfS :

H 2(Gk,∅, Z/p) → H 2(Gk,S, Z/p) be the inflation map. We have the commutative diagram:

X2
k,∅

InfS
//

� _

h
��

X2
k,S� _

g

��

(k×
v ⊗ Fp)

∧ // Bk,∅
fS
// // Bk,S

By Hoeschmann’s criteria (see [Neukirch et al. 2008, Chapter 3, Section 5]), the embedding problem
has a solution in kS if and only if InfS(ε) = 0. As Lp(k)/k is unramified, InfS(ε) ∈ X2

k,S and as
g(InfS(ε)) = fS(h(ε)) ∈ Bk,S , the embedding problem has a solution if and only if h(ε) ∈ Ker( fS).

Set GovS(k) := k(µp)(
p
√

Vk,S). In the governing extensions k(µp) ⊂ GovS(k) ⊂ Gov(k), one sees
that the kernel of the map fS : Bk,∅ ↠ Bk,S is exactly the (unramified) decomposition group Dv of
the prime v. As noted in Fact 2.6, if w1, w2 | v are two primes of k(µp), their Frobenius elements in
Gal(Gov(k)/k(µp)) differ by a nonzero scalar multiple.

We have proved:

Lemma 2.10. The embedding problem (3) has a solution in kS/k if and only if h(ε) ∈ Dv. Thus it has a
solution in kS/k if we choose the prime v such that ⟨Frv⟩ = ⟨h(ε)⟩ in M(k), that is the lines spanned by
these elements in M(k) are equal. This is always possible by Chebotarev’s theorem.

2D. Cohomological facts implying the persistence of Minkowski units. Our main aim in this paper is to
show that given a short exact sequence

1 → Z/p → G′
→ G → 1

of finite p-groups where G = Gal(Lp(k)/k), there exists a finite tamely ramified extension k′/k with
G′

= Gal(Lp(k′)/k′). To solve this embedding problem using Theorem 3.3, the tower Lp(k)/k must have
2h1(G) Minkowski units. Proposition 2.14 below shows that if we start with enough Minkowski units,
after a base change that realizes G′, we will be able to continue the induction. Proposition 2.13, which is
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only needed in the case when µp ⊂ k, shows that given at least h1(G) Minkowski units, we can perform
a base change that preserves the tower and the number of Minkowski units increases. Proposition 2.11 is
a basic group theory result bounding h1(G′) and h2(G′) in terms of h1(G) and h2(G). Furuta proves a
similar result in Lemma 2 of [Furuta 1972].

Set H 2(G′, Z/p)1 := Ker(H 2(G′, Z/p)
Res
−→ H 2(Z/p, Z/p)) and h2(G′)1 := dim H 2(G′, Z/p)1. Note

h2(Z/p) = 1 so h2(G′)1 is either h2(G′) or h2(G′) − 1 and in either case h2(G′)1 ≥ h2(G′) − 1.

Proposition 2.11. Let
1 → Z/p → G′

→ G → 1

be a short exact sequence of finite p-groups. Then h1(G′) ≤ h1(G) + 1 and h2(G′) ≤ h1(G) + h2(G) + 1.

Proof. The h1 result is clear. For the h2 statement we have the long exact sequence (see for instance
[Dekimpe et al. 2012])

0 → H 1(G, Z/p) → H 1(G′, Z/p) → H 1(Z/p, Z/p)G

→ H 2(G, Z/p) → H 2(G′, Z/p)1 → H 1(G, H 1(Z/p, Z/p)).

If G′
→ G splits, we have

0 → H 2(G, Z/p) → H 2(G′, Z/p)1 → H 1(G, H 1(Z/p, Z/p))

so h2(G′)1 ≤ h2(G) + h1(G) and since h2(G′)1 ≥ h2(G′) − 1 the result follows.
In the nonsplit case we have

0 → H 1(Z/p, Z/p)G
→ H 2(G, Z/p) → H 2(G′, Z/p)1 → H 1(G, H 1(Z/p, Z/p))

so h2(G′)1 ≤ h2(G) − 1 + h1(G) so h2(G′) ≤ h1(G) + h2(G). □

Definition 2.12. For a number field L set G = Gal(Lp(L)/L). Define f as follows:

f (L) =

{
r1(L) + r2(L) − h2(G) + h1(G) − 1, µp ̸⊂ L,

r1(L) + r2(L) − h2(G), µp ⊂ L.

Fact 2.9 implies f (L) is a lower bound on the number of Minkowski units of Lp(L)/L.

Proposition 2.13. Let k̃/k be a Z/p-extension ramified at finite tame primes such that G=Gal(Lp(k)/k)=

Gal(Lp(k̃)/k̃). Then f (k̃) = f (k) + (p − 1)(r1(k) + r2(k)).

Proof. This follows immediately as we have the same group G for k and k̃, µp ⊂ k̃ ⇐⇒ µp ⊂ k and
ri (k̃) = p · ri (k). □

Proposition 2.14. Let k′/k be a tamely ramified Z/p-extension such that G = Gal(Lp(k)/k) and G′
=

Gal(Lp(k′)/k′) where
1 → Z/p → G′

→ G → 1.

Let f (k) be as in Definition 2.12. Then

f (k) ≥ 2h1(G) + 3 =⇒ f (k′) ≥ 2h1(G′) + 3.
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Proof. We do the case µp ̸⊂ k first. We need to prove

r1(k)+r2(k)−h2(G)+h1(G)−1 ≥ 2h1(G)+3 =⇒ r1(k′)+r2(k′)−h2(G′)+h1(G′)−1 ≥ 2h1(G′)+3,

that is
r1(k′) + r2(k′)

?
≥ h1(G′) + h2(G′) + 4.

Clearly
r1(k′) + r2(k′) = p(r1(k) + r2(k)) ≥ p(h1(G) + h2(G) + 4)

and by Proposition 2.11 we have

h2(G′) + h1(G′) + 4 ≤ (h1(G) + h2(G) + 1) + (h1(G) + 1) + 4 = 2h1(G) + h2(G) + 6

so it suffices to show
(p − 1)h2(G) + (p − 2)h1(G) + 4p

✓
≥ 6.

This holds for all p.
When µp ⊂ k. We need to prove

r1(k) + r2(k) − h2(G) ≥ 2h1(G) + 3 =⇒ r1(k′) + r2(k′) − h2(G′) ≥ 2h1(G′) + 3,

that is
r1(k′) + r2(k′)

?
≥ 2h1(G′) + h2(G′) + 3.

Again using Proposition 2.11 and that ri (k′) = p · ri (k) it suffices to show

(p − 1)h2(G) + (2p − 3)h1(G) + 3p
✓
≥ 6

which holds for all p. □

Proposition 2.15 below provides the base case of the induction.

Proposition 2.15. Recall (# Clk0, p) = 1. There exists a tamely ramified extension k′/k0 such that

• the p-part of the class group of k′ is Z/p,

• [k′
: k0] = p3,

• and f (k′) > 2h1(Z/p) + 3 = 5.

Proof. Since Lp(k0) = k0, we see G = {e}. Choose a tame prime v of k whose Frobenius is trivial
in the governing Galois group M(k). By Fact 2.6 there is a unique Z/p-extension k1/k0 unramified
outside v. That (# Clk1, p) = 1 follows from Fact 2.7. Repeat this process with k1 to get a field k2 with
(# Clk2, p) = 1.

We do one more base change to find a field k′ with class group Z/p. This is proved more generally as
part of Theorem 3.3, but we include a short proof here.

Choose v1 a finite tame prime of k2 with trivial Frobenius in M(k2) so that by Fact 2.6 there exists a
unique D1/k2 ramified at v1. As D1 ∩ Gov(k2) = k2, we may choose v2 a finite tame prime of k2 with
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trivial Frobenius in Gov(k2) such that v2 remains prime in D1/k2. Again by Fact 2.6 there exists a unique
D2/k2 ramified at v2.

Let D/k2 be any of the p − 1 “diagonal” Z/p-extensions of k2 between D1 and D2 so D1 D2/D
is everywhere unramified. We claim D1 D2 = Lp(D). Indeed, by Fact 2.7 applied to D1/k2 we see
(# ClD1, p) = 1. As v2 is inert in D1/k2, the extension D2 D1/D1 is ramified only at v2 and Fact 2.7
applied to D2 D1/D1 implies (# ClD1 D2, p)=1. Whether or not µp ⊂k0, we have k′

:= D, Clk′[p∞
]=Z/p

and

f (k′) ≥ r1(k′) + r2(k′) − h2(Z/p) = p3r1(k0) + p3r2(k0) − 1 > 5 = 2h1(Z/p) + 3. □

Depending on p and the signature of k0 one can decrease the number of base changes, but this analysis
complicates the statement of the main theorem without significant gain.

3. Solving the embedding problem

Having established the base case of our induction, we now prove Theorem 3.3.

Inductive Step. Let

1 → Z/p → G′
→ G → 1

be exact and let k be a number field with Gal(Lp(k)/k) = G and f (k) ≥ 2h1(G) + 3. Then there exists a
number field k′/k with Gal(Lp(k′)/k′) = G′ and f (k′) ≥ 2h1(G′) + 3.

Theorem 3.2 below is only necessary for the key inductive step, Theorem 3.3, when µp ⊂ k.
Set K := Lp(k)(µp). We only consider finite tame primes v of k that split completely in K/k.

When µp ̸⊂ k, our Frobenius elements in governing fields (or their subfields) are only defined up
to scalar multiples. We write ⟨Frv⟩Gov(k)/k(µp) for the well-defined line spanned by Frobenius at v in
Gal(Gov(k)/k(µp)). When the Frobenius is trivial there is no ambiguity so we write ⟨Frv⟩Gov(k)/k(µp) = 0.

We need primes v of k that let us control h1(Gal(k{v}/k)) and h1(Gal(Lp(k){v}/Lp(k))) simultaneously
via Fact 2.6. Recall M(Lp(k)) := Gal(Gov(Lp(k))/Lp(k)(µp)) ≃ Fp[G]

λk ⊕ N where N is a torsion
module over Fp[G]. We have no knowledge of N and must work with the free part to control things over
Lp(k). We then use Proposition 3.1 to control things over k.

3A. The stability theorem.

Proposition 3.1. Let F ⊂ Gov(Lp(k)) be the field fixed by IG · M(Lp(k)). For v of k splitting completely
in K and w | v in K, the lines ⟨Frw⟩F/K do not depend on w so we may write ⟨Frv⟩F/K. Then ⟨Frv1⟩F/K =

⟨Frv2⟩F/K implies ⟨Frv1⟩Gov(k)/k(µp) = ⟨Frv2⟩Gov(k)/k(µp). If ⟨Frv1⟩F/K = 0 then ⟨Frv1⟩Gov(k)/k(µp) = 0.
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Proof. This diagram is useful in Theorems 3.2 and 3.3 as well:

Gov(Lp(k))

F IG·M(Lp(k))

Gov(k)K

K

M(Lp(k))

Gov(k)

Lp(k)

1

k(µp)

G

k

G
1

.

Let 1 = Gal(k(µp)/k) = Gal(K/Lp(k)). As Gal(F/K) := M(Lp(k))/IG · M(Lp(k)) is the maximal
quotient of M(Lp(k)) on which G acts trivially, and 1 acts on Gal(F/K) by scalars, the line ⟨Frw⟩F/K

is invariant under the action of Gal(K/k) = G × 1. Since the w | v form an orbit under this action of
Gal(K/k), this line is independent of the choice of w | v as desired.

As Gov(k)K/K ascends from Gov(k)/k(µp), we see G acts trivially on Gal(Gov(k)K/K) so

Gov(k)K ⊂ F.

Below, we implicitly use that our primes of k split completely in K. If ⟨Frv1⟩F/K = ⟨Frv2⟩F/K, these
lines are equal when projected to Gal(Gov(k)K/K) ⊂ Gal(Gov(k)K/k(µp)) and they are again equal in
Gal(Gov(k)/k(µp)) so ⟨Frv1⟩Gov(k)/k(µp) = ⟨Frv2⟩Gov(k)/k(µp). The last statement is clear. □

Theorem 3.2. Recall {xi }
h1(G)
i=1 is a minimal set of generators of IG. Assume that f (k) ≥ h1(G). Let w be

a degree one prime of K such that

Frw = ((x1, x2, . . . , xh1(G), 0, . . . , 0), 0) ∈ M(Lp(k)) ≃ Fp[G]
λk ⊕ N .

Then for v of k below w,

⟨Frv⟩Gov(k)/k(µp) = 0

so there exists a Z/p-extension k̃/k ramified at only v. Furthermore,

Lp(k̃) = Lp(k)k̃ and f (k̃) > f (k).

Proof. As Frw projects to 0 in the Fp-vector space Gal(F/K), Proposition 3.1 implies ⟨Frv⟩Gov(k)/k(µp) = 0
so k̃ exists by Fact 2.6. We show the Fp[G]-span of (x1, . . . , xh1(G)) ∈ Fp[G]

h1(G) has dimension #G − 1
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by computing the dimension of
⋂h1(G)

i=1 Ann(xi ). This intersection is the annihilator of IG which by
Proposition 2.2 is just FpTG, establishing our dimension result. By Fact 2.6 there is a unique extension over
Lp(k) ramified at v and thus it must be Lp(k)k̃. Fact 2.7 applied to Lp(k)k̃/Lp(k) implies (# ClLp(k)k̃, p)=1
so

Lp(k̃) = Lp(k)k̃.

Proposition 2.13 gives

f (k̃) > f (k). □

3B. The inductive step.

Theorem 3.3. Assume that Lp(k)/k has λk ≥ 2h1(G)+3 Minkowski units. Let 1 → Z/p → G′
→ G → 1.

If the extension splits or µp ̸⊂ k, there exists a Z/p-extension k′/k such that Gal(Lp(k′)/k′) ≃ G′ and
Lp(k′)/k′ has at least 2h1(G′) + 3 Minkowski units. If µp ⊂ k and the extension is nonsplit, k′ can
be realized as a compositum of two successive Z/p-extensions and Lp(k′)/k′ has at least 2h1(G′) + 3
Minkowski units.

Proof. Recall that our finite tame primes split completely in K/k. We first treat the split case. This is
independent of whether or not µp ⊂ k.

Split case. Choose tame degree one primes w1 and w2 of Gov(k)K such that

• Frw1 = ((x1, x2, . . . , xh1(G), 0, . . . , 0), 0) ∈ Gal(Gov(Lp(k))/ Gov(k)K) ⊂ M(Lp(k)). This is possi-
ble as the tuple lies in IG · M(Lp(k)) and Gov(k)K ⊂ F . As Frw1 projects to 0 in Gal(F/K), we see
for v1 of k below w1 that ⟨Frv1⟩F/K = 0 so by Proposition 3.1 ⟨Frv1⟩Gov(k)/k(µp) = 0. By Fact 2.6
applied to k there is one Z/p-extension D1/k ramified at v1. Fact 2.6 also gives (see the proof of
Theorem 3.2 as well) a unique Z/p-extension of Lp(k) ramified at v1, namely D1Lp(k)/Lp(k).

• Frw2 = ((0, 0, . . . , 0h1(G), x1, x2, . . . , xh1(G), 0, 0, 0, . . . , 0), 0) so for v2 of k below w2, ⟨Frv2⟩F/K =0.
We also insist that v2 remains prime in D1/k. This last condition is linearly disjoint from the rest
of the defining splitting conditions on v2 and imposes no contradiction. Again, there are unique
Z/p-extensions of both k and Lp(k) ramified at v2, namely D2/k and D2Lp(k)/Lp(k). Let D/k be
a “diagonal” extension between D1 and D2 ramified at both v1 and v2. There are p − 1 of these.

Fact 2.6 and our choices of the Frobenius elements of v1 and v2 imply

h1(Gal(Lp(k){v1,v2}/Lp(k))) = 2

using that the span of the Frobenius elements above them in Gal(Gov(Lp(k))/ Gov(k)K) ⊂ M(Lp(k))

has dimension 2#G − 2 and Fact 2.6. (With only h1(G) Minkowski units, we would again have had

h1(Gal(Lp(k){v1}/Lp(k))) = h1(Gal(Lp(k){v2}/Lp(k))) = 1.
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In this case the span of the Frobenius elements above {v1, v2} in Gal(Gov(Lp(k))/ Gov(k)K)⊂ M(Lp(k))

would have been #G − 1 so by Fact 2.6, h1(Gal(Lp(k){v1,v2}/Lp(k))) would have been 2#G − (#G − 1) =

#G + 1.)

Jp,el
v2

=?

5L := D1 D2Lp(k) H

?

E0

?

D2Lp(k) DLp(k) J := D1Lp(k)

D2 D D1 Lp(k)

�=Z/p

Gov(k)

k

Set L := D1 D2Lp(k), J := D1Lp(k) and note L/D is unramified as D/k has absorbed all ramification
at {v1, v2}. We will solve the problem by showing (# ClD1 D2Lp(k), p) = 1.

Since (# ClLp(k), p) = 1 and our choice of v1 is such that

h1(Gal(Lp(k){v1}/Lp(k)) = 1,

Fact 2.7 applied to J/Lp(k) implies (# ClJ, p) = 1.
We now prove that there exists a unique Z/p-extension over J unramified outside v2, namely L.

Set � = Gal(J/Lp(k)), Jp,el
{v2}

to be the maximal elementary p-abelian extension of J inside J{v2}, and
5 = Gal(Jp,el

{v2}
/J). Then � acts on 5 and trivially on Gal(L/J). We claim this is the only Z/p-extension

of J in Jp,el
{v2}

/J on which � acts trivially: If not, there exists another Z/p-extension H/J unramified
outside v2 and Galois over Lp(k). Hence Gal(H/Lp(k)) has order p2 and is abelian. The extension
H/Lp(k) cannot be cyclic because all inertia elements have order p and would then fix an everywhere
unramified extension of Lp(k), a contradiction. Suppose now that Gal(H/Lp(k)) ≃ Z/p × Z/p, with
H ̸= JD2 = L. Then Gal(H D2/Lp(k)) ≃ (Z/p)3: this contradicts the already established fact that
h1(Gal(Lp(k){v1,v2}/Lp(k)) = 2.

The final possibility is that there exists a Z/p-extension E0/J unramified outside v2, different from
L/J and not fixed by �; let S0 be the set of ramification of E0/J. As primes above v2 in Lp(k) are inert
in J/Lp(k), �(S0) = S0: then � takes E0 to another Z/p-extension E1/J exactly ramified at S0 and such
that E1 ̸= E0. The compositum E1 E0/J contains a Z/p-extension E ′

0/J exactly ramified at a set S′

0 ⊊ S0.
Observe that E ′

0 ̸= L since L/J is totally ramified at every prime above v2. Continuing the process, we
obtain an unramified Z/p-extension H/J, which is impossible since (# ClJ, p) = 1. Thus L/J is the
unique Z/p-extension unramified outside v2. Fact 2.7 applied to L/J implies (# ClL , p) = 1.
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We have solved the split embedding problem with k′
= D and Gal(Lp(k′)/k′) = G × Z/p. It required

one base change ramified at two tame finite primes. Proposition 2.14 implies f (k′) ≥ 2h1(G′)+ 3 so the
induction can proceed.

For the nonsplit case we treat µp ̸⊂ k and µp ⊂ k separately. Theorem 3.2 is only used in the nonsplit
case when µp ⊂ k.

The nonsplit case, µp ̸⊂ k. By Lemma 2.10 we may use one tame prime v of k to find a ramified
solution to the embedding problem. As µp ̸⊂ k implies Gov(k) ∩ Lp(k) = k, we can assume v splits
completely in K/k. Choosing any w | v of K we set Frw = ((z1, z2, . . . , zλk), n0) ∈ M(Lp(k)) where we
claim n0 /∈ IG ·N and zi ∈ IG ⊂ Fp[G]. Indeed, if any zi /∈ IG, its Fp[G]-span is all of Fp[G] and by Fact 2.6
there is no Z/p-extension of Lp(k) ramified at the w | v, contradicting that we are solving an embedding
problem with v. If n0 ∈ IG · N , then the projection of Frw to Gal(F/K) is trivial so Proposition 3.1 implies
⟨Frv⟩Gov(k)/k(µp) = 0 and the embedding problem we are solving is split, also a contradiction.

Choose a degree one w1 of K with Frw1 = ((x1, x2, . . . , xh1(G), 0, 0, 0, . . . , 0), n0) ∈ M(Lp(k)) where
n0 is as in the previous paragraph. Let v1 be the prime of k below w1. By Fact 2.6 (also see the proof of
Theorem 3.2) there is one Z/p-extension D1/Lp(k) ramified at v1.

Choose a degree one w2 of K with Frw2 = ((0, 0, . . . , 0, x1, x2, . . . , xh1(G), 0, 0, 0, . . . , 0), n0) ∈

M(Lp(k)) and the primes of Lp(k) above v2 remain prime in D1/Lp(k). This last condition is linearly
disjoint from the splitting conditions defining v2 and imposes no contradiction. Again by Fact 2.6 there is
one Z/p-extension D2/Lp(k) ramified at v2.

As the free components of Frw, Frw1 and Frw2 are all in I λk
G , their projections to Gal(F/K) depend

only on n0 and Proposition 3.1 implies

0 ̸= ⟨Frv⟩Gov(k)/k(µp) = ⟨Frv1⟩Gov(k)/k(µp) = ⟨Frv2⟩Gov(k)/k(µp).

Thus there is no extension of k ramified at either v1 or v2, but, by Fact 2.6, there is a Z/p-extension of
k ramified at {v1, v2}. Call it D. Note G′

≃ Gal(D1/k) ≃ Gal(D2/k) ≃ Gal(D1 D2/D):

D1 D2 = DD1 = DD2

D1 D2 DLp(k)

Gov(k) Lp(k) D

G

k

G

That D1 D2 has trivial p-class group follows exactly as it did in the split case and we may set k′
= D

so Lp(k′) = D1 D2 and Gal(Lp(k′)/k′) ≃ G′.
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We have solved the embedding problem in the nonsplit case when µp ̸⊂ k. We performed one base
change ramified at two tame finite primes and Proposition 2.14 implies f (k′) ≥ 2h1(G′) + 3 so the
induction can proceed.

The nonsplit case, µp ⊂ k. We can no longer assume Lp(k) ∩ Gov(k) = k.
Let 0 ̸= ε ∈ X2

k,∅ be the obstruction to our embedding problem G′ ↠ G. Using Lemma 2.10, let v of k
be a tame prime annihilating ε. The difficulty is that in the diagram below we may have Lp(k)∩Gov(k)⊋k
and that Frv, which is necessarily nonzero in M(k), may also be nonzero in Gal((Lp(k) ∩ Gov(k))/k).
This prevents us from also choosing v to split completely in Lp(k)/k and as we need in Gov(Lp(k))/Lp(k)

to ensure there is only one extension of Lp(k) ramified at the primes of Lp(k) above v. If we could
choose v to annihilate ε such that Frv = 0 ∈ Gal(Lp(k)/k), we would be able to proceed as in the µp ̸⊂ k
case. We get around this by a base change.

By Kummer theory and the definition of governing fields, Gal(Gov(L)/L(µp)) is an elementary p-
abelian group. Let k̃/k be a tamely ramified Z/p-extension as given by Theorem 3.2 so Gal(Lp(k̃)/k̃) = G.
By Proposition 2.13 we have λk̃ ≥ 2h1(G) + 3:

L p(k̃) Gov(k̃)

L p(k) L p(k̃) ∩ Gov(k̃)

L p(k) ∩ Gov(k) k̃

k Z/p

(Z/p)r

As Gov(k)∩ k̃ = k, we may choose a prime v to solve the embedding problem for k whose Frobenius
is nontrivial in Gal(k̃/k), that is v remains prime in k̃/k. As observed above, Lp(k̃) ∩ Gov(k̃)/k̃ is
a (Z/p)r -extension for some r and, as Gal(Lp(k)/k) = Gal(Lp(k̃)/k̃) = G, it is the base change of
such a subextension of Lp(k)/k from k so Lp(k̃)∩ Gov(k̃)/k is a (Z/p)r+1-extension. Since v remains
prime in k̃/k and residue field extensions are cyclic, it splits completely in L p(k̃) ∩ Gov(k̃)/k̃. As
the embedding problem is solvable over k by allowing ramification at v, it is also solvable over k̃ by
allowing ramification at the unique prime of k̃ above v. Thus ε ∈ X2

k̃,∅
↪→ Bk̃,∅ = M(k̃) actually lies

in Gal(Gov(k̃)/(Lp(k̃) ∩ Gov(k̃))). The base change shifted the obstruction to outside of our p-Hilbert
class field tower! The rest of the proof is identical to the µp ̸⊂ k case. □

We now prove the main theorem of the introduction.

Proof. We have verified the base case of the induction in Proposition 2.15 and the inductive step with
Theorem 3.3. It remains to count degrees and ramified primes. Proposition 2.15 involved three Z/p-base
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changes, the first two ramified at one tame prime and the last at two tame primes. The inductive steps
breaks into cases as follows:

• µp ̸⊂ k0: At each of the logp(#0) − 1 inductive stages we need one base change ramified at two
primes for a total of 3 + (logp(#0) − 1) base changes ramified at 4 + 2(logp(#0) − 1) primes.

• µp ⊂ k0: At each of the logp(#0) − 1 inductive stages we need at most two base changes and at
most three ramified tame primes so in total there are at most 3 + 2(logp(#0) − 1) base changes
ramified at most 4 + 3(logp(#0) − 1) primes. □
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