

On Ozaki's theorem realizing prescribed p-groups as p-class tower groups

Farshid Hajir, Christian Maire and Ravi Ramakrishna

Abstract

We give a streamlined and effective proof of Ozaki's theorem that any finite p-group Γ is the Galois group of the p-Hilbert class field tower of some number field F. Our work is inspired by Ozaki's and applies in broader circumstances. While his theorem is in the totally complex setting, we obtain the result in any mixed signature setting for which there exists a number field k_{0} with class number prime to p. We construct $\mathrm{F} / \mathrm{k}_{0}$ by a sequence of \mathbb{Z} / p-extensions ramified only at finite tame primes and also give explicit bounds on $\left[\mathrm{F}: \mathrm{k}_{0}\right]$ and the number of ramified primes of $\mathrm{F} / \mathrm{k}_{0}$ in terms of $\# \Gamma$.

1. Introduction

For a number field k , define $\mathrm{L}_{p}(\mathrm{k})$ to be the compositum of all finite unramified Galois p-extensions of k . The extension $\mathrm{L}_{p}(\mathrm{k}) / \mathrm{k}$ is called the p-Hilbert class field tower of k , and its $\operatorname{Galois} \operatorname{group} \operatorname{Gal}\left(\mathrm{L}_{p}(\mathrm{k}) / \mathrm{k}\right)$ is its p-class tower group. Ozaki [2011] proved that every finite p-group Γ occurs as $\operatorname{Gal}\left(\mathrm{L}_{p}(\mathrm{~F}) / \mathrm{F}\right)$ for some totally complex number field F. His strategy is as follows.

As finite p-groups are solvable, it is natural to proceed by induction. After establishing the base case (realizing \mathbb{Z} / p as a p-class tower group), it remains to show that given any short exact sequence of finite p-groups

$$
\begin{equation*}
1 \rightarrow \mathbb{Z} / p \rightarrow \mathrm{G}^{\prime} \rightarrow \mathrm{G} \rightarrow 1 \tag{1}
\end{equation*}
$$

where $\mathrm{G}:=\operatorname{Gal}\left(\mathrm{L}_{p}(\mathrm{k}) / \mathrm{k}\right)$, one can realize G^{\prime} as $\operatorname{Gal}\left(\mathrm{L}_{p}\left(\mathrm{k}^{\prime}\right) / \mathrm{k}^{\prime}\right)$ for some number field k^{\prime}. Ozaki constructs such a $\mathrm{k}^{\prime} / \mathrm{k}$ via a sequence of carefully chosen \mathbb{Z} / p-extensions.

In this paper, we provide a streamlined and effective proof of Ozaki's theorem. Some differences between our work and Ozaki's are:

- He must start with a totally complex k_{0} and then construct a field $\mathrm{F} / \mathrm{k}_{0}$ whose p-Hilbert class field tower has the given Γ as its Galois group, while we start with a number field k_{0} of arbitrary signature whose class number is prime to p.

Maire was partially supported by the ANR project FLAIR (ANR-17-CE40-0012) and by the EIPHI Graduate School (ANR-17-EURE-0002). Ramakrishna was partially supported by Simons Collaboration grant \#524863. He also thanks FEMTO-ST for its hospitality and wonderful research environment during his visit there in the spring of 2022. All three authors were supported for a Collaborate@ICERM visit in January, 2022. We express our gratitude to the referees for carefully reading the manuscript and providing many helpful suggestions for improvement.
MSC2020: 11R29.
Keywords: Class group, Hilbert class field tower, Minkowski unit, p-groups.

- Our result is effective and we are able to obtain explicit upper bounds on $\left[\mathrm{F}: \mathrm{k}_{0}\right]$ and the number of ramified primes in $\mathrm{F} / \mathrm{k}_{0}$, all of which are tame and finite.
- Moreover, we bypass some of the most delicate and involved arguments of [Ozaki 2011].

We prove:
Theorem. Let Γ be a finite p-group and k_{0} a number field with $\left(\# \mathrm{Cl}_{\mathrm{k}_{0}}, p\right)=1$. There exist infinitely many number fields $\mathrm{F} / \mathrm{k}_{0}$ such that $\operatorname{Gal}\left(\mathrm{L}_{p}(\mathrm{~F}) / \mathrm{F}\right) \simeq \Gamma$ and

- if $\mu_{p} \not \subset \mathrm{k}_{0}$ then $\mathrm{F} / \mathrm{k}_{0}$ is of degree at most $p^{2} \cdot \# \Gamma$ and is ramified at at most $2+2 \log _{p}(\# \Gamma)$ finite tame primes,
- if $\mu_{p} \subset \mathrm{k}_{0}$ then $\mathrm{F} / \mathrm{k}_{0}$ is of degree at most $p \cdot(\# \Gamma)^{2}$ and is ramified at at most $1+3 \log _{p}(\# \Gamma)$ finite tame primes.

Remark. If our starting field k_{0} has infinite p-Hilbert class field tower, there is no hope of solving the problem with a finite extension of k_{0}. If on the other hand the tower is finite, one can simply pass to the number field $\mathrm{L}_{p}\left(\mathrm{k}_{0}\right)$, which has the same signature ratio as k_{0}, and use that as the starting point to realize Γ.

As any (topologically) countably generated pro- p group Γ is the inverse limit of finite p-groups, Ozaki shows any such Γ is the Galois group of the maximal unramified p-extension of some infinite extension of \mathbb{Q}. The corresponding corollary of our theorem is:

Corollary. Any (topologically) countably generated pro-p group Γ, including p-adic analytic Γ, can be realized as $\mathrm{Gal}\left(\mathrm{L}_{p}(\mathrm{~F}) / \mathrm{F}\right)$ for a totally real tamely ramified infinite extension F / \mathbb{Q}.

We now give details about the structure of our proof and the difference between our methods and Ozaki's, though we were very much inspired by Ozaki's beautiful theorem and techniques.

We start the base case of the inductive process with any number field k_{0}, of any signature, whose class number is prime to p. Referring to the group extension (1) with G being trivial, one has to find an extension $\mathrm{k}^{\prime} / \mathrm{k}_{0}$ such that k^{\prime} has p-class group tower exactly \mathbb{Z} / p, which is equivalent to the p-class group being \mathbb{Z} / p. This is a standard argument and is part of Proposition 2.15.

The base case being done, we proceed to the inductive step (with our base field relabeled k). There are two cases, depending on whether (1) splits or not. For the sake of brevity, we only outline the nonsplit case in this introduction; the split case is handled similarly. For a set of places of k, we say that an extension $\mathrm{k}^{\prime} / \mathrm{k}$ is exactly ramified at S if it is ramified at all the places in S and nowhere else.

We need to find a suitable tame prime v_{1} of k such that:

- v_{1} splits completely in $\mathrm{L}_{p}(\mathrm{k}) / \mathrm{k}$.
- There is no \mathbb{Z} / p-extension of k exactly ramified at v_{1}.
- The maximal p-extension $\mathrm{L}_{p}(\mathrm{k})_{\left\{v_{1}\right\}} / \mathrm{L}_{p}(\mathrm{k})$ exactly ramified at the primes of $\mathrm{L}_{p}(\mathrm{k})$ above v_{1} is of degree p and solves the embedding problem (1).

Arranging this and its split analog are the main technical difficulties. One then chooses a second prime v_{2} that also solves the embedding problem as above and remains prime in $\mathrm{L}_{p}(\mathrm{k})_{\left\{v_{1}\right\}} / \mathrm{L}_{p}(\mathrm{k})$. The existence of v_{1} and v_{2} will follow from Chebotarev's theorem. The compositum of these two solutions, after a \mathbb{Z} / p-base change $\mathrm{k}^{\prime} / \mathrm{k}$ ramified at both v_{1} and v_{2} (which exists!), gives the unramified solution to the embedding problem (1) which we show is $\mathrm{L}_{p}\left(\mathrm{k}^{\prime}\right)$. This is done in the proof of Theorem 3.3.

Our ability to choose primes v_{i} as above depends upon the existence of Minkowski units in the tower $\mathrm{L}_{p}(\mathrm{k}) / \mathrm{k}$, namely on the condition that $\mathcal{O}_{\mathrm{L}_{p}(\mathrm{k})}^{\times} \otimes \mathbb{F}_{p} \simeq \mathbb{F}_{p}[\mathrm{G}]^{\lambda} \oplus N$ where N is an \mathbb{F}_{p} [G]-torsion module and λ is a large enough integer. In some situations, Minkowski units are rare; see Section 5.3 of [Hajir et al. 2021]. By contrast, both for Ozaki's proof (implicitly) and ours (explicitly), much of the work involves seeking fields for which they exist in abundance.

If $\mu_{p} \subset \mathrm{k}$, we may not be able to make our choices of v_{i} as above to both split completely in $\mathrm{L}_{p}(\mathrm{k}) / \mathrm{k}$ and solve the nonsplit embedding problem (1). In this case we need to perform an extra base change $\tilde{\mathrm{k}} / \mathrm{k}$ to shift the obstruction to the embedding problem so that we can proceed as above. The base change $\tilde{\mathrm{k}} / \mathrm{k}$ must preserve the tower, that is $\mathrm{L}_{p}(\tilde{\mathrm{k}})=\mathrm{L}_{p}(\mathrm{k}) \tilde{\mathrm{k}}$. Theorem 3.2 provides such a $\tilde{\mathrm{k}}$.

Finally we check that the condition " λ is large enough" persists, that is there are enough Minkowski units to keep the induction going. Proposition 2.14 guarantees this. To sum up, the key ingredients of the proof of the above theorem and corollary are Theorems 3.2 and 3.3 and Proposition 2.14.

We now explain in some detail Ozaki's approach and our simplifications:

- Using a result of Horie [1987], Ozaki starts with a quadratic imaginary field with class number prime to p in which p is inert. He then chooses a suitable layer k in the cyclotomic \mathbb{Z}_{p}-extension as the starting point of his induction. Assuming the problem solved for G in (1) and relabelling k as his base field, he proceeds inductively with the goal to find a $\mathrm{k}^{\prime} \supset \mathrm{k}$ whose p-Hilbert class field tower has Galois group G^{\prime}. For the induction to go forward, Ozaki needs $r_{2}(\mathrm{k}) \geq B_{p}(\mathrm{k})$ (implicit in this inequality is the existence of enough Minkowski units) where $B_{p}(\mathrm{k})$ is a certain explicit quantity depending on k , G and the p-part of the class group of $\mathrm{K}:=\mathrm{L}_{p}(\mathrm{k})\left(\mu_{p}\right)$. This involves delicate estimates in Section 4 of [Ozaki 2011]. We replace $r_{2}(\mathrm{k}) \geq B_{p}(\mathrm{k})$ with $f(\mathrm{k}) \geq 2 h^{1}(\mathrm{G})+3$ where $h^{i}(\mathrm{G}):=\operatorname{dim} H^{i}(\mathrm{G}, \mathbb{Z} / p)$ and $f(\mathrm{k})$, which is a lower bound for the number of Minkowski units in $\mathrm{L}_{p}(\mathrm{k}) / \mathrm{k}$, depends only on $h^{1}(\mathrm{G}), h^{2}(\mathrm{G})$ and the signature of k . We neither consider K nor invoke the estimates of Section 4 of [loc. cit.].
- Ozaki [2011, Section 6] proves his base change Proposition 1, namely he shows there exists a ramified \mathbb{Z} / p-extension $\tilde{\mathrm{k}} / \mathrm{k}$ such that $\operatorname{Gal}\left(\mathrm{L}_{p}(\tilde{\mathrm{k}}) / \tilde{\mathrm{k}}\right) \simeq \operatorname{Gal}\left(\mathrm{L}_{p}(\mathrm{k}) / \mathrm{k}\right)$. He uses this repeatedly when solving each embedding problem (1). Several tame primes are ramified in \tilde{k} / k and he also needs that K and $K \tilde{k}$ have the same p-class group. This makes the proof significantly more involved. Theorem 3.2 of this paper, our version of his Proposition 1, has only one tame prime of ramification and K plays no role. We only invoke Theorem 3.2 when $\mu_{p} \subset \mathrm{k}$. In particular, for p odd, our Corollary above makes no use of Theorem 3.2.
- To solve the embedding problem (1), Ozaki base changes several times (to a field relabeled k) and then uses a wildly ramified \mathbb{Z} / p-extension $\mathrm{L} / \mathrm{L}_{p}(\mathrm{k})$ to solve (1). After more base changes this is switched to a solution ramified at one tame prime. He then proceeds as in the description of this work using two
such solutions and a base change that absorbs the ramification at both tame primes to find a k^{\prime} such that $\operatorname{Gal}\left(\mathrm{L}_{p}\left(\mathrm{k}^{\prime}\right) / \mathrm{k}^{\prime}\right)=\mathrm{G}^{\prime}$. We go directly to this last step and require at most two \mathbb{Z} / p-base changes to solve the embedding problem. This allows us to quantify explicitly both the degree and number of ramified primes of $\mathrm{F} / \mathrm{k}_{0}$.

Notations. Let p be a prime number:

- L is a number field, \mathcal{O}_{L} its ring of integers, $\mathcal{O}_{\mathrm{L}}^{\times}$its units and Cl_{L} and $\mathrm{Cl}_{\mathrm{L}}\left[p^{\infty}\right]$ are, respectively, the class group of L and its p-Sylow subgroup.
- For a finite set S of primes of L, set

$$
V_{\mathrm{L}, S}=\left\{x \in \mathrm{~L}^{\times},(x)=\mathcal{I}^{p}, x \in\left(\mathrm{~L}_{v}^{\times}\right)^{p} \forall v \in S\right\} .
$$

In particular, one has the exact sequence

$$
1 \rightarrow \mathcal{O}_{\mathrm{L}}^{\times} \otimes \mathbb{F}_{p} \rightarrow V_{\mathrm{L}, \varnothing} /\left(\mathrm{L}^{\times}\right)^{p} \rightarrow \mathrm{C}_{\mathrm{L}}[p] \rightarrow 1
$$

- The superscript ${ }^{\wedge}$ indicates the Kummer dual of an object Z defined over a number field L, though we never work with the $\operatorname{Gal}\left(\mathrm{L}\left(\mu_{p}\right) / \mathrm{L}\right)$ action on Z^{\wedge}.
- L_{S} is the maximal pro- p-extension of L unramified outside $S, G_{S}:=\operatorname{Gal}\left(\mathrm{L}_{S} / \mathrm{L}\right)$ and $\mathrm{L}_{p}(\mathrm{~L}):=\mathrm{L}_{\varnothing}$, the maximal unramified pro- p-extension of L , as it will ease notation at various points.
- $h^{i}(H):=\operatorname{dim} H^{i}(H, \mathbb{Z} / p)$.
- $\operatorname{Gov}(\mathrm{L}):=\mathrm{L}\left(\mu_{p}\right)\left(\sqrt[p]{V_{\mathrm{L}, \varnothing}}\right)$, the governing field of L . The span of $\left\{\operatorname{Fr}_{v}\right\}_{v \in S}$ in $M(\mathrm{~L}):=\operatorname{Gal}\left(\operatorname{Gov}(\mathrm{L}) / \mathrm{L}\left(\mu_{p}\right)\right)$ controls $\operatorname{dim} H^{1}\left(G_{S}\right)$.

The following may be helpful in orienting the reader:

- We frequently use finite tame primes with desired splitting properties in number field extensions. We always use Chebotarev's theorem for the existence of such primes.
- Our \mathbb{Z} / p-extensions L^{\prime} / L of number fields are only ramified at (one or two) finite tame primes so $r_{i}\left(\mathrm{~L}^{\prime}\right)=p \cdot r_{i}(\mathrm{~L})$ and $\mu_{p} \subset \mathrm{~L}^{\prime} \Leftrightarrow \mu_{p} \subset \mathrm{~L}$.
- Note that k_{0} is our given base field, whereas k is a field used in the inductive process with p-class tower group G from (1). Our task is to construct k^{\prime} with p-class tower group G^{\prime}. Finally, \tilde{k} / k is an extension having p-class tower group G , the same as for k .

2. Tools for the proof

2A. $\mathbb{F}_{p}[\mathbf{G}]$-modules and Minkowski units. Let G be a finite group, a p-group in our situation. We record a few basic facts about finitely generated $\mathbb{F}_{p}[\mathrm{G}]$-modules M; see [Curtis and Reiner 1962, Section 62].
Fact 2.1. Any finitely generated $\mathbb{F}_{p}[\mathrm{G}]$-module M is isomorphic to $\mathbb{F}_{p}[\mathrm{G}]^{\lambda} \oplus N$ where N is a torsion $\mathbb{F}_{p}[\mathrm{G}]$-module (every $n \in N$ is a torsion element) and where λ depends only on M.

Proof. As free modules are clearly projective, Theorem 62.3 of [Curtis and Reiner 1962] implies they are injective. It follows immediately that if $\mathbb{F}_{p}[\mathrm{G}]$ is a submodule of an $\mathbb{F}_{p}[\mathrm{G}]$-module M, we have the $\mathbb{F}_{p}[\mathrm{G}]$-module decomposition $M=\mathbb{F}_{p}[\mathrm{G}] \oplus M^{(1)}$. Apply the same argument to $M^{(1)}$ and iterate until, at the λ-th stage there are no copies of $\mathbb{F}_{p}[\mathrm{G}]$ in $M^{(\lambda)}$. Thus for every $m_{0} \in M^{(\lambda)}$ we have $\mathbb{F}_{p}[\mathrm{G}] \cdot m_{0} \neq \mathbb{F}_{p}[\mathrm{G}]$ and thus m_{0} has nontrivial annihilator. The result is established.

Set $T_{\mathrm{G}}:=\sum_{g \in \mathrm{G}} g$. Denote by I_{G} the augmentation ideal of $\mathbb{F}_{p}[\mathrm{G}]$. For $x \in M$ set $\operatorname{Ann}_{\mathrm{G}}(x):=\{\alpha \in$ $\left.\mathbb{F}_{p}[\mathrm{G}] \mid \alpha \cdot x=0\right\}$. Let $\left\{s_{1}, \ldots, s_{h^{1}(\mathrm{G})}\right\}$ be a system of minimal generators of G. By Nakayama's lemma and the fact that $I_{\mathrm{G}} / I_{\mathrm{G}}^{2} \simeq \mathrm{G} / \mathrm{G}^{p}[\mathrm{G}, \mathrm{G}], I_{\mathrm{G}}$ can be generated, as G-(right or left)-module, by the elements $x_{i}:=s_{i}-1$.

Proposition 2.2. With the x_{i} as above, let $M=\mathbb{F}_{p}[\mathrm{G}]^{h^{1}(\mathrm{G})}$ and $x=\left(x_{1}, x_{2}, \ldots, x_{h^{1}(\mathrm{G})}\right) \in M$. Then $\operatorname{Ann}_{\mathrm{G}}(x)=\mathbb{F}_{p} T_{\mathrm{G}}$.
Proof. $\operatorname{Ann}_{\mathrm{G}}(x)=\bigcap_{i} \operatorname{Ann}_{\mathrm{G}}\left(x_{i}\right)=\operatorname{Ann}_{\mathrm{G}}\left(\left\langle x_{i}\right\rangle_{i=1}^{h^{1}(\mathrm{G})}\right)=\operatorname{Ann}_{\mathrm{G}}\left(I_{\mathrm{G}}\right)=\mathbb{F}_{p} T_{\mathrm{G}}$.
Proposition 2.3. Let $M=\mathbb{F}_{p}[\mathrm{G}]^{\lambda} \oplus N$ be a finitely generated $\mathbb{F}_{p}[\mathrm{G}]$-module where N is torsion. Then $T_{\mathrm{G}}(M) \simeq \mathbb{F}_{p}^{\lambda}$.
Proof. It is clear that $T_{\mathrm{G}}\left(\mathbb{F}_{p}[\mathrm{G}]^{\lambda}\right) \simeq \mathbb{F}_{p}^{\lambda}$. We now show $T_{\mathrm{G}}(N)=0$.
Let $n \in N$ so $\operatorname{Ann}_{\mathrm{G}}(n) \neq 0$. Note that $\mathrm{Ann}_{\mathrm{G}}(n) \subset \mathbb{F}_{p}[\mathrm{G}]$ is a p-group stable under the action of the p-group G and thus has a fixed point. But it is easy to see the only fixed points of $\mathbb{F}_{p}[\mathrm{G}]$ are multiples of T_{G} so $T_{\mathrm{G}} \in \operatorname{Ann}_{\mathrm{G}}(n)$ as desired.

Definition 2.4. We say the tower $\mathrm{L}_{p}(\mathrm{k}) / \mathrm{k}$ with Galois group G has λ Minkowski units if, as $\mathbb{F}_{p}[\mathrm{G}]-$ modules, $V_{\mathrm{L}_{p}(\mathrm{k}), \varnothing} / \mathrm{L}_{p}(\mathrm{k})^{\times p}=\mathcal{O}_{\mathrm{L}_{p}(\mathrm{k})}^{\times} \otimes \mathbb{F}_{p} \simeq \mathbb{F}_{p}[\mathrm{G}]^{\lambda} \oplus N$ where N is an $\mathbb{F}_{p}[\mathrm{G}]$-torsion module.

2B. Extensions ramified at a tame set of primes. We recall a standard formula on the number of \mathbb{Z} / p extensions of a number field with given tame ramification; see Section 11.3 of [Koch 2002] for a proof. Recall that for a field L ,

$$
\delta(\mathrm{L})= \begin{cases}0, & \mu_{p} \not \subset \mathrm{~L} \\ 1, & \mu_{p} \subset \mathrm{~L}\end{cases}
$$

Proposition 2.5. Let L be a number field, p a prime number and X a set of tame primes of L prime to p. Then

$$
\begin{equation*}
\operatorname{dim} H^{1}\left(\mathrm{G}_{\mathrm{L}, X}, \mathbb{Z} / p\right)=\operatorname{dim}\left(V_{\mathrm{L}, X} / \mathrm{L}^{\times p}\right)-r_{1}(\mathrm{~L})-r_{2}(\mathrm{~L})-\delta(\mathrm{L})+1+\sum_{v \in X} \delta\left(\mathrm{~L}_{v}\right) \tag{2}
\end{equation*}
$$

Our $v \in X$ are always finite and have norm congruent to $1 \bmod p$ so $\delta\left(\mathrm{L}_{v}\right)=1$.
Fact 2.6. Let S be a set of tame primes of L as above. For each $v \in S$ let $\mathrm{Fr}_{v} \in M(\mathrm{~L}):=\operatorname{Gal}\left(\operatorname{Gov}(\mathrm{L}) / \mathrm{L}\left(\mu_{p}\right)\right)$. If the set $\left\{\mathrm{Fr}_{v}, v \in S\right\}$ spans an $(\# S-d)$-dimensional subspace of $M(\mathrm{~L})$, then

$$
\operatorname{dim} H^{1}\left(\mathrm{G}_{\mathrm{L}, S}, \mathbb{Z} / p\right)=d+\operatorname{dim} H^{1}\left(\mathrm{G}_{\mathrm{L}, \varnothing}, \mathbb{Z} / p\right)
$$

When $\mu_{p} \not \subset \mathrm{~L}, \mathrm{Fr}_{v}$ is only well-defined up to nonzero scalar multiplication.

Proof. In (2), as we vary X from \varnothing to S, we are adding $\sum_{v \in S} \delta\left(\mathrm{~L}_{v}\right)=\# S$ to the right side, but also subtracting $\operatorname{dim}\left(V_{\mathrm{L}, \varnothing} / \mathrm{L}^{\times p}\right)-\operatorname{dim}\left(V_{\mathrm{L}, X} / \mathrm{L}^{\times p}\right)$ from the right side. This last quantity is $\# S-d$.

Fact 2.7. Let L be a number field such that $\left(\mathrm{Cl}_{\mathrm{L}}, p\right)=1$. Let $\mathrm{L}^{\prime} / \mathrm{L}$ be a $\mathbb{Z} /$ p-extension exactly ramified at $S=\left\{v_{1}, \ldots, v_{r}\right\}$ where the v_{i} are finite and tame. Then $\left(\# \mathrm{Cl}_{L^{\prime}}, p\right)=1$ if and only if $\mathrm{L}^{\prime} / \mathrm{L}$ is the unique $\mathbb{Z} /$ p-extension of L unramified outside S. In particular, that is the case when $|S|=1$.

Proof. Indeed, $\left(\# \mathrm{Cl}_{\mathrm{L}^{\prime}}, p\right) \neq 1$ if and only if there exists an unramified \mathbb{Z} / p-extension H / L^{\prime} such that H / L is Galois (use the fact the action of a p-group on a p-group always has fixed points). Observe that H / L cannot be cyclic of degree p^{2} as all inertial elements of $\operatorname{Gal}(H / \mathrm{L})$ have order p and they would thus fix an unramified extension of L , a contradiction. $\operatorname{So~} \operatorname{Gal}(H / \mathrm{L}) \simeq \mathbb{Z} / p \times \mathbb{Z} / p$, and L has at least two disjoints \mathbb{Z} / p-extension unramified outside S, also a contradiction.

Set $\mathrm{E}_{\mathrm{L}, S}=\left(V_{\mathrm{L}, S} / \mathrm{L}^{\times p}\right)^{\wedge}$. Recall $\amalg_{\mathrm{L}, S}^{2}:=\operatorname{Ker}\left(H^{2}\left(G_{S}, \mathbb{Z} / p\right) \rightarrow \oplus_{v \in S} H^{2}\left(G_{v}, \mathbb{Z} / p\right)\right)$. Fact 2.8 below is well-known; see Theorem 11.3 of [Koch 2002].

Fact 2.8. $Ш_{\mathrm{L}, S}^{2} \hookrightarrow \mathrm{E}_{\mathrm{L}, S}$.
Let λ_{L} be the number of Minkowski units in $\mathrm{L}_{p}(\mathrm{~L}) / \mathrm{L}$.
Fact 2.9. If $\mu_{p} \not \subset \mathrm{~L}$ then $\lambda_{\mathrm{L}}=r_{1}(\mathrm{~L})+r_{2}(\mathrm{~L})-1+h^{1}(\mathrm{G})-h^{2}(\mathrm{G})$. If $\mu_{p} \subset \mathrm{~L}$ then $\lambda_{\mathrm{L}} \geq r_{1}(\mathrm{~L})+r_{2}(\mathrm{~L})-h^{2}(\mathrm{G})$.
This result is Theorem 2.9 of [Hajir et al. 2021], but we sketch the proof for the sake of keeping this paper self-contained.

Proof. Set $\mathrm{G}=\operatorname{Gal}\left(\mathrm{L}_{p}(\mathrm{~L}) / \mathrm{L}\right)$. We consider two "norm maps" induced by the norm map on units $\mathcal{O}_{\mathrm{L}_{p}(\mathrm{~L})}^{\times} \rightarrow \mathcal{O}_{\mathrm{L}}^{\times}:$

- N_{G} sending $\mathcal{O}_{\mathrm{L}_{p}(\mathrm{~L})}^{\times} \otimes \mathbb{F}_{p}$ to $\mathcal{O}_{\mathrm{L}}^{\times} /\left(\mathcal{O}_{\mathrm{L}}^{\times} \cap\left(\mathcal{O}_{\mathrm{L}_{p}(\mathrm{~L})}^{\times}\right)^{p}\right) \subset \mathcal{O}_{\mathrm{L}_{p}(\mathrm{~L})}^{\times} \otimes \mathbb{F}_{p}$.
- $N_{\mathrm{G}}^{\prime}: \mathcal{O}_{\mathrm{L}_{p}(\mathrm{~L})}^{\times} \otimes \mathbb{F}_{p} \rightarrow \mathcal{O}_{\mathrm{L}}^{\times} \otimes \mathbb{F}_{p}$.

One easily sees $N_{\mathrm{G}}^{\prime}\left(\mathcal{O}_{\mathrm{L}_{p}(\mathrm{~L})}^{\times} \otimes \mathbb{F}_{p}\right) \rightarrow N_{\mathrm{G}}\left(\mathcal{O}_{\mathrm{L}_{p}(\mathrm{~L})}^{\times} \otimes \mathbb{F}_{p}\right)$ and this is an isomorphism provided $\mathcal{O}_{\mathrm{L}}^{\times} \cap\left(\mathcal{O}_{\mathrm{L}_{p}(\mathrm{~L})}^{\times}\right)^{p}=$ $\left(\mathcal{O}_{\mathrm{L}}^{\times}\right)^{p}$: in particular this is the case when $\mu_{p} \not \subset \mathrm{~L}$; see Proposition 2.8 of [Hajir et al. 2021].

Write $\mathcal{O}_{\mathrm{L}_{p}(\mathrm{~L})}^{\times} \otimes \mathbb{F}_{p} \simeq \mathbb{F}_{p}[\mathrm{G}]^{\lambda_{\mathrm{L}}} \oplus N$, where N is an $\mathbb{F}_{p}[\mathrm{G}]$-torsion module. By Proposition 2.3 one has $N_{\mathrm{G}}\left(\mathcal{O}_{\mathrm{L}_{p}(\mathrm{~L})}^{\times} \otimes \mathbb{F}_{p}\right) \simeq \mathbb{F}_{p}^{\lambda_{\mathrm{L}}}$. Hence, when $\mu_{p} \not \subset \mathrm{~L}$

$$
\operatorname{dim}\left(\frac{\mathcal{O}_{\mathrm{L}}^{\times} \otimes \mathbb{F}_{p}}{N_{\mathrm{G}}^{\prime}\left(\mathcal{O}_{\mathrm{L}_{p}(\mathrm{~L})}^{\times} \otimes \mathbb{F}_{p}\right)}\right)=\operatorname{dim}\left(\mathcal{O}_{\mathrm{L}}^{\times} \otimes \mathbb{F}_{p}\right)-\lambda_{\mathrm{L}}
$$

When $\mu_{p} \subset \mathrm{~L}$, note that the "difference" between the images of N_{G} and N_{G}^{\prime} has p-rank at $\operatorname{most} \operatorname{dim}\left(\mathcal{O}_{\mathrm{L}}^{\times} \cap\right.$ $\left.\mathcal{O}_{\mathrm{L}_{p}(\mathrm{~L})}^{\times p} /\left(\mathcal{O}_{\mathrm{L}}^{\times}\right)^{p}\right) \leq h^{1}(\mathrm{G})$, so

$$
\operatorname{dim}\left(\frac{\mathcal{O}_{\mathrm{L}}^{\times} \otimes \mathbb{F}_{p}}{N_{\mathrm{G}}^{\prime}\left(\mathcal{O}_{\mathrm{L}_{p}(\mathrm{~L})}^{\times} \otimes \mathbb{F}_{p}\right)}\right) \geq \operatorname{dim}\left(\mathcal{O}_{\mathrm{L}}^{\times} \otimes \mathbb{F}_{p}\right)-\lambda_{\mathrm{L}}-h^{1}(\mathrm{G})
$$

To conclude, we use the well-known equality (see [Roquette 1967, Lemma 9])

$$
h^{2}(\mathrm{G})-h^{1}(\mathrm{G})=\operatorname{dim}\left(\frac{\mathcal{O}_{\mathrm{L}}^{\times} \otimes \mathbb{F}_{p}}{N_{\mathrm{G}}^{\prime}\left(\mathcal{O}_{\mathrm{L}_{p}(\mathrm{~L})}^{\times} \otimes \mathbb{F}_{p}\right)}\right) .
$$

2C. Solving the ramified embedding problem with one tame prime. We start with our nonsplit exact sequence

$$
\begin{equation*}
1 \rightarrow \mathbb{Z} / p \rightarrow \mathrm{G}^{\prime} \rightarrow \mathrm{G} \rightarrow 1 \tag{3}
\end{equation*}
$$

given by the element $0 \neq \varepsilon \in H^{2}(\mathrm{G}, \mathbb{Z} / p)$.
We assume that $\mathrm{G}=\operatorname{Gal}\left(\mathrm{L}_{p}(\mathrm{k}) / \mathrm{k}\right)$.
Set $S=\{v\}$ where v is a finite tame prime of k. We first show the existence of a lift of G^{\prime} to G^{\prime} in some $\mathrm{k}_{S} / \mathrm{k}$ for certain v of k . We call this solving the embedding problem (3) in k_{S}.

Recall that $\amalg_{\mathrm{k}, S}^{2} \hookrightarrow \mathrm{E}_{\mathrm{k}, S}$ by Fact 2.8. Here $\amalg_{\mathrm{k}, \varnothing}^{2} \simeq H^{2}\left(\mathrm{G}_{\mathrm{k}, \varnothing}, \mathbb{Z} / p\right) \simeq H^{2}(\mathrm{G}, \mathbb{Z} / p)$. Let Inf_{S} : $H^{2}\left(\mathrm{G}_{\mathrm{k}, \varnothing}, \mathbb{Z} / p\right) \rightarrow H^{2}\left(\mathrm{G}_{\mathrm{k}, S}, \mathbb{Z} / p\right)$ be the inflation map. We have the commutative diagram:

By Hoeschmann's criteria (see [Neukirch et al. 2008, Chapter 3, Section 5]), the embedding problem has a solution in k_{S} if and only if $\operatorname{Inf}_{S}(\varepsilon)=0$. As $\mathrm{L}_{p}(\mathrm{k}) / \mathrm{k}$ is unramified, $\operatorname{Inf}_{S}(\varepsilon) \in \amalg_{\mathrm{k}, S}^{2}$ and as $g\left(\operatorname{Inf}_{S}(\varepsilon)\right)=f_{S}(h(\varepsilon)) \in \mathrm{E}_{\mathrm{k}, S}$, the embedding problem has a solution if and only if $h(\varepsilon) \in \operatorname{Ker}\left(f_{S}\right)$.

Set $\operatorname{Gov}_{S}(\mathrm{k}):=\mathrm{k}\left(\mu_{p}\right)\left(\sqrt[p]{V_{\mathrm{k}, S}}\right)$. In the governing extensions $\mathrm{k}\left(\mu_{p}\right) \subset \operatorname{Gov}_{S}(\mathrm{k}) \subset \operatorname{Gov}(\mathrm{k})$, one sees that the kernel of the map $f_{S}: \mathrm{E}_{\mathrm{k}, \varnothing} \rightarrow \mathrm{E}_{\mathrm{k}, S}$ is exactly the (unramified) decomposition group D_{v} of the prime v. As noted in Fact 2.6, if $w_{1}, w_{2} \mid v$ are two primes of $\mathrm{k}\left(\mu_{p}\right)$, their Frobenius elements in $\operatorname{Gal}\left(\operatorname{Gov}(\mathrm{k}) / \mathrm{k}\left(\mu_{p}\right)\right)$ differ by a nonzero scalar multiple.

We have proved:
Lemma 2.10. The embedding problem (3) has a solution in $\mathrm{k}_{S} / \mathrm{k}$ if and only if $h(\varepsilon) \in D_{v}$. Thus it has a solution in $\mathrm{k}_{S} / \mathrm{k}$ if we choose the prime v such that $\left\langle\mathrm{Fr}_{v}\right\rangle=\langle h(\varepsilon)\rangle$ in $M(\mathrm{k})$, that is the lines spanned by these elements in $M(k)$ are equal. This is always possible by Chebotarev's theorem.

2D. Cohomological facts implying the persistence of Minkowski units. Our main aim in this paper is to show that given a short exact sequence

$$
1 \rightarrow \mathbb{Z} / p \rightarrow \mathrm{G}^{\prime} \rightarrow \mathrm{G} \rightarrow 1
$$

of finite p-groups where $\mathrm{G}=\operatorname{Gal}\left(\mathrm{L}_{p}(\mathrm{k}) / \mathrm{k}\right)$, there exists a finite tamely ramified extension $\mathrm{k}^{\prime} / \mathrm{k}$ with $\mathrm{G}^{\prime}=\operatorname{Gal}\left(\mathrm{L}_{p}\left(\mathrm{k}^{\prime}\right) / \mathrm{k}^{\prime}\right)$. To solve this embedding problem using Theorem 3.3, the tower $\mathrm{L}_{p}(\mathrm{k}) / \mathrm{k}$ must have $2 h^{1}(\mathrm{G})$ Minkowski units. Proposition 2.14 below shows that if we start with enough Minkowski units, after a base change that realizes G^{\prime}, we will be able to continue the induction. Proposition 2.13 , which is
only needed in the case when $\mu_{p} \subset \mathrm{k}$, shows that given at least $h^{1}(\mathrm{G})$ Minkowski units, we can perform a base change that preserves the tower and the number of Minkowski units increases. Proposition 2.11 is a basic group theory result bounding $h^{1}\left(\mathrm{G}^{\prime}\right)$ and $h^{2}\left(\mathrm{G}^{\prime}\right)$ in terms of $h^{1}(\mathrm{G})$ and $h^{2}(\mathrm{G})$. Furuta proves a similar result in Lemma 2 of [Furuta 1972].

Set $H^{2}\left(\mathrm{G}^{\prime}, \mathbb{Z} / p\right)_{1}:=\operatorname{Ker}\left(H^{2}\left(\mathrm{G}^{\prime}, \mathbb{Z} / p\right) \xrightarrow{\text { Res }} H^{2}(\mathbb{Z} / p, \mathbb{Z} / p)\right)$ and $h^{2}\left(\mathrm{G}^{\prime}\right)_{1}:=\operatorname{dim} H^{2}\left(\mathrm{G}^{\prime}, \mathbb{Z} / p\right)_{1}$. Note $h^{2}(\mathbb{Z} / p)=1$ so $h^{2}\left(\mathrm{G}^{\prime}\right)_{1}$ is either $h^{2}\left(\mathrm{G}^{\prime}\right)$ or $h^{2}\left(\mathrm{G}^{\prime}\right)-1$ and in either case $h^{2}\left(\mathrm{G}^{\prime}\right)_{1} \geq h^{2}\left(\mathrm{G}^{\prime}\right)-1$.

Proposition 2.11. Let

$$
1 \rightarrow \mathbb{Z} / p \rightarrow \mathrm{G}^{\prime} \rightarrow \mathrm{G} \rightarrow 1
$$

be a short exact sequence of finite p-groups. Then $h^{1}\left(\mathrm{G}^{\prime}\right) \leq h^{1}(\mathrm{G})+1$ and $h^{2}\left(\mathrm{G}^{\prime}\right) \leq h^{1}(\mathrm{G})+h^{2}(\mathrm{G})+1$. Proof. The h^{1} result is clear. For the h^{2} statement we have the long exact sequence (see for instance [Dekimpe et al. 2012])

$$
\begin{aligned}
& 0 \rightarrow H^{1}(\mathrm{G}, \mathbb{Z} / p) \rightarrow H^{1}\left(\mathrm{G}^{\prime}, \mathbb{Z} / p\right) \rightarrow H^{1}(\mathbb{Z} / p, \mathbb{Z} / p)^{G} \\
& \rightarrow H^{2}(\mathrm{G}, \mathbb{Z} / p) \rightarrow H^{2}\left(\mathrm{G}^{\prime}, \mathbb{Z} / p\right)_{1} \rightarrow H^{1}\left(\mathrm{G}, H^{1}(\mathbb{Z} / p, \mathbb{Z} / p)\right)
\end{aligned}
$$

If $\mathrm{G}^{\prime} \rightarrow \mathrm{G}$ splits, we have

$$
0 \rightarrow H^{2}(\mathrm{G}, \mathbb{Z} / p) \rightarrow H^{2}\left(\mathrm{G}^{\prime}, \mathbb{Z} / p\right)_{1} \rightarrow H^{1}\left(\mathrm{G}, H^{1}(\mathbb{Z} / p, \mathbb{Z} / p)\right)
$$

so $h^{2}\left(\mathrm{G}^{\prime}\right)_{1} \leq h^{2}(\mathrm{G})+h^{1}(\mathrm{G})$ and since $h^{2}\left(\mathrm{G}^{\prime}\right)_{1} \geq h^{2}\left(\mathrm{G}^{\prime}\right)-1$ the result follows.
In the nonsplit case we have

$$
0 \rightarrow H^{1}(\mathbb{Z} / p, \mathbb{Z} / p)^{\mathrm{G}} \rightarrow H^{2}(\mathrm{G}, \mathbb{Z} / p) \rightarrow H^{2}\left(\mathrm{G}^{\prime}, \mathbb{Z} / p\right)_{1} \rightarrow H^{1}\left(\mathrm{G}, H^{1}(\mathbb{Z} / p, \mathbb{Z} / p)\right)
$$

so $h^{2}\left(\mathrm{G}^{\prime}\right)_{1} \leq h^{2}(\mathrm{G})-1+h^{1}(\mathrm{G})$ so $h^{2}\left(\mathrm{G}^{\prime}\right) \leq h^{1}(\mathrm{G})+h^{2}(\mathrm{G})$.
Definition 2.12. For a number field L set $\mathrm{G}=\operatorname{Gal}\left(\mathrm{L}_{p}(\mathrm{~L}) / \mathrm{L}\right)$. Define f as follows:

$$
f(\mathrm{~L})= \begin{cases}r_{1}(\mathrm{~L})+r_{2}(\mathrm{~L})-h^{2}(\mathrm{G})+h^{1}(\mathrm{G})-1, & \mu_{p} \not \subset \mathrm{~L} \\ r_{1}(\mathrm{~L})+r_{2}(\mathrm{~L})-h^{2}(\mathrm{G}), & \mu_{p} \subset \mathrm{~L}\end{cases}
$$

Fact 2.9 implies $f(\mathrm{~L})$ is a lower bound on the number of Minkowski units of $\mathrm{L}_{p}(\mathrm{~L}) / \mathrm{L}$.
Proposition 2.13. Let $\tilde{\mathrm{k}} / \mathrm{k}$ be $a \mathbb{Z} /$ p-extension ramified at finite tame primes such that $\mathrm{G}=\operatorname{Gal}\left(\mathrm{L}_{p}(\mathrm{k}) / \mathrm{k}\right)=$ $\operatorname{Gal}\left(\mathrm{L}_{p}(\tilde{\mathrm{k}}) / \tilde{\mathrm{k}}\right)$. Then $f(\tilde{\mathrm{k}})=f(\mathrm{k})+(p-1)\left(r_{1}(\mathrm{k})+r_{2}(\mathrm{k})\right)$.
Proof. This follows immediately as we have the same group G for k and $\tilde{\mathrm{k}}, \mu_{p} \subset \tilde{\mathrm{k}} \Longleftrightarrow \mu_{p} \subset \mathrm{k}$ and $r_{i}(\tilde{\mathrm{k}})=p \cdot r_{i}(\mathrm{k})$.
Proposition 2.14. Let $\mathrm{k}^{\prime} / \mathrm{k}$ be a tamely ramified $\mathbb{Z} /$ p-extension such that $\mathrm{G}=\operatorname{Gal}\left(\mathrm{L}_{p}(\mathrm{k}) / \mathrm{k}\right)$ and $\mathrm{G}^{\prime}=$ $\operatorname{Gal}\left(\mathrm{L}_{p}\left(\mathrm{k}^{\prime}\right) / \mathrm{k}^{\prime}\right)$ where

$$
1 \rightarrow \mathbb{Z} / p \rightarrow \mathrm{G}^{\prime} \rightarrow \mathrm{G} \rightarrow 1
$$

Let $f(\mathrm{k})$ be as in Definition 2.12. Then

$$
f(\mathrm{k}) \geq 2 h^{1}(\mathrm{G})+3 \Longrightarrow f\left(\mathrm{k}^{\prime}\right) \geq 2 h^{1}\left(\mathrm{G}^{\prime}\right)+3
$$

Proof. We do the case $\mu_{p} \not \subset \mathrm{k}$ first. We need to prove
$r_{1}(\mathrm{k})+r_{2}(\mathrm{k})-h^{2}(\mathrm{G})+h^{1}(\mathrm{G})-1 \geq 2 h^{1}(\mathrm{G})+3 \Longrightarrow r_{1}\left(\mathrm{k}^{\prime}\right)+r_{2}\left(\mathrm{k}^{\prime}\right)-h^{2}\left(\mathrm{G}^{\prime}\right)+h^{1}\left(\mathrm{G}^{\prime}\right)-1 \geq 2 h^{1}\left(\mathrm{G}^{\prime}\right)+3$,
that is

$$
r_{1}\left(\mathrm{k}^{\prime}\right)+r_{2}\left(\mathrm{k}^{\prime}\right) \stackrel{?}{\geq} h^{1}\left(\mathrm{G}^{\prime}\right)+h^{2}\left(\mathrm{G}^{\prime}\right)+4
$$

Clearly

$$
r_{1}\left(\mathrm{k}^{\prime}\right)+r_{2}\left(\mathrm{k}^{\prime}\right)=p\left(r_{1}(\mathrm{k})+r_{2}(\mathrm{k})\right) \geq p\left(h^{1}(\mathrm{G})+h^{2}(\mathrm{G})+4\right)
$$

and by Proposition 2.11 we have

$$
h^{2}\left(\mathrm{G}^{\prime}\right)+h^{1}\left(\mathrm{G}^{\prime}\right)+4 \leq\left(h^{1}(\mathrm{G})+h^{2}(\mathrm{G})+1\right)+\left(h^{1}(\mathrm{G})+1\right)+4=2 h^{1}(\mathrm{G})+h^{2}(\mathrm{G})+6
$$

so it suffices to show

$$
(p-1) h^{2}(\mathrm{G})+(p-2) h^{1}(\mathrm{G})+4 p \stackrel{\checkmark}{\geq} 6
$$

This holds for all p.
When $\mu_{p} \subset \mathrm{k}$. We need to prove

$$
r_{1}(\mathrm{k})+r_{2}(\mathrm{k})-h^{2}(\mathrm{G}) \geq 2 h^{1}(\mathrm{G})+3 \Longrightarrow r_{1}\left(\mathrm{k}^{\prime}\right)+r_{2}\left(\mathrm{k}^{\prime}\right)-h^{2}\left(\mathrm{G}^{\prime}\right) \geq 2 h^{1}\left(\mathrm{G}^{\prime}\right)+3
$$

that is

$$
r_{1}\left(\mathrm{k}^{\prime}\right)+r_{2}\left(\mathrm{k}^{\prime}\right) \stackrel{?}{\geq} 2 h^{1}\left(\mathrm{G}^{\prime}\right)+h^{2}\left(\mathrm{G}^{\prime}\right)+3 .
$$

Again using Proposition 2.11 and that $r_{i}\left(\mathrm{k}^{\prime}\right)=p \cdot r_{i}(\mathrm{k})$ it suffices to show

$$
(p-1) h^{2}(\mathrm{G})+(2 p-3) h^{1}(\mathrm{G})+3 p \stackrel{\checkmark}{\geq} 6
$$

which holds for all p.
Proposition 2.15 below provides the base case of the induction.
Proposition 2.15. Recall $\left(\# \mathrm{Cl}_{\mathrm{k}_{0}}, p\right)=1$. There exists a tamely ramified extension $\mathrm{k}^{\prime} / \mathrm{k}_{0}$ such that

- the p-part of the class group of k^{\prime} is \mathbb{Z} / p,
- $\left[\mathrm{k}^{\prime}: \mathrm{k}_{0}\right]=p^{3}$,
- and $f\left(\mathrm{k}^{\prime}\right)>2 h^{1}(\mathbb{Z} / p)+3=5$.

Proof. Since $\mathrm{L}_{p}\left(\mathrm{k}_{0}\right)=\mathrm{k}_{0}$, we see $\mathrm{G}=\{e\}$. Choose a tame prime v of k whose Frobenius is trivial in the governing Galois group $M(\mathrm{k})$. By Fact 2.6 there is a unique \mathbb{Z} / p-extension $\mathrm{k}_{1} / \mathrm{k}_{0}$ unramified outside v. That $\left(\# \mathrm{Cl}_{\mathrm{k}_{1}}, p\right)=1$ follows from Fact 2.7. Repeat this process with k_{1} to get a field k_{2} with $\left(\# \mathrm{Cl}_{\mathrm{k}_{2}}, p\right)=1$.

We do one more base change to find a field k^{\prime} with class group \mathbb{Z} / p. This is proved more generally as part of Theorem 3.3, but we include a short proof here.

Choose v_{1} a finite tame prime of k_{2} with trivial Frobenius in $M\left(\mathrm{k}_{2}\right)$ so that by Fact 2.6 there exists a unique D_{1} / k_{2} ramified at v_{1}. As $D_{1} \cap \operatorname{Gov}\left(\mathrm{k}_{2}\right)=\mathrm{k}_{2}$, we may choose v_{2} a finite tame prime of k_{2} with
trivial Frobenius in $\operatorname{Gov}\left(\mathrm{k}_{2}\right)$ such that v_{2} remains prime in D_{1} / k_{2}. Again by Fact 2.6 there exists a unique D_{2} / k_{2} ramified at v_{2}.

Let D / k_{2} be any of the $p-1$ "diagonal" \mathbb{Z} / p-extensions of k_{2} between D_{1} and D_{2} so $D_{1} D_{2} / D$ is everywhere unramified. We claim $D_{1} D_{2}=\mathrm{L}_{p}(D)$. Indeed, by Fact 2.7 applied to D_{1} / k_{2} we see $\left(\# \mathrm{Cl}_{D_{1}}, p\right)=1$. As v_{2} is inert in D_{1} / k_{2}, the extension $D_{2} D_{1} / D_{1}$ is ramified only at v_{2} and Fact 2.7 applied to $D_{2} D_{1} / D_{1}$ implies $\left(\# \mathrm{Cl}_{D_{1} D_{2}}, p\right)=1$. Whether or not $\mu_{p} \subset \mathrm{k}_{0}$, we have $\mathrm{k}^{\prime}:=D, \mathrm{Cl}_{\mathrm{k}^{\prime}}\left[p^{\infty}\right]=\mathbb{Z} / p$ and

$$
f\left(\mathrm{k}^{\prime}\right) \geq r_{1}\left(\mathrm{k}^{\prime}\right)+r_{2}\left(\mathrm{k}^{\prime}\right)-h^{2}(\mathbb{Z} / p)=p^{3} r_{1}\left(\mathrm{k}_{0}\right)+p^{3} r_{2}\left(\mathrm{k}_{0}\right)-1>5=2 h^{1}(\mathbb{Z} / p)+3
$$

Depending on p and the signature of k_{0} one can decrease the number of base changes, but this analysis complicates the statement of the main theorem without significant gain.

3. Solving the embedding problem

Having established the base case of our induction, we now prove Theorem 3.3.

Inductive Step. Let

$$
1 \rightarrow \mathbb{Z} / p \rightarrow \mathrm{G}^{\prime} \rightarrow \mathrm{G} \rightarrow 1
$$

be exact and let k be a number field with $\operatorname{Gal}\left(\mathrm{L}_{p}(\mathrm{k}) / \mathrm{k}\right)=\mathrm{G}$ and $f(\mathrm{k}) \geq 2 h^{1}(\mathrm{G})+3$. Then there exists a number field $\mathrm{k}^{\prime} / \mathrm{k}$ with $\mathrm{Gal}\left(\mathrm{L}_{p}\left(\mathrm{k}^{\prime}\right) / \mathrm{k}^{\prime}\right)=\mathrm{G}^{\prime}$ and $f\left(\mathrm{k}^{\prime}\right) \geq 2 h^{1}\left(\mathrm{G}^{\prime}\right)+3$.

Theorem 3.2 below is only necessary for the key inductive step, Theorem 3.3, when $\mu_{p} \subset \mathrm{k}$.
Set $\mathrm{K}:=\mathrm{L}_{p}(\mathrm{k})\left(\mu_{p}\right)$. We only consider finite tame primes v of k that split completely in K / k. When $\mu_{p} \not \subset \mathrm{k}$, our Frobenius elements in governing fields (or their subfields) are only defined up to scalar multiples. We write $\left\langle\operatorname{Fr}_{v}\right\rangle_{\operatorname{Gov}(\mathrm{k}) / \mathrm{k}\left(\mu_{p}\right)}$ for the well-defined line spanned by Frobenius at v in $\operatorname{Gal}\left(\operatorname{Gov}(\mathrm{k}) / \mathrm{k}\left(\mu_{p}\right)\right)$. When the Frobenius is trivial there is no ambiguity so we write $\left\langle\operatorname{Fr}_{v}\right\rangle_{\operatorname{Gov}(\mathrm{k}) / \mathrm{k}\left(\mu_{p}\right)}=0$.

We need primes v of k that let us control $h^{1}\left(\operatorname{Gal}\left(\mathrm{k}_{\{v\}} / \mathrm{k}\right)\right)$ and $h^{1}\left(\operatorname{Gal}^{\left.\left(\mathrm{L}_{p}(\mathrm{k})_{\{v\}} / \mathrm{L}_{p}(\mathrm{k})\right)\right) \text { simultaneously }}\right.$ via Fact 2.6. Recall $M\left(\mathrm{~L}_{p}(\mathrm{k})\right):=\operatorname{Gal}\left(\operatorname{Gov}\left(\mathrm{L}_{p}(\mathrm{k})\right) / \mathrm{L}_{p}(\mathrm{k})\left(\mu_{p}\right)\right) \simeq \mathbb{F}_{p}[\mathrm{G}]^{\lambda_{\mathrm{k}}} \oplus N$ where N is a torsion module over $\mathbb{F}_{p}[\mathrm{G}]$. We have no knowledge of N and must work with the free part to control things over $\mathrm{L}_{p}(\mathrm{k})$. We then use Proposition 3.1 to control things over k.

3A. The stability theorem.

Proposition 3.1. Let $F \subset \operatorname{Gov}\left(\mathrm{~L}_{p}(\mathrm{k})\right)$ be the field fixed by $\mathrm{I}_{\mathrm{G}} \cdot M\left(\mathrm{~L}_{p}(\mathrm{k})\right)$. For v of k splitting completely in K and $w \mid v$ in K , the lines $\left\langle\mathrm{Fr}_{w}\right\rangle_{F / \mathrm{K}}$ do not depend on w so we may write $\left\langle\mathrm{Fr}_{v}\right\rangle_{F / \mathrm{K}}$. Then $\left\langle\operatorname{Fr}_{v_{1}}\right\rangle_{F / \mathrm{K}}=$ $\left\langle\operatorname{Fr}_{v_{2}}\right\rangle_{F / \mathrm{K}}$ implies $\left\langle\operatorname{Fr}_{v_{1}}\right\rangle_{\operatorname{Gov}(\mathrm{k}) / \mathrm{k}\left(\mu_{p}\right)}=\left\langle\operatorname{Fr}_{v_{2}}\right\rangle_{\operatorname{Gov}(\mathrm{k}) / \mathrm{k}\left(\mu_{p}\right)}$. If $\left\langle\operatorname{Fr}_{v_{1}}\right\rangle_{F / \mathrm{K}}=0$ then $\left\langle\operatorname{Fr}_{v_{1}}\right\rangle_{\operatorname{Gov}(\mathrm{k}) / \mathrm{k}\left(\mu_{p}\right)}=0$.

Proof. This diagram is useful in Theorems 3.2 and 3.3 as well:

Let $\Delta=\operatorname{Gal}\left(\mathrm{k}\left(\mu_{p}\right) / \mathrm{k}\right)=\operatorname{Gal}\left(\mathrm{K} / \mathrm{L}_{p}(\mathrm{k})\right) . \operatorname{As~} \operatorname{Gal}(F / \mathrm{K}):=M\left(\mathrm{~L}_{p}(\mathrm{k})\right) / I_{\mathrm{G}} \cdot M\left(\mathrm{~L}_{p}(\mathrm{k})\right)$ is the maximal quotient of $M\left(\mathrm{~L}_{p}(\mathrm{k})\right)$ on which G acts trivially, and Δ acts on $\operatorname{Gal}(F / \mathrm{K})$ by scalars, the line $\left\langle\mathrm{Fr}_{w}\right\rangle_{F / \mathrm{K}}$ is invariant under the action of $\operatorname{Gal}(\mathrm{K} / \mathrm{k})=\mathrm{G} \times \Delta$. Since the $w \mid v$ form an orbit under this action of $\operatorname{Gal}(\mathrm{K} / \mathrm{k})$, this line is independent of the choice of $w \mid v$ as desired.

As $\operatorname{Gov}(\mathrm{k}) \mathrm{K} / \mathrm{K}$ ascends from $\operatorname{Gov}(\mathrm{k}) / \mathrm{k}\left(\mu_{p}\right)$, we see G acts trivially on $\operatorname{Gal}(\operatorname{Gov}(\mathrm{k}) \mathrm{K} / \mathrm{K})$ so

$$
\operatorname{Gov}(\mathrm{k}) \mathrm{K} \subset F .
$$

Below, we implicitly use that our primes of k split completely in K . If $\left\langle\operatorname{Fr}_{v_{1}}\right\rangle_{F / \mathrm{K}}=\left\langle\operatorname{Fr}_{v_{2}}\right\rangle_{F / \mathrm{K}}$, these lines are equal when projected to $\operatorname{Gal}(\operatorname{Gov}(\mathrm{k}) \mathrm{K} / \mathrm{K}) \subset \operatorname{Gal}\left(\operatorname{Gov}(\mathrm{k}) \mathrm{K} / \mathrm{k}\left(\mu_{p}\right)\right)$ and they are again equal in $\operatorname{Gal}\left(\operatorname{Gov}(\mathrm{k}) / \mathrm{k}\left(\mu_{p}\right)\right)$ so $\left\langle\operatorname{Fr}_{v_{1}}\right\rangle_{\operatorname{Gov}(\mathrm{k}) / \mathrm{k}\left(\mu_{p}\right)}=\left\langle\operatorname{Fr}_{v_{2}}\right\rangle_{\operatorname{Gov}(\mathrm{k}) / \mathrm{k}\left(\mu_{p}\right)}$. The last statement is clear.
Theorem 3.2. Recall $\left\{x_{i}\right\}_{i=1}^{h^{1}(\mathrm{G})}$ is a minimal set of generators of I_{G}. Assume that $f(\mathrm{k}) \geq h^{1}(\mathrm{G})$. Let we a degree one prime of K such that

$$
\operatorname{Fr}_{w}=\left(\left(x_{1}, x_{2}, \ldots, x_{h^{1}(\mathrm{G})}, 0, \ldots, 0\right), 0\right) \in M\left(\mathrm{~L}_{p}(\mathrm{k})\right) \simeq \mathbb{F}_{p}[\mathrm{G}]^{\lambda_{\mathrm{k}}} \oplus N
$$

Then for v of k below w,

$$
\left\langle\operatorname{Fr}_{v}\right\rangle_{\operatorname{Gov}(\mathrm{k}) / \mathrm{k}\left(\mu_{p}\right)}=0
$$

so there exists $a \mathbb{Z} / p$-extension $\tilde{\mathrm{k}} / \mathrm{k}$ ramified at only v. Furthermore,

$$
\mathrm{L}_{p}(\tilde{\mathrm{k}})=\mathrm{L}_{p}(\mathrm{k}) \tilde{\mathrm{k}} \quad \text { and } \quad f(\tilde{\mathrm{k}})>f(\mathrm{k})
$$

Proof. As Fr_{w} projects to 0 in the \mathbb{F}_{p}-vector space $\operatorname{Gal}(F / \mathrm{K})$, Proposition 3.1 implies $\left\langle\operatorname{Fr}_{v}\right\rangle_{\operatorname{Gov}(\mathrm{k}) / \mathrm{k}\left(\mu_{p}\right)}=0$ so \tilde{k} exists by Fact 2.6 . We show the $\mathbb{F}_{p}[\mathrm{G}]$-span of $\left(x_{1}, \ldots, x_{h^{1}(\mathrm{G})}\right) \in \mathbb{F}_{p}[\mathrm{G}]^{h^{1}(\mathrm{G})}$ has dimension \#G -1
by computing the dimension of $\bigcap_{i=1}^{h^{1}(\mathrm{G})} \operatorname{Ann}\left(x_{i}\right)$. This intersection is the annihilator of I_{G} which by Proposition 2.2 is just $\mathbb{F}_{p} T_{\mathrm{G}}$, establishing our dimension result. By Fact 2.6 there is a unique extension over $\mathrm{L}_{p}(\mathrm{k})$ ramified at v and thus it must be $\mathrm{L}_{p}(\mathrm{k}) \tilde{\mathrm{k}}$. Fact 2.7 applied to $\mathrm{L}_{p}(\mathrm{k}) \tilde{\mathrm{k}} / \mathrm{L}_{p}(\mathrm{k})$ implies $\left(\# \mathrm{Cl}_{\mathrm{L}_{p}(\mathrm{k}) \tilde{\mathrm{k}}}, p\right)=1$ so

$$
\mathrm{L}_{p}(\tilde{\mathrm{k}})=\mathrm{L}_{p}(\mathrm{k}) \tilde{\mathrm{k}}
$$

Proposition 2.13 gives

$$
f(\tilde{\mathrm{k}})>f(\mathrm{k})
$$

3B. The inductive step.

Theorem 3.3. Assume that $\mathrm{L}_{p}(\mathrm{k}) / \mathrm{k}$ has $\lambda_{\mathrm{k}} \geq 2 h^{1}(\mathrm{G})+3$ Minkowski units. Let $1 \rightarrow \mathbb{Z} / p \rightarrow \mathrm{G}^{\prime} \rightarrow \mathrm{G} \rightarrow 1$. If the extension splits or $\mu_{p} \not \subset \mathrm{k}$, there exists $a \mathbb{Z} / p$-extension $\mathrm{k}^{\prime} / \mathrm{k}$ such that $\operatorname{Gal}\left(\mathrm{L}_{p}\left(\mathrm{k}^{\prime}\right) / \mathrm{k}^{\prime}\right) \simeq \mathrm{G}^{\prime}$ and $\mathrm{L}_{p}\left(\mathrm{k}^{\prime}\right) / \mathrm{k}^{\prime}$ has at least $2 h^{1}\left(\mathrm{G}^{\prime}\right)+3$ Minkowski units. If $\mu_{p} \subset \mathrm{k}$ and the extension is nonsplit, k^{\prime} can be realized as a compositum of two successive \mathbb{Z} / p-extensions and $\mathrm{L}_{p}\left(\mathrm{k}^{\prime}\right) / \mathrm{k}^{\prime}$ has at least $2 h^{1}\left(\mathrm{G}^{\prime}\right)+3$ Minkowski units.

Proof. Recall that our finite tame primes split completely in K / k. We first treat the split case. This is independent of whether or not $\mu_{p} \subset \mathrm{k}$.

Split case. Choose tame degree one primes w_{1} and w_{2} of Gov(k)K such that

- $\operatorname{Fr}_{w_{1}}=\left(\left(x_{1}, x_{2}, \ldots, x_{h^{1}(\mathrm{G})}, 0, \ldots, 0\right), 0\right) \in \operatorname{Gal}\left(\operatorname{Gov}\left(\mathrm{L}_{p}(\mathrm{k})\right) / \operatorname{Gov}(\mathrm{k}) \mathrm{K}\right) \subset M\left(\mathrm{~L}_{p}(\mathrm{k})\right)$. This is possible as the tuple lies in $I_{\mathrm{G}} \cdot M\left(\mathrm{~L}_{p}(\mathrm{k})\right)$ and $\operatorname{Gov}(\mathrm{k}) \mathrm{K} \subset F$. As $\mathrm{Fr}_{w_{1}}$ projects to 0 in $\operatorname{Gal}(F / \mathrm{K})$, we see for v_{1} of k below w_{1} that $\left\langle\operatorname{Fr}_{v_{1}}\right\rangle_{F / \mathrm{K}}=0$ so by Proposition $3.1\left\langle\operatorname{Fr}_{v_{1}}\right\rangle_{\operatorname{Gov}(\mathrm{k}) / \mathrm{k}\left(\mu_{p}\right)}=0$. By Fact 2.6 applied to k there is one \mathbb{Z} / p-extension D_{1} / k ramified at v_{1}. Fact 2.6 also gives (see the proof of Theorem 3.2 as well) a unique \mathbb{Z} / p-extension of $\mathrm{L}_{p}(\mathrm{k})$ ramified at v_{1}, namely $D_{1} \mathrm{~L}_{p}(\mathrm{k}) / \mathrm{L}_{p}(\mathrm{k})$.
- $\operatorname{Fr}_{w_{2}}=\left(\left(0,0, \ldots, 0_{h^{1}(\mathrm{G})}, x_{1}, x_{2}, \ldots, x_{h^{1}(\mathrm{G})}, 0,0,0, \ldots, 0\right), 0\right)$ so for v_{2} of k below $w_{2},\left\langle\operatorname{Fr}_{v_{2}}\right\rangle_{F / \mathrm{K}}=0$. We also insist that v_{2} remains prime in D_{1} / k. This last condition is linearly disjoint from the rest of the defining splitting conditions on v_{2} and imposes no contradiction. Again, there are unique \mathbb{Z} / p-extensions of both k and $\mathrm{L}_{p}(\mathrm{k})$ ramified at v_{2}, namely D_{2} / k and $D_{2} \mathrm{~L}_{p}(\mathrm{k}) / \mathrm{L}_{p}(\mathrm{k})$. Let D / k be a "diagonal" extension between D_{1} and D_{2} ramified at both v_{1} and v_{2}. There are $p-1$ of these.

Fact 2.6 and our choices of the Frobenius elements of v_{1} and v_{2} imply

$$
h^{1}\left(\operatorname{Gal}\left(\mathrm{~L}_{p}(\mathrm{k})_{\left\{v_{1}, v_{2}\right\}} / \mathrm{L}_{p}(\mathrm{k})\right)\right)=2
$$

using that the span of the Frobenius elements above them in $\operatorname{Gal}\left(\operatorname{Gov}\left(\mathrm{L}_{p}(\mathrm{k})\right) / \operatorname{Gov}(\mathrm{k}) \mathrm{K}\right) \subset M\left(\mathrm{~L}_{p}(\mathrm{k})\right)$ has dimension 2\#G-2 and Fact 2.6. (With only $h^{1}(\mathrm{G})$ Minkowski units, we would again have had

$$
h^{1}\left(\operatorname{Gal}\left(\mathrm{~L}_{p}(\mathrm{k})_{\left\{v_{1}\right\}} / \mathrm{L}_{p}(\mathrm{k})\right)\right)=h^{1}\left(\operatorname{Gal}\left(\mathrm{~L}_{p}(\mathrm{k})_{\left\{v_{2}\right\}} / \mathrm{L}_{p}(\mathrm{k})\right)\right)=1
$$

In this case the span of the Frobenius elements above $\left\{v_{1}, v_{2}\right\}$ in $\operatorname{Gal}\left(\operatorname{Gov}\left(\mathrm{L}_{p}(\mathrm{k})\right) / \operatorname{Gov}(\mathrm{k}) \mathrm{K}\right) \subset M\left(\mathrm{~L}_{p}(\mathrm{k})\right)$ would have been \#G -1 so by Fact $2.6, h^{1}\left(\operatorname{Gal}\left(\mathrm{~L}_{p}(\mathrm{k})_{\left\{v_{1}, v_{2}\right\}} / \mathrm{L}_{p}(\mathrm{k})\right)\right)$ would have been $2 \# \mathrm{G}-(\# \mathrm{G}-1)=$ \#G+1.)

Set $\mathrm{L}:=D_{1} D_{2} \mathrm{~L}_{p}(\mathrm{k}), \mathrm{J}:=D_{1} \mathrm{~L}_{p}(\mathrm{k})$ and note L / D is unramified as D / k has absorbed all ramification at $\left\{v_{1}, v_{2}\right\}$. We will solve the problem by showing $\left(\# \mathrm{Cl}_{D_{1} D_{2} \mathrm{~L}_{p}(\mathrm{k})}, p\right)=1$.

Since $\left(\# \mathrm{Cl}_{\mathrm{L}_{p}(\mathrm{k})}, p\right)=1$ and our choice of v_{1} is such that

$$
h^{1}\left(\operatorname{Gal}\left(\mathrm{~L}_{p}(\mathrm{k})_{\left\{v_{1}\right\}} / \mathrm{L}_{p}(\mathrm{k})\right)=1,\right.
$$

Fact 2.7 applied to $\mathrm{J} / \mathrm{L}_{p}(k)$ implies $\left(\# \mathrm{Cl}_{\mathrm{J}}, p\right)=1$.
We now prove that there exists a unique \mathbb{Z} / p-extension over J unramified outside v_{2}, namely L . Set $\Omega=\operatorname{Gal}\left(\mathrm{J} / \mathrm{L}_{p}(\mathrm{k})\right), \mathrm{J}_{\left\{v_{2}\right\}}^{p, e l}$ to be the maximal elementary p-abelian extension of J inside $\mathrm{J}_{\left\{v_{2}\right\}}$, and $\Pi=\operatorname{Gal}\left(\mathbf{J}_{\left\{v_{2}\right\}}^{p, e l} / \mathrm{J}\right)$. Then Ω acts on Π and trivially on $\operatorname{Gal}(\mathrm{L} / \mathrm{J})$. We claim this is the only \mathbb{Z} / p-extension of \mathbf{J} in $\mathbf{J}_{\left\{v_{2}\right\}}^{p, e l} / \mathrm{J}$ on which Ω acts trivially: If not, there exists another \mathbb{Z} / p-extension H / J unramified outside v_{2} and Galois over $\mathrm{L}_{p}(\mathrm{k})$. Hence $\operatorname{Gal}\left(H / \mathrm{L}_{p}(\mathrm{k})\right)$ has order p^{2} and is abelian. The extension $H / L_{p}(\mathrm{k})$ cannot be cyclic because all inertia elements have order p and would then fix an everywhere unramified extension of $\mathrm{L}_{p}(\mathrm{k})$, a contradiction. Suppose now that $\operatorname{Gal}\left(H / \mathrm{L}_{p}(\mathrm{k})\right) \simeq \mathbb{Z} / p \times \mathbb{Z} / p$, with $H \neq \mathrm{J} D_{2}=\mathrm{L}$. Then $\operatorname{Gal}\left(H D_{2} / \mathrm{L}_{p}(\mathrm{k})\right) \simeq(\mathbb{Z} / p)^{3}$: this contradicts the already established fact that $h^{1}\left(\operatorname{Gal}\left(\mathrm{~L}_{p}(\mathrm{k})_{\left\{v_{1}, v_{2}\right\}} / \mathrm{L}_{p}(\mathrm{k})\right)=2\right.$.

The final possibility is that there exists a \mathbb{Z} / p-extension E_{0} / J unramified outside v_{2}, different from L / J and not fixed by Ω; let S_{0} be the set of ramification of E_{0} / J. As primes above v_{2} in $\mathrm{L}_{p}(\mathrm{k})$ are inert in $\mathrm{J} / \mathrm{L}_{p}(\mathrm{k}), \Omega\left(S_{0}\right)=S_{0}$: then Ω takes E_{0} to another \mathbb{Z} / p-extension E_{1} / J exactly ramified at S_{0} and such that $E_{1} \neq E_{0}$. The compositum $E_{1} E_{0} / \mathrm{J}$ contains a \mathbb{Z} / p-extension $E_{0}^{\prime} / \mathrm{J}$ exactly ramified at a set $S_{0}^{\prime} \subsetneq S_{0}$. Observe that $E_{0}^{\prime} \neq \mathrm{L}$ since L / J is totally ramified at every prime above v_{2}. Continuing the process, we obtain an unramified \mathbb{Z} / p-extension H / J, which is impossible since $\left(\# \mathrm{Cl}_{\mathrm{J}}, p\right)=1$. Thus L / J is the unique \mathbb{Z} / p-extension unramified outside v_{2}. Fact 2.7 applied to L / J implies $\left(\# \mathrm{Cl}_{L}, p\right)=1$.

We have solved the split embedding problem with $\mathrm{k}^{\prime}=D$ and $\operatorname{Gal}\left(\mathrm{L}_{p}\left(\mathrm{k}^{\prime}\right) / \mathrm{k}^{\prime}\right)=\mathrm{G} \times \mathbb{Z} / p$. It required one base change ramified at two tame finite primes. Proposition 2.14 implies $f\left(\mathrm{k}^{\prime}\right) \geq 2 h^{1}\left(\mathrm{G}^{\prime}\right)+3$ so the induction can proceed.

For the nonsplit case we treat $\mu_{p} \not \subset \mathrm{k}$ and $\mu_{p} \subset \mathrm{k}$ separately. Theorem 3.2 is only used in the nonsplit case when $\mu_{p} \subset \mathrm{k}$.

The nonsplit case, $\mu_{p} \not \subset \mathrm{k}$. By Lemma 2.10 we may use one tame prime v of k to find a ramified solution to the embedding problem. As $\mu_{p} \not \subset \mathrm{k}$ implies $\operatorname{Gov}(\mathrm{k}) \cap \mathrm{L}_{p}(\mathrm{k})=\mathrm{k}$, we can assume v splits completely in K / k. Choosing any $w \mid v$ of K we set $\mathrm{Fr}_{w}=\left(\left(z_{1}, z_{2}, \ldots, z_{\lambda_{\mathrm{k}}}\right), n_{0}\right) \in M\left(\mathrm{~L}_{p}(\mathrm{k})\right)$ where we claim $n_{0} \notin I_{\mathrm{G}} \cdot N$ and $z_{i} \in I_{\mathrm{G}} \subset \mathbb{F}_{p}[\mathrm{G}]$. Indeed, if any $z_{i} \notin I_{\mathrm{G}}$, its $\mathbb{F}_{p}[\mathrm{G}]$-span is all of $\mathbb{F}_{p}[\mathrm{G}]$ and by Fact 2.6 there is no \mathbb{Z} / p-extension of $\mathrm{L}_{p}(\mathrm{k})$ ramified at the $w \mid v$, contradicting that we are solving an embedding problem with v. If $n_{0} \in I_{\mathrm{G}} \cdot N$, then the projection of Fr_{w} to $\operatorname{Gal}(F / \mathrm{K})$ is trivial so Proposition 3.1 implies $\left\langle\operatorname{Fr}_{v}\right\rangle_{\mathrm{Gov}(\mathrm{k}) / \mathrm{k}\left(\mu_{p}\right)}=0$ and the embedding problem we are solving is split, also a contradiction.

Choose a degree one w_{1} of K with $\mathrm{Fr}_{w_{1}}=\left(\left(x_{1}, x_{2}, \ldots, x_{h^{1}(\mathrm{G})}, 0,0,0, \ldots, 0\right), n_{0}\right) \in M\left(\mathrm{~L}_{p}(\mathrm{k})\right)$ where n_{0} is as in the previous paragraph. Let v_{1} be the prime of k below w_{1}. By Fact 2.6 (also see the proof of Theorem 3.2) there is one \mathbb{Z} / p-extension $D_{1} / \mathrm{L}_{p}(\mathrm{k})$ ramified at v_{1}.

Choose a degree one w_{2} of K with $\mathrm{Fr}_{w_{2}}=\left(\left(0,0, \ldots, 0, x_{1}, x_{2}, \ldots, x_{h^{1}(\mathrm{G})}, 0,0,0, \ldots, 0\right), n_{0}\right) \in$ $M\left(\mathrm{~L}_{p}(\mathrm{k})\right)$ and the primes of $\mathrm{L}_{p}(\mathrm{k})$ above v_{2} remain prime in $D_{1} / \mathrm{L}_{p}(\mathrm{k})$. This last condition is linearly disjoint from the splitting conditions defining v_{2} and imposes no contradiction. Again by Fact 2.6 there is one \mathbb{Z} / p-extension $D_{2} / L_{p}(\mathrm{k})$ ramified at v_{2}.

As the free components of $\mathrm{Fr}_{w}, \mathrm{Fr}_{w_{1}}$ and $\mathrm{Fr}_{w_{2}}$ are all in $I_{\mathrm{G}}^{\lambda_{\mathrm{k}}}$, their projections to $\operatorname{Gal}(F / \mathrm{K})$ depend only on n_{0} and Proposition 3.1 implies

$$
0 \neq\left\langle\operatorname{Fr}_{v}\right\rangle_{\operatorname{Gov}(\mathrm{k}) / \mathrm{k}\left(\mu_{p}\right)}=\left\langle\operatorname{Fr}_{v_{1}}\right\rangle_{\operatorname{Gov}(\mathrm{k}) / \mathrm{k}\left(\mu_{p}\right)}=\left\langle\operatorname{Fr}_{v_{2}}\right\rangle_{\operatorname{Gov}(\mathrm{k}) / \mathrm{k}\left(\mu_{p}\right)}
$$

Thus there is no extension of k ramified at either v_{1} or v_{2}, but, by Fact 2.6 , there is a \mathbb{Z} / p-extension of k ramified at $\left\{v_{1}, v_{2}\right\}$. Call it D. Note $\mathrm{G}^{\prime} \simeq \operatorname{Gal}\left(D_{1} / \mathrm{k}\right) \simeq \operatorname{Gal}\left(D_{2} / \mathrm{k}\right) \simeq \operatorname{Gal}\left(D_{1} D_{2} / D\right)$:

That $D_{1} D_{2}$ has trivial p-class group follows exactly as it did in the split case and we may set $\mathrm{k}^{\prime}=D$ so $\mathrm{L}_{p}\left(\mathrm{k}^{\prime}\right)=D_{1} D_{2}$ and $\operatorname{Gal}\left(\mathrm{L}_{p}\left(\mathrm{k}^{\prime}\right) / \mathrm{k}^{\prime}\right) \simeq \mathrm{G}^{\prime}$.

We have solved the embedding problem in the nonsplit case when $\mu_{p} \not \subset \mathrm{k}$. We performed one base change ramified at two tame finite primes and Proposition 2.14 implies $f\left(\mathrm{k}^{\prime}\right) \geq 2 h^{1}\left(\mathrm{G}^{\prime}\right)+3$ so the induction can proceed.

The nonsplit case, $\mu_{p} \subset \mathrm{k}$. We can no longer assume $\mathrm{L}_{p}(\mathrm{k}) \cap \operatorname{Gov}(\mathrm{k})=\mathrm{k}$.
Let $0 \neq \varepsilon \in Ш_{\mathrm{k}, \varnothing}^{2}$ be the obstruction to our embedding problem $\mathrm{G}^{\prime} \rightarrow \mathrm{G}$. Using Lemma 2.10, let v of k be a tame prime annihilating ε. The difficulty is that in the diagram below we may have $\mathrm{L}_{p}(\mathrm{k}) \cap \operatorname{Gov}(\mathrm{k}) \supsetneq \mathrm{k}$ and that Fr_{v}, which is necessarily nonzero in $M(\mathrm{k})$, may also be nonzero in $\operatorname{Gal}\left(\left(\mathrm{L}_{p}(\mathrm{k}) \cap \operatorname{Gov}(\mathrm{k})\right) / \mathrm{k}\right)$. This prevents us from also choosing v to split completely in $\mathrm{L}_{p}(\mathrm{k}) / \mathrm{k}$ and as we need in $\operatorname{Gov}\left(\mathrm{L}_{p}(\mathrm{k})\right) / \mathrm{L}_{p}(\mathrm{k})$ to ensure there is only one extension of $\mathrm{L}_{p}(\mathrm{k})$ ramified at the primes of $\mathrm{L}_{p}(\mathrm{k})$ above v. If we could choose v to annihilate ε such that $\operatorname{Fr}_{v}=0 \in \operatorname{Gal}\left(\mathrm{~L}_{p}(\mathrm{k}) / \mathrm{k}\right)$, we would be able to proceed as in the $\mu_{p} \not \subset k$ case. We get around this by a base change.

By Kummer theory and the definition of governing fields, $\operatorname{Gal}\left(\operatorname{Gov}(\mathrm{L}) / \mathrm{L}\left(\mu_{p}\right)\right)$ is an elementary p abelian group. Let $\tilde{\mathrm{k}} / \mathrm{k}$ be a tamely ramified \mathbb{Z} / p-extension as given by Theorem 3.2 so $\operatorname{Gal}\left(\mathrm{L}_{p}(\tilde{\mathrm{k}}) / \tilde{\mathrm{k}}\right)=\mathrm{G}$. By Proposition 2.13 we have $\lambda_{\tilde{\mathrm{k}}} \geq 2 h^{1}(\mathrm{G})+3$:

As $\operatorname{Gov}(\mathrm{k}) \cap \tilde{\mathrm{k}}=\mathrm{k}$, we may choose a prime v to solve the embedding problem for k whose Frobenius is nontrivial in $\operatorname{Gal}(\tilde{\mathrm{k}} / \mathrm{k})$, that is v remains prime in $\tilde{\mathrm{k}} / \mathrm{k}$. As observed above, $\mathrm{L}_{p}(\tilde{\mathrm{k}}) \cap \operatorname{Gov}(\tilde{\mathrm{k}}) / \tilde{\mathrm{k}}$ is a $(\mathbb{Z} / p)^{r}$-extension for some r and, as $\operatorname{Gal}\left(\mathrm{L}_{p}(\mathrm{k}) / \mathrm{k}\right)=\operatorname{Gal}\left(\mathrm{L}_{p}(\tilde{\mathrm{k}}) / \tilde{\mathrm{k}}\right)=\mathrm{G}$, it is the base change of such a subextension of $\mathrm{L}_{p}(\mathrm{k}) / \mathrm{k}$ from k so $\mathrm{L}_{p}(\tilde{\mathrm{k}}) \cap \operatorname{Gov}(\tilde{\mathrm{k}}) / \mathrm{k}$ is a $(\mathbb{Z} / p)^{r+1}$-extension. Since v remains prime in $\tilde{\mathrm{k}} / \mathrm{k}$ and residue field extensions are cyclic, it splits completely in $L_{p}(\tilde{\mathrm{k}}) \cap \operatorname{Gov}(\tilde{\mathrm{k}}) / \tilde{\mathrm{k}}$. As the embedding problem is solvable over k by allowing ramification at v, it is also solvable over $\tilde{\mathrm{k}}$ by allowing ramification at the unique prime of $\tilde{\mathrm{k}}$ above v. Thus $\varepsilon \in Ш_{\tilde{\mathrm{k}}, \varnothing}^{2} \hookrightarrow \mathrm{E}_{\tilde{\mathrm{k}}, \varnothing}=M(\tilde{\mathrm{k}})$ actually lies in $\operatorname{Gal}\left(\operatorname{Gov}(\tilde{\mathrm{k}}) /\left(\mathrm{L}_{p}(\tilde{\mathrm{k}}) \cap \operatorname{Gov}(\tilde{\mathrm{k}})\right)\right)$. The base change shifted the obstruction to outside of our p-Hilbert class field tower! The rest of the proof is identical to the $\mu_{p} \not \subset \mathrm{k}$ case.

We now prove the main theorem of the introduction.
Proof. We have verified the base case of the induction in Proposition 2.15 and the inductive step with Theorem 3.3. It remains to count degrees and ramified primes. Proposition 2.15 involved three \mathbb{Z} / p-base
changes, the first two ramified at one tame prime and the last at two tame primes. The inductive steps breaks into cases as follows:

- $\mu_{p} \not \subset \mathrm{k}_{0}$: At each of the $\log _{p}(\# \Gamma)-1$ inductive stages we need one base change ramified at two primes for a total of $3+\left(\log _{p}(\# \Gamma)-1\right)$ base changes ramified at $4+2\left(\log _{p}(\# \Gamma)-1\right)$ primes.
- $\mu_{p} \subset \mathrm{k}_{0}$: At each of the $\log _{p}(\# \Gamma)-1$ inductive stages we need at most two base changes and at most three ramified tame primes so in total there are at most $3+2\left(\log _{p}(\# \Gamma)-1\right)$ base changes ramified at most $4+3\left(\log _{p}(\# \Gamma)-1\right)$ primes.

References

[Curtis and Reiner 1962] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Pure Appl. Math. 11, Interscience, New York, 1962. MR Zbl
[Dekimpe et al. 2012] K. Dekimpe, M. Hartl, and S. Wauters, "A seven-term exact sequence for the cohomology of a group extension", J. Algebra 369 (2012), 70-95. MR Zbl
[Furuta 1972] Y. Furuta, "On class field towers and the rank of ideal class groups", Nagoya Math. J. 48 (1972), 147-157. MR Zbl
[Hajir et al. 2021] F. Hajir, C. Maire, and R. Ramakrishna, "Deficiency of p-class tower groups and Minkowski units", preprint, 2021. arXiv 2103.09508
[Horie 1987] K. Horie, "A note on basic Iwasawa λ-invariants of imaginary quadratic fields", Invent. Math. 88:1 (1987), 31-38. MR Zbl
[Koch 2002] H. Koch, Galois theory of p-extensions, Springer, 2002. MR Zbl
[Neukirch et al. 2008] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields, 2nd ed., Grundl. Math. Wissen. 323, Springer, 2008. MR Zbl
[Ozaki 2011] M. Ozaki, "Construction of maximal unramified p-extensions with prescribed Galois groups", Invent. Math. 183:3 (2011), 649-680. MR Zbl
[Roquette 1967] P. Roquette, "On class field towers", pp. 231-249 in Algebraic number theory (Brighton, 1965), edited by J. W. S. Cassels and A. Fröhlich, Academic Press, London, 1967. MR Zbl

Communicated by Melanie Matchett Wood
Received 2022-04-18 Revised 2023-04-03 Accepted 2023-05-29

hajir@math.umass.edu	Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA, United States
christian.maire@univ-fcomte.fr	FEMTO-ST Institute, Universite Bourgogne Franche-Comté, CNRS,
	Besançon, France
ravi@math.cornell.edu	Department of Mathematics, Cornell University, Ithaca, NY, United States

Algebra \& Number Theory

msp.org/ant

EDITORS

MANAGING EDITOR

Antoine Chambert-Loir Université Paris-Diderot

France

Editorial Board Chair
David Eisenbud
University of California
Berkeley, USA

Board of Editors

Jason P. Bell	University of Waterloo, Canada	Philippe Michel	École Polytechnique Fédérale de Lausanne
Bhargav Bhatt	University of Michigan, USA	Martin Olsson	University of California, Berkeley, USA
Frank Calegari	University of Chicago, USA	Irena Peeva	Cornell University, USA
J-L. Colliot-Thélène	CNRS, Université Paris-Saclay, France	Jonathan Pila	University of Oxford, UK
Brian D. Conrad	Stanford University, USA	Anand Pillay	University of Notre Dame, USA
Samit Dasgupta	Duke University, USA	Bjorn Poonen	Massachusetts Institute of Technology, USA
Hélène Esnault	Freie Universität Berlin, Germany	Victor Reiner	University of Minnesota, USA
Gavril Farkas	Humboldt Universität zu Berlin, Germany	Peter Sarnak	Princeton University, USA
Sergey Fomin	University of Michigan, USA	Michael Singer	North Carolina State University, USA
Edward Frenkel	University of California, Berkeley, USA	Vasudevan Srinivas	Tata Inst. of Fund. Research, India
Wee Teck Gan	National University of Singapore	Shunsuke Takagi	University of Tokyo, Japan
Andrew Granville	Université de Montréal, Canada	Pham Huu Tiep	Rutgers University, USA
Ben J. Green	University of Oxford, UK	Ravi Vakil	Stanford University, USA
Christopher Hacon	University of Utah, USA	Akshay Venkatesh	Institute for Advanced Study, USA
Roger Heath-Brown	Oxford University, UK	Melanie Matchett Wood	Harvard University, USA
János Kollár	Princeton University, USA	Shou-Wu Zhang	Princeton University, USA
Michael J. Larsen	Indiana University Bloomington, USA		

PRODUCTION
production@msp.org
Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.
The subscription price for 2024 is US $\$ 525 /$ year for the electronic version, and $\$ 770 /$ year ($+\$ 65$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Algebra \& Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online.

ANT peer review and production are managed by EditFLOW ${ }^{\circledR}$ from MSP.

PUBLISHED BY

- mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2024 Mathematical Sciences Publishers

Algebra \& Number Theory

Volume 18 No. 42024

Fundamental exact sequence for the pro-étale fundamental group 631Marcin Lara
Infinitesimal dilogarithm on curves over truncated polynomial rings 685
Sinan Ünver
Wide moments of L-functions I: Twists by class group characters of imaginary quadratic fields 735
ASBJøRN CHRISTIAN NORDENTOFT
On Ozaki's theorem realizing prescribed p-groups as p-class tower groups 771Farshid Hajir, Christian Maire and Ravi Ramakrishna
Supersolvable descent for rational points 787Yonatan Harpaz and Olivier Wittenberg
On Kato and Kuzumaki's properties for the Milnor K_{2} of function fields of p-adic curves 815Diego Izquierdo and Giancarlo Lucchini Arteche

