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On Kato and Kuzumaki’s properties
for the Milnor K2 of function fields of p-adic curves

Diego Izquierdo and Giancarlo Lucchini Arteche

Let K be the function field of a curve C over a p-adic field k. We prove that, for each n, d ≥ 1 and for
each hypersurface Z in Pn

K of degree d with d2
≤ n, the second Milnor K -theory group of K is spanned

by the images of the norms coming from finite extensions L of K over which Z has a rational point.
When the curve C has a point in the maximal unramified extension of k, we generalize this result to
hypersurfaces Z in Pn

K of degree d with d ≤ n.

1. Introduction

Kato and Kuzumaki [1986] stated a set of conjectures which aimed at giving a diophantine characterization
of cohomological dimension of fields. For this purpose, they introduced some properties of fields which
are variants of the classical Ci -property and which involve Milnor K -theory and projective hypersurfaces
of small degree. They hoped that those properties would characterize fields of small cohomological
dimension.

More precisely, fix a field K and two nonnegative integers q and i . Let Kq(K ) be the q-th Milnor K -
group of K . For each finite extension L of K , one can define a norm morphism NL/K : Kq(L)→ Kq(K );
see Section 1.7 of [Kato 1980]. Thus, if Z is a scheme of finite type over K , one can introduce the
subgroup Nq(Z/K ) of Kq(K ) generated by the images of the norm morphisms NL/K when L runs
through the finite extensions of K such that Z(L) ̸= ∅. One then says that the field K is Cq

i if, for each
n ≥ 1, for each finite extension L of K and for each hypersurface Z in Pn

L of degree d with d i
≤ n,

one has Nq(Z/L)= Kq(L). For example, the field K is C0
i if, for each finite extension L of K , every

hypersurface Z in Pn
L of degree d with d i

≤ n has a 0-cycle of degree 1. The field K is Cq
0 if, for each

tower of finite extensions M/L/K , the norm morphism NM/L : Kq(M)→ Kq(L) is surjective.
Kato and Kuzumaki conjectured that, for i ≥ 0 and q ≥ 0, a perfect field is Cq

i if, and only if, it is of
cohomological dimension at most i + q. This conjecture generalizes a question raised by Serre [1965]
asking whether the cohomological dimension of a Ci -field is at most i . As it was already pointed out
at the end of Kato and Kuzumaki’s original paper [1986], Kato and Kuzumaki’s conjecture for i = 0
follows from the Bloch–Kato conjecture (which has been established by Rost and Voevodsky [2014]); in
other words, a perfect field is Cq

0 if, and only if, it is of cohomological dimension at most q. However,
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it turns out that the conjectures of Kato and Kuzumaki are wrong in general. For example, Merkur’ev
[1991] constructed a field of characteristic 0 and of cohomological dimension 2 which does not satisfy
property C0

2 . Similarly, Colliot-Thélène and Madore [2004] produced a field of characteristic 0 and
of cohomological dimension 1 which did not satisfy property C0

1 . These counterexamples were all
constructed by a method using transfinite induction due to Merkurjev and Suslin. The conjecture of Kato
and Kuzumaki is therefore still completely open for fields that usually appear in number theory or in
algebraic geometry.

Wittenberg [2015] proved that totally imaginary number fields and p-adic fields have the C1
1 property.

Izquierdo [2018] also proved that, given a positive integer n, finite extensions of C(x1, . . . , xn) and of
C(x1, . . . , xn−1)((t)) are Cq

i for any i, q ≥ 0 such that i + q = n. These are essentially the only known
cases of Kato and Kuzumaki’s conjectures. Note however that a variant of the Cq

1 -property involving
homogeneous spaces under connected linear groups is proved to characterize fields with cohomological
dimension at most q + 1 in [Izquierdo and Lucchini Arteche 2022].

In the present article, we are interested in Kato and Kuzumaki’s conjectures for the function field K of
a smooth projective curve C defined over a p-adic field k. The field K has cohomological dimension 3,
and hence it is expected to satisfy the Cq

i -property for i + q ≥ 3. As already mentioned, the Bloch–Kato
conjecture implies this result when q ≥ 3. The cases q = 0 and q = 1 seem out of reach with the current
knowledge, since they likely imply the C0

2 -property for p-adic fields, which is a widely open question. In
this article, we make progress in the case q = 2.

Our first main result is the following.

Main Theorem 1. Function fields of p-adic curves satisfy the C2
2 -property.

Of course, this implies that function fields of p-adic curves also satisfy the C2
i -property for each i ≥ 2.

It therefore only remains to prove the C2
1 -property. In that direction, we prove the following main result.

Main Theorem 2. Let K be the function field of a smooth projective curve C defined over a p-adic field k.
Assume that C has a point in the maximal unramified extension of k. Then, for each n, d ≥ 1 and for each
hypersurface Z in Pn

K of degree d with d ≤ n, we have K2(K )= N2(Z/K ).

This theorem applies for instance when K is the rational function field k(t) or more generally the
function field of a curve that has a rational point.

Since the proofs of these theorems are quite involved, we provide here below an outline with some
details. Section 2 introduces all the notations and basic definitions we will need in the sequel. In Section 3,
we prove Theorem 3.1, which widely generalizes Main Theorem 1. Finally, in Section 4, we prove
Theorem 4.8 and its corollaries, Corollaries 4.9 and 4.10, which widely generalize Main Theorem 2.

Ideas of proof for Main Theorem 1. Let K be the function field of a smooth projective curve C defined
over a p-adic field k. Take two integers n, d ≥ 1 such that d2

≤ n, a hypersurface Z in Pn
K of degree d

and an element x ∈ K2(K ). We want to prove that x ∈ N2(Z/K ). To do so, we roughly proceed in four
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steps, that are inspired from the proof of the C1
1 property for number fields in [Izquierdo 2018] but that

require to deal with several new difficulties:

(1) Solve the problem locally: For each closed point v of C , prove that x ∈ N2(Z Kv
/Kv). This provides

rv finite extensions M (v)
i /Kv such that Z(M (v)

i ) ̸= ∅ and

x ∈ ⟨NM (v)
i /Kv

(K2(M
(v)
i )) | 1 ≤ i ≤ rv⟩.

(2) Globalize the extensions M (v)
i /Kv: For each closed point v of C and each 1 ≤ i ≤ rv, find a finite

extension K (v)
i of K contained in M (v)

i such that Z(K (v)
i ) ̸= ∅. Then prove that there exists a finite

subset of these global extensions, say K1, . . . , Kr , such that for every closed point v of C , x lies in
the subgroup of K2(Kv) generated by the norms coming from the (Ki ⊗K Kv).

(3) Establish a local-to-global principle for norm groups: Prove the vanishing of the Tate–Shafarevich
group

X2 := ker
(

K2(K )
⟨NKi/K (K2(Ki )) | 1 ≤ i ≤ r⟩

→

∏
v∈C (1)

K2(Kv)

⟨NKi ⊗K Kv/Kv
(K2(Ki ⊗K Kv)) | 1 ≤ i ≤ r⟩

)
.

(4) Conclude: By step (2), we have x ∈ X2. Hence, step (3) implies that

x ∈ ⟨NKi/K (K2(Ki )) | 1 ≤ i ≤ r⟩ ⊂ N2(Z/K ),

as wished.

Let us now briefly discuss the proofs of Steps (1), (2) and (3). Step (1) can be proved by combining some
results for p-adic fields due to Wittenberg [2015] and the computation of the groups K2(Kv) thanks to
the residue maps in Milnor K -theory; see Section 3A3.

In the way it is written above, Step (2) can be easily deduced from Greenberg’s approximation theorem.
However, as we will see below, we will need a stronger version of that step, that will require a completely
different proof.

Step (3) is the hardest part of the proof. The first key tool that we use is a Poitou–Tate duality for
motivic cohomology over the field K proved by Izquierdo [2016]. This provides a finitely generated free
Galois module T̂ over K such that the Pontryagin dual of X2 is the quotient of

X2(K , T̂ ) := ker
(

H 2(K , T̂ )→

∏
v∈C (1)

H 2(Kv, T̂ )
)

by its maximal divisible subgroup. Now, a result of Demarche and Wei [2014] states that, under some
technical linear disjointness assumption for the extensions K (v)

i /K , one can find two finite extensions K ′

and K ′′ of K such that the restriction

X2(K , T̂ )→ X2(K ′, T̂ )⊕X2(K ′′, T̂ )

is injective and T̂ is a permutation Galois module over both K ′ and K ′′. If the groups X2(K ′, T̂ ) and
X2(K ′′, T̂ ) were trivial, then we would be done. But that is not the case in our context because the p-adic
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function field K has finite extensions K ′ such that X2(K ′,Z) is not trivial; see for instance the appendix
of [Colliot-Thélène et al. 2012]. This “failure of Chebotarev’s density theorem” makes the computation of
X2(K , T̂ ) very complicated and technical. By carrying out quite subtle Galois cohomology computations
and by using some results of Kato [1980], we prove that, under some technical assumptions on the K (v)

i

(see below) and another technical assumption on C (which is trivially satisfied when C(k) ̸= ∅), the
group X2(K , T̂ ) is always divisible, even though it might not be trivial; see Section 3A5. This is enough
to apply the Poitou–Tate duality and deduce the vanishing of X2.

Now, in order to ensure that the K (v)
i and C fulfill the conditions required to carry out the previous

argument, we have to

• add a step (0) in which we reduce to the case where C satisfies a technical assumption close to
having a rational point; and

• modify the constructions of the K (v)
i in Step (2), which cannot be done anymore by using Greenberg’s

approximation theorem.

The reduction to the case where C satisfies the required conditions uses the Beilinson–Lichtenbaum
conjecture for motivic cohomology and a local-to-global principle due to Kato [1980] with respect to the
places of K that come from a suitable regular model of the curve C ; see Section 3A2. As for Step (2),
we want to construct the K (v)

i so that they fulfill two extra conditions:

(a) One of the K (v)
i has to be of the form k(v)i K for some finite unramified extension k(v)i /k. This is

achieved by observing that Z(knr(C)) ̸= ∅ since the field knr(C) is C2 and Z is a hypersurface in
Pn

K of degree d with d2
≤ n.

(b) The K (v)
i have to satisfy some suitable linear disjointness conditions also involving abelian extensions

of K that are locally trivial everywhere. This is achieved by an approximation argument that uses
the implicit function theorem for Z over the Kv, weak approximation and an analogue of Hilbert’s
irreducibility theorem for the field K , see Section 3A4.

Note that, since we use the implicit function theorem, the previous argument only works when the
hypersurface Z is smooth. We thus need to add an extra step to the proof in which we reduce to that case.
This uses a dévissage technique that is due to Wittenberg [2015] and that requires to work with all proper
varieties over K (instead of only hypersurfaces); see Section 3A7. For that reason, we need to prove a
wide generalization of Main Theorem 1 to all proper varieties. This is the object of Theorem 3.1 in the
core of the text. Of course, this requires to modify and generalize the proofs of Steps (1), (2) and (3) so
that they can be applied in that more general setting.

Ideas for the proof of Main Theorem 2. The proof of Main Theorem 2 follows by combining Main The-
orem 1 with a result roughly stating that every element of K2(K ) can be written as a product of norms
coming from extensions of the form k ′K with k ′ a finite extension of k whose ramification degree is fixed,
see Theorem 4.1. The general ideas to prove this last result are similar to (and a bit simpler than) those
used in Main Theorem 1.
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2. Notations and preliminaries

In this section we fix the notations that will be used throughout this article.

Milnor K-theory. Let K be any field and let q be a nonnegative integer. The q-th Milnor K-group of K
is by definition the group K0(K )= Z if q = 0 and

Kq(K ) := K ×
⊗Z · · · ⊗Z K ×︸ ︷︷ ︸

q times

/⟨x1 ⊗ · · · ⊗ xq | ∃i, j, i ̸= j, xi + x j = 1⟩

if q > 0. For x1, . . . , xq ∈ K ×, the symbol {x1, . . . , xq} denotes the class of x1 ⊗ · · · ⊗ xq in Kq(K ).
More generally, for r and s nonnegative integers such that r + s = q , there is a natural pairing

Kr (K )× Ks(K )→ Kq(K )

which we will denote { · , · }.
When L is a finite extension of K , one can construct a norm homomorphism

NL/K : Kq(L)→ Kq(K ),

satisfying the following properties; see Section 1.7 of [Kato 1980] or Section 7.3 of [Gille and Szamuely
2017]:

• For q = 0, the map NL/K : K0(L)→ K0(K ) is given by multiplication by [L : K ].

• For q = 1, the map NL/K : K1(L)→ K1(K ) coincides with the usual norm L×
→ K ×.

• If r and s are nonnegative integers such that r + s = q, we have NL/K ({x, y})= {x, NL/K (y)} for
x ∈ Kr (K ) and y ∈ Ks(L).

• If M is a finite extension of L , we have NM/K = NL/K ◦ NM/L .

Recall also that Milnor K -theory is endowed with residue maps; see Section 7.1 of [Gille and Szamuely
2017]. Indeed, when K is a henselian discrete valuation field with ring of integers R, maximal ideal m
and residue field κ , there exists a unique residue morphism

∂ : Kq(K )→ Kq−1(κ)

such that, for each uniformizer π and for all units u2, . . . , uq ∈ R× whose images in κ are denoted
u2, . . . , uq , one has

∂({π, u2, . . . , uq})= {u2, . . . , uq}.

The kernel of ∂ is the subgroup Uq(K ) of Kq(K ) generated by symbols of the form {x1, . . . , xq} with
x1, . . . , xq ∈ R×. If U 1

q (K ) stands for the subgroup of Kq(K ) generated by those symbols that lie in
Uq(K ) and that are of the form {x1, . . . , xq} with x1 ∈ 1 + m and x2, . . . , xq ∈ K ×, then U 1

q (K ) is
ℓ-divisible for each prime ℓ different from the characteristic of κ and Uq(K )/U 1

q (K ) is canonically
isomorphic to Kq(κ). Moreover, if L/K is a finite extension with ramification degree e and residue
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field λ, then the norm map NL/K : Kq(L)→ Kq(K ) sends Uq(L) to Uq(K ) and U 1
q (L) to U 1

q (K ), and
the following diagrams commute:

Kq(L)/Uq(L) ∼=

∂L
//

NL/K

��

Kq−1(λ)

Nλ/κ
��

Uq(L)/U 1
q (L) ∼=

//

NL/K

��

Kq(λ)

eNλ/κ
��

Kq(K )/Uq(K ) ∼=

∂K
// Kq−1(κ) Uq(K )/U 1

q (K ) ∼=

// Kq(κ)

(2-1)

The Cq
i properties. Let K be a field and let i and q be two nonnegative integers. For each K -scheme

Z of finite type, we denote by Nq(Z/K ) the subgroup of Kq(K ) generated by the images of the maps
NL/K : Kq(L) → Kq(K ) when L runs through the finite extensions of K such that Z(L) ̸= ∅. The
field K is said to have the Cq

i property if, for each n ≥ 1, for each finite extension L of K and for each
hypersurface Z in Pn

L of degree d with d i
≤ n, one has Nq(Z/L)= Kq(L).

Motivic complexes. Let K be a field. For i ≥ 0, we denote by zi (K , · ) Bloch’s cycle complex defined in
[Bloch 1986]. The étale motivic complex Z(i) over K is then defined as the complex of Galois modules
zi (−, · )[−2i]. By the Nesterenko–Suslin–Totaro theorem and the Beilinson–Lichtenbaum conjecture, it
is known that

H i (K ,Z(i))∼= Ki (K ), (2-2)

and

H i+1(K ,Z(i))= 0, (2-3)

for all i ≥ 0. Statement (2-2) was originally proved in [Nesterenko and Suslin 1989; Totaro 1992], and
statement (2-3) was deduced from the Bloch–Kato conjecture in [Suslin and Voevodsky 2000; Geisser
and Levine 2000; 2001]. The Bloch–Kato conjecture itself was proved in [Suslin and Joukhovitski 2006;
Voevodsky 2011]. For the convenience of the reader, we also provide more tractable references: statement
(2-2) follows from Theorem 5.1 of [Haesemeyer and Weibel 2019] and Theorem 1.2(2) of [Geisser 2004],
and statement (2-3) can be deduced from the Bloch–Kato conjecture as explained in Lemma 1.6 and
Theorem 1.7 of [Haesemeyer and Weibel 2019].

Fields of interest. From now on and until the end of the article, p stands for a prime number and k for
a p-adic field with ring of integers Ok . We let C be a smooth projective geometrically integral curve
over k, and we let K be its function field. We denote by C (1) the set of closed points in C . The residual
index ires(C) of C is defined to be the g.c.d. of the residual degrees of the k(v)/k with v ∈ C (1). The
ramification index iram(C) of C is defined to be the g.c.d. of the ramification degrees of the k(v)/k with
v ∈ C (1).
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Tate–Shafarevich groups. When M is a complex of Galois modules over K and i ≥ 0 is an integer, we
define the i-th Tate–Shafarevich group of M as

Xi (K ,M) := ker
(

H i (K ,M)→

∏
v∈C (1)

H i (Kv,M)
)
.

When a suitable regular model C/Ok of C/k is given, we also introduce the following smaller Tate–
Shafarevich groups:

Xi
C(K ,M) := ker

(
H i (K ,M)→

∏
v∈C(1)

H i (Kv,M)
)
,

where C(1) is the set of codimension 1 points of C.

Poitou–Tate duality for motivic cohomology. We recall the Poitou–Tate duality for motivic complexes
over the field K ; Theorem 0.1 of [Izquierdo 2016] in the case d = 1. Let T̂ be a finitely generated free
Galois module over K . Set Ť := Hom(T̂ ,Z) and T = Ť ⊗ Z(2). Then there is a perfect pairing of finite
groups

X2(K , T̂ )×X3(K , T )→ Q/Z, (2-4)

where A denotes the quotient of A by its maximal divisible subgroup.
Note that, in the case T̂ = Z, the Beilinson–Lichtenbaum conjecture (2-3) implies the vanishing of

X3(K ,Z(2)) and hence the group X2(K ,Z) is divisible. By Shapiro’s lemma, the same holds for the
group X2(K ,Z[E/K ]) for every étale K -algebra E .

3. On the C2
2 -property for p-adic function fields

The goal of this section is to prove the following theorem:

Theorem 3.1. Let l/k be a finite unramified extension and set L := l K . Let Z be a proper K -variety.
Then the quotient

K2(K )/⟨NL/K (K2(L)), N2(Z/K )⟩

is χK (Z , E)2-torsion for each coherent sheaf E on Z.

Here, χK (Z , E) denotes the Euler characteristic of E over Z . Main Theorem 1 can be deduced as a
very particular case of Theorem 3.1, in which this characteristic is trivial. We explain this at the end of
the section.

3A. Proof of Theorem 3.1.

3A1. Step 0: Interpreting norms in Milnor K -theory in terms of motivic cohomology. The following
lemma, which will be extensively used in the sequel, allows to interpret quotients of K2(K ) by norm
subgroups as twisted motivic cohomology groups.



822 Diego Izquierdo and Giancarlo Lucchini Arteche

Lemma 3.2. Let L be a field and let L1, . . . , Lr be finite separable extensions of L. Consider the étale
L-algebra E :=

∏r
i=1 L i and let Ť be the Galois module defined by the following exact sequence

0 → Ť → Z[E/L] → Z → 0. (3-1)

Then

H 3(L , Ť ⊗ Z(2))∼= K2(L)/⟨NL i/L(K2(L i )) | 1 ≤ i ≤ r⟩.

Proof. Exact sequence (3-1) induces a distinguished triangle

Ť ⊗ Z(2)→ Z[E/L] ⊗ Z(2)→ Z(2)→ Ť ⊗ Z(2)[1].

By taking cohomology, we get an exact sequence

H 2(L ,Z[E/L] ⊗ Z(2)))→ H 2(L ,Z(2))→ H 3(L , Ť ⊗ Z(2))→ H 3(L ,Z[E/L] ⊗ Z(2)).

By Shapiro’s lemma, we have

H 2(L ,Z[E/L] ⊗ Z(2)))∼= H 2(E,Z(2)), H 3(L ,Z[E/L] ⊗ Z(2)))∼= H 3(E,Z(2)).

Moreover, as recalled in Section 2, the Nesterenko–Suslin–Totaro theorem and the Beilinson–Lichtenbaum
conjecture give the following isomorphisms:

H 2(L ,Z(2))∼= K2(L), H 2(E,Z(2))∼=

r∏
i=1

K2(L i ), H 3(E,Z(2))= 0.

We therefore get an exact sequence

r∏
i=1

K2(L i )→ K2(L)→ H 3(L , Ť ⊗ Z(2))→ 0,

in which the first map is the product of the norms. □

3A2. Step 1: Reducing to curves with residual index 1. In this step, we prove the following proposition,
that allows to reduce to the case when the curve C has residual index 1.

Proposition 3.3. Let k ′/k be the unramified extension of k of degree ires(C) and set K ′
:= k ′K . Then the

norm morphism NK ′/K : K2(K ′)→ K2(K ) is surjective.

Proof. Consider the Galois module Ť defined by the following exact sequence

0 → Ť → Z[K ′/K ] → Z → 0,

Since K ′/K is cyclic, a Z-basis of Ť is given by sα − sα−1 with s a generator of Gal(K ′/K ) and
1 ≤ α ≤ ires(C)− 1. Then the arrow Z[K ′/K ] → Ť that sends s to s − 1 gives rise to an exact sequence

0 → Z → Z[K ′/K ] → Ť → 0,
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and hence to a distinguished triangle

Z(2)→ Z[K ′/K ] ⊗ Z(2)→ Ť ⊗ Z(2)→ Z(2)[1].

By the Beilinson–Lichtenbaum conjecture, the group H 3(K ′,Z(2)) is trivial. Hence we get an inclusion

X3
C(K , Ť ⊗ Z(2))⊆ X4

C(K ,Z(2)),

where C is a fixed regular, proper and flat model of C whose reduced special fiber C0 is a strict normal
crossing divisor. Now, the distinguished triangle

Z(2)→ Q(2)→ Q/Z(2)→ Z(2)[1],

and the vanishing of the groups H 3(K ,Q(2)) and H 4(K ,Q(2))= 0 (which follow from Lemma 2.5 and
Theorem 2.6.c of [Kahn 2012]) give rise to an isomorphism

X3
C(K ,Q/Z(2))∼= X4

C(K ,Z(2)),

and by Proposition 5.2 of [Kato 1986], the group on the left is trivial, and hence so is the former group.
Now observe that, by Lemma 3.2, we have

X3
C(K , Ť ⊗ Z(2))∼= ker

(
K2(K )/ im(NK ′/K )→

∏
v∈C(1)

K2(Kv)/ im(NK ′
v/Kv

)

)
.

We claim that the extension K ′/K totally splits at each place v ∈ C(1). From this, we deduce that

0 = X3
C(K , Ť ⊗ Z(2))∼= K2(K )/ im(NK ′/K ),

and hence the norm morphism NK ′/K : K2(K ′)→ K2(K ) is surjective.
It remains to check the claim. It is obviously satisfied for v ∈ C (1), so we may and do assume

v ∈ C(1) \ C (1). If κ and κ ′ denote the residue fields of k and k ′, we then have to prove that all the
irreducible components of C0 are κ ′-curves. To do so, consider an infinite sequence of finite unramified
field extensions k =k0 ⊂k1 ⊂k2 ⊂· · · all with degrees prime to [k ′

:k] and denote by κ=κ0 ⊂κ1 ⊂κ2 ⊂· · ·

the corresponding residue fields. Let k∞ (resp. κ∞) be the union of all the ki (resp. κi ). Since κ∞

is infinite, Lemma 4.6 of [Wittenberg 2015] and the definition of ires(C) imply that each irreducible
component of C0 ×κ0 κ∞ has index divisible by [k ′

: k]. Hence the same is true for all the irreducible
components of C0. But recall that, by the Lang–Weil estimates, any smooth geometrically integral variety
defined over a finite field has a zero-cycle of degree 1. We deduce that the irreducible components of C0

are κ ′-curves. □

3A3. Step 2: Solving the problem locally. In this step, we prove that the analogous statement to
Theorem 3.1 over the completions of K holds. For that purpose, we first need to settle a simple lemma.
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Lemma 3.4. Let l/k be a finite extension and set K0 := k((t)) and L0 := l((t)). The residue map
∂ : K2(K0)→ k× induces an isomorphism

K2(K0)/NL0/K0(K2(L0))∼= k×/Nl/k(l×).

Proof. We have the following commutative diagram from (2-1):

K2(L0)
∂L0
//

NL0/K0
��

l×

Nl/k
��

K2(K0)
∂K0
// k×

Recalling that U2(K0) is by definition the kernel of ∂K0 (see Section 2), this diagram induces an exact
sequence

0 →
U2(K0)

U2(K0)∩ NL0/K0(K2(L0))
→

K2(K0)

NL0/K0(K2(L0))

∂K0−→
k×

Nl/k(l×)
→ 0.

It therefore suffices to prove that U2(K0)= U2(K0)∩ NL0/K0(K2(L0)). For that purpose, recall that we
have a commutative diagram with exact lines:

0 // U 1
2 (L0)

NL0/K0
��

// U2(L0)

NL0/K0

��

// K2(l)

Nl/k

��

// 0

0 // U 1
2 (K0) // U2(K0) // K2(k) // 0

But the map Nl/k : K2(l)→ K2(k) is surjective since p-adic fields have the C2
0 -property, and the map

NL0/K0 : U 1
2 (L0)→ U 1

2 (K0) is surjective since the group U 1
2 (K0) is divisible (as explained in Section 2).

We deduce that NL0/K0 : U2(L0)→ U2(K0) is also surjective, as wished. □

Proposition 3.5. Let l/k be a finite unramified extension and set K0 := k((t)) and L0 := l((t)). Let Z be
a proper K0-variety. Then the quotient

K2(K0)/⟨NL0/K0(K2(L0)), N2(Z/K0)⟩

is χK0(Z , E)-torsion for each coherent sheaf E on Z.

Proof. For each proper K0-scheme Z , we denote by nZ the exponent of the quotient group

K2(K0)/⟨NL0/K0(K2(L0)), N2(Z/K0)⟩.

We say that Z satisfies property (P) if it has a model over OK0 that is irreducible, regular, proper and
flat. To prove the proposition, it suffices to check assumptions (1), (2) and (3) of Proposition 2.1 of
[Wittenberg 2015].

Assumption (1) is obvious. Assumption (3) is a direct consequence of Gabber and de Jong’s theorem
(Theorem 3 of the introduction of [Illusie et al. 2014]). It remains to check assumption (2). For that
purpose, we proceed in the same way as in the proof of Theorem 4.2 of [Wittenberg 2015]. Indeed,
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consider a proper K0-scheme X together with a model X that is irreducible, regular, proper and flat and
denote by Y its special fiber. Let m be the multiplicity of Y and let D be the effective divisor on X such
that Y = m D.

The residue map induces an exact sequence

0 →
U2(K0)

U2(K0)∩ N2(X/K0)
→

K2(K0)

N2(X/K0)
→

K1(k)
∂(N2(X/K0))

→ 0. (3-2)

Moreover:

(a) Since k satisfies the C2
0 property, the proof of Lemma 4.4 of [Wittenberg 2015] still holds in our

context, and hence the group U2(K0)/(U2(K0)∩ N2(X/K0)) is killed by the multiplicity m of the
special fiber Y of X .

(b) The proof of Lemma 4.5 of [Wittenberg 2015] also holds in our context, and hence ∂(N2(X/K0))=

N1(Y/k)= N1(D/k).

(c) By Corollary 5.4 of [Wittenberg 2015] applied to the proper k-scheme D ⊔ Spec(l), the group
k×/⟨Nl/k(l×), N1(D/k)⟩ is killed by χk(D,OD).

By using exact sequence (3-2), facts (b) and (c) and Lemma 3.4, we deduce that

χk(D,OD) · K2(K0)⊂ ⟨NL0/K0(K2(L0)), N2(X/K0),U2(K0)⟩.

Hence, by fact (a), we get

mχk(D,OD) · K2(K0)⊂ ⟨NL0/K0(K2(L0)), N2(X/K0)⟩.

But mχk(D,OD) = χK0(X,OX ) by Proposition 2.4 of [Esnault et al. 2015], and hence the quotient
K2(K0)/⟨NL0/K0(K2(L0)), N2(X/K0)⟩ is killed by χK0(X,OX ). □

3A4. Step 3: Globalizing local field extensions. In the rest of the proof, we will show how one can
deduce the global Theorem 3.1 from the local Proposition 3.5. For that purpose, we first need to find a
suitable way to globalize local extensions: more precisely, given a place w ∈ C (1) and a finite extension
M (w) of Kw such that Z(M (w)) ̸= ∅, we want to find a suitable finite extension M of K that can be seen
as a subfield of M (w) and such that Z(M) ̸=∅. For technical reasons related to the failure of Chebotarev’s
theorem over the field K , we also need M to be linearly disjoint from a given finite extension of K . The
following proposition is the key statement allowing to do that.

Proposition 3.6. Let Z be a smooth geometrically integral K -variety. Let T be a finite subset of C (1).
Fix a finite extension L of K and, for each w ∈ T , a finite extension M (w) of Kw such that Z(M (w)) ̸= ∅.
Then there exists a finite extension M of K satisfying the following properties:

(i) Z(M) ̸= ∅.

(ii) For each w ∈ T , there exists a K -embedding M ↪→ M (w).

(iii) The extensions L/K and M/K are linearly disjoint.
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Proof. Before starting the proof, we introduce the following notations for each w ∈ T :

n(w) := [M (w)
: Kw], m(w)

:=

∏
w′∈T \{w}

n(w
′),

so that the integer n := n(w)m(w) is independent of w. We now proceed in three substeps.

Substep 1. By Proposition 4.9 in Chapter I of [Hartshorne 1977], there exists a projective hypersurface
Z ′ in Pm

K given by a nonzero equation

f (x0, . . . , xm)= 0

that is birationally equivalent to Z . Let U and U ′ be nonempty open sub-schemes of Z and Z ′ that are
isomorphic. Up to reordering the variables and shrinking U ′, we may and do assume that the polynomial
∂ f/∂x0 is nonzero and that

U ′
∩ {∂ f/∂x0(x0, . . . , xm)= 0} = ∅.

Given an element w ∈ T , the variety Z is smooth, Z(M (w)) ̸= ∅ and M (w) is large; for the definition
of this notion, please refer to [Pop 2014]. Hence the sets U (M (w)) and U ′(M (w)) are nonempty. We can
therefore find a nontrivial solution (y(w)0 , . . . , y(w)m ) of the equation f (x0, . . . , xm)= 0 in M (w) such that{

(y(w)0 , . . . , y(w)m ) ∈ U ′,

∂ f/∂x0(y
(w)
0 , . . . , y(w)m ) ̸= 0.

Substep 2. Given w ∈ T , there exist m(w) elements α1, . . . , αm(w) ∈ M (w) whose respective minimal
polynomials µα1, . . . , µαm(w)

are pairwise distinct and such that M (w)
= Kw(αi ) for each 1 ≤ i ≤ m(w).

Recalling that n = n(w)m(w), introduce the degree n monic polynomial µ(w) :=
∏m(w)

i=1 µαi and consider
the set H of n-tuples (a0, . . . , an−1)∈ K n such that the polynomial T n

+
∑n−1

i=0 ai T i is irreducible over L .
By Corollary 12.2.3 of [Fried and Jarden 2008], the set H contains a Hilbertian subset of K n , and hence,
according to Proposition 19.7 of [Jarden 1991], if we fix some ϵ > 0, we can find an n-tuple (b0, . . . , bn−1)

in H such that the polynomial µ := T n
+

∑n−1
i=0 bi T i is coefficient-wise ϵ-close to µ(w) for each w ∈ T .

Consider the field K ′
:= K [T ]/(µ). If ϵ is chosen small enough, then there exists a K -embedding

K ′ ↪→ M (w) for each w ∈ T by Krasner’s lemma; see Lemma 8.1.6 in [Neukirch et al. 2008]. Moreover,
since (b0, . . . , bn−1) ∈ H , the polynomial µ is irreducible over L , and hence the extensions K ′/K and
L/K are linearly disjoint.

Substep 3. According to Substep 1, for each w ∈ T , y(w)0 is a simple root of the polynomial

g(w)(T ) := f (T, y(w)1 , . . . , y(w)m ).

Let H ′ be the set of m-tuples (z1, . . . , zm) in K ′ such that f (T, z1, . . . , zm) is irreducible over L K ′. By
Corollary 12.2.3 of [Fried and Jarden 2008], the set H ′ contains a Hilbertian subset of K ′m . Hence, by
Proposition 19.7 of [Jarden 1991], we can find (y1, . . . , ym) in H ′ such that the polynomial

g(T ) := f (T, y1, . . . , ym)
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is coefficient-wise ϵ-close to g(w) for each w ∈ T . Introduce the field M := K ′
[T ]/(g(T )). We check

that M satisfies the conditions of the proposition, provided that ϵ is chosen small enough:

(i) Fix w ∈ T . By Substep 1, the m-tuple (y(w)0 , . . . , y(w)m ) lies in U ′. Hence, for ϵ small enough, if y0,w

stands for the root of g that is closest to y(w)0 , then the m-tuple (y0,w, y1, . . . , ym) lies in U ′. We
deduce that U ′(M) ̸= ∅, and hence Z(M) ̸= ∅.

(ii) For each w ∈ T , the polynomial g(w) has a simple root in M (w), and hence so does g(T ) if ϵ is
chosen small enough, again by Krasner’s Lemma. The field M can therefore be seen as a subfield
of M (w).

(iii) Since (y1, . . . , ym) ∈ H ′, the polynomial g(T ) is irreducible over L K ′. Hence the extensions M/K ′

and L K ′/K ′ are linearly disjoint. Moreover, by Substep 2, the extensions K ′/K and L/K are
linearly disjoint. We deduce that L/K and M/K are linearly disjoint. □

3A5. Step 4: Computation of a Tate–Shafarevich group. This step, which is quite technical, consists in
computing the Tate–Shafarevich groups of some finitely generated free Galois modules over K . Recall
that for each abelian group A, we denote by A the quotient of A by its maximal divisible subgroup.

Proposition 3.7. Let r ≥ 2 be an integer and let L , K1, . . . , Kr be finite extensions of K contained in K .
Consider the composite fields KI := K1 . . . Kr and K î := K1 . . . Ki−1Ki+1 . . . Kr for each i , and denote
by n the degree of L/K . Consider the Galois module T̂ defined by the following exact sequence

0 → Z → Z[E/K ] → T̂ → 0, (3-3)

where E := L × K1 × · · · × Kr . Given two positive integers m and m′, make the following assumptions:

(LD1) The Galois closure of L/K and the extension KI/K are linearly disjoint.

(LD2) For each i ∈ {1, . . . , r}, the fields Ki and K î are linearly disjoint over K .

(H1) The restriction map

X2(K , T̂ )→ X2(L , T̂ )⊕X2(KI, T̂ )

is injective.

(H2) The restriction map

ResL KI/KI : X2(KI,Z)→ X2(L KI,Z)

is surjective and its kernel is m-torsion.

(H3) For each i , the restriction maps

ResL Ki/Ki : X2(Ki ,Z)→ X2(L Ki ,Z) and ResL K î/K î
: X2(K î ,Z)→ X2(L K î ,Z)

are surjective.
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(H4) For each finite extension L ′ of L contained in the Galois closure of L/K , the kernel of the restriction
map

ResL ′KI/L : X2(L ′,Z)→ X2(L ′KI,Z)

is m′-torsion.

Then X2(K , T̂ ) is ((m ∨ m′)∧ n)-torsion.

Recall that A denotes the quotient of A by its maximal divisible subgroup.

Remark 3.8. In the sequel of the article, we will only use the proposition in the case when L/K is Galois.
However, this assumption does not simplify the proof.

Proof. Consider the following sequence:

X2(K , T̂ )
f0
// X2(L , T̂ )⊕X2(KI, T̂ )

g0
// X2(L KI, T̂ )

x � // (ResL/K (x),ResKI/K (x))

(x, y) � // ResL KI/L(x)− ResL KI/KI (y).

(3-4)

It is obviously a complex, and the first arrow is injective by (H1). In order to give further information
about the complex (3-4), let us consider the following commutative diagram, in which the first and second
rows are obtained in the same way as the third:

0

��

0

��

X2(K ,Z)
f1

//

φ0
��

X2(L ,Z)⊕X2(KI,Z)
g1

// //

φ1
��

X2(L KI,Z)

φ2
��

X2(K ,Z[E/K ])
f
//

ψ0
��

X2(L ,Z[E/K ])⊕X2(KI,Z[E/K ])
g
//

ψ1
��

X2(L KI,Z[E/K ])

ψ2
��

X2(K , T̂ ) �
� f0

// X2(L , T̂ )⊕X2(KI, T̂ )
g0

//

��

X2(L KI, T̂ )

��

0 0

(3-5)

The second and third columns are exact since the exact sequence (3-3) splits over L , KI and L KI .
Moreover, all the lines are complexes, and in the first one, the arrow g1 is surjective since the restriction
map

X2(KI,Z)→ X2(L KI,Z)

is surjective by (H2).
The next two lemmas constitute the core of the proof of Proposition 3.7.
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Lemma 3.9. Let a ∈ X2(K , T̂ ) and b = (bL , bKI ) ∈ X2(L ,Z[E/K ])⊕X2(KI,Z[E/K ])) such that
f0(a)= ψ1(b) and g(b)= 0. Then mbKI comes by restriction from X2(K î ,Z[E/K ]) for each i .

Proof. Consider the following commutative diagram, constructed exactly in the same way as diagram (3-5):

0

��

0

��

X2(K ,Z)
f i
1

//

φ0

��

X2(L ,Z)⊕X2(K î ,Z)
gi

1
// //

φi
1
��

X2(L K î ,Z)

φi
2
��

X2(K ,Z[E/K ])
f i
//

ψ0

��

X2(L ,Z[E/K ])⊕X2(K î ,Z[E/K ])
gi
//

ψ i
1
��

X2(L K î ,Z[E/K ])

ψ i
2
��

X2(K , T̂ ) �
� f i

0
// X2(L , T̂ )⊕X2(K î , T̂ )

gi
0

//

��

X2(L K î , T̂ )

��

0 0

The last two columns are exact since the exact sequence (3-3) splits over L , K î and L K î , and the restriction
morphism X2(K î ,Z)→ X2(L K î ,Z) is surjective by (H3). Hence there exists bK î

∈ X2(K î ,Z[E/K ])

such that ψ i
1(bL , bK î

)= f i
0 (a) and gi (bL , bK î

)= 0. The pair

(0, bKI − ResKI/K î
(bK î

)) ∈ X2(L ,Z[E/K ])⊕X2(KI,Z[E/K ])

then lies in ker(g)∩ker(ψ1) and a diagram chase in (3-5) shows that there exists c ∈X2(KI,Z) such that{
φ1(0, c)= (0, bKI − ResKI/K î

(bK î
)),

ResL KI/KI (c)= 0.

By (H2), we have mc = 0, and hence m · (bKI − ResKI/K î
(bK î

))= 0. □

Lemma 3.10. Set µ := m ∨ m′ and take a ∈ X2(K , T̂ ). Then µa ∈ Im(ψ0).

Before proving the lemma, let us introduce some notation.

Notation 3.11. (i) For each i , we can find a family (Ki j ) j of finite extensions of KI together with
embeddings σi j : Ki ↪→ Ki j so that Ki,1 = KI , the embedding σi,1 is the natural embedding Ki ↪→ KI ,
and the K -algebra homomorphism

Ki ⊗K KI →

∏
j

Ki j

x ⊗ y 7→ (σi j (x)y) j

is an isomorphism. We denote by σ̃i j : KI → Ki j the embedding obtained by tensoring σi j with the
identity of K î . This is well-defined by (LD2).
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(ii) For each i, j , we can find a family (L i j j ′) j ′ of finite extensions of Ki j together with embeddings
σi j j ′ : L ↪→ L i j j ′ so that the K -algebra homomorphism

L ⊗K Ki j →

∏
j ′

L i j j ′

x ⊗ y 7→ (σi j j ′(x)y) j ′

(3-6)

is an isomorphism. We denote by σ̃i j j ′ : L Ki → L i j j ′ the embedding obtained by tensoring σi j j ′ with σi j .
Observe that, when j =1, the K -algebra homomorphism (3-6) is simply the isomorphism L⊗K KI ∼= L KI ,
so that σi,1,1 is none other than the inclusion of L in L KI .

(iii) We can find a family of finite extensions (Lα)α of L together with embeddings τα : L ↪→ Lα so that
L1 = L , the embedding τ1 is the identity of L , and the K -algebra homomorphism

L ⊗K L →

∏
α

Lα

x ⊗ y 7→ (τα(x)y)α

is an isomorphism. For each α, we denote by τ̃α : L KI → LαKI the embedding obtained by tensoring
τα with the identity of KI . This is well-defined by (LD1).

Proof. By Shapiro’s lemma, one can identify the second line of diagram (3-5) with the following complex:

X2(L ,Z)⊕
⊕

i X
2(Ki ,Z)

f
��⊕

α X
2(Lα,Z)⊕

⊕
i X

2(L Ki ,Z)⊕X2(L KI,Z)⊕
⊕

i, j X
2(Ki j ,Z)

g
��⊕

α X
2(LαKI,Z)⊕

⊕
i, j, j ′ X2(L i j j ′,Z)

where f is given by

(x, (yi )i ) 7→
(
(Resτα :L↪→Lα (x))α, (ResL Ki/Ki (yi ))i ,ResL KI/L(x), (Resσi j :Ki ↪→Ki j (yi ))i, j

)
,

and g

((xα)α, (yi )i , z, (ti j )i, j ) 7→(
(ResLαKI/Lα (xα)− Resτ̃α :L KI ↪→LαKI (z))α, (Resσ̃i j j ′ :L Ki ↪→L i j j ′

(yi )− ResL i j j ′/Ki j (ti j ))i, j
)
.

Now take

((xα)α, (yi )i , z, (ti j )i, j ) ∈

⊕
α

X2(Lα,Z)⊕
⊕

i

X2(L Ki ,Z)⊕X2(L KI,Z)⊕
⊕
i, j

X2(Ki j ,Z) (3-7)

such that
ψ1((xα)α, (yi )i , z, (ti j )i, j )= f0(a). (3-8)
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Since g0( f0(a))= 0 and g1 is surjective, a diagram chase in (3-5) allows to assume that

((xα)α, (yi )i , z, (ti j )i, j ) ∈ ker(g). (3-9)

This implies that {
ResLαKI/Lα (xα)= Resτ̃α :L KI ↪→LαKI (z) ∀α,

Resσ̃i j j ′ :L Ki ↪→L i j j ′
(yi )= ResL i j j ′/Ki j (ti j ) ∀i, j, j ′.

(3-10)

In particular,

ResL1 KI/L1(x1)= ResL KI/L(x1)= z, (3-11)

and hence the commutativity of the following diagram of field extensions:

LαKI
τ̃α

Lα
τα

L KI

L

shows that
ResLαKI/Lα (Resτα :L↪→Lα (x1))= Resτ̃α :L KI ↪→LαKI (ResL KI/L(x1))

= Resτ̃α :L KI ↪→LαKI (z)

= ResLαKI/Lα (xα).

Since the kernel of ResLαKI/Lα is m′-torsion by (H4), we have

m′ Resτα :L↪→Lα (x1)= m′xα (3-12)

for all α. Moreover, by (H3), one can find for each i an element ỹi ∈ X2(Ki ,Z) such that

yi = ResL Ki/Ki (ỹi ). (3-13)

Let us check that

µ((xα)α, (yi )i , z, (ti j )i, j )= µ f (x1, (ỹi )i ). (3-14)

By construction (see Equations (3-12), (3-13) and (3-11)), we have

µ(Resτα :L↪→Lα (x1))α = µ(xα)α, (yi )i = (ResL Ki/Ki (ỹi ))i , µResL KI/L(x1)= µz.

To finish the proof of (3-14), it is therefore enough to check that

mti j = m Resσi j :Ki ↪→Ki j (ỹi ) (3-15)

for each i and j . For that purpose, fix i = i0, and consider first the case j = 1. We then have Ki0,1 = KI ,
and hence, by using (3-10)

ResL KI/KI (ti0,1)= ResL i0,1,1/L Ki0
(yi0)= ResL i0,1,1/Ki0

(ỹi0)= ResL KI/KI (ResKi0,1/Ki0
(ỹi0)).
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By (H2), we deduce that

mti0,1 = m ResKi0,1/Ki0
(ỹi0)= m ResKI/Ki0

(ỹi0).

Now move on to case of arbitrary j . By Lemma 3.9 together with Equations (3-8) and (3-9), the element

m(z, (ti, j )i, j ) ∈ X2(L KI,Z)⊕
⊕
i, j

X2(Ki j ,Z)= X2(KI,Z[E/K ])

comes by restriction from X2(K î ,Z[E/K ]) for each i . In particular, the element

(mti0, j ) j ∈

⊕
j

X2(Ki0, j ,Z)= X2(KI,Z[Ki0/K ])

comes by restriction from an element ti0 ∈ X2(KI,Z)= X2(K î0
,Z[Ki0/K ]). In other words

(mti0, j ) j = (Resσ̃i0, j :KI ↪→Ki0, j (ti0)) j .

In particular, mti0,1 = ti0 , and hence for each j

mti0, j = Resσ̃i0, j :KI ↪→Ki0, j (ti0)

= Resσ̃i0, j :KI ↪→Ki0, j (mti0,1)

= Resσ̃i0, j :KI ↪→Ki0, j (m ResKI/Ki0
(ỹi0))

= m Resσi0, j :Ki0 ↪→Ki0, j (ỹi0).

This finishes the proofs of equalities (3-15) and (3-14). Applying ψ1 to (3-14) we deduce that

µ f0(α)= µ f0(ψ0((xα)α, (yi )i , z, (ti j )i, j )).

Since f0 is injective, we get

µα = µψ0((xα)α, (yi )i , z, (ti j )i, j ),

which finishes the proof of the lemma. □

We can now finish the proof of Proposition 3.7. As recalled at the end of Section 2, the group
X2(K ,Z[E/K ]) is divisible and hence, by Lemma 3.10,

(m ∨ m′) ·X2(K , T̂ )⊆ X2(K , T̂ )div.

In other words, the group X2(K , T̂ ) is (m ∨ m′)-torsion.
On the other hand, using once again the end of Section 2, the group X2(L , T̂ ) vanishes. Hence, by

restriction-corestriction, X2(K , T̂ ) is n-torsion. We deduce that X2(K , T̂ ) is ((m ∨ m′)∧ n)-torsion. □

The following lemma will often allow us to check assumptions (H2) and (H3) of Proposition 3.7:

Lemma 3.12. Let l be a finite unramified extension of k of degree n and set L = l K . The restriction map
ResL/K : X2(K ,Z)→ X2(L ,Z) is surjective and its kernel is (ires(C)∧ n)-torsion.
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Proof. By restriction-corestriction, ker(ResL/K ) is killed by n. Moreover, since X2(K ,Z)=X1(K ,Q/Z),
an element in ker(ResL/K ) corresponds to a subextension K ⊂ L ′

⊂ L that is locally trivial at every
closed point of the curve C . Since L = l K , we can find an extension k ⊂ l ′ ⊂ l such that L ′

= l ′K . By
the local triviality of L ′/K , the field l ′ has to be contained in the residue field of k(v) for every v ∈ C (1).
In particular, [l ′ : k] and [L ′

: K ] divide ires(C). This shows that ker(ResL/K ) is killed by ires(C), and
hence by ires(C)∧ n.

In order to prove the surjectivity statement, consider an integral, regular, projective model C of C
such that its reduced special fiber C0 is an SNC divisor. Let c be the genus of the reduction graph of C.
According to Corollary 2.9 of [Kato 1986], for each m ≥ 1, we have an isomorphism

X3(K ,Z/mZ(2))∼= (Z/mZ)c.

Hence, by Poitou–Tate duality, we also have

X1(K ,Z/mZ)∼= (Z/mZ)c,

so that
X2(K ,Z)∼= (Q/Z)c.

Since l/k is unramified, the scheme C×Ok Ol is a suitable regular model of C ×k l and hence X2(L ,Z) is
also isomorphic to (Q/Z)c. The surjectivity of ResL/K then follows from the isomorphism X2(K ,Z)∼=

X2(L ,Z)∼= (Q/Z)c and the finiteness of the exponent of ker(ResL/K ). □

3A6. Step 5: Proof of Theorem 3.1 for smooth proper varieties. In this step, we use Poitou–Tate duality
to deduce Theorem 3.1 for smooth proper varieties from the previous steps.

Theorem 3.13. Let l/k be a finite unramified extension and set L := l K . Let Z be a smooth proper
integral K -variety. Then the quotient

K2(K )/⟨NL/K (K2(L)), N2(Z/K )⟩

is χK (Z , E)2-torsion for every coherent sheaf E on Z.

Proof. Take x ∈ K2(K ). We want to prove that

χK (Z , E)2 · x ∈ ⟨NL/K (K2(L)), N2(Z/K )⟩.

First observe that, if K ′ stands for the algebraic closure of K in the function field of Z , then Z has
a structure of a smooth proper K ′-variety and that χK ′(Z , E) = [K ′

: K ]
−1χK (Z , E). Therefore, by

restriction-corestriction, we can assume that K = K ′, and hence that Z is geometrically integral. Moreover,
by Proposition 3.3, we may and do assume that C has residual index 1.

Let now S be the (finite) set of places v ∈ C (1) such that ∂vx ̸= 0. Given a prime number ℓ, since the
curve C has residual index 1 and the field k is large, we can find some point wℓ ∈ C (1)

\ S such that the
residual degree [k(wℓ) : k]res of k(wℓ)/k is prime to ℓ. Moreover, by Proposition 3.5, we have

χK (Z , E) · K2(Kwℓ)⊆ ⟨NLwℓ/Kwℓ
(K2(Lwℓ)), N2(Zwℓ/Kwℓ)⟩. (3-16)
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Before moving further, we need to prove the following lemma:

Lemma 3.14. Let n = [l : k] with l/k as in Theorem 3.13. If vℓ(n) > vℓ(χK (Z , E)), then there exists a
finite extension M (wℓ) of Kwℓ with residue field m(wℓ) such that Z(M (wℓ)) ̸=∅ and vℓ([m(wℓ) : k(wℓ)]res)≤

vℓ(χK (Z , E)).

Proof. By contradiction, assume that, for each finite extension M of Kwℓ with residue field m such that
Z(M) ̸= ∅, we have vℓ([m : k(wℓ)]res) > vℓ(χK (Z , E)). By applying the residue map to (3-16) and by
denoting l(wℓ) the residue field of Lwℓ , we get

(K ×

wℓ
)χK (Z ,E) ⊆ ⟨Nl(wℓ)/k(wℓ)(l(wℓ)

×); Nm/k(wℓ)(m
×) | vℓ([m : k(wℓ)]res) > vℓ(χK (Z , E))⟩.

By applying the valuation wℓ, we deduce that

χK (Z , E) ∈ ⟨[l(wℓ) : k(wℓ)]res; [m : k(wℓ)]res | vℓ([m : k(wℓ)]res) > vℓ(χK (Z , E))⟩ ⊆ Z. (3-17)

Now, since l/k is unramified, we have [l : k]res = n. Moreover, since [k(wℓ) : k]res ∧ℓ= 1, our hypothesis
on vℓ(n) implies that

vℓ([l(wℓ) : k(wℓ)]res)≥ vℓ([l : k]res) > vℓ(χK (Z , E)).

Thus, every integer in

⟨[l(wℓ) : k(wℓ)]res; [m : k(wℓ)]res | vℓ([m : k(wℓ)]res) > vℓ(χK (Z , E))⟩,

is divisible by ℓvℓ(χK (Z ,E))+1, which contradicts (3-17). □

We keep the notation n := [l : k] and resume the proof of Theorem 3.13. For v ∈ C (1)
\ S, we have

x ∈ NLv/Kv
(K2(Lv)) (3-18)

by Lemma 3.4. For v ∈ S, Proposition 3.5 shows that we can find M (v)
1 , . . . ,M (v)

rv finite extensions of Kv

such that Z(M (v)
i ) ̸= ∅ for all i and

χK (Z , E) · x ∈ ⟨NLv/Kv
(K2(Lv)); NM (v)

i /Kv
(K2(M

(v)
i )), 1 ≤ i ≤ rv⟩. (3-19)

By applying Proposition 3.6 inductively, we can find, for each v ∈ S and 1 ≤ i ≤ rv, a finite extension
K (v)

i of K satisfying the following properties:

(i) Z(K (v)
i ) ̸= ∅.

(ii) There exists a K -embedding K (v)
i ↪→ M (v)

i .

(iii) There also exists a K -embedding K (v)
i ↪→ M (wℓ), where M (wℓ) is given by Lemma 3.14, for each

prime ℓ such that vℓ(n) > vℓ(χK (Z , E)).
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(iv) For each pair (v0, i0), the field K (v0)
i0

is linearly disjoint to the composite field

Ln ·

∏
(v,i) ̸=(v0,i0)

K (v)
i ,

over K , where Ln stands for the composite of all cyclic extensions of L that are locally trivial
everywhere and whose degrees divide n. Note that Ln is a finite extension of L since X1(L ,Z/nZ)

is finite.

Consider the Galois module T̂ defined by the following exact sequence:

0 → Z → Z[E/K ] → T̂ → 0,

where E := L ×
∏
v,i K (v)

i . To conclude, we introduce the composite field KI =
∏
v,i K (v)

i and we check
the assumptions (LD1), (LD2), (H1), (H2), (H3) and (H4) of Proposition 3.7 with m = χK (Z , E) and

m′
= | ker(ResL KI/L : X2(L ,Z)→ X2(L KI,Z))|.

(LD1) The extension L/K is obviously Galois. The fields L and KI are linearly disjoint over K by (iv).

(LD2) This immediately follows from (iv).

(H1) By proceeding exactly in the same way as in Lemma 4 of [Demarche and Wei 2014], since we
already have (LD1), one gets the injectivity of the restriction map

H 2(K , T̂ )→ H 2(L , T̂ )⊕ H 2(KI, T̂ ),

and hence of

X2(K , T̂ )→ X2(L , T̂ )⊕X2(KI, T̂ ).

(H2) Let CI be the smooth projective k-curve with fraction field KI . On the one hand, by (iii), given
a prime ℓ such that vℓ(n) > vℓ(χK (Z , E)), the field KI can be seen as a subfield of M (wℓ)

and the inequality vℓ([m(wℓ) : k]res) ≤ vℓ(χK (Z , E)) holds by Lemma 3.14. We deduce that
vℓ(ires(CI)) ≤ vℓ(χK (Z , E)) for such ℓ. On the other hand, for any other prime number ℓ, we
have vℓ(n)≤ vℓ(χK (Z , E)). We deduce that ires(CI)∧ n divides m = χK (Z , E), and hence (H2)
follows from Lemma 3.12.

(H3) This immediately follows from Lemma 3.12.

(H4) Since L/K is Galois, (H4) immediately follows from the choice of m′.

By Proposition 3.7, we deduce that the group X2(K , T̂ ) is ((m ∨ m′)∧ n)-torsion. But by (iv), the
fields KI and Ln are linearly disjoint over K , and hence, by the definition of m′, we have m′

∧ n = 1, so
that (m ∨ m′)∧ n = m ∧ n. The group X2(K , T̂ ) is therefore m-torsion. If we set Ť := Hom(T̂ ,Z) and
T := Ť ⊗ Z(2), that is also the case of X3(K , T ) according to Poitou–Tate duality.

Now, by Lemma 3.2, we may interpret x as an element of H 3(K , T ). Equations (3-18) and (3-19)
together with assertion (ii) imply that mx ∈ X3(K , T ), which is m-torsion. Thus m2x = 0 ∈ X3(K , T ).
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This amounts to

m2x ∈ ⟨NL/K (K2(L)); NK (v)
i /K (K2(K

(v)
i )), v ∈ S, 1 ≤ i ≤ rv⟩ ⊆ ⟨NL/K (K2(L)), N2(Z/K )⟩,

the last inclusion being a consequence of (i). □

3A7. Step 6: Proof of Theorem 3.1. In this final step, we remove the smoothness assumption from the
previous step and prove Theorem 3.1 for all proper varieties. For that purpose, we use the following
variation of the dévissage technique given by Proposition 2.1 of [Wittenberg 2015].

Proposition 3.15 [Wittenberg 2015]. Let K be a field and r a positive integer. Let (P) be a property
of proper K -varieties. Suppose we are given, for each proper K -variety X , an integer m X . Make the
following assumptions:

(1) For every morphism of proper K -schemes Y → X , the integer m X divides mY .

(2) For every proper K -scheme X satisfying (P), the integer m X divides χK (X,OX )
r .

(3) For every proper and integral K -scheme X , there exists a proper K -scheme Y satisfying (P) and a
K -morphism f : Y → X with generic fiber Yη such that m X and χK (X)(Yη,OYη) are coprime.

Then for every proper K -scheme X and every coherent sheaf E on X , the integer m X divides χK (X, E)r .

Proof. One can prove this result by following almost word by word the proof of Proposition 2.1 of
[Wittenberg 2015]. Alternatively, for each proper K -scheme X , write the prime decomposition of m X as

m X =

∏
p

pαp ,

and consider the integer

nX :=

∏
p

p⌈αp/r⌉.

One can then easily check that the correspondence X 7→ nX satisfies assumptions (1), (2) and (3) of
Proposition 2.1 of [loc. cit.]. We deduce that nX |χK (X, E), and hence that m X |χK (X, E)r , for every
proper K -scheme X and every coherent sheaf E on X . □

Proof of Theorem 3.1. Given a proper K -variety Z , we denote by m Z the exponent of the quotient

K2(K )/⟨NL/K (K2(L)), N2(Z/K )⟩.

We say that Z has property (P) if it is smooth and integral. We have to check the three conditions (1), (2)
and (3) of Proposition 3.15. Condition (1) is straightforward. Condition (2) follows from Theorem 3.13.
Condition (3) follows from Hironaka’s theorem on resolution of singularities; Section 3.3 of [Kollár
2007]. □
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3B. Proof of Main Theorem 1. We can now deduce Main Theorem 1 from Theorem 3.1.

Proof of Main Theorem 1. Fix two integers n, d ≥ 1 such that d2
≤ n and a hypersurface Z in Pn

K of
degree d. By Lang’s and Tsen’s theorems (Theorem 2a of [Nagata 1957] and Theorem 12 of [Lang
1952]), the field knr(C) is C2. Since d2

≤ n, we deduce that there exists a finite unramified extension l of
k such that Z(l K ) ̸= ∅. By Theorem 3.1, the quotient

K2(K )/⟨Nl K/K (K2(l K )), N2(Z/K )⟩ = K2(K )/N2(Z/K )

is χK (Z ,OZ )
2-torsion. But since d ≤ n, Theorem III.5.1 of [Hartshorne 1977] implies that

χK (P
n
K ,OPn

K
(−d))= 0,

and hence the exact sequence

0 → OPn
K
(−d)→ OPn

K
→ i∗OZ → 0,

where i : Z → Pn
K stands for the closed immersion, gives

χK (Z ,OZ )= χK (P
n
K ,OPn

K
)−χK (P

n
K ,OPn

K
(−d))= 1.

Hence K2(K )= N2(Z/K ). □

4. On the C2
1 property for p-adic function fields

The goal of this section is to prove Main Theorem 2. Contrary to Main Theorem 1, for which we needed
to deal with unramified extensions of k, here we will have to deal with ramified extensions of k. For that
purpose, the key statement is given by the following theorem:

Theorem 4.1. Assume that C has a rational point, let ℓ be a prime number, and fix a finite Galois totally
ramified extension l/k of degree ℓ. Let E0

l/k be the set of all finite ramified subextensions of lnr/k and let
El/k be the set of finite extensions K ′ of K of the form K ′

= k ′K for some k ′
∈ E0

l/k . Then

K2(K )= ⟨NK ′/K (K2(K ′)) | K ′
∈ El/k⟩.

Note that, given any two extensions k ′ and k ′′ in E0
l/k with k ′

⊂ k ′′, the extension k ′′/k ′ is unramified.
This observation will be often used in the sequel.

Remark 4.2. We think that the assumption that C has a rational point in Theorem 4.1 cannot be removed.
To check that, we invite the reader to assume that iram(C)= ℓ. Then, given an integer n ≥ 1, consider the
set E0

n whose elements are extensions of k in E0
l/k that are contained in the composite ln := lkn , where kn

is the degree ℓn unramified extension of k. Define the set En of finite extensions K ′ of K contained in
Ln := ln K that are of the form K ′

= k ′K for some k ′
∈ E0

n and consider the Galois module T̂n defined by
the exact sequence

0 → Z →

⊕
K ′∈En

Z[K ′/K ] → T̂n → 0.
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By following the proof of Proposition 4.5, one can check that, if K1 and K2 are two distinct degree ℓ
extensions of K in En , then the Tate–Shafarevich group X2(K , T̂n) is the direct sum of the kernel of the
map

(ResK1/K ,ResK2/K ) : X2(K , T̂n)→ X2(K1, T̂n)⊕X2(K2, T̂n)

and of a divisible group, given by the kernel of the map

ResK1 K2/K1 − ResK1 K2/K2 : X2(K1, T̂n)⊕X2(K2, T̂n)→ X2(K1K2, T̂n).

In particular
X2(K , T̂n)∼= ker

(
X2(K , T̂n)→ X2(K1, T̂n)⊕X2(K2, T̂n)

)
.

The computation of this kernel is a relatively simple (but a bit technical) exercise in the cohomology of
finite groups, since it is contained in the group

ker
(
H 2(K , T̂n)→ H 2(Ln, T̂n)

)
∼= H 2(Gal(Ln/K ), T̂ )∼= H 2(Z/ℓZ × Z/ℓnZ, T̂ ).

In that way, one checks that X2(K , T̂n) is an Fℓ-vector space of dimension at least nℓ− n − 1. Moreover,
the computation being very explicit, one can even check that the morphism X2(K , T̂n+1)→ X2(K , T̂n)

induced by the natural projection T̂n+1 → T̂n is always surjective. But then, by dualizing thanks to
Poitou–Tate duality, this shows that the groups

Qn := ker(K2(K )/⟨NK ′/K (K2(K ′)) | K ′
∈ En⟩ →

∏
v∈C (1)

K2(Kv)/⟨NK ′⊗Kv/Kv
(K2(K ′

⊗ Kv)) | K ′
∈ En⟩)

are all nontrivial and that the natural maps Qn → Qn+1 are all injective. We deduce that the nontrivial
elements of Q1 provide nontrivial elements in the quotient

K2(K )
/ 〈

NK ′/K (K2(K ′))

∣∣∣ K ′
∈

⋃
n

En

〉
= K2(K )/⟨NK ′/K (K2(K ′)) | K ′

∈ El/k⟩.

4A. Proof of Theorem 4.1.

4A1. Step 1: Solving the local problem. The first step to prove Theorem 4.1 consists in settling an
analogous statement over the completions of K . We start with the following lemma.

Lemma 4.3. Let ℓ be a prime number and let l/k be a finite Galois totally ramified extension of degree ℓ.
Let m/k be a totally ramified extension such that ml/m is unramified. Then there exists k ′

∈ E0
l/k such

that k ′
⊂ m.

Proof. If ml/m is trivial, then m contains l and we are done. Therefore we may and do assume that ml/m
has degree ℓ. Denote by kℓ the unramified extension of k with degree ℓ and set lℓ := l · kℓ. The extension
lℓ/k is Galois with Galois group (Z/ℓZ)2, and since ml is unramified of degree ℓ over m, it contains both
kℓ and lℓ, so that lℓ is contained in m′l for some finite subextension m′ of m/k. But

[m′
: k] · [lℓ : k] = ℓ2

[m′
: k]> ℓ[m′

: k] = [m′l : k] = [m′lℓ : k].

Hence the intersection k ′
:= m′

∩ lℓ is a degree ℓ totally ramified extension of k, and k ′
∈ E0

l/k . □
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Proposition 4.4. Let ℓ be a prime number and let l/k be a finite Galois totally ramified extension of
degree ℓ. Fix v ∈ C (1). Then

K2(Kv)= ⟨NK ′⊗K Kv/Kv
(K2(K ′

⊗K Kv)) | K ′
∈ El/k⟩.

Proof. Three different cases arise:

(1) The field k(v) contains l.

(2) The extension lk(v)/k(v) is unramified of degree ℓ.

(3) The extension lk(v)/k(v) is totally ramified of degree ℓ.

Case 1 is trivial, since

K2(Kv)= Nl K⊗K Kv/Kv
(K2(l K ⊗K Kv)).

Let us now consider case 2, and denote by k(v)nr the maximal unramified subextension of k(v)/k. By
Lemma 4.3, since lk(v)nr/k(v)nr is a Galois totally ramified extension of degree ℓ and k(v)/k(v)nr is a
totally ramified extension such that k(v)l/k(v) is unramified, there exists a finite extension m of k(v)nr

such that m ∈ E0
lk(v)nr/k(v)nr

⊂ E0
l/k and m ⊂ k(v). By setting M := mK , we get that M ∈ El/k and that

K2(Kv)= NM⊗K Kv/Kv
(K2(M ⊗K Kv))⊂ ⟨NK ′⊗K Kv/Kv

(K2(K ′
⊗K Kv)) | K ′

∈ El/k⟩,

as wished.
Let us finally consider case 3. To do so, fix a uniformizer π of k(v), and as before, let k(v)nr

be the maximal unramified subextension of k(v)/k. Denote by k(v)ram
π the maximal abelian totally

ramified extension of k(v) associated to π by Lubin–Tate theory. Since l/k is abelian, the extension
lk(v)ram

π /k(v)ram
π must be unramified. Hence, by Lemma 4.3, there exists a finite extension m of k(v)nr

such that m ∈ E0
lk(v)nr/k(v)nr

⊂ E0
l/k and m ⊂ k(v)ram

π . We deduce from Corollary 5.12 of [Yoshida 2008]
that

π ∈ Nm⊗k(v)nr k(v)((m ⊗k(v)nr k(v))×)⊂ ⟨Nk′⊗kk(v)/k(v)((k ′
⊗k k(v))×) | k ′

∈ E0
l/k⟩.

This being true for every uniformizer π of k(v), we deduce that

k(v)× ⊂ ⟨Nk′⊗kk(v)/k(v)((k ′
⊗k k(v))×) | k ′

∈ E0
l/k⟩,

and hence, by Lemma 3.4,

K2(Kv)= ⟨NK ′⊗K Kv/Kv
(K2(K ′

⊗K Kv)) | K ′
∈ El/k⟩. □

4A2. Step 2: Computation of a Tate–Shafarevich group. The second step, which is slightly technical,
consists in computing the Tate–Shafarevich groups of some finitely generated free Galois modules over
K associated to the fields in El . Poitou–Tate duality will then allow us to obtain a local-global principle
that will let us deduce Theorem 4.1 from Proposition 4.4.
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Proposition 4.5. Assume that C has a rational point, and let ℓ be a prime number. Fix a finite Galois
totally ramified extension l/k of degree ℓ. Given K1, . . . , Kr in El/k so that the fields K1 and K2 are
linearly disjoint over K , consider the Galois module T̂ defined by the following exact sequence

0 → Z → Z[E/K ] → T̂ → 0, (4-1)

where E := K1 × · · · × Kr . Then X2(K , T̂ ) is divisible.

Proof. Consider the following complex:

X2(K , T̂ )
f0
// X2(K1, T̂ )⊕X2(K2, T̂ )

g0
// X2(K1K2, T̂ )

x � // (ResK1/K (x),ResK2/K (x))

(x, y) � // ResK1 K2/K1(x)− ResK1 K2/K2(y).

(4-2)

We start by proving the following lemma:

Lemma 4.6. The morphism f0 is injective.

Proof. Let KI be the Galois closure of the composite of all the Ki ’s. By inflation-restriction, there is an
exact sequence

0 → H 2(KI/K , T̂ )→ H 2(K , T̂ )→ H 2(KI, T̂ ).

Take v ∈ C(k) a rational point. Since the extension KI/K is obtained by base change from an extension kI
of k, we have the equalities Gal(KI/K )= Gal(kI/k)= Gal(KI,v/Kv). The previous inflation-restriction
exact sequence therefore induces a commutative diagram with exact lines:

0 // H 2(KI/K , T̂ )

∼=

��

// H 2(K , T̂ )

��

// H 2(KI, T̂ )

��

0 // H 2(KI,v/Kv, T̂ ) // H 2(Kv, T̂ ) // H 2(KI,v, T̂ )

in which the first vertical map is an isomorphism. We deduce that the restriction map

ker
(
H 2(K , T̂ )→ H 2(Kv, T̂ )

)
→ ker

(
H 2(KI, T̂ )→ H 2(KI,v, T̂ )

)
is injective. Hence so is the restriction map

ResKI/K : X2(K , T̂ )→ X2(KI, T̂ )

as well as the restriction maps

ResK1/K : X2(K , T̂ )→ X2(K1, T̂ ), ResK2/K X2(K , T̂ )→ X2(K2, T̂ ),

since the former factors through these. □
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Now observe that the complex (4-2) fits in the following commutative diagram, in which the first and
second rows are obtained in the same way as the third:

0

��

0

��

X2(K ,Z) //

��

X2(K1,Z)⊕X2(K2,Z) // //

��

X2(K1K2,Z)

��

X2(K ,Z[E/K ])
f
//

��

X2(K1,Z[E/K ])⊕X2(K2,Z[E/K ])
g
//

��

X2(K1K2,Z[E/K ])

��

X2(K , T̂ ) �
� f0

// X2(K1, T̂ )⊕X2(K2, T̂ )
g0

//

��

X2(K1K2, T̂ )

��

0 0

(4-3)

The second and third columns are exact since the exact sequence (4-1) splits over K1, K2 and K1K2. The
lines are all complexes. In the first one, the second arrow is surjective since the restriction map

X2(K1,Z)→ X2(K1K2,Z)

is an isomorphism by Lemma 3.12 and C has a rational point. As for the second line, we have the
following lemma.

Lemma 4.7. The second line of diagram (4-3) is exact.

Proof. For 1 ≤ α ≤ r , write

K1 ⊗K Kα =

∏
β

Lαβ, K2 ⊗K Kα =

∏
γ

Mαγ , Lαβ ⊗Kα
Mαγ =

∏
δ

Nαβγ δ

for some fields Lαβ , Mαγ and Nαβγ δ . By Shapiro’s lemma, the second line of (4-3) can be identified with
the following complex ⊕

α X
2(Kα,Z)

f
��⊕

α,β X
2(Lαβ,Z)⊕

⊕
α,γ X2(Mαγ ,Z)

g
��⊕

α,β,γ,δ X
2(Nαβγ δ,Z)

where f is given by

(xα) 7→ ((ResLαβ/Kα
(xα))αβ, (ResMαγ /Kα

(xα))αγ ),
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and g
((yαβ)α,β, (zαγ )α,γ ) 7→ (ResNαβγ δ/Lαβ (yαβ)− ResNαβγ δ/Mαγ

(zαγ ))αβγ δ,

Fix ((yαβ)α,β, (zαγ )α,γ ) ∈ ker(g). Then

ResNαβγ δ/Lαβ (yαβ)= ResNαβγ δ/Mαγ
(zαγ )

for all α, β, γ, δ. But the restrictions ResLαβ/Kα
, ResMαγ /Kα

, ResNαβγ δ/Lαβ and ResNαβγ δ/Mαγ
are all iso-

morphisms by Lemma 3.12 and they fit into a commutative diagram:

X2(Kα,Z)
ResLαβ/Kα

//

ResMαγ /Kα

��

X2(Lαβ,Z)

ResNαβγ δ/Lαβ
��

X2(Mαγ ,Z)
ResNαβγ δ/Mαγ

// X2(Nαβγ δ,Z)

We deduce that, for each α, there exists xα ∈ X2(Kα,Z) such that

∀β,ResLαβ/Kα
(xα)= yαβ and ∀γ,ResMαγ /Kα

(xα)= zαγ .

In other words, ((yαβ)α,β, (zαγ )α,γ ) ∈ im( f ). □

With all the gathered information, a simple diagram chase in (4-3) shows that the morphism

X2(K ,Z[E/K ])→ X2(K , T̂ )

is surjective. But as recalled at the end of Section 2, the group X2(K ,Z[E/K ]) is divisible. Hence so is
X2(K , T̂ ). □

4A3. Step 3: Proof of Theorem 4.1. We can finally prove Theorem 4.1 by using Poitou–Tate duality.

Proof of Theorem 4.1. Take x ∈ K2(K ). By Proposition 4.4, we have

K2(Kv)= ⟨NK ′⊗K Kv/Kv
(K2(K ′

⊗K Kv)) | K ′
∈ El/k⟩

for all v ∈ C (1). Hence we can find K1, . . . , Kr ∈ El/k such that

x ∈ ker(K2(K )/⟨NKi/K (K2(Ki )) | 1 ≤ i ≤ r⟩

→

∏
v∈C (1)

K2(Kv)/⟨NKi ⊗K Kv/Kv
(K2(Ki ⊗K Kv)) | 1 ≤ i ≤ r⟩). (4-4)

Moreover, up to enlarging the family (Ki )i , we may and do assume that K1 and K2 are linearly disjoint.
Consider the étale K -algebra E := K1 × · · · × Kr and the Galois module T̂ defined by the following
exact sequence

0 → Z → Z[E/K ] → T̂ → 0.

Set Ť := Hom(T̂ ,Z) and T := Ť ⊗ Z(2). By Lemma 3.2, (4-4) can be rewritten as

x ∈ X3(K , T ).
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But, by Poitou–Tate duality, X3(K , T ) is dual to X2(K , T̂ ), and by Proposition 4.5, the group X2(K , T̂ )
is divisible. We deduce that X3(K , T )= 0, and hence that

x ∈ ⟨NKi/K (K2(Ki )) | 1 ≤ i ≤ r⟩ ⊂ ⟨NK ′/K (K2(K ′)) | K ′
∈ El/k⟩. □

4B. Proof of Main Theorem 2. By combining Theorems 3.1 and 4.1, we can now settle the following
theorem, from which we will deduce Main Theorem 2.

Theorem 4.8. Let K be the function field of a smooth projective curve C defined over a p-adic field k.
Let l/k be a finite Galois extension and set L := l K . Let Z be a proper K -variety. If sl/k stands for the
number of (not necessarily distinct) prime factors of the ramification degree of l/k, then the quotient

K2(K )/⟨NL/K (K2(L)), N2(Z/K )⟩

is iram(C) ·χK (Z , E)2sl/k+4-torsion for every coherent sheaf E on Z.

Proof. We first assume that C has a rational point, and we prove that

K2(K )/⟨NL/K (K2(L)), N2(Z/K )⟩

is χK (Z , E)2sl/k+2-torsion for every coherent sheaf E on Z by induction on sl/k . The case sl/k = 0
immediately follows from Theorem 3.1. We henceforth assume now that sl/k > 0. Let lnr be the maximal
unramified subextension of l/k and set Lnr := lnrK . Theorem 3.1 ensures then that the quotient

K2(K )/⟨NLnr/K (K2(Lnr)), N2(Z/K )⟩

is χK (Z , E)2-torsion. Now, the extension l/ lnr is Galois and totally ramified. Since finite extensions of
local fields are solvable, we can find a Galois totally ramified extension m/ lnr contained in l and of prime
degree ℓ. Set M := mK . By Theorem 4.1, we have

K2(Lnr)= ⟨NK ′/Lnr(K2(K ′)) | K ′
∈ Em/ lnr⟩.

But for each k ′
∈ E0

m/ lnr
, the ramification degree of lk ′/k ′ strictly divides that of l/k. Hence, by induction,

the group
K2(K ′)/⟨NL K ′/K ′(K2(L K ′)), N2(Z/K ′)⟩

is χK (Z , E)2sl/k -torsion for each K ′
∈ Em/ lnr . We deduce that

K2(K )/⟨NL/K (K2(L)), N2(Z/K )⟩

is χK (Z , E)2sl/k+2-torsion, which finishes the induction.
We do not assume anymore that C has a rational point. Let k1, . . . , kr be finite extensions of k over

which C acquires rational points and such that the g.c.d.’s of their ramification degrees is iram(C). For each
i , let ki,nr be the maximal unramified extension of k contained in ki , and set Ki := ki K and Ki,nr := ki,nrK .
Theorem 3.1 ensures that the quotient

K2(K )/⟨NKi,nr/K (K2(Ki,nr)), N2(Z/K )⟩
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is χK (Z , E)2-torsion. Moreover, a restriction-corestriction argument shows that the quotient

K2(Ki,nr)/NKi/Ki,nr(K2(Ki ))

is [ki : ki,nr]-torsion. Since [ki : ki,nr] is the ramification degree of ki/k, we deduce that

K2(K )/⟨NK1/K (K2(K1)), . . . , NKr/K (K2(Kr )), N2(Z/K )⟩

is iram(C) · χK (Z , E)2-torsion. But C has rational points over all the ki . Hence, by the first case, the
quotients

K2(Ki )/⟨NL Ki/Ki (K2(L Ki )), N2(Z/Ki )⟩

are all χK (Z , E)2sl/k+2-torsion. We deduce that

K2(K )/⟨NL/K (K2(L)), N2(Z/K )⟩

is iram(C) ·χK (Z , E)2sl/k+4-torsion. □

Applying this to the context of the C2
1 -property, we get the following result.

Corollary 4.9. Let K be the function field of a smooth projective curve C defined over a p-adic field
k. Then, for each n, d ≥ 1 and for each hypersurface Z in Pn

K of degree d with d ≤ n, the quotient
K2(K )/N2(Z/K ) is killed by iram(C).

Proof. Let Z be a hypersurface in Pn
K of degree d with d ≤ n. By Tsen’s theorem, the field k̄(C) is C1.

Since d ≤ n, we deduce that there exists a finite extension l of k such that Z(l K ) ̸= ∅. By Theorem 4.8,
the quotient

K2(K )/⟨Nl K/K (K2(l K )), N2(Z/K )⟩ = K2(K )/N2(Z/K )

is iram(C) · χK (Z ,OZ )
2sl/k+4-torsion. But since d ≤ n, Theorem III.5.1 of [Hartshorne 1977] and the

exact sequence

0 → OPn
K
(−d)→ OPn

K
→ i∗OZ → 0,

where i : Z → Pn
K stands for the closed immersion, imply that

χK (Z ,OZ )= χK (P
n
K ,OPn

K
)−χK (P

n
K ,OPn

K
(−d))= 1.

Hence the quotient K2(K )/N2(Z/K ) is iram(C)-torsion. □

Main Theorem 2 can now be immediately deduced from the following corollary.

Corollary 4.10. Let K be the function field of a smooth projective curve C defined over a p-adic field k.
Assume that iram(C) = 1. Then, for each n, d ≥ 1 and for each hypersurface Z in Pn

K of degree d with
d ≤ n, we have N2(Z/K )= K2(K ).

Remark 4.11. By Section 9.1 of [Bosch et al. 1990], the assumption that iram(C)= 1 automatically holds
when C has an irreducible proper flat regular model whose special fiber has multiplicity 1.
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