
Algebra &
Number
Theory

msp

Volume 18

2024
No. 5

On the ordinary Hecke orbit conjecture
Pol van Hoften





msp
ALGEBRA AND NUMBER THEORY 18:5 (2024)

https://doi.org/10.2140/ant.2024.18.847

On the ordinary Hecke orbit conjecture
Pol van Hoften

We prove the ordinary Hecke orbit conjecture for Shimura varieties of Hodge type at primes of good
reduction. We make use of the global Serre–Tate coordinates of Chai as well as recent results of D’Addezio
about the monodromy groups of isocrystals. The new ingredients in this paper are a general monodromy
theorem for Hecke-stable subvarieties for Shimura varieties of Hodge type, and a rigidity result for
the formal completions of ordinary Hecke orbits. Along the way, we show that classical Serre–Tate
coordinates can be described using unipotent formal groups, generalising a result of Howe.
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1. Introduction

Let Ag,n be the moduli space of g-dimensional principally polarised abelian varieties (A, λ) with level
n ≥ 3 structure over Fp, for a prime number p coprime to n. Recall that there are finite étale prime-to-p
Hecke correspondences from Ag,n to itself, and that two points x, y ∈Ag,n(Fp) are said to be in the same
prime-to-p Hecke orbit if they share a preimage under one of these correspondences. Recall the following
result of Chai:

Theorem [Chai 1995]. Let x ∈Ag,n(Fp) be a point corresponding to an ordinary principally polarised
abelian variety. Then the prime-to-p Hecke orbit of x is Zariski dense in Ag,n .

Our main result is a generalisation of this theorem to Shimura varieties of Hodge type. To state it, we
will first introduce some notation.

1.1. Main results. Let (G, X) be a Shimura datum of Hodge type with reflex field E and let p be a prime
number. Let Kp⊂G(Qp) be a hyperspecial subgroup and let K p

⊂G(Ap
f ) be a sufficiently small compact

open subgroup. Let ShG be the special fibre of the canonical integral model of the Shimura variety of
level K pKp at a prime v above p of E , constructed in [Kisin 2010; Kim and Madapusi Pera 2016].
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Let Ev be the v-adic completion of E , which is a finite extension of Qp. There is a closed immersion
ShG,Fp

→ Ag,n for some n (see [Xu 2020]), and the intersection ShG,ord of the ordinary locus of Ag,n

with ShG is nonempty if and only if Ev = Qp (see [Lee 2018, Corollary 1.0.2]). Recall that there are
prime-to-p Hecke correspondences over ShG , which we use to define prime-to-p Hecke orbits.

Theorem I. If Ev = Qp, then the prime-to-p Hecke orbit of a point x ∈ ShG,ord(Fp) is Zariski dense
in ShG .

Theorem I generalises results of Maulik–Shankar–Tang, see [Maulik et al. 2022], who deal with GSpin
Shimura varieties associated to a quadratic space over Q and GU(1, n−1) Shimura varieties associated to
imaginary quadratic fields E with p split in E ; their methods are completely disjoint from ours. There is
also work of Shankar [2016] for Shimura varieties of type C, using a group-theoretic version of Chai’s
strategy of using hypersymmetric points and reducing to the case of Hilbert modular varieties. Shankar
crucially proves that the Hodge map ShG,Fp

→Ag,n is a closed immersion over the ordinary locus via
canonical liftings, whereas we use work of Xu [2020].

Last we mention work of Zhou [2023], who proves the Hecke orbit conjecture for the µ-ordinary locus
of certain quaternionic Shimura varieties. Our results do not imply his, but there is some overlap between
the cases that we cover.

A fairly direct consequence of Theorem I is a density result for prime-to-p Hecke orbits of an Fp-point
in the µ-ordinary locus of a Shimura variety of abelian type, at primes v above p of the reflex field E
where Ev =Qp, see Corollary 6.4.1.

1.2. Monodromy theorems. An important ingredient in our proof is an ℓ-adic monodromy theorem
for prime-to-p Hecke-stable subvarieties of special fibres of Shimura varieties, in the style of [Chai
2005, Corollary 3.5]. To state it, let (G, X) be as above and assume for simplicity that Gad is simple
over Q. Let Vℓ be the rational ℓ-adic Tate module of the abelian variety A over ShG coming from the
map ShG,Fp

→Ag,n; it is an ℓ-adic local system of rank 2g.

Theorem II. Let Z ⊂ ShG be a smooth locally closed subvariety that is stable under the prime-to-p
Hecke operators. Suppose that Z is not contained in the smallest Newton stratum of ShG . Let z ∈ Z(Fp)

and let Z◦ ⊂ ZFp
be the connected component of Z containing z. Then the neutral component Mgeom of

the Zariski closure of the image of the monodromy representation

ρℓ,geom : π
ét
1 (Z

◦, z)→ GL2g(Qℓ)

corresponding to Vℓ, is isomorphic to Gder
Qℓ

.

This generalises work of Chai [2005] in the Siegel case and others [Kasprowitz 2012; Xiao Xiao 2020]
in the PEL case.

In the body of the paper, we work with the integral models of Shimura varieties of Hodge type of level
Kp ⊂ G(Qp) constructed in [KMS 2022]. Here Kp is not required to be hyperspecial, for example it is
allowed to be any (connected) parahoric subgroup. Our results, namely Theorem 3.2.5 and Corollary 3.2.6,
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are proved under the assumption that Hypothesis 2.3.1 holds. This hypothesis holds for example when
GQp is quasi-split and has no factors of type D, or when Kp is hyperspecial.

We also prove results about irreducible components of smooth locally closed subvarieties that are stable
under the prime-to-p Hecke operators, in the style of [Chai 2005, Proposition 4.4], see Theorem 3.4.10.
These results are used to prove irreducibility of Ekedahl–Oort strata in [van Hoften 2020].

1.2.1. An overview of the proof of Theorem II. Since Z◦ ⊂ ShG is defined over a finite field k we can
write it as Z◦k ⊗k Fp. We can then consider the Zariski closure M of the image of

ρℓ : π
ét
1 (Z

◦

k , z)→ GL2g(Qℓ).

An argument from [Chai 2005] proves that M is (isomorphic to) a normal subgroup of GQℓ
. If Gad

Qℓ
was

a simple-group, then we would be done if we could show that M was not central in GQℓ
. However, in

general there are no primes ℓ such that Gad
Qℓ

is simple and so at this point we have to deviate from the
strategy of [Chai 2005].

Instead, we control M by studying the centraliser Ix,ℓ ⊂ GQℓ
of the image of Frobenius elements

Frobx ∈ π
ét
1 (Z

◦

k , z) corresponding to points x ∈ Zk(Fq). Since the paper [KMS 2022] makes an in-depth
study of these Frobenius elements, we can make use of their results about these centralisers. For example,
if x is not contained in the basic locus, then they prove that Frobx is not central. To get more precise
results, we need to know that the element Frobx ∈G(Qℓ) is defined over Q, which is what Hypothesis 2.3.1
makes precise.

In this way we can show that M⊂ GQℓ
is a normal subgroup that surjects onto Gad

Qℓ
. The result about

Mgeom ⊂M will be deduced from this.

1.3. A sketch of the proof of Theorem I. Let x ∈ ShG(Fp) be an ordinary point, and let Z be the Zariski
closure inside ShG,ord of the prime-to-p Hecke orbit of x . Let y ∈ Z(Fp) be a smooth point of Z . Recall
that it follows from the theory of Serre–Tate coordinates that the formal completion A/y

g,n of Ag,n at y is a
formal torus. A special case of the main result of [Shankar and Zhou 2021] tells us that

S/y
:= Sh/y

G,Fp
⊂A/y

g,n

is a formal subtorus. Work of Chai on the deformation theory of ordinary p-divisible groups [Chai
2003] tells us that the dimension of the smallest formal subtorus of S/y containing Z /y , is encoded in the
unipotent radical of the p-adic monodromy group of the isocrystal M associated to the universal abelian
variety A over Z .

Using Theorem II and results of D’Addezio [2020; 2023], we compute the monodromy group of M
over Z . It follows from this computation that the smallest formal subtorus of S/y containing Z /y is equal
to S/y .

We conclude by proving that the formal completion Z /y is a formal subtorus of S/y . By the rigidity
theorem for p-divisible formal groups of [Chai 2008], it suffices to give a representation-theoretic
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description of the Dieudonné module of S/y . Unfortunately, the description of the subtorus S/y coming out
of the work of Shankar and Zhou [2021] does not readily lend itself to understanding its Dieudonné module.

Instead, we give a different proof that S/y is a subtorus of A/y
g,n . We do this by giving a new description

of Serre–Tate coordinates in terms of actions of formal unipotent groups on Rapoport–Zink spaces,
generalising results of Howe [2020] in the case g = 1. Once we have this perspective, the results of Kim
[2019] give an explicit description of the Dieudonné module of the torus A/y

g,n as well as the Dieudonné
module of the subtorus S/y .

1.4. Outline. Sections 2 and 3 form the first part of the paper and work in a more general setting than
the rest of the paper. In Section 2 we introduce the integral models of Shimura varieties of Hodge
type constructed in [KMS 2022]. We recall results and notation from [loc. cit.], in particular, about
the Frobenius elements and their centralisers associated to Fp-points of these models. In Section 3 we
prove monodromy theorems for Hecke-stable subvarieties of the special fibres of these integral models,
combining results of [KMS 2022] with ideas of Chai [2005].

Section 4 is a standalone section on Serre–Tate coordinates. In it, we show that the classical Serre–Tate
coordinates, as described in [Katz 1981], can be reinterpreted using actions of unipotent formal groups as
in [Howe 2020]. This section should be of independent interest.

In Section 5, we specialise to the smooth canonical integral models of Shimura varieties of Hodge
type at hyperspecial level, and we moreover assume that the ordinary locus is nonempty. We reprove a
result of [Shankar and Zhou 2021], which states that the formal completion of the ordinary locus gives a
subtorus of the Serre–Tate torus, and give a group-theoretic description of its Dieudonné module. At the
end of this section we also give a short interlude on strongly nontrivial actions of algebraic groups on
isocrystals, which we will need to confirm the hypotheses of the rigidity theorem of [Chai 2008].

In Section 6, we put everything together and prove Theorem I. We end by deducing a result for Shimura
varieties of abelian type.

2. Integral models of Shimura varieties of Hodge type

Let (G, X) be a Shimura datum of Hodge type. In this section we follow [KMS 2022, Section 1.3]
and construct integral models for the Shimura varieties associated to (G, X) in a very general situation.
The main goal is to introduce various Frobenius elements γx,m,ℓ ∈ G(Qℓ) associated to Fqm -points of
these integral models, and to discuss result of [KMS 2022] about their centralisers Ix,m,ℓ. We end by
introducing Hypothesis 2.3.1, which will be assumed throughout Section 3, and prove that it holds under
minor assumptions.

2.0.1. Hodge cocharacters. If (G, X) is a Shimura datum, then for each x ∈ X there is a cocharacter
µx :Gm,C→ GC, see [KMS 2022, Section 1.2.3] for the precise definition. The G(C)-conjugacy class of
µx does not depend on the choice of x and we will write {µX } for this conjugacy class, and denote it
by {µ} if X is clear from context. This conjugacy class of cocharacters is defined over a number field
E ⊂ C, called the reflex field.
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2.1. The construction of integral models. For a symplectic space (V, ψ) over Q we write GV :=

GSp(V, ψ) for the group of symplectic similitudes of V over Q. It admits a Shimura datum HV

consisting of the union of the Siegel upper and lower half spaces. Let (G, X) be a Shimura datum of
Hodge type with reflex field E and let (G, X)→ (GV ,HV ) be a Hodge embedding.

Fix a prime p and choose a Z(p)-lattice V(p)⊂V on whichψ is Z(p)-valued, and write Vp=V(p)⊗Z(p)Zp.
Write Kp ⊂ GV (Qp) for the stabiliser of Vp in GV (Qp), and similarly write Kp for the stabiliser of Vp in
G(Qp).1 For every sufficiently small compact open subgroup K p

⊂ G(Ap
f ) we can find Kp

⊂ GV (A
p
f )

such that the Hodge embedding induces a closed immersion (see [Kisin 2010, Lemma 2.1.2])

ShK (G, X)→ ShK(GV ,HV )E

of Shimura varieties of level K = K pKp and K = KpKp, respectively. We let SK over Z(p) be the
moduli-theoretic integral model of ShK(GV ,HV ); it is a moduli space of (weakly) polarised abelian
schemes (A, λ) up to prime-to-p isogeny with level Kp-structure.

Fix a prime v | p of E and let

SK :=SK (G, X)→ SK⊗Z(p) OE,(v)

be the normalisation of the Zariski closure of ShK (G, X) in SK ⊗Z(p) OE,(v). This construction is
compatible with changing the level away from p and we define

SKp := lim
←−−

Kp⊂GV (A
p
f )

SKpKp , SKp := lim
←−−

K p⊂G(A p
f )

SK pKp .

Then, as discussed in [KMS 2022, Section 2.1], the transition maps in both inverse systems are finite
étale and moreover G(Ap

f ) acts on SKp . Let k = Fq be the residue field of OE,(v), and write ShG,Kp for
the special fibre of SKp and ShG,K pKp for the special fibre of SK pKp ; these are both schemes over k and
G(Ap

f ) acts on ShG,Kp . We will write ShGV ,KpKp for the special fibre of SKpKp ⊗Z(p) OE,(v) and ShGV ,Kp

for the special fibre of SKp ⊗Z(p) OE,(v).
Let Vp be the prime-to-p adelic Tate module of the universal abelian variety A over SKp ; this is a

pro-étale local system on SKp . For a morphism x : Spec R→ SKp we will write V
p
x for the pullback along

x of Vp. As explained in [KMS 2022, Section 2.1.1] there is a universal isomorphism

ϵ : V ⊗A
p
f ≃ Vp,

sending the symplectic form ψ to an A
p,×
f -multiple of the Weil pairing. Here A

p
f denotes the pro-étale

sheaf associated to the topological group A
p
f .

1It is explained in [KMS 2022, Section 1.3.2] that the collection of subgroups Kp ⊂ G(Qp) that can arise from this
construction by varying the symplectic space and the Hodge embedding contains all stabilisers of vertices in the extended
Bruhat–Tits building of GQp . It is moreover explained in [loc. cit.] that this collection is stable under finite intersections.
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2.1.1. Tensors. Write V⊗ for the direct sum of V⊗n
⊗ (V ∗)⊗m for all pairs of integers m ≥ 0, n ≥ 0. We

will also use this notation later for modules over commutative rings and modules over sheaves of rings.
As in [KMS 2022, Section 1.3.4], we fix tensors {sα ∈ V } ⊂ V⊗ such that G is their pointwise stabiliser

in GL(V ). Then as explained in [KMS 2022, Sections 1.3.4 and 2.1.2], there are global sections

{sα,A p
f
} ∈ H 0(SK pKp , (V

p)⊗)

such that if we restrict the isomorphism ϵ via SKp → SKp we get an isomorphism

η : V ⊗A
p
f → Vp

taking sα ⊗ 1 to sα,A p
f

for all α. In particular, for each x ∈SKp(Fp) the stabiliser of the tensors {sα,A p
f ,x
}

in GL(Vp
x ) is canonically identified with G⊗A

p
f .

2.1.2. Let Fp denote an algebraic closure of Fp. We will use Z̆p to denote the p-typical Witt vectors
W (Fp) of Fp and we set Q̆p = Z̆p[1/p]. We let σ : Z̆p→ Z̆p be the automorphism induced by Frobenius
on Fp, and also denote by σ the induced automorphism of Q̆p.

Let x ∈ ShG,K pKp(Fp) and let Dx be the rational contravariant Dieudonné module of the p-divisible
group Ax [p∞] of the abelian variety Ax , equipped with its Frobenius φ. By [KMS 2022, Proposition 1.3.7]
there are φ-invariant tensors {sα,cris,x} ⊂D⊗x and in [KMS 2022, Section 1.3.8] it is argued that there is an
isomorphism Q̆p⊗V→Dx sending 1⊗sα to sα,cris,x . See the statement of [KMS 2022, Proposition 1.3.7]
for a characterisation of the tensors sα,cris.

Under such an isomorphism, the Frobenius φ corresponds to an element bx ∈ G(Q̆p), which is well
defined up to σ -conjugacy, where σ : G(Q̆p)→ G(Q̆p) is induced by σ : Q̆p→ Q̆p. In other words, we
can associate to φ a well defined element [bx ] of the Kottwitz set B(G)= B(GQp) of [Kottwitz 1985].
By [KMS 2022, Lemma 1.3.9], the element [bx ] is contained in the neutral acceptable set B(G, {µ−1

})

consisting of the {µ−1
}-admissible elements defined in [KMS 2022, Section 1.1.5]. Here we use {µ} to

denote the G(Qp) conjugacy class of cocharacters induced by the place v of E , where we recall that {µ}
was introduced in Section 2.0.1.

It follows from [KMS 2022, Theorem 1.3.14] that there are locally closed subschemes ShG,[b],K pKp of
ShG,K pKp , called Newton strata, indexed by [b] ∈ B(G, {µ−1

}), such that

ShG,[b],K pKp(Fp)= {x ∈ ShG,K pKp(Fp) | [bx ] = [b]}

and such that

ShG,[b],K pKp ⊂

⋃
[b]′≤[b]

ShG,[b′],K pKp .

Here we are using the partial order≤ on B(G, {µ−1
}) defined in [Rapoport and Richartz 1996, Section 2.3].

2.2. Centralisers. Let x ∈ ShG,Kp(Fp) and choose a sufficiently divisible integer m such that the image
of x in ShG,K pKp(Fp) is defined over Fqm . Then the geometric qm-Frobenius Frobqm acts on V

p
x via
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tensor-preserving automorphisms and therefore determines an element

γ p
x,m ∈ G(Ap

f ),

which depends on x and m. For ℓ= p there is an element δx,m ∈ G(Qqm ), constructed in [KMS 2022,
Section 2.1.7], whose class in B(GQp) is equal to [bx ]. Moreover there is an element γx,m,p ∈ G(Qqm )

such that

γx,m,p = δx,mσ(δx,m) · · · σ
rm−1(δx,m),

where we write q = pr and where σ denotes the Frobenius on G(Qqm ).
We define Ix,A p

f
⊂ GA

p
f

to be the centraliser of γ p
x,m , which does not depend on m as long as m is

sufficiently divisible. We similarly define Ix,ℓ ⊂ GQℓ
for ℓ ̸= p to be the centraliser of the projection

γx,m,ℓ of γ p
x,m to GQℓ

for sufficiently divisible m.
We define Ix,m,p to be the algebraic group over Qp whose functor of points is given by

R 7→ {g ∈ G(Qqm ⊗Qp R) | gδx,m = δx,mσ(g)},

where σ is induced by σ : G(Qqm )→ G(Qqm ). As explained in [KMS 2022, Section 2.1.7], the base
change Ix,m,p ⊗Qqm is naturally identified with the centraliser of the semisimple element γx,m,p in
G(Qqm ), and Ix,m,p is thus reductive. We similarly define Jδx,m by its functor of points

R 7→ {g ∈ G(Q̆p⊗Qp R) | gδx,m = δx,mσ(g)}.

2.2.1. Consider the decomposition

Gad
=

n∏
i=1

Gi (2.2.1)

of Gad into simple groups over Q. Let δx,m,i and γx,m,p,i be the images of δx,m and γx,m,p in Gi (Qqm ).

Lemma 2.2.2. Let ZG be the centre of G. There is a product decomposition

Ix,m,p/ZG,Qp =

n∏
i=1

Ix,m,p,i ,

where Ix,m,p,i represents the functor on Qp-algebras sending R to

{g ∈ Gi (Qqm ⊗Qp R) | gδx,m,i = δx,m,iσ(g)}.

Similarly there is a product decomposition

Jδx,m/ZG ≃

n∏
i=1

Jδx,m,i ,

where Jδx,m,i represents the functor on Qp-algebras sending R to

{g ∈ Gi (Q̆p⊗Qp R) | gδx,m,i = δx,m,iσ(g)}.



854 Pol van Hoften

Proof. Consider the commutative diagram

Ix,m,p
∏n

i=1 Ix,m,p,i

ResQqm /Qp GQqm

∏n
i=1 ResQqm /Qp Gi,Qqm

Since the kernel of the bottom map is central and the bottom map is surjective, it follows that the natural
map Ix,p→

∏n
i=1 Ix,m,p,i is surjective. The kernel is given by the intersection of Ix,m,p with the kernel

of the bottom map and thus has the following functor of points:

R 7→ {g ∈ ZG(Qqm ⊗Qp R) | gδx,m,i = δx,m,iσ(g)}.

This forces g= σ(g) and so g ∈ ZG(R)⊂ ZG(Qqm ⊗Qp R). The same proof shows that there is a product
decomposition Jδx,m/ZG ≃

∏n
i=1 Jδx,m,i . □

Note that Ix,m,p,i ⊗Qqm can be identified with the centraliser of γx,m,p,i in Gi,Qqm as in the beginning
of Section 2.2. The centraliser of γx,m,p,i ∈ G(Q̆p) does not depend on m for m sufficiently divisible, and
thus the group Ix,m,p does not depend on m for m sufficiently divisible. We will write Ix,p for the group
Ix,m,p for sufficiently divisible m and similarly Ix,p,i for the group Ix,m,p,i . We will identify Ix,p⊗ Q̆p

with the centraliser of γx,m,p in G(Q̆p) for sufficiently divisible m and similarly we will identify Ix,p,i

with the centraliser of γx,m,p,i in Gi (Q̆p).

2.2.3. Let x ∈ ShG,Kp(Fp) and let Aut(Ax) be the algebraic group over Q with functor of points

Aut(Ax)(R)= (End(Ax)⊗Z R)×.

Following [KMS 2022, Section 2.1.3], we define I p
x to be the largest closed subgroup of Aut(Ax) that

fixes the tensors sα,A p
f ,x

and Ix ⊂ I p
x to be the largest closed subgroup that also fixes the tensors sα,cris,x .

There are natural maps Ix,Qℓ
→ Ix,ℓ for all (including ℓ = p), see [KMS 2022, Section 2.1.8] for the

ℓ= p case.
The groups Ix,ℓ are connected reductive subgroups of GQℓ

and in fact Levi subgroups over Qℓ. By
[KMS 2022, Corollary 2.1.9] for all ℓ (including ℓ= p) the natural map

Ix,Qℓ
→ Ix,ℓ

is an isomorphism. This induces a closed immersion of groups Ix,Qp → Jδx,m for some sufficiently
divisible m.

2.3. An assumption. We will need to assume the following hypothesis to prove our main monodromy
theorems in Section 3.

Hypothesis 2.3.1. For all points x ∈ ShG,Kp(Fp) and for sufficiently divisible m depending on x , there is
an element γx,m ∈ G(Q) that is conjugate to γx,m,ℓ in G(Qℓ) for all ℓ (including ℓ= p). Moreover the
G(Q)-conjugacy class of γx,m is stable under the action of Gal(Q/Q).
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If the G(Q)-conjugacy class of γx,m contains an element of G(Q), then it is clearly Galois stable.
However the converse does not necessarily hold.

Lemma 2.3.2. The hypothesis holds when Kp is hyperspecial.

Proof. If Kp is hyperspecial, then [Kisin 2017, Corollary 2.3.1] tells us that there is an element γx,m ∈G(Q)
that is conjugate to γx,m,ℓ in G(Qℓ) for all ℓ (including ℓ= p). □

Remark 2.3.3. By [KMS 2022, Corollary 2.2.14], an element γx,m ∈ G(Q) satisfying the requirements
of Hypothesis 2.3.1 exists when GQp is quasi-split and has no factors of type D.

If Kp is very special, the group GQp is tamely ramified and satisfies p ∤ 2 · #π1(Gder) and π1(G)I is
torsion free, where I ⊂ Gal(Qp/Qp) is the inertia group, then the existence of an element γx,m ∈ G(Q)
satisfying the requirements of Hypothesis 2.3.1 follows from Theorem I of [van Hoften 2020].

If p > 2, if Kp is a very special parahoric subgroup and if the triple (G, X, Kp) is acceptable in the
sense of [Kisin and Zhou 2021, Definitions 5.2.6 and 5.2.9], then [Kisin and Zhou 2021, Theorem 6.1.4]
proves the existence of an element γx,m ∈ G(Q) satisfying the requirements of Hypothesis 2.3.1.

Remark 2.3.4. When GQp is not quasi-split, one should probably not expect that the G(Q)-conjugacy
class of γx,m always contains an element of G(Q). This is because CM lifts do not exist in general when
GQp is not quasi-split. However, we expect Hypothesis 2.3.1 to hold in full generality.

For example, let x ∈ ShG,Kp(Fp) be a point corresponding to the good reduction of an abelian variety
defined over a number field and assume that p > 2. Then [Kisin and Zhou 2021, Theorem 7.2.4] tells us
that there is an element γx,m ∈ G(Q) satisfying the requirements of Hypothesis 2.3.1.

2.3.5. We end by deducing a consequence of Hypothesis 2.3.1 that will be used in Section 3. Let G∗

denote the quasi-split inner form of G over Q and let 9 : G⊗Q→ G∗⊗Q be an inner twisting. This
means that every τ ∈ Gal(Q/Q) satisfies

9(τ(g))= hτ τ(9(g))h−1
τ

for some element hτ ∈ G∗(Q). A direct consequence of this definition is that the image under ψ of a
Gal(Q/Q)-stable G(Q)-conjugacy class is a Gal(Q/Q)-stable G∗(Q)-conjugacy class.

Lemma 2.3.6. Suppose that Hypothesis 2.3.1 holds and let γx,m ∈G(Q) be the element that is guaranteed
to exist by that Hypothesis. Then for sufficiently divisible m the element 9(γx,m) is G∗(Q)-conjugate to
an element in G∗(Q).

Proof. If m is sufficiently divisible, then the centraliser of γx,m is connected because this is true for γx,m,ℓ

and the formation of centralisers commutes with base change. Since G∗ is quasi-split and the element
9(γx,m) is semisimple with connected centraliser, we may apply [Kottwitz 1982, Theorem 4.7(2)] which
tells us that the G∗(Q)-conjugacy class of 9(γx,m) contains an element of G∗(Q). □
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3. Monodromy of Hecke-invariant subvarieties

In this section we prove an ℓ-adic monodromy theorem in the style of Chai, see [Chai 2005] and [Xiao
Xiao 2020; Kasprowitz 2012], for prime-to-p Hecke stable subvarieties of Shimura varieties of Hodge
type in characteristic p. We expect the results in this section to be of independent interest, at least beyond
the hyperspecial case that we will use in the rest of this article.

In Section 3.1 we establish formal properties of subvarieties Z of Shimura varieties of Hodge type in
characteristic p that are stable under prime-to-p Hecke operators. Using techniques from [Chai 2005],
we prove that the ℓ-adic monodromy groups of the universal abelian variety over such Z are normal
subgroups of GQℓ

, this is stated as Corollary 3.1.16.
In Section 3.2 we use the results from [KMS 2022] in combination with Hypothesis 2.3.1 to prove

Theorem 3.2.5 and Corollary 3.2.6; the latter is a generalisation of Theorem II. In Section 3.3 we combine
this theorem with results of D’Addezio [2020] to deduce results about the p-adic monodromy groups of
the universal abelian variety over Hecke stable subvarieties.

Finally, in Section 3.4 we prove results about irreducible components of Hecke stable subvarieties in
the style of [Chai 2005, Proposition 4.5.4]. We will not use these results in the rest of this article and so
this section can safely be skipped for the reader only interested in the proof of Theorem I.

3.1. Arithmetic monodromy groups I. Let the notation be as in Section 2. In this section we are going
to study arithmetic monodromy groups of Hecke stable subvarieties of ShG,K pKp . For maximal generality,
we do not assume that these are defined over k = Fq and so from now on we will implicitly base change
the Shimura variety ShG,K pKp to an unspecified finite extension of k, which we will also denote by k.

The morphism π : ShG,Kp → ShG,K pKp is a pro-étale K p-torsor over ShG,K pKp such that the action of
K p
⊂ G(Ap

f ) extends to an action of G(Ap
f ). Let Z ⊂ ShG,K pKp be a locally closed subscheme and let Z̃

be the inverse image of Z under π . We say that Z is stable under the prime-to-p-Hecke operators, or that
Z is G(Ap

f )-stable, if Z̃ is G(Ap
f )-stable.

For the rest of this section ℓ will be used to denote a prime number not equal to p. For such ℓ we let
Kℓ be the image of K p in G(Qℓ) under the projection G(Ap

f )→ G(Qℓ). We let

πℓ : ShG,Kp ×
K p

Kℓ→ ShG,K pKp (3.1.1)

be the induced pro-étale Kℓ-torsor. For Z ⊂ ShG,K pKp a locally closed subscheme, we will write Zℓ for
the inverse image of Z under πℓ. We say that Z is stable under the ℓ-adic Hecke operators, or that Z is
G(Qℓ)-stable, if Zℓ is G(Qℓ)-stable. When discussing G(Qℓ)-stable Z we will always implicitly work
with ℓ ̸= p. If Z is G(Ap

f )-stable, then it is automatically G(Qℓ)-stable for all ℓ ̸= p.
All the results in this section will be stated for smooth Z , and the following lemma will be used to

reduce to the smooth case in the proof of Theorem I.

Lemma 3.1.1. Let Z ⊂ ShG,K pKp be a locally closed subscheme that is stable under the action of G(Ap
f )

(respectively G(Qℓ)), then the smooth locus U ⊂ Z is also stable under this action.
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Proof. For g ∈ G(Ap
f ) and K p

⊂ G(Ap
f ) there is a finite étale correspondence

ShG,(K p∩gK pg−1)Kp

ShG,K pKp ShG,gK pg−1 Kp ShG,K pKp

p1

p2

g

and the assumption that Z̃ is stable under the action of g is equivalent to the statement that the inverse
image of Z under p1 is the same as the inverse image of Z under g ◦ p2 for all choices of K p. Because
all the maps in the diagram are finite étale, the same is true for the smooth locus U of Z . Therefore the
inverse image Ũ of U under π is stable under the action of g ∈ G(Ap

f ). □

Lemma 3.1.2. Let Z ⊂ Y ⊂ ShG,K pKp be locally closed and G(Ap
f )-stable (resp. G(Qℓ)-stable) subvari-

eties. Then the closure of Z in Y is also stable under G(Ap
f ) (resp. G(Qℓ)).

Proof. This follows in the same way as in the proof of Lemma 3.1.1 from the fact that the prime-to-p
Hecke correspondences are finite étale; indeed finite étale maps are open and closed, and thus take closures
to closures. □

3.1.3. Some general topology. Let {X i }i∈I be a countably indexed cofiltered inverse system of finite type
schemes over a field k with surjective affine transition maps. Let X = lim

←−−i X i be the inverse limit, it is
a nonempty quasi-compact scheme by [Stacks 2020, Lemma 01Z2]. Recall that for a quasi-compact
scheme Y there is a profinite topological space π0(Y ) of connected components of Y .

Lemma 3.1.4. The natural map
π0(X)→ lim

←−−
i
π0(X i ) (3.1.2)

is a homeomorphism.

Proof. The left hand side of (3.1.2) is a profinite topological space by [Stacks 2020, Lemma 0906] and the
right hand side of (3.1.2) is visibly an inverse limit of finite sets. Hence both sides are compact Hausdorff
topological spaces and to show that the map is a homeomorphism it suffices to show that it is a bijection.

To show that the natural map is a bijection, we construct an explicit inverse. Any compatible system
of connected components {Vi }i∈I of {X i }i∈I has nonempty and quasi-compact inverse limit V ⊂ X by
[Stacks 2020, Lemma 0A2W]. To prove that V is connected we suppose that there are nonempty open
and closed subsets W and W ′ of V such that V = W

∐
W ′. Then W and W ′ are quasi-compact open

because V is quasi-compact.
Now [Stacks 2020, Lemma 0A30.(1)] tells us that we can find i and (nonempty) constructible quasi-

compact open subsets Z , Z ′ of Vi such that W is the inverse image of Z under V → Vi and similarly W ′

is the inverse image of Z ′ under V → Vi . In particular, the subsets Z and Z ′ are disjoint nonempty open
subsets of Vi , which gives us a contradiction since Vi is connected.

We have produced a map lim
←−−i π0(X i )→ π0(X) and it is not hard to check that it is an inverse of the

natural map from the lemma; this concludes the proof. □
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Corollary 3.1.5. Let Z ⊂ ShG,K pKp be a G(Ap
f )-stable (resp. G(Qℓ)-stable) locally closed subscheme of

ShG,K pKp and let Z̃ be as above. Then π0(Z̃) is equipped with a continuous action of G(Ap
f ) (respectively

π0(Zℓ) is equipped with a continuous action of G(Qℓ)).

Proof. The existence of the action follows from the existence of the action on Z̃ (resp. Zℓ). The continuity
follows from the continuity of the action of K p on lim

←−−K p Z K p (resp. the continuity of the action of Kℓ on
Zℓ) and Lemma 3.1.4. □

The following lemma is only a slight generalisation of [Chai 2005, Lemma 2.8], but we include a proof
for the benefit of the reader.

Lemma 3.1.6. Let X be a second-countable compact Hausdorff topological space with a transitive and
continuous action of a locally profinite topological group G. Let x ∈ X with stabiliser Gx ⊂ G, then the
orbit map

O : G/Gx → X

is a homeomorphism.

Proof. We can write G as the increasing union of countably many compact open sets, for example by
using finite unions of cosets of a compact open subgroup K ⊂G. Since the quotient map G→G/Gx is
open for any topological group, it follows that G/Gx can be written as the increasing union of countably
many compact open subsets.

Since the orbit map is surjective, the topological space X can be written as a countable union of the
compact subsets O(U ) for U ⊂ G/Gx compact open. Because X is second-countable it is metrisable by
Urysohn’s metrisation theorem and thus the Baire category theorem tells us that there exists a compact
open subset U of G/Gx such that O(U ) contains an open subset W of X .

Choose a compact open subset V ⊂ U such that O(V ) ⊂ W . Then O : V → O(V ) is a continuous
bijection between compact Hausdorff topological spaces and hence a homeomorphism. Now note that G

acts transitively on both G/Gx and on X . Hence by moving around V we see that any point of y ∈G/Gx

has an open neighbourhood Vy such that the natural map O : Vy→ O(Vy) is a homeomorphism, and we
conclude that O is a homeomorphism. □

3.1.7. Lie groups over ℓ-adic local fields. Recall that a topological group M is called an ℓ-adic Lie group
if it admits the (necessarily unique) structure of an ℓ-adic Lie group; see [Glockner 2016, Definition 2.1,
Proposition 2.2]. If M is an ℓ-adic Lie group, then by definition there is a finite-dimensional Qℓ-Lie
algebra Lie M , an open neighbourhood U ⊂ Lie M of the identity and an exponential map Exp :U → M
that is a homeomorphism onto a compact open subgroup of M . For example for an algebraic group H
over Qℓ the topological group H(Qℓ) is an ℓ-adic Lie group with Lie algebra Lie H(Qℓ)= Lie H .

Lemma 3.1.8. Let H be an algebraic group over Qℓ and let M ⊂ H(Qℓ) be a subgroup that is compact
in the subspace topology. Then M is an ℓ-adic Lie group and the morphism M→ H(Qℓ) is a morphism
of ℓ-adic Lie groups. Moreover, the induced Lie subalgebra Lie M ⊂ Lie H(Qℓ)= Lie H satisfies

[Lie M,Lie M] = [Lie M,Lie M],
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where the bracket notation means the commutator of two Lie subalgebras and where M is the Zariski
closure of M.

Proof. The group M is an ℓ-adic Lie group by [Glockner 2016, Proposition 2.3] and the morphism
M→ H(Qℓ) is a morphism of ℓ-adic Lie groups by [Glockner 2016, Proposition 2.2]. This implies that
there is an induced morphism on Lie algebras Lie M→ Lie H(Qℓ)= Lie H .

Since M ⊂M(Qℓ) is Zariski dense, it follows that the smallest algebraic subgroup of H whose Lie
algebra contains Lie M is equal to M; indeed, if there is a smaller algebraic subgroup M′ ⊂ M with
Lie M ⊂ Lie M′, then we see using the ℓ-adic exponential map that there is a compact open (hence finite
index) subgroup of M contained in M′(Qℓ). This contradicts the fact that M is Zariski dense in M.

The fact that the smallest algebraic subgroup of H whose Lie algebra contains Lie M is equal to
M is expressed as a(Lie M) = Lie M in the notation of [Borel 1991, Section 7.1]. By [Borel 1991,
Corollary 7.9] we have the following equality of Lie subalgebras of Lie H

[Lie M,Lie M] = [a(Lie M), a(Lie M)] = [Lie M,Lie M]. □

Lemma 3.1.9. Let M be a semisimple algebraic group over Qℓ and let M ⊂M(Qℓ) be a subgroup closed
in the ℓ-adic topology. If M equipped with the subspace topology is compact and M is Zariski dense in M,
then M is a compact open subgroup of M(Qℓ).

Proof. It follows from Lemma 3.1.8 that M is an ℓ-adic Lie group, that M→M(Qℓ) is a morphism of ℓ-
adic Lie groups and that the Lie algebra of M is equal to the Lie algebra of M, since M is semisimple. Now
we can use the exponential map for ℓ-adic Lie groups to show that M contains a compact open subgroup
of M(Qℓ). Since M is itself compact, this implies that M is also a compact open subgroup of M(Qℓ). □

3.1.10. The main theorem of Galois theory for schemes tells us that the category of finite-étale covers of a
smooth connected scheme Z over k is equivalent to the category of finite sets equipped with a continuous
action of π ét

1 (Z , z). Under this equivalence, a finite étale cover f : Y → Z is sent to the finite set f −1(z)
equipped with its action of π ét

1 (Z , z). In particular, the set of connected components of Y is in bijection
with the set of orbits of π ét

1 (Z , z) on f −1(z).
If f : Y → Z is a countably indexed inverse limit of finite étale covers fi : Yi → Z with surjective

transition maps, then we can associate to f the profinite set

f −1(z)= lim
←−−

i
f −1
i (z),

equipped with its natural continuous action of π ét
1 (Z , z). By Lemma 3.1.4 it follows that the profinite

set of orbits of π ét
1 (Z , z) on f −1(z) is homeomorphic to the topological space of connected components

of Y .

3.1.11. Now let Z be a smooth G(Qℓ)-stable locally closed subscheme of ShG,K pKp , let Z◦ ⊂ Z be a
connected component of Z , and let z ∈ Z◦(Fp). Let πℓ be as in (3.1.1) and write Zℓ for the inverse image
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of Z under πℓ as above; it is stable under the action of G(Qℓ) by assumption. Denote by Z◦ℓ the inverse
image of Z◦ under πℓ, then Z◦ℓ → Z◦ is a profinite étale Kℓ-torsor.

By the Galois theory for schemes discussed above, the cover πℓ : Z◦ℓ→ Z◦ corresponds to the profinite
set π−1

ℓ (z) equipped with its natural action of π ét
1 (Z

◦, z). In particular, the set of connected components
of Z◦ℓ corresponds to the set of orbits of π ét

1 (Z
◦, z) on π−1

ℓ (z).
Choose an element z̃ ∈ π−1

ℓ (z). Then using the simply transitive action of Kℓ on π−1
ℓ (z) we can

identify π−1
ℓ (z) with Kℓ; under this identification the chosen element z̃ is send to 1 ∈ Kℓ. This defines a

continuous group homomorphism
ρℓ : π

ét
1 (Z

◦, z)→ Kℓ,

whose conjugacy class does not depend on the choice of z̃. Let y ∈ π0(Z◦ℓ) be the connected component
containing z̃. Then the stabiliser of y in Kℓ is equal to the image of ρℓ.

Let Py ⊂ G(Qℓ) be the stabiliser of y in G(Qℓ). It is a closed topological subgroup by the continuity
of the action and the fact that π0(Zℓ) is Hausdorff. Its intersection with Kℓ gives us the stabiliser of y
in Kℓ. The action map gives us a continuous map

G(Qℓ)/Py→ π0(Zℓ), g 7→ g · y

with image the orbit Orb(y) of y.

Lemma 3.1.12. The orbit Orb(y) is open and closed inside of π0(Zℓ). Moreover the orbit map induces a
homeomorphism G(Qℓ)/Py ≃ Orb(y); in particular, G(Qℓ)/Py is compact.

Proof. The identification
π0(Zℓ)/Kℓ ≃ π0(Z).

tells us that there are finitely many Kℓ-orbits on π0(Zℓ), and that each of them is open and closed. The
G(Qℓ)-orbit of a point y is then a union of finitely many Kℓ-orbits, and thus also open and closed.
Lemma 3.1.12 shows that Orb(y) is open and closed inside a second-countable profinite topological space.
Therefore Orb(y) is profinite and second-countable. The result now follows from Lemma 3.1.6. □

Let M be the image of ρℓ and let M be the neutral component of its Zariski closure inside G(Qℓ). Let
ρℓ,geom be the restriction of ρℓ to

π ét
1 (Z

◦

Fp
, z)⊂ π ét

1 (Z
◦, z),

let Mgeom be its image and let Mgeom be the neutral component of its Zariski closure inside G(Qℓ).

Lemma 3.1.13. The groups M and Mgeom are connected reductive groups over Qℓ.

Proof. There is a short exact sequence (e.g., by [D’Addezio 2020, Proposition 3.2.7])

1→M′geom→M→ Q→ 1, (3.1.3)

where Q is a commutative algebraic group of multiplicative type and where M′geom is a closed subgroup
of M with neutral component given by Mgeom. In particular, it follows that M is reductive if Mgeom is
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reductive. The representation

π ét
1 (Z

◦, z)→ Kℓ→ G(Qℓ)→ GL(V )(Qℓ)

is the monodromy representation of the (rational) ℓ-adic Tate module of the abelian scheme π :
A→ ShG,K pKp coming from the Hodge embedding ShG,K pKp → ShGV ,KpKp . This is an ℓ-adic sheaf
F0 on Z◦ which is pure of weight one. Then [Deligne 1980, Theorem 3.4.1.(iii)] tells us that the
basechange F of F0 to Z◦

Fp
is semisimple. This base change corresponds to the composition of ρℓ,geom

with Kℓ→G(Qℓ)→GL(V )(Qℓ). Now [Deligne 1980, Corollary 1.3.9] tells us that Mgeom is a semisimple
algebraic group, and thus that it is reductive. □

3.1.14. Let N be the normaliser of M in GQℓ
and let N◦ be its neutral component. The group N◦ is a

connected reductive group because we are working with reductive groups in characteristic zero; see, e.g.,
[Conrad et al. 2015, Proposition A.8.12].

Lemma 3.1.15. The group Py is contained in N.

Proof. Let γ ∈ Py , then we want to show that γ normalises M. If V is a compact open subgroup of
G(Qℓ) contained in Kℓ, then V ∩ Py ⊂ M . Moreover for every γ ∈ Py we can find an open subgroup
U ⊂ G(Qℓ) such that γUγ−1

⊂ V . For example, we can just take the intersection of V with γ V γ−1.
For such U the open subgroup M ∩U of M satisfies γ (M ∩U )γ−1

⊂ M .
Since conjugation by γ is a homeomorphism in the Zariski topology, we see that the Zariski closure

of M ∩U is moved under conjugation by γ into the Zariski closure of M . But since M ∩U is an open
subgroup of M it is also a closed subgroup and thus compact and thus of finite index in M . This means
that the Zariski closure of M ∩U and the Zariski closure of M have the same identity component, both
of which are equal to M. Since conjugation preserves 1, this mean it sends M to M. □

Corollary 3.1.16. The Zariski closure M of M is a normal subgroup of GQℓ
.

Proof. The group G(Qℓ)/N(Qℓ) is compact, because it is a quotient of G(Qℓ)/Py which is compact.
Since N◦(Qℓ) is finite index in N(Qℓ), it follows that G(Qℓ)/N

◦(Qℓ) is also compact. Since N◦ is
connected it follows from [Borel and Tits 1965, Propositions 8.4 and 9.3] that it contains a parabolic
subgroup of GQℓ

and because it is reductive it follows that N◦ = GQℓ
. Therefore N◦ = N= GQℓ

and we
find that M is a normal subgroup of GQℓ

. □

3.2. Arithmetic monodromy groups II. So far we have not excluded the possibility that M is contained
in the centre of GQℓ

. In fact, this happens when Z is the supersingular locus inside the modular curve.
Thus we will need additional assumptions on Z to prove that M is not central.

We will show, using the results of [KMS 2022], that if Z contains a point x ∈ Z(Fqm ) not contained
in the smallest Newton stratum, then the image of Frobx under ρℓ is noncentral. If Gad

Qℓ
were a simple

group over Qℓ, then this would force M to contain Gder
Qℓ

. However Gad is generally not a simple group
over Q, and even if it were simple then there would generally be no primes ℓ where Gad

Qℓ
is simple. To

deal with these issues, we will make use of Hypothesis 2.3.1.
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3.2.1. Recall that for a point x ∈ Z◦(Fqm ), there is a Frobenius element

Frobx ∈ π
ét
1 (Z

◦, z),

whose image under ρℓ is the element γx,m,ℓ ∈ G(Qℓ) from Section 2.2. If m is sufficiently divisible, then
its centraliser is equal to the group Ix,ℓ.

3.2.2. The decomposition Gad
=

∏n
i=1 Gi of (2.2.1) induces maps

B(GQp)→ B(Gad
Qp
)→

n∏
i=1

B(Gi,Qp).

For an element [b] ∈ B(GQp) we will write [bi ] for its image in B(Gi,Qp) under this map. Recall,
see[Kret and Shin 2021, Definition 5.3.2], that an element [b] ∈ B(G, {µ−1

}) is called Q-nonbasic if [bi ]

is nonbasic for all i . A Newton stratum ShG,[b],K pKp is called Q-nonbasic if [b] is Q-nonbasic.

Proposition 3.2.3. Let x ∈ Z◦(Fqm ) for some sufficiently divisible m and let [b] = [bx ] ∈ B(G, {µ−1
}).

Assume that Hypothesis 2.3.1 holds. If [bi ] is nonbasic, then the image of ρℓ(Frobx,m) under

G(Qℓ)→ Gad(Qℓ)→ Gi (Qℓ)

is nontrivial. Moreover, the image of ρℓ(Frobx,m) in each simple factor of Gi,Qℓ
over Qℓ is nontrivial.

Proof. Let m be sufficiently divisible and let γx,m ∈ G(Q) be the element guaranteed to exist by
Hypothesis 2.3.1. Let G∗ denote the quasi-split inner form of G over Q and let 9 : G⊗Q→ G∗⊗Q be
an inner twisting. Then by Lemma 2.3.6 there is an element γ ′x,m ∈ G∗(Q) that is conjugate to 9(γx,m)

in G∗(Q). We will write I ′x ⊂ G∗ for the centraliser of γ ′x,m . Recall that by Hypothesis 2.3.1 for all ℓ
(including ℓ= p) the element 9−1(γx,m) is conjugate to γx,m,ℓ in G(Qℓ).

By the classification of adjoint algebraic groups we can find number fields2 F1, . . . , Fn and absolutely
simple adjoint algebraic groups Hi over Fi for each i = 1, . . . , n such that

Gad
=

n∏
i=1

ResFi/Q Hi =

n∏
i=1

Gi .

We have a similar decomposition for G∗,ad with Hi replaced by its quasi-split inner form H∗i and we will
write G∗i for the restriction of scalars from Fi to Q of H∗i .

Let γ ′x,m,i ∈ G∗i (Q)= H∗i (Fi ) be the image of γ ′x,m and let Cx,i ⊂ H∗i be its centraliser. Then there is
a product decomposition

I ′x/ZG ≃

n∏
i=1

ResFi/Q Cx,i =

n∏
i=1

I ′x,i .

Let b = bx ∈ G(Q̆p) for sufficiently divisible m be as in Section 2.1.2. Then Equation (2.2.1) shows
that there is a product decomposition Jb/ZG,Qp ≃

∏n
i=1 Jbi , where each Jb,i is the twisted centraliser

2By the classification of Shimura varieties of abelian type in [Milne 2005, Appendix B], each Fi is totally real.
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of the image bi of b in Gi (Q̆p). Moreover the natural inclusion Ix,p→ Jb induces closed immersions
Ix,p,i → Jbi . As in [KMS 2022, Section 1.1.4], there is an inclusion Jb,i,Q̆p

→ Gi,Q̆p
, identifying its

image with the centraliser Mνbi
of the fractional cocharacter νbi of Gi ⊗ Q̆p attached to bi . If [bi ] is not

basic, then νbi is not central and so Dim Jb,i = Dim Mνbi
< Dim Gi and so Dim Ix,p,i < Dim Gi .

The subgroup

9−1(I ′
x,Qp

)⊂ GQp

can be identified with the centraliser of γx,m,p for m sufficiently divisible, and it follows that

9−1(I ′
x,i,Qp

)⊂ Gi,Qp

can be identified with the centraliser of the image of γx,m,p,i in Gi,Qp
. In particular, the group I ′

x,i,Qp
is

conjugate to Ix,i,p,Qp
and therefore of the same dimension.

The upshot of the above discussion is that Dim I ′x,i < Dim Gi if bi is not basic. It follows that the
inclusion Ix,i,Qℓ

⊂ Gi,Qℓ
is not an equality for ℓ ̸= p and thus that the image of ρℓ(Frobx,m) in Gi (Qℓ) is

nontrivial.
To deduce the last statement of Proposition 3.2.3, we note that it suffices to show that the image of

γx,m,i in every simple factor of Gi,Qℓ
is noncentral. For this, we fix i and a prime number ℓ.

Then we can write G∗i,Qℓ
as a product indexed by primes p of Fi dividing ℓ

G∗i,Qℓ
=

∏
p|ℓ

ResFi,p/Qℓ
H∗i,Fi,p

.

The element γx,m,i is noncentral in H∗i (Fi ) and thus also noncentral in H∗i (Fi,p) for all primes p of Fi

dividing ℓ, and thus we are done. □

Remark 3.2.4. When bi is basic then the inclusion Ix,i,Qp ⊂ Jb,i should be an equality and the image of
ρℓ(Frobx,m) in Gi (Qℓ) should be trivial for all ℓ ̸= p. This is true when Kp is a very special parahoric
subgroup, see the proof of [He et al. 2021, Proposition 5.2.10].

We now state and prove our main arithmetic monodromy theorem.

Theorem 3.2.5. Let Z ⊂ ShG,K pKp be a smooth G(Qℓ)-stable locally closed subvariety. Let Z◦ ⊂ Z be
a connected component and choose a point z ∈ Z◦(Fp). Let M be the neutral component of the Zariski
closure of the image of

ρℓ : π
ét
1 (Z

◦, z)→ Kℓ→ G(Qℓ).

Assume that Hypothesis 2.3.1 holds. Then M is a normal subgroup of GQℓ
surjecting onto Gi,Qℓ

for all i
such that there is a point x ∈ Z◦(Fp) with bx,i nonbasic.

When (G, X)= (GV ,HV ), then this is closely related to [Chai 2005, Corollary 3.5].

Proof. Corollary 3.1.16 proves that M⊂GQℓ
is a normal subgroup. For x ∈ Z◦(Fp) we have the Frobenius

element ρℓ(Frobx,m)= γx,m,ℓ ∈ M , for all sufficiently divisible m, where we recall that M is the image
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of ρℓ. Thus γx,m,ℓ is contained in the Zariski closure of M and thus after replacing m by a power we may
assume that γx,m,ℓ ∈M, the neutral component of the Zariski closure of M .

If x ∈ Z◦(Fp) is a point with bx,i nonbasic, then Proposition 3.2.3 tells us that the image of γx,m,ℓ in
Gi,Qℓ

is nonzero and thus the image of M in Gi,Qℓ
is nonzero. This image is moreover normal, so to

show that it is equal to Gi,Qℓ
it suffices to show that it maps nontrivially to every simple factor of Gi,Qℓ

over Qℓ. But this follows from the last line of the statement of Proposition 3.2.3. □

Corollary 3.2.6. Let Z ⊂ ShG,K pKp,Fp
be a smooth G(Qℓ)-stable locally closed subscheme as before, let

Z◦ ⊂ Z be a connected component and fix z ∈ Z◦(Fp). Let Mgeom be the neutral component of the Zariski
closure of the image of

π ét
1 (Z

◦

Fp
, z)→ Kℓ→ G(Qℓ).

Assume that Hypothesis 2.3.1 holds. Then Mgeom is a normal subgroup of GQℓ
surjecting onto Gi,Qℓ

for
all i such that there is a point x ∈ Z◦(Fp) with bx,i nonbasic. If we can find such a point for all i , then
Mgeom = Gder

Qℓ
.

Proof. The subscheme Z is defined over a finite extension of k, and so we can speak of its arithmetic
monodromy group M. Theorem 3.2.5 tells us that M surjects onto Gi,Qℓ

for all i such that there is a point
x ∈ Z◦(Fp)with bx,i nonbasic. We now claim that Mgeom and M have the same image in Gi,Qℓ

for all such i .
It follows from the short exact sequence (3.1.3) that Mgeom ⊂M is a normal subgroup with abelian

cokernel. Let Mgeom,i be the image of Mgeom in Gi,Qℓ
and let Mi be the image of M in Gi,Qℓ

. Then
Mgeom,i ⊂Mi is a normal subgroup with abelian cokernel. Given an integer i with 1≤ i ≤ n such that
there is a point x ∈ Z◦(Fp) with bx,i nonbasic, then Mi =Gi,Qℓ

and therefore Mi has no nontrivial abelian
quotients. Thus it follows that the inclusion Mgeom,i ⊂Mi is an equality.

If we can find a point x with bx,i nonbasic for all i , then Mgeom surjects onto Gad
Qℓ

and is moreover
semisimple by [Deligne 1980, Corollary 1.3.7]. It must therefore be equal to Gder

Qℓ
. □

3.3. p-adic monodromy groups. In this subsection we record a consequence of Theorem 3.2.5 in
combination with the main results of [D’Addezio 2020; 2023].

Recall the following notions from [D’Addezio 2020, Section 2.2]. Write F-Isoc(S) for the Qp-linear
Tannakian category of F-isocrystals over a smooth finite type scheme S over Fp and write F-Isoc†(S) for
the Qp-linear Tannakian category of overconvergent F-isocrystals over S. There is a natural fully faithful
embedding F-Isoc†(S)⊂ F-Isoc(S) which sends an overconvergent F-isocrystal M† to the underlying
F-isocrystal M. Similarly we write Isoc†(S) and Isoc(S) for the Q̆p-linear category of (overconvergent)
isocrystals over S. There are natural faithful forgetful functors from (overconvergent) F-isocrystals to
(overconvergent) isocrystals.

3.3.1. The morphism ShG,K pKp → ShGV ,KpKp gives us an abelian scheme π : A→ ShG,K pKp and we
consider the F-isocrystal

M := R1π∗Ocris,A[1/p],
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which is overconvergent by [Étesse 2002, Theorem 7]. Then [KMS 2022, Corollary 1.3.13] proves that
there is an exact Qp-linear tensor functor (the p-adic realisation functor)

Relp : RepQp
G→ F-Isoc(ShG,K pKp) (3.3.1)

such that the representation GQp → GV → GLV coming from the choice of Hodge embedding is sent to
the F-isocrystal M.

Lemma 3.3.2. This morphism factors via an exact Qp-linear tensor functor

Relp : RepQp
G→ F-Isoc†(ShG,K pKp), (3.3.2)

which we will also denote by Relp.

Proof. Since F-Isoc†(ShG,K pKp)⊂ F-Isoc(ShG,K pKp) is a full subcategory, it suffices to show that Relp(W )

is overconvergent for each representation W of GQp . We follow the proof of [KMS 2022, Corollary 1.3.13].
As explained there, each W can be written as the kernel of a map e : Vm,n→ Vm′,n′ , where

Vm,n = V⊗m
⊗ V ∗,⊗n.

Since M = Relp(V ) is overconvergent and the category of overconvergent isocrystals is stable under
tensor products, duals and direct sums by [Berthelot 1996, Remark 2.3.3(iii)], we see that Relp(Vm,n) is
overconvergent. Since Relp is exact, we see that Relp(W ) can be written as the kernel of a map between
overconvergent F-isocrystals, and is thus overconvergent. □

Given a smooth locally closed subscheme Z ⊂ ShG,K pKp,Fp
and a point z ∈ Z(Fp), there are monodromy

groups

Mon(Z ,M, z)⊂Mon(Z ,M†, z),

which are algebraic groups over Q̆p, see the introduction of [D’Addezio 2023]. They are defined to be the
Tannakian groups corresponding to the smallest Tannakian subcategory of Isoc(Z) respectively Isoc†(Z)
containing M, via the fibre functor ωz

ωz : Isoc(Z)→ Isoc(Fp)= Vect
Q̆p
.

We will often omit the chosen point z from the notation since the monodromy group does not depend on
z up to isomorphism.

Fix an isomorphism Dz := ωz(M†)→ V ⊗ Q̆p sending ωz(sα)= sα,cris,z to sα⊗ 1. This identifies the
composite

ωz ◦Relp : RepQp
G→ Vect

Q̆p

with the standard fibre functor, tensored up to Q̆p. Thus if we apply Tannakian duality to (3.3.1) and
(3.3.2), we get inclusions

Mon(Z ,M, z)⊂Mon(Z ,M†, z)⊂ G
Q̆p
.
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Corollary 3.3.3. Let Z ⊂ ShG,K pKp be a smooth locally closed subscheme and assume that there is a
prime ℓ ̸= p such that Z is G(Qℓ)-stable. Suppose that Z◦ contains a point x such that bx,i is nonbasic
for all i . If Hypothesis 2.3.1 holds, then there is an equality of subgroups of G

Q̆p

Mon(Z◦,M†)= Gder
Q̆p
.

Proof. Let ℓ be as in the statement of the Corollary. Then it follows from Corollary 3.2.6 that the ℓ-adic
monodromy group Mgeom of the abelian variety over Z is equal to Gder

Qℓ
. It follows from [D’Addezio

2020, Theorem 1.2.1] (compare [Pál 2022]) that there is an isomorphism of algebraic groups

Mon(Z◦,M†)⊗Qp ≃ Gder
⊗Qp.

Therefore Mon(Z◦,M†)⊂ G⊗ Q̆p is a subgroup which is isomorphic to Gder over Qp. It follows that
Mon(Z◦,M†) is equal to its own derived subgroup and therefore contained in Gder

⊗ Q̆p. This inclusion
has to be an isomorphism for dimension reasons, because both groups are connected. □

From now on we will assume that Z is contained in a single Newton stratum ShG,[b],K pKp of ShG,K pKp .
This means that for every representation W of GQp the Newton polygon of Relp(W ) is constant. As
explained in [D’Addezio 2023, Section 4.3] (cf. [Katz 1979]), this implies that Relp(W ) admits a (unique)
slope filtration Relp(W )•. There is an induced slope filtration on ωz(Relp(W )), which gives a fractional
cocharacter λW of GL(ωz(Relp(W ))). Since this construction is functorial in W, it defines a fractional
cocharacter λ of G

Q̆p
. On the other hand, there is an element b= bz ∈G(Q̆p) correspond to the Frobenius

of Dz = ωz(M†)= V ⊗ Q̆p; let νb be the Newton cocharacter of b.

Lemma 3.3.4. There is an equality λ= νb.

Proof. It suffices to show that λ= νb after composing with G⊗ Q̆p→GL(V )=GL(ωz(M†)). But both
of these fractional cocharacters of GL(V ) are per definition the slope cocharacters of the F-isocrystal
ωz(M†). Indeed, this is true for λ per definition and for νb by its construction; see [Kottwitz 1985,
Section 4]. □

Under our assumption that Z is contained in a single Newton stratum ShG,[b],K pKp of ShG,K pKp we
note that the monodromy group

Mon(Z◦,M)⊂ G
Q̆p

of a connected component Z◦ of Z is contained in the parabolic subgroup P(λ) associated to λ, as
explained in [D’Addezio 2023, Section 4.1].

Corollary 3.3.5. Let Z ⊂ ShG,K pKp be a smooth locally closed subscheme and assume that there is a
prime ℓ ̸= p such that Z is G(Qℓ)-stable. Let Z◦ be a connected component of Z and suppose that Z◦ is
contained in a single Q-nonbasic Newton stratum ShG,[b],K pKp . If Hypothesis 2.3.1 holds, then the p-adic
monodromy group

Mon(Z◦,M)⊂Mon(Z◦,M†)= Gder
Q̆p
⊂ G

Q̆p
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is equal to the intersection

Gder
Q̆p
∩ P(λ).

In particular, the unipotent radical of Mon(Z◦,M) is isomorphic to the unipotent radical of the parabolic
subgroup Pνb of G

Q̆p
.

Proof. The first assertion is a direct consequence of Corollary 3.3.3 and [D’Addezio 2023, Theorem 1.1.1].
The second assertion follows from Lemma 3.3.4 □

3.4. Irreducible components of Hecke stable subvarieties. In this section we will study irreducible com-
ponents of Hecke stable subvarieties and prove results in the style of [Chai 2005, Proposition 4.5.4].3The
results proved in this section will not be used in the rest of this article, but they are used to prove
irreducibility results for EKOR strata in [van Hoften 2020].

Let ρ : Gsc
→ Gder be the simply connected cover of the derived group Gder of G and note that ρ

induces an action of Gsc(A
p
f ) on ShG,Kp . From now on we will need another assumption:

Hypothesis 3.4.1. For each finite extension F of the reflex field E and any place w of F extending v,
the natural maps

π0(ShK pKp(G, X)⊗E F)→ π0(SK pKp ⊗OE,(v) OF,(w))← π0(ShG,K pKp ⊗kk(w))

are isomorphisms.

Lemma 3.4.2. Hypothesis 3.4.1 holds if ShG,K pKp has geometrically integral connected components.

Proof. This is [Madapusi Pera 2019, Corollary 4.1.11]. □

Remark 3.4.3. The variety ShG,K pKp has geometrically integral connected components if Kp is hy-
perspecial because then the integral models are smooth by work of Kisin [2010]. More generally the
Kisin–Pappas integral models [2018] have geometrically integral connected components if Kp is very
special; see [Kisin and Pappas 2018, Corollary 4.6.26].

3.4.4. Connected components. The following result is well known.

Lemma 3.4.5. Let Y∞ be a connected component of the scheme

lim
←−−

U⊂G(A f )

ShU,C(G, X).

Then Y∞ is stable under the action of Gsc(A f ).

Proof. This is a direct consequence of the description of connected components of Shimura varieties and
strong approximation for Gsc(Q), see [Kisin et al. 2021, Section 5.5.1, Lemma 5.5.4]. □

3Our results do not literally generalise Chai’s results because he works with Sp2g(A
p
f )-stable subvarieties while we work

with GSp2g(A
p
f )-stable subvarieties.
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Corollary 3.4.6. Let Y∞ be a connected component of

lim
←−−

Up⊂G(A p
f )

ShUp Kp,C(G, X).

Then Y∞ is stable under the action of Gsc(A
p
f ).

Proof. We consider
lim
←−−

U⊂G(A p
f )

ShU (G, X)→ lim
←−−

Up⊂G(A p
f )

ShUp Kp(G, X)

and we let Y ′
∞

be a connected component of the left hand side mapping to Y∞. Then Y ′
∞

is stable under
the action of Gsc(A f ) and thus Y∞ is stable under the action of Gsc(A

p
f ). □

Lemma 3.4.7. Suppose that Hypothesis 3.4.1 holds and let Y∞ ⊂ ShG,Kp,Fp
be a connected component.

Then Y∞ is stable under the action of Gsc(A
p
f ).

Proof. It suffices to prove this for Shimura varieties over C, because the connected components are
defined over an algebraic closure E of the reflex field E and the result can be transported to the special
fibre using Hypothesis 3.4.1. The result over C is Corollary 3.4.6. □

3.4.8. Let Z ⊂ ShG,K pKp be a G(Ap
f )-stable locally closed subscheme with inverse image Z̃ ⊂ ShG,Kp .

A finite étale cover X→ Z is called G(Ap
f )-equivariant if X̃ := Z̃ ×Z X has an action of G(Ap

f ) making
the natural map X̃ → Z̃ equivariant for the action of G(Ap

f ). If Hypothesis 3.4.1 is satisfied, then by
Lemma 3.4.7 the group Gsc(A

p
f ) acts on the fibres of

π0(X̃)→ π0(ShG,Kp,Fp
).

Lemma 3.4.9. If Hypothesis 3.4.1 holds, then G(Ap
f ) acts continuously on π0(X̃).

Proof. The assumption that X→ Z is finite étale implies that π0(X̃)→π0(Z̃) is a finite map with discrete
fibres, and therefore the action of G(Ap

f ) on π0(X̃) is continuous because the action on π0(Z̃) is, see
Corollary 3.1.5. □

Let 6 be a finite set of places of Q containing p and containing all places ℓ where Gad
ℓ has a compact

factor. From now on we will work with G(Ap
f )-stable subvarieties Z defined over Fp and with geometric

monodromy groups.

Theorem 3.4.10. Let X→ Z be a G(Ap
f )-equivariant finite étale cover of a smooth G(Ap

f )-stable locally
closed subscheme Z ⊂ ShG,K pKp,Fp

, and suppose that each connected component of Z intersects a Q-
nonbasic Newton stratum. If Hypotheses 2.3.1 and 3.4.1 hold, then G(A6

f ) acts trivially on the fibres
of

π0(X̃)→ π0(ShG,Kp,Fp
).

For a prime ℓ ̸∈6 we will write Kℓ for the image of K p
→G(Qℓ) and πℓ :ShG,K pKp,ℓ,Fp

→ShG,K pKp,Fp

for the induced Kℓ-torsor over ShG,K pKp,Fp
.
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Lemma 3.4.11. Suppose that Hypothesis 2.3.1 holds and let Y∞ ⊂ ShG,K pKp,ℓ,Fp
be a connected compo-

nent with image Y ⊂ ShG,K pKp,Fp
. Then Y∞→ Y is a torsor for a compact open subgroup of Gder(Qℓ).

Proof. It follows from profinite Galois theory for schemes, see Section 3.1.11, that the stabiliser K∞ of
Y∞ in G(Qℓ) can be identified with the image of

π ét
1 (Y, y)→ G(Qℓ)

for some point y ∈ Y (Fp). If we apply Corollary 3.2.6 and Lemma 3.1.9 to Z = ShG,K pKp , it follows that
this image contains a compact open subgroup of Gder(Qℓ) and that it is contained in Gder(Qℓ). □

Proof of Theorem 3.4.10. We write Zℓ→ Z for the induced Kℓ torsor and Xℓ→ Zℓ for Zℓ×Z X . Then
the action of G(Ap

f ) on X̃ and Z̃ induces an action of G(Qℓ) on Xℓ, and it suffices to show that Gsc(Qℓ)

acts trivially on the fibres of

aℓ : π0(Xℓ)→ π0(ShG,K pKp,ℓ,Fp
)

for all ℓ ̸∈6.
Let x ∈ π0(Xℓ) and let Z◦ be a connected component of Z containing the image of x . Moreover let

Z◦ℓ ⊂ Zℓ be the inverse image of Z◦. Fix a point z ∈ Z◦(Fp), then Hypothesis 2.3.1 and Corollary 3.2.6
tell us that the image of

ρℓ : π
ét
1 (Z

◦, z)→ Kℓ

is a compact subgroup Mgeom,ℓ whose Zariski closure Mgeom,ℓ has neutral component equal to Gder
Qℓ

. It
follows from Lemma 3.1.9 that the image of ρℓ contains a compact open subgroup Vℓ ⊂ Gder(Qℓ). The
upshot of this discussion is that the stabiliser in G(Qℓ) of a connected component of Zℓ contains a
compact open subgroup of Gder(Qℓ) and this implies that the stabiliser in G(Qℓ) of x contains a compact
open subgroup of Gder(Qℓ).

Let Y∞ be a connected component of ShG,K pKp,ℓ,Fp
such that the image Y of Y∞ in ShG,K pKp contains Z◦.

Then it follows from Hypothesis 2.3.1 and Lemma 3.4.11 that Y∞→ Y is a pro-étale torsor for a compact
open subgroup Uℓ ⊂ Gder, and from Hypothesis 3.4.1 and Lemma 3.4.7 that Y∞ is stable under the action
of Gsc(Qℓ).

We will write X∞ ⊂ Xℓ for the inverse image of Y∞ in Xℓ and let X ′ ⊂ X be its image. Note that
x ∈ π0(X∞) by construction. Then X∞→ X ′ is a pro-étale Uℓ torsor and X∞ is stable under the action
of Gsc(Qℓ). This action is moreover continuous by Lemma 3.4.9 and the inclusion

π0(X∞)⊂ π0(Xℓ)

is closed since {Y∞}⊂π0(ShG,K pKp,ℓ,Fp
) is closed. In particular, the topological space π0(X∞) is compact

Hausdorff.
Let U ′ℓ be the inverse image of Uℓ in Gsc(Qℓ). Then the quotient

U ′ℓ\π0(X∞)=Uℓ\π0(X∞)= π0(X ′)
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is finite. This means that there are finitely many (open and closed) U ′ℓ orbits on π0(X∞). Therefore the
Gsc(Qℓ) orbit of x on π0(X∞) is a union of finitely many U ′ℓ-orbits and thus closed; in particular it is
compact Hausdorff. It then follows from Lemma 3.1.6 that the Gsc(Qℓ) orbit of x is homeomorphic
to Gsc(Qℓ)/Px , where Px ⊂ Gsc(Qℓ) is the stabiliser of x . In particular, it follows that Gsc(Qℓ)/Px is
compact.

The group Px contains a compact open subgroup of Gsc(Qℓ) because the stabiliser of x in G(Qℓ)

contains a compact open subgroup of Gder(Qℓ) and Gsc(Qℓ)→ Gder(Qℓ) has finite fibres. This implies
that Gsc(Qℓ)/Px has the discrete topology, and we conclude that Gsc(Qℓ)/Px is a finite set or equivalently
that Px is a finite index subgroup. The assumption that Gsc

Qℓ
has no compact factors implies, by [Platonov

and Rapinchuk 1994, Theorems 7.1 and 7.5], that the group Gsc(Qℓ) has no finite index subgroups.
Therefore Gsc(Qℓ)/Px is a singleton which is precisely what we wanted to prove. □

4. Serre–Tate coordinates and unipotent group actions

In this section we show that the classical Serre–Tate coordinates, as described in [Katz 1981], can be
reinterpreted using the action of a unipotent formal group, as in [Howe 2020]. Our results are more-or-less
a direct generalisation of the results of [Howe 2020], except that we construct the action of unipotent formal
groups using Rapoport–Zink spaces, while in [loc. cit.] this action is constructed using Igusa varieties.

In Section 4.1, we recall the classical theory of Serre–Tate coordinates following [Katz 1981], which
shows that the formal deformation space Def(Y ) of an ordinary p-divisible group Y over Fp has the
structure of a commutative formal group. We then compute the scheme-theoretic p-adic Tate-module of
the p-divisible group H0,1 associated to this formal group. In Section 4.2 we use Rapoport–Zink spaces to
describe an action of the universal cover H̃0,1 of H0,1 on the formal scheme D̂ef(Y ) associated to Def(Y ).
In Section 4.3 we identify this action with the projection from the universal cover to H0,1 followed by the
left-translation action of H0,1 on D̂ef(Y ).

4.0.1. We consider the category Art of Artin local Z̆p-algebras R such that the natural map Fp→ R/mR is
an isomorphism. Here mR is the unique maximal ideal of R and we write α : R→ Fp for the composition
of the natural map R→ R/m with the inverse of the natural isomorphism Fp→ R/m. Note that α is
functorial for morphisms in Art. We similarly consider the category Nilp of Z̆p-algebras in which pn

= 0
for some n. The category Art is naturally a full subcategory of Nilp.

For a p-divisible group G over an algebra R ∈Nilp we define the p-adic Tate module to be the functor
TpG := lim

←−−n G [pn
], which is representable by a flat affine scheme over Spec R by [Scholze and Weinstein

2013, Proposition 3.3.1].

4.1. Classical Serre–Tate theory. Let Y be an ordinary p-divisible group of dimension g and height 2g
over Fp. In other words, let Y be a p-divisible group isomorphic to (Qp/Zp)

⊕g
⊕µ

⊕g
p∞ .

Let Def(Y ) be the functor on Art sending (R, α) to the set of isomorphism classes of pairs (X, β)
where X is a p-divisible group over Spec R and β : X ⊗R,α Fp→ YFp

is an isomorphism. This functor is
(pro)-representable by a formally smooth formal scheme Def(Y ) of relative dimension g2 over Spf Z̆p.
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By [Katz 1981, Theorem 2.1], this functor lifts to a functor valued in abelian groups such that the formal
group Def(Y ) is p-divisible.4

There is a canonical direct sum decomposition Y = Y0⊕ Y1 where Y0 is the maximal étale quotient of
Y and where Y1 is equal to the formal completion of Y at the origin. Since Y0 is étale there is a unique
lift to a p-divisible formal group over Z̆p, which we will denote by Y can

0 . Similarly Y1 has a unique lift to
a p-divisible formal group over Z̆p, for example because the Serre dual of Y1 is étale. We will denote this
lift by Y can

1 and we will use Y can
:= Y can

0 ⊕ Y can
1 to denote the canonical lift of Y to Z̆p.

Let Y∨ be the Serre-dual of Y and consider the free Zp-modules of rank g given by TpY (Fp) and
TpY∨(Fp). By [Katz 1981, Theorem 2.1], the formal group Def(Y ) is isomorphic to the functor on Art
sending R to

hom
(
TpY (Fp)⊗Zp TpY∨(Fp), Ĝm(R)

)
.

Let S be the complete Noetherian local Z̆p-algebra representing Def(Y ) on Art. Then the abelian group
structure on Def(Y ) induces a (continuous) cocommutative Hopf algebra structure on S. In particular the
formal scheme D̂ef(Y ) := Spf S, considered as a functor on Nilp, has the structure of a formal group. We
will write H0,1 := lim

−−→
Spf S[pn

] for the corresponding p-divisible group over Spf Z̆p. Note that it acts
via left translation on D̂ef(Y ); we will denote this action by aST (for Serre–Tate).

Remark 4.1.1. The natural map H0,1→ D̂ef(Y ) is an isomorphism of formal schemes, since both of
them are formally smooth formal schemes of the same dimension. Nevertheless, it is useful to treat them
as different objects, for example because the notation D̂ef(Y ) is somewhat unwieldy, especially when
passing to universal covers of p-divisible groups.

Lemma 4.1.2. The p-adic Tate module of H0,1 is isomorphic to the sheaf Hom(Y can
0 , Y can

1 ) on Nilp of
homomorphisms from Y can

0 to Y can
1 .

Proof. Let us prove the stronger assertion that there are isomorphisms H0,1[pn
] ≃Hom(Y can

0 , Y can
1 )[pn

]

for all n, compatible with changing n. Note that H0,1[pn
] is represented by the spectrum of an Artin

local Z̆p-algebra. The same is true for Hom(Y can
0 , Y can

1 )[pn
], since Hom(Z/pnZ, µpn )≃ µpn . Thus it

suffices to show that the functors H0,1[pn
] and Hom(Y can

0 , Y can
1 )[pn

] are isomorphic as functors on Art.
In [Katz 1981, p. 152] it is explained that Def(Y ) is isomorphic to the functor (on Art) sending R to

hom(TpY (Fp), Y can
1 (R)).

Note that TpY (Fp)= TpY0(Fp)= TpY can
0 (Fp) and that because TpY can

0 is an inverse limit of étale group
schemes, the natural map TpY can

0 (R)→ TpY0(Fp) is an isomorphism for R ∈ Art. Thus there is a natural
isomorphism

hom(TpY (Fp), Y can
1 (R))≃ hom(TpY can

0 (R), Y can
1 (R)).

4Recall that a commutative formal group X is called p-divisible if [p] : X→ X is finite flat.
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The pn-torsion of this group is given by

hom(TpY can
0 (R), Y can

1 (R))[pn
] = hom(TpY can

0 (R), Y can
1 [p

n
](R))= hom(Y can

0 [p
n
](R), Y can

1 [p
n
](R)).

We see that there is an isomorphism Def(Y )[pn
] ≃Hom(Y can

0 [p
n
], Y can

1 [p
n
]) of functors on Art, which

induces an isomorphism H0,1[pn
] ≃Hom(Y can

0 [p
n
], Y can

1 [p
n
]) of functors on Nilp. It is straightforward

to check that these isomorphisms are compatible with increasing n, which concludes the proof. □

4.2. Rapoport–Zink spaces and unipotent formal groups. Let Ỹ → Y be the universal cover of Y ,
defined as the inverse limit of the projective system

lim
←−−

[p]:G→G
Y.

It is representable by a formal scheme by [Scholze and Weinstein 2013, Proposition 3.1.3(iii)]. By the
proof of [Caraiani and Scholze 2017, Proposition 4.2.11], the automorphism group functors of Y and Ỹ
on Nilp can be described as follows:

Aut(Y )=
(

Aut(Y0) 0
Hom(Y0, Y1) Aut(Y1)

)
, Aut(Ỹ )=

(
Aut(Ỹ0) 0

Hom(Y0, Y1)[1/p] Aut(Ỹ1)

)
.

Moreover the functors Aut(Yi ) are pro-étale group schemes which are noncanonically isomorphic to the
group schemes associated to the profinite group GLg(Zp). Let H̃0,1 be the universal cover of H0,1. Then
by the discussion after [Caraiani and Scholze 2017, Definition 4.1.1], we can identify the fpqc sheaves

H̃0,1 = (TpH0,1)[1/p].

Moreover, by the proof of [Caraiani and Scholze 2017, Proposition 4.1.2], there is a short exact sequence
of fpqc sheaves

0→ TpH0,1→ H̃0,1→H0,1→ 0.

By Lemma 4.1.2, we can identify this with

0→Hom(Y0, Y1)→Hom(Y0, Y1)[1/p] →H0,1→ 0.

Note that Hom(Y0, Y1)[1/p] is isomorphic to H̃0,1, and thus representable by a formal scheme by [Scholze
and Weinstein 2013, Proposition 3.1.3(iii)] as above. In particular, this means that Aut(Ỹ ) is representable
by a formal scheme.

4.2.1. Let RZY be the Rapoport–Zink space associated to Y . It is defined to be the functor on Nilp
sending R to the set of isomorphism classes of pairs (X, f ), where X is a p-divisible group over Spec R
and f : X 99K YR is a quasi-isogeny (or equivalently, by [Katz 1981, Lemma 1.1.3.3], a quasi-isogeny
f0 : X R/pR 99KYR/pR). The functor RZY is representable by a formally smooth formal scheme over Spf Z̆p

by [Rapoport and Zink 1996, Theorem 2.16]. The group functor Aut(Ỹ ) acts on RZY via postcomposition,
where we note that an automorphism of Ỹ is the same thing as a self-quasi-isogeny of Y .
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Let y be the Fp-point of RZY corresponding to the identity map Y → Y and let

RZ/y
Y ⊂ RZY

be the formal completion of RZY in {y}, in the sense of formal algebraic spaces as in [Stacks 2020,
Tag0GVR]. By definition this is the subfunctor of RZY corresponding to those morphisms Spec R→RZY

that factor through {y} on the level of topological spaces. In other words, it consists of those mor-
phisms Spec R → RZY such that the induced morphism Spec Rred

⊂ Spec R → RZY factors through
y : Spec Fp→ RZY .

In terms of the moduli description, this means that we are looking at those quasi-isogenies f : X 99K YR

such that: There is a (necessarily unique) isomorphism β : X Rred → YRred making the following diagram
commute:

X Rred YRred

YRred YRred

f

β

(4.2.1)

Now restrict this moduli description to the full subcategory Art ⊂ Nilp. Then RZ/y
Y can be described

as the functor on Art sending (R, α) to the set of isomorphisms classes of triples (X, β, f ), where X
is a p-divisible group over R equipped with an isomorphism β : X ⊗R,α Fp → Y and where f is a
quasi-isogeny f : X 99K YR such that (4.2.1) commutes.

Lemma 4.2.2. The natural forgetful map RZ/y
Y →Def(Y ) sending (X, β, f ) to (X, β) is an isomorphism.

In particular, there is an isomorphism of formal schemes D̂ef(Y )≃ RZ/y
Y .

Proof. The commutativity of (4.2.1) expresses the fact that f is a lift of the quasi-isogeny Y → Y given
by the identity. But since quasi-isogenies lift uniquely by [Katz 1981, Lemma 1.1.3.3], the data of f is
superfluous and we see that the forgetful map RZ/y

Y (R)→ Def(Y )(R) is a bijection for all R ∈ Art. □

The subgroup (
Aut(Y0) 0
H̃0,1 Aut(Y1),

)
⊂ Aut(Ỹ )

preserves the point y ∈ RZY (Fp) and therefore acts on D̂ef(Y ). In particular, the profinite group

Aut(Y0)(Fp)×Aut(Y1)(Fp)= Aut(Y )(Fp)

acts on D̂ef(Y ). This induces an action of Aut(Y )(Fp) on Def(Y ) because Fp is an object of Art⊂ Nilp.

Corollary 4.2.3. This action sends a pair (X, β) ∈ Def(Y )(R), where X is a p-divisible group over
Spec R and β : X ⊗R,α Fp→ YFp

is an isomorphism, to (X, g ◦β) for g ∈ Aut(Y )(Fp).

Proof. This follows from Lemma 4.2.2 and the uniqueness of the isomorphism β : XFp
→ Y given

f : X 99K YR . □
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4.2.4. Since the action of H̃0,1 on RZY preserves the point y, there is an induced action

ãRZ : H̃0,1× D̂ef(Y )→ D̂ef(Y ).

The goal of the rest of this section is to prove the following proposition, our proof of which was heavily
inspired by the proof of [Howe 2020, Theorem 6.2.1], which deals with the g = 1 case.

Proposition 4.2.5. The action ãRZ factors through an action of H0,1 via the natural quotient map
H̃0,1→H0,1. Moreover the induced action of H0,1 is given by aST.

4.3. Proof of Proposition 4.2.5. Choose isomorphisms

TpY0 ≃ Z⊕g
p , Y1 ≃ (µp∞)

⊕g,

which induce isomorphisms of functors on Art

Def(Y )≃Hom(Z⊕g
p , (µp∞)

⊕g).

In fact if we let x1, . . . , xg ∈ Z
⊕g
p be the standard basis vectors, then we can in fact identify

Def(Y )≃ (µp∞)
⊕g2

with coordinates qi, j for 1≤ i, j ≤ g and similarly

H0,1 ≃ (µp∞)
⊕g2

with coordinates ζi, j for 1≤ i, j ≤ g. For R in Art a morphism

Spec R→ Def(Y )

corresponds to elements qi, j ∈ 1+mR , and the corresponding deformation of Y is the p-divisible group
Xq corresponding to the pushout of (see [Katz 1981, p. 152])

0→ Z⊕g
p →Q⊕g

p →
Q
⊕g
p

Z
⊕g
p
→ 0

via the morphism Z
⊕g
p,R→ µ

⊕g
p∞,R given by xi 7→ (qi,1, . . . , qi,g). In fact, there is a pushout diagram

0 Z⊕g Z[1/p]⊕g Q
⊕g
p

Z
⊕g
p

0

0 Z
⊕g
p Q

⊕g
p

Q
⊕g
p

Z
⊕g
p

0

and so we can also think of Xq as the quotient of µ⊕g
p∞,R ⊕Z[1/p]⊕g by the image of the map

hq : Z
⊕g
→ µ

⊕g
p∞,R ⊕Z[1/p]⊕g
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given by xi 7→ ((qi,1, . . . , qi,g), (xi )).

Let N be an integer such that q pN

i, j = 1 for all i, j , which exists since R is Artinian. Then the isogeny

µ
⊕g
p∞,R ⊕Z[1/p]⊕g

→ µ
⊕g
p∞,R ⊕Z[1/p]⊕g, (A, B) 7→ (pN A, pN B)

maps hq(Z
⊕g) into h1(Z

⊕g). Thus it induces a quasi-isogeny

fq,N : Xq 99K X1 = YR, (4.3.1)

and the induced quasi-isogeny Xq,Fp
= X1,Fp

→ X1,Fp
is given by pN . It follows that the quasi-isogeny

p−N fq,N is the unique quasi-isogeny lifting the identity Xq,Fp
= X1,Fp

→ X1,Fp
. Let us write q ∈RZY (R)

for p−N fq,N : Xq 99K YR .
A morphism Spec R→H0,1 corresponds to elements ζi, j ∈ 1+mR . The left translation action of H0,1

via the Serre–Tate action is given by
aST(ζ , q)= ζq,

where (ζq)i, j = (ζi, j · qi, j ) and where (ζi, j · qi, j ) denotes the multiplication in µp∞(R) = 1+mR . In
terms of p-divisible groups, this correspond to the p-divisible group Xζq . We will write ζq ∈ RZY (R)
for the element corresponding to Xζq .

Proof of Proposition 4.2.5. By definition of the action ãRZ, it suffices to show that for every fpqc cover
Spec R̃→ Spec R and every lift

ζ̃ ∈ H̃0,1(R̃)

of ζ ∈H0,1(R̃), we have ãRZ(ζ̃ , q)= ζq. There is a universal such lift over the fpqc cover R̃ given by
formally adjoining all the p-power roots of all ζi, j , and it suffices to prove the result for this choice of R̃.
Recall that Xq,R̃ is defined as the quotient of

µ
⊕g
p∞,R̃
⊕Z[1/p]⊕g

by the image of the map hq which sends the standard basis element xi ∈ Z⊕g to

((qi,1, . . . , qi,g), (xi )) ∈ µ
⊕g
p∞,R̃
⊕Z[1/p]⊕g.

The p-divisible group Xζq,R̃ is defined similarly but then using the map hζq . The compatible sequence of
p-power roots of ζ defined by ζ̃ defines a map

ψζ̃ : µ
⊕g
p∞,R̃
⊕Z[1/p]⊕g

→ µ
⊕g
p∞,R̃
⊕Z[1/p]⊕g, (A, B) 7→ (A · L ζ̃ (B), B),

where L ζ̃ : Z[1/p]⊕g
→ µ

⊕g
p∞,R̃

is the morphism sending

xi

pn 7→ (ζ
1/pn

i,1 , ζ
1/pn

i,2 , . . . , ζ
1/pn

i,g ).

It is straightforward to check that this map satisfies

ψζ̃ (hq(Z
⊕g)= hζq(Z

⊕g)
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and that it thus induces an isomorphism on quotients

φζ̃ : Xq,R̃→ Xζq,R̃.

Choose N sufficiently large such that ζ pN

i, j = 1 and q pN

i, j = 1 for all i, j . Let

p−2N fζq,2N : Xζq 99K YR

be the unique quasi-isogeny lifting the identity map Xζq,Fp
= YFp

→ YFp
as described in (4.3.1). To prove

the proposition it suffices to show that the following diagram commutes:

Xq,R̃ Xζq,R̃

(
Q
⊕g
p

Z
⊕g
p

)
R̃
⊕µ

⊕g
p∞,R̃

(
Q
⊕g
p

Z
⊕g
p

)
R̃
⊕µ

⊕g
p∞,R̃

φζ̃

p−N fq,N p−2N fζq,2N

ξζ̃

(4.3.2)

Here ξζ̃ is given by the matrix
( 1 0
ζ̃ 1

)
, see the beginning of Section 4.2 for the matrix notation. To show

that this diagram commutes we consider the auxiliary commutative diagram

µ
⊕g
p∞,R̃
⊕Z[1/p]⊕g µ

⊕g
p∞,R̃
⊕Z[1/p]⊕g

µ
⊕g
p∞,R̃
⊕Z[1/p]⊕g µ

⊕g
p∞,R̃
⊕Z[1/p]⊕g

ψζ̃

pN p2N

pNψζ̃

(4.3.3)

The diagram of quasi-isogenies (4.3.2) is obtained from the diagram (4.3.3) by quotienting by the
subgroups

hq(Z
⊕g) hζq(Z

⊕g)

h1(Z
⊕g) h1(Z

⊕g)

ψζ̃

pN p2N

pNψζ̃

and formally inverting certain powers of p. It follows that (4.3.2) is commutative. □

5. The formal neighbourhood of an ordinary point

The goal of this section is to give Serre–Tate coordinates for the formal completions of points in the
ordinary locus of Shimura varieties of Hodge type.

In Section 5.1 we specialise to the smooth canonical integral models of Shimura varieties of Hodge
type at hyperspecial level, and we moreover assume that the ordinary locus is nonempty. In Section 5.2
we recall a small amount of covariant Dieudonné theory for semiperfect rings, following [Scholze and
Weinstein 2013].
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In Section 5.4 we prove that the formal completion of the ordinary locus gives a subtorus of the
Serre–Tate torus, reproving a special case of [Shankar and Zhou 2021, Theorem 1.1]. We also give a
group-theoretic description of the Dieudonné module of the associated p-divisible group. In Section 5.5
we introduce strongly nontrivial actions of algebraic groups on isocrystals, which we will need to confirm
the hypotheses of the rigidity theorem of [Chai 2008].

5.1. Integral models at hyperspecial level. Let the notation be as in Section 2. In particular, we have
a Shimura datum (G, X) of Hodge type with reflex field E , a prime p and a prime v of E above p.
Moreover there is a symplectic space V and a Hodge embedding (G, X)→ (GV ,HV ) and for every
sufficiently small K p

⊂ G(Ap
f ) there is a sufficiently small Kp

⊂ GV (A
p
f ) and a finite morphism

SK :=SK (G, X)→ SK⊗Z(p) OE,(v). (5.1.1)

Recall that there is a Z(p)-lattice V(p) of V on which the symplectic form is Z(p)-valued, and recall that
we have defined Kp ⊂ G(Qp) to be its stabiliser. From now on we will assume that Kp is a hyperspecial
subgroup, in which case SK is the canonical integral model of ShK pKp(G, X) over OEv . Moreover the
main theorem of [Xu 2020] tells us that the map (5.1.1) is a closed immersion.

5.1.1. The Zariski closure GZ(p) of G inside GV(p) is a reductive group scheme over Z(p). By [Kisin 2010,
Proposition 1.3.2], we can choose tensors {sα} ⊂ V⊗(p) whose stabiliser is GZ(p) . All the results of Section 2
still go through with this choice of tensors.

For x ∈ ShG,K pKp(Fp) we have seen in Section 2.1.1 that there are tensors

{sα,cris} ⊂ D⊗x ,

where D⊗x is the rational contravariant Dieudonné module of Ax [p∞]. Now let D(Ax [p∞]) be the integral
contravariant Dieudonné module. Then as explained in [Shankar and Zhou 2021, Section 6.3], the tensors
{sα,cris} lie in

D(Ax [p∞])⊗.

It is moreover explained there that there is an isomorphism

D(Ax [p∞])≃ Vp⊗Z(p) Z̆p

taking sα,cris to sα ⊗ 1.

5.1.2. Let us now drop the level from the notation and write SG and SGSp respectively for the base
changes of SK and SK respectively to Z̆p for some choice of OE,v→ Z̆p. Similarly write ShG for the
special fibre of SG and ShGSp for the special fibre of SGSp. Let ShGSp,ord ⊂ ShGSp be the dense open
ordinary locus and define the ordinary locus of ShG by ShG,ord := ShG ∩ShGSp,ord. It is an open subset
which is nonempty if and only if Ev =Qp, by [Lee 2018, Corollary 1.0.2]. We will assume from now on
that Ev =Qp.

Lemma 5.1.3. The ordinary locus ShG,ord is open and dense and equal to the Newton stratum ShG,[b],K pKp

for [b] ∈ B(G, {µ−1
}) the maximal element in the partial order introduced in Section 2.1.2.
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The maximal element [b] is known as the µ-ordinary element, and the maximal Newton stratum is
known as the µ-ordinary locus.

Proof. The µ-ordinary locus and the ordinary locus are equal in this case by the proof of [Lee 2018,
Corollary 4.3.2], as explained in [Lee 2018, Remark 4.3.3]. The density of the µ-ordinary locus is
[Wortmann 2013, Theorem 1.1]; see [KMS 2022, Theorem 3] for a published reference. □

5.1.4. Let x ∈ShG(Fp) be an ordinary point and consider the closed immersions of formal neighbourhoods
(considered as functors on the category NilpZ̆p

of Z̆p-algebras where p is nilpotent)

S
/x
G := Spf ÔSG ,x ↪−→ Spf ÔSGSp,x =: S

/x
GSp. (5.1.2)

Let A be the universal abelian scheme over SGSp and let X = A[p∞] be the associated p-divisible group
over SGSp. Let D̂ef(Ax) be the formal deformation space of the abelian variety Ax , that is, the formal
scheme representing the functor Def(Ax) on the category Art of deformations of the abelian variety Ax .
Similarly let D̂ef(Y ) be the deformation space of the p-divisible group Xx =: Y . There are natural
morphisms

S/x
GSp→ D̂ef(Ax)→ D̂ef(Y ).

The first is a closed immersion by the moduli description of SGSp, and the second morphism is an
isomorphism by [Katz 1981, Theorem 1.2.1]. Now [Shankar and Zhou 2021, Theorem 1.1] (see [Noot
1996] for closely related results) implies that the closed formal subscheme

S
/x
G ⊂ D̂ef(Y )

is a p-divisible formal subgroup. The goal of this section is to compute the Dieudonné module of Sh/x
G .

We do this by giving a new proof that

Sh/x
G ⊂ D̂ef(Y )

is a p-divisible formal subgroup, using the methods of Section 4 and results of [Kim 2019].

5.2. Some covariant Dieudonné theory.

5.2.1. A caveat. In the rest of this subsection we are going to recall some covariant Dieudonné theory for
semiperfect rings following [Scholze and Weinstein 2013]. The reason we do this is that the references
[Caraiani and Scholze 2017; Kim 2019] are written in this language. Moreover we feel that results such
as Lemma 5.2.5 are most naturally stated using the covariant theory.

To avoid potential confusion, we will always write a subscript cov when using covariant Dieudonné
theory. The covariant theory and the contravariant theory will interact only once, in Section 5.3, and we
will warn the reader again there.
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5.2.2. Recall that an Fp-algebra A is semiperfect if it is the quotient of a perfect Fp-algebra B and that
it is f-semiperfect if it is the quotient of a perfect Fp-algebra by a finitely generated ideal. Let A be
a semiperfect Fp-algebra and let Acris(A) be Fontaine’s ring of crystalline periods (see [Scholze and
Weinstein 2013, Proposition 4.1.3]) with ϕ : Acris(A)→ Acris(A) induced by the absolute Frobenius on A.

Definition 5.2.3. A covariant Dieudonné module over a semiperfect Fp-algebra A is a pair (M, ϕM),
where M is a finite locally free Acris(A)-module and where

ϕM : ϕ
∗M

[ 1
p

]
→ M

[ 1
p

]
is an isomorphism such that

M ⊆ ϕM(M)⊆ 1
p M.

Remark 5.2.4. Usually one instead asks that

pM ⊆ ϕM(M)⊆ M.

The reasons for our conventions is that they agree with the conventions in [Caraiani and Scholze 2017;
Kim 2019].

A p-divisible group G over A has a covariant5 Dieudonné module (Dcov(G ), ϕG ). For Spec A′→Spec A
there is a canonical isomorphism

(Dcov(GA′), ϕGA′
)≃ (Dcov(G ), ϕG )⊗Acris(A) Acris(A′).

Our covariant Dieudonné modules are normalised as in [Caraiani and Scholze 2017]. In particular,
this means that the covariant Dieudonné module of Qp/Zp over A is Acris(A) equipped with the trivial
Frobenius, and the covariant Dieudonné module of µp∞ is Acris(A) equipped with Frobenius given by 1/p.
This also means that the contravariant Dieudonné module is isomorphic to the dual of the covariant
Dieudonné module, see [Caraiani and Scholze 2017, footnote on page 692].

Now let G be a p-divisible group over Fp with universal cover G̃ in the sense of [Scholze and Weinstein
2013, Section 3.1]. If we consider G̃ as a functor on Nilp then it is a filtered colimit of spectra of
f-semiperfect Fp-algebras by [Scholze and Weinstein 2013, Proposition 3.1.3(iii)] and is thus determined
by its restriction to the category of semiperfect Fp-algebras. We can describe it explicitly on the category
of f-semiperfect Fp-algebras as follows:

Lemma 5.2.5. There is a commutative diagram of natural transformation of functors on the category of
f-semiperfect Fp-algebras, which evaluated at an object A gives

G̃ (A)
(
B+cris(A)⊗Q̆p

Dcov(G )
[ 1

p

])ϕ=1
,

≃

where ϕ is given by the diagonal Frobenius and where B+cris(A) := Acris(A)[1/p].

5We write Dcov to distinguish from the contravariant Dieudonné theory that we used in Section 3.
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Proof. Let A be f-semiperfect, then [Scholze and Weinstein 2013, Theorem 4.1.4] tells us that the covariant
Dieudonné module functor over A is fully faithful after inverting p. There is a natural map

TpG (A)= HomA((Qp/Zp)A,GA)→HomAcris,F
(

Acris(A), Acris(A)⊗Z̆p
Dcov(G )

)
≃ (Acris(A)⊗Z̆p

Dcov(G ))
ϕ=1,

where the latter bijection is induced by evaluation at 1. After inverting p we get a natural isomorphism

G̃ (A)= HomA((Qp/Zp)A,GA)
[ 1

p

]
→

(
B+cris(A)⊗Q̆p

Dcov(G )
[ 1

p

])ϕ=1
. □

5.3. The Dieudonné module of the Serre–Tate torus. Let x ∈ShG,ord(Fp) be as above and let Y = Ax [p∞]
be the corresponding p-divisible group. Recall from Section 4 that Y = Y0⊕ Y1 and that both Y0 and Y1

lift uniquely to p-divisible groups Y can
0 and Y can

1 over Z̆p. Let Def(Y ) be the formal deformation space
of Y , considered as a functor on Art together with its extension D̂ef(Y ) to Nilp. We have seen that D̂ef(Y )
has the structure of a p-divisible formal group, and we use H0,1 to denote the corresponding p-divisible
group over Spf Z̆p.

Consider the special fibre H0,1,Fp
. Then by Lemma 4.1.2 its p-adic Tate module is given by Hom(Y0, Y1).

Therefore by [Caraiani and Scholze 2017, Lemmas 4.1.7 and 4.1.8] , we have an isomorphism

Dcov(H0,1,Fp
)[1/p] ≃Hom(Dcov(Y0)[1/p],Dcov(Y1)[1/p])≤0,

where Hom denotes the internal hom in F-isocrystals and where (·)≤0 denotes the slope at most 0 part
of an F-isocrystal.

5.3.1. Choose an isomorphism (here we use contravariant Dieudonné theory!) D(Y )→ Vp ⊗Zp Z̆p

sending sα⊗1 to sx,cris as in Section 5.1.1. This induces an isomorphism from V ∗p ⊗Zp Z̆p to the covariant
Dieudonné module Dcov(Y ) and thus gives us Frobenius invariant tensors {sα,cris} ⊂ Dcov(Y )⊗. Let
b ∈ G(Q̆p)⊂ GL(V ∗)(Q̆p) be the element corresponding to the Frobenius in Dcov(Y )[1/p]. Then there
is an inclusion of F-isocrystals

Hom(Dcov(Y0)[1/p],Dcov(Y1)[1/p])⊂Hom(Dcov(Y )[1/p],Dcov(Y )[1/p]), (5.3.1)

which sends f : Dcov(Y0)[1/p] → Dcov(Y1)[1/p] to

Id+ f : Dcov(Y0)[1/p]⊕Dcov(Y1)[1/p] → Dcov(Y0)[1/p]⊕Dcov(Y1)[1/p].

The map in equation (5.3.1) realises the source as the slope −1 part of the target.

5.3.2. Write gl(V ∗) for the Lie algebra of the algebraic group GL(V ∗)⊗ Q̆p and identify it with the
vector space of endomorphisms of V ∗⊗ Q̆p equipped with the commutator bracket. We can equip gl(V ∗)
with the structure of an F-isocrystal by letting Frobenius act by conjugation by b ∈ GL(V ∗)(Q̆p). Let us
write (gl(V ∗),Ad bσ) for this isocrystal.
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Using the isomorphism V ∗p ⊗Zp Z̆p ≃ Dcov(Y ) as above, we can identify the F-isocrystal on the right
hand side of (5.3.1) with (gl(V ∗),Ad bσ). There is a sub-F-isocrystal

(g,Ad bσ)⊂ (gl(V ∗),Ad bσ),

where g = Lie G ⊗ Q̆p. By Lemma 5.3.3 below, the subspace g ⊂ gl(V ∗) is precisely the subspace of
those endomorphisms g of V ∗⊗ Q̆p that satisfy g∗(sα ⊗ 1)= 0 for all tensors sα.

Lemma 5.3.3. Let C be a field of characteristic zero and let W be a finite dimensional C vector space. Let
H ⊂GL(W ) be a connected reductive group that is the stabiliser of a collection of tensors {tα}α∈A ⊂W⊗.
Then the Lie algebra h⊂ gl(W ) is given by the subspace

{H ∈ gl(W ) : H∗(tα)= 0 for all α ∈ A }.

Proof. The Lie algebra is given by the kernel of the map G(C[ϵ]/(ϵ2))→ G(C). Thus it consists of
matrices of the form 1+ ϵM , where M ∈ gl(W ), such that for α ∈ A we have

(1+ ϵM)∗(tα ⊗ 1)= tα.

But this is equivalent to (ϵM)∗(tα ⊗ 1)= 0 or M∗(tα)= 0. □

Let us write

(g,Ad bσ)−1
⊂Hom(Dcov(Y0)[1/p],Dcov(Y1)[1/p])= Dcov(H0,1,Fp

)[1/p] (5.3.2)

for the slope −1 subspace of the F-isocrystal (g,Ad bσ). Then by [Kim 2019, Lemma 3.1.3] and its
proof, there is an inclusion of p-divisible groups

HG
0,1,Fp
⊂H0,1,Fp

(5.3.3)

inducing (5.3.2) upon taking rational covariant Dieudonné modules. Since both of these p-divisible
groups have étale Serre duals, there is a unique lift HG

0,1 of HG
0,1,Fp

to Z̆p and a unique lift

HG
0,1 ⊂H0,1

of the inclusion (5.3.3).

Lemma 5.3.4. Let A be an f-semiperfect Fp-algebra. Then the inclusion

H̃G
0,1,Fp

(A)⊂ H̃0,1,Fp
(A)=Hom(Y0,A, Y1,A)[1/p]

identifies H̃G
0,1,Fp

(A) with the subspace of those quasi-endomorphisms f : Y0,A 99K Y1,A such that the
induced quasi-endomorphism

g =
( 0 0

f 0
)
: YA 99K YA

induces an endomorphism Dcov(YA)[1/p] → Dcov(YA)[1/p] satisfying g∗(sα,cris⊗ 1)= 0.

Proof. This follows from Lemma 5.2.5 in combination with Lemma 5.3.3. □



882 Pol van Hoften

Remark 5.3.5. The statement of Lemma 5.3.4 contradicts [Kim 2019, Lemma 3.1.3], which implies that
the inclusion

H̃G
0,1,Fp

(A)⊂ H̃0,1,Fp
(A)=Hom(Y0,A, Y1,A)[1/p]

identifies H̃G
0,1,Fp

(A) with the subspace of those quasi-endomorphisms f : Y0,A 99K Y1,A such that the
induced quasi-endomorphism

g =
( 0 0

f 0
)
: YA 99K YA

induces an endomorphism Dcov(YA)[1/p] →Dcov(YA)[1/p] satisfying g∗(sα,cris⊗ 1)= sα,cris⊗ 1. This
cannot be correct because H̃G

0,1,Fp
(A) is stable under addition and if g1, g2 both satisfy g∗(sα,cris⊗ 1)=

sα,cris⊗ 1 then their sum g1+ g2 does not.

The following lemma and its corollary essentially follow from [Kim 2019, Proposition 3.2.4]. However
the construction there is incorrect because of the error in [Kim 2019, Lemma 3.1.3] pointed out above.
Once the subgroup in the statement of Lemma 5.3.6 has been shown to exist with the properties proved
in Corollary 5.3.7, the rest of the arguments in [Kim 2019] go through without further changes.

Lemma 5.3.6. There is a closed subgroup

AutG(Ỹ )⊂ Aut(Ỹ )

such that on A-points for f-semiperfect Fp-algebras A, it is the subgroup of those quasi-isogenies g :
YA 99K YA that induce isomorphisms g : Dcov(YA)[1/p] → Dcov(YA)[1/p] satisfying

g∗(sα,cris⊗ 1)= sα,cris⊗ 1.

We will call such quasi-isogenies tensor-preserving quasi-isogenies.

Proof. First of all by [Caraiani and Scholze 2017, Lemma 4.2.10] the functor Aut(Ỹ ) satisfies

Aut(Ỹ )(R)= Aut(Ỹ )(R/p),

for all R ∈Nilp. Thus we can define a closed subfunctor of Aut(Ỹ ) by specifying its values on Fp-algebras.
The matrix description of Aut(Ỹ ) in Section 4.2 gives us a semidirect product decomposition (see

[Caraiani and Scholze 2017, Proposition 4.2.11, Remark 4.2.12])

Aut(Ỹ )Fp
:=Hom(Y0, Y1)[1/p]⋊

(
Aut(Ỹ0)Fp

×Aut(Ỹ1)Fp

)
.

Here we are using the map

Hom(Y0, Y1)[1/p] → Aut(Ỹ )Fp
, f 7→

( 1 0
f 1

)
to realise Hom(Y0, Y1)[1/p] as the subgroup of lower triangular automorphisms of Ỹ . The condition that( 1 0

f 1
)
= 1+ f satisfies (1+ f )∗(sα,cris⊗1)= sα,cris⊗1 is equivalent to the condition that f ∗(sα,cris⊗1)= 0.

Thus we see that the intersection Hom(Y0, Y1)[1/p] with AutG(Ỹ ) is given by

H̃G
0,1,Fp
⊂ H̃0,1,Fp

=Hom(Y0, Y1)[1/p].
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By Lemma 5.3.4, this is representable by a closed subgroup.

We can identify the group (Aut(Ỹ1)Fp
×Aut(Ỹ0)Fp

) with the locally profinite group scheme associated
to the locally profinite group Aut(Ỹ )(Fp). Using Dieudonné theory, we can identify this locally profinite
group with the σ -centraliser of b in GL(V ∗)(Q̆p), where we recall that we have fixed an isomorphism
V ∗p ⊗Zp Z̆p ≃Dcov(Y ) giving rise to b ∈ G(Q̆p). The subgroup of tensor-preserving automorphisms of Ỹ
over Fp can be identified with Jb(Qp), the σ -centraliser of b ∈ G(Q̆p), which is a closed subgroup.

Note that Jb(Qp)⊂G(Q̆p) stabilises (g,Ad bσ)−1 because it acts on g via automorphisms that preserve
the slope decomposition. Using Lemma 5.3.4 we see that the closed subgroup

H̃G
0,1,Fp

⋊ Jb(Qp)⊂ Aut(Ỹ )Fp
,

has the required properties over Fp, and so we are done. □

Since the R-points of H̃G
0,1 and Jb(Qp) both only depend on R/p, we see that

H̃G
0,1 ⋊ Jb(Qp)= AutG(Ỹ )

describes the unique lift to Z̆p. This identifies H̃G
0,1 with the neutral component AutG(Ỹ )◦ of AutG(Ỹ ).

Corollary 5.3.7. The identity component

H̃G
0,1,Fp
= AutG(Ỹ )◦ ⊂ AutG(Ỹ )

is isomorphic to Spf S where S is the p-adic completion of Z̆p[[x
1/p∞

1 , . . . , x1/p∞
d ]] for some d.

Proof. This is true for H̃G
0,1,Fp

because it is the universal cover of a p-divisible group, see [Scholze and
Weinstein 2013, Corollary 3.1.5, Section 6.4]. □

5.4. Serre–Tate coordinates for Hodge type Shimura varieties. Recall that x ∈ ShG(Fp) is an ordinary
point with associated element b = bx ∈ G(Q̆p). Recall also from Section 2.1.1 that we have a G(Qp)

conjugacy class of cocharacters {µ} coming from the Shimura datum X and the fixed place v of E .

Lemma 5.4.1. The conjugacy class of fractional cocharacters {ν[b]} defined by [b] is equal to {µ−1
}.

Proof. The ordinary locus is equal to the µ-ordinary locus by Lemma 5.1.3. Therefore we have that
{ν[b]} = {µ}, where {µ} is the Galois-average of {µ−1

}, see [Shankar and Zhou 2021, Section 2.1]. But
since GQp is unramified and the local reflex field Ev is equal to Qp, there is a cocharacter µ defined over
Qp inducing the conjugacy class of cocharacters {µ}. It follows that {µ} = {µ−1

}. □

Let {λ} be a conjugacy class of (fractional) cocharacters of a connected reductive group H over an
algebraically closed field C . Let T be a maximal torus, let λ be a representative of {λ} factoring through
T and let B ⊃ T be a Borel. Let ρ ∈ X∗(T ) be the half sum of the positive roots with respect to B. Then
the pairing ⟨2ρ, λ⟩ does not depend on the choice of T, B or λ, and we denote it by ⟨2ρ, {λ}⟩.

Corollary 5.4.2. The p-divisible formal group HG
0,1,Fp

has dimension ⟨2ρ, {µ}⟩
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Proof. The dimension of HG
0,1,Fp

is equal to ⟨2ρ, ν[b]⟩ by [Kim 2019, Proposition 3.1.4], which is equal to
⟨2ρ, {µ−1

}⟩ = ⟨2ρ, {µ}⟩ by Lemma 5.4.1. □

Proposition 5.4.3. The closed formal subscheme

S
/x
G ↪−→ S/x

GSp ↪−→ D̂ef(Y )

introduced in (5.1.2), is a p-divisible formal subgroup. The induced inclusion of p-divisible groups

S
/x
G [p

∞
] ⊂ D̂ef(Y )[p∞] =H0,1

induces the inclusion

(g,Ad bσ)−1
⊂Hom(Dcov(Y0)[1/p],Dcov(Y1)[1/p])

from (5.3.2) on rational covariant Dieudonné modules of their special fibres.

Proof. By [Kim 2019, Theorem 4.3.1], the closed formal subscheme S
/x
G ⊂ D̂ef(Y ) is stable under the

action of
AutG(Ỹ )◦ ⊂ Aut(Ỹ )◦.

We can identify these groups with
H̃G

0,1 ⊂ H̃0,1 (5.4.1)

By Proposition 4.2.5, the action of H̃0,1 on D̂ef(Y ) factors through the natural action of H0,1 on D̂ef(Y )
by left translation, via the natural quotient map

H̃0,1→H0,1.

The inclusion HG
0,1 ⊂H0,1 induces an inclusion TpHG

0,1 ⊂ TpH0,1 which induces (5.4.1) after inverting p.
This implies that the action of H̃G

0,1 on S
/x
G factors through an action of HG

0,1 via the natural quotient map

H̃G
0,1→HG

0,1.

Now consider the closed point {x} ∈ Sh/x
G . Then the associated orbit map gives a closed immersion

H0,1,Fp
↪−→ Def(Y )Fp

.

This means that we similarly get a closed immersion

HG
0,1,Fp
⊂ Sh/x

G .

By [Kim 2019, Proposition 3.1.4], the formal scheme Def(Y )G,Fp
has dimension ⟨2ρ, {ν[b]}⟩, which is

equal to ⟨2ρ, {µ}⟩ by Lemma 5.4.1, which in turn is equal to the dimension of Sh/x
G . It follows that the

orbit map induces an isomorphism
HG

0,1,Fp
→ Sh/x

G

and that Sh/x
G is a formal subgroup of Def(Y )Fp

satisfying the conclusions of the proposition. It remains to
show that S

/x
G ⊂Def(Y ) is a formal subgroup, which follows from [Shankar and Zhou 2021, Theorem 1.1].

□
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5.4.4. The action of automorphism groups. Let the notation be as in Section 5. Recall that we have fixed
an isomorphism Dcov(Y ) ≃ V ∗p ⊗ Z̆p sending sα ⊗ 1 to sα,cris. This gives us an element b ∈ G(Q̆p) ⊂

GL(V ∗)(Q̆p) corresponding to the Frobenius in Dcov(Y )[1/p].
Recall from Section 4 that there is an action of Aut(Ỹ ) on RZY . Recall from the discussion before

Corollary 4.2.3, that Aut(Y )(Fp) ⊂ Aut(Ỹ ) preserves the Fp-point y ∈ RZY (Fp) corresponding to the
identity map of Y , and that this induces an action of the profinite group Aut(Y )(Fp) on Def(Y ). This
action is described in Corollary 4.2.3.

5.4.5. Recall that there are closed immersions of topological groups

Jb(Qp) G(Q̆p)

GL(V ∗)b(Qp) GL(V ∗)(Q̆p)

where GL(V ∗)b(Qp)= Aut(Ỹ )(Fp) is the σ -centraliser of b in GL(V ∗)(Q̆p). Let us write Up ⊂ Jb(Qp)

for the compact open subgroup given by the intersection

AutG(Ỹ )(Fp)∩Aut(Y )(Fp).

Then Up acts on H̃G
0,1 ⊂ Hom(Y0, Y1)[1/p] and preserves the action of TpHG

0,1, and thus acts on the
quotient H0,1 ≃S

/x
G . By Proposition 5.4.3 and the proof of Lemma 5.3.6, the induced action on rational

Dieudonné modules can be identified with the natural action of Up ⊂ Jb(Qp) on

(g,Ad bσ)−1
⊂ (g,Ad bσ).

In order to apply the rigidity result of Chai [2008] we need to understand this action. We will do this in
more generality in the next section.

5.5. Strongly nontrivial actions. Let G be a connected reductive group over Qp. Let b ∈ G(Q̆p) be
an element and consider the F-isocrystal (g,Ad bσ), where g = Lie G ⊗ Q̆p equipped with its action
of Jb(Qp). If we replace b by a σ -conjugate b′, then Jb(Qp) and Jb′(Qp) are conjugate in G(Q̆p), and
there is an isomorphism of isocrystals (g,Ad bσ)≃ (g,Ad b′σ).

Let λ ∈Q and let Nλ ⊂ (g,Ad bσ) be the largest sub-F-isocrystal of slope λ. Then because Jb(Qp)

acts on (g,Ad bσ) via F-isocrystal automorphisms, it preserves the subspace Nλ. Let us also denote by b
the image of b in GL(g), then there is a homomorphism of algebraic groups

Jb→ GL(g)b,

where GL(g)b denotes the σ -centraliser of b in GL(g). There is a parabolic subgroup

P(λ)⊂ GL(g)

consisting of automorphisms of the Q̆p-vector space g that preserve the slope filtration on the F-isocrystal
(g,Ad bσ), and after potentially replacing b by a σ -conjugate, the image of b lands in P(λ). There is



886 Pol van Hoften

thus a group homomorphism
Jb→ P(λ)b,

where P(λ)b denotes the σ -centraliser of b in P(λ). Since Nλ is a graded quotient of the slope filtration
of the F-isocrystal (g,Ad bσ), there is an induced quotient map P(λ)→ GL(Nλ) and this induces a
group homomorphism

Jb→ GL(Nλ)b,

where GL(Nλ)b denotes the σ -centraliser of b in GL(Nλ). Let E be the Qp-algebra of endomorphisms
of the F-isocrystal Nλ and let E× be the functor on Qp-algebras given by R 7→ (R⊗ E)×. Then there is
a natural isomorphism E× ≃ GL(Nλ)b.

Let GL(E) be the general linear group of E considered as a Qp-vector space and let E×→GL(E) be
the natural map corresponding to the action of E on itself by left translation. Consider E as a Qp-linear
representation of Jb via Jb→ E×, then the goal of this section is to prove the following result:

Proposition 5.5.1. Let T ⊂ Jb be a maximal torus. If λ ̸= 0, then the trivial representation of T does not
occur in the representation of T given by E.

Proof of Proposition 5.5.1. After replacing b by a σ -conjugate we can arrange for it to satisfy (see
[Kottwitz 1985, Section 4])

bσ(b) · · · σ r−1(b)= (rνb)(p)

for some r . Here νb is the Newton cocharacter of b, which is defined over Qpr . Let Mνb ⊂G⊗Q̆p denote
the centraliser of the cocharacter νb. By [Kim 2019, Proposition 2.2.6], there is a unique isomorphism

Jb⊗ Q̆p→ Mνb

such the composition Jb(Qp)⊂ Jb(Q̆p)→ Mνb(Q̆p)⊂ G(Q̆p) is the defining inclusion of Jb(Qp) as the
σ -centraliser of b in G(Q̆p).

After tensoring up to Q̆p, there is a commutative diagram, where L reg is the left regular representation
of GL(Nλ) on GL(End(Nλ)),

GL(E
Q̆p
) GL(End(Nλ))

Jb,Q̆p
E×

Q̆p
GL(Nλ)

Mνb P(λ)

≃

≃

≃

Lreg

If we show that the trivial representation of T⊗Q̆p does not occur in E⊗Q̆p, then it follows that the trivial
representation of T does not occur in E . The representation W =End(Nλ) of Jb,Q̆p

defined by composition
with the left regular representation is a direct sum of copies of the representation Nλ. Therefore it suffices
to show that the representation Nλ of T ⊗ Q̆p does not contain the trivial representation.
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We note that T ⊗ Q̆p =: T ′ is a maximal torus of Mνb acting on the associated graded of the slope
filtration of the F-isocrystal (g,Ad bσ). Since νb is a central cocharacter of Mνb by definition, we see
that (rνb)(p) ∈ T ′(Q̆p). To determine the slope decomposition of the F-isocrystal (g,Ad bσ), it suffices
to determine the slope decomposition of the Fr-isocrystal

(g, (Ad bσ)r )

for some positive integer r .
Let C be an algebraic closure of Q̆p and consider the action of T ′C on gC via the adjoint action of GC .

Then we have a decomposition

gC ≃ t′C ⊕

(⊕
α∈8

Uα

)
,

where 8⊂ X∗(T ′C) consists of the simple roots of TC . There is a similar decomposition

g≃ t′⊕

( ⊕
α0∈80

Uα0

)
, (5.5.1)

where 80 ∈ X∗(T ′C)I is the image of 8 and where I = Gal(C/Q̆p) is the inertia group.
Now we choose an integer r with the following properties: the isomorphism Jb⊗Q̆p→ Mνb is defined

over Qpr , the equation
bσ(b) · · · σ r−1(b)= (rνb)(p)

is satisfied, and the decomposition (5.5.1) is defined over Qpr . Then each Uα0 is stable under the action
of σ r and (Ad bσ)r acts on it by (rνb)(p)σ r . The operator Ad bσ moreover acts trivially on t′, and thus
for nonzero λ we have that

Nλ ⊂
⊕
α0

Uα0 .

After basechanging to C , we see that
Nλ ⊂

⊕
α

Uα.

Thus T ′C acts on Nλ via a subset of the nontrivial characters given by the simple roots 8⊂ X∗(T ′C), and
therefore the trivial representation of T ′ does not occur in Nλ and thus it does not occur in E . □

6. Proof of the main theorems

There are two final ingredients that are introduced in this section. In Section 6.1, we prove the local
stabiliser principle of Chai and Oort [2009, Theorem 9.5], which shows that the formal completion of
the Zariski closure of a prime-to-p Hecke orbit is stable under the action of a large p-adic Lie group.
In Section 6.2.2 we give a summary of results of [Chai 2003], which relates Serre–Tate coordinates of
families of ordinary abelian varieties to the p-adic monodromy groups of these abelian varieties. Then
in Section 6.3 we put everything together to prove Theorem I. In Section 6.4 we prove Corollary 6.4.1,
which is a generalisation of Theorem I to Shimura varieties of abelian type.
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We will use the notation introduced in Section 2 and Section 5.1 and moreover we will keep track
of the level again. Moreover, all our schemes will now implicitly live over Fp. Let x ∈ ShG,K pKp(Fp)

and let x̃ be a lift of x to ShG,Kp(Fp). Then the prime-to-p Hecke orbit of x is defined to be the image
HK p(x)⊂ ShG,K pKp(Fp) of the orbit G(Ap

f ) · x̃ ⊂ ShG,Kp(Fp); it does not depend on the choice of lift x̃ .
For the rest of this section we fix x as above and we let Z ⊂ ShG,ord,K pKp be the closure of HK p(x); note
that Z is again G(Ap

f )-stable by Lemma 3.1.2.

6.1. Rigidity of Zariski closures of Hecke orbits. Let z ∈ Z(Fp) be a smooth point of Z and let Iz(Q)

be the group of self-quasi-isogenies of z respecting the tensors, which was introduced in Section 2.2.
Let Y = Az[p∞] and fix a choice of isomorphism Dcov(Y ) ≃ V ∗p ⊗ Z̆p sending sα ⊗ 1 to sα,cris as in
Section 5.3. This gives rise to an element bz = b ∈ G(Q̆p) and we let Up ⊂ Jb(Qp) be the compact open
subgroup introduced in Section 5.4.4. Let Iz(Z(p)) be the intersection of Iz(Q) with Up inside Jb(Qp).
We consider the closed immersion of formal neighbourhoods (where the notation is as in (5.1.2))

Z /z ⊂ Sh/zG,K pKp
⊂ Sh/zGSp,KpKp

.

The goal of this section is to prove the following result.

Proposition 6.1.1 (local stabiliser principle). The closed subscheme Z /z ⊂ Sh/zG,K pKp
is stable under the

action of Iz(Z(p)) via Iz(Z(p))→Up.

6.1.2. There is a G(Ap
f )-equivariant closed immersion (using the fact that we have a closed immersion at

finite level by the main theorem of [Xu 2020]) ShG,Kp → ShGV ,Kp , where G(Ap
f ) acts on the right hand

side via the inclusion G(Ap
f )→ GV (A

p
f ). The space ShGV ,Kp is a moduli space of (weakly) polarised

abelian varieties (A, λ) up to prime-to-p isogeny, equipped with an isomorphism Vp A → V ⊗ A
p
f

compatible with the polarisation up to a scalar in A
p,×
f .

Let z̃ be a lift of z to ShG,Kp(Fp) as above, which defines an inclusion

Iz(Z(p))⊂ Iz(Q)⊂ G(Ap
f ).

The stabiliser in GV (A
p
f ) of z̃ ∈ ShGV ,Kp is given by Endλ(Az)

×, which is the group of automorphisms of
the abelian variety up to prime-to-p isogeny A that take λ to a Z×(p) multiple of λ.

Lemma 6.1.3. The stabiliser inside G(Ap
f ) of the point z̃ is equal to Iz(Z(p)).

Proof. By [KMS 2022, Lemma 2.1.4], the stabiliser is contained in Iz(Z(p)). The stabiliser in GV (A
p
f ) of

the image of z̃ in ShGV ,Kp is equal to Endλ(Az)
× and thus contains Iz(Z(p)). The result follows. □

In order to prove Proposition 6.1.1, we first prove it for ShGSp,KpKp . See [Chai and Oort 2009,
Theorem 9.5] for closely related results and arguments.

Let Sh/z̃GV ,Kp
be the formal completion of ShGV ,Kp , considered as a formal algebraic space as in [Stacks

2020, Section 0AIX], and restrict its functor of points to Artin local Fp-algebras R with residue field
isomorphic to Fp. Then Sh/z̃GV ,Kp

(R) is the set of isomorphism classes of (weakly) polarised abelian
varieties (A, λ) over R up to prime-to-p isogeny, equipped with an isomorphism ϵ : Vp A→ V ⊗A

p
f
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compatible with the polarisation up to a scalar in A
p,×
f , such that after basechanging to Fp we recover the

point given by the image of z̃.
This means that there is a (necessarily unique) isomorphism β : AFp

→ Az making the following
diagram commute:

Vp AFp
Vp Az

V ⊗A
p
f V ⊗A

p
f

β

ϵ ϵz̃

The quadruple (A, λ, β, ϵ) is uniquely determined by (A, λ, β) because (pro-)étale sheaves on Artin
local rings are determined by their restriction to the residue field. In particular, for all R ∈ Art the natural
forgetful map

Sh/z̃GV ,Kp
(R)→ Sh/zGSp,KpKp

(R)

is an isomorphism. This induces an action of Endλ(Az)
× on Sh/zGSp,KpKp

that we will now identify.

6.1.4. Recall that there is an inclusion Endλ(Az)
×
⊂ GV (A

p
f ) determined by z̃ or rather ϵz̃ . This means

that an automorphism f of Az acts on V ⊗A
p
f in a way that makes the following diagram commute:

Vp Az Vp Az

V ⊗A
p
f V ⊗A

p
f

f

ϵz̃ ϵz̃

f

Since Endλ(Az)
× stabilises z̃, it acts on Sh/z̃GV ,Kp

. This action can be described as follows: An automor-
phism f sends a triple (A, λ, ϵ) to (A, λ, f ◦ ϵ). It is straightforward to check that the unique upgrade
(A, λ, f ◦ ϵ) to a quadruple (A, λ, β ′, f ◦ ϵ) is realised by taking β ′ = f ◦ β. Therefore the induced
action of Endλ(Az)

× on Sh/zGSp,KpKp
is given by (A, λ, β) 7→ (A, λ, f ◦β).

6.1.5. Because deformations of abelian varieties are uniquely determined by deformations of their
p-divisible groups, we can also identify

Sh/z̃GV ,Kp
(R)

with the space of triples (X, λ, β) where (X, λ) is a polarised p-divisible group and β is an isomorphism
(X, λ)Fp

→ (Az[p∞], λz). The action of Endλ(Az)
× is then given by postcomposing β with f . There is

a similar description of at finite level, and it follows that the natural map

Sh/zGSp,KpKp
⊂ Def(Az[p∞])

is Endλ(Az)
×-equivariant, where Endλ(Az)

× acts on the right hand side via the inclusion

Endλ(Az)
×
⊂ End(Az[p∞])×,
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followed by the natural action of End(Az[p∞])× on Def(Az[p∞)].

Proof of Proposition 6.1.1. Let z̃ be a lift of z to ShG,Kp(Fp) as above, which defines an inclusion

Iz(Z(p))⊂ Iz(Q)⊂ G(Ap
f ).

It follows from Lemma 6.1.3 that Iz(Z(p)) ⊂ G(Ap
f ) is the stabiliser of the point z̃ under the action of

G(Ap
f ). Let Z̃ be the inverse image of Z in ShG,Kp , it is stable under the action of G(Ap

f ) by Lemma 3.1.2.
There is a commutative diagram

Z̃ ShG,Kp ShGV ,Kp

Z ShG,K pKp ShGSp,KpKp

where the top right horizontal map is G(Ap
f )-equivariant via G(Ap

f )→ GV (A
p
f ).

Let Z̃ /z̃ be the formal completion of Z̃ at the closed point corresponding to Z̃ , considered as a formal
algebraic space as in [Stacks 2020, Section 0AIX]. This is per definition the subfunctor of Z̃ consisting
of those morphisms Spec T → Z̃ that factor through z̃ on the level of topological spaces. Since Iz(Z(p))

stabilises z̃, it acts on Z̃ /z̃ .
By [Stacks 2020, Lemma 0CUF], there is a homeomorphism |Z̃ | ≃ lim

←−−Up |ZUp | and thus we get an
isomorphism

Z̃ /z̃ ≃ lim
←−−

Up⊂G(A p
f )

Z /zUp ,

where z ∈ ZUp(Fp) is the image of z̃ under Z̃→ ZUp . The formal algebraic space Z /zUp can be identified
with Spf ÔZUp ,z , compatible with changing Up. Since the transition morphisms are all finite étale, they
induce isomorphisms of complete local rings. Therefore, all the transition maps in the inverse system
lim
←−−Up⊂G(A p

f )
Z /zUp are isomorphism. We conclude that

Z̃ /z̃ ≃ Z /zUp ,

and so there is an action of Iz(Z(p)) on Z /zUp . In the same way we can prove that there is an action of
Iz(Z(p)) on Sh/zG,K pKp

. It remains for us to identify this action with the inclusion Iz(Z(p))→Up followed
by the natural action of Up on Sh/zG,K pKp

.
Let z̃ be the image of z̃ in ShGV ,Kp(Fp) and let z ∈ ShGSp,KpKp(Fp) be its image. Then the stabiliser of

z̃ can be identified with the group

Endλ(Az)
×
⊂ GV (A

p
f )

as before. The discussion above implies that we have an action of Endλ(Az)
× on Sh/zGSp,KpKp

such that
the closed immersion

Sh/zG,K pKp
⊂ Sh/zGSp,KpKp
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is Iz(Z(p))-equivariant for the action of Iz(Z(p)) on the right hand side via the map Iz(Z(p))→Endλ(Az)
×.

But we have seen in Section 6.1.5 that the action of Endλ(Az)
× on Sh/zGSp,KpKp

described above agrees
with the action of Endλ(Az)

× via the inclusion Endλ(Az)
×
→ Autλ(Az[p∞])(Fp).

Note that the following diagram commutes by construction:

Iz(Z(p)) Endλ(Az)
×

Up Autλ(Az[p∞])(Fp)

Thus we see that Z /zK p is stable under the action of Iz(Z(p)) on Sh/x
G,K pKp

given by the inclusion Iz(Z(p))→Up

followed by the natural action of Up on Sh/x
G,K pKp

. □

Corollary 6.1.6. Assume that z ∈ ShG,K pKp(Fp) is an ordinary point. Then Z /z is a formal subtorus of
Sh/zG,K pKp

.

Proof. The compact open subgroup Up ⊂ Jb(Qp) acts on Sh/zG,K pKp
as explained in Section 5.4.4. By

Proposition 6.1.1 the closed subspace Z /z ⊂ Sh/zG,K pKp
is stable under the action of Iz(Z(p)) ⊂ Up and

hence of its closure in Up. The algebraic group IQp ⊂ Jb has the same rank as Jb by [Kisin 2017,
Corollary 2.1.7]. Let T ⊂ I be a maximal torus, then [Platonov and Rapinchuk 1994, Theorem 7.9] tells
us that the topological closure of T (Q) in T (Qp) has finite index in T (Qp). It follows from this that the
closure of Iz(Z(p)) in Up contains a compact open subgroup of a maximal torus T of Jb(Qp).

Proposition 5.5.1 then tells us that the assumptions of [Chai 2008, Theorem 4.3] are satisfied. This
theorem implies that Z /z is a p-divisible formal subgroup of Sh/zG,K pKp

, in other words, it is a formal
subtorus. □

6.2. Monodromy of linear subspaces. The goal of this section is to prove the following result, which is
a consequence of results of [Chai 2003]. Recall that the universal abelian variety A over ShGSp,ord,KpKp

gives rise to an F-isocrystal M, see Section 3.3. Let W ⊂ ShGSp,ord,KpKp be a connected smooth closed
subscheme, then we say that W is linear at a smooth point z ∈W (Fp) if

W /z
⊂ Sh/zGSp,KpKp

is a p-divisible formal subgroup. Let UW be the unipotent radical of the monodromy group Mon(W,M, z).

Proposition 6.2.1 (Chai). Let z ∈W (Fp) be a smooth point such that W is linear at z. Then we have the
inequality

dim Wz ≥ Dim UW ,

where Dim Wz is the dimension of the local ring OW,z .

Chai proves the stronger statement that this inequality is actually an equality, but we will not need this
stronger statement to prove Theorem I.
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Our proof of Proposition 6.2.1 is a straightforward application of the results in [Chai 2003, Sections 2–4].
Since [Chai 2003] is an unpublished preprint from 2003, the referee has suggested we include another
reference. Thus we give a second proof of Proposition 6.2.1 based on results of [D’Addezio and van
Hoften 2022].

6.2.2. For our first proof of Proposition 6.2.1, we need to give a brief summary of [Chai 2003, Sections 2–4].
Consider the closed immersion.

W /z
→ Sh/zGSp,KpKp

↪−→ D̂ef(Y )Fp
.

Write R = ÔW,z and write M for the finite free Zp-module TpY0(Fp)⊗Zp TpY∨1 (Fp). Then the morphism
W /z
→ D̂ef(Y ) corresponds to an element of

D̂ef(Y )(R)= Hom(M, Ĝm(R))= Hom(M, 1+mR)

where the first equality is [Katz 1981, Theorem 2.1]. Thus we get a homomorphism f : M→ 1+mR and
we let N∨z be its kernel. By [Chai 2003, Proposition 4.2.1, Remark 2.5.1], the Zp-module N∨z is finite
free and the quotient M/N∨z is torsion-free. Thus the map

W /z
→Hom(M, Ĝm)

factors through the subtorus
Hom(M/N∨z , Ĝm)⊂Hom(M, Ĝm),

which we can also write as Nz ⊗Zp Ĝm ⊂ M∗⊗Zp Ĝm . Here the ∗ denotes taking Zp-linear dual and the
morphism Nz→ M∗ is the Zp-linear dual of the quotient

M→ M/N∨z .

The following lemma has the same statement as [Chai 2003, Remark 3.14].

Lemma 6.2.3. The subgroup Nz ⊗Zp Ĝm is the smallest formal subtorus of D̂ef(Y )Fp
through which the

map from Spf R factors.

Proof. A subtorus corresponds to a free Zp-submodule N ⊂ Nz such that the quotient Nz/N is torsion
free. Write N∨ for the kernel of the map

M→ M/N∨z = N ∗z → N ∗.

If
Spf R→ Nz ⊗Zp Ĝm

factors through N ⊗Zp Ĝm , then it factors through

Hom(M/N∨, Ĝm)⊂Hom(M, Ĝm).

Since the kernel of the map M → Ĝm(R) is given by N∨z , it follows that N∨z ⊂ N∨ and therefore
M/N∨ = M/N∨z and thus Nz = N . □
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Proof of Proposition 6.2.1. We specialise the discussion of Section 6.2.2 to the situation of Proposition 6.2.1.
In particular, since W /z is assumed to be a formal subtorus, we are in the situation that

W /z
= Nz ⊗Zp Ĝm ⊂ D̂ef(Y )Fp

.

Chai [2003, Section 4, Theorem 4.4] proves that the dimension of UW is equal to the rank of Nz . Thus
the rank of Nz is certainly bounded from below by the dimension of UW . But the rank of Nz is also
the dimension of the formal scheme W /z which equals the Krull dimension of ÔW,z and also the Krull
dimension of OW,z , which proves the theorem. □

Second proof of Proposition 6.2.1. By [D’Addezio and van Hoften 2022, Theorem II], the unipotent
radical UW of Mon(W,M, z) is isomorphic to the monodromy group

Mon(W /z,M, z).

This monodromy group is defined as in Section 3.3 using the Tannakian category of isocrystals over the
formal scheme W /z or equivalently the Tannakian category of isocrystals over the scheme Spec ÔW,z , see
[D’Addezio and van Hoften 2022, Notation 2.2.5]). Thus it suffices to show that the dimension of W /z is
bounded from below by the dimension of Mon(W /z, z).

Let Y = Az[p∞] as above and write a+ =:Dcov(Y ) and a= a+[1/p]. Write b+ ⊂ a+ for the covariant
Dieudonné module of the p-divisible group associated to W /z and b= b+[1/p]. Then in the notation of
[D’Addezio and van Hoften 2022, Section 5.5] we have

W /z
= Z(b+).

Now [D’Addezio and van Hoften 2022, Theorem 5.5.3] tells us that there is an inclusion of algebraic
groups over Q̆p,

Mon(W /z,M, z)⊂U (b) := b⊗
Q̆p

Ga.

In particular, the height of the isocrystal b is bounded from below by the dimension of Mon(W /z,M, z).
Since b has slope 1, it follows that the dimension of the p-divisible group associated to b+ is also bounded
from below by the dimension of Mon(W /z,M, z). □

6.3. Monodromy and conclusion. Recall from Section 3.2.2 the maps

B(GQp)→ B(Gad
Qp
)→

n∏
i=1

B(Gi,Qp)

induced by the decomposition Gad
=

∏n
i=1 Gi of (2.2.1). Let [bord] ∈ B(G, {µ−1

}) be the σ -conjugacy
class corresponding to the ordinary locus, and let [bord,i ] be the image of [bord] in B(Gi,Qp).

Lemma 6.3.1. For all i the element [bord,i ] is nonbasic.

Proof. By the axioms of a Shimura datum, the Gi (Qp)-conjugacy class of cocharacters {µ−1
i } induced by

{µ−1
} is nontrivial for all i . By Lemma 5.4.1, we have an equality {µ−1

i } = {ν[bord,i ]} and so the Newton
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cocharacter of [bord,i ] is noncentral for all i . In other words, the σ -conjugacy class [bord,i ] is nonbasic for
all i . □

Proof of Theorem I. Let x ∈ ShG,K pKp(Fp) be an ordinary point and let Z be the Zariski closure (inside
ShG,ord,K pKp ) of its prime-to-p Hecke orbit. Then Z is G(Ap

f )-stable by Lemma 3.1.2 and similarly its
smooth locus Z sm

⊂ Z is G(Ap
f )-stable by Lemma 3.1.1. Let X be the p-divisible group over Z sm of the

universal abelian variety and let M† be the associated overconvergent F-isocrystal, see Section 3.3.
Let z ∈ Z sm(Fp) and let Z◦ ⊂ Z sm be the connected component containing z. By Lemma 6.3.1, the

element [bord] is Q-nonbasic and by Lemma 2.3.2, we know that Hypothesis 2.3.1 is satisfied because Kp

is hyperspecial. Therefore Corollary 3.3.3 tells us that the monodromy group of M† over Z◦ is isomorphic
to Gder

⊗ Q̆p. Corollary 3.3.5 tells us that unipotent radical of the monodromy group of M over Z◦ is
isomorphic to the unipotent radical of the parabolic subgroup Pν[b] ⊂G⊗Q̆p for any choice of ν[b] ∈ {ν[b]}.

By Lemma 5.4.1, this unipotent radical is isomorphic to the unipotent radical of the parabolic subgroup
Pµ⊂G for any choice of representative µ of {µ}. This unipotent radical has dimension equal to ⟨2ρ, {µ}⟩
(this notation was introduced after the statement of Lemma 5.4.1).

Corollary 6.1.6 tells us that Z /z is a formal subtorus. Applying Proposition 6.2.1 we see that the Krull
dimension of OZ ,z is bounded from below by ⟨2ρ, {µ}⟩. Since the Shimura variety ShG,K pKp also has
dimension ⟨2ρ, {µ}⟩, we conclude that

Z /z = Sh/zG,K pKp
.

Because this is true for a dense set of points, it follows that Z is a union of connected components of
ShG,ord,K pKp .

By Lemma 5.1.3, the ordinary locus is dense and thus π0(ShG,ord,K pKp)= π0(ShG,K pKp). Since G(Ap
f )

acts transitively on π0(ShG,Kp), by [Kisin 2010, Lemma 2.2.5] in combination with [Madapusi Pera 2019,
Corollary 4.1.11], it follows that Z = ShG,ord,K pKp . We conclude that the prime-to-p Hecke orbit of x is
dense in ShG,K pKp since ShG,ord,K pKp is dense in ShG,K pKp . □

6.4. Consequences for Shimura varieties of abelian type. Let (G, X) be a Shimura datum of abelian
type with reflex field E , and let (Gad, X ad) be the induced adjoint Shimura datum with reflex field
Ead
⊂ E . Let p be a prime number, let Kp ⊂ G(Qp) be a hyperspecial subgroup and let K p

⊂ G(Ap
f ) be

a sufficiently small compact open subgroup. Let ShG,K pKp be the special fibre of the canonical integral
model of the Shimura variety of level K pKp at a prime v above p of E , constructed by Kisin [2010] (see
[Kim and Madapusi Pera 2016] for the case p = 2).

By [Shen and Zhang 2022, Theorem A], there is an open and dense G(Ap
f )-stable Newton stratum

ShG,K pKp,µ−ord in ShG,K pKp , called the µ-ordinary locus. If (G, X) ⊂ (GV ,HV ) for some symplectic
space V and Ev =Qp, then the µ-ordinary locus is equal to the ordinary locus by Lemma 5.1.3.

Corollary 6.4.1. If Ead
v = Qp, then the prime-to-p Hecke orbit of x ∈ ShG,K pKp,µ−ord(Fp) is dense in

ShG,K pKp .
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Remark 6.4.2. This corollary is more general than Theorem I even for Shimura varieties of Hodge type.
Indeed, there are (many) examples of Shimura data (G, X) of Hodge type and primes p and v such that
Ev ̸=Qp but Ead

v =Qp.

Lemma 6.4.3. Corollary 6.4.1 holds for (G, X) if and only if it holds for (Gad, X ad).

Proof. The image K ad
p in Gad(Qp) is a hyperspecial subgroup. We can choose K p,ad

⊂Gad(A
p
f ) containing

the image of K p such that there is a morphism

ShG,K pKp(G, X)→ ShGad,K p,ad K ad
p
(Gad, X ad)⊗Ead E,

inducing a morphism on geometric special fibres of integral canonical models

ShG,K pKp → ShGad,K p,ad K ad
p
, (6.4.1)

where we are taking the canonical integral model of (Gad, X ad) at the place vad of Ead induced by v. This
morphism induces a G(Ap

f )-equivariant morphism

ShG,Kp → ShGad,K ad
p
,

where G(Ap
f ) acts on the left hand side via the natural map G(Ap

f )→ Gad(A
p
f ). Since the Newton

stratification on Shimura varieties of abelian type can be constructed using the F-crystals with G-structure
of Lovering [2017], which are functorial for morphisms of Shimura data, it follows that there is an induced
map

ShG,K pKp,µ−ord→ ShGad,K p,ad K ad
p ,µ−ord .

Moreover, since the natural map B(G, {µ−1
})→ B(Gad, {µ−1

}) is a bijection as explained in [Kottwitz
1997, Section 6.5], it is in fact true that ShG,K pKp,µ−ord is the inverse image of ShGad,K p,ad K ad

p ,µ−ord

under (6.4.1). By construction of the integral canonical models of Shimura varieties of abelian type,
see [Kisin 2010, Section 3.4.9; 2017, Appendix E.7], the connected components of ShGad,K p,ad K ad

p
are

quotients of connected components of ShG,K pKp by free actions of finite groups. In particular, the map
(6.4.1) is finite étale and thus closed.

Because the map (6.4.1) is closed and takes prime-to-p Hecke orbits to prime-to-p Hecke orbits, it must
takes Zariski closures of prime-to-p Hecke orbits to Zariski closure of prime-to-p Hecke orbits. Thus for
x ∈ ShG,K pKp,µ−ord(Fp) the Zariski closure of its Hecke orbit in ShG,K pKp,µ−ord has the same dimension
as the Zariski closure of its Hecke orbit in ShGad,K p,ad K ad

p ,µ−ord. Moreover in both cases the prime-to-p
Hecke operators act transitively on π0(ShG,K pKp) by [Kisin 2010, Lemma 2.2.5] in combination with
[Madapusi Pera 2019, Corollary 4.1.11].6 Thus prime-to-p Hecke orbits in ShG,K pKp,µ−ord are dense if

6The result [Madapusi Pera 2019, Corollary 4.1.11] states that for Shimura varieties of Hodge type and hyperspecial level,
Hypothesis 3.4.1 holds. Since the canonical integral models of Shimura varieties of abelian type are constructed from the
canonical integral models of Shimura varieties of Hodge type, the statement therefore also holds for canonical integral models of
Shimura varieties of abelian type.
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and only if their images under (6.4.1) are dense. In particular, if the corollary holds for (Gad, X ad), then
it holds for (G, X).

To prove the converse, we note that a point in the Shimura variety for (Gad, X ad) can, by [Kisin 2010,
Lemma 2.2.5] in combination with [Madapusi Pera 2019, Corollary 4.1.11], be moved to a connected
component which is in the image of (6.4.1). Therefore every prime-to-p Hecke orbit can be lifted to the
Shimura variety for (G, X), and we are done. □

Proof of Corollary 6.4.1. By Lemma 6.4.3, we may assume that G is adjoint. Then by the proof of
[Kisin and Pappas 2018, Lemma 4.6.22] we can choose a Shimura datum of Hodge type (G2, X2) and a
morphism of Shimura data (G2, X2)→ (G, X) such that: the group G2,Qp is quasi-split and split over an
unramified extension and the prime v of E splits in the reflex field E2 ⊃ E of (G2, X2). The upshot is
that we can choose a prime w of E2 satisfying E2,w =Qp and thus the µ-ordinary locus in the special
fibre of the canonical integral model for (G2, X2) at this prime is equal to the ordinary locus for a choice
of Hodge embedding (GV ,HV ).

Then Theorem I implies that Corollary 6.4.1 holds for (G2, X2) and Lemma 6.4.3 tells us that it also
holds for (G, X) which concludes the proof. □
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