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We develop a version of Sen theory for equivariant vector bundles on the Fargues–Fontaine curve. We
show that every equivariant vector bundle canonically descends to a locally analytic vector bundle. A
comparison with the theory of (ϕ, 0)-modules in the cyclotomic case then recovers the Cherbonnier–
Colmez decompletion theorem. Next, we focus on the subcategory of de Rham locally analytic vector
bundles. Using the p-adic monodromy theorem, we show that each locally analytic vector bundle E has a
canonical differential equation for which the space of solutions has full rank. As a consequence, E and
its sheaf of solutions Sol(E) are in a natural correspondence, which gives a geometric interpretation of a
result of Berger on (ϕ, 0)-modules. In particular, if V is a de Rham Galois representation, its associated
filtered (ϕ, N , GK )-module is realized as the space of global solutions to the differential equation. A key
to our approach is a vanishing result for the higher locally analytic vectors of representations satisfying
the Tate–Sen formalism, which is also of independent interest.
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1. Introduction

The study of p-adic Galois representations has been conditioned to an extent by two dogmas. One is the
analytic dogma; its main idea is to associate to every such representation a (ϕ, 0)-module over the Robba
ring and to study these objects using p-adic analysis. The other dogma is geometric: to every p-adic Galois
representation one associates an equivariant vector bundle over the Fargues–Fontaine curve. The aim of
this article is, roughly speaking, to find a framework where both analysis and geometry can be carried out.
In recent years, much of the theory of p-adic Galois representations has been understood in terms of the
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geometry of the Fargues–Fontaine curve. A notable exception has been the p-adic Langlands program,
where the analytic approach plays a crucial role. Thus we are motivated to reduce this discrepancy by
introducing corresponding objects on the Fargues–Fontaine curve which are also amenable to analytic
methods. These are the locally analytic vector bundles, the main new objects introduced in this article.

We shall now explain this in more detail. Let K be a finite extension of Qp with absolute Galois
group GK . Let Kcyc be the cyclotomic extension of K and write 0 = Gal(Kcyc/K ). For the sake of
simplifying the introduction, we shall focus now on the cyclotomic setting, though as we shall explain
later, the content of this paper will apply to a wider class of Galois extensions K∞/K . We have the
category RepQp

(GK ) of finite dimensional Qp-representations of GK .
On the one hand, RepQp

(GK ) can be studied via p-adic analysis. To do this, one introduces the Robba
ring R, which is the ring of power series over a certain finite extension of Qp in a variable T which
converge in some annuli r ≤ |T | < 1. It has an action of a Frobenius operator ϕ as well as an action
of 0. By work of Cherbonnier–Colmez, Fontaine and Kedlaya, it is known that there is a fully faithful
embedding

RepQp
(GK ) ↪→ {(ϕ, 0)-modules over R},

with the essential image consisting of the semistable slope 0 objects. If D is a (ϕ, 0)-module over R, a
fundamental fact is that the 0-action on D can be differentiated, namely, there is a well defined action of
Lie(0) on D. Since Lie(0) is 1-dimensional, this data is the same as that of a connection ∇ which acts
on functions of T by a multiple of d/dT . It is precisely this structure which allows the introduction of
p-adic analysis into the picture. For example, in the construction of the p-adic Langlands correspondence
for GL2(Qp) given in [Colmez 2010], the use of this analytic structure is ubiquitous.

On the other hand, RepQp
(GK ) can be studied via geometry. The Fargues–Fontaine curve, studied

extensively in [Fargues and Fontaine 2018], is defined as the analytic adic space

X = X (K̂cyc) := (SpaAinf−{p[p♭
] = 0})/(ϕZ, Gal(K/Kcyc))

(see Section 3) and has a natural action of 0. By the work of Fargues and Fontaine, there is a fully faithful
embedding

RepQp
(GK ) ↪→ {0-equivariant vector bundles on X },

again with the essential image consisting of the semistable slope 0 objects. In fact, Fargues and Fontaine
show there is an equivalence

{(ϕ, 0)-modules over R}∼= {0-equivariant vector bundles on X },

compatible with each of the aforementioned embeddings of RepQp
(GK ).

Unfortunately, the action of 0 on an equivariant vector bundle on X cannot be differentiated. This is
already true for the structure sheaf OX . Here is a simplified model of the situation which illustrates why
there is no action of Lie(0) on OX . The functions on an open subset of X can roughly be thought of



Locally analytic vector bundles on the Fargues–Fontaine curve 901

as power series in T 1/p∞ satisfying certain convergence conditions. When we try to apply the operator
d/dT to such a power series, the result will often not converge since the derivative

d(T 1/pn
)/dT = (1/pn)T 1/pn

−1

grows exponentially larger p-adically as n goes to infinity. Nevertheless, there is a way to single out the
sections for which the action of Lie(0) does not explode. This is achieved by considering only those sec-
tions on which the action of 0 is regular enough. In this toy model picture, this will amount to considering
only the power series where the coefficient of the exponent of T k/pn

will decay proportionally to pn .
More canonically and more generally, these elements for which differentiation is possible are precisely

the locally analytic elements. Given an equivariant vector bundle Ẽ on X , there is a subsheaf of locally
analytic sections Ẽ la

⊂ Ẽ . This sheaf is a module over Ola
X which is preserved under the 0-action, and,

crucially, Lie(0) acts on Ẽ la. We are thus naturally led to the definition of a locally analytic vector
bundle on X : by this we shall mean a locally free Ola

X -module together with a 0-action. The point is that
locally analytic vector bundles capture both analytic and geometric information, both of which has proven
important for the study of RepQp

(GK ).
Our first main result is saying that there is no loss of information in this process: each equivariant

vector bundle canonically descends to a locally analytic vector bundle.

Theorem A. The functor Ẽ 7→ Ẽ la gives rise to an equivalence of categories from the category of 0-
equivariant vector bundles on X to the category of locally analytic vector bundles on X . Its inverse is
given by the functor E 7→OX ⊗Ola

X
E .

This theorem fits naturally into the framework of Sen theory, as we shall now explain. Let V ∈
RepQp

(GK ). Then according to Sen’s theory, proven in [Sen 1980], there is a canonical isomorphism

(V ⊗Qp Cp)
Gal(K/Kcyc) ∼= K̂cyc⊗Kcyc DSen(V ),

where DSen(V ) is the Kcyc-subspace of elements with finite 0-orbit in V ⊗Qp Cp. Later, Fontaine [2004,
§3.4] proved an analogue of this theorem for B+dR: he showed there is an isomorphism

(V ⊗Qp B+dR)Gal(K/Kcyc) ∼= (B+dR)Gal(K/Kcyc)⊗Kcyc[[t]] D+dif(V ),

where D+dif(V ) is a canonical Kcyc[[t]]-submodule of V ⊗Qp B+dR.
In fact, both of these results are implied by Theorem A by specializing at the “point at infinity” x∞ ∈X .

Indeed, when Ẽ is the equivariant vector bundle associated to V ∈ RepQp
(GK ) and E = Ẽ la, specializing

the isomorphism Ẽ ∼=OX ⊗Ola
X
E at the fiber of x∞ gives rise to an isomorphism

Ẽk(x∞)
∼=OX ,k(x∞)⊗Ola

X ,k(x∞)
Ek(x∞),

which is none other than Sen’s theorem. Similarly, there is an isomorphism of the completed stalks at x∞,

Ẽ∧,+

x∞
∼=O∧,+

X ,x∞ ⊗Ola,∧,+
X ,x∞

E∧,+
x∞ ,
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which recovers Fontaine’s theorem. In this way, Theorem A is a sheaf theoretic version of Sen theory on
X which specializes at x∞ to classical Sen theory.

In the interest of applications, we give a proof of this equivalence not just for the cyclotomic extension,
but more generally for any p-adic Lie group 0 =Gal(K∞/K ), where K∞ is an infinitely ramified Galois
extension of K which contains an unramified twist of the cyclotomic extension. Notably, this condition
holds when K∞ is the extension generated by the torsion points of a formal group.

As we shall explain in the article, these ideas are closely related to the decompletion of (ϕ, 0)-modules,
especially in the case K∞ = Kcyc. This is not too surprising, because such (ϕ, 0)-modules are also
obtained by a Sen theory type of idea through the theorem of Cherbonnier and Colmez [1998], and
further, these objects relate to DSen and D+dif in a similar way. In fact, Theorem A is equivalent to the
Cherbonnier–Colmez theorem on decompletion of (ϕ, 0)-modules (after inverting p). Our proof is not
independent from the ideas of Cherbonnier–Colmez, since we still use their trace maps in our arguments.
However, it is logically different — more on this below.

First, let us discuss an application of Theorem A, which was a major source of motivation for this
work. We give a geometric reinterpretation of Berger’s work [2008b] on p-adic differential equations
and filtered (ϕ, N )-modules. In that article, Berger establishes several results regarding de Rham (ϕ, 0)-
modules (for example, these (ϕ, 0)-modules arising from de Rham p-adic Galois representations). To
such a (ϕ, 0)-module D, Berger associates another (ϕ, 0)-module NdR(D) (a so called p-adic differential
equation), and a K -vector space of solutions

Sol(D) := lim
−−→

[L:K ]<∞
(RL [log T ]⊗R NdR(V ))GL ,

where RL is the Robba ring with respect to L . The following results can be derived from the main results
of [Berger 2008b], for D a de Rham (ϕ, 0)-module:

(i) Sol(D) is a K -vector space of rank equal to the rank of D.

(ii) There is a canonical isomorphism

RK [log T ]⊗K un Sol(D)∼=RK [log T ]⊗R NdR(V ).

(iii) K ⊗K un Sol(D) is canonically isomorphic to K ⊗K DdR(D).

(iv) Sol(D) is naturally a filtered (ϕ, N , GK )-module.

Furthermore, the functor D 7→ Sol(D) gives rise to an equivalence of categories from the category of
de Rham (ϕ, 0)-modules over R to the category of filtered (ϕ, N , GK )-modules.

The functor of solutions is ultimately understood in [Berger 2008b] by solving the differential equation
Lie(0)= 0, and as such, uses p-adic analysis in a crucial way. It is therefore natural to apply Theorem A
to give a geometric interpretation of these results, something previously inaccessible in the framework
of vector bundles on the Fargues–Fontaine curve. In fact, when interpreted in a geometric way, [Berger
2008b, théorème A] turns out to be reminiscent of the Riemann–Hilbert correspondence.
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Our second main result is the desired geometric interpretation of Berger’s results. To describe it, we
need to introduce some notation. We have

Xlog,K := lim
←−−

[L:K ]<∞
Xlog,L ,

where each Xlog,L is a the analytic line bundle over XL := X (L̂cyc) corresponding to OXL (1), endowed
with the projection plog,L : Xlog,L → XL (see Section 8C). Essentially, Xlog,K is obtained by adjoining all
K -scalars and a logarithm to the functions on X . Now let E be a de Rham locally analytic vector bundle,
i.e., suppose that dimK Ê0=1

x∞ = rank(E) (see Section 8B). For example, if V is a de Rham p-adic Galois
representation, then its associated locally analytic vector bundle is de Rham. To such E , we associate a
sheaf Sol(E) on X , given by

Sol(E) := lim
−−→

[L:K ]<∞
plog,L ,∗(p∗log,LNdR(E))Lie(0)=0,

where NdR(E) is a modification of E corresponding to the de Rham lattice of E at x∞. Roughly speaking,
Sol(E) is the sheaf of solutions to the differential equation ∇ = 0 on the modification NdR(E). We shall
also consider a variant Solϕ(E), which are the solutions on the pullback of E along the usual covering
Y(0,∞)→ X for Y(0,∞) = SpaAinf− {p[p♭

] = 0}/Gal(K/Kcyc). We then have the following result, by
analogy with the results of [Berger 2008b] (see Section 8 for yet more precise statements).

Theorem B. Let E be a de Rham locally analytic vector bundle.

(i) The sheaf of solutions Sol(E) is locally free over the subsheaf of potentially log smooth sections
Oplsm

X ⊂Ola
X and its rank is equal to the rank of E .

(ii) There is a canonical isomorphism

Ola
Xlog,K
⊗Oplsm

X
Sol(E)−→∼ Ola

Xlog,K
⊗Ola

X
NdR(E).

(iii) The stalk of Sol(E) at x∞ is canonically isomorphic to K ⊗K DdR(E).

(iv) The space of global solutions H0(Y(0,∞), Solϕ(E)) is naturally a filtered (ϕ, N , GK )-module.

Furthermore, the functor E 7→ H0(Y(0,∞), Solϕ(E)) gives rise to an equivalence of categories from the
category of de Rham locally analytic vector bundles to the category of filtered (ϕ, N , GK )-modules.

Remark 1.1. (1) In particular, if V is a de Rham representation of GK with associated locally ana-
lytic vector bundle E , then H0(Y(0,∞), Solϕ(E)) = Dpst(V ) and the stalk Sol(E)x∞ is identified with
K ⊗K DdR(V ). The localization map corresponds to the natural map Dpst(V )→ K ⊗K DdR(V ).

(2) If E becomes crystalline after extending K to a finite extension L⊂K∞, the sheaf NdR(E)∇=0
⊂Sol(E)

is locally free over the subsheaf of smooth sections Osm
X ⊂Ola

X of rank equal to the rank of E , and there is
a simpler canonical isomorphism

Ola
X ⊗Osm

X
NdR(E)∇=0

−→∼ NdR(E).
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(3) The sheaf Oplsm
X is much smaller than Ola

X . Though we have not been quite able to show this, Oplsm
X

seems to be “almost” a locally constant sheaf except that the base field becomes slightly larger when
localizing; for that reason, we think of Sol(E) as morally being close to a local system on X . In this sense
the (ϕ, N , GK )-structure is related to the monodromy of the p-adic differential equation ∇ = 0.

Finally, let us discuss the proof of Theorem A. The essential point is to show that if Ẽ is an equivariant
vector bundle on X , the natural map OX ⊗Ola

X
Ẽ la
→ Ẽ is an isomorphism. Fargues and Fontaine observe

that the only point of X with finite 0-orbit is x∞. The idea is then to use a very simple geometric
argument: once one knows that OX ⊗Ola

X
Ẽ la
→ Ẽ is injective, everything can be understood by arguing

locally at x∞. Indeed, if this map is an isomorphism after localizing and completing along OX → Ô+X ,x∞ ,
then the cokernel has to be supported at finitely many points outside x∞. But these points also form a
finite 0-orbit, so the cokernel cannot be supported anywhere.

It therefore remains to understand the properties of our spaces of locally analytic vectors under certain
localizations and completions. To do this, we are naturally led to consider higher locally analytic vectors
and their vanishing, and we prove a representation-theoretic result which is of independent interest. To
state the result, let G be a p-adic Lie group and let 3̃ be a Banach ring with a continuous action of G.
Assume the topology on 3̃ is p-adic.

Theorem C. Suppose G and 3̃ satisfy the Tate–Sen axioms (TS1)–(TS3) of [Berger and Colmez 2008]
as well as an additional axiom (TS4). Then for any finite free 3̃-semilinear representation M of G, the
higher locally analytic vectors Ri

G-la(M) are zero for i ≥ 1.

Here are two special cases of the theorem where we conclude that Ri
G-la(M)= 0 for i ≥ 1:

(1) If M is a finite dimensional K̂∞-module with a semilinear action of 0, for K∞ containing an
unramified twist of Kcyc. In fact, the vanishing of Ri

G-la(M) can be established for arbitrary K∞, see
Section 5.

(2) If M a finite free B̃I (K̂∞)-module with a semilinear action of 0, under the same assumptions on K∞.

Note that the vanishing of higher locally analytic vectors is automatic for admissible representations,
but the examples above are not admissible. Theorem C illustrates how the Tate–Sen axioms can serve as
a substitute for admissibility.

Theorem C is especially useful for making cohomological computations. Here is an example application,
which follows directly from the main results of [Rodrigues Jacinto and Rodríguez Camargo 2022] (see
Section 5): if M satisfies assumptions of the theorem, then for i ≥ 0 we have natural isomorphisms

Hi (G, M)∼= Hi (G, M la)∼= Hi (Lie G, M la)G .

Finally, let us mention that in recent work Juan Esteban Rodríguez Camargo [2022] proves similar
results to our Theorem C. He then applies them in the setting of rigid adic spaces with fantastic applications
to the Calegari–Emerton conjecture, among others.
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1A. Structure of the article. Section 2 contains reminders on locally analytic vectors and their derived
functors. In Section 3 we give reminders on the Fargues–Fontaine curve and equivariant vector bundles.
In Section 4 we introduce locally analytic bundles and we discuss their basic properties. Section 5 is the
longest and most technical section of the paper, in which we prove Theorem C. Theorem A is proved in
Section 6. In Section 7 we compare our results to the theory of (ϕ, 0)-modules. Finally, in Section 8 we
discuss p-adic differential equations on the Fargues–Fontaine curve and explain Theorem B.

At several points in the article we have taken the liberty to raise speculations and ask questions to
which we do not yet know the answer.

1B. Notation and conventions. The field K denotes a finite extension of Qp. We write Kcyc = K (µp∞)

for the cyclotomic extension. Its Galois group 0cyc = Gal(Kcyc/K ) is an open subgroup of Z×p . We
denote by K∞ an infinitely ramified Galois extension of K with 0 = Gal(K∞/K ) a p-adic Lie group. If
K denotes the algebraic closure of K , we let GK =Gal(K/K ) and H =Gal(K/K∞) so that GK /H = 0.

The p-adic completion K̂∞ of K∞ is a perfectoid field. Write ϖ for a pseudouniformizer of K̂∞
with valuation val(ϖ)= p that admits a sequence of p-th power roots ϖ 1/pn

(such a choice is always
possible, and the constructions in this paper never depend on this choice). Let ϖ ♭

= (ϖ, ϖ 1/p, . . .) be
the corresponding pseudouniformizer of the tilt K̂ ♭

∞.
Denote by Lie(0) the Lie algebra of 0. It is a finite dimensional Qp-vector space, and if v ∈ Lie(0) is

sufficiently small, we have a corresponding element exp(v) ∈ 0.
All representations and group actions appearing in this article are assumed to be continuous. Galois

cohomology groups are always taken in the continuous sense.
If W is a Banach space over Qp we write W+ for its unit ball.
All completed tensor products appearing in this article are projective. In other words, if V+ and W+

are unit balls of two Banach spaces V and W over Qp, then

V+ ⊗̂Zp W+ = lim
←−−

n
(V+⊗Zp W+)/pn and V ⊗̂Qp W = (V+ ⊗̂Zp W+)[1/p].

2. Locally analytic and pro-analytic vectors

In this section we give reminders on locally analytic and pro-analytic vectors and quote results that will
be used in Sections 4–6. We shall freely use our conventions in Section 1B regarding Banach spaces.

2A. Locally analytic and pro-analytic vectors. We shall say a compact p-adic Lie group G is small
if there exists a saturated integral valued p-valuation on G which defines its topology and if for some
N ∈ Z≥1 there exists an embedding of G into 1+ p2 MN (Zp), the group of N by N matrices congruent
to 1 mod p2. See Sections 23 and 26 of [Schneider 2011] for the first condition. If G is small, there
exists an ordered basis g1, . . . , gd such that (x1, . . . , xd) 7→ gx1

1 · . . . · g
xd
1 gives a homeomorphism of Zd

p

with G. We then have coordinates on G

c = (c1, . . . , cd) : G −→∼ Zd
p
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defined by the inverse map where ci (g
x1
1 · . . . · g

xd
1 )= xi .

Now let G is an be any compact p-adic Lie group. By [Schneider 2011, Theorem 27.1] and Ado’s
theorem (see [Pan 2022a, Proposition 2.1.3]), the collection of small open subgroups of G forms a
fundamental system of open neighborhoods of the identity element. Let W be a Banach Qp-linear
representation of G (or G-Banach space for short). If H is a small open subgroup of G, choose
coordinates c on H and write c(h)k

=
∏d

i=1 ci (h)ki if k = (k1, . . . , kd) for h ∈ H . We have the subspace
W H -an of H -analytic vectors in W ; it is the subspace of elements w ∈W for which there exists a sequence
of vectors {wk}k∈Nd with wk→ 0 and

h(w)=
∑
k∈Nd

c(h)kwk

for all h ∈ H . The norm ∥w∥H -an = supk ∥wk∥ makes W H -an into a Banach space. Note that W H -an does
not depend on the choice of coordinates. We write W la

=
⋃

H W H -an for the subspace of locally analytic
vectors of W , and endow it with the inductive limit topology, which makes it into an LB space. If W is a
Fréchet space whose topology is defined by a countable sequence of seminorms, let Wi be the Hausdorff
completion of W for the i-th seminorm, so that W = lim

←−−
Wi is a projective limit of Banach spaces. We

write W pa
= lim
←−−

W la
i for the subspace of pro-analytic vectors. Finally, we extend the definitions of locally

analytic vectors and pro-analytic vectors to LB and LF spaces in the obvious way.
The Lie algebra Lie(G) acts on each W H -an (and hence also on W la and W pa) through derivations.

This action is given as follows. If v ∈ Lie(G) then exp(pkv) ∈ H for k≫ 0, and we define

∇v(w)= lim
k→∞

exp(pkv)(w)−w

pk .

The operator ∇v :W H -an
→W H -an is bounded; see [Berger and Colmez 2016, Lemma 2.6].

Locally analytic and pro-analytic vectors behave well when we have a basis of such vectors [Berger
and Colmez 2016, Proposition 2.3; Berger 2016, Proposition 2.4]:

Proposition 2.1. Let B be a Banach or Fréchet G-ring and let W be a free B-module of finite rank,
equipped with a B-semilinear action of G. If the B-module W has a basis w1, . . . , wd in which the
function G→ GLd(B)⊂Md(B), g 7→Mat(g) is H-analytic (resp. locally analytic, pro-analytic), then
W H -an

=
⊕d

j=1 B H -an
·wi

(
resp. W la

=
⊕d

j=1 B la
·wi , W pa

=
⊕d

j=1 Bpa
·wi

)
.

It will often be useful for us to choose a specific fundamental system of open neighborhoods of G as
follows. Fix a small compact open G0 ⊂ G which with coordinates c. For n ≥ 0 we set

Gn = G pn
= {g pn

: g ∈ G0}.

These are subgroups ([Schneider 2011, Remark 26.9]) which have induced coordinates

c|Gn : Gn −→
∼ (pnZp)

d .
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The normalization is such that for w ∈W Gn-an we can write

g(w)=
∑
k∈Nd

c(g)kwk

for g ∈ Gn and {wk}k∈Nd with pn|k|wk→ 0, and the Banach norm is given by

∥w∥Gn-an = sup
k
∥pn|k|wk∥.

It is easy to check if w ∈W Gn-an then ∥w∥Gm -an ≤ ∥w∥Gm+1-an for m ≥ n and ∥w∥Gm -an = ∥w∥ for m≫ n
(see [Berger and Colmez 2016, Lemme 2.4]).

2B. Rings of analytic functions. Suppose first that G is small. Let Can(G, Qp) be the space of analytic
functions on G. These are those functions that after pullback by the coordinates c : G −→∼ Zd

p are of the
form

x = (x1, . . . , xd) 7→
∑

k=(k1,...,kd )∈Nd

bk xk,

where bk→ 0 as |k|→∞. The norm ∥ f ∥G = supk∈Nd ∥bk∥ makes Can(G, Qp) into a Banach space. We
shall regard Can(G, Qp) as a G-representation through the left regular action of G.

If now G is any compact p-adic Lie group with a system of small neighborhoods {Gn}n≥0 as in
Section 2A, we have for each n ≥ 0 the space of analytic functions Can(Gn, Qp) on Gn . Using the
coordinates c : Gn −→

∼ (pnZp)
d as in Section 2A, we shall regard Can(Gn, Qp) as the ring of functions

that under the bijection are identified with functions of the form

x = (x1, . . . , xd) 7→
∑

k=(k1,...,kd )∈Nd

bk xk,

where pn|k|bk→ 0 as |k| →∞. Under this normalization

∥ f ∥Gn = sup
k∈Nd
∥pn|k|bk∥

for f ∈ Can(Gn, Qp).
The following lemma will be used in Section 5.

Lemma 2.2. For k ≥ 1 the subgroup Gn+k acts trivially on Can(Gn, Qp)
+/pk .

Proof. This is an easy exercise using the coordinates. See [Pan 2022a, Lemma 2.1.2] for the case k= 1. □

The following is shown in [Pan 2022a, Proposition 2.1.3] and in its proof (originally in the proof of
[Berger and Colmez 2016, théoréme 6.1]).

Proposition 2.3. Suppose that G is small. There is a dense subspace lim
−−→ℓ∈N

Vℓ ⊂ Can(G, Qp), where
each Vl is a finite-dimensional G-subrepresentation of Can(G, Qp) with coefficients in Qp such that for
any k, ℓ ∈ N, we have Vk · Vℓ ⊂ Vk+ℓ.
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Furthermore, if we fix G and consider small open subgroups G ′ ⊂ G, we may choose Vℓ(G ′) ⊂
Can(G ′, Qp) at once for all G ′ in such a way that the natural map Can(G, Qp)→ Can(G ′, Qp) restricts to
Vℓ(G)→ Vℓ(G ′).

2C. Higher locally analytic vectors. Suppose first that G is small and let W be a G-Banach space. There
is a G-equivariant isometry

W ⊗̂Qp C
an(G, Qp)∼= Can(G, W ),

where Can(G, W ) is the space of W -valued analytic functions on G, with its G-Banach structure given by
the sup norm and the action (g f )(x)= g( f (g−1(x)) for f ∈ Can(G, W ). We then have (Can(G, W ))G

=

W G-an, the identification given by f 7→ f (1). This gives an alternative description of G-analytic vectors
that we shall use in what follows.

The functor W 7→W G-an is left exact. Following [Pan 2022a, §2.2; Rodrigues Jacinto and Rodríguez Ca-
margo 2022], define right derived functors for i ≥ 0:

Ri
G-an(W )= Hi(G, W ⊗̂Qp C

an(G, Qp)
)

(taking continuous cohomology on the right hand side).
If G is a compact p-adic Lie group with subgroups {Gn}n≥1 as in Sections 2A–2B, taking the colimit

over n, there are right derived functors for W 7→W G-la given by

Ri
G-la(W )= lim

−−→
n

Ri
Gn-an(W )= lim

−−→
n

Hi(Gn, W ⊗̂Qp C
an(Gn, Qp)

)
.

We shall call these groups the higher locally analytic vectors of W . If G is understood from the context
we shall just write Ri

la instead of Ri
G-la.

If
0→ V →W → X→ 0

is a short exact sequence of G-Banach spaces, then it is strict by the open mapping theorem, and so we
have a long exact sequence

0→ V la
→W la

→ X la
→ R1

la(V )→ R1
la(W )→ R1

la(X)→ · · · .

Lemma 2.4. Let H be an open subgroup of G and let Hn =Gn ∩H. Then for n≫ 0 and each i ≥ 0 there
are natural isomorphisms Ri

Hn-an
∼= Ri

Gn-an. In particular, Ri
H -la
∼= Ri

G-la.

Proof. We have Hn = Gn for n≫ 0. □

Suppose that G be a small compact p-adic Lie group, and let H be a small closed normal subgroup.
Let W be a G-Banach space. Using the method of Hochshild–Serre we obtain the following spectral
sequences.

Proposition 2.5. (i) There is a spectral sequence

E i j
2 = Hi(G/H, H j(H, W ⊗̂Qp C

an(G, Qp)
))
⇒ Ri+ j

G-an(W ).
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(ii) There is a spectral sequence

E i j
2 = Ri

G/H -an(H
j (H, W ))⇒ Hi+ j(G, W ⊗̂Qp C

an(G/H, Qp)
)
.

Proof. Apply the Hochshild–Serre spectral sequence to W ⊗̂Qp Can(G, Qp) and W ⊗̂Qp Can(G/H, Qp)

(see [Rodrigues Jacinto and Rodríguez Camargo 2022, Proposition 5.16]). □

3. Equivariant vector bundles

In this section we give reminders on the Fargues–Fontaine curve and equivariant vector bundles. For
more details, see [Fargues and Fontaine 2018, Chapter 9; Scholze and Weinstein 2020, Lectures 12–13].

3A. The spaces Y(0,∞) and X . Let F be a perfectoid field, with tilt F♭. We have Fontaine’s ring
Ainf = Ainf(F), defined as the Witt vectors of the ring of integers O♭

F of F♭. Write Spa(Ainf) for the adic
space associated to the Huber pair (Ainf, Ainf).

Let ϖ be a pseudouniformizer of F , and let f be the residue field of OF . Then there is a point
x f ∈ Spa(Ainf) with residue field f , which is the intersection of the two closed subspaces {p = 0} and
{[ϖ ] = 0}. We set

Y = Y(F)= SpaAinf−{x f } and Y(0,∞) = Y(0,∞)(F)= SpaAinf−{p[ϖ ] = 0}.

The spaces Y and Y(0,∞) have a Frobenius automorphism ϕ induced from the Witt vector structure
of Ainf.

The space Y(0,∞) is a preperfectoid space. The (adic) Fargues–Fontaine curve associated to F is defined
as the quotient

X = X (F)= Y(0,∞)(F)/ϕZ,

which makes sense because the Frobenius action is proper and discontinuous. The natural projection
π : Y(0,∞)→ X is a local isomorphism, so X is a preperfectoid space, by virtue of Y(0,∞) being so. The
space Y(0,∞) has a canonical point called x∞, the “point at infinity”. It corresponds to the kernel of
Fontaine’s map

θ : Ainf→OF ,
∑
n≥0

[an]pn
7→

∑
n≥0

a♯
n pn,

where for a ∈ OF , a♯ is defined to be the first coordinate of a ∈ O♭
F = lim

←−−x 7→x p OF . Identify x∞ with
its image π(x∞) ∈ X . We shall sometimes use the fact that ker θ is a principal ideal, generated by
ξ =ϖ − [ϖ ♭

] (for example).
If F = K̂∞, there is an induced action of the group 0 =Gal(K∞/K ) on each of the spaces mentioned

above, and the map Y(0,∞)→ X is 0-equivariant. The point x∞ ∈ X is the unique 0-fixed point; in fact,
it is the unique point with finite 0-orbit [Fargues and Fontaine 2018, Proposition 10.1.1]. From now on,
if F is omitted from the notation of Y(0,∞) and X , we always take F = K̂∞.
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3B. The spaces YI and XI . It will be fruitful to consider certain open subsets of Y(0,∞) and X . By
[Scholze and Weinstein 2020, Lecture 12] there is a surjective continuous map κ : Y→ [0,∞] given by1

κ(x)=
log |p(x̃)|

log |[ϖ ♭](x̃)|
,

where x̃ is the maximal generization of x . For each interval I ⊂ (0,∞), let YI be the interior of the
preimage of Y under κ . These spaces are 0-stable if such a 0 action is present. Furthermore, the map ϕ

induces isomorphisms ϕ : YpI −→
∼ YI . Write log(I )= {log x : x ∈ I }. Whenever I is sufficiently small so

that the inequality | log(I )|< log(p) holds, we have I ∩ pI = 0 and π maps YI isomorphically onto its
image π(YI )= XI ⊂ X . Note that x∞ ∈ XI if and only if I contains an element of (p− 1)pZ, because
κ(x∞)= (p− 1)/p.

For I ⊂ (0,∞), we have the coordinate rings

B̃I = B̃I (K̂∞)= H0(YI ,OY(0,∞)
).

If I is compact, the geometry of YI is simple.

Proposition 3.1. Suppose I ⊂ (0,∞) is a compact interval.

(i) YI = Spa(B̃I , ÃI ), where ÃI is the ring of power bounded elements of B̃I . In particular, YI is affinoid.

(ii) B̃I is a principal ideal domain.

(iii) The global sections functor induces an equivalence of categories between vector bundles on YI and
finite free B̃I -modules.

Proof. Parts (i) and (ii) follow from [Fargues and Fontaine 2018, théorème 3.5.1]. Part (iii) follows from
[Scholze and Weinstein 2020, Theorem 5.2.8] (originally [Kedlaya and Liu 2015, Theorem 2.7.7]), since
finite projective B̃I -modules are finite free. □

3C. Equivariant vector bundles. The action of 0 on X gives an automorphism γ : X −→∼ X for each
γ ∈ 0.

Definition 3.2. A 0-equivariant vector bundle (or simply 0-vector bundle) on X is a vector bundle Ẽ
on X equipped with an isomorphism cγ : γ

∗Ẽ −→∼ Ẽ for each γ ∈ 0 such that the cocycle condition
cγ2 ◦ γ

∗

2 cγ1 = cγ1γ2 holds for every γ1, γ2,∈ 0.

Similarly, we have a notion of a (ϕ, 0)-vector bundle on Y(0,∞). This consists of a 0-vector bundle M̃
on Y(0,∞) together with an additional isomorphism cϕ : ϕ

∗M̃−→∼ M̃ such that cϕ ◦ϕ
∗cγ = cγ ◦ γ

∗cϕ for
every γ ∈ 0.

Descent along ϕ gives the following.

Proposition 3.3. There is an equivalence of categories

{0-vector bundles on X } ∼= {(ϕ, 0)-vector bundles on Y(0,∞)}.

1Our normalization of κ is the inverse of [loc. cit.].
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The equivalence is given by the following functors: If Ẽ is an equivariant vector bundle, we map it to
OY(0,∞)

⊗OX Ẽ . Conversely, if M̃ is a (ϕ, 0)-vector bundle on Y(0,∞), we map it to π∗(M̃)ϕ=1.

If Ẽ is a 0-vector bundle on X and U ⊂ X is an open subset stable under 0, there is an induced action
of 0 on H0(U, Ẽ). In particular, there is a natural action of 0 on H0(XI , Ẽ) when | log(I )|< log(p). For
a general open subset U , one only has a map

cγ : H0(U,OX )⊗H0(γ (U ),OX ) H0(γ (U ), Ẽ)→ H0(U, Ẽ).

Similar remarks apply for (ϕ, 0)-equivariant vector bundles on Y(0,∞).

Example 3.4. Let V be a finite dimensional Qp-representation of GK . Recall that H = Gal(K∞/K ).
Then by [Fargues and Fontaine 2018, théorème 10.1.5],

Ẽ(V ) := (V ⊗Qp OX (Cp))
H

is a 0-vector bundle on X . More generally, by [loc. cit.], the category of finite dimensional GK -
representations embeds fully faithfully to the category of (ϕ, 0)-modules, with essential image the
subcategory of étale (ϕ, 0)-modules. We can extend the domain of the functor V 7→ Ẽ(V ) from GK -
representations to (ϕ, 0)-modules. Conversely, any 0-vector bundle on X gives rise to a (ϕ, 0)-module,
and this correspondence results in a equivalence of categories (see [Fargues and Fontaine 2018, préface,
Remark 5.10]). This will be discussed in detail in Section 7.

4. Locally analytic vector bundles

In this section, we introduce the category of locally analytic vector bundles and discuss their basic
properties.

4A. Locally analytic functions of Y(0,∞) and X . Let U ⊂X be an open affinoid. Then U is quasicompact
and hence stable under the action of a finite index subgroup 0′ ≤ 0. The space of functions H0(U,OX ) is
a Banach 0′-ring, and so it makes sense to speak of its subring of 0′-locally analytic functions. This does
not depend on the choice of 0′, and so we shall write H0(U,OX )la for the 0′-locally analytic functions
in H0(U,OX ) for any 0′. Since taking locally analytic vectors is left exact, these can be glued and we
obtain a sheaf of rings Ola

X on X that satisfies

H0(U,Ola
X )= H0(U,OX )la

for every open affinoid U ⊂ X .
More generally, suppose U is an open subset of X which is not necessarily affinoid, but for which

there is an increasing cover U =
⋃

i Ui with each Ui affinoid and a single finite index subgroup 0′ ≤ 0

stabilizing all of the Ui simultaneously. This condition will be satisfied in any situation we shall consider.
Then the sections of Ola

X on U are the pro-analytic functions

H0(U,Ola
X )= lim

←−−
i

H0(Ui ,OX )la
= H0(U,OX )pa.
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Lemma 4.1. The sheaf Ola
X is stable for the action of 0 on OX , in the sense that the inclusion Ola

X ⊂OX

induces isomorphisms
cγ : γ

∗Ola
X −→
∼ Ola

X .

Proof. The action of 0 on OX gives rise to an isomorphism cγ : γ
∗OX −→∼ OX . Upon taking U ⊂ X

affinoid, evaluating the morphism cγ at U and taking locally analytic vectors, we get an induced map
cγ (U ) :H0(U, γ ∗OX )la

−→∼ H0(U,OX )la. But this is the same as H0(U, γ ∗Ola
X )−→∼ H0(U,Ola

X ) because
of the equality H0(U,Ola

X )= H0(U,OX )la. By writing an arbitrary open set as a union of affinoids, we
get the desired induced isomorphism cγ : γ

∗Ola
X −→
∼ Ola

X . □

The preceding discussion then applies equally well to Y(0,∞), so we have a sheaf Ola
Y(0,∞)

of locally
analytic functions on Y(0,∞) endowed with isomorphisms cγ . Since the ϕ-action on Y(0,∞) commutes
with the 0-action, it preserves the 0-locally analytic functions, and this gives an isomorphism

cϕ : ϕ
∗Ola

Y(0,∞)
−→∼ Ola

Y(0,∞)

which commutes with the 0-action as usual.

4B. A flatness result. For our application at Section 6 it would be useful to know the inclusion Ola
X ⊂OX

is flat. We are only able to establish this in the cyclotomic case where K∞ = Kcyc, and only for certain
open subsets. Nevertheless, this will suffice for our needs.

So in this subsection suppose K∞ = Kcyc and let I be a closed interval of the form I = [r, s] with
r ≥ (p−1)/p. We write B̃I,cyc for B̃I (K̂cyc) of Section 3B. Let K ′0 be the maximal unramified extension
of Qp contained in Kcyc. Then we write BI,cyc,K for the ring of power series f (T )=

∑
k∈Z ak T k with

ak ∈ K ′0, such that f (T ) converges on the nonempty annulus where |T | ∈ I . By a classical result,
BI,cyc,K is a principal ideal domain [Lazard 1962, corollaire à proposition 4]. There is an embedding
BI,cyc,K ↪→ B̃I,cyc for which BI,cyc,K is 0cyc-stable. If K is unramified over Qp, this embedding can be
described as follows: the variable T is mapped to [ε]−1, where ε = (1, ζp, ζp2, . . .) ∈ K̂ ♭

cyc. Further, one
calculates that γ (T )= (1+ T )χcyc(γ )

− 1, so BI,cyc,K is indeed stable under the action of 0cyc.

Proposition 4.2. Suppose I = [r, (p− 1)pk−1
] with k ≥ 1. Then

(i) B̃la
I,cyc =

⋃
n≥0 ϕ−n(Bpn I,cyc,K ),

(ii) B̃la
I,cyc is a Prüfer domain,

(iii) the natural ring morphism B̃la
I,cyc→ B̃I,cyc is flat.

Proof. Part (i) is [Berger 2016, Theorem 4.4 (2)]. Note that in [loc. cit.] this is stated only for I of the form
[(p− 1)pl−1, (p− 1)pk−1

], but the argument given there (see also Section 13 of [Berger 2021]) is valid
for any interval of the form [r, (p− 1)pk−1

]. Part (ii) follows, because each Bpn I,cyc is a principal ideal
domain, and an increasing union of such rings is a Prüfer domain. Finally, the ring B̃I,cyc is a domain and
hence torsionfree over the subring B̃la

I,cyc. Part (iii) is established by recalling that a torsionfree module
over a Prüfer domain is flat [Lam 1999, Proposition 4.20]. □
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Question 4.3. To what extent do (ii) and (iii) of Proposition 4.2 hold for coordinate rings of general open
subsets in X and general K∞? We do not expect B̃la

I to be a Prüfer domain when 0 has dimension larger
than 1. Nevertheless, it might still be the case that B̃la

I → B̃I is flat.

4C. Locally analytic vector bundles.

Definition 4.4. A locally analytic vector bundle on X is a locally finite free Ola
X -module E on X equipped

with an isomorphism cγ : γ
∗E −→∼ E for each γ ∈0 such that the cocycle condition cγ2 ◦γ

∗

2 cγ1 = cγ1γ2 holds
for every γ1, γ2,∈ 0. We require the action to be continuous with respect to the locally analytic topology.

Example 4.5. (1) Let Ẽ be a 0-vector bundle on X . Define a sheaf Ẽ la by generalizing the definition
of Ola

X . Namely, for every open affinoid U ⊂ X choose 0′ ≤ 0 stabilizing U . Then H0(U, Ẽ) is a Banach
0′-ring and it makes sense to speak of H0(U, Ẽ)la, which does not depend on the choice of 0′. Glue these
together to form a sheaf Ẽ la. The sheaf Ẽ la is an Ola

X -module with a 0-action. We shall show in Section 6
that Ẽ la is locally free and therefore an example of a locally analytic vector bundle.

(2) Conversely, if E is a locally analytic vector bundle, we can associate to it a 0-vector bundle Ẽ =
OX ⊗Ola

X
E . If U ⊂ X is an open affinoid such that E|U is free, it follows from Proposition 2.1 that

H0(U, E)= H0(U, Ẽ)la,

and so E = Ẽ la. This shows that the functor from 0-vector bundles to locally analytic vector bundles
mapping Ẽ to Ẽ la is essentially surjective.

It follows from Example 4.5(2) that if E is a locally analytic vector bundle, we have an action by
derivations

Lie(0)× E→ E,

or, what amounts to the same, a connection

∇ : E→ E ⊗Qp (Lie 0)∨

satisfying the identity

∇( f x)=∇( f )x + f∇(x)

for local sections f of Ola
X and x of E .

Remark 4.6. We emphasize that if U ⊂ X is an arbitrary open subset then we have an induced action
of Lie(0) on H0(U, E). This is unlike the 0-action, which only maps H0(U, E) to itself if U is 0-stable.
This is one pleasant aspect of working with locally analytic vector bundles instead of 0-vector bundles.

Finally, we have the following propositions computing sections of interest. They will not be used
elsewhere in the article. We may define a locally analytic ϕ-vector bundle on Y(0,∞) by imitating
Definition 4.4. Then given a (ϕ, 0)-vector bundle M̃ on Y(0,∞), one can define a locally analytic ϕ-vector
bundle M̃la on Y(0,∞) as in Example 4.5.
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Proposition 4.7. Let Ẽ (resp. M̃) be a 0-vector bundle on X (resp. a (ϕ, 0)-vector bundle on Y(0,∞))
and let Ẽ la (resp. M̃la) be its associated locally analytic vector bundle (resp. locally analytic ϕ-vector
bundle). There are natural isomorphisms:

(i) H0(YI ,M̃la)∼= H0(YI ,M̃)la for I a closed interval.

(ii) H0(YI ,M̃la)∼= H0(YI ,M̃)pa for I an open interval.

(iii) H0(XI , Ẽ
la
)∼= H0(XI , Ẽ)la for I a closed interval with | log(I )|< log(p).

(iv) H0(XI , Ẽ
la
)∼= H0(XI , Ẽ)pa for I an open interval with | log(I )|< log(p).

(v) H0(X , Ẽ la
)∼= H0(X , Ẽ)la.

(vi) H0(X − x∞, Ẽ la)∼= H0(X − x∞, Ẽ)pa.

Proof. Parts (i) and (iii) are immediate from the definition. For (ii) and (iv), use the coverings YI =⋃
J⊂I YJ and XI =

⋃
J⊂I XJ ranging over J ⊂ I closed. For (v), consider the covering

X = X[1,
√

p] ∪X[√p,p]

with intersection X[√p,
√

p]⨿X[1,1] (identifying 1 with p via ϕ). This yields exact sequences

0→ H0(X , Ẽ la
)→ H0(X[1,

√
p], Ẽ la)⊕H0(X[√p,p], Ẽ

la
)→ H0(X[√p,

√
p], Ẽ

la
)⊕H0(X[1,1], Ẽ

la
)

and

0→ H0(X , Ẽ)la
→ H0(X[1,

√
p], Ẽ)la

⊕H0(X[√p,p], Ẽ)la
→ H0(X[√p,

√
p], Ẽ)la

⊕H0(X[1,1], Ẽ)la.

By virtue of (iii) the kernels of these sequences are identified. This proves part (v).
For (vi), use the covering

X − x∞ = X[1,
√

p] ∪ (X[√p,p]− x∞)

with intersection X[√p,
√

p] ⨿X[1,1]. We may write X[√p,p] − x∞ as a union of 0-stable rational open
subsets

X[√p,p]−∞=∪n≥1X[√p,p]{|ξ | ≥ p−n
}.

Thus
H0(X[√p,p]− x∞, Ẽ la

)∼= H0(X[√p,p]− x∞, Ẽ)pa.

Repeating the argument which proved part (v), we conclude. □

We place ourselves in the cyclotomic setting so that 0 = 0cyc and H = Gal(K/Kcyc), and we write
B+cris(K̂cyc)= (B+cris)

H . Following Section 10.2 of [Fargues and Fontaine 2018], for n ∈Z take Ẽ =OX (n)

to be the 0-line bundle corresponding to the graded module⊕
m≥0

B+cris(K̂cyc)
ϕ=pm+n

.

Proposition 4.8. H0(X ,OX (n)la)=

{
0, n < 0,

Qp(n), n ≥ 0.
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Proof. To show this, notice first that

H0(X ,OX (n))= B+cris(K̂cyc)
ϕ=pn
=


0, n < 0,

Qp, n = 0,

B+cris(K̂cyc)
ϕ=pn

, n > 0.

If n > 0 then by [Fargues and Fontaine 2018, 6.4.2] there is an exact sequence

0→Qp(n)→ B+,ϕ=pn

cris → B+dR/tn B+dR→ 0.

Take H -invariants and locally analytic vectors. By [Berger and Colmez 2016, théorème 4.11] we know
that (B+dR/tn B+dR)H,la

= Kcyc[[t]]/tn , so we are left with an exact sequence

0→Qp(n)→ B+cris(K̂cyc)
ϕ=pn,la

→ Kcyc[[t]]/tn.

Claim. B+cris(K̂cyc)
ϕ=pn,la

=Qp(n).

Note that a similar statement appears in Section 3.3 of [Berger and Colmez 2016] in the case n = 1.
Given the claim the computation is finished because part (v) of Proposition 4.7 implies that

H0(X ,OX (n)la)= B+cris(K̂cyc)
ϕ=pn,la

=

{
0, n < 0,

Qp(n), n ≥ 0.

To show the claim, take x ∈ B+cris(K̂cyc)
ϕ=pn,la. Its image in Kcyc[[t]]/tn is killed by the polynomial

Pn(γ ) :=

n−1∏
i=0

(χcyc(γ )−iγ − 1)

for γ which generates an open subgroup of 0. It follows that Pn(γ )(x) ∈Qp(n) for this γ . Since Pn(γ )

acts on Qp(n) by a nonzero element we reduce to showing that B+cris(K̂cyc)
ϕ=pn,Pn(γ )=0 is 0. In fact, if

K ′ is the subfield of Kcyc corresponding to γ Zp ⊂ 0 with maximal unramified subextension K ′0, we shall
compute that

Bcris(K̂cyc)
Pn(γ )=0

=

n−1⊕
i=0

K ′0t i ,

and in particular there are no nonzero elements with ϕ = pn .
To show this latter description of the elements killed by Pn(γ ), we argue by induction. If n = 1 then

Pn(γ )= γ − 1 and the equality follows from the usual description of the Galois invariants of Bcris. For
n ≥ 2, we have Pn(γ )/(γ − 1)= Pn−1(χcyc(γ )−1γ ) and

Bcris(K̂cyc)
Pn−1(χcyc(γ )−1γ )=0

= t Bcris(K̂cyc)
Pn−1(γ )=0

=

n−1⊕
i=1

K ′0t i .
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Thus there is a commutative diagram

0 // K ′0 //

∼=

��

⊕n−1
i=0 K ′0t i //

��

⊕n−1
i=1 K ′0t i

∼=

��

// 0

0 // Bcris(K̂cyc)
γ−1=0 // Bcris(K̂cyc)

Pn(γ )=0 // Bcris(K̂cyc)
Pn−1(χcyc(γ )−1γ )=0

whose rows are exact and whose outer vertical maps are isomorphisms. We conclude by the applying the
five lemma. □

Remark 4.9. Set Be(K̂∞) = BH
e for the usual ring Be = Bϕ=1

cris , so that Be ⊂ H0(X − x∞,OX ). This
inclusion is not an equality: the ring Be allows only meromorphic functions at x∞ while in H0(X−x∞,OX )

there will be functions with essential singularities. The subring Be(K̂∞)pa
⊂ H0(X − x∞,OX )la is more

tractable and we can understand its structure to an extent. In particular, let us consider the subring
Be(K̂∞)pa

= Be ∩H0(X − x∞,Ola
X ) in the case 0 = 0cyc. We claim that in fact Be(K̂∞)pa

= Qp. To
see this, take x ∈ Be(K̂∞)pa, and restrict it to X[√p,p] − x∞. Since Y[√p,p] maps isomorphically onto
X[√p,p], the element t gives an element of H0(X[√p,p]− x∞,Ola

X ). Multiplying by a bounded power of t ,
the function tnx extends to an element of

H0(X[√p,p],Ola
X )= H0(X[√p,p],OX )la,

which shows that x itself is actually an element of Be(K̂∞)la, with a pole of order n at x∞. Therefore,
tnx ∈ H0(X ,OX (n)la) which is equal to Qp(n) as was shown in Proposition 4.8. This means x is in Qp

and so Be(K̂∞)pa
=Qp.

Question 4.10. (1) Is it true that H0(X − x∞,Ola
X )=Qp if 0 ̸= 0cyc and dim 0 = 1?

(2) If dim 0 > 1 then one can sometimes produce elements in Be(K̂∞)la which do not belong to Qp.
For example, in the Lubin–Tate setting, the element (t−√p/t√p)

2 lies in Be(K̂∞)la, for t±√p being the
analogue of Fontaine’s element attached to the uniformizer π =±

√
p (see Section 8.3 of [Colmez 2002]

for the notation appearing here). Is it true that in some generality Be(K̂∞)la will be d−1 dimensional for
d = dim 0? See [Berger and Colmez 2016, théoréme 6.1] for a related statement.

5. Acyclicity of locally analytic vectors for semilinear representations

In this section, we shall prove vanishing the of Ri
la-groups for certain semilinear representations. These

results will be used to prove the descent result in Section 6 but are also of independent interest. We follow
the strategy of [Pan 2022a], where the case of a trivial representation and a particular family of algebras
3̃ is treated.

5A. Statement of the results. To state the main result of this section, we recall the Tate–Sen axioms
of [Berger and Colmez 2008, 3]. Let G be a profinite group and let 3̃ be a G-Banach ring endowed
with a valuation val for which the G action is continuous and unitary. We suppose there is a character
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χ : G → Z×p with open image and let H = ker χ . Given an open normal subgroup G0 ⊂ G we let
H0 = G0 ∩ H and 0H0 = G/H0.

The Tate–Sen axioms are the following.

(TS1) There exists c1 > 0 such that for any open subgroup H1 ⊂ H2 of H0 there exists α ∈ 3̃H1 with
val(α) >−c1 and

∑
τ∈H2/H1

τ(α)= 1.

(TS2) There exists c2 > 0 and for each H0 open in H an integer n(H0) depending on H0 such that for
n ≥ n(H0), we have the extra data of

• closed subalgebras 3H0,n ⊂ 3̃H0 , and

• trace maps RH0,n : 3̃
H0 →3H0,n

satisfying:

(1) For H1 ⊂ H2 we have 3H2,n ⊂3H1,n and RH1,n|3H2,n = RH2,n .

(2) RH0,n is 3H0,n-linear and RH0,n(x)= x for x ∈3H0,n .

(3) g(3H0,n)=3gH0g−1,n and g(RH0,n(x))= RgH0g−1,n(gx) if g ∈ G.

(4) limn→∞ RH0,n(x)= x for x ∈ 3̃H0 .

(5) If n ≥ n(H0) and x ∈ 3̃H0 then val(RH0,n(x))≥ val(x)− c2.

(TS3) There exists c3 > 0 and for each open normal subgroup G0 of G an integer n(G0) ≥ n(H0)

such that if n ≥ n(G0) and γ ∈ 0H0 has n(γ ) = valp(χ(γ )− 1) ≤ n, then γ − 1 acts invertibly on
XH0,n = (1−RH0,n)(3̃

H0) and val((γ − 1)−1(x))≥ val(x)− c3.
We introduce an additional possible axiom which does not appear in [Berger and Colmez 2008].

(TS4) For any sufficiently small open normal G0 ⊂ G with H0 = G0 ∩ H and for any n ≥ n(G0), there
exists a positive real number t = t (H0, n) > 0 such that if γ ∈ G0/H0 and x ∈3H0,n then

val((γ − 1)(x))≥ val(x)+ t.

We then have the following result.

Theorem 5.1. Let M be a finite free 3̃-semilinear representation of G. Suppose there exists an open
subgroup G0 ⊂ G, a G-stable 3̃+-lattice M+ ⊂ M and an integer k > c1+ 2c2+ 2c3 such that in some
basis of M+, we have Mat(g) ∈ 1+ pkMatd(3̃+) for every g ∈ G0. Then:

(i) If (TS1)–(TS3) are satisfied then for i ≥ 2

Ri
G-la(M)= 0.

In fact, Ri
G0-an(M)= 0 for any sufficiently small open subgroup G0 ⊂ G.

(ii) If in addition (TS4) is satisfied then

R1
G-la(M)= 0.
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In fact, for every sufficiently small open subgroup G0 there is an open subgroup G1 ⊂ G0 such that the
map R1

G0-an(M)→ R1
G1-an(M) is 0.

(iii) In particular, if (TS1)–(TS4) are satisfied then M has no higher locally analytic vectors.

Remark 5.2. The following was pointed out by the anonymous referee: if the action of G0 on 3̃ was
locally analytic, then the hypothesis of the existence of M+ such that G0 acts trivially mod pk on it would
imply that the action of G0 on M is locally analytic as well, as it can be deduced from Proposition 2.1
and Lemma 2.2. So the nonlocally analyticity comes only from the coefficients 3̃.

The following special case is often useful in applications.

Proposition 5.3. If G and 3̃ satisfy (TS1)–(TS4) and if in addition the topology on 3̃ is p-adic, and if M
is a finite free 3̃-semilinear representation of G, then the higher locally analytic vectors Ri

la(M) vanish
for i ≥ 1.

Proof. We shall explain how this follows from Theorem 5.1. Indeed, we claim that any finite free
3̃-semilinear representation of G satisfies the assumptions of the Theorem 5.1 after possibly replacing G
by a smaller open subgroup G ′. This suffices because, by Lemma 2.4, higher locally analytic vectors do
not change when we replace G by G ′.

To see why such a G ′ exists, suppose M is a finite free 3̃-semilinear representation of G and choose
any 3̃-basis e1, . . . , ed of M . If we take M+ =

⊕d
i=1 3̃+ei then M+ is a lattice of M , and by continuity

we may find an open subgroup G ′ ⊂ G so that Mat(g) ∈ GLd(3̃+) for g ∈ G ′. This implies that M+

is G ′-stable. Since the topology on 3̃ is p-adic, we can find an open subgroup G ′0 ⊂ G ′ such that
Mat(g) ∈ 1+ pkMatd(3̃+) for every g ∈ G ′0. Thus, the assumptions of Theorem 5.1 hold for this M+,
G ′ and G ′0. □

Before giving the proof of Theorem 5.1, we record a few applications.

Corollary 5.4. Suppose G and 3̃ satisfy (TS1)–(TS4) and let M be as in the statement of the theorem.
Then for all i ≥ 0,

Hi (G, M)∼= Hi (G, M la)∼= Hi (Lie G, M la)G .

Proof. Apply [Rodrigues Jacinto and Rodríguez Camargo 2022, Corollary 1.6 and Theorem 1.7]. □

Two main cases of interest are the following. To state them, we set up some notation first. Let F be
an infinitely ramified algebraic extension of K which contains an unramified twist of the cyclotomic
extension, i.e., the field extension of K cut out by ηχcyc for η an unramified character. Suppose also that
Gal(F/K ) is a p-adic Lie group. For why we allow an unramified twist of the cyclotomic extension on
what follows, see Section 8 of [Berger 2016].

Example 5.5. (1) Take G = Gal(F/K ) and 3̃= F̂ . Then G and 3̃ satisfy the axioms (TS1)–(TS3) for
arbitrary c1 > 0, c2 > 0 and c3 > 1/(p− 1). See [Berger and Colmez 2008, Proposition 4.1.1] for the
case F = K , which goes back to Tate. For general F the same proof works.
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In addition, we claim that G and 3̃ satisfy the axiom (TS4). Indeed, if G0 is an open subgroup of G
corresponding to a finite extension L of K , then 3H0,n = L(ζpn ) and G0/H0 =Gal(Lcyc/L). We take G0

sufficiently small so that L contains ζp. Let π = ζpn − 1 be the uniformizer of L . For γ ∈ Gal(Lcyc/L),
we have

val((γ − 1)(π))= val(ζ γ−1
pn − 1)=

1
(p−1)pn−2 .

Using the identity (γ − 1)(ab)= (γ − 1)(a)b+ γ (a)(γ − 1)(b), one then shows by induction that

val((γ − 1)(πm))≥ val(πm)+
1

pn−2 .

If x is any element of 3H0,n= L(ζpn ), we may write x= pkπm y with k ∈Z, m≥1 and 0≤val(y)<val(π).
Since OL [ζpn ] =OL [π ], we see by writing y as a polynomial in π that

val(γ − 1)(y)≥ val(π)+
1

pn−2 .

Using the identity for γ − 1, we have

val(γ − 1)(x)≥ k+min
(
val((γ − 1)(πm)y), val(πm(γ − 1)(y))

)
≥ k+min

(
val(πm)+ val(y)+

1
pn−2 , val(πm)+ val(π)+

1
pn−2

)
≥ val(x)+

1
pn−2 ,

so (TS4) holds with t = 1/pn−2.

(2) Take G = Gal(F/K ) and for a closed interval I ⊂ (p/p− 1,∞) let 3̃= B̃I (F̂). Then again G and
3̃ satisfy the axioms (TS1)–(TS4) for arbitrary c1 > 0, c2 > 0 and c3 > 1/(p− 1). Here if G0 ⊂ G is
an open subgroup corresponding a finite extension L of K then one takes 3H0,n = ϕ−n(Bpn I,cyc,L) with
notation as in Section 4B. For (TS1)–(TS3), see [Berger 2008a, Proposition 1.1.12]. Axiom (TS4) follows
from [Colmez 2008, Corollary 9.5].

Corollary 5.6. (i) If M is a finite free F̂-semilinear representation of Gal(F/K ) then Ri
la(M) = 0 for

i ≥ 1.

(ii) If I ⊂ (p/p− 1,∞) is a closed interval and M is a finite free B̃I (F̂)-semilinear representation of
Gal(F/K ) then Ri

la(M)= 0 for i ≥ 1.

Proof. In both of these cases the topology on 3̃ is p-adic, so the theorem applies by Proposition 5.3. □

Remark 5.7. Suppose F/K is any infinitely ramified p-adic Lie extension of K (not necessarily containing
an unramified twist of the cyclotomic extension), and let M be a finite free F̂-semilinear representation
of Gal(F/K ). Then Ri

la(M)= 0 for i ≥ 1. To prove this, one is always allowed to replace K by a finite
extension. Then the extension F Kcyc/F can be assumed to be either trivial or infinite. In the first case,
the group Ri

la(M) vanishes by the corollary. In the second case, one can argue as in the proof of [Pan
2022a, Theorem 3.6.1]. We omit the details since this result will not be used in the article.



920 Gal Porat

The rest of the chapter is devoted to the proof of Theorem 5.1. The proof is inspired by that of [Pan
2022a, Theorem 3.6.1]. The strategy is the following:

(1) In Sections 5B and 5C, we establish some results using (TS1), (TS2) and (TS3) that allow us to
descend certain infinite rank 3̃-semilinear representations of G to 3+Hk ,n-semilinear representations of
G0, which are fixed by Hk .

(2) In Section 5D, we apply these results to Can(G, M).

(3) Using this and the Hochshild–Serre theorem, we show in Section 5E that Ri
G-la(M) vanishes when

i ≥ 2, and we give an explicit description for R1
G-la(M). It remains to show this latter cohomology group

vanishes.

(4) To do this, we decompose R1
G-la(M) as a sum of two groups. For the first one, we use an explicit

calculation in Section 5F and (TS4) to show its vanishing. For the second one, we show it is zero in
Section 5G by using again (TS4) and a computation inspired by Berger and Colmez [2016]. Both of these
computations are of a p-adic functional analysis flavor.

5B. Vanishing of H-cohomology. If t ∈ R we write

p−t3̃+ := elements in 3̃ with val≥−t.

The first result we shall need for the proof of Theorem 5.1 is the following.

Proposition 5.8. Suppose that (G, H, 3̃) satisfies (TS1) for some c1 > 0. If H0 ⊂ H is an open subgroup,
and r ≥ 1, we have

(i) The natural map Hr (H0, 3̃
+)→ Hr (H0, p−2c13̃+) is 0.

(ii) Let M+ be a finite free 3̃+-semilinear representation of H0 which has an H0-fixed basis. Then the
map Hr (H0, M+)→ Hr (H0, p−2c1 M+) is 0.

(iii) Let M+ =
∧⋃

k∈N M+k be the completion of an increasing union of finite free 3̃+-semilinear rep-
resentation of H0, each having an H0-fixed basis. Then the map Hr (H0, M+)→ Hr (H0, p−2c1 M+)
is 0.

In particular, in each of the cases (i)–(iii) the rational cohomology Hr (H0, M) is equal to zero.

Proof. We have (i)⇒ (ii), since continuous cohomology commutes with direct sums.
Next, we prove (ii) ⇒ (iii). To do this, observe that if t ∈ Z≥1 then pt M+k also a finite free 3̃+-

semilinear representation of H0 which has an H0-fixed basis. Taking long exact cohomologies of the
sequences

0→ pt
(⋃

k∈N

M+k

)
→

(⋃
k∈N

M+k

)
→ M+/pt M+→ 0

and

0→ pt−2c1

(⋃
k∈N

M+k

)
→ p−2c1

(⋃
k∈N

M+k

)
→ p−2c1 M+/pt−2c1 M+→ 0,
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we get from (ii) that the natural map

Hr (H0, M+/pt M+)→ Hr (H0, p−2c1 M+/pt−2c1 M+)

is 0. Now given a cocycle ξ ∈ Z r (H0, M+), write ξ0 for its image in Z r (H0, p−2c1 M+). We wish to
show that ξ0 is a coboundary. Choose some fixed t0 ≥ 3c1. Then by virtue of the observation above, the
right vertical map of the commutative diagram

Hr (H0, pt0 M+) //

��

Hr (H0, M+) //

��

Hr (H0, M+/pt0 M+)

��

Hr (H0, pt0−2c1 M+) // Hr (H0, p−2c1 M+) // Hr (H0, p−2c1 M+/pt0−2c1 M+)

is 0, which implies that ξ0 = ξ1+ δ(m1), where m1 is an r − 1 cocycle valued in p−2c1 M+ and ξ1 is an
r -cocycle valued in pt0−2c1 M+ ⊂ pc1 M+. Repeating this argument by induction with M+ replaced with
pic1 M+, we get that we can write ξi = ξi+1+ δ(mi+1), where ξi is valued in pic1 M+ and mi+1 is valued
in p(i−3)c1 M+. Hence the series

∑
∞

i=1 mi converges to an r−1 cocycle m valued in p−2c1 M+, and we
get ξ0 = δ(m), as required.

Finally, we prove (i). This statement is probably well known, but for lack of a suitable reference,
we provide a proof here. It is essentially a fiber product of the arguments appearing in [Tate 1967, 3.2,
Corollary 1; Colmez 2008, Proposition 10.2].

Let ξ ∈ Z r (H0, 3̃
+) be an r -cocycle of H0 valued in 3̃+. By a valuation of a cochain we shall mean

the infimum of its valuation on elements. Writing δ for the differential, we shall construct a sequence of
r−1 cochains xn ∈ Cr−1(H0, p−2c13̃+) for n ≥−1 such that

(1) val(ξ − δxn)≥ nc1 for σ ∈ H0, and

(2) val(xn − xn−1)≥ (n− 2)c1 for n ≥ 0.

This will suffice, since xn → x for some x ∈ Cr−1(H0, p−2c13̃+) which shows that ξ = δx is 0 in
Hr (H0, p−2c13̃+).

To do this, choose x−1 = 0, which clearly satisfies the first condition. Suppose xn has been constructed;
we construct xn+1. Let ξn be the r -cocycle

ξn := ξ − δxn,

which is valued in pnc13̃+. Choose H1 ⊂ H0 an open subgroup such that for every σ1, . . . , σr ∈ H0 and
σ ∈ H1 we have

val(ξn(σ1, . . . , σr )− ξn(σ1, . . . , σrσ))≥ (n+ 2)c1.

Such a choice is possible by the continuity of ξn as well as the compactness of H0.
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Now by the axiom (TS1) there is an element α ∈ 3̃H1 such that val(α) >−c1 and
∑

τ∈H0/H1
τ(α)= 1.

Let S be a system of representatives for H0/H1, and define an r − 1 cochain

xS(σ1, . . . , σr−1)= (−1)r
∑
τ∈S

(σ1σ2 · . . . · σr−1τ)(α)ξn(σ1, . . . , σr−1, τ ).

Each term in the sum has val≥ (n−1)c1, so val(xS)≥ (n−1)c1. In particular, xS ∈Cr−1(H0, p−2c13̃+).
We now compute (ξn − δxS)(σ1, . . . , σr ). We have by definition of δ an equation

δxS(σ1, . . . , σr )= (−1)r
∑
τ∈S

(σ1 · . . . · σrτ)(α)σ1(ξn(σ2, . . . , σr , τ ))

+

r−1∑
j=1

(−1) j+r
∑
τ∈S

(σ1 · . . . · σrτ)(α)ξn(σ1, . . . , σ jσ j+1, . . . , σr , τ )

+

∑
τ∈S

(σ1 · . . . · σr−1τ)(α)ξn(σ1, . . . , σr−1, τ ). (5-1)

On the other hand, ξn is an r-cocycle, so that δξn(σ1, . . . , σr , τ ) = 0 for every σ1, . . . , σr and τ .
Multiplying by (−1)r (σ1 · . . . · σrτ)(α) and summing over τ ∈ S, we get the equation

0= (−1)r
∑
τ∈S

(σ1 · . . . · σrτ)(α)σ1(ξn(σ2, . . . , σr , τ ))

+

r−1∑
j=1

(−1) j+r
∑
τ∈S

(σ1 · . . . · σrτ)(α)ξn(σ1, . . . , σ jσ j+1, . . . , σr , τ )

+

∑
τ∈S

(σ1 · . . . · σrτ)(α)ξn(σ1, . . . , σr−1, σrτ)−
∑
τ∈S

(σ1 · . . . · σrτ)(α)ξn(σ1, . . . , σr ). (5-2)

Subtracting (5-2) from (5-1), we get

δxS(σ1, . . . , σr )=
∑
τ∈S

(σ1 ·. . .·σr−1τ)(α)ξn(σ1, . . . , σr−1, τ )−
∑
τ∈S

(σ1 ·. . .·σrτ)(α)ξn(σ1, . . . , σr−1, σrτ)

+

∑
τ∈S

(σ1 · . . . · σrτ)(α)ξn(σ1, . . . , σr ).

Now by choice of α, the last term is simply ξn(σ1, . . . , σr ). Thus after rearranging, we have for every
σ1, . . . , σr ∈ H0 the equation

(ξn−δxS)(σ1, . . . , σr )=
∑
τ∈S

(σ1·. . .·σr−1τ)(α)ξn(σ1, . . . , σr−1, τ )−
∑
τ∈S

(σ1·. . .·σrτ)(α)ξn(σ1, . . . , σrτ).

For each τ in S, let σr,τ ∈ H1 be such that τσr,τ ∈ σr S. Then the term on the right hand side of the
previous equation becomes∑

τ∈S

(σ1 · . . . · σr−1τ)(α)
[
ξn(σ1, . . . , σr−1, τ )− ξn(σ1, . . . , τσr,τ )

]
,

so by the choice of H1 we have

val(ξ − δ(xn + xS))= val(ξn − δxS)≥ (n+ 1)c1.
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Finally, set xn+1 := xn+xS where S is arbitrary. The calculations we have done show that val(xn+1−xn)≥

(n − 1)c1 and val(ξ − δxn+1) ≥ (n + 1)c1, as required. This concludes the induction and with it the
proof. □

5C. Descent of semilinear representations. In this subsection we suppose that G and 3̃ satisfy the
axioms (TS1), (TS2) and (TS3).

Given an integer k > c1+ 2c2+ 2c3 and an open subgroup G0 ⊂ G we write Modk
3̃+

(G, G0) for the
category of finite free 3̃+-semilinear representations M+ of G such that in some basis of M+, we have
Mat(g) ∈ 1+ pkMatd(3̃+) for every g ∈ G0.

The following will allow us to descend coefficients from 3̃+ to the much smaller ring 3+H0,n =

3̃+ ∩3H0,n . It is a simple modification of [Berger and Colmez 2008, Proposition 3.3.1] and is proved in
exactly the same way.

Proposition 5.9. Let M+ ∈Modk
3̃+

(G, G0). Then for n ≥ n(G0) and H0 = H ∩G0 there exists a unique
finite free 3+H0,n-submodule D+H0,n(M+) of M+ such that:

(1) D+H0,n(M+) is fixed by H0 and stable by G.

(2) The natural map 3̃+⊗3+H0,n
D+H0,n(M+)→ M+ is an isomorphism. In particular, D+H0,n(M+) is free

of rank = rank M+.

(3) D+H0,n(M+) has a basis which is c3-fixed by G0/H0, meaning that for γ ∈ G0/H0 we have

val(Mat(γ )− 1) > c3.

Corollary 5.10. Let M+ ∈Modk
3̃+

(G, G0), M = M+⊗3̃+ 3̃ and r ≥ 1. The map

Hr (H0, M+)→ Hr (H0, p−2c1 M+)

is 0 and H r (H0, M)= 0.

Proof. This follows from Proposition 5.8 since M+ has a basis fixed by H0. □

Lemma 5.11. Let H0 be an open subgroup of H , n ≥ n(H0) an integer, γ ∈ 0H an element such that
n(γ ) ≤ n and B ∈ Ml×d(3̃H0) a matrix. Let d ∈ N ∪ {∞}. Suppose there are V1 ∈ GLl(3H0,n) and
V2 ∈ GLd(3H0,n) such that val(V1− 1), val(V2− 1) > c3 and γ (B)= V1 BV2. Then B ∈Ml×d(3H0,n).

Proof. The proof is exactly the same as that of [Berger and Colmez 2008, Lemma 3.2.5]. The only
difference between that lemma and the statement appearing here is that there one further assumes l= d and
B ∈ GLd(3̃H0), but these assumptions are not used in the proof. In fact, the very same argument shows
the result holds for matrices with d =∞, as long as we understand that an infinite matrix has coefficients
which tend to zero as the indexes tend to∞. Namely, if R is a ring with valuation and l, d ∈N∪{∞}, let
Ml×d(R) be the set of matrices A= (ai j ) of size l×d and ai j ∈ R such that val(ai j )→∞ as i+ j→∞.
The argument then works in the same way. □
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Using Lemma 5.11, we have the following description of D+H0,n(M+). It explains why D+H0,n(M+) is
functorial in M+.

Proposition 5.12. Given M+ ∈ Modk
3̃+

(G, G0), the module D+H0,n(M+) is the union of all finitely
generated 3+H0,n-submodules of M+ which are G-stable, H0-fixed and admit a c3-fixed set of generators.

Proof. Indeed, if we have a submodule generated by c3-fixed elements f1, . . . , fl and if e1, . . . , ed is a
c3-fixed basis, write

fi = Bei

for some matrix B ∈Ml×d(3̃H0,+). Then we have

Mat fi (γ )B = γ (B)Matei (γ ).

Here by Mat fi (γ ) we mean any matrix which represents the action in terms of the fi . It is not a
priori unique as the submodule may not be free. Nevertheless, we have val(Mat fi (γ )− 1) > c3 by the
assumption, and this implies that Mat fi (γ ) is invertible by [Berger and Colmez 2008, Lemma 3.1.2]. So
by Lemma 5.11

B ∈Ml×d(3H0,n)∩Ml×d(3̃H0,+)=Ml×d(3+H0,n),

hence the submodule generated by the fi is contained in D+H0,n(M+). □

Corollary 5.13. Let M+, N+ ∈Modk
3̃+

(G, G0). Then for n ≥ n(G0),

(i) There are natural isomorphisms

D+H0,n(M+)⊗3+H0,n
D+H0,n(N+)−→∼ D+H0,n(M+⊗3̃+ N+),

D+H0,n(M+)⊕ D+H0,n(N+)−→∼ D+H0,n(M+⊕ N+).

(ii) If M+ ⊂ N+ then D+H0,n(M+)= D+H0,n(N+)∩M+.

5D. Descent of Can(G0, M). From here on G is a compact p-adic Lie group and G0 ⊂ G is a small
subgroup, as in Section 2. We continue to assume G and 3̃ satisfy the axioms (TS1), (TS2) and (TS3).
The reader may also want to recall our notation and conventions of Section 1B regarding Banach spaces,
completions and tensor products.

By Proposition 2.3, we have for V+l = Vl(G0)∩ Can(G0, Qp)
+ an equality

∧

lim
−−→
l∈N

V+l = Can(G0, Qp)
+.

For M ∈Modk
3̃+

(G, G0) we have(
lim
−−→
l∈N

M+⊗Zp V+l

)∧
∼= M+ ⊗̂Zp C

an(G0, Qp)
+.

Each M+⊗Zp V+l is a finite free 3̃+-semilinear representation of G0. The action of Gk on each of the
V+l is trivial mod pk by Lemma 2.2, and hence its action on M+⊗V+l is trivial mod pk . So if n ≥ n(Gk),
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we may define using Proposition 5.8 a 3+Hk ,n-submodule of M+ ⊗̂Zp Can(G0, Qp)
+ given by

D+Hk ,n,∞(M+) :=
(

lim
−−→
l∈N

D+Hk ,n(M+⊗ V+l )

)∧
.

The module D+Hk ,n,∞(M+) is then G0-stable and fixed by Hk . By Proposition 5.8 we have natural
isomorphisms

3̃+⊗3+Hk ,n
D+Hk ,n(M+⊗ V+l )−→∼ M+⊗ V+l .

This shows that D+Hk ,n,∞(M+) is generated by c3-fixed elements which give it the sup norm, and there is
an isometry

3̃+ ⊗̂3+Hk ,n
D+Hk ,n,∞(M+)−→∼ M+ ⊗̂Zp C

an(G0, Qp)
+.

The next proposition follows from Proposition 5.12

Proposition 5.14. A finitely generated 3+Hk ,n-submodule of M+ ⊗̂Zp Can(G0, Qp)
+ which is stable by G0,

fixed by Hk and is generated by a c3-fixed set of elements is contained in D+Hk ,n,∞(M+).

In particular, we have the function log defined, by abuse of notation as the composition of

χ : G0 ↠ G0/H0 ↪→ Z×p and log : Z×p →Qp.

It lies in Can(G0, Qp)
+. Note that for g ∈ G0, we have

g(log)= log+ log(g−1)= log− log(g).

Lemma 5.15. The elements 1 and log of 3̃+ ⊗̂ Can(G0, Qp)
+ lie in D+Hk ,n,∞(3̃+).

Proof. The 3+Hk ,n-submodule generated by 1 and log in 3̃+ ⊗̂Can(G0, Qp)
+ is stable under the G0 action

and fixed by Hk . Furthermore, we claim the elements 1 and log are c3-fixed by the action of Gk/Hk . This
is clear for 1. To show this for log, notice that if g pk

∈ Gk/Hk (recalling that Gk = G pk

0 ) then

val(g pk
− 1)(log)≥ k > c1+ 2c2+ 2c3 > c3.

We conclude by Proposition 5.14. □

Proposition 5.16. (i) D+Hk ,n,∞(3̃+) is a subring of 3̃+ ⊗̂ Can(G0, Qp)
+.

(ii) The module structure of M+ ⊗̂Can(G0, Qp)
+ over 3̃+ ⊗̂Can(G0, Qp)

+ restricts to a module structure
of D+Hk ,n,∞(M+) over D+Hk ,n,∞(3̃+).

Proof. D+Hk ,n,∞(3̃+) contains 1 by Proposition 5.14. Next, one has the ring and module structure maps

3̃+⊗ 3̃+→ 3̃+, 3̃+⊗M+→ M+.

Applying Proposition 5.12, taking the inductive limit and then taking completions, we get natural maps

D+Hk ,n,∞(3̃+)⊗ D+Hk ,n,∞(3̃+)→ D+Hk ,n,∞(3̃+)

and

D+Hk ,n,∞(3̃+)⊗ D+Hk ,n,∞(M+)→ D+Hk ,n,∞(M+),

giving the desired ring and module structures. □
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5E. Computation of higher locally analytic vectors, I. Let M+ ∈Modk
3̃+

(G, G0) and M = M+⊗3̃+ 3̃.
In this subsection we shall do a first simplification towards the computation of the groups Ri

G-la(M) for
i ≥ 1.

If G0 is any open subgroup of G, we have Ri
G-la(M)= Ri

G0-la(M) so that if Gn = G pn

0 we have

Ri
G-la(M)= lim

−−→
n

Hi(Gn, M ⊗̂Qp C
an(Gn, Qp)

)
.

Upon possibly making G0 smaller, we may assume that G0 is small and that χ : G0/H0→ Z×p has image
isomorphic to Zp. Write 0n = Gn/Hn .

Lemma 5.17. For i ≥ 1,

Hi(Gn, M ⊗̂Qp C
an(Gn, Qp)

)
∼= Hi(0n+k, (M ⊗̂Qp C

an(Gn, Qp))
Hn+k

)
.

Proof. By the Hochshild–Serre spectral sequence and the vanishing of Hn+k cohomologies in (iii) of
Proposition 5.8 (taking the inductive system M+k+k′ = M+⊗ V+k+k′ for k ′ ≥ 0), we have

Hi(Gn, M ⊗̂Qp C
an(Gn, Qp)

)
∼= Hi(Gn/Hn+k, (M ⊗̂Qp C

an(Gn, Qp))
Hn+k

)
.

Now the inclusion 0n+k ↪→ Gn/Hn+k induces an isomorphism

Hi(Gn/Hn+k, (M ⊗̂Qp C
an(Gn, Qp))

Hn+k
)
∼= Hi(0n+k, (M ⊗̂Qp C

an(Gn, Qp))
Hn+k

)
.

This again follows from Hochshild–Serre, once we notice all the higher cohomologies of Gn/Gn+k

appearing vanish. This is because Gn/Gn+k is finite and the coefficients are rational. □

Corollary 5.18. Ri
Gn-an(M)= 0 for i ≥ 2 and n ≥ 0.

Proof. Because 0n+k ∼= Zp. □

This proves the first part of Theorem 5.1. It remains to study the 1st derived group

R1
G-la(M)= lim

−−→
n

H1(0n+k, (M ⊗̂Qp C
an(Gn, Qp))

Hn+k
)
.

Now for m ≥ n(Gn+k), we have by Proposition 5.9 a natural isomorphism

3̃+⊗ lim
−−→

ℓ

D+Hk ,n(M+⊗ V+ℓ )∼= M+⊗ lim
−−→
ℓ∈N

V+ℓ .

Taking the p-adic completion, we obtain a natural isomorphism

3̃+ ⊗̂3+Hn+k ,m
D+Hn+k ,m,∞(M+)−→∼ M+ ⊗̂ Can(Gn, Qp)

+

and thus
3̃+,Hn+k ⊗̂3+Hn+k ,m

D+Hn+k ,m,∞(M+)−→∼ (M+ ⊗̂ Can(Gn, Qp)
+)Hn+k .

On the other hand, recall we have the trace maps

RHn+k ,m : 3̃
Hn+k →3Hn+k ,m

which induce for XHn+k ,m = ker RHn+k ,m a decomposition

3̃Hn+k =3Hn+k ,m ⊕ X Hn+k ,m .

Therefore, we can decompose

3̃Hn+k ⊗̂3Hn+k ,m DHn+k ,m,∞(M)∼= DHn+k ,m,∞(M)⊕
(
XHn+k ,m ⊗̂3Hn+k ,m DHn+k ,m,∞(M)

)
,
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and so we get the description

R1
G-la(M)= lim

−−→
n

H1(0n+k, DHn+k ,m,∞(M))⊕H1(0n+k, XHn+k ,m ⊗̂3Hn+k ,m D+Hn+k ,m,∞(M)
)
,

where in each object of the direct limit, we take m ≥ n(Gn+k).

5F. Computation of higher locally analytic vectors, II. If m ≥ 0 is an integer and γ is an element of a
group, write γm for γ pm

. The following simple lemma will be used to compare the behavior of (γ − 1)m

and γm − 1.

Lemma 5.19. Let ℓ≥ 0. The element X pℓ

− 1 of the ring Zp[X ] is in the ideal generated by the elements
pi (X − 1)ℓ+1−i for 0≤ i ≤ ℓ.

Proof. For ℓ≥ 1 we have

X pℓ

− 1= (X pℓ−1
− 1)

(p−1∑
i=1

X i pℓ−1
)
= (X pℓ−1

− 1)

(p−1∑
i=1

1+ (X i pℓ−1
− 1)

)

= (X pℓ−1
− 1)

(
p+

p−1∑
i=1

(X i pℓ−1
− 1)

)
,

so that X pℓ

− 1 lies in the ideal

(X pℓ−1
− 1)(p, (X pℓ−1

− 1))= (p(X pℓ−1
− 1), (X pℓ−1

− 1)2).

Let Iℓ be the ideal generated by the elements pi (X − 1)ℓ+1−i for 0 ≤ i ≤ ℓ. It is easy to check that
(pIℓ−1, I 2

ℓ−1) is contained in Iℓ. Hence, induction on ℓ shows that X pℓ

− 1 belong to Iℓ. □

So far we have only used the axioms (TS1), (TS2) and (TS3). We shall now use the final axiom (TS4),
which proves us with a positive number t > 0.

Proposition 5.20. If (TS4) holds, then

(i) 3H,n is 0t -analytic for an open subgroup of 0 depending on t.

(ii) There exists an element s = s(t, c3)= s(n, m, G0, c3) such that for γ ∈ Gn+k/Hn+k we have

(γ − 1)D+Hn+k ,m,∞(M+)⊂ ps D+Hn+k ,m,∞(M+).

(iii) DHn+k ,m,∞(M) is 0-analytic for some open subgroup 0 of 0n+k which depends on n, m, G and c3.

Proof. Once (ii) is established, we claim parts (i) and (iii) follow from [Pan 2022a, Example 2.1.9]. Let
us elaborate a little bit. Take ℓ large enough so that

(ℓ− i)+ (i + 1)t = ℓ+ t + (t − 1)i ≥ 2

for each 0≤ i ≤ ℓ. Then for such ℓ (which only depends on t) we have by Lemma 5.19

(γℓ− 1)(3+H,n)⊂ p23+H,n,

so that if b ∈3H,n , the series
γ x

ℓ (b)=
∑
n≥0

( x
n

)
(γℓ− 1)n(b)
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converges. This shows b is analytic for the subgroup generated by γℓ. The argument for (iii) given (ii) is
similar.

To show part (ii), recall the identity

(γ − 1)(ab)= (γ − 1)(a)b+ γ (a)(γ − 1)(b).

Axiom (TS4) implies that if a ∈3+H,m and b ∈ D+Hn+k ,m,∞(M+) is c3-fixed, then ab is min(c3, t)-fixed.
Since the c3-fixed elements topologically generate D+Hn+k ,m,∞(M+), it follows that every element of
D+Hn+k ,m,∞(M+) is s =min(c3, t)-fixed. □

Using this we can show

Lemma 5.21. Given n there is m sufficiently large depending only on n (and not on M) such that

H1(0n+k, XHn+k ,m ⊗̂3Hn+k ,m DHn+k ,m,∞(M)
)
= 0.

Proof. (This argument is adapted from [Pan 2022a, Lemma 3.6.6].) Fix m0 ≥ n(Gn+k). From the
discussion after Corollary 5.18, for m ≥ m0 we have a natural isomorphism

3̃Hn+k ⊗̂3Hn+k ,m DHn+k ,m,∞(M)∼= DHn+k ,m,∞(M)⊕
(
XHn+k ,m ⊗̂3Hn+k ,m DHn+k ,m,∞(M)

)
.

By Proposition 5.12, we have an isomorphism

3Hn+k ,m ⊗̂ DHn+k ,m0,∞(M)∼= DHn+k ,m,∞(M).

Let X+Hn+k ,m = XHn+k ,m ∩ 3̃+. We get an induced isomorphism

X+Hn+k ,m ⊗̂3+Hn+k ,m
D+Hn+k ,m,∞(M+)∼= X+Hn+k ,m ⊗̂3+Hn+k ,m0

D+Hn+k ,m0,∞
(M).

Let γ be a generator of 0n+k . By Proposition 5.20, there is some s such that

(γ − 1)D+Hn+k ,m0,∞
(M+)⊂ ps D+Hn+k ,m0,∞

(M+).

If ℓ is sufficiently large Proposition 5.20 implies that

(γℓ− 1)D+Hn+k ,m0,∞
(M+)⊂ p2c3 D+Hn+k ,m0,∞

(M+)

(we take 2c3 rather than c3 to take of convergence later in this argument). Choose such an ℓ, and take m
large enough so that n(γℓ)≤m. Then by (TS3) we have val((γℓ−1)−1(x))≥ val(x)−c3 for x ∈X+Hn+k ,m .

We will now show that any element of XHn+k ,m ⊗̂3Hn+k ,m DHn+k ,m,∞(M) is in the image of γℓ−1. This
will also imply any element is in the image of γ − 1, since γℓ− 1 is divisible by γ − 1, and hence it will
further imply that the cohomology

H1(0n+k, XHn+k ,m ⊗̂3Hn+k ,m DHn+k ,m,∞(M)
)
∼= XHn+k ,m ⊗̂3Hn+k ,m DHn+k ,m,∞(M)/(γ − 1)

is 0.
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To do this last step, it suffices to show that each simple tensor

a⊗ b ∈ X+Hn+k ,m ⊗̂3+Hn+k ,m0
D+Hn+k ,m0,∞

(M+)∼= X+Hn+k ,m ⊗̂3+Hn+k ,m
D+Hn+k ,m,∞(M+)

is in the image of γℓ−1. Choose an integer r so that pr a is in the image of (γl−1)−1 restricted to X+Hn+k ,m

(choose any r ≥ c3). It suffices to show pr a⊗ b is in the image of γℓ− 1. So write pr a = (γℓ− 1)−1(c)
for c ∈ X+Hn+k ,m , and consider the series

y =
+∞∑
i=0

(γ−1
l − 1)−i (c)⊗ (γl − 1)i (b)=

+∞∑
i=0

γ i
l (1− γl)

−i (c)⊗ (γl − 1)i (b).

This series converges, because by our choices

val((γℓ−1)−1(x))≥ val(x)−c3 on X+Hn+k ,m and (γℓ−1)(x)≥ val(x)+2c3 on D+Hn+k ,m0,∞
(M+)!

A direct computation then gives

(γℓ− 1)(y)= (γℓ− 1)(c)⊗ b = pr a⊗ b,

so pr a⊗ b is in the image of γℓ− 1, as required. □

Combing Lemma 5.21 with the discussion after Corollary 5.18, we get the following description of
R1

G-la(M).

Proposition 5.22. R1
G-la(M)= lim

−−→
n,m

H1(0n+k, DHn+k ,m,∞(M)
)
,

where the direct limit is taken over pairs n, m.

5G. Computation of higher locally analytic vectors, III. We are now almost ready to prove our theorem.
First we prove a lemma that will be used.

Lemma 5.23. Let 0 = γ Zp and let B be a Banach representation of 0. Suppose B = B0-an, and that

∥γ − 1∥< p−1/(p−1).

Then ∥b∥ = ∥b∥0-an for any b ∈ B.

Proof. We have for x ∈ Zp that

γ x(b)=
∑ ∇

k
γ (b)

k!
xk

where ∇γ = log(γ ). By definition

∥b∥0-an = sup
k≥0
{∥∇

k
γ (b)/k!∥}.

Now recall we have
∇γ = (γ − 1)

∑
m≥0

(−1)m (γ − 1)m

m+ 1
,

so ∥∇γ (b)∥ ≤ ∥γ − 1∥∥b∥, and more generally

∥∇
k
γ (b)∥ ≤ ∥γ − 1∥k∥b∥.
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It follows that for k ≥ 1 we have

∥∇
k
γ (b)/k!∥ ≤ p−k/(p−1)

∥γ − 1∥k∥b∥< ∥b∥,

so that ∥b∥0-an = ∥b∥. □

Proof of Theorem 5.1. By Proposition 5.22, R1
G-la(M)= lim

−−→n,m H1(0n+k, DHn+k ,m,∞(M)). Fix n and m.
Given b ∈ DHn+k ,m,∞(M) we shall show it becomes zero in some H1(0l+k, DHl+k ,m′,∞(M)) for some
ℓ≥ n, m′ ≥ m — this will show the direct limit is zero. By Proposition 5.20 we know there is an open
subgroup 0 ⊂ 0n+k such that DHn+k ,m,∞(M) is 0-analytic. Writing γ for a generator of 0, we may take
0 small enough so that ∥γ − 1∥< p−1/(p−1), and hence Lemma 5.23 applies. Thus, writing ∥·∥n for the
norm on DHn+k ,m,∞(M) induced from its inclusion into M ⊗̂ Can(Gn, Qp), we have ∥b∥n = ∥b∥0-an for
b ∈ DHn+k ,m,∞(M). We know there is a real number D > 0 such that if b ∈ DHn+k ,m,∞(M) then

∥∇γ (b)∥n = ∥∇γ (b)∥0-an ≤ D∥b∥0-an = D∥b∥n.

Now choose ℓ≥ n such that 0l has index pt in 0, where t is taken large enough so that

2p1/(p−1)D ≤ pt .

Let γt = γ pt
be the generator of 0ℓ, and let logℓ ∈ Can(Gℓ, Qp) : Gℓ ↠ Gℓ/Hℓ→ Zp be the logarithm

so that logℓ(γt) = 1. Now let m′ ≥ m be large enough so that DHℓ+k ,m′,∞(M) is defined. Recall that
by Lemma 5.15, logℓ ∈ DHℓ+k ,m′,∞(3̃+). Let 0′ ⊂ 0ℓ+k be an open subgroup so that DHl+k ,m′,∞(M) is
0′-analytic and write pq for the index of 0′ in 0ℓ+k . Finally, write γ ′ for the generator of 0′. Again by
making 0′ smaller we may assume ∥γ ′− 1∥< p−1/(p−1) on DHℓ+k ,m′,∞(M). We have

γ ′ = (γ
pk

t )pq
= γ pt+k+q

.

Let zℓ = logℓ /pk+q
∈ DHℓ+k ,m′,∞(3̃), the one computes that γ ′(zℓ) = zℓ + 1. Therefore, ∇γ ′(zℓ) = 1.

Now consider the series

bzℓ−∇γ ′(b)
z2
ℓ

2!
+∇

2
γ ′(b)

z3
ℓ

3!
− · · ·

in DHℓ+k ,m′,∞(M). We claim first it converges with respect to the norm ∥·∥ℓ of DHℓ+k ,m′,∞(M). Indeed,
we have

∥zℓ∥ℓ = pk+q

and (noting that ∇ i
γ ′ = pi(t+k+q)

∇
i
γ )

∥∇
i
γ ′(b)∥ℓ = p−i(t+k+q)

∥∇
i
γ (b)∥ℓ ≤ p−i(t+k+q)

∥∇
i
γ (b)∥n ≤ p−i(t+k+q)Di

∥b∥n,

so the general term of series has size

∥∇
i
γ ′(b)/(i + 1)! · zi+1

ℓ ∥ℓ≪ p−i(t+k+q)Di pi(k+q) pi/(p−1)
= (p−t Dp1/(p−1))i

≤ 2−i ,

so the series converges in the in the ∥·∥ℓ norm. But then the series must also converge with respect to
∥·∥0′-an because of Lemma 5.23. So if we write y for the sum of the series, it makes sense to speak of
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the derivative ∇γ ′(y), and one computes that ∇γ ′(y)= b. So b is in the image of

∇γ ′ : DHℓ+k ,m′,∞(M)→ DHℓ+k ,m′,∞(M),

hence also in the image of γ ′−1, which divides ∇γ ′ . But γ ′ = γ
pq

t+k so γt+k−1 divides γ ′−1. It follows
that b is also in the image of γt+k − 1. This means that b is 0 in

DHℓ+k ,m′,∞(M)/(γt+k − 1)∼= H1(0ℓ+k, DHℓ+k ,m′,∞(M))

and we are done! □

Remark 5.24. (1) Since the choices of ℓ and m′ did not depend on b, each DHn+k ,m,∞(M) maps in its
entirety to 0 in some DHl+k ,m′,∞(M). This shows that M is strongly LA-acyclic in the sense of [Pan
2022a, §2.2]. After this work was completed, Pan proved that strong LA-acyclicity is in fact automatic in
this setting, see [Pan 2022b, Proposition 2.3.6].

(2) The proof of Theorem 5.1 shows the vanishing of lim
−−→n,m H1

(
Lie(0n+k), DHn+k ,m,∞(M)

)
, which is a

priori stronger than the vanishing of lim
−−→n,m H1(0n+k, DHn+k ,m,∞(M)).

6. Descent to locally analytic vectors

Work again in the setting of Sections 3–4. We shall assume in this section that K∞ contains an unramified
twist of the cyclotomic extension. The purpose of this section is to prove the following theorem.

Theorem 6.1. The functor E 7→OX ⊗Ola
X
E gives rise to an equivalence of categories

{locally analytic vector bundles on X } ∼= {0-vector bundles on X }.

The inverse functor is given by Ẽ 7→ Ẽ la.

In the rest of this section, we shall prove that given a 0-vector bundle Ẽ on X , the natural map

OX ⊗Ola
X
Ẽ la
→ Ẽ

is an isomorphism. This is enough for proving Theorem 6.1. Indeed, if this isomorphism is granted, then
in particular it follows from Proposition 2.1 that Ẽ la is locally free over Ola

X , so that the functor Ẽ 7→ Ẽ la

is valued in the correct category and is fully faithful. On the other hand, it follows from Example 4.5(2)
that it is also essentially surjective.

6A. Computations at the stalk. In this section, w let Ẽ be a 0-vector bundle. We have the fiber Ẽk(x∞)

at x∞, a finite dimensional K̂∞-semilinear representation of 0, and the completed stalk Ẽ∧,+
x∞ , a finite free

B+dR(K̂∞)= B+,H
dR -module. We define

DSen(Ẽ)= (Ẽk(x∞))
la and D+dif(Ẽ)= (Ẽ∧,+

x∞ )pa.

If V is a p-adic representation and Ẽ = Ẽ(V ) as in Example 3.4, and if 0 = 0cyc, then we recover the
classical invariant DSen(V ) according to [Berger and Colmez 2016, théorème 3.2]. The invariant D+dif(V )
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is also recovered, see [Porat 2022, Proposition 3.3.]. It is therefore natural to extend these definitions to
arbitrary Ẽ and 0 as we have done here.

There is the following decompletion result.

Theorem 6.2. (i) The natural map K̂∞⊗K̂ la
∞

DSen(Ẽ)→ Ẽk(x∞) is an isomorphism.

(ii) The natural map B+dR(K̂∞)⊗B+dR(K̂∞)pa D+dif(Ẽ)→ Ẽ∧,+
x∞ is an isomorphism.

Proof. The fiber Ẽk(x∞) is a finite dimensional K̂∞-semilinear representation of 0. So (i) follows from
[Berger and Colmez 2016, théorème 3.4]. For (ii), write Iθ for the maximal ideal of B+dR(K̂∞). It suffices
to prove that for n ≥ 1 the natural map

B+dR(K̂∞)/I n
θ ⊗(B+dR/I n

θ )la (Ẽ x∞/I n
θ )la
→ Ẽ x∞/I n

θ (∗)

is an isomorphism.
By Theorem 5.1 (more precisely, Corollary 5.6(i)), we have R1

la(I n−1
θ Ẽ x∞/I n

θ )= 0, so by devissage the
map

(Ẽ x∞/I n
θ )la
→ (Ẽ x∞/Iθ )la

= DSen(Ẽ)

is surjective. It follows from the case n = 1 and Nakayama’s lemma that (∗) is surjective too.
For injectivity, we argue as follows. Let ē1, . . . , ēd be a basis of DSen(Ẽ) over the field K̂ la

∞
. By what

was just proved, we may choose a lifting e1, . . . , ed of this basis to (Ẽ x∞/I n
θ )la. Then 1⊗ e1, . . . , 1⊗ ed

generate

B+dR(K̂∞)/I n
θ ⊗(B+dR/I n

θ )la (Ẽ x∞/I n
θ )la

according to Nakayama’s lemma.
Now suppose that ∑

xi ⊗ ei ∈ B+dR(K̂∞)/I n
θ ⊗(B+dR/I n

θ )la (Ẽ x∞/I n
θ )la

is in the kernel of (∗), so its image is 0 mod I n
θ . Choose a generator ξ of Iθ . Reducing mod Iθ and using

the injectivity of (∗) for n = 1, we get the relation
∑

x̄i ⊗ ēi = 0. As the ēi form a basis, each xi must be
divisible by ξ . Writing xi = ξ x ′i , we have∑

xi ⊗ ei =
∑

ξ x ′i ⊗ ei = ξ
∑

x ′i ⊗ ei ,

so the image of ∑
x ′i ⊗ yi ∈ B+dR(K̂∞)/I n−1

θ ⊗(B+dR/I n−1
θ )la (Ẽ x∞/I n−1

θ )la

in Ẽ x∞/I n−1
θ is 0. The injectivity now follows from induction. □

Let I be a closed interval with | log(I )|< log(p) and let

M̃I = H0(XI , Ẽ).

Theorem 5.1 allows us to prove the following Proposition 6.3; we shall subsequently prove a stronger
statement in Theorem 6.5.
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Proposition 6.3. There are natural isomorphisms

DSen(Ẽ)∼= M̃ la
I /(Iθ M̃I )

la and D+dif(Ẽ)∼= lim
←−−

n
M̃ la

I /(I n
θ M̃I )

la.

Proof. As Iθ is principal, Iθ M̃I is finite free over B̃I . By Corollary 5.6(ii), the cohomology R1
la(Iθ M̃I )

vanishes. Applying la to the short exact sequence

0→ Iθ M̃I → M̃I → M̃I Iθ/M̃I → 0

we get M̃ la
I /(Iθ M̃I )

la
−→∼ (M̃I /Iθ M̃I )

la
= DSen(Ẽ), which gives the first isomorphism. By the same

argument M̃ la
I /(I n

θ M̃I )
la
−→∼ (M̃I /I n

θ M̃I )
la for n ≥ 1. To get the second isomorphism, take the limit

over n. □

6B. Descent to locally analytic vectors. In this subsection we will give a proof of Theorem 6.1. We
continue with the notation of Section 6A.

We start with the following key proposition, which builds upon all of the work done in Section 4,
Section 5 and the previous subsections of Section 6.

Proposition 6.4. Let I = [r, (p−1)pn
] be an interval with n ≥ 1 and | log(I )|< log(p). Then the natural

map

B̃I ⊗B̃la
I

M̃ la
I → M̃I (6-1)

is an isomorphism.

Proof. First let us explain how to reduce to the cyclotomic case. After an unramified twist, which causes
no obstructions to descent, we may assume Kcyc ⊂ K∞. Set

M̃I,cyc := M̃Gal(K∞/Kcyc)

I .

We then have

M̃I ∼= B̃I ⊗B̃I,cyc
M̃I,cyc

(see for example [Berger and Colmez 2008, corollarie 3.2.2]), and if the conclusion of the proposition
holds for the cyclotomic case, we have

M̃I,cyc ∼= B̃I,cyc⊗B̃la
I,cyc

M̃ la
I,cyc

and hence

M̃I ∼= B̃I ⊗B̃la
I,cyc

M̃ la
I,cyc.

This shows that M̃I has a basis of locally analytic vectors and by Proposition 2.1 the map (6-1) is an
isomorphism.

It remains to establish the proposition in the cyclotomic case where B̃I = B̃I,cyc. By Proposition 4.2,
B̃I,cyc is flat as a B̃la

I,cyc-module. Since M̃ la
I,cyc is torsionfree as a B̃la

I,cyc-module, it follows from [Stacks



934 Gal Porat

2005–, 0AXM] that B̃I,cyc ⊗B̃la
I,cyc

M̃ la
I,cyc is also torsionfree. By Proposition 6.3, the completion at

Iθ ⊂ B̃I,cyc of (6-1) is nothing but the map

B+dR⊗B+,pa
dR

D+dif(Ẽ)→ Ẽ∧,+
x∞ ,

so by Theorem 6.2, the map (6-1) is an isomorphism at least after taking this completion. As B̃I,cyc is
a PID (see Proposition 3.1), it follows that (6-1) is injective with cokernel supported at finitely many
maximal ideals. These maximal ideals correspond to a finite set of points on X , and this set must form a
finite orbit under the action of 0. But by [Fargues and Fontaine 2018, Proposition 10.1.1], the only point
with finite orbit under the 0-action is x∞! Thus the cokernel of (6-1) is supported at Iθ . But then it must
be 0, as we have just shown the completion at Iθ is an isomorphism. □

Proof of Theorem 6.1. Let U be an open subaffinoid of XI for I = [r, (p− 1)pn
]. Then we claim that the

natural map

OX (U )⊗Ola
X (U ) H0(U, Ẽ la)→ H0(U, Ẽ)

is an isomorphism. Indeed, we have

H0(U, Ẽ)∼=OX (U )⊗B̃I,cyc
M̃I,cyc ∼=OX (U )⊗B̃la

I,cyc
M̃ la

I,cyc.

Thus H0(U, Ẽ) has a basis of locally analytic elements. By Proposition 2.1, we have an isomorphism

OX (U )⊗OX (U )la H0(U, Ẽ)la
→ H0(U, Ẽ),

from which the claim follows.
Now let (OX ⊗Ola

X
Ẽ la

)◦ be the presheaf on X sending

U 7→OX (U )⊗Ola
X (U ) Ẽ

la
(U ).

The XI for various I of the form I = [r, (p− 1)pn
] with | log(I )|< log(p) give a covering of X , so the

claim shows that the natural map

(OX ⊗Ola
X
Ẽ la

)◦→ Ẽ

is an isomorphism on stalks. Theorem 6.1 follows. □

The proof of Theorem 6.1 essentially shows that E is quasicoherent. This leads to a simple interpretation
of DSen and D+dif in terms of E as follows. Given a locally analytic vector bundle define

DSen(E)= Ek(x∞),

the fiber of E at x∞, and

D+dif(E)= Ê+x∞,

the completed stalk of E at x∞. These would not a priori be the same as DSen(Ẽ) and D+dif(Ẽ), because
quotients in general do not commute with locally analytic vectors, but they do in this case.



Locally analytic vector bundles on the Fargues–Fontaine curve 935

Theorem 6.5. Let Ẽ =OX ⊗Ola
X
E . There are natural isomorphisms

DSen(Ẽ)∼= DSen(E) and D+dif(Ẽ)∼= D+dif(E).

Proof. For I = [r, (p− 1)pn
] with | log(I )|< log(p) write M̃I = H0(XI , Ẽ). For any sufficiently small

U containing x∞, the proof of Theorem 6.1 shows that

H0(U, E)∼=OX (U )la
⊗B̃la

I
M̃ la

I .

It follows that the quotient Ex∞/mn
x∞Ex∞ of the stalk Ex∞ by the n-th power of the maximal ideal

mx∞ ⊂Ola
X ,x∞ is identified with the quotient M̃ la

I /(I n
θ M̃I )

la. Now use Proposition 6.3. □

7. The comparison with (ϕ, 0)-modules

In this section, we give reminders on (ϕ, 0)-modules and compare them to locally analytic vector bundles.
We keep the notation from Section 6 and the assumption that K η

cyc ⊂ K∞ for some η.

7A. Galois representations and (ϕ, 0)-modules. Recall the notation from Section 3 and let

B̃†
rig = B̃†

rig(K̂∞)= lim
−−→

r
H0(Y[r,∞),OY)= lim

−−→
r

lim
←−−
s≥r

H0(Y[r,s],OY)

be the extended Robba ring. The (ϕ, 0)-actions on Y induce actions on B̃†
rig.

Definition 7.1. A (ϕ, 0)-module over B̃†
rig is a finite free B̃†

rig-module with commuting semilinear (ϕ, 0)-
actions such that in some basis Mat(ϕ) ∈ GLd(B̃†

rig).

We can compare these objects to (ϕ, 0)-vector bundles using two functors. On the one hand, if M̃ is a
(ϕ, 0)-vector bundle, then M̃†

rig = lim
−−→r H0(Y[r,∞),M̃) is a (ϕ, 0)-module. Here, the nontrivial thing one

needs to check is that M̃†
rig is free, and this follows from B̃†

rig being Bézout [Kedlaya 2004, Theorem 3.20].
One the other hand, given a (ϕ, 0)-module M̃†

rig we define a (ϕ, 0)-vector bundle FT(M̃†
rig) as follows.

If M̃†
rig is a (ϕ, 0)-module then for every r ≫ 0 we have a finite free B̃[r,∞)-semilinear 0-representation

M̃[r,∞) together with isomorphisms

ϕ∗ B̃[r,∞)⊗B̃[r/p,∞)
M̃[r/p,∞) −→

∼ M̃[r,∞)

as well as identifications

B̃†
rig⊗B̃[r,∞)

M̃[r,∞) −→
∼ M̃†

rig.

Using the isomorphisms ϕ : B̃[r,∞)−→
∼ B̃[r/p,∞) we can then uniquely extend this to all r > 0 by inductively

defining M̃[r/pn,∞) through the isomorphisms

ϕ∗ B̃[r/pn−1,∞)⊗B̃[r/pn ,∞)
M̃[r/pn,∞) −→

∼ M̃[r/pn−1,∞).

Setting for every r > 0

H0(Y[r,∞), FT(M̃†
rig)) := M̃[r,∞)
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and for every s ≥ r
H0(Y[r,s], FT(M̃†

rig)) := M̃[r,∞)⊗B̃[r,∞)
B̃[r,s]

we obtain a (ϕ, 0)-vector bundle FT(M̃†
rig).

Proposition 7.2. The functors M̃ 7→ lim
−−→r H0(Y[r,∞),M̃) and FT induce an equivalence of categories

{(ϕ, 0)-vector bundles on Y(0,∞)}
∼= {(ϕ, 0)-modules over B̃†

rig}.

Proof. This is well known. See for example the discussion appearing directly after [Scholze and Weinstein
2020, Definition 13.4.3]. The treatment there is given in the situation where there is no 0-action present,
but the same proof works in our setting. □

The following theorem due to Fontaine and Kedlaya gives the relation of these objects with Galois
representations. To formulate it, we need to introduce some terminology. Let y be the point of Y
corresponding to p = 0. A (ϕ, 0)-module over B̃†

rig is called étale if it has a basis for which Mat(ϕ) ∈

GLd(OY,y). We also have the notion of a semistable slope 0 vector bundle on X — we refer the reader to
[Fargues and Fontaine 2018, définition 5.5.1, exemple 5.5.2.1].

Theorem 7.3. The following categories are equivalent.

(1) Finite dimensional Qp-representations of GK .

(2) Étale (ϕ, 0)-modules over B̃†
rig.

(3) 0-vector bundles on X which are semistable of slope 0.

Proof. The equivalence of (2) and (3) follows from Proposition 7.2 and Proposition 3.3. The category
in (1) is equivalent to (ϕ, 0)-modules over B̃ = ÔY,y[1/p], where ÔY,y is the p-adic completion of
OY,y , by the theorem of Fontaine [1990, théorème 3.4.3 and remarque 3.44(c)]. Next, by a relatively
elementary argument, this category is equivalent to the category of (ϕ, 0)-modules over B̃†, see for
example [Kedlaya 2015, Theorem 2.4.5] or [de Shalit and Porat 2019, Theorem 4.3]. Finally, one can
replace B̃† by B̃†

rig by [Kedlaya 2004, Proposition 5.11, Corollary 5.12]. See also [Fargues and Fontaine
2018, proposition 11.2.24]. □

7B. The comparison with locally analytic vector bundles. Let B̃†,pa
rig be the subring of pro-analytic

vectors in B̃†
rig for the action of 0. We have a corresponding version of (ϕ, 0)-modules.

Definition 7.4. A (ϕ, 0)-module M†
rig over B̃†,pa

rig is a finite free B̃†,pa
rig -module with commuting semilinear

(ϕ, 0)-actions such that in some basis Mat(ϕ) ∈GLd(B̃†,pa
rig ), and such that the action of 0 is pro-analytic.

It is étale if B̃†
rig⊗B̃†,pa

rig
M†

rig is so.

The following theorem explains the relationship between (ϕ, 0)-modules and locally analytic vector
bundles.

Theorem 7.5. The following categories are all equivalent.

(1) (ϕ, 0)-modules over B̃†
rig.
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(2) (ϕ, 0)-modules over B̃†,pa
rig .

(3) (ϕ, 0)-vector bundles over Y(0,∞).

(4) Locally analytic ϕ-vector bundles on Y(0,∞).

(5) 0-vector bundles on X .

(6) Locally analytic vector bundles on X .

Proof. The equivalences (1) ⇔ (3) ⇔ (5) are Propositions 7.2 and 3.3. (4) ⇔ (6) is similar to
Proposition 3.3. The proof of (5) ⇔ (6) was given in Theorem 6.1, and (3) ⇔ (4) can be proved
in a similar way. It remains to give an equivalence between (2) and (4). The Frobenius trick functor of
Section 7A induces a functor

FT : {(ϕ, 0)-modules over B̃†,pa
rig } → {Locally analytic ϕ-vector bundles on Y(0,∞)}.

In the other direction we map a locally analytic ϕ-vector bundle M to M†
rig = lim

−−→r H0(Y[r,∞),M). It is
easy to check from the definitions these two are inverses to each other once we know that M 7→M†

rig is
valued in the correct category. So it remains to prove the following:

Claim. M†
rig is a (ϕ, 0)-module over B̃†,pa

rig .

Proof of Claim. We only need to explain why M†
rig is a free B̃†,pa

rig -module. Since we can always descend
along unramified extensions, we may assume Kcyc ⊂ K∞. Then M and M†

rig are both base changed from
their cyclotomic counterparts MGal(K∞/Kcyc) and M†,Gal(K∞/Kcyc)

rig , so we reduce to the cyclotomic case.
To deal with this case, recall the rings BI,cyc from Section 4. The (cyclotomic) Robba ring is defined as

B†
rig,cyc = lim

−−→
r

lim
←−−
s≥r

B[r,s],cyc.

The maps B[r,s],cyc ↪→ B̃I,cyc of Section 4 induce an embedding B†
rig,cyc ↪→ B̃†

rig,cyc = B̃†
rig(K̂cyc). By

[Berger 2016, Theorem B] we have

B̃†,pa
rig =

⋃
n≥0

ϕ−n(B†
rig,cyc),

and since each ϕ−n(B†
rig,cyc) is a Bézout domain [Lazard 1962], the conclusion follows. □

In particular, we recover a decompletion result entirely phrased in terms of (ϕ, 0)-modules:

{(ϕ, 0)-modules over B̃†
rig}
∼= {(ϕ, 0)-modules over B̃†,pa

rig }.

This result recovers the decompletion theorem of Cherbonnier and Colmez [1998] and Kedlaya [2004].

Theorem 7.6. If K∞ = Kcyc, base extension induces an equivalence of categories

{(ϕ, 0)-modules over B†
rig,cyc}

∼= {(ϕ, 0)-modules over B̃†
rig,cyc}.
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Proof. If M is a (ϕ, 0)-module over B̃†,pa
rig,cyc =

⋃
n ϕ−n(B†

rig,cyc) then there exists n ≫ 0 such that M
is defined over ϕ−n(B†

rig,cyc). If e1, . . . , ed is a basis of M then ϕn(e1), . . . , ϕ
n(ed) is a basis defined

over B†
rig,cyc. Therefore the category of (ϕ, 0)-modules over B†

rig,cyc is equivalent to the category of
(ϕ, 0)-modules over B̃†,pa

rig,cyc. But this latter category is equivalent to (ϕ, 0)-modules over B̃†
rig,cyc by

Theorem 7.5. □

8. Locally analytic vector bundles and p-adic differential equations

8A. Modifications of locally analytic vector bundles. We first introduce the following category. It is the
locally analytic version of Berger’s category of B-pairs; see [Berger 2008a].

Definition 8.1. A locally analytic B-pair is a pair W = (We, W+dR), where We is a locally free Ola
X -{∞} =

Ola
X |X -{∞}-module with a semilinear 0-action and W+dR ⊂ Bpa

dR⊗Ola
X -{∞}

We is a 0-stable B+,pa
dR -lattice.

Proposition 8.2. The functor from locally analytic vector bundles to locally analytic B-pairs mapping E
to (E|X -{∞}, D+dif(E)) is an equivalence of categories.

Proof. There is an obvious functor from the category of locally analytic B-pairs to the category of B-pairs.
This leads to a commutative diagram

{locally analytic vector bundles} //

∼=

��

{locally analytic B-pairs}

��

{0-vector bundles}
∼=

// {B-pairs}

The left vertical arrow is an equivalence by Theorem 6.1. The lower horizontal arrow is also an equivalence,
as explained in [Fargues and Fontaine 2018, §10.1.2]. It follows that the functor from locally analytic
B-pairs to B-pairs is essentially surjective, so every B-pair comes from a locally analytic B-pair by
extending scalars. It now follows from Proposition 2.1 that such a locally analytic B-pair is unique. This
allows us to define a functor from B-pairs to locally analytic B-pairs, which gives a quasi-inverse to right
vertical morphism. It therefore has to be an equivalence. By commutativity of the diagram, the upper
horizontal arrow is also an equivalence, as required. □

Definition 8.3. Given two locally analytic vector bundles E1 and E2 we say that E2 is a modification of E1

if E1|X -{∞} ∼= E2|X -{∞}.

Note that in particular any 0-stable B+,pa
dR -lattice N ⊂ Ddif(E) defines a modification of E by taking

the pair (E|X -{∞}, N ).

Remark 8.4. We could have also defined this notion of modification in terms of usual B-pairs. Our
choice of presentation is meant to illustrate that one can speak of modifications without leaving the locally
analytic realm.
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8B. de Rham and C p-admissible locally analytic vector bundles. Let E be a locally analytic vector
bundle. We say that:

• E is Cp-admissible if dimK E0=1
x∞ = rank(E).

• E is de Rham if DdR(E) := dimK Ê0=1
x∞ = rank(E).

If V is a p-adic representation and E = Ẽ(V )la then E0=1
x∞ = (Cp⊗ V )GK and DdR(E)= DdR(V ), so this

extends the usual definitions.
In what follows, note that DdR(E) has a natural filtration induced from the Iθ filtration on Ê x∞ .

Definition 8.5. Suppose E is de Rham.

(1) NdR(E) is the modification of E given by the lattice DdR(E)⊗K B+,pa
dR ⊂ Ddif(E). It is Cp-admissible.

(2) MdR(E) is the locally analytic ϕ-vector bundle corresponding to NdR(E).

8C. The surfaces Ylog,L and Xlog,L . Fargues and Fontaine [2018, §10.3.3] define a scheme X log. It
is a line bundle over the schematic Fargues–Fontaine curve XFF = XFF(Cp) with a natural projection
π : X log→ X ; further, it has a GK -action and π is GK -equivariant.

We let Xlog be the analytification of X log. If L is a finite extension of K , we set

Xlog,L := Xlog/Gal(K/L∞).

(Alternatively, this can be defined as the analytification of the quotient of X log by Gal(K/L∞)). Similarly,
write Ylog = Y(0,∞)×X Xlog and Ylog,L = Ylog/Gal(K/L∞); then Ylog,L/ϕ = Xlog,L . These spaces have
an action of Gal(L∞/L), an open subgroup of 0.

Write pL (resp. plog,L ) for the projection maps YL→ Y or XL→X (resp. Ylog,L→ Y or Xlog,L→X ).
If I ⊂ (0,∞) is closed interval, let Ylog,L ,I = p−1

log,L(YI ) and similarly Xlog,L ,I = p−1
log,L(XI ) for X if I is

sufficiently small.
Define

B̃log,L ,I = H0(Ylog,L ,I ,OYlog,L ).

As explained in [loc. cit.], there is a natural GK -equivariant morphism of sheaves

d :OX log →�1
X log/X

∼= p∗logOX (−1)

which for every vector bundle E over X induces an OX -linear morphism

N : p∗logE→ p∗logE ⊗�1
Xlog/X .

See [Fargues and Fontaine 2018, Lemma 10.3.9] and the subsequent discussion. Similarly, N can be
pulled back to Ylog. This then further induces a B̃L ,I -linear differential operator N : B̃log,L ,I → B̃log,L ,I .
If T ∈ B̃log,L ,I is such that N (T )= 1 then B̃log,L ,I = B̃L ,I [T ] and N = d/dT . Such a T exists: if ϖ is
any nonunit ϖ ∈ L̂×

∞
and ϖ ♭

= (ϖ, ϖ 1/p, . . .), take T = log[ϖ ♭
].

Lemma 8.6. There exists T ∈ B̃la
log,L ,I with N (T )= 1. Consequently, B̃la

log,L ,I = B̃la
L ,I [T ].
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Proof. The second claim follows the first claim, Proposition 2.1 and the fact that taking locally analytic
vectors commutes with filtered colimits. To find such an element T , consider the exact sequence

0→ B̃L ,I → B̃N 2
=0

log,L ,I
N
−→ B̃L ,I → 0.

After taking locally analytic vectors the sequence stays exact by Theorem 5.1. Thus the sequence

0→ B̃la
L ,I → B̃la,N 2

=0
log,L ,I

N
−→ B̃la

L ,I → 0

is exact. This means we can lift 1 to an element T with N (T )= 1, as required. □

Proposition 8.7. Suppose ϕZ(x∞)∩YI ̸=∅. Then

(i) If M is a finite extension of L contained in L∞, then B̃Gal(L∞/M)

log,L ,I = M0, where M0 is the maximal
unramified extension of Qp contained in M.

(ii) B̃la,Lie 0=0
log,L ,I = L ′0, the maximal unramified extension of Qp contained in L∞.

Proof. Point (i) follows from [Fargues and Fontaine 2018, proposition 10.3.15] and (ii) follows from (i). □

One way to construct de Rham locally analytic vector bundles is as follows. Write ModFil,ϕ,N
Qun

p
(GK ) for

the category of finite dimensional vector spaces D over Qun
p together with a semilinear action of ϕ, a

monodromy operator N with ϕN = pNϕ, a filtration on D⊗Qun
p

K un and a discrete action of GK on D
which respects the filtration. For example, if V is a potentially semistable representation then Dpst(V ) is
an object of ModFil,ϕ

Qun
p

(GK ).
There is a functor

E :ModFil,ϕ
Qun

p
(GK )→ {de Rham locally analytic vector bundles}

defined as follows: Given D∈ModFil,ϕ
Qun

p
(GK ), choose L such that D is defined over L , i.e., D=Qun

p ⊗L0 D0.
Such an L exists because the action of GK is discrete. Then E(D) is defined to be the locally analytic
vector bundle corresponding to the pair(

(Ola
Ylog,L−p−1

log,L (∞)
⊗L0 D)ϕ=1,N=0,Gal(L∞/K∞), Fil0(BHL ,pa

dR ⊗L0 D0)
Gal(L∞/K∞)

)
.

It is de Rham because
D ⊂ BHK ,pa

dR ⊗Fil0(BHL ,pa
dR ⊗L0 D0)

Gal(L∞/K∞)

is fixed by an open subgroup of 0. If we choose any larger L we get the same pair, so the construction
D 7→ E(D) is independent of the choice of L .

8D. Sheaves of smooth functions. In this subsection we introduce certain sheaves of functions on X .
All of these can be defined equally well for Y(0,∞).

Definition 8.8. We define the following sheaves of functions on X .

(i) Smooth functions: Osm
X =Ola,Lie 0=0

X .
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(ii) For [L : K ]<∞, L-smooth functions: OL-sm
X = pL ,∗(p∗LO

la
X )Lie 0=0.

(iii) For [L : K ]<∞, L log-smooth functions: OL-lsm
X = plog,L ,∗(p∗log,LO

la
X )Lie 0=0.

(iv) Potentially smooth functions: Opsm
X = lim

−−→[L:K ]<∞OL-sm
X .

(v) Potentially log-smooth functions: Oplsm
X = lim

−−→[L:K ]<∞OL-lsm
X .

The following proposition has been essentially explained to us by Kedlaya.

Proposition 8.9. Let U be a connected open affinoid subset of X .

(i) The sections of each of Osm
X , OL-sm

X and Opsm
X at U is a field which injects (noncanonically) into Cp.

(ii) If x∞ ∈U then there are canonical injections

H0(U,Osm
X ) ↪→ K∞, H0(U,OL-sm

X ) ↪→ L∞ and H0(U,Opsm
X ) ↪→ K .

(iii) If x∞ ∈U and U = XI , we have

H0(XI ,Osm
X )= K ′0, H0(XI ,OL-sm

X )= L ′0 and H0(XI ,O
psm
X )= K un

0 .

(iv) We have Osm
X ,x∞ = K∞, OL-sm

X ,x∞ = L∞ and Opsm
X ,x∞ = K .

Proof. Each of the assertions (i)–(iv) for Opsm
X follows from the corresponding assertion for OL-sm

X . We shall
give below arguments proving (i)–(iv) for Osm

X ; the proofs for OL-sm
X are the same once K is replaced by L .

After passing to an open subgroup of 0, we may assume 0 stabilizes U . By [Kedlaya 2016, Theo-
rem 8.8], the ring OX (U ) is a Dedekind domain. Each rank 1 point x of U defines a maximal ideal of
OX (U ), so f ∈OX (U ) can belong to only finitely many of these points. If f ∈OX (U ) is killed by Lie 0

then f is fixed by a finite subgroup of 0, so these finitely many maximal ideals must form a finite orbit
under the 0-action. But the only rank 1 point with finite orbit is the point x∞, again by [Fargues and
Fontaine 2018, proposition 10.1.1]. So every f ∈Osm

X (U ) either vanishes only at x∞ or is invertible.
If x∞ /∈U , this proves that Osm

X (U ) is a field. In particular, it injects into the residue field of each rank 1
point, and there is a dense subset of X with residue field a subfield of Cp. This proves (i) in this case. On
the other hand, if x∞ ∈U then there is a 0-equivariant embedding of Ola

X (U ) into B+dR(K̂∞)la which gives
an embedding of Osm

X (U ) into B+dR(K̂∞)la,Lie 0=0
= K∞. This simultaneously proves (i) and (ii) for Osm

X .
Next, (iii) follows immediately from Proposition 8.7. For (iv), we have already shown that Osm

X (U )⊂K∞
for each U which contains x∞, so Osm

X ,x∞ ⊂ K∞. To show the converse inclusion, use the henselian
property of local rings of adic spaces [Morel 2019, III.6.3.7] to show first that K∞ ⊂ OX ,x∞ . It then
follows that K∞ ⊂Osm

X ,x∞ , which concludes the proof. □

We raise a few questions to which we expect a positive answer but have not answered in this article.

Question 8.10. (1) We can show that K ⊂ Opsm
X if x is any rank 1 point. Indeed, any untilt of C

♭
p is

algebraically closed, and one can use this to show that the completed local rings B+dR,x contain K . This
implies by the same argument that K ⊂OX ,x . But every element of K has finite degree over K0, which is
fixed by GK . This implies that every x ∈ K is fixed by an open subgroup GK so K ⊂Opsm

X ,x .
Is it true that K =Opsm

X ,x for any rank 1 point x?
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(2) Is it true that for every connected open affinoid U ⊂ X , the field Opsm
X (U ) is a finite extension of K un

0 ?
In particular, this would imply a positive answer to question (1).

(3) Is it true that OL-sm
X = OL-lsm

X (and hence Opsm
X = Oplsm

X )? If x∞ ∈ U then OL-sm
X (U ) = OL-lsm

X (U ).
This can be seen by using the embedding into B+dR as in the proof of Proposition 8.7.

8E. The solution functor. In this subsection, we assume E is a de Rham locally analytic vector bundle.
Given L finite over K , we define the sheaves of solutions on X ,

(1) SolL(E) := pL ,∗(p∗LNdR(E))Lie 0=0, a module over OL-sm
X ,

(2) Sollog,L(E) := plog,L ,∗(p∗log,LNdR(E))Lie 0=0, a module over OL-lsm
X ,

(3) Sol(E) := lim
−−→[L:K ]<∞ Sollog,L(E), a module over Oplsm

X .

We have similar versions of these sheaves on Y(0,∞), denoted by Solϕ
∗
(E) for ∗ ∈ {L , {log, L},∅}.

Since the ϕ action on Ylog,L is 0-equivariant, there are natural identifications Sol∗(E) = (Solϕ
∗
(E))ϕ=1

and Solϕ
∗
(E)∼=O•Y(0,∞)

⊗O•X Sol∗(E), where (∗, •)= {(L , L-sm), ({log, L}, L-lsm), (∅, plsm)}.
To make the link with E clear, we shall need the following form of the p-adic monodromy theorem

due to André [2002], Kedlaya [2004] and Mebkhout [2002].

Proposition 8.11. There exists a finite extension L over K such that if U is an open subset of Y[r,∞) for
some r ≫ 0 then the natural map

Ola
Ylog,L

(p−1
log,LU )⊗OL-lsm

Y(0,∞)
(U ) Solϕlog,L(E)(U )→Ola

Ylog,L
(p−1

log,LU )⊗Ola
Y(0,∞)

(U ) MdR(E)(U )

is an isomorphism. Consequently, if U ⊂ XI for some I then

Ola
Xlog,L

(p−1
log,LU )⊗OL-lsm

X (U ) Sollog,L(E)(U )−→∼ Ola
Xlog,L

(p−1
log,LU )⊗Ola

X (U ) NdR(E)(U ).

Proof. Let D̃†
rig be the (ϕ, 0)-module corresponding to MdR(E). By the p-adic monodromy theorem, we

know there is an isomorphism

B̃†,pa
log,L ⊗L ′0 (B̃†,pa

log,L ⊗B̃†,pa
rig,K

D̃†,pa
rig )Lie 0=0

−→∼ B̃†,pa
log,L ⊗B̃†,pa

rig,K
D̃†,pa

rig

in the cyclotomic setting (see [Berger 2008b, III.2.1]). More generally, we may descend along unramified
extensions to give it in the twisted cyclotomic case, and by base changing we get it in our setting as well
by the usual argument.

It follows that for r ≫ 0 we also have an isomorphism

B̃pa
log,[r,∞),L ⊗L ′0 (B̃pa

log,[r,∞),L ⊗B̃pa
[r,∞),K

D̃pa
[r,∞))

Lie 0=0
−→∼ B̃pa

log,[r,∞),L ⊗B̃pa
[r,∞),K

D̃pa
[r,∞).

Pulling back along Frobenius, we obtain this isomorphism for any r . Then by finding r ≫ 0 so that
U ⊂ Y[r,∞), we can base change the isomorphism along the map B̃pa

log,[r,∞),L → Ola
Ylog,L

(p−1
log,LU ) to

conclude. □
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Note that whether we need to adjoin log and/or perform a finite extension L of K depends exactly on
whether E becomes crystalline or semistable after restricting GK to GL . Applying this observation and
taking Lie 0 = 0 of both sides of the proposition, we obtain the following.

Theorem 8.12. The sheaf Sol(E) is a locally free Oplsm
X -module of rank equal to rank(E). More precisely:

(i) If E becomes crystalline after restricting GK to GL ′ for some L ⊂ L ′ ⊂ L∞ then SolL(E) is a locally
free OL-sm

X -module of rank equal to rank(E), and there is a natural isomorphism

Ola
XL
⊗OL-sm

X
SolL(E)−→∼ Ola

XL
⊗Ola

X
NdR(E).

(ii) If E becomes semistable after restricting GK to GL ′ for some L ⊂ L ′ ⊂ L∞ then Sollog,L(E) is a
locally free OL-lsm

X -module of rank equal to rank(E), and there is a natural isomorphism

Ola
Xlog,L
⊗OL-lsm

X
Sollog,L(E)−→∼ Ola

Xlog,L
⊗Ola

X
NdR(E).

Lemma 8.13. For each sufficiently small open connected affinoid U of Y(0,∞) which contains an el-
ement of ϕZ(x∞), and for L large enough so that GL stabilizes U , there is a natural GL -embedding
H0(U, Solϕlog,L(E)) ↪→ L∞⊗K DdR(E).

Proof. Taking the completed stalk at a ϕ-translate of x∞, we obtain an injection

Ola
Ylog,L

(p−1
log,LU )⊗Ola

Y(0,∞)
(U ) MdR(E)(U ) ↪→ L̂ la

∞
⊗K̂ la

∞
Ddif(E).

On the other hand, Proposition 8.7 gives an isomorphism

Ola
Ylog,L

(p−1
log,LU )⊗OL-lsm

Y(0,∞)
(U ) Solϕlog,L(E)(U )−→∼ Ola

Ylog,L
(p−1

log,LU )⊗Ola
Y(0,∞)

(U ) MdR(E)(U ).

Applying Lie 0 = 0 to the composition of these maps gives the desired embedding. □

We can now give an interpretation of the stalk at x∞:

Proposition 8.14. There following are each naturally isomorphic to each other.

(1) The stalk Sol(E)x∞ .

(2) The stalk Sol(E)
ϕ
y for any y ∈ ϕZ(x∞).

(3) K ⊗K DdR(E).

In particular, Sol(E)x∞ is naturally a filtered K -representation of GK of dimension rank(E) and GK -fixed
points DdR(E).

Proof. It is clear (1) and (2) are isomorphic. By Lemma 8.13, we have a natural embedding of Sol(E)y ,
and hence of Sol(E)x∞ into K ⊗K DdR(E). By Theorem 8.12, Sol(E)x∞ is a finite free module of rank
equal to dimK DdR(E) over Oplsm

X ,x∞ . But by Proposition 8.7 Oplsm
X ,x∞ = K , so this embedding must be an

isomorphism. □

Finally, we consider the global solutions to the differential equation, namely

D(E)= H0(Y(0,∞), Solϕ(E))= H0(Y(0,∞),O
plsm
Y(0,∞)
⊗Oplsm

X
Sol(E)

)
.
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Proposition 8.15. D(E) is naturally an object of ModFil,ϕ,N
Qun

p
(GK ) and dimQun

p
D(E)= rank(E).

Proof. We know each H0(Y(0,∞), Solϕlog,L(E)) is an L ′0 vector space for U sufficiently small (independent
of L), so D(E) is a Qun

p -vector space. The filtration is induced from the embedding

H0(Y(0,∞), Solϕ(E)) ↪→ Sol(E)x∞
∼= K ⊗K DdR(E).

The ϕ-action is induced from the map ϕ : Y(0,∞)→ Y(0,∞). The monodromy operator N is induced from
the equivariant connection p∗log,LMdR(E)→ p∗log,LNdR(E)⊗�1

Ylog/Y(0,∞)
. Finally, GK acts on the smooth

elements in p∗log,LMdR(E), and this action is discrete because every element is killed by Lie 0, hence by
an open subgroup of Gal(L∞/L). To compute the dimension use Theorem 8.12. □

Using this language, Berger’s theorem [2008b, théoréme III.2.4] admits the following interpretation.

Theorem 8.16. The functors D 7→ E(D) and E 7→ D(E) are mutual inverses and induce an equivalence
of categories

ModFil,ϕ,N
Qun

p
(GK )∼= {de Rham locally analytic vector bundles}.

Remark 8.17. If E is the locally analytic vector bundle associated to a p-adic representation V , we see
that the global-to-local map

H0(Y(0,∞), Solϕ(E)) ↪→ Sol(E)x∞

is nothing but the more familiar map

Dpst(V ) ↪→ K ⊗K DdR(V ).

Question 8.18. Theorem 8.16 allows us to consider objects of ModFil,ϕ,N
Qun

p
(GK ) as global solutions to

p-adic differential equations. The filtration is coming from the behavior of orders of vanishing at x∞ = 0,
while the (ϕ, N , GK )-structure comes from some sort of monodromy of the map lim

←−−L Ylog,L → X . In
our description the space lim

←−−L Ylog,L behaves as a substitute for a universal cover of X . It would be
interesting if it can be replaced by a more literal cover of X for which the (ϕ, N , GK )-actions can be
interpreted as monodromy actions. One could even speculate that in an appropriate sense, the analytic
fundamental group of X (Cp)K should be a tame Weil group with its two dimensions reflecting the ϕ and
N operators.

We conclude with an example.

Example 8.19. Take α ∈ Z×p , and given g ∈ Gal(Qp/Qp) let ξα(g) ∈ Zp be the element such that

ζ
ξα(g)
pn = g(α1/pn

)/α1/pn
for each n ≥ 1. The Kummer extension

0→Qp(χcyc)→ V = Vα→Qp→ 0

is given by mapping in a basis e, f the element g to the matrix(
χcyc(g) ξα(g)

0 1

)
.
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The associated locally analytic vector bundle E sits in an exact sequence

0→Ola
X (χcyc)→ E→Ola

X → 0.

We have
NdR(E)=Ola

X x ⊕Ola
X y ∼=Ola

X (1)⊕Ola
X ,

where at a neighborhood of x∞ we have x = t−1e and y =− log[α♭
]t−1e+ f . Thus

H0(Y(0,∞), Solϕ
Qp

(E))= H0(Osm
Y(0,∞)

x ⊕Osm
Y(0,∞)

y)=Qpx ⊕Qp y.

The action of ϕ is given by ϕ(x)= p−1x and ϕ(y)= y. This gives the underlying ϕ-module of Dcris(V ).
To get the filtration, we consider the stalk of SolQp(E) at x∞. Observe that Fil0 consists exactly of these

smooth sections which do not have a pole at x∞. As log[α♭
] ≡ logp α mod t , we have Fil0 SolQp(E)x∞ =

Qp,cyc(x logp α+ y) and so the filtration on Dcris(V ) is given by

Fil−1
= Dcris(V )⊃ Fil0 =Qp(x logp α+ y)⊃ Fil1 = 0.
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