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Multiplicity structure of the arc space of a fat point
Rida Ait El Manssour and Gleb Pogudin

The equation xm
= 0 defines a fat point on a line. The algebra of regular functions on the arc space

of this scheme is the quotient of k[x, x ′, x (2), . . . ] by all differential consequences of xm
= 0. This

infinite-dimensional algebra admits a natural filtration by finite-dimensional algebras corresponding to
the truncations of arcs. We show that the generating series for their dimensions equals m/(1 − mt). We
also determine the lexicographic initial ideal of the defining ideal of the arc space. These results are
motivated by the nonreduced version of the geometric motivic Poincaré series, multiplicities in differential
algebra, and connections between arc spaces and the Rogers–Ramanujan identities. We also prove a
recent conjecture put forth by Afsharijoo in the latter context.

1. Introduction

1.1. Statement of the main result. Let k be a field of characteristic zero. Consider an ideal I ⊂ k[x],
where x = (x1, . . . , xn), defining an affine scheme X . We consider the polynomial ring

k[x(∞)
] := k[x ( j)

i | 1 ⩽ i ⩽ n, j ⩾ 0]

in infinitely many variables {x ( j)
i | 1 ⩽ i ⩽ n, j ⩾ 0}. This ring is equipped with a k-linear derivation

a 7→ a′ defined on the generators by

(x ( j)
i )′ = x ( j+1)

i for 1 ⩽ i ⩽ n, j ⩾ 0.

Then we define the ideal I (∞)
⊂ k[x(∞)

] of the arc space of X by

I (∞)
:= ⟨ f ( j)

| f ∈ I, j ⩾ 0⟩.

In this paper, we will focus on the case of a fat point Im := ⟨xm
⟩ ⊂ k[x] of multiplicity m ⩾ 2. Although

the zero set of I (∞)
m over k consists of a single point with all the coordinates being zero, the dimension of

the corresponding quotient algebra k[x (∞)
]/I (∞)

m (the “multiplicity” of the arc space) is infinite.
One can obtain a finer description of the multiplicity structure of k[x (∞)

]/I (∞)
m by considering its

filtration by finite-dimensional algebras induced by the truncation of arcs

k[x (⩽ℓ)]/I (∞)
m := k[x (⩽ℓ)]/

(
k[x (⩽ℓ)] ∩ I (∞)

m
)
,
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where x (⩽ℓ) := {x, x ′, . . . , x (ℓ)}, and arranging the dimensions of these algebras into a generating series

DIm (t) :=

∞∑
ℓ=0

dimk
(
k[x (⩽ℓ)]/I (∞)

m
)
· tℓ. (1)

The main result of this paper is that
DIm (t)=

m
1−mt

. (2)

1.2. Motivations and related results. Our motivation for studying the series (1) comes from three different
areas: algebraic geometry, differential algebra, and combinatorics.

(1) From the point of view of algebraic geometry, I (∞) defines the arc space L(X) of the scheme X
[Denef and Loeser 2001]. Geometrically, the points of the arc space correspond to the Taylor coefficients
of the k[[t]]-points of X . The arc space of a variety can be viewed as an infinite-order generalization of
the tangent bundle or the space of formal trajectories on the variety. For properties and applications of
arc spaces, we refer to [Denef and Loeser 2001; Bourqui et al. 2020].

The reduced structure of an arc space is often described by means of the geometric motivic Poincaré
series [Denef and Loeser 2001, §2.2]

PX (t) :=

∞∑
ℓ=0

[πℓ(L(X))] · tℓ, (3)

where πℓ denotes the projection of L(X) to the affine subspace with the coordinates x(⩽ℓ) (i.e., the
truncation at order ℓ) and [Z ] denotes the class of variety Z in the Grothendieck ring [Denef and Loeser
2001, §2.3]. A fundamental result about these series is the Denef–Loeser theorem [1999, Theorem 1.1]
saying that PX (t) is a rational power series.

The arc spaces may also have a rich scheme (i.e., nilpotent) structure, see [Linshaw and Song 2021;
Feigin and Makedonskyi 2020; Dumanski and Feigin 2023], reflecting the geometry of the original
scheme [Sebag 2011; Bourqui and Haiech 2021]. In the case of a fat point Im = ⟨xm

⟩ ⊂ k[x], we will
have πℓ(L(X))∼= A0, so the geometric motivic Poincaré series is equal to

P(t)=
[A0

]

1 − t
,

where [A0
] is the class of a point. Note that the series does not depend on the multiplicity m of the point.

One way to capture the scheme structure of L(X) could be to take the components of the projections
in (3) with their multiplicities. For example, for the case Im , one will get

∞∑
ℓ=0

dimk
(
k[x (⩽ℓ)]/I (∞)

m
)
· [A0

] · tℓ = DIm (t)[A
0
].

Our result (2) implies that the series above is rational, as in the Denef–Loeser theorem. Interestingly, the
shape of the denominator is different from the one in [Denef and Loeser 2001, Theorem 2.2.1]. The formula
above is not the only way to take the multiplicities into account. A related and more popular approach
is via Arc Hilbert–Poincaré series [Mourtada 2023, §9]; see also [Mourtada 2014; Bruschek et al. 2013].
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(2) Differential algebra studies, in particular, differential ideals in k[x(∞)
], that is, ideals closed under

derivation. From this point of view, I (∞) is the differential ideal generated by I . Understanding the
structure of the differential ideals I (∞)

m is a key component of the low power theorem [Levi 1942; 1945]
which provides a constructive way to detect singular solutions of algebraic differential equations in one
variable. Besides that, various combinatorial properties of I (∞)

m have been studied in differential algebra,
see [O’Keefe 1960; Pogudin 2014; Arakawa et al. 2021; Zobnin 2005; 2008; Ait El Manssour and
Sattelberger 2023].

While there is a rich dimension theory for solution sets of systems of algebraic differential equa-
tions [Kondratieva et al. 1999; Pong 2006; Kolchin 1964], we are not aware of a notion of multiplicity
of a solution of such a system. In particular, the existing differential analogue of the Bézout theo-
rem [Binyamini 2017] provides only a bound, unlike the equality in classical Bézout theorem [Hartshorne
1977, Theorem 7.7, Chapter 1]. Our result (2) suggests that one possibility is to define the multiplicity of
a solution as the growth rate of multiplicities of its truncations, and this definition will be consistent with
the usual algebraic multiplicity for the case of a fat point on a line.

(3) Connections between the multiplicity structure of the arc space of a fat point and Rogers–Ramanujan
partition identities from combinatorics were pointed out by Bruschek, Mourtada, and Schepers in [2013]
(for a recent survey, see [Mourtada 2023, §9]). In particular, they used Hilbert–Poincaré series of similar
nature to (1) (motivated by the singularity theory [Mourtada 2014, §4]) to obtain new proofs of the Rogers–
Ramanujan identities and their generalizations. In this direction, new results have been obtained recently
in [Afsharijoo 2021; Afsharijoo et al. 2023; Bai et al. 2020]. Afsharijoo [2021] used computational
experiments to conjecture the initial ideal of I(∞)

m with respect to the weighted lexicographic ordering
[Afsharijoo 2021, §5] (a special case was already conjectured in [Afsharijoo and Mourtada 2020, §1]).
This conjecture would imply a new set of partition identities [Afsharijoo 2021, Conjecture 5.1]. Using
combinatorial techniques, some of them have been proved in [Afsharijoo 2021], and the rest were
established in [Afsharijoo et al. 2023]; see also [Afsharijoo et al. 2022]. However, the original algebraic
conjecture about I (∞)

m remained open. As a byproduct of our proof of (2), we prove this conjecture (see
Theorem 3.3), thus giving a new proof of one of the main results of [Afsharijoo et al. 2023].

Understanding the structure of the ideal I (∞)
m is known to be challenging: for example, its Gröbner basis

with respect to the lexicographic ordering is not just infinite but even differentially infinite [Zobnin 2005;
Afsharijoo and Mourtada 2020], and the question about the nilpotency index of the x ( j)

i modulo I (∞)
m

posed by Ritt [1950, Appendix, Q.5] remained open for sixty years until the paper of Pogudin [2014]; see
also [O’Keefe 1960; Arakawa et al. 2021].

Statement (2) appeared in the Ph.D. thesis of Pogudin [2016, Theorem 3.4.1], but the proof given
there was incorrect. We are grateful to Alexey Zobnin for pointing out the error. The proof presented in
this paper uses different ideas than the erroneous proof in [Pogudin 2016]. We would like to thank Ilya
Dumanski for pointing out that the main dimension result (2) could also be deduced from a combination
of Propositions 2.1 and 2.3 from [Feigin and Feigin 2002].
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1.3. Overview of the proof. The key technical tool used in our proofs is a representation of the quo-
tient algebra k[x (∞)

]/I (∞)
m as a subalgebra in a certain differential exterior algebra that is constructed

in [Pogudin 2014]; see Section 4.1. The injectivity of this representation builds upon the knowledge of a
Gröbner basis for I (∞)

m with respect to the degree reverse lexicographic ordering [Bruschek et al. 2013;
Zobnin 2008; Levi 1942]. We approach (2) as a collection of inequalities

mℓ+1 ⩽ dimk
(
k[x (⩽ℓ)]/I (∞)

m
)
⩽ mℓ+1 for every ℓ⩾ 0, m ⩾ 1. (4)

The starting point of our proof of the lower bound uses the insightful conjecture by Afsharijoo [2021, §5]
that suggests how the standard monomials of I (∞)

m with respect to the lexicographic ordering look like.
Using the exterior algebra representation, we prove that these monomials are indeed linearly independent
modulo I (∞)

m , and deduce the lower bound from this; see Section 4.3 and 4.4.
In order to prove the upper bound from (4), we represent the image of k[x (⩽ℓ)]/I (∞)

m in the differential
exterior algebra as a deformation of an algebra which splits as a direct product of ℓ+ 1 algebras of
dimension m, thus yielding the desired upper bound; see Section 4.2.

1.4. Structure of the paper. The rest of the paper is organized as follows: Section 2 contains definitions
and notations used to state the main results. Section 3 contains the main results of the paper. The proofs
of the results are given in Section 4. Then Section 5 describes computational experiments in [Macaulay2]
that we performed to check whether formulas similar to (2) hold for more general fat points in kn . We
formulate some open questions based on the results of these experiments.

2. Preliminaries

Definitions 2.1–2.4 provide necessary background in differential algebra. For further details, we refer
to [Kaplansky 1957, Chapter 1] or [Kolchin 1973, §I.1–I.2].

Definition 2.1 (differential rings and fields). A differential ring (R, ′ ) is a commutative ring with a
derivation ′

: R → R, that is, a map such that, for all a, b ∈ R, we have (a+b)′ =a′
+b′ and (ab)′ =a′b+ab′.

A differential field is a differential ring that is a field. For i>0, a(i) denotes the i-th order derivative of a ∈ R.

Notation 2.2. Let x be an element of a differential ring and h ∈ Z⩾0. We introduce

x (<h)
:= (x, x ′, . . . , x (h−1)) and x (∞)

:= (x, x ′, x ′′, . . . ).

Analogously, we can define x (⩽h). If x = (x1, . . . , xn) is a tuple of elements of a differential ring, then

x(<h)
:= (x (<h)

1 , . . . , x (<h)
n ) and x(∞)

:= (x (∞)
1 , . . . , x (∞)

n ).

Definition 2.3 (differential polynomials). Let R be a differential ring. Consider a ring of polynomials in
infinitely many variables

R[x (∞)
] := R[x, x ′, x ′′, x (3), . . . ],

and extend the derivation from R to this ring by (x ( j))′ := x ( j+1). The resulting differential ring is called
the ring of differential polynomials in x over R. The ring of differential polynomials in several variables
is defined by iterating this construction.
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Definition 2.4 (differential ideals). Let S := R[x (∞)
1 , . . . , x (∞)

n ] be a ring of differential polynomials over
a differential ring R. An ideal I ⊂ S is called a differential ideal if a′

∈ I for every a ∈ I .
One can verify that, for every f1, . . . , fs ∈ S, the ideal

⟨ f (∞)
1 , . . . , f (∞)

s ⟩

is a differential ideal. Moreover, this is the minimal differential ideal containing f1, . . . , fs , and we will
denote it by ⟨ f1, . . . , fs⟩

(∞).

Definition 2.5 (fair monomials). (1) For a monomial m = x (h0)x (h1) · · · x (hℓ) ∈ k[x (∞)
], we define the

order and lowest order, respectively, as

ord m := max
0⩽i⩽ℓ

hi and lord m := min
0⩽i⩽ℓ

hi .

(2) A monomial m ∈ k[x (∞)
] is called fair (respectively, strongly fair) if

lord m ⩾ deg m − 1 (respectively, lord m ⩾ deg m).

We denote the sets of all fair and strongly fair monomials by F and Fs , respectively. By convention,
1 ∈ F and 1 ∈ Fs . Note that Fs ⊂ F .

(3) For every integers a, b ⩾ 0, we define

Fa,b := Fa
·Fb

s ,

where the product of sets of monomials is the set of pairwise products. In other words, Fa,b is a set of all
monomials representable as a product of a fair monomials and b strongly fair monomials.

Remark 2.6. The notion of fair monomials was inspired from the conjectured construction of the initial
ideal of ⟨x i , (xm)(∞)

⟩ given in [Afsharijoo 2021, Conjecture 5.1]. We use the notion to formulate concisely
and prove the conjecture (see Theorem 3.3).

Example 2.7. The monomials of order at most two in F and Fs are

F ∩ k[x (⩽2)
] = {1, x, x ′, (x ′)2, x ′x ′′, x ′′, (x ′′)2, (x ′′)3},

Fs ∩ k[x (⩽2)
] = {1, x ′, x ′′, (x ′′)2}.

Using this, one can produce the monomials of order at most one in F1,1 and F2,0

F1,1 ∩ k[x (⩽1)
] = {1, x, xx ′, x ′, (x ′)2, (x ′)3},

F2,0 ∩ k[x (⩽1)
] = {1, x, x2, xx ′, x(x ′)2, x ′, (x ′)2, (x ′)3, (x ′)4}

For example, (x ′)3 ∈ F1,1 can be written as (x ′)2 · x ′, where (x ′)2 ∈ F and x ′
∈ Fs . Likewise, for the

monomials of order at most two, we can write

F1,1 ∩ k[x (⩽2)
] =

{
1, x, x ′, x ′′, xx ′, xx ′′, (x ′)2, x ′x ′′, (x ′′)2, x(x ′′)2, (x ′)3, (x ′)2x ′′, x ′(x ′′)2, (x ′′)3,

(x ′)2(x ′′)2, x ′(x ′′)3, (x ′′)4, (x ′′)5
}
.
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3. Main results

The algebra of regular functions on the arc space of a fat point xm
= 0 admits a natural filtration by

subalgebras induced by the truncation of arcs. Our first main result, Theorem 3.1, gives a simple formula
for the dimension of the subalgebra induced by the truncation at order h. Corollary 3.2 gives the generating
series for these dimensions, as in (2).

Theorem 3.1. Let m and h be positive integers and k be a differential field of zero characteristic. Then

dimk
(
k[x (⩽h)

]/(k[x (⩽h)
] ∩ ⟨xm

⟩
(∞))

)
= mh+1.

Corollary 3.2. Let m be a positive integer and k be a differential field of zero characteristic. Then

∞∑
ℓ=0

dimk
(
k[x (⩽ℓ)]/⟨xm

⟩
(∞)

)
· tℓ =

m
1−mt

,

where k[x (⩽ℓ)]/⟨xm
⟩
(∞)

:= k[x (⩽ℓ)]/(k[x (⩽ℓ)] ∩ ⟨xm
⟩
(∞)).

Given a polynomial ideal and monomial ordering, the monomials which do not appear as leading terms
of the elements of the ideal are called standard monomials. Motivated by applications to combinatorics,
Afsharijoo [2021, §5] used computations experiment to conjecture a description of the standard monomials
of ⟨xm

⟩
(∞) with respect to the degree lexicographic ordering. Our second main result, Theorem 3.3, gives

such a description and, combined with Lemma 4.10, establishes the conjecture.

Theorem 3.3. Let k be a differential field of zero characteristic. Consider a degree lexicographic
monomial ordering on k[x (∞)

] with the variables ordered as x < x ′ < x ′′ < · · · . Let m and i be positive
integers with 1 ⩽ i ⩽ m. Then the set of standard monomials of the ideal ⟨x i , (xm)(∞)

⟩ is Fi−1,m−i ; see
Definition 2.5. Note that, for i = m, we obtain the differential ideal ⟨xm

⟩
(∞).

Corollary 3.4. Theorem 3.3 also holds for the following orderings:

• purely lexicographic with the variables ordered as in Theorem 3.3;

• weighted lexicographic: monomials are first compared by the sum of the orders and then lexico-
graphically as in Theorem 3.3.

Remark 3.5. The multiplicity of the scheme of polynomial arcs of degree less than h of x = 0, defined
by ⟨xm, x (h)⟩(∞), has been studied in [Ait El Manssour and Sattelberger 2023]. It was shown that this
multiplicity, equal to dimk k[x (∞)

]/⟨xm, x (h)⟩(∞), is a polynomial in m of degree h which is the Erhart
polynomial of some lattice polytope [Ait El Manssour and Sattelberger 2023, Theorem 2.5]. Theorem 3.1
together with a natural surjective morphism k[x (<h)

]/⟨xm
⟩
(∞)

→ k[x (∞)
]/⟨xm, x (h)⟩(∞) implies that this

polynomial is bounded by mh .
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4. Proofs

4.1. Key technical tool: embedding into the exterior algebra.

Notation 4.1. Let k be a field. Then, for ξ = (ξ0, ξ1, . . . , ξn), we introduce a countable collection of sym-
bols {ξ

( j)
i | 0⩽ i ⩽ n, j ⩾ 0}, and by3k(ξ

(∞)), we denote the exterior algebra of a k-vector space spanned
by these symbols. 3k(ξ

(∞)) is equipped with a structure of a (noncommutative) differential algebra by(
ξ
(i)
j

)′
:= ξ

(i+1)
j for every i ⩾ 0 and 0 ⩽ j ⩽ n.

The next proposition is a minor modification of [Pogudin 2014, Lemma 1]. The proof we will give is a
simplification of the proof in [Pogudin 2014, Lemma 1], which will be extended to a proof of Lemma 4.4.

Proposition 4.2. Let m be a positive integer. Consider η = (η0, . . . , ηm−2) and ξ = (ξ0, . . . , ξm−2). Let

3 :=3k(η
(∞))⊗3k(ξ

(∞)),

which is equipped with a structure of differential algebra (as a tensor product of differential algebras,
using the Leibnitz rule, that is (a ⊗ b)′ := a′

⊗ b + a ⊗ b′ ). Consider a differential homomorphism
ϕ : k[x (∞)

] →3 defined by

ϕ(x) :=

m−2∑
i=0

ηi ⊗ ξi .

Then the kernel of ϕ is ⟨xm
⟩
(∞).

Example 4.3. Consider the case m = 3. Then we will have

ϕ(x)= η0 ⊗ ξ0 + η1 ⊗ ξ1.

The image of x ′ will then be

ϕ(x ′)= (ϕ(x))′ = η′

0 ⊗ ξ0 + η0 ⊗ ξ ′

0 + η′

1 ⊗ ξ1 + η1 ⊗ ξ ′

1.

One can show, for example, that (x ′)4 ̸∈ ⟨x3
⟩
(∞) by showing that ϕ((x ′)4) ̸= 0:

ϕ((x ′)4)= 24(η0 ∧ η′

0 ∧ η1 ∧ η′

1)⊗ (ξ0 ∧ ξ ′

0 ∧ ξ1 ∧ ξ ′

1) ̸= 0.

Furthermore, a direct computation shows that ϕ((x ′)5)= 0. Combined with Proposition 4.2, this implies
that (x ′)5 ∈ ⟨x3

⟩
(∞).

Proof of Proposition 4.2. Consider (ϕ(x))m . This is a sum of tensor products of exterior polynomials of
degree m in m −1 variables, so it must be zero. Since (ϕ(x))m = 0 and ϕ is a differential homomorphism,
we conclude that Kerϕ ⊃ ⟨xm

⟩
(∞).

Now we will prove the inverse inclusion. We define the weighted degree inverse lexicographic
ordering ≺ on k[x (∞)

] (see [Zobnin 2008, p. 524]): M ≺ N if and only if

• tord M < tord N , where tord is defined as the sum of the orders, or

• tord M = tord N and deg M < deg N , or

• tord M = tord N , deg M = deg N , and N is lexicographically lower than M , where the variables are
ordered x < x ′ < x ′′ < · · · .
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For example, we will have x ≺ x ′
≺ x ′′

≺ · · · and xx ′′
≺ (x ′)2. Then, for every h ⩾ 0, the leading

monomial of (xm)(h) with respect to ≺ is (x (q))m−r (x (q+1))r , where q and r are the quotient and the
reminder of the integer division of h by m, respectively. Let M be the set of all monomials not divisible
by any monomial of the form (x (q))m−r (x (q+1))r . Then we can characterize M as

M =
{

x (h0) · · · x (hℓ) | h0 ⩽ · · · ⩽ hℓ, ∀ 0 ⩽ i ⩽ ℓ− m + 1 : hi+m−1 > hi + 1
}
.

We will define a linear map ψ from M to the set of monomials in 3 with the following properties:

(P1) For every P ∈ M, we have that ψ(P) ̸= 0.

(P2) For every P ∈ M, the monomial ψ(P) appears in the polynomial ϕ(P) and, for any P0 ∈ M such
that P0 ≺ P , the monomial ψ(P) does not appear in the polynomial ϕ(P0).

Informally speaking, ψ(M) is the “leading monomial” in ϕ(M). Once such a map ψ has been defined,
we can prove the proposition as follows: Let Q ∈ Kerϕ \ ⟨xm

⟩
(∞). By replacing Q with the result of the

reduction of Q by xm, (xm)′, . . . with respect to ≺, we can further assume that all the monomials in Q
belong to M1. Let Q0 be the largest of them. By (P1) and (P2), ϕ(Q0) will involve ψ(Q0) and ϕ(Q−Q0)

will not, so ϕ(Q) ̸= 0. This contradicts the assumption that Q ∈ Kerϕ. The proposition is proved.
Therefore, it remains to define ψ satisfying (P1) and (P2). We will start with the case m = 2 to show

the main idea while keeping the notation simple. We define ψ by

ψ
(
x (h0) · · · x (hℓ)

)
:=

(
η(0) ⊗ ξ (h0)

)
∧

(
η(1) ⊗ ξ (h1−1))

∧ · · · ∧
(
η(ℓ) ⊗ ξ (hℓ−ℓ)

)
, (5)

where h0 ⩽ h1 ⩽ · · · ⩽ hℓ. For proving (P1), we observe that, if hi+1 > hi + 1 for all i , then
h0 < h1 − 1 < h2 − 2 < · · · < hℓ − ℓ, so there are no coinciding ξ ’s in (5). The construction for
arbitrary m will consist of splitting the monomial into m − 1 interlacing submonomials and applying (5)
with (ηi , ξi ) to i-th submonomial. More formally, if h0 ⩽ h1 ⩽ · · · ⩽ hℓ, we define

ψ
(
x (h0) · · · x (hℓ)

)
:=

ℓ∏
i=0

(
η
([i/(m−1)])
i % (m−1) ⊗ ξ

(hi −[i/(m−1)])
i % (m−1)

)
, (6)

where a % b denotes the remainder of the division of a by b, and [α] denotes the integer part of α.
Property (P1) is proved by applying (P1) for m = 2 to each submonomial.

For proving (P2), consider P0 ∈ M with P0 ⪯ P and ψ(P) appearing in ϕ(P0). Since ψ preserves
the total orders and doubles the degrees, we have tord P0 = tord P and deg P0 = deg P . Let H := ord P0.
Since P0 ⪯ P , we have H ⩾ hℓ. Since the maximal orders of η and ξ in ψ(P) do not exceed [ℓ/(m −1)]
and hℓ − [ℓ/(m − 1)], respectively, we have H ⩽ hℓ. Thus, H = hℓ. Applying the same argument
recursively to P/x (hℓ) and P0/x (hℓ), we conclude that P = P0.

We will prove that ϕ(P) involvesψ(P) by induction on deg P . The case deg P =0 is clear. Consider P ,
with deg P > 0. Similarly to the preceding argument, one can obtain ψ(P) (from ψ(P/x (ℓ))) only by

1Interestingly, although it is known that xm , (xm)′, . . . form a Gröbner basis, we do not really need to use this fact here since
a reduction with respect to any set of polynomials is well defined.



Multiplicity structure of the arc space of a fat point 955

taking η([ℓ/(m−1)])
ℓ% (m−1) ⊗ ξ

(hℓ−[ℓ/(m−1)])
ℓ% (m−1) (i.e., the last term in (6)) from one of the occurrences of x (hℓ) in P .

Therefore, the coefficient in front ofψ(P) in ϕ(P)will be, up to sign, equal to degx (hℓ) times the coefficient
in front of ψ(P/x (hℓ)) in ϕ(P/x (hℓ)). The latter is nonzero by the induction hypothesis. □

Lemma 4.4. In the notation of Proposition 4.2, let 1 ⩽ r < m. Then the preimage of the ideal in 3
generated by ηr−1 ⊗ ξr−1, . . . , ηm−2 ⊗ ξm−2 under ϕ is equal to ⟨(xm)(∞), xr

⟩.

Proof. We first prove that the image of xr belongs to ⟨ηr−1 ⊗ ξr−1, . . . , ηm−2 ⊗ ξm−2⟩. This is because
ϕ(xr ) is the sum of monomials which are products of r different ηi ⊗ ξi . Since there are m − 1 of them,
every such monomial will involve at least one of the last m − r of the ηi ⊗ ξi .

Let us consider a polynomial g ∈ k[x (∞)
] \ ⟨(xm)(∞), xr

⟩ and prove that ϕ(g) does not belong to
⟨ηr−1 ⊗ ξr−1, . . . , ηm−2 ⊗ ξm−2⟩. We can assume that each monomial P of g belongs to

Mr = {M ∈ M | degx M < r or 0< hr−1}.

We will use the map ψ defined in (6). In fact, ψ(P) does not involve the zero-order derivatives of
ξr−1, . . . , ξm−2, since hi − [i/(m − 1)] can only be zero for a monomial in M only if i ⩽ r − 2. Thus,

ψ(P) ̸∈ ⟨ηr−1 ⊗ ξr−1, . . . , ηm−2 ⊗ ξm−2⟩.

Assume that P0 is the largest summand that appears in g. Then ϕ(P0) involves ψ(P0), but ϕ(g − P0)

does not. Therefore, ϕ(g) does not belong to ⟨ηr−1 ⊗ ξr−1, . . . , ηm−2 ⊗ ξm−2⟩. □

4.2. Upper bounds for the dimension. Throughout the section, we fix a differential field k of zero
characteristic.

Proposition 4.5. Let m, h be positive integers. We denote by Am,h the subalgebra of k[x (∞)
]/⟨xm

⟩
(∞)

generated by the images of x, x ′, . . . , x (h). Then

dim Am,h ⩽ mh+1.

First we describe a general construction which will be a special case of the so-called associated graded
algebra. Let A = A0 ⊕ A1 ⊕ A2 ⊕ · · · be a Z⩾0-graded algebra over k equipped with a homogeneous
derivation of weight one (that is, A′

i ⊆ Ai+1 for every i ⩾ 0). We introduce a map gr : A → A defined as
follows: Consider a nonzero a ∈ A, and let i be the largest index such that a ∈ Ai ⊕ Ai+1 ⊕· · · . Then we
define gr(a) to be the image of the projection of a onto Ai along Ai+1 ⊕ Ai+2 ⊕ · · · . In other words, we
replace each element with its lowest homogeneous component.

Note that gr is not a homomorphism, it is not even a linear map. However, it has two important
properties we state as a lemma.

Lemma 4.6. (1) Let a1, . . . , an ∈ A, and let p ∈ k[x(∞)
] be a differential monomial. Then

p(gr(a1), . . . , gr(an)) ̸= 0 =⇒ gr(p(a1, . . . , an))= p(gr(a1), . . . , gr(an)).

(2) If a1, . . . , an ∈ A are k-linearly dependent, then gr(a1), . . . , gr(an) also are k-linearly dependent.
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Proof. To prove the first part, one sees that p does not vanish on the lowest homogeneous parts of a1, . . . , an ,
so the homogeneity of the multiplication and derivation imply that taking the lowest homogeneous part
commutes with applying p for a1, . . . , an .

To prove the second part, let i be the lowest grading appearing among a1, . . . , an . Restricting to the
component of this weight, one gets a linear relation for gr(a1), . . . , gr(an). □

Lemma 4.7. Let A be a graded differential algebra as above. Consider elements a1, . . . , an in A,
and denote the algebras (not differential) generated by a1, . . . , an and gr(a1), . . . , gr(an) by B and Bgr,
respectively. Then dim Bgr ⩽ dim B.

Proof. The algebra Bgr is spanned by all the monomials in gr(a1), . . . , gr(an). We choose a basis in this
spanning set, that is, we consider monomials p1, . . . , pN ∈ k[x1, . . . , xn] such that

p1
(
gr(a1), . . . , gr(an)

)
, . . . , pN

(
gr(a1), . . . , gr(an)

)
form a basis of Bgr. The first part of Lemma 4.6 implies that

gr
(

pi (a1, . . . , an)
)
= pi

(
gr(a1), . . . , gr(an)

)
for every 1 ⩽ i ⩽ N .

Then the second part of Lemma 4.6 implies that p1(a1, . . . , an), . . . , pN (a1, . . . , an) are linearly inde-
pendent. Since they belong to B, we have dim B ⩾ N = dim Bgr. □

Proof of Proposition 4.5. Let3 and ϕ be the exterior algebra and the homomorphism from Proposition 4.2.
Proposition 4.2 implies that Am,h is isomorphic to the subalgebra of 3 generated by

m−2∑
i=0

ηi ⊗ ξi ,

m−2∑
i=0

(ηi ⊗ ξi )
′,

m−2∑
i=0

(ηi ⊗ ξi )
′′, . . . ,

m−2∑
i=0

(ηi ⊗ ξi )
(h).

We define a grading on 3 by setting the weights of η(i)j and ξ (i)j to be equal to i for every i ⩾ 0 and
0 ⩽ j < m − 1. The exterior algebra 3 becomes a graded algebra, and the derivation is homogeneous of
weight one.

We fix h ⩾ 0 and consider the following elements of 3:

α̃ j,i := (1 + ∂)iα j for i ⩾ 0, 0 ⩽ j < m − 1, and α ∈ {η, ξ},

where ∂ is the operator of differentiation. We introduce

vi :=

m−2∑
j=0

η̃ j,i ⊗ ξ̃ j,i for 0 ⩽ i ⩽ h,

and let Yh be the algebra generated by v0, . . . , vh . For every 0 ⩽ i ⩽ h, we have vm
i = 0, so Yh is spanned

by the products of the form

v
d0
0 v

d1
1 . . . v

dh
h , where 0 ⩽ d0, . . . , dh < m.

Therefore, dim Yh ⩽ mh+1.
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Claim. There is an invertible (h + 1)× (h + 1) matrix M over Q such that, for u0, . . . , uh defined by

(u0, . . . , uh)
T

:= M(v0, . . . , vh)
T , (7)

we have

gr(ui )=

m−2∑
j=0

(η j ⊗ ξ j )
(i) for every 0 ⩽ i ⩽ h.

We will first demonstrate how the proposition follows from the claim, and then we prove the claim.
Since M is invertible, u0, . . . , uh generate Yh as well. Since gr(u0), . . . , gr(uh) generate Am,h , Lemma 4.7
implies that mh+1 ⩾ dim Yh ⩾ dim Am,h .

Therefore, it remains to prove the claim. For every 0 ⩽ i ⩽ h, we can write

vi = (1 ⊗ 1 + 1 ⊗ ∂)i (1 ⊗ 1 + ∂ ⊗ 1)iv0 = (1 ⊗ 1 + 1 ⊗ ∂ + ∂ ⊗ 1 + ∂ ⊗ ∂)iv0.

We set ui := (1 ⊗ ∂ + ∂ ⊗ 1 + ∂ ⊗ ∂)iv0 for every 0 ⩽ i ⩽ h. Note that, since 1 ⊗ ∂ + ∂ ⊗ 1 is just the
original derivation on 3, we have

gr(ui )= (1 ⊗ ∂ + ∂ ⊗ 1)iv0 = v
(i)
0 =

m−2∑
j=0

(η j ⊗ ξ j )
(i). (8)

By expanding the binomial (1⊗1+(1⊗∂+∂⊗1+∂⊗∂))i , we can write vi =
∑i

j=0
(i

j

)
u j . Then we have

(v0, . . . , vh)
T

= M̃(u0, . . . , uh)
T , (9)

where M̃ is the (h+1)×(h+1)-matrix with the (i, j)-th entry being
(i

j

)
. Since M̃ is lower-triangular with

ones on the diagonal, it is invertible. We set M := M̃−1. So we have (u0, . . . , uh)
T

:= M(v0, . . . , vh)
T ,

which together with (8) finishes the proof of the claim. □

By combining the proof of Proposition 4.5 with Lemma 4.4, we can extend Proposition 4.5 as follows:

Corollary 4.8. Let m, h, i be positive integers with 1 ⩽ i ⩽ m. By A(m,i),h we denote the subalgebra of
k[x (∞)

]/⟨x i , (xm)(∞)
⟩ generated by the images of x, x ′, . . . , x (h). Then

dim A(m,i),h ⩽ i · mh .

Proof. The proof will be a refinement of the proof of Proposition 4.5, and we will use the notation from
there. Let π be the canonical homomorphism π : 3→3i :=3/⟨ξi−1 ⊗ ηi−1, . . . , ξm−2 ⊗ ηm−2⟩. Since
the ideal ⟨ξi−1 ⊗ ηi−1, . . . , ξm−2 ⊗ ηm−2⟩ is homogeneous with respect to the grading on 3, there is a
natural grading on 3i .

We have A(m,i),h ∼= π(Am,h). Since π is a homogeneous homomorphism, π(Am,h) is generated
by π(gr(u0)), . . . , π(gr(uh)) from (7), so dim A(m,i),h = dimπ(Am,h) ⩽ dimπ(Yh). We observe that
π(v0)

i
= 0, so π(Yh) is spanned by products of the form

π(v0)
d0π(v1)

d1 · · ·π(vh)
dh ,

where 0 ⩽ d0 < i and 0 ⩽ d1, . . . , dh < m. Therefore, dimπ(Yh)⩽ i · mh . □
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4.3. Combinatorial properties of fair monomials.

Definition 4.9 (nonoverlapping monomials). We say that two monomials m1,m2 ∈ k[x (∞)
] do not overlap

if ord m1 ⩽ lord m2 or ord m2 ⩽ lord m1.

Lemma 4.10. Let m, i be integers with 0 ⩽ i ⩽ m. Let P ∈ Fi,m−i . Then there exist P1, . . . , Pi ∈ F and
Pi+1, . . . , Pm ∈ Fs such that

P = P1 · · · Pm and, for every 1 ⩽ i < m, ord Pi ⩽ lord Pi+1.

Remark 4.11. Lemma 4.10 implies that the set Fi−1,m−i from Theorem 3.3 coincides with the set of
standard monomials conjectured by Afsharijoo [2021, §5].

Proof. Suppose that P can be written as

P =
(
x (h1,0) · · · x (h1,ℓ1 )

)
· · ·

(
x (hm,0) · · · x (hm,ℓm )

)
,

where each (x (hi,0) · · · x (hi,ℓi )) belongs to F or Fs and h1,0 ⩽ h2,0 ⩽ · · · ⩽ hm,0. We first prove that we
can make the product to be a product of nonoverlapping monomials.

Let us sort the orders h1,0, h1,1, . . . , hm,ℓm in the ascending order{
(r1,0, . . . , r1,ℓ1); (r2,0, . . . , r2,ℓ2); . . . ; (rm,0, . . . , rm,ℓm )

}
.

Claim. For all 0 ⩽ i ⩽ m, we have hi,0 ⩽ ri,0.

In the whole list of the hi, j , all the numbers to the right from hi,0 are ⩾ hi,0. Therefore, after sorting,
hi,0 will either stay or move to the left. Thus, hi,0 ⩽ ri,0, so the claim is proved.

Hence if x (hi,0) · · · x (hi,ℓi ) was a fair (respectively, strongly fair) monomial then x (ri,0) · · · x (ri,ℓi ) is a fair
(respectively, strongly fair) monomial.

Now we will move all the strongly fair monomials to the right in the decomposition of P . We first
prove that, for every Q = Q1 Q2 such that Q1 ∈ Fs , Q2 ∈ F , and ord Q1 ⩽ lord Q2, there exist Q̃1 ∈ Fs

and Q̃2 ∈ F such that Q = Q̃1 Q̃2 and ord Q̃1 ⩽ lord Q̃2. Let

Q1 = x (h1,0) · · · x (h1,ℓ1 ) and Q2 = x (h2,0) · · · x (h2,ℓ2 ),

where ℓ1 < h1,0 and ℓ2 ⩽ h2,0. If ℓ2 < h2,0, then Q2 ∈ Fs ; so we are done. Otherwise, ℓ1 + 1 ⩽ h1,0

implies that Q1x (h1,0) is a fair monomial, and ℓ2 − 1< h2,0 implies that Q2/x (h1,0) ∈ Fs . Thus, we can
take Q̃1 := Q1x (h1,0) and Q̃2 := Q2/x (h1,0).

Applying the described transformation while possible to the nonoverlapping decomposition of P , one
can arrange that the last m − i components are strongly fair. □

Proposition 4.12. For every positive integers m, h, i with 0 ⩽ i ⩽ m, the cardinality of Fi,m−i ∩ k[x (⩽h)
]

is equal to (i + 1) · (m + 1)h .

The proof of the proposition will use the following lemma:
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Lemma 4.13. For every integers h and d, we have∣∣{P | P ∈ F ∩ k[x⩽h
] and deg P = d

}∣∣ =

(h+1
d

)
.

If one replaces F with Fs , the cardinality will be
(h

d

)
.

Proof. Let x (h0) · · · x (hℓ) ∈ F such that ℓ⩽ h0 ⩽ · · · ⩽ hℓ. We define a map

(h0, . . . , hℓ) 7→ (h0 − ℓ, h1 − ℓ− 1, . . . , hℓ).

The map assigns to the orders of a monomial in F ∩ k[x⩽h
] a list of strictly increasing nonnegative

integers not exceeding h. A direct computation shows that this map is a bijection. Since the number of
such sequences of length d is equal to the number of subsets of [0, 1, . . . , h] of cardinality d , the number
of monomials is

(h+1
d

)
.

The case of Fs is analogous with the only difference being that the subset will be in [1, 2, . . . , h], thus
yielding

(h
d

)
. □

Proof of Proposition 4.12. We will prove the proposition by induction on m. For the base case, we have
F0,0 = {1}, so the statement is true.

Consider m > 0, and assume that for all smaller m the proposition is proved. We fix 0 ⩽ i ⩽ m.
Consider a monomial P ∈ Fi,m−i ∩ k[x (⩽h)

], let P1 · · · Pm be a decomposition from Lemma 4.10 with
deg Pm being as large as possible. We denote tail P := Pm and head P := P1 · · · Pm−1.

We will show that the map P → (head P, tail P) defines a bijection between Fi,m−i and

for i < m : {(Q0, Q1) ∈ Fi,m−i−1 ×Fs | ord Q0 ⩽ deg Q1},

for i = m : {(Q0, Q1) ∈ Fm−1,0 ×F | ord Q0 < deg Q1}.
(10)

We will prove the case i <m, as the proof in the case i = m is analogous. First we will show that, for every
P ∈ Fi,m−i , we have ord head P ⩽ deg tail P . Assume the contrary, and let ℓ := ord head P > deg tail P .
Then we will have

lord(x (ℓ) tail P)⩾ min(ℓ, lord tail P)= ℓ⩾ deg(x (ℓ) tail P).

This implies that x (ℓ) tail P ∈ Fs . Thus, in the decomposition of Lemma 4.10, we could have taken Pm

to be x (ℓ) tail P . This contradicts the maximality of deg tail P . In the other direction, if Q0 ∈ Fi,m−i−1

and Q1 ∈ Fs such that ord Q0 ⩽ deg Q1, then Q0 Q1 ∈ Fi,m−i . Moreover, since x (ord Q0)Q1 ̸∈ F , we have
tail(Q0 Q1)= Q1.

We will now use the bijection (10) to count the elements in Fi,m−i ∩ k[x (⩽h)
]. For i < m,

∣∣Fi,m−i ∩ k[x (⩽h)
]
∣∣ =

h∑
ℓ=0

∣∣Fi,m−i−1 ∩ k[x (⩽ℓ)]
∣∣ · ∣∣{Q1 ∈ Fs ∩ k[x (⩽h)

] | deg Q1 = ℓ}
∣∣

=

h∑
ℓ=0

(i + 1) · mℓ
(h
ℓ

)
= (i + 1) · (m + 1)h (by Lemma 4.13).
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For i = m: ∣∣Fm,0 ∩ k[x (⩽h)
]
∣∣ =

h+1∑
ℓ=0

∣∣Fm−1,0 ∩ k[x (<ℓ)]
∣∣ · ∣∣{Q1 ∈ Fs ∩ k[x (⩽h)

] | deg Q1 = ℓ}
∣∣

=

h+1∑
ℓ=0

mℓ
(h+1
ℓ

)
= (m + 1)h+1 (by Lemma 4.13).

Thus, the proposition is proved. □

4.4. Lower bounds for the dimension.

Notation 4.14. For a differential polynomial P ∈ k[x(∞)
] and 1 ⩽ i ⩽ n, we define

• tordxi P to be the total order of P in xi , that is, the largest sum of the orders of the derivatives of xi

among the monomials of P;

• degx (∞)
i

P to be the total degree of P with respect to the variables xi , x ′

i , x ′′

i , . . . .

• We fix a monomial ordering ≺ on k[x(∞)
] defined as follows: To each differential monomial

M = x (h0)
i0

x (h1)
i1

· · · x (hℓ)iℓ with (h0, i0)⪯lex (h1, i1)⪯lex · · · ⪯lex (hℓ, iℓ), we assign a tuple

(ℓ, hℓ, hℓ−1, . . . , h0, iℓ, iℓ−1, . . . , i0),

and compare monomials by comparing the corresponding tuples lexicographically.

Definition 4.15 (isobaric ideal). An ideal I ⊂ k[x (∞)
] is called isobaric if it can be generated by isobaric

polynomials, that is, polynomials with all the monomials having the same total order.

Proposition 4.16. For i = 1, 2, the elements of Fi−1,2−i are the standard monomials modulo ⟨(x2)(∞), x i
⟩.

Proof. We use Proposition 4.2 to obtain the differential homomorphism ϕ : k[x (∞)
] → 3 defined by

ϕ(x)= η⊗ ξ (we will use η and ξ instead of η0 and ξ0 for brevity). Let ϕ̃ be the composition of ϕ with
the projection onto 3/⟨η⊗ ξ⟩. We will prove the proposition for the elements in F1,0, and the other case
can be done in the same way by replacing ϕ with ϕ̃.

Let X = x (h0) · · · x (hℓ), where h0 ⩽ h1 ⩽ · · ·⩽ hℓ, be an element of F1,0. We will show that a summand

B(X) :=
(
η(h0−ℓ) ∧ η(h1−(ℓ−1))

∧ · · · ∧ η(hℓ)
)
⊗

(
ξ (ℓ) ∧ ξ (ℓ−1)

∧ · · · ∧ ξ ′
∧ ξ

)
(11)

appears in ϕ(X) with nonzero coefficient. We will prove this by induction on ℓ. The base case ℓ= 0 is
trivial, so let ℓ > 0. Since η(h0−ℓ) may come only from one of the occurrences of x (h0) in X , we must
take η(h0−ℓ)⊗ ξ (ℓ) from one of the x (h0). Therefore, the coefficient at B(X) in ϕ(X) is degx (h0) X times
the coefficient at B(X/x (h0)) in ϕ(X/x (h0)), which is nonzero by the induction hypothesis.

Let Y := x (s0) · · · x (sℓ′ ) be a monomial such that Y ≺ X . We will prove by contradiction that B(X)
does not appear in ϕ(Y ). If it does, then deg(X) = deg(Y ) = ℓ+ 1 = ℓ′ + 1. Moreover, there exists a
permutation σ of {0, 1, . . . , ℓ} such that

si − σ(i)= hi − (ℓ− i) for every 0 ⩽ i ⩽ ℓ.
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The inequality sℓ ⩽ hℓ implies σ(ℓ) = 0, and thus, sℓ = hℓ. Therefore, sℓ−1 ⩽ hℓ−1, which implies
σ(ℓ− 1)= 1, and thus, sℓ−1 = hℓ−1. Continuing in this way, we show that

si = hi for all 0 ≤ i ≤ ℓ,

which contradicts Y ≺ X . Thus B(X) cannot appear in the ϕ(Y ).
Assume that X ∈ In≺⟨x2

⟩
(∞). Then there exist monomials P1, . . . PN such that Pj ≺ X for all

1 ≤ j ≤ N and

X −

N∑
j=1

λPj ∈ ⟨x2
⟩
(∞).

Hence, ϕ(X) −
∑N

j=1λ jϕ(Pj ) = 0. Since Pj ≺ X for all 1 ≤ j ≤ N , B(X) cannot be canceled in
ϕ(X)−

∑N
j=1λ jϕ(Pj ), which is a contradiction. Therefore, X is a standard monomial. □

Lemma 4.17. Let I1 ⊂ k[y(∞)
1 ], . . . , Is ⊂ k[y(∞)

s ] be ideals, and we denote by Mi the set of the standard
monomials modulo Ii with respect to degree lexicographic ordering for 1 ⩽ i ⩽ s. Then the standard
monomials with respect to the ordering ≺ (see Notation 4.14) modulo ⟨I1, . . . , Is⟩⊂ k[y(∞)

1 , . . . , y(∞)
s ] are

M1 · M2 · · · Ms := {m1m2 · · · ms | m1 ∈ M1, . . . ,ms ∈ Ms}.

Proof. For each Ii , consider the reduced Gröbner basis Gi of Ii with respect to the degree lexicographic
ordering. For each pair f, g ∈ G := G1 ∪ G2 ∪ . . .∪ Gs , their S-polynomial is reduced to zero by G

• if f, g belong to the same Gi , due to the fact that Gi is a Gröbner basis;

• otherwise, by the first Buchberger criterion (since f and g have coprime leading monomials). □

Proposition 4.18. Let I1 ⊂k[y(∞)
1 ], . . . , Is ⊂k[y(∞)

s ] be homogeneous and isobaric ideals (not necessarily
differential). By Mi we denote the set of standard monomials modulo Ii with respect to the degree
lexicographic ordering for 1 ⩽ i ⩽ s. We define a homomorphism (not necessarily differential)

ϕ : k[x (∞)
] → k[y(∞)

1 , . . . , y(∞)
s ]/⟨I1, . . . , Is⟩

by ϕ(x (k)) := y(k)1 + · · · + y(k)s and denote I := Ker(ϕ). Then the elements of

M :=
{
m1 . . .ms | ∀1 ⩽ i ⩽ s : mi ∈ Mi and ∀ 1 ⩽ j < s : ord m j ⩽ lord m j+1

}
(12)

are standard monomials modulo I with respect to the ordering ≺ (but maybe not all the standard
monomials).

Proof. Consider a monomial P = x (h0) · · · x (hℓ) ∈ M , and fix a representation P = m1(x), . . . ,ms(x) as
in (12). Assume that P is a leading monomial of I . Then there exist monomials P1, . . . , PN such that

P −

N∑
j=1

λ j Pj ∈ Kerϕ and ∀ 1 ⩽ j ⩽ N : Pj ≺ P.

Then ϕ(P)−
∑
λ jϕ(Pj ) ∈ ⟨I1, . . . Is⟩. We define m := m1(y1)m2(y2) · · · ms(ys).



962 Rida Ait El Manssour and Gleb Pogudin

Claim. For every monomial m̃ ̸=m in ϕ(P), there exists 1⩽ j ⩽ s such that either degy j (∞) m ̸=degy j (∞) m̃
or tordy j m ̸= tordy j m̃.

Assume the contrary, that there exists m̃ such that, for every 1 ⩽ j ⩽ s, we have di := degy j (∞) m =

degy j (∞) m̃ and tordy j m = tordy j m̃. We write m̃ = m̃1(y1) · · · m̃s(ys). Let 1 ⩽ j ⩽ s be the largest index
such that m j ̸= m̃ j . Since m j contains d j largest derivatives in m1(x) · · · m j (x)= m̃1(x) · · · m̃ j (x) and
has the same total order as m̃ j , we conclude that m j = m̃ j . Thus, the claim is proved.

We write the homogeneous and isobaric component of
∑N

j=1 λ jϕ(Pj ) of the same degree and total
order in yi as m for every 1 ⩽ i ⩽ s as

∑M
i=1 µi Ri , where Ri is a differential monomial and µi ∈ k

for every 1 ⩽ i ⩽ M . Then such a homogeneous and isobaric component of ϕ(P)−
∑N

j=1 λ jϕ(Pj ) is
Q := m −

∑M
i=1 µi Ri due to the claim. Since, for every 1 ⩽ i ⩽ s, Is is homogeneous and isobaric,

Q ∈ ⟨I1, . . . , Is⟩.
Note that for every 1⩽ i ⩽ M , the differential monomial Ri is a summand of ϕ(Pj ) for some 1⩽ j ⩽ N .

Thus, if Pj = x (s0) · · · x (sℓ), then the derivatives that appear in the monomial Ri are of orders s0, . . . , sℓ.
Hence, Pj ≺ P implies R j ≺ m. Therefore, m is the leading monomial of Q contradicting Lemma 4.17. □

Corollary 4.19. The elements of Fi−1,m−i are standard monomials modulo ⟨x i , (xm)(∞)
⟩.

Proof. We will use Proposition 4.18. Consider the ideals

I1 = ⟨y2
1⟩
(∞), . . . , Ii−1 = ⟨y2

i−1⟩
(∞), Ii =

〈
yi , (y2

i )
(∞)

〉
, . . . , Im−1 =

〈
ym−1, (y2

m−1)
(∞)

〉
,

and define ϕ as in Proposition 4.18. Lemma 4.4 implies that ϕ((xm)(k))= ((y1 + . . .+ ym−1)
m)(k) = 0 for

every k ≥1 and ϕ(x i )= (y1+. . .+yi−1)
i
=0. Therefore, ⟨(xm)(∞), x i

⟩⊂Ker(ϕ). Proposition 4.16 implies
that the standard monomials modulo I j are the fair monomials for j < i and strongly fair monomials for
i ⩽ j . Therefore, Proposition 4.18 implies that Fi−1,m−i are standard monomials modulo ⟨x i , (xm)(∞)

⟩. □

4.5. Putting everything together: proofs of the main results.

Proof of Theorem 3.1. Consider the images of Fm−1,0 ∩ k[x (⩽h)
] in k[x (∞)

]/⟨xm
⟩
(∞). By Corollary 4.19,

they are linearly independent modulo ⟨xm
⟩
(∞). Then Proposition 4.12 implies that the dimension of

k[x (⩽h)
]/⟨xm

⟩
(∞) is at least mh+1. Together with Proposition 4.5, this implies

dim
(
k[x (⩽h)

]/⟨xm
⟩
(∞)

)
= mh+1. □

Proof of Theorem 3.3. Fix h ⩾ 0. Consider Fi−1,m−i ∩k[x (⩽h)
]. Combining Corollary 4.19, Corollary 4.8,

and Proposition 4.12, we show that the image of this set in k[x (⩽h)
]/⟨(xm)(∞), x i

⟩ forms a basis. Thus, the
image of the whole Fi−1,m−i is a basis of k[x (∞)

]/⟨(xm)(∞), x i
⟩. Therefore, by Corollary 4.19, Fi−1,m−i

coincides with the set of standard monomials modulo ⟨(xm)(∞), x i
⟩. □

Proof of Corollary 3.4. Since the ideal ⟨x i , (xm)(∞)
⟩ is generated by homogeneous and isobaric (that is,

weight-homogeneous) polynomials, its Gröbner bases with respect to the purely lexicographic, degree
lexicographic, and weighted lexicographic orderings coincide. □
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5. Computational experiments for more general fat points

In this section, we consider a more general case of a fat point in a n-dimensional space, not just on a line.
We used [Macaulay2], in particular, the package Jets [Galetto and Iammarino 2021; 2022] to explore
possible analogues of our Theorem 3.1 for this more general case. A related Sage implementation for
computing the arc space of an affine scheme with respect to a fat point can be found in [Stout 2017, §9]
and [Stout 2014, §5.4].

Let x = (x1, . . . , xn), and consider a zero-dimensional ideal I ⊂ k[x]. We will be interested in
describing (in particular, in computing the dimension of the quotient ring) I (∞)

∩ k[x(⩽h)
] for a positive

integer h. Since this ideal is the union of the following chain

I (⩽1)
∩ k[x(⩽h)

] ⊆ I (⩽2)
∩ k[x(⩽h)

] ⊆ I (⩽3)
∩ k[x(⩽h)

] ⊆ · · ·

and k[x(⩽h)
] is Noetherian, one can compute I (∞)

∩ k[x(⩽h)
] by computing I (⩽H)

∩ k[x(⩽h)
] for large

enough H . But how do we determine what H is “large enough”?

• For I =⟨xm
⟩⊂k[x], the answer is given by Theorem 3.1: if the dimension k[x (⩽h)

]/(I (⩽H)
∩k[x (⩽h)

])

is equal to mh+1, then I (⩽H)
∩ k[x (⩽h)

] = I (∞)
∩ k[x (⩽h)

].

• For general I , we take H to be 1, 2, . . . , and we stop when we encounter

I (⩽H)
∩ k[x(⩽h)

] = I (⩽H+1)
∩ k[x(⩽h)

].

We conjecture that in this case I (⩽H)
∩ k[x(⩽h)

] = I (∞)
∩ k[x(⩽h)

] (see Question 5.1) but, strictly
speaking, we only know that I (⩽H)

∩ k[x(⩽h)
] ⊆ I (∞)

∩ k[x(⩽h)
].

5.1. Ideals I = ⟨xm⟩. For ideals of the form ⟨xm
⟩, the approach outlined above yields a complete

algorithm to compute I (∞)
∩ k[x (⩽h)

] for any given h and m. We use it for computing examples of
Gröbner bases for these ideals with respect to the lexicographic ordering, as shown in Table 1.

5.2. General fat points. In this subsection, we consider a general zero-dimensional I ⊂ k[x] with the
zero set of I being the origin. We use the following algorithm following the approach described in the
beginning of the section to obtain an upper bound of the dimensions of k[x(⩽h)

]/(I (∞)
∩ k[x(⩽h)

]).

Step 1: Set H = 1.

Step 2: While the dimension of I (⩽H)
∩ k[x(⩽h)

] is not zero or I (⩽H)
∩ k[x(⩽h)

] ̸= I (⩽H+1)
∩ k[x(⩽h)

],
set H = H + 1.

Ideal Gröbner basis

⟨x2
⟩
(∞)

∩ k[x (⩽2)
] (x ′′)4; x ′(x ′′)2; (x ′)2x ′′

; (x ′)3; 2xx ′′
+ (x ′)2; xx ′

; x2

⟨x3
⟩
(∞)

∩ k[x (⩽2)
] (x ′′)7; x ′(x ′′)5; (x ′)2(x ′′)4; (x ′)3(x ′′)2; (x ′)4x ′′

; (x ′)5; x(x ′′)4 + 2(x ′)2(x ′′)3;

3xx ′(x ′′)2 + (x ′)3x ′′
; 6x(x ′)2x ′′

+ (x ′)4; x(x ′)3; x2x ′′
+ x(x ′)2; x2x ′

; x3

Table 1. Gröbner bases for ⟨xm
⟩
(∞)

∩ k[x (⩽h)
], where m = 2, 3.
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Ideal h = 0 h = 1 h = 2 h = 3

⟨x2, y2, xy⟩ 3 9 27 81
⟨x2, y2, xz, yz, z2

− xy⟩ 5 25 125 —
⟨x3, y2, x2 y⟩ 5 25 125 —
⟨x3, y2, xy⟩ 4 16 64 256
⟨x3, y3, x2 y⟩ 7 49 — —
⟨x4, y4, x2 y3

⟩ 14 196 — —

Table 2. (Bounds for) the dimensions of the truncations of the arc space.

Step 3: Return dim
(
k[x(⩽h)

]/(I (⩽H)
∩ k[x(⩽h)

])
)
.

We expect the resulting bound to be exact (see also Question 5.1), for example, it is exact for I = ⟨xm
⟩.

Our implementation of this algorithm in [Macaulay2] is available for download at the following
webpage: https://mathrepo.mis.mpg.de/MultiplicityStructureOfArcSpaces. Table 2 shows some of the
results we obtained. One can see that the computed dimensions form geometric series with the exponent
being the multiplicity of the original ideal exactly as in Theorem 3.1.

However, we have also found ideals for which the generating series of the dimensions is definitely
not equal to m/(1 − mt), where m is the multiplicity of the ideal. We show some examples of this type
in Table 3.

Note that while Table 2 gives only indication that the generating series of the multiplicities for these
ideals may be m/(1 − mt), Table 3 gives a proof that this is not the case for all the fat points.

5.3. Open questions. Based on the results of the computational experiments, we formulate several open
questions.

Question 5.1. Let I ⊂ k[x] be a zero-dimensional ideal with V (I ) being a single point. Is it true that, for
every integer h(

I (⩽H)
∩ k[x(⩽h)

] = I (⩽H+1)
∩ k[x(⩽h)

]
)

=⇒
(
I (⩽H)

∩ k[x(⩽h)
] = I (⩽∞)

∩ k[x(⩽h)
]
)
?

Does this statement remain true if we drop the assumption |V (I )| = 1?

Ideal h = 0 h = 1 h = 2

⟨x3, y3, xy⟩ 5 24 115
⟨x4, y3, xy⟩ 6 33 —
⟨x4, y3, x2 y⟩ 8 62 —
⟨x4, y4, xy⟩ 7 42 —
⟨x4, y4, x2 y⟩ 10 94 —
⟨x4, y4, x2 y2

⟩ 12 140 —
⟨x4, y6, x2 y3

⟩ 18 320 —

Table 3. (Bounds for) the dimensions of the truncations of the arc space.

https://mathrepo.mis.mpg.de/MultiplicityStructureOfArcSpaces
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Question 5.2. Let I ⊂ k[x] be a zero-dimensional ideal with V (I ) being a single point of multiplicity m.
Is it true that

lim
h→∞

dim k[x(⩽h)
]/I (∞)

mh+1 = 1?

Question 5.3. Let I ⊂ k[x] be a zero-dimensional ideal with V (I ) being a single point of multiplicity m.
Under which conditions it is true that

∞∑
h=0

(
dim k[x(⩽h)

]/I (∞)
)
· th

=
m

1−mt
?

More generally, what information about the corresponding scheme can be read off the above generating
series?
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