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Theta correspondence and simple factors
in global Arthur parameters

Chenyan Wu

By using results on poles of L-functions and theta correspondence, we give a bound on b for (χ, b)-
factors of the global Arthur parameter of a cuspidal automorphic representation π of a classical group or
a metaplectic group where χ is a conjugate self-dual automorphic character and b is an integer which is
the dimension of an irreducible representation of SL2(C). We derive a more precise relation when π lies
in a generic global A-packet.

Introduction

Let F be a number field and let A be its ring of adeles. Let π be an irreducible cuspidal automorphic
representation of a classical group G defined over F . We also treat the case of metaplectic groups in this
work. However to avoid excessive notation, we focus on the case of the symplectic groups G = Sp(X) in
this introduction where X is a nondegenerate symplectic space over F . By Arthur’s theory of endoscopy
[2013], π belongs to a global A-packet associated to an elliptic global A-parameter, which is of the form

⊞r
i=1(τi , bi )

where τi is an irreducible self-dual cuspidal automorphic representation of GLni (A) and bi is a positive
integer which represents the unique bi -dimensional irreducible representation of Arthur’s SL2(C); see
Section 2, for more details.

Jiang [2014] proposed the (τ, b)-theory; see, in particular, Principle 1.2 there. It is a conjecture
that uses period integrals to link together automorphic representations in two global A-packets whose
global A-parameters are “different” by a (τ, b)-factor. We explain in more details. Let 5φ denote the
global A-packet with elliptic global A-parameter φ. Let π be an irreducible automorphic representation
of G(A) and let σ be an irreducible automorphic representation of H(A), where H is a factor of an
endoscopic group of G. Assume that π (resp. σ ) occurs in the discrete spectrum. Then it is expected that
there exists some kernel function K depending on G, H and (τ, b) only such that if π and σ satisfy a
Gan–Gross–Prasad type of criterion, namely, that the period integral∫

H(F) \ H(A)

∫
G(F) \ G(A)

K(h, g) fσ (h) fπ (g) dg dh (0-1)
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is nonvanishing for some choice of fσ ∈ σ and fπ ∈ π , then π is in the global A-packet 5φ if and
only if σ is in the global A-packet 5φ2 with φ = (τ, b)⊞φ2. Then Jiang [2014, Section 5] proceeds to
construct certain kernel functions and then using them, defines endoscopy transfer (by integrating over
H(F) \ H(A) only in (0-1)) and endoscopy descent (by integrating over G(F) \ G(A) only in (0-1)). It
is not yet known if these are the kernel functions making the statements of Principle 1.2 in [Jiang 2014]
hold. As the kernel functions come from Bessel coefficients or Fourier–Jacobi coefficients as in [Gan
et al. 2012, Section 23], we see the nonvanishing of this period integral is analogous to condition (i) in
the global Gan–Gross–Prasad conjecture [Gan et al. 2012, Conjecture 24.1].

Jiang [2014, Section 7] suggested that if τ is an automorphic character χ , then the kernel function can
be taken to be the theta kernel and endoscopy transfer and endoscopy descent are theta lifts. In this case,
the span of ∫

G(F) \ G(A)
K(h, g) fπ (g) dg

as fπ runs over π is the theta lift of π . This is an automorphic representation of H(A). Lifting in the other
direction is analogous. Assume that the theta lift of π is nonzero. Write φπ for the global A-parameter
of π . Then Jiang [2014, Principle 1.2] says that φπ has a (χ, b)-factor and that the global A-parameter
of the theta lift of π from G to H should be φπ with the (χ, b)-factor removed. Here b should be of
appropriate size relative to G and H . Our work is one step in this direction.

One goal of this article is to expand on the (χ, b)-theory and to present the results of [Mœglin 1997;
Ginzburg et al. 2009; Jiang and Wu 2016; 2018; Wu 2022a; 2022b] for various cases in a uniform way. As
different reductive dual pairs that occur in theta correspondence have their own peculiarities, the notation
and techniques of these papers are adapted to the treatment of their own specific cases. We attempt to
emphasize on the common traits of the results which are buried in lengthy and technical proofs in these
papers.

After collecting the results on poles of L-functions, poles of Eisenstein series and theta correspondence,
we derive a bound for b when b is maximal among all factors of the global A-parameter of π . In addition,
we derive an implication on global A-packets. Of course, the heavy lifting was done by the papers
mentioned above.

Theorem 0.1 (Corollary 5.3). The global A-packet attached to the elliptic global A-parameter φ cannot
have a cuspidal member if φ has a (χ, b)-factor with

b > 1
2 dimF X + 1, if G = Sp(X).

Another way of phrasing this is that we have a bound on the size of b that can occur in a factor of
type (χ, ∗) in the global A-parameter of a cuspidal automorphic representation. Thus our results have
application in getting a Ramanujan bound, which measures the departure of the local components πv
from being tempered for all places v of F , for classical groups and metaplectic groups. This should
follow by generalizing the arguments in [Jiang and Liu 2018, Section 5] which treats the symplectic case.
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There they first established a bound for b under some conditions on wave front sets. This enables them to
control the contribution of GL1-factors in the global A-parameter to the Ramanujan bound. Our result
can supply this ingredient for classical groups and also metaplectic groups unconditionally. Then Jiang
and Liu [2018, Section 5] found a Ramanujan bound for π by using the crucial results on the Ramanujan
bound for GL2 in [Kim 2003; Blomer and Brumley 2011].

We describe the idea of the proof of our result. First we relate the existence of a (τ, b)-factor in
the elliptic global A-parameter of π to the existence of poles of partial L-functions L S(s, π × τ∨); see
Proposition 2.8. If the global A-parameter of π has a factor (τ, b) where b is maximal among all factors,
we can show that the partial L-function L S(s, π × τ∨) has a pole at s =

1
2(b + 1). Thus studying the

location of poles of L S(s, π×τ∨) for τ running through all self-dual cuspidal representations of GLn(AF )

can shed light on the size of the bi that occur in the global A-parameter of π . Then we specialize to the
case where τ is a character χ and consider L S(s, π ×χ∨) in what follows.

Next we relate the poles of L S(s, π ×χ∨) to the poles of Eisenstein series attached to the cuspidal
datum χ ⊠ π ; see Section 3. In fact, in some cases, we use the nonvanishing of L S(s, π × χ∨) at
s =

1
2 instead; see Proposition 3.1. Then we recall in Theorem 3.5 that the maximal positive pole of the

Eisenstein series has a bound which is supplied by the study of global theta lifts. This is enough for
showing Corollary 5.3, though we have a more precise result that the maximal positive pole corresponds
to the invariant called the lowest occurrence index of π with respect to χ in Theorem 4.4. The lowest
occurrence index is the minimum of the first occurrence indices over some Witt towers. For the precise
definition see (4-2). We also have a less precise result (Theorem 4.1) relating the first occurrence index of
π with respect to certain quadratic spaces to possibly nonmaximal and possibly negative poles of the
Eisenstein series.

More precise results can be derived if we assume that π has a generic global A-parameter. This is
because we have a more precise result relating poles or nonvanishing of values of the complete L-functions
to poles of the Eisenstein series supplied by [Jiang et al. 2013]. Thus we get

Theorem 0.2 (Theorem 6.7). Let π be a cuspidal member in a generic global A-packet of G(A) =

Sp(X)(A). Let χ be a self-dual automorphic character of GL1(A). Then the following are equivalent:

(1) The global A-parameter φπ of π has a (χ, 1)-factor.

(2) The complete L-function L(s, π ×χ∨) has a pole at s = 1.

(3) The Eisenstein series E(g, fs) has a pole at s = 1 for some choice of section fs ∈ AQ1(s, χ ⊠π).

(4) The lowest occurrence index LOχ

X (π) is dim X.

Here Q1 is a parabolic subgroup of Sp(X1) with Levi subgroup isomorphic to GL1 × Sp(X), where X1

is the symplectic space formed from X by adjoining a hyperbolic plane. Roughly speaking, AQ1(s, χ⊠π)
is a space of automorphic forms on Sp(X1) induced from χ |·|

s ⊠ π viewed as a representation of the
parabolic subgroup Q1. We refer the reader to Section 3 for the precise definition of AQ1(s, χ ⊠π). We
note that the lowest occurrence index LOχ

X (π) is an invariant in the theory of theta correspondence related
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to the invariant called the first occurrence index; see Section 4 for their definitions. We also include a
result (Theorem 6.3) that concerns the nonvanishing of L(s, π ×χ∨) at s =

1
2 and the lowest occurrence

index. We plan to improve this result in the future by studying a relation between nonvanishing of Bessel
or Fourier–Jacobi periods and the lowest occurrence index.

We note that the L-function L(s, π ×χ∨) has been well-studied and is intricately entwined with the
study of theta correspondence, most prominently in the Rallis inner product formula which says that the
inner product of two theta lifts is equal to the residue or value of L(s, π ×χ∨) at an appropriate point up
to some ramified factors and some abelian L-functions. We refer the reader to [Yamana 2014] which is a
culmination of many previous results. In our approach, the Eisenstein series E(g, fs), which is not of
Siegel type, is the key link between L(s, π ×χ∨) and the theta lifts.

Now we describe the structure of this article. In Section 1, we set up some basic notation. In Section 2,
we define elliptic global A-parameters for classical groups and metaplectic groups and also the global
A-packet associated to an elliptic global A-parameter. We show how poles of partial L-functions detect
(τ, b)-factors in an elliptic global A-parameter. In Section 3, we define Eisenstein series attached to the
cuspidal datum χ ⊠π and recall some results on the possible locations of their maximal positive poles.
In Section 4, we introduce two invariants of theta correspondence. They are the first occurrence index
FOY,χ

X (π) and the lowest occurrence index LOχ

X (π) of π with respect to some data. We relate them to
poles of Eisenstein series. Results in Sections 3 and 4 are not new. Our aim is to present the results in
a uniform way for easier access. In Section 5, we show a bound for b in (χ, b)-factors of the global
A-parameter of π . Finally in Section 6, we consider the case when π has a generic global A-parameter.
We show that when L(s, π ×χ∨) has a pole at s = 1 (resp. L(s, π ×χ∨) is nonvanishing at s =

1
2 ), the

lowest occurrence index is determined.

1. Notation

Let F be a number field and let E be either F or a quadratic field extension of F . Let ϱ ∈ Gal(E/F) be
the trivial Galois element when E = F and the nontrivial Galois element when E ̸= F . When E ̸= F ,
write εE/F for the quadratic character associated to E/F via Class field theory. Let G be an algebraic
group over E . We write RE/F G for the restriction of scalars of Weil. This is an algebraic group over F .

Let ϵ be either 1 or −1. By an ϵ-skew Hermitian space, we mean an E-vector space X together with
an F-bilinear pairing

⟨ · , · ⟩X : X × X → E

such that

⟨y, x⟩X = −ϵ⟨x, y⟩
ϱ

X , ⟨ax, by⟩ = a⟨x, y⟩X bϱ

for all a, b ∈ E and x, y ∈ X . We consider the linear transformations of X to act from the right. We follow
the notation from [Yamana 2014] closely and we intend to generalize the results here to the quaternionic
unitary group case in our future work.



Theta correspondence and simple factors in global Arthur parameters 973

Let X be an ϵ-skew Hermitian space of finite dimension. Then the isometry group of X is one of the
following:

(1) The symplectic group Sp(X) when E = F and ϵ = 1.

(2) The orthogonal group O(X) when E = F and ϵ = −1.

(3) The unitary group U (X) when E ̸= F and ϵ = ±1.

We will also consider the metaplectic group. Let v be a place of F and let Fv denote the completion
of F at v. Let AF (resp. AE ) denote the ring of adeles of F (resp. E). Set A := AF . Write Mp(X)(Fv)
(resp. Mp(X)(AF )) for the metaplectic double cover of Sp(X)(Fv) (resp. Sp(X)(AF )) defined by Weil
[1964]. We note that the functor Mp(X) is not representable by an algebraic group. We will also need
the C1-extension Mp(X)(Fv)×µ2 C1 of Sp(X)(Fv) and we denote it by MpC1

(Fv). Similarly we define
MpC1

(AF ).
Let ψ be a nontrivial automorphic additive character of AF which will figure in the Weil representations

as well as the global A-parameters for Mp(X).
For an automorphic representation or admissible representation π , we write π∨ for its contragredient.

2. Global Arthur parameters

First we recall the definition of elliptic global Arthur parameters (A-parameters) for classical groups as
well as metaplectic groups; see [Arthur 2013] for the symplectic and the special orthogonal case and we
adopt the formulation in [Atobe and Gan 2017] for the case of the (disconnected) orthogonal groups. For
the unitary case, see [Mok 2015; Kaletha et al. 2014]. For the metaplectic case, see [Gan and Ichino
2018]. Then we focus on simple factors of global Arthur parameters and relate their presence to poles of
partial L-functions. This is a crude first step for detecting (τ, b)-factors in an elliptic global A-parameter
according to the “(τ, b)-theory” proposed in [Jiang 2014].

Let G be U(X), O(X), Sp(X) or Mp(X). Let d denote the dimension of X . Set G◦
= SO(X) when

G = O(X). Set G◦
= G otherwise. Write Ǧ for the (complex) dual group of G◦. Then

Ǧ =



GLd(C) if G = U(X);
Spd−1(C) if G = O(X) and d is odd;

SOd(C) if G = O(X) and d is even;

SOd+1(C) if G = Sp(X);
Spd(C) if G = Mp(X).

An elliptic global A-parameter for G is a finite formal sum of the form

φ = ⊞r
i=1(τi , bi ), for some positive integer r

where

(1) τi is an irreducible conjugate self-dual cuspidal automorphic representation of GLni (AE);

(2) bi is a positive integer which represents the unique bi -dimensional irreducible representation of
Arthur’s SL2(C)
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such that:

•
∑

i ni bi = dǦ .

• τi is conjugate self-dual of parity (−1)NǦ+bi (see Remark 2.3).

• The factors (τi , bi ) are pairwise distinct.

Here dǦ is the degree of the standard representation of Ǧ which, explicitly, is

dǦ =



dim X if G = U(X);
dim X − 1 if G = O(X) with dim X odd;

dim X if G = O(X) with dim X even;

dim X + 1 if G = Sp(X);
dim X if G = Mp(X);

and

NǦ =



dim X mod 2 if G = U(X);
0 if G = O(X) with dim X odd;

1 if G = O(X) with dim X even;

1 if G = Sp(X);
0 if G = Mp(X).

Remark 2.1. We adopt the notation in [Jiang 2014] and hence we write (τi , bi ) rather than τi ⊠ νbi as is
more customary in the literature, so that the quantity bi , that we study, is more visible.

Remark 2.2. In the unitary case, we basically spell out what92(U(N ), ξ1) in [Mok 2015, Definition 2.4.7]
is. We have discarded the second factor ψ̃ as it is determined by ψN and ξ1 in Mok’s notation.

Remark 2.3. (1) For G = U(X), we say that τ is conjugate self-dual of parity η if the Asai L-function
L(s, τ,Asaiη) has a pole at s = 1. If η=+1, we also say that τ is conjugate orthogonal and if η=−1,
we also say that τ is conjugate symplectic. The Asai representations come from the decomposition
of the twisted tensor product representation of the L-group; see [Mok 2015, (2.2.9) and (2.5.9)] and
[Goldberg 1994].

(2) For other cases, we mean self-dual when we write conjugate self-dual. We say that τ is self-dual of
parity +1 or orthogonal, if L(s, τ,Sym2) has a pole at s = 1; we say that τ is self-dual of parity −1
or symplectic, if L(s, τ,∧2) has a pole at s = 1.

(3) The parity is uniquely determined for each irreducible conjugate self-dual cuspidal representation τ .

Let 92(G) denote the set of elliptic global A-parameters of G. Let φ ∈92(G). Via the local Langlands
conjecture (which is proved for the general linear groups), at every place v of F , we localize φ to get an
elliptic local A-parameter,

φv : L Fv × SL2(C)→ Ǧ ⋊ WFv ,
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where WFv is the Weil group of Fv and L Fv is WFv if v is archimedean and the Weil–Deligne group
WFv × SL2(C) if v is nonarchimedean. To φv we associate the local L-parameter ϕφv : L Fv → Ǧ ⋊ WFv

given by

ϕφv (w)= φv

(
w,

(
|w|

1/2

|w|
−1/2

))
.

Let L2
disc(G) denote the discrete part of L2(G(F) \ G(AF )) when G ̸= Mp(X) and the genuine discrete

part of L2(Sp(F) \ Mp(AF )) for G = Mp(X). Define the full near equivalence class L2
φ,ψ(G) attached to

the elliptic global A-parameter φ to be the Hilbert direct sum of all irreducible automorphic representations
σ occurring in L2

disc(G) such that for almost all v, the local L-parameter of σv is ϕφv . We remark that in
the Mp(X)-case, the parametrization of σv is relative to ψv since the local L-parameter of σv is attached
via the Shimura–Waldspurger correspondence which depends on ψv . This is the only case in this article
where L2

φ,ψ(G) depends on ψ .
Let A2(G) denote the dense subspace consisting of automorphic forms in L2

disc(G). Similarly define
A2,φ,ψ(G) to be the dense subspace of L2

φ,ψ(G) consisting of automorphic forms. Then we have a crude
form of Arthur’s multiplicity formula which decomposes the L2-discrete spectrum into near equivalence
classes indexed by 92(G).

Theorem 2.4. We have the orthogonal decompositions

L2
disc(G)=

⊕̂
φ∈92(G)

L2
φ,ψ(G) and A2(G)=

⊕
φ∈92(G)

A2,φ,ψ(G).

Remark 2.5. This crude form of Arthur’s multiplicity formula has been proved for Sp(X) and quasisplit
O(X) by Arthur [2013], for U(X) by [Mok 2015; Kaletha et al. 2014] and for Mp(X) by [Gan and Ichino
2018]. This is also proved for nonquasisplit even orthogonal (and also unitary groups) in [Chen and Zou
2021] and for nonquasisplit odd orthogonal groups in [Ishimoto 2023]. Thus for all cases needed in this
paper, Theorem 2.4 is known.

We have some further remarks on the orthogonal and unitary cases.

Remark 2.6. Arthur’s statements use SO(X) rather than O(X) and he needs to account for the outer
automorphism of SO(X) when dim X is even; see the paragraph below [Arthur 2013, Theorem 1.5.2].
The formulation for quasisplit even O(X) is due to Atobe and Gan [2017, Theorem 7.1(1)]. For odd
O(X), which is isomorphic to SO(X)×µ2, the reformulation of Arthur’s result is easy. Let T be a finite
set of places of F . Assume that it has even cardinality. Let sgnT be the automorphic character of µ2(AF )

which is equal to the sign character at places in T and the trivial character at places outside T . These
give all the automorphic characters of µ2(AF ). Then every irreducible automorphic representation π of
O(X)(AF ) is of the form π0 ⊠ sgnT for some irreducible automorphic representation π0 of SO(X)(AF )

and some finite set T of places of even cardinality. A near equivalence class of O(X)(AF ) then consists
of all irreducible automorphic representations π0 ⊠ sgnT for π0 running over a near equivalence class of
SO(X)(AF ) and sgnT running over all automorphic characters of µ2(AF ).
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Remark 2.7. For the U(X) case, the global A-parameter depends on the choice of a sign and a conjugate
self-dual character which determine an embedding of the L-group of U(X) to the L-group of RE/F GLd

where we recall that d := dim X . We refer the reader to [Mok 2015, Section 2.1], in particular (2.1.9)
there, for details. In this work, we choose the +1 sign and the trivial character, which, in Mok’s notation,
means κ = 1 and χκ = 1. Then this corresponds to the standard base change of U(X) to RE/F GLd . We
note that the L-functions we use below are such that

Lv(s, πv × τv)= Lv(s,BC(πv)⊗ τv),

for all places v, automorphic representations π of G(AF ) and τ of RE/F GLa(AF ) where BC denotes the
standard base change.

By Theorem 2.4, we get

Proposition 2.8. Let π be an irreducible automorphic representation of G(AF ) that occurs in A2,φ,ψ(G).
Then:

(1) If φ has a (τ, b)-factor with b maximal among all factors, then the partial L-function L S(s, π × τ∨)

has a pole at s =
1
2(b + 1) and this is its maximal pole.

(2) if the partial L-function L S(s, π × τ∨) has a pole at s =
1
2(b

′
+ 1), then φ has a (τ, b)-factor with

b ≥ b′.

Remark 2.9. In the Mp(X) case, the L-function depends on ψ , but we suppress it from notation here.

Proof. First we collect some properties of the Rankin–Selberg L-functions for GLm × GLn . By the
Rankin–Selberg method, for an irreducible unitary cuspidal automorphic representation τ , L S(s, τ × τ∨)

has a simple pole at s = 1 and is nonzero holomorphic for Re(s)≥ 1 and s ̸= 1; for irreducible unitary
cuspidal automorphic representations τ and τ ′ such that τ ̸∼= τ ′, L S(s, τ×τ ′∨) is nonzero holomorphic for
Re(s)≥ 1. These results can be found in Cogdell’s notes [2000] which collect the results from [Jacquet
et al. 1983; Jacquet and Shalika 1976; Shahidi 1978; 1980].

Assume that φ = ⊞r
i=1(τi , bi ). Then

L S(s, π × τ∨)=

r∏
i=1

bi −1∏
j=0

L S(s −
1
2(bi − 1)+ j, τi × τ∨

)
,

where S is a finite set of places of F outside of which all data are unramified.
Assume that φ has a (τ, b)-factor with b maximal among all factors, then by the properties of the

Rankin–Selberg L-functions, we see that L S(s, π × τ∨) has a pole at s =
1
2(b + 1) and it is maximal.

Next assume that the partial L-function L S(s, π × τ∨) has a pole at s =
1
2(b

′
+ 1). If φ has no

(τ, c)-factor for any c ∈ Z>0, then L S(s, π × τ∨) is holomorphic for all s ∈ C and we get a contradiction.
Thus φ has a (τ, b)-factor. We take b maximal among all factors of the form (τ, ∗) in φ. As b may not
be maximal among all simple factors of φ, we can only conclude that L S(s, π × τ∨) is holomorphic for
Re(s) > 1

2(b + 1). Thus b′
≤ b. □
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Given an irreducible cuspidal automorphic representation π , write φπ for the global A-parameter of π .
By studying poles of L S(s, π × τ∨) for varying τ , we can detect the existence of (τ, b)-factors with
maximal b in φπ . We would also like to construct an irreducible cuspidal automorphic representation with
global A-parameter φπ ⊟ (τ, b) which means removing the (τ, b)-factor from φπ if φπ has a (τ, b)-factor.
Doing this recursively, we will be able to compute the global A-parameter of a given irreducible cuspidal
automorphic representation. In reverse, the construction should produce concrete examples of cuspidal
automorphic representations in a given global A-packet with an elliptic global A-parameter. This will be
investigated in our future work.

In this article, we focus our attention on the study of poles of L S(s, π × τ∨) where τ is a conjugate
self-dual irreducible cuspidal automorphic representation of RE/F GL1(A). Now we write χ for τ to
emphasize that we are considering the case of twisting by characters. This case has been well-studied and
it is known that the poles of L S(s, π×χ∨) are intricately related to invariants of theta correspondence via
the Rallis inner product formula which relates the inner product of two theta lifts to a residue or a value of
the L-function. We refer the readers to [Kudla and Rallis 1994; Wu 2017; Gan et al. 2014; Yamana 2014]
for details. One of the key steps is the regularized Siegel–Weil formula which relates a theta integral to a
residue or a value of a Siegel–Eisenstein series. Our work considers an Eisenstein series which is not of
Siegel type, but which is closely related to L(s, π ×χ∨).

3. Eisenstein series attached to χ ⊠π

In this section we deviate slightly from the notation in Section 2. We use G(X) to denote one of Sp(X),
O(X) and U(X). We let G(X) be a cover group of G(X), which means G(X) = Sp(X) or Mp(X) if
G(X)= Sp(X), G(X)= O(X) if G(X)= O(X) and G(X)= U(X) if G(X)= U(X). We adopt similar
notation to that in [Mœglin and Waldspurger 1995]. We define Eisenstein series on a larger group of the
same type as G(X) and collect some results on their maximal positive poles.

Let π be an irreducible cuspidal automorphic representation of G(X)(A). We always assume
that π is genuine when G(X) = Mp(X). Let χ be a conjugate self-dual automorphic character of
RE/F GL1(A)= A×

E . When E ̸= F , we define

ϵχ =

{
0 if χ |A×

F
= 1;

1 if χ |A×

F
= εE/F .

(3-1)

Let a be a positive integer. Let Xa be the ϵ-skew Hermitian space over E that is formed from X
by adjoining a-copies of the hyperbolic plane. More precisely, let ℓ+a (resp. ℓ−a ) be a totally isotropic
a-dimensional E-vector space spanned by e+

1 , . . . , e+
a (resp. e−

1 , . . . , e−
a ) such that ⟨e+

i , e−

j ⟩ = δi j where
δi j is the Kronecker symbol. Then

Xa = ℓ+a ⊕ X ⊕ ℓ−a

with X orthogonal to ℓ+a ⊕ ℓ−a .
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Let G(Xa) be the isometry group of Xa . Let Qa be the parabolic subgroup of G(Xa) that stabilizes ℓ−a .
Write Qa = Ma Na in the Levi decomposition with Na being the unipotent radical and Ma the standard
Levi subgroup. We have an isomorphism

m : RE/F GLa ×G(X)→ Ma.

where we identify RE/F GLa with RE/F GL(ℓ+a ). Let ρQa be the half sum of the positive roots in Na ,
which can be viewed as an element in a∗

Ma
:= Rat(Ma)⊗Z R where Rat(Ma) is the group of rational

characters of Ma . We note that as Qa is a maximal parabolic subgroup, a∗

Ma
is one-dimensional. Via the

Shahidi normalization [2010], we identify a∗

Ma
with R and thus may regard ρQa as the real number

1
2(dimE X + a), if G(Xa) is unitary;

1
2(dimE X + a − 1), if G(Xa) is orthogonal;
1
2(dimE X + a + 1), if G(Xa) is symplectic.

Let Ka,v be a good maximal compact subgroup of G(Xa)(Fv) in the sense that the Iwasawa decomposition
holds and set Ka =

∏
v Ka,v.

Let AQa (s, χ ⊠ π) denote the space of C-valued smooth functions f on Na(A)Ma(F) \ G(Xa)(A)

such that:

(1) f is right Ka-finite.

(2) For any x ∈ RE/F GLa(A) and g ∈ G(Xa)(A) we have

f (m(x, I )g)= χ(det(x))|det(x)|s+ρQa
AE

f (g).

(3) For any fixed k ∈ Ka , the function h 7→ f (m(I, h)k) on G(X)(A) is in the space of π .

Now let G(X) = Mp(X). This case depends on ψ . Let G̃L1(Fv) be the double cover of GL1(Fv)
defined as follows. As a set it is GL1(Fv)×µ2 and the multiplication is given by

(g1, ζ1)(g2, ζ2)= (g1g2, ζ1ζ2(g1, g2)Fv )

which has a Hilbert symbol twist when multiplying the µ2-part. Analogously we define the double cover
G̃L1(A) of GL1(A). Let χψ,v denote the genuine character of G̃L1(Fv) defined by

χψ,v((g, ζ ))= ζγv(g, ψ1/2,v)
−1

where γv( · , ψ1/2,v) is a fourth root of unity defined via the Weil index. It is the same one as in [Gan and
Ichino 2014, page 521] except that we have put in the subscripts v. Then

χψ((g, ζ ))= ζ
∏
v

γv(gv, ψ1/2,v)
−1

is a genuine automorphic character of G̃L1(A). Let K̃a denote the preimage of Ka under the projection
Mp(Xa)(A)→ Sp(Xa)(A). We will also use˜to denote the preimages of other subgroups of Sp(Xa)(A).
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Let m̃ be the isomorphism
G̃La(A)×µ2 G(X)(A)→ M̃a(A)

that lifts m : GLa(A)× G(X)(A)→ Ma(A). Let d̃et be the homomorphism

G̃La(A)→ G̃L1(A)

(x, ζ ) 7→ (det(x), ζ ).

We keep writing det for the nongenuine homomorphism

G̃La(A)→ GL1(A)

(x, ζ ) 7→ det(x).

Given a nongenuine representation τ of G̃La(A), we can twist it by χψ ◦ d̃et to get a genuine representation
which we denote by τχψ .

We remark that there are canonical embeddings of Na(A) and Sp(Xa)(F) to Mp(Xa)(A), so we may
regard them as subgroups of G(Xa)(A). Let AQa

ψ (s, χ⊠π) denote the space of C-valued smooth functions
f on Na(A)Ma(F) \ G(Xa)(A) such that:

(1) f is right K̃a-finite.

(2) For any x ∈ G̃La(A) and g ∈ G(Xa)(A) we have

f (m̃(x, I )g)= χχψ(d̃et(x))|det(x)|s+ρQa
AE

f (g).

(3) For any fixed k ∈ K̃a , the function h 7→ f (m̃(I, h)k) on G(X)(A) is in the space of π .

To unify notation, we will also write AQa
ψ (s, χ ⊠π) for AQa (s, χ ⊠π) in the nonmetaplectic case. It

should be clear from the context whether we are treating the Sp(X) case or the Mp(X) case.
Now return to the general case, so G(X) is one of Sp(X), O(X), U(X) and Mp(X). Let fs be a

holomorphic section of AQa
ψ (s, χ ⊠π). We associate to it the Eisenstein series

E Qa
ψ (g, fs) :=

∑
γ∈Qa(F) \ G(Xa)(F)

fs(γ g).

Note that the series is over γ ∈ Qa(F) \ Sp(Xa)(F) when G(X) = Mp(X). By Langlands’ theory
of Eisenstein series [Mœglin and Waldspurger 1995, IV.1], this series is absolutely convergent for
Re(s) > ρQa , has meromorphic continuation to the whole s-plane, its poles lie on root hyperplanes and
there are only finitely many poles in the positive Weyl chamber. By our identification of a∗

Ma
with R and

the fact that χ is conjugate self-dual, the statements on poles mean that the poles are all real and that
there are finitely many poles in the half-plane Re(s) > 0.

We give the setup for any positive integer a, though we will only need a = 1 in the statements of
our results. However the proofs require “going up the Witt tower” to G(Xa) for a large enough. Since
we plan to prove analogous results for quaternionic unitary groups in the future, we keep the setup for
general a.
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There is a relation between poles of L-functions and the Eisenstein series.

Proposition 3.1. (1) Assume that the partial L-function L S
ψ(s, π ×χ∨) has its rightmost positive pole

at s = s0. Then E Q1
ψ (g, fs) has a pole at s = s0.

(2) Assume that the partial L-function L S
ψ(s, π ×χ∨) is nonvanishing at s =

1
2 and is holomorphic for

Re(s) > 1
2 . Assume that

G(X)= U(X) with dim X ≡ ϵχ (mod 2);

G(X)= O(X) with dim X odd;

G(X)= Mp(X).

Then E Q1
ψ (g, fs) has a pole at s =

1
2 .

Remark 3.2. This is [Jiang and Wu 2018, Proposition 2.2] in the symplectic case, [Wu 2022a, Proposi-
tion 3.2] in the metaplectic case, [Jiang and Wu 2016, Proposition 2.2] in the unitary case and [Mœglin
1997, Remarque 2] and [Jiang and Wu 2016, Proposition 2.2] in the orthogonal case.

Remark 3.3. The allowed G(X) in item (2) are those for which we have theta dichotomy and epsilon
dichotomy (in the local nonarchimedean setting); see [Gan and Ichino 2014, Corollary 9.2, Theorem 11.1].

Remark 3.4. When π is a cuspidal member in a generic global A-packet of G(X)(A), there is a more
precise result; see Theorem 6.3 which was proved in [Jiang et al. 2013] and strengthened in [Jiang and
Zhang 2020].

We summarize the results on the maximal positive pole of E Q1
ψ (g, fs) from [Ginzburg et al. 2009,

Theorem 3.1; Jiang and Wu 2016, Theorem 3.1; 2018, Theorem 2,8; Wu 2022a, Theorem 4.2].

Theorem 3.5. The maximal positive pole of E Q1
ψ (g, fs) is of the form

s =


1
2(dim X + 1 − (2 j + ϵχ )) if G(X)= U(X);
1
2(dim X − 2 j) if G(X)= O(X);
1
2(dim X + 2 − 2 j) if G(X)= Sp(X);
1
2(dim X + 2 − (2 j + 1)) if G(X)= Mp(X);

(3-2)

where j ∈ Z such that 
rX ≤ 2 j + ϵχ < dim X + 1 if G(X)= U(X);
rX ≤ 2 j < dim X if G(X)= O(X);
rX ≤ 2 j < dim X + 2 if G(X)= Sp(X);
rX ≤ 2 j + 1< dim X + 2 if G(X)= Mp(X);

(3-3)

where rX denotes the Witt index of X.

Remark 3.6. The middle quantities in the inequalities of (3-3) are, in fact, the lowest occurrence index
of π in the global theta lift which depends on χ and ψ ; see Theorem 4.4. In some cases, the lowest
occurrence index turns out to be independent of ψ .
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Remark 3.7. To derive the inequalities rX ≤ · · · , we already need to make use of properties of the global
theta correspondence. The other parts of the statements can be derived by relating our Eisenstein series to
Siegel–Eisenstein series whose poles are completely known. We note that via the Siegel–Weil formula,
Siegel–Eisenstein series are related to global theta correspondence.

4. Theta correspondence

We keep the notation of Section 3. First we define the theta lifts and the two invariants called the first
occurrence index and the lowest occurrence index. Then we relate the invariants to poles of our Eisenstein
series.

Recall that we have taken an ϵ-skew Hermitian space X over E . Let Y be an ϵ-Hermitian space
equipped with the form ⟨ · , · ⟩Y . We note that ⟨ · , · ⟩Y is an F-bilinear pairing

⟨ · , · ⟩Y : Y × Y → E

such that

⟨y2, y1⟩Y = ϵ⟨y1, y2⟩
ϱ

Y , ⟨y1a, y2b⟩Y = aϱ⟨y1, y2⟩Y b

for all a, b ∈ E and y1, y2 ∈ Y . Let G(Y ) be its isometry group. We note that G(X) acts on X from the
right while G(Y ) acts on Y from the left. Let W be the vector space RE/F (Y ⊗E X) over F and equip it
with the symplectic form

⟨ · , · ⟩W : W × W → F

given by

⟨y1 ⊗ x1, y2 ⊗ x2⟩W = trE/F (⟨y1, y2⟩Y ⟨x1, x2⟩
ϱ

X ).

With this set-up, G(X) and G(Y ) form a reductive dual pair inside Sp(W ). Let W = W +
⊕ W − be a

polarization of W . Let MpC1
(W )(Fv) be the C1-metaplectic extension of Sp(W )(Fv). Let ωv denote

the Weil representation of MpC1
(W )(Fv) realized on the space of Schwartz functions S(W +(Fv)). The

Weil representation depends on the additive character ψv, but we suppress it from notation. When v is
archimedean, we actually take the Fock model [Howe 1989] rather than the full Schwartz space and it
is a (sp(W )(Fv), K̃Sp(W ),v)-module but we abuse language and call it a representation of MpC1

(W )(Fv).
When neither G(X) or G(Y ) is an odd orthogonal group, by [Kudla 1994] there exists a homomorphism

G(X)(Fv)× G(Y )(Fv)→ MpC1
(W )(Fv)

that lifts the obvious map G(X)(Fv)× G(Y )(Fv)→ Sp(W )(Fv). In this case, set G(X)= G(X) (resp.
G(Y )= G(Y )). When G(X) is an odd orthogonal group, we take G(Y )(Fv) to be the metaplectic double
cover of G(Y )(Fv) and set G(X)= G(X). Then by [Kudla 1994] there exists a homomorphism

G(X)(Fv)× G(Y )(Fv)→ MpC1
(W )(Fv)
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that lifts G(X)(Fv)× G(Y )(Fv)→ Sp(W )(Fv). The case is analogous when G(Y ) is an odd orthogonal
group. In any case, we get a homomorphism

ιv : G(X)(Fv)× G(Y )(Fv)→ MpC1
(Fv).

It should be clear from the context when G(X) (resp. G(Y )) refers to a cover group and when it is
not truly a cover. In the unitary case, there are many choices of ιv. Once we fix χ and an additional
character χ2, then ιv is fixed. This is worked out in great details in [Harris et al. 1996, Section 1]. Our
(χ, χ2) matches (χ1, χ2) in [Harris et al. 1996, (0.2)]. We note that Y should be compatible with χ and
χ determines the embedding of G(X)(A) into MpC1

(A) whereas X should be compatible with χ2 and χ2

determines the embedding of G(Y )(A) into MpC1
(A). By “compatible”, we mean ϵχ ≡ dim Y (mod 2)

(resp. ϵχ2 ≡dim X (mod 2)); see [Kudla 1994] for more details. We pull backωv to G(X)(Fv)×G(Y )(Fv)
via ιv and still denote the representation by ωv.

Denote by ι the adelic analogue of ιv . We also have the (global) Weil representation ω of MpC1
(A) on

the Schwartz space S(W +(A)) and its pullback via ι to G(X)(A)× G(Y )(A).
Then we can define the theta function which will be used as a kernel function. Let

θX,Y (g, h,8) :=

∑
w∈W +(F)

ω(ι(g, h))8(w)

for g ∈ G(X)(A), h ∈ G(Y )(A) and 8 ∈ S(W +(A)). It is absolutely convergent and is an automorphic
form on G(X)(A)× G(Y )(A). For f ∈ π , set

θY
X ( f,8) :=

∫
[G(X)]

f (g)θX,Y (g, h,8) dg.

Note that we write [G(X)] for G(X)(F)\G(X)(A)when G(X) is not metaplectic and G(X)(F)\G(X)(A)
or more explicitly Sp(X)(F) \ Mp(X)(A) when G(X) is metaplectic. This is an automorphic form on
G(Y )(A). It depends on χ and χ2 in the unitary case and when we want to emphasize the dependency,
we will write θY,χ

X,χ2
( f,8). Let 2Y

X (π) denote the space of functions spanned by the θY
X ( f,8) and let

2
Y,χ
X,,χ2

(π) denote the space of functions spanned by the θY,χ
X,χ2

( f,8) in the unitary case.
From now on assume that Y is anisotropic (possibly zero), so that it sits at the bottom of its Witt tower.

Define Yr to be the ϵ-Hermitian space formed by adjoining r -copies of the hyperbolic plane to Y . These
Yr form the Witt tower of Y . By the tower property [Rallis 1984; Wu 2013], if the theta lift to G(Yr ) is
nonzero then the theta lift to G(Yr ′) is also nonzero for all r ′

≥ r .
Define the first occurrence index of π in the Witt tower of Y to be

FOY,χ
X (π) :=


min{dim Yr |2

Yr ,χ
X,χ2

(π) ̸= 0} if G(X)= U(X);
min{dim Yr |2

Yr
X (π ⊗ (χ ◦ υ)) ̸= 0} if G(X)= O(X);

min{dim Yr |2
Yr
X (π) ̸= 0} if G(X)= Sp(X) or Mp(X).

(4-1)

Note that it depends on χ but not on χ2 in the unitary case as changing χ2 to another compatible one
produces only a character twist on 2Yr ,χ

X,χ2
(π). For more details, see [Wu 2022b, (1-1)]. In the orthogonal
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case, we twist π by χ ◦υ where υ denotes the spinor norm. If G(X)= Sp(X) or Mp(X), we require that
χY = χ where χY is the quadratic automorphic character of GL1(A) associated to Y given by

χY (g)= (g, (−1)dim Y (dim Y−1)/2 det⟨ · , · ⟩Y ),

where ( · , · ) is the Hilbert symbol.
Define the lowest occurrence index to be

LOχ

X (π) := min{FOY,χ
X (π) | Y is compatible with χ}, (4-2)

when G(X)= U(X),Sp(X) or Mp(X). Here compatibility means that

dim Y ≡ ϵχ (mod 2) if G(X)= U(X);

χY = χ if G(X)= Sp(X) or Mp(X).
(4-3)

Define the lowest occurrence index to be

LOχ

X (π) := min{FOY,χ
X (π ⊗ sgnT ) | T a set of even number of places of F}, (4-4)

when G(X)= O(X).
We have the following relations of the first occurrence (resp. the lowest occurrence) and the poles (resp.

the maximal positive pole) of the Eisenstein series; see [Jiang and Wu 2018, Corollary 3.9, Theorem 3.10]
for the symplectic case, [Wu 2022a, Corollary 6.3, Theorem 6.4] for the metaplectic case, [Jiang and Wu
2016, Corollaries 3.5 and 3.7] for the unitary case and [Ginzburg et al. 2009, Theorems 5.1 and 1.3] for
the orthogonal case.

Theorem 4.1. Let π be an irreducible cuspidal automorphic representation of G(X)(A). Let χ be a
conjugate self-dual automorphic character of RE/F GL1(A). Let Y be an anisotropic ϵ-Hermitian space
that is compatible with χ in the sense of (4-3). Assume that FOY,χ

X (π)= dim Y + 2r . Set

s0 =


1
2(dim X + 1 − (dim Y + 2r)) if G(X)= U(X);
1
2(dim X − (dim Y + 2r)) if G(X)= O(X);
1
2(dim X + 2 − (dim Y + 2r)) if G(X)= Sp(X) or Mp(X).

(4-5)

Assume that s0 ̸= 0. If G(X) = O(X) and s0 < 0, further assume that 1
2 dim X < r < dim X − 2. Then

s = s0 is a pole of the Eisenstein series E Q1
ψ (g, fs) for some choice of fs ∈ AQ1

ψ (s, χ ⊠π).

Remark 4.2. Using the notation from Section 2. The quantity s0 in (4-5) can be written uniformly as

1
2(dG(X)∨ − dG(Yr )∨ + 1).

Remark 4.3. Note that we always have r ≤ dim X . The extra condition when G(X)= O(X) is to avoid
treating period integrals over the orthogonal groups of split binary quadratic forms, as our methods cannot
deal with the technicality. Theorem 4.1 allows negative s0. It is possible to detect nonmaximal poles and
negative poles of the Eisenstein series by the first occurrence indices.
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Theorem 4.4. Let π be an irreducible cuspidal automorphic representation of G(X)(A). Let χ be
a conjugate self-dual automorphic character of RE/F GL1(A). Then the maximal positive pole of
E Q1
ψ (g, fs) for fs running over AQ1

ψ (s, χ ⊠π) is at s = s0 ∈ R if and only if

LOχ

X (π)=


dim X + 1 − 2s0 if G(X)= U(X);
dim X − 2s0 if G(X)= O(X);
dim X + 2 − 2s0 if G(X)= Sp(X) or Mp(X).

(4-6)

Remark 4.5. Theorem 4.4 does not allow negative s0.

In Remark 3.7, we mentioned that the part rX ≤ · · · in Theorem 3.5 is proved by using theta corre-
spondence. What we used is that we always have LOχ

X (π) ≥ rX by the stable range condition [Rallis
1984, Theorem I.2.1].

5. Application to global Arthur packets

We have derived relations among (χ, b)-factors of global A-parameters, poles of partial L-functions,
poles of Eisenstein series and lowest occurrence indices of global theta lifts. Combining these, we have
the following implication on global A-packets.

Theorem 5.1. Let π be an irreducible cuspidal automorphic representation of G(X)(A). Let φπ be its
global A-parameter. Let χ be a conjugate self-dual automorphic character of RE/F GL1(A). Assume
that φπ has a (χ, b)-factor for some positive integer b. Then

b ≤


dim X − rX if G(X)= U(X);
dim X − rX − 1 if G(X)= O(X);
dim X − rX + 1 =

1
2 dim X + 1 if G(X)= Sp(X) or Mp(X).

(5-1)

where rX denotes the Witt index of X.

Proof. If b is not maximal among all factors (τ, b) appearing in φπ , then b< 1
2 dG(X)∨ . Then it is clear that

b satisfies (5-1). Now we assume that b is maximal among all factors appearing in φπ . By Proposition 2.8,
L S(s, π ×χ−1) has its rightmost pole at s =

1
2(b + 1). Then by Proposition 3.1, E Q1

ψ (g, fs) has a pole at
s =

1
2(b + 1) for some choice of fs . Assume that s =

1
2(b1 + 1) is the rightmost pole of the Eisenstein

series with b1 ≥ b. By Theorem 3.5,

1
2(b1 + 1)≤


1
2(dim X + 1 − rX ) if G(X)= U(X);
1
2(dim X − rX ) if G(X)= O(X);
1
2(dim X + 2 − rX ) if G(X)= Sp(X) or Mp(X);

or in other words, b1 is less than or equal to the quantity on the RHS of (5-1). Using the fact that b ≤ b1,
we get the desired bound for b. □

Remark 5.2. Our result generalizes [Jiang and Liu 2018, Theorem 3.1] for symplectic groups to classical
groups and metaplectic groups. In addition, we do not require the assumption on the wave front set in
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[loc. cit., Theorem 3.1]. This type of result has been used in [loc. cit., Section 5] to find a Ramanujan
bound which measures the departure of the local components of a cuspidal π from being tempered.

The metaplectic case has been treated in [Wu 2022a, Theorem 0.1], though the proof is not written
down explicitly. Here we supply the detailed arguments for all classical groups and metaplectic groups
uniformly.

The corollary below follows immediately from the theorem.

Corollary 5.3. The global A-packet 5φ attached to the elliptic global A-parameter φ cannot have a
cuspidal member if φ has a (χ, b)-factor with

b >


dimE X − rX if G(X)= U(X);
dimF X − rX − 1 if G(X)= O(X);
dim X − rX + 1 =

1
2 dim X + 1 if G(X)= Sp(X) or Mp(X).

6. Generic global A-packets

Following the terminology of [Arthur 2013], we say that an elliptic global A-parameter is generic if
it is of the form φ = ⊞r

i=1(τi , 1) and we say a global A-packet is generic if its global A-parameter is
generic. Assume that π is a cuspidal member in a generic global A-packet. Then our results can be made
more precise. We note that our results for Mp(X) are conditional on results on normalized intertwining
operators; see Assumption 6.1 and Remark 6.2.

First assume that G(X) is quasisplit and that π is globally generic. We explain what we mean by
globally generic. We use the same set-up as in [Shahidi 1988, Section 3]. Let B be a Borel subgroup of
G(X). Let N denote its unipotent radical and let T be a fixed choice of Levi subgroup of B. Of course, in
this case T is a maximal torus of G(X). Let F denote an algebraic closure of F . Let 1 denote the set of
simple roots of T (F) in N (F). Let {Xα}α∈1 be a Gal(F/F)-invariant set of root vectors. Recall that ψ is
a fixed nontrivial automorphic character of AF which is used in the definitions of the Weil representation
and the global A-packets for Mp(X). It gives rise to generic characters of N (A). We use the one defined
as follows. For each place v of F , we define a character ψN ,v of N (Fv). Write an element of N (Fv) as∏
α∈1 exp(xαXα) for xα ∈ Fv such that σ xα = xσα with σ ∈ Gal(F/F). Set

ψN ,v

( ∏
α∈1

exp(xαXα)
)

= ψv

(∑
α∈1

xα

)
.

Let ψN = ⊗vψN ,v. In the Mp(X) case, we view N (A) as a subgroup of Mp(X)(A) via the canonical
splitting. We require that π is globally generic with respect to the generic character ψN of N (A). Thus
the notion of global genericity depends on the choice of the generic automorphic character of N (A).
However by [Cogdell et al. 2004, Appendix A], the choice has no effect on the L-factors, the ε-factors
and the global A-parameter for π in the case of G(X) = Sp(X),O(X),U(X). The case of Mp(X) is
highly dependent on the choice.
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When π is globally generic, b = 1 for every factor (τ, b) in the global A-parameter φπ . This is because
the Langlands functorial lift of π is an isobaric sum of conjugate self-dual cuspidal representations of
some RE/F GLn(A); see Theorem 11.2 of [Ginzburg et al. 2011].

By [Jiang et al. 2013], there is a more precise relation on the poles of L-functions and the poles of
Eisenstein series. The set of possible poles of the normalized Eisenstein series is determined by the
complete L-function L(s, π×χ∨). From the assumption that π is globally generic, in the right half-plane,
L(s, π×χ∨) has at most a simple pole at s = 1. In fact we only need [loc. cit., Proposition 4.1] rather than
the full strength of [loc. cit., Theorem 1.2] which allows the induction datum to be a Speh representation
on the general linear group factor of the Levi. By [Jiang and Zhang 2020, Theorem 5.1], [Jiang et al.
2013, Proposition 4.1] can be strengthened to include the case where π is a cuspidal member in a generic
global A-packet of G(X)(A) where G(X) = Sp(X),O(X),U(X) does not have to be quasisplit. We
rephrase [Jiang et al. 2013, Proposition 4.1] in our context as Theorem 6.3.

First we set up some notation and outline the method for extending [loc. cit., Proposition 4.1] to the
case of Mp(X). Let

ρ+
:=


Asaiη where η= (−1)dim X+1 if G(X)= U(X);
∧

2 if G(X)= O(X) with dim X odd or if G(X)= Mp(X);
Sym2 if G(X)= O(X) with dim X even or if G(X)= Sp(X);

(6-1)

and

ρ−
:=


Asai−η where η= (−1)dim X+1 if G(X)= U(X);
Sym2 if G(X)= O(X) with dim X odd or if G(X)= Mp(X);
∧

2 if G(X)= O(X) with dim X even or if G(X)= Sp(X).
(6-2)

The results of [loc. cit.] do not cover the metaplectic case, but the method should generalize without
difficulty. We explain the strategy. First the poles of the Eisenstein series are related to those of the
intertwining operators

M(w0, τ |·|
s ⊠π) : IndG(Xa)(A)

Qa(A)
(τ |·|s ⊠π)→ IndG(X1)(A)

Qa(A)
(τ |·|−s ⊠π)

where τ is a conjugate self-dual cuspidal automorphic representation of GLa(AE) and w0 is the longest
Weyl element in Qa \ G(Xa)/Qa . Then define the normalized intertwining operator

N (w0,τ |·|
s⊠π) :=

L(s,π×τ∨)L(2s,τ,ρ−)

L(s+1,π×τ∨)L(2s+1,τ,ρ−)ε(s,π×τ∨)ε(2s,τ,ρ−)
·M(w0,τ |·|

s⊠π). (6-3)

The proof of [loc. cit., Proposition 4.1] relies on the key result that the normalized intertwining operator
is holomorphic and nonzero for Re s ≥

1
2 . Then it boils down to finding the poles of the normalizing

factors or equivalently

L(s, π × τ∨)L(2s, τ, ρ−)

L(s + 1, π × τ∨)L(2s + 1, τ, ρ−)
.
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Once we have the key result available, we expect to have a version of [loc. cit., Proposition 4.1] for
the metaplectic groups. Note that our ρ± defined in (6-1) and (6-2) is different from the ρ and ρ− in
[loc. cit.].

Then by using an inductive formula, we expect to be able to prove [loc. cit., Theorem 1.2] as well. We
hope to supply the details in a future work.

Next we allow G(X) to be non-quasisplit. We assume that π is a cuspidal member in a generic global
A-packet of G(X). Then by [Jiang and Zhang 2020, Theorem 5.1], (6-3) is holomorphic and nonzero for
Re s ≥

1
2 when G(X)= Sp(X),O(X),U(X). Then the proof of [Jiang et al. 2013, Proposition 4.1] goes

through verbatim for such π . The proof of [Jiang and Zhang 2020, Theorem 5.1] does not generalize
readily to the case of Mp(X) as the relevant results for Mp(X) are not available.

Thus we make an assumption on the normalized intertwining operator:

Assumption 6.1. The normalized intertwining operator N (w0, χ |·|
s ⊠π) is holomorphic and nonzero

for Re s ≥
1
2 .

Remark 6.2. This is shown to be true by [Jiang and Zhang 2020, Theorem 5.1] when π is a cuspidal
member in a generic global A-packet of G(X)(A) for G(X)= Sp(X),O(X),U(X). Thus this is only a
condition when G(X)= Mp(X).

Theorem 6.3. Assume Assumption 6.1. Let π be a cuspidal member in a generic global A-packet of
G(X)(A). Let χ be a conjugate self-dual automorphic character of RE/F GL1(A).

(1) Assume G(X)=U(X)with ϵχ ̸≡dim X (mod 2), O(X)with dim X even or Sp(X). Then L(s, π×χ∨)

has a pole at s = 1 if and only if E Q1(g, fs) has a pole at s = 1 and it is its maximal pole.

(2) Assume G(X)=U(X)with ϵχ ≡dim X (mod 2), O(X)with dim X odd or Mp(X). Then L(s, π×χ∨)

is nonvanishing at s =
1
2 if and only if E Q1

ψ (g, fs) has a pole at s =
1
2 and it is its maximal pole.

Remark 6.4. The result of [Jiang et al. 2013] involves normalized Eisenstein series, but the normalization
has no impact on the positive poles. The following remarks use the notation in [loc. cit.]. We only need
the case b = 1 in [loc. cit.] which is Proposition 4.1 there. Furthermore we only apply it in the case
where τ is a character. The condition that L(s, τ, ρ) has a pole at s = 1 is automatically satisfied by
the requirement on our χ that it is conjugate self-dual of parity (−1)NG(X)∨+1; see Section 2, especially
Remark 2.3.

The global A-parameter φπ can possibly have a (χ, 1)-factor only when χ satisfies the condition that
L(s, χ, ρ+) has a pole at s = 1. Due to the parity condition on factors of an elliptic global A-parameter,
in some cases, φπ cannot have a (χ, 1)-factor.

Combining our result (Theorem 4.4) on poles of Eisenstein series and lowest occurrence indices with
Theorem 6.3 which gives a precise relation between poles of the complete L-function and those of the
Eisenstein series, we get
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Theorem 6.5. Assume Assumption 6.1. Let π be a cuspidal member in a generic global A-packet
of G(X)(A). Let χ be a conjugate self-dual automorphic character of RE/F GL1(A). In each of the
following statements, we consider only those G(X) that are listed:

(1) Assume that L(s, π ×χ∨) has a pole at s = 1. Then

LOχ

X (π)=


dim X − 1 if G(X)= U(X) and ϵχ ̸≡ dim X (mod 2);
dim X − 2 if G(X)= O(X) with dim X even;

dim X if G(X)= Sp(X).

(2) Assume that L(s, π ×χ∨) does not have a pole at s = 1. Then

LOχ

X (π)≥


dim X + 1 if G(X)= U(X) and ϵχ ̸≡ dim X (mod 2);
dim X if G(X)= O(X) with dim X even;

dim X + 2 if G(X)= Sp(X).

(3) Assume L
( 1

2 , π ×χ∨
)
̸= 0. Then

LOχ

X (π)=


dim X if G(X)= U(X) and ϵχ ≡ dim X (mod 2);
dim X − 1 if G(X)= O(X) with dim X odd;

dim X + 1 if G(X)= Mp(X).

(4) Assume L
( 1

2 , π ×χ∨
)
= 0. Then

LOχ

X (π)≥


dim X + 2 if G(X)= U(X) and ϵχ ≡ dim X (mod 2);
dim X + 1 if G(X)= O(X) with dim X odd;

dim X + 3 if G(X)= Mp(X).

Remark 6.6. By the conservation relation for local theta correspondence [Sun and Zhu 2015], there
always exists an ϵ-Hermitian space Z[v] over Ev of dimension given by the RHS of the equalities in
items (1), (3) such that the local theta lift of πv to G(Z[v]) is nonvanishing. Thus in the case of items (2), (4)
and G(X) ̸= O(X), the collection {Z[v]}v for v running over all places of F is always incoherent, i.e., there
does not exist an ϵ-Hermitian space Z over E such that the localization Zv is isomorphic to Z[v] for all v.
In the case of items (2), (4) and G(X)= O(X), we have a nontrivial theta lift of πv⊗(χv ◦υv)⊗(η[v]◦det)
to G(Z[v]) for η[v] being the trivial character or the sign character for each place v of F , but the collection
{η[v]}v is incoherent, i.e., there does not exist an automorphic character η of A×

F such that the localization
ηv is equal to η[v] for all v; see the definitions of first occurrence (4-1) and lowest occurrence (4-4) for
O(X) for why we have a (χv ◦υv)-twist. We also note that when π is an irreducible cuspidal automorphic
representation and L

( 1
2 , π ×χ∨

)
= 0, it is conjectured that there is an arithmetic version of the Rallis

inner product formula which says that the conjectural Beilinson–Bloch height pairing of arithmetic theta
lifts (which are cycles on Shimura varieties constructed from an incoherent collection of ϵ-Hermitian
spaces) gives the derivative L ′

( 1
2 , π × χ∨

)
up to some ramified factors and some abelian L-functions.

The low rank cases have been proved in [Kudla et al. 2006; Liu 2011a; 2011b]. More recently, the cases
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of unitary groups of higher rank have been proved in [Li and Liu 2021; 2022], conditional on hypothesis
of the modularity of Kudla’s generating functions of special cycles.

In terms of “(χ, b)”-factors, we have

Theorem 6.7. Let G(X)= U(X) with ϵχ ̸≡ dim X (mod 2), G(X)= O(X) with dim X even or G(X)=

Sp(X). Let π be a cuspidal member in a generic global A-packet of G(X)(A). Let χ be a conjugate
self-dual automorphic character of RE/F GL1(A). Then the following are equivalent:

(1) The global A-parameter φ of π has a (χ, 1)-factor.

(2) The complete L-function L(s, π ×χ∨) has a pole at s = 1 (and this is its maximal pole).

(3) The Eisenstein series E Q1(g, fs) has a pole at s = 1 for some choice of fs ∈ AQ1(s, χ ⊠π) (and this
is its maximal pole).

(4) The lowest occurrence index LOχ

X (π) is
dim X − 1 if G(X)= U(X);
dim X − 2 if G(X)= O(X);
dim X if G(X)= Sp(X).

Remark 6.8. The statements that the poles are maximal are automatic since π lies in a generic global
A-packet. We note that when G(X)= U(X) with ϵχ ≡ dim X (mod 2), G(X)= O(X) with dim X odd
or G(X)= Mp(X), φπ cannot have a (χ, 1)-factor as the parity condition is not satisfied.
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