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Equidistribution theorems for holomorphic
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Henry H. Kim, Satoshi Wakatsuki and Takuya Yamauchi

This paper is an extension of Kim et al. (2020a), and we prove equidistribution theorems for families of
holomorphic Siegel cusp forms of general degree in the level aspect. Our main contribution is to estimate
unipotent contributions for general degree in the geometric side of Arthur’s invariant trace formula in
terms of Shintani zeta functions in a uniform way. Several applications, including the vertical Sato–Tate
theorem and low-lying zeros for standard L-functions of holomorphic Siegel cusp forms, are discussed.
We also show that the “nongenuine forms”, which come from nontrivial endoscopic contributions by
Langlands functoriality classified by Arthur, are negligible.
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1. Introduction

Let G be a connected reductive group over Q and A the ring of adeles of Q. An equidistribution
theorem for a family of automorphic representations of G.A/ is one of recent topics in number theory
and automorphic representations. After Sauvageot’s important results [1997], Shin [2012] proved a
so-called limit multiplicity formula which shows that the limit of an automorphic counting measure is
the Plancherel measure. It implies the equidistribution of Hecke eigenvalues or Satake parameters at a
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fixed prime in a family of cohomological automorphic forms on G.A/. A quantitative version of Shin’s
result is given by Shin and Templier [2016]. A different approach is discussed in [Finis et al. 2015] for
G D GLn or SLn, treating more general automorphic forms which are not necessarily cohomological.
Note that in the works of Shin and Shin and Templier, one needs to consider all cuspidal representations
in the L-packets. Shin [2012, second paragraph on p. 88] suggested that one can isolate just holomorphic
discrete series at infinity. In [Kim et al. 2020a; 2020b], we carried out his suggestion and established
equidistribution theorems for holomorphic Siegel cusp forms of degree 2. We should also mention Dalal’s
work [2022]; see Remark 3.12. See also the related works [Knightly and Li 2019; Kowalski et al. 2012].

In this paper we generalize several equidistribution theorems to holomorphic Siegel cusp forms of
general degree. A main tool is Arthur’s invariant trace formula, as used in the previous work, but we need
a more careful analysis in the computation of unipotent contributions. Let us prepare some notations to
explain our results.

Let G D Sp.2n/ be the symplectic group of rank n defined over Q. For an n-tuple of integers
kD .k1; : : : ; kn/with k1�� � ��kn>nC1, letDhol

l
D�k be the holomorphic discrete series representation

of G.R/ with the Harish-Chandra parameter l D .k1� 1; : : : ; kn�n/ or the Blattner parameter k.
Let A (respectively, Af ) be the ring of (respectively, finite) adeles of Q, and OZ be the profinite completion

of Z. For S1 a finite set of rational primes, let S Df1g[S1, QS1 D
Q
p2S1

Qp , AS be the ring of adeles
outside S and OZS D

Q
p 62S1

Zp. We denote by 2G.QS1/ the unitary dual of G.QS1/ D
Q
p2S1

G.Qp/

equipped with the Fell topology. Fix a Haar measure �S on G.AS / so that �S .G. OZS //D 1, and let U be
a compact open subgroup of G.AS /. Consider the algebraic representation � D �k of the highest weight k
so that it is isomorphic to the minimal K1-type of Dhol

l
. Let hU denote the characteristic function of U .

Then we define a measure on 2G.QS1/ by

O�U;S1; �;Dhol
l
WD

1

vol.G.Q/nG.A//�dim �

X
�0S1
21G.QS1 /

�S .U /�1mcusp
�
�0S1 IU; �;D

hol
l

�
ı�0S1

; (1-1)

where ı�0S1
is the Dirac delta measure supported at �0S1 , a unitary representation of G.QS1/, and

mcusp.�
0
S1
IU; �;Dhol

l /D
X

�2….G.A//0

�S1'�
0
S1
; �1'D

hol
l

mcusp.�/ tr.�S .hU //; (1-2)

where ….G.A//0 stands for the isomorphism classes of all irreducible unitary cuspidal representations of
G.A/ and �S D˝0

p…S
�p.

To state the equidistribution theorem, we need to introduce the Hecke algebra C1c .G.QS1// which
is dense under the map h 7! Oh, where Oh.�S1/ D tr.�S1.h// is in F.2G.QS1// consisting of suitable
O�

pl
S1

-measurable functions on 2G.QS1/. (See [Shin 2012, Section 2.3] for that space.)
Let N be a positive integer. Put SN D fp prime W p jN g. We assume that S1\SN D∅. We denote

by Kp.N / the principal congruence subgroup of level N for G.Zp/ (see (2-3) for the definition), and
set KS .N /D

Q
p…S Kp.N /. For each rational prime p, let us consider the unramified Hecke algebra

Hur.G.Qp//�C
1
c .Qp/, and for each � >0, Hur.G.Qp//

� , the linear subspace of Hur.G.Qp// consisting
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of all Hecke elements whose heights are less than �. (See (2-2).) Let Hur.G.Qp//
�
�1 be the subset of

Hur.G.Qp//
� consisting of all Hecke elements whose complex values have absolute values less than 1.

Our first main result is

Theorem 1.1. Fix k D .k1; : : : ; kn/ satisfying k1 � � � � � kn > nC 1. Fix a positive integer �. Then
there exist constants a; b and c0 > 0 depending only on G such that for each h1 D p̋2S1h1;p, where
h1;p 2Hur.G.Qp//

�
�1, we have

O�KS .N/; S1; �;Dhol
l
.bh1/D O�pl

S1
.bh1/CO�� Y

p2S1

p

�a�Cb
N�n

�
;

if N � c0
Q
p2S1

p2n� . Note that the implicit constant of the Landau O-notation is independent of S1, N
and h1.

Let us apply this theorem to the vertical Sato–Tate theorem and higher level density theorem for
standard L-functions of holomorphic Siegel cusp forms.

The principal congruence subgroup �.N/ of level N for G.Z/ is obtained by

�.N/DG.Q/\G.R/K.N /;

whereK.N/D
Q
p<1Kp.N /. Let Sk.�.N // be the space of holomorphic Siegel cusp forms of weight k

with respect to �.N/ (see the next section for a precise definition), and let HEk.N / be a basis consisting
of all Hecke eigenforms outside N . We can identify HEk.N / with a basis of K.N/-fixed vectors in
the set of cuspidal representations of G.A/ whose infinity component is (isomorphic to) Dhol

l
. (See

the next section for the details.) Put dk.N /D jHEk.N /j. Then we have [Wakatsuki 2018], for some
constant Ck > 0,

dk.N /D CkCNN
2n2Cn

COk
�
N 2n2

�
; (1-3)

where CN D
Q
pjN

Qn
iD1.1�p

�2i /. Note that
Qn
iD1 �.2i/

�1 < CN < 1.
For each F 2HEk.N /, we denote by �F D �1˝˝0p�F;p the corresponding automorphic cuspidal

representation of G.A/. Henceforth, we assume that

k1 > � � �> kn > nC 1: (1-4)

Then the Ramanujan conjecture is true, namely, �F;p is tempered for any p; see Theorem 4.3. Unfortu-
nately, this assumption forces us to exclude the scalar-valued Siegel cusp forms.

Let 2G.Qp/ur; temp be the subspace of 2G.Qp/ consisting of all unramified tempered classes. We
denote by .�1.�F;p/; : : : ; �n.�F;p// the element of � corresponding to �F;p under the isomorphism
2G.Qp/ur; temp ' Œ0; ��n=Sn DW�. Let �p be the measure on � defined in Section 7.

Theorem 1.2. Assume (1-4). Fix a prime p. Then the set˚�
�1.�F;p/; : : : ; �n.�F;p/

�
2� W F 2HEk.N /

	
is �p-equidistributed in �, namely, for each continuous function f on �,

lim
N!1
.p;N/D1

1

dk.N /

X
F 2HEk.N/

f
�
�1.�F;p/; : : : ; �n.�F;p/

�
D

Z
�

f .�1; : : : ; �n/�p:
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By using Arthur’s endoscopic classification, we have a finer version of the above theorem. Under
the assumption (1-4), the global A-parameter describing �F , for F 2HEk.N /, is always semisimple.
(See Definition 4.1.) Let HEk.N /g be the subset of HEk.N / consisting of F such that the global
A-packet containing �F is associated to a simple global A-parameter. They are Siegel cusp forms which
do not come from smaller groups by Langlands functoriality in Arthur’s classification. In this paper, we
call them genuine forms. Let HEk.N /ng be the subset of HEk.N / consisting of F such that the global
A-packet containing �F is associated to a nonsimple global A-parameter, i.e., they are Siegel cusp forms
which come from smaller groups by Langlands functoriality in Arthur’s classification. We call them
nongenuine forms. We show that nongenuine forms are negligible. The following result is interesting in
its own right. For this, we need some further assumptions on the level N .

Theorem 1.3. Assume (1-4). We also assume

(1) N is an odd prime or

(2) N is odd and all prime divisors p1; : : : ; pr (r � 2/ of N are congruent to 1 modulo 4 such that� pi
pj

�
D 1 for i ¤ j , where

�
�
�

�
denotes the Legendre symbol.

Then

(1) jHEk.N /g j D CkCNN 2n2CnCOn;k;�
�
N 2n2Cn�1C�

�
for any � > 0;

(2) jHEk.N /ng j DOn;k;�
�
N 2n2Cn�1C�

�
for any � > 0;

(3) for a fixed prime p, the set
˚
.�1.�F;p/; : : : ; �n.�F;p// 2� W F 2HEk.N /

g
	

is �p-equidistributed
in �.

The above assumptions on the level N are necessary in order to estimate nongenuine forms related
to nonsplit but quasisplit orthogonal groups in the Arthur’s classification by using the transfer theorems
for some Hecke elements in the quadratic base change in the ramified case [Yamauchi 2021]. (See
Proposition 4.12 for the details.)

Next, we discuss `-level density (where ` is a positive integer) for standard L-functions in the level
aspect. Let us denote by ….GLn.A//0 the set of all isomorphism classes of irreducible unitary cuspidal
representations of GLn.A/. Keep the assumption on k as in (1-4) and the above assumption on the
level N . Then F can be described by a global A-parameter �riD1�i with �i 2 ….GLmi .A//

0 andPr
iD1mi D 2nC 1. Then we may define the standard L-function of F 2HEk.N / by

L.s; �F ;St/ WD
rY
iD1

L.s; �i /;

which coincides with the classical definition in terms of Satake parameters of F outside N . Then we
show unconditionally that the `-level density of the standard L-functions of the family HEk.N / has the
symmetry type Sp in the level aspect. (See Section 9 for the precise statement. Shin and Templier [2016]
showed it under several hypotheses for a family which includes nonholomorphic forms.) Here, in order to
obtain lower bounds for conductors, it is necessary to introduce a concept of newforms. This may be of
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independent interest. Since any local newform theory for Sp.2n/ is unavailable except for nD 1; 2, we
define the old space Sold

k
.�.N // to be the intersection of Sk.�.N // with the smallest G.Af /-invariant

space of functions on G.Q/nG.A/ containing Sk.�.M// for all proper divisors M of N . The new space
Snew
k
.�.N // is the orthogonal complement of Sold

k
.�.N // in Sk.�.N // with respect to the Petersson

inner product. Then if F 2 Snew
k
.�.N //, q.F / � N 1=2 (Theorem 8.3), and if N is squarefree, we can

show that dimSnew
k
.�.N //� �.n2/�1dk.N / if n� 2 (Theorem 5.4).

As a corollary, we obtain a result on the order of vanishing of L.s; �F ;St/ at s D 1
2

, the center of
symmetry of the L-function, by using the method of Iwaniec et al. [2000] for holomorphic cusp forms
on GL2.A/ (see also [Brumer 1995] for another formulation related to the Birch–Swinnerton–Dyer
conjecture): Let rF be the order of vanishing of L.s; �F ;St/ at s D 1

2
. Then we show that under the

GRH (generalized Riemann hypothesis),
P
F 2HEk.N/

rF � Cdk.N / for some constant C > 0. This
would be the first result of this kind in Siegel modular forms. We can also show a similar result for the
degree 4 spinor L-functions of GSp.4/.

Let us explain our strategy in comparison with the previous works. We choose a test function

f D �S .K.N //�1f�h1hKS .N/ 2 C
1
c .G.R//˝

�
p̋2S1H

ur.G.Qp//
�
�1

�
˝C1c .G.A

S //

such that f� is a pseudocoefficient of Dhol
l

normalized as tr.�1.f�//D 1. A starting main equality is

Ispec.f /D I.f /D Igeom.f /;

where Ispec.f / (respectively, Igeom.f /) is the spectral (respectively, the geometric) side of Arthur’s
invariant trace I.f /. Under the assumption kn > nC 1, the spectral side becomes simple by the results
of Arthur [1989] and Hiraga [1996], and it is directly related to Sk.�.N // because of the choice of a
pseudocoefficient of Dhol

l
. Now the geometric side is given by

Igeom.f /D
X
M2L

.�1/dim.AM =AG/ jW
M
0 j

jW G
0 j

X

2.M.Q//

M; QS

aM . QS; 
/IGM .
; f�/J
M
M .
; hP /; (1-5)

where QS D f1g t SN t S1 and .M.Q//
M; QS

denotes the set of .M; QS/-equivalence classes in M.Q/
(see [Arthur 2005, p. 113]); for each M in a finite set L, we choose a parabolic subgroup P such that M
is a Levi subgroup of P . (See loc. cit. for details.) Roughly speaking:

� If the test function f is fixed, the terms on (1-5) vanish except for a finite number of .M; QS/-
equivalence classes.

� The factor aM . QS; 
/ is called a global coefficient and it is almost the volume of the centralizer of 

in M if 
 is semisimple. The general properties are unknown.

� The factor IGM .
; f�/ is called an invariant weighted orbital integral, and as the notation shows, it
strongly depends on the weight k of � D �k . Therefore, it is negligible when we consider the level
aspect.

� The factor JMM .
; hP / is an orbital integral of 
 for hD �S .K.N //�1h1hKS .N/.
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According to the types of conjugacy classes and M , the geometric side is divided into the terms

Igeom.f /D I1.f /C I2.f /C I3.f /C I4.f /;

where

� I1.f /: M DG and 
 D 1;

� I2.f /: M ¤G and 
 D 1;

� I3.f /: 
 is unipotent, but 
 ¤ 1;

� I4.f /: the other contributions.

The first term I1.f / is f .1/ up to constant factors, and the Plancherel formula O�pl
S1
. Of / D f .1/

yields the first term of the equality in Theorem 1.1. The condition N � c0
Q
p2S1

p2n� in Theorem 1.1
implies that the nonunipotent contribution I4.f / vanishes by [Shin and Templier 2016, Lemma 8.4].
Therefore, everything is reduced to studying the unipotent contributions I2.f / and I3.f /. An explicit
bound for I2.f / was given by [Shin and Templier 2016, proof of Theorem 9.16]. However, as for I3.f /,
since the number of .M; QS/-equivalence classes in the geometric unipotent conjugacy class of each 
 is
increasing when N goes to infinity, it is difficult to estimate I3.f / directly. In the case of GSp.4/, we
computed unipotent contributions by using case-by-case analysis as in [Kim et al. 2020a]. Here we give a
new uniform way to estimate all the unipotent contributions. It is given by a sum of special values of
zeta integrals with real characters for spaces of symmetric matrices; see Lemma 3.3 and Theorem 3.7.
This formula is a generalization of the dimension formula (see [Shintani 1975; Wakatsuki 2018]) to the
trace formula of Hecke operators. By using their explicit formulas [Saito 1999] and analyzing Shintani
double zeta functions [Kim et al. 2022], we express the geometric side as a finite sum of products of local
integrals and special values of the Hecke L functions with real characters, and then obtain the estimates
of the geometric side; see Theorem 3.10.

This paper is organized as follows. In Section 2, we set up some notations. In Section 3, we give
key results (see Theorem 3.7 and Theorem 3.10) in estimating trace formulas of Hecke elements. In
Section 4, we study Siegel modular forms in terms of Arthur’s classification and show that nongenuine
forms are negligible. In Section 5, we give a notion of newforms which is necessary to estimate conductors.
Sections 6–10 are devoted to proving the main theorems. Finally, in the Appendix, we give an explicit
computation of the convolution product of some Hecke elements, which is needed in the computation of
`-level density of standard L-functions.

2. Preliminaries

A split symplectic group G D Sp.2n/ over the rational number field Q is defined by

G D Sp.2n/D
�
g 2 GL2n W g

�
On In
�In On

�
tg D

�
On In
�In On

��
:

The compact subgroup

K1 D

��
A �B

B A

�
2G.R/

�



Equidistribution theorems for holomorphic Siegel cusp forms of general degree: the level aspect 999

of G.R/ is isomorphic to the unitary group U.n/ via the mapping
�
A
B
�B
A

�
7! AC iB , where i D

p
�1.

For each rational prime p, we also set Kp DG.Zp/ and put K D
Q
p�1Kp. The compact groups Kv

and K are maximal in G.Qv/ and G.A/, respectively,
Holomorphic discrete series of G.R/ are parameterized by n-tuples k D .k1; : : : ; kn/ 2 Zn such that

k1 � � � � � kn >n, which is called the Blattner parameter. We write �k for the holomorphic discrete series
corresponding to the Blattner parameter k D .k1; : : : ; kn/. We also write Dhol

l
for one corresponding to

the Harish-Chandra parameter l D .k1� 1; k2� 2; : : : ; kn�n/ so that Dhol
l
D �k .

Let Hur.G.Qp// denote the unramified Hecke algebra over G.Qp/, that is,

Hur.G.Qp//D
˚
' 2 C1c .G.Qp// W '.k1xk2/D '.x/ 8k1; k2 2Kp; 8x 2G.Qp/

	
:

Let T denote the maximal split Q-torus of G consisting of diagonal matrices. We denote by X�.T / the
group of cocharacters on T over Q. An element ej in X�.T / is defined by

ej .x/D diag.

j�1‚ …„ ƒ
1; : : : ; 1; x;

n�jC1‚ …„ ƒ
1 : : : ; 1;

j�1‚ …„ ƒ
1; : : : ; 1; x�1;

n�jC1‚ …„ ƒ
1; : : : ; 1 / 2 T; x 2 Gm: (2-1)

Then, one has X�.T / D he1; : : : ; eni. By the Cartan decomposition, any function in Hur.G.Qp// is
expressed by a linear combination of characteristic functions of double cosets Kp�.p/Kp .� 2X�.T //.
A height function k � k on X�.T / is defined by



 nY

jD1

e
mj
j





Dmax
˚
jmj j W 1� j � n

	
; mj 2 Z:

For each � 2 N, we set

Hur.G.Qp//
�
D

n
' 2Hur.G.Qp// W Supp.'/�

[
�2X�.T /; k�k��

Kp�.p/Kp

o
: (2-2)

Choose a natural number N . We set

Kp.N /D fx 2Kp W x � I2n mod N g; K.N /D
Y
p<1

Kp.N /: (2-3)

One gets a congruence subgroup �.N/DG.Q/\G.R/K.N /.
Let Hn WD fZ 2Mn.C/ WZD

tZ; Im.Z/ > 0g. We write Sk.�.N // for the space of Siegel cusp forms
of weight k for �.N/, i.e., Sk.�.N // consists of Vk-valued smooth functions F on G.A/ satisfying the
following conditions:

(i) F.
gk1kf /D �k.k1/�1F.g/; g 2G.A/; 
 2G.Q/; k1 2K1; kf 2K.N/,

(ii) �k.g1; iIn/F jG.R/.g1/ is holomorphic for g1 � iIn 2 Hn,

(iii) maxg2G.A/ jF.g/j � 1,

where �k denotes the finite dimensional irreducible polynomial representation of U.n/ corresponding to k
together with the representation space Vk and we set �k.g; iIn/D �k.iC CD/ for g D

�
A
C
B
D

�
2G.R/.
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Let m D .m1; : : : ; mn/, m1jm2j � � � jmn, and Dm D diag.m1; : : : ; mn/. Let T .Dm/ be the Hecke
operator defined by the double coset

�.N/

�
Dm 0

0 D�1m

�
�.N/:

Specifically, for each prime p, letDp;aDdiag.pa1 ; : : : ; pan/, with aD .a1; : : : ; an/ and 0�a1�� � ��an.
Let F be a Hecke eigenform in Sk.�.N // with respect to the Hecke operator T .Dp;a/ for all p −N .

(See [Kim et al. 2020a, Section 2.2] for Hecke eigenforms in the case of nD 2. One can generalize the
contents there to n� 3.) Then F gives rise to an adelic automorphic form �F on Sp.2n;Q/nSp.2n;A/,
and �F gives rise to a cuspidal representation �F which is a direct sum �F D�1˚� � �˚�r , where the �i
are irreducible cuspidal representations of Sp.2n/. Since F is an eigenform, the �i are all near-equivalent
to each other. Since we do not have the strong multiplicity one theorem for Sp.2n/, we cannot conclude
that �F is irreducible. However, the strong multiplicity one theorem for GLn implies that there exists a
global A-parameter  2‰.G/ such that �i 2… for all i [Schmidt 2018, p. 3088]. (See Section 4 for
the definition of the global A-packet.)

On the other hand, given a cuspidal representation � of Sp.2n/ with a K.N/-fixed vector and whose
infinity component is holomorphic discrete series of lowest weight k, there exists a holomorphic Siegel
cusp form F of weight k with respect to �.N/ such that �F D� . (See [Schmidt 2017, p. 2409] for nD 2.
One can generalize the contents there to n� 3.)

We defineHEk.N/ to be a basis ofK.N/-fixed vectors in the set of cuspidal representations of Sp.2n;A/
whose infinity component is holomorphic discrete series of lowest weight k, and identify it with a basis
consisting of all Hecke eigenforms outsideN . In particular, each F 2HEk.N / gives rise to an irreducible
cuspidal representation �F of Sp.2n/. Let Fk.N / be the set of all isomorphism classes of cuspidal
representations of Sp.2n/ such that �K.N/¤ 0 and �1'�k . Consider the mapƒ WHEk.N /�!Fk.N /,
given by F 7�! �F . It is clearly surjective. For each � D �1˝˝0p�p 2 Fk.N /, set �f D˝0p�p . Then
we get

jƒ�1.�/j D dim�K.N/f ;

where �K.N/
f

D f� 2 �f W �f .k/� D � for all k 2K.N/g.

3. Asymptotics of Hecke eigenvalues

For each function h2C1c .K.N /nG.Af /=K.N//, an adelic Hecke operator Th on Sk.�.N // is defined by

.ThF /.g/D

Z
G.Af /

F.gx/h.x/ dx; F 2 Sk.�.N //:

See [Kim et al. 2020a, pp. 15–16] for the relationship between the classical Hecke operators and adelic
Hecke operators for n D 2. One can generalize the contents there to n � 3 easily. Let fk denote a
pseudocoefficient of �k with tr �k.fk/D 1; see [Clozel and Delorme 1990].
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Lemma 3.1. Suppose kn > nC 1 and h 2 C1c .K.N /nG.Af /=K.N//. The spectral side Ispec.fkh/ of
the invariant trace formula is given by

Ispec.fkh/D
X

�D�k˝�f ; auto. rep. ofG.A/

m� Tr.�f .h//D Tr
�
ThjSk.�.N//

�
;

where m� means the multiplicity of � in the discrete spectrum of L2.G.Q/nG.A//.

Proof. The second equality follows from [Wallach 1984]. One can prove the first equality by using the
arguments in [Arthur 1989] and the main result in [Hiraga 1996], since it follows from [Hiraga 1996] and
kn > nC 1 that we obtain Tr.�1.fk//D 0 for any unitary representation �1.6Š �k/ of G.R/. �

We choose two natural numbers N1 and N , which are mutually coprime. Suppose that N1 is squarefree.
Set S1 D fp W p j N1g. We write hN for the characteristic function of

Q
p…S1tf1g

Kp.N /. For each
automorphic representation � D �1˝˝0p�p, we set �S1 D p̋2S1�p.

Lemma 3.2. Take a test function h on G.Af / as

hD vol.K.N //�1 � h1˝ hN ; where h1 2 p̋2S1H
ur.G.Qp//: (3-1)

Then

Ispec.fkh/D
X

�D�k˝�f ; auto. rep. ofG.A/

m� dim�
K.N/

f
Tr.�S1.h1//D Tr

�
ThjSk.�.N//

�
:

Proof. This lemma immediately follows from Lemma 3.1. �

Let Vr denote the vector space of symmetric matrices of degree r , and define a rational representation �
of the group GL1 �GLr on Vr by x � �.a;m/ D atmxm, where x 2 Vr and .a;m/ 2 GL1 �GLr . The
kernel of � is given by Ker �D f.a�2; aIr/ W a 2 GL1g, and we set

Hr D Ker �n.GL1 �GLr/:

Then, the pair .Hr ; Vr/ is a prehomogeneous vector space over Q. For 1� r � n and f 2C1c .G.A// (re-
spectively, f 2C1c .G.Af //), we define a function f̂;r 2C

1
c .Vr.A// (respectively, f̂;r 2C

1
c .Vr.Af //)

as

f̂;r.x/D

Z
K

f

�
k�1

�
In �

On In

�
k

�
dk

�
respectively,

Z
Kf

�
; where � D

�
x 0

0 0

�
2 Vn:

Let Qfk denote the spherical trace function of �k with respect to �k on G.R/; see [Wakatsuki 2018,
§5.3]. Notice that Qfk is a matrix coefficient of �k , and so it is not compactly supported. Take a test
function h 2 C1c .G.Af // and set Qf D Qfkh. Let � be a real character on R>0Q�nA�. Define a zeta
integral Zr.ˆ Qf ;r ; s; �/ by

Zr.ˆ Qf ;r ; s; �/D

Z
Hr .Q/nHr .A/

jar det.m/2js�.a/
X

x2V 0r .Q/

ˆ Qf ;r.x �g/ dg; g D �.a;m/;
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where V 0r D fx 2 Vr W det.x/¤ 0g and dg is a Haar measure on Hr.A/. The zeta integral Zr.ˆ Qf ;r ; s; �/
is absolutely convergent for the range

kn > 2n; Re.s/ > r�1

2
;

8<:Re.s/ <
kn

2
if r D 2;

Re.s/ < kn�
r�1

2
otherwise;

(3-2)

see [Wakatsuki 2018, Proposition 5.15], and Z.ˆ Qf ;r ; s; �/ is meromorphically continued to the whole
s-plane; see [Shintani 1975; Wakatsuki 2018; Yukie 1993]. The following lemma associatesZ.ˆ Qf ;r ; s; �/
with the unipotent contribution Iunip.f /D I1.f /C I2.f /C I3.f / of the invariant trace formula.

Lemma 3.3. Let S0 be a finite set of finite places of Q. Take a test function hS0 2 C
1
c .G.QS0//, and

let hS0 denote the characteristic function of
Q
p…S0tf1g

Kp . Define a test function Qf as Qf D QfkhS0h
S0 .

If kn is sufficiently large .kn� 2n/, then we have

Iunip
�
fkhS0h

S0
�
D volG hS0.1/ dkC

1

2

nX
rD1

X
�2X .S0/

Zr

�
ˆ Qf ;r ; n�

r�1

2
; �
�
;

where volGDvol.G.Q/nG.A//, dk denotes the formal degree of �k , and X .S0/ denotes the set consisting
of real characters �D˝v�v on R>0Q�nA� such that �v is unramified for any v … S0 t f1g. Note that
S0 may contain S1 and all prime factors of N .

Remark 3.4. Note that the point s D n� .r �1/=2, where 1� r � n, is contained in the range (3-2), and
we have Zr.ˆ Qf ;r ; s; �/� 0 for any real character � …X .S0/.

Proof. To study Iunip.fkhS0h
S0/, we need an additional zeta integral QZr.ˆ Qf ;r ; s/ defined by

QZr.ˆ Qf ;r ; s/D

Z
GLr .Q/nGLr .A/

jdet.m/j2s
X

x2V 0r .Q/

ˆ Qf ;r.
tmxm/ dm:

The zeta integral QZr.ˆ Qf ;r ; s/ is absolutely convergent for the range (3-2), and QZ.ˆ Qf ;r ; s/ is meromor-
phically continued to the whole s-plane; see [Shintani 1975; Wakatsuki 2018; Yukie 1993]. Applying
[Wakatsuki 2018, Propositions 3.8 and 3.11, Lemmas 5.10 and 5.16] to Iunip.f /, we obtain

Iunip
�
fkhS0h

S0
�
D volG hS0.1/ dkC

nX
rD1

QZr

�
ˆ Qf ;r ; n�

r�1

2

�
(3-3)

for sufficiently large kn� 2n. Notice that fk is changed to Qfk in the right-hand side of (3-3), and this
change is essentially required for the proof of (3-3).

By the same argument as in [Hoffmann and Wakatsuki 2018, (4.9)], we have

QZr.ˆ Qf ;r ; s/D
1

2

X
�

Zr.ˆ Qf ;r ; s; �/;

where � runs over all real characters on R>0Q�nA�. Suppose that �D˝v�v …X .S0/. Then, we can
take a prime p … S0 such that �p is ramified and

ˆ Qf ;r.apx/Dˆ Qf ;r.x/; 8ap 2 Z�p : (3-4)

Hence, we get Zr.ˆ Qf ;r ; s; �/� 0, and the proof is completed. �
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Remark 3.5. The rational representation � of Hr on Vr is faithful, but the representation x 7! tmxm

of GLr on Vr is not. Hence, Zr.ˆ Qf ;r ; s; �/ is suitable for Saito’s explicit formula [1999], which we use

in the proof of Theorem 3.10, but QZr.ˆ Qf ;r ; s/ is not. This fact is also important for the study of global
coefficients in the geometric side; see [Hoffmann and Wakatsuki 2018].

Let  be a nontrivial additive character on QnA, and a bilinear form h ; i on Vr.A/ is defined by
hx; yi WD Tr.xy/. Let dx denote the self-dual measure on Vr.A/ for  .h ; i/. Then, a Fourier transform
of ˆ 2 C1.Vr.A// is defined by

Ô .y/D

Z
Vr .A/

ˆ.x/ .hx; yi/ dx; y 2 Vr.A/:

For each ˆ0 2 C10 .Vr.Af //, we define its Fourier transform ĉ
0 in the same manner. The zeta function

Zr.ˆ Qf ;r ; s;1/ satisfies the functional equation [Shintani 1975; Yukie 1993]

Zr.ˆ Qf ;r ; s;1/DZr
�
1̂
Qf ;r
;
rC1

2
� s; 1

�
; (3-5)

where 1 denotes the trivial representation on R>0Q�nA�.
Take a test functionˆ0 2C10 .Vr.Af // such thatˆ0.tkxk/Dˆ0.x/ holds for any k 2

Q
p<1Hr.Zp/

and x 2Vr.Af /, whereHr.Zp/ is identified with the projection of GL1.Zp/�GLr.Zp/ intoHr.Af /. We
writeL0 for the subset of Vr.Q/which consists of the positive definite symmetric matrices contained in the
support of ˆ0. It follows from the condition of ˆ0 that L0 is invariant for � DHr.Z/DHr.Q/\Hr. OZ/.
Put �r.ˆ0; s/D 1 for r D 0. For r > 0, define a Shintani zeta function �r.ˆ0; s/ as

�r.ˆ0; s/D
X

x2L0=�

ˆ0.x/

#.�x/ det.x/s
;

where �x D f
 2 � W x � 
 D xg. The zeta function �r.ˆ0; s/ absolutely converges for Re.s/ > .rC 1/=2,
and is meromorphically continued to the whole s-plane; see [Shintani 1975]. Furthermore, �r.ˆ0; s/ is
holomorphic except for possible simple poles at s D 1; 3=2; : : : .r C 1/=2.

Lemma 3.6. Let 1 � r � n, kn > 2n, h 2 C1c .G.Af //, and take a test function Qf as Qf D Qfkh. Then,
there exists a rational function Cn;r.x1; : : : ; xn/ over R such that

Zr

�
ˆ Qf ;r ; n�

r�1

2
; 1
�
D Cn;r.k/� �r. b̂h;r ; r �n/:

Proof. This can be proved by the functional equation (3-5) and the same argument as in [Wakatsuki 2018,
proof of Lemma 5.16]. �

Note that �r. b̂h;r ; s/ is holomorphic in fs2C WRe.s/�0g, and Cn;r.x1; : : : ; xn/ is explicitly expressed
by the Gamma function and the partitions; see [Wakatsuki 2018, (5.17) and Lemma 5.16]. We will use this
lemma for the regularization of the range of k. The zeta integral Zr.ˆ Qf ;r ; n� .r � 1/=2;1/ was defined
only for kn > 2n, but the right-hand side of the equality in Lemma 3.6 is available for any k. In addition,
this lemma is necessary to estimate the growth of Iunip.f / with respect to S D S1tf1g. We later define
a Dirichlet series DSm;uS .s/ just before Proposition 3.9, and the series DSm;uS .s/ appears in the explicit
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formula of Zr.ˆ; s;1/ when r is even. For the case that r is even and 3 < r < n, it seems difficult to
estimate the growth of its contribution to Zr.ˆ Qf ;r ; n� .r � 1/=2;1/, but we can avoid such difficulty by
this lemma, since the part related to DSm;uS .s/ in Saito’s formula [1999, Theorem 3.3] disappears in the
special value �r. b̂h;r ; r �n/.
Theorem 3.7. Suppose kn > nC 1. Let h1 2Hur.G.QS1//

� D p̋2S1Hur.G.Qp//
� , and let h be a test

function on G.Af / given as (3-1). Then there exists a positive constant c0 such that, if N � c0N 2n�
1 ,

Tr
�
ThjSk.�.N//

�
D volG vol.K.N //�1h1.1/dkC

1

2

nX
rD1

Cn;r.k/�r. b̂h;r ; r �n/: (3-6)

Proof. Let f Dfkh and Qf D Qfkh. By Lemma 3.2, it is sufficient to prove that the geometric side Igeom.f /

equals the right-hand side of (3-6). If one uses the results in [Arthur 1989] and applies [Shin and Templier
2016, Lemma 8.4] by putting „ WG � GLm, mD 2n, B„ D 1, c„ D c0 in their notations, then one gets
Igeom.f /D Iunip.f /. Hence, by Lemma 3.3 and putting hS0h

S0 D h, we have

Tr
�
ThjSk.�.N//

�
D volG vol.K.N //�1h1.1/dkC

1

2

nX
rD1

X
�2X .S0/

Zr

�
ˆ Qf ;r ; n�

r�1

2
; �
�

(3-7)

for sufficiently large kn. Let M .a/ WD diag.1; : : : ; 1; a; : : : ; a/, where there are n entries of both 1 and a,
for a 2 A�. For any ap 2 Z�p , bp 2Q�p , � 2X�.T /, we have

M .ap/
�1Kp.N /M .ap/DKp.N / and M .ap/

�1�.bp/M .ap/D �.bp/:

Hence, (3-4) holds for any p<1, and soZr.ˆ Qf ;r ; n�.r�1/=2; �/ vanishes for any �¤1. Therefore, by
Lemma 3.6 we obtain the assertion (3-6) for sufficiently large kn. By the same argument as in [Wakatsuki
2018, proof of Theorem 5.17], we can prove that this equality (3-6) holds in the range kn>nC1, because
the both sides of (3-6) are rational functions of k in that range, see Lemma 3.6 and [Wakatsuki 2018,
Proposition 5.3]. Thus, the proof is completed. �

Let S denote a finite subset of places of Q, and suppose1 2 S . For each character �D˝v�v on
Q�R>0nA

�, we set

LS .s; �/D
Y
p…S

Lp.s; �p/; L.s; �/D
Y
p<1

Lp.s; �p/;

�S .s/D LS .s;1/D
Y
p 62S

.1�p�s/�1; and �.s/D L.s; 1/;

where Lp.s; �p/D .1��p.p/p�s/�1 if �p is unramified, and Lp.s; �p/D 1 if �p is ramified.

Lemma 3.8. Let s 2 R. For s > 1,

�S .s/� �.s/ and
�
�S
�0
.s/�

2s�.s/

s� 1
;

where .�S /0.s/D d
ds �

S .s/. For s � �1,

j�S .s/j � .NS /
�s
j�.s/j;

where NS D
Q
p2Snf1g p.
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Proof. First of all, .1�p�s/�1�1 for p 2S . Hence �S .s/� �.s/. Let log �S .s/D
P
p 62S log.1�p�s/�1.

Then
.�S /0.s/

�S .s/
D

X
p 62S

�p�s logp
1�p�s

:

If s > 1, then 1�p�s � 1
2

. Hence,ˇ̌̌̌
.�S /0.s/

�S .s/

ˇ̌̌̌
� 2

X
p 62S

p�s logp � 2
X
p

p�s logp:

By partial summation,X
p

p�s logp �
Z 1
1

�X
p�x

logp
�
sx�s�1 dx �

Z 1
1

sx�s dx D s

s�1
:

Here we use the prime number theorem:
P
p�x logp � x. Therefore, .�S /0.s/� 2s�.s/=.s� 1/. �

Set DD fd.Q�/2 W d 2Q�g. For each d 2D, we denote by �d D
Q
v �d;v the quadratic character

on Q�R>0nA
� corresponding to the quadratic field Q.

p
d / via class field theory. If d D 1, then �d

means the trivial character 1. For each positive even integer m, we set

'Sd;m.s/D �
S .2s�mC 1/�S .2s/

LS .m=2; �d /

LS .2s�m=2C 1; �d /
N
�
fSd
�.m�1/=2�s

;

where fS
d

denotes the conductor of �S
d
D
Q
p 62S �d;p. For each uS 2QS D

Q
v2S Qv, one sets

D.uS /D
˚
d.Q�/2 W d 2Q�; d 2 uS .Q

�
S /
2
	
:

We need the Dirichlet series
DSm;uS .s/D

X
d.Q�/22D.uS /

'Sd;m.s/:

The following proposition is a generalization of [Ibukiyama and Saito 2012, Proposition 3.6]:

Proposition 3.9. Let m� 2 be an even integer. Suppose .�1/m=2u1 > 0 for uS D .uv/v2S (namely, the
term of d.Q�/2D .Q�/2 does not appear inDSm;uS .s/ if .�1/m=2D�1). The Dirichlet seriesDSm;uS .s/
is meromorphically continued to C, and is holomorphic at any s 2 Z�0.

Proof. See [Kim et al. 2022, Corollary 4.23] for the case m> 3. For mD 2, this statement can be proved
by using [Hoffmann and Wakatsuki 2018; Yukie 1992]. �

Theorem 3.10. Fix a parameter k such that kn>nC1. Let h1 2Hur.G.QS1//
� , and let h2C1c .G.Af //

be a test function on G.Af / given as (3-1). Suppose supx2G.QS1 / jh1.x/j � 1. Then, there exist positive
constants a, b, and c0 such that, if N � c0N 2n�

1 ,

Tr
�
ThjSk.�.N//

�
D volG vol.K.N //�1h1.1/dkC vol.K.N //�1O.N a�Cb

1 N�n/:

Here the constants a and b do not depend on �, N1, or N . See Lemma 3.3 for volG and dk .
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Proof. Set

I. Qf ; r/D vol.K.N //� �r. b̂h;r ; r �n/; 1� r � n:

By Theorem 3.7, it is sufficient to prove I. Qf ; r/DO.N a�Cb
1 N�n/.

Let R be a finite set of places of Q. Take a Haar measure dx1 on Vr.R/, and for each prime p,
we write dxp for the Haar measure on Vr.Qp/ normalized by

R
Vr .Zp/

dxp D 1. For a test function
ˆR 2 C

1
c .Vr.QR// and an Hr.QR/-orbit OR 2 V

0
r .QR/=Hr.QR/, we set

Zr;R.ˆR; s;OR/D cR

Z
OR

ˆR.x/jdet.x/js�.rC1/=2R dx;

where cR D
Q
p2R;p<1.1 � p

�1/�1, j � jR D
Q
v2R j � jv, and dx D

Q
v2R dxv. It is known that

Zr;R.ˆR; s;OR/ absolutely converges for Re.s/� rC1
2

, and is meromorphically continued to the whole
s-plane.

Suppose that R does not contain1, that is, R consists of primes. Write �p.x/ for the Clifford invariant
of x 2 V 0r .Qp/, see [Ikeda 2017, Definition 2.1], and set �R..xp/p2R/ D

Q
p2R �p.xp/. For � D 1R

(trivial) or �R, we put .ˆR�/.x/DˆR.x/ �.x/. It follows from the local functional equation [Ikeda 2017,
Theorems 2.1 and 2.2] over Qp .RD fpg/ that Zr;p. p̂�; s;Op/ is holomorphic in the range Re.s/ < 0,
and Zr;p. p̂�; s;Op/ possibly has a simple pole at sD 0. Hence, for any R, Zr;R.ˆR�; s;OR/ does not
have any pole in the area Re.s/ < 0, but it may have a pole at sD 0. Let b̂R denote the Fourier transform
of ˆR 2 C1c .Vr.QR// over QR for

Q
v2R  v.h ; i/, where  v D  jQv .

Define

ˆh1;r.x/D h1

��
In �

On In

��
2 C1c .Vr.QS1//;

where � D
�
x
0
0
0

�
2 Vn. Note that this definition is compatible with ˆ Qf ;r since h1 is spherical forQ

p2S1
Kp. Set

Zr.S1; h1/D
X

OS12V
0
r .QS1 /=Hr .QS1 /

ˇ̌
Zr;S1

�1̂
h1;r�r ; r �n;OS1

�ˇ̌
;

where

�r D

�
1S1 if (r is odd and r < n) or r D 2 < n;
�S1 if r is even and 2 < r < n;

and

Zn.S1; h1/D
X

OS12V
0
r .QS1 /=Hr .QS1 /

ˇ̌̌
Zn;S1

�
ˆh1;n;

nC1

2
;OS1

�ˇ̌̌
if r D n.

It follows from Saito’s formula [1999, Theorem 2.1 and §3] that the zeta function �r. b̂h;r ; s/ is expressed
by a (finite or infinite) sum of Euler products of Zr;p. p̂�p; s;Op/, with �p D 1p , �p , or its finite sums,
and he explicitly calculated the local zeta function Zr;p. p̂�p; s;Op/ in [Saito 1997, §2] if p̂ is the
characteristic function of V.Zp/. We shall prove I. Qf ; r/DO.N a�Cb

1 N�n/ by using his results.
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Case I. Assume r is odd and r < n. In the following, we set S D S1tf1g. By Saito’s formula, we have

I. Qf ; r/D .constant/�N r.r�1/=2�rn
�

X
OS12V

0
r .QS1 /=Hr .QS1 /

Zr;S1.
1̂
h1;r ; r�n;OS1/

��S
�
rC1

2
�n
�
�

nY
lD2

�S .l/�1�

Œr=2�Y
uD1

�S .2u/�S .2r�2n�2uC1/:

Therefore, one has
jI. Qf ; r/j �N r.r�1/=2�rn

�N 2n3

1 �Zr.S1; h1/

by using Lemma 3.8.

Case II. Assume r is even and 3 < r < n. By Saito’s formula, Proposition 3.9, and Lemma 3.8, one can
prove that jI. Qf ; r/j is bounded by

N r.r�1/=2�rn
�Zr.S1; h1/�

ˇ̌̌̌
�S
�
r

2

�
�

nY
lD2

�S .l/�1 �

r=2�1Y
uD1

�S .2u/�

r=2Y
uD1

�S .2r � 2n� 2uC 1/

ˇ̌̌̌
�N r.r�1/=2�rn

�N 2n3

1 �Zr.S1; h1/

up to a constant. Note that Proposition 3.9 was used for this estimate, since it is necessary to prove the
vanishing of the term including DSr;uS .s/ in the explicit formula [Saito 1999, Theorem 3.3].

Case III. Assume r D n. In this case, we should use a method different from Case I and Case II since
Zr;S1.

1̂
h1;r�; s;OS1/ may have a simple pole at s D r � nD 0. Take an n-tuple l D .l1; : : : ; ln/, with

l1 � � � � � ln > 2n, and let n.x/D
�
In
On

x
In

�
2G where x 2 Vn. Recall that Qfl satisfies the following two

properties:

(i) Qfl.k�1gk/D Qfl.g/, for all k 2K1, g 2G.R/; see [Wakatsuki 2018, §5.3].

(ii)
R

R
Qfl.g
�1
1 n1.t/g2/ d t D 0 for all g1, g2 2 G.R/, where n1.t/ D n..bij /1�i;j�n/, b11 D t , and

bij D 0 for all .i; j /¤ .1; 1/; see [Wakatsuki 2018, Lemma 5.9].

By property (i), we can define ˆ Qfl ;n.x/D Qfl.n.x//, where x 2 Vn.R/.

Lemma 3.11. For each orbit O1 2 V
0
n .R/=Hn.R/, we have Zn;1.ˆ Qfl ;n; .nC 1/=2;O1/D 0.

Proof. Let O1 ¤ In �Hn.R/, and take a representative element A of O1 as

AD

0@0 0 1

0 A 0

1 0 0

1A ; where A 2 V 0n�2.R/:

The orbit O1 is decomposed into A �GLn.R/t .�A/ �GLn.R/. The centralizer Hn.A/ of n.A/ in Hn.R/
is given by

Hn.A/ D fm.h/n.y/ W h 2 OA.n/; y 2 Vn.R/g;

where

m.h/D

�
th�1 On
On h

�
and OA.n/D fh 2 GLn W thAhD Ag:
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Hence, by property (ii), we have

Zn;1

�̂
Qfl ;n
;
nC1

2
;O1

�
D

X
A0D˙A

Z
OA0 .n/nGLn.R/

Qfl.m.h/
�1n.A0/m.h//jdet.h/jnC1 dh

D

X
A0D˙A

Z
N OA0 .n/nGLn.R/

Z
R

Qfl.m.h/
�1n.A0/n1.2t/m.h//jdet.h/jnC1 dt dh

D 0;

where N D f.bij / W bjj D 1;with 1� j � n; bn1 2 R; and bij D 0 otherwiseg.
In the case sD .nC1/=2, we note that j det.x/j vanishes in the integral ofZn;1.ˆ Qfl ;n; .nC1/=2;O1/.

Hence, it follows from property (ii) thatX
O12V

0
n .R/=Hn.R/

Zn;1

�
ˆ Qfl ;n

;
nC1

2
;O1

�
D

Z
Vn.R/

ˆ Qfl ;n
.x/ dx D 0;

and so we also find Zn;1.ˆ Qfl ;n; .nC 1/=2; In �Hn.R//D 0. �

By Lemmas 3.6 and 3.11, the residue formula [Yukie 1993, Chapter 4] of Zn.ˆ; s;1/ and the same
argument as in [Hoffmann and Wakatsuki 2018, proof of Theorem 4.22], we obtain

�r. b̂h;r ; 0/D Cn;n.l/
�1Zn

�
ˆ Qflh;r

;
nC1

2
;1
�

D Cn;n.l/
�1 vol.Hn.Q/nHn.A/1/

Z
V.R/

ˆ Qfl ;n
.x1/ log jdet.x1/j1 dx1

�

Z
V.QS1 /

ˆh1;n.xS1/ dxS1N
�n.nC1/=2;

where Hn.A/D f.a;m/ 2Hn.A/ W jan det.m/2j D 1g. From this, we have

jI. Qf ; r/j �N�n.nC1/=2 �Zr.S1; h1/:

Case IV. Assume r D 2< n. By Saito’s formula [Hoffmann and Wakatsuki 2018, Theorem 4.15], we have

jI. Qf ; r/j �N 1�2n
�Z2.S1; h1/�

ˇ̌
�S .2/�1�S .3� 2n/

ˇ̌
� max
uS2Q�S=.Q

�
S /
2; u1<0

jDS2;uS .2�n/j:

Hence, it is enough to give an upper bound of jDS2;uS .2 � n/j for u1 < 0. Choose a representative
element uS D .uv/v2S satisfying up 2 Zp, with p 2 S1. Take a test function ˆ D ˝vˆv such that
the support of ˆ1 is contained in fx 2 V 02 .R/ W det.x/ > 0g and p̂ is the characteristic function of
diag.1;�up/Cp2V2.Zp/ (respectively, V2.Zp/) for each p 2 S1 (respectively, p 62 S ). Let

‰.y; yu/D

Z
K2

Ô

�
tk

�
0 y

y yu

�
k

�
dk; K2 D O.2;R/�

Y
p

GL2.Zp/;

and we set

T .ˆ; s/D
d

ds1
T .ˆ; s; s1/

ˇ̌
s1D0

and T .ˆ; s; s1/D

Z
A�

Z
A

jy2jsk.1; u/ks1‰.y; yu/ du d�y:
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By [Shintani 1975, Lemma 1], one obtains Z2;1.b̂1; n � 1
2
;O1/ D 0 for any orbit O1 in V 02 .R/.

Therefore, from the functional equation [Yukie 1992, Corollary (4.3)], one deducesˇ̌
N�61 DS2;uS .2�n/

ˇ̌
�
ˇ̌
Z2;S .ˆS ; 2�n;OS /D

S
2;uS

.2�n/
ˇ̌
D
ˇ̌
2�1T

�
Ô ; n� 1

2

�ˇ̌
:

By [Yukie 1992, Proposition (2.12) (2)], one getsˇ̌̌
T
�
Ô ; n�

1

2

�ˇ̌̌
�N 4n�2

1 �

�
�S .2n� 2/C

ˇ̌
.�S /0.2n� 2/

ˇ̌
C

ˇ̌̌̌
.�S /0.2n� 1/�S .2n� 2/

�S .2n� 1/

ˇ̌̌̌�
;

where .�S /0.s/D d
ds �

S .s/, because Supp. Ôp/� p�2V.Zp/ for any p 2 S1. Therefore, one gets

jDS2;uS .2�n/j �N 4nC4
1

by Lemma 3.8.
The final task is to prove Zr.S1; h1/�N a�Cb

1 for some a and b. Using the local functional equations
in [Ikeda 2017, Theorem 2.1] (see also [Sweet 1995]), one gets

Zr.S1; h1/�N c
1 �

X
OS12V

0
r .QS1 /=Hr .QS1 /

Zr;S1

�
jˆh1;r j; n�

r�1

2
;OS1

�
for some c 2 N. By [Assem 1993, Lemma 2.1.1] and the assumption supx2G.QS1 / jh1.x/j � 1, we have

jˆh1;r j �ˆS1;r;�� ;

where ˆS1;r;�� denotes the characteristic function of p̋2S1p
��Vr.Zp/. Hence, by a change of variables,

we get

Zr;S1

�
jˆh1;r j; n�

r�1

2
;OS1

�
�Zr;S1

�
ˆS1;r;�� ; n�

r�1

2
;OS1

�
DN

�nr��r.r�1/=2
1 Zr;S1

�
ˆS1;r;0; n�

r�1

2
;OS1

�
�N

�nr��r.r�1/=2
1 :

It follows from classification theory of quadratic forms that #.V 0r .QS1/=Hr.QS1//�N1. Therefore, we
obtain a desired upper bound for Zr.S1; h1/. Thus, we obtain I. Qf ; r/DO.N a�Cb

1 N�n/. �

Remark 3.12. We give some remarks on Shin and Templier’s work [2016] and Dalal’s work [2022].
In the setting of [Shin and Templier 2016], they considered “all” cohomological representations as a
family which exhausts an L-packet at infinity since they chose the Euler–Poincaré pseudocoefficient at
the infinite place. Then there is no contribution from nontrivial unipotent conjugacy classes. Therefore,
our work is different from Shin–Templier’s work in that we can consider only holomorphic forms in an
L-packet.

Shin suggested to consider a family of automorphic representations whose infinite type is any fixed
discrete series representation. Dalal [2022] carried it out in the weight aspect by using the stable trace
formula. The stabilization allows us to remove the contribution I3.f / (see Section 1), but instead of I3.f /,
the contributions of endoscopic groups have to enter. Dalal obtained a good bound for them by using the
concept of hyperendoscopy introduced by Ferrari [2007]. In studying the level aspect, it seems difficult
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to directly get a sufficient bound for the growth of the hyperendoscopic groups in question; since Sp.2n/
has infinitely many elliptic endoscopic groups

SO.N1; N1/�Sp.2N2/ and SO.N1C 1;N1� 1;E=Q/�Sp.2N2/; N1CN2 D n;

where E runs over quadratic extensions of Q and SO.N1C 1;N1� 1;E=Q/ is the quasisplit orthogonal
group attached to E=Q (see [Arthur 2013, p. 13–14] and [Assem 1998, §4]), it is quite complicated
to count the hyperendoscopic groups. (The referee pointed out to us that the essential difficulty in
applying hyperendoscopy techniques is in computing endoscopic transfers of indicators of any level
subgroup. In particular, answering the transfer problem is necessary to even know which set of groups
we are counting.) We also observe the same complication coming from elliptic endoscopic groups in the
unipotent terms of the (unstable) Arthur trace formula; see [Hoffmann and Wakatsuki 2018, p. 8]. Assem’s
results [1993; 1998] make us expect that, for 1�r�n, some parts of zeta integralsZr.ˆ Qf ;r ; s; �/ probably
correspond to the central contributions of the endoscopic groups SO.n�rC1; n�rC1/�Sp.2r�2/ and
SO.n� r C 2; n� r; E=Q/�Sp.2r � 2/. To avoid such complication, we have simplified the unipotent
terms in several steps as follows:

� Our method showed the vanishing of a large part of the unipotent terms; see Lemma 3.3 and
[Wakatsuki 2018].

� The contributions of Zr.ˆ Qf ;r ; s; �/ vanish when � is nontrivial; see Theorem 3.7.

� Our careful analysis estimates upper bounds of the contributions of Zr.ˆ Qf ;r ; s;1/ by using the
functional equations; see the proof of Theorem 3.10.

Analogous simplifications should be required even if we use the stable trace formula.

4. Arthur classification of Siegel modular forms

In this section, we study Siegel modular forms in terms of Arthur’s classification [2013]; see §1.4 and
§1.5 of loc. cit.. Recall G D Sp.2n/=Q. We call a Siegel cusp form which comes from smaller groups by
Langlands functoriality “a nongenuine form”. In this section, we estimate the dimension of the space of
nongenuine forms and show that they are negligible. This result is interesting in its own right.

Let F 2 HEk.N /, see Section 2, and � D �F be the corresponding automorphic representation
of G.A/. According to Arthur’s classification, � can be described by using the global A-packets. Let us
recall some notations. A (discrete) global A-parameter is a symbol

 D �1Œd1�� � � ���r Œdr �

satisfying the following conditions:

(1) for each i , with 1� i � r , �i is an irreducible unitary cuspidal self-dual automorphic representation
of GLmi .A/. In particular, the central character !i of �i is trivial or quadratic;

(2) for each i , di 2 Z>0 and
Pr
iD1midi D 2nC 1;
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(3) if di is odd, then �i is orthogonal, i.e., L.s; �i ;Sym2/ has a pole at s D 1;

(4) if di is even, then �i is symplectic, i.e., L.s; �i ;^2/ has a pole at s D 1;

(5) !d11 � � �!
dr
r D 1;

(6) if i ¤ j and �i ' �j , then di ¤ dj .

We say that two global A-parameters �riD1�i Œdi � and �r 0iD1�
0
i Œd
0
i � are equivalent if r D r 0 and there

exists � 2Sr such that d 0i D d�.i/ and � 0i D ��.i/. Let ‰.G/ be the set of equivalent classes of global
A-parameters. For each  2‰.G/, one can associate a set … of equivalent classes of simple admissible
G.Af /� .g; K1/-modules; see [Arthur 2013]. The set … is called a global A-packet for  .

Definition 4.1. Let  D�riD1�i Œdi � be a global A-parameter.

�  is said to be semisimple if d1 D � � � D dr D 1; otherwise,  is said to be nonsemisimple;

�  is said to be simple if r D 1 and d1 D 1.

By [Arthur 2013, Theorem 1.5.2] (though our formulation is slightly different from the original one),
we have a following decomposition

L2disc.G.Q/nG.A//'
M

 2‰.G/

M
�2… 

m�; �; (4-1)

where m�; 2 f0; 1g; see [Atobe 2018, Theorem 2.2] for m�; . We have the following immediate
consequence of (4-1):

Proposition 4.2. Let 1K.N/ be the characteristic function of K.N/�G.Af /. Then

Sk.�.N //D
M

 2‰.G/

M
�2… 
�1'�k

m�; �
K.N/

f

and

jHEk.N /j D vol.K.N //�1
X

 2‰.G/

X
�2… 
�1'�k

m�; tr.�f .1K.N///: (4-2)

Theorem 4.3. Assume (1-4). For a globalA-parameter D�riD1�i Œdi �, suppose that there exists � 2… 
with �1 ' �k . Then  is semisimple, i.e., di D 1 for all i , and each �i is regular algebraic and satisfies
the Ramanujan conjecture, i.e., �i;p is tempered for any p.

Proof. By the proof of [Chenevier and Lannes 2019, Corollary 8.5.4], we see that d1 D � � � D dr D 1.
Hence,  is semisimple. Further, by comparing infinitesimal characters c.�1/, c. 1/ of �1,  1
respectively, we see that each �i is regular algebraic by [Chenevier and Lannes 2019, Corollary 6.3.6 and
Proposition 8.2.10]. It follows from [Caraiani 2012;2014] that �i;p is tempered for any p. �

Therefore, for each finite prime p, the local Langlands parameter at p of � is described as one of the
isobaric sum �riD1�i;p which is an admissible representation of GL2nC1.Qp/.
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Definition 4.4. We denote by HEk.N /ng the subset of HEk.N / consisting of all forms which belong toM
 2‰.G/
 Wnonsimple

M
�2… 
�1'�k

m�; �
K.N/

f
;

under the isomorphism (4-1). A form in this space is called a nongenuine form.
Similarly, we denote by HEk.N /g the subset of HEk.N / consisting of all forms which belong toM

 2‰.G/
 Wsimple

M
�2… 
�1'�k

m�; �
K.N/

f
;

under the isomorphism (4-1). A form in this space is called a genuine form.

Definition 4.5. Denote by ….GLn.R//c the isomorphism classes of all irreducible cohomological ad-
missible .gln; O.n//-modules. For �1 2….GLn.R//c and a quasicharacter � WQ�nA�!C�, we define

Lcusp;ort�GLn.Q/nGLn.A/; �1; �
�
WD

M
�Worthogonal

�1'�1; !�D�

m.�/�

and
Lcusp;ort�KGLn.N /; �1; �

�
WD

M
�Worthogonal

�1'�1; !�D�

m.�/�K
GLn .N/;

where the direct sums are taken over the isomorphism classes of all orthogonal cuspidal automorphic
representations of GLn.A/ and !� stands for the central character of � . The constant m.�/ is the
multiplicity of � in L2.GLn.Q/nGLn.A// which satisfies m.�/ 2 f0; 1g by [Shalika 1974]. Here,
KGLn.N / is the principal congruence subgroup of GLn. OZ/ of level N . Put

lcusp;ort.n;N; �1; �/ WD dimC

�
Lcusp;ort.KGLn.N /; �1; �/

�
for simplicity. Clearly, lcusp;ort.1;N; �1; �/ D j OZ

�=.1CN OZ/�j D '.N /, where ' stands for Euler’s
totient function.

Let P.2nC 1/ be the set of all partitions of 2nC 1 and Pm be the standard parabolic subgroup
of GL2nC1 associated to a partition 2nC 1Dm1C � � �Cmr , and mD .m1; : : : ; mr/.

In order to apply the formula (4-2), it is necessary to study the transfer of Hecke elements in the local
Langlands correspondence established by [Arthur 2013, Theorem 1.5.1]. We regard G D Sp.2n/ as a
twisted elliptic endoscopic subgroup of GL2nC1; see [Ganapathy and Varma 2017] or [Oi 2023].

Proposition 4.6. LetN be an odd positive integer. Put SN WDfp prime Wp jN g. For the pair .GL2nC1; G/,
the characteristic function of vol.K.N //�11K.N/ as an element of C1c .G.QSN // is transferred to

vol
�
KGL2nC1.N /

��1
1KGL2nC1 .N/

as an element of C1c .GL2nC1.QSN //.

Proof. It follows from [Ganapathy and Varma 2017, Lemma 8.2.1 (i)]. �
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Remark 4.7. Keep the notation in the previous proposition. If … is the twisted endoscopic transfer of � ,
then the claim immediately implies

dimC �
K.N/

� dimC…
KGL2nC1 .N/:

In fact, we have dimC �
K.N/D tr.I� W…K

GL2nC1 .N/!…K
GL2nC1 .N//, where I� W…!… is the intertwin-

ing operator defining the twisted trace. Since I� is of finite order, we have the above inequality; see the
argument for [Yamauchi 2021, Theorem 1.6].

Applying Proposition 4.6, we have the following:

Proposition 4.8. Assume (1-4) and N is odd. Then jHEk.N /ng j is bounded by

An.N /

'.N /

X
mD.m1;:::;mr /2P.2nC1/

r�2

X
�i2….GLmi .R//

c

c.�r
iD1

�i /Dc.�k/

X
�i WQ

�nA�!C�

�2
i
D1; c.�/jN

dPm.N /

rY
iD1

lcusp;ort.mi ; N; �i ; �i /;

where the second sum is indexed by all r-tuples .�1; : : : ; �r/ such that �i 2….GLmi .R//
c and c.�riD1�i /D

c.�k/, the equality of the infinitesimal characters. Further c.�/ stands for the conductor of � and
'.N /D j.Z=NZ/�j. Here,

(1) An.N / WD 2.2nC1/!.N/ where !.N/ WD jfp prime W p jN gj;

(2) dPm.N /D jPm.Z=NZ/nGL2nC1.Z=NZ/j D vol.KGL2nC1.N //�1=jPm.Z=NZ/j.

Proof. Let � D �1 ˝ ˝
0
p�p be an element of … for  D �riD1�i . Let …p be the local Lang-

lands correspondence of �p to GL2nC1.Qp/ established by [Arthur 2013, Theorem 1.5.1], and let
L.…p/ W LQp!GL2nC1.C/ be the local L-parameter of …p, where LQp D WQp for each p < 1
and LR D WR � SL2.C/. Since the localization  p of the global A-parameter  at p is tempered by
Theorem 4.3, we see that L.…p/ is equivalent to  p. Since L.…p/ is independent of � 2 … and
multiplicity one for GL2nC1.A/ holds, the isobaric sum  D�riD1�i as an automorphic representation
of GL2nC1.A/ gives rise to a unique global L-parameter on … . On the other hand, it follows from
[Arthur 2013, Theorem 1.5.1] that j… p j � 2

2nC1 for the local A-packet … p at p if p jN , and … p
is a singleton if p − N . It yields that j… j � 2.2nC1/!.N/. Since the local Langlands correspondence
�p 7!…p satisfies the character relation by [Arthur 2013, Theorem 1.5.1], it follows from Proposition 4.6
with Remark 4.7 that for each � 2… ,

dim
�
�
K.N/

f

�
D vol.K.N //�1 tr.�.1K.N///

� vol.KGL2nC1.N //�1 tr
�
.�riD1�i /.1KGL2nC1 .N//

�
D dim

�
.�riD1�i /

KGL2nC1 .N/

f

�
;
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where we denote by �f D˝0p<1�p the finite part of the cuspidal representation � . Plugging this into
Proposition 4.2, we have

jHEk.N /
ng
j D vol.K.N //�1

X
 D�r

iD1
�i2‰.G/; r�2

c. 1/Dc.�k/

X
�2… 

m�; tr.�f .1K.N///

�
An.N /

'.N /

X
 D�r

iD1
�i2‰.G/; r�2

c. 1/Dc.�k/

dim
�
.�riD1�i /

KGL2nC1 .N/

f

�
;

where 1='.N / is inserted because of the condition on the central characters in global A-parameters. Here,
r � 2 is essential to gain the factor 1='.N /; see Remark 4.9.

Next we describe dim..�riD1�i /
KGL2nC1.N/

f
/ in terms of the data .mi ; N; �i ; �i / with 1� i � r . Since

Pm.Af /nGL2nC1.Af /=K.N/' Pm. OZ/nGL2nC1. OZ/=K.N/' Pm.Z=NZ/nGL2nC1.Z=NZ/

and a complete system of the representatives can be taken from elements in GL2nC1. OZ/, and therefore,
they normalize K.N/. Then a standard method for fixed vectors of an induced representation shows that

dim
�
.�riD1�i /

KGL2nC1 .N/

f

�
D dPm.N /

rY
iD1

dim
�
�K

GLmi .N/

i;f

�
;

Here, if �i is the central character of �i and �i;1 ' �i , then dim.�K
GLmi .N/

i;f
/D lcusp;ort.mi ; N; �i ; �i /.

Notice that the conductor of �i is a divisor of N . Summing up, we have the claim. �

Remark 4.9. Let r � 2. The group homomorphism ..Z=NZ/�/r!.Z=NZ/�, .x1; : : : ; xr/ 7! x1 � � � xr ,
is obviously surjective, and it yields

ˇ̌˚
.�1; : : : ; �r/ 2

3.Z=NZ/�r W �1 � � ��r D 1
	ˇ̌
D
j3.Z=NZ/�r j

'.N /
:

This trivial equality explains the appearance of the factor 1='.N / in Proposition 4.8.

Next we study lcusp;ort.n;N; �; �/ for � 2 ….GLn.R//c and for n � 2. Now if � is a cuspidal
representation of GL2mC1 which is orthogonal, i.e., L.s; �;Sym2/ has a pole at s D 1, then � comes
from a cuspidal representation � on Sp.2m/. In this case, the central character !� of � is trivial.

If � is a cuspidal representation of GL2m which is orthogonal, i.e., L.s; �;Sym2/ has a pole at s D 1,
then !2� D 1; If !� D 1, � comes from a cuspidal representation � on the split orthogonal group
SO.m;m/; If !� ¤ 1, then � comes from a cuspidal representation � on the quasisplit orthogonal group
SO.mC 1;m� 1/.

First we consider the case when � is trivial in estimating lcusp;ort.2nC ı;N; �; �/, where ı D 0 or 1.
For a positive integer n, let

H D

�
SO.n; n/ if G0 D GL2n;
Sp.2n/ if G0 D GL2nC1:
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We regard H as a twisted elliptic endoscopic subgroup G0.

Proposition 4.10. Let N be an odd positive integer. For the pair .G0;H/, the characteristic function of
vol.KH .N //�11KH .N/ as an element of C1c .H.QSN // is transferred to

vol.KG
0

.N //�11KG0 .N/

as an element of C1c .G
0.QSN //.

Proof. It follows from [Ganapathy and Varma 2017, Lemma 8.2.1 (i)]. �

Each cuspidal representation � of G0.A/ contributing to lcusp;ort.N; �;1/ can be regarded as a simple
A-parameter. Also as a cuspidal representation, it strongly descends to a generic cuspidal representation
…� of H.A/ whose L-parameter L.…� / at infinity of …� is same as one of �1. In this setting, by
[Arthur 2013, Proposition 8.3.2 (b)], the problem is reduced to estimate

Lcusp;gen.H;N;L.…� /; 1/ WD
M

��Lcusp;generic;ort.H.Q/nH.A/;L.…� /;1/

m.�/�K
H .N/; m.�/ 2 f0; 1; 2g;

where � runs over all irreducible unitary, cohomological orthogonal cuspidal automorphic representations
of H.A/ whose L-parameter at infinity is isomorphic to L.…� / with the central character �D 1.

Proposition 4.11. Keep the notations as above. Then

� lcusp;ort.2nCı;N; �; 1/�Cn.N /dim.Lcusp;gen.H;N;L.…� /; 1//, whereCn.N / WD2.2nCı/!.N/ and

ı D

�
0 if G0 D GL2n;
1 if G0 D GL2nC1:

� dim.Lcusp;gen.H;N;L.…� /; 1//� c � vol.KH .N //�1 � cN dim.H/ for some c > 0, when the infin-
itesimal character of L.…� / is fixed and N !1.

Proof. The first claim follows from [Arthur 2013, Proposition 8.3.2 (b)] with a completely similar argument
of Proposition 4.8.

The second claim follows from [Savin 1989]. �

Next we consider the case when � is a quadratic character. In this case, a cuspidal representation �
contributing to Lcusp;ort.KGLn.N /; �1; �/ comes from a cuspidal representation of the quasisplit orthog-
onal group SO.mC 1;m� 1/ defined over the quadratic extension associated to �. However any transfer
theorem for Hecke elements in .GL2m;SO.mC 1;m� 1// remains open. To get around this situation,
we make use of the transfer theorems for some Hecke elements in the quadratic base change due to
Yamauchi [2021]. For this, we need the following assumptions on the level N :

(1) N is an odd prime or

(2) N is odd and all prime divisors p1; : : : ; pr .r � 2/ of N are congruent to 1 modulo 4 and
� pi
pj

�
D 1

for i ¤ j , where
�
�
�

�
denotes the Legendre symbol.
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These conditions are needed in order that for any quadratic extension M=Q with the conductor dM divid-
ingN , there exists an integral ideal N ofM such that NN� D .dM /where � is the generator of Gal.M=Q/.

Proposition 4.12. Keep the assumptions on N as above. Then

lcusp;ort.2m;N; �; �/� 22m�!.N/ vol.KH .N //�1;

where H D SO.m;m/.
Proof. Let M=Q be the quadratic extension associated to � and OM the ring of integers of M . Let � be
the generator of Gal.M=Q/. Let KGL2m

M .N/ be the principal congruence subgroup of GL2m. OZ˝Z OM /
of the level N. Clearly, the �-fixed part of KGL2m

M .N/ is KGL2m.dM / where dM is the conductor of
M=Q and it contains KGL2m.N / since dM jN . Applying [Yamauchi 2021, Theorem 1.6], we have for a
cuspidal representation � of GL2m.A/ and its base change … WD BCM=Q.�/ to GL2m.AM /,

vol
�
KGL2m.N /

��1 tr
�
�.1KGL2m .N//

�
� vol

�
K

GL2m
M .N/

��1 tr
�
….1

K
GL2m
M .N/

/
�
:

Recall that our � contributing to Lcusp;ort.2m;N; �; �/ is orthogonal, namely, L.s; �;Sym2/ has a pole
at s D 1. Note that L.s;…;Sym2/ D L.s; �;Sym2/L.s; �;Sym2˝�/. Now, L.s; � � .� ˝ �// D
L.s; �;^2˝�/L.s; �;Sym2˝�/. Suppose … is cuspidal. Then � 6' �˝�. So the left-hand side has no
zero at s D 1, and L.s; �;Sym2˝�/ has no zero at s D 1. Therefore, L.s;…;Sym2/ has a pole at s D 1.

If … is noncuspidal, then by Arthur and Clozel [1989], there exists a cuspidal representation � of
GLm.AM / such that

…D � � �� :

In such a case, ifmD 2, then �DAIQ
M � for some cuspidal representation � of GL2.AM /; an automorphic

induction from GL2.AM / to GL4.AQ/. Since � is cuspidal and orthogonal, � has to be dihedral. Such �
are counted in [Kim et al. 2020b, Section 2.6] and it amounts to O.N 11=2C"/ for any " > 0. This will
be negligible because vol.KH .N //� cNm.2m�1/ D cN 6 for some constant c > 0. Assume m� 3. It
is easy to see that the dimension of

L
…Wnoncuspidal…

KGL2m
M .N/

f
is bounded by

O
�
Nm2�1Cm.mC1/=2

�
DO

�
N 3m2=2Cm=2�1

�
;

where the �1 of m2 � 1 in the exponent of left-hand side in the above equation is inserted because of
the fixed central character. Since dim SO.m;m/Dm.2m� 1/ and m� 3, spaces …K

GL2m
M .N/

f
for which

… is noncuspidal are negligible in the estimation. Further, … is orthogonal with trivial central character.
(The central character of … is � ıNM=Q D 1.) Therefore, we can bound lcusp;ort.2m;N; �; �/ by

lcusp;ort.2m;N;BCM1=R.�/; 1/;

which is similarly defined for cuspidal representations of GL2m.AM /. Applying the argument of the
proof of Proposition 4.11 to .GL2m =M;SO.m;m/=M/, the quantity lcusp;ort.2m;N; �; �/ is bounded by
22m!.N/ vol.KHM .N//�1, where HM WD SO.m;m/=M and !.N/ denotes the number of prime ideals
dividing N. The claim follows from OM=N' Z=NZ since vol.KHM .N//D vol.KH .N // and clearly
!.N/D !.N/. �
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Note that for any split reductive group G over Q and the principal congruence subgroup KG.N / of
levelN , we have that vol.KG.N //� cN� dimG for some constant c >0 asN!1. Furthermore, !.N/�
logN=.log logN/. Hence 2!.N/�N � , and An.N /DO.N "/ and Cmi .N /DO.N

"/ for each 1� i � r .

Theorem 4.13. Assume (1-4). Keep the assumptions on N as in Proposition 4.12. Then jHEk.N /ng j D
On.N

2n2Cn�1C"/ for any " > 0. In particular,

lim
N!1

jHEk.N /
ng j

jHEk.N /j
D 0:

Proof. By Proposition 4.8, for each partition mD .m1; : : : ; mr/ of 2nC 1, we must only estimate

An.N /

'.N /
dPm.N /

rY
iD1

lcusp;ort.mi ; N; �i ; �i /:

By Proposition 4.11 and Proposition 4.12,

lcusp;ort.mi ; N; �i ; �i /�Nmi .mi�1/=2C"

for any " > 0. Further, dPm.N/ D O.N
dimPmnGL2nC1/ D O.N

P
1�i<j�r mimj /. Note that '.N /�1 D

O.N�1C"/ for any " > 0. SinceX
1�i<j�r

mimjC

rX
iD1

mi .mi � 1/

2
D
1

2

� X
1�i;j�r

mimj

�
�
1

2

rX
iD1

mi D
1

2
.2nC1/2�

1

2
.2nC1/D2n2Cn;

we have the first claim.
The second claim follows from the dimension formula (1-3). �

5. A notion of newforms in Sk.�.N//

In this section, we introduce a notion of a newform in Sk.�.N // with respect to principal congruence
subgroups. Since any local newform theory for Sp.2n/ is unavailable except for n D 1; 2, we need a
notion of newforms so that we can control a lower bound of conductors for such newforms. This is
needed in application to low lying zeros. (See Theorem 8.3 and Lemma 9.3.)

Recall the description
Sk.�.N //D

M
 2‰.G/

M
�2… 
�1'�k

m�; �
K.N/

f

in terms of Arthur’s classification.

Definition 5.1. The new part (space) of Sk.�.N // is defined by

Snew
k .�.N //D

M
 2‰.G/

M
�D�f˝�k2… 

�K.N/¤0 but �K.d/D0 for any d jN;d¤N

m�; �
K.N/

f
:

The orthogonal complement Sold
k
.�.N // of Snew

k
.�.N // in Sk.�.N // with respect to Petersson inner

product is said to be the old space. LetHEnew
k .N / be a subset ofHEk.N /which is a basis of Snew

k .�.N //.
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Remark 5.2. As the referee pointed out, Sold
k
.�.N // is the intersection of Sk.�.N // with the smallest

G.Af /-invariant space of functions on G.Q/nG.A/ containing Sk.�.M// for all proper divisors M
of N .

Set dp D .1�p�1/n, dM D
Q
pjM dp and Cp D

Qn
jD1.1�p

�2j /, CM D
Q
pjM Cp. We set d1 D 1

and C1 D 1.
Recall dk.N /D dimSk.�.N //D Ck CN N

2n2CnCOk.N
2n2/.

Lemma 5.3. Assume that (1-4) holds and N is squarefree. Then we have

dk.N /D
X
M jN

dimSnew
k .�.M//

�
N

M

�n2
CN=M d�1N=M :

Proof. Let M j N . Take an automorphic representation � D �f ˝ �k such that dim�
K.M/

f
> 0 and

dim�
K.L/

f
D 0 for any L jM , L<M . Under this condition, � has an intersection with Snew

k
.�.M//, and

also with Sk.�.N //. Let �f D p̋�p . By the assumptions and Theorem 4.3, for any prime p −M , �p is
tempered spherical, and so �p is an irreducible induced representation from a Borel subgroup B ofG.Qp/.
So dim�

Kp
p D 1. Now Kp=Kp.p/ ' Sp2n.Fp/, # Sp2n.Fp/ D p2n

2CnCp, and #B.Fp/ D pn
2Cndp.

Hence, dim�
Kp.p/
p D pn

2

Cp d
�1
p for all p −M . Since N is squarefree, this leads to

dim�
K.N/

f
D dim�

K.M/

f
�

�
N

M

�n2
CN=Md

�1
N=M :

Thus, we obtain the assertion. �

Theorem 5.4. Assume that (1-4) holds and N is squarefree. Then we have

dimSnew
k .�.N //D CkCNN

2n2Cn
Y
pjN

�
1� d�1p p�n

2�n
�
COk

�
N 2n2

�
:

Here, �.n2/�1 <
Q
pjN

�
1 � d�1p p�n

2�n
�
< 1 if n > 1. If n D 1, we have

Q
pjN

�
1 � d�1p p�2

�
>Q

p

�
1� 1=.p.p� 1//

�
D 0:374 : : : .

Proof. Since CN=M D CN =CM and dN=M D dN =dM , from Lemma 5.3, we have

dk.N /N
�n2C�1N dN D

X
M jN

dimSnew
k .�.M//M�n

2

C�1M dM :

The Möbius inversion formula gives

dimSnew
k .�.N //N�n

2

C�1N dN D
X
M jN

�.M/dk

�
N

M

��
N

M

��n2
C�1N=MdN=M ;

where � denotes the Möbius function. Therefore,

dimSnew
k .�.N //D

X
M jN

�.M/dk

�
N

M

�
M n2CMd

�1
M : (5-1)
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By [Wakatsuki 2018, Corollary 1.2], there exist constants Ck;r such that dk.N /D
Pn
rD0 Ck;rCN N

f .r/

if N > 2, where f .r/D 2n2CnC 1
2
r.r � 1/�nr and Ck;0 D Ck . Further, we take two constants D1

and D2 so that dk.N /D
Pn
rD0 Ck;r CN N

f .r/CDN for N D 1 or 2. Therefore, by (5-1), we obtain

dimSnew
k .�.N //D

nX
rD0

Ck;rCNN
f .r/

X
M jN

�.M/d�1M M n2�f .r/

C�.N/N n2CNd
�1
N D1C

8<:�
�
N

2

��
N

2

�n2
CN=2d

�1
N=2

D2 if 2 jN;

0 if 2 −N:
Since N is squarefree, X

M jN

�.M/d�1M M n2�f .r/
D

Y
pjN

�
1� d�1p pn

2�f .r/
�
:

Therefore,

dimSnew
k .�.N //D

nX
rD0

Ck;rCNN
f .r/

Y
pjN

�
1� d�1p p�f .r/Cn

2�
C�.N/N n2CNd

�1
N D1C

8<:�
�
N

2

��
N

2

�n2
CN=2d

�1
N=2

D2 if 2 jN;

0 if 2 −N:

From this, we obtain the assertion.
Now, dp <1. Hence

Q
pjN

�
1�d�1p pn

2�f .r/
�
<1. Also d�1p <pn since 1=.1�p�1/ < p. Therefore,Q

pjN

�
1� d�1p p�n

2�n
�
>
Q
pjN

�
1�p�n

2�
. Here if n > 1,Y

pjN

�
1�p�n

2��1
<
Y
p

�
1�p�n

2��1
D �.n2/:

If nD 1, Y
pjN

�
1� d�1p p�n

2�n
�
D

Y
pjN

�
1�

1

p.p�1/

�
>
Y
p

�
1�

1

p.p�1/

�
;

which is the Artin constant. �

6. Equidistribution theorem of Siegel cusp forms; proof of Theorem 1.1

By the definition in (1-1), we see that

O�KS .N/;S1;�k ;Dhol
l
.bh1/D Tr.Th1 jSk.�.N///

vol.G.Q/nG.A// � dim �k
:

Notice that dim �k D dk (under a suitable normalization of the measure). Applying Theorem 3.10 to S1,
we have the claim by the Plancherel formula of Harish-Chandra: O�pl

S1
.bh1/D h1.1/.
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7. Vertical Sato–Tate theorem for Siegel modular forms: proofs of Theorems 1.2 and 1.3

Suppose that k D .k1; : : : ; kn/ satisfies the condition (1-4). Put TD fz 2C W jzj D 1g. For F 2HEk.N /,
consider the cuspidal automorphic representation � D �F D �1˝˝0p�F;p of G.A/ associated to F . As
discussed in the previous section, under the condition (1-4), theA-parameter whoseA-packet contains �
is semisimple and �F;p is tempered for all p. Then if p −N , �F;p is spherical, and we can write �F;p as
�F;p D IndG.Qp/

B.Qp/
�p , where B D T U is the upper Borel subgroup and �p is a unitary character on B.Qp/.

For each 1� j � n, put j̨p.�p/ WD �p.ej .p
�1// (see (2-1) for ej .p�1/) and by temperedness, we may

write j̨p.�p/D e
p
�1�j ; �j 2 Œ0; ��. Let OG D SO.2nC 1/.C/ be the complex split orthogonal group

over C associated to the antidiagonal identity matrix. Let L.�p/ WWQp!SO.2nC 1/.C/ be the local
Langlands parameter given by

L.�p/.Frobp/D .˛1p.�p/; : : : ; ˛np.�p/; 1; ˛1p.�p/�1; : : : ; ˛np.�p/�1/;

which is called the p-Satake parameter. Put a.i/.�p/D a
.i/
F;p.�p/D

1
2
.˛ip.�p/C˛ip.�p/

�1/D cos �i
for 1 � i � n. Let 2G.Qp/ur; temp be the isomorphism classes of unramified tempered representations
of G.Qp/. By [Shin and Templier 2016, Lemma 3.2], we have a topological isomorphism

2G.Qp/ur; temp �
��! Œ0; ��n=Sn DW�

given by

�p D IndSp2n.Qp/
B.Qp/

�p 7!
�
arg.a.1/.�p//; : : : ; arg.a.n/.�p//

�
DW .�1; : : : ; �n/:

We denote by .�1.�F;p/; : : : ; �n.�F;p// 2� the corresponding element to �F;p under the above isomor-
phism. Let OB D OT OU be the upper Borel subgroup of OG D SO.2nC 1/.C/. Let �C. OG/ be the set of all
positive roots in X�. OT /D Hom. OT ;GL1/ with respect to OB . We view .�1; : : : ; �n/ as parameters of �.
Let �pl; temp

p be the restriction of the Plancherel measure on 2G.Qp/ to 2G.Qp/ur; temp, and by abusing the
notation, we denote by �p D �

pl; temp
p its pushforward to �. Put

t WD
�
e
p
�1�1 ; : : : ; e

p
�1�n ; 1; e�

p
�1�1 ; : : : ; e�

p
�1�n

�
for simplicity. By [Shin and Templier 2016, Proposition 3.3], we have

�
pl; temp
p .�1; : : : ; �n/DW.�1; : : : ; �n/d�1 � � � d�n;

where

W.�1; : : : ; �n/D
1

.2�/n

�
1C

1

p

�n2 Q
˛2�C. OG/

j1� e
p
�1˛.t/j2Q

˛2�C. OG/
j1�p�1e

p
�1˛.t/j2

D
1

.2�/n

�
1C

1

p

�n2 Qn
iD1 j1� e

p
�1�i j2

Q
1�i<j�n

"D˙1

j1� e
p
�1.�iC"�j /j2Qn

iD1 j1�p
�1e
p
�1�i j2

Q
1�i<j�n

"D˙1

j1�p�1e
p
�1.�iC"�j /j2

:
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By letting p!1, we recover the Sato–Tate measure

�ST
1 D lim

p!1
�

pl; temp
p D

1

.2�/n

nY
iD1

ˇ̌
1� e

p
�1�i

ˇ̌2 Y
1�i<j�n
"D˙1

ˇ̌
1� e

p
�1.�iC"�j /

ˇ̌2
d�1 � � � d�n:

Then Theorems 1.2 and 1.3 follow from Theorems 1.1 and 4.13.

8. Standard L-functions of Sp.2n/

Let kD .k1; : : : ; kn/ and F 2HEk.N /, and let �F be a cuspidal representation of G.A/ associated to F .
Assume (1-4) for k. By (4-1) and the observation there, the global A-packet … containing �F

is associated to a semisimple global A parameter  D �riD1�i where �i is an irreducible cuspidal
representation of GLmi .A/. Then the isobaric sum … WD �riD1�i is an automorphic representation
of GL2nC1.A/. Therefore, we may define

L.s; �F ;St/ WD L.s;…/D
rY
iD1

L.s; �i /:

Let Lp.s; �F ;St/ WD L.s;…p/D
Qr
iD1L.s; �ip/ be the local p-factor of L.s; �F ;St/ for each rational

prime p.
Let �F D �1˝˝0p�p . For p −N , we have that �p is the spherical representation of G.Qp/ with the

Satake parameter .˛1p; : : : ; ˛np; 1; ˛�11p ; : : : ; ˛
�1
np /. Then

Lp.s; �F ;St/�1 D .1�p�s/
nY
iD1

.1�˛ipp
�s/.1�˛�1ip p

�s/:

We define the conductor q.F / of F to be the product of the conductors q.�i / of �i , for 1� i � r .

Theorem 8.1. Let F 2HEk.N /. Then the standard L-function L.s; �F ;St/ has a meromorphic continu-
ation to all of C. Let

ƒ.s; �F ;St/D q.F /s=2L1.s; �F ;St/L.s; �F ;St/;

where L1.s; �F ;St/D �R.sC �/�C.sC k1� 1/ � � ��C.sC kn�n/,

� D

�
0 if n is even;
1 if n is odd;

and �R.s/D �
�s=2�. s

2
/, �C.s/D 2.2�/

�s�.s/. Then

ƒ.s; �F ;St/D �.F /ƒ.1� s; �F ;St/;

where �.F / 2 f˙1g.

Proof. It follows from the functional equation of L.s;…/ by noting that … is self-dual, and L.s;…1/D
L1.s; �F ;St/ is the local L-function attached to the holomorphic discrete series of the lowest weight k;
see [Kozima 2002]. �
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The epsilon factor �.F / turns out to be always 1.

Proposition 8.2. Let �F be associated to a semisimple A-parameter. Then �.F /D 1.

Proof. Recall the global A-parameter  D�riD1�i . Let !i be the central character of �i . Since �i is
orthogonal, its epsilon factor is !i .�1/ by [Lapid 2004, Theorem 1]. Hence,

�.F /D

rY
iD1

!i .�1/D

� rY
iD1

!i

�
.�1/D 1.�1/D 1

by the condition on the central character. �

Theorem 8.3. For any F 2HEk.N /, the conductor q.F / satisfies q.F /�N 2nC1. If F 2HEnew
k
.N /,

then q.F /�max
˚
N
Q
pjN p

�1;
Q
pjN p

	
. So if F 2HEnew

k
.N /, q.F /�N 1=2.

Proof. Let �F be associated to a semisimple global A parameter  D�riD1�i where �i is an irreducible
cuspidal representation of GLmi .A/, and let … WD�riD1�i . Let …D…1˝˝0p…p . By Proposition 4.6,
… has a nonzero fixed vector by KGL2nC1.pep /, where ep D ordp.N /. As in the proof of [Kim et al.
2020a, Lemma 8.1], it implies depth.…p/� ep�1. Hence q.…p/�p.2nC1/ep by [Lansky and Raghuram
2003, Proposition 2.2]. Therefore, q.F /�N 2nC1.

If F 2HEnew
k .N /, by Definition 5.1, it is not fixed byKGL2nC1.pep�1/ for each p jN . By [Miyauchi

and Yamauchi 2022, Theorem 1.2], we have q.…p/�pmi .ep�1/ for some i . In particular, q.…p/�pep�1

for each p jN . Hence, q.F /�N
Q
pjN p

�1. It is clear that q.…p/� p if p jN . Hence,

q.F /�max
�
N �

Y
pjN

p�1;
Y
pjN

p

�
:

Now, q.F /2 D q.F / � q.F /�N . Hence our result follows. �

Proposition 8.4. Keep the assumptions onN as in Proposition 4.12. Let F 2HEk.N /. ThenL.s; �F ;St/
has a pole at sD1 if and only if �F is associated to a semisimple globalA-parameter D1��1�� � ���r
where �i is an orthogonal irreducible cuspidal representation of GLmi .A/, such that if mi D 1, �i is
a nontrivial quadratic character. Let HEk.N /0 be the subset of HEk.N / such that L.s; �F ;St/ has
a pole at s D 1. Then jHEk.N /0j DO.N 2n2�nC�/. So jHEk.N /0j=jHEk.N /j DO.N�2nC�/.

This proves [Shin and Templier 2016, Hypothesis 11.2] in our family.

Proof. This follows from the proof of Theorem 4.13, by noting that partitions mD .m1; : : : ; mr/ of 2n
contribute to HEk.N /0. �

Böcherer [1986] gave the relationship between Hecke operators and L-functions for level one and
scalar-valued Siegel modular forms and it is extended by Shimura [1994a] to a more general setting.

Let a D .a1; : : : ; an/, 0 � a1 � � � � � an, and Dp;a D diag.pa1 ; : : : ; pan/. Let F be an eigenform
in HEk.N / with respect to the Hecke operator T .Dp;a/ for all p − N , and let �.F;Dp;a/ be the
eigenvalue.
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Then we have the following identity [Shimura 1994a, Theorem 2.9]:X
a

�.F;Dp;a/X
Pn
iD1 ai D

1�X

1�pnX

nY
iD1

.1�p2iX2/

.1�˛ippnX/.1�˛
�1
ip p

nX/
; (8-1)

where aD .a1; : : : ; an/ runs over 0� a1 � � � � � an.
Let m D .m1; : : : ; mn/, m1jm2j � � � jmn, and Dm D diag.m1; : : : ; mn/, and let �.F;Dm/ be the

eigenvalue of the Hecke operator T .Dm/. Let

LN .s; F /D
X

m; .mn;N/D1

�.F;Dm/ det.Dm/�s:

Then
LN .s; F /D

Y
p−N

L.s; F /p;

L.s; F /p D
X
a

�.F;Dp;a/ det.Dp;a/�s:

It converges for Re.s/ > 2nC .k1C � � �C kn/=nC 1.
Hence, we have

�N .s/

� nY
iD1

�N .2s� 2i/

�
LN .s; F /D LN .s�n; �F ;St/;

where LN .s; �F ;St/D
Q
p−N Lp.s; �F ;St/, and �N .s/D

Q
p−N .1�p

�s/�1.
The central value ofLN .s; F / is at sDnC 1

2
, andLN .s; F / has a zero at sDnC 1

2
sinceLN .s; �F ;St/

is holomorphic at s D 1
2

. Theorem 3.10 implies

Theorem 8.5. For mD .m1; : : : ; mn/, m1jm2j � � � jmn with mn > 1 and .mn; N /D 1, N �m2nn ,

1

jHEk.N /j

X
F 2HEk.N/

�.F;Dm/DO.m
˛
nN
�n/;

for some constant ˛.

Proof. Let S1 be the set of all prime divisors of mn. Since mn > 1, S1 is nonempty. The main term of
right-hand side in Theorem 3.10 includes h1.1/. Clearly, h1.1/D 0 because the double coset defining the
Hecke operator h1 does not contain any central elements. Since the automorphic counting measure is
supported on cuspidal representations, Theorem 3.10 implies the claim. �

Write

LN .s; F /D

1X
mD1

.m;N/D1

aF .m/m
�s and L.s; F /p D

1X
kD0

aF .p
k/p�ks

for each prime p −N . Here aF .pk/D
P
a �.F;Dp;a/, where the sum is over all aD .a1; : : : ; an/ such

that 0� a1 � � � � � an, a1C � � �C an D k. Hence, for k > 0 and p −N ,

1

dk.N /

X
F 2HEk.N/

aF .p
k/DO.pkaN�n/:
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More generally:

Corollary 8.6. For m> 1, with .m;N /D 1, N �m2n,

1

dk.N /

X
F 2HEk.N/

aF .m/DO.m
˛N�n/:

Proof. We have aF .m/D
P
m �.F;Dm/, where the sum is over all mD .m1; : : : ; mn/, m1jm2j � � � jmn,

m1 � � �mn Dm. Our assertion follows from Theorem 8.5. �

Write

LN .s; �F ;St/D
1X
mD1

.m;N/D1

�F .m/m
�s:

Then from (8-1), we have, for p −N ,

�F .p/D
�
aF .p/C 1

�
p�n and �F .p

2/D 1Cp�2C � � �Cp�2nC
�
aF .p

2/C aF .p/
�
p�2n:

More generally, for p −N ,

�F .p
k/D

(
1Cp�2hk.p

�2/Cp�n
Pk
iD1 hik.p

�1/aF .p
i / if k is even;

p�nh0
k
.p�2/Cp�n

Pk
iD1 h

0
ik
.p�1/aF .p

i / if k is odd;

where hk; h0k; hik; h
0
ik
2 ZŒx�. Therefore, for .m;N /D 1,

�F .m/D
Y
pjm

�
ıp;mCp

�2hım.p
�1/
�
C

X
ujm
u>1

AuaF .u/;

where

Au 2Q; hım 2 ZŒx�; and ı D ıp;m D

�
1 if vp.m/ is even;
0 otherwise:

Therefore, by Corollary 8.6, we have

Theorem 8.7. Fix k D .k1; : : : ; kn/, and let mD
Q
pjm p

vp.m/ which is coprime to N . Then

1

dk.N /

X
F 2HEk.N/

�F .m/D
Y
pjm

�
ıp;mCp

�2hım.p
�1/
�
CO.N�nmc/:

This proves [Kim et al. 2020b, Conjecture 6.1 in level aspect] for the Sp.4/ case.

9. `-level density of standard L-functions

In this section, we assume (1-4) and keep the assumptions on N in Proposition 4.12. Then we show
unconditionally that the `-level density (` a positive integer) of the standard L-functions of the family
HEk.N / has the symmetry type Sp in the level aspect. Shin and Templier [2016] showed it under several
hypotheses with a family which includes nonholomorphic forms.
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Under assumption (1-4), F satisfies the Ramanujan conjecture, namely, j˛ipj D 1 for each i . Let

�
L0

L
.s; �F ;St/D

1X
mD1

ƒ.m/bF .m/m
�s;

where bF .pm/D 1C˛m1pC � � �C˛
m
npC˛

�m
1p C � � �C˛

�m
np when �p is spherical.

For F 2 HEk.N /, let … be the Langlands transfer of �F to GL2nC1. If F 2 HEk.N /g , then
L.s;…;^2/ has no pole at s D 1, and L.s;…;Sym2/ has a simple pole at s D 1. Let

L.s;…�…/D
X

�…�….n/n
�s;

L.s;…;^2/D
X

�^2.…/.n/n
�s;

L.s;…;Sym2/D
X

�Sym2.…/.n/n
�s:

Then �F .p2/D �Sym2.…/.p/ and �F .p/2 D �…�….p/D �^2.…/.p/C�Sym2.…/.p/.
Note that �F .p/D bF .p/, and bF .p2/D 2�F .p2/��F .p/2. Let

T .p; a/D �.N/

�
Dp;a 0

0 D�1p;a

�
�.N/:

By Theorem A.1, T .p; .0; : : : ; 0; 1//2, where there are n� 1 entries of 0, is a linear combination of

T
�
p; .

n�1‚ …„ ƒ
0; : : : ; 0; 2/

�
; T

�
p; .

n�2‚ …„ ƒ
0; : : : ; 0; 1; 1/

�
; T

�
p; .

n�1‚ …„ ƒ
0; : : : ; 0; 1/

�
; T

�
p;

n‚ …„ ƒ
.0; : : : ; 0/

�
D �.N/I2n�.N/:

Therefore, by Theorem 8.7, if p −N ,

1

dk.N /

X
F 2HEk.N/

�F .p/
2

is of the form

1Cp�1g.p�1/CO.pcN�n/

for some polynomial g 2 ZŒx� and c > 0. Here the main term 1Cp�1g.p�1/ comes from the coefficient

p

2n�1X
iD0

pi of T .p;

n‚ …„ ƒ
.0; : : : ; 0//

in the linear combination. Here the explicit determination of the coefficient is necessary in our application.
Hence, we have

Proposition 9.1. For some ˛ > 0 and p −N ,

1

dk.N /

X
F 2HEk.N/

bF .p/DO.p
�1/CO.p˛N�n/; for N � p2n

1

dk.N /

X
F 2HEk.N/

bF .p
2/D 1CO.p�1/CO.p˛N�n/; for N � p4n:
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Remark 9.2. By a more careful analysis, we can replace the error term O.N a�Cb
1 N�n/ in Theorem 3.10

by

O

�
N
n.nC1/=2�C�
1 N�n.nC1/=2CN

.2n�1/�C8n�4C�
1 N 1�2n

CN n�C2n3C2n�3C�
1 N�n

C

n�1X
rD3

N
�.nr�r.r�1/=2/C.2n�r�1/Œr=2�C2n�2r�1C2n3C�
1 N r.r�1/=2�nr

�
;

for any � > 0. Hence, the first error term O.p˛N�n/ in Proposition 9.1 can be replaced (by taking � D 1)
by

O

�
pn.nC1/=2C�N�.n

2Cn/=2
Cp10n�5C�N 1�2n

Cp2n
3C3n�3C�N�n

C

n�1X
rD3

p2n
3C2n�1C2nr�r2�2rC�N r.r�1/=2�nr

�
:

The second error term O.p˛N�n/ in Proposition 9.1 can be replaced (by taking � D 2) by

O

�
pn.nC1/C�N�.n

2Cn/=2
Cp12n�6C�N 1�2n

Cp2n
3C4n�3C�N�n

C

n�1X
rD3

p2n
3C2n�1C3nr�.3=2/.r2Cr/C�N r.r�1/=2�nr

�
:

We denote the nontrivial zeros of L.s; �F ;St/ by �F;j D 1
2
C
p
�1
F;j . Without assuming the GRH

for L.s; �F ;St/, we can order them as

� � � �Re.
F;�2/�Re.
F;�1/� 0�Re.
F;1/�Re.
F;2/� � � � :

Let c.F /D q.F /.k1 � � � kn/2 be the analytic conductor, and let

log ck;N D
1

dk.N /

X
F 2HEk.N/

log c.F /:

From Theorems 5.4 and 8.3, we have

Lemma 9.3. Let n > 1. We assume that N is squarefree. Then

.k1 � � � kn/
2N 1=.2�.n2//

� ck;N � .k1 � � � kn/
2N 2nC1:

This proves [Shin and Templier 2016, Hypothesis 11.4] in our family. It is used in the proof of (9-1).

Proof. By Theorem 8.3, we have q.F / �N 2nC1. It gives rise to the upper bound. If F 2HEnew
k .N /,

q.F /�N 1=2 by Theorem 8.3. By Theorem 5.4, jHEnew
k
.N /j � �.n2/�1jHEk.N /j. Hence,

log ck;N � log.k1 � � � kn/2C
1

dk.N /

X
F 2HEnew

k
.N/

log q.F /� log.k1 � � � kn/2C
1

2�.n2/
logN: �

Consider, for an even Paley–Wiener function �,

D.F; �/D
X

F;j

�

�

F;j

2�
log ck;N

�
:
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Then as in [Kim et al. 2020a, (9.1)],

1

dk.N /

X
F 2HEk.N/

D.F; �/D O�.0/�
1

2
�.0/�

2

.log ck;N /dk.N /

X
F 2HEk.N/

X
p

bF .p/ logp
p
p

O�

�
logp

log ck;N

�

�
2

.log ck;N /dk.N /

X
F 2HEk.N/

X
p

.bF .p
2/�1/ logp
p

O�

�
2 logp

log ck;N

�

CO

�
jHEk.N /

0j

dk.N /

�
CO

�
1

log ck;N

�
;

where HEk.N /0 is in Proposition 8.4. (In [Kim et al. 2020a, (9.4)], the term O
�
jHEk.N /

0j=dk.N /
�

was omitted.)
By Proposition 9.1, we can show as in [Kim et al. 2020a] that for an even Paley–Wiener function �

such that the Fourier transform O� of � is supported in .�ˇ; ˇ/, for some ˇ > 0,

1

dk.N /

X
F 2HEk.N/

D.F; �/D O�.0/�
1

2
�.0/CO

�
1

log ck;N

�
D

Z
R

�.x/W.Sp/.x/ dxCO
�
!.N/

logN

�
; (9-1)

where !.N/ is the number of prime factors of N and W.Sp/.x/ D 1� .sin 2�x/=.2�x/. (When we
exchange two sums, if p −N , we use Proposition 9.1. If p jN , by the Ramanujan bound, jbF .p/j � n
and jbF .p2/j � n. Hence by the trivial bound, we would obtain

P
pjN bF .p/ logp=

p
p� !.N/ andP

pjN bF .p
2/ logp=p� !.N/.)

In fact, by Remark 9.2, we can take ˇ to be the minimum of

n2Cn

.2nC1/.n2CnC1/
� �;

2n�1

.2nC1/.10n�9=2/
� �;

n

.2nC1/.2n3C3n�5=2/
� �;

1

2n.2nC1/
;

min3�r�n�1

�
nr � r.r � 1/=2

.2nC 1/.2nr � r2� 2r C 2n3C 2n� 1=2/
� �

�
:

Namely,
ˇ D

n

.2nC1/.2n3C3n�5=2/
� �: (9-2)

For a general `, let
W.Sp/.x/D det.K�1.xj ; xk//1�j�`; 1�k�`;

whereK�1.x;y/Dsin�.x�y/=�.x�y/�sin�.xCy/=�.xCy/. Let �.x1; : : : ;x`/D�1.x1/ � � ��`.x`/,
where each �i is an even Paley–Wiener function and O�.u1; : : : ; u`/D O�1.u1/ � � � O�`.u`/. We assume that
the Fourier transform O�i of �i is supported in .�ˇ; ˇ/ for i D 1; : : : ; `. The `-level density function is

D.`/.F; �/D
X�

j1;��� ;j`
�

�

j1

log ck;N
2�

; 
j2
log ck;N
2�

; : : : ; 
j`
log ck;N
2�

�
;

where
P�
j1;:::;j`

is over ji D˙1;˙2; : : : with ja ¤˙jb for a¤ b. Then as in [Kim et al. 2020b], using
Theorem 8.7, we can show
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Theorem 9.4. We assume that N is squarefree. Let �.x1; : : : ; x`/D �1.x1/ � � ��`.x`/, where each �i is
an even Paley–Wiener function and O�.u1; : : : ; u`/D O�1.u1/ � � � O�`.u`/. Assume the Fourier transform O�i
of �i is supported in .�ˇ; ˇ/ for i D 1; � � � ; `. (See (9-1) for the value of ˇ.) Then

1

dk.N /

X
F 2HEk.N/

D.`/.F; �/D

Z
R`
�.x/W.Sp/.x/ dxCO

�
!.N/

logN

�
:

Remark 9.5. The above theorem is usually stated for Schwartz functions in the literature. But since
Schwartz functions approximate any function in L2-space, the above theorem holds for Payley–Wiener
functions, which are in L2.Rn/, and whose Fourier transforms have compact supports.

10. The order of vanishing of standard L-functions at s D
1
2

In this section, we show that the average order of vanishing of standard L-functions at s D 1
2

is bounded
under GRH; see [Iwaniec et al. 2000; Brumer 1995]. Under GRH onL.s; �F ;St/, its zeros are 1

2
C
p
�1
F

with 
F 2 R.

Theorem 10.1. Assume the GRH. Assume (1-4) andN is squarefree. Let rF D ordsD 1
2
L.s; �F ;St/. Then

1

dk.N /

X
F 2HEk.N/

rF � C;

where C D 1
n
.2nC 1/

�
2n3C 3n� 5

2

�
�
1
2
C �.

Proof. Choose �.x/D
�
2 sin.xˇ=2/=x

�2 for x 2 R, where ˇ is from (9-2). Then

O�.x/D

�
ˇ� jxj if jxj< ˇ;
0 otherwise:

Since �.x/� 0 for x 2 R, from (9-1), we have

1

dk.N /

X
F 2HEk.N/

rF �.0/� O�.0/�
1

2
�.0/CO

�
1

log logN

�
:

Hence, we have
1

dk.N /

X
F 2HEk.N/

rF �
1

ˇ
�
1

2
CO

�
1

log logN

�
: �

We can show a similar result for the spinor L-function of GSp.4/. Recall the following from [Kim
et al. 2020a]:

Proposition 10.2. Assume .N; 11Š/D 1.

(1) (level aspect) Fix k1; k2. Then for � whose Fourier transform O� has support in .�u; u/ for some
0 < u < 1, as N !1 (See [Kim et al. 2020a, Proposition 9.1] for the value of u),

1

dk.N /

X
F 2HEk.N/

D.�F ; �;Spin/D O�.0/C 1
2
�.0/CO

�
1

log logN

�
:
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(2) (weight aspect) Fix N . Then for � whose Fourier transform O� has support in .�u; u/ for some
0 < u < 1, as k1C k2!1,

1

dk.N /

X
F 2HEk.N/

D.�F ; �;Spin/D O�.0/C 1
2
�.0/CO

�
1

log..k1�k2C2/k1k2/

�
:

By a careful analysis, we can show that v1 D 3;w1 D 6 in [Kim et al. 2020a, Proposition 8.2] in the
level aspect. Hence uD 1

40
in the level aspect. As in Theorem 10.1, we have

Theorem 10.3. Let G D GSp.4/. Assume the GRH, and let rF D ordsD 1
2
L.s; �F ;Spin/. Then

1

dk.N /

X
F 2HEk.N/

rF �

8̂<̂
:
1

u
C
1

2
CO

�
1

log logN

�
level aspect;

1

u
C
1

2
CO

�
1

log..k1�k2C2/k1k2/

�
weight aspect:

Appendix

In this appendix we compute the product T .p; .0; : : : ; 0; 1//2, with n� 1 entries of 0, from Section 9.

Theorem A.1. For the Hecke operators, we have

T .p; .

n�1‚ …„ ƒ
0; : : : ; 0; 1//2 D T .p; .

n�1‚ …„ ƒ
0; : : : ; 0; 2//C.pC1/T .p; .

n�2‚ …„ ƒ
0; : : : ; 0; 1; 1//C.pn�1/T .p; .

n�1‚ …„ ƒ
0; : : : ; 0; 1//

C

�
p

2n�1X
iD0

pi
�
T .p;

n‚ …„ ƒ
.0; : : : ; 0//:

This agrees with [Kim et al. 2020a, (2.7)] when nD 2. [Note that the coefficient of Rp2 there should
be replaced with p4Cp3Cp2Cp.]

Since p −N , we work on K D Sp.2n;Zp/ instead of �.N/. Put

Tp;n�1 WD pT .p; .0; : : : ; 0; 1//DK diag.1;
n�1‚ …„ ƒ

p; : : : ; p; p2;

n�1‚ …„ ƒ
p; : : : ; p /K 2 GSp.2n;Qp/:

It suffices to consider T 2p;n�1. Let us first compute the coset decomposition. Put ƒD GLn.Zp/ where
the identity element is denoted by 1n. For any ring R, let Sn.R/ be the set of all symmetric matrices of
size n defined over R and Mm�n.R/ be the set of matrices of size m�n defined over R. Put

Mn.R/DMn�n.R/

for simplicity. For each D 2Mn.Zp/, we define

B.D/ WD fB 2Mn.Zp/ j
tBD D tDBg:

For each B1; B2 2 B.D/, we write B1 � B2 if there exists M 2Mn.Zp/ such that B1 �B2 DMD.
We denote by B.D/= � the set of all equivalence classes of B.D/ by the relation �. We regard Fp
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(respectively, Z=p2Z) as the subset f0; 1; : : : ; p� 1g (respectively, f0; 1; : : : ; p2� 1g) of Z. Let DI be
the set of the following matrices in Mn.Zp/:

DIn�1 D diag.
n�1‚ …„ ƒ

p; : : : ; p; 1/;

DIs DD
I
s .x/ WD

0B@ p � 1s

1 x

p � 1n�1�s

1CA ; 0� s � n� 2; x 2M1�.n�1�s/.Fp/;

where we fill out zeros in the blank blocks. The cardinality ofDI is 1CpC� � �Cpn�1D .pn�1/=.p�1/
which is equal to that of ƒnƒdn�1ƒ, where dn�1 D diag.1; p; : : : ; p/ containing n� 1 entries of p.
Similarly, let DII be the set of the following matrices:

DIIn�1 D diag.p;

n�1‚ …„ ƒ
1; : : : ; 1/;

DIIs DD
II
s .y/ WD

0B@ 1s y

p

1n�1�s

1CA ; 1� s � n� 1; y 2Ms�1.Fp/:

The cardinality of DII is 1CpC � � � Cpn�1 D .pn � 1/=.p � 1/ which is equal to that of ƒnƒd1ƒ,
where d1 D diag.1; : : : ; 1; p/ containing n� 1 entries of 1. Finally for each M 2Mn.Zp/ we denote
by rp.M/ the rank of M mod pZp.

Lemma A.2. Assume p is odd. The right coset decomposition Tp;n�1 D
`
˛2J K˛ consists of the

following elements:

(1) (type I) We have

˛ D ˛I .D;B/D

�
p2 � tD�1 B

0n D

�
;

where D runs over the set DI and B runs over complete representatives of B.D/= � such that
rp.˛/D 1. Further, for each DIs , B can be taken over

� if s ¤ 0, then x ¤ 0 and B D 0;
� if s D 0, then x D 0 and B D 0.

(2) (type II) We have

˛ D ˛II .D;B/D

�
p � tD�1 B

0n pD

�
;

where D runs over the set DII and B runs over complete representatives of B.D/= � such that
rp.˛/D 1. Further, for each DIIs , B can be taken over.

� If s D 0, then �
B22 B23

p � tB23 0n�1

�
;

where B22 runs over Z=p2Z and B23 runs over M1�.n�1/.Fp/;
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� If s ¤ 0, for DIIs .y/, y 2Ms�1.Fp/,0B@ 0s p � tB21 0s�.n�1�s/

B21 B22 B23

0.n�1�s/�s p � tB23 0n�1�s

1CA;
where B21; B22 and B23 run over M1�s.Fp/; Z=p2Z, and M1�t .Fp/, respectively.

(3) (type III) We have

˛ D ˛III .B/D

�
p1n B

0n p1n

�
;

where B runs over Sn.Fp/ with rp.B/D 1. The number of such B’s is pn� 1.

Proof. We just apply the formula [Andrianov 2009, (3.94)]. First we need to compute a complete system of
representatives ofƒnƒtƒ' .t�1ƒt/\ƒnƒ for each t 2fdn�1; d1; p1ngwhere dn�1Ddiag.1; p; : : : ; p/
and d1Ddiag.1; : : : ; 1; p/ containing n�1 entries of p and 1, respectively. By direct computation, for tD
dn�1 (respectively, t Dd1), it is given byDI (respectively,DII ). For t Dp �1n, it is obviously a singleton.

As for the computation of B.D/=�, we give details only for D 2DI , and the case of DII is similarly
handled. For each D DDIs .x/; 0� s � n� 2, put

As D

0B@ 1s

1 �px

1n�1�s

1CA;
so that

DAs D

0B@ p � 1s

1

p � 1n�1�s

1CA:
Put An�1 D 12n for D DDIn�1. Then for each D DDIs , we have a bijection

B.D/=� ���! B.DAs/=�; B 7! BAs:

Therefore, we may compute B.DAs/=� and convert them by multiplying A�1s on the right.
We write B 2 B.DAs/ as a block matrix

s‚…„ƒ 1‚…„ƒ n�1�s‚…„ƒ
B D

0B@ B11 B12 B13

B21 B22 B23

B31 B32 B33

1CA
with respect to the partition sC 1C .n� 1� s/ of n where the column is also decomposed as in the row.
The relation yields

B D

0B@ B12 B12 B13

p � tB12 B22 p � tB32
tB13 B32 B33

1CA;
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where B11 2 Ss.Zp/, B22 2 Zp, and B33 2 Sn�1�s.Zp/. We write X 2Mn.Zp/ as
s‚…„ƒ 1‚…„ƒ n�1�s‚…„ƒ0B@ X11 X12 X13

X21 X22 X23

X31 X32 X33

1CA
with respect to the partition sC 1C .n� 1� s/ of n as we have done for B . Then

XDAs D

0B@ pX11 X12 pX13

pX21 X22 pX23

pX31 X32 pX33

1CA:
Our matrix B in B.DAs/=� is considered by taking modulo XDAs for any X 2Mn.Zp/. Hence B can
be, up to equivalence, of the form

B D

0B@ B11 0s�1 B13

01�s 0 01�.n�1�s/
tB13 0.n�1�s/�1 B33

1CA; (A-1)

where B11, B33, and B13 belong to Ss.Fp/, Sn�1�s.Fp/, and Ms�.n�1�s/.Fp/, respectively. Further, to
multiply A�1s on the right never change anything. Therefore, (A-1) gives a complete system of representa-
tives of B.D/=� for D DDIs . The condition rp.˛I .D;B//D 1 and the modulo K on the left yield the
desired result. For each D 2DIIs , a similar computation shows any element of S.p �D/=� is given by

s‚…„ƒ 1‚ …„ ƒ n�1�s‚…„ƒ0B@ B11 p � tB21 B13

B21 B22 B23
tB13 p � tB23 B33

1CA
modulo the matrices of forms 0B@ pX11 p2X12 pX13

pX21 p2X22 pX23

pX31 p2X32 pX33

1CA:
Therefore, B11; B13; B21; B22; B23, and B33 run over

Ms.Fp/; Ms�.n�1�s/.Fp/; M1�s.Fp/; Z=p2Z; M1�.n�1�s/.Fp/; and Mn�1�s.Fp/;

respectively. The claim now follows from the rank condition rp.˛II .D;B//D 1 and the modulo K on
the left again.

As for D D p1n in the case of type III, it is easy to see that S.D/= � is naturally identified with
Sn.Fp/. Recall p is an odd prime by assumption. The number of matrices in Sn.Fp/ of rank 1 is given
in [MacWilliams 1969, Theorem 2]. �

Recall the right coset decomposition Tp;n�1 WD K diag.1; p; : : : ; p; p2; p; : : : ; p/K D
`
˛2J K˛,

containing two instances of n� 1 entries of p. For each ˛; ˇ 2 J , we observe that any element of K˛ˇK
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is of mod p rank at most two and has the similitude p4. Hence the double coset K˛ˇK satisfies
K˛ˇK DK
K, where 
 is one of the following four elements:


1 WD diag.1;

n�1‚ …„ ƒ
p2; : : : ; p2; p4;

n�1‚ …„ ƒ
p2; : : : ; p2/; 
3 WD diag.p;

n�1‚ …„ ƒ
p2; : : : ; p2; p3;

n�1‚ …„ ƒ
p2; : : : ; p2/;


2 WD diag.p; p;

n�2‚ …„ ƒ
p2; : : : ; p2; p3; p3;

n�2‚ …„ ƒ
p2; : : : ; p2/; 
4 WD p

2
� I2n

Here we use the Weyl elements in K to renormalize the order of entries. Then

Tp;n�1 �Tp;n�1 D

4X
iD1

m.
i /K
iK; (A-2)

where m.
i / is defined by

m.
i / WD
ˇ̌
f.˛; ˇ/ 2 J �J WK˛ˇ DK
ig

ˇ̌
(A-3)

for each 1� i � 4; see [Shimura 1994b, p. 52]. Let us compute m.
i / for each 
i .
Let JI be the subset of J consisting of the elements

˛sI .x/D

0BBBBBBB@

p � 1s
p2

�p � tx p � 1n�1�s

p � 1s
1 x

p � 1n�1�s

1CCCCCCCA
; 0� s � n�2; x 2M1�.n�1�s/.Fp/

and ˛n�1I D diag.p2; p; : : : ; p; 1; p; : : : ; p/ containing n� 1 entries of p both times.
Similarly, let JII be the subset of J consisting of the elements

˛sII .y; B21; B22; B33/D

0BBBBBBB@

p � 1s 0s p � tB21 0s�.n�1�s/
� ty 1 B21 B22 B23

p � 1n�1�s 0.n�1�s/�s p � tB23 0n�1�s

p � 1s py

p2

p � 1n�1�s

1CCCCCCCA
;

where 1 � s � n � 1, y 2 Ms�1.Fp/, and B21; B23, and B22 run over M1�s.Fp/; M1�.n�1�s/.Fp/,
and Z=p2Z, respectively. In addition,

˛0II .C22; C23/D

0BBB@
1 C22 C23
p � 1n�1 p �

tC23 0n�1

p2

p � 1n�1

1CCCA ; C22 2 Z=p2Z; C23 2M1�.n�1/.Fp/:
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Finally, let JIII be the subset of J consisting of the elements

˛III .B/D

 
p � 1n B

p � 1n

!
; B 2 Sn.Fp/ with rp.B/D 1:

Lemma A.3. For each ˛ 2 J ,

K˛K DK diag.1;
n�1‚ …„ ƒ

p; : : : ; p; p2;

n�1‚ …„ ƒ
p; : : : ; p /K;

and

vol
�
K diag.1;

n�1‚ …„ ƒ
p; : : : ; p; p2;

n�1‚ …„ ƒ
p; : : : ; p /K

�
D p

2n�1X
iD0

pi ;

where the measure is normalized as vol.K/D 1.

Proof. Except for the case of type III, it follows from elementary divisor theory. For type III, it follows
from [MacWilliams 1969] that the action of GLn.Fp/ on the set of all matrices of rank 1 in Sn.Fp/ given
by B 7! tXBX; X 2 GLn.Fp/ and such a symmetric matrix B has two orbits O.diag.1; 0; : : : ; 0// and
O.diag.g; 0; : : : ; 0//, both containing n� 1 entries of 0, where g is a generator of F�p . The claim follows
from this and elementary divisor theorem again.

For the latter claim, it is nothing but jJ j, and we may compute the number of each type. �

Remark A.4. Since K D Sp2n.Zp/ contains Weyl elements,

K diag.1;
n�1‚ …„ ƒ

p; : : : ; p; p2;

n�1‚ …„ ƒ
p; : : : ; p/K DK diag.

i‚ …„ ƒ
p; : : : ; p; 1;

n�i�1‚ …„ ƒ
p; : : : ; p;

i‚ …„ ƒ
p; : : : ; p; p2;

n�i�1‚ …„ ƒ
p; : : : ; p/K

DK diag.
i‚ …„ ƒ

p; : : : ; p; p2;

n�i�1‚ …„ ƒ
p; : : : ; p;

i‚ …„ ƒ
p; : : : ; p; 1;

n�i�1‚ …„ ƒ
p; : : : ; p/K

for 0� i � n� 1.

Notice that
Kdn�1.p/K DK.p

2
� dn�1.p/

�1/K;

where dn�1.p/ WD diag.1; p; : : : ; p; p2; p; : : : ; p/ with n� 1 entries of p both times.. By definition and
Lemma A.3 with Remark A.4, it is easy to see that

m.
i /D
ˇ̌
fˇ 2 J W 
iˇ

�1
2Kdn�1.p/Kg

ˇ̌
D
ˇ̌
fˇ 2 J W ˇ � .p2 � 
�1i / 2Kdn�1.p/Kg

ˇ̌
D
ˇ̌
fˇ 2 J W ˇ � .p2 � 
�1i / is p-integral and rp.ˇ � .p2 � 
�1i //D 1g

ˇ̌ I
see [Shimura 1994b, p. 52] for the first equality.

We are now ready to compute the coefficients. For m.
1/, we observe the p-integrality. We see that
only ˛0II .C22; C23/ with C22 D 0 and C23 D 01�.n�1/ can contribute there. Hence, m.
1/D 1.

For m.
2/, we observe the p-integrality and the rank condition. Then only ˛0II .0; 01�.n�1// and
˛1II .y; 0; 0; 01�.n�2//, with y 2 Fp , can do there. Hencem.
2/D 1Cp. Form.
3/, only ˛III .B/, where
B 2 Sn.Fp/ with rp.B/D 1 contribute. By Lemma A.2-(3), we have m.
3/D pn� 1.
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Finally, we compute m.
4/. Since p�2
4 D I4, the condition is checked easily. All members of
J D JI [ JII [ JIII can contribute there. Therefore, we have only to count the number of each type.
Hence, we have

m.
4/D

type I‚ …„ ƒ
1CpC � � �Cpn�1C

type II‚ …„ ƒ
pnC1CpnC2C � � �Cp2nC

type III‚…„ƒ
pn� 1D p

2n�1X
iD0

pi ;

as desired. Note that m.
4/ is nothing but the volume of Kdn�1.p/K; see Lemma A.3.
Recalling Tp;n�1 WD pT .p; .0; : : : ; 0; 1//, we have

T .p; .0; : : : ; 0; 1//2 D

4X
iD1

m.
i /K.p
�2
i /K:

Note that

K.p�2
1/K D T .p; .

n�1‚ …„ ƒ
0; : : : ; 0; 2//; K.p�2
2/K D T .p; .

n�2‚ …„ ƒ
0; : : : ; 0; 1; 1//;

K.p�2
3/K D T .p; .

n�1‚ …„ ƒ
0; : : : ; 0; 1//; K.p�2
4/K D T .p;

n‚ …„ ƒ
.0; : : : ; 0//DKI2nK:

We can take K back to �.N/ without changing anything since p −N . This proves Theorem A.1.

Remark A.5. We would like to make corrections to [Kim et al. 2020a].

(1) On page 356, line 1, dx dy is missing in �ST
1 . In [25, page 929, line 3], the same typo is repeated.

(2) On page 362, line 12-13, T 22;p should be a linear combination of four double cosetsKMK, whereM
runs over diag.1; p2; p4; p2/, diag.p; p; p3; p3/, diag.p; p2; p3; p2/, and diag.p2; p2; p2; p2/.

(3) On page 362, the coefficient of Rp2 should be p4Cp3Cp2CpD p
P3
iD0 p

i which is the volume
of Sp.4;Zp/ diag.1; p2; p4; p2/Sp.4;Zp/ explained in [Roberts and Schmidt 2007, p. 190].

(4) On page 403, Lemma 8.1, the inequality q.F /�N is not valid. Similarly, on page 405, Lemma 8.3,
the inequality q.F /�N is not valid. We need to consider newforms as in Section 5 of this paper.
Then for a newform, we obtain the inequality q.F / � N 1=2 and log ck;N � logN is valid as in
Lemma 9.3 of this paper.

(5) On page 404, line -5, N � p10 should be N � p20.

(6) On page 407, line 3, N � p30 should be N � p10.

(7) On page 407, line 8: N � p10 should be N � p20.

(8) On page 409, line 10, we need to add �2
�
G
�
3
2

�
C G

�
�
1
2

��
, in order to account for the poles

of ƒ.s; �F ;Spin/, and the contour integral is over Re.s/ D 2. So, in (9.3), we need to add
O
�
jHEk.N /

0j=jHEk.N /j
�
. However, only CAP forms give rise to a pole, and the number of

CAP forms in HEk.N / is O.N 8C�/. So it is negligible.
In the case of standard L-functions, the non-CAP and nongenuine forms which give rise to poles

are: 1�� , where � is an orthogonal cuspidal representation of GL.4/ with trivial central character,
or 1� �1� �2, where the �i are dihedral cuspidal representations of GL.2/. In those cases, by
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Proposition 4.11 and [Kim et al. 2020b, Theorem 2.9], we can count such forms without extra
conditions on N in Proposition 4.12. So our result is valid as it is written.

Remark A.6. The referee brought to our attention a possible gap in [Sauvageot 1997, p. 181]; see [Dalal
2022, p. 129] and [Nelson and Venkatesh 2021, p. 159]. S.W. Shin communicated to us that the issue has
not been fixed at this writing. However, we do not use the result in [Sauvageot 1997], nor any other later
results [Dalal 2022; Shin 2012; Shin and Templier 2016] which depend on [Sauvageot 1997].
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