Algebra &

Volume 18




Jason P. Bell
Bhargav Bhatt
Frank Calegari
J-L. Colliot-Thélene
Brian D. Conrad
Samit Dasgupta
Héléne Esnault
Gavril Farkas
Sergey Fomin
Edward Frenkel
Wee Teck Gan
Andrew Granville
Ben J. Green
Christopher Hacon
Roger Heath-Brown

Janos Kollar

Michael J. Larsen

Algebra & Number Theory

msp.org/ant

MANAGING EDITOR
Antoine Chambert-Loir
Université Paris-Diderot

France

EDITORIAL BOARD CHAIR
David Eisenbud
University of California
Berkeley, USA

BOARD OF EDITORS

University of Waterloo, Canada
University of Michigan, USA
University of Chicago, USA

CNRS, Université Paris-Saclay, France
Stanford University, USA

Duke University, USA

Freie Universitit Berlin, Germany
Humboldt Universitit zu Berlin, Germany
University of Michigan, USA
University of California, Berkeley, USA
National University of Singapore
Université de Montréal, Canada
University of Oxford, UK

University of Utah, USA

Oxford University, UK

Princeton University, USA

Indiana University Bloomington, USA

Philippe Michel
Martin Olsson
Irena Peeva
Jonathan Pila
Anand Pillay
Bjorn Poonen
Victor Reiner
Peter Sarnak
Michael Singer
Vasudevan Srinivas
Shunsuke Takagi
Pham Huu Tiep
Ravi Vakil
Akshay Venkatesh

Melanie Matchett Wood

Shou-Wu Zhang

PRODUCTION
production @msp.org

Silvio Levy, Scientific Editor

Ecole Polytechnique Fédérale de Lausanne
University of California, Berkeley, USA
Cornell University, USA

University of Oxford, UK

University of Notre Dame, USA
Massachusetts Institute of Technology, USA
University of Minnesota, USA

Princeton University, USA

North Carolina State University, USA

Tata Inst. of Fund. Research, India
University of Tokyo, Japan

Rutgers University, USA

Stanford University, USA

Institute for Advanced Study, USA
Harvard University, USA

Princeton University, USA

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2024 is US $525/year for the electronic version, and $770/year (+$65, if shipping outside the US) for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University

of California, Berkeley, CA 94720-3840 is published continuously online.

ANT peer review and production are managed by EditFLow® from MSP.

PUBLISHED BY

:I mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2024 Mathematical Sciences Publishers


http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/

ALGEBRA AND NUMBER THEORY 18:5 (2024)
https://doi.org/10.2140/ant.2024.18.847

On the ordinary Hecke orbit conjecture

Pol van Hoften

We prove the ordinary Hecke orbit conjecture for Shimura varieties of Hodge type at primes of good
reduction. We make use of the global Serre—Tate coordinates of Chai as well as recent results of D’ Addezio
about the monodromy groups of isocrystals. The new ingredients in this paper are a general monodromy
theorem for Hecke-stable subvarieties for Shimura varieties of Hodge type, and a rigidity result for
the formal completions of ordinary Hecke orbits. Along the way, we show that classical Serre—Tate
coordinates can be described using unipotent formal groups, generalising a result of Howe.
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1. Introduction

Let A, , be the moduli space of g-dimensional principally polarised abelian varieties (A, A) with level
n > 3 structure over Fp, for a prime number p coprime to n. Recall that there are finite étale prime-to-p
Hecke correspondences from Ay ,, to itself, and that two points x, y € Ag,n(Fp) are said to be in the same
prime-to-p Hecke orbit if they share a preimage under one of these correspondences. Recall the following
result of Chai:

Theorem [Chai 1995]. Let x € Ag’n(Fp) be a point corresponding to an ordinary principally polarised
abelian variety. Then the prime-to-p Hecke orbit of x is Zariski dense in Ag .

Our main result is a generalisation of this theorem to Shimura varieties of Hodge type. To state it, we
will first introduce some notation.

1.1. Main results. Let (G, X) be a Shimura datum of Hodge type with reflex field £ and let p be a prime
number. Let K, C G(Q),) be a hyperspecial subgroup and let K C G(A?) be a sufficiently small compact
open subgroup. Let Shg be the special fibre of the canonical integral model of the Shimura variety of
level KPK, at a prime v above p of E, constructed in [Kisin 2010; Kim and Madapusi Pera 2016].

MSC2020: primary 11G18; secondary 14G35.

Keywords: Shimura varieties, Hecke orbit conjecture, ordinary locus, monodromy theorems, Serre-Tate coordinates, Rigidity
theorem, local stabiliser principle.

© 2024 The Author, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.


http://msp.org
http://msp.org/ant/
https://doi.org/10.2140/ant.2024.18-5
https://doi.org/10.2140/ant.2024.18.847
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/

848 Pol van Hoften

Let E, be the v-adic completion of E, which is a finite extension of Q. There is a closed immersion
ShG,?p — A, , for some n (see [Xu 2020]), and the intersection Shg orq 0f the ordinary locus of Ay ,
with Shg is nonempty if and only if E, = Q,, (see [Lee 2018, Corollary 1.0.2]). Recall that there are
prime-to-p Hecke correspondences over Shg, which we use to define prime-to- p Hecke orbits.

Theorem 1. If E, = Q,, then the prime-to-p Hecke orbit of a point x € ShG,Ord(Fp) is Zariski dense
in ShG.

Theorem I generalises results of Maulik—Shankar-Tang, see [Maulik et al. 2022], who deal with GSpin
Shimura varieties associated to a quadratic space over QQ and GU(1, n—1) Shimura varieties associated to
imaginary quadratic fields £ with p split in E; their methods are completely disjoint from ours. There is
also work of Shankar [2016] for Shimura varieties of type C, using a group-theoretic version of Chai’s
strategy of using hypersymmetric points and reducing to the case of Hilbert modular varieties. Shankar
crucially proves that the Hodge map Shc,ﬁ — Ag n is a closed immersion over the ordinary locus via
canonical liftings, whereas we use work of Xu [2020].

Last we mention work of Zhou [2023], who proves the Hecke orbit conjecture for the p-ordinary locus
of certain quaternionic Shimura varieties. Our results do not imply his, but there is some overlap between
the cases that we cover.

A fairly direct consequence of Theorem I is a density result for prime-to-p Hecke orbits of an Fp—point
in the p-ordinary locus of a Shimura variety of abelian type, at primes v above p of the reflex field E
where E, = Q),,, see Corollary 6.4.1.

1.2. Monodromy theorems. An important ingredient in our proof is an £-adic monodromy theorem
for prime-to-p Hecke-stable subvarieties of special fibres of Shimura varieties, in the style of [Chai
2005, Corollary 3.5]. To state it, let (G, X) be as above and assume for simplicity that G*¢ is simple
over Q. Let V, be the rational ¢-adic Tate module of the abelian variety A over Shg coming from the
map Sh; g — Ay 3 it is an £-adic local system of rank 2g.

Theorem II. Let Z C Shg be a smooth locally closed subvariety that is stable under the prime-to-p
Hecke operators. Suppose that Z is not contained in the smallest Newton stratum of Shg. Let z € Z (Fp)
and let Z° C Z@p be the connected component of Z containing z. Then the neutral component Mgeom of

the Zariski closure of the image of the monodromy representation
P¢,geom - ﬂ]et(Zoa 7) = GLZg(@K)
corresponding to Vy, is isomorphic to G?Q?; .

This generalises work of Chai [2005] in the Siegel case and others [Kasprowitz 2012; Xiao Xiao 2020]
in the PEL case.

In the body of the paper, we work with the integral models of Shimura varieties of Hodge type of level
K, C G(Q)) constructed in [KMS 2022]. Here K, is not required to be hyperspecial, for example it is
allowed to be any (connected) parahoric subgroup. Our results, namely Theorem 3.2.5 and Corollary 3.2.6,
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are proved under the assumption that Hypothesis 2.3.1 holds. This hypothesis holds for example when
Gq, is quasi-split and has no factors of type D, or when K, is hyperspecial.

We also prove results about irreducible components of smooth locally closed subvarieties that are stable
under the prime-to-p Hecke operators, in the style of [Chai 2005, Proposition 4.4], see Theorem 3.4.10.
These results are used to prove irreducibility of Ekedahl-Oort strata in [van Hoften 2020].

1.2.1. An overview of the proof of Theorem II. Since Z° C Shg is defined over a finite field kK we can
write it as Z} ®y Fp. We can then consider the Zariski closure M of the image of

o TSHZR, 2) — GLag (Qy).

An argument from [Chai 2005] proves that M is (isomorphic to) a normal subgroup of Gg,. If G?Qi was
a simple-group, then we would be done if we could show that M was not central in Gg,. However, in
general there are no primes ¢ such that Galz is simple and so at this point we have to deviate from the
strategy of [Chai 2005].

Instead, we control M by studying the centraliser I, , C Gg, of the image of Frobenius elements
Frob, e Jrft(Z", z) corresponding to points x € Z;(F,). Since the paper [KMS 2022] makes an in-depth
study of these Frobenius elements, we can make use of their results about these centralisers. For example,
if x is not contained in the basic locus, then they prove that Frob, is not central. To get more precise
results, we need to know that the element Frob, € G (Qy) is defined over O, which is what Hypothesis 2.3.1
makes precise.

In this way we can show that M C G, is a normal subgroup that surjects onto Gg‘e . The result about
Migeom C M will be deduced from this.

1.3. A sketch of the proof of Theorem I. Let x € Shg (Fp) be an ordinary point, and let Z be the Zariski
closure inside Shg org Of the prime-to-p Hecke orbit of x. Let y € Z (Fp) be a smooth point of Z. Recall
that it follows from the theory of Serre—Tate coordinates that the formal completion .AQ nof Agpatyisa
formal torus. A special case of the main result of [Shankar and Zhou 2021] tells us that

/Y .— QK'Y /y
S/ = ShG,EJ C Ay,

is a formal subtorus. Work of Chai on the deformation theory of ordinary p-divisible groups [Chai
2003] tells us that the dimension of the smallest formal subtorus of S/¥ containing Z/”, is encoded in the
unipotent radical of the p-adic monodromy group of the isocrystal M associated to the universal abelian
variety A over Z.

Using Theorem II and results of D’ Addezio [2020; 2023], we compute the monodromy group of M
over Z. It follows from this computation that the smallest formal subtorus of S/¥ containing Z/¥ is equal
to S/Y.

We conclude by proving that the formal completion Z/” is a formal subtorus of /. By the rigidity
theorem for p-divisible formal groups of [Chai 2008], it suffices to give a representation-theoretic
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description of the Dieudonné module of S/”. Unfortunately, the description of the subtorus S/¥ coming out
of the work of Shankar and Zhou [2021] does not readily lend itself to understanding its Dieudonné module.

Instead, we give a different proof that S/ is a subtorus of Aé,yn. We do this by giving a new description
of Serre—Tate coordinates in terms of actions of formal unipotent groups on Rapoport—Zink spaces,
generalising results of Howe [2020] in the case g = 1. Once we have this perspective, the results of Kim
[2019] give an explicit description of the Dieudonné module of the torus Agn as well as the Dieudonné
module of the subtorus S/7.

1.4. Outline. Sections 2 and 3 form the first part of the paper and work in a more general setting than
the rest of the paper. In Section 2 we introduce the integral models of Shimura varieties of Hodge
type constructed in [KMS 2022]. We recall results and notation from [loc. cit.], in particular, about
the Frobenius elements and their centralisers associated to Fp—points of these models. In Section 3 we
prove monodromy theorems for Hecke-stable subvarieties of the special fibres of these integral models,
combining results of [KMS 2022] with ideas of Chai [2005].

Section 4 is a standalone section on Serre—Tate coordinates. In it, we show that the classical Serre-Tate
coordinates, as described in [Katz 1981], can be reinterpreted using actions of unipotent formal groups as
in [Howe 2020]. This section should be of independent interest.

In Section 5, we specialise to the smooth canonical integral models of Shimura varieties of Hodge
type at hyperspecial level, and we moreover assume that the ordinary locus is nonempty. We reprove a
result of [Shankar and Zhou 2021], which states that the formal completion of the ordinary locus gives a
subtorus of the Serre-Tate torus, and give a group-theoretic description of its Dieudonné module. At the
end of this section we also give a short interlude on strongly nontrivial actions of algebraic groups on
isocrystals, which we will need to confirm the hypotheses of the rigidity theorem of [Chai 2008].

In Section 6, we put everything together and prove Theorem 1. We end by deducing a result for Shimura
varieties of abelian type.

2. Integral models of Shimura varieties of Hodge type

Let (G, X) be a Shimura datum of Hodge type. In this section we follow [KMS 2022, Section 1.3]
and construct integral models for the Shimura varieties associated to (G, X) in a very general situation.
The main goal is to introduce various Frobenius elements yy , ¢ € G(Q;) associated to [,»-points of
these integral models, and to discuss result of [KMS 2022] about their centralisers I, ,, (. We end by
introducing Hypothesis 2.3.1, which will be assumed throughout Section 3, and prove that it holds under
minor assumptions.

2.0.1. Hodge cocharacters. If (G, X) is a Shimura datum, then for each x € X there is a cocharacter
Wy Gy.c = G, see [KMS 2022, Section 1.2.3] for the precise definition. The G (C)-conjugacy class of
Wy does not depend on the choice of x and we will write {{tx} for this conjugacy class, and denote it
by {u} if X is clear from context. This conjugacy class of cocharacters is defined over a number field
E C C, called the reflex field.
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2.1. The construction of integral models. For a symplectic space (V, ) over Q we write Gy =
GSp(V, ¢) for the group of symplectic similitudes of V over Q. It admits a Shimura datum Hy
consisting of the union of the Siegel upper and lower half spaces. Let (G, X) be a Shimura datum of
Hodge type with reflex field E and let (G, X) — (Gy, Hy) be a Hodge embedding.

Fix a prime p and choose a Z p)-lattice V(,,) C V on which v is Zj)-valued, and write V, = V(;,)®z,, Z .
Write K, C Gy (Q),) for the stabiliser of V), in Gy (Q),), and similarly write K, for the stabiliser of V), in
G(Qp).! For every sufficiently small compact open subgroup K” C G(A}) we can find K? C Gy (A})
such that the Hodge embedding induces a closed immersion (see [Kisin 2010, Lemma 2.1.2])

Shx (G, X) — Shic(Gy, Hv)E

of Shimura varieties of level K = KK, and K = KPK,,, respectively. We let Sx over Z ;) be the
moduli-theoretic integral model of Shx(Gy, Hy); it is a moduli space of (weakly) polarised abelian
schemes (A, A) up to prime-to-p isogeny with level ICP-structure.

Fix a prime v | p of E and let

Sk =Sk (G, X) = Sk ®Z(p) OE’(U)

be the normalisation of the Zariski closure of Shg (G, X) in Sk ®z,) OE.(v). This construction is
compatible with changing the level away from p and we define

Sk, = lim Skric,s Tk, = lim SEKPK,-
KPcgy (Af) KPcGA})

Then, as discussed in [KMS 2022, Section 2.1], the transition maps in both inverse systems are finite
étale and moreover G(A?) acts on #x,. Let k = [, be the residue field of O (v, and write Shg g, for
the special fibre of K, and Shg, KPK, for the special fibre of SKrK these are both schemes over k£ and
G(A?) acts on ShG,Kp. We will write Shgv’;cplcp for the special fibre of S]C/)}Cp ®z,) OE. v and Shgv,lcp
for the special fibre of Sk, ®z,) OF v)-

Let V? be the prime-to-p adelic Tate module of the universal abelian variety A over Sk, ; this is a
pro-étale local system on Sg,. For a morphism x : Spec R — Sy, we will write V% for the pullback along
x of VP, As explained in [KMS 2022, Section 2.1.1] there is a universal isomorphism

€e:Ve® g? ~ VP,
sending the symplectic form i to an @?’ *-multiple of the Weil pairing. Here @? denotes the pro-étale

sheaf associated to the topological group A?.

It is explained in [KMS 2022, Section 1.3.2] that the collection of subgroups K;, C G(Qp) that can arise from this
construction by varying the symplectic space and the Hodge embedding contains all stabilisers of vertices in the extended
Bruhat-Tits building of G@p. It is moreover explained in [loc. cit.] that this collection is stable under finite intersections.
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2.1.1. Tensors. Write V® for the direct sum of V®" @ (V*)®™ for all pairs of integers m > 0, n > 0. We
will also use this notation later for modules over commutative rings and modules over sheaves of rings.

As in [KMS 2022, Section 1.3.4], we fix tensors {s, € V} C V® such that G is their pointwise stabiliser
in GL(V). Then as explained in [KMS 2022, Sections 1.3.4 and 2.1.2], there are global sections

(8o} € H'(Frk,. (VP)®)
such that if we restrict the isomorphism € via Sk, — Sk, we get an isomorphism
n:VeAL— VP

taking s, ® 1 to s, AL for all . In particular, for each x € #k, (Fp) the stabiliser of the tensors {s, AL, <}
in GL(VY) is canonically identified with G ® A%,

2.1.2. Let Fp denote an algebraic closure of [F,. We will use Vi p to denote the p-typical Witt vectors
W(Fp) of Fp and we set Q p= Vi pl1/p]. Weleto : Vi p— Vi p be the automorphism induced by Frobenius
on Fp, and also denote by o the induced automorphism of Q -

Let x € Shg, K’K, (Fp) and let D, be the rational contravariant Dieudonné module of the p-divisible
group A [p°] of the abelian variety A, equipped with its Frobenius ¢. By [KMS 2022, Proposition 1.3.7]
there are ¢-invariant tensors {s,cris.x} C ID;? and in [KMS 2022, Section 1.3.8] it is argued that there is an
isomorphism Q p @V — Dy, sending 1 ® sy 10 S, cris,x - See the statement of [KMS 2022, Proposition 1.3.7]
for a characterisation of the tensors Sy, cris-

Under such an isomorphism, the Frobenius ¢ corresponds to an element b, € G((fl »)» which is well
defined up to o -conjugacy, where o : G(@ p) —> G(@ p) 1s induced by o : Q p— Q p- In other words, we
can associate to ¢ a well defined element [D,] of the Kottwitz set B(G) = B(Gq,) of [Kottwitz 1985].
By [KMS 2022, Lemma 1.3.9], the element [b,] is contained in the neutral acceptable set B(G, {1
consisting of the {4z~ !}-admissible elements defined in [KMS 2022, Section 1.1.5]. Here we use {1} to
denote the G(Q p) conjugacy class of cocharacters induced by the place v of E, where we recall that {t}
was introduced in Section 2.0.1.

It follows from [KMS 2022, Theorem 1.3.14] that there are locally closed subschemes Shg (5 krk, Of
Shg, KPK,» called Newton strata, indexed by [b] € B(G, {i~1}), such that

Shé (b1 k7K, F)={xe Shg krk, (F,) | [bx] = [b1}
and such that

Shg [p). kK, C U Shg (v, krk, -
[b] <[b]

Here we are using the partial order < on B(G, { w~'}) defined in [Rapoport and Richartz 1996, Section 2.3].

2.2. Centralisers. Let x € Shg k, (Fp) and choose a sufficiently divisible integer m such that the image
of x in Shg, KK, (Fp) is defined over F;». Then the geometric ¢™-Frobenius Frob,» acts on V2 via
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tensor-preserving automorphisms and therefore determines an element
P € GAY)
yx,m f

which depends on x and m. For £ = p there is an element §, ,, € G(Q ), constructed in [KMS 2022,
Section 2.1.7], whose class in B(G@p) is equal to [b,]. Moreover there is an element y, ,, , € G(Qyn)
such that

Vx.m,p = (Sx,mo'(sx,m) ce O'rm_l(gx,m)v

where we write ¢ = p” and where o denotes the Frobenius on G(Qg ).

We define I, Az C G A to be the centraliser of y,,,, which does not depend on m as long as m is
sufficiently divisible. We similarly define I, ¢ C Gq, for £ # p to be the centraliser of the projection
Yem.e of v to Gg, for sufficiently divisible m.

We define I, ,,,, to be the algebraic group over Q, whose functor of points is given by

R — {g € G(@q’” ®Qp R) | gax,m = 8x,m0(g)}a

where o is induced by o : G(Qyn) — G(Qgn). As explained in [KMS 2022, Section 2.1.7], the base
change I, ,;, , ® Qun is naturally identified with the centraliser of the semisimple element y, ,, , in
G(Qgn), and I, ,, , is thus reductive. We similarly define Js, , by its functor of points

R (g € G(@)®a, B) | §8x.m = 8xmo (8)).
2.2.1. Consider the decomposition

n
GM = ]_[ G; (2.2.1)
i=1

of G into simple groups over Q. Let 8, ,,,; and ¥y u, p.; be the images of &, and Yy, p in G;(Qgm).
Lemma 2.2.2. Let Zg be the centre of G. There is a product decomposition

n
Ix,m,p/ZG,@p = l_[ Ix,m,p,i»

i=1
where I ,, . ; represents the functor on Q ,-algebras sending R to
{g € Gi(@qm ®@p R) | gax,m,i = 5x,m,i0(g)}-

Similarly there is a product decomposition

n
J‘Sx,m/ZG = 1_[ Jax,m,i ’
i=1

where Js_, . represents the functor on Q-algebras sending R to

x,m,i

{g € Gi(Q,®q, R) | §8x.mi = 8xmio ()}
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Proof. Consider the commutative diagram

n
Ix,m,p > Hi:l Ix,m,p,i

[ [

n
Res@qm /@p G@qm — lel Res@qm/@p Gi,@qtrl

Since the kernel of the bottom map is central and the bottom map is surjective, it follows that the natural
map I, , — ]_[?:1 Iy . p,i 1s surjective. The kernel is given by the intersection of I, ,, , with the kernel
of the bottom map and thus has the following functor of points:

R— {g€Zs(Qq ®a, R) | g0x.mi = 8x,m,io (8}

This forces g =0(g) and so g € Zg(R) C Zg(Qyn ®aq, R). The same proof shows that there is a product

decomposition Js, , /Z¢ ~ [/, Js u

Note that Iy, p,i ® Qg can be identified with the centraliser of Y m,p,i in Gi,q,» as in the beginning
of Section 2.2. The centraliser of yy ,u, ».; € G(Q)) does not depend on m for m sufficiently divisible, and
thus the group I ,,,, does not depend on m for m sufficiently divisible. We will write I, , for the group
I m,p for sufficiently divisible m and similarly I, ,; for the group Iy ,, , ;. We will identify I, , ® @1,
with the centraliser of y, ,, , in G p) for sufficiently divisible m and similarly we will identify I , ;
with the centraliser of y, . in G; (@p).

2.2.3. Let x € Shg k » (Fp) and let Aut(A,) be the algebraic group over Q with functor of points
Aut(A)(R) = (End(A,) @7 R)*.

Following [KMS 2022, Section 2.1.3], we define I P to be the largest closed subgroup of Aut(A,) that
fixes the tensors s, AP x and I, C I} to be the largest closed subgroup that also fixes the tensors sy cris.x -
There are natural maps I, g, = I ¢ for all (including £ = p), see [KMS 2022, Section 2.1.8] for the
£ = p case.

The groups I, ¢ are connected reductive subgroups of Gg, and in fact Levi subgroups over Q. By
[KMS 2022, Corollary 2.1.9] for all £ (including £ = p) the natural map

Ix,@g g Ix,Z
is an isomorphism. This induces a closed immersion of groups I @, — Js,, for some sufficiently
divisible m.
2.3. An assumption. We will need to assume the following hypothesis to prove our main monodromy
theorems in Section 3.

Hypothesis 2.3.1. For all points x € Shg k, (Fp) and for sufficiently divisible m depending on x, there is
an element yy , € G(Q) that is conjugate to Yy ¢ in G(Qy) for all £ (including ¢ = p). Moreover the
G(@)—conjugaoy class of y, ,, is stable under the action of Gal(@/ Q).
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If the G(@)—conjugacy class of yy , contains an element of G(Q), then it is clearly Galois stable.
However the converse does not necessarily hold.

Lemma 2.3.2. The hypothesis holds when K, is hyperspecial.

Proof. If K, is hyperspecial, then [Kisin 2017, Corollary 2.3.1] tells us that there is an element y, ,, € G(Q)
that is conjugate to yx ¢ in G (Qy) for all ¢ (including ¢ = p). O

Remark 2.3.3. By [KMS 2022, Corollary 2.2.14], an element yy ,, € G(Q) satisfying the requirements
of Hypothesis 2.3.1 exists when Gg, is quasi-split and has no factors of type D.

If K, is very special, the group Gq,, is tamely ramified and satisfies p{2 - #1(G%) and 71 (G); is
torsion free, where I C Gal(Q,/Q),) is the inertia group, then the existence of an element y, ,, € G(Q)
satisfying the requirements of Hypothesis 2.3.1 follows from Theorem I of [van Hoften 2020].

If p > 2,if K, is a very special parahoric subgroup and if the triple (G, X, K,) is acceptable in the
sense of [Kisin and Zhou 2021, Definitions 5.2.6 and 5.2.9], then [Kisin and Zhou 2021, Theorem 6.1.4]
proves the existence of an element y, ,, € G(Q) satisfying the requirements of Hypothesis 2.3.1.

Remark 2.3.4. When Gq, is not quasi-split, one should probably not expect that the G (Q)-conjugacy
class of y, ,, always contains an element of G(Q). This is because CM lifts do not exist in general when
Gaq, is not quasi-split. However, we expect Hypothesis 2.3.1 to hold in full generality.

For example, let x € Shg k, (Fp) be a point corresponding to the good reduction of an abelian variety
defined over a number field and assume that p > 2. Then [Kisin and Zhou 2021, Theorem 7.2.4] tells us
that there is an element y, ,, € G(Q) satisfying the requirements of Hypothesis 2.3.1.

2.3.5. We end by deducing a consequence of Hypothesis 2.3.1 that will be used in Section 3. Let G*
denote the quasi-split inner form of G over @ and let ¥ : G ® @ — G* ® Q be an inner twisting. This
means that every v € Gal(Q/Q) satisfies

W(r(g)) = h.T(¥(g))h;"

for some element i, € G*(Q). A direct consequence of this definition is that the image under ¥ of a
Gal(Q/Q)-stable G (Q)-conjugacy class is a Gal(Q/Q)-stable G*(Q)-conjugacy class.

Lemma 2.3.6. Suppose that Hypothesis 2.3.1 holds and let vy, ,, € G(Q) be the element that is guaranteed
to exist by that Hypothesis. Then for sufficiently divisible m the element WV (yy ) is G*(Q)-conjugate to
an element in G*(Q).

Proof. If m is sufficiently divisible, then the centraliser of yy ,, is connected because this is true for yy ¢
and the formation of centralisers commutes with base change. Since G* is quasi-split and the element
W (yy.m) is semisimple with connected centraliser, we may apply [Kottwitz 1982, Theorem 4.7(2)] which
tells us that the G*(Q)-conjugacy class of W (y, ,,) contains an element of G*(Q). O
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3. Monodromy of Hecke-invariant subvarieties

In this section we prove an £-adic monodromy theorem in the style of Chai, see [Chai 2005] and [Xiao
Xiao 2020; Kasprowitz 2012], for prime-to- p Hecke stable subvarieties of Shimura varieties of Hodge
type in characteristic p. We expect the results in this section to be of independent interest, at least beyond
the hyperspecial case that we will use in the rest of this article.

In Section 3.1 we establish formal properties of subvarieties Z of Shimura varieties of Hodge type in
characteristic p that are stable under prime-to-p Hecke operators. Using techniques from [Chai 2005],
we prove that the £-adic monodromy groups of the universal abelian variety over such Z are normal
subgroups of G, this is stated as Corollary 3.1.16.

In Section 3.2 we use the results from [KMS 2022] in combination with Hypothesis 2.3.1 to prove
Theorem 3.2.5 and Corollary 3.2.6; the latter is a generalisation of Theorem II. In Section 3.3 we combine
this theorem with results of D’ Addezio [2020] to deduce results about the p-adic monodromy groups of
the universal abelian variety over Hecke stable subvarieties.

Finally, in Section 3.4 we prove results about irreducible components of Hecke stable subvarieties in
the style of [Chai 2005, Proposition 4.5.4]. We will not use these results in the rest of this article and so
this section can safely be skipped for the reader only interested in the proof of Theorem I.

3.1. Arithmetic monodromy groups I. Let the notation be as in Section 2. In this section we are going
to study arithmetic monodromy groups of Hecke stable subvarieties of Shg krk,. For maximal generality,
we do not assume that these are defined over k = [, and so from now on we will implicitly base change
the Shimura variety Sh¢ krk, to an unspecified finite extension of k, which we will also denote by .

The morphism 7 : Shg, K, —> Shg, KPK, is a pro-étale K”-torsor over Shg, KPK, such that the action of
K? C G(A‘;) extends to an action of G(A?). Let Z C Shg krk, be a locally closed subscheme and let 4
be the inverse image of Z under 7r. We say that Z is stable under the prime-to- p-Hecke operators, or that
Z is G(AD)-stable, if Z is G(AT)-stable.

For the rest of this section { will be used to denote a prime number not equal to p. For such £ we let
K, be the image of K? in G(Q,) under the projection G(A?) — G(Qy). We let

e : Shg k, xX" Ky — Shg ko, (3.1.1)

be the induced pro-étale K,-torsor. For Z C Shg, KPK, @ locally closed subscheme, we will write Z, for
the inverse image of Z under m,. We say that Z is stable under the £-adic Hecke operators, or that Z is
G (Qy)-stable, if Z; is G(Qy)-stable. When discussing G (Qy)-stable Z we will always implicitly work
with £ £ p. If Z is G(A?)-stable, then it is automatically G (Q;)-stable for all £ # p.

All the results in this section will be stated for smooth Z, and the following lemma will be used to
reduce to the smooth case in the proof of Theorem I.

Lemma 3.1.1. Let Z C Shg krk, be a locally closed subscheme that is stable under the action of G(A?)
(respectively G(Qy)), then the smooth locus U C Z is also stable under this action.
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Proof. For g € G(A?) and K? C G(A;ﬁ) there is a finite étale correspondence

She (krngkrg—1k,

8
ShG,Kpr ShG,nggfle —_— ShG,Kpr

and the assumption that Z is stable under the action of g is equivalent to the statement that the inverse
image of Z under p; is the same as the inverse image of Z under g o p; for all choices of K”. Because
all the maps in the diagram are finite étale, the same is true for the smooth locus U of Z. Therefore the
inverse image U of U under 7 is stable under the action of g € G(A?). (]

Lemma 3.1.2. Let Z C Y C Shg krk, be locally closed and G(A?)-stable (resp. G(Qy)-stable) subvari-
eties. Then the closure of Z in'Y is also stable under G(A?) (resp. G(Qy)).

Proof. This follows in the same way as in the proof of Lemma 3.1.1 from the fact that the prime-to-p
Hecke correspondences are finite étale; indeed finite étale maps are open and closed, and thus take closures
to closures. O

3.1.3. Some general topology. Let {X;}ic; be a countably indexed cofiltered inverse system of finite type
schemes over a field k with surjective affine transition maps. Let X = lim; X; be the inverse limit, it is
a nonempty quasi-compact scheme by [Stacks 2020, Lemma 01Z2]. Recall that for a quasi-compact
scheme Y there is a profinite topological space m(Y) of connected components of Y.

Lemma 3.1.4. The natural map
7o(X) — lim 7o (X;) (3.1.2)
i
is a homeomorphism.
Proof. The left hand side of (3.1.2) is a profinite topological space by [Stacks 2020, Lemma 0906] and the
right hand side of (3.1.2) is visibly an inverse limit of finite sets. Hence both sides are compact Hausdorff
topological spaces and to show that the map is a homeomorphism it suffices to show that it is a bijection.

To show that the natural map is a bijection, we construct an explicit inverse. Any compatible system
of connected components {V;};c; of {X;};c; has nonempty and quasi-compact inverse limit V C X by
[Stacks 2020, Lemma 0A2W]. To prove that V is connected we suppose that there are nonempty open
and closed subsets W and W’ of V such that V.= W ][] W’'. Then W and W' are quasi-compact open
because V is quasi-compact.

Now [Stacks 2020, Lemma 0A30.(1)] tells us that we can find i and (nonempty) constructible quasi-
compact open subsets Z, Z’ of V; such that W is the inverse image of Z under V — V; and similarly W’
is the inverse image of Z’ under V — V;. In particular, the subsets Z and Z’ are disjoint nonempty open
subsets of V;, which gives us a contradiction since V; is connected.

We have produced a map lim; o(X;) — 7o(X) and it is not hard to check that it is an inverse of the
natural map from the lemma; this concludes the proof. U
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Corollary 3.1.5. Let Z C Shg krk, be a G(A?)—stable (resp. G(Qy)-stable) locally closed subscheme of
Shg krk, and let Z be as above. Then 710(2) is equipped with a continuous action of G(A?) (respectively
wo(Zy) is equipped with a continuous action of G(Qy)).

Proof. The existence of the action follows from the existence of the action on 4 (resp. Z;¢). The continuity
follows from the continuity of the action of K7 on lim,, Zg» (resp. the continuity of the action of Ky on
Z¢) and Lemma 3.1.4. [l

The following lemma is only a slight generalisation of [Chai 2005, Lemma 2.8], but we include a proof
for the benefit of the reader.

Lemma 3.1.6. Let X be a second-countable compact Hausdorf{f topological space with a transitive and
continuous action of a locally profinite topological group G. Let x € X with stabiliser G, C G, then the
orbit map

0:G/Gy—> X
is a homeomorphism.

Proof. We can write G as the increasing union of countably many compact open sets, for example by
using finite unions of cosets of a compact open subgroup K C G. Since the quotient map G — G/G;, is
open for any topological group, it follows that G/G, can be written as the increasing union of countably
many compact open subsets.

Since the orbit map is surjective, the topological space X can be written as a countable union of the
compact subsets O (U) for U C G/G, compact open. Because X is second-countable it is metrisable by
Urysohn’s metrisation theorem and thus the Baire category theorem tells us that there exists a compact
open subset U of G/G, such that O (U) contains an open subset W of X.

Choose a compact open subset V C U such that O(V) C W. Then O : V — O(V) is a continuous
bijection between compact Hausdorff topological spaces and hence a homeomorphism. Now note that G
acts transitively on both G/G, and on X. Hence by moving around V we see that any point of y € G/G;,
has an open neighbourhood V), such that the natural map O : V, — O(Vy) is a homeomorphism, and we
conclude that O is a homeomorphism. O

3.1.7. Lie groups over £-adic local fields. Recall that a topological group M is called an £-adic Lie group
if it admits the (necessarily unique) structure of an £-adic Lie group; see [Glockner 2016, Definition 2.1,
Proposition 2.2]. If M is an £-adic Lie group, then by definition there is a finite-dimensional ();-Lie
algebra Lie M, an open neighbourhood U C Lie M of the identity and an exponential map Exp: U — M
that is a homeomorphism onto a compact open subgroup of M. For example for an algebraic group H
over (D, the topological group H (Qy) is an £-adic Lie group with Lie algebra Lie H(Q;) = Lie H.

Lemma 3.1.8. Ler H be an algebraic group over Qg and let M C H(Qy) be a subgroup that is compact
in the subspace topology. Then M is an {-adic Lie group and the morphism M — H (Qy) is a morphism
of L-adic Lie groups. Moreover, the induced Lie subalgebra Lie M C Lie H (Q,) = Lie H satisfies

[Lie M, Lie M] = [Lie M, Lie M],
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where the bracket notation means the commutator of two Lie subalgebras and where M is the Zariski

closure of M.

Proof. The group M is an ¢-adic Lie group by [Glockner 2016, Proposition 2.3] and the morphism
M — H(Qy) is a morphism of £-adic Lie groups by [Glockner 2016, Proposition 2.2]. This implies that
there is an induced morphism on Lie algebras Lie M — Lie H(Q;) = Lie H.

Since M C M(Qy) is Zariski dense, it follows that the smallest algebraic subgroup of H whose Lie
algebra contains Lie M is equal to M; indeed, if there is a smaller algebraic subgroup M’ C M with
Lie M C Lie M/, then we see using the ¢-adic exponential map that there is a compact open (hence finite
index) subgroup of M contained in M'(Q,). This contradicts the fact that M is Zariski dense in M.

The fact that the smallest algebraic subgroup of H whose Lie algebra contains Lie M is equal to
M is expressed as a(Lie M) = Lie M in the notation of [Borel 1991, Section 7.1]. By [Borel 1991,
Corollary 7.9] we have the following equality of Lie subalgebras of Lie H

[Lie M, Lie M] = [a(Lie M), a(Lie M)] = [Lie M, Lie M]. ]

Lemma 3.1.9. Let M be a semisimple algebraic group over Q; and let M C M(Qy) be a subgroup closed
in the £-adic topology. If M equipped with the subspace topology is compact and M is Zariski dense in M,
then M is a compact open subgroup of M(Qy).

Proof. 1t follows from Lemma 3.1.8 that M is an £-adic Lie group, that M — M(Q) is a morphism of £-
adic Lie groups and that the Lie algebra of M is equal to the Lie algebra of M, since M is semisimple. Now
we can use the exponential map for £-adic Lie groups to show that M contains a compact open subgroup
of M(Qy). Since M is itself compact, this implies that M is also a compact open subgroup of M(Q,). [

3.1.10. The main theorem of Galois theory for schemes tells us that the category of finite-étale covers of a
smooth connected scheme Z over k is equivalent to the category of finite sets equipped with a continuous
action of nlét(Z , ). Under this equivalence, a finite étale cover f : Y — Z is sent to the finite set f~!(z)
equipped with its action of nft(Z , ). In particular, the set of connected components of Y is in bijection
with the set of orbits of 7(Z, z) on f~!(2).

If f:Y — Z is a countably indexed inverse limit of finite étale covers f; : Y; — Z with surjective
transition maps, then we can associate to f the profinite set

M@ =lim £ @,

equipped with its natural continuous action of nft(Z, z). By Lemma 3.1.4 it follows that the profinite
set of orbits of nft(Z, z) on f~!(z) is homeomorphic to the topological space of connected components
of Y.

3.1.11. Now let Z be a smooth G (Qy)-stable locally closed subscheme of Shg krk,, let Z° C Z be a
connected component of Z, and let z € Z O(Fp). Let 7y be as in (3.1.1) and write Z, for the inverse image
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of Z under 7y as above; it is stable under the action of G(Q¢) by assumption. Denote by Z; the inverse
image of Z° under 7y, then Z} — Z° is a profinite étale K-torsor.

By the Galois theory for schemes discussed above, the cover my : Z; — Z° corresponds to the profinite
set 7T, "(2) equipped with its natural action of nft(Z °, z). In particular, the set of connected components
of Zj corresponds to the set of orbits of nft(Z°, Z) on n[l(z).

Choose an element 7 € 7, !(z). Then using the simply transitive action of Ky on 7, (2) we can
identify ng_l(z) with K; under this identification the chosen element Z is send to 1 € K. This defines a
continuous group homomorphism

pe:TN(Z°, 2) — Koy,

whose conjugacy class does not depend on the choice of Z. Let y € mo(Z;) be the connected component
containing Z. Then the stabiliser of y in K/ is equal to the image of p,.

Let Py C G(Qy) be the stabiliser of y in G(Qy). It is a closed topological subgroup by the continuity
of the action and the fact that mo(Z,) is Hausdorff. Its intersection with K, gives us the stabiliser of y
in K. The action map gives us a continuous map

G(Qp)/ Py — mo(Zy), g+>8-Yy
with image the orbit Orb(y) of y.

Lemma 3.1.12. The orbit Orb(y) is open and closed inside of wy(Z¢). Moreover the orbit map induces a
homeomorphism G(Qy)/ P, >~ Orb(y); in particular, G(Q¢)/ Py is compact.

Proof. The identification
o(Ze)/ Ko = 70(Z).

tells us that there are finitely many K,-orbits on my(Z;), and that each of them is open and closed. The
G (Qy)-orbit of a point y is then a union of finitely many K,-orbits, and thus also open and closed.
Lemma 3.1.12 shows that Orb(y) is open and closed inside a second-countable profinite topological space.
Therefore Orb(y) is profinite and second-countable. The result now follows from Lemma 3.1.6. [l

Let M be the image of p, and let M be the neutral component of its Zariski closure inside G (Qy). Let
P¢,geom be the restriction of p, to
722, 2) C i (Z°, 2),
p

let Mgeom be its image and let Mgeom be the neutral component of its Zariski closure inside G (Qy).
Lemma 3.1.13. The groups M and Mgeom are connected reductive groups over Q.

Proof. There is a short exact sequence (e.g., by [D’Addezio 2020, Proposition 3.2.7])

1M, M- Q—1, (3.1.3)

geom

/

where Q is a commutative algebraic group of multiplicative type and where M,

is a closed subgroup
of M with neutral component given by Mgeom. In particular, it follows that M is reductive if Mgeon is
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reductive. The representation
T1(Z°,2) = K¢ = G(@p) — GL(V)(@)

is the monodromy representation of the (rational) £-adic Tate module of the abelian scheme 7 :
A — Shg, KK, coming from the Hodge embedding Shg, KPK, —> Shg, . KPKC,- This is an £-adic sheaf
Fo on Z° which is pure of weight one. Then [Deligne 1980, Theorem 3.4.1.(iii)] tells us that the
basechange F of Fy to ZE is semisimple. This base change corresponds to the composition of p¢ geom
with Ky — G(Qy) — GL( V)(@() Now [Deligne 1980, Corollary 1.3.9] tells us that Migeop, is a semisimple
algebraic group, and thus that it is reductive. U

3.1.14. Let N be the normaliser of M in Gg, and let N° be its neutral component. The group N° is a
connected reductive group because we are working with reductive groups in characteristic zero; see, e.g.,
[Conrad et al. 2015, Proposition A.8.12].

Lemma 3.1.15. The group P, is contained in N.

Proof. Let y € Py, then we want to show that y normalises M. If V is a compact open subgroup of
G(Qy) contained in Ky, then V N P, C M. Moreover for every y € P, we can find an open subgroup
U C G(Qy) such that yUy~' C V. For example, we can just take the intersection of V with y Vy =
For such U the open subgroup M N U of M satisfies y(M NU)y~! Cc M.

Since conjugation by y is a homeomorphism in the Zariski topology, we see that the Zariski closure
of M NU is moved under conjugation by y into the Zariski closure of M. But since M N U is an open
subgroup of M it is also a closed subgroup and thus compact and thus of finite index in M. This means
that the Zariski closure of M NU and the Zariski closure of M have the same identity component, both

of which are equal to M. Since conjugation preserves 1, this mean it sends M to M. O
Corollary 3.1.16. The Zariski closure Ml of M is a normal subgroup of Gq,.

Proof. The group G(Qg)/N(Qy) is compact, because it is a quotient of G(Q,)/P, which is compact.
Since N°(Qy) is finite index in N(Qy), it follows that G(Q,)/N°(Q,) is also compact. Since N° is
connected it follows from [Borel and Tits 1965, Propositions 8.4 and 9.3] that it contains a parabolic
subgroup of Gg, and because it is reductive it follows that N° = Gq,. Therefore N° =N = Gg, and we
find that M is a normal subgroup of Gg,. O

3.2. Arithmetic monodromy groups II. So far we have not excluded the possibility that M is contained
in the centre of Ggq,. In fact, this happens when Z is the supersingular locus inside the modular curve.
Thus we will need additional assumptions on Z to prove that M is not central.

We will show, using the results of [KMS 2022], that if Z contains a point x € Z([;~) not contained
in the smallest Newton stratum, then the image of Frob, under p; is noncentral. If Gg‘z were a simple
group over (g, then this would force M to contain Gﬁgz. However G is generally not a simple group
over Q, and even if it were simple then there would generally be no primes £ where Gajz is simple. To
deal with these issues, we will make use of Hypothesis 2.3.1.
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3.2.1. Recall that for a point x € Z°([F;»), there is a Frobenius element
Frob, € ﬂlét(ZO, 2),

whose image under p; is the element y, ,, ¢ € G(Qy) from Section 2.2. If m is sufficiently divisible, then

its centraliser is equal to the group I .

3.2.2. The decomposition G = ]_[;7:1 G, of (2.2.1) induces maps

B(Ga,) > B(GY) — [ [ B(Gig)).

i=1
For an element [b] € B(Gq,) we will write [b;] for its image in B(G; q,) under this map. Recall,
see[Kret and Shin 2021, Definition 5.3.2], that an element [b] € B(G, {,u_l}) is called Q-nonbasic if [b;]
is nonbasic for all i. A Newton stratum Shg, 5, KK, is called Q-nonbasic if [b] is Q-nonbasic.

Proposition 3.2.3. Let x € Z°([yn) for some sufficiently divisible m and let [b] = [b,] € B(G, (™.
Assume that Hypothesis 2.3.1 holds. If [b;] is nonbasic, then the image of p¢(Froby ,,) under

G(Qp) — G*(Q) — Gi(Q)
is nontrivial. Moreover, the image of py(Froby ) in each simple factor of G; o, over Qy is nontrivial.

Proof. Let m be sufficiently divisible and let y, ,, € G(Q) be the element guaranteed to exist by
Hypothesis 2.3.1. Let G* denote the quasi-split inner form of G over Q and let ¥ : G @ Q@ — G*® Q be
an inner twisting. Then by Lemma 2.3.6 there is an element y, , € G*(Q) that is conjugate to W (yx,m)
in G*(@). We will write I, C G* for the centraliser of Y+.m- Recall that by Hypothesis 2.3.1 for all £
(including £ = p) the element \Ifl(yx,m) is conjugate to Yy ¢ in G(Qy).

By the classification of adjoint algebraic groups we can find number fields> Fj, ..., F, and absolutely

simple adjoint algebraic groups H; over F; for eachi =1, ..., n such that
Gad = HRGSFI./@ H,' = 1—[ G,’.
i=1 i=1

We have a similar decomposition for G*?¢ with H; replaced by its quasi-split inner form H* and we will
write G for the restriction of scalars from F; to Q of H;".

Let y;’m’i € G}(Q) = H}(F;) be the image of y, ,, and let C, ; C H;" be its centraliser. Then there is
a product decomposition

n n
I]Zg~ HResE./@ Cri= 1_[ I;,i'
i=1 i=1

Letb=b, € G((IiD p) for sufficiently divisible m be as in Section 2.1.2. Then Equation (2.2.1) shows
that there is a product decomposition Jp/ ZG.a, >~ ]_[:’: 1 Jb;» where each Jj, ; is the twisted centraliser

2By the classification of Shimura varieties of abelian type in [Milne 2005, Appendix B], each F; is totally real.
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of the image b; of b in G; (@ p). Moreover the natural inclusion I, , — Jj, induces closed immersions
I pi — Jp,. Asin [KMS 2022, Section 1.1.4], there is an inclusion Jb @, ™ G. i@, identifying its
image with the centraliser va of the fractional cocharacter vy, of G; ® @ attached to b;. If [b;] 1s not
basic, then vy, is not central and so Dim Jj, ; = Dim Mvh,» < Dim G; and so Dim I, , ; < Dim G;.
The subgroup
—1/q/ _
7 (Ix,@,,) - G@p
can be identified with the centraliser of yy ,, , for m sufficiently divisible, and it follows that

—1 /4 _
(I,,4)CGia,

can be identified with the centraliser of the image of yy . p; in G; a, In particular, the group [ ; i@ is
s s

conjugate to [, ; .8, and therefore of the same dimension.
The upshot of the above discussion is that Dim I;’ ; < Dim G; if b; is not basic. It follows that the
inclusion I ;. g, C G g, is not an equality for £ # p and thus that the image of p,(Frob, ;) in G;(Qy) is
nontrivial.
To deduce the last statement of Proposition 3.2.3, we note that it suffices to show that the image of
¥x.m,i 10 every simple factor of G; g, is noncentral. For this, we fix i and a prime number ¢£.

Then we can write G;'k@e as a product indexed by primes p of F; dividing £

*
i,Q — 1_[ ReSFI P/@i i Fz P’
ple

The element yy ,,; is noncentral in H*(F;) and thus also noncentral in H;(F; ) for all primes p of F;
dividing ¢, and thus we are done. (I

Remark 3.2.4. When b; is basic then the inclusion I, 1.0, C Jb.i should be an equality and the image of
pe¢(Frob, ,,) in G;(Qg) should be trivial for all £ # p. This is true when K, is a very special parahoric
subgroup, see the proof of [He et al. 2021, Proposition 5.2.10].

We now state and prove our main arithmetic monodromy theorem.

Theorem 3.2.5. Let Z C Shg krk, be a smooth G (Qy)-stable locally closed subvariety. Let Z° C Z be
a connected component and choose a point z € Z°(F,). Let Ml be the neutral component of the Zariski
closure of the image of

pe:m{(Z°,2) > K¢ — G(Qp).

Assume that Hypothesis 2.3.1 holds. Then M is a normal subgroup of Gq, surjecting onto G; g, for all i
such that there is a point x € Z° (Fp) with b, ; nonbasic.

When (G, X) = (Gy, Hy), then this is closely related to [Chai 2005, Corollary 3.5].

Proof. Corollary 3.1.16 proves that M C G, is a normal subgroup. For x € Z °(Fp) we have the Frobenius
element py(Froby ,,) = yx.m.c € M, for all sufficiently divisible m, where we recall that M is the image
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of p¢. Thus yy ¢ is contained in the Zariski closure of M and thus after replacing m by a power we may
assume that y; », ¢ € M, the neutral component of the Zariski closure of M.

IfxeZz° (Fp) is a point with b, ; nonbasic, then Proposition 3.2.3 tells us that the image of y; ;, ¢ in
G q, is nonzero and thus the image of M in G; g, is nonzero. This image is moreover normal, so to
show that it is equal to G; q, it suffices to show that it maps nontrivially to every simple factor of G, g,
over ;. But this follows from the last line of the statement of Proposition 3.2.3. ]

Corollary 3.2.6. Let Z C Shg; g, K, F, be a smooth G(Qy)-stable locally closed subscheme as before, let
Z° C Z be a connected component and fix z € Z° (Fp). Let Migeom be the neutral component of the Zariski
closure of the image of

(23 .2) = Ki— G(@y).

Assume that Hypothesis 2.3.1 holds. Then Mgeom is a normal subgroup of G, surjecting onto G; g, for
all i such that there is a point x € Z° (Fp) with by ; nonbasic. If we can find such a point for all i, then
Mgeom = G%,ir .

Proof. The subscheme Z is defined over a finite extension of k, and so we can speak of its arithmetic
monodromy group M. Theorem 3.2.5 tells us that M surjects onto G; g, for all i such that there is a point
xez° (Fp) with b, ; nonbasic. We now claim that Mlgeom, and M have the same image in G; g, for all such i.

It follows from the short exact sequence (3.1.3) that Mgeor, C M is a normal subgroup with abelian
cokernel. Let Mlgeom,; be the image of Mgeom in G; @, and let M; be the image of M in G; q,. Then
Migeom,; C Mj; is a normal subgroup with abelian cokernel. Given an integer i with 1 <i < n such that
there is a point x € Z° (Fp) with b, ; nonbasic, then M; = G; g, and therefore M;; has no nontrivial abelian
quotients. Thus it follows that the inclusion Mgeom,; C M is an equality.

If we can find a point x with b, ; nonbasic for all i, then Mgeom surjects onto G?;»i and is moreover
semisimple by [Deligne 1980, Corollary 1.3.7]. It must therefore be equal to G%i?. ]

3.3. p-adic monodromy groups. In this subsection we record a consequence of Theorem 3.2.5 in
combination with the main results of [D’Addezio 2020; 2023].

Recall the following notions from [D’Addezio 2020, Section 2.2]. Write F-Isoc(S) for the Q,-linear
Tannakian category of F-isocrystals over a smooth finite type scheme S over Fp and write F-Isoc'(S) for
the Q,-linear Tannakian category of overconvergent F-isocrystals over S. There is a natural fully faithful
embedding F-Isoc(S) c F-Isoc(S) which sends an overconvergent F-isocrystal M to the underlying
F-isocrystal M. Similarly we write Isoc’(S) and Isoc(S) for the Q p-linear category of (overconvergent)
isocrystals over S. There are natural faithful forgetful functors from (overconvergent) F-isocrystals to
(overconvergent) isocrystals.

3.3.1. The morphism Shg vk, — Shg, rri, gives us an abelian scheme 7 : A — Shg grk, and we
consider the F-isocrystal

M= Rlﬂ*ocris,A[l/p]’
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which is overconvergent by [Etesse 2002, Theorem 7]. Then [KMS 2022, Corollary 1.3.13] proves that

there is an exact Q,-linear tensor functor (the p-adic realisation functor)
Rel), : Rep@p G — F-Isoc(Shg krk,) 3.3.1)

such that the representation Gg, — Gy — GLy coming from the choice of Hodge embedding is sent to
the F-isocrystal M.

Lemma 3.3.2. This morphism factors via an exact Q ,-linear tensor functor
Rel, : Repg G — F-Isoc’ (Shg krx,), (3.3.2)

which we will also denote by Rel,,.

Proof. Since F-Isoc' (Shg, krk,) C F-Isoc(Shg krk,) is a full subcategory, it suffices to show that Rel , (W)
is overconvergent for each representation W of Gg,. We follow the proof of [KMS 2022, Corollary 1.3.13].
As explained there, each W can be written as the kernel of amap e : V,, , = V,r.,v, where

Vipn =V @ VO

Since M = Rel, (V) is overconvergent and the category of overconvergent isocrystals is stable under
tensor products, duals and direct sums by [Berthelot 1996, Remark 2.3.3(iii)], we see that Rel,(V,;, ;) is
overconvergent. Since Rel,, is exact, we see that Rel,(W) can be written as the kernel of a map between

overconvergent F-isocrystals, and is thus overconvergent. (]

Given a smooth locally closed subscheme Z C Shg; g, K,.F, and a point z € Z (Fp), there are monodromy
groups
Mon(Z, M, z) C Mon(Z, M7, 7),

which are algebraic groups over Q p»» see the introduction of [D’Addezio 2023]. They are defined to be the
Tannakian groups corresponding to the smallest Tannakian subcategory of Isoc(Z) respectively Isoc’(Z)
containing M, via the fibre functor w,

w; : Isoc(Z) — Isoc(Fp) = Vect@p .

We will often omit the chosen point z from the notation since the monodromy group does not depend on
Z up to isomorphism.

Fix an isomorphism D, := w, MHY—> Ve Q p sending @, (s4) = Sq,cris,z 10 S¢ ® 1. This identifies the
composite

w; oRel, : Rep@p G — Vect@p

with the standard fibre functor, tensored up to Q p- Thus if we apply Tannakian duality to (3.3.1) and
(3.3.2), we get inclusions

Mon(Z, M, z) C Mon(Z, M", z) C G@p.



866 Pol van Hoften

Corollary 3.3.3. Let Z C Shg, krk, be a smooth locally closed subscheme and assume that there is a
prime £ # p such that Z is G(Qy)-stable. Suppose that Z° contains a point x such that by ; is nonbasic
for alli. If Hypothesis 2.3.1 holds, then there is an equality of subgroups of G@p

Mon(Z°, M%) = G¥.
Q,

Proof. Let £ be as in the statement of the Corollary. Then it follows from Corollary 3.2.6 that the ¢-adic
monodromy group Mgeom Of the abelian variety over Z is equal to Ggf;. It follows from [D’Addezio
2020, Theorem 1.2.1] (compare [P4al 2022]) that there is an isomorphism of algebraic groups

Mon(Z°, M) ® @, ~ G*' ® Q,,.

Therefore Mon(Z°, M) c GQ Q p» 1s a subgroup which is isomorphic to G over Q p- It follows that
Mon(Z°, M) is equal to its own derived subgroup and therefore contained in G4 ® Q p- This inclusion
has to be an isomorphism for dimension reasons, because both groups are connected. ]

From now on we will assume that Z is contained in a single Newton stratum Shg [z, KPK, of Shg, KK,
This means that for every representation W of Gg, the Newton polygon of Rel,(W) is constant. As
explained in [D’Addezio 2023, Section 4.3] (cf. [Katz 1979]), this implies that Rel,,(W) admits a (unique)
slope filtration Rel, (W),. There is an induced slope filtration on w,(Rel,(W)), which gives a fractional
cocharacter Ay of GL(w,(Rel,(W))). Since this construction is functorial in W, it defines a fractional
cocharacter A of G@p. Onvthe other hand, there is an element b = b, € G(@ p») correspond to the Frobenius
of D, =0, MH=V®Q ps let v, be the Newton cocharacter of b.

Lemma 3.3.4. There is an equality X = vy,

Proof. 1t suffices to show that A = v, after composing with G ® Q » = GL(V) = GL(w, (MT)). But both
of these fractional cocharacters of GL(V') are per definition the slope cocharacters of the F-isocrystal
w, (MT). Indeed, this is true for A per definition and for v, by its construction; see [Kottwitz 1985,
Section 4]. O

Under our assumption that Z is contained in a single Newton stratum Shg 5] xrk, of Shg krk, we
note that the monodromy group
Mon(Z°, M) C Gy
P

of a connected component Z° of Z is contained in the parabolic subgroup P(A) associated to A, as
explained in [D’ Addezio 2023, Section 4.1].

Corollary 3.3.5. Let Z C Shg krk, be a smooth locally closed subscheme and assume that there is a
prime £ # p such that Z is G(Qy)-stable. Let Z° be a connected component of Z and suppose that Z° is
contained in a single Q-nonbasic Newton stratum Shg p) krk . If Hypothesis 2.3.1 holds, then the p-adic
monodromy group

Mon(Z°, M) C Mon(Z°, M") = Gf‘lj]r C Gy,
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is equal to the intersection
G%p NP).
In particular, the unipotent radical of Mon(Z°, M) is isomorphic to the unipotent radical of the parabolic
subgroup P,, of G@p.
Proof. The first assertion is a direct consequence of Corollary 3.3.3 and [D’Addezio 2023, Theorem 1.1.1].

The second assertion follows from Lemma 3.3.4 |

3.4. Irreducible components of Hecke stable subvarieties. In this section we will study irreducible com-
ponents of Hecke stable subvarieties and prove results in the style of [Chai 2005, Proposition 4.5.4].>The
results proved in this section will not be used in the rest of this article, but they are used to prove
irreducibility results for EKOR strata in [van Hoften 2020].

Let p : G — G% be the simply connected cover of the derived group G of G and note that p
induces an action of G*¢ (A?) on Shg k,. From now on we will need another assumption:

Hypothesis 3.4.1. For each finite extension F' of the reflex field £ and any place w of F extending v,
the natural maps

7o(Shgrk, (G, X) ®p F) — mo(Skrk, @0y ) OF.(w)) < mo(Shg krk, rk(w))
are isomorphisms.
Lemma 3.4.2. Hypothesis 3.4.1 holds if Shg krk, has geometrically integral connected components.
Proof. This is [Madapusi Pera 2019, Corollary 4.1.11]. (I

Remark 3.4.3. The variety Shg krk, has geometrically integral connected components if K, is hy-
perspecial because then the integral models are smooth by work of Kisin [2010]. More generally the
Kisin—Pappas integral models [2018] have geometrically integral connected components if K, is very
special; see [Kisin and Pappas 2018, Corollary 4.6.26].

3.4.4. Connected components. The following result is well known.

Lemma 3.4.5. Let Yo, be a connected component of the scheme

lim Shy c(G, X).
UCG(Ay)

Then Y is stable under the action of G*(Ay).

Proof. This is a direct consequence of the description of connected components of Shimura varieties and
strong approximation for G*°(Q), see [Kisin et al. 2021, Section 5.5.1, Lemma 5.5.4]. O

30ur results do not literally generalise Chai’s results because he works with Spy, (A?)—Stable subvarieties while we work

with GSp, o (A]pc )-stable subvarieties.
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Corollary 3.4.6. Let Yo, be a connected component of

lim  Shyrg, c(G, X).
UPCG(A;)

Then Yo is stable under the action of G*° (A?).

Proof. We consider
lim Shy(G,X) — lim Shyg, (G, X)
UCGA)) UPCG(A))
and we let Y/ be a connected component of the left hand side mapping to Y. Then Y/ is stable under
the action of G**(Ay) and thus Y is stable under the action of G* (Al’i). [l

Lemma 3.4.7. Suppose that Hypothesis 3.4.1 holds and let Yo C Shg K,.F, be a connected component.
Then Y is stable under the action of G*° (A?).

Proof. 1t suffices to prove this for Shimura varieties over C, because the connected components are
defined over an algebraic closure E of the reflex field E and the result can be transported to the special
fibre using Hypothesis 3.4.1. The result over C is Corollary 3.4.6. ]

3.4.8. Let Z C Shg krk, be a G(A;’.)—stable locally closed subscheme with inverse image ZcC Shg k-
A finite étale cover X — Z is called G(A?)—equivariant if X =7 x 7z X has an action of G(A?) making
the natural map X—>7Z equivariant for the action of G(A?). If Hypothesis 3.4.1 is satisfied, then by
Lemma 3.4.7 the group G*¢ (A‘;) acts on the fibres of

m0(X) = mo(Shg . 7,)-
Lemma 3.4.9. If Hypothesis 3.4.1 holds, then G(A?) acts continuously on no()? ).

Proof. The assumption that X — Z is finite étale implies that rro(% ) —> 710(2) is a finite map with discrete
fibres, and therefore the action of G(A?) on 710()? ) is continuous because the action on m)(z) is, see
Corollary 3.1.5. ([l

Let X be a finite set of places of (2 containing p and containing all places £ where G'z}d has a compact
factor. From now on we will work with G(A?)—stable subvarieties Z defined over Fp and with geometric
monodromy groups.

Theorem 3.4.10. Let X — Z be a G(A?)-equivariant finite étale cover of a smooth G(A?)-stable locally
closed subscheme Z C Shg K,.F, and suppose that each connected component of Z intersects a (-
nonbasic Newton stratum. If Hypotheses 2.3.1 and 3.4.1 hold, then G(AJE@) acts trivially on the fibres
of

m0(X) = 7o(Shg . 7,)-

For a prime ¢ ¢ ¥ we will write K, for the image of K” — G (Qy) and 7y : ShG,KPKp,z,E, — ShG,KPKp,E,
for the induced K-torsor over Sh; g, K,.F,"
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Lemma 3.4.11. Suppose that Hypothesis 2.3.1 holds and let Yoo C Shg; g Kp.t.F, be a connected compo-
nent with image Y C Shg g, K,.F, Then Yoo — Y is a torsor for a compact open subgroup of G (Qy).

Proof. It follows from profinite Galois theory for schemes, see Section 3.1.11, that the stabiliser K, of
Yoo in G(Qy) can be identified with the image of

(Y, y) = G(Qp)

for some point y € Y (Fp). If we apply Corollary 3.2.6 and Lemma 3.1.9 to Z = Shg krk,, it follows that
this image contains a compact open subgroup of G%"(Q,) and that it is contained in G%(Qy). O

Proof of Theorem 3.4.10. We write Z; — Z for the induced K, torsor and Xy — Z, for Z;, xz X. Then
the action of G(A;ﬁ) on X and Z induces an action of G(Q;) on Xy, and it suffices to show that G**(Q;)
acts trivially on the fibres of

ag 1 wo(Xe) — WO(ShG,KPKp,e,Fp)
forall ¢ ¢ X.

Let x € mp(X,) and let Z° be a connected component of Z containing the image of x. Moreover let
Z; C Z, be the inverse image of Z°. Fix a point z € Z° (Fp), then Hypothesis 2.3.1 and Corollary 3.2.6
tell us that the image of

0¢ - nlét(Zo, 7)) = K,

is a compact subgroup Mgeom ¢ Whose Zariski closure Mlgeom, ¢ has neutral component equal to Gﬁgz. It
follows from Lemma 3.1.9 that the image of p; contains a compact open subgroup V; C G9'(Qy). The
upshot of this discussion is that the stabiliser in G(Q;) of a connected component of Z, contains a
compact open subgroup of G%"(Q;) and this implies that the stabiliser in G(Q;) of x contains a compact
open subgroup of G"(Qy).

Let Y, be a connected component of ShG’ KPK, LT, such that the image Y of Y, in Shg, KPK, contains Z°.
Then it follows from Hypothesis 2.3.1 and Lemma 3.4.11 that Yo, — Y is a pro-étale torsor for a compact
open subgroup Uy C G, and from Hypothesis 3.4.1 and Lemma 3.4.7 that Y, is stable under the action
of G*°(Qy).

We will write X, C X, for the inverse image of Y, in X; and let X’ C X be its image. Note that
x € mo(X o) by construction. Then X, — X' is a pro-étale U, torsor and X, is stable under the action
of G*°(Qy). This action is moreover continuous by Lemma 3.4.9 and the inclusion

0(Xoo) C o (Xe)

is closed since {Yo} C 7o (ShG’ KPK,. e,ﬁ,,) is closed. In particular, the topological space mp(X ) is compact
Hausdorff.
Let U, be the inverse image of Uy in G**(Q;). Then the quotient

U\m0(Xoo) = Up\10(Xo0) = 7m0(X")
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is finite. This means that there are finitely many (open and closed) U, orbits on ¢(X). Therefore the
G*(Qy) orbit of x on 7((X) is a union of finitely many U, -orbits and thus closed; in particular it is
compact Hausdorff. It then follows from Lemma 3.1.6 that the G*°(Q;) orbit of x is homeomorphic
to G*(Qy)/ Py, where P, C G*(Qy) is the stabiliser of x. In particular, it follows that G*¢(Qg)/ Py is
compact.

The group P, contains a compact open subgroup of G*(Q,) because the stabiliser of x in G(Qy)
contains a compact open subgroup of G%'(Qy) and G*(Q;) — G%"(Qy) has finite fibres. This implies
that G*(Qy)/ P, has the discrete topology, and we conclude that G*°(Qy)/ Py is a finite set or equivalently
that P, is a finite index subgroup. The assumption that GE{ has no compact factors implies, by [Platonov
and Rapinchuk 1994, Theorems 7.1 and 7.5], that the group G*(Q;) has no finite index subgroups.
Therefore G*°(Qy)/ Py is a singleton which is precisely what we wanted to prove. O

4. Serre-Tate coordinates and unipotent group actions

In this section we show that the classical Serre—Tate coordinates, as described in [Katz 1981], can be
reinterpreted using the action of a unipotent formal group, as in [Howe 2020]. Our results are more-or-less
a direct generalisation of the results of [Howe 2020], except that we construct the action of unipotent formal
groups using Rapoport—Zink spaces, while in [loc. cit.] this action is constructed using Igusa varieties.

In Section 4.1, we recall the classical theory of Serre—Tate coordinates following [Katz 1981], which
shows that the formal deformation space Def(Y) of an ordinary p-divisible group Y over Fp has the
structure of a commutative formal group. We then compute the scheme-theoretic p-adic Tate-module of
the p-divisible group Hp 1 associated to this formal group. In Section 4.2 we use Rapoport—Zink spaces to
describe an action of the universal cover 7’-?0, 1 of Hp,1 on the formal scheme ]’)?f(Y ) associated to Def(Y).
In Section 4.3 we identify this action with the projection from the universal cover to Hg | followed by the
left-translation action of Hg | on ISEf(Y ).

4.0.1. We consider the category Art of Artin local VA p-algebras R such that the natural map Fp — R/mpg is
an isomorphism. Here mp is the unique maximal ideal of R and we write o : R — Fp for the composition
of the natural map R — R/m with the inverse of the natural isomorphism Fp — R/m. Note that « is
functorial for morphisms in Art. We similarly consider the category Nilp of VA p-algebras in which p" =0
for some n. The category Art is naturally a full subcategory of Nilp.

For a p-divisible group ¢ over an algebra R € Nilp we define the p-adic Tate module to be the functor
T,% :=lim, ¢[p"], which is representable by a flat affine scheme over Spec R by [Scholze and Weinstein
2013, Proposition 3.3.1].

4.1. Classical Serre-Tate theory. Let Y be an ordinary p-divisible group of dimension g and height 2g
over Fp. In other words, let Y be a p-divisible group isomorphic to (Q,/Z,)%¢ & Mf&i.

Let Def(Y) be the functor on Art sending (R, o) to the set of isomorphism classes of pairs (X, 8)
where X is a p-divisible group over Spec R and  : X ®r.o Fp — YE is an isomorphism. This functor is
(pro)-representable by a formally smooth formal scheme Def(Y) of relative dimension g2 over Spf 7 p-
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By [Katz 1981, Theorem 2.1], this functor lifts to a functor valued in abelian groups such that the formal
group Def(Y) is p-divisible.*

There is a canonical direct sum decomposition ¥ = Yy @ Y, where Y is the maximal étale quotient of
Y and where Y| is equal to the formal completion of Y at the origin. Since Yj is étale there is a unique
lift to a p-divisible formal group over 7 p» which we will denote by Y;*". Similarly ¥} has a unique lift to
a p-divisible formal group over VA p» for example because the Serre dual of Y is €tale. We will denote this
lift by Y;*" and we will use Y := Y™ @ Y[*" to denote the canonical lift of Y to Z,.

Let YV be the Serre-dual of Y and consider the free Z,-modules of rank g given by 7),Y (Fp) and
T,Y v(Fp). By [Katz 1981, Theorem 2.1], the formal group Def(Y') is isomorphic to the functor on Art
sending R to

hom(7,,Y (F,) ®z, T,¥ " (F,), Gu(R)).

Let S be the complete Noetherian local 7 p-algebra representing Def(Y) on Art. Then the abelian group
structure on Def(Y') induces a (continuous) cocommutative Hopf algebra structure on S. In particular the
formal scheme lSEf(Y) := Spf S, considered as a functor on Nilp, has the structure of a formal group. We
will write Ho, 1 := lim Spf S[p"] for the corresponding p-divisible group over Spf VA »- Note that it acts
via left translation on Def(Y); we will denote this action by ast (for Serre—Tate).

Remark 4.1.1. The natural map Ho; — ]5e\f(Y ) is an isomorphism of formal schemes, since both of
them are formally smooth formal schemes of the same dimension. Nevertheless, it is useful to treat them
as different objects, for example because the notation Def(Y) is somewhat unwieldy, especially when
passing to universal covers of p-divisible groups.

Lemma 4.1.2. The p-adic Tate module of Ho, is isomorphic to the sheaf #om(Y;™", Y*") on Nilp of

: can can
homomorphisms from Y5 to Y™

Proof. Let us prove the stronger assertion that there are isomorphisms Ho, 1[p"] ~ #om(Y;™", Y*")[p"]
for all n, compatible with changing n. Note that #g |[p"] is represented by the spectrum of an Artin
local Zp—algebra. The same is true for AHom(Y;™", Y*")[p"], since Hom(Z/p"Z, ppn) = ppn. Thus it
suffices to show that the functors Ho 1[p"] and H#om(Y5*™", Y{*")[p"] are ismhic as functors on Art.
In [Katz 1981, p. 152] it is explained that Def(Y') is isomorphic to the functor (on Art) sending R to

hom(7,Y (F,), Y{*(R)).

Note that T,,Y(Fp) =T,Yo (Fp) =T,Y;™" (Fp) and that because T, Y;™" is an inverse limit of étale group
schemes, the natural map 7, Y5*"(R) — T, Yo (Fp) is an isomorphism for R € Art. Thus there is a natural
isomorphism

hom(7,Y (F,), Y{*(R)) =~ hom(T, Y§*(R), Y{*"(R)).

“4Recall that a commutative formal group X is called p-divisible if [p] : X — X is finite flat.
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The p"-torsion of this group is given by
hom(7, Y5 (R), Y7 (R))[p"] = hom(T}, Y5 (R), Y{*"[ p"1(R)) = hom(Y5™"[p"1(R), Y{*"[p"1(R)).

We see that there is an isomorphism Def(Y)[p"] >~ #om(Y;*"[p"], Y;*'[p"]) of functors on Art, which
induces an isomorphism H,1[p"] >~ Aom(Y;*"[p"], Y*"[p"]) of functors on Nilp. It is straightforward
to check that these isomorphisms are compatible with increasing n, which concludes the proof. (I

4.2. Rapoport-Zink spaces and unipotent formal groups. Let Y — Y be the universal cover of Y,
defined as the inverse limit of the projective system
lim Y.
[p1:G—G
It is representable by a formal scheme by [Scholze and Weinstein 2013, Proposition 3.1.3(iii)]. By the
proof of [Caraiani and Scholze 2017, Proposition 4.2.11], the automorphism group functors of ¥ and Y
on Nilp can be described as follows:

[ Aut(Yp) 0 S Aut(Yp) 0
Aut(Y) = (%om(Yo, Y1) Aut(Yl))’ Aut(Y) = <,%”om(Y0, YDI1/p] Aut(Yl))'

Moreover the functors Aut(Y;) are pro-étale group schemes which are noncanonically isomorphic to the
group schemes associated to the profinite group GL,(Z,). Let 7:20,1 be the universal cover of Hg ;. Then
by the discussion after [Caraiani and Scholze 2017, Definition 4.1.1], we can identify the fpqc sheaves

Ho.1 = (T, Ho.1)[1/p].

Moreover, by the proof of [Caraiani and Scholze 2017, Proposition 4.1.2], there is a short exact sequence
of fpqc sheaves
0— TpHo1 — Ho,1 — Hoa — 0.

By Lemma 4.1.2, we can identify this with
0 — Hom(Yy, Y1) — H#om(Yy, Y1)[1/p] = Ho1 — 0.

Note that s#om(Yy, Y1)[1/p] is isomorphic to 7:20, 1, and thus representable by a formal scheme by [Scholze
and Weinstein 2013, Proposition 3.1.3(iii)] as above. In particular, this means that Aut(ff ) is representable

by a formal scheme.

4.2.1. Let RZy be the Rapoport—Zink space associated to Y. It is defined to be the functor on Nilp
sending R to the set of isomorphism classes of pairs (X, f), where X is a p-divisible group over Spec R
and f : X --» Yg is a quasi-isogeny (or equivalently, by [Katz 1981, Lemma 1.1.3.3], a quasi-isogeny
fo:XRr/pr -+ Yr/pr). The functor RZy is representable by a formally smooth formal scheme over Spf Vi »
by [Rapoport and Zink 1996, Theorem 2.16]. The group functor Aut(Y) acts on RZy via postcomposition,
where we note that an automorphism of Y is the same thing as a self-quasi-isogeny of Y.
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Let y be the Fp—point of RZy corresponding to the identity map ¥ — Y and let
RZ} CRZy

be the formal completion of RZy in {y}, in the sense of formal algebraic spaces as in [Stacks 2020,
TagOGVR]. By definition this is the subfunctor of RZy corresponding to those morphisms Spec R — RZy
that factor through {y} on the level of topological spaces. In other words, it consists of those mor-
phisms Spec R — RZy such that the induced morphism Spec R™¢ C Spec R — RZy factors through
y : SpecF, — RZy.

In terms of the moduli description, this means that we are looking at those quasi-isogenies f : X --+ Yg
such that: There is a (necessarily unique) isomorphism S : X grea — Ypres making the following diagram

commute:

XRred L} YRred

if H 4.2.1)

YRred YRred

Now restrict this moduli description to the full subcategory Art C Nilp. Then RZQ can be described

as the functor on Art sending (R, o) to the set of isomorphisms classes of triples (X, 8, f), where X
is a p-divisible group over R equipped with an isomorphism S : X ®g o Fp — Y and where f is a
quasi-isogeny f : X --+ Y such that (4.2.1) commutes.

Lemma 4.2.2. The natural forgetful map RZ/Yy — Def(Y) sending (X, B, f) to (X, B) is an isomorphism.
In particular, there is an isomorphism of formal schemes ISC\f(Y ) =~ RZ{,y .

Proof. The commutativity of (4.2.1) expresses the fact that f is a lift of the quasi-isogeny ¥ — Y given
by the identity. But since quasi-isogenies lift uniquely by [Katz 1981, Lemma 1.1.3.3], the data of f is
superfluous and we see that the forgetful map RZ{,y (R) — Def(Y)(R) is a bijection for all R € Art. [J

The subgroup

(Aut(Yo) 0

1t Aut(Y
o Aut(m),)c ut(¥)

preserves the point y € RZy (Fp) and therefore acts on IS?f(Y). In particular, the profinite group
Aut(Yo)(F,) x Aut(Y))(F,) = Aut(Y)(F,)

acts on ISEf(Y ). This induces an action of Aut(Y) (Fp) on Def(Y) because Fp is an object of Art C Nilp.

Corollary 4.2.3. This action sends a pair (X, B) € Def(Y)(R), where X is a p-divisible group over
SpecRand B: X Qp.q Fp — Y?p is an isomorphism, to (X, g o B) for g € Aut(Y)(Fp).

Proof. This follows from Lemma 4.2.2 and the uniqueness of the isomorphism 8 : Xﬁp — Y given
f X --» YR- U
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4.2.4. Since the action of 7’:20,1 on RZy preserves the point y, there is an induced action
L~1Rz : ﬁO,l X ISe\f(Y) —> ISe\f(Y)

The goal of the rest of this section is to prove the following proposition, our proof of which was heavily
inspired by the proof of [Howe 2020, Theorem 6.2.1], which deals with the g = 1 case.

Proposition 4.2.5. The action arz factors through an action of Ho, via the natural quotient map
ﬁo,l — Ho.1. Moreover the induced action of Ho 1 is given by ast.

4.3. Proof of Proposition 4.2.5. Choose isomorphisms
TpYo =798, Y1 (up=)®s,
which induce isomorphisms of functors on Art

Def(Y) 2 Hom(ZEE, (1 p)®8).

In fact if we let xy, ..., x, € Z?g be the standard basis vectors, then we can in fact identify

Def(¥) 2 (1)
with coordinates ¢; ; for 1 <i, j < g and similarly
Ho,1 = ()2
with coordinates ¢; ;j for 1 <i, j < g. For R in Art a morphism

Spec R — Def(Y)

corresponds to elements g; ; € 1 +mg, and the corresponding deformation of Y is the p-divisible group
X4 corresponding to the pushout of (see [Katz 1981, p. 152])

0—>Z€Bg—>@®g—>@” -0

7%
via the morphism z%¢ PR n® poo r given by x; = (i1, ..., gig). In fact, there is a pushout diagram
Q¢
0 —— 7% —— Z01/pI® — —br —— 0
l J p
® ® Q%
0 —— 7, —— @,° r b > 0
P

and so we can also think of X, as the quotient of ,u@g‘; r ®Z[1/p]®$ by the image of the map

h : 798 — Mpoc R ®Z[1/p]$g
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given by x; = ((gi,1, -+ -, qi,g)s (xi)).
Let N be an integer such that qlp Yo 1 for all i, j, which exists since R is Artinian. Then the isogeny
W g @ ZI1/pI® — 1 p @ Z[1/p1™, (A, B) > (p¥ A, p"B)
maps 1y (Z®¢) into hy(Z%¢). Thus it induces a quasi-isogeny
Jan:Xg-—> X1 =Yg, 4.3.1)

and the induced quasi-isogeny X oF, = X LF, X LF, is given by p". It follows that the quasi-isogeny
pN fq.n 1s the unique quasi-isogeny lifting the identity X oF, = X, 5 X, e Let us write ¢ € RZy (R)
for p_qu,N 1 Xg - YR B

A rnorI;hism Sipec R — Hy,1 corresponds to elements ¢; ; € 1 +mg. The left translation action of Ho
via the Serre—Tate action is given by

aST(£5 g) =£1,

where (¢q)i.j = (&i.j - i.;) and where (¢ j - g;,;) denotes the multiplication in ppx(R) = 1 +mg. In
terms of p-divisible groups, this correspond to the p-divisible group X ¢q- We will write {g € RZy (R)
for the element corresponding to X¢4.

Proof of Proposition 4.2.5. By definition of the action agry, it suffices to show that for every fpqc cover
Spec R — Spec R and every lift
¢ eHoa(R)

of ¢ €Hon (ﬁ), we have &Rz(g, q)=1¢q. There is a universal such lift over the fpqc cover R given by
formally adjoining all the p-power roots of all ¢; ;, and it suffices to prove the result for this choice of R.
Recall that X - is defined as the quotient of

o8 s@ZI1/pl®
by the image of the map k4 which sends the standard basis element x; € 7%5 to
((Gi1s - qig), (xi) G/fBg R0 [1/p]®

The p-divisible group X tq. R is defined similarly but then using the map 4. The compatible sequence of
p-power roots of ¢ defined by g: defines a map

Ve nSt R @ZI/pI™ = uE @ Z11/pI®. (A, B) > (A-Lz(B). B),
where L 71/ p]®¢ — M . 1s the morphism sending

1 1 1/p"
({ /p ’ /p L] Cl’ép )

It is straightforward to check that this map satisfies

Y (hg (@) = heg (7%
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and that it thus induces an isomorphism on quotients
¢§ : Xg,ﬂ’ — XQ,R'
N N
Choose N sufficiently large such that ¢, =1and ¢/; =1 forall i, j. Let

P fegan : Xeg - Yr

be the unique quasi-isogeny lifting the identity map X, 0F, = YE — Y?p as described in (4.3.1). To prove
the proposition it suffices to show that the following diagram commutes:

\a
XQ,R 7 XQ’ 3
I I
N fyw 107N fegon (4.3.2)
B
@j‘?g> og (Qj‘?g) g
<z§g N AV 0 R

L .10 o . . .
Here &; is given by the matrix (g: 1 ) see the beginning of Section 4.2 for the matrix notation. To show
that this diagram commutes we consider the auxiliary commutative diagram

vz
w R ®ZI/p)® —— pof L@ Z[1/p]®

le lpzzv (4.3.3)

PV
wof R ®ZI/pI® —— it @ ZI1/p]®

The diagram of quasi-isogenies (4.3.2) is obtained from the diagram (4.3.3) by quotienting by the

subgroups
W~
hg(Z28) —— hey(Z%)
E I
PV
h(Z98) —— h\(Z%%)
and formally inverting certain powers of p. It follows that (4.3.2) is commutative. ]

5. The formal neighbourhood of an ordinary point

The goal of this section is to give Serre—Tate coordinates for the formal completions of points in the
ordinary locus of Shimura varieties of Hodge type.

In Section 5.1 we specialise to the smooth canonical integral models of Shimura varieties of Hodge
type at hyperspecial level, and we moreover assume that the ordinary locus is nonempty. In Section 5.2
we recall a small amount of covariant Dieudonné theory for semiperfect rings, following [Scholze and
Weinstein 2013].
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In Section 5.4 we prove that the formal completion of the ordinary locus gives a subtorus of the
Serre—Tate torus, reproving a special case of [Shankar and Zhou 2021, Theorem 1.1]. We also give a
group-theoretic description of the Dieudonné module of the associated p-divisible group. In Section 5.5
we introduce strongly nontrivial actions of algebraic groups on isocrystals, which we will need to confirm
the hypotheses of the rigidity theorem of [Chai 2008].

5.1. Integral models at hyperspecial level. et the notation be as in Section 2. In particular, we have
a Shimura datum (G, X) of Hodge type with reflex field E, a prime p and a prime v of E above p.
Moreover there is a symplectic space V and a Hodge embedding (G, X) — (Gy, Hy) and for every
sufficiently small K? C G(A‘?) there is a sufficiently small X? C Gy (A?) and a finite morphism

Sk =Sk (G, X)_>SIC®Z(,,) O, (v (5.1.1)

Recall that there is a Z,)-lattice V|, of V on which the symplectic form is Z,)-valued, and recall that
we have defined K, C G(Q)) to be its stabiliser. From now on we will assume that K , is a hyperspecial
subgroup, in which case .“k is the canonical integral model of Shg,k,(G, X) over Og,. Moreover the
main theorem of [Xu 2020] tells us that the map (5.1.1) is a closed immersion.

5.1.1. The Zariski closure Gz, of G inside Gy, is a reductive group scheme over Z(,). By [Kisin 2010,
Proposition 1.3.2], we can choose tensors {sy} C V(%) whose stabiliser is Gz, . All the results of Section 2
still go through with this choice of tensors.

For x € Shg, KPK, (Fp) we have seen in Section 2.1.1 that there are tensors

{Sa,cris} C D? P

where I]])ff’ is the rational contravariant Dieudonné module of A,[p®]. Now let D(A,[p°]) be the integral
contravariant Dieudonné module. Then as explained in [Shankar and Zhou 2021, Section 6.3], the tensors
{Sq.cris} lie in

D(A«[p™]®.

It is moreover explained there that there is an isomorphism

9

D(Ax [Poo]) = Vp ®Z(,,) Zp
taking Sy cris t0 S @ 1.

5.1.2. Let us now drop the level from the notation and write .7 and Sgsp respectively for the base
changes of .k and Sy respectively to Vi p for some choice of O , — 7 p- Similarly write Shg for the
special fibre of . and Shgs) for the special fibre of Sgsp. Let Shgsp ora C Shgsp be the dense open
ordinary locus and define the ordinary locus of Shg by Shg o4 := Shg N Shgsp ord- It is an open subset
which is nonempty if and only if £, = Q,, by [Lee 2018, Corollary 1.0.2]. We will assume from now on
that £, = Q).

Lemma 5.1.3. The ordinary locus Shg ora is open and dense and equal to the Newton stratum Shg p) vk,
for [b] € B(G, {iu™"}) the maximal element in the partial order introduced in Section 2.1.2.
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The maximal element [b] is known as the w-ordinary element, and the maximal Newton stratum is
known as the w-ordinary locus.

Proof. The p-ordinary locus and the ordinary locus are equal in this case by the proof of [Lee 2018,
Corollary 4.3.2], as explained in [Lee 2018, Remark 4.3.3]. The density of the p-ordinary locus is
[Wortmann 2013, Theorem 1.1]; see [KMS 2022, Theorem 3] for a published reference. U

5.14. Let x € Shg (Fp) be an ordinary point and consider the closed immersions of formal neighbourhoods
(considered as functors on the category Nilpip of 7 p-algebras where p is nilpotent)

FE = Spf Dy x > Spf Disgsyx =1 Sty (5.1.2)

Let A be the universal abelian scheme over Sgsp, and let X = A[p>°] be the associated p-divisible group
over Sgsp. Let ISEf(A x) be the formal deformation space of the abelian variety A,, that is, the formal
scheme representing the functor Def(A,) on the category Art of deformations of the abelian variety A.
Similarly let lje\f(Y ) be the deformation space of the p-divisible group X, =: Y. There are natural
morphisms

Sbs, — Def(A,) — Def(Y).

The first is a closed immersion by the moduli description of Sgsp, and the second morphism is an
isomorphism by [Katz 1981, Theorem 1.2.1]. Now [Shankar and Zhou 2021, Theorem 1.1] (see [Noot
1996] for closely related results) implies that the closed formal subscheme

L c Def(Y)
is a p-divisible formal subgroup. The goal of this section is to compute the Dieudonné module of Shg .

We do this by giving a new proof that
Sh/; c Def(Y)

is a p-divisible formal subgroup, using the methods of Section 4 and results of [Kim 2019].

5.2. Some covariant Dieudonné theory.

5.2.1. A caveat. In the rest of this subsection we are going to recall some covariant Dieudonné theory for
semiperfect rings following [Scholze and Weinstein 2013]. The reason we do this is that the references
[Caraiani and Scholze 2017; Kim 2019] are written in this language. Moreover we feel that results such
as Lemma 5.2.5 are most naturally stated using the covariant theory.

To avoid potential confusion, we will always write a subscript cov when using covariant Dieudonné
theory. The covariant theory and the contravariant theory will interact only once, in Section 5.3, and we
will warn the reader again there.
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5.2.2. Recall that an [ ,-algebra A is semiperfect if it is the quotient of a perfect [ ,-algebra B and that
it is f~semiperfect if it is the quotient of a perfect [ ,-algebra by a finitely generated ideal. Let A be
a semiperfect [ ,-algebra and let A.;s(A) be Fontaine’s ring of crystalline periods (see [Scholze and
Weinstein 2013, Proposition 4.1.3]) with ¢ : A¢is(A) = Auis(A) induced by the absolute Frobenius on A.

Definition 5.2.3. A covariant Dieudonné module over a semiperfect [ ,-algebra A is a pair (M, ¢y),
where M is a finite locally free Ais(A)-module and where

oM : (p*M[%] — M[%]
is an isomorphism such that
M S op(M) S 5M.

Remark 5.2.4. Usually one instead asks that
pM S ou(M) S M.

The reasons for our conventions is that they agree with the conventions in [Caraiani and Scholze 2017;
Kim 2019].

A p-divisible group ¢ over A has a covariant® Dieudonné module (Degy (4), ¢4). For Spec A’ — Spec A
there is a canonical isomorphism

(Deov(Gar), @%A/) >~ (Deoy(9), ) @ Ais(A) Acris (A/)-

Our covariant Dieudonné modules are normalised as in [Caraiani and Scholze 2017]. In particular,
this means that the covariant Dieudonné module of @, /Z,, over A is Ag;s(A) equipped with the trivial
Frobenius, and the covariant Dieudonné module of 4, is Acris(A) equipped with Frobenius given by 1/p.
This also means that the contravariant Dieudonné module is isomorphic to the dual of the covariant
Dieudonné module, see [Caraiani and Scholze 2017, footnote on page 692].

Now let & be a p-divisible group over [, with universal cover & in the sense of [Scholze and Weinstein
2013, Section 3.1]. If we consider ¢ as a functor on Nilp then it is a filtered colimit of spectra of
f-semiperfect [ ,-algebras by [Scholze and Weinstein 2013, Proposition 3.1.3(iii)] and is thus determined
by its restriction to the category of semiperfect [ ,-algebras. We can describe it explicitly on the category
of f-semiperfect [ ,-algebras as follows:

Lemma 5.2.5. There is a commutative diagram of natural transformation of functors on the category of

f-semiperfect [ ,-algebras, which evaluated at an object A gives

G(A) = (B4 ®g Denn@)[1])77,

where @ is given by the diagonal Frobenius and where Bctis(A) = Auis(A)[1/p].

SWe write Decov to distinguish from the contravariant Dieudonné theory that we used in Section 3.
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Proof. Let A be f-semiperfect, then [Scholze and Weinstein 2013, Theorem 4.1.4] tells us that the covariant
Dieudonné module functor over A is fully faithful after inverting p. There is a natural map

Tpg(A) = HomA((Qp/Zp)A: gA) - HomAcm,F(Acris(A)v Acris (A) ®ZP [Dcov(g))
> (Adis(4) ®7 Doov(#))7~,

where the latter bijection is induced by evaluation at 1. After inverting p we get a natural isomorphism

F(A) =Homa((Qp/Zp) 4, 9n)[3] = (B (A) ®g Deov@)[1])°7". O
5.3. The Dieudonné module of the Serre-Tate torus. Letx € Shg ora (Fp) be as above andlet Y = A, [p™]
be the corresponding p-divisible group. Recall from Section 4 that ¥ = Yy @ Y; and that both Yy and Y,
lift uniquely to p-divisible groups Y;*" and Y{*" over 7 »- Let Def(Y) be the formal deformation space
of Y, considered as a functor on Art together with its extension ISEf(Y ) to Nilp. We have seen that ]’)?f(Y )
has the structure of a p-divisible formal group, and we use #g, 1 to denote the corresponding p-divisible
group over Spf VA p-
Consider the special fibre H,, LF,- Then by Lemma 4.1.2 its p-adic Tate module is given by s#om(Yy, Y1).
Therefore by [Caraiani and Scholze 2017, Lemmas 4.1.7 and 4.1.8] , we have an isomorphism

[DCOV(HO’]‘E))[I/I)] >~ Hom(Deoy(Yo)[1/p], Dcov(Yl)[l/p])SO,

where .##om denotes the internal hom in F-isocrystals and where (-)=° denotes the slope at most 0 part
of an F-isocrystal.

9

5.3.1. Choose an isomorphism (here we use contravariant Dieudonné theory!) D(Y) — V, ®z oLy
sending sq ® 1 to sy cris @s in Section 5.1.1. This induces an isomorphism from V;‘ ®z, Z, to the covariant
Dieudonné module Do, (Y) and thus gives us Frobenius invariant tensors {sg.cris} C Deov(¥)®. Let
be G(@ ») C GL( V*)(@ ») be the element corresponding to the Frobenius in Dcoy (Y)[1/p]. Then there
is an inclusion of F-isocrystals

HAom(Deoy (Yo)[1/p], Deov(YD[1/ p]) C Hom(Deoy(Y)[1/p], Deov(Y)[1/pD), (5.3.1)

which sends f : Deoy(Yo)[1/p] = Deoy(Y1)[1/p] to

Id+f : [DCOV(YO)[I/p] @ DCOV(YI)[I/p] - DCOV(YO)[I/p] @ DCOV(YI)[l/p]'

The map in equation (5.3.1) realises the source as the slope —1 part of the target.

5.3.2. Write gl(V*) for the Lie algebra of the algebraic group GL(V*) ® Q » and identify it with the
vector space of endomorphisms of V* ® Q » equipped with the commutator bracket. We can equip gl(V*)
with the structure of an F-isocrystal by letting Frobenius act by conjugation by b € GL(V*) (@ p). Letus
write (gl(V*), Ad bo) for this isocrystal.
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Using the isomorphism V; ®z, 7 » == Deoy(Y) as above, we can identify the F-isocrystal on the right
hand side of (5.3.1) with (gl(V*), Ad bo). There is a sub-F-isocrystal

(g, Adbo) C (gl(V*), Adbo),

where g =Lie G ® Q p- By Lemma 5.3.3 below, the subspace g C gl(V*) is precisely the subspace of
those endomorphisms g of V* ® Q p that satisfy g*(s, ® 1) = 0 for all tensors s.

Lemma 5.3.3. Let C be a field of characteristic zero and let W be a finite dimensional C vector space. Let
H C GL(W) be a connected reductive group that is the stabiliser of a collection of tensors {ty}ac.y C W&.
Then the Lie algebra y C gl(W) is given by the subspace

{H e gl(W): H*(ty) =0 forall « € o}.

Proof. The Lie algebra is given by the kernel of the map G(Cl[e]/ (€%)) — G(C). Thus it consists of
matrices of the form 1+ e M, where M € gl(W), such that for « € & we have

(I4+eM) (t, @ 1) = t,.
But this is equivalent to (e M)*(t, ® 1) =0 or M*(z,) = 0. O

Let us write

(g, Adbo) ™" C Hom(Deoy (Yo)[1/pl, Deoy (Y1)[1/p]) = Deov(H,1.5,)[1/P] (5.3.2)

for the slope —1 subspace of the F-isocrystal (g, Ad bo). Then by [Kim 2019, Lemma 3.1.3] and its
proof, there is an inclusion of p-divisible groups

H(();l F, c Ho,l,?p (5.3.3)

inducing (5.3.2) upon taking rational covariant Dieudonné modules. Since both of these p-divisible

groups have étale Serre duals, there is a unique lift ’HO | of 7-[0 " to Z p and a unique lift

[

7'[81 C Ho,1
of the inclusion (5.3.3).

Lemma 5.3.4. Let A be an f-semiperfect [F,-algebra. Then the inclusion

0 IF, (A) C Ho 1., (A) = AHom(Yo,4, Y1,4)[1/ ]

identifies 7-[(();1 F, (A) with the subspace of those quasi-endomorphisms f : Yo o --» Y1, 4 such that the

induced quasi- endomorphlsm
g§= (? 8) Ya--+Ya
induces an endomorphism Deoy(Y4)[1/p] = Deov(Ya)[1/ p] satisfying g% (Sg.cris ® 1) = 0.

Proof. This follows from Lemma 5.2.5 in combination with Lemma 5.3.3. U
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Remark 5.3.5. The statement of Lemma 5.3.4 contradicts [Kim 2019, Lemma 3.1.3], which implies that
the inclusion
Hy 5, (A) C Hy £, (A) = Hom(Yo 4, Y1.4)[1/p]

identifies ﬁg LF (A) with the subspace of those quasi-endomorphisms f : Yy 4 —--+ Y1 4 such that the
> L, p

induced quasi-endomorphism
g:(?g)IYA ——-)YA

induces an endomorphism Doy (Y4)[1/p] = Deoy (Ya)[1/ p] satistying g% (Sq.cris ® 1) = S cris ® 1. This
cannot be correct because ﬁ(();l 7 (A) is stable under addition and if g;, g, both satisfy g*(sg.cris® 1) =
Sa.cris @ 1 then their sum g; + gzpdoes not.

The following lemma and its corollary essentially follow from [Kim 2019, Proposition 3.2.4]. However
the construction there is incorrect because of the error in [Kim 2019, Lemma 3.1.3] pointed out above.
Once the subgroup in the statement of Lemma 5.3.6 has been shown to exist with the properties proved
in Corollary 5.3.7, the rest of the arguments in [Kim 2019] go through without further changes.

Lemma 5.3.6. There is a closed subgroup
Autg(Y) C Aut(Y)

such that on A-points for f-semiperfect Fp-algebras A, it is the subgroup of those quasi-isogenies g :
Y4 —-+ Yy that induce isomorphisms g : Deov(Y4)[1/p] = Deov(Ya)[1/ p] satisfying

§" (Sa.cris ® 1) = Sqcris ® 1.
We will call such quasi-isogenies tensor-preserving quasi-isogenies.
Proof. First of all by [Caraiani and Scholze 2017, Lemma 4.2.10] the functor Aut(? ) satisfies
Aut(Y)(R) = Aut(Y)(R/p),

for all R € Nilp. Thus we can define a closed subfunctor of Aut(Y) by specifying its values on Fp—algebras.
The matrix description of Aut(17 ) in Section 4.2 gives us a semidirect product decomposition (see
[Caraiani and Scholze 2017, Proposition 4.2.11, Remark 4.2.12])

Aut(¥)5, = Aom(Yo, Y1/ p] % (Aut(Yo)p, x Aut(¥1)y ).
Here we are using the map
Hom(Yo, YD[1/p] — Awt(¥)g . [ (}7)

to realise sZom(Yy, Y1)[1/p] as the subgroup of lower triangular automorphisms of Y. The condition that
( } (1)) =1+ f satisfies (14 f)*(Sa,cris ® 1) = Sa.cris ® 1 1s equivalent to the condition that f™* (s cris ® 1) =0.
Thus we see that the intersection sZom(Yy, Y1)[1/p] with Aut(;(? ) is given by

ﬁgl,ﬁ, C Hy1 5, = Hom(Yo. YD1/ p)
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By Lemma 5.3.4, this is representable by a closed subgroup.

We can identify the group (Aut(Yl)[F X Aut(Yo)[F ) with the locally profinite group scheme associated
to the locally profinite group Aut(Y)([F ). Usmg Dieudonné theory, we can identify this locally profinite
group with the o-centraliser of b in GL(V* )(@ »), where we recall that we have fixed an isomorphism
V, ®z, 7 p = Deoy(Y) giving rise to b € G(GiD »)- The subgroup of t(j,nsor—preserving automorphisms of Y
over [, can be identified with J,(Q),), the o-centraliser of b € G(Q,), which is a closed subgroup.

Note that J;,(Q,) C G(@ p) stabilises (g, Ad bo)~! because it acts on g via automorphisms that preserve
the slope decomposition. Using Lemma 5.3.4 we see that the closed subgroup

g 15 % Ib(@p) C Aut(Y)g .

has the required properties over Fp, and so we are done. O

Since the R-points of ﬁg , and J,(Q,) both only depend on R/ p, we see that
HS | % Jp(D,) = Autg (Y)
describes the unique lift to Vi p- This identifies ’}:Zg | with the neutral component Autg (17 )° of Autg (17 ).

Corollary 5.3.7. The identity component

g 7 = Autg(Y)" C Autg(Y)

is isomorphic to Spf S where S is the p-adic completion on Ile/p e xé/poo]]for some d.

Proof. This is true for 7-[(();1 7 because it is the universal cover of a p-divisible group, see [Scholze and

Weinstein 2013, Corollary 3.11 .5, Section 6.4]. O

5.4. Serre-Tate coordinates for Hodge type Shimura varieties. Recall that x € Shg (Fp) is an ordinary
point with associated element b = b, € G(CD p)- Recall also from Section 2.1.1 that we have a G(@Q »)
conjugacy class of cocharacters {x} coming from the Shimura datum X and the fixed place v of E.

Lemma 5.4.1. The conjugacy class of fractional cocharacters {vp} defined by [b] is equal to (w1

Proof. The ordinary locus is equal to the p-ordinary locus by Lemma 5.1.3. Therefore we have that
{vip1} = {11}, where {{1} is the Galois-average of {u~"}, see [Shankar and Zhou 2021, Section 2.1]. But
since G, 18 unramified and the local reflex field E, is equal to Q,, there is a cocharacter p defined over
Q, inducing the conjugacy class of cocharacters {u}. It follows that {{1} = { w ' O

Let {1} be a conjugacy class of (fractional) cocharacters of a connected reductive group H over an
algebraically closed field C. Let T be a maximal torus, let A be a representative of {A} factoring through
T and let B D T be a Borel. Let p € X*(T) be the half sum of the positive roots with respect to B. Then
the pairing (20, A) does not depend on the choice of T, B or A, and we denote it by (2p, {A}).

Corollary 5.4.2. The p-divisible formal group HC

0LF, has dimension (2p, {iL})
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Proof. The dimension of ’Hg 5, is equal to (2p, vpp)) by [Kim 2019, Proposition 3.1.4], which is equal to

Qe A=Y = 2p, {u}) by Lemma 54.1. O

Proposition 5.4.3. The closed formal subscheme
S s sg;p < Def(Y)
introduced in (5.1.2), is a p-divisible formal subgroup. The induced inclusion of p-divisible groups

L [p®] C Def(Y)[p™] = Ho.y

induces the inclusion
(9, Adbo) ™" € #om(Deoy (Yo)[1/pl, Deoy (YDI1/p])

from (5.3.2) on rational covariant Dieudonné modules of their special fibres.

Proof. By [Kim 2019, Theorem 4.3.1], the closed formal subscheme y(/;x C ISEf(Y ) is stable under the
action of
Aut(Y)° C Aut(Y)°.
We can identify these groups with
HE | C Ho. (5.4.1)

By Proposition 4.2.5, the action of 7:20,1 on ﬁ?(Y ) factors through the natural action of # ; on ﬁe\f(Y)
by left translation, via the natural quotient map

Ho,1 — Ho,1.

The inclusion ’Hg | C Ho,1 induces an inclusion T,,’Hg . C Ty,Ho,1 which induces (5.4.1) after inverting p.
This implies that the action of ﬁg L on yéx factors through an action of ’HOG | via the natural quotient map

G G
HO,] —> HO, 1
Now consider the closed point {x} € Shg . Then the associated orbit map gives a closed immersion
HO,I,FP — Def(Y)ﬁp.
This means that we similarly get a closed immersion

Ho 5 C Shl .
By [Kim 2019, Proposition 3.1.4], the formal scheme Def(Y); F, has dimension (2p, {vp1}), which is
equal to (2p, {i}) by Lemma 5.4.1, which in turn is equal to the dimension of Sh/ *. It follows that the
orbit map induces an isomorphism

G /x
’HO”F —>Sh

and that Shé is a formal subgroup of Def(Y )[F satisfying the conclusions of the proposition. It remains to
show that .7; I Def(Y) is a formal subgroup, which follows from [Shankar and Zhou 2021, Theorem 1.1].
O
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5.4.4. The action of automorphism groups. Let the notation be as in Section 5. Recall that we have fixed
an isomorphism Doy (Y) =~ V;‘ ® Zp sending sq ® 1 to Sy cris- This gives us an element b € G(@p) C
GL(V*)(Q,) corresponding to the Frobenius in Doy (Y)[1/ p].

Recall from Section 4 that there is an action of Aut(?) on RZy. Recall from the discussion before
Corollary 4.2.3, that Aut(Y )(Fp) C Aut(? ) preserves the Fp-point y € RZy (Fp) corresponding to the
identity map of Y, and that this induces an action of the profinite group Aut(¥Y )(Fp) on Def(Y). This
action is described in Corollary 4.2.3.

5.4.5. Recall that there are closed immersions of topological groups

I(@)) —— G(@,)

l !

GL(V*),(Q,) —— GL(V*)(Q,)

where GL(V*),(Q)) = Aut(?) (Fp) is the o -centraliser of b in GL(V*)(Gpo). Let us write U, C J,(Q))
for the compact open subgroup given by the intersection

Autg (Y)(F,) N Aut(Y)(F,).

Then U, acts on ﬁg | C Hom(Yy, Y1)[1/p] and preserves the action of TpHg |» and thus acts on the
quotient Ho, 1 = Y(/;x. By Proposition 5.4.3 and the proof of Lemma 5.3.6, the induced action on rational
Dieudonné modules can be identified with the natural action of U, C J,(Q,) on

(g, Adbo)~! C (g, Adbo).

In order to apply the rigidity result of Chai [2008] we need to understand this action. We will do this in
more generality in the next section.

5.5. Strongly nontrivial actions. Let G be a connected reductive group over Q,. Let b € GQ p) be
an element and consider the F-isocrystal (g, Adbo), where g = Lie G ® Q » equipped with its action
of J,(Q)). If we replace b by a o-conjugate b, then J,(Q,) and J (Q)) are conjugate in G(CDP), and
there is an isomorphism of isocrystals (g, Adbo) >~ (g, Adb'c).

Let A € Q and let N, C (g, Adbo) be the largest sub-F-isocrystal of slope A. Then because J,(Q))
acts on (g, Ad bo) via F-isocrystal automorphisms, it preserves the subspace N, . Let us also denote by b
the image of b in GL(g), then there is a homomorphism of algebraic groups

Jp — GL(9)»,
where GL(g); denotes the o-centraliser of b in GL(g). There is a parabolic subgroup
P(A) C GL(g)

consisting of automorphisms of the Q p-vector space g that preserve the slope filtration on the F-isocrystal
(g, Adbo), and after potentially replacing b by a o-conjugate, the image of b lands in P(X). There is
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thus a group homomorphism
Jp = P(Mp,

where P (A), denotes the o-centraliser of b in P (A). Since N, is a graded quotient of the slope filtration
of the F-isocrystal (g, Adbo), there is an induced quotient map P(A) — GL(N,) and this induces a
group homomorphism

Jp = GL(Ny)p,

where GL(N,),, denotes the o-centraliser of b in GL(N;,). Let E be the Q-algebra of endomorphisms
of the F-isocrystal N, and let E* be the functor on Q ,-algebras given by R — (R ® E)*. Then there is
a natural isomorphism E* >~ GL(N,)p.

Let GL(E) be the general linear group of E considered as a Q,-vector space and let E* — GL(E) be
the natural map corresponding to the action of E on itself by left translation. Consider E as a Q) ,-linear
representation of Jj, via J, — E*, then the goal of this section is to prove the following result:

Proposition 5.5.1. Let T C Jj, be a maximal torus. If L # 0, then the trivial representation of T does not

occur in the representation of T given by E.

Proof of Proposition 5.5.1. After replacing b by a o-conjugate we can arrange for it to satisfy (see
[Kottwitz 1985, Section 4])
bo (b) -+~ "~ (b) = (rvp) (p)

for some r. Here v, is the Newton cocharacter of b, which is defined over Q. Let M,, CG® Q p denote
the centraliser of the cocharacter v,. By [Kim 2019, Proposition 2.2.6], there is a unique isomorphism

Jb®©p - M,,

such the composition J,(Q,) C Jj (@p) —-M,, (@p) C G(G:Dp) is the defining inclusion of J,(Q,) as the
o -centraliser of b in G((Iil) p)-
After tensoring up to Q p» there is a commutative diagram, where L™ is the left regular representation
of GL(N,) on GL(End(N,)),
GL(Eg ) —=— GL(End(N,))

T

J g — EX ————— GL(N,)
»edp Q

; :

M, —— P

If we show that the trivial representation of 7 ® Q p does not occur in E Q0 p» then it follows that the trivial
representation of 7" does not occur in E. The representation W =End(N,,) of J, b0, defined by composition
with the left regular representation is a direct sum of copies of the representation N,. Therefore it suffices
to show that the representation N, of T ® Q p» does not contain the trivial representation.
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We note that T @ Q » =: T’ is a maximal torus of M,, acting on the associated graded of the slope
filtration of the F-isocrystal (g, Adbo’). Since v, is a central cocharacter of M,, by definition, we see
that (rvp)(p) € T’ (@ »)- To determine the slope decomposition of the F-isocrystal (g, Ad bo), it suffices
to determine the slope decomposition of the F’-isocrystal

(g, (Adbo)")
for some positive integer r.
Let C be an algebraic closure of Q p» and consider the action of 7/, on g¢ via the adjoint action of G¢.

QCZVCGB (@Ua>,

aed

Then we have a decomposition

where ® C X*(T/) consists of the simple roots of Tc. There is a similar decomposition
g=t'® ( . Uao), (5.5.1)
0(()6':1)()

where &g € X*(T/); is the image of ® and where / = Gal(C/(Ij)p) is the inertia group.
Now we choose an integer » with the following properties: the isomorphism J;, ® Q » —> M,, is defined
over Q,r, the equation

bo (b)---a" 1 (b) = (rvp)(p)

is satisfied, and the decomposition (5.5.1) is defined over Q,-. Then each Uy, is stable under the action
of o and (Adbo)" acts on it by (rvp)(p)o”. The operator Ad bo moreover acts trivially on t/, and thus

Ny C P U,
o

N:. C P V.
o

Thus T/, acts on N, via a subset of the nontrivial characters given by the simple roots ® C X*(7/.), and

for nonzero A we have that

After basechanging to C, we see that

therefore the trivial representation of 7’ does not occur in N; and thus it does not occur in E. O

6. Proof of the main theorems

There are two final ingredients that are introduced in this section. In Section 6.1, we prove the local
stabiliser principle of Chai and Oort [2009, Theorem 9.5], which shows that the formal completion of
the Zariski closure of a prime-to-p Hecke orbit is stable under the action of a large p-adic Lie group.
In Section 6.2.2 we give a summary of results of [Chai 2003], which relates Serre—Tate coordinates of
families of ordinary abelian varieties to the p-adic monodromy groups of these abelian varieties. Then
in Section 6.3 we put everything together to prove Theorem I. In Section 6.4 we prove Corollary 6.4.1,
which is a generalisation of Theorem I to Shimura varieties of abelian type.
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We will use the notation introduced in Section 2 and Section 5.1 and moreover we will keep track
of the level again. Moreover, all our schemes will now implicitly live over Fp. Let x € Shg krk, (Fp)
and let x be a lift of x to Shg , (Fp). Then the prime-to-p Hecke orbit of x is defined to be the image
Hgr(x) C Shg krk, (Fp) of the orbit G(A?) -X C Shg .k ) (Fp); it does not depend on the choice of lift x.
For the rest of this section we fix x as above and we let Z C Shg orq, KPK, be the closure of Hgr(x); note
that Z is again G(A;ﬁ)—stable by Lemma 3.1.2.

6.1. Rigidity of Zariski closures of Hecke orbits. Letz € Z (Fp) be a smooth point of Z and let 7,(Q)
be the group of self-quasi-isogenies of z respecting the tensors, which was introduced in Section 2.2.
Let Y = A,[p*°] and fix a choice of isomorphism Dqy (Y) =~ V[’f ® Zp sending sy ® 1 tO Sy cris as in
Section 5.3. This gives rise to an element b, = b € G(Q,) and we let U, C J,(Q,) be the compact open
subgroup introduced in Section 5.4.4. Let I,(Z(,)) be the intersection of I,(Q) with U, inside J,(Q)).
We consider the closed immersion of formal neighbourhoods (where the notation is as in (5.1.2))

/z /z
7% c She; kox, C Shgsp crc, -

The goal of this section is to prove the following result.

Proposition 6.1.1 (local stabiliser principle). The closed subscheme Z/* C Sh/GZ’ 7K, is stable under the
action of I,(Z ) via I.(Z ) — U,.

6.1.2. Thereis a G(A?)—equivariant closed immersion (using the fact that we have a closed immersion at
finite level by the main theorem of [Xu 2020]) Shg g, — Shg, i, where G(A?) acts on the right hand
side via the inclusion G(A‘;) — Gy (Aif-). The space Shg, , is a moduli space of (weakly) polarised
abelian varieties (A, 1) up to prime-to-p isogeny, equipped with an isomorphism VPA — V & A’}
compatible with the polarisation up to a scalar in &’f”x.

Let Z be a lift of z to Shg, k,(Fp) as above, which defines an inclusion

IZ(Z(p)) C Iz(@) C G(A?)-
The stabiliser in Gy (A?) of z € Shg, « , 1s given by End, (A;)*, which is the group of automorphisms of
the abelian variety up to prime-to-p isogeny A that take A to a Z(Xp) multiple of A.
Lemma 6.1.3. The stabiliser inside G(A?) of the point Z is equal to I,(Zp)).

Proof. By [KMS 2022, Lemma 2.1.4], the stabiliser is contained in I,(Z,)). The stabiliser in Gy (A‘;) of
the image of Z in Shg, , is equal to End; (A;)™ and thus contains I (Zp)). The result follows. O

In order to prove Proposition 6.1.1, we first prove it for Shgsp kcric,- See [Chai and Oort 2009,
Theorem 9.5] for closely related results and arguments.

Let Shgv, K, be the formal completion of Shg, «,, considered as a formal algebraic space as in [Stacks
2020, Section OAIX], and restrict its functor of points to Artin local [F,-algebras R with residue field
isomorphic to Fp. Then Shgv’ lc,,(R) is the set of isomorphism classes of (weakly) polarised abelian
varieties (A, A) over R up to prime-to-p isogeny, equipped with an isomorphism € : VPA — V ® ﬁ?
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compatible with the polarisation up to a scalar in &?’ *, such that after basechanging to Fp we recover the
point given by the image of Z.
This means that there is a (necessarily unique) isomorphism B : AE — A; making the following

diagram commute:

VPAr —L— VA,

p P
VA, == VA,

The quadruple (A, A, B, €) is uniquely determined by (A, A, 8) because (pro-)étale sheaves on Artin
local rings are determined by their restriction to the residue field. In particular, for all R € Art the natural
forgetful map

sl c, (R) = Shjg,. woric, (R)

is an isomorphism. This induces an action of End; (A;)™ on Shéfsp KK, that we will now identify.

6.1.4. Recall that there is an inclusion End; (A,)* C Gy (A?) determined by Z or rather €;. This means
that an automorphism f of A; actson V ® A? in a way that makes the following diagram commute:

vrA, —L s yra,

veal L, vear

Since End; (A;)* stabilises z, it acts on Shgv, K, This action can be described as follows: An automor-
phism f sends a triple (A, A, €) to (A, A, f o€). It is straightforward to check that the unique upgrade
(A, A, foe) toaquadruple (A, A, B/, f o€) is realised by taking B’ = f o B. Therefore the induced
action of End; (A,)> on Shéfsp’,c,,,cp is given by (A, A, B) — (A, A, f o B).

6.1.5. Because deformations of abelian varieties are uniquely determined by deformations of their
p-divisible groups, we can also identify
/z
Shg, ., (R)

with the space of triples (X, A, 8) where (X, 1) is a polarised p-divisible group and § is an isomorphism
(X, A)ﬁp — (A;[p*°], A;). The action of End; (A;)* is then given by postcomposing 8 with f. There is
a similar description of at finite level, and it follows that the natural map

Shiisp xric, C Def(A-[p™1)
is End, (A,)*-equivariant, where End; (A,)* acts on the right hand side via the inclusion

End, (A,)* C End(A,[p>])*,
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followed by the natural action of End(A,[p®°])* on Def(A,[p*°)].

Proof of Proposition 6.1.1. Let 7 be a lift of z to Shg, K, (Fp) as above, which defines an inclusion
1 (Z(p)) -y Q) c G(A ).

It follows from Lemma 6.1.3 that 1,(Z,)) C G(A ) is the stabiliser of the point Z under the action of
G(A ). Let 7 be the inverse image of Z in Shg, Kp» it is stable under the action of G(A ) by Lemma 3.1.2.
There is a commutative diagram

Z — Shg g, — Shg, x,

| ! !

Z —— Shg krk, — Shasp.krk,

where the top right horizontal map is G(A?)—equivariant via G(A?) — Gy (A?).

Let Z/% be the formal completion of Z at the closed point corresponding to Z, considered as a formal
algebraic space as in [Stacks 2020, Section OAIX]. This is per definition the subfunctor of Z consisting
of those morphisms Spec T — Z that factor through z on the level of topological spaces. Since I,(Z,))
stabilises Z, it acts on Z/%.

By [Stacks 2020, Lemma OCUF], there is a homeomorphism |2 | >~ lim,;, |Zyr| and thus we get an
isomorphism

7%~ lim Z {fp,
UﬁcG(A )
where z € Zy» (Fp) is the image of Z under Z — Zy». The formal algebraic space Z {fp can be identified
with Spf @ZW z» compatible with changing U?. Since the transition morphisms are all finite étale, they
induce isomorphisms of complete local rings. Therefore, all the transition maps in the inverse system
lim, ), cG@n Z{fp are isomorphism. We conclude that

VASESY

and so there is an action of 1;(Z,)) on Z{JZ,,. In the same way we can prove that there is an action of
I,(Z)) on ShG kv, 1t remains for us to identify this action with the inclusion I;(Z)) — U, followed
by the natural action of U, on ShG KPK,"

Let z be the image of Z in Shg, K, ([Fp) and let z € Shggy, KK, (Fp) be its image. Then the stabiliser of
Z can be identified with the group

End;.(A)* C Gy (A})

as before. The discussion above implies that we have an action of End, (A4;)* on Sh/GZSp KPK, such that
the closed immersion

/z
Shg ke, C ShGSp KPK,
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is I,(Zp))-equivariant for the action of I;(Z(,)) on the right hand side via the map I.(Z,)) — End; (A,)*.
But we have seen in Section 6.1.5 that the action of End, (A,)* on Sh/GZSp’ KrK, described above agrees
with the action of End; (A;)™ via the inclusion End; (A;)* — Aut; (A, [p™])(F,).

Note that the following diagram commutes by construction:

IZ (Z(p)) E— EHd)L(AZ)><

| |

U, — Aut, (A [p>])(F,)

Thus we see that Z/ k» 18 stable under the action of ,(Z,)) on Sh G.K7K, given by the inclusion I,(Z,)) — U,
followed by the natural action of U, on Shg KK, ]

Corollary 6.1.6. Assume that z € Shg, Kpr([Fp) is an ordinary point. Then Z'* is a formal subtorus of
/z
Shg; KPK,*

Proof. The compact open subgroup U, C J,(Q,) acts on ShG Kk, explained in Section 5.4.4. By
Proposition 6.1.1 the closed subspace Z/ *C Sh/ KPK, is stable under the action of I,(Z,)) C U, and
hence of its closure in U,. The algebraic group Ig, C Jj has the same rank as J, by [Kisin 2017,
Corollary 2.1.7]. Let T C I be a maximal torus, then [Platonov and Rapinchuk 1994, Theorem 7.9] tells
us that the topological closure of 7'(Q) in 7(Q,) has finite index in 7' (Q),). It follows from this that the
closure of I,(Z,)) in U, contains a compact open subgroup of a maximal torus 7" of J,(Q,).
Proposition 5.5.1 then tells us that the assumptions of [Chai 2008, Theorem 4.3] are satisfied. This
theorem implies that Z/% is a p-divisible formal subgroup of ShG KK, in other words, it is a formal
subtorus. O

6.2. Monodromy of linear subspaces. The goal of this section is to prove the following result, which is
a consequence of results of [Chai 2003]. Recall that the universal abelian variety A over Shgsp ord, kc? Ky
gives rise to an F-isocrystal M, see Section 3.3. Let W C Shgsp ord,kcric, be a connected smooth closed
subscheme, then we say that W is linear at a smooth point z € W(Fp) if

Wi c SthP KK,
is a p-divisible formal subgroup. Let Uy be the unipotent radical of the monodromy group Mon(W, M, z).

Proposition 6.2.1 (Chai). Let z € W(Fp) be a smooth point such that W is linear at z. Then we have the
inequality
dim W, > Dim Uy,

where Dim W, is the dimension of the local ring Oy ;.

Chai proves the stronger statement that this inequality is actually an equality, but we will not need this
stronger statement to prove Theorem 1.
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Our proof of Proposition 6.2.1 is a straightforward application of the results in [Chai 2003, Sections 2—4].
Since [Chai 2003] is an unpublished preprint from 2003, the referee has suggested we include another
reference. Thus we give a second proof of Proposition 6.2.1 based on results of [D’Addezio and van
Hoften 2022].

6.2.2. For our first proof of Proposition 6.2.1, we need to give a brief summary of [Chai 2003, Sections 2—4].
Consider the closed immersion.

W% — Shiig, oo, <> Def(¥)g .

Write R = 6W\Z and write M for the finite free Z,-module 7)Y, (Fp) ®z, TpY V (Fp). Then the morphism
W/ — I/)Ef(Y) corresponds to an element of

Def(Y)(R) = Hom(M, G,,(R)) = Hom(M, 1 +mg)

where the first equality is [Katz 1981, Theorem 2.1]. Thus we get a homomorphism f : M — 1 4+mg and
we let NZv be its kernel. By [Chai 2003, Proposition 4.2.1, Remark 2.5.1], the Z,-module NZv is finite
free and the quotient M/N_’ is torsion-free. Thus the map

W/t > Hom(M, @m)
factors through the subtorus

Hom(M [N, Gy) C Hom(M, G,,),

which we can also write as N, ®z, @m C M* ®z, @m Here the * denotes taking Z ,-linear dual and the
morphism N, — M* is the Z,-linear dual of the quotient

M— M/ NZV .
The following lemma has the same statement as [Chai 2003, Remark 3.14].

Lemma 6.2.3. The subgroup N; ®z, @m is the smallest formal subtorus of ISEf(Y )E through which the
map from Spf R factors.

Proof. A subtorus corresponds to a free Z,-submodule N C N; such that the quotient N, /N is torsion
free. Write N for the kernel of the map

M — M/N; =N} — N*.
If
SpfR — N. ®z, Gy

factors through N ®z, @m, then it factors through
Hom(M/NY, Gy) C Hom(M, G,).

Since the kernel of the map M — @m(R) is given by NZv , it follows that Nzv C NV and therefore
M/NY =M/N_ and thus N, = N. O
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Proof of Proposition 6.2.1. We specialise the discussion of Section 6.2.2 to the situation of Proposition 6.2.1.
In particular, since W/? is assumed to be a formal subtorus, we are in the situation that

W/* = N. ®z, G C Def(¥)g .

Chai [2003, Section 4, Theorem 4.4] proves that the dimension of Uy is equal to the rank of N,. Thus
the rank of N, is certainly bounded from below by the dimension of Uy . But the rank of N, is also
the dimension of the formal scheme W/? which equals the Krull dimension of @W, . and also the Krull
dimension of Oy ., which proves the theorem. O

Second proof of Proposition 6.2.1. By [D’Addezio and van Hoften 2022, Theorem II], the unipotent
radical Uy of Mon(W, M, z) is isomorphic to the monodromy group

Mon(W/?, M, 7).

This monodromy group is defined as in Section 3.3 using the Tannakian category of isocrystals over the
formal scheme W/% or equivalently the Tannakian category of isocrystals over the scheme Spec Z’\)W, 2> See
[D’Addezio and van Hoften 2022, Notation 2.2.5]). Thus it suffices to show that the dimension of W/? is
bounded from below by the dimension of Mon(W/3, 7).

Let Y = A,[p™] as above and write a* =: D¢y (Y) and a = a™[1/p]. Write b™ C a™ for the covariant
Dieudonné module of the p-divisible group associated to W/? and b = b*[1/p]. Then in the notation of
[D’Addezio and van Hoften 2022, Section 5.5] we have

W'z =Z(@6").

Now [D’Addezio and van Hoften 2022, Theorem 5.5.3] tells us that there is an inclusion of algebraic
groups over Q P
Mon(W/?, M, z) CU(b) := b®¢ G

In particular, the height of the isocrystal b is bounded from below by the dimension of Mon(W/%, M, z).
Since b has slope 1, it follows that the dimension of the p-divisible group associated to b is also bounded
from below by the dimension of Mon(W/?, M, 7). O

6.3. Monodromy and conclusion. Recall from Section 3.2.2 the maps
n
B(Go,) > B(GY) — [ [ B(Gig,)
i=1

induced by the decomposition G = ]—[?:1 G; of (2.2.1). Let [borq] € B(G, {u_l}) be the o-conjugacy
class corresponding to the ordinary locus, and let [byq4 ;] be the image of [bog] in B (G,-,@p).

Lemma 6.3.1. For alli the element [boa ;] is nonbasic.

Proof. By the axioms of a Shimura datum, the G;(Q p)-conjugacy class of cocharacters { u;l} induced by
{i™"} is nontrivial for all i. By Lemma 5.4.1, we have an equality {u; 1} = {V[byq,1} and so the Newton
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cocharacter of [byq ;] is noncentral for all i. In other words, the o-conjugacy class [byq ;] is nonbasic for
all i. O

Proof of Theorem 1. Let x € Shg krk, (Fp) be an ordinary point and let Z be the Zariski closure (inside
Shg ord, k7K, ) Of its prime-to-p Hecke orbit. Then Z is G(A?)—stable by Lemma 3.1.2 and similarly its
smooth locus Z°™ C Z is G(A;ﬁ)—stable by Lemma 3.1.1. Let X be the p-divisible group over Z*™ of the
universal abelian variety and let M7 be the associated overconvergent F-isocrystal, see Section 3.3.
Letz € Zsm(Fp) and let Z° C Z5™ be the connected component containing z. By Lemma 6.3.1, the
element [byq] is @-nonbasic and by Lemma 2.3.2, we know that Hypothesis 2.3.1 is satisfied because K,
is hyperspecial. Therefore Corollary 3.3.3 tells us that the monodromy group of M over Z° is isomorphic
to G @ Q p- Corollary 3.3.5 tells us that unipotent radical of the monodromy group of M over Z° is

isomorphic to the unipotent radical of the parabolic subgroup P,,,, C G® Q p for any choice of v € {vp}).

1]
By Lemma 5.4.1, this unipotent radical is isomorphic to the unipotent radical of the parabolic subgroup
P, C G for any choice of representative p of {x}. This unipotent radical has dimension equal to (2o, {1t})
(this notation was introduced after the statement of Lemma 5.4.1).
Corollary 6.1.6 tells us that Z/% is a formal subtorus. Applying Proposition 6.2.1 we see that the Krull
dimension of Oz ; is bounded from below by (2p, {1}). Since the Shimura variety Shg krk, also has

dimension (2p, {i}), we conclude that
. /
7/7 = Shcf,m,, :

Because this is true for a dense set of points, it follows that Z is a union of connected components of
Shg ord, k7K , -

By Lemma 5.1.3, the ordinary locus is dense and thus 79(Shg ord. krk,) = 70(Shg k). Since G(A;’.)
acts transitively on o (Shg, Kp), by [Kisin 2010, Lemma 2.2.5] in combination with [Madapusi Pera 2019,
Corollary 4.1.11], it follows that Z = Shg o, Kk, We conclude that the prime-to-p Hecke orbit of x is
dense in Shg krk, since Shg ord kvk, 18 dense in Shg krk, - O

6.4. Consequences for Shimura varieties of abelian type. Let (G, X) be a Shimura datum of abelian
type with reflex field E, and let (G*, X?) be the induced adjoint Shimura datum with reflex field
E* C E. Let p be a prime number, let K » C G(Q)) be a hyperspecial subgroup and let K” C G(A?) be
a sufficiently small compact open subgroup. Let Shg krk, be the special fibre of the canonical integral
model of the Shimura variety of level KK, at a prime v above p of E, constructed by Kisin [2010] (see
[Kim and Madapusi Pera 2016] for the case p = 2).

By [Shen and Zhang 2022, Theorem A], there is an open and dense G(A?)—stable Newton stratum
Shg, krk, p—ord in Shg krk,, called the p-ordinary locus. 1f (G, X) C (Gy, Hy) for some symplectic
space V and E, = Q,, then the p-ordinary locus is equal to the ordinary locus by Lemma 5.1.3.

Corollary 6.4.1. IfE;j‘d = Q,, then the prime-to-p Hecke orbit of x € ShG,Kpr,M_Ord(Fp) is dense in

ShG, KPK,p-



On the ordinary Hecke orbit conjecture 895

Remark 6.4.2. This corollary is more general than Theorem I even for Shimura varieties of Hodge type.
Indeed, there are (many) examples of Shimura data (G, X) of Hodge type and primes p and v such that
E, #Q,but E¥4=Q,,.

Lemma 6.4.3. Corollary 6.4.1 holds for (G, X) if and only if it holds for (G*, X29).

Proof. The image K;d in G4(Q ») is a hyperspecial subgroup. We can choose K pad - Gad (A?) containing
the image of K” such that there is a morphism

ShG’KﬁKp (G, X) —> ShGad’Kp,adK;d (Gad, Xad) ®Ead E,
inducing a morphism on geometric special fibres of integral canonical models
ShG’Kpr — ShGadpr,adKﬁd, (6.4.1)

where we are taking the canonical integral model of (G, X??) at the place v* of E2 induced by v. This
morphism induces a G (A})-equivariant morphism

ShG’Kp — ShGad,K;d s

where G(A?) acts on the left hand side via the natural map G(A?) — Gad(Aﬁ). Since the Newton
stratification on Shimura varieties of abelian type can be constructed using the F-crystals with G-structure
of Lovering [2017], which are functorial for morphisms of Shimura data, it follows that there is an induced
map

ShG,K"Kp,uford — ShGad’Kp,angd’Mford .

Moreover, since the natural map B(G, {iu~'}) — B(G™, {1~'}) is a bijection as explained in [Kottwitz
1997, Section 6.5], it is in fact true that Shg krk,.u—ord 1S the inverse image of ShGad’Kp,adK;d’M_ord
under (6.4.1). By construction of the integral canonical models of Shimura varieties of abelian type,
see [Kisin 2010, Section 3.4.9; 2017, Appendix E.7], the connected components of Shgaa g p.ad Ku are
quotients of connected components of Sh¢ krk, by free actions of finite groups. In particular, the map
(6.4.1) 1s finite étale and thus closed.

Because the map (6.4.1) is closed and takes prime-to-p Hecke orbits to prime-to- p Hecke orbits, it must
takes Zariski closures of prime-to-p Hecke orbits to Zariski closure of prime-to-p Hecke orbits. Thus for
x € Shg, KPK,,ju—ord (Fp) the Zariski closure of its Hecke orbit in Shg, KPK,p—ord has the same dimension

as the Zariski closure of its Hecke orbit in Shgad g p.aa K3 4- Moreover in both cases the prime-to-p

,jL—or
Hecke operators act transitively on 7o(Shg, K,;Kp) by [Kisin 2010, Lemma 2.2.5] in combination with

[Madapusi Pera 2019, Corollary 4.1.1 1].° Thus prime-to- p Hecke orbits in Shg, K?K,.u—ord are dense if

5The result [Madapusi Pera 2019, Corollary 4.1.11] states that for Shimura varieties of Hodge type and hyperspecial level,
Hypothesis 3.4.1 holds. Since the canonical integral models of Shimura varieties of abelian type are constructed from the
canonical integral models of Shimura varieties of Hodge type, the statement therefore also holds for canonical integral models of
Shimura varieties of abelian type.
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and only if their images under (6.4.1) are dense. In particular, if the corollary holds for (G, X?%), then
it holds for (G, X).

To prove the converse, we note that a point in the Shimura variety for (G, X24) can, by [Kisin 2010,
Lemma 2.2.5] in combination with [Madapusi Pera 2019, Corollary 4.1.11], be moved to a connected
component which is in the image of (6.4.1). Therefore every prime-to- p Hecke orbit can be lifted to the
Shimura variety for (G, X), and we are done. U

Proof of Corollary 6.4.1. By Lemma 6.4.3, we may assume that G is adjoint. Then by the proof of
[Kisin and Pappas 2018, Lemma 4.6.22] we can choose a Shimura datum of Hodge type (G;, X») and a
morphism of Shimura data (G2, X2) — (G, X) such that: the group G2 g, is quasi-split and split over an
unramified extension and the prime v of E splits in the reflex field E; D E of (G, X3). The upshot is
that we can choose a prime w of E; satisfying E> ,, = @, and thus the u-ordinary locus in the special
fibre of the canonical integral model for (G, X») at this prime is equal to the ordinary locus for a choice
of Hodge embedding (Gy, Hy).

Then Theorem I implies that Corollary 6.4.1 holds for (G2, X;) and Lemma 6.4.3 tells us that it also
holds for (G, X) which concludes the proof. O
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Locally analytic vector bundles
on the Fargues—Fontaine curve

Gal Porat

We develop a version of Sen theory for equivariant vector bundles on the Fargues—Fontaine curve. We
show that every equivariant vector bundle canonically descends to a locally analytic vector bundle. A
comparison with the theory of (¢, I')-modules in the cyclotomic case then recovers the Cherbonnier—
Colmez decompletion theorem. Next, we focus on the subcategory of de Rham locally analytic vector
bundles. Using the p-adic monodromy theorem, we show that each locally analytic vector bundle £ has a
canonical differential equation for which the space of solutions has full rank. As a consequence, £ and
its sheaf of solutions Sol(£) are in a natural correspondence, which gives a geometric interpretation of a
result of Berger on (¢, I')-modules. In particular, if V' is a de Rham Galois representation, its associated
filtered (¢, N, Gk )-module is realized as the space of global solutions to the differential equation. A key
to our approach is a vanishing result for the higher locally analytic vectors of representations satisfying
the Tate—Sen formalism, which is also of independent interest.
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1. Introduction

The study of p-adic Galois representations has been conditioned to an extent by two dogmas. One is the
analytic dogma; its main idea is to associate to every such representation a (¢, I')-module over the Robba
ring and to study these objects using p-adic analysis. The other dogma is geometric: to every p-adic Galois
representation one associates an equivariant vector bundle over the Fargues—Fontaine curve. The aim of
this article is, roughly speaking, to find a framework where both analysis and geometry can be carried out.
In recent years, much of the theory of p-adic Galois representations has been understood in terms of the
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geometry of the Fargues—Fontaine curve. A notable exception has been the p-adic Langlands program,
where the analytic approach plays a crucial role. Thus we are motivated to reduce this discrepancy by
introducing corresponding objects on the Fargues—Fontaine curve which are also amenable to analytic
methods. These are the locally analytic vector bundles, the main new objects introduced in this article.

We shall now explain this in more detail. Let K be a finite extension of Q, with absolute Galois
group Gg. Let K¢y be the cyclotomic extension of K and write I' = Gal(K¢y./K). For the sake of
simplifying the introduction, we shall focus now on the cyclotomic setting, though as we shall explain
later, the content of this paper will apply to a wider class of Galois extensions K,/K. We have the
category Rep@p(GK) of finite dimensional @ ,-representations of Gg.

On the one hand, Rep@p(GK) can be studied via p-adic analysis. To do this, one introduces the Robba
ring R, which is the ring of power series over a certain finite extension of Q, in a variable T which
converge in some annuli 7 < |T| < 1. It has an action of a Frobenius operator ¢ as well as an action
of I'. By work of Cherbonnier—Colmez, Fontaine and Kedlaya, it is known that there is a fully faithful
embedding

Repg (Gx) = {(¢, I')-modules over R},

with the essential image consisting of the semistable slope 0 objects. If D is a (¢, [')-module over R, a
fundamental fact is that the ["-action on D can be differentiated, namely, there is a well defined action of
Lie(I") on D. Since Lie(I") is 1-dimensional, this data is the same as that of a connection V which acts
on functions of T by a multiple of d/dT. It is precisely this structure which allows the introduction of
p-adic analysis into the picture. For example, in the construction of the p-adic Langlands correspondence
for GL,(Q,) given in [Colmez 2010], the use of this analytic structure is ubiquitous.

On the other hand, Rep@p(GK) can be studied via geometry. The Fargues—Fontaine curve, studied
extensively in [Fargues and Fontaine 2018], is defined as the analytic adic space

X = X(I?cyc) = (SpaAinf - {p[pb] = 0})/«02’ Gal(E/Kcyc))

(see Section 3) and has a natural action of I". By the work of Fargues and Fontaine, there is a fully faithful
embedding

Rep@p (Gk) — {I'-equivariant vector bundles on X'},

again with the essential image consisting of the semistable slope 0 objects. In fact, Fargues and Fontaine

show there is an equivalence
{(¢, T')-modules over R} = {I"-equivariant vector bundles on X'},

compatible with each of the aforementioned embeddings of Rep@p (Gg).

Unfortunately, the action of I" on an equivariant vector bundle on X' cannot be differentiated. This is
already true for the structure sheaf Oy. Here is a simplified model of the situation which illustrates why
there is no action of Lie(I") on Oy. The functions on an open subset of X can roughly be thought of
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as power series in T''/P™ satisfying certain convergence conditions. When we try to apply the operator
d/dT to such a power series, the result will often not converge since the derivative

d(T"?"yydT = (1/p")T"/7"~!

grows exponentially larger p-adically as n goes to infinity. Nevertheless, there is a way to single out the
sections for which the action of Lie(I") does not explode. This is achieved by considering only those sec-
tions on which the action of I" is regular enough. In this toy model picture, this will amount to considering
only the power series where the coefficient of the exponent of T*/7" will decay proportionally to p”.

More canonically and more generally, these elements for which differentiation is possible are precisely
the locally analytic elements. Given an equivariant vector bundle £ on X, there is a subsheaf of locally
analytic sections £ C £. This sheaf is a module over Ol{‘; which is preserved under the I'-action, and,
crucially, Lie(I") acts on £2. We are thus naturally led to the definition of a locally analytic vector
bundle on X: by this we shall mean a locally free (’)lj_i—module together with a I'-action. The point is that
locally analytic vector bundles capture both analytic and geometric information, both of which has proven
important for the study of Rep@p(GK).

Our first main result is saying that there is no loss of information in this process: each equivariant
vector bundle canonically descends to a locally analytic vector bundle.

Theorem A. The functor & — EV gives rise to an equivalence of categories from the category of T'-
equivariant vector bundles on X to the category of locally analytic vector bundles on X. Its inverse is
given by the functor £ — Oy Qo E.

This theorem fits naturally into the framework of Sen theory, as we shall now explain. Let V €
Rep@p (Gk). Then according to Sen’s theory, proven in [Sen 1980], there is a canonical isomorphism

(V ®@p Cp)Gal(K/KcyC) = i(\cyc k. DSen(V)a

cyc

where Dge, (V) is the Kcyc-subspace of elements with finite I'-orbit in V ®g » C,. Later, Fontaine [2004,
§3.4] proved an analogue of this theorem for B;“R: he showed there is an isomorphism

(V ®@p B&)Gal(K/Kcyc) >~ (B(;E)Gal(K/Kcyc) ®Kcyc[[t]] D;f(V),

where D:{if(V) is a canonical Kcy[[7]-submodule of V ®a, B(ﬁ{.

In fact, both of these results are implied by Theorem A by specializing at the “point at infinity” xo, € X.
Indeed, when & is the equivariant vector bundle associated to V € Rep@p (Gg) and € = £", specializing
the isomorphism £ = Oy Bol € at the fiber of x, gives rise to an isomorphism

Ero) = O kixo) B0t il

which is none other than Sen’s theorem. Similarly, there is an isomorphism of the completed stalks at x,

SN+

~ N+ A+
gxoo - O-nyoo ®O'{%/;; 8xoo ’
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which recovers Fontaine’s theorem. In this way, Theorem A is a sheaf theoretic version of Sen theory on
X which specializes at x, to classical Sen theory.

In the interest of applications, we give a proof of this equivalence not just for the cyclotomic extension,
but more generally for any p-adic Lie group I' = Gal(K /K ), where K is an infinitely ramified Galois
extension of K which contains an unramified twist of the cyclotomic extension. Notably, this condition
holds when K is the extension generated by the torsion points of a formal group.

As we shall explain in the article, these ideas are closely related to the decompletion of (¢, I')-modules,
especially in the case Koo = K¢ye. This is not too surprising, because such (¢, I')-modules are also
obtained by a Sen theory type of idea through the theorem of Cherbonnier and Colmez [1998], and
further, these objects relate to Dge, and D;rif in a similar way. In fact, Theorem A is equivalent to the
Cherbonnier—Colmez theorem on decompletion of (¢, I')-modules (after inverting p). Our proof is not
independent from the ideas of Cherbonnier—Colmez, since we still use their trace maps in our arguments.
However, it is logically different— more on this below.

First, let us discuss an application of Theorem A, which was a major source of motivation for this
work. We give a geometric reinterpretation of Berger’s work [2008b] on p-adic differential equations
and filtered (¢, N)-modules. In that article, Berger establishes several results regarding de Rham (¢, I')-
modules (for example, these (¢, I')-modules arising from de Rham p-adic Galois representations). To
such a (p, [')-module D, Berger associates another (¢, I')-module Ngr (D) (a so called p-adic differential
equation), and a K -vector space of solutions

Sol(D) := lim (Ry[logT]1®r Nar(V),
[L:K]<o0

where R is the Robba ring with respect to L. The following results can be derived from the main results
of [Berger 2008b], for D a de Rham (¢, I')-module:

(i) Sol(D) is a K -vector space of rank equal to the rank of D.

(ii) There is a canonical isomorphism
Rgllog T]®kuw Sol(D) = Rg[log T]1®r Nar (V).

(iii) K @gw Sol(D) is canonically isomorphic to K @k Dgr(D).
(iv) Sol(D) is naturally a filtered (¢, N, Gg)-module.

Furthermore, the functor D +— Sol(D) gives rise to an equivalence of categories from the category of
de Rham (¢, I')-modules over R to the category of filtered (¢, N, Gk )-modules.

The functor of solutions is ultimately understood in [Berger 2008b] by solving the differential equation
Lie(I") = 0, and as such, uses p-adic analysis in a crucial way. It is therefore natural to apply Theorem A
to give a geometric interpretation of these results, something previously inaccessible in the framework
of vector bundles on the Fargues—Fontaine curve. In fact, when interpreted in a geometric way, [Berger
2008b, théoréme A] turns out to be reminiscent of the Riemann—Hilbert correspondence.
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Our second main result is the desired geometric interpretation of Berger’s results. To describe it, we

need to introduce some notation. We have
‘X‘log,]? = l(ﬁl ‘Xlog,L,
[L:K]<0o0

where each &)y 1 is a the analytic line bundle over &} := & (icyc) corresponding to Oy, (1), endowed
with the projection piog 1 : Xiog,1 — AL (see Section 8C). Essentially, Xjo¢  is obtained by adjoining all
K -scalars and a logarithm to the functions on X. Now let £ be a de Rham locally analytic vector bundle,
i.e., suppose that dimg é};:l =rank(&) (see Section 8B). For example, if V is a de Rham p-adic Galois

representation, then its associated locally analytic vector bundle is de Rham. To such £, we associate a
sheaf Sol(£) on &, given by

Sol(£) := h—r>n Plog,L,*(Pﬁ)g,LNdR(E))Lie(F):O,
[L:K]<oo

where Ngr(€) is a modification of £ corresponding to the de Rham lattice of £ at xo,. Roughly speaking,
Sol(€) is the sheaf of solutions to the differential equation V = 0 on the modification Ngg(€). We shall
also consider a variant Sol? (£), which are the solutions on the pullback of £ along the usual covering
Y0,00) = X for Y(0,00) = SpaAinr — {pl pb] =0} /Gal(l? /Kcye). We then have the following result, by
analogy with the results of [Berger 2008b] (see Section 8 for yet more precise statements).

Theorem B. Let £ be a de Rham locally analytic vector bundle.

(i) The sheaf of solutions Sol(£) is locally free over the subsheaf of potentially log smooth sections
(’)pxlsm C (’)ljé and its rank is equal to the rank of £.

(i) There is a canonical isomorphism
1 ~ ml
O%ng ®O;;sm Sol(&£) = O;logj ®Ol/§;f Nar ().

(ii1) The stalk of Sol(€) at x is canonically isomorphic to K ®k Dgr ().
(iv) The space of global solutions HO V0,00, S01?(E)) is naturally a filtered (¢, N, Gk )-module.

Furthermore, the functor & — H° (Y0,00), S01?(E)) gives rise to an equivalence of categories from the
category of de Rham locally analytic vector bundles to the category of filtered (¢, N, Gg)-modules.

Remark 1.1. (1) In particular, if V is a de Rham representation of Gk with associated locally ana-
Iytic vector bundle &, then Ho(y(o,oo), Sol?(£)) = Dy (V) and the stalk Sol(€),,, is identified with
K ®k Dgr(V). The localization map corresponds to the natural map Dpg (V) — K @k Dgr(V).

(2) If £ becomes crystalline after extending K to a finite extension L C K, the sheaf Ny (£)V=" C Sol(€)
is locally free over the subsheaf of smooth sections Q5™ C 0% of rank equal to the rank of £, and there is
a simpler canonical isomorphism

0% ®ow Nar (£) V=0 => Nar (€).
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(3) The sheaf Olesm is much smaller than Olj}. Though we have not been quite able to show this, Olesm
seems to be “almost” a locally constant sheaf except that the base field becomes slightly larger when
localizing; for that reason, we think of Sol(£) as morally being close to a local system on X. In this sense
the (¢, N, Gg)-structure is related to the monodromy of the p-adic differential equation V = 0.

Finally, let us discuss the proof of Theorem A. The essential point is to show that if £ is an equivariant
vector bundle on X, the natural map Oy Dot £ — £ is an isomorphism. Fargues and Fontaine observe
that the only point of X with finite I'-orbit is xo,. The idea is then to use a very simple geometric
argument: once one knows that Ox Qo' £ 5 £ is injective, everything can be understood by arguing
locally at x~. Indeed, if this map is an isomorphism after localizing and completing along Oy — @j{g,xm,
then the cokernel has to be supported at finitely many points outside x~,. But these points also form a
finite I"-orbit, so the cokernel cannot be supported anywhere.

It therefore remains to understand the properties of our spaces of locally analytic vectors under certain
localizations and completions. To do this, we are naturally led to consider higher locally analytic vectors
and their vanishing, and we prove a representation-theoretic result which is of independent interest. To
state the result, let G be a p-adic Lie group and let A be a Banach ring with a continuous action of G.
Assume the topology on Ais p-adic.

Theorem C. Suppose G and A satisfy the Tate—Sen axioms (TS1)—(TS3) of [Berger and Colmez 2008]
as well as an additional axiom (TS4). Then for any finite free A-semilinear representation M of G, the

higher locally analytic vectors Ré;_la(M ) are zero fori > 1.
Here are two special cases of the theorem where we conclude that Ré;_la(M )y=0fori>1:

(1) If M is a finite dimensional fm—module with a semilinear action of I', for K, containing an
unramified twist of K¢yc. In fact, the vanishing of Ric;_la(M ) can be established for arbitrary K., see
Section 5.

(2) If M a finite free §1 (I? ~0)-module with a semilinear action of I', under the same assumptions on K.

Note that the vanishing of higher locally analytic vectors is automatic for admissible representations,
but the examples above are not admissible. Theorem C illustrates how the Tate—Sen axioms can serve as
a substitute for admissibility.

Theorem C is especially useful for making cohomological computations. Here is an example application,
which follows directly from the main results of [Rodrigues Jacinto and Rodriguez Camargo 2022] (see
Section 5): if M satisfies assumptions of the theorem, then for i > 0 we have natural isomorphisms

H (G, M) ZH (G, M'*) = H (Lie G, M'*)C.

Finally, let us mention that in recent work Juan Esteban Rodriguez Camargo [2022] proves similar
results to our Theorem C. He then applies them in the setting of rigid adic spaces with fantastic applications
to the Calegari-Emerton conjecture, among others.
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1A. Structure of the article. Section 2 contains reminders on locally analytic vectors and their derived
functors. In Section 3 we give reminders on the Fargues—Fontaine curve and equivariant vector bundles.
In Section 4 we introduce locally analytic bundles and we discuss their basic properties. Section 5 is the
longest and most technical section of the paper, in which we prove Theorem C. Theorem A is proved in
Section 6. In Section 7 we compare our results to the theory of (¢, I')-modules. Finally, in Section 8 we
discuss p-adic differential equations on the Fargues—Fontaine curve and explain Theorem B.

At several points in the article we have taken the liberty to raise speculations and ask questions to
which we do not yet know the answer.

1B. Notation and conventions. The field K denotes a finite extension of Q,. We write Kc¢ye = K (14 px)
for the cyclotomic extension. Its Galois group I'cyc = Gal(Kcyc/K) is an open subgroup of Z. We
denote by K, an infinitely ramified Galois extension of K with I' = Gal(K~,/K) a p-adic Lie group. If
K denotes the algebraic closure of K, we let Gy = Gal(K /K) and H = Gal(K /K ) so that Gx /H =T .

The p-adic completion Koo Of Koo is a perfectoid field. Write @ for a pseudouniformizer of Koo
with valuation val(z') = p that admits a sequence of p-th power roots /7" (such a choice is always
possible, and the constructions in this paper never depend on this choice). Let @’ = (=, w!/?, ...) be
the corresponding pseudouniformizer of the tilt K f;o

Denote by Lie(I") the Lie algebra of I'. It is a finite dimensional @ ,-vector space, and if v € Lie(I") is
sufficiently small, we have a corresponding element exp(v) € I'.

All representations and group actions appearing in this article are assumed to be continuous. Galois
cohomology groups are always taken in the continuous sense.

If W is a Banach space over Q,, we write W for its unit ball.

All completed tensor products appearing in this article are projective. In other words, if V* and W+
are unit balls of two Banach spaces V and W over Q,, then

VI®z, W =1im(V* ®z, WH/p" and V&g, W= (V" ®z, WH[1/pl.
n

2. Locally analytic and pro-analytic vectors

In this section we give reminders on locally analytic and pro-analytic vectors and quote results that will
be used in Sections 4-6. We shall freely use our conventions in Section 1B regarding Banach spaces.

2A. Locally analytic and pro-analytic vectors. We shall say a compact p-adic Lie group G is small
if there exists a saturated integral valued p-valuation on G which defines its topology and if for some
N € 7= there exists an embedding of G into 1 + p>My(Z ), the group of N by N matrices congruent
to 1 mod p?. See Sections 23 and 26 of [Schneider 2011] for the first condition. If G is small, there
exists an ordered basis gy, ..., g7 such that (xq, ..., xg) — gfl e gf" gives a homeomorphism of Z‘;
with G. We then have coordinates on G

c:(cl,...,cd):GL>Zf7
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defined by the inverse map where ¢;(g;" - .. .- g{*) = x;.

Now let G is an be any compact p-adic Lie group. By [Schneider 2011, Theorem 27.1] and Ado’s
theorem (see [Pan 2022a, Proposition 2.1.3]), the collection of small open subgroups of G forms a
fundamental system of open neighborhoods of the identity element. Let W be a Banach Q-linear
representation of G (or G-Banach space for short). If H is a small open subgroup of G, choose
coordinates ¢ on H and write c(h)¥ = ]_[f.l:l ci(h if k = (ki, ..., kg) for h € H. We have the subspace
WH-an of H-analytic vectors in W it is the subspace of elements w € W for which there exists a sequence
of vectors {wg}rene With wg — 0 and

h(w) = Z c(h) wy

keNd

for all & € H. The norm || w|| y-an = supy, [|wk || makes W#-2" into a Banach space. Note that W -2 does
not depend on the choice of coordinates. We write W' = | J,;, W for the subspace of locally analytic
vectors of W, and endow it with the inductive limit topology, which makes it into an LB space. If W is a
Fréchet space whose topology is defined by a countable sequence of seminorms, let W; be the Hausdorff
completion of W for the i-th seminorm, so that W = lim W; is a projective limit of Banach spaces. We
write WP = lim Wl.la for the subspace of pro-analytic vectors. Finally, we extend the definitions of locally
analytic vectors and pro-analytic vectors to LB and LF spaces in the obvious way.

The Lie algebra Lie(G) acts on each W2 (and hence also on W' and WP?) through derivations.
This action is given as follows. If v € Lie(G) then exp( pkv) € H for k > 0, and we define

exp(pFv)(w) — w
pk '

v = fim

The operator V,, : wH-an _ yH-an iq hounded; see [Berger and Colmez 2016, Lemma 2.6].
Locally analytic and pro-analytic vectors behave well when we have a basis of such vectors [Berger
and Colmez 2016, Proposition 2.3; Berger 2016, Proposition 2.4]:

Proposition 2.1. Let B be a Banach or Fréchet G-ring and let W be a free B-module of finite rank,
equipped with a B-semilinear action of G. If the B-module W has a basis wy, ..., wg in which the
function G — GL4(B) C My(B), g — Mat(g) is H-analytic (resp. locally analytic, pro-analytic), then
W H-an — @‘;:1 B w; (resp. W = @?:1 B w;, WP = @?:1 BP* . ;).

It will often be useful for us to choose a specific fundamental system of open neighborhoods of G as
follows. Fix a small compact open Go C G which with coordinates c. For n > 0 we set

Gy =G" ={g" :g € Go}.
These are subgroups ([Schneider 2011, Remark 26.9]) which have induced coordinates

clg, : Gn = (p"Z,)".
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The normalization is such that for w € WY we can write

gw)= Y c(e)wi

keNd
for g € G, and {wy}gene With p"¥lwy — 0, and the Banach norm is given by

" g

|wllG,-an = sup || p
k
It is easy to check if w € W then [|w||G,,-an < lwllg,, -an for m > n and [[w||G,,-an = |w]| form >n
(see [Berger and Colmez 2016, Lemme 2.4]).

2B. Rings of analytic functions. Suppose first that G is small. Let C*"(G, Q,) be the space of analytic
functions on G. These are those functions that after pullback by the coordinates ¢ : G => Zf, are of the
form
x=(,...x)> Y bk
k=(ki,....kg)eN?
where by — 0 as |k| — oo. The norm || f || = supy e |6k || makes C*"(G, Q) into a Banach space. We
shall regard C*"(G, Q) as a G-representation through the left regular action of G.

If now G is any compact p-adic Lie group with a system of small neighborhoods {G,},>0 as in
Section 2A, we have for each n > 0 the space of analytic functions C*'(G,, Q,) on G,. Using the
coordinates ¢ : G, = (p"Z p)d as in Section 2A, we shall regard C*"(G,, Q) as the ring of functions
that under the bijection are identified with functions of the form

x=(X1,..., %) > bk,
k:(kl ..... kd)ENd

where p”'k‘bk — 0 as |k| — oco. Under this normalization

IfllG, = sup || p" by |
keNd

for f € C*"(G,, Q)p).
The following lemma will be used in Section 5.

Lemma 2.2. For k > 1 the subgroup G, acts trivially on C*(G,, @p)+/pk.
Proof. This is an easy exercise using the coordinates. See [Pan 2022a, Lemma 2.1.2] for the case k = 1. [

The following is shown in [Pan 2022a, Proposition 2.1.3] and in its proof (originally in the proof of
[Berger and Colmez 2016, théoréme 6.1]).

Proposition 2.3. Suppose that G is small. There is a dense subspace lim,_ Ve C C*(G, Q,), where
each V) is a finite-dimensional G-subrepresentation of C*"(G, Q) with coefficients in Q, such that for
any k, £ € N, we have Vi - Vo C Viyy.
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Furthermore, if we fix G and consider small open subgroups G' C G, we may choose V,(G') C
C*™(G', Q) at once for all G" in such a way that the natural map C*"(G, Q,) — C*(G’, Q),) restricts to
Vi(G) — Ve(G).

2C. Higher locally analytic vectors. Suppose first that G is small and let W be a G-Banach space. There
is a G-equivariant isometry
W ®q, C*(G, @y) ZC™(G, W),

where C*"(G, W) is the space of W-valued analytic functions on G, with its G-Banach structure given by
the sup norm and the action (gf)(x) = g(f (g~ (x)) for f € C*(G, W). We then have (C*(G, W))¢ =
WE-an_the identification given by f — f(1). This gives an alternative description of G-analytic vectors
that we shall use in what follows.

The functor W — WY is left exact. Following [Pan 2022a, §2.2; Rodrigues Jacinto and Rodriguez Ca-
margo 2022], define right derived functors for i > 0:

R..(W) =H (G, W ®q, C*(G, Q)))

(taking continuous cohomology on the right hand side).
If G is a compact p-adic Lie group with subgroups {G,},>1 as in Sections 2A-2B, taking the colimit
over n, there are right derived functors for W — W% given by

R (W) =limRy, (W) =limH (G, W g, C"(G,, Q))).
n n

We shall call these groups the higher locally analytic vectors of W. If G is understood from the context
we shall just write R{a instead of Rg_la.
It
0O-V->W->X—->0

is a short exact sequence of G-Banach spaces, then it is strict by the open mapping theorem, and so we
have a long exact sequence

0— Vi wh - x5 RL(V) > RLW) > RL(X) — - -+ .

Lemma 2.4. Let H be an open subgroup of G and let H, = G, N H. Then for n >> 0 and each i > O there

. . i ~ pi
are natural isomorphisms Ry, . =R¢ ..

Proof. We have H, = G,, for n > 0. O

. i ~ pi
In particular, RY; |, =R ..

Suppose that G be a small compact p-adic Lie group, and let H be a small closed normal subgroup.
Let W be a G-Banach space. Using the method of Hochshild—Serre we obtain the following spectral
sequences.

Proposition 2.5. (i) There is a spectral sequence

EY =W (G/H,H/ (H, W 8q, C*(G,Q,))) = R (W).
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(i) There is a spectral sequence
EY =Ry, (@ (H, W) = H (G, W 8, C*(G/H, Q))).

Proof. Apply the Hochshild—Serre spectral sequence to W ®q , CM(G,Qp) and W R0 ,C*"(G/H, Qp)
(see [Rodrigues Jacinto and Rodriguez Camargo 2022, Proposition 5.16]). U

3. Equivariant vector bundles

In this section we give reminders on the Fargues—Fontaine curve and equivariant vector bundles. For
more details, see [Fargues and Fontaine 2018, Chapter 9; Scholze and Weinstein 2020, Lectures 12—13].

3A. The spaces Y(,o) and X. Let F be a perfectoid field, with tilt F°. We have Fontaine’s ring
Ainr = Ains(F), defined as the Witt vectors of the ring of integers (’); of F. Write Spa(Ajyy) for the adic
space associated to the Huber pair (Ajnf, Ajnf)-

Let @ be a pseudouniformizer of F, and let f be the residue field of Or. Then there is a point
Xy € Spa(Ajyf) with residue field f, which is the intersection of the two closed subspaces {p = 0} and
{[m] =0}. We set

Y =YV(F)=SpaAins —{xr} and Y 0,00) = V0,00)(F) = SpaAjs — {plzw ] = 0}.

The spaces ) and )0,~) have a Frobenius automorphism ¢ induced from the Witt vector structure
of Ainf.

The space )0, is a preperfectoid space. The (adic) Fargues—Fontaine curve associated to F is defined
as the quotient

X =X (F) = Y0.00)(F) /97,

which makes sense because the Frobenius action is proper and discontinuous. The natural projection
7 1 V0,000 = X is a local isomorphism, so X is a preperfectoid space, by virtue of Vo ) being so. The
space Y0,00) has a canonical point called x, the “point at infinity”. It corresponds to the kernel of
Fontaine’s map

0: At — Op, Y lanlp" = Y alp",

n>0 n>0

where for a € OF, a* is defined to be the first coordinate of a € ObF =lim , OF. Identify xo with
its image 7 (xs) € X. We shall sometimes use the fact that ker6 is a principal ideal, generated by
£ =w —[w"] (for example).

If F = Ko, there is an induced action of the group I' = Gal(K/K) on each of the spaces mentioned
above, and the map Y(,o0) — & is I'-equivariant. The point x, € X is the unique I'-fixed point; in fact,
it is the unique point with finite I"-orbit [Fargues and Fontaine 2018, Proposition 10.1.1]. From now on,

if F is omitted from the notation of V(o) and X, we always take F' = K. 00-
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3B. The spaces Y1 and Xj. It will be fruitful to consider certain open subsets of Vo ) and X. By
[Scholze and Weinstein 2020, Lecture 12] there is a surjective continuous map « : ) — [0, oo] given by!
i = 2O
log |[[”](¥)]
where X is the maximal generization of x. For each interval I C (0, 00), let ); be the interior of the
preimage of ) under «. These spaces are I'-stable if such a I' action is present. Furthermore, the map ¢
induces isomorphisms ¢ : V,; = Y;. Write log(/) = {log x : x € I'}. Whenever [ is sufficiently small so
that the inequality | log(/)| < log(p) holds, we have I N pI =0 and 7 maps )); isomorphically onto its
image 7 ();) = X; C X. Note that xo, € X7 if and only if / contains an element of (p — 1) pZ, because

K (Xo0) = (p—1)/p.
For I C (0, o0), we have the coordinate rings
B; =B/(Kw) =H' V1, Oyy).
If I is compact, the geometry of )y is simple.
Proposition 3.1. Suppose I C (0, 00) is a compact interval.
1 Y= Spa(gl, A;), where A; is the ring of power bounded elements of ]§1. In particular, Vi is affinoid.
(i) By isa principal ideal domain.

(iii) The global sections functor induces an equivalence of categories between vector bundles on Y; and
[finite free B, -modules.

Proof. Parts (i) and (ii) follow from [Fargues and Fontaine 2018, théoréme 3.5.1]. Part (iii) follows from
[Scholze and Weinstein 2020, Theorem 5.2.8] (originally [Kedlaya and Liu 2015, Theorem 2.7.7]), since
finite projective B;-modules are finite free. U

3C. Egquivariant vector bundles. The action of I" on X’ gives an automorphism y : X = X for each
y el.

Definition 3.2. A I'-equivariant vector bundle (or simply I'-vector bundle) on X is a vector bundle &
on X' equipped with an isomorphism c, : y*€ =5 & for each y e I' such that the cocycle condition
Cy, 0 V5 Cyy = Cyyy, holds for every yy, y2, € T.

Similarly, we have a notion of a (¢, I')-vector bundle on Y 9,«). This consists of a I'-vector bundle M
on Y(0.00) together with an additional isomorphism ¢, : 9* M => M such that ¢, o p*c, = ¢, o y*c,, for
every y €I'.

Descent along ¢ gives the following.

Proposition 3.3. There is an equivalence of categories

{T"-vector bundles on X} = {(¢, I')-vector bundles on Yo )}

1Our normalization of  is the inverse of [loc. cit.].
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The equivalence is given by the following functors: If € is an equivariant vector bundle, we map it to

OYi.00) ®Ox E. Conversely, if/\71 is a (¢, I')-vector bundle on Yo, ), we map it to (/\A/Jl)‘pzl.

If £ is a ['-vector bundle on X and U C X is an open subset stable under I, there is an induced action
of I on H (U, 5). In particular, there is a natural action of I" on HO(x;, S~) when |log(/)| < log(p). For
a general open subset U, one only has a map

ey tHUWU. Ox) @1 w),00 B (r (U). &) = H'(U. &)
Similar remarks apply for (¢, I')-equivariant vector bundles on V0, «0).

Example 3.4. Let V be a finite dimensional Q ,-representation of Gg. Recall that H = Gal(K/K).
Then by [Fargues and Fontaine 2018, théoreme 10.1.5],

E(V) = (V®a, Oxc,)"

is a ['-vector bundle on X. More generally, by [loc. cit.], the category of finite dimensional G-
representations embeds fully faithfully to the category of (¢, I')-modules, with essential image the
subcategory of étale (¢, I')-modules. We can extend the domain of the functor V +— g (V) from Gg-
representations to (¢, I')-modules. Conversely, any I"-vector bundle on X’ gives rise to a (¢, [')-module,
and this correspondence results in a equivalence of categories (see [Fargues and Fontaine 2018, préface,
Remark 5.10]). This will be discussed in detail in Section 7.

4. Locally analytic vector bundles

In this section, we introduce the category of locally analytic vector bundles and discuss their basic
properties.

4A. Locally analytic functions of Y(0,) and X. Let U C X be an open affinoid. Then U is quasicompact
and hence stable under the action of a finite index subgroup I'” < I". The space of functions H*(U, Oy) is
a Banach I'-ring, and so it makes sense to speak of its subring of I'’-locally analytic functions. This does
not depend on the choice of T, and so we shall write H*(U, O ) for the I'"-locally analytic functions
in HY(U, Oy) for any I'". Since taking locally analytic vectors is left exact, these can be glued and we
obtain a sheaf of rings (91}} on X that satisfies

H(U, 0%) =H°(U, Ox)"
for every open affinoid U C X.

More generally, suppose U is an open subset of X which is not necessarily affinoid, but for which
there is an increasing cover U = | J; U; with each U; affinoid and a single finite index subgroup I'' <T
stabilizing all of the U; simultaneously. This condition will be satisfied in any situation we shall consider.
Then the sections of Ol% on U are the pro-analytic functions

H'(U, O}) =limH’(U;, Ox)" = H'(U, Ox)™.

1
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Lemma 4.1. The sheaf (91/% is stable for the action of I" on Oy, in the sense that the inclusion (’)lj? C Oy
induces isomorphisms

L kmla ~ la
cy Y Oy = Oy.

Proof. The action of I' on Oy gives rise to an isomorphism ¢, : y*Ox = Ox. Upon taking U C X
affinoid, evaluating the morphism ¢, at U and taking locally analytic vectors, we get an induced map
cy(U): HOY(U, y*Ox)12 = HO(U, Ox)". But this is the same as H(U, y*(’)ljé) =~ HO(U, OE}) because
of the equality HO(U, (’)lj}) =H (U, Oy)™. By writing an arbitrary open set as a union of affinoids, we
get the desired induced isomorphism c,, : y*Olf, = (91;. U

The preceding discussion then applies equally well to V(,«), S0 we have a sheaf (95‘,‘(0 - of locally
analytic functions on )o,o) endowed with isomorphisms ¢, . Since the ¢-action on )9, ) commutes
with the "-action, it preserves the ["-locally analytic functions, and this gives an isomorphism

=~ O

.k mla
Co:9 O Vio.00)

V(0,00

which commutes with the I"-action as usual.

4B. A flatness result. For our application at Section 6 it would be useful to know the inclusion Oﬂ@ C Oy
is flat. We are only able to establish this in the cyclotomic case where K, = K¢y, and only for certain
open subsets. Nevertheless, this will suffice for our needs.

So in this subsection suppose K = K¢y and let I be a closed interval of the form I = [r, s] with
r>(p—1)/p. We write §1,Cyc for EI(I?CyC) of Section 3B. Let K(/) be the maximal unramified extension
of Q, contained in K¢y.. Then we write Bj cyc g for the ring of power series f(T') = >k c7 Ak T* with
ar € K|, such that f(T) converges on the nonempty annulus where |7| € I. By a classical result,
B cyc.k is a principal ideal domain [Lazard 1962, corollaire a proposition 4]. There is an embedding
B cye.x — B I.cye for which Bj cyc g is I'eyc-stable. If K is unramified over Q,, this embedding can be
described as follows: the variable 7' is mapped to [¢] — 1, where ¢ = (1, ¢, {p2y-n) € I?bec. Further, one
calculates that y(T) = (1 + T)Xee) — 1, 0 B cyc k is indeed stable under the action of I'cyc.

Proposition 4.2. Suppose I =[r, (p — 1) p* "1 withk > 1. Then

. Dl _
(1) Blc,lcyc = Unzo(p n(Bp”I,cyc,K),

(ii) B}acyc is a Priifer domain,

la

(iii) the natural ring morphism B Loye = B cyc is flat.

Proof. Part (i) is [Berger 2016, Theorem 4.4 (2)]. Note that in [loc. cit.] this is stated only for / of the form
[(p— l)pl_l, (p— l)pk_l], but the argument given there (see also Section 13 of [Berger 2021]) is valid
for any interval of the form [r, (p — 1) p*~!]. Part (ii) follows, because each B/ cyc is a principal ideal

domain, and an increasing union of such rings is a Priifer domain. Finally, the ring B; cyc is a domain and

la
I,cyc*

over a Priifer domain is flat [Lam 1999, Proposition 4.20]. U

hence torsionfree over the subring B Part (iii) is established by recalling that a torsionfree module
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Question 4.3. To what extent do (ii) and (iii) of Proposition 4.2 hold for coordinate rings of general open
subsets in X and general K 5,7 We do not expect E}a to be a Priifer domain when I" has dimension larger
than 1. Nevertheless, it might still be the case that E}a —~ B 7 is flat.

4C. Locally analytic vector bundles.

Definition 4.4. A locally analytic vector bundle on X’ is a locally finite free (’)lj(‘—module & on & equipped
with an isomorphism ¢, : y*£ = & for each y € I'" such that the cocycle condition ¢, oy, ¢,, =c¢,,,, holds
for every y1, y2, € I'. We require the action to be continuous with respect to the locally analytic topology.

Example 4.5. (1) Let € be a ['-vector bundle on X. Define a sheaf £ by generalizing the definition
of Ol/%. Namely, for every open affinoid U C X choose I'” < I stabilizing U. Then HO(U, €) is a Banach
I"-ring and it makes sense to speak of HO(U, £)"2, which does not depend on the choice of I". Glue these
together to form a sheaf £2. The sheaf £ is an Olj} -module with a I"-action. We shall show in Section 6
that £ is locally free and therefore an example of a locally analytic vector bundle.

(2) Conversely, if € is a locally analytic vector bundle, we can associate to it a I'-vector bundle £ =
Ox B0l E. If U C X is an open affinoid such that €|y is free, it follows from Proposition 2.1 that

H'(U, &) =H(U. &,
and so & = £, This shows that the functor from I'-vector bundles to locally analytic vector bundles
mapping € to £ is essentially surjective.

It follows from Example 4.5(2) that if £ is a locally analytic vector bundle, we have an action by
derivations
Liel") x & — &,

or, what amounts to the same, a connection

V:€— EQq, (Liel)"
satisfying the identity
V(fx) =V(flx+ fVXx)

for local sections f of (’)ljé and x of £.

Remark 4.6. We emphasize that if U C X is an arbitrary open subset then we have an induced action
of Lie(T") on HY(U, £). This is unlike the I'-action, which only maps HO(U, &) to itself if U is I'-stable.
This is one pleasant aspect of working with locally analytic vector bundles instead of I"-vector bundles.

Finally, we have the following propositions computing sections of interest. They will not be used
elsewhere in the article. We may define a locally analytic ¢-vector bundle on V(o) by imitating
Definition 4.4. Then given a (¢, I')-vector bundle M on Y0,0)» one can define a locally analytic ¢-vector
bundle /' on Y0,00) as in Example 4.5.
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Proposition 4.7. Let E (resp. ./\71) be a I'-vector bundle on X (resp. a (¢, I')-vector bundle on Y ,o0))
and let E® (resp. M) be its associated locally analytic vector bundle (resp. locally analytic ¢-vector
bundle). There are natural isomorphisms:

(i) HO(Y;, M) Z HO(Y;, M)™ for I a closed interval.
(ii) HO(Y;, M) = HO(Y;, M)P2 for I an open interval.
(iii) HO(X;, &%) = HO(X;, &) for I a closed interval with | log(I)| < log(p).
(iv) HO(X;, &™) = HO(X;, EYP° for I an open interval with |log(I)| < log(p).
(v) HO(x, &™) = HOx, &)l
(vi) HO(X — X0, £2) = HO(X — x40, E)P2.

Proof. Parts (i) and (iii) are immediate from the definition. For (ii) and (iv), use the coverings V; =
Uy Yy and X; = J, -, &, ranging over J C I closed. For (v), consider the covering

X = X[]W/ﬁ] U X[\/f,’p]
with intersection X[ /5 /p) LI A71,1) (identifying 1 with p via ¢). This yields exact sequences
~1 ~1. ~1 =l ~1
0— HX, Y — H'(X, 5, E @ H (X 5.1, € ) = BN 5, 71, € D ®H (X111, € )
and
0— H(X, &) > H(Xy1, /51, O @ HY(X 5,1, )™ — HO(X 5, /1. )P @ HO (X113, )™

By virtue of (iii) the kernels of these sequences are identified. This proves part (v).
For (vi), use the covering

X —Xoo = X[lsﬁ] U(X[ﬁ,p] — Xoo)

with intersection X[ /5 /p) L A71,1). We may write A /5 5] — Xoo as a union of I'-stable rational open

subsets
X yp.p) — 00 = Up1 X 5. 1§l = p7"}
Thus
HO(X] /.1 — Yoo &) = HO(X /i p) — Xoor )P
Repeating the argument which proved part (v), we conclude. U

We place ourselves in the cyclotomic setting so that I' = I'cyc and H = Gal(K /Kcye), and we write
Bt (Keye) = (B ). Following Section 10.2 of [Fargues and Fontaine 2018], for n € Z take & = O (n)
to be the I'-line bundle corresponding to the graded module

- — pm+n
D, 0 Bers Keye) "
0, n<0,

P ition 4.8. HY (X, Ox(n)'?) =
roposition ( x(n)?) {@p(n), >0,
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Proof. To show this, notice first that

0, n <0,
HY(X, Ox(m) = By (Keyo) ™" = 1Qp. n=0,
Bl (Keyo)?=?", n>0.

If n > O then by [Fargues and Fontaine 2018, 6.4.2] there is an exact sequence

0— Q,(n) > BLY="" — Bl /"B, — 0.

Take H-invariants and locally analytic vectors. By [Berger and Colmez 2016, théoreme 4.11] we know
that (B;i/t” B(;%)H’la = Keycll2]/1", so we are left with an exact sequence

0— @p(”) — B} (I?cyc)w:pn’la - Kcyc[[t]]/tn~

cris
Claim. B (Keyo) ™" 1 = @, (n).

Note that a similar statement appears in Section 3.3 of [Berger and Colmez 2016] in the case n = 1.
Given the claim the computation is finished because part (v) of Proposition 4.7 implies that

0, n <0,
Q,(m), n=0.

cris

HO(X, Ox(m)®) = B (Keye) P71 = {

To show the claim, take x € B;S(I/(\Cyc)‘/’:f’"’la. Its image in K¢y [[2]]/1" is killed by the polynomial

n—1
Pa(y) =[] teye) 'y = 1)
i=0
for y which generates an open subgroup of I'. It follows that P,(y)(x) € Q,(n) for this y. Since P,(y)
acts on Q,(n) by a nonzero element we reduce to showing that B:;is(l/(\cyc)‘p:pn’})"(”)zo is 0. In fact, if
K’ is the subfield of Ky corresponding to y%» C ' with maximal unramified subextension K/, we shall
compute that

n—1

Bcris(i{\cyc)P"(y):O = @ K(/)l‘i,
i=0
and in particular there are no nonzero elements with ¢ = p”.

To show this latter description of the elements killed by P,(y), we argue by induction. If n = 1 then
P,(y) =y — 1 and the equality follows from the usual description of the Galois invariants of B.s. For
n>2,wehave Py(y)/(y —=1) = Pii(Xeye(¥) " 'y) and

n—1

-~ —1.\_, -~ . .
Bcris(Kcyc)Pnfl(chC(y) V=0 - thris(KC}’c)Pnfl(y)_O = @ K(/)tl'

i=1
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Thus there is a commutative diagram

0

n—1 i n—1 i
0 K, D=0 Kot' D=1 Kyt'

o !

-~ L - 3 R L
00— BCI‘iS(KCYC)V =0 Bcris(Kcyc)Pn(y)_O E— Bcris(KCyc)P"_](chC(y) V=0

whose rows are exact and whose outer vertical maps are isomorphisms. We conclude by the applying the
five lemma. (]

Remark 4.9. Set B,(K,) = B for the usual ring B, = B’Z', so that B, C HY(X — xo, O). This
inclusion is not an equality: the ring B, allows only meromorphic functions at x,, while in H*(X —x., Ox)
there will be functions with essential singularities. The subring Be(l/(\oo)pa C HO(X — x00, Ox) is more
tractable and we can understand its structure to an extent. In particular, let us consider the subring
Be(l/{\oo)pa = B, NH(X — xo, Olj}) in the case I' = I'cyc. We claim that in fact Be(l/(\oo)pa =0Q,. To
see this, take x € B,(Koo)P, and restrict it to X /p.p] — Xoo- Since Y| /5 p) Maps isomorphically onto
X /p.p)» the element 7 gives an element of HO(X[ JB.p] — Xoos (’)1;). Multiplying by a bounded power of ¢,

the function #"x extends to an element of

HO(X[ﬁ,p]v 0%) = HO(X[ﬁ,p], Ox)",

which shows that x itself is actually an element of Be(f )2, with a pole of order n at xo,. Therefore,
t"x € HY(X, O (n)"?) which is equal to Q p(n) as was shown in Proposition 4.8. This means x is in @,
and so B(,,(I/(\oo)pa =Q,.

Question 4.10. (1) Is it true that H*(X — xog, O%) = Q,, if T # Teye and dimT" = 1?

2) If dimT" > 1 then one can sometimes produce elements in Be(I/(\c,o)la which do not belong to Q,,.
For example, in the Lubin—Tate setting, the element (t_ ﬁ/ t ﬁ)z lies in B, (I?oo)la, forty JP being the
analogue of Fontaine’s element attached to the uniformizer m = £,/p (see Section 8.3 of [Colmez 2002]
for the notation appearing here). Is it true that in some generality Be(l? o) 2 will be d—1 dimensional for
d =dimI'? See [Berger and Colmez 2016, théoréme 6.1] for a related statement.

5. Acyclicity of locally analytic vectors for semilinear representations

In this section, we shall prove vanishing the of R{a—groups for certain semilinear representations. These
results will be used to prove the descent result in Section 6 but are also of independent interest. We follow
the strategy of [Pan 2022a], where the case of a trivial representation and a particular family of algebras
A is treated.

5A. Statement of the results. To state the main result of this section, we recall the Tate—Sen axioms
of [Berger and Colmez 2008, 3]. Let G be a profinite group and let A be a G-Banach ring endowed
with a valuation val for which the G action is continuous and unitary. We suppose there is a character
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x + G — Z; with open image and let H = ker x. Given an open normal subgroup Gy C G we let
Hy=GoNH and 'y, = G/Hy.
The Tate—Sen axioms are the following.

(TS1) There exists c; > 0 such that for any open subgroup H; C H; of Hy there exists « € AH with
val(a) > —c; and ZteHz/Hl () =1.

(TS2) There exists ¢, > 0 and for each Hy open in H an integer n(Hp) depending on Hy such that for
n > n(Hp), we have the extra data of

* closed subalgebras A g, , C KHO, and

o trace maps Ry, : A — Ap,,
satisfying:
(1) For Hy C H, we have Ay, , C Ay, , and RHI,”|AH2,n =Ry, .
(2) Ryy,n is Ap, p-linear and Ry, ,(x) = x for x € Ag, ».
(3) 8(AHym) = Agrpg-1.n a0d gRpy n(1)) = Rypppg1.(g%) if g € G.
(4) 1im,,_ 00 Ry, n(x) = x for x € Ath.
(5) If n > n(Hp) and x € A then val(Ry, ,(x)) > val(x) — c,.

(TS3) There exists c3 > 0 and for each open normal subgroup Gy of G an integer n(Goy) > n(Hy)
such that if n > n(Go) and y € 'y, has n(y) = val,(x(y) — 1) < n, then y — 1 acts invertibly on
Xtion = (1 = Rpgo,) (A0 and val((y — 1)~ (x)) = val(x) — c3.

We introduce an additional possible axiom which does not appear in [Berger and Colmez 2008].

(TS4) For any sufficiently small open normal Gy C G with Hy = Gy N H and for any n > n(Gy), there
exists a positive real number ¢ = ¢ (Hy, n) > 0 such thatif y € Go/Hp and x € Ap, , then

val((y — 1)(x)) = val(x) +1.
We then have the following result.

Theorem 5.1. Let M be a finite free A-semilinear representation of G. Suppose there exists an open
subgroup Gy C G, a G-stable A*-lattice M C M and an integer k > c1 + 2c + 2¢3 such that in some
basis of M, we have Mat(g) € 1 4+ p*Maty(A™") for every g € Go. Then:

(1) If (TS1)—~(TS3) are satisfied then fori > 2
R (M) =0.

In fact, R, (M) = 0 for any sufficiently small open subgroup Go C G.

Go-an

(i1) Ifin addition (TS4) is satisfied then

R (M) =0.
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In fact, for every sufficiently small open subgroup G there is an open subgroup G| C Gy such that the
map Rg (M) — RE; (M) is 0.

(iii) In particular, if (TS1)—(TS4) are satisfied then M has no higher locally analytic vectors.

Remark 5.2. The following was pointed out by the anonymous referee: if the action of Gy on A was
locally analytic, then the hypothesis of the existence of M+ such that G acts trivially mod p* on it would
imply that the action of Gy on M is locally analytic as well, as it can be deduced from Proposition 2.1
and Lemma 2.2. So the nonlocally analyticity comes only from the coefficients A.

The following special case is often useful in applications.

Proposition 5.3. If G and A satisfy (TS1)—(TS4) and if in addition the topology on A is p-adic, and if M
is a finite free A-semilinear representation of G, then the higher locally analytic vectors R{a(M ) vanish
fori > 1.

Proof. We shall explain how this follows from Theorem 5.1. Indeed, we claim that any finite free
A-semilinear representation of G satisfies the assumptions of the Theorem 5.1 after possibly replacing G
by a smaller open subgroup G’. This suffices because, by Lemma 2.4, higher locally analytic vectors do
not change when we replace G by G'.

To see why such a G’ exists, suppose M is a finite free A-semilinear representation of G and choose
any A-basis e, ..., eq of M. If we take M™ = @"_, Ate; then M is a lattice of M, and by continuity
we may find an open subgroup G’ C G so that Mat(g) € GL, (AT) for g € G'. This implies that M
is G’-stable. Since the topology on A is p-adic, we can find an open subgroup G C G’ such that
Mat(g) € 1 + p*Maty (A) for every g € G,. Thus, the assumptions of Theorem 5.1 hold for this M +,
G’ and G|, O

Before giving the proof of Theorem 5.1, we record a few applications.

Corollary 5.4. Suppose G and A satisfy (TS1)—(TS4) and let M be as in the statement of the theorem.
Then for alli > 0,
H (G, M) ZH (G, M"*) = H!(Lie G, M'")°.

Proof. Apply [Rodrigues Jacinto and Rodriguez Camargo 2022, Corollary 1.6 and Theorem 1.7]. (Il

Two main cases of interest are the following. To state them, we set up some notation first. Let F be
an infinitely ramified algebraic extension of K which contains an unramified twist of the cyclotomic
extension, i.e., the field extension of K cut out by 7 xcyc for n an unramified character. Suppose also that
Gal(F/K) is a p-adic Lie group. For why we allow an unramified twist of the cyclotomic extension on
what follows, see Section 8 of [Berger 2016].

Example 5.5. (1) Take G = Gal(F/K) and A =F. Then G and A satisfy the axioms (TS1)—(TS3) for
arbitrary ¢; > 0, ¢c; > 0 and ¢3 > 1/(p — 1). See [Berger and Colmez 2008, Proposition 4.1.1] for the
case F = K, which goes back to Tate. For general F the same proof works.
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In addition, we claim that G and A satisfy the axiom (TS4). Indeed, if G¢ is an open subgroup of G
corresponding to a finite extension L of K, then Ay, , = L({pn) and Go/ Hy = Gal(Lcyc/L). We take Gy
sufficiently small so that L contains ¢,. Let w = {,» — 1 be the uniformizer of L. For y € Gal(Lcyc/L),

we have
- 1
1((y — 1 —val(c, )= ————
val((y —1)(r)) = val(¢,, )= o2
Using the identity (y — 1)(ab) = (y — 1)(a)b + y(a)(y — 1)(b), one then shows by induction that

val((y = D) 2 val(e™ + .

If x is any element of A, , = L({,»), we may write x = pknmy withkeZ, m>1and 0 <val(y) < val(w).
Since Op[¢pn] = O[], we see by writing y as a polynomial in 7 that

val(y — 1)(y) > val(w) + #

Using the identity for y — 1, we have
val(y — 1)(x) > k +min(val((y — D(@™)y), val(x" (y — 1)(y)))
> e+ min(val(x") + val (y) + —Lg, val(x™) 4+ val () + — )
p p
1
> val(x) + PR

50 (TS4) holds with = 1/p" 2.

(2) Take G = Gal(F/K) and for a closed interval I C (p/p — 1, 00) let A= E,(f). Then again G and
A satisfy the axioms (TS1)—(TS4) for arbitrary ¢; > 0, ¢; > 0and ¢c3 > 1/(p —1). Here if Gy C G is
an open subgroup corresponding a finite extension L of K then one takes Ay, , = @~ " (Bpn cyc,1) With
notation as in Section 4B. For (TS1)—(TS3), see [Berger 2008a, Proposition 1.1.12]. Axiom (TS4) follows
from [Colmez 2008, Corollary 9.5].

Corollary 5.6. (i) If M is a finite free F-semilinear representation of Gal(F/K) then R{a(M ) =0 for
i>1

@G1) If I C (p/p — 1, 00) is a closed interval and M is a finite free B I(f )-semilinear representation of
Gal(F/K) then Rl (M) =0 fori > 1.

Proof. In both of these cases the topology on A is p-adic, so the theorem applies by Proposition 5.3. [

Remark 5.7. Suppose F/K is any infinitely ramified p-adic Lie extension of K (not necessarily containing
an unramified twist of the cyclotomic extension), and let M be a finite free F-semilinear representation
of Gal(F/K). Then R{a(M ) =0 for i > 1. To prove this, one is always allowed to replace K by a finite
extension. Then the extension F Ky./F can be assumed to be either trivial or infinite. In the first case,
the group Rfa(M ) vanishes by the corollary. In the second case, one can argue as in the proof of [Pan
2022a, Theorem 3.6.1]. We omit the details since this result will not be used in the article.
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The rest of the chapter is devoted to the proof of Theorem 5.1. The proof is inspired by that of [Pan
2022a, Theorem 3.6.1]. The strategy is the following:

(1) In Sections 5B and 5C, we establish some results using (TS1), (TS2) and (TS3) that allow us to
descend certain infinite rank A-semilinear representations of G to Azk’n-semilinear representations of
Gy, which are fixed by Hj.

(2) In Section 5D, we apply these results to C*"(G, M).

(3) Using this and the Hochshild—Serre theorem, we show in Section SE that Ré;_la(M ) vanishes when
i > 2, and we give an explicit description for Rlc;_la(M ). It remains to show this latter cohomology group
vanishes.

(4) To do this, we decompose RIG_]a(M ) as a sum of two groups. For the first one, we use an explicit
calculation in Section S5F and (TS4) to show its vanishing. For the second one, we show it is zero in
Section 5G by using again (TS4) and a computation inspired by Berger and Colmez [2016]. Both of these
computations are of a p-adic functional analysis flavor.

5B. Vanishing of H-cohomology. 1f t € R we write
p~'AT :=elements in A with val > —.
The first result we shall need for the proof of Theorem 5.1 is the following.

Proposition 5.8. Suppose that (G, H, A) satisfies (TS1) for some c¢1 > 0. If Hy C H is an open subgroup,
andr > 1, we have

() The natural map H' (Hy, AT) — H' (Hy, p~21A ™) is .

(ii) Let M be a finite free At-semilinear representation of Hy which has an Hy-fixed basis. Then the
map B (Hy, M+) — B (Hy, p~>*'M™) is 0.

(iii) Let M = Lm be the completion of an increasing union of finite free At-semilinear rep-
resentation of Hy, each having an Hy-fixed basis. Then the map H" (Hy, M™) — H" (Hy, p~2'M™)
is 0.

In particular, in each of the cases (1)—(iii) the rational cohomology H" (Hy, M) is equal to zero.

Proof. We have (i) = (ii), since continuous cohomology commutes with direct sums.
Next, we prove (ii) = (iii). To do this, observe that if # € Z~ then pr,:r also a finite free AT-
semilinear representation of Hy which has an Hy-fixed basis. Taking long exact cohomologies of the

0—>pt(UM,j>—> (UM:>—>M+/ptM+—>O

keN keN

sequences

and

0— p'~2 (U M,j') — pa (U M,j) — p Xapmt/pT Mt 0,
keN keN
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we get from (ii) that the natural map
H' (Ho, M /p'M™) — H' (Hy, p~ 2" M™*/p' 7> ' M)

is 0. Now given a cocycle & € Z"(Hy, M ™), write & for its image in Z" (H,, p21MT). We wish to
show that &; is a coboundary. Choose some fixed fy > 3c¢;. Then by virtue of the observation above, the
right vertical map of the commutative diagram

H" (Hy, p"M*) ——— H (Hy, M) ———— H" (Hy, Mt/ pM™)

| l |

Hr(H(), pto—Zc1M+) N Hr(Ho, p—ZCl M+) N Hr(H(), p—201M+/p10_2clM+)

is 0, which implies that §y = & 4+ §(m), where m is an r — 1 cocycle valued in p‘zcl M™ and & is an
r-cocycle valued in p~2 M+ C p“ M. Repeating this argument by induction with M+ replaced with
plMt, we get that we can write & = &1 + 8(m;41), where &; is valued in pi"M* and m; is valued
in p@=3 M+, Hence the series Y o, m; converges to an r—1 cocycle m valued in p~2¢' M+, and we
get &y = §(m), as required.

Finally, we prove (i). This statement is probably well known, but for lack of a suitable reference,
we provide a proof here. It is essentially a fiber product of the arguments appearing in [Tate 1967, 3.2,
Corollary 1; Colmez 2008, Proposition 10.2].

Let & € Z"(Hy, K*) be an r-cocycle of Hy valued in AT, By a valuation of a cochain we shall mean
the infimum of its valuation on elements. Writing & for the differential, we shall construct a sequence of
r—1 cochains x,, € C" "' (Hj, p‘261/~\+) for n > —1 such that

(1) val(¢ —éx,) > nc; for o € Hy, and
2) val(x, —x,—1) = (n —2)cq forn > 0.

This will suffice, since x, — x for some x € C" ™' (Hy, p‘z"‘KJr) which shows that £ = §x is O in
H' (Ho, p~21A™).

To do this, choose x_; = 0, which clearly satisfies the first condition. Suppose x, has been constructed;
we construct x,+1. Let &, be the r-cocycle

En =& — dxy,

which is valued in p"C‘K+. Choose H| C Hy an open subgroup such that for every o1, ..., 0, € Hy and
o € H| we have

val(§, (o1, ..., 00) =& (01, ..., 000)) = (n+2)cy.

Such a choice is possible by the continuity of &, as well as the compactness of Hy.
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Now by the axiom (TS1) there is an element o € AH such that val(a) > —c; and ZfeHO/HI () =1.
Let S be a system of representatives for Hy/H,, and define an » — 1 cochain

x$5(@1, . 0pm) = (=1 ) (0102 0 1 D@01 01, 7).
Tes
Each term in the sum has val > (n — 1)y, so val(xs) > (n — 1)c;. In particular, xg € C"~' (Hy, p~ 21 A ™).

We now compute (§, — dxs)(o1, ..., 0,). We have by definition of § an equation

Sxs(oq,...,00) = (—1)" Z(ol o) (@)or (o, ..., 00, T))

Tes

r—1
+ (=D (o1 0 D) @E (01, - 001 0r, T)
j=1 Tes
+) @10 D@E 01 01, 1), (5-1)

Tes
On the other hand, &, is an r-cocycle, so that §¢,(oy, ..., 0., 7) = 0 for every o1,...,0, and 7.
Multiplying by (—1)" (o7 - ... 0,7)(v) and summing over T € S, we get the equation

0=(=1") (01-...-0;0)(@01(Ex(02, ... 07, T))

Tes r—1
+D DY o1 0 T (@8 (01 00 - 0, T)
j=1 Tes
+ ©1 0D @E L 01,07 = ) (01 D)@ (01, -, 0). (52)
Tes Tes

Subtracting (5-2) from (5-1), we get

8x5(01, ... 0) =Y (1.0 1T (@& (01, ... O 1, T) = Y (0120, T)(@)Ex (01 -, Or 1, O T)

Tes tes

+D @1 0 D)@ (01, - ).
Tes
Now by choice of «, the last term is simply &,(o1, ..., 0,). Thus after rearranging, we have for every
oy, ...,0r € Hy the equation

(En—0x)(01, ... 0) = ) (01701 D@01, .., Go1, )= ) (0110, D(@En 01, ... 0, T).

Tes TeS

For each 7 in S, let 0, € H; be such that to,; € 0,,S. Then the term on the right hand side of the
previous equation becomes

Y @1 0 D @[Ea 01 - Ot T) — En(O1, - TOD) .

tes

so by the choice of H; we have

val(§ — 8 (x, +x5)) = val(§, —dxs) = (n + Dcy.
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Finally, set x,,+1 := x, +xs where S is arbitrary. The calculations we have done show that val(x,4+; —x,) >
(n — 1)cy and val(§ — éx,+1) = (n + 1)cy, as required. This concludes the induction and with it the
proof. ]

5C. Descent of semilinear representations. In this subsection we suppose that G and A satisfy the
axioms (TS1), (TS2) and (TS3).

Given an integer k > c| + 2¢» + 2¢3 and an open subgroup Go C G we write Mod% L (G, Gy) for the
category of finite free A*-semilinear representations M of G such that in some basis of M, we have
Mat(g) € 14 p*Maty(A™) for every g € Go.

The following will allow us to descend coefficients from AT to the much smaller ring AJITIM =
ATNA Hy.n- 1t 1s a simple modification of [Berger and Colmez 2008, Proposition 3.3.1] and is proved in
exactly the same way.

Proposition 5.9. Let M ¢ Modl}ﬁ (G, Go). Then for n > n(Gy) and Hy = H N G there exists a unique
finite free A;O’n-submodule DIJ;M(Mﬂ of M such that:
@) D;;O’H(MJ“) is fixed by Hy and stable by G.

(2) The natural map A+ ®A;ov" D;L,M(MJF) — M™ is an isomorphism. In particular, D;O’n(MJF) is free
of rank = rank M.

3) D;;O’n(MjL) has a basis which is c3-fixed by Go/ Hy, meaning that for y € Go/ Hy we have
val(Mat(y) — 1) > c3.
Corollary 5.10. Let M* € Mod , (G, Go), M = M* @3+ A and r > 1. The map
H' (Ho, M) — H' (Ho, p7 ' M™)
isO0and H (Hy, M) = 0.
Proof. This follows from Proposition 5.8 since M has a basis fixed by Hj. U

Lemma 5.11. Let Hy be an open subgroup of H, n > n(Hy) an integer, y € I'g an element such that
n(y) <mnand B € Mlxd(XH") a matrix. Let d € NU {oo}. Suppose there are Vi € GL;(Ap,,») and
Vo € GLg(A g, .») such that val(Vy — 1), val(Vo — 1) > ¢3 and y (B) = V1BV,. Then B € Mxq(AH, n).

Proof. The proof is exactly the same as that of [Berger and Colmez 2008, Lemma 3.2.5]. The only
difference between that lemma and the statement appearing here is that there one further assumes / =d and
B e GLd(KHO), but these assumptions are not used in the proof. In fact, the very same argument shows
the result holds for matrices with d = 00, as long as we understand that an infinite matrix has coefficients
which tend to zero as the indexes tend to oo. Namely, if R is a ring with valuation and /, d € NU {00}, let
M, 4(R) be the set of matrices A = (a;;) of size [ x d and a;; € R such that val(a;;) — oo as i + j — oo.
The argument then works in the same way. U
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Using Lemma 5.11, we have the following description of D;;O,n (M™). It explains why D;;O’ L(MT) s
functorial in M.

Proposition 5.12. Given Mt ¢ Modl}\+ (G, Gy), the module D;}O’n(MJF) is the union of all finitely
generated A;;O’n-submodules of Mt which are G-stable, Hy-fixed and admit a c3-fixed set of generators.

Proof. Indeed, if we have a submodule generated by c3-fixed elements f1,..., f; andife;,...,esis a
c3-fixed basis, write

fi = Be;
for some matrix B € M4 (AHoT). Then we have
Maty, (y) B = y (B)Mat,, ().

Here by Maty,(y) we mean any matrix which represents the action in terms of the f;. It is not a
priori unique as the submodule may not be free. Nevertheless, we have val(Maty, (y) — 1) > c3 by the
assumption, and this implies that Mat, () is invertible by [Berger and Colmez 2008, Lemma 3.1.2]. So
by Lemma 5.11

B € Mpya(Ay.n) NMia (A7) = My (AT ),
hence the submodule generated by the f; is contained in D;}O’n(M ). ]
Corollary 5.13. Let M, NT ¢ Mod%+(G, Gy). Then for n > n(Gy),
(i) There are natural isomorphisms
Dy (MO @y Dy, (NT) = Dy (M7 @54 N7,
D} (M@ Dy, (NT) = Djj (MT&NT).
(ii) If M* C N* then Dy, (M) =D}, ,(NH)NM™.

5D. Descent of C*(Gy, M). From here on G is a compact p-adic Lie group and Go C G is a small
subgroup, as in Section 2. We continue to assume G and A satisfy the axioms (TS1), (TS2) and (TS3).
The reader may also want to recall our notation and conventions of Section 1B regarding Banach spaces,
completions and tensor products.
By Proposition 2.3, we have for V,;* = V;(G¢) NC*(Gy, @,)* an equality
lim V,* = C*(Go, @)

leN
For M € Modk, (G, Go) we have

A
(li_n)] M* ®z, Vﬁ) =M*®z,C"(Go. Q)"
leN

Each M+ ®z, VZJr is a finite free A*-semilinear representation of Gy. The action of G on each of the
VlJr is trivial mod pk by Lemma 2.2, and hence its action on M T® Vl+ 1s trivial mod pk. Soif n > n(Gy),
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we may define using Proposition 5.8 a A;;k,n—submodule of M+ ®Zp C*™(Gy, @p)* given by

AN
Hk 0 (M) = (hm D;;k Mt ® V,+)> )
leN

The module D7,

Hj,n,00

(M) is then Go-stable and fixed by Hy. By Proposition 5.8 we have natural
isomorphisms

AT O, , Dl a M@ V) = M@V
This shows that D7,

Hen.ooM T) is generated by c3-fixed elements which give it the sup norm, and there is

an isometry
At B, , DM = M* 87, C"(Go, Q)"
The next proposition follows from Proposition 5.12

Proposition 5.14. A finitely generated AJr ,-Submodule of M @Z C*™(Go, Q,) " which is stable by Gy,
fixed by Hy and is generated by a c;3 ﬁxed set of elements is contained in D}, Hen.ooM .

In particular, we have the function log defined, by abuse of notation as the composition of
x :Go—» Go/Hy — Z; and log: Z; — Q,.
It lies in C**(Go, @,)". Note that for g € G, we have
g(log) =log +log(s™") = log — log(g).
Lemma 5.15. The elements 1 and log ofAJr C*™(Go, Qp) T lie in DHk " OQ(A*’).

Proof. The A;}k’n—submodule generated by 1 and log in AT ®C™(Gy, Q)T is stable under the G action

and fixed by Hj. Furthermore, we claim the elements 1 and log are c3-fixed by the action of G/ H;. This
A k

is clear for 1. To show this for log, notice that if g”k € G/ Hy (recalling that G = G(’)7 ) then

Val(g”k —1(log) > k > ¢ +2¢; +2¢3 > 3.
We conclude by Proposition 5.14. O

Proposition 5.16. (i) D}, (A") is a subring of AT & C*(Gy, Q).

(ii) The module structure of Mt QC*™ (G, Q@ ») 7 over AT RCM (G, Q ») T restricts to a module structure
ofDHk n.oo(MT) over DHk n. oc)(AJ’).

Hj,n,00

Proof. D7, (A+) contains 1 by Proposition 5.14. Next, one has the ring and module structure maps

Hj ,n,00

ATQAT > AT ATQMT — M.

Applying Proposition 5.12, taking the inductive limit and then taking completions, we get natural maps

D}, ANHeDf  (AYH—Dj (A
and
D}, ANH®DS | (M) Df (M),

giving the desired ring and module structures. U
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SE. Computation of higher locally analytic vectors, I. Let M™ € Modlli\ (G,Gp)and M = Mt @5+ A.
In this subsection we shall do a first simplification towards the computation of the groups R"(;_la(M ) for
i>1.
If Gy is any open subgroup of G, we have R"(;_la(M )= RiGO_la(M ) so thatif G,, = Gg" we have
Ry, (M) =limH (G, M ®q, C*"(Gy, @))).

Upon possibly making G smaller, we may assume that G is small and that x : Go/Ho — Z; has image
isomorphic to Z,,. Write I', = G,/ H,,.
Lemma 5.17. Fori > 1,

H (G, M ®q, C*"(Gn. Qp)) ZH (Tppi. (M ®a, C*™(G . Q) +4).
Proof. By the Hochshild—Serre spectral sequence and the vanishing of H,; cohomologies in (iii) of
Proposition 5.8 (taking the inductive system M ,:“ w=M T® thrk’ for k' > 0), we have

H (Gy, M ®q, C*™(Gn, Qp)) ZH (G/Hutr (M ®q, C*™ (G, Qp)) ).
Now the inclusion I';, 1y < G,/ H,+; induces an isomorphism
H'(Gu/ Hysk. (M 8, C"(Gp, @)™ ) ZH' (Tys. (M B, C(Gy, Qp) ™).

This again follows from Hochshild—Serre, once we notice all the higher cohomologies of G, /G4«

appearing vanish. This is because G,/ G, is finite and the coefficients are rational. (Il
Corollary 5.18. R w(M)=0 fori>2andn>0.
Proof. Because ' 1y = Z,. O

This proves the first part of Theorem 5.1. It remains to study the 1st derived group
RGo(M) =limH' (T 4k, (M ®a, C*"(Gp, @,))+).
n

Now for m > n(G,4«), we have by Proposition 5.9 a natural isomorphism
A* ®lim Dy ,(MT® V) =MT @lim V,".
¢ ’ teN
Taking the p-adic completion, we obtain a natural isomorphism
K8 o Dty M5) = MTBC (G, @)

and thus
At g, DY (M*) = (M*RC™(G,, Q,)+) ek,

Hyyf.m Hyyx,m,00

On the other hand, recall we have the trace maps
- A Huti
RHnJrk’m AT — AHn+k,m
which induce for Xy, ., » =kerRp, , ,» a decomposition
XH
AT = AHn+kJ7l & XHn-M,m'
Therefore, we can decompose

KHn+k ®AHn DH,,+k,m,oo(M) g DH,,+k,m,oo(M) @ (XHn+k,m ®AH

n+k-m

DH,th,m,OO(M)) k)

4k
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and so we get the description

RG (M) =limH' (T ik, D, om0 (M) @ H (T, Xty om @, Dy oo (M),

e
n

where in each object of the direct limit, we take m > n(G,4¢)-
5F. Computation of higher locally analytic vectors, II. 1f m > 0 is an integer and y is an element of a

group, write y,, for y”". The following simple lemma will be used to compare the behavior of (y — 1)”
and y,, — 1.

Lemma 5.19. Let £ > 0. The element X P of the ring Z,[ X1 is in the ideal generated by the elements
pPrX =D for0<i <.

Proof. For £ > 1 we have

p—1 p—1
X 1= - 1)(2 X"P“”) = x" - 1)(2 T+ (x? - 1))
i=1 [

i=1

p—1
=" - 1)<p +y X - 1)),

i=1

so that X' — 1 lies in the ideal

X7 =D (X 1)) = (p(xX?T — D, (X =1,
Let I, be the ideal generated by the elements p' (X — 1)1~/ for 0 <i < ¢. It is easy to check that
(plo—1,1 62_1) is contained in I,. Hence, induction on ¢ shows that X Pt belong to ;. O

So far we have only used the axioms (TS1), (TS2) and (TS3). We shall now use the final axiom (TS4),
which proves us with a positive number ¢ > 0.

Proposition 5.20. If (TS4) holds, then
(1) Apn.p is U's-analytic for an open subgroup of " depending on t.
(ii) There exists an element s = s(t, c3) = s(n, m, Go, c3) such that for y € Gp4x/Hy+r we have
= DD}, oM C DYy (M),
(ii1) Dp,. . .m,00(M) is I'-analytic for some open subgroup I" of Ty which depends onn, m, G and cs.
Proof. Once (ii) is established, we claim parts (i) and (iii) follow from [Pan 2022a, Example 2.1.9]. Let
us elaborate a little bit. Take ¢ large enough so that
-+ +Dt=L+t+@—-1i>2
for each 0 <i < £. Then for such £ (which only depends on ¢) we have by Lemma 5.19
(e — D(A},) C PPAT,.
so thatif b € Ay ,, the series

iy =Y} ) = 1"®)

n>0
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converges. This shows b is analytic for the subgroup generated by y,. The argument for (iii) given (ii) is
similar.
To show part (ii), recall the identity

(y —D(ab) =(y —D(@b+y@)(y — D).

Axiom (TS4) implies that if a € A;,m and b € D}, (M™) is c3-fixed, then ab is min(cs, t)-fixed.

Hy 1k ,m,00

Since the c3-fixed elements topologically generate D,*,Hk,m,oo(M T), it follows that every element of

D}, (M) is s = min(c3, 1)-fixed. O

Hyyi,m,00

Using this we can show

Lemma 5.21. Given n there is m sufficiently large depending only on n (and not on M) such that

1 —~
H (Fﬂ-‘rkv XHn+k,m ®AH

n+k-m

Dy, .m.00(M)) = 0.

Proof. (This argument is adapted from [Pan 2022a, Lemma 3.6.6].) Fix mg > n(G,4¢). From the
discussion after Corollary 5.18, for m > m( we have a natural isomorphism

~H S
n+
A ®AHn+k.m

Dy, m.00(M) = Dy mco(M) @ (X, @y Diyiim,c0(M)).

ko

By Proposition 5.12, we have an isomorphism

AHn+k,m @ DHn+k7m0sOO(M) = DH:erk,m,OO(M)'

Let XJ[,nM m = XH,.,.m VAT. We get an induced isomorphism
+ S + +y ~ x+ S +
X, em ®AEn+k,m DHn+k,m,<>o(M ) = X, em ®AEn+k,m0 DHn+k,mo,oo(M)'

Let y be a generator of I',,4. By Proposition 5.20, there is some s such that

(v = DD} oo™ CP DYy (M),
If ¢ is sufficiently large Proposition 5.20 implies that
Ve = DD g ocM ) CPPOD g o (M)

(we take 2c3 rather than c3 to take of convergence later in this argument). Choose such an ¢, and take m
large enough so that n(y,) < m. Then by (TS3) we have val((y, — D~'(x)) > val(x) —c3 for x € X}S

kM’
We will now show that any element of Xp, , n ®AHn+k»m Dy, .,.m,00(M) is in the image of y, — 1. This

will also imply any element is in the image of ¥ — 1, since y; — 1 is divisible by y — 1, and hence it will
further imply that the cohomology

H' (Totks Xty O, n Dbtyyim oo M) = Xty oom ®nyw Doyom oo M)/ (y — 1)

is 0.
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To do this last step, it suffices to show that each simple tensor

a®beX} M)

n+k,M

®r:  Df (M*) =X}

®,+ DF
aomo k110,00 nrksm < Ay H,

koM n+k,m,00(

is in the image of ¥, — 1. Choose an integer r so that p”a is in the image of (y; — 1) ™! restricted to X;‘—In+k,m
(choose any r > c¢3). It suffices to show p"a ® b is in the image of y, — 1. So write p"a = (y; — l)_1 (¢)
forc e X};Hbm, and consider the series

+00 +00
Y=Y =D @m-D'® =) vl-w T ©ew-1 0.
i=0 i=0

This series converges, because by our choices

val(re—1) ') = val(x)—¢c3 on X}, and  (ye—1)(x) = val(x)+2c3 on D . (M*)!
A direct computation then gives

(re—=DM =@ —DE®b=p'a®b,
so p"a ® b is in the image of y, — 1, as required. U

Combing Lemma 5.21 with the discussion after Corollary 5.18, we get the following description of
R§ . (M).
Proposition 5.22. RG.o(M) =limH' Tk, Dy om0 (M),
where the direct limit is taken over pairs n, Ir’l}’lm
5G. Computation of higher locally analytic vectors, III. We are now almost ready to prove our theorem.
First we prove a lemma that will be used.

Lemma 5.23. Let T = y?» and let B be a Banach representation of T'. Suppose B = B'*, and that

ly — 1|l < p~ /=D,

Then ||b|| = ||b]|r-an for any b € B.

Proof. We have for x € Z,, that
VE(b)
X _ )4 k
y by =) L

where V,, =log(y). By definition

16/ r-an = iug{ﬂv)/f (B)/ k).
Now recall we have -
(y —D"

Vy=(r =D (D"

m>0

’

so ||V, (B)|l < [ly — 1]|1Ib]l, and more generally
IVy @) <y — 11 (1511
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It follows that for £ > 1 we have

IV5 )/ k! < p~ =Dy =114 |1b] < 1151,
s that [|b||r_a = [5]. O

Proof of Theorem 5.1. By Proposition 5.22, Ri;_la(M) = @n’m H' (T4, Dy, ., .m,c0o(M)). Fix n and m.
Given b € Dy, m,00(M) we shall show it becomes zero in some HI(FHk, Dy, m',00(M)) for some
¢ >n, m" > m—this will show the direct limit is zero. By Proposition 5.20 we know there is an open
subgroup I' C I';, 4 such that Dy, ., m 00(M) is I'-analytic. Writing y for a generator of I', we may take
I" small enough so that ||y — 1] < p~ /=D "and hence Lemma 5.23 applies. Thus, writing |||, for the
norm on Dy, ., m 00(M) induced from its inclusion into M RC™(G,, Q,), we have ||b||, = ||b]|r-an for

b€ Dy, , moo(M). We know there is a real number D > 0 such that if b € Dy, ., u,00(M) then
IVy D) lln = IVy (B)lIr-an < DI|blIr-an = Dbl
Now choose £ > n such that I'; has index p’ in ", where ¢ is taken large enough so that
2p1/(P—1)D <p'.

Lety, = ypl be the generator of I'y, and let log, € C*"(G¢, Q) : G, — G¢/Hy — Z,, be the logarithm
so that log,(y,) = 1. Now let m’ > m be large enough so that Dy, m oo(M) is defined. Recall that
by Lemma 5.15, log, € DHM,,,,/,OO(K*). Let I'" C g4 be an open subgroup so that Dy, 00(M) is
[-analytic and write p? for the index of I'" in I"y4,. Finally, write ' for the generator of I'’. Again by
making I'" smaller we may assume ||y’ — 1] < p~/%~V on Dy,,, w.co(M). We have
k g t+k+q
Y =" =yt
Let z, = log, /pk“l € DHHk,m’,oo(K)a the one computes that y'(z¢) = z¢ + 1. Therefore, V,(z¢) = 1.

Now consider the series
2 3

2y 2 82
bze =Yy (0) 2 + V3 (b) 35—+

in Dy, m',0o(M). We claim first it converges with respect to the norm ||-||¢ of Dy, m',00(M). Indeed,

we have
k+q

lzelle=p
and (noting that V;, = pitt +k+‘/)V7‘;)
IVL Bl = p~ ANV Bl < p~' TNV B) [l < pT CTHEO DD,
so the general term of series has size

Hv]l//(b)/(l +1)!- ZZ-H e < pfi(t+k+q)Dipi(kJrq)pi/(pfl) — (pftDpl/(pfl))i < 271"

so the series converges in the in the || - ||, norm. But then the series must also converge with respect to
Il - lr7-an because of Lemma 5.23. So if we write y for the sum of the series, it makes sense to speak of
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the derivative V,/(y), and one computes that V,(y) = b. So b is in the image of
V}// : DHHk,m/,oo(M) - DHg+k,l71/,OO(M)a

hence also in the image of y’ — 1, which divides V.. But y' = yt’fk 80 Y14k — 1 divides y' — 1. It follows
that b is also in the image of y;1¢ — 1. This means that b is O in

Doy oo(M) ] (epx — D) EH' (Togk, Dy, 00 (M)
and we are done! ]

Remark 5.24. (1) Since the choices of £ and m’ did not depend on b, each Dy, ,, n.0o(M) maps in its
entirety to 0 in some Dy, m',00(M). This shows that M is strongly £2l-acyclic in the sense of [Pan
2022a, §2.2]. After this work was completed, Pan proved that strong £2(-acyclicity is in fact automatic in
this setting, see [Pan 2022b, Proposition 2.3.6].

(2) The proof of Theorem 5.1 shows the vanishing of h_n)lnm H! (Lie(Fn+k), DHHk,m,OO(M)), which is a
priori stronger than the vanishing of h_r)nnym H' (Tngxs DH, om0 (M)).

6. Descent to locally analytic vectors

Work again in the setting of Sections 3—4. We shall assume in this section that K, contains an unramified
twist of the cyclotomic extension. The purpose of this section is to prove the following theorem.

Theorem 6.1. The functor £ — Oy ot & gives rise to an equivalence of categories
{locally analytic vector bundles on X} = {I"-vector bundles on X}.
The inverse functor is given by € — &2,
In the rest of this section, we shall prove that given a I'-vector bundle & on X, the natural map
~la ~
Ox ol E > ¢

is an isomorphism. This is enough for proving Theorem 6.1. Indeed, if this isomorphism is granted, then
in particular it follows from Proposition 2.1 that £ is locally free over (91;, so that the functor & > £
is valued in the correct category and is fully faithful. On the other hand, it follows from Example 4.5(2)
that it is also essentially surjective.

6A. Computations at the stalk. In this section, w let & be a [-vector bundle. We have the fiber & k(Xoo)
at xoo, a finite dimensional K, ~o-semilinear representation of I', and the completed stalk E Q;:, a finite free
Bg}([f(\oo) = Bj;"-module. We define

Dsen(€) = )™ and  DLH(E) = (£,

If V is a p-adic representation and E=E(V)asin Example 3.4, and if I' = Iy, then we recover the
classical invariant Dge, (V) according to [Berger and Colmez 2016, théoréme 3.2]. The invariant D;qf(V)
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is also recovered, see [Porat 2022, Proposition 3.3.]. It is therefore natural to extend these definitions to
arbitrary £ and I' as we have done here.
There is the following decompletion result.

Theorem 6.2. (i) The natural map I?oo Qg Dgen (&) — & k(xy) IS an isomorphism.
(i) The natural map B&%(I/(\oo) ® B (Roo)m D(Tif(g) — fgj is an isomorphism.
Proof. The fiber g k(xs) 18 a finite dimensional K, oo-semilinear representation of I'. So (i) follows from

[Berger and Colmez 2016, théoreme 3.4]. For (ii), write Iy for the maximal ideal of B;]Q(I? o). It suffices
to prove that for n > 1 the natural map

B (Koo)/ I} @ jirys Ex [TV — Ec /1§ (%)
is an isomorphism.
By Theorem 5.1 (more precisely, Corollary 5.6(i)), we have Rlla(IG” -lg v/ 1y) =0, so by devissage the
map
Ex/ D™ = €4/ 1) = Dsen(E)

is surjective. It follows from the case n = 1 and Nakayama’s lemma that (x) is surjective too.

For injectivity, we argue as follows. Let e1, ..., e; be a basis of Dge, (€) over the field K é% By what
was just proved, we may choose a lifting ey, .. ., e4 of this basis to (éxm/lg’)la. Then 1 ®eyq,...,1Rey
generate

B (Ko) /15 ® gt pmys e/ IO
according to Nakayama’s lemma.
Now suppose that

Y xi®ei € B (Koo) /15 ® gy Erns/ "

is in the kernel of (%), so its image is 0 mod /. Choose a generator £ of Iy. Reducing mod /5 and using
the injectivity of (x) for n = 1, we get the relation ) x; ® e; = 0. As the ¢; form a basis, each x; must be
divisible by &£. Writing x; = £x/, we have

Zx,-@)e,-:st;@e,-:SZx{@e;,

Y X ®yi € BR(Ks)/ 1] ® gt mtye Ex/1;7HE

so the image of

in & xoo/ 10"_l is 0. The injectivity now follows from induction. (Il
Let I be a closed interval with |log(/)| < log(p) and let
M; =H’x,, ).

Theorem 5.1 allows us to prove the following Proposition 6.3; we shall subsequently prove a stronger
statement in Theorem 6.5.
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Proposition 6.3. There are natural isomorphisms

Dsen(&) = MP /(oMD" and  DJ(&) = lim MP /(15 M)".
n

Proof. As Iy is principal, Iy M, is finite free over B;. By Corollary 5.6(ii), the cohomology Rlla(lg M 1)
vanishes. Applying la to the short exact sequence

0— IgM]-) M[ —> M[I@/M] — 0

we get M}a/(lglql)la = (M,/Ig]\?,)la = DSen(g), which gives the first isomorphism. By the same
argument M/ (12 M)* => (M;/1} M;)™ for n > 1. To get the second isomorphism, take the limit
over n. O

6B. Descent to locally analytic vectors. In this subsection we will give a proof of Theorem 6.1. We
continue with the notation of Section 6A.

We start with the following key proposition, which builds upon all of the work done in Section 4,
Section 5 and the previous subsections of Section 6.

Proposition 6.4. Let [ =[r, (p —1)p"] be an interval withn > 1 and | log(I)| <log(p). Then the natural
map
B, D MP — M, (6-1)

is an isomorphism.

Proof. First let us explain how to reduce to the cyclotomic case. After an unramified twist, which causes
no obstructions to descent, we may assume Kcyc C Koo. Set

~ ~ Gal(K /K.
M eye := M, (Koo/ Cyc)'

‘We then have
M; = By ®E,_Cyc MI,cyc

(see for example [Berger and Colmez 2008, corollarie 3.2.2]), and if the conclusion of the proposition
holds for the cyclotomic case, we have

Ml,cyc = E],cyc ®§}a_cyc M}?cyc
and hence

~ o~ ~1a
M; =B 50 M .
1 1 ®B,‘fcyc I,cyc

This shows that M, has a basis of locally analytic vectors and by Proposition 2.1 the map (6-1) is an
isomorphism.

It remains to establish the proposition in the cyclotomic case where B, =B I,cye- By Proposition 4.2,

la

I.cyc-module, it follows from [Stacks

~ . ~h _ Sn i ~
Bj cyc 1s flat as a B -module. Since M/, is torsionfree as a B
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2005—~, 0AXM] that El,cyc ®BY,, Z\Z}?Cyc is also torsionfree. By Proposition 6.3, the completion at
Iy C By cyc of (6-1) is nothing but the map

+ + (5 SA,
By ®B£{'P*‘ D (€) — 5)?;’

so by Theorem 6.2, the map (6-1) is an isomorphism at least after taking this completion. As B Ieye 18
a PID (see Proposition 3.1), it follows that (6-1) is injective with cokernel supported at finitely many
maximal ideals. These maximal ideals correspond to a finite set of points on X, and this set must form a
finite orbit under the action of I". But by [Fargues and Fontaine 2018, Proposition 10.1.1], the only point
with finite orbit under the I'-action is xo,! Thus the cokernel of (6-1) is supported at /5. But then it must
be 0, as we have just shown the completion at Iy is an isomorphism. (Il

Proof of Theorem 6.1. Let U be an open subaffinoid of X for I = [r, (p — 1) p"]. Then we claim that the
natural map
Ox(U) ®pis 1, H'(U, £%) — H'(U, &)

is an isomorphism. Indeed, we have

HO(U’ g) = OX(U) ®§,’Cy I,cyc*

C

M eye = 0x(U) @pn M
Thus HO(U, €) has a basis of locally analytic elements. By Proposition 2.1, we have an isomorphism
Ox(U) ®¢, wy H'(U, )" - H'(U, &),
from which the claim follows.
Now let (Oxy ®01§) g la)° be the presheaf on X' sending
U > Ox(U) @iy ) & (V).

The X for various I of the form I = [r, (p — 1) p"] with | log(1)| < log(p) give a covering of X, so the
claim shows that the natural map
(Ox @y £° — &

is an isomorphism on stalks. Theorem 6.1 follows. ]

The proof of Theorem 6.1 essentially shows that £ is quasicoherent. This leads to a simple interpretation
of Dge, and D(;f in terms of £ as follows. Given a locally analytic vector bundle define

DSen(g) = Sk(xoo),
the fiber of £ at x,, and
Dl (&) =¢&F

the completed stalk of £ at x,. These would not a priori be the same as Dsey (&) and D(;“if(é ), because
quotients in general do not commute with locally analytic vectors, but they do in this case.
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Theorem 6.5. Let € = Oy ®oi E. There are natural isomorphisms
Dsen (5) Dsen(6)  and Ddlf(g) dlf(g)

Proof. For I =[r, (p — 1) p"] with |log(1)| < log(p) write ]\71 =HO(x;, 5). For any sufficiently small
U containing x~, the proof of Theorem 6.1 shows that

H(U, £) = Ox(U)* @1 M.
It follows that the quotient & /m} &y, of the stalk &, by the n-th power of the maximal ideal
My, C (’)l;,xoo is identified with the quotient M1/ (1} M)"™. Now use Proposition 6.3. O
7. The comparison with (¢, I')-modules

In this section, we give reminders on (¢, I")-modules and compare them to locally analytic vector bundles.
We keep the notation from Section 6 and the assumption that K¢ye C Koo for some 7.

7A. Galois representations and (¢, I')-modules. Recall the notation from Section 3 and let

rig rig —
5>

B! =B! (Ks)=1imH(V.00), Oy) = limlim H' (Y, 5, Oy)
r r

~

be the extended Robba ring. The (¢, [')-actions on ) induce actions on B:lg

Definition 7.1. A (¢, [')-module over B 1s a finite free BT -module with commuting semilinear (¢, I')-

actions such that in some basis Mat(¢) € GLd(BrTl g)

We can compare these objects to (¢, I')-vector bundles using two functors. On the one hand, if Misa
(¢, I')-vector bundle, then M = lim, H° Vir,00), M M)isa (¢, I')-module. Here, the nontrivial thing one
needs to check is that MJr is free and this follows from BT being Bézout [Kedlaya 2004, Theorem 3.20].

One the other hand, glven a (¢, I')-module Mrlg we deﬁne a (¢, I')-vector bundle FT(Mrlg
If M!_isa (¢, I')-module then for every r >> 0 we have a finite free B[r,oo)—semlhnear ["-representation

rig
M[r,oo) together with isomorphisms

) as follows.

@ Blr.oo) ®F,,  Mir/p.oo) = Mir.e0)

[r/p.o0)
as well as identifications

Bf,®p,  Mio0) = M.
Using the isomorphisms ¢ : §[,,oo) = Elr /p,o0) We can then uniquely extend this to all » > 0 by inductively
defining M{,/pn o0) through the isomorphisms

(p*B[I’/p"_l,OO) ®§[r/p”400) M[f/p”,oo) = M[r/p"",oo)-
Setting for every r > 0

HO W00y, FT(M},)) := My o)
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and for every s > r

HVprs), FT(ME,) := My 0) ®F,  Birs)

we obtain a (¢, I')-vector bundle FT(lVIjig).

Proposition 7.2. The functors M lim, H(V}r.00)s M) and FT induce an equivalence of categories
{(p, I')-vector bundles on Y(0,o0)} = {(¢, I')-modules over E:ig}.

Proof. This is well known. See for example the discussion appearing directly after [Scholze and Weinstein
2020, Definition 13.4.3]. The treatment there is given in the situation where there is no I'-action present,
but the same proof works in our setting. (I

The following theorem due to Fontaine and Kedlaya gives the relation of these objects with Galois
representations. To formulate it, we need to introduce some terminology. Let y be the point of )

corresponding to p = 0. A (¢, I')-module over B’ is called étale if it has a basis for which Mat(p) €

rig
GL4(Oy,y). We also have the notion of a semistable slope 0 vector bundle on X' — we refer the reader to

[Fargues and Fontaine 2018, définition 5.5.1, exemple 5.5.2.1].
Theorem 7.3. The following categories are equivalent.

(1) Finite dimensional Q ,-representations of Gg.

(2) Etale (¢, I')-modules over Ejig-

(3) T'-vector bundles on X which are semistable of slope 0.

Proof. The equivalence of (2) and (3) follows from Proposition 7.2 and Proposition 3.3. The category
in (1) is equivalent to (¢, I')-modules over B = @y’ y[1/pl, where @y, y is the p-adic completion of
Oy,y, by the theorem of Fontaine [1990, théoréme 3.4.3 and remarque 3.44(c)]. Next, by a relatively
elementary argument, this category is equivalent to the category of (¢, I')-modules over BT, see for
example [Kedlaya 2015, Theorem 2.4.5] or [de Shalit and Porat 2019, Theorem 4.3]. Finally, one can
replace Bf by §:ig by [Kedlaya 2004, Proposition 5.11, Corollary 5.12]. See also [Fargues and Fontaine
2018, proposition 11.2.24]. U

~

7B. The comparison with locally analytic vector bundles. Let B

~ rig
vectors in B:i . for the action of I". We have a corresponding version of (¢, [')-modules.

Definition 7.4. A (¢, I')-module Mjig over E:i’gpa is a finite free §$’gpa—module with commuting semilinear
(¢, I')-actions such that in some basis Mat(¢) € GLd(ErTi;gp a

It is étale if B Qe M s so.
rig

be the subring of pro-analytic

), and such that the action of I" is pro-analytic.

rig rig
The following theorem explains the relationship between (¢, I')-modules and locally analytic vector
bundles.

Theorem 7.5. The following categories are all equivalent.

(1) (@, I')-modules over E:ig.



Locally analytic vector bundles on the Fargues—Fontaine curve 937

(2) (¢, I')-modules over E:i:gpa.

(3) (¢, I')-vector bundles over Yo, o0)-

(4) Locally analytic ¢-vector bundles on Yo, ).
(5) I'-vector bundles on X.

(6) Locally analytic vector bundles on X.

Proof. The equivalences (1) < (3) < (5) are Propositions 7.2 and 3.3. (4) < (6) is similar to
Proposition 3.3. The proof of (5) < (6) was given in Theorem 6.1, and (3) < (4) can be proved
in a similar way. It remains to give an equivalence between (2) and (4). The Frobenius trick functor of
Section 7A induces a functor

FT : {(¢, I')-modules over le gp } — {Locally analytic ¢-vector bundles on YV )}

In the other direction we map a locally analytic ¢-vector bundle M to M = lim, HO(),. 00)s M). It is
easy to check from the definitions these two are inverses to each other once we know that M — M
valued in the correct category. So it remains to prove the following:

Claim. Mlg is a (¢, I')-module over B:lgpa.

Proof of Claim. We only need to explain why /\/l o is afree B:lgpa—module Since we can always descend
along unramified extensions, we may assume KCyc C Kso. Then M and /\/l g are both base changed from
their cyclotomic counterparts MS8(Koee/Keve) and MLgG al(Koo/Keye) |50 we reduce to the cyclotomic case.

To deal with this case, recall the rings Bj cyc from Section 4. The (cyclotomic) Robba ring is defined as

Big cye T h_r)nl(&n B[r,s],cyc-
ros>r
The maps By, s cyc — B; ,cyc Of Section 4 induce an embedding Brlg oye B;Eg oye — B;Eg(KCyC) By
[Berger 2016, Theorem B] we have
ptpa _ —n pt
Brlg U @ n(Brlg cyc
n>0

and since each ¢ "(BT ) is a Bézout domain [Lazard 1962], the conclusion follows. O

rig,cyc

In particular, we recover a decompletion result entirely phrased in terms of (¢, I')-modules:

{(¢, T")-modules over Ejig} = {(p, I')-modules over BrTlgp }-

This result recovers the decompletion theorem of Cherbonnier and Colmez [1998] and Kedlaya [2004].

Theorem 7.6. If K = Kcyc, base extension induces an equivalence of categories

} = {(@, T')-modules over B!

{(p, I')-modules over B! g, Cyc}

rig,cyc
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Proof. If M is a (¢, I')-module over B — U, <p‘”(B:ig’Cyc) then there exists n > 0 such that M

rig,cyc
is defined over go_”(B:ig’Cyc). Ifeq,..., id yis a basis of M then ¢"(ey), ..., ¢"(ey) is a basis defined
over B:ig, eye- Therefore the category of (¢, I')-modules over B:ig’ oye is equivalent to the category of
(¢, I')-modules over E:i;;iyc. But this latter category is equivalent to (¢, [')-modules over §:ig’ eye by
Theorem 7.5. U

8. Locally analytic vector bundles and p-adic differential equations

8A. Modifications of locally analytic vector bundles. We first introduce the following category. It is the
locally analytic version of Berger’s category of B-pairs; see [Berger 2008a].

Definition 8.1. A locally analytic B-pair is a pair W = (W,, W(;{{), where W, is a locally free (91;_{00} =
(’)ljél X-{oo}-module with a semilinear I"-action and WJR - ng ®01)a(_[ | W, is a I'-stable B;%’pa-lattice.

Proposition 8.2. The functor from locally analytic vector bundles to locally analytic B-pairs mapping £

1o (€] x-{o0} Dgf(S )) is an equivalence of categories.

Proof. There is an obvious functor from the category of locally analytic B-pairs to the category of B-pairs.
This leads to a commutative diagram

{locally analytic vector bundles} —— {locally analytic B-pairs}

l .

{I"-vector bundles} - { B-pairs}

The left vertical arrow is an equivalence by Theorem 6.1. The lower horizontal arrow is also an equivalence,
as explained in [Fargues and Fontaine 2018, §10.1.2]. It follows that the functor from locally analytic
B-pairs to B-pairs is essentially surjective, so every B-pair comes from a locally analytic B-pair by
extending scalars. It now follows from Proposition 2.1 that such a locally analytic B-pair is unique. This
allows us to define a functor from B-pairs to locally analytic B-pairs, which gives a quasi-inverse to right
vertical morphism. It therefore has to be an equivalence. By commutativity of the diagram, the upper
horizontal arrow is also an equivalence, as required. U

Definition 8.3. Given two locally analytic vector bundles £ and &, we say that & is a modification of &

if &1 x-o0) = E2] x-fo0)-

Note that in particular any I"-stable B;Epa—lattice N C Dyis(€) defines a modification of £ by taking
the pair (&]x-(c0}, N).

Remark 8.4. We could have also defined this notion of modification in terms of usual B-pairs. Our
choice of presentation is meant to illustrate that one can speak of modifications without leaving the locally
analytic realm.
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8B. de Rham and C,-admissible locally analytic vector bundles. Let £ be a locally analytic vector
bundle. We say that:

e £is Cp-admissible if dimg £ =! = rank(€).

o &£ is de Rham if Dgr(&) := dimg ég;l = rank(&).
If V is a p-adic representation and £ = £(V)™ then Exroo:l =C,® V)P and Dgr(E) = Dgr(V), so this
extends the usual definitions.

In what follows, note that D4r(€) has a natural filtration induced from the Iy filtration on é‘xm.
Definition 8.5. Suppose £ is de Rham.
(1) Ngr(€) is the modification of £ given by the lattice Dgr () ®k B;;pa C Dyit(€). It is C,-admissible.
(2) Mgr(€) is the locally analytic ¢-vector bundle corresponding to Ngg(E).

8C. The surfaces Yog,1. and Xjog, 1. Fargues and Fontaine [2018, §10.3.3] define a scheme Xjqg. It
is a line bundle over the schematic Fargues—Fontaine curve Xgr = Xpp(C,) with a natural projection
7 : X1og — X; further, it has a Gg-action and 7 is Gk -equivariant.

We let Ajog be the analytification of Xjo. If L is a finite extension of K, we set

/Ylog,L = AXlog/Gal(E/Loo)-

(Alternatively, this can be defined as the analytification of the quotient of Xjo by Gal(K /Lso)). Similarly,
write Viog = V(0,00) X & Xog and Viog, 1. = y]og/Gal([Z/Loo); then Mog,1./¢ = Alog, .- These spaces have
an action of Gal(L, /L), an open subgroup of I".

Write p;, (resp. piog, 1) for the projection maps Y, — Y or X, — X (resp. Niog,. — Y or &jgg,1 — X).
If I C (0, co) is closed interval, let Viog 1,1 = Pfogl,L(y]) and similarly X 7,7 = Pfogl,L(X[) for X if I is
sufficiently small.

Define

Elog,L,I =H"Whog.1.1» O )
As explained in [loc. cit.], there is a natural Gk -equivariant morphism of sheaves
d:Ox,, — Ql(.ng/x = PlogOx(—1)
which for every vector bundle £ over X’ induces an O y-linear morphism
N : pl*ogé’ — pl’;g5® Qiq‘,g/x-

See [Fargues and Fontaine 2018, Lemma 10.3.9] and the subsequent discussion. Similarly, N can be
pulled back to Vog. This then further induces a B r.s-linear differential operator N : Elog, L1 — Elog, LI
IfT e Elog’L’I is such that N(T) = 1 then E]Og’[”[ = IN}L,I[T] and N =d/dT. Such a T exists: if w is
any nonunit @w € igo and @’ = (w, w'/P,.. ), take T = log[wb].

Lemma 8.6. There exists T € Ellg‘g’L’l with N(T) = 1. Consequently, El"‘g’LJ = E?,I[T]'

lo
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Proof. The second claim follows the first claim, Proposition 2.1 and the fact that taking locally analytic
vectors commutes with filtered colimits. To find such an element 7', consider the exact sequence

0— EL,I — E{ggf’)] ﬂ) ELJ — 0.
After taking locally analytic vectors the sequence stays exact by Theorem 5.1. Thus the sequence

Bla 3la,N>=0 N Hla
0— B, — Blog’L’I — B[, —>0

is exact. This means we can lift 1 to an element T with N(T) = 1, as required. O

Proposition 8.7. Suppose 97 (xo0) NV # @. Then

(1) If M is a finite extension of L contained in L, then ES;I(LL?/ M _

unramified extension of Q,, contained in M.

My, where My is the maximal

-\ plaLiel'=0 _ 5/ . . . . .
>i1) Blog, L1 = Lg. the maximal unramified extension of Q) contained in L.

Proof. Point (i) follows from [Fargues and Fontaine 2018, proposition 10.3.15] and (ii) follows from (i). [J

One way to construct de Rham locally analytic vector bundles is as follows. Write Modg}l;(p’N(GK) for
P

the category of finite dimensional vector spaces D over Q' together with a semilinear action of ¢, a
monodromy operator N with o N = pNg, a filtration on D Squw K" and a discrete action of Gg on D
which respects the filtration. For example, if V is a potentially semistable representation then Dy (V) is
an object of Modg.ll,);fp(GK).

There is a functor

E: Modgll,;fp (Gk) — {de Rham locally analytic vector bundles}
P

defined as follows: Given D € Modg}l;‘p (Gk), choose L such that D is defined over L, i.e., D= @‘;n ®r, Do.
¥4

Such an L exists because the action of Gk is discrete. Then £(D) is defined to be the locally analytic

vector bundle corresponding to the pair

1 :1,N:0,G 1 Loo Koo .10 H ,pa Gal Loo Koc
((O;log,L—pE,;L(OO) ®1, D) Aboe/Koe) Fil)(Byg ™ @, Do)/ K)),

It is de Rham because

DcC BiK»Pa ®FilO(B§IRLaP8. ®LO DO)Gal(LOO/KOQ)

is fixed by an open subgroup of I". If we choose any larger L we get the same pair, so the construction
D +— £(D) is independent of the choice of L.

8D. Sheaves of smooth functions. In this subsection we introduce certain sheaves of functions on X'.
All of these can be defined equally well for Vo, 0).

Definition 8.8. We define the following sheaves of functions on X’.

(i) Smooth functions: O = OI;’LiGF:O.
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(i) For [L : K] < oo, L-smooth functions: Of\‘;sm = pL,*(pZ(QIj})Lie r=0,
(iii) For [L : K] < oo, L log-smooth functions: Oé‘lsm = Dlog, L,+( pf;g’ LOE@)UC r=0,

(iv) Potentially smooth functions: O%" = =1lim; x1 00 oLsm,

(v) Potentially log-smooth functions: OpX =1lim; x1 00 Oktsm,

The following proposition has been essentially explained to us by Kedlaya.
Proposition 8.9. Let U be a connected open affinoid subset of X.
(i) The sections of each of O%", O5™™ and Ogjm at U is a field which injects (noncanonically) into C,,.

(1) If xoo € U then there are canonical injections
HY(U, O < Ko, H'(U,0%™) > Lo and H(U,OK™) < K.
(ii1) If xoo € U and U = Xy, we have
H(x;, O =K, H(x;, 0™ =L, and H(Xx;, OF™) = K"
(iv) We have Oig"xw = Koo, Offsx“:o =L and ngs,r:w =K.
Proof. Each of the assertions (i)—(iv) for Opsm follows from the corresponding assertion for Ofgsm. We shall
give below arguments proving (i)—(iv) for O%"; the proofs for OL ™ are the same once K is replaced by L.

After passing to an open subgroup of I', we may assume I stabilizes U. By [Kedlaya 2016, Theo-
rem 8.8], the ring Oy (U) is a Dedekind domain. Each rank 1 point x of U defines a maximal ideal of
Ox(U), so f € Ox(U) can belong to only finitely many of these points. If f € Oy (U) is killed by Lie I"
then f is fixed by a finite subgroup of I', so these finitely many maximal ideals must form a finite orbit
under the I'-action. But the only rank 1 point with finite orbit is the point x~,, again by [Fargues and
Fontaine 2018, proposition 10.1.1]. So every f € O%"(U) either vanishes only at x, or is invertible.

If xo0 ¢ U, this proves that OF"(U) is a field. In particular, it injects into the residue field of each rank 1
point, and there is a dense subset of X with residue field a subfield of C,,. This proves (1) in this case. On
the other hand, if xo, € U then there is a ['-equivariant embedding of Oﬂ'{l_,(U ) into B (K )2 which gives
an embedding of O%"(U) into B (K ylaLiel=0 — g This simultaneously proves (i) and (ii) for O%"

Next, (iii) follows immediately from Proposition 8.7. For (iv), we have already shown that O (U) C Ko
for each U which contains x,, SO Oﬁé‘}xm C K. To show the converse inclusion, use the henselian
property of local rings of adic spaces [Morel 2019, I11.6.3.7] to show first that Koo C Ox .. It then
follows that Ko C Oy",_, which concludes the proof. U

We raise a few questions to which we expect a positive answer but have not answered in this article.

Question 8.10. (1) We can show that K C (’)g(sm if x is any rank 1 point. Indeed, any untilt of (Ebp is
algebraically closed, and one can use this to show that the completed local rings Bé;’ . contain K. This
implies by the same argument that K C Ox x. But every element of K has finite degree over Ko, which is
fixed by Gy. This implies that every x € K is fixed by an open subgroup Gg so K C (’)p o

Is it true that K = Op;’r; for any rank 1 point x?
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(2) Is it true that for every connected open affinoid U C X, the field Opsm(U ) is a finite extension of Kj"?
In particular, this would imply a positive answer to question (1).

(3) Is it true that O™ = OLS™ (and hence O™ = O%™)? If xoo € U then O™ (U) = OLS™ (),
This can be seen by using the embedding into BdR as in the proof of Proposition 8.7.

8E. The solution functor. In this subsection, we assume £ is a de Rham locally analytic vector bundle.
Given L finite over K, we define the sheaves of solutions on X,

(1) Sol. (&) := pr +(PENGR(E))HT=0, a module over O%*™,
(2) Soliog, £.(E) := Plog,,x(Prg L Nar (€)X "=0, a module over O5™,

(3) Sol(&) :=1limy; . gy o, SOliog,.(£), a module over OSQS‘“.

We have similar versions of these sheaves on )0, denoted by Sol?(£) for % € {L, {log, L}, &}.
Since the ¢ action on Vg, is I'-equivariant, there are natural identifications Sol.(€) = (Sol? (&))P=!
and Sol? (&) = (93,(000) ®0s, Soli (), where (x, ¢) = {(L, L-sm), ({log, L}, L-Ism), (&, plsm)}.

To make the link with £ clear, we shall need the following form of the p-adic monodromy theorem
due to André [2002], Kedlaya [2004] and Mebkhout [2002].

Proposition 8.11. There exists a finite extension L over K such that if U is an open subset of Vi, ) for

some r > 0 then the natural map
1
(’)j}lﬂg L(plog L U) ®0L Ism " W) Sollog L EOU) — OM L(plog L U) ®Ola ) Mgr(E)(U)
is an isomorphism. Consequently, if U C X} for some I then
O (Dieh LU) @iy SOliog LENU) <> O% (pis) 1 1) @t 1) Nar (€) (V).

Proof. Let E:ig be the (¢, I')-module corresponding to Mgr(£). By the p-adic monodromy theorem, we

know there is an isomorphism

'pa Tpa Liel'=0 ~, B T.pa ~T.pa
log L ®L (Blog L ®BT e D ) Blog L ®BT . Drlg

in the cyclotomic setting (see [Berger 2008b, I11.2.1]). More generally, we may descend along unramified
extensions to give it in the twisted cyclotomic case, and by base changing we get it in our setting as well
by the usual argument.

It follows that for r > 0 we also have an isomorphism

~pa

LieI'= 0
Blog [r,00),L ®B[roo) K D[r,oo)'

Blog [r,00),L ®L0 (Blog [r,00),L ®Broo)1< D[roo))
Pulling back along Frobenius, we obtain this isomorphism for any . Then by finding r > 0 so that
U C Y0, We can base change the isomorphism along the map Blog [roo) L — OlaézllogL(Plgé,LU) to
conclude. U
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Note that whether we need to adjoin log and/or perform a finite extension L of K depends exactly on
whether £ becomes crystalline or semistable after restricting Gk to Gy. Applying this observation and
taking Lie I' = O of both sides of the proposition, we obtain the following.

Theorem 8.12. The sheaf Sol(€) is a locally free (’)pxlsm-module of rank equal to rank(E). More precisely:
(1) If € becomes crystalline after restricting Gk to G for some L C L' C Lo, then Soly (€) is a locally
free (’)ﬁ;sm-module of rank equal to rank (&), and there is a natural isomorphism

Of, ®pLsm S0l (£) => Of, @i Nar (£).
(ii) If € becomes semistable after restricting Gk to G for some L C L' C Lo then Solig,1.(€) is a
locally free (’)gglsm-madule of rank equal to rank(E), and there is a natural isomorphism

0%, ®prim Soligg 1L (€) => O ®cu Nar (€).

Lemma 8.13. For each sufficiently small open connected affinoid U of Y,oc) which contains an el-
ement of 9% (xo0), and for L large enough so that Gy, stabilizes U, there is a natural Gy -embedding
H(U, Solf,,, ; (£)) = Lo ®k Dar(E).

Proof. Taking the completed stalk at a ¢-translate of x.,, we obtain an injection
OSioer (Prog. L V) 0y ) Mar(€)(U) = LY ®gu Dair(£).
On the other hand, Proposition 8.7 gives an isomorphism
ymg L (Piog, o2 U) ®0L bm (W) Solfy, (E)(U) => yl% L(Plog LU) ®old NG Mgr(E)(U).

Applying Lie I' = 0 to the composition of these maps gives the desired embedding. ]
We can now give an interpretation of the stalk at x:
Proposition 8.14. There following are each naturally isomorphic to each other.
(1) The stalk Sol(€)y.. .
(2) The stalk Sol(é’)ﬁfor anyy € goz (X00)-
(3) K ®k Dar(E).

In particular, Sol(E) ., is naturally a filtered K -representation of Gg of dimension rank(€) and Gy -fixed
points Dgr(E).

Proof. It is clear (1) and (2) are isomorphic. By Lemma 8.13, we have a natural embedding of Sol(£),,
and hence of Sol(£), ., into K ®k Dr(E). By Theorem 8.12, Sol(£),,, is a finite free module of rank
equal to dimg Dgr(€) over Ogglf;nm. But by Proposition 8.7 nglf';nx = K, so this embedding must be an
isomorphism. U

Finally, we consider the global solutions to the differential equation, namely

D(E) = H'Y0.00). S0l (€)) = H (Vo.00, O" @ g SOL(E)).



944 Gal Porat

Proposition 8.15. D(&) is naturally an object of Modg}.’n‘p’N(GK) and dim@;n D(&) =rank(€).
P

Proof. We know each H (V0. 00), Solﬁ)g’ 1 (£)) is an L;, vector space for U sufficiently small (independent
of L),so D(€) is a @;“—Vector space. The filtration is induced from the embedding

H (V0,00)> S01¢(£)) <> Sol(€),, = K ®k Dar(E).

The ¢-action is induced from the map ¢ : V0,00) = Y(0,00). The monodromy operator N is induced from
the equivariant connection pl*og 1 Mar(E) = pl*og L/\/dR(é’) ® Q%,log IVome” Finally, Gk acts on the smooth
elements in pl’f)g’ 1 Mar(€), and this action is discrete because every element is killed by Lie I', hence by
an open subgroup of Gal(L,/L). To compute the dimension use Theorem 8.12. (Il

Using this language, Berger’s theorem [2008b, théoréme I11.2.4] admits the following interpretation.

Theorem 8.16. The functors D +— E(D) and £ — D(E) are mutual inverses and induce an equivalence
of categories

Modglll’n(p’N (Gk) = {de Rham locally analytic vector bundles}.
P

Remark 8.17. If £ is the locally analytic vector bundle associated to a p-adic representation V, we see

that the global-to-local map
H’(V0.00), S0I?(£)) = Sol(€)x,

is nothing but the more familiar map

Dpst(V) — E Rk DdR(V)-

Question 8.18. Theorem 8.16 allows us to consider objects of Modgl;fp’N(GK) as global solutions to
P

p-adic differential equations. The filtration is coming from the behavior of orders of vanishing at x», = 0,
while the (¢, N, Gg)-structure comes from some sort of monodromy of the map 1im; Yog 1 — X. In
our description the space im; Wog 1. behaves as a substitute for a universal cover of X. It would be
interesting if it can be replaced by a more literal cover of X for which the (¢, N, Gg)-actions can be
interpreted as monodromy actions. One could even speculate that in an appropriate sense, the analytic
fundamental group of X (C,) g should be a tame Weil group with its two dimensions reflecting the ¢ and

N operators.
We conclude with an example.

Example 8.19. Take @ € Z%, and given g € Gal(@p /Qp) let &,(g) € Z, be the element such that

§§ﬁ(g) = g(a'/?")/a'/?" for each n > 1. The Kummer extension
0= Qp(Xeye) > V=Ve—>0Q,—0

is given by mapping in a basis e, f the element g to the matrix

Xcyc (g) &a(g)
0 1 ’
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The associated locally analytic vector bundle £ sits in an exact sequence

0 — O%(Xeye) = € — O% — 0.
We have
Ner(€) =08x @ ORy = 0% (1) 08,

where at a neighborhood of x,, we have x = t~le and y=— log[ozb]t_le + f. Thus

H(Yo,). Solgy (€)) =HY(OS} _ x® O3 v) =Qpx & Qpy.

'x and ¢(y) = y. This gives the underlying ¢-module of Dcs(V).

The action of ¢ is given by ¢(x) = p~
To get the filtration, we consider the stalk of Solg, () at xo. Observe that Fil® consists exactly of these
smooth sections which do not have a pole at x,. As log[ozb] =log e mod ¢, we have Fil° Solg » E)xy, =

Qp,cyc(x log pt y) and so the filtration on Ds(V) is given by
Fil ™' = Derig(V) D Fil’ = Qp(x log, a + y) D Fil' =0.

Acknowledgments

I would like to thank my Ph.D. advisor Matthew Emerton for his constant support, advice and supply
of ideas. I would also like to thank Laurent Berger, Pierre Colmez, Ian Gleason, Lue Pan, Léo Poyeton
and Joaquin Rodrigues Jacinto for answering my questions. Special thanks to Kiran Kedlaya for his
explanations regarding smooth functions appearing in Section 8D. Finally, I would like to thank Laurent
Berger, Ehud de Shalit, Hui Gao, Louis Jabouri, Hao Lee, Léo Poyeton, Stephan Snegirov and the
anonymous referee for their interest and comments. We hope the contents of this article will make it clear
we were inspired by [Berger and Colmez 2016; Pan 2022a].

References

[André 2002] Y. André, “Filtrations de type Hasse—Arf et monodromie p-adique”, Invent. Math. 148:2 (2002), 285-317. MR
Zbl

[Berger 2008a] L. Berger, “Construction de (¢, I')-modules: représentations p-adiques et B-paires”, Algebra Number Theory
2:1 (2008), 91-120. MR Zbl

[Berger 2008b] L. Berger, “Equations différentielles p-adiques et (¢, N)-modules filtrés”, pp. 13=38 in Représentations p-
adiques de groupes p-adiques, I: Représentations galoisiennes et (¢, I')-modules, edited by L. Berger et al., Astérisque 319,
Soc. Math. France, Paris, 2008. MR Zbl

[Berger 2016] L. Berger, “Multivariable (¢, I')-modules and locally analytic vectors”, Duke Math. J. 165:18 (2016), 3567-3595.
MR Zbl

[Berger 2021] L. Berger, “Errata for my articles”, preprint, 2021, https://tinyurl.com/y535b6jm.

[Berger and Colmez 2008] L. Berger and P. Colmez, “Familles de représentations de de Rham et monodromie p-adique”, pp.
303-337 in Représentations p-adiques de groupes p-adiques, I: Représentations galoisiennes et (¢, I')-modules, edited by L.
Berger et al., Astérisque 319, Soc. Math. France, Paris, 2008. MR Zbl

[Berger and Colmez 2016] L. Berger and P. Colmez, “Théorie de Sen et vecteurs localement analytiques”, Ann. Sci. Ec. Norm.
Supér. (4) 49:4 (2016), 947-970. MR Zbl

[Cherbonnier and Colmez 1998] F. Cherbonnier and P. Colmez, “Représentations p-adiques surconvergentes”, Invent. Math.
133:3 (1998), 581-611. MR Zbl

[Colmez 2002] P. Colmez, “Espaces de Banach de dimension finie”, J. Inst. Math. Jussieu 1:3 (2002), 331-439. MR Zbl


http://dx.doi.org/10.1007/s002220100207
http://msp.org/idx/mr/1906151
http://msp.org/idx/zbl/1081.12003
http://dx.doi.org/10.2140/ant.2008.2.91
http://msp.org/idx/mr/2377364
http://msp.org/idx/zbl/1219.11078
http://www.numdam.org/item/AST_2008__319__13_0.pdf
http://msp.org/idx/mr/2493215
http://msp.org/idx/zbl/1168.11019
http://dx.doi.org/10.1215/00127094-3674441
http://msp.org/idx/mr/3577371
http://msp.org/idx/zbl/1395.11084
https://tinyurl.com/y535b6jm
http://www.numdam.org/item/AST_2008__319__303_0/
http://msp.org/idx/mr/2493221
http://msp.org/idx/zbl/1168.11020
http://dx.doi.org/10.24033/asens.2300
http://msp.org/idx/mr/3552018
http://msp.org/idx/zbl/1396.11130
http://dx.doi.org/10.1007/s002220050255
http://msp.org/idx/mr/1645070
http://msp.org/idx/zbl/0928.11051
http://dx.doi.org/10.1017/S1474748002000099
http://msp.org/idx/mr/1956055
http://msp.org/idx/zbl/1044.11102

946 Gal Porat

[Colmez 2008] P. Colmez, “Espaces vectoriels de dimension finie et représentations de de Rham”, pp. 117-186 in Représentations
p-adiques de groupes p-adiques, I: Représentations galoisiennes et (¢, I')-modules, edited by L. Berger et al., Astérisque 319,
Soc. Math. France, Paris, 2008. MR Zbl

[Colmez 2010] P. Colmez, “Représentations de GL,(Q)) et (¢, I')-modules”, pp. 281-509 in Représentations p-adiques de
groupes p-adiques, II: Représentations de GLp(Qp) et (¢, I')-modules, edited by L. Berger et al., Astérisque 330, Soc. Math.
France, Paris, 2010. MR Zbl

[Fargues and Fontaine 2018] L. Fargues and J.-M. Fontaine, Courbes et fibrés vectoriels en théorie de Hodge p-adique,
Astérisque 406, Soc. Math. France, Paris, 2018. MR Zbl

[Fontaine 1990] J.-M. Fontaine, “Représentations p-adiques des corps locaux, I”, pp. 249-309 in The Grothendieck Festschrift,
vol. 2, edited by P. Cartier et al., Progr. Math. 87, Birkhduser, Boston, 1990. MR Zbl

[Fontaine 2004] J.-M. Fontaine, “Arithmétique des représentations galoisiennes p-adiques”, pp. 1-115 in Cohomologies p-
adiques et applications arithmétiques, I11, edited by P. Berthelot et al., Astérisque 295, Soc. Math. France, Paris, 2004. MR
Zbl

[Kedlaya 2004] K. S. Kedlaya, “A p-adic local monodromy theorem”, Ann. of Math. (2) 160:1 (2004), 93-184. MR Zbl

[Kedlaya 2015] K. S. Kedlaya, “New methods for (I', ¢)-modules”, Res. Math. Sci. 2 (2015), art.id. 20. MR Zbl

[Kedlaya 2016] K. S. Kedlaya, “Noetherian properties of Fargues—Fontaine curves”, Int. Math. Res. Not. 2016:8 (2016),
2544-2567. MR Zbl

[Kedlaya and Liu 2015] K. S. Kedlaya and R. Liu, Relative p-adic Hodge theory: foundations, Astérisque 371, Soc. Math.
France, Paris, 2015. MR Zbl

[Lam 1999] T.Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics 189, Springer, 1999. MR Zbl

[Lazard 1962] M. Lazard, “Les zéros des fonctions analytiques d’une variable sur un corps valué complet”, Inst. Hautes Etudes
Sci. Publ. Math. 14 (1962), 47-75. MR Zbl

[Mebkhout 2002] Z. Mebkhout, “Analogue p-adique du théoreme de Turrittin et le théoréme de la monodromie p-adique”,
Invent. Math. 148:2 (2002), 319-351. MR Zbl

[Morel 2019] S. Morel, “Adic spaces”, lecture notes, Princeton University, 2019, https://tinyurl.com/3udep89y.

[Pan 2022a] L. Pan, “On locally analytic vectors of the completed cohomology of modular curves”, Forum Math. Pi 10 (2022),
art.id.e7. MR Zbl

[Pan 2022b] L. Pan, “On locally analytic vectors of the completed cohomology of modular curves, II”, preprint, 2022. arXiv
2209.06366

[Porat 2022] G. Porat, “Lubin-Tate theory and overconvergent Hilbert modular forms of low weight”, Israel J. Math. 249:1
(2022), 431-476. MR Zbl

[Rodrigues Jacinto and Rodriguez Camargo 2022] J. Rodrigues Jacinto and J. E. Rodriguez Camargo, “Solid locally analytic
representations of p-adic Lie groups”, Represent. Theory 26 (2022), 962—-1024. MR Zbl

[Rodriguez Camargo 2022] J. E. Rodriguez Camargo, “Locally analytic completed cohomology of Shimura varieties and
overconvergent BGG maps”, preprint, 2022. arXiv 2205.02016v1

[Schneider 2011] P. Schneider, p-adic Lie groups, Grundl. Math. Wissen. 344, Springer, 2011. MR Zbl

[Scholze and Weinstein 2020] P. Scholze and J. Weinstein, Berkeley lectures on p-adic geometry, Annals of Mathematics Studies
207, Princeton University Press, 2020. MR Zbl

[Sen 1980] S. Sen, “Continuous cohomology and p-adic Galois representations”, Invent. Math. 62:1 (1980), 89-116. MR Zbl

[de Shalit and Porat 2019] E. de Shalit and G. Porat, “Induction and restriction of (¢, I')-modules”, Miinster J. Math. 12:1
(2019), 215-237. MR Zbl

[Stacks 2005—-] “The Stacks project”, electronic reference, 2005—, http://stacks.math.columbia.edu.

[Tate 1967] J. T. Tate, “p-divisible groups”, pp. 158-183 in Proceedings of a Conference on Local Fields (Driebergen,
Netherlands, 1966), edited by T. A. Springer, Springer, 1967. MR Zbl

Communicated by Bhargav Bhatt
Received 2022-05-17 Revised 2023-04-12 Accepted 2023-07-03

galporat1@gmail.com Department of Mathematics, University of Chicago,
Eckhart Hall, 5734 S University Ave, Chicago, IL 60637, United States

mathematical sciences publishers :'msp


http://www.numdam.org/article/AST_2008__319__117_0.pdf
http://msp.org/idx/mr/2493217
http://msp.org/idx/zbl/1168.11021
http://www.numdam.org/item/AST_2010__330__281_0/
http://msp.org/idx/mr/2642409
http://msp.org/idx/zbl/1218.11107
http://dx.doi.org/10.24033/ast.1056
http://msp.org/idx/mr/3917141
http://msp.org/idx/zbl/1470.14001
https://www.math.arizona.edu/~cais/847Page/References/Fontaine-Representations_p-adique_des_corpx_locaux.pdf
http://msp.org/idx/mr/1106901
http://msp.org/idx/zbl/0743.11066
http://www.numdam.org/article/AST_2004__295__1_0.pdf
http://msp.org/idx/mr/2005i:11074
http://msp.org/idx/zbl/1142.11335
http://dx.doi.org/10.4007/annals.2004.160.93
http://msp.org/idx/mr/2119719
http://msp.org/idx/zbl/1088.14005
http://dx.doi.org/10.1186/s40687-015-0031-z
http://msp.org/idx/mr/3412585
http://msp.org/idx/zbl/1387.11087
http://dx.doi.org/10.1093/imrn/rnv227
http://msp.org/idx/mr/3519123
http://msp.org/idx/zbl/1404.13026
http://dx.doi.org/10.24033/ast.957
http://msp.org/idx/mr/3379653
http://msp.org/idx/zbl/1370.14025
http://dx.doi.org/10.1007/978-1-4612-0525-8
http://msp.org/idx/mr/1653294
http://msp.org/idx/zbl/0911.16001
http://www.numdam.org/item?id=PMIHES_1962__14__47_0
http://msp.org/idx/mr/152519
http://msp.org/idx/zbl/0119.03701
http://dx.doi.org/10.1007/s002220100208
http://msp.org/idx/mr/1906152
http://msp.org/idx/zbl/1071.12004
https://tinyurl.com/3udep89y
http://dx.doi.org/10.1017/fmp.2022.1
http://msp.org/idx/mr/4390302
http://msp.org/idx/zbl/1497.11135
http://msp.org/idx/arx/2209.06366
http://msp.org/idx/arx/2209.06366
http://dx.doi.org/10.1007/s11856-022-2317-3
http://msp.org/idx/mr/4462638
http://msp.org/idx/zbl/1509.11034
http://dx.doi.org/10.1090/ert/615
http://dx.doi.org/10.1090/ert/615
http://msp.org/idx/mr/4475468
http://msp.org/idx/zbl/1510.11118
http://msp.org/idx/arx/2205.02016v1
http://dx.doi.org/10.1007/978-3-642-21147-8
http://msp.org/idx/mr/2810332
http://msp.org/idx/zbl/1223.22008
https://people.math.rochester.edu/faculty/doug/otherpapers/scholze-berkeley.pdf
http://msp.org/idx/mr/4446467
http://msp.org/idx/zbl/1475.14002
http://dx.doi.org/10.1007/BF01391665
http://msp.org/idx/mr/595584
http://msp.org/idx/zbl/0463.12005
http://dx.doi.org/10.17879/85169758758
http://msp.org/idx/mr/3928087
http://msp.org/idx/zbl/1432.11170
http://stacks.math.columbia.edu
https://www.math.arizona.edu/~cais/scans/Proceedings_on_a_Conference_in_Local_Fields.pdf
http://msp.org/idx/mr/231827
http://msp.org/idx/zbl/0157.27601
mailto:galporat1@gmail.com
http://msp.org

ALGEBRA AND NUMBER THEORY 18:5 (2024)
https://doi.org/10.2140/ant.2024.18.947

Multiplicity structure of the arc space of a fat point
Rida Ait El Manssour and Gleb Pogudin

The equation x™ = 0 defines a fat point on a line. The algebra of regular functions on the arc space
of this scheme is the quotient of k[x, x, x@ ] by all differential consequences of x™ = 0. This
infinite-dimensional algebra admits a natural filtration by finite-dimensional algebras corresponding to
the truncations of arcs. We show that the generating series for their dimensions equals m /(1 — mt). We
also determine the lexicographic initial ideal of the defining ideal of the arc space. These results are
motivated by the nonreduced version of the geometric motivic Poincaré series, multiplicities in differential
algebra, and connections between arc spaces and the Rogers—Ramanujan identities. We also prove a
recent conjecture put forth by Afsharijoo in the latter context.

1. Introduction

1.1. Statement of the main result. Let k be a field of characteristic zero. Consider an ideal I C k[x],
where x = (x1, ..., x,), defining an affine scheme X. We consider the polynomial ring

klx = klx [ 1<i <n, j>0]

in infinitely many variables {xl.(j ) | 1 <i < n, j=>=0}. This ring is equipped with a k-linear derivation
a +—> a’ defined on the generators by

Py =xY for1<i<n, j>0.
Then we define the ideal 1©® C k[x®] of the arc space of X by
1°9:=(fV | fel, j=0).

In this paper, we will focus on the case of a fat point Z,, := (x™) C k[x] of multiplicity m > 2. Although
the zero set of Z,™° over k consists of a single point with all the coordinates being zero, the dimension of
the corresponding quotient algebra k[x (] /I,Ef’"’ (the “multiplicity” of the arc space) is infinite.

One can obtain a finer description of the multiplicity structure of k[x (] /I,E,"") by considering its
filtration by finite-dimensional algebras induced by the truncation of arcs

k[x(gé)]/IrElOO) — k[x(<5)]/(k[x(<€)] mI(OO))’

m
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where x (9 := {x, x/, ..., x¥}, and arranging the dimensions of these algebras into a generating series
o0
Dz, (1) := Y _ dimy (k[xSO1/Z) - . (1)
=0
The main result of this paper is that
Dz, ()= 17— o)
mt

1.2. Motivations and related results. Our motivation for studying the series (1) comes from three different
areas: algebraic geometry, differential algebra, and combinatorics.

(1) From the point of view of algebraic geometry, I°® defines the arc space £(X) of the scheme X
[Denef and Loeser 2001]. Geometrically, the points of the arc space correspond to the Taylor coefficients
of the k[[t]-points of X. The arc space of a variety can be viewed as an infinite-order generalization of
the tangent bundle or the space of formal trajectories on the variety. For properties and applications of
arc spaces, we refer to [Denef and Loeser 2001; Bourqui et al. 2020].

The reduced structure of an arc space is often described by means of the geometric motivic Poincaré
series [Denef and Loeser 2001, §2.2]

o0

Px(t) =) [me(L(X)]- 1", 3)

£=0
where 7, denotes the projection of £(X) to the affine subspace with the coordinates x(SP (ie., the
truncation at order £) and [Z] denotes the class of variety Z in the Grothendieck ring [Denef and Loeser
2001, §2.3]. A fundamental result about these series is the Denef—Loeser theorem [1999, Theorem 1.1]
saying that Py (¢) is a rational power series.

The arc spaces may also have a rich scheme (i.e., nilpotent) structure, see [Linshaw and Song 2021;
Feigin and Makedonskyi 2020; Dumanski and Feigin 2023], reflecting the geometry of the original
scheme [Sebag 2011; Bourqui and Haiech 2021]. In the case of a fat point Z,, = (x) C k[x], we will
have 7, (£(X)) = A, so the geometric motivic Poincaré series is equal to
[A%]

1_—1"

where [A®] is the class of a point. Note that the series does not depend on the multiplicity m of the point.

P(t) =

One way to capture the scheme structure of £(X) could be to take the components of the projections
in (3) with their multiplicities. For example, for the case Z,,, one will get

> dimy (k[xSO1/Z0) - [A%] - ¢ = Dy, (DA,
£=0

Our result (2) implies that the series above is rational, as in the Denef-Loeser theorem. Interestingly, the
shape of the denominator is different from the one in [Denef and Loeser 2001, Theorem 2.2.1]. The formula
above is not the only way to take the multiplicities into account. A related and more popular approach
is via Arc Hilbert—Poincaré series [Mourtada 2023, §9]; see also [Mourtada 2014; Bruschek et al. 2013].
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(2) Differential algebra studies, in particular, differential ideals in k[x ()], that is, ideals closed under
derivation. From this point of view, 7 is the differential ideal generated by /. Understanding the
structure of the differential ideals 1,5,°°> is a key component of the low power theorem [Levi 1942; 1945]
which provides a constructive way to detect singular solutions of algebraic differential equations in one
variable. Besides that, various combinatorial properties of 7% have been studied in differential algebra,
see [O’Keefe 1960; Pogudin 2014; Arakawa et al. 2021; Zobnin 2005; 2008; Ait El Manssour and
Sattelberger 2023].

While there is a rich dimension theory for solution sets of systems of algebraic differential equa-
tions [Kondratieva et al. 1999; Pong 2006; Kolchin 1964], we are not aware of a notion of multiplicity
of a solution of such a system. In particular, the existing differential analogue of the Bézout theo-
rem [Binyamini 2017] provides only a bound, unlike the equality in classical Bézout theorem [Hartshorne
1977, Theorem 7.7, Chapter 1]. Our result (2) suggests that one possibility is to define the multiplicity of
a solution as the growth rate of multiplicities of its truncations, and this definition will be consistent with

the usual algebraic multiplicity for the case of a fat point on a line.

(3) Connections between the multiplicity structure of the arc space of a fat point and Rogers—Ramanujan
partition identities from combinatorics were pointed out by Bruschek, Mourtada, and Schepers in [2013]
(for a recent survey, see [Mourtada 2023, §9]). In particular, they used Hilbert—Poincaré series of similar
nature to (1) (motivated by the singularity theory [Mourtada 2014, §4]) to obtain new proofs of the Rogers—
Ramanujan identities and their generalizations. In this direction, new results have been obtained recently
in [Afsharijoo 2021; Afsharijoo et al. 2023; Bai et al. 2020]. Afsharijoo [2021] used computational
experiments to conjecture the initial ideal of I,S,O") with respect to the weighted lexicographic ordering
[Afsharijoo 2021, §5] (a special case was already conjectured in [Afsharijoo and Mourtada 2020, §1]).
This conjecture would imply a new set of partition identities [Afsharijoo 2021, Conjecture 5.1]. Using
combinatorial techniques, some of them have been proved in [Afsharijoo 2021], and the rest were
established in [Afsharijoo et al. 2023]; see also [Afsharijoo et al. 2022]. However, the original algebraic
conjecture about I,;OO) remained open. As a byproduct of our proof of (2), we prove this conjecture (see
Theorem 3.3), thus giving a new proof of one of the main results of [Afsharijoo et al. 2023].

Understanding the structure of the ideal I,E;’") is known to be challenging: for example, its Grobner basis
with respect to the lexicographic ordering is not just infinite but even differentially infinite [Zobnin 2005;
Afsharijoo and Mourtada 2020], and the question about the nilpotency index of the xl.(j ) modulo I,,(fo)
posed by Ritt [1950, Appendix, Q.5] remained open for sixty years until the paper of Pogudin [2014]; see
also [O’Keefe 1960; Arakawa et al. 2021].

Statement (2) appeared in the Ph.D. thesis of Pogudin [2016, Theorem 3.4.1], but the proof given
there was incorrect. We are grateful to Alexey Zobnin for pointing out the error. The proof presented in
this paper uses different ideas than the erroneous proof in [Pogudin 2016]. We would like to thank Ilya
Dumanski for pointing out that the main dimension result (2) could also be deduced from a combination
of Propositions 2.1 and 2.3 from [Feigin and Feigin 2002].
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1.3. Overview of the proof. The key technical tool used in our proofs is a representation of the quo-
tient algebra k[x (] /Z,Sloo) as a subalgebra in a certain differential exterior algebra that is constructed
in [Pogudin 2014]; see Section 4.1. The injectivity of this representation builds upon the knowledge of a
Grobner basis for I,Ef‘” with respect to the degree reverse lexicographic ordering [Bruschek et al. 2013;
Zobnin 2008; Levi 1942]. We approach (2) as a collection of inequalities

m" ™ < dimyg (k[xSP1/Z0P) <m™ forevery €0, m > 1. 4)

The starting point of our proof of the lower bound uses the insightful conjecture by Afsharijoo [2021, §5]
that suggests how the standard monomials of I,i,oo) with respect to the lexicographic ordering look like.
Using the exterior algebra representation, we prove that these monomials are indeed linearly independent
modulo I,(noo), and deduce the lower bound from this; see Section 4.3 and 4.4.

In order to prove the upper bound from (4), we represent the image of k[x(S91/Z° in the differential
exterior algebra as a deformation of an algebra which splits as a direct product of ¢ 4 1 algebras of
dimension m, thus yielding the desired upper bound; see Section 4.2.

1.4. Structure of the paper. The rest of the paper is organized as follows: Section 2 contains definitions
and notations used to state the main results. Section 3 contains the main results of the paper. The proofs
of the results are given in Section 4. Then Section 5 describes computational experiments in [Macaulay?2]
that we performed to check whether formulas similar to (2) hold for more general fat points in k. We
formulate some open questions based on the results of these experiments.

2. Preliminaries

Definitions 2.1-2.4 provide necessary background in differential algebra. For further details, we refer
to [Kaplansky 1957, Chapter 1] or [Kolchin 1973, §I.1-1.2].

Definition 2.1 (differential rings and fields). A differential ring (R, ) is a commutative ring with a
derivation ": R — R, that is, a map such that, for all @, b € R, we have (a+b)' =a’+b’ and (ab) =a’b+ab’.
A differential field is a differential ring that is a field. Fori >0, ) denotes the i-th order derivative of a € R.

Notation 2.2. Let x be an element of a differential ring and & € Z>(. We introduce

M= x, L xPDYy and x©0 = (x, X X)),
Analogously, we can define xS, If x = (x1, ..., x,) is a tuple of elements of a differential ring, then
x (=M= (x§<h), cooxSMy and x9 = (xfoo), o, x,

Definition 2.3 (differential polynomials). Let R be a differential ring. Consider a ring of polynomials in
infinitely many variables

R[x®]:= R[x,x",x",x®, ...,
and extend the derivation from R to this ring by (x/))’ := x*+D_ The resulting differential ring is called
the ring of differential polynomials in x over R. The ring of differential polynomials in several variables
is defined by iterating this construction.



Multiplicity structure of the arc space of a fat point 951

Definition 2.4 (differential ideals). Let S := R[xfoo), e x,(,oo)] be a ring of differential polynomials over
a differential ring R. An ideal I C S is called a differential ideal if a’ € I for every a € I.
One can verify that, for every fi, ..., fs € S, the ideal

(2, f

is a differential ideal. Moreover, this is the minimal differential ideal containing f1, ..., f;, and we will
denote it by (fi, ..., f;)©).

Definition 2.5 (fair monomials). (1) For a monomial m = x0x®"0 ... x(h) ¢ k[x°)] we define the

order and lowest order, respectively, as

ordm := max h; and lordm := min h;.
0<i<t 0<i<t

(2) A monomial m € k[x(®] is called fair (respectively, strongly fair) if
lordm > degm — 1 (respectively, lord m > degm).

We denote the sets of all fair and strongly fair monomials by F and Fj, respectively. By convention,
1 € Fand 1 € F,. Note that F; C F.

(3) For every integers a, b > 0, we define
. Ta b
Fap i=F" - F),
where the product of sets of monomials is the set of pairwise products. In other words, F, 5 is a set of all
monomials representable as a product of a fair monomials and b strongly fair monomials.

Remark 2.6. The notion of fair monomials was inspired from the conjectured construction of the initial
ideal of (x', (x")(®®)) given in [Afsharijoo 2021, Conjecture 5.1]. We use the notion to formulate concisely
and prove the conjecture (see Theorem 3.3).

Example 2.7. The monomials of order at most two in F and F; are
FOkxSP1 =1, x,x', )2, x'x", x", )%, (x")?},
Fs kxS = {1, %, x", (x")?}.
Using this, one can produce the monomials of order at most one in F7,; and F5
FiraNkxSVT = (1, x, xx', x', ()2, (x))),
FooNkxSVT= {1, x, 2%, xx/, x(x)%, ¥/, ()2, (x)?, (x)*)
For example, (x')3 € F| 1 can be written as (x')? - x’, where (x’)? € F and x’ € F,. Likewise, for the
monomials of order at most two, we can write
Fia kxS = {1, x, 2, 27, xx/, xx”, ()2, x'x", ()2, x ()2, (), ()27, X' ("), (x7)?,

(x/)z(xu)z’ x/(x//).’;, (x//)4’ (x//)S}.
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3. Main results

The algebra of regular functions on the arc space of a fat point x™ = 0 admits a natural filtration by
subalgebras induced by the truncation of arcs. Our first main result, Theorem 3.1, gives a simple formula
for the dimension of the subalgebra induced by the truncation at order 4. Corollary 3.2 gives the generating
series for these dimensions, as in (2).

Theorem 3.1. Let m and h be positive integers and k be a differential field of zero characteristic. Then
dimy (k[x S/ k[x SN (x™) D)) = m" .

Corollary 3.2. Let m be a positive integer and k be a differential field of zero characteristic. Then

o
; (<H (00)) ., M
;dlmk(k[x 1/ ) ot =

where k[x(S07/(x™)©) = k[x(SO7/(k[x( O] N (™M) ),

Given a polynomial ideal and monomial ordering, the monomials which do not appear as leading terms
of the elements of the ideal are called standard monomials. Motivated by applications to combinatorics,
Afsharijoo [2021, §5] used computations experiment to conjecture a description of the standard monomials
of (x™)( with respect to the degree lexicographic ordering. Our second main result, Theorem 3.3, gives
such a description and, combined with Lemma 4.10, establishes the conjecture.

Theorem 3.3. Let k be a differential field of zero characteristic. Consider a degree lexicographic
monomial ordering on k[x®] with the variables ordered as x < x' < x" < ---. Let m and i be positive
integers with 1 <i < m. Then the set of standard monomials of the ideal (x', (x")®) is Fi—1.m—i; see
Definition 2.5. Note that, for i = m, we obtain the differential ideal (x™)®.

Corollary 3.4. Theorem 3.3 also holds for the following orderings:

o purely lexicographic with the variables ordered as in Theorem 3.3,

o weighted lexicographic: monomials are first compared by the sum of the orders and then lexico-
graphically as in Theorem 3.3.

Remark 3.5. The multiplicity of the scheme of polynomial arcs of degree less than 4 of x = 0, defined
by (x™, x™)( has been studied in [Ait El Manssour and Sattelberger 2023]. It was shown that this
multiplicity, equal to dimy k[x©]/(x™, xM)(> is a polynomial in m of degree & which is the Erhart
polynomial of some lattice polytope [Ait El Manssour and Sattelberger 2023, Theorem 2.5]. Theorem 3.1
together with a natural surjective morphism k[x <]/ (x™)(®) — k[x©]/(x™, x™)( implies that this
polynomial is bounded by m".
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4. Proofs

4.1. Key technical tool: embedding into the exterior algebra.

Notation 4.1. Let k be a field. Then, for & = (&, &1, ..., &,), we introduce a countable collection of sym-
bols {éi(J ) |0<i <n, j >0}, and by A (£), we denote the exterior algebra of a k-vector space spanned
by these symbols. Ay (& (%)) is equipped with a structure of a (noncommutative) differential algebra by
(E}i))/ = g;‘*“ foreveryi >0and 0 < j <n.
The next proposition is a minor modification of [Pogudin 2014, Lemma 1]. The proof we will give is a

simplification of the proof in [Pogudin 2014, Lemma 1], which will be extended to a proof of Lemma 4.4.

Proposition 4.2. Let m be a positive integer. Consider 1 = (g, . .., Nm—2) and & = (&, ..., Em—2). Let
A= A ™) ® Ak,

which is equipped with a structure of differential algebra (as a tensor product of differential algebras,
using the Leibnitz rule, that is (a @ b) == a’' @ b+a ® b'). Consider a differential homomorphism
¢ k[x°] — A defined by

m—2
p) =) i @
i=0
Then the kernel of ¢ is (x™)©).

Example 4.3. Consider the case m = 3. Then we will have

p(x)=no®& +m A&
The image of x” will then be
p(x') = (p(x)) =ny ® & + 1o ® &+ 1) ®E +m ®E.
One can show, for example, that (x")* & (x3)(® by showing that ¢((x)*) # 0:
o(()h) = 2400 Ay Ami AN ® (o A G AELAE]) #0.
Furthermore, a direct computation shows that <p((x’)5 ) = 0. Combined with Proposition 4.2, this implies
that (x')° € (x3)(®),

Proof of Proposition 4.2. Consider (¢(x))™. This is a sum of tensor products of exterior polynomials of
degree m in m — 1 variables, so it must be zero. Since (¢(x))™ =0 and ¢ is a differential homomorphism,
we conclude that Ker ¢ D (x™)(),

Now we will prove the inverse inclusion. We define the weighted degree inverse lexicographic
ordering < on k[x®] (see [Zobnin 2008, p.524]): M < N if and only if

e tord M < tord N, where tord is defined as the sum of the orders, or
e tord M =tord N and deg M < deg N, or
e tord M =tord N, deg M =deg N, and N is lexicographically lower than M, where the variables are

ordered x <x' <x" < ...



954 Rida Ait El Manssour and Gleb Pogudin

For example, we will have x < x’ < x” < --- and xx” < (x/)2. Then, for every h > 0, the leading
monomial of (x™)™ with respect to < is (x @)™~ (x@+D)" where ¢ and r are the quotient and the
reminder of the integer division of /& by m, respectively. Let M be the set of all monomials not divisible
by any monomial of the form (x@)"~"(x@*+D)" Then we can characterize M as

M= {x BB | ho <oy, VO S E—mA 12 higmey > hi + 1},
We will define a linear map ¢ from M to the set of monomials in A with the following properties:

(P1) For every P € M, we have that ¥ (P) # 0.

(P2) For every P € M, the monomial v (P) appears in the polynomial ¢ (P) and, for any Py € M such
that Py < P, the monomial vy (P) does not appear in the polynomial ¢ (Py).

Informally speaking, v (M) is the “leading monomial” in ¢ (M). Once such a map i has been defined,
we can prove the proposition as follows: Let Q € Kerg \ (x)©. By replacing Q with the result of the
reduction of Q by x™, (x™)’, ... with respect to <, we can further assume that all the monomials in Q
belong to M'. Let Q( be the largest of them. By (P1) and (P2), ¢(Qo) will involve v (Qy) and ¢(Q — Qo)
will not, so ¢(Q) # 0. This contradicts the assumption that Q € Ker ¢. The proposition is proved.

Therefore, it remains to define i satisfying (P1) and (P2). We will start with the case m = 2 to show
the main idea while keeping the notation simple. We define ¥ by

1/,(x(ho) .. ,x(hz)) = (77(0) ®§<h0)) A (77(]) ®§(h1—1)) A A (,7(4) ®S(’u—€))’ (3)

where hg < h; < --- < hy. For proving (P1), we observe that, if h;; > h; + 1 for all i, then
ho <hy—1<hy—2<--- < hy— ¢, so there are no coinciding &’s in (5). The construction for
arbitrary m will consist of splitting the monomial into m — 1 interlacing submonomials and applying (5)
with (n;, &) to i-th submonomial. More formally, if g < h; < - - - < hy, we define

)= T () o8t ®
i=0
where a % b denotes the remainder of the division of a by b, and [«] denotes the integer part of «.
Property (P1) is proved by applying (P1) for m = 2 to each submonomial.

For proving (P2), consider Py € M with Py < P and {(P) appearing in ¢(Py). Since y preserves
the total orders and doubles the degrees, we have tord Py = tord P and deg Py = deg P. Let H := ord P,.
Since Py < P, we have H > hy. Since the maximal orders of  and & in v (P) do not exceed [£/(m — 1)]
and hy — [£/(m — 1)], respectively, we have H < hy. Thus, H = h,. Applying the same argument
recursively to P/x"¢ and Py/x""*), we conclude that P = P,.

We will prove that ¢ (P) involves i (P) by induction on deg P. The case deg P =0 is clear. Consider P,
with deg P > 0. Similarly to the preceding argument, one can obtain ¥ (P) (from ¥ (P /x©)) only by

1Interestingly, although it is known that x”, (x™)’, ... form a Grobner basis, we do not really need to use this fact here since
a reduction with respect to any set of polynomials is well defined.
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taking 71%0/ E:Z:};D R E 15(}%;1[1[—/ (1';1_1)]) (i.e., the last term in (6)) from one of the occurrences of x*¢) in P.

Therefore, the coefficient in front of ¥ (P) in ¢ (P) will be, up to sign, equal to deg .« times the coefficient
in front of ¥ (P/x"9)) in ¢(P/x"?). The latter is nonzero by the induction hypothesis. U

Lemma 4.4. In the notation of Proposition 4.2, let 1 < r < m. Then the preimage of the ideal in A
generated by n,—1 Q&,_1, ..., Nm—2 Q &y—o under ¢ is equal to ((x™)(©) x7y.

Proof. We first prove that the image of x" belongs to (9,1 ®&._1, ..., Nm—2 ® &,—2). This is because
@(x") is the sum of monomials which are products of r different ; ® &;. Since there are m — 1 of them,
every such monomial will involve at least one of the last m — r of the n; ® &;.

Let us consider a polynomial g € k[x©®]\ ((x™)©, x”) and prove that ¢(g) does not belong to
MNr—1®&_1, ... Nm—2 ®&,_2). We can assume that each monomial P of g belongs to

M, ={MeM|deg. M <ror0<h,_1}.

We will use the map ¢ defined in (6). In fact, 1 (P) does not involve the zero-order derivatives of
&_1,...,&u—n,since h; — [i /(m — 1)] can only be zero for a monomial in M only if i <r — 2. Thus,

w(P) ¢ <77r—1 ®'§r—la ---,77m—2®5m—2>-

Assume that Py is the largest summand that appears in g. Then ¢ (Py) involves 1 (Pp), but ¢(g — Pp)
does not. Therefore, ¢(g) does not belong to (n,—1 @& 1, ..., Nm—2 ®@&En_2). O

4.2. Upper bounds for the dimension. Throughout the section, we fix a differential field k of zero
characteristic.

Proposition 4.5. Let m, h be positive integers. We denote by A, j, the subalgebra of k[x©]/(x™) )
generated by the images of x, x', ..., x". Then

dimA,, » < mt

First we describe a general construction which will be a special case of the so-called associated graded
algebra. Let A=Ao® A ® A2 P --- be a Z>¢-graded algebra over k equipped with a homogeneous
derivation of weight one (that is, A} C A, for every i > 0). We introduce a map gr: A — A defined as
follows: Consider a nonzero a € A, and let i be the largest index such thata € A; ® A; 1 ® - --. Then we
define gr(a) to be the image of the projection of a onto A; along A;+1 ® A;+2 @ - - -. In other words, we
replace each element with its lowest homogeneous component.

Note that gr is not a homomorphism, it is not even a linear map. However, it has two important
properties we state as a lemma.

Lemma 4.6. (1) Letay,...,a, € A, and let p € k[x©] be a differential monomial. Then

plgr(ar), ..., gr(a) #0 = gr(plar, ..., a,)) = p(gr(ar), ..., gr(a,)).

2) Ifay, ...,a, € A are k-linearly dependent, then gr(ay), ..., gr(a,) also are k-linearly dependent.
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Proof. To prove the first part, one sees that p does not vanish on the lowest homogeneous parts of ay, . . ., a,
so the homogeneity of the multiplication and derivation imply that taking the lowest homogeneous part
commutes with applying p for ay, ..., a,.

To prove the second part, let i be the lowest grading appearing among ay, ..., a,. Restricting to the
component of this weight, one gets a linear relation for gr(a;), ..., gr(a,). (Il

Lemma 4.7. Let A be a graded differential algebra as above. Consider elements ay, ..., a, in A,
and denote the algebras (not differential) generated by a, . .., a, and gr(a,), . .., gr(a,) by B and By,
respectively. Then dim By, < dim B.

Proof. The algebra Bg; is spanned by all the monomials in gr(ay), ..., gr(a,). We choose a basis in this
spanning set, that is, we consider monomials py, ..., py € k[x1, ..., x,] such that

pi(gr(ar), ..., gr(an)), . ... pn(gr(an), . .., gr(ay))
form a basis of Bg,. The first part of Lemma 4.6 implies that
gr(pi(ay, ..., an)) = pi(gr(an), ..., gr(ay,)) forevery 1 <i<N.

Then the second part of Lemma 4.6 implies that p,(ay, ..., a,), ..., pn(ai, ..., a,) are linearly inde-
pendent. Since they belong to B, we have dim B > N = dim By;. O

Proof of Proposition 4.5. Let A and ¢ be the exterior algebra and the homomorphism from Proposition 4.2.
Proposition 4.2 implies that A,, j is isomorphic to the subalgebra of A generated by

m—2 m—2 m—2 m—2
Doni®&. Y mi®E). Y mi®&) ... > @)™,
i=0 i=0 i=0 i=0

We define a grading on A by setting the weights of ny) and S;i) to be equal to i for every i > 0 and
0 < j <m — 1. The exterior algebra A becomes a graded algebra, and the derivation is homogeneous of
weight one.

We fix h > 0 and consider the following elements of A:

aj :=(1+3)io¢j fori >20,0<j<m—1,and x € {n, &},

where d is the operator of differentiation. We introduce

m—2
v = nj,i®&;; for0<i<h,
j=0
and let Y}, be the algebra generated by v, ..., v,. For every 0 <i < h, we have v}" =0, so Y}, is spanned
by the products of the form
vgovf' ...th, where 0 < dp, ..., d, < m.

Therefore, dim ¥, < m"*!.
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Claim. There is an invertible (h + 1) x (h + 1) matrix M over Q such that, for u, . .., uy defined by

(o, ..., up)" =My, ..., vp)", ©)
we have
m—2
gr(u;) = Z(nj ®&)D  forevery0<i <h.
j=0

We will first demonstrate how the proposition follows from the claim, and then we prove the claim.
Since M is invertible, ug, . . ., u, generate Yj, as well. Since gr(ug), . .., gr(u,) generate A,, ,, Lemma 4.7
implies that m"*! > dim Y}, > dim A,,, ;..

Therefore, it remains to prove the claim. For every 0 < i < h, we can write

i=(1®1+13)'1R1+00 Du=(0101+103+®1+3® ) .

Wesetu; :=(109+9d®14+9®3d) v for every 0 < i < h. Note that, since 1 ® d + 9 ® 1 is just the
original derivation on A, we have

m—2
gru) =103+ Dv=vy =) (n;®&)". ®)

=0
By expanding the binomial (1®1+(1Qd+d®1+9 ®49))’, we can write v; = Z;:o (;)u] Then we have
o, - o) = Mug, ..., up)", ©)
where M is the (h+ 1) x (h+ 1)-matrix with the (i, j)-th entry being (j) Since M is lower-triangular with
ones on the diagonal, it is invertible. We set M := M~'. So we have (uo, ..., us)" := M(vo, ..., vp)7,
which together with (8) finishes the proof of the claim. O

By combining the proof of Proposition 4.5 with Lemma 4.4, we can extend Proposition 4.5 as follows:

Corollary 4.8. Let m, h, i be positive integers with 1 <i < m. By A i),n we denote the subalgebra of
k[x©]/(x?, (x™)() generated by the images of x, x', ..., x™. Then

dim A(m,i),h < i -mh.

Proof. The proof will be a refinement of the proof of Proposition 4.5, and we will use the notation from
there. Let  be the canonical homomorphism w: A — A; == A/&_1®ni—1, ..., Em—2 @ Nm—2). Since
the ideal (§;_1 ® ni—1, ..., Em—2 @ Nm—2) is homogeneous with respect to the grading on A, there is a
natural grading on A;.

We have Agy,iyn = 7(Ap,n). Since m is a homogeneous homomorphism, (A, ) is generated
by m(gr(uo))., ..., w(gr(uy)) from (7), so dim Ay iy, = dimmw (A, ) < dimm(Y,). We observe that
7 (vy)! =0, so 7(Yy,) is spanned by products of the form

(o) (v)™ - - - 7 (v,

where 0 < dy <i and 0 < dy, ..., d, <m. Therefore, dmm (¥;) <i -mh. |
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4.3. Combinatorial properties of fair monomials.

Definition 4.9 (nonoverlapping monomials). We say that two monomials m, m, € k[x©] do not overlap

if ordm < lordmy or ordm, < lordm;.

Lemma 4.10. Let m, i be integers with 0 <i < m. Let P € F; ,,—;. Then there exist Py, ..., P; € F and
Py, ..., Py € F; such that

P=P ---P, and, foreveryl <i <m, ordP; <lord P;;.

Remark 4.11. Lemma 4.10 implies that the set F;_; ,,—; from Theorem 3.3 coincides with the set of
standard monomials conjectured by Afsharijoo [2021, §5].

Proof. Suppose that P can be written as

P = (x(hl,o) . _x(hl,él)) . (x(hm,()) . ,x(hm.lm))’

where each (x40 ... x i)y belongs to F or Fy and iy o < hoo < -+ - < hy 0. We first prove that we
can make the product to be a product of nonoverlapping monomials.
Let us sort the orders A0, 1,1, .. ., hm ¢, 10 the ascending order

{(Fl’(), ey F‘l,gl); (1”2,0, ey 7”27[2); ey (rm’(), ey Fm,gm)}.
Claim. Forall 0 <i < m, we have h; o < 1.

In the whole list of the £; ;, all the numbers to the right from #; o are > h; o. Therefore, after sorting,
hi o will either stay or move to the left. Thus, &; ¢ < 7,0, so the claim is proved.

Hence if x"0) ... x7.t) was a fair (respectively, strongly fair) monomial then x 0 . .. xit:) is a fair
(respectively, strongly fair) monomial.

Now we will move all the strongly fair monomials to the right in the decomposition of P. We first
prove that, for every Q = Q105 such that Q| € Fs, Q2 € F, and ord O < lord Q», there exist él e F
and éz € F such that Q = él éz and ord él < lord éz. Let

0 = x(hl.()) . ,x(hl,el) and Q> :x(hz,o) . ‘x(huz)’

where €1 < h1 9 and £, < hpo. If €2 < hy o, then Qs € Fi; so we are done. Otherwise, €1 +1 < hy
implies that Q1x.0) is a fair monomial, and £> — 1 < hs o implies that Q»/x 10 € F;. Thus, we can
take él = Q1x"™M0) and éz = Q0 /xM0),

Applying the described transformation while possible to the nonoverlapping decomposition of P, one
can arrange that the last m — i components are strongly fair. U

Proposition 4.12. For every positive integers m, h, i with 0 < i < m, the cardinality of F; ,—; 0 k[x(SP]
is equal to (i +1) - (m + 1),

The proof of the proposition will use the following lemma:
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Lemma 4.13. For every integers h and d, we have

{PIP e FNk[x<"] and deg P =d}| = <h+1>,

d

If one replaces F with F;, the cardinality will be (Z)

Proof. Let x0) ... x ) e Fguch that € < hg < -+ - < hy. We define a map
(hoy ... he) > (ho—L,hy —£—1,..., hy).

The map assigns to the orders of a monomial in F N k[x<"] a list of strictly increasing nonnegative
integers not exceeding /. A direct computation shows that this map is a bijection. Since the number of

such sequences of length d is equal to the number of subsets of [0, 1, ..., 4] of cardinality d, the number
of monomials is (hjl).

The case of F; is analogous with the only difference being that the subset will be in [1, 2, ..., &], thus
yielding (%). O

Proof of Proposition 4.12. We will prove the proposition by induction on m. For the base case, we have
Fo.0 = {1}, so the statement is true.

Consider m > 0, and assume that for all smaller m the proposition is proved. We fix 0 < i < m.
Consider a monomial P € F; i N k[xSM], let P, --- P, be a decomposition from Lemma 4.10 with
deg P, being as large as possible. We denote tail P := P,, and head P := P - - - Py,_1.

We will show that the map P — (head P, tail P) defines a bijection between F; ,,,—; and

for i <m: {(Qo, Q1) € Fim—i—1 x Fy | ord Qg < deg 01},

(10)
fori=m: {(Qo, Q1) € Fm—1.0 X F |ord Q¢ < deg O01}.

We will prove the case i < m, as the proof in the case i = m is analogous. First we will show that, for every
P € F; u—i, we have ord head P < degtail P. Assume the contrary, and let £ := ord head P > degtail P.
Then we will have

lord(x® tail P) > min(¢, lord tail P) = £ > deg(x® tail P).

This implies that x© tail P € F;. Thus, in the decomposition of Lemma 4.10, we could have taken P,
to be x(© tail P. This contradicts the maximality of degtail P. In the other direction, if Qg € F; —i—1
and Q| € F; such that ord Qg < deg Q1, then Qo Q| € Fi ;. Moreover, since x©420 Q| ¢ F, we have
tail(Qo Q1) = 0.

We will now use the bijection (10) to count the elements in F; ,,_; Nk[xS"]. For i < m,

h
| Fim—i VSN = | Finei NSO [{Q1 € FoNk[x S | deg 01 = ¢
£=0

h
=Y+ m‘(}g) —G+1)-(m+1)" (by Lemma 4.13).
=0
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Fori =m:
h+1
| Fn0 KL S =) | Fu1.0 MK D] - [{Q1 € Fo NK[xSP] | deg 01 = ¢}

=0
h+1

- Zm[(h‘gl) — (m+ D" (by Lemma 4.13).
=0

Thus, the proposition is proved. O

4.4. Lower bounds for the dimension.
Notation 4.14. For a differential polynomial P € k[x©)] and 1 <i < n, we define

« tord,, P to be the fotal order of P in x;, that is, the largest sum of the orders of the derivatives of x;
among the monomials of P;

o deg, o P to be the total degree of P with respect to the variables x;, x/, x/', ....

e We fix a monomial ordering < on k[x(©] defined as follows: To each differential monomial
M = x"0xm -xi(ehe) with (ho, i0) <iex (11, 11) Siex - - Sex (he, 1), We assign a tuple

— i i
(€, he, he—1, ..., ho, ig, ig—1, ..., i0),

and compare monomials by comparing the corresponding tuples lexicographically.

Definition 4.15 (isobaric ideal). Anideal I C k[x©] is called isobaric if it can be generated by isobaric
polynomials, that is, polynomials with all the monomials having the same total order.

Proposition 4.16. Fori =1, 2, the elements of F;_1 »—; are the standard monomials modulo (x| x1).

Proof. We use Proposition 4.2 to obtain the differential homomorphism ¢: k[x(®)] — A defined by
p(x) =n Q& (we will use n and & instead of ng and & for brevity). Let ¢ be the composition of ¢ with
the projection onto A/(n ® &). We will prove the proposition for the elements in Fj o, and the other case
can be done in the same way by replacing ¢ with @.

Let X = x®0) ... x"0) where hog < h; < - - - < hy, be an element of F1,0- We will show that a summand

B(X) 1= (1070 A p®=U=0) A p 10 @ (6O AECD AL A8 AE) 11

appears in ¢ (X) with nonzero coefficient. We will prove this by induction on £. The base case £ =0 is
trivial, so let £ > 0. Since n"*~9 may come only from one of the occurrences of x"?) in X, we must
take n"0~9 ® £©® from one of the x ). Therefore, the coefficient at B(X) in ¢(X) is deg, iy X times
the coefficient at B(X/x") in (X /x0)), which is nonzero by the induction hypothesis.

Let Y := x(0 ... x0¢) be a monomial such that ¥ < X. We will prove by contradiction that B(X)
does not appear in ¢(Y). If it does, then deg(X) = deg(Y) = £+ 1 = ¢’ + 1. Moreover, there exists a
permutation o of {0, 1, ..., £} such that

si—o(i)=h;—({—i) forevery 0<i<U/.
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The inequality s; < h, implies o () = 0, and thus, s = hy. Therefore, sy—; < hy—1, which implies
o( —1) =1, and thus, sy_; = hy—;. Continuing in this way, we show that
si=h; forall0<i </,

which contradicts Y < X. Thus B(X) cannot appear in the ¢(Y).
Assume that X € In.(x2)(®). Then there exist monomials Py, ... Py such that P; < X for all
1<j<N and

N
X =Y aPje(xh)®.
j=1

Hence, ¢p(X) — Z;V:l)\j(p(Pj) = 0. Since P; < X forall 1 < j < N, B(X) cannot be canceled in
o(X) — Zj\’: 1A j9(Pj), which is a contradiction. Therefore, X is a standard monomial. O

Lemma 4.17. Let I; C k[y{oo)], LI C k[ys(oo)] be ideals, and we denote by M; the set of the standard
monomials modulo I; with respect to degree lexicographic ordering for 1 <i < s. Then the standard
monomials with respect to the ordering < (see Notation 4.14) modulo (I, ..., I;) C k[yl(oo), ey ys(oo)] are

M1~M2-‘~MS ::{mlmz---mxlmleMl,...,mSEMS}.

Proof. For each [;, consider the reduced Grobner basis G; of I; with respect to the degree lexicographic
ordering. For each pair f, g € G := G UG, U...UGy, their S-polynomial is reduced to zero by G

« if f, g belong to the same G;, due to the fact that G; is a Grobner basis;

« otherwise, by the first Buchberger criterion (since f and g have coprime leading monomials). [J

Proposition 4.18. Let I} C k[yfoo)], o1 C k[ys(oo)] be homogeneous and isobaric ideals (not necessarily
differential). By M; we denote the set of standard monomials modulo I; with respect to the degree
lexicographic ordering for 1 <i < s. We define a homomorphism (not necessarily differential)

@1 kx©] — K[y, .y, . )
by p(x®) := yfk) 4.4 ys(k) and denote I .= Ker(@). Then the elements of
M:={m...m;|V1<i<s:m; € Mijand V1< j<s: ordm; <lordm i} (12)

are standard monomials modulo I with respect to the ordering < (but maybe not all the standard

monomials).
Proof. Consider a monomial P = x0) ... x") ¢ M and fix a representation P =m(x), ..., mg(x) as
in (12). Assume that P is a leading monomial of /. Then there exist monomials Py, ..., Py such that

N
P—> ")jPjcKerg and VYI<j<N:P;<P.
j=1

Then ¢(P) — Y Aje(Pj) € (11, ...1I). We define m :=m(y)ma(y2) - - - ms(ys).
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Claim. For every monomial m #m in ¢(P), there exists 1 < j < s such that either degyj<oo> m# degyj@o) m

or tordy, m # tord, .

Assume the contrary, that there exists 7 such that, for every 1 < j < s, we have d; := degyj<oc> m=
degyj(oo) m and tordy, m = tord,, m. We write m = (y1) - - - ms(ys). Let 1 < j <'s be the largest index
such that m; # nT, Since m  contains d; largest derivatives in m(x) - --mj(x) =m(x)---m;(x) and
has the same total order as 71 j, we conclude that m ; = mnj. Thus, the claim is proved.

We write the homogeneous and isobaric component of Z?’:l Ajp(P;) of the same degree and total
order in y; as m for every 1 <i < s as Zlﬂil Wi R;, where R; is a differential monomial and u; € k
for every 1 <i < M. Then such a homogeneous and isobaric component of ¢(P) — Z?’:] Ajp(P)) is
Q:=m-— Zlﬂil i R; due to the claim. Since, for every 1 < i < s, I is homogeneous and isobaric,
Qell,...,I).

Note that for every 1 <i < M, the differential monomial R; is a summand of ¢ (P;) for some 1 < j < N.
Thus, if P; = x©0) ... x60  then the derivatives that appear in the monomial R; are of orders s, ..., $.
Hence, P; < P implies R; <m. Therefore, m is the leading monomial of Q contradicting Lemma 4.17. [

Corollary 4.19. The elements of Fi_1 m—i are standard monomials modulo (xf, (xm) )y,

Proof. We will use Proposition 4.18. Consider the ideals

L= Lo =070 L=y, 0D), oy Luet = (Y1, G D),

and define ¢ as in Proposition 4.18. Lemma 4.4 implies that <p((x’")(k)) =((y+...+ ym_l)m)(") =0 for
every k> 1and ¢(x') = (y1+...+y;_1)' =0. Therefore, ((x™), x’) C Ker(¢). Proposition 4.16 implies
that the standard monomials modulo /; are the fair monomials for j < i and strongly fair monomials for
i < j. Therefore, Proposition 4.18 implies that F;_; ,,_; are standard monomials modulo (x’, (x")©). O

4.5. Putting everything together: proofs of the main results.

Proof of Theorem 3.1. Consider the images of F;,_1.0 N k[xSM] in k[x(©]/(x™)>®). By Corollary 4.19,
they are linearly independent modulo (x)(. Then Proposition 4.12 implies that the dimension of
k[x(SM7/(x™)> is at least m"*!. Together with Proposition 4.5, this implies

dim(k[x S/ (x™) ) = mh+1, O

Proof of Theorem 3.3. Fix h > 0. Consider F;_1 ,,_; Nk[xS]. Combining Corollary 4.19, Corollary 4.8,
and Proposition 4.12, we show that the image of this set in k[x S]/((x"), x) forms a basis. Thus, the
image of the whole F;_; ,,—; is a basis of k[x(oo)]/((xm)(oo), x'). Therefore, by Corollary 4.19, Fi_1 m—i
coincides with the set of standard monomials modulo ((x™)® x?). O

Proof of Corollary 3.4. Since the ideal (x', (x)®®)) is generated by homogeneous and isobaric (that is,
weight-homogeneous) polynomials, its Grobner bases with respect to the purely lexicographic, degree
lexicographic, and weighted lexicographic orderings coincide. U
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5. Computational experiments for more general fat points

In this section, we consider a more general case of a fat point in a n-dimensional space, not just on a line.
We used [Macaulay?2], in particular, the package Jets [Galetto and lammarino 2021; 2022] to explore
possible analogues of our Theorem 3.1 for this more general case. A related Sage implementation for
computing the arc space of an affine scheme with respect to a fat point can be found in [Stout 2017, §9]
and [Stout 2014, §5.4].

Let x = (x1,...,x,), and consider a zero-dimensional ideal I C k[x]. We will be interested in
describing (in particular, in computing the dimension of the quotient ring) I N k[x<"] for a positive
integer h. Since this ideal is the union of the following chain

J&<D ﬂk[x(gh)] c <2 ﬂk[x(gh)] c [(3 ﬂk[x(gh)] cC...
and k[xS"] is Noetherian, one can compute 7 N k[xSP] by computing S N k[xSP] for large
enough H. But how do we determine what H is “large enough”?

o For I = (x™) C k[x], the answer is given by Theorem 3.1: if the dimension k[x S/ (I SH) Nk [x(<77])
is equal to m"*1, then ISH) N k[x(SM] = 100 N k[x (],
» For general /, we take H tobe 1,2, ..., and we stop when we encounter

J(&H) mk[th)] — J(SH+D ﬂk[th)]_

We conjecture that in this case IS N Ek[x(SD] = 109 N k[xSP] (see Question 5.1) but, strictly
speaking, we only know that (S™) N k[x(SM] € 109 0 k[x(SP].

5.1. Ideals I = (x™). For ideals of the form (x™), the approach outlined above yields a complete
algorithm to compute 7 N k[xSM] for any given 4 and m. We use it for computing examples of
Grobner bases for these ideals with respect to the lexicographic ordering, as shown in Table 1.

5.2. General fat points. In this subsection, we consider a general zero-dimensional I C k[x] with the
zero set of I being the origin. We use the following algorithm following the approach described in the
beginning of the section to obtain an upper bound of the dimensions of k[x(SM] /(I () N kxS,

Step 1: Set H =1.

Step 2: While the dimension of I(S") N k[x(SM7] is not zero or I(SH) N k[x (S £ [(SHFD A f[x (],
set H=H + 1.

Ideal Grdébner basis

<x2)(oo)mk[x(<2)] (x//)4; x/(x//)l; (x/>2x//; (x/)S; 2xx//+(x/)2; xx/; x2

(xHONExESD] )5 X ()5 (DA (D)3 EE DT () x()F +2(x) ()
3xx/(x//)2+(x/)3x//; 6)(()(/)2)6”4-()6/)4; x(x/)S; x2x//+x(x/)2; x2x/; x3

Table 1. Grobner bases for (x)© Nk[x(SM], where m = 2, 3.
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Ideal h=0 h=1 h=2 h=3
(x2, y%, xy) 3 9 27 81
(x2,y%, xz,yz, 22 —xy) 5 25 125 —
(x3, y2, x%y) 5 25 125 —
(x3, y2, xy) 4 16 64 256
(x3, y3, x%y) 7 49 -
(x4, y*, x2y3) 14 196 — @ —

Table 2. (Bounds for) the dimensions of the truncations of the arc space.

Step 3: Return dim(k[x(gh)]/(IKH) N k[x(gh)])).

We expect the resulting bound to be exact (see also Question 5.1), for example, it is exact for I = (x™).

Our implementation of this algorithm in [Macaulay2] is available for download at the following
webpage: https://mathrepo.mis.mpg.de/MultiplicityStructureOf ArcSpaces. Table 2 shows some of the
results we obtained. One can see that the computed dimensions form geometric series with the exponent
being the multiplicity of the original ideal exactly as in Theorem 3.1.

However, we have also found ideals for which the generating series of the dimensions is definitely
not equal to m /(1 — mt), where m is the multiplicity of the ideal. We show some examples of this type
in Table 3.

Note that while Table 2 gives only indication that the generating series of the multiplicities for these
ideals may be m /(1 — mt), Table 3 gives a proof that this is not the case for all the fat points.

5.3. Open questions. Based on the results of the computational experiments, we formulate several open
questions.

Question 5.1. Let I C k[x] be a zero-dimensional ideal with V (/) being a single point. Is it true that, for
every integer h

(1(<H) ﬂk[x(gh)] — [(SH+D mk[th)]) N (1(<H) ﬂk[x(gh)] — (£ ﬂk[x(gh)])?

Does this statement remain true if we drop the assumption |V (/)| = 17

Ideal h=0 h=1 h=2
(x3, 93, xy) 5 24 115
(x* ¥3, xy) 6 33 —
(x* y3, x%y) 8 62 —
(x4, y4, xy) 7 42 —
(x*, y*, x%y) 10 94 —
(x* y* x2y%) 12 140 —
(x* y0, x2y3) 18 320 —

Table 3. (Bounds for) the dimensions of the truncations of the arc space.
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Question 5.2. Let / C k[x] be a zero-dimensional ideal with V (1) being a single point of multiplicity m.

Is it true that

; (<h) (00)
lim dimk[x 1/1 _ 12

h— o0 mh""1

Question 5.3. Let I C k[x] be a zero-dimensional ideal with V (/) being a single point of multiplicity m.
Under which conditions it is true that

o]

. <h ) h _ m
’;)(dlmk[xK V1)t =

More generally, what information about the corresponding scheme can be read off the above generating
series?
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Theta correspondence and simple factors
in global Arthur parameters

Chenyan Wu

By using results on poles of L-functions and theta correspondence, we give a bound on b for (x, b)-
factors of the global Arthur parameter of a cuspidal automorphic representation  of a classical group or
a metaplectic group where y is a conjugate self-dual automorphic character and b is an integer which is
the dimension of an irreducible representation of SL,(C). We derive a more precise relation when 7 lies
in a generic global A-packet.

Introduction

Let F be a number field and let A be its ring of adeles. Let 7 be an irreducible cuspidal automorphic
representation of a classical group G defined over F. We also treat the case of metaplectic groups in this
work. However to avoid excessive notation, we focus on the case of the symplectic groups G = Sp(X) in
this introduction where X is a nondegenerate symplectic space over F. By Arthur’s theory of endoscopy
[2013], 7 belongs to a global A-packet associated to an elliptic global A-parameter, which is of the form

(T, by)

where 7; is an irreducible self-dual cuspidal automorphic representation of GL,, (A) and b; is a positive
integer which represents the unique b;-dimensional irreducible representation of Arthur’s SL,(C); see
Section 2, for more details.

Jiang [2014] proposed the (z, b)-theory; see, in particular, Principle 1.2 there. It is a conjecture
that uses period integrals to link together automorphic representations in two global A-packets whose
global A-parameters are “different” by a (7, b)-factor. We explain in more details. Let I14 denote the
global A-packet with elliptic global A-parameter ¢. Let w be an irreducible automorphic representation
of G(A) and let o be an irreducible automorphic representation of H (A), where H is a factor of an
endoscopic group of G. Assume that 7 (resp. o) occurs in the discrete spectrum. Then it is expected that
there exists some kernel function X depending on G, H and (z, ) only such that if 7 and o satisfy a
Gan-Gross—Prasad type of criterion, namely, that the period integral

/ / K(h, ) f> () Ta (@) dg dh (0-1)
H(F)\H(A) JG(F)\G(A)
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is nonvanishing for some choice of f, € o and f; € 7, then 7 is in the global A-packet Iy if and
only if o is in the global A-packet 1y, with ¢ = (7, b) H ¢,. Then Jiang [2014, Section 5] proceeds to
construct certain kernel functions and then using them, defines endoscopy transfer (by integrating over
H(F)\ H(A) only in (0-1)) and endoscopy descent (by integrating over G(F) \ G(A) only in (0-1)). It
is not yet known if these are the kernel functions making the statements of Principle 1.2 in [Jiang 2014]
hold. As the kernel functions come from Bessel coefficients or Fourier-Jacobi coefficients as in [Gan
et al. 2012, Section 23], we see the nonvanishing of this period integral is analogous to condition (i) in
the global Gan—Gross—Prasad conjecture [Gan et al. 2012, Conjecture 24.1].

Jiang [2014, Section 7] suggested that if 7 is an automorphic character x, then the kernel function can
be taken to be the theta kernel and endoscopy transfer and endoscopy descent are theta lifts. In this case,
the span of

/ K(h, &) Ta (@) dg
G(F)\GA)

as f, runs over 7 is the theta lift of r. This is an automorphic representation of H (A). Lifting in the other
direction is analogous. Assume that the theta lift of 7 is nonzero. Write ¢, for the global A-parameter
of 7. Then Jiang [2014, Principle 1.2] says that ¢, has a (), b)-factor and that the global A-parameter
of the theta lift of 7 from G to H should be ¢, with the (x, b)-factor removed. Here b should be of
appropriate size relative to G and H. Our work is one step in this direction.

One goal of this article is to expand on the (), b)-theory and to present the results of [Mceglin 1997;
Ginzburg et al. 2009; Jiang and Wu 2016; 2018; Wu 2022a; 2022b] for various cases in a uniform way. As
different reductive dual pairs that occur in theta correspondence have their own peculiarities, the notation
and techniques of these papers are adapted to the treatment of their own specific cases. We attempt to
emphasize on the common traits of the results which are buried in lengthy and technical proofs in these
papers.

After collecting the results on poles of L-functions, poles of Eisenstein series and theta correspondence,
we derive a bound for » when b is maximal among all factors of the global A-parameter of 7. In addition,
we derive an implication on global A-packets. Of course, the heavy lifting was done by the papers
mentioned above.

Theorem 0.1 (Corollary 5.3). The global A-packet attached to the elliptic global A-parameter ¢ cannot
have a cuspidal member if ¢ has a (x, b)-factor with

b>1dimpX+1, ifG=SpX).

Another way of phrasing this is that we have a bound on the size of b that can occur in a factor of
type (x, *) in the global A-parameter of a cuspidal automorphic representation. Thus our results have
application in getting a Ramanujan bound, which measures the departure of the local components 7,
from being tempered for all places v of F, for classical groups and metaplectic groups. This should
follow by generalizing the arguments in [Jiang and Liu 2018, Section 5] which treats the symplectic case.
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There they first established a bound for b under some conditions on wave front sets. This enables them to
control the contribution of GL|-factors in the global A-parameter to the Ramanujan bound. Our result
can supply this ingredient for classical groups and also metaplectic groups unconditionally. Then Jiang
and Liu [2018, Section 5] found a Ramanujan bound for 7 by using the crucial results on the Ramanujan
bound for GL; in [Kim 2003; Blomer and Brumley 2011].

We describe the idea of the proof of our result. First we relate the existence of a (t, b)-factor in
the elliptic global A-parameter of 7 to the existence of poles of partial L-functions L5(s, m x TV); see
Proposition 2.8. If the global A-parameter of 7 has a factor (z, b) where b is maximal among all factors,
we can show that the partial L-function L5(s, w x V) has a pole at s = %(b + 1). Thus studying the
location of poles of L5 (s, m x V) for T running through all self-dual cuspidal representations of GL, (Ar)
can shed light on the size of the b; that occur in the global A-parameter of . Then we specialize to the
case where 7 is a character x and consider L5(s, w x x ) in what follows.

Next we relate the poles of L5(s, w x x V) to the poles of Eisenstein series attached to the cuspidal
datum x X m; see Section 3. In fact, in some cases, we use the nonvanishing of LS(s,m x xV) at

1
§=3

instead; see Proposition 3.1. Then we recall in Theorem 3.5 that the maximal positive pole of the
Eisenstein series has a bound which is supplied by the study of global theta lifts. This is enough for
showing Corollary 5.3, though we have a more precise result that the maximal positive pole corresponds
to the invariant called the lowest occurrence index of m with respect to x in Theorem 4.4. The lowest
occurrence index is the minimum of the first occurrence indices over some Witt towers. For the precise
definition see (4-2). We also have a less precise result (Theorem 4.1) relating the first occurrence index of
7 with respect to certain quadratic spaces to possibly nonmaximal and possibly negative poles of the
Eisenstein series.

More precise results can be derived if we assume that 7 has a generic global A-parameter. This is
because we have a more precise result relating poles or nonvanishing of values of the complete L-functions

to poles of the Eisenstein series supplied by [Jiang et al. 2013]. Thus we get

Theorem 0.2 (Theorem 6.7). Let w be a cuspidal member in a generic global A-packet of G(A) =
Sp(X)(A). Let x be a self-dual automorphic character of GL{(A). Then the following are equivalent:

(1) The global A-parameter ¢ of w has a (x, 1)-factor.
(2) The complete L-function L(s, 7w x x") has a pole at s = 1.
(3) The Eisenstein series E(g, f;) has a pole at s = 1 for some choice of section f, € A2 (s, x X ).

(4) The lowest occurrence index LO))(( () is dim X.

Here Q] is a parabolic subgroup of Sp(X) with Levi subgroup isomorphic to GL;| x Sp(X), where X
is the symplectic space formed from X by adjoining a hyperbolic plane. Roughly speaking, AC! (s, x X )
is a space of automorphic forms on Sp(X) induced from yx|-|* X 7 viewed as a representation of the
parabolic subgroup Q. We refer the reader to Section 3 for the precise definition of AC! (s, x X ). We
note that the lowest occurrence index LO§ (7r) is an invariant in the theory of theta correspondence related
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to the invariant called the first occurrence index; see Section 4 for their definitions. We also include a
result (Theorem 6.3) that concerns the nonvanishing of L(s, w x x¥) ats = % and the lowest occurrence
index. We plan to improve this result in the future by studying a relation between nonvanishing of Bessel
or Fourier—Jacobi periods and the lowest occurrence index.

We note that the L-function L(s, 7 x x ) has been well-studied and is intricately entwined with the
study of theta correspondence, most prominently in the Rallis inner product formula which says that the
inner product of two theta lifts is equal to the residue or value of L(s, w x x ) at an appropriate point up
to some ramified factors and some abelian L-functions. We refer the reader to [ Yamana 2014] which is a
culmination of many previous results. In our approach, the Eisenstein series E(g, f5), which is not of
Siegel type, is the key link between L(s, 7 x x ) and the theta lifts.

Now we describe the structure of this article. In Section 1, we set up some basic notation. In Section 2,
we define elliptic global A-parameters for classical groups and metaplectic groups and also the global
A-packet associated to an elliptic global A-parameter. We show how poles of partial L-functions detect
(z, b)-factors in an elliptic global A-parameter. In Section 3, we define Eisenstein series attached to the
cuspidal datum x Xz and recall some results on the possible locations of their maximal positive poles.
In Section 4, we introduce two invariants of theta correspondence. They are the first occurrence index
FOf(’X (r) and the lowest occurrence index LO§ (r) of & with respect to some data. We relate them to
poles of Eisenstein series. Results in Sections 3 and 4 are not new. Our aim is to present the results in
a uniform way for easier access. In Section 5, we show a bound for b in (), b)-factors of the global
A-parameter of 7. Finally in Section 6, we consider the case when 7 has a generic global A-parameter.
We show that when L(s, 7w x x“) has a pole at s = 1 (resp. L(s, w X x ) is nonvanishing at s = %), the
lowest occurrence index is determined.

1. Notation

Let F be a number field and let E be either F' or a quadratic field extension of F. Let o € Gal(E/F) be
the trivial Galois element when E = F and the nontrivial Galois element when E # F. When E # F,
write e, r for the quadratic character associated to E/F via Class field theory. Let G be an algebraic
group over E. We write Rg,rG for the restriction of scalars of Weil. This is an algebraic group over F.

Let € be either 1 or —1. By an e-skew Hermitian space, we mean an E-vector space X together with
an F-bilinear pairing

(-, ) x: XxX—>FE
such that
(v, x)x = —€(x, )%, (ax,by) =alx, y)xb°

foralla, b € E and x, y € X. We consider the linear transformations of X to act from the right. We follow
the notation from [ Yamana 2014] closely and we intend to generalize the results here to the quaternionic
unitary group case in our future work.
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Let X be an e-skew Hermitian space of finite dimension. Then the isometry group of X is one of the
following:

(1) The symplectic group Sp(X) when E = F and € = 1.
(2) The orthogonal group O(X) when £ = F and € = —1.
(3) The unitary group U(X) when E # F and € = £1.

We will also consider the metaplectic group. Let v be a place of F and let F, denote the completion
of F atv. Let A (resp. Ag) denote the ring of adeles of F (resp. E). Set A := Ar. Write Mp(X)(Fy)
(resp. Mp(X)(Ar)) for the metaplectic double cover of Sp(X)(F,) (resp. Sp(X)(AF)) defined by Weil
[1964]. We note that the functor Mp(X) is not representable by an algebraic group. We will also need
the C'-extension Mp(X)(F,) X 11 C! of Sp(X)(F,) and we denote it by MpCl (Fy). Similarly we define
Mp® (Ap).

Let ¢ be a nontrivial automorphic additive character of Ar which will figure in the Weil representations
as well as the global A-parameters for Mp(X).

For an automorphic representation or admissible representation 7, we write 77V for its contragredient.

2. Global Arthur parameters

First we recall the definition of elliptic global Arthur parameters (A-parameters) for classical groups as
well as metaplectic groups; see [Arthur 2013] for the symplectic and the special orthogonal case and we
adopt the formulation in [Atobe and Gan 2017] for the case of the (disconnected) orthogonal groups. For
the unitary case, see [Mok 2015; Kaletha et al. 2014]. For the metaplectic case, see [Gan and Ichino
2018]. Then we focus on simple factors of global Arthur parameters and relate their presence to poles of
partial L-functions. This is a crude first step for detecting (t, b)-factors in an elliptic global A-parameter
according to the “(z, b)-theory” proposed in [Jiang 2014].

Let G be U(X), O(X), Sp(X) or Mp(X). Let d denote the dimension of X. Set G° = SO(X) when
G = O(X). Set G° = G otherwise. Write G for the (complex) dual group of G°. Then
GL,;(©) if G =U(X);
Sp;—1(€C) if G =0(X) and d is odd;
SO, (C) if G =0O(X) and d is even;
SO4+1(C) if G = Sp(X);
Sp,(C) if G = Mp(X).
An elliptic global A-parameter for G is a finite formal sum of the form

Q«
I

¢ =H_, (v, bj), forsome positive integer r
where

(1) 7; is an irreducible conjugate self-dual cuspidal automorphic representation of GL,, (Ag);

(2) b; is a positive integer which represents the unique b;-dimensional irreducible representation of
Arthur’s SL,(C)
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such that:

. Zi l’ll‘b,‘ = dé

Chenyan Wu

« 7; is conjugate self-dual of parity (—1)Ne TP (see Remark 2.3).

 The factors (t;, b;) are pairwise distinct.

Here d; is the degree of the standard representation of G which, explicitly, is

dim X if G =U(X);
dimX —1 if G =0(X) with dim X odd;
dim X if G = O(X) with dim X even;

dimX+1 if G =Sp(X);
dim X if G =Mp(X);

dimX mod2 if G =U(X);

dg =
and
0
Né =11
1
0

if G = O(X) with dim X odd;
if G = O(X) with dim X even;
if G = Sp(X);
if G = Mp(X).

Remark 2.1. We adopt the notation in [Jiang 2014] and hence we write (t;, b;) rather than t; XM vy, as is

more customary in the literature, so that the quantity b;, that we study, is more visible.

Remark 2.2. In the unitary case, we basically spell out what W, (U(N), &1) in [Mok 2015, Definition 2.4.7]
is. We have discarded the second factor v as it is determined by ¥V and & in Mok’s notation.

Remark 2.3. (1) For G = U(X), we say that t is conjugate self-dual of parity 7 if the Asai L-function

L(s, T, Asai”) has a pole at s = 1. If n = +1, we also say that 7 is conjugate orthogonal and if n = —1,

we also say that 7 is conjugate symplectic. The Asai representations come from the decomposition
of the twisted tensor product representation of the L-group; see [Mok 2015, (2.2.9) and (2.5.9)] and

[Goldberg 1994].

(2) For other cases, we mean self-dual when we write conjugate self-dual. We say that 7 is self-dual of

parity +1 or orthogonal, if L(s, r, Sym?) has a pole at s = 1; we say that 7 is self-dual of parity —1

or symplectic, if L(s, 7, A>) has apole at s = 1.

(3) The parity is uniquely determined for each irreducible conjugate self-dual cuspidal representation .

Let W,(G) denote the set of elliptic global A-parameters of G. Let ¢ € W,(G). Via the local Langlands
conjecture (which is proved for the general linear groups), at every place v of F', we localize ¢ to get an

elliptic local A-parameter,

¢y : Lr, x SLy(C) - G x W, ,
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where Wp, is the Weil group of F, and Lf, is Wp, if v is archimedean and the Weil-Deligne group
WE, x SL,(C) if v is nonarchimedean. To ¢, we associate the local L-parameter ¢y, : Lp, — G Wk,

given by
lw('/? ))
w) = ¢y w, _ .
§0¢v( ) ¢ ( ( I'I,U| 1/2
Let Lgisc(G) denote the discrete part of L*(G(F)\ G(Afr)) when G # Mp(X) and the genuine discrete

part of Lz(Sp(F )\ Mp(AF)) for G = Mp(X). Define the full near equivalence class Li’w (G) attached to

the elliptic global A-parameter ¢ to be the Hilbert direct sum of all irreducible automorphic representations

2
disc

the Mp(X)-case, the parametrization of o, is relative to v, since the local L-parameter of o, is attached

o occurring in Ly, (G) such that for almost all v, the local L-parameter of o, is ¢4, . We remark that in
via the Shimura—Waldspurger correspondence which depends on vr,,. This is the only case in this article
where Lé’w(G) depends on .

Let A,(G) denote the dense subspace consisting of automorphic forms in LﬁiSC(G). Similarly define
A3 4.4 (G) to be the dense subspace of Lé’ w(G) consisting of automorphic forms. Then we have a crude
form of Arthur’s multiplicity formula which decomposes the L?-discrete spectrum into near equivalence

classes indexed by W, (G).

Theorem 2.4. We have the orthogonal decompositions

Li.G = @ L3, (G) and 4H(G) = P Avpy(G).
PeW¥(G) $€¥2(G)
Remark 2.5. This crude form of Arthur’s multiplicity formula has been proved for Sp(X) and quasisplit
O(X) by Arthur [2013], for U(X) by [Mok 2015; Kaletha et al. 2014] and for Mp(X) by [Gan and Ichino
2018]. This is also proved for nonquasisplit even orthogonal (and also unitary groups) in [Chen and Zou
2021] and for nonquasisplit odd orthogonal groups in [Ishimoto 2023]. Thus for all cases needed in this
paper, Theorem 2.4 is known.

We have some further remarks on the orthogonal and unitary cases.

Remark 2.6. Arthur’s statements use SO(X) rather than O(X) and he needs to account for the outer
automorphism of SO(X) when dim X is even; see the paragraph below [Arthur 2013, Theorem 1.5.2].
The formulation for quasisplit even O(X) is due to Atobe and Gan [2017, Theorem 7.1(1)]. For odd
O(X), which is isomorphic to SO(X) X s, the reformulation of Arthur’s result is easy. Let T be a finite
set of places of F. Assume that it has even cardinality. Let sgn; be the automorphic character of 2 (Af)
which is equal to the sign character at places in T and the trivial character at places outside 7. These
give all the automorphic characters of ,(Ar). Then every irreducible automorphic representation 7 of
O(X)(AF) is of the form 7o X sgn, for some irreducible automorphic representation 7y of SO(X)(AF)
and some finite set T of places of even cardinality. A near equivalence class of O(X)(AF) then consists
of all irreducible automorphic representations 7o X sgn; for 7 running over a near equivalence class of
SO(X)(Ar) and sgny running over all automorphic characters of 2 (Af).
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Remark 2.7. For the U(X) case, the global A-parameter depends on the choice of a sign and a conjugate
self-dual character which determine an embedding of the L-group of U(X) to the L-group of Rg,r GLy
where we recall that d := dim X. We refer the reader to [Mok 2015, Section 2.1], in particular (2.1.9)
there, for details. In this work, we choose the +1 sign and the trivial character, which, in Mok’s notation,
means k = 1 and x, = 1. Then this corresponds to the standard base change of U(X) to Rg,r GL;. We
note that the L-functions we use below are such that

Ly(s, my X 7y) = Ly(s, BC(my) ® 10)),

for all places v, automorphic representations = of G(Ar) and 7 of Rg,r GL,(Af) where BC denotes the
standard base change.

By Theorem 2.4, we get

Proposition 2.8. Let 7w be an irreducible automorphic representation of G(Ar) that occurs in Ay ¢ 4 (G).
Then:

(1) If ¢ has a (z, b)-factor with b maximal among all factors, then the partial L-function L3(s, w x V)
has a pole at s = %(b + 1) and this is its maximal pole.

(2) if the partial L-function L3 (s, w x tV) has a pole at s = %(b’ + 1), then ¢ has a (t, b)-factor with
b>"b

Remark 2.9. In the Mp(X) case, the L-function depends on i, but we suppress it from notation here.

Proof. First we collect some properties of the Rankin—Selberg L-functions for GL,, x GL,. By the
Rankin—Selberg method, for an irreducible unitary cuspidal automorphic representation 7, L5(s, 7 x tV)
has a simple pole at s = 1 and is nonzero holomorphic for Re(s) > 1 and s # 1; for irreducible unitary
cuspidal automorphic representations t and v’ such that 2 7/, L5(s, T x t’¥) is nonzero holomorphic for
Re(s) > 1. These results can be found in Cogdell’s notes [2000] which collect the results from [Jacquet
et al. 1983; Jacquet and Shalika 1976; Shahidi 1978; 1980].

Assume that ¢ = H_,(7;, b;). Then

robi—1
L5(s,m x 1Y) :1_[ l_[ LS(s—ibi—D+j,uxtY),
i=1 j=0
where S is a finite set of places of F outside of which all data are unramified.
Assume that ¢ has a (t, b)-factor with b maximal among all factors, then by the properties of the
Rankin-Selberg L-functions, we see that L3(s,m x tV) has a pole at s = %(b + 1) and it is maximal.
Next assume that the partial L-function L3(s, 7 x tV) has a pole at s = %(b/ + 1). If ¢ has no
(t, ¢)-factor for any ¢ € Z-, then L3(s, 7 x tV) is holomorphic for all s € C and we get a contradiction.
Thus ¢ has a (z, b)-factor. We take b maximal among all factors of the form (7, *) in ¢. As b may not
be maximal among all simple factors of ¢, we can only conclude that L5(s, = x ") is holomorphic for
Re(s) > 3(b+1). Thus b’ < b. O
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Given an irreducible cuspidal automorphic representation 7, write ¢, for the global A-parameter of 7.
By studying poles of L3(s, w x tV) for varying 7, we can detect the existence of (, b)-factors with
maximal b in ¢,. We would also like to construct an irreducible cuspidal automorphic representation with
global A-parameter ¢, H(t, b) which means removing the (z, b)-factor from ¢, if ¢, has a (z, b)-factor.
Doing this recursively, we will be able to compute the global A-parameter of a given irreducible cuspidal
automorphic representation. In reverse, the construction should produce concrete examples of cuspidal
automorphic representations in a given global A-packet with an elliptic global A-parameter. This will be
investigated in our future work.

In this article, we focus our attention on the study of poles of L5(s, = x V) where 7 is a conjugate
self-dual irreducible cuspidal automorphic representation of Rg,r GL{(A). Now we write x for T to
emphasize that we are considering the case of twisting by characters. This case has been well-studied and
it is known that the poles of L5 (s, = x x V) are intricately related to invariants of theta correspondence via
the Rallis inner product formula which relates the inner product of two theta lifts to a residue or a value of
the L-function. We refer the readers to [Kudla and Rallis 1994; Wu 2017; Gan et al. 2014; Yamana 2014]
for details. One of the key steps is the regularized Siegel-Weil formula which relates a theta integral to a
residue or a value of a Siegel-FEisenstein series. Our work considers an Eisenstein series which is not of
Siegel type, but which is closely related to L(s, 7w x x ).

3. Eisenstein series attached to y X

In this section we deviate slightly from the notation in Section 2. We use G(X) to denote one of Sp(X),
O(X) and U(X). We let G(X) be a cover group of G(X), which means G(X) = Sp(X) or Mp(X) if
G(X) =Sp(X), G(X) =0(X) if G(X) =0(X) and G(X) = U(X) if G(X) = U(X). We adopt similar
notation to that in [Mceglin and Waldspurger 1995]. We define Eisenstein series on a larger group of the
same type as G(X) and collect some results on their maximal positive poles.

Let = be an irreducible cuspidal automorphic representation of G(X)(A). We always assume
that 7 is genuine when G(X) = Mp(X). Let x be a conjugate self-dual automorphic character of
Re/r GL1(A) =Ag. When E # F, we define

0 if x|px =1;
) :! X|AF -1

1 ileA;=8E/F-

Let a be a positive integer. Let X, be the e-skew Hermitian space over E that is formed from X
by adjoining a-copies of the hyperbolic plane. More precisely, let £ (resp. £) be a totally isotropic
a-dimensional E-vector space spanned by efr, ...,ef (resp. e[, ..., e;) such that (ei*, e;) =24 where
d;j is the Kronecker symbol. Then

X,=oX®e,

with X orthogonal to £ & ¢ .
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Let G(X,) be the isometry group of X,. Let Q, be the parabolic subgroup of G(X,) that stabilizes £ .
Write Q, = M, N, in the Levi decomposition with N, being the unipotent radical and M, the standard
Levi subgroup. We have an isomorphism

m:Rg/r GLy xG(X) — M,.

where we identify Rg,r GL, with Rg/r GL(ZCJ[). Let pg, be the half sum of the positive roots in N,
which can be viewed as an element in a}kwa := Rat(M,) ®z R where Rat(M,) is the group of rational
characters of M,. We note that as Q, is a maximal parabolic subgroup, aj, is one-dimensional. Via the
Shahidi normalization [2010], we identify aj, with R and thus may regard pg, as the real number
1(dimg X +a), if G(X,) is unitary;
3dimg X +a—1), if G(X,) is orthogonal;
%(dimE X+a+1), if G(X,) is symplectic.

Let K, , be a good maximal compact subgroup of G (X,)(F}) in the sense that the Iwasawa decomposition
holds and set K, =[], Kq.v-

Let A% (s, x X ) denote the space of C-valued smooth functions f on N,(A)M,(F)\ G(Xz)(A)
such that:

(1) f isright K,-finite.
(2) Forany x € Rg,r GL,(A) and g € G(X,)(A) we have
f(m(x, 1)g) = x (det(x))|det(x) [ % £ (g).
(3) For any fixed k € K, the function h — f(m (I, h)k) on G(X)(A) is in the space of .

Now let G(X) = Mp(X). This case depends on 1. Let Gil (F,) be the double cover of GL(F},)
defined as follows. As a set it is GL; (F,) X uy and the multiplication is given by

(g1, ¢)(&2, &) = (8182, $162(81, &2)F,)

which has a Hilbert symbol twist when multiplying the w,-part. Analogously we define the double cover
Cf}\il (A) of GL{(A). Let xy,, denote the genuine character of Gil (F,) defined by

X0 (8, ) = Cvu(g, Yij2.0) !

where y, (-, ¥1,2,0) is a fourth root of unity defined via the Weil index. It is the same one as in [Gan and
Ichino 2014, page 521] except that we have put in the subscripts v. Then

x (&) =¢ [ [roten w1720

is a genuine automorphic character of GL, (A\). Let K, denote the preimage of K, under the projection
Mp(X,)(A) — Sp(X,)(A). We will also use ™ to denote the preimages of other subgroups of Sp(X,)(A).



Theta correspondence and simple factors in global Arthur parameters 979

Let m be the isomorphism
GL4(A) Xy, G(X)(A) - My(A)

that lifts m : GL,(A) x G(X)(A) — M,(A). Let det be the homomorphism
GLa(A) - GLi(A)
(x, £) = (det(x), £).
We keep writing det for the nongenuine homomorphism
GL4(A) - GLi(A)
(x, ¢) — det(x).

Given a nongenuine representation t of GL, (A), we can twist it by xy o det to get a genuine representation
which we denote by 7 xy.

We remark that there are canonical embeddings of N, (A) and Sp(X,)(F) to Mp(X,)(A), so we may
regard them as subgroups of G(X,)(A). Let Al/j" (s, x W) denote the space of C-valued smooth functions
fon N,(A)M,(F)\ G(X,)(A) such that:

(1) f is right K,-finite.
(2) For any x € C’}\La (A) and g € G(X,)(A) we have

F@ix, 1)g) = x xy (det(x))|det(x) [ 7% £ (g).
(3) For any fixed k € Ea, the function 4 — f(m (I, h)k) on G(X)(A) is in the space of 7.

To unify notation, we will also write A;/O;“ (s, x ®m) for A% (s, x X ) in the nonmetaplectic case. It
should be clear from the context whether we are treating the Sp(X) case or the Mp(X) case.

Now return to the general case, so G(X) is one of Sp(X), O(X), U(X) and Mp(X). Let f; be a
holomorphic section of Aw“ (s, x X ). We associate to it the Eisenstein series

EZ(g. f,) = > fi(rg).
Y€Qa(F)\ G(Xa)(F)
Note that the series is over y € Q,(F)\ Sp(X,)(F) when G(X) = Mp(X). By Langlands’ theory
of Eisenstein series [Moeglin and Waldspurger 1995, IV.1], this series is absolutely convergent for
Re(s) > pg,, has meromorphic continuation to the whole s-plane, its poles lie on root hyperplanes and
there are only finitely many poles in the positive Weyl chamber. By our identification of aj, with R and
the fact that x is conjugate self-dual, the statements on poles mean that the poles are all real and that
there are finitely many poles in the half-plane Re(s) > 0.

We give the setup for any positive integer a, though we will only need a = 1 in the statements of
our results. However the proofs require “going up the Witt tower” to G(X,) for a large enough. Since
we plan to prove analogous results for quaternionic unitary groups in the future, we keep the setup for
general a.
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There is a relation between poles of L-functions and the Eisenstein series.

Proposition 3.1. (1) Assume that the partial L-function Lfb (s, x x V) has its rightmost positive pole
at s = sg. Then Eg' (g, fs) has a pole at s = sy.

(2) Assume that the partial L-function Li(s, 7 X xV) is nonvanishing at s = % and is holomorphic for
Re(s) > % Assume that

G(X) =U(X) with dim X = ¢, (mod 2);
G(X) = O(X) with dim X odd,
G(X) = Mp(X).

Then Eg' (g, fs) has a pole at s = %

Remark 3.2. This is [Jiang and Wu 2018, Proposition 2.2] in the symplectic case, [Wu 2022a, Proposi-
tion 3.2] in the metaplectic case, [Jiang and Wu 2016, Proposition 2.2] in the unitary case and [Moeeglin
1997, Remarque 2] and [Jiang and Wu 2016, Proposition 2.2] in the orthogonal case.

Remark 3.3. The allowed G(X) in item (2) are those for which we have theta dichotomy and epsilon
dichotomy (in the local nonarchimedean setting); see [Gan and Ichino 2014, Corollary 9.2, Theorem 11.1].

Remark 3.4. When 7 is a cuspidal member in a generic global A-packet of G(X)(A), there is a more
precise result; see Theorem 6.3 which was proved in [Jiang et al. 2013] and strengthened in [Jiang and
Zhang 2020].

We summarize the results on the maximal positive pole of Eg‘ (g, fs) from [Ginzburg et al. 2009,
Theorem 3.1; Jiang and Wu 2016, Theorem 3.1; 2018, Theorem 2,8; Wu 2022a, Theorem 4.2].

Theorem 3.5. The maximal positive pole of Eg (g, f5) is of the form

1dimX+1-(2j+¢)) if GX)=U(X);

,_ | 2@dimX=2j) if G(X) = O(X); 32)
1(dimX 4+2—2)) if G(X) = Sp(X);
5dimX4+2—-@2j+1)  if G(X)=Mp(X);
where j € Z such that
rx <2j+e, <dmX+1 ifG(X)=U(X);
rx <2j <dimX if G(X) = 0(X); 33)
ry <2j <dimX+2 if G(X) =Sp(X);

ry <2j+1<dmX+2 ifG(X)=Mp(X);
where rx denotes the Witt index of X.

Remark 3.6. The middle quantities in the inequalities of (3-3) are, in fact, the lowest occurrence index
of 7 in the global theta lift which depends on x and ; see Theorem 4.4. In some cases, the lowest
occurrence index turns out to be independent of .
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Remark 3.7. To derive the inequalities ry < - - -, we already need to make use of properties of the global
theta correspondence. The other parts of the statements can be derived by relating our Eisenstein series to
Siegel-FEisenstein series whose poles are completely known. We note that via the Siegel-Weil formula,
Siegel-Eisenstein series are related to global theta correspondence.

4. Theta correspondence

We keep the notation of Section 3. First we define the theta lifts and the two invariants called the first
occurrence index and the lowest occurrence index. Then we relate the invariants to poles of our Eisenstein
series.

Recall that we have taken an e-skew Hermitian space X over E. Let Y be an e-Hermitian space
equipped with the form (-, - )y. We note that (-, - )y is an F-bilinear pairing

(-, )y:YxXY—>F
such that

(2, y1)y = €(y1, y2)y,  (yia, y2b)y =a®{y1, y2)yb

forall a,b € E and yy, y, € Y. Let G(Y) be its isometry group. We note that G(X) acts on X from the
right while G(Y') acts on Y from the left. Let W be the vector space Rg,r(Y ®g X) over F and equip it
with the symplectic form

(-, YWw:WxW-—>F
given by
M ®x1, y2 ®x2)w = trg r((y1, y2)y (x1, X2)%).

With this set-up, G(X) and G(Y) form a reductive dual pair inside Sp(W). Let W = WT @ W~ be a
polarization of W. Let Mp(Dl (W)(F,) be the Cl—metaplectic extension of Sp(W)(Fy,). Let w, denote
the Weil representation of MpCl (W)(F,) realized on the space of Schwartz functions S(W™*(F,)). The
Weil representation depends on the additive character v, but we suppress it from notation. When v is
archimedean, we actually take the Fock model [Howe 1989] rather than the full Schwartz space and it
is a (sp(W)(Fy), K Sp(w),»)-module but we abuse language and call it a representation of Mp":l (W)Y(Fy).
When neither G(X) or G(Y) is an odd orthogonal group, by [Kudla 1994] there exists a homomorphism

G(X)(F) x G(Y)(F,) — Mp® (W)(F,)

that lifts the obvious map G (X)(F,) x G(Y)(F,) — Sp(W)(F,). In this case, set G(X) = G(X) (resp.
G(Y)=G(Y)). When G(X) is an odd orthogonal group, we take G (Y)(F,) to be the metaplectic double
cover of G(Y)(Fy) and set G(X) = G(X). Then by [Kudla 1994] there exists a homomorphism

G(X)(Fy) x G(Y)(F,) — Mp® (W)(F,)
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that lifts G(X)(F,) x G(Y)(F,) = Sp(W)(F,). The case is analogous when G (Y) is an odd orthogonal
group. In any case, we get a homomorphism

b : G(X)(F,) x G(Y)(F,) > Mp® (F,).

It should be clear from the context when G(X) (resp. G(Y)) refers to a cover group and when it is
not truly a cover. In the unitary case, there are many choices of ¢,. Once we fix x and an additional
character yx», then ¢, is fixed. This is worked out in great details in [Harris et al. 1996, Section 1]. Our
(x, x2) matches (x1, x2) in [Harris et al. 1996, (0.2)]. We note that Y should be compatible with x and
x determines the embedding of G(X)(A) into MpCl (A) whereas X should be compatible with x» and x»
determines the embedding of G (Y)(A) into MpCl (A). By “compatible”, we mean €, = dimY (mod 2)
(resp. €, =dim X (mod 2)); see [Kudla 1994] for more details. We pull back w, to G(X)(F,) x G(Y)(Fy)
via (, and still denote the representation by w,.

Denote by ¢ the adelic analogue of ¢,,. We also have the (global) Weil representation @ of Mp@] (A) on
the Schwartz space S(W(A)) and its pullback via ¢ to G(X)(A) x G(Y)(A).

Then we can define the theta function which will be used as a kernel function. Let

Oxy(gh, ®) = > (g h)dw)
weW+(F)
for g € G(X)(A), h € G(Y)(A) and ® € S(WT(A)). It is absolutely convergent and is an automorphic
form on G(X)(A) x G(Y)(A). For f € m, set

0Y (/. ®) = f F@)0x.y (. h, ®) dg.
[G(X)]

Note that we write [G (X)] for G (X)(F)\G(X)(A) when G (X) is not metaplectic and G (X)(F)\G(X)(A)
or more explicitly Sp(X)(F) \ Mp(X)(A) when G (X) is metaplectic. This is an automorphic form on
G(Y)(A). It depends on x and x; in the unitary case and when we want to emphasize the dependency,
we will write 9?;‘(2( f, ®). Let ®% () denote the space of functions spanned by the 6F (f, ®) and let
®§,),(xz (7r) denote the space of functions spanned by the 9;’3((2 (f, ®) in the unitary case.

From now on assume that Y is anisotropic (possibly zero), so that it sits at the bottom of its Witt tower.
Define Y, to be the e-Hermitian space formed by adjoining r-copies of the hyperbolic plane to Y. These
Y, form the Witt tower of Y. By the tower property [Rallis 1984; Wu 2013], if the theta lift to G(Y;) is
nonzero then the theta lift to G(Y,~) is also nonzero for all ' > r.

Define the first occurrence index of 7 in the Witt tower of Y to be

min{dim Y, | @;;"”;2(71) %0} if G(X) =U(X);
FOf(’X(n) := { min{dim Y, | @f{ (T ®(xov)) #0} if G(X)=0(X); 4-1)
min{dim Y, | @f{ () # 0} if G(X) = Sp(X) or Mp(X).

Note that it depends on x but not on x» in the unitary case as changing x, to another compatible one
produces only a character twist on @?;(2 (;r). For more details, see [Wu 2022b, (1-1)]. In the orthogonal



Theta correspondence and simple factors in global Arthur parameters 983

case, we twist T by x o v where v denotes the spinor norm. If G(X) = Sp(X) or Mp(X), we require that
Xy = X Where yy is the quadratic automorphic character of GL;(A) associated to Y given by

Xy (g) = (g, (=1)dmY@mY=D/2gqer(. .yy),

where (-, -) is the Hilbert symbol.
Define the lowest occurrence index to be

LO% () := min{Fo)YgX () | Y is compatible with x}, 4-2)
when G (X) = U(X), Sp(X) or Mp(X). Here compatibility means that
dimY =€, (mod2) if G(X)=U(X);

) 4-3)
Xy =X if G(X) = Sp(X) or Mp(X).
Define the lowest occurrence index to be
LO% () == min{FOff’X (m ® sgny) | T a set of even number of places of F}, (4-4)

when G(X) = O(X).

We have the following relations of the first occurrence (resp. the lowest occurrence) and the poles (resp.
the maximal positive pole) of the Eisenstein series; see [Jiang and Wu 2018, Corollary 3.9, Theorem 3.10]
for the symplectic case, [Wu 2022a, Corollary 6.3, Theorem 6.4] for the metaplectic case, [Jiang and Wu
2016, Corollaries 3.5 and 3.7] for the unitary case and [Ginzburg et al. 2009, Theorems 5.1 and 1.3] for
the orthogonal case.

Theorem 4.1. Let w be an irreducible cuspidal automorphic representation of G(X)(A). Let x be a
conjugate self-dual automorphic character of Rg;r GL1(A). Let Y be an anisotropic €-Hermitian space
that is compatible with x in the sense of (4-3). Assume that FO?’X (m)=dim Y + 2r. Set

JdimX +1—(dimY +2r)) if G(X) =U(X);
50 = %(dimX — (dim Y 4 2r)) if G(X)=0(X); 4-5)
%(dimX 4+2—(dimY +42r)) if G(X)=Sp(X) or Mp(X).
Assume that so # 0. If G(X) = O(X) and so < 0, further assume that %dimX <r <dimX — 2. Then
s = 8o is a pole of the Eisenstein series EI% (g, fs) for some choice of f € Ag' (s, x Xm).

Remark 4.2. Using the notation from Section 2. The quantity sg in (4-5) can be written uniformly as
1dax) —da,yv + ).

Remark 4.3. Note that we always have r < dim X. The extra condition when G (X) = O(X) is to avoid
treating period integrals over the orthogonal groups of split binary quadratic forms, as our methods cannot
deal with the technicality. Theorem 4.1 allows negative s¢. It is possible to detect nonmaximal poles and
negative poles of the Eisenstein series by the first occurrence indices.
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Theorem 4.4. Let m be an irreducible cuspidal automorphic representation of G(X)(A). Let x be
a conjugate self-dual automorphic character of Rg;r GL1(A). Then the maximal positive pole of
Egl (g, fs) for fs running over Agl (s, x Xm)isats=syeRifand only if

dimX +1—2sy if G(X)=U(X);
LO% () = { dim X — 2s¢ if G(X) = O(X); (4-6)
dimX +2—2s9 if G(X) = Sp(X) or Mp(X).

Remark 4.5. Theorem 4.4 does not allow negative so.

In Remark 3.7, we mentioned that the part rx < --- in Theorem 3.5 is proved by using theta corre-
spondence. What we used is that we always have LO);( () > rx by the stable range condition [Rallis
1984, Theorem 1.2.1].

5. Application to global Arthur packets

We have derived relations among (x, b)-factors of global A-parameters, poles of partial L-functions,
poles of Eisenstein series and lowest occurrence indices of global theta lifts. Combining these, we have
the following implication on global A-packets.

Theorem 5.1. Let w be an irreducible cuspidal automorphic representation of G(X)(A). Let ¢ be its
global A-parameter. Let x be a conjugate self-dual automorphic character of Rg,r GL1(A). Assume
that ¢ has a (x, b)-factor for some positive integer b. Then

dim X —ry if G(X) =U(X);
b<{dimX—ry—1 if G(X) = 0(X); (5-1)
dimX —rxy+1=15dimX+1 ifG(X)=Sp(X) or Mp(X).

where rx denotes the Witt index of X.

Proof. If b is not maximal among all factors (z, b) appearing in ¢, then b < %dG( x)yv. Then it is clear that
b satisfies (5-1). Now we assume that b is maximal among all factors appearing in ¢,. By Proposition 2.8,
L5(s, w x x~1) has its rightmost pole at s = %(b + 1). Then by Proposition 3.1, ES‘ (g, fs) has a pole at
s = %(b + 1) for some choice of f;. Assume that s = %(bl + 1) is the rightmost pole of the Eisenstein
series with b; > b. By Theorem 3.5,

IdimX +1—ry) if GX)=UX);
%(bl—i-l)f %(dimX—rX) if G(X) =0(X);
%(dimX+2—rX) if G(X) =Sp(X) or Mp(X);
or in other words, b is less than or equal to the quantity on the RHS of (5-1). Using the fact that b < by,
we get the desired bound for b. (I

Remark 5.2. Our result generalizes [Jiang and Liu 2018, Theorem 3.1] for symplectic groups to classical
groups and metaplectic groups. In addition, we do not require the assumption on the wave front set in
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[loc. cit., Theorem 3.1]. This type of result has been used in [loc. cit., Section 5] to find a Ramanujan
bound which measures the departure of the local components of a cuspidal = from being tempered.

The metaplectic case has been treated in [Wu 2022a, Theorem 0.1], though the proof is not written
down explicitly. Here we supply the detailed arguments for all classical groups and metaplectic groups
uniformly.

The corollary below follows immediately from the theorem.

Corollary 5.3. The global A-packet Tl attached to the elliptic global A-parameter ¢ cannot have a
cuspidal member if ¢ has a (x, b)-factor with

dimg X — ry if G(X) = U(X);
b>ddimp X —ry —1 if G(X) = O(X);
dimX —ry+1=1dimX+1 if G(X)=Sp(X) or Mp(X).

6. Generic global A-packets

Following the terminology of [Arthur 2013], we say that an elliptic global A-parameter is generic if
it is of the form ¢ = H;_,(z;, 1) and we say a global A-packet is generic if its global A-parameter is
generic. Assume that 7 is a cuspidal member in a generic global A-packet. Then our results can be made
more precise. We note that our results for Mp(X) are conditional on results on normalized intertwining
operators; see Assumption 6.1 and Remark 6.2.

First assume that G(X) is quasisplit and that 7 is globally generic. We explain what we mean by
globally generic. We use the same set-up as in [Shahidi 1988, Section 3]. Let B be a Borel subgroup of
G(X). Let N denote its unipotent radical and let 7' be a fixed choice of Levi subgroup of B. Of course, in
this case 7' is a maximal torus of G(X). Let F denote an algebraic closure of F. Let A denote the set of
simple roots of T(F)in N(F). Let {Xq}aca be a Gal(F / F)-invariant set of root vectors. Recall that 1 is
a fixed nontrivial automorphic character of Ar which is used in the definitions of the Weil representation
and the global A-packets for Mp(X). It gives rise to generic characters of N(A). We use the one defined
as follows. For each place v of F, we define a character ¥ , of N(F,). Write an element of N(F}) as
[Tyen exp(xe Xq) for x4 € F, such that 0x, = x5o With 0 € Gal(F/F). Set

x/fN,u(l'[ exp(xaxa)) = wv(z xa>.
aEA aEA

Let Yy = ®,¥n . In the Mp(X) case, we view N(A) as a subgroup of Mp(X)(A) via the canonical
splitting. We require that 7 is globally generic with respect to the generic character ¥y of N(A). Thus
the notion of global genericity depends on the choice of the generic automorphic character of N(A).
However by [Cogdell et al. 2004, Appendix A], the choice has no effect on the L-factors, the e-factors
and the global A-parameter for 7 in the case of G(X) = Sp(X), O(X), U(X). The case of Mp(X) is
highly dependent on the choice.
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When 7 is globally generic, b = 1 for every factor (z, b) in the global A-parameter ¢, . This is because
the Langlands functorial lift of 7 is an isobaric sum of conjugate self-dual cuspidal representations of
some Rg/r GL, (A); see Theorem 11.2 of [Ginzburg et al. 2011].

By [Jiang et al. 2013], there is a more precise relation on the poles of L-functions and the poles of
Eisenstein series. The set of possible poles of the normalized Eisenstein series is determined by the
complete L-function L(s, 7w x x ). From the assumption that 7z is globally generic, in the right half-plane,
L(s, m x x") has at most a simple pole at s = 1. In fact we only need [loc. cit., Proposition 4.1] rather than
the full strength of [loc. cit., Theorem 1.2] which allows the induction datum to be a Speh representation
on the general linear group factor of the Levi. By [Jiang and Zhang 2020, Theorem 5.1], [Jiang et al.
2013, Proposition 4.1] can be strengthened to include the case where 7 is a cuspidal member in a generic
global A-packet of G(X)(A) where G(X) = Sp(X), O(X), U(X) does not have to be quasisplit. We
rephrase [Jiang et al. 2013, Proposition 4.1] in our context as Theorem 6.3.

First we set up some notation and outline the method for extending [loc. cit., Proposition 4.1] to the
case of Mp(X). Let

Asai” where n = (—1)4mX+if G(X) =U(X);
pti=1{A2 if G(X)=0(X) with dimX odd or if G(X) =Mp(X); (6-1)
Sym2 if G(X) =0(X) with dim X even or if G(X) =Sp(X);

Asai™" where n = (—DIMX+if G(X) =U(X);
o~ :={Sym? if G(X)=0(X) with dim X odd or if G(X) =Mp(X); (6-2)
A2 if G(X) =0(X) with dim X even or if G(X) =Sp(X).

The results of [loc. cit.] do not cover the metaplectic case, but the method should generalize without
difficulty. We explain the strategy. First the poles of the Eisenstein series are related to those of the
intertwining operators

M (wo, |1 ®) : Indg G0 ™ (]| ) — Indg ()™ (x| Ri)

where 7 is a conjugate self-dual cuspidal automorphic representation of GL,(Ag) and wy is the longest
Weyl element in Q, \ G(X,;)/ Q4. Then define the normalized intertwining operator

L(s,mtxtY)L(2s,7,07)
L(s+1,mxtV)LQ2s+1,t,p7)e(s, mxtV)e(2s,7,07)

N (wo, T|'H) := M (wo, T|-|'®r).  (6-3)
The proof of [loc. cit., Proposition 4.1] relies on the key result that the normalized intertwining operator
is holomorphic and nonzero for Res > % Then it boils down to finding the poles of the normalizing
factors or equivalently
L(s,m xTtY)L2s,7,p7)
Ls+1,mxtV)L2s+1,7,p7)
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Once we have the key result available, we expect to have a version of [loc. cit., Proposition 4.1] for
the metaplectic groups. Note that our p* defined in (6-1) and (6-2) is different from the p and p~ in
[loc. cit.].

Then by using an inductive formula, we expect to be able to prove [loc. cit., Theorem 1.2] as well. We
hope to supply the details in a future work.

Next we allow G(X) to be non-quasisplit. We assume that 7 is a cuspidal member in a generic global
A-packet of G(X). Then by [Jiang and Zhang 2020, Theorem 5.1], (6-3) is holomorphic and nonzero for
Res > % when G(X) = Sp(X), O(X), U(X). Then the proof of [Jiang et al. 2013, Proposition 4.1] goes
through verbatim for such w. The proof of [Jiang and Zhang 2020, Theorem 5.1] does not generalize
readily to the case of Mp(X) as the relevant results for Mp(X) are not available.

Thus we make an assumption on the normalized intertwining operator:

Assumption 6.1. The normalized intertwining operator N (wy, x|-|* X ) is holomorphic and nonzero

for Res > %

Remark 6.2. This is shown to be true by [Jiang and Zhang 2020, Theorem 5.1] when 7 is a cuspidal

member in a generic global A-packet of G(X)(A) for G(X) = Sp(X), O(X), U(X). Thus this is only a
condition when G (X) = Mp(X).

Theorem 6.3. Assume Assumption 6.1. Let w be a cuspidal member in a generic global A-packet of
G(X)(A). Let x be a conjugate self-dual automorphic character of Rg;rp GL1(A).

(1) Assume G(X)=U(X) withe, #dim X (mod 2), O(X) with dim X even or Sp(X). Then L(s, tx x")
has a pole at s = 1 if and only if EQ' (g, f;) has a pole at s = 1 and it is its maximal pole.

(2) Assume G(X)=U(X) withe, =dim X (mod 2), O(X) with dim X odd or Mp(X). Then L(s, wx x")

is nonvanishing at s = % if and only ing1 (g, fs) has a pole at s = % and it is its maximal pole.

Remark 6.4. The result of [Jiang et al. 2013] involves normalized Eisenstein series, but the normalization
has no impact on the positive poles. The following remarks use the notation in [loc. cit.]. We only need
the case » = 1 in [loc. cit.] which is Proposition 4.1 there. Furthermore we only apply it in the case
where 7 is a character. The condition that L(s, 7, p) has a pole at s = 1 is automatically satisfied by
the requirement on our x that it is conjugate self-dual of parity (—1)Ve+1; see Section 2, especially
Remark 2.3.

The global A-parameter ¢, can possibly have a (), 1)-factor only when x satisfies the condition that
L(s, x, p") has a pole at s = 1. Due to the parity condition on factors of an elliptic global A-parameter,
in some cases, ¢, cannot have a (x, 1)-factor.

Combining our result (Theorem 4.4) on poles of Eisenstein series and lowest occurrence indices with
Theorem 6.3 which gives a precise relation between poles of the complete L-function and those of the
Eisenstein series, we get
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Theorem 6.5. Assume Assumption 6.1. Let m be a cuspidal member in a generic global A-packet
of G(X)(A). Let x be a conjugate self-dual automorphic character of Rg,r GL1(A). In each of the
following statements, we consider only those G(X) that are listed:

(1) Assume that L(s, w x x") has a pole at s = 1. Then

dimX —1 ifG(X)=U(X) and ¢, # dim X (mod 2);
LO§(JT) =q1dimX —2 fG(X)=0(X) with dim X even;
dim X if G(X) =Sp(X).

(2) Assume that L(s, 7w x x") does not have a pole at s = 1. Then

dmX+1 ifG(X)=U(X)and e, #dimX (mod 2);
LO§((7T) > {dim X if G(X) =0(X) with dim X even;
dimX +2 ifG(X)=Sp(X).

(3) Assume L(%, T X XV) # 0. Then

dim X if G(X) =U(X) and €,, = dim X (mod 2);
LOY ()= {dimX —1 if G(X)=O(X) with dim X odd;
dmX+1 if G(X)=Mp(X).

(4) Assume L(% T X XV) =0. Then

dimX +2 fG(X)=U(X)and e, =dim X (mod 2);
LOL(m) > {dimX +1 if G(X) = O(X) with dim X odd;
dimX 43 ifG(X)=Mp(X).

Remark 6.6. By the conservation relation for local theta correspondence [Sun and Zhu 2015], there
always exists an e-Hermitian space Z[,) over E, of dimension given by the RHS of the equalities in
items (1), (3) such that the local theta lift of 7, to G(Z|,]) is nonvanishing. Thus in the case of items (2), (4)
and G (X) # O(X), the collection {Z[,1}, for v running over all places of F is always incoherent, i.e., there
does not exist an e-Hermitian space Z over E such that the localization Z, is isomorphic to Zp,) for all v.
In the case of items (2), (4) and G(X) = O(X), we have a nontrivial theta lift of 7, ® (), ovy) ® (n[y) o det)
to G(Zp,) for np,) being the trivial character or the sign character for each place v of F, but the collection
{nv1}v is incoherent, i.e., there does not exist an automorphic character n of Ay such that the localization
1y is equal to 5, for all v; see the definitions of first occurrence (4-1) and lowest occurrence (4-4) for
O(X) for why we have a (), o v,)-twist. We also note that when 7 is an irreducible cuspidal automorphic
representation and L(%, T X XV) = (), it is conjectured that there is an arithmetic version of the Rallis
inner product formula which says that the conjectural Beilinson—Bloch height pairing of arithmetic theta
lifts (which are cycles on Shimura varieties constructed from an incoherent collection of e-Hermitian
spaces) gives the derivative L’(%, T X XV) up to some ramified factors and some abelian L-functions.
The low rank cases have been proved in [Kudla et al. 2006; Liu 2011a; 2011b]. More recently, the cases
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of unitary groups of higher rank have been proved in [Li and Liu 2021; 2022], conditional on hypothesis
of the modularity of Kudla’s generating functions of special cycles.

In terms of “(x, b)”-factors, we have

Theorem 6.7. Let G(X) = U(X) with €, # dim X (mod 2), G(X) = O(X) with dim X even or G(X) =
Sp(X). Let w be a cuspidal member in a generic global A-packet of G(X)(A). Let x be a conjugate
self-dual automorphic character of Rg,r GL{(A). Then the following are equivalent:

(1) The global A-parameter ¢ of w has a (x, 1)-factor.
(2) The complete L-function L(s, T x x") has a pole at s = 1 (and this is its maximal pole).

(3) The Eisenstein series EC1(g, f;) has a pole at s = 1 for some choice of f; € A9 (s, x Xx) (and this
is its maximal pole).

(4) The lowest occurrence index LO;% () is

dmX -1 ifG(X)=U(X);

dmX -2 ifG(X)=0(X);

dim X if G(X) =Sp(X).
Remark 6.8. The statements that the poles are maximal are automatic since 7 lies in a generic global
A-packet. We note that when G(X) = U(X) with €, =dim X (mod 2), G(X) = O(X) with dim X odd
or G(X) = Mp(X), ¢, cannot have a (), 1)-factor as the parity condition is not satisfied.
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Equidistribution theorems for holomorphic
Siegel cusp forms of general degree: the level aspect

Henry H. Kim, Satoshi Wakatsuki and Takuya Yamauchi

This paper is an extension of Kim et al. (2020a), and we prove equidistribution theorems for families of
holomorphic Siegel cusp forms of general degree in the level aspect. Our main contribution is to estimate
unipotent contributions for general degree in the geometric side of Arthur’s invariant trace formula in
terms of Shintani zeta functions in a uniform way. Several applications, including the vertical Sato—Tate
theorem and low-lying zeros for standard L-functions of holomorphic Siegel cusp forms, are discussed.
We also show that the “nongenuine forms”, which come from nontrivial endoscopic contributions by
Langlands functoriality classified by Arthur, are negligible.
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1. Introduction

Let G be a connected reductive group over X and A the ring of adeles of Q. An equidistribution
theorem for a family of automorphic representations of G(A) is one of recent topics in number theory
and automorphic representations. After Sauvageot’s important results [1997], Shin [2012] proved a
so-called limit multiplicity formula which shows that the limit of an automorphic counting measure is
the Plancherel measure. It implies the equidistribution of Hecke eigenvalues or Satake parameters at a
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fixed prime in a family of cohomological automorphic forms on G(A). A quantitative version of Shin’s
result is given by Shin and Templier [2016]. A different approach is discussed in [Finis et al. 2015] for
G = GL, or SL,, treating more general automorphic forms which are not necessarily cohomological.
Note that in the works of Shin and Shin and Templier, one needs to consider all cuspidal representations
in the L-packets. Shin [2012, second paragraph on p. 88] suggested that one can isolate just holomorphic
discrete series at infinity. In [Kim et al. 2020a; 2020b], we carried out his suggestion and established
equidistribution theorems for holomorphic Siegel cusp forms of degree 2. We should also mention Dalal’s
work [2022]; see Remark 3.12. See also the related works [Knightly and Li 2019; Kowalski et al. 2012].

In this paper we generalize several equidistribution theorems to holomorphic Siegel cusp forms of
general degree. A main tool is Arthur’s invariant trace formula, as used in the previous work, but we need
a more careful analysis in the computation of unipotent contributions. Let us prepare some notations to
explain our results.

Let G = Sp(2n) be the symplectic group of rank n defined over Q. For an n-tuple of integers
k=(ky,....kp)withk;>--->k,>n+1, let D?Ol = oy be the holomorphic discrete series representation
of G(R) with the Harish-Chandra parameter [ = (k; — 1,...,k, —n) or the Blattner parameter k.

Let A (respectively, Ay ) be the ring of (respectively, finite) adeles of Q, and 7 be the profinite completion
of Z. For S a finite set of rational primes, let S = {oo} U Sy, Qg, = ]_[pesl Qp, AS be the ring of adeles
outside S and Z5 = [1,¢s, Zp- We denote by G/(@) the unitary dual of G(Qs,) = [[,es, G(Qp)
equipped with the Fell topology. Fix a Haar measure uS5 on G(AS) so that x5 (G(zs )) =1, and let U be
a compact open subgroup of G(AS). Consider the algebraic representation £ = £ of the highest weight k
so that it is isomorphic to the minimal Ko-type of D}‘Ol. Let Ay denote the characteristic function of U.

Then we define a measure on (ﬁ@?, ) by

p o 1 S -1 0. hol i
/’LU’SI’S,D?"I T VOl(G(@)\G(A))dImS Z 1% (U) mcusp(nsl,U’ év Dl )Sngl P (1 1)

—

7§, €G(Qs,)
where § 9 is the Dirac delta measure supported at ngl, a unitary representation of G(Qg, ), and
1
Meusp(mg,: U.&. D) = > Meusp () tr(® (hy)), (1-2)
7ell(G(A))°

0 hol
TS, :ﬂsl s noo:Dl
where T1(G(A))? stands for the isomorphism classes of all irreducible unitary cuspidal representations of
G(A) and 75 = ®;¢S7TP'

To state the equidistribution theorem, we need to introduce the Hecke algebra C°(G(Qg,)) which
is dense under the map h +— h, where ﬁ(ﬂgl) = tr(ms,(h)) is in F(G(Qg,)) consisting of suitable
/lg}l -measurable functions on G(Qs, ). (See [Shin 2012, Section 2.3] for that space.)

Let N be a positive integer. Put Sy = {p prime : p | N}. We assume that S1 N Sy = &. We denote
by K,(N) the principal congruence subgroup of level N for G(Z,) (see (2-3) for the definition), and
set KS(N) = ]_[p ¢s Kp(N). For each rational prime p, let us consider the unramified Hecke algebra
HY(G(Qp)) C CP(Qp), and for each k > 0, H (G (Q)))", the linear subspace of H"'(G(Qp)) consisting
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of all Hecke elements whose heights are less than k. (See (2-2).) Let H"'(G(Qp))<, be the subset of
HY(G(Qp))* consisting of all Hecke elements whose complex values have absolute values less than 1.
Our first main result is

Theorem 1.1. Fix k = (kq,...,ky) satisfying k1 > --- >k, > n + 1. Fix a positive integer k. Then
there exist constants a, b and co > 0 depending only on G such that for each h1 = Qpes, h1,p, where

hi,p € H'(G(Qp))< . we have
ak+b
[1 p) N ‘”),

A -~ ~pl ~
ks, sy, p(h1) = il (hy) + 0((
7 DES)

ifN =co ]_[pes1 p2". Note that the implicit constant of the Landau O-notation is independent of S1, N

and hy.

Let us apply this theorem to the vertical Sato—Tate theorem and higher level density theorem for
standard L-functions of holomorphic Siegel cusp forms.
The principal congruence subgroup I'(N) of level N for G(Z) is obtained by

'(N)=GQ)NGR)K(N),

where K(N) = ]_[p <00 Kp(N). Let Sg (I'(N)) be the space of holomorphic Siegel cusp forms of weight k
with respect to I'(V) (see the next section for a precise definition), and let HEy (N ) be a basis consisting
of all Hecke eigenforms outside N. We can identify HEy(N) with a basis of K(N)-fixed vectors in
the set of cuspidal representations of G(A) whose infinity component is (isomorphic to) D}‘Ol. (See
the next section for the details.) Put dg(N) = [HEg(N)|. Then we have [Wakatsuki 2018], for some
constant Cy > 0,
i di(N) = CxCy N2 F" 4 O, (N?"), (1-3)

where Cy =[], [172,(1—p~2%). Note that [[/_; {(2i) ! < Cy < 1.

For each F' € HEy(N), we denote by nfp = 700 ® ®;,n F,p the corresponding automorphic cuspidal
representation of G(A). Henceforth, we assume that

ki>->k,>n+1. (1-4)

Then the Ramanujan conjecture is true, namely, 7 g , is tempered for any p; see Theorem 4.3. Unfortu-
nately, this assumption forces us to exclude the scalar-valued Siegel cusp forms.

Let @“r’ MP he the subspace of 6@ consisting of all unramified tempered classes. We
denote by (01(7F,p),....0u(7F,p)) the element of Q corresponding to wf , under the isomorphism
@“r’ temp ~ [0, 7]" /&, =: Q. Let up be the measure on Q defined in Section 7.

Theorem 1.2. Assume (1-4). Fix a prime p. Then the set
{(01(F,p).....0n(F p)) €Q: F € HER(N)}
is [Lp-equidistributed in 2, namely, for each continuous function f on Q,

fim m 3 f(el(nF,p),...,en(nF,,,))=/Qf(91,...,9,,)u,,.

N —o0
(p.N)=1 FeHE(N)
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By using Arthur’s endoscopic classification, we have a finer version of the above theorem. Under
the assumption (1-4), the global A-parameter describing 7f, for F € HEy(N), is always semisimple.
(See Definition 4.1.) Let HEy(N)# be the subset of HEy(N) consisting of F' such that the global
A-packet containing 7 is associated to a simple global A-parameter. They are Siegel cusp forms which
do not come from smaller groups by Langlands functoriality in Arthur’s classification. In this paper, we
call them genuine forms. Let HEy(N)"8 be the subset of HEy (N ) consisting of F such that the global
A-packet containing 7 is associated to a nonsimple global A-parameter, i.e., they are Siegel cusp forms
which come from smaller groups by Langlands functoriality in Arthur’s classification. We call them
nongenuine forms. We show that nongenuine forms are negligible. The following result is interesting in
its own right. For this, we need some further assumptions on the level N.

Theorem 1.3. Assume (1-4). We also assume

(1) N is an odd prime or

(2) N is odd and all prime divisors p1, ..., pr (r = 2) of N are congruent to 1 modulo 4 such that
(Ilj—;) =1fori # j, where (z) denotes the Legendre symbol.
Then

(1) |HER(N)E| = CLCN N2+ 4 0, ; (NZ’H1714€) for any € > 0;
) |HER(N)™| = Oy . (NZ’HT1714€) for any e > 0;

(3) for a fixed prime p, the set {(01 (TF,p)s-- . On(Fp)) €EQ:F € HEy (N)g} is Wp-equidistributed
in Q.

The above assumptions on the level N are necessary in order to estimate nongenuine forms related
to nonsplit but quasisplit orthogonal groups in the Arthur’s classification by using the transfer theorems
for some Hecke elements in the quadratic base change in the ramified case [Yamauchi 2021]. (See
Proposition 4.12 for the details.)

Next, we discuss £-level density (where £ is a positive integer) for standard L-functions in the level
aspect. Let us denote by IT(GL,(A))° the set of all isomorphism classes of irreducible unitary cuspidal
representations of GL, (A). Keep the assumption on k as in (1-4) and the above assumption on the
level N. Then F can be described by a global A-parameter B_,7; with 7; € IT(GLyy; (A))? and
> r_,m; =2n+ 1. Then we may define the standard L-function of F € HE(N) by

,
L(s,mp,St):= 1_[ L(s, i),
i=1
which coincides with the classical definition in terms of Satake parameters of F' outside N. Then we
show unconditionally that the £-level density of the standard L-functions of the family H Ey (N) has the
symmetry type Sp in the level aspect. (See Section 9 for the precise statement. Shin and Templier [2016]
showed it under several hypotheses for a family which includes nonholomorphic forms.) Here, in order to
obtain lower bounds for conductors, it is necessary to introduce a concept of newforms. This may be of
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independent interest. Since any local newform theory for Sp(2n) is unavailable except for n = 1, 2, we
define the old space S ,‘;ld(F(N )) to be the intersection of Sy (I'(N)) with the smallest G(Ay )-invariant
space of functions on G(Q)\G(A) containing S (I'(M)) for all proper divisors M of N. The new space
S ECW(F(N )) is the orthogonal complement of Sgd(f‘ (N)) in Sg(I'(N)) with respect to the Petersson
inner product. Then if F' € S;™(T'(N)), ¢(F) > N 1/2 (Theorem 8.3), and if N is squarefree, we can
show that dim S*(T'(N)) = ¢(n?)~'dg(N) if n > 2 (Theorem 5.4).

As a corollary, we obtain a result on the order of vanishing of L(s, nF,St) at s = %, the center of
symmetry of the L-function, by using the method of Iwaniec et al. [2000] for holomorphic cusp forms
on GL,(A) (see also [Brumer 1995] for another formulation related to the Birch—-Swinnerton—Dyer
conjecture): Let rg be the order of vanishing of L(s,wf,St) at s = % Then we show that under the
GRH (generalized Riemann hypothesis), ) pcy Ex(N) TF = Cdi(N) for some constant C > 0. This
would be the first result of this kind in Siegel modular forms. We can also show a similar result for the
degree 4 spinor L-functions of GSp(4).

Let us explain our strategy in comparison with the previous works. We choose a test function

[ =u(KIN)! fehihgs vy € CGR) ® (Spes, H (G(Qp))%,) ® C(GAY))
such that fg is a pseudocoefficient of D?Ol normalized as tr(7oo(fg)) = 1. A starting main equality is

Ispec(f) =1I1(f)= geom(f)’

where Ipec(f) (respectively, Igeom(f)) is the spectral (respectively, the geometric) side of Arthur’s
invariant trace /(). Under the assumption k, > n + 1, the spectral side becomes simple by the results
of Arthur [1989] and Hiraga [1996], and it is directly related to Sy (I'(V)) because of the choice of a
pseudocoefficient of D?Ol. Now the geometric side is given by

, wM -
liean(£) = Y (tymeaniao o L sm o omis 6 st gane). s
MecL Lo ye(M @)y, 5
where § = {oo} U Sy U S; and (M(Q)) .5 denotes the set of (M, S)-equivalence classes in M(Q)
(see [Arthur 2005, p. 113]); for each M in a finite set £, we choose a parabolic subgroup P such that M
is a Levi subgroup of P. (See loc. cit. for details.) Roughly speaking:

e If the test function f is fixed, the terms on (1-5) vanish except for a finite number of (M, S)-
equivalence classes.

e The factor a™ (S, y) is called a global coefficient and it is almost the volume of the centralizer of y
in M if y is semisimple. The general properties are unknown.

e The factor / ]g (v. fg) is called an invariant weighted orbital integral, and as the notation shows, it
strongly depends on the weight k of § = §;. Therefore, it is negligible when we consider the level
aspect.

e The factor JA],‘IJ (y, hp) is an orbital integral of y for h = MS(K(N))_IhlhKS(N).
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According to the types of conjugacy classes and M, the geometric side is divided into the terms

Igeom(f) = 11 (f) + I2(f) + I3(f) + 14 ().

where
e [((f): M=Gandy =1;
e Ih(f): M #Gandy =1,
e I3(f): y is unipotent, but y # 1;
e [4(f): the other contributions.
The first term 7;(f) is f(1) up to constant factors, and the Plancherel formula ﬁgll ( f ) = f(1)

21 in Theorem 1.1

yields the first term of the equality in Theorem 1.1. The condition N > ¢g ]_[pG s, P
implies that the nonunipotent contribution /4( f) vanishes by [Shin and Templier 2016, Lemma 8.4].
Therefore, everything is reduced to studying the unipotent contributions 7> ( f) and 73( f). An explicit
bound for /5( f) was given by [Shin and Templier 2016, proof of Theorem 9.16]. However, as for I3( f),
since the number of (M, § )-equivalence classes in the geometric unipotent conjugacy class of each y is
increasing when N goes to infinity, it is difficult to estimate I3( f) directly. In the case of GSp(4), we
computed unipotent contributions by using case-by-case analysis as in [Kim et al. 2020a]. Here we give a
new uniform way to estimate all the unipotent contributions. It is given by a sum of special values of
zeta integrals with real characters for spaces of symmetric matrices; see Lemma 3.3 and Theorem 3.7.
This formula is a generalization of the dimension formula (see [Shintani 1975; Wakatsuki 2018]) to the
trace formula of Hecke operators. By using their explicit formulas [Saito 1999] and analyzing Shintani
double zeta functions [Kim et al. 2022], we express the geometric side as a finite sum of products of local
integrals and special values of the Hecke L functions with real characters, and then obtain the estimates
of the geometric side; see Theorem 3.10.

This paper is organized as follows. In Section 2, we set up some notations. In Section 3, we give
key results (see Theorem 3.7 and Theorem 3.10) in estimating trace formulas of Hecke elements. In
Section 4, we study Siegel modular forms in terms of Arthur’s classification and show that nongenuine
forms are negligible. In Section 5, we give a notion of newforms which is necessary to estimate conductors.
Sections 6-10 are devoted to proving the main theorems. Finally, in the Appendix, we give an explicit
computation of the convolution product of some Hecke elements, which is needed in the computation of
£-level density of standard L-functions.

2. Preliminaries

A split symplectic group G = Sp(2n) over the rational number field Q is defined by

On 1 On 1
G = Sp(2n) = {g eGly,: g (—Inn 0’;) lg = (—Ir; 0’;)} .

The compact subgroup
A —B
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of G(R) is isomorphic to the unitary group U(n) via the mapping ( g _f ) > A+iB, where i = +/—1.
For each rational prime p, we also set K, = G(Z,) and put K = Hpgoo K,. The compact groups K
and K are maximal in G(Q,) and G(A), respectively,

Holomorphic discrete series of G(R) are parameterized by n-tuples k = (k1,...,k,) € Z" such that
ki >--->ky > n, which is called the Blattner parameter. We write oy for the holomorphic discrete series
corresponding to the Blattner parameter k = (ky, ..., k,). We also write D}‘Ol for one corresponding to
the Harish-Chandra parameter [ = (k1 — 1,k —2, ..., k, —n) so that D?Ol = 0.

Let H"'(G(Q)p)) denote the unramified Hecke algebra over G(Q,), that is,

HY(G(@p)) = {¢ € C2(G(Qp)) : plk1xks) = p(x) Vki, k2 € Kp, ¥x € G(Qp)}.

Let T denote the maximal split @-torus of G consisting of diagonal matrices. We denote by X«(7') the
group of cocharacters on 7" over Q0. An element e; in X« (7T') is defined by
j—1 n—j+1  j-1 n—j+1
. —N— — N —— 1 —N—
ej(x)=diag(1,...,1,x,1....1,1,....LLx" ", 1,...,1)eT, x¢€Gy. 2-1)
Then, one has X«(T') = (e1,...,en). By the Cartan decomposition, any function in H*'(G(Qp)) is
expressed by a linear combination of characteristic functions of double cosets K,A(p) K, (A € X«(T)).
A height function || - || on X« (T) is defined by

n

m,
l_[ €

j=1

=max{|mj| 1<y §n}, mj e’Z.

For each k € N, we set
HHG@p) = o e HTG@) :Swp) © | Kpr(pKp)  22)
REX+(T), llnll<k
Choose a natural number N. We set
Ky(N)={x€Kp:x=1, mod N}, K(N)= 1_[ Ky(N). (2-3)
p<oo
One gets a congruence subgroup ['(N) = G(Q) NG(R)K(N).

Let 9, :={Z € M,(C): Z ='Z, Im(Z) > 0}. We write S (I'(N)) for the space of Siegel cusp forms
of weight k for I'(N), i.e., S (I'(V)) consists of Vi -valued smooth functions F' on G(A) satisfying the
following conditions:

(i) F(ygkooks) = pr(koo) ' F(g), g€ GA), ¥y € G(Q), koo € Koo, ky € K(N),
(ii) Pk (gooi1n) FlG(r)(goo) is holomorphic for goo - ily € Hn,
(iii)) maxgega) | F(g)| K 1,

where pi denotes the finite dimensional irreducible polynomial representation of U(n) corresponding to k
together with the representation space Vi and we set px(g.iln) = px(iC + D) for g = (é g) € G(R).
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Let m = (my,...,mp), my|ma|---|my, and D, = diag(my,...,my). Let T(Dy) be the Hecke
operator defined by the double coset

Dy O
'(N) ( 0 Dn_11) '(N).
Specifically, for each prime p, let D, , =diag( p“!,..., p?*), witha=(ay,...,ap)and0<a; <---<ay.

Let F be a Hecke eigenform in S (I'(V)) with respect to the Hecke operator T'(Dp4) for all p 4 N.
(See [Kim et al. 2020a, Section 2.2] for Hecke eigenforms in the case of n = 2. One can generalize the
contents there to n > 3.) Then F gives rise to an adelic automorphic form ¢ on Sp(2n, @)\ Sp(2n, A),
and ¢ gives rise to a cuspidal representation 7 g which is a direct sum wg = 71 @- - - @ 7, where the m;
are irreducible cuspidal representations of Sp(2#n). Since F is an eigenform, the 7r; are all near-equivalent
to each other. Since we do not have the strong multiplicity one theorem for Sp(2n), we cannot conclude
that 7 is irreducible. However, the strong multiplicity one theorem for GL,, implies that there exists a
global A-parameter € W(G) such that 7; € ITy for all i [Schmidt 2018, p. 3088]. (See Section 4 for
the definition of the global A-packet.)

On the other hand, given a cuspidal representation 7 of Sp(2n) with a K(N)-fixed vector and whose
infinity component is holomorphic discrete series of lowest weight k, there exists a holomorphic Siegel
cusp form F of weight k with respect to I'(N) such that 7 = 7. (See [Schmidt 2017, p. 2409] for n = 2.
One can generalize the contents there to n > 3.)

We define HEy (N ) to be a basis of K(N)-fixed vectors in the set of cuspidal representations of Sp(2n,A)
whose infinity component is holomorphic discrete series of lowest weight k, and identify it with a basis
consisting of all Hecke eigenforms outside N. In particular, each F' € HE} (N) gives rise to an irreducible
cuspidal representation g of Sp(2n). Let Fx(N) be the set of all isomorphism classes of cuspidal
representations of Sp(2n) such that 7K@) £ 0 and 7o ~ ok. Consider the map A : HEy (N ) — Fi(N),
given by F —— mf. It is clearly surjective. For each w = mso ® ®;)7Tp € Fx(N),set mp = ®;,np. Then
we get

A7 ()| = dim 7 F V),

where n;((N) ={pens mr(k)p =¢ forallk € K(N)}.

3. Asymptotics of Hecke eigenvalues

For each function 7 € C2°(K(N)\G(Ar)/K(N)), an adelic Hecke operator 7}, on Sg (I'(N)) is defined by

(ThF)(g) = /G o PEORG) s, F & STV)
\f

See [Kim et al. 2020a, pp. 15-16] for the relationship between the classical Hecke operators and adelic

Hecke operators for n = 2. One can generalize the contents there to n > 3 easily. Let f; denote a
pseudocoefficient of oy with troy (fi) = 1; see [Clozel and Delorme 1990].
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Lemma 3.1. Suppose k, >n+1and h € CZ°(K(N)\G(Ar)/K(N)). The spectral side Ispec( frh) of
the invariant trace formula is given by

Lspec(fich) = > ma Tr(rrp (h)) = Tr(Thl s, ravy))s
=0k ®m s ,auto. rep. of G(A)
where my means the multiplicity of 7 in the discrete spectrum of L*>(G(Q)\G(A)).
Proof. The second equality follows from [Wallach 1984]. One can prove the first equality by using the

arguments in [Arthur 1989] and the main result in [Hiraga 1996], since it follows from [Hiraga 1996] and
kn > n + 1 that we obtain Tr(7( fx)) = O for any unitary representation (% ox) of G(R). d

We choose two natural numbers N; and N, which are mutually coprime. Suppose that Ny is squarefree.
Set Sy ={p: p| N1}. We write hy for the characteristic function of np¢Slu{oo} K,(N). For each
automorphic representation 7 = o ® ®,7p, We set Ts, = ®pes, Tp-

Lemma 3.2. Take a test function h on G(Ay) as

h=vol(K(N)" ' xhi ®hy, whereh; € ®pes, H"(G(Qp)). (3-1)
Then
. K(N
Tipec(fich) = > mx dim 7 £ Te(rg, (1)) = Tr(Tls, e avy)-
=0k Qs ,auto. rep. of G(A)
Proof. This lemma immediately follows from Lemma 3.1. O

Let V; denote the vector space of symmetric matrices of degree r, and define a rational representation p
of the group GL; x GL;, on V, by x - p(a, m) = a'mxm, where x € V, and (a,m) € GL x GL,. The
kernel of p is given by Ker p = {(a~2,al,) : a € GL1}, and we set

H, = Ker p\(GL; x GL;).

Then, the pair (H,, V;) is a prehomogeneous vector space over Q. For 1 <r <n and f € C°(G(A)) (re-
spectively, f € CZ°(G(Ay))), we define a function @, € C2°(V;-(A)) (respectively, @z, € C2° (V- (Ar)))

as
1 In * . x 0
Orr(x)= [ flk k) dk [respectively, ,  where x = eVy.

Let f;g denote the spherical trace function of oy with respect to px on G(R); see [Wakatsuki 2018,
§5.3]. Notice that fzc is a matrix coefficient of oy, and so it is not compactly supported. Take a test
function 1 € CZ°(G(Ay)) and set f = fkh. Let y be a real character on R~ oQ>*\A*. Define a zeta
integral Zr(<I>];’r, s, x) by

la” detm)?"x(@) ) @z, (x-g)dg, g=pla,m),
xeV2(Q)

2,50 [

Hr (@\H,(A)
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where V.2 = {x € V; : det(x) # 0} and dg is a Haar measure on H, (A). The zeta integral Z, (CDf oS X)
is absolutely convergent for the range
k
r—1 Re(s) < — ifr =2,
kn>2n, Re(s)> — 2 . (3-2)
Re(s) < k,, — rT otherwise,

see [Wakatsuki 2018, Proposition 5.15], and Z(® FrS x) is meromorphically continued to the whole
s-plane; see [Shintani 1975; Wakatsuki 2018; Yukie 1993]. The following lemma associates Z ($ FrrS X)
with the unipotent contribution Iu,ip(f) = I1(f) + I2(f) + I3(f) of the invariant trace formula.

Lemma 3.3. Let Sy be a finite set of finite places of Q. Take a test function hg, € CZ°(G(Qs,)), and
let hS° denote the characteristic function of ]_[p¢ Sol{oo} Kp- Define a test function f as f = fzch SOhSO.
If ky, is sufficiently large (k,, > 2n), then we have

n
Laip (fihsoh®?) = volg hsy (Vi +5 5" > Zp(®7,.n="1. 7).
r=1 ye2 (So)

where volg =vol(G(Q)\G(A)), di denotes the formal degree of oy, and % (So) denotes the set consisting
of real characters y = Qy )y on R=oQ*\A* such that y is unramified for any v ¢ So LU {oo}. Note that
So may contain S1 and all prime factors of N.

Remark 3.4. Note that the point s =n — (r —1)/2, where 1 <r < n, is contained in the range (3-2), and
we have Z,(® 7, s, y) = 0 for any real character y ¢ 2°(So).

Proof. To study Lunip(fxh SOhSO), we need an additional zeta integral Z, (P £.r»s) defined by

Zr(@j 0 = |

|det(m)|?* ®; (‘'mxm)dm.
GL,(@)\ GL, (A) 2 O,

xeV2(Q)

The zeta integral Z,(® For s) is absolutely convergent for the range (3-2), and Z(® ; »»§) is meromor-
phically continued to the whole s-plane; see [Shintani 1975; Wakatsuki 2018; Yukie 1993]. Applying
[Wakatsuki 2018, Propositions 3.8 and 3.11, Lemmas 5.10 and 5.16] to Zynip( /), we obtain

n
Tip (fih s05°) = volg hsy (1) dig + 3 Ze (@ 7,n =51 (3-3)
r=1

for sufficiently large k, > 2n. Notice that fj is changed to fk in the right-hand side of (3-3), and this
change is essentially required for the proof of (3-3).
By the same argument as in [Hoffmann and Wakatsuki 2018, (4.9)], we have

~ 1
Zr(®f,.8)=5) Zr(®7, 5.0,
X

where y runs over all real characters on R~ oQ*\A*. Suppose that y = ® y» ¢ 2 (So). Then, we can
take a prime p ¢ So such that y, is ramified and

P 7 (apx) =Pz (x), Vape€ Z,. (3-4)
Hence, we get Z,(® 7 . s, ) = 0, and the proof is completed. O
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"mxm

Remark 3.5. The rational representation p of H, on V; is faithful, but the representation x —
of GL, on V; is not. Hence, Z, (P Fr S x) is suitable for Saito’s explicit formula [1999], which we use
in the proof of Theorem 3.10, but Zr(® For s) is not. This fact is also important for the study of global

coefficients in the geometric side; see [Hoffmann and Wakatsuki 2018].

Let ¥ be a nontrivial additive character on Q\A, and a bilinear form (, ) on V;(A) is defined by
(x,y) :=Tr(xy). Let dx denote the self-dual measure on V;(A) for ¥ ({, }). Then, a Fourier transform
of & € C*®°(V,(A)) is defined by

b(y) = [ PP ((x. ) dx. 3 € Vy(A).
Vi (R)

For each &g € C5°(V;(Ar)), we define its Fourier transform @, in the same manner. The zeta function
Z (D Fr S 1) satisfies the functional equation [Shintani 1975; Yukie 1993]

Zr@;,.5. 0 =7, (0;, s 1), (3-5)
where 1 denotes the trivial representation on R @ \A*.

Take a test function ®g € C§°(V; (Ay)) such that ®o(*kxk) = ®g(x) holds for any k € ]_[p<oo Hy(Zp)
and x € V- (Ayr), where H;(Zp) is identified with the projection of GL1(Zp) x GL(Zp) into Hy(Ay). We
write Lo for the subset of V;-(Q) which consists of the positive definite symmetric matrices contained in the
support of ®g. It follows from the condition of ®q that Ly is invariant for I' = H,(Z) = H,(Q) N H,(2).
Put ¢, (g, s) = 1 for r = 0. For r > 0, define a Shintani zeta function ¢, (®g, 5) as

Do (x)
(P, s) = U a2
6r (@0, ) xeLZO/I‘ #(Ty) det(x)®

where 'y = {y € ' : x -y = x}. The zeta function ¢, (P, s) absolutely converges for Re(s) > (r +1)/2,
and is meromorphically continued to the whole s-plane; see [Shintani 1975]. Furthermore, {,(®o, 5) is
holomorphic except for possible simple poles at s = 1,3/2,...(r +1)/2.

Lemma 3.6. Let 1 <r <n, k, >2n, h € CZ°(G(Ay)), and take a test function f as f = kah. Then,

there exists a rational function Cp r(X1, ..., Xn) over R such that
r—1 —
Zr(q)f,r,n—‘_z ,1) :Cn,r(]_()xgr(q)h!r,r—n)'

Proof. This can be proved by the functional equation (3-5) and the same argument as in [Wakatsuki 2018,
proof of Lemma 5.16]. O

Note that £, (CI;;;, s) is holomorphic in {s € C:Re(s) <0}, and Cp, , (x1, ..., X,) is explicitly expressed
by the Gamma function and the partitions; see [Wakatsuki 2018, (5.17) and Lemma 5.16]. We will use this
lemma for the regularization of the range of k. The zeta integral Z, (® Fol— (r—1)/2,1) was defined
only for k, > 2n, but the right-hand side of the equality in Lemma 3.6 is available for any k. In addition,

this lemma is necessary to estimate the growth of Iynip(f)) with respect to S = §7 L {oo}. We later define
S

a Dirichlet series D (s) just before Proposition 3.9, and the series Dy

maus (s) appears in the explicit
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formula of Z,(®, s, 1) when r is even. For the case that r is even and 3 < r < n, it seems difficult to

estimate the growth of its contribution to Z,(® Felt— (r—1)/2,1), but we can avoid such difficulty by

S

this lemma, since the part related to D, ,, .

(s) in Saito’s formula [1999, Theorem 3.3] disappears in the
special value ¢, (CIT;;, r—n).

Theorem 3.7. Suppose k, >n + 1. Let h1 € H'(G(Qs,))* = Qpes, H" (G(Qp))*, and let h be a test
function on G(Ay) given as (3-1). Then there exists a positive constant cq such that, if N > coN 12”",

TH(Thl s, rvyy) = vol Vol (K(N) " hi (D + 5 3 Cor K6 (Bpr=m). (3-6)

r=1
Proof. Let f = fih and f = fzch. By Lemma 3.2, it is sufficient to prove that the geometric side Jgeom( /)
equals the right-hand side of (3-6). If one uses the results in [Arthur 1989] and applies [Shin and Templier
2016, Lemma 8.4] by putting E : G C GL,,, m = 2n, Bg = 1, cg = ¢¢ in their notations, then one gets
Tscom(f) = Lunip(f). Hence, by Lemma 3.3 and putting hSOhSO = h, we have

n
_ 1 r—1
Tr(Thl s, rvy) = volg VOI(K(N) T i (Dde +5 > Y Zr(<1>];’r, n-2, x) (-7)
r=1 ye2 (So)
for sufficiently large k. Let .#(a) := diag(1,...,1,a,...,a), where there are n entries of both 1 and «,

for a € A*. For any ap € Z;, by € Q, o € Xx(T), we have
///(ap)_le (N)A#(ap) = Kp(N) and ///(ap)_lﬂ(bp)///(ap) = pu(bp).

Hence, (3-4) holds for any p < co, and so Z, (CIDf’r, n—(r—1)/2, y) vanishes for any y # 1. Therefore, by
Lemma 3.6 we obtain the assertion (3-6) for sufficiently large k;. By the same argument as in [Wakatsuki
2018, proof of Theorem 5.17], we can prove that this equality (3-6) holds in the range k, > n + 1, because
the both sides of (3-6) are rational functions of k in that range, see Lemma 3.6 and [Wakatsuki 2018,
Proposition 5.3]. Thus, the proof is completed. O

Let S denote a finite subset of places of @, and suppose oo € S. For each character y = ® xy on
Q*R=o\A*, we set

L5, 0 =[] Lot xp). L )= [] LoGs 1),

DPES p<00

) =L, =[]a-p™)"" and ()= L(s, D),
PgsS

where L, (s, xp) = (1 — xp(p)p~*) L if xp is unramified, and L, (s, xp) = 1 if yp is ramified.

Lemma 3.8. Lets € R. Fors > 1,
$5(s)<¢(s) and (£5)(s) <
where (£5) (s) = L¢5(s). Fors < —1,
125 ()] < (Ns)~*1¢(s)1.

258(s)

s—1

’

where Ns = [],es\ (oo} P-
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Proof. Firstof all, (1—p~5)~1>1for p € S. Hence ¢5(s) <(s). Letlog £5 (s) = Zp¢S log(1—p~%)~L.
Then

(€5)(s) = —pSlogp
56 T2 1

- 1
Ifs>1,thenl—p~ > 5. Hence,

(€5 (s)
£5(s)

<2) plogp=<2> p~logp.
DES p
By partial summation,
o0 o0 s
Zp_s logp < / (Z log p)sx_s_1 dx < / sx S dx = P
p I Ap=x ! 5
Here we use the prime number theorem: Zpsx log p ~ x. Therefore, (£5)/(s) < 2s¢(s)/(s—1). O
Set © = {d(Q*)?:d € Q*}. For each d € D, we denote by y; =[], xa.» the quadratic character

on @*Rso\A* corresponding to the quadratic field Q(+/d ) via class field theory. If d = 1, then yg4
means the trivial character 1. For each positive even integer m, we set

L5(m/2, xa)

N S (m—l)/2—s’
LSQ2s—m/2+1, xq) (fd)

03 m(s) =525 —m + 1)¢5 (29)

where fg denotes the conductor of )(g = [I,¢s Xd.p- Foreachug € Qg =[], e5 Qu, one sets
D(us) = {d(@)*:d € Q*, d cug(Q¥)?}.

‘We need the Dirichlet series

DS =D @5,

d(Q@*)2eD(us)
The following proposition is a generalization of [Ibukiyama and Saito 2012, Proposition 3.6]:

Proposition 3.9. Let m > 2 be an even integer. Suppose (—1)™?ugs > 0 forus = (uy)yes (namely, the
term of d(Q*)2 = (@) does not appear in D3 .. (s) if (—=1)™/2 = —1). The Dirichlet series DS .. (s)

mus mus
is meromorphically continued to C, and is holomorphic at any s € Z <.

Proof. See [Kim et al. 2022, Corollary 4.23] for the case m > 3. For m = 2, this statement can be proved
by using [Hoffmann and Wakatsuki 2018; Yukie 1992]. O

Theorem 3.10. Fix a parameter k such that ky, >n+1. Let hy € H*"(G(Qs,))*, and let h € CZ°(G(Ay))
be a test function on G(Ay) given as (3-1). Suppose SUPxeG(as,) |h1(x)| < 1. Then, there exist positive
constants a, b, and cq such that, if N > cole'”‘,

Tr(Ths, (r(vy)) = volg Vol(K(N)) ™ hy(1)dj + vol(K(N)) ™! O(NGF+b N,

Here the constants a and b do not depend on «, N1, or N. See Lemma 3.3 for volg and dj.
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Proof. Set
I(f.r) =Vol(K(N)) X & (®ppr —n), 1<r<n.

By Theorem 3.7, it is sufficient to prove I(f,r) = O(NI‘Z’CH’N_”).
Let R be a finite set of places of Q. Take a Haar measure dxs, on V;(R), and for each prime p,

we write dx, for the Haar measure on V;(Q,) normalized by er @) dx, = 1. For a test function
dr € CX(V,(QR)) and an H,(Qg)-orbit Og € VO(QRr)/H,(QR), we set

Zr.R(PR-$. OR) =CR/ R (x)|det(x)[ T 2 dx,

OR

where cr = [[,eR, p<oo(l — P H7Y - |r = [lyer | - lv, and dx = [],cg dxp. It is known that

Z, Rr(PR, s, Or) absolutely converges for Re(s) > = '51, and is meromorphically continued to the whole

s-plane.

Suppose that R does not contain oo, that is, R consists of primes. Write 1, (x) for the Clifford invariant
of x € V,2(Qp), see [Tkeda 2017, Definition 2.1], and set nr((xp)per) = [1per Np(xp). For x = 1
(trivial) or ng, we put (O g x)(x) = Pr(x) x(x). It follows from the local functional equation [Ikeda 2017,
Theorems 2.1 and 2.2] over Qp (R = {p}) that Z, ,(®p . s, O)) is holomorphic in the range Re(s) < 0,
and Z, ,(®p x, s, 0)) possibly has a simple pole at s = 0. Hence, for any R, Z, r(Pry.s, Or) does not
have any pole in the area Re(s) < 0, but it may have a pole at s = 0. Let 6; denote the Fourier transform

of ®gp € C°(V;(QRr)) over Qg for [[,er Yv((, ), where ¥, = ¥|q,.
Define

o, =h((g ) ecmn@s),

where * = (§ 8) € Vu. Note that this definition is compatible with @ 7 _ since h1 is spherical for
HPESI Kp. Set
%(S17h1): Z ‘Zr,S1(®h1,rXr7r_naﬁS1) 5
ﬁSIGVrO(@Sl)/Hr(@Sl)
where
|15, if(risoddandr <n)orr=2<n,
T ns, ifrisevenand2<r <n,
and
1 .
%I(Slshl)z Z ‘Zn,Sl(q)hl,m %’ ﬁsl) ifr =n.

0s,€V2(Qs,)/Hr(Qs,)

It follows from Saito’s formula [1999, Theorem 2.1 and §3] that the zeta function ¢, ( 5;,\, s) is expressed
by a (finite or infinite) sum of Euler products of Z, ,(®p xp. s, Op), with y, =15, np, or its finite sums,
and he explicitly calculated the local zeta function Z, ,(®, xp. s, Op) in [Saito 1997, §2] if &, is the
characteristic function of V(Z,). We shall prove /( f .r) = O(N{“ thN ~) by using his results.
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Case I. Assume r is odd and r < n. In the following, we set S = S; U {oo}. By Saito’s formula, we have

I(f.r) = (constant) x N""=D/2=rn Z Zr,5,(Phyror =1, Os,)
WSIEVrO(@Sl)/HV(@Sl)
41 n [r/2]
S(r S —1 S S
¢ ( ! —n)xll_lzé‘ () x]_[l; Qu)eS 2r—2n—2u+1).
= u=

Therefore, one has
[I(f 1) < NTOTD27m s N2T° s a1 (S hy)
by using Lemma 3.8.

Case II. Assume r is even and 3 < r < n. By Saito’s formula, Proposition 3.9, and Lemma 3.8, one can
prove that |7 ( f ,7)| is bounded by

r/2—1 r/2

;S(%) <[Te507 = [] Seux[]¢S@r—2n—2u+1)
1=2 u=1 u=1

< Nr(r—l)/z—rn % NlZn2 % %(Sl,hl)

Nr(r—l)/z—rn % ffr(Sl, hl) %

up to a constant. Note that Proposition 3.9 was used for this estimate, since it is necessary to prove the

vanishing of the term including Dfu ¢ (s) in the explicit formula [Saito 1999, Theorem 3.3].

Case II1. Assume r = n. In this case, we should use a method different from Case I and Case II since

Zrs, (CIT;“\J)(, s, Us,) may have a simple pole at s = r —n = 0. Take an n-tuple [ = (/y,...,[,), with
I, x

iy >--->1,>2n,and let n(x) = (On In) € G where x € V,,. Recall that fl satisfies the following two
properties:

() fi(k~'gk) = fi(g), for all k € Koo, g € G(R); see [Wakatsuki 2018, §5.3].
(i) g fl(gl_lnl(t)gz)dt = 0 for all g1, g2 € G(R), where n1(t) = n((bij)1<i,j<n), b11 = ¢, and
bjj =0forall (i, j) # (1, 1); see [Wakatsuki 2018, Lemma 5.9].
By property (i), we can define @ »(x) = f}(n (x)), where x € V,,(R).
Lemma 3.11. For each orbit O, € V.)(R)/Hy(R), we have Z”aw(q)ﬁ,n’ (n+1)/2,05)=0.
Proof. Let O # I, - Hy(R), and take a representative element A of ﬁ;oo as

0 01
A=|0 o 0], where o e V2 ,(R).
1 00
The orbit 0 is decomposed into A - GL, (R) U (—A) - GL, (R). The centralizer H,,4) of n(A) in H,(R)
is given by
Hyq) = tm(h)n(y) :h € 04(n), y € Va(R)},
where

t;,—1
m(h) = (}(’) Oh") and  Oa(n) = {h € GLy : hAh = A}.
n
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Hence, by property (ii), we have

Zn,oo(chNl n’ 11_2|_1_’ ﬁoo) = / f}(m(h)—ln(A/)m(h))ldet(h)|n+l dh
i 2 ia ovmneL®
= Z / / fNI(m(h)_ln(A/)nl(zl)m(h))|det(h)|n+ldtdh
At VO M\GLy(R) JR
=0,

where 4" = {(b;j) : bj; =1,with 1 < j <n, by €R, and b;; = 0 otherwise}.
In the case s = (n+1)/2, we note that | det(x)| vanishes in the integral of Zn,oo(CIJf; 2 (1 +1)/2,0).
Hence, it follows from property (ii) that i

- n+1 _ ~ _
> Zawo(®, ,ﬁoo)—/V(R)CDﬁ,n(x)dx—O,
Ooo €V (R)/Hy (R) "
and so we also find Zp 00 (P £ ,n, (n +1)/2, In - Hy(R)) = 0. O
By Lemmas 3.6 and 3.11, the residue formula [Yukie 1993, Chapter 4] of Z, (P, s, 1) and the same

argument as in [Hoffmann and Wakatsuki 2018, proof of Theorem 4.22], we obtain

T _ -1 n+1
& (B 0) = ConD)™" Zn (P, . 3201)

= Cua )™ VI @VHA )Y [ @ (xo) og detC50) o

X Op, (xs,) dxg, N2,
V(@s,)
where Hy,(A) = {(a,m) € H,(A) : |a” det(m)?| = 1}. From this, we have
I(f ) < NN 5 55.(S). ).
Case IV. Assume r = 2 < n. By Saito’s formula [Hoffmann and Wakatsuki 2018, Theorem 4.15], we have

[I(f.r)| < N'72" x 25(S1,h1) x |£5(2) 715 (3 —2m) | x max D3, (2—n).

us€Q3/(QF)?, Uoo<0

S
2,us

element us = (uy)yes satisfying u, € Z,, with p € §1. Take a test function & = ®, P, such that

Hence, it is enough to give an upper bound of |D (2—n)| for us, < 0. Choose a representative

the support of @, is contained in {x € V20 (R) : det(x) > 0} and ®,, is the characteristic function of
diag(1, —up) + p?Va(Z,) (respectively, V2(Zp)) for each p € Sy (respectively, p & S). Let

qj(y,yu)=/K &;(tk(g yyu)k)dk, K> =0(2.R) x [ [ GL2(Z,).
2 P

and we set

d
T(@.5) = - T@ssl, Ly and T@soon = [ [ BP0 01" 0.y dudy.
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By [Shintani 1975, Lemma 1], one obtains Zz,oo(é;,n - % Oso) = 0 for any orbit O in VZO([R).
Therefore, from the functional equation [Yukie 1992, Corollary (4.3)], one deduces

INTODS ,2—n)| < |Zy,5(®s.2—n,05) D5, 2—n)| =271 T(®.n - 1)].
By [Yukie 1992, Proposition (2.12) (2)], one gets

1

SN/ o S _

¢S(2n—1) } ’
where (£5)'(s) = %CS(S), because Supp(&)p) C p~2V(Zp) for any p € Sy. Therefore, one gets

D3 s @=m| < N
by Lemma 3.8.
The final task is to prove 25 (S1,h1) <K N 1‘”‘+b for some a and b. Using the local functional equations
in [Ikeda 2017, Theorem 2.1] (see also [Sweet 1995]), one gets

—1
% (S1.h1) < Nf x 3 Zrs51 (1P, =52 05, )

2
ﬁS] GV}’O(@SI)/HI”(@SI)

for some ¢ € N. By [Assem 1993, Lemma 2.1.1] and the assumption SUPxeG(Qs,) |h1(x)| <1, we have
|q>h1,r| = ®S1,r,—K7

where ®g, » _« denotes the characteristic function of ®,es, p~“V;(Zp). Hence, by a change of variables,
we get
r—1 r—1

Zr,S1 (|q>h1,r|’n - T’ ﬁsl) = Zr,Sl (qDSl,r,—K’n - T’ ﬁSl)

= N{Cnr_Kr(r_l)/ZZr,Sl (q)Sl,r,Oa n— %7 ﬁsl)

< N{cnr—/cr(r—l)/z‘

It follows from classification theory of quadratic forms that #(V,%(Qs,)/H,(Qs,)) < Nj. Therefore, we
obtain a desired upper bound for Z; (S, h1). Thus, we obtain I(f,r) = O(Nl""+bN_”). O

Remark 3.12. We give some remarks on Shin and Templier’s work [2016] and Dalal’s work [2022].
In the setting of [Shin and Templier 2016], they considered “all” cohomological representations as a
family which exhausts an L-packet at infinity since they chose the Euler—Poincaré pseudocoefficient at
the infinite place. Then there is no contribution from nontrivial unipotent conjugacy classes. Therefore,
our work is different from Shin—Templier’s work in that we can consider only holomorphic forms in an
L-packet.

Shin suggested to consider a family of automorphic representations whose infinite type is any fixed
discrete series representation. Dalal [2022] carried it out in the weight aspect by using the stable trace
formula. The stabilization allows us to remove the contribution I3 ( /) (see Section 1), but instead of I3( f),
the contributions of endoscopic groups have to enter. Dalal obtained a good bound for them by using the
concept of hyperendoscopy introduced by Ferrari [2007]. In studying the level aspect, it seems difficult
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to directly get a sufficient bound for the growth of the hyperendoscopic groups in question; since Sp(2n)
has infinitely many elliptic endoscopic groups

SO(Ny1, N1) xSp(2Nz) and SO(N;+1,Ny—1,E/Q)xSp(2N32), Ni+ N, =n,

where E runs over quadratic extensions of @ and SO(N; + 1, N; — 1, E/Q) is the quasisplit orthogonal
group attached to £/Q (see [Arthur 2013, p. 13—14] and [Assem 1998, §4]), it is quite complicated
to count the hyperendoscopic groups. (The referee pointed out to us that the essential difficulty in
applying hyperendoscopy techniques is in computing endoscopic transfers of indicators of any level
subgroup. In particular, answering the transfer problem is necessary to even know which set of groups
we are counting.) We also observe the same complication coming from elliptic endoscopic groups in the
unipotent terms of the (unstable) Arthur trace formula; see [Hoffmann and Wakatsuki 2018, p. 8]. Assem’s
results [1993; 1998] make us expect that, for 1 <r <n, some parts of zeta integrals Z, (P FrS x) probably
correspond to the central contributions of the endoscopic groups SO(n—r +1,n—r + 1) x Sp(2r —2) and
SO(n—r+2,n—r, E/Q) x Sp(2r —2). To avoid such complication, we have simplified the unipotent
terms in several steps as follows:

¢ Our method showed the vanishing of a large part of the unipotent terms; see Lemma 3.3 and
[Wakatsuki 2018].

¢ The contributions of Z,(® FrrS x) vanish when y is nontrivial; see Theorem 3.7.

e Our careful analysis estimates upper bounds of the contributions of Z, (P Fore S 1) by using the

functional equations; see the proof of Theorem 3.10.

Analogous simplifications should be required even if we use the stable trace formula.

4. Arthur classification of Siegel modular forms

In this section, we study Siegel modular forms in terms of Arthur’s classification [2013]; see §1.4 and
§1.5 of loc. cit.. Recall G = Sp(2n)/Q. We call a Siegel cusp form which comes from smaller groups by
Langlands functoriality “a nongenuine form”. In this section, we estimate the dimension of the space of
nongenuine forms and show that they are negligible. This result is interesting in its own right.

Let F € HEE(N), see Section 2, and 7 = 7 be the corresponding automorphic representation
of G(A). According to Arthur’s classification, 7 can be described by using the global A-packets. Let us
recall some notations. A (discrete) global A-parameter is a symbol

v =m[di] BB [dr]
satisfying the following conditions:

(1) for each i, with 1 <i <r, m; is an irreducible unitary cuspidal self-dual automorphic representation
of GL,; (A). In particular, the central character w; of m; is trivial or quadratic;

(2) foreachi,d; € Z=g and Y | mid; =2n+ 1,
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(3) if d; is odd, then ; is orthogonal, i.e., L(s, 7;, Symz) has a pole at s = 1;
(4) if d; is even, then m; is symplectic, i.e., L(s, w;, A?) has a pole at s = I;
(6) ifi # j and m; >~ 7j, then d; # d;.
We say that two global A-parameters B! _, ;[d;] and B /=1”i, [d/] are equivalent if » = r’ and there
exists 0 € &, such that d/ = dg(;) and 7] = 75(;). Let W(G) be the set of equivalent classes of global

A-parameters. For each € W(G), one can associate a set ITy, of equivalent classes of simple admissible
G(Ar) x (g, Ko)-modules; see [Arthur 2013]. The set ITy is called a global A-packet for .

Definition 4.1. Let ¢ = B/_, m;[d;] be a global A-parameter.
e 1 is said to be semisimple if d; = --- = d, = 1; otherwise, 1 is said to be nonsemisimple;
e 1 is said to be simple if r =1 and d; = 1.

By [Arthur 2013, Theorem 1.5.2] (though our formulation is slightly different from the original one),
we have a following decomposition

L3 G@\GA)~ B B maym. 1)
YeV(G) welly
where my y € {0, 1}; see [Atobe 2018, Theorem 2.2] for my . We have the following immediate
consequence of (4-1):

Proposition 4.2. Let 1g(ny be the characteristic function of K(N) C G(Ar). Then
K(N
ST = @ P mayrf™

YeV(G) melly
JTOOZUL{

and

|HE(N)| =vol(K(N)™" >~ 3" muy (s (Igwy))- (4-2)

vew(G) melly
JTOOZO’]S

Theorem 4.3. Assume (1-4). For a global A-parameter W =7 _, 7r;[d;], suppose that there exists 7w € T1y,
with oo 2 ok. Then V is semisimple, i.e., d; =1 for all i, and each m; is regular algebraic and satisfies

the Ramanujan conjecture, i.e., 7; p is tempered for any p.

Proof. By the proof of [Chenevier and Lannes 2019, Corollary 8.5.4], we see that d; = --- =d, = 1.
Hence, v is semisimple. Further, by comparing infinitesimal characters ¢ (7o), ¢(¥oo) Of Too, Yoo
respectively, we see that each 7; is regular algebraic by [Chenevier and Lannes 2019, Corollary 6.3.6 and
Proposition 8.2.10]. It follows from [Caraiani 2012;2014] that m; , is tempered for any p. O

Therefore, for each finite prime p, the local Langlands parameter at p of 7 is described as one of the
isobaric sum H’_, m; , which is an admissible representation of GL3,+41(Qp).
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Definition 4.4. We denote by HEy (N)" the subset of HE} (N) consisting of all forms which belong to

D D meyr ™,

Yvev(G) melly
Y:nonsimple Too=0k

under the isomorphism (4-1). A form in this space is called a nongenuine form.
Similarly, we denote by HEy (N )# the subset of HEj (N) consisting of all forms which belong to

@ @ mﬂ,wn]{((N)’

YveV(G) melly
Yisimple Too™=0k

under the isomorphism (4-1). A form in this space is called a genuine form.

Definition 4.5. Denote by I1(GL,(R))¢ the isomorphism classes of all irreducible cohomological ad-
missible (gl,,, O(n))-modules. For 1o € IT(GL,(R))¢ and a quasicharacter y : @Q*\A*—C*, we define

LEPY(GLy (@)\GLA (A), Too, 1) := D meor

7 : orthogonal
Moo =Too, W =X

and
Lcusp,ort(KGLn (N), Toos X) = @ I’l’l(]T)]TKGLn (N)’

7 :orthogonal
Too=Too, Wx =X

where the direct sums are taken over the isomorphism classes of all orthogonal cuspidal automorphic
representations of GL,(A) and w, stands for the central character of w. The constant m(7) is the
multiplicity of 7 in L?(GL,(Q)\ GL,(A)) which satisfies m () € {0, 1} by [Shalika 1974]. Here,
KCLn(N) is the principal congruence subgroup of GLj (Z) of level N. Put

lcusp,on(n, N, Toos X) = dlm@ (Lcusp,ort(KGLn (N), Toos X))
for simplicity. Clearly, [*P°'(1, N, 100, ) = |2x/ (1+N 2)x| = @(N), where ¢ stands for Euler’s
totient function.

Let P(2n + 1) be the set of all partitions of 2n + 1 and P, be the standard parabolic subgroup
of GLyy+1 associated to a partition 2n + 1 =my +---+m,, and m = (mq, ..., m;).

In order to apply the formula (4-2), it is necessary to study the transfer of Hecke elements in the local
Langlands correspondence established by [Arthur 2013, Theorem 1.5.1]. We regard G = Sp(2n) as a
twisted elliptic endoscopic subgroup of GL>,+1; see [Ganapathy and Varma 2017] or [Oi 2023].

Proposition 4.6. Let N be an odd positive integer. Put Sy :={p prime: p | N }. For the pair (GLap+1, G),
the characteristic function of vol(K(N))~11 k() as an element of CX°(G(Qs ) is transferred to

VOl (KGLGJ,_] (N))_l IKGLZH-"-] (N)

as an element of C2°(GL2p+1(Qsy))-

Proof. 1t follows from [Ganapathy and Varma 2017, Lemma 8.2.1 (1)]. O
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Remark 4.7. Keep the notation in the previous proposition. If II is the twisted endoscopic transfer of r,
then the claim immediately implies

dimg aKW) <dim¢ HKGL2n+1 (N,

In fact, we have dim¢ 7K™ = tr(Iy : LR CORS | L (N)), where I : [T—1I1 is the intertwin-
ing operator defining the twisted trace. Since Iy is of finite order, we have the above inequality; see the
argument for [ Yamauchi 2021, Theorem 1.6].

Applying Proposition 4.6, we have the following:

Proposition 4.8. Assume (1-4) and N is odd. Then |HEx (N )" | is bounded by

An(N :
X SR DTS | e R )
¢(N) m=(m,....m;)€P2n+1) 7 EM(GLy, (R)C x;:@¥\A¥—>C* i=1

r=2 c(B/_ 1)=c(ox) x}=1,c()IN

where the second sum is indexed by all r-tuples (t1, . . ., ) such that t; € II(GLy,,; (R))€ and ¢ (B _, 7)) =
c(ox), the equality of the infinitesimal characters. Further c(y) stands for the conductor of x and

o(N) =|(Z/NZ)*|. Here,

(1) Ap(N):=2@n+tDoW) ywhere o(N) := |{p prime : p | N}Y|;
(2) dp,,(N) = |Pu(Z/NZ)\ GL2p41(Z/NZ)| = vol(KS-2n+1(N))™! /| Pp(Z/ N Z)).

Proof. Let m = 100 ® ®;,np be an element of ITy for ¥ = B]_,m;. Let 1, be the local Lang-
lands correspondence of 7, to GL,4+1(Q)) established by [Arthur 2013, Theorem 1.5.1], and let
L(Tp) : Lg,— GL2n+1(C) be the local L-parameter of Iy, where Lg, = Wg, for each p < oo
and Lr = Wgr x SL»(C). Since the localization v, of the global A-parameter ¥ at p is tempered by
Theorem 4.3, we see that £(IT,) is equivalent to v,. Since L£(II,) is independent of w € ITy and
multiplicity one for GL3,+1(A) holds, the isobaric sum ¢ = B’_, 7; as an automorphic representation
of GL2,+1(A) gives rise to a unique global L-parameter on ITy. On the other hand, it follows from
[Arthur 2013, Theorem 1.5.1] that [ITy,, | < 22+1 for the local A-packet [y, at pif p| N, and [Ty,
is a singleton if p 4 N. It yields that [ITy | < 2@n+1De(N) - gince the local Langlands correspondence
7p > I1, satisfies the character relation by [Arthur 2013, Theorem 1.5.1], it follows from Proposition 4.6
with Remark 4.7 that for each 7 € I1y,

dim (7 ) = vol(K(V) ™" tr(x (1 (w))

= VOI(KGL2n+l (N))_l tr((EElr=17Ti)(1KGL2n+1 (N)))

KSL2n+1 (N))

= dim((EEI{zlni)f
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/

where we denote by 7y = ®),

mp the finite part of the cuspidal representation . Plugging this into
Proposition 4.2, we have

|HER(N)"¢| = vol(K(N))™" > > may (s (lgw)))
Yy=HB!_,7;€e¥(G),r>2 nelly,
c(Voo)=c(0k)
A (N) . GL2p+1
< > dim (&), m)f M),
¢(N) G
=H/_,m;e¥(G),r=2
c(Yoo)=c(o%)

where 1/¢(N) is inserted because of the condition on the central characters in global A-parameters. Here,

r > 2 is essential to gain the factor 1/¢(N); see Remark 4.9.

. . GL (N) . . . .
Next we describe dlm((BﬂlT:lm)}( 2177 in terms of the data (m;, N, 7;, ;) with 1 <i <r. Since

Pu(Ar)\ GLon41(Ap)/K(N) =~ Py(2)\ GLon41(2)/K(N) =~ Pp(Z/NZ)\ GLayp+1(Z/NZ)

and a complete system of the representatives can be taken from elements in GL2, 41 (2), and therefore,
they normalize K(N ). Then a standard method for fixed vectors of an induced representation shows that

r
dim((@]_, )K" ) = dp, (N [ dim( ),

S
i=1
. . : K Olm;i (N) cusp,ort
Here, if x; is the central character of 7; and 7; oo >~ 7;, then dlm(ni’ r ) = 1P (m;, N, Ty, xi).
Notice that the conductor of y; is a divisor of N. Summing up, we have the claim. O

Remark 4.9. Let r > 2. The group homomorphism ((Z/NZ)*) —(Z/NZ)*, (x1,...,Xr) > X1+ Xr,
is obviously surjective, and it yields

\{(xl,...,x»e(ﬂvz\)”:XI-"Xr=1}|Z%

This trivial equality explains the appearance of the factor 1/¢(/N) in Proposition 4.8.

Next we study ["P-°(n, N, 7, y) for T € TI(GL,(R))¢ and for n > 2. Now if 7 is a cuspidal
representation of GL,,, 11 which is orthogonal, i.e., L(s, 7, Sym?) has a pole at s = 1, then 7 comes
from a cuspidal representation T on Sp(2m). In this case, the central character w, of  is trivial.

If 7 is a cuspidal representation of GLy,, which is orthogonal, i.e., L(s, , Sym?) has a pole at s = 1,

2 _
- =

SO(m,m); If wy # 1, then 7w comes from a cuspidal representation t on the quasisplit orthogonal group
SO(m+1,m—1).
First we consider the case when y is trivial in estimating [°*"°"(2n + 8, N, 7, ), where § = 0 or 1.

then w 1; If wy = 1, m comes from a cuspidal representation t on the split orthogonal group

For a positive integer n, let
_ (SO(n,n) if G' = GLy,,
~|Sp2n)  if G’ = GLayyi.
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We regard H as a twisted elliptic endoscopic subgroup G'.

Proposition 4.10. Let N be an odd positive integer. For the pair (G', H), the characteristic function of
vol(KH (N))™1 Lg 1 () as an element of C2°(H(Qg,)) is transferred to
vol(K' (N) gy
as an element of C2°(G'(Qs,,)).
Proof. 1t follows from [Ganapathy and Varma 2017, Lemma 8.2.1 (i)]. O

Each cuspidal representation 7 of G’(A) contributing to [*P=°"'(N, z, 1) can be regarded as a simple
A-parameter. Also as a cuspidal representation, it strongly descends to a generic cuspidal representation
I, of H(A) whose L-parameter £(I1;) at infinity of I1, is same as one of 7. In this setting, by
[Arthur 2013, Proposition 8.3.2 (b)], the problem is reduced to estimate

LESPEen(F N £(TT,), 1) := @ m(ﬂ)ﬂKH(N)’ m(m) €{0,1,2},
nCLcusp,generic,orl(H(@)\H(A)7[:(1_[_[)’1)

where 7 runs over all irreducible unitary, cohomological orthogonal cuspidal automorphic representations
of H(A) whose L-parameter at infinity is isomorphic to £(I1;) with the central character y = 1.

Proposition 4.11. Keep the notations as above. Then
o [0POt(2pn 4+, N, 7,1) < Cp (N)dim(LPE (H, N, L(T1), 1)), where Cy (N ) :=2@1T0)W) gng

0 ifG' =GLyy,
1 ifG' =GLop1.

o dim(L"PE(H N, £(T1;), 1)) < ¢ -vol(KH(N))™! ~ ¢ NI™UH) (o some ¢ > 0, when the infin-
itesimal character of L(I1;) is fixed and N — oo.

Proof. The first claim follows from [Arthur 2013, Proposition 8.3.2 (b)] with a completely similar argument
of Proposition 4.8.
The second claim follows from [Savin 1989]. O

Next we consider the case when y is a quadratic character. In this case, a cuspidal representation 7
contributing to L¢P (KSGLn (N), 15, ) comes from a cuspidal representation of the quasisplit orthog-
onal group SO(m + 1, m — 1) defined over the quadratic extension associated to y. However any transfer
theorem for Hecke elements in (GL5;,, SO(m + 1, m — 1)) remains open. To get around this situation,
we make use of the transfer theorems for some Hecke elements in the quadratic base change due to

Yamauchi [2021]. For this, we need the following assumptions on the level N:

(1) N is an odd prime or

(2) N is odd and all prime divisors p1,..., pr (r > 2) of N are congruent to 1 modulo 4 and (1%) =1
fori # j, where (E) denotes the Legendre symbol.



1016 Henry H. Kim, Satoshi Wakatsuki and Takuya Yamauchi

These conditions are needed in order that for any quadratic extension M/Q with the conductor dps divid-
ing N, there exists an integral ideal 9% of M such that 9t0? = (dps) where 6 is the generator of Gal(M/Q).

Proposition 4.12. Keep the assumptions on N as above. Then
lcusp,ort(zm’ N. . X) < 22m-a)(N) VO](KH(N))_l,

where H = SO(m, m).

Proof. Let M /Q be the quadratic extension associated to y and Oy the ring of integers of M. Let 6 be
the generator of Gal(M/Q). Let K]?,IL”” (9%) be the principal congruence subgroup of GL3, (Z ®z Op)
of the level N. Clearly, the 6-fixed part of KZCCILZ’” (M) is K27 (dps) where dyy is the conductor of
M /Q and it contains K27 (N) since dps|N. Applying [Yamauchi 2021, Theorem 1.6], we have for a
cuspidal representation 7w of GL2,,(A) and its base change IT := BCpy/q () to GL2p (Apr),

vol (K92 (W) ™ tr(aw (Lgatam ) = Vol (K> (M) ™ r(TT(1 gotam o)-
M

Recall that our 7 contributing to L¢"P-°"'(2m, N, 7, y) is orthogonal, namely, L(s, 7, Symz) has a pole
at s = 1. Note that L(s, IT, Sym?) = L(s, 7w, Sym?)L(s, 7, Sym? ® y). Now, L(s,7 X (7 ® x)) =
L(s, 7, A>® x)L(s, m, Sym? ®x). Suppose I is cuspidal. Then 7 % 7 ® x. So the left-hand side has no
zero at s = 1, and L(s, v, Sym? ® y) has no zero at s = 1. Therefore, L(s, IT, Sym?) has a pole at s = 1.

If IT is noncuspidal, then by Arthur and Clozel [1989], there exists a cuspidal representation t of
GL,; (Apz) such that

=@\’

Insuch acase, if m =2, then 7 = AI}%I 7 for some cuspidal representation t of GL;(Apy); an automorphic
induction from GL,(Aps) to GL4(Ag). Since 7 is cuspidal and orthogonal, 7 has to be dihedral. Such 7
are counted in [Kim et al. 2020b, Section 2.6] and it amounts to O(N 11/2+#) for any ¢ > 0. This will
be negligible because vol(K 7 (N)) ~ e N™@m=1) — ¢ N6 for some constant ¢ > 0. Assume m > 3. It

. . . GL .
is easy to see that the dimension of @H:noncuspidal IT }{M > M is bounded by

O(Nm2—1+m(m+1)/2) _ 0(N3m2/2+m/2—1),

where the —1 of m? — 1 in the exponent of left-hand side in the above equation is inserted because of
the fixed central character. Since dim SO(m, m) = m(2m — 1) and m > 3, spaces H}(I(\} > for which
IT is noncuspidal are negligible in the estimation. Further, IT is orthogonal with trivial central character.
(The central character of IT is y o Nps/q = 1.) Therefore, we can bound /°“**°"(2m, N, z, ) by

1920 (2m, N, BCpyr_ /r(7), 1),

which is similarly defined for cuspidal representations of GLj,(Azr). Applying the argument of the
proof of Proposition 4.11 to (GLp,, /M, SO(m, m)/ M), the quantity [°*P°""(2m, N, t, x) is bounded by
22moM) yol(KHm (91))~1, where Hys := SO(m, m)/M and w(M) denotes the number of prime ideals
dividing 9. The claim follows from Qs /M ~ Z/NZ since vol(K 7 (M) = vol(KH (N)) and clearly
o) = w(N). d
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Note that for any split reductive group G over @ and the principal congruence subgroup K9(N) of
level N, we have that vol(K9(N)) ~ ¢ N ~4m9 for some constant ¢ > 0 as N — oo. Furthermore, w(N) <
log N/(loglog N). Hence 2*W) « N€ and A4,(N) = O(N¢) and Cm;(N)=O(N?®) foreach1 <i <r.
Theorem 4.13. Assume (1-4). Keep the assumptions on N as in Proposition 4.12. Then |HEy (N )"8| =
On(N 2”2"'”_“'8) for any & > 0. In particular,

|HE (N)"8]
im ———— =0.
N—o0 |HEk (N) |
Proof. By Proposition 4.8, for each partition m = (my,...,m,) of 2n + 1, we must only estimate
An(N) -
d N lcusp,ort - N, ) Xi).
o(N) Pm( )1_[ (m; Ti, Xi)

i=1
By Proposition 4.11 and Proposition 4.12,

lcusp,ort(mi’ N, 1, Xi) < Nmi(mi—l)/2+s

for any & > 0. Further, dp,, (v) = O(N94m Pm\Glant1) — O(Nlei<J‘sr mim;y)  Note that p(N)™! =
O(N~17#) for any & > 0. Since

r r
mi(m; —1
Z mimj+2¥=%( Z mimj)—%Zmi=%(2n+1)2—%(2n+1)=2n2+n,

1<i<j<r i=1 1<i,j<r i=1
we have the first claim.
The second claim follows from the dimension formula (1-3). O

5. A notion of newforms in Sg (I'(NV))

In this section, we introduce a notion of a newform in S (I'(/V)) with respect to principal congruence
subgroups. Since any local newform theory for Sp(2n) is unavailable except for n = 1,2, we need a
notion of newforms so that we can control a lower bound of conductors for such newforms. This is
needed in application to low lying zeros. (See Theorem 8.3 and Lemma 9.3.)

ST = @ P mayr™

we\II(G) JTEHVJ

oo =0k

Recall the description

in terms of Arthur’s classification.
Definition 5.1. The new part (space) of S (I'(N)) is defined by
K(N
SEra) = @ D My .

Ye¥(G) n=nyQox€lly
KN £ but 7 K@) =0 for any d|N, d #N

The orthogonal complement S ,‘c’ld(l“ (N)) of SE(I'(N)) in S (I'(NV)) with respect to Petersson inner
product is said to be the old space. Let HEg™ (N) be a subset of H Ex (N') which is a basis of Sg™ (T'(N)).
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Remark 5.2. As the referee pointed out, S ;C’ld(l" (N)) is the intersection of S (I'(N)) with the smallest
G (Ay)-invariant space of functions on G(Q)\G(A) containing Sy (I'(M)) for all proper divisors M
of N.

Setd, =(1—p~")", dpy =1, p dp and Cp =TT, (1 —p7¥), Cy = [1p1pr Cp- We setdy =1
and C; = 1.
Recall di(N) = dim Sg (T'(N)) = C, Cy N2+ 4 0 (N277).

Lemma 5.3. Assume that (1-4) holds and N is squarefree. Then we have

. w N\ _
de(N) = 3" dim S} (T (M) (M) Chmdyhy
M|N

Proof. Let M | N. Take an automorphic representation 7 = 7y ® o such that dim JT;((M) > 0 and

dim JT;{(L) =0forany L | M, L < M. Under this condition, 7 has an intersection with S?**(I"(M)), and
also with Sg (I'(N)). Let my = ®,7p. By the assumptions and Theorem 4.3, for any prime p M, p is
tempered spherical, and so 7, is an irreducible induced representation from a Borel subgroup B of G(Qp).
So dim = 1. Now Kp/Kp(p) =~ Spyn(Fp). #Spay (Fp) = p2>11C,, and #B(F,) = p"**1d,.
Hence, dim nf”(p) = p”sz dp_l forall p t M. Since N is squarefree, this leads to
. _K(N . KM N\ -
dlmnf ™M - dll‘nT[f (M) o (ﬁ) CN/MdN/lM.
Thus, we obtain the assertion. O

Theorem 5.4. Assume that (1-4) holds and N is squarefree. Then we have

dim SV (I (N)) = CCy N2+ [10- A pT T 4 Ok (NPT),
PIN
Here, {(n*)™! < T, n(1 — dp_lp_”z_”) <lifn>1 Ifn =1, wehave [[,y(1—d, ' p72) >
[1,(1=1/(p(p—1))) = 0.374....

Proof. Since Cn/pr = Cn/Cp and dy/pr = dn /dp, from Lemma 5.3, we have
de(N N Cildy = Y dim SP(D(M)M ™ Cip'dyy.
M|N

The Mobius inversion formula gives

)
dim S} (C(N)N ™ Cldy = Y /L(M)dk(%) (%) " Crtadnm
M|N

where © denotes the Mobius function. Therefore,

dim ST (V) = 3 M(M)dk(%)M”ZCMd;;. (5-1)
M|N
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By [Wakatsuki 2018, Corollary 1.2], there exist constants C , such that dg(N) =Y 7_o Cx ,CN N f)
if N > 2, where f(r) =2n%+n+ %r(r —1) —nr and Cy o = C. Further, we take two constants D
and D3 so that di(N) = Zf:o CirCn NS 4 Dy for N =1 or 2. Therefore, by (5-1), we obtain

n
dim SF((N)) = Z Cr CNN/®) Z w(M)dy M=)

r=0 M|N 2

N .
+ u(N)N™ Cydy' Dy + “( )(7) Cnj2dy D2 if 2N,
0 if 24 N.

N
2

Since N is squarefree,

Z M(M)dﬂ—danz_f(r) — 1_[( d 1 n —f(r))

M|N pPIN

Therefore,

n
dim S™(T'(N)) = Z CrrCNNT® 1_[(1 —d; p—f(r)+n2)

r=0 PIN
n2

N _1 .
+ u(N)N" Cndy' D1 + “( )(2) Cnj2dy D2 i 2N,
0 if2 4 N.

N
2

From this, we obtain the assertion.
Now, dp < 1. HC;ICG [Tn(1 —a’p_lp”tf(’)) <1. Alsod, ! < p" since 1/(1—p~') < p. Therefore,
HPIN(l —dp_lp_" ) > p|N(1 —p™™). Here if n > 1,

[Ta-p")" <H1— =),

DPIN
Ifn=1,
_n2_ 1 1
[T0—a =y = T1(— - )= T - o)
—1 -/
IV ot p(p—1) . p(p—1)
which is the Artin constant. O

6. Equidistribution theorem of Siegel cusp forms; proof of Theorem 1.1
By the definition in (1-1), we see that

A ) = Tr(Th, | s r(vy)
HES).S18DP Y = (01(G(Q)\G(A)) - dim &

Notice that dim £ = dj (under a suitable normalization of the measure). Applying Theorem 3.10 to Sy,
we have the claim by the Plancherel formula of Harish-Chandra: ;lgll (h1) = h1(1).
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7. Vertical Sato-Tate theorem for Siegel modular forms: proofs of Theorems 1.2 and 1.3

Suppose that k = (k1, ..., k) satisfies the condition (1-4). Put T ={z € C: |z| = 1}. For F € HE}(N),
consider the cuspidal automorphic representation 7 = 7 = oo ® ®;)n F,p of G(A) associated to F'. As
discussed in the previous section, under the condition (1-4), the A-parameter ¥ whose A-packet contains 7
is semisimple and 7, is tempered for all p. Thenif p 4 N, wF p is spherical, and we can write 7 p, as
TF,p= Indg((gﬁ)) Xp> where B =T U is the upper Borel subgroup and y, is a unitary character on B(Q),).
Foreach 1 < j <n,putaj,(xp) = xp(e;(p~1)) (see (2-1) for e (p~1!)) and by temperedness, we may
write o (Xp) = eﬁof', 8; € [0, ]. Let G = SO(2n 4+ 1)(C) be the complex split orthogonal group
over C associated to the antidiagonal identity matrix. Let L(7p) : Wg,— SO(2n + 1)(C) be the local
Langlands parameter given by

E(”p)(Fmbp) = (Ollp()(p)’ oo onp(xp). 1, Ollp()(p)_l’ e ,Olnp()(p)_l)’

which is called the [);Sﬁke parameter. Put a(i)()(p) = ag?p()(p) = %(aip (tp) +ip(xp)~1) = cos b;

for 1 <i <n. Let G(Qp)" '™ be the isomorphism classes of unramified tempered representations

of G(Qp). By [Shin and Templier 2016, Lemma 3.2], we have a topological isomorphism
@“r’temp =0, 7]"/6, =: Q

given by

Ip (arg(a(l)()(p)), e, arg(a(”)()(p))) =:(01,...,0p).

We denote by (01(tF,p), ..., 0u(7F,p)) € Q2 the corresponding element to g, , under the above isomor-

phism. Let B =TU be the upper Borel subgroup of G = SO(2n + 1)(C). Let A+(é) be the set of all

positive roots in X *(YA“) = Hom(f“, GL;) with respect to B. We view (01, ...,6,) as parameters of Q2.

Let uf,l’temp be the restriction of the Plancherel measure on 5@ to @“r’ mp and by abusing the

notation, we denote by u, = ,ugl’temp its pushforward to €2. Put

t:= (eV_w‘ A Zat LB B e L N e_V_w")

for simplicity. By [Shin and Templier 2016, Proposition 3.3], we have

Hp PO On) = WO On)dy -y,

where

W01, ..., 60

1 (1 1)”2 Maeat 1=V 7"OP
I1

Q2n)" p weA+(©) 11— p‘leﬁ“(’)P

> [lie |1—€V_19"|21_[156i=<§n [1—evV—1@iteb)) 2

1 ( Ly
= (141 :
@)t PS Tl U= p~teV =10 [Tusi<jzn [1 - p~leVT1C+e0) ]2
e==%1
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By letting p — oo, we recover the Sato—Tate measure

2 1—[ {l_eﬁ(eﬂrsei)fd@l...dgn,

1<i<j<n
e==1

Then Theorems 1.2 and 1.3 follow from Theorems 1.1 and 4.13.

n
ST _ 1 pl,temp 1 _ /_191.
Moo = JI0 Hp™ " = Gy _1_[1‘1 ¢

1=

8. Standard L-functions of Sp(2n)

Letk = (k1....,kn) and F € HEE(N), and let 7t g be a cuspidal representation of G(A) associated to F'.

Assume (1-4) for k. By (4-1) and the observation there, the global A-packet ITy containing wr
is associated to a semisimple global A parameter ¥ = H_,7; where m; is an irreducible cuspidal
representation of GL,,, (A). Then the isobaric sum IT := H/_,7; is an automorphic representation
of GL3y+1(A). Therefore, we may define

,
L(s,7p,St) = L(s. 1) = [ | L(s. 7).
i=1
Let Ly(s, wp,St):= L(s,I1,) = []i=; L(s, 7ip) be the local p-factor of L(s, wF, St) for each rational
prime p.
Let tp = oo ® ®;)71p. For p 4 N, we have that ,, is the spherical representation of G(Q,) with the
Satake parameter («t1p, ..., Unp, l,ozl_pl, e ,oz,jpl). Then

n
Lp(s,nr, SO~ = (1=p) [ [ —ipp™) (1 —a;,! p™).

i=1
We define the conductor g (F') of F to be the product of the conductors ¢ (7;) of m;, for 1 <i <r.

Theorem 8.1. Let F' € HE} (N ). Then the standard L-function L(s, wF, St) has a meromorphic continu-
ation to all of C. Let

A(s.7r, SO = ¢(F)*/ Loo(s. mp . SOL(s. 7 , SV,
where Loo(s, mp,St) =Tr(s +€)I'c(s+ k1 —1)---Tc(s + kn —n),

0 ifn is even,
1 ifnisodd,

and Tr(s) = 7=5/2T($), Tc(s) = 2(2) 5 T(s). Then

€ =

A, g, St)y=e(F)A(1—s,F, St),
where €(F) € {£1}.
Proof. Tt follows from the functional equation of L(s, IT) by noting that IT is self-dual, and L(s, [1s) =

Loo(s, mF, St) is the local L-function attached to the holomorphic discrete series of the lowest weight &;
see [Kozima 2002]. O
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The epsilon factor €(F') turns out to be always 1.
Proposition 8.2. Let wf be associated to a semisimple A-parameter. Then €(F) = 1.

Proof. Recall the global A-parameter Y = H/_, 7;. Let w; be the central character of ;. Since m; is
orthogonal, its epsilon factor is w; (—1) by [Lapid 2004, Theorem 1]. Hence,

«)=[To-n=(TTer)n=1¢-n=1

i=1 i=1
by the condition on the central character. O

Theorem 8.3. For any F € HE(N), the conductor q(F) satisfies q(F) < N2+l IfF e HE;SW(N),
then q(F) = max{N [,y p~". [I,n P}- Soif F € HE}*(N), q(F) = N'/2,

Proof. Let wF be associated to a semisimple global A parameter ¥ = H_, 7; where 7; is an irreducible
cuspidal representation of GL;,; (A), and let IT := H_, 7;. Let IT = 1o ® ®;, IT,. By Proposition 4.6,
IT has a nonzero fixed vector by K 9L2n+1( p¢r), where ep = ord,(N). As in the proof of [Kim et al.
2020a, Lemma 8.1], it implies depth(IT,) <e, —1. Hence ¢(I1,) < p@ntDep by [Lansky and Raghuram
2003, Proposition 2.2]. Therefore, g(F) < N2"+1,

If F € HEJ®Y(N), by Definition 5.1, it is not fixed by KOL2n+1( per=1) for each p | N. By [Miyauchi
and Yamauchi 2022, Theorem 1.2], we have g (I1,) > p™i (ep=1) for some i. In particular, ¢ (IT p) > per1
for each p | N. Hence, g(F) > N [], 1y p~ L. Itis clear that ¢(T1,) > p if p | N. Hence,

q(F)ZmaX{N-]_[p‘l, ]_[p§-

pIN pIN
Now, ¢(F)? = g(F)-q(F) > N. Hence our result follows. O
q( q q

Proposition 8.4. Keep the assumptions on N as in Proposition4.12. Let F € HEy (N ). Then L(s, 7F , St)
has a pole at s = 1 if and only if wF is associated to a semisimple global A-parameter = 1B H- - -Bx,
where 1; is an orthogonal irreducible cuspidal representation of GLy,; (A), such that if m; = 1, m; is
a nontrivial quadratic character. Let HE} (N)? be the subset of HEg(N) such that L(s, wF,St) has
apole ats = 1. Then |HE,(N)°| = O(N2"*~"%€) So |HE(N)°|/|HEL(N)| = O(N~2"+€),

This proves [Shin and Templier 2016, Hypothesis 11.2] in our family.

Proof. This follows from the proof of Theorem 4.13, by noting that partitions m = (my,...,m,) of 2n
contribute to HEy (N )0, O

Bocherer [1986] gave the relationship between Hecke operators and L-functions for level one and
scalar-valued Siegel modular forms and it is extended by Shimura [1994a] to a more general setting.

Leta = (ai,...,an),0=<ay <--- < ap, and Dy, = diag(p?®',..., p?). Let F be an eigenform
in HEy(N) with respect to the Hecke operator T(Dp 4) for all p 4 N, and let A(F, Dy 4) be the
eigenvalue.
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Then we have the following identity [Shimura 1994a, Theorem 2.9]:

1-X ﬁ (1-p2?X?)
I-ptX (l—cx,-pp”X)(l—(xi_plp”X)’

> A(F. Dy g) X Ei=14 = (8-1)

a i=1

where a = (ay,...,an) runsover 0 <a; <--- <ay,.
Let m = (my,...,my), my|mz|---|my, and D,, = diag(my,...,my), and let A(F, Dy,) be the

eigenvalue of the Hecke operator 7(D,,). Let

LY. F)= Y A(F.Dpy)det(Dpy)™".
m,(m,,N)=1
Then
LY(s.F) =[] L(s. F)p.
PN

L(s, F)p = ZMF, Dp,a)det(Dp,a)”".

It converges for Re(s) > 2n + (k1 +---+ kn)/n + 1.
Hence, we have

n
§N(s)|:H§N(2s—2i)i|LN(s, F)=LN(s—n,7F,St),
i=1
where LV (s, 7, St) = [Ipsn Lp(s, F, St), and N (s) = [n( —p5~L
The central value of LY (s, F) is at s :n+%, and LN (s, F) has a zero at s :n+% since LN (s, nf, St)
is holomorphic at s = % Theorem 3.10 implies

Theorem 8.5. Form = (my,...,my), my|ma|---|m, withmy, > 1 and (im,, N) =1, N > m%”,
1 _
—_— F,Dy,) = eNT"
HEW)] 2 MFDm) = OGN,
= FeHEi(N)

for some constant «.

Proof. Let S1 be the set of all prime divisors of my. Since m, > 1, S is nonempty. The main term of
right-hand side in Theorem 3.10 includes /1 (1). Clearly, &1 (1) = 0 because the double coset defining the
Hecke operator /11 does not contain any central elements. Since the automorphic counting measure is

supported on cuspidal representations, Theorem 3.10 implies the claim. O
Write
[e.e] o0
LY. F)= ) apmm™ and L(s.F)p=) ar(p©)p™
m=1 k=0
(m,N)=1

for each prime p + N. Here ap ( p¥) = Zg A(F, Dp 4), where the sum is over all @ = (a1, ..., a,) such
that 0 <ay <---<ap,a;+---+a, =k. Hence, fork >0and p } N,

1 -
. 2 ar(H=00"NT.
k FeHEi(N)
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More generally:
Corollary 8.6. Form > 1, with (m,N) =1, N > m?",

1) S ar(m) = OmN™").

de(N FeHE(N)
Proof. We have ap (m) = _,, A(F, Dp), where the sum is over all m = (my, ..., my), mi|ma|--- [mp,
mji---my = m. Our assertion follows from Theorem 8.5. O

Write
o0
LN (s, 7np,St) = Z wr(m)m=.
m=1
(m,N)=1

Then from (8-1), we have, for p N,

ur(p)=(ar(p)+1)p™ and pp(p*)=1+p 2+ 4 p 2" +(ar(p*) +ar(p)p~>".
More generally, for p 4 N,
L+ p 2 (p2) + p™" iy hir(p~Dar (p)  if k is even,
P (P H P iy Wy (pDap(ph) if ks odd,
where hy, by, hjk, b}, € Z|x]. Therefore, for (m, N) = 1,

ur(m)=[[Gpm+p 25 (p™H) + > Ayar ().

plm ulm
u>1

wr(pF) =

where

1 if v,(m) is even,
Ay €@, hS eZlx], and §=6pm= i
" m € ZI].an P { 0 otherwise.

Therefore, by Corollary 8.6, we have
Theorem 8.7. Fixk = (ky,...,kn), and let m = Hp|m VP which is coprime to N. Then

d (lN) Yo wrm)=]]6om+p2h(p7h) + ON "mO).
k FeHEr(N) plm

This proves [Kim et al. 2020b, Conjecture 6.1 in level aspect] for the Sp(4) case.

9. {-level density of standard L -functions

In this section, we assume (1-4) and keep the assumptions on N in Proposition 4.12. Then we show
unconditionally that the £-level density (£ a positive integer) of the standard L-functions of the family
HE(N) has the symmetry type Sp in the level aspect. Shin and Templier [2016] showed it under several
hypotheses with a family which includes nonholomorphic forms.
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Under assumption (1-4), F satisfies the Ramanujan conjecture, namely, |«;,| = 1 for each i. Let

—Lf/(s, TF,St) = Z A(m)bp (m)ym™,

m=1
where bp (p™) =1+ af), + -+ oy, + )" + -+ +a,," when mp is spherical.
For F € HE}(N), let I1 be the Langlands transfer of ng to GLy,41. If F € HE,(N)#, then
L(s, IT, /\2) has no pole at s = 1, and L(s, IT, Symz) has a simple pole at s = 1. Let
L(s,TIxTI) = anxn(n)n_s,
L(s, TI, A%) = Z)L,\z(n)(n)n_s,
L(s, 1, Sym?) = stymz(n)(n)n_s.
Then fr (p?) = Asym2(my(p) and r (p)* = Anxm(p) = An2an () + Asym2(m (P)-
Note that i (p) = br(p), and b (p?) = 2pur (p?) — pr(p)*. Let
D 0
T(p.a)=T(N)( 7% 2 ) T(N).
0 D,,

By Theorem A.1, T(p, (0, ...,0, 1)), where there are n — 1 entries of 0, is a linear combination of

n—1 n—2 n—1 n

—— —— —— e e
T(p.(0,...,0,2), T(p.(0,....0,1,1)), T(p,(0,...,0,1)), T(p.(0,...,0)) =T(N)r,T(N).

Therefore, by Theorem 8.7,if p 4 N,

1 Y. wr(p)?

di(N) FeHE(N)
is of the form
L+ p lg(p™) + 0PN
for some polynomial g € Z[x] and ¢ > 0. Here the main term 1+ p~1g( p~!) comes from the coefficient

2n—1 n

i —_——
p Y pof T(p.(0.....0)
i=0

in the linear combination. Here the explicit determination of the coefficient is necessary in our application.
Hence, we have

Proposition 9.1. For somea > 0and p N,

d (lN) Y. bR =0(pTH+ 0N for N> p*"

= FeHE(N)

1 2\ -1 o AT—H 4n
di(N) Z br(p?)=1+0(p )+ O(p*N™"), for N> p*".

£ FeHE(N)
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Remark 9.2. By a more careful analysis, we can replace the error term O(N{* by ") in Theorem 3.10
by

O(Nln(n+1)/2/c+eN—n(n+1)/2 + Nl(zn—l)/c+8n—4+eN1—2n + N1m<+2n3+2n—3+eN—n

n—1
+ Z N{c(nr—r(r—l)/2)+(2n—r—1)[r/2]+2n—2r—1+2n3+eNr(r_1)/2_nr)’

r=3
for any € > 0. Hence, the first error term O(p®* N ~") in Proposition 9.1 can be replaced (by taking k = 1)

by

2n3+3n—3+eN—n

0(pn(n+1)/2+eN—(n2+n)/2 +p10n—5+eN1—2n +p

n—1

+ Z p2n3+2n—1+2nr—r2—2r+eNr(r—l)/z—nr).
r=3

The second error term O(p* N ~™) in Proposition 9.1 can be replaced (by taking ¥ = 2) by

0(pn(n+l)+eN—(n2+n)/2 + p12n—6+6N1—2n + p2n3+4n—3+eN—n

n—1

+ Z p2n3+2n—1+3nr—(3/2)(r2+r)+eNr(r—l)/Z—nr).
r=3
We denote the nontrivial zeros of L(s, wf,St) by o, ; = % + +/—1yF, ;. Without assuming the GRH
for L(s, 7F, St), we can order them as
-+ < Re(yr,—2) = Re(yr,—1) =0 =< Re(yr,1) < Re(yrp2) < -
Let c(F)=¢q(F)(ky---k,)? be the analytic conductor, and let

1
logc = — logc(F).
8GN =GN Fe%(m gc(F)

From Theorems 5.4 and 8.3, we have
Lemma 9.3. Let n > 1. We assume that N is squarefree. Then
(ky k) 2NV @O < < (g oo k) 2N
This proves [Shin and Templier 2016, Hypothesis 11.4] in our family. It is used in the proof of (9-1).

Proof. By Theorem 8.3, we have ¢(F) < N2"*1_ 1t gives rise to the upper bound. If F € HERY(N),
g(F) > N'/2 by Theorem 8.3. By Theorem 5.4, |HEZY(N)| > tm*)~! |HE(N)|. Hence,

log cx N = log(ky ckn)? + 1 logq(F) > log(ky -+ kn)? + =—— > logN. O
k (N , 2 25( )

GHE,S (N)
Consider, for an even Paley—Wiener function ¢,

D(F.0) = Yo% oz

YF.j
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Then as in [Kim et al. 2020a, (9.1)],
1 br(p)logp log p
W X PED=IO-O- s Y X NG ¢( )

K FeHE (V) FEeHE(N) P log kv
2 (br(p*)—1)logp ~( 2logp

oz ) 2 2 » M foge
FeHE (N) P kN

[HEL(N)°| |
+0( 4 (N) )+0(long,N)’

where HEy(N)? is in Proposition 8.4. (In [Kim et al. 2020a, (9.4)], the term O (|HE(N)°|/dk(N))
was omitted.)

By Proposition 9.1, we can show as in [Kim et al. 2020a] that for an even Paley—Wiener function ¢
such that the Fourier transform ¢ of ¢ is supported in (—8, ), for some 8 > 0,

1
T D DE=30-560+0 (1

£ FeHE(N)

oe) = [omwspwarto(20). o
where w(/N) is the number of prime factors of N and W(Sp)(x) = 1 — (sin2zxx)/(27wx). (When we
exchange two sums, if p + N, we use Proposition 9.1. If p | N, by the Ramanujan bound, |br (p)| <n
and |br ( p?)| < n. Hence by the trivial bound, we would obtain pr br(p)logp//p < w(N) and
Y ,ivbr(p?)log p/p L w(N).)

In fact, by Remark 9.2, we can take 8 to be the minimum of

n%+n e 2n—1 e n e 1
Cn+1)(n2+n+1) 7 Qu+DA0R-9/2)  Qn+1)(2n3+3n-5/2)  2nQ2n+1)’
nr—r(r—1)/2

mln3§r§n—1 (2n+1)(2nr_r2_2r+2n3+2n—1/2)_G .

Namely,

— n _ )
b= Gnvnan+m—sp © (9-2)

For a general £, let
W(Sp)(x) = det(K—1(x;, X)) 1<j<t, 1<k <t

where K_1(x, y)=sin (x—y) /7 (x — y)=sin 7 (x+1)/m(x + ). Let p(x1, ..., x¢) = b1 (x1) - pe(x0),
where each ¢; is an even Paley—Wiener function and ¢ (u1,...,ug) = ¢1(u1) --- ¢g(ug). We assume that
the Fourier transform ¢; of ¢; is supported in (—f, B) fori = 1,...,£. The {-level density function is

¢ * log i, v log cx, v logcx, v
D()(F’¢):Zjl jﬂs(yjl o Vin o0 Vi ’

2 2

where Zjl , isover jj ==+1,£2,... with jg # =+ jp for a # b. Then as in [Kim et al. 2020b], using
Theorem 8.7, we can show
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Theorem 9.4. We assume that N is squarefree. Let ¢(x1,...,xg) = p1(x1) -+ - Ppe(xy), where each ¢; is
an even Paley—Wiener function and qAS(ul, coUg) = qAﬁl (uy)--- g?)g (ug). Assume the Fourier transform qASi
of ¢; is supported in (—B, B) fori =1,---, L. (See (9-1) for the value of B.) Then

Ls Y pOr.g)= [¢(x)W(Sp>(x>dx+0( (N))

A (N )FeHE (N) N

Remark 9.5. The above theorem is usually stated for Schwartz functions in the literature. But since
Schwartz functions approximate any function in L2-space, the above theorem holds for Payley—Wiener
functions, which are in L2(R"), and whose Fourier transforms have compact supports.

DN

10. The order of vanishing of standard L -functions at s =

In this section, we show that the average order of vanishing of standard L-functions at s = % is bounded
under GRH; see [Iwaniec et al. 2000; Brumer 1995]. Under GRH on L (s, 7w, St), its zeros are %—i— v—=1yF
with yr € R.

Theorem 10.1. Assume the GRH. Assume (1-4) and N is squarefree. Let rp = ord,_

=1
2
1
E re <C,
di(N) F
€HE(N)

L(s,F,St). Then

where C = L(2n+1)(2n* +3n—3) — ] + €.
Proof. Choose ¢ (x) = (2sin(xf/2) /x)2 for x € R, where B is from (9-2). Then

Aoy B=Ix| if x| < B,

o) = {0 otherwise.
Since ¢(x) > 0 for x € R, from (9-1), we have

1
L O =40 - 500+ 0(jpy)
£ FeHE(N)
Hence, we have
1 Z 1 1 1
rr<—-—=4+0——). O
di(N) FeHEL(V) B 2 (log log N)

We can show a similar result for the spinor L-function of GSp(4). Recall the following from [Kim
et al. 2020a]:
Proposition 10.2. Assume (N, 11!) = 1.
(1) (level aspect) Fix ki, ko. Then for ¢ whose Fourier transform (,iA) has support in (—u, u) for some
O<u<1,as N — oo (See [Kim et al. 2020a, Proposition 9.1] for the value of u),
1 .
T 2 Der.g.spin) =40) + 560 + O

£ FeHE;(N)

ogto )
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(2) (weight aspect) Fix N. Then for ¢ whose Fourier transform qAS has support in (—u,u) for some
O<u<l,aski+ky— o0,

1 . - 1 1
GV, DS =900+ 5600+ 0o iy )

d
FeHE(N)

I

By a careful analysis, we can show that v; = 3, w; = 6 in [Kim et al. 2020a, Proposition 8.2] in the

level aspect. Hence u = 5

70 in the level aspect. As in Theorem 10.1, we have

Theorem 10.3. Let G = GSp(4). Assume the GRH, and let rp = ord _ ! L(s, ng,Spin). Then

1 1 1
1 ” =+ > + O(W> level aspect,
4 (N) > TFS 1,1 1
E FeHE(N) -+ =+ 0( ) weight aspect.
= u 2 log((kl——kz—k2)k1k2)
Appendix

In this appendix we compute the product 7'( p, (0, ..., 0, 1))2, with n — 1 entries of 0, from Section 9.

Theorem A.1. For the Hecke operators, we have

n—1 n—1 n—2 n—l

—— 2 ——
T(p,0,...,0,1)*=T(p,(0,...,0,2)+(p+DT(p, (O, 0,1,1))+(p -DT(p, (() ,0,1))
2n—1

+(p > pi)T(p, (0,...,0)).

i=0
This agrees with [Kim et al. 2020a, (2.7)] when n = 2. [Note that the coefficient of R > there should
be replaced with p* + p3 4+ p2 + p.]
Since p t N, we work on K = Sp(2n, Z,) instead of I'(N). Put

n—1 n—1

Tym—1:=pT(p.(0.....0.1)) = K diag(1.7..... p. p>. 7..... P)K € GSp(2n. Q).

It suffices to consider sz .—1- Let us first compute the coset decomposition. Put A = GL,(Z,) where
the identity element is denoted by 1,. For any ring R, let S, (R) be the set of all symmetric matrices of
size n defined over R and M,,x,(R) be the set of matrices of size m x n defined over R. Put

My (R) = Mpxn(R)
for simplicity. For each D € M, (Zp), we define
B(D):={B e M,(Z,) | '"BD ='DB}.

For each By, B, € B(D), we write By ~ B, if there exists M € M, (Z,) such that By — B, = MD.
We denote by B(D)/ ~ the set of all equivalence classes of B(D) by the relation ~. We regard F,
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(respectively, Z/ p?7) as the subset {0, 1, ..., p — 1} (respectively, {0, 1,..., p> —1}) of Z. Let D; be
the set of the following matrices in M (Zp):
n—1
. ——
D,{_l = diag( p,..., p, 1),
p-ls
D;S{ :Ds{(x) = 1 X ’ OESSn_z’ XGMlx(n—l—s)(I]:p)»
P ln—1-s

where we fill out zeros in the blank blocks. The cardinality of D; is 14+ p+---4+p" 1 =(p"—1)/(p—1)
which is equal to that of A\Ad,—1 A, where d,—; = diag(1, p,..., p) containing n — 1 entries of p.
Similarly, let Dy be the set of the following matrices:

n—1
DI, = diag(p.T.-. .. D).
Iy |y
DI = pll(y).= p . 1<s<n—1,ye Mgy (Fp).
lp—1-s
The cardinality of Dy7is 1 + p +---4 p"~! = (p" —1)/(p — 1) which is equal to that of A\Ad;A,
where d; = diag(l,...,1, p) containing n — 1 entries of 1. Finally for each M € M, (Z,) we denote

by rp(M) the rank of M mod pZ,.

Lemma A.2. Assume p is odd. The right coset decomposition Tpn—1 = |[,c; Ko consists of the
following elements:
(1) (type I) We have

2. tn-1
azoq(D,B)Z(p b B),

0n D
where D runs over the set Dy and B runs over complete representatives of B(D)/ ~ such that
rp(a) = 1. Further, for each DSI, B can be taken over

e ifs #0,thenx #0and B = 0;

o ifs=0,thenx =0and B =0.

(2) (type II) We have
tn—1
_ _(p-'D B
Ot—OtII(D,B)—( 0, pD)’

where D runs over the set Dyj and B runs over complete representatives of B(D)/ ~ such that

rp(o) = 1. Further, for each DSH, B can be taken over.

o [fs =0, then
( B>> 323)
p-'Byz Op—1)’

where Bas runs over 7/ p*Z and By3 runs over Mixpn-1)(Fp);
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o Ifs #0,for DI (y), y € Mg1(Fp),

Os p'tB21 Osx(n—l—s)
B> Ba» Ba3 ,
O(n—l—s)xs p 't323 On—1—s

1031

where By1, Bay and Ba3z run over Mixs(Fp), Z/pZZ, and M1x(Fp), respectively.

1 B
a=arr(B) = (%n sl )
n n

where B runs over Sy (Fp) with rp(B) = 1. The number of such B’s is p" — 1.

(3) (type IIl) We have

Proof. We just apply the formula [Andrianov 2009, (3.94)]. First we need to compute a complete system of
representatives of A\AtA ~ (t "' At)NA\A foreacht €{d,_1,d1, pl,} where d,,_ =diag(1, p,..., p)
and d; =diag(l,..., 1, p) containing n—1 entries of p and 1, respectively. By direct computation, for t =
dn—1 (respectively, t = dy), it is given by D' (respectively, D). For t = p-1,, itis obviously a singleton.
As for the computation of B(D)/ ~, we give details only for D € D!, and the case of D!/ is similarly
handled. For each D = DSI (x), 0<s<n—2,put
L
As = 1

—pX ;

1n—l—s

so that
p-lg

DAs = 1

P lp—1—5
Put A,—1 = 15, for D = D,ﬁ_l. Then for each D = DSI, we have a bijection
B(D)/ ~~=> B(DAy)/ ~, B~ BA;.

Therefore, we may compute B(DAg)/ ~ and convert them by multiplying A ! on the right.
We write B € B(DAy) as a block matrix

s 1 n-l-s

—_—— e — ——

Bi1 | Bi2 | Bis

B = B> By | Ba3
B31 | B32 | B33

with respect to the partition s + 1 + (n — 1 —s) of n where the column is also decomposed as in the row.

The relation yields

B =

B> | Bi2| B3
p-'Bi2 | B | p-'B32 |,
'Bis | B32| B33
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where B11 € S5(Zp), B2z € Zp, and B33 € Sy—1-5(Zp). We write X € M, (Z,) as

N 1 n—1-—s
—— =~ N—

X11 | X12 | X13
X21 | X2z | Xo23
X31 | X32 | X33

with respect to the partition s + 1 + (n — 1 —s) of n as we have done for B. Then
pX11 | X12 | pX13
XDAs = | pXa1| X2 |pXa3
PX31 | X32 | pX33
Our matrix B in B(DAg)/ ~ is considered by taking modulo XDA; for any X € M, (Z,). Hence B can
be, up to equivalence, of the form

B11 Osx1 B3
B = O1xs 0 le(n—l—s) ) (A-1)
'B13 | O(n—1-g)x1 B33

where B11, B33, and B3 belong to Ss(Fp), Sp—1-5(Fp), and My ,—1—s)(Fp), respectively. Further, to
multiply A;! on the right never change anything. Therefore, (A-1) gives a complete system of representa-
tives of B(D)/ ~ for D = D SI . The condition r,(ay (D, B)) = 1 and the modulo K on the left yield the

desired result. For each D € D SI I "a similar computation shows any element of S(p- D)/ ~ is given by

N 1 n—1-s
o — e — e N—

Bii | p-'Ba1i | Bis
B>y B>> B>3
'Bis | p-'By3 | B33

modulo the matrices of forms )
pX11 | p“X12 | pX13

pXo1 | p?Xao | pXo3
pX31| p*X32 | pX33
Therefore, Blls Bl3, 321, 322, 323, and B33 run over

My(Fp). Mgx-1-5G,). Mixst,) Z/P*Z. Mixm—-1-s)¢,). and Mu_1_5(Fp),

respectively. The claim now follows from the rank condition r,(az7 (D, B)) = 1 and the modulo K on
the left again.

As for D = pl, in the case of type III, it is easy to see that S(D)/ ~ is naturally identified with
Sn(Fp). Recall p is an odd prime by assumption. The number of matrices in S, (F,) of rank 1 is given
in [MacWilliams 1969, Theorem 2]. O

Recall the right coset decomposition Ty ,—1 := K diag(l, p,..., p, p%, p,...,p)K = [[4es K@,
containing two instances of n — 1 entries of p. For each o, 8 € J, we observe that any element of KafK
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is of mod p rank at most two and has the similitude p*. Hence the double coset KoK satisfies
KaBK = KyK, where y is one of the following four elements:

n—1 n—1 n—1 n—1
)/1 ::diag(lvpzv---vp27p47p27“'7p2)’ y3:d1ag(p’p2"pz’p3’p2”p2)’
-2 -2
n n

y2 :=diag(p, p. p*,....p% P> p>. % ... PP, yai=pPoly

Here we use the Weyl elements in K to renormalize the order of entries. Then

4
Tpn-1-Tpn-1=Y_ my)KyiK. (A-2)
i=1
where m(y;) is defined by

m(yi) = |{(a, ) € J x J : Kaf = Kyi}| (A-3)

for each 1 <i < 4; see [Shimura 1994b, p. 52]. Let us compute m(y;) for each y;.
Let J; be the subset of J consisting of the elements

p-ls
p2

—p-Ix 1,1
o (x) = prX Pzt . 0=<s=n—2,x€Mxpu_1-5(Fp)

P lu—1—s

and a}’_l =diag(p2, p.....p,1, p...., p) containing n — 1 entries of p both times.
Similarly, let Jy; be the subset of J consisting of the elements

p' 1s OS p.thl OSX(H—I—S)
P ln—1—s | On—1— p-'Bss 01—
O‘?I (v, B21, B22, B33) = n S (np : 1S)Xs p n s ,
s p2
p'ln—l—s

where 1 <s <n—1,y € Msx1(Fp), and Ba1, B23, and Bz run over M1xs(Fp), Mix@n—1-5)(Fp),
and Z/ p?Z, respectively. In addition,

1 Cro Ca3
p-la_1|p-'Caz 0py
a?(Caz, Ca3) = 5 , Ca€Z/p*Z, Cr3 € Myxn—1)(Fp).

p
p-ln—
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Finally, let J7;; be the subset of J consisting of the elements

p-lan| B .
arr(B) = o , B eS,(Fp) withry,(B) = 1.
“in

Lemma A.3. Foreacho € J,
n—1 n—1

KoK = K diag(1,p, ..., p. p2.7.... P)K,

and
n—1 n—1 2n—1

vol(K diag(1. 7. p. p2. 7 P)K) = p Y ',
i=0

where the measure is normalized as vol(K) = 1.

Proof. Except for the case of type IlI, it follows from elementary divisor theory. For type III, it follows
from [MacWilliams 1969] that the action of GLj (F,) on the set of all matrices of rank 1 in S, (F,) given
by B+ 'XBX, X € GL,(F,) and such a symmetric matrix B has two orbits O(diag(1,0,...,0)) and
O(diag(g,0,...,0)), both containing n — 1 entries of 0, where g is a generator of [F;. The claim follows
from this and elementary divisor theorem again.

For the latter claim, it is nothing but |J|, and we may compute the number of each type. O

Remark A.4. Since K = Sp,,,(Z,) contains Weyl elements,

n—1 n—1 i n—i—1 i n—i—1
. e N ——— . e e et N ——
Kdlag(l,p,...,p,pz,p,...,p)K:Kdlag(p,...,p,l,p,...,p,p,...,p,pz,p,...,p)K
i n—i—1 i n—i—1
. e N et e N e N
= Kdiag(p,... 0. p2.0.....0.0.....0. LD, ... DK

forO<i<n-—1.

Notice that
Kdn—1(p)K = K(p*-du—1(p) MK,

where d,_1( p) :=diag(1, p,....p, p%, p...., p) with n — 1 entries of p both times.. By definition and
Lemma A.3 with Remark A.4, it is easy to see that

m(yi) =[{BeJ:yip~" € Kdp—1(p)K}|
=[{BeJ:B-(p*-y7") € Kdp1(p)K}| ;
= }{,3 eJ:B- (p2 . yl-_l) is p-integral and rp, (B - (pz-yi_l)) = 1}}
see [Shimura 1994b, p. 52] for the first equality.
We are now ready to compute the coefficients. For m(y;), we observe the p-integrality. We see that
only 0‘(1)1 (C22, C23) with C23 = 0 and C23 = 01x(,—1) can contribute there. Hence, m(y1) = 1.
For m(y,), we observe the p-integrality and the rank condition. Then only O‘(I)I (0,01x(n—1)) and
a}l (7,0,0,01%x(n—2)), with y € Fp, can do there. Hence m(y2) = 1+ p. For m(y3), only ay77 (B), where
B € S, (Fp) with r,(B) = 1 contribute. By Lemma A.2-(3), we have m(y3) = p" — 1.
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Finally, we compute m(y4). Since p~2y4 = I4, the condition is checked easily. All members of
J = Jr U Jrr U Jyr can contribute there. Therefore, we have only to count the number of each type.

Hence, we have
type I type 11 type III 2n—1
-1 n+1 n+2 2n n i
mya)=14p+-+p" 4 p" 4 p" P pP g p 1 =p Y P,
i=0

as desired. Note that m(y4) is nothing but the volume of Kd,—1(p)K; see Lemma A.3.
Recalling 7p -1 := pT(p,(0,...,0,1)), we have

4
T(p,(0,....0,1)* = my)K(p*yi)K.
i=1

Note that
n—1 n—2
-2 -2
K(p~™“y)K=T(p,(0,...,0,2)), K(p “yv2)K=T(p,(0,...,0,1,1)),
n—1 n

—2 —N— 5 e e
K(p~™y3) K=T(p,(0,...,0,1)), K(p~“ya)K=T(p,(0,...,0) =K, K.
We can take K back to I'(N) without changing anything since p } N. This proves Theorem A.1.
Remark A.5. We would like to make corrections to [Kim et al. 2020a].
(1) On page 356, line 1, dx dy is missing in u30. In [25, page 929, line 3], the same typo is repeated.
(2) On page 362, line 12-13, T22’ » should be a linear combination of four double cosets K M K, where M
runs over diag(1, p?, p*, p?), diag(p. p, p*. p), diag(p, p*. p*, p?), and diag(p?, p*. p*, p*).
(3) On page 362, the coefficient of R,,> should be pr4+pi+pi+p=p 21-3=0 p' which is the volume
of Sp(4,Z,) diag(1, p2, p*, p?) Sp(4, Zp) explained in [Roberts and Schmidt 2007, p. 190].

(4) On page 403, Lemma 8.1, the inequality g(F) > N is not valid. Similarly, on page 405, Lemma 8.3,
the inequality ¢(F) > N is not valid. We need to consider newforms as in Section 5 of this paper.
Then for a newform, we obtain the inequality g(F) > N 1/2 and logcx, v < log N is valid as in
Lemma 9.3 of this paper.

(5) On page 404, line -5, N > p!° should be N > p2°.

(6) On page 407, line 3, N > p3° should be N > p'°.

(7) On page 407, line 8: N > p'° should be N > p?°.

(8) On page 409, line 10, we need to add —2(G(3) + G(—3)). in order to account for the poles
of A(s,mF,Spin), and the contour integral is over Re(s) = 2. So, in (9.3), we need to add
0(|H Ex (N YO|/|H Ex(N )|) However, only CAP forms give rise to a pole, and the number of
CAP forms in HEg(N) is O(N¥t€). So it is negligible.

In the case of standard L-functions, the non-CAP and nongenuine forms which give rise to poles
are: 1 B mr, where 7 is an orthogonal cuspidal representation of G L (4) with trivial central character,
or 1 B 1 B m,, where the 7; are dihedral cuspidal representations of GL(2). In those cases, by
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Proposition 4.11 and [Kim et al. 2020b, Theorem 2.9], we can count such forms without extra
conditions on N in Proposition 4.12. So our result is valid as it is written.

Remark A.6. The referee brought to our attention a possible gap in [Sauvageot 1997, p. 181]; see [Dalal
2022, p. 129] and [Nelson and Venkatesh 2021, p. 159]. S.W. Shin communicated to us that the issue has
not been fixed at this writing. However, we do not use the result in [Sauvageot 1997], nor any other later
results [Dalal 2022; Shin 2012; Shin and Templier 2016] which depend on [Sauvageot 1997].
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