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On the ordinary Hecke orbit conjecture
Pol van Hoften

We prove the ordinary Hecke orbit conjecture for Shimura varieties of Hodge type at primes of good
reduction. We make use of the global Serre–Tate coordinates of Chai as well as recent results of D’Addezio
about the monodromy groups of isocrystals. The new ingredients in this paper are a general monodromy
theorem for Hecke-stable subvarieties for Shimura varieties of Hodge type, and a rigidity result for
the formal completions of ordinary Hecke orbits. Along the way, we show that classical Serre–Tate
coordinates can be described using unipotent formal groups, generalising a result of Howe.
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1. Introduction

Let Ag,n be the moduli space of g-dimensional principally polarised abelian varieties (A, λ) with level
n ≥ 3 structure over Fp, for a prime number p coprime to n. Recall that there are finite étale prime-to-p
Hecke correspondences from Ag,n to itself, and that two points x, y ∈Ag,n(Fp) are said to be in the same
prime-to-p Hecke orbit if they share a preimage under one of these correspondences. Recall the following
result of Chai:

Theorem [Chai 1995]. Let x ∈Ag,n(Fp) be a point corresponding to an ordinary principally polarised
abelian variety. Then the prime-to-p Hecke orbit of x is Zariski dense in Ag,n .

Our main result is a generalisation of this theorem to Shimura varieties of Hodge type. To state it, we
will first introduce some notation.

1.1. Main results. Let (G, X) be a Shimura datum of Hodge type with reflex field E and let p be a prime
number. Let Kp⊂G(Qp) be a hyperspecial subgroup and let K p

⊂G(Ap
f ) be a sufficiently small compact

open subgroup. Let ShG be the special fibre of the canonical integral model of the Shimura variety of
level K pKp at a prime v above p of E , constructed in [Kisin 2010; Kim and Madapusi Pera 2016].
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Let Ev be the v-adic completion of E , which is a finite extension of Qp. There is a closed immersion
ShG,Fp

→ Ag,n for some n (see [Xu 2020]), and the intersection ShG,ord of the ordinary locus of Ag,n

with ShG is nonempty if and only if Ev = Qp (see [Lee 2018, Corollary 1.0.2]). Recall that there are
prime-to-p Hecke correspondences over ShG , which we use to define prime-to-p Hecke orbits.

Theorem I. If Ev = Qp, then the prime-to-p Hecke orbit of a point x ∈ ShG,ord(Fp) is Zariski dense
in ShG .

Theorem I generalises results of Maulik–Shankar–Tang, see [Maulik et al. 2022], who deal with GSpin
Shimura varieties associated to a quadratic space over Q and GU(1, n−1) Shimura varieties associated to
imaginary quadratic fields E with p split in E ; their methods are completely disjoint from ours. There is
also work of Shankar [2016] for Shimura varieties of type C, using a group-theoretic version of Chai’s
strategy of using hypersymmetric points and reducing to the case of Hilbert modular varieties. Shankar
crucially proves that the Hodge map ShG,Fp

→Ag,n is a closed immersion over the ordinary locus via
canonical liftings, whereas we use work of Xu [2020].

Last we mention work of Zhou [2023], who proves the Hecke orbit conjecture for the µ-ordinary locus
of certain quaternionic Shimura varieties. Our results do not imply his, but there is some overlap between
the cases that we cover.

A fairly direct consequence of Theorem I is a density result for prime-to-p Hecke orbits of an Fp-point
in the µ-ordinary locus of a Shimura variety of abelian type, at primes v above p of the reflex field E
where Ev =Qp, see Corollary 6.4.1.

1.2. Monodromy theorems. An important ingredient in our proof is an ℓ-adic monodromy theorem
for prime-to-p Hecke-stable subvarieties of special fibres of Shimura varieties, in the style of [Chai
2005, Corollary 3.5]. To state it, let (G, X) be as above and assume for simplicity that Gad is simple
over Q. Let Vℓ be the rational ℓ-adic Tate module of the abelian variety A over ShG coming from the
map ShG,Fp

→Ag,n; it is an ℓ-adic local system of rank 2g.

Theorem II. Let Z ⊂ ShG be a smooth locally closed subvariety that is stable under the prime-to-p
Hecke operators. Suppose that Z is not contained in the smallest Newton stratum of ShG . Let z ∈ Z(Fp)

and let Z◦ ⊂ ZFp
be the connected component of Z containing z. Then the neutral component Mgeom of

the Zariski closure of the image of the monodromy representation

ρℓ,geom : π
ét
1 (Z

◦, z)→ GL2g(Qℓ)

corresponding to Vℓ, is isomorphic to Gder
Qℓ

.

This generalises work of Chai [2005] in the Siegel case and others [Kasprowitz 2012; Xiao Xiao 2020]
in the PEL case.

In the body of the paper, we work with the integral models of Shimura varieties of Hodge type of level
Kp ⊂ G(Qp) constructed in [KMS 2022]. Here Kp is not required to be hyperspecial, for example it is
allowed to be any (connected) parahoric subgroup. Our results, namely Theorem 3.2.5 and Corollary 3.2.6,
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are proved under the assumption that Hypothesis 2.3.1 holds. This hypothesis holds for example when
GQp is quasi-split and has no factors of type D, or when Kp is hyperspecial.

We also prove results about irreducible components of smooth locally closed subvarieties that are stable
under the prime-to-p Hecke operators, in the style of [Chai 2005, Proposition 4.4], see Theorem 3.4.10.
These results are used to prove irreducibility of Ekedahl–Oort strata in [van Hoften 2020].

1.2.1. An overview of the proof of Theorem II. Since Z◦ ⊂ ShG is defined over a finite field k we can
write it as Z◦k ⊗k Fp. We can then consider the Zariski closure M of the image of

ρℓ : π
ét
1 (Z

◦

k , z)→ GL2g(Qℓ).

An argument from [Chai 2005] proves that M is (isomorphic to) a normal subgroup of GQℓ
. If Gad

Qℓ
was

a simple-group, then we would be done if we could show that M was not central in GQℓ
. However, in

general there are no primes ℓ such that Gad
Qℓ

is simple and so at this point we have to deviate from the
strategy of [Chai 2005].

Instead, we control M by studying the centraliser Ix,ℓ ⊂ GQℓ
of the image of Frobenius elements

Frobx ∈ π
ét
1 (Z

◦

k , z) corresponding to points x ∈ Zk(Fq). Since the paper [KMS 2022] makes an in-depth
study of these Frobenius elements, we can make use of their results about these centralisers. For example,
if x is not contained in the basic locus, then they prove that Frobx is not central. To get more precise
results, we need to know that the element Frobx ∈G(Qℓ) is defined over Q, which is what Hypothesis 2.3.1
makes precise.

In this way we can show that M⊂ GQℓ
is a normal subgroup that surjects onto Gad

Qℓ
. The result about

Mgeom ⊂M will be deduced from this.

1.3. A sketch of the proof of Theorem I. Let x ∈ ShG(Fp) be an ordinary point, and let Z be the Zariski
closure inside ShG,ord of the prime-to-p Hecke orbit of x . Let y ∈ Z(Fp) be a smooth point of Z . Recall
that it follows from the theory of Serre–Tate coordinates that the formal completion A/y

g,n of Ag,n at y is a
formal torus. A special case of the main result of [Shankar and Zhou 2021] tells us that

S/y
:= Sh/y

G,Fp
⊂A/y

g,n

is a formal subtorus. Work of Chai on the deformation theory of ordinary p-divisible groups [Chai
2003] tells us that the dimension of the smallest formal subtorus of S/y containing Z /y , is encoded in the
unipotent radical of the p-adic monodromy group of the isocrystal M associated to the universal abelian
variety A over Z .

Using Theorem II and results of D’Addezio [2020; 2023], we compute the monodromy group of M
over Z . It follows from this computation that the smallest formal subtorus of S/y containing Z /y is equal
to S/y .

We conclude by proving that the formal completion Z /y is a formal subtorus of S/y . By the rigidity
theorem for p-divisible formal groups of [Chai 2008], it suffices to give a representation-theoretic
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description of the Dieudonné module of S/y . Unfortunately, the description of the subtorus S/y coming out
of the work of Shankar and Zhou [2021] does not readily lend itself to understanding its Dieudonné module.

Instead, we give a different proof that S/y is a subtorus of A/y
g,n . We do this by giving a new description

of Serre–Tate coordinates in terms of actions of formal unipotent groups on Rapoport–Zink spaces,
generalising results of Howe [2020] in the case g = 1. Once we have this perspective, the results of Kim
[2019] give an explicit description of the Dieudonné module of the torus A/y

g,n as well as the Dieudonné
module of the subtorus S/y .

1.4. Outline. Sections 2 and 3 form the first part of the paper and work in a more general setting than
the rest of the paper. In Section 2 we introduce the integral models of Shimura varieties of Hodge
type constructed in [KMS 2022]. We recall results and notation from [loc. cit.], in particular, about
the Frobenius elements and their centralisers associated to Fp-points of these models. In Section 3 we
prove monodromy theorems for Hecke-stable subvarieties of the special fibres of these integral models,
combining results of [KMS 2022] with ideas of Chai [2005].

Section 4 is a standalone section on Serre–Tate coordinates. In it, we show that the classical Serre–Tate
coordinates, as described in [Katz 1981], can be reinterpreted using actions of unipotent formal groups as
in [Howe 2020]. This section should be of independent interest.

In Section 5, we specialise to the smooth canonical integral models of Shimura varieties of Hodge
type at hyperspecial level, and we moreover assume that the ordinary locus is nonempty. We reprove a
result of [Shankar and Zhou 2021], which states that the formal completion of the ordinary locus gives a
subtorus of the Serre–Tate torus, and give a group-theoretic description of its Dieudonné module. At the
end of this section we also give a short interlude on strongly nontrivial actions of algebraic groups on
isocrystals, which we will need to confirm the hypotheses of the rigidity theorem of [Chai 2008].

In Section 6, we put everything together and prove Theorem I. We end by deducing a result for Shimura
varieties of abelian type.

2. Integral models of Shimura varieties of Hodge type

Let (G, X) be a Shimura datum of Hodge type. In this section we follow [KMS 2022, Section 1.3]
and construct integral models for the Shimura varieties associated to (G, X) in a very general situation.
The main goal is to introduce various Frobenius elements γx,m,ℓ ∈ G(Qℓ) associated to Fqm -points of
these integral models, and to discuss result of [KMS 2022] about their centralisers Ix,m,ℓ. We end by
introducing Hypothesis 2.3.1, which will be assumed throughout Section 3, and prove that it holds under
minor assumptions.

2.0.1. Hodge cocharacters. If (G, X) is a Shimura datum, then for each x ∈ X there is a cocharacter
µx :Gm,C→ GC, see [KMS 2022, Section 1.2.3] for the precise definition. The G(C)-conjugacy class of
µx does not depend on the choice of x and we will write {µX } for this conjugacy class, and denote it
by {µ} if X is clear from context. This conjugacy class of cocharacters is defined over a number field
E ⊂ C, called the reflex field.
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2.1. The construction of integral models. For a symplectic space (V, ψ) over Q we write GV :=

GSp(V, ψ) for the group of symplectic similitudes of V over Q. It admits a Shimura datum HV

consisting of the union of the Siegel upper and lower half spaces. Let (G, X) be a Shimura datum of
Hodge type with reflex field E and let (G, X)→ (GV ,HV ) be a Hodge embedding.

Fix a prime p and choose a Z(p)-lattice V(p)⊂V on whichψ is Z(p)-valued, and write Vp=V(p)⊗Z(p)Zp.
Write Kp ⊂ GV (Qp) for the stabiliser of Vp in GV (Qp), and similarly write Kp for the stabiliser of Vp in
G(Qp).1 For every sufficiently small compact open subgroup K p

⊂ G(Ap
f ) we can find Kp

⊂ GV (A
p
f )

such that the Hodge embedding induces a closed immersion (see [Kisin 2010, Lemma 2.1.2])

ShK (G, X)→ ShK(GV ,HV )E

of Shimura varieties of level K = K pKp and K = KpKp, respectively. We let SK over Z(p) be the
moduli-theoretic integral model of ShK(GV ,HV ); it is a moduli space of (weakly) polarised abelian
schemes (A, λ) up to prime-to-p isogeny with level Kp-structure.

Fix a prime v | p of E and let

SK :=SK (G, X)→ SK⊗Z(p) OE,(v)

be the normalisation of the Zariski closure of ShK (G, X) in SK ⊗Z(p) OE,(v). This construction is
compatible with changing the level away from p and we define

SKp := lim
←−−

Kp⊂GV (A
p
f )

SKpKp , SKp := lim
←−−

K p⊂G(A p
f )

SK pKp .

Then, as discussed in [KMS 2022, Section 2.1], the transition maps in both inverse systems are finite
étale and moreover G(Ap

f ) acts on SKp . Let k = Fq be the residue field of OE,(v), and write ShG,Kp for
the special fibre of SKp and ShG,K pKp for the special fibre of SK pKp ; these are both schemes over k and
G(Ap

f ) acts on ShG,Kp . We will write ShGV ,KpKp for the special fibre of SKpKp ⊗Z(p) OE,(v) and ShGV ,Kp

for the special fibre of SKp ⊗Z(p) OE,(v).
Let Vp be the prime-to-p adelic Tate module of the universal abelian variety A over SKp ; this is a

pro-étale local system on SKp . For a morphism x : Spec R→ SKp we will write V
p
x for the pullback along

x of Vp. As explained in [KMS 2022, Section 2.1.1] there is a universal isomorphism

ϵ : V ⊗A
p
f ≃ Vp,

sending the symplectic form ψ to an A
p,×
f -multiple of the Weil pairing. Here A

p
f denotes the pro-étale

sheaf associated to the topological group A
p
f .

1It is explained in [KMS 2022, Section 1.3.2] that the collection of subgroups Kp ⊂ G(Qp) that can arise from this
construction by varying the symplectic space and the Hodge embedding contains all stabilisers of vertices in the extended
Bruhat–Tits building of GQp . It is moreover explained in [loc. cit.] that this collection is stable under finite intersections.
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2.1.1. Tensors. Write V⊗ for the direct sum of V⊗n
⊗ (V ∗)⊗m for all pairs of integers m ≥ 0, n ≥ 0. We

will also use this notation later for modules over commutative rings and modules over sheaves of rings.
As in [KMS 2022, Section 1.3.4], we fix tensors {sα ∈ V } ⊂ V⊗ such that G is their pointwise stabiliser

in GL(V ). Then as explained in [KMS 2022, Sections 1.3.4 and 2.1.2], there are global sections

{sα,A p
f
} ∈ H 0(SK pKp , (V

p)⊗)

such that if we restrict the isomorphism ϵ via SKp → SKp we get an isomorphism

η : V ⊗A
p
f → Vp

taking sα ⊗ 1 to sα,A p
f

for all α. In particular, for each x ∈SKp(Fp) the stabiliser of the tensors {sα,A p
f ,x
}

in GL(Vp
x ) is canonically identified with G⊗A

p
f .

2.1.2. Let Fp denote an algebraic closure of Fp. We will use Z̆p to denote the p-typical Witt vectors
W (Fp) of Fp and we set Q̆p = Z̆p[1/p]. We let σ : Z̆p→ Z̆p be the automorphism induced by Frobenius
on Fp, and also denote by σ the induced automorphism of Q̆p.

Let x ∈ ShG,K pKp(Fp) and let Dx be the rational contravariant Dieudonné module of the p-divisible
group Ax [p∞] of the abelian variety Ax , equipped with its Frobenius φ. By [KMS 2022, Proposition 1.3.7]
there are φ-invariant tensors {sα,cris,x} ⊂D⊗x and in [KMS 2022, Section 1.3.8] it is argued that there is an
isomorphism Q̆p⊗V→Dx sending 1⊗sα to sα,cris,x . See the statement of [KMS 2022, Proposition 1.3.7]
for a characterisation of the tensors sα,cris.

Under such an isomorphism, the Frobenius φ corresponds to an element bx ∈ G(Q̆p), which is well
defined up to σ -conjugacy, where σ : G(Q̆p)→ G(Q̆p) is induced by σ : Q̆p→ Q̆p. In other words, we
can associate to φ a well defined element [bx ] of the Kottwitz set B(G)= B(GQp) of [Kottwitz 1985].
By [KMS 2022, Lemma 1.3.9], the element [bx ] is contained in the neutral acceptable set B(G, {µ−1

})

consisting of the {µ−1
}-admissible elements defined in [KMS 2022, Section 1.1.5]. Here we use {µ} to

denote the G(Qp) conjugacy class of cocharacters induced by the place v of E , where we recall that {µ}
was introduced in Section 2.0.1.

It follows from [KMS 2022, Theorem 1.3.14] that there are locally closed subschemes ShG,[b],K pKp of
ShG,K pKp , called Newton strata, indexed by [b] ∈ B(G, {µ−1

}), such that

ShG,[b],K pKp(Fp)= {x ∈ ShG,K pKp(Fp) | [bx ] = [b]}

and such that

ShG,[b],K pKp ⊂

⋃
[b]′≤[b]

ShG,[b′],K pKp .

Here we are using the partial order≤ on B(G, {µ−1
}) defined in [Rapoport and Richartz 1996, Section 2.3].

2.2. Centralisers. Let x ∈ ShG,Kp(Fp) and choose a sufficiently divisible integer m such that the image
of x in ShG,K pKp(Fp) is defined over Fqm . Then the geometric qm-Frobenius Frobqm acts on V

p
x via
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tensor-preserving automorphisms and therefore determines an element

γ p
x,m ∈ G(Ap

f ),

which depends on x and m. For ℓ= p there is an element δx,m ∈ G(Qqm ), constructed in [KMS 2022,
Section 2.1.7], whose class in B(GQp) is equal to [bx ]. Moreover there is an element γx,m,p ∈ G(Qqm )

such that

γx,m,p = δx,mσ(δx,m) · · · σ
rm−1(δx,m),

where we write q = pr and where σ denotes the Frobenius on G(Qqm ).
We define Ix,A p

f
⊂ GA

p
f

to be the centraliser of γ p
x,m , which does not depend on m as long as m is

sufficiently divisible. We similarly define Ix,ℓ ⊂ GQℓ
for ℓ ̸= p to be the centraliser of the projection

γx,m,ℓ of γ p
x,m to GQℓ

for sufficiently divisible m.
We define Ix,m,p to be the algebraic group over Qp whose functor of points is given by

R 7→ {g ∈ G(Qqm ⊗Qp R) | gδx,m = δx,mσ(g)},

where σ is induced by σ : G(Qqm )→ G(Qqm ). As explained in [KMS 2022, Section 2.1.7], the base
change Ix,m,p ⊗Qqm is naturally identified with the centraliser of the semisimple element γx,m,p in
G(Qqm ), and Ix,m,p is thus reductive. We similarly define Jδx,m by its functor of points

R 7→ {g ∈ G(Q̆p⊗Qp R) | gδx,m = δx,mσ(g)}.

2.2.1. Consider the decomposition

Gad
=

n∏
i=1

Gi (2.2.1)

of Gad into simple groups over Q. Let δx,m,i and γx,m,p,i be the images of δx,m and γx,m,p in Gi (Qqm ).

Lemma 2.2.2. Let ZG be the centre of G. There is a product decomposition

Ix,m,p/ZG,Qp =

n∏
i=1

Ix,m,p,i ,

where Ix,m,p,i represents the functor on Qp-algebras sending R to

{g ∈ Gi (Qqm ⊗Qp R) | gδx,m,i = δx,m,iσ(g)}.

Similarly there is a product decomposition

Jδx,m/ZG ≃

n∏
i=1

Jδx,m,i ,

where Jδx,m,i represents the functor on Qp-algebras sending R to

{g ∈ Gi (Q̆p⊗Qp R) | gδx,m,i = δx,m,iσ(g)}.
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Proof. Consider the commutative diagram

Ix,m,p
∏n

i=1 Ix,m,p,i

ResQqm /Qp GQqm

∏n
i=1 ResQqm /Qp Gi,Qqm

Since the kernel of the bottom map is central and the bottom map is surjective, it follows that the natural
map Ix,p→

∏n
i=1 Ix,m,p,i is surjective. The kernel is given by the intersection of Ix,m,p with the kernel

of the bottom map and thus has the following functor of points:

R 7→ {g ∈ ZG(Qqm ⊗Qp R) | gδx,m,i = δx,m,iσ(g)}.

This forces g= σ(g) and so g ∈ ZG(R)⊂ ZG(Qqm ⊗Qp R). The same proof shows that there is a product
decomposition Jδx,m/ZG ≃

∏n
i=1 Jδx,m,i . □

Note that Ix,m,p,i ⊗Qqm can be identified with the centraliser of γx,m,p,i in Gi,Qqm as in the beginning
of Section 2.2. The centraliser of γx,m,p,i ∈ G(Q̆p) does not depend on m for m sufficiently divisible, and
thus the group Ix,m,p does not depend on m for m sufficiently divisible. We will write Ix,p for the group
Ix,m,p for sufficiently divisible m and similarly Ix,p,i for the group Ix,m,p,i . We will identify Ix,p⊗ Q̆p

with the centraliser of γx,m,p in G(Q̆p) for sufficiently divisible m and similarly we will identify Ix,p,i

with the centraliser of γx,m,p,i in Gi (Q̆p).

2.2.3. Let x ∈ ShG,Kp(Fp) and let Aut(Ax) be the algebraic group over Q with functor of points

Aut(Ax)(R)= (End(Ax)⊗Z R)×.

Following [KMS 2022, Section 2.1.3], we define I p
x to be the largest closed subgroup of Aut(Ax) that

fixes the tensors sα,A p
f ,x

and Ix ⊂ I p
x to be the largest closed subgroup that also fixes the tensors sα,cris,x .

There are natural maps Ix,Qℓ
→ Ix,ℓ for all (including ℓ = p), see [KMS 2022, Section 2.1.8] for the

ℓ= p case.
The groups Ix,ℓ are connected reductive subgroups of GQℓ

and in fact Levi subgroups over Qℓ. By
[KMS 2022, Corollary 2.1.9] for all ℓ (including ℓ= p) the natural map

Ix,Qℓ
→ Ix,ℓ

is an isomorphism. This induces a closed immersion of groups Ix,Qp → Jδx,m for some sufficiently
divisible m.

2.3. An assumption. We will need to assume the following hypothesis to prove our main monodromy
theorems in Section 3.

Hypothesis 2.3.1. For all points x ∈ ShG,Kp(Fp) and for sufficiently divisible m depending on x , there is
an element γx,m ∈ G(Q) that is conjugate to γx,m,ℓ in G(Qℓ) for all ℓ (including ℓ= p). Moreover the
G(Q)-conjugacy class of γx,m is stable under the action of Gal(Q/Q).
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If the G(Q)-conjugacy class of γx,m contains an element of G(Q), then it is clearly Galois stable.
However the converse does not necessarily hold.

Lemma 2.3.2. The hypothesis holds when Kp is hyperspecial.

Proof. If Kp is hyperspecial, then [Kisin 2017, Corollary 2.3.1] tells us that there is an element γx,m ∈G(Q)
that is conjugate to γx,m,ℓ in G(Qℓ) for all ℓ (including ℓ= p). □

Remark 2.3.3. By [KMS 2022, Corollary 2.2.14], an element γx,m ∈ G(Q) satisfying the requirements
of Hypothesis 2.3.1 exists when GQp is quasi-split and has no factors of type D.

If Kp is very special, the group GQp is tamely ramified and satisfies p ∤ 2 · #π1(Gder) and π1(G)I is
torsion free, where I ⊂ Gal(Qp/Qp) is the inertia group, then the existence of an element γx,m ∈ G(Q)
satisfying the requirements of Hypothesis 2.3.1 follows from Theorem I of [van Hoften 2020].

If p > 2, if Kp is a very special parahoric subgroup and if the triple (G, X, Kp) is acceptable in the
sense of [Kisin and Zhou 2021, Definitions 5.2.6 and 5.2.9], then [Kisin and Zhou 2021, Theorem 6.1.4]
proves the existence of an element γx,m ∈ G(Q) satisfying the requirements of Hypothesis 2.3.1.

Remark 2.3.4. When GQp is not quasi-split, one should probably not expect that the G(Q)-conjugacy
class of γx,m always contains an element of G(Q). This is because CM lifts do not exist in general when
GQp is not quasi-split. However, we expect Hypothesis 2.3.1 to hold in full generality.

For example, let x ∈ ShG,Kp(Fp) be a point corresponding to the good reduction of an abelian variety
defined over a number field and assume that p > 2. Then [Kisin and Zhou 2021, Theorem 7.2.4] tells us
that there is an element γx,m ∈ G(Q) satisfying the requirements of Hypothesis 2.3.1.

2.3.5. We end by deducing a consequence of Hypothesis 2.3.1 that will be used in Section 3. Let G∗

denote the quasi-split inner form of G over Q and let 9 : G⊗Q→ G∗⊗Q be an inner twisting. This
means that every τ ∈ Gal(Q/Q) satisfies

9(τ(g))= hτ τ(9(g))h−1
τ

for some element hτ ∈ G∗(Q). A direct consequence of this definition is that the image under ψ of a
Gal(Q/Q)-stable G(Q)-conjugacy class is a Gal(Q/Q)-stable G∗(Q)-conjugacy class.

Lemma 2.3.6. Suppose that Hypothesis 2.3.1 holds and let γx,m ∈G(Q) be the element that is guaranteed
to exist by that Hypothesis. Then for sufficiently divisible m the element 9(γx,m) is G∗(Q)-conjugate to
an element in G∗(Q).

Proof. If m is sufficiently divisible, then the centraliser of γx,m is connected because this is true for γx,m,ℓ

and the formation of centralisers commutes with base change. Since G∗ is quasi-split and the element
9(γx,m) is semisimple with connected centraliser, we may apply [Kottwitz 1982, Theorem 4.7(2)] which
tells us that the G∗(Q)-conjugacy class of 9(γx,m) contains an element of G∗(Q). □
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3. Monodromy of Hecke-invariant subvarieties

In this section we prove an ℓ-adic monodromy theorem in the style of Chai, see [Chai 2005] and [Xiao
Xiao 2020; Kasprowitz 2012], for prime-to-p Hecke stable subvarieties of Shimura varieties of Hodge
type in characteristic p. We expect the results in this section to be of independent interest, at least beyond
the hyperspecial case that we will use in the rest of this article.

In Section 3.1 we establish formal properties of subvarieties Z of Shimura varieties of Hodge type in
characteristic p that are stable under prime-to-p Hecke operators. Using techniques from [Chai 2005],
we prove that the ℓ-adic monodromy groups of the universal abelian variety over such Z are normal
subgroups of GQℓ

, this is stated as Corollary 3.1.16.
In Section 3.2 we use the results from [KMS 2022] in combination with Hypothesis 2.3.1 to prove

Theorem 3.2.5 and Corollary 3.2.6; the latter is a generalisation of Theorem II. In Section 3.3 we combine
this theorem with results of D’Addezio [2020] to deduce results about the p-adic monodromy groups of
the universal abelian variety over Hecke stable subvarieties.

Finally, in Section 3.4 we prove results about irreducible components of Hecke stable subvarieties in
the style of [Chai 2005, Proposition 4.5.4]. We will not use these results in the rest of this article and so
this section can safely be skipped for the reader only interested in the proof of Theorem I.

3.1. Arithmetic monodromy groups I. Let the notation be as in Section 2. In this section we are going
to study arithmetic monodromy groups of Hecke stable subvarieties of ShG,K pKp . For maximal generality,
we do not assume that these are defined over k = Fq and so from now on we will implicitly base change
the Shimura variety ShG,K pKp to an unspecified finite extension of k, which we will also denote by k.

The morphism π : ShG,Kp → ShG,K pKp is a pro-étale K p-torsor over ShG,K pKp such that the action of
K p
⊂ G(Ap

f ) extends to an action of G(Ap
f ). Let Z ⊂ ShG,K pKp be a locally closed subscheme and let Z̃

be the inverse image of Z under π . We say that Z is stable under the prime-to-p-Hecke operators, or that
Z is G(Ap

f )-stable, if Z̃ is G(Ap
f )-stable.

For the rest of this section ℓ will be used to denote a prime number not equal to p. For such ℓ we let
Kℓ be the image of K p in G(Qℓ) under the projection G(Ap

f )→ G(Qℓ). We let

πℓ : ShG,Kp ×
K p

Kℓ→ ShG,K pKp (3.1.1)

be the induced pro-étale Kℓ-torsor. For Z ⊂ ShG,K pKp a locally closed subscheme, we will write Zℓ for
the inverse image of Z under πℓ. We say that Z is stable under the ℓ-adic Hecke operators, or that Z is
G(Qℓ)-stable, if Zℓ is G(Qℓ)-stable. When discussing G(Qℓ)-stable Z we will always implicitly work
with ℓ ̸= p. If Z is G(Ap

f )-stable, then it is automatically G(Qℓ)-stable for all ℓ ̸= p.
All the results in this section will be stated for smooth Z , and the following lemma will be used to

reduce to the smooth case in the proof of Theorem I.

Lemma 3.1.1. Let Z ⊂ ShG,K pKp be a locally closed subscheme that is stable under the action of G(Ap
f )

(respectively G(Qℓ)), then the smooth locus U ⊂ Z is also stable under this action.
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Proof. For g ∈ G(Ap
f ) and K p

⊂ G(Ap
f ) there is a finite étale correspondence

ShG,(K p∩gK pg−1)Kp

ShG,K pKp ShG,gK pg−1 Kp ShG,K pKp

p1

p2

g

and the assumption that Z̃ is stable under the action of g is equivalent to the statement that the inverse
image of Z under p1 is the same as the inverse image of Z under g ◦ p2 for all choices of K p. Because
all the maps in the diagram are finite étale, the same is true for the smooth locus U of Z . Therefore the
inverse image Ũ of U under π is stable under the action of g ∈ G(Ap

f ). □

Lemma 3.1.2. Let Z ⊂ Y ⊂ ShG,K pKp be locally closed and G(Ap
f )-stable (resp. G(Qℓ)-stable) subvari-

eties. Then the closure of Z in Y is also stable under G(Ap
f ) (resp. G(Qℓ)).

Proof. This follows in the same way as in the proof of Lemma 3.1.1 from the fact that the prime-to-p
Hecke correspondences are finite étale; indeed finite étale maps are open and closed, and thus take closures
to closures. □

3.1.3. Some general topology. Let {X i }i∈I be a countably indexed cofiltered inverse system of finite type
schemes over a field k with surjective affine transition maps. Let X = lim

←−−i X i be the inverse limit, it is
a nonempty quasi-compact scheme by [Stacks 2020, Lemma 01Z2]. Recall that for a quasi-compact
scheme Y there is a profinite topological space π0(Y ) of connected components of Y .

Lemma 3.1.4. The natural map
π0(X)→ lim

←−−
i
π0(X i ) (3.1.2)

is a homeomorphism.

Proof. The left hand side of (3.1.2) is a profinite topological space by [Stacks 2020, Lemma 0906] and the
right hand side of (3.1.2) is visibly an inverse limit of finite sets. Hence both sides are compact Hausdorff
topological spaces and to show that the map is a homeomorphism it suffices to show that it is a bijection.

To show that the natural map is a bijection, we construct an explicit inverse. Any compatible system
of connected components {Vi }i∈I of {X i }i∈I has nonempty and quasi-compact inverse limit V ⊂ X by
[Stacks 2020, Lemma 0A2W]. To prove that V is connected we suppose that there are nonempty open
and closed subsets W and W ′ of V such that V = W

∐
W ′. Then W and W ′ are quasi-compact open

because V is quasi-compact.
Now [Stacks 2020, Lemma 0A30.(1)] tells us that we can find i and (nonempty) constructible quasi-

compact open subsets Z , Z ′ of Vi such that W is the inverse image of Z under V → Vi and similarly W ′

is the inverse image of Z ′ under V → Vi . In particular, the subsets Z and Z ′ are disjoint nonempty open
subsets of Vi , which gives us a contradiction since Vi is connected.

We have produced a map lim
←−−i π0(X i )→ π0(X) and it is not hard to check that it is an inverse of the

natural map from the lemma; this concludes the proof. □
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Corollary 3.1.5. Let Z ⊂ ShG,K pKp be a G(Ap
f )-stable (resp. G(Qℓ)-stable) locally closed subscheme of

ShG,K pKp and let Z̃ be as above. Then π0(Z̃) is equipped with a continuous action of G(Ap
f ) (respectively

π0(Zℓ) is equipped with a continuous action of G(Qℓ)).

Proof. The existence of the action follows from the existence of the action on Z̃ (resp. Zℓ). The continuity
follows from the continuity of the action of K p on lim

←−−K p Z K p (resp. the continuity of the action of Kℓ on
Zℓ) and Lemma 3.1.4. □

The following lemma is only a slight generalisation of [Chai 2005, Lemma 2.8], but we include a proof
for the benefit of the reader.

Lemma 3.1.6. Let X be a second-countable compact Hausdorff topological space with a transitive and
continuous action of a locally profinite topological group G. Let x ∈ X with stabiliser Gx ⊂ G, then the
orbit map

O : G/Gx → X

is a homeomorphism.

Proof. We can write G as the increasing union of countably many compact open sets, for example by
using finite unions of cosets of a compact open subgroup K ⊂G. Since the quotient map G→G/Gx is
open for any topological group, it follows that G/Gx can be written as the increasing union of countably
many compact open subsets.

Since the orbit map is surjective, the topological space X can be written as a countable union of the
compact subsets O(U ) for U ⊂ G/Gx compact open. Because X is second-countable it is metrisable by
Urysohn’s metrisation theorem and thus the Baire category theorem tells us that there exists a compact
open subset U of G/Gx such that O(U ) contains an open subset W of X .

Choose a compact open subset V ⊂ U such that O(V ) ⊂ W . Then O : V → O(V ) is a continuous
bijection between compact Hausdorff topological spaces and hence a homeomorphism. Now note that G

acts transitively on both G/Gx and on X . Hence by moving around V we see that any point of y ∈G/Gx

has an open neighbourhood Vy such that the natural map O : Vy→ O(Vy) is a homeomorphism, and we
conclude that O is a homeomorphism. □

3.1.7. Lie groups over ℓ-adic local fields. Recall that a topological group M is called an ℓ-adic Lie group
if it admits the (necessarily unique) structure of an ℓ-adic Lie group; see [Glockner 2016, Definition 2.1,
Proposition 2.2]. If M is an ℓ-adic Lie group, then by definition there is a finite-dimensional Qℓ-Lie
algebra Lie M , an open neighbourhood U ⊂ Lie M of the identity and an exponential map Exp :U → M
that is a homeomorphism onto a compact open subgroup of M . For example for an algebraic group H
over Qℓ the topological group H(Qℓ) is an ℓ-adic Lie group with Lie algebra Lie H(Qℓ)= Lie H .

Lemma 3.1.8. Let H be an algebraic group over Qℓ and let M ⊂ H(Qℓ) be a subgroup that is compact
in the subspace topology. Then M is an ℓ-adic Lie group and the morphism M→ H(Qℓ) is a morphism
of ℓ-adic Lie groups. Moreover, the induced Lie subalgebra Lie M ⊂ Lie H(Qℓ)= Lie H satisfies

[Lie M,Lie M] = [Lie M,Lie M],
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where the bracket notation means the commutator of two Lie subalgebras and where M is the Zariski
closure of M.

Proof. The group M is an ℓ-adic Lie group by [Glockner 2016, Proposition 2.3] and the morphism
M→ H(Qℓ) is a morphism of ℓ-adic Lie groups by [Glockner 2016, Proposition 2.2]. This implies that
there is an induced morphism on Lie algebras Lie M→ Lie H(Qℓ)= Lie H .

Since M ⊂M(Qℓ) is Zariski dense, it follows that the smallest algebraic subgroup of H whose Lie
algebra contains Lie M is equal to M; indeed, if there is a smaller algebraic subgroup M′ ⊂ M with
Lie M ⊂ Lie M′, then we see using the ℓ-adic exponential map that there is a compact open (hence finite
index) subgroup of M contained in M′(Qℓ). This contradicts the fact that M is Zariski dense in M.

The fact that the smallest algebraic subgroup of H whose Lie algebra contains Lie M is equal to
M is expressed as a(Lie M) = Lie M in the notation of [Borel 1991, Section 7.1]. By [Borel 1991,
Corollary 7.9] we have the following equality of Lie subalgebras of Lie H

[Lie M,Lie M] = [a(Lie M), a(Lie M)] = [Lie M,Lie M]. □

Lemma 3.1.9. Let M be a semisimple algebraic group over Qℓ and let M ⊂M(Qℓ) be a subgroup closed
in the ℓ-adic topology. If M equipped with the subspace topology is compact and M is Zariski dense in M,
then M is a compact open subgroup of M(Qℓ).

Proof. It follows from Lemma 3.1.8 that M is an ℓ-adic Lie group, that M→M(Qℓ) is a morphism of ℓ-
adic Lie groups and that the Lie algebra of M is equal to the Lie algebra of M, since M is semisimple. Now
we can use the exponential map for ℓ-adic Lie groups to show that M contains a compact open subgroup
of M(Qℓ). Since M is itself compact, this implies that M is also a compact open subgroup of M(Qℓ). □

3.1.10. The main theorem of Galois theory for schemes tells us that the category of finite-étale covers of a
smooth connected scheme Z over k is equivalent to the category of finite sets equipped with a continuous
action of π ét

1 (Z , z). Under this equivalence, a finite étale cover f : Y → Z is sent to the finite set f −1(z)
equipped with its action of π ét

1 (Z , z). In particular, the set of connected components of Y is in bijection
with the set of orbits of π ét

1 (Z , z) on f −1(z).
If f : Y → Z is a countably indexed inverse limit of finite étale covers fi : Yi → Z with surjective

transition maps, then we can associate to f the profinite set

f −1(z)= lim
←−−

i
f −1
i (z),

equipped with its natural continuous action of π ét
1 (Z , z). By Lemma 3.1.4 it follows that the profinite

set of orbits of π ét
1 (Z , z) on f −1(z) is homeomorphic to the topological space of connected components

of Y .

3.1.11. Now let Z be a smooth G(Qℓ)-stable locally closed subscheme of ShG,K pKp , let Z◦ ⊂ Z be a
connected component of Z , and let z ∈ Z◦(Fp). Let πℓ be as in (3.1.1) and write Zℓ for the inverse image
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of Z under πℓ as above; it is stable under the action of G(Qℓ) by assumption. Denote by Z◦ℓ the inverse
image of Z◦ under πℓ, then Z◦ℓ → Z◦ is a profinite étale Kℓ-torsor.

By the Galois theory for schemes discussed above, the cover πℓ : Z◦ℓ→ Z◦ corresponds to the profinite
set π−1

ℓ (z) equipped with its natural action of π ét
1 (Z

◦, z). In particular, the set of connected components
of Z◦ℓ corresponds to the set of orbits of π ét

1 (Z
◦, z) on π−1

ℓ (z).
Choose an element z̃ ∈ π−1

ℓ (z). Then using the simply transitive action of Kℓ on π−1
ℓ (z) we can

identify π−1
ℓ (z) with Kℓ; under this identification the chosen element z̃ is send to 1 ∈ Kℓ. This defines a

continuous group homomorphism
ρℓ : π

ét
1 (Z

◦, z)→ Kℓ,

whose conjugacy class does not depend on the choice of z̃. Let y ∈ π0(Z◦ℓ) be the connected component
containing z̃. Then the stabiliser of y in Kℓ is equal to the image of ρℓ.

Let Py ⊂ G(Qℓ) be the stabiliser of y in G(Qℓ). It is a closed topological subgroup by the continuity
of the action and the fact that π0(Zℓ) is Hausdorff. Its intersection with Kℓ gives us the stabiliser of y
in Kℓ. The action map gives us a continuous map

G(Qℓ)/Py→ π0(Zℓ), g 7→ g · y

with image the orbit Orb(y) of y.

Lemma 3.1.12. The orbit Orb(y) is open and closed inside of π0(Zℓ). Moreover the orbit map induces a
homeomorphism G(Qℓ)/Py ≃ Orb(y); in particular, G(Qℓ)/Py is compact.

Proof. The identification
π0(Zℓ)/Kℓ ≃ π0(Z).

tells us that there are finitely many Kℓ-orbits on π0(Zℓ), and that each of them is open and closed. The
G(Qℓ)-orbit of a point y is then a union of finitely many Kℓ-orbits, and thus also open and closed.
Lemma 3.1.12 shows that Orb(y) is open and closed inside a second-countable profinite topological space.
Therefore Orb(y) is profinite and second-countable. The result now follows from Lemma 3.1.6. □

Let M be the image of ρℓ and let M be the neutral component of its Zariski closure inside G(Qℓ). Let
ρℓ,geom be the restriction of ρℓ to

π ét
1 (Z

◦

Fp
, z)⊂ π ét

1 (Z
◦, z),

let Mgeom be its image and let Mgeom be the neutral component of its Zariski closure inside G(Qℓ).

Lemma 3.1.13. The groups M and Mgeom are connected reductive groups over Qℓ.

Proof. There is a short exact sequence (e.g., by [D’Addezio 2020, Proposition 3.2.7])

1→M′geom→M→ Q→ 1, (3.1.3)

where Q is a commutative algebraic group of multiplicative type and where M′geom is a closed subgroup
of M with neutral component given by Mgeom. In particular, it follows that M is reductive if Mgeom is
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reductive. The representation

π ét
1 (Z

◦, z)→ Kℓ→ G(Qℓ)→ GL(V )(Qℓ)

is the monodromy representation of the (rational) ℓ-adic Tate module of the abelian scheme π :
A→ ShG,K pKp coming from the Hodge embedding ShG,K pKp → ShGV ,KpKp . This is an ℓ-adic sheaf
F0 on Z◦ which is pure of weight one. Then [Deligne 1980, Theorem 3.4.1.(iii)] tells us that the
basechange F of F0 to Z◦

Fp
is semisimple. This base change corresponds to the composition of ρℓ,geom

with Kℓ→G(Qℓ)→GL(V )(Qℓ). Now [Deligne 1980, Corollary 1.3.9] tells us that Mgeom is a semisimple
algebraic group, and thus that it is reductive. □

3.1.14. Let N be the normaliser of M in GQℓ
and let N◦ be its neutral component. The group N◦ is a

connected reductive group because we are working with reductive groups in characteristic zero; see, e.g.,
[Conrad et al. 2015, Proposition A.8.12].

Lemma 3.1.15. The group Py is contained in N.

Proof. Let γ ∈ Py , then we want to show that γ normalises M. If V is a compact open subgroup of
G(Qℓ) contained in Kℓ, then V ∩ Py ⊂ M . Moreover for every γ ∈ Py we can find an open subgroup
U ⊂ G(Qℓ) such that γUγ−1

⊂ V . For example, we can just take the intersection of V with γ V γ−1.
For such U the open subgroup M ∩U of M satisfies γ (M ∩U )γ−1

⊂ M .
Since conjugation by γ is a homeomorphism in the Zariski topology, we see that the Zariski closure

of M ∩U is moved under conjugation by γ into the Zariski closure of M . But since M ∩U is an open
subgroup of M it is also a closed subgroup and thus compact and thus of finite index in M . This means
that the Zariski closure of M ∩U and the Zariski closure of M have the same identity component, both
of which are equal to M. Since conjugation preserves 1, this mean it sends M to M. □

Corollary 3.1.16. The Zariski closure M of M is a normal subgroup of GQℓ
.

Proof. The group G(Qℓ)/N(Qℓ) is compact, because it is a quotient of G(Qℓ)/Py which is compact.
Since N◦(Qℓ) is finite index in N(Qℓ), it follows that G(Qℓ)/N

◦(Qℓ) is also compact. Since N◦ is
connected it follows from [Borel and Tits 1965, Propositions 8.4 and 9.3] that it contains a parabolic
subgroup of GQℓ

and because it is reductive it follows that N◦ = GQℓ
. Therefore N◦ = N= GQℓ

and we
find that M is a normal subgroup of GQℓ

. □

3.2. Arithmetic monodromy groups II. So far we have not excluded the possibility that M is contained
in the centre of GQℓ

. In fact, this happens when Z is the supersingular locus inside the modular curve.
Thus we will need additional assumptions on Z to prove that M is not central.

We will show, using the results of [KMS 2022], that if Z contains a point x ∈ Z(Fqm ) not contained
in the smallest Newton stratum, then the image of Frobx under ρℓ is noncentral. If Gad

Qℓ
were a simple

group over Qℓ, then this would force M to contain Gder
Qℓ

. However Gad is generally not a simple group
over Q, and even if it were simple then there would generally be no primes ℓ where Gad

Qℓ
is simple. To

deal with these issues, we will make use of Hypothesis 2.3.1.
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3.2.1. Recall that for a point x ∈ Z◦(Fqm ), there is a Frobenius element

Frobx ∈ π
ét
1 (Z

◦, z),

whose image under ρℓ is the element γx,m,ℓ ∈ G(Qℓ) from Section 2.2. If m is sufficiently divisible, then
its centraliser is equal to the group Ix,ℓ.

3.2.2. The decomposition Gad
=

∏n
i=1 Gi of (2.2.1) induces maps

B(GQp)→ B(Gad
Qp
)→

n∏
i=1

B(Gi,Qp).

For an element [b] ∈ B(GQp) we will write [bi ] for its image in B(Gi,Qp) under this map. Recall,
see[Kret and Shin 2021, Definition 5.3.2], that an element [b] ∈ B(G, {µ−1

}) is called Q-nonbasic if [bi ]

is nonbasic for all i . A Newton stratum ShG,[b],K pKp is called Q-nonbasic if [b] is Q-nonbasic.

Proposition 3.2.3. Let x ∈ Z◦(Fqm ) for some sufficiently divisible m and let [b] = [bx ] ∈ B(G, {µ−1
}).

Assume that Hypothesis 2.3.1 holds. If [bi ] is nonbasic, then the image of ρℓ(Frobx,m) under

G(Qℓ)→ Gad(Qℓ)→ Gi (Qℓ)

is nontrivial. Moreover, the image of ρℓ(Frobx,m) in each simple factor of Gi,Qℓ
over Qℓ is nontrivial.

Proof. Let m be sufficiently divisible and let γx,m ∈ G(Q) be the element guaranteed to exist by
Hypothesis 2.3.1. Let G∗ denote the quasi-split inner form of G over Q and let 9 : G⊗Q→ G∗⊗Q be
an inner twisting. Then by Lemma 2.3.6 there is an element γ ′x,m ∈ G∗(Q) that is conjugate to 9(γx,m)

in G∗(Q). We will write I ′x ⊂ G∗ for the centraliser of γ ′x,m . Recall that by Hypothesis 2.3.1 for all ℓ
(including ℓ= p) the element 9−1(γx,m) is conjugate to γx,m,ℓ in G(Qℓ).

By the classification of adjoint algebraic groups we can find number fields2 F1, . . . , Fn and absolutely
simple adjoint algebraic groups Hi over Fi for each i = 1, . . . , n such that

Gad
=

n∏
i=1

ResFi/Q Hi =

n∏
i=1

Gi .

We have a similar decomposition for G∗,ad with Hi replaced by its quasi-split inner form H∗i and we will
write G∗i for the restriction of scalars from Fi to Q of H∗i .

Let γ ′x,m,i ∈ G∗i (Q)= H∗i (Fi ) be the image of γ ′x,m and let Cx,i ⊂ H∗i be its centraliser. Then there is
a product decomposition

I ′x/ZG ≃

n∏
i=1

ResFi/Q Cx,i =

n∏
i=1

I ′x,i .

Let b = bx ∈ G(Q̆p) for sufficiently divisible m be as in Section 2.1.2. Then Equation (2.2.1) shows
that there is a product decomposition Jb/ZG,Qp ≃

∏n
i=1 Jbi , where each Jb,i is the twisted centraliser

2By the classification of Shimura varieties of abelian type in [Milne 2005, Appendix B], each Fi is totally real.
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of the image bi of b in Gi (Q̆p). Moreover the natural inclusion Ix,p→ Jb induces closed immersions
Ix,p,i → Jbi . As in [KMS 2022, Section 1.1.4], there is an inclusion Jb,i,Q̆p

→ Gi,Q̆p
, identifying its

image with the centraliser Mνbi
of the fractional cocharacter νbi of Gi ⊗ Q̆p attached to bi . If [bi ] is not

basic, then νbi is not central and so Dim Jb,i = Dim Mνbi
< Dim Gi and so Dim Ix,p,i < Dim Gi .

The subgroup

9−1(I ′
x,Qp

)⊂ GQp

can be identified with the centraliser of γx,m,p for m sufficiently divisible, and it follows that

9−1(I ′
x,i,Qp

)⊂ Gi,Qp

can be identified with the centraliser of the image of γx,m,p,i in Gi,Qp
. In particular, the group I ′

x,i,Qp
is

conjugate to Ix,i,p,Qp
and therefore of the same dimension.

The upshot of the above discussion is that Dim I ′x,i < Dim Gi if bi is not basic. It follows that the
inclusion Ix,i,Qℓ

⊂ Gi,Qℓ
is not an equality for ℓ ̸= p and thus that the image of ρℓ(Frobx,m) in Gi (Qℓ) is

nontrivial.
To deduce the last statement of Proposition 3.2.3, we note that it suffices to show that the image of

γx,m,i in every simple factor of Gi,Qℓ
is noncentral. For this, we fix i and a prime number ℓ.

Then we can write G∗i,Qℓ
as a product indexed by primes p of Fi dividing ℓ

G∗i,Qℓ
=

∏
p|ℓ

ResFi,p/Qℓ
H∗i,Fi,p

.

The element γx,m,i is noncentral in H∗i (Fi ) and thus also noncentral in H∗i (Fi,p) for all primes p of Fi

dividing ℓ, and thus we are done. □

Remark 3.2.4. When bi is basic then the inclusion Ix,i,Qp ⊂ Jb,i should be an equality and the image of
ρℓ(Frobx,m) in Gi (Qℓ) should be trivial for all ℓ ̸= p. This is true when Kp is a very special parahoric
subgroup, see the proof of [He et al. 2021, Proposition 5.2.10].

We now state and prove our main arithmetic monodromy theorem.

Theorem 3.2.5. Let Z ⊂ ShG,K pKp be a smooth G(Qℓ)-stable locally closed subvariety. Let Z◦ ⊂ Z be
a connected component and choose a point z ∈ Z◦(Fp). Let M be the neutral component of the Zariski
closure of the image of

ρℓ : π
ét
1 (Z

◦, z)→ Kℓ→ G(Qℓ).

Assume that Hypothesis 2.3.1 holds. Then M is a normal subgroup of GQℓ
surjecting onto Gi,Qℓ

for all i
such that there is a point x ∈ Z◦(Fp) with bx,i nonbasic.

When (G, X)= (GV ,HV ), then this is closely related to [Chai 2005, Corollary 3.5].

Proof. Corollary 3.1.16 proves that M⊂GQℓ
is a normal subgroup. For x ∈ Z◦(Fp) we have the Frobenius

element ρℓ(Frobx,m)= γx,m,ℓ ∈ M , for all sufficiently divisible m, where we recall that M is the image
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of ρℓ. Thus γx,m,ℓ is contained in the Zariski closure of M and thus after replacing m by a power we may
assume that γx,m,ℓ ∈M, the neutral component of the Zariski closure of M .

If x ∈ Z◦(Fp) is a point with bx,i nonbasic, then Proposition 3.2.3 tells us that the image of γx,m,ℓ in
Gi,Qℓ

is nonzero and thus the image of M in Gi,Qℓ
is nonzero. This image is moreover normal, so to

show that it is equal to Gi,Qℓ
it suffices to show that it maps nontrivially to every simple factor of Gi,Qℓ

over Qℓ. But this follows from the last line of the statement of Proposition 3.2.3. □

Corollary 3.2.6. Let Z ⊂ ShG,K pKp,Fp
be a smooth G(Qℓ)-stable locally closed subscheme as before, let

Z◦ ⊂ Z be a connected component and fix z ∈ Z◦(Fp). Let Mgeom be the neutral component of the Zariski
closure of the image of

π ét
1 (Z

◦

Fp
, z)→ Kℓ→ G(Qℓ).

Assume that Hypothesis 2.3.1 holds. Then Mgeom is a normal subgroup of GQℓ
surjecting onto Gi,Qℓ

for
all i such that there is a point x ∈ Z◦(Fp) with bx,i nonbasic. If we can find such a point for all i , then
Mgeom = Gder

Qℓ
.

Proof. The subscheme Z is defined over a finite extension of k, and so we can speak of its arithmetic
monodromy group M. Theorem 3.2.5 tells us that M surjects onto Gi,Qℓ

for all i such that there is a point
x ∈ Z◦(Fp)with bx,i nonbasic. We now claim that Mgeom and M have the same image in Gi,Qℓ

for all such i .
It follows from the short exact sequence (3.1.3) that Mgeom ⊂M is a normal subgroup with abelian

cokernel. Let Mgeom,i be the image of Mgeom in Gi,Qℓ
and let Mi be the image of M in Gi,Qℓ

. Then
Mgeom,i ⊂Mi is a normal subgroup with abelian cokernel. Given an integer i with 1≤ i ≤ n such that
there is a point x ∈ Z◦(Fp) with bx,i nonbasic, then Mi =Gi,Qℓ

and therefore Mi has no nontrivial abelian
quotients. Thus it follows that the inclusion Mgeom,i ⊂Mi is an equality.

If we can find a point x with bx,i nonbasic for all i , then Mgeom surjects onto Gad
Qℓ

and is moreover
semisimple by [Deligne 1980, Corollary 1.3.7]. It must therefore be equal to Gder

Qℓ
. □

3.3. p-adic monodromy groups. In this subsection we record a consequence of Theorem 3.2.5 in
combination with the main results of [D’Addezio 2020; 2023].

Recall the following notions from [D’Addezio 2020, Section 2.2]. Write F-Isoc(S) for the Qp-linear
Tannakian category of F-isocrystals over a smooth finite type scheme S over Fp and write F-Isoc†(S) for
the Qp-linear Tannakian category of overconvergent F-isocrystals over S. There is a natural fully faithful
embedding F-Isoc†(S)⊂ F-Isoc(S) which sends an overconvergent F-isocrystal M† to the underlying
F-isocrystal M. Similarly we write Isoc†(S) and Isoc(S) for the Q̆p-linear category of (overconvergent)
isocrystals over S. There are natural faithful forgetful functors from (overconvergent) F-isocrystals to
(overconvergent) isocrystals.

3.3.1. The morphism ShG,K pKp → ShGV ,KpKp gives us an abelian scheme π : A→ ShG,K pKp and we
consider the F-isocrystal

M := R1π∗Ocris,A[1/p],



On the ordinary Hecke orbit conjecture 865

which is overconvergent by [Étesse 2002, Theorem 7]. Then [KMS 2022, Corollary 1.3.13] proves that
there is an exact Qp-linear tensor functor (the p-adic realisation functor)

Relp : RepQp
G→ F-Isoc(ShG,K pKp) (3.3.1)

such that the representation GQp → GV → GLV coming from the choice of Hodge embedding is sent to
the F-isocrystal M.

Lemma 3.3.2. This morphism factors via an exact Qp-linear tensor functor

Relp : RepQp
G→ F-Isoc†(ShG,K pKp), (3.3.2)

which we will also denote by Relp.

Proof. Since F-Isoc†(ShG,K pKp)⊂ F-Isoc(ShG,K pKp) is a full subcategory, it suffices to show that Relp(W )

is overconvergent for each representation W of GQp . We follow the proof of [KMS 2022, Corollary 1.3.13].
As explained there, each W can be written as the kernel of a map e : Vm,n→ Vm′,n′ , where

Vm,n = V⊗m
⊗ V ∗,⊗n.

Since M = Relp(V ) is overconvergent and the category of overconvergent isocrystals is stable under
tensor products, duals and direct sums by [Berthelot 1996, Remark 2.3.3(iii)], we see that Relp(Vm,n) is
overconvergent. Since Relp is exact, we see that Relp(W ) can be written as the kernel of a map between
overconvergent F-isocrystals, and is thus overconvergent. □

Given a smooth locally closed subscheme Z ⊂ ShG,K pKp,Fp
and a point z ∈ Z(Fp), there are monodromy

groups

Mon(Z ,M, z)⊂Mon(Z ,M†, z),

which are algebraic groups over Q̆p, see the introduction of [D’Addezio 2023]. They are defined to be the
Tannakian groups corresponding to the smallest Tannakian subcategory of Isoc(Z) respectively Isoc†(Z)
containing M, via the fibre functor ωz

ωz : Isoc(Z)→ Isoc(Fp)= Vect
Q̆p
.

We will often omit the chosen point z from the notation since the monodromy group does not depend on
z up to isomorphism.

Fix an isomorphism Dz := ωz(M†)→ V ⊗ Q̆p sending ωz(sα)= sα,cris,z to sα⊗ 1. This identifies the
composite

ωz ◦Relp : RepQp
G→ Vect

Q̆p

with the standard fibre functor, tensored up to Q̆p. Thus if we apply Tannakian duality to (3.3.1) and
(3.3.2), we get inclusions

Mon(Z ,M, z)⊂Mon(Z ,M†, z)⊂ G
Q̆p
.
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Corollary 3.3.3. Let Z ⊂ ShG,K pKp be a smooth locally closed subscheme and assume that there is a
prime ℓ ̸= p such that Z is G(Qℓ)-stable. Suppose that Z◦ contains a point x such that bx,i is nonbasic
for all i . If Hypothesis 2.3.1 holds, then there is an equality of subgroups of G

Q̆p

Mon(Z◦,M†)= Gder
Q̆p
.

Proof. Let ℓ be as in the statement of the Corollary. Then it follows from Corollary 3.2.6 that the ℓ-adic
monodromy group Mgeom of the abelian variety over Z is equal to Gder

Qℓ
. It follows from [D’Addezio

2020, Theorem 1.2.1] (compare [Pál 2022]) that there is an isomorphism of algebraic groups

Mon(Z◦,M†)⊗Qp ≃ Gder
⊗Qp.

Therefore Mon(Z◦,M†)⊂ G⊗ Q̆p is a subgroup which is isomorphic to Gder over Qp. It follows that
Mon(Z◦,M†) is equal to its own derived subgroup and therefore contained in Gder

⊗ Q̆p. This inclusion
has to be an isomorphism for dimension reasons, because both groups are connected. □

From now on we will assume that Z is contained in a single Newton stratum ShG,[b],K pKp of ShG,K pKp .
This means that for every representation W of GQp the Newton polygon of Relp(W ) is constant. As
explained in [D’Addezio 2023, Section 4.3] (cf. [Katz 1979]), this implies that Relp(W ) admits a (unique)
slope filtration Relp(W )•. There is an induced slope filtration on ωz(Relp(W )), which gives a fractional
cocharacter λW of GL(ωz(Relp(W ))). Since this construction is functorial in W, it defines a fractional
cocharacter λ of G

Q̆p
. On the other hand, there is an element b= bz ∈G(Q̆p) correspond to the Frobenius

of Dz = ωz(M†)= V ⊗ Q̆p; let νb be the Newton cocharacter of b.

Lemma 3.3.4. There is an equality λ= νb.

Proof. It suffices to show that λ= νb after composing with G⊗ Q̆p→GL(V )=GL(ωz(M†)). But both
of these fractional cocharacters of GL(V ) are per definition the slope cocharacters of the F-isocrystal
ωz(M†). Indeed, this is true for λ per definition and for νb by its construction; see [Kottwitz 1985,
Section 4]. □

Under our assumption that Z is contained in a single Newton stratum ShG,[b],K pKp of ShG,K pKp we
note that the monodromy group

Mon(Z◦,M)⊂ G
Q̆p

of a connected component Z◦ of Z is contained in the parabolic subgroup P(λ) associated to λ, as
explained in [D’Addezio 2023, Section 4.1].

Corollary 3.3.5. Let Z ⊂ ShG,K pKp be a smooth locally closed subscheme and assume that there is a
prime ℓ ̸= p such that Z is G(Qℓ)-stable. Let Z◦ be a connected component of Z and suppose that Z◦ is
contained in a single Q-nonbasic Newton stratum ShG,[b],K pKp . If Hypothesis 2.3.1 holds, then the p-adic
monodromy group

Mon(Z◦,M)⊂Mon(Z◦,M†)= Gder
Q̆p
⊂ G

Q̆p
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is equal to the intersection

Gder
Q̆p
∩ P(λ).

In particular, the unipotent radical of Mon(Z◦,M) is isomorphic to the unipotent radical of the parabolic
subgroup Pνb of G

Q̆p
.

Proof. The first assertion is a direct consequence of Corollary 3.3.3 and [D’Addezio 2023, Theorem 1.1.1].
The second assertion follows from Lemma 3.3.4 □

3.4. Irreducible components of Hecke stable subvarieties. In this section we will study irreducible com-
ponents of Hecke stable subvarieties and prove results in the style of [Chai 2005, Proposition 4.5.4].3The
results proved in this section will not be used in the rest of this article, but they are used to prove
irreducibility results for EKOR strata in [van Hoften 2020].

Let ρ : Gsc
→ Gder be the simply connected cover of the derived group Gder of G and note that ρ

induces an action of Gsc(A
p
f ) on ShG,Kp . From now on we will need another assumption:

Hypothesis 3.4.1. For each finite extension F of the reflex field E and any place w of F extending v,
the natural maps

π0(ShK pKp(G, X)⊗E F)→ π0(SK pKp ⊗OE,(v) OF,(w))← π0(ShG,K pKp ⊗kk(w))

are isomorphisms.

Lemma 3.4.2. Hypothesis 3.4.1 holds if ShG,K pKp has geometrically integral connected components.

Proof. This is [Madapusi Pera 2019, Corollary 4.1.11]. □

Remark 3.4.3. The variety ShG,K pKp has geometrically integral connected components if Kp is hy-
perspecial because then the integral models are smooth by work of Kisin [2010]. More generally the
Kisin–Pappas integral models [2018] have geometrically integral connected components if Kp is very
special; see [Kisin and Pappas 2018, Corollary 4.6.26].

3.4.4. Connected components. The following result is well known.

Lemma 3.4.5. Let Y∞ be a connected component of the scheme

lim
←−−

U⊂G(A f )

ShU,C(G, X).

Then Y∞ is stable under the action of Gsc(A f ).

Proof. This is a direct consequence of the description of connected components of Shimura varieties and
strong approximation for Gsc(Q), see [Kisin et al. 2021, Section 5.5.1, Lemma 5.5.4]. □

3Our results do not literally generalise Chai’s results because he works with Sp2g(A
p
f )-stable subvarieties while we work

with GSp2g(A
p
f )-stable subvarieties.
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Corollary 3.4.6. Let Y∞ be a connected component of

lim
←−−

Up⊂G(A p
f )

ShUp Kp,C(G, X).

Then Y∞ is stable under the action of Gsc(A
p
f ).

Proof. We consider
lim
←−−

U⊂G(A p
f )

ShU (G, X)→ lim
←−−

Up⊂G(A p
f )

ShUp Kp(G, X)

and we let Y ′
∞

be a connected component of the left hand side mapping to Y∞. Then Y ′
∞

is stable under
the action of Gsc(A f ) and thus Y∞ is stable under the action of Gsc(A

p
f ). □

Lemma 3.4.7. Suppose that Hypothesis 3.4.1 holds and let Y∞ ⊂ ShG,Kp,Fp
be a connected component.

Then Y∞ is stable under the action of Gsc(A
p
f ).

Proof. It suffices to prove this for Shimura varieties over C, because the connected components are
defined over an algebraic closure E of the reflex field E and the result can be transported to the special
fibre using Hypothesis 3.4.1. The result over C is Corollary 3.4.6. □

3.4.8. Let Z ⊂ ShG,K pKp be a G(Ap
f )-stable locally closed subscheme with inverse image Z̃ ⊂ ShG,Kp .

A finite étale cover X→ Z is called G(Ap
f )-equivariant if X̃ := Z̃ ×Z X has an action of G(Ap

f ) making
the natural map X̃ → Z̃ equivariant for the action of G(Ap

f ). If Hypothesis 3.4.1 is satisfied, then by
Lemma 3.4.7 the group Gsc(A

p
f ) acts on the fibres of

π0(X̃)→ π0(ShG,Kp,Fp
).

Lemma 3.4.9. If Hypothesis 3.4.1 holds, then G(Ap
f ) acts continuously on π0(X̃).

Proof. The assumption that X→ Z is finite étale implies that π0(X̃)→π0(Z̃) is a finite map with discrete
fibres, and therefore the action of G(Ap

f ) on π0(X̃) is continuous because the action on π0(Z̃) is, see
Corollary 3.1.5. □

Let 6 be a finite set of places of Q containing p and containing all places ℓ where Gad
ℓ has a compact

factor. From now on we will work with G(Ap
f )-stable subvarieties Z defined over Fp and with geometric

monodromy groups.

Theorem 3.4.10. Let X→ Z be a G(Ap
f )-equivariant finite étale cover of a smooth G(Ap

f )-stable locally
closed subscheme Z ⊂ ShG,K pKp,Fp

, and suppose that each connected component of Z intersects a Q-
nonbasic Newton stratum. If Hypotheses 2.3.1 and 3.4.1 hold, then G(A6

f ) acts trivially on the fibres
of

π0(X̃)→ π0(ShG,Kp,Fp
).

For a prime ℓ ̸∈6 we will write Kℓ for the image of K p
→G(Qℓ) and πℓ :ShG,K pKp,ℓ,Fp

→ShG,K pKp,Fp

for the induced Kℓ-torsor over ShG,K pKp,Fp
.
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Lemma 3.4.11. Suppose that Hypothesis 2.3.1 holds and let Y∞ ⊂ ShG,K pKp,ℓ,Fp
be a connected compo-

nent with image Y ⊂ ShG,K pKp,Fp
. Then Y∞→ Y is a torsor for a compact open subgroup of Gder(Qℓ).

Proof. It follows from profinite Galois theory for schemes, see Section 3.1.11, that the stabiliser K∞ of
Y∞ in G(Qℓ) can be identified with the image of

π ét
1 (Y, y)→ G(Qℓ)

for some point y ∈ Y (Fp). If we apply Corollary 3.2.6 and Lemma 3.1.9 to Z = ShG,K pKp , it follows that
this image contains a compact open subgroup of Gder(Qℓ) and that it is contained in Gder(Qℓ). □

Proof of Theorem 3.4.10. We write Zℓ→ Z for the induced Kℓ torsor and Xℓ→ Zℓ for Zℓ×Z X . Then
the action of G(Ap

f ) on X̃ and Z̃ induces an action of G(Qℓ) on Xℓ, and it suffices to show that Gsc(Qℓ)

acts trivially on the fibres of

aℓ : π0(Xℓ)→ π0(ShG,K pKp,ℓ,Fp
)

for all ℓ ̸∈6.
Let x ∈ π0(Xℓ) and let Z◦ be a connected component of Z containing the image of x . Moreover let

Z◦ℓ ⊂ Zℓ be the inverse image of Z◦. Fix a point z ∈ Z◦(Fp), then Hypothesis 2.3.1 and Corollary 3.2.6
tell us that the image of

ρℓ : π
ét
1 (Z

◦, z)→ Kℓ

is a compact subgroup Mgeom,ℓ whose Zariski closure Mgeom,ℓ has neutral component equal to Gder
Qℓ

. It
follows from Lemma 3.1.9 that the image of ρℓ contains a compact open subgroup Vℓ ⊂ Gder(Qℓ). The
upshot of this discussion is that the stabiliser in G(Qℓ) of a connected component of Zℓ contains a
compact open subgroup of Gder(Qℓ) and this implies that the stabiliser in G(Qℓ) of x contains a compact
open subgroup of Gder(Qℓ).

Let Y∞ be a connected component of ShG,K pKp,ℓ,Fp
such that the image Y of Y∞ in ShG,K pKp contains Z◦.

Then it follows from Hypothesis 2.3.1 and Lemma 3.4.11 that Y∞→ Y is a pro-étale torsor for a compact
open subgroup Uℓ ⊂ Gder, and from Hypothesis 3.4.1 and Lemma 3.4.7 that Y∞ is stable under the action
of Gsc(Qℓ).

We will write X∞ ⊂ Xℓ for the inverse image of Y∞ in Xℓ and let X ′ ⊂ X be its image. Note that
x ∈ π0(X∞) by construction. Then X∞→ X ′ is a pro-étale Uℓ torsor and X∞ is stable under the action
of Gsc(Qℓ). This action is moreover continuous by Lemma 3.4.9 and the inclusion

π0(X∞)⊂ π0(Xℓ)

is closed since {Y∞}⊂π0(ShG,K pKp,ℓ,Fp
) is closed. In particular, the topological space π0(X∞) is compact

Hausdorff.
Let U ′ℓ be the inverse image of Uℓ in Gsc(Qℓ). Then the quotient

U ′ℓ\π0(X∞)=Uℓ\π0(X∞)= π0(X ′)



870 Pol van Hoften

is finite. This means that there are finitely many (open and closed) U ′ℓ orbits on π0(X∞). Therefore the
Gsc(Qℓ) orbit of x on π0(X∞) is a union of finitely many U ′ℓ-orbits and thus closed; in particular it is
compact Hausdorff. It then follows from Lemma 3.1.6 that the Gsc(Qℓ) orbit of x is homeomorphic
to Gsc(Qℓ)/Px , where Px ⊂ Gsc(Qℓ) is the stabiliser of x . In particular, it follows that Gsc(Qℓ)/Px is
compact.

The group Px contains a compact open subgroup of Gsc(Qℓ) because the stabiliser of x in G(Qℓ)

contains a compact open subgroup of Gder(Qℓ) and Gsc(Qℓ)→ Gder(Qℓ) has finite fibres. This implies
that Gsc(Qℓ)/Px has the discrete topology, and we conclude that Gsc(Qℓ)/Px is a finite set or equivalently
that Px is a finite index subgroup. The assumption that Gsc

Qℓ
has no compact factors implies, by [Platonov

and Rapinchuk 1994, Theorems 7.1 and 7.5], that the group Gsc(Qℓ) has no finite index subgroups.
Therefore Gsc(Qℓ)/Px is a singleton which is precisely what we wanted to prove. □

4. Serre–Tate coordinates and unipotent group actions

In this section we show that the classical Serre–Tate coordinates, as described in [Katz 1981], can be
reinterpreted using the action of a unipotent formal group, as in [Howe 2020]. Our results are more-or-less
a direct generalisation of the results of [Howe 2020], except that we construct the action of unipotent formal
groups using Rapoport–Zink spaces, while in [loc. cit.] this action is constructed using Igusa varieties.

In Section 4.1, we recall the classical theory of Serre–Tate coordinates following [Katz 1981], which
shows that the formal deformation space Def(Y ) of an ordinary p-divisible group Y over Fp has the
structure of a commutative formal group. We then compute the scheme-theoretic p-adic Tate-module of
the p-divisible group H0,1 associated to this formal group. In Section 4.2 we use Rapoport–Zink spaces to
describe an action of the universal cover H̃0,1 of H0,1 on the formal scheme D̂ef(Y ) associated to Def(Y ).
In Section 4.3 we identify this action with the projection from the universal cover to H0,1 followed by the
left-translation action of H0,1 on D̂ef(Y ).

4.0.1. We consider the category Art of Artin local Z̆p-algebras R such that the natural map Fp→ R/mR is
an isomorphism. Here mR is the unique maximal ideal of R and we write α : R→ Fp for the composition
of the natural map R→ R/m with the inverse of the natural isomorphism Fp→ R/m. Note that α is
functorial for morphisms in Art. We similarly consider the category Nilp of Z̆p-algebras in which pn

= 0
for some n. The category Art is naturally a full subcategory of Nilp.

For a p-divisible group G over an algebra R ∈Nilp we define the p-adic Tate module to be the functor
TpG := lim

←−−n G [pn
], which is representable by a flat affine scheme over Spec R by [Scholze and Weinstein

2013, Proposition 3.3.1].

4.1. Classical Serre–Tate theory. Let Y be an ordinary p-divisible group of dimension g and height 2g
over Fp. In other words, let Y be a p-divisible group isomorphic to (Qp/Zp)

⊕g
⊕µ

⊕g
p∞ .

Let Def(Y ) be the functor on Art sending (R, α) to the set of isomorphism classes of pairs (X, β)
where X is a p-divisible group over Spec R and β : X ⊗R,α Fp→ YFp

is an isomorphism. This functor is
(pro)-representable by a formally smooth formal scheme Def(Y ) of relative dimension g2 over Spf Z̆p.
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By [Katz 1981, Theorem 2.1], this functor lifts to a functor valued in abelian groups such that the formal
group Def(Y ) is p-divisible.4

There is a canonical direct sum decomposition Y = Y0⊕ Y1 where Y0 is the maximal étale quotient of
Y and where Y1 is equal to the formal completion of Y at the origin. Since Y0 is étale there is a unique
lift to a p-divisible formal group over Z̆p, which we will denote by Y can

0 . Similarly Y1 has a unique lift to
a p-divisible formal group over Z̆p, for example because the Serre dual of Y1 is étale. We will denote this
lift by Y can

1 and we will use Y can
:= Y can

0 ⊕ Y can
1 to denote the canonical lift of Y to Z̆p.

Let Y∨ be the Serre-dual of Y and consider the free Zp-modules of rank g given by TpY (Fp) and
TpY∨(Fp). By [Katz 1981, Theorem 2.1], the formal group Def(Y ) is isomorphic to the functor on Art
sending R to

hom
(
TpY (Fp)⊗Zp TpY∨(Fp), Ĝm(R)

)
.

Let S be the complete Noetherian local Z̆p-algebra representing Def(Y ) on Art. Then the abelian group
structure on Def(Y ) induces a (continuous) cocommutative Hopf algebra structure on S. In particular the
formal scheme D̂ef(Y ) := Spf S, considered as a functor on Nilp, has the structure of a formal group. We
will write H0,1 := lim

−−→
Spf S[pn

] for the corresponding p-divisible group over Spf Z̆p. Note that it acts
via left translation on D̂ef(Y ); we will denote this action by aST (for Serre–Tate).

Remark 4.1.1. The natural map H0,1→ D̂ef(Y ) is an isomorphism of formal schemes, since both of
them are formally smooth formal schemes of the same dimension. Nevertheless, it is useful to treat them
as different objects, for example because the notation D̂ef(Y ) is somewhat unwieldy, especially when
passing to universal covers of p-divisible groups.

Lemma 4.1.2. The p-adic Tate module of H0,1 is isomorphic to the sheaf Hom(Y can
0 , Y can

1 ) on Nilp of
homomorphisms from Y can

0 to Y can
1 .

Proof. Let us prove the stronger assertion that there are isomorphisms H0,1[pn
] ≃Hom(Y can

0 , Y can
1 )[pn

]

for all n, compatible with changing n. Note that H0,1[pn
] is represented by the spectrum of an Artin

local Z̆p-algebra. The same is true for Hom(Y can
0 , Y can

1 )[pn
], since Hom(Z/pnZ, µpn )≃ µpn . Thus it

suffices to show that the functors H0,1[pn
] and Hom(Y can

0 , Y can
1 )[pn

] are isomorphic as functors on Art.
In [Katz 1981, p. 152] it is explained that Def(Y ) is isomorphic to the functor (on Art) sending R to

hom(TpY (Fp), Y can
1 (R)).

Note that TpY (Fp)= TpY0(Fp)= TpY can
0 (Fp) and that because TpY can

0 is an inverse limit of étale group
schemes, the natural map TpY can

0 (R)→ TpY0(Fp) is an isomorphism for R ∈ Art. Thus there is a natural
isomorphism

hom(TpY (Fp), Y can
1 (R))≃ hom(TpY can

0 (R), Y can
1 (R)).

4Recall that a commutative formal group X is called p-divisible if [p] : X→ X is finite flat.
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The pn-torsion of this group is given by

hom(TpY can
0 (R), Y can

1 (R))[pn
] = hom(TpY can

0 (R), Y can
1 [p

n
](R))= hom(Y can

0 [p
n
](R), Y can

1 [p
n
](R)).

We see that there is an isomorphism Def(Y )[pn
] ≃Hom(Y can

0 [p
n
], Y can

1 [p
n
]) of functors on Art, which

induces an isomorphism H0,1[pn
] ≃Hom(Y can

0 [p
n
], Y can

1 [p
n
]) of functors on Nilp. It is straightforward

to check that these isomorphisms are compatible with increasing n, which concludes the proof. □

4.2. Rapoport–Zink spaces and unipotent formal groups. Let Ỹ → Y be the universal cover of Y ,
defined as the inverse limit of the projective system

lim
←−−

[p]:G→G
Y.

It is representable by a formal scheme by [Scholze and Weinstein 2013, Proposition 3.1.3(iii)]. By the
proof of [Caraiani and Scholze 2017, Proposition 4.2.11], the automorphism group functors of Y and Ỹ
on Nilp can be described as follows:

Aut(Y )=
(

Aut(Y0) 0
Hom(Y0, Y1) Aut(Y1)

)
, Aut(Ỹ )=

(
Aut(Ỹ0) 0

Hom(Y0, Y1)[1/p] Aut(Ỹ1)

)
.

Moreover the functors Aut(Yi ) are pro-étale group schemes which are noncanonically isomorphic to the
group schemes associated to the profinite group GLg(Zp). Let H̃0,1 be the universal cover of H0,1. Then
by the discussion after [Caraiani and Scholze 2017, Definition 4.1.1], we can identify the fpqc sheaves

H̃0,1 = (TpH0,1)[1/p].

Moreover, by the proof of [Caraiani and Scholze 2017, Proposition 4.1.2], there is a short exact sequence
of fpqc sheaves

0→ TpH0,1→ H̃0,1→H0,1→ 0.

By Lemma 4.1.2, we can identify this with

0→Hom(Y0, Y1)→Hom(Y0, Y1)[1/p] →H0,1→ 0.

Note that Hom(Y0, Y1)[1/p] is isomorphic to H̃0,1, and thus representable by a formal scheme by [Scholze
and Weinstein 2013, Proposition 3.1.3(iii)] as above. In particular, this means that Aut(Ỹ ) is representable
by a formal scheme.

4.2.1. Let RZY be the Rapoport–Zink space associated to Y . It is defined to be the functor on Nilp
sending R to the set of isomorphism classes of pairs (X, f ), where X is a p-divisible group over Spec R
and f : X 99K YR is a quasi-isogeny (or equivalently, by [Katz 1981, Lemma 1.1.3.3], a quasi-isogeny
f0 : X R/pR 99KYR/pR). The functor RZY is representable by a formally smooth formal scheme over Spf Z̆p

by [Rapoport and Zink 1996, Theorem 2.16]. The group functor Aut(Ỹ ) acts on RZY via postcomposition,
where we note that an automorphism of Ỹ is the same thing as a self-quasi-isogeny of Y .
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Let y be the Fp-point of RZY corresponding to the identity map Y → Y and let

RZ/y
Y ⊂ RZY

be the formal completion of RZY in {y}, in the sense of formal algebraic spaces as in [Stacks 2020,
Tag0GVR]. By definition this is the subfunctor of RZY corresponding to those morphisms Spec R→RZY

that factor through {y} on the level of topological spaces. In other words, it consists of those mor-
phisms Spec R → RZY such that the induced morphism Spec Rred

⊂ Spec R → RZY factors through
y : Spec Fp→ RZY .

In terms of the moduli description, this means that we are looking at those quasi-isogenies f : X 99K YR

such that: There is a (necessarily unique) isomorphism β : X Rred → YRred making the following diagram
commute:

X Rred YRred

YRred YRred

f

β

(4.2.1)

Now restrict this moduli description to the full subcategory Art ⊂ Nilp. Then RZ/y
Y can be described

as the functor on Art sending (R, α) to the set of isomorphisms classes of triples (X, β, f ), where X
is a p-divisible group over R equipped with an isomorphism β : X ⊗R,α Fp → Y and where f is a
quasi-isogeny f : X 99K YR such that (4.2.1) commutes.

Lemma 4.2.2. The natural forgetful map RZ/y
Y →Def(Y ) sending (X, β, f ) to (X, β) is an isomorphism.

In particular, there is an isomorphism of formal schemes D̂ef(Y )≃ RZ/y
Y .

Proof. The commutativity of (4.2.1) expresses the fact that f is a lift of the quasi-isogeny Y → Y given
by the identity. But since quasi-isogenies lift uniquely by [Katz 1981, Lemma 1.1.3.3], the data of f is
superfluous and we see that the forgetful map RZ/y

Y (R)→ Def(Y )(R) is a bijection for all R ∈ Art. □

The subgroup (
Aut(Y0) 0
H̃0,1 Aut(Y1),

)
⊂ Aut(Ỹ )

preserves the point y ∈ RZY (Fp) and therefore acts on D̂ef(Y ). In particular, the profinite group

Aut(Y0)(Fp)×Aut(Y1)(Fp)= Aut(Y )(Fp)

acts on D̂ef(Y ). This induces an action of Aut(Y )(Fp) on Def(Y ) because Fp is an object of Art⊂ Nilp.

Corollary 4.2.3. This action sends a pair (X, β) ∈ Def(Y )(R), where X is a p-divisible group over
Spec R and β : X ⊗R,α Fp→ YFp

is an isomorphism, to (X, g ◦β) for g ∈ Aut(Y )(Fp).

Proof. This follows from Lemma 4.2.2 and the uniqueness of the isomorphism β : XFp
→ Y given

f : X 99K YR . □
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4.2.4. Since the action of H̃0,1 on RZY preserves the point y, there is an induced action

ãRZ : H̃0,1× D̂ef(Y )→ D̂ef(Y ).

The goal of the rest of this section is to prove the following proposition, our proof of which was heavily
inspired by the proof of [Howe 2020, Theorem 6.2.1], which deals with the g = 1 case.

Proposition 4.2.5. The action ãRZ factors through an action of H0,1 via the natural quotient map
H̃0,1→H0,1. Moreover the induced action of H0,1 is given by aST.

4.3. Proof of Proposition 4.2.5. Choose isomorphisms

TpY0 ≃ Z⊕g
p , Y1 ≃ (µp∞)

⊕g,

which induce isomorphisms of functors on Art

Def(Y )≃Hom(Z⊕g
p , (µp∞)

⊕g).

In fact if we let x1, . . . , xg ∈ Z
⊕g
p be the standard basis vectors, then we can in fact identify

Def(Y )≃ (µp∞)
⊕g2

with coordinates qi, j for 1≤ i, j ≤ g and similarly

H0,1 ≃ (µp∞)
⊕g2

with coordinates ζi, j for 1≤ i, j ≤ g. For R in Art a morphism

Spec R→ Def(Y )

corresponds to elements qi, j ∈ 1+mR , and the corresponding deformation of Y is the p-divisible group
Xq corresponding to the pushout of (see [Katz 1981, p. 152])

0→ Z⊕g
p →Q⊕g

p →
Q
⊕g
p

Z
⊕g
p
→ 0

via the morphism Z
⊕g
p,R→ µ

⊕g
p∞,R given by xi 7→ (qi,1, . . . , qi,g). In fact, there is a pushout diagram

0 Z⊕g Z[1/p]⊕g Q
⊕g
p

Z
⊕g
p

0

0 Z
⊕g
p Q

⊕g
p

Q
⊕g
p

Z
⊕g
p

0

and so we can also think of Xq as the quotient of µ⊕g
p∞,R ⊕Z[1/p]⊕g by the image of the map

hq : Z
⊕g
→ µ

⊕g
p∞,R ⊕Z[1/p]⊕g
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given by xi 7→ ((qi,1, . . . , qi,g), (xi )).

Let N be an integer such that q pN

i, j = 1 for all i, j , which exists since R is Artinian. Then the isogeny

µ
⊕g
p∞,R ⊕Z[1/p]⊕g

→ µ
⊕g
p∞,R ⊕Z[1/p]⊕g, (A, B) 7→ (pN A, pN B)

maps hq(Z
⊕g) into h1(Z

⊕g). Thus it induces a quasi-isogeny

fq,N : Xq 99K X1 = YR, (4.3.1)

and the induced quasi-isogeny Xq,Fp
= X1,Fp

→ X1,Fp
is given by pN . It follows that the quasi-isogeny

p−N fq,N is the unique quasi-isogeny lifting the identity Xq,Fp
= X1,Fp

→ X1,Fp
. Let us write q ∈RZY (R)

for p−N fq,N : Xq 99K YR .
A morphism Spec R→H0,1 corresponds to elements ζi, j ∈ 1+mR . The left translation action of H0,1

via the Serre–Tate action is given by
aST(ζ , q)= ζq,

where (ζq)i, j = (ζi, j · qi, j ) and where (ζi, j · qi, j ) denotes the multiplication in µp∞(R) = 1+mR . In
terms of p-divisible groups, this correspond to the p-divisible group Xζq . We will write ζq ∈ RZY (R)
for the element corresponding to Xζq .

Proof of Proposition 4.2.5. By definition of the action ãRZ, it suffices to show that for every fpqc cover
Spec R̃→ Spec R and every lift

ζ̃ ∈ H̃0,1(R̃)

of ζ ∈H0,1(R̃), we have ãRZ(ζ̃ , q)= ζq. There is a universal such lift over the fpqc cover R̃ given by
formally adjoining all the p-power roots of all ζi, j , and it suffices to prove the result for this choice of R̃.
Recall that Xq,R̃ is defined as the quotient of

µ
⊕g
p∞,R̃
⊕Z[1/p]⊕g

by the image of the map hq which sends the standard basis element xi ∈ Z⊕g to

((qi,1, . . . , qi,g), (xi )) ∈ µ
⊕g
p∞,R̃
⊕Z[1/p]⊕g.

The p-divisible group Xζq,R̃ is defined similarly but then using the map hζq . The compatible sequence of
p-power roots of ζ defined by ζ̃ defines a map

ψζ̃ : µ
⊕g
p∞,R̃
⊕Z[1/p]⊕g

→ µ
⊕g
p∞,R̃
⊕Z[1/p]⊕g, (A, B) 7→ (A · L ζ̃ (B), B),

where L ζ̃ : Z[1/p]⊕g
→ µ

⊕g
p∞,R̃

is the morphism sending

xi

pn 7→ (ζ
1/pn

i,1 , ζ
1/pn

i,2 , . . . , ζ
1/pn

i,g ).

It is straightforward to check that this map satisfies

ψζ̃ (hq(Z
⊕g)= hζq(Z

⊕g)
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and that it thus induces an isomorphism on quotients

φζ̃ : Xq,R̃→ Xζq,R̃.

Choose N sufficiently large such that ζ pN

i, j = 1 and q pN

i, j = 1 for all i, j . Let

p−2N fζq,2N : Xζq 99K YR

be the unique quasi-isogeny lifting the identity map Xζq,Fp
= YFp

→ YFp
as described in (4.3.1). To prove

the proposition it suffices to show that the following diagram commutes:

Xq,R̃ Xζq,R̃

(
Q
⊕g
p

Z
⊕g
p

)
R̃
⊕µ

⊕g
p∞,R̃

(
Q
⊕g
p

Z
⊕g
p

)
R̃
⊕µ

⊕g
p∞,R̃

φζ̃

p−N fq,N p−2N fζq,2N

ξζ̃

(4.3.2)

Here ξζ̃ is given by the matrix
( 1 0
ζ̃ 1

)
, see the beginning of Section 4.2 for the matrix notation. To show

that this diagram commutes we consider the auxiliary commutative diagram

µ
⊕g
p∞,R̃
⊕Z[1/p]⊕g µ

⊕g
p∞,R̃
⊕Z[1/p]⊕g

µ
⊕g
p∞,R̃
⊕Z[1/p]⊕g µ

⊕g
p∞,R̃
⊕Z[1/p]⊕g

ψζ̃

pN p2N

pNψζ̃

(4.3.3)

The diagram of quasi-isogenies (4.3.2) is obtained from the diagram (4.3.3) by quotienting by the
subgroups

hq(Z
⊕g) hζq(Z

⊕g)

h1(Z
⊕g) h1(Z

⊕g)

ψζ̃

pN p2N

pNψζ̃

and formally inverting certain powers of p. It follows that (4.3.2) is commutative. □

5. The formal neighbourhood of an ordinary point

The goal of this section is to give Serre–Tate coordinates for the formal completions of points in the
ordinary locus of Shimura varieties of Hodge type.

In Section 5.1 we specialise to the smooth canonical integral models of Shimura varieties of Hodge
type at hyperspecial level, and we moreover assume that the ordinary locus is nonempty. In Section 5.2
we recall a small amount of covariant Dieudonné theory for semiperfect rings, following [Scholze and
Weinstein 2013].
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In Section 5.4 we prove that the formal completion of the ordinary locus gives a subtorus of the
Serre–Tate torus, reproving a special case of [Shankar and Zhou 2021, Theorem 1.1]. We also give a
group-theoretic description of the Dieudonné module of the associated p-divisible group. In Section 5.5
we introduce strongly nontrivial actions of algebraic groups on isocrystals, which we will need to confirm
the hypotheses of the rigidity theorem of [Chai 2008].

5.1. Integral models at hyperspecial level. Let the notation be as in Section 2. In particular, we have
a Shimura datum (G, X) of Hodge type with reflex field E , a prime p and a prime v of E above p.
Moreover there is a symplectic space V and a Hodge embedding (G, X)→ (GV ,HV ) and for every
sufficiently small K p

⊂ G(Ap
f ) there is a sufficiently small Kp

⊂ GV (A
p
f ) and a finite morphism

SK :=SK (G, X)→ SK⊗Z(p) OE,(v). (5.1.1)

Recall that there is a Z(p)-lattice V(p) of V on which the symplectic form is Z(p)-valued, and recall that
we have defined Kp ⊂ G(Qp) to be its stabiliser. From now on we will assume that Kp is a hyperspecial
subgroup, in which case SK is the canonical integral model of ShK pKp(G, X) over OEv . Moreover the
main theorem of [Xu 2020] tells us that the map (5.1.1) is a closed immersion.

5.1.1. The Zariski closure GZ(p) of G inside GV(p) is a reductive group scheme over Z(p). By [Kisin 2010,
Proposition 1.3.2], we can choose tensors {sα} ⊂ V⊗(p) whose stabiliser is GZ(p) . All the results of Section 2
still go through with this choice of tensors.

For x ∈ ShG,K pKp(Fp) we have seen in Section 2.1.1 that there are tensors

{sα,cris} ⊂ D⊗x ,

where D⊗x is the rational contravariant Dieudonné module of Ax [p∞]. Now let D(Ax [p∞]) be the integral
contravariant Dieudonné module. Then as explained in [Shankar and Zhou 2021, Section 6.3], the tensors
{sα,cris} lie in

D(Ax [p∞])⊗.

It is moreover explained there that there is an isomorphism

D(Ax [p∞])≃ Vp⊗Z(p) Z̆p

taking sα,cris to sα ⊗ 1.

5.1.2. Let us now drop the level from the notation and write SG and SGSp respectively for the base
changes of SK and SK respectively to Z̆p for some choice of OE,v→ Z̆p. Similarly write ShG for the
special fibre of SG and ShGSp for the special fibre of SGSp. Let ShGSp,ord ⊂ ShGSp be the dense open
ordinary locus and define the ordinary locus of ShG by ShG,ord := ShG ∩ShGSp,ord. It is an open subset
which is nonempty if and only if Ev =Qp, by [Lee 2018, Corollary 1.0.2]. We will assume from now on
that Ev =Qp.

Lemma 5.1.3. The ordinary locus ShG,ord is open and dense and equal to the Newton stratum ShG,[b],K pKp

for [b] ∈ B(G, {µ−1
}) the maximal element in the partial order introduced in Section 2.1.2.
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The maximal element [b] is known as the µ-ordinary element, and the maximal Newton stratum is
known as the µ-ordinary locus.

Proof. The µ-ordinary locus and the ordinary locus are equal in this case by the proof of [Lee 2018,
Corollary 4.3.2], as explained in [Lee 2018, Remark 4.3.3]. The density of the µ-ordinary locus is
[Wortmann 2013, Theorem 1.1]; see [KMS 2022, Theorem 3] for a published reference. □

5.1.4. Let x ∈ShG(Fp) be an ordinary point and consider the closed immersions of formal neighbourhoods
(considered as functors on the category NilpZ̆p

of Z̆p-algebras where p is nilpotent)

S
/x
G := Spf ÔSG ,x ↪−→ Spf ÔSGSp,x =: S

/x
GSp. (5.1.2)

Let A be the universal abelian scheme over SGSp and let X = A[p∞] be the associated p-divisible group
over SGSp. Let D̂ef(Ax) be the formal deformation space of the abelian variety Ax , that is, the formal
scheme representing the functor Def(Ax) on the category Art of deformations of the abelian variety Ax .
Similarly let D̂ef(Y ) be the deformation space of the p-divisible group Xx =: Y . There are natural
morphisms

S/x
GSp→ D̂ef(Ax)→ D̂ef(Y ).

The first is a closed immersion by the moduli description of SGSp, and the second morphism is an
isomorphism by [Katz 1981, Theorem 1.2.1]. Now [Shankar and Zhou 2021, Theorem 1.1] (see [Noot
1996] for closely related results) implies that the closed formal subscheme

S
/x
G ⊂ D̂ef(Y )

is a p-divisible formal subgroup. The goal of this section is to compute the Dieudonné module of Sh/x
G .

We do this by giving a new proof that

Sh/x
G ⊂ D̂ef(Y )

is a p-divisible formal subgroup, using the methods of Section 4 and results of [Kim 2019].

5.2. Some covariant Dieudonné theory.

5.2.1. A caveat. In the rest of this subsection we are going to recall some covariant Dieudonné theory for
semiperfect rings following [Scholze and Weinstein 2013]. The reason we do this is that the references
[Caraiani and Scholze 2017; Kim 2019] are written in this language. Moreover we feel that results such
as Lemma 5.2.5 are most naturally stated using the covariant theory.

To avoid potential confusion, we will always write a subscript cov when using covariant Dieudonné
theory. The covariant theory and the contravariant theory will interact only once, in Section 5.3, and we
will warn the reader again there.



On the ordinary Hecke orbit conjecture 879

5.2.2. Recall that an Fp-algebra A is semiperfect if it is the quotient of a perfect Fp-algebra B and that
it is f-semiperfect if it is the quotient of a perfect Fp-algebra by a finitely generated ideal. Let A be
a semiperfect Fp-algebra and let Acris(A) be Fontaine’s ring of crystalline periods (see [Scholze and
Weinstein 2013, Proposition 4.1.3]) with ϕ : Acris(A)→ Acris(A) induced by the absolute Frobenius on A.

Definition 5.2.3. A covariant Dieudonné module over a semiperfect Fp-algebra A is a pair (M, ϕM),
where M is a finite locally free Acris(A)-module and where

ϕM : ϕ
∗M

[ 1
p

]
→ M

[ 1
p

]
is an isomorphism such that

M ⊆ ϕM(M)⊆ 1
p M.

Remark 5.2.4. Usually one instead asks that

pM ⊆ ϕM(M)⊆ M.

The reasons for our conventions is that they agree with the conventions in [Caraiani and Scholze 2017;
Kim 2019].

A p-divisible group G over A has a covariant5 Dieudonné module (Dcov(G ), ϕG ). For Spec A′→Spec A
there is a canonical isomorphism

(Dcov(GA′), ϕGA′
)≃ (Dcov(G ), ϕG )⊗Acris(A) Acris(A′).

Our covariant Dieudonné modules are normalised as in [Caraiani and Scholze 2017]. In particular,
this means that the covariant Dieudonné module of Qp/Zp over A is Acris(A) equipped with the trivial
Frobenius, and the covariant Dieudonné module of µp∞ is Acris(A) equipped with Frobenius given by 1/p.
This also means that the contravariant Dieudonné module is isomorphic to the dual of the covariant
Dieudonné module, see [Caraiani and Scholze 2017, footnote on page 692].

Now let G be a p-divisible group over Fp with universal cover G̃ in the sense of [Scholze and Weinstein
2013, Section 3.1]. If we consider G̃ as a functor on Nilp then it is a filtered colimit of spectra of
f-semiperfect Fp-algebras by [Scholze and Weinstein 2013, Proposition 3.1.3(iii)] and is thus determined
by its restriction to the category of semiperfect Fp-algebras. We can describe it explicitly on the category
of f-semiperfect Fp-algebras as follows:

Lemma 5.2.5. There is a commutative diagram of natural transformation of functors on the category of
f-semiperfect Fp-algebras, which evaluated at an object A gives

G̃ (A)
(
B+cris(A)⊗Q̆p

Dcov(G )
[ 1

p

])ϕ=1
,

≃

where ϕ is given by the diagonal Frobenius and where B+cris(A) := Acris(A)[1/p].

5We write Dcov to distinguish from the contravariant Dieudonné theory that we used in Section 3.
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Proof. Let A be f-semiperfect, then [Scholze and Weinstein 2013, Theorem 4.1.4] tells us that the covariant
Dieudonné module functor over A is fully faithful after inverting p. There is a natural map

TpG (A)= HomA((Qp/Zp)A,GA)→HomAcris,F
(

Acris(A), Acris(A)⊗Z̆p
Dcov(G )

)
≃ (Acris(A)⊗Z̆p

Dcov(G ))
ϕ=1,

where the latter bijection is induced by evaluation at 1. After inverting p we get a natural isomorphism

G̃ (A)= HomA((Qp/Zp)A,GA)
[ 1

p

]
→

(
B+cris(A)⊗Q̆p

Dcov(G )
[ 1

p

])ϕ=1
. □

5.3. The Dieudonné module of the Serre–Tate torus. Let x ∈ShG,ord(Fp) be as above and let Y = Ax [p∞]
be the corresponding p-divisible group. Recall from Section 4 that Y = Y0⊕ Y1 and that both Y0 and Y1

lift uniquely to p-divisible groups Y can
0 and Y can

1 over Z̆p. Let Def(Y ) be the formal deformation space
of Y , considered as a functor on Art together with its extension D̂ef(Y ) to Nilp. We have seen that D̂ef(Y )
has the structure of a p-divisible formal group, and we use H0,1 to denote the corresponding p-divisible
group over Spf Z̆p.

Consider the special fibre H0,1,Fp
. Then by Lemma 4.1.2 its p-adic Tate module is given by Hom(Y0, Y1).

Therefore by [Caraiani and Scholze 2017, Lemmas 4.1.7 and 4.1.8] , we have an isomorphism

Dcov(H0,1,Fp
)[1/p] ≃Hom(Dcov(Y0)[1/p],Dcov(Y1)[1/p])≤0,

where Hom denotes the internal hom in F-isocrystals and where (·)≤0 denotes the slope at most 0 part
of an F-isocrystal.

5.3.1. Choose an isomorphism (here we use contravariant Dieudonné theory!) D(Y )→ Vp ⊗Zp Z̆p

sending sα⊗1 to sx,cris as in Section 5.1.1. This induces an isomorphism from V ∗p ⊗Zp Z̆p to the covariant
Dieudonné module Dcov(Y ) and thus gives us Frobenius invariant tensors {sα,cris} ⊂ Dcov(Y )⊗. Let
b ∈ G(Q̆p)⊂ GL(V ∗)(Q̆p) be the element corresponding to the Frobenius in Dcov(Y )[1/p]. Then there
is an inclusion of F-isocrystals

Hom(Dcov(Y0)[1/p],Dcov(Y1)[1/p])⊂Hom(Dcov(Y )[1/p],Dcov(Y )[1/p]), (5.3.1)

which sends f : Dcov(Y0)[1/p] → Dcov(Y1)[1/p] to

Id+ f : Dcov(Y0)[1/p]⊕Dcov(Y1)[1/p] → Dcov(Y0)[1/p]⊕Dcov(Y1)[1/p].

The map in equation (5.3.1) realises the source as the slope −1 part of the target.

5.3.2. Write gl(V ∗) for the Lie algebra of the algebraic group GL(V ∗)⊗ Q̆p and identify it with the
vector space of endomorphisms of V ∗⊗ Q̆p equipped with the commutator bracket. We can equip gl(V ∗)
with the structure of an F-isocrystal by letting Frobenius act by conjugation by b ∈ GL(V ∗)(Q̆p). Let us
write (gl(V ∗),Ad bσ) for this isocrystal.
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Using the isomorphism V ∗p ⊗Zp Z̆p ≃ Dcov(Y ) as above, we can identify the F-isocrystal on the right
hand side of (5.3.1) with (gl(V ∗),Ad bσ). There is a sub-F-isocrystal

(g,Ad bσ)⊂ (gl(V ∗),Ad bσ),

where g = Lie G ⊗ Q̆p. By Lemma 5.3.3 below, the subspace g ⊂ gl(V ∗) is precisely the subspace of
those endomorphisms g of V ∗⊗ Q̆p that satisfy g∗(sα ⊗ 1)= 0 for all tensors sα.

Lemma 5.3.3. Let C be a field of characteristic zero and let W be a finite dimensional C vector space. Let
H ⊂GL(W ) be a connected reductive group that is the stabiliser of a collection of tensors {tα}α∈A ⊂W⊗.
Then the Lie algebra h⊂ gl(W ) is given by the subspace

{H ∈ gl(W ) : H∗(tα)= 0 for all α ∈ A }.

Proof. The Lie algebra is given by the kernel of the map G(C[ϵ]/(ϵ2))→ G(C). Thus it consists of
matrices of the form 1+ ϵM , where M ∈ gl(W ), such that for α ∈ A we have

(1+ ϵM)∗(tα ⊗ 1)= tα.

But this is equivalent to (ϵM)∗(tα ⊗ 1)= 0 or M∗(tα)= 0. □

Let us write

(g,Ad bσ)−1
⊂Hom(Dcov(Y0)[1/p],Dcov(Y1)[1/p])= Dcov(H0,1,Fp

)[1/p] (5.3.2)

for the slope −1 subspace of the F-isocrystal (g,Ad bσ). Then by [Kim 2019, Lemma 3.1.3] and its
proof, there is an inclusion of p-divisible groups

HG
0,1,Fp
⊂H0,1,Fp

(5.3.3)

inducing (5.3.2) upon taking rational covariant Dieudonné modules. Since both of these p-divisible
groups have étale Serre duals, there is a unique lift HG

0,1 of HG
0,1,Fp

to Z̆p and a unique lift

HG
0,1 ⊂H0,1

of the inclusion (5.3.3).

Lemma 5.3.4. Let A be an f-semiperfect Fp-algebra. Then the inclusion

H̃G
0,1,Fp

(A)⊂ H̃0,1,Fp
(A)=Hom(Y0,A, Y1,A)[1/p]

identifies H̃G
0,1,Fp

(A) with the subspace of those quasi-endomorphisms f : Y0,A 99K Y1,A such that the
induced quasi-endomorphism

g =
( 0 0

f 0
)
: YA 99K YA

induces an endomorphism Dcov(YA)[1/p] → Dcov(YA)[1/p] satisfying g∗(sα,cris⊗ 1)= 0.

Proof. This follows from Lemma 5.2.5 in combination with Lemma 5.3.3. □
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Remark 5.3.5. The statement of Lemma 5.3.4 contradicts [Kim 2019, Lemma 3.1.3], which implies that
the inclusion

H̃G
0,1,Fp

(A)⊂ H̃0,1,Fp
(A)=Hom(Y0,A, Y1,A)[1/p]

identifies H̃G
0,1,Fp

(A) with the subspace of those quasi-endomorphisms f : Y0,A 99K Y1,A such that the
induced quasi-endomorphism

g =
( 0 0

f 0
)
: YA 99K YA

induces an endomorphism Dcov(YA)[1/p] →Dcov(YA)[1/p] satisfying g∗(sα,cris⊗ 1)= sα,cris⊗ 1. This
cannot be correct because H̃G

0,1,Fp
(A) is stable under addition and if g1, g2 both satisfy g∗(sα,cris⊗ 1)=

sα,cris⊗ 1 then their sum g1+ g2 does not.

The following lemma and its corollary essentially follow from [Kim 2019, Proposition 3.2.4]. However
the construction there is incorrect because of the error in [Kim 2019, Lemma 3.1.3] pointed out above.
Once the subgroup in the statement of Lemma 5.3.6 has been shown to exist with the properties proved
in Corollary 5.3.7, the rest of the arguments in [Kim 2019] go through without further changes.

Lemma 5.3.6. There is a closed subgroup

AutG(Ỹ )⊂ Aut(Ỹ )

such that on A-points for f-semiperfect Fp-algebras A, it is the subgroup of those quasi-isogenies g :
YA 99K YA that induce isomorphisms g : Dcov(YA)[1/p] → Dcov(YA)[1/p] satisfying

g∗(sα,cris⊗ 1)= sα,cris⊗ 1.

We will call such quasi-isogenies tensor-preserving quasi-isogenies.

Proof. First of all by [Caraiani and Scholze 2017, Lemma 4.2.10] the functor Aut(Ỹ ) satisfies

Aut(Ỹ )(R)= Aut(Ỹ )(R/p),

for all R ∈Nilp. Thus we can define a closed subfunctor of Aut(Ỹ ) by specifying its values on Fp-algebras.
The matrix description of Aut(Ỹ ) in Section 4.2 gives us a semidirect product decomposition (see

[Caraiani and Scholze 2017, Proposition 4.2.11, Remark 4.2.12])

Aut(Ỹ )Fp
:=Hom(Y0, Y1)[1/p]⋊

(
Aut(Ỹ0)Fp

×Aut(Ỹ1)Fp

)
.

Here we are using the map

Hom(Y0, Y1)[1/p] → Aut(Ỹ )Fp
, f 7→

( 1 0
f 1

)
to realise Hom(Y0, Y1)[1/p] as the subgroup of lower triangular automorphisms of Ỹ . The condition that( 1 0

f 1
)
= 1+ f satisfies (1+ f )∗(sα,cris⊗1)= sα,cris⊗1 is equivalent to the condition that f ∗(sα,cris⊗1)= 0.

Thus we see that the intersection Hom(Y0, Y1)[1/p] with AutG(Ỹ ) is given by

H̃G
0,1,Fp
⊂ H̃0,1,Fp

=Hom(Y0, Y1)[1/p].
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By Lemma 5.3.4, this is representable by a closed subgroup.

We can identify the group (Aut(Ỹ1)Fp
×Aut(Ỹ0)Fp

) with the locally profinite group scheme associated
to the locally profinite group Aut(Ỹ )(Fp). Using Dieudonné theory, we can identify this locally profinite
group with the σ -centraliser of b in GL(V ∗)(Q̆p), where we recall that we have fixed an isomorphism
V ∗p ⊗Zp Z̆p ≃Dcov(Y ) giving rise to b ∈ G(Q̆p). The subgroup of tensor-preserving automorphisms of Ỹ
over Fp can be identified with Jb(Qp), the σ -centraliser of b ∈ G(Q̆p), which is a closed subgroup.

Note that Jb(Qp)⊂G(Q̆p) stabilises (g,Ad bσ)−1 because it acts on g via automorphisms that preserve
the slope decomposition. Using Lemma 5.3.4 we see that the closed subgroup

H̃G
0,1,Fp

⋊ Jb(Qp)⊂ Aut(Ỹ )Fp
,

has the required properties over Fp, and so we are done. □

Since the R-points of H̃G
0,1 and Jb(Qp) both only depend on R/p, we see that

H̃G
0,1 ⋊ Jb(Qp)= AutG(Ỹ )

describes the unique lift to Z̆p. This identifies H̃G
0,1 with the neutral component AutG(Ỹ )◦ of AutG(Ỹ ).

Corollary 5.3.7. The identity component

H̃G
0,1,Fp
= AutG(Ỹ )◦ ⊂ AutG(Ỹ )

is isomorphic to Spf S where S is the p-adic completion of Z̆p[[x
1/p∞

1 , . . . , x1/p∞
d ]] for some d.

Proof. This is true for H̃G
0,1,Fp

because it is the universal cover of a p-divisible group, see [Scholze and
Weinstein 2013, Corollary 3.1.5, Section 6.4]. □

5.4. Serre–Tate coordinates for Hodge type Shimura varieties. Recall that x ∈ ShG(Fp) is an ordinary
point with associated element b = bx ∈ G(Q̆p). Recall also from Section 2.1.1 that we have a G(Qp)

conjugacy class of cocharacters {µ} coming from the Shimura datum X and the fixed place v of E .

Lemma 5.4.1. The conjugacy class of fractional cocharacters {ν[b]} defined by [b] is equal to {µ−1
}.

Proof. The ordinary locus is equal to the µ-ordinary locus by Lemma 5.1.3. Therefore we have that
{ν[b]} = {µ}, where {µ} is the Galois-average of {µ−1

}, see [Shankar and Zhou 2021, Section 2.1]. But
since GQp is unramified and the local reflex field Ev is equal to Qp, there is a cocharacter µ defined over
Qp inducing the conjugacy class of cocharacters {µ}. It follows that {µ} = {µ−1

}. □

Let {λ} be a conjugacy class of (fractional) cocharacters of a connected reductive group H over an
algebraically closed field C . Let T be a maximal torus, let λ be a representative of {λ} factoring through
T and let B ⊃ T be a Borel. Let ρ ∈ X∗(T ) be the half sum of the positive roots with respect to B. Then
the pairing ⟨2ρ, λ⟩ does not depend on the choice of T, B or λ, and we denote it by ⟨2ρ, {λ}⟩.

Corollary 5.4.2. The p-divisible formal group HG
0,1,Fp

has dimension ⟨2ρ, {µ}⟩
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Proof. The dimension of HG
0,1,Fp

is equal to ⟨2ρ, ν[b]⟩ by [Kim 2019, Proposition 3.1.4], which is equal to
⟨2ρ, {µ−1

}⟩ = ⟨2ρ, {µ}⟩ by Lemma 5.4.1. □

Proposition 5.4.3. The closed formal subscheme

S
/x
G ↪−→ S/x

GSp ↪−→ D̂ef(Y )

introduced in (5.1.2), is a p-divisible formal subgroup. The induced inclusion of p-divisible groups

S
/x
G [p

∞
] ⊂ D̂ef(Y )[p∞] =H0,1

induces the inclusion

(g,Ad bσ)−1
⊂Hom(Dcov(Y0)[1/p],Dcov(Y1)[1/p])

from (5.3.2) on rational covariant Dieudonné modules of their special fibres.

Proof. By [Kim 2019, Theorem 4.3.1], the closed formal subscheme S
/x
G ⊂ D̂ef(Y ) is stable under the

action of
AutG(Ỹ )◦ ⊂ Aut(Ỹ )◦.

We can identify these groups with
H̃G

0,1 ⊂ H̃0,1 (5.4.1)

By Proposition 4.2.5, the action of H̃0,1 on D̂ef(Y ) factors through the natural action of H0,1 on D̂ef(Y )
by left translation, via the natural quotient map

H̃0,1→H0,1.

The inclusion HG
0,1 ⊂H0,1 induces an inclusion TpHG

0,1 ⊂ TpH0,1 which induces (5.4.1) after inverting p.
This implies that the action of H̃G

0,1 on S
/x
G factors through an action of HG

0,1 via the natural quotient map

H̃G
0,1→HG

0,1.

Now consider the closed point {x} ∈ Sh/x
G . Then the associated orbit map gives a closed immersion

H0,1,Fp
↪−→ Def(Y )Fp

.

This means that we similarly get a closed immersion

HG
0,1,Fp
⊂ Sh/x

G .

By [Kim 2019, Proposition 3.1.4], the formal scheme Def(Y )G,Fp
has dimension ⟨2ρ, {ν[b]}⟩, which is

equal to ⟨2ρ, {µ}⟩ by Lemma 5.4.1, which in turn is equal to the dimension of Sh/x
G . It follows that the

orbit map induces an isomorphism
HG

0,1,Fp
→ Sh/x

G

and that Sh/x
G is a formal subgroup of Def(Y )Fp

satisfying the conclusions of the proposition. It remains to
show that S

/x
G ⊂Def(Y ) is a formal subgroup, which follows from [Shankar and Zhou 2021, Theorem 1.1].

□
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5.4.4. The action of automorphism groups. Let the notation be as in Section 5. Recall that we have fixed
an isomorphism Dcov(Y ) ≃ V ∗p ⊗ Z̆p sending sα ⊗ 1 to sα,cris. This gives us an element b ∈ G(Q̆p) ⊂

GL(V ∗)(Q̆p) corresponding to the Frobenius in Dcov(Y )[1/p].
Recall from Section 4 that there is an action of Aut(Ỹ ) on RZY . Recall from the discussion before

Corollary 4.2.3, that Aut(Y )(Fp) ⊂ Aut(Ỹ ) preserves the Fp-point y ∈ RZY (Fp) corresponding to the
identity map of Y , and that this induces an action of the profinite group Aut(Y )(Fp) on Def(Y ). This
action is described in Corollary 4.2.3.

5.4.5. Recall that there are closed immersions of topological groups

Jb(Qp) G(Q̆p)

GL(V ∗)b(Qp) GL(V ∗)(Q̆p)

where GL(V ∗)b(Qp)= Aut(Ỹ )(Fp) is the σ -centraliser of b in GL(V ∗)(Q̆p). Let us write Up ⊂ Jb(Qp)

for the compact open subgroup given by the intersection

AutG(Ỹ )(Fp)∩Aut(Y )(Fp).

Then Up acts on H̃G
0,1 ⊂ Hom(Y0, Y1)[1/p] and preserves the action of TpHG

0,1, and thus acts on the
quotient H0,1 ≃S

/x
G . By Proposition 5.4.3 and the proof of Lemma 5.3.6, the induced action on rational

Dieudonné modules can be identified with the natural action of Up ⊂ Jb(Qp) on

(g,Ad bσ)−1
⊂ (g,Ad bσ).

In order to apply the rigidity result of Chai [2008] we need to understand this action. We will do this in
more generality in the next section.

5.5. Strongly nontrivial actions. Let G be a connected reductive group over Qp. Let b ∈ G(Q̆p) be
an element and consider the F-isocrystal (g,Ad bσ), where g = Lie G ⊗ Q̆p equipped with its action
of Jb(Qp). If we replace b by a σ -conjugate b′, then Jb(Qp) and Jb′(Qp) are conjugate in G(Q̆p), and
there is an isomorphism of isocrystals (g,Ad bσ)≃ (g,Ad b′σ).

Let λ ∈Q and let Nλ ⊂ (g,Ad bσ) be the largest sub-F-isocrystal of slope λ. Then because Jb(Qp)

acts on (g,Ad bσ) via F-isocrystal automorphisms, it preserves the subspace Nλ. Let us also denote by b
the image of b in GL(g), then there is a homomorphism of algebraic groups

Jb→ GL(g)b,

where GL(g)b denotes the σ -centraliser of b in GL(g). There is a parabolic subgroup

P(λ)⊂ GL(g)

consisting of automorphisms of the Q̆p-vector space g that preserve the slope filtration on the F-isocrystal
(g,Ad bσ), and after potentially replacing b by a σ -conjugate, the image of b lands in P(λ). There is
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thus a group homomorphism
Jb→ P(λ)b,

where P(λ)b denotes the σ -centraliser of b in P(λ). Since Nλ is a graded quotient of the slope filtration
of the F-isocrystal (g,Ad bσ), there is an induced quotient map P(λ)→ GL(Nλ) and this induces a
group homomorphism

Jb→ GL(Nλ)b,

where GL(Nλ)b denotes the σ -centraliser of b in GL(Nλ). Let E be the Qp-algebra of endomorphisms
of the F-isocrystal Nλ and let E× be the functor on Qp-algebras given by R 7→ (R⊗ E)×. Then there is
a natural isomorphism E× ≃ GL(Nλ)b.

Let GL(E) be the general linear group of E considered as a Qp-vector space and let E×→GL(E) be
the natural map corresponding to the action of E on itself by left translation. Consider E as a Qp-linear
representation of Jb via Jb→ E×, then the goal of this section is to prove the following result:

Proposition 5.5.1. Let T ⊂ Jb be a maximal torus. If λ ̸= 0, then the trivial representation of T does not
occur in the representation of T given by E.

Proof of Proposition 5.5.1. After replacing b by a σ -conjugate we can arrange for it to satisfy (see
[Kottwitz 1985, Section 4])

bσ(b) · · · σ r−1(b)= (rνb)(p)

for some r . Here νb is the Newton cocharacter of b, which is defined over Qpr . Let Mνb ⊂G⊗Q̆p denote
the centraliser of the cocharacter νb. By [Kim 2019, Proposition 2.2.6], there is a unique isomorphism

Jb⊗ Q̆p→ Mνb

such the composition Jb(Qp)⊂ Jb(Q̆p)→ Mνb(Q̆p)⊂ G(Q̆p) is the defining inclusion of Jb(Qp) as the
σ -centraliser of b in G(Q̆p).

After tensoring up to Q̆p, there is a commutative diagram, where L reg is the left regular representation
of GL(Nλ) on GL(End(Nλ)),

GL(E
Q̆p
) GL(End(Nλ))

Jb,Q̆p
E×

Q̆p
GL(Nλ)

Mνb P(λ)

≃

≃

≃

Lreg

If we show that the trivial representation of T⊗Q̆p does not occur in E⊗Q̆p, then it follows that the trivial
representation of T does not occur in E . The representation W =End(Nλ) of Jb,Q̆p

defined by composition
with the left regular representation is a direct sum of copies of the representation Nλ. Therefore it suffices
to show that the representation Nλ of T ⊗ Q̆p does not contain the trivial representation.
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We note that T ⊗ Q̆p =: T ′ is a maximal torus of Mνb acting on the associated graded of the slope
filtration of the F-isocrystal (g,Ad bσ). Since νb is a central cocharacter of Mνb by definition, we see
that (rνb)(p) ∈ T ′(Q̆p). To determine the slope decomposition of the F-isocrystal (g,Ad bσ), it suffices
to determine the slope decomposition of the Fr-isocrystal

(g, (Ad bσ)r )

for some positive integer r .
Let C be an algebraic closure of Q̆p and consider the action of T ′C on gC via the adjoint action of GC .

Then we have a decomposition

gC ≃ t′C ⊕

(⊕
α∈8

Uα

)
,

where 8⊂ X∗(T ′C) consists of the simple roots of TC . There is a similar decomposition

g≃ t′⊕

( ⊕
α0∈80

Uα0

)
, (5.5.1)

where 80 ∈ X∗(T ′C)I is the image of 8 and where I = Gal(C/Q̆p) is the inertia group.
Now we choose an integer r with the following properties: the isomorphism Jb⊗Q̆p→ Mνb is defined

over Qpr , the equation
bσ(b) · · · σ r−1(b)= (rνb)(p)

is satisfied, and the decomposition (5.5.1) is defined over Qpr . Then each Uα0 is stable under the action
of σ r and (Ad bσ)r acts on it by (rνb)(p)σ r . The operator Ad bσ moreover acts trivially on t′, and thus
for nonzero λ we have that

Nλ ⊂
⊕
α0

Uα0 .

After basechanging to C , we see that
Nλ ⊂

⊕
α

Uα.

Thus T ′C acts on Nλ via a subset of the nontrivial characters given by the simple roots 8⊂ X∗(T ′C), and
therefore the trivial representation of T ′ does not occur in Nλ and thus it does not occur in E . □

6. Proof of the main theorems

There are two final ingredients that are introduced in this section. In Section 6.1, we prove the local
stabiliser principle of Chai and Oort [2009, Theorem 9.5], which shows that the formal completion of
the Zariski closure of a prime-to-p Hecke orbit is stable under the action of a large p-adic Lie group.
In Section 6.2.2 we give a summary of results of [Chai 2003], which relates Serre–Tate coordinates of
families of ordinary abelian varieties to the p-adic monodromy groups of these abelian varieties. Then
in Section 6.3 we put everything together to prove Theorem I. In Section 6.4 we prove Corollary 6.4.1,
which is a generalisation of Theorem I to Shimura varieties of abelian type.
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We will use the notation introduced in Section 2 and Section 5.1 and moreover we will keep track
of the level again. Moreover, all our schemes will now implicitly live over Fp. Let x ∈ ShG,K pKp(Fp)

and let x̃ be a lift of x to ShG,Kp(Fp). Then the prime-to-p Hecke orbit of x is defined to be the image
HK p(x)⊂ ShG,K pKp(Fp) of the orbit G(Ap

f ) · x̃ ⊂ ShG,Kp(Fp); it does not depend on the choice of lift x̃ .
For the rest of this section we fix x as above and we let Z ⊂ ShG,ord,K pKp be the closure of HK p(x); note
that Z is again G(Ap

f )-stable by Lemma 3.1.2.

6.1. Rigidity of Zariski closures of Hecke orbits. Let z ∈ Z(Fp) be a smooth point of Z and let Iz(Q)

be the group of self-quasi-isogenies of z respecting the tensors, which was introduced in Section 2.2.
Let Y = Az[p∞] and fix a choice of isomorphism Dcov(Y ) ≃ V ∗p ⊗ Z̆p sending sα ⊗ 1 to sα,cris as in
Section 5.3. This gives rise to an element bz = b ∈ G(Q̆p) and we let Up ⊂ Jb(Qp) be the compact open
subgroup introduced in Section 5.4.4. Let Iz(Z(p)) be the intersection of Iz(Q) with Up inside Jb(Qp).
We consider the closed immersion of formal neighbourhoods (where the notation is as in (5.1.2))

Z /z ⊂ Sh/zG,K pKp
⊂ Sh/zGSp,KpKp

.

The goal of this section is to prove the following result.

Proposition 6.1.1 (local stabiliser principle). The closed subscheme Z /z ⊂ Sh/zG,K pKp
is stable under the

action of Iz(Z(p)) via Iz(Z(p))→Up.

6.1.2. There is a G(Ap
f )-equivariant closed immersion (using the fact that we have a closed immersion at

finite level by the main theorem of [Xu 2020]) ShG,Kp → ShGV ,Kp , where G(Ap
f ) acts on the right hand

side via the inclusion G(Ap
f )→ GV (A

p
f ). The space ShGV ,Kp is a moduli space of (weakly) polarised

abelian varieties (A, λ) up to prime-to-p isogeny, equipped with an isomorphism Vp A → V ⊗ A
p
f

compatible with the polarisation up to a scalar in A
p,×
f .

Let z̃ be a lift of z to ShG,Kp(Fp) as above, which defines an inclusion

Iz(Z(p))⊂ Iz(Q)⊂ G(Ap
f ).

The stabiliser in GV (A
p
f ) of z̃ ∈ ShGV ,Kp is given by Endλ(Az)

×, which is the group of automorphisms of
the abelian variety up to prime-to-p isogeny A that take λ to a Z×(p) multiple of λ.

Lemma 6.1.3. The stabiliser inside G(Ap
f ) of the point z̃ is equal to Iz(Z(p)).

Proof. By [KMS 2022, Lemma 2.1.4], the stabiliser is contained in Iz(Z(p)). The stabiliser in GV (A
p
f ) of

the image of z̃ in ShGV ,Kp is equal to Endλ(Az)
× and thus contains Iz(Z(p)). The result follows. □

In order to prove Proposition 6.1.1, we first prove it for ShGSp,KpKp . See [Chai and Oort 2009,
Theorem 9.5] for closely related results and arguments.

Let Sh/z̃GV ,Kp
be the formal completion of ShGV ,Kp , considered as a formal algebraic space as in [Stacks

2020, Section 0AIX], and restrict its functor of points to Artin local Fp-algebras R with residue field
isomorphic to Fp. Then Sh/z̃GV ,Kp

(R) is the set of isomorphism classes of (weakly) polarised abelian
varieties (A, λ) over R up to prime-to-p isogeny, equipped with an isomorphism ϵ : Vp A→ V ⊗A

p
f
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compatible with the polarisation up to a scalar in A
p,×
f , such that after basechanging to Fp we recover the

point given by the image of z̃.
This means that there is a (necessarily unique) isomorphism β : AFp

→ Az making the following
diagram commute:

Vp AFp
Vp Az

V ⊗A
p
f V ⊗A

p
f

β

ϵ ϵz̃

The quadruple (A, λ, β, ϵ) is uniquely determined by (A, λ, β) because (pro-)étale sheaves on Artin
local rings are determined by their restriction to the residue field. In particular, for all R ∈ Art the natural
forgetful map

Sh/z̃GV ,Kp
(R)→ Sh/zGSp,KpKp

(R)

is an isomorphism. This induces an action of Endλ(Az)
× on Sh/zGSp,KpKp

that we will now identify.

6.1.4. Recall that there is an inclusion Endλ(Az)
×
⊂ GV (A

p
f ) determined by z̃ or rather ϵz̃ . This means

that an automorphism f of Az acts on V ⊗A
p
f in a way that makes the following diagram commute:

Vp Az Vp Az

V ⊗A
p
f V ⊗A

p
f

f

ϵz̃ ϵz̃

f

Since Endλ(Az)
× stabilises z̃, it acts on Sh/z̃GV ,Kp

. This action can be described as follows: An automor-
phism f sends a triple (A, λ, ϵ) to (A, λ, f ◦ ϵ). It is straightforward to check that the unique upgrade
(A, λ, f ◦ ϵ) to a quadruple (A, λ, β ′, f ◦ ϵ) is realised by taking β ′ = f ◦ β. Therefore the induced
action of Endλ(Az)

× on Sh/zGSp,KpKp
is given by (A, λ, β) 7→ (A, λ, f ◦β).

6.1.5. Because deformations of abelian varieties are uniquely determined by deformations of their
p-divisible groups, we can also identify

Sh/z̃GV ,Kp
(R)

with the space of triples (X, λ, β) where (X, λ) is a polarised p-divisible group and β is an isomorphism
(X, λ)Fp

→ (Az[p∞], λz). The action of Endλ(Az)
× is then given by postcomposing β with f . There is

a similar description of at finite level, and it follows that the natural map

Sh/zGSp,KpKp
⊂ Def(Az[p∞])

is Endλ(Az)
×-equivariant, where Endλ(Az)

× acts on the right hand side via the inclusion

Endλ(Az)
×
⊂ End(Az[p∞])×,
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followed by the natural action of End(Az[p∞])× on Def(Az[p∞)].

Proof of Proposition 6.1.1. Let z̃ be a lift of z to ShG,Kp(Fp) as above, which defines an inclusion

Iz(Z(p))⊂ Iz(Q)⊂ G(Ap
f ).

It follows from Lemma 6.1.3 that Iz(Z(p)) ⊂ G(Ap
f ) is the stabiliser of the point z̃ under the action of

G(Ap
f ). Let Z̃ be the inverse image of Z in ShG,Kp , it is stable under the action of G(Ap

f ) by Lemma 3.1.2.
There is a commutative diagram

Z̃ ShG,Kp ShGV ,Kp

Z ShG,K pKp ShGSp,KpKp

where the top right horizontal map is G(Ap
f )-equivariant via G(Ap

f )→ GV (A
p
f ).

Let Z̃ /z̃ be the formal completion of Z̃ at the closed point corresponding to Z̃ , considered as a formal
algebraic space as in [Stacks 2020, Section 0AIX]. This is per definition the subfunctor of Z̃ consisting
of those morphisms Spec T → Z̃ that factor through z̃ on the level of topological spaces. Since Iz(Z(p))

stabilises z̃, it acts on Z̃ /z̃ .
By [Stacks 2020, Lemma 0CUF], there is a homeomorphism |Z̃ | ≃ lim

←−−Up |ZUp | and thus we get an
isomorphism

Z̃ /z̃ ≃ lim
←−−

Up⊂G(A p
f )

Z /zUp ,

where z ∈ ZUp(Fp) is the image of z̃ under Z̃→ ZUp . The formal algebraic space Z /zUp can be identified
with Spf ÔZUp ,z , compatible with changing Up. Since the transition morphisms are all finite étale, they
induce isomorphisms of complete local rings. Therefore, all the transition maps in the inverse system
lim
←−−Up⊂G(A p

f )
Z /zUp are isomorphism. We conclude that

Z̃ /z̃ ≃ Z /zUp ,

and so there is an action of Iz(Z(p)) on Z /zUp . In the same way we can prove that there is an action of
Iz(Z(p)) on Sh/zG,K pKp

. It remains for us to identify this action with the inclusion Iz(Z(p))→Up followed
by the natural action of Up on Sh/zG,K pKp

.
Let z̃ be the image of z̃ in ShGV ,Kp(Fp) and let z ∈ ShGSp,KpKp(Fp) be its image. Then the stabiliser of

z̃ can be identified with the group

Endλ(Az)
×
⊂ GV (A

p
f )

as before. The discussion above implies that we have an action of Endλ(Az)
× on Sh/zGSp,KpKp

such that
the closed immersion

Sh/zG,K pKp
⊂ Sh/zGSp,KpKp
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is Iz(Z(p))-equivariant for the action of Iz(Z(p)) on the right hand side via the map Iz(Z(p))→Endλ(Az)
×.

But we have seen in Section 6.1.5 that the action of Endλ(Az)
× on Sh/zGSp,KpKp

described above agrees
with the action of Endλ(Az)

× via the inclusion Endλ(Az)
×
→ Autλ(Az[p∞])(Fp).

Note that the following diagram commutes by construction:

Iz(Z(p)) Endλ(Az)
×

Up Autλ(Az[p∞])(Fp)

Thus we see that Z /zK p is stable under the action of Iz(Z(p)) on Sh/x
G,K pKp

given by the inclusion Iz(Z(p))→Up

followed by the natural action of Up on Sh/x
G,K pKp

. □

Corollary 6.1.6. Assume that z ∈ ShG,K pKp(Fp) is an ordinary point. Then Z /z is a formal subtorus of
Sh/zG,K pKp

.

Proof. The compact open subgroup Up ⊂ Jb(Qp) acts on Sh/zG,K pKp
as explained in Section 5.4.4. By

Proposition 6.1.1 the closed subspace Z /z ⊂ Sh/zG,K pKp
is stable under the action of Iz(Z(p)) ⊂ Up and

hence of its closure in Up. The algebraic group IQp ⊂ Jb has the same rank as Jb by [Kisin 2017,
Corollary 2.1.7]. Let T ⊂ I be a maximal torus, then [Platonov and Rapinchuk 1994, Theorem 7.9] tells
us that the topological closure of T (Q) in T (Qp) has finite index in T (Qp). It follows from this that the
closure of Iz(Z(p)) in Up contains a compact open subgroup of a maximal torus T of Jb(Qp).

Proposition 5.5.1 then tells us that the assumptions of [Chai 2008, Theorem 4.3] are satisfied. This
theorem implies that Z /z is a p-divisible formal subgroup of Sh/zG,K pKp

, in other words, it is a formal
subtorus. □

6.2. Monodromy of linear subspaces. The goal of this section is to prove the following result, which is
a consequence of results of [Chai 2003]. Recall that the universal abelian variety A over ShGSp,ord,KpKp

gives rise to an F-isocrystal M, see Section 3.3. Let W ⊂ ShGSp,ord,KpKp be a connected smooth closed
subscheme, then we say that W is linear at a smooth point z ∈W (Fp) if

W /z
⊂ Sh/zGSp,KpKp

is a p-divisible formal subgroup. Let UW be the unipotent radical of the monodromy group Mon(W,M, z).

Proposition 6.2.1 (Chai). Let z ∈W (Fp) be a smooth point such that W is linear at z. Then we have the
inequality

dim Wz ≥ Dim UW ,

where Dim Wz is the dimension of the local ring OW,z .

Chai proves the stronger statement that this inequality is actually an equality, but we will not need this
stronger statement to prove Theorem I.
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Our proof of Proposition 6.2.1 is a straightforward application of the results in [Chai 2003, Sections 2–4].
Since [Chai 2003] is an unpublished preprint from 2003, the referee has suggested we include another
reference. Thus we give a second proof of Proposition 6.2.1 based on results of [D’Addezio and van
Hoften 2022].

6.2.2. For our first proof of Proposition 6.2.1, we need to give a brief summary of [Chai 2003, Sections 2–4].
Consider the closed immersion.

W /z
→ Sh/zGSp,KpKp

↪−→ D̂ef(Y )Fp
.

Write R = ÔW,z and write M for the finite free Zp-module TpY0(Fp)⊗Zp TpY∨1 (Fp). Then the morphism
W /z
→ D̂ef(Y ) corresponds to an element of

D̂ef(Y )(R)= Hom(M, Ĝm(R))= Hom(M, 1+mR)

where the first equality is [Katz 1981, Theorem 2.1]. Thus we get a homomorphism f : M→ 1+mR and
we let N∨z be its kernel. By [Chai 2003, Proposition 4.2.1, Remark 2.5.1], the Zp-module N∨z is finite
free and the quotient M/N∨z is torsion-free. Thus the map

W /z
→Hom(M, Ĝm)

factors through the subtorus
Hom(M/N∨z , Ĝm)⊂Hom(M, Ĝm),

which we can also write as Nz ⊗Zp Ĝm ⊂ M∗⊗Zp Ĝm . Here the ∗ denotes taking Zp-linear dual and the
morphism Nz→ M∗ is the Zp-linear dual of the quotient

M→ M/N∨z .

The following lemma has the same statement as [Chai 2003, Remark 3.14].

Lemma 6.2.3. The subgroup Nz ⊗Zp Ĝm is the smallest formal subtorus of D̂ef(Y )Fp
through which the

map from Spf R factors.

Proof. A subtorus corresponds to a free Zp-submodule N ⊂ Nz such that the quotient Nz/N is torsion
free. Write N∨ for the kernel of the map

M→ M/N∨z = N ∗z → N ∗.

If
Spf R→ Nz ⊗Zp Ĝm

factors through N ⊗Zp Ĝm , then it factors through

Hom(M/N∨, Ĝm)⊂Hom(M, Ĝm).

Since the kernel of the map M → Ĝm(R) is given by N∨z , it follows that N∨z ⊂ N∨ and therefore
M/N∨ = M/N∨z and thus Nz = N . □
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Proof of Proposition 6.2.1. We specialise the discussion of Section 6.2.2 to the situation of Proposition 6.2.1.
In particular, since W /z is assumed to be a formal subtorus, we are in the situation that

W /z
= Nz ⊗Zp Ĝm ⊂ D̂ef(Y )Fp

.

Chai [2003, Section 4, Theorem 4.4] proves that the dimension of UW is equal to the rank of Nz . Thus
the rank of Nz is certainly bounded from below by the dimension of UW . But the rank of Nz is also
the dimension of the formal scheme W /z which equals the Krull dimension of ÔW,z and also the Krull
dimension of OW,z , which proves the theorem. □

Second proof of Proposition 6.2.1. By [D’Addezio and van Hoften 2022, Theorem II], the unipotent
radical UW of Mon(W,M, z) is isomorphic to the monodromy group

Mon(W /z,M, z).

This monodromy group is defined as in Section 3.3 using the Tannakian category of isocrystals over the
formal scheme W /z or equivalently the Tannakian category of isocrystals over the scheme Spec ÔW,z , see
[D’Addezio and van Hoften 2022, Notation 2.2.5]). Thus it suffices to show that the dimension of W /z is
bounded from below by the dimension of Mon(W /z, z).

Let Y = Az[p∞] as above and write a+ =:Dcov(Y ) and a= a+[1/p]. Write b+ ⊂ a+ for the covariant
Dieudonné module of the p-divisible group associated to W /z and b= b+[1/p]. Then in the notation of
[D’Addezio and van Hoften 2022, Section 5.5] we have

W /z
= Z(b+).

Now [D’Addezio and van Hoften 2022, Theorem 5.5.3] tells us that there is an inclusion of algebraic
groups over Q̆p,

Mon(W /z,M, z)⊂U (b) := b⊗
Q̆p

Ga.

In particular, the height of the isocrystal b is bounded from below by the dimension of Mon(W /z,M, z).
Since b has slope 1, it follows that the dimension of the p-divisible group associated to b+ is also bounded
from below by the dimension of Mon(W /z,M, z). □

6.3. Monodromy and conclusion. Recall from Section 3.2.2 the maps

B(GQp)→ B(Gad
Qp
)→

n∏
i=1

B(Gi,Qp)

induced by the decomposition Gad
=

∏n
i=1 Gi of (2.2.1). Let [bord] ∈ B(G, {µ−1

}) be the σ -conjugacy
class corresponding to the ordinary locus, and let [bord,i ] be the image of [bord] in B(Gi,Qp).

Lemma 6.3.1. For all i the element [bord,i ] is nonbasic.

Proof. By the axioms of a Shimura datum, the Gi (Qp)-conjugacy class of cocharacters {µ−1
i } induced by

{µ−1
} is nontrivial for all i . By Lemma 5.4.1, we have an equality {µ−1

i } = {ν[bord,i ]} and so the Newton
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cocharacter of [bord,i ] is noncentral for all i . In other words, the σ -conjugacy class [bord,i ] is nonbasic for
all i . □

Proof of Theorem I. Let x ∈ ShG,K pKp(Fp) be an ordinary point and let Z be the Zariski closure (inside
ShG,ord,K pKp ) of its prime-to-p Hecke orbit. Then Z is G(Ap

f )-stable by Lemma 3.1.2 and similarly its
smooth locus Z sm

⊂ Z is G(Ap
f )-stable by Lemma 3.1.1. Let X be the p-divisible group over Z sm of the

universal abelian variety and let M† be the associated overconvergent F-isocrystal, see Section 3.3.
Let z ∈ Z sm(Fp) and let Z◦ ⊂ Z sm be the connected component containing z. By Lemma 6.3.1, the

element [bord] is Q-nonbasic and by Lemma 2.3.2, we know that Hypothesis 2.3.1 is satisfied because Kp

is hyperspecial. Therefore Corollary 3.3.3 tells us that the monodromy group of M† over Z◦ is isomorphic
to Gder

⊗ Q̆p. Corollary 3.3.5 tells us that unipotent radical of the monodromy group of M over Z◦ is
isomorphic to the unipotent radical of the parabolic subgroup Pν[b] ⊂G⊗Q̆p for any choice of ν[b] ∈ {ν[b]}.

By Lemma 5.4.1, this unipotent radical is isomorphic to the unipotent radical of the parabolic subgroup
Pµ⊂G for any choice of representative µ of {µ}. This unipotent radical has dimension equal to ⟨2ρ, {µ}⟩
(this notation was introduced after the statement of Lemma 5.4.1).

Corollary 6.1.6 tells us that Z /z is a formal subtorus. Applying Proposition 6.2.1 we see that the Krull
dimension of OZ ,z is bounded from below by ⟨2ρ, {µ}⟩. Since the Shimura variety ShG,K pKp also has
dimension ⟨2ρ, {µ}⟩, we conclude that

Z /z = Sh/zG,K pKp
.

Because this is true for a dense set of points, it follows that Z is a union of connected components of
ShG,ord,K pKp .

By Lemma 5.1.3, the ordinary locus is dense and thus π0(ShG,ord,K pKp)= π0(ShG,K pKp). Since G(Ap
f )

acts transitively on π0(ShG,Kp), by [Kisin 2010, Lemma 2.2.5] in combination with [Madapusi Pera 2019,
Corollary 4.1.11], it follows that Z = ShG,ord,K pKp . We conclude that the prime-to-p Hecke orbit of x is
dense in ShG,K pKp since ShG,ord,K pKp is dense in ShG,K pKp . □

6.4. Consequences for Shimura varieties of abelian type. Let (G, X) be a Shimura datum of abelian
type with reflex field E , and let (Gad, X ad) be the induced adjoint Shimura datum with reflex field
Ead
⊂ E . Let p be a prime number, let Kp ⊂ G(Qp) be a hyperspecial subgroup and let K p

⊂ G(Ap
f ) be

a sufficiently small compact open subgroup. Let ShG,K pKp be the special fibre of the canonical integral
model of the Shimura variety of level K pKp at a prime v above p of E , constructed by Kisin [2010] (see
[Kim and Madapusi Pera 2016] for the case p = 2).

By [Shen and Zhang 2022, Theorem A], there is an open and dense G(Ap
f )-stable Newton stratum

ShG,K pKp,µ−ord in ShG,K pKp , called the µ-ordinary locus. If (G, X) ⊂ (GV ,HV ) for some symplectic
space V and Ev =Qp, then the µ-ordinary locus is equal to the ordinary locus by Lemma 5.1.3.

Corollary 6.4.1. If Ead
v = Qp, then the prime-to-p Hecke orbit of x ∈ ShG,K pKp,µ−ord(Fp) is dense in

ShG,K pKp .
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Remark 6.4.2. This corollary is more general than Theorem I even for Shimura varieties of Hodge type.
Indeed, there are (many) examples of Shimura data (G, X) of Hodge type and primes p and v such that
Ev ̸=Qp but Ead

v =Qp.

Lemma 6.4.3. Corollary 6.4.1 holds for (G, X) if and only if it holds for (Gad, X ad).

Proof. The image K ad
p in Gad(Qp) is a hyperspecial subgroup. We can choose K p,ad

⊂Gad(A
p
f ) containing

the image of K p such that there is a morphism

ShG,K pKp(G, X)→ ShGad,K p,ad K ad
p
(Gad, X ad)⊗Ead E,

inducing a morphism on geometric special fibres of integral canonical models

ShG,K pKp → ShGad,K p,ad K ad
p
, (6.4.1)

where we are taking the canonical integral model of (Gad, X ad) at the place vad of Ead induced by v. This
morphism induces a G(Ap

f )-equivariant morphism

ShG,Kp → ShGad,K ad
p
,

where G(Ap
f ) acts on the left hand side via the natural map G(Ap

f )→ Gad(A
p
f ). Since the Newton

stratification on Shimura varieties of abelian type can be constructed using the F-crystals with G-structure
of Lovering [2017], which are functorial for morphisms of Shimura data, it follows that there is an induced
map

ShG,K pKp,µ−ord→ ShGad,K p,ad K ad
p ,µ−ord .

Moreover, since the natural map B(G, {µ−1
})→ B(Gad, {µ−1

}) is a bijection as explained in [Kottwitz
1997, Section 6.5], it is in fact true that ShG,K pKp,µ−ord is the inverse image of ShGad,K p,ad K ad

p ,µ−ord

under (6.4.1). By construction of the integral canonical models of Shimura varieties of abelian type,
see [Kisin 2010, Section 3.4.9; 2017, Appendix E.7], the connected components of ShGad,K p,ad K ad

p
are

quotients of connected components of ShG,K pKp by free actions of finite groups. In particular, the map
(6.4.1) is finite étale and thus closed.

Because the map (6.4.1) is closed and takes prime-to-p Hecke orbits to prime-to-p Hecke orbits, it must
takes Zariski closures of prime-to-p Hecke orbits to Zariski closure of prime-to-p Hecke orbits. Thus for
x ∈ ShG,K pKp,µ−ord(Fp) the Zariski closure of its Hecke orbit in ShG,K pKp,µ−ord has the same dimension
as the Zariski closure of its Hecke orbit in ShGad,K p,ad K ad

p ,µ−ord. Moreover in both cases the prime-to-p
Hecke operators act transitively on π0(ShG,K pKp) by [Kisin 2010, Lemma 2.2.5] in combination with
[Madapusi Pera 2019, Corollary 4.1.11].6 Thus prime-to-p Hecke orbits in ShG,K pKp,µ−ord are dense if

6The result [Madapusi Pera 2019, Corollary 4.1.11] states that for Shimura varieties of Hodge type and hyperspecial level,
Hypothesis 3.4.1 holds. Since the canonical integral models of Shimura varieties of abelian type are constructed from the
canonical integral models of Shimura varieties of Hodge type, the statement therefore also holds for canonical integral models of
Shimura varieties of abelian type.
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and only if their images under (6.4.1) are dense. In particular, if the corollary holds for (Gad, X ad), then
it holds for (G, X).

To prove the converse, we note that a point in the Shimura variety for (Gad, X ad) can, by [Kisin 2010,
Lemma 2.2.5] in combination with [Madapusi Pera 2019, Corollary 4.1.11], be moved to a connected
component which is in the image of (6.4.1). Therefore every prime-to-p Hecke orbit can be lifted to the
Shimura variety for (G, X), and we are done. □

Proof of Corollary 6.4.1. By Lemma 6.4.3, we may assume that G is adjoint. Then by the proof of
[Kisin and Pappas 2018, Lemma 4.6.22] we can choose a Shimura datum of Hodge type (G2, X2) and a
morphism of Shimura data (G2, X2)→ (G, X) such that: the group G2,Qp is quasi-split and split over an
unramified extension and the prime v of E splits in the reflex field E2 ⊃ E of (G2, X2). The upshot is
that we can choose a prime w of E2 satisfying E2,w =Qp and thus the µ-ordinary locus in the special
fibre of the canonical integral model for (G2, X2) at this prime is equal to the ordinary locus for a choice
of Hodge embedding (GV ,HV ).

Then Theorem I implies that Corollary 6.4.1 holds for (G2, X2) and Lemma 6.4.3 tells us that it also
holds for (G, X) which concludes the proof. □
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Locally analytic vector bundles
on the Fargues–Fontaine curve

Gal Porat

We develop a version of Sen theory for equivariant vector bundles on the Fargues–Fontaine curve. We
show that every equivariant vector bundle canonically descends to a locally analytic vector bundle. A
comparison with the theory of (ϕ, 0)-modules in the cyclotomic case then recovers the Cherbonnier–
Colmez decompletion theorem. Next, we focus on the subcategory of de Rham locally analytic vector
bundles. Using the p-adic monodromy theorem, we show that each locally analytic vector bundle E has a
canonical differential equation for which the space of solutions has full rank. As a consequence, E and
its sheaf of solutions Sol(E) are in a natural correspondence, which gives a geometric interpretation of a
result of Berger on (ϕ, 0)-modules. In particular, if V is a de Rham Galois representation, its associated
filtered (ϕ, N , GK )-module is realized as the space of global solutions to the differential equation. A key
to our approach is a vanishing result for the higher locally analytic vectors of representations satisfying
the Tate–Sen formalism, which is also of independent interest.
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1. Introduction

The study of p-adic Galois representations has been conditioned to an extent by two dogmas. One is the
analytic dogma; its main idea is to associate to every such representation a (ϕ, 0)-module over the Robba
ring and to study these objects using p-adic analysis. The other dogma is geometric: to every p-adic Galois
representation one associates an equivariant vector bundle over the Fargues–Fontaine curve. The aim of
this article is, roughly speaking, to find a framework where both analysis and geometry can be carried out.
In recent years, much of the theory of p-adic Galois representations has been understood in terms of the
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geometry of the Fargues–Fontaine curve. A notable exception has been the p-adic Langlands program,
where the analytic approach plays a crucial role. Thus we are motivated to reduce this discrepancy by
introducing corresponding objects on the Fargues–Fontaine curve which are also amenable to analytic
methods. These are the locally analytic vector bundles, the main new objects introduced in this article.

We shall now explain this in more detail. Let K be a finite extension of Qp with absolute Galois
group GK . Let Kcyc be the cyclotomic extension of K and write 0 = Gal(Kcyc/K ). For the sake of
simplifying the introduction, we shall focus now on the cyclotomic setting, though as we shall explain
later, the content of this paper will apply to a wider class of Galois extensions K∞/K . We have the
category RepQp

(GK ) of finite dimensional Qp-representations of GK .
On the one hand, RepQp

(GK ) can be studied via p-adic analysis. To do this, one introduces the Robba
ring R, which is the ring of power series over a certain finite extension of Qp in a variable T which
converge in some annuli r ≤ |T | < 1. It has an action of a Frobenius operator ϕ as well as an action
of 0. By work of Cherbonnier–Colmez, Fontaine and Kedlaya, it is known that there is a fully faithful
embedding

RepQp
(GK ) ↪→ {(ϕ, 0)-modules over R},

with the essential image consisting of the semistable slope 0 objects. If D is a (ϕ, 0)-module over R, a
fundamental fact is that the 0-action on D can be differentiated, namely, there is a well defined action of
Lie(0) on D. Since Lie(0) is 1-dimensional, this data is the same as that of a connection ∇ which acts
on functions of T by a multiple of d/dT . It is precisely this structure which allows the introduction of
p-adic analysis into the picture. For example, in the construction of the p-adic Langlands correspondence
for GL2(Qp) given in [Colmez 2010], the use of this analytic structure is ubiquitous.

On the other hand, RepQp
(GK ) can be studied via geometry. The Fargues–Fontaine curve, studied

extensively in [Fargues and Fontaine 2018], is defined as the analytic adic space

X = X (K̂cyc) := (SpaAinf−{p[p♭
] = 0})/(ϕZ, Gal(K/Kcyc))

(see Section 3) and has a natural action of 0. By the work of Fargues and Fontaine, there is a fully faithful
embedding

RepQp
(GK ) ↪→ {0-equivariant vector bundles on X },

again with the essential image consisting of the semistable slope 0 objects. In fact, Fargues and Fontaine
show there is an equivalence

{(ϕ, 0)-modules over R}∼= {0-equivariant vector bundles on X },

compatible with each of the aforementioned embeddings of RepQp
(GK ).

Unfortunately, the action of 0 on an equivariant vector bundle on X cannot be differentiated. This is
already true for the structure sheaf OX . Here is a simplified model of the situation which illustrates why
there is no action of Lie(0) on OX . The functions on an open subset of X can roughly be thought of
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as power series in T 1/p∞ satisfying certain convergence conditions. When we try to apply the operator
d/dT to such a power series, the result will often not converge since the derivative

d(T 1/pn
)/dT = (1/pn)T 1/pn

−1

grows exponentially larger p-adically as n goes to infinity. Nevertheless, there is a way to single out the
sections for which the action of Lie(0) does not explode. This is achieved by considering only those sec-
tions on which the action of 0 is regular enough. In this toy model picture, this will amount to considering
only the power series where the coefficient of the exponent of T k/pn

will decay proportionally to pn .
More canonically and more generally, these elements for which differentiation is possible are precisely

the locally analytic elements. Given an equivariant vector bundle Ẽ on X , there is a subsheaf of locally
analytic sections Ẽ la

⊂ Ẽ . This sheaf is a module over Ola
X which is preserved under the 0-action, and,

crucially, Lie(0) acts on Ẽ la. We are thus naturally led to the definition of a locally analytic vector
bundle on X : by this we shall mean a locally free Ola

X -module together with a 0-action. The point is that
locally analytic vector bundles capture both analytic and geometric information, both of which has proven
important for the study of RepQp

(GK ).
Our first main result is saying that there is no loss of information in this process: each equivariant

vector bundle canonically descends to a locally analytic vector bundle.

Theorem A. The functor Ẽ 7→ Ẽ la gives rise to an equivalence of categories from the category of 0-
equivariant vector bundles on X to the category of locally analytic vector bundles on X . Its inverse is
given by the functor E 7→OX ⊗Ola

X
E .

This theorem fits naturally into the framework of Sen theory, as we shall now explain. Let V ∈
RepQp

(GK ). Then according to Sen’s theory, proven in [Sen 1980], there is a canonical isomorphism

(V ⊗Qp Cp)
Gal(K/Kcyc) ∼= K̂cyc⊗Kcyc DSen(V ),

where DSen(V ) is the Kcyc-subspace of elements with finite 0-orbit in V ⊗Qp Cp. Later, Fontaine [2004,
§3.4] proved an analogue of this theorem for B+dR: he showed there is an isomorphism

(V ⊗Qp B+dR)Gal(K/Kcyc) ∼= (B+dR)Gal(K/Kcyc)⊗Kcyc[[t]] D+dif(V ),

where D+dif(V ) is a canonical Kcyc[[t]]-submodule of V ⊗Qp B+dR.
In fact, both of these results are implied by Theorem A by specializing at the “point at infinity” x∞ ∈X .

Indeed, when Ẽ is the equivariant vector bundle associated to V ∈ RepQp
(GK ) and E = Ẽ la, specializing

the isomorphism Ẽ ∼=OX ⊗Ola
X
E at the fiber of x∞ gives rise to an isomorphism

Ẽk(x∞)
∼=OX ,k(x∞)⊗Ola

X ,k(x∞)
Ek(x∞),

which is none other than Sen’s theorem. Similarly, there is an isomorphism of the completed stalks at x∞,

Ẽ∧,+

x∞
∼=O∧,+

X ,x∞ ⊗Ola,∧,+
X ,x∞

E∧,+
x∞ ,
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which recovers Fontaine’s theorem. In this way, Theorem A is a sheaf theoretic version of Sen theory on
X which specializes at x∞ to classical Sen theory.

In the interest of applications, we give a proof of this equivalence not just for the cyclotomic extension,
but more generally for any p-adic Lie group 0 =Gal(K∞/K ), where K∞ is an infinitely ramified Galois
extension of K which contains an unramified twist of the cyclotomic extension. Notably, this condition
holds when K∞ is the extension generated by the torsion points of a formal group.

As we shall explain in the article, these ideas are closely related to the decompletion of (ϕ, 0)-modules,
especially in the case K∞ = Kcyc. This is not too surprising, because such (ϕ, 0)-modules are also
obtained by a Sen theory type of idea through the theorem of Cherbonnier and Colmez [1998], and
further, these objects relate to DSen and D+dif in a similar way. In fact, Theorem A is equivalent to the
Cherbonnier–Colmez theorem on decompletion of (ϕ, 0)-modules (after inverting p). Our proof is not
independent from the ideas of Cherbonnier–Colmez, since we still use their trace maps in our arguments.
However, it is logically different — more on this below.

First, let us discuss an application of Theorem A, which was a major source of motivation for this
work. We give a geometric reinterpretation of Berger’s work [2008b] on p-adic differential equations
and filtered (ϕ, N )-modules. In that article, Berger establishes several results regarding de Rham (ϕ, 0)-
modules (for example, these (ϕ, 0)-modules arising from de Rham p-adic Galois representations). To
such a (ϕ, 0)-module D, Berger associates another (ϕ, 0)-module NdR(D) (a so called p-adic differential
equation), and a K -vector space of solutions

Sol(D) := lim
−−→

[L:K ]<∞
(RL [log T ]⊗R NdR(V ))GL ,

where RL is the Robba ring with respect to L . The following results can be derived from the main results
of [Berger 2008b], for D a de Rham (ϕ, 0)-module:

(i) Sol(D) is a K -vector space of rank equal to the rank of D.

(ii) There is a canonical isomorphism

RK [log T ]⊗K un Sol(D)∼=RK [log T ]⊗R NdR(V ).

(iii) K ⊗K un Sol(D) is canonically isomorphic to K ⊗K DdR(D).

(iv) Sol(D) is naturally a filtered (ϕ, N , GK )-module.

Furthermore, the functor D 7→ Sol(D) gives rise to an equivalence of categories from the category of
de Rham (ϕ, 0)-modules over R to the category of filtered (ϕ, N , GK )-modules.

The functor of solutions is ultimately understood in [Berger 2008b] by solving the differential equation
Lie(0)= 0, and as such, uses p-adic analysis in a crucial way. It is therefore natural to apply Theorem A
to give a geometric interpretation of these results, something previously inaccessible in the framework
of vector bundles on the Fargues–Fontaine curve. In fact, when interpreted in a geometric way, [Berger
2008b, théorème A] turns out to be reminiscent of the Riemann–Hilbert correspondence.
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Our second main result is the desired geometric interpretation of Berger’s results. To describe it, we
need to introduce some notation. We have

Xlog,K := lim
←−−

[L:K ]<∞
Xlog,L ,

where each Xlog,L is a the analytic line bundle over XL := X (L̂cyc) corresponding to OXL (1), endowed
with the projection plog,L : Xlog,L → XL (see Section 8C). Essentially, Xlog,K is obtained by adjoining all
K -scalars and a logarithm to the functions on X . Now let E be a de Rham locally analytic vector bundle,
i.e., suppose that dimK Ê0=1

x∞ = rank(E) (see Section 8B). For example, if V is a de Rham p-adic Galois
representation, then its associated locally analytic vector bundle is de Rham. To such E , we associate a
sheaf Sol(E) on X , given by

Sol(E) := lim
−−→

[L:K ]<∞
plog,L ,∗(p∗log,LNdR(E))Lie(0)=0,

where NdR(E) is a modification of E corresponding to the de Rham lattice of E at x∞. Roughly speaking,
Sol(E) is the sheaf of solutions to the differential equation ∇ = 0 on the modification NdR(E). We shall
also consider a variant Solϕ(E), which are the solutions on the pullback of E along the usual covering
Y(0,∞)→ X for Y(0,∞) = SpaAinf− {p[p♭

] = 0}/Gal(K/Kcyc). We then have the following result, by
analogy with the results of [Berger 2008b] (see Section 8 for yet more precise statements).

Theorem B. Let E be a de Rham locally analytic vector bundle.

(i) The sheaf of solutions Sol(E) is locally free over the subsheaf of potentially log smooth sections
Oplsm

X ⊂Ola
X and its rank is equal to the rank of E .

(ii) There is a canonical isomorphism

Ola
Xlog,K
⊗Oplsm

X
Sol(E)−→∼ Ola

Xlog,K
⊗Ola

X
NdR(E).

(iii) The stalk of Sol(E) at x∞ is canonically isomorphic to K ⊗K DdR(E).

(iv) The space of global solutions H0(Y(0,∞), Solϕ(E)) is naturally a filtered (ϕ, N , GK )-module.

Furthermore, the functor E 7→ H0(Y(0,∞), Solϕ(E)) gives rise to an equivalence of categories from the
category of de Rham locally analytic vector bundles to the category of filtered (ϕ, N , GK )-modules.

Remark 1.1. (1) In particular, if V is a de Rham representation of GK with associated locally ana-
lytic vector bundle E , then H0(Y(0,∞), Solϕ(E)) = Dpst(V ) and the stalk Sol(E)x∞ is identified with
K ⊗K DdR(V ). The localization map corresponds to the natural map Dpst(V )→ K ⊗K DdR(V ).

(2) If E becomes crystalline after extending K to a finite extension L⊂K∞, the sheaf NdR(E)∇=0
⊂Sol(E)

is locally free over the subsheaf of smooth sections Osm
X ⊂Ola

X of rank equal to the rank of E , and there is
a simpler canonical isomorphism

Ola
X ⊗Osm

X
NdR(E)∇=0

−→∼ NdR(E).
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(3) The sheaf Oplsm
X is much smaller than Ola

X . Though we have not been quite able to show this, Oplsm
X

seems to be “almost” a locally constant sheaf except that the base field becomes slightly larger when
localizing; for that reason, we think of Sol(E) as morally being close to a local system on X . In this sense
the (ϕ, N , GK )-structure is related to the monodromy of the p-adic differential equation ∇ = 0.

Finally, let us discuss the proof of Theorem A. The essential point is to show that if Ẽ is an equivariant
vector bundle on X , the natural map OX ⊗Ola

X
Ẽ la
→ Ẽ is an isomorphism. Fargues and Fontaine observe

that the only point of X with finite 0-orbit is x∞. The idea is then to use a very simple geometric
argument: once one knows that OX ⊗Ola

X
Ẽ la
→ Ẽ is injective, everything can be understood by arguing

locally at x∞. Indeed, if this map is an isomorphism after localizing and completing along OX → Ô+X ,x∞ ,
then the cokernel has to be supported at finitely many points outside x∞. But these points also form a
finite 0-orbit, so the cokernel cannot be supported anywhere.

It therefore remains to understand the properties of our spaces of locally analytic vectors under certain
localizations and completions. To do this, we are naturally led to consider higher locally analytic vectors
and their vanishing, and we prove a representation-theoretic result which is of independent interest. To
state the result, let G be a p-adic Lie group and let 3̃ be a Banach ring with a continuous action of G.
Assume the topology on 3̃ is p-adic.

Theorem C. Suppose G and 3̃ satisfy the Tate–Sen axioms (TS1)–(TS3) of [Berger and Colmez 2008]
as well as an additional axiom (TS4). Then for any finite free 3̃-semilinear representation M of G, the
higher locally analytic vectors Ri

G-la(M) are zero for i ≥ 1.

Here are two special cases of the theorem where we conclude that Ri
G-la(M)= 0 for i ≥ 1:

(1) If M is a finite dimensional K̂∞-module with a semilinear action of 0, for K∞ containing an
unramified twist of Kcyc. In fact, the vanishing of Ri

G-la(M) can be established for arbitrary K∞, see
Section 5.

(2) If M a finite free B̃I (K̂∞)-module with a semilinear action of 0, under the same assumptions on K∞.

Note that the vanishing of higher locally analytic vectors is automatic for admissible representations,
but the examples above are not admissible. Theorem C illustrates how the Tate–Sen axioms can serve as
a substitute for admissibility.

Theorem C is especially useful for making cohomological computations. Here is an example application,
which follows directly from the main results of [Rodrigues Jacinto and Rodríguez Camargo 2022] (see
Section 5): if M satisfies assumptions of the theorem, then for i ≥ 0 we have natural isomorphisms

Hi (G, M)∼= Hi (G, M la)∼= Hi (Lie G, M la)G .

Finally, let us mention that in recent work Juan Esteban Rodríguez Camargo [2022] proves similar
results to our Theorem C. He then applies them in the setting of rigid adic spaces with fantastic applications
to the Calegari–Emerton conjecture, among others.
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1A. Structure of the article. Section 2 contains reminders on locally analytic vectors and their derived
functors. In Section 3 we give reminders on the Fargues–Fontaine curve and equivariant vector bundles.
In Section 4 we introduce locally analytic bundles and we discuss their basic properties. Section 5 is the
longest and most technical section of the paper, in which we prove Theorem C. Theorem A is proved in
Section 6. In Section 7 we compare our results to the theory of (ϕ, 0)-modules. Finally, in Section 8 we
discuss p-adic differential equations on the Fargues–Fontaine curve and explain Theorem B.

At several points in the article we have taken the liberty to raise speculations and ask questions to
which we do not yet know the answer.

1B. Notation and conventions. The field K denotes a finite extension of Qp. We write Kcyc = K (µp∞)

for the cyclotomic extension. Its Galois group 0cyc = Gal(Kcyc/K ) is an open subgroup of Z×p . We
denote by K∞ an infinitely ramified Galois extension of K with 0 = Gal(K∞/K ) a p-adic Lie group. If
K denotes the algebraic closure of K , we let GK =Gal(K/K ) and H =Gal(K/K∞) so that GK /H = 0.

The p-adic completion K̂∞ of K∞ is a perfectoid field. Write ϖ for a pseudouniformizer of K̂∞
with valuation val(ϖ)= p that admits a sequence of p-th power roots ϖ 1/pn

(such a choice is always
possible, and the constructions in this paper never depend on this choice). Let ϖ ♭

= (ϖ, ϖ 1/p, . . .) be
the corresponding pseudouniformizer of the tilt K̂ ♭

∞.
Denote by Lie(0) the Lie algebra of 0. It is a finite dimensional Qp-vector space, and if v ∈ Lie(0) is

sufficiently small, we have a corresponding element exp(v) ∈ 0.
All representations and group actions appearing in this article are assumed to be continuous. Galois

cohomology groups are always taken in the continuous sense.
If W is a Banach space over Qp we write W+ for its unit ball.
All completed tensor products appearing in this article are projective. In other words, if V+ and W+

are unit balls of two Banach spaces V and W over Qp, then

V+ ⊗̂Zp W+ = lim
←−−

n
(V+⊗Zp W+)/pn and V ⊗̂Qp W = (V+ ⊗̂Zp W+)[1/p].

2. Locally analytic and pro-analytic vectors

In this section we give reminders on locally analytic and pro-analytic vectors and quote results that will
be used in Sections 4–6. We shall freely use our conventions in Section 1B regarding Banach spaces.

2A. Locally analytic and pro-analytic vectors. We shall say a compact p-adic Lie group G is small
if there exists a saturated integral valued p-valuation on G which defines its topology and if for some
N ∈ Z≥1 there exists an embedding of G into 1+ p2 MN (Zp), the group of N by N matrices congruent
to 1 mod p2. See Sections 23 and 26 of [Schneider 2011] for the first condition. If G is small, there
exists an ordered basis g1, . . . , gd such that (x1, . . . , xd) 7→ gx1

1 · . . . · g
xd
1 gives a homeomorphism of Zd

p

with G. We then have coordinates on G

c = (c1, . . . , cd) : G −→∼ Zd
p
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defined by the inverse map where ci (g
x1
1 · . . . · g

xd
1 )= xi .

Now let G is an be any compact p-adic Lie group. By [Schneider 2011, Theorem 27.1] and Ado’s
theorem (see [Pan 2022a, Proposition 2.1.3]), the collection of small open subgroups of G forms a
fundamental system of open neighborhoods of the identity element. Let W be a Banach Qp-linear
representation of G (or G-Banach space for short). If H is a small open subgroup of G, choose
coordinates c on H and write c(h)k

=
∏d

i=1 ci (h)ki if k = (k1, . . . , kd) for h ∈ H . We have the subspace
W H -an of H -analytic vectors in W ; it is the subspace of elements w ∈W for which there exists a sequence
of vectors {wk}k∈Nd with wk→ 0 and

h(w)=
∑
k∈Nd

c(h)kwk

for all h ∈ H . The norm ∥w∥H -an = supk ∥wk∥ makes W H -an into a Banach space. Note that W H -an does
not depend on the choice of coordinates. We write W la

=
⋃

H W H -an for the subspace of locally analytic
vectors of W , and endow it with the inductive limit topology, which makes it into an LB space. If W is a
Fréchet space whose topology is defined by a countable sequence of seminorms, let Wi be the Hausdorff
completion of W for the i-th seminorm, so that W = lim

←−−
Wi is a projective limit of Banach spaces. We

write W pa
= lim
←−−

W la
i for the subspace of pro-analytic vectors. Finally, we extend the definitions of locally

analytic vectors and pro-analytic vectors to LB and LF spaces in the obvious way.
The Lie algebra Lie(G) acts on each W H -an (and hence also on W la and W pa) through derivations.

This action is given as follows. If v ∈ Lie(G) then exp(pkv) ∈ H for k≫ 0, and we define

∇v(w)= lim
k→∞

exp(pkv)(w)−w

pk .

The operator ∇v :W H -an
→W H -an is bounded; see [Berger and Colmez 2016, Lemma 2.6].

Locally analytic and pro-analytic vectors behave well when we have a basis of such vectors [Berger
and Colmez 2016, Proposition 2.3; Berger 2016, Proposition 2.4]:

Proposition 2.1. Let B be a Banach or Fréchet G-ring and let W be a free B-module of finite rank,
equipped with a B-semilinear action of G. If the B-module W has a basis w1, . . . , wd in which the
function G→ GLd(B)⊂Md(B), g 7→Mat(g) is H-analytic (resp. locally analytic, pro-analytic), then
W H -an

=
⊕d

j=1 B H -an
·wi

(
resp. W la

=
⊕d

j=1 B la
·wi , W pa

=
⊕d

j=1 Bpa
·wi

)
.

It will often be useful for us to choose a specific fundamental system of open neighborhoods of G as
follows. Fix a small compact open G0 ⊂ G which with coordinates c. For n ≥ 0 we set

Gn = G pn
= {g pn

: g ∈ G0}.

These are subgroups ([Schneider 2011, Remark 26.9]) which have induced coordinates

c|Gn : Gn −→
∼ (pnZp)

d .
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The normalization is such that for w ∈W Gn-an we can write

g(w)=
∑
k∈Nd

c(g)kwk

for g ∈ Gn and {wk}k∈Nd with pn|k|wk→ 0, and the Banach norm is given by

∥w∥Gn-an = sup
k
∥pn|k|wk∥.

It is easy to check if w ∈W Gn-an then ∥w∥Gm -an ≤ ∥w∥Gm+1-an for m ≥ n and ∥w∥Gm -an = ∥w∥ for m≫ n
(see [Berger and Colmez 2016, Lemme 2.4]).

2B. Rings of analytic functions. Suppose first that G is small. Let Can(G, Qp) be the space of analytic
functions on G. These are those functions that after pullback by the coordinates c : G −→∼ Zd

p are of the
form

x = (x1, . . . , xd) 7→
∑

k=(k1,...,kd )∈Nd

bk xk,

where bk→ 0 as |k|→∞. The norm ∥ f ∥G = supk∈Nd ∥bk∥ makes Can(G, Qp) into a Banach space. We
shall regard Can(G, Qp) as a G-representation through the left regular action of G.

If now G is any compact p-adic Lie group with a system of small neighborhoods {Gn}n≥0 as in
Section 2A, we have for each n ≥ 0 the space of analytic functions Can(Gn, Qp) on Gn . Using the
coordinates c : Gn −→

∼ (pnZp)
d as in Section 2A, we shall regard Can(Gn, Qp) as the ring of functions

that under the bijection are identified with functions of the form

x = (x1, . . . , xd) 7→
∑

k=(k1,...,kd )∈Nd

bk xk,

where pn|k|bk→ 0 as |k| →∞. Under this normalization

∥ f ∥Gn = sup
k∈Nd
∥pn|k|bk∥

for f ∈ Can(Gn, Qp).
The following lemma will be used in Section 5.

Lemma 2.2. For k ≥ 1 the subgroup Gn+k acts trivially on Can(Gn, Qp)
+/pk .

Proof. This is an easy exercise using the coordinates. See [Pan 2022a, Lemma 2.1.2] for the case k= 1. □

The following is shown in [Pan 2022a, Proposition 2.1.3] and in its proof (originally in the proof of
[Berger and Colmez 2016, théoréme 6.1]).

Proposition 2.3. Suppose that G is small. There is a dense subspace lim
−−→ℓ∈N

Vℓ ⊂ Can(G, Qp), where
each Vl is a finite-dimensional G-subrepresentation of Can(G, Qp) with coefficients in Qp such that for
any k, ℓ ∈ N, we have Vk · Vℓ ⊂ Vk+ℓ.
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Furthermore, if we fix G and consider small open subgroups G ′ ⊂ G, we may choose Vℓ(G ′) ⊂
Can(G ′, Qp) at once for all G ′ in such a way that the natural map Can(G, Qp)→ Can(G ′, Qp) restricts to
Vℓ(G)→ Vℓ(G ′).

2C. Higher locally analytic vectors. Suppose first that G is small and let W be a G-Banach space. There
is a G-equivariant isometry

W ⊗̂Qp C
an(G, Qp)∼= Can(G, W ),

where Can(G, W ) is the space of W -valued analytic functions on G, with its G-Banach structure given by
the sup norm and the action (g f )(x)= g( f (g−1(x)) for f ∈ Can(G, W ). We then have (Can(G, W ))G

=

W G-an, the identification given by f 7→ f (1). This gives an alternative description of G-analytic vectors
that we shall use in what follows.

The functor W 7→W G-an is left exact. Following [Pan 2022a, §2.2; Rodrigues Jacinto and Rodríguez Ca-
margo 2022], define right derived functors for i ≥ 0:

Ri
G-an(W )= Hi(G, W ⊗̂Qp C

an(G, Qp)
)

(taking continuous cohomology on the right hand side).
If G is a compact p-adic Lie group with subgroups {Gn}n≥1 as in Sections 2A–2B, taking the colimit

over n, there are right derived functors for W 7→W G-la given by

Ri
G-la(W )= lim

−−→
n

Ri
Gn-an(W )= lim

−−→
n

Hi(Gn, W ⊗̂Qp C
an(Gn, Qp)

)
.

We shall call these groups the higher locally analytic vectors of W . If G is understood from the context
we shall just write Ri

la instead of Ri
G-la.

If
0→ V →W → X→ 0

is a short exact sequence of G-Banach spaces, then it is strict by the open mapping theorem, and so we
have a long exact sequence

0→ V la
→W la

→ X la
→ R1

la(V )→ R1
la(W )→ R1

la(X)→ · · · .

Lemma 2.4. Let H be an open subgroup of G and let Hn =Gn ∩H. Then for n≫ 0 and each i ≥ 0 there
are natural isomorphisms Ri

Hn-an
∼= Ri

Gn-an. In particular, Ri
H -la
∼= Ri

G-la.

Proof. We have Hn = Gn for n≫ 0. □

Suppose that G be a small compact p-adic Lie group, and let H be a small closed normal subgroup.
Let W be a G-Banach space. Using the method of Hochshild–Serre we obtain the following spectral
sequences.

Proposition 2.5. (i) There is a spectral sequence

E i j
2 = Hi(G/H, H j(H, W ⊗̂Qp C

an(G, Qp)
))
⇒ Ri+ j

G-an(W ).
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(ii) There is a spectral sequence

E i j
2 = Ri

G/H -an(H
j (H, W ))⇒ Hi+ j(G, W ⊗̂Qp C

an(G/H, Qp)
)
.

Proof. Apply the Hochshild–Serre spectral sequence to W ⊗̂Qp Can(G, Qp) and W ⊗̂Qp Can(G/H, Qp)

(see [Rodrigues Jacinto and Rodríguez Camargo 2022, Proposition 5.16]). □

3. Equivariant vector bundles

In this section we give reminders on the Fargues–Fontaine curve and equivariant vector bundles. For
more details, see [Fargues and Fontaine 2018, Chapter 9; Scholze and Weinstein 2020, Lectures 12–13].

3A. The spaces Y(0,∞) and X . Let F be a perfectoid field, with tilt F♭. We have Fontaine’s ring
Ainf = Ainf(F), defined as the Witt vectors of the ring of integers O♭

F of F♭. Write Spa(Ainf) for the adic
space associated to the Huber pair (Ainf, Ainf).

Let ϖ be a pseudouniformizer of F , and let f be the residue field of OF . Then there is a point
x f ∈ Spa(Ainf) with residue field f , which is the intersection of the two closed subspaces {p = 0} and
{[ϖ ] = 0}. We set

Y = Y(F)= SpaAinf−{x f } and Y(0,∞) = Y(0,∞)(F)= SpaAinf−{p[ϖ ] = 0}.

The spaces Y and Y(0,∞) have a Frobenius automorphism ϕ induced from the Witt vector structure
of Ainf.

The space Y(0,∞) is a preperfectoid space. The (adic) Fargues–Fontaine curve associated to F is defined
as the quotient

X = X (F)= Y(0,∞)(F)/ϕZ,

which makes sense because the Frobenius action is proper and discontinuous. The natural projection
π : Y(0,∞)→ X is a local isomorphism, so X is a preperfectoid space, by virtue of Y(0,∞) being so. The
space Y(0,∞) has a canonical point called x∞, the “point at infinity”. It corresponds to the kernel of
Fontaine’s map

θ : Ainf→OF ,
∑
n≥0

[an]pn
7→

∑
n≥0

a♯
n pn,

where for a ∈ OF , a♯ is defined to be the first coordinate of a ∈ O♭
F = lim

←−−x 7→x p OF . Identify x∞ with
its image π(x∞) ∈ X . We shall sometimes use the fact that ker θ is a principal ideal, generated by
ξ =ϖ − [ϖ ♭

] (for example).
If F = K̂∞, there is an induced action of the group 0 =Gal(K∞/K ) on each of the spaces mentioned

above, and the map Y(0,∞)→ X is 0-equivariant. The point x∞ ∈ X is the unique 0-fixed point; in fact,
it is the unique point with finite 0-orbit [Fargues and Fontaine 2018, Proposition 10.1.1]. From now on,
if F is omitted from the notation of Y(0,∞) and X , we always take F = K̂∞.
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3B. The spaces YI and XI . It will be fruitful to consider certain open subsets of Y(0,∞) and X . By
[Scholze and Weinstein 2020, Lecture 12] there is a surjective continuous map κ : Y→ [0,∞] given by1

κ(x)=
log |p(x̃)|

log |[ϖ ♭](x̃)|
,

where x̃ is the maximal generization of x . For each interval I ⊂ (0,∞), let YI be the interior of the
preimage of Y under κ . These spaces are 0-stable if such a 0 action is present. Furthermore, the map ϕ

induces isomorphisms ϕ : YpI −→
∼ YI . Write log(I )= {log x : x ∈ I }. Whenever I is sufficiently small so

that the inequality | log(I )|< log(p) holds, we have I ∩ pI = 0 and π maps YI isomorphically onto its
image π(YI )= XI ⊂ X . Note that x∞ ∈ XI if and only if I contains an element of (p− 1)pZ, because
κ(x∞)= (p− 1)/p.

For I ⊂ (0,∞), we have the coordinate rings

B̃I = B̃I (K̂∞)= H0(YI ,OY(0,∞)
).

If I is compact, the geometry of YI is simple.

Proposition 3.1. Suppose I ⊂ (0,∞) is a compact interval.

(i) YI = Spa(B̃I , ÃI ), where ÃI is the ring of power bounded elements of B̃I . In particular, YI is affinoid.

(ii) B̃I is a principal ideal domain.

(iii) The global sections functor induces an equivalence of categories between vector bundles on YI and
finite free B̃I -modules.

Proof. Parts (i) and (ii) follow from [Fargues and Fontaine 2018, théorème 3.5.1]. Part (iii) follows from
[Scholze and Weinstein 2020, Theorem 5.2.8] (originally [Kedlaya and Liu 2015, Theorem 2.7.7]), since
finite projective B̃I -modules are finite free. □

3C. Equivariant vector bundles. The action of 0 on X gives an automorphism γ : X −→∼ X for each
γ ∈ 0.

Definition 3.2. A 0-equivariant vector bundle (or simply 0-vector bundle) on X is a vector bundle Ẽ
on X equipped with an isomorphism cγ : γ

∗Ẽ −→∼ Ẽ for each γ ∈ 0 such that the cocycle condition
cγ2 ◦ γ

∗

2 cγ1 = cγ1γ2 holds for every γ1, γ2,∈ 0.

Similarly, we have a notion of a (ϕ, 0)-vector bundle on Y(0,∞). This consists of a 0-vector bundle M̃
on Y(0,∞) together with an additional isomorphism cϕ : ϕ

∗M̃−→∼ M̃ such that cϕ ◦ϕ
∗cγ = cγ ◦ γ

∗cϕ for
every γ ∈ 0.

Descent along ϕ gives the following.

Proposition 3.3. There is an equivalence of categories

{0-vector bundles on X } ∼= {(ϕ, 0)-vector bundles on Y(0,∞)}.

1Our normalization of κ is the inverse of [loc. cit.].
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The equivalence is given by the following functors: If Ẽ is an equivariant vector bundle, we map it to
OY(0,∞)

⊗OX Ẽ . Conversely, if M̃ is a (ϕ, 0)-vector bundle on Y(0,∞), we map it to π∗(M̃)ϕ=1.

If Ẽ is a 0-vector bundle on X and U ⊂ X is an open subset stable under 0, there is an induced action
of 0 on H0(U, Ẽ). In particular, there is a natural action of 0 on H0(XI , Ẽ) when | log(I )|< log(p). For
a general open subset U , one only has a map

cγ : H0(U,OX )⊗H0(γ (U ),OX ) H0(γ (U ), Ẽ)→ H0(U, Ẽ).

Similar remarks apply for (ϕ, 0)-equivariant vector bundles on Y(0,∞).

Example 3.4. Let V be a finite dimensional Qp-representation of GK . Recall that H = Gal(K∞/K ).
Then by [Fargues and Fontaine 2018, théorème 10.1.5],

Ẽ(V ) := (V ⊗Qp OX (Cp))
H

is a 0-vector bundle on X . More generally, by [loc. cit.], the category of finite dimensional GK -
representations embeds fully faithfully to the category of (ϕ, 0)-modules, with essential image the
subcategory of étale (ϕ, 0)-modules. We can extend the domain of the functor V 7→ Ẽ(V ) from GK -
representations to (ϕ, 0)-modules. Conversely, any 0-vector bundle on X gives rise to a (ϕ, 0)-module,
and this correspondence results in a equivalence of categories (see [Fargues and Fontaine 2018, préface,
Remark 5.10]). This will be discussed in detail in Section 7.

4. Locally analytic vector bundles

In this section, we introduce the category of locally analytic vector bundles and discuss their basic
properties.

4A. Locally analytic functions of Y(0,∞) and X . Let U ⊂X be an open affinoid. Then U is quasicompact
and hence stable under the action of a finite index subgroup 0′ ≤ 0. The space of functions H0(U,OX ) is
a Banach 0′-ring, and so it makes sense to speak of its subring of 0′-locally analytic functions. This does
not depend on the choice of 0′, and so we shall write H0(U,OX )la for the 0′-locally analytic functions
in H0(U,OX ) for any 0′. Since taking locally analytic vectors is left exact, these can be glued and we
obtain a sheaf of rings Ola

X on X that satisfies

H0(U,Ola
X )= H0(U,OX )la

for every open affinoid U ⊂ X .
More generally, suppose U is an open subset of X which is not necessarily affinoid, but for which

there is an increasing cover U =
⋃

i Ui with each Ui affinoid and a single finite index subgroup 0′ ≤ 0

stabilizing all of the Ui simultaneously. This condition will be satisfied in any situation we shall consider.
Then the sections of Ola

X on U are the pro-analytic functions

H0(U,Ola
X )= lim

←−−
i

H0(Ui ,OX )la
= H0(U,OX )pa.
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Lemma 4.1. The sheaf Ola
X is stable for the action of 0 on OX , in the sense that the inclusion Ola

X ⊂OX

induces isomorphisms
cγ : γ

∗Ola
X −→
∼ Ola

X .

Proof. The action of 0 on OX gives rise to an isomorphism cγ : γ
∗OX −→∼ OX . Upon taking U ⊂ X

affinoid, evaluating the morphism cγ at U and taking locally analytic vectors, we get an induced map
cγ (U ) :H0(U, γ ∗OX )la

−→∼ H0(U,OX )la. But this is the same as H0(U, γ ∗Ola
X )−→∼ H0(U,Ola

X ) because
of the equality H0(U,Ola

X )= H0(U,OX )la. By writing an arbitrary open set as a union of affinoids, we
get the desired induced isomorphism cγ : γ

∗Ola
X −→
∼ Ola

X . □

The preceding discussion then applies equally well to Y(0,∞), so we have a sheaf Ola
Y(0,∞)

of locally
analytic functions on Y(0,∞) endowed with isomorphisms cγ . Since the ϕ-action on Y(0,∞) commutes
with the 0-action, it preserves the 0-locally analytic functions, and this gives an isomorphism

cϕ : ϕ
∗Ola

Y(0,∞)
−→∼ Ola

Y(0,∞)

which commutes with the 0-action as usual.

4B. A flatness result. For our application at Section 6 it would be useful to know the inclusion Ola
X ⊂OX

is flat. We are only able to establish this in the cyclotomic case where K∞ = Kcyc, and only for certain
open subsets. Nevertheless, this will suffice for our needs.

So in this subsection suppose K∞ = Kcyc and let I be a closed interval of the form I = [r, s] with
r ≥ (p−1)/p. We write B̃I,cyc for B̃I (K̂cyc) of Section 3B. Let K ′0 be the maximal unramified extension
of Qp contained in Kcyc. Then we write BI,cyc,K for the ring of power series f (T )=

∑
k∈Z ak T k with

ak ∈ K ′0, such that f (T ) converges on the nonempty annulus where |T | ∈ I . By a classical result,
BI,cyc,K is a principal ideal domain [Lazard 1962, corollaire à proposition 4]. There is an embedding
BI,cyc,K ↪→ B̃I,cyc for which BI,cyc,K is 0cyc-stable. If K is unramified over Qp, this embedding can be
described as follows: the variable T is mapped to [ε]−1, where ε = (1, ζp, ζp2, . . .) ∈ K̂ ♭

cyc. Further, one
calculates that γ (T )= (1+ T )χcyc(γ )

− 1, so BI,cyc,K is indeed stable under the action of 0cyc.

Proposition 4.2. Suppose I = [r, (p− 1)pk−1
] with k ≥ 1. Then

(i) B̃la
I,cyc =

⋃
n≥0 ϕ−n(Bpn I,cyc,K ),

(ii) B̃la
I,cyc is a Prüfer domain,

(iii) the natural ring morphism B̃la
I,cyc→ B̃I,cyc is flat.

Proof. Part (i) is [Berger 2016, Theorem 4.4 (2)]. Note that in [loc. cit.] this is stated only for I of the form
[(p− 1)pl−1, (p− 1)pk−1

], but the argument given there (see also Section 13 of [Berger 2021]) is valid
for any interval of the form [r, (p− 1)pk−1

]. Part (ii) follows, because each Bpn I,cyc is a principal ideal
domain, and an increasing union of such rings is a Prüfer domain. Finally, the ring B̃I,cyc is a domain and
hence torsionfree over the subring B̃la

I,cyc. Part (iii) is established by recalling that a torsionfree module
over a Prüfer domain is flat [Lam 1999, Proposition 4.20]. □
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Question 4.3. To what extent do (ii) and (iii) of Proposition 4.2 hold for coordinate rings of general open
subsets in X and general K∞? We do not expect B̃la

I to be a Prüfer domain when 0 has dimension larger
than 1. Nevertheless, it might still be the case that B̃la

I → B̃I is flat.

4C. Locally analytic vector bundles.

Definition 4.4. A locally analytic vector bundle on X is a locally finite free Ola
X -module E on X equipped

with an isomorphism cγ : γ
∗E −→∼ E for each γ ∈0 such that the cocycle condition cγ2 ◦γ

∗

2 cγ1 = cγ1γ2 holds
for every γ1, γ2,∈ 0. We require the action to be continuous with respect to the locally analytic topology.

Example 4.5. (1) Let Ẽ be a 0-vector bundle on X . Define a sheaf Ẽ la by generalizing the definition
of Ola

X . Namely, for every open affinoid U ⊂ X choose 0′ ≤ 0 stabilizing U . Then H0(U, Ẽ) is a Banach
0′-ring and it makes sense to speak of H0(U, Ẽ)la, which does not depend on the choice of 0′. Glue these
together to form a sheaf Ẽ la. The sheaf Ẽ la is an Ola

X -module with a 0-action. We shall show in Section 6
that Ẽ la is locally free and therefore an example of a locally analytic vector bundle.

(2) Conversely, if E is a locally analytic vector bundle, we can associate to it a 0-vector bundle Ẽ =
OX ⊗Ola

X
E . If U ⊂ X is an open affinoid such that E|U is free, it follows from Proposition 2.1 that

H0(U, E)= H0(U, Ẽ)la,

and so E = Ẽ la. This shows that the functor from 0-vector bundles to locally analytic vector bundles
mapping Ẽ to Ẽ la is essentially surjective.

It follows from Example 4.5(2) that if E is a locally analytic vector bundle, we have an action by
derivations

Lie(0)× E→ E,

or, what amounts to the same, a connection

∇ : E→ E ⊗Qp (Lie 0)∨

satisfying the identity

∇( f x)=∇( f )x + f∇(x)

for local sections f of Ola
X and x of E .

Remark 4.6. We emphasize that if U ⊂ X is an arbitrary open subset then we have an induced action
of Lie(0) on H0(U, E). This is unlike the 0-action, which only maps H0(U, E) to itself if U is 0-stable.
This is one pleasant aspect of working with locally analytic vector bundles instead of 0-vector bundles.

Finally, we have the following propositions computing sections of interest. They will not be used
elsewhere in the article. We may define a locally analytic ϕ-vector bundle on Y(0,∞) by imitating
Definition 4.4. Then given a (ϕ, 0)-vector bundle M̃ on Y(0,∞), one can define a locally analytic ϕ-vector
bundle M̃la on Y(0,∞) as in Example 4.5.
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Proposition 4.7. Let Ẽ (resp. M̃) be a 0-vector bundle on X (resp. a (ϕ, 0)-vector bundle on Y(0,∞))
and let Ẽ la (resp. M̃la) be its associated locally analytic vector bundle (resp. locally analytic ϕ-vector
bundle). There are natural isomorphisms:

(i) H0(YI ,M̃la)∼= H0(YI ,M̃)la for I a closed interval.

(ii) H0(YI ,M̃la)∼= H0(YI ,M̃)pa for I an open interval.

(iii) H0(XI , Ẽ
la
)∼= H0(XI , Ẽ)la for I a closed interval with | log(I )|< log(p).

(iv) H0(XI , Ẽ
la
)∼= H0(XI , Ẽ)pa for I an open interval with | log(I )|< log(p).

(v) H0(X , Ẽ la
)∼= H0(X , Ẽ)la.

(vi) H0(X − x∞, Ẽ la)∼= H0(X − x∞, Ẽ)pa.

Proof. Parts (i) and (iii) are immediate from the definition. For (ii) and (iv), use the coverings YI =⋃
J⊂I YJ and XI =

⋃
J⊂I XJ ranging over J ⊂ I closed. For (v), consider the covering

X = X[1,
√

p] ∪X[√p,p]

with intersection X[√p,
√

p]⨿X[1,1] (identifying 1 with p via ϕ). This yields exact sequences

0→ H0(X , Ẽ la
)→ H0(X[1,

√
p], Ẽ la)⊕H0(X[√p,p], Ẽ

la
)→ H0(X[√p,

√
p], Ẽ

la
)⊕H0(X[1,1], Ẽ

la
)

and

0→ H0(X , Ẽ)la
→ H0(X[1,

√
p], Ẽ)la

⊕H0(X[√p,p], Ẽ)la
→ H0(X[√p,

√
p], Ẽ)la

⊕H0(X[1,1], Ẽ)la.

By virtue of (iii) the kernels of these sequences are identified. This proves part (v).
For (vi), use the covering

X − x∞ = X[1,
√

p] ∪ (X[√p,p]− x∞)

with intersection X[√p,
√

p] ⨿X[1,1]. We may write X[√p,p] − x∞ as a union of 0-stable rational open
subsets

X[√p,p]−∞=∪n≥1X[√p,p]{|ξ | ≥ p−n
}.

Thus
H0(X[√p,p]− x∞, Ẽ la

)∼= H0(X[√p,p]− x∞, Ẽ)pa.

Repeating the argument which proved part (v), we conclude. □

We place ourselves in the cyclotomic setting so that 0 = 0cyc and H = Gal(K/Kcyc), and we write
B+cris(K̂cyc)= (B+cris)

H . Following Section 10.2 of [Fargues and Fontaine 2018], for n ∈Z take Ẽ =OX (n)

to be the 0-line bundle corresponding to the graded module⊕
m≥0

B+cris(K̂cyc)
ϕ=pm+n

.

Proposition 4.8. H0(X ,OX (n)la)=

{
0, n < 0,

Qp(n), n ≥ 0.
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Proof. To show this, notice first that

H0(X ,OX (n))= B+cris(K̂cyc)
ϕ=pn
=


0, n < 0,

Qp, n = 0,

B+cris(K̂cyc)
ϕ=pn

, n > 0.

If n > 0 then by [Fargues and Fontaine 2018, 6.4.2] there is an exact sequence

0→Qp(n)→ B+,ϕ=pn

cris → B+dR/tn B+dR→ 0.

Take H -invariants and locally analytic vectors. By [Berger and Colmez 2016, théorème 4.11] we know
that (B+dR/tn B+dR)H,la

= Kcyc[[t]]/tn , so we are left with an exact sequence

0→Qp(n)→ B+cris(K̂cyc)
ϕ=pn,la

→ Kcyc[[t]]/tn.

Claim. B+cris(K̂cyc)
ϕ=pn,la

=Qp(n).

Note that a similar statement appears in Section 3.3 of [Berger and Colmez 2016] in the case n = 1.
Given the claim the computation is finished because part (v) of Proposition 4.7 implies that

H0(X ,OX (n)la)= B+cris(K̂cyc)
ϕ=pn,la

=

{
0, n < 0,

Qp(n), n ≥ 0.

To show the claim, take x ∈ B+cris(K̂cyc)
ϕ=pn,la. Its image in Kcyc[[t]]/tn is killed by the polynomial

Pn(γ ) :=

n−1∏
i=0

(χcyc(γ )−iγ − 1)

for γ which generates an open subgroup of 0. It follows that Pn(γ )(x) ∈Qp(n) for this γ . Since Pn(γ )

acts on Qp(n) by a nonzero element we reduce to showing that B+cris(K̂cyc)
ϕ=pn,Pn(γ )=0 is 0. In fact, if

K ′ is the subfield of Kcyc corresponding to γ Zp ⊂ 0 with maximal unramified subextension K ′0, we shall
compute that

Bcris(K̂cyc)
Pn(γ )=0

=

n−1⊕
i=0

K ′0t i ,

and in particular there are no nonzero elements with ϕ = pn .
To show this latter description of the elements killed by Pn(γ ), we argue by induction. If n = 1 then

Pn(γ )= γ − 1 and the equality follows from the usual description of the Galois invariants of Bcris. For
n ≥ 2, we have Pn(γ )/(γ − 1)= Pn−1(χcyc(γ )−1γ ) and

Bcris(K̂cyc)
Pn−1(χcyc(γ )−1γ )=0

= t Bcris(K̂cyc)
Pn−1(γ )=0

=

n−1⊕
i=1

K ′0t i .
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Thus there is a commutative diagram

0 // K ′0 //

∼=

��

⊕n−1
i=0 K ′0t i //

��

⊕n−1
i=1 K ′0t i

∼=

��

// 0

0 // Bcris(K̂cyc)
γ−1=0 // Bcris(K̂cyc)

Pn(γ )=0 // Bcris(K̂cyc)
Pn−1(χcyc(γ )−1γ )=0

whose rows are exact and whose outer vertical maps are isomorphisms. We conclude by the applying the
five lemma. □

Remark 4.9. Set Be(K̂∞) = BH
e for the usual ring Be = Bϕ=1

cris , so that Be ⊂ H0(X − x∞,OX ). This
inclusion is not an equality: the ring Be allows only meromorphic functions at x∞ while in H0(X−x∞,OX )

there will be functions with essential singularities. The subring Be(K̂∞)pa
⊂ H0(X − x∞,OX )la is more

tractable and we can understand its structure to an extent. In particular, let us consider the subring
Be(K̂∞)pa

= Be ∩H0(X − x∞,Ola
X ) in the case 0 = 0cyc. We claim that in fact Be(K̂∞)pa

= Qp. To
see this, take x ∈ Be(K̂∞)pa, and restrict it to X[√p,p] − x∞. Since Y[√p,p] maps isomorphically onto
X[√p,p], the element t gives an element of H0(X[√p,p]− x∞,Ola

X ). Multiplying by a bounded power of t ,
the function tnx extends to an element of

H0(X[√p,p],Ola
X )= H0(X[√p,p],OX )la,

which shows that x itself is actually an element of Be(K̂∞)la, with a pole of order n at x∞. Therefore,
tnx ∈ H0(X ,OX (n)la) which is equal to Qp(n) as was shown in Proposition 4.8. This means x is in Qp

and so Be(K̂∞)pa
=Qp.

Question 4.10. (1) Is it true that H0(X − x∞,Ola
X )=Qp if 0 ̸= 0cyc and dim 0 = 1?

(2) If dim 0 > 1 then one can sometimes produce elements in Be(K̂∞)la which do not belong to Qp.
For example, in the Lubin–Tate setting, the element (t−√p/t√p)

2 lies in Be(K̂∞)la, for t±√p being the
analogue of Fontaine’s element attached to the uniformizer π =±

√
p (see Section 8.3 of [Colmez 2002]

for the notation appearing here). Is it true that in some generality Be(K̂∞)la will be d−1 dimensional for
d = dim 0? See [Berger and Colmez 2016, théoréme 6.1] for a related statement.

5. Acyclicity of locally analytic vectors for semilinear representations

In this section, we shall prove vanishing the of Ri
la-groups for certain semilinear representations. These

results will be used to prove the descent result in Section 6 but are also of independent interest. We follow
the strategy of [Pan 2022a], where the case of a trivial representation and a particular family of algebras
3̃ is treated.

5A. Statement of the results. To state the main result of this section, we recall the Tate–Sen axioms
of [Berger and Colmez 2008, 3]. Let G be a profinite group and let 3̃ be a G-Banach ring endowed
with a valuation val for which the G action is continuous and unitary. We suppose there is a character
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χ : G → Z×p with open image and let H = ker χ . Given an open normal subgroup G0 ⊂ G we let
H0 = G0 ∩ H and 0H0 = G/H0.

The Tate–Sen axioms are the following.

(TS1) There exists c1 > 0 such that for any open subgroup H1 ⊂ H2 of H0 there exists α ∈ 3̃H1 with
val(α) >−c1 and

∑
τ∈H2/H1

τ(α)= 1.

(TS2) There exists c2 > 0 and for each H0 open in H an integer n(H0) depending on H0 such that for
n ≥ n(H0), we have the extra data of

• closed subalgebras 3H0,n ⊂ 3̃H0 , and

• trace maps RH0,n : 3̃
H0 →3H0,n

satisfying:

(1) For H1 ⊂ H2 we have 3H2,n ⊂3H1,n and RH1,n|3H2,n = RH2,n .

(2) RH0,n is 3H0,n-linear and RH0,n(x)= x for x ∈3H0,n .

(3) g(3H0,n)=3gH0g−1,n and g(RH0,n(x))= RgH0g−1,n(gx) if g ∈ G.

(4) limn→∞ RH0,n(x)= x for x ∈ 3̃H0 .

(5) If n ≥ n(H0) and x ∈ 3̃H0 then val(RH0,n(x))≥ val(x)− c2.

(TS3) There exists c3 > 0 and for each open normal subgroup G0 of G an integer n(G0) ≥ n(H0)

such that if n ≥ n(G0) and γ ∈ 0H0 has n(γ ) = valp(χ(γ )− 1) ≤ n, then γ − 1 acts invertibly on
XH0,n = (1−RH0,n)(3̃

H0) and val((γ − 1)−1(x))≥ val(x)− c3.
We introduce an additional possible axiom which does not appear in [Berger and Colmez 2008].

(TS4) For any sufficiently small open normal G0 ⊂ G with H0 = G0 ∩ H and for any n ≥ n(G0), there
exists a positive real number t = t (H0, n) > 0 such that if γ ∈ G0/H0 and x ∈3H0,n then

val((γ − 1)(x))≥ val(x)+ t.

We then have the following result.

Theorem 5.1. Let M be a finite free 3̃-semilinear representation of G. Suppose there exists an open
subgroup G0 ⊂ G, a G-stable 3̃+-lattice M+ ⊂ M and an integer k > c1+ 2c2+ 2c3 such that in some
basis of M+, we have Mat(g) ∈ 1+ pkMatd(3̃+) for every g ∈ G0. Then:

(i) If (TS1)–(TS3) are satisfied then for i ≥ 2

Ri
G-la(M)= 0.

In fact, Ri
G0-an(M)= 0 for any sufficiently small open subgroup G0 ⊂ G.

(ii) If in addition (TS4) is satisfied then

R1
G-la(M)= 0.
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In fact, for every sufficiently small open subgroup G0 there is an open subgroup G1 ⊂ G0 such that the
map R1

G0-an(M)→ R1
G1-an(M) is 0.

(iii) In particular, if (TS1)–(TS4) are satisfied then M has no higher locally analytic vectors.

Remark 5.2. The following was pointed out by the anonymous referee: if the action of G0 on 3̃ was
locally analytic, then the hypothesis of the existence of M+ such that G0 acts trivially mod pk on it would
imply that the action of G0 on M is locally analytic as well, as it can be deduced from Proposition 2.1
and Lemma 2.2. So the nonlocally analyticity comes only from the coefficients 3̃.

The following special case is often useful in applications.

Proposition 5.3. If G and 3̃ satisfy (TS1)–(TS4) and if in addition the topology on 3̃ is p-adic, and if M
is a finite free 3̃-semilinear representation of G, then the higher locally analytic vectors Ri

la(M) vanish
for i ≥ 1.

Proof. We shall explain how this follows from Theorem 5.1. Indeed, we claim that any finite free
3̃-semilinear representation of G satisfies the assumptions of the Theorem 5.1 after possibly replacing G
by a smaller open subgroup G ′. This suffices because, by Lemma 2.4, higher locally analytic vectors do
not change when we replace G by G ′.

To see why such a G ′ exists, suppose M is a finite free 3̃-semilinear representation of G and choose
any 3̃-basis e1, . . . , ed of M . If we take M+ =

⊕d
i=1 3̃+ei then M+ is a lattice of M , and by continuity

we may find an open subgroup G ′ ⊂ G so that Mat(g) ∈ GLd(3̃+) for g ∈ G ′. This implies that M+

is G ′-stable. Since the topology on 3̃ is p-adic, we can find an open subgroup G ′0 ⊂ G ′ such that
Mat(g) ∈ 1+ pkMatd(3̃+) for every g ∈ G ′0. Thus, the assumptions of Theorem 5.1 hold for this M+,
G ′ and G ′0. □

Before giving the proof of Theorem 5.1, we record a few applications.

Corollary 5.4. Suppose G and 3̃ satisfy (TS1)–(TS4) and let M be as in the statement of the theorem.
Then for all i ≥ 0,

Hi (G, M)∼= Hi (G, M la)∼= Hi (Lie G, M la)G .

Proof. Apply [Rodrigues Jacinto and Rodríguez Camargo 2022, Corollary 1.6 and Theorem 1.7]. □

Two main cases of interest are the following. To state them, we set up some notation first. Let F be
an infinitely ramified algebraic extension of K which contains an unramified twist of the cyclotomic
extension, i.e., the field extension of K cut out by ηχcyc for η an unramified character. Suppose also that
Gal(F/K ) is a p-adic Lie group. For why we allow an unramified twist of the cyclotomic extension on
what follows, see Section 8 of [Berger 2016].

Example 5.5. (1) Take G = Gal(F/K ) and 3̃= F̂ . Then G and 3̃ satisfy the axioms (TS1)–(TS3) for
arbitrary c1 > 0, c2 > 0 and c3 > 1/(p− 1). See [Berger and Colmez 2008, Proposition 4.1.1] for the
case F = K , which goes back to Tate. For general F the same proof works.
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In addition, we claim that G and 3̃ satisfy the axiom (TS4). Indeed, if G0 is an open subgroup of G
corresponding to a finite extension L of K , then 3H0,n = L(ζpn ) and G0/H0 =Gal(Lcyc/L). We take G0

sufficiently small so that L contains ζp. Let π = ζpn − 1 be the uniformizer of L . For γ ∈ Gal(Lcyc/L),
we have

val((γ − 1)(π))= val(ζ γ−1
pn − 1)=

1
(p−1)pn−2 .

Using the identity (γ − 1)(ab)= (γ − 1)(a)b+ γ (a)(γ − 1)(b), one then shows by induction that

val((γ − 1)(πm))≥ val(πm)+
1

pn−2 .

If x is any element of 3H0,n= L(ζpn ), we may write x= pkπm y with k ∈Z, m≥1 and 0≤val(y)<val(π).
Since OL [ζpn ] =OL [π ], we see by writing y as a polynomial in π that

val(γ − 1)(y)≥ val(π)+
1

pn−2 .

Using the identity for γ − 1, we have

val(γ − 1)(x)≥ k+min
(
val((γ − 1)(πm)y), val(πm(γ − 1)(y))

)
≥ k+min

(
val(πm)+ val(y)+

1
pn−2 , val(πm)+ val(π)+

1
pn−2

)
≥ val(x)+

1
pn−2 ,

so (TS4) holds with t = 1/pn−2.

(2) Take G = Gal(F/K ) and for a closed interval I ⊂ (p/p− 1,∞) let 3̃= B̃I (F̂). Then again G and
3̃ satisfy the axioms (TS1)–(TS4) for arbitrary c1 > 0, c2 > 0 and c3 > 1/(p− 1). Here if G0 ⊂ G is
an open subgroup corresponding a finite extension L of K then one takes 3H0,n = ϕ−n(Bpn I,cyc,L) with
notation as in Section 4B. For (TS1)–(TS3), see [Berger 2008a, Proposition 1.1.12]. Axiom (TS4) follows
from [Colmez 2008, Corollary 9.5].

Corollary 5.6. (i) If M is a finite free F̂-semilinear representation of Gal(F/K ) then Ri
la(M) = 0 for

i ≥ 1.

(ii) If I ⊂ (p/p− 1,∞) is a closed interval and M is a finite free B̃I (F̂)-semilinear representation of
Gal(F/K ) then Ri

la(M)= 0 for i ≥ 1.

Proof. In both of these cases the topology on 3̃ is p-adic, so the theorem applies by Proposition 5.3. □

Remark 5.7. Suppose F/K is any infinitely ramified p-adic Lie extension of K (not necessarily containing
an unramified twist of the cyclotomic extension), and let M be a finite free F̂-semilinear representation
of Gal(F/K ). Then Ri

la(M)= 0 for i ≥ 1. To prove this, one is always allowed to replace K by a finite
extension. Then the extension F Kcyc/F can be assumed to be either trivial or infinite. In the first case,
the group Ri

la(M) vanishes by the corollary. In the second case, one can argue as in the proof of [Pan
2022a, Theorem 3.6.1]. We omit the details since this result will not be used in the article.
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The rest of the chapter is devoted to the proof of Theorem 5.1. The proof is inspired by that of [Pan
2022a, Theorem 3.6.1]. The strategy is the following:

(1) In Sections 5B and 5C, we establish some results using (TS1), (TS2) and (TS3) that allow us to
descend certain infinite rank 3̃-semilinear representations of G to 3+Hk ,n-semilinear representations of
G0, which are fixed by Hk .

(2) In Section 5D, we apply these results to Can(G, M).

(3) Using this and the Hochshild–Serre theorem, we show in Section 5E that Ri
G-la(M) vanishes when

i ≥ 2, and we give an explicit description for R1
G-la(M). It remains to show this latter cohomology group

vanishes.

(4) To do this, we decompose R1
G-la(M) as a sum of two groups. For the first one, we use an explicit

calculation in Section 5F and (TS4) to show its vanishing. For the second one, we show it is zero in
Section 5G by using again (TS4) and a computation inspired by Berger and Colmez [2016]. Both of these
computations are of a p-adic functional analysis flavor.

5B. Vanishing of H-cohomology. If t ∈ R we write

p−t3̃+ := elements in 3̃ with val≥−t.

The first result we shall need for the proof of Theorem 5.1 is the following.

Proposition 5.8. Suppose that (G, H, 3̃) satisfies (TS1) for some c1 > 0. If H0 ⊂ H is an open subgroup,
and r ≥ 1, we have

(i) The natural map Hr (H0, 3̃
+)→ Hr (H0, p−2c13̃+) is 0.

(ii) Let M+ be a finite free 3̃+-semilinear representation of H0 which has an H0-fixed basis. Then the
map Hr (H0, M+)→ Hr (H0, p−2c1 M+) is 0.

(iii) Let M+ =
∧⋃

k∈N M+k be the completion of an increasing union of finite free 3̃+-semilinear rep-
resentation of H0, each having an H0-fixed basis. Then the map Hr (H0, M+)→ Hr (H0, p−2c1 M+)
is 0.

In particular, in each of the cases (i)–(iii) the rational cohomology Hr (H0, M) is equal to zero.

Proof. We have (i)⇒ (ii), since continuous cohomology commutes with direct sums.
Next, we prove (ii) ⇒ (iii). To do this, observe that if t ∈ Z≥1 then pt M+k also a finite free 3̃+-

semilinear representation of H0 which has an H0-fixed basis. Taking long exact cohomologies of the
sequences

0→ pt
(⋃

k∈N

M+k

)
→

(⋃
k∈N

M+k

)
→ M+/pt M+→ 0

and

0→ pt−2c1

(⋃
k∈N

M+k

)
→ p−2c1

(⋃
k∈N

M+k

)
→ p−2c1 M+/pt−2c1 M+→ 0,
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we get from (ii) that the natural map

Hr (H0, M+/pt M+)→ Hr (H0, p−2c1 M+/pt−2c1 M+)

is 0. Now given a cocycle ξ ∈ Z r (H0, M+), write ξ0 for its image in Z r (H0, p−2c1 M+). We wish to
show that ξ0 is a coboundary. Choose some fixed t0 ≥ 3c1. Then by virtue of the observation above, the
right vertical map of the commutative diagram

Hr (H0, pt0 M+) //

��

Hr (H0, M+) //

��

Hr (H0, M+/pt0 M+)

��

Hr (H0, pt0−2c1 M+) // Hr (H0, p−2c1 M+) // Hr (H0, p−2c1 M+/pt0−2c1 M+)

is 0, which implies that ξ0 = ξ1+ δ(m1), where m1 is an r − 1 cocycle valued in p−2c1 M+ and ξ1 is an
r -cocycle valued in pt0−2c1 M+ ⊂ pc1 M+. Repeating this argument by induction with M+ replaced with
pic1 M+, we get that we can write ξi = ξi+1+ δ(mi+1), where ξi is valued in pic1 M+ and mi+1 is valued
in p(i−3)c1 M+. Hence the series

∑
∞

i=1 mi converges to an r−1 cocycle m valued in p−2c1 M+, and we
get ξ0 = δ(m), as required.

Finally, we prove (i). This statement is probably well known, but for lack of a suitable reference,
we provide a proof here. It is essentially a fiber product of the arguments appearing in [Tate 1967, 3.2,
Corollary 1; Colmez 2008, Proposition 10.2].

Let ξ ∈ Z r (H0, 3̃
+) be an r -cocycle of H0 valued in 3̃+. By a valuation of a cochain we shall mean

the infimum of its valuation on elements. Writing δ for the differential, we shall construct a sequence of
r−1 cochains xn ∈ Cr−1(H0, p−2c13̃+) for n ≥−1 such that

(1) val(ξ − δxn)≥ nc1 for σ ∈ H0, and

(2) val(xn − xn−1)≥ (n− 2)c1 for n ≥ 0.

This will suffice, since xn → x for some x ∈ Cr−1(H0, p−2c13̃+) which shows that ξ = δx is 0 in
Hr (H0, p−2c13̃+).

To do this, choose x−1 = 0, which clearly satisfies the first condition. Suppose xn has been constructed;
we construct xn+1. Let ξn be the r -cocycle

ξn := ξ − δxn,

which is valued in pnc13̃+. Choose H1 ⊂ H0 an open subgroup such that for every σ1, . . . , σr ∈ H0 and
σ ∈ H1 we have

val(ξn(σ1, . . . , σr )− ξn(σ1, . . . , σrσ))≥ (n+ 2)c1.

Such a choice is possible by the continuity of ξn as well as the compactness of H0.
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Now by the axiom (TS1) there is an element α ∈ 3̃H1 such that val(α) >−c1 and
∑

τ∈H0/H1
τ(α)= 1.

Let S be a system of representatives for H0/H1, and define an r − 1 cochain

xS(σ1, . . . , σr−1)= (−1)r
∑
τ∈S

(σ1σ2 · . . . · σr−1τ)(α)ξn(σ1, . . . , σr−1, τ ).

Each term in the sum has val≥ (n−1)c1, so val(xS)≥ (n−1)c1. In particular, xS ∈Cr−1(H0, p−2c13̃+).
We now compute (ξn − δxS)(σ1, . . . , σr ). We have by definition of δ an equation

δxS(σ1, . . . , σr )= (−1)r
∑
τ∈S

(σ1 · . . . · σrτ)(α)σ1(ξn(σ2, . . . , σr , τ ))

+

r−1∑
j=1

(−1) j+r
∑
τ∈S

(σ1 · . . . · σrτ)(α)ξn(σ1, . . . , σ jσ j+1, . . . , σr , τ )

+

∑
τ∈S

(σ1 · . . . · σr−1τ)(α)ξn(σ1, . . . , σr−1, τ ). (5-1)

On the other hand, ξn is an r-cocycle, so that δξn(σ1, . . . , σr , τ ) = 0 for every σ1, . . . , σr and τ .
Multiplying by (−1)r (σ1 · . . . · σrτ)(α) and summing over τ ∈ S, we get the equation

0= (−1)r
∑
τ∈S

(σ1 · . . . · σrτ)(α)σ1(ξn(σ2, . . . , σr , τ ))

+

r−1∑
j=1

(−1) j+r
∑
τ∈S

(σ1 · . . . · σrτ)(α)ξn(σ1, . . . , σ jσ j+1, . . . , σr , τ )

+

∑
τ∈S

(σ1 · . . . · σrτ)(α)ξn(σ1, . . . , σr−1, σrτ)−
∑
τ∈S

(σ1 · . . . · σrτ)(α)ξn(σ1, . . . , σr ). (5-2)

Subtracting (5-2) from (5-1), we get

δxS(σ1, . . . , σr )=
∑
τ∈S

(σ1 ·. . .·σr−1τ)(α)ξn(σ1, . . . , σr−1, τ )−
∑
τ∈S

(σ1 ·. . .·σrτ)(α)ξn(σ1, . . . , σr−1, σrτ)

+

∑
τ∈S

(σ1 · . . . · σrτ)(α)ξn(σ1, . . . , σr ).

Now by choice of α, the last term is simply ξn(σ1, . . . , σr ). Thus after rearranging, we have for every
σ1, . . . , σr ∈ H0 the equation

(ξn−δxS)(σ1, . . . , σr )=
∑
τ∈S

(σ1·. . .·σr−1τ)(α)ξn(σ1, . . . , σr−1, τ )−
∑
τ∈S

(σ1·. . .·σrτ)(α)ξn(σ1, . . . , σrτ).

For each τ in S, let σr,τ ∈ H1 be such that τσr,τ ∈ σr S. Then the term on the right hand side of the
previous equation becomes∑

τ∈S

(σ1 · . . . · σr−1τ)(α)
[
ξn(σ1, . . . , σr−1, τ )− ξn(σ1, . . . , τσr,τ )

]
,

so by the choice of H1 we have

val(ξ − δ(xn + xS))= val(ξn − δxS)≥ (n+ 1)c1.
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Finally, set xn+1 := xn+xS where S is arbitrary. The calculations we have done show that val(xn+1−xn)≥

(n − 1)c1 and val(ξ − δxn+1) ≥ (n + 1)c1, as required. This concludes the induction and with it the
proof. □

5C. Descent of semilinear representations. In this subsection we suppose that G and 3̃ satisfy the
axioms (TS1), (TS2) and (TS3).

Given an integer k > c1+ 2c2+ 2c3 and an open subgroup G0 ⊂ G we write Modk
3̃+

(G, G0) for the
category of finite free 3̃+-semilinear representations M+ of G such that in some basis of M+, we have
Mat(g) ∈ 1+ pkMatd(3̃+) for every g ∈ G0.

The following will allow us to descend coefficients from 3̃+ to the much smaller ring 3+H0,n =

3̃+ ∩3H0,n . It is a simple modification of [Berger and Colmez 2008, Proposition 3.3.1] and is proved in
exactly the same way.

Proposition 5.9. Let M+ ∈Modk
3̃+

(G, G0). Then for n ≥ n(G0) and H0 = H ∩G0 there exists a unique
finite free 3+H0,n-submodule D+H0,n(M+) of M+ such that:

(1) D+H0,n(M+) is fixed by H0 and stable by G.

(2) The natural map 3̃+⊗3+H0,n
D+H0,n(M+)→ M+ is an isomorphism. In particular, D+H0,n(M+) is free

of rank = rank M+.

(3) D+H0,n(M+) has a basis which is c3-fixed by G0/H0, meaning that for γ ∈ G0/H0 we have

val(Mat(γ )− 1) > c3.

Corollary 5.10. Let M+ ∈Modk
3̃+

(G, G0), M = M+⊗3̃+ 3̃ and r ≥ 1. The map

Hr (H0, M+)→ Hr (H0, p−2c1 M+)

is 0 and H r (H0, M)= 0.

Proof. This follows from Proposition 5.8 since M+ has a basis fixed by H0. □

Lemma 5.11. Let H0 be an open subgroup of H , n ≥ n(H0) an integer, γ ∈ 0H an element such that
n(γ ) ≤ n and B ∈ Ml×d(3̃H0) a matrix. Let d ∈ N ∪ {∞}. Suppose there are V1 ∈ GLl(3H0,n) and
V2 ∈ GLd(3H0,n) such that val(V1− 1), val(V2− 1) > c3 and γ (B)= V1 BV2. Then B ∈Ml×d(3H0,n).

Proof. The proof is exactly the same as that of [Berger and Colmez 2008, Lemma 3.2.5]. The only
difference between that lemma and the statement appearing here is that there one further assumes l= d and
B ∈ GLd(3̃H0), but these assumptions are not used in the proof. In fact, the very same argument shows
the result holds for matrices with d =∞, as long as we understand that an infinite matrix has coefficients
which tend to zero as the indexes tend to∞. Namely, if R is a ring with valuation and l, d ∈N∪{∞}, let
Ml×d(R) be the set of matrices A= (ai j ) of size l×d and ai j ∈ R such that val(ai j )→∞ as i+ j→∞.
The argument then works in the same way. □
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Using Lemma 5.11, we have the following description of D+H0,n(M+). It explains why D+H0,n(M+) is
functorial in M+.

Proposition 5.12. Given M+ ∈ Modk
3̃+

(G, G0), the module D+H0,n(M+) is the union of all finitely
generated 3+H0,n-submodules of M+ which are G-stable, H0-fixed and admit a c3-fixed set of generators.

Proof. Indeed, if we have a submodule generated by c3-fixed elements f1, . . . , fl and if e1, . . . , ed is a
c3-fixed basis, write

fi = Bei

for some matrix B ∈Ml×d(3̃H0,+). Then we have

Mat fi (γ )B = γ (B)Matei (γ ).

Here by Mat fi (γ ) we mean any matrix which represents the action in terms of the fi . It is not a
priori unique as the submodule may not be free. Nevertheless, we have val(Mat fi (γ )− 1) > c3 by the
assumption, and this implies that Mat fi (γ ) is invertible by [Berger and Colmez 2008, Lemma 3.1.2]. So
by Lemma 5.11

B ∈Ml×d(3H0,n)∩Ml×d(3̃H0,+)=Ml×d(3+H0,n),

hence the submodule generated by the fi is contained in D+H0,n(M+). □

Corollary 5.13. Let M+, N+ ∈Modk
3̃+

(G, G0). Then for n ≥ n(G0),

(i) There are natural isomorphisms

D+H0,n(M+)⊗3+H0,n
D+H0,n(N+)−→∼ D+H0,n(M+⊗3̃+ N+),

D+H0,n(M+)⊕ D+H0,n(N+)−→∼ D+H0,n(M+⊕ N+).

(ii) If M+ ⊂ N+ then D+H0,n(M+)= D+H0,n(N+)∩M+.

5D. Descent of Can(G0, M). From here on G is a compact p-adic Lie group and G0 ⊂ G is a small
subgroup, as in Section 2. We continue to assume G and 3̃ satisfy the axioms (TS1), (TS2) and (TS3).
The reader may also want to recall our notation and conventions of Section 1B regarding Banach spaces,
completions and tensor products.

By Proposition 2.3, we have for V+l = Vl(G0)∩ Can(G0, Qp)
+ an equality

∧

lim
−−→
l∈N

V+l = Can(G0, Qp)
+.

For M ∈Modk
3̃+

(G, G0) we have(
lim
−−→
l∈N

M+⊗Zp V+l

)∧
∼= M+ ⊗̂Zp C

an(G0, Qp)
+.

Each M+⊗Zp V+l is a finite free 3̃+-semilinear representation of G0. The action of Gk on each of the
V+l is trivial mod pk by Lemma 2.2, and hence its action on M+⊗V+l is trivial mod pk . So if n ≥ n(Gk),
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we may define using Proposition 5.8 a 3+Hk ,n-submodule of M+ ⊗̂Zp Can(G0, Qp)
+ given by

D+Hk ,n,∞(M+) :=
(

lim
−−→
l∈N

D+Hk ,n(M+⊗ V+l )

)∧
.

The module D+Hk ,n,∞(M+) is then G0-stable and fixed by Hk . By Proposition 5.8 we have natural
isomorphisms

3̃+⊗3+Hk ,n
D+Hk ,n(M+⊗ V+l )−→∼ M+⊗ V+l .

This shows that D+Hk ,n,∞(M+) is generated by c3-fixed elements which give it the sup norm, and there is
an isometry

3̃+ ⊗̂3+Hk ,n
D+Hk ,n,∞(M+)−→∼ M+ ⊗̂Zp C

an(G0, Qp)
+.

The next proposition follows from Proposition 5.12

Proposition 5.14. A finitely generated 3+Hk ,n-submodule of M+ ⊗̂Zp Can(G0, Qp)
+ which is stable by G0,

fixed by Hk and is generated by a c3-fixed set of elements is contained in D+Hk ,n,∞(M+).

In particular, we have the function log defined, by abuse of notation as the composition of

χ : G0 ↠ G0/H0 ↪→ Z×p and log : Z×p →Qp.

It lies in Can(G0, Qp)
+. Note that for g ∈ G0, we have

g(log)= log+ log(g−1)= log− log(g).

Lemma 5.15. The elements 1 and log of 3̃+ ⊗̂ Can(G0, Qp)
+ lie in D+Hk ,n,∞(3̃+).

Proof. The 3+Hk ,n-submodule generated by 1 and log in 3̃+ ⊗̂Can(G0, Qp)
+ is stable under the G0 action

and fixed by Hk . Furthermore, we claim the elements 1 and log are c3-fixed by the action of Gk/Hk . This
is clear for 1. To show this for log, notice that if g pk

∈ Gk/Hk (recalling that Gk = G pk

0 ) then

val(g pk
− 1)(log)≥ k > c1+ 2c2+ 2c3 > c3.

We conclude by Proposition 5.14. □

Proposition 5.16. (i) D+Hk ,n,∞(3̃+) is a subring of 3̃+ ⊗̂ Can(G0, Qp)
+.

(ii) The module structure of M+ ⊗̂Can(G0, Qp)
+ over 3̃+ ⊗̂Can(G0, Qp)

+ restricts to a module structure
of D+Hk ,n,∞(M+) over D+Hk ,n,∞(3̃+).

Proof. D+Hk ,n,∞(3̃+) contains 1 by Proposition 5.14. Next, one has the ring and module structure maps

3̃+⊗ 3̃+→ 3̃+, 3̃+⊗M+→ M+.

Applying Proposition 5.12, taking the inductive limit and then taking completions, we get natural maps

D+Hk ,n,∞(3̃+)⊗ D+Hk ,n,∞(3̃+)→ D+Hk ,n,∞(3̃+)

and

D+Hk ,n,∞(3̃+)⊗ D+Hk ,n,∞(M+)→ D+Hk ,n,∞(M+),

giving the desired ring and module structures. □
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5E. Computation of higher locally analytic vectors, I. Let M+ ∈Modk
3̃+

(G, G0) and M = M+⊗3̃+ 3̃.
In this subsection we shall do a first simplification towards the computation of the groups Ri

G-la(M) for
i ≥ 1.

If G0 is any open subgroup of G, we have Ri
G-la(M)= Ri

G0-la(M) so that if Gn = G pn

0 we have

Ri
G-la(M)= lim

−−→
n

Hi(Gn, M ⊗̂Qp C
an(Gn, Qp)

)
.

Upon possibly making G0 smaller, we may assume that G0 is small and that χ : G0/H0→ Z×p has image
isomorphic to Zp. Write 0n = Gn/Hn .

Lemma 5.17. For i ≥ 1,

Hi(Gn, M ⊗̂Qp C
an(Gn, Qp)

)
∼= Hi(0n+k, (M ⊗̂Qp C

an(Gn, Qp))
Hn+k

)
.

Proof. By the Hochshild–Serre spectral sequence and the vanishing of Hn+k cohomologies in (iii) of
Proposition 5.8 (taking the inductive system M+k+k′ = M+⊗ V+k+k′ for k ′ ≥ 0), we have

Hi(Gn, M ⊗̂Qp C
an(Gn, Qp)

)
∼= Hi(Gn/Hn+k, (M ⊗̂Qp C

an(Gn, Qp))
Hn+k

)
.

Now the inclusion 0n+k ↪→ Gn/Hn+k induces an isomorphism

Hi(Gn/Hn+k, (M ⊗̂Qp C
an(Gn, Qp))

Hn+k
)
∼= Hi(0n+k, (M ⊗̂Qp C

an(Gn, Qp))
Hn+k

)
.

This again follows from Hochshild–Serre, once we notice all the higher cohomologies of Gn/Gn+k

appearing vanish. This is because Gn/Gn+k is finite and the coefficients are rational. □

Corollary 5.18. Ri
Gn-an(M)= 0 for i ≥ 2 and n ≥ 0.

Proof. Because 0n+k ∼= Zp. □

This proves the first part of Theorem 5.1. It remains to study the 1st derived group

R1
G-la(M)= lim

−−→
n

H1(0n+k, (M ⊗̂Qp C
an(Gn, Qp))

Hn+k
)
.

Now for m ≥ n(Gn+k), we have by Proposition 5.9 a natural isomorphism

3̃+⊗ lim
−−→

ℓ

D+Hk ,n(M+⊗ V+ℓ )∼= M+⊗ lim
−−→
ℓ∈N

V+ℓ .

Taking the p-adic completion, we obtain a natural isomorphism

3̃+ ⊗̂3+Hn+k ,m
D+Hn+k ,m,∞(M+)−→∼ M+ ⊗̂ Can(Gn, Qp)

+

and thus
3̃+,Hn+k ⊗̂3+Hn+k ,m

D+Hn+k ,m,∞(M+)−→∼ (M+ ⊗̂ Can(Gn, Qp)
+)Hn+k .

On the other hand, recall we have the trace maps

RHn+k ,m : 3̃
Hn+k →3Hn+k ,m

which induce for XHn+k ,m = ker RHn+k ,m a decomposition

3̃Hn+k =3Hn+k ,m ⊕ X Hn+k ,m .

Therefore, we can decompose

3̃Hn+k ⊗̂3Hn+k ,m DHn+k ,m,∞(M)∼= DHn+k ,m,∞(M)⊕
(
XHn+k ,m ⊗̂3Hn+k ,m DHn+k ,m,∞(M)

)
,
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and so we get the description

R1
G-la(M)= lim

−−→
n

H1(0n+k, DHn+k ,m,∞(M))⊕H1(0n+k, XHn+k ,m ⊗̂3Hn+k ,m D+Hn+k ,m,∞(M)
)
,

where in each object of the direct limit, we take m ≥ n(Gn+k).

5F. Computation of higher locally analytic vectors, II. If m ≥ 0 is an integer and γ is an element of a
group, write γm for γ pm

. The following simple lemma will be used to compare the behavior of (γ − 1)m

and γm − 1.

Lemma 5.19. Let ℓ≥ 0. The element X pℓ

− 1 of the ring Zp[X ] is in the ideal generated by the elements
pi (X − 1)ℓ+1−i for 0≤ i ≤ ℓ.

Proof. For ℓ≥ 1 we have

X pℓ

− 1= (X pℓ−1
− 1)

(p−1∑
i=1

X i pℓ−1
)
= (X pℓ−1

− 1)

(p−1∑
i=1

1+ (X i pℓ−1
− 1)

)

= (X pℓ−1
− 1)

(
p+

p−1∑
i=1

(X i pℓ−1
− 1)

)
,

so that X pℓ

− 1 lies in the ideal

(X pℓ−1
− 1)(p, (X pℓ−1

− 1))= (p(X pℓ−1
− 1), (X pℓ−1

− 1)2).

Let Iℓ be the ideal generated by the elements pi (X − 1)ℓ+1−i for 0 ≤ i ≤ ℓ. It is easy to check that
(pIℓ−1, I 2

ℓ−1) is contained in Iℓ. Hence, induction on ℓ shows that X pℓ

− 1 belong to Iℓ. □

So far we have only used the axioms (TS1), (TS2) and (TS3). We shall now use the final axiom (TS4),
which proves us with a positive number t > 0.

Proposition 5.20. If (TS4) holds, then

(i) 3H,n is 0t -analytic for an open subgroup of 0 depending on t.

(ii) There exists an element s = s(t, c3)= s(n, m, G0, c3) such that for γ ∈ Gn+k/Hn+k we have

(γ − 1)D+Hn+k ,m,∞(M+)⊂ ps D+Hn+k ,m,∞(M+).

(iii) DHn+k ,m,∞(M) is 0-analytic for some open subgroup 0 of 0n+k which depends on n, m, G and c3.

Proof. Once (ii) is established, we claim parts (i) and (iii) follow from [Pan 2022a, Example 2.1.9]. Let
us elaborate a little bit. Take ℓ large enough so that

(ℓ− i)+ (i + 1)t = ℓ+ t + (t − 1)i ≥ 2

for each 0≤ i ≤ ℓ. Then for such ℓ (which only depends on t) we have by Lemma 5.19

(γℓ− 1)(3+H,n)⊂ p23+H,n,

so that if b ∈3H,n , the series
γ x

ℓ (b)=
∑
n≥0

( x
n

)
(γℓ− 1)n(b)
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converges. This shows b is analytic for the subgroup generated by γℓ. The argument for (iii) given (ii) is
similar.

To show part (ii), recall the identity

(γ − 1)(ab)= (γ − 1)(a)b+ γ (a)(γ − 1)(b).

Axiom (TS4) implies that if a ∈3+H,m and b ∈ D+Hn+k ,m,∞(M+) is c3-fixed, then ab is min(c3, t)-fixed.
Since the c3-fixed elements topologically generate D+Hn+k ,m,∞(M+), it follows that every element of
D+Hn+k ,m,∞(M+) is s =min(c3, t)-fixed. □

Using this we can show

Lemma 5.21. Given n there is m sufficiently large depending only on n (and not on M) such that

H1(0n+k, XHn+k ,m ⊗̂3Hn+k ,m DHn+k ,m,∞(M)
)
= 0.

Proof. (This argument is adapted from [Pan 2022a, Lemma 3.6.6].) Fix m0 ≥ n(Gn+k). From the
discussion after Corollary 5.18, for m ≥ m0 we have a natural isomorphism

3̃Hn+k ⊗̂3Hn+k ,m DHn+k ,m,∞(M)∼= DHn+k ,m,∞(M)⊕
(
XHn+k ,m ⊗̂3Hn+k ,m DHn+k ,m,∞(M)

)
.

By Proposition 5.12, we have an isomorphism

3Hn+k ,m ⊗̂ DHn+k ,m0,∞(M)∼= DHn+k ,m,∞(M).

Let X+Hn+k ,m = XHn+k ,m ∩ 3̃+. We get an induced isomorphism

X+Hn+k ,m ⊗̂3+Hn+k ,m
D+Hn+k ,m,∞(M+)∼= X+Hn+k ,m ⊗̂3+Hn+k ,m0

D+Hn+k ,m0,∞
(M).

Let γ be a generator of 0n+k . By Proposition 5.20, there is some s such that

(γ − 1)D+Hn+k ,m0,∞
(M+)⊂ ps D+Hn+k ,m0,∞

(M+).

If ℓ is sufficiently large Proposition 5.20 implies that

(γℓ− 1)D+Hn+k ,m0,∞
(M+)⊂ p2c3 D+Hn+k ,m0,∞

(M+)

(we take 2c3 rather than c3 to take of convergence later in this argument). Choose such an ℓ, and take m
large enough so that n(γℓ)≤m. Then by (TS3) we have val((γℓ−1)−1(x))≥ val(x)−c3 for x ∈X+Hn+k ,m .

We will now show that any element of XHn+k ,m ⊗̂3Hn+k ,m DHn+k ,m,∞(M) is in the image of γℓ−1. This
will also imply any element is in the image of γ − 1, since γℓ− 1 is divisible by γ − 1, and hence it will
further imply that the cohomology

H1(0n+k, XHn+k ,m ⊗̂3Hn+k ,m DHn+k ,m,∞(M)
)
∼= XHn+k ,m ⊗̂3Hn+k ,m DHn+k ,m,∞(M)/(γ − 1)

is 0.
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To do this last step, it suffices to show that each simple tensor

a⊗ b ∈ X+Hn+k ,m ⊗̂3+Hn+k ,m0
D+Hn+k ,m0,∞

(M+)∼= X+Hn+k ,m ⊗̂3+Hn+k ,m
D+Hn+k ,m,∞(M+)

is in the image of γℓ−1. Choose an integer r so that pr a is in the image of (γl−1)−1 restricted to X+Hn+k ,m

(choose any r ≥ c3). It suffices to show pr a⊗ b is in the image of γℓ− 1. So write pr a = (γℓ− 1)−1(c)
for c ∈ X+Hn+k ,m , and consider the series

y =
+∞∑
i=0

(γ−1
l − 1)−i (c)⊗ (γl − 1)i (b)=

+∞∑
i=0

γ i
l (1− γl)

−i (c)⊗ (γl − 1)i (b).

This series converges, because by our choices

val((γℓ−1)−1(x))≥ val(x)−c3 on X+Hn+k ,m and (γℓ−1)(x)≥ val(x)+2c3 on D+Hn+k ,m0,∞
(M+)!

A direct computation then gives

(γℓ− 1)(y)= (γℓ− 1)(c)⊗ b = pr a⊗ b,

so pr a⊗ b is in the image of γℓ− 1, as required. □

Combing Lemma 5.21 with the discussion after Corollary 5.18, we get the following description of
R1

G-la(M).

Proposition 5.22. R1
G-la(M)= lim

−−→
n,m

H1(0n+k, DHn+k ,m,∞(M)
)
,

where the direct limit is taken over pairs n, m.

5G. Computation of higher locally analytic vectors, III. We are now almost ready to prove our theorem.
First we prove a lemma that will be used.

Lemma 5.23. Let 0 = γ Zp and let B be a Banach representation of 0. Suppose B = B0-an, and that

∥γ − 1∥< p−1/(p−1).

Then ∥b∥ = ∥b∥0-an for any b ∈ B.

Proof. We have for x ∈ Zp that

γ x(b)=
∑ ∇

k
γ (b)

k!
xk

where ∇γ = log(γ ). By definition

∥b∥0-an = sup
k≥0
{∥∇

k
γ (b)/k!∥}.

Now recall we have
∇γ = (γ − 1)

∑
m≥0

(−1)m (γ − 1)m

m+ 1
,

so ∥∇γ (b)∥ ≤ ∥γ − 1∥∥b∥, and more generally

∥∇
k
γ (b)∥ ≤ ∥γ − 1∥k∥b∥.
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It follows that for k ≥ 1 we have

∥∇
k
γ (b)/k!∥ ≤ p−k/(p−1)

∥γ − 1∥k∥b∥< ∥b∥,

so that ∥b∥0-an = ∥b∥. □

Proof of Theorem 5.1. By Proposition 5.22, R1
G-la(M)= lim

−−→n,m H1(0n+k, DHn+k ,m,∞(M)). Fix n and m.
Given b ∈ DHn+k ,m,∞(M) we shall show it becomes zero in some H1(0l+k, DHl+k ,m′,∞(M)) for some
ℓ≥ n, m′ ≥ m — this will show the direct limit is zero. By Proposition 5.20 we know there is an open
subgroup 0 ⊂ 0n+k such that DHn+k ,m,∞(M) is 0-analytic. Writing γ for a generator of 0, we may take
0 small enough so that ∥γ − 1∥< p−1/(p−1), and hence Lemma 5.23 applies. Thus, writing ∥·∥n for the
norm on DHn+k ,m,∞(M) induced from its inclusion into M ⊗̂ Can(Gn, Qp), we have ∥b∥n = ∥b∥0-an for
b ∈ DHn+k ,m,∞(M). We know there is a real number D > 0 such that if b ∈ DHn+k ,m,∞(M) then

∥∇γ (b)∥n = ∥∇γ (b)∥0-an ≤ D∥b∥0-an = D∥b∥n.

Now choose ℓ≥ n such that 0l has index pt in 0, where t is taken large enough so that

2p1/(p−1)D ≤ pt .

Let γt = γ pt
be the generator of 0ℓ, and let logℓ ∈ Can(Gℓ, Qp) : Gℓ ↠ Gℓ/Hℓ→ Zp be the logarithm

so that logℓ(γt) = 1. Now let m′ ≥ m be large enough so that DHℓ+k ,m′,∞(M) is defined. Recall that
by Lemma 5.15, logℓ ∈ DHℓ+k ,m′,∞(3̃+). Let 0′ ⊂ 0ℓ+k be an open subgroup so that DHl+k ,m′,∞(M) is
0′-analytic and write pq for the index of 0′ in 0ℓ+k . Finally, write γ ′ for the generator of 0′. Again by
making 0′ smaller we may assume ∥γ ′− 1∥< p−1/(p−1) on DHℓ+k ,m′,∞(M). We have

γ ′ = (γ
pk

t )pq
= γ pt+k+q

.

Let zℓ = logℓ /pk+q
∈ DHℓ+k ,m′,∞(3̃), the one computes that γ ′(zℓ) = zℓ + 1. Therefore, ∇γ ′(zℓ) = 1.

Now consider the series

bzℓ−∇γ ′(b)
z2
ℓ

2!
+∇

2
γ ′(b)

z3
ℓ

3!
− · · ·

in DHℓ+k ,m′,∞(M). We claim first it converges with respect to the norm ∥·∥ℓ of DHℓ+k ,m′,∞(M). Indeed,
we have

∥zℓ∥ℓ = pk+q

and (noting that ∇ i
γ ′ = pi(t+k+q)

∇
i
γ )

∥∇
i
γ ′(b)∥ℓ = p−i(t+k+q)

∥∇
i
γ (b)∥ℓ ≤ p−i(t+k+q)

∥∇
i
γ (b)∥n ≤ p−i(t+k+q)Di

∥b∥n,

so the general term of series has size

∥∇
i
γ ′(b)/(i + 1)! · zi+1

ℓ ∥ℓ≪ p−i(t+k+q)Di pi(k+q) pi/(p−1)
= (p−t Dp1/(p−1))i

≤ 2−i ,

so the series converges in the in the ∥·∥ℓ norm. But then the series must also converge with respect to
∥·∥0′-an because of Lemma 5.23. So if we write y for the sum of the series, it makes sense to speak of
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the derivative ∇γ ′(y), and one computes that ∇γ ′(y)= b. So b is in the image of

∇γ ′ : DHℓ+k ,m′,∞(M)→ DHℓ+k ,m′,∞(M),

hence also in the image of γ ′−1, which divides ∇γ ′ . But γ ′ = γ
pq

t+k so γt+k−1 divides γ ′−1. It follows
that b is also in the image of γt+k − 1. This means that b is 0 in

DHℓ+k ,m′,∞(M)/(γt+k − 1)∼= H1(0ℓ+k, DHℓ+k ,m′,∞(M))

and we are done! □

Remark 5.24. (1) Since the choices of ℓ and m′ did not depend on b, each DHn+k ,m,∞(M) maps in its
entirety to 0 in some DHl+k ,m′,∞(M). This shows that M is strongly LA-acyclic in the sense of [Pan
2022a, §2.2]. After this work was completed, Pan proved that strong LA-acyclicity is in fact automatic in
this setting, see [Pan 2022b, Proposition 2.3.6].

(2) The proof of Theorem 5.1 shows the vanishing of lim
−−→n,m H1

(
Lie(0n+k), DHn+k ,m,∞(M)

)
, which is a

priori stronger than the vanishing of lim
−−→n,m H1(0n+k, DHn+k ,m,∞(M)).

6. Descent to locally analytic vectors

Work again in the setting of Sections 3–4. We shall assume in this section that K∞ contains an unramified
twist of the cyclotomic extension. The purpose of this section is to prove the following theorem.

Theorem 6.1. The functor E 7→OX ⊗Ola
X
E gives rise to an equivalence of categories

{locally analytic vector bundles on X } ∼= {0-vector bundles on X }.

The inverse functor is given by Ẽ 7→ Ẽ la.

In the rest of this section, we shall prove that given a 0-vector bundle Ẽ on X , the natural map

OX ⊗Ola
X
Ẽ la
→ Ẽ

is an isomorphism. This is enough for proving Theorem 6.1. Indeed, if this isomorphism is granted, then
in particular it follows from Proposition 2.1 that Ẽ la is locally free over Ola

X , so that the functor Ẽ 7→ Ẽ la

is valued in the correct category and is fully faithful. On the other hand, it follows from Example 4.5(2)
that it is also essentially surjective.

6A. Computations at the stalk. In this section, w let Ẽ be a 0-vector bundle. We have the fiber Ẽk(x∞)

at x∞, a finite dimensional K̂∞-semilinear representation of 0, and the completed stalk Ẽ∧,+
x∞ , a finite free

B+dR(K̂∞)= B+,H
dR -module. We define

DSen(Ẽ)= (Ẽk(x∞))
la and D+dif(Ẽ)= (Ẽ∧,+

x∞ )pa.

If V is a p-adic representation and Ẽ = Ẽ(V ) as in Example 3.4, and if 0 = 0cyc, then we recover the
classical invariant DSen(V ) according to [Berger and Colmez 2016, théorème 3.2]. The invariant D+dif(V )
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is also recovered, see [Porat 2022, Proposition 3.3.]. It is therefore natural to extend these definitions to
arbitrary Ẽ and 0 as we have done here.

There is the following decompletion result.

Theorem 6.2. (i) The natural map K̂∞⊗K̂ la
∞

DSen(Ẽ)→ Ẽk(x∞) is an isomorphism.

(ii) The natural map B+dR(K̂∞)⊗B+dR(K̂∞)pa D+dif(Ẽ)→ Ẽ∧,+
x∞ is an isomorphism.

Proof. The fiber Ẽk(x∞) is a finite dimensional K̂∞-semilinear representation of 0. So (i) follows from
[Berger and Colmez 2016, théorème 3.4]. For (ii), write Iθ for the maximal ideal of B+dR(K̂∞). It suffices
to prove that for n ≥ 1 the natural map

B+dR(K̂∞)/I n
θ ⊗(B+dR/I n

θ )la (Ẽ x∞/I n
θ )la
→ Ẽ x∞/I n

θ (∗)

is an isomorphism.
By Theorem 5.1 (more precisely, Corollary 5.6(i)), we have R1

la(I n−1
θ Ẽ x∞/I n

θ )= 0, so by devissage the
map

(Ẽ x∞/I n
θ )la
→ (Ẽ x∞/Iθ )la

= DSen(Ẽ)

is surjective. It follows from the case n = 1 and Nakayama’s lemma that (∗) is surjective too.
For injectivity, we argue as follows. Let ē1, . . . , ēd be a basis of DSen(Ẽ) over the field K̂ la

∞
. By what

was just proved, we may choose a lifting e1, . . . , ed of this basis to (Ẽ x∞/I n
θ )la. Then 1⊗ e1, . . . , 1⊗ ed

generate

B+dR(K̂∞)/I n
θ ⊗(B+dR/I n

θ )la (Ẽ x∞/I n
θ )la

according to Nakayama’s lemma.
Now suppose that ∑

xi ⊗ ei ∈ B+dR(K̂∞)/I n
θ ⊗(B+dR/I n

θ )la (Ẽ x∞/I n
θ )la

is in the kernel of (∗), so its image is 0 mod I n
θ . Choose a generator ξ of Iθ . Reducing mod Iθ and using

the injectivity of (∗) for n = 1, we get the relation
∑

x̄i ⊗ ēi = 0. As the ēi form a basis, each xi must be
divisible by ξ . Writing xi = ξ x ′i , we have∑

xi ⊗ ei =
∑

ξ x ′i ⊗ ei = ξ
∑

x ′i ⊗ ei ,

so the image of ∑
x ′i ⊗ yi ∈ B+dR(K̂∞)/I n−1

θ ⊗(B+dR/I n−1
θ )la (Ẽ x∞/I n−1

θ )la

in Ẽ x∞/I n−1
θ is 0. The injectivity now follows from induction. □

Let I be a closed interval with | log(I )|< log(p) and let

M̃I = H0(XI , Ẽ).

Theorem 5.1 allows us to prove the following Proposition 6.3; we shall subsequently prove a stronger
statement in Theorem 6.5.
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Proposition 6.3. There are natural isomorphisms

DSen(Ẽ)∼= M̃ la
I /(Iθ M̃I )

la and D+dif(Ẽ)∼= lim
←−−

n
M̃ la

I /(I n
θ M̃I )

la.

Proof. As Iθ is principal, Iθ M̃I is finite free over B̃I . By Corollary 5.6(ii), the cohomology R1
la(Iθ M̃I )

vanishes. Applying la to the short exact sequence

0→ Iθ M̃I → M̃I → M̃I Iθ/M̃I → 0

we get M̃ la
I /(Iθ M̃I )

la
−→∼ (M̃I /Iθ M̃I )

la
= DSen(Ẽ), which gives the first isomorphism. By the same

argument M̃ la
I /(I n

θ M̃I )
la
−→∼ (M̃I /I n

θ M̃I )
la for n ≥ 1. To get the second isomorphism, take the limit

over n. □

6B. Descent to locally analytic vectors. In this subsection we will give a proof of Theorem 6.1. We
continue with the notation of Section 6A.

We start with the following key proposition, which builds upon all of the work done in Section 4,
Section 5 and the previous subsections of Section 6.

Proposition 6.4. Let I = [r, (p−1)pn
] be an interval with n ≥ 1 and | log(I )|< log(p). Then the natural

map

B̃I ⊗B̃la
I

M̃ la
I → M̃I (6-1)

is an isomorphism.

Proof. First let us explain how to reduce to the cyclotomic case. After an unramified twist, which causes
no obstructions to descent, we may assume Kcyc ⊂ K∞. Set

M̃I,cyc := M̃Gal(K∞/Kcyc)

I .

We then have

M̃I ∼= B̃I ⊗B̃I,cyc
M̃I,cyc

(see for example [Berger and Colmez 2008, corollarie 3.2.2]), and if the conclusion of the proposition
holds for the cyclotomic case, we have

M̃I,cyc ∼= B̃I,cyc⊗B̃la
I,cyc

M̃ la
I,cyc

and hence

M̃I ∼= B̃I ⊗B̃la
I,cyc

M̃ la
I,cyc.

This shows that M̃I has a basis of locally analytic vectors and by Proposition 2.1 the map (6-1) is an
isomorphism.

It remains to establish the proposition in the cyclotomic case where B̃I = B̃I,cyc. By Proposition 4.2,
B̃I,cyc is flat as a B̃la

I,cyc-module. Since M̃ la
I,cyc is torsionfree as a B̃la

I,cyc-module, it follows from [Stacks
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2005–, 0AXM] that B̃I,cyc ⊗B̃la
I,cyc

M̃ la
I,cyc is also torsionfree. By Proposition 6.3, the completion at

Iθ ⊂ B̃I,cyc of (6-1) is nothing but the map

B+dR⊗B+,pa
dR

D+dif(Ẽ)→ Ẽ∧,+
x∞ ,

so by Theorem 6.2, the map (6-1) is an isomorphism at least after taking this completion. As B̃I,cyc is
a PID (see Proposition 3.1), it follows that (6-1) is injective with cokernel supported at finitely many
maximal ideals. These maximal ideals correspond to a finite set of points on X , and this set must form a
finite orbit under the action of 0. But by [Fargues and Fontaine 2018, Proposition 10.1.1], the only point
with finite orbit under the 0-action is x∞! Thus the cokernel of (6-1) is supported at Iθ . But then it must
be 0, as we have just shown the completion at Iθ is an isomorphism. □

Proof of Theorem 6.1. Let U be an open subaffinoid of XI for I = [r, (p− 1)pn
]. Then we claim that the

natural map

OX (U )⊗Ola
X (U ) H0(U, Ẽ la)→ H0(U, Ẽ)

is an isomorphism. Indeed, we have

H0(U, Ẽ)∼=OX (U )⊗B̃I,cyc
M̃I,cyc ∼=OX (U )⊗B̃la

I,cyc
M̃ la

I,cyc.

Thus H0(U, Ẽ) has a basis of locally analytic elements. By Proposition 2.1, we have an isomorphism

OX (U )⊗OX (U )la H0(U, Ẽ)la
→ H0(U, Ẽ),

from which the claim follows.
Now let (OX ⊗Ola

X
Ẽ la

)◦ be the presheaf on X sending

U 7→OX (U )⊗Ola
X (U ) Ẽ

la
(U ).

The XI for various I of the form I = [r, (p− 1)pn
] with | log(I )|< log(p) give a covering of X , so the

claim shows that the natural map

(OX ⊗Ola
X
Ẽ la

)◦→ Ẽ

is an isomorphism on stalks. Theorem 6.1 follows. □

The proof of Theorem 6.1 essentially shows that E is quasicoherent. This leads to a simple interpretation
of DSen and D+dif in terms of E as follows. Given a locally analytic vector bundle define

DSen(E)= Ek(x∞),

the fiber of E at x∞, and

D+dif(E)= Ê+x∞,

the completed stalk of E at x∞. These would not a priori be the same as DSen(Ẽ) and D+dif(Ẽ), because
quotients in general do not commute with locally analytic vectors, but they do in this case.
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Theorem 6.5. Let Ẽ =OX ⊗Ola
X
E . There are natural isomorphisms

DSen(Ẽ)∼= DSen(E) and D+dif(Ẽ)∼= D+dif(E).

Proof. For I = [r, (p− 1)pn
] with | log(I )|< log(p) write M̃I = H0(XI , Ẽ). For any sufficiently small

U containing x∞, the proof of Theorem 6.1 shows that

H0(U, E)∼=OX (U )la
⊗B̃la

I
M̃ la

I .

It follows that the quotient Ex∞/mn
x∞Ex∞ of the stalk Ex∞ by the n-th power of the maximal ideal

mx∞ ⊂Ola
X ,x∞ is identified with the quotient M̃ la

I /(I n
θ M̃I )

la. Now use Proposition 6.3. □

7. The comparison with (ϕ, 0)-modules

In this section, we give reminders on (ϕ, 0)-modules and compare them to locally analytic vector bundles.
We keep the notation from Section 6 and the assumption that K η

cyc ⊂ K∞ for some η.

7A. Galois representations and (ϕ, 0)-modules. Recall the notation from Section 3 and let

B̃†
rig = B̃†

rig(K̂∞)= lim
−−→

r
H0(Y[r,∞),OY)= lim

−−→
r

lim
←−−
s≥r

H0(Y[r,s],OY)

be the extended Robba ring. The (ϕ, 0)-actions on Y induce actions on B̃†
rig.

Definition 7.1. A (ϕ, 0)-module over B̃†
rig is a finite free B̃†

rig-module with commuting semilinear (ϕ, 0)-
actions such that in some basis Mat(ϕ) ∈ GLd(B̃†

rig).

We can compare these objects to (ϕ, 0)-vector bundles using two functors. On the one hand, if M̃ is a
(ϕ, 0)-vector bundle, then M̃†

rig = lim
−−→r H0(Y[r,∞),M̃) is a (ϕ, 0)-module. Here, the nontrivial thing one

needs to check is that M̃†
rig is free, and this follows from B̃†

rig being Bézout [Kedlaya 2004, Theorem 3.20].
One the other hand, given a (ϕ, 0)-module M̃†

rig we define a (ϕ, 0)-vector bundle FT(M̃†
rig) as follows.

If M̃†
rig is a (ϕ, 0)-module then for every r ≫ 0 we have a finite free B̃[r,∞)-semilinear 0-representation

M̃[r,∞) together with isomorphisms

ϕ∗ B̃[r,∞)⊗B̃[r/p,∞)
M̃[r/p,∞) −→

∼ M̃[r,∞)

as well as identifications

B̃†
rig⊗B̃[r,∞)

M̃[r,∞) −→
∼ M̃†

rig.

Using the isomorphisms ϕ : B̃[r,∞)−→
∼ B̃[r/p,∞) we can then uniquely extend this to all r > 0 by inductively

defining M̃[r/pn,∞) through the isomorphisms

ϕ∗ B̃[r/pn−1,∞)⊗B̃[r/pn ,∞)
M̃[r/pn,∞) −→

∼ M̃[r/pn−1,∞).

Setting for every r > 0

H0(Y[r,∞), FT(M̃†
rig)) := M̃[r,∞)
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and for every s ≥ r
H0(Y[r,s], FT(M̃†

rig)) := M̃[r,∞)⊗B̃[r,∞)
B̃[r,s]

we obtain a (ϕ, 0)-vector bundle FT(M̃†
rig).

Proposition 7.2. The functors M̃ 7→ lim
−−→r H0(Y[r,∞),M̃) and FT induce an equivalence of categories

{(ϕ, 0)-vector bundles on Y(0,∞)}
∼= {(ϕ, 0)-modules over B̃†

rig}.

Proof. This is well known. See for example the discussion appearing directly after [Scholze and Weinstein
2020, Definition 13.4.3]. The treatment there is given in the situation where there is no 0-action present,
but the same proof works in our setting. □

The following theorem due to Fontaine and Kedlaya gives the relation of these objects with Galois
representations. To formulate it, we need to introduce some terminology. Let y be the point of Y
corresponding to p = 0. A (ϕ, 0)-module over B̃†

rig is called étale if it has a basis for which Mat(ϕ) ∈

GLd(OY,y). We also have the notion of a semistable slope 0 vector bundle on X — we refer the reader to
[Fargues and Fontaine 2018, définition 5.5.1, exemple 5.5.2.1].

Theorem 7.3. The following categories are equivalent.

(1) Finite dimensional Qp-representations of GK .

(2) Étale (ϕ, 0)-modules over B̃†
rig.

(3) 0-vector bundles on X which are semistable of slope 0.

Proof. The equivalence of (2) and (3) follows from Proposition 7.2 and Proposition 3.3. The category
in (1) is equivalent to (ϕ, 0)-modules over B̃ = ÔY,y[1/p], where ÔY,y is the p-adic completion of
OY,y , by the theorem of Fontaine [1990, théorème 3.4.3 and remarque 3.44(c)]. Next, by a relatively
elementary argument, this category is equivalent to the category of (ϕ, 0)-modules over B̃†, see for
example [Kedlaya 2015, Theorem 2.4.5] or [de Shalit and Porat 2019, Theorem 4.3]. Finally, one can
replace B̃† by B̃†

rig by [Kedlaya 2004, Proposition 5.11, Corollary 5.12]. See also [Fargues and Fontaine
2018, proposition 11.2.24]. □

7B. The comparison with locally analytic vector bundles. Let B̃†,pa
rig be the subring of pro-analytic

vectors in B̃†
rig for the action of 0. We have a corresponding version of (ϕ, 0)-modules.

Definition 7.4. A (ϕ, 0)-module M†
rig over B̃†,pa

rig is a finite free B̃†,pa
rig -module with commuting semilinear

(ϕ, 0)-actions such that in some basis Mat(ϕ) ∈GLd(B̃†,pa
rig ), and such that the action of 0 is pro-analytic.

It is étale if B̃†
rig⊗B̃†,pa

rig
M†

rig is so.

The following theorem explains the relationship between (ϕ, 0)-modules and locally analytic vector
bundles.

Theorem 7.5. The following categories are all equivalent.

(1) (ϕ, 0)-modules over B̃†
rig.
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(2) (ϕ, 0)-modules over B̃†,pa
rig .

(3) (ϕ, 0)-vector bundles over Y(0,∞).

(4) Locally analytic ϕ-vector bundles on Y(0,∞).

(5) 0-vector bundles on X .

(6) Locally analytic vector bundles on X .

Proof. The equivalences (1) ⇔ (3) ⇔ (5) are Propositions 7.2 and 3.3. (4) ⇔ (6) is similar to
Proposition 3.3. The proof of (5) ⇔ (6) was given in Theorem 6.1, and (3) ⇔ (4) can be proved
in a similar way. It remains to give an equivalence between (2) and (4). The Frobenius trick functor of
Section 7A induces a functor

FT : {(ϕ, 0)-modules over B̃†,pa
rig } → {Locally analytic ϕ-vector bundles on Y(0,∞)}.

In the other direction we map a locally analytic ϕ-vector bundle M to M†
rig = lim

−−→r H0(Y[r,∞),M). It is
easy to check from the definitions these two are inverses to each other once we know that M 7→M†

rig is
valued in the correct category. So it remains to prove the following:

Claim. M†
rig is a (ϕ, 0)-module over B̃†,pa

rig .

Proof of Claim. We only need to explain why M†
rig is a free B̃†,pa

rig -module. Since we can always descend
along unramified extensions, we may assume Kcyc ⊂ K∞. Then M and M†

rig are both base changed from
their cyclotomic counterparts MGal(K∞/Kcyc) and M†,Gal(K∞/Kcyc)

rig , so we reduce to the cyclotomic case.
To deal with this case, recall the rings BI,cyc from Section 4. The (cyclotomic) Robba ring is defined as

B†
rig,cyc = lim

−−→
r

lim
←−−
s≥r

B[r,s],cyc.

The maps B[r,s],cyc ↪→ B̃I,cyc of Section 4 induce an embedding B†
rig,cyc ↪→ B̃†

rig,cyc = B̃†
rig(K̂cyc). By

[Berger 2016, Theorem B] we have

B̃†,pa
rig =

⋃
n≥0

ϕ−n(B†
rig,cyc),

and since each ϕ−n(B†
rig,cyc) is a Bézout domain [Lazard 1962], the conclusion follows. □

In particular, we recover a decompletion result entirely phrased in terms of (ϕ, 0)-modules:

{(ϕ, 0)-modules over B̃†
rig}
∼= {(ϕ, 0)-modules over B̃†,pa

rig }.

This result recovers the decompletion theorem of Cherbonnier and Colmez [1998] and Kedlaya [2004].

Theorem 7.6. If K∞ = Kcyc, base extension induces an equivalence of categories

{(ϕ, 0)-modules over B†
rig,cyc}

∼= {(ϕ, 0)-modules over B̃†
rig,cyc}.
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Proof. If M is a (ϕ, 0)-module over B̃†,pa
rig,cyc =

⋃
n ϕ−n(B†

rig,cyc) then there exists n ≫ 0 such that M
is defined over ϕ−n(B†

rig,cyc). If e1, . . . , ed is a basis of M then ϕn(e1), . . . , ϕ
n(ed) is a basis defined

over B†
rig,cyc. Therefore the category of (ϕ, 0)-modules over B†

rig,cyc is equivalent to the category of
(ϕ, 0)-modules over B̃†,pa

rig,cyc. But this latter category is equivalent to (ϕ, 0)-modules over B̃†
rig,cyc by

Theorem 7.5. □

8. Locally analytic vector bundles and p-adic differential equations

8A. Modifications of locally analytic vector bundles. We first introduce the following category. It is the
locally analytic version of Berger’s category of B-pairs; see [Berger 2008a].

Definition 8.1. A locally analytic B-pair is a pair W = (We, W+dR), where We is a locally free Ola
X -{∞} =

Ola
X |X -{∞}-module with a semilinear 0-action and W+dR ⊂ Bpa

dR⊗Ola
X -{∞}

We is a 0-stable B+,pa
dR -lattice.

Proposition 8.2. The functor from locally analytic vector bundles to locally analytic B-pairs mapping E
to (E|X -{∞}, D+dif(E)) is an equivalence of categories.

Proof. There is an obvious functor from the category of locally analytic B-pairs to the category of B-pairs.
This leads to a commutative diagram

{locally analytic vector bundles} //

∼=

��

{locally analytic B-pairs}

��

{0-vector bundles}
∼=

// {B-pairs}

The left vertical arrow is an equivalence by Theorem 6.1. The lower horizontal arrow is also an equivalence,
as explained in [Fargues and Fontaine 2018, §10.1.2]. It follows that the functor from locally analytic
B-pairs to B-pairs is essentially surjective, so every B-pair comes from a locally analytic B-pair by
extending scalars. It now follows from Proposition 2.1 that such a locally analytic B-pair is unique. This
allows us to define a functor from B-pairs to locally analytic B-pairs, which gives a quasi-inverse to right
vertical morphism. It therefore has to be an equivalence. By commutativity of the diagram, the upper
horizontal arrow is also an equivalence, as required. □

Definition 8.3. Given two locally analytic vector bundles E1 and E2 we say that E2 is a modification of E1

if E1|X -{∞} ∼= E2|X -{∞}.

Note that in particular any 0-stable B+,pa
dR -lattice N ⊂ Ddif(E) defines a modification of E by taking

the pair (E|X -{∞}, N ).

Remark 8.4. We could have also defined this notion of modification in terms of usual B-pairs. Our
choice of presentation is meant to illustrate that one can speak of modifications without leaving the locally
analytic realm.
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8B. de Rham and C p-admissible locally analytic vector bundles. Let E be a locally analytic vector
bundle. We say that:

• E is Cp-admissible if dimK E0=1
x∞ = rank(E).

• E is de Rham if DdR(E) := dimK Ê0=1
x∞ = rank(E).

If V is a p-adic representation and E = Ẽ(V )la then E0=1
x∞ = (Cp⊗ V )GK and DdR(E)= DdR(V ), so this

extends the usual definitions.
In what follows, note that DdR(E) has a natural filtration induced from the Iθ filtration on Ê x∞ .

Definition 8.5. Suppose E is de Rham.

(1) NdR(E) is the modification of E given by the lattice DdR(E)⊗K B+,pa
dR ⊂ Ddif(E). It is Cp-admissible.

(2) MdR(E) is the locally analytic ϕ-vector bundle corresponding to NdR(E).

8C. The surfaces Ylog,L and Xlog,L . Fargues and Fontaine [2018, §10.3.3] define a scheme X log. It
is a line bundle over the schematic Fargues–Fontaine curve XFF = XFF(Cp) with a natural projection
π : X log→ X ; further, it has a GK -action and π is GK -equivariant.

We let Xlog be the analytification of X log. If L is a finite extension of K , we set

Xlog,L := Xlog/Gal(K/L∞).

(Alternatively, this can be defined as the analytification of the quotient of X log by Gal(K/L∞)). Similarly,
write Ylog = Y(0,∞)×X Xlog and Ylog,L = Ylog/Gal(K/L∞); then Ylog,L/ϕ = Xlog,L . These spaces have
an action of Gal(L∞/L), an open subgroup of 0.

Write pL (resp. plog,L ) for the projection maps YL→ Y or XL→X (resp. Ylog,L→ Y or Xlog,L→X ).
If I ⊂ (0,∞) is closed interval, let Ylog,L ,I = p−1

log,L(YI ) and similarly Xlog,L ,I = p−1
log,L(XI ) for X if I is

sufficiently small.
Define

B̃log,L ,I = H0(Ylog,L ,I ,OYlog,L ).

As explained in [loc. cit.], there is a natural GK -equivariant morphism of sheaves

d :OX log →�1
X log/X

∼= p∗logOX (−1)

which for every vector bundle E over X induces an OX -linear morphism

N : p∗logE→ p∗logE ⊗�1
Xlog/X .

See [Fargues and Fontaine 2018, Lemma 10.3.9] and the subsequent discussion. Similarly, N can be
pulled back to Ylog. This then further induces a B̃L ,I -linear differential operator N : B̃log,L ,I → B̃log,L ,I .
If T ∈ B̃log,L ,I is such that N (T )= 1 then B̃log,L ,I = B̃L ,I [T ] and N = d/dT . Such a T exists: if ϖ is
any nonunit ϖ ∈ L̂×

∞
and ϖ ♭

= (ϖ, ϖ 1/p, . . .), take T = log[ϖ ♭
].

Lemma 8.6. There exists T ∈ B̃la
log,L ,I with N (T )= 1. Consequently, B̃la

log,L ,I = B̃la
L ,I [T ].
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Proof. The second claim follows the first claim, Proposition 2.1 and the fact that taking locally analytic
vectors commutes with filtered colimits. To find such an element T , consider the exact sequence

0→ B̃L ,I → B̃N 2
=0

log,L ,I
N
−→ B̃L ,I → 0.

After taking locally analytic vectors the sequence stays exact by Theorem 5.1. Thus the sequence

0→ B̃la
L ,I → B̃la,N 2

=0
log,L ,I

N
−→ B̃la

L ,I → 0

is exact. This means we can lift 1 to an element T with N (T )= 1, as required. □

Proposition 8.7. Suppose ϕZ(x∞)∩YI ̸=∅. Then

(i) If M is a finite extension of L contained in L∞, then B̃Gal(L∞/M)

log,L ,I = M0, where M0 is the maximal
unramified extension of Qp contained in M.

(ii) B̃la,Lie 0=0
log,L ,I = L ′0, the maximal unramified extension of Qp contained in L∞.

Proof. Point (i) follows from [Fargues and Fontaine 2018, proposition 10.3.15] and (ii) follows from (i). □

One way to construct de Rham locally analytic vector bundles is as follows. Write ModFil,ϕ,N
Qun

p
(GK ) for

the category of finite dimensional vector spaces D over Qun
p together with a semilinear action of ϕ, a

monodromy operator N with ϕN = pNϕ, a filtration on D⊗Qun
p

K un and a discrete action of GK on D
which respects the filtration. For example, if V is a potentially semistable representation then Dpst(V ) is
an object of ModFil,ϕ

Qun
p

(GK ).
There is a functor

E :ModFil,ϕ
Qun

p
(GK )→ {de Rham locally analytic vector bundles}

defined as follows: Given D∈ModFil,ϕ
Qun

p
(GK ), choose L such that D is defined over L , i.e., D=Qun

p ⊗L0 D0.
Such an L exists because the action of GK is discrete. Then E(D) is defined to be the locally analytic
vector bundle corresponding to the pair(

(Ola
Ylog,L−p−1

log,L (∞)
⊗L0 D)ϕ=1,N=0,Gal(L∞/K∞), Fil0(BHL ,pa

dR ⊗L0 D0)
Gal(L∞/K∞)

)
.

It is de Rham because
D ⊂ BHK ,pa

dR ⊗Fil0(BHL ,pa
dR ⊗L0 D0)

Gal(L∞/K∞)

is fixed by an open subgroup of 0. If we choose any larger L we get the same pair, so the construction
D 7→ E(D) is independent of the choice of L .

8D. Sheaves of smooth functions. In this subsection we introduce certain sheaves of functions on X .
All of these can be defined equally well for Y(0,∞).

Definition 8.8. We define the following sheaves of functions on X .

(i) Smooth functions: Osm
X =Ola,Lie 0=0

X .
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(ii) For [L : K ]<∞, L-smooth functions: OL-sm
X = pL ,∗(p∗LO

la
X )Lie 0=0.

(iii) For [L : K ]<∞, L log-smooth functions: OL-lsm
X = plog,L ,∗(p∗log,LO

la
X )Lie 0=0.

(iv) Potentially smooth functions: Opsm
X = lim

−−→[L:K ]<∞OL-sm
X .

(v) Potentially log-smooth functions: Oplsm
X = lim

−−→[L:K ]<∞OL-lsm
X .

The following proposition has been essentially explained to us by Kedlaya.

Proposition 8.9. Let U be a connected open affinoid subset of X .

(i) The sections of each of Osm
X , OL-sm

X and Opsm
X at U is a field which injects (noncanonically) into Cp.

(ii) If x∞ ∈U then there are canonical injections

H0(U,Osm
X ) ↪→ K∞, H0(U,OL-sm

X ) ↪→ L∞ and H0(U,Opsm
X ) ↪→ K .

(iii) If x∞ ∈U and U = XI , we have

H0(XI ,Osm
X )= K ′0, H0(XI ,OL-sm

X )= L ′0 and H0(XI ,O
psm
X )= K un

0 .

(iv) We have Osm
X ,x∞ = K∞, OL-sm

X ,x∞ = L∞ and Opsm
X ,x∞ = K .

Proof. Each of the assertions (i)–(iv) for Opsm
X follows from the corresponding assertion for OL-sm

X . We shall
give below arguments proving (i)–(iv) for Osm

X ; the proofs for OL-sm
X are the same once K is replaced by L .

After passing to an open subgroup of 0, we may assume 0 stabilizes U . By [Kedlaya 2016, Theo-
rem 8.8], the ring OX (U ) is a Dedekind domain. Each rank 1 point x of U defines a maximal ideal of
OX (U ), so f ∈OX (U ) can belong to only finitely many of these points. If f ∈OX (U ) is killed by Lie 0

then f is fixed by a finite subgroup of 0, so these finitely many maximal ideals must form a finite orbit
under the 0-action. But the only rank 1 point with finite orbit is the point x∞, again by [Fargues and
Fontaine 2018, proposition 10.1.1]. So every f ∈Osm

X (U ) either vanishes only at x∞ or is invertible.
If x∞ /∈U , this proves that Osm

X (U ) is a field. In particular, it injects into the residue field of each rank 1
point, and there is a dense subset of X with residue field a subfield of Cp. This proves (i) in this case. On
the other hand, if x∞ ∈U then there is a 0-equivariant embedding of Ola

X (U ) into B+dR(K̂∞)la which gives
an embedding of Osm

X (U ) into B+dR(K̂∞)la,Lie 0=0
= K∞. This simultaneously proves (i) and (ii) for Osm

X .
Next, (iii) follows immediately from Proposition 8.7. For (iv), we have already shown that Osm

X (U )⊂K∞
for each U which contains x∞, so Osm

X ,x∞ ⊂ K∞. To show the converse inclusion, use the henselian
property of local rings of adic spaces [Morel 2019, III.6.3.7] to show first that K∞ ⊂ OX ,x∞ . It then
follows that K∞ ⊂Osm

X ,x∞ , which concludes the proof. □

We raise a few questions to which we expect a positive answer but have not answered in this article.

Question 8.10. (1) We can show that K ⊂ Opsm
X if x is any rank 1 point. Indeed, any untilt of C

♭
p is

algebraically closed, and one can use this to show that the completed local rings B+dR,x contain K . This
implies by the same argument that K ⊂OX ,x . But every element of K has finite degree over K0, which is
fixed by GK . This implies that every x ∈ K is fixed by an open subgroup GK so K ⊂Opsm

X ,x .
Is it true that K =Opsm

X ,x for any rank 1 point x?



942 Gal Porat

(2) Is it true that for every connected open affinoid U ⊂ X , the field Opsm
X (U ) is a finite extension of K un

0 ?
In particular, this would imply a positive answer to question (1).

(3) Is it true that OL-sm
X = OL-lsm

X (and hence Opsm
X = Oplsm

X )? If x∞ ∈ U then OL-sm
X (U ) = OL-lsm

X (U ).
This can be seen by using the embedding into B+dR as in the proof of Proposition 8.7.

8E. The solution functor. In this subsection, we assume E is a de Rham locally analytic vector bundle.
Given L finite over K , we define the sheaves of solutions on X ,

(1) SolL(E) := pL ,∗(p∗LNdR(E))Lie 0=0, a module over OL-sm
X ,

(2) Sollog,L(E) := plog,L ,∗(p∗log,LNdR(E))Lie 0=0, a module over OL-lsm
X ,

(3) Sol(E) := lim
−−→[L:K ]<∞ Sollog,L(E), a module over Oplsm

X .

We have similar versions of these sheaves on Y(0,∞), denoted by Solϕ
∗
(E) for ∗ ∈ {L , {log, L},∅}.

Since the ϕ action on Ylog,L is 0-equivariant, there are natural identifications Sol∗(E) = (Solϕ
∗
(E))ϕ=1

and Solϕ
∗
(E)∼=O•Y(0,∞)

⊗O•X Sol∗(E), where (∗, •)= {(L , L-sm), ({log, L}, L-lsm), (∅, plsm)}.
To make the link with E clear, we shall need the following form of the p-adic monodromy theorem

due to André [2002], Kedlaya [2004] and Mebkhout [2002].

Proposition 8.11. There exists a finite extension L over K such that if U is an open subset of Y[r,∞) for
some r ≫ 0 then the natural map

Ola
Ylog,L

(p−1
log,LU )⊗OL-lsm

Y(0,∞)
(U ) Solϕlog,L(E)(U )→Ola

Ylog,L
(p−1

log,LU )⊗Ola
Y(0,∞)

(U ) MdR(E)(U )

is an isomorphism. Consequently, if U ⊂ XI for some I then

Ola
Xlog,L

(p−1
log,LU )⊗OL-lsm

X (U ) Sollog,L(E)(U )−→∼ Ola
Xlog,L

(p−1
log,LU )⊗Ola

X (U ) NdR(E)(U ).

Proof. Let D̃†
rig be the (ϕ, 0)-module corresponding to MdR(E). By the p-adic monodromy theorem, we

know there is an isomorphism

B̃†,pa
log,L ⊗L ′0 (B̃†,pa

log,L ⊗B̃†,pa
rig,K

D̃†,pa
rig )Lie 0=0

−→∼ B̃†,pa
log,L ⊗B̃†,pa

rig,K
D̃†,pa

rig

in the cyclotomic setting (see [Berger 2008b, III.2.1]). More generally, we may descend along unramified
extensions to give it in the twisted cyclotomic case, and by base changing we get it in our setting as well
by the usual argument.

It follows that for r ≫ 0 we also have an isomorphism

B̃pa
log,[r,∞),L ⊗L ′0 (B̃pa

log,[r,∞),L ⊗B̃pa
[r,∞),K

D̃pa
[r,∞))

Lie 0=0
−→∼ B̃pa

log,[r,∞),L ⊗B̃pa
[r,∞),K

D̃pa
[r,∞).

Pulling back along Frobenius, we obtain this isomorphism for any r . Then by finding r ≫ 0 so that
U ⊂ Y[r,∞), we can base change the isomorphism along the map B̃pa

log,[r,∞),L → Ola
Ylog,L

(p−1
log,LU ) to

conclude. □
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Note that whether we need to adjoin log and/or perform a finite extension L of K depends exactly on
whether E becomes crystalline or semistable after restricting GK to GL . Applying this observation and
taking Lie 0 = 0 of both sides of the proposition, we obtain the following.

Theorem 8.12. The sheaf Sol(E) is a locally free Oplsm
X -module of rank equal to rank(E). More precisely:

(i) If E becomes crystalline after restricting GK to GL ′ for some L ⊂ L ′ ⊂ L∞ then SolL(E) is a locally
free OL-sm

X -module of rank equal to rank(E), and there is a natural isomorphism

Ola
XL
⊗OL-sm

X
SolL(E)−→∼ Ola

XL
⊗Ola

X
NdR(E).

(ii) If E becomes semistable after restricting GK to GL ′ for some L ⊂ L ′ ⊂ L∞ then Sollog,L(E) is a
locally free OL-lsm

X -module of rank equal to rank(E), and there is a natural isomorphism

Ola
Xlog,L
⊗OL-lsm

X
Sollog,L(E)−→∼ Ola

Xlog,L
⊗Ola

X
NdR(E).

Lemma 8.13. For each sufficiently small open connected affinoid U of Y(0,∞) which contains an el-
ement of ϕZ(x∞), and for L large enough so that GL stabilizes U , there is a natural GL -embedding
H0(U, Solϕlog,L(E)) ↪→ L∞⊗K DdR(E).

Proof. Taking the completed stalk at a ϕ-translate of x∞, we obtain an injection

Ola
Ylog,L

(p−1
log,LU )⊗Ola

Y(0,∞)
(U ) MdR(E)(U ) ↪→ L̂ la

∞
⊗K̂ la

∞
Ddif(E).

On the other hand, Proposition 8.7 gives an isomorphism

Ola
Ylog,L

(p−1
log,LU )⊗OL-lsm

Y(0,∞)
(U ) Solϕlog,L(E)(U )−→∼ Ola

Ylog,L
(p−1

log,LU )⊗Ola
Y(0,∞)

(U ) MdR(E)(U ).

Applying Lie 0 = 0 to the composition of these maps gives the desired embedding. □

We can now give an interpretation of the stalk at x∞:

Proposition 8.14. There following are each naturally isomorphic to each other.

(1) The stalk Sol(E)x∞ .

(2) The stalk Sol(E)
ϕ
y for any y ∈ ϕZ(x∞).

(3) K ⊗K DdR(E).

In particular, Sol(E)x∞ is naturally a filtered K -representation of GK of dimension rank(E) and GK -fixed
points DdR(E).

Proof. It is clear (1) and (2) are isomorphic. By Lemma 8.13, we have a natural embedding of Sol(E)y ,
and hence of Sol(E)x∞ into K ⊗K DdR(E). By Theorem 8.12, Sol(E)x∞ is a finite free module of rank
equal to dimK DdR(E) over Oplsm

X ,x∞ . But by Proposition 8.7 Oplsm
X ,x∞ = K , so this embedding must be an

isomorphism. □

Finally, we consider the global solutions to the differential equation, namely

D(E)= H0(Y(0,∞), Solϕ(E))= H0(Y(0,∞),O
plsm
Y(0,∞)
⊗Oplsm

X
Sol(E)

)
.
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Proposition 8.15. D(E) is naturally an object of ModFil,ϕ,N
Qun

p
(GK ) and dimQun

p
D(E)= rank(E).

Proof. We know each H0(Y(0,∞), Solϕlog,L(E)) is an L ′0 vector space for U sufficiently small (independent
of L), so D(E) is a Qun

p -vector space. The filtration is induced from the embedding

H0(Y(0,∞), Solϕ(E)) ↪→ Sol(E)x∞
∼= K ⊗K DdR(E).

The ϕ-action is induced from the map ϕ : Y(0,∞)→ Y(0,∞). The monodromy operator N is induced from
the equivariant connection p∗log,LMdR(E)→ p∗log,LNdR(E)⊗�1

Ylog/Y(0,∞)
. Finally, GK acts on the smooth

elements in p∗log,LMdR(E), and this action is discrete because every element is killed by Lie 0, hence by
an open subgroup of Gal(L∞/L). To compute the dimension use Theorem 8.12. □

Using this language, Berger’s theorem [2008b, théoréme III.2.4] admits the following interpretation.

Theorem 8.16. The functors D 7→ E(D) and E 7→ D(E) are mutual inverses and induce an equivalence
of categories

ModFil,ϕ,N
Qun

p
(GK )∼= {de Rham locally analytic vector bundles}.

Remark 8.17. If E is the locally analytic vector bundle associated to a p-adic representation V , we see
that the global-to-local map

H0(Y(0,∞), Solϕ(E)) ↪→ Sol(E)x∞

is nothing but the more familiar map

Dpst(V ) ↪→ K ⊗K DdR(V ).

Question 8.18. Theorem 8.16 allows us to consider objects of ModFil,ϕ,N
Qun

p
(GK ) as global solutions to

p-adic differential equations. The filtration is coming from the behavior of orders of vanishing at x∞ = 0,
while the (ϕ, N , GK )-structure comes from some sort of monodromy of the map lim

←−−L Ylog,L → X . In
our description the space lim

←−−L Ylog,L behaves as a substitute for a universal cover of X . It would be
interesting if it can be replaced by a more literal cover of X for which the (ϕ, N , GK )-actions can be
interpreted as monodromy actions. One could even speculate that in an appropriate sense, the analytic
fundamental group of X (Cp)K should be a tame Weil group with its two dimensions reflecting the ϕ and
N operators.

We conclude with an example.

Example 8.19. Take α ∈ Z×p , and given g ∈ Gal(Qp/Qp) let ξα(g) ∈ Zp be the element such that

ζ
ξα(g)
pn = g(α1/pn

)/α1/pn
for each n ≥ 1. The Kummer extension

0→Qp(χcyc)→ V = Vα→Qp→ 0

is given by mapping in a basis e, f the element g to the matrix(
χcyc(g) ξα(g)

0 1

)
.
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The associated locally analytic vector bundle E sits in an exact sequence

0→Ola
X (χcyc)→ E→Ola

X → 0.

We have
NdR(E)=Ola

X x ⊕Ola
X y ∼=Ola

X (1)⊕Ola
X ,

where at a neighborhood of x∞ we have x = t−1e and y =− log[α♭
]t−1e+ f . Thus

H0(Y(0,∞), Solϕ
Qp

(E))= H0(Osm
Y(0,∞)

x ⊕Osm
Y(0,∞)

y)=Qpx ⊕Qp y.

The action of ϕ is given by ϕ(x)= p−1x and ϕ(y)= y. This gives the underlying ϕ-module of Dcris(V ).
To get the filtration, we consider the stalk of SolQp(E) at x∞. Observe that Fil0 consists exactly of these

smooth sections which do not have a pole at x∞. As log[α♭
] ≡ logp α mod t , we have Fil0 SolQp(E)x∞ =

Qp,cyc(x logp α+ y) and so the filtration on Dcris(V ) is given by

Fil−1
= Dcris(V )⊃ Fil0 =Qp(x logp α+ y)⊃ Fil1 = 0.
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Multiplicity structure of the arc space of a fat point
Rida Ait El Manssour and Gleb Pogudin

The equation xm
= 0 defines a fat point on a line. The algebra of regular functions on the arc space

of this scheme is the quotient of k[x, x ′, x (2), . . . ] by all differential consequences of xm
= 0. This

infinite-dimensional algebra admits a natural filtration by finite-dimensional algebras corresponding to
the truncations of arcs. We show that the generating series for their dimensions equals m/(1 − mt). We
also determine the lexicographic initial ideal of the defining ideal of the arc space. These results are
motivated by the nonreduced version of the geometric motivic Poincaré series, multiplicities in differential
algebra, and connections between arc spaces and the Rogers–Ramanujan identities. We also prove a
recent conjecture put forth by Afsharijoo in the latter context.

1. Introduction

1.1. Statement of the main result. Let k be a field of characteristic zero. Consider an ideal I ⊂ k[x],
where x = (x1, . . . , xn), defining an affine scheme X . We consider the polynomial ring

k[x(∞)
] := k[x ( j)

i | 1 ⩽ i ⩽ n, j ⩾ 0]

in infinitely many variables {x ( j)
i | 1 ⩽ i ⩽ n, j ⩾ 0}. This ring is equipped with a k-linear derivation

a 7→ a′ defined on the generators by

(x ( j)
i )′ = x ( j+1)

i for 1 ⩽ i ⩽ n, j ⩾ 0.

Then we define the ideal I (∞)
⊂ k[x(∞)

] of the arc space of X by

I (∞)
:= ⟨ f ( j)

| f ∈ I, j ⩾ 0⟩.

In this paper, we will focus on the case of a fat point Im := ⟨xm
⟩ ⊂ k[x] of multiplicity m ⩾ 2. Although

the zero set of I (∞)
m over k consists of a single point with all the coordinates being zero, the dimension of

the corresponding quotient algebra k[x (∞)
]/I (∞)

m (the “multiplicity” of the arc space) is infinite.
One can obtain a finer description of the multiplicity structure of k[x (∞)

]/I (∞)
m by considering its

filtration by finite-dimensional algebras induced by the truncation of arcs

k[x (⩽ℓ)]/I (∞)
m := k[x (⩽ℓ)]/

(
k[x (⩽ℓ)] ∩ I (∞)

m
)
,
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where x (⩽ℓ) := {x, x ′, . . . , x (ℓ)}, and arranging the dimensions of these algebras into a generating series

DIm (t) :=

∞∑
ℓ=0

dimk
(
k[x (⩽ℓ)]/I (∞)

m
)
· tℓ. (1)

The main result of this paper is that
DIm (t)=

m
1−mt

. (2)

1.2. Motivations and related results. Our motivation for studying the series (1) comes from three different
areas: algebraic geometry, differential algebra, and combinatorics.

(1) From the point of view of algebraic geometry, I (∞) defines the arc space L(X) of the scheme X
[Denef and Loeser 2001]. Geometrically, the points of the arc space correspond to the Taylor coefficients
of the k[[t]]-points of X . The arc space of a variety can be viewed as an infinite-order generalization of
the tangent bundle or the space of formal trajectories on the variety. For properties and applications of
arc spaces, we refer to [Denef and Loeser 2001; Bourqui et al. 2020].

The reduced structure of an arc space is often described by means of the geometric motivic Poincaré
series [Denef and Loeser 2001, §2.2]

PX (t) :=

∞∑
ℓ=0

[πℓ(L(X))] · tℓ, (3)

where πℓ denotes the projection of L(X) to the affine subspace with the coordinates x(⩽ℓ) (i.e., the
truncation at order ℓ) and [Z ] denotes the class of variety Z in the Grothendieck ring [Denef and Loeser
2001, §2.3]. A fundamental result about these series is the Denef–Loeser theorem [1999, Theorem 1.1]
saying that PX (t) is a rational power series.

The arc spaces may also have a rich scheme (i.e., nilpotent) structure, see [Linshaw and Song 2021;
Feigin and Makedonskyi 2020; Dumanski and Feigin 2023], reflecting the geometry of the original
scheme [Sebag 2011; Bourqui and Haiech 2021]. In the case of a fat point Im = ⟨xm

⟩ ⊂ k[x], we will
have πℓ(L(X))∼= A0, so the geometric motivic Poincaré series is equal to

P(t)=
[A0

]

1 − t
,

where [A0
] is the class of a point. Note that the series does not depend on the multiplicity m of the point.

One way to capture the scheme structure of L(X) could be to take the components of the projections
in (3) with their multiplicities. For example, for the case Im , one will get

∞∑
ℓ=0

dimk
(
k[x (⩽ℓ)]/I (∞)

m
)
· [A0

] · tℓ = DIm (t)[A
0
].

Our result (2) implies that the series above is rational, as in the Denef–Loeser theorem. Interestingly, the
shape of the denominator is different from the one in [Denef and Loeser 2001, Theorem 2.2.1]. The formula
above is not the only way to take the multiplicities into account. A related and more popular approach
is via Arc Hilbert–Poincaré series [Mourtada 2023, §9]; see also [Mourtada 2014; Bruschek et al. 2013].
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(2) Differential algebra studies, in particular, differential ideals in k[x(∞)
], that is, ideals closed under

derivation. From this point of view, I (∞) is the differential ideal generated by I . Understanding the
structure of the differential ideals I (∞)

m is a key component of the low power theorem [Levi 1942; 1945]
which provides a constructive way to detect singular solutions of algebraic differential equations in one
variable. Besides that, various combinatorial properties of I (∞)

m have been studied in differential algebra,
see [O’Keefe 1960; Pogudin 2014; Arakawa et al. 2021; Zobnin 2005; 2008; Ait El Manssour and
Sattelberger 2023].

While there is a rich dimension theory for solution sets of systems of algebraic differential equa-
tions [Kondratieva et al. 1999; Pong 2006; Kolchin 1964], we are not aware of a notion of multiplicity
of a solution of such a system. In particular, the existing differential analogue of the Bézout theo-
rem [Binyamini 2017] provides only a bound, unlike the equality in classical Bézout theorem [Hartshorne
1977, Theorem 7.7, Chapter 1]. Our result (2) suggests that one possibility is to define the multiplicity of
a solution as the growth rate of multiplicities of its truncations, and this definition will be consistent with
the usual algebraic multiplicity for the case of a fat point on a line.

(3) Connections between the multiplicity structure of the arc space of a fat point and Rogers–Ramanujan
partition identities from combinatorics were pointed out by Bruschek, Mourtada, and Schepers in [2013]
(for a recent survey, see [Mourtada 2023, §9]). In particular, they used Hilbert–Poincaré series of similar
nature to (1) (motivated by the singularity theory [Mourtada 2014, §4]) to obtain new proofs of the Rogers–
Ramanujan identities and their generalizations. In this direction, new results have been obtained recently
in [Afsharijoo 2021; Afsharijoo et al. 2023; Bai et al. 2020]. Afsharijoo [2021] used computational
experiments to conjecture the initial ideal of I(∞)

m with respect to the weighted lexicographic ordering
[Afsharijoo 2021, §5] (a special case was already conjectured in [Afsharijoo and Mourtada 2020, §1]).
This conjecture would imply a new set of partition identities [Afsharijoo 2021, Conjecture 5.1]. Using
combinatorial techniques, some of them have been proved in [Afsharijoo 2021], and the rest were
established in [Afsharijoo et al. 2023]; see also [Afsharijoo et al. 2022]. However, the original algebraic
conjecture about I (∞)

m remained open. As a byproduct of our proof of (2), we prove this conjecture (see
Theorem 3.3), thus giving a new proof of one of the main results of [Afsharijoo et al. 2023].

Understanding the structure of the ideal I (∞)
m is known to be challenging: for example, its Gröbner basis

with respect to the lexicographic ordering is not just infinite but even differentially infinite [Zobnin 2005;
Afsharijoo and Mourtada 2020], and the question about the nilpotency index of the x ( j)

i modulo I (∞)
m

posed by Ritt [1950, Appendix, Q.5] remained open for sixty years until the paper of Pogudin [2014]; see
also [O’Keefe 1960; Arakawa et al. 2021].

Statement (2) appeared in the Ph.D. thesis of Pogudin [2016, Theorem 3.4.1], but the proof given
there was incorrect. We are grateful to Alexey Zobnin for pointing out the error. The proof presented in
this paper uses different ideas than the erroneous proof in [Pogudin 2016]. We would like to thank Ilya
Dumanski for pointing out that the main dimension result (2) could also be deduced from a combination
of Propositions 2.1 and 2.3 from [Feigin and Feigin 2002].
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1.3. Overview of the proof. The key technical tool used in our proofs is a representation of the quo-
tient algebra k[x (∞)

]/I (∞)
m as a subalgebra in a certain differential exterior algebra that is constructed

in [Pogudin 2014]; see Section 4.1. The injectivity of this representation builds upon the knowledge of a
Gröbner basis for I (∞)

m with respect to the degree reverse lexicographic ordering [Bruschek et al. 2013;
Zobnin 2008; Levi 1942]. We approach (2) as a collection of inequalities

mℓ+1 ⩽ dimk
(
k[x (⩽ℓ)]/I (∞)

m
)
⩽ mℓ+1 for every ℓ⩾ 0, m ⩾ 1. (4)

The starting point of our proof of the lower bound uses the insightful conjecture by Afsharijoo [2021, §5]
that suggests how the standard monomials of I (∞)

m with respect to the lexicographic ordering look like.
Using the exterior algebra representation, we prove that these monomials are indeed linearly independent
modulo I (∞)

m , and deduce the lower bound from this; see Section 4.3 and 4.4.
In order to prove the upper bound from (4), we represent the image of k[x (⩽ℓ)]/I (∞)

m in the differential
exterior algebra as a deformation of an algebra which splits as a direct product of ℓ+ 1 algebras of
dimension m, thus yielding the desired upper bound; see Section 4.2.

1.4. Structure of the paper. The rest of the paper is organized as follows: Section 2 contains definitions
and notations used to state the main results. Section 3 contains the main results of the paper. The proofs
of the results are given in Section 4. Then Section 5 describes computational experiments in [Macaulay2]
that we performed to check whether formulas similar to (2) hold for more general fat points in kn . We
formulate some open questions based on the results of these experiments.

2. Preliminaries

Definitions 2.1–2.4 provide necessary background in differential algebra. For further details, we refer
to [Kaplansky 1957, Chapter 1] or [Kolchin 1973, §I.1–I.2].

Definition 2.1 (differential rings and fields). A differential ring (R, ′ ) is a commutative ring with a
derivation ′

: R → R, that is, a map such that, for all a, b ∈ R, we have (a+b)′ =a′
+b′ and (ab)′ =a′b+ab′.

A differential field is a differential ring that is a field. For i>0, a(i) denotes the i-th order derivative of a ∈ R.

Notation 2.2. Let x be an element of a differential ring and h ∈ Z⩾0. We introduce

x (<h)
:= (x, x ′, . . . , x (h−1)) and x (∞)

:= (x, x ′, x ′′, . . . ).

Analogously, we can define x (⩽h). If x = (x1, . . . , xn) is a tuple of elements of a differential ring, then

x(<h)
:= (x (<h)

1 , . . . , x (<h)
n ) and x(∞)

:= (x (∞)
1 , . . . , x (∞)

n ).

Definition 2.3 (differential polynomials). Let R be a differential ring. Consider a ring of polynomials in
infinitely many variables

R[x (∞)
] := R[x, x ′, x ′′, x (3), . . . ],

and extend the derivation from R to this ring by (x ( j))′ := x ( j+1). The resulting differential ring is called
the ring of differential polynomials in x over R. The ring of differential polynomials in several variables
is defined by iterating this construction.
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Definition 2.4 (differential ideals). Let S := R[x (∞)
1 , . . . , x (∞)

n ] be a ring of differential polynomials over
a differential ring R. An ideal I ⊂ S is called a differential ideal if a′

∈ I for every a ∈ I .
One can verify that, for every f1, . . . , fs ∈ S, the ideal

⟨ f (∞)
1 , . . . , f (∞)

s ⟩

is a differential ideal. Moreover, this is the minimal differential ideal containing f1, . . . , fs , and we will
denote it by ⟨ f1, . . . , fs⟩

(∞).

Definition 2.5 (fair monomials). (1) For a monomial m = x (h0)x (h1) · · · x (hℓ) ∈ k[x (∞)
], we define the

order and lowest order, respectively, as

ord m := max
0⩽i⩽ℓ

hi and lord m := min
0⩽i⩽ℓ

hi .

(2) A monomial m ∈ k[x (∞)
] is called fair (respectively, strongly fair) if

lord m ⩾ deg m − 1 (respectively, lord m ⩾ deg m).

We denote the sets of all fair and strongly fair monomials by F and Fs , respectively. By convention,
1 ∈ F and 1 ∈ Fs . Note that Fs ⊂ F .

(3) For every integers a, b ⩾ 0, we define

Fa,b := Fa
·Fb

s ,

where the product of sets of monomials is the set of pairwise products. In other words, Fa,b is a set of all
monomials representable as a product of a fair monomials and b strongly fair monomials.

Remark 2.6. The notion of fair monomials was inspired from the conjectured construction of the initial
ideal of ⟨x i , (xm)(∞)

⟩ given in [Afsharijoo 2021, Conjecture 5.1]. We use the notion to formulate concisely
and prove the conjecture (see Theorem 3.3).

Example 2.7. The monomials of order at most two in F and Fs are

F ∩ k[x (⩽2)
] = {1, x, x ′, (x ′)2, x ′x ′′, x ′′, (x ′′)2, (x ′′)3},

Fs ∩ k[x (⩽2)
] = {1, x ′, x ′′, (x ′′)2}.

Using this, one can produce the monomials of order at most one in F1,1 and F2,0

F1,1 ∩ k[x (⩽1)
] = {1, x, xx ′, x ′, (x ′)2, (x ′)3},

F2,0 ∩ k[x (⩽1)
] = {1, x, x2, xx ′, x(x ′)2, x ′, (x ′)2, (x ′)3, (x ′)4}

For example, (x ′)3 ∈ F1,1 can be written as (x ′)2 · x ′, where (x ′)2 ∈ F and x ′
∈ Fs . Likewise, for the

monomials of order at most two, we can write

F1,1 ∩ k[x (⩽2)
] =

{
1, x, x ′, x ′′, xx ′, xx ′′, (x ′)2, x ′x ′′, (x ′′)2, x(x ′′)2, (x ′)3, (x ′)2x ′′, x ′(x ′′)2, (x ′′)3,

(x ′)2(x ′′)2, x ′(x ′′)3, (x ′′)4, (x ′′)5
}
.
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3. Main results

The algebra of regular functions on the arc space of a fat point xm
= 0 admits a natural filtration by

subalgebras induced by the truncation of arcs. Our first main result, Theorem 3.1, gives a simple formula
for the dimension of the subalgebra induced by the truncation at order h. Corollary 3.2 gives the generating
series for these dimensions, as in (2).

Theorem 3.1. Let m and h be positive integers and k be a differential field of zero characteristic. Then

dimk
(
k[x (⩽h)

]/(k[x (⩽h)
] ∩ ⟨xm

⟩
(∞))

)
= mh+1.

Corollary 3.2. Let m be a positive integer and k be a differential field of zero characteristic. Then

∞∑
ℓ=0

dimk
(
k[x (⩽ℓ)]/⟨xm

⟩
(∞)

)
· tℓ =

m
1−mt

,

where k[x (⩽ℓ)]/⟨xm
⟩
(∞)

:= k[x (⩽ℓ)]/(k[x (⩽ℓ)] ∩ ⟨xm
⟩
(∞)).

Given a polynomial ideal and monomial ordering, the monomials which do not appear as leading terms
of the elements of the ideal are called standard monomials. Motivated by applications to combinatorics,
Afsharijoo [2021, §5] used computations experiment to conjecture a description of the standard monomials
of ⟨xm

⟩
(∞) with respect to the degree lexicographic ordering. Our second main result, Theorem 3.3, gives

such a description and, combined with Lemma 4.10, establishes the conjecture.

Theorem 3.3. Let k be a differential field of zero characteristic. Consider a degree lexicographic
monomial ordering on k[x (∞)

] with the variables ordered as x < x ′ < x ′′ < · · · . Let m and i be positive
integers with 1 ⩽ i ⩽ m. Then the set of standard monomials of the ideal ⟨x i , (xm)(∞)

⟩ is Fi−1,m−i ; see
Definition 2.5. Note that, for i = m, we obtain the differential ideal ⟨xm

⟩
(∞).

Corollary 3.4. Theorem 3.3 also holds for the following orderings:

• purely lexicographic with the variables ordered as in Theorem 3.3;

• weighted lexicographic: monomials are first compared by the sum of the orders and then lexico-
graphically as in Theorem 3.3.

Remark 3.5. The multiplicity of the scheme of polynomial arcs of degree less than h of x = 0, defined
by ⟨xm, x (h)⟩(∞), has been studied in [Ait El Manssour and Sattelberger 2023]. It was shown that this
multiplicity, equal to dimk k[x (∞)

]/⟨xm, x (h)⟩(∞), is a polynomial in m of degree h which is the Erhart
polynomial of some lattice polytope [Ait El Manssour and Sattelberger 2023, Theorem 2.5]. Theorem 3.1
together with a natural surjective morphism k[x (<h)

]/⟨xm
⟩
(∞)

→ k[x (∞)
]/⟨xm, x (h)⟩(∞) implies that this

polynomial is bounded by mh .
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4. Proofs

4.1. Key technical tool: embedding into the exterior algebra.

Notation 4.1. Let k be a field. Then, for ξ = (ξ0, ξ1, . . . , ξn), we introduce a countable collection of sym-
bols {ξ

( j)
i | 0⩽ i ⩽ n, j ⩾ 0}, and by3k(ξ

(∞)), we denote the exterior algebra of a k-vector space spanned
by these symbols. 3k(ξ

(∞)) is equipped with a structure of a (noncommutative) differential algebra by(
ξ
(i)
j

)′
:= ξ

(i+1)
j for every i ⩾ 0 and 0 ⩽ j ⩽ n.

The next proposition is a minor modification of [Pogudin 2014, Lemma 1]. The proof we will give is a
simplification of the proof in [Pogudin 2014, Lemma 1], which will be extended to a proof of Lemma 4.4.

Proposition 4.2. Let m be a positive integer. Consider η = (η0, . . . , ηm−2) and ξ = (ξ0, . . . , ξm−2). Let

3 :=3k(η
(∞))⊗3k(ξ

(∞)),

which is equipped with a structure of differential algebra (as a tensor product of differential algebras,
using the Leibnitz rule, that is (a ⊗ b)′ := a′

⊗ b + a ⊗ b′ ). Consider a differential homomorphism
ϕ : k[x (∞)

] →3 defined by

ϕ(x) :=

m−2∑
i=0

ηi ⊗ ξi .

Then the kernel of ϕ is ⟨xm
⟩
(∞).

Example 4.3. Consider the case m = 3. Then we will have

ϕ(x)= η0 ⊗ ξ0 + η1 ⊗ ξ1.

The image of x ′ will then be

ϕ(x ′)= (ϕ(x))′ = η′

0 ⊗ ξ0 + η0 ⊗ ξ ′

0 + η′

1 ⊗ ξ1 + η1 ⊗ ξ ′

1.

One can show, for example, that (x ′)4 ̸∈ ⟨x3
⟩
(∞) by showing that ϕ((x ′)4) ̸= 0:

ϕ((x ′)4)= 24(η0 ∧ η′

0 ∧ η1 ∧ η′

1)⊗ (ξ0 ∧ ξ ′

0 ∧ ξ1 ∧ ξ ′

1) ̸= 0.

Furthermore, a direct computation shows that ϕ((x ′)5)= 0. Combined with Proposition 4.2, this implies
that (x ′)5 ∈ ⟨x3

⟩
(∞).

Proof of Proposition 4.2. Consider (ϕ(x))m . This is a sum of tensor products of exterior polynomials of
degree m in m −1 variables, so it must be zero. Since (ϕ(x))m = 0 and ϕ is a differential homomorphism,
we conclude that Kerϕ ⊃ ⟨xm

⟩
(∞).

Now we will prove the inverse inclusion. We define the weighted degree inverse lexicographic
ordering ≺ on k[x (∞)

] (see [Zobnin 2008, p. 524]): M ≺ N if and only if

• tord M < tord N , where tord is defined as the sum of the orders, or

• tord M = tord N and deg M < deg N , or

• tord M = tord N , deg M = deg N , and N is lexicographically lower than M , where the variables are
ordered x < x ′ < x ′′ < · · · .
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For example, we will have x ≺ x ′
≺ x ′′

≺ · · · and xx ′′
≺ (x ′)2. Then, for every h ⩾ 0, the leading

monomial of (xm)(h) with respect to ≺ is (x (q))m−r (x (q+1))r , where q and r are the quotient and the
reminder of the integer division of h by m, respectively. Let M be the set of all monomials not divisible
by any monomial of the form (x (q))m−r (x (q+1))r . Then we can characterize M as

M =
{

x (h0) · · · x (hℓ) | h0 ⩽ · · · ⩽ hℓ, ∀ 0 ⩽ i ⩽ ℓ− m + 1 : hi+m−1 > hi + 1
}
.

We will define a linear map ψ from M to the set of monomials in 3 with the following properties:

(P1) For every P ∈ M, we have that ψ(P) ̸= 0.

(P2) For every P ∈ M, the monomial ψ(P) appears in the polynomial ϕ(P) and, for any P0 ∈ M such
that P0 ≺ P , the monomial ψ(P) does not appear in the polynomial ϕ(P0).

Informally speaking, ψ(M) is the “leading monomial” in ϕ(M). Once such a map ψ has been defined,
we can prove the proposition as follows: Let Q ∈ Kerϕ \ ⟨xm

⟩
(∞). By replacing Q with the result of the

reduction of Q by xm, (xm)′, . . . with respect to ≺, we can further assume that all the monomials in Q
belong to M1. Let Q0 be the largest of them. By (P1) and (P2), ϕ(Q0) will involve ψ(Q0) and ϕ(Q−Q0)

will not, so ϕ(Q) ̸= 0. This contradicts the assumption that Q ∈ Kerϕ. The proposition is proved.
Therefore, it remains to define ψ satisfying (P1) and (P2). We will start with the case m = 2 to show

the main idea while keeping the notation simple. We define ψ by

ψ
(
x (h0) · · · x (hℓ)

)
:=

(
η(0) ⊗ ξ (h0)

)
∧

(
η(1) ⊗ ξ (h1−1))

∧ · · · ∧
(
η(ℓ) ⊗ ξ (hℓ−ℓ)

)
, (5)

where h0 ⩽ h1 ⩽ · · · ⩽ hℓ. For proving (P1), we observe that, if hi+1 > hi + 1 for all i , then
h0 < h1 − 1 < h2 − 2 < · · · < hℓ − ℓ, so there are no coinciding ξ ’s in (5). The construction for
arbitrary m will consist of splitting the monomial into m − 1 interlacing submonomials and applying (5)
with (ηi , ξi ) to i-th submonomial. More formally, if h0 ⩽ h1 ⩽ · · · ⩽ hℓ, we define

ψ
(
x (h0) · · · x (hℓ)

)
:=

ℓ∏
i=0

(
η
([i/(m−1)])
i % (m−1) ⊗ ξ

(hi −[i/(m−1)])
i % (m−1)

)
, (6)

where a % b denotes the remainder of the division of a by b, and [α] denotes the integer part of α.
Property (P1) is proved by applying (P1) for m = 2 to each submonomial.

For proving (P2), consider P0 ∈ M with P0 ⪯ P and ψ(P) appearing in ϕ(P0). Since ψ preserves
the total orders and doubles the degrees, we have tord P0 = tord P and deg P0 = deg P . Let H := ord P0.
Since P0 ⪯ P , we have H ⩾ hℓ. Since the maximal orders of η and ξ in ψ(P) do not exceed [ℓ/(m −1)]
and hℓ − [ℓ/(m − 1)], respectively, we have H ⩽ hℓ. Thus, H = hℓ. Applying the same argument
recursively to P/x (hℓ) and P0/x (hℓ), we conclude that P = P0.

We will prove that ϕ(P) involvesψ(P) by induction on deg P . The case deg P =0 is clear. Consider P ,
with deg P > 0. Similarly to the preceding argument, one can obtain ψ(P) (from ψ(P/x (ℓ))) only by

1Interestingly, although it is known that xm , (xm)′, . . . form a Gröbner basis, we do not really need to use this fact here since
a reduction with respect to any set of polynomials is well defined.
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taking η([ℓ/(m−1)])
ℓ% (m−1) ⊗ ξ

(hℓ−[ℓ/(m−1)])
ℓ% (m−1) (i.e., the last term in (6)) from one of the occurrences of x (hℓ) in P .

Therefore, the coefficient in front ofψ(P) in ϕ(P)will be, up to sign, equal to degx (hℓ) times the coefficient
in front of ψ(P/x (hℓ)) in ϕ(P/x (hℓ)). The latter is nonzero by the induction hypothesis. □

Lemma 4.4. In the notation of Proposition 4.2, let 1 ⩽ r < m. Then the preimage of the ideal in 3
generated by ηr−1 ⊗ ξr−1, . . . , ηm−2 ⊗ ξm−2 under ϕ is equal to ⟨(xm)(∞), xr

⟩.

Proof. We first prove that the image of xr belongs to ⟨ηr−1 ⊗ ξr−1, . . . , ηm−2 ⊗ ξm−2⟩. This is because
ϕ(xr ) is the sum of monomials which are products of r different ηi ⊗ ξi . Since there are m − 1 of them,
every such monomial will involve at least one of the last m − r of the ηi ⊗ ξi .

Let us consider a polynomial g ∈ k[x (∞)
] \ ⟨(xm)(∞), xr

⟩ and prove that ϕ(g) does not belong to
⟨ηr−1 ⊗ ξr−1, . . . , ηm−2 ⊗ ξm−2⟩. We can assume that each monomial P of g belongs to

Mr = {M ∈ M | degx M < r or 0< hr−1}.

We will use the map ψ defined in (6). In fact, ψ(P) does not involve the zero-order derivatives of
ξr−1, . . . , ξm−2, since hi − [i/(m − 1)] can only be zero for a monomial in M only if i ⩽ r − 2. Thus,

ψ(P) ̸∈ ⟨ηr−1 ⊗ ξr−1, . . . , ηm−2 ⊗ ξm−2⟩.

Assume that P0 is the largest summand that appears in g. Then ϕ(P0) involves ψ(P0), but ϕ(g − P0)

does not. Therefore, ϕ(g) does not belong to ⟨ηr−1 ⊗ ξr−1, . . . , ηm−2 ⊗ ξm−2⟩. □

4.2. Upper bounds for the dimension. Throughout the section, we fix a differential field k of zero
characteristic.

Proposition 4.5. Let m, h be positive integers. We denote by Am,h the subalgebra of k[x (∞)
]/⟨xm

⟩
(∞)

generated by the images of x, x ′, . . . , x (h). Then

dim Am,h ⩽ mh+1.

First we describe a general construction which will be a special case of the so-called associated graded
algebra. Let A = A0 ⊕ A1 ⊕ A2 ⊕ · · · be a Z⩾0-graded algebra over k equipped with a homogeneous
derivation of weight one (that is, A′

i ⊆ Ai+1 for every i ⩾ 0). We introduce a map gr : A → A defined as
follows: Consider a nonzero a ∈ A, and let i be the largest index such that a ∈ Ai ⊕ Ai+1 ⊕· · · . Then we
define gr(a) to be the image of the projection of a onto Ai along Ai+1 ⊕ Ai+2 ⊕ · · · . In other words, we
replace each element with its lowest homogeneous component.

Note that gr is not a homomorphism, it is not even a linear map. However, it has two important
properties we state as a lemma.

Lemma 4.6. (1) Let a1, . . . , an ∈ A, and let p ∈ k[x(∞)
] be a differential monomial. Then

p(gr(a1), . . . , gr(an)) ̸= 0 =⇒ gr(p(a1, . . . , an))= p(gr(a1), . . . , gr(an)).

(2) If a1, . . . , an ∈ A are k-linearly dependent, then gr(a1), . . . , gr(an) also are k-linearly dependent.
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Proof. To prove the first part, one sees that p does not vanish on the lowest homogeneous parts of a1, . . . , an ,
so the homogeneity of the multiplication and derivation imply that taking the lowest homogeneous part
commutes with applying p for a1, . . . , an .

To prove the second part, let i be the lowest grading appearing among a1, . . . , an . Restricting to the
component of this weight, one gets a linear relation for gr(a1), . . . , gr(an). □

Lemma 4.7. Let A be a graded differential algebra as above. Consider elements a1, . . . , an in A,
and denote the algebras (not differential) generated by a1, . . . , an and gr(a1), . . . , gr(an) by B and Bgr,
respectively. Then dim Bgr ⩽ dim B.

Proof. The algebra Bgr is spanned by all the monomials in gr(a1), . . . , gr(an). We choose a basis in this
spanning set, that is, we consider monomials p1, . . . , pN ∈ k[x1, . . . , xn] such that

p1
(
gr(a1), . . . , gr(an)

)
, . . . , pN

(
gr(a1), . . . , gr(an)

)
form a basis of Bgr. The first part of Lemma 4.6 implies that

gr
(

pi (a1, . . . , an)
)
= pi

(
gr(a1), . . . , gr(an)

)
for every 1 ⩽ i ⩽ N .

Then the second part of Lemma 4.6 implies that p1(a1, . . . , an), . . . , pN (a1, . . . , an) are linearly inde-
pendent. Since they belong to B, we have dim B ⩾ N = dim Bgr. □

Proof of Proposition 4.5. Let3 and ϕ be the exterior algebra and the homomorphism from Proposition 4.2.
Proposition 4.2 implies that Am,h is isomorphic to the subalgebra of 3 generated by

m−2∑
i=0

ηi ⊗ ξi ,

m−2∑
i=0

(ηi ⊗ ξi )
′,

m−2∑
i=0

(ηi ⊗ ξi )
′′, . . . ,

m−2∑
i=0

(ηi ⊗ ξi )
(h).

We define a grading on 3 by setting the weights of η(i)j and ξ (i)j to be equal to i for every i ⩾ 0 and
0 ⩽ j < m − 1. The exterior algebra 3 becomes a graded algebra, and the derivation is homogeneous of
weight one.

We fix h ⩾ 0 and consider the following elements of 3:

α̃ j,i := (1 + ∂)iα j for i ⩾ 0, 0 ⩽ j < m − 1, and α ∈ {η, ξ},

where ∂ is the operator of differentiation. We introduce

vi :=

m−2∑
j=0

η̃ j,i ⊗ ξ̃ j,i for 0 ⩽ i ⩽ h,

and let Yh be the algebra generated by v0, . . . , vh . For every 0 ⩽ i ⩽ h, we have vm
i = 0, so Yh is spanned

by the products of the form

v
d0
0 v

d1
1 . . . v

dh
h , where 0 ⩽ d0, . . . , dh < m.

Therefore, dim Yh ⩽ mh+1.
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Claim. There is an invertible (h + 1)× (h + 1) matrix M over Q such that, for u0, . . . , uh defined by

(u0, . . . , uh)
T

:= M(v0, . . . , vh)
T , (7)

we have

gr(ui )=

m−2∑
j=0

(η j ⊗ ξ j )
(i) for every 0 ⩽ i ⩽ h.

We will first demonstrate how the proposition follows from the claim, and then we prove the claim.
Since M is invertible, u0, . . . , uh generate Yh as well. Since gr(u0), . . . , gr(uh) generate Am,h , Lemma 4.7
implies that mh+1 ⩾ dim Yh ⩾ dim Am,h .

Therefore, it remains to prove the claim. For every 0 ⩽ i ⩽ h, we can write

vi = (1 ⊗ 1 + 1 ⊗ ∂)i (1 ⊗ 1 + ∂ ⊗ 1)iv0 = (1 ⊗ 1 + 1 ⊗ ∂ + ∂ ⊗ 1 + ∂ ⊗ ∂)iv0.

We set ui := (1 ⊗ ∂ + ∂ ⊗ 1 + ∂ ⊗ ∂)iv0 for every 0 ⩽ i ⩽ h. Note that, since 1 ⊗ ∂ + ∂ ⊗ 1 is just the
original derivation on 3, we have

gr(ui )= (1 ⊗ ∂ + ∂ ⊗ 1)iv0 = v
(i)
0 =

m−2∑
j=0

(η j ⊗ ξ j )
(i). (8)

By expanding the binomial (1⊗1+(1⊗∂+∂⊗1+∂⊗∂))i , we can write vi =
∑i

j=0
(i

j

)
u j . Then we have

(v0, . . . , vh)
T

= M̃(u0, . . . , uh)
T , (9)

where M̃ is the (h+1)×(h+1)-matrix with the (i, j)-th entry being
(i

j

)
. Since M̃ is lower-triangular with

ones on the diagonal, it is invertible. We set M := M̃−1. So we have (u0, . . . , uh)
T

:= M(v0, . . . , vh)
T ,

which together with (8) finishes the proof of the claim. □

By combining the proof of Proposition 4.5 with Lemma 4.4, we can extend Proposition 4.5 as follows:

Corollary 4.8. Let m, h, i be positive integers with 1 ⩽ i ⩽ m. By A(m,i),h we denote the subalgebra of
k[x (∞)

]/⟨x i , (xm)(∞)
⟩ generated by the images of x, x ′, . . . , x (h). Then

dim A(m,i),h ⩽ i · mh .

Proof. The proof will be a refinement of the proof of Proposition 4.5, and we will use the notation from
there. Let π be the canonical homomorphism π : 3→3i :=3/⟨ξi−1 ⊗ ηi−1, . . . , ξm−2 ⊗ ηm−2⟩. Since
the ideal ⟨ξi−1 ⊗ ηi−1, . . . , ξm−2 ⊗ ηm−2⟩ is homogeneous with respect to the grading on 3, there is a
natural grading on 3i .

We have A(m,i),h ∼= π(Am,h). Since π is a homogeneous homomorphism, π(Am,h) is generated
by π(gr(u0)), . . . , π(gr(uh)) from (7), so dim A(m,i),h = dimπ(Am,h) ⩽ dimπ(Yh). We observe that
π(v0)

i
= 0, so π(Yh) is spanned by products of the form

π(v0)
d0π(v1)

d1 · · ·π(vh)
dh ,

where 0 ⩽ d0 < i and 0 ⩽ d1, . . . , dh < m. Therefore, dimπ(Yh)⩽ i · mh . □
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4.3. Combinatorial properties of fair monomials.

Definition 4.9 (nonoverlapping monomials). We say that two monomials m1,m2 ∈ k[x (∞)
] do not overlap

if ord m1 ⩽ lord m2 or ord m2 ⩽ lord m1.

Lemma 4.10. Let m, i be integers with 0 ⩽ i ⩽ m. Let P ∈ Fi,m−i . Then there exist P1, . . . , Pi ∈ F and
Pi+1, . . . , Pm ∈ Fs such that

P = P1 · · · Pm and, for every 1 ⩽ i < m, ord Pi ⩽ lord Pi+1.

Remark 4.11. Lemma 4.10 implies that the set Fi−1,m−i from Theorem 3.3 coincides with the set of
standard monomials conjectured by Afsharijoo [2021, §5].

Proof. Suppose that P can be written as

P =
(
x (h1,0) · · · x (h1,ℓ1 )

)
· · ·

(
x (hm,0) · · · x (hm,ℓm )

)
,

where each (x (hi,0) · · · x (hi,ℓi )) belongs to F or Fs and h1,0 ⩽ h2,0 ⩽ · · · ⩽ hm,0. We first prove that we
can make the product to be a product of nonoverlapping monomials.

Let us sort the orders h1,0, h1,1, . . . , hm,ℓm in the ascending order{
(r1,0, . . . , r1,ℓ1); (r2,0, . . . , r2,ℓ2); . . . ; (rm,0, . . . , rm,ℓm )

}
.

Claim. For all 0 ⩽ i ⩽ m, we have hi,0 ⩽ ri,0.

In the whole list of the hi, j , all the numbers to the right from hi,0 are ⩾ hi,0. Therefore, after sorting,
hi,0 will either stay or move to the left. Thus, hi,0 ⩽ ri,0, so the claim is proved.

Hence if x (hi,0) · · · x (hi,ℓi ) was a fair (respectively, strongly fair) monomial then x (ri,0) · · · x (ri,ℓi ) is a fair
(respectively, strongly fair) monomial.

Now we will move all the strongly fair monomials to the right in the decomposition of P . We first
prove that, for every Q = Q1 Q2 such that Q1 ∈ Fs , Q2 ∈ F , and ord Q1 ⩽ lord Q2, there exist Q̃1 ∈ Fs

and Q̃2 ∈ F such that Q = Q̃1 Q̃2 and ord Q̃1 ⩽ lord Q̃2. Let

Q1 = x (h1,0) · · · x (h1,ℓ1 ) and Q2 = x (h2,0) · · · x (h2,ℓ2 ),

where ℓ1 < h1,0 and ℓ2 ⩽ h2,0. If ℓ2 < h2,0, then Q2 ∈ Fs ; so we are done. Otherwise, ℓ1 + 1 ⩽ h1,0

implies that Q1x (h1,0) is a fair monomial, and ℓ2 − 1< h2,0 implies that Q2/x (h1,0) ∈ Fs . Thus, we can
take Q̃1 := Q1x (h1,0) and Q̃2 := Q2/x (h1,0).

Applying the described transformation while possible to the nonoverlapping decomposition of P , one
can arrange that the last m − i components are strongly fair. □

Proposition 4.12. For every positive integers m, h, i with 0 ⩽ i ⩽ m, the cardinality of Fi,m−i ∩ k[x (⩽h)
]

is equal to (i + 1) · (m + 1)h .

The proof of the proposition will use the following lemma:
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Lemma 4.13. For every integers h and d, we have∣∣{P | P ∈ F ∩ k[x⩽h
] and deg P = d

}∣∣ =

(h+1
d

)
.

If one replaces F with Fs , the cardinality will be
(h

d

)
.

Proof. Let x (h0) · · · x (hℓ) ∈ F such that ℓ⩽ h0 ⩽ · · · ⩽ hℓ. We define a map

(h0, . . . , hℓ) 7→ (h0 − ℓ, h1 − ℓ− 1, . . . , hℓ).

The map assigns to the orders of a monomial in F ∩ k[x⩽h
] a list of strictly increasing nonnegative

integers not exceeding h. A direct computation shows that this map is a bijection. Since the number of
such sequences of length d is equal to the number of subsets of [0, 1, . . . , h] of cardinality d , the number
of monomials is

(h+1
d

)
.

The case of Fs is analogous with the only difference being that the subset will be in [1, 2, . . . , h], thus
yielding

(h
d

)
. □

Proof of Proposition 4.12. We will prove the proposition by induction on m. For the base case, we have
F0,0 = {1}, so the statement is true.

Consider m > 0, and assume that for all smaller m the proposition is proved. We fix 0 ⩽ i ⩽ m.
Consider a monomial P ∈ Fi,m−i ∩ k[x (⩽h)

], let P1 · · · Pm be a decomposition from Lemma 4.10 with
deg Pm being as large as possible. We denote tail P := Pm and head P := P1 · · · Pm−1.

We will show that the map P → (head P, tail P) defines a bijection between Fi,m−i and

for i < m : {(Q0, Q1) ∈ Fi,m−i−1 ×Fs | ord Q0 ⩽ deg Q1},

for i = m : {(Q0, Q1) ∈ Fm−1,0 ×F | ord Q0 < deg Q1}.
(10)

We will prove the case i <m, as the proof in the case i = m is analogous. First we will show that, for every
P ∈ Fi,m−i , we have ord head P ⩽ deg tail P . Assume the contrary, and let ℓ := ord head P > deg tail P .
Then we will have

lord(x (ℓ) tail P)⩾ min(ℓ, lord tail P)= ℓ⩾ deg(x (ℓ) tail P).

This implies that x (ℓ) tail P ∈ Fs . Thus, in the decomposition of Lemma 4.10, we could have taken Pm

to be x (ℓ) tail P . This contradicts the maximality of deg tail P . In the other direction, if Q0 ∈ Fi,m−i−1

and Q1 ∈ Fs such that ord Q0 ⩽ deg Q1, then Q0 Q1 ∈ Fi,m−i . Moreover, since x (ord Q0)Q1 ̸∈ F , we have
tail(Q0 Q1)= Q1.

We will now use the bijection (10) to count the elements in Fi,m−i ∩ k[x (⩽h)
]. For i < m,

∣∣Fi,m−i ∩ k[x (⩽h)
]
∣∣ =

h∑
ℓ=0

∣∣Fi,m−i−1 ∩ k[x (⩽ℓ)]
∣∣ · ∣∣{Q1 ∈ Fs ∩ k[x (⩽h)

] | deg Q1 = ℓ}
∣∣

=

h∑
ℓ=0

(i + 1) · mℓ
(h
ℓ

)
= (i + 1) · (m + 1)h (by Lemma 4.13).
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For i = m: ∣∣Fm,0 ∩ k[x (⩽h)
]
∣∣ =

h+1∑
ℓ=0

∣∣Fm−1,0 ∩ k[x (<ℓ)]
∣∣ · ∣∣{Q1 ∈ Fs ∩ k[x (⩽h)

] | deg Q1 = ℓ}
∣∣

=

h+1∑
ℓ=0

mℓ
(h+1
ℓ

)
= (m + 1)h+1 (by Lemma 4.13).

Thus, the proposition is proved. □

4.4. Lower bounds for the dimension.

Notation 4.14. For a differential polynomial P ∈ k[x(∞)
] and 1 ⩽ i ⩽ n, we define

• tordxi P to be the total order of P in xi , that is, the largest sum of the orders of the derivatives of xi

among the monomials of P;

• degx (∞)
i

P to be the total degree of P with respect to the variables xi , x ′

i , x ′′

i , . . . .

• We fix a monomial ordering ≺ on k[x(∞)
] defined as follows: To each differential monomial

M = x (h0)
i0

x (h1)
i1

· · · x (hℓ)iℓ with (h0, i0)⪯lex (h1, i1)⪯lex · · · ⪯lex (hℓ, iℓ), we assign a tuple

(ℓ, hℓ, hℓ−1, . . . , h0, iℓ, iℓ−1, . . . , i0),

and compare monomials by comparing the corresponding tuples lexicographically.

Definition 4.15 (isobaric ideal). An ideal I ⊂ k[x (∞)
] is called isobaric if it can be generated by isobaric

polynomials, that is, polynomials with all the monomials having the same total order.

Proposition 4.16. For i = 1, 2, the elements of Fi−1,2−i are the standard monomials modulo ⟨(x2)(∞), x i
⟩.

Proof. We use Proposition 4.2 to obtain the differential homomorphism ϕ : k[x (∞)
] → 3 defined by

ϕ(x)= η⊗ ξ (we will use η and ξ instead of η0 and ξ0 for brevity). Let ϕ̃ be the composition of ϕ with
the projection onto 3/⟨η⊗ ξ⟩. We will prove the proposition for the elements in F1,0, and the other case
can be done in the same way by replacing ϕ with ϕ̃.

Let X = x (h0) · · · x (hℓ), where h0 ⩽ h1 ⩽ · · ·⩽ hℓ, be an element of F1,0. We will show that a summand

B(X) :=
(
η(h0−ℓ) ∧ η(h1−(ℓ−1))

∧ · · · ∧ η(hℓ)
)
⊗

(
ξ (ℓ) ∧ ξ (ℓ−1)

∧ · · · ∧ ξ ′
∧ ξ

)
(11)

appears in ϕ(X) with nonzero coefficient. We will prove this by induction on ℓ. The base case ℓ= 0 is
trivial, so let ℓ > 0. Since η(h0−ℓ) may come only from one of the occurrences of x (h0) in X , we must
take η(h0−ℓ)⊗ ξ (ℓ) from one of the x (h0). Therefore, the coefficient at B(X) in ϕ(X) is degx (h0) X times
the coefficient at B(X/x (h0)) in ϕ(X/x (h0)), which is nonzero by the induction hypothesis.

Let Y := x (s0) · · · x (sℓ′ ) be a monomial such that Y ≺ X . We will prove by contradiction that B(X)
does not appear in ϕ(Y ). If it does, then deg(X) = deg(Y ) = ℓ+ 1 = ℓ′ + 1. Moreover, there exists a
permutation σ of {0, 1, . . . , ℓ} such that

si − σ(i)= hi − (ℓ− i) for every 0 ⩽ i ⩽ ℓ.
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The inequality sℓ ⩽ hℓ implies σ(ℓ) = 0, and thus, sℓ = hℓ. Therefore, sℓ−1 ⩽ hℓ−1, which implies
σ(ℓ− 1)= 1, and thus, sℓ−1 = hℓ−1. Continuing in this way, we show that

si = hi for all 0 ≤ i ≤ ℓ,

which contradicts Y ≺ X . Thus B(X) cannot appear in the ϕ(Y ).
Assume that X ∈ In≺⟨x2

⟩
(∞). Then there exist monomials P1, . . . PN such that Pj ≺ X for all

1 ≤ j ≤ N and

X −

N∑
j=1

λPj ∈ ⟨x2
⟩
(∞).

Hence, ϕ(X) −
∑N

j=1λ jϕ(Pj ) = 0. Since Pj ≺ X for all 1 ≤ j ≤ N , B(X) cannot be canceled in
ϕ(X)−

∑N
j=1λ jϕ(Pj ), which is a contradiction. Therefore, X is a standard monomial. □

Lemma 4.17. Let I1 ⊂ k[y(∞)
1 ], . . . , Is ⊂ k[y(∞)

s ] be ideals, and we denote by Mi the set of the standard
monomials modulo Ii with respect to degree lexicographic ordering for 1 ⩽ i ⩽ s. Then the standard
monomials with respect to the ordering ≺ (see Notation 4.14) modulo ⟨I1, . . . , Is⟩⊂ k[y(∞)

1 , . . . , y(∞)
s ] are

M1 · M2 · · · Ms := {m1m2 · · · ms | m1 ∈ M1, . . . ,ms ∈ Ms}.

Proof. For each Ii , consider the reduced Gröbner basis Gi of Ii with respect to the degree lexicographic
ordering. For each pair f, g ∈ G := G1 ∪ G2 ∪ . . .∪ Gs , their S-polynomial is reduced to zero by G

• if f, g belong to the same Gi , due to the fact that Gi is a Gröbner basis;

• otherwise, by the first Buchberger criterion (since f and g have coprime leading monomials). □

Proposition 4.18. Let I1 ⊂k[y(∞)
1 ], . . . , Is ⊂k[y(∞)

s ] be homogeneous and isobaric ideals (not necessarily
differential). By Mi we denote the set of standard monomials modulo Ii with respect to the degree
lexicographic ordering for 1 ⩽ i ⩽ s. We define a homomorphism (not necessarily differential)

ϕ : k[x (∞)
] → k[y(∞)

1 , . . . , y(∞)
s ]/⟨I1, . . . , Is⟩

by ϕ(x (k)) := y(k)1 + · · · + y(k)s and denote I := Ker(ϕ). Then the elements of

M :=
{
m1 . . .ms | ∀1 ⩽ i ⩽ s : mi ∈ Mi and ∀ 1 ⩽ j < s : ord m j ⩽ lord m j+1

}
(12)

are standard monomials modulo I with respect to the ordering ≺ (but maybe not all the standard
monomials).

Proof. Consider a monomial P = x (h0) · · · x (hℓ) ∈ M , and fix a representation P = m1(x), . . . ,ms(x) as
in (12). Assume that P is a leading monomial of I . Then there exist monomials P1, . . . , PN such that

P −

N∑
j=1

λ j Pj ∈ Kerϕ and ∀ 1 ⩽ j ⩽ N : Pj ≺ P.

Then ϕ(P)−
∑
λ jϕ(Pj ) ∈ ⟨I1, . . . Is⟩. We define m := m1(y1)m2(y2) · · · ms(ys).
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Claim. For every monomial m̃ ̸=m in ϕ(P), there exists 1⩽ j ⩽ s such that either degy j (∞) m ̸=degy j (∞) m̃
or tordy j m ̸= tordy j m̃.

Assume the contrary, that there exists m̃ such that, for every 1 ⩽ j ⩽ s, we have di := degy j (∞) m =

degy j (∞) m̃ and tordy j m = tordy j m̃. We write m̃ = m̃1(y1) · · · m̃s(ys). Let 1 ⩽ j ⩽ s be the largest index
such that m j ̸= m̃ j . Since m j contains d j largest derivatives in m1(x) · · · m j (x)= m̃1(x) · · · m̃ j (x) and
has the same total order as m̃ j , we conclude that m j = m̃ j . Thus, the claim is proved.

We write the homogeneous and isobaric component of
∑N

j=1 λ jϕ(Pj ) of the same degree and total
order in yi as m for every 1 ⩽ i ⩽ s as

∑M
i=1 µi Ri , where Ri is a differential monomial and µi ∈ k

for every 1 ⩽ i ⩽ M . Then such a homogeneous and isobaric component of ϕ(P)−
∑N

j=1 λ jϕ(Pj ) is
Q := m −

∑M
i=1 µi Ri due to the claim. Since, for every 1 ⩽ i ⩽ s, Is is homogeneous and isobaric,

Q ∈ ⟨I1, . . . , Is⟩.
Note that for every 1⩽ i ⩽ M , the differential monomial Ri is a summand of ϕ(Pj ) for some 1⩽ j ⩽ N .

Thus, if Pj = x (s0) · · · x (sℓ), then the derivatives that appear in the monomial Ri are of orders s0, . . . , sℓ.
Hence, Pj ≺ P implies R j ≺ m. Therefore, m is the leading monomial of Q contradicting Lemma 4.17. □

Corollary 4.19. The elements of Fi−1,m−i are standard monomials modulo ⟨x i , (xm)(∞)
⟩.

Proof. We will use Proposition 4.18. Consider the ideals

I1 = ⟨y2
1⟩
(∞), . . . , Ii−1 = ⟨y2

i−1⟩
(∞), Ii =

〈
yi , (y2

i )
(∞)

〉
, . . . , Im−1 =

〈
ym−1, (y2

m−1)
(∞)

〉
,

and define ϕ as in Proposition 4.18. Lemma 4.4 implies that ϕ((xm)(k))= ((y1 + . . .+ ym−1)
m)(k) = 0 for

every k ≥1 and ϕ(x i )= (y1+. . .+yi−1)
i
=0. Therefore, ⟨(xm)(∞), x i

⟩⊂Ker(ϕ). Proposition 4.16 implies
that the standard monomials modulo I j are the fair monomials for j < i and strongly fair monomials for
i ⩽ j . Therefore, Proposition 4.18 implies that Fi−1,m−i are standard monomials modulo ⟨x i , (xm)(∞)

⟩. □

4.5. Putting everything together: proofs of the main results.

Proof of Theorem 3.1. Consider the images of Fm−1,0 ∩ k[x (⩽h)
] in k[x (∞)

]/⟨xm
⟩
(∞). By Corollary 4.19,

they are linearly independent modulo ⟨xm
⟩
(∞). Then Proposition 4.12 implies that the dimension of

k[x (⩽h)
]/⟨xm

⟩
(∞) is at least mh+1. Together with Proposition 4.5, this implies

dim
(
k[x (⩽h)

]/⟨xm
⟩
(∞)

)
= mh+1. □

Proof of Theorem 3.3. Fix h ⩾ 0. Consider Fi−1,m−i ∩k[x (⩽h)
]. Combining Corollary 4.19, Corollary 4.8,

and Proposition 4.12, we show that the image of this set in k[x (⩽h)
]/⟨(xm)(∞), x i

⟩ forms a basis. Thus, the
image of the whole Fi−1,m−i is a basis of k[x (∞)

]/⟨(xm)(∞), x i
⟩. Therefore, by Corollary 4.19, Fi−1,m−i

coincides with the set of standard monomials modulo ⟨(xm)(∞), x i
⟩. □

Proof of Corollary 3.4. Since the ideal ⟨x i , (xm)(∞)
⟩ is generated by homogeneous and isobaric (that is,

weight-homogeneous) polynomials, its Gröbner bases with respect to the purely lexicographic, degree
lexicographic, and weighted lexicographic orderings coincide. □
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5. Computational experiments for more general fat points

In this section, we consider a more general case of a fat point in a n-dimensional space, not just on a line.
We used [Macaulay2], in particular, the package Jets [Galetto and Iammarino 2021; 2022] to explore
possible analogues of our Theorem 3.1 for this more general case. A related Sage implementation for
computing the arc space of an affine scheme with respect to a fat point can be found in [Stout 2017, §9]
and [Stout 2014, §5.4].

Let x = (x1, . . . , xn), and consider a zero-dimensional ideal I ⊂ k[x]. We will be interested in
describing (in particular, in computing the dimension of the quotient ring) I (∞)

∩ k[x(⩽h)
] for a positive

integer h. Since this ideal is the union of the following chain

I (⩽1)
∩ k[x(⩽h)

] ⊆ I (⩽2)
∩ k[x(⩽h)

] ⊆ I (⩽3)
∩ k[x(⩽h)

] ⊆ · · ·

and k[x(⩽h)
] is Noetherian, one can compute I (∞)

∩ k[x(⩽h)
] by computing I (⩽H)

∩ k[x(⩽h)
] for large

enough H . But how do we determine what H is “large enough”?

• For I =⟨xm
⟩⊂k[x], the answer is given by Theorem 3.1: if the dimension k[x (⩽h)

]/(I (⩽H)
∩k[x (⩽h)

])

is equal to mh+1, then I (⩽H)
∩ k[x (⩽h)

] = I (∞)
∩ k[x (⩽h)

].

• For general I , we take H to be 1, 2, . . . , and we stop when we encounter

I (⩽H)
∩ k[x(⩽h)

] = I (⩽H+1)
∩ k[x(⩽h)

].

We conjecture that in this case I (⩽H)
∩ k[x(⩽h)

] = I (∞)
∩ k[x(⩽h)

] (see Question 5.1) but, strictly
speaking, we only know that I (⩽H)

∩ k[x(⩽h)
] ⊆ I (∞)

∩ k[x(⩽h)
].

5.1. Ideals I = ⟨xm⟩. For ideals of the form ⟨xm
⟩, the approach outlined above yields a complete

algorithm to compute I (∞)
∩ k[x (⩽h)

] for any given h and m. We use it for computing examples of
Gröbner bases for these ideals with respect to the lexicographic ordering, as shown in Table 1.

5.2. General fat points. In this subsection, we consider a general zero-dimensional I ⊂ k[x] with the
zero set of I being the origin. We use the following algorithm following the approach described in the
beginning of the section to obtain an upper bound of the dimensions of k[x(⩽h)

]/(I (∞)
∩ k[x(⩽h)

]).

Step 1: Set H = 1.

Step 2: While the dimension of I (⩽H)
∩ k[x(⩽h)

] is not zero or I (⩽H)
∩ k[x(⩽h)

] ̸= I (⩽H+1)
∩ k[x(⩽h)

],
set H = H + 1.

Ideal Gröbner basis

⟨x2
⟩
(∞)

∩ k[x (⩽2)
] (x ′′)4; x ′(x ′′)2; (x ′)2x ′′

; (x ′)3; 2xx ′′
+ (x ′)2; xx ′

; x2

⟨x3
⟩
(∞)

∩ k[x (⩽2)
] (x ′′)7; x ′(x ′′)5; (x ′)2(x ′′)4; (x ′)3(x ′′)2; (x ′)4x ′′

; (x ′)5; x(x ′′)4 + 2(x ′)2(x ′′)3;

3xx ′(x ′′)2 + (x ′)3x ′′
; 6x(x ′)2x ′′

+ (x ′)4; x(x ′)3; x2x ′′
+ x(x ′)2; x2x ′

; x3

Table 1. Gröbner bases for ⟨xm
⟩
(∞)

∩ k[x (⩽h)
], where m = 2, 3.
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Ideal h = 0 h = 1 h = 2 h = 3

⟨x2, y2, xy⟩ 3 9 27 81
⟨x2, y2, xz, yz, z2

− xy⟩ 5 25 125 —
⟨x3, y2, x2 y⟩ 5 25 125 —
⟨x3, y2, xy⟩ 4 16 64 256
⟨x3, y3, x2 y⟩ 7 49 — —
⟨x4, y4, x2 y3

⟩ 14 196 — —

Table 2. (Bounds for) the dimensions of the truncations of the arc space.

Step 3: Return dim
(
k[x(⩽h)

]/(I (⩽H)
∩ k[x(⩽h)

])
)
.

We expect the resulting bound to be exact (see also Question 5.1), for example, it is exact for I = ⟨xm
⟩.

Our implementation of this algorithm in [Macaulay2] is available for download at the following
webpage: https://mathrepo.mis.mpg.de/MultiplicityStructureOfArcSpaces. Table 2 shows some of the
results we obtained. One can see that the computed dimensions form geometric series with the exponent
being the multiplicity of the original ideal exactly as in Theorem 3.1.

However, we have also found ideals for which the generating series of the dimensions is definitely
not equal to m/(1 − mt), where m is the multiplicity of the ideal. We show some examples of this type
in Table 3.

Note that while Table 2 gives only indication that the generating series of the multiplicities for these
ideals may be m/(1 − mt), Table 3 gives a proof that this is not the case for all the fat points.

5.3. Open questions. Based on the results of the computational experiments, we formulate several open
questions.

Question 5.1. Let I ⊂ k[x] be a zero-dimensional ideal with V (I ) being a single point. Is it true that, for
every integer h(

I (⩽H)
∩ k[x(⩽h)

] = I (⩽H+1)
∩ k[x(⩽h)

]
)

=⇒
(
I (⩽H)

∩ k[x(⩽h)
] = I (⩽∞)

∩ k[x(⩽h)
]
)
?

Does this statement remain true if we drop the assumption |V (I )| = 1?

Ideal h = 0 h = 1 h = 2

⟨x3, y3, xy⟩ 5 24 115
⟨x4, y3, xy⟩ 6 33 —
⟨x4, y3, x2 y⟩ 8 62 —
⟨x4, y4, xy⟩ 7 42 —
⟨x4, y4, x2 y⟩ 10 94 —
⟨x4, y4, x2 y2

⟩ 12 140 —
⟨x4, y6, x2 y3

⟩ 18 320 —

Table 3. (Bounds for) the dimensions of the truncations of the arc space.

https://mathrepo.mis.mpg.de/MultiplicityStructureOfArcSpaces
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Question 5.2. Let I ⊂ k[x] be a zero-dimensional ideal with V (I ) being a single point of multiplicity m.
Is it true that

lim
h→∞

dim k[x(⩽h)
]/I (∞)

mh+1 = 1?

Question 5.3. Let I ⊂ k[x] be a zero-dimensional ideal with V (I ) being a single point of multiplicity m.
Under which conditions it is true that

∞∑
h=0

(
dim k[x(⩽h)

]/I (∞)
)
· th

=
m

1−mt
?

More generally, what information about the corresponding scheme can be read off the above generating
series?
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Theta correspondence and simple factors
in global Arthur parameters

Chenyan Wu

By using results on poles of L-functions and theta correspondence, we give a bound on b for (χ, b)-
factors of the global Arthur parameter of a cuspidal automorphic representation π of a classical group or
a metaplectic group where χ is a conjugate self-dual automorphic character and b is an integer which is
the dimension of an irreducible representation of SL2(C). We derive a more precise relation when π lies
in a generic global A-packet.

Introduction

Let F be a number field and let A be its ring of adeles. Let π be an irreducible cuspidal automorphic
representation of a classical group G defined over F . We also treat the case of metaplectic groups in this
work. However to avoid excessive notation, we focus on the case of the symplectic groups G = Sp(X) in
this introduction where X is a nondegenerate symplectic space over F . By Arthur’s theory of endoscopy
[2013], π belongs to a global A-packet associated to an elliptic global A-parameter, which is of the form

⊞r
i=1(τi , bi )

where τi is an irreducible self-dual cuspidal automorphic representation of GLni (A) and bi is a positive
integer which represents the unique bi -dimensional irreducible representation of Arthur’s SL2(C); see
Section 2, for more details.

Jiang [2014] proposed the (τ, b)-theory; see, in particular, Principle 1.2 there. It is a conjecture
that uses period integrals to link together automorphic representations in two global A-packets whose
global A-parameters are “different” by a (τ, b)-factor. We explain in more details. Let 5φ denote the
global A-packet with elliptic global A-parameter φ. Let π be an irreducible automorphic representation
of G(A) and let σ be an irreducible automorphic representation of H(A), where H is a factor of an
endoscopic group of G. Assume that π (resp. σ ) occurs in the discrete spectrum. Then it is expected that
there exists some kernel function K depending on G, H and (τ, b) only such that if π and σ satisfy a
Gan–Gross–Prasad type of criterion, namely, that the period integral∫

H(F) \ H(A)

∫
G(F) \ G(A)

K(h, g) fσ (h) fπ (g) dg dh (0-1)
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is nonvanishing for some choice of fσ ∈ σ and fπ ∈ π , then π is in the global A-packet 5φ if and
only if σ is in the global A-packet 5φ2 with φ = (τ, b)⊞φ2. Then Jiang [2014, Section 5] proceeds to
construct certain kernel functions and then using them, defines endoscopy transfer (by integrating over
H(F) \ H(A) only in (0-1)) and endoscopy descent (by integrating over G(F) \ G(A) only in (0-1)). It
is not yet known if these are the kernel functions making the statements of Principle 1.2 in [Jiang 2014]
hold. As the kernel functions come from Bessel coefficients or Fourier–Jacobi coefficients as in [Gan
et al. 2012, Section 23], we see the nonvanishing of this period integral is analogous to condition (i) in
the global Gan–Gross–Prasad conjecture [Gan et al. 2012, Conjecture 24.1].

Jiang [2014, Section 7] suggested that if τ is an automorphic character χ , then the kernel function can
be taken to be the theta kernel and endoscopy transfer and endoscopy descent are theta lifts. In this case,
the span of ∫

G(F) \ G(A)
K(h, g) fπ (g) dg

as fπ runs over π is the theta lift of π . This is an automorphic representation of H(A). Lifting in the other
direction is analogous. Assume that the theta lift of π is nonzero. Write φπ for the global A-parameter
of π . Then Jiang [2014, Principle 1.2] says that φπ has a (χ, b)-factor and that the global A-parameter
of the theta lift of π from G to H should be φπ with the (χ, b)-factor removed. Here b should be of
appropriate size relative to G and H . Our work is one step in this direction.

One goal of this article is to expand on the (χ, b)-theory and to present the results of [Mœglin 1997;
Ginzburg et al. 2009; Jiang and Wu 2016; 2018; Wu 2022a; 2022b] for various cases in a uniform way. As
different reductive dual pairs that occur in theta correspondence have their own peculiarities, the notation
and techniques of these papers are adapted to the treatment of their own specific cases. We attempt to
emphasize on the common traits of the results which are buried in lengthy and technical proofs in these
papers.

After collecting the results on poles of L-functions, poles of Eisenstein series and theta correspondence,
we derive a bound for b when b is maximal among all factors of the global A-parameter of π . In addition,
we derive an implication on global A-packets. Of course, the heavy lifting was done by the papers
mentioned above.

Theorem 0.1 (Corollary 5.3). The global A-packet attached to the elliptic global A-parameter φ cannot
have a cuspidal member if φ has a (χ, b)-factor with

b > 1
2 dimF X + 1, if G = Sp(X).

Another way of phrasing this is that we have a bound on the size of b that can occur in a factor of
type (χ, ∗) in the global A-parameter of a cuspidal automorphic representation. Thus our results have
application in getting a Ramanujan bound, which measures the departure of the local components πv
from being tempered for all places v of F , for classical groups and metaplectic groups. This should
follow by generalizing the arguments in [Jiang and Liu 2018, Section 5] which treats the symplectic case.
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There they first established a bound for b under some conditions on wave front sets. This enables them to
control the contribution of GL1-factors in the global A-parameter to the Ramanujan bound. Our result
can supply this ingredient for classical groups and also metaplectic groups unconditionally. Then Jiang
and Liu [2018, Section 5] found a Ramanujan bound for π by using the crucial results on the Ramanujan
bound for GL2 in [Kim 2003; Blomer and Brumley 2011].

We describe the idea of the proof of our result. First we relate the existence of a (τ, b)-factor in
the elliptic global A-parameter of π to the existence of poles of partial L-functions L S(s, π × τ∨); see
Proposition 2.8. If the global A-parameter of π has a factor (τ, b) where b is maximal among all factors,
we can show that the partial L-function L S(s, π × τ∨) has a pole at s =

1
2(b + 1). Thus studying the

location of poles of L S(s, π×τ∨) for τ running through all self-dual cuspidal representations of GLn(AF )

can shed light on the size of the bi that occur in the global A-parameter of π . Then we specialize to the
case where τ is a character χ and consider L S(s, π ×χ∨) in what follows.

Next we relate the poles of L S(s, π ×χ∨) to the poles of Eisenstein series attached to the cuspidal
datum χ ⊠ π ; see Section 3. In fact, in some cases, we use the nonvanishing of L S(s, π × χ∨) at
s =

1
2 instead; see Proposition 3.1. Then we recall in Theorem 3.5 that the maximal positive pole of the

Eisenstein series has a bound which is supplied by the study of global theta lifts. This is enough for
showing Corollary 5.3, though we have a more precise result that the maximal positive pole corresponds
to the invariant called the lowest occurrence index of π with respect to χ in Theorem 4.4. The lowest
occurrence index is the minimum of the first occurrence indices over some Witt towers. For the precise
definition see (4-2). We also have a less precise result (Theorem 4.1) relating the first occurrence index of
π with respect to certain quadratic spaces to possibly nonmaximal and possibly negative poles of the
Eisenstein series.

More precise results can be derived if we assume that π has a generic global A-parameter. This is
because we have a more precise result relating poles or nonvanishing of values of the complete L-functions
to poles of the Eisenstein series supplied by [Jiang et al. 2013]. Thus we get

Theorem 0.2 (Theorem 6.7). Let π be a cuspidal member in a generic global A-packet of G(A) =

Sp(X)(A). Let χ be a self-dual automorphic character of GL1(A). Then the following are equivalent:

(1) The global A-parameter φπ of π has a (χ, 1)-factor.

(2) The complete L-function L(s, π ×χ∨) has a pole at s = 1.

(3) The Eisenstein series E(g, fs) has a pole at s = 1 for some choice of section fs ∈ AQ1(s, χ ⊠π).

(4) The lowest occurrence index LOχ

X (π) is dim X.

Here Q1 is a parabolic subgroup of Sp(X1) with Levi subgroup isomorphic to GL1 × Sp(X), where X1

is the symplectic space formed from X by adjoining a hyperbolic plane. Roughly speaking, AQ1(s, χ⊠π)
is a space of automorphic forms on Sp(X1) induced from χ |·|

s ⊠ π viewed as a representation of the
parabolic subgroup Q1. We refer the reader to Section 3 for the precise definition of AQ1(s, χ ⊠π). We
note that the lowest occurrence index LOχ

X (π) is an invariant in the theory of theta correspondence related
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to the invariant called the first occurrence index; see Section 4 for their definitions. We also include a
result (Theorem 6.3) that concerns the nonvanishing of L(s, π ×χ∨) at s =

1
2 and the lowest occurrence

index. We plan to improve this result in the future by studying a relation between nonvanishing of Bessel
or Fourier–Jacobi periods and the lowest occurrence index.

We note that the L-function L(s, π ×χ∨) has been well-studied and is intricately entwined with the
study of theta correspondence, most prominently in the Rallis inner product formula which says that the
inner product of two theta lifts is equal to the residue or value of L(s, π ×χ∨) at an appropriate point up
to some ramified factors and some abelian L-functions. We refer the reader to [Yamana 2014] which is a
culmination of many previous results. In our approach, the Eisenstein series E(g, fs), which is not of
Siegel type, is the key link between L(s, π ×χ∨) and the theta lifts.

Now we describe the structure of this article. In Section 1, we set up some basic notation. In Section 2,
we define elliptic global A-parameters for classical groups and metaplectic groups and also the global
A-packet associated to an elliptic global A-parameter. We show how poles of partial L-functions detect
(τ, b)-factors in an elliptic global A-parameter. In Section 3, we define Eisenstein series attached to the
cuspidal datum χ ⊠π and recall some results on the possible locations of their maximal positive poles.
In Section 4, we introduce two invariants of theta correspondence. They are the first occurrence index
FOY,χ

X (π) and the lowest occurrence index LOχ

X (π) of π with respect to some data. We relate them to
poles of Eisenstein series. Results in Sections 3 and 4 are not new. Our aim is to present the results in
a uniform way for easier access. In Section 5, we show a bound for b in (χ, b)-factors of the global
A-parameter of π . Finally in Section 6, we consider the case when π has a generic global A-parameter.
We show that when L(s, π ×χ∨) has a pole at s = 1 (resp. L(s, π ×χ∨) is nonvanishing at s =

1
2 ), the

lowest occurrence index is determined.

1. Notation

Let F be a number field and let E be either F or a quadratic field extension of F . Let ϱ ∈ Gal(E/F) be
the trivial Galois element when E = F and the nontrivial Galois element when E ̸= F . When E ̸= F ,
write εE/F for the quadratic character associated to E/F via Class field theory. Let G be an algebraic
group over E . We write RE/F G for the restriction of scalars of Weil. This is an algebraic group over F .

Let ϵ be either 1 or −1. By an ϵ-skew Hermitian space, we mean an E-vector space X together with
an F-bilinear pairing

⟨ · , · ⟩X : X × X → E

such that

⟨y, x⟩X = −ϵ⟨x, y⟩
ϱ

X , ⟨ax, by⟩ = a⟨x, y⟩X bϱ

for all a, b ∈ E and x, y ∈ X . We consider the linear transformations of X to act from the right. We follow
the notation from [Yamana 2014] closely and we intend to generalize the results here to the quaternionic
unitary group case in our future work.
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Let X be an ϵ-skew Hermitian space of finite dimension. Then the isometry group of X is one of the
following:

(1) The symplectic group Sp(X) when E = F and ϵ = 1.

(2) The orthogonal group O(X) when E = F and ϵ = −1.

(3) The unitary group U (X) when E ̸= F and ϵ = ±1.

We will also consider the metaplectic group. Let v be a place of F and let Fv denote the completion
of F at v. Let AF (resp. AE ) denote the ring of adeles of F (resp. E). Set A := AF . Write Mp(X)(Fv)
(resp. Mp(X)(AF )) for the metaplectic double cover of Sp(X)(Fv) (resp. Sp(X)(AF )) defined by Weil
[1964]. We note that the functor Mp(X) is not representable by an algebraic group. We will also need
the C1-extension Mp(X)(Fv)×µ2 C1 of Sp(X)(Fv) and we denote it by MpC1

(Fv). Similarly we define
MpC1

(AF ).
Let ψ be a nontrivial automorphic additive character of AF which will figure in the Weil representations

as well as the global A-parameters for Mp(X).
For an automorphic representation or admissible representation π , we write π∨ for its contragredient.

2. Global Arthur parameters

First we recall the definition of elliptic global Arthur parameters (A-parameters) for classical groups as
well as metaplectic groups; see [Arthur 2013] for the symplectic and the special orthogonal case and we
adopt the formulation in [Atobe and Gan 2017] for the case of the (disconnected) orthogonal groups. For
the unitary case, see [Mok 2015; Kaletha et al. 2014]. For the metaplectic case, see [Gan and Ichino
2018]. Then we focus on simple factors of global Arthur parameters and relate their presence to poles of
partial L-functions. This is a crude first step for detecting (τ, b)-factors in an elliptic global A-parameter
according to the “(τ, b)-theory” proposed in [Jiang 2014].

Let G be U(X), O(X), Sp(X) or Mp(X). Let d denote the dimension of X . Set G◦
= SO(X) when

G = O(X). Set G◦
= G otherwise. Write Ǧ for the (complex) dual group of G◦. Then

Ǧ =



GLd(C) if G = U(X);
Spd−1(C) if G = O(X) and d is odd;

SOd(C) if G = O(X) and d is even;

SOd+1(C) if G = Sp(X);
Spd(C) if G = Mp(X).

An elliptic global A-parameter for G is a finite formal sum of the form

φ = ⊞r
i=1(τi , bi ), for some positive integer r

where

(1) τi is an irreducible conjugate self-dual cuspidal automorphic representation of GLni (AE);

(2) bi is a positive integer which represents the unique bi -dimensional irreducible representation of
Arthur’s SL2(C)
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such that:

•
∑

i ni bi = dǦ .

• τi is conjugate self-dual of parity (−1)NǦ+bi (see Remark 2.3).

• The factors (τi , bi ) are pairwise distinct.

Here dǦ is the degree of the standard representation of Ǧ which, explicitly, is

dǦ =



dim X if G = U(X);
dim X − 1 if G = O(X) with dim X odd;

dim X if G = O(X) with dim X even;

dim X + 1 if G = Sp(X);
dim X if G = Mp(X);

and

NǦ =



dim X mod 2 if G = U(X);
0 if G = O(X) with dim X odd;

1 if G = O(X) with dim X even;

1 if G = Sp(X);
0 if G = Mp(X).

Remark 2.1. We adopt the notation in [Jiang 2014] and hence we write (τi , bi ) rather than τi ⊠ νbi as is
more customary in the literature, so that the quantity bi , that we study, is more visible.

Remark 2.2. In the unitary case, we basically spell out what92(U(N ), ξ1) in [Mok 2015, Definition 2.4.7]
is. We have discarded the second factor ψ̃ as it is determined by ψN and ξ1 in Mok’s notation.

Remark 2.3. (1) For G = U(X), we say that τ is conjugate self-dual of parity η if the Asai L-function
L(s, τ,Asaiη) has a pole at s = 1. If η=+1, we also say that τ is conjugate orthogonal and if η=−1,
we also say that τ is conjugate symplectic. The Asai representations come from the decomposition
of the twisted tensor product representation of the L-group; see [Mok 2015, (2.2.9) and (2.5.9)] and
[Goldberg 1994].

(2) For other cases, we mean self-dual when we write conjugate self-dual. We say that τ is self-dual of
parity +1 or orthogonal, if L(s, τ,Sym2) has a pole at s = 1; we say that τ is self-dual of parity −1
or symplectic, if L(s, τ,∧2) has a pole at s = 1.

(3) The parity is uniquely determined for each irreducible conjugate self-dual cuspidal representation τ .

Let 92(G) denote the set of elliptic global A-parameters of G. Let φ ∈92(G). Via the local Langlands
conjecture (which is proved for the general linear groups), at every place v of F , we localize φ to get an
elliptic local A-parameter,

φv : L Fv × SL2(C)→ Ǧ ⋊ WFv ,
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where WFv is the Weil group of Fv and L Fv is WFv if v is archimedean and the Weil–Deligne group
WFv × SL2(C) if v is nonarchimedean. To φv we associate the local L-parameter ϕφv : L Fv → Ǧ ⋊ WFv

given by

ϕφv (w)= φv

(
w,

(
|w|

1/2

|w|
−1/2

))
.

Let L2
disc(G) denote the discrete part of L2(G(F) \ G(AF )) when G ̸= Mp(X) and the genuine discrete

part of L2(Sp(F) \ Mp(AF )) for G = Mp(X). Define the full near equivalence class L2
φ,ψ(G) attached to

the elliptic global A-parameter φ to be the Hilbert direct sum of all irreducible automorphic representations
σ occurring in L2

disc(G) such that for almost all v, the local L-parameter of σv is ϕφv . We remark that in
the Mp(X)-case, the parametrization of σv is relative to ψv since the local L-parameter of σv is attached
via the Shimura–Waldspurger correspondence which depends on ψv . This is the only case in this article
where L2

φ,ψ(G) depends on ψ .
Let A2(G) denote the dense subspace consisting of automorphic forms in L2

disc(G). Similarly define
A2,φ,ψ(G) to be the dense subspace of L2

φ,ψ(G) consisting of automorphic forms. Then we have a crude
form of Arthur’s multiplicity formula which decomposes the L2-discrete spectrum into near equivalence
classes indexed by 92(G).

Theorem 2.4. We have the orthogonal decompositions

L2
disc(G)=

⊕̂
φ∈92(G)

L2
φ,ψ(G) and A2(G)=

⊕
φ∈92(G)

A2,φ,ψ(G).

Remark 2.5. This crude form of Arthur’s multiplicity formula has been proved for Sp(X) and quasisplit
O(X) by Arthur [2013], for U(X) by [Mok 2015; Kaletha et al. 2014] and for Mp(X) by [Gan and Ichino
2018]. This is also proved for nonquasisplit even orthogonal (and also unitary groups) in [Chen and Zou
2021] and for nonquasisplit odd orthogonal groups in [Ishimoto 2023]. Thus for all cases needed in this
paper, Theorem 2.4 is known.

We have some further remarks on the orthogonal and unitary cases.

Remark 2.6. Arthur’s statements use SO(X) rather than O(X) and he needs to account for the outer
automorphism of SO(X) when dim X is even; see the paragraph below [Arthur 2013, Theorem 1.5.2].
The formulation for quasisplit even O(X) is due to Atobe and Gan [2017, Theorem 7.1(1)]. For odd
O(X), which is isomorphic to SO(X)×µ2, the reformulation of Arthur’s result is easy. Let T be a finite
set of places of F . Assume that it has even cardinality. Let sgnT be the automorphic character of µ2(AF )

which is equal to the sign character at places in T and the trivial character at places outside T . These
give all the automorphic characters of µ2(AF ). Then every irreducible automorphic representation π of
O(X)(AF ) is of the form π0 ⊠ sgnT for some irreducible automorphic representation π0 of SO(X)(AF )

and some finite set T of places of even cardinality. A near equivalence class of O(X)(AF ) then consists
of all irreducible automorphic representations π0 ⊠ sgnT for π0 running over a near equivalence class of
SO(X)(AF ) and sgnT running over all automorphic characters of µ2(AF ).
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Remark 2.7. For the U(X) case, the global A-parameter depends on the choice of a sign and a conjugate
self-dual character which determine an embedding of the L-group of U(X) to the L-group of RE/F GLd

where we recall that d := dim X . We refer the reader to [Mok 2015, Section 2.1], in particular (2.1.9)
there, for details. In this work, we choose the +1 sign and the trivial character, which, in Mok’s notation,
means κ = 1 and χκ = 1. Then this corresponds to the standard base change of U(X) to RE/F GLd . We
note that the L-functions we use below are such that

Lv(s, πv × τv)= Lv(s,BC(πv)⊗ τv),

for all places v, automorphic representations π of G(AF ) and τ of RE/F GLa(AF ) where BC denotes the
standard base change.

By Theorem 2.4, we get

Proposition 2.8. Let π be an irreducible automorphic representation of G(AF ) that occurs in A2,φ,ψ(G).
Then:

(1) If φ has a (τ, b)-factor with b maximal among all factors, then the partial L-function L S(s, π × τ∨)

has a pole at s =
1
2(b + 1) and this is its maximal pole.

(2) if the partial L-function L S(s, π × τ∨) has a pole at s =
1
2(b

′
+ 1), then φ has a (τ, b)-factor with

b ≥ b′.

Remark 2.9. In the Mp(X) case, the L-function depends on ψ , but we suppress it from notation here.

Proof. First we collect some properties of the Rankin–Selberg L-functions for GLm × GLn . By the
Rankin–Selberg method, for an irreducible unitary cuspidal automorphic representation τ , L S(s, τ × τ∨)

has a simple pole at s = 1 and is nonzero holomorphic for Re(s)≥ 1 and s ̸= 1; for irreducible unitary
cuspidal automorphic representations τ and τ ′ such that τ ̸∼= τ ′, L S(s, τ×τ ′∨) is nonzero holomorphic for
Re(s)≥ 1. These results can be found in Cogdell’s notes [2000] which collect the results from [Jacquet
et al. 1983; Jacquet and Shalika 1976; Shahidi 1978; 1980].

Assume that φ = ⊞r
i=1(τi , bi ). Then

L S(s, π × τ∨)=

r∏
i=1

bi −1∏
j=0

L S(s −
1
2(bi − 1)+ j, τi × τ∨

)
,

where S is a finite set of places of F outside of which all data are unramified.
Assume that φ has a (τ, b)-factor with b maximal among all factors, then by the properties of the

Rankin–Selberg L-functions, we see that L S(s, π × τ∨) has a pole at s =
1
2(b + 1) and it is maximal.

Next assume that the partial L-function L S(s, π × τ∨) has a pole at s =
1
2(b

′
+ 1). If φ has no

(τ, c)-factor for any c ∈ Z>0, then L S(s, π × τ∨) is holomorphic for all s ∈ C and we get a contradiction.
Thus φ has a (τ, b)-factor. We take b maximal among all factors of the form (τ, ∗) in φ. As b may not
be maximal among all simple factors of φ, we can only conclude that L S(s, π × τ∨) is holomorphic for
Re(s) > 1

2(b + 1). Thus b′
≤ b. □
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Given an irreducible cuspidal automorphic representation π , write φπ for the global A-parameter of π .
By studying poles of L S(s, π × τ∨) for varying τ , we can detect the existence of (τ, b)-factors with
maximal b in φπ . We would also like to construct an irreducible cuspidal automorphic representation with
global A-parameter φπ ⊟ (τ, b) which means removing the (τ, b)-factor from φπ if φπ has a (τ, b)-factor.
Doing this recursively, we will be able to compute the global A-parameter of a given irreducible cuspidal
automorphic representation. In reverse, the construction should produce concrete examples of cuspidal
automorphic representations in a given global A-packet with an elliptic global A-parameter. This will be
investigated in our future work.

In this article, we focus our attention on the study of poles of L S(s, π × τ∨) where τ is a conjugate
self-dual irreducible cuspidal automorphic representation of RE/F GL1(A). Now we write χ for τ to
emphasize that we are considering the case of twisting by characters. This case has been well-studied and
it is known that the poles of L S(s, π×χ∨) are intricately related to invariants of theta correspondence via
the Rallis inner product formula which relates the inner product of two theta lifts to a residue or a value of
the L-function. We refer the readers to [Kudla and Rallis 1994; Wu 2017; Gan et al. 2014; Yamana 2014]
for details. One of the key steps is the regularized Siegel–Weil formula which relates a theta integral to a
residue or a value of a Siegel–Eisenstein series. Our work considers an Eisenstein series which is not of
Siegel type, but which is closely related to L(s, π ×χ∨).

3. Eisenstein series attached to χ ⊠π

In this section we deviate slightly from the notation in Section 2. We use G(X) to denote one of Sp(X),
O(X) and U(X). We let G(X) be a cover group of G(X), which means G(X) = Sp(X) or Mp(X) if
G(X)= Sp(X), G(X)= O(X) if G(X)= O(X) and G(X)= U(X) if G(X)= U(X). We adopt similar
notation to that in [Mœglin and Waldspurger 1995]. We define Eisenstein series on a larger group of the
same type as G(X) and collect some results on their maximal positive poles.

Let π be an irreducible cuspidal automorphic representation of G(X)(A). We always assume
that π is genuine when G(X) = Mp(X). Let χ be a conjugate self-dual automorphic character of
RE/F GL1(A)= A×

E . When E ̸= F , we define

ϵχ =

{
0 if χ |A×

F
= 1;

1 if χ |A×

F
= εE/F .

(3-1)

Let a be a positive integer. Let Xa be the ϵ-skew Hermitian space over E that is formed from X
by adjoining a-copies of the hyperbolic plane. More precisely, let ℓ+a (resp. ℓ−a ) be a totally isotropic
a-dimensional E-vector space spanned by e+

1 , . . . , e+
a (resp. e−

1 , . . . , e−
a ) such that ⟨e+

i , e−

j ⟩ = δi j where
δi j is the Kronecker symbol. Then

Xa = ℓ+a ⊕ X ⊕ ℓ−a

with X orthogonal to ℓ+a ⊕ ℓ−a .
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Let G(Xa) be the isometry group of Xa . Let Qa be the parabolic subgroup of G(Xa) that stabilizes ℓ−a .
Write Qa = Ma Na in the Levi decomposition with Na being the unipotent radical and Ma the standard
Levi subgroup. We have an isomorphism

m : RE/F GLa ×G(X)→ Ma.

where we identify RE/F GLa with RE/F GL(ℓ+a ). Let ρQa be the half sum of the positive roots in Na ,
which can be viewed as an element in a∗

Ma
:= Rat(Ma)⊗Z R where Rat(Ma) is the group of rational

characters of Ma . We note that as Qa is a maximal parabolic subgroup, a∗

Ma
is one-dimensional. Via the

Shahidi normalization [2010], we identify a∗

Ma
with R and thus may regard ρQa as the real number

1
2(dimE X + a), if G(Xa) is unitary;

1
2(dimE X + a − 1), if G(Xa) is orthogonal;
1
2(dimE X + a + 1), if G(Xa) is symplectic.

Let Ka,v be a good maximal compact subgroup of G(Xa)(Fv) in the sense that the Iwasawa decomposition
holds and set Ka =

∏
v Ka,v.

Let AQa (s, χ ⊠ π) denote the space of C-valued smooth functions f on Na(A)Ma(F) \ G(Xa)(A)

such that:

(1) f is right Ka-finite.

(2) For any x ∈ RE/F GLa(A) and g ∈ G(Xa)(A) we have

f (m(x, I )g)= χ(det(x))|det(x)|s+ρQa
AE

f (g).

(3) For any fixed k ∈ Ka , the function h 7→ f (m(I, h)k) on G(X)(A) is in the space of π .

Now let G(X) = Mp(X). This case depends on ψ . Let G̃L1(Fv) be the double cover of GL1(Fv)
defined as follows. As a set it is GL1(Fv)×µ2 and the multiplication is given by

(g1, ζ1)(g2, ζ2)= (g1g2, ζ1ζ2(g1, g2)Fv )

which has a Hilbert symbol twist when multiplying the µ2-part. Analogously we define the double cover
G̃L1(A) of GL1(A). Let χψ,v denote the genuine character of G̃L1(Fv) defined by

χψ,v((g, ζ ))= ζγv(g, ψ1/2,v)
−1

where γv( · , ψ1/2,v) is a fourth root of unity defined via the Weil index. It is the same one as in [Gan and
Ichino 2014, page 521] except that we have put in the subscripts v. Then

χψ((g, ζ ))= ζ
∏
v

γv(gv, ψ1/2,v)
−1

is a genuine automorphic character of G̃L1(A). Let K̃a denote the preimage of Ka under the projection
Mp(Xa)(A)→ Sp(Xa)(A). We will also use˜to denote the preimages of other subgroups of Sp(Xa)(A).
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Let m̃ be the isomorphism
G̃La(A)×µ2 G(X)(A)→ M̃a(A)

that lifts m : GLa(A)× G(X)(A)→ Ma(A). Let d̃et be the homomorphism

G̃La(A)→ G̃L1(A)

(x, ζ ) 7→ (det(x), ζ ).

We keep writing det for the nongenuine homomorphism

G̃La(A)→ GL1(A)

(x, ζ ) 7→ det(x).

Given a nongenuine representation τ of G̃La(A), we can twist it by χψ ◦ d̃et to get a genuine representation
which we denote by τχψ .

We remark that there are canonical embeddings of Na(A) and Sp(Xa)(F) to Mp(Xa)(A), so we may
regard them as subgroups of G(Xa)(A). Let AQa

ψ (s, χ⊠π) denote the space of C-valued smooth functions
f on Na(A)Ma(F) \ G(Xa)(A) such that:

(1) f is right K̃a-finite.

(2) For any x ∈ G̃La(A) and g ∈ G(Xa)(A) we have

f (m̃(x, I )g)= χχψ(d̃et(x))|det(x)|s+ρQa
AE

f (g).

(3) For any fixed k ∈ K̃a , the function h 7→ f (m̃(I, h)k) on G(X)(A) is in the space of π .

To unify notation, we will also write AQa
ψ (s, χ ⊠π) for AQa (s, χ ⊠π) in the nonmetaplectic case. It

should be clear from the context whether we are treating the Sp(X) case or the Mp(X) case.
Now return to the general case, so G(X) is one of Sp(X), O(X), U(X) and Mp(X). Let fs be a

holomorphic section of AQa
ψ (s, χ ⊠π). We associate to it the Eisenstein series

E Qa
ψ (g, fs) :=

∑
γ∈Qa(F) \ G(Xa)(F)

fs(γ g).

Note that the series is over γ ∈ Qa(F) \ Sp(Xa)(F) when G(X) = Mp(X). By Langlands’ theory
of Eisenstein series [Mœglin and Waldspurger 1995, IV.1], this series is absolutely convergent for
Re(s) > ρQa , has meromorphic continuation to the whole s-plane, its poles lie on root hyperplanes and
there are only finitely many poles in the positive Weyl chamber. By our identification of a∗

Ma
with R and

the fact that χ is conjugate self-dual, the statements on poles mean that the poles are all real and that
there are finitely many poles in the half-plane Re(s) > 0.

We give the setup for any positive integer a, though we will only need a = 1 in the statements of
our results. However the proofs require “going up the Witt tower” to G(Xa) for a large enough. Since
we plan to prove analogous results for quaternionic unitary groups in the future, we keep the setup for
general a.
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There is a relation between poles of L-functions and the Eisenstein series.

Proposition 3.1. (1) Assume that the partial L-function L S
ψ(s, π ×χ∨) has its rightmost positive pole

at s = s0. Then E Q1
ψ (g, fs) has a pole at s = s0.

(2) Assume that the partial L-function L S
ψ(s, π ×χ∨) is nonvanishing at s =

1
2 and is holomorphic for

Re(s) > 1
2 . Assume that

G(X)= U(X) with dim X ≡ ϵχ (mod 2);

G(X)= O(X) with dim X odd;

G(X)= Mp(X).

Then E Q1
ψ (g, fs) has a pole at s =

1
2 .

Remark 3.2. This is [Jiang and Wu 2018, Proposition 2.2] in the symplectic case, [Wu 2022a, Proposi-
tion 3.2] in the metaplectic case, [Jiang and Wu 2016, Proposition 2.2] in the unitary case and [Mœglin
1997, Remarque 2] and [Jiang and Wu 2016, Proposition 2.2] in the orthogonal case.

Remark 3.3. The allowed G(X) in item (2) are those for which we have theta dichotomy and epsilon
dichotomy (in the local nonarchimedean setting); see [Gan and Ichino 2014, Corollary 9.2, Theorem 11.1].

Remark 3.4. When π is a cuspidal member in a generic global A-packet of G(X)(A), there is a more
precise result; see Theorem 6.3 which was proved in [Jiang et al. 2013] and strengthened in [Jiang and
Zhang 2020].

We summarize the results on the maximal positive pole of E Q1
ψ (g, fs) from [Ginzburg et al. 2009,

Theorem 3.1; Jiang and Wu 2016, Theorem 3.1; 2018, Theorem 2,8; Wu 2022a, Theorem 4.2].

Theorem 3.5. The maximal positive pole of E Q1
ψ (g, fs) is of the form

s =


1
2(dim X + 1 − (2 j + ϵχ )) if G(X)= U(X);
1
2(dim X − 2 j) if G(X)= O(X);
1
2(dim X + 2 − 2 j) if G(X)= Sp(X);
1
2(dim X + 2 − (2 j + 1)) if G(X)= Mp(X);

(3-2)

where j ∈ Z such that 
rX ≤ 2 j + ϵχ < dim X + 1 if G(X)= U(X);
rX ≤ 2 j < dim X if G(X)= O(X);
rX ≤ 2 j < dim X + 2 if G(X)= Sp(X);
rX ≤ 2 j + 1< dim X + 2 if G(X)= Mp(X);

(3-3)

where rX denotes the Witt index of X.

Remark 3.6. The middle quantities in the inequalities of (3-3) are, in fact, the lowest occurrence index
of π in the global theta lift which depends on χ and ψ ; see Theorem 4.4. In some cases, the lowest
occurrence index turns out to be independent of ψ .



Theta correspondence and simple factors in global Arthur parameters 981

Remark 3.7. To derive the inequalities rX ≤ · · · , we already need to make use of properties of the global
theta correspondence. The other parts of the statements can be derived by relating our Eisenstein series to
Siegel–Eisenstein series whose poles are completely known. We note that via the Siegel–Weil formula,
Siegel–Eisenstein series are related to global theta correspondence.

4. Theta correspondence

We keep the notation of Section 3. First we define the theta lifts and the two invariants called the first
occurrence index and the lowest occurrence index. Then we relate the invariants to poles of our Eisenstein
series.

Recall that we have taken an ϵ-skew Hermitian space X over E . Let Y be an ϵ-Hermitian space
equipped with the form ⟨ · , · ⟩Y . We note that ⟨ · , · ⟩Y is an F-bilinear pairing

⟨ · , · ⟩Y : Y × Y → E

such that

⟨y2, y1⟩Y = ϵ⟨y1, y2⟩
ϱ

Y , ⟨y1a, y2b⟩Y = aϱ⟨y1, y2⟩Y b

for all a, b ∈ E and y1, y2 ∈ Y . Let G(Y ) be its isometry group. We note that G(X) acts on X from the
right while G(Y ) acts on Y from the left. Let W be the vector space RE/F (Y ⊗E X) over F and equip it
with the symplectic form

⟨ · , · ⟩W : W × W → F

given by

⟨y1 ⊗ x1, y2 ⊗ x2⟩W = trE/F (⟨y1, y2⟩Y ⟨x1, x2⟩
ϱ

X ).

With this set-up, G(X) and G(Y ) form a reductive dual pair inside Sp(W ). Let W = W +
⊕ W − be a

polarization of W . Let MpC1
(W )(Fv) be the C1-metaplectic extension of Sp(W )(Fv). Let ωv denote

the Weil representation of MpC1
(W )(Fv) realized on the space of Schwartz functions S(W +(Fv)). The

Weil representation depends on the additive character ψv, but we suppress it from notation. When v is
archimedean, we actually take the Fock model [Howe 1989] rather than the full Schwartz space and it
is a (sp(W )(Fv), K̃Sp(W ),v)-module but we abuse language and call it a representation of MpC1

(W )(Fv).
When neither G(X) or G(Y ) is an odd orthogonal group, by [Kudla 1994] there exists a homomorphism

G(X)(Fv)× G(Y )(Fv)→ MpC1
(W )(Fv)

that lifts the obvious map G(X)(Fv)× G(Y )(Fv)→ Sp(W )(Fv). In this case, set G(X)= G(X) (resp.
G(Y )= G(Y )). When G(X) is an odd orthogonal group, we take G(Y )(Fv) to be the metaplectic double
cover of G(Y )(Fv) and set G(X)= G(X). Then by [Kudla 1994] there exists a homomorphism

G(X)(Fv)× G(Y )(Fv)→ MpC1
(W )(Fv)
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that lifts G(X)(Fv)× G(Y )(Fv)→ Sp(W )(Fv). The case is analogous when G(Y ) is an odd orthogonal
group. In any case, we get a homomorphism

ιv : G(X)(Fv)× G(Y )(Fv)→ MpC1
(Fv).

It should be clear from the context when G(X) (resp. G(Y )) refers to a cover group and when it is
not truly a cover. In the unitary case, there are many choices of ιv. Once we fix χ and an additional
character χ2, then ιv is fixed. This is worked out in great details in [Harris et al. 1996, Section 1]. Our
(χ, χ2) matches (χ1, χ2) in [Harris et al. 1996, (0.2)]. We note that Y should be compatible with χ and
χ determines the embedding of G(X)(A) into MpC1

(A) whereas X should be compatible with χ2 and χ2

determines the embedding of G(Y )(A) into MpC1
(A). By “compatible”, we mean ϵχ ≡ dim Y (mod 2)

(resp. ϵχ2 ≡dim X (mod 2)); see [Kudla 1994] for more details. We pull backωv to G(X)(Fv)×G(Y )(Fv)
via ιv and still denote the representation by ωv.

Denote by ι the adelic analogue of ιv . We also have the (global) Weil representation ω of MpC1
(A) on

the Schwartz space S(W +(A)) and its pullback via ι to G(X)(A)× G(Y )(A).
Then we can define the theta function which will be used as a kernel function. Let

θX,Y (g, h,8) :=

∑
w∈W +(F)

ω(ι(g, h))8(w)

for g ∈ G(X)(A), h ∈ G(Y )(A) and 8 ∈ S(W +(A)). It is absolutely convergent and is an automorphic
form on G(X)(A)× G(Y )(A). For f ∈ π , set

θY
X ( f,8) :=

∫
[G(X)]

f (g)θX,Y (g, h,8) dg.

Note that we write [G(X)] for G(X)(F)\G(X)(A)when G(X) is not metaplectic and G(X)(F)\G(X)(A)
or more explicitly Sp(X)(F) \ Mp(X)(A) when G(X) is metaplectic. This is an automorphic form on
G(Y )(A). It depends on χ and χ2 in the unitary case and when we want to emphasize the dependency,
we will write θY,χ

X,χ2
( f,8). Let 2Y

X (π) denote the space of functions spanned by the θY
X ( f,8) and let

2
Y,χ
X,,χ2

(π) denote the space of functions spanned by the θY,χ
X,χ2

( f,8) in the unitary case.
From now on assume that Y is anisotropic (possibly zero), so that it sits at the bottom of its Witt tower.

Define Yr to be the ϵ-Hermitian space formed by adjoining r -copies of the hyperbolic plane to Y . These
Yr form the Witt tower of Y . By the tower property [Rallis 1984; Wu 2013], if the theta lift to G(Yr ) is
nonzero then the theta lift to G(Yr ′) is also nonzero for all r ′

≥ r .
Define the first occurrence index of π in the Witt tower of Y to be

FOY,χ
X (π) :=


min{dim Yr |2

Yr ,χ
X,χ2

(π) ̸= 0} if G(X)= U(X);
min{dim Yr |2

Yr
X (π ⊗ (χ ◦ υ)) ̸= 0} if G(X)= O(X);

min{dim Yr |2
Yr
X (π) ̸= 0} if G(X)= Sp(X) or Mp(X).

(4-1)

Note that it depends on χ but not on χ2 in the unitary case as changing χ2 to another compatible one
produces only a character twist on 2Yr ,χ

X,χ2
(π). For more details, see [Wu 2022b, (1-1)]. In the orthogonal
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case, we twist π by χ ◦υ where υ denotes the spinor norm. If G(X)= Sp(X) or Mp(X), we require that
χY = χ where χY is the quadratic automorphic character of GL1(A) associated to Y given by

χY (g)= (g, (−1)dim Y (dim Y−1)/2 det⟨ · , · ⟩Y ),

where ( · , · ) is the Hilbert symbol.
Define the lowest occurrence index to be

LOχ

X (π) := min{FOY,χ
X (π) | Y is compatible with χ}, (4-2)

when G(X)= U(X),Sp(X) or Mp(X). Here compatibility means that

dim Y ≡ ϵχ (mod 2) if G(X)= U(X);

χY = χ if G(X)= Sp(X) or Mp(X).
(4-3)

Define the lowest occurrence index to be

LOχ

X (π) := min{FOY,χ
X (π ⊗ sgnT ) | T a set of even number of places of F}, (4-4)

when G(X)= O(X).
We have the following relations of the first occurrence (resp. the lowest occurrence) and the poles (resp.

the maximal positive pole) of the Eisenstein series; see [Jiang and Wu 2018, Corollary 3.9, Theorem 3.10]
for the symplectic case, [Wu 2022a, Corollary 6.3, Theorem 6.4] for the metaplectic case, [Jiang and Wu
2016, Corollaries 3.5 and 3.7] for the unitary case and [Ginzburg et al. 2009, Theorems 5.1 and 1.3] for
the orthogonal case.

Theorem 4.1. Let π be an irreducible cuspidal automorphic representation of G(X)(A). Let χ be a
conjugate self-dual automorphic character of RE/F GL1(A). Let Y be an anisotropic ϵ-Hermitian space
that is compatible with χ in the sense of (4-3). Assume that FOY,χ

X (π)= dim Y + 2r . Set

s0 =


1
2(dim X + 1 − (dim Y + 2r)) if G(X)= U(X);
1
2(dim X − (dim Y + 2r)) if G(X)= O(X);
1
2(dim X + 2 − (dim Y + 2r)) if G(X)= Sp(X) or Mp(X).

(4-5)

Assume that s0 ̸= 0. If G(X) = O(X) and s0 < 0, further assume that 1
2 dim X < r < dim X − 2. Then

s = s0 is a pole of the Eisenstein series E Q1
ψ (g, fs) for some choice of fs ∈ AQ1

ψ (s, χ ⊠π).

Remark 4.2. Using the notation from Section 2. The quantity s0 in (4-5) can be written uniformly as

1
2(dG(X)∨ − dG(Yr )∨ + 1).

Remark 4.3. Note that we always have r ≤ dim X . The extra condition when G(X)= O(X) is to avoid
treating period integrals over the orthogonal groups of split binary quadratic forms, as our methods cannot
deal with the technicality. Theorem 4.1 allows negative s0. It is possible to detect nonmaximal poles and
negative poles of the Eisenstein series by the first occurrence indices.
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Theorem 4.4. Let π be an irreducible cuspidal automorphic representation of G(X)(A). Let χ be
a conjugate self-dual automorphic character of RE/F GL1(A). Then the maximal positive pole of
E Q1
ψ (g, fs) for fs running over AQ1

ψ (s, χ ⊠π) is at s = s0 ∈ R if and only if

LOχ

X (π)=


dim X + 1 − 2s0 if G(X)= U(X);
dim X − 2s0 if G(X)= O(X);
dim X + 2 − 2s0 if G(X)= Sp(X) or Mp(X).

(4-6)

Remark 4.5. Theorem 4.4 does not allow negative s0.

In Remark 3.7, we mentioned that the part rX ≤ · · · in Theorem 3.5 is proved by using theta corre-
spondence. What we used is that we always have LOχ

X (π) ≥ rX by the stable range condition [Rallis
1984, Theorem I.2.1].

5. Application to global Arthur packets

We have derived relations among (χ, b)-factors of global A-parameters, poles of partial L-functions,
poles of Eisenstein series and lowest occurrence indices of global theta lifts. Combining these, we have
the following implication on global A-packets.

Theorem 5.1. Let π be an irreducible cuspidal automorphic representation of G(X)(A). Let φπ be its
global A-parameter. Let χ be a conjugate self-dual automorphic character of RE/F GL1(A). Assume
that φπ has a (χ, b)-factor for some positive integer b. Then

b ≤


dim X − rX if G(X)= U(X);
dim X − rX − 1 if G(X)= O(X);
dim X − rX + 1 =

1
2 dim X + 1 if G(X)= Sp(X) or Mp(X).

(5-1)

where rX denotes the Witt index of X.

Proof. If b is not maximal among all factors (τ, b) appearing in φπ , then b< 1
2 dG(X)∨ . Then it is clear that

b satisfies (5-1). Now we assume that b is maximal among all factors appearing in φπ . By Proposition 2.8,
L S(s, π ×χ−1) has its rightmost pole at s =

1
2(b + 1). Then by Proposition 3.1, E Q1

ψ (g, fs) has a pole at
s =

1
2(b + 1) for some choice of fs . Assume that s =

1
2(b1 + 1) is the rightmost pole of the Eisenstein

series with b1 ≥ b. By Theorem 3.5,

1
2(b1 + 1)≤


1
2(dim X + 1 − rX ) if G(X)= U(X);
1
2(dim X − rX ) if G(X)= O(X);
1
2(dim X + 2 − rX ) if G(X)= Sp(X) or Mp(X);

or in other words, b1 is less than or equal to the quantity on the RHS of (5-1). Using the fact that b ≤ b1,
we get the desired bound for b. □

Remark 5.2. Our result generalizes [Jiang and Liu 2018, Theorem 3.1] for symplectic groups to classical
groups and metaplectic groups. In addition, we do not require the assumption on the wave front set in
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[loc. cit., Theorem 3.1]. This type of result has been used in [loc. cit., Section 5] to find a Ramanujan
bound which measures the departure of the local components of a cuspidal π from being tempered.

The metaplectic case has been treated in [Wu 2022a, Theorem 0.1], though the proof is not written
down explicitly. Here we supply the detailed arguments for all classical groups and metaplectic groups
uniformly.

The corollary below follows immediately from the theorem.

Corollary 5.3. The global A-packet 5φ attached to the elliptic global A-parameter φ cannot have a
cuspidal member if φ has a (χ, b)-factor with

b >


dimE X − rX if G(X)= U(X);
dimF X − rX − 1 if G(X)= O(X);
dim X − rX + 1 =

1
2 dim X + 1 if G(X)= Sp(X) or Mp(X).

6. Generic global A-packets

Following the terminology of [Arthur 2013], we say that an elliptic global A-parameter is generic if
it is of the form φ = ⊞r

i=1(τi , 1) and we say a global A-packet is generic if its global A-parameter is
generic. Assume that π is a cuspidal member in a generic global A-packet. Then our results can be made
more precise. We note that our results for Mp(X) are conditional on results on normalized intertwining
operators; see Assumption 6.1 and Remark 6.2.

First assume that G(X) is quasisplit and that π is globally generic. We explain what we mean by
globally generic. We use the same set-up as in [Shahidi 1988, Section 3]. Let B be a Borel subgroup of
G(X). Let N denote its unipotent radical and let T be a fixed choice of Levi subgroup of B. Of course, in
this case T is a maximal torus of G(X). Let F denote an algebraic closure of F . Let 1 denote the set of
simple roots of T (F) in N (F). Let {Xα}α∈1 be a Gal(F/F)-invariant set of root vectors. Recall that ψ is
a fixed nontrivial automorphic character of AF which is used in the definitions of the Weil representation
and the global A-packets for Mp(X). It gives rise to generic characters of N (A). We use the one defined
as follows. For each place v of F , we define a character ψN ,v of N (Fv). Write an element of N (Fv) as∏
α∈1 exp(xαXα) for xα ∈ Fv such that σ xα = xσα with σ ∈ Gal(F/F). Set

ψN ,v

( ∏
α∈1

exp(xαXα)
)

= ψv

(∑
α∈1

xα

)
.

Let ψN = ⊗vψN ,v. In the Mp(X) case, we view N (A) as a subgroup of Mp(X)(A) via the canonical
splitting. We require that π is globally generic with respect to the generic character ψN of N (A). Thus
the notion of global genericity depends on the choice of the generic automorphic character of N (A).
However by [Cogdell et al. 2004, Appendix A], the choice has no effect on the L-factors, the ε-factors
and the global A-parameter for π in the case of G(X) = Sp(X),O(X),U(X). The case of Mp(X) is
highly dependent on the choice.
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When π is globally generic, b = 1 for every factor (τ, b) in the global A-parameter φπ . This is because
the Langlands functorial lift of π is an isobaric sum of conjugate self-dual cuspidal representations of
some RE/F GLn(A); see Theorem 11.2 of [Ginzburg et al. 2011].

By [Jiang et al. 2013], there is a more precise relation on the poles of L-functions and the poles of
Eisenstein series. The set of possible poles of the normalized Eisenstein series is determined by the
complete L-function L(s, π×χ∨). From the assumption that π is globally generic, in the right half-plane,
L(s, π×χ∨) has at most a simple pole at s = 1. In fact we only need [loc. cit., Proposition 4.1] rather than
the full strength of [loc. cit., Theorem 1.2] which allows the induction datum to be a Speh representation
on the general linear group factor of the Levi. By [Jiang and Zhang 2020, Theorem 5.1], [Jiang et al.
2013, Proposition 4.1] can be strengthened to include the case where π is a cuspidal member in a generic
global A-packet of G(X)(A) where G(X) = Sp(X),O(X),U(X) does not have to be quasisplit. We
rephrase [Jiang et al. 2013, Proposition 4.1] in our context as Theorem 6.3.

First we set up some notation and outline the method for extending [loc. cit., Proposition 4.1] to the
case of Mp(X). Let

ρ+
:=


Asaiη where η= (−1)dim X+1 if G(X)= U(X);
∧

2 if G(X)= O(X) with dim X odd or if G(X)= Mp(X);
Sym2 if G(X)= O(X) with dim X even or if G(X)= Sp(X);

(6-1)

and

ρ−
:=


Asai−η where η= (−1)dim X+1 if G(X)= U(X);
Sym2 if G(X)= O(X) with dim X odd or if G(X)= Mp(X);
∧

2 if G(X)= O(X) with dim X even or if G(X)= Sp(X).
(6-2)

The results of [loc. cit.] do not cover the metaplectic case, but the method should generalize without
difficulty. We explain the strategy. First the poles of the Eisenstein series are related to those of the
intertwining operators

M(w0, τ |·|
s ⊠π) : IndG(Xa)(A)

Qa(A)
(τ |·|s ⊠π)→ IndG(X1)(A)

Qa(A)
(τ |·|−s ⊠π)

where τ is a conjugate self-dual cuspidal automorphic representation of GLa(AE) and w0 is the longest
Weyl element in Qa \ G(Xa)/Qa . Then define the normalized intertwining operator

N (w0,τ |·|
s⊠π) :=

L(s,π×τ∨)L(2s,τ,ρ−)

L(s+1,π×τ∨)L(2s+1,τ,ρ−)ε(s,π×τ∨)ε(2s,τ,ρ−)
·M(w0,τ |·|

s⊠π). (6-3)

The proof of [loc. cit., Proposition 4.1] relies on the key result that the normalized intertwining operator
is holomorphic and nonzero for Re s ≥

1
2 . Then it boils down to finding the poles of the normalizing

factors or equivalently

L(s, π × τ∨)L(2s, τ, ρ−)

L(s + 1, π × τ∨)L(2s + 1, τ, ρ−)
.
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Once we have the key result available, we expect to have a version of [loc. cit., Proposition 4.1] for
the metaplectic groups. Note that our ρ± defined in (6-1) and (6-2) is different from the ρ and ρ− in
[loc. cit.].

Then by using an inductive formula, we expect to be able to prove [loc. cit., Theorem 1.2] as well. We
hope to supply the details in a future work.

Next we allow G(X) to be non-quasisplit. We assume that π is a cuspidal member in a generic global
A-packet of G(X). Then by [Jiang and Zhang 2020, Theorem 5.1], (6-3) is holomorphic and nonzero for
Re s ≥

1
2 when G(X)= Sp(X),O(X),U(X). Then the proof of [Jiang et al. 2013, Proposition 4.1] goes

through verbatim for such π . The proof of [Jiang and Zhang 2020, Theorem 5.1] does not generalize
readily to the case of Mp(X) as the relevant results for Mp(X) are not available.

Thus we make an assumption on the normalized intertwining operator:

Assumption 6.1. The normalized intertwining operator N (w0, χ |·|
s ⊠π) is holomorphic and nonzero

for Re s ≥
1
2 .

Remark 6.2. This is shown to be true by [Jiang and Zhang 2020, Theorem 5.1] when π is a cuspidal
member in a generic global A-packet of G(X)(A) for G(X)= Sp(X),O(X),U(X). Thus this is only a
condition when G(X)= Mp(X).

Theorem 6.3. Assume Assumption 6.1. Let π be a cuspidal member in a generic global A-packet of
G(X)(A). Let χ be a conjugate self-dual automorphic character of RE/F GL1(A).

(1) Assume G(X)=U(X)with ϵχ ̸≡dim X (mod 2), O(X)with dim X even or Sp(X). Then L(s, π×χ∨)

has a pole at s = 1 if and only if E Q1(g, fs) has a pole at s = 1 and it is its maximal pole.

(2) Assume G(X)=U(X)with ϵχ ≡dim X (mod 2), O(X)with dim X odd or Mp(X). Then L(s, π×χ∨)

is nonvanishing at s =
1
2 if and only if E Q1

ψ (g, fs) has a pole at s =
1
2 and it is its maximal pole.

Remark 6.4. The result of [Jiang et al. 2013] involves normalized Eisenstein series, but the normalization
has no impact on the positive poles. The following remarks use the notation in [loc. cit.]. We only need
the case b = 1 in [loc. cit.] which is Proposition 4.1 there. Furthermore we only apply it in the case
where τ is a character. The condition that L(s, τ, ρ) has a pole at s = 1 is automatically satisfied by
the requirement on our χ that it is conjugate self-dual of parity (−1)NG(X)∨+1; see Section 2, especially
Remark 2.3.

The global A-parameter φπ can possibly have a (χ, 1)-factor only when χ satisfies the condition that
L(s, χ, ρ+) has a pole at s = 1. Due to the parity condition on factors of an elliptic global A-parameter,
in some cases, φπ cannot have a (χ, 1)-factor.

Combining our result (Theorem 4.4) on poles of Eisenstein series and lowest occurrence indices with
Theorem 6.3 which gives a precise relation between poles of the complete L-function and those of the
Eisenstein series, we get
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Theorem 6.5. Assume Assumption 6.1. Let π be a cuspidal member in a generic global A-packet
of G(X)(A). Let χ be a conjugate self-dual automorphic character of RE/F GL1(A). In each of the
following statements, we consider only those G(X) that are listed:

(1) Assume that L(s, π ×χ∨) has a pole at s = 1. Then

LOχ

X (π)=


dim X − 1 if G(X)= U(X) and ϵχ ̸≡ dim X (mod 2);
dim X − 2 if G(X)= O(X) with dim X even;

dim X if G(X)= Sp(X).

(2) Assume that L(s, π ×χ∨) does not have a pole at s = 1. Then

LOχ

X (π)≥


dim X + 1 if G(X)= U(X) and ϵχ ̸≡ dim X (mod 2);
dim X if G(X)= O(X) with dim X even;

dim X + 2 if G(X)= Sp(X).

(3) Assume L
( 1

2 , π ×χ∨
)
̸= 0. Then

LOχ

X (π)=


dim X if G(X)= U(X) and ϵχ ≡ dim X (mod 2);
dim X − 1 if G(X)= O(X) with dim X odd;

dim X + 1 if G(X)= Mp(X).

(4) Assume L
( 1

2 , π ×χ∨
)
= 0. Then

LOχ

X (π)≥


dim X + 2 if G(X)= U(X) and ϵχ ≡ dim X (mod 2);
dim X + 1 if G(X)= O(X) with dim X odd;

dim X + 3 if G(X)= Mp(X).

Remark 6.6. By the conservation relation for local theta correspondence [Sun and Zhu 2015], there
always exists an ϵ-Hermitian space Z[v] over Ev of dimension given by the RHS of the equalities in
items (1), (3) such that the local theta lift of πv to G(Z[v]) is nonvanishing. Thus in the case of items (2), (4)
and G(X) ̸= O(X), the collection {Z[v]}v for v running over all places of F is always incoherent, i.e., there
does not exist an ϵ-Hermitian space Z over E such that the localization Zv is isomorphic to Z[v] for all v.
In the case of items (2), (4) and G(X)= O(X), we have a nontrivial theta lift of πv⊗(χv ◦υv)⊗(η[v]◦det)
to G(Z[v]) for η[v] being the trivial character or the sign character for each place v of F , but the collection
{η[v]}v is incoherent, i.e., there does not exist an automorphic character η of A×

F such that the localization
ηv is equal to η[v] for all v; see the definitions of first occurrence (4-1) and lowest occurrence (4-4) for
O(X) for why we have a (χv ◦υv)-twist. We also note that when π is an irreducible cuspidal automorphic
representation and L

( 1
2 , π ×χ∨

)
= 0, it is conjectured that there is an arithmetic version of the Rallis

inner product formula which says that the conjectural Beilinson–Bloch height pairing of arithmetic theta
lifts (which are cycles on Shimura varieties constructed from an incoherent collection of ϵ-Hermitian
spaces) gives the derivative L ′

( 1
2 , π × χ∨

)
up to some ramified factors and some abelian L-functions.

The low rank cases have been proved in [Kudla et al. 2006; Liu 2011a; 2011b]. More recently, the cases
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of unitary groups of higher rank have been proved in [Li and Liu 2021; 2022], conditional on hypothesis
of the modularity of Kudla’s generating functions of special cycles.

In terms of “(χ, b)”-factors, we have

Theorem 6.7. Let G(X)= U(X) with ϵχ ̸≡ dim X (mod 2), G(X)= O(X) with dim X even or G(X)=

Sp(X). Let π be a cuspidal member in a generic global A-packet of G(X)(A). Let χ be a conjugate
self-dual automorphic character of RE/F GL1(A). Then the following are equivalent:

(1) The global A-parameter φ of π has a (χ, 1)-factor.

(2) The complete L-function L(s, π ×χ∨) has a pole at s = 1 (and this is its maximal pole).

(3) The Eisenstein series E Q1(g, fs) has a pole at s = 1 for some choice of fs ∈ AQ1(s, χ ⊠π) (and this
is its maximal pole).

(4) The lowest occurrence index LOχ

X (π) is
dim X − 1 if G(X)= U(X);
dim X − 2 if G(X)= O(X);
dim X if G(X)= Sp(X).

Remark 6.8. The statements that the poles are maximal are automatic since π lies in a generic global
A-packet. We note that when G(X)= U(X) with ϵχ ≡ dim X (mod 2), G(X)= O(X) with dim X odd
or G(X)= Mp(X), φπ cannot have a (χ, 1)-factor as the parity condition is not satisfied.
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Equidistribution theorems for holomorphic
Siegel cusp forms of general degree: the level aspect

Henry H. Kim, Satoshi Wakatsuki and Takuya Yamauchi

This paper is an extension of Kim et al. (2020a), and we prove equidistribution theorems for families of
holomorphic Siegel cusp forms of general degree in the level aspect. Our main contribution is to estimate
unipotent contributions for general degree in the geometric side of Arthur’s invariant trace formula in
terms of Shintani zeta functions in a uniform way. Several applications, including the vertical Sato–Tate
theorem and low-lying zeros for standard L-functions of holomorphic Siegel cusp forms, are discussed.
We also show that the “nongenuine forms”, which come from nontrivial endoscopic contributions by
Langlands functoriality classified by Arthur, are negligible.
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1. Introduction

Let G be a connected reductive group over Q and A the ring of adeles of Q. An equidistribution
theorem for a family of automorphic representations of G.A/ is one of recent topics in number theory
and automorphic representations. After Sauvageot’s important results [1997], Shin [2012] proved a
so-called limit multiplicity formula which shows that the limit of an automorphic counting measure is
the Plancherel measure. It implies the equidistribution of Hecke eigenvalues or Satake parameters at a
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fixed prime in a family of cohomological automorphic forms on G.A/. A quantitative version of Shin’s
result is given by Shin and Templier [2016]. A different approach is discussed in [Finis et al. 2015] for
G D GLn or SLn, treating more general automorphic forms which are not necessarily cohomological.
Note that in the works of Shin and Shin and Templier, one needs to consider all cuspidal representations
in the L-packets. Shin [2012, second paragraph on p. 88] suggested that one can isolate just holomorphic
discrete series at infinity. In [Kim et al. 2020a; 2020b], we carried out his suggestion and established
equidistribution theorems for holomorphic Siegel cusp forms of degree 2. We should also mention Dalal’s
work [2022]; see Remark 3.12. See also the related works [Knightly and Li 2019; Kowalski et al. 2012].

In this paper we generalize several equidistribution theorems to holomorphic Siegel cusp forms of
general degree. A main tool is Arthur’s invariant trace formula, as used in the previous work, but we need
a more careful analysis in the computation of unipotent contributions. Let us prepare some notations to
explain our results.

Let G D Sp.2n/ be the symplectic group of rank n defined over Q. For an n-tuple of integers
kD .k1; : : : ; kn/with k1�� � ��kn>nC1, letDhol

l
D�k be the holomorphic discrete series representation

of G.R/ with the Harish-Chandra parameter l D .k1� 1; : : : ; kn�n/ or the Blattner parameter k.
Let A (respectively, Af ) be the ring of (respectively, finite) adeles of Q, and OZ be the profinite completion

of Z. For S1 a finite set of rational primes, let S Df1g[S1, QS1 D
Q
p2S1

Qp , AS be the ring of adeles
outside S and OZS D

Q
p 62S1

Zp. We denote by 2G.QS1/ the unitary dual of G.QS1/ D
Q
p2S1

G.Qp/

equipped with the Fell topology. Fix a Haar measure �S on G.AS / so that �S .G. OZS //D 1, and let U be
a compact open subgroup of G.AS /. Consider the algebraic representation � D �k of the highest weight k
so that it is isomorphic to the minimal K1-type of Dhol

l
. Let hU denote the characteristic function of U .

Then we define a measure on 2G.QS1/ by

O�U;S1; �;Dhol
l
WD

1

vol.G.Q/nG.A//�dim �

X
�0S1
21G.QS1 /

�S .U /�1mcusp
�
�0S1 IU; �;D

hol
l

�
ı�0S1

; (1-1)

where ı�0S1
is the Dirac delta measure supported at �0S1 , a unitary representation of G.QS1/, and

mcusp.�
0
S1
IU; �;Dhol

l /D
X

�2….G.A//0

�S1'�
0
S1
; �1'D

hol
l

mcusp.�/ tr.�S .hU //; (1-2)

where ….G.A//0 stands for the isomorphism classes of all irreducible unitary cuspidal representations of
G.A/ and �S D˝0

p…S
�p.

To state the equidistribution theorem, we need to introduce the Hecke algebra C1c .G.QS1// which
is dense under the map h 7! Oh, where Oh.�S1/ D tr.�S1.h// is in F.2G.QS1// consisting of suitable
O�

pl
S1

-measurable functions on 2G.QS1/. (See [Shin 2012, Section 2.3] for that space.)
Let N be a positive integer. Put SN D fp prime W p jN g. We assume that S1\SN D∅. We denote

by Kp.N / the principal congruence subgroup of level N for G.Zp/ (see (2-3) for the definition), and
set KS .N /D

Q
p…S Kp.N /. For each rational prime p, let us consider the unramified Hecke algebra

Hur.G.Qp//�C
1
c .Qp/, and for each � >0, Hur.G.Qp//

� , the linear subspace of Hur.G.Qp// consisting
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of all Hecke elements whose heights are less than �. (See (2-2).) Let Hur.G.Qp//
�
�1 be the subset of

Hur.G.Qp//
� consisting of all Hecke elements whose complex values have absolute values less than 1.

Our first main result is

Theorem 1.1. Fix k D .k1; : : : ; kn/ satisfying k1 � � � � � kn > nC 1. Fix a positive integer �. Then
there exist constants a; b and c0 > 0 depending only on G such that for each h1 D p̋2S1h1;p, where
h1;p 2Hur.G.Qp//

�
�1, we have

O�KS .N/; S1; �;Dhol
l
.bh1/D O�pl

S1
.bh1/CO�� Y

p2S1

p

�a�Cb
N�n

�
;

if N � c0
Q
p2S1

p2n� . Note that the implicit constant of the Landau O-notation is independent of S1, N
and h1.

Let us apply this theorem to the vertical Sato–Tate theorem and higher level density theorem for
standard L-functions of holomorphic Siegel cusp forms.

The principal congruence subgroup �.N/ of level N for G.Z/ is obtained by

�.N/DG.Q/\G.R/K.N /;

whereK.N/D
Q
p<1Kp.N /. Let Sk.�.N // be the space of holomorphic Siegel cusp forms of weight k

with respect to �.N/ (see the next section for a precise definition), and let HEk.N / be a basis consisting
of all Hecke eigenforms outside N . We can identify HEk.N / with a basis of K.N/-fixed vectors in
the set of cuspidal representations of G.A/ whose infinity component is (isomorphic to) Dhol

l
. (See

the next section for the details.) Put dk.N /D jHEk.N /j. Then we have [Wakatsuki 2018], for some
constant Ck > 0,

dk.N /D CkCNN
2n2Cn

COk
�
N 2n2

�
; (1-3)

where CN D
Q
pjN

Qn
iD1.1�p

�2i /. Note that
Qn
iD1 �.2i/

�1 < CN < 1.
For each F 2HEk.N /, we denote by �F D �1˝˝0p�F;p the corresponding automorphic cuspidal

representation of G.A/. Henceforth, we assume that

k1 > � � �> kn > nC 1: (1-4)

Then the Ramanujan conjecture is true, namely, �F;p is tempered for any p; see Theorem 4.3. Unfortu-
nately, this assumption forces us to exclude the scalar-valued Siegel cusp forms.

Let 2G.Qp/ur; temp be the subspace of 2G.Qp/ consisting of all unramified tempered classes. We
denote by .�1.�F;p/; : : : ; �n.�F;p// the element of � corresponding to �F;p under the isomorphism
2G.Qp/ur; temp ' Œ0; ��n=Sn DW�. Let �p be the measure on � defined in Section 7.

Theorem 1.2. Assume (1-4). Fix a prime p. Then the set˚�
�1.�F;p/; : : : ; �n.�F;p/

�
2� W F 2HEk.N /

	
is �p-equidistributed in �, namely, for each continuous function f on �,

lim
N!1
.p;N/D1

1

dk.N /

X
F 2HEk.N/

f
�
�1.�F;p/; : : : ; �n.�F;p/

�
D

Z
�

f .�1; : : : ; �n/�p:
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By using Arthur’s endoscopic classification, we have a finer version of the above theorem. Under
the assumption (1-4), the global A-parameter describing �F , for F 2HEk.N /, is always semisimple.
(See Definition 4.1.) Let HEk.N /g be the subset of HEk.N / consisting of F such that the global
A-packet containing �F is associated to a simple global A-parameter. They are Siegel cusp forms which
do not come from smaller groups by Langlands functoriality in Arthur’s classification. In this paper, we
call them genuine forms. Let HEk.N /ng be the subset of HEk.N / consisting of F such that the global
A-packet containing �F is associated to a nonsimple global A-parameter, i.e., they are Siegel cusp forms
which come from smaller groups by Langlands functoriality in Arthur’s classification. We call them
nongenuine forms. We show that nongenuine forms are negligible. The following result is interesting in
its own right. For this, we need some further assumptions on the level N .

Theorem 1.3. Assume (1-4). We also assume

(1) N is an odd prime or

(2) N is odd and all prime divisors p1; : : : ; pr (r � 2/ of N are congruent to 1 modulo 4 such that� pi
pj

�
D 1 for i ¤ j , where

�
�
�

�
denotes the Legendre symbol.

Then

(1) jHEk.N /g j D CkCNN 2n2CnCOn;k;�
�
N 2n2Cn�1C�

�
for any � > 0;

(2) jHEk.N /ng j DOn;k;�
�
N 2n2Cn�1C�

�
for any � > 0;

(3) for a fixed prime p, the set
˚
.�1.�F;p/; : : : ; �n.�F;p// 2� W F 2HEk.N /

g
	

is �p-equidistributed
in �.

The above assumptions on the level N are necessary in order to estimate nongenuine forms related
to nonsplit but quasisplit orthogonal groups in the Arthur’s classification by using the transfer theorems
for some Hecke elements in the quadratic base change in the ramified case [Yamauchi 2021]. (See
Proposition 4.12 for the details.)

Next, we discuss `-level density (where ` is a positive integer) for standard L-functions in the level
aspect. Let us denote by ….GLn.A//0 the set of all isomorphism classes of irreducible unitary cuspidal
representations of GLn.A/. Keep the assumption on k as in (1-4) and the above assumption on the
level N . Then F can be described by a global A-parameter �riD1�i with �i 2 ….GLmi .A//

0 andPr
iD1mi D 2nC 1. Then we may define the standard L-function of F 2HEk.N / by

L.s; �F ;St/ WD
rY
iD1

L.s; �i /;

which coincides with the classical definition in terms of Satake parameters of F outside N . Then we
show unconditionally that the `-level density of the standard L-functions of the family HEk.N / has the
symmetry type Sp in the level aspect. (See Section 9 for the precise statement. Shin and Templier [2016]
showed it under several hypotheses for a family which includes nonholomorphic forms.) Here, in order to
obtain lower bounds for conductors, it is necessary to introduce a concept of newforms. This may be of
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independent interest. Since any local newform theory for Sp.2n/ is unavailable except for nD 1; 2, we
define the old space Sold

k
.�.N // to be the intersection of Sk.�.N // with the smallest G.Af /-invariant

space of functions on G.Q/nG.A/ containing Sk.�.M// for all proper divisors M of N . The new space
Snew
k
.�.N // is the orthogonal complement of Sold

k
.�.N // in Sk.�.N // with respect to the Petersson

inner product. Then if F 2 Snew
k
.�.N //, q.F / � N 1=2 (Theorem 8.3), and if N is squarefree, we can

show that dimSnew
k
.�.N //� �.n2/�1dk.N / if n� 2 (Theorem 5.4).

As a corollary, we obtain a result on the order of vanishing of L.s; �F ;St/ at s D 1
2

, the center of
symmetry of the L-function, by using the method of Iwaniec et al. [2000] for holomorphic cusp forms
on GL2.A/ (see also [Brumer 1995] for another formulation related to the Birch–Swinnerton–Dyer
conjecture): Let rF be the order of vanishing of L.s; �F ;St/ at s D 1

2
. Then we show that under the

GRH (generalized Riemann hypothesis),
P
F 2HEk.N/

rF � Cdk.N / for some constant C > 0. This
would be the first result of this kind in Siegel modular forms. We can also show a similar result for the
degree 4 spinor L-functions of GSp.4/.

Let us explain our strategy in comparison with the previous works. We choose a test function

f D �S .K.N //�1f�h1hKS .N/ 2 C
1
c .G.R//˝

�
p̋2S1H

ur.G.Qp//
�
�1

�
˝C1c .G.A

S //

such that f� is a pseudocoefficient of Dhol
l

normalized as tr.�1.f�//D 1. A starting main equality is

Ispec.f /D I.f /D Igeom.f /;

where Ispec.f / (respectively, Igeom.f /) is the spectral (respectively, the geometric) side of Arthur’s
invariant trace I.f /. Under the assumption kn > nC 1, the spectral side becomes simple by the results
of Arthur [1989] and Hiraga [1996], and it is directly related to Sk.�.N // because of the choice of a
pseudocoefficient of Dhol

l
. Now the geometric side is given by

Igeom.f /D
X
M2L

.�1/dim.AM =AG/ jW
M
0 j

jW G
0 j

X

2.M.Q//

M; QS

aM . QS; 
/IGM .
; f�/J
M
M .
; hP /; (1-5)

where QS D f1g t SN t S1 and .M.Q//
M; QS

denotes the set of .M; QS/-equivalence classes in M.Q/
(see [Arthur 2005, p. 113]); for each M in a finite set L, we choose a parabolic subgroup P such that M
is a Levi subgroup of P . (See loc. cit. for details.) Roughly speaking:

� If the test function f is fixed, the terms on (1-5) vanish except for a finite number of .M; QS/-
equivalence classes.

� The factor aM . QS; 
/ is called a global coefficient and it is almost the volume of the centralizer of 

in M if 
 is semisimple. The general properties are unknown.

� The factor IGM .
; f�/ is called an invariant weighted orbital integral, and as the notation shows, it
strongly depends on the weight k of � D �k . Therefore, it is negligible when we consider the level
aspect.

� The factor JMM .
; hP / is an orbital integral of 
 for hD �S .K.N //�1h1hKS .N/.
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According to the types of conjugacy classes and M , the geometric side is divided into the terms

Igeom.f /D I1.f /C I2.f /C I3.f /C I4.f /;

where

� I1.f /: M DG and 
 D 1;

� I2.f /: M ¤G and 
 D 1;

� I3.f /: 
 is unipotent, but 
 ¤ 1;

� I4.f /: the other contributions.

The first term I1.f / is f .1/ up to constant factors, and the Plancherel formula O�pl
S1
. Of / D f .1/

yields the first term of the equality in Theorem 1.1. The condition N � c0
Q
p2S1

p2n� in Theorem 1.1
implies that the nonunipotent contribution I4.f / vanishes by [Shin and Templier 2016, Lemma 8.4].
Therefore, everything is reduced to studying the unipotent contributions I2.f / and I3.f /. An explicit
bound for I2.f / was given by [Shin and Templier 2016, proof of Theorem 9.16]. However, as for I3.f /,
since the number of .M; QS/-equivalence classes in the geometric unipotent conjugacy class of each 
 is
increasing when N goes to infinity, it is difficult to estimate I3.f / directly. In the case of GSp.4/, we
computed unipotent contributions by using case-by-case analysis as in [Kim et al. 2020a]. Here we give a
new uniform way to estimate all the unipotent contributions. It is given by a sum of special values of
zeta integrals with real characters for spaces of symmetric matrices; see Lemma 3.3 and Theorem 3.7.
This formula is a generalization of the dimension formula (see [Shintani 1975; Wakatsuki 2018]) to the
trace formula of Hecke operators. By using their explicit formulas [Saito 1999] and analyzing Shintani
double zeta functions [Kim et al. 2022], we express the geometric side as a finite sum of products of local
integrals and special values of the Hecke L functions with real characters, and then obtain the estimates
of the geometric side; see Theorem 3.10.

This paper is organized as follows. In Section 2, we set up some notations. In Section 3, we give
key results (see Theorem 3.7 and Theorem 3.10) in estimating trace formulas of Hecke elements. In
Section 4, we study Siegel modular forms in terms of Arthur’s classification and show that nongenuine
forms are negligible. In Section 5, we give a notion of newforms which is necessary to estimate conductors.
Sections 6–10 are devoted to proving the main theorems. Finally, in the Appendix, we give an explicit
computation of the convolution product of some Hecke elements, which is needed in the computation of
`-level density of standard L-functions.

2. Preliminaries

A split symplectic group G D Sp.2n/ over the rational number field Q is defined by

G D Sp.2n/D
�
g 2 GL2n W g

�
On In
�In On

�
tg D

�
On In
�In On

��
:

The compact subgroup

K1 D

��
A �B

B A

�
2G.R/

�



Equidistribution theorems for holomorphic Siegel cusp forms of general degree: the level aspect 999

of G.R/ is isomorphic to the unitary group U.n/ via the mapping
�
A
B
�B
A

�
7! AC iB , where i D

p
�1.

For each rational prime p, we also set Kp DG.Zp/ and put K D
Q
p�1Kp. The compact groups Kv

and K are maximal in G.Qv/ and G.A/, respectively,
Holomorphic discrete series of G.R/ are parameterized by n-tuples k D .k1; : : : ; kn/ 2 Zn such that

k1 � � � � � kn >n, which is called the Blattner parameter. We write �k for the holomorphic discrete series
corresponding to the Blattner parameter k D .k1; : : : ; kn/. We also write Dhol

l
for one corresponding to

the Harish-Chandra parameter l D .k1� 1; k2� 2; : : : ; kn�n/ so that Dhol
l
D �k .

Let Hur.G.Qp// denote the unramified Hecke algebra over G.Qp/, that is,

Hur.G.Qp//D
˚
' 2 C1c .G.Qp// W '.k1xk2/D '.x/ 8k1; k2 2Kp; 8x 2G.Qp/

	
:

Let T denote the maximal split Q-torus of G consisting of diagonal matrices. We denote by X�.T / the
group of cocharacters on T over Q. An element ej in X�.T / is defined by

ej .x/D diag.

j�1‚ …„ ƒ
1; : : : ; 1; x;

n�jC1‚ …„ ƒ
1 : : : ; 1;

j�1‚ …„ ƒ
1; : : : ; 1; x�1;

n�jC1‚ …„ ƒ
1; : : : ; 1 / 2 T; x 2 Gm: (2-1)

Then, one has X�.T / D he1; : : : ; eni. By the Cartan decomposition, any function in Hur.G.Qp// is
expressed by a linear combination of characteristic functions of double cosets Kp�.p/Kp .� 2X�.T //.
A height function k � k on X�.T / is defined by



 nY

jD1

e
mj
j





Dmax
˚
jmj j W 1� j � n

	
; mj 2 Z:

For each � 2 N, we set

Hur.G.Qp//
�
D

n
' 2Hur.G.Qp// W Supp.'/�

[
�2X�.T /; k�k��

Kp�.p/Kp

o
: (2-2)

Choose a natural number N . We set

Kp.N /D fx 2Kp W x � I2n mod N g; K.N /D
Y
p<1

Kp.N /: (2-3)

One gets a congruence subgroup �.N/DG.Q/\G.R/K.N /.
Let Hn WD fZ 2Mn.C/ WZD

tZ; Im.Z/ > 0g. We write Sk.�.N // for the space of Siegel cusp forms
of weight k for �.N/, i.e., Sk.�.N // consists of Vk-valued smooth functions F on G.A/ satisfying the
following conditions:

(i) F.
gk1kf /D �k.k1/�1F.g/; g 2G.A/; 
 2G.Q/; k1 2K1; kf 2K.N/,

(ii) �k.g1; iIn/F jG.R/.g1/ is holomorphic for g1 � iIn 2 Hn,

(iii) maxg2G.A/ jF.g/j � 1,

where �k denotes the finite dimensional irreducible polynomial representation of U.n/ corresponding to k
together with the representation space Vk and we set �k.g; iIn/D �k.iC CD/ for g D

�
A
C
B
D

�
2G.R/.
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Let m D .m1; : : : ; mn/, m1jm2j � � � jmn, and Dm D diag.m1; : : : ; mn/. Let T .Dm/ be the Hecke
operator defined by the double coset

�.N/

�
Dm 0

0 D�1m

�
�.N/:

Specifically, for each prime p, letDp;aDdiag.pa1 ; : : : ; pan/, with aD .a1; : : : ; an/ and 0�a1�� � ��an.
Let F be a Hecke eigenform in Sk.�.N // with respect to the Hecke operator T .Dp;a/ for all p −N .

(See [Kim et al. 2020a, Section 2.2] for Hecke eigenforms in the case of nD 2. One can generalize the
contents there to n� 3.) Then F gives rise to an adelic automorphic form �F on Sp.2n;Q/nSp.2n;A/,
and �F gives rise to a cuspidal representation �F which is a direct sum �F D�1˚� � �˚�r , where the �i
are irreducible cuspidal representations of Sp.2n/. Since F is an eigenform, the �i are all near-equivalent
to each other. Since we do not have the strong multiplicity one theorem for Sp.2n/, we cannot conclude
that �F is irreducible. However, the strong multiplicity one theorem for GLn implies that there exists a
global A-parameter  2‰.G/ such that �i 2… for all i [Schmidt 2018, p. 3088]. (See Section 4 for
the definition of the global A-packet.)

On the other hand, given a cuspidal representation � of Sp.2n/ with a K.N/-fixed vector and whose
infinity component is holomorphic discrete series of lowest weight k, there exists a holomorphic Siegel
cusp form F of weight k with respect to �.N/ such that �F D� . (See [Schmidt 2017, p. 2409] for nD 2.
One can generalize the contents there to n� 3.)

We defineHEk.N/ to be a basis ofK.N/-fixed vectors in the set of cuspidal representations of Sp.2n;A/
whose infinity component is holomorphic discrete series of lowest weight k, and identify it with a basis
consisting of all Hecke eigenforms outsideN . In particular, each F 2HEk.N / gives rise to an irreducible
cuspidal representation �F of Sp.2n/. Let Fk.N / be the set of all isomorphism classes of cuspidal
representations of Sp.2n/ such that �K.N/¤ 0 and �1'�k . Consider the mapƒ WHEk.N /�!Fk.N /,
given by F 7�! �F . It is clearly surjective. For each � D �1˝˝0p�p 2 Fk.N /, set �f D˝0p�p . Then
we get

jƒ�1.�/j D dim�K.N/f ;

where �K.N/
f

D f� 2 �f W �f .k/� D � for all k 2K.N/g.

3. Asymptotics of Hecke eigenvalues

For each function h2C1c .K.N /nG.Af /=K.N//, an adelic Hecke operator Th on Sk.�.N // is defined by

.ThF /.g/D

Z
G.Af /

F.gx/h.x/ dx; F 2 Sk.�.N //:

See [Kim et al. 2020a, pp. 15–16] for the relationship between the classical Hecke operators and adelic
Hecke operators for n D 2. One can generalize the contents there to n � 3 easily. Let fk denote a
pseudocoefficient of �k with tr �k.fk/D 1; see [Clozel and Delorme 1990].
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Lemma 3.1. Suppose kn > nC 1 and h 2 C1c .K.N /nG.Af /=K.N//. The spectral side Ispec.fkh/ of
the invariant trace formula is given by

Ispec.fkh/D
X

�D�k˝�f ; auto. rep. ofG.A/

m� Tr.�f .h//D Tr
�
ThjSk.�.N//

�
;

where m� means the multiplicity of � in the discrete spectrum of L2.G.Q/nG.A//.

Proof. The second equality follows from [Wallach 1984]. One can prove the first equality by using the
arguments in [Arthur 1989] and the main result in [Hiraga 1996], since it follows from [Hiraga 1996] and
kn > nC 1 that we obtain Tr.�1.fk//D 0 for any unitary representation �1.6Š �k/ of G.R/. �

We choose two natural numbers N1 and N , which are mutually coprime. Suppose that N1 is squarefree.
Set S1 D fp W p j N1g. We write hN for the characteristic function of

Q
p…S1tf1g

Kp.N /. For each
automorphic representation � D �1˝˝0p�p, we set �S1 D p̋2S1�p.

Lemma 3.2. Take a test function h on G.Af / as

hD vol.K.N //�1 � h1˝ hN ; where h1 2 p̋2S1H
ur.G.Qp//: (3-1)

Then

Ispec.fkh/D
X

�D�k˝�f ; auto. rep. ofG.A/

m� dim�
K.N/

f
Tr.�S1.h1//D Tr

�
ThjSk.�.N//

�
:

Proof. This lemma immediately follows from Lemma 3.1. �

Let Vr denote the vector space of symmetric matrices of degree r , and define a rational representation �
of the group GL1 �GLr on Vr by x � �.a;m/ D atmxm, where x 2 Vr and .a;m/ 2 GL1 �GLr . The
kernel of � is given by Ker �D f.a�2; aIr/ W a 2 GL1g, and we set

Hr D Ker �n.GL1 �GLr/:

Then, the pair .Hr ; Vr/ is a prehomogeneous vector space over Q. For 1� r � n and f 2C1c .G.A// (re-
spectively, f 2C1c .G.Af //), we define a function f̂;r 2C

1
c .Vr.A// (respectively, f̂;r 2C

1
c .Vr.Af //)

as

f̂;r.x/D

Z
K

f

�
k�1

�
In �

On In

�
k

�
dk

�
respectively,

Z
Kf

�
; where � D

�
x 0

0 0

�
2 Vn:

Let Qfk denote the spherical trace function of �k with respect to �k on G.R/; see [Wakatsuki 2018,
§5.3]. Notice that Qfk is a matrix coefficient of �k , and so it is not compactly supported. Take a test
function h 2 C1c .G.Af // and set Qf D Qfkh. Let � be a real character on R>0Q�nA�. Define a zeta
integral Zr.ˆ Qf ;r ; s; �/ by

Zr.ˆ Qf ;r ; s; �/D

Z
Hr .Q/nHr .A/

jar det.m/2js�.a/
X

x2V 0r .Q/

ˆ Qf ;r.x �g/ dg; g D �.a;m/;
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where V 0r D fx 2 Vr W det.x/¤ 0g and dg is a Haar measure on Hr.A/. The zeta integral Zr.ˆ Qf ;r ; s; �/
is absolutely convergent for the range

kn > 2n; Re.s/ > r�1

2
;

8<:Re.s/ <
kn

2
if r D 2;

Re.s/ < kn�
r�1

2
otherwise;

(3-2)

see [Wakatsuki 2018, Proposition 5.15], and Z.ˆ Qf ;r ; s; �/ is meromorphically continued to the whole
s-plane; see [Shintani 1975; Wakatsuki 2018; Yukie 1993]. The following lemma associatesZ.ˆ Qf ;r ; s; �/
with the unipotent contribution Iunip.f /D I1.f /C I2.f /C I3.f / of the invariant trace formula.

Lemma 3.3. Let S0 be a finite set of finite places of Q. Take a test function hS0 2 C
1
c .G.QS0//, and

let hS0 denote the characteristic function of
Q
p…S0tf1g

Kp . Define a test function Qf as Qf D QfkhS0h
S0 .

If kn is sufficiently large .kn� 2n/, then we have

Iunip
�
fkhS0h

S0
�
D volG hS0.1/ dkC

1

2

nX
rD1

X
�2X .S0/

Zr

�
ˆ Qf ;r ; n�

r�1

2
; �
�
;

where volGDvol.G.Q/nG.A//, dk denotes the formal degree of �k , and X .S0/ denotes the set consisting
of real characters �D˝v�v on R>0Q�nA� such that �v is unramified for any v … S0 t f1g. Note that
S0 may contain S1 and all prime factors of N .

Remark 3.4. Note that the point s D n� .r �1/=2, where 1� r � n, is contained in the range (3-2), and
we have Zr.ˆ Qf ;r ; s; �/� 0 for any real character � …X .S0/.

Proof. To study Iunip.fkhS0h
S0/, we need an additional zeta integral QZr.ˆ Qf ;r ; s/ defined by

QZr.ˆ Qf ;r ; s/D

Z
GLr .Q/nGLr .A/

jdet.m/j2s
X

x2V 0r .Q/

ˆ Qf ;r.
tmxm/ dm:

The zeta integral QZr.ˆ Qf ;r ; s/ is absolutely convergent for the range (3-2), and QZ.ˆ Qf ;r ; s/ is meromor-
phically continued to the whole s-plane; see [Shintani 1975; Wakatsuki 2018; Yukie 1993]. Applying
[Wakatsuki 2018, Propositions 3.8 and 3.11, Lemmas 5.10 and 5.16] to Iunip.f /, we obtain

Iunip
�
fkhS0h

S0
�
D volG hS0.1/ dkC

nX
rD1

QZr

�
ˆ Qf ;r ; n�

r�1

2

�
(3-3)

for sufficiently large kn� 2n. Notice that fk is changed to Qfk in the right-hand side of (3-3), and this
change is essentially required for the proof of (3-3).

By the same argument as in [Hoffmann and Wakatsuki 2018, (4.9)], we have

QZr.ˆ Qf ;r ; s/D
1

2

X
�

Zr.ˆ Qf ;r ; s; �/;

where � runs over all real characters on R>0Q�nA�. Suppose that �D˝v�v …X .S0/. Then, we can
take a prime p … S0 such that �p is ramified and

ˆ Qf ;r.apx/Dˆ Qf ;r.x/; 8ap 2 Z�p : (3-4)

Hence, we get Zr.ˆ Qf ;r ; s; �/� 0, and the proof is completed. �
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Remark 3.5. The rational representation � of Hr on Vr is faithful, but the representation x 7! tmxm

of GLr on Vr is not. Hence, Zr.ˆ Qf ;r ; s; �/ is suitable for Saito’s explicit formula [1999], which we use

in the proof of Theorem 3.10, but QZr.ˆ Qf ;r ; s/ is not. This fact is also important for the study of global
coefficients in the geometric side; see [Hoffmann and Wakatsuki 2018].

Let  be a nontrivial additive character on QnA, and a bilinear form h ; i on Vr.A/ is defined by
hx; yi WD Tr.xy/. Let dx denote the self-dual measure on Vr.A/ for  .h ; i/. Then, a Fourier transform
of ˆ 2 C1.Vr.A// is defined by

Ô .y/D

Z
Vr .A/

ˆ.x/ .hx; yi/ dx; y 2 Vr.A/:

For each ˆ0 2 C10 .Vr.Af //, we define its Fourier transform ĉ
0 in the same manner. The zeta function

Zr.ˆ Qf ;r ; s;1/ satisfies the functional equation [Shintani 1975; Yukie 1993]

Zr.ˆ Qf ;r ; s;1/DZr
�
1̂
Qf ;r
;
rC1

2
� s; 1

�
; (3-5)

where 1 denotes the trivial representation on R>0Q�nA�.
Take a test functionˆ0 2C10 .Vr.Af // such thatˆ0.tkxk/Dˆ0.x/ holds for any k 2

Q
p<1Hr.Zp/

and x 2Vr.Af /, whereHr.Zp/ is identified with the projection of GL1.Zp/�GLr.Zp/ intoHr.Af /. We
writeL0 for the subset of Vr.Q/which consists of the positive definite symmetric matrices contained in the
support of ˆ0. It follows from the condition of ˆ0 that L0 is invariant for � DHr.Z/DHr.Q/\Hr. OZ/.
Put �r.ˆ0; s/D 1 for r D 0. For r > 0, define a Shintani zeta function �r.ˆ0; s/ as

�r.ˆ0; s/D
X

x2L0=�

ˆ0.x/

#.�x/ det.x/s
;

where �x D f
 2 � W x � 
 D xg. The zeta function �r.ˆ0; s/ absolutely converges for Re.s/ > .rC 1/=2,
and is meromorphically continued to the whole s-plane; see [Shintani 1975]. Furthermore, �r.ˆ0; s/ is
holomorphic except for possible simple poles at s D 1; 3=2; : : : .r C 1/=2.

Lemma 3.6. Let 1 � r � n, kn > 2n, h 2 C1c .G.Af //, and take a test function Qf as Qf D Qfkh. Then,
there exists a rational function Cn;r.x1; : : : ; xn/ over R such that

Zr

�
ˆ Qf ;r ; n�

r�1

2
; 1
�
D Cn;r.k/� �r. b̂h;r ; r �n/:

Proof. This can be proved by the functional equation (3-5) and the same argument as in [Wakatsuki 2018,
proof of Lemma 5.16]. �

Note that �r. b̂h;r ; s/ is holomorphic in fs2C WRe.s/�0g, and Cn;r.x1; : : : ; xn/ is explicitly expressed
by the Gamma function and the partitions; see [Wakatsuki 2018, (5.17) and Lemma 5.16]. We will use this
lemma for the regularization of the range of k. The zeta integral Zr.ˆ Qf ;r ; n� .r � 1/=2;1/ was defined
only for kn > 2n, but the right-hand side of the equality in Lemma 3.6 is available for any k. In addition,
this lemma is necessary to estimate the growth of Iunip.f / with respect to S D S1tf1g. We later define
a Dirichlet series DSm;uS .s/ just before Proposition 3.9, and the series DSm;uS .s/ appears in the explicit
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formula of Zr.ˆ; s;1/ when r is even. For the case that r is even and 3 < r < n, it seems difficult to
estimate the growth of its contribution to Zr.ˆ Qf ;r ; n� .r � 1/=2;1/, but we can avoid such difficulty by
this lemma, since the part related to DSm;uS .s/ in Saito’s formula [1999, Theorem 3.3] disappears in the
special value �r. b̂h;r ; r �n/.
Theorem 3.7. Suppose kn > nC 1. Let h1 2Hur.G.QS1//

� D p̋2S1Hur.G.Qp//
� , and let h be a test

function on G.Af / given as (3-1). Then there exists a positive constant c0 such that, if N � c0N 2n�
1 ,

Tr
�
ThjSk.�.N//

�
D volG vol.K.N //�1h1.1/dkC

1

2

nX
rD1

Cn;r.k/�r. b̂h;r ; r �n/: (3-6)

Proof. Let f Dfkh and Qf D Qfkh. By Lemma 3.2, it is sufficient to prove that the geometric side Igeom.f /

equals the right-hand side of (3-6). If one uses the results in [Arthur 1989] and applies [Shin and Templier
2016, Lemma 8.4] by putting „ WG � GLm, mD 2n, B„ D 1, c„ D c0 in their notations, then one gets
Igeom.f /D Iunip.f /. Hence, by Lemma 3.3 and putting hS0h

S0 D h, we have

Tr
�
ThjSk.�.N//

�
D volG vol.K.N //�1h1.1/dkC

1

2

nX
rD1

X
�2X .S0/

Zr

�
ˆ Qf ;r ; n�

r�1

2
; �
�

(3-7)

for sufficiently large kn. Let M .a/ WD diag.1; : : : ; 1; a; : : : ; a/, where there are n entries of both 1 and a,
for a 2 A�. For any ap 2 Z�p , bp 2Q�p , � 2X�.T /, we have

M .ap/
�1Kp.N /M .ap/DKp.N / and M .ap/

�1�.bp/M .ap/D �.bp/:

Hence, (3-4) holds for any p<1, and soZr.ˆ Qf ;r ; n�.r�1/=2; �/ vanishes for any �¤1. Therefore, by
Lemma 3.6 we obtain the assertion (3-6) for sufficiently large kn. By the same argument as in [Wakatsuki
2018, proof of Theorem 5.17], we can prove that this equality (3-6) holds in the range kn>nC1, because
the both sides of (3-6) are rational functions of k in that range, see Lemma 3.6 and [Wakatsuki 2018,
Proposition 5.3]. Thus, the proof is completed. �

Let S denote a finite subset of places of Q, and suppose1 2 S . For each character �D˝v�v on
Q�R>0nA

�, we set

LS .s; �/D
Y
p…S

Lp.s; �p/; L.s; �/D
Y
p<1

Lp.s; �p/;

�S .s/D LS .s;1/D
Y
p 62S

.1�p�s/�1; and �.s/D L.s; 1/;

where Lp.s; �p/D .1��p.p/p�s/�1 if �p is unramified, and Lp.s; �p/D 1 if �p is ramified.

Lemma 3.8. Let s 2 R. For s > 1,

�S .s/� �.s/ and
�
�S
�0
.s/�

2s�.s/

s� 1
;

where .�S /0.s/D d
ds �

S .s/. For s � �1,

j�S .s/j � .NS /
�s
j�.s/j;

where NS D
Q
p2Snf1g p.
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Proof. First of all, .1�p�s/�1�1 for p 2S . Hence �S .s/� �.s/. Let log �S .s/D
P
p 62S log.1�p�s/�1.

Then
.�S /0.s/

�S .s/
D

X
p 62S

�p�s logp
1�p�s

:

If s > 1, then 1�p�s � 1
2

. Hence,ˇ̌̌̌
.�S /0.s/

�S .s/

ˇ̌̌̌
� 2

X
p 62S

p�s logp � 2
X
p

p�s logp:

By partial summation,X
p

p�s logp �
Z 1
1

�X
p�x

logp
�
sx�s�1 dx �

Z 1
1

sx�s dx D s

s�1
:

Here we use the prime number theorem:
P
p�x logp � x. Therefore, .�S /0.s/� 2s�.s/=.s� 1/. �

Set DD fd.Q�/2 W d 2Q�g. For each d 2D, we denote by �d D
Q
v �d;v the quadratic character

on Q�R>0nA
� corresponding to the quadratic field Q.

p
d / via class field theory. If d D 1, then �d

means the trivial character 1. For each positive even integer m, we set

'Sd;m.s/D �
S .2s�mC 1/�S .2s/

LS .m=2; �d /

LS .2s�m=2C 1; �d /
N
�
fSd
�.m�1/=2�s

;

where fS
d

denotes the conductor of �S
d
D
Q
p 62S �d;p. For each uS 2QS D

Q
v2S Qv, one sets

D.uS /D
˚
d.Q�/2 W d 2Q�; d 2 uS .Q

�
S /
2
	
:

We need the Dirichlet series
DSm;uS .s/D

X
d.Q�/22D.uS /

'Sd;m.s/:

The following proposition is a generalization of [Ibukiyama and Saito 2012, Proposition 3.6]:

Proposition 3.9. Let m� 2 be an even integer. Suppose .�1/m=2u1 > 0 for uS D .uv/v2S (namely, the
term of d.Q�/2D .Q�/2 does not appear inDSm;uS .s/ if .�1/m=2D�1). The Dirichlet seriesDSm;uS .s/
is meromorphically continued to C, and is holomorphic at any s 2 Z�0.

Proof. See [Kim et al. 2022, Corollary 4.23] for the case m> 3. For mD 2, this statement can be proved
by using [Hoffmann and Wakatsuki 2018; Yukie 1992]. �

Theorem 3.10. Fix a parameter k such that kn>nC1. Let h1 2Hur.G.QS1//
� , and let h2C1c .G.Af //

be a test function on G.Af / given as (3-1). Suppose supx2G.QS1 / jh1.x/j � 1. Then, there exist positive
constants a, b, and c0 such that, if N � c0N 2n�

1 ,

Tr
�
ThjSk.�.N//

�
D volG vol.K.N //�1h1.1/dkC vol.K.N //�1O.N a�Cb

1 N�n/:

Here the constants a and b do not depend on �, N1, or N . See Lemma 3.3 for volG and dk .
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Proof. Set

I. Qf ; r/D vol.K.N //� �r. b̂h;r ; r �n/; 1� r � n:

By Theorem 3.7, it is sufficient to prove I. Qf ; r/DO.N a�Cb
1 N�n/.

Let R be a finite set of places of Q. Take a Haar measure dx1 on Vr.R/, and for each prime p,
we write dxp for the Haar measure on Vr.Qp/ normalized by

R
Vr .Zp/

dxp D 1. For a test function
ˆR 2 C

1
c .Vr.QR// and an Hr.QR/-orbit OR 2 V

0
r .QR/=Hr.QR/, we set

Zr;R.ˆR; s;OR/D cR

Z
OR

ˆR.x/jdet.x/js�.rC1/=2R dx;

where cR D
Q
p2R;p<1.1 � p

�1/�1, j � jR D
Q
v2R j � jv, and dx D

Q
v2R dxv. It is known that

Zr;R.ˆR; s;OR/ absolutely converges for Re.s/� rC1
2

, and is meromorphically continued to the whole
s-plane.

Suppose that R does not contain1, that is, R consists of primes. Write �p.x/ for the Clifford invariant
of x 2 V 0r .Qp/, see [Ikeda 2017, Definition 2.1], and set �R..xp/p2R/ D

Q
p2R �p.xp/. For � D 1R

(trivial) or �R, we put .ˆR�/.x/DˆR.x/ �.x/. It follows from the local functional equation [Ikeda 2017,
Theorems 2.1 and 2.2] over Qp .RD fpg/ that Zr;p. p̂�; s;Op/ is holomorphic in the range Re.s/ < 0,
and Zr;p. p̂�; s;Op/ possibly has a simple pole at sD 0. Hence, for any R, Zr;R.ˆR�; s;OR/ does not
have any pole in the area Re.s/ < 0, but it may have a pole at sD 0. Let b̂R denote the Fourier transform
of ˆR 2 C1c .Vr.QR// over QR for

Q
v2R  v.h ; i/, where  v D  jQv .

Define

ˆh1;r.x/D h1

��
In �

On In

��
2 C1c .Vr.QS1//;

where � D
�
x
0
0
0

�
2 Vn. Note that this definition is compatible with ˆ Qf ;r since h1 is spherical forQ

p2S1
Kp. Set

Zr.S1; h1/D
X

OS12V
0
r .QS1 /=Hr .QS1 /

ˇ̌
Zr;S1

�1̂
h1;r�r ; r �n;OS1

�ˇ̌
;

where

�r D

�
1S1 if (r is odd and r < n) or r D 2 < n;
�S1 if r is even and 2 < r < n;

and

Zn.S1; h1/D
X

OS12V
0
r .QS1 /=Hr .QS1 /

ˇ̌̌
Zn;S1

�
ˆh1;n;

nC1

2
;OS1

�ˇ̌̌
if r D n.

It follows from Saito’s formula [1999, Theorem 2.1 and §3] that the zeta function �r. b̂h;r ; s/ is expressed
by a (finite or infinite) sum of Euler products of Zr;p. p̂�p; s;Op/, with �p D 1p , �p , or its finite sums,
and he explicitly calculated the local zeta function Zr;p. p̂�p; s;Op/ in [Saito 1997, §2] if p̂ is the
characteristic function of V.Zp/. We shall prove I. Qf ; r/DO.N a�Cb

1 N�n/ by using his results.
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Case I. Assume r is odd and r < n. In the following, we set S D S1tf1g. By Saito’s formula, we have

I. Qf ; r/D .constant/�N r.r�1/=2�rn
�

X
OS12V

0
r .QS1 /=Hr .QS1 /

Zr;S1.
1̂
h1;r ; r�n;OS1/

��S
�
rC1

2
�n
�
�

nY
lD2

�S .l/�1�

Œr=2�Y
uD1

�S .2u/�S .2r�2n�2uC1/:

Therefore, one has
jI. Qf ; r/j �N r.r�1/=2�rn

�N 2n3

1 �Zr.S1; h1/

by using Lemma 3.8.

Case II. Assume r is even and 3 < r < n. By Saito’s formula, Proposition 3.9, and Lemma 3.8, one can
prove that jI. Qf ; r/j is bounded by

N r.r�1/=2�rn
�Zr.S1; h1/�

ˇ̌̌̌
�S
�
r

2

�
�

nY
lD2

�S .l/�1 �

r=2�1Y
uD1

�S .2u/�

r=2Y
uD1

�S .2r � 2n� 2uC 1/

ˇ̌̌̌
�N r.r�1/=2�rn

�N 2n3

1 �Zr.S1; h1/

up to a constant. Note that Proposition 3.9 was used for this estimate, since it is necessary to prove the
vanishing of the term including DSr;uS .s/ in the explicit formula [Saito 1999, Theorem 3.3].

Case III. Assume r D n. In this case, we should use a method different from Case I and Case II since
Zr;S1.

1̂
h1;r�; s;OS1/ may have a simple pole at s D r � nD 0. Take an n-tuple l D .l1; : : : ; ln/, with

l1 � � � � � ln > 2n, and let n.x/D
�
In
On

x
In

�
2G where x 2 Vn. Recall that Qfl satisfies the following two

properties:

(i) Qfl.k�1gk/D Qfl.g/, for all k 2K1, g 2G.R/; see [Wakatsuki 2018, §5.3].

(ii)
R

R
Qfl.g
�1
1 n1.t/g2/ d t D 0 for all g1, g2 2 G.R/, where n1.t/ D n..bij /1�i;j�n/, b11 D t , and

bij D 0 for all .i; j /¤ .1; 1/; see [Wakatsuki 2018, Lemma 5.9].

By property (i), we can define ˆ Qfl ;n.x/D Qfl.n.x//, where x 2 Vn.R/.

Lemma 3.11. For each orbit O1 2 V
0
n .R/=Hn.R/, we have Zn;1.ˆ Qfl ;n; .nC 1/=2;O1/D 0.

Proof. Let O1 ¤ In �Hn.R/, and take a representative element A of O1 as

AD

0@0 0 1

0 A 0

1 0 0

1A ; where A 2 V 0n�2.R/:

The orbit O1 is decomposed into A �GLn.R/t .�A/ �GLn.R/. The centralizer Hn.A/ of n.A/ in Hn.R/
is given by

Hn.A/ D fm.h/n.y/ W h 2 OA.n/; y 2 Vn.R/g;

where

m.h/D

�
th�1 On
On h

�
and OA.n/D fh 2 GLn W thAhD Ag:
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Hence, by property (ii), we have

Zn;1

�̂
Qfl ;n
;
nC1

2
;O1

�
D

X
A0D˙A

Z
OA0 .n/nGLn.R/

Qfl.m.h/
�1n.A0/m.h//jdet.h/jnC1 dh

D

X
A0D˙A

Z
N OA0 .n/nGLn.R/

Z
R

Qfl.m.h/
�1n.A0/n1.2t/m.h//jdet.h/jnC1 dt dh

D 0;

where N D f.bij / W bjj D 1;with 1� j � n; bn1 2 R; and bij D 0 otherwiseg.
In the case sD .nC1/=2, we note that j det.x/j vanishes in the integral ofZn;1.ˆ Qfl ;n; .nC1/=2;O1/.

Hence, it follows from property (ii) thatX
O12V

0
n .R/=Hn.R/

Zn;1

�
ˆ Qfl ;n

;
nC1

2
;O1

�
D

Z
Vn.R/

ˆ Qfl ;n
.x/ dx D 0;

and so we also find Zn;1.ˆ Qfl ;n; .nC 1/=2; In �Hn.R//D 0. �

By Lemmas 3.6 and 3.11, the residue formula [Yukie 1993, Chapter 4] of Zn.ˆ; s;1/ and the same
argument as in [Hoffmann and Wakatsuki 2018, proof of Theorem 4.22], we obtain

�r. b̂h;r ; 0/D Cn;n.l/
�1Zn

�
ˆ Qflh;r

;
nC1

2
;1
�

D Cn;n.l/
�1 vol.Hn.Q/nHn.A/1/

Z
V.R/

ˆ Qfl ;n
.x1/ log jdet.x1/j1 dx1

�

Z
V.QS1 /

ˆh1;n.xS1/ dxS1N
�n.nC1/=2;

where Hn.A/D f.a;m/ 2Hn.A/ W jan det.m/2j D 1g. From this, we have

jI. Qf ; r/j �N�n.nC1/=2 �Zr.S1; h1/:

Case IV. Assume r D 2< n. By Saito’s formula [Hoffmann and Wakatsuki 2018, Theorem 4.15], we have

jI. Qf ; r/j �N 1�2n
�Z2.S1; h1/�

ˇ̌
�S .2/�1�S .3� 2n/

ˇ̌
� max
uS2Q�S=.Q

�
S /
2; u1<0

jDS2;uS .2�n/j:

Hence, it is enough to give an upper bound of jDS2;uS .2 � n/j for u1 < 0. Choose a representative
element uS D .uv/v2S satisfying up 2 Zp, with p 2 S1. Take a test function ˆ D ˝vˆv such that
the support of ˆ1 is contained in fx 2 V 02 .R/ W det.x/ > 0g and p̂ is the characteristic function of
diag.1;�up/Cp2V2.Zp/ (respectively, V2.Zp/) for each p 2 S1 (respectively, p 62 S ). Let

‰.y; yu/D

Z
K2

Ô

�
tk

�
0 y

y yu

�
k

�
dk; K2 D O.2;R/�

Y
p

GL2.Zp/;

and we set

T .ˆ; s/D
d

ds1
T .ˆ; s; s1/

ˇ̌
s1D0

and T .ˆ; s; s1/D

Z
A�

Z
A

jy2jsk.1; u/ks1‰.y; yu/ du d�y:
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By [Shintani 1975, Lemma 1], one obtains Z2;1.b̂1; n � 1
2
;O1/ D 0 for any orbit O1 in V 02 .R/.

Therefore, from the functional equation [Yukie 1992, Corollary (4.3)], one deducesˇ̌
N�61 DS2;uS .2�n/

ˇ̌
�
ˇ̌
Z2;S .ˆS ; 2�n;OS /D

S
2;uS

.2�n/
ˇ̌
D
ˇ̌
2�1T

�
Ô ; n� 1

2

�ˇ̌
:

By [Yukie 1992, Proposition (2.12) (2)], one getsˇ̌̌
T
�
Ô ; n�

1

2

�ˇ̌̌
�N 4n�2

1 �

�
�S .2n� 2/C

ˇ̌
.�S /0.2n� 2/

ˇ̌
C

ˇ̌̌̌
.�S /0.2n� 1/�S .2n� 2/

�S .2n� 1/

ˇ̌̌̌�
;

where .�S /0.s/D d
ds �

S .s/, because Supp. Ôp/� p�2V.Zp/ for any p 2 S1. Therefore, one gets

jDS2;uS .2�n/j �N 4nC4
1

by Lemma 3.8.
The final task is to prove Zr.S1; h1/�N a�Cb

1 for some a and b. Using the local functional equations
in [Ikeda 2017, Theorem 2.1] (see also [Sweet 1995]), one gets

Zr.S1; h1/�N c
1 �

X
OS12V

0
r .QS1 /=Hr .QS1 /

Zr;S1

�
jˆh1;r j; n�

r�1

2
;OS1

�
for some c 2 N. By [Assem 1993, Lemma 2.1.1] and the assumption supx2G.QS1 / jh1.x/j � 1, we have

jˆh1;r j �ˆS1;r;�� ;

where ˆS1;r;�� denotes the characteristic function of p̋2S1p
��Vr.Zp/. Hence, by a change of variables,

we get

Zr;S1

�
jˆh1;r j; n�

r�1

2
;OS1

�
�Zr;S1

�
ˆS1;r;�� ; n�

r�1

2
;OS1

�
DN

�nr��r.r�1/=2
1 Zr;S1

�
ˆS1;r;0; n�

r�1

2
;OS1

�
�N

�nr��r.r�1/=2
1 :

It follows from classification theory of quadratic forms that #.V 0r .QS1/=Hr.QS1//�N1. Therefore, we
obtain a desired upper bound for Zr.S1; h1/. Thus, we obtain I. Qf ; r/DO.N a�Cb

1 N�n/. �

Remark 3.12. We give some remarks on Shin and Templier’s work [2016] and Dalal’s work [2022].
In the setting of [Shin and Templier 2016], they considered “all” cohomological representations as a
family which exhausts an L-packet at infinity since they chose the Euler–Poincaré pseudocoefficient at
the infinite place. Then there is no contribution from nontrivial unipotent conjugacy classes. Therefore,
our work is different from Shin–Templier’s work in that we can consider only holomorphic forms in an
L-packet.

Shin suggested to consider a family of automorphic representations whose infinite type is any fixed
discrete series representation. Dalal [2022] carried it out in the weight aspect by using the stable trace
formula. The stabilization allows us to remove the contribution I3.f / (see Section 1), but instead of I3.f /,
the contributions of endoscopic groups have to enter. Dalal obtained a good bound for them by using the
concept of hyperendoscopy introduced by Ferrari [2007]. In studying the level aspect, it seems difficult
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to directly get a sufficient bound for the growth of the hyperendoscopic groups in question; since Sp.2n/
has infinitely many elliptic endoscopic groups

SO.N1; N1/�Sp.2N2/ and SO.N1C 1;N1� 1;E=Q/�Sp.2N2/; N1CN2 D n;

where E runs over quadratic extensions of Q and SO.N1C 1;N1� 1;E=Q/ is the quasisplit orthogonal
group attached to E=Q (see [Arthur 2013, p. 13–14] and [Assem 1998, §4]), it is quite complicated
to count the hyperendoscopic groups. (The referee pointed out to us that the essential difficulty in
applying hyperendoscopy techniques is in computing endoscopic transfers of indicators of any level
subgroup. In particular, answering the transfer problem is necessary to even know which set of groups
we are counting.) We also observe the same complication coming from elliptic endoscopic groups in the
unipotent terms of the (unstable) Arthur trace formula; see [Hoffmann and Wakatsuki 2018, p. 8]. Assem’s
results [1993; 1998] make us expect that, for 1�r�n, some parts of zeta integralsZr.ˆ Qf ;r ; s; �/ probably
correspond to the central contributions of the endoscopic groups SO.n�rC1; n�rC1/�Sp.2r�2/ and
SO.n� r C 2; n� r; E=Q/�Sp.2r � 2/. To avoid such complication, we have simplified the unipotent
terms in several steps as follows:

� Our method showed the vanishing of a large part of the unipotent terms; see Lemma 3.3 and
[Wakatsuki 2018].

� The contributions of Zr.ˆ Qf ;r ; s; �/ vanish when � is nontrivial; see Theorem 3.7.

� Our careful analysis estimates upper bounds of the contributions of Zr.ˆ Qf ;r ; s;1/ by using the
functional equations; see the proof of Theorem 3.10.

Analogous simplifications should be required even if we use the stable trace formula.

4. Arthur classification of Siegel modular forms

In this section, we study Siegel modular forms in terms of Arthur’s classification [2013]; see §1.4 and
§1.5 of loc. cit.. Recall G D Sp.2n/=Q. We call a Siegel cusp form which comes from smaller groups by
Langlands functoriality “a nongenuine form”. In this section, we estimate the dimension of the space of
nongenuine forms and show that they are negligible. This result is interesting in its own right.

Let F 2 HEk.N /, see Section 2, and � D �F be the corresponding automorphic representation
of G.A/. According to Arthur’s classification, � can be described by using the global A-packets. Let us
recall some notations. A (discrete) global A-parameter is a symbol

 D �1Œd1�� � � ���r Œdr �

satisfying the following conditions:

(1) for each i , with 1� i � r , �i is an irreducible unitary cuspidal self-dual automorphic representation
of GLmi .A/. In particular, the central character !i of �i is trivial or quadratic;

(2) for each i , di 2 Z>0 and
Pr
iD1midi D 2nC 1;
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(3) if di is odd, then �i is orthogonal, i.e., L.s; �i ;Sym2/ has a pole at s D 1;

(4) if di is even, then �i is symplectic, i.e., L.s; �i ;^2/ has a pole at s D 1;

(5) !d11 � � �!
dr
r D 1;

(6) if i ¤ j and �i ' �j , then di ¤ dj .

We say that two global A-parameters �riD1�i Œdi � and �r 0iD1�
0
i Œd
0
i � are equivalent if r D r 0 and there

exists � 2Sr such that d 0i D d�.i/ and � 0i D ��.i/. Let ‰.G/ be the set of equivalent classes of global
A-parameters. For each  2‰.G/, one can associate a set … of equivalent classes of simple admissible
G.Af /� .g; K1/-modules; see [Arthur 2013]. The set … is called a global A-packet for  .

Definition 4.1. Let  D�riD1�i Œdi � be a global A-parameter.

�  is said to be semisimple if d1 D � � � D dr D 1; otherwise,  is said to be nonsemisimple;

�  is said to be simple if r D 1 and d1 D 1.

By [Arthur 2013, Theorem 1.5.2] (though our formulation is slightly different from the original one),
we have a following decomposition

L2disc.G.Q/nG.A//'
M

 2‰.G/

M
�2… 

m�; �; (4-1)

where m�; 2 f0; 1g; see [Atobe 2018, Theorem 2.2] for m�; . We have the following immediate
consequence of (4-1):

Proposition 4.2. Let 1K.N/ be the characteristic function of K.N/�G.Af /. Then

Sk.�.N //D
M

 2‰.G/

M
�2… 
�1'�k

m�; �
K.N/

f

and

jHEk.N /j D vol.K.N //�1
X

 2‰.G/

X
�2… 
�1'�k

m�; tr.�f .1K.N///: (4-2)

Theorem 4.3. Assume (1-4). For a globalA-parameter D�riD1�i Œdi �, suppose that there exists � 2… 
with �1 ' �k . Then  is semisimple, i.e., di D 1 for all i , and each �i is regular algebraic and satisfies
the Ramanujan conjecture, i.e., �i;p is tempered for any p.

Proof. By the proof of [Chenevier and Lannes 2019, Corollary 8.5.4], we see that d1 D � � � D dr D 1.
Hence,  is semisimple. Further, by comparing infinitesimal characters c.�1/, c. 1/ of �1,  1
respectively, we see that each �i is regular algebraic by [Chenevier and Lannes 2019, Corollary 6.3.6 and
Proposition 8.2.10]. It follows from [Caraiani 2012;2014] that �i;p is tempered for any p. �

Therefore, for each finite prime p, the local Langlands parameter at p of � is described as one of the
isobaric sum �riD1�i;p which is an admissible representation of GL2nC1.Qp/.
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Definition 4.4. We denote by HEk.N /ng the subset of HEk.N / consisting of all forms which belong toM
 2‰.G/
 Wnonsimple

M
�2… 
�1'�k

m�; �
K.N/

f
;

under the isomorphism (4-1). A form in this space is called a nongenuine form.
Similarly, we denote by HEk.N /g the subset of HEk.N / consisting of all forms which belong toM

 2‰.G/
 Wsimple

M
�2… 
�1'�k

m�; �
K.N/

f
;

under the isomorphism (4-1). A form in this space is called a genuine form.

Definition 4.5. Denote by ….GLn.R//c the isomorphism classes of all irreducible cohomological ad-
missible .gln; O.n//-modules. For �1 2….GLn.R//c and a quasicharacter � WQ�nA�!C�, we define

Lcusp;ort�GLn.Q/nGLn.A/; �1; �
�
WD

M
�Worthogonal

�1'�1; !�D�

m.�/�

and
Lcusp;ort�KGLn.N /; �1; �

�
WD

M
�Worthogonal

�1'�1; !�D�

m.�/�K
GLn .N/;

where the direct sums are taken over the isomorphism classes of all orthogonal cuspidal automorphic
representations of GLn.A/ and !� stands for the central character of � . The constant m.�/ is the
multiplicity of � in L2.GLn.Q/nGLn.A// which satisfies m.�/ 2 f0; 1g by [Shalika 1974]. Here,
KGLn.N / is the principal congruence subgroup of GLn. OZ/ of level N . Put

lcusp;ort.n;N; �1; �/ WD dimC

�
Lcusp;ort.KGLn.N /; �1; �/

�
for simplicity. Clearly, lcusp;ort.1;N; �1; �/ D j OZ

�=.1CN OZ/�j D '.N /, where ' stands for Euler’s
totient function.

Let P.2nC 1/ be the set of all partitions of 2nC 1 and Pm be the standard parabolic subgroup
of GL2nC1 associated to a partition 2nC 1Dm1C � � �Cmr , and mD .m1; : : : ; mr/.

In order to apply the formula (4-2), it is necessary to study the transfer of Hecke elements in the local
Langlands correspondence established by [Arthur 2013, Theorem 1.5.1]. We regard G D Sp.2n/ as a
twisted elliptic endoscopic subgroup of GL2nC1; see [Ganapathy and Varma 2017] or [Oi 2023].

Proposition 4.6. LetN be an odd positive integer. Put SN WDfp prime Wp jN g. For the pair .GL2nC1; G/,
the characteristic function of vol.K.N //�11K.N/ as an element of C1c .G.QSN // is transferred to

vol
�
KGL2nC1.N /

��1
1KGL2nC1 .N/

as an element of C1c .GL2nC1.QSN //.

Proof. It follows from [Ganapathy and Varma 2017, Lemma 8.2.1 (i)]. �
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Remark 4.7. Keep the notation in the previous proposition. If … is the twisted endoscopic transfer of � ,
then the claim immediately implies

dimC �
K.N/

� dimC…
KGL2nC1 .N/:

In fact, we have dimC �
K.N/D tr.I� W…K

GL2nC1 .N/!…K
GL2nC1 .N//, where I� W…!… is the intertwin-

ing operator defining the twisted trace. Since I� is of finite order, we have the above inequality; see the
argument for [Yamauchi 2021, Theorem 1.6].

Applying Proposition 4.6, we have the following:

Proposition 4.8. Assume (1-4) and N is odd. Then jHEk.N /ng j is bounded by

An.N /

'.N /

X
mD.m1;:::;mr /2P.2nC1/

r�2

X
�i2….GLmi .R//

c

c.�r
iD1

�i /Dc.�k/

X
�i WQ

�nA�!C�

�2
i
D1; c.�/jN

dPm.N /

rY
iD1

lcusp;ort.mi ; N; �i ; �i /;

where the second sum is indexed by all r-tuples .�1; : : : ; �r/ such that �i 2….GLmi .R//
c and c.�riD1�i /D

c.�k/, the equality of the infinitesimal characters. Further c.�/ stands for the conductor of � and
'.N /D j.Z=NZ/�j. Here,

(1) An.N / WD 2.2nC1/!.N/ where !.N/ WD jfp prime W p jN gj;

(2) dPm.N /D jPm.Z=NZ/nGL2nC1.Z=NZ/j D vol.KGL2nC1.N //�1=jPm.Z=NZ/j.

Proof. Let � D �1 ˝ ˝
0
p�p be an element of … for  D �riD1�i . Let …p be the local Lang-

lands correspondence of �p to GL2nC1.Qp/ established by [Arthur 2013, Theorem 1.5.1], and let
L.…p/ W LQp!GL2nC1.C/ be the local L-parameter of …p, where LQp D WQp for each p < 1
and LR D WR � SL2.C/. Since the localization  p of the global A-parameter  at p is tempered by
Theorem 4.3, we see that L.…p/ is equivalent to  p. Since L.…p/ is independent of � 2 … and
multiplicity one for GL2nC1.A/ holds, the isobaric sum  D�riD1�i as an automorphic representation
of GL2nC1.A/ gives rise to a unique global L-parameter on … . On the other hand, it follows from
[Arthur 2013, Theorem 1.5.1] that j… p j � 2

2nC1 for the local A-packet … p at p if p jN , and … p
is a singleton if p − N . It yields that j… j � 2.2nC1/!.N/. Since the local Langlands correspondence
�p 7!…p satisfies the character relation by [Arthur 2013, Theorem 1.5.1], it follows from Proposition 4.6
with Remark 4.7 that for each � 2… ,

dim
�
�
K.N/

f

�
D vol.K.N //�1 tr.�.1K.N///

� vol.KGL2nC1.N //�1 tr
�
.�riD1�i /.1KGL2nC1 .N//

�
D dim

�
.�riD1�i /

KGL2nC1 .N/

f

�
;
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where we denote by �f D˝0p<1�p the finite part of the cuspidal representation � . Plugging this into
Proposition 4.2, we have

jHEk.N /
ng
j D vol.K.N //�1

X
 D�r

iD1
�i2‰.G/; r�2

c. 1/Dc.�k/

X
�2… 

m�; tr.�f .1K.N///

�
An.N /

'.N /

X
 D�r

iD1
�i2‰.G/; r�2

c. 1/Dc.�k/

dim
�
.�riD1�i /

KGL2nC1 .N/

f

�
;

where 1='.N / is inserted because of the condition on the central characters in global A-parameters. Here,
r � 2 is essential to gain the factor 1='.N /; see Remark 4.9.

Next we describe dim..�riD1�i /
KGL2nC1.N/

f
/ in terms of the data .mi ; N; �i ; �i / with 1� i � r . Since

Pm.Af /nGL2nC1.Af /=K.N/' Pm. OZ/nGL2nC1. OZ/=K.N/' Pm.Z=NZ/nGL2nC1.Z=NZ/

and a complete system of the representatives can be taken from elements in GL2nC1. OZ/, and therefore,
they normalize K.N/. Then a standard method for fixed vectors of an induced representation shows that

dim
�
.�riD1�i /

KGL2nC1 .N/

f

�
D dPm.N /

rY
iD1

dim
�
�K

GLmi .N/

i;f

�
;

Here, if �i is the central character of �i and �i;1 ' �i , then dim.�K
GLmi .N/

i;f
/D lcusp;ort.mi ; N; �i ; �i /.

Notice that the conductor of �i is a divisor of N . Summing up, we have the claim. �

Remark 4.9. Let r � 2. The group homomorphism ..Z=NZ/�/r!.Z=NZ/�, .x1; : : : ; xr/ 7! x1 � � � xr ,
is obviously surjective, and it yields

ˇ̌˚
.�1; : : : ; �r/ 2

3.Z=NZ/�r W �1 � � ��r D 1
	ˇ̌
D
j3.Z=NZ/�r j

'.N /
:

This trivial equality explains the appearance of the factor 1='.N / in Proposition 4.8.

Next we study lcusp;ort.n;N; �; �/ for � 2 ….GLn.R//c and for n � 2. Now if � is a cuspidal
representation of GL2mC1 which is orthogonal, i.e., L.s; �;Sym2/ has a pole at s D 1, then � comes
from a cuspidal representation � on Sp.2m/. In this case, the central character !� of � is trivial.

If � is a cuspidal representation of GL2m which is orthogonal, i.e., L.s; �;Sym2/ has a pole at s D 1,
then !2� D 1; If !� D 1, � comes from a cuspidal representation � on the split orthogonal group
SO.m;m/; If !� ¤ 1, then � comes from a cuspidal representation � on the quasisplit orthogonal group
SO.mC 1;m� 1/.

First we consider the case when � is trivial in estimating lcusp;ort.2nC ı;N; �; �/, where ı D 0 or 1.
For a positive integer n, let

H D

�
SO.n; n/ if G0 D GL2n;
Sp.2n/ if G0 D GL2nC1:
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We regard H as a twisted elliptic endoscopic subgroup G0.

Proposition 4.10. Let N be an odd positive integer. For the pair .G0;H/, the characteristic function of
vol.KH .N //�11KH .N/ as an element of C1c .H.QSN // is transferred to

vol.KG
0

.N //�11KG0 .N/

as an element of C1c .G
0.QSN //.

Proof. It follows from [Ganapathy and Varma 2017, Lemma 8.2.1 (i)]. �

Each cuspidal representation � of G0.A/ contributing to lcusp;ort.N; �;1/ can be regarded as a simple
A-parameter. Also as a cuspidal representation, it strongly descends to a generic cuspidal representation
…� of H.A/ whose L-parameter L.…� / at infinity of …� is same as one of �1. In this setting, by
[Arthur 2013, Proposition 8.3.2 (b)], the problem is reduced to estimate

Lcusp;gen.H;N;L.…� /; 1/ WD
M

��Lcusp;generic;ort.H.Q/nH.A/;L.…� /;1/

m.�/�K
H .N/; m.�/ 2 f0; 1; 2g;

where � runs over all irreducible unitary, cohomological orthogonal cuspidal automorphic representations
of H.A/ whose L-parameter at infinity is isomorphic to L.…� / with the central character �D 1.

Proposition 4.11. Keep the notations as above. Then

� lcusp;ort.2nCı;N; �; 1/�Cn.N /dim.Lcusp;gen.H;N;L.…� /; 1//, whereCn.N / WD2.2nCı/!.N/ and

ı D

�
0 if G0 D GL2n;
1 if G0 D GL2nC1:

� dim.Lcusp;gen.H;N;L.…� /; 1//� c � vol.KH .N //�1 � cN dim.H/ for some c > 0, when the infin-
itesimal character of L.…� / is fixed and N !1.

Proof. The first claim follows from [Arthur 2013, Proposition 8.3.2 (b)] with a completely similar argument
of Proposition 4.8.

The second claim follows from [Savin 1989]. �

Next we consider the case when � is a quadratic character. In this case, a cuspidal representation �
contributing to Lcusp;ort.KGLn.N /; �1; �/ comes from a cuspidal representation of the quasisplit orthog-
onal group SO.mC 1;m� 1/ defined over the quadratic extension associated to �. However any transfer
theorem for Hecke elements in .GL2m;SO.mC 1;m� 1// remains open. To get around this situation,
we make use of the transfer theorems for some Hecke elements in the quadratic base change due to
Yamauchi [2021]. For this, we need the following assumptions on the level N :

(1) N is an odd prime or

(2) N is odd and all prime divisors p1; : : : ; pr .r � 2/ of N are congruent to 1 modulo 4 and
� pi
pj

�
D 1

for i ¤ j , where
�
�
�

�
denotes the Legendre symbol.
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These conditions are needed in order that for any quadratic extension M=Q with the conductor dM divid-
ingN , there exists an integral ideal N ofM such that NN� D .dM /where � is the generator of Gal.M=Q/.

Proposition 4.12. Keep the assumptions on N as above. Then

lcusp;ort.2m;N; �; �/� 22m�!.N/ vol.KH .N //�1;

where H D SO.m;m/.
Proof. Let M=Q be the quadratic extension associated to � and OM the ring of integers of M . Let � be
the generator of Gal.M=Q/. Let KGL2m

M .N/ be the principal congruence subgroup of GL2m. OZ˝Z OM /
of the level N. Clearly, the �-fixed part of KGL2m

M .N/ is KGL2m.dM / where dM is the conductor of
M=Q and it contains KGL2m.N / since dM jN . Applying [Yamauchi 2021, Theorem 1.6], we have for a
cuspidal representation � of GL2m.A/ and its base change … WD BCM=Q.�/ to GL2m.AM /,

vol
�
KGL2m.N /

��1 tr
�
�.1KGL2m .N//

�
� vol

�
K

GL2m
M .N/

��1 tr
�
….1

K
GL2m
M .N/

/
�
:

Recall that our � contributing to Lcusp;ort.2m;N; �; �/ is orthogonal, namely, L.s; �;Sym2/ has a pole
at s D 1. Note that L.s;…;Sym2/ D L.s; �;Sym2/L.s; �;Sym2˝�/. Now, L.s; � � .� ˝ �// D
L.s; �;^2˝�/L.s; �;Sym2˝�/. Suppose … is cuspidal. Then � 6' �˝�. So the left-hand side has no
zero at s D 1, and L.s; �;Sym2˝�/ has no zero at s D 1. Therefore, L.s;…;Sym2/ has a pole at s D 1.

If … is noncuspidal, then by Arthur and Clozel [1989], there exists a cuspidal representation � of
GLm.AM / such that

…D � � �� :

In such a case, ifmD 2, then �DAIQ
M � for some cuspidal representation � of GL2.AM /; an automorphic

induction from GL2.AM / to GL4.AQ/. Since � is cuspidal and orthogonal, � has to be dihedral. Such �
are counted in [Kim et al. 2020b, Section 2.6] and it amounts to O.N 11=2C"/ for any " > 0. This will
be negligible because vol.KH .N //� cNm.2m�1/ D cN 6 for some constant c > 0. Assume m� 3. It
is easy to see that the dimension of

L
…Wnoncuspidal…

KGL2m
M .N/

f
is bounded by

O
�
Nm2�1Cm.mC1/=2

�
DO

�
N 3m2=2Cm=2�1

�
;

where the �1 of m2 � 1 in the exponent of left-hand side in the above equation is inserted because of
the fixed central character. Since dim SO.m;m/Dm.2m� 1/ and m� 3, spaces …K

GL2m
M .N/

f
for which

… is noncuspidal are negligible in the estimation. Further, … is orthogonal with trivial central character.
(The central character of … is � ıNM=Q D 1.) Therefore, we can bound lcusp;ort.2m;N; �; �/ by

lcusp;ort.2m;N;BCM1=R.�/; 1/;

which is similarly defined for cuspidal representations of GL2m.AM /. Applying the argument of the
proof of Proposition 4.11 to .GL2m =M;SO.m;m/=M/, the quantity lcusp;ort.2m;N; �; �/ is bounded by
22m!.N/ vol.KHM .N//�1, where HM WD SO.m;m/=M and !.N/ denotes the number of prime ideals
dividing N. The claim follows from OM=N' Z=NZ since vol.KHM .N//D vol.KH .N // and clearly
!.N/D !.N/. �
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Note that for any split reductive group G over Q and the principal congruence subgroup KG.N / of
levelN , we have that vol.KG.N //� cN� dimG for some constant c >0 asN!1. Furthermore, !.N/�
logN=.log logN/. Hence 2!.N/�N � , and An.N /DO.N "/ and Cmi .N /DO.N

"/ for each 1� i � r .

Theorem 4.13. Assume (1-4). Keep the assumptions on N as in Proposition 4.12. Then jHEk.N /ng j D
On.N

2n2Cn�1C"/ for any " > 0. In particular,

lim
N!1

jHEk.N /
ng j

jHEk.N /j
D 0:

Proof. By Proposition 4.8, for each partition mD .m1; : : : ; mr/ of 2nC 1, we must only estimate

An.N /

'.N /
dPm.N /

rY
iD1

lcusp;ort.mi ; N; �i ; �i /:

By Proposition 4.11 and Proposition 4.12,

lcusp;ort.mi ; N; �i ; �i /�Nmi .mi�1/=2C"

for any " > 0. Further, dPm.N/ D O.N
dimPmnGL2nC1/ D O.N

P
1�i<j�r mimj /. Note that '.N /�1 D

O.N�1C"/ for any " > 0. SinceX
1�i<j�r

mimjC

rX
iD1

mi .mi � 1/

2
D
1

2

� X
1�i;j�r

mimj

�
�
1

2

rX
iD1

mi D
1

2
.2nC1/2�

1

2
.2nC1/D2n2Cn;

we have the first claim.
The second claim follows from the dimension formula (1-3). �

5. A notion of newforms in Sk.�.N//

In this section, we introduce a notion of a newform in Sk.�.N // with respect to principal congruence
subgroups. Since any local newform theory for Sp.2n/ is unavailable except for n D 1; 2, we need a
notion of newforms so that we can control a lower bound of conductors for such newforms. This is
needed in application to low lying zeros. (See Theorem 8.3 and Lemma 9.3.)

Recall the description
Sk.�.N //D

M
 2‰.G/

M
�2… 
�1'�k

m�; �
K.N/

f

in terms of Arthur’s classification.

Definition 5.1. The new part (space) of Sk.�.N // is defined by

Snew
k .�.N //D

M
 2‰.G/

M
�D�f˝�k2… 

�K.N/¤0 but �K.d/D0 for any d jN;d¤N

m�; �
K.N/

f
:

The orthogonal complement Sold
k
.�.N // of Snew

k
.�.N // in Sk.�.N // with respect to Petersson inner

product is said to be the old space. LetHEnew
k .N / be a subset ofHEk.N /which is a basis of Snew

k .�.N //.
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Remark 5.2. As the referee pointed out, Sold
k
.�.N // is the intersection of Sk.�.N // with the smallest

G.Af /-invariant space of functions on G.Q/nG.A/ containing Sk.�.M// for all proper divisors M
of N .

Set dp D .1�p�1/n, dM D
Q
pjM dp and Cp D

Qn
jD1.1�p

�2j /, CM D
Q
pjM Cp. We set d1 D 1

and C1 D 1.
Recall dk.N /D dimSk.�.N //D Ck CN N

2n2CnCOk.N
2n2/.

Lemma 5.3. Assume that (1-4) holds and N is squarefree. Then we have

dk.N /D
X
M jN

dimSnew
k .�.M//

�
N

M

�n2
CN=M d�1N=M :

Proof. Let M j N . Take an automorphic representation � D �f ˝ �k such that dim�
K.M/

f
> 0 and

dim�
K.L/

f
D 0 for any L jM , L<M . Under this condition, � has an intersection with Snew

k
.�.M//, and

also with Sk.�.N //. Let �f D p̋�p . By the assumptions and Theorem 4.3, for any prime p −M , �p is
tempered spherical, and so �p is an irreducible induced representation from a Borel subgroup B ofG.Qp/.
So dim�

Kp
p D 1. Now Kp=Kp.p/ ' Sp2n.Fp/, # Sp2n.Fp/ D p2n

2CnCp, and #B.Fp/ D pn
2Cndp.

Hence, dim�
Kp.p/
p D pn

2

Cp d
�1
p for all p −M . Since N is squarefree, this leads to

dim�
K.N/

f
D dim�

K.M/

f
�

�
N

M

�n2
CN=Md

�1
N=M :

Thus, we obtain the assertion. �

Theorem 5.4. Assume that (1-4) holds and N is squarefree. Then we have

dimSnew
k .�.N //D CkCNN

2n2Cn
Y
pjN

�
1� d�1p p�n

2�n
�
COk

�
N 2n2

�
:

Here, �.n2/�1 <
Q
pjN

�
1 � d�1p p�n

2�n
�
< 1 if n > 1. If n D 1, we have

Q
pjN

�
1 � d�1p p�2

�
>Q

p

�
1� 1=.p.p� 1//

�
D 0:374 : : : .

Proof. Since CN=M D CN =CM and dN=M D dN =dM , from Lemma 5.3, we have

dk.N /N
�n2C�1N dN D

X
M jN

dimSnew
k .�.M//M�n

2

C�1M dM :

The Möbius inversion formula gives

dimSnew
k .�.N //N�n

2

C�1N dN D
X
M jN

�.M/dk

�
N

M

��
N

M

��n2
C�1N=MdN=M ;

where � denotes the Möbius function. Therefore,

dimSnew
k .�.N //D

X
M jN

�.M/dk

�
N

M

�
M n2CMd

�1
M : (5-1)
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By [Wakatsuki 2018, Corollary 1.2], there exist constants Ck;r such that dk.N /D
Pn
rD0 Ck;rCN N

f .r/

if N > 2, where f .r/D 2n2CnC 1
2
r.r � 1/�nr and Ck;0 D Ck . Further, we take two constants D1

and D2 so that dk.N /D
Pn
rD0 Ck;r CN N

f .r/CDN for N D 1 or 2. Therefore, by (5-1), we obtain

dimSnew
k .�.N //D

nX
rD0

Ck;rCNN
f .r/

X
M jN

�.M/d�1M M n2�f .r/

C�.N/N n2CNd
�1
N D1C

8<:�
�
N

2

��
N

2

�n2
CN=2d

�1
N=2

D2 if 2 jN;

0 if 2 −N:
Since N is squarefree, X

M jN

�.M/d�1M M n2�f .r/
D

Y
pjN

�
1� d�1p pn

2�f .r/
�
:

Therefore,

dimSnew
k .�.N //D

nX
rD0

Ck;rCNN
f .r/

Y
pjN

�
1� d�1p p�f .r/Cn

2�
C�.N/N n2CNd

�1
N D1C

8<:�
�
N

2

��
N

2

�n2
CN=2d

�1
N=2

D2 if 2 jN;

0 if 2 −N:

From this, we obtain the assertion.
Now, dp <1. Hence

Q
pjN

�
1�d�1p pn

2�f .r/
�
<1. Also d�1p <pn since 1=.1�p�1/ < p. Therefore,Q

pjN

�
1� d�1p p�n

2�n
�
>
Q
pjN

�
1�p�n

2�
. Here if n > 1,Y

pjN

�
1�p�n

2��1
<
Y
p

�
1�p�n

2��1
D �.n2/:

If nD 1, Y
pjN

�
1� d�1p p�n

2�n
�
D

Y
pjN

�
1�

1

p.p�1/

�
>
Y
p

�
1�

1

p.p�1/

�
;

which is the Artin constant. �

6. Equidistribution theorem of Siegel cusp forms; proof of Theorem 1.1

By the definition in (1-1), we see that

O�KS .N/;S1;�k ;Dhol
l
.bh1/D Tr.Th1 jSk.�.N///

vol.G.Q/nG.A// � dim �k
:

Notice that dim �k D dk (under a suitable normalization of the measure). Applying Theorem 3.10 to S1,
we have the claim by the Plancherel formula of Harish-Chandra: O�pl

S1
.bh1/D h1.1/.
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7. Vertical Sato–Tate theorem for Siegel modular forms: proofs of Theorems 1.2 and 1.3

Suppose that k D .k1; : : : ; kn/ satisfies the condition (1-4). Put TD fz 2C W jzj D 1g. For F 2HEk.N /,
consider the cuspidal automorphic representation � D �F D �1˝˝0p�F;p of G.A/ associated to F . As
discussed in the previous section, under the condition (1-4), theA-parameter whoseA-packet contains �
is semisimple and �F;p is tempered for all p. Then if p −N , �F;p is spherical, and we can write �F;p as
�F;p D IndG.Qp/

B.Qp/
�p , where B D T U is the upper Borel subgroup and �p is a unitary character on B.Qp/.

For each 1� j � n, put j̨p.�p/ WD �p.ej .p
�1// (see (2-1) for ej .p�1/) and by temperedness, we may

write j̨p.�p/D e
p
�1�j ; �j 2 Œ0; ��. Let OG D SO.2nC 1/.C/ be the complex split orthogonal group

over C associated to the antidiagonal identity matrix. Let L.�p/ WWQp!SO.2nC 1/.C/ be the local
Langlands parameter given by

L.�p/.Frobp/D .˛1p.�p/; : : : ; ˛np.�p/; 1; ˛1p.�p/�1; : : : ; ˛np.�p/�1/;

which is called the p-Satake parameter. Put a.i/.�p/D a
.i/
F;p.�p/D

1
2
.˛ip.�p/C˛ip.�p/

�1/D cos �i
for 1 � i � n. Let 2G.Qp/ur; temp be the isomorphism classes of unramified tempered representations
of G.Qp/. By [Shin and Templier 2016, Lemma 3.2], we have a topological isomorphism

2G.Qp/ur; temp �
��! Œ0; ��n=Sn DW�

given by

�p D IndSp2n.Qp/
B.Qp/

�p 7!
�
arg.a.1/.�p//; : : : ; arg.a.n/.�p//

�
DW .�1; : : : ; �n/:

We denote by .�1.�F;p/; : : : ; �n.�F;p// 2� the corresponding element to �F;p under the above isomor-
phism. Let OB D OT OU be the upper Borel subgroup of OG D SO.2nC 1/.C/. Let �C. OG/ be the set of all
positive roots in X�. OT /D Hom. OT ;GL1/ with respect to OB . We view .�1; : : : ; �n/ as parameters of �.
Let �pl; temp

p be the restriction of the Plancherel measure on 2G.Qp/ to 2G.Qp/ur; temp, and by abusing the
notation, we denote by �p D �

pl; temp
p its pushforward to �. Put

t WD
�
e
p
�1�1 ; : : : ; e

p
�1�n ; 1; e�

p
�1�1 ; : : : ; e�

p
�1�n

�
for simplicity. By [Shin and Templier 2016, Proposition 3.3], we have

�
pl; temp
p .�1; : : : ; �n/DW.�1; : : : ; �n/d�1 � � � d�n;

where

W.�1; : : : ; �n/D
1

.2�/n

�
1C

1

p

�n2 Q
˛2�C. OG/

j1� e
p
�1˛.t/j2Q

˛2�C. OG/
j1�p�1e

p
�1˛.t/j2

D
1

.2�/n

�
1C

1

p

�n2 Qn
iD1 j1� e

p
�1�i j2

Q
1�i<j�n

"D˙1

j1� e
p
�1.�iC"�j /j2Qn

iD1 j1�p
�1e
p
�1�i j2

Q
1�i<j�n

"D˙1

j1�p�1e
p
�1.�iC"�j /j2

:
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By letting p!1, we recover the Sato–Tate measure

�ST
1 D lim

p!1
�

pl; temp
p D

1

.2�/n

nY
iD1

ˇ̌
1� e

p
�1�i

ˇ̌2 Y
1�i<j�n
"D˙1

ˇ̌
1� e

p
�1.�iC"�j /

ˇ̌2
d�1 � � � d�n:

Then Theorems 1.2 and 1.3 follow from Theorems 1.1 and 4.13.

8. Standard L-functions of Sp.2n/

Let kD .k1; : : : ; kn/ and F 2HEk.N /, and let �F be a cuspidal representation of G.A/ associated to F .
Assume (1-4) for k. By (4-1) and the observation there, the global A-packet … containing �F

is associated to a semisimple global A parameter  D �riD1�i where �i is an irreducible cuspidal
representation of GLmi .A/. Then the isobaric sum … WD �riD1�i is an automorphic representation
of GL2nC1.A/. Therefore, we may define

L.s; �F ;St/ WD L.s;…/D
rY
iD1

L.s; �i /:

Let Lp.s; �F ;St/ WD L.s;…p/D
Qr
iD1L.s; �ip/ be the local p-factor of L.s; �F ;St/ for each rational

prime p.
Let �F D �1˝˝0p�p . For p −N , we have that �p is the spherical representation of G.Qp/ with the

Satake parameter .˛1p; : : : ; ˛np; 1; ˛�11p ; : : : ; ˛
�1
np /. Then

Lp.s; �F ;St/�1 D .1�p�s/
nY
iD1

.1�˛ipp
�s/.1�˛�1ip p

�s/:

We define the conductor q.F / of F to be the product of the conductors q.�i / of �i , for 1� i � r .

Theorem 8.1. Let F 2HEk.N /. Then the standard L-function L.s; �F ;St/ has a meromorphic continu-
ation to all of C. Let

ƒ.s; �F ;St/D q.F /s=2L1.s; �F ;St/L.s; �F ;St/;

where L1.s; �F ;St/D �R.sC �/�C.sC k1� 1/ � � ��C.sC kn�n/,

� D

�
0 if n is even;
1 if n is odd;

and �R.s/D �
�s=2�. s

2
/, �C.s/D 2.2�/

�s�.s/. Then

ƒ.s; �F ;St/D �.F /ƒ.1� s; �F ;St/;

where �.F / 2 f˙1g.

Proof. It follows from the functional equation of L.s;…/ by noting that … is self-dual, and L.s;…1/D
L1.s; �F ;St/ is the local L-function attached to the holomorphic discrete series of the lowest weight k;
see [Kozima 2002]. �
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The epsilon factor �.F / turns out to be always 1.

Proposition 8.2. Let �F be associated to a semisimple A-parameter. Then �.F /D 1.

Proof. Recall the global A-parameter  D�riD1�i . Let !i be the central character of �i . Since �i is
orthogonal, its epsilon factor is !i .�1/ by [Lapid 2004, Theorem 1]. Hence,

�.F /D

rY
iD1

!i .�1/D

� rY
iD1

!i

�
.�1/D 1.�1/D 1

by the condition on the central character. �

Theorem 8.3. For any F 2HEk.N /, the conductor q.F / satisfies q.F /�N 2nC1. If F 2HEnew
k
.N /,

then q.F /�max
˚
N
Q
pjN p

�1;
Q
pjN p

	
. So if F 2HEnew

k
.N /, q.F /�N 1=2.

Proof. Let �F be associated to a semisimple global A parameter  D�riD1�i where �i is an irreducible
cuspidal representation of GLmi .A/, and let … WD�riD1�i . Let …D…1˝˝0p…p . By Proposition 4.6,
… has a nonzero fixed vector by KGL2nC1.pep /, where ep D ordp.N /. As in the proof of [Kim et al.
2020a, Lemma 8.1], it implies depth.…p/� ep�1. Hence q.…p/�p.2nC1/ep by [Lansky and Raghuram
2003, Proposition 2.2]. Therefore, q.F /�N 2nC1.

If F 2HEnew
k .N /, by Definition 5.1, it is not fixed byKGL2nC1.pep�1/ for each p jN . By [Miyauchi

and Yamauchi 2022, Theorem 1.2], we have q.…p/�pmi .ep�1/ for some i . In particular, q.…p/�pep�1

for each p jN . Hence, q.F /�N
Q
pjN p

�1. It is clear that q.…p/� p if p jN . Hence,

q.F /�max
�
N �

Y
pjN

p�1;
Y
pjN

p

�
:

Now, q.F /2 D q.F / � q.F /�N . Hence our result follows. �

Proposition 8.4. Keep the assumptions onN as in Proposition 4.12. Let F 2HEk.N /. ThenL.s; �F ;St/
has a pole at sD1 if and only if �F is associated to a semisimple globalA-parameter D1��1�� � ���r
where �i is an orthogonal irreducible cuspidal representation of GLmi .A/, such that if mi D 1, �i is
a nontrivial quadratic character. Let HEk.N /0 be the subset of HEk.N / such that L.s; �F ;St/ has
a pole at s D 1. Then jHEk.N /0j DO.N 2n2�nC�/. So jHEk.N /0j=jHEk.N /j DO.N�2nC�/.

This proves [Shin and Templier 2016, Hypothesis 11.2] in our family.

Proof. This follows from the proof of Theorem 4.13, by noting that partitions mD .m1; : : : ; mr/ of 2n
contribute to HEk.N /0. �

Böcherer [1986] gave the relationship between Hecke operators and L-functions for level one and
scalar-valued Siegel modular forms and it is extended by Shimura [1994a] to a more general setting.

Let a D .a1; : : : ; an/, 0 � a1 � � � � � an, and Dp;a D diag.pa1 ; : : : ; pan/. Let F be an eigenform
in HEk.N / with respect to the Hecke operator T .Dp;a/ for all p − N , and let �.F;Dp;a/ be the
eigenvalue.
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Then we have the following identity [Shimura 1994a, Theorem 2.9]:X
a

�.F;Dp;a/X
Pn
iD1 ai D

1�X

1�pnX

nY
iD1

.1�p2iX2/

.1�˛ippnX/.1�˛
�1
ip p

nX/
; (8-1)

where aD .a1; : : : ; an/ runs over 0� a1 � � � � � an.
Let m D .m1; : : : ; mn/, m1jm2j � � � jmn, and Dm D diag.m1; : : : ; mn/, and let �.F;Dm/ be the

eigenvalue of the Hecke operator T .Dm/. Let

LN .s; F /D
X

m; .mn;N/D1

�.F;Dm/ det.Dm/�s:

Then
LN .s; F /D

Y
p−N

L.s; F /p;

L.s; F /p D
X
a

�.F;Dp;a/ det.Dp;a/�s:

It converges for Re.s/ > 2nC .k1C � � �C kn/=nC 1.
Hence, we have

�N .s/

� nY
iD1

�N .2s� 2i/

�
LN .s; F /D LN .s�n; �F ;St/;

where LN .s; �F ;St/D
Q
p−N Lp.s; �F ;St/, and �N .s/D

Q
p−N .1�p

�s/�1.
The central value ofLN .s; F / is at sDnC 1

2
, andLN .s; F / has a zero at sDnC 1

2
sinceLN .s; �F ;St/

is holomorphic at s D 1
2

. Theorem 3.10 implies

Theorem 8.5. For mD .m1; : : : ; mn/, m1jm2j � � � jmn with mn > 1 and .mn; N /D 1, N �m2nn ,

1

jHEk.N /j

X
F 2HEk.N/

�.F;Dm/DO.m
˛
nN
�n/;

for some constant ˛.

Proof. Let S1 be the set of all prime divisors of mn. Since mn > 1, S1 is nonempty. The main term of
right-hand side in Theorem 3.10 includes h1.1/. Clearly, h1.1/D 0 because the double coset defining the
Hecke operator h1 does not contain any central elements. Since the automorphic counting measure is
supported on cuspidal representations, Theorem 3.10 implies the claim. �

Write

LN .s; F /D

1X
mD1

.m;N/D1

aF .m/m
�s and L.s; F /p D

1X
kD0

aF .p
k/p�ks

for each prime p −N . Here aF .pk/D
P
a �.F;Dp;a/, where the sum is over all aD .a1; : : : ; an/ such

that 0� a1 � � � � � an, a1C � � �C an D k. Hence, for k > 0 and p −N ,

1

dk.N /

X
F 2HEk.N/

aF .p
k/DO.pkaN�n/:
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More generally:

Corollary 8.6. For m> 1, with .m;N /D 1, N �m2n,

1

dk.N /

X
F 2HEk.N/

aF .m/DO.m
˛N�n/:

Proof. We have aF .m/D
P
m �.F;Dm/, where the sum is over all mD .m1; : : : ; mn/, m1jm2j � � � jmn,

m1 � � �mn Dm. Our assertion follows from Theorem 8.5. �

Write

LN .s; �F ;St/D
1X
mD1

.m;N/D1

�F .m/m
�s:

Then from (8-1), we have, for p −N ,

�F .p/D
�
aF .p/C 1

�
p�n and �F .p

2/D 1Cp�2C � � �Cp�2nC
�
aF .p

2/C aF .p/
�
p�2n:

More generally, for p −N ,

�F .p
k/D

(
1Cp�2hk.p

�2/Cp�n
Pk
iD1 hik.p

�1/aF .p
i / if k is even;

p�nh0
k
.p�2/Cp�n

Pk
iD1 h

0
ik
.p�1/aF .p

i / if k is odd;

where hk; h0k; hik; h
0
ik
2 ZŒx�. Therefore, for .m;N /D 1,

�F .m/D
Y
pjm

�
ıp;mCp

�2hım.p
�1/
�
C

X
ujm
u>1

AuaF .u/;

where

Au 2Q; hım 2 ZŒx�; and ı D ıp;m D

�
1 if vp.m/ is even;
0 otherwise:

Therefore, by Corollary 8.6, we have

Theorem 8.7. Fix k D .k1; : : : ; kn/, and let mD
Q
pjm p

vp.m/ which is coprime to N . Then

1

dk.N /

X
F 2HEk.N/

�F .m/D
Y
pjm

�
ıp;mCp

�2hım.p
�1/
�
CO.N�nmc/:

This proves [Kim et al. 2020b, Conjecture 6.1 in level aspect] for the Sp.4/ case.

9. `-level density of standard L-functions

In this section, we assume (1-4) and keep the assumptions on N in Proposition 4.12. Then we show
unconditionally that the `-level density (` a positive integer) of the standard L-functions of the family
HEk.N / has the symmetry type Sp in the level aspect. Shin and Templier [2016] showed it under several
hypotheses with a family which includes nonholomorphic forms.
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Under assumption (1-4), F satisfies the Ramanujan conjecture, namely, j˛ipj D 1 for each i . Let

�
L0

L
.s; �F ;St/D

1X
mD1

ƒ.m/bF .m/m
�s;

where bF .pm/D 1C˛m1pC � � �C˛
m
npC˛

�m
1p C � � �C˛

�m
np when �p is spherical.

For F 2 HEk.N /, let … be the Langlands transfer of �F to GL2nC1. If F 2 HEk.N /g , then
L.s;…;^2/ has no pole at s D 1, and L.s;…;Sym2/ has a simple pole at s D 1. Let

L.s;…�…/D
X

�…�….n/n
�s;

L.s;…;^2/D
X

�^2.…/.n/n
�s;

L.s;…;Sym2/D
X

�Sym2.…/.n/n
�s:

Then �F .p2/D �Sym2.…/.p/ and �F .p/2 D �…�….p/D �^2.…/.p/C�Sym2.…/.p/.
Note that �F .p/D bF .p/, and bF .p2/D 2�F .p2/��F .p/2. Let

T .p; a/D �.N/

�
Dp;a 0

0 D�1p;a

�
�.N/:

By Theorem A.1, T .p; .0; : : : ; 0; 1//2, where there are n� 1 entries of 0, is a linear combination of

T
�
p; .

n�1‚ …„ ƒ
0; : : : ; 0; 2/

�
; T

�
p; .

n�2‚ …„ ƒ
0; : : : ; 0; 1; 1/

�
; T

�
p; .

n�1‚ …„ ƒ
0; : : : ; 0; 1/

�
; T

�
p;

n‚ …„ ƒ
.0; : : : ; 0/

�
D �.N/I2n�.N/:

Therefore, by Theorem 8.7, if p −N ,

1

dk.N /

X
F 2HEk.N/

�F .p/
2

is of the form

1Cp�1g.p�1/CO.pcN�n/

for some polynomial g 2 ZŒx� and c > 0. Here the main term 1Cp�1g.p�1/ comes from the coefficient

p

2n�1X
iD0

pi of T .p;

n‚ …„ ƒ
.0; : : : ; 0//

in the linear combination. Here the explicit determination of the coefficient is necessary in our application.
Hence, we have

Proposition 9.1. For some ˛ > 0 and p −N ,

1

dk.N /

X
F 2HEk.N/

bF .p/DO.p
�1/CO.p˛N�n/; for N � p2n

1

dk.N /

X
F 2HEk.N/

bF .p
2/D 1CO.p�1/CO.p˛N�n/; for N � p4n:
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Remark 9.2. By a more careful analysis, we can replace the error term O.N a�Cb
1 N�n/ in Theorem 3.10

by

O

�
N
n.nC1/=2�C�
1 N�n.nC1/=2CN

.2n�1/�C8n�4C�
1 N 1�2n

CN n�C2n3C2n�3C�
1 N�n

C

n�1X
rD3

N
�.nr�r.r�1/=2/C.2n�r�1/Œr=2�C2n�2r�1C2n3C�
1 N r.r�1/=2�nr

�
;

for any � > 0. Hence, the first error term O.p˛N�n/ in Proposition 9.1 can be replaced (by taking � D 1)
by

O

�
pn.nC1/=2C�N�.n

2Cn/=2
Cp10n�5C�N 1�2n

Cp2n
3C3n�3C�N�n

C

n�1X
rD3

p2n
3C2n�1C2nr�r2�2rC�N r.r�1/=2�nr

�
:

The second error term O.p˛N�n/ in Proposition 9.1 can be replaced (by taking � D 2) by

O

�
pn.nC1/C�N�.n

2Cn/=2
Cp12n�6C�N 1�2n

Cp2n
3C4n�3C�N�n

C

n�1X
rD3

p2n
3C2n�1C3nr�.3=2/.r2Cr/C�N r.r�1/=2�nr

�
:

We denote the nontrivial zeros of L.s; �F ;St/ by �F;j D 1
2
C
p
�1
F;j . Without assuming the GRH

for L.s; �F ;St/, we can order them as

� � � �Re.
F;�2/�Re.
F;�1/� 0�Re.
F;1/�Re.
F;2/� � � � :

Let c.F /D q.F /.k1 � � � kn/2 be the analytic conductor, and let

log ck;N D
1

dk.N /

X
F 2HEk.N/

log c.F /:

From Theorems 5.4 and 8.3, we have

Lemma 9.3. Let n > 1. We assume that N is squarefree. Then

.k1 � � � kn/
2N 1=.2�.n2//

� ck;N � .k1 � � � kn/
2N 2nC1:

This proves [Shin and Templier 2016, Hypothesis 11.4] in our family. It is used in the proof of (9-1).

Proof. By Theorem 8.3, we have q.F / �N 2nC1. It gives rise to the upper bound. If F 2HEnew
k .N /,

q.F /�N 1=2 by Theorem 8.3. By Theorem 5.4, jHEnew
k
.N /j � �.n2/�1jHEk.N /j. Hence,

log ck;N � log.k1 � � � kn/2C
1

dk.N /

X
F 2HEnew

k
.N/

log q.F /� log.k1 � � � kn/2C
1

2�.n2/
logN: �

Consider, for an even Paley–Wiener function �,

D.F; �/D
X

F;j

�

�

F;j

2�
log ck;N

�
:
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Then as in [Kim et al. 2020a, (9.1)],

1

dk.N /

X
F 2HEk.N/

D.F; �/D O�.0/�
1

2
�.0/�

2

.log ck;N /dk.N /

X
F 2HEk.N/

X
p

bF .p/ logp
p
p

O�

�
logp

log ck;N

�

�
2

.log ck;N /dk.N /

X
F 2HEk.N/

X
p

.bF .p
2/�1/ logp
p

O�

�
2 logp

log ck;N

�

CO

�
jHEk.N /

0j

dk.N /

�
CO

�
1

log ck;N

�
;

where HEk.N /0 is in Proposition 8.4. (In [Kim et al. 2020a, (9.4)], the term O
�
jHEk.N /

0j=dk.N /
�

was omitted.)
By Proposition 9.1, we can show as in [Kim et al. 2020a] that for an even Paley–Wiener function �

such that the Fourier transform O� of � is supported in .�ˇ; ˇ/, for some ˇ > 0,

1

dk.N /

X
F 2HEk.N/

D.F; �/D O�.0/�
1

2
�.0/CO

�
1

log ck;N

�
D

Z
R

�.x/W.Sp/.x/ dxCO
�
!.N/

logN

�
; (9-1)

where !.N/ is the number of prime factors of N and W.Sp/.x/ D 1� .sin 2�x/=.2�x/. (When we
exchange two sums, if p −N , we use Proposition 9.1. If p jN , by the Ramanujan bound, jbF .p/j � n
and jbF .p2/j � n. Hence by the trivial bound, we would obtain

P
pjN bF .p/ logp=

p
p� !.N/ andP

pjN bF .p
2/ logp=p� !.N/.)

In fact, by Remark 9.2, we can take ˇ to be the minimum of

n2Cn

.2nC1/.n2CnC1/
� �;

2n�1

.2nC1/.10n�9=2/
� �;

n

.2nC1/.2n3C3n�5=2/
� �;

1

2n.2nC1/
;

min3�r�n�1

�
nr � r.r � 1/=2

.2nC 1/.2nr � r2� 2r C 2n3C 2n� 1=2/
� �

�
:

Namely,
ˇ D

n

.2nC1/.2n3C3n�5=2/
� �: (9-2)

For a general `, let
W.Sp/.x/D det.K�1.xj ; xk//1�j�`; 1�k�`;

whereK�1.x;y/Dsin�.x�y/=�.x�y/�sin�.xCy/=�.xCy/. Let �.x1; : : : ;x`/D�1.x1/ � � ��`.x`/,
where each �i is an even Paley–Wiener function and O�.u1; : : : ; u`/D O�1.u1/ � � � O�`.u`/. We assume that
the Fourier transform O�i of �i is supported in .�ˇ; ˇ/ for i D 1; : : : ; `. The `-level density function is

D.`/.F; �/D
X�

j1;��� ;j`
�

�

j1

log ck;N
2�

; 
j2
log ck;N
2�

; : : : ; 
j`
log ck;N
2�

�
;

where
P�
j1;:::;j`

is over ji D˙1;˙2; : : : with ja ¤˙jb for a¤ b. Then as in [Kim et al. 2020b], using
Theorem 8.7, we can show
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Theorem 9.4. We assume that N is squarefree. Let �.x1; : : : ; x`/D �1.x1/ � � ��`.x`/, where each �i is
an even Paley–Wiener function and O�.u1; : : : ; u`/D O�1.u1/ � � � O�`.u`/. Assume the Fourier transform O�i
of �i is supported in .�ˇ; ˇ/ for i D 1; � � � ; `. (See (9-1) for the value of ˇ.) Then

1

dk.N /

X
F 2HEk.N/

D.`/.F; �/D

Z
R`
�.x/W.Sp/.x/ dxCO

�
!.N/

logN

�
:

Remark 9.5. The above theorem is usually stated for Schwartz functions in the literature. But since
Schwartz functions approximate any function in L2-space, the above theorem holds for Payley–Wiener
functions, which are in L2.Rn/, and whose Fourier transforms have compact supports.

10. The order of vanishing of standard L-functions at s D
1
2

In this section, we show that the average order of vanishing of standard L-functions at s D 1
2

is bounded
under GRH; see [Iwaniec et al. 2000; Brumer 1995]. Under GRH onL.s; �F ;St/, its zeros are 1

2
C
p
�1
F

with 
F 2 R.

Theorem 10.1. Assume the GRH. Assume (1-4) andN is squarefree. Let rF D ordsD 1
2
L.s; �F ;St/. Then

1

dk.N /

X
F 2HEk.N/

rF � C;

where C D 1
n
.2nC 1/

�
2n3C 3n� 5

2

�
�
1
2
C �.

Proof. Choose �.x/D
�
2 sin.xˇ=2/=x

�2 for x 2 R, where ˇ is from (9-2). Then

O�.x/D

�
ˇ� jxj if jxj< ˇ;
0 otherwise:

Since �.x/� 0 for x 2 R, from (9-1), we have

1

dk.N /

X
F 2HEk.N/

rF �.0/� O�.0/�
1

2
�.0/CO

�
1

log logN

�
:

Hence, we have
1

dk.N /

X
F 2HEk.N/

rF �
1

ˇ
�
1

2
CO

�
1

log logN

�
: �

We can show a similar result for the spinor L-function of GSp.4/. Recall the following from [Kim
et al. 2020a]:

Proposition 10.2. Assume .N; 11Š/D 1.

(1) (level aspect) Fix k1; k2. Then for � whose Fourier transform O� has support in .�u; u/ for some
0 < u < 1, as N !1 (See [Kim et al. 2020a, Proposition 9.1] for the value of u),

1

dk.N /

X
F 2HEk.N/

D.�F ; �;Spin/D O�.0/C 1
2
�.0/CO

�
1

log logN

�
:
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(2) (weight aspect) Fix N . Then for � whose Fourier transform O� has support in .�u; u/ for some
0 < u < 1, as k1C k2!1,

1

dk.N /

X
F 2HEk.N/

D.�F ; �;Spin/D O�.0/C 1
2
�.0/CO

�
1

log..k1�k2C2/k1k2/

�
:

By a careful analysis, we can show that v1 D 3;w1 D 6 in [Kim et al. 2020a, Proposition 8.2] in the
level aspect. Hence uD 1

40
in the level aspect. As in Theorem 10.1, we have

Theorem 10.3. Let G D GSp.4/. Assume the GRH, and let rF D ordsD 1
2
L.s; �F ;Spin/. Then

1

dk.N /

X
F 2HEk.N/

rF �

8̂<̂
:
1

u
C
1

2
CO

�
1

log logN

�
level aspect;

1

u
C
1

2
CO

�
1

log..k1�k2C2/k1k2/

�
weight aspect:

Appendix

In this appendix we compute the product T .p; .0; : : : ; 0; 1//2, with n� 1 entries of 0, from Section 9.

Theorem A.1. For the Hecke operators, we have

T .p; .

n�1‚ …„ ƒ
0; : : : ; 0; 1//2 D T .p; .

n�1‚ …„ ƒ
0; : : : ; 0; 2//C.pC1/T .p; .

n�2‚ …„ ƒ
0; : : : ; 0; 1; 1//C.pn�1/T .p; .

n�1‚ …„ ƒ
0; : : : ; 0; 1//

C

�
p

2n�1X
iD0

pi
�
T .p;

n‚ …„ ƒ
.0; : : : ; 0//:

This agrees with [Kim et al. 2020a, (2.7)] when nD 2. [Note that the coefficient of Rp2 there should
be replaced with p4Cp3Cp2Cp.]

Since p −N , we work on K D Sp.2n;Zp/ instead of �.N/. Put

Tp;n�1 WD pT .p; .0; : : : ; 0; 1//DK diag.1;
n�1‚ …„ ƒ

p; : : : ; p; p2;

n�1‚ …„ ƒ
p; : : : ; p /K 2 GSp.2n;Qp/:

It suffices to consider T 2p;n�1. Let us first compute the coset decomposition. Put ƒD GLn.Zp/ where
the identity element is denoted by 1n. For any ring R, let Sn.R/ be the set of all symmetric matrices of
size n defined over R and Mm�n.R/ be the set of matrices of size m�n defined over R. Put

Mn.R/DMn�n.R/

for simplicity. For each D 2Mn.Zp/, we define

B.D/ WD fB 2Mn.Zp/ j
tBD D tDBg:

For each B1; B2 2 B.D/, we write B1 � B2 if there exists M 2Mn.Zp/ such that B1 �B2 DMD.
We denote by B.D/= � the set of all equivalence classes of B.D/ by the relation �. We regard Fp
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(respectively, Z=p2Z) as the subset f0; 1; : : : ; p� 1g (respectively, f0; 1; : : : ; p2� 1g) of Z. Let DI be
the set of the following matrices in Mn.Zp/:

DIn�1 D diag.
n�1‚ …„ ƒ

p; : : : ; p; 1/;

DIs DD
I
s .x/ WD

0B@ p � 1s

1 x

p � 1n�1�s

1CA ; 0� s � n� 2; x 2M1�.n�1�s/.Fp/;

where we fill out zeros in the blank blocks. The cardinality ofDI is 1CpC� � �Cpn�1D .pn�1/=.p�1/
which is equal to that of ƒnƒdn�1ƒ, where dn�1 D diag.1; p; : : : ; p/ containing n� 1 entries of p.
Similarly, let DII be the set of the following matrices:

DIIn�1 D diag.p;

n�1‚ …„ ƒ
1; : : : ; 1/;

DIIs DD
II
s .y/ WD

0B@ 1s y

p

1n�1�s

1CA ; 1� s � n� 1; y 2Ms�1.Fp/:

The cardinality of DII is 1CpC � � � Cpn�1 D .pn � 1/=.p � 1/ which is equal to that of ƒnƒd1ƒ,
where d1 D diag.1; : : : ; 1; p/ containing n� 1 entries of 1. Finally for each M 2Mn.Zp/ we denote
by rp.M/ the rank of M mod pZp.

Lemma A.2. Assume p is odd. The right coset decomposition Tp;n�1 D
`
˛2J K˛ consists of the

following elements:

(1) (type I) We have

˛ D ˛I .D;B/D

�
p2 � tD�1 B

0n D

�
;

where D runs over the set DI and B runs over complete representatives of B.D/= � such that
rp.˛/D 1. Further, for each DIs , B can be taken over

� if s ¤ 0, then x ¤ 0 and B D 0;
� if s D 0, then x D 0 and B D 0.

(2) (type II) We have

˛ D ˛II .D;B/D

�
p � tD�1 B

0n pD

�
;

where D runs over the set DII and B runs over complete representatives of B.D/= � such that
rp.˛/D 1. Further, for each DIIs , B can be taken over.

� If s D 0, then �
B22 B23

p � tB23 0n�1

�
;

where B22 runs over Z=p2Z and B23 runs over M1�.n�1/.Fp/;
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� If s ¤ 0, for DIIs .y/, y 2Ms�1.Fp/,0B@ 0s p � tB21 0s�.n�1�s/

B21 B22 B23

0.n�1�s/�s p � tB23 0n�1�s

1CA;
where B21; B22 and B23 run over M1�s.Fp/; Z=p2Z, and M1�t .Fp/, respectively.

(3) (type III) We have

˛ D ˛III .B/D

�
p1n B

0n p1n

�
;

where B runs over Sn.Fp/ with rp.B/D 1. The number of such B’s is pn� 1.

Proof. We just apply the formula [Andrianov 2009, (3.94)]. First we need to compute a complete system of
representatives ofƒnƒtƒ' .t�1ƒt/\ƒnƒ for each t 2fdn�1; d1; p1ngwhere dn�1Ddiag.1; p; : : : ; p/
and d1Ddiag.1; : : : ; 1; p/ containing n�1 entries of p and 1, respectively. By direct computation, for tD
dn�1 (respectively, t Dd1), it is given byDI (respectively,DII ). For t Dp �1n, it is obviously a singleton.

As for the computation of B.D/=�, we give details only for D 2DI , and the case of DII is similarly
handled. For each D DDIs .x/; 0� s � n� 2, put

As D

0B@ 1s

1 �px

1n�1�s

1CA;
so that

DAs D

0B@ p � 1s

1

p � 1n�1�s

1CA:
Put An�1 D 12n for D DDIn�1. Then for each D DDIs , we have a bijection

B.D/=� ���! B.DAs/=�; B 7! BAs:

Therefore, we may compute B.DAs/=� and convert them by multiplying A�1s on the right.
We write B 2 B.DAs/ as a block matrix

s‚…„ƒ 1‚…„ƒ n�1�s‚…„ƒ
B D

0B@ B11 B12 B13

B21 B22 B23

B31 B32 B33

1CA
with respect to the partition sC 1C .n� 1� s/ of n where the column is also decomposed as in the row.
The relation yields

B D

0B@ B12 B12 B13

p � tB12 B22 p � tB32
tB13 B32 B33

1CA;
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where B11 2 Ss.Zp/, B22 2 Zp, and B33 2 Sn�1�s.Zp/. We write X 2Mn.Zp/ as
s‚…„ƒ 1‚…„ƒ n�1�s‚…„ƒ0B@ X11 X12 X13

X21 X22 X23

X31 X32 X33

1CA
with respect to the partition sC 1C .n� 1� s/ of n as we have done for B . Then

XDAs D

0B@ pX11 X12 pX13

pX21 X22 pX23

pX31 X32 pX33

1CA:
Our matrix B in B.DAs/=� is considered by taking modulo XDAs for any X 2Mn.Zp/. Hence B can
be, up to equivalence, of the form

B D

0B@ B11 0s�1 B13

01�s 0 01�.n�1�s/
tB13 0.n�1�s/�1 B33

1CA; (A-1)

where B11, B33, and B13 belong to Ss.Fp/, Sn�1�s.Fp/, and Ms�.n�1�s/.Fp/, respectively. Further, to
multiply A�1s on the right never change anything. Therefore, (A-1) gives a complete system of representa-
tives of B.D/=� for D DDIs . The condition rp.˛I .D;B//D 1 and the modulo K on the left yield the
desired result. For each D 2DIIs , a similar computation shows any element of S.p �D/=� is given by

s‚…„ƒ 1‚ …„ ƒ n�1�s‚…„ƒ0B@ B11 p � tB21 B13

B21 B22 B23
tB13 p � tB23 B33

1CA
modulo the matrices of forms 0B@ pX11 p2X12 pX13

pX21 p2X22 pX23

pX31 p2X32 pX33

1CA:
Therefore, B11; B13; B21; B22; B23, and B33 run over

Ms.Fp/; Ms�.n�1�s/.Fp/; M1�s.Fp/; Z=p2Z; M1�.n�1�s/.Fp/; and Mn�1�s.Fp/;

respectively. The claim now follows from the rank condition rp.˛II .D;B//D 1 and the modulo K on
the left again.

As for D D p1n in the case of type III, it is easy to see that S.D/= � is naturally identified with
Sn.Fp/. Recall p is an odd prime by assumption. The number of matrices in Sn.Fp/ of rank 1 is given
in [MacWilliams 1969, Theorem 2]. �

Recall the right coset decomposition Tp;n�1 WD K diag.1; p; : : : ; p; p2; p; : : : ; p/K D
`
˛2J K˛,

containing two instances of n� 1 entries of p. For each ˛; ˇ 2 J , we observe that any element of K˛ˇK
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is of mod p rank at most two and has the similitude p4. Hence the double coset K˛ˇK satisfies
K˛ˇK DK
K, where 
 is one of the following four elements:


1 WD diag.1;

n�1‚ …„ ƒ
p2; : : : ; p2; p4;

n�1‚ …„ ƒ
p2; : : : ; p2/; 
3 WD diag.p;

n�1‚ …„ ƒ
p2; : : : ; p2; p3;

n�1‚ …„ ƒ
p2; : : : ; p2/;


2 WD diag.p; p;

n�2‚ …„ ƒ
p2; : : : ; p2; p3; p3;

n�2‚ …„ ƒ
p2; : : : ; p2/; 
4 WD p

2
� I2n

Here we use the Weyl elements in K to renormalize the order of entries. Then

Tp;n�1 �Tp;n�1 D

4X
iD1

m.
i /K
iK; (A-2)

where m.
i / is defined by

m.
i / WD
ˇ̌
f.˛; ˇ/ 2 J �J WK˛ˇ DK
ig

ˇ̌
(A-3)

for each 1� i � 4; see [Shimura 1994b, p. 52]. Let us compute m.
i / for each 
i .
Let JI be the subset of J consisting of the elements

˛sI .x/D

0BBBBBBB@

p � 1s
p2

�p � tx p � 1n�1�s

p � 1s
1 x

p � 1n�1�s

1CCCCCCCA
; 0� s � n�2; x 2M1�.n�1�s/.Fp/

and ˛n�1I D diag.p2; p; : : : ; p; 1; p; : : : ; p/ containing n� 1 entries of p both times.
Similarly, let JII be the subset of J consisting of the elements

˛sII .y; B21; B22; B33/D

0BBBBBBB@

p � 1s 0s p � tB21 0s�.n�1�s/
� ty 1 B21 B22 B23

p � 1n�1�s 0.n�1�s/�s p � tB23 0n�1�s

p � 1s py

p2

p � 1n�1�s

1CCCCCCCA
;

where 1 � s � n � 1, y 2 Ms�1.Fp/, and B21; B23, and B22 run over M1�s.Fp/; M1�.n�1�s/.Fp/,
and Z=p2Z, respectively. In addition,

˛0II .C22; C23/D

0BBB@
1 C22 C23
p � 1n�1 p �

tC23 0n�1

p2

p � 1n�1

1CCCA ; C22 2 Z=p2Z; C23 2M1�.n�1/.Fp/:
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Finally, let JIII be the subset of J consisting of the elements

˛III .B/D

 
p � 1n B

p � 1n

!
; B 2 Sn.Fp/ with rp.B/D 1:

Lemma A.3. For each ˛ 2 J ,

K˛K DK diag.1;
n�1‚ …„ ƒ

p; : : : ; p; p2;

n�1‚ …„ ƒ
p; : : : ; p /K;

and

vol
�
K diag.1;

n�1‚ …„ ƒ
p; : : : ; p; p2;

n�1‚ …„ ƒ
p; : : : ; p /K

�
D p

2n�1X
iD0

pi ;

where the measure is normalized as vol.K/D 1.

Proof. Except for the case of type III, it follows from elementary divisor theory. For type III, it follows
from [MacWilliams 1969] that the action of GLn.Fp/ on the set of all matrices of rank 1 in Sn.Fp/ given
by B 7! tXBX; X 2 GLn.Fp/ and such a symmetric matrix B has two orbits O.diag.1; 0; : : : ; 0// and
O.diag.g; 0; : : : ; 0//, both containing n� 1 entries of 0, where g is a generator of F�p . The claim follows
from this and elementary divisor theorem again.

For the latter claim, it is nothing but jJ j, and we may compute the number of each type. �

Remark A.4. Since K D Sp2n.Zp/ contains Weyl elements,

K diag.1;
n�1‚ …„ ƒ

p; : : : ; p; p2;

n�1‚ …„ ƒ
p; : : : ; p/K DK diag.

i‚ …„ ƒ
p; : : : ; p; 1;

n�i�1‚ …„ ƒ
p; : : : ; p;

i‚ …„ ƒ
p; : : : ; p; p2;

n�i�1‚ …„ ƒ
p; : : : ; p/K

DK diag.
i‚ …„ ƒ

p; : : : ; p; p2;

n�i�1‚ …„ ƒ
p; : : : ; p;

i‚ …„ ƒ
p; : : : ; p; 1;

n�i�1‚ …„ ƒ
p; : : : ; p/K

for 0� i � n� 1.

Notice that
Kdn�1.p/K DK.p

2
� dn�1.p/

�1/K;

where dn�1.p/ WD diag.1; p; : : : ; p; p2; p; : : : ; p/ with n� 1 entries of p both times.. By definition and
Lemma A.3 with Remark A.4, it is easy to see that

m.
i /D
ˇ̌
fˇ 2 J W 
iˇ

�1
2Kdn�1.p/Kg

ˇ̌
D
ˇ̌
fˇ 2 J W ˇ � .p2 � 
�1i / 2Kdn�1.p/Kg

ˇ̌
D
ˇ̌
fˇ 2 J W ˇ � .p2 � 
�1i / is p-integral and rp.ˇ � .p2 � 
�1i //D 1g

ˇ̌ I
see [Shimura 1994b, p. 52] for the first equality.

We are now ready to compute the coefficients. For m.
1/, we observe the p-integrality. We see that
only ˛0II .C22; C23/ with C22 D 0 and C23 D 01�.n�1/ can contribute there. Hence, m.
1/D 1.

For m.
2/, we observe the p-integrality and the rank condition. Then only ˛0II .0; 01�.n�1// and
˛1II .y; 0; 0; 01�.n�2//, with y 2 Fp , can do there. Hencem.
2/D 1Cp. Form.
3/, only ˛III .B/, where
B 2 Sn.Fp/ with rp.B/D 1 contribute. By Lemma A.2-(3), we have m.
3/D pn� 1.
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Finally, we compute m.
4/. Since p�2
4 D I4, the condition is checked easily. All members of
J D JI [ JII [ JIII can contribute there. Therefore, we have only to count the number of each type.
Hence, we have

m.
4/D

type I‚ …„ ƒ
1CpC � � �Cpn�1C

type II‚ …„ ƒ
pnC1CpnC2C � � �Cp2nC

type III‚…„ƒ
pn� 1D p

2n�1X
iD0

pi ;

as desired. Note that m.
4/ is nothing but the volume of Kdn�1.p/K; see Lemma A.3.
Recalling Tp;n�1 WD pT .p; .0; : : : ; 0; 1//, we have

T .p; .0; : : : ; 0; 1//2 D

4X
iD1

m.
i /K.p
�2
i /K:

Note that

K.p�2
1/K D T .p; .

n�1‚ …„ ƒ
0; : : : ; 0; 2//; K.p�2
2/K D T .p; .

n�2‚ …„ ƒ
0; : : : ; 0; 1; 1//;

K.p�2
3/K D T .p; .

n�1‚ …„ ƒ
0; : : : ; 0; 1//; K.p�2
4/K D T .p;

n‚ …„ ƒ
.0; : : : ; 0//DKI2nK:

We can take K back to �.N/ without changing anything since p −N . This proves Theorem A.1.

Remark A.5. We would like to make corrections to [Kim et al. 2020a].

(1) On page 356, line 1, dx dy is missing in �ST
1 . In [25, page 929, line 3], the same typo is repeated.

(2) On page 362, line 12-13, T 22;p should be a linear combination of four double cosetsKMK, whereM
runs over diag.1; p2; p4; p2/, diag.p; p; p3; p3/, diag.p; p2; p3; p2/, and diag.p2; p2; p2; p2/.

(3) On page 362, the coefficient of Rp2 should be p4Cp3Cp2CpD p
P3
iD0 p

i which is the volume
of Sp.4;Zp/ diag.1; p2; p4; p2/Sp.4;Zp/ explained in [Roberts and Schmidt 2007, p. 190].

(4) On page 403, Lemma 8.1, the inequality q.F /�N is not valid. Similarly, on page 405, Lemma 8.3,
the inequality q.F /�N is not valid. We need to consider newforms as in Section 5 of this paper.
Then for a newform, we obtain the inequality q.F / � N 1=2 and log ck;N � logN is valid as in
Lemma 9.3 of this paper.

(5) On page 404, line -5, N � p10 should be N � p20.

(6) On page 407, line 3, N � p30 should be N � p10.

(7) On page 407, line 8: N � p10 should be N � p20.

(8) On page 409, line 10, we need to add �2
�
G
�
3
2

�
C G

�
�
1
2

��
, in order to account for the poles

of ƒ.s; �F ;Spin/, and the contour integral is over Re.s/ D 2. So, in (9.3), we need to add
O
�
jHEk.N /

0j=jHEk.N /j
�
. However, only CAP forms give rise to a pole, and the number of

CAP forms in HEk.N / is O.N 8C�/. So it is negligible.
In the case of standard L-functions, the non-CAP and nongenuine forms which give rise to poles

are: 1�� , where � is an orthogonal cuspidal representation of GL.4/ with trivial central character,
or 1� �1� �2, where the �i are dihedral cuspidal representations of GL.2/. In those cases, by
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Proposition 4.11 and [Kim et al. 2020b, Theorem 2.9], we can count such forms without extra
conditions on N in Proposition 4.12. So our result is valid as it is written.

Remark A.6. The referee brought to our attention a possible gap in [Sauvageot 1997, p. 181]; see [Dalal
2022, p. 129] and [Nelson and Venkatesh 2021, p. 159]. S.W. Shin communicated to us that the issue has
not been fixed at this writing. However, we do not use the result in [Sauvageot 1997], nor any other later
results [Dalal 2022; Shin 2012; Shin and Templier 2016] which depend on [Sauvageot 1997].
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