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For a d-dimensional regular proper variety X over the function field of a smooth variety B over a field k
and for i ≥ 0, we define a subgroup CHi (X)(0) of CHi (X) and construct a “refined height pairing”

CHi (X)(0)×CHd+1−i (X)(0)→ CH1(B)

in the category of abelian groups up to isogeny. For i = 1, d , CHi (X)(0) is the group of cycles numerically
equivalent to 0. This pairing relates to pairings defined by P. Schneider and A. Beilinson if B is a curve,
to a refined height defined by L. Moret-Bailly when X is an abelian variety, and to a pairing with values
in H 2(Bk̄,Ql(1)) defined by D. Rössler and T. Szamuely in general. We study it in detail when i = 1.
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Introduction

Let X be a regular proper (for example, smooth projective) variety of dimension d over a field K , finitely
generated of transcendence degree δ over a subfield k. Suppose given a smooth (separated) k-scheme of
finite type B, with function field K . For i ∈ [0, d], write CHi (X) for the i-th Chow group of X . In this
paper, we define a subgroup CHi (X)[0] and a “refined height pairing”

CHi (X)[0]×CHd+1−i (X)[0]→ CH1(B) (1)

in the category Ab⊗Z[1/p] of abelian groups up to p-isogeny: this category is recalled in Section 4C.
Here p is the exponential characteristic of k, so nothing is inverted in characteristic 0; the only reason to
invert it in nonzero characteristic is a lack of resolution of singularities; see Section 4A.
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If B is a smooth projective curve and we compose (1) with the degree map, we get a Z[1/p]-valued
pairing (with values in p−sZ for some integer s ≥ 0), which relates to the one constructed by Beilinson
[1987, §1]. Beilinson [1987, p. 5] asked what happens when trdeg(K/k) > 1: (1) gives one answer to
this question.

The quotient CHi (X)/CHi (X)[0] is finitely generated. When we vary (X, i), CHi (X)[0] defines an
adequate equivalence relation for smooth projective K-varieties, which a priori depends on the choice
of B. Its saturation CHi (X)(0) lies between the subgroups CHi

alg(X) and CHi
num(X) of algebraically and

numerically trivial cycles, hence equals CHi
num(X) when i = 1, d . We conjecture that this holds for all i ,

and prove it in further special cases (Theorem 5.5(ii)). One can show that it would follow in general from
the Tate conjecture, or the Hodge conjecture in characteristic 0, for cycles of codimension < i , although
we don’t include a proof here. More generally, one might hope that Lemma 1.1 below induces pairings in
Ab⊗Q

FnCHi (X)× FnCHd+n−i (X)→ CHn(B), i ≥ 0,

where F∗CH∗(X) is the conjectural Bloch–Beilinson–Murre filtration [Jannsen 1994], the case n = 0
(resp. 1) being the intersection pairing (resp. (1)).

Works following Néron’s seminal paper [1965] have much relied on l-adic cohomology to analyse or
define height pairings (because of the cohomological definition of Hasse–Weil L-functions): for δ = 1,
this is the case in [Schneider 1982] (i = 1, X an abelian variety), [Bloch 1984] and [Beı̆linson 1987].
This is also the case in the work of Damian Rössler and Tamás Szamuely [2022], which is the direct
inspiration of this one: they construct a pairing

CHi
l (X)×CHd+1−i

l (X)→ H 2
ét(Bk̄,Ql(1)), (2)

where l is a prime number invertible in k and CHi
l (X) denotes cycles homologically equivalent to 0 with

respect to l-adic cohomology. By contrast, our approach here is completely cycle-theoretic and very
close in spirit to Moret-Bailly’s geometric height [1985, chapitre III, définition 3.2]; it relies on Fulton’s
marvellous theory of Gysin maps [1984, Chapters 6 and 8]. This gives a different flavour to the definitions
because numerical and homological equivalence have rather opposite functoriality under specialisation,
as described in detail by Grothendieck in [SGA 6 1971, 7.9 and 7.13]. See Remark 2.7.

Comparing various definitions of height pairings is a highly nontrivial issue, which is solved only in a
few cases: for example, as far as I know those defined by Bloch [1984] and Beilinson [1987] have still
not been checked to agree. Schneider [1982] compares an l-adic height pairing [loc. cit., p. 298] with the
Néron–Tate height by comparing each to an intermediate Yoneda pairing [loc. cit., p. 502]

H 0(B,A0)×Ext1B(A
0,Gm)→ CH1(B), (3)

where A0 is the connected component of the identity of the Néron model A of the abelian variety A (= X
here).
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In Proposition 2.11, I show that (1) and (2) are compatible (at least in characteristic 0) on a common
subgroup CH∗B,l(X) of CH∗l (X) and CH∗(X)[0] via the cycle class map Pic(B)→ H 2

ét(Bk̄,Ql(1)): this is
what Rössler and Szamuely [2022, Proposition 6.1] had checked in the special case where X/K has a
smooth model, by using a variant of Proposition 2.8 here. In Theorem 5.10, I show that (1) is the opposite
of Silverman’s refined height pairing [1994, Theorem III.9.5(b)] in the classical case of an elliptic curve
X over the function field of a smooth projective curve B over an algebraically closed field k.

Another case where a compatibility should not be hard to show is that of [Moret-Bailly 1985].
Note that (1) is finer than (2) inasmuch as it takes homologically trivial cycles on B into account. This

extra structure is presumably arithmetically significant; it is studied in Section 6E in the case d = 1, B
projective.

It may seem disturbing that (1) is essentially integral, while the classical height pairing is usually
rational: this may be “explained” by (3) which is integral but takes values on the subgroup of finite index
A0(B)⊆ A(K ). In this spirit, I show in Remarks 5.13(a) that in the elliptic curve case mentioned above,
CH1(X)[0] contains N 0(B) as a subgroup of finite index, where N 0 is the identity component of the
Néron model of X .

The raison d’être of [Beı̆linson 1987; Bloch 1984] was to refine the conjectures of Tate [1965] on the
orders of poles of zeta functions at integers by describing special values at these integers, when K is a
global field. Thus one might like to extend (1) to the case where B is regular and flat over Z. I consider
this as beyond the scope of this article for two reasons:
• The present method fails in this case even if one is given a regular projective model f : X → B of X ,
because Fulton’s techniques do not define an intersection product on X , except when δ = 1 and f is
smooth [1984, p. 397]. One does get an intersection product with Q coefficients, by using either K-theory
as in [Gillet and Soulé 1987, 8.3], or alterations and deformation to the normal cone as in Andreas Weber’s
thesis [2015, Corollary 4.2.3 and Theorem 4.3.3]; it is possible that the present approach may be adapted
by using one of these products.
• However, the main point in characteristic 0 is to involve archimedean places to get a complete height
pairing whose determinant has a chance to describe the special values as mentioned above: this is what was
done successfully in [Bloch 1984; Beı̆linson 1987] when δ= 1. In higher dimensions, one probably would
have to use something like Arakelov intersection theory (see [Rössler and Szamuely 2022, Conjecture 7.1]
for a conjectural statement).

I leave these issues to the interested readers. Rather, I hope to show here that height pairings in the
style of (1) also raise interesting geometric questions. These are discussed in Section 6, which is closely
related to [Kahn 2014, Question 7.6].

Contents. Up to Section 4F, we assume k perfect; this assumption is removed in the said subsection.
In Definition 2.2, we introduce subgroups CHi (X )0 of admissible cycles in the Chow groups of a k-
model f : X → B of f ′ : X → Spec K , with X smooth; when B is projective, CHi (X )0 contains
numerically trivial cycles (Proposition 2.5) and in general it contains locally homologically trivial cycles
in the sense of Beilinson [1987, 1.2] (Proposition 2.6). From the intersection pairing on X , pushed
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forward to CH1(B), we then get, thanks to Proposition 2.8, a height pairing ⟨ , ⟩ f defined on the groups
CHi (X)0f := Im(CHi (X )0→ CHi (X)) (2-9). This is a pairing of genuine abelian groups. We prove in
Propositions 3.6 and 3.8 that the CHi (X)0f and ⟨ , ⟩ f are independent of f and compatible with the
action of correspondences, and in Proposition 3.9 that they behave well with respect to base change. The
group CHi (X)/CHi (X)0 is finitely generated (Proposition 3.11).

If we are in characteristic 0, the construction is finished since X always admits a smooth model by
resolution of singularities (Proposition 4.1). In characteristic p > 0, there turns out to be quite a bit of
work to get a pairing in general after suitably inverting p, by using Gabber’s refinement of de Jong’s
theorem: the general height pairing (4-1) is defined in Theorem 4.14; as said above, it makes sense in the
category Ab⊗Z[1/p]. Functoriality and base change extend to this pairing (Theorem 4.14).

In Section 5, we investigate Conjecture 5.1: CHi (X)[0] is of finite index in CHi
num(X), the group of

cycles numerically equivalent to 0 (the inclusion is always true by Lemma 4.3(d)); we prove it for i = 1, d
in Theorem 5.6(b) (see Theorem 5.5(ii) for other cases). In Section 5C, we also relate (1) to the classical
Néron–Tate height pairing in the case where X is an elliptic curve and B is a smooth projective curve.

In Section 6, we study the height pairing (2-9) in the basic case i = 1. If B is projective, it leads to a
coarser pairing (6-2) between the Lang–Néron groups LN(Pic0

X , K/k) and LN(AlbX , K/k) with values
in N 1(B), codimension 1 cycles modulo numerical equivalence (Theorem 6.2). When δ = 1, a version
of this pairing involving an ample divisor is negative definite (Theorem 6.6): one should compare this
with a result of Shioda [1999] when d = 1. See also Theorem 6.6 for a conjectural statement when δ > 1.
We finally get an intriguing homomorphism from LN(Pic0

X , K/k) to homomorphisms between certain
abelian varieties in (6-6).

Notation and conventions. We try and follow Fulton’s notation [1984] as much as possible. In particular,
given a morphism of k-schemes f : X→ Y , we write γ f for the associated graph morphism X→ X×k Y
and δX for γ1X ; if f admits refined Gysin morphisms as in [loc. cit., Chapters 6 and 8], we write them f !

and sometimes use the notation f ∗ for ordinary Gysin morphisms.
We usually abbreviate the notation ×k (fibre product over k) to ×, and re-establish it when it may be

confused with other fibre products.
We shall encounter k-schemes essentially of finite type, being of finite type over some localisation of B.

We shall sometimes commit the abuse of treating them as if they were of finite type: for example, call
them smooth even if they really are essentially smooth, and take (refined) Gysin morphisms associated to
morphisms between them even if these morphisms are not of finite type. This is easily justified by the
fact that Chow groups commute with inverse limits of open immersions [Bloch 2010, Lemma IA.1].

1. An elementary reduction

1A. Intersection on regular K-schemes. Let K be a field. If char K = 0, every regular K-scheme X ,
separated of finite type, is smooth, so the intersection theory of [Fulton 1984, Chapter 8] applies. Here
we point out that this is also true in characteristic p > 0: it will be needed in and after Section 4B.
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We may assume K to be finitely generated over its (perfect) subfield k = Fp, and X (regular) to be
irreducible of dimension d. We may find a smooth connected separated k-scheme B of finite type with
generic point η = Spec K , and a dominant morphism f : X → B with X k-smooth, of generic fibre X .
We have the intersection pairing of [Fulton 1984, §8.1]: for i, r ≥ 0,

CHi (X )×CHd+r−i (X ) ·−→ CHd+r (X ), (1-1)

which commutes with base change by [Fulton 1984, Proposition 6.6(c) and 8.3(a)]. Then (1-1) induces
an intersection product on X by passing to the limit. If f1 : X1→ B1 is another choice, then B and B1

share a common open subset with isomorphic fibres, so this intersection product is independent of the
choice of (B, f ).

Suppose moreover X and f proper. Composing (1-1) with f∗, we get a pairing

CHi (X )×CHd+r−i (X )
⟨ , ⟩
−−→ CHr (B). (1-2)

For the same reason, numerical equivalence makes sense on X via (1-2), and does not depend on any
choice.

1B. The set-up. Let now k be any perfect field; we place ourselves in the situation (B,X , f ) of Section 1A
with f proper, and let f ′ : X→ η be the generic fibre of f . In particular, the observations of Section 1A
apply to X .

For a subscheme Z of B, write XZ = f −1(Z), ι : XZ ↪→ X for the corresponding immersion and
fZ : XZ → Z for the projection induced by f . We extend these notations to pull-backs by a morphism
Z→ B when there is no ambiguity in the context.

Lemma 1.1. Suppose that codimB Z > r . Then (1-2) factors through a pairing

CHi (X −XZ )×CHd+r−i (X −XZ )
⟨ , ⟩
−−→ CHr (B).

Proof. We have

CHr (B)−→∼ CHr (B− Z). □

We shall use the case r = 1 of this lemma in the rest of this paper.

Remarks 1.2. (a) Let Z be the locus of nonsmoothness of f . If f ′ is smooth, f (Z) is a proper closed
subset of B, hence contains only finitely many points of B(1), the set of codimension 1 points of B.

(b) If δ = 1, any proper surjective morphism ϕ from an irreducible k-variety V to B is flat [Hartshorne
1977, Chapter II, Proposition 9.7]; in general, this is true after base-changing to the local scheme at any
point b ∈ B(1). If F ⊂ V is the (closed) locus of nonflatness of ϕ, the closed subset ϕ(F) is therefore
of codimension ≥ 2 in B. This shows that one may reduce to ϕ flat by removing a closed subset of
codimension ≥ 2 from B. This technique may be applied to f if necessary; a variant will be used in the
proof of Proposition 3.11.
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Let CHi
num(X) denote the subgroup of CHi (X) formed of cycles numerically equivalent to 0; write j

for the inclusion X ↪→ X .

Lemma 1.3. For α ∈ CHi (X ), the following are equivalent:

(1) j∗α ∈ CHi
num(X);

(2) for any β ∈ CHd−i (X ), f∗(α ·β)= 0.

Proof. We have (2)⇒ (1) because of the surjectivity of j∗ and the formula

ȷ∗ f∗(α ·β)= f ′
∗

j∗(α ·β)= f ′
∗
( j∗α · j∗β) (1-3)

[Fulton 1984, Proposition 1.7 and 8.3(a)], where ȷ : η ↪→ B is the inclusion, and (1)⇒ (2) because of
(1-3) and the injectivity of ȷ∗ : CH0(B)→ CH0(η). □

2. The refined height pairing

We keep the set-up of Section 1B.

2A. Review of Fulton’s refined Gysin morphisms. Let f : X→Y be a morphism of algebraic k-schemes,
of constant dimensions dX and dY for simplicity, and let d = dY − dX . In certain cases, Fulton associates
to f “refined Gysin morphisms”

f ! : CH∗(Y ′)→ CH∗−d(X ×Y Y ′)

for any Y -scheme Y ′; these morphisms are compatible with push-forward, pull-back and intersection
products in the sense of [Fulton 1984, Definition 17.1]. Such collections of morphisms are called
orientations in [loc. cit., §17.4]. Orientable morphisms are

• flat morphisms [loc. cit., Theorem 1.7],

• regular embeddings [loc. cit., §§6.2, 6.4],

• more generally, l.c.i. morphisms [loc. cit., §6.5],

• morphisms to a smooth Y [loc. cit., Definition 8.1.2].

The definitions of f ! agree when f is of several of these forms at the same time, e.g., [loc. cit.,
Proposition 8.1.2]. The assignment f 7→ f ! is functorial in certain cases, many of which are summarised
in [loc. cit., Example 17.4.6].

Since it is difficult to find a unified statement of all these compatibilities in [Fulton 1984], we shall
strive to give precise references for all those we use; the above reminder should only be viewed as a guide
to the reader.

We shall very often use the following situation, that we record as a lemma.
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Lemma 2.1. Let

S′
f ′

−−−→ T ′

g′
y g

y
S

f
−−−→ T

be a Cartesian square of k-schemes, where g is proper and f is an l.c.i. morphism. Then:

(a) One has

f !g∗ = g′
∗

f !

as homomorphisms from CH∗(T ′) to CH∗(S).

(b) If f ′ is also an l.c.i. morphism, of same codimension, then f ! = f ′!.

(c) If f and g are two composable l.c.i. morphisms, then (g ◦ f )! = f ! ◦ g!.

Proof. This follows from [Fulton 1984, Theorem 6.6(c)]. □

2B. Admissible cycles. Let b ∈ B(1); write Z = {b}. Recall the cap-product [Fulton 1984, p. 131]

·ι : CHi (X )×CHl(XZ )→ CHl−i (XZ ), (α, β) 7→ γ !ι (β ×α),

where ι is the closed immersion XZ ↪→ X .
Take l = δ+ i − 1. Composing with ( fZ )∗, we get a pairing

⟨ , ⟩b : CHi (X )×CHδ+i−1(XZ )→ CHδ−1(Z)= CH0(Z)= Z, ⟨α, β⟩b = ( fZ )∗(α ·ι β). (2-1)

We record two useful formulas:

α · ι∗β = ι∗(α ·ι β) ∈ CHl−i (X ), (2-2)

which follows from Lemma 2.1 applied to the Cartesian diagram

XZ
γι
−−−→ XZ ×X

ι

y ι×1

y
X 1X
−−−→ X ×X

of regular embeddings of codimension d + δ. Hence

f∗(α · ι∗β)= f∗ι∗(α ·ι β)= ι′∗⟨α, β⟩b, (2-3)

where ι′ is the closed immersion Z ↪→ B.

Definition 2.2. With the above notation, we set

CHi (X )0b = {α ∈ CHi (X ) | j∗α ∈ CHi
num(X) and ⟨α, β⟩b = 0 for all β ∈ CHδ+i−1(XZ )}
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for b ∈ B(1), and
CHi (X )0 =

⋂
b∈B(1)

CHi (X )0b.

We call the cycles in CHi (X )0 admissible.

Even if it is not apparent anymore, this definition was inspired by [Bloch 1984, Assumption 2; Beı̆linson
1987, 1.2].

Remarks 2.3. (a) One should be careful that CHi (X )0 does not contain Ker j∗ in general. For example,
let B = A1

= Spec k[t] and let X be the hypersurface in B ×P2 with (partly) homogeneous equation
t X2

0 = X1 X2. Then the pull-back of the curve (t = X1 = 0), viewed as a codimension 1 cycle on X , to
the curve (t = X2 = 0), is the point (0, (1 : 0 : 0)) which is not numerically equivalent to 0. On the other
hand, if f is smooth above SpecOB,b for a b ∈ B(1), then any element of Ker j∗ vanishes when restricted
to Xb thanks to [Fulton 1984, §20.3]. So this caveat only involves finitely many exceptional b.

(b) The pairing (2-1) makes sense for any b ∈ B (replacing CHδ+i−1(Z) by CHδ+i−r (Z) if b ∈ B(r)),
and defines an equivalence relation α ≡b 0 if ⟨α, β⟩b = 0 for any β ∈ CHδ+i−r (Z). One can show that
α ≡b′ 0⇒ α ≡b 0 if b′ is a specialisation of b; in particular, the condition j∗α ∈CHi

num(X) is superfluous
in the definition of CHi (X )0b, thanks to Lemma 1.3. We shall not use these facts in the present paper, so
the rather long proof is omitted (see [Kahn 2023]).

(c) Let b ∈ B(1). Suppose that all the irreducible components X λ
b of Xb are of dimension d and smooth

over k(b). Then it is easy to see that α≡b 0 if and only if κ !λα ∈CHi
num(X λ

b ) for all λ, where κλ :X λ
b ↪→X

is the inclusion. Our initial approach to the refined height pairing was based on such models; they are not
necessary anymore.

We obviously have

Lemma 2.4. The quotient CHi (X )/CHi (X )0 is torsion-free. □

2C. Comparison with numerical and homological equivalence.

Proposition 2.5. If B is projective (hence X is k-proper), we have CHi
num(X )⊆ CHi (X )0.

Proof. Let α ∈ CHi
num(X ): we want to show that α ∈ CHi (X )0. Let first β ∈ CHd−i (X ) = CHδ+i (X ).

Choose a 0-cycle z ∈ CH0(B) of nonzero degree. Then

0= deg(α ·β · f ∗z)= deg( f∗(α ·β) · z)= f∗(α ·β) deg(z);

hence f∗(α ·β)= 0, and we conclude that j∗α ∈ CHi
num(X) by Lemma 1.3.

Let now b ∈ B(1), and Z = {b} as above. Let β ∈ CHδ+i−1(XZ ). We have this time

0= f∗(α · ι∗β · f ∗z)= f∗(α · ι∗β) · z

for any z ∈ CH1(B)= CHδ−1(B), i.e., f∗(α · ι∗β)= ι′∗⟨α, β⟩b ∈ CH1
num(B) (see (2-3)). But

ι′
∗
: Z= CH0(Z)→ CH1(B)/CH1

num(B)
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is injective since Z , as an irreducible divisor on a smooth projective variety, is not numerically equivalent
to 0 (compare [Debarre 2001, Chapter I, Theorem 1.21]). Therefore ⟨α, β⟩b = 0, as requested. □

Let now l be a prime number invertible in k. We have a composition

CHi (X )→ H 2i (Xk̄,Ql(i))→ H 0(Bk̄, R2i f∗Ql(i)), (2-4)

where the first map is the (geometric) cycle class map. Write CHi
l (X ) (resp. CHi (X )0B,l for the kernel of the

first map (resp. of their composition): the latter group is introduced by analogy to [Beı̆linson 1987, 1.2],
which is the special case δ = 1, k algebraically closed. We obviously have CHi

l (X )⊆ CHi (X )0B,l .
The following is parallel to Proposition 2.5, without assuming B projective. It will be used in

Proposition 2.11 and in Remarks 5.4(a) and 3.12.

Proposition 2.6. At least in characteristic 0, CHi (X )0B,l ⊆ CHi (X )0.

Proof. Let α ∈ CHi (X )0B,l . Then α vanishes in H 0(K k̄, R2i f∗Ql(i)) = H 2i (X ⊗k k̄,Ql(i)), hence a
fortiori in H 2i (X ⊗K K ,Ql(i)): this means that j∗α is l-adically homologically equivalent to 0, hence
also numerically equivalent to 0. This part of the proof works in all characteristics.

We now give the sequel of the proof in characteristic 0: to oversimplify, it follows by functoriality from
the fact that the cycle class map is injective in codimension 0 (sic). (So this argument is geometrically
cheaper than the one for Proposition 2.5.)

We may assume k finitely generated and choose an embedding of k in C. By Artin’s comparison
theorem,

CHi (X )0B,l = Ker
(
CHi (X )→ H 0

B(BC, R2i f∗Q(i))
)
,

where HB denotes Betti (or analytic) cohomology. Let b ∈ B(1), and let Z , ι, β be as in Definition 2.2.
To show that ⟨α, β⟩b = 0 in CH0(Z)−→∼ CH0(ZC), we may assume k = C and drop all Tate twists.

In [Fulton 1984, Chapter 19], a cycle class map cl is defined for Chow groups of complex, possibly
singular, varieties, with values in their Borel–Moore homology and we have the formula

cl(α ·ι β)= ι′
∗
(cl(α))∩ cl(β) ∈ H2δ−2(XZ ) (2-5)

[Fulton 1984, Proposition 19.2], where ι′ is the closed immersion Z ↪→ B as in the previous proof, hence

cl(⟨α, β⟩b)= ( fZ )∗(ι
∗(cl(α))∩ cl(β)) ∈ H2δ−2(Z) (2-6)

since cl commutes with push-forwards, by definition and [Fulton 1984, Lemma 19.1.2].
It now suffices to show that the right hand side of (2-6) vanishes since CHδ−1(Z)→ H2δ−2(Z) is

injective, as one sees by reducing to Z smooth by removing from it a proper closed subset. For this, it
suffices to show that the pairing

H 2i (X )× H2δ−2+2i (XZ )→ H2δ−2(Z), (2-7)

given by (x, y) 7→ ( fZ )∗(ι
∗x ∩ y), factors through H 0(B, R2i f∗Q)× H2δ−2+2i (XZ ).
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We switch by Poincaré duality from the Borel–Moore homology of XZ (resp. Z ) to the cohomology of
the smooth variety X (resp. B) with supports in XZ (resp. in Z ). Then (2-7) becomes the composition

H 2i (X )× H 2d+2−2i
XZ

(X ) ∩−→ H 2d+2
XZ

(X )
f∗
−→ H 2

Z (B), (2-8)

where ∩ is the usual cap-product. The (global) trace map f∗ factors as a composition

H 2d+2
XZ

(X )→ H 0
Z (B, R2d+2 f∗Q)

(Tr f )∗
−−−→ H 2

Z (B)

where Tr f is the local trace map in étale cohomology for the proper morphism f . Thus, (2-8) factor
through the map

H 2i (X )× H 2d+2−2i
XZ

(X )→ H 0(B, R2i f∗Q)× H 0
Z (B, R2d+2−i f∗Q)

as requested.
In positive characteristic, the leap of faith is that (2-5) and (2-6) hold for the cycle class maps defined

in l-adic Borel–Moore homology [Laumon 1976, §6]. The commutation with push-forwards causes
no problem, and (2-5) indeed appears in [Laumon 1976, Theorem (7.2)], except that the extraordinary
cap-product ·ι (defined in [Verdier 1976, 2.1.1] using intersection multiplicities) should be shown to
agree with Fulton’s. (This is suggested in the notes and references of [Fulton 1984, Chapter 19]; see also
[loc. cit., p. 382].)1

This being accepted, the same argument goes through. □

Remark 2.7. As a referee pointed out, there is an important conceptual difference between CHi (X )0B,l
and CHi (X )0: by the smooth and proper base change, we have the equality

Ker
(
H 2i (Xk̄,Ql(i))→ H 2i (X k̄,Ql(i))

)
= Ker

(
H 2i (Xk̄,Ql(i))→ H 0(Uk̄, R2i f∗Ql(i))

)
for any open subset U ⊆ B over which f is smooth. Thus, the condition α ∈ CHi (X )0B,l for α ∈ CHi (X )
only has to be checked at the generic fibre and at the “bad fibres” of f . This contrasts with the case of
CHi (X )0, see Remarks 2.3(a). See also Remarks 5.4 further down.

2D. Global height pairing. The following proposition is the key point of this paper.

Proposition 2.8. Let α ∈ CHi (X )0. If β ∈ CHd+1−i (X ) and j∗β = 0, then f∗(α ·β)= 0 in CH1(B).

Proof. By [Fulton 1984, Proposition 1.8], write β = ι∗β ′ with β ′ ∈ CHδ+i−1(XZ ) for some proper closed
subset Z ⊂ B, where ι : XZ ↪→ X is the inclusion. We may assume that β ′ is the class of an irreducible
cycle, hence take Z irreducible. If codimB Z > 1, the result follows from Lemma 1.1. If Z = {b} for
b ∈ B(1), the conclusion follows from (2-3). □

The proof of the following lemma is in the same spirit, so we include it here. It will be used in the
proof of Proposition 3.9(ii).

1Using Olsson’s theorem [2015, Theorem 2.34] that the cycle class maps commute with refined Gysin homomorphisms, it
would suffice to show the identity γ !ι (x × y)= ι∗y ∩ x in Borel–Moore l-adic homology.
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Lemma 2.9. Let b1, . . . , bn be a finite set of points on B(1) and let Z = {b1, . . . , bn}. Then one has
( fZ )∗(α ·ι β) = 0 for any α ∈ CHi (X )0 and any β ∈ CHδ+i−1(XZ ), where ι is the closed immersion
XZ ↪→ X .

Proof. We may assume that β is the class of an irreducible cycle β ′; then β ′ is supported on XZr for
some r , where Zr = {br }. Let κ : XZr ↪→ XZ be the corresponding closed immersion, and let ιr = ικ: by
applying again Lemma 2.1 to the obvious Cartesian square involving κ , we get the identity

α ·ι κ∗β
′
= κ∗(α ·ιr β

′)

etc. □

Definition 2.10. Let CHi (X)0f be the image of CHi (X )0 in CHi (X). By Proposition 2.8, (1-2) induces a
pairing

CHi (X )0×CHd+1−i (X)→ CH1(B)

hence, swapping i with d + 1− i , a “height” pairing

⟨ , ⟩ f : CHi (X)0f ×CHd+1−i (X)0f → CH1(B). (2-9)

We shall see in the next section (Propositions 3.6 and 3.8) that neither CHi (X)0f nor ⟨ , ⟩ f depends
in the choice of f .

2E. Comparison with the pairing of Rössler–Szamuely.

Proposition 2.11. The pairing (2-9) is compatible with the pairing (2) of the introduction on the subgroups
CHi (X )0B,l and CHd+1−i (X )0B,l of Proposition 2.6.

Proof. Using cup-product and push-forward in l-adic cohomology,

H 2i (Xk̄,Ql(i))⊗ H 2(d+1−i)(Xk̄,Ql(d + 1− i))
∪
−→ H 2(d+1)(Xk̄,Ql(d + 1))

f∗
−→ H 2(Bk̄,Ql(1)), (2-10)

we get from (2-4) a pairing

CHi (X )⊗CHd+1−i (X )→ H 2(Bk̄,Ql(1)) (2-11)

which is evidently compatible with (1-2) (for r = 1). On the other hand, the Leray spectral sequence

H r (Bk̄, Rs f∗Ql(i))⇒ H r+s(Xk̄,Ql(i)) (2-12)

yields Abel–Jacobi maps

AJi
B : CHi (X )0B,l→ H 1(Bk̄, R2i−1 f∗Ql(i)). (2-13)

We have a pairing parallel to (2-10),

H 1(Bk̄, R2i−1 f∗Ql(i))⊗ H 1(Bk̄, R2(d−i+1)−1 f∗Ql(d − i + 1))
∪
−→ H 2(Bk̄, R2d f∗Ql(i))

Tr f
−−→ H 2(Bk̄,Ql(1)), (2-14)
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which is compatible with the former via (2-12). This implies that the restriction of (2-11) to

CHi (X )0B,l ⊗CHd+1−i (X )0B,l

is compatible with (2-9) via Proposition 2.6, i.e., that the diagram

CHi (X )0B,l ⊗CHd+1−i (X )0B,l −−−→ H 2(Bk̄,Ql(1))y x
CHi (X )0⊗CHd+1−i (X )0 −−−→ CH1(B)

(2-15)

commutes.
On the other hand, the height pairing of [Rössler and Szamuely 2022] is defined on

CHi
l (X)⊗CHd+1−i

l (X),

also with values in H 2(Bk̄,Ql(1)). More precisely, by [loc. cit., Proposition 2.3], if α ∈ CHi
l (X),

j : U ↪→ B is an open subset over which f is smooth and αU is a lift of α to CHi (XU ), then
AJi

U (αU ) ∈ H 1(Uk̄, R2i−1( fU )∗Ql(i)) lies in the subgroup H 1−δ(Bk̄, j!∗R2i−1( fU )∗Ql(i)) [loc. cit.,
Proposition 2.1], and the height pairing of Rössler and Szamuely is defined by (2-14) on these sub-
groups. Let F = R2i−1( fU )∗Ql(i) = j∗R2i−1 f∗Ql(i). Since j∗ j!∗F = F [Beı̆linson et al. 1982,
remarque 1.4.14.1], the image of H 1(Bk̄, R2i−1 f∗Ql(i)) in H 1(Uk̄, R2i−1( fU )∗Ql(i)) is contained in
H 1−δ(Bk̄, j!∗R2i−1( fU )∗Ql(i)). □

3. Independence from the (smooth) model

3A. Review of the Corti–Hanamura category. A morphism f :X → B as in Section 1 defines an object
in the Corti–Hanamura category CHC(B) of [Corti and Hanamura 2000, Definition 2.8].2 Given two such
objects fi : Xi → B (i = 1, 2), morphisms in CHC(B) are defined by relative correspondences

CHC(B)(X1,X2)= CHdimX2(X1×B X2)= CHdim X1(X1×B X2),

where X1 is the generic fibre of X1.
If f3 : X3 → B is a third object, the composition of two such correspondences u : X1 → X2 and

v : X2→ X3 is defined as
v • u = (p1,2,3

1,3 )∗δ
!

2(u×k v), (3-1)

where δ! is the refined Gysin morphism from [Fulton 1984, §6.2] associated to the (regular immersion)
diagonal δ2 : X2→ X2×k X2 in the (augmented) Cartesian square

(X1×B X3)
p1,2,3

1,3
←−−− X1×B X2×B X3

1
−−−→ (X1×B X2)×k (X2×B X3)yp1,2,3

2

yp1,2
2 ×p2,3

1

X2
δ2
−−−→ X2×k X2

(3-2)

2Except that f is assumed projective in [Corti and Hanamura 2000]; proper is sufficient to apply its formalism.
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and the notation for the projections is self-evident.
As usual, one can generalise this to “graded correspondences”

CHC(B)r (X1,X2)= CHdimX2−r (X1×B X2)= CHdim X1+r (X1×B X2)

and reduce these graded correspondences to ordinary ones if one wishes, by using the projective bundle
formula [Fulton 1984, Theorem 3.3(b)].

Since 1 is also a regular immersion of the same codimension as δ (namely, dimX2), we may apply
Lemma 2.1(b) which gives

δ!2(v×k u)=1!(v×k u). (3-3)

If the fi are smooth, we also have a “classical” composition of correspondences à la Deninger–Murre
[1991]:

v ◦ u = (p1,2,3
1,3 )∗

(
(p1,2,3

2,3 )∗v · (p1,2,3
1,2 )∗u

)
.

Lemma 3.1. (a) In the above case, v ◦ u = v • u.

(b) The category CHC(B) is contravariant for smooth k-morphisms ϕ : C→ B.

(c) The pro-open immersion j defines a functor to the category of Chow correspondences over K from the
full subcategory of CHC(B) consisting of those f : X → B whose generic fibre is smooth.

Proof. (a) We use (3-3). We have the Cartesian square

X1×B X2×B X3
11
−−−→ (X1×B X2×B X3)×k (X1×B X2×B X3)

||

y yp1,2,3
2,3 ×p1,2,3

1,2

X1×B X2×B X3
1
−−−→ (X2×B X3)×k (X1×B X2)

in which all morphisms are l.c.i. morphisms, hence

1!(v×k u)=1!1(p
1,2,3
2,3 × p1,2,3

1,2 )!(v×k u)

by Lemma 2.1(c),

(p1,2,3
2,3 × p1,2,3

1,2 )!(v×k u)= (p1,2,3
2,3 × p1,2,3

1,2 )∗(v×k u)= (p1,2,3
2,3 )∗v×k (p

1,2,3
1,2 )∗u

by [Fulton 1984, Proposition 6.6(b)], and finally

1!1
(
(p1,2,3

2,3 )∗v×k (p
1,2,3
1,2 )∗u

)
= (p1,2,3

2,3 )∗v · (p1,2,3
1,2 )∗u

by definition of the intersection product on smooth varieties [Fulton 1984, p. 131].

(b) The statement means that ϕ defines a functor ϕ∗ : CHC(B)→ CHC(C), given by fibre product. It is
defined on objects by the smoothness of ϕ, and on morphisms because smooth morphisms are flat. To
check that it respects composition involves chasing in the Cartesian cube obtained by pulling back the
square of B-schemes (3-2) along the morphism C ×B C→ B, and then further pulling back along the
diagonal δ′ : C → C ×B C ; this latter operation is unnecessary if C is an open subset of B. The first
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step involves [Fulton 1984, Proposition 6.6] as in the proof of (a), to take care of the flat l.c.i morphisms
C ×B (Xi ×B X j )→ Xi ×B X j ; the second step uses the fact that δ′ is a regular immersion.

(c) This follows from (a), (b) and [Bloch 2010, Lemma IA.1], since U ×B X is smooth over U for a
suitable open subset U of B for X as in the statement. □

Remark 3.2. The associativity of the composition • is not proven in [Corti and Hanamura 2000]. It will
not be used here and is left to the reader. See nevertheless Remark 3.4.

As a special case of (3-1), take X3 = B: we get pairings

CHdim X2+r (X1×B X2)⊗CHi (X2)→ CHi+r (X1), (ψ, α) 7→ ψ∗α := (p1)∗δ
!

2(ψ ×k α)

compatible via j∗ with the usual action of correspondences over K , by Lemma 3.1(c). For clarity, we
repeat (3-1) in this special case:

X1
p1
←−−− X1×B X2

γp2
−−−→ (X1×B X2)×k X2

p2

y p2×1
y

X2
δ2
−−−→ X2×k X2

(3-4)

where γp2 is the graph of p2 := p1,2
2 .

We also write ψ∗ for (tψ)∗.
As an even more special case, when X1 = B: writing β rather than ψ , we recover the pairing (1-2)

⟨α, β⟩ = ( f2)∗(α ·β)= ( f2)∗δ
!

2(α×k β)= β
∗α ∈ CH∗(B). (3-5)

Lemma 3.3. Let (α, β) ∈ CHi (X1)×CHd1−i+1(X2) and ψ ∈ CHd2(X1×B X2). Then

⟨ψ∗α, β⟩ = ⟨α,ψ∗β⟩.

Proof. For clarity, write δi for the diagonal map Xi → Xi ×k Xi . As in the proof of Proposition 3.6, let pi

be the projection X1×B X2→ Xi . Developing, the identity to be proven is

( f1)∗((p1)∗δ
!

2(ψ ×α) ·β)= ( f2)∗(α · (p2)∗δ
!

1(
tψ ×β)). (3-6)

Let λ= δ!2(ψ ×α). We have

(p1)∗λ ·β = δ
!

1((p1)∗λ×β)= δ
!

1(p1× 1)∗(λ×β)= (p1)∗δ
!

1(λ×β)

by Lemma 2.1(a). Similarly, if λ′ = δ!1(
tψ ×β) and λ′′ := δ!1(ψ ×β):

α · (p2)∗λ
′
= (p2)∗δ

!

2(α× λ
′)= (p2)∗δ

!

2(λ
′′
×α).

Since f1 p1 = f2 p2, to show (3-6) it suffices to show that

δ!1(λ×β)= δ
!

2(λ
′′
×α).
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We now observe that since X2 is smooth, γp2 is also a regular embedding in (3-4), hence δ!2 = γ
∗
p2

(nonrefined Gysin map) by Lemma 2.1(b) (see also (3-3)); similarly, δ!1 = γ
∗
p1

. The expression γ ∗pi
(x × y)

is also written x ·pi y in [Fulton 1984, Definition 8.1.1] (cf. proof of Proposition 2.8). The formula to be
proven therefore becomes

(ψ ·p2 α) ·p1 β = (ψ ·p1 β) ·p2 α

which is [Fulton 1984, Proposition 8.1.1(b)]. □

Remark 3.4. There is a much more conceptual proof by interpreting both sides as compositions of
correspondences: we then have

⟨ψ∗α, β⟩ = (α •ψ) •β = α • (ψ •β)= ⟨α,ψ∗β⟩

by the associativity of •.

3B. Independence from the model and functoriality.

Lemma 3.5. Let b ∈ B(1) and Z = {b} as usual. For ψ ∈ CH∗(X1×B X2) and β ∈ CH∗(X1,Z ), let

ψ!β = (p2,Z )∗δ
!

1(ψ ×β) ∈ CH∗(X2,Z ).

Then:

(a) (ι2)∗ψ!β = ψ∗((ι1)∗β).

(b) For any α ∈ CHi (X2), β ∈ CHδ+i−1(XZ ) and ψ ∈ CHd2(X1×B X2), we have ⟨α,ψ!β⟩b = ⟨ψ∗α, β⟩b.

Proof. (a) Let us first draw the diagram of Cartesian squares underlying the coming computation:

X2,Z
p2,Z
←−−− X1,Z ×Z X2,Z

(κ,p1,Z )
−−−−→ (X1×B X2)×X1,Z

ι2

y κ

y 1×ι1

y
X2

p2
←−−− X1×B X2

γp1
−−−→ (X1×B X2)×X1

p1

y p1×1
y

X1
δ1
−−−→ X1×X1

(3-7)

It already explains the use of δ!1 in the definition of ψ!. Now

(ι2)∗ψ!β = (ι2)∗(p2,Z )∗δ
!

1(ψ ×β)= (p2)∗κ∗δ
!

1(ψ ×β)

= (p2)∗δ
!

1(1× ι1)∗(ψ ×β)= (p2)∗δ
!

1(ψ × (ι1)∗β)

=: (tψ)∗((ι1)∗β)=: ψ∗((ι1)∗β),

where the third equality follows as usual from Lemma 2.1(a).
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(b) First

α ·ι2 ψ!β := γ
!

ι2
((p2,Z )∗δ

!

1(ψ ×β)×α)
(a)
= γ !ι2((p2,Z )∗γ

!

p1
(ψ ×β)×α)

(b)
= (p2,Z )∗γ

!

ι2
(γp1 × 1)!(ψ ×β ×α)

(c)
= (p2,Z )∗γ

!

p2
(γp1 × 1)!(ψ ×β ×α)

(d)
= (p2,Z )∗γ

!

λ(ψ ×β ×α),

where λ is the regular embedding X1×B X2 ↪→ X1×X2, so that γλ is the composition of the bottom row
in the diagram of Cartesian squares

X2,Z
γι2
−−−→ X2,Z ×X2

p2,Z

x p2,Z×1
x

X1,Z ×Z X2,Z
γp2,Z ι2
−−−→ (X1,Z ×Z X2,Z )×X2

(κ,p1,Z )×1
−−−−−−→ (X1×B X2)×X1,Z ×X2

κ

y κ×1

y 1×ι1×1
y

X1×B X2
γp2
−−−→ (X1×B X2)×X2

γp1×1
−−−→ (X1×B X2)×X1×X2

(3-8)

Here (a) follows from Lemma 2.1(b) applied to (3-7), (b) from Lemma 2.1(a), (c) from Lemma 2.1(b)
again (applied twice), and (d) from Lemma 2.1(c).

Next

ψ∗α ·ι1 β := γ
!

ι1
(β × (p1)∗δ

!

2(ψ ×α))
(a)
= γ !ι1(β × (p1)∗γ

!

p2
(ψ ×α))

(b)
= (p1,Z )∗γ

!

ι1
(1× γp2)

!(β ×ψ ×α),

where (a) follows from Lemma 2.1(b) applied to (3-4) and (b) follows from Lemma 2.1(a) applied to the
Cartesian square

X1,Z ×Z X2,Z
(p1,Z ,κ)
−−−−→ X1,Z × (X1×B X2)

p1,Z

y 1×p1

y
X1,Z

γι1
−−−→ X1,Z ×X1

Since f1,Z p1,Z = f2,Z p2,Z , we are left to prove the equality

γ !λ(ψ ×β ×α)= γ
!

ι1
(1× γp2)

!(β ×ψ ×α).

For this we draw the diagram of Cartesian squares, similar to (3-8):

X1,Z

tγι1
−−−−−→ X1×X1,Z

p1,Z

x p1×1
x

X1,Z ×Z X2,Z
(κ,p1,Z )
−−−−−→ (X1×B X2)×X1,Z

γp2×1X1,Z
−−−−−−−→ (X1×B X2)×X2×X1,Z

κ

y 1×ι1
y 1×1×ι1

y
X1×B X2

γp1
−−−−−→ (X1×B X2)×X1

γp2×1X1
−−−−−−→ (X1×B X2)×X2×X1
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Here the composition of the bottom row is γλ, up to permuting X1 and X2. By Lemma 2.1(b),
(tγι1)

! and γ !p1
both compute the refined Gysin map corresponding to the arrow (κ, p1,Z ), and also

(γp2 × 1X1,Z )
!
= (γp2 × 1X1)

!; we conclude by applying Lemma 2.1(c) to the bottom row once again. □

Proposition 3.6. Let f1 : X1→ B, f2 : X2→ B be two proper morphisms with generic fibres X1, X2 of
dimensions d1, d2, where X1 and X2 are smooth; let r ∈ Z and let γ ∈ CHd2+r (X1 ×K X2) be a Chow
correspondence of degree r . Then

γ ∗ CHi (X2)
0
f2
⊆ CHi+r (X1)

0
f1

(3-9)

for any i ≥ 0. In particular,

(i) if r = 0, we also have γ∗ CHi (X1)
0
f2
⊆ CHi (X2)

0
f1

;

(ii) the group CHi (X)0f does not depend on f .

Proof. First, (i) (resp. (ii)) follows from (3-9) by considering tγ (resp. by taking X1 = X2 = X , γ =1X ).
To prove (3-9), we may assume that γ is the class of an integral cycle 0 ⊂ X1×K X2.

Let ji : X i ↪→ Xi be the corresponding immersions, and ψ be the closure of 0 in X1 ×B X2. By
Lemma 3.1(c),

γ ∗ ◦ j∗2 = j∗1 ◦ψ
∗, (3-10)

and it suffices to show that ψ∗α ∈ CHi+r (X1)
0 for any α ∈ CHi (X2)

0. Formula (3-10) shows that
j∗1 (ψ

∗α) ∈ CHi+r
num(X1); the other condition follows from Lemma 3.5(b). □

Remark 3.7. If B is projective, Lemma 3.5(a) is sufficient for the proof of Proposition 3.6 by using (2-3),
as in the proof of Proposition 2.5.

Proposition 3.8. The pairing (2-9) does not depend on the choice of f (we drop f from its notation from
now on). Moreover, in the situation of Proposition 3.6 with r = 0, we have the identity

⟨γ ∗α, β⟩ = ⟨α, γ∗β⟩ (3-11)

for (α, β) ∈ CHi (X2)
0
×CHi−1(X1)

0.

Proof. As in the proof of Proposition 3.6, the first claim follows from the second by taking X1 = X2 = X ,
γ =1X . For the second claim, we take γ and ψ as in the proof of Proposition 3.6. Then (3-11) follows
from Lemma 3.3 applied to lifts α̃ and β̃ of α and β in CHi (X2)

0 and CHd1−i+1(X1)
0, respectively. □

3C. Base change.

Proposition 3.9. Consider a commutative diagram

X1
g

−−−→ X2

f1

y f2

y
B1

ḡ
−−−→ B2

(3-12)
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where f1, f2 satisfy the hypotheses of Section 1, ḡ is finite surjective and g proper; we assume that the
diagram of generic fibres,

X1
g′
−−−→ X2

f ′1

y f ′2

y
η1

ḡ′
−−−→ η2

is Cartesian (in particular, g is generically finite). Then, for all i ≥ 0, one has:

(i) g∗ CHi (X2)
0
⊆ CHi (X1)

0, hence g′∗ CHi (X2)
0
⊆ CHi (X1)

0.

(ii) g∗ CHi (X1)
0
⊆ CHi (X2)

0, hence g′
∗

CHi (X1)
0
⊆ CHi (X2)

0.

(iii) (g∗)−1 CHi (X1)
0
= CHi (X2)

0.

(iv) One has the identities

ḡ∗⟨g′
∗
α, β ′⟩ = ⟨α, g′

∗
β ′⟩, (3-13)

⟨g′∗α, g′∗β⟩ = ḡ∗⟨α, β⟩, (3-14)

for any i ≥ 0 and any (α, β, β ′) ∈ CHi (X2)
0
×CHd+1−i (X2)

0
×CHd+1−i (X1)

0.

Proof. (i) Write ji : X i ↪→ Xi for the inclusions. Let α ∈ CHi (X2)
0: then j∗1 g∗α = g′∗ j∗2α ∈ CHi

num(X1).
Next, let b ∈ B(1)1 and Z = {b}. Let β ∈ CHδ+i−1(X1,Z ), f1,Z : X1,Z → Z be the restriction of f1 and
ι1 : X1,Z ↪→ X1 be the closed immersion: we need to prove that ( f1,Z )∗(g∗α ·ι1 β)= 0. Let T = ḡ(Z) and
h̄ : Z→ T be the (finite surjective) projection: it suffices to show that h̄∗( f1,Z )∗(g∗α ·ι1 β)= 0 ∈CH0(T ).
This follows from the computation

0
(a)
= ( f2,T )∗(α ·ι2 h∗β)= ( f2,T )∗γ

!

ι2
(h∗β ×α)

(b)
= ( f2,T )∗h∗γ !gι1(β ×α)= h̄∗( f1,Z )∗γ

!

gι1(β ×α)

(c)
= h̄∗( f1,Z )∗γ

!

ι1
(1× g)!(β ×α)= h̄∗( f1,Z )∗(g∗α ·ι2 β),

where h : X1,Z → X2,T is the restriction of g and ι2 is the inclusion X2,T ↪→ X2, in which (a) is by
hypothesis, (b) follows from Lemma 2.1, and (c) follows from [Fulton 1984, Proposition 8.1.1(a)] (see
comment in [op. cit., mid p. 134]).

(ii) The inclusion j∗2 g∗ CHi (X1)
0
⊆ CHi

num(X2) is obtained this time from the identity j∗2 g∗ = g′
∗

j∗1 .
Next, let b ∈ B(1)2 Z = {b} and ι2 : X2,Z ↪→ X2, f2,Z : X2,Z → Z be the inclusion and the projection. Let
α ∈ CHi (X1)

0 and β ∈ CHδ+i−1(X2,Z ): we need to prove that ( f2,Z )∗(g∗α ·ι2 β)= 0 ∈ CH0(Z).
Let T = ḡ−1(Z). Then X1,T −→

∼ X1×X2 X2,Z ; hence refined Gysin morphisms

g! : CH j (X2,Z )→ CH j (X1,T ).
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By Lemma 2.9, we have ( f1,T )∗(α ·ι1 g!β)= 0, where ι1 is the inclusion X1,T ↪→ X1. The commutative
square

X1,T
h

−−−→ X2,Z

f1,T

y f2,Z

y
T

h̄
−−−→ Z

where h and h̄ are the restrictions of g and ḡ, gives the identity of push-forwards

h̄∗( f1,T )∗ = ( f2,Z )∗h∗.

Therefore, it suffices to prove the identity (projection formula)

g∗α ·ι2 β = h∗(α ·ι1 g!β). (3-15)

For this, consider the commutative diagram of Cartesian squares

X1
δX1
−−−→ X1×X1

g×1
−−−→ X2×X1

ι1

x ι1×1
x ι2×1

x
X1,T

γι1
−−−→ X1,T ×X1

h×1
−−−→ X2,Z ×X1

h

y 1×g
y

X2,Z
γι2
−−−→ X2,Z ×X2

ι2

y ι2×1
y

X2
δX2
−−−→ X2×X2

Applying Lemma 2.1 to the two bottom squares yields first

g∗α ·ι2 β := γ
!

ι2
(1× g)∗(β ×α)= h∗γ !ι2(β ×α)= h∗δ!X2

(β ×α).

We are now left to show the identity

δ!X2
(β ×α)= α ·ι1 g!β := γ !ι1(g× 1)!(β ×α),

where the right hand side stems from the top part of the diagram (with vertical arrows pointing upwards).
But γ !ι1(g×1)!(β×α)= δ!X1

(g×1)!(β×α) and δ!X1
(g×1)!(β×α)= [(g×1)δX1]

!(β×α)= tγ !g(β×α),
both by Lemma 2.1. Here, tγ denotes the transpose of a graph (graph composed with the switch of
factors). Finally, tγ !g(β × α) = δ

!

X2
(β × α) by applying once again Lemma 2.1(b) to the diagram of
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Cartesian squares

X1,T
(h,ι1)
−−−→ X2,Z ×X1

ι1

y ι2×1
y

X1

tγg
−−−→ X2×X1

g
y 1×g

y
X2

δX2
−−−→ X2×X2

(iii) This follows from (i) and (ii) by the projection formula g∗g∗ = deg(g) (generic degree), and
Lemma 2.4.

(iv) This follows from the special case B1 = B2, ḡ = 1B in (i) or (ii).
In (iv), the identities can be checked on the level of X1 and X2. The first, (3-13), is an easy consequence

of the projection formula. Let us prove (3-14). The diagram of Cartesian squares

X1
(g, f1)

B

−−−−→ X2×B2 B1
1×B2 ḡ
−−−→ X2

||

y inj
y (1, f2)

y
X1

(g, f1)
−−−→ X2×k B1

1×ḡ
−−−→ X2×k B2

together with Lemma 2.1 (b), and (c) gives a factorisation of g∗ into a composition of refined Gysin
morphisms

g∗ = (g, f1)
!(1× ḡ)!. (3-16)

Next, [Fulton 1984, Example 8.1.7] applied to the left square with x = [X1] and y = (1× ḡ)!z for
some z ∈ CH∗(X2) yields via [Fulton 1984, Proposition 8.1.2(b)] the identity

(g, f1)
B
∗
(g, f1)

!y = (g, f1)
B
∗
[X1] · y = y; (3-17)

indeed, (g, f1)
B maps X1 birationally onto an irreducible component of X2 ×B2 B1, and the other

irreducible components have support away from η2, hence have smaller dimensions. Taking z = α ·β for
(α, β) ∈ CHi (X2)

0
×CHd+1−i (X2)

0, we get

⟨g∗α, g∗β⟩ = ( f1)∗(g∗α · g∗β)= ( f1)∗g∗(α ·β)
(3-16)
= ( f2× 1)∗(g, f1)

B
∗
(g, f1)

!(1× ḡ)!(α ·β)
(3-17)
= ( f2× 1)∗(1× ḡ)!(α ·β)

= ḡ∗( f2)∗(α ·β)= ḡ∗⟨α, β⟩,

where the last but one equality follows once again from Lemma 2.1. This readily implies (3-14). □

Remark 3.10. In Proposition 3.9, suppose that ḡ is only an alteration. I cannot prove (i). On the other
hand, (ii) holds with the same proof, as well as (iv) for (α, β) ∈ CHi (X2)

0
×CHd+1−i (X2)

0 such that
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(g∗α, g∗β) ∈ CHi (X1)
0
×CHd+1−i (X1)

0. This is not very important, in view of Remarks 1.2(b) (see
proof of Proposition 3.11).

3D. Structure of CHi (X)/ CHi (X)0.

Proposition 3.11. The groups CHi (X )/CHi (X )0 and CHi (X)/CHi (X)0 are finitely generated.

Proof. It suffices to show the first claim. We proceed in several steps.

(1) Suppose B ′ is an open subset of B, let X ′ = X ×B B ′ and let λ : X ′→ X be the corresponding open
immersion. Then CHi (X )0 ⊆ (λ∗)−1 CHi (X ′)0, with equality if B− B ′ has codimension ≥ 2. Therefore
the claim for X implies the claim for X ′, and conversely in the latter case.

(2) B is projective: this follows from Proposition 2.5.

(3) In general, let B be a compactification of B and X
f̄
−→ B a projective morphism extending f (in the

sense that X = X ×B B).

• By [de Jong 1996, Theorem 4.1], alter B into a smooth projective k-variety B1.

• Let K1 = k(B1) (a finite extension of K ), and let X ′ be the closure of X ⊗K K1 in X ×B B1. Again by
[de Jong 1996, Theorem 4.1], alter X ′ into a smooth projective k-variety X 1. We are now in the situation
of (2).

• Let B1 = B×B B1 and X1 = B1×B1
X 1.

• By Remarks 1.2(b), the alteration B1→ B becomes flat, hence finite, after removing from B a closed
subset F of codimension ≥ 2. Let B ′ = B− F and X ′, B ′1, X ′1 be the corresponding base changes of X ,
B1 and X1.

By (2), the claim is true for X 1; therefore it is also true for X ′1 by (1). By Proposition 3.9 (i), (ii),
the projection X ′1 → X ′ induces maps between CHi (X ′)/CHi (X ′)0 and CHi (X ′1)/CHi (X ′1)

0, whose
composition is multiplication by [K1 : K ]. Since CHi (X ′)/CHi (X ′)0 is torsion-free by Lemma 2.4, it is
finitely generated, and so is CHi (X )/CHi (X )0 by reapplying (1). □

Remark 3.12. Proposition 2.6 gives a more direct proof of Proposition 3.11 in characteristic 0, by the
comparison theorem between Betti and l-adic cohomology.

3E. A vanishing result. Let l be a prime number invertible in k. For any smooth k-variety V , there are
cycle class maps with values in Jannsen’s continuous étale cohomology

cli : CHi (V )→ H 2i
cont(V,Zl(i))

which are compatible with pull-backs, push-forwards and products [Jannsen 1988, (3.25) and (6.14)].3

3Strangely, [Jannsen 1988, (3.25)] only mentions push-forwards for closed immersions, but the case of a general proper
morphism is proven in the same way.



1060 Bruno Kahn

Lemma 3.13. Suppose k finitely generated. Then the composition of cl1 with the projection

H 2
cont(V,Zl(1))→ H 2

cont(V,Zl(1))/H 2
cont(k,Zl(1))

has finite kernel.

Proof. By construction of cli , there is a commutative diagram

CH1(V )
α

−−−→ CH1(V )∧

cl1
y (cl1)∧

y
H 2

cont(V,Zl(1)) −−−→ lim
←−−

H 2(V, µn
l )

where the bottom map is part of the Milnor exact sequence of [Jannsen 1988, (3.16)] and CH1(V )∧ is the
l-adic completion of CH1(V ). The Kummer exact sequences imply the injectivity of (cl1)∧. Since k is
finitely generated, CH1(V ) is a finitely generated abelian group, which implies that α has finite kernel of
order prime to l. Hence the same holds for cl1.

On the other hand, the choice of a 0-cycle of nonzero degree on V (e.g., a closed point), plus transfer,
provide a map ρ : H 2

cont(V,Zl(1))→ H 2
cont(k,Zl(1)) such that the composition

H 2
cont(k,Zl(1))→ H 2

cont(V,Zl(1))
ρ
−→ H 2

cont(k,Zl(1))

is multiplication by some integer m > 0. Since CH1(k)= 0, the naturality of the cycle class map implies
that ρ ◦ cl1 = 0. Hence the lemma. □

The following proposition will be used in the proof of Proposition 6.8.

Proposition 3.14. Let (α, β) ∈ CHi (X )×CHd+1−i (X ). Consider the pairing (1-2). As in Section 2C, let
CHi

l (X ) be the kernel of the geometric cycle class map. If (α, β) ∈ CHi
l (X )×CHd+1−i

l (X ), then ⟨α, β⟩
is torsion.

Proof. We may assume k to be the perfect closure of a finitely generated field. We use the spectral
sequences of [Jannsen 1988, Theorem (3.3)]

E p,q
2 = H p

cont
(
k, Hq(Vk̄,Zl(n))

)
⇒ H p+q

cont (V,Zl(n)).

They are compatible with the action of correspondences, in particular with products and push-forwards.
Thus, if F •Hcont is the filtration on Hcont induced by the spectral sequence, we have

cl1( f∗(α ·β))= f∗cld+1(α ·β)

= f∗
(
cli (α)∪ cld+1−i (β)

)
∈ F2 H 2

cont(B,Zl(1))= Im
(
H 2

cont(k,Zl(1))→ H 2
cont(B,Zl(1))

)
if (α, β) ∈ CHi

l (X )×CHd+1−i
l (X ). We conclude by Lemma 3.13. □

Question 3.15. When B is projective, can one prove Proposition 3.14 with CHl replaced by CHnum,
without assuming the standard conjectures?
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3F. Local height pairing. In this context, there is not much to say. Let f be as in Section 1. Let
C1 ∈ Z i (X), C2 ∈ Zd+1−i (X) be two integral cycles with disjoint supports. Let Ci be the closure of Ci in
X ; then C1×X C2 has support in XZ for some proper closed subset Z of B, whence a refined intersection
product [Fulton 1984, §8.1],

C1 · C2 ∈ CHδ−1(XZ ).

Given the isomorphism
CHδ−1(Z)−→∼

⊕
b∈Z∩B(1)

Z,

the class ( fZ )∗(C1 · C2) defines a divisor on B, whose class in Pic(B)= CH1(B) is obviously ⟨C1, C2⟩ (cf.
[Beı̆linson 1987, Lemma 2.0.1]). One may then extend by bilinearity and get an expression of ⟨ , ⟩ as
the class of a divisor.

We leave it to the interested reader to refine Lemma 3.3 to this local height pairing in the style of
[Bloch 1984, (A.2)].

4. Extension to the general case

Let X be regular, connected and proper over K . In the previous section, we defined subgroups CHi (X)0⊂
CHi (X) and pairings (1) assuming the existence of a k-smooth model X of X , proper over B.

4A. Characteristic 0.

Proposition 4.1. Assuming resolution of singularities à la Hironaka, a smooth model always exists. This
is the case in particular if char k = 0, or if d + δ ≤ 3 [Cossart and Piltant 2009].

Proof. Start from an integral proper model f : X → B of X/K . Let U ⊆ X be the regular locus of X/k:
it is open [EGA IV2 1965, corollaire 6.12.6] and since X is regular, we have X ⊂U . By hypothesis, we
may find X1 regular over k and a projective morphism π : X1→ X such that π|π−1(U ) : π

−1(U )→U is
an isomorphism. Then the immersion X ↪→ X lifts to X ↪→ X1, and X1 is the desired smooth model of X
(since k is assumed to be perfect). □

4B. Positive characteristic. Here we cannot directly use de Jong’s theorem [1996] to replace Hironaka
resolution, because there is no control in this theorem on the centre of the alteration. Instead we must
proceed more carefully.

Definition 4.2. Let X be an integral proper K-scheme.

(a) X is good (relatively to B) if it admits a k-regular proper model X
f
−→ B. (In particular, X is then

regular.)

(b) A K-morphism π : X1→ X is admissible if X1 is good.

(c) We set
CHi (X)0 = {α ∈ CHi (X) | π∗α ∈ CHi (X1)

0
∀π admissible}.
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Lemma 4.3. (a) For any X as in Definition 4.2, admissible alterations exist; in particular CHi (X)0 ̸=∅.

(b) If X is good, CHi (X)0 agrees with the subgroup of Proposition 3.6(ii).

(c) Given two admissible morphisms πi : X i → X , there exists an admissible morphism π3 : X3→ X
factoring through π1 and π2.

(d) If X is regular, we have CHi (X)0 ⊆ CHi
num(X).

Proof. (a) This follows from [de Jong 1996, Theorem 4.1] applied to a (not necessarily smooth) model.

(b) This follows from Proposition 3.6.

(c) Let X ,X1,X2 be B-proper models of X, X1 and X2. Taking the graphs of the rational maps πi :

Xi 99K X , we may assume these to be B-morphisms. Applying [de Jong 1996, Theorem 4.1] again to an
irreducible component of X1×X X2 dominant over B, we get a k-smooth X -scheme X3, projective over
B and mapping to X1 and X2, whose generic fibre X3 maps to X1 and X2 over X .

(d) Let α ∈ CHi (X)0 and β ∈ CHd−i (X). Choose an admissible π . Writing [ , ] for the intersection
product, we have [π∗ηα, π

∗
ηβ] = 0 by definition of CHi (X1)

0, hence [α, β] = 0. □

To go further, we need to invert p in characteristic p; this is the object of the next subsections.

4C. The category Ab ⊗ R, where R is a subring of Q. (See also [Barbieri-Viale and Kahn 2016,
Appendix B].) This category has two equivalent descriptions:

• It is the localisation of the category Ab of abelian groups with respect to the Serre subcategory of
abelian groups killed by some integer invertible in A; in particular, Ab⊗ R is abelian and the localisation
functor Ab→ Ab⊗ R is exact.

• It has the same objects as Ab, while morphisms are those of Ab tensored with A.

If R = Z[1/p], we shall abbreviate Ab⊗ R to Ab[1/p].

Lemma 4.4. The tensor product of Ab induces a tensor structure on Ab⊗ R, still denoted by ⊗.

(This allows us to talk of a “pairing in Ab⊗ R”.)

Proof. It suffices to show that, if f ∈ Ab(A, B) becomes invertible in Ab⊗ R (i.e., Ker f , Coker f have
p-power exponent), the same holds for f ⊗ 1C for any C ∈ Ab. By considering the image of f , we may
treat separately the cases where f is injective and f is surjective. Both hold because, if G ∈ Ab has
p-power exponent, so do G⊗C and Tor(G,C) for any C ∈ Ab. □

Remarks 4.5. (a) Let A, B be two abelian groups. By definition, a morphism in (Ab⊗ R)(A, B) =
lim
−−→N ̸=0 Ab(A, B) is represented by a pair (ϕ, N )with ϕ : A→ B and N an integer invertible in R; two pairs
(ϕ1, N1) and (ϕ2, N2) are equivalent if there exist two such integers d1, d2 such that d1 N1 = d2 N2 =: N3

and (d1ϕ1, N3)= (d2ϕ2, N3). We get a well-defined homomorphism

ρ : (Ab⊗ R)(A, B)→ Ab(A, B⊗ R)
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by sending a pair (ϕ, N ) to ψ;= N−1ϕ; its image is contained in the subgroup formed of those homo-
morphisms ψ : A→ B ⊗ R such that ψ(A) ⊆ N−1 B for some N ̸= 0, with B = B/torsion. If B is
torsion-free, ρ is injective with the above image.

(b) In any category, the commutativity of a diagram (i.e., the equality of two arrows) is equivalent to the
commutativity of a family of diagrams of sets, thanks to Yoneda’s lemma. In the category of modules
over a ring R, one can test such commutativity on elements, because the R-module R is a generator.

In the sequel, we shall extend identities such as (3-11), (3-13) and (3-14) to Ab⊗ R. However this
category is not Grothendieck (note that abelian groups with finite exponent are not closed under infinite
direct sums), so reasoning with “elements” is abusive. Writing out the above identities as commutative
diagrams in Ab is straightforward, but cumbersome. (For example, (3-11) means that two homomorphisms
from CHd2(X1×K X2)⊗CHi (X2)

0
⊗CHi−1(X1)

0 to CH1(B) agree.) We shall therefore sometimes make
the abuse of talking of such identities in Ab⊗ R when we mean the corresponding commutative diagrams.

In Theorem 4.14, we shall use a local-to-global result for these localisations (Corollary 4.8 below).

Theorem 4.6. Let H be a module over an integral domain R with quotient field Q. Suppose given, for
each maximal ideal m⊂ R, an element fm ∈ Hm, all of which become equal in Q⊗R H. Then there exists
at most one element f ∈ H which becomes equal to fm in Hm for every m; f exists provided

(i) H is torsion free, or

(ii) R is Noetherian and S = Supp(Mtors) is a finite set of maximal ideals.

(Counterexample without Hypothesis (ii): R = Z, H =
⊕

m Z/m, fm = 1m.)

Proof. Uniqueness. Let f, f ′ verifying the condition. Then f and f ′ become equal in Hm for all m. This
means that, for every m, there exists Mm ∈ R−m such that Mm( f − f ′)= 0. Since the Mm generate R
as an ideal, we get f = f ′.

Existence. We may write fm = r−1
m f̃m with f̃m ∈ H and rm ∈ R−m; again, the rm generate the unit ideal

of R. In case (i), if g ∈ Q ⊗R H is the common value of the fm, then rmg ∈ H for all m; if (am) is a
family of elements of R with finite support such that

∑
amrm = 1, then g =

∑
amrmg ∈ H .

In case (ii), write T = Htors for notational simplicity. Considering H/T , we find f0 such that
1m⊗ f0− fm is torsion for all m, hence is 0 for m /∈ S.

Claim 4.7. The monomorphism T 7→
∏

m∈S Tm is surjective.

Proof. For each m ∈ S, let Tm
= Ker(T →

∏
m′ ̸=m Tm′): we must show that T =

∑
Tm. Let t ∈ T ;

by assumption, the radical of Ann(t) (the annihilator of t) is of the form
∏

m∈S′ m for a subset S′ of S.
By [Bourbaki 1985, IV.2.5, proposition 9], R(t)= R/Ann(t) is Artinian, hence R(t)−→∼

∏
m∈S′ R(t)m

[loc. cit., corollaire 1]; equivalently, Rt −→∼
∏

m∈S′(Rt)m, which shows that t ∈
∑

Tm. □

Coming back to the proof of case (ii), the claim yields an element t ∈ T such that tm = 1m⊗ f0− fm
for all m ∈ S; then f = f0− t yields the desired element. □
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Corollary 4.8. Let A, B ∈ Ab and R be a subring of Q. Suppose given, for each prime number l not
invertible in R, a morphism fl : A→ B in Ab⊗Z(l), all of which become equal in Ab⊗Q. Then there
exists at most one morphism f : A→ B in Ab⊗ R which becomes equal to fl in Ab⊗Z(l) for every l; f
exists provided B is l-torsion free for almost all l not invertible in R.

Proof. Apply Theorem 4.6 to H =Hom(A, B)⊗R, noting that the hypothesis on B implies the hypothesis
on H . □

4D. p-covers.

Definition 4.9. Let X be an integral proper K-scheme. A p-cover of X is a finite family (πl : Xl→ X),
indexed by prime numbers l ̸= p and such that

(i) for each l, πl is an admissible alteration of generic degree dl prime to l;

(ii) gcdl(dl) is a power of p.

Proposition 4.10. (a) p-covers exist.

(b) Given two p-covers (πl), (π ′l ), there exists a third p-cover (π ′′l ) such that, for each l, π ′′l factors
through πl and π ′l .

(c) Given a p-cover (πl) and an admissible morphism f1 : X1→ X , there exists a p-cover (π1,l) of X1

such that the composition X1,l→ X1→ X factors through Xl for each l.

Proof. (a) We use Gabber’s refinement of de Jong’s alteration theorem [Illusie and Temkin 2014,
Theorem 2.1]: given a model X of X and a prime number l ̸= p, we may find an alteration Xl→ X with
Xl regular (hence smooth over k) and of generic degree dl prime to l; the induced alteration πl : Xl→ X
is then admissible of generic degree dl . Considering the other prime divisors of dl different from p, we
may find a finite number of l and πl such that the gcd of the dl is a power of p.

(b) and (c) These are proven similarly to (a). □

4E. The refined height pairing (characteristic p).

Definition 4.11. We set

CHi (X)[0] = {α ∈ CHi (X) | ∃s ≥ 0 : psα ∈ CHi (X)0}.

Proposition 4.12. (a) If X is regular, CHi (X)/CHi (X)0 is an extension of a finitely generated abelian
group by a torsion group of p-power exponent, and CHi (X)/CHi (X)[0] is finitely generated with prime-
to-p torsion.

(b) Let (πl) be a p-cover of X , and let α ∈ CHi (X). Then α ∈ CHi (X)[0] if and only if π∗l α ∈ CHi (Xl)
[0]

for each l.

(c) Propositions 3.6 and 3.9 (i), (ii), (iii) extend to all regular X after replacing CHi (X)0 by CHi (X)[0].
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Proof. (a) Given a p-cover (πl), since (πl)∗π
∗

l is multiplication by dl for each l, Ker(CHi (X)/CHi (X)0→∏
l CHi (Xl)/CHi (Xl)

0) is killed by a power of p, say ps , and the first claim follows from Proposition 3.11.
The second follows by definition of CHi (X)[0].

(b) The condition is necessary by definition; the converse follows from Proposition 4.10 (c), as in (a).

(c) Let X1, X2, γ be as in Proposition 3.6. To prove (3-9), we must show that π∗γ ∗ CHi (X2)
0
⊆

CHi+r (X ′1)
0 for any admissible π : X ′1→ X1; replacing γ by γ ◦π , we may assume that X1 is good and

π = 1X1 . Choose a p-cover (πl) of X2. For α ∈ CHi (X2)
[0], we have π∗l α ∈ CHi (Xl)

[0], hence

dlγ
∗α = (γ ∗(πl)∗)π

∗

l α ∈ CHi+r (X1)
[0]

for all l thanks to Proposition 3.6, hence psγ ∗α ∈ CHi+r (X1)
[0] and finally γ ∗α ∈ CHi+r (X1)

[0] as
desired. The cases in Proposition 3.9 are treated similarly. □

Lemma 4.13. Let π : X1→ X be an admissible alteration, of generic degree d prime to l, where l ̸= p.
Then the morphism in Ab⊗Z(l)

⟨ , ⟩(l) : CHi (X)[0]⊗CHd+1−i (X)[0]
(π∗⊗π∗)
−−−−−→ CHi (X1)

[0]
⊗CHd+1−i (X1)

[0] d−1
⟨ , ⟩

−−−−→ CH1(B)

does not depend on the choice of π , and coincides with ⟨ , ⟩ if X is good. For two prime numbers
l, l ′ ̸= p, we have ⟨ , ⟩(l) = ⟨ , ⟩(l ′) in Ab⊗⊗Q.

Proof. Let π ′ : X ′1→ X another such alteration, with generic degree d ′. By Proposition 4.10(c) applied
to an irreducible component of X1× X X ′1 dominating X , we can find admissible alterations X ′′1

ρ
−→ X1,

X ′′1
ρ′

−→ X ′1 of generic degrees δ, δ′ such that πρ = π ′ρ ′, hence δd = δ′d ′. Using elements to clarify the
argument, we have for (α, β) ∈ CHi (X)[0]×CHd+1−i (X)[0],

d−1
⟨π∗α, π∗β⟩ = d−1δ−1

⟨ρ∗π∗α, ρ∗π∗β⟩ = d ′−1
δ′
−1
⟨ρ ′
∗
π ′
∗
α, ρ ′

∗
π ′
∗
β⟩ = d ′−1

⟨π ′
∗
α, π ′

∗
β⟩,

where we used (3-11) and the identities ρ∗ρ∗ = δ, ρ ′∗ρ
′∗
= δ′. The second claim follows by taking

π = 1X . For the third claim, we argue similarly by using an admissible alteration covering two admissible
alterations of generic degrees prime to l and l ′. □

Theorem 4.14. (a) There exists a unique pairing

⟨ , ⟩ : CHi (X)[0]⊗CHd+1−i (X)[0]→ CH1(B) (4-1)

in Ab[1/p] which coincides with ⟨ , ⟩(l) in Ab⊗Z(l) for each l.

(b) The identities of Propositions 3.8 (see Remarks 4.5(b)) and 3.9(iv) extend to these pairings.

Proof. (a) Suppose first that k is the perfect closure of a field k0 finitely generated over Fp, and that
B = B0 ⊗k0 k for some smooth k0-variety B0. Then CH1(B0) is a finitely generated abelian group
[Kahn 2006], and CH1(B0)⊗Z[1/p] does not change under purely inseparable extensions; in particular,
CH1(B)⊗Z[1/p] has finite torsion and a fortiori verifies the hypothesis of Corollary 4.8. The result then
follows from this theorem and Lemma 4.13.
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In general, the situation is defined over such a subfield of k, so reduces to the first case.

(b) Let X1, X2 be (proper) regular, and let γ ∈ CHdim X2(X1×K X2). We need to prove the analogue of
(3-11),

⟨ , ⟩1 ◦ γ
∗
⊗ 1= ⟨ , ⟩2 ◦ 1⊗ γ∗,

where ⟨ , ⟩i is the height pairing of X i . By the uniqueness statement of Corollary 4.8, it suffices to
prove this identity after localising at l for all l ̸= p. Let πi : X i,l → X i (i = 1, 2) be two admissible
alterations of generic degrees di prime to l, and let γl = π

∗

2 ◦ γ ◦ (π1)∗ ∈ CHdim X2(X1,l ×K X2,l), so that
d2γ ◦ (π1)∗ = (π2)∗γl and γl ◦π

∗

1 = d1π
∗

2 ◦ γ . By Lemma 4.13, we have, with obvious notation,

⟨ , ⟩1 ◦ γ
∗
⊗ 1= d−1

1 ⟨ , ⟩1,l ◦π
∗

1 γ
∗
⊗π∗1 = d−1

1 d−1
2 ⟨ , ⟩1,l ◦ γ

∗

l π
∗

2 ⊗π
∗

1

(a)
= d−1

1 d−1
2 ⟨ , ⟩2,l ◦π

∗

2 ⊗ (γl)∗π
∗

1 = d−1
2 ⟨ , ⟩2,l ◦π

∗

2 ⊗π
∗

2 γ∗

= ⟨ , ⟩2 ◦ 1⊗ γ∗,

where (a) used (3-11) for γl .
The identity of Proposition 3.9(iv) is extended in similar fashion. □

We shall use the following fact in the proof of Theorem 6.2:

Example 4.15. Suppose that X is an abelian variety. For a ∈ X (K ), write τa for the translation by a. It
yields a self-correspondence of degree 0 still denoted by τa , and we have the obvious formula tτa = τ−a .
This yields the identity (see Remarks 4.5(b))

⟨τ ∗a α, β⟩ = ⟨α, τ
∗

−aβ⟩

for (α, β) ∈ CHi (X)[0]×CHd+1−i (X)[0].

Remark 4.16. The functoriality of Proposition 4.12(c) means that the subgroups CHi (X)[0], for varying
X and i , define an adequate equivalence relation on algebraic cycles with integral coefficients on smooth
projective K-varieties. This adequate relation a priori depends on the choice of B, but see Conjecture 5.1
and Remarks 5.4 below.

4F. Extension to imperfect fields. Let X, K , B be as in the introduction, but relax the assumption that k
is perfect; specifically, we assume k imperfect of characteristic p. Write k p (resp. K p, B p, X p for the
perfect closure of k (resp. for K ⊗k k p, B⊗k k p, X ⊗K K p).

We define CHi (X)[0] as the inverse image of CHi (X p)[0] under the pull-back morphism CHi (X)→
CHi (X p). We claim that the pairing (4-1) for X p induces a similar pairing for X , with the same properties.

Since the homomorphism λ : CH1(B)→ CHi (B p) has p-primary torsion kernel and cokernel, this is
trivial if we accept to replace CH1(B) by CH1(B)⊗Z[1/p] (note that Ker λ and Coker λ do not have
finite exponent, so λ is not an isomorphism in Ab[1/p]). We can avoid this, however, by observing that
all constructions involved in constructing (4-1) for X p and proving its properties are defined over some
finite subextension of k p/k.
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5. Homologically and algebraically trivial cycles

From now on, we write

CHi (X)(0) = {α ∈ CHi (X) | ∃n ̸= 0 : nα ∈ CHi (X)0}

for the saturation of CHi (X)0. We have the inclusion

CHi (X)(0) ⊆ CHi
num(X) (5-1)

by Lemma 4.3(d) and the fact that CHi (X)/CHi
num(X) is torsion-free.

5A. Conjectures. The following is a numerical analogue to [Beı̆linson 1987, Conjecture 2.2.5].

Conjecture 5.1. The inclusion (5-1) is an equality.

Let the index l denote homological equivalence for l-adic cohomology, l ̸= char k. Conjecture 5.1
implies

Conjecture 5.2. One has the inclusion CHi
l (X)⊆ CHi (X)(0).

Conversely, Conjecture 5.2 implies Conjecture 5.1 under Grothendieck’s standard Conjecture D, by
Proposition 3.11 (and Proposition 4.12(a) in characteristic p).

Proposition 5.3. Conjecture 5.2 is true if X admits a model f : X → B with f smooth.

Proof. This follows from the smooth and proper base change theorem (see Remark 2.7). □

Remarks 5.4. (a) More generally, Proposition 2.6 shows that CHi (X)0 contains the image of CHi (X )0B,l
for any model f : X → B of X with X smooth.

(b) Suppose X smooth (not just regular). For clarity, let us write CHi (X)(0)B to mark the dependence of
CHi (X)(0) on the model B. If U is an open subset of B, we obviously have CHi (X)(0)B ⊆ CHi (X)(0)U , and
this direct system is essentially constant by Proposition 4.12(b). For U small enough, Proposition 5.3
thus gives inclusions

CHi
l (X)⊆ CHi (X)(0)U ⊆ CHi

num(X),

where the middle group does not change when U gets smaller (note that equality on the right is not clear:
see Remark 2.7). In view of Remark 4.16, this defines a new adequate equivalence on smooth projective
K-varieties, this time independent of the choice of B (and which conjecturally agrees with numerical
equivalence).

Theorem 5.5. Conjecture 5.1 is true in the following cases:

(i) i = 1, d.

(ii) char K = 0, f is smooth and

• either i ∈ {2, d − 1},
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• or X is “of abelian type” (i.e., its homological motive is isomorphic to a direct summand of the
motive of an abelian variety).

Proof. For (i), see Theorem 5.6(b) below. For (ii), homological and numerical equivalences agree in the
said cases by Lieberman [1968]. Therefore, the statement follows from Proposition 5.3. □

5B. Algebraic equivalence.

Theorem 5.6. (a) One has CHi
alg(X)⊆ CHi (X)(0).

(b) Conjecture 5.1 is true for i = 1, d.

Of course, (b) follows from (a) (using Matsusaka’s theorem [1957] in the case i = 1).
To prove (a), we first reduce to the case where X has a smooth model X as in Section 4: this is

automatic if char k = 0 by Proposition 4.1, and if char k > 0 we first reduce to k perfect as in Section 4F,
then we can use Proposition 4.10(a) and a transfer argument.

We now give ourselves a model f : X → B of X with X smooth. The proof is in two steps.

Step 1. Assume d = 1 and two sections c̃0, c̃1 of f are given. Let c0, c1 be their generic fibres and
α = [c0] − [c1].

Lemma 5.7. There exists an integer N > 0 such that Nα ∈ CH1(X)0.

Proof. Let α̃ = [c̃0(B)] − [c̃1(B)] ∈ CH1(X ). Then j∗α̃ ∈ CH1
alg(X)⊆ CH1

num(X). We now need to find
N > 0 and ξ ∈ Ker j∗ such that N α̃+ ξ ∈ CH1(X )0. We shall look for ξ in the form

ξ =
∑

b∈B(1)

(ιb)∗ξb,

where ιb : XZb ↪→ X is the inclusion (with Zb = {b} as usual) and each ξb is a linear combination of
classes of irreducible δ-dimensional components X λ

Zb
of XZb (almost all ξb will be 0). For this, I claim

that the method of [Silverman 1994, III.8] extends to this case:
The first thing to check is that the hypothesis of [loc. cit., Proposition III.8.3] is verified, namely that
⟨α̃, [XZb ]⟩b = 0 for all b ∈ B(1). For simplicity, write Z and ι instead of Zb and ιb. Up to removing a
proper closed subset from Z , we may assume it smooth. In the Cartesian square of the diagram

Z
gi=(di ,ι

′)
−−−−−→ XZ × B

di

y 1×c̃i

y
Z

fZ
←−−− XZ

γι
−−−→ XZ ×X

where di = (c̃i )|Z and ι′ is the inclusion Z ↪→ B, the top horizontal map gi is a regular embedding of
codimension δ+ 1 as the composite of the two regular embeddings

Z
δ
−→ Z × Z

di×ι
′

−−→ XZ × B.
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Here we use that the embedding di is regular [EGA IV4 1967, proposition 19.1.1]. Then

⟨[c̃i (B)], [XZ ]⟩b = ( fZ )∗γ
!

ι ([XZ ]× (c̃i )∗[B])= ( fZ )∗γ
!

ι ((1× c̃i )∗[XZ × B])
(a)
= ( fZ )∗(di )∗γ

!

ι [XZ × B] = γ !ι [XZ × B]
(b)
= g!i [X

λ
Z × B]

(c)
= δ!(d !i [XZ ]× ι

′!
[B])= [Z ],

where (a) (resp. (b), (c)) is once again Lemma 2.1(a) (resp. (b), (c)).
Now

CHδ+i−1(XZ )= CHδ(XZ )
∼
←−

⊕
λ

Z[X λ
Z ],

where the X λ
Z are the irreducible components of XZ of dimension δ: this follows from [Fulton 1984,

Example 1.8.1] by induction on the number of components. The second thing to observe is that the
statement and proof of [Silverman 1994, Proposition III.8.2] apply verbatim, namely that the quadratic
form α 7→ ⟨ι∗α, α⟩b on CHδ(XZ ) is negative, with kernel generated by [XZ ]. Indeed, this is a local
computation so we can consider the fibre of X over SpecOB,b and simply apply the said proposition.
(The fact that f∗OX = OB , which is used in its proof, follows from the fact that X is geometrically
connected since it has rational points, and that B is normal.)

We can now find N and ξ just as in [Silverman 1994, Proposition III.8.3]. □

Step 2. The general case. Let α ∈ CHi
alg(X). By [Achter et al. 2019, Lemma 3.8], there exist an integer

s ≥ 0, a smooth projective K-curve C , two rational points c0, c1 ∈C(K ) and an element y ∈ CHi (C× X)
such that psα = (c∗0 − c∗1)y (recall that p is the exponential characteristic of k).

Lemma 5.8 (Q. Liu; cf. [Liu and Tong 2016]). There exists a closed subset F ⊂ B of codimension > 1
such that C lifts to a regular proper (B−F)-scheme C and the ci lift to sections c̃i of C→ B− F.

Proof. See Proposition A.1 of the Appendix. □

By Step 1 and Lemma 5.8, there exists an integer N > 0 such that N ([c1] − [c1]) ∈ CH1(C)0. Then
N psα = N (c∗0 − c∗1)y = y∗N ([c0] − [c1]) ∈ CHi (X)0 by Proposition 3.6, where y is considered as a
correspondence (Weil–Bloch trick). This concludes the proof of Theorem 5.6.

Remark 5.9. There is a statement parallel to Theorem 5.6 in [Beı̆linson 1987, Lemma 2.2.2(b)], with a
similar proof.

5C. Example: elliptic curves. In Step 1 of the proof of Theorem 5.6, suppose δ= 1, B projective and that
X is an elliptic curve. Applying deg : CH1(B)→ Z, we get an integral pairing ⟨ , ⟩ on the finite index
subgroup CH1(X)0∩ X (K ) of CH1

alg(X)= Pic0(X)= X (K ); this pairing coincides with the Néron–Tate
height pairing by the description in [Silverman 1994, Theorem III.9.3].

Theorem 5.10. Assume k algebraically closed. Then:

(a) CH1(X)0 ∩ X (K ) contains the subset denoted by X (K )0 in [Silverman 1994, Remark III.9.4.2].
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(b) If X is a minimal model, X (K )0 is a subgroup and the pairing

X (K )0× X (K )0→ Pic(B) (5-2)

of [loc. cit., Theorem III.9.5(b)] equals −⟨ , ⟩.

Proof. (a) Let P ∈ X (K ). As in Lemma 5.7, write P̃ : B→ X for the section of f extending P (here
its existence as a morphism is automatic since δ = 1, by the valuative criterion of properness). What is
written [P̃(B)] = P̃∗[B] in its proof of is denoted by (P) in [Silverman 1994]. Since

(P) · [Xb] = P̃∗[B] · f ∗b = [B] · P̃∗ f ∗b = deg(b)= 1

(projection formula), and the intersection numbers of (P) with the components of Xb are ≥ 0, this implies
that P meets exactly one component of Xb, with multiplicity 1.

By definition, X (K )0 is the set of P such that (P) meets the same component of Xb as (0) for all
b ∈ B(1). Equivalently, deg

(
((P)− (0)) · [X λ

b ]
)
= 0 for all b and all such components. By (2-3), this

degree is none else than ⟨(P)− (0),X λ
b ⟩b, so we get that

P ∈ X (K )0⇒ (P)− (0) ∈ CH1(X )0⇒ P − 0 ∈ CH1(X)0.

(b) What we use here is that
P̃ = τP ◦ 0̃ (5-3)

for all P ∈ X (K ), where τP is the translation by P [Silverman 1994, Proposition III.9.1]. This already
implies that X (K )0 is a subgroup of X (K ).

We start with a convenient description of (5-2) by reformulating part (a) of [Silverman 1994, Theo-
rem III.9.5]. For P, Q ∈ X (K ), we have j∗((P + Q)− (P)− (Q)+ (0))= 0 in Pic0(X); the sequence

0→ Pic(B)
f ∗
−→ Pic(X )

j∗
−→ Pic(X)→ 0

is exact except at Pic(X ) where its homology is given by
⊕

b CH1(Xb)/[Xb] (see [Kahn 2009, 3.2(a)]).
If now P, Q ∈ X (K )0, then

(P + Q)− (P)− (Q)+ (0)= ((P + Q)− (0))− ((P)− (0))− ((Q)− (0)) ∈ CH1(X )0,

which implies that its homology class is 0 by the nondegeneracy of the intersection pairings on CH1(Xb)/[Xb].
Thus (P + Q)− (P)− (Q)+ (0)= f ∗[P, Q] for a unique [P, Q] ∈ Pic(B). In particular,

[P, Q] = R̃∗((P + Q)− (P)− (Q)+ (0)) for all R ∈ X (K ). (5-4)

For convenience, we now write

P ∗ Q = f∗((P) · (Q)) ∈ Pic(B)

for P, Q ∈ X (K ).

Lemma 5.11. We have the identities P ∗ Q = Q̃∗(P) and P ∗ Q = 0 ∗ (P − Q).
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Proof. For the first identity,

f∗((P) · (Q))= f∗(P̃∗[B] · Q̃∗[P])= f∗(Q̃∗ Q̃∗ P̃∗[B])= Q̃∗(P)

by the projection formula. For the second one,

Q̃∗(P)= 0̃∗τ ∗Q(τP)∗0̃∗[B] = 0̃∗(τQ)
−1
∗
(τP)∗0̃∗[B] = 0̃∗(τP−Q)∗0̃∗[B] = 0̃∗(P − Q). □

Remark 5.12. Since P ∗ Q = Q ∗ P , we also get the intriguing identity 0 ∗ P = 0 ∗ (−P).

To prove the claim of Theorem 5.10(b), we now apply (5-4) with R = Q:

[P, Q] = Q̃∗((P + Q)− (P)− (Q)+ (0))

= (P + Q) ∗ Q− P ∗ Q− Q ∗ Q+ 0 ∗ Q

= 0 ∗ P − P ∗ Q− 0 ∗ 0+ 0 ∗ Q = P ∗ 0− P ∗ Q− 0 ∗ 0+ 0 ∗ Q =−⟨P, Q⟩. □

Remarks 5.13. (a) We have X (K )0 =N 0(B), where N 0 is the identity component of the Néron model
N of X . Indeed, N is isomorphic to the smooth locus Xsm of X [Artin 1986, Proposition 1.15] and
N 0 contains the 0-section (0). For any P ∈ X (K ), (P) ⊂ Xsm (see end of Step 2 in the proof of
Proposition A.1), and (P) ∈N 0 if and only if P ∈ X (K )0 since N 0

b is the identity component of Nb for
all b ∈ B(1) by definition of N 0.

(b) Suppose that P − 0 ∈ CH1(X)0. We can find a fibral divisor ξ such that (P)− (0)− ξ is orthogonal
to all fibral divisors (as in the proof of Lemma 5.7, with N = 1), and this divisor is unique modulo Im f ∗

by [Silverman 1994, Proposition III.8.3]. By [loc. cit., Lemma III.9.4] (or by (a)), X (K )/X (K )0 =
X (K )/N 0(B) is finite, so the class of ξ is torsion in each CH1(Xb)/[Xb]. Thus CH1(X)0/N 0(B) ↪→⊕

b∈B(1)(CH1(Xb)/[Xb])tors.

6. The pairing in codimension 1

In this section, we assume X projective and geometrically irreducible. Recall that δ= trdeg(K/k)=dim B.
We shall study the height pairing (4-1) for i = 1, in Ab⊗Q; note that CHi (X)(0)=CHi

num(X) for i = 1, d
by Theorem 5.6.

6A. A general result. We write T (X)⊂ CHd
num(X)= CHd(X)0 for the Albanese kernel. For an abelian

K-variety A, write TrK/k A for its K/k-trace and

LN(A, K/k)= A(K )/(TrK/k A)(k)

for its Lang–Néron group: it is finitely generated by the Lang–Néron theorem [1959]. We shall need the
following classical fact:

Lemma 6.1. The Albanese map aX : CHd(X)0→ AlbX (K ) has a cokernel of finite exponent.
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Proof. This could be deduced from [Kahn 2021, Proposition A.1]; here is a different and more direct
proof. Choose a smooth irreducible multiple hyperplane section of dimension 1 i : C ↪→ X . By the usual
transfer argument, we may assume that X has a rational point lying on C . Then aC is bijective. By [Murre
1990, Lemma 2.3], the composition

Pic0
X

i∗
−→ Pic0

C = AlbC
i∗
−→ AlbX (6-1)

is an isogeny, hence Coker i∗(K ) has finite exponent and so does its quotient Coker aX . □

Theorem 6.2. (a) The pairing ⟨ , ⟩ vanishes on CH1
num(X)× T (X).

(b) This induces a pairing (in Ab⊗Q)

⟨ , ⟩ : Pic0(X)×AlbX (K )→ CH1(B).

(c) Suppose B projective. Composing this pairing with the projection CH1(B)→ N 1(B) (where N 1(B)
is the group of cycles of codimension 1 modulo numerical equivalence) induces a pairing

⟨ , ⟩num : LN(Pic0
X , K/k)×LN(AlbX , K/k)→ N 1(B). (6-2)

Proof. (a) Up to extending scalars to the perfect closure of k, we may assume k perfect. Let L/K be
a finite extension. Let BL be the normalisation of B in L; up to removing from B a closed subset F
of codimension ≥ 2 and from BL the inverse image of F (which does not affect CH1(B) or CH1(BL)),
we may assume BL smooth. In Ab[1/p], the map CH1(B)→ CH1(BL) is a monomorphism (transfer
argument). In view of the functoriality in Theorem 4.14(b), to prove the vanishing we may thus increase
scalars as much as we wish. In particular, we may assume that X (K ) ̸=∅.

Let x ∈ X (K ) and let a : X → AlbX be the corresponding Albanese map. Then a induces an
isomorphism a∗ : Pic0(AlbX ) −→

∼ Pic0(X), and a∗ : CH0(X)→ CH0(AlbX ) sends T (X) into T (AlbX ).
Still by functoriality, we are reduced to the case X = AlbX =: A.

The sequel is inspired by Néron’s proof of [Néron 1965, Proposition 7]. In order to reason with
elements, pick a representative of ⟨ , ⟩ in Ab as in Remarks 4.5(a). Let β ∈ T (A), and let K be an
algebraic closure of K . In T (AK ), we may write βK =

∑
i ([ai+bi ]−[ai ]−[bi ]+[0]), with ai , bi ∈ A(K ).

Choose L/K finite such that all the ai are rational over L . As above, we may extend scalars from K
to L , and thus reduce to β = [a+ b] − [a] − [b]+ [0] for a, b ∈ A(K ). The vanishing now follows from
Example 4.15 and the theorem of the square [Mumford 2008, II.6, Corollary 4].

(b) This follows immediately from (a) and Lemma 6.1, which implies that CHd(X)0/T (X)→ AlbX (K )
is an isomorphism in Ab⊗Q.

(c) We may assume k algebraically closed; then the claim follows from the divisibility of Y (k) for an
abelian k-variety Y and the finite generation of N 1(B). □

6B. Another conjecture. For the needs of Theorem 6.6 below, we introduce a new conjecture. From
now on, B is projective as in Theorem 6.2(c).
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Let R be a discrete valuation ring with quotient field K and residue field E . Suppose that an abelian
K-variety A has good reduction with respect to R; then its Néron model A is an abelian scheme over
Spec R, whose special fibre As is an abelian E-variety. We have a specialisation homomorphism

A(K )=A(R)→ As(E). (6-3)

Suppose now that R contains k. The notion of K/k-trace readily extends to a notion of R/k-trace for
abelian R-schemes; viewing these traces as right adjoints shows that

• TrR/k A exists and equals TrK/k A;

• the ‘special fibre’ functor yields a canonical morphism TrK/k A→ TrE/k As .

It follows that (6-3) induces a homomorphism of Lang–Néron groups

LN(A, K/k)→ LN(As, E/k). (6-4)

Conjecture 6.3. Assume that A has semistable reduction at every point of B(1), and that δ > 1. For any
projective embedding B ↪→ PN , there exists a smooth, geometrically connected hyperplane section h of B
such that A has good reduction at h and the kernel of (6-4) is finite, with E = k(h).

Suppose A constant. Then (6-4) may be rewritten as

Homk(AlbB, A)→ Homk(Albh, A),

and Conjecture 6.3 follows from the surjectivity of Albh→ AlbB (see (6-1)). This gives some evidence
for this conjecture.

Remark 6.4. Perhaps the hypotheses of Conjecture 6.3 are too weak.4 In any case, we only need it in the
special case A = Pic0

X , when X satisfies the conclusion of Lemma 6.5 (or any suitable variant of it); it
may be easier to prove in such a case.

6C. A technical lemma. This lemma will be needed in the proofs of Theorem 6.6 and Proposition 6.8
below.

Lemma 6.5. Suppose that d = 1. Then there exists an alteration B̃ → B, with B̃ smooth, such that
X ⊗K k(B̃) has a projective model f : X → B̃ where X is smooth over k and, for all b ∈ B̃(1), the
irreducible components of Xb are smooth over k(b).

Proof. Start from a projective embedding X ↪→ PN
K and consider its closure X0 in PN

B . In the following
reasoning using results of [de Jong 1997], we always take the group G appearing there equal to 1. By
[de Jong 1997, Theorem 5.9] (or just [de Jong 1997, Theorem 2.4 and Lemma 5.7]), we may (projectively)
alter f0 : X0→ B into f1 : X1→ B1 so that f1 is a projective quasisplit semistable curve in the sense
of [de Jong 1997, section after Lemma 5.6]. This condition is stable under base change, hence, by the
reasoning at the end of the proof of [de Jong 1996, Theorem 5.13], we may alter B1 into B2 so that B2 is

4Added in proof: A version of this conjecture has now been proven: see Bruno Kahn and Long Liu, A specialisation theorem
for Lang–Néron groups, in preparation.
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smooth and f2 :X2 :=X1×B1 B2→ B2 verifies the hypotheses of [de Jong 1997, Proposition 5.11] (note that
varieties over a field verify [de Jong 1997, (5.12.1)] by [de Jong 1996, Theorem 4.1]); in particular, B̃ := B2

is smooth. Next, the beginning of the proof of [de Jong 1997, Proposition 5.11] yields a modification
π : X3→ X2 such that the singular locus 6 of X3 is smooth of codimension ≥ 3 and f3 : X3→ B̃ is still
a quasisplit semistable curve. The end of this proof then yields a desingularisation X4 of X3 by blowing
up the components of 6. Since they lie over points of codimension ≥ 2 in B̃, this does not affect the
fibres of f3 at points of codimension 1, so f4 : X4→ B̃ is “quasisplit semistable in codimension 1”.

We are left to desingularise the singular components of (X4)b for all b ∈ B̃(1). Let D be such a
component, and let x be a singular point of D. Note that x does not lie on any other component, since
all singular points of (X4)b are quadratic by the “semistable” condition. By the “quasisplit” one, the
completion of OX4,x is isomorphic to k[[u, v, t1, . . . , tδ]]/(uv − t1), where t1 is a local equation of D
(compare [de Jong 1996, 2.16]). The ideal of x is (u, v, t1). Blowing up this ideal retains the regularity
of X4, separates the two branches of D at x (making its strict transform regular at the two corresponding
points) and adds a smooth irreducible exceptional divisor. We have therefore decreased by 1 the total
number of singular points of the irreducible components of (X4)b. Since only finitely many b are involved,
we end the process after a finite number of steps. □

6D. A negativity theorem.

Theorem 6.6. Let L ∈ Pic(X) and ℓ ∈ Pic(B)−{0}. Consider the quadratic form

q = q(X, B, L , ℓ) : LN(Pic0
X , K/k) ∋ α 7→ deg

(
⟨α, Ld−1α⟩num · ℓ

δ−1)
obtained from the pairing of Theorem 6.2(c). If L is ample and δ= 1 (hence ℓδ−1

= 1), then q(X, B, L , ℓ)
is negative definite (in particular, nondegenerate). If Conjecture 6.3 holds for Pic0

X when d = 1 and in the
situation of Lemma 6.5, this extends to δ > 1 for ℓ ample.

Remark 6.7. As pointed out in Remarks 4.5(b), the notation using elements is abusive in Ab⊗ Q.
Theorem 6.6 could be converted into an arrow-theoretic statement; similarly, the notion “negative definite”
for a quadratic form with values in Z is unambiguous in Ab⊗Q, by using Remarks 4.5(a).

However, converting the proof below into arrow-theoretic notation would be cumbersome at best.
Since the source and target of the quadratic form q are finitely generated abelian groups, we can tensor
everything with Q (i.e., apply the natural functor from Ab ⊗ Q to Q-vector spaces) without losing
information, and reason with honest elements. This is what we do in this proof.

Proof. (a) We first reduce to d = 1 as follows. Suppose d > 1. We may assume L very ample. Let
i : C ↪→ X be a smooth irreducible curve given by successive hyperplane sections from the projective
embedding determined by L . By the functoriality of Theorem 4.14, we have

⟨i∗α, i∗α⟩num = ⟨α, i∗i∗α⟩num = ⟨α, Ld−1
·α⟩num;

hence q(X, B, L , ℓ)(α)=q(C, B, i∗L , ℓ)(i∗α). By the isogeny (6-1), LN(Pic0
X ,K/k)→LN(Pic0

C ,K/k)
is mono in Ab⊗Q.
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We now assume d = 1.

(b) We reduce to the situation of Lemma 6.5. Let X
f
−→ B̃ be as in Lemma 6.5. Since π : B̃→ B is

projective, pick a very ample divisor L relative to π . By [EGA II 1961, proposition 4.4.10(ii)], L+ nπ∗ℓ
is then very ample (relative to B̃→ Spec k) for all n≫ 0. Let α ∈ LN(Pic0

X , K/k)−{0}. Assuming the
theorem true over B̃, we have

deg
(
⟨π∗α, π∗Ld−1π∗α⟩num · (L+ nπ∗ℓ)δ−1)< 0

for all n≫ 0. This is a polynomial in n, with dominant term

deg
(
⟨π∗α, π∗Ld−1π∗α⟩num ·π

∗ℓδ−1)
= deg

(
⟨α, Ld−1α⟩num · ℓ

δ−1)
by (3-14), which must be negative.

We now assume that we are in the situation of Lemma 6.5.

(c) Assume δ = 1. Observe that the pairing (1-2), composed with the degree, is then the intersection
pairing. By the Hodge index theorem, this pairing has signature (1, ρ− 1) where ρ = rk N 1(X ). Since
N 1(X )0 is the orthogonal of the isotropic vector f ∗t for t ∈ N 1(B)−{0}, the restriction of the intersection
pairing to this subspace is negative with kernel generated by f ∗t . Since f ∗t also generates the kernel of
N 1(X )0→ LN(Pic0

X , K/k), the quadratic form q is negative definite, as requested.

(d) Assume finally δ > 1. Similarly to (a), we may assume ℓ very ample. We may also assume k
algebraically closed (in particular, infinite). Let Z ⊂ B be the locus of nonsmoothness of f . In the family
of hyperplane sections of B relative to the projective embedding given by ℓ, only finitely many may be
contained in Z , therefore we can pick a smooth hyperplane section h ̸⊂ Z . By induction, there exists
a smooth ample curve i : 0 ⊂ B determined by ℓ such that the generic fibre X (E) of X0 = f −1(0) is
smooth over E = k(0).

Write I : X0 ↪→ X , g : X0→ 0 for the two corresponding projections. For α̃ ∈ CH1(X ), we have

⟨α̃, α̃⟩ · ℓδ−1
= i∗i∗ f∗(α̃2)= i∗g∗ I !(α̃2).

Since degB ◦ i∗ = deg0, it is enough to compute g∗ I !(α̃2).
Choose a resolution of singularities π : Y→ X0 of the surface X0; let Ĩ = I ◦π and g̃ = g ◦π . The

same reasoning as in the proof of Proposition 3.9(iv) yields the identity I ! = π∗ Ĩ ∗, hence

g∗ I !(α̃2)= g̃∗ Ĩ ∗(α̃2)= g̃∗( Ĩ ∗α̃)2.

Now there exists a finite extension E ′/E with smooth projective k-model 0′, and a semistable model
Y ′ of X (E)⊗E E ′ over 0′ mapping to Y by a morphism ϕ. If d = [E ′ : E], we therefore have

(g̃ ◦ϕ)∗( Ĩ ◦ϕ)∗(α̃)2 = dg̃∗( Ĩ ∗α̃)2.

Under Conjecture 6.3, 0 may be chosen such that the map induced by Ĩ ∗

LN(Pic0
X , K/k)→ LN(Pic0

X (E), E/k)

has finite kernel, and our reduction to δ = 1 is complete. □
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6E. Another pairing. Here we assume B projective; we write A = TrK/k Pic0
X and P = Pic0

B .

Proposition 6.8. Suppose d = 1. In the pairing of Theorem 6.2(b), we have ⟨A(k), A(k)⟩ ⊆ Pic0(B){p}
in Ab⊗Q, where p is the exponential characteristic of k. This induces a pairing in Ab⊗Q

LN(Pic0
X , K/k)× A(k)→ P(k)/P(k){p}. (6-5)

Proof. We may first reduce to k perfect and then pass to a finite extension of K , hence reduce to the
existence of a smooth model X (e.g., as in Lemma 6.5). By [Kahn 2009, 3.2(a)], we have

j∗ Pic0(X )= A(k).

By Proposition 3.14, ⟨Pic0(X ),Pic0(X )⟩ is p-primary torsion, hence the claim. □

Question 6.9. Does (6-5) extend to arbitrary d , replacing A(k) by TrK/k AlbX (k)?

Let E = k(A). Using [Milne 1986, Theorem 3.1], we deduce from (6-5) a pairing

LN(Pic0
X , K/k)×Mork(A, A)→Mork(A, P)/Mork(A, P){p}.

Evaluating on the identity 1A ∈Mork(A, A), we get a homomorphism

LN(Pic0
X , K/k)→Mork(A, P)/Mork(A, P){p}

and using the canonical isomorphism Mork(A, P)≃ P(k)⊕Homk(A, P), a final homomorphism

LN(Pic0
X , K/k)→ Hom(TrK/k Pic0

X ,Pic0
B) (6-6)

because the right hand group is torsion-free. It is an exercise to check that, evaluating this homomorphism
on k-points, we get back (6-5) (improved).

If B = P1 or TrK/k Pic0
X = 0, the right hand side is 0 while the left hand side is nonzero in general.

Yet we may ask:

Question 6.10. When is (6-6) surjective (in Ab⊗Q)?

Appendix: Extending rational points to sections

by Qing Liu

Proposition A.1. Let B be a noetherian connected regular excellent scheme. Let C be a connected
projective regular curve over the function field K of B. Let c1, . . . , cn ∈ C(K ). Then there exist an open
subset U ⊆ B with codim(B \U, B)≥ 2 and a proper scheme C→U , with C regular, containing the ci

such that the latter extend to sections of C→U.



Refined height pairing 1077

Step 1. We extend C to a projective regular scheme C0 over some “big” open subset U0 of B.

First we extend C to an integral projective scheme f : X → B (taking for instance the scheme-
theoretical closure of C in a suitable Pn

B). Let Xsing be the closed subset of the singular points of X . Then
V := B \ f (Xsing) is a dense open subset of B such that XV is regular.

Let b1, . . . , bm be the codimension 1 points of B inside of B \ V . We are going to extend XV above
an open subset U0 of B containing all the b j . For each j ≤ m, we have a relative integral curve
X ×B SpecOB,b j over the discrete valuation ring OB,b j with regular generic fibre C . As B is excellent,
there exists a resolution of singularities

X ′j → X ×B SpecOB,b j → SpecOB,b j .

Each X ′j is a projective regular curve over SpecOB,b j and extends to a projective regular curve X j over
some open neighbourhood V j ∋ b j . Shrinking the (finitely many) V j if necessary, we can suppose that
for all j, ℓ ≤ m, X j and Xℓ coincide over V j ∩ Vℓ and that X j coincides with XV over V ∩ V j . Let
U0 be the union of V and the V j and let C0→ U0 be obtained by glueing XV and the X j . Then C0 is
regular, proper over U0

(
by the fpqc descent V

∐(∐
1≤i≤m V j

)
→U0 of properness; see [EGA IV2 1965,

proposition 2.7.1(vii)]
)
, and codim(B \U0, B)≥ 2.

Step 2. For all i ≤ n we let Pi ⊆ C0 be the scheme-theoretical closure of {ci }. Then Pi →U0 is proper
birational, hence is an isomorphism away from a closed subset Zi ⊂U0 of codimension at least 2. To
finish we let U :=U0 \

(⋃
1≤i≤n Zi

)
and let C = (C0)U →U . (As U and C are regular, the section (Pi )U

of C→ U is contained in the smooth locus of C [Bosch et al. 1990, 3.1, Proposition 2 and following
paragraph].)
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