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1. Introduction

The conjecture of Bloch–Kato describes a precise relation between special values of L-functions attached
to geometric Galois representations and the dimension of the associated Bloch–Kato Selmer group (which
can be seen as a generalization of the free part of the Mordell–Weil group for an abelian variety). One of
the key tools in establishing cases of this conjecture is an Euler system — a collection of group cohomology
classes for the Galois representation which, under a “nonvanishing criterion”, impose constraints on
the size of the Bloch–Kato Selmer group; for example, see [Rubin 2000; Mazur and Rubin 2004]. The
application to the Bloch–Kato conjecture then arises from a relation between this “nonvanishing criterion”
and special values of the L-function; such a relation is commonly referred to as an explicit reciprocity
law.

In the setting where the Galois representation is automorphic, it is often the case that these special
L-values can be expressed as an automorphic period for a pair of reductive groups (G, H). If (G, H)
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can be enhanced to a pair of Shimura data, then one can often describe this automorphic period as a
pairing in coherent cohomology for the pair of associated Shimura varieties. This provides an arithmetic
interpretation of the L-values, which can be related to the Euler system classes via a p-adic L-function
(interpolating these automorphic periods and hence the L-values).

This present article describes the construction of a p-adic analytic function which should play the role
of this p-adic L-function in an explicit reciprocity law for the anticyclotomic Euler system constructed
in [Graham and Shah 2023] (or more precisely, its generalization to CM fields, which will appear in
forthcoming work of the author, D. Barrera and C. Williams).1 The construction crucially uses the recently
developed higher Coleman theory of Boxer and Pilloni [2021] and the strategy is similar to the work of
Loeffler and Zerbes [2021] and Loeffler, Pilloni, Skinner and Zerbes [Loeffler et al. 2021]. Furthermore,
as a key ingredient, we p-adically interpolate the branching laws for representations of GL2n and GL2n−1

restricted to GLn ×GLn and GLn−1×GLn respectively (see Appendix A), using the fact that these pairs
give rise to spherical varieties.

Unfortunately, our result is not optimal — there is a missing variable in this p-adic analytic function,
which would therefore lead to a suboptimal version of an explicit reciprocity law (similar to the restriction
in [Loeffler and Zerbes 2021]). To account for the missing variable, one would need to incorporate the
p-adic variation of certain theta operators into the picture. This incorporation will be pursued in future
work.

1.0.1. Unitary Friedberg–Jacquet periods. The p-adic analytic function we construct interpolates so-
called unitary Friedberg–Jacquet periods for certain cuspidal automorphic representations of unitary
groups, which is a variant of the automorphic periods for general linear groups studied by Friedberg and
Jacquet [1993]. Although expected, it is not yet known (in general) whether these unitary Friedberg–
Jacquet periods calculate L-values, but there has been a lot of recent work towards showing this; in
particular:

• The “relative trace formula approach” in forthcoming work of Jingwei Xiao and Wei Zhang, and the
work of Spencer Leslie [2019a; 2019b].

• Applications of the residue method in the work of Pollack, Wan and Zydor [Pollack et al. 2021].

• An approach via theta correspondences in the work of Chen and Gan [2021].

As a consequence of these works, we at least know that if certain values of this p-adic analytic function
are nonvanishing then the corresponding (complex) L-values are also nonvanishing (see Corollary C
below). We expect that there is an analogous version of Waldspurger’s formula in this setting which will
express (the square of) these values in terms of the complex L-values, but we do not attempt to establish
such an identity in this article. Nevertheless, with these considerations in mind, we will henceforth refer
to this p-adic analytic function as a p-adic L-function.

1In fact, we also show that these Euler system classes vary in Coleman families.



On the p-adic interpolation of unitary Friedberg–Jacquet periods 1119

1.1. Statement of the results. Let F be a CM field with maximal totally real subfield F+, and fix an odd
rational prime p which splits completely in F/Q. We impose the following assumptions:

Assumption 1.1.1. We assume that:

(1) F+ ̸=Q and F contains an imaginary quadratic number field E/Q.

(2) p does not divide the class number of F.

Fix an integer n ≥ 1. Let W be a 2n-dimensional Hermitian space over F with signature (1, 2n− 1) at
one place, and signature (0, 2n) at the remaining places. Fix a decomposition W =W1⊕W2 of Hermitian
spaces where each factor has dimension n, the signature of W1 is (1, n− 1) at one place and (0, n) at all
remaining places, and the signature of W2 is (0, n) at all places. Let G be the reductive group over Q

of unitary similitudes of W with similitude in Gm . We let H ⊂ G denote the subgroup preserving the
decomposition W =W1⊕W2.

Let π be a discrete series cuspidal automorphic representation of G(A), and let χ : A×F → C× be an
algebraic Hecke character which is anticyclotomic (i.e., its restriction to A×F+ is trivial). Then for any
ϕ ∈ π , we can consider the following automorphic period

Pπ,χ (ϕ) :=

∫
[H]
ϕ(h) ·χ

(
det h2

det h1

)
dh.

Here hi denotes the component of h corresponding to the factor Wi , and [H] = H(Q)AG(A)\H(A) with
AG denoting the maximal split subtorus of the center of G (which can be shown to lie in H). For this to
make sense, we also need to assume that the central character of π is trivial on AG(A).

Letψ⊠50 denote the (weak) automorphic base-change of π to GL1(AE)×GL2n(AF ), as constructed in
[Shin 2014]. We have the following conjecture of Xiao–Zhang; see [Chen and Gan 2021, Conjecture 7.4]:

Conjecture A. With set-up as above, assume that π is tempered. Then there exists ϕ ∈ π such that
Pπ,χ (ϕ) ̸= 0 if and only if the following three conditions are satisfied:

(1) The standard L-function L(50⊗χ, s) is nonvanishing at s = 1
2 .

(2) The exterior square L-function L(50,
∧2
, s) has a pole at s = 1.

(3) There exists an irreducible constituent π0 ⊂ π |H0 such that, for every (finite) rational prime ℓ, the
Hom-space satisfies

HomH0(Qℓ)(π0,ℓ, χ
−1
◦ ν) ̸= 0

where H0 ⊂ H is the kernel of the similitude character and ν is the character on H0 given by
ν(h)= det h2/ det h1.

Remark 1.1.2. Because we are working with unitary similitudes, this conjecture is presented in a slightly
different way to [Chen and Gan 2021, Conjecture 7.4]. However the two statements are equivalent by
Remark 8.2.8.
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Suppose that π is ramified only at primes which split in E/Q,2 the base-change 50 is cuspidal and π
satisfies a “small slope condition” at the prime p (see Assumption 6.1.4). Then, following [Boxer and
Pilloni 2021, Section 6.9] and [Loeffler and Zerbes 2021], we show that there exists a unique family
π of automorphic representations, passing though π and defined over a certain open affinoid subspace
U of n[F+ : Q]-dimensional weight space WG . Here, by family we mean an O(U )-valued system of
eigenvalues for a certain collection of Hecke operators (see Definition 6.1.6) — for a classical point x ∈U ,
the specialization of the family at x corresponds to a cohomological cuspidal automorphic representation
π x of G(A) (see Remark 6.2.6).

On the other hand, by Assumption 1.1.1(2), we can construct a family χ of anticyclotomic characters
defined over the ([F+ :Q]− 1)-dimensional weight space WH parametrizing characters of (Z×p )

[F+:Q]−1,
which passes through the character χ . As above, for a point x ∈WH , we let χ x denote the specialization
of the family at x . The main result of the article is the following:

Theorem B (Corollary 8.2.4). There exists a Zariski dense subset of classical weights 6int
⊂U ×WH

and a p-adic analytic function Lp =Lp(η.χ) ∈O(U ×WH ) which interpolates the periods Pπ x ,χ x (ϕx)

for x ∈6int (where ϕx ∈ π x is a certain nonzero choice of automorphic form).

Combining this with [Chen and Gan 2021, Corollary 7.6] (and the fact that regular algebraic conjugate
self-dual cuspidal automorphic representations of GL2n(AF ) are tempered [Caraiani 2012]), we see that:

Corollary C. Let x ∈ 6int and let ψx ⊠ BC(π x) denote the automorphic base-change of π x to a
representation of GL1(AE)×GL2n(AF ). Suppose that BC(π x) is cuspidal. Then

Lp(x) ̸= 0⇒ L
(
BC(π x)⊗χ x ,

1
2

)
̸= 0.

The strategy we will use for constructing Lp consists of three key steps:

(1) Express the automorphic periods Pπ x ,χ x (ϕx) as a cup product in the coherent cohomology of a
Shimura variety associated with H involving (the restriction to H) of a coherent cohomology class
ηx corresponding to ϕx .

(2) Using higher Coleman theory one can reinterpret (1) in terms of a pairing in coherent cohomology
over certain strata in the adic Shimura varieties for G and H . In particular, this interpretation is
amenable to p-adic interpolation provided that there exist families of cohomology classes η and χ
passing through ηx and χ x respectively.

(3) Under the above assumptions, we construct these families η and χ . The p-adic L-function Lp is
then defined as a pairing between the classes η and χ .

Remark 1.1.3. Assumption 1.1.1(1) is imposed throughout the whole article, however assumption (2) is
only imposed when showing the existence of certain anticyclotomic algebraic Hecke characters for F
(which we expect can be removed by passing to a finite cover of weight space). In fact, it is likely that

2In the weakest possible sense, namely there does not exist a maximal special subgroup with nontrivial fixed points on the
corresponding local component of π .
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assumption (1) is not needed until Section 6 when applying the automorphic base-change results in [Shin
2014].

Remark 1.1.4 (Example 6.1.5). The “small slope condition” at the prime p is implied by (but more
general than) a Borel-ordinarity condition on π (i.e., there exists an eigenvalue for the action of a suitably
normalized Borel Up-Hecke operator on πp which is a p-adic unit).

Remark 1.1.5. To show the existence of the family π we need to implicitly use the results in [Mok 2015]
and [Kaletha et al. 2014] on the endoscopic classification for unitary groups. As far as the author is aware,
this work is still conditional on the stabilization of the twisted trace formula for G0 and ResF/Q GL2n

and their endoscopy groups.

1.2. Notation. Throughout this article, we fix a totally real number field F+ ̸=Q with a fixed embedding
τ0 : F+ ↪→ R. We fix a totally imaginary quadratic extension F/F+ and a CM type 9 for F , i.e., 9 is a
set of embeddings F ↪→ C of size [F+ :Q], with no two embeddings being equivalent to one another.
We denote by τ0 the element of 9 which extends the embedding τ0 : F+ ↪→ R. Let Fcl denote the Galois
closure of F . We assume that F contains an imaginary quadratic number field E .

We fix an odd prime p which splits completely in F/Q, and we fix an isomorphism ιp : C ∼
−→Qp.

Under this isomorphism every embedding τ ∈9 gives rise to a prime ideal pτ of F , lying above p.
We also fix the following notation and conventions throughout:

• For any split reductive group G, we let wmax
G denote the element of its Weyl group of maximal length.

• The group law on characters will be written additively, unless specified otherwise.

• Let G be a split reductive group with a fixed parabolic P ⊂ G and Levi M , and let T ⊂ P be a
maximal torus. Then for any algebraic character κ of T which is M-dominant, we will write

κ∨ =−wmax
M κ − 2ρnc

for the Serre dual of κ , where ρnc is the half-sum of positive roots not lying in M (with respect to a
fixed Borel containing T and contained in P). We will also use the notation (−)∨ to refer to the
Serre dual of a vector bundle on a scheme.

• We will use the terminology neat or sufficiently small to refer to a compact open subgroup of the
finite adelic points of a reductive group satisfying [Graham and Shah 2023, Definition B.6].

• All torsors are right torsors unless specified otherwise.

2. Preliminaries

Let n ≥ 1 be a positive integer. Let W denote a 2n-dimensional Hermitian space over F which has
signature (1, 2n − 1) with respect to the embedding τ0, and signature (0, 2n) at τ ∈ 9 − {τ0}. Fix a
decomposition W =W1⊕W2 of Hermitian spaces, where Wi is a Hermitian space over F of dimension
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n with signatures

signature(Wi ⊗F,τ C)=

{
(1, n− 1) if i = 1 and τ = τ0,

(0, n) otherwise.

Denote the Hermitian pairings on W and Wi by ⟨ · , · ⟩W and ⟨ · , · ⟩Wi respectively.

Definition 2.0.1. Let G and H denote the reductive groups over Q whose values on R-points, for a
Q-algebra R, are

G(R)={g ∈GL(W⊗Q R) : ⟨g·x,g·y⟩W = c(g)⟨x, y⟩W for all x, y ∈W⊗Q R and some c(g)∈ R×},

H(R)={g= (g1,g2)∈GL(W1⊗Q R)×GL(W2⊗Q R)

: ⟨gi ·xi ,gi ·yi ⟩Wi = c(g)⟨xi , yi ⟩Wi , for all xi , yi ∈Wi⊗Q R and i = 1,2, and some c(g)∈ R×}.

We also let G0 (resp. H0) denote the kernel of the similitude character c : G→ Gm (resp. c : H→ Gm).
Note that we have natural embeddings

H0 ↪→ G0, H ↪→ G

both of which we will denote by ι.

Remark 2.0.2. If R is an Fcl-algebra (with fixed embedding Fcl ↪→ R), then we have an identification

W ⊗Q R =
⊕
τ∈9

(W ⊗F,τ R⊕W ⊗F,τ R)

where τ : F ↪→ R denotes the embedding obtained from precomposing the fixed embedding Fcl ↪→ R
with τ : F ↪→ Fcl, and τ : F ↪→ R denotes its complex conjugate. Under this identification, one has

G0,Fcl =

∏
τ∈9

GL2n,Fcl, GFcl = GL1,Fcl ×

∏
τ∈9

GL2n,Fcl

where the latter is described by sending an element g ∈ GFcl(R) to (c(g), g|W⊗F,τ R)τ∈9 .
In particular, if p is a prime which splits completely in F/Q and we have an isomorphism C∼=Qp,

then we obtain a distinguished embedding F ↪→Qp arising from τ0 (and factoring through Fcl) and GQp

is identified with GL1,Qp ×
∏
τ∈9 GL2n,Qp .

Similarly, we have identifications

H0,Fcl =

∏
τ∈9

(GLn,Fcl ×GLn,Fcl), HFcl = GL1,Fcl ×

∏
τ∈9

(GLn,Fcl ×GLn,Fcl)

and the embeddings H0,Fcl
ι
−→ G0,Fcl and HFcl

ι
−→ GFcl map the GL1,Fcl-factor to itself, and for each

τ ∈9, map GLn,Fcl ×GLn,Fcl into GL2n,Fcl block diagonally.
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Using the identifications in Remark 2.0.2, we define the following parabolic subgroups:

• Let BG (resp. BH ) denote the upper-triangular Borel subgroup of GFcl (resp. HFcl). We let T
denote the standard maximal torus inside BG (which also coincides with the standard maximal torus
inside BH ). In particular, elements of T can be described as tuples

(x; y1,τ , . . . , y2n,τ )τ∈9

corresponding to the diagonal matrix

x ×
∏
τ∈9

diag(y1,τ , . . . , y2n,τ ) ∈ GL1×
∏
τ∈9

GL2n .

• Let PG denote the parabolic subgroup of GFcl containing BG with Levi given by

MG = GL1,Fcl ×(GL1,Fcl ×GL2n−1,Fcl)×
∏

τ∈9−{τ0}

GL2n,Fcl .

Similarly, we let PH denote the parabolic of HFcl containing BH with Levi given by

MH = GL1,Fcl ×(GL1,Fcl ×GLn−1,Fcl ×GLn,Fcl)×
∏

τ∈9−{τ0}

(GLn,Fcl ×GLn,Fcl)

so that PH = PG ∩ HFcl and MH = MG ∩ HFcl .

• Let T0 ⊂ T denote the subtorus given by elements of the form

(x; y1,τ , . . . , yn,τ , yn,τ , . . . , y1,τ )τ∈9 .

We now describe the relevant Weyl groups that will be used throughout this article.

Definition 2.0.3. For ? ∈ {GFcl, HFcl,MG,MH}, let W? denote the associated Weyl group. Let M WG

denote the set of Kostant representatives for the quotient WMG\WGFcl . This set comprises of 2n elements

M WG = {w0, . . . , w2n−1}

where the length of wi is i . Similarly, M WH (the set of Kostant representatives for WMH\WHFcl ) is a
set {w0, . . . , wn−1} where the length of wi is i . We can (and do) choose representatives for the Weyl
elements wi in G such that the embedding H ↪→ G identifies M WH with the subset of M WG of elements
of lengths 0, . . . , n− 1 (which justifies the notation). In Section 2.4, we will make a specific choice of
representative for wn .

We let X∗(T )= Hom(T,Gm) denote the abelian group of algebraic characters of T . We also define
X∗(T/T0)= Hom(T/T0,Gm) which can naturally be viewed as a subgroup of X∗(T ) (by precomposing
with the quotient T ↠ T/T0). We identify elements of X∗(T ) with tuples of integers

(c0; c1,τ , . . . , c2n,τ )τ∈9
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which correspond to the character mapping an element (x; y1,τ , . . . , y2n,τ )τ∈9 ∈ T to the quantity

xc0
∏
τ∈9

i=1,...,2n

yci,τ
i,τ .

With this description, elements of X∗(T/T0) are identified with tuples as above, satisfying c0 = 0 and
ci,τ+c2n+1−i,τ = 0 for all τ ∈9 and i = 1, . . . , 2n. We let X∗(T )+⊂ X∗(T ) denote the cone of dominant
characters, i.e., tuples of integers as above which satisfy c1,τ ≥ · · · ≥ c2n,τ for all τ ∈ 9, and we set
X∗(T/T0)

+
= X∗(T/T0)∩ X∗(T )+.

The Weyl group WG naturally acts on X∗(T ) by the formula

w · λ(t)= λ(w−1tw), w ∈WG, t ∈ T .

In particular the set M WG acts by shuffles, i.e., w0 acts as the identity, and for i = 1, . . . , 2n− 1, one has
the following description:

wi · (c0; c1,τ , . . . , c2n,τ )τ∈9 = (c0; ci+1,τ0, c1,τ0, . . . , ci,τ0, ci+2,τ0, . . . , c2n,τ0; c1,τ , . . . , c2n,τ )τ∈9−{τ0}.

Definition 2.0.4. Let ρ ∈ 1
2 X∗(T ) denote the half-sum of the positive roots of GF with respect to the

Borel BG . Explicitly, this is given by

ρ =
(
0; 1

2(2n− 1), 1
2(2n− 3), . . . , 1

2(3− 2n), 1
2(1− 2n)

)
τ∈9

.

Let ρc ∈
1
2 X∗(T ) (resp. ρnc ∈

1
2 X∗(T )) denote the half-sum of positive roots which lie in MG (resp. do

not lie in MG). Explicitly, the components of ρc (resp. ρnc) agree with ρ on the GL1-factor and on the
GL2n-factor for τ ̸= τ0 (resp. are zero on the τ ̸= τ0 factor), but the τ0-factors are given

(0, n− 1, n− 2, . . . , 2− n, 1− n) and
( 1

2(2n− 1),− 1
2 ,−

1
2 , . . . ,−

1
2 ,−

1
2

)
respectively.

We conclude this section by introducing notation for the categories of algebraic representations of MG

and MH .

Notation 2.0.5. Let Rep(MG) (resp. Rep(MH)) denote the category of finite-dimensional algebraic
representations of MG (resp. MH ).

2.1. Shimura varieties. We consider the following Shimura data for the groups G and H . Let S =

ResC/R Gm denote the Deligne torus. Recall from Remark 2.0.2 that we have an identification

W ⊗Q C=
⊕
τ∈9

(W ⊗F,τ C⊕W ⊗F,τ C).

For an embedding τ : F ↪→ C, each piece Wτ :=W ⊗F,τ C comes equipped with a Hermitian pairing by
base-extension of ⟨ · , · ⟩W . We fix a decomposition Wτ =W+τ ⊕W−τ into maximal subspaces where the



On the p-adic interpolation of unitary Friedberg–Jacquet periods 1125

induced pairing is positive (resp. negative) definite. We define the following Hodge structure (of type
{(−1, 0), (0,−1)})

W ⊗Q C=W (−1,0)
⊕W (0,−1)

by imposing that

W (−1,0)
:=

⊕
τ∈9

(W+τ ⊕W−τ ), W (0,−1)
:=

⊕
τ∈9

(W−τ ⊕W+τ ).

This defines a homomorphism hG : S→ GR. We have a similar description for h H and we can arrange it
in such a way that hG = ι ◦ h H .

Let µG denote the restriction of hG,C to the first component in the identification SC
∼= Gm,C×Gm,C.

Then (after possibly conjugating hG by an element of G(R)) under the identification in Remark 2.0.2, the
cocharacter µG is given by

µG : Gm,C→ GL1,C×
∏
τ∈9

GL2n,C,

z 7→ z× diag(z, 1, . . . , 1)×
∏

τ∈9−{τ0}

diag(1, . . . , 1).

In particular, µG is defined over Fcl. Furthermore, the field of definition of the G(C)-conjugacy class of
µG is F , because of the conditions on the signatures and our assumption that F contains an imaginary
quadratic number field. Note that µG is of the form ι ◦µH for a cocharacter µH : Gm,C→ HC, and this
cocharacter coincides with the one obtained from h H similar to above. The field of definition of the
H(C)-conjugacy class of µH is also F , and the cocharacter µH is defined over Fcl.

Remark 2.1.1. The centralizer of µG (resp. µH ) in GFcl (resp. HFcl) is MG (resp. MH ).

Lemma 2.1.2. The data (G, hG) and (H, h H) define Shimura–Deligne data in the sense of [Graham and
Shah 2023, Appendix B], and additionally satisfy (SD5). The datum (G, hG) is a Shimura datum in the
usual sense. The reflex field for both of these data is F.

For a neat compact open subgroup K ⊂ G(A f ), we let SG,K denote the associated Shimura variety
over the reflex field F . Similarly, for a neat compact open subgroup U ⊂ H(A f ), we let SH,U denote the
associated Shimura–Deligne variety over the reflex field F (a canonical model exists as the connected
component of the PEL-type moduli problem associated with H and h H ). If ι(U )⊂ K , then we have an
induced finite unramified morphism

ι : SH,U → SG,K .

We note that SH,U and SG,K are smooth projective varieties, because we have assumed F+ ̸= Q (for
example, the conditions in [Lan 2013, Section 5.3.3] are satisfied).

Convention 2.1.3. From now on, all of the Shimura–Deligne varieties we consider will be base-changed
to Fcl (or a field extension of Fcl) via the embedding τ0 : F ↪→ Fcl, but we will suppress this from the
notation.
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2.2. Automorphic vector bundles. In this section, we recall the construction of automorphic vector
bundles on SG,K .

Let Pstd
G denote the opposite of PG with respect to the torus T , and consider the flag variety FLstd

G :=

G/Pstd
G . Let X G denote the G(R)-conjugacy class of homomorphisms S→ GR containing hG , which is

a Hermitian symmetric domain. Then we have a holomorphic embedding (the Borel embedding)

β : X G ↪→ FLstd
G (C).

Definition 2.2.1. Let K ⊂ G(A f ) be a sufficiently small compact open subgroup. For an algebraic
representation V of Pstd

G , let [V ] denote the vector bundle on SG,K (C) defined as

[V ] := G(Q)\β∗(V )× G(A f )/K

where we view V as a G(C)-homogeneous vector bundle on FLstd
G (C) in the usual way.

Remark 2.2.2. One can show that [V ] descends to an algebraic vector bundle on SG,K ; see [Milne 1990,
Section III] for example.

Definition 2.2.3. The association in Definition 2.2.1 defines a functor

[−] = [−]K : Rep(MG)→ VB(SG,K )

by inflating a representation of MG to one of Pstd
G , where VB(−) denotes the category of vector bundles on

a scheme. This functor is compatible with varying K , in the sense that if g ∈ G(A f ) and L ⊂ g−1K g, then
g∗[−]K = [−]L . Here g∗ denotes pullback under the map SG,L → SG,K induced from right-translation
by g.

We have a similar description of automorphic vector bundles over SH,U arising from algebraic repre-
sentations of MH , and one has the relation

ι∗[V ] = [V |MH ]

where V is an algebraic representation of MG and ι : SH,U → SG,K is the finite unramified morphism at
the end of the previous section.

Example 2.2.4 [Boxer and Pilloni 2021, Section 4.2.8]. Let V−2ρnc denote the irreducible algebraic
representation of MG with highest weight −2ρnc (see Definition 2.0.4). Then [V−2ρnc ]

∼=�
2n−1
SG,K

.

2.3. Discrete series representations. Let K∞⊂ G(R) denote the stabilizer of hG under the adjoint action.
Explicitly, this has the following description. Upon base-change to R, one has the following identification

W ⊗Q R=
⊕
τ∈9

(W ⊗F+,τ R)
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where each summand is a 2n-dimensional Hermitian space over C. In particular, W ⊗Q R is a Hermitian
space over C, and the fixed decomposition

W ⊗Q C=

(⊕
τ∈9

W+τ ⊕W+τ

)
⊕

(⊕
τ∈9

W−τ ⊕W−τ

)
descends to a decomposition W ⊗Q R=W+⊕W− into maximal subspaces where the Hermitian pairing
is positive (resp. negative) definite. Then K∞ can be described as the subgroup of G(R) preserving the
decomposition W ⊗Q R=W+⊕W−. In particular, the complexification of K∞ is equal to MG(C).

Let H∞ denote the compact (mod center) Cartan subgroup of K∞ whose complexification is equal
to T (C). Then algebraic characters of H∞ can be identified with tuples (c0; c1,τ , . . . , c2n,τ ) ∈ X∗(T )
satisfying the parity condition

c0 ≡
∑
τ∈9

2n∑
i=1

ci,τ modulo 2.

For any dominant algebraic character λ of H∞ and i = 0, . . . , 2n− 1, we set ξi := wi · (λ+ ρ). Then
ξi is the Harish-Chandra parameter of a discrete series representation π(ξi ) of G(R) (see [Blasius et al.
1994, Section 3]) and the local L-packet containing this representation is of the form

{π(ξ0), . . . , π(ξ2n−1)}.

Therefore, discrete series L-packets of G(R) are parametrized by dominant algebraic characters of H∞.
One has a similar description for discrete series L-packets of G0(R).

Remark 2.3.1. Note that discrete series L-packets of both G0(R) and G(R) have size 2n, because K∞
differs from the maximal compact subgroup of Gder(R) by the center of G(R). In particular, if π(ξi ) is a
discrete series representation of G(R) as above, then

π(ξi )|G0(R) = π(ξ
′

i )

where ξ ′j denotes the restriction of ξ j to H∞∩G0(R) and π(ξ ′j ) denotes the discrete series representation
of G0(R) with Harish-Chandra parameter ξ ′j .

For convenience, we introduce the following dictionary of weights and parameters. Let λ be a dominant
algebraic character of H∞. Then

(1) (Harish-Chandra parameters) The Harish-Chandra parameters in the L-packet parametrized by λ are
given by

ξi = wi · (λ+ ρ)

for i = 0, . . . , 2n− 1.

(2) (Blattner parameters) The Blattner parameters associated with λ are

νi = wi · (λ+ 2ρ)− 2ρc.
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In particular, the lowest K∞ ∩ G0(R)-type of π(ξ ′i ) has highest weight given by (the restriction to
H∞ ∩ G0(R) of) νi . This implies that

dim HomK∞(ν j , π(ξi ))=

{
1 if j = i,
0 otherwise.

(3) (Vector bundle weights) If we let λ∗ =−wmax
G λ, then the vector bundle weights are

κi = wi ⋆ λ
∗
:= wi · (λ

∗
+ ρ)− ρ.

In the notation of [Boxer and Pilloni 2021], we have

C(κi )
−
= {w ∈WG : w

−1(κi + ρ) ∈ X∗(T )+
Q
} = {wi }

so we expect the coherent cohomology of [Vκi ] to be concentrated in degree ℓ−(wi ) = 2n − 1− i (at
least on small slope parts). Let p= Lie Pstd

G and m= Lie MG , then for i = 0, . . . , 2n− 1,
∧i p/m is an

irreducible algebraic representation of MG under the adjoint action. If we let αi denote the highest weight
of this representation, then the vector bundle weights and Blattner parameters are related by the formula:

νi = αi −w
max
MG
κ2n−1−i .

2.4. Some important elements. Recall that we have identifications

GFcl = GL1,Fcl ×

∏
τ∈9

GL2n,Fcl and HFcl = GL1,Fcl ×

∏
τ∈9

(GLn,Fcl ×GLn,Fcl).

In particular GFcl and HFcl (and the algebraic subgroups considered throughout this section) have models
over O :=OFcl , which we will denote by the same letters.

Let wn ∈
M WG denote the Weyl element of length n. We will now make explicit a choice of represen-

tative (which we will also denote wn) in G(O) which represents the element wn ∈
M WG .

Definition 2.4.1. Let wn = 1×
∏
τ∈9(wn)τ ∈ G(O) be the element where (wn)τ = id for τ ̸= τ0, and

(wn)τ0 is the matrix

[(wn)τ0]i, j =


1 if (i, j)= (1, n+ 1),
1 if j = i − 1, 2≤ i ≤ n+ 1,
1 if i = j ≥ n+ 2,
0 otherwise.

The following elements are key to the whole construction in this paper.

Definition 2.4.2. Let u′τ0
∈ GL2n−1(O) denote the matrix whose (i, j)-th element is

(u′τ0
)i, j =


1 if i = j,
1 if j = 2n− i, i ≤ n,
0 otherwise,
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and we let uτ0 = 1× u′τ0
∈ GL1(O)×GL2n−1(O). For τ ̸= τ0, we let uτ ∈ GL2n(O) denote the block

matrix (with block size (n× n)) given by

uτ =
(

1
wmax

GLn
1

)
where wmax

GLn
denotes the antidiagonal matrix with 1s along the antidiagonal (which represents the longest

Weyl element in WGLn ). We let u ∈ MG(O) be the element u = 1×
∏
τ∈9 uτ .

Denote by xτ0 the (1×2n−1)-matrix whose first n entries are 1 and the rest are 0. We let γτ0 ∈GL2n(O)
denote the block matrix

γτ0 = uτ0 ·

(
1 xτ0

1

)
and we set γτ = uτ ∈ GL2n(O) for τ ̸= τ0. Define γ ∈ PG(O) to be γ := 1×

∏
τ γτ .

Finally, we define γ̂ := γ ·wn ∈ G(O) (with the specific choice of wn fixed above).

Here are some key properties of these elements.

Lemma 2.4.3. (1) The orbit MH · u · BMG is Zariski open in MG (over SpecO), where BMG denotes the
standard Borel of MG .

(2) The orbit H · γ̂ · BG is Zariski open in G (over SpecO).

Proof. It is enough to check that the stabilizer MH ∩ u BMG u−1 (resp. H ∩ γ̂ BG γ̂
−1) for the action of

MH (resp. H) on the flag variety MG/BMG (resp. G/BG) has the required dimension. But an explicit
calculation shows that

MH ∩ u BMG u−1
= GL1×{diag(x1, x2, . . . , xn+1, xn, . . . , x2) ∈ GL1×GLn−1×GLn}

×

∏
τ ̸=τ0

{diag(y1, . . . , yn, yn, . . . , y1) ∈ GLn ×GLn}

which proves part (1). For part (2), we separate the calculation into three separate cases depending on the
decomposition of H and G into general linear groups, namely the GL1-component, the τ0-component
and the τ -component for τ ̸= τ0.

There is nothing to check for the GL1-component, and the τ ̸= τ0-component follows from the
computation as in part (1). So we are left to prove the lemma for the τ0-component. One can find
X, Z ∈ GLn(O), Y an n× n-matrix with entries in O, such that:

• Z is upper triangular.

• Xwmax
GLn
=U is block upper triangular and lies in the standard parabolic of GLn with Levi GL1×GLn−1.

Its projection to the Levi is 1×wmax
GLn−1

.

• One has the equality

γ̂τ0 =

(
X

1

) (
1

wmax
GLn

1

) (
1 Y

Z

)
.
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We therefore find that, for h = (A, B) ∈ GLn ×GLn , γ̂−1
τ0

hγ̂τ0 lies in the standard Borel of GL2n if and
only if U−1 AU (resp. B) is lower (resp. upper triangular) and B = U−1 AU . This gives the required
dimension for the stabilizer. □

2.5. Level subgroups at p. Let p be a prime which splits completely in F/Q, and fix an isomorphism
C∼=Qp. Then, as in Remark 2.0.2, we have identifications

G := GQp = GL1,Qp ×

∏
τ∈9

GL2n,Qp and H := HQp = GL1,Qp ×

∏
τ∈9

(GLn,Qp ×GLn,Qp).

Remark 2.5.1. Note that the choice of O-models in the previous section give rise to Zp-models of G, H ,
and the various subgroups under consideration. We will denote these models by the same letters. For
various objects attached to G and H , we will use nonbold letters to indicate their analogue for the groups
G and H . For example, will write MG for MG,Qp .

We introduce the following level subgroups:

Definition 2.5.2. (1) For t ≥ 1, let K G
Iw(p

t)⊂ G(Zp) denote the depth t upper triangular Iwahori of G,
i.e., all elements in G(Zp) which land in BG modulo pt . We also use the same definition for H .

(2) For t ≥ 1, we let K H
♦
(pt)⊂ H(Qp) denote the subgroup H(Qp)∩ γ̂ K G

Iw(p
t)γ̂−1, where γ̂ is treated

as an element of G(Zp).

We have the following:

Lemma 2.5.3. The subgroup K H
♦
(pt) is contained in K H

Iw(p
t). Furthermore, one has

[K H
♦
(pt) : K H

♦
(pt+1)] = [K G

Iw(p
t) : K G

Iw(p
t+1)] = pdn(2n−1)

where d = [F+ :Q].

Proof. For the first part, the computation for the GL1-component and τ ̸= τ0-component follows from the
stabilizer computations in Lemma 2.4.3. For the τ0-component, with notation as in Lemma 2.4.3, we
note that if U−1 AU lies in the standard maximal torus modulo pt , then A lies in the depth pt Iwahori for
GLn , because the Levi component of U is 1×wmax

GLn−1
which normalizes the maximal torus. The index

calculation follows from a direct computation using the stabilizer descriptions in Lemma 2.4.3. □

We will choose the level-at-p of our Shimura varieties to be one of these subgroups; therefore we
introduce the following notation.

Notation 2.5.4. For a fixed neat compact open subgroup K p
⊂G(Ap

f ), we set SG,Iw(pt) to be the Shimura
variety of level K p K G

Iw(p
t). Similarly, for a fixed neat compact open subgroup U p

⊂ H(Ap
f ), we let

SH,♦(pt) and SH,Iw(pt) denote the Shimura varieties of levels U p K H
♦
(pt) and U p K H

Iw(p
t) respectively.

If U p
⊂ K p, then we have a morphism

ι̂ : SH,♦(pt)→ SG,Iw(pt)

defined as the composition γ̂ ◦ ι.
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2.6. Branching laws. To be able to construct the relevant pairing in coherent cohomology, we need to
understand how representations of MG decompose after restricting them to MH . For convenience, we
recall that a general element of MH is of the form (x; y1, y2, y3; z1,τ , z2,τ ) where τ runs over 9 −{τ0}

and

• x ∈ GL1,

• y1 ∈ GL1, y2 ∈ GLn−1 and y3 ∈ GLn ,

• zi,τ ∈ GLn for i = 1, 2.

This description will be useful for describing characters of MH .

Proposition 2.6.1. Let λ = (c0; c1,τ , . . . , c2n,τ ) ∈ X∗(T/T0)
+ and κn = wn ⋆ (−w

max
G λ) = wn ⋆ λ as in

Section 2.3. Set κ∗n =−w
max
MG
κn and let Vκ∗n denote the irreducible algebraic representation of MG with

highest weight κ∗n . Let j = ( jτ )τ∈9−{τ0} be a tuple of integers satisfying | jτ | ≤ cn,τ . Then there exists a
unique up to scaling vector v[ j]κn ∈ Vκ∗n such that MH acts on v[ j]κn through the character

MH → Gm

(x; y1, y2, y3; z1,τ , z2,τ ) 7→ y
n+cn,τ0
1 det y

cn,τ0
2 det y

−(cn,τ0+1)
3

∏
τ ̸=τ0

det z jτ
1,τ det z− jτ

2,τ .
(2.6.2)

Proof. This follows from [Knapp 2001, Theorem 2.1] (see also Appendix A). □

Remark 2.6.3. We fix a specific model of Vκ∗n namely the space of algebraic functions f : MG → A1

which transform as
f (gb)= κn(b) f (g)

for all g ∈ MG and b ∈ BMG . The action of m ∈ MG is then given by (m · f )(g) = f (m−1g). Since
MH · u · BMG is Zariski dense in MG (Lemma 2.4.3), we can (and do) normalize v[ j]κn so that its value on
u is 1.

Let σ [ j]n denote the inverse of the character in (2.6.2). Then after fixing an isomorphism Vκ∗n
∼= V ∗κn

, we
obtain a MH -equivariant linear map

Vκn ↠ σ [ j]n .

We can therefore consider the following Fcl-bilinear pairing

⟨ · , · ⟩alg : Hn−1(SG,Iw(p), [Vκn ])×H0(SH,♦(p), [σ [ j]n ]
∨)→ Fcl

defined as ⟨η, χ⟩alg = tr(ι̂∗η∪χ), where tr denotes the residue morphism

Hn−1(SH,♦(p),�n−1)→ Fcl.

In Section 8, we will show that this recovers twisted unitary Friedberg–Jacquet periods when η (resp. χ )
is associated with an automorphic representation of G(A) (resp. automorphic character of H(A)). The
goal of this paper is to p-adically interpolate this pairing.
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3. Functoriality on the flag variety

In this section we consider the functoriality of higher Coleman theory on the level of flag varieties (over
Zp). This section is entirely local; in particular, we use notation and conventions as in Section 2.5 (so G
and H denote the integral models in Remark 2.5.1 for GQp and HQp respectively, etc.).

Definition 3.0.1. Let FLG (resp. FLH ) denote the flag variety PG\G (resp. PH\H ) over Zp. This can be
described as the space of row vectors in P2n−1 (resp. Pn−1) with the action of g ∈ G (resp. h ∈ H ) given
by

[x0 : · · · : x2n−1] ⋆ g = [x0 : · · · : x2n−1] ·
t g−1 and [y0 : · · · : yn−1] ⋆ h = [y0 : · · · : yn−1] ·

t h−1.

The embedding FLH
ι
−→ FLG induced from H ↪→ G is described in coordinates as

ι([y0 : · · · : yn−1])= [y0 : · · · : yn−1 : 0 : · · · : 0].

We will consider certain stratifications on these flag varieties, and relations between them. Recall that
M WG denotes the set of Kostant representatives for the quotient WMG\WG , where W? denotes the Weyl
group of ?. This can be described as

M WG = {w0, . . . , w2n−1}

where l(wi )= i , and each wi corresponds to a shuffle and acts on the flag variety FLG as

[x0 : · · · : x2n−1] ⋆wi = [x1 : · · · : xi : x0 : xi+1 : · · · : x2n−1]

(the element w0 acts as the identity). We have a similar description for H and, as mentioned in Section 2,
we have a map M WH ↪→

M WG induced from H ↪→ G, preserving the lengths of the Weyl elements.

3.1. The Bruhat stratification. For either ?= G, H , we have the following stratification of FL?,Fp given
by the cells

C?
w = P?\P? ·w · B?

for w ∈ M W?. In coordinates, we have that CG
wi

is the orbit of [0 : · · · : 0 : 1 : 0 : · · · : 0] (where the 1 is in
the (i + 1)-th place) under the ⋆-action of BG . Explicitly, this is described as the collection of tuples

[x0 : · · · : xi−1 : 1 : 0 : · · · : 0], x j ∈ A1
Fp

for j = 0, . . . , i − 1.

Each cell CG
wi

has dimension i , and they are ordered as CG
w′ ⊂ CG

w if and only if l(w′)≤ l(w). We have a
similar description for H .

Definition 3.1.1. For ?= G, H and w ∈ M W?, we set

Y ?
w =

⋃
l(w′)≥l(w)

C?
w′, X ?

w =

⋃
l(w′)≤l(w)

C?
w′ .

The former is open in FL?,Fp , the latter is closed, and one has the relation C?
w = Y ?

w ∩ X ?
w.
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Recall the definition of γ̂ in Section 2.4, which we view as an element of G(Zp). Let ι̂ : FLH → FLG

denote the map given by PH · h 7→ PG · hγ̂ . This map satisfies the following properties:

Lemma 3.1.2. One has:

(1) ι̂−1(CG
wi
)=∅ if i < n.

(2) ι̂−1(CG
wn
)= C H

id .

Proof. In coordinates, the map ι̂ is given by

ι̂([y0 : · · · : yn−1])=

[
y1 : y2 : · · · : yn−1 : 0 : y0−

n−1∑
i=1

yi ,−yn−1 : · · · : −y1

]
.

The result immediately follows from this and the description of CG
wi

in coordinates. □

3.2. Tubes in the flag variety. We recall some notation from [Boxer and Pilloni 2021, Section 3.3] and
[Loeffler and Zerbes 2021, Section 5.4]. Suppose that X/Zp is a finite-type scheme and let

X = X ×Spec Zp Spa(Qp,Zp)

denote the associated adic space over Spa(Qp,Zp). Let X0 denote the special fiber of X over Fp. Then
one has a specialization map sp : X → X0, and for any locally closed subscheme U ⊂ X0, we define the
tube ]U [ ⊂ X to be the interior of sp−1(U ).

Definition 3.2.1. For m ∈Q, let B◦m ⊂ B◦m ⊂ Bm ⊂ Bm denote the four flavors of “disc” inside the adic
affine line defined as follows:

Bm = {|·| : |z| ≤ |p|m}, Bm =
⋂

m′<m

Bm′, B◦m =
⋃

m′>m

Bm′, B◦m = {|·| : |z|< |p|
m
}.

We let FLG and FLH denote the adic flag varieties (over Spa(Qp,Zp)) associated with FLG and FLH .
For ? = G, H , we let 8± denote the set of ±-roots with respect to B?, and set 8−,M to be the set of
negative roots which are not contained in M?. Set δH = n − 1 and δG = 2n − 1. Then, for w ∈ M W?,
we set Uw = C?

wδ?
·w−1

δ?
w which is an open set containing C?

w. Let Uan
w denote its analytification. Then,

following [Boxer and Pilloni 2021, Section 3.3.6], we have an Iwahori decomposition∏
α∈w−18−,M

A1,an ∼
−→ Uan

w ,

(uα) 7→ w
∏
α

uα.
(3.2.2)
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Definition 3.2.3. Let m, k ∈Q and w ∈ M W?. We define ]C?
w[m,k , ]C?

w[m̄,k , ]C?
w[m,k̄ and ]C?

w[m̄,k̄ to be
the images of ∏

α∈(w−18−,M )∩8−

B◦m ×
∏

α∈(w−18−,M )∩8+

Bk,

∏
α∈(w−18−,M )∩8−

B◦m ×
∏

α∈(w−18−,M )∩8+

Bk,

∏
α∈(w−18−,M )∩8−

B◦m ×
∏

α∈(w−18−,M )∩8+

Bk,

∏
α∈(w−18−,M )∩8−

B◦m ×
∏

α∈(w−18−,M )∩8+

Bk,

respectively, under the map (3.2.2).

Remark 3.2.4. If m, k ∈ Q≥0 then ]C?
w[m,k ⊂ ]C

?
w[ with equality if m = k = 0. If m ≥ k ≥ 0, then

]C?
wi
[m,k is described in coordinates as the subset of tuples

[y0 : · · · : yδ?]

satisfying

y j ∈


Bk if j < i,
1+B◦m if j = i,
B◦m if j > i.

One has a similar description for ]C?
wi
[m̄,k by replacing B◦m with B◦m , and a similar description for ]C?

wi
[m,k̄

when k > 0 by replacing Bk with Bk ; see [Boxer and Pilloni 2021, Section 3.3.10]. In particular, if i = 0
(so w0 = id) then these tubes do not depend on k, so we will drop it from the notation.

We will now make specific choices of tubes which will be relevant for the construction of the p-adic
L-function. Throughout, we let m, k, t be integers satisfying

0≤ k ≤ m < t, with m > k if k ̸= 0. (3.2.5)

We also introduce the following stronger condition:

m, k, t as in (3.2.5) with m > (2n− 1)(k+ 1) and t > m+ k. (3.2.6)

We define some tubes in FLG as follows.

Definition 3.2.7. Let m, k, t be as in (3.2.5):

(1) Let UG
0 = ]Y

G
wn
[, ZG

0 = ]X
G
wn
[ and IG

0,0 = UG
0 ∩ ZG

0 .

(2) We define IG
m,k = ]C

G
wn
[m̄,k · K G

Iw(p
t), which is independent of t by the description in [Boxer and

Pilloni 2021, Section 3.3.10].

(3) For k≥ 1, we define UG
k =]C

G
wn
[k,k ·K G

Iw(p
t), which is independent of t by the description in [loc. cit.].

Furthermore, we have IG
m,k ⊂ UG

k .
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We now define some tubes for H .

Definition 3.2.8. (1) For m ≥ 0 and t ≥ 1, one defines

ZH
m = ]C

H
id [m̄ · K

H
♦
(pt)

which is equal to ]C H
id [m̄ for t > m.

(2) For k ≥ 1 and t ≥ 1, we define
UH

k = ]C
H
id [k · K

H
♦
(pt)

which is equal to ]C H
id [k for t > k. For k = 0, we define UH

0 = FLH .

We obtain the following lemma, essentially by construction:

Lemma 3.2.9. For m, t, k as in (3.2.5), one has UH
k = ι̂

−1(UG
k ) and ZH

m = ι̂
−1(IG

m,k). Furthermore, there
is a Cartesian diagram

ZH
m UH

k

IG
m,k UG

k

with each map a closed embedding.

Proof. The lemma is clear for (m, k)= (0, 0) by Lemma 3.1.2; so assume that (m, k) ̸= (0, 0). Then we
can express IG

m,k as the intersection

IG
m,k = ]C

G
wn
[k,k · K G

Iw(p
t)∩ ]CG

wn
[m̄,0 · K

G
Iw(p

t).

Indeed, the group K G
Iw(p

t) acts continuously and preserves ]CG
wn
[m̄,0, so must also preserve ]CG

wn
[m̄,0 =

]CG
wn
[m̄,0. One then follows the proof of [Boxer and Pilloni 2021, Lemma 3.3.17].

The above description implies that IG
m,k is closed in UG

k . Furthermore, the map ι̂ is a closed embedding
of flag varieties, therefore it is enough to check UH

k = ι̂
−1(UG

k ) and ZH
m = ι̂

−1(IG
m,k). But this follows

immediately from the explicit description involving coordinates, and the fact that ι̂(UH
k )⊂ ]C

G
wn
[k,k and

ι̂(ZH
m )⊂ ]C

G
wn
[m̄,k for (m, k) ̸= (0, 0). □

4. Pullbacks on adic Shimura varieties

We now transfer the functoriality of the last section to the setting of adic Shimura varieties, via the
Hodge–Tate period map. We fix a neat compact open subgroup K p

⊂ G(Ap
f ), and let K = K p K p

for a compact open subgroup K p ⊂ G(Qp). Let SG,K = San
G,K denote the adic Shimura variety over

Spa(Qp,Zp)= Spa(Fpτ0
,OFpτ0

) associated with SG,K (note our assumption F+ ̸=Q implies that SG,K

is proper). Similarly, we fix a neat compact open subgroup U p
⊂ H(Ap

f ) contained in K p, and we let
SH,U denote the corresponding adic Shimura variety of level U =U pUp. If we choose K p = K G

Iw(p
t) or

Up = K H
Iw(p

t), K H
♦
(pt) then we will use the notation SG,Iw(pt), SH,Iw(pt) and SH,♦(pt) respectively.
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4.1. The Hodge–Tate period map. Since (G, hG) defines a PEL-type (and hence Hodge-type) Shimura
datum, there exists a perfectoid space SG,K p over Qp which represents the diamond lim

←−−K p
SG,K . In fact,

the existence of such a perfectoid space does not require axiom (SV3), i.e., Gad(R) has no Q-simple
factors which are R-anisotropic, provided that one has embedding into a Siegel datum. This leads to the
following proposition:

Proposition 4.1.1. There exists a perfectoid space SH,U p over Qp which represents the diamond
lim
←−−Up

SH,U .

Proof. Although the set-up is slightly different, this follows the proof of [Scholze 2015, Theorem IV.1.1]
verbatim. Note that we do not need a description of the connected components of SH,U in terms of
Shimura data for the group Hder (this would require (SV3)). □

Both of these perfectoid spaces come equipped with a Hodge–Tate period map into a flag variety
associated with the ambient Siegel datum. It is shown in [Caraiani and Scholze 2017] that one can refine
this morphism so that its image is contained in a flag variety associated with G or H . In particular, since
the same Siegel datum can be chosen for G and H (compatible with the embedding ι : H ↪→ G), one has
a commutative diagram:

SG,K p FLG

SH,U p FLH

πHT,G

πHT,H

where the vertical arrows are the natural ones (induced from ι) and πHT denotes the Hodge–Tate period map.
We will often drop the subscripts for πHT when the context is clear. Since πHT,G is G(Qp)-equivariant,
the twisted embedding ι̂ : SH,♦(pt)→ SG,Iw(pt) commutes with the twisted morphism

ι̂ : FLH/K H
♦
(pt)→ FLG/K G

Iw(p
t),

x K H
♦
(pt) 7→ ι̂(x)K G

Iw(p
t)

via the Hodge–Tate period morphisms. This is of course well-defined because γ̂−1K H
♦
(pt)γ̂ ⊂ K G

Iw(p
t).

4.2. Twisting torsors. In this section, we describe a general procedure for Tate-twisting proétale torsors
and record some properties of this construction. Our choice of convention for twisting below will be
consistent with our convention for the torsors on Shimura varieties (namely that they are defined via
frames of relative homology groups).

Let L/Qp be a finite extension and X/L a smooth adic space. Let T × → X denote the proétale
Z×p -torsor parametrizing isomorphisms (of proétale sheaves) Zp

∼
−→ Zp(1). The action of Z×p is given by

precomposition, i.e., for λ ∈ Z×p and φ : Zp
∼
−→ Zp(1), we set

φ · λ= φ(λ · −).
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Let M be a smooth adic group scheme over Spa L and suppose that we have a homomorphism

µ : Z×p → M

that is central (i.e., its image is contained in the center of M).

Definition 4.2.1. Let M→ X be a (right) proétale M-torsor. We define the twist of M along µ to be

µM :=M×[Z
×
p ,µ] T ×

where the right-hand side denotes the quotient of M×X T × by the equivalence relation:

(m ·µ(λ), φ)∼ (m, φ · λ−1), for all m ∈M, φ ∈ T ×, λ ∈ Z×p .

This defines a proétale M-torsor µM→ X via the action (m, φ) ·n = (m ·n, φ), for m ∈M, φ ∈ T × and
n ∈ M , because the homomorphism µ is central.

Example 4.2.2. Suppose that M =Gan
m and µ : Z×p → M is the natural inclusion. Let F be a locally free

sheaf of rank one on the proétale site of X . Then M := Isom(ÔX ,F ) is a proétale M-torsor, and we
have a natural identification

µM= Isom(ÔX ,F (−1)).

This twisting procedure enjoys the following properties:

Lemma 4.2.3. (1) The construction µM is functorial in the (right) proétale torsor M.

(2) If f : Y→ X is a morphism of smooth adic spaces over Spa L , then

f ∗(µM)∼=
µ( f ∗M)

canonically (i.e., we have a natural isomorphism f ∗ ◦ µ(−) ∼−→ µ(−) ◦ f ∗).

(3) If N ⊂ M is a smooth subgroup and µ factors through N , then for any proétale N-torsor N → X
one has

µ(N ×N M)∼= µN ×N M

canonically (i.e., it is natural in N ).

Proof. All of these properties follow immediately from tracing through the definitions. □

4.3. Torsors on adic Shimura varieties. We would like to recover the construction of the automorphic
vector bundles in Section 2.2 via the Hodge–Tate period morphism (which plays the role of the Borel
embedding). This is accomplished in [Caraiani and Scholze 2017, Section 2], and we give a brief review
of the results. We will describe the construction for the group G only, as the construction for H follows
the same argument.

Let MG denote the adic generic fiber associated with MG (the adic generic fiber of its completion
along the special fiber) and Man

G = Man
G . Let µ : Z×p →MG denote the (central) homomorphism induced

from the Hodge cocharacter µG defined in Section 2.1. By the results of [loc. cit.], there exists a proétale
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Man
G -torsor Man

G,HT over SG,K such that its twist µMan
G,HT along µ is canonically isomorphic to MG,dR

under analytification.3 It is shown in [Boxer and Pilloni 2021, Section 4.6] that Man
G,HT has an integral

structure, namely the proétale MG-torsor MG,HT. By Lemma 4.2.3, this defines an integral structure
µMG,HT on µMan

G,HT, which is an étale MG-torsor because the morphism µMG,HT→ SG,K is surjective
on geometric points and smooth (as µMG,HT is an open subset of µMan

G,HT = Man
G,dR).

On the other hand, if NG is the unipotent radical of PG with associated adic generic fiber NG , then
one can consider the (right) MG-torsor

MG
: G/NG→ FLG

via the morphism x 7→ x−1. These torsors are related in the following way:

Lemma 4.3.1. The pullback of MG,HT to the perfectoid space SG,K p is identified with π∗HTMG .

Proof. Immediate from the proof of [Boxer and Pilloni 2021, Proposition 4.6.3]. □

Recall that we have a twisted morphism ι̂ : SH,♦(pt)→ SG,Iw(pt). Also, recall that the choice of
Hodge cocharacters µG and µH are compatible under the inclusion H ↪→G, therefore the homomorphism
µ above factors through MH . The description in the above lemma gives the following reduction of
structure.

Proposition 4.3.2. One has a reduction of structure of proétale torsors over SH,♦(pt)

ι̂∗MG,HT =MH,HT×
[MH ,u]MG

where the superscript means we view MH as a subgroup of MG via the embedding u−1MH u ⊂MG . In
particular, one has a reduction of structure of étale torsors

ι̂∗(µMG,HT)=
µMH,HT×

[MH ,u]MG .

Proof. For the first part and via the interpretation in Lemma 4.3.1, it is enough to show that ι̂∗MG
=

MG
×
[MH ,u]MG on the level of flag varieties. This follows from the following commutative diagram:

H/NH G/NG

FLH FLGι̂

where the vertical arrows are the torsors MH and MG and the top horizontal map is given by

hNH 7→ γ̂−1hγNG = γ̂
−1huNG .

where the last equality follows from the fact that γ maps to u under the projection PG ↠MG .
The last part of the proposition follows from the functoriality properties of twisted torsors in Lemma 4.2.3

and the fact µ is central (so is unaffected by conjugation by u). □
3See the paragraph preceding [Caraiani and Scholze 2017, Lemma 2.3.5] for the definition of this torsor (which in the notation

of [loc. cit.] would be MdR).
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Remark 4.3.3. One has an alternative reduction of structure as follows. In this remark only, set U =
U p K H

♦
(pt), K = K p K G

Iw(p
t) and K γ̂ = γ̂ K γ̂−1, and we will include the level in the notation for MHT

and MdR. Then we obtain a twisted morphism ι̂ : µMan
H,HT,U →

µMan
G,HT,K defined as the analytification

of the composition

MH,dR,U
ι
−→ MG,dR,K γ̂

γ̂
−→ MG,dR,K .

This is simply the twist along µ of the morphism of torsors induced from the natural map on the level
of flag varieties H/NH → G/NG sending hNH to γ̂−1hNG (see Appendix B), so in fact preserves the
integral structure. This gives a reduction of structure

ι̂∗(µMG,HT,K )=
µMH,HT,U ×

MH MG (4.3.4)

and we have a commutative diagram

µMH,HT,U ×
MH MG

ι̂∗(µMG,HT,K )

µMH,HT,U ×
[MH ,u]MG

where every map is an isomorphism; the top diagonal map is the reduction of structure in (4.3.4), the
bottom diagonal map is the reduction of structure in Proposition 4.3.2, and the vertical map is given by
[x,m] 7→ [x, u−1mu].

The reduction of structure in (4.3.4) will be useful for the comparison with the archimedean setting,
whereas the reduction of structure in Proposition 4.3.2 will be useful when we speak about sheaves of
distributions in Section 5.

4.4. Comparison with the archimedean pairing. We can now reinterpret the pairing at the end of
Section 2 in the setting of adic Shimura varieties via rigid GAGA. For a representation V ∈ Rep(MG) we
let [V ] denote the associated bundle on SG,K using the torsor µMan

G,HT = Man
G,dR; and similarly for H .

We place ourselves in the setting of Section 2.6 — in particular, we let λ ∈ X∗(T/T0)
+. Then, after fixing

an isomorphism Vκ∗n
∼= V ∗κn

we obtain a MH -equivariant morphism

Vκn ↠ σ [ j]n (4.4.1)

by pairing with the vector u−1
· v
[ j]
κn , where MH acts on Vκn via the embedding u−1 MH u ⊂ MG . Via the

reduction of structure in Proposition 4.3.2, this gives a morphism of sheaves

ι̂∗[Vκn ] → [σ
[ j]
n ]
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over SH,♦(p). Using this morphism, we therefore obtain a pairing

⟨ · , · ⟩an : Hn−1(SG,Iw(p), [Vκn ])×H0(SH,♦(p), [σ [ j]n ]
∨)→Qp

defined as ⟨η, χ⟩an = tr(ι̂∗η∪χ). By the discussion in Remark 4.3.3 and the fact that the analytification
of MdR is identified with µMan

HT, we obtain the following proposition:

Proposition 4.4.2. The pairings ⟨ · , · ⟩alg and ⟨ · , · ⟩an correspond to each other under rigid GAGA, where
we have base-changed the former to Qp via the embedding Fcl ↪→Qp induced from the fixed isomorphism
C∼=Qp.

4.5. Hecke operators. We would like to restrict the pairing ⟨ · , · ⟩an to one over certain strata in the adic
Shimura varieties, without losing any information. To accomplish this, we need to pass to “small-slope”
parts of cohomology with respect to the action of certain Hecke operators, which we will now describe.

Let T− ⊂ T (Qp) denote the submonoid defined as

T− = {x ∈ T (Qp) : v(α(x))≤ 0 for all α ∈8+}

where 8+ is the set of positive roots of G (with respect to BG) and v : Q×p → Z is the p-adic valuation,
normalized so that v(p) = 1. We let T−− ⊂ T− be the subset of elements satisfying v(α(x)) < 0 for
all α ∈ 8+. For t ≥ 1, We let H−p,t denote the algebra Qp[K G

Iw(p
t)\T−/K G

Iw(p
t)] with multiplication

given by the double coset description in [Boxer and Pilloni 2021, Section 4.2]. This is isomorphic to the
algebra Qp[T−] (with the usual definition of multiplication), with an element x ∈ T− corresponding to
[K G

Iw(p
t)x K G

Iw(p
t)].

We fix a specific choice of Hecke operator.

Definition 4.5.1. Let λ be an algebraic character of H∞ (see Section 2.3) and set λ∗ =−wmax
G λ. We let

U ′B(p
t) ∈H−p,t denote the Hecke operator λ∗(x−1)[K G

Iw(p
t)x K G

Iw(p
t)] where x ∈ T−− is given by

x = (1; 1, p, p2, . . . , p2n−1)τ∈9 .

Remark 4.5.2. It will turn out that the action of U ′B(p
t) on cohomology will be independent of the level,

so we will often write U ′B instead.

Note that a Qp-algebra homomorphism H−p,t → Qp is identified with a monoid homomorphism
θ : T−→ (Qp,×) via the isomorphism above. We say that θ is finite-slope if θ(x) ̸= 0 for some x ∈ T−−

(in fact, this implies θ(x) ̸= 0 for all x ∈ T−).

Definition 4.5.3. Let M be a Banach Qp-module (or more generally, a bounded complex of projective
Banach Qp-modules) with an action of a potent compact operator T (see [Boxer and Pilloni 2021,
Definition 2.4.13]). Then M has a slope decomposition with respect to (some power of) T and we set

M fs
:= colimh M≤h

where the colimit is over h ∈Q≥0. This is called the finite-slope part of M .
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If M carries an action of H−p,t such that [K G
Iw(p

t)x K G
Iw(p

t)] acts as a potent compact operator for some
x ∈ T−−, then we denote the finite-slope part by M−,fs (which is independent of x by [Boxer and Pilloni
2021, Lemma 5.1.7]). Furthermore, M≤h can be decomposed into generalized eigenspaces for the action
of T−, for any h ∈ Q≥0 (since slope decompositions are unique and M≤h is finite-dimensional). This
will allow us to pass to the “small slope part” of M , in the following sense.

Definition 4.5.4. Let λ ∈ X∗(T/T0)
+. We say that a (monoid) homomorphism θ : T−→Q×p is small

slope (with respect to κn) if, for every w ∈ M WG −{wn}, there exists x ∈ T− such that

v(θ(x)) < v((w−1 ⋆ κn)(x)). (4.5.5)

If M is as in the paragraph following Definition 4.5.3, then we let M−,ss(κn) denote the sum of generalized
eigenspaces in M≤h for which T− acts through a small slope homomorphism θ : T−→ Q×p (for any
sufficiently large h depending on κn). We will write M−,ss when κn is clear from the context.

4.6. Restriction to smaller strata. We transfer the strata in Section 3.2 to adic Shimura varieties via the
Hodge–Tate period map.

Definition 4.6.1. For m, t, k as in (3.2.5), we define

• UG
k (p

t)= π−1
HT,G,t(U

G
k ),

• IG
m,k(p

t)= π−1
HT,G,t(I

G
m,k),

• ZG
0 (p

t)= π−1
HT,G,t(Z

G
0 ),

• ZG
m (p

t)= π−1
HT,G,t(]C

G
wn
[m̄,0 · K

G
Iw(p

t)) for m ≥ 1.

where πHT,G,t : SG,Iw(pt)→ FLG/K G
Iw(p

t) is the map (of topological spaces) induced from the Hodge–
Tate period map. We will write UG

k , IG
m,k and ZG

m when t is clear from the context.

Note that, by the Iwahori decompositions in Section 3.2, UG
k (p

t) is an open subset of SG,Iw(pt) which is
a finite union of quasi-Stein open subsets, and ZG

m (p
t) is a closed subset of SG,Iw(pt) whose complement

is a finite union of quasi-Stein open subsets. Note that we have

IG
m,k(p

t)= UG
k (p

t)∩ZG
m (p

t)

so by [Boxer and Pilloni 2021, Lemma 2.5.21], the cohomology complex R0IG
m,k
(UG

k , [Vκn ]) is represented
by a complex in ProN(Kproj(Ban(Qp))). Furthermore, R0IG

0,0
(UG

0 , [Vκn ]) carries an action of H−p,t for
which U ′B(p

t) acts as a potent compact operator; see [loc. cit., Theorem 5.4.3].

Proposition 4.6.2. For m, k, t in (3.2.6), the complex R0IG
m,k
(UG

k , [Vκn ]) carries an action of U ′B(p
t)m as

a potent compact operator, and the natural maps

R0IG
m,k(p

t )(U
G
k (p

t), [Vκn ])
res
←− R0IG

m,0(p
t )(U

G
0 (p

t), [Vκn ])
cores
−−→ R0IG

0,0(p
t )(U

G
0 (p

t), [Vκn ])

are equivariant for U ′B(p
t)m and become quasiisomorphisms after passing to finite-slope parts.
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Proof. For this proof only, let K = K p K G
Iw(p

t) and Kx = K ∩ x K x−1, where x is the element in
Definition 4.5.1. Let T denote the correspondence

SG,K
p2
←− SG,Kx

p1
−→ SG,K

where p1 is the forgetful map associated with the inclusion Kx ⊂ K , and p2 is the composition of
right-translation by x and the forgetful map associated with the inclusion x−1Kx x ⊂ K . For a subset
W ⊂ SG,K , we let T (W)= p2 p−1

1 (W) and (T t)(W)= p1 p−1
2 (W). For a nonnegative integer s, we let

T s+1(W)= T (T s(W)), (T t)s+1(W)= (T t)((T t)s(W))

with the convention that T 0(W)= (T t)0(W)=W .
By [Boxer and Pilloni 2021, Lemmas 3.3.17 and 3.5.10], one has the following inclusions

(T t)k+1+m(ZG
0 )∩U

G
0 ⊂ ZG

m ⊂ (T
t)k+1(ZG

0 )

T m(UG
0 )∩ (T

t)k+1(ZG
0 )⊂ UG

k ⊂ UG
0

so the result follows from [loc. cit., Corollary 5.3.8] (note that the action of x factors through its
projection to the τ0-component on the flag variety, so we can apply the cited lemmas with min(x)= 1
and max(x)= 2n− 1). □

Remark 4.6.3. It does not seem possible to apply [loc. cit., Corollary 5.3.8] for general m, k, t satisfying
(3.2.5), and we do not know if there is an alternative way to show that R0IG

m,k
(UG

k , [Vκn ]) carries an action
of a power of U ′B as a potent compact operator such that the conclusion of Proposition 4.6.2 holds.

We also define strata for SH,♦(pt).

Definition 4.6.4. Let πHT,H,t : SH,♦(pt)→ FLH/K H
♦
(pt) denote the map induced from the Hodge–Tate

period map:

• For m ≥ 0 and t ≥ 1, we define

ZH
m (p

t)= π−1
HT,H,t(Z

H
m ).

• For k ≥ 0 and t ≥ 1, we define

UH
k (p

t)= π−1
HT,H,t(U

H
k ).

We will write ZH
m and UH

k when t is clear from the context.

We now define the relevant cohomology complexes with partial compact support conditions, following
[Boxer and Pilloni 2021, Section 5.4].

Definition 4.6.5. Let λ ∈ X∗(T/T0)
+. Then we define

R0G
wn
(κn)

−,fs
:= R0IG

0,0(p)
(UG

0 (p), [Vκn ])
−,fs

where (−)−,fs denotes the finite-slope part with respect to the action of H−p,1 as in Section 4.5. We denote
the cohomology of this complex by Hi

wn
(κn)

−,fs.
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We record some important properties.

Theorem 4.6.6. Let λ ∈ X∗(T/T0)
+:

(1) (Change of level) Let m, k, t be as in (3.2.6) (resp. m = 0, k = 0 and t ≥ 1). The trace map

R0IG
m,k(p

t+1)(U
G
k (p

t+1), [Vκn ])→ R0IG
m,k(p

t )(U
G
k (p

t), [Vκn ])

is (U ′B)
m-equivariant (resp. T−-equivariant) and induces a quasiisomorphism on finite-slope parts.

(2) (Classicality for small slope) The natural maps

R0IG
0,0(p)

(UG
0 (p), [Vκn ])

cores
−−→ R0(UG

0 (p), [Vκn ])
res
←− R0(SG,Iw(p), [Vκn ])

are H−p,1-equivariant and induce quasiisomorphisms on small slope parts.

(3) (Vanishing for small slope) The complex R0(SG,Iw(p), [Vκn ])
−,ss is concentrated in degree n− 1.

Proof. Part (1) is an application of [Boxer and Pilloni 2021, Corollary 4.2.16 and Theorem 5.4.14].
Because the Shimura variety is compact, Theorem 6.10.1 implies Conjecture 5.9.2 in [loc. cit.] (i.e., the
expected slope bounds hold). Parts (2) and (3) then follow immediately from the small slope versions of
Theorems 5.12.3 and 5.12.5 in [loc. cit.]. □

We define similar complexes for SH,♦(pt), however we do not consider the finite-slope part of these
complexes.

Definition 4.6.7. We set

R0H
id (SH,♦(pt), σ [ j]n )(−,†) := lim

←−−
m

R0ZH
m (pt )(SH,♦(pt), [σ [ j]n ])

where the transition maps are given by corestriction. If t = 1, we simply write R0H
id (σ

[ j]
n )(−,†) and denote

the cohomology of this complex by Hi
id(σ

[ j]
n )(−,†).

4.7. Functoriality. The goal of this section is to construct a map

R0G
wn
(κn)

−,fs
→ R0H

id (σ
[ j]
n )(−,†)

which is compatible with pull-back by ι̂ on the usual cohomology.

Definition 4.7.1. Let m, k, t be as in (3.2.5). Then we define a morphism

ϑm,k,t : R0IG
m,k(p

t )(U
G
k (p

t), [Vκn ])→ R0ZH
m (pt )(SH,♦(pt), [σ [ j]n ])

as the composition of the following maps:

• ι̂∗ : R0IG
m,k(p

t )(U
G
k (p

t), [Vκn ])→ R0ZH
m (pt )(UH

k (p
t), ι̂∗[Vκn ]).

• (Excision) R0ZH
m (pt )(UH

k (p
t), ι̂∗[Vκn ])

∼
−→ R0ZH

m (pt )(SH,♦(pt), ι̂∗[Vκn ]).

• R0ZH
m (pt )(SH,♦(pt), ι̂∗[Vκn ])→ R0ZH

m (pt )(SH,♦(pt), [σ
[ j]
n ]).
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Where the last map is induced from Vκn→ σ
[ j]
n (as in (4.4.1)). Note that ι̂∗ is well-defined by the Cartesian

square in Lemma 3.2.9 and the fact that the strata on the level of flag varieties are independent of t
for t > m (see property (2) in [Boxer and Pilloni 2021, Section2.1]). The excision step is well-defined
because ZH

m (p
t) is closed SH,♦(pt); see property (3) in [loc. cit.].

Let m, k, t and m′, k ′, t ′ be triples satisfying (3.2.5), such that m′ ≥ m, k ′ ≥ k and t ′ ≥ t . Then the
maps in Definition 4.7.1 fit into the following commutative diagram:

R0IG
m′,k′ (p

t ′ )(U
G
k′ (p

t ′), [Vκn ]) R0ZH
m′ (p

t ′ )(SH,♦(pt ′), [σ
[ j]
n ])

R0IG
m′,k(p

t ′ )(U
G
k (p

t ′), [Vκn ]) R0ZH
m′ (p

t ′ )(SH,♦(pt ′), [σ
[ j]
n ])

R0IG
m,k(p

t ′ )(U
G
k (p

t ′), [Vκn ]) R0ZH
m (pt ′ )(SH,♦(pt ′), [σ

[ j]
n ])

R0IG
m,k(p

t )(U
G
k (p

t), [Vκn ]) R0ZH
m (pt )(SH,♦(pt), [σ

[ j]
n ])

ϑm′,k′,t ′

ϑm′,k,t ′

res

cores cores

ϑm,k,t ′

tr tr

ϑm,k,t

where tr denotes the trace map; see [Boxer and Pilloni 2021, Lemma 2.1.2]. The bottom square is
commutative because, by Lemma 2.5.3, we have a Cartesian diagram of Shimura varieties:

SH,♦(pt+1) SG,Iw(pt+1)

SH,♦(pt) SG,Iw(pt)

ι̂

ι̂

for any t ≥ 1.

Proposition 4.7.2. One has a well-defined map

R0G
wn
(κn)

−,fs
→ R0H

id (σ
[ j]
n )(−,†)

defined as the (inverse limit over m of the) composition of

• the inverse of the trace map followed by the inverse of corestriction

R0IG
0,0(p)

(UG
0 (p), [Vκn ])

−,fs ∼
−→ R0IG

m,0(p
t )(U

G
0 (p

t), [Vκn ])
−,fs

which makes sense by Proposition 4.6.2 and Theorem 4.6.6,

• the morphism ϑm,0,t and

• the trace map

R0ZH
m (pt )(SH,♦(pt), [σ [ j]n ])→ R0ZH

m (p)(SH,♦(p), [σ [ j]n ])

for any m ≥ 0, t ≥ 1 satisfying m > 2n− 1 and t > m+ 1 (i.e., the tuple (m, 0, t) satisfies (3.2.6)).
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Proof. This map is well-defined by the above commutative diagram and the fact that trace and corestriction
commute with each other; see the construction in [Boxer and Pilloni 2021, Lemma 2.1.2]. □

Set R0H
id (σ

[ j],∨
n )(+,†) := lim

−−→m R0(ZH
m (p), [σ

[ j]
n ]
∨)with transition maps given by restriction, and denote

the cohomology of this complex by Hi
id(σ

[ j],∨
n )(+,†). By [loc. cit., Theorem 2.7.1] (using the fact that ZH

m

is the closure of UH
m ), one has a natural pairing between R0H

id (σ
[ j]
n )(−,†) and R0H

id (σ
[ j],∨
n )(+,†) built from

the Serre duality pairings, which commutes with the Serre duality pairing between R0(SH,♦(p), [σ
[ j]
n ])

and R0(SH,♦(p), [σ
[ j]
n ]
∨) via corestriction and restriction on the former and latter complex respectively.4

Proposition 4.7.2 therefore allows us to define a pairing

⟨ · , · ⟩−an : Hn−1
wn
(κn)

−,fs
×H0

id(σ
[ j],∨
n )(+,†)→Qp

by composing the map in Proposition 4.7.2 with the duality pairing between the (−, †) and (+, †)
cohomologies above. Considering classes in the small slope part, we obtain the following result:

Theorem 4.7.3. Let

• χ ∈ H0(SH,♦(p), [σ
[ j]
n ]
∨),

• η ∈ Hn−1
wn
(κn)

−,ss ∼= Hn−1(SG,Iw(p), [Vκn ])
−,ss ,

and denote by resχ the image of χ under the restriction map

H0(SH,♦(p), [σ [ j]n ]
∨)→ H0

id(σ
[ j],∨
n )(+,†).

Then ⟨η, resχ⟩−an = ⟨η, χ⟩an.

Proof. Since the embedding ι̂ : SH,♦(pt)→SG,Iw(pt) factors through UG
0 (p

t), we obtain the commutative
diagram:

R0G
wn
(κn)

−,fs R0H
id (σ

[ j]
n )(−,†)

R0(UG
0 (p), [Vκn ]) R0(SH,♦(p), [σ

[ j]
n ])

R0(SG,Iw(p), [Vκn ]) R0(SH,♦(p), [σ
[ j]
n ])

cores cores

res

where the top horizontal arrow is as in Proposition 4.7.2, and the bottom two are obtained from composing
ι̂∗ with the map of sheaves ι̂∗[Vκn ] → [σ

[ j]
n ]. Passing to small slope parts and cohomology gives the

result. □

4To be more precise, one cannot directly apply [Boxer and Pilloni 2021, Theorem 2.7.1] because UH
m is not quasicompact.

However one can find quasicompact open subsets U ′m satisfying UH
m+1 ⊂ U ′m ⊂ UH

m and apply the theorem with these strata
instead, as this does not affect the cohomology groups in the limit.
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5. Locally analytic cohomology

5.1. Further reduction of structure. We first consider the reduction of structure for MG,HT. Let UG ,
U G , UMG and U MG denote the unipotent radicals of BG , BG , BMG and B MG respectively. For k > 0, let
G1

k,k (resp. M1
G,k,k) denote the subgroup of G (resp. MG) of elements which reduce to UG (resp. UMG )

modulo pk+ε for all ε > 0, and to UG (resp. UMG ) modulo pk . We have similar definitions for M1
H,k,k

and H1
k,k .

We introduce the following group:

Definition 5.1.1. Let M□
G,k,k =M1

G,k,k · BMG (Zp), which is a subgroup of MG containing the Iwahori
subgroup of MG(Zp) of depth pt for any t > k.

Remark 5.1.2. The homomorphism µ : Z×p →MG factors through the subgroup M□
G,k,k .

Remark 5.1.3. Let t > k > 0. If we let K p,wn,MG equal the projection of wn K G
Iw(p

t)w−1
n ∩PG to MG ,

then the proof of [Boxer and Pilloni 2021, Proposition 4.6.9] shows that K p,wn,MG equals the Iwahori
subgroup of MG(Zp) of depth pt (the proposition only treats the case t = 1, but the proof easily generalizes
to arbitrary t). Therefore M□

G,k,k =M1
G,k,k · K p,wn,MG = K p,wn,MG ·M1

G,k,k .

For t > k > 0, let MG
k,k,t denote the space

K G
Iw(p

t)G1
k,k/(K

G
Iw(p

t)G1
k,k ∩w

−1
n NGwn)→ PG\PGwn K G

Iw(p
t)G1

k,k = UG
k ,

x 7→ PGwnx−1,

which is a (right) torsor for the group M□
G,k,k via the embedding w−1

n M□
G,k,kwn ⊂ K G

Iw(p
t)G1

k,k .

Proposition 5.1.4. Let t > k > 0. The torsor MG,HT has a reduction of structure to a proétale M□
G,k,k-

torsor MG,HT,k,k,t over UG
k (p

t). Furthermore, the pullback of MG,HT,k,k,t to the perfectoid space SG,K p

is canonically isomorphic to the torsor π∗HTMG
k,k,t .

Moreover, the twisted torsor µMG,HT,k,k,t defines a reduction of structure of the torsor µMG,HT to an
étale M□

G,k,k-torsor.

Proof. This is essentially [Boxer and Pilloni 2021, Proposition 4.6.12], but we have conjugated our groups
by wn . Note that we have a commutative diagram:

K G
Iw(p

t)G1
k,k/(K

G
Iw(p

t)G1
k,k ∩w

−1
n NGwn) G/NG

UG
k FLG

where the vertical maps are the torsors MG
k,k,t and MG , the bottom map is the natural inclusion and the top

map is given by

g(K G
Iw(p

t)G1
k ∩w

−1
n NGwn) 7→ gw−1

n NG .
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Therefore MG
k,k,t gives a reduction of structure for MG , and the proétale torsor π∗HTMG

k,k,t descends to a
proétale torsor MG,HT,k,k,t over UG

k (p
t) because it is a K G

Iw(p
t)-invariant open subset of the proétale

torsor π∗HTMG (which we already know descends). The last part follows from the fact that µ factors
through M□

G,k,k , Lemma 4.2.3(3), and because µMG,HT,k,k,t → UG
k (p

t) is surjective on geometric points
and smooth (as µMG,HT,k,k,t is an open subset of the étale torsor µMG,HT). □

We now discuss the reduction of structure for MH,HT. Consider the following subtori of T consisting
of elements (x; y1,τ , . . . , y2n,τ ) satisfying the following relations:

• T♣⊂ T is the subtorus given by the relations yi,τ0 = y2n+2−i,τ0 for i = 2, . . . , 2n, and yi,τ = y2n+1−i,τ

for all i = 1, . . . , 2n and τ ̸= τ0.

• T♦ ⊂ T♣ is the subtorus with the additional relation that y1,τ0 = yn+1,τ0 .

We begin with the following lemma:

Lemma 5.1.5. Let IwMG (p
t)⊂MG(Zp) denote the Iwahori subgroup of depth pt , and let M H

♦
(pt) denote

the projection of K H
♦
(pt)∩PH to MH . Then:

(1) M H
♦
(pt) is the subgroup of MH (Zp) of all elements which land in T♦ modulo pt .

(2) M H
♣
(pt) := u IwMG (p

t)u−1
∩MH is the subgroup of MH (Zp) of all elements which land in T♣

modulo pt . It is contained in the projection of K H
Iw(p

t)∩PH to MH .

In particular, one has M H
♦
(pt)⊂ M H

♣
(pt).

Proof. By the proof of Lemma 2.4.3, we see that

h = x ×
(

y1,τ

y2,τ

)
∈ H(Zp)

lies in K H
♦
(pt) if and only if:

• For all τ ̸= τ0, the block diagonal matrix (y1,τ , y2,τ ) lies in the τ -component of T♦ modulo pt .

• The elements U−1 y1,τ0U and y2,τ0 are lower-triangular and upper-triangular modulo pt respectively,
where U is a (n× n) matrix lying the standard parabolic of GLn with Levi GL1×GLn−1, whose
projection to the Levi equals

1×wmax
GLn−1

.

• The elements U−1 y1,τ0U and y2 are congruent to each other modulo pt .

From these properties, one then immediately obtains part (1). Part (2) follows from the stabilizer
computations in Lemma 2.4.3. It is contained in the projection of K H

Iw(p
t)∩PH to MH because T♣ is

contained in BH . □
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For t ≥ 1 and k > 0, we let M♦

H,k,k,t =M H
♦
(pt)M1

H,k,k and M♣

H,k,k,t =M H
♣
(pt)M1

H,k,k . Both of these
are groups by [Boxer and Pilloni 2021, Lemma 3.3.15] (because K H

♦
(pt)⊂ K H

Iw(p
t)). If t > k, then these

groups don’t depend on t ; explicitly, we have

M♦

H,k,k,t =M♦

H,k,k := T♦(Zp)M1
H,k,k, M♣

H,k,k,t =M♣

H,k,k := T♣(Zp)M1
H,k,k .

Furthermore, we have u−1M♦

H,k,ku ⊂ u−1M♣

H,k,ku ⊂M□
G,k,k .

Remark 5.1.6. The homomorphism µ : Z×p →MH induced from the Hodge cocharacter µH factors
through M♣

H,k,k,t for any t ≥ 1 and k > 0. It doesn’t factor through M♦

H,k,k,t , although the latter group is
useful for discussing the reduction of structure below.

As above, we introduce the following space MH
k,k,t (for k > 0 and t ≥ 1):

K H
♦
(pt)H1

k,k/(K
H
♦
(pt)H1

k,k ∩NH )→ PH\PH K H
♦
(pt)H1

k,k = UH
k ,

x 7→ PH x−1,

which is a (right) torsor for the group M♦

H,k,k,t via the embedding M♦

H,k,k,t ⊂ K H
♦
(pt)H1

k,k .

Proposition 5.1.7. Let t ≥ 1 and k > 0:

(1) Then the torsor MH,HT has a reduction of structure to a proétale M♦

H,k,k,t -torsor M′

H,HT,k,k,t over
UH

k (p
t). Furthermore, the pullback of M′

H,HT,k,k,t to the perfectoid space SH,U p is canonically
isomorphic to π∗HTMH

k,k,t .

(2) If we define MH,HT,k,k,t as the pushout M′

H,HT,k,k,t ×
M♦

H,k,k,t M♣

H,k,k,t , then the proétale M♣

H,k,k,t -
torsor MH,HT,k,k,t (resp. étale M♣

H,k,k,t -torsor µMH,HT,k,k,t ) provides a reduction of structure of
the torsor MH,HT (resp. µMH,HT).

Proof. For the first part, this follows from a similar argument in Proposition 5.1.4. Note that the proof of
[Boxer and Pilloni 2021, Proposition 4.6.12] also applies in this situation, even though K H

♦
(pt) is not of

the form in the statement of [loc. cit.].
The second part follows immediately from the inclusions

M♦

H,k,k,t ⊂M♣

H,k,k,t ⊂MH ,

the functoriality properties in Lemma 4.2.3, and the fact that µMH,HT,k,k,t → UH
k (p

t) is smooth and
surjective on geometric points. □

We have the following proposition which relates the torsors for G and H .

Proposition 5.1.8. Let t > k > 0. One has a reduction of structure of étale torsors

ι̂∗(µMG,HT,k,k,t)=
µMH,HT,k,k,t ×

[M♣

H,k,k ,u]M□
G,k,k

where ι̂ denotes the embedding UH
k (p

t) ↪→ UG
k (p

t).
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Proof. We first show that we have a reduction of structure

ι̂∗MG,HT,k,k,t =M′

H,HT,k,k,t ×
[M♦

H,k,k ,u]M□
G,k,k . (5.1.9)

It is enough to show the analogous statement for the torsors MG
k,k,t and MH

k,k,t . In this case, we have a
commutative diagram:

K H
♦
(pt)H1

k,k/(K
H
♦
(pt)H1

k,k ∩NH ) K G
Iw(p

t)G1
k,k/(K

G
Iw(p

t)G1
k,k ∩w

−1
n NGwn)

UH
k UG

k
ι̂

where the vertical maps are the torsors MH
k,k,t and MG

k,k,t , and the top map is induced from the map
K H
♦
(pt)H1

k,k → K G
Iw(p

t)G1
k,k given by h 7→ γ̂−1hγ̂ . Note that this diagram is commutative because

γ ∈ PG .
Since MG

k,k,t is a torsor for the group M□
G,k,k via the conjugated embeddingw−1

n M□
G,k,kwn⊂K G

Iw(p
t)G1

k,k ,
and the projection of γ to MG is equal to u, (5.1.9) follows.

Since u−1M♦

H,k,ku ⊂ u−1M♣

H,k,ku ⊂M□
G,k,k , we also obtain the reduction of structure

ι̂∗MG,HT,k,k,t =MH,HT,k,k,t ×
[M♣

H,k,k ,u]M□
G,k,k

and we can twist this along µ by Lemma 4.2.3 (and the fact µ is central, so unaffected by conjugation
by u). □

Remark 5.1.10. If t ′ ≥ t and k ′ ≥ k, then the torsors µMG,HT,k′,k′,t ′ and µMH,HT,k′,k′,t ′ provide a
reduction of structure for the pullbacks of µMG,HT,k,k,t and µMH,HT,k,k,t along the trace/inclusion maps
UG

k′ (p
t ′)→UG

k (p
t) and UH

k′ (p
t ′)→UH

k (p
t) respectively; see [Boxer and Pilloni 2021, Proposition 4.6.14].

Remark 5.1.11. Let k > 0, and let M1
G,k (resp. M1

H,k) denote the normal affinoid subgroup of MG

(resp. MH ) consisting of elements which reduce to the identity modulo pk . We set

M□
G,k =M1

G,k BMG (Zp), M♣

H,k =M1
H,k T♣(Zp), M♣

H,k,t =M1
H,k M H

♣
(pt)

for k, t ≥ 1. All of these groups are open affinoid analytic subgroups of M?, where ?= G, H according
to the subscript.

To be able to apply the results in [loc. cit., Section 6], it will be more convenient to work with the
following torsors, obtained as the pushouts

MG,HT,k,t :=MG,HT,k,k,t ×
M□

G,k,k M□
G,k and MH,HT,k,t :=MH,HT,k,k,t ×

M♣

H,k,k,t M♣

H,k,t .

In particular, we can twist these torsors along µ and the torsors µMG,HT,k,t and µMH,HT,k,t are étale
torsors by Lemma 4.2.3. The analogous compatibility for varying k and t as in Remark 5.1.10 still
continues to hold for these torsors, and we have an analogue of Proposition 5.1.8, namely one has a



1150 Andrew Graham

reduction of structure of étale torsors

ι̂∗(µMG,HT,k,t)=
µMH,HT,k,t ×

[M♣

H,k ,u]M□
G,k

whenever t > k > 0.

5.2. Weight spaces. For an integer r ∈Q>0 let T 1
r denote the subgroup of T of elements which reduce

to the identity modulo pr . Recall that for a Tate algebra (A, A+) over (Qp,Zp), a character

λ : T (Zp)→ (A+)×

is r -analytic if it extends to an analytic A-valued function on T (Zp)T 1
r ⊂ T ad.

Definition 5.2.1. Let (A, A+) be a Tate algebra above. We let X∗(T ; A) denote the space of all characters

λ : T (Zp)→ (A+)×

which are r -analytic, for some r ∈Q>0. We let X∗(T/T0; A)⊂ X∗(T ; A) be the subspace of all characters
which are trivial on T0(Zp).

Remark 5.2.2. Note that there is a Weyl action on X∗(T ; A) by the usual formulae. Furthermore, even
though the half sum of positive roots doesn’t strictly give an element of this space, the ⋆-action of the
Weyl group also still makes sense.

Remark 5.2.3. The functor (A, A+) 7→ X∗(T/T0; A) is representable by a group adic space over
Spa(Qp,Zp), which we will denote by WG .

Definition 5.2.4. For i = 1, . . . , n and τ ∈ 9, let λi,τ ∈ X∗(T/T0)
+ be the character which is trivial

outside the τ -component, and in the τ -component is given by the tuple

(1, . . . , 1, 0, . . . , 0,−1, . . . ,−1)

where there are i lots of 1s and −1s.

These characters give a generating set for X∗(T/T0; A) in the following sense.

Lemma 5.2.5. Let λ ∈ X∗(T/T0; A) be an r-analytic character. Then there exist unique r-analytic
characters ξi,τ : Z×p → (A+)×, for i = 1, . . . , n and τ ∈9, such that

λ=

n∑
i=1

∑
τ∈9

ξi,τ ◦ λi,τ

where the group structure on X∗(T/T0; A) is written additively.

Proof. Any such character λ is a (unique) product of r-analytic characters αi,τ : Z×p → (A+)× where
i = 1, . . . , 2n and τ ∈ 9, where αi,τ is determined by where it sends yi,τ . Since λ is trivial on T0, we
have αi,τ =−α2n+1−i,τ for all i = 1, . . . , 2n and τ ∈9. One then defines

ξi,τ =

{
αi,τ −αi+1,τ for i = 1, . . . , n− 1,
αn,τ for i = n.

Uniqueness is a simple check. □
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Remark 5.2.6. The above lemma implies that WG is a finite disjoint union of n[F+ :Q]-dimensional
open unit polydiscs.

Let S denote the torus
∏
τ ̸=τ0

Gm , and for a Tate algebra (A, A+), let X∗(S; A) denote the space of
locally analytic characters S(Zp)→ (A+)×. A general element of X∗(S; A) is a tuple β = (βτ )τ ̸=τ0 ,
where βτ : Z×p → (A+)× are locally analytic. The functor (A, A+) 7→ X∗(S; A) is representable by a
[F+ :Q] − 1-dimensional group adic space over Spa(Qp,Zp) denoted WH .

Definition 5.2.7. Let X∗0(T × S; A)= X∗(T/T0; A)× X∗(S; A). The functor (A, A+) 7→ X∗0(T × S; A)
is then represented by W :=WG ×WH .

5.3. Analytic and distribution modules. We now define the relevant analytic and distribution modules.
We introduce some notation:

Notation 5.3.1. For λ ∈ X∗(T/T0; A), we set κn(λ) = wn ⋆ (−w
max
G λ). We also define κn(λ)

∗
=

−wmax
MG
κn(λ).

Definition 5.3.2. Let λ∈ X∗(T/T0; A) be an r0-analytic character, for some r0∈Z>0. Set S=Spa(A, A+).
Then for any r ≥ r0, we define

V r−an
G,κn(λ)∗

= anInd
M□

G,r

M□
G,r∩BMG

(wmax
MG
κn(λ)

∗)

:= { f : (M□
G,r )S→ A

1,an
S

: f (mb)= (wmax
MG
κn(λ)

∗)(b−1) f (m) for all b ∈ (M□
G,r ∩BMG )S and m ∈ (M□

G,r )S}

as in [Boxer and Pilloni 2021, Section 6.2.4]. This carries actions of (M□
G,r )S and T M,+ by the formulae

in [loc. cit.], where T M,+
⊂ T (Qp) denotes the submonoid of elements t ∈ T (Qp) which satisfy

t BMG (Zp)t−1
⊂ BMG (Zp). Note that V r−an

G,κn(λ)∗
⊂ V r ′−an

G,κn(λ)∗
for r ′ ≥ r , where the inclusion is given by

restricting a function to (M□
G,r ′)S .

We write D̃r−an
G,κn(λ)

for the continuous A-dual of V r−an
G,κn(λ)∗

, which carries actions of (M□
G,r )S and

T M,−
= (T M,+)−1 in the usual way. This is a Banach A-module but in general, it is not necessarily

projective. To remedy this, one introduces the open subgroup

M□,◦
G,r =M1,◦

G,r BMG (Zp)

where M1,◦
G,r ⊂M1

G,r denotes the open subgroup of elements m≡ 1 modulo pr+ε for some ε> 0. Note that
this subgroup contains M□

G,r+1. In [loc. cit., Section 6.2.20], the authors introduce a modification of the
space of analytic functions V ◦,r−an

G,κn(λ)∗
using this open subgroup, and one has a (M□,◦

G,r , T M,+)-equivariant
morphism V r−an

G,κn(λ)∗
→ V ◦,r−an

G,κn(λ)∗
with dense image. One defines the space of r-analytic distributions

Dr−an
G,κn(λ)

to be the continuous A-dual of V ◦,r−an
G,κn(λ)∗

, which is a projective Banach A-module. One has a
(M□,◦

G,r , T M,−)-equivariant morphism Dr−an
G,κn(λ)

→ D̃r−an
G,κn(λ)

with dense image.
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We also introduce the following characters:

Definition 5.3.3. Let (λ, β) ∈ X∗0(T × S; A) be an r0-analytic character. Set S = Spa(A, A+). Then for
any r ≥ r0, we let σ [β]n (λ) : (M♣

H,r,1)S→ Gan
m,S be the analytic character given by

(x; y1, y2, y3; z1,τ , z2,τ )τ ̸=τ0 7→ y
−n−ξn,τ0
1 det−ξn,τ0 det y

ξn,τ0+1
3

∏
τ ̸=τ0

det z−βτ1,τ det zβτ2,τ

where ξi,τ are the characters associated with λ as in Lemma 5.2.5.

We obtain the following “branching law in families”, which is an analytic version of Proposition 2.6.1.
As the proof of this theorem is rather technical (and involves significantly changing the notation), we
provide the proof in Appendix A.

Theorem 5.3.4. Let (A, A+) be a Tate algebra over (Qp,Zp) and (λ, β) ∈ X∗0(T × S; A) which is
r0-analytic for some r0 ∈ Z>0. Then, for any r ∈ Z such that r ≥ r0, there exists a nonzero vector
x [β]n (λ) ∈ V r−an

G,κn(λ)∗
satisfying:

(1) The group M♣

H,r acts on x [β]n (λ) through the inverse of the character σ [β]n (λ), via the embedding
u−1M♣

H,r u ⊂M□
G,r .

(2) If (B, B+) denotes another Tate algebra with a morphism (A, A+) → (B, B+), and (λ′, β ′) ∈
X∗0(T × S; B) denotes the composition of (λ, β) with this morphism, then the image of x [β]n (λ) under
the natural map

V r−an
G,κn(λ)∗

→ V r−an
G,κn(λ′)∗

is equal to x [β
′
]

n (λ′).

(3) If (λ, j) ∈ X∗(T/T0)
+
× X∗(S) is a pair of algebraic characters satisfying 0 ≤ jτ ≤ cn,τ for all

τ ̸= τ0, then x [β]n (λ) equals the image of u−1
· v
[ j]
κn under the natural map

Vκ∗n → V r−an
G,κn(λ)∗

.

Here any undefined notation is as in Proposition 2.6.1.

(4) The vector x [β]n (λ) does not depend on the radius of analyticity; see Theorem A.5.10(4).

Proof. This follows from Theorem A.5.10, noting that the character κn(λ)
∗ satisfies the conditions in

Lemma A.5.6 (because λ is trivial on T0(Zp)), and this character specializes to a MG-dominant character
in C whenever λ ∈ X∗(T/T0)

+. □

Remark 5.3.5. Note that if (λ, j) ∈ X∗(T/T0)
+
× X∗(S) is a pair of algebraic characters as in

Theorem 5.3.4(3), then (after fixing an isomorphism Vκn
∼= V ∗κ∗n ) we have a commutative diagram:

Dr−an
G,κn(λ)

Vκn σ
[ j]
n



On the p-adic interpolation of unitary Friedberg–Jacquet periods 1153

where the vertical map is the dual of the map in Theorem 5.3.4(3) restricted to Dr−an
G,κn(λ)

, the bottom map
is pairing with the vector u−1

· v
[ j]
κn , and the diagonal map is evaluation at x [β]n (λ). All of the maps are

equivariant for the action of M♣

H,r+1 via the embedding u−1M♣

H,r+1u ⊂M□
G,r+1 ⊂M□,◦

G,r .

5.4. Locally analytic cohomology. Let (λ, β)∈ X∗0(T×S; A) be an r0-analytic character, and let t>k>r0

be integers. Let µM◦

G,HT,k−1,t denote the pushout of µMG,HT,k,t along the inclusion M□
G,k ⊂M□,◦

G,k−1,
and consider the base-extension of the torsor

π × 1 : µM◦

G,HT,k−1,t ×Spa(A, A+)→ UG
k (p

t)×Spa(A, A+).

We define [V ◦,(k−1)−an
G,κn(λ)∗

] to be the subsheaf of (π × 1)∗OµM◦

G,HT,k−1,t×Spa(A,A+) of bounded sections which
transform as f (mb) = (wmax

MG
κn(λ)

∗)(b−1) f (m) for every b ∈M□,◦
G,k−1 ∩ BMG . This defines a sheaf of

topological modules over UG
k (p

t) locally modeled on V ◦,(k−1)−an
G,κn(λ)∗

by the same proof as [Boxer and Pilloni
2021, Proposition 6.3.3]. We define [D(k−1)−an

G,κn(λ)
] to be the continuous dual of [V ◦,(k−1)−an

G,κn(λ)∗
] which is a

locally projective Banach sheaf locally modeled on the representation D(k−1)−an
G,κn(λ)

.

Remark 5.4.1. The sheaf [D(k−1)−an
G,κn(λ)

] can alternatively be described as

((π × 1)∗OµMG,HT,k,t×Spa(A,A+)⊗̂D(k−1)−an
G,κn(λ)

)M
□
G,k

where the invariants are via the (left) diagonal action and

π × 1 : µMG,HT,k,t ×Spa(A, A+)→ UG
k (p

t)×Spa(A, A+)

denotes the structural map.

Let t > m > k > r0 satisfy (3.2.6). We can therefore form the cohomology

R0G
wn,an(κn(λ))

−,fs
:= R0IG

m,k(p
t )(U

G
k (p

t), [D(k−1)−an
G,κn(λ)

])−,fs

where the finite-slope part is with respect to a certain power of U ′B(p
t) (by [Boxer and Pilloni 2021,

Theorem 6.4.3] and a similar calculation in the proof of Proposition 4.6.2). This definition is independent
of the choice of (m, k, t) by [loc. cit., Theorems 6.4.5 and 6.4.8]. If one has a continuous morphism
(A, A+)→ (Qp,Zp) such that the composition of this morphism with λ (denoted λ) lies in X∗(T/T0)

+,
then one has a natural specialization map R0G

wn,an(κn(λ))
−,fs
→ R0G

wn
(κn(λ))

−,fs (after fixing an isomor-
phism Vκn(λ)

∼= V ∗κn(λ)∗
) arising from the map D(k−1)−an

G,κn(λ)
→ Vκn(λ). Furthermore, if (A, A+)= (Qp,Zp)

then this specialization map is an isomorphism on small slope parts; [loc. cit., Corollary 6.8.4] using the
improved slope bounds implied by [loc. cit., Theorem 6.10.1] because the Shimura variety is compact.

Similarly, we can also form the cohomology complexes

R0H
id,an(SH,♦(pt), σ [β]n (λ))(−,†) := lim

←−−
m

R0ZH
m (pt )(UH

k (p
t), [σ [β]n (λ)]),

R0H
id,an(SH,♦(pt), σ [β]n (λ)∨)(+,†) := lim

−−→
m

R0(ZH
m (p

t), [σ [β]n (λ)]∨),

for k > r0 and t ≥ 1, where the sheaves are defined using the torsor µMH,HT,k,t . The first definition
is independent of k by excision and Remark 5.1.10. As before, if t = 1 then we omit the variety
from the notation. If (A, A+)→ (Qp,Zp) is a continuous homomorphism and the composition of this
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morphism with (λ, β) (denoted (λ, j)) lies in X∗(T/T0)
+
× X∗(S), then we have specialization maps

R0H
id,an(σ

[β]
n (λ))(−,†)→ R0H

id (σ
[ j]
n (λ))(−,†) and R0H

id,an(σ
[β]
n (λ)∨)(+,†)→ R0H

id (σ
[ j]
n (λ)∨)(+,†).

Proposition 5.4.2. Let (λ, β) ∈ X∗0(T × S; A) be an r0-analytic character. Then we have a well-defined
A-linear map

R0G
wn,an(κn(λ))

−,fs
→ R0H

id,an(σ
[β]
n (λ))(−,†) (5.4.3)

which satisfies:

(1) If (A, A+)→ (B, B+) is a morphism of Tate algebras over (Qp,Zp), and (λ′, β ′) ∈ X∗0(T × S; B)
denotes the induced character, then the morphisms in (5.4.3) for the pairs (λ, β) and (λ′, β ′) are
compatible under base-change along the morphism (A, A+)→ (B, B+).

(2) If (A, A+) = (Qp,Zp) and (λ, β) = (λ, j) is algebraic as in Theorem 5.3.4(3), then one has a
commutative diagram:

R0G
wn,an(κn(λ))

−,fs R0H
id,an(σ

[ j]
n (λ))(−,†)

R0G
wn
(κn(λ))

−,fs R0H
id (σ

[ j]
n (λ))(−,†)

(5.4.3)

where the bottom map is the one in Proposition 4.7.2.

Proof. This is constructed in a similar way as Proposition 4.7.2, using the morphism of sheaves
ι̂[D(k−1)−an

G,κn(λ)
] → [σ

[β]
n (λ)] arising from evaluation at the vector x [β]n (λ), i.e., the pullback is constructed

using a triple (m, k, t) satisfying (3.2.6) and then one traces down to level K H
♦
(p). Parts (1) and (2)

follow from the properties of the vector xn(λ) in Theorem 5.3.4. □

We have a Serre duality pairing between the complexes R0H
id,an( · · · )

(−,†) and R0H
id,an( · · · )

(+,†) which is
compatible with the duality in Section 4.7 via the specialization maps above. Therefore we obtain a pairing

⟨⟨ · , · ⟩⟩−an : Hn−1
wn,an(κn(λ))

−,fs
×H0

id,an(σ
[β]
n (λ)∨)(+,†)→ A

which is compatible under change of coefficients. We have the following compatibility with the previously
defined pairings.

Corollary 5.4.4. Let f : (A, A+)→ (Qp,Zp) be a homomorphism over (Qp,Zp), and suppose that the
character (λ, j), induced from composing (λ, β) with this morphism, is algebraic as in Theorem 5.3.4(3).
Then for any

• η ∈ Hn−1
wn,an(κn(λ))

−,fs,

• χ ∈ H0
id,an(σ

[β]
n (λ)∨)(+,†),

one has f (⟨⟨η, χ⟩⟩−an)= ⟨η, χ⟩
−
an, where η and χ denote the specializations of η and χ respectively under

the morphism f .
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Remark 5.4.5. There are analogous constructions of all the various pairings in Sections 4–5 working
over a finite extension L/Qp and they are related by base-change of coefficients. This will be important
in the construction of the p-adic L-function, because we will have to enlarge the field of definition to
include the Hecke eigenvalues of the relevant automorphic representation/character.

6. Families of cohomology classes

In this section we show that, under some hypotheses on the ramification of the automorphic representa-
tion π , there exists a family of cohomology classes in Hn−1

wn,an(κn(λA))
−,fs corresponding to a family of

automorphic representations passing through π . This family of cohomology classes will be one half of
the input for the pairing ⟨⟨·, ·⟩⟩−an when constructing the p-adic L-function in Section 8. Recall that we
have assumed F contains an imaginary quadratic number field E . This will be important when speaking
about automorphic base-change for unitary similitude groups.

6.1. Families for the group G. Let π be a cuspidal automorphic representation of G(A) such that π∞
lies in the discrete series. We impose the following assumptions:

Assumption 6.1.1. Assume that:

(1) The Harish-Chandra parameter of π∞ is of the form wn · (λπ + ρ) for some λπ ∈ X∗(T/T0)
+ (see

Section 2.3).

(2) Any weak base-change of π to an automorphic representation of GL1(AE)×GL2n(AF ) is cuspidal.5

(3) There exist compact open subgroups K p ⊂ G(Qp) and K p
⊂ G(Ap

f ) with K p hyperspecial, such
that K = K p K p is sufficiently small and

dimC π
K
f = 1.

Remark 6.1.2. Under the additional assumptions below, Assumption 6.1.1(3) is not a severe restriction
thanks to the local newform theory for general linear groups. More precisely, under Assumption 6.2.1
below, the local component of π at any ramified prime occurs as the local component of its cuspidal
base-change to GL1(AE)×GL2n(AF ), and is therefore generic. In particular, by [Jacquet et al. 1981],
there exists a compact open subgroup K = K p K p with K p hyperspecial, such that dimC π

K
f = 1. If K is

neat then Assumption 6.1.1(3) holds, otherwise one can use a similar strategy as in [Loeffler and Zerbes
2021, Remark 3.2.1] to handle more general levels.

Fix a finite set of primes S containing p and all primes where K p is not a good special maximal
compact open subgroup as in Lemma C.0.1. Let T− denote the Hecke algebra (over Q) given by

T− = C∞(K S
\G(AS

f )/K S)⊗Q[T−]

5Here by weak base-change, we mean an automorphic representation of GL1(AE )×GL2n(AF ) satisfying the conditions in
[Shin 2014, Theorem A.1] (the theorem of course shows that such a base-change exists).
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where the convolution product for the first factor is with respect to a fixed Haar measure on G. We fix a
C-algebra homomorphism θπ : T−

C
→C which is an eigencharacter for the action of T−

C
on π

K p K G
Iw(p)

f . By
Assumption 6.1.1(3), this homomorphism has finite-slope at p, so gives rise to a monoid homomorphism
θπ,p : T−→ C×. We let Iπ denote the kernel of the morphism θπ .

Lemma 6.1.3. There exists a number field 8 containing F , such that θπ is defined over 8.

Proof. Let ψ ⊠50 denote the weak base-change of π to GL1(AE) × GL2n(AF ). By [Labesse and
Schwermer 2019, Theorem 5.2.1], there exists π0 ⊂ π |G0(Qℓ) cuspidal automorphic such that 50 is the
weak base-change of π0. Since 50 is cuspidal, we have BCℓ(π0,ℓ)∼=50,ℓ for all rational primes ℓ, where
BCℓ denotes the local (standard) base-change map; see [Liu et al. 2022, Section C.3].

This implies that the homomorphism θπ matches with the Hecke eigensystem for ψ ⊠50, which is
regular algebraic. The result then follows from [Grobner and Raghuram 2014, Proposition 3.4.3] (note
that F is taken to be a totally real field in [loc. cit.], but the cited result holds in general via the same
proof). □

The above lemma implies that we can view θπ as a homomorphism valued in any field extension of 8.
For example, if we let L denote the completion of the image of 8 under the fixed isomorphism C∼=Qp,
then L/Qp is a finite extension and we can view θπ as an L-algebra homomorphism T−L → L . This leads
to the following small slope assumption:

Assumption 6.1.4. We assume that the monoid homomorphism θπ,p : T−→ L× is of small slope (with
respect to κn = wn ⋆ (−w

max
G λπ )).

Example 6.1.5. Let λ∗π =−w
max
G ·λπ (which is in fact equal to λπ by Assumption 6.1.1(1)). We say that

π is Borel ordinary if λ∗π (x)
−1θπ,p(x) is a p-adic unit, where x ∈ T−− is the element in Definition 4.5.1.

As seen below, π contributes to the coherent cohomology of SG,Iw(p), and the slope bounds in [Boxer and
Pilloni 2021, Conjecture 5.9.2] hold because the Shimura variety is compact; see [loc. cit., Theorem 6.48].
Therefore, being Borel ordinary in fact implies that the homomorphism (−λ∗π ) · θπ,p is valued in O×L .

Suppose that π is Borel ordinary. Then we will show that θπ,p is of small slope. For this, it is enough
to calculate, for i ̸= n, the τ0-component of δi := w

−1
i ⋆ κn − λ

∗
π and show that there exists x ∈ T−

such that v(δi (x)) > 0. For 1≤ i ≤ 2n− 1, let xi ∈ T− be the element which is the identity outside the
τ0-component, and equal to (1, . . . , 1, p, . . . , p) in the τ0-component (where there are i lots of p). Write
λπ = (0; c1,τ , . . . , c2n,τ )τ∈9 . We break the analysis into two cases.

Suppose that i < n. Then the action of w−1
i only affects the first i + 1 entries of the τ0-component

of the weight. In this case, we take x = xn and find that v(δi (x)) = 2cn,τ0 + 1 > 0 because cn,τ0 ≥ 0
(Assumption 6.1.1(1)).

Suppose that i = n+ ε for an integer 1≤ ε ≤ n− 1. Then the last n− ε entries of the τ0-component
of δi are cn−ε − cn + ε, 0, . . . , 0 (using the fact that c j,τ0 = −c2n+1− j,τ0). We then take x = xn−ε and
conclude that v(δi (x))= cn−ε − cn + ε > 0 because λπ is dominant.
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Recall that we can view X∗(T/T0)
+ as a subset of WG(Qp) (we will refer to this subset as the classical

weights). We now introduce the notion of a family of automorphic representations and cohomology classes.

Definition 6.1.6. By a family π over an open affinoid U = Spa(A, A+)⊂WG,L containing λπ , passing
through π , we mean an A-algebra homomorphism

θπ : T−A → A

such that for all but finitely many classical weights λ∈U∩X∗(T/T0)
+, there exists a cuspidal automorphic

representation σ such that the specialization of θπ at λ is an eigencharacter for the action of T−L on
σ K p K G

Iw(p) (under the identification C∼=Qp).
Let η ∈ Hn−1(SG,Iw(p), [Vκn ])

−,ss be an eigenvector for the action of T−L with eigencharacter θπ . Let
λA : T (Zp)→ (A+)× denote the universal character associated with U . If such a family π exists then,
by a family η of cohomology classes passing through η, we mean an eigenvector η ∈ Hn−1

wn,an(κn(λA))
−,fs

for the action of T−A with eigencharacter θπ , whose specialization at λπ equals η under the comparison
isomorphism

Hn−1
wn,an(κn(λπ ))

−,ss ∼= Hn−1(SG,Iw(p), [Vκn ])
−,ss.

6.2. Existence of families. In this section, we introduce some further assumptions on π which ensure
the existence of a family passing through π as well as a family of cohomology classes. We begin with
the following ramification assumption on the representation π :

Assumption 6.2.1. Assume that:

(1) The set S above contains only primes which split in E/Q, i.e., K S
=

∏
ℓ̸∈S Kℓ where Kℓ⊂G(Qℓ) is a

good special maximal compact open. We further assume that Kℓ is hyperspecial if GQℓ
is unramified

(for ℓ ̸∈ S).

(2) The eigencharacter θπ,p appears with multiplicity one for the action on π
K G

Iw(p)
p .

As a consequence of this assumption, we have:

Lemma 6.2.2. Suppose that π satisfies Assumption 6.2.1 (as well as the assumptions in the previous
section). Let σ be a cuspidal automorphic representation of G(A) such that σ∞ is cohomological. Suppose
that σ K

f ̸= 0 and πℓ ∼= σℓ for all ℓ ̸∈ S. Then π f ∼= σ f .

Proof. This is an application of Proposition C.0.3. □

We obtain the following corollary:

Corollary 6.2.3. Let π be as in Lemma 6.2.2 and set κn = wn ⋆ (−w
max
G · λπ ). Then the localized

cohomology
Hn−1(SG,Iw(p), [Vκn ])Iπ

is one-dimensional (over L).6

6We are abusing notation slightly — by the localization ( · · ·)Iπ we mean first base-change to L and then localize at Iπ (the
kernel of the map T−L → L).
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Proof. Via the rigid GAGA comparison, this localized cohomology group has the same dimension as

Hn−1(S(C), [Vκn ])Iπ

where S = SG,Iw(p) and we are considering its sheaf cohomology with coefficients in [Vκn ].
Let AG ∼= Gm denote the maximal split torus inside the center of G, and let AG(R)

◦ denote the
connected component of the identity in the analytic topology. Let K ◦

∞
⊂ K∞ denote the maximal compact

subgroup, where K∞ = AG(R)
◦K ◦
∞

is as in Section 2.3. Let p denote the Lie algebra of the opposite of
PG , and we can write

p= p◦⊕ aG

where aG is the Lie algebra of AG and p◦ = p∩ g0, where g0 denotes the Lie algebra of G0.
By [Su 2019], we have the following description

Hn−1(S(C), [Vκn ])=
⊕
σ

(Hn−1
(p◦,K ◦∞)

(σ∞⊗ Vκn )⊗ σ
K p K G

Iw(p)
f )m(σ ) (6.2.4)

where the sum runs over all cuspidal automorphic representations σ of G(A) which lie in the discrete
spectrum (with multiplicity m(σ )), and are such that AG(R)

◦ acts trivially on σ∞. Since aG and AG(R)
◦

act trivially on σ∞⊗ Vκn , we have

Hn−1
(p◦,K ◦∞)

(σ∞⊗ Vκn )= Hn−1
(p,K∞)(σ∞⊗ Vκn ).

By the Hodge decomposition (see [Lan and Polo 2018] for example) of the singular cohomology
H2n−1(S(C),Wλπ ) with coefficients in the algebraic representation with highest weight λπ , we see
that σ∞ is cohomological if

Hn−1
(p,K∞)(σ∞⊗ Vκn )⊗ σ

K p K G
Iw(p)

f ̸= 0.

Furthermore, if this space is nonzero after localizing at Iπ , the conditions in Lemma 6.2.2 are satisfied
for σ .

Note that if σ satisfies σ f ∼=π f then by the strong base-change results in [Mok 2015] and [Kaletha et al.
2014] (and that AG(R)

◦ acts trivially on σ∞), σ∞ must lie in the same L-packet for π∞. By [Blasius et al.
1994, Theorem 3.2.1], if the vector space Hn−1

(p,K∞)(σ∞⊗ Vκn ) is nonzero, then we must have σ∞ ∼= π∞
and Hn−1

(p,K∞)(π∞⊗ Vκn ) is one-dimensional. Therefore, localizing (6.2.4) at the ideal Iπ , we see that

Hn−1(S(C), [Vκn ])Iπ = (H
n−1
(p,K∞)(π∞⊗ Vκn )⊗π

K p K G
Iw(p)

f [θπ,p])
m(π).

where π
K p K G

Iw(p)
f [θπ,p] denotes the (generalized) eigenspace for the character θπ,p.

By Assumption 6.2.1, we therefore see that the dimension of the cohomology group in the statement
of the corollary is equal to m(π). Since m(π) > 0 (by definition), it is enough to show that m(π) ≤ 1.
But there is an injective G0-equivariant restriction map

L2
disc(G) ↪→ L2

disc(G0)
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from the discrete spectrum of G to that of G0 (see [Labesse and Schwermer 2019, Theorem 1.1.1]),
hence it is enough to show that the multiplicity of any cuspidal automorphic representation in L2

disc(G0)

is at most 1. But this follows from Arthur’s multiplicity formula for unitary groups; see [Chen and Zou
2021]. □

Recall that we have classicality isomorphisms on the small slope part

R0G
wn,an(κn)

−,ss ∼= R0G
wn
(κn)

−,ss ∼= R0(SG,Iw(p), [Vκn ])
−,ss.

Note that the cohomology of the right-hand side vanishes outside degree n− 1, and since θπ is of small
slope, we see that R0G

wn,an(κn)Iπ has cohomology concentrated in degree n− 1 where it is free of rank
one (over L).

The Tor-spectral sequence

E p,q
2 : TorA

−p(H
q
wn,an(κn(λA))

−,fs, λπ )⇒ Hp+q
wn,an(κn(λπ ))

−,fs

therefore implies that there exists an affinoid U = Spa(A, A+)⊂ (WG)L containing λπ , such that

R0G
wn,an(κn(λA))Iπ

has cohomology concentrated in degree n− 1 where it is free of rank one over the stalk of A at λπ . Here
λA : T (Zp)→ (A+)× denotes the universal character (which is trivial on T0(Zp)).

The construction in [Boxer and Pilloni 2021, Section 6.9] gives rise to an eigenvariety E→WG which is
locally quasifinite and partially proper, and parametrizes finite-slope Hecke eigensystems appearing in the
coherent cohomology of SG,Iw(p).7 In particular, we have coherent sheaves M̃•,−,fs

wn
whose pushforward

to WG recovers the cohomology groups H•wn,an( · · · )
−,fs, and the ideal Iπ gives a point x ∈ E(L). Since

R0G
wn,an(κn(λA))Iπ has cohomology concentrated in degree n− 1 where it is free of rank one over the

stalk of A at λπ , we can (after shrinking U ) find an open affinoid neighborhood V ⊂ EL of x such that
the induced map V →U is an isomorphism. In particular, this implies:

Theorem 6.2.5. Shrinking U if necessary:

(1) There exists a unique family π over U passing through π .

(2) The generalized eigenspace Sn−1(π)⊂Hn−1
wn,an(κn(λA))

−,fs on which T−A acts through the character θπ ,
is a direct summand that is free of rank one over A. In particular, a basis η of Sn−1(π) is a family of
cohomology classes passing through a basis η of Hn−1(SG,Iw(p), [Vκn ])Iπ .

Proof. The above discussion implies that there exists a character θπ specializing to θπ at λπ and
satisfying (2), so we just need to show that θπ defines a unique family. But the fact that θπ arises from the
eigenvariety E implies that for any λ ∈U ∩ X∗(T/T0)

+, the specialization of θπ is an eigencharacter for

7This is not the “full eigenvariety” but rather the pullback of the eigenvariety constructed in [Boxer and Pilloni 2021,
Section 6.9] along the closed embedding WG ↪→Wfull

G , here Wfull
G is the weight space parametrizing characters of T (Zp).

Furthermore, including level subgroups which are good special maximal compact open but not hyperspecial does not affect the
construction.
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the action of T−L on Hn−1
wn,an(κn(λ))

−,fs. Shrinking U if necessary, we can ensure that it is of small slope,
so (under the identification C∼=Qp) contributes to Hn−1(SG,Iw(C), [Vκn(λ)]) with multiplicity one. The
description in (6.2.4) holds for this cohomology group, and therefore, letting I denote the kernel of the
specialization θ of θπ at λ, we must have a Hecke-equivariant isomorphism

Hn−1(SG,Iw(C), [Vκn(λ)])I ∼= σ
K p K G

Iw(p)
f [θp]

for some cuspidal automorphic representation σ , since we know the dimension of the left-hand side is
one. □

Remark 6.2.6. We will refer to σ in the above theorem as the specialization of θπ at λ, even though there
will be several automorphic representations σ ′ which have the same Hecke eigenvalues. Note that, by the
Hodge decomposition, σ∞ is cohomological with respect to the algebraic representation of G(C) with
highest weight λ.

7. Families of anticyclotomic characters

In this section we exhibit families of anticyclotomic characters in the coherent cohomology of SH,♦(p).

7.1. Anticyclotomic characters. Let R denote the unitary similitude group associated with the Hermitian
space

∧n
F W1⊕

∧n
F W2 (with common similitude on each factor) where W1 and W2 are the Hermitian

spaces in Section 2. This can be upgraded to a PEL Shimura datum via the homomorphism h R := det ◦h H

and has Hodge cocharacter µR := det ◦µH . Here det : H → R denotes the homomorphism given by
(h1, h2) 7→ (det h1, det h2). By design, one has a morphism of Shimura data (H, h H)→ (R, h R). Note
that µR is central in RFcl , so the associated parabolics and Levi are all equal to

RFcl ∼= Gm,Fcl ×

∏
τ∈9

(Gm,Fcl ×Gm,Fcl).

Let ResF+/Q U(1) be the restriction of scalars of the unitary group associated with the one-dimensional
Hermitian space over F (with respect to F/F+). Then we have a morphism of algebraic groups

N : ResF/Q Gm→ ResF+/Q U(1),

z 7→ z̄/z,

which is open and surjective on A f -points. On the other hand, we have a morphism

ν : H det
−→ R→ ResF+/Q U(1)

where the second map is given by sending a pair (z1, z2) to z2/z1.

Notation 7.1.1. Let N be the smallest ideal of OF such that ν(U ) ⊂ N ((ÔF+ + NÔF )
×), where

U ⊂ H(A f ) is the level of SH,♦(p).

We introduce the following space of anticyclotomic characters:
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Definition 7.1.2. Let 6(N) denote the set of algebraic Hecke characters χ : A×F → C× satisfying:

(1) χ is anticyclotomic, i.e., its restriction to A×F+ is trivial.

(2) The infinity type of χ is ( j,− j) for some tuple of integers j = ( jτ )τ∈9 , i.e., for any z = (zτ )τ∈9 ∈∏
τ∈9 Fτ one has

χ(z)=
∏
τ∈9

z− jτ
τ zτ jτ .

(3) The conductor of χ divides the ideal N.

Remark 7.1.3. Let χ ∈ 6(N). Then, since χ is anticyclotomic, the character χ descends to a unique
character

χ ′ : (ResF+/Q U(1))(Q)\(ResF+/Q U(1))(A)→ C×

satisfying χ =χ ′◦N . We consider the character χ : R(Q)\R(A)→C× defined as χ(z1, z2)=χ
′(z2/z1).

Any character χ ∈6(N) has an associated p-adic algebraic Hecke character, denoted χp : A×F →Q×p ,
by defining

χp(x)= ιp(χ f (x))
∏
τ∈9

x− jτ
pτ x jτ

pτ

where ιp : C∼=Qp denotes the fixed isomorphism in Section 1.2, and pτ is the prime ideal corresponding
to τ with respect to this isomorphism. We are interested in p-adically interpolating algebraic p-adic
characters of the form

χ0,p
∏
τ∈9

χmτ
τ,p

where χ0 ∈6(N) is an anticyclotomic Dirichlet character, χτ ∈6(N) is a fixed anticyclotomic character
of infinity type (1τ ,−1τ ) (1τ is the tuple which is nonzero only in the τ -component, where it is equal
to 1) and mτ are integers. Furthermore, we want to interpret such a family as a coherent cohomology
class.

The strategy we will use for producing such a family follows three steps:

(1) We will first construct a family of cohomology classes interpolating these characters in the cohomology
of a Shimura set associated with the group R.

(2) Using the results in Appendix B, we will pull back this construction to the Shimura variety SH,♦(p)
via the morphism det : H→ R.

(3) Finally, we will construct the family and describe the interpolation property.

7.2. Step 1: Classes for the Shimura set. Let C ⊂ R(A f ) be a sufficiently small compact open subgroup,
and let χ ∈6(N) be an anticyclotomic character of infinity type ( j,− j) such that χ is trivial on C . Let
1 := SR,C denote the associated Shimura set (over Fcl), which satisfies

1(C)= R(Q)\R(A f )/C.
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The goal of this section is to associate to χ a class in the coherent cohomology of 1, and explain how
one can raise this class to p-adic powers.

Let RdR→1 denote the standard principal RFcl-bundle, which satisfies

RdR(C)= R(Q)\R(C)× R(A f )/C

(via the embedding Fcl
⊂ C). This bundle has a trivialization in the following way. Fix a set of

representatives {s1, . . . , sr } ⊂ R(A f ) for each point of 1(C), then we have an identification of torsors

1(C)× R(C)= RdR(C) (7.2.1)

by sending ([si ], γ ) to [γ, si ]. One can show that, for any number field8/Fcl, this identification descends
to an identification 18× R8 = RdR,8.8

Recall that we have a fixed prime p of F lying above p (corresponding to the fixed embedding τ0). We
fix a choice of prime P of 8 lying above p, and by passing to completions, we obtain a finite extension
L := 8P of Qp. Let 1an

L denote the adic space associated with 1L , and let Ran
HT,L → 1an

L denote the
Ran

L -torsor parametrizing frames of (the pro-étale sheaf) Vét⊗Q̂p
Ô1an

L
(respecting certain tensors), where

R = RQp and Vét is the p-adic local system associated with a faithful representation V of R; see [Caraiani
and Scholze 2017, Section 2.3].

Since µR is central in RFcl , one has an isomorphism of torsors between the analytification of RdR,L

and µRan
HT,L (the twist of Ran

HT,L along µR).

Notation 7.2.2. Consider the open affinoid subgroup

Rk,L =O×L (1+Bk)×
∏
τ∈9

(O×L (1+Bk)×O×L (1+Bk))⊂ Ran
L

where Bk is the “closed disc” (over L) in Section 3.2. We denote a general element of this subgroup by
(x0, x1,τ , x2,τ )τ∈9 .

Corollary 7.2.3. The above identification induces an identification

1an
L × Ran

L =
µRan

HT,L .

It is evident from this identification that one obtains the following reduction of structure

RHT,L ,k :=1
an
L ×Rk,L ↪→1an

L × Ran
L =Ran

HT,L

for any k ≥ 1. We can (and do) choose the set of representatives {s1, . . . , sr } such that si ∈ R(Ap
f ).

9 Then
we associate with χ the global section

RdR(C)→ C

8One should think of such a choice of representatives as a choice of canonical model for 1(C). Of course, canonical models
are unique up to unique isomorphism, but for this identification of torsors, it is helpful to fix such a choice.

9This is possible because a finite Galois extension can be generated by Frobeniuses outside any finite set of primes.
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given by sending [x, y] 7→ ξ [ j](x)χ(y), where x ∈ R(C) and y ∈ R(A f ), and

ξ [ j] : R(C)∼= C××
∏
τ∈9

(C××C×)→ C×,

(x0, x1,τ , x2,τ )τ∈9 7→
∏
τ∈9

(
x2,τ

x1,τ

) jτ
.

This global section is well-defined precisely because χ is an algebraic Hecke character of infinity-type
( j,− j), and transforms under the action of R(C) by the character ξ [ j], so descends to a cohomology
class

[χ ]B ∈ H0(1(C), [ξ [ j]]).

Via the identification in (7.2.1), the class [χ ]B coincides with the product of the global section of 1(C)
taking si to χ(si ), and the global section R(C) ξ

[ j]
−→ C× ⊂ C. Since χ(si ) are elements of some number

field, we can find a large enough 8 such that [χ ]B descends to a global section in H0(18, [ξ
[ j]
]). Via

the rigid GAGA comparison, we therefore obtain a global section [χ ]HT ∈ H0(1an
L , [ξ

[ j]
]) characterized

by the global section
1an

L × Ran
L → A1,an,

([si ], t) 7→ χ(si )ξ
[ j],an(t),

where we are viewing χ(si ) as an element of L× via the identification C∼=Qp.

Lemma 7.2.4. For any integer k ≥ 1, the global section [χ ]HT is described by the morphism

1an
L ×Rk,L → A1,an,

([si ], (x0, x1,τ , x2,τ )τ∈9) 7→ χ(si )
∏
τ∈9

(
x2,τ

x1,τ

) jτ
,

which is valued in O×L (1+Bk).

Proof. This follows immediately from the fact that χ(si ) ∈O×L (under the identification C∼=Qp). Indeed,
because the representatives si have been chosen to have no component at p, χ(si ) is in the image of the
(continuous) Galois character Gal(Fab/F)→ L× associated with χp (via class field theory). But Galois
groups are compact, so this is valued in O×L . □

The description in Lemma 7.2.4 allows us to raise this cohomology class to p-adic powers, in the
following way. Let (A, A+) be a Tate algebra over (L ,OL) and let β : O×L → (A+)× be a k-analytic
character, i.e., it extends to a pairing

O×L (1+Bk)×Spa(L ,OL ) Spa(A, A+)→ Gan
m .

Then via the torsor RHT,L ,k , one obtains an A-Banach sheaf [β ◦ ξ [ j]] and a cohomology class

[χ ]
β

HT ∈ H0(1an
L , [β ◦ ξ

[ j]
])
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described by the morphism

1an
L ×Rk,L → A1,an

×Spa(A, A+),

([si ], (x0, x1,τ , x2,τ )τ∈9) 7→ β

(
χ(si )

∏
τ∈9

(
x2,τ

x1,τ

) jτ)
,

which is well-defined by Lemma 7.2.4. This description is independent of the radius of analyticity k.

Remark 7.2.5. If we take (A, A+)= (L ,OL) and β(−)= (−)k for some integer k, then [χ ]βHT is equal
to the k-fold cup product of [χ ]HT (which makes sense for negative integers because [χ ]HT is an invertible
section). In particular, under the rigid GAGA comparison (and the identification C∼=Qp)

H0(1an
L , [β ◦ ξ

[ j]
])= H0(1an

Qp
, [β ◦ ξ [ j]])⊗Qp L ↪→ H0(1(C), [β ◦ ξ [ j]])

the class [χ ]βHT is mapped to [χ k
]B .

7.3. Step 2: Pullback to the Shimura variety for H. Recall that we have a morphism (H, X H)→

(R, X R) of Shimura data induced from the homomorphism det : H ↠ R. Let U = U p K H
♦
(p) and let

C = ν(U ). By shrinking U p is necessary, we may assume that C is neat. We therefore obtain a morphism

SH,♦(p)→ SR,C :=1

which we will also denote by det. The fibers of this morphism (after base-changing to a sufficiently large
field extension) are disjoint unions of connected components of SH,♦(p).

Let HdR→ SH,♦(p) denote the standard principle HFcl-bundle as in [Milne 1990, Section III.3], which
satisfies

HdR(C)= H(Q)\X H × H(C)× H(A f )/K .

One has a natural morphism HdR(C)→ RdR(C) induced from the morphism det and, as explained in
Section III.4 of [loc. cit.], this descends to a morphism on the canonical models of these standard principle
bundles;10 i.e., we obtain a morphism (of principle bundles) HdR→ RdR. One can check on complex
points that this induces an isomorphism HdR×

HFcl RFcl ∼= det∗ RdR, where the pushout is via the morphism
det : HFcl → RFcl .

On the other hand, the bundle HdR can be expressed as the pushout PH,dR×
PH HFcl , and since the

morphism ν : PH → RFcl factors through the projection PH ↠ MH , one obtains an isomorphism

MH,dR×
MH RFcl ∼= HdR×

HFcl RFcl ∼= det∗ RdR.

Passing to the associated adic spaces and using the de Rham–p-adic comparison, one obtains an isomor-
phism (of Ran-torsors)

µMan
H,HT×

Man
H Ran ∼= det∗(µRan

HT). (7.3.1)

10Since (H, X H ) does not satisfy axiom (SD3) in [Graham and Shah 2023, Definition B.16], one has to use the additional
property that this Shimura–Deligne datum embeds into a Siegel datum to ensure the existence of a canonical model for HdR.
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It will be helpful to reinterpret this isomorphism in terms of flag varieties. We have a commutative
diagram:

SH,U p FLH

SR,C p FLR

πH,HT

πR,HT

where the vertical arrows are induced from the homomorphism det.
Let Ran and MH,an denote the torsors Ran

→ FLR and H an/N an
H → FLH respectively (where both

structural maps are given by x 7→ x−1 to ensure that they are right torsors). Note that the torsor Ran is
trivial, so det∗ Ran is identified with FLG

× Ran and we have a canonical isomorphism

MH,an
×

Man
H Ran ∼= det∗ Ran.

Since pull-back commutes with colimits (so in particular pushouts) and this is compatible with the
K H
♦
(p)-equivariant structure, this induces an isomorphism

Man
H,HT×

Man
H Ran

= π∗H,HT(M
H,an
×

Man
H Ran)/K H

♦
(p)∼= π∗H,HT(det∗ Ran)/K H

♦
(p)= det∗Ran

HT.

We can twist this isomorphism along µ : Z×p → Man
H

det
−→ Ran (induced from µR = det ◦µH ) to obtain an

isomorphism
µMan

H,HT×
Man

H Ran ∼= det∗(µRan
HT). (7.3.2)

Proposition 7.3.3. The isomorphisms (7.3.1) and (7.3.2) coincide.

Proof. With notation as in Appendix B, the isomorphism (7.3.1) (resp. (7.3.2)) is induced from the natural
transformation ηdR (resp. ηét). The result now follows from Corollary B.2.4. □

We obtain the following corollary:

Corollary 7.3.4. Over UH
k (p)L one has a commutative diagram:

µMan
H,HT,L ×

Man
H,L Ran

L det∗(µRan
HT,L)

µMH,HT,k,1,L ×
M♣

H,k,1,L Rk,L det∗(µRHT,k,L)

(7.3.1)

∼

for any finite extension L/Qp, where the left-hand map is induced from the reduction of structure in
Section 5.1.

Proof. To simplify notation, we will establish the case L =Qp only, as the general case follows the exact
same argument.

Note that the left-hand vertical map is induced from the morphism MH,HT,k,k,1→Man
H,HT and pushing

out along M♣

H,k,k,1→Rk factors through the affinoid group M♣

H,k,1, so the left hand vertical map does
indeed make sense.
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Using the fact that the morphism (7.3.1) coincides with (7.3.2) and untwisting along µ : Z×p →

M♣

H,k,1
det
−→Rk , we can work on the level of flag varieties. In this setting we have a commutative diagram

(because the morphism M♦

H,k,k,1→Rk extends to a morphism MH
k,k,1→Rk):

MH,an
|UH

k
×

Man
H Ran UH

k × Ran

MH
k,k,1×

M♦

H,k,k,1 Rk UH
k ×Rk

∼

∼

which gives the desired result. □

7.4. Step 3: Construction of the family. Fix a collection {χτ : τ ∈ 9} ⊂ 6(N) of anticyclotomic
characters, where χτ has infinity type (1τ ,−1τ ) and let χ0 ∈6(N) be a fixed anticyclotomic Dirichlet
character. Let L ′/Qp be a sufficiently large finite extension containing the fields of definition of χτ,p,
and let L/L ′ be finite extension containing the field of definition of χ0,p.

Theorem 7.4.1. Let (A, A+) be a Tate algebra over (L ,OL) and let (βτ )τ∈9 be a collection of locally
analytic characters O×L ′ → (A+)×. Let ξ [β] : Rk,L ′ → Gan

m denote the character given by sending
(x0, x1,τ , x2,τ )τ∈9 to

∏
τ βτ (x2,τ/x1,τ ), for any sufficiently large k. Then there exists a class

χ ∈ H0
id,an(ξ

[β]
◦ det)(+,†) := lim

−−→
m

H0(ZH
m (p), [ξ

[β]
◦ det])

such that:

(1) If (A, A+) = (L ,OL) and βτ are integers, then χ extends to a class in H0(SH,♦(p)L , [ξ
[β]
◦ det])

whose image under the map (induced from rigid GAGA and the identification C∼=Qp)

H0(SH,♦(p)L , [ξ
[β]
◦ det])= H0(SH,♦(p), [ξ [β] ◦ det])⊗Qp L ↪→ H0(SH,♦(p)(C), [ξ [β] ◦ det])

is equal to det∗([χ0]B ·
∏
τ∈9[χ

βτ
τ ]B). In other words, for classical weights this family specializes to

the cohomology class representing the automorphic form:

H(Q)\H(A)→ C,

(h1, h2) 7→ χ0(det(h1, h2)) ·
∏
τ∈9

χ τ (det(h1, h2))
βτ .

(2) For varying (A, A+), the constructions of χ are compatible.

Proof. Recall the definitions of [χ0]HT and [χτ ]
βτ
HT from Section 7.2 (where we view [χτ ]

βτ
HT as a class

defined over L). We define
χ = det∗[χ0]HT ·

∏
τ∈9

det∗[χτ ]
βτ
HT.

The interpolation property follows from Corollary 7.3.4 and Remark 7.2.5, and it is clear from the
definition of [· · · ]HT that this construction is compatible under base-change. □
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8. Construction of the p-adic L-function

In this final section, we construct the p-adic L-function associated with a family of cohomology classes η
and a family χ of anticyclotomic characters. We will end by discussing its relation to unitary Friedberg–
Jacquet periods.

8.1. Definition of the p-adic L-function. Let π be a cuspidal automorphic representation of G(A)
satisfying Assumptions 6.1.1, 6.1.4 and 6.2.1. Then the construction in Section 6.2 implies that there
exists a unique family θπ and family of cohomology classes η ∈ Sn−1(π) passing through π , defined over
a sufficiently small affinoid U = Spa(A, A+)⊂WG,L .

For the family of anticyclotomic characters, we make the following assumption:

Assumption 8.1.1. The class number of F is not divisible by p.

By this assumption, for every τ ∈9, we can fix an anticyclotomic character χτ ∈6(N) of infinity type
(1τ ,−1τ ), such that associated p-adic Hecke character is valued in Q×p ; see the discussion in [Collins
2020, Section 4.2], for example. Fix an anticyclotomic Dirichlet character χ0 ∈ 6(N), and let V =
Spa(B, B+)⊂WH,L be an open affinoid subspace with universal character λB : (Z

×
p )
[F+:Q]−1

→ (B+)×.
We can naturally view λA and β := λB as characters valued in A⊗̂B. Then the results in Section 7 imply
that there exists a family χ ∈H0

id,an(σ
[β]
n (λA)

∨)(+,†) which interpolates (the coherent cohomology classes
associated with) the anticyclotomic characters

χ(λ, j) := χ0 ·χ
−(cn,τ0+1)
τ0 ·

∏
τ ̸=τ0

χ− jτ
τ

where (λ, j)∈ X∗(T/T0)
+
×X∗(S)+∩U×V with λ= (0; c1,τ , . . . , c2n,τ )τ∈9 and j = ( jτ )τ ̸=τ0 satisfying

0≤ jτ ≤ cn,τ .

Definition 8.1.2. With the set-up as above, we define

Lp(η, χ) := ⟨⟨η, χ⟩⟩
−

an ∈O(U × V )

where the right-hand side is as in Section 5.4.

Remark 8.1.3. Since the pairing ⟨⟨·, ·⟩⟩−an is compatible with change of coefficients, the p-adic analytic
functions Lp(η, χ) glue as V varies. Therefore, we can (and do) view

Lp(η, χ) ∈O(U ×WH,L)

which makes sense because the families χ glue for varying V , by Theorem 7.4.1(2) (note that we can
choose an open affinoid cover of WH such that the universal characters for each open are locally analytic —
see [Loeffler and Zerbes 2016, Lemma 4.1.5]).
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8.2. The interpolation property. Keeping with the same set-up as in the previous section, we introduce
the following “region of interpolation”:

Definition 8.2.1. Let 6int denote the subset of X∗(T/T0)
+
× X∗(S)+ ∩ (U ×WH )(L) of all pairs (λ, j)

with λ= (0; c1,τ , . . . , c2n,τ )τ∈9 and j = ( jτ )τ ̸=τ0 satisfying 0≤ jτ ≤ cn,τ .

For (λ, j) ∈6int let

ηλ ∈ Hn−1
wn,an(κn(λ))

−,ss ∼= Hn−1(SG,Iw(p), [Vκn(λ)])
−,ss

denote the specialization of η at (λ, j), which we can view as an element of Hn−1(SG,Iw(p)(C), [Vκn(λ)])

via rigid GAGA and the identification ιp : C ∼= Qp. Let Lp(ηλ, χ(λ, j)) denote the specialization of
Lp(η, χ) under the map O(U ×WH )→ L induced from (λ, j).

We obtain the following interpolation property for Lp(η, χ).

Proposition 8.2.2. After possibly shrinking U around λπ , for any (λ, j) ∈6int one has

ι−1
p Lp(ηλ, χ(λ, j))= ⟨ηλ, ν

∗
[χ(λ, j)]B⟩alg

where ιp : C ∼= Qp denotes the fixed isomorphism, and the pairing in the right-hand side has been
base-changed to C (via the embedding Fcl ↪→ C).

Proof. If we let

ν∗[χ(λ, j)]HT ∈ H0
id,an(σ

[ j](λ)∨)(+,†) = H0
id(σ

[ j](λ)∨)(+,†)

denote the specialization of χ , then the results in Section 7 imply that ν∗[χ(λ, j)]HT is in the image of the
restriction map

H0(SH,♦(p), [σ [ j]n (λ)]∨)→ H0
id(σ

[ j](λ)∨)(+,†)

and its image under the rigid GAGA comparison is equal to ν∗[χ(λ, j)]B . The result then follows from
Corollary 5.4.4, Theorem 4.7.3 and Proposition 4.4.2. □

Remark 8.2.3. The equality in Proposition 8.2.2 depends on a choice of isomorphism V ∗κn(λ)∗
∼= Vκn(λ)

over Fcl.

Let [H] = H(Q)AG,H(A)\H(A), where AG denotes the maximal split subtorus of the center of G
and AG,H = AG ∩ H (which in fact equals AG). By choosing a Haar measure for H(Q)AG,H(A) and
using a fixed Haar measure for H(A), one obtains a measure on the quotient [H] which we will denote
by d̄h. We also let [H]′ = H(Q)AG,H(R)

◦
\H(A) and, similar to above, we have an induced measure

d̄ ′h. We choose these measures so they are compatible under the quotient map [H]′→ [H]. We also
assume that the volume of U ◦

∞
U with respect to the Haar measure on H(A) is contained in (Fcl)×, where

U ◦
∞

is the maximal compact subgroup of U∞ = K∞ ∩ H(R).
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Corollary 8.2.4. Let (λ, j) ∈6int and σ be the cuspidal automorphic representation of G(A) associated
with ηλ (see Section 6.2). Then there exists G ∈ σ such that

ι−1
p Lp(ηλ, χ(λ, j))∼Fcl,× (2π i)−(n−1)

∫
[H]′

G(h) ·χ(λ, j)(ν(h)) d̄ ′h (8.2.5)

where ∼Fcl,× means up to a nonzero constant in Fcl,× which only depends on λ and the choice of Haar
measures as above.

Furthermore, if the central character of π restricted to AG,H(A) is trivial, then we have the relation

ι−1
p Lp(ηλ, χ(λ, j))∼Fcl,× (2π i)−(n−1)

∫
[H]

G(h) ·χ(λ, j)(ν(h)) d̄h

after possibly shrinking U around λπ .

Proof. By Proposition 8.2.2, it is equivalent to showing that ⟨ηλ, ν∗[χ(λ, j)]B⟩alg equals the right-hand side
of (8.2.5). We will freely use the notation from the proof of Corollary 6.2.3. We first note that we have an
morphism

HomK∞(νn−1, σ∞)→ HomK∞

(n−1∧
(p/m), σ∞⊗ Vκn(λ)

)
where notation is as in Section 2.3, given by precomposing with the map of MG-representations

n−1∧
(p/m)⊗ Vκn(λ)∗→ νn−1 (8.2.6)

(which is uniquely determined up to C×) and using a fixed isomorphism

V ∗κn(λ)∗
∼= Vκn(λ). (8.2.7)

This induces an isomorphism HomK∞(νn−1, σ∞)∼=Hn−1
(p,K∞)(σ∞⊗Vκn(λ)), and hence we obtain an injective

map

HomK∞(νn−1, σ∞)⊗ σ
K p K G

Iw(p)
f ↪→ Hn−1(SG,Iw(p)(C), [Vκn(λ)])

whose image is identified with the localization of the right-hand side at the kernel of the specialization of
θπ at λ.

The representation
∧n−1

(p/m) is definable over Fcl so we choose the map (8.2.6) to be defined
over Fcl. We also choose the same isomorphism (8.2.7) as in Proposition 8.2.2, which is defined over Fcl.
Recall from Proposition 2.6.1 that we have a (unique up to scaling) vector v[ j]κn(λ)

∈ Vκn(λ)∗ on which MH

acts through the character σ [ j]n (λ)−1. Let z be the image of w⊗ v[ j]κn(λ)
under the map (8.2.6), where w

is a choice of highest weight vector of
∧n−1

(p/m) defined over Fcl. This vector z is nonzero because
σ
[ j]
n (λ)∨ appears as a direct factor with multiplicity one in both the codomain and domain of (8.2.6).

Via the above injective map, the class ηλ corresponds to a homomorphism Gηλ ⊗ ϕ f , where ϕ f ∈

σ K p K G
Iw(p). We take G to be G := γ̂ ·(Gηλ(z)⊗ϕ f )∈σ (where γ̂ is viewed as an element of G(Qp)⊂G(A)).
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If we let pH (resp. mH ) denote the Lie algebra of the opposite of PH (resp. MH ), then
∧n−1 pH/mH is

identified with the line spanned by the vector w. By [Su 2019], we have an isomorphism

Hn−1(SH,♦(p)(C), [σ [ j]n (λ)])∼= Hn−1
(pH ,U∞)(C

∞([H]′/U )U∞−fin
⊗ σ [ j]n (λ))

where U∞ = K∞ ∩ H(R) and U ⊂ H(A f ) is the level of the Shimura variety SH,♦(p). Under this
identification, the class ι̂∗ηλ is represented by the homomorphism

n−1∧
pH/mH → C∞([H]′/U )U∞−fin

⊗ σ [ j]n (λ),

w 7→ G|H .

The result now follows from [Harris 1990, Proposition 3.8].
For the last part, note that the central character of π restricted to AG(A) is necessarily a Dirichlet

character (because π contributes to the coherent cohomology of SG,Iw(p) and the center acts trivially
on Vκn ) and is therefore determined by the image of Hecke operators [K SaK S

] under the map θπ , for
a ∈ AG(A

S
f ). The image of these operators under θπ form a discrete subgroup, so we can shrink U if

necessary so that the images of these operators under θπ are constant (note that one normally normalizes
the Hecke operators by the weight, but because our weights are trivial on T0, this normalization is trivial).
Therefore our assumption implies that the central character of σ is trivial on AG(A), so we can descend
to [H]. □

Remark 8.2.8. If we define [H0] = H0(Q)\H0(A), then [H] is the disjoint union of finitely many
translates of [H0]. Therefore the integral (over [H]) in Corollary 8.2.4 is nonzero if and only if∫

[H0]

G(h) ·χ(λ, j)(ν(h)) d̄h

is nonzero. This latter integral is a so-called unitary Friedberg–Jacquet period.

Appendix A: Branching laws

The goal of this appendix is to prove Theorem 5.3.4. The idea is to p-adically interpolate the branching
law appearing in Proposition 2.6.1. Since the groups MG and MH are products of general linear groups
indexed by the CM type 9 (and an additional “similitude factor”), it will be more convenient to analyze
the branching law for each factor.

Unfortunately this means that we will have to use conflicting notation when performing this case-
by-case analysis; therefore, we warn the reader that the notation in Sections A.1–A.4 is different from
the rest of the article. We have however endeavored to keep the notation uniform throughout these four
subsections (e.g., the element u and torus T♦ play the same role in the analysis, but change for each
group). We hope that this change doesn’t cause any confusion.
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A.1. A preliminary lemma. For a split unramified reductive group G over Zp, let BG ⊂ G denote a
Borel subgroup and BG its opposite with respect to a fixed maximal torus T ⊂ BG . Let UG ⊂ BG and
U G ⊂ BG denote the unipotent radicals.

Let G denote the adic generic fiber of the completion of G along its special fiber, and let Gan denote
the analytification of GQp (so we have G ⊂ Gan). We use similar notation for UG , BG , etc. For an integer
r ≥ 1, we let G1

r denote the subgroup of G of elements which reduce to the identity modulo pr . Similarly,
for H= UG , UG , BG , BG , let H1

r denote the elements in H which reduce to the identity modulo pr .
Recall the notation B◦r ⊂ B◦r ⊂ Br ⊂ Br for the four different “flavors of disc” in Section 3.2.

Lemma A.1.1. Let d, r ≥ 1 and Y a (d × d)-matrix with entries in B◦r . Let ξ denote the antidiagonal
(d × d)-matrix with 1s along the antidiagonal. Then there exist elements R ∈ U1

GLd ,r and S ∈ B1
GLd ,r such

that

ξ + Y = R · ξ · S.

Proof. The element 1+ Y ξ−1 defines an element of the group GL1
d,r . One has an Iwahori decomposition

GL1
d,r = U1

GLd ,r ·B
1
GLd ,r

so there exist elements R ∈U1
GLd ,r and S′ ∈B1

GLd ,r such that 1+Y ξ−1
= RS′. We then take S= ξ−1S′ξ . □

A.2. The group GL2n−1. We first establish the following lemma:

Lemma A.2.1. Let ξ be the (n×n−1)-matrix whose first row is zero and the bottom (n−1×n−1)-matrix
is the antidiagonal matrix with 1s along the antidiagonal. Let Y be any (n× n− 1)-matrix with entries
in B◦r . Then there exists R ∈ U1

GLn,r and S ∈ B1
GLn−1,r such that

ξ + Y = R · ξ · S.

Proof. We denote the top row of Y by y and the bottom (n− 1× n− 1)-matrix by Y ′. Let R′ ∈ U1
GLn,r

and S ∈ B1
GLn−1,r be as in Lemma A.1.1 such that

ξ ′+ Y ′ = R′ · ξ ′ · S

where ξ ′ is the (n− 1× n− 1) antidiagonal matrix with nonzero entries equal to 1. Then we take

R =
(

1 r
R′

)
∈ U1

GLn,r

where r = yS−1(ξ ′)−1. □

Let G = GL2n−1 and H = GLn−1×GLn over Zp. We consider H as a subgroup of G via the block
diagonal embedding (where the top left block is of size GLn−1). Fix the standard Borel BG and torus
T in G. Elements of the torus T are given by tuples (y1, . . . , y2n−1) (corresponding to the entries of
the diagonal matrix) and we let T♦ ⊂ T denote the subtorus of elements satisfying yi = y2n−i for all
i = 1, . . . , 2n− 1. For an integer r ≥ 1, we set G□

r = G1
r · BG(Zp) and H♦r =H1

r · T
♦(Zp).
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Let u ∈ G(Zp) denote the block matrix

u =
(

1
ξ 1

)
where the top right block is of size (n− 1× n− 1) and ξ is as in Lemma A.2.1.

Proposition A.2.2. One has the following equality

G□
r = (u

−1H♦r u) · (G□
r ∩BG).

Proof. By multiplying by elements of (G1
r ∩ BG)BG(Zp) on the right, we are reduced to proving the

statement
U1

G,r ⊂ (u
−1H♦r u) · (G□

r ∩BG)

because one has an Iwahori decomposition G1
r = U1

G,r · (G
1
r ∩BG). Let x ∈ U1

G,r be a general element
written as a block matrix

x =
(

x1

x2 x3

)
where the top left (resp. bottom right) block has size (n− 1× n− 1) (resp. n× n). Then

h :=
(

x1

x3

)
defines an element of H1

r . Let N denote the unipotent radical of the standard opposite parabolic of G
with Levi H . Then we have

(u−1h−1u) · x ∈N 1
r

where N 1
r denote the subgroup of N of elements which reduce to the identity modulo pr . Hence we are

reduced to proving N 1
r ⊂ (u

−1H♦r u) · (G□
r ∩BG). But if(

1
Y 1

)
∈N 1

r

is a general element, then we have(
1
Y 1

)
= u−1

(
S−1

R

)
u

(
S

R−1

)
where R, S are as in Lemma A.2.1. □

Remark A.2.3. The proof of Proposition A.2.2 in fact shows that G□
r = (u

−1H1
r u) · (G□

r ∩BG).

A.3. The group GL1 × GL2n−1. We now let G =GL1×GL2n−1 and H =GL1×GLn−1×GLn embed-
ded block diagonally. Define G□

r and H♦r analogously as in the previous section, where now T♦ is the
subtorus of elements (y1, . . . , y2n) with y1 = yn+1 and yi = y2n+2−i for all i = 2, . . . , 2n.

We take u ∈ G(Zp) to be the element which is 1 in the GL1-component, and equal to the element u in
the previous section in the GL2n−1-component. Then we obtain the following decomposition:
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Proposition A.3.1. Let r ≥ 1. Then we have

G□
r = (u

−1H♦r u) · (G□
r ∩BG).

Proof. This follows from Proposition A.2.2 and Remark A.2.3. □

A.4. The group GL2n. We now let G = GL2n and H = GLn ×GLn embedded block diagonally. We
define G□

r and H♦r analogously as in the previous section, but now T♦ is the subtorus given by elements
(y1, . . . , y2n) satisfying yi = y2n+1−i for all i = 1, . . . , 2n.

We let u ∈ G(Zp) denote the block matrix

u =
(

1
ξ 1

)
where all blocks are of size (n× n), and ξ is the antidiagonal matrix with nonzero entries equal to 1.

Proposition A.4.1. Let r ≥ 1. Then we have

G□
r = (u

−1H♦r u) · (G□
r ∩BG).

Proof. By reasoning as in the proof of Proposition A.2.2, it is enough to show

N 1
r ⊂ (u

−1H♦r u) · (G□
r ∩BG)

where N denotes the unipotent radical of the standard opposite parabolic of G with Levi H . But this
follows from the same proof in Proposition A.2.2 using Lemma A.1.1 (with d = 2n). □

A.5. Proof of Theorem 5.3.4. We now return to the setting of Section 5 (and return to using the notation
introduced in the main body of the article). By combining the previous sections, we immediately find
that:

Proposition A.5.1. Let r ≥ 1. Then one has equalities

M□
G,r = (u

−1M♦

H,r u) · (M□
G,r ∩BMG ), M□

G,r = (u
−1M♣

H,r u) · (M□
G,r ∩BMG ).

Proof. For the first equality, this follows by breaking up the groups into the factors indexed by τ ∈ 9.
The factor corresponding to τ0 follows from Proposition A.2.2, and the factors for τ ̸= τ0 follow from
Proposition A.4.1. There is nothing to check for the extra GL1-factors in MG and MH . The second
equality follows from u−1M♦

H,r u ⊂ u−1M♣

H,r u ⊂M□
G,r . □

We now introduce the relevant algebraic weights for representations of MG . Recall any algebraic
character of the torus T can be represented by a tuple

κ = (κ0; κ1,τ , . . . , κ2n,τ )τ∈9

where κ0 and κi,τ are integers. By the τ -factor or τ -component of κ , we mean the tuple (κ1,τ , . . . , κ2n,τ ),
and by the GL1-factor, we mean the integer κ0. It will be helpful to use this terminology when defining
certain characters below.
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Definition A.5.2. Let κ be an algebraic character of T as above. We say:

(1) κ is MG-dominant if

κ2,τ0 ≥ · · · ≥ κ2n,τ0 and κ1,τ ≥ · · · ≥ κ2n,τ

for all τ ∈9 −{τ0}.

(2) κ is pure of weight w ∈ Z if

κi,τ0 + κ2n+2−i,τ0 = w

for all i = 2, . . . , n, and κi,τ + κ2n+1−i,τ = 0 for all i = 1, . . . , 2n and τ ̸= τ0.

The set of characters which are pure (of some weight w ∈ Z) form a group, and we let C denote the
submonoid of MG-dominant characters which are pure of weight w ≤ 0 satisfying κn+1,τ0 ≤ w. We will
always write the group law for C additively. We consider the following special elements of C:

• µ0 = (1; 0, . . . , 0)τ∈9 .

• µw = (µw,0, µw,1,τ , . . . , µw,2n,τ )τ∈9 , where µw,0 = µw,1,τ0 = µw,i,τ = 0 for all i = 1, . . . , 2n and
τ ̸= τ0, and we have

µw,2,τ0 = · · · = µw,n,τ0 = 0, µw,n+1,τ0 = · · · = µw,2n,τ0 =−1.

• µ1,τ0 which is the identity in the GL1-factor and τ ̸= τ0 factors, and in the τ0-factor is given by

(1, 0, . . . , 0).

• For i = 2, . . . , n, we let µi,τ0 be the character which is the identity in the GL1-factor and τ ̸= τ0

factors, and in the τ0-factor is given by

(0, 1, . . . , 1, 0, . . . , 0,−1, . . . ,−1)

where there are i − 1 lots of 1s and −1s.

• We let µn+1,τ0 be the character which is the identity outside the τ0-factor, and the τ0-factor is given
by

(0, 1, . . . , 1,−1, . . . ,−1)

where there are n− 1 lots of 1 and n lots of −1.

• For i = 1, . . . , n and τ ̸= τ0, we let µi,τ denote the character which is the identity outside the τ -factor,
and at the τ -factor is

(1, . . . , 1, 0, . . . , 0,−1, . . . ,−1)

where there are i lots of 1s and −1s.
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This collection of characters forms a generating set for C in the following sense: for any κ ∈ C, there exist
unique integers a0, a1,τ0 ∈ Z and aw, ai,τ ∈ Z≥0 for (i, τ ) ̸= (1, τ0), such that

κ = a0µ0+ awµw + an+1,τ0µn+1,τ0 +

n∑
i=1

∑
τ∈9

ai,τµi,τ .

Explicitly, the integers are given by:

• a0 = κ0.

• aw =−(κ2,τ0 + κ2n,τ0).

• a1,τ0 = κ1,τ0 .

• For i = 2, . . . , n+ 1, one has

ai,τ0 =


κi,τ0 − κi+1,τ0 if i ≤ n− 1,
κn+1,τ0 − κn+2,τ0 if i = n,
(κn,τ0 + κn+2,τ0)− κn+1,τ0 if i = n+ 1.

• For i = 1, . . . , n and τ ̸= τ0, one has

ai,τ =

{
κi,τ − κi+1,τ if i ≤ n− 1,
κn,τ if i = n.

Let D =
∏
τ ̸=τ0

Z≥0 equipped with the monoid structure given by component-wise addition. We will
denote elements of D by tuples j = ( jτ )τ ̸=τ0 . We let E ⊂ C×D be the collection of pairs (κ, j) which
satisfy jτ ≤ κn,τ for all τ ̸= τ0. This forms a submonoid of C×D. Then E has a generating set given by
the pairs (µ0, 0), (µw, 0), (µi,τ , 0), and (µn,τ , 1τ ) for τ ̸= τ0, where 1τ ∈ D is the tuple which is zero
outside τ and has 1 in the τ -component. More precisely, for any (κ, j) ∈ E , there exist unique integers
a0, a1,τ0 ∈ Z, aw, ai,τ ∈ Z≥0 for (i, τ ) ̸= (1, τ0), and bτ ∈ Z≥0 for τ ̸= τ0 such that

(κ, j)= a0(µ0, 0)+ aw(µw, 0)+ an+1,τ0(µn+1,τ0, 0)+
n∑

i=1

∑
τ∈9

ai,τ (µi,τ , 0)+
∑
τ ̸=τ0

bτ (µn,τ , 1τ ).

Explicitly, the integers are given by:

• a0, aw, a1,τ0, . . . , an+1,τ0 and a1,τ , . . . , an−1,τ are given by the formulae above.

• For τ ̸= τ0, one has an,τ = κn,τ − jτ .

• bτ = jτ .

Definition A.5.3. For any (κ, j) ∈ E , we let σ [ j]κ denote the character of MH given by sending a general
element (x; y1, y2, y3; z1,τ , z2,τ )τ ̸=τ0 to

x−κ0 y
−κ1,τ0
1 det y

κn+1,τ0−w

2 det y
−κn+1,τ0
3

∏
τ ̸=τ0

det z− jτ
1,τ det z jτ

2,τ

where w = κ2,τ0 + κ2n,τ0 denotes the weight of κ .
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For any κ ∈ C, let Vκ denote the irreducible algebraic representation of MG with highest weight κ ,
which can be viewed as the space of algebraic functions f : MG→ A1 satisfying

f (mb)= (wmax
MG
κ)(b−1) f (m)

for all b ∈ BMG . The action of MG on f is then given by m · f (n)= f (m−1n). We have the following
classical branching law:

Theorem A.5.4. Let (κ, j) ∈ E . Then there exists a unique vector x [ j]κ ∈ Vκ such that:

(1) x [ j]κ is an eigenvector for the action of u−1 MH u with eigencharacter given by the inverse of σ [ j]κ .

(2) x [ j]κ (1)= 1, where we are viewing x [ j]κ : MG→ A1 as an algebraic function.

(3) The vectors x [0]µ0
and x [0]µ1,τ0

are invertible in O(MG), and we have

x [ j]κ = (x
[0]
µ0
)a0 · (x [0]µw)

aw · (x [0]µn+1,τ0
)an+1,τ0 ·

∏
i=1,...,n
τ∈9

(x [0]µi,τ
)ai,τ ·

∏
τ ̸=τ0

(x [1τ ]µn,τ
)bτ

where the product takes place in O(MG) and the exponents are the integers above.

Proof. By applying [Knapp 2001, Theorem 2.1] for each general linear factor of MG ,11 there exists a
unique up to scaling (nonzero) vector x [ j]κ ∈ Vκ satisfying property (1). Since u−1 MH u BMG is Zariski
open in MG (Lemma 2.4.3), the vector is nonvanishing on this cell, so we can normalize x [ j]κ as in
(2) to determine the vector uniquely. The vectors x [0]µ0

and x [0]µ1,τ0
are invertible in O(MG) because the

corresponding representations Vµ0 and Vµ1,τ0
are one-dimensional. Property (3) then follows immediately

from uniqueness, the identity

σ [ j]κ = (σµ0)
a0 · (σ [0]µw )

aw · (σ [0]µn+1,τ0
)an+1,τ0 · (σ [0]µ1,τ0

)a1,τ0 ·

∏
τ ̸=τ0

(σ [1τ ]µn,τ
)bτ

and the fact that σ [0]µi,τ
is the trivial character for (i, τ ) ̸= (1, τ0), (n+ 1, τ0). □

Remark A.5.5. Note that we introduced some asymmetry here — we could have equally worked with the
monoid D =

∏
τ ̸=τ0

Z≤0 (or even more generally, products of Z≥0 and Z≤0) and the monoid E defined by
the equations − jτ ≤ κn,τ .

To prove Theorem 5.3.4, we will use a p-adic version of the product formula in Theorem A.5.4(3).

Lemma A.5.6. Let (A, A+) be a Tate algebra over (Qp,Zp), and suppose that κ : T (Zp)→ (A+)× is
an r-analytic character, for some r ∈Q>0, which satisfies

κi,τ0 + κ2n+2−i,τ0 = κ j,τ0 + κ2n+2− j,τ0

for all i, j =2, . . . , n, and κi,τ+κ2n+1−i,τ =0 for all i =1, . . . , n and τ ̸= τ0. Let β= (βτ ) :
∏
τ ̸=τ0

Z×p→

(A+)× be an r-analytic character. Then there exist unique r-analytic characters

11Knapp works in the setting of compact unitary groups, but the proof works verbatim for general linear groups.
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• ξ0, ξw, ξi,τ : Z×p → (A+)× for i = 1, . . . , n and τ ∈9,

• ξn+1,τ0 : Z×p → (A+)×,

• 4τ : Z×p → (A+)× for τ ∈9 −{τ0}

such that

(κ, β)= ξ0 ◦ (µ0, 0)+ ξw ◦ (µw, 0)+ ξn+1,τ0 ◦ (µn+1,τ0, 0)+
n∑

i=1

∑
τ∈9

ξi,τ ◦ (µi,τ , 0)+
∑
τ ̸=τ0

4τ ◦ (µn,τ , 1τ )

where the group law is written additively.

Proof. We define the r-analytic characters via the same formulae as above, i.e., ξ0 = κ0, ξw =
−(κ2,τ0 + κ2n,τ0), etc. It is clear that these are uniquely determined. □

We will also need the following lemma:

Lemma A.5.7. Let r ∈ Z>0. Then for any (κ, j) ∈ E , one has

x [ j]κ (M
□
G,r )⊂ Z×p (1+Br )

where we are viewing x [ j]κ as an analytic function Man
G → A1,an.

Proof. By Proposition A.5.1, we have M□
G,r = (u

−1M♣

H,r u)(M□
G,r ∩BMG ), therefore the transformation

properties for x [ j]κ imply that

x [ j]κ (m)= σ
[ j]
κ (m1) · (w

max
MG
κ)(m−1

2 )

for any m ∈M□
G,r satisfying m = u−1m1u ·m2 for m1 ∈M♣

H,r and m2 ∈M□
G,r ∩ BMG . But σ [ j]κ and

wmax
MG
κ are algebraic characters, so their analytifications map M♣

H,r and M□
G,r ∩BMG into Z×p (1+Br ), as

required. □

Remark A.5.8. The previous lemma implies that for any r-analytic character ξ : Z×p → (A+)×, the
composition ξ ◦ x [ j]κ defines an analytic function

ξ ◦ x [ j]κ :M
□
G,r ×Spa(A, A+)→ Gan

m,A ⊂ A
1,an
A .

We now introduce the p-adic vectors. Recall that for an r -analytic weight κ : T (Zp)→ (A+)×, we let
V r−an
κ denote the r -analytic induction as in Definition 5.3.2.

Definition A.5.9. Let r ∈ Z>0 and let (κ, β) be a pair of r -analytic characters as in Lemma A.5.6. Then
we define

x [β]κ := (x
[0]
µ0
)ξ0 · (x [0]µw)

ξw · (x [0]µn+1,τ0
)ξn+1,τ0 ·

∏
i=1,...,n
τ∈9

(x [0]µi,τ
)ξi,τ ·

∏
τ ̸=τ0

(x [1τ ]µn,τ
)4τ

where the product takes place in O(M□
G,r )⊗̂A and the analytic characters ξ... and4... are as in Lemma A.5.6.

Here we have written (−)ξ as a shorthand for ξ ◦ (−). This defines an element of V r−an
κ .
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We let σ [β]κ denote the character

σ [β]κ :M
♣

H,r ×Spa(A, A+)→ Gan
m,A,

(x; y1, y2, y3, z1,τ , z2,τ ) 7→ κ0(x−1)κ1,τ0(y
−1
1 )(κn+1,τ0κ

−1
2,τ0
κ−1

2n,τ0
)(det y2)κ

−1
n+1,τ0

(det y3)

·

∏
τ ̸=τ0

βτ (det z−1
1,τ det z2,τ ),

which makes sense because κ and β are r -analytic.

Finally, we obtain the following theorem:

Theorem A.5.10. Let r ∈ Z>0 and let (κ, β) be a pair of r-analytic characters as in Lemma A.5.6. Then:

(1) x [β]κ is a (nonzero) eigenvector for the action of u−1M♣

H,r u with eigencharacter given by the inverse
of σ [β]κ .

(2) If (B, B+) is another Tate algebra with a morphism (A, A+)→ (B, B+), and (κ ′, β ′) denotes the
composition of (κ, β) with this morphism, then the image of x [β]κ under the natural map

V r−an
κ → V r−an

κ ′

is equal to x [β
′
]

κ ′ .

(3) If (κ, β) arises from a pair of algebraic characters (κ, j) ∈ E , then x [β]κ is equal to the image of x [ j]κ
under the natural map

Vκ→ V r−an
κ

given by restricting (the analytification of ) a function MG→ A1 to M□
G,r .

(4) The vector x [β]κ does not depend on the radius of analyticity, i.e., if r ′ ≥ r is another integer, then the
constructions for x [β]κ coincide under the map

V r−an
κ → V r ′−an

κ

given by restriction to M□
G,r ′ .

Proof. Part (1) follows from the fact we have a similar product formula for σ [β]κ as in the proof of
Theorem A.5.4, replacing the coefficients a... and b... by ξ... and 4....

The remaining properties are clear from construction, using the fact that the characters ξ... and 4... are
unique and Theorem A.5.4(3). □

Appendix B: Comparisons in families

In this appendix, we describe the key ingredient needed to compare the coherent cohomology classes
associated with algebraic Hecke characters and (algebraic) p-adic Hecke characters. We restrict ourselves
to the case of PEL Shimura data which give rise to compact Shimura varieties — more general versions
of the functorial properties we describe can be found in [Diao et al. 2023].
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B.1. Canonical constructions. In this section we let (G , XG ) be a PEL-type Shimura–Deligne datum
satisfying (SD5) as in [Graham and Shah 2023, Section B.3]. Suppose that the associated Shimura variety
admits a canonical model over the reflex field, which we will denote by F . We fix a rational prime p > 2
which is unramified in F and for which GQp is unramified. We fix a prime p of F lying above p.

Let K ⊂ G (A f ) be a neat compact open subgroup. Then the Shimura variety SG ,K parametrizes abelian
varieties A with PEL structure (corresponding to the PEL-data defining (G , XG )), such that the first
relative homology of A is modeled on the defining representation for G . Let S = SG ,U and denote the
universal abelian variety over S by A. We are interested in the local systems/locally free sheaves obtained
from the relative homology of A.

Assumption B.1.1. We assume that the Shimura variety S is compact.

Recall that there exist “canonical constructions” ξB (resp. ξdR, resp. ξét) which are tensor functors on
the category of algebraic representations of G valued in the category of variations of Hodge structures
over S(C) (resp. locally free sheaves on S with an integrable connection, resp. p-adic local systems on S).
More precisely, if V is an algebraic representation of G , then:

(1) The variation of Hodge structure ξB(V ) is constructed from the left G (Q)-torsor

XG ×G (A f )/K → G (Q)\XG ×G (A f )/K = S(C)

and the G (Q)-representation V ; see [Caraiani and Scholze 2017, Section 2.3] for example.

(2) The locally free sheaf ξdR(V ) arises from the GF -torsor

GdR→ S

(the standard principal bundle) and the algebraic representation VF of GF ; see [Milne 1990, Sec-
tion III.3].

(3) The p-adic local system ξét(V ) can be constructed by choosing a G (Zp)-stable lattice T ⊂ VQp and
using the pro-system of torsors

SG ,K ′→ SG ,K

for K ′ ⊂ K ; see [Graham and Shah 2023, Section 4]. One can also interpret this in terms of the
perfectoid Shimura variety (see Section B.3 below).

Notation B.1.2. Let V be an algebraic representation of G . We write VB , VdR and Vét for ξB(V ), ξdR(V )
and ξét(V ) respectively.

Remark B.1.3. The above functors are normalized so that W? equals the first relative homology of
A/S with respect to the relevant cohomology theory, for ? = B, dR, ét, where W denotes the defining
representation of G .
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We have several comparisons between these sheaves/local systems:

(1) (Betti–p-adic, [SGA 43 1973, Exposé xi]) Since S is smooth, one has a morphism of sites β : Scl→ Sét

from the site of étale coverings of S(C) to the étale site of S. Then for any algebraic representation
V of G , one has

Vét ∼= β∗(VB ⊗Q Qp).

Indeed, one has a similar map of sites for A, whose pushforward is exact and commutes with
pushforward along A→ S (in the analytic and étale topologies).

(2) (Betti–de Rham) For an algebraic representation V of G , one has a comparison isomorphism

VdR⊗OS OS(C) ∼= VB ⊗Q OS(C).

(3) (de Rham–p-adic, [Caraiani and Scholze 2017, Section 2.2]) Let L/Fp be a finite extension and
let Aan

→ San be the morphism of adic spaces associated with AL → SL . Then for any algebraic
representation V of G , one has an isomorphism

Van
dR,L ⊗OSan OBdR,San ∼= Van

ét,L ⊗Q̂p
OBdR,San

of sheaves on the pro-étale site of San compatible with filtrations and connections. Here (−)an means
pull-back to the associated adic space.

More precisely, one has the above comparisons for W? and the work of Ancona [2015] and Torzewski
[2020] shows that all of these “canonical constructions” factor through a functor valued in relative Chow
motives over S, so the comparisons can be extended to all algebraic representations. In particular, since
the comparisons above are functorial with respect to algebraic operations (e.g., correspondences on A),
the above comparisons are also functorial in the algebraic representation V .

B.2. Functoriality. Let (G1, X1) and (G2, X2) be two PEL-type Shimura–Deligne data (with a common
reflex field F) as in the previous subsection, including Assumption B.1.1. Suppose that we have a
homomorphism f : G1→ G2 inducing a morphism of Shimura data (and arising from a morphism of
PEL data). Let K1 ⊂ G1(A f ) be a neat compact open subgroup and K2 ⊂ G2(A f ) a neat compact open
subgroup containing f (K1). Let Si = SGi ,Ki for i = 1, 2.

The morphism f induces a map of torsors

X1×G1(A f )/K1 X2×G2(A f )/K2

S1(C) S2(C)

and hence a natural isomorphism ηB : ξ1,B ◦ f ∗ → f ∗ ◦ ξ2,B , where we have use the notation ξi,B to
emphasize which Shimura variety and group the construction refers to.
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Similarly, the morphism f induces morphisms of (finite étale) torsors SG1,K ′1 → SG2,K ′2 over S1→ S2,
for any K ′1 ⊂ K1 and f (K ′1) ⊂ K ′2 ⊂ K2. These are compatible with varying K ′1 and K ′2, so induce a
natural isomorphism ηét : ξ1,ét ◦ f ∗→ f ∗ ◦ ξ2,ét.

Lemma B.2.1. The Betti–p-adic comparison identifies the natural isomorphisms ηB ⊗Q Qp and ηét.

Proof. Let V be an algebraic representation of G1. Then it is well-known that one can construct ξB(V )
either by considering V as a left G1(Q)-module (as above) or by viewing V as a right K1-module (with
no left G1(Q)-action) and setting

ξB(V )= G1(Q)\X1×G1(A f )× V/K1.

In particular, choosing a G1(Zp)-stable lattice T ⊂ VQp , one easily sees that the two constructions
ξB(V )⊗Qp and ξét(V ) are identified under the Betti–p-adic comparison. Similar calculations apply for
the group G2. □

We also obtain a natural isomorphism involving the functor ξdR as follows. Since f induces a
morphism of Shimura data, by theory of canonical models for standard principal bundles (see [Milne
1990, Section III.4]), one obtains a morphism of torsors G1,dR→ G2,dR which induces the desired natural
isomorphism ηdR : ξ1,dR ◦ f ∗→ f ∗ ◦ ξ2,dR. Pulling this back to C, this morphism of torsors is identified
with the morphism

G1,dR(C)= G1(Q)\X1×G1(C)×G1(A f )/K1→ G2(Q)\X2×G2(C)×G2(A f )/K2 = G2,dR(C)

sending [x, g, g′] to [ f (x), f (g), f (g′)]. But Gi,dR(C) is the pushout of the torsor X i ×Gi (A f )/Ki along
the map Gi (Q)→ Gi (C), and it is clear that this morphism of torsors is induced from the one above. In
other words, the Betti–de Rham comparison identifies ηdR⊗OS OS(C) and ηB ⊗Q OS(C).

Proposition B.2.2. The de Rham–p-adic comparison identifies the natural isomorphisms ηan
dR ⊗OSan

OBdR,San and ηan
ét ⊗Q̂p

OBdR,San .

Proof. Essentially this follows because ηB is induced from an (absolute) Hodge cycle for a certain abelian
variety, which is known to be de Rham [Blasius 1994].

Let W2 denote the defining representation of G2. Since we already know ηB , ηdR, ηét are natural
isomorphisms of additive tensor functors (respecting this structure and duals), and every representation G2

is a direct summand of tensor products of W2 and W ∗2 , it enough to check that ηan
dR(W2)⊗OSan OBdR,San =

ηan
ét (W2)⊗Q̂p

OBdR,San . Fix a presentation

W2 = e
( k⊕

i=1

W⊗ai
1 ⊗ (W ∗1 )

⊗bi

)
for some positive integers ai , bi and idempotent e. Since ξ1,B , ξ1,dR and ξ1,ét factor through a functor
valued in relative Chow motives, we obtain idempotents eB , edR, eét in the respective target categories
which are all compatible under the comparison isomorphisms.
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Let A1 and A2 denote the universal abelian varieties over S1 and S2, and let f ∗A2 denote the pullback
to S1. For ?= B, dR, ét, the isomorphisms η?(W2) are described by isomorphisms

ξ1,?(W2)∼= e?

( k⊕
i=1

W⊗ai
1,? ⊗ (W

∨

1,?)
⊗bi

)
∼
−→H?

1( f ∗A2/S1)∼= f ∗H?
1(A2/S2)

where H?
1( · · · ) denotes first relative homology of the appropriate cohomology theory and the last

isomorphism is proper base-change.
We just need to check the middle isomorphism is compatible under the de Rham–étale comparison

isomorphism. It is enough to check this at points of S1 which are defined over number fields (see the proof
of [Caraiani and Scholze 2017, Proposition 2.3.9]) — let θ? denote the middle isomorphism specialized at
such a point. By above, we know that θB and θdR are compatible under the Betti–de Rham comparison,
and that θB and θét are compatible under the Betti–étale comparison. The result now follows from the
fact that θB can be represented as a Hodge class (by using the polarization and Künneth formula) for
an abelian variety constructed from copies of A1 and f ∗A2. Indeed, by [Deligne et al. 1982] it is an
absolute Hodge class whose de Rham realization is defined over the field of definition of the point (by the
paragraph preceding the proposition). By [Blasius 1994], this Hodge class is de Rham, which precisely
means that θdR and θét are compatible under the de Rham–étale comparison, as required. □

Remark B.2.3. One can show that the pushout G1,dR×
G1 G2 is identified with frames of HdR

1 ( f ∗A2/S1)

preserving a collection of Hodge tensors coming from a choice of G1-equivariant embedding W⊗2 ⊂W⊗1
and the isomorphism θdR above. The isomorphism G1,dR ×

G1 G2→ f ∗G2,dR is then induced from the
proper base-change isomorphism HdR

1 ( f ∗A2/S1)∼= f ∗HdR
1 (A2/S2), which matches the Hodge tensors.

A similar description also holds for the étale and Betti constructions.

Let L/F be a finite extension and let µi : Gm,L → Gi,L be a choice of Hodge cocharacter for the
Shimura datum (Gi , X i ), for i = 1, 2. We assume that µ2 = f ◦µ1. Fix a prime P of L lying above p,
and we base-change the Shimura varieties S1 and S2 to LP (but omit this from the notation). For i = 1, 2
and over LP, we have two parabolics Pstd

i and Pi , with common Levi Mi , associated with µi . We have
proétale torsors over Si given by

Pan
i,dR(U ) := {ÔSi ⊗Wi |U

∼
−→Wan

i,dR⊗OSi
ÔSi |U : preserving Hodge filtration and Hodge tensors},

Pan
i,HT(U ) := {ÔSi ⊗Wi |U

∼
−→Wan

i,ét⊗Q̂p
ÔSi |U : preserving Hodge–Tate filtration and Hodge tensors},

where Wi is the defining representation of Gi . These are Pstd
i and Pi torsors respectively. We denote

by Man
i,dR and Man

i,HT their pushouts to Mi . Then the results of [Caraiani and Scholze 2017] imply that
Man

i,dR
∼=
µMan

i,HT, where the twist is along µi as in Section 4.2. Note that

f (Pstd
1 )⊂Pstd

2 , f (P1)⊂P2 and f (M1)⊂M2

by the assumption that µ2 = f ◦µ1.
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Corollary B.2.4. We have a commutative diagram of torsors:

Man
1,dR×

M1 M2 f ∗Man
2,dR

µMan
1,HT×

M1 M2 f ∗(µMan
2,HT)

where the horizontal arrows are induced from the natural transformations ηan
dR and ηan

ét , and the vertical
arrows are induced from the isomorphism of de Rham and twisted Hodge–Tate torsors above.

Proof. Let π : A2 → S2 denote the universal abelian variety and f −1π : f ∗A2 → S1 its pullback
under f . To simplify notation, set E := H1

dR(A2/S2), E ′ := H1
dR( f ∗A2/S1), L := R1π∗Ẑp,A2 and L′ :=

R1( f −1π)∗Ẑp, f ∗A2 . By Proposition B.2.2 and Remark B.2.3, we know that the following diagram
commutes:

f ∗(E ⊗OS2
OBdR,S2) f ∗E ⊗OS1

OBdR,S1 E ′⊗OS1
OBdR,S1

f ∗(L⊗
Ẑp

OBdR,S2) f ∗L⊗
Ẑp

OBdR,S1 L′⊗
Ẑp

OBdR,S1

∼

∼

where the horizontal arrows are the proper base-change isomorphisms and the vertical arrows (which are
isomorphisms) arise from the comparisons of relative p-adic Hodge theory. The module E ⊗OS2

OB+dR,S2

is an OB+dR-module with an integrable connection, so satisfies

E ⊗OS2
OB+dR,S2

=M0⊗B+dR,S2
OBdR,S2

where M0 = (E ⊗OS2
OB+dR,S2

)∇=0; see [Scholze 2013, Theorem 7.2]. Hence

f ∗(E ⊗OS2
OB+dR,S2

)∇=0
= ( f ∗E ⊗OS1

OBdR,S1)
∇=0
= f ∗M0.

Set M′0 = (E
′
⊗OS1

OBdR,S1)
∇=0, M= L⊗

Ẑp
OB+dR,S2

and M′ = L′⊗
Ẑp

OB+dR,S1
. Since the base-change

maps are compatible with structures, they induce isomorphisms

f ∗M0
∼
−→M′0, (B.2.5)

f ∗M ∼
−→M′, (B.2.6)

and we have a commutative diagram:

f ∗M0⊗B+dR,S1
BdR,S1 M′0⊗B+dR,S1

BdR,S1

f ∗M⊗B+dR,S1
BdR,S1 M′⊗B+dR,S1

BdR,S1

(B.2.5)⊗1

(B.2.6)⊗1
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where the vertical arrows are as in [Caraiani and Scholze 2017, Proposition 2.2.3]. In particular, considering
the relative Hodge filtration as in [loc. cit.] and passing to gradeds, we have

f ∗ gr j E gr j E ′

f ∗(gr j (L⊗Ẑp
ÔS2)( j)) gr j (L

′
⊗

Ẑp
ÔS1)( j)

for all j ≥ 0. Note that the pullback f ∗ preserves the relevant filtrations because each graded piece is
locally free. This last commutative diagram (or more precisely its dual version) describes the compatibility
we desire in the statement of the corollary. Indeed, the isomorphism θdR in the proof of Proposition B.2.2
preserves Hodge filtrations, and by a similar argument above, one can show θét preserves relative Hodge–
Tate filtrations. Therefore the pushouts Pan

1,dR×
Pstd

1 Pstd
2 and Pan

1,HT×
P1 P2 can be described as frames

of HdR
1 ( f ∗A2/S1) and Hét

1 ( f ∗A2/S1) respectively, preserving Hodge tensors and filtrations. □

B.3. Perfectoid Shimura varieties. Continuing with the set-up as in the previous subsection, assume that
Ki is of the form K p

i × Ki,p ⊂ Gi (A
p
f )×Gi (Qp) for i = 1, 2. Let S1 and S2 denote the adic spaces over

Fp associated with S1 and S2, and let Si,∞ denote the perfectoid Shimura variety (of tame level K p
i ), as

constructed in [Scholze 2015]. Then [Caraiani and Scholze 2017, Theorem 1.10], implies that we have a
commutative diagram

S1,∞ FL1

S2,∞ FL2

πHT,1

πHT,2

where FLi denotes the adic flag variety associated with the Shimura datum (Gi , X i ) and πHT,i is the
corresponding Hodge–Tate period morphism. Both of the vertical maps are induced from f .

For i = 1, 2 consider the torsor FLi × Gi (Qp) with the right action of Gi (Qp) given by (x, g) · g′ =
(xg′, (g′)−1g). We then obtain a torsor

π∗HT(FLi ×Gi (Qp))/Ki,p = Si,∞×
Ki,p Gi (Qp)

over Si . By the description of ξét as above, and the fact that Si,∞ is essentially the limit lim
←−−K ′i,p

SGi ,K
p
i K ′i,p

,
this torsor encodes ξ an

ét .
We have a natural map of torsors FL1×G1(Qp)→ FL2×G2(Qp) induced from f , which is compatible

with the equivariant structure. Pulling back along the Hodge–Tate period morphism and descending, we
obtain a natural transformation η′ : ξ1,ét ◦ f ∗→ f ∗ ◦ ξ2,ét.

Lemma B.3.1. The natural transformations ηan
ét and η′ coincide.

Proof. This follows from the above commutative diagram and (on the level of topological spaces) the
map S1,∞→ S2,∞ is the inverse limit of (the analytification of) maps SG1,K ′1 → SG2,K ′2 . □
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Appendix C: Unitary base change

In this appendix, we describe how the results on endoscopic classification of unitary groups in [Mok 2015]
and [Kaletha et al. 2014] imply a certain strong multiplicity one theorem for automorphic representations
of G(A). Note that these cited papers are conditional on the stabilization of the trace formula for unitary
groups. Throughout, we let G and G0 be as in Section 2, and we write U for the unitary group over F+

associated with W (so G0 = ResF+/Q U ). As usual, we assume that F contains an imaginary quadratic
number field E .

Lemma C.0.1. Let ℓ be any (finite) rational prime. Then there exists a good special maximal compact open
subgroup K ⊂G(Qℓ) (as in [Mínguez 2011, Section 2.1]) such that the intersection K∩G0(Qℓ)⊂G0(Qℓ)

is a good special maximal compact open subgroup. Furthermore, if GQℓ
is unramified, we can arrange it

so that both K and K ∩ G0(Qℓ) are hyperspecial.

Proof. This follows from the fact that:

• G0 and G have the same adjoint group.

• The induced map from the Kottwitz group of G0 to that of G is injective. More precisely, the
Kottwitz group of the former is Z/2Z, of the latter is Z×Z/2Z and the induced map is inclusion
into the second factor.

One then applies the description of all parahoric subgroups as in [Pappas and Rapoport 2008]. □

Let ℓ be a finite rational prime. Then the results of [Mok 2015; Kaletha et al. 2014] imply that
there exists a local (standard) base change map BCℓ from irreducible admissible representations of
G0(Qℓ) ∼=

∏
v | ℓ U (F+v ) to irreducible admissible representations of G0(Qℓ ⊗Q E) ∼= U (Qℓ ⊗Q F) ∼=∏

w | ℓ GL2n(Fw) (this can be defined unconditionally if all primes above ℓ split in F/F+, or if the group
and representation are both unramified).

Lemma C.0.2. Let ℓ be an odd rational prime. Let K ⊂ G(Qℓ) be a good special maximal compact open
subgroup as in Lemma C.0.1, and let π and σ be irreducible admissible unitary representations of G(Qℓ).
Suppose that:

• There exist irreducible admissible unitary representations π0 and σ0 of G0(Qℓ) such that π0 ⊂

π |G0(Qℓ), σ0 ⊂ σ |G0(Qℓ) and BCℓ(π0)∼= BCℓ(σ0).

• Both πK
̸= 0 and σ K

̸= 0.

Then π ∼= σ or π ∼= σ⊗ω, where ω is the quadratic character associated with E⊗Q Qℓ/Qℓ. In particular,
if ℓ ramifies or splits in E/Q, then π ∼= σ .

Proof. Suppose for the moment that π and σ share an irreducible constituent under the action of G0(Qℓ).
Then [Labesse and Schwermer 2019, Proposition 4.1.3] implies that π ∼= σ ⊗ χ for some character
of the quotient G0(Qℓ)ZG(Qℓ)\G(Qℓ). But this quotient is contained in N ((E ⊗Qℓ)

×)\Q×ℓ via the
similitude character, where N denotes the norm map, hence χ is either the trivial character or the quadratic
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character ω. If ℓ is split then ω = 1, otherwise if ℓ is ramified, then ω is ramified. But since π and σ are
K -spherical, they cannot be isomorphic via a ramified twist. The latter is true because the image of the
Qℓ-points of a Levi of a minimal parabolic in GQℓ

under the similitude map contains Z×ℓ (by the structure
of even-dimensional unitary groups in [Mínguez 2011, Example 3.2] and that any nontrivial quadratic
form in two or more variables represents every element of F×ℓ ), and the fact that the intersection of the
Levi with a good maximal special subgroup is the unique maximal compact open subgroup; see [loc. cit.,
Section 2.1].

We now show that π and σ share an irreducible constituent. Since πK
̸= 0, there exists an irreducible

constituent π ′0 ⊂ π |G0(Qℓ) which has nontrivial invariants under K0 := K ∩ G0(Qℓ). Since K0 is a good
special maximal compact open subgroup, π ′0 has a set of associated Satake parameters which is determined
from the Satake parameters for π . Hence π0 and π ′0 have the same set of Satake parameters (but are
spherical for different choices of special subgroups). This implies that BCℓ(π0)∼= BCℓ(π ′0). By a similar
argument for σ , we may replace π0 and σ0 by π ′0 and σ ′0 respectively. Now we note that the base-change
map on Langlands/Arthur parameters is injective [Mok 2015, Section 2.2] hence π ′0 and σ ′0 have the same
Satake parameters, as required. □

Now we discuss a global application of this lemma. Let S be a finite set of rational primes which split
in E/Q. Let K = K S

× KS ⊂ G(AS
f )× G(AS) be a compact open subgroup such that K S

=
∏
ℓ̸∈S Kℓ

with each Kℓ ⊂ G(Qℓ) a good special maximal compact open subgroup, which is hyperspecial if GQℓ
is

unramified. Let T denote a cofinite set of rational primes containing 2 and all primes which are inert in
E/Q.

Proposition C.0.3. Let π and σ be cuspidal automorphic representations of G(A) such that π∞ and σ∞
are cohomological and πK

f ̸= 0 and σ K
f ̸= 0. Suppose that πℓ ∼= σℓ for all ℓ ∈ T − (S∩ T ). Also, suppose

that the weak base-change of π to GL1(AE)×GL2n(AF ) is cuspidal. Then π f ∼= σ f .

Proof. Since π∞ and σ∞ are cohomological, they admit weak base-changes by [Shin 2014]. These weak
base-changes must be isomorphic by our assumptions and strong multiplicity one, and hence also cuspidal
by assumption. By [Labesse and Schwermer 2019, Theorem 5.2.1], we can find cuspidal automorphic
representations π0 and σ0 of G0(A) such that π0 ⊂ π |G0(A) and σ0 ⊂ σ |G0(A). By compatibility of
base-change for unitary and unitary similitude groups, the weak-base changes of π0 and σ0 are isomorphic
(and cuspidal). Call the common representation 50. By the theory of endoscopy (see [Liu et al. 2022,
Proposition C.3.1(2)]), we actually have the stronger compatibility BCℓ(π0,ℓ)∼=50,ℓ ∼= BCℓ(σ0,ℓ) for all
rational primes ℓ. Then:

(1) If ℓ ∈ S, then the weak base-changes of π and σ are locally isomorphic at ℓ [Shin 2014, Theo-
rem A.1(2)]. Since local base-change is injective at these primes, we have πℓ ∼= σℓ.

(2) If ℓ ̸∈ S ∪ {2} and ramifies or splits in E/Q, then we have πℓ ∼= σℓ by Lemma C.0.2.

(3) If ℓ ̸∈ S and is inert in E/Q, or ℓ= 2, then ℓ ∈ T − (S ∩ T ) and πℓ ∼= σℓ by assumption.

This completes the proof. □
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