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Serre weights for
three-dimensional wildly ramified Galois representations

Daniel Le, Bao V. Le Hung, Brandon Levin and Stefano Morra

We formulate and prove the weight part of Serre’s conjecture for three-dimensional mod p Galois
representations under a genericity condition when the field is unramified at p. This removes the assumption
made previously that the representation be tamely ramified at p. We also prove a version of Breuil’s
lattice conjecture and a mod p multiplicity one result for the cohomology of U(3)-arithmetic manifolds.
The key input is a study of the geometry of the Emerton–Gee stacks using the local models we introduced
previously (2023).
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1. Introduction

The goal of this paper is to prove a generalization of the weight part of Serre’s conjecture for three-
dimensional mod p Galois representations which are generic at p. We also prove a generalization of
Breuil’s lattice conjecture for these representations and the Breuil–Mézard conjecture for generic tamely
potentially crystalline deformation rings of parallel weight (2, 1, 0). For a detailed discussion of these
conjectures, see [Le et al. 2020], where we establish the tame case of these conjectures.

1.1. Results.

1.1.A. The weight part of Serre’s conjecture. Let p be a prime, and let F/F+ be a CM extension of
a totally real field F+ ̸=Q. Assume that all places in F+ above p split in F/F+. Let G be a definite
unitary group over F+ split over F which is isomorphic to U(3) at each infinite place and split at each
place above p. A (global) Serre weight is an irreducible Fp-representation V of G(OF+,p). These are all
of the form

⊗
v | p Vv with Vv an irreducible Fp-representation of G(kv), where kv is the residue field of
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F+ at v. For a mod p Galois representation r̄ :GF→GL3(Fp), let W (r̄) denote the collection of modular
Serre weights for r̄ . That is, V ∈W (r̄) if the Hecke eigensystem attached to r̄ appears in a space of mod
p automorphic forms on G of weight V for some prime to p level.

For each place v | p, fix a place ṽ of F dividing v which identifies G(kv) with GL3(kv). Define
ρv := r̄ |Gal(F ṽ/Fṽ)

. We can now state the main theorem.

Theorem 1.1.1 (Theorem 5.4.2). Assume that p is unramified in F and that ρv is 8-generic for all v | p.
Assume that r̄ is modular (i.e., W (r̄) is nonempty) and satisfies the Taylor–Wiles hypotheses.

Then ⊗
v | p

Vv ∈W (r̄)⇔ Vv ∈W g(ρv) for all v | p,

where W g(ρv) is an explicit set of irreducible Fp-representations of GL3(kv) attached to ρv (see
Definition 1.2.1).

In particular, this affirms the expectation from local-global compatibility that W (r̄) depends only on
the restrictions of r̄ to places above p.

Remark 1.1.2. This is the first complete description of W (r̄) in dimension greater than two for represen-
tations r̄ that are wildly ramified above p. Some lower bounds were previously obtained in [Gee and
Geraghty 2012; Morra and Park 2017; Herzig et al. 2017; Le et al. 2018a; 2018b].

The first obstacle we overcome is the lack of a conjecture. One basic problem is that while tame
representations (when restricted to inertia) depend only on discrete data, wildly ramified representations
vary in nontrivial moduli. Buzzard–Diamond–Jarvis defined a recipe in terms of crystalline lifts in
dimension two. However, after [Le et al. 2018a], it was clear that the crystalline lifts perspective is
insufficient in higher dimension. In higher dimensions, Herzig defined a combinatorial/representation
theoretic recipe for a collection of weights W ?(ρv) when ρv is tame. For possibly wildly ramified ρ,
Gee et al. [2018] make a conjectural conjecture: they define a conjectural set conditional on a version
of the Breuil–Mézard conjecture. Our first step is to prove a version of the Breuil–Mézard conjecture
(Theorem 1.2.2 and Remark 1.2.3) when n = 3.

Having established a version of the Breuil–Mézard conjecture when n=3, the weight set from [Gee et al.
2018] turns out (in generic cases) to have a simple geometric interpretation. Let X3 be the moduli stack
of (ϕ, 0)-modules recently constructed by Emerton and Gee [2023]. The irreducible components of X3

are labeled by irreducible mod p representations of GL3(kv) and W g(ρv) is defined so that Vv ∈W g(ρv)

if and only if ρv lies on CVv
. However, this definition of W g(ρv) gives very little insight into its structure.

We study W g(ρv) using the local models developed in [Le et al. 2023b] combined with the explicit
calculations of tamely potentially crystalline deformation rings in [Le et al. 2018a; 2020]. We ultimately
arrive at an explicit description of all possible weight sets W g(ρv) which allows us to then employ the
Taylor–Wiles patching method to prove Theorem 1.1.1.
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1.1.B. Breuil’s lattice conjecture and mod p multiplicity one. The weight part of Serre’s conjecture can
be viewed as a local-global compatibility result in the mod p Langlands program. In this section, we
mention two further local-global compatibility results — one mod p and one p-adic. We direct the reader
to the introduction of [Le et al. 2020] for further context for the following two results.

In the global setup above assume further that F/F+ is unramified at all finite places and G is quasisplit
at all finite places. Let r :GF→GL3(Qp) be a modular Galois representation which is tamely potentially
crystalline with Hodge–Tate weights (2, 1, 0) at each place above p and unramified outside p (though our
results hold true when r is minimally split ramified; see Section 5.4). Write λ for the Hecke eigensystem
corresponding to r . We fix places ṽ |v | p of F and F+ respectively. We let H̃ be the integral p-adically
completed cohomology with infinite level at v, hyperspecial level outside v, and constant coefficients. Set
ρ

def
= r |GFṽ

and let σ(τ) be the tame type corresponding to the Weil–Deligne representation associated to
ρ under the inertial local Langlands correspondence (so that H̃ [λ][1/p] contains σ(τ) with multiplicity
one). Let r̄ and ρ be the reductions of r and ρ, respectively.

Theorem 1.1.3 (Theorem 5.4.4). Assume that p is unramified in F+, r is unramified outside p, ρ is
11-generic, and r̄ satisfies Taylor–Wiles hypotheses. Then, the lattice

σ(τ)∩ H̃ [λ]

depends only on ρ.

We now let H be the mod p reduction of H̃ . Thus, H is the mod p cohomology with infinite level at
v (and hyperspecial level at places outside v with constant coefficients) of a U(3)-arithmetic manifold.

Theorem 1.1.4 (Theorem 5.4.3). Let σ(τ)◦ be an O-lattice in σ(τ) with irreducible “upper alcove”
cosocle. Under the assumptions of Theorem 1.1.3, HomGL3(OFṽ

)(σ (τ )◦, H [λ]) is a one-dimensional
Fp-vector space.

See Sections 1.4 and 2.1.F, for the notion of upper and lower alcove for Serre weights for GL3. The
statement of Theorem 1.1.4 is also true when the cosocle is not necessarily upper alcove if one imposes a
condition on the shape of ρ with respect to τ ; see Theorem 5.4.3.

1.2. Methods.

1.2.A. Local methods: geometry of the Emerton–Gee stack and local models. We begin by recalling
the set W g(ρ) that appears in Theorem 1.1.1. Let K be a finite unramified extension of Qp of degree f ,
with ring of integers OK and residue field k. Let XK ,n be the Noetherian formal algebraic stack over
Spf Zp defined in [Emerton and Gee 2023, Definition 3.2.1]. It has the property that for any complete
local Noetherian Zp-algebra R, the groupoid XK ,n(R) is equivalent to the groupoid of rank n projective
R-modules equipped with a continuous GK -action; see [Emerton and Gee 2023, §3.6.1]. In particular,
XK ,n(Fp) is the groupoid of continuous Galois representations ρ : GK → GLn(Fp). As explained in [Le
et al. 2023b, §7.4], there is a bijection σ 7→ Cσ between irreducible Fp-representations of GLn(k) and
the irreducible components of the reduced special fiber of XK ,n . (This is a relabeling of the bijection of
[Emerton and Gee 2023, Theorem 6.5.1].)
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Definition 1.2.1. Let ρ ∈ XK ,n(Fp). Define the set of geometric weights of ρ to be

W g(ρ)= {σ | ρ ∈ Cσ (Fp)}.

While Definition 1.2.1 is simple, it does not appear to be an easy task to determine the possible sets
W g(ρ). The irreducible components of XK ,n are described in terms of closures of substacks, but we
expect the closure relations and component intersections in XK ,n to be rather complicated.

We now specialize to the case n = 3. A key tool in the analysis of the sets W g(ρ) in this setting is
the description of certain potentially crystalline substacks. For a tame inertial type τ , let X η,τ

⊂ XK ,3 be
the substack parametrizing potentially crystalline representations of type τ and parallel weight (2, 1, 0).
Recall that σ(τ) denotes the representation of GL3(OK ) obtained by applying the inertial local Langlands
correspondence to τ (it is the inflation of a Deligne–Lusztig representation; see Section 2.1.C). The
following is an application of the theory of local models of [Le et al. 2023b]:

Theorem 1.2.2 (Corollary 3.3.3). If τ is a 4-generic tame inertial type, then X η,τ is normal and Cohen–
Macaulay and its special fiber X η,τ

F is reduced. Moreover, X η,τ

F is the scheme-theoretic union⋃
σ∈JH(σ (τ ))

Cσ .

Remark 1.2.3. This shows that the choice of cycles Zσ = Cσ solves the Breuil–Mézard equations for the
above X η,τ (see [Emerton and Gee 2023, Conjecture 8.2.2; Le et al. 2023b, Conjecture 8.1.1]).

The equality of the underlying reduced X η,τ

F,red and the scheme-theoretic union
⋃

σ∈JH(σ (τ )) Cσ is proved
in Theorem 1.3.5 in [Le et al. 2023b] though we reprove it here with a weaker genericity condition (see
Remark 1.2.4). The key point is to prove that the special fiber of X η,τ is in fact reduced. (If we replace η

by λ+ η with λ dominant and nonzero or n = 3 by n > 3, the Breuil–Mézard conjecture predicts that
the analogous stacks never have reduced special fiber.) The special fiber of X η,τ has an open cover with
open sets labeled by f -tuples of (2, 1, 0)-admissible elements (w̃ j ) in the extended affine Weyl group of
GL3. The complexity of the geometry of the open sets increases as the lengths of the w̃ j decrease. When
the length of w̃ j is greater than 1 for all j , the reducedness immediately follows from the calculations
in [Le et al. 2018a, §5.3]. Otherwise, the calculations of [Le et al. 2018a, §8] give an explicit upper
bound on the special fiber which when combined with X η,τ

F,red =
⋃

σ∈JH(σ (τ )) Cσ must be an equality, and
the reducedness follows.

Remark 1.2.4. An inexplicit genericity condition appears in the main theorems of [Le et al. 2023b] (see
§1.2.1 of [loc. cit.]). While we use the models constructed in [loc. cit.], we reprove some of its main
theorems in Sections 3.2 and 3.3 with the inexplicit condition replaced by the more typical genericity
condition on the gaps between the exponents of the inertial characters in τ . This is possible because of
the computations in [Le et al. 2018a; 2020].

Finally, we analyze W g(ρ) using local models. The special fibers of the local models embed inside
the affine flag variety where irreducible components appear as subvarieties of translated affine Schubert
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varieties. In Section 4, we introduce a subset Wobv(ρ) ⊂ W g(ρ) of obvious weights for (possibly)
wildly ramified ρ, which has a simple interpretation in terms of the affine flag variety. Obvious weights
generalize the notion of ordinary weights that appear in [Gee and Geraghty 2012] and the additional
weights appearing in the exceptional cases of [Morra and Park 2017; Herzig et al. 2017; Le et al. 2018b].
The set Wobv(ρ) gives upper and lower bounds for W g(ρ). We finally show that, in almost all cases, one
can determine W g(ρ) from Wobv(ρ) (Theorem 4.2.5). This last part uses a curious piece of numerology
from the calculations of [Le et al. 2018a] — points in the special fibers of the local models never lie on
exactly three components.

1.2.B. Global methods: patching. To prove Theorems 1.1.3 and 1.1.4 we combine the explicit description
of the weight sets W (r̄), coming from Theorems 1.1.1 and 4.2.5, with the Kisin–Taylor–Wiles methods
developed in [Emerton et al. 2015] and employed in [Le et al. 2020, §5]. A crucial ingredient is the
analysis of certain intersections of cycles in the special fiber of deformation rings. The local models
introduced in [Le et al. 2023b] allow us to algebraize the computations made for the tame case in [Le
et al. 2020, §3.6].

We now turn to Theorem 1.1.1. The key input into its proof beyond the Kisin–Taylor–Wiles method is
the fact that the local Galois deformation rings of type (η, τ ) are domains when τ is 4-generic. This is
guaranteed by the fact that the stacks X η,τ are normal (Theorem 1.2.2). Then the supports of the patched
modules of type τ are either empty or the entire potentially crystalline deformation rings of type (η, τ ).
The proof is then similar to the tame case in [Le et al. 2020] — one propagates modularity between
obvious weights and then to shadow weights using carefully chosen types — except for one new wrinkle.
From the axioms of a weak patching functor, one cannot deduce the modularity of an obvious weight to
get started! Indeed one cannot rule out that ρv lies on a unique component Cσv

and W (r̄) contains exactly
one Serre weight σ ′ ̸= σ

def
=

⊗
v|p σv with the property that for any tame inertial type τ , if JH(σ (τ ))

contains σ ′, then it also contains σ . We use a patched version of the weight cycling technique introduced
in [Emerton et al. 2013] to rule out this pathology. In fact, we axiomatize our setup to make clear the
ingredients that our method requires.

1.3. Overview. Section 2 covers background on tame inertial L-parameters and representation theory in
Section 2.1, and Breuil–Kisin modules with tame descent data in Section 2.2, following [Le et al. 2023b].
Section 2.1.F gives a comparison between parametrizations of Serre weights in [Le et al. 2020; 2023b].

Section 3 establishes the main results about the geometry of local deformation rings. We specialize the
theory of local models in [Le et al. 2023b] to dimension three. The main results are Theorem 3.3.2 and
Corollary 3.3.3, which establish the geometric properties that we need, some of which are specific to
dimension three.

In Section 4, we analyze possible sets of geometric weights using the affine flag variety. Theorem 4.2.5
gives a complete explicit description when ρ is sufficiently generic.

Section 5 contains our global applications. In Section 5.1, we introduce the axioms of patching functors
following [Le et al. 2023b, §6] and prove the weight part of Serre’s conjecture assuming the modularity of
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at least one obvious weight (Proposition 5.1.11). The latter condition is then removed in Section 5.2 using
modules with an arithmetic action (Theorem 5.2.6). In Section 5.3, we prove results on mod p multiplicity
one and Breuil’s lattice conjectures for patched modules (Theorems 5.3.1, 5.3.13), generalizing analogous
results in [Le et al. 2020] to the wildly ramified case. Finally, Section 5.4 proves our main global theorems.

1.4. Notation. For any field K we fix once and for all a separable closure K and let GK
def
=Gal(K/K ). If

K is a nonarchimedean local field, we let IK ⊂ GK denote the inertial subgroup. We fix a prime p ∈ Z>0.
Let E ⊂Qp be a subfield which is finite-dimensional over Qp. We write O to denote its ring of integers,
fix an uniformizer ϖ ∈O and let F denote the residue field of E . We will assume throughout that E is
sufficiently large.

We consider the group G def
= GL3 (defined over Z). We write B for the subgroup of upper triangular

matrices, T ⊂ B for the split torus of diagonal matrices and Z ⊂ T for the center of G. Let 8+ ⊂ 8

(resp. 8∨,+
⊂8∨) denote the subset of positive roots (resp. positive coroots) in the set of roots (resp. co-

roots) for (G, B, T ). Let 1 (resp. 1∨) be the set of simple roots (resp. coroots). Let X∗(T ) be the group of
characters of T which we identify with Z3 by letting the standard i-th basis element εi = (0, . . . , 1, . . . , 0)

(with the 1 in the i-th position) correspond to extracting the i-th diagonal entry of a diagonal matrix. In
particular, we let ε′1 and ε′2 be (1, 0, 0) and (0, 0,−1) respectively.

We write W (resp. Wa , W̃ ) for the Weyl group (resp. the affine Weyl group, the extended affine Weyl
group) of G. If 3R ⊂ X∗(T ) denotes the root lattice for G we then have

Wa =3R ⋊ W, W̃ = X∗(T )⋊ W

and use the notation tν ∈ W̃ to denote the image of ν ∈ X∗(T ). The Weyl groups W , W̃ , and Wa act
naturally on X∗(T ) and on X∗(T )⊗Z A for any ring A by extension of scalars.

Let ⟨ , ⟩ denote the duality pairing on X∗(T )× X∗(T ), which extends to a pairing on

(X∗(T )⊗Z A)× (X∗(T )⊗Z A)

for any ring A. We say that a weight λ ∈ X∗(T ) is dominant if 0≤ ⟨λ, α∨⟩ for all α ∈1. Set X0(T ) to
be the subgroup consisting of characters λ ∈ X∗(T ) such that ⟨λ, α∨⟩ = 0 for all α ∈1, and X1(T ) to be
the subset consisting of characters λ ∈ X∗(T ) such that 0≤ ⟨λ, α∨⟩< p for all α ∈1

We fix an element η ∈ X∗(T ) such that ⟨η, α∨⟩ = 1 for all positive simple roots α. We define the p-dot
action as tλw ·µ= tpλw(µ+ η)− η. By letting w0 denote the longest element in W define w̃h

def
= w0t−η.

Recall that for (α, n) ∈ 8+ × Z, we have the p-root hyperplane Hα,n
def
= {λ : ⟨λ + η, α∨⟩ = np}.

A p-alcove is a connected component of the complement X∗(T )⊗Z R \
(⋃

(α,n) Hα,n
)
. We say that a

p-alcove C is p-restricted (resp. dominant) if 0 < ⟨λ+ η, α∨⟩< p (resp. 0 < ⟨λ+ η, α∨⟩) for all simple
roots α ∈1 and λ ∈ C . If C0 ⊂ X∗(T )⊗Z R denotes the dominant base alcove (i.e., the alcove defined
by the condition 0 < ⟨λ+ η, α∨⟩< p for all positive roots α ∈8+, we let

W̃+ def
= {w̃ ∈ W̃ : w̃ ·C0 is dominant} and W̃+1

def
= {w̃ ∈ W̃+ : w̃ ·C0 is p-restricted}.

We sometimes refer to C0 as the lower alcove and C1
def
= w̃h ·C0 as the upper alcove.
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Let now Op be a finite étale Zp-algebra. We have an isomorphism Op ∼=
∏

v∈Sp
Ov where Sp is a finite

set and Ov is the ring of integers of a finite unramified extension F+v of Qp. Let G0
def
=ResOp/Zp G/Op with

Borel subgroup B0
def
= ResOp/Zp B/Op , maximal torus T0

def
= ResOp/Zp T/Op , and Z0

def
= ResOp/Zp Z/Op . We

assume that O contains the image of any ring homomorphism Op→ Zp and write J def
= HomZp(Op,O).

We can and do fix an identification of G def
= (G0)/O with the split reductive group GJ

/O. We similarly
define B, T , and Z . Corresponding to (G, B, T ), we have the set of positive roots 8+ ⊂ 8 and the
set of positive coroots 8∨,+

⊂ 8∨. The notation 3R , W , W a , W̃ , W̃+, W̃+1 should be clear as should
the natural isomorphisms X∗(T )= X∗(T )J and the like. Given an element j ∈ J , we use a subscript
notation to denote j-components obtained from the isomorphism G ∼= GJ

/O (so that, for instance, given
an element w̃ ∈ W̃ we write w̃ j to denote its j-th component via the induced identification W̃ ∼= W̃J ).
For sake of readability, we abuse notation and still write w0 to denote the longest element in W , and
fix a choice of an element η ∈ X∗(T ) such that ⟨η, α∨⟩ = 1 for all α ∈ 1. The meaning of w0, η and
w̃h

def
= w0t−η should be clear from the context.

The absolute Frobenius automorphism on Op/p lifts canonically to an automorphism ϕ of Op. We
define an automorphism π of the identified groups X∗(T ) and X∗(T∨) by the formula π(λ)σ = λσ◦ϕ−1

for all λ ∈ X∗(T ) and σ : Op → O. We assume that, in this case, the element η ∈ X∗(T ) we fixed is
π -invariant. We similarly define an automorphism π of W and W̃ .

Let F+p be Op[1/p] so that F+p is isomorphic to the (finite) product
∏

v∈Sp
F+v where F+v

def
= Ov[1/p]

for each v ∈ Sp. Let

G∨/Z

def
=

∏
F+p →E

G∨/Z

be the dual group of G so that the Langlands dual group of G0 is LG/Z
def
= G∨ ⋊ Gal(E/Qp), where

Gal(E/Qp) acts on the set of homomorphisms F+p → E by postcomposition.
We now specialize to the case where Sp = {v} is a singleton. Hence F+p = K is an unramified extension

of degree f with ring of integers OK and residue field k. Let W (k) be ring of Witt vectors of k, which is
also the ring of integers of K .

We denote the arithmetic Frobenius automorphism on W (k) by ϕ; it acts as raising to p-th power on
the residue field.

Recall that we fixed a separable closure K of K . We choose π ∈ K such that π p f
−1
= −p and let

ωK :GK →O×K be the character defined by g(π)=ωK (g)π , which is independent of the choice of π . We
fix an embedding σ0 : K ↪→ E and define σ j = σ0◦ϕ

− j , which identifies J =Hom(k, F)=HomQp(K , E)

with Z/ f Z. We write ω f : GK →O× for the character σ0 ◦ωK .
Let ε denote the p-adic cyclotomic character. If W is a de Rham representation of GK over E , then for

each κ ∈HomQp(K , E), we write HTκ(W ) for the multiset of Hodge–Tate weights labeled by embedding
κ normalized so that the p-adic cyclotomic character ε has Hodge–Tate weight {1} for every κ . For
µ= (µ j ) j∈J ∈ X∗(T ), we say that a 3-dimensional representation W has Hodge–Tate weights µ if

HTσ j (W )= {µ1, j , µ2, j , µ3, j }.
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Our convention is the opposite of that of [Emerton and Gee 2023; Caraiani et al. 2016], but agrees with
that of [Gee et al. 2018].

We say that a 3-dimensional potentially semistable representation ρ : GK → GLn(E) has type (µ, τ)

if ρ has Hodge–Tate weights µ and the restriction to IK of the Weil–Deligne representation attached to ρ

(via the covariant functor ρ 7→WD(ρ)) is isomorphic to the inertial type τ . Note that this differs from
the conventions of [Gee et al. 2018] via a shift by η.

Let 0 be a group. If V is a finite length 0-representation, we let JH(V ) be the (finite) set of Jordan–
Hölder factors of V . If V ◦ is a finite O-module with a 0-action, we write V ◦ for the 0-representation
V ◦⊗O F over F.

If X is an ind-scheme defined over O, we write X E
def
= X ×SpecO Spec E and XF

def
= X ×SpecO Spec F to

denote its generic and special fiber, respectively. If M is any O-module we write M to denote M ⊗O F.
If P is a statement, the symbol δP ∈ {0, 1} takes value 1 if P is true, and 0 if P is false.

1.4.A. Tables. In Tables 1–3 we write α, β and γ for the elements of W̃ corresponding to (12), (23) and
w0t(1,0,−1), respectively. Moreover, the image of 1 def

= (1, 1, 1) ∈ X∗(T ) in W̃ is denoted as t1. We identify
the elements above with matrices in GL3(Z((v))) via the embedding W̃ ↪→ GL3(Z((v))) defined by

α 7→

0 1 0
1 0 0
0 0 1

 , β 7→

1 0 0
0 0 1
0 1 0

 , γ 7→

0 0 v−1

0 1 0
v 0 0

 and t1 7→

v 0 0
0 v 0
0 0 v

 .

2. Background

2.1. Affine Weyl group, tame inertial types and Deligne–Lusztig representations. Throughout this
section, we assume that Sp = {v}. Thus Op =OK is the ring of integers of a finite unramified extension K
of Qp and G0=ResOK /Zp G/OK . We drop subscripts v from notation and we identify J =HomQp(K , E)

with Z/ f Z via σ j
def
= σ0 ◦ϕ

− j
7→ j .

2.1.A. Admissibility. We follow [Le et al. 2023b, §2.1–§2.4], specializing to the case of n = 3. We
denote by ≤ the Bruhat order on W̃ ∼= X∗(T )⋊ W associated to the choice of the dominant base alcove
C0 and set

Adm(η)= {w̃ ∈ W̃ | w̃ ≤ ts(η) for some s ∈W }.

We will also consider the partially ordered group W̃∨ which is identified with W̃ as a group, but whose
Bruhat order is defined by the antidominant base alcove (and still denoted as ≤). Then Adm∨(η) is
defined as above, using now the antidominant order. We have an order reversing bijection w̃ 7→ w̃∗

between W̃ and W̃∨ defined as (w̃∗) j
def
= w−1

j tν j if w̃ j = tν j w j .

2.1.B. Tame inertial types and Deligne–Lusztig representations. An inertial type (for K ) is the GL3(E)-
conjugacy class of a homomorphism τ : IK → GL3(E) with open kernel and which extends to the Weil
group of GK . An inertial type is tame if it factors through the tame quotient of IK . We will sometimes
identify a tame inertial type with a fixed choice of a representative in its class.
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Given s = (s0, . . . , s f−1) ∈W and µ∈ X∗(T )∩C0, we have an associated integer r ∈{1, 2, 3} (which is
the order of the element s0s1 · · · s f−1 ∈W ), integers a′( j ′)

∈Z3 for 0≤ j ′≤ f r−1 and a tame inertial type
τ(s, µ+η) defined as τ(s, µ+η)

def
=

∑3
i=1(ω f r )

a′(0)
i (see [Le et al. 2023b, Example 2.4.1, equations (5.2),

(5.1)] for the details of this construction). We say that (s, µ) is the lowest alcove presentation for the
tame inertial type τ(s, µ+ η) and that τ(s, µ+ η) is N-generic if µ is N -deep in alcove C0. We say
that a tame inertial type τ has a lowest alcove presentation if there exists a pair (s, µ) as above such that
τ ∼= τ(s, µ+ η) (in which case we will say that (s, µ) is a lowest alcove presentation for τ ), and that τ

is N -generic if τ has a lowest alcove presentation (s, µ) such that µ is N -deep in alcove C0. We remark
that different choices of pairs (s, µ) as above can give rise to isomorphic tame inertial types (see [Le et al.
2019, Proposition 2.2.15]). If τ is a tame inertial type of the form τ = τ(s, µ+η), we write w̃(τ ) for the
element tµ+ηs ∈ W̃ . (In particular, when writing w̃(τ ) we use an implicit lowest alcove presentation for τ ).

Repeating the above with E replaced by F, we obtain the notion of inertial F-types and lowest
alcove presentations for tame inertial F-types. We use the notation τ to denote a tame inertial F-type
τ : IK →GL3(F). We say that a tame inertial F-type is N -generic if it admits a lowest alcove presentation
(s, µ) such that µ is N -deep in C0.

If µ is 1-deep in C0, then for each 0 ≤ j ′ ≤ f r − 1 there is a unique element s ′or, j ′ ∈ W such that
(s ′or, j ′)

−1(a′ ( j ′)) is dominant. (In the terminology of [Le et al. 2018a], see Definition 2.6 of [loc. cit.], the
f r -tuple (s ′or, j ′)0≤ j ′≤ f r−1 is the orientation of (a′ ( j ′))0≤ j ′≤ f r−1.)

To a pair (s, µ) ∈W × X∗(T ), we can also associate a virtual G0(Fp)-representation over E which we
denote Rs(µ) (cf. [Gee et al. 2018, Definition 9.2.2], where Rs(µ) is denoted as R(s, µ)). In particular,
R1(µ) is a principal series representation. If µ− η is 1-deep in C0 then Rs(µ) is an irreducible represen-
tation. In analogy with the terminology for tame inertial type, if µ− η is N -deep in alcove C0 for N ≥ 0,
we call (s, µ− η) an N -generic lowest alcove presentation for Rs(µ), and say that Rs(µ) is N-generic.
2.1.C. Inertial local Langlands correspondence. Given a tame inertial type τ : IK → GL3(E), [Caraiani
et al. 2016, Theorem 3.7] gives an irreducible smooth E-valued representation σ(τ) of G0(Fp)=GL3(k)

over E satisfying results towards the inertial local Langlands correspondence (see [loc. cit.] for the proper-
ties satisfied by σ(τ)). (By inflation, we will consider σ(τ) as a smooth representation of G0(Zp) without
further comment.) This representation need not be uniquely determined by τ and in what follows σ(τ) will
denote either a particular choice that we have made or any choice that satisfies the properties of [Caraiani
et al. 2016, Theorem 3.7] (see also [Le et al. 2023b, Theorem 2.5.3] and the discussion following it).

When τ = τ(s, µ+ η) is a tame inertial type such that µ ∈ C0 is 1-deep, the representation σ(τ) can
be taken to be Rs(µ+ η) thanks to [Le et al. 2019, Corollary 2.3.5].
2.1.D. Serre weights. We finally recall the notion of Serre weights for G0(Fp), and the notion of lowest
alcove presentations for them, following [Le et al. 2023b, §2.2]. A Serre weight for G0(Fp) is the
isomorphism class of an (absolutely) irreducible representation of G0(Fp) over F. (We will sometimes
refer to a representative for the isomorphism class as a Serre weight.)

Given λ∈ X1(T ), we write F(λ) for the Serre weight with highest weight λ; the assignment λ 7→ F(λ)

induces a bijection between X1(T )/(p− π)X0(T ) and the set of Serre weights (see [Gee et al. 2018,
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Lemma 9.2.4]). We say that F(λ) is N -deep if λ is (this does not depend on the choice of λ).
Recall from [Le et al. 2023b, §2.2] the equivalence relation on W̃ × X∗(T ) defined by

(w̃, ω)∼ (tνw̃, ω− ν)

for all ν ∈ X0(T ). For (an equivalence class of) a pair (w̃1, ω− η) ∈ W̃+1 × (X∗(T )∩C0)/∼ the Serre
weight F(w̃1,ω)

def
= F(π−1(w̃1) · (ω− η)) is well defined, i.e., is independent of the representative of the

equivalence class of (w̃1, ω). The equivalence class of (w̃1, ω) is called a lowest alcove presentation for
the Serre weight F(w̃1,ω). The Serre weight F(w̃1,ω) is N -deep if and only if ω−η is N -deep in alcove C0.
As above, we sometimes implicitly choose a representative for a lowest alcove presentation to make an a
priori sense of an expression, though it is a posteriori independent of this choice.

2.1.E. Compatibility for lowest alcove presentations. Recall that we have a canonical isomorphism
W̃/W a ∼= X∗(Z) where W a ∼= 3R ⋊ W is the affine Weyl group of G. Given an algebraic character
ζ ∈ X∗(Z), we say that an element w̃ ∈ W̃ is ζ -compatible if it corresponds to ζ via the isomorphism
W̃/W a ∼= X∗(Z). In particular, a lowest alcove presentation (s, µ) for a tame inertial type (resp. a
lowest alcove presentation (s, µ−η) for a Deligne–Lusztig representation) is ζ -compatible if the element
tµ+ηs ∈ W̃ (resp. tµs ∈ W̃ ) is ζ -compatible. Similarly, a lowest alcove presentation (w̃1, ω) for Serre
weight is ζ -compatible if the element tω−ηw̃1 ∈ W̃ is ζ -compatible.

2.1.F. A comparison to [Le et al. 2020]. In [Le et al. 2020], the parametrization of Serre weights is
slightly different from the one in [Le et al. 2023b]. Here, we give a dictionary between the two.

Define a map
W̃ × X∗(T )→ W̃/W a ∼= X∗(Z), (w̃, ω) 7→ tω−ηw̃W a (2-1)

and write (W̃×X∗(T ))ζ for the preimage of ζ ∈ X∗(Z) (presentations compatible with ζ ). The map (2-1)
is constant on equivalence classes, and we write (W̃ × X∗(T ))ζ/∼ for the set of equivalence classes in
the preimage of ζ . The equivalence relation restricts to one on W̃ 1× X∗(T ) or W̃ 1× (X∗(T )∩C0+ η),
and we use similar notation, e.g., (W̃ 1× (X∗(T )∩C0+ η))ζ/∼, for these subsets.

We let 3W and W̃ der be X∗(T )/X0(T ) and W̃/X0(T ), respectively. Recall from [Le et al. 2020, §2.1]
the set

Pder
= {(ω, w̃) ∈3W × W̃ der,+

1 | tωπ(w̃) ∈W a}.

Letting A be the set of p-restricted alcoves in X∗(T )⊗Z R, the map

β : Pder
→3W ×A, (ω, w̃) 7→ (ω, π(w̃) ·C0)

is a bijection by [Le et al. 2020, Lemma 2.1.1].
For λ ∈ X∗(T ), the map

(W̃ 1× X∗(T ))λ−η|Z /∼
ιλ
→ Pder, (w̃, ω) 7→ (ω− λ, π−1(w̃))

is a bijection. (Here ω− λ also denotes its image in 3W .)
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Then β ◦ ιλ : (W̃ 1× X∗(T ))λ−η|Z /∼→3W ×A is a bijection which induces a bijection

(W̃ 1× X∗(T )∩C0+ η)λ−η|Z /∼→3λ
W ×A, (w̃, ω) 7→ (ω− λ, w̃ ·C0) (2-2)

when λ−η ∈C0 and 3λ
W is defined to be the set of ω′ ∈3W satisfying ω′+λ−η ∈C0, see [Le et al. 2020,

§2.1]. By the definition of Trλ in [Le et al. 2020, §2.1], for (w̃, ω) ∈ (W̃ 1× X∗(T )∩C0+ η)λ−η|Z /∼,
we have

F(w̃,ω) = F(Trλ(ω− λ, w̃ ·C0)). (2-3)

2.1.G. Reduction of Deligne–Lusztig representations. For i ∈ {1, 2}, let εi denote the image of ε′i via the
surjection X∗(T ) ↠ 3W .

Proposition 2.1.1. Let λ−η and µ−η be 0-deep and 1-deep in C0, respectively, such that µ+η−λ∈3R .
If σ ∈ JH(Rs(µ)) is a 0-deep Serre weight, then σ is contained in F

(
Trλ(tµ−λs(6))

)
, where 6= (60)

f
⊆

3
λ+η

W ×A and

60
def
=

{
(ε1+ ε2, 0), (ε1− ε2, 0), (ε2− ε1, 0), (0, 1), (ε1, 1), (ε2, 1), (0, 0), (ε1, 0), (ε2, 0)

}
.

If µ− η is furthermore 2-deep, then JH(Rs(µ)) is F
(
Trλ(tµ−λs(6))

)
.

Proof. [Herzig 2009, Appendix, Theorem 3.4] gives the identity

Rs(µ)=
∑

w̃∈W̃+1 /X0(T )

W
(
w̃ · (tµs(w̃hw̃)−1(0)− η)

)
at the level of characters (in our situation, γ ′

Fr−1
w1,w2

is 1 if w1 = w2 and is 0 otherwise). That µ− η is
1-deep in C0 implies that w̃ · (tµs(w̃hw̃)−1(0)− η) is −1-deep in a p-restricted alcove. This implies that
for each w̃ ∈ W̃+1 , w̃ · (tµs(w̃hw̃)−1(0)−η)+η is dominant so that w̃ · (tµs(w̃hw̃)−1(0)−η) is dominant
or W (w̃ ·(tµs(w̃hw̃)−1(0)−η)) is zero. If σ ∈ JH(Rs(µ)), then σ ∈ JH

(
W (w̃ ·(tµs(w̃hw̃)−1(0)−η))

)
for

some w̃ ∈ W̃+1 . Herzig [2006, Proposition 4.9] gives a decomposition of such p-restricted Weyl modules.
The proof of [Le et al. 2020, Proposition 2.3.4] shows that σ ∈ F

(
Trλ(tµ−λs(6))

)
. If µ− η is 2-deep,

then w̃ · (tµs(w̃hw̃)−1(0)− η) is 0-deep in a p-restricted alcove and hence dominant. The description of
JH(Rs(µ)) again follows from the proof of [Le et al. 2020, Proposition 2.3.4]. □

If µ−η is 1-deep in C0, we let the subset JHout(Rs(µ))⊂ JH(Rs(µ)) be the Serre weights of the form
F

(
w̃ · (tµs(w̃hw̃)−1(0)− η)

)
for some w̃ ∈ W̃+1 . We call the elements of JHout(Rs(µ)) the outer weights

(of JH(Rs(µ))). In the notation of Proposition 2.1.1, JHout(Rs(µ)) is the subset F
(
Trλ(tµ−λs(6out))

)
,

where 6out = (6out,0)
f
⊆3

λ+η

W ×A and

6out,0
def
=

{
(ε1+ ε2, 0), (ε1− ε2, 0), (ε2− ε1, 0)(0, 1), (ε1, 1), (ε2, 1)

}
.

If λ − η and µ − η are 0-deep and 2-deep in C0 respectively, and µ + η − λ ∈ 3R , we define
W ?(τ (s, µ + η)) to be the set of Serre weights F

(
Trλ

(
tµ+η−λs(r(6))

))
, where r(6) is defined by

swapping the digits of a ∈A in the elements (ε, a) ∈6.
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2.1.H. The covering order.

Definition 2.1.2. We say that a 3-deep Serre weight σ0 covers σ if

σ ∈
⋂

R 1-generic
σ0∈JH(R)

JH(R)

(where R runs over 1-generic Deligne–Lusztig representations).

Lemma 2.1.3. A Serre weight σ1 covers σ2 if and only if σ2 ↑ σ1.

Proof. This follows from [Le et al. 2023b, Proposition 2.3.12(4)] where the slightly weaker genericity
hypotheses come from Section 2.1.G. □

2.1.I. L-parameters. We now assume that Sp has arbitrary finite cardinality. An L-parameter (over E)
is a G∨(E)-conjugacy class of a continuous homomorphism ρ : GQp →

LG(E) which is compatible
with the projection to Gal(E/Qp) (such homomorphism is called L-homomorphism). An inertial L-
parameter is a G∨(E)-conjugacy class of a homomorphism τ : IQp → G∨(E) with open kernel, and
which admits an extension to an L-homomorphism. An inertial L-parameter is tame if some (equivalently,
any) representative in its equivalence class factors through the tame quotient of IQp .

Fixing isomorphisms F+v −→∼ Qp for all v ∈ Sp, we have a bijection between L-parameters (resp. tame
inertial L-parameters) and collections of the form (ρv)v∈Sp (resp. of the form (τv)v∈Sp ) where for all
v ∈ Sp the element ρv : GF+v → GL3(E) is a continuous Galois representation (resp. the element
τv : IF+v → GL3(E) is a tame inertial type for F+v ).

We have similar notions when E is replaced by F. Again we will often abuse terminology, and identify
an L-parameter (resp. a tame inertial L-parameter) with a fixed choice of a representative in its class.
This shall cause no confusion, and nothing in what follows will depend on this choice.

The definitions and results of Sections 2.1.B–2.1.H generalize in the evident way for tame inertial
L-parameters and L-homomorphism. (In the case of the inertial local Langlands correspondence of
Section 2.1.C, given a tame inertial L-parameter τ corresponding to the collection of tame inertial
types (τv)v∈Sp , we let σ(τ) be the irreducible smooth E-valued representation of G0(Zp) given by⊗

v∈Sp
σ(τv).)

2.2. Breuil–Kisin modules. We recall some background on Breuil–Kisin modules with tame descent
data. We refer the reader to [Le et al. 2020, §3.1–3.2; 2023b, §5.1] for further detail, with the caveat that
we are following the conventions of the latter on the labeling of embeddings for tame inertial types and
Breuil–Kisin modules (see [loc. cit., Remark 5.1.2]).

Let τ =τ(s, µ+η) be a tame inertial type with lowest alcove presentation (s, µ) which we fix throughout
this section (recall that µ is 1-deep in C0). Recall that r ∈ {1, 2, 3} is the order of s0s1s2 · · · s f−1 ∈W .
We write K ′/K for the unramified extension of degree r contained in K and set f ′ def

= f r , e′ def
= p f ′

− 1.
We identify HomQp(K ′, E) with Z/ f ′Z via σ j ′

def
= σ ′0 ◦ϕ

− j ′
7→ j ′, where σ ′0 : K

′ ↪→ E is a fixed choice
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for an embedding extending σ0 : K ↪→ E . In this way, restriction of embeddings corresponds to reduction
modulo f in the above identifications.

Let π ′ ∈ K be an e′-th root of −p, let L ′ def
= K ′(π ′) and 1′

def
= Gal(L ′/K ′) ⊂ 1

def
= Gal(L ′/K ). We

define the O×K ′-valued character ωK ′(g)
def
= g(π ′)/π ′ for g ∈1′ (this does not depend on the choice of π ′).

Given an O-algebra R, we set SL ′,R
def
= (W (k ′)⊗Zp R)[[u′]]. The latter is endowed with an endomorphism

ϕ :SL ′,R→SL ′,R acting as Frobenius on W (k ′), trivially on R, and sending u′ to (u′)p. It is endowed
moreover with an action of 1 as follows: for any g in 1′, g(u′)= (g(π ′)/π ′)u′ = ωK ′(g)u′ and g acts
trivially on the coefficients; if σ f

∈ Gal(L ′/K ) is the lift of p f -Frobenius on W (k ′) which fixes π ′, then
σ f is a generator for Gal(K ′/K ), acting in natural way on W (k ′) and trivially on both u′ and R. Set
v = (u′)e′ ,

SR
def
= (SL ′,R)1=1

= (W (k)⊗Zp R)[[v]]

and E(v)
def
= v+ p = (u′)e′

+ p.
Let Y [0,2](R) be the groupoid of Breuil–Kisin modules of rank 3 over SL ′,R , height in [0, 2] and descent

data of type τ (see [Caraiani and Levin 2018, §3; Le et al. 2020, Definition 3.1.3; 2023b, Definition 5.1.3]):

Definition 2.2.1. An object of Y [0,2],τ (R) is the datum of

(1) a finitely generated projective SL ′,R-module M which is locally free of rank 3;

(2) an injective SL ′,R-linear map φM : ϕ
∗(M)→M whose cokernel is annihilated by E(v)2; and

(3) a semilinear action of 1 on M which commutes with φM, and such that, for each j ′ ∈HomQp(K ′, E),

(M⊗W (k′),σ j ′
R) mod u′ ∼= τ∨⊗O R

as 1′-representations.

Note that M( j ′) def
=M⊗W (k′),σ j ′

R is an R[[u′]]-submodule of M in a standard way, endowed with a semi-
linear action of 1′ and the Frobenius φM induces 1′-equivariant morphisms φ

( j ′)
M : ϕ

∗(M( j ′−1))→M( j ′).
In particular, by letting τ ′ denote the tame inertial type for K ′ obtained from τ via the identification IK ′= IK

induced by the inclusion K ′⊆ K , the semilinear action of 1 induces an isomorphism ιM : (σ
f )∗(M)∼=M

(see [Le et al. 2018a, §6.1]) as elements of Y [0,2],τ ′(R).
Let M ∈ Y [0,2],τ (R). Recall that an eigenbasis of M is a collection of bases β( j ′)

= ( f ( j ′)
1 , f ( j ′)

2 , f ( j ′)
3 )

for each M( j ′) such that 1′ acts on f ( j ′)
i via the character ω−a′ (0)

i
f ′ (see Section 2.1.B for the definition of

a′ (0)
∈ Z3) and such that ιM((σ f )∗(β( j ′)))= β( j ′+ f ) for all j ′ ∈ HomQp(K ′, E). Given an eigenbasis β

for M, we let C ( j ′)
M,β be the matrix of φ

( j ′)
M : ϕ

∗(M( j ′−1))→M( j ′) with respect to the bases ϕ∗(β( j ′−1))

and β( j ′) and set
A( j ′)
M,β

def
= Ad((s ′or, j ′)

−1(u′)−a′ ( j ′)
)(C ( j ′)

M,β)

for j ′ ∈ HomQp(K ′, E). It is an element of GL3(R((v + p))) with coefficients in R[[v + p]], is upper
triangular modulo v and only depends on the restriction of j ′ to K (see [Le et al. 2023b, §5.1]).

Let I(F) denote the Iwahori subgroup of GL3(F((v))) relative to the Borel of upper triangular matrices.
We define the shape of a mod p Breuil–Kisin module M ∈ Y [0,2],τ (F) to be the element z̃ = (z̃ j ) ∈ W̃∨
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such that for any eigenbasis β and any j ∈ J , the matrix A( j)
M,β lies in I(F)z̃ j I(F). This notion doesn’t

depend on the choice of eigenbasis, see [Le et al. 2023b, Proposition 5.1.8] (but it does depend on the
lowest alcove presentation of τ ; see [ibid., Remark 5.1.5]).

3. Local models in mixed characteristic and the Emerton–Gee stack

We assume throughout this section that Sp = {v} so Op =OK is the ring of integer of a finite unramified
extension K of Qp. We identify J = HomQp(K , E) with Z/ f Z via σ j

def
= σ0 ◦ϕ

− j
7→ j .

3.1. Local models in mixed characteristic. We now define the mixed characteristic local models which
are relevant to our paper. We follow closely [Le et al. 2023b, §4] and the notation therein.

For any Noetherian O-algebra R, define

LGO(R)
def
= {A ∈ GL3(R((v+ p))), A is upper triangular modulo v};

L+GO(R)
def
= {A ∈ GL3(R[[v+ p]]), A is upper triangular modulo v};

L [0,2]GO(R)
def
=

{
A ∈ LGO(R),

A, (v+ p)2 A−1 are elements of Mat3(R[[v+ p]])
and are upper triangular modulo v

}
.

The fpqc quotients L+GO \L [0,2]GO ↪→ L+GO \LGO induced from inclusions L+GO(R)⊆ L [0,2]GO(R)⊆

LGO(R) are representable by a projective scheme Gr[0,2]
G,O and an ind-projective ind-scheme GrG,O, respec-

tively.
For any z̃ = (z̃ j ) j∈J ∈ W̃∨ and any Noetherian O-algebra R, define

Ũ (z̃)(R)=
(
Ũ (z̃ j )(R)

)
j∈J ⊆ (LGO(R))J

to be the set of f -tuples of matrices (A( j)) j∈J ∈ (LGO(R))J such that for all 1≤ i, k ≤ 3 and j ∈ J ,

• A( j)
ik ∈ vδi>k R[v+ p, 1/(v+ p)];

• degv+p(A( j)
ik )≤ ν j,k − δi<z j (k); and

• degv+p(A( j)
z j (k)k)= ν j,k and the coefficient of the leading term is a unit of R,

where we have written z̃= ztν and ν= (ν j,1, ν j,2, ν j,3) j∈J (and recall from Section 1.4 the notation for the
Kronecker deltas δi>k , δi<z j (k)). We set Ũ [0,2](z̃)(R)

def
= Ũ (z̃)(R)∩(L [0,2]G(R))J . Note that both Ũ [0,2](z̃)

and Ũ (z̃) are endowed with a T∨O-action induced by left multiplication of matrices. It follows from [Le
et al. 2023b, Lemmas 3.2.2 and 3.2.7] that the natural map Ũ (z̃)→ GrJG,O (resp. Ũ [0,2](z̃)→ Gr[0,2],J

G,O )
factors as a T∨O-torsor map followed by an open immersion. (We have written GrJG,O for the product, over
SpecO, of f -copies of GrG,O indexed over elements j ∈ J , and Gr[0,2],J

G,O is defined similarly.)
We now compare the objects above with groupoids of Breuil–Kisin modules with tame descent. Let

(s, µ) ∈W × X∗(T ) be a lowest alcove presentation for the tame inertial type τ
def
= τ(s, µ+ η). We have

the twisted shifted conjugation action of T∨O on Ũ [0,2](z̃) given by

A( j)
7→ t j A( j)Ad(s−1

j )(t j−1),
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which is exactly the restriction to T∨O of the (s, µ)-twisted ϕ-conjugation in [Le et al. 2023b, §5.2]. By [Le
et al. 2023b, Corollary 5.2.3] the quotient of Ũ [0,2](z̃)F by this action is isomorphic to an open substack
Y [0,2],τ

F (z̃) of Y [0,2],τ
F . We denote by Y [0,2],τ (z̃) the open substack of Y [0,2],τ induced by Y [0,2],τ

F (z̃) (see
[Le et al. 2023b, Definition 5.2.4]).

By [Le et al. 2023b, Theorem 5.3.1], whenever µ is 3-deep in C0, we have a morphism of p-adic
formal algebraic stacks over O,

Ũ [0,2](z̃)∧p → Y [0,2],τ (z̃) ↪→ Y [0,2],τ ,

where the left map is a T∨O-torsor for the twisted shifted conjugation action on the source and the second
map is an open immersion.

We finally consider Breuil–Kisin modules with height bounded by the cocharacter η ∈ X∗(T∨). The
fiber GrJG,E of GrJG,O over E is the affine Grassmannian of GL3 and we let MJ (≤η) be the Zariski closure
in GrJG,O of the open affine Schubert cell associated to (v+ p)η in GrJG,E . Let Ũ (z̃,≤η) be the pull back
of Ũ [0,2](z̃) along the closed immersion MJ (≤η) ↪→ GrJG,O.

Let Y≤η,τ denote the closed p-adic formal substack of Y [0,2],τ appearing in [Caraiani and Levin 2018,
§5] (and denoted Y η,τ there). The computations of [Le et al. 2018a, §4] give the following:

Proposition 3.1.1. Let z̃ ∈ Adm∨(η). Then Ũ (z̃,≤η) is an affine scheme over O, with presentations⊗ f−1
j=0 O(Ũ (z̃ j ,≤ η j )), where the O-algebras O(Ũ (z̃ j ,≤ η j )) are given in Table 1. Moreover, let

(s, µ) ∈W × (X∗(T )∩C0) be a lowest alcove presentation of τ
def
= τ(s, µ+ η), with µ being 3-deep in

C0 and denote by Y≤η,τ (z̃) the pull back of Y [0,2],τ (z̃) along the closed immersion Y≤η,τ ↪→ Y [0,2],τ .
Then we have a morphism of p-adic formal algebraic stacks over O

Ũ (z̃,≤η)∧p → Y≤η,τ (z̃) ↪→ Y≤η,τ . (3-1)

where the left map is a T∨O-torsor for the twisted shifted conjugation action on the source and the second
map is an open immersion.

3.2. Monodromy condition. We introduce closed subspaces of Y≤η,τ , Y≤η,τ (z̃) and Ũ (z̃,≤η)∧p , and
compare them with potentially crystalline substacks of the Emerton–Gee stack (introduced below).

Recall the element η ∈ X∗(T ) we fixed in Section 1.4. Let τ
def
= τ(s, µ + η) be a tame inertial

type with lowest alcove presentation (s, µ), where µ is 1-deep in alcove C0. By [Le et al. 2023b,
Proposition 7.1.6] the datum of a p-adically complete, topologically finite type flat O-algebra R, and a
morphism f : Spf R→ Y [0,2],τ (corresponding to an element M ∈ Y [0,2],τ (R)) defines a p-saturated ideal
IM,∇∞ ⊂ R which is compatible with flat base change. (In the terminology of [loc. cit.], and in the case
where M is free over SL ′,R , the morphism f : Spf R→ Y [0,2],τ factors through Spf R→ Spf(R/IM,∇∞)

if and only if M satisfies the monodromy condition [Le et al. 2023b, Definition 7.1.2].) This gives rise to
a O-flat closed substack Y [0,2],τ,∇∞ ↪→ Y [0,2],τ (see [Le et al. 2023b, §7.2]) characterized by the property
that for any M ∈ Y [0,2],τ (R) corresponding to Spf R→ Y [0,2],τ , the pullback of the substack Y [0,2],τ,∇∞
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z̃ j t−1 A( j) O(Ũ (z̃ j ,≤η j ))

αβαγ

 (v+ p)2c∗11 0 0
v(v+ p)c21 (v+ p)c∗22 0

v(c31+ (v+ p)c′31) vc32 c∗33

 O[c∗11, c21, c31, c′31, c∗22, c32, c∗33]

βγαγ

(v+ p)c∗11 (v+ p)c12 0
0 (v+ p)2c∗22 0

vc31 v(c32+ (v+ p)c′32) c∗33

 O[c∗11, c12, c∗22, c31, c32, c′32, c∗33]

βαγ

 (v+ p)c11 (v+ p)c∗12 0
v(v+ p)c∗21 (v+ p)c22 0

v(c31+ (v+ p)c′31) vc32 c∗33

 O[c11, c∗12, c∗21, c22, c31, c′31, c32, c∗33]/Iz̃ j

Iz̃ j = (c11c22+ pc∗12c∗21)

αβγ

 (v+ p)2c∗11 0 0
v(c21+ (v+ p)c′21) c22 c∗23

v(c21c33(c∗23)
−1
+ (v+ p)c′31) vc∗32 c33

 O[c∗11, c21, c′21, c22, c∗23, c′31, c∗32, c33]/Iz̃ j

Iz̃ j = (c22c33+ pc∗32c∗23)

αβα

 c11 c11c32(c∗31)
−1 c13+ (v+ p)c∗13

0 (v+ p)c∗22 (v+ p)c23

vc∗31 vc32 c33+ (v+ p)c′33

 O[c11, c12, c13, c∗13, c∗22, c23, c∗31, c32, c33, c′33]/Iz̃ j

Iz̃ j =

(
c11c32− c12c∗31, c11c33+ pc13c∗31

c11c′33− c13c∗31+ pc∗13c∗31

)
Table 1 (continued)

Table 1. We list the O-algebras O(Ũ (z̃ j ,≤η j )) appearing in Proposition 3.1.1. Note
that O(Ũ (z̃ j ,≤η j )) ∼= O(Ũ (δz̃ jδ

−1,≤η j )) using the following change of coordinates
in terms of universal matrices A( j): for ? ∈ {∅, ∗, ′} we have c?

ik 7→ c?
(i+1)(k+1), where,

for 1≤ i, k ≤ 3, the integers (i + 1), (k+ 1) ∈ {1, 2, 3} are taken modulo 3.

is Spf(R/IM,∇∞). We finally define Y≤η,τ,∇∞ as the pullback of Y [0,2],τ,∇∞ ↪→ Y [0,2],τ along the closed
immersion Y≤η,τ ↪→ Y [0,2],τ .

Let XK ,3 be the Noetherian formal algebraic stack over SpfO defined in [Emerton and Gee 2023,
Definition 3.2.1]. It has the property that for any complete local Noetherian O-algebra R with finite
residue field, the groupoid XK ,3(R) is equivalent to the groupoid of rank 3 projective R-modules equipped
with a continuous GK -action, see [Emerton and Gee 2023, §3.6.1]. (In particular, we will consider closed
points of XK ,3(F) as continuous Galois representations ρ : GK → GL3(F), and conversely.) Moreover,
by [Emerton and Gee 2023, Theorem 4.8.12], there is a unique O-flat closed formal substack X η,τ of
XK ,3 which parametrizes, over finite flat O-algebras, those GK -representations which after inverting p
are potentially crystalline with Hodge-Tate weight η and inertial type τ . We define X≤η,τ in the same
way, except that the condition on Hodge-Tate weights becomes ≤η. In particular, X≤η,τ is the scheme
theoretic union of the substacks X λ,τ for λ dominant and λ≤ η.

The substacks X η,τ , X≤η,τ have the following fundamental properties:
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z̃ j t−1 A( j) O(Ũ (z̃ j ,≤η j ))

αβ

c31c12(c∗32)
−1 c12 c13+ (v+ p)c∗13

vc∗21 c22 c23+ (v+ p)c′23
vc31 vc∗32

(
c31c23(c∗21)

−1
+ (v+ p)c′33

)
 O[c12, c13, c∗13, c∗21, c22, c23, c′23, c31, c∗32, c′33]/Iz̃ j

Iz̃ j =

(
c22c31+ pc∗21c∗32, c12c23− c22c13

c∗21c∗32c13− pc∗21c∗32c∗13− c′33c∗21c12 = 0

)

βα

 c11
(
(c∗31)

−1c11c32+ (v+ p)c∗12

)
c13

0 (v+ p)c′22 (v+ p)c∗23
c∗31v c32v c33+ (v+ p)c′33

 O[c11, c∗12, c13, c′22, c∗23, c∗31, c32, c33, c′33]/Iz̃ j

Iz̃ j =

(
c11c33+ pc∗31c13

c′22(c11c′33− c13c∗31)− pc∗23c∗12c∗31

)

α

 c11 c12+ (v+ p)c∗12 c13

c∗21v c22+ (v+ p)c′22 c23

c31v c32v (c33+ (v+ p)c∗33)


O[c11, c12, c∗12, c13, c∗21, c22, c′22, c23, c31, c32, c33, c∗33]/Iz̃ j

Iz̃ j =


c11c22+ pc12c∗21, c11c23+ pc13c∗21, c12c23− c13c22,

c11c32− c31c12, c11c33+ pc31c13, c12c33+ pc32c13,

pc∗21c32+ c22c31, c∗21c33− c23c31, c22c33+ pc32c23,

c11c′22c∗33+ c13c∗21c32− c13c′22c31

− c12c∗21c∗33+ pc∗21c∗12c∗33



id

c11+ c∗11(v+ p) c12 c13

vc21 c22+ c∗22(v+ p) c23

vc31 vc32 c33+ c∗33(v+ p)


O[c11, c∗11, c12, c13, c21, c22, c∗22, c23, c31, c32, c33, c∗33]/Iz̃ j

Iz̃ j =


c11c22+ pc12c21, c11c23+ pc13c21, c12c23− c13c22,

c11c32− c31c12, c11c33+ pc31c13, c12c33+ pc32c13,

pc21c32+ c22c31, c21c33− c23c31, c22c33+ pc32c23,

c11c∗22c∗33+ c22c∗33c∗11+ c33c∗11c∗22
− c∗11c23c32− c∗22c13c31− c∗33c12c21+ c21c13c32


Table 1 (continued). The remaining relevant O-algebras for Proposition 3.1.1.

Theorem 3.2.1 [Emerton and Gee 2023, Theorem 4.8.12, Proposition 4.8.10]. Let X ?,τ denote either the
substack X η,τ or X≤η,τ . Then:

(1) The stack X ?,τ is a p-adic formal algebraic stack, flat and topologically of finite type over SpfO.

(2) X η,τ is equidimensional of dimension 1+3 f , while for λ dominant and λ<η, X λ,τ is equidimensional
of dimension < 1+ 3 f .

(3) Let ρ ∈ X η,τ (F) corresponding to a mod p representation of GK . Then the potentially crystalline
deformation ring Rη,τ

ρ is a versal ring to X η,τ at ρ.

(4) For any smooth map Spf R→ X ?,τ with R being a p-adically complete, topologically of finite type
O-algebra, the ring R is reduced and R[1/p] is regular.

Using Proposition 3.1.1, we can finally relate the objects introduced so far:

Theorem 3.2.2. Let z̃ ∈ Adm∨(η) and assume that the character µ (appearing in the lowest alcove
presentation (s, µ) of τ ) is 4-deep. We have a commutative diagram of p-adic formal algebraic stacks
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over SpfO:

Ũ (z̃,≤η)∧p // Y≤η,τ (z̃) �
�

// Y≤η,τ

Ũ (z̃,≤η,∇τ,∞) //
?�

OO

Y≤η,τ,∇∞(z̃) �
�

//
?�

OO

Y≤η,τ,∇∞
?�

OO

X̃≤η,τ (z̃) //

∼=

OO

X≤η,τ (z̃) �
�

//

∼=

OO

X≤η,τ

∼=

OO

X̃ η,τ (z̃) //
?�

OO

X η,τ (z̃) �
�

//
?�

OO

X η,τ
?�

OO

where

• all the stacks appearing in the left column and in the central column are defined so that all the squares
in the diagram are cartesian;

• the hooked horizontal arrows are open immersion;

• the left horizontal arrows are T∨O-torsor for the twisted shifted conjugation action on the source (induced
by the twisted shifted conjugation action on Ũ (z̃,≤η)∧p );

• the vertical hooked arrows are closed immersions and the vertical arrows decorated with “∼=” are
isomorphisms.

In particular, Ũ (z̃,≤η,∇τ,∞) is an affine p-adic formal scheme over SpfO, topologically of finite type.
Furthermore, if ℓ(z̃ j )≥ 2 for all j , then Ũ (z̃,≤η,∇τ,∞) is the p-adically completed tensor product over
O of the rings in Table 2.

Proof. This is [Le et al. 2023b, Proposition 7.2.3]. The last assertion follows from the computations in [Le
et al. 2018a, §5.3] noting that the whole discussion there applies to the p-adic completion (as opposed to
completions at closed points), and that the computations of [loc. cit.] can be performed with less stringent
genericity assumptions (see the proof of Theorem 3.3.2 for the precise genericity). □

Remark 3.2.3. Note that X η,τ
⊆X≤η,τ can be characterized as the union of the (1+3 f )-dimensional irre-

ducible components (which is the maximal possible dimension). In particular, by letting Ũ (z̃, η,∇τ,∞) de-
note the maximal reduced O-flat (1+6 f )-dimensional closed p-adic formal subscheme of Ũ (z̃,≤η,∇τ,∞),
Theorem 3.2.2 gives an identification of X̃ η,τ (z̃) with Ũ (z̃, η,∇τ,∞).

3.3. Special fibers. Let Fl denote the affine flag variety over F for GL3/F (with respect to the Iwahori
relative to the upper triangular Borel), identified with the special fiber of GrG,O. As in [Le et al. 2023b,
(4.7)], we define the closed sub-ind scheme Fl∇0 ↪→ Fl.
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z̃ j t−1 O(Ũ (z̃ j , η,∇(s,µ)))

αβαγ O[c∗11, c21, c′31, c∗22, c32, c∗33]

βγαγ O[c∗11, c12, c∗22, c31, c′32, c∗33]

βαγ
O[c11, c∗12, c∗21, c22, c′31, c32, c∗33]/Iz̃ j ,∇(s,µ)

Iz̃ j ,∇(s,µ)
= (c11c22+ pc∗12c∗21)

αβγ
O[c∗11, c′21, c22, c∗23, c′31, c∗32, c33]/Iz̃ j ,∇s j (µ j+η j )

Iz̃ j ,∇(s,µ)
= (c22c33+ pc∗32c∗23)

αβα
O[c32, c23, c′33, c∗31, c∗22, c∗13]/Iz̃ j ,∇(s,µ)

Iz̃ j ,∇s j (µ j+η j )
=

(
c11

(
(a− b)c23c32− (a− c)c∗22c′33

)
+ p(e′− a+ c)c∗31c∗22c∗13

)
αβ

O[[c31, c22, c12, c′23, c′33, c∗21, c∗13, c∗32]]/Iz̃ j ,∇s j (µ j+η j )

Iz̃ j ,∇(s,µ)
=

(
c12

(
(a− b)c31c′23+ (b− c)c∗21c′33

)
− p(e′− a+ c)c∗21c∗32c∗13,

c22c31+ pc∗21c∗32

)

βα

O[[c11, c′22, c13, c32, c′33, c∗31, c∗12, c∗23]]/Iz̃ j ,∇s j (µ j+η j )

Iz̃ j ,∇(s,µ)
=

(
c11

(
(a− b)c32c∗23− (a− c)c′22c′33

)
− p(e′− a+ c)c∗12c∗23c∗31,

c′22(c11c′33− c13c∗31)− pc∗23c∗12c∗31

)
Table 2. We list the O-algebras O(Ũ (z̃ j , η j ,∇(s,µ))) appearing in Theorem 3.2.2. The
triple (a, b, c) is (s ′or, j ′)

−1(a′ ( j ′)). Note that

O(Ũ (z̃ j , η,∇(s,µ)))∼=O(Ũ (δz̃ jδ
−1, η j ,∇(s,µ)))

using the following change of coordinates: for ? ∈ {∅, ∗, ′} we have c?
ik 7→ c?

(i+1)(k+1)

(where, for 1≤ i, k ≤ 3, the integers (i + 1), (k+ 1) ∈ {1, 2, 3} are taken modulo 3) and
moreover a 7→ b, b 7→ c, c 7→ a− e′.

3.3.A. Labeling components of (Fl∇0)J .

Definition 3.3.1. Let (w̃1, ω) ∈ W̃+1 × (X∗(T ) ∩ C0 + η) and write S◦F(w̃∗1w
∗

0) for the open affine
Schubert cell associated to w̃∗1w

∗

0 ∈ W̃∨. We define C(w̃1,ω) to be the Zariski closure in (Fl∇0)J of
S◦F(w̃∗1w

∗

0)tω∗ ∩ (Fl∇0)J . It is an irreducible subvariety of (Fl∇0)J of dimension 3 f when ω−η is 2-deep
(see [Le et al. 2023b, Proposition 4.3.3]). It does not depend on the equivalence class of the pair (w̃1, ω)

defined in Section 2.1.D.

3.3.B. T∨F -torsors. Replacing the Iwahori with the pro-v Iwahori in the construction of Fl yields a
T∨F -torsor F̃lJ → FlJ . We use ·̃ to denote the pullback via this T∨F -torsor of objects introduced so far
(e.g., C̃(w̃1,ω) ⊂ (F̃l∇0

)J ). Let F̃l[0,2]
⊂ F̃l be the pullback of the special fiber of Gr[0,2]

G,O .
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On the other hand, F̃lJ is also endowed with a T∨F -action by twisted shifted conjugation induced, at
level of matrices, by (A( j)) j∈J 7→ (t j A( j)t−1

j−1) j∈J for (t j ) j∈J ∈ T∨F .

3.3.C. Labeling by Serre weights. Recall from [Le et al. 2023b, Lemma 2.2.3] the bijection (w̃1, ω) 7→

(F(w̃1,ω), tω−ηw̃1W a/W a) between lowest alcove presentations (w̃1, ω) of 0-deep Serre weights and 0-
deep Serre weights σ with the choice of an algebraic central character ζ ∈ X∗(Z) lifting the central
character of σ . If (w̃1, ω) maps to (σ, ζ ) under this bijection, then we set Cζ

σ
def
= C(w̃1,ω). If the algebraic

central character ζ ∈ X∗(Z) is understood, we will simply write Cσ .

3.3.D. The local model diagram in characteristic p. As explained in [Le et al. 2023b, §7.4] there is a
bijection σ 7→ Cσ between Serre weights and the top dimensional (namely, 3 f -dimensional) irreducible
components of XK ,3. (This is a relabeling of the bijection of [Emerton and Gee 2023, Theorem 6.5.1].)
The main result of this section describes sufficiently generic Cσ in terms of the coordinate charts of
Theorem 3.2.2.

Recall that 8-Modét,n
K ,F denotes the fppf stack over F whose R-points, for a finite type F-algebra R,

parametrize projective rank n étale (ϕ,OE,K⊗Fp R)-modules (recall that OE,K denotes the p-adic comple-
tion of (W (k)[[v]])[1/v]). We have a morphism (XK ,3)F→8-Modét,n

K ,F corresponding to “restriction to
GK∞” (see [Emerton and Gee 2023, §3.2]).

Theorem 3.3.2. Let (s, µ) be a ζ -compatible 4-generic lowest alcove presentation of a tame inertial
type τ . Let z̃ ∈ Adm∨(η) and σ ∈ JH(σ (τ )).

We have a commutative diagram

C̃ζ
σ

P̃σ,z̃ Ũ (z̃, η,∇τ,∞)F Ũ (z̃,≤ η)F F̃l[0,2]
J · s∗tµ∗+η∗

C̃σ (z̃) X̃ η,τ (z̃)F

Cσ (z̃) X η,τ (z̃)F

Cσ X η,τ

F Y≤η,τ

F

[
F̃l[0,2]

J · s∗tµ∗+η∗/T∨,J
F -sh.cnj

]

(XK ,3)F 8-Modét,n
K ,F

◦

T∨,J
F

∼=

T∨,J
F T∨,J

F

∼=Remark 3.2.3

◦ ◦

ι(s,µ)

ι0

(3-2)

where

• All the squares are cartesian (this defines the previously undefined objects Cσ (z̃), C̃σ (z̃) and P̃σ,z̃).
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• All the hooked arrows decorated with a circle are open immersions; all the hooked undecorated arrows
are monomorphisms and, except ι0, are moreover closed immersions; all the arrow decorated with T∨,J

F

are T∨,J
F -torsors.

• Ũ (z̃,≤ η)F→ Y≤η,τ

F is an open immersion followed by a T∨,J
F -torsor map. The map Ũ (z̃,≤ η)F→

F̃l[0,h]
J · s∗tµ∗+η∗ is given by the formula

(A( j)) j 7→ (A( j)) j s∗tµ∗+η∗

and is a locally closed immersion.

• The map ι(s,µ) is given, fpqc locally, by M 7→ (A( j)
M,β) j s∗tµ∗+η∗ , for any choice of eigenbasis β for

M ∈ Y≤η,τ

F (R).

• The map ι0 is defined, fpqc locally, by sending the class of a tuple (A( j)) j∈J to the free rank n étale
ϕ-module with Frobenius given by (A( j)) j∈J in the standard basis.

• If σ = F(Trµ+2η(s(ε), a)), then the closed immersion P̃σ,z̃ ↪→ Ũ (z̃, η,∇τ,∞)F corresponds to the ideal∑
j P̃(ε j ,a j ),z̃ jO(Ũ (z̃, η,∇τ,∞)F) with P̃(ε j ,a j ),z̃ j in Table 3 (or the unit ideal if P̃(ε j ,a j ),z̃ j , up to symmetry,

does not appear in Table 3 for some j); in particular Ũ (z̃, η,∇τ,∞)F is reduced.

• The bottom horizontal map identifies X η,τ

F with the reduced union of [C̃ζ

σ ′/T∨,J
F -sh.cnj] for σ ′∈JH(σ (τ )).

Proof. Theorem 3.2.2 (together with Remark 3.2.3) and [Le et al. 2023b, Proposition 5.4.7, Theorem 7.4.2],
imply the existence of the portion of diagram (3-2) which excludes the leftmost vertical column, the top
triangle, and the identification of Ũ (z̃, η,∇τ,∞)F with entries of Table 3. (In the notation of [Le et al.
2023b, Proposition 5.4.7] the monomorphism ι0 would be denoted as ιs∗tµ∗+η∗

, the morphism ι(s,µ) would
be the diagonal arrow.) Furthermore, all stated properties of this portion of the diagram are already known
to hold, except possibly for the last item. We now explain how to fill in the missing parts with all the
desired properties except for the last item.

(1) We first deal with the case ℓ(z̃ j )≥ 2 for all 0≤ j ≤ f − 1. In this situation, the computations in [Le
et al. 2018a, §5.3.1] show that Ũ (z̃, η,∇τ,∞)F ↪→ Ũ (z̃,≤ η)F identifies with the scheme given by Table 3.
Indeed, we note that:

• The computations in [Le et al. 2018a, §5.3.1] of various completions of Ũ (z̃, η,∇τ,∞)F are in fact
valid for Ũ (z̃, η,∇τ,∞)F.

• The computations are performed with an unnecessary strong genericity condition: indeed, by using
the “(1,3)-entry” of the leading term in the monodromy condition, one recovers the last displayed
equation at page 59 of [loc. cit.] with n− 3 replaced by n− 1.

Choosing the closed subscheme P̃σ,z̃ according to Table 3, we have now constructed the top horizontal
arrow of diagram (3-2). This uniquely induces the leftmost vertical column of the diagram for some
choice of irreducible component Cκ of X η,τ . We need to show that
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z̃ j t−1 Ũ (z̃ j , η j ,∇s−1
j (µ j+η j )

)F (ε j , a j ) ∈60 P̃(ε j ,a j ),z̃ j

αβαγ

v2c∗11 0 0
v2c21 vc∗22 0
v2d31 vc32 c∗33

 (ε1+ ε2, 0) (0)

βγ αγ

vc∗11 vc12 0
0 v2c∗22 0

vc31 vc32+ v2d32 c∗33


(−1− b+ c)c32c∗11− (−1− a+ c)c12c31 = 0

(ε2, 1) (0)

βαγ

 vc11 vc∗12 0
v2c∗21 vc22 0

v(c31+ vd31) vc32 c∗33


Iz̃ j ,F = 0;

(−1− a+ c)c∗12c31− (−1− b+ c)c32c11 = 0

(ε1+ ε2, 0) (c11)

(ε2, 1) (c22)

αβγ

 v2c11 0 0
v(c21+ vd21) c22 c∗23

v(c21c33(c∗23)
−1
+ vd31) vc∗32 c33


Iz̃ j ,F = 0;

(−1− a+ c)c21c∗32+ (b− c)d31c22 = 0

(ε1+ ε2, 0) (c22)

(ε1, 1) (c33)

αβα

 c11 c11c32(c∗31)
−1 d33c11(c∗31)

−1
+ vc∗13

0 vc∗22 vc23

vc∗31 vc32 vd33


Iz̃ j ,F = 0;

c11((a− b)c23c32− (a− c)c∗33d33)= 0

(0, 0) (c11)

(0, 1) ((a− b)c23c32− (a− c)c∗33d33)

Table 3 (continued)

Table 3. The table records data relevant to Theorem 3.3.2. The first column records
the components of z̃. The second column records the coordinates of (Ũ (z̃, η,∇τ,∞)F)

in terms of the universal matrix A( j) and the relations between its coefficients. Re-
call that in the statement of Theorem 3.3.2 the Serre weight σ is parametrized by
(µ + η − λ + s(ε), a) ∈ 3λ

R × A. The ideal corresponding to the closed immersion
P̃σ,z̃ ↪→ Ũ (z̃, η,∇τ,∞)F is of the form

∑ f−1
j=0 P̃(ε j ,a j ),z̃ j , where each P̃(ε j ,a j ),z̃ j is a min-

imal prime ideal of O(Ũ (z̃ j , η j ,∇s−1
j (µ j+η j ))F). The elements (ε j , a j ) ∈ 60 are speci-

fied in the third column and the ideal P̃(ε j ,a j ),z̃ j specified in the fourth column records.
The structure constants that feature in the presentation are given by (a, b, c) ∈ F3

p with
(a, b, c)≡ s−1

j (µ j + η j ) mod p.
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z̃ j t−1 Ũ (z̃ j , η j ,∇s−1
j (µ j+η j ))F (ε j , a j ) ∈60 P̃(ε j ,ai ),z̃ j

αβ

c13c12(c∗32)
−1 c12 c13+ vc∗13

vc∗21 c22 c23+ vd23

vc31 vc∗32 c31c23(c∗21)
−1
+ vd33


Iz̃ j ,F = 0;

c12((a− b)c31d23− (b− c)d33c∗21)= 0;

(−1− a+ c)c23c∗32 = (−1− a+ b)c22d33 = 0

(ε1, 1) (c12, c31)

(ε1− ε2, 0) (c31, d33)

(0, 0) (c12, c22)

(0, 1) (c22, (b− c)d33c∗21+ (a− b)c31d23)

βα

 c11 (c∗31)
−1c11c32+ vc∗12 c13

0 vd22 vc∗23
vc∗31 vc32 c33+ vd33


Iz̃ j ,F = 0;

c11((a− b)c32c∗23− (a− c)d22d33)= 0;

(1+ a− c)c33c∗23c∗12 = c13((a− b)c32c∗23− (a− c)d22d33)

(ε2, 1) (d22, c11)

(ε2− ε1, 0) (d22, c32)

(0, 0) (c11, c13)

(0, 1)

(
(a− b)c32c∗23− (a− c)d22d33,

c13c∗31− c11d33
)
= 0

α

 c11 c12+ vc∗12 c13

vc∗21 c22+ vd22 c23

vc31 vc32 (c∗21)
−1c31c23+ vc∗33 = 0


Iz̃ j ,F = 0;

(a− b)c12c∗33− (a− c)c13c̃32 = 0;

(e− a+ c)c23c̃32− (e− a+ b)c22c∗33 = 0;

(c− 1− a)c31c23c∗12− (c− 1− a)c31c13d22

+ (c− 1− b)c32c13c∗21+ c12c∗33c∗21− c11d22c∗33 = 0

(ε1, 1) (c11, c13, c31)

(ε2, 0) (c11, c31, c32c∗21− d22c31)

(ε2, 1)

(
c11, c32c∗21− d22c31,
(a− b)c13d22+ (−1− a+ c)c23c∗12

)
(ε2− ε1, 0) (c23, d22, c32c∗21− d22c31)

(0, 0) (c11, c13, c23)

(0, 1)

(
c11c∗33− c13c31, c23,
(a− b)c31d22+ (c− b)(c32c∗21− d22c31)

)

id

c11+ vc∗11 c12 c13

vc21 c22+ vc∗22 c23

vc31 vc32 c33+ vc∗33


Iz̃ j ,F = 0;

(c− 1− a)c∗22c33+ (b− 1− a)c22c∗33− (c− 1− a)c23c32 = 0;

(a− b)c∗33c11+ (c− 1− b)c33c∗11− (a− b)c13c31 = 0;

(b− c)c∗11c22+ (a− c)c11c∗22− (b− c)c12c21 = 0

(ε1, 0) (ci i , i=1,2,3, c21, c31, c23)

(ε1, 1)

(
c31, c33, c11,
(−1− a+ c)c32c13− (−1− a+ b)c12c∗33,

c21c13− c23c∗11

)
(ε2, 0) (ci i , i=1,2,3, c12, c31, c32)

(ε2, 1)

(
c12, c22, c11,
(a− b)c21c13− (−1− b+ c)c23c∗11,

c21c32− c31c∗22

)
(0, 0) (ci i , i=1,2,3, c13, c23, c12)

(0, 1)

(
c23, c33, c22,

(a− b)c21c32− (a− c)c31c∗22,
c32c13− c12c∗33

)
Table 3 (continued). Further data relevant to Theorem 3.3.2.
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(a) the composite of the top horizontal arrows identifies P̃σ,z̃ with an nonempty open subscheme of C̃ζ
σ ;

and

(b) Cκ = Cσ .

For item (a), we use [Le et al. 2023b, Propositions 4.3.4, 4.3.5]: one checks that according to Table 3, the
image of P̃σ,z̃ along the top horizontal arrows is, in the notation of [loc. cit.], a T∨,J

F -torsor over

S∇0
F (w̃1, w̃2, s̃)

for suitable choices of w̃1, w̃2, and for s̃ taken to be tµ+ηs, and this is exactly an open subscheme of C̃ζ
σ .

For item (b), we use the just established item (a), and then use the same argument as in the third
paragraph in the proof of [Le et al. 2023b, Theorem 7.4.2] to recognize that Cκ is actually Cσ .

(2) We deal with the general case. The computations in [Le et al. 2018a, §8], namely Propositions 8.3,
8.11 and 8.13, as well as those of1 [loc. cit., §5.3.2, §5.3.3], show that the closed embedding of

Ũ (z̃, η,∇τ,∞)F ↪→ Ũ (z̃,≤ η)F

factors through Ũ (z̃, η,∇τ,∞)table,F, where we temporarily write Ũ (z̃, η,∇τ,∞)table,F for the scheme
defined in the second column of Table 3.

We have to prove that this closed immersion is actually an isomorphism. Let n z̃ be

#
(
W ?(τ(sz∗, µ+ s(ν∗)+ η)

)
∩ JH(Rs(µ+ η))

)
.

Note that the arguments of [Le et al. 2018a, §8] show that Ũ (z̃, η,∇τ,∞)table,F is reduced, and that its
number of irreducible component is n z̃ . We will show that there are at least n z̃ irreducible components of
X η,τ

F which intersect the open substack X η,τ (z̃)F.
Now, from the previously established cases of diagram (3-2), we see that X η,τ must contain all the

Cσ ′ which occurs in diagram (3-2) for z̃′ such that ℓ(z̃′j ) ≥ 3 for all 0 ≤ j ≤ f − 1. In particular, X η,τ
F

contains all Cσ ′ such that σ ′ ∈ JH(Rs(µ+ η)). Note that by definition,

X η,τ (z̃)F = X η,τ

F ∩
[
Ũ (z̃,≤ η)Fs∗tµ∗+η∗/T∨,J

F -sh.cnj
]
.

We are thus reduced to showing that there are at least n z̃ choices of σ ′ as above such that

Cσ ′ ∩
[
Ũ (z̃,≤ η)Fs∗tµ∗+η∗/T∨,J

F -sh.cnj
]
̸=∅.

1The computations of [Le et al. 2018a, §5.3.2, §5.3.3] are also performed with unnecessary strong genericity conditions:
again using the “(1,3)-entries” of the leading term in the monodromy condition recovers, in Sections 5.3.2 and 5.3.3 of [Le et al.
2018a], respectively, the equations

c11((a− b)c32c∗23− (a− c)c′22c′33)− p(e− a+ c)c∗12c∗23c∗31+ O(pn−1),

c12((a− b)c31c′23+ (b− c)c∗21c′33)− p(e− a+ c)c∗21c∗32c∗13+ O(pn−1)

(see the last displayed equations on pages 60 and 61 of [Le et al. 2018a]) obtaining the “monodromy equations” claimed in
[loc. cit.] as soon as µ is 4-deep in alcove C0.
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But this last condition is equivalent to

C̃ζ

σ ′ ∩ Ũ (z̃,≤ η)Fs∗tµ∗+η∗ ̸=∅,

and in turn equivalent to z̃s∗tµ∗+η∗ ∈ C̃ζ

σ ′ . To summarize, we need to show the combinatorial statement
that the number of C̃ζ

σ ′ which contain z̃s∗tµ∗+η∗ is exactly n z̃ . But this is the same combinatorial statement
as [Le et al. 2023b, Theorem 4.7.6], and we observe that the conclusion of that Theorem holds in our
current setup: this follows from the invariance property [Le et al. 2023b, Proposition 4.3.5] of C̃ζ

σ ′ , as
well as the fact that z̃′s∗tµ∗+η∗ ∈ C̃ζ

σ ′ whenever C̃ζ

σ ′ occurs in diagram (3-2) for z̃′ such that ℓ(z̃′j )≥ 3 for
0≤ j ≤ f − 1.

At this point, we have shown that Ũ (z̃, η,∇τ,∞)F identifies with Ũ (z̃, η,∇τ,∞)table,F, and thus we
establish the top horizontal arrow of diagram (3-2). The rest of the proof now is exactly the same as in
the previous case.

Finally, it remains to check the last item in the theorem. But the reducedness follow from the reducedness
of each Ũ (z̃, η,∇τ,∞)F, while the identification of the irreducible components was already established in
the arguments above. □

Corollary 3.3.3. Let z̃ ∈ Adm∨(η) and assume that the character µ (appearing in the lowest alcove
presentation (s, µ) of τ ) is 4-deep. Then

• X η,τ

F is reduced;

• O(Ũ (z̃, η,∇τ,∞)) is a normal domain; and

• for any ρ : GK → GL3(F) the ring Rη,τ

ρ is either 0 or a normal domain.

Remark 3.3.4. It can be showed that both O(Ũ (z̃, η,∇τ,∞)) and Rη,τ

ρ are Cohen–Macaulay. This can be
done by either explicit inspection of the schemes occurring in Table 3 as in [Le et al. 2018a, §8], or by
using the cyclicity of patched modules proven in Theorem 5.3.1 below.

Proof. The fact that O
(
Ũ (z̃, η,∇τ,∞)

)
is a normal domain follows from the fact that its special fiber

is reduced, as in the proof of [Le et al. 2018a, Proposition 8.5]. The statement for Rη,τ

ρ follows in
the same way, noting that Rη,τ

ρ,F, being (equisingular to) a completion of the excellent reduced ring
O(Ũ (z̃, η,∇τ,∞)F), is reduced. □

We can finally introduce the notion of Serre weights attached to a continuous Galois representation
ρ : GK → GL3(F).

Definition 3.3.5. Let ρ : GK → GL3(F) be a continuous Galois representation. We define W g(ρ) to be
the set of Serre weights σ such that ρ ∈ Cσ (F) (cf. [Le et al. 2023b, Definition 9.1.2]).

If ρ|IK is tame so that ρ|IK is isomorphic to a tame inertial F-type τ(w, µ+ η), then we define W ?(ρ)

to be W ?(τ (w, µ+η)) (see Section 2.1.G for the latter). We also say that ρ is N-generic if τ(w, µ+η) is.
Finally, we say that a Serre weight is generic if it is a Jordan–Hölder constituent of a 4-generic Deligne–

Lusztig representation. (By equation (2-3) and Section 2.1.G, a Serre weight is generic if and only if it



1246 Daniel Le, Bao V. Le Hung, Brandon Levin and Stefano Morra

admits a lowest alcove presentation (w̃1, ω) such that (ω, w̃1 ·C0) ∈ tµ+ηs(6) for some µ ∈ C0∩ X∗(T )

that is 4-deep.) A generic Serre weight is necessarily 2-deep by [Le et al. 2023b, Proposition 2.3.7]. We
let W g

gen(ρ) and W ?
gen(ρ) denote the subsets of generic Serre weights of W g(ρ) and W ?(ρ), respectively.

Remark 3.3.6. When restricted to the present setting, the subset W g
gen(ρ)⊆W g(ρ) defined in [Le et al.

2023b, Definition 9.1.2] (consisting of 8-deep Serre weights) is a subset of the set defined above.

Corollary 3.3.7. Let ρ : GK → GL3(F) be semisimple and 4-generic. Then W g
gen(ρ)=W ?

gen(ρ).

Proof. Let σ be a generic Serre weight so that σ ∈ JH
(
Rs(µ+ η)

)
for some 4-deep µ ∈ C0 and s ∈W .

By Theorem 3.3.2, if ρ /∈ X η,τ

F then σ /∈ W g(ρ). Else ρ, being semisimple, corresponds to a point in
T∨,J

F z̃ ∈ Ũ (z̃,≤ η)F in the diagram (3-2). The proof of Theorem 3.3.2 (precisely, the end of the third
paragraph in the proof of item (2) there) shows that ρ ∈ C̃σ if and only if σ ∈W ?(ρ). □

Proposition 3.3.8. If ρ : GK → GL3(F) is a Galois representation such that ρss
|IK is 6-generic, then

every Serre weight in W g(ρ) is generic, i.e., W g
gen(ρ)=W g(ρ).

Proof. Since the proof uses methods which are now well-known (see, e.g., [Gee et al. 2017, §3]) but
orthogonal to those of this section, we will be brief. Let ρ be as in the statement of the proposition.
Then in particular, p > 6. Suppose that F(λ) ∈ W g(ρ). Let ρ ′ : GK → GL3(F) be a maximally
nonsplit Galois representation lying only on CF(λ). Then ρ ′ has an ordinary crystalline lift of weight
λ+ η by [Emerton and Gee 2023, Lemma 5.5.4]. Then by [Emerton and Gee 2014, Corollary A.7]
there is an automorphic globalization r̄ ′ : GF+ → G3(F) (where G3 is the algebraic group defined
in [Clozel et al. 2008, §2.1] with n = 3) of ρ ′ which is potentially diagonalizably automorphic in
the sense of [Le et al. 2019, Theorem 4.3.1]. The proof of [Le et al. 2019, Theorem 4.3.8] im-
plies that HomG(OF+p )

(⊗
v|p W (λ)∨, S(U )

)ord
̸= 0 in the notation of [loc. cit.]. Since the natural map

HomG(OF+p )

(⊗
v|p F(λ)∨, S(U )

)ord
→ HomG(OF+p )

(⊗
v|p W (λ)∨, S(U )

)ord is an isomorphism by [Gee
and Geraghty 2012, Lemma 6.1.3], we conclude that HomG(OF+p )

(⊗
v|p F(λ)∨, S(U )

)
is nonzero. This

implies that HomG(OF+p )

(⊗
v|p R1(λ)∨, S(U )

)
̸= 0 by [Herzig 2011, Lemma 2.3]. In particular, ρ ′ has a

potentially semistable lift of type (η, τ ) for τ = τ(1, λ). Since W g(ρ ′)={F(λ)}, we conclude that CF(λ) is
a subset of the substack of XK ,3 corresponding to potentially semistable representations of type (η, τ ). In
particular, since ρ ∈ CF(λ)(F), ρ has a potentially semistable lift of type (η, τ ). By [Enns 2019, Lemma 5],
ρss has a semistable lift of type (η, τ ). Then R1(λ) is 1-generic by [Enns 2019, Proposition 7] (the proof
of [Enns 2019, Theorem 8] shows that R1(λ) is 2-generic in the sense of [Enns 2019, Definition 2] where
δ = 6 and n+ 1 = 4 here so that R1(λ) is 1-generic by [Le et al. 2019, Remark 2.2.8]). In particular,
any potentially semistable lift of type (η, τ ) is potentially crystalline. By the proof of [Le et al. 2019,
Proposition 3.3.2], τ is 4-generic (the proof shows that any lowest alcove presentation of τ is 3-generic,
but one compatible with a 6-generic lowest alcove presentation of ρss

IK
is 4-generic). We conclude that

R1(λ) is 4-generic and that F(λ) is generic. □

Corollary 3.3.9. Let ρ : GK → GL3(F) be semisimple and 6-generic. Then W g(ρ)=W ?(ρ).
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Proof. This follows from Corollary 3.3.7, Proposition 3.3.8, and the fact that W ?
gen(ρ)=W ?(ρ) in this

case. □

Remark 3.3.10. The notions and the results of this section hold true, mutatis mutandis, when the set
Sp has arbitrary finite cardinality, and τ , ρ are a tame inertial L-parameter and a continuous F-valued L-
homomorphism respectively. In this case Ũ (z̃), Ũ [0,2](z̃), etc. are fibered products, over SpecO and over
the elements v ∈ Sp, of objects of the form Ũ (z̃v), Ũ [0,2](z̃), etc. for z̃v ∈ (W̃∨)HomQp (F+v ,E); the twisted
shifted T∨O-conjugation action is now induced by A( j)

7→ t j A( j)s−1
j (tπ−1( j)) for j ∈HomQp(Fp, E). Analo-

gously, the algebraic stacks Y [0,2],τ , XK ,3, X η,τ , etc. are fibered products, over SpfO and over the elements
v ∈ Sp, of Y [0,2],τv , XF+v ,3, X ηv,τv , etc. The results of this section hold true in this more general setting.

4. Geometric Serre weights

The irreducible components of XK ,n from [Emerton and Gee 2023, Definition 3.2.1] give rise to a partition
of XK ,n with locally closed parts ⋂

σ∈W+
Cσ

∖ ⋃
σ /∈W+

Cσ

indexed by sets W+ of Serre weights. It is of interest to determine the geometric properties of these
pieces, e.g., when they are nonempty. In principle, one can directly study⋂

σ∈W+
Cσ

∖ ⋃
σ /∈W+

σ generic

Cσ (4-1)

for a set W+ of generic Serre weights using the relationship between XK ,n and Fl∇0 , but this seems to be
complicated even when n = 4. In this section, we determine when (4-1) is nonempty in generic cases
when n = 3 using a notion of obvious weights for wildly ramified representations.

4.1. Intersections of generic irreducible components in Fl∇0 . We first study the geometry of Fl∇0 . The
set J will be a singleton, and so we will omit it from the notation. For n ∈ N, let Cn-deep be the set of
ω ∈ X∗(T ) such that ω− η is n-deep in C0. Recall from Section 3.3.A that given (w̃, ω) ∈ W̃1× C2-deep,
we have the irreducible subvariety C(w̃,ω) of Fl∇0 . We define Fl∇0

2-deep as the union of the C(w̃,ω) with
(w̃, ω) ∈ W̃1 × C2-deep (in particular, these C(w̃,ω) are its irreducible components). The action of T∨F
(resp. Gm) on Fl∇0 induced by right multiplication (resp. loop rotation t · v = t−1v) preserves Fl∇0

2-deep and
its irreducible components. We let T̃∨F be the extended torus T∨F ×Gm . We write Fl∇0,T∨

2-deep for the set of
T∨F -fixed points (or equivalently T̃∨F -fixed points) of Fl∇0

2-deep under right translation.

Definition 4.1.1. For x∗ ∈ Fl∇0
2-deep(F), let W g

2-deep(x∗) be the set{
(w̃, ω) ∈ (W̃1× C2-deep) | x∗ ∈ C(w̃,ω)(F)

}
/∼ .

Recall that the equivalence relation is given by (w̃, ω)∼ (tνw̃, ω− ν) for any ν ∈ X0(T ).
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The main result of this section classifies the sets W g
2-deep(x∗) for x∗ ∈ Fl∇0

2-deep(F). Combining the proof
of Theorem 3.3.2 (namely, the combinatorial statement in the proof of item (2) there) and Corollary 3.3.7
(see also [Le et al. 2023b, Proposition 2.6.2]), we obtain the following description of W g

2-deep(x∗) for
x∗ ∈ Fl∇0,T∨

2-deep(F)

Theorem 4.1.2. For x∗ ∈ Fl∇0,T∨
2-deep , W g

2-deep(x∗) is the set{
(w̃, xw̃−1

2 (0)) ∈ W̃+1 × C2-deep | w̃2 ↑ w̃
}
/∼ .

A first step towards understanding W g
2-deep(x∗) will be the determination of the subset Wobv(x∗) ⊂

W g
2-deep(x∗) of obvious weights. It is defined as follows (see [Le et al. 2022]).

Definition 4.1.3. (1) Let y ∈ W̃ and w̃ ∈ W̃1 be such that yw̃−1(0) ∈ C2-deep. We define C(w̃,yw̃−1(0))(y∗)
to be the intersection C(w̃,yw̃−1(0)) ∩ T∨F \ Ũ (y∗)F in Fl∇0

2-deep.

(2) Let x∗ ∈ Fl∇0
2-deep(F). Then define SP(x∗) to be the set{(

y, (w̃, yw̃−1(0))
)
∈ W̃ × (W̃1× C2-deep)/∼ | x∗ ∈ C(w̃,yw̃−1(0))(y∗)(F)

}
and S(x∗) and Wobv(x∗) be the images of SP(x∗) under the projections of W̃ × (W̃1× C2-deep)/∼ to W̃
and (W̃1× C2-deep)/∼, respectively.

We call elements in S(x∗) specializations of x∗. The set SP(x∗) is the set of specialization pairs
consisting of a specialization and an obvious weight.

Lemma 4.1.4. For x∗ ∈ Fl∇0,T∨
2-deep(F) and w̃ ∈ W̃1 such that xw̃−1(0) ∈ C2-deep, x∗ ∈ C(w̃,xw̃−1(0)).

Proof. For any w̃ ∈ W̃1, since x∗ ∈ S◦F(w̃∗w∗0)(xw̃−1w0)
∗, x∗ ∈ S∇0

F (w̃, e, xw̃−1w0)= C(w̃,xw̃−1(0)) (see
[Le et al. 2023b, (4.9) and Proposition 4.3.5]). □

Remark 4.1.5. (1) Let x∗ ∈ Fl∇0,T∨
2-deep . Since x∗ is the unique T∨F -fixed point of C(w̃,xw̃−1(0))(x∗),

SP(x∗)=
{(

x, (w̃, xw̃−1(0))
)
∈ W̃ × (W̃1× C2-deep)/∼

}
by Lemma 4.1.4. In particular, S(x∗) = {x}. Moreover, for all tame inertial F-types τ , (w̃, ω) ∈

Wobv(w̃(τ )∗) if and only if F(w̃,ω) ∈Wobv(τ ) in the sense of [Le et al. 2023b, Definition 2.6.3].

(2) For x∗ ∈ Fl∇0
2-deep(F), clearly, Wobv(x∗)⊂W g

2-deep(x∗).

To determine W g
2-deep(x∗), we first determine SP(x∗). The idea is that Wobv(x∗) gives a lower bound for

W g
2-deep(x∗) (Remark 4.1.5(2)) while S(x∗) gives an upper bound by Lemma 4.1.7(2) and Theorem 4.1.2,

and SP(x∗) combines these invariants into a more uniformly behaved set (see Corollary 4.1.10).
The following results are key to our analysis of SP(x∗). For x∗ ∈ Fl∇0

2-deep, let θx∗ : SP(x∗)→W be the
map that takes (y, (w̃, ω)) to the image of yw̃−1 in W .

Proposition 4.1.6. For x∗ ∈ Fl∇0
2-deep, θx∗ : SP(x∗)→W is injective.

Proof. This is [Le et al. 2022, Proposition 3.6.4]. (It can also be proven by direct computation in the case
of GL3.) □
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Let I def
= L+GF be the Iwahori group scheme. For w̃τ ∈ W̃ and x∗ ∈ Fl, let w̃(x∗, w̃τ ) ∈ W̃ be the

unique element such that x∗ ∈ I \ Iw̃(x∗, w̃τ )
∗Iw̃∗τ .

Lemma 4.1.7. Suppose that y ∈ S(x∗). Then

(1) w̃(y∗, w̃τ )≤ w̃(x∗, w̃τ ); and

(2) W g
2-deep(x∗)⊂W g

2-deep(y∗).

Proof. That y ∈ S(x∗) implies that x∗ ∈ T∨F \ Ũ (y∗) or equivalently that y∗ is in the T̃∨F -orbit closure
of x∗. For (1), y∗ is in the (T̃∨F -orbit) closure of I \Iw̃(x∗, w̃τ )

∗Iw̃∗τ which implies the desired inequality.
For (2), if x∗ ∈ C(w̃,ω), then y∗ ∈ C(w̃,ω) since C(w̃,ω) is T̃∨F -stable and closed. □

The following result provides a method to start with an element of SP(x∗) and produce another using
a simple reflection in W .

Proposition 4.1.8. Let x∗ ∈ Fl∇0
2-deep and s ∈W be a simple reflection. Suppose that for some y ∈ W̃ ,

(1) yw̃−1st−ηw̃(0)− η, ys̃w−1(0)− η, and yt−(sw)−1(η)(0)− η are 2-deep; and

(2)
(
y, (w̃, yw̃−1(0))

)
∈ SP(x∗),

where s̃w ∈ W̃1 is the unique element up to X0(T ) such that s̃ww̃−1s−1
∈ X∗(T ). Then either(

yw̃−1sw̃, (w̃, yw̃−1(0))
)
∈ SP(x∗) or

(
y, (s̃w, ys̃w−1(0))

)
is in SP(x∗).

Proof. Let w̃τ be y(w̃−1w̃−1
h w0sw̃)−1 so that w̃(y∗, w̃τ )= w̃−1w̃−1

h w0sw̃. In Galois-theoretic language,
this corresponds to the choice of the inertial type τ in [Le et al. 2018a, Proposition 7.16(3)]. We will see
that there are only two possibilities for w̃(x∗, w̃τ ). First, w̃−1w̃−1

h w0sw̃ ≤ w̃(x∗, w̃τ ) by Lemma 4.1.7(1).
Let M(≤ η)F ⊂ Fl be the reduced closure of ∪w∈WI \Itw−1(η)I (this is compatible with the notation in

Section 3.1). Let M(η,∇w̃τ (0))Fw̃
∗
τ be the intersection M(η)Fw̃

∗
τ ∩Fl∇0 . For z̃ ∈ W̃∨, let M(η,∇w̃τ (0))F(z̃)

denote the intersection M(η,∇w̃τ (0))F ∩ (T∨F \ Ũ (z̃)) which is isomorphic to

U(z̃, η,∇w̃τ (0))F
def
= T∨F \ Ũ(z̃, η,∇w̃τ (0))F.

Now, x∗ lies in C(w̃,yw̃−1(0)) which is the closure of

M(η,∇w̃τ (0))F(t∗w−1(η)
)w̃∗τ = I \ Itw−1(η)Iw̃∗τ ∩Fl∇0,

hence w̃(x∗, w̃τ )≤ tw−1(η). Combining this with the last paragraph, we have

w̃−1w̃−1
h w0sw̃ ≤ w̃(x∗, w̃τ )≤ tw−1(η).

Since ℓ(w̃−1w̃−1
h w0sw̃)= 3= ℓ(tw−1(η))− 1 (this is a consequence of a more general result in [Le et al.

2022], but can be checked directly using [Le et al. 2018a, Table 1]), we see that w̃(x∗, w̃τ )= tw−1(η) or
w̃−1w̃−1

h w0sw̃.
If w̃(x∗, w̃τ ) = tw−1(η), then

(
yw̃−1sw̃, (w̃, yw̃−1(0))

)
∈ SP(x∗) (this is represented by the red and

blue parts in Figure 1). We claim that if w̃(x∗, w̃τ )= w̃−1w̃−1
h w0sw̃, then x∗ ∈ C(s̃w,ys̃w−1(0))(y∗) (this is
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y

y'
y

y'

Figure 1. We illustrate the dichotomy given by the last paragraph of the proof of
Proposition 4.1.8. We represent the data (y, (w̃, ω)) ∈ SP(x∗) by the alcove labeled by
y and the dot (resp. circle) at ω ∈ X∗(T )/X0(T ) when w̃ · C0 is lower (resp. upper)
alcove (thus the left picture is the case where w̃ ·C0 is upper alcove, and the right picture
the case where w̃ ·C0 is lower alcove). The starting pair

(
y, (w̃, yw̃−1(0))

)
∈ SP(x∗) is

given by the red triangle (with vertexes labeled by the set Wobv(y∗)) and the source of
the arrow (labeled by the obvious weight (w̃, yw̃−1(0)) ∈Wobv(x∗)). The dotted triangle
represents the possible new specialization, while the tip of the arrow represents the new
obvious weight.

represented by the arrows in Figure 1). It suffices to show that

I \ I(w̃−1w̃−1
h w0sw̃)∗Iw̃∗τ ∩Fl∇0 ⊂ I \ It∗

(sw)−1(η)
It∗
−(sw)−1(η)

y∗ ∩Fl∇0 . (4-2)

Using (1), [Le et al. 2023b, Theorem 4.2.4] shows that both

I \ I(w̃−1w̃−1
h w0sw̃)∗Iw̃∗τ ∩Fl∇0 and I \ I(w0ss̃w)∗I(s̃w−1w̃−1

h )∗w̃∗τ ∩Fl∇0 (4-3)

are isomorphic to A2
F. The equality w̃−1w̃−1

h w0sw̃ = s̃w−1w̃−1
h w0ss̃w implies that the latter space in

(4-3) is contained in the former by the proof of [Le et al. 2023b, Proposition 4.3.4] (one can directly
check that (s̃w−1w̃−1

h )(w0s)s̃w is a reduced factorization) so that the spaces in (4-3) are equal. Finally,
observe that

I \ I(w0ss̃w)∗I(s̃w−1w̃−1
h )∗w̃∗τ ⊂ I \ I(w0s̃w)∗I(w0sw−1

0 )∗(s̃w−1w̃−1
h )∗w̃∗τ

and

I \ I(w0s̃w)∗I(w0sw−1
0 )∗(s̃w−1w̃−1

h )∗w̃∗τ ∩Fl∇0

= I \ I(s̃w−1w̃−1
h w0s̃w)∗I(w̃h s̃w)∗(w0sw−1

0 )∗(s̃w−1w̃−1
h )∗w̃∗τ ∩Fl∇0

= I \ It∗
(sw)−1(η)

It∗
−(sw)−1(η)

y∗ ∩Fl∇0

by (the proof of) [Le et al. 2023b, Proposition 4.3.4]. Putting this all together yields (4-2). □
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Proposition 4.1.9. For x∗ ∈ Fl∇0
2-deep, SP(x∗) is nonempty.

Proof. By hypothesis, we have x∗ ∈ C(w̃,ω) for some (w̃, ω) ∈ W̃1× C2-deep. It follows from the definition
of C(w̃,ω) that it is a closed subscheme of S◦F(w̃∗w∗0)tω∗ ∩ Fl∇0 . Thus C(w̃,ω) ⊂ ∪z̃≤w̃∗w∗0

S◦F(z̃)tω∗ . Note
that S◦F(z̃)⊂ T∨F \ Ũ (z̃)Ftω∗ = T∨F \ Ũ (z̃tω∗)F, for example, see [Le et al. 2023b, Proposition 4.2.13]. It
follows that C(w̃,ω) has an open cover

⋃
z̃≤w̃∗w∗0

C(w̃,ω)(z̃tω∗).
If w̃ ·C0 = C0, then any z̃ ≤ w̃∗w∗0 satisfies z̃∗ ∈W w̃. Choosing such a z̃ with x∗ ∈ C(w̃,ω)(z̃tω∗) gives

(tω z̃∗, (w̃, ω)) ∈ SP(x∗) and we are done.
Suppose now that w̃ ·C0 is the upper p-restricted alcove. For z̃≤ w̃∗w∗0 , either z̃∗ ∈W w̃∗, or z̃∗ ∈W w̃′,

where w̃′ is the unique element in W̃1 such that w̃′ < w̃. In particular w̃′ ·C0 = C0. There are two cases:

• If x∗ ∈ C(w̃,ω)(z̃tω∗) for some z̃∗ ∈W w̃∗, we get (tω z̃∗, (w̃, ω)) ∈ SP(x∗) as above.

• Otherwise, x∗ ∈
(⋃

z̃∗∈W w̃′ S
◦

F(z̃)tω∗
)
∩Fl∇0 =C(w̃′,ω). Repeating our arguments with (w̃, ω) replaced

by (w̃′, ω), we are also done in this case. □

Corollary 4.1.10. Let x∗ ∈ Fl∇0
2-deep. If there exists y0 ∈ S(x∗) with y0(0) ∈ C6-deep, then θx∗ : SP(x∗)→W

is bijective.

Proof. By Proposition 4.1.6, it suffices to show that θx∗ : SP(x∗)→W is surjective. By Proposition 4.1.9,
SP(x∗) is nonempty. If

(
y, (w̃, yw̃−1(0))

)
∈ SP(x∗) and s ∈W is a simple reflection, then either(

yw̃−1sw̃, (w̃, yw̃−1(0))
)
∈ SP(x∗) or

(
y, (s̃w, ys̃w−1(0))

)
∈ SP(x∗)

by Proposition 4.1.8 so that θx∗
(
y, (w̃, yw̃−1(0))

)
s is in the image of θx∗ . (The hypothesis that y0(0) ∈

C6-deep guarantees that Proposition 4.1.8(1) applies.) Since simple reflections generate W , the result
follows. □

Lemma 4.1.11. Suppose that x∗ ∈ Fl∇0
2-deep such that there exists y0 ∈ S(x∗) with y0(0) ∈ C6-deep. Then

there exists λ− η ∈ C0 and w ∈W such that the image of Wobv(x∗) under (2-2) is one of the sets

(1) w{(0, 0)};

(2) w{(ε1− ε2, 1)};

(3) w{(0, 0), (ε1− ε2, 1)};

(4) w{(0, 0), (ε1− ε2, 1), (ε2− ε1, 1)};

(5) w{(0, 1), (ε1, 0), (ε2, 0), (ε1+ ε2, 1)}; and

(6) w
{
(0, 0), (ε1− ε2, 1), (ε2− ε1, 1), (ε1, 0), (ε2, 0), (ε1+ ε2, 1)

}
.

Moreover, every possibility arises. Finally, with respect to the six above alternatives for Wobv(x∗) the
image of W g

2-deep(x∗) under (2-2) is contained in

(1′) w{(0, 0), (0, 1)};

(2′) w{(ε1− ε2, 1)};

(3′) w{(0, 0), (0, 1), (ε1− ε2, 1)};
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(4′) w{(0, 0), (0, 1), (ε1− ε2, 1), (ε2− ε1, 1)};

(5′) w{(0, 1), (ε1, 0), (ε1, 1), (ε2, 0), (ε2, 1), (ε1+ ε2, 1)}; and

(6′) w
{
(0, 0), (0, 1), (ε1− ε2, 1), (ε2− ε1, 1), (ε1, 0), (ε1, 1), (ε2, 0), (ε2, 1), (ε1+ ε2, 1)

}
.

Remark 4.1.12. The sets in the second part of Lemma 4.1.11 are the minimal sets containing the
corresponding sets in the first part closed under changing a 0 in the second argument to a 1. Since the set
in the second part are obtained by taking intersections

⋂
y∈S(x∗) W g

2-deep(y∗) which are closed under this
operation, these sets are a natural upper bound for W g

2-deep(x∗).

Proof. We will illustrate the proof with various figures, all of which follow the same graphic conventions
as in Figure 1.

Recall that we have canonical isomorphisms W̃/Wa −→
∼ X∗(Z) and π0(Fl)−→∼ X∗(Z). In this proof

we will choose various λ ∈ X∗(T ) with the property that the image of tλ in X∗(Z) is the same as the
image of x∗, and use (2-2) to identify

(
W̃1× (X∗(T )∩C0+ η)λ−η|Z

)
/∼ and 3λ

W ×A, since the latter
set is more convenient to work with here.

By Corollary 4.1.10, one obtains the elements of Wobv(x∗) by repeatedly applying the process described
in Proposition 4.1.8 which we call a simple walk. We use the following two basic facts repeatedly.

(i) If (ε, a) ∈Wobv(x∗), then either Wobv(x∗)= {(ε, a)} or there is a simple walk from some (y, (ε, a))

giving another element (ε′, a′) ∈Wobv(x∗) in which case a ̸= a′ and ε− ε′ ∈W {ε1, ε2}.

(ii) W g
2-deep(x∗)⊂

⋂
y∈S(x∗) W g

2-deep(y∗) by Lemma 4.1.7(2).

The analysis can be divided into a number of cases.

• Suppose that there is no element of the form (ε, 1) in Wobv(x∗). Then Wobv(x∗) consists of a single
element by (i), which after changing λ, we assume to be {(0, 0)}. Then by Corollary 4.1.10, S(x∗) =
{tλw |w ∈W }. Then W g

2-deep(x∗)⊂
⋂

y∈S(x∗) W g
2-deep(y∗)= {(0, 0), (0, 1)} by (ii); see Figure 2, left. This

gives (1) and (1′).

• Suppose now that (ε, 1) ∈ Wobv(x∗) for some ε ∈ 3W . Say (y1, (ε, 1)) ∈ SP(x∗). If a simple walk
produces (y2, (ε, 1)) ∈ SP(x∗) (i.e., a new element of S(x∗) rather than Wobv(x∗)), then there exist
λ− η ∈ C0 and w ∈W such that y1 = tλw and y2 = tλww0. Then

W g
2-deep(y∗1 )∩W g

2-deep(y∗2 )= w{(0, 0), (0, 1), (ε1− ε2, 1), (ε2− ε1, 1)}.

Fact (i) precludes w(0, 1) from being in Wobv(x∗). Moreover, if w(ε1− ε2, 1) and w(ε2− ε1, 1) are in
Wobv(x∗), then so is w(0, 0). Changing w if necessary, we assume that ε is w(ε1−ε2, 1). Then Wobv(x∗)
is one of cases (2), (3), or (4).

– In case (2), S(x∗) has six elements by Corollary 4.1.10, and furthermore

W g
2-deep(x∗)⊂

⋂
y∈S(x∗)

W g
2-deep(y∗)= {(ε, 1)}

by (ii) — this is (2′); see Figure 2, middle.
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y1 y1
y1

(0,0)
(e,1) (e,1)

y2

y2

y2

y3

y3

y3y4 y4 y4
y5

y5

y6

y6

Figure 2. Left: Case where Wobv(x∗) = {(0, 0)} and #S(x∗) = #W . The set Wobv(x∗)
is pictured by the red dot and the set S(x∗) by the 6 triangles. The simple walks only
produce new specializations. Middle: Case where Wobv(x∗)= {(ε, 1)} and #S(x∗)= #W .
The set Wobv(x∗) is pictured by the red circle and the set S(x∗) by the 6 triangles. Again,
the simple walks only produce new specializations. Right: Case where #S(x∗)= 4. We
have the four specializations given by the triangles, and the starting obvious weight (ε, 1)

by the red circle. The simple walk producing the new obvious weight is pictured by the
black thickened arrow.

– In case (3), S(x∗) has four elements, and
⋂

y∈S(x∗) W g
2-deep(y∗) is given by (3′); see Figure 2, right.

– In case (4), given by Figure 3, left, S(x∗)= {y1, y2} and W g
2-deep(y∗1 )∩W g

2-deep(y∗2 ) is given by (4′).

• Finally, we suppose that (ε, 1)∈Wobv(x∗) for some ε∈3W and a simple walk starting with (ε′, 1) for any
ε′ ∈3λ

W such that (ε′, 1) ∈Wobv(x∗) always yields a new element of Wobv(x∗). Let (y1, (ε, 1)) ∈ SP(x∗).
After possibly changing λ, there exists w ∈W such that W g

2-deep(y∗1 ) is

w
{
(0, 0), (0, 1), (ε1− ε2, 1), (ε2− ε1, 1), (ε1, 0), (ε1, 1), (ε2, 0), (ε2, 1), (ε1+ ε2, 1)

}
and ε = ε1+ ε2. By assumption, we have that (y1, w(ε1, 0)) and (y1, w(ε2, 0)) ∈ SP(x∗).

– If a simple walk starting with (y1, w(ε1, 0)) yields (y2, w(ε1, 0)) ∈ SP(x∗) for some y2 ∈ W̃ , then
W g

2-deep(x∗)⊂W g
2-deep(y∗1 )∩W g

2-deep(y∗2 ) which is (5′) (see Figure 3, middle).
We claim that w(ε1, 1) /∈Wobv(ρ). If w(ε1, 1)∈Wobv(ρ) then, as argued before with w(ε1+ ε2, 1),

there would necessarily be two elements in Wobv(x∗)⊂W g
2-deep(y∗1 )∩W g

2-deep(y∗2 ) which correspond
to two adjacent vertices in Figure 3, middle. However, there are no such elements in (5′). Sim-
ilarly, w(ε2, 1) /∈ Wobv(x∗). A simple walk from (y2, w(ε1, 0)) ∈ SP(x∗) yields two elements in
SP(x∗) — (y1, w(ε1, 0)) and (y3, w(ε′, a)). If y2 ̸= y3, then w(ε2, 0) /∈W g

2-deep(y∗3 ), which contradicts
Lemma 4.1.7(2). We conclude that w(ε′, a)= w(0, 1) ∈Wobv(ρ). This gives the set in (5).
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y1
(e, a)

y2

(e,1)

y1

y2
y3

(e  , 0)2
(e  , 0)1

(e  + e  ,1)1 2

y1

(e  , 0)2(e  , 0)1

(e  − e  ,1)1 2

Figure 3. Left: Case where #S(x∗)= 2. We have the two specializations given by the
red and blue triangles, and the starting obvious weight (ε, 1) by the red circle. The
simple walks producing the new obvious weights are pictured by the black thickened
arrows. Middle: We picture (for w= 1) the simple walks pertaining the third bullet point
in the analysis of the proof of Lemma 4.1.11. The arrows from (ε, 1) ∈ Wobv(x∗) to
(ε1, 0), (ε2, 0) exist by the assumption that any simple walk from (ε, 1) always yields
a new element of Wobv(x∗). In this middle picture, we consider the case where a
simple walk from (y1, (ε1, 0)) yields (y2, (ε1, 0)) ∈ SP(x∗) with y2 ̸= y1 (such y2 is
uniquely determined.) Since (y3, (ε2, 0)) /∈ SP(x∗), we have the arrow from (ε1, 0) to
(0, 1). Right: Again, we consider the third bullet point in the analysis of the proof of
Lemma 4.1.11, but now we consider the case when a simple walk from (y1, (ε1, 0))

yields (y1, (ε1− ε2, 1)) ∈ SP(x∗) (hence, yields the arrow from (ε1, 0) to (ε1− ε2, 1);
compare with the middle figure.

– If the process in Proposition 4.1.8 from (y1, (ε1, 0)) ∈ SP(x∗) yields (y1, w(ε1− ε2, 1)) ∈ SP(x∗)
instead of (y2, w(ε1, 0)), then S(x∗)= {y1} by (ii) since y1 is the unique y ∈ W̃ such that W g

2-deep(y∗)
contains w(ε1− ε2, 1), w(ε1, 0), w(ε2, 0), and w(ε1+ ε2, 1); see Figure 3, right.

We conclude from Corollary 4.1.10 that Wobv(x∗)= Wobv(y∗1 ) which is given by (6). Then the
upper bounds for W g

2-deep(x∗) in cases (5) and (6) again follow from (ii).

We now show that every possibility arises.

• One checks that case (6) arises when x∗ = I \ I(tλw)∗.

• If we let γ = t(1,0,−1)w0 and x∗ ∈ I \ Iγ ∗I(tλw)∗(F) but is not equal to I \ I(tλwγ )∗, then one can
check that tλw, tλwγ ∈ S(x∗) so that Wobv(x∗)⊂W g

2-deep(tλw)∩W g
2-deep(tλwγ ) by Lemma 4.1.7. This

rules out (6). One can furthermore check that the image of Wobv(x∗) under (2-2) contains (5) so that out
of the six possibilities it must equal (5).

• Next, if s1 and s2 ∈W denote the simple reflections and x∗ is generic in

I \ Is1s2Is2s1(tλw)∗ ∩ I \ Is2s1Is1s2(tλw)∗,
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then tλw, tλww0 ∈ S(x∗) so that

Wobv(x∗)⊂W g
2-deep(tλw)∩W g

2-deep(tλww0)

by Lemma 4.1.7. This rules out (6). One can furthermore check that the image of Wobv(x∗) under (2-2)
contains (4) so that out of the six possibilities it must equal (4).

• If x∗ is generic in I \ Is2s1Is1s2(tλw)∗, then tλw, tλws2, tλws2s1, tλww0 ∈ S(x∗). Then by similar
arguments as above Wobv(x∗) is contained in (3). One can furthermore check that Wobv(x∗) contains (3).

• If x∗ is generic in I \ Iw0I(tλw)∗, then W g
2-deep(x∗) only has one element, namely (1).

• If x∗ is generic in an upper alcove component, then W g
2-deep(x∗) only has one element corresponding to

(2). □

Theorem 4.1.13. Suppose that x∗ ∈ Fl∇0
2-deep such that there exists y0 ∈ S(x∗) with y0(0) ∈ C6-deep. Then

there exist λ− η ∈ C0 and w ∈W such that under (2-2) the image of Wobv(x∗) is as in Lemma 4.1.11 and
the image of W g

2-deep(x∗) is correspondingly one of

(1) w{(0, 0)} or w{(0, 0), (0, 1)};

(2) w{(ε1− ε2, 1)};

(3) w{(0, 0), (ε1− ε2, 1)};

(4) w{(0, 0), (ε1− ε2, 1), (ε2− ε1, 1)};

(5) w{(0, 1), (ε1, 0), (ε1, 1), (ε2, 0), (ε2, 1), (ε1+ ε2, 1)}; and

(6) w
{
(0, 0), (0, 1), (ε1− ε2, 1), (ε2− ε1, 1), (ε1, 0), (ε1, 1), (ε2, 0), (ε2, 1), (ε1+ ε2, 1)

}
.

Moreover, every possibility arises.

Proof. We explain how the bounds on Wobv(x∗) and Table 3 can be used to determine W g
2-deep(x∗). Let

x∗ ∈ Fl∇0
2-deep be as in the statement of the theorem, and let λ and w be as in Lemma 4.1.11. Define 6g(x∗)

to be the image of W g
2-deep(x∗) under (2-2). Table 3 (with s j in the notation there taken to be w in this

proof) implies that the number of irreducible components of the completion of Ũ (z̃, η,∇w−1(µ+η))F at
an F-point is never three (and that each irreducible component is smooth). Theorem 3.3.2 then implies
that #6g(x∗)∩ tνs(60) ̸= 3 for all tνs ∈ Wa . (The relevant type τ in Theorem 3.3.2 is 4-generic since
w̃(y∗0 , w̃(τ ))≤ w̃(x∗, w̃(τ )) ∈ Adm(η) by Lemma 4.1.7(1) and y0(0) ∈ C6-deep.) This is the key fact that
we will use in our analysis of 6g(x∗).

The upper and lower bounds, say 6ub(x∗) and 6lb(x∗), respectively, for 6g(x∗) from Lemma 4.1.11
give upper and lower bounds for 6g(x∗)∩ tνs(60) for each tνs ∈Wa . For each (ε, a)∈6ub(x∗)\6lb(x∗)
in cases (3)–(6), one can choose tνs ∈Wa such that

• (6ub(x∗) \6lb(x∗))∩ tνs(60)= {(ε, a)}; and

• #6ub(x∗)∩ tνs(60)= 3 or #6lb(x∗)∩ tνs(60)= 3.
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(e, a)

m+h n 0t wt s( )Σ

m+ht w
(e, a)

m+h n 0t wt s( )Σ

m+ht w

Figure 4. Choice of tνs in cases (3) and (4). The red circles and the dot represent
6lb(x∗), the black circle the element in 6ub(x∗) \6lb(x∗). We have fixed an element
tµ+ηw ∈ W̃ so that s−1tν∗w−1tµ∗+η∗ ∈ S(x∗).

(e, a) m+h n 0t wt s( )Σ

m+ht w

(e, a) m+h n 0t wt s( )Σ

m+ht w

Figure 5. Choice of tνs in cases (5) and (6).The red circles and dots represent 6lb(x∗),
the black circles the element in 6ub(x∗)\6lb(x∗). We have fixed an element tµ+ηw ∈ W̃
so that s−1tν∗w−1tµ∗+η∗ ∈ S(x∗).

Then the fact above implies that #6lb(x∗)∩ tνs(60)= 3 if and only if (ε, a) ∈6g(x∗). From this, one
checks that 6g(x∗) is as claimed. We now illustrate in Figures 4 and 5 the choices of τ in cases (3)–(6).

Finally, we show that every possibility arises. Since Lemma 4.1.11 showed that every one of the
six possibilities arises, we only need to show that the two possibilities in case (1) arise. The case
w{(0, 0)} arises when x∗ is generic on a lower alcove component so that W g

2-deep(x∗) only has one element
corresponding to this component. The case w{(0, 0), (0, 1)} arises when x∗ is generic in the intersection
of the two components corresponding to w{(0, 0), (0, 1)}. Indeed, this intersection is two-dimensional
so as long as x∗ is not in cases (5) or (6) which are of dimensions one and zero, respectively, the case
w{(0, 0), (0, 1)} must apply. □

Remark 4.1.14. The notions in this section extend to the case of products: if x∗ = (x∗i )i∈J ∈ (Fl∇0
2-deep)

J ,
we let W g

2-deep(x∗) and Wobv(x∗) be the subsets
∏

i∈J W g
2-deep(x∗i ) and

∏
i∈J Wobv(x∗i ) of(

W̃ 1× (X∗(T )∩C0+ η)
)
/∼,
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respectively. The natural analogues of Theorems 4.1.2 and 4.1.13 generalize to this setting.

4.2. Classification of geometric weight sets. Let ρ :GK→GL3(F) be a continuous Galois representation.
If τ is a 4-generic tame inertial type and ρ arises as an F-point of X η,τ

F then Theorem 3.2.2 attaches a
Breuil–Kisin module M ∈ Y [0,2],τ (F) to ρ. In this scenario, we define the shape w̃∗(ρ, τ ) ∈ W̃∨,J of ρ

with respect to τ to be the shape of M ∈ Y [0,2],τ (F) (see Section 2.2). Let W g
2-deep(ρ) be the set of Serre

weights {σ | σ is 2-deep and ρ ∈ Cσ (F)}.

Definition 4.2.1. Let SP(ρ) be the set of pairs (ρ1, σ ) with ρ1 a tame inertial F-type and σ ∈W g
2-deep(ρ)

such that there exists a 4-generic tame inertial type τ with

• σ ∈ JH(σ (τ )) and

• w̃∗(ρ, τ )= w̃∗(ρ̃1, τ ) ∈ tW∨η

for any, or equivalently all, extensions ρ̃1 :GK→GL3(F) of ρ1 (in particular σ ∈Wobv(ρ1)). Let Wobv(ρ)⊂

W g
2-deep(ρ) be the image of SP(ρ) under the projection to W g

2-deep(ρ). Let S(ρ) be the image of SP(ρ)

under the projection to the set of tame inertial F-types. We call an element of S(ρ) a specialization of ρ.

Definition 4.2.2. We say that a Galois representation ρ : GK → GL3(F) is m-generic if the tame inertial
F-type ρss

|IK is m-generic and ρ has an m-generic specialization.

Remark 4.2.3. (1) If m ≥ 6, ρ :GK→GL3(F) is semisimple, and ρ|IK is m-generic, then ρ is m-generic
in the sense of Definition 4.2.2 since ρ|IK ∈ S(ρ).

(2) It is shown (in greater generality under a suitable genericity assumption) in [Le et al. 2022] that
ρss
|IK ∈ S(ρ) so that the requirement that ρ has an m-generic specialization in Definition 4.2.2 is

superfluous when m is sufficiently large.

We now recall the setting of Theorem 3.3.2. In particular, we have a pair (σ, ζ ) which corresponds to a
lowest alcove presentation (w̃, ω) of a Serre weight σ . Given the auxiliary choice of an appropriate tame
inertial type τ (and letting (s, µ) be the compatible lowest alcove presentation), we have the diagram

C̃ζ
σ = C̃(w̃,ω) C(w̃,ω)

F̃l[0,2]
J · s∗tµ∗+η∗ FlJ

Cσ

[
F̃l[0,2]

J · s∗tµ∗+η∗/T∨,J
F -sh.cnj

]

(XK ,3)F 8-Modét,n
K ,F

T∨,J
F

ι0

(4-4)
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In particular the composite of the middle column gives a map C̃ζ
σ →8-Modét,n

K ,F which does not depend
on τ and which factors through XK ,3. Note also that C̃ζ

σ is a subvariety of (F̃l∇0
)J , and that the rightmost

vertical arrow factors through (Fl∇0)J .
The following proposition relates the Galois theoretic notions in Section 3.3 with the geometric notions

in Section 4.1 (or rather, its product version as in Remark 4.1.14):

Proposition 4.2.4. Let ρ ∈ XK ,3(F) be 6-generic and (w̃, ω) be a lowest alcove presentation of an
element of W g

gen(ρ) compatible with a 6-generic lowest alcove presentation of ρss. If x̃∗ ∈ (F̃l∇0
)J (F) has

images x∗ ∈ (Fl∇0
2-deep)

J (F) and ρ ∈ XK ,3(F) then (w̃, ω) is in Wobv(x∗) (resp. W g
2-deep(x∗)) if and only if

F(w̃,ω) ∈Wobv(ρ) (resp. W g
2-deep(ρ)).

Proof. This follows from Theorem 3.3.2, applied to suitably chosen auxiliary 4-generic types τ containing
F(w̃,ω). □

Theorem 4.2.5. If ρ : GK → GL3(F) is 6-generic, then there exist λ ∈ X∗(T ) and w ∈ W such that
Wobv(ρ) is F

(
Trλ

(∏
j∈J w j6obv, j (ρ)

))
where for each j ∈ J , 6obv, j (ρ) is one of the sets

(1) {(0, 0)};

(2) {(ε1− ε2, 1)};

(3) {(0, 0), (ε1− ε2, 1)};

(4) {(0, 0), (ε1− ε2, 1), (ε2− ε1, 1)};

(5) {(0, 1), (ε1, 0), (ε2, 0), (ε1+ ε2, 1)}; and

(6)
{
(0, 0), (ε1− ε2, 1), (ε2− ε1, 1), (ε1, 0), (ε2, 0), (ε1+ ε2, 1)

}
.

Furthermore, W g
gen(ρ)= F

(
Trλ

(∏
j∈J w j6

g
j (ρ)

))
, where with respect to the six above alternatives for

6obv, j (ρ), 6
g
j (ρ) is

(1′) {(0, 0)} or {(0, 0), (0, 1)};

(2′) {(ε1− ε2, 1)};

(3′) {(0, 0), (ε1− ε2, 1)};

(4′) {(0, 0), (ε1− ε2, 1), (ε2− ε1, 1)};

(5′) {(0, 1), (ε1, 0), (ε1, 1), (ε2, 0), (ε2, 1), (ε1+ ε2, 1)}; or

(6′)
{
(0, 0), (0, 1), (ε1− ε2, 1), (ε2− ε1, 1), (ε1, 0), (ε1, 1), (ε2, 0), (ε2, 1), (ε1+ ε2, 1)

}
.

Moreover, every possibility arises. If ρ is furthermore 8-generic, then W g(ρ)= F
(
Trλ

(∏
j∈J w j6

g
j (ρ)

))
with 6

g
j as above.

Proof. This follows from Proposition 4.2.4, Theorem 4.1.13, and Proposition 3.3.8. □

Remark 4.2.6. By the proof of Theorem 4.2.5 (and Lemma 4.1.11), if ρ is 6-generic and has an m-generic
specialization, then every specialization is (m−4)-generic.
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Theorem 4.2.7. Let τ and τ ′ be 4-generic tame inertial types and ρ ∈X η,τ (F) and ρ ′ ∈X η,τ ′(F). Suppose
further that x̃∗, x̃ ′∗ ∈ (F̃l∇0

)J (F) have images x∗, x ′∗ ∈ (Fl∇0
2-deep)

J (F) and ρ, ρ ′ ∈X3(F), respectively, such
that x ′∗ is in the closure of the T̃∨F -orbit of x∗. Then ρ ′ ∈ X η,τ (F) and w̃∗(ρ ′, τ )≤ w̃∗(ρ, τ ). Moreover,
W g

gen(ρ)⊂W g
gen(ρ

′).

Proof. Since ρ ∈ X η,τ (F), x∗ ∈ Cσ for some σ ∈ JH(σ (τ )) by Theorem 3.3.2. Since Cσ is closed and
T̃∨F -stable, x ′∗ ∈ Cσ . We conclude that ρ ′ ∈ X η,τ (F) again using Theorem 3.3.2. Similarly, x ′∗ is in the
closure of I \ Iw̃∗(ρ, τ )Iw̃∗(τ ) which implies the desired inequality.

If ρ ∈ Cσ for a generic weight σ , then the same argument above shows that ρ ′ ∈ Cσ . □

Corollary 4.2.8. Let τ and τ ′ be 4-generic tame inertial types and ρ ∈ X η,τ (F)∩X η,τ ′(F). Suppose that
ρ1 ∈ X η,τ ′(F) such that w̃∗(ρ1, τ

′)= w̃∗(ρ, τ ′). Then ρ1 ∈ X η,τ (F) and w̃∗(ρ1, τ )≤ w̃∗(ρ, τ ).

Proof. This follows from Theorem 4.2.7 since there is a contracting T̃∨F -cocharacter for each translated
Schubert cell (see [Le et al. 2023b, Lemma 3.4.7]). □

5. Results for patching functors

We start in Section 5.1 by recalling the formalism of weak (minimal) patching functors and we prove
abstract versions of Serre weight conjectures assuming the modularity of an obvious weight (see Proposi-
tions 5.1.10 and 5.1.11 below). This assumption is removed in Section 5.2 if the weak patching functor
comes from an arithmetic module. In Section 5.3, we prove results on cyclicity of patching functors
arising from arithmetic modules and we finally give global applications of the above results in Section 5.4.

5.1. Patching functors and Serre weights. We recall the setup and the basic definitions for weak
minimal patching functors. Recall from Section 1.4 that we write the finite étale Zp-algebra Op as the
product

∏
v∈Sp

Ov, where Sp is a finite set and for each v ∈ Sp, Ov is the ring of integers in a finite
unramified extension F+v of Qp, and that LG denotes the Langlands dual group of G0

def
=ResOp/Zp(GL3/Op).

Following Section 2.1.I, an F-valued L-homomorphism ρ : GQp →
LG(F) (resp. a tame inertial L-

parameter τ : IQp → G∨(E)) is identified with a collection (ρv)v∈Sp of continuous homomorphisms
ρv : GF+v → GL3(F) (resp. with a collection (τv)v∈Sp of tame inertial types τv : IF+v → GL3(E)).

Let ρ be an L-homomorphism over F with corresponding collection (ρv)v∈Sp . We write R∞ for the
O-algebra Rρ ⊗̂O R p, where

Rρ
def
=

⊗̂
v∈Sp,O

R□
ρv

and R p is a (nonzero) complete local Noetherian equidimensional flat O-algebra with residue field F such
that each irreducible component of Spec R p and of Spec R p is geometrically irreducible (we remind the
reader that M denotes M ⊗O F for any O-module M). We suppress the dependence on R p below. For a
Weil–Deligne inertial L-parameter τ , let R∞(τ ) be R∞⊗Rρ

Rη,τ

ρ , where

Rη,τ

ρ

def
=

⊗̂
v∈Sp,O

Rηv,τv

ρv
.



1260 Daniel Le, Bao V. Le Hung, Brandon Levin and Stefano Morra

Let X∞, X∞(τ ), and X∞(τ ) be Spec R∞, Spec R∞(τ ), and Spec R∞(τ ) respectively. Let Mod(X∞) be
the category of coherent sheaves over X∞, and let RepO(GL3(Op)) denote the category of topological
O[GL3(Op)]-modules which are finitely generated over O.

Recall from Section 2.1.C that given a tame inertial L-parameter τ we have an irreducible smooth
E-representation σ(τ) attached to it. If σ ◦(τ )⊆ σ(τ) is an O-lattice, we write σ ◦(τ ) for σ ◦(τ )⊗O F in
what follows.

Definition 5.1.1. A weak patching functor for an L-homomorphism ρ : WQp →
LG(F) is a nonzero

covariant exact functor M∞ : RepO(GL3(Op))→Mod(X∞) satisfying the following: if τ is an inertial
L-parameter and σ ◦(τ ) is an O-lattice in σ(τ) then:

(1) M∞(σ ◦(τ )) is either zero or a maximal Cohen–Macaulay sheaf on X∞(τ ).

(2) For all σ ∈ JH(σ ◦(τ )), M∞(σ ) is a maximal Cohen–Macaulay sheaf on X∞(τ ) (or is 0).

(3) Suppose σ ◦ is an O-lattice in a principal series representation R1(µ). Then M∞(σ ◦) is supported
on the potentially semistable locus of type (η, τ (1, µ)) in X∞.

We say that a weak patching functor M∞ is minimal if R p is formally smooth over O and whenever τ is an
inertial L-parameter, M∞(σ ◦(τ ))[p−1

], which is locally free over (the regular scheme) Spec R∞(τ )[p−1
],

has rank at most one on each connected component.

Remark 5.1.2. The above definition of weak patching functor is slightly weaker than that in [Le et al.
2023b, Definition 6.2.1] and closer in spirit to that of [Le et al. 2019, Definition 4.2.1]: the purpose of the
third item is to eliminate nonregular Serre weights.

Let d be the (common) dimension of X∞(τ ) for any inertial L-parameter τ . If M is an R∞-module
whose action factors through R∞(τ ) for some inertial L-parameter τ , let Z(M) be the associated d-
dimensional cycle. Note that Z(M∞(−)) is additive in exact sequences.

We now fix an L-homomorphism ρ :WQp →
LG(F) and a weak patching functor M∞. Let W (ρ) be

the set of Serre weights σ such that M∞(σ ) ̸= 0.

Proposition 5.1.3. If ρ :WQp →
LG(F) is an L-homomorphism with 6-generic semisimplification, then

Wgen(ρ)=W (ρ).

Proof. We adapt the argument in Proposition 3.3.8: If F(λ) ∈ W (ρ), then M∞(F(λ)) ̸= 0 so that
M∞(R1(λ)) ̸= 0. This implies that ρ, and hence ρss, has a potentially semistable lift of type (η, τ (1, λ)).
The rest of the argument is the same. □

Proposition 5.1.4. (1) If ρss
|IK is 7-generic, then W (ρ)⊂W ?(ρss

|IK ).

(2) If ρss
|IK is 7-generic, then for any 4-generic ρ1 ∈ S(ρ), W (ρ)⊂W ?(ρ1). (Note that S(ρ) consists of

tame inertial F-types so that W ?(ρ1) is defined.)

Proof. Let σ be in W (ρ). By the proof of Propositions 5.1.3 and 3.3.8, R1(λ) is 5-generic if σ = F(λ) so
that σ is 3-deep. Let ρ1 be a 4-generic element of S(ρ) or ρss

|IK . Suppose that σ /∈ W ?(ρ1). By (the
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proof of) [Le et al. 2020, Lemma 2.3.13] and Proposition 2.1.1, we can find a 1-generic type τ such that
σ ∈ JH(σ (τ )) and JH(σ (τ ))∩W ?(ρ1)=∅. That σ ∈W (ρ) implies that ρ, and thus ρss, has a potentially
crystalline lift of type τ as in the proof of Proposition 5.1.3. Proposition 3.3.2 in [Le et al. 2019] implies
that τ is 4-generic. Lemma 5 in [Enns 2019] or Corollary 4.2.8 then implies that ρ̃1 ∈ X η,τ (F) for any
extension ρ̃1 of ρ1 to an L-homomorphism. Theorem 3.3.2 implies that JH(σ (τ ))∩W g

gen(ρ̃1) ̸=∅. On
the other hand,

JH(σ (τ ))∩W g
gen(ρ̃1)= JH(σ (τ ))∩W ?

gen(ρ1)= JH(σ (τ ))∩W ?(ρ1)=∅

by Corollary 3.3.7. This is a contradiction. □

For a Serre weight σ , let p(σ ) be the prime ideal or unit ideal in Rρ corresponding to the pullback of
the stack Cσ to Spec Rρ . For an inertial L-parameter τ , let I (τ ) be the kernel of the surjection Rρ ↠ Rη,τ

ρ .
Observe that if I (τ ) ⊂ p(σ ) ̸= 1, then p(σ ) induces a minimal prime of Rη,τ

ρ , and all minimal primes
arise this way.

Lemma 5.1.5. Suppose that τ is an inertial L-parameter corresponding to a collection of 4-generic tame
inertial types (τv)v∈Sp . Then any minimal prime ideal of R∞(τ ) is of the form I (τ )R∞+ pR∞ for some
minimal prime ideal p⊂ R p.

If M is a nonzero finitely generated maximal Cohen–Macaulay R∞(τ )-module, then AnnRρ
(M) =

I (τ )+ (ϖ).

Proof. Since Rη,τ

ρ is geometrically irreducible (its special fiber is reduced after arbitrary finite extension of
F and hence is normal; see the proof of [Le et al. 2020, Lemma 3.5.4]), the first part follows from [Barnet-
Lamb et al. 2011, Lemma 3.3(5)]. Similarly, any minimal prime of R∞(τ ) is of the form p(σ )R∞+pR∞,
where p(σ ) corresponds to a minimal prime of Rη,τ

ρ , and p is a minimal prime of R p.
If M is a nonzero finitely generated maximal Cohen–Macaulay R∞(τ )-module, then Z(M) is at least

the reduction of the cycle in Spec R∞(τ )[1/p] corresponding to a minimal prime of R∞(τ ). In particular,
for any prime p(σ ) of Rρ inducing a minimal prime of Rη,τ

ρ , AnnR∞(τ )(M) is contained in a prime induced
by p(σ )R∞+ pR∞ for some minimal prime p of R p. Since R∞/(p(σ )R∞+ pR∞)∼= Rρ/p(σ ) ⊗̂ R p/p,
(p(σ )R∞+ pR∞)∩ Rρ = p(σ ) by Lemma 5.1.6. We conclude that AnnRρ

(M)⊂ p(σ ) for each minimal
prime ideal p(σ )R∞(τ ) of R∞(τ ). Since R∞(τ ) is reduced, AnnRρ

(M) ⊂ I (τ )+ (ϖ). The reverse
inclusion is clear. □

Lemma 5.1.6. Let F be a field. If R and S are complete Noetherian local F-algebras with residue field F,
then the natural map R→ R ⊗̂F S, r 7→ r ⊗̂ 1 is an injection.

Proof. Let mS ⊂ S be the maximal ideal. The composition R→ R ⊗̂F S→ R ⊗̂F (S/mS)∼= R⊗F F is the
isomorphism given by r 7→ r ⊗ 1. The result follows. □

For the rest of the section, we assume that ρ is 8-generic. In particular, every element of S(ρ) is
4-generic by Remark 4.2.6.
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Lemma 5.1.7. If σ1 is a Serre weight and AnnRρ
M∞(σ1) ⊂ p(σ2) ⊊ Rρ for a Serre weight σ2, then

σ2 ↑ σ1.

Proof. Since M∞(σ1) is nonzero by assumption, Proposition 5.1.4 implies that σ1 ∈ W ?(ρ1) for any
specialization ρ1 of ρ. Then σ1 is 6-deep because ρ is 8-generic. If σ1 ∈ JH(σ (τ )) for a tame inertial
type τ (necessarily 4-generic), then⋂

σ∈JH(σ (τ ))

p(σ )= (ϖ)+ I (τ )⊂ AnnRρ
M∞(σ1)⊂ p(σ2) ⊊ Rρ

by Theorem 3.3.2. This implies that σ2 ∈ JH(σ (τ )). We conclude that σ1 covers σ2 (Definition 2.1.2).
The result now follows from Lemma 2.1.3. □

Lemma 5.1.8. If Wobv(ρ)∩W (ρ) is nonempty, then Wobv(ρ)⊂W (ρ).

Proof. Let σ0 ∈ Wobv(ρ). We claim that there is an n ∈ N and sequences of tame inertial types (τi )
n
i=1,

specializations (ρi )
n
i=1 (elements in S(ρ)), and (not necessarily distinct) Serre weights (σi )

n
i=1 such that

• {σi }
n
i=0 =Wobv(ρ);

• ρi ∈ S(ρ) for all i = 1, . . . , n;

• W ?(ρi )∩ JH(σ (τi ))=Wobv(ρi )∩ JH(σ (τi ))= {σi−1, σi } for all i = 1, . . . , n.

Indeed, the proof of Corollary 4.1.10 gives a sequence of elements
(
y, (w̃, yw̃−1(0))

)
in SP(x∗). We

define the sequences by taking the specializations ρi corresponding to the elements y, taking the
Serre weights σi corresponding to the elements F(w̃,yw̃−1(0)), and taking the tame inertial types τi to
be τ

(
u, y(w̃−1w̃−1

h w0sw̃)−1(0)
)

where u is the image of y(w̃−1w̃−1
h w0sw̃)−1 in W (see also the proof

of Proposition 4.1.8). We will use these sequences to prove the result by induction.
Suppose that σi−1 ∈W (ρ) for some 1≤ i ≤ n. Then M∞(σ ◦(τi )) is nonzero. Since M∞(σ ◦(τi )) is a

nonzero finitely generated maximal Cohen–Macaulay R∞(τi )-module, Proposition 5.1.4 and Lemma 5.1.5
give ∏

σ ′∈JH(σ (τi ))∩W ?(ρi )

AnnRρ
M∞(σ ′)⊂ AnnRρ

M∞(σ ◦(τi ))= I (τi )+ (ϖ)⊂ p(σi ).

Then AnnRρ
M∞(σi−1)⊂ p(σi ) or AnnRρ

M∞(σi )⊂ p(σi ). The former contradicts Lemma 5.1.7 and so
σi ∈W (ρ). □

Lemma 5.1.9. If ρ is semisimple and 8-generic, and σ ∈ W ?(ρ), then there exists a tame inertial
L-homomorphism τ such that

(1) σ ∈ JH(σ (τ )); and

(2) σ ′ ∈W ?(ρ)∩ JH(σ (τ )) implies that σ ′ ↑ σ .

Proof. This follows from [Le et al. 2020, Lemma 3.5.9]. □

In fact, τ is unique. We say that τ is minimal with respect to ρ and σ .
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Proposition 5.1.10. Let ρ : WQp →
LG(F) be an 8-generic L-homomorphism and let M∞ be a weak

patching functor. If Wobv(ρ)∩W (ρ) is nonempty, then AnnRρ
M∞(σ )⊂ p(σ ) for all Serre weights σ . In

particular, W g(ρ)⊂W (ρ).

Proof. The inclusion is trivial if σ /∈ W g(ρ). Suppose that σ ∈ W g(ρ). Choose an 8-generic ρ ′ ∈ S(ρ)

(e.g., ρss) and choose the tame inertial type τ which is minimal with respect to ρ ′ and σ .
For any Serre weight σ ′ ↑ σ , σ ′ ∈ JH(σ (τ )). Theorem 4.2.5 implies that JH(σ (τ )) ∩ Wobv(ρ) is

nonempty. Lemma 5.1.8 implies that M∞(σ ◦(τ )) is nonzero for any lattice σ ◦(τ ) ⊂ σ(τ). Since
M∞(σ ◦(τ )) is a nonzero finitely generated maximal Cohen–Macaulay R∞(τ )-module, Proposition 5.1.4
and Lemma 5.1.5 give∏

σ ′∈JH(σ (τ ))∩W ?(ρ′)

AnnRρ
M∞(σ ′)⊂ AnnRρ

M∞(σ ◦(τ ))= I (τ )+ (ϖ)⊂ p(σ ).

Then AnnRρ
M∞(σ ′)⊂ p(σ ) for some σ ′ ∈ JH(σ (τ ))∩W ?(ρ ′). Lemma 5.1.7 implies that σ ↑ σ ′. That

τ is minimal with respect to ρ ′ and σ implies that σ ′ ↑ σ , hence σ = σ ′. □

Proposition 5.1.11. Let ρ : WQp →
LG(F) be an 8-generic L-homomorphism and let M∞ be a weak

minimal patching functor. Assume that Wobv(ρ)∩W (ρ) is nonempty. Then Z(M∞(σ )) is the irreducible
or zero cycle corresponding to the prime or unit ideal p(σ )R∞. In particular, W (ρ)=W g(ρ).

Proof. Let τ be a 4-generic tame inertial type. Let Cσ (ρ) be the irreducible or zero cycle corresponding
to the ideal p(σ )R∞. Then

Z(R∞(τ ))≥ Z
(
M∞(σ ◦(τ ))

)
=

∑
σ∈JH(σ (τ ))

Z(M∞(σ ))≥
∑

σ∈JH(σ (τ ))

Cσ (ρ),

where the first inequality follows from the fact that M∞ is minimal (see [Le et al. 2018a, Proposition 7.14])
and the second inequality follows from Proposition 5.1.10. However the first and last expression are equal
by Theorem 3.3.2, which forces the inequalities to be equalities. We conclude that the result holds for all
σ ∈ JH(σ (τ )) for a 4-generic tame inertial type τ . In particular, the result holds for all generic σ .

Finally, suppose σ is nongeneric. Then Proposition 5.1.3 shows that Z(M∞(σ ))= 0 and σ /∈W g(ρ),
by Proposition 3.3.8, so p(σ )R∞ = R∞. □

5.2. Arithmetic patched modules. Let R∞ be as in Section 5.1 and set Fp
def
= Op⊗Zp Qp.

Definition 5.2.1. An arithmetic R∞[GL3(Fp)]-module for an L-homomorphism ρ :WQp →
LG(F) is a

nonzero O-module M∞ with commuting actions of R∞ and GL3(Fp) satisfying the following axioms:

(1) The R∞[GL3(Op)]-action on M∞ extends to R∞[[GL3(Op)]] making M∞ a finitely generated
R∞[[GL3(Op)]]-module.

(2) The functor HomO[[GL3(Op)]](−, M∨
∞

)∨ :RepO(GL3(Op))→Mod(X∞), denoted M∞(−), is a weak
patching functor.
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(3) The action of HGL3(Fp)

GL3(Op)
(σ (τ )) ∼= HGL3(Fp)

GL3(Op)
(σ (τ )◦)[1/p] on M∞(σ (τ )◦)[1/p] factors through the

composite
HGL3(Fp)

GL3(Op)
(σ (τ ))

η∞
−→ Rη,τ

ρ [1/p] → R∞(τ )[1/p],

where the map η∞ is the map denoted by η in [Caraiani et al. 2016, Theorem 4.1] except with rp

normalized so that rp(π)= recp(π ⊗ | det |(n−1)/2).

We say that an arithmetic R∞[GL3(Fp)]-module M∞ is minimal if M∞(−) is.

Let I be the preimage of B0(Fp) under the reduction map G0(Zp)→ G0(Fp). Let I1 be the (unique)
pro-p Sylow subgroup of I . Let χ : I/I1→O× be a character. Let θ(χ) be indG(Op)

I χ . If χ is regular,
i.e., χ = χ s implies s = 1 for s ∈W (GLSp

3 ), then θ(χ)[1/p] is absolutely irreducible.

Lemma 5.2.2. If χ : I/I1→O× is a regular character, then the G0(Zp)-cosocle of θ(χ) is isomorphic
to the unique Serre weight σ(χ) with σ(χ)I1 ∼= χ .

Proof. By Frobenius reciprocity, HomG0(Zp)(θ(χ), σ )∼= HomI (χ, σ )∼= HomI (χ, σ I1). Then

HomG(Zp)(θ(χ), σ ) ̸= 0

if and only if σ = σ(χ) in which case it is one-dimensional. □

Let s ∈W (GLSp
3 ) and χ s be the character such that χ s(t)= χ(s−1ts) for

t ∈ T0(Zp)∼= T (Op)∼=
∏
v∈Sp

T (Ov).

The representations θ(χ) and θ(χ s) are isomorphic.

Lemma 5.2.3. Let χ : I/I1→O× be a regular character. Fix s ∈W (GLSp
3 ), and let θ(χ)→ θ(χ s) be a

nonzero map which is unique up to scalar. Let I (χ, s) be the image of this map. Then σ(χ) ∈ JH(I (χ, s)).

Proof. The natural surjection θ(χ) ↠ I (χ, s) induces a surjection on G0(Zp)-cosocles by Lemma 5.2.2.
Thus the cosocle of I (χ, s) is isomorphic to σ(χ). □

Let χ =
⊗

v∈Sp
χv be as above and decompose each χv as χv,1⊗χv,2⊗χv,3 in the usual way. For each

v ∈ Sp, let τv (resp. τv,1) be the tame inertial type (χv,1⊕χv,2⊕χv,3) ◦Art−1
Fv

(resp. χv,1 ◦Art−1
Fv

). Then
letting τ

def
= (τv)v∈Sp (resp. τ1

def
= (τv,1)v∈Sp ) we have that σ(τ)= θ(χ)[1/p] (resp. σ(τ1) is the inflation of

χ1 to O×p ). For each v ∈ Sp, let U τ1,v
τv

be the endomorphism defined in [Le et al. 2023a, §10.1.2] so that
U τ1

τ

def
=

∏
v∈Sp

U τ1,v
τv

is an endomorphism of indGL3(Fp)

GL3(Op)
θ(χ).

Lemma 5.2.4. With χ and τ as above, suppose that τ is 4-generic. If σ ∈ JH(σ (τ )) is not an outer weight,
then η∞(Uτ1,τ ) vanishes on Cσ (ρ).

Proof. Up to a unit, for each v ∈ Sp, the image of η∞(Uτv,1,τv
) (mod ϖ) ∈ F in (the completion of) the

second column of Table 1 is a nonempty product of diagonal elements modulo v by [Dotto and Le 2021,
Corollary 3.7]. One can check that each of these diagonal elements modulo v is contained in each of the
ideals in the final column corresponding to (0, 0), (ε1, 0), or (ε2, 0). □
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Lemma 5.2.5. Let ρ be 8-generic, and let M∞ be an arithmetic R∞[GL3(Fp)]-module. Then

SuppRρ
M∞(σ )⊂ Cσ (ρ).

In particular, W (ρ)⊂W g(ρ).

Proof. Let σ ′ be a Serre weight such that Cσ ′(ρ) ⊂ SuppRρ
M∞(σ ). We will show that σ ′ = σ . Set

χ to be the Teichmüller lift of σ I1 , i.e., σ = σ(χ). Let τ and τ1 be defined in terms of χ as before,
e.g., σ(τ) ∼= θ(χ)[1/p]. Since σ covers σ ′ by Lemma 5.1.7, σ ′ ∈ JH(σ (τ )). Since the only weight in
JHout(σ (τ )) that σ covers is σ itself, we conclude that σ ′ = σ or σ ′ is not in JHout(σ (τ )).

We have

Cσ ′(ρ)⊂ SuppRρ
M∞(σ )⊂ SuppRρ

M∞(I (χ, s))

= SuppRρ
η∞(Uτ1,τ )M∞(θ(χ)/(ϖ))⊂ SuppRρ

η∞(Uτ1,τ )Rτ
ρ,

where the second inclusion follows from Lemma 5.2.3 and the equality follows from the fact that
M∞(θ(χ))/(η∞(Uτ1,τ ), ϖ)∼= M∞((θ(χ s)⊗O F)/I (χ, s)), where sv = (132) for all v ∈ Sp by [Le et al.
2023a, (10.1.9)] (and using the exactness of M∞(−)). Then (η∞(Uτ1,τ ), ϖ)p(σ ′)/(ϖ)p(σ ′) ̸= 0. Since
Rτ

ρ is reduced, Lemma 5.2.4 implies that σ ′ ∈ JHout(σ (τ )). □

Theorem 5.2.6. Let ρ be 8-generic and M∞ be an arithmetic R∞[GL3(Fp)]-module. For a Serre weight σ ,
SuppRρ

M∞(σ )= Cσ (ρ). In particular, W (ρ)=W g(ρ). If M∞ is furthermore minimal, then Z(M∞(σ ))

is the irreducible or zero cycle corresponding to the prime or unit ideal p(σ )R∞.

Proof. If σ is nongeneric, then σ /∈W (ρ) and σ /∈W g(ρ) as in the proof of Proposition 5.1.11 and the
desired equality holds. Since M∞ is nonzero, there is a generic σ ∈ W (ρ). Choose a 4-generic tame
inertial type τ such that σ ∈ JH(σ (τ )). Then M∞(σ (τ )) is nonzero and in fact

SuppRρ
M∞(σ (τ ))=

⋃
σ ′∈JH(σ (τ ))

Cσ ′(ρ)

by Theorem 3.3.2. On the other hand, we have

SuppRρ
M∞(σ (τ ))=

⋃
σ ′∈JH(σ (τ ))

SuppRρ
M∞(σ ′).

Then Lemma 5.2.5 implies that SuppRρ
M∞(σ ′)= Cσ ′(ρ) for all σ ′ ∈ JH(σ (τ )); in particular,

SuppRρ
M∞(σ)= Cσ (ρ).

It is easy to see from Section 2.1.G and Theorem 4.2.5 that Wobv(ρ)∩ JH(σ (τ )) is nonempty. Combined
with the above, Wobv(ρ)∩W (ρ) is nonempty. By Proposition 5.1.10, W g(ρ)⊂W (ρ). With Lemma 5.2.5,
we have W g(ρ)=W (ρ). By the above parenthetical, SuppRρ

M∞(σ )= Cσ (ρ) if σ ∈W (ρ) while it holds
trivially otherwise.

If M∞ is minimal, then the last part now follows from Proposition 5.1.11. □
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5.3. Cyclicity for patching functors. In this section, we show that certain patched modules for tame
types are locally free of rank one over the corresponding local deformation space. The argument follows
closely that of [Le et al. 2020, §5.2].

Recall from Section 2.1.C the irreducible smooth E-representation σ(τ) attached to a tame inertial
L-parameter τ . Given σ ∈ JH(σ (τ )) we write σ(τ)σ for an O-lattice, unique up to homothety, in
σ(τ) with cosocle σ . For an L-parameter ρ : GQp →

LG(F), we write W g(ρ, τ ) for the intersection
W g(ρ) ∩ JH(σ (τ )). Throughout this section, we fix an L-parameter ρ and a weak minimal patching
functor M∞ for ρ which comes from an arithmetic R∞[GL3(Fp)]-module. The main result of this section
is the following:

Theorem 5.3.1. Suppose that ρ : GQp →
LG(F) is a 11-generic L-parameter arising from an F-point

of X η,τ for tame inertial L-parameter τ (in particular, τ is 9-generic) and let z̃ def
= w̃∗(ρ, τ ). Let

F(λ) ∈W g(ρ, τ ) be a Serre weight such that for all j ∈ J ,

λπ−1( j) ∈ X1(T ) is in alcove w̃h ·C0 if ℓ(z̃ j )≤ 1. (5-1)

Then M∞(σ (τ )F(λ)) is a free R∞(τ )-module of rank 1.

The proof is similar to the case when ρ is semisimple ([Le et al. 2020, Theorem 5.1.1] with slightly
weaker genericity assumptions), and we will indicate the necessary modifications. First, [Le et al. 2020,
Theorem 5.1.1] relies on a structure theorem for lattices in generic Deligne–Lusztig representations of
G0(Fp) [loc. cit., Theorem 4.1.9]. The following proposition improves the genericity hypothesis of that
result. We refer the reader to [loc. cit.] for unexplained notation or terminology.

Proposition 5.3.2. Let R be Rs(µ) where µ− η ∈ C0 is 9-deep. Then the radical filtration of Rσ is
predicted by the extension graph with respect to σ , and the graph distance, the radical distance and the
saturation distance from σ all coincide on 0(Rσ ).

Proof. As we now explain, the proof of [Le et al. 2020, Proposition 4.3.7] works for 9-generic R using
some minor improvements to genericity hypotheses. Replace Rexpl,∇

M,w̃
with a suitable completion of(

O(Ũ (w̃, η,∇τ,∞))
)

and the primes pexpl(σ ) with suitable completions of the primes corresponding to
P̃σ,w̃ in Theorem 3.3.2. The results of [Le et al. 2020, §3.5, 3.6] appearing in the proof of [Le et al.
2020, Proposition 4.3.7] hold for 7-generic ρS . Indeed, [Le et al. 2020, Theorem 3.5.2] holds by the
same argument using Proposition 5.1.4 in place of [Le et al. 2020, Proposition 3.5.6]. The rest of the
results follow from Theorem 3.3.2. In particular, it holds for the ρS chosen in the proof of [Le et al. 2020,
Proposition 4.3.7] since R is 9-generic. (Proposition 3.4.5 in [Le et al. 2020] holds with (n− 3) replaced
by (n − 2). Indeed, [Le et al. 2019, Proposition 3.3.2] holds with m − n replaced by m − n + 1. The
proof shows this stronger result and that all lowest alcove presentations of τ are (m−n)-generic.) All the
subsequent statements appearing in [Le et al. 2020, §4.3] then hold for 9-generic R (note that [Le et al.
2020, Theorem 4.2.16] holds for 8-generic R). □
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We prove Theorem 5.3.1 through a series of lemmas. Until the end of the proof of Theorem 5.3.1, fix
ρ 8-generic, τ a tame inertial L-parameter such that ρ ∈ X η,τ (F) (in particular 6-generic), z̃ = w̃∗(ρ, τ ),
w̃

def
= z̃∗, and λ satisfying (5-1). We write σ(τ)σ for σ(τ)σ ⊗O F in what follows.
Below, we modify the proofs of [Le et al. 2020, §5.1]. We will refer to the following as the usual

modifications: we replace τS , ρS , W ?(ρS), W ?(ρS, τS), w̃i , and w̃∗i in [loc. cit.] by τ , ρ, W g(ρ),
W g(ρ, τ ), z̃i , and w̃i , respectively. (In [Le et al. 2020, §5.1], the set Sp is denoted S.)

Lemma 5.3.3. Assume that τ is 9-generic (for instance, if ρ is 11-generic) and ℓ(z̃ j ) > 1 for all j ∈ J .
Let V be a quotient of σ(τ)σ . Then M∞(V ) is a cyclic R∞(τ )-module.

Proof. First, the scheme-theoretic support of M∞(σ ) is, by Theorem 5.2.6, (nonempty and) generically
reduced and hence reduced, e.g., by the proof of [Le et al. 2020, Lemma 3.6.2]. It is then formally smooth
by Table 3, and so M∞(σ ) is free over its scheme-theoretic support by the Auslander–Buchsbaum–Serre
theorem and the Auslander–Buchsbaum formula.

Now the proof of [Le et al. 2020, Lemma 5.1.3] applies after the usual modifications. Moreover,
in the setup for [Le et al. 2020, Proposition 4.3.7, Lemma 3.6.10], Rexpl,∇

M,w̃
should be replaced by(

O(Ũ (z̃, η,∇τ,∞))
)∧

x (for a suitable x ∈ Ũ (z̃, η,∇τ,∞)(F)) and N by log2 #W g(ρ, τ ). (Lemma 3.6.10 in
[Le et al. 2020] holds for ρ and τ with W ?(ρ, τ ) replaced by W g(ρ, τ ) by Theorem 3.3.2.) □

We now assume that ρ is 11-generic (in particular, τ is 9-generic). We fix a semisimple ρsp
:

GQp→
L G(F) such that w̃∗(ρsp, τ )= w̃∗(ρ, τ )= z̃. By Corollary 4.2.8, if ρ ∈X η,τ ′(F) for a 4-generic τ ′,

then ρsp
∈ X η,τ ′(F) and

w̃∗(ρsp, τ ′)≤ w̃∗(ρ, τ ′). (5-2)

Let (s, µ− η) be the 7-generic lowest alcove presentation for ρsp compatible with the implicit 9-generic
lowest alcove presentation of τ so that ρsp

|IQp
∼= τ(s, µ).

Now let V be a quotient of σ(τ)σ such that there exist subsets 6V, j ⊆ w̃−1
j (60) such that∏

i∈J

6V,i −→
∼ JH(V ), (ω, a) 7→ σ(ω,a)

def
= F(Trµ(sω, a))

is a bijection. We will show the cyclicity of M∞(V ) by inducting on the complexity of the set W g(ρ, τ )∩

JH(V ).
Let 6

g
j ⊂ r(60) such that (ω, a) 7→ F(Trµ(sω, a)) defines a bijection from 6

g
j →W g(ρ). (The sets

6
g
j exist by Section 2.1.G, Corollary 3.3.9, Theorem 4.2.5, and Corollary 4.2.8.)

Lemma 5.3.4. Suppose that for all j ∈ J either ℓ(z̃ j ) > 1 or 6V, j ⊂ {(ε, 1), (0, 0), (ε1, 0), (ε2, 0)} for
some ε ∈ {0, ε1, ε2}. Then M∞(V ) is a cyclic R∞(τ )-module.

Proof. We induct on
n def
= #

{
i ∈ J : ℓ(z̃i )≤ 1 and #6V,i = 3

}
.

If n = 0 we let τ ′ be the tame inertial L-parameter corresponding to τ ′S constructed in the first paragraph
of [Le et al. 2020, Lemma 5.1.4] with respect to ρsp. Since σ ∈ JH(σ (τ )) by construction, X η,τ ′(F)
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contains the 11-generic ρ so that τ ′ is 9-generic. Then ρ arises from a point in Ũ (z̃′, η,∇τ ′,∞)(F) by
Theorem 3.3.2 since σ ∈ JH(σ (τ ′)) and ℓ(z̃′j ) > 1 by (5-2). The result follows now from Lemma 5.3.3.

Observe that if ℓ(z̃ j ) ≤ 1, then λπ−1( j) ∈ w̃h · C0 so that (ε, 1) is necessarily in 6
g
j since F(λ) ∈

W g(ρ)∩JH(V ). The general case then follows verbatim as in the proof of the general case in [loc. cit.] with
the usual modifications. Moreover, references to [Le et al. 2020, Theorem 3.6.4, Table 3, Theorem 4.1.9]
are replaced by references to Theorem 3.3.2, Table 3, and Proposition 5.3.2 respectively; and references
to [Le et al. 2020, Lemmas 3.6.12, 3.6.16 (3.19)] are replaced by references to Lemma 5.3.9 and 5.3.10
after localization at x (in fact [Le et al. 2020, Lemma 3.6.12] is sufficient for the case of z̃ j = t1). □

Lemma 5.3.5. Suppose that ℓ(z̃ j ) > 1 or

6V, j ⊂ w̃−1
j (60 \ {(ν1, 0), (ν2, 1), (ν3, 0)}),

where (ν1, ν2, ν3) is (ε1− ε2, ε1, ε1+ ε2), (ε2− ε1, ε2, ε1+ ε2), or (ε1− ε2, 0, ε2− ε1). Then M∞(V ) is
a cyclic R∞(τ )-module.

Proof. This follows from the proof of [Le et al. 2020, Lemma 5.1.5] with the usual modifications. (In the
reduction step in the first paragraph of the proof, one possibly changes τ and so possibly changes ρsp. This
only affects this proof.) References to [Le et al. 2020, Theorem 4.1.9] are replaced by Proposition 5.3.2
above, and references to [Le et al. 2020, Lemma 5.1.4] are replaced by references to Lemma 5.3.4.

Finally, we can and do choose V 2 in the final paragraph of the proof of [Le et al. 2020, Lemma 5.1.5]
so that if (ε′, 0) ∈ V 2

i ′ in the notation of [loc. cit.], then (ε′, 0) ∈ 6
g
i ′ . Indeed, ℓ(z̃i ′) ≤ 1 and [Le et al.

2018a, §8] ensure that Ũ (z̃i ′, ηi ′,∇s−1
i ′ (µi ′+ηi ′ )

)F has at least 5 components, where τ = τ(s, µ+η), so that
#6

g
i ′ ≥ 6 and contains two of w̃−1

i ′ ((0, 0), (ε1, 0), (ε2, 0)) by Theorem 4.2.5. Then by Theorem 5.2.6, we
can apply [Emerton et al. 2015, Lemma 10.1.13] as described in [Le et al. 2020]. □

Remark 5.3.6. There was a gap in the proof of [Le et al. 2020, Lemma 5.1.5]: in the proof there one
needs to possibly change the type τ to an auxiliary type, which may cause a loss of 2 in the genericity.
Since we need to apply [Le et al. 2020, Theorem 4.1.9] to this auxiliary type, one needs to increase the
genericity assumption by 2 in [Le et al. 2020, Theorem 5.1.1].

Lemma 5.3.7. Suppose that ℓ(z̃ j ) > 1 or 6V, j ⊂ w̃−1
j (60 \ {(ν, 0)}), where ν is ε1 − ε2, ε2 − ε1, or

ε1+ ε2. Then M∞(V ) is a cyclic R∞(τ )-module.

Proof. This follows from the proof of [Le et al. 2020, Lemma 5.1.6] with the usual modifications and
using Lemma 5.3.5 and Lemmas 5.3.11 and 5.3.12 below (completed at x). □

Lemma 5.3.8. With V as described before Lemma 5.3.4, M∞(V ) is a cyclic R∞(τ )-module.

Proof. The argument in the proof of [Le et al. 2020, Lemma 5.1.7] holds verbatim with the usual
modifications and the reference to [Le et al. 2020, Lemma 5.1.6] replaced by a reference to Lemma 5.3.7.

□

Proof of Theorem 5.3.1. Theorem 5.3.1 follows from the proof of [Le et al. 2020, Theorem 5.1.1] using
Lemma 5.3.8 in place of [Le et al. 2020, Lemma 5.1.7]. □
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In the lemmas below we refer the reader to Section 1.4.A for unexplained notation. These lemmas
are algebraizations of [Le et al. 2020, Lemmas 3.6.12, 3.6.14, 3.6.16 (3.19), 3.6.16 (3.17) and (3.18)].
Their proof follows verbatim in our setting by replacing Rexpl,∇

M,z̃
and the ideals c(ω,a) of [loc. cit.]

with Ũ (z̃, η j ,∇s−1
j (µ j+η j )

)F (with µ j ∈ X∗(T ) 4-deep) and the ideals P̃(ω,a),αt1 , respectively. (The
second displayed equation in the statement of the Lemma 5.3.12 is not covered by [Le et al. 2020,
Lemma 3.6.16(3.17)], but the proof is analogous.) Alternatively, one observes that all the ideal equalities
we need to verify can be checked after projecting Ũ (z̃ j , η j ,∇s−1

j (µ j+η j )
)F to Fl, where there is a contracting

T∨F -action with unique fixed point z̃ j . Since all the ideals involved are T∨F -equivariant one only needs to
check the equalities after completion at z̃ j , which are exactly the results of [Le et al. 2020, §3.6.3].

Lemma 5.3.9 [Le et al. 2020, Lemma 3.6.12]. In Ũ (t1, η j ,∇s−1
j (µ j+η j ))F, we have the following ideal

relation:(
P̃(0,0),t1 ∩ P̃(0,1),t1 ∩ P̃(ε1,0),t1

)
+

(
P̃(0,0),t1 ∩ P̃(0,1),t1 ∩ P̃(ε2,0),t1

)
=

(
P̃(0,0),t1 ∩ P̃(0,1),t1

)
.

Lemma 5.3.10 [Le et al. 2020, Lemma 3.6.16 (3.19)]. In Ũ (αt1, η j ,∇s−1
j (µ j+η j ))F, we have the following

ideal relation:(
P̃(0,1),αt1 ∩ P̃(0,0),αt1 ∩ P̃(ε2,0),αt1

)
+

(
P̃(0,1),αt1 ∩ P̃(0,0),αt1 ∩ P̃(ε2−ε1,0),αt1

)
=

(
P̃(0,1),αt1 ∩ P̃(0,0),αt1

)
.

Lemma 5.3.11 [Le et al. 2020, Lemma 3.6.14]. In Ũ (t1, η j ,∇s−1
j (µ j+η j ))F, we have the following ideal

relation:(
P̃(0,0),t1 ∩ P̃(0,1),t1 ∩ P̃(ε1,0),t1 ∩ P̃(ε1,1),t1 ∩ P̃(ε2,0),t1

)
+

(
P̃(0,0),t1 ∩ P̃(0,1),t1 ∩ P̃(ε2,0),t1 ∩ P̃(ε2,1),t1 ∩ P̃(ε1,0),t1

)
=

(
P̃(0,0),t1 ∩ P̃(0,1),t1 ∩ P̃(ε1,0),t1 ∩ P̃(ε2,0),t1

)
.

Lemma 5.3.12 [Le et al. 2020, Lemma 3.6.16 (3.17), (3.18)]. In Ũ (αt1, η j ,∇s−1
j (µ j+η j ))F, we have the

following ideal relations:(
P̃(0,1),αt1 ∩ P̃(0,0),αt1 ∩ P̃(ε2,0),αt1 ∩ P̃(ε2−ε1,0),αt1 ∩ P̃(ε2,1),αt1

)
+

(
P̃(0,1),αt1 ∩ P̃(0,0),αt1 ∩ P̃(ε2,0),αt1 ∩ P̃(ε1,1),αt1

)
=

(
P̃(0,1),αt1 ∩ P̃(0,0),αt1 ∩ P̃(ε2,0),αt1

)
,(

P̃(ε2,1),αt1 ∩ P̃(ε2,0),αt1 ∩ P̃(0,0),αt1 ∩ P̃(ε2−ε1,0),αt1 ∩ P̃(0,1),αt1
)

+
(
P̃(ε2,1),αt1 ∩ P̃(ε2,0),αt1 ∩ P̃(0,0),αt1 ∩ P̃(ε1,1),αt1

)
=

(
P̃(ε2,1),αt1 ∩ P̃(ε2,0),αt1 ∩ P̃(0,0),αt1

)
,(

P̃(ε1,1),αt1 ∩ P̃(0,1),αt1 ∩ P̃(ε2,0),αt1 ∩ P̃(0,1),αt1
)

+
(
P̃(ε1,1),αt1 ∩ P̃(0,1),αt1 ∩ P̃(ε2,0),αt1 ∩ P̃(ε2,1),αt1

)
=

(
P̃(ε1,1),αt1 ∩ P̃(0,1),αt1 ∩ P̃(ε2,0),αt1

)
.

5.3.A. Gauges for patching functors. Let τ be a tame inertial L-parameter τ and ρ : GQp →
LG(F) be

an 11-generic L-homomorphism arising from an F-point X η,τ (F). Let M∞ be a weak minimal patching
functor coming from an arithmetic R∞[GL3(Fp)]-module.

The scheme X∞(τ ) is normal and Cohen–Macaulay by Corollary 3.3.3 and Remark 3.3.4. We let
Z ⊂ X∞(τ ) be the locus of points lying on two irreducible components of the special fiber of X∞(τ ) (in
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particular Z ⊂ X∞(τ ) has codimension at least two) and

j :U def
= X∞(τ ) \ Z ↪→ X∞(τ )

be the natural open immersion.

Theorem 5.3.13. Let σ, κ ∈ JH(σ (τ )) and let ι : σ(τ)κ ↪→ σ(τ)σ be a saturated injection. For any
θ ∈W g(ρ), let m(θ) be the multiplicity with which θ appears in the cokernel of ι. Suppose further that σ

is as in Theorem 5.3.1. Then the induced injection M∞(ι) : M∞(σ (τ )κ) ↪→ M∞(σ (τ )σ ) has image

j∗ j∗
( ∏

θ∈W g(ρ)

p(θ)m(θ) R∞(τ )

)
M∞(σ (τ )σ ),

where p(θ) is the minimal prime ideal of (Rτ
ρ)F corresponding to θ via Theorem 3.3.2 and localization at

ρ ∈ X η,τ

F .

Proof. The proof follows verbatim the argument of [Le et al. 2020, Lemmas 5.2.1 and 5.2.2, Theorem 5.2.3]
after replacing occurrences of W ?(ρS) there with W g(ρ). □

5.4. Global applications. In this section, we deduce global applications of Theorems 5.2.6, 5.3.1, and
5.3.13 generalizing results of [Le et al. 2020, §5.3] in the tamely ramified setting. Let F+ be a totally
real field, Sp the set of places of F+ dividing p, and F/F+ a CM extension. We assume that all places
of Sp are unramified over Q and split in F . We start with the following modularity lifting result.

Theorem 5.4.1. Let F/F+ be a CM extension, and let r : GF → GL3(E) be a continuous representation
such that

• r is unramified at all but finitely many places;

• r is potentially crystalline at places dividing p of type (η, τ ), where τ is a tame inertial type that
admits a lowest alcove presentation (s, µ) with µ 4-deep in alcove C0;

• r c ∼= r∨ε−2;

• ζp /∈ Fker adr̄ and r̄(GF(ζp))⊂ GL3(F) is an adequate subgroup; and

• r̄ ∼= r̄ι(π) for some π a regular algebraic conjugate self-dual cuspidal (RACSDC) automorphic
representation of GL3(AF ) of weight 0 so that σ(τ) is a K-type for π at places dividing p.

Then r is automorphic, i.e., r ∼= rι(π
′) for some π ′ a RACSDC automorphic representation of GL3(AF ).

Proof. This follows from standard base change and Taylor–Wiles patching arguments using Corollary 3.3.3;
see [Le et al. 2023b, Theorem 9.2.1; 2018a, Theorem 7.4], and the addendum in [Le et al. 2020, §6]. □

We now suppose that F+ ̸=Q. Let OF+,p
def
= OF+ ⊗Z Zp be the finite étale Zp-algebra denoted Op in

Section 5.1, 5.2. We fix an outer form G/F+ of GLn which splits over F and is definite at all archimedean
places of F+. There exists N ∈N, a reductive model G of G defined over OF+[1/N ], and an isomorphism

ι : G/OF [1/N ]
ι
−→ GL3/OF [1/N ] (5-3)
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(see [Emerton et al. 2013, §7.1]). Given a subset P of finite complement in the set of finite places of
F+ which split in F and are coprime to pN , let TP be the universal Hecke algebra TP for places in
P (see [Le et al. 2023b, §9.1]). Given a compact open U =U pUp ≤ G(A

∞,p
F+ )×G(OF+,p) and a finite

O-module W with a continuous U -action, let S(U, W ) be the space of algebraic automorphic forms of
level U and coefficients W , as in [Le et al. 2023b, (9.2)]. If U is unramified at places in P , then S(U, W )

has a natural TP -action. Let TP(U, W ) be the quotient of TP acting faithfully on S(U, W ).
Let G3 be the group scheme over Z defined in [Clozel et al. 2008, §2.1]. We consider a continuous

Galois representation r̄ : GF+→ G3(F) which is automorphic in the sense of [Le et al. 2023b], i.e., for
which there exists a maximal ideal m⊆ TP(U, W ), for some level U and coefficients W satisfying

det(1− r̄(Frobw)X)=

2∑
j=0

(−1) j (NF/Q(w))(
j
2)T ( j)

w X j mod m

for all w ∈P . Note that the collection (r̄ |GF+v
)v∈Sp defines an F-valued L-parameter, which will be denoted

as r̄p in what follows. For such r̄ , we define as in [Le et al. 2023b, Definition 9.1.1] the set W (r̄) of
modular Serre weights for r̄ .

Theorem 5.4.2. Let r̄ : GF+→ G3(F) be an automorphic Galois representation. Assume further that

• r̄ |GF (GF(ζp)) is adequate; and

• r̄p is 8-generic.

Then

W (r̄)=W g(r̄p).

Proof. The proof of [Le et al. 2020, Theorem 5.3.3] applies verbatim after replacing [loc. cit., Theo-
rem 3.5.2] with Theorem 5.2.6 above. □

5.4.A. Mod p multiplicity one. We continue using the setup from Section 5.4. We assume further that
F/F+ is unramified at all finite places. We now let S0 denote the set of finite places of F+ away from p
where r̄ ramifies and assume that every place of S0 splits in F . For each v ∈ S0, with fixed lift ṽ in F , we
let τṽ be the minimally ramified type in the sense of [Clozel et al. 2008, Definition 2.4.14] corresponding
to r̄ |GFṽ

: GFṽ
→ GL3(F) and σ(τv)

def
= σ(τṽ) ◦ ιṽ be the G(OF+v )-representation attached to it (where ιṽ is

the localization at ṽ of the isomorphism (5-3); σ(τv) is independent of the choice of ṽ |v; see [Le et al.
2020, §5.3]). Fix an O-lattice WS0 in

⊗
v∈S0

σ(τv). We have the following mod p multiplicity one result.

Theorem 5.4.3. Let r̄ : GF+→ G3(F) be a continuous Galois representation such that r̄p is 11-generic.
Let τ and F(λ) ∈W g(r̄p, τ ) be as in the statement of Theorem 5.3.1. Assume moreover that

• r̄ : GF+→ G3(F) is automorphic;

• r̄ |GF (GF(ζp)) is adequate; and

• the places at which r̄ ramifies split in F.
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Then

S
(

U pG(OF+,p),

(
σ(τ)F(λ)

◦

∏
v∈Sp

ιṽ

)∨
⊗O WS0

)
[m]

is one-dimensional over F, where m is the maximal ideal in the Hecke algebra TP corresponding to r̄ .

Proof. The proof of [Le et al. 2020, Theorem 5.3.4] applies verbatim after replacing the reference to [Le
et al. 2020, Theorem 5.2.1] by a reference to Theorem 5.3.1 above. □

5.4.B. Breuil’s lattice conjecture. Now consider an automorphic Galois representation r :GF→GL3(E)

as in Theorem 5.4.1 which is minimally ramified, i.e., for any place ṽ of F lying above some v ∈ S0, the
Galois representation r |GFṽ

is minimally ramified in the sense of [Clozel et al. 2008, Definition 2.4.14].
Let λ be the kernel of the system of Hecke eigenvalues α : TP→O associated to r , i.e., α satisfies

det(1− r∨(Frobw)X)=

3∑
j=0

(−1) j (NF/Q(w))(
j
2)α(T ( j)

w )X j

for all w ∈ P . For U p
≤ G(A

∞,p
F+ ) and a finite O-module W with a continuous U p-action. Let

S(U p, W )
def
= lim
−−→
Up

S(U pUp, W ) and S̃(U p, W )
def
= lim
←−−
s∈N

S(U p, W/ϖ s),

where Up runs over the compact open subgroups of G(OF+,p). By Theorem 5.4.1, S̃(U p, WS0)[λ] is
nonzero.

Theorem 5.4.4. Let r : GF → GL3(E) and τ be as in Theorem 5.4.1. Assume furthermore that r is
minimally ramified and that the places at which r̄ ramifies are split in F. Finally, assume that r̄p is
11-generic. Then the lattice σ(τ)∩ S̃(U p, WS0)[λ] ⊂ σ(τ)∩ S̃(U p, WS0)[λ]⊗O E depends only on rp.

Proof. The proof of [Le et al. 2020, Theorem 5.3.5] applies verbatim after replacing occurrences of
W ?(r̄S) there with W g(r̄p) and the reference to [Le et al. 2020, Theorem 5.2.3] with a reference to
Theorem 5.3.13. □
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Combining Igusa’s conjectures
on exponential sums and monodromy

with semicontinuity of the minimal exponent
Raf Cluckers and Kien Huu Nguyen

We combine two of Igusa’s conjectures with recent semicontinuity results by Mustat,ă and Popa to form
a new, natural conjecture about bounds for exponential sums. These bounds have a deceivingly simple
and general formulation in terms of degrees and dimensions only. We provide evidence consisting partly
of adaptations of already known results about Igusa’s conjecture on exponential sums, but also some
new evidence like for all polynomials in up to 4 variables. We show that, in turn, these bounds imply
consequences for Igusa’s (strong) monodromy conjecture. The bounds are related to estimates for major
arcs appearing in the circle method for local-global principles.

1. Introduction

Let f be a polynomial in n variables over Z and of degree d > 1, and let s be the (complex affine)
dimension of the critical locus of the degree d homogeneous part of f . The main objects of our study are
the finite exponential sums from (1) and their estimates in terms of n, d , and s as in Conjecture 1 below.
For any positive integer N and any complex primitive N -th root of unity ξ , consider the exponential sum∑

x∈(Z/NZ)n

ξ f (x). (1)

When N runs over the set of prime numbers, the sums from (1) fall under the scope of works by
Grothendieck, Deligne, Katz, Laumon, and others, building in particular on the Weil conjectures. We
don’t pursue new results for N running over the set of prime numbers. Instead we put forward new
bounds for these sums uniformly in general N with, roughly, a win of a factor

N−(n−s)/d

on the trivial bound; see Conjecture 1 below. In this context, Birch [1962] proved and used bounds with
exponent

(n − s)/2d−1(d − 1)
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instead of our projected and stronger (n − s)/d; see (5) below. The bounds in the conjecture look
deceivingly simple, but a reduction argument to, say, the case s = 0, turns out to be surprisingly hard in
general, and moreover, the case s = 0 for nonhomogeneous f is surprisingly hard as well. As evidence
for Conjecture 1 we prove an almost generic case (based on the Newton polyhedron of f ), as well as the
case with up to 4 variables, and, the cases restricted to those N which are cube free and more generally
(d+2)-th power free.

Conjecture 1 combines two of Igusa’s conjectures, namely on exponential sums and on monodromy,
and represents an update of these conjectures in line with the recently proved semicontinuity result for
the minimal exponent by Mustat,ă and Popa [2020] and the conjectured equality of the minimal exponent
with the motivic oscillation index; see [Cluckers et al. 2019] and Section 2.7 below.

1.1. Let us make all this more precise, for f a polynomial over Z in n variables. For an integer N > 0
and a complex primitive N -th root of unity ξ , put

E f (N , ξ) :=

∣∣∣∣ 1
N n

∑
x∈(Z/NZ)n

ξ f (x)
∣∣∣∣, (2)

which is simply the complex modulus of the sum in (1) normalized by the number of terms. Write d for
the degree of f and fd for the homogeneous degree d part of f . We assume that d > 1. Write s = s( f )
for the dimension of the critical locus of fd , namely, of the solution set in Cn of the equations

0 =
∂ fd

∂x1
(x)= · · · =

∂ fd

∂xn
(x). (3)

Note that 0 ≤ s ≤ n − 1. Our projected bounds are as follows:

Conjecture 1. Given f , n, s, and d as above and any ε > 0, one has

E f (N , ξ)≪ N−(n−s)/d+ε. (4)

In this context, note that Birch [1962, Lemma 5.4] obtained the following bound, based on the very
same data of f , n, s, and d (and, assuming f to be homogeneous):

E f (N , ξ)≪ N
−

n−s
2d−1(d−1)

+ε
, (5)

which he used to estimate major arcs to obtain general local-global principles (see Section 1.9 below).
Remarkably, the weakening of Conjecture 1 with

−
n − s

2(d − 1)
+ ε (6)

in the exponent of N in (4) instead of −(n − s)/d + ε has just been shown in [Nguyen 2021], vastly
improving Birch’s bounds (5). The case of Conjecture 1 with d = 3 is in line with the resembling (but
averaged) bounds (170) of [Hooley 1988]. In the one variable case, similar bounds to (4) have already
been studied; see, e.g., [Chalk 1987; Hua 1959] and some generalizations in [Cochrane and Zheng 1999;
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2000]. Knowing only n, s and d , the exponent −(n−s)/d is optimal in (4), as witnessed by f =
∑n−s

i=1 xd
i

and N = pd for primes p; see also the example in (20).

Remark 1.2. The notation in (4) means that, given f and ε > 0, there is a constant c = c( f, ε) such
that, for all integers N ≥ 1 and all primitive N -th roots of unity ξ , the value E f (N , ξ) is no larger than
cN−(n−s)/d+ε.

Remark 1.3. The critical case of Conjecture 1 is with N having a single prime divisor. Indeed, by the
Chinese remainder theorem, if one writes N =

∏
i pei

i for distinct prime numbers pi and integers ei > 0,
then one has

E f (N , ξ)=

∏
i

E f (p
ei
i , ξi ) (7)

for some primitive pei
i -th roots of unity ξi . In detail, if one writes 1/N =

∑
i ai/pei

i with (ai , pi ) = 1,
then one takes ξi = ξ bi with bi = ai N/pei

i .

1.4. Conjecture 1 simplifies Igusa’s original question on exponential sums (recalled in Section 1.6) to
bounds involving only n, d , and s. It opens a way to proceed with Igusa’s conjecture on exponential sums
beyond the case of nonrational singularities that is obtained recently in [Cluckers et al. 2019].

In most of the evidence that we provide below, one can furthermore take ε = 0 and one may wonder to
which extent this sharpening of Conjecture 1 holds. Such a sharpening with ε = 0 goes beyond Igusa’s
conjectures in ways explained in Section 2.5. One may also wonder whether the implied constant c can
be taken depending only on fd and n (and ε, but not on f ). If one excludes a finite set S (depending on
f or just on fd ) of prime divisors of N , then it seems furthermore possible that the implied constant can
be taken depending only on d and n (and ε); see Remark 5.7 for more details.

1.5. In Section 2 we relate the bounds from Conjecture 1 to Igusa’s monodromy conjecture. Conjecture 1
implies the strong monodromy conjecture for poles of local zeta functions with real part in the range
strictly between −(n −s)/d and zero. More precisely, we show under Conjecture 1 that there are no poles
(of a local zeta function of f ) with real part in this range except −1 (see Proposition 2.3); from [Mustat,ă
and Popa 2020] it follows correspondingly that there are no zeros of the Bernstein–Sato polynomial of f
in this range other than −1 (see Proposition 2.4). Note that Conjecture 1 is much stronger than the strong
monodromy conjecture in the mentioned range, as the latter implies merely a much weaker variant of
Conjecture 1, namely the bounds from (15) instead of (4), where the constant cp is allowed to depend on p.

1.6. Igusa’s original question on exponential sums predicts upper bounds with a noncanonical exponent
coming from a choice of log resolution for homogeneous f (with f = fd ); see [Igusa 1978]. More precisely,
let h : Y → X = An

Q
be a log resolution of D = f −1(0) := Spec(Q[x1, . . . , xn]/( f )), i.e., Y is an integral

smooth scheme, h : Y → X is a proper map, the restriction h : Y\h−1(D)→ X\D is an isomorphism,
and (h−1(D))red has simple normal crossings as subscheme of Y . Such a log resolution exists by the
work of Hironaka [1964]. Write h−1(D)=

∑
i∈I Ni Ei and Div(h∗(dx1 ∧ · · · ∧ dxn))=

∑
i∈I (νi − 1)Ei
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for irreducible components Ei of (h−1(D))red and positive integers Ni , νi . By blowing up further, one
may suppose that E j ∩ Ei = ∅ whenever (νi , Ni )= (ν j , N j )= (1, 1) and i ̸= j . Put

J = {i ∈ I | (νi , Ni ) ̸= (1, 1)} and σ0 = σ0(h) := min
i∈J

νi

Ni
.

Note that σ0 depends on the choice of h in general. Igusa originally conjectured, for any σ <σ0, and under
a few extra conditions that are most likely superfluous (namely, that σ0 > 2 and that f is homogeneous),
that one has a bound

E f (N , ξ)≤ cN−σ (8)

for all N > 0, all primitive N -th roots of unity ξ and a constant c independent of N , ξ . In the case that
σ0 ≤ 1, the bounds (8) are proved even more generally than in Igusa’s original conjecture in [Cluckers
et al. 2019]; see Section 3.2 below. Furthermore, precisely (and only) in the case that σ0 ≤ 1 holds, the
value σ0 is independent of the choice of h, and, is called the log canonical threshold of f .

When one takes a fixed prime number p, Igusa [1978] proves that inequality (8) holds for N of the
form N = pm with m ≥ 1, primitive N -th root of unity ξ and a constant c = cp depending on p and
σ < σ0 (but not on m, ξ ).

When f satisfies the nondegeneracy condition of Section 4, there is a toric log resolution h of D
related to the Newton polyhedron of f at zero. In this case, σ0(h)= σf with σf defined again from the
Newton polyhedron (see Section 4 for the definition of σf ). Denef and Sperber [2001] conjectured that
when f is nondegenerate, one can replace inequality (8) in Igusa’s conjecture by

E f (pm, ξ)≤ cmκ−1 p−σf m, (9)

where κ is an invariant coming from the Newton polyhedron of f at zero (see Section 4) and c is
independent of p,m, ξ . Thus, the Denef–Sperber conjecture is a bit stronger than Igusa’s conjecture in
the case of nondegenerate polynomials, by the more explicit form of the exponents σf and κ; it has been
proved and generalized in [Denef and Sperber 2001; Cluckers 2008a; 2010; Castryck and Nguyen 2019].
See Proposition 4.1 below.

In [Cluckers and Veys 2016], some of Igusa’s original conditions, like homogeneity for f , were
dropped with some care, namely by focusing on squareful integers; see Section 2.7 for more details.
Igusa’s condition that σ0(h) > 2 for some h was already dropped before; it was more relevant for his
intended application of his conjecture to local-global principles than for the content of the conjecture
itself. Additionally, Igusa’s noncanonical exponent σ0(h) was replaced by canonical candidates for the
exponent: the motivic oscillation index of f , and, (expected to be equal) the minimal exponent of f − v

with v a well-chosen critical value of f : Cn
→ C, see [Cluckers and Veys 2016; Cluckers et al. 2019]

and Section 2.7 below. Our suggested bounds encompass several issues related to the minimal exponent
(and, the motivic oscillation index), by replacing them by the much simpler and natural value (n − s)/d ,
yielding Conjecture 1 as new variant of (8). As an extra upshot, Conjecture 1 makes sense again for all
positive integers N , and not only for squareful integers. Although the bounds from Conjecture 1 seem
simple and very natural, they appear surprisingly hard to show in general, and even the much weaker
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bounds with constants depending on p and N running over powers of p as in (15), remain elusive in
general up to date, even in the case with s = 0.

1.7. From Section 3 on we develop evidence for Conjecture 1. We first rephrase some well-known results
as evidence, namely, Igusa’s treatment of the smooth homogeneous case (with f = fd and s = 0), the case
with degree d = 2, the case with (n − s)/d ≤ 1, the case of at most 3 variables, and, the case with cube
free N . We then generalize this further to new evidence for all N which are (d+2)-th power free (see
Section 3.6). This treatment of the (d+2)-th power free case is mainly provided for expository reasons,
as it uses some recent results on bounds of [Cluckers et al. 2016] in the context of motivic integration and
uniform p-adic integration as in [Cluckers et al. 2018]; it indicates that the case N = pe with p prime
and e small is generally more easy than with e large.

In Section 4, we show Conjecture 1 when f is nondegenerate with respect to its Newton polyhedron at
zero, using recent work from [Castryck and Nguyen 2019] and some elementary reasoning on Newton
polyhedrons. This shows that Conjecture 1 holds under often generic conditions, including the generic
weighted homogeneous case, see Remark 4.5.

In Section 5, we show Conjecture 1 for all polynomial in up to 4 variables. This uses [Cluckers et al.
2019] to reduce to the case with n = 4, d = 3 and s = 0.

In our final Remark 5.7, we explain that throughout the evidence for Conjecture 1 of this paper, up to
excluding a finite set S of primes divisors of N (depending on f ), the constant c can be taken depending
only on d, n and ε.

Let us finally mention the further evidence of [Nguyen 2021] for Conjecture 1, with the weakened
exponent (n − s)/2(d − 1) in the upper bound of (4) instead of (n − s)/d .

1.8. In his vast program from [Igusa 1978], Igusa studies a certain adèlic Poisson summation formula
related to f , inspired by Weil’s work [1965] on the Hasse principle and Birch’s work [1962] on more
general local-global principles. Conjecture 1 would imply that Igusa’s adèlic Poisson summation formula
for f holds under the simple condition

n − s > 2d (10)

which simplifies (and generalizes) the list of conditions put forward by Igusa [1978], and would drop in
particular the condition of homogeneity on f .

1.9. Also for obtaining (or just for streamlining) local-global principles, Conjecture 1 may play a role.
When f is homogeneous, the sums E f (N , ξ) appear for estimating the contribution of the major arcs in
the circle method to get a local-global principle for f when

n − s > (d − 1)2d , (11)

in work by Birch [1962] and in the recent sharpening from [Browning and Prendiville 2017], which both
rely on Birch’s bounds (5) quoted above. Birch shows that any homogeneous form f = fd with (11) and
having smooth local zeros for each completion of Q automatically has a nontrivial rational zero. One may
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hope one day to replace Condition (11) on homogeneous f by (10), which is in line with a conjectured
local-global principle from [Browning and Heath-Brown 2017]. Conjecture 1 would put the remaining
obstacle completely with the estimation for the minor arcs (where actually already lie the limits of the
current strategies). Other possible applications may be for small solutions of congruences as studied in,
e.g., [Baker 1983].

Note that Birch’s method [1962] also helps to understand the distribution of rational points in the
projective hypersurface X associated with a homogeneous polynomial f . More precisely, the singular
series

S( f )=

∑
N≥1

N−n
∑

a∈(Z/NZ)×

∑
x∈(Z/NZ)n

exp
(

2π ia f (x)
N

)
which is equal to the product of p-adic densities of f will contribute to the dominant term in the asymptotic
formula of the number points of X of bounded height. Conjecture 1 implies that the singular series S( f )
is absolutely convergent if n − s > 2d . Thereby Conjecture 1 may be useful for the future research on the
distribution of rational points in algebraic hypersurfaces.

1.10. Generalization to a ring of integers. Before giving precise statements and proofs, we formulate a
natural generalization to rings of integers (a generality we will not use later in this paper). For a ring
of integers O of a number field and a polynomial g over O, one can formulate an analogous conjecture
with summation sets (O/I )n with nonzero ideals I of O and primitive additive characters ψ : O/I → C×.
More precisely, let g be a polynomial in n variables of degree d > 1 and with coefficients in O. For
any nonzero ideal I of O and any primitive additive character ψ : O/I → C×, let NI := [O : I ] be the
absolute norm of I and consider

Eg(I, ψ) :=

∣∣∣∣ 1
N n

I

∑
x∈(O/I )n

ψ(g(x))
∣∣∣∣. (12)

Write s for the dimension of the critical locus of the degree d homogeneous part gd of g. As a generalization
of the above questions, one may wonder whether for each ε > 0 (or more strongly with ε = 0) one has

Eg(I, ψ)≪ N
−

n−s
d +ε

I . (13)

As above with the Chinese remainder theorem, one can rephrase this using the finite completions of the
field of fractions of O. Furthermore, one can study similar sums for the local fields Fq((t)) (with similar
methods in the large characteristic case); see, e.g., [Cluckers and Veys 2016, Section 2.6; Cluckers et al.
2019, Section 1.2].

2. Link with the monodromy conjecture

2.1. Fix a prime number p. For each integer m ≥ 0 let ap,m be the number of solutions in (Z/pmZ)n of
the equation f (x)≡ 0 mod pm , and consider the Poincaré series

P f,p(T ) :=

∑
m≥0

ap,m

pmn T m,
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in Z[[T ]]. Igusa [1975; 1978] showed that P f,p(T ) is a rational function in T , using a log resolution of
f −1(0). Let T0 be a complex pole of P f,p(T ) and let t0 be the real part of a complex number s0 with
p−s0 = T0. Let h : Y → An

Q
be a log resolution of f −1(0) and (Ni , νi )i∈I as in Section 3. Igusa [1978]

showed that t0 belongs to the set Ph = {−νi/Ni | i ∈ I }. However, Ph depends on the choice of log
resolution h. Igusa [1975, Theorem 2] also showed a strong link between exponential sums and local zeta
functions (see also [Denef 1991, Corollary 1.4.5; [Denef and Veys 1995, Proposition 2.7]]), yielding the
following corollary.

Corollary 2.2 [Igusa 1975]. For p, f , T0 and t0 as above, if T0 is furthermore a pole of (T − p)P f,p(T ),
then

pmt0 ≤ c′

p E f (pm, ξ) (14)

for infinitely many m and ξ and a constant c′
p independent of m, ξ .

Proof. Proposition 2.7 of [Denef and Veys 1995] gives finitely many complex numbers T , finitely many
characters χ : C×

→ C× of finite order, finitely many integers b ≥ 0, and finitely many complex numbers
c such that for large m, E f (pm, ξ) is (the complex modulus of) a finite C-linear combination of the terms

χ(ξ) · T −mmbξ c,

where furthermore a term with T = T0 appears nontrivially in this linear combination for each pole T0

of (T − p)P f,p(T ). Now the corollary follows by looking at the dominant terms, namely, with largest
occurring real part of T and for such T the largest occurring value for b. □

Denef [1991] formulated a strong variant of Igusa’s monodromy conjecture by asking whether t0 as
above is automatically a zero of the Bernstein–Sato polynomial of f . The following result addresses this
question in a range of values for t0, namely strictly between −(n − s)/d and zero, assuming Conjecture 1
for f .

Proposition 2.3 (strong monodromy conjecture, in a range). Let f , n, s, and d be as in the introduction
and suppose that Conjecture 1 holds for f . Let t0 be coming as above from a pole T0 of P f,p(T ) for a
prime number p. Suppose that moreover t0 >−(n − s)/d. Then t0 = −1, and hence, t0 is a zero of the
Bernstein–Sato polynomial of f .

Proposition 2.3 is a form of the strong monodromy conjecture in the range strictly between −(n − s)/d
and zero. We don’t pursue the highest generality here, and leave the generalization for other variants of
zeta functions like twisted p-adic local zeta (or even motivic) functions to the reader. Proposition 2.4
below gives a related statement for the zeros of the Bernstein–Sato polynomial of f .

Proof of Proposition 2.3. Let p be a prime number. Let t0 be the real part of a complex number s0 such
that T0 := p−s0 is a pole of P f,p(T ). Suppose that for all ε > 0 there exists cp = cp( f, ε) such that

E f (pm, ξ)≤ cp · (pm)
−

n−s
d +ε for all m > 0 and all primitive ξ . (15)
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By Corollary 2.2 it follows that t0 either equals −1 or, one has

pmt0 ≤ c′

p E f (pm, ξ) (16)

for infinitely many pairs (m, ξ) and a constant c′
p independent of m, ξ . Clearly the bound from (15) holds

if Conjecture 1 holds for f . By (15) and (16), if t0 >−(n − s)/d , then t0 = −1. Since f is nonconstant,
the value −1 is automatically a zero of the Bernstein–Sato polynomial of f . This completes the proof of
the proposition. □

Showing the bounds (15) from the above proof for general f does not seem easy, although they are
much weaker (and much less useful adelically) than the bounds from (4), because of the dependence of
cp on p.

In view of the strong monodromy conjecture, Proposition 2.3 should be compared with the following
absence of zeros of the Bernstein–Sato polynomial in a similar range, apart from −1. Recall that the
zeros of the Bernstein–Sato polynomial are negative rational numbers.

Proposition 2.4. Let f , n, s, and d be as in the introduction and let r be any zero of the Bernstein–Sato
polynomial of f . Then either r = −1, or, r ≤ −(n − s)/d.

Proof. We write f = f0+· · ·+ fd with fi is the homogeneous part of degree i of f . Item (3) of Theorem E
of [Mustat,ă and Popa 2020] states that the minimal exponent α̃ f,0 of f at zero is at least (n − s)/d if
f is homogeneous. Recall that the minimal exponent α̃ f of f is equal to minx∈ f −1(0) α̃ f,x . Moreover,
if ϕ : An

→ An is a linear change of variables then α̃ f,x = α̃ f ◦ϕ,ϕ−1(x), and, for any constant β ̸= 0 one
has α̃ f,x = α̃β f,x . Let gλ(x) be fd +

∑
0≤i≤d−1 λ

d−i fi . Then for each λ ̸= 0 we have gλ(x)= λd f (x/λ).
Write X = An

× A1, T = A1, π : An
× A1

→ A1 for the projection, h(x, λ) = gλ(x) and D = h−1(0).
For each x ∈ f −1(0), we consider the section sx : T → X with λ 7→ (λx, λ), then sx(λ) ∈ Dλ since
h(λx, λ) = gλ(λx) = λd f (λx/λ) = 0 if λ ̸= 0 and h(0, 0) = fd(0) = 0. Now we can use item (2) of
Theorem E of [Mustat,ă and Popa 2020] for X , T , π , D and sx to see that for each x ∈ f −1(0) we have

α̃ f,x = α̃gλ,λx ≥ α̃g0,0 = α̃ fd ,0 ≥ (n − s)/d

for all λ ̸= 0 in a small enough neighborhood of 0. Thus,

α̃ f = min
x∈ f −1(0)

α̃ f,x ≥ (n − s)/d.

The proposition now follows directly from the definition of the minimal exponent α̃ f of f as the smallest
zero of b f (−s)/(s − 1), where b f (s) is the Bernstein–Sato polynomial of f . □

2.5. The variant of Conjecture 1 with ε = 0 (or even just the bounds (15) with ε = 0) implies for
any pole T0 of P f,p(T ) with corresponding value t0 the following bound on the order of the pole: If
t0 equals −(n − s)/d and −(n − s)/d ̸= −1, then the pole T0 has multiplicity at most one, and, if
t0 = −1 = −(n − s)/d, then the pole T0 has multiplicity at most two, by a similar reasoning as for
Corollary 2.2.
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Remark 2.6. Conjecture 1 implies the bounds (15) with moreover constants cp taken independently from
p, and, the conjecture in turns would follow from this. By (7), the variant of Conjecture 1 with ε = 0 is
equivalent with the bounds (15) with ε = 0 and such that furthermore the products of the constants cp

over any set P of primes is bounded independently of P .

2.7. The minimal exponent of f is defined as the smallest zero of the quotient b f (−s)/(s −1) with b f (s)
the Bernstein–Sato polynomial of f if such a zero exists, and it is defined as +∞ otherwise. Write α̂f

for the minimum of the minimal exponents of f − v for v running over the (complex) critical values
of f . In a more canonical variant of Igusa’s original question, one may wonder more technically than
Conjecture 1 whether for all ε > 0 one has

E f (N , ξ)≪ N−α̂f +ε for all ξ and all squareful integers N , (17)

similarly as the question introduced in [Cluckers and Veys 2016] for the motivic oscillation index (and
where the necessity of working with squareful integers N is explained). Recall that an integer N is called
squareful if for any prime p dividing N also p2 divides N . In [Castryck and Nguyen 2019; Chambille and
Nguyen 2021; Cluckers 2008a; 2010; 2019; Denef and Sperber 2001], evidence is given for this sharper
but more technical question. As mentioned above, α̂f is hard to compute in general, and (n − s)/d is
much more transparent. However, α̂f is supposedly equal to the motivic oscillation index of f , which in
turn is optimal as exponent of N−1 in the upper bounds for E f (N , ξ) for squareful N (see the last section
of [Cluckers et al. 2019], or, a reasoning as for Corollary 2.2). Note that by Proposition 2.4, one has

α̂f ≥ (n − s)/d, (18)

which shows that (17) is indeed a sharper (or equally sharp) bound than (4).

3. Some first evidence

In this section we translate some well-known results into evidence for Conjecture 1, and we show the
(new) case of (d+2)-th power free N . A key (but hard) case of Conjecture 1 for inhomogeneous f is
when fd is projectively smooth, namely with s = 0, since the case of general s can be derived from a
sufficiently uniform form of the inhomogeneous case with s = 0, see, e.g., how (22) is used below for
squarefree N . However, the inhomogeneous case with s = 0 seems very hard at the moment. This should
not be confused with Igusa’s more basic case recalled in Section 3.1, for homogeneous f with s = 0.

3.1. When f itself is smooth homogeneous, namely, f = fd and s = 0, then Conjecture 1 with ε = 0 is
known by Igusa’s bounds [1978] by a straightforward computation and reduction to Deligne’s bounds. In
detail, if f = fd and s = 0, Igusa [1978] showed (using [Deligne 1974]) that for each prime p there is a
constant cp such that

E f (pm, ξ)≤ cp p−mn/d for all integers m > 0 and all choices of ξ, (19)
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and, that one can take cp = 1 when p is larger than some value M depending on f . More precisely, one
can take cp = 1 when p does not divide d and when the reduction of f modulo p is smooth. Furthermore,
Igusa [1978] shows that the exponent −n/d of pm is optimal in the upper bound of (19) when m = d.
This easily shows that the exponent (n − s)/d is optimal in Conjecture 1, for example by taking

f = (x1 + · · · + xs+1)
d
+ xd

s+2 + · · · + xd
n (20)

and N = pd for all prime numbers p.

3.2. When f is such that

(n − s)/d ≤ 1, (21)

then Conjecture 1 follows from [Cluckers et al. 2019] and its recent solution of Igusa’s conjecture for
nonrational singularities. Indeed, in [Cluckers et al. 2019] the stronger (and optimal) upper bounds from
(17) are shown for all squareful N in the case of nonrational singularities, as well as the case with 1 in
the exponent instead of α̂f in the case of rational singularities. Recall that this is indeed stronger, by (18).
The bounds for those integers N that are not squareful are recovered by the treatment of squarefree N
below, by writing a general integer as a product of a squareful and a squarefree integer. We mention on
the side that α̂f ≤ 1 if and only if f − v = 0 has nonrational singularities for some critical value v ∈ C

of f , by [Saito 1993] and that in this case α̂f equals the minimum of the log canonical thresholds of
f − v for v running over the (complex) critical values of f . These results under condition (21) imply
that Conjecture 1 holds for all f in three (or less) variables. Indeed, the degree two case is easy by
diagonalizing f2 over Q, and, (21) holds when n ≤ 3 ≤ d. More surprisingly, Igusa’s Conjecture (with
the motivic oscillation index in the upper bound) is proved recently in [Nguyen and Veys 2022] for all
polynomials in 3 variables. Some related results of the special case with n ≤ 2 are developed in [Fraser
and Wright 2020; Lichtin 2013; Veys 2020]. In Section 5 we will prove that Conjecture 1 holds for all
polynomials in up to four variables.

3.3. Although it is classical, let us explain the case of d = 2 in more detail, by showing that Conjecture 1
holds with ε= 0 for f of degree d = 2. In fact, the argument as in the proof of Lemma 25 of [Heath-Brown
1996] is shorter and simpler for the case d = 2, but our treatment will be useful later in this paper. First
suppose that the degree two part of f is a diagonal form, namely, f2(x)=

∑n
i=1 ai x2

i for some ai ∈ Z. In
this case it is sufficient to show the case with n = 1 and d = 2 (indeed, f = h1(x1)+ · · · + hn(xn) for
some polynomials h j in one variable x j and of degree ≤ 2). But this case follows readily from Hua’s
bounds, see [Hua 1959] or [Chalk 1987], and is in fact elementary.

For general f with d = 2, by diagonalizing f2 over Q and taking a suitable integer multiple, we find
a matrix T ∈ Zn×n with nonzero determinant so that f2(T x) is a diagonal form over Z in the variables
x , namely, f2(T x)=

∑n
i=1 ai x2

i for some ai ∈ Z. The map sending x to T x transforms Zn
p into a set of

the form
∏n

j=1 pep, j Zp for some integers ep, j ≥ 0 (called a box). By composing with a map of the form
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(x j ) j 7→ (b j x j ) j for some integers b j it is clear that we may assume that T is already such that ep, j = ep

for all p and all j and some integers ep ≥ 0. Hence, the case d = 2 follows from Lemma 3.4.

Lemma 3.4. Let f , n, s, and d be as in the introduction and let T ∈ Zn×n be a matrix with nonzero
determinant and such that, for each prime p, the transformation x 7→ T x maps Zn

p onto pep Zn
p for some

ep ≥ 0. Then, Conjecture 1 for each of the polynomials gi (x) := f (i +T x) for i ∈ Zn implies Conjecture 1
for f , and, similarly for Conjecture 1 with ε = 0.

Proof. For each i ∈ Zn , write gi (x) for the polynomial f (i + T x). For any prime p, let µp,n be the Haar
measure on Qn

p, normalized so that Zn
p has measure 1. For any integer m > 0 and any primitive pm-th

root of unity ξ , we have, by the change of variables formula for p-adic integrals, and with e = ep and
with integrals taken against the measure µ= µp,n ,

E f (pm, ξ)=

∣∣∣∣∫
x∈Zn

p

ξ f (x) mod pm
µ

∣∣∣∣ ≤

n∑
j=1

pe
−1∑

i j =0

∣∣∣∣∫
x∈i+(peZp)n

ξ f (x) mod pm
µ

∣∣∣∣.
For each i we further have∣∣∣∣∫

x∈i+(peZp)n
ξ f (x) mod pm

µ

∣∣∣∣ = p−ne
∣∣∣∣∫

x∈Zn
p

ξ f (i+pex) mod pm
µ

∣∣∣∣
= p−ne

∣∣∣∣∫
x∈Zn

p

ξ gi (x) mod pm
µ

∣∣∣∣ = p−ne Egi (p
m, ξ).

Since ep = 0 for all but finitely many primes p, we are done. □

3.5. When one restricts to integers N which are squarefree (namely, not divisible by a nontrivial square),
then Conjecture 1 with ε = 0 follows from Deligne’s bound [1974], as we now explain. The reasoning is
classical but also instructive for later use in this paper; a similar induction argument on s ≥ 0 already
appears in [Hooley 1991]. By [Deligne 1974], for each prime number p such that the reduction of fd

modulo p is smooth, one has

E f (p, ξ)≤ (d − 1)n p−n/2 for each primitive p-th root of unity ξ , (22)

where smooth means that the reduction modulo p of the equations (3) has 0 as the only solution over
an algebraic closure of Fp. If s = 0 then the reduction of fd modulo p is smooth whenever p is large
and thus Conjecture 1 for squarefree N and with ε = 0 follows for f with s = 0 (note the different
exponent of p in (22) and of N in 1 when d > 2). We proceed by induction on s by restricting f to
hyperplanes, as follows. The bound (22) for all large p is our base case when s = 0. Now suppose that
s > 0. After a linear coordinate change of An

Z, we may suppose that the polynomial g(x̂) := f (0, x̂) in
the variables x̂ = (x2, . . . , xn) is still of degree d and that its degree d homogeneous part gd has critical
locus of dimension s − 1. Hence, for large prime p, the reduction of gd modulo p has also critical locus
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of dimension s − 1, in An−1
Fp

. Hence, for large p, one has by induction on s that∣∣∣∣ 1
pn−1

∑
x̂=(x2,...,xn)∈Fn−1

p

ξ f (a,x̂)
∣∣∣∣ ≤ (d − 1)n−s p−(n−s)/2 (23)

for each a ∈ Fp and each primitive p-th root of unity ξ . Indeed, the polynomial f (a, x̂) has gd mod p as
its degree d homogeneous part for each a ∈ Fd . Now, summing over a ∈ Fp and dividing by p gives∣∣∣∣ 1

pn

∑
x∈Fn

p

ξ f (x)
∣∣∣∣ ≤ (d − 1)n−s p−(n−s)/2 (24)

for large p (coming from the condition that the reduction of gd modulo p has critical locus of dimension
s − 1). Conjecture 1 with ε = 0 for squarefree integers N thus follows, by comparing the exponents
in the upper bounds of (24) and (4), which allows to swallow the constant (d − 1)n−s when d > 2.
(Alternatively, one can use the much more general Theorem 5 of [Katz 1999] when d > 2 and an argument
as in Section 3.3 when d = 2.)

3.6. When one restricts to integers N which are cube free (namely, not divisible by a nontrivial cube),
then Conjecture 1 with ε = 0 follows exactly in the same way as for squarefree N , but now using both
the bounds from [Heath-Brown 1985] and from [Deligne 1974]. Indeed, this similarly gives

E f (p2, ξ)≤ (d − 1)n−s p−(n−s) (25)

for large p and all ξ . Together with the squarefree case, this implies the cube free case of Conjecture 1,
with ε= 0 (note again the different exponent of p2 in (25) and of N in 1, when d > 2). In fact, with some
more work we can go up to (d+2)-th powers instead of just cubes, as follows.

Proposition 3.7. Conjecture 1 with ε = 0 holds when restricted to integers N which are not divisible by a
nontrivial (d+2)-th power. In detail, let f , n, s, and d be as in the introduction. Then there is a constant
c = c( fd) (depending only on fd ) such that for all integers N > 0 which are not divisible by a nontrivial
(d+2)-th power and all primitive N-th roots ξ of 1, one has

E f (N , ξ)≤ cN−(n−s)/d . (26)

We will prove Proposition 3.7 by making a link between E f (pm, ξ) and finite field exponential sums,
as follows. For any prime p, any m > 0, any point P in Fn

p and any ξ , write

E P
f (p

m, ξ) :=

∣∣∣∣ 1
pmn

∑
x∈P+(pZ/pm Z)n

ξ f (x)
∣∣∣∣. (27)

Compared to E f (pm, ξ), the summation set for E P
f (p

m, ξ) has p-adically zoomed in around the point P .
Let us consider the following positive characteristic analogues,

E f (tm, ψ) :=

∣∣∣∣ 1
pmn

∑
x∈(Fp[t]/(tm))n

ψ( f (x))
∣∣∣∣, (28)
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and

E P
f (t

m, ψ) :=

∣∣∣∣ 1
pmn

∑
x∈P+(tFp[t]/(tm))n

ψ( f (x))
∣∣∣∣, (29)

for any primitive additive character
ψ : Fp[t]/(tm)→ C×,

where primitive means that ψ does not factor through the projection

Fp[t]/(tm)→ Fp[t]/(tm−1).

The sums of (28), resp. (29), can be rewritten as finite field exponential sums, to which classical bounds
like (24) apply. This is done by identifying the summation set with Fmn

p , resp. with F
(m−1)n
p , namely by

sending a polynomial in t to its coefficients, while forgetting the constant terms in the second case.
We first prove the following variant of Proposition 3.7.

Proposition 3.8. Let f , n, s, and d be as in the introduction. Then there is a constant M (depending
only on fd ) such that for all primes p with p > M , all integers m > 0 with m ≤ d + 1, and all primitive
additive characters ψ : Fp[t]/(tm)→ C× one has

E f (tm, ψ)≤ p−m·
n−s

d . (30)

Proof. By a reasoning as for the squarefree case, it is sufficient to treat the case with s = 0 for large p,
while letting the fi for i < d vary over homogeneous polynomials in Fp[t, x] of degree i in x , and while
keeping fd fixed in Z[x]. So, we may assume that s = 0, and, by the squarefree case treated above, that
m > 1. We also may assume that d ≥ 3 by the above treatment of the case d = 2. For each p, let C p

be the set of critical points of the reduction of f modulo p. Since s = 0, one has #C p ≤ c1 for some
constant c1 depending only on n and d, see for example the final inequality of [Heath-Brown 1985], or
Lemma 5.3 below. Clearly we have

E f (tm, ψ)=

∑
P∈C p

E P
f (t

m, ψ) (31)

for all primes p > d, all m > 1 and all primitive ψ : Fp[t]/(tm)→ C×. For m < d , note that

1
pmn · #(tF[[t]]/(tm))n = pn(m−1)−mn

= p−n < p−mn/d . (32)

For m < d , we thus find by (31) that

E f (tm, ψ)≤ c1 p−n, (33)

and (30) follows when m < d and p is large enough so that the constant c1 is eaten by the extra saved
power of p coming from (32). We now treat the case that m = d. If p > d is such that the reduction of
f modulo t is smooth homogeneous of degree d, then C p = {0} and there is nothing left to prove since
then E f (tm, ψ) = E P0

f (t
m, ψ) ≤ p−n

= p−mn/d , with P0 = {0}. If the reduction of f modulo t is not
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homogeneous of degree d , and, p is larger than d , then there is a constant c2 (depending only on n and d)
such that

E P
f (t

m, ψ)≤ c2 p−n−1/2 (34)

for all P in C p and all primitive ψ . Indeed, this follows from the worst case of (23) applied to E P
f (t

m, ψ),
after rewriting it as a finite field exponential sum as explained just above the proposition. The case m = d
for (30) follows, where the constant c2 is eaten by the extra saved power of p coming from d ≥ 3 and (34).
For d = m + 1, when we rewrite E P

f (t
m, ψ) for P ∈ C p as a finite field exponential sum over (m − 1)n

variables running over Fp, we can again apply (23), now in n(m − 1) variables and with highest degree
part fd which has singular locus of dimension n(m − 2) inside An(m−1). Since d ≥ 3, we again can use
the extra saved power of p to obtain (30) and the proposition is proved. □

The transfer principle for bounds from Theorem 3.1 of [Cluckers et al. 2016] can be applied to compare
the exponential sums E f (pm, ξ) and E f (tm, ψ); we will use it in the following basic form. Recall that a
Presburger subset A of N is a Boolean combination of congruence classes and subintervals of N.

Corollary 3.9 [Cluckers et al. 2016]. Let g be a homogeneous polynomial over Z, of degree d > 1 and
in n variables. Consider a real number σ > 0 and a Presburger subset A ⊂ N. Then the following two
statements are equivalent.

(1) There exist constants c and M such that for all primes p>M and all polynomials f in Zp[x1, . . . , xn]

of degree d and with fd = g, one has

E f (pm, ξ)≤ cp−σm

for all m ∈ A and all primitive pm-th roots of unity ξ .

(2) There exist constants c′ and M ′ such that for all primes p>M ′ and all polynomials f in Fp[[t]][x1,...,xn]

of degree d and such that fd = g mod (p) holds in Fp[x], one has

E f (tm, ψ)≤ c′ p−σm

for all m ∈ A and all primitive characters ψ : Fp[t]/(tm)→ C×.

In the corollary, we have extended the notation E f to more general f , namely with more general
coefficients than just in Z, in the obvious way. More generally than Corollary 3.9, Theorem 3.1 of
[Cluckers et al. 2016] allows to transfer bounds that hold for motivic families of functions, and, the
families in the corollary are a special case of such family.

Proof of Corollary 3.9. Clearly the left hand sides and of the right hand sides of the inequalities come
from motivic functions H and G as required in Theorem 3.1 of [Cluckers et al. 2016]. Now the corollary
readily follows from the conclusion of Theorem 3.1 of [Cluckers et al. 2016] for such H and G. □

Proof of Proposition 3.7. We show for all large primes p, all integers m > 0 with m ≤ d + 1, and all
primitive pm-th roots of 1, that

E f (pm, ξ)≤ p−m·
n−s

d , (35)
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where moreover the lower bound on p depends only on fd . The case d = 2 is already shown. For
m ̸= d ≥ 3 this follows at once from Corollary 3.9 and the corresponding extra power savings when
m ̸= d in the proof of Proposition 3.8. Indeed, the transfer principle holds uniformly in f as long as
fd and n are fixed, since these bounds (with the extra power savings) from the proof of Proposition 3.8
depend only on fd and n. Let us now treat the remaining case of m = d. It is again enough to treat the
case s = 0. For a prime p > d such that the reduction of f modulo p is not smooth homogeneous of
degree d , we are done similarly by the transfer principle for bounds from [Cluckers et al. 2016] and the
corresponding power savings in the proof Proposition 3.8. If m = d and p > d is such that the reduction
of f modulo p is smooth homogeneous of degree d, then we have that P0 = {0} is the unique critical
point of the reduction of f modulo p, and thus

E f (pm, ξ)= E P0
f (p

m, ξ)≤ p−n
= p−mn/d .

The proof of Proposition 3.7 is thus finished. □

4. The nondegenerate case

In this section we show that Conjecture 1 with ε = 0 holds for nondegenerate polynomials, where the
nondegeneracy condition is with respect to the Newton polyhedron of f − f (0) at zero as in [Castryck
and Nguyen 2019] (which is slightly different than the nondegeneracy notion of [Kouchnirenko 1976;
Varčenko 1976]). The nondegeneracy condition generalizes the situation where f is a sum of monomials
in separate variables, like x1x2 + x3x4. In detail, writing f (x)− f (0) =

∑
i∈Nn βi x i in multi-index

notation, let

Suppf := {i ∈ Nn
| βi ̸= 0}

be the support of f − f (0). Further, let

10( f ) := Conv(Suppf + (R≥0)
n)

be the convex hull of the sum-set of Suppf with (R≥0)
n where R≥0 is {x ∈R | x ≥0}. The set10( f ) is called

the Newton polyhedron of f − f (0) at zero. Let σf be the unique real value such that (1/σf , . . . , 1/σf )

is contained in a proper face of 10( f ). Further, let κ denote the maximal codimension in Rn of τ when τ
varies over the faces of 10( f ) containing (1/σf , . . . , 1/σf ). For each face τ of the polyhedron 10( f ),
consider the polynomial

fτ :=

∑
i∈τ

βi x i .

Call f nondegenerate with respect to 10( f ) when for each face τ of 10( f ) and each critical point P of
fτ : Cn

→ C, at least one coordinate of P equals zero. Recall that a complex point P ∈ Cn is called a
critical point of fτ if ∂ fτ/∂xi (P)= 0 for all i = 1, . . . , n.
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The following proposition slightly extends the main result of [Castryck and Nguyen 2019] as it covers
small primes as well. Note that [Castryck and Nguyen 2019, Theorem 1.4.1] gives evidence for Igusa’s
conjecture on exponential sums in the variant of [Cluckers and Veys 2016, Conjecture 1.2].

Proposition 4.1 [Castryck and Nguyen 2019, Theorem 1.4.1]. Suppose that f is nondegenerate with
respect to10( f ). Then, there is a constant c such that for all primes p, all integers m ≥ 2 and all primitive
pm-th roots of unity ξ one has

E f (pm, ξ)≤ cp−mσf mκ−1. (36)

From Proposition 4.1 we will derive the following evidence for Conjecture 1.

Theorem 4.2. Let f , n, s, and d be as in the introduction. Suppose that f is nondegenerate with respect
to 10( f ). Then Conjecture 1 with ε = 0 holds for f . Namely, there is c such that for all integers N > 0
and all primitive N-th roots of unity ξ , one has

E f (N , ξ)≤ cN−
n−s

d .

Furthermore, for all large primes p (with “large” depending on f ), all integers m > 0 and all primitive
pm-th roots of unity ξ one has

E f (pm, ξ)≤ p−m n−s
d .

Proof of Proposition 4.1. In [Castryck and Nguyen 2019] it is shown that one can take a constant c so
that (36) holds for all large primes p and all m ≥ 2. So, there is only left to prove that for each prime p
there is a constant cp (depending on p) such that for each integer m ≥ 2 one has

E f (pm, ξ)≤ cp p−mσf mκ−1. (37)

Indeed, (37) is only used for the finitely many remaining primes. First, if f is nondegenerate with respect
to 10( f ) we show that f (0) is the only possible critical value of f , by induction on n. If n = 1, by
the nondegeneracy of f , we get that f has no critical point in C× and we are done. Now suppose that
n > 1. Let f be a polynomial in n variables which is nondegenerate with respect to 10( f ). Suppose that
u = (u1, . . . , un) is a critical point of f . By the nondegeneracy of f there exists 1 ≤ j ≤ n such that u j = 0.
Without lost of generality we can suppose that j = n. We can write f = f (0)+

∑d
i=0 gi (x1, . . . , xn−1)x i

n

for some polynomials gi with furthermore g0(0)= 0. It is sufficient to show that f (u1, . . . , un)= f (0).
Since un = 0, it suffices to show that g0(u1, . . . , un−1) = 0. By the fact that f is nondegenerate with
respect to 10( f ) we get that g0 is nondegenerate with respect to 10(g0). It is clear that (u1, . . . , un−1) is
a critical point of g0. So, we can use the inductive hypothesis to deduce that g0(u1, . . . , un−1)= g0(0)= 0.
Now, since f has no other possible critical value than f (0) and since there exists a toric log resolution of
f − f (0) whose numerical properties (in particular its discrepancy numbers) are controlled by 10( f )

(see for example [Varčenko 1976]), inequality (37) follows from Igusa’s work [1978]. Here, we use the
following information on the discrepancy numbers coming from the toric log resolution π of f − f (0), in
relation to 10( f ). If E is an irreducible component of the exceptional locus of π and if one writes NE for
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the multiplicity of E in the divisor π∗( f − f (0)) and νE −1 for the multiplicity of E in π∗(dx1∧· · ·∧dxn),
then one has νE/NE ≥ σ . Furthermore, any intersection of κ + 1 many such E for which the equality
νE/NE = σ holds is empty. Since f (0) is the only critical value of f , we are now done by Igusa’s work
[1978]. □

The proof of Theorem 4.2 relies on Proposition 4.1 and Lemma 4.3. Note that the following Lemmas 4.3
and 4.4 do not require f to be nondegenerate.

Lemma 4.3. Let f , n, s, and d be as in the introduction. (In particular, f is allowed to be inhomogeneous
and there is no condition on nondegeneracy.) Suppose that d ≥ 3. Then one has σf ≥ (n − s)/d , and,
equality holds if and only if there is a smooth form g of degree d in n − s variables such that

f (x)− f (0)= g(xi1, . . . , xin−s )

for some i j with 1 ≤ i1 < i2 < . . . < in−s ≤ n.

We will first prove Lemma 4.3 in the case that s = 0, using the following lemma. We write Conv(Suppf )

for the convex hull of Suppf in Rn .

Lemma 4.4. Let f , n, s, and d be as in the introduction. Suppose furthermore that d ≥ 3, s = 0 and that
f = fd , namely, f is smooth homogeneous of degree at least 3. Then

dim(Conv(Suppf ))= n − 1,

and, the point (d/n, . . . , d/n) belongs to the interior of Conv(Suppf ). In particular, σf = n/d and κ = 1.

Proof. Since f = fd , it is clear that

dim(Conv(Suppf ))≤ n − 1.

Suppose now that either dim(Conv(Suppf )) < n − 1, or, that (d/n, . . . , d/n) does not belong to the
interior of Conv(Suppf ). We try to find a contradiction. By our assumptions, there exists a hyperplane
H = {a ∈ Rn

| k · a = 0} for some k ∈ Rn
\ {0} such that the point (d/n, . . . , d/n) belongs to H and

such that Suppf belongs to the half space H+ := {a ∈ Rn
| k · a ≥ 0}. Let I be the subset of {1, . . . , n}

consisting of i with ki > 0 and let J be the subset of {1, . . . , n} consisting of j with k j < 0. Clearly I and
J are disjoint. Since (d/n, . . . , d/n) belongs to H , it follows that I and J are both nonempty and that∑

i∈I

ki =

∑
j∈J

|k j |. (38)

Furthermore, the inclusion Suppf ⊂ H+ implies that∑
i∈I

ki ai ≥

∑
j∈J

|k j |a j for all a ∈ Suppf . (39)

Consider the set Supp0
f consisting of those a ∈ Suppf with moreover ai = 1 for some i ∈ I and ai ′ = 0

for all i ′
̸∈ J ∪ {i}. For a ∈ Supp0

f write t (a) for the unique i ∈ I with ai = 1 and write

I0 := {i ∈ I | ∃a ∈ Supp0
f with t (a)= i}.
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Clearly we can write
f (x)=

∑
i∈I0

xi gi (x j ) j∈J +

∑
a∈Suppf \Supp0

f

βaxa

for some polynomials gi in the variables (x j ) j∈J . Also, the algebraic set⋂
i /∈J

{xi = 0}

⋂
i∈I0

{gi = 0}

in An
C

has dimension at least |J |−|I0| and is contained in Crit f , the critical locus of f . By our smoothness
condition s = 0, this implies

|I0| ≥ |J |. (40)

Hence, we can write I0 = {i1, . . . , iℓ} and J = { j1, . . . , jm} with m ≤ ℓ and with

ki1 ≥ ki2 ≥ · · · ≥ kiℓ and |k j1 | ≥ |k j2 | ≥ · · · ≥ |k jm |. (41)

To prove the lemma it is now sufficient to show that

kir > |k jr | for all r with 1 ≤ r ≤ m. (42)

Indeed, (42) gives a contradiction with (38). To prove (42), we suppose that there is r0 with 1 ≤ r0 ≤ m
and with

kir0
≤ |k jr0

| (43)

and we need to find a contradiction. If there exists a ∈ Supp0
f such that a jr1

≥ 1 for some r1 ≤ r0, then let
a be such an element and let t be t (a); otherwise, let a be arbitrary and put t = 0. We will now show that
t < r0. If t = 0 this is clear, so, suppose that t > 0. Since d ≥ 3 and a ∈ Supp0

f , we find by (39) and (41)
that

kit =

∑
i∈I

ki ai ≥

∑
j∈J

a j |k j |> |k jr1
| ≥ |k jr0

|. (44)

Together with (41) and (43), this implies that t < r0 as desired. We can thus write

f =

∑
1≤ℓ≤r0−1

xiℓhℓ(x j ) j∈J +

∑
a∈A

βaxa (45)

with

A =

{
a ∈ Suppf

∣∣∣ ∑
i /∈{ j1,..., jr0 }

ai ≥ 2
}

and with some polynomials hℓ in the variables (x j ) j∈J . It follows that the algebraic set⋂
i /∈{ j1,..., jr0 }

{xi = 0}

⋂
1≤ℓ≤r0−1

{hℓ = 0}

has dimension at least 1 and is contained in Crit f , again a contradiction with our smoothness assumption
s = 0. So, relation (42) follows and the lemma is proved. □

The case of Lemma 4.3 with s = 0 is derived from Lemma 4.4, as follows.



Combining Igusa’s conjectures with semicontinuity 1293

Proof of Lemma 4.3 with s = 0. Let f be of degree d ≥ 3 and with s = 0. We need to show that σf ≥ n/d ,
and, that σf = n/d if and only if f = fd . Since fd is smooth, Lemma 4.4 implies that (d/n, . . . , d/n)
belongs to 10( f ), and hence, σf ≥ n/d. Suppose now that f ̸= fd . Then there exists a ∈ Suppf with∑n

i=1 ai < d . Hence, by Lemma 4.4 and the definition of 10( f ), there exists ε > 0 such that

{x ∈ Rn
| ∥x − (d/n, . . . , d/n)∥ ≤ ε} ⊂10( f ).

Therefore it is clear that σf > n/d . This finishes the proof of Lemma 4.3 with s = 0. □

Proof of Lemma 4.3 with s > 0. To prove the lemma with s > 0 we may suppose that

σf ≤ (n − s)/d. (46)

By the definition of σf we have

min
a∈Conv(Suppf )

max(a)= 1/σf , (47)

where max(a)= max1≤i≤n{ai } and where Conv(Suppf ) is the convex hull of Suppf . We set

k := min
max(a)=1/σf

#{i | ai = 1/σf },

where the minimum is taken over a ∈ Conv(Suppf ). Let a ∈ Conv(Suppf ) realize this minimum, namely,
with #{i | ai = 1/σ } = k and with max(a)= 1/σf . We may suppose that

a1 = · · · = ak = 1/σf and ai < 1/σf if i > k.

Let b ∈ Conv(Suppf ) be such that max(b)= 1/σf . Then, for each λ∈ [0, 1], the point cλ := λa +(1−λ)b
lies in Conv(Suppf ). When λ is sufficiently close to 1, then we have cλ,i < 1/σf for all i > k, and, the
definition of k implies that bi = 1/σf for all 1 ≤ i ≤ k. By the same reasoning, for each b ∈ Conv(Suppf )

one has bi ≥ 1/σf for some i with 1 ≤ i ≤ k. The definition of k and (47) also tell us that k/σf ≤ d , and
thus we find

k ≤ n − s (48)

from (46). For any tuple of complex numbers C = (ci, j )1≤i, j≤s we consider the polynomial

gC = f
(

x1, . . . , xn−s, xn−s+1 +

∑
1≤ j≤n−s

c1, j x j , . . . , xn +

∑
1≤ j≤n−s

cs, j x j

)
.

For a generic choice of C one has Suppf ⊂ SuppgC
. Furthermore, we show that for a generic choice of C

the polynomial

hC = fd

(
x1, . . . , xn−s,

∑
1≤ j≤n−s

c1, j x j , . . . ,
∑

1≤ j≤n−s

cs, j x j

)
is smooth homogeneous in n − s variables, where fd is the degree d homogeneous part of f . For a
generic choice of en = (en,i )i<n one has

dim(Sing( fd,en ))= n − s,
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where

fd,en (x1, . . . , xn−1) := fd

(
x1, . . . , xn−1,

n−1∑
i=1

en,i xi

)
,

considered as a polynomial in n − 1 variables xi with i < n. We repeat this argument to see that for a
generic choice E = (en−s+1, . . . , en) with e j = (e j,i )i< j one has that

dim(Sing( fd |VE ))= n − s,

where

VE =

{
x

∣∣∣ xn =

∑
i<n

en,i xi , . . . , xn−s+1 =

∑
i≤n−s

en−s+1,i xi

}
.

It is clear that the smoothness of fd |VE for generic E corresponds to the smoothness of hC for generic C .
Let us fix such a choice of C with all these properties, namely, that hC is smooth and that Suppf ⊂ SuppgC

.
If a ∈ SuppgC

, it is easy to see that ai ≥ bi for all i with 1 ≤ i ≤ n − s and for some b ∈ Suppf . Hence,
σgC ≤ σf , by the definition of k and our chosen ordering of the coordinates. On the other hand, from
Suppf ⊂ SuppgC

it follows that σgC ≥ σf , and hence, we have

σgC = σf .

Let π be the coordinate projection from Rn to Rn−s . Then, for any e = (e j ) j=1,...,s , consider the polynomial

gC,e(x1, . . . , xn−s) := gC(x1, . . . , xn−s, e1, . . . , es).

Then, for generic choice of e, we have

SuppgC,e
= π(SuppgC

).

Let us fix such a choice of e. It is clear that

σgC,e = σgC ,

by the definition of k and our ordering of the coordinates. Note that the highest degree homogeneous part
of gC,e equals hC , which is smooth. Thus, we can use Lemma 4.3 with s = 0 (which is already proved)
for gC,e. So, we find

σgC,e = (n − s)/d and gC,e − gC,e(0)= hC .

Hence,

π(Suppf )⊂ π(SuppgC
)⊂ {a ∈ Rn−s

| a1 + · · · + an−s = d}.

This holds if and only if f − f (0) = fd = h(x1, . . . , xn−s) for some polynomial h, which is smooth
homogeneous since dim(Crit fd )= s. This finishes the proof of the Lemma 4.3. □

We are now ready to prove Theorem 4.2.
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Proof of Theorem 4.2. The case that d = 2 is treated in Section 3.3. Hence, we may suppose that d ≥ 3. By
Proposition 4.1, there exists a constant c2 such that for all integers m > 1, all primes p and all primitive
pm-th roots of unity ξ we have

E f (pm, ξ)≤ c2 p−mσf mκ−1. (49)

By Lemma 4.3 we have σf ≥ (n − s)/d. If σf > (n − s)/d, then we have (n − s)/d < 1
2(n − s), from

using d ≥ 3 and s < n. Conjecture 1 for this case follows by combining (7) and (49) with the squarefree
case from Section 3.5 . If σf = (n − s)/d, we use Lemma 4.3 again to see that f = gd + f (0) for a
smooth form gd of degree d in n − s variables. Conjecture 1 for this case follows by Igusa’s case from
Section 3.1. □

Remark 4.5. If f is weighted homogeneous, then the notion of nondegenericity with respect to 10( f )
is generic, but otherwise the genericity is more subtle, by the difference between “critical points” and
“singular points”. In fact, whether or not the notion of nondegenericity with respect to 10( f ) is generic
depends on Suppf . When Suppf is contained in a hyperplane which does not contain the origin 0 and
has a normal vector with nonnegative coordinates (see [Castryck and Nguyen 2019, Section 2.2]), then
the condition of nondegeneracy on the coefficients βi is generic within this support, that is, for any γ
outside a Zariski closed subset of CSuppf , the polynomial

∑
i∈Suppf

γi x i is nondegenerate with respect to
its Newton polyhedron at zero. This hyperplane condition generalizes the case of weighted homogeneous
polynomials. However, in the general case, this genericity may be lost since we imposed conditions on
critical points of fτ instead of on singular points as is done more traditionally in [Kouchnirenko 1976],
[Varčenko 1976]. Especially for τ = 10( f ) this makes a difference when the mentioned hyperplane
condition is not met. For instance, polynomials of the form f (x)= ax3

+ by3
+ cxy for nonzero a, b,

and c are never nondegenerate in our sense, the problem being with τ =10( f ).

5. The four variable case

In this final section we prove Conjecture 1 when n ≤ 4 (Theorem 5.1), and a slightly stronger result when
furthermore d ≤ 3 and s = 0 (Proposition 5.2).

Theorem 5.1. Let f , n, s, and d be as in the introduction and suppose that n ≤ 4. Then Conjecture 1
holds for f .

The proof of Theorem 5.1 relies on a concrete lemma inspired by Weierstrass preparation (see
Lemma 5.4), properties of α̂f based on results on minimal exponents from [Mustat,ă and Popa 2020],
bounds from [Cluckers et al. 2019; Nguyen and Veys 2022], and Igusa’s results as summarized in [Denef
1991].

Proof of Theorem 5.1. Suppose that n ≤ 4. If (n − s)/d ≤ 1 or d = 2, then Conjecture 1 follows by the
arguments in Sections 3.2 and 3.3. Hence, we may concentrate on the case that d = 3 and s = 0, but this
follows from Proposition 5.2 below, the squarefree case from Section 3.5, the inequality (18) and the
relation (7). □
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The rest of this section will focus on the proof of Proposition 5.2, which says slightly more than
Theorem 5.1 in the case that d ≤ 3 and s = 0.

Proposition 5.2. Let f , n, s, and d be as in the introduction and suppose that n ≤ 4, d ≤ 3, and s = 0.
Then for all ε > 0 there is a constant c such that

E f (pm, ξ)≤ c(pm)−α̂f +ε for all primes p, all m > 1 and all ξ, (50)

with α̂f as in Section 2.7. Furthermore, the value α̂f is equal to the motivic oscillation index of f as given
in [Cluckers et al. 2019]. Hence, α̂f is the optimal exponent in (50).

The optimality of the exponent α̂f in (50) means that there is a constant c0 > 0 such that for infinitely
many primes p and (some) arbitrarily large m one has

c0(pm)−α̂f ≤ E f (pm, ξ) for some ξ . (51)

The motivic oscillation index of f as given in [Cluckers et al. 2019] (which corresponds to the one from
[Cluckers 2008b] but without the negative sign) is the optimal exponent of p−m in (50), see Section 3.4 of
[Cluckers et al. 2019]; therefore, the equality of α̂f with the motivic oscillation index is a useful property
and implies (51).

The following auxiliary lemma is well known, see for example the final inequality of [Heath-Brown
1985], where furthermore an explicit upper bound on the number of critical points is obtained.

Lemma 5.3. Suppose that g = g0 + · · · + gd is a polynomial in C[x1, . . . , xn] of degree d and with
dim(Critgd ) = 0, where gi is the degree i homogeneous part of g, and where Critgd is the critical locus
of gd : Cn

→ C, i.e., the scheme associated with the ideal generated by the ∂gd/∂xi for 1 ≤ i ≤ n. Then
Critg(C) is a finite set.

Proof. This is shown by homogenizing g as in the reasoning towards the final inequality of [Heath-Brown
1985], where it is even shown that # Critg(C)≤ (d − 1)n , by an application of Bézout’s theorem. □

Lemma 5.4. Let f in ∈ Z[x1, x2, x3, x4] be of degree d = 3 and with s = 0. Suppose that one can write
f = f2 + f3 with fi homogeneous of degree i and with f2 ̸= 0. Then there exists a finite field extension K
of Q and a linear transformation xi =

∑4
j=1 ai j y j with (ai j )1≤i, j≤4 ∈ GL4(K ) such that

f (x1, x2, x3, x4)= g(y1, y2, y3, y4) with
∂2g
∂y2

1
(0, 0, 0, 0) ̸= 0 and

∂3g
∂y3

1

(0, 0, 0, 0)= 0.

Proof. By a simple calculation we have

∂2g
∂y2

1
(0, 0, 0, 0)= 2 f2(a11, a21, a31, a41) and

∂3g
∂y3

1

(0, 0, 0, 0)= 6 f3(a11, a21, a31, a41).

So, it suffices to show the following relation on zero loci

Z( f3(a11, a21, a31, a41))⊈ Z( f2(a11, a21, a31, a41))∪ Z(det(A)) (52)
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viewed as algebraic subsets of A16
Q

and with A = (ai j )1≤i, j≤4 and Q the algebraic closure of Q. Since
s = dim(Sing( f3))= 0 one has that f3 is absolutely irreducible. Therefore if (52) does not hold then

f3(a11, a21, a31, a41)| f2(a11, a21, a31, a41) or f3(a11, a21, a31, a41)|det(A).

It is clear that f3 ∤ f2 since f2 ̸= 0. Also, the polynomial det(A) is absolutely irreducible of degree 4. So,
(52) must hold. The lemma is proved. □

We first prove the part of Proposition 5.2 for large primes, as follows.

Proposition 5.5. With notation and assumptions from Proposition 5.2, there exist an integer M and a
constant c such that for all p > M all m > 1, for all primitive pm-th roots of unity ξ we have

E f (pm, ξ)≤ cm3 p−mα̂f . (53)

Proof. We may focus on the case d = 3. By Lemma 5.3, the set Crit f (Q) is finite. Because of [Denef
1991, Remark 4.5.3], we are done when f has no critical point. Similarly, when f has a critical point a
such that f − f (a) has multiplicity 3 at a the proposition follows by Section 3.1 and the fact that α̂f =

4
3

in this case. Now we suppose that if a is a critical point of f then f − f (a) has multiplicity 2 at a. By
[Denef 1991, Remark 4.5.3], it suffices to show that if a ∈ Crit f (Q) then there exist an integer M and a
constant c such that for all p > M with a ∈ Z4

p, all m > 1, all primitive pm-th roots of unity ξ we have

E (a)f (pm, ξ) :=

∫
a+pZ4

p

ξ f (x) mod pm
µ≤ cm3 p−mα̂f . (54)

Without loss of generality, we can suppose that a = 0 and f (0)= 0. Lemma 5.4 gives us a finite field
extension K of Q and a linear transformation xi =

∑
1≤ j≤4 ai j y j with (ai j )1≤i, j≤4 ∈ GL4(K ) such that if

g(y1, y2, y3, y4)= f (x1, x2, x3, x4) then

g(y1, y2, y3, y4)= h2(y2, y3, y4)y2
1 + h1(y2, y3, y4)y1 + h0(y2, y3, y4)

with polynomials h0, h1, h2 ∈ K (y2, y3, y4) and h2(0, 0, 0) ̸= 0, h1(0, 0, 0)= h0(0, 0, 0)= 0. We set

z1 = h2(y2, y3, y4)y1 +
1
2 h1(y1, y3, y4)

and z2 = y2, z3 = y3, z4 = y4. At the new coordinates (z1, z2, z3, z4) we have g(y1, y2, y3, y4) =

h(z1, z2, z3, z4) with

h(z1, z2, z3, z4)h2(z2, z3, z4)= z2
1 + r(z2, z3, z4)

and

r(z2, z3, z4)= h2(z2, z3, z4)h0(z2, z3, z4)−
1
4 h2

1(z2, z3, z4).

Using Lemma 5.3 and the argument from [Nguyen and Veys 2022, Proposition 5.9 and Section 6] (to
compare between the weights of suitable ℓ-adic cohomology groups related to f and those related to
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z2
1 + r ), it now follows that there exist an integer M and a constant c such that for all p > M all m > 1,

all primitive pm-th roots of unity ξ we have

E (0)f (pm, ξ)≤ cm3 p−mα̂f . (55)

So we are done. □

By Proposition 5.5, in order to prove Proposition 5.2, it remains to prove the following proposition.

Proposition 5.6. Let f be in Z[x1, x2, x3, x4] of degree d = 3 and with s = 0. Then, for each p and ε > 0
there exist a constant cp,ε and an integer m p such that for all integers m > m p and all primitive pm-th
roots of unity ξ we have

E f (pm, ξ)≤ cp,ε p−m(α̂f −ε) (56)

Proof. By Lemma 5.3, the set Crit f (Zp) is finite for each p. If there exists a point a ∈ Crit f (Zp) such
that the multiplicity of f at a is 3 then we are done as in Proposition 5.5. If Crit f (Zp) = ∅ then by
a basic argument there exists an integer m p such that we have E f (pm, ξ) = 0 for all m ≥ m p and all
primitive pm-th roots of unity ξ .

Let us now suppose that Crit f (Zp) ̸= ∅ and that the multiplicity of f − f (a) at a is 2 for all
a ∈ Crit f (Zp). By [Igusa 1974; 1978; Denef and Veys 1995], it is sufficient to show that the real part of
every nontrivial pole of the Igusa local zeta functions of f at Ua is at most −α̂f , where Ua is a small
enough neighborhood of a in Z4

p. Here, we recall that if L is a finite extension of Qp, OL is the ring of
integers of L , V is an open subset of On

L , F is an analytic function defined on a neighborhood of V and
χ is a multiplicative character of O×

L then the twisted Igusa local zeta function of F at V associated with
χ given by

Zχ (L , V, F, s)=

∫
V
χ

(
ac(F(x))

)
|F(x)|s |dx |,

where |dx | is the normalized Haar measure on Ln so that the measure of On
L is 1, ac(z)= zϖ−ordL (z)

L for
nonzero z and for a fixed uniformizing elementϖL of OL and the usual valuation map ordL : L →Z∪{+∞}

(see, e.g., [Denef 1991; Veys and Zúñiga Galindo 2008]). We say that s is a nontrivial pole of the
Igusa local functions of F at V if s is a pole of Zχ (L , V, F, s) when χ ̸= χtrivial or s is a pole of
(ps+1

− 1)Zχ (L , V, F, s) when χ = χtrivial. Let L be a finite extension of Qp, V be an open subset of
On

L , F be an analytic function on V and denote by PolV (F) the set of the real parts of the nontrivial poles
of the Igusa local zeta functions of F at V . By [Igusa 1974; Igusa 1978; Denef and Veys 1995; Veys and
Zúñiga Galindo 2008], PolV (F) is a finite set. To prove the proposition, it thus remains to show for all
a ∈ Crit f (Zp), all small enough neighborhoods Ua of a in Z4

p, that

α ≤ −α̂f for all α ∈ PolUa ( f − f (a)). (57)

The rest of the proof will show this (57).
Fix a ∈ Crit f (Zp); to simplify the notation we suppose that a = (0, 0, 0, 0) and f (0)= 0. Up to using

a transformation as in Lemma 3.4, we may suppose that f2 is diagonal, where we write f = f2 + f3

with fi homogeneous of degree i for each i . Suppose that the coefficient of x2
1 is nonzero in f2. Using
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Weierstrass preparation, we can suppose that for a small enough open (p-adic) neighborhood U = pm0Z4
p

of 0, there exist analytic functions u, g1, g0 on U such that we have

f |U = u(x)(x2
1 + 2g1(x2, x3, x4)x1 + g0(x2, x3, x4))

and g1(0, 0, 0)= g0(0, 0, 0)= 0 ̸= u(0), with x = (x1, x2, x3, x4). By shrinking U we can furthermore
suppose that χ(ac(u)) and ordp(u) are constant on U for each multiplicative character χ ∈ C. Moreover,
we can suppose that 0 is the only critical point of f in U . With these conditions on U , it is easy to show
that PolU ( f )= PolU (g), where

g(x)= x2
1 + 2g1(x2, x3, x4)x1 + g0(x2, x3, x4) (58)

with gi as above. By setting y1 = x1 +g1(x2, x3, x4), y2 = x2, y3 = x3, y4 = x4 then at the new coordinates
(y1, y2, y3, y4) we have g(x1, x2, x3, x4) = y2

1 + h1(y2, y3, y4), and hence, by the change of variables
formula, we may suppose that g1 = 0 in (58), so that g(x)= x2

1 + g0(x2, x3, x4). By using the argument
in [Denef 1991, Section 5.1] and by noting that Polpm0 Zp(x

2
1)= {−1/2} and enlarging m0 if needed, we

have PolU ( f )= PolU (g)= −1/2 + PolU ′(g0)= {−1/2 +α|α ∈ PolU ′(g0)}, where U ′
= pm0Z3

p.
As in the proof of Proposition 5.5, we can find a finite extension L of Qp, a Zariski open subset W of

A4
L and a change of coordinates such that

f |W = ũ(x)(x2
1 + g̃0(x2, x3, x4)),

where ũ, g̃0 are regular functions on W and ũ is nonzero on W . Let ϖL be a uniformizing element of OL .
Let m1 be a large enough integer and Ũ =ϖ

m1
L O4

L . By the above argument we also have PolŨ ′(g̃0)−1/2 =

PolŨ ( f )= PolŨ (g)= −1/2 + PolŨ ′(g0), where Ũ ′
=ϖ

m1
L O3

L . Thus PolŨ ′(g̃0)= PolŨ ′(g0).
Suppose first that g̃0 has a nonrational singularity at 0 ∈ A3, namely, α̃g̃0,0 is equal to the log-canonical

threshold at 0 of g̃0. Let π be a log resolution of g̃0 at 0, let (νi , Ni )i∈I be the numerical data of π so
that 1 ≥ α̃g̃0,0 = min(νi ,Ni ) ̸=(1,1) νi/Ni (see [Denef 1991; Mustat,ă 2012]). Thus, by using [Igusa 1974;
Igusa 1978] we have α ≤ −α̃g̃0,0 for all α ∈ PolŨ ′(g̃0). Moreover, it follows from [Yano 1978, Corollary
3.17] that α̃ f,0 = 1/2 + α̃g̃0,0. If there is β ∈ PolU ′(g0) such that β >−α̃ f,0 + 1/2 = −α̃g̃0,0 ≥ −1 then it
follows by [Igusa 1974; Igusa 1978; Veys and Zúñiga Galindo 2008] that there is a log-resolution π ′ of
g0 with a numerical data (ν, N ) satisfying ν < α̃g̃0,0 N ≤ N . Thus we can use [Veys and Zúñiga Galindo
2008, Theorem 2.7] to see that there is β ′

∈ PolŨ ′(g0) such that β ′ >−α̃g̃0,0. This contradicts the fact that
PolŨ ′(g̃0)= PolŨ ′(g0) and α ≤ −α̃g̃0,0 for all α ∈ PolŨ ′(g̃0). Thus we can conclude that β ≤ −α̃ f,0 +1/2
for all β ∈ PolU ′(g0). Therefore α ≤ −α̃ f,0 for all α ∈ PolU ( f ) as desired.

Suppose now that g̃0 has a rational singularity at 0 ∈ A3, namely α̃g̃0,0 is strictly larger than the
log-canonical threshold at 0 of g̃0, or equivalently, α̃g̃0,0 > 1. We can use a classical result from [Durfee
1979] to see that either g̃0 is smooth at 0, or, we can use an analytic isomorphism to transform g̃0 to one
of the following forms:

xd+1
2 + x2

3 + x2
4 with d ≥ 1, xd−1

2 + x2x2
3 + x2

4 with d ≥ 4,

x4
2 + x3

3 + x2
4 , x3

2 + x2x3
3 + x2

4 , x3
2 + x5

3 + x2
4 .
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By using [Yano 1978, Corollary 3.17], we can compute α̃g̃0,0 in each case. In fact, α̃g̃0,0 ≤
3
2 if g̃0 is

not smooth at 0. Moreover, it is easy to find a log-resolution π of g̃0 such that for all numerical data
(ν, N ) ̸= (1, 1) we have ν ≥ α̃g̃0,0 N . For example, in the first form, we have α̃g̃0,0 = 1+1/(d +1) and we
can choose π such that its numerical data is {(1, 1)}∪{(3+2m, 2+2m) | 0 ≤ m ≤ k−1}∪{(2+2k, 2k+1)}
or {(1, 1)} ∪ {(3 + 2m, 2 + 2m) | 0 ≤ m ≤ k − 1} depending on d = 2k or d = 2k − 1, respectively. Thus,
it follows from [Igusa 1974; 1978] that α ≤ −α̃g̃0,0 for all α ∈ PolŨ ′(g̃0).

We now show that the multiplicity e of g0 at 0 is at most 2. If this is not true, we can find a log-resolution
π ′ of g0 such that there is a numerical data (ν, N ) ̸= (1, 1) with ν≤ N (indeed, we can find a log-resolution
of g0 after using a blowing up at 0, thus the numerical data (3, e) appears in this log-resolution). Thus
we can use [Igusa 1974; 1978; Veys and Zúñiga Galindo 2008] as above to contradict the facts that
PolŨ ′(g̃0)= PolŨ ′(g0) and α ≤ −α̃g̃0,0 for all α ∈ PolŨ ′(g̃0). This shows that e is at most 2. If e = 1 or g̃0

is smooth at 0 then it is easy to have that PolŨ ′(g̃0)= PolŨ ′(g0)= PolU ′(g0)= ∅, so our claim follows.
If e = 2 and g̃0 is not smooth at 0, we can use Weierstrass preparation again and the above argument
to suppose that g0(x2, x3, x4) = x2

2 + h(x3, x4) for some analytic function h in at most two variables.
We also have, as above, that PolU ( f ) = −1 + PolU ′′(h) and PolŨ ′(g̃0) = PolŨ ′(g0) = −

1
2 + PolŨ ′′(h),

where U ′′
= pm0Z2

p and Ũ ′′
=ϖ

m1
L O2

L . If there is β ∈ PolU ′′(h) with β >−α̃ f,0 + 1 = −α̃g̃0,0 +
1
2 ≥ −1

then we can repeat the above argument to get a contradiction. Our desired result (57) now follows from
PolU ( f )= −1 + PolU ′′(h) and β ≤ −α̃ f,0 + 1 for all β ∈ PolU ′′(h). □

Remark 5.7. For each of the above cases in which Conjecture 1 is shown in this paper, one moreover
sees that, after excluding a finite set S (which depends on f ) of prime divisors of N , the implied constant
can be taken depending only on d and n (and on ε). The only case where this is not directly clear is for
the case with (n − s)/d ≤ 1, since its treatment in [Cluckers et al. 2019] uses a chosen log resolution
which depends on f . However, the complexity of such log resolutions (and of the corresponding proof in
[Cluckers et al. 2019]) remains bounded when n and d are fixed. Indeed, one first takes a log resolution of
a generic polynomial of degree d in n variables; this then yields a log resolution for polynomials whose
coefficients lie in a dense Zariski open subset U of the parameter space. One proceeds similarly for a
generic polynomial with parameters in the complement of the dense open U .

Note that the exclusion of a finite list of prime divisors of N is necessary, as can be seen when one
replaces a polynomial f by p f for some prime p. It is not clear at the moment whether the finite set S
has to depend fully on f in general, or, just on fd .
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We develop a lower bound sieve for primes under the (unlikely) assumption of infinitely many exceptional
characters. Compared with the illusory sieve due to Friedlander and Iwaniec which produces asymptotic
formulas, we show that less arithmetic information is required to prove nontrivial lower bounds. As an
application of our method, assuming the existence of infinitely many exceptional characters we show that
there are infinitely many primes of the form a2

+ b8.
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1. Introduction

Understanding the distribution of prime numbers along polynomial sequences is one of the basic questions
in analytic number theory. For sparse polynomial sequences the problem is solved only in a handful of
cases. The most notable are the Friedlander and Iwaniec [1998b] theorem of primes of the form a2

+ b4

and the result of Heath-Brown [2001] of primes of the form a3
+ 2b3, which has been generalized to

binary cubic forms by Heath-Brown and Moroz [2002] and to general incomplete norm forms by Maynard
[2020]. Also, the result of Friedlander and Iwaniec has been extended by Heath-Brown and Li [2017] to
primes of the form a2

+ p4 where p is a prime.
Let ±D be a fundamental discriminant and let χD(n)= (D/n) be the associated primitive real character.

We say that χD is exceptional if L(1, χD) is very small, say,

L(1, χD)=

∞∑
n=1

χD(n)
n

≤ log−100 D. (1-1)

It is conjectured that (for an exponent such as 100) there are at most finitely many exceptional characters,
which is closely related to the conjecture that L-functions do not have zeros close to s = 1 (so-called
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Keywords: prime numbers, Siegel zero, sieve methods, prime values of polynomials, exceptional character.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://msp.org/ant/
https://doi.org/10.2140/ant.2024.18-7
https://doi.org/10.2140/ant.2024.18.1305
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


1306 Jori Merikoski

Siegel zeros). However, assuming that there do exist infinitely many exceptional characters, it is possible
to prove very strong results on distribution of prime numbers. For example, Heath-Brown [1983] has
shown that the twin prime conjecture follows from such an assumption, and Drappeau and Maynard
[2019] have bounded sums of Kloosterman sums along primes. The potential benefit of such results is
that for an unconditional proof we are now allowed to assume the nonexistence of exceptional characters,
which in turn implies strong regularity in the distribution of primes in arithmetic progressions. Such
a bifurcation in the proof has been successfully used to solve problems, for example, in the proof of
Linnik’s theorem [1944] and in many results in the theory of L-functions.

The state of the art method using exceptional characters is the so-called illusory sieve developed by
Friedlander and Iwaniec [2003; 2004; 2005], which is geared towards counting primes in sparse sets.
Assuming the existence of infinitely many exceptional characters (with the exponent 100 in (1-1) replaced
by 200), Friedlander and Iwaniec [2005] proved that there are infinitely many prime numbers of the form
a2

+ b6. For their method it is required to solve the corresponding ternary divisor problem, that is, show
an asymptotic formula for

∑
τ3(a2

+ b6). This essentially comes down to showing that the sequence has
an exponent of distribution 2

3 − ε. Friedlander and Iwaniec [2006] have solved this problem for a2
+ b6

in a form that is narrowly sufficient for the illusory sieve.
Their method fails for sparser polynomial sequences such as a2

+ b8, which has an exponent of
distribution 5

8 − ε. The purpose of this article is to develop a lower bound version of the illusory sieve.
That is, instead of aiming for an asymptotic formula for primes of the form a2

+b8, we just want to prove
a lower bound of the correct order of magnitude for the number of primes. Morally speaking, we are
able to show a nontrivial lower bound for primes in sequences with a level of distribution greater than
(1 +

√
e)/(1 + 2

√
e)= 0.61634 . . . (see Theorem 16), so that the sequence a2

+ b8 qualifies.
We will state the general version of our lower bound sieve at the end of this article (Theorem 16). For

now we state the result for primes of the form a2
+ b8. For any n ≥ 0 define

κn :=

∫ 1

0

√
1 − tn dt.

Theorem 1. If there are infinitely many exceptional primitive characters χ , then there are infinitely many
prime numbers of the form a2

+ b8. More precisely, if L(1, χD) ≤ log−100 D, then for exp(log10 D) <
x < exp(log16 D) we have

∑
a2

+b8
≤x

a,b>0

3(a2
+ b8)≥ (0.189 − o(1)) ·

4
π
κ8x5/8

and ∑
a2

+b8
≤x

a,b>0

3(a2
+ b8)≤ (1 + o(1)) ·

4
π
κ8x5/8.
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Remark. Note that κ2 = π/4, so that the coefficient is in fact κ8/κ2, and 4
π
κ8x5/8 is the expected main

term. It turns out that the upper bound result is much easier and for this having an exponent of distribution
1
2 is sufficient.

1.1. Sketch of the argument. We present here a nonrigorous sketch of the proof of the lower bound in
Theorem 1. Let

an := 1(n,D)=1
∑

n=a2
+b8

(a,b)=1
a,b>0

1,

so that our goal is to estimate
∑

n∼x an3(n).
Let χ = χD . Similarly as in [Friedlander and Iwaniec 2005], we define the Dirichlet convolutions

λ := 1 ∗χ and λ′
:= χ ∗ log,

so that

λ ∗3= (1 ∗χ) ∗ (µ ∗ log)= (χ ∗ log) ∗ (1 ∗µ)= λ′. (1-2)

Note that λ(n)≥ 0 and λ′(n)≥3(n)≥ 0 (by using λ′
= λ ∗3).

The basic idea in arguments using the exceptional characters is as follows. Since

L(1, χ)−1
=

∑
n

µ(n)χ(n)/n =

∏
p

(
1 −

χ(p)
p

)
is large, we expect that χ(p)= µ(p) for most primes (in a range depending on D), so that heuristically
we have χ ≈ µ and λ′

≈3. Hence, we expect that∑
n∼x

an3(n)≈

∑
n∼x

anλ
′(n). (1-3)

Since the modulus of χ is small, morally λ′(n) is of same complexity as the divisor function τ(n), so that
we have replaced the original sum by a much simpler sum.

Making the approximation (1-3) rigorous is the difficult part of the argument, especially for sparse
sequences an . Friedlander and Iwaniec succeeded in this under the assumption that the exponent of
distribution is almost 2

3 , which was sufficient to handle primes in the sequence a2
+b6. In our application

an has the exponent of distribution 5
8 −ε. This results in an additional error term compared to [Friedlander

and Iwaniec 2005], but we are able to show that the contribution from this is smaller (but of the same
order) as the main term.

To bound the error term in (1-3), using λ′
= λ ∗3 we see that

λ′(n)−3(n)=

∑
n=km
m>1

3(k)λ(m).
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Let z = xε (in the proof we choose a slightly smaller z for technical reasons). Then∑
n∼x

an3(n)≥

∑
n∼x

an3(n)1(n,P(z))=1

=

∑
n∼x

anλ
′(n)1(n,P(z))=1 −

∑
km∼x
k,m≥z

akm3(k)λ(m)1(km,P(z))=1

=: S1 − S2.

Note that by removing the small prime factors we have guaranteed that m ≥ z in the second sum, so that
we expect λ(m)≈ (1 ∗µ)(m)= 0 for almost all m in S2. Thus, we expect that S1 gives us the main term
and that S2 = o(S1).

Remark. The above decomposition has a close resemblance to the recent work of Granville [2021] using
the identity

3(n)1(n,P(z)) = 1(n,P(z)) log n −

∑
n=ℓm

(ℓm,P(z))=1
ℓ,m≥z

3(ℓ).

For the main term S1 we can handle the condition (n, P(z)) = 1 by the fundamental lemma of the
sieve, so we ignore this detail for the moment. Thus, we have to evaluate∑

n∼x

anλ
′(n)=

∑
mn∼x

amnχ(m) log n.

We have m ≥ x1/2 or n ≥ x1/2, so that we are able to compute S1 provided that our sequence an has an
exponent of distribution 1

2 . This is because the modulus of χ is xo(1), so that χ is essentially of the same
complexity as the constant function 1. We find that S1 gives the expected main term, so that we need to
bound the error term S2.

Similarly as in the argument in [Friedlander and Iwaniec 2005], the range x2/3 plays a special role.
With this in mind, we define γ =

1
24 + ε so that 2

3 −γ =
5
8 − ε is the exponent of distribution. We split S2

into three parts depending on the size of k

S2 =

∑
km∼x

k>x1/3+γ

m≥z

akm3(k)λ(m)1(km,P(z))=1 +

∑
km∼x

x1/3−2γ<k≤x1/3+γ

m≥z

akm3(k)λ(m)1(km,P(z))=1

+

∑
km∼x

z≤k≤x1/3−2γ

m≥z

akm3(k)λ(m)1(km,P(z))=1

=: S21 + S22 + S23.

By similar arguments as in [Friedlander and Iwaniec 2005], we are able use the lacunarity of λ(m)
to bound the terms S21 and S23 suitably in terms of L(1, χ), using the fact that the exponent of the
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distribution is 2
3 − γ . That is, for S21 we write

S21 ≤ (log x)
∑

km∼x
k>x1/3+γ

m≥z

akmλ(m)1(m,P(z))=1,

and for S23 we drop 1(m,P(z))=1 by positivity and write

λ(m)=

∑
m=cd

χ(d),

where c or d is > x1/3+γ . In all cases we get a variable > x1/3+γ , so that these can be evaluated as Type I
sums. This gives

S21 + S23 ≪C x5/8(log−C x + L(1, χ) log5 x),

which is sufficient by the assumption that χ is an exceptional character.
The novel part in our argument is the treatment of the middle range

S22 =

∑
km∼x

x1/3−2γ<k≤x1/3+γ

m≥z

akm3(k)λ(m)1(km,P(z))=1.

Note that also in [Friedlander and Iwaniec 2005] a narrow range near x2/3 has to be discarded, but the
argument there requires γ = o(1). Thanks to the restriction (m, P(z))= 1, it turns out that we are able to
handle all parts of S22 except when m is a prime number. To see this, if m is not a prime, then m = m1m2

for some m1,m2 ≥ z, and we essentially get (recall that λ(m)≥ 0)∑
km∼x

x1/3−2γ<k≤x1/3+γ

m /∈P

akm3(k)λ(m)1(m,P(z))=1 ≤

∑
km1m2≤x

x1/3−2γ<k≤x1/3+γ

m1,m2≥z

akm3(k)λ(m1)λ(m2)1(m1m2,P(z))=1,

since λ is multiplicative and the part where (m1,m2) > 1 gives a negligible contribution. For the part
km1 > x1/2 we use λ(m1)≤ τ(m1)≪ 21/ε and combine variables ℓ= km1 to get a bound

≪

∑
z≤m2≪x1/2

λ(m2)
∑

ℓ∼x/m2

aℓm2,

which can be bounded suitably in terms of L(1, χ) by a similar argument as with S21. The part km1 ≤ x1/2

is handled similarly, using λ(m2) ≤ τ(m2)≪ 21/ϵ and extracting L(1, χ) from λ(m1) this time. Thus,
the contribution from the composite m is negligible.

Hence, it remains to bound

S222 :=

∑
kp∼x

x1/3−2γ<k≤x1/3+γ

akm3(k)λ(p)=

∑
kp∼x

x1/3−2γ<k≤x1/3+γ

akm3(k)(1 +χ(p)).
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Here we are not able to make use of the lacunarity of λ(p). However, since S222 counts products of two
primes of medium sizes, we immediately see that S222 should be smaller than the main term by a factor
of O(γ ), so that at least for small enough γ we get a nontrivial lower bound. We use the linear sieve
upper bound to the variable p to make this upper bound rigorous and precise, which leads to the constant
0.189 in Theorem 1.

The paper is structured as follows. In Section 2 we carry out the sieve argument and the proof of
Theorem 1 assuming a sufficient exponent of distribution for an (Propositions 8 and 9). In Section 3 we
prove Propositions 8 and 9 by generalizing the arguments in [Friedlander and Iwaniec 2006]. Lastly, in
Section 4 we state a general version of the sieve and explain how the method could be improved assuming
further arithmetic information.

Remark. Our sieve argument is inspired by Harman’s sieve method [2007], although the exact details in
this setting turn out to be quite different. The moral of the story is that all sieve arguments should be
continuous with respect to the quality of the arithmetic information, which in this case is measured solely
by the exponent of distribution. That is, even though we fail to obtain an asymptotic formula after some
point

(
in this case 2

3

)
, we still expect to be able to produce lower and upper bounds of the correct order of

magnitude with slightly less arithmetic information.

1.2. Notations. For functions f and g with g ≥ 0, we write f ≪ g or f = O(g) if there is a constant C
such that | f | ≤ Cg. The notation f ≍ g means g ≪ f ≪ g. The constant may depend on some parameter,
which is indicated in the subscript (e.g., ≪ϵ). We write f = o(g) if f/g → 0 for large values of the
variable. For summation variables we write n ∼ N meaning N < n ≤ 2N .

For two functions f and g with g ≥ 0, it is convenient for us to denote f (N ) ≺≺ g(N ) if f (N )≪

g(N ) logO(1) N . For parameters such as ε we write f (N )≺≺ε g(N ) to mean f (N )≪ε g(N ) logOε(1) N .
A typical bound we use is S(N )=

∑
n≤N τk(n)K

≺≺k,K N , where τk is the k-fold divisor function. We
say that an arithmetic function f is divisor bounded if | f (n)| ≺≺ τ(n)K for some K .

For a statement E we denote by 1E the characteristic function of that statement. For a set A we use 1A

to denote the characteristic function of A.
We let e(x) := e2π i x and eq(x) := e(x/q) for any integer q ≥ 1. We denote

λ := 1 ∗χ and λ′
:= χ ∗ log .

2. The sieve argument

In this section state the arithmetic information (Propositions 8 and 9) and assuming this we give the proof
of Theorem 1 using a sieve argument with exceptional characters. We postpone the proof of Propositions 8
and 9 to Section 3. From here on we let q denote the modulus of the exceptional character χ = χq , to
avoid conflating it with the level of distribution which we will denote by D; this also agrees with the
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notations in [Friedlander and Iwaniec 2005, Section 14]. Throughout this section we denote

an := 1(n,q)=1
∑

n=a2
+b8

(a,b)=1
a,b>0

1, and bn := 1(n,q)=1
1
4

∑
n=a2

+b2

(a,b)=1
a,b>0

b−3/4.

In bn we are counting the representations a2
+ b2 weighted with the probability that b is a perfect

fourth power so that heuristically we expect
∑

n∼x an3(n)= (1 + o(1))
∑

n∼x bn3(n). Differing from
[Friedlander and Iwaniec 2005], it is convenient for us to write certain parts of the argument as a
comparison between an and bn . This is inspired by Harman’s sieve method [2007], where the idea is
to apply the same combinatorial decompositions to the sums over an and bn and then compare, using
positivity to drop certain terms entirely.

We let g(d) denote the multiplicative function defined by

g(pk)= 1p ∤q
ϱ(pk)

pk

(
1 +

1
p

)−1

, (2-1)

where ϱ(d) denotes the number of solutions to ν2
+ 1 ≡ 0(d). Note that for all primes p we have

ϱ(p)= 1 +χ4(p). We also define

g1(pk)=
ϱ(pk)

pk

(
1 +

1
p

)−1

.

2.1. Preliminaries. We have collected here some standard estimates that will be needed in the sieve
argument.

Lemma 2. Let

Gq :=

∏
p | q

(1 − g1(p))−1.

Then ∏
p≤z

(1 − g(p))= (1 + o(1))
Gqζ(2)
L(1, χ4)

∏
p≤z

(1 − 1/p)= (1 + o(1))
Gqζ(2)

L(1, χ4)eγ1 log z

and ∑
n≤x

3(n)bn = (1 + o(1))
Gqζ(2)
L(1, χ4)

∑
n≤x

bn = (1 + o(1))
4
π
κ8x5/8

= (1 + o(1))eγ1 log z
∏
p≤z

(1 − g(p))
∑
n≤x

bn,

where γ1 = 0.577 . . . denotes the Euler–Mascheroni constant.

Proof. The first asymptotic follows from∏
p

1 − g(p)
1 − 1/p

= Gq

∏
p

(1 −χ4(p)/p)(1 − p−2)−1
=

Gqζ(2)
L(1, χ4)
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and Mertens’ theorem. To get the second part we apply prime number theorem for Gaussian primes
a + ib, splitting the sum into boxes (a, b) ∈ [z1, z1 + x/ log10 x] × [z2, z2 + x/ log10 x] so that b−3/4

=

(1+o(1))z−3/4
2 , noting that the contribution from boxes with z1 ≤ x/ log10 x or z2 ≤ x/ log10 x is trivially

≪ x5/8/ log x (by writing 3(n)≤ log x). The prime number theorem in small boxes follows splitting the
boxes in to smaller polar boxes and applying [Iwaniec and Kowalski 2004, Theorem 5.36], for instance.

Here the condition (a2
+ b2, q) = 1 implicit in bn cancels the multiplicative factor Gq , since by an

expansion using the Möbius function∑
n≤x

bn =

∑
n=a2

+b2

(a,b)=1
a,b>0

1(n,q)=1
1
4 b−3/4

=

∑
d | q

µ(d)
∑

n=a2
+b2

(a,b)=1
a,b>0
d | n

1
4 b−3/4

=(1 + o(1))
∑
d | q

µ(d)g1(d)
∑

n=a2
+b2

(a,b)=1
a,b>0

1
4 b−3/4

=(1 + o(1))G−1
q

∑
n=a2

+b2

(a,b)=1
a,b>0

1
4 b−3/4

For the last asymptotic note that by the change of variables t = u1/4

1
4

∫ 1

0
u−3/4

√
1 − u2 dt =

∫ 1

0

√
1 − t8 dt = κ8

and L(1, χ4)= π/4. □

We also require the following basic estimate; see [Friedlander and Iwaniec 1998a, Lemma 1], for
instance.

Lemma 3. For every square-free integer n and every k ≥ 2 there exists some d | n such that d ≤ n1/k and

τ(n)≤ 2kτ(d)k .

From this we get the more general version.

Lemma 4. For every integer n and every k ≥ 2 there exists some d | n such that d ≤ n1/k and

τ(n)≤ 2k2
τ(d)k

3
.

Proof. Write n = b1b2
2 · · · bk−1

k−1bk
k with b1, . . . , bk−1 square-free, by letting bk be the largest integer such

that bk
k | n, so that n/bk

k is k-free and splits uniquely into b1b2
2 · · · bk−1

k−1 with b j square-free. We have

τ(n)≤ τ(b1)τ (b2)
2
· · · τ(bk)

k .
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By Lemma 3 for all j ≤ k − 1 there is d j | b j with d j ≤ b1/k
j and τ(b j ) ≤ 2kτ(d j )

k . Hence, for
d = d1 · · · dk−1bk we have

d ≤ (b1 · · · bk−1)
1/kbk = (b1 · · · bk−1bk

k)
1/k

≤ n1/k

and

τ(n)≤ (2τ(d1) · · · τ(dk−1)τ (bk))
k2

≤ 2k2
τ(d)k

3
. □

To bound the final error term we require the linear sieve upper bound for primes; apply [Friedlander
and Iwaniec 2010, Theorem 11.12] with z = D and s = 1, using F(1)= 2eγ .

Lemma 5 (linear sieve upper bound for primes). Let (cn)n≥1 be a sequence of nonnegative real numbers.
For some fixed X0 depending only on the sequence (cn)n≥1, define rd for all square-free d ≥ 1 by∑

n≡0(d)

cn = g0(d)X0 + rd ,

where g0(d) is a multiplicative function, depending only on the sequence (an)n≥1, satisfying 0 ≤ g0(p) < 1
for all primes p. Let D ≥ 2 (the level of distribution). Suppose that there exists a constant L > 0 that for
any 2 ≤ w < D we have ∏

w≤p<D

(1 − g0(p))−1
≤

log D
logw

(
1 +

L
logw

)
.

Then ∑
p

cp ≤ (1 + O(log−1/6 D))X02eγ1
∏
p≤D

(1 − g0(p))+
∑
d≤D

d square free

|rd |.

The following lemma gives a basic upper bound for smooth numbers; see [Tenenbaum 2015, Chap-
ter III.5, Theorem 1], for instance.

Lemma 6. For any 2 ≤ z ≤ y we have ∑
n∼y

P+(n)<z

1 ≪ ye−u/2,

where u := log y/ log z.

We also need the following simple divisor sum bound.

Lemma 7. Let M ≫ 1 and let Z = Mc1/(log log M)c2 for some constants c1, c2 > 0. Then for any K > 0∑
m∼M

τ(m)K 1(m,P(Z))=1 ≪c1,c2,K M.
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Proof. For some L = L(K ) we have by a standard sieve bound∑
m∼M

τ(m)K 1(m,P(Z))=1 ≪

∑
m∼M

τL(m)1(m,P(Z))=1 =

∑
n1···nL∼M

1(n1,P(Z))=1 · · · 1(nL ,P(Z))=1

≪c1,c2,K
M(log log M)c2

log M

∑
n1,...,nL−1≪M

1(n1,P(Z))=1 · · · 1(nL−1,P(Z))=1

n1 · · · nL−1

≪c1,c2,K
M(log log M)c2

log M

( ∏
Z≤p≤M

(
1 +

1
p

))L−1

≪c1,c2,K
M(log log M)c2

log M

(
log M
log Z

)L−1

≪c1,c2,K M,

by computing the sum over n j = max{n1, . . . , nL} first. □

2.2. Arithmetic information. For the sieve argument we need arithmetic information given by the
following two propositions, which state that an has an exponent of distribution 5

8 − ε. We will prove these
in Section 3. The first is just a standard sieve axiom on the level of distribution of the sequence an , and
the second is similar but twisted with the quadratic character χ . For the rest of this section we denote

X :=

∑
n∼x

bn.

Recall that X ≍ x5/8 by Lemma 2.

Proposition 8 (type I information). Let B > 0 be a large constant and let 1 ∈ [log−B x, 1]. Let ε > 0 be
small but fixed. Let D ≤ x5/8−ε and N be such that DN ≍ x. Let α(d) be divisor bounded coefficients
and let g(d) be as in (2-1). Then for any C > 0∑

d∼D

α(d)
∑

n∼x/d
n∈(N ,N (1+1)]

adn =

∑
d∼D

α(d)
∑

n∼x/d
n∈(N ,N (1+1)]

bdn + OB,C(X log−C x)

and∑
d≤D

α(d)
∑

n∼x/d

adn =

∑
d≤D

α(d)
∑

n∼x/d

bdn + OC(X log−C x)= X
∑
d≤D

α(d)g(d)+ OC(X log−C x). (2-2)

Furthermore, for D ≤ x2/3+ε we have the last asymptotic∑
d≤D

α(d)
∑

n∼x/d

bdn = X
∑
d≤D

α(d)g(d)+ OC(X log−C x)

and for 1= log−B x for any fixed B > 0 the bound∑
d≤D

α(d)
∑

n∈(N ,N (1+1)]

bdn ≪1X
∑
d≤D

|α(d)|g(d).

Remark. In our set up the last asymptotic actually holds up to D ≤ x1−ε, but we will not need this.
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Proposition 9 (type Iχ information). Let B > 0 be a large constant and let 1 ∈ [log−B x, 1]. Let
exp(log10 q) < x < exp(log16 q). Let D ≤ x5/8−ε and N be such that DN ≍ x. Let α(d) be divisor
bounded coefficients. Then for any C > 0∑

d∼D

α(d)
∑

n∼x/d
n∈(N ,N (1+1)]

adnχ(n)=

∑
d∼D

α(d)
∑

n∼x/d
n∈(N ,N (1+1)]

bdnχ(n)+ OB,C(X log−C x)≪B,C X log−C x

and ∑
d≤D

α(d)
∑

n∼x/d

adnχ(n)=

∑
d≤D

α(d)
∑

n∼x/d

bdnχ(n)+ OC(X log−C x)≪C X log−C x .

Furthermore, the bounds for the sums with bdn hold up to D ≤ x2/3+ε.

We will also need the following proposition to bound certain error terms in terms of L(1, χ). This
follows from [Friedlander and Iwaniec 2005, Lemmata 3.7 and 3.9] (as mentioned in [Friedlander and
Iwaniec 2005, Section 14], the g(d) defined by (2-1) is easily shown to satisfy the required assumptions).

Proposition 10 (exceptional characters). Let λ := (1 ∗χ). Then for any x > z ≥ q9 we have∑
n≤x

χ(n)g(n)≪ L(1, χ) and
∑

z<n≤x

λ(n)g(n)≪ L(1, χ) log2 x .

2.3. Initial decomposition. Let ε > 0 be small and define the parameter γ :=
1

24 +ε so that 2
3 −γ =

5
8 −ε

is the exponent of distribution of an . Using λ′
= λ ∗3 (see (1-2)) we get

λ′(n)−3(n)=

∑
n=km
m>1

3(k)λ(m).

Hence, for z := x1/(log log x)2 we have∑
n∼x

an3(n)=

∑
n∼x

an3(n)1(n,P(z))=1 + OC(x5/8/ logC x)

=

∑
n∼x

anλ
′(n)1(n,P(z))=1 −

∑
km∼x
k,m≥z

akm3(k)λ(m)1(m,P(z))=1 + OC(x5/8/ logC x)

=: S1 − S2 + OC(x5/8/ logC x).

Similarly as in [Friedlander and Iwaniec 2005], by the lacunarity of λ(m) we expect that S2 = o(S1), but
this is out of reach. We will show that S1 = (1+o(1))

∑
n∼x bn3(n) and S2 ≤ (0.811+o(1))·

∑
n∼x bn3(n)

which together imply Theorem 1.

Remark. For technical reasons we have chosen z a bit smaller than xε (compare with Section 1.1). This
has the benefit that evaluating S1 is a lot easier. On the downside bounding S2 is slightly more difficult
and we require Lemma 4 for this.
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2.4. Sum S1. Let D1 := xε for some small ε > 0. We expand the condition 1(n,P(z))=1 by using the
Möbius function and split the sum to get

S1 =

∑
n∼x

anλ
′(n)

∑
d | (n,P(z))

µ(d)=

∑
n∼x

anλ
′(n)

∑
d | (n,P(z))

d≤D1

µ(d)+
∑
n∼x

anλ
′(n)

∑
d | (n,P(z))

d>D1

µ(d)=: S′

1 + R1.

To handle the error term R1, note that if d | P(z) and d > D1, then d has a divisor in [D1, 2zD1]. Since
z = x1/(log log x)2 , by Lemma 4 (with k = 2 applied to the variable n/d to get n = cdn′ with τ(n)≤ τ(c)O(1)),
Proposition 8, and Lemma 6 we get

R1 ≪ (log x)
∑
n∼x

∃d | (n,P(z)),d∈[D1,2zD1]

anτ(n)3

≪ (log x)
∑

d∈[D1,2zD1]
d | P(z)

∑
c≤(2x)1/2

τ(cd)O(1)
∑

n′∼x/cd

acdn′

≪ (log x)x5/8
∑

d∈[D1,2zD1]
d | P(z)

∑
c≤(2x)1/2

τ(cd)O(1)g(cd)≪C x5/8 log−C x . (2-3)

To get the last bound use τ(cd)O(1)g(cd)≤ τ(cd)O(1)/(cd)≤ τ(c)O(1)τ(d)O(1)/(cd) and apply Lemma 4
to the variable d before using Lemma 6.

For the main term we write

S′

1 =

∑
d | P(z)
d≤D1

µ(d)
∑
n∼x

n≡0(d)

anλ
′(n)=

∑
d | P(z)
d≤D1

µ(d)
∑

mn∼x
mn≡0(d)

amnχ(m) log n

=

∑
d | P(z)
d≤D1

µ(d)
∑

mn∼x
mn≡0(d)
n>x1/2

amnχ(m) log n +

∑
d | P(z)
d≤D1

µ(d)
∑

mn∼x
mn≡0(d)
n≤x1/2

amnχ(m) log n =: S11 + S12.

We write (denoting d1 = (m, d))

S11 =

∑
d1d2 | P(z)
d1d2≤D1

µ(d1d2)
∑

d1m≪x1/2

(m,d2)=1

χ(d1m)
∑

n∼x/md1d2
d2n>x1/2

ad1d2mn log d2n

We will use Proposition 8 to evaluate this sum but first we need to remove the cross-condition d2n > x1/2

and the weight log d2n by using a finer-than-dyadic decomposition to the sums over d2 and n. That is, for
1= log−B x for some large B > 0 we split S11 into∑

i, j≪logB+1 x
D2=(1+1)i

N=(1+1) j

D2 N (1+1)2>x1/2

∑
d1d2 | P(z)
d1d2≤D1

d2∈(D2,D2(1+1)]

µ(d1d2)
∑

d1m≪x1/2

(m,d2)=1

χ(d1m)
∑

n∈(N ,N (1+1)]
n∼x/md1d2

d2n>x1/2

ad1d2mn log d2n.
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Here we can write

log d2n = log D2 N + O(log−B x),

where the error term will contribute by Lemma 4 and Proposition 8

≪ log−B x
∑
n∼x

τ4(n)an ≪ log−B x
∑
n∼x

τ(n)4an ≪ log−B x
∑

d≪x1/2

τ(d)O(1)
∑

n∼x/d

an ≪B x5/8 logO(1)−B x

so that S11 = S′

11 + OB(x logO(1)−B x) with

S′

11 :=

∑
i, j≪logB+1 x
D2=(1+1)i

N=(1+1) j

D2 N (1+1)2>x1/2

log D2 N
∑

d1d2 | P(z)
d1d2≤D1

d2∈(D2,D2(1+1)]

µ(d1d2)
∑

d1m≪x1/2

(m,d2)=1

χ(d1m)
∑

n∈(N ,N (1+1)]
n∼x/md1d2

d2n>x1/2

ad1d2mn.

The cross-condition d2n > x1/2 holds trivially and may be dropped except in the diagonal part where

(1 +1)−2x1/2 < D2 N ≤ x1/2.

The contribution from this diagonal part is bounded by using Proposition 8

≪ (log x)
∑

i, j≪logB+1 x
D2=(1+1)i

N=(1+1) j

(1+1)−2x1/2<D2 N≤x1/2

∑
d1d2 | P(z)
d1d2≤D1

d2∈(D2,D2(1+1)]

∑
d1m≪x1/2

(m,d2)=1

∑
n∈(N ,N (1+1)]

n∼x/md1d2

ad1d2mn

≪C x5/8 log−C x + (log x)
∑

i, j≪logB+1 x
D2=(1+1)i

N=(1+1) j

(1+1)−2x1/2<D2 N≤x1/2

∑
d1d2 | P(z)
d1d2≤D1

d2∈(D2,D2(1+1)]

∑
d1m≪x1/2

(m,d2)=1

∑
n∈(N ,N (1+1)]

n∼x/md1d2

bd1d2mn

≪C x5/8 log−C x + (logO(1) x)x5/812
∑

i, j≪logB+1 x
D2=(1+1)i

N=(1+1) j

(1+1)−2x1/2<D2 N≤x1/2

1 ≪B x5/8 logO(1)−B x

by choosing C = B. Hence, the cross-condition d2n > x1/2 may be dropped and we get S11 = S′′

11 +

OB(x logO(1)−B x) with

S′′

11 :=

∑
i, j≪logB+1 x
D2=(1+1)i

N=(1+1) j

D2 N (1+1)2>x1/2

log D2 N
∑

d1d2 | P(z)
d1d2≤D1

d2∈(D2,D2(1+1)]

µ(d1d2)
∑

d1m≪x1/2

(m,d2)=1

χ(d1m)
∑

n∈(N ,N (1+1)]
n∼x/md1d2

ad1d2mn.
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Applying a similar decomposition to the corresponding sum with bd1d2mn and using Proposition 8 we get

S11 =

∑
d1d2 | P(z)
d1d2≤D1

µ(d1d2)
∑

d1m≪x1/2

(m,d2)=1

χ(d1m)
∑

n∼x/md1d2
d2n>x1/2

bd1d2mn log d2n + OC(x5/8 log−C x)

=: M11 + OC(x5/8 log−C x).

Similarly, we get by Proposition 9 (denoting d2 = (n, d))

S12 =

∑
d1d2 | P(z)
d1d2≤D1

µ(d1d2)χ(d1)
∑

d2n≤x1/2

(n,d1)=1

log d2n
∑

m∼x/nd1d2

ad1d2mnχ(m)

=

∑
d1d2 | P(z)
d1d2≤D1

µ(d1d2)χ(d1)
∑

d2n≤x1/2

(n,d1)=1

log d2n
∑

m∼x/nd1d2

bd1d2mnχ(m)+ OC(x5/8 log−C x)

=: M12 + OC(x5/8 log−C x)

That is, in the sums S11 and S12 we have managed to replace an by bn . By reversing the steps to recombine
we get

M11 + M12 =

∑
n∼x

bnλ
′(n)

∑
d | (n,P(z))

d≤D1

µ(d)=: M1

By a similar argument as in (2-3) we can add the part d > D1 back into the sum and we get

M1 =

∑
n∼x

bnλ
′(n)1(n,P(z))=1 + OC(x5/8/ logC x)≥

∑
n∼x

bn3(n)1(n,P(z))=1 + OC(x5/8/ logC x)

by using λ′(n)≥3(n). Thus, by Lemma 2 we have

S1 ≥ (1 + o(1))
∑
n∼x

bn3(n),

so that for the lower bound result it suffices to show that

S2 ≤ (0.811 + o(1)) ·
∑
n∼x

bn3(n).

We now proceed to do this, and at the end of this section we will show how to get the upper bound in
Theorem 1.

Remark. We have used Lemma 6 to handle the restriction (n, P(z)) = 1 instead of applying the fun-
damental lemma of sieve. Thanks to this we were able to use the trivial lower bound λ′(n) ≥3(n) to
simplify the evaluation of the main term.
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2.5. Sum S2. Recall that γ =
1

24 + ε and 2
3 −γ =

5
8 − ε. We split the sum S2 into three ranges according

to the size of k

S2 =

∑
km∼x
k,m≥z

akm3(k)λ(m)1(m,P(z))=1

=

∑
km∼x

k>x1/3+γ

m≥z

akm3(k)λ(m)1(m,P(z))=1 +

∑
km∼x

x1/3−2γ<k≤x1/3+γ

m≥z

akm3(k)λ(m)1(m,P(z))=1

+

∑
km∼x

z≤k≤x1/3−2γ

m≥z

akm3(k)λ(m)1(m,P(z))=1

=: S21 + S22 + S23.

Using the assumption that L(1, χ) is small, we will show that the contribution from S21 and S23 is
negligible, and that S22 ≤ (0.811 + o(1)) ·

∑
n∼x bn3(n).

2.5.1. Sum S21. Here we have k > x1/3+γ , so that by a crude estimate we get

S21 =

∑
km∼x

k≥x1/3+γ

m≥z

akm3(k)λ(m)1(m,P(z))=1 ≪ (log x)
∑

z≤m≪x2/3−γ

λ(m)
∑

k∼x/m

akm := S′

21 = M21 + R21,

where

M21 := (log x)X
∑

z≤m≪x2/3−γ

λ(m)g(m) and R21 := S′

21 − M21.

By Proposition 8 we get

R21 ≪C x5/8 log−C x,

and by Proposition 10 we have

M21 ≪ x5/8L(1, χ) log3 x .

Hence, we have

S21 ≪C x5/8L(1, χ) log3 x + x5/8 log−C x .

2.5.2. Sum S23. Recall that here m ≫ x2/3+2γ . By positivity we may drop the condition (m, P(z))= 1.
Writing

λ(m)=

∑
cd=m

χ(d)
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we split the sum S23 into two ranges, d ≤ x1/3+γ or d > x1/3+γ . We get S23 ≤ S231 + S232, where

S231 :=

∑
z≤k≤x1/3−2γ

3(k)
∑

c≪x2/3−γ /k

∑
d∼x/ck

d>x1/3+γ

χ(d)acdk,

S232 :=

∑
z≤k≤x1/3−2γ

3(k)
∑

d≤x1/3+γ

χ(d)
∑

c∼x/dk

acdk .

By Proposition 9 we get (after applying a finer-than-dyadic decomposition similarly as with S11 to remove
cross-conditions)

S231 ≪C x5/8 log−C x .

By Propositions 8 and 10 we get (since the contribution from (k, d) > 1 is trivially negligible)

S232 = X
∑

z≤k≪x1/3−2γ

3(k)
∑

d≤x1/3+γ

χ(d)g(dk)+ OC(x5/8 log−C x)

≪C X
∑

z≤k≪x1/3−2γ

3(k)g(k)
∑

d≤x1/3+γ

χ(d)g(d)+ x5/8 log−C x

≪C x5/8L(1, χ) log x + x5/8 log−C x .

Combining the bounds, we have

S23 ≪C x5/8L(1, χ) log x + x5/8 log−C x .

2.5.3. Sum S22. We have

S22 =

∑
km∼x

x1/3−2γ<k≤x1/3+γ

akm3(k)λ(m)1(m,P(z))=1.

It turns out that we can handle all parts except when m is a prime, so we write

S22 =

∑
km∼x

x1/3−2γ<k≤x1/3+γ

m /∈P

akm3(k)λ(m)1(m,P(z))=1 +

∑
kp∼x

x1/3−2γ<k≤x1/3+γ

akp3(k)λ(p)=: S221 + S222.

In S221 we have m = m1m2 for m1,m2 ≥ z. Since (m1m2, P(z))= 1, the part where (m1,m2) > 1 triv-
ially contributes at most ≪ z−1x5/8 logO(1) x which is negligible. Hence, using λ(m1m2)= λ(m1)λ(m2)

for (m1,m2)= 1 we get

S221 ≤

∑
km1m2∼x

x1/3−2γ<k≤x1/3+γ

m1,m2≥z

akm1m23(k)λ(m1)λ(m2)1(m1m2,P(z))=1 + OC(x5/8 log−C x).

We split this sum into two parts according to km1 > x1/2 or km1 ≤ x1/2. In either case we get m j ≪ x1/2

for some j ∈ {1, 2}. We combine the variables ℓ = km2− j and use λ(m2− j ) ≤ τ(m2− j ) to obtain by



Exceptional characters and prime numbers in sparse sets 1321

Lemma 4

S221 ≤ (log x)
∑

z≤m≪x1/2

λ(m)
∑
ℓ∼x/m

τ(ℓ)1(ℓ,P(z))=1aℓm + OC(x5/8 log−C x)

≪K (log x)
∑

z≤m≪x1/2

λ(m)
∑

d≤x1/K

τ(d)OK (1)1(d,P(z))=1
∑

ℓ∼x/dm

adℓm + OC(x5/8 log−C x).

By Proposition 8 we get (once we choose K large enough so that 1
2 + 1/K < 2

3 − γ )

S221 ≪K M221 + OC(x5/8 log−C x),

where

M221 = X (log x)
∑

z≤m≪x1/2

λ(m)
∑

d≤x1/K

τ(d)OK (1)1(d,P(z))=1g(d)g(m),

since the contribution from the part the part (d,m) > 1 is negligible by a trivial bound. Thus, by
Proposition 10 and Lemma 7 we have

M221 ≪C X (log x)
∑

d≤x1/K

τ(d)OK (1)g(d)1(d,P(z))=1
∑

z≤m≪x1/2

λ(m)g(m)≪C x5/8L(1, χ) log5 x .

Combining the above bounds we get

S221 ≪C x5/8L(1, χ) log5 x + x5/8 log−C x,

so all that remains is to bound the sum S222. The savings here will come from the fact that k is restricted
to a fairly narrow range.

2.6. Bounding the error term S222. We have

S222 :=

∑
kp∼x

x1/3−2γ<k≤x1/3+γ

akp3(k)(1 +χ(p)).

We will apply the linear sieve upper bound to the nonnegative sequence

cn := akn(1 +χ(n))

with level of distribution x2/3−γ /k (note that by exploiting the cancellation from χ(n) we save a factor
of 2 compared to using the trivial bound λ(p)≤ 2). For (d, k)= 1 define R(d, k) by∑

n∼x/k
n≡0(d)

akn(1 +χ(n))= g(d)g(k)X + R(d, k).

Note that the contribution from sums with (d, k) > 1 is negligible by trivial estimates. Then by Lemma 5
with Dk = x2/3−γ /k we have

S222 ≤ (1 + o(1))M222 + R222,
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where

M222 := X
∑

x1/3−2γ<k≤x1/3+γ

3(k)g(k)2eγ1
∏

p≤Dk

(1 − g(p))

and

R222 =

∑
dk≤x2/3−γ

(d,k)=1

3(k)|R(d, k)| ≪C x5/8 log−C x

by Propositions 8 and 9. Applying Lemma 2 we get

M222 = (2 + o(1))
∑
n∼x

bn3(n)
∑

x1/3−2γ<k≤x1/3+γ

3(k)g(k)
log(x2/3−γ /k)

=: D(γ )
∑
n∼x

bn3(n).

By the prime number theorem (for p ≡ 1(4)) we have (denoting k = xα)

D(γ )∼ 2
∑

x1/3−2γ<k≤x1/3+γ

3(k)g(k)
k log(x2/3−γ /k)

∼ 2
∑

x1/3−2γ<k≤x1/3+γ

1
k log(x2/3−γ /k)

∼ 2
∫ 1/3+γ

1/3−2γ

dα
2/3 − γ −α

∼ 2 log
1 + 3γ
1 − 6γ

.

We have D
( 1

24

)
< 0.811. Since ε > 0 can be taken to be arbitrarily small, this implies

S222 ≤ (0.811 + o(1)) ·
∑
n∼x

bn3(n),

completing the proof of Theorem 1. □

2.7. Proof of the upper bound result. We now explain how to get the upper bound result in Theorem 1.
By Section 2.4 we have by negativity of S2∑

n∼x

an3(n)≤ S1 + OC(x5/8/ log Cx)=

∑
n∼x

bnλ
′(n)1(n,P(z))=1 + OC(x5/8/ log Cx)

=

∑
n∼x

bn3(n)1(n,P(z))=1 + M2 + OC(x5/8/ log Cx),

where by reversing the initial decomposition on the bn-side (Section 2.3)

M2 :=

∑
km∼x
k,m≥z

bkm3(k)λ(m)1(m,P(z))=1
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which is the same as S2 but with an replaced by bn . Now M2 can be bounded similarly as S2, except that
we decompose with γ = 0 to get M2 = M21 + M23 with

M21 :=

∑
km∼x
k>x1/3

m≥z

bkm3(k)λ(m)1(m,P(z))=1, M23 :=

∑
km∼x
k≤x1/3

m≥z

bkm3(k)λ(m)1(m,P(z))=1.

By similar arguments as above for S21, S23 we get

M21 + M23 ≪C x5/8L(1, χ) log5 x + x5/8/ logC x,

since for bn we have an exponent of distribution > 2
3 by Propositions 8 and 9. That is, to prove the upper

bound we only needed that an has an exponent of distribution 1
2 + ε instead of 5

8 − ε.

3. Type I sums

In this section we will prove Propositions 8 and 9. The arguments are straightforward generalizations
of the arguments in [Friedlander and Iwaniec 2006; 2005, Section 14]. Since it does not require much
additional effort, we give the arguments in this section for the sequences a2

+ b2k for any k ≥ 1, which
yields the exponent of distribution 1

2 +
1

2k − ε, as claimed in [Friedlander and Iwaniec 2006, below
Theorem 4].

For the arguments in this section it is convenient for us to define ≺≺ to mean an inequality modulo
logarithmic factors, that is, for two functions f and g with g ≥ 0 we write f (N ) ≺≺ g(N ) if f (N )≪

g(N ) logO(1) N . For parameters such as ε we write f (N )≺≺ε g(N ) to mean f (N )≪ε g(N ) logOε(1) N .
Proposition 8 is a consequence of the following proposition, which we will prove in this section.

Proposition 11. Let M, L , D ≫ 1. Let k ≥ 1 integer and let λℓ be a coefficient such that |λℓ| ≤ 1ℓ=nk .
Let ψ denote a fixed C∞-smooth compactly supported function and denote ψM(x) := ψ(x/M). Then for
any divisor bounded α(d) and any real number m0 ≺≺ M we have∑

d∼D

α(d)
( ∑

(ℓ,m)=1
ℓ∼L

ℓ2
+m2

≡0(d)

λℓψM(m − m0)−

∫
ψM(t) dt

ϱ(d)
d

∑
(ℓ,d)=1
ℓ∼L

λℓ
ϕ(ℓ)

ℓ

)

≺≺ε Mε(L + M)1/2 D1/2L1/(2k).

Proof of Proposition 8 assuming Proposition 11. For the sequence bn , which counts n = a2
+b2 weighted

with b−1+1/k/k, we will apply similar arguments as below but with k = 1, renormalizing the corresponding
λℓ appropriately. For an which counts n = a2

+b8 we write m = a and ℓ= b4, so that we are applying the
above proposition with k = 4. Similarly as with the treatment of the sum S11, we use a finer-than-dyadic
decomposition to remove the cross-condition m2

+ ℓ2
∼ x that is, writing 1= log−B x for some large B,

we partition the sum into ≪1−2 log2 x parts where ℓ ∈ [L0, L0(1 +1)] and m ∈ [M0,M0(1 +1)] with
L2

0 + M2
0 ∼ x and L0,M0 ≪

√
x . In fact, we need to refine this decomposition so that for m we use a
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C∞-smooth finer-than-dyadic partition of unity. Then the resulting coefficients for m are C∞-smooth
functions of the form ψM(m − M0), where M = M01 is the width of the window around M0 ≪

√
x .

We can now drop the condition ℓ2
+ m2

∼ x , with an error contribution bounded by x5/8 log−B+O(1) x
coming from the edges (where L2

0 + M2
0 is in [x(1 +1)−2, x(1 +1)2] or [2x(1 +1)−2, 2x(1 +1)2]).

To see this, note that we have by Proposition 11 using M0, L0 ≪ x1/2

∑
d∼D

|α(d)|
∑

m
ℓ∈[L0,L0(1+1)]

m2
+ℓ≡0(d)

λℓψ1M0(m − M0)≪C x5/8 log−C x +11+1/k L1/k
0 M0

∑
d∼D

|α(d)|ϱ(d)
d

≪C x5/8 log−C x + x5/8 log−(1+1/k)B+O(1) x,

and that the number of edge cases is ≪ logB+O(1) x , so that we save a factor of logO(1)−B/k x , which is
sufficient for B ≫ k.

We can now apply Proposition 11 in each of the parts separately. Note that then we have L ,M ≪ x1/2

and D ≪ x5/8−ε, so that the error term is bounded by x5/8−ε/4. To remove the condition (ℓ2
+m2, q)= 1

implicit in Proposition 8 we may expand using the Möbius function to get∑
ℓ2

+m2
≡0(d)

(ℓ2
+m2,q)=1

=

∑
f | q

µ( f )
∑

ℓ2
+m2

≡0(d f )

since (d, q)= 1, and apply Proposition 11 with level x5/8−εq ≪ x5/8−ε/2.
Denote λ(1)ℓ = 1ℓ=nk and λ(2)ℓ = k−1ℓ−1+1/k . Let g̃(d) extend g(d) to (d, q) > 1, that is,

g̃(pk) :=
ϱ(pk)

pk

(
1 +

1
p

)−1

.

We still have to evaluate the main term in Proposition 11 to get (2-2). Recombining the finer-than-dyadic
decomposition to a dyadic one for the variable ℓ, this follows we once show that for j ∈ {1, 2}∑

d∼D

α(d)
∫
ψM(t)dt

ϱ(d)
d

∑
(ℓ,d)=1
ℓ∼L

λ
( j)
ℓ

ϕ(ℓ)

ℓ
=

∑
d∼D

α(d)g̃(d)
∑

(ℓ,m)=1
ℓ∼L

λ
(2)
ℓ ψM(m − m0)+ O(x5/8−η),

which follows easily once we show that∑
d∼D

α(d)
∫
ψM(t) dt

ϱ(d)
d

∑
(ℓ,d)=1
ℓ∼L

λ
( j)
ℓ

ϕ(ℓ)

ℓ

=

∑
d∼D

α(d)
ϱ(d)

d
ϕ(d)

d

∏
p | d

(1 − p−2)−1 1
ζ(2)

∑
m
ℓ∼L

λ
(2)
ℓ ψM(m − m0)+ O(x5/8−η). (3-1)

Define

Hd :=

∏
p ∤d

(1 − p−2)=

∑
(c,d)=1

µ(c)
c2 =

1
ζ(2)

∏
p | d

(1 − p−2)−1
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and note that ∑
ℓ∼L

λ
(1)
ℓ = (1 + L−εk )

∑
ℓ∼L

λ
(2)
ℓ

and ∫
ψM(t)dt =

∑
m

ψM(m − m0)+ OC(M−C).

Then, since M ≺≺ x1/2, the claim (3-1) follows once we show∑
d≤D

α(d)ϱ(d)
d

( ∑
(ℓ,d)=1
ℓ∼L

λ
( j)
ℓ

ϕ(ℓ)

ℓ
−
ϕ(d)

d
Hd

∑
ℓ∼L

λ
( j)
ℓ

)
≺≺ 1.

To show this, note also that
ϕ(ℓ)

ℓ
=

∑
c | ℓ

µ(c)
c
.

Then for λℓ = 1ℓ=nk (and similarly for λℓ = k−1ℓ−1+1/k)∑
d≤D

α(d)ϱ(d)
d

( ∑
(ℓ,d)=1
ℓ∼L

λℓ
ϕ(ℓ)

ℓ
−
ϕ(d)

d
Hd

∑
ℓ∼L

λℓ

)

=

∑
d≤D

α(d)ϱ(d)
d

∑
(c,d)=1

µ(c)
c

( ∑
(ℓ,d)=1
ℓ∼L/c

λcℓ −
ϕ(d)
cd

∑
ℓ∼L

λℓ

)

=

∑
d≤D

α(d)ρ(d)
d

∑
(c,d)=1

µ(c)
c

∑
e | d

µ(e)
( ∑
ℓ∼L/ce

λceℓ −
1
ce

∑
ℓ∼L

λℓ

)

=

∑
d≤D

α(d)ρ(d)
d

∑
(c,d)=1

µ(c)
c

∑
e | d

µ(e)
( ∑

n∼L1/k/ce

1 −
1
ce

∑
n∼L1/k

1
)

≪

∑
d≤D

|α(d)|ρ(d)
d

∑
e | d

( ∑
c≪L1/k/e

1
c

+
L1/k

e

∑
c≫L1/k/e

1
c2

)
≺≺ 1

by writing ℓ= (nce)k since ce is square free. □

Proposition 9 follows by a similar argument from the following (recall that an and bn are supported on
(n, q)= 1).

Proposition 12. Let M, L , D ≫ 1. Let k ≥ 1 integer and let λℓ be a coefficient such that |λℓ| ≤ 1ℓ=nk .
Let ψ denote a fixed C∞-smooth compactly supported function and denote ψM(x) := ψ(x/M). Let χ
denote a primitive quadratic Dirichlet character associated to a fundamental discriminant ±q with q > 1.
Then for any divisor bounded α(d) and any real number m0 ≺≺ M we have for some η > 0∑

d∼D

α(d)
∑

(ℓ,m)=1
ℓ∼L

ℓ2
+m2

≡0(d)

λℓψM(m − m0)χ(ℓ
2
+ m2)≺≺ε q2 Mε(L + M)1/2 D1/2L1/(2k)

+ q−ηM L1/k .
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For the proof of Propositions 11 and 12 we need the following large sieve inequality; see [Friedlander
and Iwaniec 2005, Lemma 14.4] for the proof.

Lemma 13. Let q ≥ 1. Then for any complex numbers αn we have∑
d∼D

(d,q)=1

∑
ν2+1≡0(d)

∣∣∣∣∑
n≤N

αned(νnq̄)
∣∣∣∣ ≪ (Dq + N )

∑
n≤N

|αn|
2,

where qq̄ ≡ 1(d).

We also require the Poisson summation formula.

Lemma 14 (truncated Poisson summation formula). Let ψ : R → C be a fixed C∞-smooth compactly
supported function with ∥ψ∥1 ≤ 1 and let M ≫ 1. Fix a real number m0. Let d ≥ 1 be an integer. Then
for any ε > 0 we have uniformly in m0∑

m≡a(d)

ψM(m − m0)=

∫ ∑
0≤|h|≤Mεd/M

ψM(td − m0)e(ht)ed(−ah)dt + OC,ε(M−C).

Proof. Applying the Poisson summation formula we get∑
m≡a(d)

ψM(m − m0)=

∑
n

ψM(nd + a − m0)=

∑
h

∫
ψM(td + a − m0)e(ht) dt

=

∑
h

∫
ψM(td − m0)e(ht)ed(−ha)du.

by the change of variables t 7→ t − a/d. For |h|> Mεd/M we can iterate integration by parts to show
that the contribution from this part is ≪C,ε M−C . □

We also need the following Weil bound for character sums; see [Kowalski 2021, Theorem 3.1], for
instance.

Lemma 15. Let q ≥ 1 and let χ be a primitive quadratic character of modulus q. Let a, b ∈ Z and
(a, q)= 1. Then ∑

m(q)

χ(am2
+ b)≪ε (b, q)1/2q1/2+ε.

3.1. Proof of Propositions 11 and 12. We first note that there is a gap in the proof given in [Friedlander
and Iwaniec 2005, Section 14], namely, the argument around their application of Poisson summation
works only if the sum is restricted to (ℓ, q)= 1. To fix this we must first bound the contribution ℓ= nk

which have a large factor whose prime factors divide q . Let q0 = q0(n)= q0(ℓ) denote the smallest factor
of n such that (n/q0, q) = 1. The parts of the sums in Proposition 12 where q0 > qη can be bounded
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trivially. To see this, note that by the divisor boundedness α(d) and Lemma 4 we have

∑
d∼D

α(d)
∑

(ℓ,m)=1
ℓ∼L

ℓ2
+m2

≡0(d)
q0>qη

λℓψM(m − m0)χ(ℓ
2
+ m2)≪

∑
m≍m0
n∼L1/k

q0>qη

τ(m2
+ n2k)O(1)

≪

∑
d≪m1/2

0

τ(d)O(1)
∑

n∼L1/k

q0>qη

∑
m≍m0

m2
≡−n2k(d)

1

≺≺ M
∑

d≪m1/2
0

τ(d)O(1)

d

∑
n∼L1/k

q0>qη

1 ≺≺ M
∑

n∼L1/k

q0>qη

1

and

∑
n∼L1/k

q0>qη

1 ≤

∑
q0>qη

p | q0⇒p | q

∑
n∼L1/k/q0

≪ L1/k
∑

q0>qη
p | q0⇒p | q

q−1
0 ≤ q−η/2L1/k

∏
p | q

(1 − p−1/2)−1
≪ q−η/4L1/k .

Hence, we may assume that λℓ is supported on q0(ℓ) < qη for some small η > 0.
Note that since d | ℓ2

+ m2, we may add the condition (d, q) = 1 since otherwise χ(ℓ2
+ m2) = 0.

Expanding the condition (ℓ,m)= 1 using the Möbius function, we get

∑
d∼D
(d,q)=1

α(d)
∑

(ℓ,m)=1
ℓ∼L

ℓ2
+m2

≡0(d)

λℓψM(m − m0)χ(ℓ
2
+ m2)

=

∑
b≪L M
(b,q)=1

µ(b)
∑
d∼D
(d,q)=1

α(d)
∑
ℓ∼L/b
(ℓ,d)=1

λbℓ

∑
m

b2(ℓ2
+m2)≡0(d)

ψM/b(m − m0/b)χ(ℓ2
+ m2).

Writing b1 = (d, b) and b2 = b/b1 we get (absorbing (d, b2)= 1 into the coefficient α(d) and redefining
α(d) as α(b1d))

∑
b1b2≪L M
(b1b2,q)=1

µ(b1b2)
∑

d∼D/b1
(d,q)=1

α(d)
∑
ℓ∼L/b
(ℓ,d)=1

λbℓ

∑
m

ℓ2
+m2

≡0(d)

ψM/b(m − m0/b)χ(ℓ2
+ m2).

Let qℓ := qk
0 so that (q, ℓ/qℓ)= 1. Defining ν(d) and β(q) so that m ≡ νℓ(d) and m ≡ β(ℓ/qℓ)(q) we

get by the Chinese remainder theorem

m ≡ νℓqq̄ +β(ℓ/qℓ)dd̄(dq),
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where the inverses q̄ and d̄ are computed modulo d and q, respectively. Using Lemma 14 we get for
H := Mεb2 Dq/M∑

m
ℓ2

+m2
≡0(d)

ψM/b(m−m0/b)χ(ℓ2
+m2)

=

∑
ν(d)

ν2
+1≡0(d)

∑
β(q)

χ(β2
+q2

ℓ )
∑

m
m≡νℓqq̄+β(ℓ/qℓ)dd̄(dq)

ψM/b(m−m0/b)

=

∑
ν(d)

ν2
+1≡0(d)

∑
β(q)

χ(β2
+q2

ℓ )

∫ ∑
0≤|h|≤H

ψM/b(tdq−m0/b)e(ht)ed(−νhℓq̄)eq(−βh(ℓ/qℓ)d̄)dt

+OC,ε(M−C).

Making the change of variables and β 7→ βd this becomes∫ ∑
0≤|h|≤H

(∑
β(q)

χ(β2d2
+ q2

ℓ )eq(−βh(ℓ/qℓ))
) ∑
ν2

+1≡0(d)

ψM(tbdq − m0)e(ht)ed(−νhℓq̄) dt.

From h = 0 we get a total contribution∑
b1b2≪L M
(b1b2,q)=1

µ(b1b2)
∑

d∼D/b1
(d,q)=1

α(d)ϱ(d)
∑
ℓ∼L/b
(ℓ,d)=1

λbℓ
M

b2dq

∫
ψ(t)dt

∑
β(q)

χ(β2d2
+ q2

ℓ )≺≺ q−1/4 M L1/k

by using the bound (Lemma 15)∑
β(q)

χ(β2d2
+ q2

ℓ )≪ε (q, q2
ℓ )

1/2q1/2+ε

and the fact that qℓ = qk
0 ≪ qηk for some small η.

For h ̸= 0 we can by symmetry restrict to h < 0. We first want to remove the cross-condition
χ(β2d2

+ q2
ℓ ) between the variables d and ℓ. To do this we fix the value of qℓ modulo q and split ℓ into

congruence classes qℓ ≡ γ (q). Hence, we get for some |ch,ℓ(t, q, β, γ )| ≤ 1 and |ch,ℓ(t, q)| ≤ 1 that the
total contribution from h ̸= 0 is∑
γ (q)

∑
b1b2≪L M
(b1b2,q)=1

µ(b1b2)

∫ ∑
β(q)

∑
d∼D/b1
(d,q)=1

α(d)χ(β2d2
+ γ 2)

×

∑
ν2+1≡0(d)

∑
ℓ∼L/b
(ℓ,d)=1
qℓ≡γ (q)

λbℓ

∑
1≤h≤H

ch,ℓ(t, q, β, γ )ed(νhℓq̄)ψM(tbdq − m0) dt

≺≺ q2
∑

b1b2≪L M

∫ ∑
d∼D/b1
(d,q)=1

|α(d)|
∑

ν2+1≡0(d)

∣∣∣∣ ∑
ℓ∼L/b
(ℓ,d)=1

λbℓ

∑
1≤h≤H

ch,ℓ(t, q)ed(νhℓq̄)ψM(tbdq − m0)

∣∣∣∣ dt.
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Note that ψM(tbdq − m0) vanishes outside |tbdq − m0| ≪ M . Hence, by d ∼ D/b1 and m0 ≺≺ M the
integral over t is supported on a fixed set T (b1, b2) with measure bounded by ≺≺ M/b2q D so that by
taking the maximal t the last expression is bounded by

≺≺ q
∑

b1b2≪L M

M
b2 D

∑
d∼D/b1
(d,q)=1

|α(d)|
∑

ν2+1≡0(d)

∣∣∣∣ ∑
ℓ∼L/b
(ℓ,d)=1

λbℓ

∑
1≤h≤H

ch,ℓed(νhℓq̄)
∣∣∣∣

for some coefficients ch,ℓ = ch,ℓ(b1, b2, q,m0) independent of d with |ch,ℓ| ≤ 1. Expanding the condition
(ℓ, d)= 1 this is bounded by

q M
D

∑
b1b2≪L M

1
b2

∑
c≪DL

∑
d∼D/b1c
(d,q)=1

|α(cd)|
∑

ν2+1≡0(d)

∣∣∣∣ ∑
ℓ∼L/bc

λbcℓ

∑
1≤h≤H

ch,cℓed(νhcℓq̄)
∣∣∣∣. (3-2)

By Cauchy–Schwarz and Lemma 13 the sum over d is bounded by (denoting H1 := H/b2 = MεDq/M)

≺≺
D1/2

(b1c)1/2

( ∑
d∼D/b1c
(d,q)=1

∑
ν2+1≡0(d)

∣∣∣∣ ∑
ℓ∼L/bc

λbcℓ

∑
1≤h≤H

ch,cℓed(νhcℓq̄)
∣∣∣∣2)1/2

≪
D1/2

(b1c)1/2
(Dq/b1c + H L/b)1/2

( ∑
1≤ j≪H1 L/c

∣∣∣∣ ∑
j=ℓh
ℓ∼L/bc

λbcℓ

∣∣∣∣2)1/2

≪
1

bc1/2 (Dq + (DH1L)1/2)
( ∑

1≤ j≪H1 L/c

∣∣∣∣ ∑
j=ℓh
ℓ∼L/bc

λbcℓ

∣∣∣∣2)1/2

.

By Cauchy–Schwarz we get (writing m = bcj = bj ′ and B := L M so that 1/b = j ′/m ≪ H1L/m)

∑
b≪L M

τ(b)
b

∑
c≪DL

1
c1/2

( ∑
1≤ j≪H1 L/c

∣∣∣∣ ∑
j=ℓh
ℓ∼L/bc

λbcℓ

∣∣∣∣2)1/2

≺≺

( ∑
j ′
≪H1 L
b≪B

1
b
τ( j ′)

∣∣∣∣ ∑
j ′
=ℓh

ℓ∼L/b

λbℓ

∣∣∣∣2)1/2

≪

( ∑
m≪H1 L B

H1L
m

τ(m)2
∣∣∣∣ ∑
m=ℓh
ℓ∼L

λℓ

∣∣∣∣2)1/2

≤

(
H1L

∑
nk∼L

∑
h≪H1 B

τ(hnk)4

hnk

)1/2

≤

(
H1L

∑
nk∼L

∑
h≪H1 B

τ(h)4τ(n)4k

hnk

)1/2

≺≺ H 1/2
1 L1/2k .
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Hence, the final bound for (3-2) is

≺≺
q M
D
(Dq + (DH1L)1/2)H 1/2

1 L1/(2k)

= q Mε(Mq1/2 H 1/2
1 L1/(2k)

+ M H1L1/2+1/(2k)D−1/2)

= Mεq2(D1/2 M1/2L1/(2k)
+ D1/2L1/2+1/(2k))

by using H1 = MεDq/M . □

4. A General version of the sieve

From our argument in Section 2 we can infer the following general result. We have not made an effort to
minimize the assumptions or optimize the powers of logarithms.

Theorem 16. Let x be large and let χD be a real primitive character associated to a fundamental
discriminant D = xo(1) with D ≫C logC x. Let an and bn be nonnegative sequences supported on
(n, D) = 1, and let g(d) be the associated multiplicative function. Suppose that g(d) ≪ τ(d)O(1)/d.
Assume that g satisfies the assumptions of Lemma 5 and assume that Proposition 10 holds. Suppose that
for any z > xε we have ∑

n∼x

bn3(n)= (1 + o(1))
1

eγ1 log z

∏
p≤z

(1 − g(p))
∑
n∼x

bn

and ∑
k∼z

3(k)g(k)= (1 + o(1))
∑
k∼z

3(k)
k
.

Suppose also that for some ϵ > 0 we have the crude bounds∑
n∼x

an3(n)1(n,P(xϵ))>1,
∑
n∼x

bn3(n)1(n,P(xϵ))>1 = o
(∑

n∼x

3(n)bn

)
.

Suppose that the exponent of distribution is at least α=
2
3 −γ for some γ < 1

6 (in the sense of Propositions
8 and 9). Then∑

n∼x

3(n)an ≥

(
1 − 2 log

1 + 3γ
1 − 6γ

− O(L(1, χD) log5 x)− o(1)
) ∑

n∼x

3(n)bn.

Assuming that the exponent of distribution is at least 1
2 + ε we have∑

n∼x

3(n)an ≤ (1 + O(L(1, χD) log5 x)+ o(1))
∑
n∼x

3(n)bn.

In particular, if L(1, χD) ≤ log−100 D and exp(log10 D) < x < exp(log16 D), then the lower bound is
nontrivial as soon as the exponent of distribution satisfies

α >
1 +

√
e

1 + 2
√

e
= 0.61634 . . . .



Exceptional characters and prime numbers in sparse sets 1331

Remark. With much more effort it is possible to get the same result as above with L(1, χ) log x in place
of L(1, χ) log5 x , so that one only needs L(1, χD)= o(1/ log D).

Remark. Unfortunately the above theorem just misses out the next case a2
+ b10, which has an exponent

of distribution 3
5 − ε. Similarly as with the linear sieve, further improvements are possible if we make

use of well-factorability of the weights [Friedlander and Iwaniec 2010, Chapter 12.7]. For example, the
upper bound for the sum S222 can be improved if we are able to handle certain Type I/II sums (that is,
Type I sums where the modulus is kd with d well-factorable). Note also that in S21 and S23 the weight
factorizes and furthermore there is some smoothness available in the weight. Hence, assuming suitable
arithmetic information (of Type I/II or Type I2) we could handle some parts near the edges of S22 by a
similar argument as for the sums S21 or S23. Unfortunately we do not know how to carry this out for the
sequence a2

+ b10, but possibly sums of Kloosterman sums methods might be able to handle these sums.
It is also unclear if the handling of the sum S222 is optimal but we have not found a way to improve this.

Remark. The ideas in this paper can be used also to the problem of primes in short intervals, to improve
the result of Friedlander and Iwaniec [2004] which gives primes in intervals of length x39/79 < x1/2 under
the assumption of exceptional characters. The sieve argument is slightly different here since for this
problem we can also utilize the available Type I/II and Type I2 information furnished by the exponential
sum estimates used for the problem of largest prime factor on short intervals [Baker and Harman 2009;
Fouvry and Iwaniec 1989; Liu and Wu 1999]. The details will appear elsewhere.
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Polyhedral and tropical geometry of flag positroids
Jonathan Boretsky, Christopher Eur and Lauren Williams

A flag positroid of ranks r := (r1 < · · · < rk) on [n] is a flag matroid that can be realized by a real
rk × n matrix A such that the ri × ri minors of A involving rows 1, 2, . . . , ri are nonnegative for all
1 ≤ i ≤ k. In this paper we explore the polyhedral and tropical geometry of flag positroids, particularly
when r := (a, a + 1, . . . , b) is a sequence of consecutive numbers. In this case we show that the
nonnegative tropical flag variety TrFl≥0

r,n equals the nonnegative flag Dressian FlDr≥0
r,n , and that the points

µ = (µa, . . . , µb) of TrFl≥0
r,n = FlDr≥0

r,n give rise to coherent subdivisions of the flag positroid polytope
P(µ) into flag positroid polytopes. Our results have applications to Bruhat interval polytopes: for
example, we show that a complete flag matroid polytope is a Bruhat interval polytope if and only if its
(≤ 2)-dimensional faces are Bruhat interval polytopes. Our results also have applications to realizability
questions. We define a positively oriented flag matroid to be a sequence of positively oriented matroids
(χ1, . . . , χk) which is also an oriented flag matroid. We then prove that every positively oriented flag
matroid of ranks r = (a, a + 1, . . . , b) is realizable.

1. Introduction 1333
2. Background on total positivity and Bruhat interval polytopes 1338
3. The nonnegative tropicalization 1341
4. Positively oriented flag matroids 1349
5. Subdivisions of flag matroid polytopes 1352
6. Three-term incidence relations 1356
7. Projections of positive Richardsons to positroids 1358
8. Fan structures for and coherent subdivisions from TrGr>0

d;n and TrFl>0
n 1366

References 1372

1. Introduction

In recent years there has been a great deal of interest in the tropical Grassmannian [Speyer and Sturmfels
2004; Herrmann et al. 2009; 2014; Cachazo et al. 2019; Bossinger 2021], and matroid polytopes and
their subdivisions [Speyer 2008; Ardila et al. 2010; Early 2022], as well as “positive” [Postnikov 2007;
Speyer and Williams 2005; 2021; Oh 2008; Ardila et al. 2016; Le and Fraser 2019; Lukowski et al. 2023;
Arkani-Hamed et al. 2021b] and “flag” [Tsukerman and Williams 2015; Brandt et al. 2021; Bossinger et al.
2017; Jarra and Lorscheid 2024; Joswig et al. 2023; Boretsky 2022] versions of the above objects. The aim
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of this paper is to illustrate the beautiful relationships between the nonnegative tropical flag variety, the
nonnegative flag Dressian, and flag positroid polytopes and their subdivisions, unifying and generalizing
some of the existing results. We will particularly focus on the case of flag varieties (respectively, flag
positroids) consisting of subspaces (respectively, matroids) of consecutive ranks. This case includes both
Grassmannians and complete flag varieties.

For positive integers n and d with d < n, we let [n] denote the set {1, . . . , n} and we let
(
[n]

d

)
denote

the collection of all d-element subsets of [n]. Given a subset S ⊆ [n] we let eS denote the sum of standard
basis vectors

∑
i∈S ei . For a collection B ⊂

(
[n]

d

)
, we let

P(B) = the convex hull of {eB : B ∈ B} in Rn.

The collection B is said to define a matroid M of rank d on [n] if every edge of the polytope P(B) is
parallel to ei −e j for some i ̸= j ∈ [n]. In this case, we call B the set of bases of M , and define the matroid
polytope P(M) of M to be the polytope P(B). When B indexes the nonvanishing Plücker coordinates of
an element A of the Grassmannian Grd,n(C), we say that A realizes M , and it is well-known that P(B) is
the moment map image of the closure of the torus orbit of A in the Grassmannian [Gelfand et al. 1987].
We assume familiarity with the fundamentals of matroid theory as in [Oxley 2011] and [Borovik et al.
2003].

The above definition of matroid in terms of its polytope is due to [Gelfand et al. 1987]. Flag matroids
are natural generalizations of matroids that admit the following polytopal definition.

Definition 1.1 [Borovik et al. 2003, Corollary 1.13.5 and Theorem 1.13.6]. Let r = (r1, . . . , rk) be a
sequence of increasing integers in [n]. A flag matroid of ranks r on [n] is a sequence M = (M1, . . . , Mk)

of matroids of ranks (r1, . . . , rk) on [n] such that all vertices of the polytope

P(M) = P(M1) + · · · + P(Mk), the Minkowski sum of matroid polytopes,

are equidistant from the origin. The polytope P(M) is called the flag matroid polytope of M; we
sometimes say it is a flag matroid polytope of rank r .

Flag matroids are exactly the type A objects in the theory of Coxeter matroids [Gelfand and Serganova
1987; Borovik et al. 2003]. Just as a realization of a matroid is a point in a Grassmannian, a realization
of a flag matroid is a point in a flag variety. More concretely, a realization of a flag matroid of ranks
(r1, . . . , rk) is an rk × n matrix A over a field such that for each 1 ≤ i ≤ k, the ri × n submatrix of A
formed by the first ri rows of A is a realization of Mi . For an equivalent definition of flag matroids in
terms of Plücker relations on partial flag varieties; see [Jarra and Lorscheid 2024, Proposition A].

There is a notion of moment map for any flag variety (indeed for any generalized partial flag variety
G/P) [Gelfand and Serganova 1987; Borovik et al. 2003]. When a flag matroid M can be realized by a
point A in the flag variety, then its matroid polytope P(M) is the moment map image of the closure of the
torus orbit of A in the flag variety [Gelfand and Serganova 1987; Borovik et al. 2003, Corollary 1.13.5].

There are natural “positive” analogues of matroids, flag matroids, and their polytopes.
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Definition 1.2. Let r = (r1, . . . , rk) be a sequence of increasing integers in [n]. We say that a flag matroid
(M1, . . . , Mk) of ranks r on [n] is a flag positroid if it has a realization by a real matrix A such that the
ri × n submatrix of A formed by the first ri rows of A has all nonnegative minors for each 1 ≤ i ≤ k.

We refer to the flag matroid polytope of a flag positroid as a flag positroid polytope. It follows from
our definition above that flag positroids are realizable.

Setting k = 1 in Definition 1.2 gives the well-studied notion of positroids and positroid polytopes
[Postnikov 2007; Oh 2008; Ardila et al. 2016]. Therefore each flag positroid is a sequence of positroids.

In recent years it has been gradually understood that the tropical geometry of the Grassmannian and
flag variety, and in particular, the Dressian and flag Dressian, are intimately connected to (flag) matroid
polytopes and their subdivisions [Speyer 2008; Herrmann et al. 2009; Brandt et al. 2021]; see also
[Maclagan and Sturmfels 2015, Section 4]. A particularly attractive point of view, which sheds light on
the above connections, is the theory of (flag) matroids over hyperfields [Baker and Bowler 2019; Jarra
and Lorscheid 2024]. In this framework, the Dressian and flag Dressian are the Grassmannian and flag
variety over the tropical hyperfield, while matroids and flag matroids are the points of the Grassmannian
and flag variety over the Krasner hyperfield.

The tropical geometry of the positive Grassmannian and flag variety are particularly nice: the positive
tropical Grassmannian equals the positive Dressian, whose cones in turn parametrize subdivisions of
the hypersimplex into positroid polytopes [Speyer and Williams 2005; 2021; Lukowski et al. 2023;
Arkani-Hamed et al. 2021b]. And the positive tropical complete flag variety equals the positive complete
flag Dressian, whose cones parametrize subdivisions of the permutohedron into Bruhat interval polytopes
[Boretsky 2022; Joswig et al. 2023]. Theorem A below unifies and generalizes the above results.

Definition 1.3. Let T = R∪{∞} be the set underlying the tropical hyperfield, endowed with the topology
such that − log : R≥0 → T is a homeomorphism. Given a point w ∈ T([n]

r ), we define the support of w to
be w =

{
S ∈

(
[n]

r

)
: wS ̸= ∞

}
. When w is the set of bases of a matroid, we identify w with that matroid.

Let P(T([n]

r )) be the tropical projective space of T([n]

r ), which is defined as (T([n]

r ) \ {(∞, . . . ,∞)})/ ∼,
where w ∼ w′ if w = w′

+ (c, . . . , c) for some c ∈ R.

Our main result is the following.

Theorem A. Suppose r is a sequence of consecutive integers (a, . . . , b) for some 1 ≤ a ≤ b ≤ n. Then,
for µ = (µa, . . . , µb) ∈

∏b
i=a P(T([n]

i )), the following statements are equivalent:

(a) µ ∈ TrFl≥0
r,n , the nonnegative tropicalization of the flag variety, i.e., the closure of the coordinate-wise

valuation of points in Flr,n(C≥0).

(b) µ ∈ FlDr≥0
r,n , the nonnegative flag Dressian, i.e., the “solutions” to the positive-tropical Grassmann–

Plücker and incidence-Plücker relations.

(c) Every face in the coherent subdivision Dµ of the polytope P(µ) = P(µ1)+· · ·+ P(µk) induced by
µ is a flag positroid polytope (of rank r).
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Figure 1. Left-hand side: the coherent subdivision of the hypersimplex into positroid
polytopes induced by a point µ ∈ Dr>0

2,4 such that µ13 + µ24 = µ23 + µ14 < µ12 + µ34.
Right-hand side: the coherent subdivision of the permutohedron into Bruhat interval
polytopes induced by a point µ ∈ FlDr>0

(1,2,3),3 such that µ2 +µ13 = µ1 +µ23 < µ3 +µ12.

(d) Every face of dimension at most 2 in the subdivision Dµ of P(µ) is a flag positroid polytope (of
rank r).

(e) The support µ of µ is a flag matroid, and µ satisfies every three-term positive-tropical incidence
relation (respectively, every three-term positive-tropical Grassmann–Plücker relation) when a < b
(respectively, a = b).

For the definitions of the objects in Theorem A, see Proposition 3.6 for (a), Definition 3.3 for (b),
Definition 5.1 for (c), and Definition 3.8 for (e).

We note that if r = (d) is a single integer, Theorem A describes the relationship between the nonnegative
tropical Grassmannian, the nonnegative Dressian, and subdivisions of positroid polytopes (e.g., the
hypersimplex, if µ has no coordinates equal to ∞) into positroid polytopes. And when r = (1, 2, . . . , n),
Theorem A describes the relationship between the nonnegative tropical complete flag variety, the nonneg-
ative complete flag Dressian, and subdivisions of Bruhat interval polytopes (e.g., the permutohedron, if µ

has no coordinates equal to ∞) into Bruhat interval polytopes. We illustrate this relationship in the case
where µ has no coordinates equal to ∞ in Figure 1.

We prove the equivalence (a)⇐⇒(b) in Section 3.2, the implications (b)=⇒(c)=⇒(d)=⇒(e) in Section 5.2,
and the implication (e)=⇒(b) in Section 6.1.

Theorem A has applications to flag positroid polytopes.

Corollary 1.4. For a flag matroid M = (Ma, Ma+1, . . . , Mb) of consecutive ranks r = (a, a + 1, . . . , b),
its flag matroid polytope P(M) is a flag positroid polytope if and only if its (≤ 2)-dimensional faces are
flag positroid polytopes (of rank r).

Proof. Let µ = (µa, . . . , µb), with µi ∈ {0, ∞}(
[n]

i ), where the coordinates of each µi are either 0 or ∞

based on whether we have a basis or nonbasis of Mi . This gives rise to the trivial subdivision of the
corresponding flag matroid polytope P(µ) = P(M). The result now follows from the equivalence of (c)
and (d) in Theorem A. □
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In the Grassmannian case, that is, the case that r = (d) is a single integer, the flag positroid polytopes
of rank r are precisely the positroid polytopes, and in that case the above corollary appeared as [Lukowski
et al. 2023, Theorem 3.9].

Also in the Grassmannian case, the objects discussed in Theorem A are closely related to questions
of realizability. Note that by definition, every positroid has a realization by a matrix whose Plücker
coordinates are nonnegative, so it naturally defines a positively oriented matroid, that is, an oriented
matroid defined by a chirotope whose values are all 0 and 1. Conversely, every positively oriented matroid
can be realized by a positroid: this was first proved in [Ardila et al. 2017] using positroid polytopes,
and subsequently in [Speyer and Williams 2021], using the positive tropical Grassmannian. It is natural
then to ask if there is an analogous realizability statement in the setting of flag matroids, and if one can
characterize when a sequence of positroids forms a flag positroid; indeed, this was part of the motivation
for [Benedetti et al. 2022], which studied quotients of uniform positroids. Note however that questions
of realizability for flag matroids are rather subtle: for example, a sequence of positroids that form a
realizable flag matroid can still fail to be a flag positroid (see Example 4.4). By working with oriented
flag matroids, we give an answer to this realizability question in Corollary 1.5, in the case of consecutive
ranks.

Corollary 1.5. Suppose (M1, . . . , Mk) is a sequence of positroids on [n] of consecutive ranks r =

(r1, . . . , rk). Then, when considered as a sequence of positively oriented matroids, (M1, . . . , Mk) is a flag
positroid if and only if it is an oriented flag matroid.

We define a positively oriented flag matroid to be a sequence of positively oriented matroids (χ1, . . . , χk)

which is also an oriented flag matroid. Corollary 1.5 then says that every positively oriented flag matroid
of consecutive ranks (r1, . . . , rk) is realizable.

See Section 4.1 for a review of oriented matroids and oriented flag matroids. Note that because a
positroid by definition has a realization over R with all nonnegative minors, it defines a positively oriented
matroid. In Section 4.2, we deduce Corollary 1.5 from the equivalence of (a) and (b) in Theorem A. Another
proof using ideas from discrete convex analysis is sketched in Remark 4.7. In both proofs, the consecutive
ranks condition is indispensable. We do not know whether the corollary holds if r = (r1, . . . , rk) fails to
satisfy the consecutive rank condition.

Question 1.6. Suppose M and M ′ are positroids on [n] such that, when considered as positively oriented
matroids, they form an oriented flag matroid (M, M ′). Is (M, M ′) then a flag positroid?

One may attempt to answer the question by appealing to the fact [Kung 1986, Exercise 8.14] that for a
flag matroid (M, M ′), one can always find a flag matroid (M1, . . . , Mk) of consecutive ranks such that
M1 = M and Mk = M ′. However, the analogous statement fails for flag positroids; see Example 4.6 for an
example of a flag positroid (M, M ′) on [4] of ranks (1, 3) such that there is no flag positroid (M, M2, M ′)

with rank of M2 equal to 2.
The consecutive rank condition has recently shown up in [Bloch and Karp 2023], which studied the

relation between two notions of total positivity for partial flag varieties, “Lusztig positivity” and “Plücker
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positivity” (see Section 2.1). In particular, the Plücker positive subset of a partial flag variety agrees with
the Lusztig positive subset of the partial flag variety precisely when the flag variety consists of linear
subspaces of consecutive ranks [Bloch and Karp 2023, Theorem 1.1].

A generalized Bruhat interval polytope [Tsukerman and Williams 2015, Definition 7.8 and Lemma 7.9]
can be defined as the moment map image of the closure of the torus orbit of a point A in the nonnegative
part (G/P)≥0 (in the sense of Lusztig) of a flag variety G/P . When r is a sequence of consecutive
integers, it then follows from [Bloch and Karp 2023] that generalized Bruhat interval polytopes for Fl≥0

r;n
are precisely the flag positroid polytopes of ranks r . In the complete flag case, a generalized Bruhat
interval polytope is just a Bruhat interval polytope [Kodama and Williams 2015], that is, the convex hull
of the permutation vectors (z(1), . . . , z(n)) for all permutations z lying in some Bruhat interval [u, v].

We can now restate Corollary 1.4 as follows.

Corollary 1.7. For a flag matroid on [n] of consecutive ranks r , its flag matroid polytope is a generalized
Bruhat interval polytope if and only if its (≤ 2)-dimensional faces are generalized Bruhat interval
polytopes. In particular, for a complete flag matroid on [n], its flag matroid polytope is a Bruhat interval
polytope if and only if its (≤ 2)-dimensional faces are Bruhat interval polytopes.

The structure of this paper is as follows. In Section 2, we give background on total positivity and
Bruhat interval polytopes. In Section 3, we introduce the tropical flag variety, the flag Dressian, and
nonnegative analogues of these objects; we also prove the equivalence of (a) and (b) in Theorem A.
In Section 4 we discuss positively oriented flag matroids and prove Corollary 1.5. In Section 5 we
explain the relation between the flag Dressian and subdivisions of flag matroid polytopes, then prove
that (b)=⇒(c)=⇒(d)=⇒(e) in Theorem A. We prove some key results about three-term incidence and
Grassmann–Plücker relations in Section 6, which allow us to prove (e)=⇒(b) in Theorem A. Section 7
concerns projections of positive Richardsons to positroids: we characterize the positroid constituents of
complete flag positroids, and we characterize when two adjacent-rank positroids form an oriented matroid
quotient, or equivalently, can appear as constituents of a complete flag positroid. In Section 8, we make
some remarks about the various fan structures for TrFl>0

r;n; we then discuss fan structures and coherent
subdivisions in the case of the Grassmannian and complete flag variety, including a detailed look at the
case of TrFl>0

4 .

2. Background on total positivity and Bruhat interval polytopes

2.1. Background on total positivity. Let n ∈ Z+ and let r = {r1 < · · · < rk} ⊆ [n]. For a field k, let
G = GLn(k), and let Pr;n(k) denote the parabolic subgroup of G of block upper-triangular matrices with
diagonal blocks of sizes r1, r2 − r1, . . . , rk − rk−1, n − rk . We define the partial flag variety

Flr;n(k) := GLn(k)/ Pr;n(k).

As usual, we identify Flr;n(k) with the variety of partial flags of subspaces in kn:

Flr;n(k) = {(V1 ⊂ · · · ⊂ Vk) : Vi a linear subspace of kn of dimension ri for i = 1, . . . , k}.
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We write Fln(k) for the complete flag variety Fl1,2,...,n;n(k). Note that Fln(k) can be identified with
GLn(k)/B(k), where B(k) is the subgroup of upper-triangular matrices. There is a natural projection π

from Fln(k) to any partial flag variety by simply forgetting some of the subspaces.
If A is an rk × n matrix such that Vri is the span of the first ri rows, we say that A is a realization

of V := (V1 ⊂ · · · ⊂ Vk) ∈ Flr;n . Given any realization A of V and any 1 ≤ i ≤ k, we have the Plücker
coordinates or flag minors pI (A) where I ∈

(
[n]

ri

)
; concretely, pI (A) is the determinant of the submatrix

of A occupying the first ri rows and columns I . This gives the Plücker embedding of Flr;n(k) into
P

([n]

r1
)−1

× · · · × P
([n]

rk
)−1 taking V to ((pI (A))I∈([n]

r1
), . . . , (pI (A))I∈([n]

rk
)).

We now let k be the field R of real numbers. With this understanding, we will often drop the R from
our notation.

Definition 2.1. We say that a real matrix is totally positive if all of its minors are positive. We let GL>0
n

denote the subset of GLn of totally positive matrices.

There are two natural ways to define positivity for partial flag varieties. The first notion comes from
work of Lusztig [1994]. The second notion uses Plücker coordinates, and was initiated in work of
Postnikov [2007].

Definition 2.2. We define the (Lusztig) positive part of Flr;n , denoted by Fl>0
r;n , as the image of GL>0

n

inside Flr;n = GLn / Pr;n . We define the (Lusztig) nonnegative part of Flr;n , denoted by Fl≥0
r;n , as the

closure of Fl>0
r;n in the Euclidean topology.

We define the Plücker positive part (respectively, Plücker nonnegative part) of Flr;n to be the subset of
Flr;n where all Plücker coordinates are positive (respectively, nonnegative).1

It is well-known that the Lusztig positive part of Flr;n is a subset of the Plücker positive part of Flr;n ,
and that the two notions agree in the case of the Grassmannian [Talaska and Williams 2013, Corollary 1.2].
The two notions also agree in the case of the complete flag variety [Boretsky 2022, Theorem 5.21]. More
generally, we have the following.

Theorem 2.3 [Bloch and Karp 2023, Theorem 1.1]. The Lusztig positive (respectively, Lusztig nonnega-
tive) part of Flr;n equals the Plücker positive (respectively, Plücker nonnegative) part of Flr;n if and only
if the set r consists of consecutive integers.

See [Bloch and Karp 2023, Section 1.4] for more references and a nice discussion of the history. Since
in this paper we will be mainly studying the case where r consists of consecutive integers, we will use
the two notions interchangeably when there is no ambiguity.

Let B and B− be the opposite Borel subgroups consisting of upper-triangular and lower-triangular
matrices. Let W = Sn be the Weyl group of GLn . Given u, v ∈ W , the Richardson variety is the intersection
of opposite Bruhat cells

Ru,v := (Bv̇B/B) ∩ (B−u̇ B/B),

1The reader who is concerned about the fact that we are working with projective coordinates can replace “all Plücker
coordinates are positive” by “all Plücker coordinates are nonzero and have the same sign”.
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where v̇ and u̇ denote permutation matrices in GLn representing v and u. It is well-known that Ru,v is
nonempty precisely when u ≤ v in Bruhat order, and in that case is irreducible of dimension ℓ(v)− ℓ(u).

For u, v ∈ W with u ≤ v, let R>0
u,v :=Ru,v ∩Fl≥0

n be the positive part of the Richardson variety. Lusztig
conjectured and Rietsch [1998] proved that

Fl≥0
n =

⊔
u≤v

R>0
u,v (1)

is a cell decomposition of Fl≥0
n . Moreover, Rietsch showed that one obtains a cell decomposition of the

nonnegative partial flag variety Fl≥0
r;n by projecting the cell decomposition of Fl≥0

n [Rietsch 1998; 2006,
Section 6]. Specifically, if we let Wr be the parabolic subgroup of W generated by the simple reflections
{si | 1 ≤ i ≤ n − 1 and i /∈ {r1, . . . , rk}}, then one obtains a cell decomposition by using the projections
π(R>0

u,v) of the cells R>0
u,v where u ≤ v and v is a minimal-length coset representative of W/Wr . (We note

moreover that Rietsch’s results hold for G a semisimple, simply connected linear algebraic group over C

split over R).
In the case of the Grassmannian, Postnikov [2007] studied the Plücker nonnegative part Gr≥0

d,n of the
Grassmannian, and gave a decomposition of it into positroid cells S>0

B by intersecting Gr≥0
d,n with the

matroid strata. Concretely, if B is the collection of bases of an element of Gr≥0
d,n , then S>0

B = {A ∈ Gr≥0
d,n |

pI (A) ̸= 0 if and only if I ∈B}. This cell decomposition of Gr≥0
d,n agrees with Rietsh’s cell decomposition

[Talaska and Williams 2013, Corollary 1.2].

2.2. Background on (generalized) Bruhat interval polytopes. Bruhat interval polytopes were defined in
[Kodama and Williams 2015], motivated by the connections to the full Kostant–Toda hierarchy.

Definition 2.4 [Kodama and Williams 2015]. Given two permutations u and v in Sn with u ≤ v in Bruhat
order, the Bruhat interval polytope Pu,v is defined as

Pu,v = Conv{(x(1), x(2), . . . , x(n)) | u ≤ x ≤ v} ⊂ Rn. (2)

We also define the (twisted) Bruhat interval polytope P̃u,v by

P̃u,v = Conv{(n + 1 − x−1(1), n + 1 − x−1(2), . . . , n + 1 − x−1(n)) | u ≤ x ≤ v} ⊂ Rn. (3)

While the definition of Bruhat interval polytope in (2) is more natural from a combinatorial point of
view, as we’ll see shortly, the definition in (3) is more natural from the point of view of the moment map.
Note that the set of Bruhat interval polytopes is the same as the set of twisted Bruhat interval polytopes;
it is just a difference in labeling.

Remark 2.5. If we choose any point A in the cell R>0
u,v ⊂ Fl≥0

n (thought of as an n × n matrix), and let
Mi be the matroid represented by the first i rows of A, then P̃u,v is the Minkowski sum of the matroid
polytopes P(M1), . . . , P(Mn) [Kodama and Williams 2015, Corollary 6.11]. In particular, P̃u,v is the
matroid polytope of the flag matroid M1, . . . , Mn .
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Following [Tsukerman and Williams 2015], we can generalize the notion of Bruhat interval polytope
as follows; see [loc. cit., Section 7.2] for notation.

Definition 2.6. Choose a generalized partial flag variety G/P = G/PJ , let WJ be the associated parabolic
subgroup of the Weyl group W , and let u, v ∈ W with u ≤ v in Bruhat order and v a minimal-length coset
representative of W/WJ . Let π denote the projection from G/B to G/P , and let A be an element of the
cell π(R>0

u,v) of (Lusztig’s definition of) (G/P)≥0.
A generalized Bruhat interval polytope P̃ J

u,v can be defined in any of the following equivalent ways
[Tsukerman and Williams 2015, Definition 7.8, Lemma 7.9, Proposition 7.10, Remark 7.11] and [Borovik
et al. 2003, Preface]:

• The moment map image of the closure of the torus orbit of A in G/P (which is a Coxeter matroid
polytope).

• The moment map image of the closure of the cell π(R>0
u,v).

• The moment map image of the closure of the projected Richardson variety π(Ru,v).

• The convex hull Conv{z ·ρJ | u ≤ z ≤ v} ⊂ t∗R, where ρJ is the sum of fundamental weights
∑

j∈J ω j ,
and t∗R is the dual of the real part of the Lie algebra t of the torus T ⊂ G.

Remark 2.7. When G = GLn with fundamental weights e1, e1 +e2, . . . , e1 +· · ·+en−1, each generalized
Bruhat interval polytope P̃ J

u,v is the flag positroid polytope associated to a matrix A representing a
point of Fl≥0

r;n , with r = (r1, . . . , rk). In this case the generalized Bruhat interval polytope is precisely
the Minkowski sum P(M1) + · · · + P(Mk) of the matroid polytopes P(Mi ), where Mi is the matroid
realized by the first ri rows of A. In particular, the generalized Bruhat interval polytope P̃∅

u,v = P̃u,v is
the Minkowski sum P(M1) + · · · + P(Mn), where Mi is the positroid realized by the first i rows of any
matrix representing a point of A ∈ R>0

v,w. We will discuss how to read off the matroids Mi from (u, v) in
Section 7.2.

As mentioned in the introduction, when r is a sequence of consecutive ranks, the generalized Bruhat
interval polytopes for Fl≥0

r;n are precisely the flag positroid polytopes of ranks r . When r = (1, 2, . . . , n),
we recover the notion of Bruhat interval polytope, and when r is a single integer, we recover the notion
of positroid polytope.

3. The nonnegative tropicalization

3.1. Background on tropical geometry. We define the main objects in (a) and (b) of Theorem A, and
record some basic properties. For a more comprehensive treatment of tropicalizations and positive-
tropicalizations, we refer to [Maclagan and Sturmfels 2015, Chapter 6] and [Speyer and Williams 2005],
respectively.

For a point w = (w1, . . . , wm) ∈ Tm , we write w̄ for its image in the tropical projective space P(Tm).
For a = (a1, . . . , an) ∈ Zm , write a • w = a1w1 + · · · + amwm .
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Definition 3.1. For a real homogeneous polynomial

f =

∑
a∈A

caxa
∈ R[x1, . . . , xm], where A is a finite subset of Zm

≥0 and 0 ̸= ca ∈ R,

the extended tropical hypersurface Vtrop( f ) and the nonnegative tropical hypersurface V ≥0
trop( f ) are subsets

of the tropical projective space P(Tm) defined by

Vtrop( f ) = {w̄ ∈ P(Tm) | the minimum in mina∈A(a • w), if finite, is achieved at least twice},

and

V ≥0
trop( f ) =

{
w̄ ∈ P(Tm)

∣∣∣ the minimum in mina∈A(a • w), if finite, is achieved at least twice,
including at some a, a′

∈ A such that ca and ca′ have opposite signs

}
.

We say that a point satisfies the tropical relation of f if it is in Vtrop( f ), and that it satisfies the positive-
tropical relation of f if it is in V ≥0

trop( f ).

When f is a multihomogeneous real polynomial, we define Vtrop( f ) and V ≥0
trop( f ) similarly as subsets

of a product of tropical projective spaces. We will consider tropical hypersurfaces of polynomials that
define the Plücker embedding of a partial flag variety.

Definition 3.2. For integers 0 < r ≤ s < n, the (single-exchange) Plücker relations of type (r, s; n) are
polynomials in variables

{
x I : I ∈

(
[n]

r

)
∪

(
[n]

s

)}
defined as

Pr,s;n =

{ ∑
j∈J\I

sign( j, I, J )x I∪ j x J\ j

∣∣∣ I ∈

(
[n]

r −1

)
, J ∈

(
[n]

s+1

)}
,

where sign( j, I, J ) = (−1)|{k∈J |k< j}|+|{i∈I | j<i}|. When r = s, the elements of Pr,r;n are called the
Grassmann–Plücker relations (of type (r; n)), and when r < s, the elements of Pr,s;n are called the
incidence-Plücker relations (of type (r, s; n)).

As in the introduction, let r = (r1 < · · · < rk) be a sequence of increasing integers in [n]. We let
Pr;n =

⋃
r≤s, r,s∈r Pr,s;n, and let ⟨Pr;n⟩ be the ideal generated by the elements of Pr;n . It is well-known

that for any field k the ideal ⟨Pr;n⟩ set-theoretically carves out the partial flag variety Flr;n(k) embedded
in

∏k
i=1 P(k([n]

ri
)
) via the standard Plücker embedding [Fulton 1997, Section 9]. Similarly, the Plücker

relations define the tropical analogues of partial flag varieties as follows.

Definition 3.3. The tropicalization TrFlr;n of Flr;n , nonnegative tropicalization TrFl≥0
r;n of Flr;n , flag

Dressian FlDrr;n , and nonnegative flag Dressian FlDr≥0
r;n are subsets of

∏k
i=1 P(T

([n]

ri
)
) defined as

TrFlr;n =

⋂
f ∈⟨Pr;n⟩

Vtrop( f ) and TrFl≥0
r;n =

⋂
f ∈⟨Pr;n⟩

V ≥0
trop( f ),

FlDrr;n =

⋂
f ∈Pr;n

Vtrop( f ) and FlDr≥0
r;n =

⋂
f ∈Pr;n

V ≥0
trop( f ).
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When k = 1, i.e., when r consists of one integer d , one obtains the (nonnegative) tropicalization of the
Grassmannian TrGr(≥0)

d;n and the (nonnegative) Dressian Dr(≥0)

d;n studied in [Speyer and Sturmfels 2004;
Speyer and Williams 2005; 2021; Arkani-Hamed et al. 2021b]. Like Fln , we write only n in the subscript
when r = (1, 2, . . . , n).

Remark 3.4. In [Joswig et al. 2023, Section 6], the authors define the “positive flag Dressian” to consist of
the elements µ = (µ1, . . . , µk) ∈ FlDrr;n whose constituents µi are each in the strictly positive Dressian.
In our language, this is equal to considering the points of⋂

f ∈
⋃k

i=1 Pri ,ri ;n

V ≥0
trop( f ) ∩

⋂
f ∈

⋃
ri <r j

Pri ,r j ;n

Vtrop( f )

that have no ∞ coordinates. In a similar vein, we could consider defining the “nonnegative flag Dressian”
to be the elements of the flag Dressian whose constituents are in the nonnegative Dressian. This gives a
strictly larger set than our definition of the nonnegative flag Dressian, and has the shortcoming that the
equivalence of (a) and (b) in Theorem A would no longer hold; see Example 4.4.

We record a useful equivalent description of the (nonnegative) tropicalization of a partial flag variety
using Puiseux series. Recall the notion of the tropical semifield from Definition 1.3.

Definition 3.5. Let C = C{{t}} be the field of Puiseux series with coefficients in C, with the usual valuation
map val : C → T. Concretely, for f ̸= 0, val( f ) is the exponent of the initial term of f , and val(0) = ∞.
Let

C>0 = { f ∈ C \ {0} : the initial coefficient of f is real and positive} and C≥0 = C>0 ∪ {0}.

For a point p ∈ Flr;n(C) ⊆
∏k

i=1 P(C([n]

ri
)
), applying the valuation val : C → T coordinate-wise to

the Plücker coordinates gives a point val(p) ∈
∏k

i=1 P(T
([n]

ri
)
). Noting that val(C) = Q ∪ {∞} ⊂ T, we

say that a point in
∏k

i=1 P(T
([n]

ri
)
) has rational coordinates if it is a point in

∏k
i=1 P((Q ∪ {∞})

([n]

ri
)
).

Let Flr;n(C≥0) be the subset of Flr;n(C) consisting of points with all coordinates in C≥0, i.e., the points

p ∈ Flr;n(C) ⊆
∏k

i=1 P(C([n]

ri
)
) that have a representative in

∏k
i=1 C

([n]

ri
)

≥0 .

Proposition 3.6. The set {val(p) : p ∈Flr;n(C)} equals the set of points in TrFlr;n with rational coordinates.
Likewise, the set {val(p) : p ∈ Flr;n(C≥0)} equals the set of points in TrFl≥0

r;n with rational coordinates.
Moreover, we have

TrFlr;n = the closure of {val(p) : p ∈ Flr;n(C)} in
k∏

i=1

P(T
([n]

ri
)
) and

TrFl≥0
r;n = the closure of {val(p) : p ∈ Flr;n(C≥0)} in

k∏
i=1

P(T
([n]

ri
)
).
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Proof. The first equality is known as the (extended) fundamental theorem of tropical geometry [Maclagan
and Sturmfels 2015, Theorems 3.2.3 and 6.2.15]. The second equality is the analogue for nonnegative
tropicalizations, established in [Speyer and Williams 2005, Proposition 2.2]. □

Remark 3.7. The need to restrict to rational coordinates and the need to take the closure in Proposition 3.6
can be removed if we let C be the Maltsev–Neumann ring C((R)) (see [Poonen 1993, Section 3]) which
satisfies val(C) = T; see also [Markwig 2010].

Let us also record an equivalent description of the (nonnegative) flag Dressian when r is a sequence of
consecutive integers. We need the following definition. As is customary in matroid theory, we write Si j
for the union S ∪ {i, j} of subsets S and {i, j} of [n].

Definition 3.8. The set P
(3)

r,r;n of three-term Grassmann–Plücker relations (of type (r; n)) is the subset
of Pr,r;n consisting of polynomials of the form

xSi j xSkℓ − xSik xSjℓ + xSiℓxSjk

for a subset S ⊆ [n] of cardinality r −2 and a subset {i < j < k < ℓ} ⊆ [n] disjoint from S. Similarly, the
set P

(3)

r,r+1;n of three-term incidence–Plücker relations (of type (r, r +1)) is the subset of Pr,r;n consisting
of polynomials of the form

xSi xSjk − xSj xSik + xSk xSi j

for a subset S ⊆ [n] of cardinality r − 1 and a subset {i < j < k} ⊆ [n] disjoint from S.

Let P
(3)

r;n be the union of the three-term Grassmann–Plücker and three-term incidence-Plücker relations,
which we refer to as the three-term Plücker relations.

Proposition 3.9. Suppose r = (r1 < · · · < rk) consists of consecutive integers. Then a point µ =

(µ1, . . . , µk) ∈
∏k

i=1 P(T
([n]

ri
)
) is in the (nonnegative) flag Dressian if and only if its support µ =

(µ1, . . . , µk) is a flag matroid and µ satisfies the (nonnegative-)tropical three-term Plücker relations.
More explicitly, we have

FlDrr;n =

{
µ ∈

k∏
i=1

P(T
([n]

ri
)
)

∣∣∣ µ is a flag matroid and µ ∈

⋂
f ∈P

(3)
r;n

Vtrop( f )

}
, and

FlDr≥0
r;n =

{
µ ∈

k∏
i=1

P(T
([n]

ri
)
)

∣∣∣ µ is a flag matroid and µ ∈

⋂
f ∈P

(3)
r;n

V ≥0
trop( f )

}
.

Proof. We will use the language and results from the study of matroids over hyperfields. See [Baker
and Bowler 2019] for hyperfields and relation to matroid theory, and see [Gunn 2019, Section 2.3] for a
description of the signed tropical hyperfield TR, for which we note the following fact: The underlying set
of TR is (R×{+, −})∪{∞}, so given c ∈ T, one can identify it with the element (c, +) ∈ R×{+, −} of
TR if c < ∞ and ∞ otherwise.
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In the language of hyperfields, for a homogeneous polynomial f in m variables and a hyperfield F,
one has the notion of the “hypersurface of f over F,” which is a subset VF( f ) of P(Fm). When F is
the tropical hyperfield T, this coincides with Vtrop( f ) in Definition 3.1. When F is the signed tropical
hyperfield TR, a point w ∈ Tm , when considered as a point of TRm , is in VTR( f ) if and only if it is in
V ≥0

trop( f ). Thus, in the language of flag matroids over hyperfields [Jarra and Lorscheid 2024], the flag
Dressian is the partial flag variety Flr;n(T) over T, and the nonnegative flag Dressian is the subset of the
partial flag variety Flr;n(TR) over TR consisting of points that come from T.

Now, both the tropical hyperfield and the signed tropical hyperfield are perfect hyperfields because
they are doubly distributive [Baker and Bowler 2019, Corollary 3.45]. Our proposition then follows from
[Jarra and Lorscheid 2024, Theorem 2.16 and Corollary 2.24], which together state the following: When
r consists of consecutive integers, for a perfect hyperfield F, a point p ∈

∏k
i=1 P(F

([n]

ri
)
) is in the partial

flag variety Flr;n(F) over F if and only if the support of p is a flag matroid and p satisfies the three-term
Plücker relations over F. □

For completeness, we include the proof of the following fact.

Lemma 3.10. The signed tropical hyperfield TR is doubly distributive. That is, for any x, y, z, w ∈ TR,
one has an equality of sets (x ⊞ y) · (z ⊞w) = xz ⊞ xw⊞ yz ⊞ yw.

Proof. If any one of the four x, y, z, w is ∞, then the desired equality is the usual distributivity of the
signed tropical hyperfield. Thus, we now assume that all four elements are in R × {+, −}, and write
x = (xR, xS) ∈ R × {+, −} and similarly for y, z, w. If xR > yR, then xzR > yzR and xwR > ywR, so
the equality follows again from the usual distributivity. So we now assume that all four elements have
the same value in R, and the equality then follows from the fact that the signed hyperfield S is doubly
distributive. □

Remark 3.11. Even when r does not consist of consecutive integers, [Jarra and Lorscheid 2024, The-
orem 2.16] implies that the flag Dressian and the nonnegative flag Dressian are carved out by fewer
polynomials than Pr;n in the following way: Denoting by

P
ad j
r;n =

k⋃
i=1

Pri ,ri ;n ∪

k−1⋃
i=1

Pri ,ri+1;n,

one has

FlDrr;n =

⋂
f ∈P

ad j
r;n

Vtrop( f ) and FlDr≥0
r;n =

⋂
f ∈P

ad j
r;n

V ≥0
trop( f ).

This generalizes the fact that a sequence of matroids (M1, . . . , Mk) is a flag matroid if and only if
(Mi , Mi+1) is a flag matroid for all i = 1, . . . , k − 1 [Borovik et al. 2003, Theorems 1.7.1 and 1.11.1].

The following corollary of Proposition 3.9 is often useful in computation. It states that the nonnegative
tropical flag Dressian is in some sense “convex” inside the tropical flag Dressian.
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Corollary 3.12. Suppose that r = (r1 < · · · < rk) consists of consecutive integers, and suppose we
have points µ1, . . . ,µℓ ∈

∏k
i T

([n]

ri
) that are in FlDr≥0

r;n . Then, if a nonnegative linear combination
c1µ1 + · · · + cℓµℓ is in FlDrr;n , it is in FlDr≥0

r;n .

Proof. We make the following general observation: Suppose f = cαxα
− cβ xβ

+ cγ xγ is a three-term
polynomial in R[x1, . . . , xm] with cα, cβ, cγ positive. Then an element u ∈ Tm satisfies the positive-
tropical relation of f if and only if β • u = min{α • u, γ • u}. Hence, if u1, . . . , uℓ ∈ Tm each satisfy this
relation, then a nonnegative linear combination of them can satisfy the tropical relation of f only if the
term at β achieves the minimum, that is, only if the positive-tropical relation is satisfied. The corollary
now follows from this general observation and Proposition 3.9. □

3.2. Equivalence of (a) and (b) in Theorem A. Let r be a sequence of consecutive integers (a, . . . , b) for
some 1 ≤ a ≤ b ≤ n. We will show that TrFl≥0

r;n = FlDr≥0
r;n . The inclusion TrFl≥0

r;n ⊆ FlDr≥0
r;n is immediate

from Definition 3.3. We will deduce TrFl≥0
r;n ⊇ FlDr≥0

r;n by utilizing the two known cases of the equality
TrFl≥0

r;n = FlDr≥0
r;n — when r = (r) and when r = (1, 2, . . . , n).

We start by recalling that tropicalization behaves well on subtraction-free rational maps.

Definition 3.13. Let f =
∑

a∈A caxa
∈ R[x1, . . . , xm] be a real polynomial, where A is a finite subset of

Zm
≥0 and 0 ̸= ca ∈ R. We define the tropicalization Trop( f ) : Rm

→ R to be the piecewise-linear map
w 7→ mina∈A(a • w), where as before, a • w = a1w1 + · · · + amwm .

Note that Trop( f1 f2) = Trop( f1)+Trop( f2). Moreover, if f1 and f2 are two polynomials with positive
coefficients, and a1, a2 ∈ R>0, then Trop(a1 f1 + a2 f2) = min(Trop( f1), Trop( f2)). These facts imply
the following simple lemma, which appears as [Rietsch and Williams 2019, Lemma 11.5]; see [Speyer
and Williams 2005, Proposition 2.5] and [Pachter and Sturmfels 2004] for closely related statements.

Lemma 3.14. Let f = ( f1, . . . , fn) : Cm
→ Cn be a rational map defined by polynomials f1, . . . , fn

with positive coefficients (or more generally by subtraction-free rational expressions). Let (x1, . . . , xm) ∈

(C≥0)
m , such that f (x1, . . . , xm) = (y1, . . . , yn). Then

(Trop( f ))(val(x1), . . . , val(xm)) = (val(y1), . . . , val(yn)).

The next result states that we can extend points in the nonnegative Dressian to points in the nonnegative
two-step flag Dressian.

Proposition 3.15. Given µd ∈ Dr≥0
d;n with rational coordinates, there exists µd+1 ∈ Dr≥0

d+1;n such that
(µd , µd+1) ∈ FlDr≥0

d,d+1;n . Similarly, there exists µd−1 ∈ Dr≥0
d−1;n such that (µd−1, µd) ∈ FlDr≥0

d−1,d;n .

The proof of Proposition 3.15 requires the following refined results about Rietsch’s cell decomposition
of the nonnegative flag variety.
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Theorem 3.16. The nonnegative flag variety has a cell decomposition into positive Richardsons

Fln(C≥0) =

⊔
v≤w

Rv,w(C>0)

where each cell Rv,w(C>0) can be parametrized using a map

φv,w : (C>0)
ℓ(w)−ℓ(v)

→ Rv,w(C>0).

Moreover, this parametrization can be expressed as an embedding into projective space (e.g., using the
flag minors) using polynomials in the parameters with positive coefficients.

Proof. The first statement comes from [Marsh and Rietsch 2004, Theorem 11.3]; Marsh and Rietsch
were working over R and R>0 but the same proof holds over Puiseux series. The statement that the
parametrization can be expressed as an embedding into projective space using positive polynomials comes
from [Rietsch and Williams 2008, Proposition 5.1]. □

Corollary 3.17. Each m-dimensional positroid cell SB(C>0) in the nonnegative Grassmannian Grd,n(C≥0)

is the projection πd(Rv,w(C>0)) of some positive Richardson of dimension m = ℓ(w)− ℓ(v) in Fln(C≥0),
so we get a subtraction-free rational map

πd ◦ φv,w : (C>0)
m

→ Rv,w(C>0) → SB(C>0).

Proof. That fact that each positroid cell is the projection of a positive Richardson was discussed in
Section 2.1. The result now follows from Theorem 3.16. □

Proof of Proposition 3.15. Using [Arkani-Hamed et al. 2021b, Theorem 9.2], the fact that µd ∈ Dr≥0
d;n

with rational coordinates implies that µd = val({1I (Vd)}) for some subspace Vd ∈ Grd,n(C≥0), and hence
Vd lies in some positroid cell SB(C>0) over Puiseux series.

By Corollary 3.17, Vd is the projection of a point (V1, . . . , Vn) of Fln(C≥0), which in turn is the image
of a point (x1, . . . , xm) ∈ (C>0)

m , and the Plücker coordinates 1I (V j ) of each V j are expressed as positive
polynomials 1I (x1, . . . , xm) in the parameters x1, . . . , xm .

In particular, we have subtraction-free maps

πd ◦ φv,w : (C>0)
m

→ Fln(C≥0) → Grd,n(C≥0)

taking

(x1, . . . , xm) 7→ {1I (x1, . . . , xm) | I ⊂ [n]} 7→

{
1I (x1, . . . , xm)

∣∣ I ∈

(
[n]

d

)}
.

The fact that the maps φv,w and πd are subtraction-free implies by Lemma 3.14 that we can tropicalize
them, obtaining maps

Trop(πd ◦ φv,w) : Rm
→ TrFl≥0

n → TrGr≥0
d,n

taking

(val(x1), . . . , val(xm)) 7→ {val(1I (x1, . . . , xm)) | I ⊂ [n]} 7→

{
val(1I (x1, . . . , xm)) | I ∈

(
[n]

d

)}
.
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We now let µd+1 =
{
val(1I (Vd+1)) | I ∈

(
[n]

d+1

)}
and µd−1 =

{
val(1I (Vd−1)) | I ∈

(
[n]

d−1

)}
. By

construction we have that all the three-term (incidence) Plücker relations hold for (µd , µd+1), and
similarly for (µd−1, µd). Therefore (µd , µd+1) ∈ FlDr≥0

d,d+1;n and (µd−1, µd) ∈ FlDr≥0
d−1,d;n . □

The following consequence of Proposition 3.15 is very useful.

Corollary 3.18. Let a′
≤ a ≤ b ≤ b′ be positive integers, and let r = (a, a + 1, . . . , b) and r ′

=

(a′, a′
+ 1, . . . , b′) be sequences of consecutive integers. Then any point (µa, . . . , µb) ∈ FlDr≥0

r;n with
rational coordinates can be extended to a point (µa′, µa′+1, . . . , µa, . . . , µb, . . . , µb′) ∈ FlDr≥0

r ′;n .

Proof. We start with µ = (µa, µa+1, . . . , µb) ∈ FlDr≥0
r;n . We take µb and repeatedly use Proposition 3.15

to construct µb+1, then µb+2, . . . , µb′ . Similarly we take µa and use Proposition 3.15 to construct
µa−1, µa−2, . . . , µa′ . Now by construction (µa′, µa′+1, . . . , µa, . . . , µb, . . . , µb′) satisfies:

• µi ∈ Dr≥0
i;n for i = a′, a′

+ 1, . . . , b′.

• All three-term incidence-Plücker relations hold (because the three-term incidence-Plücker relations
occur only in consecutive ranks).

Therefore (µa′, µa′+1, . . . , µb′) ∈ FlDr≥0
r ′;n by Proposition 3.9. □

Theorem 3.19. Let r = (a, a + 1, . . . , b) be a sequence of consecutive integers, and let µ ∈ FlDr≥0
r;n with

rational coordinates. Then µ ∈ TrFl≥0
r;n .

Proof. We start with µ= (µa, µa+1, . . . , µb)∈ FlDr≥0
r;n and use Corollary 3.18 to construct (µ1, . . . , µn)∈

FlDr≥0
n . Now [Boretsky 2022, Theorem 5.21trop] states that FlDr≥0

n = TrFl≥0
n . Hence, we have

(µ1, . . . , µn) ∈ TrFl≥0
n , so (µa, µa+1, . . . , µb) ∈ TrFl≥0

r,n . □

Proof of (a) ⇐⇒ (b) in Theorem A. We only need show that (b)=⇒(a), i.e., that TrFl≥0
r;n ⊇ FlDr≥0

r;n , since
the other direction is trivial. But this follows from Theorem 3.19 because the points in FlDr≥0

r;n with
rational coordinates are dense in FlDr≥0

r;n , and TrFl≥0
r;n is closed. □

Remark 3.20. Note that our method of proof crucially used the fact that r is a sequence of consecutive
integers: we used Proposition 3.15 to fill in the ranks from b through n and from a down to 1. But if
say we were considering r = {a, b} with b − a > 1 and µ = (µa, µb), we could not guarantee using
Proposition 3.15 that we could construct µb−1, µb−2, . . . , µa+1 in a way that is consistent with µa .

Remark 3.21. Recall from Theorem 2.3 that if r is a sequence of consecutive integers, the two notions of
the positive/nonnegative part of the flag variety (see Definition 2.2) coincide. The method used to prove
the equivalence of (a) and (b) in Theorem A can be applied in a nontropical context to prove Theorem 2.3
in an alternate way. We start by noting that the result holds when r = (a), which is to say, for the
nonnegative Grassmannian [Talaska and Williams 2013, Corollary 1.2] and also when r = (1, 2, . . . , n),
which is to say, for the nonnegative complete flag variety [Boretsky 2022, Theorem 5.21]. To prove
the result for r = (a, a + 1, . . . , b), we start with a flag V• = (Va, . . . , Vb) in ranks r whose Plücker
coordinates are all nonnegative, so that V• is Plücker nonnegative. As in Proposition 3.15, we can use
the r = (a) case to argue that the flag can be extended to lower ranks in such a way that all the Plücker
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coordinates are nonnegative. Dually, we can extend to higher ranks from the r = (b) case. This yields a
complete flag (V1, . . . , Vn) with all nonnegative Plücker coordinates. We can then apply the result in the
complete flag case to conclude that (V1, . . . , Vn) lies in Fl≥0

n . Thus, V• is a projection of the nonnegative
complete flag (V1, . . . , Vn) and itself lies in Fl≥0

r;n , which is to say, V• is Lusztig nonnegative.

The strictly positive tropicalization of a partial flag variety TrFl>0
r;n is the subset of TrFl≥0

r;n consisting
of points whose coordinates are never ∞. Define similarly the strictly positive flag Dressian FlDr>0

r;n .
The weaker version of Theorem 3.19 stating that TrFl>0

n = FlDr>0
n was established in [Joswig et al.

2023, Lemma 19] as follows. One starts by noting that if µ ∈ Dr≥0
r+m;n+m , then the sequence of minors

(µr , . . . , µr+m) where µr+i =µ\{n+1, . . . , n+i}/{n+i+1, . . . , n+m} is a point in FlDr≥0
r,...,r+m;n . Then,

the crucial step is a construction in discrete convex analysis [Murota and Shioura 2018, Proposition 2]
that shows that every element of FlDr>0

n arises from an element of Dr>0
n;2n in this way. One then appeals

to Gr>0
r;n = Dr>0

r;n established in [Speyer and Williams 2021].
Example 3.22 shows that the above argument does not work if one replaces “strictly positive” with

“nonnegative.” In particular, the crucial step fails: that is, not every element of FlDr≥0
n arises from an

element of Dr≥0
n;2n in such a way.

Example 3.22. Let (M1, M2, M3) be matroids on [3] whose sets of bases are ({1, 3}, {13}, {123}). The
matrix 1 0 1

0 0 1
0 −1 0


shows that it is a flag positroid. However, we claim that there is no positroid M of rank 3 on [6] such that
M1 = M \4/56, M2 = M \45/6, and M3 = M \ 456. Since all three cases involve deletion by 4, if we
replace M \4 by M ′, and decrease each of 5, 6 by 1, then we are claiming that there is no positroid M ′ of
rank 3 on [5] such that

M1 = M ′/45, M2 = M ′
\4/5, and M3 = M ′

\ 45. (4)

From M1 = M ′/45 and M2 = M ′
\4/5, we have that M ′/5 has bases {14, 34, 13}, and similarly, we have

M ′
\ 4 has bases {135, 123}. Hence, the set of bases of M ′ contains {123, 135, 145, 345}, and does not

contain {125, 235, 245}. By considering the Plücker relation

p134 p235 = p123 p345 + p135 p234,

we see that no positroid satisfies these properties.

4. Positively oriented flag matroids

In this section we explain the relationship between the nonnegative flag Dressian and positively oriented
flag matroids, and we apply our previous results to flag matroids. In particular, we prove Corollary 1.5,
which says that every positively oriented flag matroid of consecutive ranks is realizable. We also prove
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Corollary 4.8, which says that a positively oriented flag matroid of consecutive ranks a, . . . , b can be
extended to ranks a′, . . . , b′ (for a′

≤ a ≤ a ≤ b).

4.1. Oriented matroids and flag matroids. We give here a brief review of oriented matroids in terms
of Plücker relations. Let S = {−1, 0, 1} be the hyperfield of signs. For a polynomial f =

∑
a∈A caxa

∈

R[x1, . . . , xm], we say that an element χ ∈ Sm is in the null set of f if the set {sign(ca)χ
a
}a∈A is either

{0} or contains {−1, 1}.

Definition 4.1. An oriented matroid of rank r on [n] is a point χ ∈ S([n]

r ), called a chirotope, such that
χ is in the null set of f for every f ∈ Pr,r;n . Similarly, an oriented flag matroid of ranks r is a point
χ = (χ1, . . . , χk) ∈

∏k
i=1 S

([n]

ri
) such that χ is in the null set of f for every f ∈ Pr;n .

While these definitions may seem different from those in the standard reference [Björner et al. 1999]
on oriented matroids, Definition 4.1 is equivalent to [Björner et al. 1999, Definition 3.5.3] by [Baker and
Bowler 2019, Example 3.33]. The definition of oriented flag matroid here is equivalent to the definition
of a sequence of oriented matroid quotients [Björner et al. 1999, Definition 7.7.2] by [Jarra and Lorscheid
2024, Example above Theorem D].

Definition 4.2. A positively oriented matroid is an oriented matroid χ such that χ only takes values 0
or 1. Similarly, we define a positively oriented flag matroid to be an oriented flag matroid χ such that χ

only takes values 0 or 1.

A positroid M defines a positively oriented matroid χ = χM where χ takes value 1 on its bases and
0 otherwise. da Silva [1987] conjectured that every positively oriented matroid arises in this way; this
conjecture was subsequently proved in [Ardila et al. 2017] and then [Speyer and Williams 2021].

Theorem 4.3 [Ardila et al. 2017]. Every positively oriented matroid χ is realizable, i.e., χ has the form
χM for some positroid M.

By Theorem 4.3, each positively oriented flag matroid is a sequence of positroids which is also an
oriented flag matroid.

In this section we will prove Corollary 1.5, which generalizes Theorem 4.3, and says that every
positively oriented flag matroid (χ1, . . . , χk) of consecutive ranks r1 < · · · < rk can be realized by a
flag positroid. But before we prove it, let us give an example that shows that imposing the oriented flag
matroid condition is stronger than imposing that we have a realizable flag matroid whose consistent
matroids are positroids.

Example 4.4. We give an example of a realizable flag matroid that has positroids as its constituent
matroids but is not a flag positroid. This example also appeared in [Joswig et al. 2023, Example 5] and
[Bloch and Karp 2023, Example 6]. Let (M, M ′) be matroids of ranks 1 and 2 on [3] whose sets of bases
are {1, 3} and {12, 13, 23}, respectively. Both are positroids. We can realize (M, M ′) as a flag matroid
using the matrix [

a 0 b
c d e

]
,
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where the nonvanishing minors a, b, ad, −bd, ae − bc are nonzero. In order to realize (M, M ′) as a
flag positroid, we need to choose real numbers a, b, c, d, e such that all these minors are strictly positive.
However, a > 0 and ad > 0 implies d > 0, while b > 0 and −bd > 0 implies d < 0.

This example is consistent with Corollary 1.5 because (M, M ′), when considered as a sequence of
positively oriented matroids, is not an oriented flag matroid.

4.2. From the nonnegative flag Dressian to positively oriented flag matroids. We start with the following
simple observation. While the proof is very simple, we label it a “theorem” to emphasize its importance.

Theorem 4.5. The set of positively oriented flag matroids of ranks r can be identified with the set of points
of the nonnegative flag Dressian FlDr≥0

r;n whose coordinates are all either 0 or ∞.

Proof. Given a point χ = (χ1, . . . , χm) ∈ {0, 1}
m

⊂ Sm ,2 we define t (χ) = (t1, . . . , tm) ∈ Tm by setting
ti = 0 if χi = 1 and ti = ∞ if χi = 0. Then, we observe that χ is in the null set of a polynomial
f ∈ R[x1, . . . , xm] if and only if the image of t (χ) in P(Tm) is a point in V ≥0

trop( f ). Therefore, each
positively oriented flag matroid χ can be identified with the element t (χ) in the nonnegative flag Dressian
FlDr≥0

r;n . □

We now prove that every positively oriented flag matroid χ = (χ1, . . . , χk) of consecutive ranks
r1 < · · · < rk is realizable.

Proof of Corollary 1.5. By the lemma, we may identify a positively oriented flag matroid χ as an element
t (χ) of the nonnegative flag Dressian. Because the ranks r are consecutive integers, the equivalence
(a)⇐⇒(b) of Theorem A implies that t (χ) is thus a point in TrFl≥0

r;n . Because t (χ) has rational coordinates

(all non-∞ coordinates are 0), Proposition 3.6 implies that t (χ) = val(p) for some p ∈
∏k

i=1 P(C
([n]

ri
)

≥0 ).
Setting the parameter t in each Puisseux series of p to 0 now gives the realization of χ as a flag positroid.

□

As in Question 1.6, we do not know whether the corollary holds when r does not consist of consecutive
integers. The following example shows that one cannot reduce to the consecutive ranks case.

Example 4.6. We give an example of a flag positroid (M, M ′) on [4] of ranks (1, 3) such that there is no
flag positroid (M, M2, M ′) with rank of M2 equal to 2. Let the sets of bases of M and M ′ be {1, 2, 3, 4}

and {123, 234}, respectively. The matrix 1 1 1 1
0 1 0 0
0 0 1 0


for example shows that (M, M ′) is a flag positroid. However, this flag positroid cannot be extended to a
flag positroid with consecutive ranks. To see this, note that any realization of (M, M ′) as a flag positroid,

2Note that (χ1, . . . , χm) is not a sequence of chirotopes in this proof, instead each χi ∈ S.
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after row-reducing by the first row, is of the form1 a b c
0 x y 0
0 z w 0


where a, b, c > 0 and xw − yz > 0. The minors of the matrix formed by the first two rows include
x, y, −cx, −cy, which cannot be all nonnegative since c > 0 and not both of x and y are zero.

Remark 4.7. Let us sketch an alternate proof of Corollary 1.5 that relies only on the weaker version of
(a)⇐⇒(b) in Theorem A that the strictly positive parts agree, i.e., that TrFl>0

r;n = FlDr>0
r;n . For a matroid

M of rank d, define ρM ∈ R([n]

d ) by ρM(S) = d − rkM(S) for S ∈
(
[n]

d

)
, where rkM is the rank function

of M . If M is a positively oriented matroid, then ρM is a point in the positive Dressian Dr>0
d,n [Speyer

and Williams 2021, proof of Theorem 5.1]. One can use this to show that if M = (M1, . . . , Mk) is a
positively oriented flag matroid of consecutive ranks r , then the sequence ρ = (ρM1, . . . , ρMk ) is a point
in FlDr>0

r;n . Since TrFl>0
r;n = FlDr>0

r;n and ρ has rational coordinates, Proposition 3.6 implies that there is a
point p ∈ Flr;n(C≥0) with val(p) = ρ. Consider the coordinate p(S) ∈ C of p at a subset S ∈

(
[n]

ri

)
. By

construction, the initial term of p(S) is ctq for some positive real c and a nonnegative integer q , where q
is zero exactly when S is a basis of Mi . Thus, setting the parameter t to 0 in the Puisseux series of p
gives a realization of M as a flag positroid.

We now use Theorem 4.5 to give a matroidal analogue of Corollary 3.18.

Corollary 4.8. Let a′
≤ a ≤ b ≤ b′ be positive integers, and let (Ma, Ma+1, . . . , Mb) be a positively

oriented flag matroid on [n] of consecutive ranks a, a + 1, . . . , b, that is, a sequence of positroids
Ma, . . . , Mb which is also an oriented flag matroid. Then we can extend it to a positively oriented flag
matroid (Ma′, Ma′+1, . . . , Ma, . . . , Mb, . . . , Mb′) of consecutive ranks a′, a′

+ 1, . . . , b′.

Proof. As in Theorem 4.5, we view the positively oriented flag matroid (Ma, . . . , Mb) as a point of the
nonnegative flag Dressian (µa, . . . , µb) ∈ FlDr≥0

r;n whose coordinates are all either 0 or ∞. The desired
statement almost follows from Proposition 3.15: we just need to check that we can extend (µa, . . . , µb)

in a way which preserves the fact that coordinates are all either 0 or ∞. This is true, and we prove it by
following the proof of Proposition 3.15 and replacing all instances of the positive Puiseux series C>0 by
the positive Puiseux series with constant coefficients, that is, by R>0. Alternatively, we can use our result
that (Ma, . . . , Mb) is realizable by a flag positroid, and then argue as in Remark 3.21. □

5. Subdivisions of flag matroid polytopes

5.1. Flag Dressian and flag matroidal subdivisions. Consider a point µ= (µ1, . . . , µk)∈
∏k

i=1 P(T
([n]

ri
)
)

such that its support µ is a flag matroid. By construction, the vertices of the flag matroid polytope P(µ)

have the form eB1 + · · · + eBk where Bi is a basis of the matroid µi for each i = 1, . . . , k.



Polyhedral and tropical geometry of flag positroids 1353

Definition 5.1. We define Dµ to be the coherent subdivision of P(µ) induced by assigning each vertex
eB1 + · · · + eBk of P(µ) the weight µ1(B1) + · · · + µk(Bk). That is, the faces of Dµ correspond to the
faces of the lower convex hull of the set of points

{(eB1 + · · · + eBk , µ1(B1) + · · · +µk(Bk)) ∈ Rn
× R : eB1 + · · · + eBk a vertex of P(µ)}.

The points of the flag Dressians are exactly the ones for which the subdivision Dµ consists of flag
matroid polytopes.

Theorem 5.2 [Brandt et al. 2021, Theorem A(a) and (c)]. A point µ ∈
∏k

i=1 P(T
([n]

ri
)
) is in the flag

Dressian FlDrr;n if and only if the all faces of the subdivision Dµ are flag matroid polytopes.

When r consists of consecutive integers (a, a + 1, . . . , b), the nonnegative analogue of this theorem
is the equivalence of (b) and (c) in Theorem A, which states that a point µ ∈

∏b
i=a P(T([n]

i )) is in the
nonnegative flag Dressian FlDr≥0

r;n if and only if all faces of the subdivision Dµ are flag positroid polytopes.
A different nonnegative analogue of Theorem 5.2 that holds for r not necessarily consecutive, but loses
the flag positroid property, can be found in Remark 5.6.

5.2. The proof of (b)=⇒(c)=⇒(d)=⇒(e) in Theorem A. We start by recording two observations. The first
is a well-known consequence of the greedy algorithm for matroids; see for instance [Ardila and Klivans
2006, Proposition 4.3]. For a matroid M on [n] and a vector v ∈ Rn , let face(P(M), v) be the face of the
matroid polytope P(M) that maximizes the standard pairing with v.

Proposition 5.3. Let M be a matroid on [n] and let S = (∅ ⊊ S1 ⊊ · · · ⊊ Sℓ ⊊ [n]) be a chain of
nonempty proper subsets of [n]. For a vector vS in the relative interior of the cone R≥0{eS1, . . . , eSℓ

}, we
have

face(P(M), vS ) = P(MS ),

where MS
= M |S1 ⊕ M |S2/S1 ⊕ M |S3/S2 ⊕ · · · ⊕ M/Sℓ is the direct sum of minors of M.

For M = (M1, . . . , Mk) a flag matroid, since P(M) is the Minkowski sum P(M1) + · · · + P(Mk), we
likewise have that face(P(M), vS ) = P(MS ) = P(MS

1 )+· · ·+ P(MS
k ), where MS

= (MS
1 , . . . , MS

k ).
In particular, the face of a flag matroid polytope is a flag matroid polytope.

The second observation concerns the following operations that we will show preserve the nonnegative
flag Dressian. Recall that for w ∈ T([n]

r ), its support w is {S ∈
(
[n]

r

)
: wS ̸= ∞}:

• We consider a point w ∈ T([n]

r ) as a set of weights on the vertices {eS : S ∈ w} of P(w) ⊂ Rn . Given
an affine-linear function ϕ : Rn

→ R and an element w ∈ T([n]

r ), we define

ϕw ∈ T([n]

r ) by (ϕw)(S) = ϕ(eS) + w(S) for S ∈

(
[n]

r

)
.

• For a point w ∈ T([n]

r ), denote by win
∈ T([n]

r ) its initial part, i.e.,

win(S) =

{
0 if w(S) = min

{
w(S′) : S′

∈
(
[n]

r

)}
,

∞ otherwise.
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Proposition 5.4. Let r = (r1, . . . , rk) be a sequence of increasing integers in [n]. Suppose w =

(w1, . . . , wk) ∈ FlDr≥0
r;n . Then, the following hold:

(1) The support w is a positively oriented flag matroid. In particular, it is a flag positroid when
r = (r1, . . . , rk) consists of consecutive integers.

(2) We have ϕw = (ϕw1, . . . , ϕwk) ∈ FlDr≥0
r;n for any affine-linear functional ϕ on Rn .

(3) We have win
= (win

1 , . . . , win
k ) ∈ FlDr≥0

r;n .

Proof. We may consider w as an element
∏k

i=1 P(T
([n]

ri
)
) by assigning the value 0 to a subset S if it is in

the support of w and ∞ otherwise. Then, we have w ∈ FlDr≥0
r;n because the terms in each of the tropical

Plücker relations that achieve the minimum when evaluated at w continue to do so when evaluated at w.
The statement (1) follows from Theorem 4.5 and Corollary 1.5

The support is unchanged by ϕ, so ϕw is a flag matroid. The statement (2) now follows because for
each of the positive-tropical Plücker relations, the operation ϕ preserves the terms at which the minimum
is achieved.

The support win is a flag matroid by Theorem 5.2 and because P(win) is a face in the subdivision
Dw of P(w). The statement (3) now follows because for each of the positive-tropical Plücker relations,
the operation in either preserves the terms at which the minimum is achieved or changes all the terms
involved to ∞. □

Remark 5.5. While it’s not needed here, we note that Proposition 5.4 is the “positive” analogue of
the following statement, which is proved similarly: If w ∈ FlDrr;n , then (1) w is a flag matroid, (2)
ϕw ∈ FlDrr;n , and (3) win

∈ FlDrr;n; see also [Brandt et al. 2021, Corollary 4.3.2] for related statements.

Proof of (b) =⇒ (c). Every face in the coherent subdivision is the initial one after an affine-linear
transformation. Hence, the implication follows from Proposition 5.4. □

Remark 5.6. One may modify the statement (c) to the following:

(c’) Every face in the coherent subdivision Dµ of P(µ) is the flag matroid polytope of a positively
oriented flag matroid.

Similar argument as above shows that (b)=⇒(c’) even when r doesn’t consist of consecutive integers.
One can also verify the converse (c’)=⇒(b) in this more general case as follows:

Suppose for contradiction (c’) but not (b) for some µ. Then Theorem 5.2 implies that µ is in the flag
Dressian, and thus the failure of (b) implies that there is a Plücker relation where the minimum occurs at
least twice but at the terms whose coefficients have the same sign. Proposition 5.4 implies that, replacing
µ by ϕµ for some ϕ if necessary, we may conclude that the same is true for that Plücker relation evaluated
at µin. But then µin, which arise as a face in the subdivision, is not a positively oriented flag matroid by
Theorem 4.5, contradicting (c’).

There is no equivalence of (c’) and (e) since three-term incidence relations exist only for consecutive
ranks.
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The implication (c)=⇒(d) is immediate.

Proof of (d) =⇒ (e). First, (d) implies that every edge of the subdivision Dµ of P(µ) is a flag matroid
polytope, i.e., it is parallel to ei − e j for some i ̸= j ∈ [n]. Hence the edges of P(µ) have the same
property, so µ is a flag matroid.

We start with the case a = b, where µ is just (µ). We need check the validity of the three-term
positive-tropical Grassmann–Plücker relations, say for an arbitrary choice of S ⊂ [n] and {i < j < k <

ℓ} ⊆ [n] \ S. Let S be a maximal chain S1 ⊊ · · ·⊊ Sm of subsets of [n] with the property that Sa = S and
Sa+1 = S ∪ {i jkℓ} for some a ∈ [m]. Then, Proposition 5.3 implies that for a vector vS in the relative
interior of the cone R≥0{eS1, . . . , eSm }, we have

face(P(µ), vS ) = P(µS ) ≃ P(µ|S ∪ i jkℓ/S).

For the second identification, we have used that

• the matroid polytope of a direct sum of matroids is the product of the matroid polytopes;

• with the exception of (Sa, Sa+1) = (S, S ∪ i jkℓ), all other minors of the matroid µ corresponding to
(Sb, Sb+1) in the chain have their polytopes being a point because |Sb+1 \ Sb| = 1.

Let r̂ be the rank of the matroid minor µ|S∪i jkℓ/S. For a basis B̂ of µ|S∪i jkℓ/S, let B be the basis of µ

such that the vertex eB of P(µ) corresponds to the vertex eB̂ of P(µ|S ∪ i jkℓ/S) under the identification
above. Identifying [4] = {1 < 2 < 3 < 4} with {i < j < k < ℓ}, we may thus consider “restricting” µ to
the face P(µ|S ∪ i jkℓ/S) to obtain an element µ̂ = µ|S ∪ i jkℓ/S ∈ Dr̂r;4 defined by

µ̂(B̃) =

{
µ(B) if B̂ a basis of µ|S ∪ i jkℓ/S,

∞ otherwise,
for B̂ ∈

(
[4]

r̂

)
.

It is straightforward to check that for points in a Dressian on four elements, the three-term positive-tropical
Grassmann–Plücker relations are satisfied if and only if every 2-dimensional faces in the corresponding
subdivision are positroid polytopes. Since the faces of the subdivision Dµ̂ of P(µ|S ∪ i jkℓ/S) are
a subset of the faces of the subdivision Dµ, we have that µ satisfies the three-term tropical-positive
Grassmann–Plücker relation involving i jkℓ and S.

Let us now treat the case a < b, whose proof is similar. We check the validity of the three-term positive-
tropical incidence-Plücker relations, say for an arbitrary choice of S ⊂ [n] and {i < j < k} ⊆ [n] \ S. Let
S be a maximal chain S1 ⊊ · · · ⊊ Sm of subsets of [n] with the property that Sa = S and Sa+1 = S ∪ i jk
for some a ∈ [m]. Then, Proposition 5.3 implies that for a vector vS in the relative interior of the cone
R≥0{eS1, . . . , eSm }, we have

face(P(µ), vS ) = P(µS ) ≃ P(µ|S ∪ i jk/S).

For the second identification, we have used that

• the matroid polytope of a direct sum of matroids is the product of the matroid polytopes;

• with the exception of (Sa, Sa+1) = (S, S ∪ i jk), all other minors of the constituent matroids of µ

corresponding to (Sb, Sb+1) in the chain have their polytopes being a point because |Sb+1 \ Sb| = 1.
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Note that the polytope P(µ|S ∪ i jk/S) is at most 2-dimensional since it is a flag matroid polytope on
3 elements. Similarly to the a = b case, we may “restrict” µ to the face P(µ|S ∪ i jk/S) to obtain an
element µ̂=µ|S∪i jk/S ∈ FlDr3, it is straightforward to verify that the unique three-term positive-tropical
incidence relation involving S and i jk is satisfied if and only if the subdivision Dµ̂ consists only of flag
positroid polytopes. Since the faces of the subdivision Dµ̂ are a subset of the faces of the subdivision Dµ,
we have that µ satisfies the three-term incidence relation involving S and {i, j, k}. □

6. Three-term incidence relations

6.1. The proof of (e)=⇒(b) in Theorem A. In the case that a = b in Theorem A, the implication (e)=⇒(b)
is the content of Proposition 3.9.

To prove the implication when a < b, we will show the following key theorem.

Theorem 6.1. Suppose µ = (µ1, µ2) ∈ P(T([n]

r )) × P(T( [n]

r+1)) satisfies every three-term positive-tropical
incidence relation. If the support µ is a flag matroid, then µ ∈ FlDr≥0

r,r+1;n .

Proof of (e)=⇒ (b). Since r consists of consecutive integers, Theorem 6.1 implies that if µ is a flag matroid
and µ satisfies every three-term positive-tropical incidence relation, then µ also satisfies every three-term
positive-tropical Grassmann–Plücker relation. Hence µ is an element of FlDr≥0

r;n by Proposition 3.9. □

The proof of Theorem 6.1 relies on the following technical lemma.

Lemma 6.2. Suppose w ∈ T([5]

2 ) satisfies all three-term positive-tropical Grassmann–Plücker relations
involving the element 5. Suppose moreover that wi5 < ∞ for some i = 1, 2, 3, 4. Then w ∈ Dr≥0

2;5, i.e., w

also satisfies the three-term positive-tropical Grassmann–Plücker relation not involving 5.

Proof. The idea of the proof of Lemma 6.2 is that in the usual Grassmannian Gr2,5, if we can invert
certain Plücker coordinates, then we can write the three-term Grassmann–Plücker relation not involving 5
as a linear combination of three of the other three-term Grassmann–Plücker relations. In particular, we
have the following identity, which is easy to verify.

Lemma 6.3. If p25 ̸= 0 (respectively, p35 ̸= 0) then p13 p24 − p12 p34 − p14 p23 can be written in the
following ways.

p13 p24−p12 p34−p14 p23

= (p13 p25−p12 p35−p15 p23)
p24

p25
−(p14 p25−p12 p45−p15 p24)

p23

p25
+(p24 p35−p23 p45−p25 p34)

p12

p25

= (p13 p25−p12 p35−p15 p23)
p34

p35
−(p14 p35−p13 p45−p15 p34)

p23

p35
+(p24 p35−p23 p45−p25 p34)

p13

p35
.

We next note that we can interpret the first (respectively, second) expression in Lemma 6.3 tropically
as long as w25 < ∞ (respectively, w35 < ∞).

Case 1: w25 < ∞. Then we can make sense of the terms on the right hand side of the first expression
of Lemma 6.3 tropically. Since the three-term positive tropical Plücker relations involving 5 hold, and
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w25 < ∞, we have

w13 + w25 + w24 − w25 = min(w12 + w35 + w24 − w25, w15 + w23 + w24 − w25),

w14 + w25 + w23 − w25 = min(w12 + w45 + w23 − w25, w15 + w24 + w23 − w25),

w24 + w35 + w12 − w25 = min(w23 + w45 + w12 − w25, w25 + w34 + w12 − w25).

We now simplify these expressions and underline terms that agree, obtaining

w13 + w24 = min(w12 + w35 + w24 − w25, w15 + w23 + w24 − w25), (5)

w14 + w23 = min(w12 + w45 + w23 − w25
::::::::::::::::::::

, w15 + w24 + w23 − w25), (6)

w24 + w35 + w12 − w25 = min(w23 + w45 + w12 − w25
::::::::::::::::::::

, w34 + w12). (7)

There are now eight cases to consider, based on whether the minimum is achieved by the first or second
term in each of (5), (6), (7). All cases are straightforward. If the minimum is achieved by the first term in
(5) and the second term in (7), then we find that w13 + w24 = w12 + w34 ≤ w14 + w23. In the other six
cases, we find that w13 + w24 = w14 + w23 ≤ w12 + w34. Therefore the positive tropical Plücker relation
involving 1, 2, 3, 4 is satisfied.

Case 2: w35 < ∞. The argument for Case 2 is the same as for Case 1, except we use the tropicalization
of the second identity in Lemma 6.3.

Case 3: w25 = w35 = ∞. In this case, since 5 is not a loop, either w15 < ∞ or w45 < ∞. Suppose that
w15 < ∞. Then the positive tropical Plücker relations

• w13 + w25 = min(w12 + w35, w15 + w23),

• w14 + w25 = min(w12 + w45, w15 + w24),

• w14 + w35 = min(w13 + w45, w15 + w34),

imply that w23 = w24 = w34 = ∞, and hence the positive tropical Plücker relation involving 1, 2, 3, 4 is
satisfied. The case where w45 < ∞ is similar. □

For w ∈ T([n]

r ), define its dual w⊥
∈ T( [n]

n−r) by w⊥(I ) = w([n] \ I ). It is straightforward to verify that
w is an element of Drr;n (resp. Dr≥0

r;n) if and only if w⊥ is an element of Drn−r;n (resp. Dr≥0
n−r;n). This

matroid duality gives the following dual formulation of Lemma 6.2.

Corollary 6.4. Suppose w ∈ T([5]

3 ) satisfies all three-term positive-tropical Grassmann–Plücker relations
that contain a variable indexed by S ∈

(
[5]

3

)
with 5 /∈ S. If w is a matroid such that 5 is not a coloop, then

w ∈ Dr≥0
3;5, i.e., w also satisfies the three-term positive-tropical Grassmann–Plücker relation whose every

variable contains 5 in its indexing subset.

We are now ready to prove Theorem 6.1. We expect that the proof of Theorem 6.1 here adapts well to
give an analogous statement for arbitrary perfect hyperfields.
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Proof of Theorem 6.1. Given such µ = (µ1, µ2) ∈ P(T([n]

r )) × P(T( [n]

r+1)), define µ̃ ∈ P(T([n+1]

r+1 )) by

µ̃(S) =

{
µ1(S \ (n + 1)) if (n + 1) ∈ S,

µ2(S) otherwise.

Because µ is a flag matroid, we have that µ̃ is a matroid, with the element (n + 1) that is neither a loop
nor a coloop. We observe that µ̃ ∈ Dr≥0

r+1;n+1 if and only if µ ∈ FlDr≥0
r,r+1;n because the validity of the

three-term positive-tropical Grassmann–Plücker relations for µ̃ is equivalent to the validity of both the
three-term positive-tropical incidence relations and the three-term positive-tropical Grassmann–Plücker
relations for µ.

We need to check that µ̃ satisfies every three-term positive-tropical Grassmann–Plücker relation of
type (r + 1; n + 1). Consider the three-term relation associated to the subset S ⊆ [n + 1] of cardinality
r − 1 and {i < j < k < ℓ} ⊆ [n + 1] disjoint from S. We have three cases:

• ℓ = n + 1. In this case, erasing the index n + 1 in the expression for the corresponding three-term
Grassmann–Plücker relation yields a three-term incidence relation of type (r, r + 1; n), which is
satisfied by our assumption on µ.

• (n+1)∈ S. In this case, considering the minor µ̃|S∪i jkℓ/(S\(n+1)) and then applying Corollary 6.4
implies that the three-term Grassmann–Plücker relation is satisfied.

• (n + 1) /∈ S ∪ i jkℓ. In this case, considering the minor µ̃|S ∪ i jkℓ(n + 1)/S and then applying
Lemma 6.2 implies that the three-term Grassmann–Plücker relation is satisfied.

In every case the three-term positive-tropical Grassmann–Plücker relation is satisfied, as desired. □

7. Projections of positive Richardsons to positroids

One recurrent theme in our paper has been the utility of projecting a complete flag positroid (equivalently,
a positive Richardson) to a positroid (or a positroid cell). This has come up in Rietsch’s cell decomposition
of a nonnegative (partial) flag variety, in our proofs in Section 3.2, and in the expression of a Bruhat
interval polytope as a Minkowski sum of positroid polytopes in Remark 2.7. Positive Richardsons can be
indexed by pairs (u, v) of permutations with u ≤ v. Meanwhile, by work of Postnikov [2007], positroid
cells of Gr≥0

d,n can be indexed by Grassmann necklaces. In this section we will give several concrete
combinatorial recipes for constructing the positroids obtained by projecting a (complete) flag positroid.
We will also discuss the problem of determining when a collection of positroids can be identified with a
(complete) flag positroid.

7.1. Indexing sets for cells of Gr≥0
d,n. As discussed in Section 2.1, there are two equivalent ways of

thinking about the positroid cell decomposition of Gr≥0
d,n:

Gr≥0
d,n =

⊔
S>0
B =

⊔
u,v

π(R>0
u,v).
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In the union on the right, π is the projection from Fln to Grd,n , and u, v range over all permutations u ≤v in
Sn , such that v is a minimal-length coset representative of W/Wd , and Wd =⟨s1, . . . ,sd−1, ŝd ,sd+1, . . . ,sn−1⟩.
We write W d for the set of minimal-length coset representatives of W/Wd . Recall that a descent of a
permutation z is a position j such that z( j) > z( j + 1). We have that W d is the subset of permutations in
Sn which have at most one descent, and if it exists, that descent must be in position d .

Even if v /∈ W d , the projection of R>0
u,v to Gr≥0

d,n is still a positroid, which we will characterize below.
We start by defining Grassmann necklaces [Postnikov 2007].

Definition 7.1. Let I = (I1, . . . , In) be a sequence of subsets of
(
[n]

d

)
. We say I is a Grassmann necklace

of type (d, n) if the following holds:

• If i ∈ Ii , then Ii+1 = (Ii \ i) ∪ j for some j ∈ [n].

• If i /∈ Ii , then Ii+1 = Ii .

In order to define the bijection between these Grassmann necklaces and positroids, we need to define
the i -Gale order on

(
[n]

d

)
.

Definition 7.2. We write <i for the following shifted linear order on [n].

i <i i + 1 <i · · · <i n <i 1 <i · · · <i i − 1.

We also define the i -Gale order on d-element subsets by setting

{a1 <i · · · <i ad} ≤i {b1 <i · · · <i bd}

if and only if aℓ ≤i bℓ for all 1 ≤ ℓ ≤ d.

Given a positroid M , we define a sequence IM = (I1, . . . , In) of subsets of [n] by letting Ii be the
minimal basis of M in the i-Gale order. The following result is from [Postnikov 2007, Theorem 17.1].

Proposition 7.3. For any positroid M , IM is a Grassmann necklace. The map M 7→ IM gives a bijection
between positroids of rank d on [n] and Grassmann necklaces of type (d, n).

7.2. Projecting positive Richardsons to positroids. In this section we will give several descriptions of
the constituent positroids appearing in a complete flag positroid (that is, a flag matroid represented by a
positive Richardson). We start by reviewing a cryptomorphic definition of flag matroid, based on [Borovik
et al. 2003, Sections 1.7–1.11].

A flag F = F1 ⊂ F2 ⊂ · · · ⊂ Fk on [n] is an increasing sequence of finite subsets of [n]. A flag matroid
is a collection F of flags satisfying the maximality property. Recall that eS denotes the 01 indicator vector
in Rn associated to a subset S ⊂ [n]. For a flag F = F1 ⊂ F2 ⊂ · · · ⊂ Fk we let eF = eF1 + · · · + eFk . In
this language, the flag matroid polytope of F is PF = Conv{eF | F ∈ F}, whose vertices are precisely the
points eF for F ∈ F .

In the complete flag case, each point eF is a permutation vector (z(1), . . . , z(n)) for some z ∈ Sn . Note
that we can read off z := z(F) from F by setting z(i) = j , where j is the unique element of Fi \ Fi−1.
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Given u ≤ v in Bruhat order, we define the Bruhat interval flag matroid Fu,v to be the complete flag
matroid whose flags are precisely

{z([1]) ⊂ z([2]) ⊂ · · · ⊂ z([n])} for u ≤ z ≤ v,

where [i] denotes {1, 2, . . . , i} and z([i]) denotes {z(1), . . . , z(i)}. Then by the above discussion, the
(twisted) Bruhat interval polytope

P̃u,v = Conv{(n + 1 − z−1(1), n + 1 − z−1(2), . . . , n + 1 − z−1(n)) | u ≤ z ≤ v}

is the flag matroid polytope of the Bruhat interval flag matroid Fu,v.
This observation leads naturally to the following definition.

Definition 7.4. Consider a complete flag matroid F on [n], which we identify with a collection S of
permutations on [n]. By the maximality property [Borovik et al. 2003, Section 1.7.2] and its relation to the
tableau criterion for Bruhat order [Borovik et al. 2003, Theorem 5.17.3], S contains a unique permutation
u (respectively, v) which is minimal (respectively, maximal) in Bruhat order among all elements of S.
We say that Fu,v is the Bruhat interval envelope of F .

It follows from Definition 7.4 that the Bruhat interval envelope of a complete flag matroid F contains F ;
however, in general this inclusion is strict. It is an equality precisely when F is a Bruhat interval flag
matroid.

Recall that if F = (F1, . . . , Fn) and G = (G1, . . . , Gn) are flags, we say that F is less than or equal
to G in the ≤ j Gale order (and write F ≤ j G) if and only if Fi ≤ j Gi for all 1 ≤ i ≤ n. (We also talk
about the “usual” Gale order with respect to the total order 1 < 2 < · · · < n.) The Maximality Property
for flag matroids implies that for any flag matroid F , there is always a unique element which is maximal
(and a unique element which is minimal) with respect to ≤ j .

We now give a Grassmann necklace characterization of the positroid constituents of a complete flag
positroid, which follows from the previous discussion plus Proposition 7.3.

Proposition 7.5. Consider a complete flag positroid M = (M1, . . . , Mn) on [n], that is, the flag positroid
associated to any point of R>0

u,v, for some u ≤ v. For each 1 ≤ j ≤ n, let z( j) be the Gale-minimal
permutation with respect to ≤ j in the interval [u, v]. Then the Grassmann necklace of the positroid M j is
(z(1)([ j]), z(2)([ j]), . . . , z(n)([ j])).

Example 7.6. Consider the flag positroid associated to a point of R>0
u,v, where u = (1, 2, 4, 3) and

v = (4, 2, 1, 3) (which we abbreviate as 1243 and 4213). The interval [u, v] consists of

[u, v] = {1243, 1423, 2143, 2413, 4123, 4213}.

We now use Proposition 7.5, and find that the Gale-minimal permutations of [u, v] with respect to ≤1,
≤2, ≤3, ≤4 are 1243, 2413, 4123, 4123. Therefore the Grassmann necklaces for the constituent positroids
M1, M2, M3 and M4 are (1, 2, 4, 4), (12, 24, 14, 14), (124, 124, 124, 124), and (1234, 1234, 1234, 1234).
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Alternatively, we can read off the flags in the flag positroid from the permutations in [u, v], obtaining
the flags

{1 ⊂ 12 ⊂ 124, 1 ⊂ 14 ⊂ 124, 2 ⊂ 12 ⊂ 124, 2 ⊂ 24 ⊂ 124, 4 ⊂ 14 ⊂ 124, 4 ⊂ 24 ⊂ 124}.

(Note that for brevity, we have omitted the subset 1234 from the end of each flag above.) We can now
read off the bases of M1, M2, M3, M4 from the flags, obtaining {1, 2, 4}, {12, 14, 24}, {124}, and {1234}.
We can then directly calculate the Grassmann necklaces from these sets of bases, getting the same answer
as above.

If we compute the Minkowski sum of the positroids M1, M2, M3, M4 above, we obtain the twisted
Bruhat interval polytope P̃1243,4213 = P2314,4312, whose vertices are

{(4, 3, 1, 2), (4, 2, 1, 3), (3, 4, 1, 2), (3, 2, 1, 4), (2, 4, 1, 3), (2, 3, 1, 4)},

as noted in Remark 2.7.

The following result gives an alternative description of the constituent positroids of a complete flag
matroid, this time in terms of bases.

Lemma 7.7 [Kodama and Williams 2015, Lemma 3.11; Billey and Weaver 2022, Theorem 1.4]. Consider
a complete flag positroid, that is, a flag matroid represented by a point of a positive Richardson R>0

u,v,
where u, v ∈ Sn and u ≤ v in Bruhat order. Choose 1 ≤ d ≤ n. Let π denote the projection from Fln to
Grd,n . Then the bases of the rank d positroid represented by π(R>0

u,v) are {z([d]) | u ≤ z ≤ v}.

Finally, we remark that [Bloch and Karp 2023, Remark 5.24] gives yet another description of the
constituent positroids of a complete flag positroid, this time in terms of pairs of permutations.

7.3. Characterizing when two adjacent-rank positroids form an oriented matroid quotient. We have
discussed how to compute the projection of a complete flag positroid to a positroid. Moreover, it is
well-known that every positroid is the projection of a complete flag positroid. In this section we will give
a criterion for determining when two positroids Mi and Mi+1 on [n] of ranks i and i + 1 can be obtained
as the projection of a complete flag positroid (see Theorem 7.14).

We recall the definition of oriented matroid quotient in the setting at hand.

Definition 7.8. We say that two positroids Mi and Mi+1 on [n] of ranks i and i + 1 form an oriented
matroid quotient if (Mi , Mi+1) is an oriented flag matroid.

The following statement is a direct consequence of Corollary 4.8.

Proposition 7.9. Let Mi and Mi+1 be positroids on [n] of ranks i and i + 1. Then there is a complete flag
positroid with Mi and Mi+1 as constituents if and only if (Mi , Mi+1) form an oriented matroid quotient.

Proposition 7.10. Suppose that (M1, . . . , Mn) is a sequence of positroids of ranks 1, 2, . . . , n on [n],
such that each pair Mi and Mi+1 forms an oriented matroid quotient. Then (M1, . . . , Mn) is a complete
flag positroid. Moreover, it is realized by a point of the positive Richardson R>0

u,v, where we can explicitly
construct u and v as follows:
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• Let Bmin
1 , . . . , Bmin

n (respectively, Bmax
1 , . . . , Bmax

n ) be the bases of M1, . . . , Mn which are minimal
(maximal) with respect to the usual Gale ordering. Then u, v ∈ Sn are defined by

u(i) = Bmin
i \ Bmin

i−1 and v(i) = Bmax
i \ Bmax

i−1 .

Proof. As in Theorem 4.5, we identify each positroid Mi with the image t (χi ) of its chirotope χi ; we have
that t (χi ) lies in Dr≥0

i;n . The fact that each pair Mi , Mi+1 forms an oriented matroid quotient means that
(t (χ1), . . . , t (χn)) satisfies all three-term incidence-Plücker relations, and hence (t (χ1), . . . , t (χn)) ∈

FlDr≥0
n . Since FlDr≥0

n = TrFl≥0
n , we have proved that (M1, . . . , Mn) is a complete flag positroid.

To prove the characterization of u and v, we use Lemma 7.7. In particular, it follows from Lemma 7.7
and the Tableaux Criterion for Bruhat order that the Gale-minimal and Gale-maximal bases of the rank d
positroid π(R>0

u,v) are u([d]) and v([d]). The result now follows. □

As we’ve seen in Example 4.4 it is a subtle question to determine whether a pair of positroids M1

and M2 of ranks r and r + 1 form an oriented matroid quotient. One way is to construct an n by r + 1
matrix such that the minor in rows 1, . . . , r and columns I is nonzero if and only if I is a basis of M1

while the maximal minor in rows 1, . . . , r + 1 and columns J is nonzero if and only if J is a basis of M2.
Another way is to check the three-term relations over the signed tropical hyperfield, as in Proposition 3.9.
We do not have an efficient way to do either of these things. Instead, in Theorem 7.14, we will give an
algorithmic, combinatorial way to verify whether M1 and M2 form an oriented matroid quotient.

Construction 1. Given two positroids M1 and M2 on the ground set [n] of ranks r and r +1, respectively,
which form a positively oriented matroid quotient, we construct a positroid M := M(M1, M2) of rank
r + 1 on the ground set [n + 1] where n + 1 is neither a loop nor a coloop. The bases of M are precisely

B(M) = B(M2) ∪ {B ∪ {n + 1} | B ∈ B(M1)}.

Construction 2. Conversely, given a rank r positroid M on ground set [n + 1], where (n + 1) is neither a
loop nor coloop, we construct two positroids M1 := M1(M) and M2 := M2(M) which form a positively
oriented matroid quotient, as follows. Let Ã be a matrix realizing M ; therefore its Plücker coordinates
are nonnegative. We apply row operations to rewrite Ã in the form

A =


0

A′ 0
0

∗ ∗ ∗ · · · ∗ 1

 .

Let M1 denote the matroid on [n] realized by A′ and let M2 denote the matroid on [n] realized by A′

together with the row of ∗’s below it. Then M1 and M2 are both positroids (since the Plücker coordinates
of A′ and A are all nonnegative), and they form a positively oriented quotient. Moreover, it is clear that
M1 = M \ (n + 1) and M2 = M/(n + 1).

The idea of our algorithm is to translate Constructions 1 and 2 into operations on Grassmann necklaces,
so that Construction 1 is well-defined even if M1 and M2 fail to form a positively oriented quotient. Clearly
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if we start with positroids M1 and M2 forming a positively oriented matroid quotient, then Construction 1
followed by 2 is the identity map. Conversely, if Construction 1 followed by 2 is the identity map, then
since Construction 2 always outputs a positively oriented matroid quotient, we must have started with
positroids forming a positively oriented matroid quotient.

We let mini {S1, . . . , Sk} denote the minimum of the sets S1, . . . , Sk in the ≤i order.

Proposition 7.11. Let M1 and M2 be positroids of consecutive ranks which form a positively oriented
quotient. Let IM j = (I ( j)

1 , . . . , I ( j)
n ) be the Grassmann necklace of M j for j = 1, 2. Define

Ji =


I (2)
1 for i = 1,

mini {I (1)
i ∪ {n + 1}, I (2)

i } for 2 ≤ i ≤ n,

I (1)
1 ∪ {n + 1} for i = n + 1.

Then J = (J1, . . . , Jn+1) is the Grassmann necklace of the positroid M = M(M1, M2) on [n + 1] whose
bases are precisely

B(M) = B(M2) ∪ {B ∪ {n + 1} | B ∈ B(M1)}.

Proof. It suffices to show that each basis of M is i-Gale greater than J (i) for all i ∈ [n + 1]. One also
need to check that the J (i) are in fact bases of M but this is clear by definition.

Note that the ≤i minimal flag of a flag matroid consists of the ≤i minimal bases of each of its constituent
matroids [Borovik et al. 2003, Corollary 7.2.1]. Thus, I (1)

t ⊂ I (2)
t for each t ∈ [n].

First, let S ⊂ [n] be a basis of M2. For i ∈ [n], we have S ≥i I (2)
i ≥i Ji . Since neither S nor

I (2)
i contain n + 1, S ≥n+1 I (2)

1 . By our earlier observation, I (2)
1 = I (1)

1 ∪ {a} for some a ∈ [n]. Thus,
I (2)
1 ≥n+1 I (1)

1 ∪ {n + 1}. We conclude that S ≥i Ji for all i ∈ [n + 1].
Next, consider S∪{n+1} for S a basis of M1. For 2 ≤ i ≤ n, we have S∪{n+1} ≥i I (1)

i ∪{n+1} ≥i Ji .
Since neither S nor I (1)

i contain n + 1, we have S ≥1 I (1)
1 and S ∪ {n + 1} ≥n+1 I (1)

1 ∪ {n + 1} = Jn+1.
Since I (2)

1 = I (1)
1 ∪ {a}, we have I (1)

1 ∪ {n + 1} ≥1 I (2)
1 = J1. We conclude that S ∪ {n + 1} ≥i Ji for all

i ∈ [n + 1]. □

If M1 and M2 form a positively oriented quotient, we should obtain them from the positroid M =

M(M1, M2), constructed as in Proposition 7.11, by deleting and contracting n + 1. The following result
explains how these operations affect Grassmann necklaces.

Proposition 7.12 [Oh 2008, Proposition 7 and Lemma 9]. Let M be a positroid on [n + 1] such that
n + 1 is neither a loop nor a coloop, with Grassmann necklace (Ji )

n+1
i=1 . Then the Grassmann necklaces

(K (1)
1 , . . . , K (1)

n ) and (K (2)
1 , . . . , K (2)

n ) of M1 = M/(n + 1) and M2 = M \ (n + 1), are as follows:

K (1)
i =

{
Ji \ {n + 1}, n + 1 ∈ Ji ,

Ji \ {maxi (Ji \ Jn+1)}, n + 1 /∈ Ji ,

K (2)
i =

{
(Ji \ {n + 1}) ∪ {mini (Jn+1 \ Ji )}, n + 1 ∈ Ji ,

Ji , n + 1 /∈ Ji .
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Taken together, the last two results yield a recipe for verifying whether two positroids, given in
terms of their Grassmann necklaces, form a positively oriented quotient. First apply the construction of
Proposition 7.11. If that yields a Grassmann necklace, apply Proposition 7.12 and see if that yields the
original Grassmann necklaces. If so, the two Grassmann necklaces form a positively oriented quotient.

Our next goal is to streamline this recipe. Let I(1)
= (I (1)

1 , . . . , I (1)
n ) and I(2)

= (I (2)
1 , . . . , I (2)

n ) be
Grassmann necklaces of positroids of ranks r and r + 1, respectively. Note that a necessary condition
for the positroids corresponding to I(1) and I(2) forming a positively oriented quotient is that I (1)

i ⊂ I (2)
i

for all i ∈ [n]. Now, we define a subset S as follows: For each i , if I (1)
i ∪ {n + 1} <i I (2)

i , let i ∈ S.
Since I (2)

i = I (1)
i ∪ a for some a ∈ [n], this is as simple as checking whether a <i n + 1. If the positroids

corresponding to I(1) and I(2) form a positively oriented quotient, applying Proposition 7.11 and then
Proposition 7.12 should leave them unchanged. It is straightforward to see that i ∈ S if and only if
n +1 ∈ Ji in Proposition 7.12. In particular, since J is a Grassmann necklace, S must either be an interval
of the form [d, n], or empty.

Next we claim that, once we verify that S is an interval of the form [d, n] or is empty, then it follows
automatically that J , as constructed in Proposition 7.11, is a Grassmann necklace.

Lemma 7.13. Let I(1)
= (I (1)

1 , . . . , I (1)
n ) and I(2)

= (I (2)
1 , . . . , I (2)

n ) be Grassmann necklaces of types
(r, n) and (r +1, n), respectively. Construct J = (J1, . . . , Jn+1) as in Proposition 7.11. Let S = {i ∈ [n] |

I (1)
i ∪ (n + 1) <i I (2)

i }. If S = [d, n] for some d ≤ n or S = ∅, then J is a Grassmann necklace.

Proof. It is clear from the definition that J satisfies the Grassmann necklace condition for each pair of
consecutive sets Ji and Ji+1 except for when i = k −1, i = n and i = n +1 (where we label sets cyclically
so that Jn+2 = J1).

If S ̸=∅, then Jn = I (1)
n ∪{n +1}. This makes it clear that the Grassmann necklace condition holds for

Jn and Jn+1. Also, sing the fact that I (1)
i ⊂ I (2)

i for all i , it is not hard to verify the Grassmann necklace
condition for Jn+1 and J1.

This leaves us to check the condition for Jk−1 and Jk . In this case, Jk−1 = I (2)
k−1 and Jk = I (1)

k ∪{n +1}.
Our goal is to show that Jk = (Jk−1 \ {k − 1}) ∪ {a} for some a ∈ [n + 1]. It is immediately obvious that
we necessarily have a = n + 1. Thus, we are left to show that I (1)

k ∪ {n + 1} = (I (2)
k−1 \ {k − 1}) ∪ {n + 1},

or that I (1)
k = I (2)

k−1 \ {k − 1}.
Let ai be defined by I (1)

i = (I (1)
i−1\{i −1})∪{ai }, let bi be defined by I (2)

i = (I (2)
i−1\{i −1})∪{bi } and let ci

be defined by I (2)
i = I (1)

i ∪{ci }. We observe that I (1)
k = (I (1)

k−1\{k−1})∪{ak}= (I (2)
k−1\{ck−1, k−1})∪{ak}.

Also, I (1)
k = I (2)

k \ {ck} = (I (2)
k−1 \ {ck, k − 1}) ∪ {bk}. Comparing these two equalities, we conclude that

either ak = ck−1 and bk = ck , or ck−1 = ck and ak = bk . The first case is what we want to prove, so let us
show by contradiction that the second case cannot occur.

Assume ck = ck−1 and ak = bk . By assumption, I (1)
k−1 ∪ {ck−1} = I (2)

k−1 <k−1 I (1)
k−1 ∪ {n + 1} and

I (1)
k ∪ {n + 1} <k I (2)

k = I (1)
k ∪ {ck}. Thus, ck−1 <k−1 n + 1 and ck >k n + 1. Since ck = ck−1, this means

they are both equal to k − 1. However, if ck = k − 1, then M2 has k − 1 as a coloop. it follows that
bk = k − 1, which means ak = k − 1 as well. Thus, in this case, I (1)

k = I (1)
k−1 = I (2)

k−1 \ {k − 1}, as desired.
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Finally, if A = ∅, we can check that the Grassmann necklace condition holds for Jn+1 and J1 as
before. The we are just left to verify this condition for Jn and Jn+1. We can apply the same logic
but with Jk−1 replaced by Jn = I (2)

n and Jk replaced by Jn+1 = I (1)
∪ {n + 1}. Specifically, we find

I (1)
1 = (I (2)

n \ {cn, n}) ∪ {a1} = I (2)
n \ {c1, n}) ∪ {b1}. We then must show that it is impossible for

c1 = cn and a1 = b1. However, I (1)
n ∪ {cn} = I (2)

n <n I (1)
n ∪ {n + 1}. Moreover, it is always true that

I (1)
1 ∪ {n + 1} <n+1 I (1)

1 ∪ {c1} = I (1)
2 . Using c1 = cn , we then find cn <n (n + 1) and cn >n+1 (n + 1)

which means that c1 = cn = n and we can conclude as in the previous paragraph. □

Combining Propositions 7.11, 7.12 and Lemma 7.13, we obtain the following:

Theorem 7.14. Fix positroids M1 and M2 on [n] of ranks r and r + 1, respectively. Let I = IM1 =

(I1, . . . , In) and J = IM2 = (J1, . . . , Jn) be their Grassmann necklaces. We now set S = {i ∈ [n] |

Ii ∪ {n + 1} ≤i Ji }, where ≤i denotes the ≤i Gale order on [n + 1]. Define ai = maxi (Ji \ I1) and
bi = mini (I1 \ Ii ). Then M1 and M2 form a positively oriented quotient if and only if the following
conditions hold:

(1) For i ∈ [n], Ii ⊂ Ji .

(2) S is an interval of the form [d, n] or S = ∅.

(3) For i /∈ S, Ii = Ji \ {ai }.

(4) For i ∈ S, Ji = Ii ∪ {bi }.

Proof. First, suppose that we have a positively oriented quotient. As explained earlier, the first two
conditions always hold for positively oriented quotients. We know that applying the constructions of
Propositios 7.11 and 7.12 in sequence should preserve our positively oriented quotient. Observing what
conditions this imposes on the constituent Grassmann necklaces yields conditions (3) and (4).

Conversely, if the conditions in the theorem statement hold, then by Lemma 7.13, applying the
construction of Proposition 7.11 to I and J yields another Grassmann necklace K on [n + 1] such that
n + 1 is neither a loop nor a coloop of the positroid corresponding to K. Then, conditions (3) and (4)

guarantee that applying the construction of Proposition 7.12 to K will recover I and J . The result of
applying Proposition 7.12 to the Grassmann necklace of a positroid M with n + 1 neither a loop nor a
coloop is the pair of Grassmann necklaces corresponding to M/(n + 1) and M \ (n + 1), which form a
positively oriented quotient. □

Example 7.15. Let I = (123, 235, 356, 456, 561, 613) and J = (1235, 2356, 3456, 4562, 5612, 6123).
Then A = {4, 5, 6} is an interval with upper endpoint n = 6. Note that a1 = 5, a2 = 6 and a3 = 6, while
b4 = 1, b5 = 2 and b6 = 2. The positroids with these Grassmann necklaces do not form a positively
oriented quotient since it is false that I3 = J3 \ {a3}.

However, if we start with the Grassmann necklaces I = (123, 235, 345, 456, 561, 613) and J =

(1235, 2356, 3456, 4562, 5612, 6123), then the values of the ai and bi are unchanged. It is straightforward
to verify that the conditions of Theorem 7.14 hold and so the positroids corresponding to I and J do in
fact form a positively oriented quotient.
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We now have a tool that allows us to recognize flag positroids in consecutive ranks without finding a
realization or certifying the incidence relations over the signed hyperfield.

Corollary 7.16. Suppose (Ma, Ma+1, . . . , Mb) is a sequence of positroids of ranks a, a + 1, . . . , b. Then
(Ma, Ma+1, . . . , Mb) is a flag positroid if and only if for a ≤ i < b, the pair of positroids (Mi , Mi+1)

satisfy the conditions of Theorem 7.14.

Proof. By Proposition 7.10, it suffices to check that each such pair forms a positively oriented quotient,
which is precisely the content of Theorem 7.14. □

8. Fan structures for and coherent subdivisions from TrGr>0
d;n and TrFl>0

n

In this section we make some brief remarks about the various fan structures for TrFl>0
r;n and coher-

ent subdivisions from points of TrFl>0
r;n . Code written for the computations here can be found at

https://github.com/chrisweur/PosTropFlagVar. We take a detailed look at the Grassmannian and complete
flag variety, in particular the case of TrFl>0

4 .

8.1. Fan structures. There are multiple possibly different natural fan structures for TrFl>0
r;n:

(i) The Plücker fan (induced by the three-term tropical Plücker relations).

(ii) The secondary fan (induced according to the coherent subdivision as in Corollary 8.3).

(iii) The Gröbner fan (induced according to the initial ideal of the ideal ⟨Pr;n⟩).

(iv) The simultaneous refinement of the fans dual to the Newton polytopes of the Plücker coordinates,
when the Plücker coordinates are expressed in terms of a “positive parametrization” of Fl>0

r;n , such as
an X -cluster chart.

(v) (If the cluster algebra associated to Flr;n has finitely many cluster variables) the same fan as above
but with (the larger set of) cluster variables replacing Plücker coordinates.

Note that by definition, fan (v) is always a refinement of (iv).
In the case of the positive tropical Grassmannian, the fan structures in (iv) and (v) were studied in

[Speyer and Williams 2005, Definition 4.2 and Section 8], where the authors observed that for Gr2,n , fan
(iv) (which coincides with (v)) is isomorphic to the cluster complex of type An−3;3 for Gr3,6 and Gr3,7,
fan (iv) is isomorphic to a coarsening of the corresponding cluster complex, while fan (v) is isomorphic
to the cluster complex (of types D4 and E6, respectively). Conjecture 8.1 of [Speyer and Williams 2005]
says that fan (v) (associated to the positive tropicalization of a full rank cluster variety of finite type)
should be isomorphic to the corresponding cluster complex. This conjecture was essentially resolved in
[Jahn et al. 2021; Arkani-Hamed et al. 2021a] by working with F-polynomials.

Theorem 14 of [Olarte et al. 2019] states that the Plücker fan and the secondary fan structures for
Dressians coincide, and hence implies that (i) and (ii) coincide because the positive Dressian and the
positive tropical Grassmannian are the same [Speyer and Williams 2021]. For TrGr2,n , the results of

3See [Fomin and Zelevinsky 2003] for background on the cluster complex.

https://github.com/chrisweur/PosTropFlagVar
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[Speyer and Sturmfels 2004, Section 4] imply that (i), (ii), and (iii) agree, and combining this with [Speyer
and Williams 2005, Section 5] implies that all five fan structures agree for TrGr>0

2,n . For TrGr>0
3,6, we

computed that (iii) and (v) strictly refine (i), but the two fan structures are not comparable.
We can consider the same fan structures in the case of the positive tropical complete flag variety.

When n = 3, the fan TrFl>0
n modulo its lineality space is a one-dimensional fan, and all fan structures

coincide. For TrFln (before taking the positive part), one can find computations of the fan (iii) for n = 4
and n = 5 in [Bossinger et al. 2017, Section 3], the fan (i) and its relation to (iii) for n = 4 in [Brandt
et al. 2021, Example 5.2.3], and the fan (ii) and its relation to (iii) for n = 4 in [Joswig et al. 2023,
Section 5]. Returning to the positive tropicalization, Bossinger [2022, Section 5.1] computed the fan
structure (iii) for TrFl>0

4 , and found it was dual to the three-dimensional associahedron; in particular,
there are 14 maximal cones and the f -vector is (14, 21, 9, 1). Using the positive parametrization of
[Boretsky 2022] (a graphical version of the parametrizations of [Marsh and Rietsch 2004]) for TrFl>0

n ,
we computed the polyhedral complex underlying (iv) for n = 4 in Macaulay2 by computing the normal
fan of the Minkowski sum of the Newton polytopes of the Plücker coordinates expressed in the chosen
parametrization; we obtained the f -vector (13, 20, 9, 1). We also computed (v) after incorporating the
additional non-Plücker cluster variable p2 p134 − p1 p234. Combining these, we find that for n = 4, (i)=(iv)
and (ii)=(iii). We also find that both (ii) and (v) strictly refine (i)=(iv) and are both isomorphic to the
normal fan of the three-dimensional associahedron, but are not comparable fan structures.

The fact that the fan structure (v) of TrFl>0
4 is dual to the three-dimensional associahedron is consistent

with [Speyer and Williams 2005, Conjecture 8.1] and the fact that Fl4 has a cluster algebra structure of
finite type A3 [Geiss et al. 2008, Table 1], whose cluster complex is dual to the associahedron.

We now give a graphical way to think about the fan structure on TrFl>0
4 , building on the ideas of

[Speyer and Williams 2005] and [Brandt et al. 2021, Example 5.2.3].

Example 8.1. A planar tree on [n] is an unrooted tree drawn in the plane with n leaves labeled by
1, 2, . . . , n (in counterclockwise order). By [Speyer and Williams 2005], TrGr>0

2;n parametrizes metric
planar trees, and its cones correspond to the various combinatorial types of planar trees. In particular,
if we assign real-valued lengths to the edges of a planar tree, then the negative of the distance between
leaf i and j encodes the positive tropical Plücker coordinate wi j of a point in the corresponding cone.
In particular, it is easy to see that the negative distances wi j associated to such a planar tree satisfy the
positive tropical Plücker relations.

Now as in [Brandt et al. 2021, Example 5.2.3], we note that for a valuated matroid µ whose underlying
matroid is the uniform matroid U2,4, the tropical linear spaces trop(µ) and trop(µ∗) associated to
µ and its dual µ∗ are translates of each other. This allows us to identify points µ = (µ1, µ2, µ3)

of TrFl>0
4 with planar trees on the vertices {1, 2, 3, 4, 5, 5′

} such that the vertices {1, 2, 3, 4, 5} and
separately the vertices {1, 2, 3, 4, 5′

} appear in counterclockwise order. To see this, note that (using
the same idea as Construction 1 from Section 7) we can identify (µ1, µ2), with Plücker coordinates
(w1, . . . , w4; w12, . . . , w34), with an element (wab) of TrGr>0

2,5: we simply set wa5 := wa for 1 ≤ a ≤ 4.
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Figure 2. The fan structure (ii)=(iii) of TrFl>0
4 .

Similarly, we identify (µ2, µ3), where µ3 has Plücker coordinates (w123, . . . , w234), with an element of
TrGr>0

2,5: we simply set wd5′ := wabc, where {a, b, c} := [4] \ {d}.
This gives us the Plücker fan structure (i)=(iv) with thirteen maximal cones, as shown in Figure 2. To

get the Gröbner fan structure (iii) we subdivide one of the cones into two, along the squiggly line shown
in Figure 2. This squiggly line occurs when dist(x1, blue) = dist(x2, red), where x1 and x2 are the two
black trivalent nodes in the tree on [4]. To obtain the fan structure (v), instead of the squiggly line, the
square face is subdivided along the other diagonal.
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Using the computation of TrFl5 in [Bossinger et al. 2017], which can be found on github at
https://github.com/Saralamboglia/Toric-Degenerations/blob/master/Flag5.rtf and Corollary 3.12, we
further computed that TrFl+5 with (iii) has 938 maximal cones (906 of which are simplicial) and that (iv)
has 406 maximal cones. According to [Speyer and Williams 2005, Conjecture 8.1], the (v) fan structure
for TrFl+5 has 672 maximal cones.

8.2. Coherent subdivisions. We next discuss coherent subdivisions coming from the positive tropical
Grassmannian and positive tropical complete flag variety. When Flr;n is the Grassmannian Grd,n and the
support µ is the uniform matroid, Theorem A gives rise to the following corollary (which was first proved
in [Lukowski et al. 2023] and [Arkani-Hamed et al. 2021b]).

Corollary 8.2. Let µ = (µd) ∈ P(T([n]

d )), and suppose it has no ∞ coordinates. Then the following
statements are equivalent:

• µ ∈ TrGr>0
d,n , that is, µ lies in the strictly positive tropical Grassmannian.

• Every face in the coherent subdivision Dµ of the hypersimplex 1d,n induced by µ is a positroid
polytope.

The coherent subdivisions above (called positroidal subdivisions) were further studied in [Speyer and
Williams 2021], where the finest positroidal subdivisions were characterized in terms of series-parallel
matroids. Furthermore, all finest positroidal subdivisions of 1d,n achieve equality in Speyer’s f -vector
theorem; in particular, they all consist of

(n−2
d−1

)
facets [Speyer and Williams 2021, Corollary 6.7].

When Flr;n is the complete flag variety Fln , and the support µ is the uniform flag matroid, Theorem A
gives rise to the following corollary, which appeared in [Joswig et al. 2023, Theorem 20].

Corollary 8.3. Let µ = (µ1, . . . , µn) ∈
∏b

i=a P(T([n]

i )), and suppose it has no ∞ coordinates. Then the
following statements are equivalent.

• µ ∈ TrFl>0
n , that is, µ lies in the strictly positive tropical flag variety.

• Every face in the coherent subdivision Dµ of the permutohedron Permn induced by µ is a Bruhat
interval polytope.

In light of the results of [Speyer and Williams 2021], it is natural to ask if one can characterize the
finest coherent subdivisions of the permutohedron Permn into Bruhat interval polytopes. Furthermore, do
they all have the same f -vector?

Explicit computations for TrFl4 show that the answer to the second question is no. We find that TrFl4
with the fan structure (iii) (which agrees with (ii) by [Joswig et al. 2023, Section 5]) has 78 maximal
cones. We choose a point in the relative interior of each of the 78 cones to use as a height function
(thinking of points in TrFl4 as weights on the vertices of Perm4 as in (c) of Theorem A), then use Sage to
compute the corresponding coherent subdivision of Perm4. As expected, precisely 14 of the 78 cones
induce subdivisions of Perm4 into Bruhat interval polytopes, see Table 1.

https://github.com/Saralamboglia/Toric-Degenerations/blob/master/Flag5.rtf
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height function (P1, P2, P3, P4; P12, P13, Bruhat interval polytopes in subdivision f -vector
P14, P23, P24, P34; P123, P124, P134, P234)

(15, −1, −7, −7; 4, −2, −2, P3214,4321, P3124,4231, P2314,3421,

−2, −2, 4; −7, −7, −1, 15) P2134,3241, P1324,2431, P1234,2341

(15, 3, −9, −9; 4, −8, −8, P2413,4321, P3124,4231, P2314,4231,

−4, −4, 20; −1, −1, −1, 3) P2134,3241, P1324,2431, P1234,2341

(15, −7, −1, −7; −2, 4, −2, P3142,4321, P3124,4312, P2143,3421,

−2, 4, −2; −7, −1, −7, 15) P2134,3412, P1243,2431, P1234,2413

(−1, −1, −1, 3; 4, −8, −4, P2413,4321, P1423,4231, P1342,4231,

−8, −4, 20; 15, 3, −9, −9) P1324,4213, P1243,4132, P1234,4123

(−7, −7, −1, 15; 4, −2, −2, P1432,4321, P1423,4312, P1342,4231,

−2, −2, 4; 15, −1, −7, −7) P1324,4213, P1243,4132, P1234,4123

(−1, −7, −7, 15; −2, −2, 4, P3142,4321, P2143,4312, P2134,4213,

4, −2, −2; 15, −7, −7, −1) P1342,3421, P1243,3412, P1234,2413
(24, 46, 29, 6)

(−9, −9, 3, 15; 20, −4, −8, P1432,4321, P1423,4312, P1342,4231,

−4, −8, 4; 3, −1, −1, −1) P1324,4213, P1324,4132, P1234,3142

(11, −7, −7, 3; −6, −6, 4, P3142,4321, P2143,4312, P2134,4213,

4, 2, 2; 11, −7, −7, 3) P2143,3421, P1243,2431, P1234,2413

(3, 3, −3, −3; 20, −10, −10, P2413,4321, P3124,4231, P2314,4231,

−10, −10, 20; −3, −3, 3, 3) P1324,2431, P1324,3241, P1234,3142

(3, −1, −1, −1; 20, −4, −4, P3214,4321, P3124,4231, P2314,3421,

−8, −8, 4; −9, −9, 3, 15) P1324,3241, P1324,2431, P1234,3142

(−3, −3, 3, 3; 20, −10, −10, P2413,4321, P1423,4231, P1342,4231,

−10, −10, 20; 3, 3, −3, −3) P1324,4132, P1324,4213, P1234,3142

(3, −7, −7, 11; 2, 2, 4, P3142,4321, P3124,4312, P1342,3421,

4, −6, −6; 3, −7, −7, 11) P2134,3412, P1243,3412, P1234,2413

(11, −1, −7, −3; −2, −8, −4, P2413,4321, P2143,4231, P2134,4213,

−4, 0, 18; 11, −1, −7, −3) P1243,2431, P1234,2413
(24, 45, 27, 5)

(−3, −7, −1, 11; 18, 0, −4, P3142,4321, P3124,4312, P1342,3421

−4, −8, −2; −3, −7, −1, 11) P1324,3412, P1234,3142

Table 1. Table documenting the 14 finest coherent subdivisions of Perm4 into Bruhat
interval polytopes. There are two possible f -vectors, each of which can be realized in
multiple ways.

Of the 14 coherent subdivisions coming from maximal cones of TrFl>0
4 , 12 of them contain 6 facets,

while the other 2 contain 5 facets. Table 1 lists the facets and f -vectors of each of these 14 subdivisions.
Note that each Bruhat interval polytope Pv,w which appears as a facet satisfies ℓ(w)−ℓ(v) = 3. Thus, any
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height function (P1, P2, P3, P4; P12, P13, Bruhat interval polytopes
f -vectorP14, P23, P24, P34; P123, P124, P134, P234) in subdivision

(−1, −1, −1, 0; −1, −1, 0, −1, 0, 0; 0, 0, 0, 0) P1243,4321, P1234,4213

(−1, −1, −1, 0; 0, 0, 0, 0, 0, 0; 0, 0, 0, 0) P1342,4321, P1234,4312
(24, 39, 18, 2)

(1, 0, 0, 0; 0, 0, 0, 0, 0, 0; 0, 0, 0, 0) P2134,4321, P1234,2431

(1, 0, 0, 0; 0, 0, 0, 1, 1, 1; 0, 0, 0, 0) P3124,4321, P1234,3421

(0, 0, 0, 0; −1, −1, −1, −1, −1, 0; 0, 0, 0, 0) P2413,4321, P1234,4231
(24, 40, 19, 2)

(0, 0, 0, 0; 1, 0, 0, 0, 0, 0; 0, 0, 0, 0) P1324,4321, P1234,3142

(−1, −1, 0, 0; −1, −1, −1, −1, −1, 0; 0, 0, 0, 0)
P1423,4321, P1342,4231,

P1324,4213, P1234,4132

(0, −1, −1, 0; 0, 0, 1, 0, 0, 0; 0, 0, 0, 0)
P3142,4321, P1243,3421,

(24, 42, 23, 4)P2134,4312, P1234,2413

(1, 1, 0, 0; 1, 0, 0, 0, 0, 0; 0, 0, 0, 0)
P2314,4321, P1324,2431,

P3124,4231, P1234,3241

Table 2. Table documenting the 9 coarsest coherent subdivisions of Perm4 into Bruhat
interval polytopes. There are three possible f -vectors, each of which can be realized in
multiple ways.

Bruhat interval polytope Pv′,w properly contained inside Pv,w would have the property that ℓ(w′)−ℓ(v′)≤

2, and hence dim(Pv′,w′) ≤ 2. Since Perm4 is 3-dimensional, all 14 of these subdivisions are finest
subdivisions.

We note that the 12 finest subdivisions whose f -vector is (24, 46, 29, 6) are subdivisions of the
permutohedron into cubes. Subdivisions of the permutohedron into Bruhat interval polytopes which are
cubes have been previously studied in [Harada et al. 2019, Sections 5 and 6; Lee et al. 2021; Nadeau
and Tewari 2023, Section 6]. In particular, there is a subdivision of Permn into (n−1)! Bruhat interval
polytopes

{Pu,v | u = (u1 . . . , un) with un = n, and v = (v1, . . . , vn) with vi = ui + 1 modulo n}.

The first subdivision in Table 1 has this form.
We can further study the f -vectors of subdivisions of TrFl>0

4 which are coarsest (without being trivial),
rather than finest. In this case, we observe three different f -vectors, each of which occurs in multiple
subdivisions. The detailed results of our explicit computations on coarsest subdivisions can be found in
Table 2.
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Maximal subgroups of exceptional groups
and Quillen’s dimension

Kevin I. Piterman

Given a finite group G and a prime p, let Ap(G) be the poset of nontrivial elementary abelian p-subgroups
of G. The group G satisfies the Quillen dimension property at p if Ap(G) has nonzero homology in the
maximal possible degree, which is the p-rank of G minus 1. For example, D. Quillen showed that solvable
groups with trivial p-core satisfy this property, and later, M. Aschbacher and S. D. Smith provided a list
of all p-extensions of simple groups that may fail this property if p is odd. In particular, a group G with
this property satisfies Quillen’s conjecture: G has trivial p-core and the poset Ap(G) is not contractible.

In this article, we focus on the prime p = 2 and prove that the 2-extensions of finite simple groups
of exceptional Lie type in odd characteristic satisfy the Quillen dimension property, with only finitely
many exceptions. We achieve these conclusions by studying maximal subgroups and usually reducing
the problem to the same question in small linear groups, where we establish this property via counting
arguments. As a corollary, we reduce the list of possible components in a minimal counterexample to
Quillen’s conjecture at p = 2.

1. Introduction

Since the early 70s, there has been a growing interest in the p-subgroup posets and their connections with
finite group theory, the classification of the finite simple groups, finite geometries, group cohomology
and representation theory. The poset Sp(G) of nontrivial p-subgroups of a group G was introduced by
Kenneth Brown [1975]. In that paper, Brown worked with the Euler characteristic χ(G) of groups G
satisfying certain finiteness conditions and established connections between the p-fractional part of χ(G)

and the p-subgroup structure of G. One of the consequences of his results is the commonly known
“Homological Sylow theorem”, which states that the Euler characteristic of Sp(G) is 1 modulo |G|p, the
order of a Sylow p-subgroup of G.

Some years later, Daniel Quillen [1978] introduced the poset Ap(G) of nontrivial elementary abelian
p-subgroups of a finite group G and exhibited several applications of the topological properties of these
posets. Indeed, the study of elementary abelian p-subgroups goes back to Quillen’s earlier work on the
Bredon cohomology of G-spaces and his proof of the Atiyah–Swan conjecture, that relates the Krull
dimension of a ring to the dimension of Ap(G) (see [Quillen 1971]).
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Quillen [1978] showed that Sp(G) and Ap(G) are (G-equivariantly) homotopy equivalent, and provided
a new proof of Brown’s result. In fact, when G is the set of rational points of a semisimple algebraic
group over a finite field of characteristic p, these posets are homotopy equivalent to the building of G
and, hence, they have the homotopy type of a wedge of spheres of dimension l − 1, where l is the rank of
the underlying algebraic group. Furthermore, in that case, the homology H̃∗(Ap(G)) affords the classical
Steinberg module for G.

Quillen also exhibited other connections between intrinsic algebraic properties of G and the topology
of these posets. For instance, he showed that Ap(G) is disconnected if and only if G contains a strongly
p-embedded subgroup. Recall that the classification of the groups with this property is indeed one of the
many important steps towards the classification of the finite simple groups (see, for example, Section 7.6
of [Gorenstein et al. 1998]).

On the other hand, Quillen proved that if G has a fixed point on Ap(G) (or, equivalently on Sp(G)),
then these posets are contractible. Note that G has a fixed point if and only if its p-core Op(G) is
nontrivial. In view of this and further evidence, Quillen conjectured that the reciprocal to this statement
should hold. That is, if Ap(G) is contractible then there is a fixed point, or, equivalently, Op(G) ̸= 1 (see
Conjecture 2.9 of [Quillen 1978]). In other words, Quillen’s conjecture asserts that Ap(G) is contractible
if and only if Op(G) ̸= 1.

A significant part of Quillen’s article is devoted to proving the solvable case of this conjecture. In
[Quillen 1978] it is shown that for a p-nilpotent group G with abelian Sylow p-subgroups and Op(G) = 1,
Ap(G) is homotopy equivalent to a nontrivial wedge of spheres of the maximal possible dimension, which
is mp(G) − 1, the p-rank of G minus 1. Then, if G is any solvable group with Op(G) = 1, G contains
a p-nilpotent subgroup Op′(G)A, with A ∈ Ap(G) of maximal p-rank and Op(Op′(G)A) = 1, and thus
H̃mp(G)−1(Ap(G)) ̸= 0.

Later, Michael Aschbacher and Stephen D. Smith [1993] formalised this property and gave a name to
it: an arbitrary group G with H̃mp(G)−1(Ap(G)) ̸= 0 is said to satisfy the Quillen dimension property at p,
or (QD)p for short. Therefore, a solvable group G with Op(G) = 1 satisfies (QD)p and thus Quillen’s
conjecture. Furthermore, it was shown that p-solvable groups satisfy this property by using Quillen’s
techniques and, in addition, the CFSG (see [Díaz Ramos 2018; Smith 2011]). These results also suggest
that a stronger statement of the conjecture may hold: if Op(G) = 1 then H̃∗(Ap(G); Q) ̸= 0. Therefore,
from now on, by Quillen’s conjecture we will be referring to this stronger version.

It is not hard to see that not every group G with Op(G)= 1 satisfies (QD)p. For example, we mentioned
that finite groups of Lie type in characteristic p satisfy the conjecture, but since the Lie rank is usually
strictly smaller than the p-rank, they fail (QD)p. This has led to the development of new methods to prove
Quillen’s conjecture. One of the most notorious advances in the conjecture was achieved by Aschbacher
and Smith [1993]. They established Quillen’s conjecture for a group G if p > 5 and in addition, roughly,
all the p-extensions of finite unitary groups PSUn(q), with q odd and p |q+1, satisfy (QD)p (see Main
Theorem of [Aschbacher and Smith 1993] for the precise statement). Here, a p-extension of a group L is
a split extension of L by an elementary abelian p-subgroup of Out(L). In [Aschbacher and Smith 1993]
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it is not shown that the group G satisfies (QD)p. Instead, they proved that if every p-extension of a fixed
component of G satisfies (QD)p, then

H̃∗(Ap(G); Q) ̸= 0 if Op(G) = 1

(under suitable inductive hypotheses). This result restricts the possibilities of the components of a minimal
counterexample to Quillen’s conjecture: every component has a p-extension failing (QD)p. In view of
this result and the classification of the finite simple groups, Aschbacher and Smith described for p ≥ 3,
all the possible p-extensions of simple groups which may potentially fail (QD)p. This is the (QD)-List,
Theorem 3.1, of [Aschbacher and Smith 1993]. Moreover, it is conjectured in [Aschbacher and Smith
1993] that the unitary groups PSUn(q) with q odd and p |q+1 should not appear in this list, and so the extra
hypothesis on the unitary groups in the main result of [Aschbacher and Smith 1993] could be omitted. Nev-
ertheless, this problem remains open (see [Piterman and Welker 2022] for recent results in this direction).

In the last few years, there have been further developments in the Quillen conjecture [Piterman 2021;
Piterman et al. 2021; Piterman and Smith 2022a; 2022b]. Recently, in [Piterman and Smith 2022b], new
tools for the study of the conjecture have been provided. For example, it is shown that the Aschbacher–
Smith general approach to the conjecture can be extended to every prime p by reducing reliance on
results of [Aschbacher and Smith 1993] stated only for odd primes and invoking the classification. In
particular, Theorem 1.1 of [Piterman and Smith 2022b] shows that Main Theorem of [Aschbacher and
Smith 1993] extends to p ≥ 3, keeping the additional constraint on the unitary groups. On the other hand,
for p = 2, one important obstruction for this extension is the lack of a (QD)-List for this prime. Roughly,
Corollary 1.8 of [Piterman and Smith 2022b] concludes that a minimal counterexample to Quillen’s
conjecture contains a component of Lie type in characteristic r ̸= 3, and every component of G has a
2-extension failing (QD)2.

In view of these results on Quillen’s conjecture, in this article, we focus on showing that the 2-extensions
of the finite simple groups of exceptional Lie type in odd characteristic satisfy (QD)2, with a small number
of exceptions. This improves the conclusions of [Piterman and Smith 2022b] on Quillen’s conjecture for
p = 2, and allows us to conclude then that exceptional groups of Lie type in odd characteristic different
from 3 cannot be components of a minimal counterexample to the conjecture (see Corollary 1.2 below).

The main result of this article is the following theorem, whose proof is given through different
propositions in Section 5.

Theorem 1.1. Let L be a finite simple group of exceptional Lie type in odd characteristic. That is,
L =

3D4(q), F4(q), G2(q), 2G2(q)′, E6(q), 2E6(q), E7(q) or E8(q), with q odd. Then every 2-extension
of L satisfies the Quillen dimension property at p = 2, except possibly in the following cases:

•
3D4(9) extended with field automorphisms;

• F4(3), F4(9) extended with field automorphisms;

• 2-extensions of G2(3), G2(9) extended with field automorphisms;

•
2G2(3)′, E8(3), E8(9) extended with field automorphisms.
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Indeed, the extensions of G2(3), G2(9) and 2G2(3)′ mentioned above do fail (QD)2 by Example 5.3
and Proposition 5.1.

To achieve the conclusions of Theorem 1.1, in most cases we exhibit a maximal subgroup M of a
2-extension L B of L such that m2(M) = m2(L B) and M satisfies (QD)2. Since there is an inclusion
H̃m2(L B)−1(A2(M)) ↪→ H̃m2(L B)−1(A2(L B)) in the top-degree homology groups, this establishes (QD)2

for L B (see Lemma 3.3). In some cases, the subgroup M arises from suitable parabolic subgroups. More
concretely, when it is possible, we pick P to be a maximal parabolic subgroup of L which is stabilised by
B and such that M := PB realises the 2-rank of L B. Then we get a 2-nilpotent configuration UA, where
U is the unipotent radical of P , A is an elementary abelian 2-subgroup realising the 2-rank of PB, and
O2(UA) = CA(U ) = 1 by one of the corollaries of the Borel–Tits theorem. Hence, by Quillen’s results
on the solvable case, UA satisfies (QD)2, and thus also M and L B.

When the choice of such parabolic P is not possible, we pick one of the maximal rank subgroups
of L . Here, the components of the maximal subgroup M are usually smaller exceptional groups, low-
dimensional linear group A1(q) and A2(q) or unitary groups 2A2(q). Therefore, we first prove that the
2-extensions of simple linear and unitary groups in dimensions 2 and 3 satisfy (QD)2.

Although there is a large literature on maximal subgroups of exceptional groups of Lie type, we will
only need the results from [Cohen et al. 1992; Kleidman 1988; Liebeck et al. 1992; Liebeck and Seitz
1990; 2004].

Finally, from Theorem 1.1 and the results of [Piterman and Smith 2022b] for p = 2, we can conclude:

Corollary 1.2. Let G be a minimal counterexample to Quillen’s conjecture for p = 2. Then G contains
a component of Lie type in characteristic r ̸= 3. Moreover, every such component fails (QD)2 in some
2-extension and belongs to one of the following families:

PSLn(2a) (n ≥ 3), Dn(2a) (n ≥ 4), E6(2a),

PSL±

n (q) (n ≥ 4), Bn(q) (n ≥ 2), Cn(q) (n ≥ 3), D±

n (q) (n ≥ 4),

where q = ra and r > 3.

The 2-extensions of PSL2(q), PSL3(q) and PSU3(q) satisfy (QD)2 by Propositions 4.2, 4.5 and 4.6,
respectively, with exceptions when q = 3, 5, 9. Nevertheless, the results of [Piterman and Smith 2022b]
eliminate these possibilities from a minimal counterexample.

Further results on the Quillen dimension property at p = 2 for the classical groups could be pursued
by combining the methods presented in this article with the results of [Díaz Ramos 2018; Díaz Ramos
and Mazza 2022].

The paper is organised as follows. In Section 2 we set the notation and conventions that we will
need to work with the finite groups of Lie type. We also provide some useful properties to work out the
p-extensions and compute p-ranks. In Section 3 we gather previous results on the Quillen dimension
property and related tools that will help us establish this property. Then in Section 4 we establish (QD)2
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for some 2-extensions of linear groups and recall the structure of the centralisers of graph automorphisms,
following Table 4.5.1 of [Gorenstein et al. 1998]. In Section 5 we prove each case of Theorem 1.1.

All groups considered in this article are finite. We suppress the notation for the homology coefficients,
and we assume that they are always taken over Q. The interested reader may note that our results can be
extended to homology with coefficients in other rings. Finally, we emphasise that we adopt the language
and conventions of [Gorenstein et al. 1998]. This is particularly important when we name the different
types of automorphisms of groups of Lie type. Computer calculations were performed with [GAP].

2. Preliminaries

We assume that the reader is familiar with the construction of the finite groups of Lie type as fixed points of
Steinberg endomorphisms, and the basic properties concerning root systems of reductive algebraic groups.
We will follow the language of [Gorenstein et al. 1998], which also contains the required background on
finite groups of Lie type. In this section, we will only recall some notation and names, and state results
that will be used later.

We denote by Cn , Dn , Symn and Altn the cyclic group of order n, the dihedral group of order n, the
symmetric group on n points and the alternating group on n points.

If G is a group, then Aut(G), Inn(G) and Out(G) denote the automorphism group, the group of inner
automorphisms and the outer automorphism group of G respectively. We denote by Z(G) the centre of G.
We usually write G : H , or simply GH , for a split extension of G by H . When an extension of G by H may
not split, we denote it by G.H . By an element g (resp. a subgroup B) of G inducing outer automorphisms
on L ≤ G we mean that g ∈ NG(L) embeds into Aut(L) \ Inn(L) (resp. B ≤ NG(L) embeds in Aut(L)

with B ∩ Inn(L) = 1). Finally, H ◦m K denotes a central product of H and K by a central cyclic subgroup
of order m. That is, H ◦m K = (H × K )/ Cm , where Cm embeds into both Z(H) and Z(K ).

We will usually use the notation n in a group extension to denote a cyclic group of order n, and nm a
direct product of m copies of cyclic groups of order n. A number between brackets [n] in the structure
description of an extension means some group of order n.

In this article, we are mainly interested in extensions by elementary abelian groups. Below we recall
the definition of p-extension given in the introduction and introduce some useful notation.

Definition 2.1. Let L be a finite group and p a prime number. A p-extension of L is a split extension
L B of L by an elementary abelian p-group B inducing outer automorphisms on L .

If L ≤ G, we denote by OG(L) the poset of elements B ∈ Ap(NG(L)) such that B ∩ LCG(L) = 1
(that is, B induces outer automorphisms on L). We write O2(L) for OAut(L)(L) at p = 2. We also let
ÔG(L) = OG(L) ∪ {1} and Ô2(L) = O2(L) ∪ {1}.

Definition 2.2. For a prime number p, we say that a group G satisfies the Quillen dimension property
at p if Ap(G) has nonzero homology in dimension mp(G)− 1, where mp(G) denotes the p-rank of G:

H̃mp(G)−1(Ap(G)) ̸= 0. (QD)p
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A remarkable study of the Quillen dimension property for odd primes p was carried out in Theorem 3.1
of [Aschbacher and Smith 1993]. This theorem provides a list with the p-extensions of simple groups that
might fail (QD)p, for p ≥ 3. In particular, this list contains the p-extensions of unitary groups PSUn(q)

with q odd and p |q+1. However, Conjecture 4.1 of [Aschbacher and Smith 1993] basically claims that
these groups should not belong to this list. In fact, it is shown there that if n < q(q − 1) then these
p-extensions satisfy (QD)p. Nevertheless, this problem remains open.

The aim of this article is to achieve some progress on a similar list for the prime p = 2. Therefore, we
will focus on showing that 2-extensions of certain simple groups satisfy (QD)2. To that end, we introduce
the following convenient definition.

Definition 2.3. A group L satisfies (E-(QD)) if every 2-extension of L satisfies (QD)2:

For every B ∈ Ô2(L), L B satisfies (QD)2. (E-(QD))

In order to establish (QD)p for p-extensions, it is crucial to be able to compute p-ranks of extensions.
The following result, extracted from Lemma 4.2 in [Piterman et al. 2021], will be a useful tool to compute
p-ranks of extensions.

Lemma 2.4 (p-rank of extensions). Let G = N .K be an extension of finite groups, and let p be a prime
number. Then

mp(G) = max
A∈S

(
mp(CN (A)) + mp(A)

)
,

where S= {A ∈ Ap(G)∪ {1} : A ∩ N = 1}. In particular, mp(G) ≤ mp(N )+ mp(K ), and if K has order
prime to p then Ap(G) = Ap(N ) and mp(G) = mp(N ).

We will implicitly use this result at many points of the proofs. Note that, in order to apply this lemma,
we should be able to compute centralisers of elementary abelian 2-subgroups, usually inducing outer
automorphisms. We will often proceed as follows: if L B is a 2-extension of L , then take a suitable
decomposition B = B0 ⊕ B1, with |B1| = 2. Suppose that we can inductively compute the 2-rank of L B0.
Then, by Lemma 2.4, we have

m2(L B) = max
{
m2(L B0), 1 + m2(CL B0(t)) : t ∈ L B \ L B0 is an involution

}
. (2-1)

Moreover, this computation depends only on the conjugacy classes of the involutions t , and, in most of
the cases that we are interested in, such classes are completely classified.

Now we recall, rather informally, the names of the different types of automorphisms of a simple group
of Lie type K defined over a field of odd characteristic, following Definition 2.5.13 of [Gorenstein et al.
1998]. We refer to [Gorenstein et al. 1998] for the full details. Let t ∈ Aut(K ) be an involution and
K ∗

= Inndiag(K ). Then we have the following names for t :

(1) inner-diagonal if t ∈ K ∗;

(2) inner if t ∈ Inn(K );
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(3) diagonal if t ∈ K ∗
\ Inn(K );

(4) field automorphism if t ∈ Aut(K ) \ K ∗ is Aut(K )-conjugate to a field automorphism of the ground
field and K is not 2An(q), 2Dn(q) or 2E6(q);

(5) graph if t ∈ Aut(K ) \ K ∗, roughly, is Aut(K )-conjugate to an involution arising as an automorphism
of the underlying Dynkin diagram (except for K = G2(q)), or else from a field automorphism in cases
2An(q), 2Dn(q) and 2E6(q); and

(6) graph-field automorphism if it can be expressed as a product g f of a graph involution g and a
field automorphism f , or else K = G2(q) and t arises from an Aut(K )-conjugate of an involution
automorphism of the underlying Coxeter diagram.

It follows from Proposition 4.9.1 of [Gorenstein et al. 1998] that the centralisers of field involutions t
verify that m2(CK (t))= m2(K ) and m2(CK ∗(t))= m2(K ∗). By (2-1), we see that m2(K ⟨t⟩)= m2(K )+1.
Below we reproduce a simplified version of this proposition.

Proposition 2.5. Let K =
d6(q) be a group of Lie type in adjoint version in characteristic r , and let x be

a field or graph-field automorphism of prime order p. Set Kx = Or ′

(CK (x)). Then the following hold:

(1) If x is a field automorphism then Kx ∼=
d6(q1/p).

(2) If x is a graph-field automorphism then d = 1, p = 2 or 3, and Kx ∼=
p6(q1/p).

(3) Kx is adjoint and CInndiag(K )(x) ∼= Inndiag(Kx).

(4) Field (resp. graph-field) automorphisms are all Inndiag(K )-conjugate, except for graph-fields for
K = D4(q) and p = 3.

The previous proposition does not determine, a priori, the structure of CK (x), but just of the centraliser
taken over the inner-diagonal automorphism group. Since we are interested in computing m2(CK (x)),
it will be crucial for us to decide when a diagonal involution can centralise a field or graph-field
automorphism x . We recall below Lemma 12.8 of [Gorenstein et al. 2018, Chapter 17], which provides a
partial solution to this problem.

Lemma 2.6. Let K ∼= PSL2(q), P�2n+1(q), PSp2n(q) or E7(q), where q is a power of an odd prime r.
Let φ be a field automorphism of order 2, and let Kφ = Or ′

(CK (φ)). Then

Inndiag(Kφ) = CInndiag(K )(φ) = CInn(K )(φ).

In particular, φ does not commute with diagonal involutions of Inndiag(K ).

We will mainly work with Table 4.5.1 of [Gorenstein et al. 1998] to compute the 2-ranks of extensions
by diagonal and graph involutions, mostly for the groups of type A±

m(q) and the exceptional groups. In
the next paragraph, we briefly and informally describe how to read such a table. See [Gorenstein et al.
1998, pp. 171–182] for a complete and accurate description of Table 4.5.1.

This table records the K ∗-conjugacy classes of inner-diagonal and graph involutions t of a finite group
of Lie type K in adjoint version, and the structure of their centralisers when taken over K ∗

= Inndiag(K ).
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The centraliser of an involution t is denoted by C∗
= CK ∗(t). The first column of Table 4.5.1 denotes the

family for which the involutions are listed (An , Bn , Cn , etc.) The second column indicates the restrictions
for these classes to exist, while the third column is a label for the conjugacy class of that involution. For
the purposes of this article, we will not need to interpret the fourth column. In the fifth column, it is
indicated when such classes are of inner type (denoted by 1), diagonal type (denoted by d) or graph
type (several notation like g, g′). The notation 1/d indicates that it is inner if the condition inside the
parentheses at the right holds, and it is diagonal otherwise. From the sixth column to the end, the structure
of the centraliser C∗ is described. Roughly, C∗ is an extension of a central product of groups of Lie type
L∗

= Or ′

(C∗) (column six), whose versions are specified in the column “version” and whose centres can
be recovered from the column Z(L∗). An extra part centralising this product can be computed from the
column CC∗◦(L∗). Here C∗◦

= L∗T ∗ is the connected-centraliser, where T ∗ is a certain r ′-subgroup arising
from a torus T normalised by t and inducing inner-diagonal automorphisms on L∗. From the columns
L∗, version, Z(L∗) and CC∗◦(L∗), one can compute the “inner-part” of C∗◦. Finally, from the last two
columns we can recover the outer automorphisms of L∗ arising in C∗◦ (in general of diagonal type) and the
remaining part of C∗/C∗◦, which is often an involution acting on the components of L∗ (as field or graph
automorphism, or by switching two components) and on the central part CC∗(L∗) (which is usually cyclic
and the involution acts by inversion). To recover the action of the last column, the symbols i , ↔, φ, γ , 1
mean, respectively, an action by inversion, a swap of two components, a field automorphism of order 2,
a graph automorphism of order 2, and an inner action on a component or trivial action on CC∗◦(L∗).

3. Tools to achieve (QD)p

In this section, we provide tools and collect results that will help us to establish (QD)2 on certain
2-extensions. Many of these tools were introduced and exploited by Aschbacher–Smith to determine the
(QD)-list in [Aschbacher and Smith 1993].

The following proposition is an easy consequence of the Künneth formula for the join of spaces and
the fact that Ap(H × K ) ≃ Ap(H) ∗Ap(K ) (see [Quillen 1978, Proposition 2.6]).

Proposition 3.1. If p is a prime and H, K satisfy (QD)p, then H × K satisfies (QD)p.

The following lemma corresponds to Lemmas 0.11 and 0.12 of [Aschbacher and Smith 1993].

Lemma 3.2. Let N ⊴ G be such that N ≤ Op′(G). Then there is an inclusion

H̃∗(Ap(G/N )) ⊆ H̃∗(Ap(G)).

In particular, m2(G) = m2(G/N ), and if G/N satisfies (QD)p then so does G.
If N ≤ Z(G), then the quotient map induces a poset isomorphism Ap(G) ∼= Ap(G/N ).

The following observation is an easy consequence of the inclusion between the homology groups of
top-degree.

Lemma 3.3. Let H ≤ G be such that mp(H) = mp(G). If H satisfies (QD)p, then so does G.
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Next, we recall one of the essential results on the Quillen dimension property.

Theorem 3.4 (Quillen). If G is a solvable group with Op(G) = 1, then G satisfies (QD)p.

This theorem settles the solvable case of Quillen’s conjecture (see [Quillen 1978, Theorem 12.1]).
Later, it was extended to the family of p-solvable groups by using the CFSG if p is odd. We refer to
Chapter 8 of [Smith 2011] for further details on Quillen’s conjecture and the Quillen dimension property.

In view of Theorem 3.4 and the inclusion lemma (Lemma 3.3), it is convenient to look for solvable
subgroups of G with maximal p-rank. Some standard solvable subgroups in a group of Lie type L arise
by taking extensions of unipotent radicals by elementary abelian subgroups of their normalisers. These
extensions lie then inside parabolic subgroups. The following result on parabolic subgroups will help
us to achieve (E-(QD)) for arbitrary groups of Lie type (see [Aschbacher and Smith 1993, Step v on
p. 506]).

Lemma 3.5. Let L be a simple group of Lie type, and p a prime not dividing the characteristic of L.
Suppose that L B is a p-extension of L and that there exists a B-invariant proper parabolic subgroup
P ≤ L such that mp(L B) = mp(PB). Then L B satisfies (QD)p.

Proof. Let R := Or (P), where r is the characteristic of the ground field. Then, as a consequence of the
Borel–Tits theorem, CAut(L)(R) ≤ R (see Corollary 3.1.4 of [Gorenstein et al. 1998]). In particular, if
T ≤ PB realises the p-rank of PB, then T normalises R, and CT (R) ≤ R ∩ T = 1. This means that T is
faithful on R, i.e., Op(RT ) = 1, and mp(RT ) = mp(PB) = mp(L B). Then RT is a solvable group with
trivial p-core, and by Theorem 3.4, RT satisfies (QD)p. By Lemma 3.3, L B satisfies (QD)p. □

Lemma 3.6. Let L be a simple group of Lie type defined in odd characteristic. Suppose that P is a proper
parabolic subgroup of L containing a Sylow 2-subgroup of L (that is, |L : P| is odd). Then L and the
extension of L by a field automorphism of order 2 satisfy (QD)2.

Proof. Let L and P be as in the hypotheses of the lemma. Since P has odd index in L , it contains a
Sylow 2-subgroup of L . Therefore, m2(P) = m2(L) and by Lemma 3.5, L satisfies (QD)2.

Next, let B ∈ Ô2(L) be cyclic inducing field automorphisms. By passing through algebraic groups
and root systems, it can be shown that B normalises some conjugate of P , which we may assume is P
itself. Thus, after conjugation, we suppose that B ≤ NAut(L)(P). Note that a Sylow 2-subgroup of PB is
a Sylow 2-subgroup of L B, so m2(PB) = m2(L B). By Lemma 3.5, L B satisfies (QD)2. □

We close this section with a few more results on low p-ranks. The following lemma follows from the
p-rank 2 case of Quillen’s conjecture. See [Quillen 1978, Proposition 2.10].

Lemma 3.7. If Ap(G) is connected, mp(G) = 2 and Op(G) = 1, then G satisfies (QD)p.

It will be convenient to recall the classification of groups with a strongly 2-embedded subgroup, that
is, those groups with disconnected 2-subgroup poset. See [Gorenstein et al. 1998, Theorem 7.6.1] and
[Quillen 1978, Sec. 5].
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Theorem 3.8. Let p = 2 and G be a finite group. Then A2(G) is disconnected if and only if O2(G) = 1
and one of the following holds:

(1) m2(G) = 1;

(2) �1(G)/Op′(�1(G)) ∼= PSL2(2n), PSU3(2n) or Sz(22n−1) for some n ≥ 2.

In particular, from the isomorphisms among the simple groups, we see that

Alt5 ∼= PSL2(5) ∼= PSL2(22), 2G2(3)′ ∼= PSL2(23),

are included in the list of item (2).

Indeed, sometimes in low dimensions, we will be able to conclude (QD)p by computing the sign of
the Euler characteristic of Ap(G). Therefore, we will use the following well-known expression of this
invariant. We write E for the conjugacy class of a subgroup E of G.

Proposition 3.9. The reduced Euler characteristic of Ap(G) is

χ̃(Ap(G)) =

∑
E∈Ap(G)/G∪{1}

(−1)mp(E)−1 p(mp (E)

2 ) |G : NG(E)|.

Proof. This follows from the results of [Jacobsen and Møller 2012], as we briefly explain below. By
[Jacobsen and Møller 2012, Example 2.10], we have

χ̃(Ap(G)) = −

∑
E∈Ap(G)∪{1}

χ̃(Ap(E) \ {E}).

Since Ap(E) \ {E} is the poset of proper nonzero subspaces of the vector space E of dimension mp(E)

over the finite field of p elements, we see that

χ̃(Ap(E) \ {E}) = (−1)mp(E)−2 p(mp (E)

2 ).

Grouping by conjugacy classes yields the formula given in the statement of the proposition. □

Finally, the next lemma will help us to produce nonzero homology by inductively looking into the
homology of the Quillen poset of a certain normal subgroup and centralisers of outer elements acting on
it. The main reference for this lemma is [Segev and Webb 1994].

Lemma 3.10. Let G be a finite group and p a prime number. Suppose that L ⊴ G is a normal subgroup
such that OG(L) consists only of cyclic subgroups. Then we have a long exact sequence

· · · → H̃m+1(Ap(G)) →

⊕
B∈OG(L)

H̃m(Ap(CL(B)))
i∗
−→ H̃m(Ap(L))

j∗
−→ H̃m(Ap(G)) → · · ·

where i∗ and j∗ are the natural maps induced by the inclusions Ap(CL(B)) ⊆Ap(L) and Ap(L) ⊆Ap(G),
respectively.

In particular, the following hold:
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(1) Let X be the union of the subposets Ap(CL(B)) for B ∈ OG(L). We have indeed a factorisation⊕
B∈OG(L) H̃m

(
Ap(CL(B))

) i∗
//

i ′
∗

))

H̃m(Ap(L))

H̃m(X)

k∗

99

(3-1)

where also i ′
∗

and k∗ are induced by the inclusions Ap(CL(B)) ⊆ X and X ⊆ Ap(L), respectively.

(2) mp(G) ≤ mp(L) + 1.

(3) If H̃mp(L)−1(Ap(CL(B))) = 0 for all B ∈ OG(L), then Hmp(L)(Ap(G)) = 0.

(4) We have a bound

dim Hmp(L)(Ap(G)) ≥

∑
B∈OG(L)

dim H̃mp(L)−1(Ap(CL(B))) − dim H̃mp(L)−1(X)

≥

∑
B∈OG(L)

dim H̃mp(L)−1(Ap(CL(B))) − dim H̃mp(L)−1(Ap(L)).

(5) If mp(G) = mp(L) + 1 and G fails (QD)p, then, for m = mp(L) − 1, we get inclusions⊕
B∈OG(L)

H̃m
(
Ap(CL(B))

)
↪→ H̃m(X) ↪→ H̃m(Ap(L)).

Proof. The long exact sequence arises from the main result of [Segev and Webb 1994]. Then equation (3-1)
in item (1) is an immediate consequence of this sequence. Item (2) holds by Lemma 2.4. Items (3)–(5)
follow by looking into the last terms of the long exact sequence, at m = mp(L). □

4. Some linear groups satisfy (QD)2

In this section, we prove that the linear groups PSL2(q) and PSL3(q) satisfy (E-(QD)) for every q , with
a few exceptions for q = 3, 5, 9. These cases will serve as basic cases for the exceptional groups, where
we will occasionally find linear groups as direct factors in some of their maximal subgroups.

From [Gorenstein et al. 1998, Proposition 4.10.5], we recall the 2-ranks of the small dimensional linear
groups:

Proposition 4.1. If q is a power of an odd prime and n = 2, 3, then PSL±

n (q) and PGL±

n (q) have 2-rank 2.

We begin by studying the linear group of dimension 2.

Proposition 4.2. Let L ∼= PSL2(q) with q odd and q ̸= 3. Then every 2-extension L B of L satisfies
(QD)2, with the following exceptions:

(1) L ∼= PSL2(5), B = 1;

(2) L ∼= PSL2(9), B induces field automorphisms of order 2.

Moreover, every 2-extension of Inndiag(L) ∼= PGL2(q) satisfies (QD)2, except in case (2).
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2-extension L B CL(B) m2(L B)

B = 1 L 2
B = ⟨φ⟩ PGL2(q1/2) 3
B = ⟨d⟩ Dq+ϵ 2

Table 1. 2-extensions of PSL2(q), q ≥ 5 odd. Here q ≡ ϵ (mod 4), ϵ ∈ {1, −1}.

Proof. We consider the possible 2-extensions of L . In any case, we know that L is simple and that
Out(L) = C2 × Ca , where C2 ∼= Outdiag(L) and Ca is the group of field automorphisms of Fq . Suppose
that φ is an order 2-field automorphisms of Fq (if it exists), and that d ∈ Inndiag(L) \ L is a diagonal
involution. Then the 2-extensions of L are given in Table 1.

This table follows since every involution of Aut(PSL2(q)) \ PGL2(q) is a field automorphism. Recall
also that field and diagonal automorphisms of order 2 do not commute by Lemma 2.6. The structure of the
centraliser for d follows from the first row of Table 4.5.1 of [Gorenstein et al. 1998]. Finally, observe that
L⟨d⟩ = Inndiag(L) and m2(Inndiag(L)⟨φ⟩) = 3 since m2(L) = m2(Inndiag(L)) = 2 by Proposition 4.1.

By computing the Euler characteristic, we prove that each 2-extension of L satisfies (QD)2. First,
2-extensions L B and Inndiag(L)⟨φ⟩ have connected A2-poset by Theorem 3.8, except for L = PSL2(5),
B = 1. Therefore, by Lemma 3.7, L and Inndiag(L) satisfy (QD)2, except for L = PSL2(5). Note that
A2(PSL2(5)) = A2(Alt5) = A2(PSL2(4)) is homotopically discrete with 5 points, and the 2-extension
PGL2(5) ∼= Sym5 does satisfy (QD)2. This yields the conclusions of the statement for the case q = 5.

Next we show (QD)2 for the 2-extensions L⟨φ⟩ and Inndiag(L)⟨φ⟩. Since both have 2-rank 3, by
Lemma 3.3 it is enough to show that L⟨φ⟩ satisfies (QD)2. In order to do this, we compute the dimensions
of H1(A2(L)) and H1

(
A2(CL(φ))

)
.

Since in this situation, q is a square, q ̸= 5. Second, if q = 25, CL(φ) = PGL2(5). Hence, in any case,
the dimension of these degree 1 homology groups can be computed from the reduced Euler characteristic
of the underlying A2-poset. Here we use the formula given in Proposition 3.9. Thus, for K = L or CL(φ),

dim H1(A2(K )) = −χ̃(A2(K )) = 1 − # of involutions in K + 2 · # of 4-subgroups of K . (4-1)

In Table 2 we describe these numbers.

Proof of Table 2. The number of involutions and 4-subgroups of PSL2(q) follows from Dickson’s
classification of the subgroups of PSL2(q) (see also Theorem 6.5.1 of [Gorenstein et al. 1998]).

group number of involutions number of 4-subgroups

PSL2(q) 1
2q(q + ϵ) 1

24q(q2
− 1)

PGL2(q) q2 1
6q(q2

− 1)

Table 2. Here q ≡ ϵ (mod 4), ϵ ∈ {1, −1}.
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The number of involutions of PGL2(q) follows since there is a unique conjugacy class of diagonal
involutions d by Table 4.5.1 of [Gorenstein et al. 1998]. Thus, the number of elements in such conjugacy
class is equal to 1

2q(q − ϵ), which gives q2 after adding the number of involutions in PSL2(q).
Finally, to compute the number of four-subgroups of PGL2(q) we proceed as follows: each four-

subgroup of PGL2(q) is either contained in PSL2(q) or else it contains a unique involution of PSL2(q) and
2 diagonal involutions. Therefore, for a given diagonal involution d , there is a one-to-one correspondence
between 4-subgroups containing d and involutions in CL(d) ∼= Dq+ϵ . This shows that each diagonal
involution is contained in (q + ϵ)/2 4-subgroups. Since we have 1

2q(q − ϵ) diagonal involutions, the total
number of 4-subgroups in PGL2(q) containing diagonal involutions is

q(q − ϵ)

2
·
(q + ϵ)

2
·

1
2

=
q(q2

− 1)

8
.

Thus the total number of 4-subgroups in PGL2(q) is

q(q2
− 1)

24
+

q(q2
− 1)

8
=

q(q2
− 1)

6
.

This completes the proof of Table 2. □

Indeed, by Table 2, we get concrete values for the dimensions of the degree 1 homology groups of
A2(PSL2(q)) and A2(PGL2(q)):

dim H1
(
A2(PSL2(q))

)
= −χ̃

(
A2(PSL2(q))

)
=

1
12(q − ϵ)(q2

− (6 − ϵ)q − ϵ12), (4-2)

dim H1
(
A2(PGL2(q))

)
= −χ̃

(
A2(PGL2(q))

)
=

1
3(q − 3)(q2

− 1). (4-3)

Now we need to describe the number of field automorphisms in PSL2(q)⟨φ⟩ and in PGL2(q)⟨φ⟩.
Recall that the field automorphisms of PSL2(q)⟨φ⟩ are all PGL2(q)-conjugate, with centraliser

CPGL2(q)(φ) = CPSL2(q)(φ). Thus, the number of field automorphisms of order 2 in PSL2(q)⟨φ⟩ is
exactly

| PGL2(q)|

|CPSL2(q)(q)|
=

q(q2
− 1)

q1/2(q − 1)
= q1/2(q + 1).

This gives q1/2(q +1) involutions in PSL2(q)⟨φ⟩\PSL2(q). Let L = PSL2(q), B = ⟨φ⟩. By Lemma 3.10,
the values in Table 2 and formula (4-1), we conclude that

dim H2(A2(L B)) ≥ q1/2(q + 1) dim H1
(
A2(PGL2(q1/2))

)
− dim H1

(
A2(PSL2(q))

)
= q1/2(q + 1)1

3(q1/2
− 3)(q − 1) −

1
12(q − 1)(q2

− 5q − 12)

=
1
4(q1/2

− 1)(q − 1)(q3/2
− 3q − 4).

Note that q ≡ 1 (mod 4). The above number is positive for all q ≥ 13, which is our case since q is an
even power of an odd prime and q ̸= 9 by hypothesis. We conclude that L B = PSL2(q)⟨φ⟩ satisfies
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(QD)2. Then also PGL2(q)⟨φ⟩ satisfies (QD)2. Moreover,

dim H2
(
A2(PGL2(q)⟨φ⟩)

)
≥ dim H2

(
A2(PSL2(q)⟨φ⟩)

)
≥

1
4(q1/2

− 1)(q − 1)(q3/2
− 3q − 4). (4-4)

We have shown that every possible 2-extension of PSL2(q) and PGL2(q) satisfies (QD)2, except for
the cases described in the statement of the theorem. □

We note that the excluded cases in Proposition 4.2 actually fail (QD)2. Indeed, PSL2(5) fails (QD)2

since it has 2-rank 2 and A2(PSL2(5)) = A2(PSL2(4)) is homotopically discrete. The following ex-
ample provides the details that show that PSL2(9)⟨φ⟩ and PGL2(9)⟨φ⟩ fail (QD)2, where φ is a field
automorphism of order 2.

Example 4.3. Let L = PSL2(9) and let A = Aut(L). Then A/L ∼= C2 × C2, so every 2-extension of L is
a nontrivial normal subgroup of A. This gives 3 possible 2-extensions of L , but not 4. Let φ be a field
automorphism of L and d a diagonal automorphism of L , both of order 2. Then the possible 2-extensions
of L are

(1) L , with 2-rank 2, satisfies (QD)2 with H1(A2(L)) of rank 16;

(2) L⟨φ⟩, with 2-rank 3, fails (QD)2 since CL(φ) ∼= Sym4, which has nontrivial 2-core

O2(CL(φ)) ∼= C2 × C2 ̸= 1;

(3) L⟨d⟩ = PGL2(9), with 2-rank 2, satisfies (QD)2 with H1(A2(L)⟨d⟩) of rank 160 and CL(d) ∼= D10.

Note that Aut(L) has 2-rank 3 and does not satisfy (QD)2, and it is not a 2-extension of L since
diagonal and field automorphisms do not commute in Aut(L). Also PGL2(9)⟨φ⟩ fails (QD)2 since
CPGL2(9)(φ) = CL(φ) has nontrivial 2-core.

There is also a remaining almost simple group N with L < N < Aut(L), not contained in the previous
cases. This is the extension N = PSL2(9).2 ∼= Alt6 .2, and it satisfies that A2(N ) = A2(L). Therefore,
although this group N is not a 2-extension of L , it is a “nonsplit 2-extension”, and it does satisfy (QD)2.

Finally, these computations show that A2(L) ↪→ A2(Aut(L)) induces an inclusion in homology, and
hence a nonzero map. By the main result of [Piterman and Smith 2022a], PSL2(9) is not a component of
a minimal counterexample to Quillen’s conjecture.

Our next aim is to show that 2-extensions of PSL3(q) satisfy (QD)2, with only a few exceptions. We
will need the following lemma which records the values of the Euler characteristic of the Quillen poset of
some linear groups and the unitary groups in dimension 3.

Lemma 4.4. For L = PSLn(q) and n odd, we have

χ̃(A2(L)) = χ̃
(
A2(PGLn(q))

)
=

(−1)n

n

n−1∏
i=1

(q i
− 1) fn(q),
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where fn(q) denotes a polynomial as described in [Welker 1995]. For instance, f3(q) = q3
+3q2

+3q +3.
Moreover, since A2(L) is Cohen–Macaulay of dimension n − 2, the above Euler characteristic computes
the dimension of Hn−2(A2(L)).

If L = PSU3(q), then

χ̃(A2(L)) = χ̃
(
A2(PGU3(q))

)
= −

1
3(q6

− 2q5
− q4

+ 2q3
− 3q2

+ 3).

Proof. The value of the Euler characteristic for PGLn(q) follows from Proposition 4.1 and Theorem 4.4
of [Welker 1995] (note that there is a typo in the formula of Theorem 4.4, and the product over i
should be up to r − 1). Also, since n is odd, by Proposition 7.5 of [Piterman and Welker 2022],
A2(PSLn(q)) =A2(PGLn(q)) =A2(GLn(q))>Z where Z is the cyclic subgroup of order 2 of Z(GLn(q)).
By [Quillen 1978] (see also [Welker 1995]), A2(PSLn(q)) is Cohen–Macaulay of dimension n − 2.

The formula for PGU3(q) follows from Example 7.6 of [Piterman and Welker 2022]. □

Next, we show that the 2-extensions of PSU3(q) satisfy (QD)2, except for q = 3. These cases will be
important during our analysis for PSL3(q), especially when working with 2-extensions by graph-field
automorphisms.

Proposition 4.5. Let L = PSU3(q) with q odd. Then L satisfies (E-(QD)) if q ̸= 3. Moreover, let φ be a
graph automorphism of order 2 of L. Then we have

dim H2
(
A2(PGU3(q)⟨φ⟩)

)
≥ dim H2

(
A2(PSU3(q)⟨φ⟩)

)
≥

1
3(q2

− 1)(q + 1)

(
q2(q2

− q + 1)

(3, q + 1)
(q − 3) − (q3

− 3q2
+ 3q − 3)

)
,

which is a positive polynomial for q > 3. Finally, for q = 3, PSU3(3) satisfies (QD)2 but PSU3(3)⟨φ⟩

fails (QD)2.

Proof. We have that A2(L) is connected by Theorem 3.8, and m2(L) = 2 by Proposition 4.1. Thus L
satisfies (QD)2 by Lemma 3.7. Moreover, by Lemma 4.4,

dim H1(A2(L)) = −χ̃(A2(L)) =
1
3(q6

− 2q5
− q4

+ 2q3
− 3q2

+ 3). (4-5)

Next, the only possible nontrivial 2-extension of L is by a graph automorphism φ of order 2 (which
indeed arises from the field automorphism x 7→ xq ). Let L1 = L⟨φ⟩ be such extension. By Table 4.5.1 of
[Gorenstein et al. 1998],

CPGU3(q)(φ) ∼= Inndiag(�3(q)) = PGL2(q).

This implies that CL(φ) = PGL2(q). Moreover, there is a unique PGU3(q)-conjugacy class of graph
automorphisms, and such elements act by inversion on Outdiag(L) = (3, q +1). Thus the conjugacy class
of φ in Out(L) has size (3, q + 1), and this gives rise to exactly (3, q + 1) extensions L⟨φ′

⟩ ≤ Aut(L) of
L by a conjugate φ′ of φ, and these extensions are Aut(L)-conjugate. We conclude then that the number
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of graph automorphisms contained in L1 is

ng :=
| PGU3(q)|

| PGL2(q)|(3, q + 1)
=

q2(q3
+ 1)

(3, q + 1)
.

Finally, by Lemma 3.10, we conclude that

dim H2
(
A2(PGU3(q)⟨φ⟩)

)
≥ dim H2

(
A2(PSU3(q)⟨φ⟩)

)
≥ ng dim H1

(
A2(PGL2(q))

)
− dim H1

(
A2(PSU3(q))

)
=

q2(q3
+ 1)

(3, q + 1)
1
3(q − 3)(q2

− 1) −
1
3(q6

− 2q5
− q4

+ 2q3
− 3q2

+ 3)

=
1
3(q2

− 1)(q + 1)

(
q2(q2

− q + 1)

(3, q + 1)
(q − 3) − (q3

− 3q2
+ 3q − 3)

)
.

This polynomial is positive for all q > 3. Therefore, L1 satisfies (QD)2 if q ̸= 3.
When q = 3, CL(φ) = PGL2(3) has nontrivial 2-core, so H1

(
A2(CL(φ))

)
= 0, and by Lemma 3.10(3),

H2(A2(L1)) = 0. □

Now we have the necessary background to prove that PSL3(q) satisfies (E-(QD)), except for a small
number of cases.

Proposition 4.6. Let L = PSLn(q) with n, q odd. The following assertions hold:

(1) L , and L extended by a field involution, satisfy (QD)2.

(2) If n = 3, then every 2-extension of L satisfies (QD)2, with the following exceptions that fail (QD)2:

• L = PSL3(3) extended by a graph automorphism, and
• L = PSL3(9) extended by a group generated by a field involution and a graph automorphism.

Proof. Let L = PSLn(q), with n odd, and consider the stabiliser P of a 1-dimensional subspace of the
underlying module V = Fn

q . Then P is a parabolic subgroup with structure P ∼= [qn−1
]L P , where L P , a

Levi complement for P , has structure SLn−1(q) ◦(n,q−1) Cq−1. Thus |L P | = | GLn−1(q)|/(n, q − 1) and
the index of P in L is

|L : P| =
qn(n−1)/2 ∏n

i=2(q
i
− 1)

qn−1 · q(n−1)(n−2)/2
∏n−1

i=1 (q i − 1)
=

qn
− 1

q − 1
= qn−1

+ qn−2
+ · · · + q + 1.

Since n is odd, the index of P in PSLn(q) is odd. By Lemma 3.6, L = PSLn(q) and L extended by a
field involution satisfy (QD)2. This proves item (1).

Before moving to the case n = 3, we list all the possible 2-extensions of L . Denote by φ, γ and δ a
field automorphism of order 2, a graph automorphism and a graph-field automorphism of L , respectively,
such that [φ, γ ] = 1 and δ = φγ . Let also L∗

= PGLn(q). Then the 2-extensions of L are

(i) L;

(ii) L⟨φ⟩, with CL∗(φ) ∼= PGLn(q1/2) by Proposition 2.5;

(iii) L⟨γ ⟩, with CL(γ ) ∼= Inndiag(�n(q)) by Table 4.5.1 of [Gorenstein et al. 1998];
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(iv) L⟨δ⟩, with CL∗(δ) ∼= PGUn(q1/2) by Proposition 2.5;

(v) L⟨φ, γ ⟩, with CL(φ, γ ) ∼= Inndiag(�n(q1/2)) by (iii) and Proposition 2.5.

Now suppose that n = 3, that is L = PSL3(q). We know that the extensions of cases (i) and (ii) above
satisfy (QD)2 by the parabolic argument. So it remains to show that the 2-extensions by graph, graph-field
and both graph and field automorphisms, satisfy (QD)2. To that end, we compute the dimensions of the
top-degree homology groups, similar to what we did for PSL2(q) in the proof of Proposition 4.2.

First, recall that we have the following number of involutions of each type. Let B = ⟨φ, γ ⟩.

n f := # field involutions in L⟨φ⟩ = # field involutions in L B

=
| PGL3(q)|

| PGL3(q1/2)|(3, q1/2 + 1)
,

ng := # graph involutions in L⟨γ ⟩ = # graph involutions in L B

=
| PGL3(q)|

| PGL2(q)|(3, q − 1)
,

ng f := # graph-field involutions in L⟨δ⟩ = # graph-field involutions in L B

=
| PGL3(q)|

| PGU3(q1/2)|(3, q1/2 − 1)
.

To compute these numbers, we have used the structure of the centraliser in each case, the fact that there is
a unique L∗-conjugacy class for each type of involution, and the structure of Out(L) = (3, q − 1) : ⟨φ, γ ⟩

(see Theorem 2.5.12 of [Gorenstein et al. 1998]).
Let t be a field, graph or graph-field involution of L , and let L1 = L⟨t⟩. Then the number nt of involutions

in L1 \ L is n f , ng or ng f , accordingly to the type of t . Note also that m2(L1) = m2(L) + 1 = 3.
By Lemma 3.10,

dim H2(A2(L1)) ≥ nt · dim H1
(
A2(CL(t))

)
− dim H1(A2(L)). (4-6)

We compute d(t) := dim H1
(
A2(CL(t))

)
in each case, by using Lemma 4.4 and (4-3). Note that

�1(CL(φ)) = PSL3(q1/2) by item (ii) above. Also CL(γ ) = PGL2(q) by the classical isomorphism
Inndiag(�3(q)) ∼= PGL2(q). By Lemma 4.4, we have

d(φ) = dim H1
(
A2(PSL3(q1/2))

)
=

1
3(q1/2

− 1)(q − 1)(q3/2
+ 3q + 3q1/2

+ 3),

d(γ ) = dim H1
(
A2(PGL2(q))

)
=

1
3(q − 3)(q2

− 1),

d(δ) = dim H1
(
A2(PGU3(q1/2))

)
=

1
3(q3

− 2q5/2
− q2

+ 2q3/2
− 3q + 3).

Let d := dim H1(A2(L)). Since A2(L) is connected and m2(L) = 2, by Lemma 4.4 we have

d = −χ̃(A2(L)) =
1
3(q − 1)(q2

− 1)(q3
+ 3q2

+ 3q + 3).

Now it is routine to verify that nt d(t) > d if t = γ or t = δ, if and only if (t, q) ̸= (γ, 3). Indeed, for
q = 3, CL(γ ) = PGL2(3) ∼= Sym4 has nontrivial 2-core, so d(γ ) = 0 and in consequence, H2(L⟨γ ⟩) = 0.
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This shows that L⟨γ ⟩ fails (QD)2 if q = 3. Therefore, a 2-extension of L by a field, graph or graph-field
involution satisfies (QD)2 if and only if q ̸= 3 when L is extended by a graph involution.

It remains to show that L B = L⟨φ, γ ⟩ verifies (QD)2. For this case, we take L f = L⟨φ⟩, L2 = L B
and consider the long exact sequence of Lemma 3.10 at m = 2 there (since m2(L2) = 4). That is, we
need to show that H3(A2(L2)) ̸= 0.

Note that the set of involutions t ∈ L2 \ L1 is exactly the set of all graph and graph-field automorphisms
of the extension L2 = L B. Let dg := dim H2

(
A2(PGL2(q)⟨φ⟩)

)
, dg f := dim H2

(
A2(PGU3(q1/2)⟨φ⟩)

)
and df := dim H2(A2(L f )). Therefore, by Lemma 3.10,

dim H3(A2(L2)) ≥ ngdg + ng f dg f − df . (4-7)

We show that the right-hand side of this equation is positive if q ̸= 9 by providing proper bounds of the
dimensions dg, dg f and df .

By (4-4),

dg = dim H2
(
A2(PGL2(q)⟨φ⟩)

)
≥

1
4(q1/2

− 1)(q − 1)(q3/2
− 3q − 4). (4-8)

Next, by Proposition 4.5,

dg f ≥
1
3(q − 1)(q1/2

+ 1)

(
q(q − q1/2

+ 1)

(3, q1/2 + 1)
(q1/2

− 3) − (q3/2
− 3q + 3q1/2

− 3)

)
, (4-9)

which is positive for all q > 9.
Finally, we need to bound df from above. Indeed, by Lemma 3.10 at m = 2, we have

df = dim H2(A2(L f )) = dim H2
(
A2(PSL3(q)⟨φ⟩)

)
≤ n f dim H1

(
A2(PSL3(q1/2))

)
=

q3/2(q + 1)(q3/2
+ 1)

(3, q1/2 + 1)
1
3(q1/2

− 1)(q − 1)(q3/2
+ 3q + 3q1/2

+ 3).

Now we check with the given bounds that ngdg + ng f dg f − df is positive if and only if q > 9. In
fact, if q = 9, similar arguments show H3(A2(L B)) = 0 since dg = 0 by Example 4.3 and dg f = 0 by
Proposition 4.5.

We conclude that every 2-extension of PSL3(q) satisfies (QD)2, except for PSL3(3) extended by a
graph automorphism and for PSL3(9) extended by field and graph automorphisms, which actually fail
(QD)2. □

5. The Quillen dimension property on exceptional groups of Lie type

We use the results of the preceding sections to show that, with only finitely many exceptions, the 2-
extensions of the finite simple groups of exceptional Lie type satisfy (QD)2. For that purpose, it will be
convenient to recall first which 2-extensions can arise in each case. Table 3 records the 2-ranks of the
exceptional groups of Lie type in adjoint version and the structure of the outer automorphism group. The
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group 2-rank Outdiag Out / Outdiag
3D4(q) 3 1 38

G2(q) 3 1 80, where |80 : 0| = 2 if q = 3a , and 0 = 1 otherwise
2G2(q) 3 1 8 (odd order)
F4(q) 5 1 8

E6(q) 6 (3, q − 1) 8× 0, 0 ∼= C2
2E6(q) 6 (3, q + 1) 28

E7(q) 8 2 8

E8(q) 9 1 8

Table 3. Out / Outdiag is cyclic unless specified; 8 = Aut(Fq) ∼= Ca , where q = ra, r is
an odd prime, and the usual conventions for the twisted types hold. Also, 0 is a set of
graph automorphisms.

2-ranks were extracted from [Cohen and Seitz 1987; Gorenstein et al. 1998, Proposition 4.10.5]. From
Table 3, we will compute the possible 2-extensions in each case.

Recall that we follow the terminology of [Gorenstein et al. 1998]. In particular, by a group of Lie
type K we mean the finite group Or ′

(Cσ (K )), where K is a simple Fr -algebraic group and σ a Steinberg
endomorphism of K . Also, K is the adjoint version if Z(K ) = 1. Unless we specify the version, we will
always work with the adjoint versions of the exceptional groups of Lie type.

Cases G2(q) and 2G2(q). We start by proving that the Ree groups 2G2(q) satisfy (QD)2 if and only if
q ̸= 3. Note that, by Table 3 for example, 2G2(q) has no nontrivial 2-extension.

Proposition 5.1. Let L be the Ree group 2G2(q), where q is a power of 3 by an odd positive integer. Then
the following hold:

(1) L has no nontrivial 2-extensions.

(2) A Sylow 2-subgroup of L is an elementary abelian group of order 8, so m2(L) = 3.

(3) 2-subgroups of equal order of L are conjugate.

(4) L satisfies (QD)2 if and only if q ̸= 3. Moreover, if q > 3 then

dim H2(A2(L)) ≥ χ̃(A2(L)) =
1
21(q2

− 1)(q5
− 8q4

+ 15q3
+ 21) > 0. (5-1)

(5) For q = 3, A2(L) = A2(PSL2(8)) is homotopy equivalent to a discrete space of 8 points.

Proof. Items (1)–(3) are well-known facts about the Ree groups and can be found in [Ward 1966].
If L =

2G2(3), then L ′
= PSL2(8) has index 3 in L , and A2(L) ∼= A2(PSL2(8)) is homotopy equivalent

to a discrete space with 8 points. Since m2(L) = 3, we conclude that L fails (QD)2 for q = 3. This
proves item (5) and the “only if” part of item (4).

Now suppose that q ̸= 3 and L =
2G2(q). Since A2(L) has dimension 2 by item (2), we show that its

second homology group is nonzero. To that end, it is enough to see that its Euler characteristic is positive
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since A2(L) is connected for q ̸= 3 by Theorem 3.8. Indeed,

χ̃(A2(L)) = dim H2(A2(L)) − dim H1(A2(L)) ≤ dim H2(A2(L)).

We invoke Theorem C of [Kleidman 1988] to describe the normalisers of 2-subgroups: the centraliser
of an involution is 2×PSL2(q), the normaliser of a four-subgroup is (22

×D(q+1)/2) : 3, and the normaliser
of a Sylow 2-subgroup is 23

: 7 : 3. From this information, items (2), (3) and Proposition 3.9, we can
compute the Euler characteristic of A2(L):

χ̃(A2(L)) = −1 +
|L|

2| PSL2(q)|
− 2

|L|

6(q + 1)
+ 8

|L|

168

= −1 + q3(q3
+ 1)(q − 1)

( 1
q(q2−1)

−
1

3(q+1)
+

1
21

)
=

1
21(q2

− 1)(q5
− 8q4

+ 15q3
+ 21).

Since the polynomial q5
− 8q4

+ 15q3
+ 21 = q4(q − 8) + 15q3

+ 21 is positive for every prime power
q ̸= 4, we conclude that H2(A2(L)) ̸= 0. In consequence, L satisfies (QD)2 if q ̸= 3. This completes the
proof of item (4), and hence of this proposition. □

For the case G2(q), we refer the reader to the classification of maximal subgroups of G2(q) by
P. Kleidman [1988]. We will follow the terminology of that article.

Proposition 5.2. Let L = G2(q), with q odd. Then every 2-extension of L satisfies (QD)2, except possibly
for the 2-extensions of G2(3) and the 2-extension of G2(9) by a field involution.

Proof. Let L = G2(q). We prove first that G2(q) and its extension by a field automorphism of order 2
satisfy (QD)2, by exhibiting a maximal subgroup of the same rank that satisfies (QD)2.

By Theorem A in [Kleidman 1988], G2(q) contains a subgroup K+ = SL3(q) : 2. Let L+ = F∗(K+) ∼=

SL3(q) and Z = Z(L+). Then L0 := L+/Z = PSL3(q) and H0 := K+/Z = L0⟨γ ⟩, where γ induces a
graph automorphism on L0 (see Proposition 2.2 and its proof in [Kleidman 1988]). By Proposition 4.6,
L0 satisfies (QD)2 if q ̸= 3, so H0 satisfies (QD)2.

On the other hand, m2(L) = 3 by Table 3, and also m2(L0) = 3 by the proof of Proposition 4.6. Recall
from Lemma 3.2 that

H̃∗(A2(H0)) = H̃∗(A2(K+/Z)) ⊆ H̃∗(A2(K+)).

In particular, we get the following inclusions between the top-degree homology groups

H̃2(A2(H0)) ⊆ H̃2(A2(K+)) ⊆ H̃2(A2(L)),

which show that L satisfies (QD)2 if q ̸= 3.
Next, a nontrivial 2-extension of L = G2(q) can only be given by field automorphisms of order 2

if q is not a power of 3. Moreover, by the construction of the subgroup K+ given in [Kleidman
1988], field automorphisms of G2(q) induce field automorphisms on (a suitable conjugate of) K+,
and hence on the quotient H0. Thus, for B ∈ O2(L) inducing field automorphisms, we may take
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K+ fixed by B, and then K+B ∼= SL3(q) : (2 × B) after a suitable choice of conjugates (recall that
Out(SL3(q)) = (3, q − 1) : (Aut(Fq)×0), where 0 = 2 is a group of graph automorphisms). Similar as
before, we have a split extension K+B/Z = L0 B ′, where B ′

= ⟨γ ⟩ × B ∈ O(L0). By Proposition 4.6,
L0 B ′ satisfies (QD)2 if q ̸= 9. Analogously to the previous case, m2(L0 B ′) = 4 = m2(L) = m2(K+B),
and we get an inclusion in the degree 3 homology groups, showing that K+B and L B satisfy (QD)2.
Therefore, an extension of L by a field automorphism of order 2 satisfies (QD)2 if q ̸= 9.

It remains to analyse the case q =3a . By Table 4.5.1 of [Gorenstein et al. 1998] (see also Theorem 2.5.12
of [Gorenstein et al. 1998]), only field or graph-field automorphisms can arise in Aut(L). We have shown
above that the extension of L by a field automorphism of order 2 satisfies (QD)2 if q ̸= 9. Thus we need
to prove that if t is a graph-field automorphism of L , then L⟨t⟩ satisfies (QD)2. In that case, q = 32a+1

and by Proposition 2.5, CL(t) =
2G2(q), which has 2-rank 3. Therefore m2(L⟨t⟩) = 4. However, by

Theorem B of [Kleidman 1988], every maximal subgroup of L⟨t⟩ containing t is either 2-local or has
2-rank at most 3. This shows that we cannot proceed as before via maximal subgroups. In view of this,
we will proceed by using the long exact sequence of Lemma 3.10.

We have subgroups M0 := CL(t) =
2G2(q), M1 := G2(3)⟨t⟩ ≤ L⟨t⟩ and M2 :=

2G2(3) such that
M2 ≤ M1∩M0. Fix A a Sylow 2-subgroup of M2. By Proposition 5.1(2) and [Kleidman 1988, Lemma 2.4],
A is also a Sylow 2-subgroup of M0 and it is self-centralising in L , i.e., CL(A) = A. A direct computation
also shows that NM ′

1
(A) = A.PSL3(2), which immediately implies NL(A) = A.PSL3(2).

Now, suppose by the way of contradiction that L⟨t⟩ fails (QD)2, that is, the homology group
H3(A2(L⟨t⟩)) vanishes. Recall that CL(t)=

2G2(q) and there is a unique L-conjugacy class of involutions
t ′

∈ L⟨t⟩ − L by Proposition 2.5(4). Let X =
⋃

CL (t)x∈L/CL (t) A2(CL(t x)). By Lemma 3.10, we get
inclusions ⊕

L/CL (t)

H2
(
A2(CL(t))

)
↪→ H2(X) ↪→ H2(A2(L)). (5-2)

Set

d := dim H2(X), d ′
:= dim

⊕
L/CL (t)

H2
(
A2(CL(t))

)
= |L : CL(t)| dim H2

(
A2(

2G2(q))
)
.

Equation (5-2) shows that d ′
≤ d . However, we will prove that d < d ′, arriving then at a contradiction.

On one hand, we have that X is a union of A2-posets. Therefore, below each point, we have a wedge
of spheres of maximal possible dimension. This means that the homology of X can be obtained from the
chain complex that in degree i is freely generated by the spheres below each point of X of height i . In
particular, for i = 2, the points of height 2 correspond to the conjugates of A, the fixed Sylow 2-subgroup
of M0 = CL(t) and M2. Thus,

d = dim H2(X) ≤ |L : NL(A)| · #(spheres below A) =
q6(q6

− 1)(q2
− 1)

168
.

On the other hand, by Proposition 5.1(4),

d ′
≥ |L : CL(t)| · χ̃

(
A2(

2G2(q))
)
= q3(q3

− 1)(q + 1) 1
21(q2

− 1)(q5
− 8q4

+ 15q3
+ 21).
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Finally, from these bounds, we prove that d ′ > d if q ≥ 7. We can bound

d ′
− d ≥ q3(q3

− 1)(q + 1) 1
21(q2

− 1)(q5
− 8q4

+ 15q3
+ 21) −

q6(q6
− 1)(q2

− 1)

168
= q3(q3

− 1)(q + 1) 1
168(q2

− 1)
(
8(q5

− 8q4
+ 15q3

+ 21) − q3(q2
− q + 1)

)
> 8(q5

− 8q4
+ 15q3

+ 21) − q3(q2
− q + 1)

= 7(q4(q − 9) + 17q3
+ 24).

The latter polynomial is clearly positive for q ≥ 9, and also for q = 7 by direct computation. Since q ≥ 7
by hypothesis, we conclude that d ′ > d . This gives a contradiction to equation (5-2), and thus shows that
H3(A2(L⟨t⟩)) ̸= 0; that is, L⟨t⟩ satisfies (QD)2. This finishes the proof of the proposition. □

Example 5.3. Let L = G2(3). We show that A2(L) is homotopy equivalent to a wedge of spheres of
dimension 1. In particular, since m2(L) = 3, L fails (QD)2. Moreover, by Lemma 3.10, also the unique
nontrivial 2-extension of L (by a graph-field automorphism) fails (QD)2.

We construct a subposet of A2(L) of dimension 1 and homotopy equivalent to A2(L). First, take
the subposet i(A2(L)) =

{
A ∈ A2(L) : A = �1

(
Z
(
�1(CL(A))

))}
, which is homotopy equivalent to

A2(L) (see [Piterman 2019, Remark 4.5]). Next, there are two conjugacy classes of elementary abelian
2-subgroups of order 8, and both are contained in i(A2(L)). For one of these classes, say represented by A,
the normaliser NL(A) has order 192. Then it can be shown that i(A2(L))<A is contractible. Therefore, if
we remove the L-conjugates of A from i(A2(L)) we get a subposet si(A2(L)) homotopy equivalent to
i(A2(L)). Now, there is a unique conjugacy class of four-subgroups in this new subposet si(A2(L)), and
each such subgroup is contained in a unique element of order 8 of si(A2(L)). Again, we can remove all
the four-subgroups from si(A2(L)) and obtain a new subposet Y homotopy equivalent to A2(L). Since
Y consists only of elements of order 2 and 8, we conclude that Y has dimension 1. Finally, an extra
computation shows that χ̃(A2(L)) = −11584. Therefore A2(L) is homotopy equivalent to a wedge of
11584 spheres of dimension 1. In particular, L fails (QD)2.

This also shows that L = G2(9) extended by a field automorphism of order 2 fails (QD)2: if φ is a
field involution, then CL(φ) = G2(3), and thus H2

(
A2(CL(φ))

)
= 0 by the previous computation. Then

by Lemma 3.10, we conclude that H3(A2(L)) = 0.

Cases 3D4 and F4(q).

Proposition 5.4. The group L =
3D4(q) satisfies (E-(QD)) if q ̸= 9 is odd. Also 3D4(9) satisfies (QD)2.

Proof. Recall that m2(L) = 3 by Table 3. Then a graph automorphism of order 3 of 3D4(q) centralises a
subgroup K = G2(q). Also, if φ denotes a field automorphism of order 2 of L , then, after choosing a
suitable conjugate, we may assume that φ induces a field automorphism on K . By Proposition 5.2 and
its proof, m2(K ) = 3 = m2(L), m2(K ⟨φ⟩) = 4 = m2(L⟨φ⟩), and both K and K ⟨φ⟩ satisfy (QD)2 for
q ̸= 3, 9 respectively. Also note that G2(9) satisfies (QD)2. By Lemma 3.3, L and L⟨φ⟩ satisfy (QD)2

if q ̸= 3, 9, respectively. Since these are the only possible 2-extensions of L by Table 3, this concluded
with the proof of our proposition for q ̸= 3.
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If q = 3, a computation of the Euler characteristic of A2(L) in GAP with the Posets package [Fernández
et al. 2019] shows that χ̃(A2(L)) = 882634225472. Since A2(L) is connected by Theorem 3.8, we see
that H2(A2(L)) ̸= 0, that is, L satisfies (QD)2. □

Proposition 5.5. If L = F4(q), with q ̸= 3, 9 odd, then L satisfies (E-(QD)). Also F4(9) satisfies (QD)2.

Proof. Suppose that q ̸= 3, 9 is an odd prime power. Then L contains a subgroup H := PGL2(q)×G2(q)

(see the main result of [Liebeck and Seitz 2004]). Note that H satisfies (QD)2 by Propositions 3.1, 4.2
and 5.2. Since both L and H have 2-rank 5 by Table 3, we conclude that L satisfies (QD)2.

Let B ∈O2(L), so B is generated by a field automorphism of order 2. Thus it acts by field automorphisms
in a direct product subgroup isomorphic to H , which we may assume without loss of generality that it is
our H . Then H̃ = PGL2(q)B×G2(q1/2), which is a subgroup of HB, satisfies (QD)2 by Propositions 3.1,
4.2 and 5.2. Since m2(H̃) = 6 = m2(L B), we conclude that L B also satisfies (QD)2.

We have shown that every possible 2-extension of L satisfies (QD)2, so L satisfies (E-(QD)).
If q = 9, then PGL2(9) × G2(9) satisfies (QD)2 by Propositions 3.1, 4.2 and 5.2. Therefore, F4(9)

satisfies (QD)2. □

Cases E6(q) and 2E6(q).

Proposition 5.6. Let L = Eϵ
6(q) (any version), ϵ ∈ {±1}, and q odd. Then L satisfies (E-(QD)).

Proof. Let L = Eϵ
6(q) in adjoint version (i.e., simple), where ϵ ∈ {±1}. For a 2-extension L B of the

adjoint version L , we see that m2(L B) = m2(Lu B̃), where Lu is the universal version of Eϵ
6(q) and B̃,

isomorphic to B, is just a lift of the action of B on Lu (this is possible since Z(Lu) = (3, q − ϵ) is odd).
Thus L B = Lu B̃/Z(Lu), and by Lemma 3.2, H̃∗(A2(L B)) ⊆ H̃∗(A2(Lu B)). Therefore, if L satisfies
(E-(QD)), then so does the universal version of Eϵ

6(q).
We will show that there exists a parabolic subgroup P of L such that for any 2-extension L B, a suitable

conjugate of P is normalised by B (so we can suppose it is P itself), and m2(PB) = m2(L B).
This parabolic subgroup P arises from the A5 subdiagram in E6, so P = U GLϵ

6(q)/Z(Lu), where
GLϵ

6(q)/Z(Lu) denotes the Levi complement. Then m2(P) = 6, which realises the 2-rank of L . Further-
more, a graph, graph-field or field automorphism of order 2 of L (the last two only for ϵ = 1) stabilises this
subdiagram (and hence P), inducing a graph (resp. graph-field or field) automorphism on GLϵ

6(q)/Z(Lu).
Denote by t such automorphism. Then m2(L⟨t⟩) ≤ m2(L) + 1 = 7. We claim that

m2(P⟨t⟩) = m2(GLϵ
6(q)⟨t⟩) = 7 = m2(L⟨t⟩). (5-3)

Note that m2(P⟨t⟩) = m2(GLϵ
6(q)⟨t⟩), for the lifted action of t on GLϵ

6(q). Then it is clear that (5-3) holds
if t induces a field automorphism (so ϵ = 1), since the stabiliser of t in GL6(q) is GL6(q1/2). Similarly,
if t is a graph-field automorphism then ϵ = 1 and CGL6(q)(t) = GU6(q1/2), which has 2-rank 6. Then, in
these two situations, m2(P⟨t⟩) = 7.

Now assume that t is a graph involution. For ϵ = 1, t acts on GL6(q), so GL6(q)⟨t⟩ contains a
graph automorphism g inducing the map x 7→ (x ′)−1, where x ′ denotes the transpose of x . Therefore,
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CGL6(q)(g)={x ∈ GL6(q) : xx ′
= 1}= GO6(q) is the subgroup of orthogonal matrices, which has 2-rank 6.

This implies that m2(GL6(q)⟨t⟩) = 6. If ϵ = −1, t is a graph involution acting on GU6(q), so up to
conjugation t is indeed the map x 7→ xq . Therefore, CGU6(q)(t) = GO6(q), so m2(GU6(q)⟨t⟩) = 6. In
any case, we see that m2(P⟨t⟩) = 7.

Finally, suppose that we have B = ⟨φ, γ ⟩, where φ is a field automorphism of order 2 and γ a graph
automorphism of order 2 of L = E6(q). We can suppose that B stabilises P (and thus its unipotent radical),
and its Levi complement GL6(q)/Z(Lu). Thus, γ induces a graph automorphism on the stabiliser of
φ in GL6(q), which is isomorphic to GL6(q1/2). As we saw above, m2(GL6(q1/2)⟨γ ⟩) = 7. Therefore,
m2(GL6(q)B) = 8. Since m2(B) = 2 and m2(E6(q)) = 6, we conclude that m2(E6(q)B) = 8, so the
2-rank is realised in PB.

To conclude, note that a 2-extension of L is one of:

(1) L , of 2-rank 6 = m2(P),

(2) L⟨γ ⟩ of 2-rank 7, with γ a graph automorphism of order 2, which also stabilises P and m2(P⟨γ ⟩)= 7,

(3) L⟨φ⟩ of 2-rank 7, with φ a field automorphism of order 2 (ϵ =1) that stabilises P , and so m2(P⟨φ⟩)=7,

(4) L⟨γφ⟩ of 2-rank 7, with γφ a graph-field automorphism of order 2 (ϵ = 1), which stabilises P , and
thus m2(P⟨γφ⟩) = 7,

(5) L⟨γ, φ⟩ of 2-rank 8, with φ a field automorphism of order 2 (ϵ = 1) commuting with γ a graph
automorphism of order 2, and ⟨γ, φ⟩ also stabilises P with m2(P⟨γ, φ⟩) = 8.

From this, we conclude that any 2-extension of the simple group Eϵ
6(q) satisfies (QD)2. By the remark

at the beginning of the proof, we conclude that any version of Eϵ
6(q) satisfies (E-(QD)). □

Case E7(q).

Proposition 5.7. Let L = E7(q) with q odd. Then L satisfies (E-(QD)).

Proof. Let L = E7(q). By Table 3, if φ denotes a field automorphism of order 2 of L , the 2-extensions of
L are

L , Inndiag(L), L⟨φ⟩.

Note that Inndiag(L)⟨φ⟩ is not a 2-extension since field and diagonal automorphisms of order 2 do not
commute in view of Lemma 2.6.

Next, we study the 2-ranks of these extensions, so we need to understand the centralisers of the outer
involutions. From Table 3, m2(L) = 8. We claim that m2(Inndiag(L)) = 8 = m2(L). Indeed, consider
K = E7(q2) in adjoint version. Then m2(K ) = 8. Let φ′ be a field automorphism of order 2 for K . Then,
by Proposition 2.5 and Lemma 2.6,

K ≥ CK (φ′) = CInndiag(K )(φ
′) = Inndiag(E7(q)) ∼= Inndiag(L).
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From this we see that m2(Inndiag(L)) = 8 = m2(L). In particular, Inndiag(L) satisfies (QD)2 if L does.
Moreover, this also proves that if φ is a field automorphism of order 2 for L then

m2(Inndiag(L)⟨φ⟩) = 9 = m2(L⟨φ⟩).

From these observations, we conclude that, in order to establish (E-(QD)) for E7(q), it is enough to
show that E7(q) and E7(q)⟨φ⟩ satisfy (QD)2.

To this end, we exhibit a maximal parabolic subgroup of E7(q) of 2-rank 8. We see that D6 is a
subdiagram of E7, so we have a maximal parabolic subgroup in E7(q) of the form

P = U (D6(q).(q − 1)).

Here U denotes the unipotent radical of P , and the subgroup H = D6(q) is a quotient of Spin+

12(q) by a
central subgroup of order 2. Indeed, H = HSpin+

12(q) and it lies in the centraliser of the involution that
generates the centre of a Sylow 2-subgroup T of L (see the t1 involution of the E7(q) entry in Table 4.5.1
of [Gorenstein et al. 1998]). From this, we show that the Levi complement L P = D6(q).(q − 1) of P
has 2-rank 8. Let t be the involution in the centre of L P . Then CL(t) = (SL2(q) ◦2 HSpin+

12(q)).2 by
Table 4.5.1 of [Gorenstein et al. 1998]. Since t ∈ Z(T ), T ≤ CL(t). Also, SL2(q) has a unique involution,
so the 2-rank of T is realised in a subgroup of the extension M := HSpin+

12(q).2. Here, the 2 at the end
comes from diagonal automorphisms of the half-spin group, as in the Levi complement above. Therefore,
if we identify M as a subgroup of L P , we conclude that m2(L P) = m2(M) = m2(E7(q)).

Moreover, after suitable choices of conjugates, a field automorphism φ of order 2 must normalise P and
act as a field automorphism on our M . Since CM(φ) contains a subgroup isomorphic to HSpin+

12(q
1/2).2,

we see that P⟨φ⟩ has 2-rank 9, which is the 2-rank of the 2-extension E7(q)⟨φ⟩.
By Lemma 3.5, L and L⟨φ⟩ satisfy (QD)2. Finally, by the previous discussion, we conclude that L

satisfies (E-(QD)). □

Case E8(q).

Proposition 5.8. The simple group E8(q), q ̸= 3, 9 odd, satisfies (E-(QD)). Also E8(9) satisfies (QD)2.

Proof. Let L = E8(q). By Table 5.1 of [Liebeck et al. 1992], L contains a maximal subgroup

H ∼= (3, q − 1).(PSL3(q) × E6(q)).(3, q − 1).2.

Note that

F∗(H)= (3, q−1).(PSL3(q)×E6(q)), and H+ := H/Z(F∗(H))= (PSL3(q)×E6(q)).(3, q−1).2,

where (3, q − 1) induces diagonal automorphism on each component of H+, and the 2 induces a graph
involution, also acting on both components. In particular, by taking the centraliser of a graph involution
on the PSL3(q) component, we see that H0 contains a subgroup K0 isomorphic to

PGL2(q) × Inndiag(E6(q))⟨γ ⟩,
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where γ is a graph involution of E6(q) centralising PGL2(q). Now, recall that

m2(L) = 9 and m2(PGL2(q)) = 2.

Since m2(E6(q)⟨γ ⟩) = 7 by item (2) of the proof of Proposition 5.6, we see that

m2(K0) = m2(PGL2(q)) + m2(E6(q)⟨γ ⟩) = 2 + 7 = 9 = m2(L).

Therefore K0 realises the 2-rank of L .
By Table 3, E8(q) extended by a field automorphism of order 2, say φ, is the unique nontrivial

2-extension. From the construction of the maximal subgroup H and K0 (see [Liebeck et al. 1992]), we
can pick a suitable L-conjugate of φ (and we suppose it is the same φ) such that it normalises H and,
after passing to the quotient, normalises K0 and induces a field automorphism on both factors of K0. In
particular, we have a subgroup K1 of K0⟨φ⟩ of the form

PGL2(q1/2) × Inndiag(E6(q))⟨γ ′, φ⟩,

where we have chosen γ ′
∈ Inndiag(E6(q))⟨γ ⟩ to be a graph automorphism commuting with φ, and

PGL2(q1/2) = CPGL2(q)(φ). Therefore, by item (5) in the proof of Proposition 5.6,

m2(K1) = 2 + m2(E6(q)⟨γ ′, φ⟩) = 2 + 8 = 10.

Since m2(L⟨φ⟩) ≤ m2(L) + 1 = 10, we conclude that m2(K1) = m2(L⟨φ⟩).
Finally, note that K0 and K1 satisfy (QD)2 if q ̸= 3, 9 respectively, by Propositions 4.2, 5.6 and 3.1.

Hence, by Lemmas 3.2 and 3.3, L and L⟨t⟩ satisfy (QD)2 if q ̸= 3, 9, respectively.
Therefore every 2-extension of E8(q) satisfies (QD)2, with the exceptions given in the statement. This

concludes the proof of the proposition. □
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