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Serre weights for
three-dimensional wildly ramified Galois representations

Daniel Le, Bao V. Le Hung, Brandon Levin and Stefano Morra

We formulate and prove the weight part of Serre’s conjecture for three-dimensional mod p Galois
representations under a genericity condition when the field is unramified at p. This removes the assumption
made previously that the representation be tamely ramified at p. We also prove a version of Breuil’s
lattice conjecture and a mod p multiplicity one result for the cohomology of U(3)-arithmetic manifolds.
The key input is a study of the geometry of the Emerton—Gee stacks using the local models we introduced
previously (2023).
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1. Introduction

The goal of this paper is to prove a generalization of the weight part of Serre’s conjecture for three-
dimensional mod p Galois representations which are generic at p. We also prove a generalization of
Breuil’s lattice conjecture for these representations and the Breuil-Mézard conjecture for generic tamely
potentially crystalline deformation rings of parallel weight (2, 1, 0). For a detailed discussion of these
conjectures, see [Le et al. 2020], where we establish the tame case of these conjectures.

1.1. Results.

1.1.A. The weight part of Serre’s conjecture. Let p be a prime, and let F/F* be a CM extension of
a totally real field F™ # Q. Assume that all places in F* above p splitin F/FT. Let G be a definite
unitary group over F* split over F which is isomorphic to U(3) at each infinite place and split at each
place above p. A (global) Serre weight is an irreducible I]_:p—representation V of G(OFf+ ). These are all

of the form ), , V, with V,, an irreducible Fp—representation of G(k,), where k, is the residue field of

vlp
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FT at v. For amod p Galois representation 7 : G — GL3 (Fp), let W (7) denote the collection of modular
Serre weights for 7. That is, V € W (r) if the Hecke eigensystem attached to r appears in a space of mod
p automorphic forms on G of weight V for some prime to p level.

For each place v|p, fix a place v of F dividing v which identifies G(k,) with GL3(k,). Define
Pv *=TlGa(F;, F;)- We can now state the main theorem.

Theorem 1.1.1 (Theorem 5.4.2). Assume that p is unramified in F and that p, is 8-generic for all v| p.
Assume that v is modular (i.e., W (r) is nonempty) and satisfies the Taylor—Wiles hypotheses.
Then
Q) Vo e W(F) & V, € W(p,) forall v| p,

v|p

where W8(p,) is an explicit set of irreducible Fp-represemations of GLs(ky) attached to p, (see
Definition 1.2.1).

In particular, this affirms the expectation from local-global compatibility that W (r) depends only on
the restrictions of 7 to places above p.

Remark 1.1.2. This is the first complete description of W (r) in dimension greater than two for represen-
tations r that are wildly ramified above p. Some lower bounds were previously obtained in [Gee and
Geraghty 2012; Morra and Park 2017; Herzig et al. 2017; Le et al. 2018a; 2018b].

The first obstacle we overcome is the lack of a conjecture. One basic problem is that while tame
representations (when restricted to inertia) depend only on discrete data, wildly ramified representations
vary in nontrivial moduli. Buzzard—Diamond-Jarvis defined a recipe in terms of crystalline lifts in
dimension two. However, after [Le et al. 2018a], it was clear that the crystalline lifts perspective is
insufficient in higher dimension. In higher dimensions, Herzig defined a combinatorial/representation
theoretic recipe for a collection of weights W’(5,) when p, is tame. For possibly wildly ramified p,
Gee et al. [2018] make a conjectural conjecture: they define a conjectural set conditional on a version
of the Breuil-Mézard conjecture. Our first step is to prove a version of the Breuil-Mézard conjecture
(Theorem 1.2.2 and Remark 1.2.3) when n = 3.

Having established a version of the Breuil-Mézard conjecture when n = 3, the weight set from [Gee et al.
2018] turns out (in generic cases) to have a simple geometric interpretation. Let A3 be the moduli stack
of (¢, I')-modules recently constructed by Emerton and Gee [2023]. The irreducible components of X3
are labeled by irreducible mod p representations of GL3(k,) and W8 (p,) is defined so that V,, € W&(p,)
if and only if p, lies on Cy,. However, this definition of W&(p,) gives very little insight into its structure.
We study Wé(p,) using the local models developed in [Le et al. 2023b] combined with the explicit
calculations of tamely potentially crystalline deformation rings in [Le et al. 2018a; 2020]. We ultimately
arrive at an explicit description of all possible weight sets W (5,) which allows us to then employ the
Taylor—Wiles patching method to prove Theorem 1.1.1.
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1.1.B. Breuil’s lattice conjecture and mod p multiplicity one. The weight part of Serre’s conjecture can
be viewed as a local-global compatibility result in the mod p Langlands program. In this section, we
mention two further local-global compatibility results —one mod p and one p-adic. We direct the reader
to the introduction of [Le et al. 2020] for further context for the following two results.

In the global setup above assume further that 7/ F* is unramified at all finite places and G is quasisplit
at all finite places. Let 7 : G — GL3(Q ») be a modular Galois representation which is tamely potentially
crystalline with Hodge—Tate weights (2, 1, 0) at each place above p and unramified outside p (though our
results hold true when r is minimally split ramified; see Section 5.4). Write A for the Hecke eigensystem
corresponding to . We fix places 0 |v|p of F and F* respectively. We let H be the integral p-adically
completed cohomology with infinite level at v, hyperspecial level outside v, and constant coefficients. Set
P & "G, and let o (7) be the tame type corresponding to the Weil-Deligne representation associated to
p under the inertial local Langlands correspondence (so that H [A][1/ p] contains o (t) with multiplicity
one). Let 7 and p be the reductions of r and p, respectively.

Theorem 1.1.3 (Theorem 5.4.4). Assume that p is unramified in F*, r is unramified outside p, p is
11-generic, and r satisfies Taylor—Wiles hypotheses. Then, the lattice

o(r)NHN]
depends only on p.

We now let H be the mod p reduction of H. Thus, H is the mod p cohomology with infinite level at
v (and hyperspecial level at places outside v with constant coefficients) of a U(3)-arithmetic manifold.

Theorem 1.1.4 (Theorem 5.4.3). Let o (t)° be an O-lattice in o (t) with irreducible “upper alcove”
cosocle. Under the assumptions of Theorem 1.1.3, HomGLS(oFﬁ)(o (v)°, H [A]) is a one-dimensional

[, -vector space.

See Sections 1.4 and 2.1.F, for the notion of upper and lower alcove for Serre weights for GL3. The
statement of Theorem 1.1.4 is also true when the cosocle is not necessarily upper alcove if one imposes a
condition on the shape of p with respect to 7; see Theorem 5.4.3.

1.2. Methods.

1.2.A. Local methods: geometry of the Emerton—Gee stack and local models. We begin by recalling
the set W&(p) that appears in Theorem 1.1.1. Let K be a finite unramified extension of @, of degree f,
with ring of integers Ok and residue field k. Let A’k , be the Noetherian formal algebraic stack over
SpfZ, defined in [Emerton and Gee 2023, Definition 3.2.1]. It has the property that for any complete
local Noetherian Z ,-algebra R, the groupoid Xk ,(R) is equivalent to the groupoid of rank n projective
R-modules equipped with a continuous Gk -action; see [Emerton and Gee 2023, §3.6.1]. In particular,
XK,,,(FP) is the groupoid of continuous Galois representations p : Gy — GL, (FI,). As explained in [Le
et al. 2023b, §7.4], there is a bijection o — C, between irreducible I]_:p—representations of GL, (k) and
the irreducible components of the reduced special fiber of Xk ,,. (This is a relabeling of the bijection of
[Emerton and Gee 2023, Theorem 6.5.1].)
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Definition 1.2.1. Let p € XK,H(E,). Define the set of geometric weights of p to be
W(p) ={o | p € Co(Fy)}.

While Definition 1.2.1 is simple, it does not appear to be an easy task to determine the possible sets
WE(p). The irreducible components of Xk , are described in terms of closures of substacks, but we
expect the closure relations and component intersections in X , to be rather complicated.

We now specialize to the case n = 3. A key tool in the analysis of the sets W&(p) in this setting is
the description of certain potentially crystalline substacks. For a tame inertial type 7, let X" C Xk 3 be
the substack parametrizing potentially crystalline representations of type t and parallel weight (2, 1, 0).
Recall that o () denotes the representation of GL3(O ) obtained by applying the inertial local Langlands
correspondence to t (it is the inflation of a Deligne—Lusztig representation; see Section 2.1.C). The
following is an application of the theory of local models of [Le et al. 2023b]:

Theorem 1.2.2 (Corollary 3.3.3). If t is a 4-generic tame inertial type, then X" is normal and Cohen—
Macaulay and its special fiber X[;’ " is reduced. Moreover, X[g ' is the scheme-theoretic union

U .

o€eJH(o (1))

Remark 1.2.3. This shows that the choice of cycles Z, = C, solves the Breuil-Mézard equations for the
above X7 (see [Emerton and Gee 2023, Conjecture 8.2.2; Le et al. 2023b, Conjecture 8.1.1]).

The equality of the underlying reduced Ay ' ; and the scheme-theoretic union | J,, cIH@G (r)) Co 18 proved
in Theorem 1.3.5 in [Le et al. 2023b] though we reprove it here with a weaker genericity condition (see
Remark 1.2.4). The key point is to prove that the special fiber of X% is in fact reduced. (If we replace n
by A 4+ n with A dominant and nonzero or n = 3 by n > 3, the Breuil-Mézard conjecture predicts that
the analogous stacks never have reduced special fiber.) The special fiber of X" has an open cover with
open sets labeled by f-tuples of (2, 1, 0)-admissible elements (w;) in the extended affine Weyl group of
GL3. The complexity of the geometry of the open sets increases as the lengths of the w; decrease. When
the length of w; is greater than 1 for all j, the reducedness immediately follows from the calculations
in [Le et al. 2018a, §5.3]. Otherwise, the calculations of [Le et al. 2018a, §8] give an explicit upper
bound on the special fiber which when combined with Xﬁ }Ted =U, cJH(@ (1)) Co must be an equality, and
the reducedness follows.

Remark 1.2.4. An inexplicit genericity condition appears in the main theorems of [Le et al. 2023b] (see
§1.2.1 of [loc. cit.]). While we use the models constructed in [loc. cit.], we reprove some of its main
theorems in Sections 3.2 and 3.3 with the inexplicit condition replaced by the more typical genericity
condition on the gaps between the exponents of the inertial characters in 7. This is possible because of
the computations in [Le et al. 2018a; 2020].

Finally, we analyze W& (p) using local models. The special fibers of the local models embed inside
the affine flag variety where irreducible components appear as subvarieties of translated affine Schubert
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varieties. In Section 4, we introduce a subset W,y (0) C W8(p) of obvious weights for (possibly)
wildly ramified p, which has a simple interpretation in terms of the affine flag variety. Obvious weights
generalize the notion of ordinary weights that appear in [Gee and Geraghty 2012] and the additional
weights appearing in the exceptional cases of [Morra and Park 2017; Herzig et al. 2017; Le et al. 2018b].
The set Wy (0) gives upper and lower bounds for W8(p). We finally show that, in almost all cases, one
can determine W8 (p) from Wy, (0) (Theorem 4.2.5). This last part uses a curious piece of numerology
from the calculations of [Le et al. 2018a] — points in the special fibers of the local models never lie on
exactly three components.

1.2.B. Global methods: patching. To prove Theorems 1.1.3 and 1.1.4 we combine the explicit description
of the weight sets W (r), coming from Theorems 1.1.1 and 4.2.5, with the Kisin—Taylor—Wiles methods
developed in [Emerton et al. 2015] and employed in [Le et al. 2020, §5]. A crucial ingredient is the
analysis of certain intersections of cycles in the special fiber of deformation rings. The local models
introduced in [Le et al. 2023b] allow us to algebraize the computations made for the tame case in [Le
et al. 2020, §3.6].

We now turn to Theorem 1.1.1. The key input into its proof beyond the Kisin—Taylor—Wiles method is
the fact that the local Galois deformation rings of type (1, t) are domains when t is 4-generic. This is
guaranteed by the fact that the stacks X" are normal (Theorem 1.2.2). Then the supports of the patched
modules of type t are either empty or the entire potentially crystalline deformation rings of type (7, 7).
The proof is then similar to the tame case in [Le et al. 2020] — one propagates modularity between
obvious weights and then to shadow weights using carefully chosen types — except for one new wrinkle.
From the axioms of a weak patching functor, one cannot deduce the modularity of an obvious weight to
get started! Indeed one cannot rule out that p, lies on a unique component C,, and W (r) contains exactly

one Serre weight 0’ # o 4 &),, ov With the property that for any tame inertial type 7, if JH(G (7))

vlp
contains ¢’, then it also contains o. We use a patched version of the weight cycling technique introduced
in [Emerton et al. 2013] to rule out this pathology. In fact, we axiomatize our setup to make clear the

ingredients that our method requires.

1.3. Overview. Section 2 covers background on tame inertial L-parameters and representation theory in
Section 2.1, and Breuil-Kisin modules with tame descent data in Section 2.2, following [Le et al. 2023b].
Section 2.1.F gives a comparison between parametrizations of Serre weights in [Le et al. 2020; 2023b].

Section 3 establishes the main results about the geometry of local deformation rings. We specialize the
theory of local models in [Le et al. 2023b] to dimension three. The main results are Theorem 3.3.2 and
Corollary 3.3.3, which establish the geometric properties that we need, some of which are specific to
dimension three.

In Section 4, we analyze possible sets of geometric weights using the affine flag variety. Theorem 4.2.5
gives a complete explicit description when p is sufficiently generic.

Section 5 contains our global applications. In Section 5.1, we introduce the axioms of patching functors
following [Le et al. 2023b, §6] and prove the weight part of Serre’s conjecture assuming the modularity of
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at least one obvious weight (Proposition 5.1.11). The latter condition is then removed in Section 5.2 using
modules with an arithmetic action (Theorem 5.2.6). In Section 5.3, we prove results on mod p multiplicity
one and Breuil’s lattice conjectures for patched modules (Theorems 5.3.1, 5.3.13), generalizing analogous
results in [Le et al. 2020] to the wildly ramified case. Finally, Section 5.4 proves our main global theorems.

1.4. Notation. For any field K we fix once and for all a separable closure K and let G défGal(I? /K). If
K is a nonarchimedean local field, we let Ix C Gk denote the inertial subgroup. We fix a prime p € Z-.
Let ECQ p» be a subfield which is finite-dimensional over Q,. We write O to denote its ring of integers,
fix an uniformizer @ € O and let F denote the residue field of E. We will assume throughout that E is
sufficiently large.

We consider the group G & GL; (defined over Z). We write B for the subgroup of upper triangular
matrices, T C B for the split torus of diagonal matrices and Z C T for the center of G. Let &+ C &
(resp. @V C @) denote the subset of positive roots (resp. positive coroots) in the set of roots (resp. co-
roots) for (G, B, T). Let A (resp. AY) be the set of simple roots (resp. coroots). Let X*(T') be the group of
characters of T which we identify with 73 by letting the standard i-th basis element &; = (0, ..., 1,...,0)
(with the 1 in the i-th position) correspond to extracting the i-th diagonal entry of a diagonal matrix. In
particular, we let £} and &} be (1,0, 0) and (0, 0, —1) respectively.

We write W (resp. W,,, 17[7) for the Weyl group (resp. the affine Weyl group, the extended affine Weyl
group) of G. If Ag C X*(T) denotes the root lattice for G we then have

Wo=ArxW, W=X"T)xW

and use the notation , € W to denote the image of v € X*(T). The Weyl groups W, W, and W, act
naturally on X*(7') and on X*(T) ®z A for any ring A by extension of scalars.
Let { , ) denote the duality pairing on X*(7T") x X.(T'), which extends to a pairing on

(X*(T)®z A) x (X(T) ®z A)

for any ring A. We say that a weight A € X*(T) is dominant if 0 < (A, ") for all @ € A. Set X%T) to
be the subgroup consisting of characters A € X*(T) such that (A, «¥) =0 for all @ € A, and X(T) to be
the subset consisting of characters A € X*(T') such that 0 < (A, ") < p forall @ € A

We fix an element n € X*(T') such that (n, «¥) = 1 for all positive simple roots «. We define the p-dot
action as t,w - =t w(p +n) — n. By letting wo denote the longest element in W define Wy, & wol_y.

Recall that for (a,n) € ®* x Z, we have the p-root hyperplane H, , = A (A+n,aY) =np}.
A p-alcove is a connected component of the complement X*(T) ®z R\ (U(a’n) Ho,’n). We say that a
p-alcove C is p-restricted (resp. dominant) if 0 < (A +17, a") < p (resp. 0 < (A +n, «")) for all simple
rootsa € Aand A € C. If Cy C X*(T) ®z R denotes the dominant base alcove (i.e., the alcove defined
by the condition 0 < (A +n, a¥) < p for all positive roots a € ®T, we let

W+ E (% eW: - Cois dominant} and Wt (W e W™ :@-Cyis p-restricted}.

. def ~
We sometimes refer to Cy as the lower alcove and C; = Wy, - Cy as the upper alcove.
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Let now O, be a finite étale Z ,-algebra. We have an isomorphism O, =[], es, O where S, is a finite
set and O, is the rlng of integers of a finite unramified extenswn F, + of Q,. Let Go = Reso /2, G /0, with
Borel subgroup Bo = Resop /z,B)0,, maximal torus TO = Reso /2, 1/0,, and Zo Res@p /2,20, We
assume that O contains the image of any rmg homomorphism O, — Z and write J & Homzp (O, 0).
We can and do fix an identification of G (GO) o with the split reductive group G . We similarly
define B, T, and Z. Corresponding to (G, B, T'), we have the set of positive roots 9+ C @ and the
set of positive coroots ®¥- C ®V. The notation Ag, W, W, V_T/, V_~V+, V_T’T should be clear as should
the natural isomorphisms X*(T) = X*(T)Y and the like. Given an element j € 7, we use a subscript
notation to denote j-components obtained from the isomorphism G = G770 (so that, for instance, given
an element w € ﬁ/ we write w; to denote its j-th component via the induced identification V_T/ ~ W),
For sake of readability, we abuse notation and still write wg to denote the longest element in W, and
fix a choice of an element n € X*(T) such that (n, «¥) = 1 for all @ € A. The meaning of w, n and
oy = wo?—_y should be clear from the context.

The absolute Frobenius automorphism on O,/ p lifts canonically to an automorphism ¢ of O,. We
define an automorphism 7 of the identified groups X*(T') and X, (T") by the formula 7 (1), = Aoop-!
for all A € X*(T') and 0 : O, — O. We assume that, in this case, the element n € X*(T') we fixed is
m-invariant. We similarly define an automorphism 7 of W and V_T/

Let F7 be O,[1/p] so that F,I is isomorphic to the (finite) product [ ]

for eachv € §),. Let
def
6= [ 6/

Ff—E

F;f where F;F £ 0,[1/p]

vES),

be the dual group of G so that the Langlands dual group of Gy is /G Yv = GY x Gal(E/Q)), where
Gal(E/Q,) acts on the set of homomorphisms F ;r — E by postcomposition.

We now specialize to the case where S, = {v} is a singleton. Hence F ;r = K is an unramified extension
of degree f with ring of integers Ok and residue field k. Let W (k) be ring of Witt vectors of k, which is
also the ring of integers of K.

We denote the arithmetic Frobenius automorphism on W (k) by ¢; it acts as raising to p-th power on
the residue field.

Recall that we fixed a separable closure K of K. We choose 7 € K such that 1% A p and let
wg :Gx — (92 be the character defined by g(7) = wg (g)m, which is independent of the choice of 7. We
fix an embedding o : K < E and define o} = 0y o™/, which identifies .7 = Hom(k, F) = Homg ,(K, E)
with Z/fZ. We write wy : Gk — O for the character o¢ o wi.

Let € denote the p-adic cyclotomic character. If W is a de Rham representation of Gg over E, then for
each x € Homg, (K, E), we write HT, (W) for the multiset of Hodge-Tate weights labeled by embedding
« normalized so that the p-adic cyclotomic character ¢ has Hodge—Tate weight {1} for every «. For
w=(u;)jes € X*(T), we say that a 3-dimensional representation W has Hodge-Tate weights p if

HTO'J(W) = {Ml,jv /"Lz,js ILS,j}
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Our convention is the opposite of that of [Emerton and Gee 2023; Caraiani et al. 2016], but agrees with
that of [Gee et al. 2018].

We say that a 3-dimensional potentially semistable representation p : Gy — GL,(FE) has type (u, )
if p has Hodge-Tate weights & and the restriction to Ix of the Weil-Deligne representation attached to p
(via the covariant functor p — WD(p)) is isomorphic to the inertial type 7. Note that this differs from
the conventions of [Gee et al. 2018] via a shift by 7.

Let I" be a group. If V is a finite length I"-representation, we let JH(V') be the (finite) set of Jordan—
Holder factors of V. If V° is a finite @-module with a I'-action, we write V° for the I'-representation
V°®e F over F.

If X is an ind-scheme defined over O, we write X g &y X spec 0 Spec E and X =5's X spec 0 Spec [ to
denote its generic and special fiber, respectively. If M is any O-module we write M to denote M ®o F.

If P is a statement, the symbol §p € {0, 1} takes value 1 if P is true, and O if P is false.

1.4.A. Tables. In Tables 1-3 we write «, 8 and y for the elements of w corresponding to (12), (23) and
wol(1,0,—1), respectively. Moreover, the image of 1 & (1,1,1) e X*(T) in W is denoted as t1. We identify
the elements above with matrices in GL3(Z((v))) via the embedding W — GL3(Z((v))) defined by

010 100 00 v! v 0O
a—~ {100}, B—{001)], y—~1]01 O and 71—~ |0 v O
001 010 v0 0 00w

2. Background

2.1. Affine Weyl group, tame inertial types and Deligne—Lusztig representations. Throughout this
section, we assume that S, = {v}. Thus O, = O is the ring of integers of a finite unramified extension K
of @, and Go =Resp, /ZPG J0x - We drop subscripts v from notation and we identify 7 = Homg, (K, E)
with Z/f7Z via o; Y pop™ > j.

2.1.A. Admissibility. We follow [Le et al. 2023b, §2.1-§2.4], specializing to the case of n = 3. We
denote by < the Bruhat order on VE’ = X*(T) x W associated to the choice of the dominant base alcove
Co and set

Adm(p) ={we W |® < ts(n) for some s € W}.

We will also consider the partially ordered group VI/V which is identified with f)[:/ as a group, but whose
Bruhat order is defined by the antidominant base alcove (and still denoted as <). Then Adm" (n) is
defined as above, using now the antidominant order. We have an order reversing bijection w +— w*

g oV ~ def 1 o~
between W and W defined as (w*); = w; ifw; = fy, Wj.

2.1.B. Tame inertial types and Deligne—Lusztig representations. An inertial type (for K) is the GL3(E)-
conjugacy class of a homomorphism 7 : Ix — GL3(E) with open kernel and which extends to the Weil
group of Gg. An inertial type is tame if it factors through the tame quotient of /x. We will sometimes
identify a tame inertial type with a fixed choice of a representative in its class.
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Givens = (5o, ...,5r—1) € Wand u e X*(T)NCy, we have an associated integer r € {1, 2, 3} (which is
the order of the element sos; - - - s —1 € W), integers a'V) e 73 for 0 < j' < fr—1 and a tame inertial type
(s, u+n) defined as t(s, u+1n) ol Z?:l (w fr)“fm) (see [Le et al. 2023b, Example 2.4.1, equations (5.2),
(5.1)] for the details of this construction). We say that (s, u) is the lowest alcove presentation for the
tame inertial type (s, u + 1) and that 7(s, u + n) is N-generic if u is N-deep in alcove Cy. We say
that a tame inertial type t has a lowest alcove presentation if there exists a pair (s, i) as above such that
T = 7(s, 4+ n) (in which case we will say that (s, i) is a lowest alcove presentation for 7), and that T
is N-generic if T has a lowest alcove presentation (s, w) such that u is N-deep in alcove Cy. We remark
that different choices of pairs (s, t) as above can give rise to isomorphic tame inertial types (see [Le et al.
2019, Proposition 2.2.15]). If 7 is a tame inertial type of the form t = t(s, u +n), we write w(t) for the
element 7, 4,5 € ﬁ/ (In particular, when writing w () we use an implicit lowest alcove presentation for 7).

Repeating the above with E replaced by [, we obtain the notion of inertial F-types and lowest
alcove presentations for tame inertial F-types. We use the notation T to denote a tame inertial F-type
T : Ix — GL3(F). We say that a tame inertial F-type is N-generic if it admits a lowest alcove presentation
(s, u) such that u is N-deep in Cy.

If u is 1-deep in Cy, then for each 0 < j' < fr — 1 there is a unique element s(’m i € W such that
(s(’)r, j,)_1 (a'V /)) is dominant. (In the terminology of [Le et al. 2018a], see Definition 2.6 of [loc. cit.], the
fr-tuple (s;, i )o<j <fr—1 is the orientation of (@Yo jr<fr-1.)

To a pair (s, u) € W x X*(T'), we can also associate a virtual Go([F,)-representation over E which we
denote R;(u) (cf. [Gee et al. 2018, Definition 9.2.2], where R;(w) is denoted as R(s, w)). In particular,
R () is a principal series representation. If . — 5 is 1-deep in Cq then R;(u) is an irreducible represen-
tation. In analogy with the terminology for tame inertial type, if 4 — n is N-deep in alcove Cq for N > 0,
we call (s, w —n) an N-generic lowest alcove presentation for R;(u), and say that Ry(u) is N-generic.
2.1.C. Inertial local Langlands correspondence. Given a tame inertial type 7 : Ix — GL3(E), [Caraiani
et al. 2016, Theorem 3.7] gives an irreducible smooth E-valued representation o () of Go([F,) = GL3(k)
over E satisfying results towards the inertial local Langlands correspondence (see [loc. cit.] for the proper-
ties satisfied by o (7)). (By inflation, we will consider o () as a smooth representation of Go(Z,) without
further comment.) This representation need not be uniquely determined by T and in what follows o (7) will
denote either a particular choice that we have made or any choice that satisfies the properties of [Caraiani
et al. 2016, Theorem 3.7] (see also [Le et al. 2023b, Theorem 2.5.3] and the discussion following it).

When t = (s, u + 1) is a tame inertial type such that u € Cy is 1-deep, the representation o (7) can

be taken to be R;(u + 1) thanks to [Le et al. 2019, Corollary 2.3.5].
2.1.D. Serre weights. We finally recall the notion of Serre weights for G(([F,), and the notion of lowest
alcove presentations for them, following [Le et al. 2023b, §2.2]. A Serre weight for Go([F,) is the
isomorphism class of an (absolutely) irreducible representation of Go(F,) over [F. (We will sometimes
refer to a representative for the isomorphism class as a Serre weight.)

Given A € X (T), we write F (1) for the Serre weight with highest weight A; the assignment A — F'())
induces a bijection between X{(T)/(p — 7)X%(T) and the set of Serre weights (see [Gee et al. 2018,
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Lemma 9.2.4]). We say that F'(X) is N-deep if X is (this does not depend on the choice of A).
Recall from [Le et al. 2023b, §2.2] the equivalence relation on VI’ x X*(T) defined by

(ws (,()) ~ (tvw7 w — U)

for all v € X°(T). For (an equivalence class of) a pair (W, ® — 1) € I/I/T X (X*(T)NCpy)/ ~ the Serre
weight Fig, w) L F (m~ (@) - (w — 1)) is well defined, i.e., is independent of the representative of the
equivalence class of (w1, w). The equivalence class of (W, w) is called a lowest alcove presentation for
the Serre weight F(3, ). The Serre weight F(, ) is N-deep if and only if @ — n is N-deep in alcove Co.
As above, we sometimes implicitly choose a representative for a lowest alcove presentation to make an a

priori sense of an expression, though it is a posteriori independent of this choice.

2.1.E. Compatibility for lowest alcove presentations. Recall that we have a canonical isomorphism
E/ /Wq = X*(Z) where W, = Ag x W is the affine Weyl group of G. Given an algebraic character
¢ € X*(Z), we say that an element W € V_T’ is ¢-compatible if it corresponds to ¢ via the isomorphism
XZV /W, = X*(Z). In particular, a lowest alcove presentation (s, i) for a tame inertial type (resp. a
lowest alcove presentation (s, u — n) for a Deligne-Lusztig representation) is ¢-compatible if the element
tugns € V_T/ (resp. 1,5 € V_T/) is ¢-compatible. Similarly, a lowest alcove presentation (w1, w) for Serre
weight is ¢-compatible if the element #,,_,w; € V_T/ is ¢-compatible.

2.1.F. A comparison to [Le et al. 2020]. In [Le et al. 2020], the parametrization of Serre weights is
slightly different from the one in [Le et al. 2023b]. Here, we give a dictionary between the two.
Define a map
W x X*(T) = W/Wo = X*Z), (B,0) tyyiW, (2-1)

and write (VI’ x X*(T))* for the preimage of ¢ € X*(Z) (presentations compatible with ¢). The map (2-1)
is constant on equivalence classes, and we write (lZV x X*(T))¢/ ~ for the set of equivalence classes in
the preimage of ¢. The equivalence relation restricts to one on ﬁ/l x X*(T) or ﬁ/l X (X*(T)NCy—+n),
and we use similar notation, e.g., (V_T/1 X (X*(T)NCo+n))¢/ ~, for these subsets.

We let Aw and Wt be X *(T)/X°(T) and W / X°(T), respectively. Recall from [Le et al. 2020, §2.1]
the set

P = (o, ) € Ay x WY

| tom (W) € Wal.
Letting A be the set of p-restricted alcoves in X*(7T) ®z R, the map
B:PY > Awx A (0, B) > (@7 (@) Co)

is a bijection by [Le et al. 2020, Lemma 2.1.1].
For A € X*(T), the map

(W, x X* (D)2 ) ~5 YT (5, w) > (0 — A, w7~ 1(@))

is a bijection. (Here w — X also denotes its image in Ay.)
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Then Bou;, : (W, x X*(T))* "2/ ~— Aw x A is a bijection which induces a bijection
(W, x XX(T)NCo+n) "2/ ~— Afy x A, (@, 0) > (@— 1, B~ Co) (2-2)

when A —n € Cg and 1_\%1, is defined to be the set of " € Ay satisfying o’ +A —n € C, see [Le et al. 2020,
§2.1]. By the definition of T, in [Le et al. 2020, §2.1], for (w, w) € (V_T/1 X X*(T)NCo+ n)*‘”‘l/ ~,
we have

Fiipw) = F(Tra(w— A, - Co)). (2-3)

2.1.G. Reduction of Deligne—Lusztig representations. Fori € {1, 2}, let ¢; denote the image of ¢/ via the
surjection X*(T) — Aw.

Proposition 2.1.1. Let . —n and ;1 —n be 0-deep and 1-deep in Cy, respectively, such that u—+n—»x € Ag.
If o € JH(R (1)) is a 0-deep Serre weight, then o is contained in F(ft,\ (tu_,\s(E))), where T = (Zo)/ C
Ax+n

Ay ' x Aand

o= {(e1+€2,0), (61 —£2,0), (e2—£1,0), (0, 1), (£1, 1), (€2, 1), (0, 0), (¢1, 0), (2, 0)}.
If u — n is furthermore 2-deep, then JH(R;(u)) is F(St,\ (tu_;\s(E))).
Proof. [Herzig 2009, Appendix, Theorem 3.4] gives the identity

Rwy= Y. W(@- @us@w) "' ©0)—m)

WeW | /XO(T)

/Fr—1
wi, w2

1-deep in Cy implies that @ - (#,,5 (W, w) ' (0) —n) is —1-deep in a p-restricted alcove. This implies that

at the level of characters (in our situation, y is 1 if w; = w; and is O otherwise). That u — n is
for each w € ﬁ/f, W - (t,,5 (W w) "1 (0) — n) + 1 is dominant so that ¥ - (¢,,s (W, @)~ (0) — n) is dominant
or W (@ - (t,,s (W, @) ~1(0) — 1)) is zero. If o € JH(R, (w)), then o € JH(W (i - (t,,5 (0, ) ~1(0) — ))) for
some W € ﬁ/;r Herzig [2006, Proposition 4.9] gives a decomposition of such p-restricted Weyl modules.
The proof of [Le et al. 2020, Proposition 2.3.4] shows that o € F(Ttk (tM_As(E))). If w—n is 2-deep,
then w - (7,5 (Wp, w)~1(0) — n) is O-deep in a p-restricted alcove and hence dominant. The description of
JH(RT,LL)) again follows from the proof of [Le et al. 2020, Proposition 2.3.4]. O

If 4 —n is 1-deep in Cy, we let the subset JHow(Rs (1)) C JH(R, (1)) be the Serre weights of the form
F(W - (tus(@pw)~"(0) — 1)) for some @ € E/T We call the elements of JHou (Ry (1)) the outer weights
(of JH(m)). In the notation of Proposition 2.1.1, JHout(m) is the subset F(‘Zt,\ (tM_As(Eout))),
where Zou = (Zour0)’ € éé‘f" x A and

EOl.lt,O déf {(81 +827 0)7 (81 — &2, 0)7 (82 — €1, 0)(09 1)7 (817 1)7 (82’ 1)}

If A —n and u — n are O-deep and 2-deep in Cq respectively, and u +n — A € Ag, we define
W?(Z(s, u + 1)) to be the set of Serre weights F(Tt;\(twn_ks(r(E)))), where r(X) is defined by
swapping the digits of a € A in the elements (¢, a) € X.
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2.1.H. The covering order.

Definition 2.1.2. We say that a 3-deep Serre weight oy covers o if

oce () JHR)
R 1-generic

ooeJH(R)

(where R runs over 1-generic Deligne—Lusztig representations).
Lemma 2.1.3. A Serre weight o covers oy if and only if o3 1 07.

Proof. This follows from [Le et al. 2023b, Proposition 2.3.12(4)] where the slightly weaker genericity
hypotheses come from Section 2.1.G. U

2.1.I. L-parameters. We now assume that S, has arbitrary finite cardinality. An L-parameter (over E)
is a GY(E)-conjugacy class of a continuous homomorphism p : Gg, — LG(E) which is compatible
with the projection to Gal(E/Q,) (such homomorphism is called L-homomorphism). An inertial L-
parameter is a G (E)-conjugacy class of a homomorphism 7 : Ig, — G"(E) with open kernel, and
which admits an extension to an L-homomorphism. An inertial L-parameter is tame if some (equivalently,
any) representative in its equivalence class factors through the tame quotient of /g, .

Fixing isomorphisms F,” => Q p forall v e §,, we have a bijection between L-parameters (resp. tame
inertial L-parameters) and collections of the form (poy)ves, (resp. of the form (7y)yes,) where for all
v € S, the element p, : Gg+ — GL3(E) is a continuous Galois representation (resp. the element
Ty : [+ — GL3(E) is a tame inertial type for F;").

We have similar notions when E is replaced by F. Again we will often abuse terminology, and identify
an L-parameter (resp. a tame inertial L-parameter) with a fixed choice of a representative in its class.
This shall cause no confusion, and nothing in what follows will depend on this choice.

The definitions and results of Sections 2.1.B-2.1.H generalize in the evident way for tame inertial
L-parameters and L-homomorphism. (In the case of the inertial local Langlands correspondence of
Section 2.1.C, given a tame inertial L-parameter t corresponding to the collection of tame inertial
types (Ty)ve S,, We let o () be the irreducible smooth E-valued representation of Go(Z,) given by

®yes, 7 (7))

2.2. Breuil-Kisin modules. We recall some background on Breuil-Kisin modules with tame descent
data. We refer the reader to [Le et al. 2020, §3.1-3.2; 2023b, §5.1] for further detail, with the caveat that
we are following the conventions of the latter on the labeling of embeddings for tame inertial types and
Breuil-Kisin modules (see [loc. cit., Remark 5.1.2]).

Let T =1 (s, +n) be a tame inertial type with lowest alcove presentation (s, ) which we fix throughout
this section (recall that p is 1-deep in Cy). Recall that r € {1, 2, 3} is the order of sosys2---s7-1 € W.
We write K'/K for the unramified extension of degree r contained in K and set f’ 4 fr, e 4 pf —1.
We identify Homg, (K, E) with Z/f'Z via o dzefa(’) o@~/ > j', where o, : K" — E is a fixed choice
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for an embedding extending o : K — E. In this way, restriction of embeddings corresponds to reduction
modulo f in the above identifications.

Let 7’ € K be an ¢/-th root of —p, let L’ &£ K'(7’) and A’ £ Gal(L’/K') ¢ A € Gal(L'/K). We
define the O, -valued character wg(g) «f g(")/m’ for g € A’ (this does not depend on the choice of 7”).
Given an O-algebra R, we set G/ g o (WK ®z, R)[#']. The latter is endowed with an endomorphism
¢ : S g = S g acting as Frobenius on W (k'), trivially on R, and sending u’ to (u’)?. It is endowed
moreover with an action of A as follows: for any g in A’, g(u') = (g(z')/7")u' = wg(g)u’ and g acts
trivially on the coefficients; if 0/ € Gal(L’/K) is the lift of p/-Frobenius on W (k") which fixes 7/, then
o/ is a generator for Gal(K'/K), acting in natural way on W (k') and trivially on both u’ and R. Set
v= @),

Sr = (61 ) = (WK 8z, RV
and E (v) LV p=®wW) +p.

Let YI2I(R) be the groupoid of Breuil-Kisin modules of rank 3 over & g, height in [0, 2] and descent
data of type 7 (see [Caraiani and Levin 2018, §3; Le et al. 2020, Definition 3.1.3; 2023b, Definition 5.1.3]):

Definition 2.2.1. An object of Y[%2-7(R) is the datum of
(1) a finitely generated projective &/ g-module 91 which is locally free of rank 3;
(2) an injective &/ g-linear map oy : ¢* (M) — M whose cokernel is annihilated by E (v)?%; and

(3) asemilinear action of A on 9){ which commutes with ¢y, and such that, for each j' € Hom@p (K, E),

(Qﬁ ®W(k’),0j/ R) mod I/l/ = Tv KXo R
as A/—representations.

Note that 990" d:“s):rt@W(kl),oj, R is an R[[u']-submodule of 91 in a standard way, endowed with a semi-
linear action of A’ and the Frobenius ¢gy induces A’-equivariant morphisms gbé};) cpr (MU /_1)) — MU,
In particular, by letting t’ denote the tame inertial type for K’ obtained from 7 via the identification Ix = I
induced by the inclusion K’ C K, the semilinear action of A induces an isomorphism tgy : (o Dy =m
(see [Le et al. 2018a, §6.1]) as elements of Y[O’Z]*’,(R).

Let M € Y0217 (R). Recall that an eigenbasis of M is a collection of bases U7 = (17, £, 1))
for each 9U" such that A’ acts on fl.(j ) via the character a)},"r{ v (see Section 2.1.B for the definition of
a'© e 73) and such that wp((0/)*(BY))) = BU' T for all j' € Homg, (K’, E). Given an eigenbasis 3
for M, we let Céjj{)ﬂ be the matrix of (/553];) c* (MU D) 5 MU with respect to the bases ¢*(8Y =Dy
and BU" and set
1"

i) def _ _
AS)s E Ad((s) ) W)™

)(Cs)
for j" € Homg,(K’, E). It is an element of GL3(R((v + p))) with coefficients in R[[v + p]|, is upper
triangular modulo v and only depends on the restriction of j’ to K (see [Le et al. 2023b, §5.1]).

Let Z(F) denote the Iwahori subgroup of GL3(F((v))) relative to the Borel of upper triangular matrices.

We define the shape of a mod p Breuil-Kisin module M € Y!1%21'7(F) to be the element 7 = (Z;) € w”
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such that for any eigenbasis 8 and any j € 7, the matrix Az()ét) 8 lies in Z(F)z; Z(F). This notion doesn’t
depend on the choice of eigenbasis, see [Le et al. 2023b, Proposition 5.1.8] (but it does depend on the
lowest alcove presentation of 7; see [ibid., Remark 5.1.5]).

3. Local models in mixed characteristic and the Emerton—-Gee stack

We assume throughout this section that S, = {v} so O, = Ok is the ring of integer of a finite unramified
extension K of Q,. We identify 7 = Homg, (K, E)) with Z/fZ via o} dzefcro o> j.

3.1. Local models in mixed characteristic. We now define the mixed characteristic local models which
are relevant to our paper. We follow closely [Le et al. 2023b, §4] and the notation therein.
For any Noetherian O-algebra R, define

LGo(R) & {A € GL3(R(v + p))), A isupper triangular modulo v};

L*Go(R) o {A € GL3(R[[v+ pl), A is upper triangular modulo v};

A, (v+ p)?A~" are elements of Matz(R[[v + p1) }

[0.2] def
L™"Go(R) = {A € LGo(R). ,1d are upper triangular modulo v

The fpqc quotients Lt Gp \ LI®21G» < LTGp\ LGo induced from inclusions LT Go(R) € LI%21GH(R)
LGo(R) are representable by a projective scheme Grg ’(29] and an ind-projective ind-scheme Grg, o, respec-
tively.

Forany 7 = (Z)jes € ‘z/'v and any Noetherian O-algebra R, define

U@ R =(UE)HR), ., < LIo(R)7
to be the set of f-tuples of matrices (A(j))jej € (LGo(R))7 such thatforall 1 <i,k <3 and j € J,
e A e v Rlv+p, 1/ v+ p)l;
. degv+p(A,§,J€)) <Vjk —8i<z;(k); and
o deg,,, (Ag )(k) ) = V).« and the coefficient of the leading term is a unit of R,

where we have written Z =zt, and v = (v} 1, v; 2, v} 3) jes (and recall from Section 1.4 the notation for the
Kronecker deltas 8;-, 8; -, k). We set T2 (RYE T (2)(R)N(LI®2G(R))Y . Note that both T021(3)
and U () are endowed with a T 5-action induced by left multiplication of matrices. It follows from [Le
et al. 2023b, Lemmas 3.2.2 and 3.2.7] that the natural map U () — Grg o (resp. U102(z) — Gr[go’ ’é]’ )
factors as a T %-torsor map followed by an open immersion. (We have written Grg o for the product, over

Spec O, of f-copies of Grg ¢ indexed over elements j € 7, and Gr[g? ’éj’j

is defined similarly.)
We now compare the objects above with groupoids of Breuil-Kisin modules with tame descent. Let
(s, n) € W x X*(T) be a lowest alcove presentation for the tame inertial type t ] (s, u+1n). We have

the twisted shifted conjugation action of T% on U'%21(Z) given by

AV > 1; ADAd(sT (1),
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which is exactly the restriction to 7' of the (s, u1)-twisted ¢-conjugation in [Le et al. 2023b, §5.2]. By [Le
et al. 2023b, Corollary 5.2.3] the quotient of 002z, by this action is isomorphic to an open substack
Y[EO’ZJ’T(Z) of Y[go,z],r' We denote by Y%217(Z) the open substack of Y!%27 induced by Y[EO’ZJ’T(Z) (see
[Le et al. 2023b, Definition 5.2.4]).

By [Le et al. 2023b, Theorem 5.3.1], whenever u is 3-deep in Cy, we have a morphism of p-adic
formal algebraic stacks over O,

r7[0,2] /=~ Ap [0,2],7 /> [0,2],7
U Q)" —>Y ()—=>Y

where the left map is a T }-torsor for the twisted shifted conjugation action on the source and the second
map is an open immersion.

We finally consider Breuil-Kisin modules with height bounded by the cocharacter n € X, (T"). The
fiber Grg g of Grg o over E is the affine Grassmannian of GL3 and we let M 7(<n) be the Zariski closure
in Grg’ o of the open affine Schubert cell associated to (v + p)” in Grg g Let U (z, <n) be the pull back
of U2 (%) along the closed immersion M 7 (<n) <> Grg o-

Let Y="7 denote the closed p-adic formal substack of Y'%27 appearing in [Caraiani and Levin 2018,
§5] (and denoted Y™'* there). The computations of [Le et al. 2018a, §4] give the following:

Proposition 3.1.1. Let 7 € Adm" (). Then U (z, <n) is an affine scheme over O, with presentations
®]f:—01 O(ﬁ(Zj, <nj)), where the O-algebras O(ﬁ(Zj, <nj)) are given in Table 1. Moreover, let
(s, ) € W x (X*(T)NCy) be a lowest alcove presentation of T = (s, u+n), with  being 3-deep in
Co and denote by Y="7(Z) the pull back of Y217 (2) along the closed immersion Y="F < y[0.21.7,

Then we have a morphism of p-adic formal algebraic stacks over O
UG <) — Y= (@) < Y=T, (3-1)

where the left map is a T },-torsor for the twisted shifted conjugation action on the source and the second

map is an open immersion.

3.2. Monodromy condition. We introduce closed subspaces of Y="7, Y="-7(Z) and UG, <n)”r, and
compare them with potentially crystalline substacks of the Emerton—Gee stack (introduced below).
Recall the element n € X*(T) we fixed in Section 1.4. Let t o (s, 4 + n) be a tame inertial
type with lowest alcove presentation (s, i), where p is 1-deep in alcove Cy. By [Le et al. 2023b,
Proposition 7.1.6] the datum of a p-adically complete, topologically finite type flat O-algebra R, and a
morphism f : Spf R — Y0217 (corresponding to an element 9t € Y[%:27(R)) defines a p-saturated ideal
Inx,v,, C R which is compatible with flat base change. (In the terminology of [loc. cit.], and in the case
where 9 is free over G/ g, the morphism f : Spf R — Y1217 factors through Spf R — Spf(R/Ion.v..)
if and only if 907 satisfies the monodromy condition [Le et al. 2023b, Definition 7.1.2].) This gives rise to
a O-flat closed substack Y0217V s yI0.217 (see [Le et al. 2023b, §7.2]) characterized by the property
that for any 9t 