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We develop a lower bound sieve for primes under the (unlikely) assumption of infinitely many exceptional
characters. Compared with the illusory sieve due to Friedlander and Iwaniec which produces asymptotic
formulas, we show that less arithmetic information is required to prove nontrivial lower bounds. As an
application of our method, assuming the existence of infinitely many exceptional characters we show that
there are infinitely many primes of the form a2

+ b8.
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1. Introduction

Understanding the distribution of prime numbers along polynomial sequences is one of the basic questions
in analytic number theory. For sparse polynomial sequences the problem is solved only in a handful of
cases. The most notable are the Friedlander and Iwaniec [1998b] theorem of primes of the form a2

+ b4

and the result of Heath-Brown [2001] of primes of the form a3
+ 2b3, which has been generalized to

binary cubic forms by Heath-Brown and Moroz [2002] and to general incomplete norm forms by Maynard
[2020]. Also, the result of Friedlander and Iwaniec has been extended by Heath-Brown and Li [2017] to
primes of the form a2

+ p4 where p is a prime.
Let ±D be a fundamental discriminant and let χD(n)= (D/n) be the associated primitive real character.

We say that χD is exceptional if L(1, χD) is very small, say,

L(1, χD)=

∞∑
n=1

χD(n)
n

≤ log−100 D. (1-1)

It is conjectured that (for an exponent such as 100) there are at most finitely many exceptional characters,
which is closely related to the conjecture that L-functions do not have zeros close to s = 1 (so-called
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Siegel zeros). However, assuming that there do exist infinitely many exceptional characters, it is possible
to prove very strong results on distribution of prime numbers. For example, Heath-Brown [1983] has
shown that the twin prime conjecture follows from such an assumption, and Drappeau and Maynard
[2019] have bounded sums of Kloosterman sums along primes. The potential benefit of such results is
that for an unconditional proof we are now allowed to assume the nonexistence of exceptional characters,
which in turn implies strong regularity in the distribution of primes in arithmetic progressions. Such
a bifurcation in the proof has been successfully used to solve problems, for example, in the proof of
Linnik’s theorem [1944] and in many results in the theory of L-functions.

The state of the art method using exceptional characters is the so-called illusory sieve developed by
Friedlander and Iwaniec [2003; 2004; 2005], which is geared towards counting primes in sparse sets.
Assuming the existence of infinitely many exceptional characters (with the exponent 100 in (1-1) replaced
by 200), Friedlander and Iwaniec [2005] proved that there are infinitely many prime numbers of the form
a2

+ b6. For their method it is required to solve the corresponding ternary divisor problem, that is, show
an asymptotic formula for

∑
τ3(a2

+ b6). This essentially comes down to showing that the sequence has
an exponent of distribution 2

3 − ε. Friedlander and Iwaniec [2006] have solved this problem for a2
+ b6

in a form that is narrowly sufficient for the illusory sieve.
Their method fails for sparser polynomial sequences such as a2

+ b8, which has an exponent of
distribution 5

8 − ε. The purpose of this article is to develop a lower bound version of the illusory sieve.
That is, instead of aiming for an asymptotic formula for primes of the form a2

+b8, we just want to prove
a lower bound of the correct order of magnitude for the number of primes. Morally speaking, we are
able to show a nontrivial lower bound for primes in sequences with a level of distribution greater than
(1 +

√
e)/(1 + 2

√
e)= 0.61634 . . . (see Theorem 16), so that the sequence a2

+ b8 qualifies.
We will state the general version of our lower bound sieve at the end of this article (Theorem 16). For

now we state the result for primes of the form a2
+ b8. For any n ≥ 0 define

κn :=

∫ 1

0

√
1 − tn dt.

Theorem 1. If there are infinitely many exceptional primitive characters χ , then there are infinitely many
prime numbers of the form a2

+ b8. More precisely, if L(1, χD) ≤ log−100 D, then for exp(log10 D) <
x < exp(log16 D) we have

∑
a2

+b8
≤x

a,b>0

3(a2
+ b8)≥ (0.189 − o(1)) ·

4
π
κ8x5/8

and ∑
a2

+b8
≤x

a,b>0

3(a2
+ b8)≤ (1 + o(1)) ·

4
π
κ8x5/8.
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Remark. Note that κ2 = π/4, so that the coefficient is in fact κ8/κ2, and 4
π
κ8x5/8 is the expected main

term. It turns out that the upper bound result is much easier and for this having an exponent of distribution
1
2 is sufficient.

1.1. Sketch of the argument. We present here a nonrigorous sketch of the proof of the lower bound in
Theorem 1. Let

an := 1(n,D)=1
∑

n=a2
+b8

(a,b)=1
a,b>0

1,

so that our goal is to estimate
∑

n∼x an3(n).
Let χ = χD . Similarly as in [Friedlander and Iwaniec 2005], we define the Dirichlet convolutions

λ := 1 ∗χ and λ′
:= χ ∗ log,

so that

λ ∗3= (1 ∗χ) ∗ (µ ∗ log)= (χ ∗ log) ∗ (1 ∗µ)= λ′. (1-2)

Note that λ(n)≥ 0 and λ′(n)≥3(n)≥ 0 (by using λ′
= λ ∗3).

The basic idea in arguments using the exceptional characters is as follows. Since

L(1, χ)−1
=

∑
n

µ(n)χ(n)/n =

∏
p

(
1 −

χ(p)
p

)
is large, we expect that χ(p)= µ(p) for most primes (in a range depending on D), so that heuristically
we have χ ≈ µ and λ′

≈3. Hence, we expect that∑
n∼x

an3(n)≈

∑
n∼x

anλ
′(n). (1-3)

Since the modulus of χ is small, morally λ′(n) is of same complexity as the divisor function τ(n), so that
we have replaced the original sum by a much simpler sum.

Making the approximation (1-3) rigorous is the difficult part of the argument, especially for sparse
sequences an . Friedlander and Iwaniec succeeded in this under the assumption that the exponent of
distribution is almost 2

3 , which was sufficient to handle primes in the sequence a2
+b6. In our application

an has the exponent of distribution 5
8 −ε. This results in an additional error term compared to [Friedlander

and Iwaniec 2005], but we are able to show that the contribution from this is smaller (but of the same
order) as the main term.

To bound the error term in (1-3), using λ′
= λ ∗3 we see that

λ′(n)−3(n)=

∑
n=km
m>1

3(k)λ(m).
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Let z = xε (in the proof we choose a slightly smaller z for technical reasons). Then∑
n∼x

an3(n)≥

∑
n∼x

an3(n)1(n,P(z))=1

=

∑
n∼x

anλ
′(n)1(n,P(z))=1 −

∑
km∼x
k,m≥z

akm3(k)λ(m)1(km,P(z))=1

=: S1 − S2.

Note that by removing the small prime factors we have guaranteed that m ≥ z in the second sum, so that
we expect λ(m)≈ (1 ∗µ)(m)= 0 for almost all m in S2. Thus, we expect that S1 gives us the main term
and that S2 = o(S1).

Remark. The above decomposition has a close resemblance to the recent work of Granville [2021] using
the identity

3(n)1(n,P(z)) = 1(n,P(z)) log n −

∑
n=ℓm

(ℓm,P(z))=1
ℓ,m≥z

3(ℓ).

For the main term S1 we can handle the condition (n, P(z)) = 1 by the fundamental lemma of the
sieve, so we ignore this detail for the moment. Thus, we have to evaluate∑

n∼x

anλ
′(n)=

∑
mn∼x

amnχ(m) log n.

We have m ≥ x1/2 or n ≥ x1/2, so that we are able to compute S1 provided that our sequence an has an
exponent of distribution 1

2 . This is because the modulus of χ is xo(1), so that χ is essentially of the same
complexity as the constant function 1. We find that S1 gives the expected main term, so that we need to
bound the error term S2.

Similarly as in the argument in [Friedlander and Iwaniec 2005], the range x2/3 plays a special role.
With this in mind, we define γ =

1
24 + ε so that 2

3 −γ =
5
8 − ε is the exponent of distribution. We split S2

into three parts depending on the size of k

S2 =

∑
km∼x

k>x1/3+γ

m≥z

akm3(k)λ(m)1(km,P(z))=1 +

∑
km∼x

x1/3−2γ<k≤x1/3+γ

m≥z

akm3(k)λ(m)1(km,P(z))=1

+

∑
km∼x

z≤k≤x1/3−2γ

m≥z

akm3(k)λ(m)1(km,P(z))=1

=: S21 + S22 + S23.

By similar arguments as in [Friedlander and Iwaniec 2005], we are able use the lacunarity of λ(m)
to bound the terms S21 and S23 suitably in terms of L(1, χ), using the fact that the exponent of the
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distribution is 2
3 − γ . That is, for S21 we write

S21 ≤ (log x)
∑

km∼x
k>x1/3+γ

m≥z

akmλ(m)1(m,P(z))=1,

and for S23 we drop 1(m,P(z))=1 by positivity and write

λ(m)=

∑
m=cd

χ(d),

where c or d is > x1/3+γ . In all cases we get a variable > x1/3+γ , so that these can be evaluated as Type I
sums. This gives

S21 + S23 ≪C x5/8(log−C x + L(1, χ) log5 x),

which is sufficient by the assumption that χ is an exceptional character.
The novel part in our argument is the treatment of the middle range

S22 =

∑
km∼x

x1/3−2γ<k≤x1/3+γ

m≥z

akm3(k)λ(m)1(km,P(z))=1.

Note that also in [Friedlander and Iwaniec 2005] a narrow range near x2/3 has to be discarded, but the
argument there requires γ = o(1). Thanks to the restriction (m, P(z))= 1, it turns out that we are able to
handle all parts of S22 except when m is a prime number. To see this, if m is not a prime, then m = m1m2

for some m1,m2 ≥ z, and we essentially get (recall that λ(m)≥ 0)∑
km∼x

x1/3−2γ<k≤x1/3+γ

m /∈P

akm3(k)λ(m)1(m,P(z))=1 ≤

∑
km1m2≤x

x1/3−2γ<k≤x1/3+γ

m1,m2≥z

akm3(k)λ(m1)λ(m2)1(m1m2,P(z))=1,

since λ is multiplicative and the part where (m1,m2) > 1 gives a negligible contribution. For the part
km1 > x1/2 we use λ(m1)≤ τ(m1)≪ 21/ε and combine variables ℓ= km1 to get a bound

≪

∑
z≤m2≪x1/2

λ(m2)
∑

ℓ∼x/m2

aℓm2,

which can be bounded suitably in terms of L(1, χ) by a similar argument as with S21. The part km1 ≤ x1/2

is handled similarly, using λ(m2) ≤ τ(m2)≪ 21/ϵ and extracting L(1, χ) from λ(m1) this time. Thus,
the contribution from the composite m is negligible.

Hence, it remains to bound

S222 :=

∑
kp∼x

x1/3−2γ<k≤x1/3+γ

akm3(k)λ(p)=

∑
kp∼x

x1/3−2γ<k≤x1/3+γ

akm3(k)(1 +χ(p)).
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Here we are not able to make use of the lacunarity of λ(p). However, since S222 counts products of two
primes of medium sizes, we immediately see that S222 should be smaller than the main term by a factor
of O(γ ), so that at least for small enough γ we get a nontrivial lower bound. We use the linear sieve
upper bound to the variable p to make this upper bound rigorous and precise, which leads to the constant
0.189 in Theorem 1.

The paper is structured as follows. In Section 2 we carry out the sieve argument and the proof of
Theorem 1 assuming a sufficient exponent of distribution for an (Propositions 8 and 9). In Section 3 we
prove Propositions 8 and 9 by generalizing the arguments in [Friedlander and Iwaniec 2006]. Lastly, in
Section 4 we state a general version of the sieve and explain how the method could be improved assuming
further arithmetic information.

Remark. Our sieve argument is inspired by Harman’s sieve method [2007], although the exact details in
this setting turn out to be quite different. The moral of the story is that all sieve arguments should be
continuous with respect to the quality of the arithmetic information, which in this case is measured solely
by the exponent of distribution. That is, even though we fail to obtain an asymptotic formula after some
point

(
in this case 2

3

)
, we still expect to be able to produce lower and upper bounds of the correct order of

magnitude with slightly less arithmetic information.

1.2. Notations. For functions f and g with g ≥ 0, we write f ≪ g or f = O(g) if there is a constant C
such that | f | ≤ Cg. The notation f ≍ g means g ≪ f ≪ g. The constant may depend on some parameter,
which is indicated in the subscript (e.g., ≪ϵ). We write f = o(g) if f/g → 0 for large values of the
variable. For summation variables we write n ∼ N meaning N < n ≤ 2N .

For two functions f and g with g ≥ 0, it is convenient for us to denote f (N ) ≺≺ g(N ) if f (N )≪

g(N ) logO(1) N . For parameters such as ε we write f (N )≺≺ε g(N ) to mean f (N )≪ε g(N ) logOε(1) N .
A typical bound we use is S(N )=

∑
n≤N τk(n)K

≺≺k,K N , where τk is the k-fold divisor function. We
say that an arithmetic function f is divisor bounded if | f (n)| ≺≺ τ(n)K for some K .

For a statement E we denote by 1E the characteristic function of that statement. For a set A we use 1A

to denote the characteristic function of A.
We let e(x) := e2π i x and eq(x) := e(x/q) for any integer q ≥ 1. We denote

λ := 1 ∗χ and λ′
:= χ ∗ log .

2. The sieve argument

In this section state the arithmetic information (Propositions 8 and 9) and assuming this we give the proof
of Theorem 1 using a sieve argument with exceptional characters. We postpone the proof of Propositions 8
and 9 to Section 3. From here on we let q denote the modulus of the exceptional character χ = χq , to
avoid conflating it with the level of distribution which we will denote by D; this also agrees with the
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notations in [Friedlander and Iwaniec 2005, Section 14]. Throughout this section we denote

an := 1(n,q)=1
∑

n=a2
+b8

(a,b)=1
a,b>0

1, and bn := 1(n,q)=1
1
4

∑
n=a2

+b2

(a,b)=1
a,b>0

b−3/4.

In bn we are counting the representations a2
+ b2 weighted with the probability that b is a perfect

fourth power so that heuristically we expect
∑

n∼x an3(n)= (1 + o(1))
∑

n∼x bn3(n). Differing from
[Friedlander and Iwaniec 2005], it is convenient for us to write certain parts of the argument as a
comparison between an and bn . This is inspired by Harman’s sieve method [2007], where the idea is
to apply the same combinatorial decompositions to the sums over an and bn and then compare, using
positivity to drop certain terms entirely.

We let g(d) denote the multiplicative function defined by

g(pk)= 1p ∤q
ϱ(pk)

pk

(
1 +

1
p

)−1

, (2-1)

where ϱ(d) denotes the number of solutions to ν2
+ 1 ≡ 0(d). Note that for all primes p we have

ϱ(p)= 1 +χ4(p). We also define

g1(pk)=
ϱ(pk)

pk

(
1 +

1
p

)−1

.

2.1. Preliminaries. We have collected here some standard estimates that will be needed in the sieve
argument.

Lemma 2. Let

Gq :=

∏
p | q

(1 − g1(p))−1.

Then ∏
p≤z

(1 − g(p))= (1 + o(1))
Gqζ(2)
L(1, χ4)

∏
p≤z

(1 − 1/p)= (1 + o(1))
Gqζ(2)

L(1, χ4)eγ1 log z

and ∑
n≤x

3(n)bn = (1 + o(1))
Gqζ(2)
L(1, χ4)

∑
n≤x

bn = (1 + o(1))
4
π
κ8x5/8

= (1 + o(1))eγ1 log z
∏
p≤z

(1 − g(p))
∑
n≤x

bn,

where γ1 = 0.577 . . . denotes the Euler–Mascheroni constant.

Proof. The first asymptotic follows from∏
p

1 − g(p)
1 − 1/p

= Gq

∏
p

(1 −χ4(p)/p)(1 − p−2)−1
=

Gqζ(2)
L(1, χ4)
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and Mertens’ theorem. To get the second part we apply prime number theorem for Gaussian primes
a + ib, splitting the sum into boxes (a, b) ∈ [z1, z1 + x/ log10 x] × [z2, z2 + x/ log10 x] so that b−3/4

=

(1+o(1))z−3/4
2 , noting that the contribution from boxes with z1 ≤ x/ log10 x or z2 ≤ x/ log10 x is trivially

≪ x5/8/ log x (by writing 3(n)≤ log x). The prime number theorem in small boxes follows splitting the
boxes in to smaller polar boxes and applying [Iwaniec and Kowalski 2004, Theorem 5.36], for instance.

Here the condition (a2
+ b2, q) = 1 implicit in bn cancels the multiplicative factor Gq , since by an

expansion using the Möbius function∑
n≤x

bn =

∑
n=a2

+b2

(a,b)=1
a,b>0

1(n,q)=1
1
4 b−3/4

=

∑
d | q

µ(d)
∑

n=a2
+b2

(a,b)=1
a,b>0
d | n

1
4 b−3/4

=(1 + o(1))
∑
d | q

µ(d)g1(d)
∑

n=a2
+b2

(a,b)=1
a,b>0

1
4 b−3/4

=(1 + o(1))G−1
q

∑
n=a2

+b2

(a,b)=1
a,b>0

1
4 b−3/4

For the last asymptotic note that by the change of variables t = u1/4

1
4

∫ 1

0
u−3/4

√
1 − u2 dt =

∫ 1

0

√
1 − t8 dt = κ8

and L(1, χ4)= π/4. □

We also require the following basic estimate; see [Friedlander and Iwaniec 1998a, Lemma 1], for
instance.

Lemma 3. For every square-free integer n and every k ≥ 2 there exists some d | n such that d ≤ n1/k and

τ(n)≤ 2kτ(d)k .

From this we get the more general version.

Lemma 4. For every integer n and every k ≥ 2 there exists some d | n such that d ≤ n1/k and

τ(n)≤ 2k2
τ(d)k

3
.

Proof. Write n = b1b2
2 · · · bk−1

k−1bk
k with b1, . . . , bk−1 square-free, by letting bk be the largest integer such

that bk
k | n, so that n/bk

k is k-free and splits uniquely into b1b2
2 · · · bk−1

k−1 with b j square-free. We have

τ(n)≤ τ(b1)τ (b2)
2
· · · τ(bk)

k .
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By Lemma 3 for all j ≤ k − 1 there is d j | b j with d j ≤ b1/k
j and τ(b j ) ≤ 2kτ(d j )

k . Hence, for
d = d1 · · · dk−1bk we have

d ≤ (b1 · · · bk−1)
1/kbk = (b1 · · · bk−1bk

k)
1/k

≤ n1/k

and

τ(n)≤ (2τ(d1) · · · τ(dk−1)τ (bk))
k2

≤ 2k2
τ(d)k

3
. □

To bound the final error term we require the linear sieve upper bound for primes; apply [Friedlander
and Iwaniec 2010, Theorem 11.12] with z = D and s = 1, using F(1)= 2eγ .

Lemma 5 (linear sieve upper bound for primes). Let (cn)n≥1 be a sequence of nonnegative real numbers.
For some fixed X0 depending only on the sequence (cn)n≥1, define rd for all square-free d ≥ 1 by∑

n≡0(d)

cn = g0(d)X0 + rd ,

where g0(d) is a multiplicative function, depending only on the sequence (an)n≥1, satisfying 0 ≤ g0(p) < 1
for all primes p. Let D ≥ 2 (the level of distribution). Suppose that there exists a constant L > 0 that for
any 2 ≤ w < D we have ∏

w≤p<D

(1 − g0(p))−1
≤

log D
logw

(
1 +

L
logw

)
.

Then ∑
p

cp ≤ (1 + O(log−1/6 D))X02eγ1
∏
p≤D

(1 − g0(p))+
∑
d≤D

d square free

|rd |.

The following lemma gives a basic upper bound for smooth numbers; see [Tenenbaum 2015, Chap-
ter III.5, Theorem 1], for instance.

Lemma 6. For any 2 ≤ z ≤ y we have ∑
n∼y

P+(n)<z

1 ≪ ye−u/2,

where u := log y/ log z.

We also need the following simple divisor sum bound.

Lemma 7. Let M ≫ 1 and let Z = Mc1/(log log M)c2 for some constants c1, c2 > 0. Then for any K > 0∑
m∼M

τ(m)K 1(m,P(Z))=1 ≪c1,c2,K M.
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Proof. For some L = L(K ) we have by a standard sieve bound∑
m∼M

τ(m)K 1(m,P(Z))=1 ≪

∑
m∼M

τL(m)1(m,P(Z))=1 =

∑
n1···nL∼M

1(n1,P(Z))=1 · · · 1(nL ,P(Z))=1

≪c1,c2,K
M(log log M)c2

log M

∑
n1,...,nL−1≪M

1(n1,P(Z))=1 · · · 1(nL−1,P(Z))=1

n1 · · · nL−1

≪c1,c2,K
M(log log M)c2

log M

( ∏
Z≤p≤M

(
1 +

1
p

))L−1

≪c1,c2,K
M(log log M)c2

log M

(
log M
log Z

)L−1

≪c1,c2,K M,

by computing the sum over n j = max{n1, . . . , nL} first. □

2.2. Arithmetic information. For the sieve argument we need arithmetic information given by the
following two propositions, which state that an has an exponent of distribution 5

8 − ε. We will prove these
in Section 3. The first is just a standard sieve axiom on the level of distribution of the sequence an , and
the second is similar but twisted with the quadratic character χ . For the rest of this section we denote

X :=

∑
n∼x

bn.

Recall that X ≍ x5/8 by Lemma 2.

Proposition 8 (type I information). Let B > 0 be a large constant and let 1 ∈ [log−B x, 1]. Let ε > 0 be
small but fixed. Let D ≤ x5/8−ε and N be such that DN ≍ x. Let α(d) be divisor bounded coefficients
and let g(d) be as in (2-1). Then for any C > 0∑

d∼D

α(d)
∑

n∼x/d
n∈(N ,N (1+1)]

adn =

∑
d∼D

α(d)
∑

n∼x/d
n∈(N ,N (1+1)]

bdn + OB,C(X log−C x)

and∑
d≤D

α(d)
∑

n∼x/d

adn =

∑
d≤D

α(d)
∑

n∼x/d

bdn + OC(X log−C x)= X
∑
d≤D

α(d)g(d)+ OC(X log−C x). (2-2)

Furthermore, for D ≤ x2/3+ε we have the last asymptotic∑
d≤D

α(d)
∑

n∼x/d

bdn = X
∑
d≤D

α(d)g(d)+ OC(X log−C x)

and for 1= log−B x for any fixed B > 0 the bound∑
d≤D

α(d)
∑

n∈(N ,N (1+1)]

bdn ≪1X
∑
d≤D

|α(d)|g(d).

Remark. In our set up the last asymptotic actually holds up to D ≤ x1−ε, but we will not need this.
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Proposition 9 (type Iχ information). Let B > 0 be a large constant and let 1 ∈ [log−B x, 1]. Let
exp(log10 q) < x < exp(log16 q). Let D ≤ x5/8−ε and N be such that DN ≍ x. Let α(d) be divisor
bounded coefficients. Then for any C > 0∑

d∼D

α(d)
∑

n∼x/d
n∈(N ,N (1+1)]

adnχ(n)=

∑
d∼D

α(d)
∑

n∼x/d
n∈(N ,N (1+1)]

bdnχ(n)+ OB,C(X log−C x)≪B,C X log−C x

and ∑
d≤D

α(d)
∑

n∼x/d

adnχ(n)=

∑
d≤D

α(d)
∑

n∼x/d

bdnχ(n)+ OC(X log−C x)≪C X log−C x .

Furthermore, the bounds for the sums with bdn hold up to D ≤ x2/3+ε.

We will also need the following proposition to bound certain error terms in terms of L(1, χ). This
follows from [Friedlander and Iwaniec 2005, Lemmata 3.7 and 3.9] (as mentioned in [Friedlander and
Iwaniec 2005, Section 14], the g(d) defined by (2-1) is easily shown to satisfy the required assumptions).

Proposition 10 (exceptional characters). Let λ := (1 ∗χ). Then for any x > z ≥ q9 we have∑
n≤x

χ(n)g(n)≪ L(1, χ) and
∑

z<n≤x

λ(n)g(n)≪ L(1, χ) log2 x .

2.3. Initial decomposition. Let ε > 0 be small and define the parameter γ :=
1

24 +ε so that 2
3 −γ =

5
8 −ε

is the exponent of distribution of an . Using λ′
= λ ∗3 (see (1-2)) we get

λ′(n)−3(n)=

∑
n=km
m>1

3(k)λ(m).

Hence, for z := x1/(log log x)2 we have∑
n∼x

an3(n)=

∑
n∼x

an3(n)1(n,P(z))=1 + OC(x5/8/ logC x)

=

∑
n∼x

anλ
′(n)1(n,P(z))=1 −

∑
km∼x
k,m≥z

akm3(k)λ(m)1(m,P(z))=1 + OC(x5/8/ logC x)

=: S1 − S2 + OC(x5/8/ logC x).

Similarly as in [Friedlander and Iwaniec 2005], by the lacunarity of λ(m) we expect that S2 = o(S1), but
this is out of reach. We will show that S1 = (1+o(1))

∑
n∼x bn3(n) and S2 ≤ (0.811+o(1))·

∑
n∼x bn3(n)

which together imply Theorem 1.

Remark. For technical reasons we have chosen z a bit smaller than xε (compare with Section 1.1). This
has the benefit that evaluating S1 is a lot easier. On the downside bounding S2 is slightly more difficult
and we require Lemma 4 for this.
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2.4. Sum S1. Let D1 := xε for some small ε > 0. We expand the condition 1(n,P(z))=1 by using the
Möbius function and split the sum to get

S1 =

∑
n∼x

anλ
′(n)

∑
d | (n,P(z))

µ(d)=

∑
n∼x

anλ
′(n)

∑
d | (n,P(z))

d≤D1

µ(d)+
∑
n∼x

anλ
′(n)

∑
d | (n,P(z))

d>D1

µ(d)=: S′

1 + R1.

To handle the error term R1, note that if d | P(z) and d > D1, then d has a divisor in [D1, 2zD1]. Since
z = x1/(log log x)2 , by Lemma 4 (with k = 2 applied to the variable n/d to get n = cdn′ with τ(n)≤ τ(c)O(1)),
Proposition 8, and Lemma 6 we get

R1 ≪ (log x)
∑
n∼x

∃d | (n,P(z)),d∈[D1,2zD1]

anτ(n)3

≪ (log x)
∑

d∈[D1,2zD1]
d | P(z)

∑
c≤(2x)1/2

τ(cd)O(1)
∑

n′∼x/cd

acdn′

≪ (log x)x5/8
∑

d∈[D1,2zD1]
d | P(z)

∑
c≤(2x)1/2

τ(cd)O(1)g(cd)≪C x5/8 log−C x . (2-3)

To get the last bound use τ(cd)O(1)g(cd)≤ τ(cd)O(1)/(cd)≤ τ(c)O(1)τ(d)O(1)/(cd) and apply Lemma 4
to the variable d before using Lemma 6.

For the main term we write

S′

1 =

∑
d | P(z)
d≤D1

µ(d)
∑
n∼x

n≡0(d)

anλ
′(n)=

∑
d | P(z)
d≤D1

µ(d)
∑

mn∼x
mn≡0(d)

amnχ(m) log n

=

∑
d | P(z)
d≤D1

µ(d)
∑

mn∼x
mn≡0(d)
n>x1/2

amnχ(m) log n +

∑
d | P(z)
d≤D1

µ(d)
∑

mn∼x
mn≡0(d)
n≤x1/2

amnχ(m) log n =: S11 + S12.

We write (denoting d1 = (m, d))

S11 =

∑
d1d2 | P(z)
d1d2≤D1

µ(d1d2)
∑

d1m≪x1/2

(m,d2)=1

χ(d1m)
∑

n∼x/md1d2
d2n>x1/2

ad1d2mn log d2n

We will use Proposition 8 to evaluate this sum but first we need to remove the cross-condition d2n > x1/2

and the weight log d2n by using a finer-than-dyadic decomposition to the sums over d2 and n. That is, for
1= log−B x for some large B > 0 we split S11 into∑

i, j≪logB+1 x
D2=(1+1)i

N=(1+1) j

D2 N (1+1)2>x1/2

∑
d1d2 | P(z)
d1d2≤D1

d2∈(D2,D2(1+1)]

µ(d1d2)
∑

d1m≪x1/2

(m,d2)=1

χ(d1m)
∑

n∈(N ,N (1+1)]
n∼x/md1d2

d2n>x1/2

ad1d2mn log d2n.
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Here we can write

log d2n = log D2 N + O(log−B x),

where the error term will contribute by Lemma 4 and Proposition 8

≪ log−B x
∑
n∼x

τ4(n)an ≪ log−B x
∑
n∼x

τ(n)4an ≪ log−B x
∑

d≪x1/2

τ(d)O(1)
∑

n∼x/d

an ≪B x5/8 logO(1)−B x

so that S11 = S′

11 + OB(x logO(1)−B x) with

S′

11 :=

∑
i, j≪logB+1 x
D2=(1+1)i

N=(1+1) j

D2 N (1+1)2>x1/2

log D2 N
∑

d1d2 | P(z)
d1d2≤D1

d2∈(D2,D2(1+1)]

µ(d1d2)
∑

d1m≪x1/2

(m,d2)=1

χ(d1m)
∑

n∈(N ,N (1+1)]
n∼x/md1d2

d2n>x1/2

ad1d2mn.

The cross-condition d2n > x1/2 holds trivially and may be dropped except in the diagonal part where

(1 +1)−2x1/2 < D2 N ≤ x1/2.

The contribution from this diagonal part is bounded by using Proposition 8

≪ (log x)
∑

i, j≪logB+1 x
D2=(1+1)i

N=(1+1) j

(1+1)−2x1/2<D2 N≤x1/2

∑
d1d2 | P(z)
d1d2≤D1

d2∈(D2,D2(1+1)]

∑
d1m≪x1/2

(m,d2)=1

∑
n∈(N ,N (1+1)]

n∼x/md1d2

ad1d2mn

≪C x5/8 log−C x + (log x)
∑

i, j≪logB+1 x
D2=(1+1)i

N=(1+1) j

(1+1)−2x1/2<D2 N≤x1/2

∑
d1d2 | P(z)
d1d2≤D1

d2∈(D2,D2(1+1)]

∑
d1m≪x1/2

(m,d2)=1

∑
n∈(N ,N (1+1)]

n∼x/md1d2

bd1d2mn

≪C x5/8 log−C x + (logO(1) x)x5/812
∑

i, j≪logB+1 x
D2=(1+1)i

N=(1+1) j

(1+1)−2x1/2<D2 N≤x1/2

1 ≪B x5/8 logO(1)−B x

by choosing C = B. Hence, the cross-condition d2n > x1/2 may be dropped and we get S11 = S′′

11 +

OB(x logO(1)−B x) with

S′′

11 :=

∑
i, j≪logB+1 x
D2=(1+1)i

N=(1+1) j

D2 N (1+1)2>x1/2

log D2 N
∑

d1d2 | P(z)
d1d2≤D1

d2∈(D2,D2(1+1)]

µ(d1d2)
∑

d1m≪x1/2

(m,d2)=1

χ(d1m)
∑

n∈(N ,N (1+1)]
n∼x/md1d2

ad1d2mn.
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Applying a similar decomposition to the corresponding sum with bd1d2mn and using Proposition 8 we get

S11 =

∑
d1d2 | P(z)
d1d2≤D1

µ(d1d2)
∑

d1m≪x1/2

(m,d2)=1

χ(d1m)
∑

n∼x/md1d2
d2n>x1/2

bd1d2mn log d2n + OC(x5/8 log−C x)

=: M11 + OC(x5/8 log−C x).

Similarly, we get by Proposition 9 (denoting d2 = (n, d))

S12 =

∑
d1d2 | P(z)
d1d2≤D1

µ(d1d2)χ(d1)
∑

d2n≤x1/2

(n,d1)=1

log d2n
∑

m∼x/nd1d2

ad1d2mnχ(m)

=

∑
d1d2 | P(z)
d1d2≤D1

µ(d1d2)χ(d1)
∑

d2n≤x1/2

(n,d1)=1

log d2n
∑

m∼x/nd1d2

bd1d2mnχ(m)+ OC(x5/8 log−C x)

=: M12 + OC(x5/8 log−C x)

That is, in the sums S11 and S12 we have managed to replace an by bn . By reversing the steps to recombine
we get

M11 + M12 =

∑
n∼x

bnλ
′(n)

∑
d | (n,P(z))

d≤D1

µ(d)=: M1

By a similar argument as in (2-3) we can add the part d > D1 back into the sum and we get

M1 =

∑
n∼x

bnλ
′(n)1(n,P(z))=1 + OC(x5/8/ logC x)≥

∑
n∼x

bn3(n)1(n,P(z))=1 + OC(x5/8/ logC x)

by using λ′(n)≥3(n). Thus, by Lemma 2 we have

S1 ≥ (1 + o(1))
∑
n∼x

bn3(n),

so that for the lower bound result it suffices to show that

S2 ≤ (0.811 + o(1)) ·
∑
n∼x

bn3(n).

We now proceed to do this, and at the end of this section we will show how to get the upper bound in
Theorem 1.

Remark. We have used Lemma 6 to handle the restriction (n, P(z)) = 1 instead of applying the fun-
damental lemma of sieve. Thanks to this we were able to use the trivial lower bound λ′(n) ≥3(n) to
simplify the evaluation of the main term.
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2.5. Sum S2. Recall that γ =
1

24 + ε and 2
3 −γ =

5
8 − ε. We split the sum S2 into three ranges according

to the size of k

S2 =

∑
km∼x
k,m≥z

akm3(k)λ(m)1(m,P(z))=1

=

∑
km∼x

k>x1/3+γ

m≥z

akm3(k)λ(m)1(m,P(z))=1 +

∑
km∼x

x1/3−2γ<k≤x1/3+γ

m≥z

akm3(k)λ(m)1(m,P(z))=1

+

∑
km∼x

z≤k≤x1/3−2γ

m≥z

akm3(k)λ(m)1(m,P(z))=1

=: S21 + S22 + S23.

Using the assumption that L(1, χ) is small, we will show that the contribution from S21 and S23 is
negligible, and that S22 ≤ (0.811 + o(1)) ·

∑
n∼x bn3(n).

2.5.1. Sum S21. Here we have k > x1/3+γ , so that by a crude estimate we get

S21 =

∑
km∼x

k≥x1/3+γ

m≥z

akm3(k)λ(m)1(m,P(z))=1 ≪ (log x)
∑

z≤m≪x2/3−γ

λ(m)
∑

k∼x/m

akm := S′

21 = M21 + R21,

where

M21 := (log x)X
∑

z≤m≪x2/3−γ

λ(m)g(m) and R21 := S′

21 − M21.

By Proposition 8 we get

R21 ≪C x5/8 log−C x,

and by Proposition 10 we have

M21 ≪ x5/8L(1, χ) log3 x .

Hence, we have

S21 ≪C x5/8L(1, χ) log3 x + x5/8 log−C x .

2.5.2. Sum S23. Recall that here m ≫ x2/3+2γ . By positivity we may drop the condition (m, P(z))= 1.
Writing

λ(m)=

∑
cd=m

χ(d)
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we split the sum S23 into two ranges, d ≤ x1/3+γ or d > x1/3+γ . We get S23 ≤ S231 + S232, where

S231 :=

∑
z≤k≤x1/3−2γ

3(k)
∑

c≪x2/3−γ /k

∑
d∼x/ck

d>x1/3+γ

χ(d)acdk,

S232 :=

∑
z≤k≤x1/3−2γ

3(k)
∑

d≤x1/3+γ

χ(d)
∑

c∼x/dk

acdk .

By Proposition 9 we get (after applying a finer-than-dyadic decomposition similarly as with S11 to remove
cross-conditions)

S231 ≪C x5/8 log−C x .

By Propositions 8 and 10 we get (since the contribution from (k, d) > 1 is trivially negligible)

S232 = X
∑

z≤k≪x1/3−2γ

3(k)
∑

d≤x1/3+γ

χ(d)g(dk)+ OC(x5/8 log−C x)

≪C X
∑

z≤k≪x1/3−2γ

3(k)g(k)
∑

d≤x1/3+γ

χ(d)g(d)+ x5/8 log−C x

≪C x5/8L(1, χ) log x + x5/8 log−C x .

Combining the bounds, we have

S23 ≪C x5/8L(1, χ) log x + x5/8 log−C x .

2.5.3. Sum S22. We have

S22 =

∑
km∼x

x1/3−2γ<k≤x1/3+γ

akm3(k)λ(m)1(m,P(z))=1.

It turns out that we can handle all parts except when m is a prime, so we write

S22 =

∑
km∼x

x1/3−2γ<k≤x1/3+γ

m /∈P

akm3(k)λ(m)1(m,P(z))=1 +

∑
kp∼x

x1/3−2γ<k≤x1/3+γ

akp3(k)λ(p)=: S221 + S222.

In S221 we have m = m1m2 for m1,m2 ≥ z. Since (m1m2, P(z))= 1, the part where (m1,m2) > 1 triv-
ially contributes at most ≪ z−1x5/8 logO(1) x which is negligible. Hence, using λ(m1m2)= λ(m1)λ(m2)

for (m1,m2)= 1 we get

S221 ≤

∑
km1m2∼x

x1/3−2γ<k≤x1/3+γ

m1,m2≥z

akm1m23(k)λ(m1)λ(m2)1(m1m2,P(z))=1 + OC(x5/8 log−C x).

We split this sum into two parts according to km1 > x1/2 or km1 ≤ x1/2. In either case we get m j ≪ x1/2

for some j ∈ {1, 2}. We combine the variables ℓ = km2− j and use λ(m2− j ) ≤ τ(m2− j ) to obtain by
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Lemma 4

S221 ≤ (log x)
∑

z≤m≪x1/2

λ(m)
∑
ℓ∼x/m

τ(ℓ)1(ℓ,P(z))=1aℓm + OC(x5/8 log−C x)

≪K (log x)
∑

z≤m≪x1/2

λ(m)
∑

d≤x1/K

τ(d)OK (1)1(d,P(z))=1
∑

ℓ∼x/dm

adℓm + OC(x5/8 log−C x).

By Proposition 8 we get (once we choose K large enough so that 1
2 + 1/K < 2

3 − γ )

S221 ≪K M221 + OC(x5/8 log−C x),

where

M221 = X (log x)
∑

z≤m≪x1/2

λ(m)
∑

d≤x1/K

τ(d)OK (1)1(d,P(z))=1g(d)g(m),

since the contribution from the part the part (d,m) > 1 is negligible by a trivial bound. Thus, by
Proposition 10 and Lemma 7 we have

M221 ≪C X (log x)
∑

d≤x1/K

τ(d)OK (1)g(d)1(d,P(z))=1
∑

z≤m≪x1/2

λ(m)g(m)≪C x5/8L(1, χ) log5 x .

Combining the above bounds we get

S221 ≪C x5/8L(1, χ) log5 x + x5/8 log−C x,

so all that remains is to bound the sum S222. The savings here will come from the fact that k is restricted
to a fairly narrow range.

2.6. Bounding the error term S222. We have

S222 :=

∑
kp∼x

x1/3−2γ<k≤x1/3+γ

akp3(k)(1 +χ(p)).

We will apply the linear sieve upper bound to the nonnegative sequence

cn := akn(1 +χ(n))

with level of distribution x2/3−γ /k (note that by exploiting the cancellation from χ(n) we save a factor
of 2 compared to using the trivial bound λ(p)≤ 2). For (d, k)= 1 define R(d, k) by∑

n∼x/k
n≡0(d)

akn(1 +χ(n))= g(d)g(k)X + R(d, k).

Note that the contribution from sums with (d, k) > 1 is negligible by trivial estimates. Then by Lemma 5
with Dk = x2/3−γ /k we have

S222 ≤ (1 + o(1))M222 + R222,
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where

M222 := X
∑

x1/3−2γ<k≤x1/3+γ

3(k)g(k)2eγ1
∏

p≤Dk

(1 − g(p))

and

R222 =

∑
dk≤x2/3−γ

(d,k)=1

3(k)|R(d, k)| ≪C x5/8 log−C x

by Propositions 8 and 9. Applying Lemma 2 we get

M222 = (2 + o(1))
∑
n∼x

bn3(n)
∑

x1/3−2γ<k≤x1/3+γ

3(k)g(k)
log(x2/3−γ /k)

=: D(γ )
∑
n∼x

bn3(n).

By the prime number theorem (for p ≡ 1(4)) we have (denoting k = xα)

D(γ )∼ 2
∑

x1/3−2γ<k≤x1/3+γ

3(k)g(k)
k log(x2/3−γ /k)

∼ 2
∑

x1/3−2γ<k≤x1/3+γ

1
k log(x2/3−γ /k)

∼ 2
∫ 1/3+γ

1/3−2γ

dα
2/3 − γ −α

∼ 2 log
1 + 3γ
1 − 6γ

.

We have D
( 1

24

)
< 0.811. Since ε > 0 can be taken to be arbitrarily small, this implies

S222 ≤ (0.811 + o(1)) ·
∑
n∼x

bn3(n),

completing the proof of Theorem 1. □

2.7. Proof of the upper bound result. We now explain how to get the upper bound result in Theorem 1.
By Section 2.4 we have by negativity of S2∑

n∼x

an3(n)≤ S1 + OC(x5/8/ log Cx)=

∑
n∼x

bnλ
′(n)1(n,P(z))=1 + OC(x5/8/ log Cx)

=

∑
n∼x

bn3(n)1(n,P(z))=1 + M2 + OC(x5/8/ log Cx),

where by reversing the initial decomposition on the bn-side (Section 2.3)

M2 :=

∑
km∼x
k,m≥z

bkm3(k)λ(m)1(m,P(z))=1
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which is the same as S2 but with an replaced by bn . Now M2 can be bounded similarly as S2, except that
we decompose with γ = 0 to get M2 = M21 + M23 with

M21 :=

∑
km∼x
k>x1/3

m≥z

bkm3(k)λ(m)1(m,P(z))=1, M23 :=

∑
km∼x
k≤x1/3

m≥z

bkm3(k)λ(m)1(m,P(z))=1.

By similar arguments as above for S21, S23 we get

M21 + M23 ≪C x5/8L(1, χ) log5 x + x5/8/ logC x,

since for bn we have an exponent of distribution > 2
3 by Propositions 8 and 9. That is, to prove the upper

bound we only needed that an has an exponent of distribution 1
2 + ε instead of 5

8 − ε.

3. Type I sums

In this section we will prove Propositions 8 and 9. The arguments are straightforward generalizations
of the arguments in [Friedlander and Iwaniec 2006; 2005, Section 14]. Since it does not require much
additional effort, we give the arguments in this section for the sequences a2

+ b2k for any k ≥ 1, which
yields the exponent of distribution 1

2 +
1

2k − ε, as claimed in [Friedlander and Iwaniec 2006, below
Theorem 4].

For the arguments in this section it is convenient for us to define ≺≺ to mean an inequality modulo
logarithmic factors, that is, for two functions f and g with g ≥ 0 we write f (N ) ≺≺ g(N ) if f (N )≪

g(N ) logO(1) N . For parameters such as ε we write f (N )≺≺ε g(N ) to mean f (N )≪ε g(N ) logOε(1) N .
Proposition 8 is a consequence of the following proposition, which we will prove in this section.

Proposition 11. Let M, L , D ≫ 1. Let k ≥ 1 integer and let λℓ be a coefficient such that |λℓ| ≤ 1ℓ=nk .
Let ψ denote a fixed C∞-smooth compactly supported function and denote ψM(x) := ψ(x/M). Then for
any divisor bounded α(d) and any real number m0 ≺≺ M we have∑

d∼D

α(d)
( ∑

(ℓ,m)=1
ℓ∼L

ℓ2
+m2

≡0(d)

λℓψM(m − m0)−

∫
ψM(t) dt

ϱ(d)
d

∑
(ℓ,d)=1
ℓ∼L

λℓ
ϕ(ℓ)

ℓ

)

≺≺ε Mε(L + M)1/2 D1/2L1/(2k).

Proof of Proposition 8 assuming Proposition 11. For the sequence bn , which counts n = a2
+b2 weighted

with b−1+1/k/k, we will apply similar arguments as below but with k = 1, renormalizing the corresponding
λℓ appropriately. For an which counts n = a2

+b8 we write m = a and ℓ= b4, so that we are applying the
above proposition with k = 4. Similarly as with the treatment of the sum S11, we use a finer-than-dyadic
decomposition to remove the cross-condition m2

+ ℓ2
∼ x that is, writing 1= log−B x for some large B,

we partition the sum into ≪1−2 log2 x parts where ℓ ∈ [L0, L0(1 +1)] and m ∈ [M0,M0(1 +1)] with
L2

0 + M2
0 ∼ x and L0,M0 ≪

√
x . In fact, we need to refine this decomposition so that for m we use a
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C∞-smooth finer-than-dyadic partition of unity. Then the resulting coefficients for m are C∞-smooth
functions of the form ψM(m − M0), where M = M01 is the width of the window around M0 ≪

√
x .

We can now drop the condition ℓ2
+ m2

∼ x , with an error contribution bounded by x5/8 log−B+O(1) x
coming from the edges (where L2

0 + M2
0 is in [x(1 +1)−2, x(1 +1)2] or [2x(1 +1)−2, 2x(1 +1)2]).

To see this, note that we have by Proposition 11 using M0, L0 ≪ x1/2

∑
d∼D

|α(d)|
∑

m
ℓ∈[L0,L0(1+1)]

m2
+ℓ≡0(d)

λℓψ1M0(m − M0)≪C x5/8 log−C x +11+1/k L1/k
0 M0

∑
d∼D

|α(d)|ϱ(d)
d

≪C x5/8 log−C x + x5/8 log−(1+1/k)B+O(1) x,

and that the number of edge cases is ≪ logB+O(1) x , so that we save a factor of logO(1)−B/k x , which is
sufficient for B ≫ k.

We can now apply Proposition 11 in each of the parts separately. Note that then we have L ,M ≪ x1/2

and D ≪ x5/8−ε, so that the error term is bounded by x5/8−ε/4. To remove the condition (ℓ2
+m2, q)= 1

implicit in Proposition 8 we may expand using the Möbius function to get∑
ℓ2

+m2
≡0(d)

(ℓ2
+m2,q)=1

=

∑
f | q

µ( f )
∑

ℓ2
+m2

≡0(d f )

since (d, q)= 1, and apply Proposition 11 with level x5/8−εq ≪ x5/8−ε/2.
Denote λ(1)ℓ = 1ℓ=nk and λ(2)ℓ = k−1ℓ−1+1/k . Let g̃(d) extend g(d) to (d, q) > 1, that is,

g̃(pk) :=
ϱ(pk)

pk

(
1 +

1
p

)−1

.

We still have to evaluate the main term in Proposition 11 to get (2-2). Recombining the finer-than-dyadic
decomposition to a dyadic one for the variable ℓ, this follows we once show that for j ∈ {1, 2}∑

d∼D

α(d)
∫
ψM(t)dt

ϱ(d)
d

∑
(ℓ,d)=1
ℓ∼L

λ
( j)
ℓ

ϕ(ℓ)

ℓ
=

∑
d∼D

α(d)g̃(d)
∑

(ℓ,m)=1
ℓ∼L

λ
(2)
ℓ ψM(m − m0)+ O(x5/8−η),

which follows easily once we show that∑
d∼D

α(d)
∫
ψM(t) dt

ϱ(d)
d

∑
(ℓ,d)=1
ℓ∼L

λ
( j)
ℓ

ϕ(ℓ)

ℓ

=

∑
d∼D

α(d)
ϱ(d)

d
ϕ(d)

d

∏
p | d

(1 − p−2)−1 1
ζ(2)

∑
m
ℓ∼L

λ
(2)
ℓ ψM(m − m0)+ O(x5/8−η). (3-1)

Define

Hd :=

∏
p ∤d

(1 − p−2)=

∑
(c,d)=1

µ(c)
c2 =

1
ζ(2)

∏
p | d

(1 − p−2)−1
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and note that ∑
ℓ∼L

λ
(1)
ℓ = (1 + L−εk )

∑
ℓ∼L

λ
(2)
ℓ

and ∫
ψM(t)dt =

∑
m

ψM(m − m0)+ OC(M−C).

Then, since M ≺≺ x1/2, the claim (3-1) follows once we show∑
d≤D

α(d)ϱ(d)
d

( ∑
(ℓ,d)=1
ℓ∼L

λ
( j)
ℓ

ϕ(ℓ)

ℓ
−
ϕ(d)

d
Hd

∑
ℓ∼L

λ
( j)
ℓ

)
≺≺ 1.

To show this, note also that
ϕ(ℓ)

ℓ
=

∑
c | ℓ

µ(c)
c
.

Then for λℓ = 1ℓ=nk (and similarly for λℓ = k−1ℓ−1+1/k)∑
d≤D

α(d)ϱ(d)
d

( ∑
(ℓ,d)=1
ℓ∼L

λℓ
ϕ(ℓ)

ℓ
−
ϕ(d)

d
Hd

∑
ℓ∼L

λℓ

)

=

∑
d≤D

α(d)ϱ(d)
d

∑
(c,d)=1

µ(c)
c

( ∑
(ℓ,d)=1
ℓ∼L/c

λcℓ −
ϕ(d)
cd

∑
ℓ∼L

λℓ

)

=

∑
d≤D

α(d)ρ(d)
d

∑
(c,d)=1

µ(c)
c

∑
e | d

µ(e)
( ∑
ℓ∼L/ce

λceℓ −
1
ce

∑
ℓ∼L

λℓ

)

=

∑
d≤D

α(d)ρ(d)
d

∑
(c,d)=1

µ(c)
c

∑
e | d

µ(e)
( ∑

n∼L1/k/ce

1 −
1
ce

∑
n∼L1/k

1
)

≪

∑
d≤D

|α(d)|ρ(d)
d

∑
e | d

( ∑
c≪L1/k/e

1
c

+
L1/k

e

∑
c≫L1/k/e

1
c2

)
≺≺ 1

by writing ℓ= (nce)k since ce is square free. □

Proposition 9 follows by a similar argument from the following (recall that an and bn are supported on
(n, q)= 1).

Proposition 12. Let M, L , D ≫ 1. Let k ≥ 1 integer and let λℓ be a coefficient such that |λℓ| ≤ 1ℓ=nk .
Let ψ denote a fixed C∞-smooth compactly supported function and denote ψM(x) := ψ(x/M). Let χ
denote a primitive quadratic Dirichlet character associated to a fundamental discriminant ±q with q > 1.
Then for any divisor bounded α(d) and any real number m0 ≺≺ M we have for some η > 0∑

d∼D

α(d)
∑

(ℓ,m)=1
ℓ∼L

ℓ2
+m2

≡0(d)

λℓψM(m − m0)χ(ℓ
2
+ m2)≺≺ε q2 Mε(L + M)1/2 D1/2L1/(2k)

+ q−ηM L1/k .
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For the proof of Propositions 11 and 12 we need the following large sieve inequality; see [Friedlander
and Iwaniec 2005, Lemma 14.4] for the proof.

Lemma 13. Let q ≥ 1. Then for any complex numbers αn we have∑
d∼D

(d,q)=1

∑
ν2+1≡0(d)

∣∣∣∣∑
n≤N

αned(νnq̄)
∣∣∣∣ ≪ (Dq + N )

∑
n≤N

|αn|
2,

where qq̄ ≡ 1(d).

We also require the Poisson summation formula.

Lemma 14 (truncated Poisson summation formula). Let ψ : R → C be a fixed C∞-smooth compactly
supported function with ∥ψ∥1 ≤ 1 and let M ≫ 1. Fix a real number m0. Let d ≥ 1 be an integer. Then
for any ε > 0 we have uniformly in m0∑

m≡a(d)

ψM(m − m0)=

∫ ∑
0≤|h|≤Mεd/M

ψM(td − m0)e(ht)ed(−ah)dt + OC,ε(M−C).

Proof. Applying the Poisson summation formula we get∑
m≡a(d)

ψM(m − m0)=

∑
n

ψM(nd + a − m0)=

∑
h

∫
ψM(td + a − m0)e(ht) dt

=

∑
h

∫
ψM(td − m0)e(ht)ed(−ha)du.

by the change of variables t 7→ t − a/d. For |h|> Mεd/M we can iterate integration by parts to show
that the contribution from this part is ≪C,ε M−C . □

We also need the following Weil bound for character sums; see [Kowalski 2021, Theorem 3.1], for
instance.

Lemma 15. Let q ≥ 1 and let χ be a primitive quadratic character of modulus q. Let a, b ∈ Z and
(a, q)= 1. Then ∑

m(q)

χ(am2
+ b)≪ε (b, q)1/2q1/2+ε.

3.1. Proof of Propositions 11 and 12. We first note that there is a gap in the proof given in [Friedlander
and Iwaniec 2005, Section 14], namely, the argument around their application of Poisson summation
works only if the sum is restricted to (ℓ, q)= 1. To fix this we must first bound the contribution ℓ= nk

which have a large factor whose prime factors divide q . Let q0 = q0(n)= q0(ℓ) denote the smallest factor
of n such that (n/q0, q) = 1. The parts of the sums in Proposition 12 where q0 > qη can be bounded
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trivially. To see this, note that by the divisor boundedness α(d) and Lemma 4 we have

∑
d∼D

α(d)
∑

(ℓ,m)=1
ℓ∼L

ℓ2
+m2

≡0(d)
q0>qη

λℓψM(m − m0)χ(ℓ
2
+ m2)≪

∑
m≍m0
n∼L1/k

q0>qη

τ(m2
+ n2k)O(1)

≪

∑
d≪m1/2

0

τ(d)O(1)
∑

n∼L1/k

q0>qη

∑
m≍m0

m2
≡−n2k(d)

1

≺≺ M
∑

d≪m1/2
0

τ(d)O(1)

d

∑
n∼L1/k

q0>qη

1 ≺≺ M
∑

n∼L1/k

q0>qη

1

and

∑
n∼L1/k

q0>qη

1 ≤

∑
q0>qη

p | q0⇒p | q

∑
n∼L1/k/q0

≪ L1/k
∑

q0>qη
p | q0⇒p | q

q−1
0 ≤ q−η/2L1/k

∏
p | q

(1 − p−1/2)−1
≪ q−η/4L1/k .

Hence, we may assume that λℓ is supported on q0(ℓ) < qη for some small η > 0.
Note that since d | ℓ2

+ m2, we may add the condition (d, q) = 1 since otherwise χ(ℓ2
+ m2) = 0.

Expanding the condition (ℓ,m)= 1 using the Möbius function, we get

∑
d∼D
(d,q)=1

α(d)
∑

(ℓ,m)=1
ℓ∼L

ℓ2
+m2

≡0(d)

λℓψM(m − m0)χ(ℓ
2
+ m2)

=

∑
b≪L M
(b,q)=1

µ(b)
∑
d∼D
(d,q)=1

α(d)
∑
ℓ∼L/b
(ℓ,d)=1

λbℓ

∑
m

b2(ℓ2
+m2)≡0(d)

ψM/b(m − m0/b)χ(ℓ2
+ m2).

Writing b1 = (d, b) and b2 = b/b1 we get (absorbing (d, b2)= 1 into the coefficient α(d) and redefining
α(d) as α(b1d))

∑
b1b2≪L M
(b1b2,q)=1

µ(b1b2)
∑

d∼D/b1
(d,q)=1

α(d)
∑
ℓ∼L/b
(ℓ,d)=1

λbℓ

∑
m

ℓ2
+m2

≡0(d)

ψM/b(m − m0/b)χ(ℓ2
+ m2).

Let qℓ := qk
0 so that (q, ℓ/qℓ)= 1. Defining ν(d) and β(q) so that m ≡ νℓ(d) and m ≡ β(ℓ/qℓ)(q) we

get by the Chinese remainder theorem

m ≡ νℓqq̄ +β(ℓ/qℓ)dd̄(dq),
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where the inverses q̄ and d̄ are computed modulo d and q, respectively. Using Lemma 14 we get for
H := Mεb2 Dq/M∑

m
ℓ2

+m2
≡0(d)

ψM/b(m−m0/b)χ(ℓ2
+m2)

=

∑
ν(d)

ν2
+1≡0(d)

∑
β(q)

χ(β2
+q2

ℓ )
∑

m
m≡νℓqq̄+β(ℓ/qℓ)dd̄(dq)

ψM/b(m−m0/b)

=

∑
ν(d)

ν2
+1≡0(d)

∑
β(q)

χ(β2
+q2

ℓ )

∫ ∑
0≤|h|≤H

ψM/b(tdq−m0/b)e(ht)ed(−νhℓq̄)eq(−βh(ℓ/qℓ)d̄)dt

+OC,ε(M−C).

Making the change of variables and β 7→ βd this becomes∫ ∑
0≤|h|≤H

(∑
β(q)

χ(β2d2
+ q2

ℓ )eq(−βh(ℓ/qℓ))
) ∑
ν2

+1≡0(d)

ψM(tbdq − m0)e(ht)ed(−νhℓq̄) dt.

From h = 0 we get a total contribution∑
b1b2≪L M
(b1b2,q)=1

µ(b1b2)
∑

d∼D/b1
(d,q)=1

α(d)ϱ(d)
∑
ℓ∼L/b
(ℓ,d)=1

λbℓ
M

b2dq

∫
ψ(t)dt

∑
β(q)

χ(β2d2
+ q2

ℓ )≺≺ q−1/4 M L1/k

by using the bound (Lemma 15)∑
β(q)

χ(β2d2
+ q2

ℓ )≪ε (q, q2
ℓ )

1/2q1/2+ε

and the fact that qℓ = qk
0 ≪ qηk for some small η.

For h ̸= 0 we can by symmetry restrict to h < 0. We first want to remove the cross-condition
χ(β2d2

+ q2
ℓ ) between the variables d and ℓ. To do this we fix the value of qℓ modulo q and split ℓ into

congruence classes qℓ ≡ γ (q). Hence, we get for some |ch,ℓ(t, q, β, γ )| ≤ 1 and |ch,ℓ(t, q)| ≤ 1 that the
total contribution from h ̸= 0 is∑
γ (q)

∑
b1b2≪L M
(b1b2,q)=1

µ(b1b2)

∫ ∑
β(q)

∑
d∼D/b1
(d,q)=1

α(d)χ(β2d2
+ γ 2)

×

∑
ν2+1≡0(d)

∑
ℓ∼L/b
(ℓ,d)=1
qℓ≡γ (q)

λbℓ

∑
1≤h≤H

ch,ℓ(t, q, β, γ )ed(νhℓq̄)ψM(tbdq − m0) dt

≺≺ q2
∑

b1b2≪L M

∫ ∑
d∼D/b1
(d,q)=1

|α(d)|
∑

ν2+1≡0(d)

∣∣∣∣ ∑
ℓ∼L/b
(ℓ,d)=1

λbℓ

∑
1≤h≤H

ch,ℓ(t, q)ed(νhℓq̄)ψM(tbdq − m0)

∣∣∣∣ dt.
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Note that ψM(tbdq − m0) vanishes outside |tbdq − m0| ≪ M . Hence, by d ∼ D/b1 and m0 ≺≺ M the
integral over t is supported on a fixed set T (b1, b2) with measure bounded by ≺≺ M/b2q D so that by
taking the maximal t the last expression is bounded by

≺≺ q
∑

b1b2≪L M

M
b2 D

∑
d∼D/b1
(d,q)=1

|α(d)|
∑

ν2+1≡0(d)

∣∣∣∣ ∑
ℓ∼L/b
(ℓ,d)=1

λbℓ

∑
1≤h≤H

ch,ℓed(νhℓq̄)
∣∣∣∣

for some coefficients ch,ℓ = ch,ℓ(b1, b2, q,m0) independent of d with |ch,ℓ| ≤ 1. Expanding the condition
(ℓ, d)= 1 this is bounded by

q M
D

∑
b1b2≪L M

1
b2

∑
c≪DL

∑
d∼D/b1c
(d,q)=1

|α(cd)|
∑

ν2+1≡0(d)

∣∣∣∣ ∑
ℓ∼L/bc

λbcℓ

∑
1≤h≤H

ch,cℓed(νhcℓq̄)
∣∣∣∣. (3-2)

By Cauchy–Schwarz and Lemma 13 the sum over d is bounded by (denoting H1 := H/b2 = MεDq/M)

≺≺
D1/2

(b1c)1/2

( ∑
d∼D/b1c
(d,q)=1

∑
ν2+1≡0(d)

∣∣∣∣ ∑
ℓ∼L/bc

λbcℓ

∑
1≤h≤H

ch,cℓed(νhcℓq̄)
∣∣∣∣2)1/2

≪
D1/2

(b1c)1/2
(Dq/b1c + H L/b)1/2

( ∑
1≤ j≪H1 L/c

∣∣∣∣ ∑
j=ℓh
ℓ∼L/bc

λbcℓ

∣∣∣∣2)1/2

≪
1

bc1/2 (Dq + (DH1L)1/2)
( ∑

1≤ j≪H1 L/c

∣∣∣∣ ∑
j=ℓh
ℓ∼L/bc

λbcℓ

∣∣∣∣2)1/2

.

By Cauchy–Schwarz we get (writing m = bcj = bj ′ and B := L M so that 1/b = j ′/m ≪ H1L/m)

∑
b≪L M

τ(b)
b

∑
c≪DL

1
c1/2

( ∑
1≤ j≪H1 L/c

∣∣∣∣ ∑
j=ℓh
ℓ∼L/bc

λbcℓ

∣∣∣∣2)1/2

≺≺

( ∑
j ′
≪H1 L
b≪B

1
b
τ( j ′)

∣∣∣∣ ∑
j ′
=ℓh

ℓ∼L/b

λbℓ

∣∣∣∣2)1/2

≪

( ∑
m≪H1 L B

H1L
m

τ(m)2
∣∣∣∣ ∑
m=ℓh
ℓ∼L

λℓ

∣∣∣∣2)1/2

≤

(
H1L

∑
nk∼L

∑
h≪H1 B

τ(hnk)4

hnk

)1/2

≤

(
H1L

∑
nk∼L

∑
h≪H1 B

τ(h)4τ(n)4k

hnk

)1/2

≺≺ H 1/2
1 L1/2k .
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Hence, the final bound for (3-2) is

≺≺
q M
D
(Dq + (DH1L)1/2)H 1/2

1 L1/(2k)

= q Mε(Mq1/2 H 1/2
1 L1/(2k)

+ M H1L1/2+1/(2k)D−1/2)

= Mεq2(D1/2 M1/2L1/(2k)
+ D1/2L1/2+1/(2k))

by using H1 = MεDq/M . □

4. A General version of the sieve

From our argument in Section 2 we can infer the following general result. We have not made an effort to
minimize the assumptions or optimize the powers of logarithms.

Theorem 16. Let x be large and let χD be a real primitive character associated to a fundamental
discriminant D = xo(1) with D ≫C logC x. Let an and bn be nonnegative sequences supported on
(n, D) = 1, and let g(d) be the associated multiplicative function. Suppose that g(d) ≪ τ(d)O(1)/d.
Assume that g satisfies the assumptions of Lemma 5 and assume that Proposition 10 holds. Suppose that
for any z > xε we have ∑

n∼x

bn3(n)= (1 + o(1))
1

eγ1 log z

∏
p≤z

(1 − g(p))
∑
n∼x

bn

and ∑
k∼z

3(k)g(k)= (1 + o(1))
∑
k∼z

3(k)
k
.

Suppose also that for some ϵ > 0 we have the crude bounds∑
n∼x

an3(n)1(n,P(xϵ))>1,
∑
n∼x

bn3(n)1(n,P(xϵ))>1 = o
(∑

n∼x

3(n)bn

)
.

Suppose that the exponent of distribution is at least α=
2
3 −γ for some γ < 1

6 (in the sense of Propositions
8 and 9). Then∑

n∼x

3(n)an ≥

(
1 − 2 log

1 + 3γ
1 − 6γ

− O(L(1, χD) log5 x)− o(1)
) ∑

n∼x

3(n)bn.

Assuming that the exponent of distribution is at least 1
2 + ε we have∑

n∼x

3(n)an ≤ (1 + O(L(1, χD) log5 x)+ o(1))
∑
n∼x

3(n)bn.

In particular, if L(1, χD) ≤ log−100 D and exp(log10 D) < x < exp(log16 D), then the lower bound is
nontrivial as soon as the exponent of distribution satisfies

α >
1 +

√
e

1 + 2
√

e
= 0.61634 . . . .
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Remark. With much more effort it is possible to get the same result as above with L(1, χ) log x in place
of L(1, χ) log5 x , so that one only needs L(1, χD)= o(1/ log D).

Remark. Unfortunately the above theorem just misses out the next case a2
+ b10, which has an exponent

of distribution 3
5 − ε. Similarly as with the linear sieve, further improvements are possible if we make

use of well-factorability of the weights [Friedlander and Iwaniec 2010, Chapter 12.7]. For example, the
upper bound for the sum S222 can be improved if we are able to handle certain Type I/II sums (that is,
Type I sums where the modulus is kd with d well-factorable). Note also that in S21 and S23 the weight
factorizes and furthermore there is some smoothness available in the weight. Hence, assuming suitable
arithmetic information (of Type I/II or Type I2) we could handle some parts near the edges of S22 by a
similar argument as for the sums S21 or S23. Unfortunately we do not know how to carry this out for the
sequence a2

+ b10, but possibly sums of Kloosterman sums methods might be able to handle these sums.
It is also unclear if the handling of the sum S222 is optimal but we have not found a way to improve this.

Remark. The ideas in this paper can be used also to the problem of primes in short intervals, to improve
the result of Friedlander and Iwaniec [2004] which gives primes in intervals of length x39/79 < x1/2 under
the assumption of exceptional characters. The sieve argument is slightly different here since for this
problem we can also utilize the available Type I/II and Type I2 information furnished by the exponential
sum estimates used for the problem of largest prime factor on short intervals [Baker and Harman 2009;
Fouvry and Iwaniec 1989; Liu and Wu 1999]. The details will appear elsewhere.
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