

Exceptional characters and prime numbers in sparse sets

Jori Merikoski

Abstract

We develop a lower bound sieve for primes under the (unlikely) assumption of infinitely many exceptional characters. Compared with the illusory sieve due to Friedlander and Iwaniec which produces asymptotic formulas, we show that less arithmetic information is required to prove nontrivial lower bounds. As an application of our method, assuming the existence of infinitely many exceptional characters we show that there are infinitely many primes of the form $a^{2}+b^{8}$.

1. Introduction 1305
2. The sieve argument 1310
3. Type I sums 1323
4. A General version of the sieve 1330
Acknowledgements 1331
References 1331

1. Introduction

Understanding the distribution of prime numbers along polynomial sequences is one of the basic questions in analytic number theory. For sparse polynomial sequences the problem is solved only in a handful of cases. The most notable are the Friedlander and Iwaniec [1998b] theorem of primes of the form $a^{2}+b^{4}$ and the result of Heath-Brown [2001] of primes of the form $a^{3}+2 b^{3}$, which has been generalized to binary cubic forms by Heath-Brown and Moroz [2002] and to general incomplete norm forms by Maynard [2020]. Also, the result of Friedlander and Iwaniec has been extended by Heath-Brown and Li [2017] to primes of the form $a^{2}+p^{4}$ where p is a prime.

Let $\pm D$ be a fundamental discriminant and let $\chi_{D}(n)=(D / n)$ be the associated primitive real character. We say that χ_{D} is exceptional if $L\left(1, \chi_{D}\right)$ is very small, say,

$$
\begin{equation*}
L\left(1, \chi_{D}\right)=\sum_{n=1}^{\infty} \frac{\chi_{D}(n)}{n} \leq \log ^{-100} D \tag{1-1}
\end{equation*}
$$

It is conjectured that (for an exponent such as 100) there are at most finitely many exceptional characters, which is closely related to the conjecture that L-functions do not have zeros close to $s=1$ (so-called

[^0]Siegel zeros). However, assuming that there do exist infinitely many exceptional characters, it is possible to prove very strong results on distribution of prime numbers. For example, Heath-Brown [1983] has shown that the twin prime conjecture follows from such an assumption, and Drappeau and Maynard [2019] have bounded sums of Kloosterman sums along primes. The potential benefit of such results is that for an unconditional proof we are now allowed to assume the nonexistence of exceptional characters, which in turn implies strong regularity in the distribution of primes in arithmetic progressions. Such a bifurcation in the proof has been successfully used to solve problems, for example, in the proof of Linnik's theorem [1944] and in many results in the theory of L-functions.

The state of the art method using exceptional characters is the so-called illusory sieve developed by Friedlander and Iwaniec [2003; 2004; 2005], which is geared towards counting primes in sparse sets. Assuming the existence of infinitely many exceptional characters (with the exponent 100 in (1-1) replaced by 200), Friedlander and Iwaniec [2005] proved that there are infinitely many prime numbers of the form $a^{2}+b^{6}$. For their method it is required to solve the corresponding ternary divisor problem, that is, show an asymptotic formula for $\sum \tau_{3}\left(a^{2}+b^{6}\right)$. This essentially comes down to showing that the sequence has an exponent of distribution $\frac{2}{3}-\varepsilon$. Friedlander and Iwaniec [2006] have solved this problem for $a^{2}+b^{6}$ in a form that is narrowly sufficient for the illusory sieve.

Their method fails for sparser polynomial sequences such as $a^{2}+b^{8}$, which has an exponent of distribution $\frac{5}{8}-\varepsilon$. The purpose of this article is to develop a lower bound version of the illusory sieve. That is, instead of aiming for an asymptotic formula for primes of the form $a^{2}+b^{8}$, we just want to prove a lower bound of the correct order of magnitude for the number of primes. Morally speaking, we are able to show a nontrivial lower bound for primes in sequences with a level of distribution greater than $(1+\sqrt{e}) /(1+2 \sqrt{e})=0.61634 \ldots$ (see Theorem 16), so that the sequence $a^{2}+b^{8}$ qualifies.

We will state the general version of our lower bound sieve at the end of this article (Theorem 16). For now we state the result for primes of the form $a^{2}+b^{8}$. For any $n \geq 0$ define

$$
\kappa_{n}:=\int_{0}^{1} \sqrt{1-t^{n}} d t
$$

Theorem 1. If there are infinitely many exceptional primitive characters χ, then there are infinitely many prime numbers of the form $a^{2}+b^{8}$. More precisely, if $L\left(1, \chi_{D}\right) \leq \log ^{-100} D$, then for $\exp \left(\log ^{10} D\right)<$ $x<\exp \left(\log ^{16} D\right)$ we have

$$
\sum_{\substack{a^{2}+b^{8} \leq x \\ a, b>0}} \Lambda\left(a^{2}+b^{8}\right) \geq(0.189-o(1)) \cdot \frac{4}{\pi} \kappa_{8} x^{5 / 8}
$$

and

$$
\sum_{\substack{a^{2}+b^{8} \leq x \\ a, b>0}} \Lambda\left(a^{2}+b^{8}\right) \leq(1+o(1)) \cdot \frac{4}{\pi} \kappa_{8} x^{5 / 8}
$$

Remark. Note that $\kappa_{2}=\pi / 4$, so that the coefficient is in fact κ_{8} / κ_{2}, and $\frac{4}{\pi} \kappa_{8} x^{5 / 8}$ is the expected main term. It turns out that the upper bound result is much easier and for this having an exponent of distribution $\frac{1}{2}$ is sufficient.
1.1. Sketch of the argument. We present here a nonrigorous sketch of the proof of the lower bound in Theorem 1. Let

$$
a_{n}:=1_{(n, D)=1} \sum_{\substack{n=a^{2}+b^{8} \\(a, b)=1 \\ a, b>0}} 1,
$$

so that our goal is to estimate $\sum_{n \sim x} a_{n} \Lambda(n)$.
Let $\chi=\chi_{D}$. Similarly as in [Friedlander and Iwaniec 2005], we define the Dirichlet convolutions

$$
\lambda:=1 * \chi \quad \text { and } \quad \lambda^{\prime}:=\chi * \log
$$

so that

$$
\begin{equation*}
\lambda * \Lambda=(1 * \chi) *(\mu * \log)=(\chi * \log) *(1 * \mu)=\lambda^{\prime} . \tag{1-2}
\end{equation*}
$$

Note that $\lambda(n) \geq 0$ and $\lambda^{\prime}(n) \geq \Lambda(n) \geq 0$ (by using $\lambda^{\prime}=\lambda * \Lambda$).
The basic idea in arguments using the exceptional characters is as follows. Since

$$
L(1, \chi)^{-1}=\sum_{n} \mu(n) \chi(n) / n=\prod_{p}\left(1-\frac{\chi(p)}{p}\right)
$$

is large, we expect that $\chi(p)=\mu(p)$ for most primes (in a range depending on D), so that heuristically we have $\chi \approx \mu$ and $\lambda^{\prime} \approx \Lambda$. Hence, we expect that

$$
\begin{equation*}
\sum_{n \sim x} a_{n} \Lambda(n) \approx \sum_{n \sim x} a_{n} \lambda^{\prime}(n) \tag{1-3}
\end{equation*}
$$

Since the modulus of χ is small, morally $\lambda^{\prime}(n)$ is of same complexity as the divisor function $\tau(n)$, so that we have replaced the original sum by a much simpler sum.

Making the approximation (1-3) rigorous is the difficult part of the argument, especially for sparse sequences a_{n}. Friedlander and Iwaniec succeeded in this under the assumption that the exponent of distribution is almost $\frac{2}{3}$, which was sufficient to handle primes in the sequence $a^{2}+b^{6}$. In our application a_{n} has the exponent of distribution $\frac{5}{8}-\varepsilon$. This results in an additional error term compared to [Friedlander and Iwaniec 2005], but we are able to show that the contribution from this is smaller (but of the same order) as the main term.

To bound the error term in (1-3), using $\lambda^{\prime}=\lambda * \Lambda$ we see that

$$
\lambda^{\prime}(n)-\Lambda(n)=\sum_{\substack{n=k m \\ m>1}} \Lambda(k) \lambda(m)
$$

Let $z=x^{\varepsilon}$ (in the proof we choose a slightly smaller z for technical reasons). Then

$$
\begin{aligned}
\sum_{n \sim x} a_{n} \Lambda(n) & \geq \sum_{n \sim x} a_{n} \Lambda(n) 1_{(n, P(z))=1} \\
& =\sum_{n \sim x} a_{n} \lambda^{\prime}(n) 1_{(n, P(z))=1}-\sum_{\substack{k m \sim x \\
k, m \geq z}} a_{k m} \Lambda(k) \lambda(m) 1_{(k m, P(z))=1} \\
& =: S_{1}-S_{2}
\end{aligned}
$$

Note that by removing the small prime factors we have guaranteed that $m \geq z$ in the second sum, so that we expect $\lambda(m) \approx(1 * \mu)(m)=0$ for almost all m in S_{2}. Thus, we expect that S_{1} gives us the main term and that $S_{2}=o\left(S_{1}\right)$.

Remark. The above decomposition has a close resemblance to the recent work of Granville [2021] using the identity

$$
\Lambda(n) 1_{(n, P(z))}=1_{(n, P(z))} \log n-\sum_{\substack{n=\ell m \\(\ell m, P(z))=1 \\ \ell, m \geq z}} \Lambda(\ell) .
$$

For the main term S_{1} we can handle the condition $(n, P(z))=1$ by the fundamental lemma of the sieve, so we ignore this detail for the moment. Thus, we have to evaluate

$$
\sum_{n \sim x} a_{n} \lambda^{\prime}(n)=\sum_{m n \sim x} a_{m n} \chi(m) \log n
$$

We have $m \geq x^{1 / 2}$ or $n \geq x^{1 / 2}$, so that we are able to compute S_{1} provided that our sequence a_{n} has an exponent of distribution $\frac{1}{2}$. This is because the modulus of χ is $x^{o(1)}$, so that χ is essentially of the same complexity as the constant function 1. We find that S_{1} gives the expected main term, so that we need to bound the error term S_{2}.

Similarly as in the argument in [Friedlander and Iwaniec 2005], the range $x^{2 / 3}$ plays a special role. With this in mind, we define $\gamma=\frac{1}{24}+\varepsilon$ so that $\frac{2}{3}-\gamma=\frac{5}{8}-\varepsilon$ is the exponent of distribution. We split S_{2} into three parts depending on the size of k

$$
\begin{aligned}
S_{2} & =\sum_{\substack{k m \sim x \\
k>x^{1 / 3+\gamma} \\
m \geq z}} a_{k m} \Lambda(k) \lambda(m) 1_{(k m, P(z))=1}+\sum_{\substack{k m \sim x \\
x^{1 / 3-2 \gamma} \begin{array}{c}
k \leq x^{1 / 3+\gamma} \\
m \geq z
\end{array}}} a_{k m} \Lambda(k) \lambda(m) 1_{(k m, P(z))=1} \\
& +\sum_{\substack{k m \sim x \\
z \leq k \leq x^{1 / 3-2 \gamma}}} a_{k m} \Lambda(k) \lambda(m) 1_{(k m, P(z))=1} \\
& =: S_{21}+S_{22}+S_{23} .
\end{aligned}
$$

By similar arguments as in [Friedlander and Iwaniec 2005], we are able use the lacunarity of $\lambda(m)$ to bound the terms S_{21} and S_{23} suitably in terms of $L(1, \chi)$, using the fact that the exponent of the
distribution is $\frac{2}{3}-\gamma$. That is, for S_{21} we write

$$
S_{21} \leq(\log x) \sum_{\substack{k m \sim x \\ k>x^{1 / 3+\gamma} \\ m \geq z}} a_{k m} \lambda(m) 1_{(m, P(z))=1},
$$

and for S_{23} we drop $1_{(m, P(z))=1}$ by positivity and write

$$
\lambda(m)=\sum_{m=c d} \chi(d)
$$

where c or d is $>x^{1 / 3+\gamma}$. In all cases we get a variable $>x^{1 / 3+\gamma}$, so that these can be evaluated as Type I sums. This gives

$$
S_{21}+S_{23}<_{C} x^{5 / 8}\left(\log ^{-C} x+L(1, \chi) \log ^{5} x\right)
$$

which is sufficient by the assumption that χ is an exceptional character.
The novel part in our argument is the treatment of the middle range

$$
S_{22}=\sum_{\substack{k m \sim x \\ x^{1 / 3-2 \gamma}<k \leq z^{1 / 3+\gamma} \\ m \geq z}} a_{k m} \Lambda(k) \lambda(m) 1_{(k m, P(z))=1}
$$

Note that also in [Friedlander and Iwaniec 2005] a narrow range near $x^{2 / 3}$ has to be discarded, but the argument there requires $\gamma=o(1)$. Thanks to the restriction $(m, P(z))=1$, it turns out that we are able to handle all parts of S_{22} except when m is a prime number. To see this, if m is not a prime, then $m=m_{1} m_{2}$ for some $m_{1}, m_{2} \geq z$, and we essentially get (recall that $\lambda(m) \geq 0$)

$$
\sum_{\substack{k m \sim x \\ x^{1 / 3-2 \gamma}<k \leq x \leq 1 / 3+\gamma \\ m \notin \mathbb{P}}} a_{k m} \Lambda(k) \lambda(m) 1_{(m, P(z))=1} \leq \sum_{\substack{k m_{1} m_{2} \leq x \\ x^{1 / 3-2 \gamma}<k \leq x \\ m_{1}, m_{2} \geq z}} a_{k m} \Lambda(k) \lambda\left(m_{1}\right) \lambda\left(m_{2}\right) 1_{\left(m_{1} m_{2}, P(z)\right)=1},
$$

since λ is multiplicative and the part where $\left(m_{1}, m_{2}\right)>1$ gives a negligible contribution. For the part $k m_{1}>x^{1 / 2}$ we use $\lambda\left(m_{1}\right) \leq \tau\left(m_{1}\right) \ll 2^{1 / \varepsilon}$ and combine variables $\ell=k m_{1}$ to get a bound

$$
\ll \sum_{z \leq m_{2} \ll x^{1 / 2}} \lambda\left(m_{2}\right) \sum_{\ell \sim x / m_{2}} a_{\ell m_{2}}
$$

which can be bounded suitably in terms of $L(1, \chi)$ by a similar argument as with S_{21}. The part $k m_{1} \leq x^{1 / 2}$ is handled similarly, using $\lambda\left(m_{2}\right) \leq \tau\left(m_{2}\right) \ll 2^{1 / \epsilon}$ and extracting $L(1, \chi)$ from $\lambda\left(m_{1}\right)$ this time. Thus, the contribution from the composite m is negligible.

Hence, it remains to bound

$$
S_{222}:=\sum_{\substack{k p \sim x \\ x^{1 / 3-2 \gamma}<k \leq x^{1 / 3+\gamma}}} a_{k m} \Lambda(k) \lambda(p)=\sum_{\substack{k p \sim x \\ x^{1 / 3-2 \gamma}<k \leq x^{1 / 3+\gamma}}} a_{k m} \Lambda(k)(1+\chi(p)) .
$$

Here we are not able to make use of the lacunarity of $\lambda(p)$. However, since S_{222} counts products of two primes of medium sizes, we immediately see that S_{222} should be smaller than the main term by a factor of $O(\gamma)$, so that at least for small enough γ we get a nontrivial lower bound. We use the linear sieve upper bound to the variable p to make this upper bound rigorous and precise, which leads to the constant 0.189 in Theorem 1.

The paper is structured as follows. In Section 2 we carry out the sieve argument and the proof of Theorem 1 assuming a sufficient exponent of distribution for a_{n} (Propositions 8 and 9). In Section 3 we prove Propositions 8 and 9 by generalizing the arguments in [Friedlander and Iwaniec 2006]. Lastly, in Section 4 we state a general version of the sieve and explain how the method could be improved assuming further arithmetic information.

Remark. Our sieve argument is inspired by Harman's sieve method [2007], although the exact details in this setting turn out to be quite different. The moral of the story is that all sieve arguments should be continuous with respect to the quality of the arithmetic information, which in this case is measured solely by the exponent of distribution. That is, even though we fail to obtain an asymptotic formula after some point (in this case $\frac{2}{3}$), we still expect to be able to produce lower and upper bounds of the correct order of magnitude with slightly less arithmetic information.
1.2. Notations. For functions f and g with $g \geq 0$, we write $f \ll g$ or $f=O(g)$ if there is a constant C such that $|f| \leq C g$. The notation $f \asymp g$ means $g \ll f \ll g$. The constant may depend on some parameter, which is indicated in the subscript (e.g., $\ll \epsilon_{\epsilon}$). We write $f=o(g)$ if $f / g \rightarrow 0$ for large values of the variable. For summation variables we write $n \sim N$ meaning $N<n \leq 2 N$.

For two functions f and g with $g \geq 0$, it is convenient for us to denote $f(N) \prec \prec g(N)$ if $f(N) \ll$ $g(N) \log ^{O(1)} N$. For parameters such as ε we write $f(N) \ll_{\varepsilon} g(N)$ to mean $f(N) \ll_{\varepsilon} g(N) \log ^{O_{\varepsilon}(1)} N$. A typical bound we use is $S(N)=\sum_{n \leq N} \tau_{k}(n)^{K} \prec \prec_{k, K} N$, where τ_{k} is the k-fold divisor function. We say that an arithmetic function f is divisor bounded if $|f(n)| \longleftrightarrow \tau(n)^{K}$ for some K.

For a statement E we denote by 1_{E} the characteristic function of that statement. For a set A we use 1_{A} to denote the characteristic function of A.

We let $e(x):=e^{2 \pi i x}$ and $e_{q}(x):=e(x / q)$ for any integer $q \geq 1$. We denote

$$
\lambda:=1 * \chi \quad \text { and } \quad \lambda^{\prime}:=\chi * \log .
$$

2. The sieve argument

In this section state the arithmetic information (Propositions 8 and 9) and assuming this we give the proof of Theorem 1 using a sieve argument with exceptional characters. We postpone the proof of Propositions 8 and 9 to Section 3. From here on we let q denote the modulus of the exceptional character $\chi=\chi_{q}$, to avoid conflating it with the level of distribution which we will denote by D; this also agrees with the
notations in [Friedlander and Iwaniec 2005, Section 14]. Throughout this section we denote

$$
a_{n}:=1_{(n, q)=1} \sum_{\substack{n=a^{2}+b^{8} \\(a, b)=1 \\ a, b>0}} 1, \quad \text { and } \quad b_{n}:=1_{(n, q)=1} \frac{1}{4} \sum_{\substack{n=a^{2}+b^{2} \\(a, b)=1 \\ a, b>0}} b^{-3 / 4} .
$$

In b_{n} we are counting the representations $a^{2}+b^{2}$ weighted with the probability that b is a perfect fourth power so that heuristically we expect $\sum_{n \sim x} a_{n} \Lambda(n)=(1+o(1)) \sum_{n \sim x} b_{n} \Lambda(n)$. Differing from [Friedlander and Iwaniec 2005], it is convenient for us to write certain parts of the argument as a comparison between a_{n} and b_{n}. This is inspired by Harman's sieve method [2007], where the idea is to apply the same combinatorial decompositions to the sums over a_{n} and b_{n} and then compare, using positivity to drop certain terms entirely.

We let $g(d)$ denote the multiplicative function defined by

$$
\begin{equation*}
g\left(p^{k}\right)=1_{p \nmid q} \frac{\varrho\left(p^{k}\right)}{p^{k}}\left(1+\frac{1}{p}\right)^{-1} \tag{2-1}
\end{equation*}
$$

where $\varrho(d)$ denotes the number of solutions to $v^{2}+1 \equiv 0(d)$. Note that for all primes p we have $\varrho(p)=1+\chi_{4}(p)$. We also define

$$
g_{1}\left(p^{k}\right)=\frac{\varrho\left(p^{k}\right)}{p^{k}}\left(1+\frac{1}{p}\right)^{-1}
$$

2.1. Preliminaries. We have collected here some standard estimates that will be needed in the sieve argument.

Lemma 2. Let

$$
G_{q}:=\prod_{p \mid q}\left(1-g_{1}(p)\right)^{-1}
$$

Then

$$
\prod_{p \leq z}(1-g(p))=(1+o(1)) \frac{G_{q} \zeta(2)}{L\left(1, \chi_{4}\right)} \prod_{p \leq z}(1-1 / p)=(1+o(1)) \frac{G_{q} \zeta(2)}{L\left(1, \chi_{4}\right) e^{\gamma_{1}} \log z}
$$

and

$$
\begin{aligned}
\sum_{n \leq x} \Lambda(n) b_{n} & =(1+o(1)) \frac{G_{q} \zeta(2)}{L\left(1, \chi_{4}\right)} \sum_{n \leq x} b_{n}=(1+o(1)) \frac{4}{\pi} \kappa_{8} x^{5 / 8} \\
& =(1+o(1)) e^{\gamma_{1}} \log z \prod_{p \leq z}(1-g(p)) \sum_{n \leq x} b_{n}
\end{aligned}
$$

where $\gamma_{1}=0.577 \ldots$ denotes the Euler-Mascheroni constant.
Proof. The first asymptotic follows from

$$
\prod_{p} \frac{1-g(p)}{1-1 / p}=G_{q} \prod_{p}\left(1-\chi_{4}(p) / p\right)\left(1-p^{-2}\right)^{-1}=\frac{G_{q} \zeta(2)}{L\left(1, \chi_{4}\right)}
$$

and Mertens' theorem. To get the second part we apply prime number theorem for Gaussian primes $a+i b$, splitting the sum into boxes $(a, b) \in\left[z_{1}, z_{1}+x / \log ^{10} x\right] \times\left[z_{2}, z_{2}+x / \log ^{10} x\right]$ so that $b^{-3 / 4}=$ $(1+o(1)) z_{2}^{-3 / 4}$, noting that the contribution from boxes with $z_{1} \leq x / \log ^{10} x$ or $z_{2} \leq x / \log ^{10} x$ is trivially $\ll x^{5 / 8} / \log x$ (by writing $\Lambda(n) \leq \log x$). The prime number theorem in small boxes follows splitting the boxes in to smaller polar boxes and applying [Iwaniec and Kowalski 2004, Theorem 5.36], for instance.

Here the condition $\left(a^{2}+b^{2}, q\right)=1$ implicit in b_{n} cancels the multiplicative factor G_{q}, since by an expansion using the Möbius function

$$
\begin{aligned}
\sum_{n \leq x} b_{n} & =\sum_{\substack{n=a^{2}+b^{2} \\
(a, b)=1 \\
a, b>0}} 1_{(n, q)=1} \frac{1}{4} b^{-3 / 4}=\sum_{d \mid q} \mu(d) \sum_{\substack{n=a^{2}+b^{2} \\
(a, b)=1 \\
a, b>0 \\
d \mid n}} \frac{1}{4} b^{-3 / 4} \\
& =(1+o(1)) \sum_{d \mid q} \mu(d) g_{1}(d) \sum_{\substack{n=a^{2}+b^{2} \\
(a, b)=1 \\
a, b>0}} \frac{1}{4} b^{-3 / 4} \\
& =(1+o(1)) G_{q}^{-1} \sum_{\substack{n=a^{2}+b^{2} \\
(a, b)=1 \\
a, b>0}} \frac{1}{4} b^{-3 / 4}
\end{aligned}
$$

For the last asymptotic note that by the change of variables $t=u^{1 / 4}$

$$
\frac{1}{4} \int_{0}^{1} u^{-3 / 4} \sqrt{1-u^{2}} d t=\int_{0}^{1} \sqrt{1-t^{8}} d t=\kappa_{8}
$$

and $L\left(1, \chi_{4}\right)=\pi / 4$.
We also require the following basic estimate; see [Friedlander and Iwaniec 1998a, Lemma 1], for instance.

Lemma 3. For every square-free integer n and every $k \geq 2$ there exists some $d \mid n$ such that $d \leq n^{1 / k}$ and

$$
\tau(n) \leq 2^{k} \tau(d)^{k}
$$

From this we get the more general version.
Lemma 4. For every integer n and every $k \geq 2$ there exists some $d \mid n$ such that $d \leq n^{1 / k}$ and

$$
\tau(n) \leq 2^{k^{2}} \tau(d)^{k^{3}}
$$

Proof. Write $n=b_{1} b_{2}^{2} \cdots b_{k-1}^{k-1} b_{k}^{k}$ with b_{1}, \ldots, b_{k-1} square-free, by letting b_{k} be the largest integer such that $b_{k}^{k} \mid n$, so that n / b_{k}^{k} is k-free and splits uniquely into $b_{1} b_{2}^{2} \cdots b_{k-1}^{k-1}$ with b_{j} square-free. We have

$$
\tau(n) \leq \tau\left(b_{1}\right) \tau\left(b_{2}\right)^{2} \cdots \tau\left(b_{k}\right)^{k}
$$

By Lemma 3 for all $j \leq k-1$ there is $d_{j} \mid b_{j}$ with $d_{j} \leq b_{j}^{1 / k}$ and $\tau\left(b_{j}\right) \leq 2^{k} \tau\left(d_{j}\right)^{k}$. Hence, for $d=d_{1} \cdots d_{k-1} b_{k}$ we have

$$
d \leq\left(b_{1} \cdots b_{k-1}\right)^{1 / k} b_{k}=\left(b_{1} \cdots b_{k-1} b_{k}^{k}\right)^{1 / k} \leq n^{1 / k}
$$

and

$$
\tau(n) \leq\left(2 \tau\left(d_{1}\right) \cdots \tau\left(d_{k-1}\right) \tau\left(b_{k}\right)\right)^{k^{2}} \leq 2^{k^{2}} \tau(d)^{k^{3}}
$$

To bound the final error term we require the linear sieve upper bound for primes; apply [Friedlander and Iwaniec 2010, Theorem 11.12] with $z=D$ and $s=1$, using $F(1)=2 e^{\gamma}$.

Lemma 5 (linear sieve upper bound for primes). Let $\left(c_{n}\right)_{n \geq 1}$ be a sequence of nonnegative real numbers. For some fixed X_{0} depending only on the sequence $\left(c_{n}\right)_{n \geq 1}$, define r_{d} for all square-free $d \geq 1$ by

$$
\sum_{n \equiv 0(d)} c_{n}=g_{0}(d) X_{0}+r_{d}
$$

where $g_{0}(d)$ is a multiplicative function, depending only on the sequence $\left(a_{n}\right)_{n \geq 1}$, satisfying $0 \leq g_{0}(p)<1$ for all primes p. Let $D \geq 2$ (the level of distribution). Suppose that there exists a constant $L>0$ that for any $2 \leq w<D$ we have

$$
\prod_{w \leq p<D}\left(1-g_{0}(p)\right)^{-1} \leq \frac{\log D}{\log w}\left(1+\frac{L}{\log w}\right)
$$

Then

$$
\sum_{p} c_{p} \leq\left(1+O\left(\log ^{-1 / 6} D\right)\right) X_{0} 2 e^{\gamma_{1}} \prod_{p \leq D}\left(1-g_{0}(p)\right)+\sum_{\substack{d \leq D \\ d \text { square free }}}\left|r_{d}\right|
$$

The following lemma gives a basic upper bound for smooth numbers; see [Tenenbaum 2015, Chapter III.5, Theorem 1], for instance.

Lemma 6. For any $2 \leq z \leq y$ we have

$$
\sum_{\substack{n \sim y \\ P^{+}(n)<z}} 1 \ll y e^{-u / 2}
$$

where $u:=\log y / \log z$.
We also need the following simple divisor sum bound.
Lemma 7. Let $M \gg 1$ and let $Z=M^{c_{1} /(\log \log M)^{c_{2}}}$ for some constants $c_{1}, c_{2}>0$. Then for any $K>0$

$$
\sum_{m \sim M} \tau(m)^{K} 1_{(m, P(Z))=1}<_{c_{1}, c_{2}, K} M .
$$

Proof. For some $L=L(K)$ we have by a standard sieve bound

$$
\begin{aligned}
\sum_{m \sim M} \tau(m)^{K} 1_{(m, P(Z))=1} & \ll \sum_{m \sim M} \tau_{L}(m) 1_{(m, P(Z))=1}=\sum_{n_{1} \cdots n_{L} \sim M} 1_{\left(n_{1}, P(Z)\right)=1} \cdots 1_{\left(n_{L}, P(Z)\right)=1} \\
& \ll c_{c_{1}, c_{2}, K} \frac{M(\log \log M)^{c_{2}}}{\log M} \sum_{n_{1}, \ldots, n_{L-1} \ll M} \frac{1_{\left(n_{1}, P(Z)\right)=1} \cdots 1_{\left(n_{L-1}, P(Z)\right)=1}}{n_{1} \cdots n_{L-1}} \\
& \ll c_{c_{1}, c_{2}, K} \frac{M(\log \log M)^{c_{2}}}{\log M}\left(\prod_{Z \leq p \leq M}\left(1+\frac{1}{p}\right)\right)^{L-1} \\
& \ll c_{c_{1}, c_{2}, K} \frac{M(\log \log M)^{c_{2}}}{\log M}\left(\frac{\log M}{\log Z}\right)^{L-1}{\ll c c_{1}, c_{2}, K} M
\end{aligned}
$$

by computing the sum over $n_{j}=\max \left\{n_{1}, \ldots, n_{L}\right\}$ first.
2.2. Arithmetic information. For the sieve argument we need arithmetic information given by the following two propositions, which state that a_{n} has an exponent of distribution $\frac{5}{8}-\varepsilon$. We will prove these in Section 3. The first is just a standard sieve axiom on the level of distribution of the sequence a_{n}, and the second is similar but twisted with the quadratic character χ. For the rest of this section we denote

$$
X:=\sum_{n \sim x} b_{n}
$$

Recall that $X \asymp x^{5 / 8}$ by Lemma 2 .
Proposition 8 (type I information). Let $B>0$ be a large constant and let $\Delta \in\left[\log ^{-B} x, 1\right]$. Let $\varepsilon>0$ be small but fixed. Let $D \leq x^{5 / 8-\varepsilon}$ and N be such that $D N \asymp x$. Let $\alpha(d)$ be divisor bounded coefficients and let $g(d)$ be as in (2-1). Then for any $C>0$

$$
\sum_{d \sim D} \alpha(d) \sum_{\substack{n \sim x / d \\ n \in(N, N(1+\Delta)]}} a_{d n}=\sum_{d \sim D} \alpha(d) \sum_{\substack{n \sim x / d \\ n \in(N, N(1+\Delta)]}} b_{d n}+O_{B, C}\left(X \log ^{-C} x\right)
$$

and

$$
\begin{equation*}
\sum_{d \leq D} \alpha(d) \sum_{n \sim x / d} a_{d n}=\sum_{d \leq D} \alpha(d) \sum_{n \sim x / d} b_{d n}+O_{C}\left(X \log ^{-C} x\right)=X \sum_{d \leq D} \alpha(d) g(d)+O_{C}\left(X \log ^{-C} x\right) \tag{2-2}
\end{equation*}
$$

Furthermore, for $D \leq x^{2 / 3+\varepsilon}$ we have the last asymptotic

$$
\sum_{d \leq D} \alpha(d) \sum_{n \sim x / d} b_{d n}=X \sum_{d \leq D} \alpha(d) g(d)+O_{C}\left(X \log ^{-C} x\right)
$$

and for $\Delta=\log ^{-B} x$ for any fixed $B>0$ the bound

$$
\sum_{d \leq D} \alpha(d) \sum_{n \in(N, N(1+\Delta)]} b_{d n} \ll \Delta X \sum_{d \leq D}|\alpha(d)| g(d)
$$

Remark. In our set up the last asymptotic actually holds up to $D \leq x^{1-\varepsilon}$, but we will not need this.

Proposition 9 (type I_{χ} information). Let $B>0$ be a large constant and let $\Delta \in\left[\log ^{-B} x, 1\right]$. Let $\exp \left(\log ^{10} q\right)<x<\exp \left(\log ^{16} q\right)$. Let $D \leq x^{5 / 8-\varepsilon}$ and N be such that $D N \asymp x$. Let $\alpha(d)$ be divisor bounded coefficients. Then for any $C>0$

$$
\sum_{d \sim D} \alpha(d) \sum_{\substack{n \sim x / d \\ n \in(N, N(1+\Delta)]}} a_{d n} \chi(n)=\sum_{d \sim D} \alpha(d) \sum_{\substack{n \sim x / d \\ n \in(N, N(1+\Delta)]}} b_{d n} \chi(n)+O_{B, C}\left(X \log ^{-C} x\right) \lll B, C X \log ^{-C} x
$$

and

$$
\sum_{d \leq D} \alpha(d) \sum_{n \sim x / d} a_{d n} \chi(n)=\sum_{d \leq D} \alpha(d) \sum_{n \sim x / d} b_{d n} \chi(n)+O_{C}\left(X \log ^{-C} x\right) \lll C X \log ^{-C} x
$$

Furthermore, the bounds for the sums with $b_{d n}$ hold up to $D \leq x^{2 / 3+\varepsilon}$.
We will also need the following proposition to bound certain error terms in terms of $L(1, \chi)$. This follows from [Friedlander and Iwaniec 2005, Lemmata 3.7 and 3.9] (as mentioned in [Friedlander and Iwaniec 2005, Section 14], the $g(d)$ defined by (2-1) is easily shown to satisfy the required assumptions).

Proposition 10 (exceptional characters). Let $\lambda:=(1 * \chi)$. Then for any $x>z \geq q^{9}$ we have

$$
\sum_{n \leq x} \chi(n) g(n) \ll L(1, \chi) \quad \text { and } \quad \sum_{z<n \leq x} \lambda(n) g(n) \ll L(1, \chi) \log ^{2} x
$$

2.3. Initial decomposition. Let $\varepsilon>0$ be small and define the parameter $\gamma:=\frac{1}{24}+\varepsilon$ so that $\frac{2}{3}-\gamma=\frac{5}{8}-\varepsilon$ is the exponent of distribution of a_{n}. Using $\lambda^{\prime}=\lambda * \Lambda$ (see (1-2)) we get

$$
\lambda^{\prime}(n)-\Lambda(n)=\sum_{\substack{n=k m \\ m>1}} \Lambda(k) \lambda(m)
$$

Hence, for $z:=x^{1 /(\log \log x)^{2}}$ we have

$$
\begin{aligned}
\sum_{n \sim x} a_{n} \Lambda(n) & =\sum_{n \sim x} a_{n} \Lambda(n) 1_{(n, P(z))=1}+O_{C}\left(x^{5 / 8} / \log ^{C} x\right) \\
& =\sum_{n \sim x} a_{n} \lambda^{\prime}(n) 1_{(n, P(z))=1}-\sum_{\substack{k m \sim x \\
k, m \geq z}} a_{k m} \Lambda(k) \lambda(m) 1_{(m, P(z))=1}+O_{C}\left(x^{5 / 8} / \log ^{C} x\right) \\
& =: S_{1}-S_{2}+O_{C}\left(x^{5 / 8} / \log ^{C} x\right)
\end{aligned}
$$

Similarly as in [Friedlander and Iwaniec 2005], by the lacunarity of $\lambda(m)$ we expect that $S_{2}=o\left(S_{1}\right)$, but this is out of reach. We will show that $S_{1}=(1+o(1)) \sum_{n \sim x} b_{n} \Lambda(n)$ and $S_{2} \leq(0.811+o(1)) \cdot \sum_{n \sim x} b_{n} \Lambda(n)$ which together imply Theorem 1.

Remark. For technical reasons we have chosen z a bit smaller than x^{ε} (compare with Section 1.1). This has the benefit that evaluating S_{1} is a lot easier. On the downside bounding S_{2} is slightly more difficult and we require Lemma 4 for this.
2.4. Sum S_{1}. Let $D_{1}:=x^{\varepsilon}$ for some small $\varepsilon>0$. We expand the condition $1_{(n, P(z))=1}$ by using the Möbius function and split the sum to get

$$
S_{1}=\sum_{n \sim x} a_{n} \lambda^{\prime}(n) \sum_{d \mid(n, P(z))} \mu(d)=\sum_{n \sim x} a_{n} \lambda^{\prime}(n) \sum_{\substack{d \mid(n, P(z)) \\ d \leq D_{1}}} \mu(d)+\sum_{n \sim x} a_{n} \lambda^{\prime}(n) \sum_{\substack{d \mid(n, P(z)) \\ d>D_{1}}} \mu(d)=: S_{1}^{\prime}+R_{1} .
$$

To handle the error term R_{1}, note that if $d \mid P(z)$ and $d>D_{1}$, then d has a divisor in [$D_{1}, 2 z D_{1}$]. Since $z=x^{1 /(\log \log x)^{2}}$, by Lemma 4 (with $k=2$ applied to the variable n / d to get $n=c d n^{\prime}$ with $\tau(n) \leq \tau(c)^{O(1)}$), Proposition 8, and Lemma 6 we get

$$
\begin{align*}
R_{1} & \ll(\log x) \sum_{\substack{n \sim x \\
\exists d \mid(n, P(z)), d \in\left[D_{1}, 2 z D_{1}\right]}} a_{n} \tau(n)^{3} \\
& \ll(\log x) \sum_{\substack{d \in\left[D_{1}, 2 z D_{1}\right] \\
d \mid P(z)}} \sum_{c \leq(2 x)^{1 / 2}} \tau(c d)^{O(1)} \sum_{n^{\prime} \sim x / c d} a_{c d n^{\prime}} \\
& \ll(\log x) x^{5 / 8} \sum_{\substack{d \in\left[D_{1}, 2 z D_{1}\right] \\
d \mid P(z)}} \sum_{c \leq(2 x)^{1 / 2}} \tau(c d)^{O(1)} g(c d) \lll c x^{5 / 8} \log ^{-C} x . \tag{2-3}
\end{align*}
$$

To get the last bound use $\tau(c d)^{O(1)} g(c d) \leq \tau(c d)^{O(1)} /(c d) \leq \tau(c)^{O(1)} \tau(d)^{O(1)} /(c d)$ and apply Lemma 4 to the variable d before using Lemma 6 .

For the main term we write

$$
\begin{aligned}
S_{1}^{\prime} & =\sum_{\substack{d \mid P(z) \\
d \leq D_{1}}} \mu(d) \sum_{\substack{n \sim x \\
n \equiv 0(d)}} a_{n} \lambda^{\prime}(n)=\sum_{\substack{d \mid P(z) \\
d \leq D_{1}}} \mu(d) \sum_{\substack{m n \sim x \\
m n \equiv 0(d)}} a_{m n} \chi(m) \log n \\
& =\sum_{\substack{d \mid P(z) \\
d \leq D_{1}}} \mu(d) \sum_{\substack{m n \sim x \\
m n \equiv 0(d) \\
n>x^{1 / 2}}} a_{m n} \chi(m) \log n+\sum_{\substack{d \mid P(z) \\
d \leq D_{1}}} \mu(d) \sum_{\substack{m n \sim x \\
m n \equiv 0(d) \\
n \leq x^{1 / 2}}} a_{m n} \chi(m) \log n=: S_{11}+S_{12} .
\end{aligned}
$$

We write (denoting $d_{1}=(m, d)$)

$$
S_{11}=\sum_{\substack{d_{1} d_{2} \mid P(z) \\ d_{1} d_{2} \leq D_{1}}} \mu\left(d_{1} d_{2}\right) \sum_{\substack{d_{1} m \ll x^{1 / 2} \\\left(m, d_{2}\right)=1}} \chi\left(d_{1} m\right) \sum_{\substack{n \sim x / m d_{1} d_{2} \\ d_{2} n>x^{1 / 2}}} a_{d_{1} d_{2} m n} \log d_{2} n
$$

We will use Proposition 8 to evaluate this sum but first we need to remove the cross-condition $d_{2} n>x^{1 / 2}$ and the weight $\log d_{2} n$ by using a finer-than-dyadic decomposition to the sums over d_{2} and n. That is, for $\Delta=\log ^{-B} x$ for some large $B>0$ we split S_{11} into

$$
\sum_{\substack{i, j \ll \log ^{B+1} x \\ D_{2}=(1+\Delta)^{i} \\ N=(1+\Delta)^{j}}} \sum_{\substack{d_{1} d_{2} \mid P(z) \\ d_{1} d_{2} \leq D_{1} \\ d_{2} \in\left(D_{2}, D_{2}(1+\Delta)\right]}} \mu\left(d_{1} d_{2}\right) \sum_{\substack{d_{1} m \ll x^{1 / 2} \\\left(m, d_{2}\right)=1}} \chi\left(d_{1} m\right) \sum_{\substack{n \in(N, N(1+\Delta)] \\ n \sim x / m d_{1} d_{2} \\ d_{2} n>x^{1 / 2}}} a_{d_{1} d_{2} m n} \log d_{2} n .
$$

Here we can write

$$
\log d_{2} n=\log D_{2} N+O\left(\log ^{-B} x\right)
$$

where the error term will contribute by Lemma 4 and Proposition 8 $\ll \log ^{-B} x \sum_{n \sim x} \tau_{4}(n) a_{n} \ll \log ^{-B} x \sum_{n \sim x} \tau(n)^{4} a_{n} \ll \log ^{-B} x \sum_{d \ll x^{1 / 2}} \tau(d)^{O(1)} \sum_{n \sim x / d} a_{n} \ll{ }_{B} x^{5 / 8} \log ^{O(1)-B} x$ so that $S_{11}=S_{11}^{\prime}+O_{B}\left(x \log ^{O(1)-B} x\right)$ with

$$
S_{11}^{\prime}:=\sum_{\substack{i, j<\log ^{B+1} x \\ D_{2}=(1+\Delta)^{i} \\ N=(1+\Delta)^{j} \\ D_{2} N(1+\Delta)^{2}>x^{1 / 2}}} \log D_{2} N \sum_{\substack{d_{1} d_{2} \mid P(z) \\ d_{1} d_{2} \leq D_{1} \\ d_{2} \in\left(D_{2}, D_{2}(1+\Delta)\right]}} \mu\left(d_{1} d_{2}\right) \sum_{\substack{d_{1} m \ll x^{1 / 2} \\\left(m, d_{2}\right)=1}} \chi\left(d_{1} m\right) \sum_{\substack{n \in(N, N(1+\Delta)] \\ n \sim x / m d_{1} d_{2} \\ d_{2} n>x^{1 / 2}}} a_{d_{1} d_{2} m n} .
$$

The cross-condition $d_{2} n>x^{1 / 2}$ holds trivially and may be dropped except in the diagonal part where

$$
(1+\Delta)^{-2} x^{1 / 2}<D_{2} N \leq x^{1 / 2}
$$

The contribution from this diagonal part is bounded by using Proposition 8

$$
\begin{aligned}
& \ll C x^{5 / 8} \log ^{-C} x+(\log x) \sum_{\substack{i, j \ll \log ^{B+1} x}} \sum_{\substack{D_{2}=(1+\Delta)^{i} \\
N=(1+\Delta)^{i} \\
d_{1} d_{2} \mid P(z) \\
d_{1} d_{2} \leq D_{1} \\
d_{2} \in\left(D_{2}, D_{2}(1+\Delta)\right]}} \sum_{\substack{d_{1} m \ll x^{1 / 2} \\
\left(1+d_{2}\right)=1}} \sum_{\substack{n \in N, N(1+\Delta)] \\
n \sim x / m d_{1} d_{2}}} b_{d_{1} d_{2} m n} \\
& <_{C} x^{5 / 8} \log ^{-C} x+\left(\log ^{O(1)} x\right) x^{5 / 8} \Delta^{2} \sum_{\substack{i, j \ll \log ^{B+1} x \\
D_{2}=(1+\Delta)^{i} \\
N=(1+\Delta)^{j} \\
(1+\Delta)^{-2} x^{1 / 2}<D_{2} N \leq x^{1 / 2}}}
\end{aligned}
$$

by choosing $C=B$. Hence, the cross-condition $d_{2} n>x^{1 / 2}$ may be dropped and we get $S_{11}=S_{11}^{\prime \prime}+$ $O_{B}\left(x \log ^{O(1)-B} x\right)$ with

$$
S_{11}^{\prime \prime}:=\sum_{\substack{i, j \ll \log ^{B+1} x \\ D_{2}=(1+\Delta)^{i} \\ N=(1+\Delta){ }^{j} \\ D_{2} N(1+\Delta)^{2}>x^{1 / 2}}} \log D_{2} N \sum_{\substack{d_{1} d_{2} \mid P(z) \\ d_{1} d_{2} \leq D_{1} \\ d_{2} \in\left(D_{2}, D_{2}(1+\Delta)\right]}} \mu\left(d_{1} d_{2}\right) \sum_{\substack{d_{1} m \ll x^{1 / 2} \\\left(m, d_{2}\right)=1}} \chi\left(d_{1} m\right) \sum_{\substack{n \in(N, N(1+\Delta)] \\ n \sim x / m d_{1} d_{2}}} a_{d_{1} d_{2} m n .} .
$$

Applying a similar decomposition to the corresponding sum with $b_{d_{1} d_{2} m n}$ and using Proposition 8 we get

$$
\begin{aligned}
S_{11} & =\sum_{\substack{d_{1} d_{2} \mid P(z) \\
d_{1} d_{2} \leq D_{1}}} \mu\left(d_{1} d_{2}\right) \sum_{\substack{d_{1} m \ll x^{1 / 2} \\
\left(m, d_{2}\right)=1}} \chi\left(d_{1} m\right) \sum_{\substack{n \sim x / m d_{1} d_{2} \\
d_{2} n>x^{1 / 2}}} b_{d_{1} d_{2} m n} \log d_{2} n+O_{C}\left(x^{5 / 8} \log ^{-C} x\right) \\
& =: M_{11}+O_{C}\left(x^{5 / 8} \log ^{-C} x\right) .
\end{aligned}
$$

Similarly, we get by Proposition 9 (denoting $d_{2}=(n, d)$)

$$
\begin{aligned}
S_{12} & =\sum_{\substack{d_{1} d_{2} \mid P(z) \\
d_{1} d_{2} \leq D_{1}}} \mu\left(d_{1} d_{2}\right) \chi\left(d_{1}\right) \sum_{\substack{d_{2} n \leq x^{1 / 2} \\
\left(n, d_{1}\right)=1}} \log d_{2} n \sum_{m \sim x / n d_{1} d_{2}} a_{d_{1} d_{2} m n} \chi(m) \\
& =\sum_{\substack{d_{1} d_{2} \mid P(z) \\
d_{1} d_{2} \leq D_{1}}} \mu\left(d_{1} d_{2}\right) \chi\left(d_{1}\right) \sum_{\substack{d_{2} n \leq x^{1 / 2} \\
\left(n, d_{1}\right)=1}} \log d_{2} n \sum_{m \sim x / n d_{1} d_{2}} b_{d_{1} d_{2} m n} \chi(m)+O_{C}\left(x^{5 / 8} \log ^{-C} x\right) \\
& =: M_{12}+O_{C}\left(x^{5 / 8} \log ^{-C} x\right)
\end{aligned}
$$

That is, in the sums S_{11} and S_{12} we have managed to replace a_{n} by b_{n}. By reversing the steps to recombine we get

$$
M_{11}+M_{12}=\sum_{n \sim x} b_{n} \lambda^{\prime}(n) \sum_{\substack{d \mid(n, P(z)) \\ d \leq D_{1}}} \mu(d)=: M_{1}
$$

By a similar argument as in (2-3) we can add the part $d>D_{1}$ back into the sum and we get

$$
M_{1}=\sum_{n \sim x} b_{n} \lambda^{\prime}(n) 1_{(n, P(z))=1}+O_{C}\left(x^{5 / 8} / \log ^{C} x\right) \geq \sum_{n \sim x} b_{n} \Lambda(n) 1_{(n, P(z))=1}+O_{C}\left(x^{5 / 8} / \log ^{C} x\right)
$$

by using $\lambda^{\prime}(n) \geq \Lambda(n)$. Thus, by Lemma 2 we have

$$
S_{1} \geq(1+o(1)) \sum_{n \sim x} b_{n} \Lambda(n)
$$

so that for the lower bound result it suffices to show that

$$
S_{2} \leq(0.811+o(1)) \cdot \sum_{n \sim x} b_{n} \Lambda(n)
$$

We now proceed to do this, and at the end of this section we will show how to get the upper bound in Theorem 1.

Remark. We have used Lemma 6 to handle the restriction $(n, P(z))=1$ instead of applying the fundamental lemma of sieve. Thanks to this we were able to use the trivial lower bound $\lambda^{\prime}(n) \geq \Lambda(n)$ to simplify the evaluation of the main term.
2.5. Sum $\boldsymbol{S}_{\mathbf{2}}$. Recall that $\gamma=\frac{1}{24}+\varepsilon$ and $\frac{2}{3}-\gamma=\frac{5}{8}-\varepsilon$. We split the sum S_{2} into three ranges according to the size of k

$$
\begin{aligned}
S_{2} & =\sum_{\substack{k m \sim x \\
k, m \geq z}} a_{k m} \Lambda(k) \lambda(m) 1_{(m, P(z))=1} \\
& =\sum_{\substack{k m \sim x \\
k>x^{1 / 3+\gamma} \\
m \geq z}} a_{k m} \Lambda(k) \lambda(m) 1_{(m, P(z))=1}+\sum_{\substack { k m \sim x \\
x^{1 / 3-2 \gamma} \begin{subarray}{c}{<k \leq x^{1 / 3+\gamma} \\
m \geq z{ k m \sim x \\
x ^ { 1 / 3 - 2 \gamma } \begin{subarray} { c } { < k \leq x ^ { 1 / 3 + \gamma } \\
m \geq z } }\end{subarray}} a_{k m} \Lambda(k) \lambda(m) 1_{(m, P(z))=1}+\sum_{\substack{k m \sim x \\
z \leq \leq \leq x^{1 / 3-2 \gamma} \\
m \geq z}} a_{k m} \Lambda(k) \lambda(m) 1_{(m, P(z))=1} \\
& =: S_{21}+S_{22}+S_{23} .
\end{aligned}
$$

Using the assumption that $L(1, \chi)$ is small, we will show that the contribution from S_{21} and S_{23} is negligible, and that $S_{22} \leq(0.811+o(1)) \cdot \sum_{n \sim x} b_{n} \Lambda(n)$.
2.5.1. Sum S_{21}. Here we have $k>x^{1 / 3+\gamma}$, so that by a crude estimate we get

$$
S_{21}=\sum_{\substack{k m \sim x \\ k \geq x^{1 / 3+\gamma} \\ m \geq z}} a_{k m} \Lambda(k) \lambda(m) 1_{(m, P(z))=1} \ll(\log x) \sum_{z \leq m \ll x^{2 / 3-\gamma}} \lambda(m) \sum_{k \sim x / m} a_{k m}:=S_{21}^{\prime}=M_{21}+R_{21},
$$

where

$$
M_{21}:=(\log x) X \sum_{z \leq m \ll x^{2 / 3-\gamma}} \lambda(m) g(m) \quad \text { and } \quad R_{21}:=S_{21}^{\prime}-M_{21}
$$

By Proposition 8 we get

$$
R_{21} \ll_{C} x^{5 / 8} \log ^{-C} x
$$

and by Proposition 10 we have

$$
M_{21} \ll x^{5 / 8} L(1, \chi) \log ^{3} x .
$$

Hence, we have

$$
S_{21} \ll C x^{5 / 8} L(1, \chi) \log ^{3} x+x^{5 / 8} \log ^{-C} x
$$

2.5.2. Sum S_{23}. Recall that here $m \gg x^{2 / 3+2 \gamma}$. By positivity we may drop the condition $(m, P(z))=1$. Writing

$$
\lambda(m)=\sum_{c d=m} \chi(d)
$$

we split the sum S_{23} into two ranges, $d \leq x^{1 / 3+\gamma}$ or $d>x^{1 / 3+\gamma}$. We get $S_{23} \leq S_{231}+S_{232}$, where

$$
\begin{aligned}
& S_{231}:=\sum_{z \leq k \leq x^{1 / 3-2 \gamma}} \Lambda(k) \sum_{c \ll x^{2 / 3-\gamma / k}} \sum_{\substack{d \sim x / c k \\
d>x^{1 / 3+\gamma}}} \chi(d) a_{c d k}, \\
& S_{232}:=\sum_{z \leq k \leq x^{1 / 3-2 \gamma}} \Lambda(k) \sum_{d \leq x^{1 / 3+\gamma}} \chi(d) \sum_{c \sim x / d k} a_{c d k} .
\end{aligned}
$$

By Proposition 9 we get (after applying a finer-than-dyadic decomposition similarly as with S_{11} to remove cross-conditions)

$$
S_{231} \ll C x^{5 / 8} \log ^{-C} x
$$

By Propositions 8 and 10 we get (since the contribution from $(k, d)>1$ is trivially negligible)

$$
\begin{aligned}
S_{232} & =X \sum_{z \leq k \ll x^{1 / 3-2 \gamma}} \Lambda(k) \sum_{d \leq x^{1 / 3+\gamma}} \chi(d) g(d k)+O_{C}\left(x^{5 / 8} \log ^{-C} x\right) \\
& \ll C X \sum_{z \leq k \ll x^{1 / 3-2 \gamma}} \Lambda(k) g(k) \sum_{d \leq x^{1 / 3+\gamma}} \chi(d) g(d)+x^{5 / 8} \log ^{-C} x \\
& \ll C x^{5 / 8} L(1, \chi) \log x+x^{5 / 8} \log ^{-C} x .
\end{aligned}
$$

Combining the bounds, we have

$$
S_{23} \ll C x^{5 / 8} L(1, \chi) \log x+x^{5 / 8} \log ^{-C} x
$$

2.5.3. Sum S_{22}. We have

$$
S_{22}=\sum_{\substack{k m \sim x \\ x^{1 / 3-2 \gamma}<k \leq x^{1 / 3+\gamma}}} a_{k m} \Lambda(k) \lambda(m) 1_{(m, P(z))=1}
$$

It turns out that we can handle all parts except when m is a prime, so we write

$$
S_{22}=\sum_{\substack{k m \sim x \\
x^{1 / 3-2 \gamma<k \leq x^{1 / 3+\gamma}} \begin{array}{c}
m \notin \mathbb{P}
\end{array}}} a_{k m} \Lambda(k) \lambda(m) 1_{(m, P(z))=1}+\sum_{\substack{k p \sim x \\
x^{1 / 3-2 \gamma}<k \leq x^{1 / 3+\gamma}}} a_{k p} \Lambda(k) \lambda(p)=: S_{221}+S_{222}
$$

In S_{221} we have $m=m_{1} m_{2}$ for $m_{1}, m_{2} \geq z$. Since $\left(m_{1} m_{2}, P(z)\right)=1$, the part where $\left(m_{1}, m_{2}\right)>1$ trivially contributes at most $\ll z^{-1} x^{5 / 8} \log ^{O(1)} x$ which is negligible. Hence, using $\lambda\left(m_{1} m_{2}\right)=\lambda\left(m_{1}\right) \lambda\left(m_{2}\right)$ for $\left(m_{1}, m_{2}\right)=1$ we get

$$
S_{221} \leq \sum_{\substack{k m_{1} m_{2} \sim x \\ x^{1 / 3-2 \gamma}<k \leq x \\ m_{1}, m_{2} \geq z}} a_{k m_{1} m_{2}} \Lambda(k) \lambda\left(m_{1}\right) \lambda\left(m_{2}\right) 1_{\left(m_{1} m_{2}, P(z)\right)=1}+O_{C}\left(x^{5 / 8} \log ^{-C} x\right)
$$

We split this sum into two parts according to $k m_{1}>x^{1 / 2}$ or $k m_{1} \leq x^{1 / 2}$. In either case we get $m_{j} \ll x^{1 / 2}$ for some $j \in\{1,2\}$. We combine the variables $\ell=k m_{2-j}$ and use $\lambda\left(m_{2-j}\right) \leq \tau\left(m_{2-j}\right)$ to obtain by

Lemma 4

$$
\begin{aligned}
S_{221} & \leq(\log x) \sum_{z \leq m \ll x^{1 / 2}} \lambda(m) \sum_{\ell \sim x / m} \tau(\ell) 1_{(\ell, P(z))=1} a_{\ell m}+O_{C}\left(x^{5 / 8} \log ^{-C} x\right) \\
& \ll K(\log x) \sum_{z \leq m \ll x^{1 / 2}} \lambda(m) \sum_{d \leq x^{1 / K}} \tau(d)^{O_{K}(1)} 1_{(d, P(z))=1} \sum_{\ell \sim x / d m} a_{d \ell m}+O_{C}\left(x^{5 / 8} \log ^{-C} x\right) .
\end{aligned}
$$

By Proposition 8 we get (once we choose K large enough so that $\frac{1}{2}+1 / K<\frac{2}{3}-\gamma$)

$$
S_{221} \ll K_{K} M_{221}+O_{C}\left(x^{5 / 8} \log ^{-C} x\right)
$$

where

$$
M_{221}=X(\log x) \sum_{z \leq m \ll x^{1 / 2}} \lambda(m) \sum_{d \leq x^{1 / K}} \tau(d)^{O_{K}(1)} 1_{(d, P(z))=1} g(d) g(m),
$$

since the contribution from the part the part $(d, m)>1$ is negligible by a trivial bound. Thus, by Proposition 10 and Lemma 7 we have

$$
M_{221} \ll C X(\log x) \sum_{d \leq x^{1 / K}} \tau(d)^{O_{K}(1)} g(d) 1_{(d, P(z))=1} \sum_{z \leq m \ll x^{1 / 2}} \lambda(m) g(m) \ll_{C} x^{5 / 8} L(1, \chi) \log ^{5} x
$$

Combining the above bounds we get

$$
S_{221} \ll C x^{5 / 8} L(1, \chi) \log ^{5} x+x^{5 / 8} \log ^{-C} x
$$

so all that remains is to bound the sum S_{222}. The savings here will come from the fact that k is restricted to a fairly narrow range.
2.6. Bounding the error term $\boldsymbol{S}_{\mathbf{2 2 2}}$. We have

$$
S_{222}:=\sum_{\substack{k p \sim x \\ x^{1 / 3}-2 \gamma<k \leq x^{1 / 3}+\gamma}} a_{k p} \Lambda(k)(1+\chi(p)) .
$$

We will apply the linear sieve upper bound to the nonnegative sequence

$$
c_{n}:=a_{k n}(1+\chi(n))
$$

with level of distribution $x^{2 / 3-\gamma} / k$ (note that by exploiting the cancellation from $\chi(n)$ we save a factor of 2 compared to using the trivial bound $\lambda(p) \leq 2$). For $(d, k)=1$ define $R(d, k)$ by

$$
\sum_{\substack{n \sim x / k \\ n=0(d)}} a_{k n}(1+\chi(n))=g(d) g(k) X+R(d, k)
$$

Note that the contribution from sums with $(d, k)>1$ is negligible by trivial estimates. Then by Lemma 5 with $D_{k}=x^{2 / 3-\gamma} / k$ we have

$$
S_{222} \leq(1+o(1)) M_{222}+R_{222}
$$

where

$$
M_{222}:=X \sum_{x^{1 / 3-2 \gamma}<k \leq x^{1 / 3+\gamma}} \Lambda(k) g(k) 2 e^{\gamma_{1}} \prod_{p \leq D_{k}}(1-g(p))
$$

and

$$
R_{222}=\sum_{\substack{d k \leq x^{2 / 3-\gamma} \\(d, k)=1}} \Lambda(k)|R(d, k)|<_{C} x^{5 / 8} \log ^{-C} x
$$

by Propositions 8 and 9. Applying Lemma 2 we get

$$
M_{222}=(2+o(1)) \sum_{n \sim x} b_{n} \Lambda(n) \sum_{x^{1 / 3-2 \gamma}<k \leq x^{1 / 3+\gamma}} \frac{\Lambda(k) g(k)}{\log \left(x^{2 / 3-\gamma} / k\right)}=: D(\gamma) \sum_{n \sim x} b_{n} \Lambda(n)
$$

By the prime number theorem (for $p \equiv 1(4)$) we have (denoting $k=x^{\alpha}$)

$$
\begin{aligned}
D(\gamma) & \sim 2 \sum_{x^{1 / 3-2 \gamma}<k \leq x^{1 / 3+\gamma}} \frac{\Lambda(k) g(k)}{k \log \left(x^{2 / 3-\gamma} / k\right)} \\
& \sim 2 \sum_{x^{1 / 3-2 \gamma}<k \leq x^{1 / 3+\gamma}} \frac{1}{k \log \left(x^{2 / 3-\gamma} / k\right)} \sim 2 \int_{1 / 3-2 \gamma}^{1 / 3+\gamma} \frac{d \alpha}{2 / 3-\gamma-\alpha} \\
& \sim 2 \log \frac{1+3 \gamma}{1-6 \gamma} .
\end{aligned}
$$

We have $D\left(\frac{1}{24}\right)<0.811$. Since $\varepsilon>0$ can be taken to be arbitrarily small, this implies

$$
S_{222} \leq(0.811+o(1)) \cdot \sum_{n \sim x} b_{n} \Lambda(n)
$$

completing the proof of Theorem 1.
2.7. Proof of the upper bound result. We now explain how to get the upper bound result in Theorem 1. By Section 2.4 we have by negativity of S_{2}

$$
\begin{aligned}
\sum_{n \sim x} a_{n} \Lambda(n) & \leq S_{1}+O_{C}\left(x^{5 / 8} / \log C x\right)=\sum_{n \sim x} b_{n} \lambda^{\prime}(n) 1_{(n, P(z))=1}+O_{C}\left(x^{5 / 8} / \log C x\right) \\
& =\sum_{n \sim x} b_{n} \Lambda(n) 1_{(n, P(z))=1}+M_{2}+O_{C}\left(x^{5 / 8} / \log C x\right)
\end{aligned}
$$

where by reversing the initial decomposition on the b_{n}-side (Section 2.3)

$$
M_{2}:=\sum_{\substack{k m \sim x \\ k, m \geq z}} b_{k m} \Lambda(k) \lambda(m) 1_{(m, P(z))=1}
$$

which is the same as S_{2} but with a_{n} replaced by b_{n}. Now M_{2} can be bounded similarly as S_{2}, except that we decompose with $\gamma=0$ to get $M_{2}=M_{21}+M_{23}$ with

$$
M_{21}:=\sum_{\substack{k m \sim x \\ k>x^{1 / 3} \\ m \geq z}} b_{k m} \Lambda(k) \lambda(m) 1_{(m, P(z))=1}, \quad M_{23}:=\sum_{\substack{k m \sim x \\ k \leq x^{11 / 3} \\ m \geq z}} b_{k m} \Lambda(k) \lambda(m) 1_{(m, P(z))=1}
$$

By similar arguments as above for S_{21}, S_{23} we get

$$
M_{21}+M_{23}<_{C} x^{5 / 8} L(1, \chi) \log ^{5} x+x^{5 / 8} / \log ^{C} x
$$

since for b_{n} we have an exponent of distribution $>\frac{2}{3}$ by Propositions 8 and 9 . That is, to prove the upper bound we only needed that a_{n} has an exponent of distribution $\frac{1}{2}+\varepsilon$ instead of $\frac{5}{8}-\varepsilon$.

3. Type I sums

In this section we will prove Propositions 8 and 9. The arguments are straightforward generalizations of the arguments in [Friedlander and Iwaniec 2006; 2005, Section 14]. Since it does not require much additional effort, we give the arguments in this section for the sequences $a^{2}+b^{2 k}$ for any $k \geq 1$, which yields the exponent of distribution $\frac{1}{2}+\frac{1}{2 k}-\varepsilon$, as claimed in [Friedlander and Iwaniec 2006, below Theorem 4].

For the arguments in this section it is convenient for us to define $\prec<$ to mean an inequality modulo logarithmic factors, that is, for two functions f and g with $g \geq 0$ we write $f(N) \prec \prec g(N)$ if $f(N) \ll$ $g(N) \log ^{O(1)} N$. For parameters such as ε we write $f(N)<\prec_{\varepsilon} g(N)$ to mean $f(N) \ll_{\varepsilon} g(N) \log ^{O_{\varepsilon}(1)} N$.

Proposition 8 is a consequence of the following proposition, which we will prove in this section.
Proposition 11. Let $M, L, D \gg 1$. Let $k \geq 1$ integer and let λ_{ℓ} be a coefficient such that $\left|\lambda_{\ell}\right| \leq 1_{\ell=n^{k}}$. Let ψ denote a fixed C^{∞}-smooth compactly supported function and denote $\psi_{M}(x):=\psi(x / M)$. Then for any divisor bounded $\alpha(d)$ and any real number $m_{0} \longleftrightarrow M$ we have

$$
\begin{aligned}
\sum_{d \sim D} \alpha(d) & \left(\sum_{\substack{(\ell, m)=1 \\
\ell \sim L \\
\ell^{2}+m^{2} \equiv 0(d)}} \lambda_{\ell} \psi_{M}\left(m-m_{0}\right)-\int \psi_{M}(t) d t \frac{\varrho(d)}{d} \sum_{\substack{(\ell, d)=1 \\
\ell \sim L}} \lambda_{\ell} \frac{\varphi(\ell)}{\ell}\right) \\
& \ll_{\varepsilon} M^{\varepsilon}(L+M)^{1 / 2} D^{1 / 2} L^{1 /(2 k)} .
\end{aligned}
$$

Proof of Proposition 8 assuming Proposition 11. For the sequence b_{n}, which counts $n=a^{2}+b^{2}$ weighted with $b^{-1+1 / k} / k$, we will apply similar arguments as below but with $k=1$, renormalizing the corresponding λ_{ℓ} appropriately. For a_{n} which counts $n=a^{2}+b^{8}$ we write $m=a$ and $\ell=b^{4}$, so that we are applying the above proposition with $k=4$. Similarly as with the treatment of the sum S_{11}, we use a finer-than-dyadic decomposition to remove the cross-condition $m^{2}+\ell^{2} \sim x$ that is, writing $\Delta=\log ^{-B} x$ for some large B, we partition the sum into $\ll \Delta^{-2} \log ^{2} x$ parts where $\ell \in\left[L_{0}, L_{0}(1+\Delta)\right]$ and $m \in\left[M_{0}, M_{0}(1+\Delta)\right]$ with $L_{0}^{2}+M_{0}^{2} \sim x$ and $L_{0}, M_{0} \ll \sqrt{x}$. In fact, we need to refine this decomposition so that for m we use a
C^{∞}-smooth finer-than-dyadic partition of unity. Then the resulting coefficients for m are C^{∞}-smooth functions of the form $\psi_{M}\left(m-M_{0}\right)$, where $M=M_{0} \Delta$ is the width of the window around $M_{0} \ll \sqrt{x}$. We can now drop the condition $\ell^{2}+m^{2} \sim x$, with an error contribution bounded by $x^{5 / 8} \log ^{-B+O(1)} x$ coming from the edges (where $L_{0}^{2}+M_{0}^{2}$ is in $\left[x(1+\Delta)^{-2}, x(1+\Delta)^{2}\right]$ or $\left.\left[2 x(1+\Delta)^{-2}, 2 x(1+\Delta)^{2}\right]\right)$. To see this, note that we have by Proposition 11 using $M_{0}, L_{0} \ll x^{1 / 2}$

$$
\sum_{d \sim D}|\alpha(d)| \sum_{\substack{m \\ \ell \in\left[L_{0}, L_{0}(1+\Delta)\right] \\ m^{2}+\ell=0(d)}} \lambda_{\ell} \psi_{\Delta M_{0}}\left(m-M_{0}\right) \ll c x^{5 / 8} \log ^{-C} x+\Delta^{1+1 / k} L_{0}^{1 / k} M_{0} \sum_{d \sim D} \frac{|\alpha(d)| \varrho(d)}{d}
$$

$$
<_{C} x^{5 / 8} \log ^{-C} x+x^{5 / 8} \log ^{-(1+1 / k) B+O(1)} x
$$

and that the number of edge cases is $\ll \log ^{B+O(1)} x$, so that we save a factor of $\log ^{O(1)-B / k} x$, which is sufficient for $B \gg k$.

We can now apply Proposition 11 in each of the parts separately. Note that then we have $L, M \ll x^{1 / 2}$ and $D \ll x^{5 / 8-\varepsilon}$, so that the error term is bounded by $x^{5 / 8-\varepsilon / 4}$. To remove the condition $\left(\ell^{2}+m^{2}, q\right)=1$ implicit in Proposition 8 we may expand using the Möbius function to get

$$
\sum_{\substack{\ell^{2}+m^{2} \equiv 0(d) \\\left(\ell^{2}+m^{2}, q\right)=1}}=\sum_{f \mid q} \mu(f) \sum_{\ell^{2}+m^{2} \equiv 0(d f)}
$$

since $(d, q)=1$, and apply Proposition 11 with level $x^{5 / 8-\varepsilon} q \ll x^{5 / 8-\varepsilon / 2}$.
Denote $\lambda_{\ell}^{(1)}=1_{\ell=n^{k}}$ and $\lambda_{\ell}^{(2)}=k^{-1} \ell^{-1+1 / k}$. Let $\tilde{g}(d)$ extend $g(d)$ to $(d, q)>1$, that is,

$$
\tilde{g}\left(p^{k}\right):=\frac{\varrho\left(p^{k}\right)}{p^{k}}\left(1+\frac{1}{p}\right)^{-1}
$$

We still have to evaluate the main term in Proposition 11 to get (2-2). Recombining the finer-than-dyadic decomposition to a dyadic one for the variable ℓ, this follows we once show that for $j \in\{1,2\}$

$$
\sum_{d \sim D} \alpha(d) \int \psi_{M}(t) d t \frac{\varrho(d)}{d} \sum_{\substack{(\ell, d)=1 \\ \ell \sim L}} \lambda_{\ell}^{(j)} \frac{\varphi(\ell)}{\ell}=\sum_{d \sim D} \alpha(d) \tilde{g}(d) \sum_{\substack{(\ell, m)=1 \\ \ell \sim L}} \lambda_{\ell}^{(2)} \psi_{M}\left(m-m_{0}\right)+O\left(x^{5 / 8-\eta}\right)
$$

which follows easily once we show that

$$
\begin{align*}
& \sum_{d \sim D} \alpha(d) \int \psi_{M}(t) d t \frac{\varrho(d)}{d} \sum_{\substack{(\ell, d)=1 \\
\ell \sim L}} \lambda_{\ell}^{(j)} \frac{\varphi(\ell)}{\ell} \\
&=\sum_{d \sim D} \alpha(d) \frac{\varrho(d)}{d} \frac{\varphi(d)}{d} \prod_{p \mid d}\left(1-p^{-2}\right)^{-1} \frac{1}{\zeta(2)} \sum_{\substack{m \\
\ell \sim L}} \lambda_{\ell}^{(2)} \psi_{M}\left(m-m_{0}\right)+O\left(x^{5 / 8-\eta}\right) \tag{3-1}
\end{align*}
$$

Define

$$
H_{d}:=\prod_{p \nmid d}\left(1-p^{-2}\right)=\sum_{(c, d)=1} \frac{\mu(c)}{c^{2}}=\frac{1}{\zeta(2)} \prod_{p \mid d}\left(1-p^{-2}\right)^{-1}
$$

and note that

$$
\sum_{\ell \sim L} \lambda_{\ell}^{(1)}=\left(1+L^{-\varepsilon_{k}}\right) \sum_{\ell \sim L} \lambda_{\ell}^{(2)}
$$

and

$$
\int \psi_{M}(t) d t=\sum_{m} \psi_{M}\left(m-m_{0}\right)+O_{C}\left(M^{-C}\right)
$$

Then, since $M \longleftrightarrow x^{1 / 2}$, the claim (3-1) follows once we show

$$
\sum_{d \leq D} \frac{\alpha(d) \varrho(d)}{d}\left(\sum_{\substack{(\ell, d)=1 \\ \ell \sim L}} \lambda_{\ell}^{(j)} \frac{\varphi(\ell)}{\ell}-\frac{\varphi(d)}{d} H_{d} \sum_{\ell \sim L} \lambda_{\ell}^{(j)}\right) \prec \prec 1 .
$$

To show this, note also that

$$
\frac{\varphi(\ell)}{\ell}=\sum_{c \mid \ell} \frac{\mu(c)}{c}
$$

Then for $\lambda_{\ell}=1_{\ell=n^{k}}$ (and similarly for $\lambda_{\ell}=k^{-1} \ell^{-1+1 / k}$)

$$
\begin{aligned}
\sum_{d \leq D} \frac{\alpha(d) \varrho(d)}{d}\left(\sum_{\substack{(\ell, d)=1 \\
\ell \sim L}} \lambda_{\ell} \frac{\varphi(\ell)}{\ell}-\frac{\varphi(d)}{d}\right. & \left.H_{d} \sum_{\ell \sim L} \lambda_{\ell}\right) \\
& =\sum_{d \leq D} \frac{\alpha(d) \varrho(d)}{d} \sum_{(c, d)=1} \frac{\mu(c)}{c}\left(\sum_{\substack{(\ell, d)=1 \\
\ell \sim L / c}} \lambda_{c \ell}-\frac{\varphi(d)}{c d} \sum_{\ell \sim L} \lambda_{\ell}\right) \\
& =\sum_{d \leq D} \frac{\alpha(d) \rho(d)}{d} \sum_{(c, d)=1} \frac{\mu(c)}{c} \sum_{e \mid d} \mu(e)\left(\sum_{\ell \sim L / c e} \lambda_{c e \ell}-\frac{1}{c e} \sum_{\ell \sim L} \lambda_{\ell}\right) \\
& =\sum_{d \leq D} \frac{\alpha(d) \rho(d)}{d} \sum_{(c, d)=1} \frac{\mu(c)}{c} \sum_{e \mid d} \mu(e)\left(\sum_{n \sim L^{1 / k} / c e} 1-\frac{1}{c e} \sum_{n \sim L^{1 / k}} 1\right) \\
& \ll \sum_{d \leq D} \frac{|\alpha(d)| \rho(d)}{d} \sum_{e \mid d}\left(\sum_{c \ll L^{1 / k} / e} \frac{1}{c}+\frac{L^{1 / k}}{e} \sum_{c \gg L^{1 / k} / e} \frac{1}{c^{2}}\right) \prec \prec 1
\end{aligned}
$$

by writing $\ell=(n c e)^{k}$ since $c e$ is square free.
Proposition 9 follows by a similar argument from the following (recall that a_{n} and b_{n} are supported on $(n, q)=1$).

Proposition 12. Let $M, L, D \gg 1$. Let $k \geq 1$ integer and let λ_{ℓ} be a coefficient such that $\left|\lambda_{\ell}\right| \leq 1_{\ell=n^{k}}$. Let ψ denote a fixed C^{∞}-smooth compactly supported function and denote $\psi_{M}(x):=\psi(x / M)$. Let χ denote a primitive quadratic Dirichlet character associated to a fundamental discriminant $\pm q$ with $q>1$. Then for any divisor bounded $\alpha(d)$ and any real number $m_{0} \longleftrightarrow M$ we have for some $\eta>0$

$$
\sum_{d \sim D} \alpha(d) \sum_{\substack{(\ell, m)=1 \\ \ell \sim L \\ \ell^{2}+m^{2} \equiv 0(d)}} \lambda_{\ell} \psi_{M}\left(m-m_{0}\right) \chi\left(\ell^{2}+m^{2}\right) \nprec{ }_{\varepsilon} q^{2} M^{\varepsilon}(L+M)^{1 / 2} D^{1 / 2} L^{1 /(2 k)}+q^{-\eta} M L^{1 / k}
$$

For the proof of Propositions 11 and 12 we need the following large sieve inequality; see [Friedlander and Iwaniec 2005, Lemma 14.4] for the proof.

Lemma 13. Let $q \geq 1$. Then for any complex numbers α_{n} we have

$$
\sum_{\substack{d \sim D \\(d, q)=1}} \sum_{v^{2}+1 \equiv 0(d)}\left|\sum_{n \leq N} \alpha_{n} e_{d}(v n \bar{q})\right| \ll(D q+N) \sum_{n \leq N}\left|\alpha_{n}\right|^{2},
$$

where $q \bar{q} \equiv 1(d)$.
We also require the Poisson summation formula.
Lemma 14 (truncated Poisson summation formula). Let $\psi: \mathbb{R} \rightarrow \mathbb{C}$ be a fixed C^{∞}-smooth compactly supported function with $\|\psi\|_{1} \leq 1$ and let $M \gg 1$. Fix a real number m_{0}. Let $d \geq 1$ be an integer. Then for any $\varepsilon>0$ we have uniformly in m_{0}

$$
\sum_{m \equiv a(d)} \psi_{M}\left(m-m_{0}\right)=\int \sum_{0 \leq|h| \leq M^{\varepsilon} d / M} \psi_{M}\left(t d-m_{0}\right) e(h t) e_{d}(-a h) d t+O_{C, \varepsilon}\left(M^{-C}\right)
$$

Proof. Applying the Poisson summation formula we get

$$
\begin{aligned}
\sum_{m \equiv a(d)} \psi_{M}\left(m-m_{0}\right) & =\sum_{n} \psi_{M}\left(n d+a-m_{0}\right)=\sum_{h} \int \psi_{M}\left(t d+a-m_{0}\right) e(h t) d t \\
& =\sum_{h} \int \psi_{M}\left(t d-m_{0}\right) e(h t) e_{d}(-h a) d u
\end{aligned}
$$

by the change of variables $t \mapsto t-a / d$. For $|h|>M^{\varepsilon} d / M$ we can iterate integration by parts to show that the contribution from this part is $<_{C, \varepsilon} M^{-C}$.

We also need the following Weil bound for character sums; see [Kowalski 2021, Theorem 3.1], for instance.

Lemma 15. Let $q \geq 1$ and let χ be a primitive quadratic character of modulus q. Let $a, b \in \mathbb{Z}$ and $(a, q)=1$. Then

$$
\sum_{m(q)} \chi\left(a m^{2}+b\right)<_{\varepsilon}(b, q)^{1 / 2} q^{1 / 2+\varepsilon}
$$

3.1. Proof of Propositions 11 and 12. We first note that there is a gap in the proof given in [Friedlander and Iwaniec 2005, Section 14], namely, the argument around their application of Poisson summation works only if the sum is restricted to $(\ell, q)=1$. To fix this we must first bound the contribution $\ell=n^{k}$ which have a large factor whose prime factors divide q. Let $q_{0}=q_{0}(n)=q_{0}(\ell)$ denote the smallest factor of n such that $\left(n / q_{0}, q\right)=1$. The parts of the sums in Proposition 12 where $q_{0}>q^{\eta}$ can be bounded
trivially. To see this, note that by the divisor boundedness $\alpha(d)$ and Lemma 4 we have

$$
\begin{aligned}
\sum_{d \sim D} \alpha(d) \sum_{\substack{(\ell, m)=1 \\
\ell \sim L \\
\ell^{2}+m^{2}=0(d) \\
q_{0}>q^{n}}} \lambda_{\ell} \psi_{M}\left(m-m_{0}\right) \chi\left(\ell^{2}+m^{2}\right) & \ll \sum_{\substack{m \simeq m_{0} \\
n \sim L^{1 / k} \\
q_{0}>q^{n}}} \tau\left(m^{2}+n^{2 k}\right)^{O(1)} \\
& \ll \sum_{d \ll m_{0}^{1 / 2}} \tau(d)^{O(1)} \sum_{\substack{n \sim L^{1 / k} \\
q_{0}>q^{n}}} \sum_{\substack{m \simeq m_{0} \\
m^{2}=-n^{2 k}(d)}} 1 \\
& \ll M \sum_{d \ll m_{0}^{1 / 2}} \frac{\tau(d)^{O(1)}}{d} \sum_{\substack{n \sim L^{1 / k} \\
q_{0}>q^{\eta}}} 1 \lll \sum_{\substack{n \sim L^{1 / k} \\
q_{0}>q^{\eta}}} 1
\end{aligned}
$$

and

$$
\sum_{\substack{n \sim L^{1 / k} \\ q_{0}>q^{\eta}}} 1 \leq \sum_{\substack{q_{0}>q^{\eta} \\ p\left|q_{0} \Rightarrow p\right| q}} \sum_{\substack{n \sim L^{1 / k} / q_{0}}}<L^{1 / k} \sum_{\substack{q_{0}>q^{\eta} \\ p\left|q_{0} \Rightarrow p\right| q}} q_{0}^{-1} \leq q^{-\eta / 2} L^{1 / k} \prod_{p \mid q}\left(1-p^{-1 / 2}\right)^{-1} \ll q^{-\eta / 4} L^{1 / k}
$$

Hence, we may assume that λ_{ℓ} is supported on $q_{0}(\ell)<q^{\eta}$ for some small $\eta>0$.
Note that since $d \mid \ell^{2}+m^{2}$, we may add the condition $(d, q)=1$ since otherwise $\chi\left(\ell^{2}+m^{2}\right)=0$. Expanding the condition $(\ell, m)=1$ using the Möbius function, we get

$$
\begin{aligned}
& \sum_{\substack{d \sim D \\
(d, q)=1}} \alpha(d) \sum_{\substack{(\ell, m)=1 \\
\ell \sim L \\
\ell^{2}+m^{2} \equiv 0(d)}} \lambda_{\ell} \psi_{M}\left(m-m_{0}\right) \chi\left(\ell^{2}+m^{2}\right) \\
&=\sum_{\substack{b \ll L M \\
(b, q)=1}} \mu(b) \sum_{\substack{d \sim D \\
(d, q)=1}} \alpha(d) \sum_{\substack{\ell \sim L / b \\
(\ell, d)=1}} \lambda_{b \ell} \sum_{\substack{m \\
b^{2}\left(\ell^{2}+m^{2}\right) \equiv 0(d)}} \psi_{M / b}\left(m-m_{0} / b\right) \chi\left(\ell^{2}+m^{2}\right) .
\end{aligned}
$$

Writing $b_{1}=(d, b)$ and $b_{2}=b / b_{1}$ we get (absorbing $\left(d, b_{2}\right)=1$ into the coefficient $\alpha(d)$ and redefining $\alpha(d)$ as $\alpha\left(b_{1} d\right)$)

$$
\sum_{\substack{b_{1} b_{2} \ll L M \\\left(b_{1} b_{2}, q\right)=1}} \mu\left(b_{1} b_{2}\right) \sum_{\substack{d \sim D / b_{1} \\(d, q)=1}} \alpha(d) \sum_{\substack{\ell \sim L / b \\(\ell, d)=1}} \lambda_{b \ell} \sum_{\substack{m \\ \ell^{2}+m^{2} \equiv 0(d)}} \psi_{M / b}\left(m-m_{0} / b\right) \chi\left(\ell^{2}+m^{2}\right)
$$

Let $q_{\ell}:=q_{0}^{k}$ so that $\left(q, \ell / q_{\ell}\right)=1$. Defining $v(d)$ and $\beta(q)$ so that $m \equiv \nu \ell(d)$ and $m \equiv \beta\left(\ell / q_{\ell}\right)(q)$ we get by the Chinese remainder theorem

$$
m \equiv \nu \ell q \bar{q}+\beta\left(\ell / q_{\ell}\right) d \bar{d}(d q)
$$

where the inverses \bar{q} and \bar{d} are computed modulo d and q, respectively. Using Lemma 14 we get for $H:=M^{\varepsilon} b_{2} D q / M$

$$
\begin{aligned}
& \sum_{\substack{m \\
\ell^{2}+m^{2} \equiv 0(d)}} \psi_{M / b}\left(m-m_{0} / b\right) \chi\left(\ell^{2}+m^{2}\right) \\
& \quad=\sum_{\substack{v(d) \\
v^{2}+1 \equiv 0(d)}} \sum_{\beta(q)} \chi\left(\beta^{2}+q_{\ell}^{2}\right) \sum_{\substack{m \\
m \equiv \nu \ell q \bar{q}+\beta\left(\ell / q_{\ell}\right) d \bar{d}(d q)}} \psi_{M / b}\left(m-m_{0} / b\right) \\
& \quad=\sum_{\substack{v(d) \\
v^{2}+1 \equiv 0(d)}} \sum_{\beta(q)} \chi\left(\beta^{2}+q_{\ell}^{2}\right) \sum_{0 \leq|h| \leq H} \psi_{M / b}\left(t d q-m_{0} / b\right) e(h t) e_{d}(-v h \ell \bar{q}) e_{q}\left(-\beta h\left(\ell / q_{\ell}\right) \bar{d}\right) d t \\
& +O_{C, \varepsilon}\left(M^{-C}\right)
\end{aligned}
$$

Making the change of variables and $\beta \mapsto \beta d$ this becomes

$$
\int \sum_{0 \leq|h| \leq H}\left(\sum_{\beta(q)} \chi\left(\beta^{2} d^{2}+q_{\ell}^{2}\right) e_{q}\left(-\beta h\left(\ell / q_{\ell}\right)\right)\right) \sum_{v^{2}+1 \equiv 0(d)} \psi_{M}\left(t b d q-m_{0}\right) e(h t) e_{d}(-v h \ell \bar{q}) d t
$$

From $h=0$ we get a total contribution

$$
\sum_{\substack{b_{1} b_{2} \ll L M \\\left(b_{1} b_{2}, q\right)=1}} \mu\left(b_{1} b_{2}\right) \sum_{\substack{d \sim D / b_{1} \\(d, q)=1}} \alpha(d) \varrho(d) \sum_{\substack{\ell \sim L / b \\(\ell, d)=1}} \lambda_{b \ell} \frac{M}{b_{2} d q} \int \psi(t) d t \sum_{\beta(q)} \chi\left(\beta^{2} d^{2}+q_{\ell}^{2}\right) \prec \prec q^{-1 / 4} M L^{1 / k}
$$

by using the bound (Lemma 15)

$$
\sum_{\beta(q)} \chi\left(\beta^{2} d^{2}+q_{\ell}^{2}\right)<_{\varepsilon}\left(q, q_{\ell}^{2}\right)^{1 / 2} q^{1 / 2+\varepsilon}
$$

and the fact that $q_{\ell}=q_{0}^{k} \ll q^{\eta k}$ for some small η.
For $h \neq 0$ we can by symmetry restrict to $h<0$. We first want to remove the cross-condition $\chi\left(\beta^{2} d^{2}+q_{\ell}^{2}\right)$ between the variables d and ℓ. To do this we fix the value of q_{ℓ} modulo q and split ℓ into congruence classes $q_{\ell} \equiv \gamma(q)$. Hence, we get for some $\left|c_{h, \ell}(t, q, \beta, \gamma)\right| \leq 1$ and $\left|c_{h, \ell}(t, q)\right| \leq 1$ that the total contribution from $h \neq 0$ is

$$
\begin{aligned}
& \sum_{\substack{\gamma(q)}} \sum_{\substack{b_{1} b_{2} \ll L M \\
\left(b_{1} b_{2}, q\right)=1}} \mu\left(b_{1} b_{2}\right) \int \sum_{\substack{\beta(q)}} \sum_{\substack{d \sim D / b_{1} \\
(d, q)=1}} \alpha(d) \chi\left(\beta^{2} d^{2}+\gamma^{2}\right) \\
& \quad \times \sum_{\substack{v^{2}+1 \equiv 0(d)}} \sum_{\substack{\ell \sim L / b \\
(\ell, d)=1 \\
q_{\ell}=\gamma(q)}} \lambda_{b \ell} \sum_{1 \leq h \leq H} c_{h, \ell}(t, q, \beta, \gamma) e_{d}(v h \ell \bar{q}) \psi_{M}\left(t b d q-m_{0}\right) d t \\
& \quad \prec q^{2} \sum_{b_{1} b_{2} \ll L M} \int \sum_{\substack{d \sim D / b_{1} \\
(d, q)=1}}|\alpha(d)| \sum_{v^{2}+1 \equiv 0(d)}\left|\sum_{\substack{\ell \sim L / b \\
(, d)=1}} \lambda_{b \ell} \sum_{1 \leq h \leq H} c_{h, \ell}(t, q) e_{d}(v h \ell \bar{q}) \psi_{M}\left(t b d q-m_{0}\right)\right| d t .
\end{aligned}
$$

Note that $\psi_{M}\left(t b d q-m_{0}\right)$ vanishes outside $\left|t b d q-m_{0}\right| \ll M$. Hence, by $d \sim D / b_{1}$ and $m_{0} \ll M$ the integral over t is supported on a fixed set $T\left(b_{1}, b_{2}\right)$ with measure bounded by $\prec<M / b_{2} q D$ so that by taking the maximal t the last expression is bounded by

$$
\prec q \sum_{b_{1} b_{2} \ll L M} \frac{M}{b_{2} D} \sum_{\substack{d \sim D / b_{1} \\(d, q)=1}}|\alpha(d)| \sum_{v^{2}+1 \equiv 0(d)}\left|\sum_{\substack{\ell \sim L / b \\(\ell, d)=1}} \lambda_{b \ell} \sum_{1 \leq h \leq H} c_{h, \ell} e_{d}(v h \ell \bar{q})\right|
$$

for some coefficients $c_{h, \ell}=c_{h, \ell}\left(b_{1}, b_{2}, q, m_{0}\right)$ independent of d with $\left|c_{h, \ell}\right| \leq 1$. Expanding the condition ($\ell, d)=1$ this is bounded by

$$
\begin{equation*}
\frac{q M}{D} \sum_{b_{1} b_{2} \ll L M} \frac{1}{b_{2}} \sum_{c \ll} \sum_{\substack{d \sim D / b_{1} c \\(d, q)=1}}|\alpha(c d)| \sum_{v^{2}+1 \equiv 0(d)}\left|\sum_{\ell \sim L / b c} \lambda_{b c \ell} \sum_{1 \leq h \leq H} c_{h, c \ell} e_{d}(v h c \ell \bar{q})\right| . \tag{3-2}
\end{equation*}
$$

By Cauchy-Schwarz and Lemma 13 the sum over d is bounded by (denoting $H_{1}:=H / b_{2}=M^{\varepsilon} D q / M$)

$$
\begin{aligned}
& \ll \frac{D^{1 / 2}}{\left(b_{1} c\right)^{1 / 2}}\left(\sum_{\substack{d \sim D / b_{1} c \\
(d, q)=1}} \sum_{v^{2}+1 \equiv 0(d)}\left|\sum_{\ell \sim L / b c} \lambda_{b c \ell} \sum_{1 \leq h \leq H} c_{h, c \ell} e_{d}(v h c \ell \bar{q})\right|^{2}\right)^{1 / 2} \\
& \ll \frac{D^{1 / 2}}{\left(b_{1} c\right)^{1 / 2}}\left(D q / b_{1} c+H L / b\right)^{1 / 2}\left(\left.\sum_{\substack { 1 \leq j \ll H_{1} L / c \\
\begin{subarray}{c}{j=\ell h \\
\ell \sim L / b c{ 1 \leq j \ll H _ { 1 } L / c \\
\begin{subarray} { c } { j = \ell h \\
\ell \sim L / b c } }\end{subarray}} \lambda_{b c \ell}\right|^{2}\right)^{1 / 2} \\
& \ll \frac{1}{b c^{1 / 2}}\left(D q+\left(D H_{1} L\right)^{1 / 2}\right)\left(\sum_{1 \leq j \ll H_{1} L / c}\left|\sum_{\substack{j=\ell h \\
\ell \sim L / b c}} \lambda_{b c \ell}\right|^{2}\right)^{1 / 2} .
\end{aligned}
$$

By Cauchy-Schwarz we get (writing $m=b c j=b j^{\prime}$ and $B:=L M$ so that $1 / b=j^{\prime} / m \ll H_{1} L / m$)

$$
\begin{aligned}
\sum_{b \ll L M} \frac{\tau(b)}{b} \sum_{c \ll D L} \frac{1}{c^{1 / 2}}\left(\sum_{\substack{1 \leq j \ll H_{1} L / c}}\left|\sum_{\substack{j=\ell h \\
\ell \sim L / b c}} \lambda_{b c \ell}\right|^{2}\right)^{1 / 2} & \prec<\left(\sum_{\substack{j^{\prime} \ll H_{1} L \\
b \ll B}} \frac{1}{b} \tau\left(j^{\prime}\right)\left|\sum_{\substack{j^{\prime}=\ell h \\
\ell \sim L / b}} \lambda_{b \ell}\right|^{2}\right)^{1 / 2} \\
& \ll\left(\sum_{m \ll H_{1} L B} \frac{H_{1} L}{m} \tau(m)^{2}\left|\sum_{\substack{m=\ell h \\
\ell \sim L}} \lambda_{\ell}\right|^{2}\right)^{1 / 2} \\
& \leq\left(H_{1} L \sum_{n^{k} \sim L} \sum_{h \ll H_{1} B} \frac{\tau\left(h n^{k}\right)^{4}}{h n^{k}}\right)^{1 / 2} \\
& \leq\left(H_{1} L \sum_{\substack{n^{k} \sim L}} \sum_{h \ll H_{1} B} \frac{\tau(h)^{4} \tau(n)^{4 k}}{h n^{k}}\right)^{1 / 2} \\
& \prec<H_{1}^{1 / 2} L^{1 / 2 k} .
\end{aligned}
$$

Hence, the final bound for (3-2) is

$$
\begin{aligned}
& \prec \frac{q M}{D}\left(D q+\left(D H_{1} L\right)^{1 / 2}\right) H_{1}^{1 / 2} L^{1 /(2 k)} \\
& =q M^{\varepsilon}\left(M q^{1 / 2} H_{1}^{1 / 2} L^{1 /(2 k)}+M H_{1} L^{1 / 2+1 /(2 k)} D^{-1 / 2}\right) \\
& =M^{\varepsilon} q^{2}\left(D^{1 / 2} M^{1 / 2} L^{1 /(2 k)}+D^{1 / 2} L^{1 / 2+1 /(2 k)}\right)
\end{aligned}
$$

by using $H_{1}=M^{\varepsilon} D q / M$.

4. A General version of the sieve

From our argument in Section 2 we can infer the following general result. We have not made an effort to minimize the assumptions or optimize the powers of logarithms.

Theorem 16. Let x be large and let χ_{D} be a real primitive character associated to a fundamental discriminant $D=x^{o(1)}$ with $D>_{C} \log ^{C} x$. Let a_{n} and b_{n} be nonnegative sequences supported on $(n, D)=1$, and let $g(d)$ be the associated multiplicative function. Suppose that $g(d) \ll \tau(d)^{O(1)} / d$. Assume that g satisfies the assumptions of Lemma 5 and assume that Proposition 10 holds. Suppose that for any $z>x^{\varepsilon}$ we have

$$
\sum_{n \sim x} b_{n} \Lambda(n)=(1+o(1)) \frac{1}{e^{\gamma_{1}} \log z} \prod_{p \leq z}(1-g(p)) \sum_{n \sim x} b_{n}
$$

and

$$
\sum_{k \sim z} \Lambda(k) g(k)=(1+o(1)) \sum_{k \sim z} \frac{\Lambda(k)}{k}
$$

Suppose also that for some $\epsilon>0$ we have the crude bounds

$$
\sum_{n \sim x} a_{n} \Lambda(n) 1_{\left(n, P\left(x^{\epsilon}\right)\right)>1}, \quad \sum_{n \sim x} b_{n} \Lambda(n) 1_{\left(n, P\left(x^{\epsilon}\right)\right)>1}=o\left(\sum_{n \sim x} \Lambda(n) b_{n}\right)
$$

Suppose that the exponent of distribution is at least $\alpha=\frac{2}{3}-\gamma$ for some $\gamma<\frac{1}{6}$ (in the sense of Propositions 8 and 9). Then

$$
\sum_{n \sim x} \Lambda(n) a_{n} \geq\left(1-2 \log \frac{1+3 \gamma}{1-6 \gamma}-O\left(L\left(1, \chi_{D}\right) \log ^{5} x\right)-o(1)\right) \sum_{n \sim x} \Lambda(n) b_{n}
$$

Assuming that the exponent of distribution is at least $\frac{1}{2}+\varepsilon$ we have

$$
\sum_{n \sim x} \Lambda(n) a_{n} \leq\left(1+O\left(L\left(1, \chi_{D}\right) \log ^{5} x\right)+o(1)\right) \sum_{n \sim x} \Lambda(n) b_{n}
$$

In particular, if $L\left(1, \chi_{D}\right) \leq \log ^{-100} D$ and $\exp \left(\log ^{10} D\right)<x<\exp \left(\log ^{16} D\right)$, then the lower bound is nontrivial as soon as the exponent of distribution satisfies

$$
\alpha>\frac{1+\sqrt{e}}{1+2 \sqrt{e}}=0.61634 \ldots
$$

Remark. With much more effort it is possible to get the same result as above with $L(1, \chi) \log x$ in place of $L(1, \chi) \log ^{5} x$, so that one only needs $L\left(1, \chi_{D}\right)=o(1 / \log D)$.

Remark. Unfortunately the above theorem just misses out the next case $a^{2}+b^{10}$, which has an exponent of distribution $\frac{3}{5}-\varepsilon$. Similarly as with the linear sieve, further improvements are possible if we make use of well-factorability of the weights [Friedlander and Iwaniec 2010, Chapter 12.7]. For example, the upper bound for the sum S_{222} can be improved if we are able to handle certain Type I/II sums (that is, Type I sums where the modulus is $k d$ with d well-factorable). Note also that in S_{21} and S_{23} the weight factorizes and furthermore there is some smoothness available in the weight. Hence, assuming suitable arithmetic information (of Type I/II or Type I_{2}) we could handle some parts near the edges of S_{22} by a similar argument as for the sums S_{21} or S_{23}. Unfortunately we do not know how to carry this out for the sequence $a^{2}+b^{10}$, but possibly sums of Kloosterman sums methods might be able to handle these sums. It is also unclear if the handling of the sum S_{222} is optimal but we have not found a way to improve this.

Remark. The ideas in this paper can be used also to the problem of primes in short intervals, to improve the result of Friedlander and Iwaniec [2004] which gives primes in intervals of length $x^{39 / 79}<x^{1 / 2}$ under the assumption of exceptional characters. The sieve argument is slightly different here since for this problem we can also utilize the available Type I/II and Type I_{2} information furnished by the exponential sum estimates used for the problem of largest prime factor on short intervals [Baker and Harman 2009; Fouvry and Iwaniec 1989; Liu and Wu 1999]. The details will appear elsewhere.

Acknowledgements

I am grateful to my supervisor Kaisa Matomäki for helpful comments and encouragement. I also wish to thank Kyle Pratt for comments on an early version of this manuscript. I am grateful to the anonymous referee for helpful comments. During the work the author was funded by UTUGS Graduate School. Part of the article was also completed while I was working on projects funded by the Academy of Finland (project no. 319180) and the Emil Aaltonen foundation.

References

[Baker and Harman 2009] R. Baker and G. Harman, "Numbers with a large prime factor, II", pp. 1-14 in Analytic number theory, edited by W. W. L. Chen et al., Cambridge Univ. Press, 2009. MR Zbl
[Drappeau and Maynard 2019] S. Drappeau and J. Maynard, "Sign changes of Kloosterman sums and exceptional characters", Proc. Amer. Math. Soc. 147:1 (2019), 61-75. MR Zbl
[Fouvry and Iwaniec 1989] E. Fouvry and H. Iwaniec, "Exponential sums with monomials", J. Number Theory 33:3 (1989), 311-333. MR Zbl
[Friedlander and Iwaniec 1998a] J. Friedlander and H. Iwaniec, "Asymptotic sieve for primes", Ann. of Math. (2) 148:3 (1998), 1041-1065. MR Zbl
[Friedlander and Iwaniec 1998b] J. Friedlander and H. Iwaniec, "The polynomial $X^{2}+Y^{4}$ captures its primes", Ann. of Math. (2) 148:3 (1998), 945-1040. MR Zbl
[Friedlander and Iwaniec 2003] J. B. Friedlander and H. Iwaniec, "Exceptional characters and prime numbers in arithmetic progressions", Int. Math. Res. Not. 2003:37 (2003), 2033-2050. MR Zbl
[Friedlander and Iwaniec 2004] J. B. Friedlander and H. Iwaniec, "Exceptional characters and prime numbers in short intervals", Selecta Math. (N.S.) 10:1 (2004), 61-69. MR Zbl
[Friedlander and Iwaniec 2005] J. B. Friedlander and H. Iwaniec, "The illusory sieve", Int. J. Number Theory 1:4 (2005), 459-494. MR Zbl
[Friedlander and Iwaniec 2006] J. B. Friedlander and H. Iwaniec, "A polynomial divisor problem", J. Reine Angew. Math. 601 (2006), 109-137. MR Zbl
[Friedlander and Iwaniec 2010] J. Friedlander and H. Iwaniec, Opera de cribro, American Mathematical Society Colloquium Publications 57, American Mathematical Society, Providence, RI, 2010. MR Zbl
[Granville 2021] A. Granville, "An alternative to Vaughan's identity", Riv. Math. Univ. Parma (N.S.) 12:1 (2021), 119-124. MR Zbl
[Harman 2007] G. Harman, Prime-detecting sieves, London Mathematical Society Monographs Series 33, Princeton University Press, 2007. MR Zbl
[Heath-Brown 1983] D. R. Heath-Brown, "Prime twins and Siegel zeros", Proc. London Math. Soc. (3) 47:2 (1983), 193-224. MR Zbl
[Heath-Brown 2001] D. R. Heath-Brown, "Primes represented by $x^{3}+2 y^{3} "$, Acta Math. 186:1 (2001), 1-84. MR Zbl
[Heath-Brown and Li 2017] D. R. Heath-Brown and X. Li, "Prime values of $a^{2}+p^{4 "}$, Invent. Math. 208:2 (2017), 441-499. MR Zbl
[Heath-Brown and Moroz 2002] D. R. Heath-Brown and B. Z. Moroz, "Primes represented by binary cubic forms", Proc. London Math. Soc. (3) 84:2 (2002), 257-288. MR Zbl
[Iwaniec and Kowalski 2004] H. Iwaniec and E. Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications 53, American Mathematical Society, Providence, RI, 2004. MR Zbl
[Kowalski 2021] E. Kowalski, "Exponential sums over finite fields: elementary methods", 2021, https://people.math.ethz.ch/ ~kowalski/exponential-sums-elementary.pdf. Zbl
[Linnik 1944] U. V. Linnik, "On the least prime in an arithmetic progression, I: The basic theorem", Rec. Math. N.S. 15(57) (1944), 139-178. MR Zbl
[Liu and Wu 1999] H.-Q. Liu and J. Wu, "Numbers with a large prime factor", Acta Arith. 89:2 (1999), 163-187. MR Zbl
[Maynard 2020] J. Maynard, "Primes represented by incomplete norm forms", Forum Math. Pi 8 (2020), art. id e3. MR Zbl
[Tenenbaum 2015] G. Tenenbaum, Introduction to analytic and probabilistic number theory, French ed., Graduate Studies in Mathematics 163, American Mathematical Society, Providence, RI, 2015. MR Zbl

Communicated by Andrew Granville
Received 2022-08-31 Revised 2023-06-19 Accepted 2023-09-03
jori.merikoski@maths.ox.ac.uk Mathematical Institute, University of Oxford, Oxford, United Kingdom

Algebra \& Number Theory

msp.org/ant

EDITORS

MANAGING EDITOR

Antoine Chambert-Loir Université Paris-Diderot

France

Editorial Board Chair
David Eisenbud
University of California
Berkeley, USA

Board of Editors

Jason P. Bell	University of Waterloo, Canada	Philippe Michel	École Polytechnique Fédérale de Lausanne
Bhargav Bhatt	University of Michigan, USA	Martin Olsson	University of California, Berkeley, USA
Frank Calegari	University of Chicago, USA	Irena Peeva	Cornell University, USA
J-L. Colliot-Thélène	CNRS, Université Paris-Saclay, France	Jonathan Pila	University of Oxford, UK
Brian D. Conrad	Stanford University, USA	Anand Pillay	University of Notre Dame, USA
Samit Dasgupta	Duke University, USA	Bjorn Poonen	Massachusetts Institute of Technology, USA
Hélène Esnault	Freie Universität Berlin, Germany	Victor Reiner	University of Minnesota, USA
Gavril Farkas	Humboldt Universität zu Berlin, Germany	Peter Sarnak	Princeton University, USA
Sergey Fomin	University of Michigan, USA	Michael Singer	North Carolina State University, USA
Edward Frenkel	University of California, Berkeley, USA	Vasudevan Srinivas	SUNY Buffalo, USA
Wee Teck Gan	National University of Singapore	Shunsuke Takagi	University of Tokyo, Japan
Andrew Granville	Université de Montréal, Canada	Pham Huu Tiep	Rutgers University, USA
Ben J. Green	University of Oxford, UK	Ravi Vakil	Stanford University, USA
Christopher Hacon	University of Utah, USA	Akshay Venkatesh	Institute for Advanced Study, USA
Roger Heath-Brown	Oxford University, UK	Melanie Matchett Wood	Harvard University, USA
János Kollár	Princeton University, USA	Shou-Wu Zhang	Princeton University, USA
Michael J. Larsen	Indiana University Bloomington, USA		

PRODUCTION
production@msp.org
Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.
The subscription price for 2024 is US $\$ 525 /$ year for the electronic version, and $\$ 770 /$ year ($+\$ 65$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Algebra \& Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online.

ANT peer review and production are managed by EditFLOw ${ }^{\circledR}$ from MSP.

PUBLISHED BY

E. mathematical sciences publishers

Algebra \& Number Theory

Volume 18 No. $7 \quad 2024$

Serre weights for three-dimensional wildly ramified Galois representations 1221
Daniel Le, Bao V. Le Hung, Brandon Levin and Stefano Morra
Combining Igusa's conjectures on exponential sums and monodromy with semicontinuity of the minimal 1275exponentRaf Cluckers and Kien Huu Nguyen
Exceptional characters and prime numbers in sparse sets 1305
Jori Merikoski
Polyhedral and tropical geometry of flag positroids 1333Jonathan Boretsky, Christopher Eur and Lauren Williams
Maximal subgroups of exceptional groups and Quillen's dimension 1375
Kevin I. Piterman

[^0]: MSC2020: primary 11N32; secondary 11N36.
 Keywords: prime numbers, Siegel zero, sieve methods, prime values of polynomials, exceptional character.

