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Maximal subgroups of exceptional groups
and Quillen’s dimension

Kevin I. Piterman

Given a finite group G and a prime p, let Ap(G) be the poset of nontrivial elementary abelian p-subgroups
of G. The group G satisfies the Quillen dimension property at p if Ap(G) has nonzero homology in the
maximal possible degree, which is the p-rank of G minus 1. For example, D. Quillen showed that solvable
groups with trivial p-core satisfy this property, and later, M. Aschbacher and S. D. Smith provided a list
of all p-extensions of simple groups that may fail this property if p is odd. In particular, a group G with
this property satisfies Quillen’s conjecture: G has trivial p-core and the poset Ap(G) is not contractible.

In this article, we focus on the prime p = 2 and prove that the 2-extensions of finite simple groups
of exceptional Lie type in odd characteristic satisfy the Quillen dimension property, with only finitely
many exceptions. We achieve these conclusions by studying maximal subgroups and usually reducing
the problem to the same question in small linear groups, where we establish this property via counting
arguments. As a corollary, we reduce the list of possible components in a minimal counterexample to
Quillen’s conjecture at p = 2.

1. Introduction

Since the early 70s, there has been a growing interest in the p-subgroup posets and their connections with
finite group theory, the classification of the finite simple groups, finite geometries, group cohomology
and representation theory. The poset Sp(G) of nontrivial p-subgroups of a group G was introduced by
Kenneth Brown [1975]. In that paper, Brown worked with the Euler characteristic χ(G) of groups G
satisfying certain finiteness conditions and established connections between the p-fractional part of χ(G)

and the p-subgroup structure of G. One of the consequences of his results is the commonly known
“Homological Sylow theorem”, which states that the Euler characteristic of Sp(G) is 1 modulo |G|p, the
order of a Sylow p-subgroup of G.

Some years later, Daniel Quillen [1978] introduced the poset Ap(G) of nontrivial elementary abelian
p-subgroups of a finite group G and exhibited several applications of the topological properties of these
posets. Indeed, the study of elementary abelian p-subgroups goes back to Quillen’s earlier work on the
Bredon cohomology of G-spaces and his proof of the Atiyah–Swan conjecture, that relates the Krull
dimension of a ring to the dimension of Ap(G) (see [Quillen 1971]).
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Quillen [1978] showed that Sp(G) and Ap(G) are (G-equivariantly) homotopy equivalent, and provided
a new proof of Brown’s result. In fact, when G is the set of rational points of a semisimple algebraic
group over a finite field of characteristic p, these posets are homotopy equivalent to the building of G
and, hence, they have the homotopy type of a wedge of spheres of dimension l − 1, where l is the rank of
the underlying algebraic group. Furthermore, in that case, the homology H̃∗(Ap(G)) affords the classical
Steinberg module for G.

Quillen also exhibited other connections between intrinsic algebraic properties of G and the topology
of these posets. For instance, he showed that Ap(G) is disconnected if and only if G contains a strongly
p-embedded subgroup. Recall that the classification of the groups with this property is indeed one of the
many important steps towards the classification of the finite simple groups (see, for example, Section 7.6
of [Gorenstein et al. 1998]).

On the other hand, Quillen proved that if G has a fixed point on Ap(G) (or, equivalently on Sp(G)),
then these posets are contractible. Note that G has a fixed point if and only if its p-core Op(G) is
nontrivial. In view of this and further evidence, Quillen conjectured that the reciprocal to this statement
should hold. That is, if Ap(G) is contractible then there is a fixed point, or, equivalently, Op(G) ̸= 1 (see
Conjecture 2.9 of [Quillen 1978]). In other words, Quillen’s conjecture asserts that Ap(G) is contractible
if and only if Op(G) ̸= 1.

A significant part of Quillen’s article is devoted to proving the solvable case of this conjecture. In
[Quillen 1978] it is shown that for a p-nilpotent group G with abelian Sylow p-subgroups and Op(G) = 1,
Ap(G) is homotopy equivalent to a nontrivial wedge of spheres of the maximal possible dimension, which
is mp(G) − 1, the p-rank of G minus 1. Then, if G is any solvable group with Op(G) = 1, G contains
a p-nilpotent subgroup Op′(G)A, with A ∈ Ap(G) of maximal p-rank and Op(Op′(G)A) = 1, and thus
H̃mp(G)−1(Ap(G)) ̸= 0.

Later, Michael Aschbacher and Stephen D. Smith [1993] formalised this property and gave a name to
it: an arbitrary group G with H̃mp(G)−1(Ap(G)) ̸= 0 is said to satisfy the Quillen dimension property at p,
or (QD)p for short. Therefore, a solvable group G with Op(G) = 1 satisfies (QD)p and thus Quillen’s
conjecture. Furthermore, it was shown that p-solvable groups satisfy this property by using Quillen’s
techniques and, in addition, the CFSG (see [Díaz Ramos 2018; Smith 2011]). These results also suggest
that a stronger statement of the conjecture may hold: if Op(G) = 1 then H̃∗(Ap(G); Q) ̸= 0. Therefore,
from now on, by Quillen’s conjecture we will be referring to this stronger version.

It is not hard to see that not every group G with Op(G)= 1 satisfies (QD)p. For example, we mentioned
that finite groups of Lie type in characteristic p satisfy the conjecture, but since the Lie rank is usually
strictly smaller than the p-rank, they fail (QD)p. This has led to the development of new methods to prove
Quillen’s conjecture. One of the most notorious advances in the conjecture was achieved by Aschbacher
and Smith [1993]. They established Quillen’s conjecture for a group G if p > 5 and in addition, roughly,
all the p-extensions of finite unitary groups PSUn(q), with q odd and p |q+1, satisfy (QD)p (see Main
Theorem of [Aschbacher and Smith 1993] for the precise statement). Here, a p-extension of a group L is
a split extension of L by an elementary abelian p-subgroup of Out(L). In [Aschbacher and Smith 1993]



Maximal subgroups of exceptional groups and Quillen’s dimension 1377

it is not shown that the group G satisfies (QD)p. Instead, they proved that if every p-extension of a fixed
component of G satisfies (QD)p, then

H̃∗(Ap(G); Q) ̸= 0 if Op(G) = 1

(under suitable inductive hypotheses). This result restricts the possibilities of the components of a minimal
counterexample to Quillen’s conjecture: every component has a p-extension failing (QD)p. In view of
this result and the classification of the finite simple groups, Aschbacher and Smith described for p ≥ 3,
all the possible p-extensions of simple groups which may potentially fail (QD)p. This is the (QD)-List,
Theorem 3.1, of [Aschbacher and Smith 1993]. Moreover, it is conjectured in [Aschbacher and Smith
1993] that the unitary groups PSUn(q) with q odd and p |q+1 should not appear in this list, and so the extra
hypothesis on the unitary groups in the main result of [Aschbacher and Smith 1993] could be omitted. Nev-
ertheless, this problem remains open (see [Piterman and Welker 2022] for recent results in this direction).

In the last few years, there have been further developments in the Quillen conjecture [Piterman 2021;
Piterman et al. 2021; Piterman and Smith 2022a; 2022b]. Recently, in [Piterman and Smith 2022b], new
tools for the study of the conjecture have been provided. For example, it is shown that the Aschbacher–
Smith general approach to the conjecture can be extended to every prime p by reducing reliance on
results of [Aschbacher and Smith 1993] stated only for odd primes and invoking the classification. In
particular, Theorem 1.1 of [Piterman and Smith 2022b] shows that Main Theorem of [Aschbacher and
Smith 1993] extends to p ≥ 3, keeping the additional constraint on the unitary groups. On the other hand,
for p = 2, one important obstruction for this extension is the lack of a (QD)-List for this prime. Roughly,
Corollary 1.8 of [Piterman and Smith 2022b] concludes that a minimal counterexample to Quillen’s
conjecture contains a component of Lie type in characteristic r ̸= 3, and every component of G has a
2-extension failing (QD)2.

In view of these results on Quillen’s conjecture, in this article, we focus on showing that the 2-extensions
of the finite simple groups of exceptional Lie type in odd characteristic satisfy (QD)2, with a small number
of exceptions. This improves the conclusions of [Piterman and Smith 2022b] on Quillen’s conjecture for
p = 2, and allows us to conclude then that exceptional groups of Lie type in odd characteristic different
from 3 cannot be components of a minimal counterexample to the conjecture (see Corollary 1.2 below).

The main result of this article is the following theorem, whose proof is given through different
propositions in Section 5.

Theorem 1.1. Let L be a finite simple group of exceptional Lie type in odd characteristic. That is,
L =

3D4(q), F4(q), G2(q), 2G2(q)′, E6(q), 2E6(q), E7(q) or E8(q), with q odd. Then every 2-extension
of L satisfies the Quillen dimension property at p = 2, except possibly in the following cases:

•
3D4(9) extended with field automorphisms;

• F4(3), F4(9) extended with field automorphisms;

• 2-extensions of G2(3), G2(9) extended with field automorphisms;

•
2G2(3)′, E8(3), E8(9) extended with field automorphisms.
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Indeed, the extensions of G2(3), G2(9) and 2G2(3)′ mentioned above do fail (QD)2 by Example 5.3
and Proposition 5.1.

To achieve the conclusions of Theorem 1.1, in most cases we exhibit a maximal subgroup M of a
2-extension L B of L such that m2(M) = m2(L B) and M satisfies (QD)2. Since there is an inclusion
H̃m2(L B)−1(A2(M)) ↪→ H̃m2(L B)−1(A2(L B)) in the top-degree homology groups, this establishes (QD)2

for L B (see Lemma 3.3). In some cases, the subgroup M arises from suitable parabolic subgroups. More
concretely, when it is possible, we pick P to be a maximal parabolic subgroup of L which is stabilised by
B and such that M := PB realises the 2-rank of L B. Then we get a 2-nilpotent configuration UA, where
U is the unipotent radical of P , A is an elementary abelian 2-subgroup realising the 2-rank of PB, and
O2(UA) = CA(U ) = 1 by one of the corollaries of the Borel–Tits theorem. Hence, by Quillen’s results
on the solvable case, UA satisfies (QD)2, and thus also M and L B.

When the choice of such parabolic P is not possible, we pick one of the maximal rank subgroups
of L . Here, the components of the maximal subgroup M are usually smaller exceptional groups, low-
dimensional linear group A1(q) and A2(q) or unitary groups 2A2(q). Therefore, we first prove that the
2-extensions of simple linear and unitary groups in dimensions 2 and 3 satisfy (QD)2.

Although there is a large literature on maximal subgroups of exceptional groups of Lie type, we will
only need the results from [Cohen et al. 1992; Kleidman 1988; Liebeck et al. 1992; Liebeck and Seitz
1990; 2004].

Finally, from Theorem 1.1 and the results of [Piterman and Smith 2022b] for p = 2, we can conclude:

Corollary 1.2. Let G be a minimal counterexample to Quillen’s conjecture for p = 2. Then G contains
a component of Lie type in characteristic r ̸= 3. Moreover, every such component fails (QD)2 in some
2-extension and belongs to one of the following families:

PSLn(2a) (n ≥ 3), Dn(2a) (n ≥ 4), E6(2a),

PSL±

n (q) (n ≥ 4), Bn(q) (n ≥ 2), Cn(q) (n ≥ 3), D±

n (q) (n ≥ 4),

where q = ra and r > 3.

The 2-extensions of PSL2(q), PSL3(q) and PSU3(q) satisfy (QD)2 by Propositions 4.2, 4.5 and 4.6,
respectively, with exceptions when q = 3, 5, 9. Nevertheless, the results of [Piterman and Smith 2022b]
eliminate these possibilities from a minimal counterexample.

Further results on the Quillen dimension property at p = 2 for the classical groups could be pursued
by combining the methods presented in this article with the results of [Díaz Ramos 2018; Díaz Ramos
and Mazza 2022].

The paper is organised as follows. In Section 2 we set the notation and conventions that we will
need to work with the finite groups of Lie type. We also provide some useful properties to work out the
p-extensions and compute p-ranks. In Section 3 we gather previous results on the Quillen dimension
property and related tools that will help us establish this property. Then in Section 4 we establish (QD)2
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for some 2-extensions of linear groups and recall the structure of the centralisers of graph automorphisms,
following Table 4.5.1 of [Gorenstein et al. 1998]. In Section 5 we prove each case of Theorem 1.1.

All groups considered in this article are finite. We suppress the notation for the homology coefficients,
and we assume that they are always taken over Q. The interested reader may note that our results can be
extended to homology with coefficients in other rings. Finally, we emphasise that we adopt the language
and conventions of [Gorenstein et al. 1998]. This is particularly important when we name the different
types of automorphisms of groups of Lie type. Computer calculations were performed with [GAP].

2. Preliminaries

We assume that the reader is familiar with the construction of the finite groups of Lie type as fixed points of
Steinberg endomorphisms, and the basic properties concerning root systems of reductive algebraic groups.
We will follow the language of [Gorenstein et al. 1998], which also contains the required background on
finite groups of Lie type. In this section, we will only recall some notation and names, and state results
that will be used later.

We denote by Cn , Dn , Symn and Altn the cyclic group of order n, the dihedral group of order n, the
symmetric group on n points and the alternating group on n points.

If G is a group, then Aut(G), Inn(G) and Out(G) denote the automorphism group, the group of inner
automorphisms and the outer automorphism group of G respectively. We denote by Z(G) the centre of G.
We usually write G : H , or simply GH , for a split extension of G by H . When an extension of G by H may
not split, we denote it by G.H . By an element g (resp. a subgroup B) of G inducing outer automorphisms
on L ≤ G we mean that g ∈ NG(L) embeds into Aut(L) \ Inn(L) (resp. B ≤ NG(L) embeds in Aut(L)

with B ∩ Inn(L) = 1). Finally, H ◦m K denotes a central product of H and K by a central cyclic subgroup
of order m. That is, H ◦m K = (H × K )/ Cm , where Cm embeds into both Z(H) and Z(K ).

We will usually use the notation n in a group extension to denote a cyclic group of order n, and nm a
direct product of m copies of cyclic groups of order n. A number between brackets [n] in the structure
description of an extension means some group of order n.

In this article, we are mainly interested in extensions by elementary abelian groups. Below we recall
the definition of p-extension given in the introduction and introduce some useful notation.

Definition 2.1. Let L be a finite group and p a prime number. A p-extension of L is a split extension
L B of L by an elementary abelian p-group B inducing outer automorphisms on L .

If L ≤ G, we denote by OG(L) the poset of elements B ∈ Ap(NG(L)) such that B ∩ LCG(L) = 1
(that is, B induces outer automorphisms on L). We write O2(L) for OAut(L)(L) at p = 2. We also let
ÔG(L) = OG(L) ∪ {1} and Ô2(L) = O2(L) ∪ {1}.

Definition 2.2. For a prime number p, we say that a group G satisfies the Quillen dimension property
at p if Ap(G) has nonzero homology in dimension mp(G)− 1, where mp(G) denotes the p-rank of G:

H̃mp(G)−1(Ap(G)) ̸= 0. (QD)p



1380 Kevin I. Piterman

A remarkable study of the Quillen dimension property for odd primes p was carried out in Theorem 3.1
of [Aschbacher and Smith 1993]. This theorem provides a list with the p-extensions of simple groups that
might fail (QD)p, for p ≥ 3. In particular, this list contains the p-extensions of unitary groups PSUn(q)

with q odd and p |q+1. However, Conjecture 4.1 of [Aschbacher and Smith 1993] basically claims that
these groups should not belong to this list. In fact, it is shown there that if n < q(q − 1) then these
p-extensions satisfy (QD)p. Nevertheless, this problem remains open.

The aim of this article is to achieve some progress on a similar list for the prime p = 2. Therefore, we
will focus on showing that 2-extensions of certain simple groups satisfy (QD)2. To that end, we introduce
the following convenient definition.

Definition 2.3. A group L satisfies (E-(QD)) if every 2-extension of L satisfies (QD)2:

For every B ∈ Ô2(L), L B satisfies (QD)2. (E-(QD))

In order to establish (QD)p for p-extensions, it is crucial to be able to compute p-ranks of extensions.
The following result, extracted from Lemma 4.2 in [Piterman et al. 2021], will be a useful tool to compute
p-ranks of extensions.

Lemma 2.4 (p-rank of extensions). Let G = N .K be an extension of finite groups, and let p be a prime
number. Then

mp(G) = max
A∈S

(
mp(CN (A)) + mp(A)

)
,

where S= {A ∈ Ap(G)∪ {1} : A ∩ N = 1}. In particular, mp(G) ≤ mp(N )+ mp(K ), and if K has order
prime to p then Ap(G) = Ap(N ) and mp(G) = mp(N ).

We will implicitly use this result at many points of the proofs. Note that, in order to apply this lemma,
we should be able to compute centralisers of elementary abelian 2-subgroups, usually inducing outer
automorphisms. We will often proceed as follows: if L B is a 2-extension of L , then take a suitable
decomposition B = B0 ⊕ B1, with |B1| = 2. Suppose that we can inductively compute the 2-rank of L B0.
Then, by Lemma 2.4, we have

m2(L B) = max
{
m2(L B0), 1 + m2(CL B0(t)) : t ∈ L B \ L B0 is an involution

}
. (2-1)

Moreover, this computation depends only on the conjugacy classes of the involutions t , and, in most of
the cases that we are interested in, such classes are completely classified.

Now we recall, rather informally, the names of the different types of automorphisms of a simple group
of Lie type K defined over a field of odd characteristic, following Definition 2.5.13 of [Gorenstein et al.
1998]. We refer to [Gorenstein et al. 1998] for the full details. Let t ∈ Aut(K ) be an involution and
K ∗

= Inndiag(K ). Then we have the following names for t :

(1) inner-diagonal if t ∈ K ∗;

(2) inner if t ∈ Inn(K );
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(3) diagonal if t ∈ K ∗
\ Inn(K );

(4) field automorphism if t ∈ Aut(K ) \ K ∗ is Aut(K )-conjugate to a field automorphism of the ground
field and K is not 2An(q), 2Dn(q) or 2E6(q);

(5) graph if t ∈ Aut(K ) \ K ∗, roughly, is Aut(K )-conjugate to an involution arising as an automorphism
of the underlying Dynkin diagram (except for K = G2(q)), or else from a field automorphism in cases
2An(q), 2Dn(q) and 2E6(q); and

(6) graph-field automorphism if it can be expressed as a product g f of a graph involution g and a
field automorphism f , or else K = G2(q) and t arises from an Aut(K )-conjugate of an involution
automorphism of the underlying Coxeter diagram.

It follows from Proposition 4.9.1 of [Gorenstein et al. 1998] that the centralisers of field involutions t
verify that m2(CK (t))= m2(K ) and m2(CK ∗(t))= m2(K ∗). By (2-1), we see that m2(K ⟨t⟩)= m2(K )+1.
Below we reproduce a simplified version of this proposition.

Proposition 2.5. Let K =
d6(q) be a group of Lie type in adjoint version in characteristic r , and let x be

a field or graph-field automorphism of prime order p. Set Kx = Or ′

(CK (x)). Then the following hold:

(1) If x is a field automorphism then Kx ∼=
d6(q1/p).

(2) If x is a graph-field automorphism then d = 1, p = 2 or 3, and Kx ∼=
p6(q1/p).

(3) Kx is adjoint and CInndiag(K )(x) ∼= Inndiag(Kx).

(4) Field (resp. graph-field) automorphisms are all Inndiag(K )-conjugate, except for graph-fields for
K = D4(q) and p = 3.

The previous proposition does not determine, a priori, the structure of CK (x), but just of the centraliser
taken over the inner-diagonal automorphism group. Since we are interested in computing m2(CK (x)),
it will be crucial for us to decide when a diagonal involution can centralise a field or graph-field
automorphism x . We recall below Lemma 12.8 of [Gorenstein et al. 2018, Chapter 17], which provides a
partial solution to this problem.

Lemma 2.6. Let K ∼= PSL2(q), P�2n+1(q), PSp2n(q) or E7(q), where q is a power of an odd prime r.
Let φ be a field automorphism of order 2, and let Kφ = Or ′

(CK (φ)). Then

Inndiag(Kφ) = CInndiag(K )(φ) = CInn(K )(φ).

In particular, φ does not commute with diagonal involutions of Inndiag(K ).

We will mainly work with Table 4.5.1 of [Gorenstein et al. 1998] to compute the 2-ranks of extensions
by diagonal and graph involutions, mostly for the groups of type A±

m(q) and the exceptional groups. In
the next paragraph, we briefly and informally describe how to read such a table. See [Gorenstein et al.
1998, pp. 171–182] for a complete and accurate description of Table 4.5.1.

This table records the K ∗-conjugacy classes of inner-diagonal and graph involutions t of a finite group
of Lie type K in adjoint version, and the structure of their centralisers when taken over K ∗

= Inndiag(K ).
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The centraliser of an involution t is denoted by C∗
= CK ∗(t). The first column of Table 4.5.1 denotes the

family for which the involutions are listed (An , Bn , Cn , etc.) The second column indicates the restrictions
for these classes to exist, while the third column is a label for the conjugacy class of that involution. For
the purposes of this article, we will not need to interpret the fourth column. In the fifth column, it is
indicated when such classes are of inner type (denoted by 1), diagonal type (denoted by d) or graph
type (several notation like g, g′). The notation 1/d indicates that it is inner if the condition inside the
parentheses at the right holds, and it is diagonal otherwise. From the sixth column to the end, the structure
of the centraliser C∗ is described. Roughly, C∗ is an extension of a central product of groups of Lie type
L∗

= Or ′

(C∗) (column six), whose versions are specified in the column “version” and whose centres can
be recovered from the column Z(L∗). An extra part centralising this product can be computed from the
column CC∗◦(L∗). Here C∗◦

= L∗T ∗ is the connected-centraliser, where T ∗ is a certain r ′-subgroup arising
from a torus T normalised by t and inducing inner-diagonal automorphisms on L∗. From the columns
L∗, version, Z(L∗) and CC∗◦(L∗), one can compute the “inner-part” of C∗◦. Finally, from the last two
columns we can recover the outer automorphisms of L∗ arising in C∗◦ (in general of diagonal type) and the
remaining part of C∗/C∗◦, which is often an involution acting on the components of L∗ (as field or graph
automorphism, or by switching two components) and on the central part CC∗(L∗) (which is usually cyclic
and the involution acts by inversion). To recover the action of the last column, the symbols i , ↔, φ, γ , 1
mean, respectively, an action by inversion, a swap of two components, a field automorphism of order 2,
a graph automorphism of order 2, and an inner action on a component or trivial action on CC∗◦(L∗).

3. Tools to achieve (QD)p

In this section, we provide tools and collect results that will help us to establish (QD)2 on certain
2-extensions. Many of these tools were introduced and exploited by Aschbacher–Smith to determine the
(QD)-list in [Aschbacher and Smith 1993].

The following proposition is an easy consequence of the Künneth formula for the join of spaces and
the fact that Ap(H × K ) ≃ Ap(H) ∗Ap(K ) (see [Quillen 1978, Proposition 2.6]).

Proposition 3.1. If p is a prime and H, K satisfy (QD)p, then H × K satisfies (QD)p.

The following lemma corresponds to Lemmas 0.11 and 0.12 of [Aschbacher and Smith 1993].

Lemma 3.2. Let N ⊴ G be such that N ≤ Op′(G). Then there is an inclusion

H̃∗(Ap(G/N )) ⊆ H̃∗(Ap(G)).

In particular, m2(G) = m2(G/N ), and if G/N satisfies (QD)p then so does G.
If N ≤ Z(G), then the quotient map induces a poset isomorphism Ap(G) ∼= Ap(G/N ).

The following observation is an easy consequence of the inclusion between the homology groups of
top-degree.

Lemma 3.3. Let H ≤ G be such that mp(H) = mp(G). If H satisfies (QD)p, then so does G.
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Next, we recall one of the essential results on the Quillen dimension property.

Theorem 3.4 (Quillen). If G is a solvable group with Op(G) = 1, then G satisfies (QD)p.

This theorem settles the solvable case of Quillen’s conjecture (see [Quillen 1978, Theorem 12.1]).
Later, it was extended to the family of p-solvable groups by using the CFSG if p is odd. We refer to
Chapter 8 of [Smith 2011] for further details on Quillen’s conjecture and the Quillen dimension property.

In view of Theorem 3.4 and the inclusion lemma (Lemma 3.3), it is convenient to look for solvable
subgroups of G with maximal p-rank. Some standard solvable subgroups in a group of Lie type L arise
by taking extensions of unipotent radicals by elementary abelian subgroups of their normalisers. These
extensions lie then inside parabolic subgroups. The following result on parabolic subgroups will help
us to achieve (E-(QD)) for arbitrary groups of Lie type (see [Aschbacher and Smith 1993, Step v on
p. 506]).

Lemma 3.5. Let L be a simple group of Lie type, and p a prime not dividing the characteristic of L.
Suppose that L B is a p-extension of L and that there exists a B-invariant proper parabolic subgroup
P ≤ L such that mp(L B) = mp(PB). Then L B satisfies (QD)p.

Proof. Let R := Or (P), where r is the characteristic of the ground field. Then, as a consequence of the
Borel–Tits theorem, CAut(L)(R) ≤ R (see Corollary 3.1.4 of [Gorenstein et al. 1998]). In particular, if
T ≤ PB realises the p-rank of PB, then T normalises R, and CT (R) ≤ R ∩ T = 1. This means that T is
faithful on R, i.e., Op(RT ) = 1, and mp(RT ) = mp(PB) = mp(L B). Then RT is a solvable group with
trivial p-core, and by Theorem 3.4, RT satisfies (QD)p. By Lemma 3.3, L B satisfies (QD)p. □

Lemma 3.6. Let L be a simple group of Lie type defined in odd characteristic. Suppose that P is a proper
parabolic subgroup of L containing a Sylow 2-subgroup of L (that is, |L : P| is odd). Then L and the
extension of L by a field automorphism of order 2 satisfy (QD)2.

Proof. Let L and P be as in the hypotheses of the lemma. Since P has odd index in L , it contains a
Sylow 2-subgroup of L . Therefore, m2(P) = m2(L) and by Lemma 3.5, L satisfies (QD)2.

Next, let B ∈ Ô2(L) be cyclic inducing field automorphisms. By passing through algebraic groups
and root systems, it can be shown that B normalises some conjugate of P , which we may assume is P
itself. Thus, after conjugation, we suppose that B ≤ NAut(L)(P). Note that a Sylow 2-subgroup of PB is
a Sylow 2-subgroup of L B, so m2(PB) = m2(L B). By Lemma 3.5, L B satisfies (QD)2. □

We close this section with a few more results on low p-ranks. The following lemma follows from the
p-rank 2 case of Quillen’s conjecture. See [Quillen 1978, Proposition 2.10].

Lemma 3.7. If Ap(G) is connected, mp(G) = 2 and Op(G) = 1, then G satisfies (QD)p.

It will be convenient to recall the classification of groups with a strongly 2-embedded subgroup, that
is, those groups with disconnected 2-subgroup poset. See [Gorenstein et al. 1998, Theorem 7.6.1] and
[Quillen 1978, Sec. 5].
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Theorem 3.8. Let p = 2 and G be a finite group. Then A2(G) is disconnected if and only if O2(G) = 1
and one of the following holds:

(1) m2(G) = 1;

(2) �1(G)/Op′(�1(G)) ∼= PSL2(2n), PSU3(2n) or Sz(22n−1) for some n ≥ 2.

In particular, from the isomorphisms among the simple groups, we see that

Alt5 ∼= PSL2(5) ∼= PSL2(22), 2G2(3)′ ∼= PSL2(23),

are included in the list of item (2).

Indeed, sometimes in low dimensions, we will be able to conclude (QD)p by computing the sign of
the Euler characteristic of Ap(G). Therefore, we will use the following well-known expression of this
invariant. We write E for the conjugacy class of a subgroup E of G.

Proposition 3.9. The reduced Euler characteristic of Ap(G) is

χ̃(Ap(G)) =

∑
E∈Ap(G)/G∪{1}

(−1)mp(E)−1 p(mp (E)

2 ) |G : NG(E)|.

Proof. This follows from the results of [Jacobsen and Møller 2012], as we briefly explain below. By
[Jacobsen and Møller 2012, Example 2.10], we have

χ̃(Ap(G)) = −

∑
E∈Ap(G)∪{1}

χ̃(Ap(E) \ {E}).

Since Ap(E) \ {E} is the poset of proper nonzero subspaces of the vector space E of dimension mp(E)

over the finite field of p elements, we see that

χ̃(Ap(E) \ {E}) = (−1)mp(E)−2 p(mp (E)

2 ).

Grouping by conjugacy classes yields the formula given in the statement of the proposition. □

Finally, the next lemma will help us to produce nonzero homology by inductively looking into the
homology of the Quillen poset of a certain normal subgroup and centralisers of outer elements acting on
it. The main reference for this lemma is [Segev and Webb 1994].

Lemma 3.10. Let G be a finite group and p a prime number. Suppose that L ⊴ G is a normal subgroup
such that OG(L) consists only of cyclic subgroups. Then we have a long exact sequence

· · · → H̃m+1(Ap(G)) →

⊕
B∈OG(L)

H̃m(Ap(CL(B)))
i∗
−→ H̃m(Ap(L))

j∗
−→ H̃m(Ap(G)) → · · ·

where i∗ and j∗ are the natural maps induced by the inclusions Ap(CL(B)) ⊆Ap(L) and Ap(L) ⊆Ap(G),
respectively.

In particular, the following hold:
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(1) Let X be the union of the subposets Ap(CL(B)) for B ∈ OG(L). We have indeed a factorisation⊕
B∈OG(L) H̃m

(
Ap(CL(B))

) i∗
//

i ′
∗

))

H̃m(Ap(L))

H̃m(X)

k∗

99

(3-1)

where also i ′
∗

and k∗ are induced by the inclusions Ap(CL(B)) ⊆ X and X ⊆ Ap(L), respectively.

(2) mp(G) ≤ mp(L) + 1.

(3) If H̃mp(L)−1(Ap(CL(B))) = 0 for all B ∈ OG(L), then Hmp(L)(Ap(G)) = 0.

(4) We have a bound

dim Hmp(L)(Ap(G)) ≥

∑
B∈OG(L)

dim H̃mp(L)−1(Ap(CL(B))) − dim H̃mp(L)−1(X)

≥

∑
B∈OG(L)

dim H̃mp(L)−1(Ap(CL(B))) − dim H̃mp(L)−1(Ap(L)).

(5) If mp(G) = mp(L) + 1 and G fails (QD)p, then, for m = mp(L) − 1, we get inclusions⊕
B∈OG(L)

H̃m
(
Ap(CL(B))

)
↪→ H̃m(X) ↪→ H̃m(Ap(L)).

Proof. The long exact sequence arises from the main result of [Segev and Webb 1994]. Then equation (3-1)
in item (1) is an immediate consequence of this sequence. Item (2) holds by Lemma 2.4. Items (3)–(5)
follow by looking into the last terms of the long exact sequence, at m = mp(L). □

4. Some linear groups satisfy (QD)2

In this section, we prove that the linear groups PSL2(q) and PSL3(q) satisfy (E-(QD)) for every q , with
a few exceptions for q = 3, 5, 9. These cases will serve as basic cases for the exceptional groups, where
we will occasionally find linear groups as direct factors in some of their maximal subgroups.

From [Gorenstein et al. 1998, Proposition 4.10.5], we recall the 2-ranks of the small dimensional linear
groups:

Proposition 4.1. If q is a power of an odd prime and n = 2, 3, then PSL±

n (q) and PGL±

n (q) have 2-rank 2.

We begin by studying the linear group of dimension 2.

Proposition 4.2. Let L ∼= PSL2(q) with q odd and q ̸= 3. Then every 2-extension L B of L satisfies
(QD)2, with the following exceptions:

(1) L ∼= PSL2(5), B = 1;

(2) L ∼= PSL2(9), B induces field automorphisms of order 2.

Moreover, every 2-extension of Inndiag(L) ∼= PGL2(q) satisfies (QD)2, except in case (2).
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2-extension L B CL(B) m2(L B)

B = 1 L 2
B = ⟨φ⟩ PGL2(q1/2) 3
B = ⟨d⟩ Dq+ϵ 2

Table 1. 2-extensions of PSL2(q), q ≥ 5 odd. Here q ≡ ϵ (mod 4), ϵ ∈ {1, −1}.

Proof. We consider the possible 2-extensions of L . In any case, we know that L is simple and that
Out(L) = C2 × Ca , where C2 ∼= Outdiag(L) and Ca is the group of field automorphisms of Fq . Suppose
that φ is an order 2-field automorphisms of Fq (if it exists), and that d ∈ Inndiag(L) \ L is a diagonal
involution. Then the 2-extensions of L are given in Table 1.

This table follows since every involution of Aut(PSL2(q)) \ PGL2(q) is a field automorphism. Recall
also that field and diagonal automorphisms of order 2 do not commute by Lemma 2.6. The structure of the
centraliser for d follows from the first row of Table 4.5.1 of [Gorenstein et al. 1998]. Finally, observe that
L⟨d⟩ = Inndiag(L) and m2(Inndiag(L)⟨φ⟩) = 3 since m2(L) = m2(Inndiag(L)) = 2 by Proposition 4.1.

By computing the Euler characteristic, we prove that each 2-extension of L satisfies (QD)2. First,
2-extensions L B and Inndiag(L)⟨φ⟩ have connected A2-poset by Theorem 3.8, except for L = PSL2(5),
B = 1. Therefore, by Lemma 3.7, L and Inndiag(L) satisfy (QD)2, except for L = PSL2(5). Note that
A2(PSL2(5)) = A2(Alt5) = A2(PSL2(4)) is homotopically discrete with 5 points, and the 2-extension
PGL2(5) ∼= Sym5 does satisfy (QD)2. This yields the conclusions of the statement for the case q = 5.

Next we show (QD)2 for the 2-extensions L⟨φ⟩ and Inndiag(L)⟨φ⟩. Since both have 2-rank 3, by
Lemma 3.3 it is enough to show that L⟨φ⟩ satisfies (QD)2. In order to do this, we compute the dimensions
of H1(A2(L)) and H1

(
A2(CL(φ))

)
.

Since in this situation, q is a square, q ̸= 5. Second, if q = 25, CL(φ) = PGL2(5). Hence, in any case,
the dimension of these degree 1 homology groups can be computed from the reduced Euler characteristic
of the underlying A2-poset. Here we use the formula given in Proposition 3.9. Thus, for K = L or CL(φ),

dim H1(A2(K )) = −χ̃(A2(K )) = 1 − # of involutions in K + 2 · # of 4-subgroups of K . (4-1)

In Table 2 we describe these numbers.

Proof of Table 2. The number of involutions and 4-subgroups of PSL2(q) follows from Dickson’s
classification of the subgroups of PSL2(q) (see also Theorem 6.5.1 of [Gorenstein et al. 1998]).

group number of involutions number of 4-subgroups

PSL2(q) 1
2q(q + ϵ) 1

24q(q2
− 1)

PGL2(q) q2 1
6q(q2

− 1)

Table 2. Here q ≡ ϵ (mod 4), ϵ ∈ {1, −1}.
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The number of involutions of PGL2(q) follows since there is a unique conjugacy class of diagonal
involutions d by Table 4.5.1 of [Gorenstein et al. 1998]. Thus, the number of elements in such conjugacy
class is equal to 1

2q(q − ϵ), which gives q2 after adding the number of involutions in PSL2(q).
Finally, to compute the number of four-subgroups of PGL2(q) we proceed as follows: each four-

subgroup of PGL2(q) is either contained in PSL2(q) or else it contains a unique involution of PSL2(q) and
2 diagonal involutions. Therefore, for a given diagonal involution d , there is a one-to-one correspondence
between 4-subgroups containing d and involutions in CL(d) ∼= Dq+ϵ . This shows that each diagonal
involution is contained in (q + ϵ)/2 4-subgroups. Since we have 1

2q(q − ϵ) diagonal involutions, the total
number of 4-subgroups in PGL2(q) containing diagonal involutions is

q(q − ϵ)

2
·
(q + ϵ)

2
·

1
2

=
q(q2

− 1)

8
.

Thus the total number of 4-subgroups in PGL2(q) is

q(q2
− 1)

24
+

q(q2
− 1)

8
=

q(q2
− 1)

6
.

This completes the proof of Table 2. □

Indeed, by Table 2, we get concrete values for the dimensions of the degree 1 homology groups of
A2(PSL2(q)) and A2(PGL2(q)):

dim H1
(
A2(PSL2(q))

)
= −χ̃

(
A2(PSL2(q))

)
=

1
12(q − ϵ)(q2

− (6 − ϵ)q − ϵ12), (4-2)

dim H1
(
A2(PGL2(q))

)
= −χ̃

(
A2(PGL2(q))

)
=

1
3(q − 3)(q2

− 1). (4-3)

Now we need to describe the number of field automorphisms in PSL2(q)⟨φ⟩ and in PGL2(q)⟨φ⟩.
Recall that the field automorphisms of PSL2(q)⟨φ⟩ are all PGL2(q)-conjugate, with centraliser

CPGL2(q)(φ) = CPSL2(q)(φ). Thus, the number of field automorphisms of order 2 in PSL2(q)⟨φ⟩ is
exactly

| PGL2(q)|

|CPSL2(q)(q)|
=

q(q2
− 1)

q1/2(q − 1)
= q1/2(q + 1).

This gives q1/2(q +1) involutions in PSL2(q)⟨φ⟩\PSL2(q). Let L = PSL2(q), B = ⟨φ⟩. By Lemma 3.10,
the values in Table 2 and formula (4-1), we conclude that

dim H2(A2(L B)) ≥ q1/2(q + 1) dim H1
(
A2(PGL2(q1/2))

)
− dim H1

(
A2(PSL2(q))

)
= q1/2(q + 1)1

3(q1/2
− 3)(q − 1) −

1
12(q − 1)(q2

− 5q − 12)

=
1
4(q1/2

− 1)(q − 1)(q3/2
− 3q − 4).

Note that q ≡ 1 (mod 4). The above number is positive for all q ≥ 13, which is our case since q is an
even power of an odd prime and q ̸= 9 by hypothesis. We conclude that L B = PSL2(q)⟨φ⟩ satisfies
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(QD)2. Then also PGL2(q)⟨φ⟩ satisfies (QD)2. Moreover,

dim H2
(
A2(PGL2(q)⟨φ⟩)

)
≥ dim H2

(
A2(PSL2(q)⟨φ⟩)

)
≥

1
4(q1/2

− 1)(q − 1)(q3/2
− 3q − 4). (4-4)

We have shown that every possible 2-extension of PSL2(q) and PGL2(q) satisfies (QD)2, except for
the cases described in the statement of the theorem. □

We note that the excluded cases in Proposition 4.2 actually fail (QD)2. Indeed, PSL2(5) fails (QD)2

since it has 2-rank 2 and A2(PSL2(5)) = A2(PSL2(4)) is homotopically discrete. The following ex-
ample provides the details that show that PSL2(9)⟨φ⟩ and PGL2(9)⟨φ⟩ fail (QD)2, where φ is a field
automorphism of order 2.

Example 4.3. Let L = PSL2(9) and let A = Aut(L). Then A/L ∼= C2 × C2, so every 2-extension of L is
a nontrivial normal subgroup of A. This gives 3 possible 2-extensions of L , but not 4. Let φ be a field
automorphism of L and d a diagonal automorphism of L , both of order 2. Then the possible 2-extensions
of L are

(1) L , with 2-rank 2, satisfies (QD)2 with H1(A2(L)) of rank 16;

(2) L⟨φ⟩, with 2-rank 3, fails (QD)2 since CL(φ) ∼= Sym4, which has nontrivial 2-core

O2(CL(φ)) ∼= C2 × C2 ̸= 1;

(3) L⟨d⟩ = PGL2(9), with 2-rank 2, satisfies (QD)2 with H1(A2(L)⟨d⟩) of rank 160 and CL(d) ∼= D10.

Note that Aut(L) has 2-rank 3 and does not satisfy (QD)2, and it is not a 2-extension of L since
diagonal and field automorphisms do not commute in Aut(L). Also PGL2(9)⟨φ⟩ fails (QD)2 since
CPGL2(9)(φ) = CL(φ) has nontrivial 2-core.

There is also a remaining almost simple group N with L < N < Aut(L), not contained in the previous
cases. This is the extension N = PSL2(9).2 ∼= Alt6 .2, and it satisfies that A2(N ) = A2(L). Therefore,
although this group N is not a 2-extension of L , it is a “nonsplit 2-extension”, and it does satisfy (QD)2.

Finally, these computations show that A2(L) ↪→ A2(Aut(L)) induces an inclusion in homology, and
hence a nonzero map. By the main result of [Piterman and Smith 2022a], PSL2(9) is not a component of
a minimal counterexample to Quillen’s conjecture.

Our next aim is to show that 2-extensions of PSL3(q) satisfy (QD)2, with only a few exceptions. We
will need the following lemma which records the values of the Euler characteristic of the Quillen poset of
some linear groups and the unitary groups in dimension 3.

Lemma 4.4. For L = PSLn(q) and n odd, we have

χ̃(A2(L)) = χ̃
(
A2(PGLn(q))

)
=

(−1)n

n

n−1∏
i=1

(q i
− 1) fn(q),
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where fn(q) denotes a polynomial as described in [Welker 1995]. For instance, f3(q) = q3
+3q2

+3q +3.
Moreover, since A2(L) is Cohen–Macaulay of dimension n − 2, the above Euler characteristic computes
the dimension of Hn−2(A2(L)).

If L = PSU3(q), then

χ̃(A2(L)) = χ̃
(
A2(PGU3(q))

)
= −

1
3(q6

− 2q5
− q4

+ 2q3
− 3q2

+ 3).

Proof. The value of the Euler characteristic for PGLn(q) follows from Proposition 4.1 and Theorem 4.4
of [Welker 1995] (note that there is a typo in the formula of Theorem 4.4, and the product over i
should be up to r − 1). Also, since n is odd, by Proposition 7.5 of [Piterman and Welker 2022],
A2(PSLn(q)) =A2(PGLn(q)) =A2(GLn(q))>Z where Z is the cyclic subgroup of order 2 of Z(GLn(q)).
By [Quillen 1978] (see also [Welker 1995]), A2(PSLn(q)) is Cohen–Macaulay of dimension n − 2.

The formula for PGU3(q) follows from Example 7.6 of [Piterman and Welker 2022]. □

Next, we show that the 2-extensions of PSU3(q) satisfy (QD)2, except for q = 3. These cases will be
important during our analysis for PSL3(q), especially when working with 2-extensions by graph-field
automorphisms.

Proposition 4.5. Let L = PSU3(q) with q odd. Then L satisfies (E-(QD)) if q ̸= 3. Moreover, let φ be a
graph automorphism of order 2 of L. Then we have

dim H2
(
A2(PGU3(q)⟨φ⟩)

)
≥ dim H2

(
A2(PSU3(q)⟨φ⟩)

)
≥

1
3(q2

− 1)(q + 1)

(
q2(q2

− q + 1)

(3, q + 1)
(q − 3) − (q3

− 3q2
+ 3q − 3)

)
,

which is a positive polynomial for q > 3. Finally, for q = 3, PSU3(3) satisfies (QD)2 but PSU3(3)⟨φ⟩

fails (QD)2.

Proof. We have that A2(L) is connected by Theorem 3.8, and m2(L) = 2 by Proposition 4.1. Thus L
satisfies (QD)2 by Lemma 3.7. Moreover, by Lemma 4.4,

dim H1(A2(L)) = −χ̃(A2(L)) =
1
3(q6

− 2q5
− q4

+ 2q3
− 3q2

+ 3). (4-5)

Next, the only possible nontrivial 2-extension of L is by a graph automorphism φ of order 2 (which
indeed arises from the field automorphism x 7→ xq ). Let L1 = L⟨φ⟩ be such extension. By Table 4.5.1 of
[Gorenstein et al. 1998],

CPGU3(q)(φ) ∼= Inndiag(�3(q)) = PGL2(q).

This implies that CL(φ) = PGL2(q). Moreover, there is a unique PGU3(q)-conjugacy class of graph
automorphisms, and such elements act by inversion on Outdiag(L) = (3, q +1). Thus the conjugacy class
of φ in Out(L) has size (3, q + 1), and this gives rise to exactly (3, q + 1) extensions L⟨φ′

⟩ ≤ Aut(L) of
L by a conjugate φ′ of φ, and these extensions are Aut(L)-conjugate. We conclude then that the number
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of graph automorphisms contained in L1 is

ng :=
| PGU3(q)|

| PGL2(q)|(3, q + 1)
=

q2(q3
+ 1)

(3, q + 1)
.

Finally, by Lemma 3.10, we conclude that

dim H2
(
A2(PGU3(q)⟨φ⟩)

)
≥ dim H2

(
A2(PSU3(q)⟨φ⟩)

)
≥ ng dim H1

(
A2(PGL2(q))

)
− dim H1

(
A2(PSU3(q))

)
=

q2(q3
+ 1)

(3, q + 1)
1
3(q − 3)(q2

− 1) −
1
3(q6

− 2q5
− q4

+ 2q3
− 3q2

+ 3)

=
1
3(q2

− 1)(q + 1)

(
q2(q2

− q + 1)

(3, q + 1)
(q − 3) − (q3

− 3q2
+ 3q − 3)

)
.

This polynomial is positive for all q > 3. Therefore, L1 satisfies (QD)2 if q ̸= 3.
When q = 3, CL(φ) = PGL2(3) has nontrivial 2-core, so H1

(
A2(CL(φ))

)
= 0, and by Lemma 3.10(3),

H2(A2(L1)) = 0. □

Now we have the necessary background to prove that PSL3(q) satisfies (E-(QD)), except for a small
number of cases.

Proposition 4.6. Let L = PSLn(q) with n, q odd. The following assertions hold:

(1) L , and L extended by a field involution, satisfy (QD)2.

(2) If n = 3, then every 2-extension of L satisfies (QD)2, with the following exceptions that fail (QD)2:

• L = PSL3(3) extended by a graph automorphism, and
• L = PSL3(9) extended by a group generated by a field involution and a graph automorphism.

Proof. Let L = PSLn(q), with n odd, and consider the stabiliser P of a 1-dimensional subspace of the
underlying module V = Fn

q . Then P is a parabolic subgroup with structure P ∼= [qn−1
]L P , where L P , a

Levi complement for P , has structure SLn−1(q) ◦(n,q−1) Cq−1. Thus |L P | = | GLn−1(q)|/(n, q − 1) and
the index of P in L is

|L : P| =
qn(n−1)/2 ∏n

i=2(q
i
− 1)

qn−1 · q(n−1)(n−2)/2
∏n−1

i=1 (q i − 1)
=

qn
− 1

q − 1
= qn−1

+ qn−2
+ · · · + q + 1.

Since n is odd, the index of P in PSLn(q) is odd. By Lemma 3.6, L = PSLn(q) and L extended by a
field involution satisfy (QD)2. This proves item (1).

Before moving to the case n = 3, we list all the possible 2-extensions of L . Denote by φ, γ and δ a
field automorphism of order 2, a graph automorphism and a graph-field automorphism of L , respectively,
such that [φ, γ ] = 1 and δ = φγ . Let also L∗

= PGLn(q). Then the 2-extensions of L are

(i) L;

(ii) L⟨φ⟩, with CL∗(φ) ∼= PGLn(q1/2) by Proposition 2.5;

(iii) L⟨γ ⟩, with CL(γ ) ∼= Inndiag(�n(q)) by Table 4.5.1 of [Gorenstein et al. 1998];
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(iv) L⟨δ⟩, with CL∗(δ) ∼= PGUn(q1/2) by Proposition 2.5;

(v) L⟨φ, γ ⟩, with CL(φ, γ ) ∼= Inndiag(�n(q1/2)) by (iii) and Proposition 2.5.

Now suppose that n = 3, that is L = PSL3(q). We know that the extensions of cases (i) and (ii) above
satisfy (QD)2 by the parabolic argument. So it remains to show that the 2-extensions by graph, graph-field
and both graph and field automorphisms, satisfy (QD)2. To that end, we compute the dimensions of the
top-degree homology groups, similar to what we did for PSL2(q) in the proof of Proposition 4.2.

First, recall that we have the following number of involutions of each type. Let B = ⟨φ, γ ⟩.

n f := # field involutions in L⟨φ⟩ = # field involutions in L B

=
| PGL3(q)|

| PGL3(q1/2)|(3, q1/2 + 1)
,

ng := # graph involutions in L⟨γ ⟩ = # graph involutions in L B

=
| PGL3(q)|

| PGL2(q)|(3, q − 1)
,

ng f := # graph-field involutions in L⟨δ⟩ = # graph-field involutions in L B

=
| PGL3(q)|

| PGU3(q1/2)|(3, q1/2 − 1)
.

To compute these numbers, we have used the structure of the centraliser in each case, the fact that there is
a unique L∗-conjugacy class for each type of involution, and the structure of Out(L) = (3, q − 1) : ⟨φ, γ ⟩

(see Theorem 2.5.12 of [Gorenstein et al. 1998]).
Let t be a field, graph or graph-field involution of L , and let L1 = L⟨t⟩. Then the number nt of involutions

in L1 \ L is n f , ng or ng f , accordingly to the type of t . Note also that m2(L1) = m2(L) + 1 = 3.
By Lemma 3.10,

dim H2(A2(L1)) ≥ nt · dim H1
(
A2(CL(t))

)
− dim H1(A2(L)). (4-6)

We compute d(t) := dim H1
(
A2(CL(t))

)
in each case, by using Lemma 4.4 and (4-3). Note that

�1(CL(φ)) = PSL3(q1/2) by item (ii) above. Also CL(γ ) = PGL2(q) by the classical isomorphism
Inndiag(�3(q)) ∼= PGL2(q). By Lemma 4.4, we have

d(φ) = dim H1
(
A2(PSL3(q1/2))

)
=

1
3(q1/2

− 1)(q − 1)(q3/2
+ 3q + 3q1/2

+ 3),

d(γ ) = dim H1
(
A2(PGL2(q))

)
=

1
3(q − 3)(q2

− 1),

d(δ) = dim H1
(
A2(PGU3(q1/2))

)
=

1
3(q3

− 2q5/2
− q2

+ 2q3/2
− 3q + 3).

Let d := dim H1(A2(L)). Since A2(L) is connected and m2(L) = 2, by Lemma 4.4 we have

d = −χ̃(A2(L)) =
1
3(q − 1)(q2

− 1)(q3
+ 3q2

+ 3q + 3).

Now it is routine to verify that nt d(t) > d if t = γ or t = δ, if and only if (t, q) ̸= (γ, 3). Indeed, for
q = 3, CL(γ ) = PGL2(3) ∼= Sym4 has nontrivial 2-core, so d(γ ) = 0 and in consequence, H2(L⟨γ ⟩) = 0.
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This shows that L⟨γ ⟩ fails (QD)2 if q = 3. Therefore, a 2-extension of L by a field, graph or graph-field
involution satisfies (QD)2 if and only if q ̸= 3 when L is extended by a graph involution.

It remains to show that L B = L⟨φ, γ ⟩ verifies (QD)2. For this case, we take L f = L⟨φ⟩, L2 = L B
and consider the long exact sequence of Lemma 3.10 at m = 2 there (since m2(L2) = 4). That is, we
need to show that H3(A2(L2)) ̸= 0.

Note that the set of involutions t ∈ L2 \ L1 is exactly the set of all graph and graph-field automorphisms
of the extension L2 = L B. Let dg := dim H2

(
A2(PGL2(q)⟨φ⟩)

)
, dg f := dim H2

(
A2(PGU3(q1/2)⟨φ⟩)

)
and df := dim H2(A2(L f )). Therefore, by Lemma 3.10,

dim H3(A2(L2)) ≥ ngdg + ng f dg f − df . (4-7)

We show that the right-hand side of this equation is positive if q ̸= 9 by providing proper bounds of the
dimensions dg, dg f and df .

By (4-4),

dg = dim H2
(
A2(PGL2(q)⟨φ⟩)

)
≥

1
4(q1/2

− 1)(q − 1)(q3/2
− 3q − 4). (4-8)

Next, by Proposition 4.5,

dg f ≥
1
3(q − 1)(q1/2

+ 1)

(
q(q − q1/2

+ 1)

(3, q1/2 + 1)
(q1/2

− 3) − (q3/2
− 3q + 3q1/2

− 3)

)
, (4-9)

which is positive for all q > 9.
Finally, we need to bound df from above. Indeed, by Lemma 3.10 at m = 2, we have

df = dim H2(A2(L f )) = dim H2
(
A2(PSL3(q)⟨φ⟩)

)
≤ n f dim H1

(
A2(PSL3(q1/2))

)
=

q3/2(q + 1)(q3/2
+ 1)

(3, q1/2 + 1)
1
3(q1/2

− 1)(q − 1)(q3/2
+ 3q + 3q1/2

+ 3).

Now we check with the given bounds that ngdg + ng f dg f − df is positive if and only if q > 9. In
fact, if q = 9, similar arguments show H3(A2(L B)) = 0 since dg = 0 by Example 4.3 and dg f = 0 by
Proposition 4.5.

We conclude that every 2-extension of PSL3(q) satisfies (QD)2, except for PSL3(3) extended by a
graph automorphism and for PSL3(9) extended by field and graph automorphisms, which actually fail
(QD)2. □

5. The Quillen dimension property on exceptional groups of Lie type

We use the results of the preceding sections to show that, with only finitely many exceptions, the 2-
extensions of the finite simple groups of exceptional Lie type satisfy (QD)2. For that purpose, it will be
convenient to recall first which 2-extensions can arise in each case. Table 3 records the 2-ranks of the
exceptional groups of Lie type in adjoint version and the structure of the outer automorphism group. The
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group 2-rank Outdiag Out / Outdiag
3D4(q) 3 1 38

G2(q) 3 1 80, where |80 : 0| = 2 if q = 3a , and 0 = 1 otherwise
2G2(q) 3 1 8 (odd order)
F4(q) 5 1 8

E6(q) 6 (3, q − 1) 8× 0, 0 ∼= C2
2E6(q) 6 (3, q + 1) 28

E7(q) 8 2 8

E8(q) 9 1 8

Table 3. Out / Outdiag is cyclic unless specified; 8 = Aut(Fq) ∼= Ca , where q = ra, r is
an odd prime, and the usual conventions for the twisted types hold. Also, 0 is a set of
graph automorphisms.

2-ranks were extracted from [Cohen and Seitz 1987; Gorenstein et al. 1998, Proposition 4.10.5]. From
Table 3, we will compute the possible 2-extensions in each case.

Recall that we follow the terminology of [Gorenstein et al. 1998]. In particular, by a group of Lie
type K we mean the finite group Or ′

(Cσ (K )), where K is a simple Fr -algebraic group and σ a Steinberg
endomorphism of K . Also, K is the adjoint version if Z(K ) = 1. Unless we specify the version, we will
always work with the adjoint versions of the exceptional groups of Lie type.

Cases G2(q) and 2G2(q). We start by proving that the Ree groups 2G2(q) satisfy (QD)2 if and only if
q ̸= 3. Note that, by Table 3 for example, 2G2(q) has no nontrivial 2-extension.

Proposition 5.1. Let L be the Ree group 2G2(q), where q is a power of 3 by an odd positive integer. Then
the following hold:

(1) L has no nontrivial 2-extensions.

(2) A Sylow 2-subgroup of L is an elementary abelian group of order 8, so m2(L) = 3.

(3) 2-subgroups of equal order of L are conjugate.

(4) L satisfies (QD)2 if and only if q ̸= 3. Moreover, if q > 3 then

dim H2(A2(L)) ≥ χ̃(A2(L)) =
1
21(q2

− 1)(q5
− 8q4

+ 15q3
+ 21) > 0. (5-1)

(5) For q = 3, A2(L) = A2(PSL2(8)) is homotopy equivalent to a discrete space of 8 points.

Proof. Items (1)–(3) are well-known facts about the Ree groups and can be found in [Ward 1966].
If L =

2G2(3), then L ′
= PSL2(8) has index 3 in L , and A2(L) ∼= A2(PSL2(8)) is homotopy equivalent

to a discrete space with 8 points. Since m2(L) = 3, we conclude that L fails (QD)2 for q = 3. This
proves item (5) and the “only if” part of item (4).

Now suppose that q ̸= 3 and L =
2G2(q). Since A2(L) has dimension 2 by item (2), we show that its

second homology group is nonzero. To that end, it is enough to see that its Euler characteristic is positive
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since A2(L) is connected for q ̸= 3 by Theorem 3.8. Indeed,

χ̃(A2(L)) = dim H2(A2(L)) − dim H1(A2(L)) ≤ dim H2(A2(L)).

We invoke Theorem C of [Kleidman 1988] to describe the normalisers of 2-subgroups: the centraliser
of an involution is 2×PSL2(q), the normaliser of a four-subgroup is (22

×D(q+1)/2) : 3, and the normaliser
of a Sylow 2-subgroup is 23

: 7 : 3. From this information, items (2), (3) and Proposition 3.9, we can
compute the Euler characteristic of A2(L):

χ̃(A2(L)) = −1 +
|L|

2| PSL2(q)|
− 2

|L|

6(q + 1)
+ 8

|L|

168

= −1 + q3(q3
+ 1)(q − 1)

( 1
q(q2−1)

−
1

3(q+1)
+

1
21

)
=

1
21(q2

− 1)(q5
− 8q4

+ 15q3
+ 21).

Since the polynomial q5
− 8q4

+ 15q3
+ 21 = q4(q − 8) + 15q3

+ 21 is positive for every prime power
q ̸= 4, we conclude that H2(A2(L)) ̸= 0. In consequence, L satisfies (QD)2 if q ̸= 3. This completes the
proof of item (4), and hence of this proposition. □

For the case G2(q), we refer the reader to the classification of maximal subgroups of G2(q) by
P. Kleidman [1988]. We will follow the terminology of that article.

Proposition 5.2. Let L = G2(q), with q odd. Then every 2-extension of L satisfies (QD)2, except possibly
for the 2-extensions of G2(3) and the 2-extension of G2(9) by a field involution.

Proof. Let L = G2(q). We prove first that G2(q) and its extension by a field automorphism of order 2
satisfy (QD)2, by exhibiting a maximal subgroup of the same rank that satisfies (QD)2.

By Theorem A in [Kleidman 1988], G2(q) contains a subgroup K+ = SL3(q) : 2. Let L+ = F∗(K+) ∼=

SL3(q) and Z = Z(L+). Then L0 := L+/Z = PSL3(q) and H0 := K+/Z = L0⟨γ ⟩, where γ induces a
graph automorphism on L0 (see Proposition 2.2 and its proof in [Kleidman 1988]). By Proposition 4.6,
L0 satisfies (QD)2 if q ̸= 3, so H0 satisfies (QD)2.

On the other hand, m2(L) = 3 by Table 3, and also m2(L0) = 3 by the proof of Proposition 4.6. Recall
from Lemma 3.2 that

H̃∗(A2(H0)) = H̃∗(A2(K+/Z)) ⊆ H̃∗(A2(K+)).

In particular, we get the following inclusions between the top-degree homology groups

H̃2(A2(H0)) ⊆ H̃2(A2(K+)) ⊆ H̃2(A2(L)),

which show that L satisfies (QD)2 if q ̸= 3.
Next, a nontrivial 2-extension of L = G2(q) can only be given by field automorphisms of order 2

if q is not a power of 3. Moreover, by the construction of the subgroup K+ given in [Kleidman
1988], field automorphisms of G2(q) induce field automorphisms on (a suitable conjugate of) K+,
and hence on the quotient H0. Thus, for B ∈ O2(L) inducing field automorphisms, we may take
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K+ fixed by B, and then K+B ∼= SL3(q) : (2 × B) after a suitable choice of conjugates (recall that
Out(SL3(q)) = (3, q − 1) : (Aut(Fq)×0), where 0 = 2 is a group of graph automorphisms). Similar as
before, we have a split extension K+B/Z = L0 B ′, where B ′

= ⟨γ ⟩ × B ∈ O(L0). By Proposition 4.6,
L0 B ′ satisfies (QD)2 if q ̸= 9. Analogously to the previous case, m2(L0 B ′) = 4 = m2(L) = m2(K+B),
and we get an inclusion in the degree 3 homology groups, showing that K+B and L B satisfy (QD)2.
Therefore, an extension of L by a field automorphism of order 2 satisfies (QD)2 if q ̸= 9.

It remains to analyse the case q =3a . By Table 4.5.1 of [Gorenstein et al. 1998] (see also Theorem 2.5.12
of [Gorenstein et al. 1998]), only field or graph-field automorphisms can arise in Aut(L). We have shown
above that the extension of L by a field automorphism of order 2 satisfies (QD)2 if q ̸= 9. Thus we need
to prove that if t is a graph-field automorphism of L , then L⟨t⟩ satisfies (QD)2. In that case, q = 32a+1

and by Proposition 2.5, CL(t) =
2G2(q), which has 2-rank 3. Therefore m2(L⟨t⟩) = 4. However, by

Theorem B of [Kleidman 1988], every maximal subgroup of L⟨t⟩ containing t is either 2-local or has
2-rank at most 3. This shows that we cannot proceed as before via maximal subgroups. In view of this,
we will proceed by using the long exact sequence of Lemma 3.10.

We have subgroups M0 := CL(t) =
2G2(q), M1 := G2(3)⟨t⟩ ≤ L⟨t⟩ and M2 :=

2G2(3) such that
M2 ≤ M1∩M0. Fix A a Sylow 2-subgroup of M2. By Proposition 5.1(2) and [Kleidman 1988, Lemma 2.4],
A is also a Sylow 2-subgroup of M0 and it is self-centralising in L , i.e., CL(A) = A. A direct computation
also shows that NM ′

1
(A) = A.PSL3(2), which immediately implies NL(A) = A.PSL3(2).

Now, suppose by the way of contradiction that L⟨t⟩ fails (QD)2, that is, the homology group
H3(A2(L⟨t⟩)) vanishes. Recall that CL(t)=

2G2(q) and there is a unique L-conjugacy class of involutions
t ′

∈ L⟨t⟩ − L by Proposition 2.5(4). Let X =
⋃

CL (t)x∈L/CL (t) A2(CL(t x)). By Lemma 3.10, we get
inclusions ⊕

L/CL (t)

H2
(
A2(CL(t))

)
↪→ H2(X) ↪→ H2(A2(L)). (5-2)

Set

d := dim H2(X), d ′
:= dim

⊕
L/CL (t)

H2
(
A2(CL(t))

)
= |L : CL(t)| dim H2

(
A2(

2G2(q))
)
.

Equation (5-2) shows that d ′
≤ d . However, we will prove that d < d ′, arriving then at a contradiction.

On one hand, we have that X is a union of A2-posets. Therefore, below each point, we have a wedge
of spheres of maximal possible dimension. This means that the homology of X can be obtained from the
chain complex that in degree i is freely generated by the spheres below each point of X of height i . In
particular, for i = 2, the points of height 2 correspond to the conjugates of A, the fixed Sylow 2-subgroup
of M0 = CL(t) and M2. Thus,

d = dim H2(X) ≤ |L : NL(A)| · #(spheres below A) =
q6(q6

− 1)(q2
− 1)

168
.

On the other hand, by Proposition 5.1(4),

d ′
≥ |L : CL(t)| · χ̃

(
A2(

2G2(q))
)
= q3(q3

− 1)(q + 1) 1
21(q2

− 1)(q5
− 8q4

+ 15q3
+ 21).
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Finally, from these bounds, we prove that d ′ > d if q ≥ 7. We can bound

d ′
− d ≥ q3(q3

− 1)(q + 1) 1
21(q2

− 1)(q5
− 8q4

+ 15q3
+ 21) −

q6(q6
− 1)(q2

− 1)

168
= q3(q3

− 1)(q + 1) 1
168(q2

− 1)
(
8(q5

− 8q4
+ 15q3

+ 21) − q3(q2
− q + 1)

)
> 8(q5

− 8q4
+ 15q3

+ 21) − q3(q2
− q + 1)

= 7(q4(q − 9) + 17q3
+ 24).

The latter polynomial is clearly positive for q ≥ 9, and also for q = 7 by direct computation. Since q ≥ 7
by hypothesis, we conclude that d ′ > d . This gives a contradiction to equation (5-2), and thus shows that
H3(A2(L⟨t⟩)) ̸= 0; that is, L⟨t⟩ satisfies (QD)2. This finishes the proof of the proposition. □

Example 5.3. Let L = G2(3). We show that A2(L) is homotopy equivalent to a wedge of spheres of
dimension 1. In particular, since m2(L) = 3, L fails (QD)2. Moreover, by Lemma 3.10, also the unique
nontrivial 2-extension of L (by a graph-field automorphism) fails (QD)2.

We construct a subposet of A2(L) of dimension 1 and homotopy equivalent to A2(L). First, take
the subposet i(A2(L)) =

{
A ∈ A2(L) : A = �1

(
Z
(
�1(CL(A))

))}
, which is homotopy equivalent to

A2(L) (see [Piterman 2019, Remark 4.5]). Next, there are two conjugacy classes of elementary abelian
2-subgroups of order 8, and both are contained in i(A2(L)). For one of these classes, say represented by A,
the normaliser NL(A) has order 192. Then it can be shown that i(A2(L))<A is contractible. Therefore, if
we remove the L-conjugates of A from i(A2(L)) we get a subposet si(A2(L)) homotopy equivalent to
i(A2(L)). Now, there is a unique conjugacy class of four-subgroups in this new subposet si(A2(L)), and
each such subgroup is contained in a unique element of order 8 of si(A2(L)). Again, we can remove all
the four-subgroups from si(A2(L)) and obtain a new subposet Y homotopy equivalent to A2(L). Since
Y consists only of elements of order 2 and 8, we conclude that Y has dimension 1. Finally, an extra
computation shows that χ̃(A2(L)) = −11584. Therefore A2(L) is homotopy equivalent to a wedge of
11584 spheres of dimension 1. In particular, L fails (QD)2.

This also shows that L = G2(9) extended by a field automorphism of order 2 fails (QD)2: if φ is a
field involution, then CL(φ) = G2(3), and thus H2

(
A2(CL(φ))

)
= 0 by the previous computation. Then

by Lemma 3.10, we conclude that H3(A2(L)) = 0.

Cases 3D4 and F4(q).

Proposition 5.4. The group L =
3D4(q) satisfies (E-(QD)) if q ̸= 9 is odd. Also 3D4(9) satisfies (QD)2.

Proof. Recall that m2(L) = 3 by Table 3. Then a graph automorphism of order 3 of 3D4(q) centralises a
subgroup K = G2(q). Also, if φ denotes a field automorphism of order 2 of L , then, after choosing a
suitable conjugate, we may assume that φ induces a field automorphism on K . By Proposition 5.2 and
its proof, m2(K ) = 3 = m2(L), m2(K ⟨φ⟩) = 4 = m2(L⟨φ⟩), and both K and K ⟨φ⟩ satisfy (QD)2 for
q ̸= 3, 9 respectively. Also note that G2(9) satisfies (QD)2. By Lemma 3.3, L and L⟨φ⟩ satisfy (QD)2

if q ̸= 3, 9, respectively. Since these are the only possible 2-extensions of L by Table 3, this concluded
with the proof of our proposition for q ̸= 3.
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If q = 3, a computation of the Euler characteristic of A2(L) in GAP with the Posets package [Fernández
et al. 2019] shows that χ̃(A2(L)) = 882634225472. Since A2(L) is connected by Theorem 3.8, we see
that H2(A2(L)) ̸= 0, that is, L satisfies (QD)2. □

Proposition 5.5. If L = F4(q), with q ̸= 3, 9 odd, then L satisfies (E-(QD)). Also F4(9) satisfies (QD)2.

Proof. Suppose that q ̸= 3, 9 is an odd prime power. Then L contains a subgroup H := PGL2(q)×G2(q)

(see the main result of [Liebeck and Seitz 2004]). Note that H satisfies (QD)2 by Propositions 3.1, 4.2
and 5.2. Since both L and H have 2-rank 5 by Table 3, we conclude that L satisfies (QD)2.

Let B ∈O2(L), so B is generated by a field automorphism of order 2. Thus it acts by field automorphisms
in a direct product subgroup isomorphic to H , which we may assume without loss of generality that it is
our H . Then H̃ = PGL2(q)B×G2(q1/2), which is a subgroup of HB, satisfies (QD)2 by Propositions 3.1,
4.2 and 5.2. Since m2(H̃) = 6 = m2(L B), we conclude that L B also satisfies (QD)2.

We have shown that every possible 2-extension of L satisfies (QD)2, so L satisfies (E-(QD)).
If q = 9, then PGL2(9) × G2(9) satisfies (QD)2 by Propositions 3.1, 4.2 and 5.2. Therefore, F4(9)

satisfies (QD)2. □

Cases E6(q) and 2E6(q).

Proposition 5.6. Let L = Eϵ
6(q) (any version), ϵ ∈ {±1}, and q odd. Then L satisfies (E-(QD)).

Proof. Let L = Eϵ
6(q) in adjoint version (i.e., simple), where ϵ ∈ {±1}. For a 2-extension L B of the

adjoint version L , we see that m2(L B) = m2(Lu B̃), where Lu is the universal version of Eϵ
6(q) and B̃,

isomorphic to B, is just a lift of the action of B on Lu (this is possible since Z(Lu) = (3, q − ϵ) is odd).
Thus L B = Lu B̃/Z(Lu), and by Lemma 3.2, H̃∗(A2(L B)) ⊆ H̃∗(A2(Lu B)). Therefore, if L satisfies
(E-(QD)), then so does the universal version of Eϵ

6(q).
We will show that there exists a parabolic subgroup P of L such that for any 2-extension L B, a suitable

conjugate of P is normalised by B (so we can suppose it is P itself), and m2(PB) = m2(L B).
This parabolic subgroup P arises from the A5 subdiagram in E6, so P = U GLϵ

6(q)/Z(Lu), where
GLϵ

6(q)/Z(Lu) denotes the Levi complement. Then m2(P) = 6, which realises the 2-rank of L . Further-
more, a graph, graph-field or field automorphism of order 2 of L (the last two only for ϵ = 1) stabilises this
subdiagram (and hence P), inducing a graph (resp. graph-field or field) automorphism on GLϵ

6(q)/Z(Lu).
Denote by t such automorphism. Then m2(L⟨t⟩) ≤ m2(L) + 1 = 7. We claim that

m2(P⟨t⟩) = m2(GLϵ
6(q)⟨t⟩) = 7 = m2(L⟨t⟩). (5-3)

Note that m2(P⟨t⟩) = m2(GLϵ
6(q)⟨t⟩), for the lifted action of t on GLϵ

6(q). Then it is clear that (5-3) holds
if t induces a field automorphism (so ϵ = 1), since the stabiliser of t in GL6(q) is GL6(q1/2). Similarly,
if t is a graph-field automorphism then ϵ = 1 and CGL6(q)(t) = GU6(q1/2), which has 2-rank 6. Then, in
these two situations, m2(P⟨t⟩) = 7.

Now assume that t is a graph involution. For ϵ = 1, t acts on GL6(q), so GL6(q)⟨t⟩ contains a
graph automorphism g inducing the map x 7→ (x ′)−1, where x ′ denotes the transpose of x . Therefore,
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CGL6(q)(g)={x ∈ GL6(q) : xx ′
= 1}= GO6(q) is the subgroup of orthogonal matrices, which has 2-rank 6.

This implies that m2(GL6(q)⟨t⟩) = 6. If ϵ = −1, t is a graph involution acting on GU6(q), so up to
conjugation t is indeed the map x 7→ xq . Therefore, CGU6(q)(t) = GO6(q), so m2(GU6(q)⟨t⟩) = 6. In
any case, we see that m2(P⟨t⟩) = 7.

Finally, suppose that we have B = ⟨φ, γ ⟩, where φ is a field automorphism of order 2 and γ a graph
automorphism of order 2 of L = E6(q). We can suppose that B stabilises P (and thus its unipotent radical),
and its Levi complement GL6(q)/Z(Lu). Thus, γ induces a graph automorphism on the stabiliser of
φ in GL6(q), which is isomorphic to GL6(q1/2). As we saw above, m2(GL6(q1/2)⟨γ ⟩) = 7. Therefore,
m2(GL6(q)B) = 8. Since m2(B) = 2 and m2(E6(q)) = 6, we conclude that m2(E6(q)B) = 8, so the
2-rank is realised in PB.

To conclude, note that a 2-extension of L is one of:

(1) L , of 2-rank 6 = m2(P),

(2) L⟨γ ⟩ of 2-rank 7, with γ a graph automorphism of order 2, which also stabilises P and m2(P⟨γ ⟩)= 7,

(3) L⟨φ⟩ of 2-rank 7, with φ a field automorphism of order 2 (ϵ =1) that stabilises P , and so m2(P⟨φ⟩)=7,

(4) L⟨γφ⟩ of 2-rank 7, with γφ a graph-field automorphism of order 2 (ϵ = 1), which stabilises P , and
thus m2(P⟨γφ⟩) = 7,

(5) L⟨γ, φ⟩ of 2-rank 8, with φ a field automorphism of order 2 (ϵ = 1) commuting with γ a graph
automorphism of order 2, and ⟨γ, φ⟩ also stabilises P with m2(P⟨γ, φ⟩) = 8.

From this, we conclude that any 2-extension of the simple group Eϵ
6(q) satisfies (QD)2. By the remark

at the beginning of the proof, we conclude that any version of Eϵ
6(q) satisfies (E-(QD)). □

Case E7(q).

Proposition 5.7. Let L = E7(q) with q odd. Then L satisfies (E-(QD)).

Proof. Let L = E7(q). By Table 3, if φ denotes a field automorphism of order 2 of L , the 2-extensions of
L are

L , Inndiag(L), L⟨φ⟩.

Note that Inndiag(L)⟨φ⟩ is not a 2-extension since field and diagonal automorphisms of order 2 do not
commute in view of Lemma 2.6.

Next, we study the 2-ranks of these extensions, so we need to understand the centralisers of the outer
involutions. From Table 3, m2(L) = 8. We claim that m2(Inndiag(L)) = 8 = m2(L). Indeed, consider
K = E7(q2) in adjoint version. Then m2(K ) = 8. Let φ′ be a field automorphism of order 2 for K . Then,
by Proposition 2.5 and Lemma 2.6,

K ≥ CK (φ′) = CInndiag(K )(φ
′) = Inndiag(E7(q)) ∼= Inndiag(L).
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From this we see that m2(Inndiag(L)) = 8 = m2(L). In particular, Inndiag(L) satisfies (QD)2 if L does.
Moreover, this also proves that if φ is a field automorphism of order 2 for L then

m2(Inndiag(L)⟨φ⟩) = 9 = m2(L⟨φ⟩).

From these observations, we conclude that, in order to establish (E-(QD)) for E7(q), it is enough to
show that E7(q) and E7(q)⟨φ⟩ satisfy (QD)2.

To this end, we exhibit a maximal parabolic subgroup of E7(q) of 2-rank 8. We see that D6 is a
subdiagram of E7, so we have a maximal parabolic subgroup in E7(q) of the form

P = U (D6(q).(q − 1)).

Here U denotes the unipotent radical of P , and the subgroup H = D6(q) is a quotient of Spin+

12(q) by a
central subgroup of order 2. Indeed, H = HSpin+

12(q) and it lies in the centraliser of the involution that
generates the centre of a Sylow 2-subgroup T of L (see the t1 involution of the E7(q) entry in Table 4.5.1
of [Gorenstein et al. 1998]). From this, we show that the Levi complement L P = D6(q).(q − 1) of P
has 2-rank 8. Let t be the involution in the centre of L P . Then CL(t) = (SL2(q) ◦2 HSpin+

12(q)).2 by
Table 4.5.1 of [Gorenstein et al. 1998]. Since t ∈ Z(T ), T ≤ CL(t). Also, SL2(q) has a unique involution,
so the 2-rank of T is realised in a subgroup of the extension M := HSpin+

12(q).2. Here, the 2 at the end
comes from diagonal automorphisms of the half-spin group, as in the Levi complement above. Therefore,
if we identify M as a subgroup of L P , we conclude that m2(L P) = m2(M) = m2(E7(q)).

Moreover, after suitable choices of conjugates, a field automorphism φ of order 2 must normalise P and
act as a field automorphism on our M . Since CM(φ) contains a subgroup isomorphic to HSpin+

12(q
1/2).2,

we see that P⟨φ⟩ has 2-rank 9, which is the 2-rank of the 2-extension E7(q)⟨φ⟩.
By Lemma 3.5, L and L⟨φ⟩ satisfy (QD)2. Finally, by the previous discussion, we conclude that L

satisfies (E-(QD)). □

Case E8(q).

Proposition 5.8. The simple group E8(q), q ̸= 3, 9 odd, satisfies (E-(QD)). Also E8(9) satisfies (QD)2.

Proof. Let L = E8(q). By Table 5.1 of [Liebeck et al. 1992], L contains a maximal subgroup

H ∼= (3, q − 1).(PSL3(q) × E6(q)).(3, q − 1).2.

Note that

F∗(H)= (3, q−1).(PSL3(q)×E6(q)), and H+ := H/Z(F∗(H))= (PSL3(q)×E6(q)).(3, q−1).2,

where (3, q − 1) induces diagonal automorphism on each component of H+, and the 2 induces a graph
involution, also acting on both components. In particular, by taking the centraliser of a graph involution
on the PSL3(q) component, we see that H0 contains a subgroup K0 isomorphic to

PGL2(q) × Inndiag(E6(q))⟨γ ⟩,
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where γ is a graph involution of E6(q) centralising PGL2(q). Now, recall that

m2(L) = 9 and m2(PGL2(q)) = 2.

Since m2(E6(q)⟨γ ⟩) = 7 by item (2) of the proof of Proposition 5.6, we see that

m2(K0) = m2(PGL2(q)) + m2(E6(q)⟨γ ⟩) = 2 + 7 = 9 = m2(L).

Therefore K0 realises the 2-rank of L .
By Table 3, E8(q) extended by a field automorphism of order 2, say φ, is the unique nontrivial

2-extension. From the construction of the maximal subgroup H and K0 (see [Liebeck et al. 1992]), we
can pick a suitable L-conjugate of φ (and we suppose it is the same φ) such that it normalises H and,
after passing to the quotient, normalises K0 and induces a field automorphism on both factors of K0. In
particular, we have a subgroup K1 of K0⟨φ⟩ of the form

PGL2(q1/2) × Inndiag(E6(q))⟨γ ′, φ⟩,

where we have chosen γ ′
∈ Inndiag(E6(q))⟨γ ⟩ to be a graph automorphism commuting with φ, and

PGL2(q1/2) = CPGL2(q)(φ). Therefore, by item (5) in the proof of Proposition 5.6,

m2(K1) = 2 + m2(E6(q)⟨γ ′, φ⟩) = 2 + 8 = 10.

Since m2(L⟨φ⟩) ≤ m2(L) + 1 = 10, we conclude that m2(K1) = m2(L⟨φ⟩).
Finally, note that K0 and K1 satisfy (QD)2 if q ̸= 3, 9 respectively, by Propositions 4.2, 5.6 and 3.1.

Hence, by Lemmas 3.2 and 3.3, L and L⟨t⟩ satisfy (QD)2 if q ̸= 3, 9, respectively.
Therefore every 2-extension of E8(q) satisfies (QD)2, with the exceptions given in the statement. This

concludes the proof of the proposition. □
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