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The strong maximal rank conjecture
and moduli spaces of curves

Fu Liu, Brian Osserman, Montserrat Teixidor i Bigas and Naizhen Zhang

Building on recent work of the authors, we use degenerations to chains of elliptic curves to prove two
cases of the Aprodu–Farkas strong maximal rank conjecture, in genus 22 and 23. This constitutes a major
step forward in Farkas’ program to prove that the moduli spaces of curves of genus 22 and 23 are of
general type. Our techniques involve a combination of the Eisenbud–Harris theory of limit linear series,
and the notion of linked linear series developed by Osserman.
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1. Introduction

The moduli space Mg of curves of fixed genus g is one of the most classically studied in algebraic
geometry. Going back to Severi and based on examples in low genus there was a general expectation that
these moduli spaces ought to be unirational. However, groundbreaking work of Harris, Mumford and
Eisenbud [Harris and Mumford 1982; Harris 1984; Eisenbud and Harris 1987] in the 1980s showed that
not only is Mg not unirational for large g, but it is in fact of general type for g ≥ 24. Their fundamental
technique was to compute the classes of certain explicit effective divisors on Mg arising from Brill–
Noether theory, and use this to show that the canonical class of Mg can be written as the sum of an
ample and an effective divisor. The particular families of divisors they considered were computable in all
applicable genera, but did not suffice to prove that Mg is of general type for g ≤ 23. For the last thirty
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years, no new cases have been proved of Mg being of general type. Over a decade ago, Farkas [2009a,
§7; 2009b, §4; 2009c] proposed new families of expected divisors on Mg as an approach to showing
that M22 and M23 are of general type. Let Dg ⊆ Mg consist of curves X of genus g which admit a g6

d

such that the resulting image of X in P6 lies on a quadric hypersurface. Farkas computed “virtual classes”
for these expected divisors Dg in [Farkas 2009a] for genus 22 and in [Farkas 2018] for genus 23, and in
both cases found that the classes satisfy the necessary inequalities to conclude that M22 and M23 are of
general type, provided that they are indeed represented by effective divisors.

In order to conclude that Mg is of general type for g = 22 or 23, one has to check two statements: first,
that Dg yields an effective divisor, or equivalently, that Dg ⊊Mg; and second, that the class induced by
Dg agrees with the class previously computed by Farkas, or equivalently, that the subset of Dg consisting
of curves carrying infinitely many g6

ds whose image lie on a quadric occurs in codimension strictly higher
than 1.

In this paper, we prove the first of these two statements, for both g = 22 and g = 23. An independent
proof of this result has been obtained by Jensen and Payne [2018] using a tropical approach. Their tropical
proof has now been merged in [Farkas et al. 2020] with the prior results of Farkas and with the missing
piece that the map from the space of linear series to the moduli space of curves does not have infinite fibers
over a divisorial component of the image. This completes the proof that M22,M23 are of general type.

Our main theorem is thus the following:

Theorem 1.1. In characteristic 0, the loci D22 and D23 are proper subsets of M22 and M23 respectively.

Our proof goes through unmodified for characteristic p ≥ 29, and our techniques can in principle be
applied to lower characteristics as well, but due to characteristic restrictions on the application to the
geometry of Mg, we have not pursued this. See Remark 1.3 below.

The divisor Dg ⊊Mg can be presented as a particular case of a more general (conjectural) subsets of
Mg: With applications to moduli,spaces of curves in mind, Aprodu and Farkas [2011, Conjecture 5.4]
proposed a “strong maximal rank conjecture”, about ranks of multiplication maps of line bundles on
curves. Specifically, given a linear series (L , V ) on a curve X , we have the multiplication map

Sym2 V → 0(X, L ⊗2). (1-1)

Note that the source has dimension
(r+2

2

)
, and assuming X is Petri-general, the target has dimension

2d + 1 − g. The image of X under the linear series lies on a quadric if and only if (1-1) has a nonzero
kernel. The classical maximal rank conjecture asserts that if r ≥ 3, for a general X and a general gr

d on X ,
the map (1-1) should always be injective or surjective (and similarly for the higher-order multiplication
maps). Many special cases of this were proved by various people; we omit discussion of most of these,
but mention that the case of quadrics was first proved by Ballico [2012]. Subsequent proofs were given
by Jensen and Payne [2016] using a tropical approach, and by the present authors [Liu et al. 2021] using
a degeneration to a chain of genus-1 curves. Recently, Larson [2017; 2020] has proved the full classical
maximal rank conjecture.
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Since the failure of (1-1) to have maximal rank is a determinantal condition, the strong maximal rank
conjecture of Aprodu and Farkas is the following:

Conjecture 1.2 [Aprodu and Farkas 2011, Conjecture 5.4]. Set ρ := g − (r + 1)(g + r − d).
On a general curve of genus g, if ρ < r − 2, the locus of gr

ds for which (1-1) fails to have maximal rank
is equal to the expected determinantal codimension, which is 1 +

∣∣(r+2
2

)
− (2d + 1 − g)

∣∣. In particular,
when this expected codimension exceeds ρ, every linear series on X should have maximal rank.1

The strong maximal rank conjecture remains wide open, even in the case of quadrics. The only cases
solved (to our knowledge) are for k = 2, d ≤ g + 1 (see [Teixidor i Bigas 2003]) or for Brill–Noether
number ρ = 0, because it is equivalent to the (weak) maximal rank conjecture.

For the divisors Dg, we compute that ρ = g−21= (2d+1−g)−
(r+2

2

)
, so in this case Conjecture 1.2 pre-

dicts that every linear series on the generic curve should yield (1-1) of maximal rank, and more specifically,
should have injective multiplication map, just as we prove in Theorem 1.1 for the cases g = 22, 23.

Our proof builds on the ideas introduced in [Liu et al. 2021], which combine the Eisenbud–Harris
theory of limit linear series with ideas from the theory of linked linear series introduced by the second
author [Osserman 2006; 2014]. We start with a limit linear series on a chain X0 of genus-1 curves, and
describe a collection of global sections living in different multidegrees on X0. We then take tensors of
these sections and consider their image in a carefully chosen multidegree, showing that they have the
correct-dimensional span. The first major difficulty is that while we can choose the curve, we have to
consider all possible limit linear series. As a consequence, we cannot ignore degenerate limit linear series
(which occur already in codimension 1). We systematically use ideas from linked linear series to prove
that when ρ = 1 or ρ = 2 we can always produce global sections of certain prescribed forms which must
lie in the specialization of the family of linear series.

The structure of the paper is as follows. In Section 2 we consider certain maps from genus-1 curves
to projective spaces which arise naturally from tensor squares of linear series, and show that these are
nondegenerate morphisms in cases of interest. In Section 3, we review the Eisenbud–Harris theory of
limit linear series, and the related theory of linked linear series introduced by the second author. In
Section 4, we describe the possible structures of linked linear series lying over a given limit linear series
in the cases that appear when ρ ≤ 2 (see also Proposition 5.3). In Sections 5 and 6, we give a criterion
for certain collection of sections in the tensor square of a limit linear series to be linearly independent.
In Section 7, we improve and apply this criterion to a family of examples with r = 6, which include
the genus-22 and genus-23 cases of interest for the proof of Theorem 1.1. In Section 8, we focus on
the behavior of degenerate sections under tensor product. For ρ = 2 (that is, genus 23), the situation is
quite a bit more complicated than for ρ = 1 (i.e., genus 22). To handle the degenerate cases, we consider
in Section 8 variant multidegrees which depend more tightly on the limit linear series in question, and
(partially inspired by the earlier work of Jensen and Payne [2016] on a tropical approach to the classical

1In fact, Aprodu and Farkas also include higher-degree multiplication maps in their conjecture. Farkas and Ortega [2011]
subsequently relax the ρ < r − 2 hypothesis in cases such as ours, where ρ is less than the expected codimension.
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maximal rank conjecture), we also consider families of curves with highly specialized directions of
approach, which gives us further control over the behavior of the global sections in different multidegrees.
Finally, in Section 9, we complete the proof of Theorem 1.1.

We expect that the tools we develop here will lead to proofs of specific cases of the strong maximal
rank conjecture of geometric relevance. In the tropical setting, this has been carried out in the case g = 13
(see [Farkas et al. 2024]). We have written the different parts of the argument to be independent of r
and/or ρ wherever this does not lead to unnecessary complication. In particular, Theorem 9.1 has been
stated in greater generality than what we need to prove the results for g = 22, g = 23. The nature of our
approach also allows for proving cases of the maximal rank conjecture where the expected codimension
does not exceed ρ, so that the locus of linear series which do not have maximal rank is nonempty. Our
approach should also be useful in other questions involving multiplication maps for linear series, such
as the conjecture of Bakker and Farkas [2018, Remark 14], which was motivated by connections to
higher-rank Brill–Noether theory. Their conjecture treats a certain specific family of cases, but with
products of distinct linear series in place of symmetric squares of a fixed one. In addition, our work
in Section 2 on nondegeneracy of certain morphisms from genus-1 curves to projective spaces and in
Section 4 on the structure of exact linked linear series is likely to be useful in other settings as well.

In a different direction, the ideas and approach of this paper can be used in the context of vector bundles
(see [Teixidor i Bigas 2023]). Brill–Noether related vector bundle problems cannot at the moment be
treated with tropical techniques as there is no satisfactory theory of sections of vector bundles in the
tropical settings.

Remark 1.3. We mention that although we impose characteristic-0 hypotheses in our main theorem,
these do not appear to be essential. Nearly everything we do is characteristic-independent, but we use
a characteristic-dependent result (Theorem 3.4 below) of Eisenbud and Harris to simplify the situation
slightly by restricting our attention to “refined” limit linear series (Definition 3.1 below). In fact, the only
characteristic dependence in Theorem 3.4 is the use of the Plücker inequality, which still holds in charac-
teristic p and degree d when p > d; see for instance Proposition 2.4 and Corollary 2.5 of [Osserman 2006].
Thus, our proof of Theorem 1.1 extends as written to characteristic p >25 for g =22 and p >26 for g =23.

Moreover, since our key specialization result (Proposition 3.10 below) on linked linear series applies
in arbitrary characteristic, there is no visible obstruction to extending our proof to lower characteristics
as well. However, key portions of the argument for the implications for the geometry of Mg were
written using characteristic 0, and as far as we are aware no one has carefully analyzed which positive
characteristics they may apply to, so it seems preferable to work in characteristic zero and we will assume
this is the case from now on.

2. Nondegeneracy calculations

In this section, we study maps from elliptic curves to projective space determined by comparing values of
tensor products of certain tuples of sections at two points P and Q. We will need two distinct results in
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this direction: first, we consider the situation that we let the point Q vary. This is already considered
in [Liu et al. 2021], where we showed that these maps are morphisms, described them explicitly, and
gave partial criteria for nondegeneracy. Here we extend the nondegeneracy criterion to a sharp statement
for the case of tensor pairs. This is used to show that if we vary the location of the nodes on individual
components, we can get possible linear dependencies to vary sufficiently nontrivially. Next, we will
consider a new case, where Q is fixed, but we have a separate varying parameter. This situation was not
considered in [Liu et al. 2021], but will be important to us in dealing with situations where the discrete
data of the limit linear series does not fix the underlying line bundle in some components.

First, given a genus-1 curve C and distinct P, Q on C , and c, d ≥ 0, let L =OC(cP +(d −c)Q). Then
for any a, b ≥ 0 with a +b = d −1, there is a unique section (up to scaling by k×) of L vanishing to order
at least a at P and at least b at Q. Thus, we have a uniquely determined point R such that the divisor of the
aforementioned section is a P +bQ + R; explicitly, R is determined by a P +bQ + R ∼ cP +(d −c)Q, or

R ∼ (c − a)P + (d − c − b)Q = (c − a)P + (1 + a − c)Q

= P + (a + 1 − c)(Q − P) = Q + (a − c)(Q − P). (2-1)

We see that R = P if and only if Q − P is |a + 1 − c|-torsion, and R = Q if and only if Q − P is
|a−c|-torsion. Note that (2-1) makes sense even when Q = P (in which case R = Q = P), so we will
use the formula for all P, Q, understanding that it has the initial interpretation as long as Q ̸= P . To
avoid trivial cases, we will assume that a ̸= c − 1, and b ̸= d − c − 1, or equivalently, a + 1 − c ̸= 0, and
a − c ̸= 0.

Notation 2.1. Fix P ∈ C , ℓ ≥ 1, and for j = 0, . . . , ℓ, set numbers a j
1 , a j

2 , b j
1, b j

2 satisfying for i = 1, 2,
j, j ′

∈ {0, . . . , ℓ},

a j
i + b j

i = d − 1, a j
i − c ̸= 0, −1, a j

1 + a j
2 = a j ′

1 + a j ′

2 .

Let U be the open subset of C consisting of all Q such that Q − P is not |a j
i −c|-torsion or |a j

i +1−c|-
torsion for any i, j . For Q ∈ U , choose sections s j

i with divisors

a j
i P + b j

i Q + R j,Q
i .

Define s j
= s j

1 ⊗ s j
2 ∈ 0(C, L ⊗2), and normalize the s j , uniquely up to simultaneous scalar, so that their

values at P are all the same. Considering (s0(Q), . . . , sℓ(Q)) gives a well-defined point of Pℓ, denote by
fQ the point of Pℓ determined by (s0(Q), . . . , sℓ(Q)).

In [Liu et al. 2021] we showed that the map U → Pℓ given by Q 7→ fQ extends to a morphism
f : C → Pℓ.

Extending Corollary 2.5 of [Liu et al. 2021], we have:

Proposition 2.2. If all the a j
i are distinct, and a j

1 + a j
2 ̸= 2c − 1, then f is nondegenerate.

The proof relies on reduction to a good understanding of the ℓ = 1 case. Indeed, we can view our
map as being given by (1, f1, . . . , fℓ), where fj is the rational function constructed from the quotient
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of sections s j , s0. Thus, nondegeneracy is equivalent to linear independence of the rational functions
1, f1, . . . , fℓ, whose zeroes and poles are described explicitly by the following result, which combines
Lemma 2.2 and Corollary 2.3 of [Liu et al. 2021]. Recall the following notation introduced in [Liu et al.
2021]. For k an integer, X a point in C and L1, . . . , Lk2 the line bundles in Pic0(C) of order a divisor
of |k|, OC(X) ⊗ L i = OC(Yi ) for a unique Yi ∈ C . Then, X + T [k] :=

∑
i Yi .

Lemma 2.3. In the ℓ = 1 case of Notation 2.1, the function f : U → k× given by Q 7→ (s0/s1)(Q)

determines a rational function on C. We then have

div f =

2∑
i=1

(
(P + T [|a0

i − c|]) − (P + T [|a1
i − c|]) − (P + T [|a0

i + 1 − c|]) + (P + T [|a1
i + 1 − c|])

)
,

Moreover, f is nonconstant if and only if a j
1 + a j

2 ̸= 2c − 1.

Proof of Proposition 2.2. By Lemma 2.3, f1, . . . , fℓ are all nonconstant. By reindexing the pairs we may
further assume

aℓ
1 < aℓ−1

1 < · · · < a0
1 ≤ a0

2 < a1
2 < · · · < aℓ

2.

Let n j
i := |a j

i − c + 1|, m j
i := |a j

i − c|, and n j
= max{n j

1, n j
2}.

A first observation is that n j > n j−1 for all j : if a j−1
1 < c (respectively, a j−1

1 > c), then n j−1
1 < n j

1

(respectively, n j−1
1 < n j

2), and thus n j−1
1 < n j ; by a similar calculation, n j−1

2 < n j ; thus, n j−1 < n j .
A second observation is that n j

≥ max{m0
1, m0

2} for all j ≥ 1, and if equality is attained, j must
be 1. Indeed, when c < a0

2 , we have m0
2 < m j

2 < n j
2 for all j ≥ 1; meanwhile, either m0

1 ≤ m0
2 (if

c < a0
1) or m0

1 ≤ n1
1 < n j

1 (if c > a0
1) for all j > 1; thus, max{m0

1, m0
2} ≤ n j for all j ≥ 1. When c > a0

2 ,
m0

2 ≤ m0
1 ≤ n1

1 < n j
1 for all j > 1, and hence the same conclusion holds.

Now, we claim that fj has poles at the strict nj -torsion points. Recalling from Lemma 2.3 that the
poles of fj are supported among the m0

i - and n j
i -torsion points for i = 1, 2, the above two observations

show that 1, . . . , fj−1 cannot have any poles at strict n j -torsion points, which immediately implies that
1, f1, . . . , fℓ are k-linearly independent. Thus, it suffices to prove the claim. Since the potential zeroes
of fj are supported among the m j

i - and n0
i -torsion points, we just need to show that n j does not divide

m j
i or n0

i for i = 1, 2 and any j ≥ 1. Moreover, we already know that n j > n0
≥ n0

i , so it is enough to
consider the m j

i . We consider two cases.

Case 1: c < a0
2 , so that also c < a j

2 for all j . In this case,

m0
2 < n0

2 ≤ m1
2 < n1

2 ≤ · · · ≤ mℓ
2 < nℓ

2.

In particular, we have n j > m j
2, so it remains to compare n j against m j

1. If n j
= n j

1, since n j
1 is always

coprime to m j
1 , the claim follows instantly. If n j

= n j
2 > n j

1 , since |n j
1 − m j

1| = 1, we have n j
≥ m j

1 . But
equality cannot hold as it would imply that a j

1 + a j
2 = 2c − 1, which is ruled out by our assumption. So

we conclude the claim in this case.
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Case 2: c > a0
1 , so that c > a j

1 for all j . If a j
2 > c, n j

2 = m j
2 + 1 and hence n j > m j

2. Meanwhile,
n j

1 = m j
1 −1. Similarly to the previous case, either n j > m j

1 or n j is coprime to m j
1 , and the claim follows.

If a j
2 < c, n j

2 = m j
2 − 1. Under our assumption, n j

= n j
1 so is coprime to m j

1. But because j ≥ 1, we
have n j

1 ≥ n j
2 + 2 = m j

2 + 1, so n j
1 > m j

2 and the claim follows. □

Notation 2.4. We now consider the point Q fixed, but the line bundle L varies (in particular, we do not
have a c). As before, for ℓ ≥ 1, and j = 0, . . . , ℓ, set nonnegative integers a j

1 , a j
2 , b j

1, b j
2 satisfying

a j
i + b j

i = d − 1 for all i, j; a j
1 + a j

2 is independent of j.

Choose a point R = R0
1 . Then, for every i = 1, 2, j = 0, . . . , l, there is a well determined R j

i such that
O(a j

i P +b j
i Q + R j

i ) =O(a0
1 P +b0

1 Q + R) = L . Note that, using that a j
i +b j

i = d −1, the last equation
is equivalent to

R j
i = R0

1 + (a0
1 − a j

i )(P − Q).

We have sections s j
i of L with divisors a j

i P + b j
i Q + R j

i . We can take tensor products to obtain
s j

= s j
1 ⊗s j

2 and obtain sections of the line bundle L ⊗2 having divisors (a j
1 +a j

2 )P+(b j
1 +b j

2)Q+R j
1 +R j

2 .
Note that the condition that a j

1 + a j
2 is independent of j implies that the divisors R j

1 + R j
2 will all be

linearly equivalent to one another. If the a j
i , b j

i are generic, none of the R j
i are equal to P and we can

normalize the s j to have the same value at P . We obtain a well-defined point (s0(Q), . . . , sℓ(Q)) ∈ Pℓ.
But because we have said that L is uniquely determined by R0

1 , we can view this procedure as giving a
rational map from C to Pℓ, which we will now study. The argument will be similar to that of Lemma 2.2
and Corollary 2.5 of [Liu et al. 2021], but a bit simpler.

Proposition 2.5. Suppose that P − Q is not m-torsion for any m ≤ d. Let U ⊆ C be the open subset of
points R = R0

1 on which the map ϕ : U → Pℓ that sends R ∈ U to (s0(Q), . . . , sℓ(Q)) is well defined.
Then ϕ extends to a nondegenerate morphism C → Pℓ.

Proof. We first consider the case ℓ = 1, proving that we obtain a nonconstant rational function, and
showing further that the divisor of this function is equal to

Q + (Q − (a0
1 − a0

2)(P − Q)) + (P − (a0
1 − a1

1)(P − Q)) + (P − (a0
1 − a1

2)(P − Q))

− (Q − (a0
1 − a1

1)(P − Q)) − (Q − (a0
1 − a1

2)(P − Q)) − P − (P − (a0
1 − a0

2)(P − Q)).

Let D j
i be the divisor on C × C obtained as the graph of the morphism

R 7→ R + (a0
1 − a j

i )(P − Q)

so that D0
1 is simply the diagonal, and (R0

1, R j
i ) ∈ D j

i . Set

D j
= D j

1 + D j
2 + (P − (a0

1 − a1− j
1 )(P − Q)) × C + (P − (a0

1 − a1− j
2 )(P − Q)) × C

for j = 0, 1. Then we claim that D0 and D1 are linearly equivalent. By construction, if we restrict to
{R} × C for any R not among the P − (a0

1 − a j
i )(P − Q), we get that D0 and D1 are linearly equivalent,
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so D0
− D1

∼ D × C for some divisor D on C . But if we restrict to C × {P}, we see that D j
1 + D j

2

restricts to (P − (a0
1 − a j

1 )(P − Q)) + (P − (a0
1 − a j

2 )(P − Q)), so the restrictions of D0 and D1 are
linearly equivalent on C ×{P}, and hence on C ×C , as desired. Moreover, this shows that if t0 and t1 are
sections of the resulting line bundle having D0 and D1 as divisors, then t0|C×{P} has the same divisor as
t1|C×{P}, so we can scale so that t0 and t1 are equal on C × {P}. We then see that our map U → P1 is
given by composing R 7→ (R, Q) with the rational function induced by our normalized choice of (t0, t1).
Thus, it is a rational function, as desired. We compute its divisor simply by looking at the restrictions of
D0 and D1 to C × {Q}, which gives the claimed formula.

Now, for the case of arbitrary ℓ, we can consider the map to Pℓ to be given by a tuple of rational
functions induced from the ℓ = 1 case, specifically by ( f0, . . . , fℓ−1, 1), where fj comes from looking at
s j and sℓ. To show nondegeneracy, it suffices to show that the fj are linearly independent, which we do
by showing that each of them (other than fℓ = 1) has a pole which none of the others have. If we order
so that

a0
1 < a1

1 < · · · < aℓ
1 ≤ aℓ

2 < aℓ−1
2 < · · · < a0

2,

we see that P − (a j
1 −a j

2 )(P − Q) occurs among the poles of fj : indeed, given our nontorsion hypothesis
on P − Q, the only positive term in the divisor which could possibly cancel it is Q, which would require
a j

1 − a j
2 = 1, which is not possible with our above ordering. But again using our nontorsion hypothesis,

and the fact that a j
2 − a j

1 strictly decreases as j increases, we see that we obtain the desired distinct
poles. □

3. Background on limit linear series and linked linear series

In this section we review background on limit linear series, as introduced by Eisenbud and Harris [1986],
and on linked linear series, introduced by the second author [Osserman 2006] for two-component curves
and generalized to arbitrary curves of compact type in [Osserman 2014].2 Recall that a curve of compact
type is a projective nodal curve such that every node is disconnecting, or equivalently, the dual graph is a
tree. To streamline our presentation, we will largely restrict our attention to the situation of curves of
compact type together with one-parameter smoothings.

Definition 3.1. Let X0 be a curve of compact type, with dual graph 0. Given r, d ≥ 0, a limit linear series
on X0 of dimension r and degree d is a tuple (L v, V v)v∈V (0), where each (L v, V v) is a linear series of
dimension r and degree d on the component Zv of X0 corresponding to v. Write a(v,e)

• = (a(v,e)
0 , . . . , a(v,e)

r )

with a(v,e)
0 < a(v,e)

1 < · · · < a(v,e)
r for the vanishing sequence (the r +1 different orders of vanishing of the

sections in V v) at Pe. The following condition must be satisfied: if Zv and Zv′ meet at a node Pe, then

a(v,e)
j + a(v′,e)

r− j ≥ d for j = 0, . . . , r.

A limit linear series is said to be refined if the above inequalities are equalities for all e and j .

2In [Osserman 2006], linked linear series were called “limit linear series”, but the name was changed subsequently to reduce
confusion.



The strong maximal rank conjecture and moduli spaces of curves 1411

We now consider a one-parameter smoothing of X0, as follows.

Remark 3.2. Suppose B is the spectrum of a discrete valuation ring with algebraically closed residue
field, and π : X → B is flat and proper, with special fiber X0 a curve of compact type, and smooth generic
fiber Xη. Suppose further that the total space X is regular, that π admits a section.

Now, suppose we have a line bundle Lη generically — more precisely, we allow for the possibility that
Lη is only defined after a finite extension of the base field of Xη. We can then take a finite base change
B ′

→ B so that Lη is defined over X ′
η, and then X ′ may not be regular, but the line bundle Lη will still

extend over X0 because X0 is of compact type. Moreover, there is a unique extension of Lη having any
specified multidegree (i.e., tuple of degrees one for each component) adding up to d: because X was
regular each component Zv of X0 is a Cartier divisor in X , and twisting by the OX (Zv) (or more precisely,
their pullbacks to X ′) will increase the degree by 1 on each component meeting Zv, and decrease the
degree on Zv correspondingly. For a multidegree ω, we denote this unique extension by L̃ω. In particular,
for each Zv, we can consider the multidegree ωv which concentrates degree d on Zv, and has degree 0
elsewhere.

Proposition 3.3 [Eisenbud and Harris 1986, Proposition 2.1]. Given a linear series (Lη, V v) on X ′
η of

dimension r and degree d , if we set L v
:= (L̃ωv )|Zv

, and V v
:= (Vη ∩0(X ′, L̃ωv ))|Zv

, then the resulting
tuple (L v, V v)v is a limit linear series on X0.

Theorem 3.4 [Eisenbud and Harris 1986, Theorem 2.6]. In characteristic 0, after finite base change and
blowing up nodes in the special fiber, we may assume that the specialized limit linear series constructed
by Proposition 3.3 is refined.

Note that the only effect on X0 of the base change and blowup is that chains of genus-0 curves are
introduced at the nodes. Assuming we blow up to fully resolve the singularities resulting from the base
change, these chain of curves have length equal to one less than the ramification index of the base change,
so in particular they are the same at every node.

We now move on to linked linear series. The first observation is that if we have two multidegrees ω

and ω′, then there is a unique collection of nonnegative coefficients cv ∈ Z, not all positive, such that
L̃ω

∼= L̃ω′(−
∑

v cv Zv). In this way, we obtain an inclusion L̃ω ↪→ L̃ω′ which is defined uniquely up to
scaling. If we define Lω := L̃ω|X0 , we get induced maps Lω → Lω′ which are no longer injective, as
they vanish identically on the components Zv with cv > 0. However, they are injective on the remaining
components. Passing to global sections we obtain maps

fω,ω′ : 0(X0, Lω) → 0(X0, Lω′).

From the construction we see that fω,ω′ ◦ fω′,ω always vanishes identically. Although the twisted line
bundles Lω can be described intrinsically on the special fiber, the maps fω,ω′ depend on the smoothing
of X0 whenever the locus on which they are nonvanishing. is disconnected.

To minimize notation, we will define linked linear series only in the above specialization context.
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Definition 3.5. Given Lη of degree d and the induced tuple (Lω)ω of line bundles, a linked linear series
of dimension r (and degree d) on the Lω is a tuple (Vω)ω for all multidegrees of total degree d where
each Vω ⊆ 0(X0, Lω) is an (r+1)-dimensional space of global sections, and for every ω, ω′, we have

fω,ω′(Vω) ⊆ Vω′ .

From the definitions and using Remark 3.2, we have:

Proposition 3.6. Given (Lη, Vη), for all ω set Vω = (Vη ∩ 0(X ′, L̃ω))|X0 . We obtain a linked linear
series.

This process is compatible with the Eisenbud–Harris specialization process, and the forgetful map
commutes with specialization. The definition of linked series includes a linear series for every meaningful
multidegree. In particular, there are linear series for the degrees ωv which concentrate all the degree
on Zv. Ignoring the other multidegrees, we obtain a forgetful functor:

Theorem 3.7. If (Vω)ω is a linked linear series on Lω, and we set L v
= Lωv |Zv

and V v
= Vωv |Zv

for all
v ∈ V (0), then (L v, V v) is a limit linear series. We will say that the linked linear series lies over the
limit linear series

This is explicitly stated (in the generality of higher-rank vector bundles) as part of Theorem 4.3.4 of
[Osserman 2014], but is primarily a consequence of Lemma 4.1.6 of [loc. cit.].

In [Osserman 2014], the following notion is introduced:

Definition 3.8. A linked linear series is simple if there exist multidegrees ω0, . . . , ωr and sections
sj ∈ 0(X0, Lωj ) such that for every ω, the fωj ,ω(sj ) form a basis of Vω.

The simple linked linear series form an open subset, and are particularly easy to understand (hence
the name). However, we will be forced to consider more general linked linear series arising under
specialization. We therefore introduce the following open subset, originally introduced in [Osserman
2006] in the two-component case.

Definition 3.9. A linked linear series is exact if for every multidegree ω, and every proper subset S ⊆ V (0),
if Lω′

∼= Lω(−
∑

v∈S Zv), then

fω,ω′(Vω) = Vω′ ∩ ker fω′,ω.

An important special case in the definition, and the only one which we will use in the present paper,
is that ω′ is obtained from ω by decreasing the degree by 1 on a single component and increasing it
correspondingly on an adjacent component.

While we cannot always ensure our linked linear series are simple, we can ensure they are exact:

Proposition 3.10. If (Lη, Vη) is defined over Xη itself , then the resulting linked linear series is exact.

The proof is exactly the same as in the two-component case, which is explained immediately before
the statement of Theorem 5.2 of [Esteves and Osserman 2013]. Thus, even if (Lη, Vη) is not defined
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over Xη, we can take a finite base change to make it defined, and blow up the resulting singularities of
the total space to put ourselves into position to apply Proposition 3.10.

4. Degenerate linked linear series

The purpose of this section is to analyze the structures of the possible exact linked linear series lying over
limit linear series mostly when ρ ≤ 2. We will restrict our attention to the case that the reducible curve
X0 is a chain.

Definition 4.1. Let Z1, . . . , Z N be smooth curves with distinct marked points Pi , Qi on each Zi . Construct
X0 by gluing Qi to Pi+1 for each i = 1, . . . , N − 1. Fix a total degree which in this section, we will
denote with d . Given w = (c2, . . . , cN ), define the multidegree of a line bundle on X0 associated to w,

mdd(w) = (d1, . . . , dN ), by d1 = c2, di = ci+1 − ci , i = 2, . . . , N − 1, dN = d − cN .

Note that conversely, given a multidegree ω with total degree d , there is a unique w such that ω = md(w).
We will assume that 0 ≤ ci ≤ ci+1 ≤ d for all i .

The notation ci is very helpful in connection with the way in which we encode the combinatorial data
of a limit linear series. In order to avoid treating the end points separately, it will be convenient to use the
convention that c1 = 0 and cN+1 = d . To avoid notational clutter, we will frequently write simply md(w)

when the total degree is clear, and we will abbreviate Lmd(w) by Lw, fmd(w),md(w′) by fw,w′ , and so fourth.
The assumption that 0 ≤ ci ≤ d for all i guarantees that the map fw,wi is injective on the component Zi

(see Proposition 3.6 of [Liu et al. 2021]), so we can understand sections in multidegree w as being glued
from the Zi -parts of sections in the multidegrees wi .

From Remark 3.2, given a limit linear series (L i , V i )i=1,...,N and the multidegree associated to a w, then
Lw|Zi is obtained from L i by twisting down by ci Pi +(d −ci+1)Qi , leaving degree d −ci −(d −ci+1) =

ci+1 − ci . Therefore, the condition ci ≤ ci+1 is equivalent to the di being positive.

Notation 4.2. By construction, the components of X0 are ordered from 1 to N . We will think of a
horizontal representation of the curve, numbering the components from left to right. For example, when
we talk of the curve “strictly left of i”, we mean

⋃
j<i Z j .

We first describe the behavior of the maps fw,w′ under the above encoding (See Proposition 3.6 of
[Liu et al. 2021] for a proof):

Proposition 4.3. Given w = (c2, . . . , cN ), w′
= (c′

2, . . . , c′

N ) and total degree d , the map Lw′ → Lw

vanishes identically on the component Zi if and only if

N∑
j=i+1

(c′

j − cj ) > min
1≤i ′≤N

N∑
j=i ′+1

(c′

j − cj ).

In particular, if c′

i < ci or c′

i+1 > ci+1 then the map vanishes identically on Zi , and if c′

i = ci for i > 1,
then the map vanishes identically on Zi if and only if it vanishes identically on Zi−1.
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Proposition 4.4. Let Z be a smooth projective curve, and P, Q ∈ Z distinct. Let (L , V ) be a gr
d on Z.

Then there is a unique (unordered) set of pairs (a0, b0), . . . , (ar , br ) with all aj distinct and all bj distinct
such that there exists a basis s0, . . . , sr of V with ordP sj = aj and ordQ sj = bj for j = 0, . . . , r .

Proof. Start with a basis s0, . . . , sr with vanishing a0 < · · · < ar at P . Add multiples of the si to s0 to
maximize vanishing at Q. Then repeat the process replacing s1, by adding multiples of the sj , j ≥ 2.

Note that the sj themselves are not unique, although a given sj can be modified only by adding multiples
of sj ′ which simultaneously satisfy ordP sj ′ > ordP sj and ordQ sj ′ > ordQ sj . □

To each refined limit linear series, we can associate a table of numbers as follows:

Definition 4.5. Let (L i , V i ) be a refined limit gr
d on X0, and for each i let (ai

j , bi
j )j be the set of pairs

given by Proposition 4.4. Construct the (r+1) × N table T ′ from left to right, with the i-th column
of T ′ consisting of the pairs (ai

j , bi
j ) for j = 0, . . . , r , and the ordering of each column determined as

follows: a1
j should be strictly increasing, and for i > 1 and each j , we require ai

j = d − bi−1
j . For fixed i ,

we refer to the ai
j and the bi

j as making up the subcolumns of the i-th column of T ′. For each j , let
wj = (a2

j , . . . , aN
j ), and set ωj = mdd(wj ).

Example 4.6. Let X0 be a chain of 5 elliptic curves. Construct a limit linear series on X0 of degree 4
and dimension 1 with the following line bundles on the components:

L1 = O(4Q1), L2 = O(2P2 + 2Q2), L3 = O(P3 + 3Q3), L4 generic, L5 = O(4P5).

and sections with vanishing associated to the table

0 4 0 3 1 3 1 2 2 1
1 2 2 2 2 1 3 0 4 0

The table has two rows corresponding to the two sections. The five columns correspond to the 5 elliptic
curves with the left and right semicolumns corresponding to the vanishing at Pi and Qi , respectively.
There are two wi one for each of the two sections and left semicolumns, starting with the second one and
corresponding multidegrees ωj as follows:

w0 = (0, 1, 1, 2), ω0 = (0, 1, 0, 1, 2), w1 = (2, 2, 3, 4), ω1 = (2, 0, 1, 1, 0).

For instance Lw0 is a line bundle on the chain with restrictions to the 5 components

L0
1 = O, L0

2 = O(2P2 − Q2), L0
3 = O, L0

4 = L4(−P4 − 2Q4), L0
5 = O(2P5),

while Lw1 has restrictions to the 5 components

L0
1 = O(2Q1), L0

2 = O, L0
3 = O(2Q3 − P3), L0

4 = L4(−3P4), L0
5 = O.

Note that the set of pairs of Proposition 4.4 is giving a relative ordering of the vanishing sequences at
P and Q, so the condition that the limit linear series is refined means that we can always impose that
ai

j = d − bi−1
j . Arranging our table ordering in this way, we can always choose sections si

j ∈ V i such that
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ordPi si
j = ai

j and ordQi si
j = bi

j . Then in multidegree ωj there is a unique section sj obtained from gluing
together the si

j (although as noted above, the choices of si
j are not unique in general).

Definition 4.7. We say that a swap occurs in column i between rows j, j ′ if ai
j < ai

j ′ and bi
j < bi

j ′ or if
ai

j > ai
j ′ and bi

j > bi
j ′ . A swap is minimal if further |ai

j − ai
j ′ | = |bi

j − bi
j ′ | = 1 and either ai

j + bi
j = d or

ai
j ′ + bi

j ′ = d .

Example 4.8. If X0 is again a chain of 5 elliptic curves, construct a limit linear series on X0 of degree 4
and dimension 1 with line bundles and table of vanishing

L1 =O(4Q1), L2 =O(2P2 +2Q2), L3 =O(2P3 +2Q3), L4 =O(2P4 +2Q4), L5 =O(4P5),

0 4 0 3 1 1 3 0 4 0
1 2 2 2 2 2 2 2 2 1

A swap appears on C3 between the only two sections on the linear series s0, s1. This swap is minimal as
|a3

1 − a3
0 | = 2 − 1 = |b3

1 − b3
0| is 1 and a3

1 + b3
1 = 2 + 2 = 4 = d.

A limit linear series is chain-adaptable in the sense of [Osserman 2014] if there are no swaps in the
table T ′. For a chain-adaptable limit linear series, there is only one linked linear series lying over it that
is simple, generated by the sj described above. In the nonchain-adaptable case, the linked linear series is
not necessarily unique.

A nonempty open subset of the set of possible linked linear series will always be simple, generated by
sections similar to the sj described above. However, even some exact linked linear series are not simple.
We can nonetheless use exactness to obtain fairly good control over what these linked linear series look
like. We address all the cases that can arise for ρ ≤ 2 below.

We will use the following observation: Fix a refined limit linear series and a choice of all the si
j .

For any w = (c2, . . . , cN ) (assumed bounded), the linkage condition implies that the sections in the
(r+1)-dimensional space Vw in the linked linear series are linear combinations of sections obtained by
gluing, for a fixed j , the sections si

j to one another as i varies, where each si
j that appears must satisfy

ai
j ≥ ci and bi

j ≥ d − ci+1, and if the first (respectively, second) inequality is an equality, we must also
have si−1

j (respectively, si+1
j ) included in the gluing. Indeed, a section in Vw must be a linear combination

of such si
j , and since the ai

j and bi
j are all distinct for fixed i , at most one can have equality on each side,

leading to the desired form for the gluing.

Proposition 4.9. Suppose that the j0-th row of T ′ has the property that for all j < j0 we have bi
j > bi

j0
for i = 1, . . . , N − 1, and for all j > j0 we have ai

j > ai
j0 for i = 2, . . . , N. Then any linked linear series

lying over the given limit linear series (in the sense of Theorem 3.7) contains the expected section sj0 .

Proof. It suffices to see that the space of global sections in multidegree ωj0 obtained from all possible
gluings of the si

j has dimension exactly r + 1, so that any linked linear series must contain the whole
space, including sj0 . But for j < j0 since bi

j > bi
j0 for i < N , we have ai+1

j < ai+1
j0 , so si+1

j cannot appear
at all in multidegree ωj0 . Thus, only s1

j can appear, glued to the zero section on every other component.
Similarly, for j > j0 only s N

j can appear. And since each si
j0 has precisely the desired vanishing at the
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nodes, sj0 is the unique way to glue them together, so we obtain an (r+1)-dimensional space in total, as
desired. □

In this paper we consider mostly spaces of linear series with Brill–Noether number ρ = 1, 2. We will
see in Proposition 5.3 that on a generic chain of elliptic curves, the number of swaps is bounded by ρ. So,
we now systematically consider all cases where the limit linear series has only one or two swaps.

Proposition 4.10. Suppose that a limit linear series has a single swap occurring in the i0-th column
between the ( j0−1)-st and j0-th rows, Then any linked linear series lying over that limit linear series (in
the sense of Theorem 3.7) contains the expected section sj0−1. The spaces of sections of the linear series
with multidegrees associated to

(a2
j0−1, . . . , ai0

j0−1, ai0+1
j0 , . . . , aN

j0 ) and (a2
j0, . . . , ai0

j0 , ai0+1
j0−1 , . . . , aN

j0−1)

contain the respective images of the section sj0 . These images consist of 0 on the first i0 − 1 components
and si

j0 for i = i0, . . . , N , and of si
j0 for i = 1, . . . , i0 and 0 on the last N − i0 components, respectively.

Given w = (c2, . . . , cN ). If ci < ai
j0−1, ai

j0 for all i , the linked linear series contains s1
j0 in multidegree

md(w), and if ci > ai
j0−1, ai

j0 for all i , the linked linear series contains s N
j0 in multidegree md(w) (in both

cases, glued to 0 on the other components).

Proof. Note that our assumptions imply that

bi
j > bi

j0−1, bi
j0, for all j < j0 −1, i = 1, . . . , N −1, ai

j > ai
j0, ai

j0−1 for all j > j0, i = 2, . . . , N .

In multidegree ωj0−1, as in the proof of Proposition 4.9, the si
j for j ̸= j0 − 1, j0 can only contribute for

i = 1 (if j < j0 − 1) or i = N (if j > j0), and the si
j0−1 glue uniquely to give sj0−1. Finally, the si

j0 can
only contribute at i = i0, so we find that the space obtained from all the si

j is (r + 1)-dimensional, and
sj0−1 must be in the linked linear series, as desired.

Next, consider w′
= (a2

j0−1, . . . , ai0
j0−1, ai0+1

j0 , . . . , aN
j0 ). Note that fwj0 ,w′(sj0) is equal to sj0 from i0

to N (inclusive), and 0 strictly before i0. We claim that the space of possible sections from the si
j in

multidegree md(w′) is precisely (r+1)-dimensional, so the linked linear series is uniquely determined in
this multidegree. By hypothesis, the si

j for j < j0 − 1 can only contribute for i = 1, and the si
j for j > j0

can only contribute for i = N . The si
j0−1 could in principle contribute for i < i0 and i = N , but if the

si
j0−1 gave rise to nonzero sections for i < i0, they all would be nonvanishing at the relevant nodes, and

they would have to glue to something nonvanishing in the i0-th column. This would have to be si0
j0−1,

which does not have enough vanishing on the right to appear in multidegree md(w′). Thus, we conclude
that the si

j0−1 can only appear for i = N (where it is glued to the zero section on all other columns).
Finally, the si

j0 can only appear for i ≥ i0, where they are nonzero at all interior nodes, and therefore have
a unique gluing, which must yield fwj0 ,w′(sj0). Thus we get the claimed dimension r + 1, and conclude
that fwj0 ,w′(sj0) is contained in the linked linear series.

Similarly, if w′′
= (a2

j0, . . . , ai0
j0 , ai0+1

j0−1 , . . . , aN
j0−1), we find that space of possible sections is (r+1)-

dimensional, and contains fwj0 ,w′′(sj0).
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Now, suppose we are given w with ci < ai
j0−1, ai

j0 for all i . Then Proposition 4.3 implies that fw′′,w is
nonzero precisely on the first component, so fw′′,w( fwj0 ,w′′(sj0)) is equal to s1

j0 glued to 0, as desired. The
situation with ci > ai

j0−1, ai
j0 is similar, but with w′ in place of w′′. □

Example 4.11. In Example 4.8, (a2
j0−1, . . . , ai0

j0−1, ai0+1
j0 , . . . , aN

j0 ) = (0, 1, 2, 2). This numbers give the
required vanishing at Pi , i = 2, . . . , 5, while the vanishing at Qi = d − ci+1 = 4 − ci+1. This means that
the required vanishing is

4 at Q1, 0 at P2, 3 at Q2, 1 at P3, 2 at Q3, 2 at P4, 2 at Q4, 2 at P5.

The order of vanishing of s1 at the nodes is 2 at P3, 2 at Q3, 2 at P4, 2 at Q4, 2 at P5. As the order at
P3 is 2, strictly greater than the required 1, it can be glued to the zero section in the first two components
to give rise to a section of the linked linear series. Similarly, (a2

j0, . . . , ai0
j0 , ai0+1

j0−1 , . . . , aN
j0−1) = (2, 2, 3, 1).

The required vanishing is then

2 at Q1, 2 at P2, 2 at Q2, 2 at P3, 1 at Q3, 3 at P4, 0 at Q4, 4 at P5.

The order of vanishing of s1 at the nodes is 2 at Q1, 2 at P2, 2 at Q2, 2 at P3, 2 at Q3. As the order at
Q3 is 1, strictly greater than the required 0, it can be glued to the zero section in the last two components
to give rise to a section of the linked linear series.

When the hypotheses of Proposition 4.9 are not satisfied for every j0, there may be linked linear series —
even exact ones — which do not contain all of the sj0 . They may occur as specializations of linear series
on the generic fiber. This leads us to introduce the notion of mixed sections below. We will then show that
there are mixed sections of rather precise forms, which can in some sense take the place of the missing sj .

Definition 4.12. For ℓ > 1, let S⃗ = (S1, . . . , Sℓ) be a tuple of subsets of {1, . . . , N } (some of which may
be empty) such that for all pairs i < i ′, every element of Si is less than or equal to every element of Si ′ and
such that every element of {1, . . . , g} is contained in some Si . Let j⃗ = ( j1, . . . , jℓ) be a tuple of elements
of {0, . . . , r}, possibly with repetitions. Then given a fixed limit linear series and corresponding choices
of the si

j , a mixed section of type (S⃗, j⃗) is a w and a section s in multidegree md(w) which is a sum from
i = 1 to ℓ of sections obtained by gluing si ′

ji for all i ′
∈ Si to the zero section on other components.

Proposition 4.13. Suppose that a limit linear series has precisely one swap, between the j0-th and
( j0−1)-st rows occurring in the i0-th column. Then any linked linear series lying over the given limit
linear series contains the expected sections sj for all j ̸= j0. If the linked linear series is exact, then it
must contain mixed sections s ′

j0 of type ((S′

1, S′

2), ( j0 − 1, j0)) with S′

1 supported on
⋃

i<i0
Zi and s ′′

j0 of
type ((S′′

1 , S′′

2 ), ( j0, j0 − 1)) with S′′

2 supported on
⋃

i>i0
Zi .

Note that this allows for the linked linear series to contain the section sj0 itself when S′

1 and S′′

2 are
both empty.

Proof. Start with the w′
= (a2

j0−1, . . . , ai0
j0−1, ai0+1

j0 , . . . , aN
j0 ) as in Proposition 4.10. Note that if i0 = 1,

then the proposition says that sj0 itself is in our linked linear series, consistent with the stated form for s ′

j0 .
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If i0 > 1, we consider iteratively changing w′ by increasing the twists by 1 for i ′
≤ i0 (starting at i0)

until they each agree with ai ′

j0 . We note that every such modified w′ has an (r+2)-dimensional space of
global sections obtained from the si

j , described explicitly as follows: s1
j for j < j0 − 1; s N

j for j > j0;
s N

j0−1; a section obtained by gluing the si
j0−1 for i from 1 to i ′

− 1 (which is the last column in which w′

agrees with ai
j0−1); and a section obtained by gluing the si

j0 from either i ′
− 1 or i ′ to N , beginning with

the last column in which w′ has coefficient strictly less than ai
j0 . For each j ̸= j0 − 1, since there is a

unique section constructed from the si
j , it is necessarily equal to fwj ,w′(sj ). In addition, since we know sj

is in the linked linear series for j ̸= j0, then fwj ,w′(sj ) is necessarily contained in the linked linear series
for j ̸= j0 − 1, j0.

Now, suppose that the linked linear series contained fwj0 ,w′(sj0) for the old w′; we claim that it either
also contains it for the new w′, or contains a section of the form desired for s ′

j0 . Indeed, increasing the
twist in the i-th column corresponding to twisting once by every component from i to N ., we observe
that fwj0 ,w′(sj0) is in the kernel of the map from the old w′ to the new one. By definition of exactness,
the linked linear series must contain some s in the new multidegree mapping to fwj0 ,w′(sj0) in the old
one. Using the above description of the space of global sections, this is necessarily a combination of the
fwj ,w′(sj ) for j < j0 −1 and j = j0, together with the section from the si

j0−1 for i = 1 to i ′
−1. Moreover,

since we observed above that fwj ,w′(sj ) is contained in the linked linear series for j < j0 − 1, we can
subtract these off to obtain a combination of the sections from the j0 − 1 and j0 rows. If the j0 − 1
term vanishes, we have that fwj0 ,w′(sj0) is contained in our linked linear series for the new w′, and if the
j0 − 1 term is nonzero, we have something of the desired form for s ′

j0 (with the minimal element of S′

2

being either i ′ or i ′
− 1 according to where fwj0 ,w′(sj0) begins), as claimed. Iterating this process, we

either obtain the desired s ′

j0 , or we eventually reach w′
= wj0 and find that the linked linear series actually

contains sj0 itself.
As the situation is completely symmetric, the construction of s ′′

j0 is similar, starting from the multidegree
w′′ from the proof of Proposition 4.10. □

When ρ = 2, there are four additional types of swap (see Definition 4.7), which we consider one by
one. They all involve having exactly two swaps, occurring in distinct columns. The first case is when the
swaps occur in disjoint pairs of rows.

Proposition 4.14 (“disjoint swap”). Suppose that a limit linear series contains precisely two swaps, and
these occur in disjoint pairs of rows, say j0 − 1, j0 and j1 − 1, j1. Then any linked linear series lying over
the given limit linear series contains the expected sections sj for all j ̸= j0, j1. If the linked linear series is
exact, then for ℓ=0, 1 it must contain mixed sections s ′

jℓ of type ((S′

1+2ℓ, S′

2+2ℓ), ( jℓ−1, jℓ)) with S′

1+2ℓ sup-
ported strictly left of iℓ and s ′′

jℓ of type ((S′′

1+2ℓ, S′′

2+2ℓ), ( jℓ, jℓ−1)) with S′′

2+2ℓ supported strictly right of iℓ.

Proof. This is essentially identical to the proof of Proposition 4.13. The only new point which arises
is that in constructing the sections s ′

j0, s ′′

j0 , we need to know that we can always subtract off any sj1 part
which arises in the iterative procedure, and similarly with j0 and j1 switched. But this follows from the
last assertion of Proposition 4.10. □
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Example 4.15. Assume that X0 is a chain of 6 elliptic curves. One can construct a limit linear series on
X0 of degree 8 and dimension 3 by choosing the following line bundles on each component:

O(8Q1), O(2P2 + 6Q2), O(2P3 + 6Q3), O(6P4 + 2Q4), O(6P5 + 2Q5),O(8P6),

and sections with associated table
0 8 0 7 1 5 3 4 4 3 5 2
1 6 2 6 2 6 2 5 3 4 4 3
2 5 3 4 4 3 5 1 7 0 8 0
3 4 4 3 5 2 6 2 6 2 6 1

A swap appears on C3 between s0, s1 and another at C4 between s2, s3. Both swaps are minimal as
required as there are the maximum number possible (two) of swaps for ρ = 2. In general there may be
larger gaps between the rows where the swap occurs and between the columns where it occurs as well.

The next case is that a single pair of rows can undergo two swaps in different columns.

Proposition 4.16 (“repeated swap”). Suppose that the limit linear series has precisely two swaps, both
between the j0-th and ( j0−1)-st rows, with the first occurring in the i0-th column, and the second in
the i1-st column for some i1 > i0. Then any exact linked linear series lying over the given limit linear
series contains mixed sections s ′

j0−1 of type ((S′

1, S′

2, S′

3), ( j0 − 1, j0, j0 − 1)) with S′

2 supported strictly
left of i1 and s ′′

j0−1 of type ((S′′

1 , S′′

2 ), ( j0 − 1, j0)) with S′′

2 supported strictly right of i1, and it contains
mixed sections s ′

j0 of type ((S′

4, S′

5), ( j0 − 1, j0)) with S′

4 supported strictly left of i0 and s ′′

j0 of type
((S′′

3 , S′′

4 , S′′

5 ), ( j0, j0 − 1, j0)) with S′′

4 supported strictly right of i0.

Proof. The proof is similar to the proof of Proposition 4.13. For s ′

j0−1, we first consider

w′
= (a2

j0−1, . . . , ai0
j0−1, ai0+1

j0 , . . . , ai1
j0 , ai1+1

j0−1 , . . . , aN
j0−1).

Note that fwj0−1,w′(sj0−1) is equal to sj0−1 from i1 to N (inclusive), and 0 elsewhere. Indeed, these are
the only columns in which the si

j0−1 can be supported, since they do not satisfy the correct inequalities
from i0 to i1 − 1, and for i < i0 they satisfy them with equality, so would have to be glued to a nonzero
element in the i0-th column. As in the proof of Proposition 4.9, we check that we have dimension exactly
r + 1 in multidegree md(w′), with the unique contribution from the j0 row coming from s N

j0 . Thus, we
find that fwj0−1,w′(sj0−1) is necessarily contained in multidegree md(w′).

We then iterate changing w′ by 1, increasing the twist by 1 in the i ′-th column for i ′
≤ i1 to change

them from ai ′

j0 to ai ′

j0−1. Using exactness, at each stage we either find the linked linear series still contains
fwj0−1,w′(sj0−1) for the new value of w′, or it contains the sum of fwj0−1,w′(sj0−1) with a section obtained
by gluing the si

j0 for i = i0, . . . , i ′
− 1. In the first case, we continue to iterate the process of changing w′,

and if we do not ever get the second case, we end up with sj0−1 itself in our linked linear series. On the
other hand, once the second case occurs, we begin to iteratively change w′ by increasing the twist by 1 in
the i ′-th column for i ′

≤ i0 to change them from ai ′

j0−1 to ai ′

j0 . Each time the twist increases above ai ′

j0−1,
we could obtain a contribution obtained from gluing si

j0−1 from i = 1 to i ′
− 1, and if this occurs, we get
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our desired s ′

j0−1. Otherwise, we keep iterating, and each time the twist at i ′ reaches ai ′

j0 , the portion of
the section obtained from the si

j0 extends to include i ′
− 1. Again, if we never get a contribution from the

si
j0−1 for i ≤ i ′, we will end up with a section as required for s ′

j0−1, having S′

1 = ∅.
The construction of s ′′

j0−1 is similar, but simpler: we set our initial w′′
= (a2

j0−1, . . . ,ai1
j0−1,ai1+1

j0 , . . . ,aN
j0 ),

and then we iteratively decrease the twists for i ′ > i1 by 1 to change them from ai ′

j0 to ai ′

j0−1, until we
obtain the desired result.

The construction of s ′

j0 and s ′′

j0 follows the same process. For s ′

j0 , we start with

w′
= (a2

j0−1, . . . , ai0
j0−1, ai0+1

j0 , . . . , aN
j0 ),

and we iteratively increase the twists for i ′
≤ i0 by 1 to change them from ai ′

j0−1 to ai ′

j0 . Finally, for s ′′

j0 , we
start with w′′

= (a2
j0, . . . , ai0

j0 , ai0+1
j0−1 , . . . , ai1

j0−1, ai1+1
j0 , . . . , aN

j0 ), obtaining a section glued from the si
j0 for

i ≤ i0. We iteratively decrease the twists for i ′ > i0 by 1 to change them from ai ′

j0−1 to ai ′

j0 , until we obtain
a contribution from the ai

j0−1 (necessarily ending at i1), and then we iteratively decrease the twists for
i ′ > i1 by 1 to change them from ai ′

j0 to ai ′

j0−1, eventually obtaining either sj0 itself, or the desired s ′′

j0 . □

Example 4.17. Assume that X0 is a chain of 6 elliptic curves. One can construct a limit linear series on
X0 of degree 5 and dimension 1 by choosing the following line bundles on each component,

O(5Q1), O(2P2 + 3Q2), O(2P3 + 3Q3), O(3P4 + 2Q4), O(3P5 + 2Q5), O(5P6);

a table associated to this limit linear series is

0 5 0 4 1 2 3 2 3 2 3 1
1 3 2 3 2 3 2 1 4 0 5 0

A swap appears on C3 and again at C4 between the only two sections on the linear series s0, s1. Both
swap are minimal as required as there are the maximum number possible (two) of swaps for ρ = 2

Finally, three consecutive rows can undergo two swaps. This can happen in two different ways.

Proposition 4.18 (“first 3-cycle”). Suppose that the limit linear series has one swap between the j0-th and
( j0+1)-st rows occurring in the i0-th column, and a second swap between the ( j0−1)-st and ( j0+1)-st
rows in the i1-st column for some i1 > i0, and no other swaps. Then any linked linear series lying over
the given limit linear series contains sj0−1 and sj0 . If further the linked linear series is exact, then it
contains mixed sections s ′

j0+1 of type ((S′

1, S′

2, S′

3), ( j0 − 1, j0, j0 + 1)) with S′

1 supported strictly left of i1,
S′

2 supported strictly left of i0, s ′′

j0+1 of type ((S′′

1 , S′′

2 , S′′

3 ), ( j0 + 1, j0 − 1, j0)) with S′′

2 supported strictly
right of i1, S′′

3 supported strictly right of i0, and s ′′

j0+1 of type ((S′′′

1 , S′′′

2 , S′′′

3 ), ( j0, j0 + 1, j0 − 1)) with S′′′

1

supported strictly left of i0, and S′′′

3 supported strictly right of i1.

Note that if S′

2 = ∅, then S′

1 may contain elements greater than i0, and similarly if S′′

2 = ∅, then S′′

3

may contain elements less than i1.

Proof. First, check that the multidegrees ωj0−1 and ωj0 both have only (r + 1)-dimensional spaces of
possible sections, so that sj0−1 and sj0 must both lie in any linked linear series. Indeed, for the former, the
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si
j0 can contribute only for i = N , while the si

j0+1 can contribute only for i = i1, while for the latter, the
si

j0−1 can contribute only for i = 1, and the si
j0+1 can contribute only for i = i0.

Now, to construct the sections s ′

j0+1, s ′′

j0+1 and s ′′′

j0+1, we proceed as in the previous propositions.
For s ′

j0+1, we start with w′
= (a2

j0−1, . . . , ai1
j0−1, ai1+1

j0+1 , . . . , aN
j0+1), and then iteratively increase the twist

by 1 at a time for i ′
≤ i1, initially increasing it from ai ′

j0−1 to ai ′

j0+1. For i ′ > i0, this process behaves as
before, either extending the contribution from the ai

j0+1 iteratively to the left without introducing any
other nonzero contributions, or producing a section s ′

j0+1 as desired, having S2 = ∅. Once i ′
≤ i0, we

still iteratively increase the twist from ai ′

j0−1 to ai ′

j0+1, but we are required to pass ai ′

j0 in the process. This
introduces a third possibility: once the twist at i ′ is strictly greater than ai ′

j0 , we could obtain a contribution
from si ′

−1
j0 . Also, for i ′ < i0, once the twist at i ′ is equal to ai ′

j0 , we could obtain a contribution from
both si ′

−1
j0 and si ′

j0 . If either of these occurs, we move to the next i ′, and for the remaining i ′, instead of
increasing the twist from ai ′

j0−1 to ai ′

j0+1, we only increase to ai ′

j0 . Note that we may obtain contributions
from the si

j0 (for i = i ′
− 1 or i = i ′

− 1, i ′) and si
j0−1 (for i = 1, . . . , i ′

− 1) simultaneously at some point,
which still gives an s ′

j0+1 of the desired form. On the other hand, if we never obtain a contribution from
the si

j0 , then the resulting s ′

j0+1 simply has S′

2 = ∅.
For s ′′

j0+1, we start with w′′
= (a2

j0+1, . . . , ai0
j0+1, ai0+1

j0 , . . . , aN
j0 ), and then follow the same procedure as

for s ′

j0+1, iteratively decreasing the twist at i ′ > i0 from ai ′

j0 to ai ′

j0+1, with the possibility of a contribution
from the si

j0−1 once i ′ passes i1.
Finally, for s ′′′

j0+1 set w′′′
= (a2

j0, . . . , ai0
j0 , ai0+1

j0+1 , . . . , ai1
j0+1, ai1+1

j0−1 , . . . , aN
j0−1) initially. We then iteratively

increase the twist at i ′
≤ i0 from ai ′

j0 to ai ′

j0+1, and iteratively decrease the twist at i ′ > i1 from ai ′

j0−1 to
ai ′

j0+1 to construct s ′′′

j0+1. □

Example 4.19. Assume that X0 is a chain of 8 elliptic curves. One can construct a limit linear series on
X0 of degree 8 and dimension 2 by choosing the following line bundles on each component

O(8Q1), O(2P2 + 6Q2), O(4P3 + 4Q3), O(4P4 + 4Q4),

O(4P5 + 4Q5), O(4P6 + 4Q6), O(6P7 + 2Q7), O(8P8)

and sections with associated table

0 8 0 7 1 6 2 5 3 3 5 2 6 2 6 1
1 6 2 6 2 5 3 3 5 2 6 1 7 0 8 0
2 5 3 4 4 4 4 4 4 4 4 4 4 3 5 2

A swap appears on C4 between s1, s2 and another at C5 between s0, s2. In general there may be larger
gaps between the columns where the swap occurs.

Proposition 4.20 (“second 3-cycle”). Suppose that our limit linear series has one swap between the
( j0−1)-st and j0-th rows occurring in the i0-th column, and a second swap between the ( j0−1)-st and
( j0+1)-st rows in the i1-st column for some i1 > i0, and no other swaps.

Then any linked linear series lying over the given limit linear series contains sj0−1. If further the
linked linear series is exact, then it contains mixed sections s ′

j0 and s ′′

j0 of type ((S′

1, S′

2), ( j0 − 1, j0)) and
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((S′′

1 , S′′

2 , S′′

3 ), ( j0, j0 + 1, j0 − 1)) respectively, with S′

1 supported strictly left of i0, S′′

2 supported at or
right of i1, and S′′

3 supported strictly right of i0. Similarly, it contains mixed sections s ′

j0+1 and s ′′

j0+1 of type
((S′

3, S′

4, S′

5), ( j0 − 1, j0, j0 + 1)) and ((S′′

4 , S′′

5 ), ( j0 + 1, j0 − 1)) respectively, withS′

3 supported strictly
left of i1, S′

4 supported at or left of i0, and S′′

5 supported strictly right of i1. Moreover, if i1 ∈ S′′

2 then also
i1 ∈ S′′

1 , and if i0 ∈ S′

4, then also i0 ∈ S′

5. Finally, either we can have S′

2 = S′′

4 = {1, . . . , N }, or it also
contains a mixed section s ′′′ of type ((S′′′

1 , S′′′

2 , S′′′

3 ), ( j0, j0 − 1, j0 + 1)), where every element of S′′′

2 is
strictly between i0 and i1.

Proof. For the most part, this is straightforward and similar to the previous propositions, but there
is one new subtlety to address, and the idea for the construction of s ′′′ is new. We first construct s ′

j0 ,
starting with w′

= (a2
j0−1, . . . , ai0

j0−1, ai0+1
j0 , . . . , aN

j0 ). We then iteratively increase the twist from ai ′

j0−1

to ai ′

j0 for i ′
≤ i0, and obtain s ′

j0 as before. We then do the same procedure for s ′′

j0+1, starting with
w′′

= (a2
j0+1, . . . , ai1

j0+1, ai1+1
j0−1 , . . . , aN

j0−1).
Next, we construct s ′′

j0 , starting with w′′
= (a2

j0, . . . , ai0
j0 , ai0+1

j0−1 , . . . , aN
j0−1). We then iteratively decrease

the twist at i ′ > i0 from ai ′

j0−1 to ai ′

j0 . For i ′
≤ i1, this behaves as in the previous propositions, with one new

subtlety: for each intermediate value of w′, the si
j0+1 can contribute only in the i1 column, but because

we do not know that sj0+1 is contained in the linked linear series, we also do not know a priori that this
contribution from si1

j0+1 in multidegree md(w′) is contained in our linked linear series. However, since
we have already constructed s ′′

j0+1, we can use its image in md(w′). One checks that its only possible
support in md(w′) is in the i1 column, so that in fact the multidegree-md(w′) part of the linked linear
series necessarily contains the section given by si1

j0+1, and we can subtract it off as necessary from the
section we are constructing. Thus, for i ′

≤ i1, we can iterate as before, and will either obtain an s ′′

j0 as
desired (with S′′

2 = ∅), or we will obtain a section made up of the si
j0 for i ≤ i1, and vanishing identically

for i > i1. In the latter case, we continue to iteratively decrease the twists defining w′ for i > i1, but as in
the construction of s ′

j0+1 in the proof of Proposition 4.18, to get from ai ′

j0−1 to ai ′

j0 we need to pass ai ′

j0+1,
which is where the possible contribution from the j0 + 1 may occur.

The construction of s ′

j0+1 follows the same pattern as that of s ′′

j0 , but starting with

w′
= (a2

j0−1, . . . , ai1
j0−1, ai1+1

j0+1 , . . . , aN
j0+1).

Here we use the image of s ′

j0 in order to subtract off any contributions of si0
j0 which occur.

Finally, for s ′′′, we start with w′
= wj0 . We observe that there is an (r+2)-dimensional space of

potential sections in multidegree ωj0 , with the si
j for j < j0 − 1 contributing only for i = 1, the si

j for
j ≥ j0 + 1 contributing only for i = N , the si

j0 contributing only with sj0 itself, and the si
j0−1 contributing

separately for i = 1 and i = N .
We must therefore have a three-dimensional space of combinations of the four sections s1

j0−1, s N
j0−1,

s N
j0+1, and sj0 . It follows by elimination that this space must contain (at least) one of the following: sj0 plus

a (possibly zero) multiple of s1
j0−1; sj0 plus a (possibly zero) multiple of s N

j0+1; s1
j0−1 and s N

j0+1. The first
case means that we can take S′

2 = {1, . . . , N }, while in the second we get a valid choice of s ′′′. In the third
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case, we begin with s N
j0+1, and iteratively twist the multidegree as before. For i ′ > i1, we change w′ from

twisting down by ai ′

j0 to ai ′

j0+1, and at each stage, we must either obtain the desired s ′′′, or a section made
up purely of the si

j0+1, in which case we continue to iterate. Note that in these multidegrees, we continue
to have that the only possible contributions of the si

j (for j ̸= j0) supported strictly left of i ′ come for
j ≤ j0 − 1, and we can take the image of s1

j0−1 from multidegree ωj0 , so all these can be subtracted off as
necessary. When i ′

≤ i1, we will have ai ′

j0−1 between ai ′

j0 and ai ′

j0+1; we still iteratively increase the twist,
but a new possibility occurs: once we are twisting down by strictly more than ai ′

j0−1, we could obtain a
contribution from ai ′

−1
j0−1. If this occurs, we will continue to iterate, but stopping after increasing the twist

from ai ′

j0 to ai ′

j0−1 for each smaller i ′.
If we have continued with contributions from si ′

j0+1 for each i ′, then once we reach i0, we will again
have no other ai

j between ai
j0 and ai

j0+1, so we will ultimately obtain an s ′′′ of the desired form, with
S′′′

2 = ∅. On the other hand, if we have switched from the si ′

j0+1 to the si ′

j0−1, then we see that this must
terminate (necessarily with an s ′′′ of the desired form) before we reach i ′

= i0, because there is no section
in column i0 which can glue to si0+1

j0−1 .
Now, if the above construction did not give s ′′′ because we had S′

2 = {1, . . . , N }, we apply precisely
the same process starting in multidegree ωj0+1, and we find that unless we also have S′′

4 = {1, . . . , N }, we
end up with the desired s ′′′. □

Example 4.21. Assume that X0 is a chain of 8 elliptic curves. One can construct a limit linear series on
X0 of degree 8 and dimension 2 by choosing the following line bundles on each component

O(8Q1), O(2P2 + 6Q2), O(2P3 + 6Q3), O(5P4 + 3Q4),

O(5P5 + 3Q5), O(4P6 + 4Q6), O(6P7 + 2Q7), O(8P8)

and sections with associated table

0 8 0 7 1 5 3 4 4 2 6 1 7 0 8 0
1 6 2 6 2 6 2 5 3 4 4 4 4 3 5 2
2 5 3 4 4 3 5 3 5 3 5 2 6 2 6 1

A swap appears on C3 between s0, s1 and another at C5 between s0, s2. In general there may be larger
gaps between the columns where the swap occurs.

Up until now, everything we have done has been insensitive to insertion of genus-0 components.
However, to handle the genus-23 case, we will need to impose restrictions on direction of approach;
more precisely, we will require that the genus-1 components be separated by exponentially increasing
numbers of genus-0 components (going from right to left). The reason for doing this is that, if our limit
linear series has all changes to the λi occurring in the genus-1 components, the pattern of the genus-0
components will force the support of every sj in every multidegree to be precisely the leftmost segment of
potential support (see Proposition 8.8). So, we obtain better control over the situation when the potential
support is disconnected. That this sort of restriction could potentially be useful is already pointed out in
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Remark 4.12 of [Liu et al. 2021], and is also influenced by the earlier work of Jensen and Payne [2016]
on their tropical approach to the classical maximal rank conjecture.

Definition 4.22. Assume that we have a chain of curves of genus zero and one with the first and last
components of the chain being of genus 1. We denote by ℓi the number of nodes between the i-th and
(i+1)-st components of genus-1. We say that X0 is left-weighted if

ℓi ≥ 4d
g−1∑

i ′=i+1

ℓi ′ .

In our notation, ℓi −1 is the number of genus-0 components between two genus one components. If we
take a ramified base change with ramification index e, and then blow up to resolve the resulting singularities,
we will insert e new genus-0 components at every node, which has the effect of multiplying all the ℓi

by e. Thus, the ratios of the ℓi (and therefore the left-weightedness) are invariant under this operation.

Definition 4.23. Given S⃗ = (S1, . . . , Sℓ) and j⃗ = ( j1, . . . , jℓ), a mixed section of type (S⃗, j⃗) is said to be
controlled if for every i = 2, . . . , ℓ with Si ̸=∅, the minimal element of Si is either a genus-1 component
or strictly closer to the next genus-1 component to the right than to the previous one on the left.

Proposition 4.24. Suppose that X0 is left-weighted. Then:

(1) In the situation of Proposition 4.14, if we assume further that i0 and i1 have genus 1, then we may
require that s ′

j0 and s ′

j1 are controlled, that S′

2 does not contain any i < i0 which has genus 1, and that
S′

4 does not contain any i < i1 which has genus 1.

(2) In the situation of Proposition 4.20, if we assume further that i0 and i1 have genus 1, then we may
require that s ′

j0 is controlled, and that S′

2 does not contain any i < i0 which has genus 1.

Proof. (1) With the notations of the proof of Proposition 4.14, for s = 0, 1 and every value of w′ arising
in the iterative procedure, the potential support of the si

js−1 in multidegree md(w′) has two connected
components: one extending from i = 1 to i = i ′

−1, and the other supported at i = N . We cannot continue
our iterative procedure indefinitely if fwjs−1,w′(sjs−1) is supported (partially or entirely) at i = N . If we
write w′

= (c′

2, . . . , c′

N ), then ai
js−1 −c′

i > 0 for i > is , ai
js−1 −c′

i < 0 for i ′
≤ i ≤ is , and ai

js−1 −c′

i = 0 for
i < i ′. Suppose is is the ms-th genus-1 component. Note that ai

js−1 − c′

i ≤ ai
js−1 ≤ d . Then in the notation

used in Definition 4.22 above, we can say (extremely conservatively) that
N∑

i=is+1

(ai
js−1 − c′

i ) ≤ d
g−1∑

i=ms

ℓi ≤
1
4ℓms−1. (4-1)

Thus, if is − i ′ > 1
4ℓms−1, then

∑N
i=i ′(ai

js−1 − c′

i ) < 0, so fwjs−1,w′(sjs−1) is supported entirely on the left.
We can then subtract off any contribution from the si

js−1 and continue our iterative procedure. The desired
conditions on s ′

js follow.

(2) This is essentially the same as (1) (the analogous statement for s ′

j0+1 is a bit more complicated, but
we don’t need it). □
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row col = 1 2 3 4 5 6 7 8 9 10 11

0 0 25 0 24 1 23 2 22 3 21 4 20 5 19 6 19 6 18 7 17 8 16
1 1 23 2 23 2 22 3 21 4 20 5 19 6 18 7 17 8 16 9 16 9 15
2 2 22 3 21 4 21 4 20 5 19 6 18 7 17 8 16 9 14 11 13 12 12
3 3 21 4 20 5 19 6 19 6 18 7 17 8 16 9 15 10 15 10 14 11 14
4 4 20 5 19 6 18 7 17 8 17 8 16 9 15 10 14 11 13 12 12 13 11
5 5 19 6 18 7 17 8 16 9 15 10 15 10 14 11 13 12 12 13 11 14 10
6 6 18 7 17 8 16 9 15 10 14 11 13 12 13 12 12 13 11 14 10 15 9

row col = 12 13 14 15 16 17 18 19 20 21 22

0 9 15 10 14 11 13 12 12 13 12 13 11 14 10 15 9 16 8 17 7 18 6
1 10 14 11 13 12 12 13 11 14 10 15 10 15 9 16 8 17 7 18 6 19 5
2 13 12 13 11 14 10 15 9 16 8 17 7 18 6 19 6 19 5 20 4 21 3
3 11 13 12 12 13 11 14 10 15 9 16 8 17 8 17 7 18 6 19 5 20 4
4 14 10 15 10 15 9 16 8 17 7 18 6 19 5 20 4 21 4 21 3 22 2
5 15 9 16 8 17 8 17 7 18 6 19 5 20 4 21 3 22 2 23 2 23 1
6 16 8 17 7 18 6 19 6 19 5 20 4 21 3 22 2 23 1 24 0 25 0

Table 1. Example 4.25. A possible table T ′ associated to a limit linear series for r = 6,
g = 22, d = 25 with all component of genus 1. The table is split in two. Top: left part.
Bottom: right part.

An example in a case we are ultimately interested in is presented now.

Example 4.25. Table 1 shows a possible table T ′ associated to a limit linear series for r = 6, g = 22,
d = 25 with all component of genus 1.

Since there is no ramification at P1, the first entries of the table agree with the row labels. Note that
we have a single swap, occurring in the ninth column between the j = 2 and j = 3 rows. This leads to
having an extra dimension of possibilities in the multidegree obtained from the j = 3 row, as the j = 2
row can appear either in the first or last columns. Consequently, it is possible that an exact linked linear
series lying over this limit linear series might not contain s3, but might only contain mixed sections s ′

3

and s ′′

3 , as in Proposition 4.13, with s ′

3 agreeing with s3 for i ≥ 9, but switching to s2 at some i < 9, and s ′′

3

agreeing with s3 for i ≤ 9, but switching to s2 at some i > 9. In both cases, the switch occurs in a column
mixing si

2 and si
3 unless, the column in question has a gap of at least 2 between the j = 2 and j = 3 rows.

Since this doesn’t occur for i < 9, we see that s ′

3 always has a mixed column, while s ′′

3 may not.

5. General setup

We are working with chains of N curves. While we imagine starting from a chain of genus-1 curves, we
allow for inserting any number of rational components at nodes so that all components Zi are of genus at
most one, and exactly g have genus 1 (including the first and last components). Given i between 1 and N ,
we denote by g(i) the number of genus-1 components between 1 and i , inclusive. In particular, g(0) = 0
by convention.
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We will suppose also that all the Pi and Qi are general (and in particular each Pi − Qi is not ℓ-torsion
for any ℓ ≤ d). We need generality conditions that go beyond what can be imposed component by
component, as it also involves interaction between components. This will be needed in the proof of
Lemma 6.3.

No matter the genus of Zi , for all j , ai
j + bi

j ≤ d. If Zi has genus 0, there are no further restrictions.
If the genus of Zi is 1, the genericity hypothesis implies that there is at most one value of j such that
ai

j + bi
j = d. In this case the underlying line bundle is uniquely determined as O(ai

j Pi + bi
j Qi ). The

generic situation is that ai
j + bi

j = d − 1 for all other j , but in positive codimension we can have strictly
smaller sums as well

Definition 5.1. We say that the j-th row is exceptional in column i if ai
j + bi

j < d − 1 when Zi has
genus 1, or if ai

j + bi
j < d when Zi has genus 0. For i = 1, . . . , N , we write g(i) for the number of

genus one components between 1 and i inclusive. For j = 0, . . . , r and i = 0, . . . , N , define λi, j by
ai+1

j = g(i) + j − λi, j . For a given i , if there is a j such that λi, j > λi−1, j , we say that there is a δi . and
more specifically, that δi = j . Otherwise, we say that there is no δi .

In this way, we obtain a sequence λi = (λi,0, . . . , λi,r ). For a fixed i , we think of the λi, j , j = 0, . . . , r
as rows with λi, j , squares, where a negative number of squares appears as “holes” to the left of the level 0
line. In this ways, we get a collection of “shapes”, i = 0, . . . , N (not necessarily skew, or connected)
generalizing the Young Tableaux usually associated to limit linear series on chains of elliptic curves.
They behave as follows: λ0, j ≤ 0 for all j , λ0 is the empty shape if a1

j = j and in general the λ0 shape is
entirely made of holes. Going from i to i + 1, any number of “squares” can be removed from the right of
any row (and then the row is exceptional). At most one “square” is added (and then δi = j), with the
possibility of adding a “square” only in the genus-1 components.

Example 5.2. Let X0 be a generic chain of 8 elliptic curves. Construct a limit linear series on X0 of
degree 8 and dimension 2 by choosing generic line bundles L4, L6 on C4, C6 and the rest as follows:

O(8Q1), O(2P2+6Q2), O(4P3+4Q3), L4, O(3P5+5Q5), L6, O(6P7+2Q7), O(8P8)

and sections with associated table

0 8 0 7 1 6 2 5 3 5 3 4 4 3 5 2
1 6 2 6 2 5 3 4 4 3 5 2 6 2 6 1
2 5 3 4 4 4 4 3 5 2 6 1 7 0 8 0

The corresponding λ shapes are

λ0 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8
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By contrast, the λ shapes corresponding to Example 4.19 which has a swap on C4 between rows 1 and
2 and another swap on C5 between rows 0 and 2 are

λ0 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

Proposition 5.3. Assume that the curve X0 is a chain of elliptic and rational curves. Choose a limit linear
series and a linked series lying over it, then the number of swaps is bounded by ρ. Moreover, if there are
ρ swaps, then the swaps must all be minimal, and occur in genus-1 columns, and there cannot be any
exceptional behavior (as in Definition 5.1) other than what is needed for the swaps.

Proof. The bN
j are nonnegative (and distinct) for all j . Equivalently the aN+1

j are bounded by

d − r, d − r + 1, . . . , d.

In particular,
∑r

j=0 aN+1
j ≤ (r + 1)d −

(r+1
2

)
, so

r∑
j=0

λN , j ≥ (r + 1)g +

(r +1
2

)
− (r + 1)d +

(r +1
2

)
= (r + 1)(g + r − d) = g − ρ.

Since
∑

j λi, j can increase by at most 1 as i increases (and only on genus-1 components), and λ0, j ≤ 0
for all j , we see that for ρ = 0, we must have λ0, j = 0 for all j (i.e., minimal initial vanishing sequence
at P1), no places where λi, j decreases (i.e., no exceptional columns for any row), and a δi for every
genus-1 column i . When ρ > 0, the total amount of initial ramification, exceptional columns, and genus-1
columns without δi is bounded by ρ.

A swap occurs when the vanishings of two of the sections at Pi , Qi are of the form (a, d − a − l)
and (a + k, d − a − k − l ′), respectively, with k > 0, k + l ′ < l. Hence, a swap is necessarily a case of
an exceptional column, and can contribute exactly 1 to ρ precisely when it is minimal and occurs in a
genus-1 column. □

We now describe the tensor square of a limit linear series considering images in a fixed multidegree of
total degree 2d. Essentially the discrete data from the base limit linear series is extended to its tensor
square.

Notation 5.4. In the situation of Definition 4.5, let T be the
(r+2

2

)
× N table with rows indexed by

unordered pairs ( j, j ′) with j, j ′
∈ {0, . . . , r}, having entries (ai

( j, j ′), bi
( j, j ′)) defined by

ai
( j, j ′) = ai

j + ai
j ′, and bi

( j, j ′) = bi
j + bi

j ′ .

We update a definition from [Liu et al. 2021] to allow for genus-0 components:

Definition 5.5. We say a multidegree of total degree 2d is unimaginative if it assigns degree 0 to every
genus-0 component, and degree 2 or 3 to every genus-1 component. By extension, we will say that w is
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unimaginative if md2d(w) is. Given a fixed unimaginative multidegree, we will let γi be the number of 3s
in the first i columns.

We will work throughout only with unimaginative multidegrees. Thus, the multidegree is encoded by
twisting down by 2d −2g(i)−γi on the right-hand of the i-th column, and by twisting down by 2g(i)+γi

on the left-hand side of the (i+1)-st column, for all i < N . We introduce some notation that we will use:

Definition 5.6. In the situation of Notation 5.4, fix total degree 2d, and w = (c2, . . . , cN ). We say that
the ( j, j ′) row is potentially present (respectively potentially starting, respectively potentially ending)
in column i and multidegree md2d(w) if ai

( j, j ′) ≥ ci and bi
( j, j ′) ≥ 2d − ci+1 (respectively ai

( j, j ′) > ci and
bi

( j, j ′) ≥ 2d − ci+1, respectively ai
( j, j ′) ≥ ci and bi

( j, j ′) > 2d − ci+1).

The next proposition is an immediate consequence of the definitions.

Proposition 5.7. If a row ( j1, j2) is potentially present in the i-th column, then

j1 + j2 − λi−1, j1 − λi−1, j2 ≥ γi−1 and j1 + j2 − λi, j1 − λi, j2 ≤ γi .

If a row ( j1, j2) is potentially starting (respectively ending) in the i-th column, then the first (respectively
second) inequality is strict.

If a row ( j1, j2) is potentially present in the i-th and (i+1)-st columns, then

j1 + j2 − λi, j1 − λi, j2 = γi .

Note that the sequence j1 + j2 − λi, j1 − λi, j2 decreases by at most 1 each time i increases, unless
j1 = j2 = δi , when it can decrease by 2. Similarly, from our assumptions on degrees and the definition of
γi , γi is nondecreasing, and increases by at most 1 each time i increases.

Corollary 5.8. Assume the multidegree is 2 on the i-th column. There can be a row potentially starting in
the i-th column only if δi exists and either there exists j such that

δi + j − λi,δi − λi, j = γi or 2δi − 2λi,δi = γi − 1.

In these cases, the potentially starting rows are (δi , j) or (δi , δi ), respectively.
There can be a row potentially ending in the i-th column only if δi exists and either there exists j such

that

δi + j − λi,δi − λi, j = γi − 1 or 2δi − 2λi,δi = γi − 2.

In these cases, the potentially ending rows are (δi , j) or (δi , δi ), respectively.
In any case, there can be at most one row potentially starting on the i-th column, and at most one row

potentially ending in it.

Proof. Since in this case γi = γi−1, Proposition 5.7 implies that the ( j1, j2) row can be potentially starting
in the i-th column only if λi, j1 > λi−1, j1 or λi, j2 > λi−1, j2 , which is to say if δi exists and j1 or j2 is equal
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to δi . Moreover, in this case λi,δi = λi−1,δi + 1, so we conclude that the two stated cases are the only
possibilities for having

j1 + j2 − λi−1, j1 − λi−1, j2 > γi−1 = γi ≥ j1 + j2 − λi, j1 − λi, j2,

and that moreover in the first case we must also have λi−1, j = λi, j unless j = δi .
Now, there is at most one j satisfying the first identity of the corollary, since the j −λi, j are all distinct.

Moreover, if there is some j satisfying the first, then the second one cannot hold, since this would force

δi − λi−1,δi = δi − λi,δi + 1 = j − λi, j = j − λi−1, j ,

which is not allowed. This completes the proof of the assertions on rows potentially starting in the i-th
column. The assertion on rows potentially ending in the i-th column is proved similarly. □

Next corollary has a similar proof, which we omit.

Corollary 5.9. If the multidegree has a 3 in the i-th column, then there can be at most one row potentially
starting and ending in the i-th column, and this occurs only if δi exists and either there exists j such that

δi + j − λi,δi − λi, j = γi − 1 or 2δi − 2λi,δi = γi − 2.

In addition, for a fixed j ̸= δi , there is at most one value of j ′ such that the ( j, j ′) row is potentially
starting in column i , and at most one value of j ′ such that the ( j, j ′) row is potentially ending in column i.

Proposition 5.10. For a fixed limit linear series, w, and column i , if ai
( j, j ′) > ci , then ( j, j ′) has a

component of potential support
⋃

j≥i Z j . If ai
( j, j ′) < ci , then ( j, j ′) has a component of potential support⋃

j<i Z j .
Conversely, suppose further that w is unimaginative. If ( j, j ′) has a component of potential support⋃
j≥i Z j , and if neither j nor j ′ is exceptional in any column strictly right of i − 1, then ai

( j, j ′) > ci .
Similarly, if ( j, j ′) has a component of potential support

⋃
j<i Z j ., and if neither j nor j ′ is exceptional

in any column j < i , then ai
( j, j ′) < ci .

In particular, in the unimaginative case, the potential support of ( j, j ′) is connected unless the sum of
the number of swaps for which the j-th row is exceptional and the number of swaps for which the j ′-th
row is exceptional is at least 2.

Proof. The first part is straightforward, and we omit the proof. For the second part, the point is that the
unimaginative hypothesis together with the nonexceptional hypothesis imply that the relevant portion of
the sequence ai ′

( j, j ′) − ci ′ is nondecreasing in the relevant range as i ′ decreases, so in the first case if its
positivity for some i ′

≥ i implies it remains positive at i ′
= i , while in the second case its negativity for

some i ′
≤ i implies it remains negative at i ′

= i .
For the last assertion, we can have disconnected potential support in the ( j, j ′) row only if the sequence

ai
( j, j ′) − ci goes from positive to negative as i decreases, possibly over multiple columns. But we observe

that if only one of j and j ′ are exceptional at a swap, which is moreover minimal and in a genus-1 column,
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then the sequence ai
( j, j ′) − ci can decrease only by 1 as i decreases. Thus, if this occurs only once, it

cannot go from positive to negative, and it cannot have disconnected potential support. □

Definition 5.11. Given a refined limit linear series, we construct a second table T of vanishing numbers
obtained from the first by reordering each subcolumn into strictly increasing (respectively, decreasing)
order. We denote the λ sequence obtained from T by λi , and the entries of the table T by (āi

j , b̄i
j ). For

ℓ ≥ 1, we denote by λℓ
i the number of j such that λi, j ≥ ℓ.

Put differently, T is obtained from the limit linear series simply by taking vanishing sequences at each
point, and ignoring the interplay between the pair of points. If we picture skewing the rows of the λi accord-
ing to the initial ramification sequence a1

j − j , the sequence λi will give a genuine sequence of skew shapes,
terminating with a skew shape containing the one obtained by starting from the usual (r+1) × (r+g−d)

center rectangle, and adding squares on the left determined by the initial ramification sequence.
The following lemma is the key to our analysis, showing in particular that if we place multidegree 3 in

the correct places, we can obtain fine control over what happens with the rows involving δi+1.

Lemma 5.12. Given 1 ≤ ℓ1 < ℓ2 and n > 0, suppose that λ
ℓ1
i + λ

ℓ2
i = n and λ

ℓ1
i−1 + λ

ℓ2
i−1 < n. Then

for all j, δi + j − λi,δi − λi, j ̸= n − 1 − ℓ1 − ℓ2, (5-1)

2δi − 2λi,δi ̸= n − 2 − ℓ1 − ℓ2. (5-2)

Moreover, if for some j , λi, j < λi−1, j , then

δi + j − λi,δi − λi, j ̸= n − ℓ1 − ℓ2, (5-3)

δi + j − λi−1,δi − λi−1, j ̸= n − 1 − ℓ1 − ℓ2. (5-4)

Proof. We first prove the case that λi ′ = λi ′ for all i ′. Note that the assumption that λ
ℓ1
i +λ

ℓ2
i > λ

ℓ1
i−1 +λ

ℓ2
i−1

implies that there is a δi and it is the row of the last square in either the ℓ1-th or ℓ2-th columns of λi .

Case when λ
ℓ1
i , λ

ℓ2
i are distinct and positive. Set js = λ

ℓs
i − 1, s = 1, 2. In particular, δi = j1 or j2 and

( j1 + 1) + ( j2 + 1) = n. For s = 1, 2 write ms = λi, js − ℓs , so that ms ≥ 0 for s = 1, 2, with equality for
at least one s. Then,

j1 + j2 − λi, j1 − λi, j2 = ( j1 + 1) + ( j2 + 1) − 2 − (m1 + ℓ1) − (m2 + ℓ2)

= n − 2 − ℓ1 − ℓ2 − m1 − m2

< n − 1 − ℓ1 − ℓ2.

Thus, the only way to get equality in (5-1) would be to set j to be strictly greater than whichever js is not
equal to δi . Now, because js was determined as the lowest row with a square in the ℓs-th column, we have

λi, js+1 < ℓs = λi, js − ms,

so if we use j > js in place of js , the value of the above expression jumps by at least 2 + ms . Moreover,
we can only use j in place of j1 if δi = j2, in which case we must have m2 = 0, and similarly if we use j
in place of j2. We conclude that (5-1) is satisfied.
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Similarly, if we had equality in (5-3), then necessarily j = js +1 and λi, j = ℓs −1. On the other hand, the
assumption that λ

ℓ1
i +λ

ℓ2
i > λ

ℓ1
i−1 +λ

ℓ2
i−1 implies that if λi, j < λi−1, j for some j , then λi, j ̸= ℓ1 −1, ℓ2 −1.

Therefore, (5-3) is an inequality as stated.
By the same reasoning, if δi = j1 > j2, then equality in (5-2) is also impossible: because m1 = 0

replacing j2 by δi increases the left-hand side by at least 2 + m2. On the other hand, if δi = j2 then
replacing j1 by δi decreases the left-hand side, making it too small to satisfy (5-2).

Finally, suppose we have some j such that λi, j < λi−1, j ; say λi, j = λi−1, j − p for some p > 0. Then
equality in (5-4) is equivalent to

δi + j − λi,δi − λi, j = n − 2 − ℓ1 − ℓ2 + p.

If as above js ̸= δi , then necessarily j > js . Then, by definition of js we must have λi, j < ℓs . On the
other hand, since we have assumed that λ

ℓ1
i−1 + λ

ℓ2
i−1 < n, we must have that λi, j , . . . , λi, j + p does not

contain ℓs . It follows that λi, j + p < ℓs = λi, js −ms . We conclude that j −λi, j > 1+ js −λi, js + p +ms ,
so

δi + j − λi,δi − λi, j > (n − 2 − ℓ1 − ℓ2 − ms) + 1 + p + ms = n − 1 − ℓ1 − ℓ2 + p,

proving (5-4).

Case when λi has no entries in the ℓ2-th column. Then, λ
ℓ2
i = 0, δi is the row of the last square in the

ℓ1-th column and λi,δi = ℓ1. As the rows are numbered starting at 0, the condition λ
ℓ1
i +λ

ℓ2
i = n becomes

δi + 1 = n. Hence,

δi − λi,δi = (δi + 1) − 1 − ℓ1 = n − 1 − ℓ1.

But since the ℓ2-th column is empty for all j , we have λi, j < ℓ2, so we find that

δi + j − λi,δi − λi, j > n − 1 − ℓ1 + j − ℓ2 ≥ n − 1 − ℓ1 − ℓ2,

showing that (5-1) holds, and that equality in (5-3) occurs only if λi, j = ℓ2 − 1. But if we assume
λi, j < λi−1, j , then λi−1, j ≥ ℓ2, contradicting the assumption that λ

ℓ1
i−1 +λ

ℓ2
i−1 < n. Therefore, (5-3) holds.

We also see that

2δi − 2λi,δi = 2n − 2 − 2ℓ1 > 2n − 2 − ℓ1 − ℓ2 > n − 2 − ℓ1 − ℓ2,

so (5-2) holds. Finally, as λ
ℓ1
i−1 + λ

ℓ2
i−1 < n, then λi−1, j < ℓ2, so

δi + j − λi−1,δi − λi−1, j = δi + j − λi,δi − λi−1, j + 1 > n − 1 − ℓ1 − ℓ2 + 1 = n − ℓ1 − ℓ2,

proving (5-4).

Case when λi has the same number of entries in the ℓ1-th and ℓ2-th columns. So we must have n even,
with δi + 1 = n/2, and also λi,δi = ℓ2. In this case, we have

δi − λi,δi = (δi + 1) − 1 − ℓ2 = n/2 − 1 − ℓ2.
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Therefore

2δi − 2λi,δi = n − 2 − 2ℓ2 < n − 2 − ℓ1 − ℓ2,

proving (5-2).
For j1 < δi , λi, j1 ≥ λi,δi . Therefore

j1 + δi − λi, j1 − λi,δi < 2δi − 2λi,δi < n − 2 − ℓ1 − ℓ2,

proving (5-1) in this case. For j1 > δi , as the ℓ1-th column has exactly δi + 1 entries,

λi, j1 ≤ ℓ1 − 1 = ℓ2 − (ℓ2 − ℓ1) − 1 = λi,δi − (ℓ2 − ℓ1) − 1,

j1 + δi − λi, j1 − λi,δi ≥ δi + 1 + δi − 2λi,δi + ℓ2 − ℓ1 + 1 = n − 2ℓ2 + ℓ2 − ℓ1 = n − ℓ2 − ℓ1,

completing the proof of (5-1). Moreover, we can have equality in (5-3) only if j = δi +1 and λi, j = ℓ1 −1,
so (5-3) holds under the stated condition λi, j < λi−1, j . Finally, if λi, j = λi−1, j − p for p > 0, then in order
to have equality in (5-4) we would need to have j > δi , which implies that λi, j + p < ℓ1 = λi,δi − ℓ2 + ℓ1,
so

δi + j − λi,δi − λi, j > (n − 2 − 2ℓ2) + 1 + (ℓ2 − ℓ1 + p) = n − 1 − ℓ1 − ℓ2 + p,

again yielding (5-4).
This completes the proof of the lemma in the case that λi ′ = λi ′ for all i ′. We will see that the general

case follows.

General case (λi ′ not necessarily equal to λi ′). The main observation is the following: if λi, j = λi−1, j +1,
and we let j ′ be such that āi+1

j = ai+1
j ′ , then we necessarily have λi, j ′ = λi−1, j ′ + 1, and we cannot have

any swaps in the i-th column involving the j ′-th row. Indeed, the identity λi, j = λi−1, j +1 means that we
have āi

j = āi+1
j , which means that ai+1

j ′ = ai
j ′′ for the j ′′ such that exactly j values of ai

m are less than ai
j ′′ .

We also have exactly j values of ai+1
m less than ai+1

j ′ . It then follows that we must have j ′′
= j ′: we

cannot have ai
j ′ > ai

j ′′ , since then we would have ai
j ′ > ai+1

j ′ . But if ai
j ′ < ai

j ′′ , then j ′ occurs among the
values of m with ai

m < ai
j ′′ , so there is necessarily some m with ai+1

m < ai+1
j ′ but ai

m ≥ ai
j ′′ , again leading

to a contradiction. This proves the observation, noting that the fact that j ′
= j ′′ rules out any swaps

involving the j ′-th row.
Note that equations (5-1) and (5-2) can be phrased in terms of the values of j − λi ′, j = ai ′

+1
j − g(i ′).

Using δ̄i to denote the values of δ coming from T , our above observation implies that we have ai
δi

=

ai+1
δi

= āi+1
δ̄i

= āi
δ̄i

. Therefore, the proof of these two equations follows from the case λi ′ = λi ′ .
Next, suppose that we have some j with λi, j < λi−1, j . We claim that if j ′ is such that ai+1

j = āi+1
j ′ , and

j ′′ is such that ai
j = āi

j ′′ , then we necessarily also have that λi, j ′ < λi−1, j ′ and λi, j ′′ < λi−1, j ′′ . Given this
claim, (5-3) and (5-4) follow from the case that λi ′ = λi ′ for all i ′. By our above observations on the case
λi, j =λi−1, j +1, it suffices to prove that λi, j ′ ̸=λi−1, j ′ and λi, j ′′ ̸=λi−1, j ′′ , Equivalently, āi+1

j ′ ̸= āi
j ′ +1 and

āi+1
j ′′ ̸= āi

j ′′ + 1. In order to have ai+1
j = āi+1

j ′ = āi
j ′ + 1, we would need to have ai+1

j − 1 occurring among
the ai

• , with precisely j ′ strictly smaller values also occurring. By definition we have j ′ values strictly
smaller than ai+1

j occurring in ai+1
• , and using our observation on lack of swaps when λi, j = λi−1, j + 1,
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we see that every one of these also must yield a value of ai
• strictly smaller than ai+1

j − 1. But we have in
addition that ai

j < ai+1
j − 1, so we conclude that there are at least j ′

+ 1 values in ai
• strictly less than

ai+1
j − 1, proving the desired inequality by contradiction.

Similarly, in order to have āi+1
j ′′ = āi

j ′′ + 1 = ai
j + 1, we would need to have ai

j + 1 occurring among
the ai+1

• , with precisely j ′′ strictly smaller values also occurring. By definition, we have only j ′′ values
among the ai

• strictly smaller than ai
j , and every value of ai+1

• which is strictly smaller than ai
j + 1 must

come from one of these. But again using our observation on the lack of swaps when λi, j = λi−1, j +1, we
see that the value ai

j + 1 in ai+1
• must itself come from a row in ai

• with value strictly smaller than ai
j , so

we conclude that if ai
j + 1 occurs in ai+1

• , there must be strictly fewer than j ′′ entries in ai+1
• which are

strictly smaller than it. This proves the claim, and the lemma. □

6. An independence criterion

Suppose we have a limit linear series, and fix choices of sections si
j matching the vanishing orders in our

table. We make the following definition:

Definition 6.1. Given an unimaginative multidegree ω, for all ( j1, j2), let n( j1, j2) be the number of places
(i.e., collections of contiguous columns) where the ( j1, j2) row is potentially present in the multidegree ω.
Let s( j1, j2),i for i = 1, . . . , n( j1, j2) be the induced sections in multidegree ω with precisely the given
support. Then the full collection of s( j1, j2),i are the potentially present sections in multidegree ω, and
their span in 0(X0, (L

⊗2)ω) is the potential ambient space.

Note that in the above, we require that each s( j1, j2),i be potentially starting in its first column of support
and potentially ending in its last column of support. Thus, there may be individual columns in which the
( j, j ′) row satisfies the inequalities to be potentially present in that column, but which does not occur in
any of the s( j1, j2),i because it fails inequalities in other columns.

The s( j1, j2),i are each unique up to scaling given a choice of the si
j . The si

j are not unique, but they
can differ only by multiples of si

j ′ with strictly higher vanishing at both points. Then if si
j has potential

support (in the i-th column), necessarily si
j ′ has a connected component of potential support consisting

precisely of the i-th column. We conclude that the potential ambient space is independent of the choice
of the si

j . Consequently, the dimension of the span — and in particular the linear independence — of the
potentially appearing sections is likewise independent of choices.

Fix a multidegree ω and consider the images of sj ⊗sj ′ focusing attention on potentially present sections.
Assume we have a linear combination of images of sections equal to 0. As in [Liu et al. 2021]„ we prove
successively that the coefficient of particular sections must be zero. When this happens, we say that we
“drop” that section and talk about “remaining” sections (i.e., those which have not yet been dropped).

Definition 6.2. We say that the i-th column of T is semicritical in multidegree ω if it satisfies the
following conditions:

• it has a value of δi (see Definition 5.1), in particular, it has genus 1;
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• on the potentially present sections remaining, the two subcolumns of column i exhibiting the minimal
values add to at least 2d − 2;

• if the ( j, δi ) row remains in the i-th column for some j ̸= δi , then the j-th row is not exceptional.

If further the minimal values among the remaining potentially present sections are not both one less than
the values in the (δi , δi ) row, we say that the i-th column is critical.

We start with the following independence criterion:

Lemma 6.3. For a given limit linear series, and given unimaginative multidegree ω, we can drop
potentially present sections if they satisfy the following rules:

(i) If in some column i , there is a unique remaining potentially present section supported in that column
having minimal ai

( j, j ′) value, or a unique one having minimal bi
( j, j ′), then the one achieving the minimum

may be dropped.

(ii) If there are at most two remaining potentially present sections with support in some genus-1 column i ,
and neither of them involves an exceptional row, (see Definition 5.1), then they can both be dropped.

(iii) If there are i < i ′ such that the block of columns from i to i ′ has the following properties, then all the
remaining potentially present sections supported in this block can be dropped:

• There are at most 3 remaining potentially present sections supported in each of the i-th and i ′-th
columns.

• Within the block, there are at most three potentially present sections continuing from any column to
the next.

• Every column strictly between i and i ′ has degree 2.

• Both the i-th column and the i ′-th column are semicritical and either i is critical with no remaining
potentially present section ending in the i-th column, or i ′ is critical with no remaining potentially
present section starting in the i ′-th column.

Proof. Suppose we had a hypothetical linear dependence among the potentially present sections. We
claim that in each case (i), (ii), (iii), the coefficients of the relevant potentially present sections would be
forced to vanish.

In case (i), the uniqueness of the minimal value of ai
( j, j ′) (or of bi

( j, j ′)) means that si
( j, j ′) vanishes to

strictly smaller order at Pi than any other remaining potentially present section, which forces us to drop
that section.

In case (ii), we need to see that for a fixed column i , any two si
( j, j ′) have to be linearly independent

provided that they do not involve any exceptional rows. If either of them involves δi , this is automatic,
since either the ai

( j, j ′) or bi
( j, j ′) values are forced to be distinct. On the other hand, if neither involves δi ,

we claim that the sections in question must have distinct zeroes on Zi away from Pi and Qi . Indeed, if
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we have a, b, a′, b′ with a + b = d − 1 = a′
+ b′, then the unique sections s, s ′ of the given line bundle

vanishing to order at least a at Pi and b at Qi (respectively, a′ at Pi and b′ at Qi ) have

div s = a Pi + bQi + R and div s ′
= a′ Pi + b′Qi + R′

for some R, R′. We see that we have a linear equivalence R − R′
∼ (a′

− a)Pi + (b′
− b)Qi , and if

0 ≤ a, a′
≤ d , we see that R ̸= R′ because of the generality hypothesis on Pi , Qi . Thus, tensors of different

sections of this form always have zeroes in distinct places on Zi , and must be linearly independent.
For case (iii), note that the condition that the degree is 2 on every column between i and i ′ means by

Corollary 5.8 that there is at most one potentially starting and at most one potentially ending section in
each of these columns. Noting that the situation is fully symmetric, suppose without loss of generality
that i ′ is critical, with no remaining potentially present sections starting in it. If i or i ′ has fewer than
three remaining potentially present sections, we may use (ii) to drop these, and then move iteratively
through the rest of the block, using that at most one section starts or ends in each column together with (i)
to drop the remaining sections. Thus, suppose that i and i ′ both have three remaining potentially present
sections. Note also that if any column i ′′ has only one potentially present section spanning i ′′ and i ′′

+ 1,
then the minimal value in the right subcolumn of i ′′ is necessarily unique, so we can use case (i) to drop
the section in question. Moreover, there can be at most one other potentially present section supported in
column i ′′ (the one ending there), so we can drop this one as well, and then we can move iteratively left
and right to drop the entire block. Thus, we may further suppose that every column in the block has at
least two potentially present sections spanning it and the next column.

Next, normalize the sections as follows: scale all sections spanning the i ′
− 1 and i ′ column so they

agree at Qi ′−1, and then go back one column at a time, scaling any newly appearing section so that its
value at the previous node agrees with the value of a section which has already been fixed. In this way,
we will fix a normalization of all the sections except for those which are supported in only one column.
Although the normalization depends on some choices, they are of a discrete nature, and can be fixed
based purely on the discrete data of the limit linear series.

Now, consider a hypothetical nonzero linear dependence involving the rows in our block. First, the
coefficients of the linear dependence cannot vanish identically in the remaining potential sections of any
column, since otherwise the condition that at most one potentially present section ends in each column
would imply that there was a column with exactly one nonzero coefficient among its remaining sections.
Next, we see that the coefficients are unique up to simultaneous scaling for the three potentially present
sections in column i . Indeed, since we have assumed that i is semicritical, its three potentially present
sections must be pairwise independent.

Since we have at most one new potentially present section in each column, we find that the coefficient
for any new one is always uniquely determined by the previous ones. Since there are no new potentially
present sections in column i ′, we find that even before considering this column, we have already uniquely
determined all of the coefficients (up to simultaneous scaling) of all of the potentially present sections
remaining in the block. Moreover, we claim that these coefficients (excluding the ones for potentially
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present sections supported only in a single column) are uniquely determined up to finite indeterminacy by
the marked curves Zi , . . . , Zi ′−1 together with the discrete data of the limit linear series. Indeed, there are
only two ways in which nontrivial moduli can enter the picture: if there are columns i ′′ between i and i ′

−1
either having no δi ′′ , or having some sections si ′′

j which are not uniquely determined up to scalar. This
becomes slightly delicate, since in both these cases, varying the moduli could affect both the normalization
we have chosen and the linear dependence. However, we will show that in both cases, there will in fact
be only finitely many possibilities which still preserve the linear dependence. Note that by hypothesis,
neither of these nontrivial moduli occurs in the i-th column. Note also that we cannot have both occurring
at once, as the si ′′

j can only fail to be determined up to scalar if they involve an exceptional row, and since
we have assumed we have degree 2 between i and i ′, these can only appear if paired with the δi ′′ row.

First consider the case that we have no δi ′′ . Then since we have degree 2, every potentially present
section in column i ′′ must extend to both the preceding and subsequent columns. By assumption, there
are then at most three such sections. If there are fewer than three, they cannot be independent, leading
to an immediate contradiction. As a line bundle of degree two on an elliptic curve has at most two
independent sections, if there are three, say si ′′

0 , si ′′

1 , si ′′

2 , they are necessarily dependent, with a unique
dependence c0si ′′

0 + c1si ′′

1 + c2si ′′

2 = 0 which can be determined by requiring that it holds at both Pi ′′

and Qi ′′ . We claim that for any fixed choice of c0, c1, c2 (not all zero), there are only finitely many choices
of the line bundle L i ′′

such that the resulting cancellation holds at both points. For this claim, we can
renormalize our sections so that the values of the si ′′

j agree at Pi ′′ . We want to see that the values at Qi ′′

move nondegenerately in P2 as L i ′′

varies. But this is precisely the content of Proposition 2.5.
Next, suppose that we have an exceptional row j involved in column i ′′, necessarily paired with the δi ′′

row. As before, a linear dependence in the i ′′ necessarily has to give cancellation at both Pi ′′ and Qi ′′ .
Suppose that the j -th row and the δi ′′-th row have entries a, b and a′, b′ respectively, so that a +b = d −2
and a′

+ b′
= d. There are two cases: if a = a′

− 1, so that also b = b′
− 1 (and i ′′ has a swap in it),

then the moduli for the section si ′′

j consists simply of adding multiples of the section si ′′

δi ′′
, which doesn’t

affect the value at either Pi ′′ or Qi ′′ , and only affects the coefficient of the (δi ′′, δi ′′) row, which in this
case is supported purely in the i ′′ column. On the other hand, if a ̸= a′

− 1, observe that since the
degree is 2 in this column, we cannot have any other sections involving δi ′′ starting or ending in the
column, and therefore we have no sections starting or ending in the column. Thus, there are at most
three potentially present sections in column i ′′, and the other ones can’t involve any exceptional row and
must therefore be linearly independent. It follows that in our linear dependence, the coefficient of s( j,δi ′′ )

must be nonzero. Now, varying sj will change the relationship between the values at Pi ′′ and Qi ′′ (we
can view the moduli for sj as adding multiples of a section vanishing to order a + 1 at Pi ′′ and order b
at Qi ′′). Since this variation of moduli affects only a single potentially present section, and we know it
must have nonzero coefficient in our linear dependence, there is only one choice of si ′′

j compatible with
the previously determined linear dependence, and we have no nontrivial moduli in this case.

Finally, note that although our normalization was not determined for potentially present sections
supported in a single column, scaling these does not affect the coefficients of any of the sections spanning
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the i ′
− 1 and i ′ column, so we have that the possible coefficients of these sections are determined up to

finitely many possibilities. It thus suffices to show that if we vary the gluing points on the component
corresponding to the final column, the (unique, if it exists) linear independence on the three potentially
present sections varies nontrivially.

As there are no remaining potentially present section starting in the i ′-th column, the three rows in its
left subcolumn necessarily have the same a value. Let b be the minimal value for the right subcolumn.
By criticality, a + b = 2d − 2. Using (i), there are two cases to consider, either b is attained twice, or
in all three rows. The last condition in the definition of criticality implies that none of the (a, b) rows
are obtained by adding the δi ′ row to an exceptional row. Now, if all three rows are (a, b) rows, we can
directly apply Proposition 2.2 to conclude that the linear dependence in the i ′-th column varies nontrivially
with Pi ′, Qi ′ , as desired. On the other hand, if two rows are (a, b) rows, we again apply Proposition 2.2
to these two rows, and since we have normalized all three rows so that the values at Pi ′ agree, we again
see that the linear dependence among the three has to vary nontrivially with Pi ′, Qi ′ , as desired. □

7. The case r = 6

We now specialize to r = 6, g = 21 + ϵ and d = 24 + ϵ for some ϵ ≥ 0 (so that ρ = ϵ). As the total
degree is 2d = 2g + 6 = 3 × 6 + 2 × (g − 6), a multidegree can be determined by placing threes in six
columns, and twos in the rest.

Definition 7.1. For a limit linear series and with the λi of Definition 5.11, the default multidegree ωdef is
determined by placing a 3

(1) in the first column;

(2) in the first column with λ1
i + λ2

i = 5;

(3) in the first column with λ1
i + λ3

i = 7;

(4) in the column immediately after the last column with λ1
i + λ3

i = 7;

(5) in the column immediately after the last column with λ2
i + λ3

i = 9;

(6) in the last column.

As we are assuming that the first and last component in the chain have genus one and λℓ
i can only

increase in a genus-1 column, the default multidegree is unimaginative. Also, as the goal is to fill an
(r +1)(g −d +r) = 7×3 rectangle, conditions (2)–(5), (3)–(4) and of course (1)–(6) are symmetric with
respect to flipping the start and end of the chain. Recall that an unimaginative multidegree has degrees
2 or 3 on every elliptic component and that γi denotes the number of 3s in the first i components(see
Definition 5.5 ).

Proposition 7.2. Fix an unimaginative multidegree. Then for a column i , there can be at most three rows
spanning columns i and i + 1 except in the following circumstances:

(i) γi = 0 and λ1
i + λ3

i ≥ 8;
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(ii) γi = 2 and λ1
i + λ3

i ≥ 7;

(iii) γi = 4 and λ1
i + λ3

i ≤ 7;

(iv) γi = 6 and λ1
i + λ3

i ≤ 6.

In particular, in the default multidegree there are never more than three rows spanning a given pair of
columns.

Proof. We will use the criterion from Proposition 5.7. Since this only involves the values of j − λi, j =

ai+1
j −g(i), the general case reduces immediately to the notationally simpler situation that λi = λi for all i .

We thus assume that we are in this situation. Then, because the sequence j − λi, j is strictly increasing
in j , we see that pairs ( j1, j2) satisfying the identity for appearing in the i-th and (i+1)-st columns from
Proposition 5.7 must be strictly nested, so we can have at most r/2 + 1 = 4 of them, and we only have all
of these if λi, j + λi,r− j is constant for all j , in particular 2λi,r/2 = λi,0 + λi,r . Moreover,

γi = r − 2λi,r/2 = 6 − 2λi,r/2, γi = r − λi, j − λi,r− j , j = 0, . . . , r;

in particular γi is even. Adding these identities, we find that
r∑

j=0

λi, j =
(r + 1)(r − γi )

2
= 7

(
3 −

1
2γi

)
,

so λi,r/2 = 3 − γi/2.
If γi = 0, then λi,r/2 = 3. As r/2 = 3 and we start numbering the sections at 0, there are at least 4

values of λ that contribute to λ3
i (and therefore to λ1

i ). We conclude that λ1
i + λ3

i ≥ 8.
If γi = 2, then λi,r/2 = 2. Let n be the number of values of j with λi, j ≤ 0. Then also λi,r− j ≥ 4 for

the same n values of j . So λ1
i + λ3

i ≥ (r + 1 − n) + n = 7, as desired.
Similarly, if γi = 4 then λi,r/2 = 1. If there are n values of j with λi, j ≥ 3, then also λi,r− j ≤ −1. As

before we find λ1
i + λ3

i ≤ (r + 1 − n) + n = 7.
Finally, if γi = 6 then λi,r/2 = 0. Therefore, λ1

i + λ3
i ≤ 6, as claimed. □

We can now prove the following theorem, which will in particular prove the desired maximal rank
statement in all sufficiently nondegenerate cases for all ϵ in our family of cases. It will also suffice to
prove the genus-22 case of our main theorem.

Theorem 7.3. In the default multidegree, we can always drop all potentially present sections using the
rules from Lemma 6.3, so the potentially present sections are all linearly independent.

Proof. The vanishing of sections of a line bundle of degree d at Q1 is at most either d or d − 1(but not
both), d − 2, d − 3 . . . . So, at most the rows (0, 0), (0, 1) and (0, 2) can be among the potentially present
if there is no swap and at most the rows (0, 1) and (1, 1) can be potentially present if there is a swap. In
both cases, these sections have distinct orders of vanishing at Q1, so they can be dropped.

According to Corollary 5.8, we will have at most one new row with a potentially present section in
each column until we get to the next column of degree 3, so these can all be dropped.
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Now, suppose that i is minimal such that λ1
i + λ2

i = 5. Take ℓ1 = 1 and ℓ2 = 2 in Lemma 5.12, so
γi − 1 = 1 = 5 − 1 − ℓ1 − ℓ2. From Lemma 5.12 and Corollary 5.9, we have no potentially present
sections supported entirely in the i-th column. Any other new potentially present sections would have
to be supported in the i-th and (i+1)-st columns, so by Proposition 7.2, we have at most three of these.
Choose i ′ minimal so that λ1

i ′ +λ2
i ′ = 6, then with ℓ1 = 1 and ℓ2 = 2, γi ′ = 2 = 6−1−ℓ1 −ℓ2. According

to Corollary 5.8 and Lemma 5.12, there is no row starting in the i ′-th column. Then the i-th (respectively,
i ′-th) columns are critical: if a, b are the minimum values in the subcolumns, they have to add to at least
2d −2 or the rows would not be potentially starting in the i-th column (respectively, potentially supported
in the i ′-th column). The last condition of semicriticality and the condition for criticality then follow from
the second and first parts of Lemma 5.12, respectively. It follows that the hypotheses of Lemma 6.3(iii)
are satisfied, so we can drop all rows occurring in this block. We can then again handle any additional
columns before the next degree-3 one.

The setup being symmetric, we can also start at the end of the chain and in the same manner, eliminating
all potentially present sections occurring in any columns outside the middle two degree-3 columns. For
these columns, we are considering ℓ1 = 1 and ℓ2 = 3, so we have

γi+1 − 1 = 2 = 7 − 1 − ℓ1 − ℓ2 and γi+1 − 1 = 3 = 8 − 1 − ℓ1 − ℓ2,

respectively, and according to Corollary 5.9 and Lemma 5.12, neither column has any potentially present
section supported entirely in it. As before, we find we must have a block satisfying the hypotheses of
Lemma 6.3(iii), which we can then eliminate. □

If the specialization of our linear series contains the “expected” sections sj for every j = 0, . . . , r in
the expected multidegrees ωj (as in Proposition 4.9), then Theorem 7.3 implies that the images of each
sj ⊗ sj ′ in the default multidegree are linearly independent, so the multiplication map has the desired
rank

(r+2
2

)
= 28. However, some linear series may have more degenerate specializations. The remainder

of the paper will be devoted to applying Theorem 7.3 (and variants thereof) to handle these situations
as well. For this, the statement in terms of potentially present sections (as opposed to the separate
rows considered in [Liu et al. 2021]) is crucial. In interesting cases, we can have strictly more than 28
potentially present sections. This does not contradict the fact that the multiplication map can have rank at
most 28, because these do not occur separately in the linked linear series coming as the specialization
of any fixed family of linear series on the smooth fibers. In most limits, for every ( j1, j2) we will have
a unique linear combination of the potentially present sections in the ( j1, j2) row which actually arise
in the specialization. What makes the degenerate cases more interesting is that in these cases, we may
have more than one linear combination occurring from a given row, precisely in situations where the
specialization fails to contain any potentially present sections from some other row — see Example 8.3.

Ultimately, the default multidegree used in Theorem 7.3 will be sufficient to handle the genus-22 case,
and most of the genus-23 cases. However, for certain degenerate cases we will need to consider other
multidegrees instead. The following results allows for some flexibility in the choice of multidegree while
maintaining linear independence.
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Proposition 7.4. Suppose ω is an unimaginative multidegree determined by placing degree 3 in genus-1
columns as follows:

(1) In one column which is either the first, or a column with no exceptional rows and satisfying λ1
i +λ2

i ≤4
and λi,0 ≤ 2.

(2) In one column with λ1
i + λ2

i = 5 but λ1
i−1 + λ2

i−1 = 4.

(3) In one column between the first column with λ1
i + λ2

i = 6 and the first column with λ1
i + λ3

i = 7
(inclusive).

(4) In one column between the column immediately after the last column with λ1
i +λ3

i = 7 and the column
immediately after the last column with λ2

i + λ3
i = 8 (inclusive).

(5) In one column with λ2
i + λ3

i = 10 but λ2
i−1 + λ3

i−1 = 9.

(6) In one column which is either the last, or a column with no exceptional rows and satisfying

λ2
i−1 + λ3

i−1 ≥ 10 and λi−1,6 ≥ 1.

Then the potentially present sections in multidegree ω are still linearly independent.

Proof. The main new ingredient is verifying that if we place the first degree 3 in a (genus-1) column
after the first, but still satisfying λ1

i + λ2
i ≤ 4 and λi,0 ≤ 2, then provided we also have no exceptional

rows (and therefore no swaps), we will in fact obtain at most two potentially present sections starting in
the i-th column. By Proposition 5.7, for the ( j, j ′) row to have a potentially present section starting in
the i-th column, we will need j + j ′

− λi−1, j − λi−1, j ′ > γi−1 = 0 and j + j ′
− λi, j − λi, j ′ ≤ γi = 1, or

equivalently
λi−1, j + λi−1, j ′ < j + j ′

≤ 1 + λi, j + λi, j ′ . (7-1)

As there are no swaps in the i-th column, it suffices to check this assertion with λi = λi for all i . Then,
λ1

i + λ2
i ≤ 4 implies λi, j ≤ 0 for j ≥ 4 and λi, j ≤ 1 for j = 2, 3. It follows that to satisfy the right-hand

inequality above, we must have at least one of j, j ′ equal to 0 or 1. Moreover, by Corollary 5.9 for
j = 0, 1, if j ̸= δi , then there is at most one value of j ′ satisfying the above inequalities. In particular, we
conclude that if δi ̸= 0, 1, there are at most two potentially present sections, as claimed.

Assume δi = 0, and show that at most two rows of the form (0, j ′) are present in the i-th column, and
if two are present, then none of the form (1, j ′) is for j ′ > 0. Suppose first (0, 0) is potentially starting in
the i-th column. By (7-1) this could only happen if λi−1,0 < 0, so λi, j ′ = λi−1, j ′ < 0 for all j ′ > 0, and
then (0, j ′) cannot satisfy the right-hand side of (7-1) for any j ′ > 0. On the other hand, if j ′′ > j ′ > 0
are such that (0, j ′) and (0, j ′′) are both present, then

λi−1,0 + λi−1, j ′ < j ′ < j ′′
≤ 1 + λi,0 + λi, j ′′ ≤ 2 + λi−1,0 + λi−1, j ′,

so the only possibility is that j ′
= 1 + λi−1,0 + λi−1, j ′ and j ′′

= j ′
+ 1, with λi, j ′′ = λi, j ′ . It follows that

no other (0, j ′′′) is present for j ′′′
̸= 0, j ′, j ′′. Moreover, (1, j ′′′) cannot be potentially present for any

j ′′′ > 0 in this situation: If the (1, 1) row were present, (7-1) implies λi−1,1 ≤ 0, λi,1 ≥ 1 against the
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assumption δi = 0. As 1 + j ′′′ will be too large if j ′′′
≥ j ′, in order to have (1, j ′′′), j ′′′

≥ 2 present we
would need j ′′

≥ 4. But the original assumptions imply 1 + λi,0 + λi, j ′′ ≤ 3, contradicting (7-1).
Finally, consider the case that δi = 1. If the (1, 1) row is potentially starting in the i-th column, by parity

we have 1 = λi,1. So for all j > 1 λi, j = λi−1, j ≤ λi−1,1 = 0. Then we cannot have (1, j ′) potentially
starting for any j ′ > 1, so we have at most two rows potentially starting. On the other hand, if we have
j ′′ > j ′ > 1 potentially starting in the i-th column, we are just as above forced to have j ′

= λi−1,1 +λi−1, j ′

and j ′′
= j ′

+ 1, with λi, j ′′ = λi, j ′ , and we claim we cannot have (0, j ′′′) potentially starting for any j ′′′.
Indeed, if j ′′′

≤ j ′′, then we have j ′′′
− λi−1, j ′′′ ≤ j ′′

− λi−1, j ′′ , so

j ′′′
≤ j ′′

− λi−1, j ′′ + λi−1, j ′′′

= 1 + λi−1,1 + λi−1, j ′′ − λi−1, j ′′ + λi−1, j ′′′

≤ λi−1,0 + λi−1, j ′′′,

violating (7-1). But j ′′
≥ 3, so if j ′′′

≥ 4 we cannot satisfy (7-1) without violating our hypothesis that
λi−1,0 ≤ 2. We thus conclude the desired statement on the number of potentially present sections starting
in column i .

Now, since we have assumed that our first column with degree 3 has no exceptional rows, the fact that
it has at most two potentially present sections starting in it means that we can still eliminate sections
starting at the beginning of the chain until we reach the second column of degree 3, just as in the proof
of Theorem 7.3 and the second column of degree 3 will still be critical, with at most three potentially
present sections starting in it. The next step depends on the location of the third column of degree 3. If
the first column with λ1

i + λ2
i = 6 still has degree 2, we will eliminate this block in increasing order, as

before. On the other hand, if the first column with λ1
i + λ3

i = 7 has degree 2, we do not need to have
eliminated everything in components with smaller indices in order to eliminate the central block, since
the potentially supported rows in multidegree ω will be precisely the same as the potentially starting rows
in ωdef. Thus, if the third column of degree 3 is strictly between these, we can eliminate both adjacent
blocks first, and then eliminate all potentially present sections one by one from both sides until we reach
this final column, which can have at most one remaining potentially present section by Corollary 5.9.
However, if the third column of degree 3 is the first column with λ1

i + λ2
i = 6, we see that this will be

critical with at most three potentially present sections ending in it, and we will instead eliminate the
central block first, and then eliminate the block between the second and third columns of degree 3 last.

The situation is symmetric on the right, so we see that in all cases we will be able to eliminate all
potentially present sections in a suitable order. □

It will also be important to consider moving degree 3 into a column with a swap, which we analyze
below:

Lemma 7.5. Choose a multidegree md2d(w) for w = (c2, . . . , cg) that assigns degree 3 to the i-th column
having a δi . If ai

δi
= ai

j0 + 1, ai+1
δi

= ai+1
j0 − 1 for some j0, then there are at most four potentially starting
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sections on the i-th column. Moreover, if there are actually four either

2āi
3 = ci + 1, (7-2)

or (δi , δi ) is potentially starting, and one of the following three possibilities holds:

(1) ai
(δi ,δi )

= ci + 1;

(2) ai
(δi ,δi )

= ci + 2, and the ( j0, δi ) row is potentially starting;

(3) ai
(δi ,δi )

= ci + 3, with ai
δi

= āi
4.

At most four potentially present sections end in the i-th column, with four of them ending only if either

2āi
3 = ci , (7-3)

or if (δi , δi ) is potentially ending, and one the following three possibilities holds:

(1) ai
(δi ,δi )

= ci , with ai
δi

= āi
3;

(2) ai
(δi ,δi )

= ci + 1, and the ( j0, δi ) row is potentially ending;

(3) ai
(δi ,δi )

= ci + 2;

We have written the above to allow for swaps having occurred prior to the i-th column. If no swaps
have occurred, the j0 in the lemma statement is necessarily δi − 1, and the third exceptional case would
require δi = 4 (respectively, δi = 2) in the statement on potential support starting (respectively, ending).

Proof. In order to have a potentially starting section in the ( j, j ′) row, one needs ai
( j, j ′) > ci and

ai+1
( j, j ′) ≤ ci+1 = ci +3. It follows that if j, j ′

̸= δi , then ai
( j, j ′) = ci +1, and neither j nor j ′ equal to j0. If

j ′
= δi , j ̸= δi , it is possible that ai

( j,δi )
= ci + 2, provided that j ̸= j0. And ( j0, δi ) is potentially starting

only if ai
( j0,δi )

= ci + 1, or equivalently if ai
(δi ,δi )

= ci + 2. Recall that Corollary 5.9 says that if ( j, δi ) is
potentially starting for some j ̸= δi , then there is no j ′

̸= δi with ( j, j ′) also potentially starting. Next, we
note that we can have at most two rows of the form ( j, δi ) potentially starting. Indeed, if ai

(δi ,δi )
= ci + 3,

then ai
( j,δi )

= ci + 2 only for j = j0, so the ( j0, δi ) row does not occur, and we can have at most one
additional row, having ai

( j,δi )
= ci + 1. On the other hand, if ai

(δi ,δi )
̸= ci + 3, then we have at most two

rows, because they have to satisfy ai
( j,δi )

= ci + 1 or ci + 2. We also observe that we can have a row of
the form ( j, j) for j ̸= δi only for a unique choice of j , necessarily with 2ai

j = ci + 1 and j ̸= j0, and
then we cannot have (δi , δi ) occurring, since ai

j ̸= ai
δi

− 1 for j ̸= j0.
If no ( j, δi ) is potentially starting, then in particular ( j0, δi ) also cannot be potentially starting. We can

obtain at most three pairs (allowing one of them to have repeated entries) with fixed sum of vanishing.
Similarly, if exactly one ( j, δi ) is potentially starting, then necessarily j ̸= j0, or we would be in the 2nd
exceptional case with also (δi , δi ) potentially starting, so for the remaining pairs we must choose from
values not equal to δi , j0, j , leaving four values, and at most two pairs. We therefore see that in order to
have four rows potentially starting, two of them need to involve δi .

If ( j1, δi ) and ( j2, δi ) are potentially starting, with neither j1, j2 equal to δi (and hence also neither
equal to j0), then any remaining rows have to be chosen as distinct pairs from the remaining (r +1)−4 = 3
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indices, with at most one pair having repeated value. We thus obtain at most four rows, with four occurring
only if 2ai

j = ai
j3 + ai

j4 = ci + 1 for some j, j3, j4 ̸= δi , j0, j1, j2. Moreover, we see that there must be
exactly three values of j ′ with ai

j ′ < ai
j in this case: if ai

δi
< ai

j , then these are δi , j0, and exactly one
of j3, j4, with necessarily j1, j2 and the other of j3, j4 having ai

j ′ > ai
j . If ai

δi
> ai

j , then ai
j0 must also be

greater than ai
j , so we similarly find exactly three values are smaller. Thus (7-2) must hold.

It remains to consider the case the (δi , δi ) row is potentially starting, and the only thing left to prove is
the description of case (3), where ai

(δi ,δi )
= ci +3. Here, we must also have a j with ai

( j,δi )
= ci +1, and if

we have two additional rows appearing, these must come from two additional pairs nested around ai
( j,δi )

,
so since ai

j < ai
j0 < ai

δi
in this case, we obtain the desired statement.

The statement on rows ending is symmetric. □

We are now ready to deal with the two possible cases of 3-cycles in the next two corollaries.

Corollary 7.6. Suppose that ρ = 2 and r = 6 and we are in the “first 3-cycle” situation of Proposition 4.18.
Then, there exists an unimaginative multidegree ω′ such that the ( j0 − 1, j0) row has a unique potentially
present section in multidegree ω′, whose support does not contain i0 or i1, and such that all the potentially
present sections are linearly independent.

Proof. Consider the default multidegree ωdef. If all ( j1, j2) have connected potential support, we are
done. With the notation of Proposition 4.18, the only rows that have a semicolumn adding to d − 2 are
j0, j0 − 1. From Proposition 5.10, the only row which could have disconnected potential support in some
unimaginative multidegree is ( j0 − 1, j0). More specifically, the potential support of ( j0 − 1, j0) can be
disconnected only if ai0

j0−1 +ai0
j0 = ci0 −1, ai1+1

j0−1 +ai1+1
j0 = ci1+1 +1, there is degree 2 in every column from

i0 to i1 inclusive, and no δi equals j0 −1 or j0 for any i between i0 and i1. It then follows in particular that
ai0

( j0+1, j0+1) ≥ ci0 +2 and ai1+1
( j0+1, j0+1) ≤ ci1+1 −2, or equivalently, ai1

( j0+1, j0+1) ≤ ci1 . If the ( j0 −1, j0) row
has disconnected potential support, then we will use Lemma 7.5 to verify that we can move one degree 3
into either the i0 or i1 column to achieve connected potential support while maintaining the independence
conclusion of Theorem 7.3. If the 3 was moved to the i0 column, then the ( j0 − 1, j0) still cannot have
any potential support at i1. If the 3 was moved from the right, we still have ai0

j0−1 + ai0
j0 = ci0 − 1, ruling

out potential support at i0. But if it was moved from the left, then this will decrease ci0 by 1, and we will
then have ai

j0−1 + ai
j0 = ci for i0 ≤ i ≤ i1, meaning that any potential support at i0 would have to continue

right to i1, but we will still have ai1+1
j0−1 + ai1+1

j0 = ci1 + 1, so there cannot be any potential support at i1. A
similar analysis holds if we moved the 3 to i1, proving the desired result.

To prove that we can always move a 3 as desired, we first make some general observations regarding
when we will be able to move degree 3 from the left or right onto i0 or i1. Recall that, from the assumption
of having a 3-cycle, δi0 = δi1 = j0 + 1. Since ai1

( j0+1, j0+1) ≤ ci1 , moving a degree 3 to i1 from the right
will always lead to at most 3 rows starting in the i1 column, unless 2āi1

3 = ci1 + 1, or equivalently,

5 − γi1−1 = 2λi1−1,3. (7-4)

In addition, ai1
( j0−1, j0+1) < ci1 , so the ( j0 − 1, j0 + 1) row will not be among the potentially present rows.
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We next consider what happens if we move a degree 3 to i0 from the left. This will decrease ci0 by 1,
so we have to rule out that in multidegree ωdef we have 2āi0

3 = ci0 , or equivalently,

6 − γi0−1 = 2λi0−1,3. (7-5)

Additionally, if ai0
( j0+1, j0+1) ≥ ci0 + 3 in ωdef, then after moving the degree 3 to i0, none of the other

exceptional cases of Lemma 7.5 can occur, so as long as we do not have (7-5), we will have at most three
rows with potential support starting at i0. The only other possibility is that ai0

( j0+1, j0+1) = ci0 + 2, which
is equivalent to 2 j0 − γi0−1 = 2λi0−1, j0+1; moreover, after moving a 3 from the left to i0 we will have
ai0

( j0+1, j0+1) = ci0 + 3, so we could potentially be only in the third exceptional case in Lemma 7.5. Thus,
the only case for concern is that j0 + 1 = 4, so we simply need to check that in cases where we wish to
move a 3 from the left, we never have

6 − γi0−1 = 2λi0−1,4. (7-6)

Finally, in either case after the move we will have ai0
( j0, j0+1) = ai0

( j0+1, j0+1) −1 ≥ ci0 +2, so the ( j0, j0 +1)

row cannot be among the rows starting at i0.
We now describe how to modify our default multidegree, depending on the location of i0 and i1. If we

have γi0 = γi1 = 1, then we will move the next 3 from the right to column i1, and we will obtain at most
three rows with potential support starting in i1: by the above observation, it suffices to rule out (7-4), but
we have 5−γi1−1 = 4. To have equality we would need λi1−1,3 = 2, which would imply λ1

i1−1 +λ2
i1−1 ≥ 8,

in which case we would not have had γi1 = 1 in ωdef.
Next, suppose γi0 = γi1 = 2, and we have λ1

i1
+λ2

i1
< 6. In this case, we will move the 3 to i0 from the

left, and γi0−1 = 2 in ωdef, so if either (7-6) or (7-5) is satisfied, we must have λi0−1,3 ≥ 2. But this would
force

λ1
i1

+ λ2
i1

≥ λ1
i0−1 + λ2

i0−1 ≥ 8,

contradicting the hypothesis for the case in question. We again conclude that there are at most 3 rows
starting, and again the ( j0, j0 + 1) row is not among them.

On the other hand, if γi0 = γi1 = 2, and λ1
i1

+ λ2
i1

≥ 6, then we will move a 3 to i1 from the right,
and (7-4) is not satisfied for parity reasons, so we will have at most three new rows starting. Finally, if
γi0 = γi1 = 3, neither (7-6) nor (7-5) can be satisfied for parity reasons, so we can move a 3 from the left
to i0, and have at most three starting rows.

The remaining cases are treated symmetrically, with rows starting replaced by rows ending. In each
case, we see that the basic structure of the proof of Theorem 7.3 is preserved by our change of multidegree,
so our linear independence is likewise preserved, yielding the desired statement. □

Corollary 7.7. Assume that ρ = 2, r = 6 and we are in the “second 3-cycle” situation of Proposition 4.20.
Suppose that in the default multidegree ωdef, we have the inequalities

2ai0
j0−1 ≤ ci0 − 1, and 2ai1+1

j0−1 ≥ ci1+1 + 1,
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with exactly one of the two inequalities satisfied with equality. Then there exists an unimaginative
multidegree ω′ such that the ( j0 − 1, j0 − 1) row does not have potentially present sections both left of i0

and right of i1 in multidegree ω′, and such that all the potentially present sections are linearly independent.

Proof. The only row that has a semicolumn adding to d − 2 is j0 − 1 and it has two of them. From
Proposition 5.10, the only row which could have disconnected potential support in some unimaginative
multidegree is ( j0 − 1, j0 − 1).

Suppose that in multidegree ωdef, we have

2ai0
j0−1 = ci0 − 1, but 2ai1+1

j0−1 > ci1+1 + 1.

We will show that we can always move a 3 from the left to a genus-1 column on or right of i0, while
preserving linear independence. This will eliminate potential support in the ( j0 − 1, j0 − 1) row left of i0,
as desired. From the definition of λi, j in Definition 5.1, this condition can be written as

2( j0 − 1) + 1 − γi0−1 = 2λi0−1, j0−1,

so in particular γi0−1 must be odd.

Case γi0−1 = 1. Then j0 − 1 = λi0−1, j0−1. From the definition of default multidegree λ1
i0−1 + λ2

i0−1 < 5,
which forces j0 − 1 = 1, so λi0,1 = λi0−1,1 = 1.

First, if i1 is the genus-1 column immediately following i0, we observe that if we move the first 3 to i0,
considering only the inequalities at i0, there can be at most three rows with potential support starting at
i0: (1, 2), (2, 2) and (0, j) for a unique j > 2: For the row ( j, j ′) to be present, we need

λi0−1, j + λi0−1, j ′ < j + j ′
≤ 1 + λi0, j + λi0, j ′ .

From j0 − 1 = 1, λi0−1,1 = 1 and the 3-cycle situation, λi0,1 = 0, λi0−1,2 = 1, λi0,2 = 2. So (1, 2), (2, 2)

are potentially present and one pair (0, j), j > 2. But in this case the actual potential support of (1, 2) is
connected and supported strictly to the right of i1. Thus, there are in fact at most two rows with potential
support starting at i0, and neither of them involves the exceptional row (specifically, j = 1). So moving
the first 3 to i0 we will still be able to eliminate potentially present sections from left to right as before.

Next, suppose that i1 is not the genus-1 column immediately following i0, and denote this column
by i . Suppose also that there is no degree-3 column between i0 and i1, so that in particular λ1

i + λ2
i ≤ 4.

We observe that we must also have λi,0 = 1, since we have λi0,1 = λi0,2 = 1, and we must have
λi1−1,2 = λi1−1,3 ≥ 1. So the only way we can avoid having a column of degree 3 before i1 is if also
λi1−1,0 = 1. We can then apply Proposition 7.4 to move the first 3 to column i , and we will still obtain
linear independence.

Finally, if we have a column of degree 3 between i0 and i1, say in column i , so that λ1
i + λ2

i = 5, then
we claim that if we move the first 3 from the left to i0, we will have at most two potentially present
sections ending in column i , and at most two potentially present sections supported in the first column
with λ1

i ′ +λ2
i ′ = 6. This will prove the desired statement, since we can then eliminate the potentially present
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sections starting from i ′ and moving both left and right from there. Checking the possible inequalities in
column i ′, moving the 3 from the left to i0 won’t affect anything, so the argument for Theorem 7.3 implies
a priori that there are at most three rows satisfying the inequalities at i ′ for potentially present sections to
be supported there. We will check that there is always one such row which satisfies the inequalities at i ′,
but does not in fact have potential support there. Because we have a 3 between i0 and i1, we must have
2ai1+1

j0−1 = ci1+1 + 2. If i ′ < i1, the row in question is (1, 1) = ( j0 − 1, j0 − 1): indeed, in this situation
we will have ai ′′

( j0−1, j0−1) = ci ′′ for all i ′′ with i < i ′′
≤ i1, so ( j0 − 1, j0 − 1) does satisfy the necessary

inequalities at i ′, but its actual potential support (after moving the 3 to i0) is strictly to the right of i1. On
the other hand, if i ′ > i1, the row in question will be (1, 2) = ( j0 − 1, j0):

we have ai1+1
j0−1 + ai1+1

j0 ≤ ci1+1, so ai1
j0−1 + ai1

j0 < ci1,

and because the potential support is connected, it must be strictly left of i1. However, we claim that we
must have ai1+1

j0−1 + ai1+1
j0 = ci1+1, and that this must extend through the column i ′, so that the inequalities

for potential support are satisfied at i ′. Indeed, the only way this could fail is if δi ′′ = j0 for some i ′′ with
i0 < i ′′ < i ′. But we know that λi0−1, j0−1 = λi0−1, j0 = 1. So if δi ′′ = j0 anywhere after i0, it increases
λ1

i ′′ +λ2
i ′′ to at least 5. Thus, this could only happen for i ′′ < i ′ if i ′′

= i , which then forces us to have λ1
i0

= 3
and λ2

i0
= 1. However, in this case, because we cannot have a gap between the j0 − 1 and j0 + 1 column

at i1, this would force us to also increase λ1
i ′′ to 4 before i1, which violates our hypothesis that i ′ > i1. Thus,

in either situation we have shown that the column i ′ has at most two potentially present sections supported
on it, and it remains to check that the column i has at most two potentially present sections ending on
it. But we either have λ1

i−1 = 4 and λ2
i−1 = 0 or λ1

i−1 = 3 and λ2
i−1 = 1, and one can calculate directly

that because we cannot have δi = 0 or 4 in the second case, δi = 1 in either case (recalling that by column
i we have had a swap between rows 1 and 2), or δi = 3 in the first case, the only rows with potential
support ending in column i are (1, 2) and (0, j) for a unique value of j , yielding the desired statement.

Case γi0−1 = 3. Then either j0 −1 = 2 and λi0−1, j0−1 = 1, or j0 −1 = 3 and λi0−1, j0−1 = 2. First, suppose
that ( j0 − 1, j0) has potential support strictly to the right of i1, or equivalently, that there are no columns
between i0 and i1 having degree 3, or with δi = j0 − 1 or j0. In this case, if we move a 3 from the left to
i0, by Lemma 7.5 at most four rows satisfy the inequalities at i0 to have potentially starting sections at i0,
and we see that these include ( j0 − 1, j0). But ( j0 − 1, j0) does not actually have potential support at i0,
so in this case we have at most three rows starting at i0, and none of them involve the exceptional row
(specifically, j0 − 1), so we can eliminate this central block just as in Theorem 7.3, and we conclude we
still have linear independence.

Now, the possibility that we have δi = j0 − 1 in between i0 and i1 is ruled out by the inequality
2ai1+1

j0−1 > ci1+1 + 1. If there is a column with δi = j0, but no column having degree 3 between i0 and i1,
we will move the third degree-3 from the left to i1, and the ( j0 + 1, j0 + 1) = (δi1, δi1) row is supported
strictly to the right of i1. In addition (7-2) is ruled out by parity reasons, so by Lemma 7.5 we have at most
three rows starting at i1, and we also see that ( j0 − 1, j0 + 1) is not among them, as it will have potential
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support strictly to the right of i1. Thus, no row involving j0 −1 (the exceptional row) has potential support
starting at i1, and in this case we can eliminate all potentially present sections just as in Theorem 7.3.

Next, suppose there is some column with degree 3 between i0 and i1, but no column with δi = j0.
In this case, we will move the fourth 3 to the first column i with λ2

i + λ3
i = 9, and the third 3 to i0. If

λ2
i1

+ λ3
i1

< 9, then according to Proposition 7.4, moving the fourth 3 doesn’t disrupt linear independence,
and then we are in exactly the same situation as the first case considered above, with ( j0 − 1, j0) having
potential support strictly to the right of i1. On the other hand, if λ2

i1
+λ3

i1
= 9, we will still maintain linear

independence, but for different reasons: we claim that will have at most three rows ending in the i-th
column, no row ending in the first column i ′ with λ2

i ′ + λ3
i ′ = 8, and only two rows ending in the first

column i ′′ with λ2
i ′′ + λ3

i ′′ = 10. Thus, we will be able to eliminate potentially present sections from the
right, treating the columns from i ′ to i as a block to which to apply Lemma 6.3(3), and we will in this way
eliminate all potentially present sections supported on either side of i0. This leaves at most one potentially
present section, which can then be eliminated. Thus, it suffices to prove the above claim. By the argument
for Proposition 7.4, we have no potentially present section supported only in the i-th column, and at most
three continuing from the previous column. So, there are at most three ending in the i-th column, as
claimed. The fact that there are no rows ending in the i ′-th column is immediate from Corollary 5.8 and
Lemma 5.12. Finally, we know from the proof of Theorem 7.3 that there at most three rows satisfying
the inequalities in column i ′′ to have potential support ending there. Moreover, we see that ( j0 − 1, j0)
is necessarily one of them. Indeed, since we have one column with degree 3 and none with δi = j0 − 1
or j0 between i0 and i1, we see that ai1+1

( j0−1, j0) = ci1+1 even after changing the multidegree. But after i1,
any column with δi = j0 − 1 or j0 will increase λ2

i + λ3
i , so this cannot occur strictly between i1 and i ′′,

and we conclude that ai ′′

( j0−1, j0) = ci ′′ as well. Since column i ′′ has degree 3, this means that ( j0 − 1, j0)
satisfies the inequalities to have potential support ending at i ′′. But again using that the fourth 3 is still
left of i1, the actual potential support of ( j0 − 1, j0) is contained to the left of i1, so we conclude that
column i ′′ has at most two rows with potential support ending there, completing the proof of the claim.

It remains to analyze the possibility that we have a column of degree 3 and a column with δi = j0 in
between i0 and i1. Recall that we have either

j0 − 1 = 2 and λi0−1, j0−1 = 1, or j0 − 1 = 3 and λi0−1, j0−1 = 2.

We first claim that in the latter case, we cannot have δi = j0 in between i0 and i1 without forcing there to
be two columns of degree 3 in between, or equivalently, forcing λ2

i1
+ λ3

i1
≥ 10. Indeed, since we cannot

have a gap between ai0
j0−1 and ai0

j0 for the swap, we must have λ2
i0

≥ 5, and then for the same reason at
i1 we must have λ2

i1
≥ 6. But having some δi = j0 also requires λ3

i ≥ 4, so we conclude that we would
necessarily have λ2

i1
+ λ3

i1
≥ 10, as claimed. Thus, it suffices to treat the situation that λi0−1, j0−1 = 1. In

this situation, we have λ2
i1

+λ3
i1

≤ 6, and we will move the third 3 to column i0 and the fourth 3 to column
i1. We claim that we will have at most two rows with potentially present sections ending in i1, and neither
involves the exceptional row (specifically, j0 − 1, which is 2). Thus, we will be able to eliminate all
potentially present sections from the left and from the right of i0, and finally eliminate the at most one
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potentially present section supported only at i0. To verify the claim, we see that we necessarily have

5 ≤ λ1
i1

≤ 7, λ2
i1

= 3, and 1 ≤ λ3
i1

≤ 3.

We compute that the only rows satisfying the inequalities to potentially end at i1 are (3, 4), (0, 6), (1, 5),
(1, 6) and (3, 5), but by the uniqueness part of Corollary 5.9, we see that the only way we can have three
of these occurring at once is if we have (3, 4), (0, 6) and (1, 5). However, we also have that (3, 4) can
only end if λ3

i1
≤ 2, (0, 6) can only end if λ1

i1
≤ 6, and (1, 5) can only end if one of the preceding two

inequalities is strict. But together these imply that λ1
i1

+λ3
i1

≤ 7, meaning that we cannot have all the rows
ending at i1 under our hypothesis that the fourth 3 comes before i1.

This concludes the case γi0−1 = 3.

Case γi0−1 = 5. In this case j0 − 1 = λi0−1, j0−1 + 2. From the definition of default multidegree,
λ2

i0−1 +λ3
i0−1 ≥ 10, so j0 −1 ≥ 4. But, to allow for the double swap (there is a j0 +1 row), j0 −1 ≤ 4, so

j0 − 1 = 4. With an argument as in Lemma 7.5, if we move the fifth 3 to i0, even if we obtain two rows
involving δi0 = 5 with potential support ending at i0, there can be at most one more (necessarily of the
form ( j, 6) for some j). Moreover, the (4, 5) row is not one of these, as it will have potential support
starting, not ending, at i0. We can therefore still eliminate the block spanning from the first column with
λ2

i + λ3
i = 9 to column i0 just as before.

The case that 2ai1+1
j0−1 = ci1+1 + 1 but 2ai0

j0−1 < ci0 − 1 is handled completely symmetrically, completing
the proof. □

8. An analysis of the degenerate case

To conclude the proof of the main theorem, we need multidegrees such that on the one hand, the potentially
present sections are still linearly independent, and on the other hand, tensors coming from any exact
linked linear series generate at least

(r+2
2

)
= 28 linearly independent combinations of the potentially

present sections. The key point is that even though there are cases where some row may not have any
potentially present section occurring in the linked linear series in the chosen multidegree, in those cases
there is more than one combination of sections from some other row. We first look at the behavior of
mixed sections under tensor product

Lemma 8.1. Suppose s, s ′ are mixed sections of multidegrees mdd(w) and mdd(w′), and let md2d(w′′)

be another multidegree. Then fw+w′,w′′(s ⊗ s ′) lies in the potential ambient space in multidegree md(w′′).

Proof. By definition of mixed sections as sums, it suffices to treat the case that s is obtained purely from
gluing together si

j for fixed j , and s ′ is obtained from gluing together si
j ′ for fixed j ′. But in this case

the result is clear, since fw+w′,w′′(s ⊗ s ′) must be a combination of potentially present sections from the
( j, j ′) row. □

The following lemma is convenient for cutting down the number of possibilities to consider.
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Lemma 8.2. Let s, s ′ be mixed sections of multidegrees md(w) and md(w′) and types (S⃗, j⃗) and (S⃗′, j⃗ ′)

respectively. Suppose that for some i with 1 < i < N , we have

ℓ1 ̸= ℓ2 and ℓ′

1 ̸= ℓ′

2 such that i ∈ Sℓ1 ∩ Sℓ2 ∩ S′

ℓ′

1
∩ S′

ℓ′

2
.

Then for any unimaginative w′′, the map fw+w′,w′′ vanishes identically on Zi .
If further either { jℓ1, jℓ2} = { j ′

ℓ′

1
, j ′

ℓ′

2
} or { jℓ1, jℓ2}∩{ j ′

ℓ′

1
, j ′

ℓ′

2
} =∅, then the same conclusion holds when

i = 1 or i = N.

Proof. First consider the case 1 < i < N , and write w = (c2, . . . , cN ) and w′
= (c′

2, . . . , c′

N ). The
hypotheses mean that w allows for support of both si

j and si
j ′ for some distinct j, j ′, so ai

j , ai
j ′ ≥ ci and

bi
j , bi

j ′ ≥ d − ci+1. Without loss of generality, suppose ai
j < ai

j ′ . Then, either ai
j + bi

j < d or ai
j ′ + bi

j ′ < d .
If bi

j > bi
j ′ , then either ci+1 ≥ d −bi

j ′ > d −bi
j > ai

j ≥ ci or ci+1 ≥ d −bi
j ′ > ai

j ′ > ai
j ≥ ci , so in either case

we have ci+1 ≥ ci +2. On the other hand, if bi
j < bi

j ′ , then ci+1 ≥ d −bi
j > d −bi

j ′ ≥ ai
j ′ > ai

j ≥ ci , so again
ci+1 ≥ ci + 2. The same argument holds for w′, so we conclude that ci+1 + c′

i+1 ≥ ci + c′

i + 4, which
implies that fw+w′,w′′ vanishes on Zi , since if we write w′′

= (c′′

2, . . . , c′′

N ), the unimaginative hypothesis
means that c′′

i+1 ≤ c′′

i + 3.
Next, if i = 1, the unimaginative hypothesis means that c2 is equal to 2 or 3. It follows (see the proof of

Theorem 7.3) that only the rows (0, 0), (0, 1), (1, 1) and (0, 2) can have potential support in the column,
with not both (0, 0) and (1, 1) occurring. If fw+w′,w′′ is nonzero on Z1, then fw+w′,w′′(s ⊗ s ′) must have
( jℓu , j ′

ℓ′
v
) parts with potential support at i = 1 for u = 1, 2 and v = 1, 2, and this isn’t possible if either

{ jℓ1, jℓ2} = { j ′

ℓ′

1
, j ′

ℓ′

2
} or { jℓ1, jℓ2} ∩ { j ′

ℓ′

1
, j ′

ℓ′

2
} = ∅. The case i = N is symmetric. □

The cases of mixed sections appearing after each type of swap will require individual analysis. We
treat the case of a single swap in the next proposition but we first give an example:

Example 8.3. Tables 2a and 2b together show the table T obtained from the tensor square of the limit
linear series considered in Example 4.25, which has r = 6, g = 22, and d = 25.

We have highlighted the potentially present sections; note that the (2, 2) row contains two (the first in
Table 2a, the second in Table 2b), while the rest all have a unique one. These two potentially present
sections are thus treated separately in Theorem 7.3; the first appears as part of a block in the fifth and
sixth columns which is eliminated using rule (iii) of Lemma 6.3, while the second occurs as the only
new potentially present sections in the twelfth column, which is part of another block, extending from
the seventh column to the sixteenth column, which is again eliminated using rule (iii), after all other
potentially present sections have been eliminated on both the left and right. The only other block that
requires rule (iii) contains the seventeenth and eighteenth columns, and is eliminated after the potentially
present sections appearing to the right have all been dropped. Following the proof of Theorem 7.3, we
see that we can eliminate all sections outside the aforementioned three blocks going inward from both the
left and right ends, using only iterated applications of rule (i).

Observe that in the default multidegree, the (unique) potentially present section in row (2, 3) extends
from the seventh column to the eleventh column. This means that if s ′

3 and s ′′

3 have the smallest possible
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col = 1 2 3 4 5 6 7 8 9 10 11

(0, 0) 0 50 0 48 2 46 4 44 6 42 8 40 10 38 12 38 12 36 14 34 16 32
(0, 1) 1 48 2 47 3 45 5 43 7 41 9 39 11 37 13 36 14 34 16 33 17 31
(0, 2) 2 47 3 45 5 44 6 42 8 40 10 38 12 36 14 35 15 32 18 30 20 28
(1, 1) 2 46 4 46 4 44 6 42 8 40 10 38 12 36 14 34 16 32 18 32 18 30
(0, 3) 3 46 4 44 6 42 8 41 9 39 11 37 13 35 15 34 16 33 17 31 19 30
(1, 2) 3 45 5 44 6 43 7 41 9 39 11 37 13 35 15 33 17 30 20 29 21 27
(0, 4) 4 45 5 43 7 41 9 39 11 38 12 36 14 34 16 33 17 31 19 29 21 27
(1, 3) 4 44 6 43 7 41 9 40 10 38 12 36 14 34 16 32 18 31 19 30 20 29
(2, 2) 4 44 6 42 8 42 8 40 10 38 12 36 14 34 16 32 18 28 22 26 24 24
(0, 5) 5 44 6 42 8 40 10 38 12 36 14 35 15 33 17 32 18 30 20 28 22 26
(1, 4) 5 43 7 42 8 40 10 38 12 37 13 35 15 33 17 31 19 29 21 28 22 26
(2, 3) 5 43 7 41 9 40 10 39 11 37 13 35 15 33 17 31 19 29 21 27 23 26
(0, 6) 6 43 7 41 9 39 11 37 13 35 15 33 17 32 18 31 19 29 21 27 23 25
(1, 5) 6 42 8 41 9 39 11 37 13 35 15 34 16 32 18 30 20 28 22 27 23 25
(2, 4) 6 42 8 40 10 39 11 37 13 36 14 34 16 32 18 30 20 27 23 25 25 23
(3, 3) 6 42 8 40 10 38 12 38 12 36 14 34 16 32 18 30 20 30 20 28 22 28
(1, 6) 7 41 9 40 10 38 12 36 14 34 16 32 18 31 19 29 21 27 23 26 24 24
(2, 5) 7 41 9 39 11 38 12 36 14 34 16 33 17 31 19 29 21 26 24 24 26 22
(3, 4) 7 41 9 39 11 37 13 36 14 35 15 33 17 31 19 29 21 28 22 26 24 25
(2, 6) 8 40 10 38 12 37 13 35 15 33 17 31 19 30 20 28 22 25 25 23 27 21
(3, 5) 8 40 10 38 12 36 14 35 15 33 17 32 18 30 20 28 22 27 23 25 25 24
(4, 4) 8 40 10 38 12 36 14 34 16 34 16 32 18 30 20 28 22 26 24 24 26 22
(3, 6) 9 39 11 37 13 35 15 34 16 32 18 30 20 29 21 27 23 26 24 24 26 23
(4, 5) 9 39 11 37 13 35 15 33 17 32 18 31 19 29 21 27 23 25 25 23 27 21
(4, 6) 10 38 12 36 14 34 16 32 18 31 19 29 21 28 22 26 24 24 26 22 28 20
(5, 5) 10 38 12 36 14 34 16 32 18 30 20 30 20 28 22 26 24 24 26 22 28 20
(5, 6) 11 37 13 35 15 33 17 31 19 29 21 28 22 27 23 25 25 23 27 21 29 19
(6, 6) 12 36 14 34 16 32 18 30 20 28 22 26 24 26 24 24 26 22 28 20 30 18
(6, 6) 32 16 34 14 36 12 38 12 38 10 40 8 42 6 44 4 46 2 48 0 50 0

47 3 45 5 43 7 41 9 38 12 36 14 33 17 31 19 29 21 27 23 25

Table 2a. This is the left side of the table T obtained from the tensor square of the
limit linear series considered in Example 4.25, which has r = 6, g = 22, and d = 25.
The right side is shown in Table 2b. We have also included the w corresponding to the
default multidegree ωdef at the bottom of the table, and include not only the values ci for
i = 2, . . . , 22, but also 2d − ci in the preceding subcolumns.

portions coming from the j = 3 row, so that s ′

3 only has nonzero si
3 parts for i ≥ 8 and s ′′

3 for i ≤ 10, then
the potentially present section for the (2, 3) row cannot come from either s2 ⊗ s ′

3 or s2 ⊗ s ′′

3 . This means
that these sections (or more precisely, their images in multidegree ωdef) are forced to yield potentially
present sections from the (2, 2) row, with s2 ⊗ s ′

3 necessarily yielding the one supported from columns 5
through 7, and s2 ⊗ s ′′

3 necessarily yielding the one supported in column 12. Thus, we explicitly see the
lack of a (2, 3) section being offset by the inclusion of two independent (2, 2) sections.
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col = 12 13 14 15 16 17 18 19 20 21 22

(0, 0) 18 30 20 28 22 26 24 24 26 24 26 22 28 20 30 18 32 16 34 14 36 12
(0, 1) 19 29 21 27 23 25 25 23 27 22 28 21 29 19 31 17 33 15 35 13 37 11
(0, 2) 22 27 23 25 25 23 27 21 29 20 30 18 32 16 34 15 35 13 37 11 39 9
(1, 1) 20 28 22 26 24 24 26 22 28 20 30 20 30 18 32 16 34 14 36 12 38 10
(0, 3) 20 28 22 26 24 24 26 22 28 21 29 19 31 18 32 16 34 14 36 12 38 10
(1, 2) 23 26 24 24 26 22 28 20 30 18 32 17 33 15 35 14 36 12 38 10 40 8
(0, 4) 23 25 25 24 26 22 28 20 30 19 31 17 33 15 35 13 37 12 38 10 40 8
(1, 3) 21 27 23 25 25 23 27 21 29 19 31 18 32 17 33 15 35 13 37 11 39 9
(2, 2) 26 24 26 22 28 20 30 18 32 16 34 14 36 12 38 12 38 10 40 8 42 6
(0, 5) 24 24 26 22 28 21 29 19 31 18 32 16 34 14 36 12 38 10 40 9 41 7
(1, 4) 24 24 26 23 27 21 29 19 31 17 33 16 34 14 36 12 38 11 39 9 41 7
(2, 3) 24 25 25 23 27 21 29 19 31 17 33 15 35 14 36 13 37 11 39 9 41 7
(0, 6) 25 23 27 21 29 19 31 18 32 17 33 15 35 13 37 11 39 9 41 7 43 6
(1, 5) 25 23 27 21 29 20 30 18 32 16 34 15 35 13 37 11 39 9 41 8 42 6
(2, 4) 27 22 28 21 29 19 31 17 33 15 35 13 37 11 39 10 40 9 41 7 43 5
(3, 3) 22 26 24 24 26 22 28 20 30 18 32 16 34 16 34 14 36 12 38 10 40 8
(1, 6) 26 22 28 20 30 18 32 17 33 15 35 14 36 12 38 10 40 8 42 6 44 5
(2, 5) 28 21 29 19 31 18 32 16 34 14 36 12 38 10 40 9 41 7 43 6 44 4
(3, 4) 25 23 27 22 28 20 30 18 32 16 34 14 36 13 37 11 39 10 40 8 42 6
(2, 6) 29 20 30 18 32 16 34 15 35 13 37 11 39 9 41 8 42 6 44 4 46 3
(3, 5) 26 22 28 20 30 19 31 17 33 15 35 13 37 12 38 10 40 8 42 7 43 5
(4, 4) 28 20 30 20 30 18 32 16 34 14 36 12 38 10 40 8 42 8 42 6 44 4
(3, 6) 27 21 29 19 31 17 33 16 34 14 36 12 38 11 39 9 41 7 43 5 45 4
(4, 5) 29 19 31 18 32 17 33 15 35 13 37 11 39 9 41 7 43 6 44 5 45 3
(4, 6) 30 18 32 17 33 15 35 14 36 12 38 10 40 8 42 6 44 5 45 3 47 2
(5, 5) 30 18 32 16 34 16 34 14 36 12 38 10 40 8 42 6 44 4 46 4 46 2
(5, 6) 31 17 33 15 35 14 36 13 37 11 39 9 41 7 43 5 45 3 47 2 48 1
(6, 6) 32 16 34 14 36 12 38 12 38 10 40 8 42 6 44 4 46 2 48 0 50 0

25 23 27 21 29 19 31 17 33 14 36 12 38 9 41 7 43 5 45 3 47

Table 2b. This is the right side of the table T obtained from the tensor square of the
limit linear series considered in Example 4.25, which has r = 6, g = 22, and d = 25.
The left side is shown in Table 2a. We have also included the w corresponding to the
default multidegree ωdef at the bottom of the table, and include not only the values ci for
i = 2, . . . , 22, but also 2d − ci in the preceding subcolumns.

Proposition 8.4. Suppose a limit linear series contains precisely one swap, occurring between the rows
j0, j0 −1 in column i0. With notation as in Proposition 4.13, for any multidegree ω, the tensors pairs of the
sj for j ̸= j0, and s ′

j0, s ′′

j0 contain
(r+2

2

)
independent linear combinations of the potentially present sections.

Proof. If j ≤ j ′ are both different from j0, then sj and sj ′ are in the linked linear series and contribute
an s( j, j ′),i . This gives rise to

(r
2

)
potentially present sections, necessarily independent because they are

supported in distinct rows. If j ̸= j0, j0 − 1, there are three global sections sj ⊗ s ′

j0 , sj ⊗ s ′′

j0 and sj ⊗ sj0−1,
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each of which has nonzero image in multidegree ω. We claim that these three images must contain at
least two distinct linear combinations of the s( j, j0),i and s( j, j0−1),i . If sj ⊗ s ′

j0 has support in any columns
greater than or equal to i0, this necessarily includes a nonzero combination of the s( j, j0),i , which is distinct
from the image of sj ⊗ sj0−1, and we are done. The same holds if sj ⊗ s ′′

j0 has support in any columns less
than or equal to i0. The final case is that sj ⊗ s ′

j0 has support only in columns strictly less than i0, and
sj ⊗ s ′′

j0 has support only in columns strictly greater than i0. In this case, both may be linear combinations
of the s( j, j0−1),i , but since their support is disjoint, they must be two distinct combinations, as desired.

Thus, we have produced
(r

2

)
+ 2(r − 1) =

(r+2
2

)
− 3 independent combinations of potentially present

sections, supported among the rows ( j, j ′) with j ̸= j0 − 1, j0. Finally, we consider the tensors of
sj0−1, s ′

j0, s ′′

j0 , and claim we obtain three distinct linear combinations, necessarily supported among the
rows ( j0 −1, j0 −1), ( j0 −1, j0), ( j0, j0). Consider the images of s ′

j0 ⊗s ′

j0 , s ′

j0 ⊗s ′′

j0 , and s ′′

j0 ⊗s ′′

j0 . If any of
their images contain any portion of the ( j0, j0) row, then considering sj0−1 ⊗ sj0−1, sj0−1 ⊗ s ′

j0, sj0−1 ⊗ s ′

j0 .
The same argument as above shows we obtain two distinct combinations of type ( j0 − 1, j0 − 1) and/or
( j0 − 1, j0), so we are done. But the only alternative is that the first three tensors come from the
( j0 − 1, j0 − 1), ( j0 − 1, j0) and ( j0 − 1, j0 − 1) rows respectively, with the first and last having disjoint
support. Thus, in this case these three are all linearly independent, and we again obtain the desired
conclusion. □

When ρ = 2, there can be up to two swaps (Proposition 5.3) occurring on distinct columns i0 < i1

corresponding to genus 1 components. We will show that in each of the four possible configurations of
the two swaps there are enough independent linear combinations of the potentially present sections (see
Propositions 8.5, 8.9, 8.10, 8.12).

We find it convenient to introduce shorthand notation as follows: we will write for instance

s ′

j0 ⊗ s ′′

j0+1 = ( j0 − 1, j0 + 1)L + ( j0 − 1, j0)R + ( j0, j0 + 1)

to indicate that the image of s ′

j0 ⊗ s ′′

j0+1 in the relevant multidegree is a combination of potentially present
sections from the ( j0 − 1, j0 + 1), ( j0 − 1, j0) and ( j0, j0 + 1) rows, where the first is supported strictly
left of i0, the second strictly right of i1 and the third has no restrictions on its support. We will also use
subscripts C to denote support strictly between i0 and i1, LC to denote support strictly left of i1 and CR
to denote support strictly right of i0.

Propositions 8.6, 8.7, 8.8 help us control the potential support of mixed sections using a left-weighted X0.

Proposition 8.5. Suppose that the limit linear series contains precisely two swaps, and both occur in
the same pair of rows, say j0, j0 − 1 in columns i0, i1 (“repeated swap”, see Proposition 4.16). Then
for any unimaginative multidegree ω, the images in multidegree ω of the tensors of pairs of the sj for
j ̸= j0, j0 − 1, and s ′

j0−1, s ′′

j0−1, s ′

j0, s ′′

j0 contain
(r+2

2

)
independent linear combinations of the potentially

present sections.

Proof. Just as in the proof of Proposition 8.4, for j, j ′
̸= j0, j0 − 1, the linked linear series contains sj

and sj ′ , so the image of sj ⊗ sj ′ always gives a potentially present section from row ( j, j ′).
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Now consider j ̸= j0, j0 − 1; we claim that sj ⊗ s ′

j0−1, sj ⊗ s ′′

j0−1, sj ⊗ s ′

j0, sj ⊗ s ′′

j0 cannot all coincide.
Hence they have a two-dimensional span. Indeed, if sj ⊗ s ′′

j0−1 coincides with sj ⊗ s ′

j0 , they must be of
the form ( j, j0 − 1)L + ( j, j0)R. But the former cannot occur in sj ⊗ s ′′

j0 , and the latter cannot occur in
sj ⊗ s ′

j0−1, so one of the two will provide a second section.
It remains to show that we have at least three independent sections among all tensors of the s ′

j0−1,
s ′′

j0−1, s ′

j0 , s ′′

j0 . We first consider the tensor squares of each of the four sections. According to Lemma 8.2,
these can only contain types ( j0 − 1, j0 − 1) and ( j0, j0), with no type ( j0 − 1, j0) appearing. Now, the
possible ( j0, j0) parts of s ′⊗2

j0−1 and s ′′⊗2
j0−1 are disjoint, so we conclude that either these two are distinct, or

they are of pure type ( j0 − 1, j0 − 1). Similarly, the sections s ′⊗2
j0 and s ′′⊗2

j0 are either distinct or of pure
type ( j0, j0). Thus, it suffices to show that we cannot have all of our tensors in the span of a single pair
of sections, each of pure type ( j0 − 1, j0 − 1) or ( j0, j0). Now, s ′

j0 ⊗ s ′′

j0 cannot have a ( j0 − 1, j0 − 1)

part, and s ′

j0−1 ⊗ s ′′

j0−1 cannot have a ( j0, j0) part, so the only possibility to consider is that one of our
sections is purely of type ( j0 − 1, j0 − 1), and the other is purely of type ( j0, j0).

If the ( j0 − 1, j0 − 1) part occurs in s ′′

j0−1 ⊗ s ′

j0 , it must be supported strictly to the left of i0. Then
s ′′

j0−1 ⊗ s ′′

j0 cannot have a ( j0 − 1, j0 − 1) part, so must be of type ( j0, j0), and the support must be strictly
to the right of i1. On the other hand, if the ( j0, j0) part occurs in s ′′

j0−1 ⊗ s ′

j0 , it must again be supported
strictly to the right of i1, and then s ′

j0−1 ⊗s ′

j0 cannot have a ( j0, j0) part, so must be of type ( j0 −1, j0 −1),
again supported to the left of i0. But in either case, s ′

j0−1 ⊗ s ′′

j0 cannot be a linear combination of these
two sections, as desired. □

Proposition 8.6. Suppose that ρ = 2 and there are two swaps between rows j0 − 1, j0 and j1 − 1, j1
in columns i0 < i1 (“disjoint swap” of Proposition 4.14), Then, in an unimaginative multidegree, the
potential support of every ( j, j ′) is connected except possibly for ( j0 − 1, j0 − 1), ( j1 − 1, j1 − 1), and
( j0 − 1, j1 − 1). Moreover, if ( j0 − 1, j1 − 1) has disconnected potential support in multidegree ω, the
potential support must be made up of two components, one contained strictly to the right of i1, and one
contained strictly to the left of i0, and the potential support of ( j0−1, j1) is contained strictly right of i1−1,
and the potential support of ( j0, j1 − 1) is contained strictly left of i0 + 1. Finally, if the potential support
of ( j0 − 1, j1) is contained strictly left of i0, then ( j0 − 1, j1 − 1) must also have a component of potential
support contained strictly left of i0, and if the potential support of ( j0, j1 − 1) is contained strictly right
of i1, then ( j0 − 1, j1 − 1) must also have a component of potential support contained strictly right of i1.

Proof. We write as usual ω = md(w) with w = (c2, . . . , cg).
From Proposition 5.3, no rows are exceptional except row j0 − 1 at i0 and row j1 − 1 at i1. From

Proposition 5.10, in multidegree ω, the potential support of every ( j, j ′) is connected except possibly for
( j0 − 1, j0 − 1), ( j1 − 1, j1 − 1), and ( j0 − 1, j1 − 1). and following the proof we see further that in order
for ( j0 − 1, j1 − 1) to have disconnected support, the support must be split between strictly right of i1

and strictly left of i0, as claimed. Next, if the potential support of ( j0 − 1, j1 − 1) has a component lying
strictly right of i1, then

ai1
( j0−1, j1) = ai1+1

( j0−1, j1) − 1 = ai1+1
( j0−1, j1−1) − 2 > ci1+1 − 2 ≥ ci1,
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and the connectedness statement implies that the potential support of ( j0 − 1, j1) is supported strictly
to the right of i1 − 1, as desired. The corresponding statement on support left of i0 and i0 + 1 follows
similarly. Finally, if the potential support of ( j0 − 1, j1) is contained strictly left of i0, then

ai0
( j0−1, j1−1) < ai0

( j0−1, j1) < ci0,

so ( j0 − 1, j1 − 1) also has a component of potential support strictly left of i0, as desired. The last
statement on support strictly right of i1 follows similarly. □

Proposition 8.7. Suppose that ρ = 2 and there are two swaps in the “first 3-cycle” situation of
Proposition 4.18. In an unimaginative multidegree, the potential support of every ( j, j ′) is connected
except possibly for ( j0 −1, j0 −1), ( j0 −1, j0), and ( j0, j0). Moreover, if for some j , the potential support
of ( j, j0) has a component strictly to the left of i0, then the potential support of ( j, j0 − 1) is entirely
contained strictly to the left of i0, and if the potential support of ( j, j0 − 1) has a component strictly to the
right of i1, then the potential support of ( j, j0) is entirely contained strictly to the right of i1.

Finally, if ( j0 −1, j0) has potential support contained entirely strictly to the left of i1, then the potential
support of ( j0 − 1, j0 + 1) cannot be contained to the right of i1; if it has potential support contained
entirely strictly to the right of i0, then the potential support of ( j0, j0 + 1) cannot be contained to the left
of i0; and if it has potential support contained entirely strictly between i0 and i1, then ( j0 − 1, j0 − 1) has
potential support contained entirely strictly to the left of i1, and ( j0, j0) has potential support contained
entirely strictly to the right of i0.

Proof. Most of the argument is similar to Proposition 8.6. For the support of ( j, j0) to have a component
strictly to the left of i0 we must have ai0

( j, j0) ≤ ci0 − 1, and then ai0
( j, j0−1) < ci0 − 1. Arguing as in

Proposition 8.6, we conclude that (even if j = j0 − 1 or j0) the support of ( j, j0 − 1) is connected and
strictly to the left of i0. The statement on support to the right of i1 is proved in exactly the same way. For
the last assertion, note that the ( j0 − 1, j0 − 1) row has no support at i1, and the ( j0, j0) has no support at
i0, since both sum to 2d − 4 in the relevant columns. □

Proposition 8.8. Suppose that X0 is left-weighted, and that the rows j, j ′ have no exceptional behavior
in any genus-0 columns. Then the image of sj ⊗ sj ′ in any unimaginative multidegree ω is equal to the
leftmost potentially appearing section in the ( j, j ′) row.

Proof. The lack of exceptional behavior away from genus-1 components means that the ai
( j, j ′) are constant

on the genus-0 components. The idea is then that the left-weighting means that the leftmost negative
value of ai

( j, j ′) − ci is repeated so many times that it must lead to a strict minimum of the partial sums.
Compare the proof of Proposition 4.24, where in (4-1) we now replace d by 2d due to having passed to
the tensor square. □

Proposition 8.9. Suppose that ρ = 2, X0 is left-weighted and we are in the “disjoint swap” case of
Proposition 4.14, so that the limit linear series contains precisely two swaps in disjoint pairs of rows,
say j0, j0 − 1 and j1, j1 − 1. Then for any unimaginative multidegree ω, choosing s ′

j0 and s ′

j1 as allowed
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by Proposition 4.24, the images in multidegree ω of the tensors of pairs of the sj for j ̸= j0, j1, and
s ′

j0, s ′′

j0, s ′

j1, s ′′

j1 contain
(r+2

2

)
independent linear combinations of the potentially present sections.

Proof. Without loss of generality, assume that i0 < i1. By Proposition 4.24, we may assume that s ′

j1 is
controlled, and that the j1-part of s ′

j1 does not contain any genus-1 component left of i1. Every ( j, j ′) has
connected potential support unless j, j ′

∈ { j0 − 1, j1 − 1}. Moreover, if j, j ′
̸= j0, j0 − 1, j1, j1 − 1, then

we know that fwj +w′

j ,w
(sj ⊗sj ′) is nonzero and composed of si

( j, j ′). Now, suppose j ̸= j0, j0 −1, j1, j1 −1.
Then the same argument as in Proposition 8.4 shows that if we consider the images in multidegree ω of
sj ⊗ sj0−1, sj ⊗ s ′

j0 , and sj ⊗ s ′′

j0 , we either obtain one section of type ( j, j0 −1) and one with a contribution
of type ( j, j0), or two sections of type ( j, j0 − 1), but having disjoint support. The same holds with j1 in
place of j0. Together, these produce

(r−2
2

)
+ 4(r − 3) =

(r+2
2

)
− 10 linearly independent combinations. It

thus suffices to show that we have 10 linearly independent combinations coming from tensor products of
pairs of the sections sj0−1, s ′

j0, s ′′

j0, sj1−1, s ′

j1, s ′′

j1 . Just as in the proof of Proposition 8.4, tensor products of
the first three sections yield three independent combinations, with contributions contained among the
types ( j0 − 1, j0 − 1), ( j0 − 1, j0), and ( j0, j0). Tensor products of the last three sections likewise yield
three combinations, with j1 replacing j0 in the types.

It remains to consider the tensors with types contained among ( j0 −1, j1 −1), ( j0 −1, j1), ( j0, j1 −1)

and ( j0, j1). First suppose that ( j0 − 1, j1 − 1) has connected potential support in multidegree ω. Then
just as in the single-swap case, at least one of sj0−1 ⊗ s ′

j1, sj0−1 ⊗ s ′′

j1 must involve a ( j0 − 1, j1) part, and
at least one of s ′

j0 ⊗ sj1−1, s ′′

j0 ⊗ sj1−1 must involve a ( j0, j1 − 1) part. Since sj0−1 ⊗ sj1−1 is pure of type
( j0 − 1, j1 − 1), and all of these have unique potential support, we find that the span of these sections
contains the (unique) pure types of each of ( j0 −1, j1 −1), ( j0, j1 −1) and ( j0 −1, j1). Thus, if we have
anything with a nonzero part of type ( j0, j1), this gives a fourth independent combination. On the other
hand, if nothing has a ( j0, j1) part, then we must have the following:

s ′

j0 ⊗ s ′′

j1 = ( j0 − 1, j1)L + ( j0, j1 − 1)R,

s ′

j0 ⊗ s ′

j1 = ( j0 − 1, j1 − 1)L + ( j0, j1 − 1)LC and

s ′′

j0 ⊗ s ′′

j1 = ( j0 − 1, j1)CR + ( j0 − 1, j1 − 1)R.

First consider the possibility that the ( j0−1, j1)L part of s ′

j0 ⊗s ′′

j1 is nonzero. Then, by Proposition 8.6(1),
we have that ( j0 − 1, j1 − 1) has support strictly left of i0 too, which in turn means that ( j0, j1 − 1) can’t
have support strictly right of i1. But this leaves no possibility for s ′′

j0 ⊗ s ′′

j1 . On the other hand, if the
( j0, j1 − 1)R part of s ′

j0 ⊗ s ′′

j1 is nonzero, we have that ( j0 − 1, j1 − 1) must have support strictly right of
i1, and hence that ( j0 − 1, j1) can’t have support strictly left of i0, leaving no possibility for s ′

j0 ⊗ s ′

j1 . We
conclude that it is not possible for these tensors not to have some ( j0, j1) part, giving the desired four
independent combinations when ( j0 − 1, j1 − 1) has connected potential support.

It remains to treat the case that ( j0 − 1, j1 − 1) has disconnected potential support in multidegree ω.
Then Proposition 8.6 tells us that this potential support has two parts, contained strictly left of i0 and right
of i1 respectively. Moreover, it says that the potential support of ( j0 − 1, j1) is contained strictly right of
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i1 −1 and the potential support of ( j0, j1 −1) is contained strictly left of i0 +1. This forces s ′

j0 ⊗ s ′′

j1 to be
of pure ( j0, j1) type. Now, we observe that two of the sections sj0−1 ⊗ sj1−1, sj0−1 ⊗ s ′

j1, sj0−1 ⊗ s ′′

j1 must
be independent, either involving a ( j0 −1, j1) part and a ( j0 −1, j1 −1) part, or two ( j0 −1, j1 −1) parts.
Similarly, s ′

j0 ⊗ sj1−1 and s ′′

j0 ⊗ sj1−1 must either involve a ( j0, j1 − 1) part or two ( j0 − 1, j1 − 1) parts.
We see that the only way to avoid having four independent combinations would be if these five tensors
are all of pure type ( j0 − 1, j1 − 1), necessarily achieving support independently both on the left and
right. But we note that because the potential support of ( j0, j1 − 1) is contained strictly left of i0 + 1, and
because (in the disconnected support case) we must have ai

( j0−1, j1−1) = ci for i0 < i ≤ i1, the only way
that s ′′

j0 ⊗ sj0−1 can fail to have a ( j0, j1 − 1) part is if s ′′

j0 is not controlled, and more specifically if its j0
portion does not extend more than halfway to the next genus-1 component after i0. On the other hand, s ′

j1
is controlled and has j1 part not containing any genus-1 component smaller than i1, so we conclude that
in this situation its j1 part is disjoint from the j0 part of s ′′

j0 , and then s ′′

j0 ⊗ s ′

j1 = ( j0, j1 − 1)+ ( j0 − 1, j1),
and gives a fourth independent combination. This completes the proof of the proposition. □

Proposition 8.10. Suppose that ρ = 2 and we are in the “first 3-cycle” situation of Proposition 4.18.
Choose an unimaginative multidegree ω such that the ( j0 − 1, j0) row has a unique potentially present
section in multidegree ω, whose support does not contain i0 or i1 (use Corollary 7.6,). Then the images
in multidegree ω of the tensors of pairs of the sj for j ̸= j0 + 1, and s ′

j0+1, s ′′

j0+1, s ′′′

j0+1 contain
(r+2

2

)
independent linear combinations of the potentially present sections.

Proof. We are assuming that there is one swap between the j0-th and ( j0+1)-st on the i0-th column, and
a second swap between the ( j0−1)-st and ( j0+1)-st rows on the i1-st column for some i1 > i0. We first
show that for j ̸= j0 − 1, j0, j0 + 1, the sections

sj ⊗ sj0−1, sj ⊗ sj0, sj ⊗ s ′

j0+1, sj ⊗ s ′′

j0+1, sj ⊗ s ′′′

j0+1

must yield at least three independent combinations. But the first two tensors yield ( j, j0 − 1) and ( j, j0)
parts, so if any of the last three have any ( j, j0 + 1) part, we obtain the desired independence. On the
other hand, if not we find that

sj ⊗ s ′

j0+1 = ( j, j0 − 1)LC + ( j, j0)L;

sj ⊗ s ′′

j0+1 = ( j, j0 − 1)R + ( j, j0)CR;

sj ⊗ s ′′′

j0+1 = ( j, j0)L + ( j, j0 − 1)R.

If the ( j, j0)L part of the last tensor is nonzero, then by Proposition 8.7, the potential support of both the
( j, j0 −1) and ( j, j0) rows are connected and contained strictly to the left of i0, leaving no possibility for
the second tensor. But if the ( j, j0 − 1)R part of the last tensor is nonzero, then similarly the potential
support of both the ( j, j0−1) and ( j, j0) rows are contained strictly to the right of i1, leaving no possibility
for the first tensor. Thus, we reach a contradiction, and conclude that we must obtain a ( j, j0 + 1) part,
giving the desired three independent combinations.
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Next, we consider the 15 tensors arising from

sj0−1, sj0, s ′

j0+1, s ′′

j0+1, s ′′′

j0+1;

we need to show that these yield 6 independent linear combinations.
By hypothesis, we have that the potential support of the ( j0 − 1, j0) row is connected and does not

contain i0 or i1, so we organize cases according to its support. First suppose that the support of the
( j0 − 1, j0) row is entirely to the left of i0; then according to Proposition 8.7, the same holds for the
( j0 − 1, j0 − 1) row, and the ( j0 − 1, j0 + 1) row cannot have its support to the right of i1. We then see
that sj0−1 ⊗ s ′′

j0+1 cannot have any ( j0 − 1, j0 − 1) or ( j0 − 1, j0) parts, so must be of ( j0 − 1, j0 + 1)

type. Similarly, s ′′

j0+1 ⊗ s ′′′

j0+1 cannot have any ( j0 − 1, j0 − 1), ( j0 − 1, j0), or ( j0 − 1, j0 + 1) parts, so
it must contain ( j0, j0 + 1) or ( j0 + 1, j0 + 1) parts. In addition, the pair sj0 ⊗ s ′′

j0+1 and sj0 ⊗ s ′′′

j0+1 must
contain either a ( j0, j0 + 1) part, or two distinct ( j0, j0) parts, supported left and right of i0, respectively.
Given that we always have ( j0 − 1, j0 − 1), ( j0 − 1, j0) and ( j0, j0) parts, the only way we could fail
to have produced six independent combinations is if s ′′

j0+1 ⊗ s ′′′
j0+1 has type ( j0, j0 + 1), and we have

only one ( j0, j0) part. But then considering s ′′⊗2
j0+1 and s ′′′⊗2

j0+1 and using Lemma 8.2, we must produce a
( j0 + 1, j0 + 1) part or two distinct ( j0, j0) parts, so we necessarily obtain the sixth combination.

Similarly, if the potential support of the ( j0−1, j0) row is entirely to the right of i1, then Proposition 8.7
tells us that the same holds for ( j0, j0), and that the potential support of the ( j0, j0 + 1) row cannot be to
the left of i0. Then sj0 ⊗ s ′

j0+1 must be of ( j0, j0 + 1) type, and s ′

j0+1 ⊗ s ′′′

j0+1 must have ( j0 − 1, j0 + 1) or
( j0 +1, j0 +1) parts. The pair sj0−1 ⊗ s ′

j0+1 and sj0−1 ⊗ s ′′′

j0+1 must contain either a ( j0 −1, j0 +1) part, or
two distinct ( j0 − 1, j0 − 1) parts, and in either case the tensors s ′⊗2

j0+1 and s ′′′⊗2
j0+1 (together with the usual

tensors of sj0−1 and sj0) must complete the six independent combinations.
Finally, if the potential support of the ( j0 − 1, j0) row is between the i0 and i1 columns, then by

Proposition 8.6, we know that the potential support of ( j0 −1, j0 −1) is left of i1 and the potential support
of ( j0, j0) is right of i0. We then see that the tensors sj0−1 ⊗ s ′′′

j0+1, sj0 ⊗ s ′′′

j0+1, and s ′′′⊗2
j0+1 must be pure of

types ( j0−1, j0+1), ( j0, j0+1), and ( j0+1, j0+1) respectively, yielding the desired six combinations. □

Lemma 8.11. Assume that ρ =2 and r =6 and we are in the “second 3-cycle” situation of Proposition 4.20.
Then, there is an unimaginative multidegree ωdef, such that one of the following options is satisfied:

(a) the ( j0 − 1, j0 − 1) row does not have potentially present sections both left of i0 and right of i1; or

(b) 2ai0
j0−1 = ci0 − 1, and 2ai1+1

j0−1 = ci1+1 + 1; or

(c) 2ai0
j0−1 = ci0 − 2, and 2ai1+1

j0−1 = ci1+1 + 2, and w has degree 2 in both i0 and i1.

Proof. If (a) does not hold, the ( j0 − 1, j0 − 1) row has support both left of i0 and right of i1. From
Proposition 5.10, then

ai0
( j0−1, j0−1) < ci0, ai1+1

( j0−1, j0−1) > ci1 .

Write ai0
( j0−1, j0−1) = ci0 − k0, ai1+1

( j0−1, j0−1) = ci1 + k1. Denote by t the number of elliptic components from
i0, to i1 (inclusive). As we are assuming that ρ = 2 and there are two swaps, there are no other exceptional
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columns. Therefore, between i0 and i1, ai+1
j0−1 = ai

j0−1 if the component i is rational, ai+1
j0−1 ≤ ai

j0−1 +1 if it
is elliptic with i ̸= i0, i1 and aik+1

j0−1 = aik
j0−1 + 2, k = 0, 1. Therefore

ai1+1
( j0−1, j0−1) ≤ ai0

( j0−1, j0−1) + 4 + 2t.

If ωdef is an unimaginative multidegree, then it has degree 0 on rational components, and 2 or 3 on elliptic
components with γi the number of 3s in the first i components. Therefore

ci1+1 = ci0 + 2t + (γi1 − γi0−1).

From these identities, it follows that

k0 + k1 ≤ 4 − (γi1 − γi0−1).

As by assumption, both k0, k1 are strictly positive, the options for the pair (k0, k1) are

(1, 1), (1, 2), (2, 1), (2, 2).

The case (1, 1) is option (b). In case (2, 2), γi1 −γi0−1 = 0, therefore the degree on each elliptic component
from i0 to i1 is 2. This is option (c). From Corollary 7.7, in cases (1, 2), (2, 1), with a suitable choice of
multidegree, we are in case (a). Therefore, the result is proved □

Proposition 8.12. Suppose that ρ = 2, X0 is left-weighted and we are in the “second 3-cycle” situation of
Proposition 4.20. Choose an unimaginative multidegree w = (c2, . . . , cN ) satisfying one of the conditions
of Lemma 8.11. Then the images in multidegree md(w) of the tensors of pairs of the sj for j ̸= j0, j0+1, and
s ′

j0, s ′′

j0, s ′

j0+1, s ′′

j0+1, s ′′′ contain
(r+2

2

)
independent linear combinations of the potentially present sections.

Proof. By assumption, the limit linear series contains precisely two swaps, with one swap between the
( j0−1)-st and j0-th rows occurring in the i0-th column, and a second swap between the ( j0−1)-st and
( j0+1)-st rows in the i1-st column for some i1 > i0. First suppose j ̸= j0 −1, j0, j0 +1; we show that we
can always obtain three linearly independent combinations of potentially present sections from the rows
( j, j0 −1), ( j, j0) and ( j, j0 +1). sj ⊗sj0−1 always yields a pure ( j, j0 −1) part. If S′

2 = S′′

4 = {1, . . . , N },
then sj ⊗ s ′

j0 has a nonzero ( j, j0) part and no ( j, j0 + 1) part, while sj ⊗ s ′′

j0+1 has a nonzero ( j, j0 + 1)

part, so we get the desired three combinations. Otherwise, we have

sj ⊗ s ′

j0 = ( j, j0 − 1)L + ( j, j0),

sj ⊗ s ′′

j0 = ( j, j0) + ( j, j0 + 1)R′ + ( j, j0 − 1)CR,

sj ⊗ s ′

j0+1 = ( j, j0 − 1)LC + ( j, j0)L′ + ( j, j0 + 1),

sj ⊗ s ′′

j0+1 = ( j, j0 + 1) + ( j, j0 − 1)R,

sj ⊗ s ′′′
= ( j, j0) + ( j, j0 − 1)C + ( j, j0 + 1),

where R′ and L′ denote possible support at and right of i1 and at and left of i0, respectively, and if sj ⊗ s ′′

j0
has a nonzero ( j, j0 + 1) part with support containing i1, its ( j, j0) part must be nonzero, and similarly
for the ( j, j0) and ( j, j0 + 1) parts of sj ⊗ s ′

j0+1. Now, suppose that ( j, j0 − 1) has connected potential
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support which is not contained strictly right of i0. Then ( j, j0 + 1) cannot have any potential support
strictly right of i1 without also forcing ( j, j0 − 1) to have potential support strictly right of i1, so the
( j, j0) part of sj ⊗ s ′′

j0 must be nonzero. But then adding sj ⊗ s ′′

j0+1 = ( j, j0 +1) and sj ⊗ sj0−1 yields three
independent sections. Similarly, if ( j, j0 − 1) has connected potential support not contained strictly left
of i1, then ( j, j0) cannot have potential support strictly left of i0, so sj ⊗ s ′

j0+1 has nonzero ( j, j0 + 1)

part, and adding sj ⊗ s ′

j0 = ( j, j0) and sj ⊗ sj0−1 yields the desired combinations. For connected potential
support, the only remaining possibility is that ( j, j0 − 1) has potential support strictly between i0 and i1,
in which case sj ⊗ s ′

j0 = ( j, j0) and sj ⊗ s ′′

j0+1 = ( j, j0 + 1).
Finally, since ρ = 2, the only remaining possibility is that ( j, j0 − 1) has potential support both left

of i0 and right of i1, and in this case we must have ai0
( j, j0−1) = ci0 − 1 and ai1+1

( j, j0−1) = ci1+1 + 1. Then
( j, j0 + 1) cannot have potential support strictly right of i1, and ( j, j0) cannot have potential support
strictly left of i0, so as above we find that if the ( j, j0 + 1) part of sj ⊗ s ′′

j0 is nonzero (necessarily with
support at i1), then the ( j, j0) part must also be nonzero, and if the ( j, j0) part of sj ⊗ s ′

j0+1 is nonzero,
then the ( j, j0 + 1) part must also be nonzero. Now, we have sj ⊗ s ′

j0 and sj ⊗ s ′′

j0+1 linearly independent
always, and the only way they could fail to be independent from sj ⊗ s ′′′ is if either sj ⊗ s ′

j0 = ( j, j0) or
sj ⊗ s ′′

j0+1 = ( j, j0 + 1), while the only way they could fail to be independent from sj ⊗ sj0−1 if is either
sj ⊗ s ′

j0 = ( j, j0 − 1)L or sj ⊗ s ′′

j0+1 = ( j, j0 − 1)R. If sj ⊗ s ′

j0 = ( j, j0) and sj ⊗ s ′′

j0+1 = ( j, j0 − 1)R, we
see that sj ⊗ s ′

j0+1 necessarily gives a third independent combination, while if sj ⊗ s ′

j0 = ( j, j0 − 1)L and
sj ⊗ s ′′

j0+1 = ( j, j0 + 1), we see that sj ⊗ s ′′

j0 necessarily gives a third independent combination.
It remains to show that we can get six independent combinations from the rows ( j0 − 1, j0 − 1),

( j0 − 1, j0), ( j0 − 1, j0 + 1), ( j0, j0), ( j0, j0 + 1), and ( j0 + 1, j0 + 1). If S′

2 = S′′

4 = {1, . . . , N }, then
we immediately get that the six tensors coming from sj0−1, s ′

j0, s ′′

j0+1 are linearly independent, as desired.
Otherwise, we will make use of the mixed section s ′′′ to handle certain cases. For reference, we write out
the form of all the relevant tensors of sj0−1, s ′

j0, s ′′

j0, s ′

j0+1, s ′′

j0+1 (we are making use of Lemma 8.2 in the
case of self-tensors):

sj0−1 ⊗ s ′

j0 = ( j0 − 1, j0 − 1)L + ( j0 − 1, j0),

sj0−1 ⊗ s ′′

j0 = ( j0 − 1, j0) + ( j0 − 1, j0 + 1)R′ + ( j0 − 1, j0 − 1)CR,

sj0−1 ⊗ s ′

j0+1 = ( j0 − 1, j0 − 1)LC + ( j0 − 1, j0)L′ + ( j0 − 1, j0 + 1),

sj0−1 ⊗ s ′′

j0+1 = ( j0 − 1, j0 + 1) + ( j0 − 1, j0 − 1)R,

s ′

j0 ⊗ s ′

j0 = ( j0 − 1, j0 − 1)L + ( j0, j0),

s ′′

j0 ⊗ s ′′

j0 = ( j0, j0) + ( j0 + 1, j0 + 1)R + ( j0 − 1, j0 − 1)CR,

s ′

j0 ⊗ s ′′

j0 = ( j0 − 1, j0) + ( j0, j0) + ( j0, j0 + 1)R′,

s ′

j0+1 ⊗ s ′

j0+1 = ( j0 − 1, j0 − 1)LC + ( j0, j0)L + ( j0 + 1, j0 + 1),

s ′′

j0+1 ⊗ s ′′

j0+1 = ( j0 + 1, j0 + 1) + ( j0 − 1, j0 − 1)R,

s ′

j0+1 ⊗ s ′′

j0+1 = ( j0 − 1, j0 + 1) + ( j0, j0 + 1)L′ + ( j0 + 1, j0 + 1),
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s ′

j0 ⊗ s ′

j0+1 = ( j0 − 1, j0 − 1)L + ( j0 − 1, j0)LC + ( j0 − 1, j0 + 1)L + ( j0, j0)L′ + ( j0, j0 + 1),

s ′

j0 ⊗ s ′′

j0+1 = ( j0 − 1, j0 + 1)L + ( j0 − 1, j0)R + ( j0, j0 + 1),

s ′′

j0 ⊗ s ′′

j0+1 = ( j0 − 1, j0 − 1)R + ( j0 − 1, j0)R + ( j0 − 1, j0 + 1)CR + ( j0, j0 + 1) + ( j0 + 1, j0 + 1)R′ .

As above, we separate out cases by the potential support of the ( j0 − 1, j0 − 1) row. Note that because
the entries sum to 2d −4 in both the i0 and i1 columns, the ( j0 −1, j0 −1) row cannot have any potential
support in either of these columns in any unimaginative multidegree. First suppose the potential support
is strictly to the left of i0. In this case none of the relevant rows can have potential support extending right
of i1, so we get sj0−1 ⊗s ′′

j0+1 = ( j0 −1, j0 +1), s ′′

j0 ⊗s ′′

j0 = ( j0, j0), and s ′′

j0+1 ⊗s ′′

j0+1 = ( j0 +1, j0 +1), and
the ( j0−1, j0) part of sj0−1⊗s ′′

j0 must be nonzero. We also have s ′

j0 ⊗s ′′

j0+1 = ( j0−1, j0+1)L+( j0, j0+1)

and s ′′

j0 ⊗ s ′′

j0+1 = ( j0 − 1, j0 + 1)CR + ( j0, j0 + 1) + ( j0 + 1, j0 + 1)R′ , where again the latter has to have
nonzero ( j0, j0 + 1) part unless it is equal to ( j0 − 1, j0 + 1)CR, so these must either yield a nonzero
( j0, j0 + 1) part, or two independent ( j0 − 1, j0 + 1) parts (which won’t happen when ρ = 2), and in
either case together with sj0−1 ⊗ sj0−1 we get the desired six independent combinations.

Similarly, if the potential support of the ( j0 − 1, j0 − 1) row is strictly to the right of i1, we will have

sj0−1 ⊗ s ′

j0 = ( j0 − 1, j0), s ′

j0 ⊗ s ′

j0 = ( j0, j0), s ′

j0+1 ⊗ s ′

j0+1 = ( j0 + 1, j0 + 1),

with sj0−1 ⊗ s ′

j0+1 having a nonzero ( j0 − 1, j0 + 1) part, and s ′

j0 ⊗ s ′′

j0+1 = ( j0 − 1, j0)R + ( j0, j0 + 1) and
s ′

j0 ⊗ s ′

j0+1 = ( j0 − 1, j0)LC + ( j0, j0 + 1) + ( j0, j0)L′ , and we again obtain six independent combinations
in the same manner.

If the potential support of the ( j0 − 1, j0 − 1) row is strictly between i0 and i1, then none of the
relevant rows can have support either left of i0 or right of i1, and we get sj0−1 ⊗ s ′

j0 = ( j0 − 1, j0),
sj0−1⊗s ′′

j0+1 = ( j0−1, j0+1), s ′

j0 ⊗s ′

j0 = ( j0, j0), s ′′

j0+1⊗s ′′

j0+1 = ( j0+1, j0+1), and s ′

j0 ⊗s ′′

j0+1 = ( j0, j0+1).
If the ( j0 − 1, j0 − 1) row has disconnected potential support to the left of i0 and strictly between

i0 and i1, then once again none of the relevant rows can have potential support extending right of i1,
and because ρ = 2 we must have ai0

( j0−1, j0−1) = ci0 − 1, so none of the other relevant rows can have
their potential support contained strictly left of i0, either. Moreover, the ( j0 − 1, j0) row must have
potential support containing i0, so s ′

j0 ⊗ s ′′

j0 cannot have any ( j0 − 1, j0) part, and its ( j0, j0) part must
be nonzero. We then find that sj0−1 ⊗ s ′′

j0+1 = ( j0 − 1, j0 + 1), s ′′

j0+1 ⊗ s ′′

j0+1 = ( j0 + 1, j0 + 1), and
s ′

j0 ⊗ s ′′

j0+1 = ( j0, j0 + 1). If the ( j0 − 1, j0) part of sj0−1 ⊗ s ′′

j0 is nonzero, then these together with
sj0−1 ⊗ sj0−1 give six independent combinations. Otherwise, we must have sj0−1 ⊗ s ′′

j0 = ( j0 − 1, j0 − 1)C,
and we see that sj0−1 ⊗ s ′

j0 = ( j0 − 1, j0 − 1)L + ( j0 − 1, j0) gives a sixth independent combination.
The situation is nearly the same if the ( j0 −1, j0 −1) row has disconnected potential support to the right

of i1 and strictly between i0 and i1. Here we instead obtain that ( j0 −1, j0 +1) must have potential support
containing i1, and thus that sj0−1 ⊗s ′

j0 = ( j0 −1, j0), s ′

j0 ⊗s ′

j0 = ( j0, j0), and s ′

j0 ⊗s ′′

j0+1 = ( j0, j0 +1), with
s ′

j0+1 ⊗ s ′′

j0+1 having nonzero ( j0 + 1, j0 + 1) part. Then sj0−1 ⊗ s ′

j0+1 either has a nonzero ( j0 − 1, j0 + 1)

part, or is equal to ( j0 − 1, j0 − 1)C, and in either case we obtain a sixth combination, from sj0−1 ⊗ sj0−1

or sj0−1 ⊗ s ′′

j0+1 = ( j0 − 1, j0 + 1) + ( j0 − 1, j0 − 1)R, respectively.



The strong maximal rank conjecture and moduli spaces of curves 1461

If ( j0 − 1, j0 − 1) has three components of potential support, necessarily left of i0, strictly between
i0 and i1, and right of i1, then none of the relevant rows other than ( j0 − 1, j0 − 1) can have potential
support contained strictly left of i0 or strictly right of i1, and we also know that the potential support of the
( j0 −1, j0) (respectively, ( j0 −1, j0 +1)) row contains i0 (respectively, i1). We then have that s ′

j0 ⊗s ′′

j0+1 =

( j0, j0 +1), and that s ′

j0 ⊗s ′′

j0 and s ′

j0+1 ⊗s ′′

j0+1 have nonzero ( j0, j0) and ( j0 +1, j0 +1) parts, respectively.
We also have sj0−1 ⊗s ′

j0 = ( j0 −1, j0 −1)L +( j0 −1, j0)„ sj0−1 ⊗s ′′

j0+1 = ( j0 −1, j0 −1)R +( j0 −1, j0 +1),
and sj0−1 ⊗ s ′′′

= ( j0 − 1, j0)+ ( j0 − 1, j0 − 1)C + ( j0 − 1, j0 + 1). To have a dependence between these,
we need (at least one of) sj0−1 ⊗ s ′

j0 = ( j0 − 1, j0) or sj0−1 ⊗ s ′′

j0+1 = ( j0 − 1, j0 + 1). On the other hand,
to have a dependence between the first five and sj0−1 ⊗ sj0−1, we need sj0−1 ⊗ s ′

j0 = ( j0 − 1, j0 − 1)L or
sj0−1⊗s ′′

j0+1 = ( j0−1, j0−1)R. If sj0−1⊗s ′

j0 = ( j0−1, j0) and sj0−1⊗s ′′

j0+1 = ( j0−1, j0−1)R, we see that
sj0−1⊗s ′

j0+1 must have a nonzero ( j0−1, j0−1)LC or ( j0−1, j0+1) part, and thus gives a sixth independent
combination. On the other hand, if sj0−1 ⊗ s ′

j0 = ( j0 − 1, j0 − 1)L and sj0−1 ⊗ s ′′

j0+1 = ( j0 − 1, j0 + 1), we
see that sj0−1 ⊗ s ′′

j0 must have a nonzero ( j0 − 1, j0 − 1)CR or ( j0 − 1, j0) part, and again gives a sixth
independent combination.

It remains to analyze the case that ( j0 − 1, j0 − 1) has two components of potential support, one left of
i0, and the other right of i1. By hypothesis, we only have to address the case that ai0

( j0−1, j0−1) = ci0 −2 and
ai1+1

( j0−1, j0−1) = ci1+1 + 2, and that we have degree 2 in both i0 and i1. In this situation, the ( j0 − 1, j0) row
has potential support strictly left of i0, but none of the other relevant rows do, and the ( j0, j0) row must
have support containing i0 and extending left to at least the previous genus-1 component. Similarly, the
( j0 − 1, j0 + 1) row has potential support strictly right of i1, but none of the other relevant rows do, and
the ( j0 + 1, j0 + 1) row has support containing i1 and extending to the right to at least the next genus-1
component. We also see that the potential support of ( j0, j0 + 1) must be contained between i0 and i1

inclusive, and cannot be equal solely to i0 or to i1. In particular, s ′

j0 ⊗ s ′′

j0+1 cannot have a ( j0 − 1, j0) or
( j0 − 1, j0 + 1) part, so must be equal to ( j0, j0 + 1).

Now, sj0−1 ⊗ sj0−1 = ( j0 − 1, j0 − 1)L because X0 is left-weighted, and we begin by considering the
case that no tensor has a ( j0 − 1, j0 − 1)R part. Then we must have sj0−1 ⊗ s ′′

j0+1 = ( j0 − 1, j0 + 1),
s ′′

j0+1 ⊗ s ′′

j0+1 = ( j0 + 1, j0 + 1), s ′′

j0 ⊗ s ′′

j0 = ( j0, j0), and we also see that sj0−1 ⊗ s ′′

j0 must be ( j0 − 1, j0),
because it could only have a ( j0 − 1, j0 + 1)R′ part if the j0 part of s ′′

j0 extends through i1, and in this case
the fact that X0 is left-weighted gives us that sj0−1 ⊗ s ′′

j0 = ( j0 − 1, j0) regardless. Thus, we obtain the
desired six independent combinations in this case.

On the other hand, if any tensor has a ( j0 − 1, j0 − 1)R part, we need to produce only three more
independent combinations, and we consider the four tensors,

s ′

j0 ⊗ s ′′

j0 = ( j0 − 1, j0) + ( j0, j0), s ′

j0+1 ⊗ s ′′

j0+1 = ( j0 − 1, j0 + 1) + ( j0 + 1, j0 + 1),

sj0−1 ⊗ s ′′′
= ( j0 − 1, j0) + ( j0 − 1, j0 + 1), s ′′′

⊗ s ′′′
= ( j0, j0) + ( j0 + 1, j0 + 1).

These must have at least a three-dimensional span unless they collapse into equal pairs, and there are two
possibilities for this: either s ′

j0 ⊗s ′′

j0 = sj0−1⊗s ′′′
= ( j0−1, j0) and s ′

j0+1⊗s ′′

j0+1 = s ′′′
⊗s ′′′

= ( j0+1, j0+1),
or s ′

j0 ⊗s ′′

j0 = s ′′′
⊗s ′′′

= ( j0, j0) and s ′

j0+1⊗s ′′

j0+1 = sj0−1⊗s ′′′
= ( j0−1, j0+1). Moreover, Proposition 4.24
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implies that the j0-part of s ′

j0 doesn’t contain any genus-1 components left of i0. Then we necessarily
have s ′

j0 ⊗ s ′′

j0 = ( j0 − 1, j0), so only the first possibility above can occur. Now, in general we have
s ′′

j0 ⊗s ′′′
= ( j0, j0)+( j0 −1, j0 +1)CR +( j0 +1, j0 +1)R′ +( j0 −1, j0 −1)C +( j0 −1, j0)CR +( j0, j0 +1),

which in our case simplifies to s ′′

j0 ⊗ s ′′′
= ( j0, j0) + ( j0 − 1, j0 + 1)CR + ( j0, j0 + 1) + ( j0 + 1, j0 + 1)R′ .

If this has nonzero ( j0, j0) or ( j0 −1, j0 +1) term, we have our sixth independent combination. On the
other hand, if the ( j0 +1, j0 +1) term is nonzero, the ( j0, j0 +1) term must also be. Because the potential
support of ( j0, j0 + 1) must end no later than i1 and cannot be supported solely at i1, if the ( j0, j0 + 1)

term of s ′′

j0 ⊗ s ′′′ is nonzero, this means that the j0 part of s ′′

j0 must extend to cover all of ( j0, j0 + 1) (note
that the proof of Lemma 8.1 indicates that a ( j0, j0 + 1) part has to come from either a j0 part of s ′′

j0 and
a ( j0 + 1) part of s ′′′ or vice versa, but not some mixture of the two). But we know that this contains
at least one genus-1 component strictly right of i0, so since the support of ( j0, j0) ends at i0, and X0 is
left-weighted, we conclude that we would have to have s ′′

j0 ⊗ s ′′

j0 = ( j0, j0) in this case. Thus, in all cases
we obtain the desired six independent combinations. □

9. Proof of the main theorem

We are now ready to prove Theorem 1.1. The main point is that if we have a smoothing family π : X → B
as in Remark 3.2, and a generic linear series (Lη, Vη), which after base change and blowup we may
assume is rational on the generic fiber, we can apply the linked linear series construction both to (Lη, Vη)

and to (Wη, L ⊗2
η ), where Wη is the image of the multiplication map (1-1) of sections s ′

∈ Vω′ and s ′′
∈ Vω′′ .

As in the discussion following Proposition 3.12 of [Liu et al. 2021], for any multidegree ω of total degree
2d , and any multidegrees ω′, ω′′ of total degree d , fω′+ω′′,ω(s ′

⊗ s ′′) lies in Wω. Thus, in order to give a
lower bound on the rank of (1-1), we can choose many different ω′, ω′′ and s ′, s ′′, and show that they
span a certain-dimensional subspace of (L ⊗2)ω.

Theorem 9.1. We assume characteristic 0. Fix g, r, d with r ≥ 3 and ρ = 1 or ρ = 2.
If ρ = 1, suppose that for every generic chain of rational and elliptic curves X0 and every refined limit

gr
d on X0, there is a multidegree ω such that the potentially present sections in multidegree ω are linearly

independent.
If ρ = 2, suppose that for every left-weighted generic chain of elliptic and rational curves X0 of total

genus g and every refined limit gr
d on X0, there is an unimaginative w = (c2, . . . , cN ) such that the

potentially present sections in multidegree md(w) are linearly independent,
Then the strong maximal rank conjecture holds for (g, r, d), and more specifically, if we define

D(g,r,d) ⊆ Mg to be the set of curves which have a gr
d for which (1-1) is not injective, then the closure in

Mg of Dg,r,d does not contain a general chain of genus-1 curves.

Proof. According to the above discussion together with Theorem 3.4 and Proposition 3.10, we need to
show that an arbitrary exact linked linear series on X0 lying over a refined limit linear series admits some
multidegree ω such that the combined images fω′+ω′′,ω(s ′

⊗ s ′′) span an
(r+2

2

)
-dimensional space. For the

ω in the statement, it then suffices to show that these sections give
(r+2

2

)
independent combinations of the

potentially present sections.
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When ρ = 1, from Proposition 5.3 , we can have at most one swap. If we have no swaps, we
obtain the desired independence directly from the independence of the potentially present sections, using
Proposition 4.9. On the other hand, if we have a single swap, Proposition 8.4 states that there are

(r+2
2

)
-

linearly independent combinations of the potentially present sections in some unimaginative multidegree.
We have proved the statement for all X0 at once, so the stronger assertion on the closure of D(g,r,d) follows
(compare with the proof of Proposition 3.13 of [Liu et al. 2021]).

If ρ = 2, from Proposition 5.3, there are at most two swaps. If there are no swaps or one swap, the
proof above still works. If there are two swaps, we can use Propositions 8.5, 8.9, 8.10 together with
Corollary 7.6 and Proposition 8.12 together with Lemma 8.11 to guarantee the existence of

(r+2
2

)
- linearly

independent combinations of the potentially present sections in some unimaginative multidegree.
When ρ = 2, we assume X0 is left-weighted. This forces us to consider only special directions of

approach to X0 in Mg. Recalling that being left-weighted is preserved under the insertions of genus-0
chains which occur from base change and then blow up to resolve the resulting singularities, we conclude
that for suitable smoothing families, the generic fiber cannot carry a gr

d for which (1-1) is not injective, as
desired. □

Theorem 1.1 follows now from Theorem 9.1 together with Theorem 7.3 using that ρ = 1 when g = 22
and ρ = 2 when g = 23 and that in both cases, r = 6.

Remark 9.2. In our arguments for the g = 23 case, we used the ρ = 2 hypothesis in two distinct ways:
first, to limit the number of swaps occurring to two, but then also to control the behavior of the rest of
the limit linear series when two swaps did occur, for instance limiting the number of possibilities for
rows having disconnected potential support. This may appear discouraging from the point of view of
generalizing to cases with higher ρ, but as ρ increases, one also obtains more flexibility in choosing
multidegrees while still maintaining linear independence of the potentially present sections. Indeed, we
are taking advantage of this phenomenon already in the ρ = 2 case with Corollary 7.6.
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Unramifiedness of weight 1 Hilbert Hecke algebras
Shaunak V. Deo, Mladen Dimitrov and Gabor Wiese

We prove that the Galois pseudo-representation valued in the mod pn cuspidal Hecke algebra for GL(2)
over a totally real number field F , of parallel weight 1 and level prime to p, is unramified at any place
above p. The same is true for the noncuspidal Hecke algebra at places above p whose ramification
index is not divisible by p−1. A novel geometric ingredient, which is also of independent interest, is
the construction and study, in the case when p ramifies in F , of generalised 2-operators using Reduzzi
and Xiao’s generalised Hasse invariants, including especially an injectivity criterion in terms of minimal
weights.
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Introduction

Starting with Wiles [1995] and Taylor and Wiles [1995], R = T theorems have been developed and taken
a role as cornerstones in number theory. They provide both the existence of Galois representations with
values in Hecke algebras satisfying prescribed local properties and modularity lifting theorems. The state
of R = T theorems for 2-dimensional representations in residual characteristic p of the absolute Galois
group GQ of Q and Hecke algebras acting on elliptic modular forms is quite satisfactory. In particular, the
notoriously difficult case of Galois representations that are unramified at an odd prime p has been settled
by ground-breaking work of Calegari and Geraghty [2018], in which they show that those correspond to
modular forms of weight 1. More precisely, given an odd irreducible representation ρ̄ : GQ→ GL2(Fp)

unramified outside a finite set of places S not containing p, they show that

RS
Q,ρ̄

∼
−→ T

(1)
ρ̄ ,

where RS
Q,ρ̄ is the universal deformation ring parametrising deformations of ρ̄ which are unramified

outside S and T
(1)
ρ̄ is the local component at ρ̄ of a weight 1 Hecke algebra of a certain level prime to p.
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In this article, we address the corresponding question for parallel weight 1 Hilbert modular forms over
a totally real field F of degree d = [F :Q]⩾ 2 and ring of integers o. We focus on the construction of the
Galois (pseudo-)representation with values in the parallel weight 1 Hecke algebra with p-power torsion
coefficients and proving its local ramification properties. In particular, given a finite set S of places in F
relatively prime to p and a totally odd irreducible representation ρ̄ : GF → GL2(Fp) unramified outside
S we show that there exists a surjective homomorphism

RS
F,ρ̄ ↠ T

(1)
ρ̄ ,

where RS
F,ρ̄ is the universal deformation ring parametrising deformations of ρ̄ which are unramified

outside S and T
(1)
ρ̄ is the local component at ρ̄ of a weight 1 Hecke algebra of a certain level prime to p

(see Corollary 3.10 for a precise statement).
Let Mκ(n, R) be the R-module of Hilbert modular forms of parallel weight κ ⩾ 1 and prime to p level

n over a Zp-algebra R, as in Definition 2.1. This R-module is equipped with a commuting family of
Hecke operators Tq as well as with diamond operators ⟨q⟩ for all primes q of F not dividing n. Let K/Qp

be a finite extension containing the images of all embeddings of F in Qp, and let O be its valuation ring,
ϖ a uniformiser and F=O/ϖ its residue field. We put Mκ(n, K/O)= lim

−−→n Mκ(n,O/ϖ n) and define
the parallel weight 1 Hecke algebra

T(1) = im(O[Tq, ⟨q⟩]q∤np→ EndO(M1(n, K/O))),

as well as its cuspidal quotient T
(1)
cusp acting faithfully on the submodule of parallel weight 1 cuspforms.

We can now state the main results of this article. Let po=
∏

p|p p
ep with ep ⩾ 1. We emphasise that there

is no restriction on the ramification of p in F .

Theorem 0.1. There exists a T(1)-valued pseudo-representation P (1) of GF of degree 2 which is unramified
at all primes q not dividing np and satisfies

P (1)(Frobq)= (Tq, ⟨q⟩).

Moreover, if p−1 does not divide ep for some p | p, then P (1) is also unramified at p and satisfies

P (1)(Frobp)= (Tp, ⟨p⟩),

in particular Tp ∈ T(1).
Finally, the pseudo-representation P (1)cusp obtained after composing P (1) with the natural surjection

T(1)→ T
(1)
cusp is unramified at all p | p and satisfies

P (1)cusp(Frobp)= (Tp, ⟨p⟩).

The strategy of the proof is based on the doubling method developed in [Wiese 2014], further simplified
and conceptualised in [Dimitrov and Wiese 2020] and [Calegari and Geraghty 2018]. The parallel weight 1
Hilbert modular forms over O/ϖ n can be mapped into some higher weight in two ways, per prime p
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dividing p, either by multiplication by a suitable power of the total Hasse invariant, or by applying a V -
operator. That doubling map is used by Calegari and Specter [2019] to prove an analogue of Theorem 0.1
when F =Q, for which they successfully develop the notion of a p-ordinary pseudo-representation. In
that case, one knows by a result of Katz that the doubling map is injective. Furthermore, the existence of
the Hecke operator Tp acting on weight 1 modular forms and the knowledge of its precise effect on the
q-expansion (both due to Gross) allow one to show that the image of the doubling map is contained in
the p-ordinary part of the higher weight space.

The existence of an optimally integral Hecke operator Tp acting on parallel weight 1 Hilbert modular
forms with arbitrary coefficients having the desired effect on their q-expansions (see [Diamond 2021]
improving on and correcting previous works such as [Emerton et al. 2017] and [Dimitrov and Wiese
2020]) allows us to adapt the overall Calegari–Specter strategy to the Hilbert modular setting, while
slightly generalising and clarifying some aspects of their arguments (see Section 3), the main challenge
being to prove the injectivity of the doubling map. Note that the simple calculation in [Dimitrov and Wiese
2020] showing injectivity after restriction to an eigenspace is insufficient as the Hecke algebra modulo
p need not be semisimple. Instead, we observe that the injectivity of the doubling map would follow
from the injectivity of a certain generalised 2-operator, introduced in the foundational work of Andreatta
and Goren [2005] for Hilbert modular forms in characteristic p defined over the Deligne–Pappas moduli
space. When p is unramified in F , the theory of partial 2-operators was also developed by Diamond and
Sasaki [2023] in a more general setting using a slightly different approach from that of [Andreatta and
Goren 2005]. However, when p is ramified in F , the results of [Diamond and Sasaki 2023] do not apply,
while those of [Andreatta and Goren 2005] are not sufficiently precise for our purposes, as the Hilbert
modular forms defined over the Deligne–Pappas model “miss” some weights, and as a consequence
the injectivity result of the latter paper is not optimal. In order to tackle this problem, we go back to
the root of the problem and work with the Pappas–Rapoport moduli space, which does not miss any
weight.

Capitalising on the theory of generalised Hasse invariants developed by Reduzzi and Xiao [2017]
in this context, we carefully revisit [Andreatta and Goren 2005] and develop in Section 1E the needed
theory of generalised 2-operators over the Pappas–Rapoport moduli space and prove a refined injectivity
criterion in terms of the minimal weights. In particular, we show that the generalised 2-operators are
indeed injective on parallel weight 1 Hilbert modular forms provided their weight is minimal at p. By the
recent works of Diamond and Kassaei [2017; 2023] (see Section 1C) weight 1 Hilbert modular forms
having “nonminimal” weight at p could only possibly exist when p− 1 divides ep, and are products of
forms of partial weight 0 at p with generalised Hasse invariants.

In order to show the vanishing of the space of Katz cuspforms of partial weight 0 at p, and thus complete
the proof of the last parts of the Theorem, in Section 1D we construct a partial Frobenius endomorphism
8pe of this space and show that it is simultaneously injective and nilpotent. Our construction is inspired
by the one in [Diamond and Sasaki 2023, Section 9.8] in the case when p is unramified in F . We also
compute its effect on q-expansions, which is crucially used in our proof and, in order to avoid having to
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switch between different cusps, we only study the partial Frobenius operator of an appropriate power of
p, rather than of p itself.

In the language of linear representations, we prove the following result, which can be seen as a first
step towards an R = T theorem.

Corollary (Corollary 3.10). For every non-Eisenstein maximal ideal m of T(1) (see Definition 3.8) there
exists a representation

ρm : GF → GL2(T
(1)
m ),

unramified at all primes q not dividing n such that tr(ρm(Frobq))= Tq and det(ρm(Frobq))= ⟨q⟩.

We believe that our modest contribution to the theory of generalised 2-operators in the setting of
the Pappas–Rapoport splitting model is worthwhile on its own, beyond the application to our main
theorem. On our way to the injectivity criterion, we also explore some related themes, such as the relation
between Hilbert modular forms defined over the Pappas–Rapoport model with those defined over the
Deligne–Pappas model, and the q-expansion and vanishing loci of the generalised Hasse invariants defined
by Reduzzi and Xiao. We hope that it bridges the gap between many existing references in the literature
and also clarifies some important aspects of the theory of mod p Hilbert modular forms. In the meantime,
motivated by geometric Serre weight conjectures, Diamond [2023] extended the techniques of [Diamond
and Sasaki 2023] to also construct partial 2-operators which have an optimal effect on weights in the case
where p ramifies in F . Moreover, Diamond [2023] generalised the construction of the partial Frobenius
operators (our partial Frobenius operator 8pe is essentially Diamond’s V e

p ). Note that Diamond also
describes kernels of partial 2-operators in terms of images of his partial Frobenius maps Vp; see [loc. cit.,
Theorem 9.1.1]. However, our construction is less technical because we restrict to the Rapoport locus and
we only consider the case of weights 0 at p.

Notation. Throughout the paper, we will use the following notation. We let F be a totally real number
field of degree d ⩾ 2 and ring of integers o. We denote by Q ⊂ C the subfield of algebraic numbers
and denote by GF = Gal(Q/F) the absolute Galois group of F . For every prime q of F we denote by
Frobq ∈ GF a fixed choice of an arithmetic Frobenius at q. Let p be a prime of F dividing p. Fixing
an embedding ιp of Q into a fixed algebraic closure Qp of Qp allows one to see the absolute Galois
group GFp = Gal(Qp/Fp) of Fp as a decomposition subgroup of GF at p, and we let Ip denote its inertia
subgroup. Furthermore, we fix a finite extension K/Qp containing the images of all embeddings of F in
Qp, and let O be its valuation ring, ϖ a uniformiser and F=O/(ϖ) its residue field.

For a prime p of F dividing p, denote the residue field of Fp by Fp and the ring of Witt vectors of Fp

by W (Fp). We also let fp and ep denote the residue and the ramification index of p, respectively. Let
6 be the set of infinite places of F , which we view as embeddings F ↪→Qp via ιp. We have a natural
partitioning 6 =

∐
p|p 6p where 6p contains exactly those embeddings inducing the place p. For σ ∈6p,

we denote by σ its restriction to the maximal unramified subfield of Fp or, equivalently, the induced
embedding of Fp(σ ) into Fp. Furthermore, we let 6p = {σ | σ ∈6p} and 6 = {σ | σ ∈6} =

∐
p|p 6p. As
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a general rule, elements of 6 will be called σ whereas τ usually designates an element of 6. In both
cases, p(σ ) and p(τ ) denotes the underlying prime ideal. When either σ or τ is clear from the context,
we will just denote this prime ideal by p. In particular, an element τ ∈6p denotes both an embedding
Fp(τ ) ↪→ F and the corresponding p-adic one W (Fp(τ )) ↪→O. Denoting the absolute arithmetic Frobenius
on F by φ, we have 6p = {φ

j
◦ τ | j ∈ Z} ≃ Z/ fpZ≃Gal(Fp/Fp) for any choice τ ∈6p. For any τ ∈6p,

we let 6τ = {σ ∈ 6p | σ = τ } = {στ,i | 1 ⩽ i ⩽ ep}, where the numbering is chosen in an arbitrary, but
fixed way. As an abbreviation, we write τ̃ = στ,ep .

Let C be a fixed set of representatives, all relatively prime to p, for the narrow class group of F .

1. Hilbert modular forms in finite characteristic

This section refines the theory of 2-operators developed by Andreatta and Goren [2005], when p ramifies
in F , in the setting of Hilbert modular forms defined over the Pappas–Rapoport splitting models for
Hilbert modular varieties with the aim of proving the injectivity of the doubling map in Section 2. Along
the way, we will need the generalised Hasse invariants of Reduzzi and Xiao [2017], results of Diamond
and Kassaei [2017; 2023] about minimal weights as well as a partial Frobenius operator generalised from
[Diamond and Sasaki 2023].

Throughout this section we fix an ideal n of o relatively prime to p and having a prime factor which
does not divide 6d, where d denotes the different of F .

1A. Pappas–Rapoport splitting models for Hilbert modular varieties. Since we allow our base field F
to ramify at p, we have to be careful with the model we choose for our Hilbert modular variety.

Fix c ∈ C. We first consider the functor from the category of locally Noetherian Zp-schemes to the
category of sets which assigns to a scheme S the set of isomorphism classes of tuples (A, λ, µ) where:

(i) A is a Hilbert–Blumenthal abelian variety (HBAV) over S, i.e., an abelian S-scheme of relative
dimension d, together with a ring embedding o ↪→ EndS(A).

(ii) λ is a c-polarisation of A/S, i.e., an isomorphism λ : A∨→ A⊗o c of HBAV’s over S such that the
induced isomorphism Homo(A, A⊗o c)≃ Homo(A, A∨) sends elements of c (resp. of the cone c+

of its totally positive elements) to symmetric elements (resp. to polarisations),

(iii) µ is a µn-level structure on A, i.e., an o-linear closed embedding of S-schemes µ : µn→ A, where
µn denotes the Cartier dual of the constant group scheme o/n over S.

Under our assumption on n above, this functor is representable by a Zp-scheme XDP of finite type, called
the Deligne–Pappas moduli space; see [Andreatta and Goren 2005, Remark 3.3] and [Dimitrov and
Tilouine 2004, Lemma 1.4].

Suppose now that A is an HBAV over a locally Noetherian O-scheme S with structure map s : A→ S
and let �1

A/S be the sheaf of relative differentials of A over S. Define

ωS = s∗�1
A/S,
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i.e., ωS is the sheaf of invariant differentials of A over S. Consider the decomposition

o⊗Z OS = (o⊗Z Zp)⊗Zp OS =
∏
p|p

op⊗Zp OS =
∏
τ∈6

op(τ )⊗W (Fp(τ )),τ OS. (1)

It implies that we have a corresponding decomposition

ωS =
⊕
τ∈6

ωS,τ . (2)

The sheaf ωS,τ is locally free over S of rank ep(τ ); see [Reduzzi and Xiao 2017, Section 2.2]. Note that
on ωS,τ , the action of W (Fp(τ )) ⊂ op(τ ) is via τ . Fix a uniformiser ϖp(τ ) of op(τ ). From the product
decomposition above, we get an action of op(τ ) on ωS,τ . Denote the action of ϖp(τ ) on ωS,τ by [ϖp(τ )].

We are now ready to present the Pappas–Rapoport model. Consider the functor from the category of
locally Noetherian O-schemes to the category of sets which assigns to a scheme S the set of isomorphism
classes of tuples (A, λ, µ, (Fp)p|p) where (A, λ, µ) is as above and for all p | p, Fp is a collection
(F i

τ )τ∈6p,0⩽i⩽ep of o⊗OS-modules, which are locally free as OS-modules, such that:

• 0= F0
τ ⊂ · · · ⊂ Fep

τ = ωS,τ .

• For any σ = στ,i ∈ 6τ , the OS-module ωS,τ,i = ωS,σ = F i
τ/F i−1

τ is locally free of rank 1 and
annihilated by [ϖp] − σ(ϖp). Note that the numbering here depends on the one for 6τ .

This functor is representable by a smooth O-scheme X of finite type called the Pappas–Rapoport moduli
space; see [Reduzzi and Xiao 2017, Proposition 2.4] and [Dimitrov and Tilouine 2004, Lemma 1.4].

In order to better understand the relation between the Deligne–Pappas and the Pappas–Rapoport moduli
spaces, we recall that the Rapoport locus XRa is the open subscheme of XDP classifying HBAV’s s : A→ S
satisfying the following condition introduced by Rapoport: s∗�1

A/S is a locally free o⊗Z OS-module
of rank 1. Then XRa is the smooth locus of XDP and its complement is supported in the special fibre
and has codimension at least 2 in it. The forgetful map X → XDP

O induces an isomorphism on the open
subscheme XRa

O ; see [Reduzzi and Xiao 2017, Proposition 2.4]. If p is unramified in F , the different
schemes agree: X = XRa

O = XDP
O ; see [Reduzzi and Xiao 2017, Section 1].

Let A be the universal abelian scheme over X with structure morphism s :A→ X . Let ωX = s∗�1
A/X .

Note that the restriction of ωX to XRa
O is a locally free sheaf of rank 1 over o⊗ZOXRa

O
. As abbreviation we

write ω,ωτ , ωτ,i , ωσ for ωX , ωX ,τ , ωX ,τ,i , ωX ,σ . In particular, for each τ ∈6, the sheaf ωτ is equipped
with a filtration the graded pieces of which are the invertible sheaves ωσ for σ ∈ 6τ . In [Reduzzi and
Xiao 2017] this is referred to as the universal filtration. We point out explicitly that the last graded piece
ωτ̃ is a quotient of ωτ .

Next we give, following Katz, a geometric definition of the space of Hilbert modular forms.

Definition 1.1. A Katz Hilbert modular form of weight k =
∑

σ∈6 kσσ ∈ Z[6], level n and coefficients
in an O-algebra R is a global section of the line bundle ω⊗k

=
⊗

σ∈6 ω
⊗kσ
σ over X ×O R. We will denote

by MKatz
k (c, n; R) the corresponding R-module.
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Its R-submodule of cuspforms SKatz
k (c, n; R) consists of those Katz Hilbert modular forms that vanish

along the cuspidal divisor of any toroidal compactification of X ×O R; see [Reduzzi and Xiao 2017,
Section 2.11].

As X admits toroidal compactifications (see [Reduzzi and Xiao 2017, Section 2.11]) which are smooth
and proper over O and to which ωσ extends for all σ ∈ 6, the Koecher principle implies, in view of
[Stacks 2005–, Tag 02O5], that MKatz

k (c, n; R) is a finitely generated R-module.

Remark 1.2. When the weight k ∈ Z[6] is parallel, i.e., kσ = κ ∈ Z for all σ ∈6, one also could define
a Katz Hilbert modular form of parallel weight κ ∈ Z, level n and coefficients in a Zp-algebra R as a
global section of the line bundle

(∧d s∗�1
A/XDP

)⊗κ over XDP
×Zp R. By Zariski’s main theorem applied

to the proper birational map X → XDP
O between normal varieties, this would lead to the same space as in

Definition 1.1.

1B. Generalised Hasse invariants. From this point onwards we will work over F. Let X be the Pappas–
Rapoport moduli space over F, i.e., the special fibre X ×O F of X . There is a natural morphism
X→ XDP

×Zp F obtained by forgetting the filtrations. Let XRa
= XRa

×Zp F. We have the equality

o⊗Z F=
∏
p|p

op⊗Zp F≃
∏
τ∈6

op(τ )⊗W (Fp(τ )),τ F=
∏
τ∈6

F[x]/(xep(τ )), (3)

coming from (1). Note that the last equality of (3) depends on the choice of the uniformiser ϖp(τ ) of op(τ ),
made in the previous subsection for every τ ∈6, and allows us to view ωτ as an OX [x]/(xep)-module. If
S is a locally Noetherian F-scheme and A is an HBAV over S satisfying the Rapoport condition, then ωS,τ

is a locally free OS[x]/(xep(τ ))-module of rank 1. Hence, there is a unique filtration on ωS,τ satisfying the
Pappas–Rapoport conditions given by xep(τ )−iωS,τ for 0 ⩽ i ⩽ ep(τ ). We point out again that the definition
of X depends on the numbering of the embeddings in 6τ fixed above, but that X is independent of any
such choice; see also [Reduzzi and Xiao 2017, Remark 2.3].

If p | p and τ ∈6p, then suppose the universal filtration on ωτ is given by (F i
τ )0⩽i⩽ep . We now recall

Reduzzi and Xiao’s constructions of generalised Hasse invariants hσ given in [Reduzzi and Xiao 2017].
Let p | p and τ ∈ 6p and assume first that 2 ⩽ i ⩽ ep. There is a map F i

τ → F i−1
τ which sends a local

section z of F i
τ to the section x · z of F i−1

τ , where the action of x is given by [ϖp(τ )]. Hence, we get
a map F i

τ/F i−1
τ → F i−1

τ /F i−2
τ inducing a section hτ,i = hστ,i of ωτ,i−1⊗ω

−1
τ,i over X . This hσ is the

generalised Hasse invariant at σ = στ,i ; see [Reduzzi and Xiao 2017, Construction 3.3] and [Emerton
et al. 2017, Section 2.11] for more details. As (ωτ )|XRa is a locally free sheaf over OXRa[x]/(xep) of rank
1, we have (F i

τ )|XRa = (xep−iωτ )|XRa . It follows that hτ,i is a nowhere vanishing section over XRa and
multiplication by hτ,i induces an isomorphism between (ωτ,i )|XRa and (ωτ,i−1)|XRa .

For the case i = 1, the generalised Hasse invariant hτ,1 is defined as a global section over X of
ω
⊗p
φ−1◦τ,ep

⊗ω⊗−1
τ,1 ; see [Reduzzi and Xiao 2017, Construction 3.6] for more details. We let hτ =

∏
σ∈6τ

hσ =∏ep
i=1 hτ,i . It is a modular form of weight p · φ̃−1 ◦ τ − τ̃ .

https://stacks.math.columbia.edu/tag/02O5
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Remark 1.3. Let A be the universal abelian scheme over X and Ver : A(p)→ A be the Verschiebung mor-
phism, where A(p)= A×F,φF. It induces mapsωτ→ω

(p)
φ−1◦τ

and further Fep
τ /F

ep−1
τ → (Fep

φ−1◦τ
/Fep−1

φ−1◦τ
)(p).

Note that Fep
τ /F

ep−1
τ =ωτ,ep , (Fep

φ−1◦τ
/Fep−1

φ−1◦τ
)(p)=ω

⊗p
φ−1◦τ,ep

and the resulting section of ω⊗p
φ−1◦τ,ep

⊗ω⊗−1
τ,ep

over X is precisely given by hτ ; see [Reduzzi and Xiao 2017, Lemma 3.8]. Moreover, its restriction
to XRa coincides with Andreatta and Goren’s partial Hasse invariant constructed in [Andreatta and
Goren 2005, Definition 7.12]. In particular, when p is unramified in F , the generalised Hasse invariants
constructed by Reduzzi and Xiao are the same as the partial Hasse invariants constructed by Andreatta
and Goren.

We will now determine the geometric q-expansions of these generalised Hasse invariants. We will
mostly follow conventions of [Dimitrov 2004, Section 8]. Let∞c be the standard infinity cusp whose
Tate object is given by (Gm ⊗Z c∗)/qo; see [Dimitrov and Wiese 2020, Section 2.3]. Here c∗ = c−1d−1.
Let X∧ be the formal completion of a toroidal compactification of X along the divisor at the cusp∞c;
see [Dimitrov 2004, Theorem 8.6]. By [loc. cit.], the pull back of ω to X∧ is canonically isomorphic to
OX∧ ⊗ c. Choosing an identification

F⊗ c ∼−→ F⊗ o (4)

one can canonically identify ωτ | X∧ with τ(OX∧ ⊗ o)=OX∧[x]/(xep(τ )) (see (3)). A global section of ωτ
over X∧ is an element of{ ∑

ξ∈c+∪{0}

aξqξ
∣∣ aξ ∈ F[x]/(xep(τ )) and au2ξ = τ(u)aξ ,∀u ∈ o

×, u− 1 ∈ n
}
,

whereas a section z of ωτ,i over X∧ is an element of{
xep(τ )−i

·

∑
ξ∈c+∪{0}

bξqξ
∣∣ bξ ∈ F and bu2ξ = τ(u)bξ ,∀u ∈ o

×, u− 1 ∈ n
}

whose q-expansion is given by
∑

ξ∈c+∪{0} bξq
ξ with respect to the choice of basis of ωτ,i | X∧ corresponding

to xep(τ )−i .

Lemma 1.4. Let p | p, τ ∈6p. Then for every 1 ⩽ i ⩽ ep, the geometric q-expansion of the generalised
Hasse invariant hτ,i at∞c is 1. In particular, it does not vanish at any cusp.

Proof. When i > 1, as x · z is a section of ωτ,i−1 having by definition the same q-expansion, one concludes
that hτ,i has q-expansion 1, thus proving the claim in that case. In the remaining case of i = 1, we
observe that the q-expansion of hτ =

∏ep(τ )
i=1 hτ,i at∞c is 1 by Remark 1.3 and [Andreatta and Goren

2005, Proposition 7.14]. Hence the q-expansion of hτ,1 at∞c is 1. Finally, since the hτ,i can be defined
in any level, we deduce their nonvanishing at all cusps from the nonvanishing at∞c. □

We now collect some properties of the generalised Hasse invariants that will be used in the sequel. Let
Zσ ⊂ X be the divisor of hσ and, in order to shorten the notation, we let Zτ,i = Zστ,i .
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Lemma 1.5. The complement of XRa in X coincides with
⋃
τ∈6

⋃ep(τ )
i=2 Zτ,i . Moreover, for any I ⊆ 6,

the intersection
⋂
σ∈I Zσ is, either empty, or equidimensional of dimension d − |I |. In particular, the

zero loci of two different generalised Hasse invariants do not have a common divisor.

Proof. The first claim has been established in [Emerton et al. 2017, Proposition 2.13 (2)]. For the second,
if ∩σ∈I Zσ is nonempty, then the tangent space computation in [Reduzzi and Xiao 2017, Theorem 3.10]
ensures the correct dimension. □

Remark 1.6. Diamond and Kassaei also prove Lemma 1.5 and obtain in addition the nonemptiness of
the intersection; see [Diamond and Kassaei 2023, Proposition 5.8]. Here we sketch a constructive proof,
following ideas of Andreatta and Goren [2003], if ep(τ ) is odd for all τ ∈6.

Let A = E ⊗Z o∗, where E is a supersingular elliptic curve over F. We see, as in [Andreatta and
Goren 2003, Proof of Theorem 10.1], that ωA,τ ≃ F[x]/(xep(τ )) for all τ ∈6. Let FrobA : A→ A(p) be
the Frobenius map and H = ker(FrobA)[

∏
p|p p

[ep/2]]. By imitating the calculations of [Andreatta and
Goren 2003, Section 8] (more specifically [Andreatta and Goren 2003, Proposition 6.5, Lemmas 8.6, 8.9,
Proposition 8.10]), one sees that if A(1) = A/H , then

ωA(1),τ ≃ x [ep(τ )/2] · F[x]/(xep(τ ))
⊕

xep(τ )−[ep(τ )/2] · F[x]/(xep(τ )) for all τ ∈6. (5)

Note that A(1) is a c′-polarised HBAV over F for some c′ ∈ C. Let a⊂ o be an ideal relatively prime
to p such that ac′ and c represent the same element in the narrow class group of F . Let H (1) be an
o-invariant subgroup scheme of A(1)[a] isomorphic to o/a and let A(2) = A(1)/H (1). By [Kisin and Lai
2005, Section 1.9], A(2) is a c-polarised HBAV over F and since a is relatively prime to p, we have
ωA(2) = ωA(1) . Endowing each ωA(2),τ with the “alternating” filtration between the two summands in (5)
yields a point in

⋂
τ∈6

⋂ep(τ )
i=2 Zτ,i , showing that the latter is nonempty.

If ep(τ ) is odd, then the filtration on ωA(2),τ described above is unique. Moreover, as A(2) is supersingular
(i.e., its p-torsion subgroup has no étale component), the map ωA(2),τ → ωA(2),φ−1◦τ induced by the
Verschiebung morphism is the zero map. Hence, we conclude, using the structure of ωA(2),τ and the
definition of the Hasse invariant hτ,1, that any such point also lies in Zτ,1. Thus, if ep(τ ) is odd for all
τ ∈6, then we get a point in

⋂
τ∈6

⋂ep(τ )
i=1 Zτ,i .

We illustrate the weights of the generalised and partial Hasse invariants in Table 1, where we let τ ∈6
and write e = ep(τ ) as abbreviation.

One of the advantages of Definition 1.1 is that it allows us to define mod p Hilbert modular forms
in any weight k =

∑
σ∈6 kσσ ∈ Z[6], while the definition in [Andreatta and Goren 2005] was missing

some weights when p ramifies in F , namely theirs are indexed by 6, instead of 6. Indeed, the space of
modular forms introduced by Andreatta and Goren [2005, Propisition 5.5] is

MAG
k̄ (c, n; F)= H0

(
XRa,

⊗
τ∈6

ω
kτ
τ̃

)
, where k̄ =

∑
τ∈6

kτ τ ∈ Z[6]. (6)
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weights

φ−1
◦ τ τ φ ◦ τ

· · · e− 1 e 1 2 · · · e− 1 e 1 2 · · ·

hφ−1◦τ,e 1 −1
hτ,1 p −1
hτ,2 1 −1
...

. . .
. . .

hτ,e−1 1 −1
hτ,e 1 −1
hφ◦τ,1 p −1
hφ◦τ,2 1 −1

hτ p −1

Table 1. Weights of Hasse invariants.

We will denote by SAG
k̄
(c, n; F) the subspace of MAG

k̄
(c, n; F) consisting of cuspforms, which are defined

as modular forms such that the constant coefficient of the q-expansion at every cusp vanishes. If
k=

∑
σ∈6 kσσ ∈Z[6], then for every τ ∈6, let kτ =

∑
σ∈6τ

kσ and define k̄ :=
∑

τ∈6 kτ τ ∈Z[6]. We let

H RX
k =

∏
τ∈6

ep(τ )∏
i=2

h
∑i−1

j=1 kτ, j

τ,i , (7)

where kτ, j = kστ, j . In view of the table of weights of the generalised Hasse invariants, for every τ ∈6,
the (τ, i)-component of the weight of f/H RX

k is 0 if 1 ⩽ i ⩽ ep(τ )− 1 and the τ̃ = (τ, ep(τ ))-component
is kτ . Since H RX

k is invertible on XRa, we obtain the following result.

Lemma 1.7. The restriction from X to XRa yields an injection of MKatz
k (c, n; F) into MAG

k̄
(c, n; F) sending

f to f/H RX
k .

A converse is described in Lemma 1.12 below.

1C. Minimal weights. We recall the notion of minimal weight of a mod p Hilbert modular form.

Definition 1.8. We define the minimal weight of 0 ̸= f ∈ MKatz
k (c, n; F) to be the unique weight k ′ such

that f = g ·
∏
σ∈6 hnσ

σ , where g ∈ MKatz
k′ (c, n; F) and the integers (nσ )σ∈6 are as large as possible.

Lemma 1.9. The notion of minimal weight is well defined.

Proof. First note that Zσ is nonempty for every σ ∈6. Indeed, this follows from [Diamond and Kassaei
2023, Corollary 5.7]. Alternatively, we have shown in Remark 1.6 that Zτ,i is nonempty for every τ ∈6
and 2≤ i ≤ ep(τ ). Moreover, it is well known that the zero locus of hτ =

∏ep(τ )
i=1 hτ,i in XRa is nonempty

for every τ ∈6; see [Andreatta and Goren 2005, Corollary 8.18]. By Lemma 1.5, the Hasse invariants
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hτ,i with τ ∈ 6 and 2 ≤ i ≤ ep(τ ) are invertible on XRa. Therefore, it follows that the divisor Zτ,1 is
nonempty for every τ ∈6.

Recall from Lemma 1.5 that the zero loci of two different generalised Hasse invariants do not have
a common divisor. Let jσ be the order of vanishing of a Hilbert modular form f ̸= 0 on Zσ . So, if
we divide f by

∏
σ∈6 h jσ

σ , we get the modular form g needed in Definition 1.8. Hence, it follows that
the notion of minimal weight is indeed well defined; see also the proof of [Andreatta and Goren 2005,
Theorem 8.19] and [Diamond and Kassaei 2023, Section 8]. □

Remark 1.10. When p is unramified in F (i.e.,6=6), the notion of minimal weights from Definition 1.8
is the same as the one introduced by Andreatta and Goren [2005, Section 8.20]. On the other hand,
when p is ramified, multiplying 0 ̸= f ∈ MKatz

k (c, n; F) having minimal weight k with arbitrary powers of
generalised Hasse invariants (hτ,i with 2 ⩽ i ⩽ ep) yields forms sharing the same k̄ but whose weights are
not minimal anymore.

Diamond and Kassaei [2017; 2023] define the minimal cone by

Cmin
=

{∑
τ∈6

ep(τ )∑
i=1

kτ,iστ,i ∈Q[6]

∣∣∣ ∀τ ∈6,∀1 ⩽ i < ep(τ ), kτ,i+1 ⩾ kτ,i , pkτ,1 ⩾ kφ−1◦τ,ep(τ )

}
.

Regarding the minimal weights for Hilbert modular forms, Diamond and Kassaei prove the following
result in [Diamond and Kassaei 2017, Corollary 5.3], when p is unramified in F , and in [Diamond and
Kassaei 2023, Corollary 8.2], when p is ramified in F .

Proposition 1.11 (Diamond and Kassaei). The minimal weight of 0 ̸= f ∈ MKatz
k (c, n; F) belongs to Cmin.

The minimal weights allow us to further elaborate on the relation between the modular forms defined
by Andreatta and Goren [2005] and those of Definition 1.1.

Lemma 1.12. Let k̄ ∈ Z[6]. There is a finite subset K ⊂ Cmin such that for every f ∈ MAG
k̄
(c, n; F),

there is k ′ ∈ K , a modular form g ∈ MKatz
k′ (c, n; F) and a product of generalised Hasse invariants

H =
∏
τ∈6

∏ep(τ )
i=1 h jτ,i

τ,i with jτ,i ∈ Z and jτ,1 ⩾ 0, such that the restriction to XRa of g · H equals f . In
particular, f and g have the same geometric q-expansion at the cusp∞c.

Proof. The result is trivial for f = 0. Seeing 0 ̸= f ∈ MAG
k̄
(c, n; F) as a meromorphic section of the line

bundle
⊗

τ∈6 ωτ̃
⊗kτ over X , we let jτ,i ∈ Z be the order of vanishing of f along the divisor Zτ,i defined

by the Hasse invariant hτ,i for τ ∈6 and 1 ⩽ i ⩽ ep(τ ). As f is holomorphic on XRa, which intersects
every irreducible component of Zτ,1 nontrivially by Lemma 1.5, we deduce that jτ,1 ⩾ 0. Dividing f by
H =

∏
τ∈6

∏ep(τ )
i=1 h jτ,i

τ,i yields a holomorphic section on all of X , i.e., a Katz modular form g in a weight
k ′ which is by construction minimal, hence belongs to Cmin by Proposition 1.11. As the q-expansions
of all generalised Hasse invariants at the cusp∞c equal 1 by Lemma 1.4, both f and g have the same
q-expansion.

We next prove that given k̄, there are only finitely many k ′ ∈ Cmin that can appear for nonzero modular
forms in MAG

k̄
(c, n; F) via the method in the previous paragraph. Since dividing by hτ,1 (for any τ ∈6)
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subtracts (p− 1) from the sum of the weights, whereas multiplying or dividing by hτ,i for τ ∈ 6 and
2 ⩽ i ⩽ ep(τ ) leaves that sum unchanged, we deduce that

∑
σ∈6 k ′σ ⩽

∑
τ∈6 kτ . As in the language of

[Diamond and Kassaei 2023], the minimal cone is contained in the standard cone, we have k ′σ ⩾ 0 for all
σ ∈6 and the claimed finiteness follows. □

The finiteness of K in Lemma 1.12 yields the following result.

Corollary 1.13. The F-vector space MAG
k̄
(c, n; F) is finite dimensional.

We now further use the work of Diamond and Kassaei to study the minimality of the weight for modular
forms of parallel weight one.

Corollary 1.14. Suppose f ∈ MKatz
1 (c, n; F) is a nonzero Hilbert modular form and k is its minimal

weight. Then, for any prime p | p, either kσ = 1 for all σ ∈ 6p (in that case, we say that the weight is
minimal at p), or kσ = 0 for all σ ∈6p, the latter case being possible only if (p− 1) divides ep.

Proof. By Proposition 1.11, we know that k ∈ Cmin. By definition of Cmin one has kσ ⩾ 0 for all σ ∈6
and, moreover, if kσ = 0 with σ ∈6p for some p | p, then kσ = 0 for all σ ∈6p.

We assume for the rest of this proof that kσ = 0 for all σ ∈6p. Denote the weight of the Hasse invariant
hτ,i by wτ,i . By the definition of the minimal weight, there exist integers nτ,i ⩾ 0 such that∑

σ∈6p

σ =
∑
τ∈6p

ep∑
i=1

nτ,iwτ,i . (8)

From the description of wτ,i (see Table 1), it follows that for all i ⩾ 2 one has nτ,i = nτ,i−1 + 1 and
furthermore pnτ,1 = nφ−1◦τ,1+ ep. It is then easy to find that nτ,1 = ep/(p− 1) for all τ ∈6p, showing
that p− 1 divides ep. □

The following result, the proof of which will be completed in the next subsection, shows that one can
be more precise when restricting to cuspforms.

Proposition 1.15. Let p be a prime of F dividing p. Let k =
∑

σ∈6 kσσ ∈ Z[6] be a weight such that
kσ = 0 for all σ ∈6p. Then SKatz

k (c, n; F)= 0.

Proof. By Lemma 1.7, SKatz
k (c, n; F) injects into SAG

k̄
(c, n; F), which is zero by Proposition 1.22. Alter-

natively, if there is a unique prime p of F dividing p, then k = 0 and Koecher’s principle applied to an
embedding of the connected scheme X in a toroidal compactification implies that H0(X,OX ) consists
only of forms which are constant, thus it does not contain any nonzero cuspforms. □

Corollary 1.16. The weight of any nonzero parallel weight 1 cuspform is minimal.

Proof. Let f be a nonzero cuspform of parallel weight 1 and let k be its minimal weight. Suppose the
minimal weight k is not

∑
σ∈6 σ . Then by Corollary 1.14 we already know that there exists p | p such

that kσ = 0 for all σ ∈6p. Moreover, as the generalised Hasse invariants do not vanish at any cusp (see
Lemma 1.4), we have constructed a nonzero cuspform of weight k, contradicting Proposition 1.15. This
proves the corollary. □
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Remark 1.17. Confusion may arise from the fact that parallel weight 1 forms in our sense have weight
exponents ep(τ ) when seen as a modular form in MAG

k̄
(c, n; F) as

∧ep(τ ) ωτ ≃ ω
⊗ep(τ )
τ̃ for τ ∈6 over the

Rapoport locus (see Lemma 1.7).

1D. Partial Frobenius operator. Fix c ∈ C and let e ∈ N be such that peep = (α) with α ∈ o+ and
α ≡ pe

≡ 1 (mod n). Also let β ∈ o+ such that pe
= α ·β. In order to lighten notation, we let Y = XRa

denote the Rapoport locus and let s :A→ Y be the universal c-polarised HBAV endowed with µn-level
structure. Let A(pe)

=A×Y,Fre Y be the base change by the e-th power of absolute Frobenius Fr : Y → Y .
The e-th power of Verschiebung then defines an isogeny over Y

A(p
e) Vere

−→A,

the kernel of which we denote by H . It is a finite group scheme with an o/(pe)-action. Hence we can
apply the Chinese remainder theorem to obtain the direct product decomposition H = Hp× H ′p, where
Hp = H [α] is the p-component of H and H ′p = H [β] is the product of p′-components of H for all p′ ̸= p

dividing p. We now define the abelian variety

B =A(p
e)/H ′p,

through which Vere factors, leading to an isogeny over Y

B
VA

//

t

��

A.
s

~~

Y

(9)

Lemma 1.18. The abelian variety B inherits a µn-level structure and an α−1c-polarisation λα.

Proof. As A(pe)
→ B is a p-primary isogeny, the µn-level structure on A(pe) yields one on B.

Regarding the polarisation, following a suggestion of the referee (see also [Kisin and Lai 2005,
Section 1.9]), we claim that the kernel of the composed isogeny

δ : B⊗o c
VA⊗1
−−→A⊗o c

λ−1
−→A∨

V∨A
−−→ B∨

equals the α-torsion of B⊗o c, i.e., ker(δ) is α-torsion and has the same order as (B⊗o c)[α]. As the
order of finite flat group schemes is locally constant, it suffices to check this pointwise on the ordinary
locus of Y which is dense.

As Vere is étale at an ordinary closed point y ∈ Y , its kernel is isomorphic to the constant group
scheme given by o/peo, whence ker(VAy )≃ o/αo. Consequently, the kernel of the dual isogeny V∨Ay

is
isomorphic to the Cartier dual µαo of o/αo. This gives us a short exact sequence of finite flat commutative
group schemes

0→ c/αc≃ ker(VAy )⊗o c ↪→ ker(δy)
λ−1
◦(VAy⊗1)

−−−−−−−→ ker(V∨Ay
)≃ µαo→ 0.



1478 Shaunak V. Deo, Mladen Dimitrov and Gabor Wiese

As the connected-étale sequence of any finite flat group scheme over a perfect field splits (see [Tate
1997, Section 3.7]), we deduce that ker(δy) is isomorphic to the group scheme (c/αc)×µαo. In particular
ker(δy) is α-torsion and has the same order as (By⊗o c)[α]. Therefore, it follows that ker(δ)= (B⊗o c)[α].

Since (B ⊗o c)/(B ⊗o c)[α] is canonically isomorphic to B ⊗o (α
−1c), we deduce an isomorphism

B⊗o (α
−1c) ∼−→ B∨ the inverse of which is the desired α−1c-polarisation λα. □

We now verify that the HBAV B/Y satisfies the Rapoport condition. Recall that ωA/Y = s∗�1
A/Y and

ωB/Y := t∗�1
B/Y .

Lemma 1.19. For any τ ∈6 \6p, the map V ∗A,τ : ωA/Y,τ → ωB/Y,τ is an isomorphism.
On the other hand, if τ ∈6p, then the isogeny A(pe)

→ B induces an isomorphism

ωB/Y,τ ≃ ωA(pe)/Y,τ ≃ (Fre)∗ωA/Y,φ−e◦τ .

Proof. Let rp be the projection of o/(pe) on its p-primary component and let γ ∈ o be such that its image
in o/(pe) represents rp. The image of γ ′ = 1− γ in o/(pe) represents the complementary idempotent
r ′p = 1− rp. As γ ′ kills ker(VA), the isogeny B γ ′·

−→ B factors through VA, yielding a factorisation

ωB/Y //

γ ′·

&&
ωA/Y

V ∗A
// ωB/Y

If p′ | p and p′ ̸= p, the projection of γ ′ on the p′-component of o/(pe) is 1. Hence, it induces the identity
on the p′-component of ωB/Y . So the map V ∗A is split on the p′-component and hence ωB/Y,τ is isomorphic
to a direct summand of ωA/Y,τ for all τ ∈6p′ . Recall that both ωB/Y,τ and ωA/Y,τ are locally free sheaves
over Y of the same rank. Therefore, after passing to their stalks, we conclude that V ∗A,τ is an isomorphism
for all τ ∈6p′ .

Similarly, as γ annihilates the kernel of the isogeny A(pe)
→ B, we obtain an isomorphism between

ωA(pe)/Y,τ and ωB/Y,τ for all τ ∈6p. This proves the lemma. □

We get a c-polarisation on B from the α−1c-polarisation λα (which is obtained in Lemma 1.18) after
identifying α−1c with c by multiplication by α. Thus, using Lemma 1.19, the universal property of A→ Y
yields a Cartesian diagram

B //

t
��

A,

s
��

□

Y
φα

// Y,

(10)

from which we deduce a natural isomorphism φ∗αωA/Y
∼
−→ ωB/Y of o⊗OY -modules.

Let k =
∑

σ∈6 kσσ ∈ Z[6] be a weight such that kσ = 0 for all σ ∈6p. By Lemma 1.19

V ∗A : ω
⊗k
A/Y

∼
−→ ω⊗k

B/Y . (11)
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Definition 1.20. Let k =
∑

σ∈6 kσσ ∈ Z[6] be a weight such that kσ = 0 for all σ ∈ 6p. The partial
Frobenius operator 8pe is defined as the composition of the adjunction morphism coming from (10)
with (11)

8pe : H0(Y, ω⊗k
A/Y )

φ∗α−→ H0(Y, ω⊗k
B/Y )

(V ∗A)
−1

∼
−−−→ H0(Y, ω⊗k

A/Y ).

We next study the effect of 8pe on q-expansions. To this end, we recall the definition and properties of
Tate objects. For fractional ideals a, b, c of o such that ab⊂ c and a cone C in c∗

+
, we let

Ta,b = (Gm ⊗ a∗)/qb
→ S◦C = Spec(R◦C)

be the Tate HBAV over the Noetherian algebra R◦C ⊃ F[[qξ , ξ ∈ c+]] (for more details we refer to [Dimitrov
2004, Section 2], where R◦C is denoted by R∧C ⊗RC R). It is equipped with a µn-level structure which
depends on the choice of an isomorphism between a/na and o/n. Moreover, the natural isomorphism

λa,b : T∨a,b = Tb,a→ Ta,b⊗o (ab
−1)

endows Ta,b with a canonical ab−1-polarisation. Note that Tc,o = (Gm ⊗ c∗)/qo is a Tate HBAV at the
standard cusp∞c of Y fitting, by universality of A/Y , into a Cartesian diagram

Tc,o //

��

A

s

��

□

S◦C
αY

// Y.

(12)

This gives a natural isomorphism α∗YωA/Y ≃ ωTc,o/S◦C
and further, by adjunction and choice of canonical

trivialisations using (4), we obtain a q-expansion map at the cusp∞c:

H0(Y, ω⊗k
A/Y )

α∗Y−→ H0(S◦C , ω
⊗k
Tc,o/S◦C

)≃ R◦C .

Next we describe Vere on Tate objects. Define T (pe)
c,o = Tc,o ×S◦C ,Fre S◦C as the base change by the

e-th power of absolute Frobenius. Note that T (pe)
c,o = Tpec,o and the relative Frobenius map Frobe

Tc,o :

Tc,o→ Tpec,o is the map induced by the inclusion pec ↪→ c. The pe-th Verschiebung is the dual of the
pe-th relative Frobenius on T∨c,o, i.e., Vere

= (Frobe
T∨c,o
)∨. We do not identify ((T∨c,o)

(pe))∨ with T (pe)
c,o

(as is usually done while defining Verschiebung) in order to get the desired maps on Tate objects. In
particular, Frobe

T∨c,o
: To,c→ Tpeo,c is the map induced by the inclusion peo ↪→ o. Therefore, its dual map

Vere
: Tc,peo→ Tc,o is the natural projection obtained by going modulo qo.

Our next aim is to specialise φα to the Tate objects. It follows from the previous paragraph that the
base change of (9) to S◦C is given by the following commutative diagram:

Tc,αo
VT

//

!!

Tc,o

~~

S◦C
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where the map VT is the natural projection obtained by going modulo qo. Combining with (10), we get
the following Cartesian diagram:

Tc,αo //

��

B //

t
��

A

s

��

□ □

S◦C
αY

// Y
φα

// Y

(13)

On the other hand, considering the c-polarised HBAV Tc,o over S◦αC gives a Cartesian diagram:

Tc,αo //

��

Tc,o //

��

A

s

��

□ □

S◦C
fα

// S◦αC

α′Y
// Y,

(14)

where fα is induced by the morphism R◦αC→ R◦C sending qξ to qαξ . We would like to emphasise that αC
is considered as a cone in c∗

+
, hence the dual cone (used in the construction of R◦αC , see [Dimitrov 2004,

Section 2]) is considered as a cone in c (and not in α−1c). In particular, the morphism R◦αC→ R◦C , qξ 7→qαξ

is not étale.

Lemma 1.21. Under the notation developed above, φα ◦αY = α
′

Y ◦ fα.

Proof. The proof proceeds by showing that the c-polarisation and µn-level structure on Tc,αo obtained
from the base change in (13) coincide with the ones obtained from the base change in (14). This, along
with the universality of A/Y , implies φα ◦αY = α

′

Y ◦ fα.
As Mumford’s construction of Tate objects presented in [Dimitrov 2004, Section 2] is functorial in

(a, b, c) and C , we deduce that the c-polarisation on Tc,αo arising from (14) is obtained from λc,αo after
identifying α−1c with c by multiplication by α.

We now derive the c-polarisation on Tc,αo via the base change in (13). To do this, we proceed as
in the proof of Lemma 1.18 to first obtain an α−1c-polarisation on Tc,αo from λc,o. From the proof of
Lemma 1.18, it follows that the kernel of the isogeny

Tc,αo⊗o c→ Tc,o⊗o c→ To,c→ Tαo,c.

is just the α-torsion of Tc,αo⊗o c. Here the first map is induced by VT (the natural projection given by
going modulo qo), the second map is λ−1

c,o , and the final map is induced by the inclusion αo⊂ o. Therefore,
this composition of maps induces an isomorphism

λ : T∨c,αo = Tαo,c ∼−→ (Tc,αo⊗o c)⊗o α
−1o= Tc,αo⊗o α

−1c,

which is the α−1c-polarisation on Tc,αo induced from λc,o. From the description of the maps above, it
follows that λ= λc,αo. Hence, the c-polarisation on Tc,αo via the base change in (13) is obtained from λc,αo

by identifying α−1c with c by multiplication by α. Therefore, it follows that these two c-polarisations on
Tc,αo coincide.
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As α ≡ 1 (mod n), the multiplication by α map preserves the µn-level structure of Tc,o. Hence, the
µn-level structure on Tc,αo induced by fα is same as the one coming from the quotient map Tc,peo→ Tc,αo.
This concludes the proof of the lemma. □

We are now ready to compute the effect of 8pe on q-expansions at∞c.

Proposition 1.22. Let k̄ =
∑

τ∈6 kτ τ ∈ Z[6] such that kτ = 0 for all τ ∈6p. Then the map 8pe defines
an endomorphism of MAG

k̄
(c, n; F), sending f =

∑
ξ∈c+

aξqξ to 8pe( f ) =
∑

ξ∈c+
aξqαξ . In particular,

the restriction of 8pe to SAG
k̄
(c, n; F) is injective and nilpotent, hence SAG

k̄
(c, n; F)= {0}.

Proof. By definition, the q-expansion of 8pe( f ) at∞c is the image of f under the map H0(Y, ω⊗k
A/Y )→

H0(S◦C , ω
⊗k
Tc,αo/S◦C

) coming from the Cartesian diagram (13), followed by (V ∗T )
−1. By Lemma 1.21, one

can use instead the Cartesian diagram (14). Hence, the q-expansion of 8pe( f ) at∞c can be obtained as
the image of f under the adjunction morphism

H0(Y, ω⊗k
A/Y )

α′Y
∗

−→ H0(S◦αC , ω
⊗k
Tc,o/S◦αC

)
f ∗α−→ H0(S◦C , ω

⊗k
Tc,αo/S◦C

)

followed by the map (V ∗T )
−1
:H0(S◦C , ω

⊗k
Tc,αo/S◦C

) ∼−→H0(S◦C , ω
⊗k
Tc,o/S◦C

). Since the q-expansion
∑

ξ∈c+
aξqξ

of f at the cusp∞c is independent of a particular choice of a cone, it is given by the image of f under
the map α′Y

∗
: H0(Y, ω⊗k

A/Y )→ H0(S◦αC , ω
⊗k
Tc,o/S◦αC

). As fα is induced by the map sending qξ to qαξ we
deduce that f ∗α

(∑
ξ∈c+

aξqξ
)
=

∑
ξ∈c+

aξqαξ . Finally, as VT is induced from the identity map on the torus
Gm⊗c

∗, the morphism V ∗T is the identity on the q-expansions, i.e., (V ∗T )
−1

(∑
ξ∈c+

aξqαξ
)
=

∑
ξ∈c+

aξqαξ ,
yielding the desired formula.

The rest follows from the q-expansion principle and the finite dimensionality of SAG
k̄
(c, n; F). □

1E. Refined injectivity criterion for 2-operators. The purpose of this section is to extend the definition
of the Andreatta–Goren operators 2AG

τ for τ ∈6 and prove an injectivity criterion refining [Andreatta and
Goren 2005, Proposition 15.10] when p ramifies in F . Given f ∈ MKatz

k (c, n; F), by Lemma 1.7 and the
discussion after it, 2AG

τ ( f/H RX
k ) defines a meromorphic section over X , whose poles lie outside XRa. A

careful study of the order at these poles will first show that multiplication by H RX
k leads to a holomorphic

section and further allow us to establish Proposition 1.28 (injectivity criterion). If p is unramified in F ,
our 2-operators coincide exactly with those of Andreatta and Goren, and in that case everything that we
prove here has already been proved in [Andreatta and Goren 2005]; see also [Diamond and Sasaki 2023].

The construction of 2AG
τ goes via the Kummer cover. By definition, the ordinary locus Xord of

XRa is endowed with a Galois cover X (µ(p))ord
→ Xord with group (o/(p))×, where X (µ(p)) is the

Deligne–Pappas moduli space of level pn. Taking the quotient by the p-Sylow subgroup yields a cover
π : XKum

→ Xord with group
∏

p|p(o/p)
×, called the Kummer cover. Let π̃ : X̃ → X be the normal

closure of X in XKum. It can be described explicitly using the generalised Hasse invariants as follows.
For τ ∈6, we write p= p(τ ), f = fp and we let

Hτ =
f−1∏
j=0

(hφ− j◦τ )
p j
. (15)
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It is a modular form of weight (p f
−1)̃τ and XKum is obtained by adjoining a (p f

−1)-th root sτ of it for
all τ ∈6. The nowhere vanishing section sτ provides a trivialisation of the line bundle π∗ωτ̃ over XKum

(see [Andreatta and Goren 2005, Definition 7.4]), and by definition of the normalisation, it also defines a
section over X̃ ; see [Andreatta and Goren 2005, Proposition 7.9]. As

H p
φ−1◦τ

= Hτ · (hτ )p f
−1, (16)

H p
φ−1◦τ

/Hτ is a (p f
− 1)-th power, this construction does not depend on the choice of τ ∈6p.

Next we describe the Kodaira–Spencer maps. By [Reduzzi and Xiao 2017, Theorem 2.9] there is a
decomposition

�1
X/F =

⊕
τ∈6

�1
X/F,τ (17)

where each �1
X/F,τ is endowed with a filtration whose successive subquotients are naturally isomorphic

to ω⊗2
τ,i with 1 ⩽ i ⩽ ep for p = p(τ ) in descending order, i.e., ω⊗2

τ̃ = ω
⊗2
τ,ep is naturally a quotient. As

the map π : XKum
→ Xord is étale, we have �1

XKum/F
= π∗�1

Xord/F
, the elements of which we view as

meromorphic sections of the sheaf π̃∗�1
X/F over X̃ . Given a section of π̃∗�1

X/F, we denote by a subscript
τ ∈6 its projection onto the τ -component via (17). Consider the surjective map

KSτ : π̃∗�1
X/F,τ → π̃∗ω⊗2

τ̃ .

Definition 1.23. Let k =
∑

σ∈6 kσσ ∈ Z[6] and kτ =
∑

σ∈6τ
kσ for τ ∈ 6. Let f ∈ MKatz

k (c, n; F).
Recall that f/H RX

k ∈ MAG
k̄
(c, n; F) (see Lemma 1.7). We put

H AG
k =

∏
τ∈6

skτ
τ and Hk = H AG

k ·π
∗(H RX

k ).

Similarly to [Andreatta and Goren 2005, Definition 7.19], we further put

r( f )= π∗( f/H RX
k )/H AG

k = π∗( f )/Hk ∈ H0(XKum,OXKum)

where we restricted f and H RX
k to Xord.

Definition 1.24. For τ ∈6, we define the generalised 2-operator acting on f ∈ MKatz
k (c, n; F) as

2τ ( f )= KSτ (d(r( f ))τ ) · Hk ·π
∗(hτ )= H RX

k ·2
AG
τ

(
f

H RX
k

)
,

viewed as an element of H0(XKum, π∗ω⊗k′) where:

(1) If τ ̸= φ−1
◦ τ , then

k ′σ =


kσ + 1 if σ = στ,ep(τ ) = τ̃ ,

kσ + p if σ = σφ−1◦τ,ep(τ ) = φ̃
−1 ◦ τ ,

kσ otherwise.
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(2) If τ = φ−1
◦ τ , then

k ′σ =
{

kσ + p+ 1 if σ = στ,ep(τ ) = τ̃ ,
kσ otherwise.

We will now prove that 2τ ( f ) yields an element of MKatz
k′ (c, n; F). In order to prove this, we proceed

as in [Andreatta and Goren 2005] to calculate the poles of d(r( f ))τ along the divisors of the generalised
Hasse invariants.

Using the trivialisation of the line bundles π∗ωτ̃ given by the sections sτ and the generalised Hasse
invariants hτ,i ’s for i > 1, we get trivialisations of π∗ωτ,i for all τ ∈ 6 and 1 ⩽ i ⩽ ep(τ ). Using these
trivialisations we can view the pullbacks π̃∗hτ,i and π̃∗hτ of Hasse invariants as functions over X̃ (see
[Andreatta and Goren 2005, Section 12.32] for more details), whose differentials are denoted by d(hτ,i )
and d(hτ ), respectively (viewed as meromorphic sections of π̃∗�1

X/F).
For τ ′ ∈ 6, we let Z̃ be an irreducible component of the effective Weil divisor of X̃ associated to

π̃∗(hτ ′) (see Section 1B). From the construction of X̃ and [Andreatta and Goren 2005, Section 9.3,
Proposition 9.4] (see also [Andreatta and Goren 2005, Section 12.32]), we can choose a uniformiser δ at
the generic point of Z̃ such that δ p

fp(τ ′)−1
= Hτ ′ (see (15) for the definition of Hτ ′). We fix this choice

from now on and let vδ be the corresponding normalised discrete valuation. For the sake of readability,
we will often drop π̃∗ from the notation when pulling back Hilbert modular forms, especially generalised
Hasse invariants; for instance, we usually write vδ(hτ ) for vδ(π̃∗(hτ )).

We will first calculate vδ((dδ)τ ), where (dδ)τ is viewed as a meromorphic section of π̃∗�1
X/F,τ over X̃ .

We also prove some complementary results which will be used in the proof of the injectivity criterion.

Lemma 1.25. (i) Let τ ∈6 different from τ ′. Then (dδ)τ = 0.

(ii) There is a unique 1 ⩽ i0 ⩽ ep(τ ′) (depending on Z̃ ) such that vδ(hτ ′,i0)= p fp(τ ′) − 1 and vδ(hτ ′,i )= 0
for all i ̸= i0. Moreover, vδ(hτ ′)= p fp(τ ′) − 1 and vδ(hτ )= 0 if τ ̸= τ ′.

(iii) vδ(d(hτ ′,i ))⩾ 0 for all i and for i0 found in (ii) , vδ(d(hτ ′,i0))= 0.

(iv) vδ(sτ ′)= 1, vδ(sτ )= p j if τ = φ j
◦ τ ′ and vδ(sτ )= 0 if τ ̸= φ j

◦ τ ′ for any integer j .

(v) vδ((dδ)τ ′)= 2− p fp(τ ′) .

(vi) (dδ)τ ′ = D+ g · (d(hτ ′,i0))τ ′ where g =−δ2−p
fp(τ ′)
·
(∏ fp(τ ′)−1

j=1 (hφ− j◦τ ′)
p j )
·
(∏

j ̸=i0
hτ ′, j

)
and D is

a meromorphic section of π̃∗�1
X/F,τ ′ such that vδ(D)⩾ 0.

(vii) KSτ ′(d(hτ ′,ep(τ ′))τ ′) ̸= 0 and if Z̃ is an irreducible component of the effective Weil divisor of X̃
associated with π̃∗(hτ ′,ep(τ ′)), then vδ(KSτ ′(d(hτ ′,ep(τ ′))τ ′)s

−2
τ ′ )=−2.

Proof. Recall that we have chosen δ such that δ p
fp(τ ′)−1

= Hτ ′ . Hence

−δ p
fp(τ ′)−2dδ =

( fp(τ ′)−1∏
j=1

(hφ− j◦τ ′)
p j

)
· d(hτ ′).
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Since XRa is Zariski dense in X , it follows from [Andreatta and Goren 2005, Lemma 12.34] that
(d(hτ ′))τ = 0 if τ ̸= τ ′. Hence, we get dδ = (dδ)τ ′ , which implies that (dδ)τ = 0 if τ ̸= τ ′. Now

d(hτ ′)= d
(ep(τ ′)∏

i=1

hτ ′,i

)
=

ep(τ ′)∑
i=1

(∏
j ̸=i

hτ ′, j

)
· d(hτ ′,i ).

Since δ is a uniformiser at the generic point of Z̃ , there is a unique i0 such that vδ(hτ ′,i0) > 0. Note
that vδ(hτ ′,i )= 0 for i ̸= i0 and vδ(d(hτ ′,i ))⩾ 0 for all i . Moreover, it follows from [Reduzzi and Xiao
2017, Theorem 3.10] that vδ(d(hτ ′,i0))= 0. So (ii) and (iii) follow from the discussion above. Combining
this with (16) gives (iv). Hence, vδ(d(hτ ′))= vδ(

∏
i ̸=i0

hτ ′,i (d(hτ ′,i0)))= 0 from which (v) follows and
combining this with (ii) and (iii) gives us (vi).

We will now prove statement (vii). Recall that, by [Reduzzi and Xiao 2017, Theorem 2.9], �1
X/F,τ ′

admits a canonical filtration whose successive subquotients are (isomorphic to) ω⊗2
τ ′,i with 1 ⩽ i ⩽ ep(τ ′).

Recall that KSτ ′ is the surjective map from π̃∗�1
X/F,τ ′ onto its first subquotient π̃∗ω⊗2

τ ′,ep(τ ′)
. On the other

hand, by [Reduzzi and Xiao 2017, Theorem 3.10], �1
Zτ ′,ep(τ ′)/F,τ

′ admits a canonical filtration whose

successive subquotients are (isomorphic to) ω⊗2
τ ′,i with 1 ⩽ i < ep(τ ′). Here Zτ ′,ep(τ ′) ⊂ X is the divisor of

hτ ′,ep(τ ′) . Therefore, we conclude that KSτ ′(d(hτ ′,ep(τ ′))τ ′) ̸= 0. Since sτ ′ gives a trivialisation of the line
bundle π∗ωτ̃ ′ , vδ(KSτ ′(d(hτ ′,ep(τ ′))τ ′)s

−2
τ ′ ) is well defined. We conclude vδ(KSτ ′(d(hτ ′,ep(τ ′))τ ′)s

−2
τ ′ )=−2

by combining [Reduzzi and Xiao 2017, Theorem 3.10] with (iii) and (iv); see also [Andreatta and Goren
2005, Proposition 12.37]. This concludes the proof of the lemma. □

In order to compute vδ(d(r( f ))τ ), it is sufficient to work in the discrete valuation ring obtained by
localising at the generic point of Z̃ . Letting r( f )= u

δn , with vδ(u)= 0, we have

d(r( f ))τ =
(du)τ
δn −

nu(dδ)τ
δn+1 . (18)

Lemma 1.26. Let τ ∈6 and let f ∈ MKatz
k (c, n; F). Then

(i) vδ((du)τ )⩾ inf{0, vδ((dδ)τ )},

(ii) vδ(d(r( f ))τ )⩾ vδ(r( f )), if τ ̸= τ ′,

(iii) vδ(d(r( f ))τ ′)⩾ vδ(r( f ))− (p fp(τ ′) − 2), if p | vδ(r( f )),

(iv) vδ(d(r( f ))τ ′)= vδ(r( f ))− (p fp(τ ′) − 1), if p ∤vδ(r( f )).

Proof. Let τ ∈6. The proof of (i) is similar to the proof of [Andreatta and Goren 2005, Proposition 12.35]
and we reproduce parts of it here. Let B (resp. B̃) be the local ring of the generic point of π̃(Z̃) (resp.
of Z̃ ). As in [loc. cit., Corollary 9.6], we have B ⊂ Bet

⊂ B̃ where Bet is étale over B and B̃ = Bet
[δ].

Writing u =
∑p

fp(τ ′)−2
h=0 uhδ

h with uh ∈ Bet, we have

(du)τ =
p fp(τ ′)−2∑

h=0

(δh(duh)τ + huhδ
h−1(dδ)τ ).



Unramifiedness of weight 1 Hilbert Hecke algebras 1485

Now δh(duh)τ lies in B̃ ⊗Bet �1
Bet/F

, which is the same as π̃∗�1
B/F since Bet is étale over B. Hence

δh(duh)τ has no poles and (i) follows. Combining this inequality with (18) and Lemma 1.25(i), (v) gives
us the other parts of the lemma. □

Finally we are ready to prove that 2τ ( f ) is also a mod p Hilbert modular form.

Proposition 1.27. Let τ ∈6, f ∈ MKatz
k (c, n; F) and k ′ be as in Definition 1.24. Then 2τ ( f ) descends to

a global section of the line bundle ω⊗k′ over Xord, and further extends to a section over X , yielding an
element 2τ ( f ) ∈ MKatz

k′ (c, n; F).

Proof. The descent follows by applying [Andreatta and Goren 2005, Theorem 12.39] to f/H RX
k .

As KSτ is a surjective map of locally free sheaves with a locally free kernel over the normal scheme X̃ ,
the orders of the poles of KSτ (d(r( f ))τ ) are less than or equal to the orders of the poles of d(r( f ))τ ,
i.e., vδ(KSτ (d(r( f ))τ ))⩾ vδ(d(r( f ))τ ) (see the proof of [loc. cit., Proposition 12.37] for more details).
Note that r( f ) · Hk = π

∗( f ) has no poles on X̃ , i.e., vδ(π∗ f ) ⩾ 0. Combining Lemma 1.25(ii) and
Lemma 1.26, we get that 2τ ( f ) has no poles over X̃ . Hence, the section obtained by descending from
XKum to Xord extends to all of X and is thus a Hilbert modular form. □

The effect of 2τ on the geometric q-expansions of Hilbert modular forms will be used in Section 2B
and can be described as follows. The identification (4), used in defining the geometric q-expansion∑

ξ∈c+∪{0} aξ ( f )qξ of f at the cusp∞c, allows one to consider the map

τ̄c : F⊗ c ∼−→ F⊗ o↠ F[x]/(xep(τ ))↠ F,

where the middle map is given by the idempotent at τ . By [Andreatta and Goren 2005, Corollary 12.40]
we obtain the following q-expansion at the cusp∞c:

2τ ( f )=
∑
ξ∈c+

τ̄c(1⊗ ξ)aξqξ . (19)

The proof of our main theorem uses the injectivity of 2τ on certain mod p Hilbert modular forms.

Proposition 1.28. Let f ∈ MKatz
k (c, n; F) and let τ ∈ 6p. Suppose p ∤kτ,ep and hτ,ep does not divide f .

Then 2τ ( f ) ̸= 0.
In particular, if the weight of f ̸= 0 is minimal at p, and p ∤kτ,ep , then 2τ ( f ) ̸= 0.

Proof. We follow the proof of [Andreatta and Goren 2005, Proposition 15.10]. Let δ be the uniformiser at
the generic point of an irreducible component of the Weil divisor of X̃ attached to π̃∗hτ,ep chosen just
before Lemma 1.25. As vδ(π̃∗( f ))= 0, using Lemma 1.25(ii),(iv) (see also [loc. cit., Proposition 15.9])
we deduce

n := vδ(r( f ))=−
f−1∑
j=0

p j kφ j◦τ − (p
fp − 1)

ep−1∑
j=1

kτ, j ≡−kτ,ep (mod p).
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Hence p ∤n and Lemma 1.26 (i) shows that the right most term in (18) has a strictly lower valuation than
the other term on the right hand side. Thus, Lemma 1.25 (vi) shows that

d(r( f ))τ = D′−
nuδ2−p fp(τ )

·
(∏ fp(τ )−1

j=1 (hφ− j◦τ )
p j )
·
(∏

j ̸=ep hτ, j
)

δn+1 (dhτ,ep)τ ,

where D′ is a meromorphic section of (π̃∗�1
X/F)τ and the right most term has a strictly smaller valuation

than D′. Combining this with Lemma 1.25 (vii), we get that KSτ (d(r( f ))τ ) ̸= 0. This implies that
2τ ( f ) ̸= 0. □

Remark 1.29. When p is unramified in F , Proposition 1.28 can also be deduced from [Diamond
and Sasaki 2023, Theorem 8.2.2] whose proof is different. Furthermore, Diamond and Sasaki [2023,
Theorem 9.8.2] also determine the kernel of 2τ in terms of the partial Frobenius operator at τ that they
define. Meanwhile, the case when p is ramified in F has been treated in [Diamond 2023]. Proposition 1.28
follows from [Diamond 2023, Theorem 5.2.1] and the kernel of 2τ is described in terms of partial
Frobenius operators in [loc. cit., Corollary 9.1.2].

2. Doubling and Hecke algebras

2A. Hilbert modular forms of parallel weight 1. It is important to distinguish between Katz Hilbert
modular forms defined on the fine moduli space and those on the coarse quotient by the action of the
totally positive units of o. The latter enjoy the good Hecke theory for GL(2) and are the natural objects
to study in relation with two dimensional Galois representations; see [Dimitrov and Wiese 2020]. In
this section, we will define Hilbert modular forms of parallel weight building on Definition 1.1. Even
though we give a definition valid in all levels n that are prime to p, we nevertheless need to consider
the following condition (which is stronger than the one we imposed in Section 1) expressing that n is
sufficiently divisible:

n is divisible by a prime above a prime number q splitting completely in F(
√
ϵ | ϵ ∈ o×+) and

such that q ≡−1 (mod 4ℓ) for all prime numbers ℓ such that [F(µℓ) : F] = 2.
(20)

This condition ensures that XDP is a scheme on which [ϵ] ∈ E = o×+/{ϵ ∈ o
×
| ϵ− 1 ∈ n}2 acts properly

and discontinuously by sending (A, λ, µ) to (A, ϵλ, µ); see [Dimitrov 2009, Lemma 2.1(iii)]. For any
c ∈ C, any Zp-algebra R, and any parallel weight k, this induces an action of E on MKatz

k (c, n; R), whose
invariants are denoted by MKatz

k (c, n; R)E . The following definition is equivalent to the one used in
[Dimitrov and Wiese 2020, Section 2.2].

Definition 2.1. If n satisfies (20), then the space of Hilbert modular forms over a Zp-algebra R of
(parallel) weight κ ∈ Z and level n is given by

Mκ(n, R)=
⊕
c∈C

MKatz
k (c, n; R)E ,
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where k =
∑

σ∈6 κσ . For a general level n, let q1 ̸= q2 be primes such that both nq1 and nq2 satisfy (20)
and define

Mκ(n, R)= Mκ(nq1, R)∩Mκ(nq2, R),

where the intersection can be taken in Mκ(nq1q2, R). Note that the primes q1 and q2 can be chosen from
a set of primes of positive density and that the definition does not depend on this choice.

For f ∈ Mκ(n, R), we let
∑

b∈I∪{(0)} a(b, f )qb be the adelic q-expansion of f , where I denotes the
group of fractional ideals of F ; see [Dimitrov and Wiese 2020, Section 2.6].

We denote by Sκ(n, R) the R-submodule of Mκ(n, R) consisting of Hilbert modular cuspforms.

For f ∈ Mκ(n, R) and c ∈ C, we will let fc denote the corresponding E-invariant element of
MKatz

k (c, n;R) or, equivalently, its geometric q-expansion at the cusp∞c; see [Dimitrov and Wiese 2020,
Section 2.5]. Recall that when n satisfies (20), Mκ(n, R) is endowed with Hecke and diamond operators;
see [Dimitrov and Wiese 2020, Sections 3.1–3.3]. When n is not sufficiently divisible, Hecke and diamond
operators exist nonetheless because they stabilise the intersection Mκ(nq1, R)∩Mκ(nq2, R), where the
auxiliary primes q1, q2 may be chosen appropriately. When it is not clear from the context, a superscript
between parentheses indicates the weight of the space of Hilbert modular forms on which an operator acts,
e.g., T (1)

p . Since we are interested in torsion coefficients, we let Mκ(n, K/O)= lim
−−→n Mκ(n,O/ϖ n), where

the inductive limit is taken by identifying Mκ(n,O/ϖ n) with the subspace Mκ(n,O/ϖ n)⊗O (ϖO) of
Mκ(n,O/ϖ n+1).

2B. Doubling. We shall rely on the following lifting result.

Lemma 2.2. Suppose that n satisfies (20). There exists a κ0 ∈ Z such that for all κ ⩾ κ0 and all n ∈ N,
the natural map

Mκ(n,O)⊗O O/ϖ n
→ Mκ(n,O/ϖ n)

is a Hecke equivariant isomorphism.

Proof. The proof of [Dimitrov and Wiese 2020, Lemma 2.2] works unchanged after replacing Zp by O
and p by ϖ n . □

We also need a generalisation of the total Hasse invariant modulo ϖ n .

Lemma 2.3. Suppose that n satisfies (20). For every n ∈ N, there is a κn ∈ N such that (κn − 1) is a
multiple of (p− 1)pn−1, and a modular form hn ∈ Mκn−1(n,O/ϖ n) having q-expansion equal to 1 at
∞c for all c ∈ C. In particular, it does not vanish at any cusp.

Proof. Let h ∈ Mp−1(n, F) be the usual Hasse invariant see [Dimitrov and Wiese 2020, Section 3.4].
For r such that r(p− 1) is big enough to apply Lemma 2.2, the modular form hr

∈ Mr(p−1)(n,O) has
q-expansion congruent to 1 modulo ϖ at each cusp∞c, c ∈ C. A big enough power of it satisfies the
required congruence relation and condition on the weight. □
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The theory of generalised 2-operators presented in Section 1E allows us to prove the following result.

Lemma 2.4. Assume such an f exists. Assume that n satisfies (20). Then there does not exist any
0 ̸= f ∈ M1(n, F) such that fc has minimal weight at a fixed prime p dividing p (see Corollary 1.14) for
all c ∈ C and such that a(b, f )= 0 for all ideals b⊂ o not divisible by p.

Proof. The minimality of the weight at p implies that there exists a τ ∈6p such that h τ̃ does not divide fc
(the proof of Corollary 1.14 implies that this is true for all τ ∈6p). Let b= (ξ)c−1. Then, by definition,
aξ = a(b, f ) and this is zero unless p | b, in which case p | (ξ). Thus, it follows that τ̄c(1⊗ ξ) = 0.
By (19), this shows that the geometric q-expansion of2τ ( fc) vanishes at∞c for all c∈ C, i.e., 2τ ( fc)= 0,
contradicting the injectivity criterion from Proposition 1.28. □

For p | p and n ∈ N, we define the Vp-operator by (see [Diamond 2021], improving on and correcting
previous works such as [Emerton et al. 2017] and [Dimitrov and Wiese 2020], for the definition of T (1)

p )

Vp,n = ⟨p⟩
−1(hnT (1)

p − T (κn)
p hn)

with hn and κn from Lemma 2.3. A simple computation on q-expansions (see [Dimitrov and Wiese 2020,
Proposition 3.6]) shows that Vp,n has the following effect on adelic q-expansions:

a((0), Vp,n f )= a((0), f )[p−1
],

a(r, Vp,n f )= a(p−1r, f )

for nonzero ideals r⊆ o.

Proposition 2.5. Let p | p be a prime and assume that n satisfies (20).

(i) If f ∈ S1(n, K/O) and a(b, f )= 0 for all ideals b⊂ o not divisible by p, then f = 0.

(ii) For all n ∈ N, the “doubling map”

(hn, Vp,n) : S1(n,O/ϖ n)⊕2 ( f,g) 7→hn f+Vp,n g
−−−−−−−−−→ Mκn (n,O/ϖ

n)

is injective and compatible with the Hecke operators Tq for q ∤np. The Hecke operator T (κn)
p acts on

the image by the formula T (κn)
p ◦ (hn, Vp,n)= (hn, Vp,n) ◦

( T (1)p

−⟨p⟩
1
0

)
. In particular, the image Wp,n of

(hn, Vp,n) lies in the p-ordinary part of Mκn (n,O/ϖ n) and is stable under all Hecke operators Tq
for q ∤np.

If (p− 1) does not divide ep, then the same statements hold after replacing the spaces S1(n, K/O) and
S1(n,O/ϖ n) by M1(n, K/O) and M1(n,O/ϖ n), respectively.

Proof. (i) For f ∈ S1(n,O/ϖ), the claim is precisely the content of Lemma 2.4, in view of Corollaries 1.14
and 1.16. The induction step from n − 1 to n follows from the q-expansion principle and the exact
sequence

0→ S1(n,O/ϖ)⊗Oϖ
n−1O→ S1(n,O/ϖ n)→ S1(n,O/ϖ n−1).

(ii) The injectivity follows from (i) applied to the first component of an element in the kernel. The matrix
is obtained from a calculation as in [Dimitrov and Wiese 2020, Lemma 3.7]. □
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2C. Hecke algebras. For κ⩾1 and n∈N, we consider the following complete Artinian (resp. Noetherian)
semi-local O-algebras

T(κ)n = im
(
O[Tq, ⟨q⟩]q ∤np→ EndO(Mκ(n,O/ϖ n))

)
,

T(κ)cusp,n = im
(
O[Tq, ⟨q⟩]q ∤np→ EndO(Sκ(n,O/ϖ n))

)
, resp.,

T(κ) = im
(
O[Tq, ⟨q⟩]q ∤np→ EndO(Mκ(n, K/O))

)
= lim
←−−

n
T(κ)n ,

T(κ)cusp = im
(
O[Tq, ⟨q⟩]q ∤np→ EndO(Sκ(n, K/O))

)
= lim
←−−

n
T(κ)cusp,n.

(21)

Note that they all contain ⟨p⟩ for p | p since p is relatively prime to n. Moreover, the restriction to the
cusp space gives surjective morphisms T

(κ)
n ↠ T

(κ)
cusp,n and T(κ)↠ T

(κ)
cusp. We also consider the torsion free

Hecke O-algebra:

T
(κ)
O = im

(
O[Tq, ⟨q⟩]q∤np→ EndO(Mκ(n,O))

)
.

Let In be the annihilator of T
(κ)
O acting on Mκ(n,O)⊗O (O/ϖ n). Then we have natural surjective ring

homomorphisms

T(κ)n ↠ T
(κ)
O /In and T(κ) ↠ T

(κ)
O ,

the latter coming from the fact that the intersection
⋂

n In is zero. For sufficiently large κ , both homomor-
phisms are isomorphisms due to Lemma 2.2. However, this need no longer be true in our principal case
of interest κ = 1 since the inclusions

M1(n,O)⊗O (O/ϖ n) ↪→ M1(n,O/ϖ n) and M1(n,O)⊗O (K/O) ↪→ M1(n, K/O)

need not be isomorphisms, in general. The kernel of T(1) ↠ T
(1)
O is a finitely generated torsion O-module,

which is isomorphic to the kernel of T
(1)
n →T

(1)
O /In for n ∈N sufficiently large. Recall that multiplication

by the Hasse invariant hn allows us to see M1(n,O/ϖ n) inside Mκn (n,O/ϖ n) equivariantly for all Hecke
operators Tq and ⟨q⟩ for q ∤np, yielding a surjection T

(κn)
n ↠ T

(1)
n (see Proposition 2.5). For a prime p | p,

consider also the Hecke algebra:

T̃(κn)
n = T(κn)

n [T
(κn)
p ] ⊂ EndO(Mκn (n,O/ϖ

n)). (22)

Corollary 2.6. Suppose that n satisfies (20). Let p | p. Then for any n ∈ N, there is a surjection sending
T (κn)
p to U (considered as a polynomial variable):

T̃(κn)
n ↠ T(1)cusp,n[T

(1)
p ,U ]/(U 2

− T (1)
p U +⟨p⟩).

The same statement holds after replacing T
(1)
cusp,n by T

(1)
n , provided (p− 1)∤ep.

Proof. The injection from Proposition 2.5 gives a morphism T̃
(κn)
n →EndO(S1(n,O/ϖ n)⊕2) of O-algebras

compatible with Tq and ⟨q⟩ for all q ∤np and, hence, we get a surjection T
(κn)
n ↠ T

(1)
cusp,n . Moreover, T (κn)

p

acts on the image of S1(n,O/ϖ n)⊕2 via the matrix
( T (1)p

−⟨p⟩
1
0

)
, whence it is annihilated by its characteristic

polynomial U 2
− T (1)

p U + ⟨p⟩ and does not satisfy any nontrivial linear relation over T
(1)
n [T

(1)
p ], thus
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proving the existence of the desired homomorphism. For the surjectivity, let us observe that the image of
S1(n,O/ϖ n)⊕2 is contained in the T (κn)

p -ordinary subspace of Mκn (n,O/ϖ n), and that the endomorphism
T (κn)
p + ⟨p⟩(T (κn)

p )−1 of the latter space acts on the former as
( T (1)p

0
0

T (1)p

)
. Finally, assuming (p− 1)∤ep

allows us to apply Proposition 2.5 with M1(n,O/ϖ n) instead of S1(n,O/ϖ n), leading to the validity of
the result with T

(1)
cusp,n replaced by T

(1)
n . □

3. Pseudo-representations for weight 1 Hecke algebras

3A. Pseudo-representations of degree 2. In this section, we recall some definitions due to Chenevier
[2014] and Calegari and Specter [2019].

Definition 3.1. Let R be a complete Noetherian local O-algebra with maximal ideal m and residue field
R/m= F considered with its natural m-adic topology. An R-valued pseudo-representation of degree 2 of
GF is a tuple P = (T, D) consisting of continuous maps T, D : GF → R such that

(i) D is a group homomorphism GF → R×,

(ii) T (1)= 2 and T (gh)= T (hg)= T (g)T (h)− D(g)T (g−1h) for all g, h ∈ GF .

We extend T : GF → R to an R-linear map R[GF ] → R and we denote this map by T as well.
Given g ∈ GF , we define D(g− 1) := D(g)− T (g)+ 1.
The pseudo-representation P = (T, D) is said to be unramified at p if D(h−1)= T (g(h−1))= 0 for

all g ∈ GF and all h ∈ Ip.

Any continuous representation ρ : GF → GL2(R) yields a degree 2 pseudo-representation Pρ =
(tr ◦ρ, det ◦ρ). The converse is true when the semisimple representation ρ̄ :GF→GL2(F) corresponding
to the residual pseudo-representation is absolutely irreducible; see [Chenevier 2014, Theorem 2.22].
Further, if ρ is unramified outside a finite set of places S, then so is Pρ . Again, the converse is true in the
residually absolutely irreducible case. This can be seen by applying [loc. cit.] to the Galois group of the
maximal extension of F unramified outside S over F .

We introduce a notion of ordinarity inspired from Calegari and Specter [2019].

Definition 3.2. Let P̃ = (P, αp) with P = (T, D) a degree 2 pseudo-representation of GF over R and
αp ∈ R a root of X2

− T (Frobp)X + D(Frobp) ∈ R[X ].
We say that P̃ is ordinary at p of weight κ ⩾ 1, if for all h, h′ ∈ Ip and all g ∈ GF we have

(i) D(h− 1)= 0 and T (h− 1)= χκ−1
p (h)− 1, where χp denotes the p-adic cyclotomic character,

(ii) T
(
g(h−χκ−1

p (h))(h′ Frobp−αp)
)
= 0.

Remark 3.3. Note that our notion of p-ordinary pseudo-representations implies the one of Calegari and
Specter [2019, Definition 2.5]. Let P = (T, D) : GF → R2 be a degree 2 pseudo-representation and
let (T , D) : GF → F2 be its residual pseudo-representation. Suppose there exists a lift Frobp ∈ GFp of
the arithmetic Frobenius at p such that the polynomial X2

− T (Frobp)X + D(Frobp) has distinct roots
in F. Then (P, αp) is a p-ordinary pseudo-representation in the sense of Definition 3.2 if and only if it is
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p-ordinary in the sense of Calegari–Specter. However, if this hypothesis does not hold, then we expect
that the two notions are not equivalent.

Let P = (T , D) :GF→ F2 be a fixed degree 2 pseudo-representation unramified outside np∞. Denote
by Pps

= (T ps, Dps) : GF → (Rps)2 the universal deformation of P unramified outside np∞ in the
category of complete Noetherian local O-algebras with residue field F and consider the quotient

Rps
[X ]/(X2

− T ps(Frobp)X + Dps(Frobp))↠ Rord (23)

which classifies pairs (P, αp) such that P is a deformation of P unramified outside np∞ and (P, αp) is
ordinary at p of weight κ . The universal ring Rord, classifying deformations of P which are unramified
outside np∞ and are ordinary at p of weight κ , is the quotient of the ring Rps

[X ]/(X2
− T ps(Frobp)X +

Dps(Frobp)) by the ideal generated by the set{
Dps(h− 1), T ps(h− 1)−χκ−1

p (h)+ 1, T ps(g(h−χκ−1
p (h))(h′ Frobp−X)

)
| h, h′ ∈ Ip, g ∈ GF

}
and a direct computation shows that Rord is independent of the choice of Frobp.

Note that Rord is a finite Rps-algebra. As Rps is a local ring, it follows that Rord is a semi-local ring and
all of its maximal ideals contain the unique maximal ideal mps of Rps. After going modulo mps in Rord, it
is easy to see, using the description of the ideal from the previous paragraph, that the number of maximal
ideals of Rord is the number of distinct α ∈ F such that (P, α) is a p-ordinary pseudo-representation of
weight κ .

Now suppose P is unramified at p and κ ≡ 1 (mod p− 1). Then we have

T
(
g(h−χκ−1

p (h))(h′ Frobp−X)
)
= T (g(h− 1)h′ Frobp)− XT (g(h− 1))= T (h′ Frobp g(h− 1))= 0.

Here we are repeatedly using the fact that T (g(h−1))=0 for all g∈G F and h ∈ Ip, which is a consequence
of the assumption that P is unramified at p. Thus, in this case, we see that (P, α) is a p-ordinary pseudo-
representation of weight κ if and only if α is a root of the polynomial X2

− T (Frobp)X + D(Frobp).
Hence, in this case, Rord is a semi-local Noetherian ring with two maximal ideals if the polynomial
X2
− T (Frobp)X + D(Frobp) has two distinct roots and it is a local Noetherian ring otherwise.

3B. Existence of an ordinary Hecke algebra-valued pseudo-representation. We continue to use the
notation from Section 2. In particular, suppose that n satisfies (20). Let m be any maximal ideal of T(1)

(or equivalently of T
(1)
n for some n) and denote also by m the maximal ideals of T(κn) and T

(κn)
n defined

as the pull-back of m⊂ T
(1)
n .

Lemma 3.4. There exists a T
(κn)
n,m -valued pseudo-representation P (κn)

n,m of GF of degree 2 which is unramified
at all primes q ∤np and P (κn)

n,m (Frobq)= (Tq, ⟨q⟩). In particular, after replacing O by a finite unramified
extension, there exists a unique semisimple Galois representation

ρm : GF → GL2(T
(1)/m)

unramified outside np∞ satisfying

tr(ρm(Frobq))= Tq (mod m) and det(ρm(Frobq))= ⟨q⟩ (mod m)

for all primes q ∤np.



1492 Shaunak V. Deo, Mladen Dimitrov and Gabor Wiese

Proof. After enlarging K , we may assume that it contains all the eigenvalues of T(κn) acting on Mκn (n,O).
The O-algebra T(κn) generated by the Hecke operators outside the level and p is torsion-free and reduced,
hence T

(κn)
m ⊗O K =

∏
g∈N K where N denotes the set of newforms occurring in Mκn (n,O)m. As is well

known, one can attach to each such eigenform g a GF -pseudo-representation Pg of degree 2 unramified
outside np∞ such that Pg(Frobq) = (a(q, g), ψg(q)N(q)κn−1) for all q ∤np, where ⟨q⟩g = ψg(q)g.
Since the natural homomorphism T

(κn)
m → T

(κn)
m ⊗O K is injective, in view of the Chebotarev Density

Theorem, we obtain a T
(κn)
m -valued GF -pseudo-representation P (κn)

m unramified outside np∞ such that
P (κn)
m (Frobq)= (Tq, ⟨q⟩N(q)κn−1) for all q ∤np; see [Chenevier 2014, Corollary 1.14].
Note that N(q)κn−1

≡ 1 (modϖ n). Composing P (κn)
m with the surjection T

(κn)
m ↠ T

(κn)
n,m , we get the

desired pseudo-representation. Finally T
(κn)
n /m = T

(1)
n /m along with [Chenevier 2014, Theorem A]

finishes the proof of the lemma. □

Let Rps
m be the universal deformation ring of the corresponding degree 2 pseudo-representation Pm =

(tr ◦ρm, det ◦ρm) unramified outside np∞ in the category of complete Noetherian local O-algebras with
residue field F (chosen large enough in order to contain the residue field of T

(1)
m ). Using the surjection

T
(κn)
m ↠ T

(κn)
n,m ↠ T

(1)
n,m and then passing to the projective limit T

(1)
m = lim

←−−n T
(1)
n,m, we obtain the following

result.

Corollary 3.5. For any maximal ideal m of T(1), there exists a T
(1)
m -valued pseudo-representation P (1)m of

GF of degree 2 which is unramified for all primes q ∤np and P (1)m (Frobq)= (Tq, ⟨q⟩). It yields a surjection
Rps
m ↠ T

(1)
m .

Note that for a maximal ideal m of T
(κn)
n , the algebra T̃

(κn)
n,m is in general only semi-local (see (22)). By

the main result of [Dimitrov and Wiese 2020], ρm is unramified at p, allowing us to consider the ideal

m̃=
(
m, (T (κn)

p )2− ̂tr(ρm(Frobp))T
(κn)
p + ̂det(ρm(Frobp))

)
⊂ T̃(κn)

n , (24)

where ̂tr(ρm(Frobp)) and ̂det(ρm(Frobp)) are some lifts of tr(ρm(Frobp)) and det(ρm(Frobp)), respectively
in T

(κn)
n . Note that the ideal m̃ does not depend on the choices of these lifts.

Let T̃
(κn)
n,m̃ be the completion of T̃

(κn)
n with respect to m̃. The algebra T̃

(κn)
n,m̃ then has at most two local

components. Let Rord
m be the universal O-algebra classifying deformations of Pm unramified outside

primes dividing np∞ and ordinary at p of weight 1 (see (23)).

Lemma 3.6. There exists a p-ordinary T̃
(κn)
n,m̃ -valued pseudo-representation P̃ (κn)

n,m = (P
(κn)
n,m , T (κn)

p ) of degree
2 and weight 1 of GF such that P (κn)

n,m (Frobq)= (Tq, ⟨q⟩) for all q ∤np. It yields a surjection Rord
m ↠ T̃

(κn)
n,m̃ .

Proof. Let T̃(κn)=T(κn)[T (κn)
p ] and denote also by m̃ the ideal of T̃(κn) defined as the pull-back of m̃⊂ T̃

(κn)
n .

Let T̃
(κn)
m̃ be the completion of T̃(κn) with respect to m̃.

We have T̃
(κn)
m̃ ⊗O K =

∏
g∈Ñ K , where Ñ denotes the subset of N (see the proof of Lemma 3.4)

consisting of newforms occurring in Mκn (n,O)m̃. As p does not divide n, any g ∈ Ñ is an eigenvector
for T (κn)

p (resp. ⟨p⟩) whose eigenvalue a(p, g) (resp. ψg(p)) is necessarily a p-adic unit by (24), i.e., g is
p-ordinary. By a result due to Hida and Wiles, when g is ordinary at all places dividing p, and to Saito
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[2009] and Skinner [2009] in general, p-adic Galois representation ρg attached to g is ordinary at p, i.e.,
its restriction to GFp has a one-dimensional unramified quotient on which Frobp acts by the (unique)
p-adic unit root αp,g of the Hecke polynomial X2

−a(p, g)X +ψg(p)N(p)κn−1. This implies that αp,g is
also a root of X2

− tr(ρg)(Frobp)X +det(ρg)(Frobp), for any choice of a Frobenius element Frobp ∈GFp .
Thus, the pseudo-representation Pg = (tr(ρg), det(ρg)) is p-ordinary of weight κn with respect to αp,g in
the sense of Definition 3.2.

Since T̃
(κn)
m̃ is a semi-local finite O-algebra, applying Hensel’s lemma to each local component shows that

the polynomial X2
−T (κn)

p X+⟨p⟩N(p)κn−1 admits a unique unit root U in T̃
(κn)
m̃ . By the Chebotarev density

theorem, gluing the p-ordinary pseudo-representations P̃g= (Pg, αp,g) for all g∈ Ñ gives us a T̃
(κn)
m̃ -valued

p-ordinary pseudo-representation (P (κn)
m ,U ) of weight κn such that P (κn)

m (Frobq)= (Tq, ⟨q⟩N(q)κn−1) for
all q ∤np. We have χκn−1

p (g)≡ 1 (modϖ n) for all g ∈ G F . Hence, the reduction of (P (κn)
m ,U ) to T̃

(κn)
n,m̃

is a p-ordinary pseudo-representation of weight 1. Note that by Hensel’s lemma, U reduces to T (κn)
p in

T̃
(κn)
n,m̃ , since the former (resp. the latter) is the unique unit root of X2

− T (κn)
p X + ⟨p⟩N(p)κn−1 in T̃

(κn)
m̃

(resp. in T̃
(κn)
n,m̃ ). As N(q)κn−1

≡ 1 (modϖ n) for all q ∤np, this completes the proof of the lemma. □

3C. Proof of the main theorem. In the proof of Theorem 0.1 we can assume without loss of generality
that n satisfies (20), because given any prime q, the Hecke algebra in level n is a quotient of the one in
level nq. Moreover, since the algebra T(1) is semi-local, equal to the product of T

(1)
m where m runs over

its maximal ideals, it is enough to prove the theorem after localisation at m.
Recall that in Corollary 3.5 we constructed a T

(1)
m -valued pseudo-representation P (1)m = (T, D) of

GF , whose image under the surjective homomorphism T
(1)
m ↠ T

(1)
cusp,m ↠ T

(1)
cusp,n,m will be denoted by

P (1)n,m = (Tn, Dn), for n ∈ N. This gives the first row of the following commutative diagram:

Rps
m

Corollary 3.5
// //

��

T
(1)
cusp,m // // T

(1)
cusp,n,m� _

��

Rord
m

Lemma 3.6
// // T̃

(κn)
n,m̃

Corollary 2.6
// // T

(1)
cusp,n,m[T

(1)
p ,U ]/(U 2

− T (1)
p U +⟨p⟩).

(25)

The morphisms in the second row come from Lemma 3.6 and Corollary 2.6. Combining them, we see
that P̃ (1)n,m = (P

(1)
n,m,U ) is a p-ordinary pseudo-representation of weight 1.

We now perform the key “doubling” step, as presented in [Calegari and Specter 2019, Proposition 2.10],
and slightly improved upon, since the surjectivity of the composed map Rord

m → T
(1)
cusp,n,m[T

(1)
p ,U ]/

(U 2
− T (1)

p U +⟨p⟩) will not be used in the sequel. One has

T(1)cusp,n,m[T
(1)
p ,U ]/(U 2

− T (1)
p U +⟨p⟩)= T(1)cusp,n,m[T

(1)
p ]⊕U ·T(1)cusp,n,m[T

(1)
p ].

Since P̃ (1)n,m is ordinary at p of weight 1, for all g ∈ GF and h ∈ Ip the following equality holds:

Tn(gh Frobp)− Tn(g Frobp)=U (Tn(gh)− Tn(g)) ∈ T(1)cusp,n,m[T
(1)
p ] ∩UT(1)cusp,n,m[T

(1)
p ] = {0},

hence Tn(gh)= Tn(g), i.e., P (1)n,m is unramified at p.
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Note that U satisfies the following relations

U 2
− T (1)

p U +⟨p⟩ = 0 and U 2
− Tn(Frobp)U + Dn(Frobp)= 0

in the ring T
(1)
cusp,n,m[T

(1)
p ,U ]/(U 2

− T (1)
p U +⟨p⟩). Indeed, the second relation follows from the fact that

(P (1)n,m,U ) is a p-ordinary pseudo-representation of weight 1. As the former polynomial is minimal, one
obtains the desired equality (Tn(Frobp), Dn(Frobp))= (T

(1)
p , ⟨p⟩), in particular T (1)

p ∈ T
(1)
cusp,n,m. Letting

n vary finishes the proof of Theorem 0.1 for T
(1)
cusp,m.

In order to obtain the theorem for T
(1)
m , we replace T

(1)
cusp,m by T

(1)
m , T

(1)
cusp,n,m by T

(1)
n,m, and S1(n,O/ϖ n)

by M1(n,O/ϖ n) throughout. The arguments continue to work if we assume that p−1 does not divide ep,
which is used in Corollary 2.6.

Corollary 3.7. Let p | p. Then T (1)
p ∈T

(1)
cusp, i.e., for all n∈N, the Hecke operator T (1)

p acts on S1(n,O/ϖ n)

by an element of T
(1)
cusp,n . Moreover, if (p− 1)∤ep, then one also has T (1)

p ∈ T(1).

3D. Non-Eisenstein ideals.

Definition 3.8. A maximal ideal m of T(κ) (or of T
(κ)
n ) is called Eisenstein if the corresponding (T(κ)m /m)-

valued pseudo-representation of GF is the sum of two (T(κ)m /m)-valued characters, where T
(κ)
m /m is an

algebraic closure of T
(κ)
m /m.

We now prove that in the non-Eisenstein case it suffices to consider the cuspidal Hecke algebra.

Proposition 3.9. The localisation of the natural surjection T
(κ)
n ↠ T

(κ)
n,cusp at any non-Eisenstein maximal

ideal m of T
(κ)
n is an isomorphism.

Proof. It suffices to prove that the localisation of Mκ(n,O/ϖ n)/Sκ(n,O/ϖ n) at a non-Eisenstein
ideal vanishes. By multiplication by a suitable power of hn which does not vanish at any cusp (see
Lemma 2.3), we can assume that κ is sufficiently large so that Lemma 2.2 applies yielding Mκ(n,O/ϖ n)=

Mκ(n,O)⊗O (O/ϖ n). Hence the natural Hecke equivariant morphism

Mκ(n,O)/Sκ(n,O)→ Mκ(n,O/ϖ n)/Sκ(n,O/ϖ n)

is surjective. The former, however, can be Hecke equivariantly embedded into Mκ(n,C)/Sκ(n,C) which
is well known to be generated by Eisenstein series whose Galois representations are reducible. This
proves the proposition. □

Henceforth we assume m to be a non-Eisenstein ideal of T(1), so that the corresponding residual
Galois representation ρm is absolutely irreducible. Therefore, by combining Theorem 0.1 with a result of
Chenevier [2014, Theorem 2.22], we get a representation

ρm : GF → GL2(T
(1)
m ),

unramified outside np∞, and uniquely characterised by the property that for all primes q ∤np one has
tr(ρm(Frobq)) = Tq and det(ρm(Frobq)) = ⟨q⟩. By combining Theorem 0.1 with Proposition 3.9, we
deduce that the pseudo-representation P (1)m is unramified at all primes p | p and, by the discussion after
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Definition 3.1, we conclude that ρm is unramified at these primes as well. Let S be the set of places
of F dividing n∞ and let RS

F,ρm
be the universal deformation ring of ρm unramified outside S in the

category of complete Noetherian local O-algebras with residue field F. Hence ρm induces an O-algebra
homomorphism RS

F,ρm
→ T

(1)
m .

As T(1) is generated by Tq and ⟨q⟩ for q ∤np as an O-algebra, we obtain the following result.

Corollary 3.10. There exists a surjective homomorphism RS
F,ρm

↠ T
(1)
m of O-algebras.
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Failure of the local-global principle for isotropy
of quadratic forms over function fields

Asher Auel and V. Suresh

We prove the failure of the local-global principle, with respect to discrete valuations, for isotropy of
quadratic forms in 2n variables over function fields of transcendence degree n ≥ 2 over an algebraically
closed field of characteristic ̸= 2. Our construction involves the generalized Kummer varieties considered
by Borcea and by Cynk and Hulek as well as new results on the nontriviality of unramified cohomology
of products of elliptic curves over discretely valued fields.

Introduction

The Hasse–Minkowski theorem states that if a quadratic form q over a number field is isotropic over every
completion, then q is isotropic. This is the first, and most famous, instance of the local-global principle
for isotropy of quadratic forms. Already for a function field of transcendence degree one over a number
field, Witt [1935] found examples of the failure of the local-global principle for isotropy of quadratic
forms in 3 variables (and also 4). Lind [1940] and Reichardt [1942], and later Cassels [1963], found
examples of the failure of the local-global principle for isotropy of pairs of quadratic forms in 4 variables
over Q (see [Aitken and Lemmermeyer 2011] for a detailed account), giving examples of quadratic forms
over the function field Q(t) by an application of the Amer–Brumer theorem [Leep 2007; Elman et al.
2008, Theorem 17.14]. Cassels, Ellison, and Pfister [Cassels et al. 1971] found examples in 4 variables
over the function field R(x, y).

Here, we are interested in the failure of the local-global principle for isotropy of quadratic forms over
function fields of higher transcendence degree over algebraically closed fields. All our fields will be
assumed to be of characteristic ̸= 2 and all our quadratic forms nondegenerate. A quadratic form is called
isotropic if it admits a nontrivial zero. If K is a field and v is a discrete valuation on K , we denote by Kv

the fraction field of the completion (with respect to the v-adic topology) of the valuation ring of v. When
we speak of the local-global principle for isotropy of quadratic forms, sometimes referred to as the strong
Hasse principle, in a given dimension d over a given field K , we mean the following statement:

If q is a quadratic form in d variables over K and q is isotropic over Kv for every discrete
valuation v on K , then q is isotropic over K .
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Keywords: quadratic forms, local-global principle, Hasse principle, function fields, unramified cohomology, elliptic curves.
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Our main result is the following.

Theorem 1. The local-global principle for isotropy of quadratic forms fails to hold in dimension 2n over
any function field K of transcendence degree n ≥ 2 over an algebraically closed field k of characteristic
̸= 2 other than possibly the algebraic closure of a finite field.

Previously, only the case of n = 2 was known, with the first explicit examples over K = C(x, y) appear-
ing in [Kim and Roush 1991], and later in [Bevelacqua 2004] and [Jaworski 2001]. For a construction,
using algebraic geometry, over any transcendence degree 2 function field over an algebraically closed
field of characteristic 0, see [Auel 2013; Auel et al. 2015, Section 6]. In a previous version of this work,
Theorem 1 was proved in the case of complex rational function fields, and left as a conjecture. Though we
no longer need to make use of it, in Section 6, we also prove a “geometric presentation lemma” of general
interest about the existence of double covers of varieties admitting nontrivial unramified cohomology
in maximal degree, which was conjectured in an earlier version of this work and was shown to imply
Theorem 1.

We recall that by Tsen–Lang theory [Lang 1952, Theorem 6], such function fields are Cn-fields, hence
have u-invariant 2n , and thus all quadratic forms of dimension > 2n are already isotropic, thus we provide
counterexamples to the local-global principle in the maximal dimension in which they could occur.

We mention that in the case of transcendence degree n = 1, where K = k(X) for a smooth projective
curve X over an algebraically closed field k, the local-global principle for isotropy of binary quadratic
forms (the “global square theorem”) holds when the genus of X is zero and fails when X has positive
genus, see Remark 5.3.

Finally, when k is the algebraic closure of a finite field, our methods no longer work. Though one
can use other techniques to handle the case of transcendence degree n = 2 (see Remark 5.4), proving
the failure of the local-global principle for quadratic forms over function fields K of transcendence
degree n ≥ 3 over Fp remains an open problem. Our method relies on proving the nontriviality of certain
unramified cohomology classes in top degree, see Section 6. Already for n = 3, the existence of threefolds
over Fp or Fp admitting nontrivial unramified cohomology in degree 3 is an open problem related to the
integral Tate conjecture, see [Colliot-Thélène and Kahn 2013, Question 5.4].

Our result relies on two new ingredients and one very useful trick. The trick, due to Bogomolov [1995]
and outlined in Section 1, is a kind of refinement of the existence of transcendence bases, and allows us
to reduce the construction of counterexamples to the local-global principle over general function fields
to the case of rational function fields. Next, our construction over rational function fields makes use
of so-called generalized Kummer varieties, first considered by Borcea [1992] and developed by Cynk
and Hulek [2007], which are constructed as quotients of products of elliptic curves and are birationally
double covers of rational varieties. Finally, we prove a new result (Theorem 3.3) on the nontriviality of
unramified cohomology on products of elliptic curves, which provides an arithmetic generalization of a
result of Gabber [Colliot-Thélène 2002, Appendice], see also Colliot-Thélène [2019].
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1. Bogomolov’s trick

Let K/k be a finitely generated field extension. Recall that K/k admits a finite transcendence basis, i.e., a
set of elements x1, . . . , xn ∈ K that are algebraically independent over k and such that K/k(x1, . . . , xn) is
a finite extension. The cardinality of any transcendence basis is equal to the transcendence degree of K/k.

A projective model of K/k is an integral projective k-variety X whose field of rational functions is
k-isomorphic to K . By the classical Chow’s lemma, every finitely generated field extension admits a
projective model, where the dimension of the model coincides with the transcendence degree of the
extension.

The following statement, a refinement of the existence of transcendence bases, can be traced back to
Bogomolov, in the course of the proof of [Bogomolov 1995, Theorem 1.1], cf. [Bogomolov and Tschinkel
2012, Proposition 20].

Lemma 1.1 (Bogomolov’s trick). Let K/k be a finitely generated extension of transcendence degree n.
Assume that k is infinite and that a projective model of K/k admits a smooth k-point. Then for any prime
number p, there exists a transcendence basis x1, . . . , xn ∈ K such that K/k(x1, . . . , xn) is finite of degree
prime to p.

We remark that by the Lang–Nishimura theorem, see [Lang 1954; Nishimura 1955] and also [Reichstein
and Youssin 2000, Proposition A.6], the existence of a smooth k-point on a projective model of K/k
implies that any other projective model admits a k-point. The condition that a projective model admits a
smooth k-point also implies that any model is geometrically integral and generically smooth, see [Stacks
2005–, Lemma 0CDW and Lemma 056V]. In particular, if k is algebraically closed, then any projective
model of K/k admits a smooth k-point.

Proof. As above, since a projective model of K/k is geometrically integral, it is geometrically reduced,
and hence K/k is separably generated by a result of MacLane, see [Eisenbud 1995, Theorem A1.3].
Hence, as in [Hartshorne 1977, Proposition I.4.9], there exists a projective hypersurface model X ⊂ Pn+1

of K/k. Let d be the degree of X . If d = 1, then X = Pn and there is nothing to prove, so we can assume
that d > 1.

Projection from a k-point in the complement of X (using that k is infinite) yields a dominant rational
map X 99K Pn of degree d . Indeed, it is dominant since the fibers of the projection are the intersections
of X with the lines through the point, and such intersections are always nonempty, cf. [Hartshorne 1977,
Theorem I.7.2]. Moreover, it is generically finite of degree d since any line through the point cannot be
contained in X , hence must intersect X in a zero-dimensional scheme, which has length d. Similarly,
projection from a smooth k-point P of X yields a dominant rational map X 99K Pn of degree d − 1.
Indeed, since P is a smooth point, the tangent space to X at P has codimension 1 in Pn+1, hence (again
using that k is infinite) the general line in Pn+1 through P meets X transversally at P and thus intersects
X in a nonempty zero-dimensional scheme of degree d containing P as an irreducible component. Then
the general fiber of this projection, which is the complement of P in the intersection of X with a general

https://stacks.math.columbia.edu/tag/0CDW
https://stacks.math.columbia.edu/tag/056V
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line through P , is nonempty (using d > 1) and has length d − 1, cf. [Harris 1992, Example 18.16]. Since
d and d − 1 are relatively prime, no prime number p can divide both, hence the associated extension of
function fields K = k(X)/k(Pn)= k(x1, . . . , xn) can be chosen of degree prime to p. □

We remark that the hypothesis on a projective model admitting a k-point is essential. For example, if
K/k is the function field of a smooth plane conic X with no k-point, then there is no presentation of K
as an odd degree extension of a rational function field k(x). Indeed, X cannot acquire rational points over
rational function fields (see [Elman et al. 2008, Lemma 7.15]) or extensions of odd degree (by Springer’s
theorem), but does acquire a rational point over its own function field.

We have the following immediate corollary of Bogomolov’s trick.

Corollary 1.2. Let K be a finitely generated field of transcendence degree n over an algebraically closed
field k. Then there exists a transcendence basis x1, . . . , xn ∈ K such that K/k(x1, . . . , xn) is of odd
degree.

With this in mind, we now explain how Springer’s theorem allows us to reduce the construction of
counterexamples to the local-global principle for isotropy of quadratic forms over general function fields
to the case of rational function fields.

Proposition 1.3. Let q be a nondegenerate quadratic form over a field K ′ and let K/K ′ be a finite
extension of odd degree. If q is a counterexample to the local-global principle for isotropy over K ′, then
qK is such a counterexample over K .

Proof. By Springer’s theorem, since q is anisotropic over K ′ and K/K ′ has odd degree, then qK is
anisotropic over K . To show that qK is locally isotropic over K , let v be a discrete valuation on K ,
which then lies over a discrete valuation v′ on K ′. Since the completion Kv is a finite extension of the
completion K ′

v′ and since q is isotropic over K ′

v′ , we see that qK is isotropic over Kv. □

2. Unramified cohomology of function fields

We now recall the notion of unramified cohomology, introduced in [Colliot-Thélène and Ojanguren 1989],
restricting ourselves to mod 2 coefficients. Readers should consult the excellent survey [Colliot-Thélène
1995] for further details. Let k be a field of characteristic ̸= 2 and K/k be a finitely generated extension.
By a discrete valuation v on K/k we mean a rank 1 discrete valuation v on K that is trivial on k.

For each discrete valuation v on K/k with residue field κ(v), recall the residue map in Galois
cohomology

∂v : H n(K , µ⊗n
2 )→ H n−1(κ(v), µ⊗n−1

2 )

which arises from the Gysin sequence associated to the closed point in the spectrum of the valuation ring
Rv of v, see [Colliot-Thélène 1995, Section 3.3]. The residue map is uniquely determined by the property
that ∂v((u1) · · · ( f un−1) · (πv))= (ū1) · · · (ūn−1), where πv is a uniformizer and u1, . . . , un−1 are units
of Rv , and ū means the image of a unit in κ(v). The degree n unramified cohomology of K/k is defined
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by

H n
ur(K/k, µ⊗n

2 )=

⋂
v

ker(∂v : H n(K , µ⊗n
2 )→ H n−1(κ(v), µ⊗n−1

2 ))

where the intersection ranges over all discrete valuations v on K/k. We say that an element α ∈

H n(K , µ⊗n
2 ) is unramified if it belongs to H n

ur(K/k, µ⊗n
2 ).

We recall two results about discrete valuations on rational function fields that will be useful later.

Proposition 2.1. (a) Let k be a field and K = k(x1, . . . , xn) a rational function field over k with n ≥ 1.
For each 1 ≤ m ≤ n, there exists a discrete valuation v on K/k satisfying v(xi )= 1 for all 1 ≤ i ≤ m
and v(xi )= 0 for all m + 1 ≤ i ≤ n.

(b) Let k0 be a field with a discrete valuation v0 and residue field κ0. Then there exists a discrete
valuation v on the rational function field K0 = k0(x1, . . . , xn), extending v0 on k0, and with residue
field κ0(x1, . . . , xn).

Proof. For (a), let A be the localization of k[x1, · · · , xn] at the prime ideal (x1, · · · , xm). Then R =

A[y1, · · · , ym−1]/(xm−x1 y1, · · · , xm−xm−1 ym−1) is an integral domain with field of fractions isomorphic
to K . Furthermore, the ideal p of R generated by the images of x1, . . . , xm is a prime ideal and Rp is
a discrete valuation ring. The valuation on K/k given by this discrete valuation ring has the required
properties. Geometrically, this corresponds to blowing up the model Pn of K/k along the linear subspace
defined by x1 = · · · = xm = 0.

For (b), letting R0 ⊂ k0 be the valuation ring of v0 and π0 a uniformizer, we take the discrete valuation
v on K0 associated to the prime ideal in R0[x1, . . . , xn] ⊂ K0 generated by π0. By construction, the
residue field of v on K0 is κ0(x1, . . . , xn). Geometrically, this corresponds to the special fiber of the
model Pn

R0
. □

3. Generalized Kummer varieties

In this section, we review a construction, considered in the context of modular Calabi–Yau varieties [Cynk
and Hulek 2007, Section 2; Cynk and Schütt 2009], of a generalized Kummer variety attached to a product
of elliptic curves. This recovers, in dimension 2, the Kummer K3 surface associated to a decomposable
abelian surface, and in dimension 3, a class of Calabi–Yau threefolds of CM type considered by Borcea
[1992, Section 3]. We also prove some results about the unramified cohomology groups in top degree of
products of elliptic curves and their associated generalized Kummer varieties.

Let E1, . . . , En be elliptic curves over an algebraically closed field k of characteristic ̸= 2 and let
Y = E1 ×· · ·× En . Let σi denote the negation automorphism on Ei and Ei → P1 the associated quotient
branched double cover. We extend each σi to an automorphism of Y by acting trivially on each E j for
j ̸= i ; the subgroup G ⊂ Aut(Y ) they generate is an elementary abelian 2-group. Consider the exact
sequence of abelian groups

1 → H → G 5
−→ Z/2 → 0,
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where 5 is defined by sending each σi to 1. Then the product of the double covers Y → P1
× · · · × P1 is

the quotient by G and we denote by Y → X the quotient by the subgroup H . The intermediate quotient
X → P1

× · · · × P1 is a double cover, branched over a reducible divisor of type (4, . . . , 4). For n = 2,
this divisor is the union of 4 vertical fibers and 4 horizontal fibers of P1

× P1 meeting in 16 points.
We point out that X is a singular degeneration of smooth Calabi–Yau varieties that (geometrically)

admits a smooth Calabi–Yau model, see [Cynk and Hulek 2007, Corollary 2.3; Cynk and Schütt 2009,
Section 4]. For n = 2, the minimal resolution of X is indeed isomorphic to the Kummer K3 surface
Kum(E1 × E2).

Given nontrivial classes γi ∈ H 1
ét(Ei , µ2), we consider the cup product

γ = γ1 · · · γn ∈ H n
ét(Y, µ

⊗n
2 ) (1)

and its image in H n
ur(k(Y )/k, µ⊗n

2 ) under restriction to the generic point. These classes have been studied
in [Colliot-Thélène 2002]. We remark that γ is in the image of the restriction map

H n(k(P1
× · · · × P1), µ⊗n

2 )→ H n(k(Y ), µ⊗n
2 )

in Galois cohomology since each γi is in the image of the restriction map H 1(k(P1), µ2)→ H 1(k(Ei ), µ2).
We make this more explicit as follows. Corresponding to each double cover Ei → P1, choose a

Weierstrass equation in Legendre form

y2
i = xi (xi − 1)(xi − λi ) (2)

where xi is a coordinate on P1 and λi ∈ k \{0, 1}, see [Silverman 1986, III.1.7]. Then the branched double
cover X → P1

× · · · × P1 is birationally defined by the equation

y2
=

n∏
i=1

xi (xi − 1)(xi − λi )= f (x1, . . . , xn) (3)

where y = y1 · · · yn in k(Y ), see [Cynk and Schütt 2009, Section 3]. Up to an automorphism, we can,
and henceforth will, choose the Legendre forms so that the image of γi under the map H 1

ét(Ei , µ2)→

H 1(k(Ei ), µ2) coincides with the square class (xi ) ∈ k(Ei )/k(Ei )
×2

= H 1(k(Ei ), µ2) of the rational
function xi , which is then visibly in the image of the restriction map H 1(k(P1), µ2)→ H 1(k(Ei ), µ2).
Hence we see that the (ramified) cup product class ξ = (x1) · · · (xn) ∈ H n(k(x1, · · · , xn), µ

⊗n
2 ), restricts

to the unramified class γ ∈ H n
ur(k(Y )/k, µ⊗n

2 ).
The first main result of this section is that the class ξ already restricts to an unramified class over the

quadratic extension k(X). We prove a more general result that can be viewed as a higher dimensional
generalization of [Colliot-Thélène 1995, Section 1].

Proposition 3.1. Let k be an algebraically closed field of characteristic ̸= 2 and K = k(x1, . . . , xn) a
rational function field over k. For 1 ≤ i ≤ n, let fi (xi ) ∈ k[xi ] be polynomials of even degree satisfying
fi (0) ̸= 0, and let f =

∏n
i=1 xi fi (xi ). Then the restriction of the class ξ = (x1) · · · (xn) ∈ H n(K , µ⊗n

2 ) to
H n(K (

√
f ), µ⊗n

2 ) is unramified with respect to all discrete valuations.
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Proof. Let L = K (
√

f ) and v a discrete valuation on L with valuation ring R, maximal ideal m, and
residue field κ . Write ξL for the restriction of ξ to H n(L , µ⊗n

2 ).
Suppose v(xi ) < 0 for some i . Let di be the degree of fi and consider the reciprocal polynomial

f ∗

i (xi )= xdi
i fi

( 1
xi

)
, so that xi fi (xi )= xdi +1

i ·
1
xi

f ∗

i

( 1
xi

)
. Since di is even, we have that the polynomials

xi fi (xi ) and 1
xi

f ∗

i

( 1
xi

)
have the same class in K ×/K ×2.

Thus, up to replacing, for all i with v(xi ) < 0, the polynomial fi by f ∗

i in the definition of f and
replacing xi by 1

xi
, we can assume that v(xi )≥ 0 for all i without changing the extension L/K . Hence

k[x1, . . . , xn] ⊂ Rv.
Consider p = k[x1, . . . , xn]∩m. Then p is a prime ideal of k[x1, . . . , xn] whose residue field κ(p) is a

subfield of κ . Let Kp be the completion of K at p and Lv the completion of L at v. Then Kp is a subfield
of Lv.

If v(xi )= 0 for all i , then ξL is unramified at v. So suppose that v(xi ) ̸= 0 for some i . By reindexing
x1, . . . , xn , we assume that there exists m ≥ 1 such that v(xi ) > 0 for 1 ≤ i ≤ m and v(xi ) = 0 for
m +1 ≤ i ≤ n, i.e., we have x1, . . . , xm ∈ p and xm+1, . . . , xn ̸∈ p. In particular, the transcendence degree
of κ(p) over k is ≤ n − m.

First, suppose fi (xi )∈ p for some m +1 ≤ i ≤ n. Since fi (xi ) is a product of linear factors in k[xi ], we
have that xi − ai ∈ p for some ai ∈ k, with ai ̸= 0 since fi (0) ̸= 0. Thus the image of xi in κ(p) is equal
to ai and hence is a square in Kp. In particular, xi is a square in Lv , thus ξL is trivial (hence unramified)
at v, cf. [Colliot-Thélène and Ojanguren 1989, Proposition 1.4].

Now, suppose that fi (xi ) ̸∈ p for all m + 1 ≤ i ≤ n. Then for each 1 ≤ i ≤ m, we see that since
xi ∈ p and fi (0) ̸= 0, we have fi (xi ) ̸∈ p. Consequently, we can assume that f = x1 · · · xmu for some
u ∈ k[x1, . . . , xn] \ p. We remark that f = x1 · · · xmu is a square in L , so that (x1 · · · xm) = (u) in
H 1(L , µ2).

For m = 1, we see that ξL = (u) · (x2) · · · (xn) is unramified at v since u and x2, . . . , xn are units at v.
For m > 1, a computation with symbols

(x1) · · · (xm)= (x1) · · · (xm−1) · (x1 · · · xm)= (x1) · · · (xm−1) · (u) ∈ H m(L , µ⊗m
2 )

shows that ξL = (x1) · · · (xm−1) · (u) · (xm+1) · · · (xn). Since u and xm+1, . . . , xn are units at v, computing
with the Galois cohomology residue homomorphism ∂v : H n(L , µ⊗n

2 ) → H n−1(κ(v), µ⊗n−1
2 ) from

Section 2 shows that

∂v((x1) · · · (xm−1) · (u) · (xm+1) · · · (xn))= α · (ū) · (x̄m+1) · · · (x̄n)

for some α ∈ H m−2(κ(v), µ⊗m−2
2 ), where for any h ∈ k[x1, . . . , xn], we write h̄ for the image of h in

κ(p) ⊂ κ . Since the transcendence degree of κ(p) over k is ≤ n − m and k is algebraically closed, we
have that κ(p) has 2-cohomological dimension ≤ n − m by [Serre 2002, II.4.2 Proposition 11], so that
H n−m+1(κ(p), µ⊗n−m+1

2 ) = 0. Since ū, x̄i ∈ κ(p), we then have that (ū) · (x̄m+1) · · · (x̄n) is trivial. In
particular, ∂v(ξL) is trivial, and hence ξL is unramified at v. Finally, we have shown that the restriction ξL

is unramified at all discrete valuations on L . □
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As an immediate consequence, we deduce the fact that the class ξ restricts to an unramified class over
k(X)= k(x1, . . . , xn)(

√
f ), where f is as in (3).

Proposition 3.2. Let E1, . . . , En be elliptic curves over an algebraically closed field k of characteristic
̸= 2, given in the Legendre form (2), with K = k(x1, . . . , xn). Then the restriction of the class ξ =

(x1) · · · (xn) in H n(K , µ⊗n
2 ) to H n(k(X), µ⊗n

2 ) is unramified at all discrete valuations.

This unramified class on k(X) restricts to the class γ on k(Y ) in (1), so without loss of generality,
we will also call it γ . Finally, we will need conditions ensuring that our class γ is nontrivial over k(X).
For this, we must choose the elliptic curves E1, . . . , En more carefully, and we will then show that γ is
nontrivial over k(Y ), hence is nontrivial over k(X). We proceed as follows.

First, we choose a subfield k0 ⊂ k admitting a discrete valuation v0. This is possible unless k is the
algebraic closure of a finite field; this is why we must henceforth assume that k is not the algebraic
closure of a finite field. Then we choose Ei defined over k0 with Weierstrass equation (2) satisfying
v0(λi ) > 0. Finally, we appeal to the following arithmetic version, which was inspired by Bogomolov
[1992, Section 7], of a result of Gabber [Colliot-Thélène 2002, Appendice].

Theorem 3.3. Let k0 be a field with a discrete valuation v0 whose residue field has characteristic ̸= 2.
Let E1, . . . , En be elliptic curves over k0 given in the Legendre form (2), with v0(λi ) > 0 for all 1 ≤ i ≤ n.
Let Y = E1 ×· · ·× En and k/k0 be an algebraically closed extension. Then the class γ ∈ H n(k(Y ), µ⊗n

2 )

in (1) is nontrivial.

Proof. Let K0 = k0(x1, . . . , xn) and let γ0 be the restriction of the class ξ0 = (x1) · · · (xn) ∈ H n(K0, µ
⊗n
2 )

to H n(k0(Y ), µ⊗n
2 ). Letting κ0 be the residue field of v0, by Proposition 2.1(b) we can extend v0 to a

discrete valuation on K0 with residue field κ0(x1, . . . , xn). We remark that each xi ∈ K0 is a unit with
respect to this valuation. Since k0(Y )/K0 is a finite separable extension, we can further extend this
valuation to a discrete valuation ṽ on k0(Y ). Writing

k0(Y )= k0(x1, · · · , xn)(
√

x1(x1 − 1)(x1 − λ1), · · · ,
√

xn(xn − 1)(xn − λn))

then since ṽ(λi ) > 0 and ṽ(xi )= 0 for all i , we have that the residue field of ṽ is

κ̃ = κ0(x1, · · · , xn)(
√

x1 − 1, · · · ,
√

xn − 1).

Since each xi is a unit at ṽ, the class γ0 is unramified at ṽ, and has specialization ξ̃0 = (x1) · · · (xn) ∈

H n(κ̃, µ⊗n
2 ).

We now argue that ξ̃0 is nontrivial, hence that γ0 is nontrivial. To this end, by Proposition 2.1(a) there
is a valuation vn on κ0(x1, · · · , xn) such that vn(xi )= 0 for 1 ≤ i ≤ n − 1 and vn(xn)= 1, and we denote
by ṽn an extension to κ̃ , which is separable over κ0(x1, . . . , xn) and unramified at ṽn . Thus ṽn is trivial
on the subfield

κ̃n = κ0(x1, · · · , xn−1)(
√

x1 − 1, · · · ,
√

xn−1 − 1)
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and satisfies ṽn(xn) = 1. Then the residue field of ṽn is κ̃n(
√

−1) and the residue of the class ξ̃0 at ṽn

is simply (x1) · · · (xn−1). Repeatedly taking residues using this process, we arrive at the class (x1) ∈

H 1(κ0(x1)(
√

−1,
√

x1 − 1), µ2), which is nontrivial, hence ξ̃0 is nontrivial. Thus γ0 ∈ H n(k0(Y ), µ⊗n
2 )

is nontrivial.
Now let k/k0 be any algebraically closed field extension and let k̄0 be the algebraic closure of k0

in k. First, we show that the restriction of γ0 to H n(k̄0(Y ), µ⊗n
2 ) is nontrivial. This is equivalent to the

restriction of γ0 to H n(l0(Y ), µ⊗n
2 ) being nontrivial for every finite algebraic extension l0/k0. Letting w0

be an extension of v0 to l0, we still have that w0(λi ) > 0 for all i , so we can apply what we have already
proved. Second, since γ0 is unramified, its restriction to H n(k̄0(Y ), µ⊗n

2 ) and further to H n(k(Y ), µ⊗n
2 ),

remains unramified and coincides with the class γ . Then we can appeal to the rigidity property for
unramified cohomology, which implies that the restriction map H n

ur(k̄0(Y )/k̄, µ⊗n
2 )→ H n

ur(k(Y )/k, µ⊗n
2 )

is an isomorphism, see [Colliot-Thélène 1995, Section 4.4], showing that γ is nontrivial. □

Additional aspects and applications of the argument in the proof of Theorem 3.3 will be the subject
of forthcoming work [Auel and Suresh 2023]. In particular, µ⊗n

2 coefficients can be replaced by µ⊗n
ℓ

coefficients for any positive integer ℓ prime to the residue characteristic of k0. We content ourselves with
giving one application here, which is a new proof of (a generalization of) Gabber’s result [Colliot-Thélène
2002, Appendice].

Corollary 3.4. Let k be a field of characteristic ̸= 2 and K/k an algebraically closed extension. Let
E1, . . . , En be elliptic curves over K whose j-invariants are algebraically independent over k. Let
Y = E1 × · · · × En . Then the class γ ∈ H n(K (Y ), µ⊗n

2 ) in (1) is nontrivial.

Proof. Since K is algebraically closed, each elliptic curve Ei can be put into Legendre form (2). Hence
Y is defined over the field k0 = k(λ1, . . . , λn). Since the j -invariant of Ei is a rational function in λi , the
algebraic independence of j (E1), . . . , j (En) over k implies the algebraic independence of λ1, . . . , λn

over k. By Proposition 2.1(a), there exists a discrete valuation v0 on k0 such that v0(λi ) > 0 for all i , and
then we can apply Theorem 3.3. □

4. Hyperbolicity over a quadratic extension

Let K be a field of characteristic ̸= 2. We will need the following result about isotropy of quadratic forms,
generalizing a well-known result in the dimension four case, see [Scharlau 1985, Chapter 2, Lemma 14.2].

Proposition 4.1. Let q be a quadratic form over K of dimension divisible by 4 and discriminant d , and
let L = K (

√
d). If q is hyperbolic over L then q is isotropic over K .

Proof. If d ∈ K ×2, then K = L and there is nothing to prove, so suppose d ̸∈ K ×2. To get a contradiction,
we will assume q is anisotropic. Since qL is hyperbolic, we then have q ≃ ⟨1,−d⟩⊗q1 for some quadratic
form q1 over K , see [Scharlau 1985, Chapter 2, Theorem 5.2]. Since the dimension of q is divisible by
four, the dimension of q1 is divisible by two, and a computation of the discriminant shows that d ∈ K ×2,
which is a contradiction. □
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For n ≥ 1 and a1, . . . , an ∈ K ×, recall the n-fold Pfister form

⟨⟨a1, . . . , an⟩⟩ = ⟨1,−a1⟩ ⊗ · · ·⊗ ⟨1,−an⟩

and the associated symbol (a1) · · · (an) in the Galois cohomology group H n(K , µ⊗n
2 ). Then ⟨⟨a1, . . . , an⟩⟩

is hyperbolic if and only if ⟨⟨a1, . . . , an⟩⟩ is isotropic if and only if (a1) · · · (an) is trivial. For the fact
that isotropic Pfister forms are hyperbolic, see [Scharlau 1985, Chapter 4, Corollary 1.5]. The fact that
the triviality of (a1) · · · (an) implies the hyperbolicity of ⟨⟨a1, . . . , an⟩⟩ is a consequence of the Milnor
conjectures for the Witt group, as proved by Voevodsky [2003] and Orlov, Vishik, Voevodsky [Orlov et al.
2007].

For d ∈ K × and n ≥ 2, we will consider quadratic forms of discriminant d related to n-fold Pfister
forms, as follows. Write ⟨⟨a1, . . . , an⟩⟩ as q0 ⊥ ⟨(−1)na1 · · · an⟩, then define

⟨⟨a1, . . . , an; d⟩⟩ = q0 ⊥ ⟨(−1)na1 · · · and⟩.

For example:
⟨⟨a; d⟩⟩ = ⟨1,−ad⟩,

⟨⟨a, b; d⟩⟩ = ⟨1,−a,−b, abd⟩,

⟨⟨a, b, c; d⟩⟩ = ⟨1,−a,−b,−c, ab, ac, bc,−abcd⟩,

for n = 1, 2, 3, respectively. We remark that every quadratic form of dimension 4 is similar to one of this
type. We also remark that ⟨⟨a1, . . . , an; d⟩⟩ becomes isomorphic to ⟨⟨a1, . . . , an⟩⟩ over K (

√
d). In general,

these quadratic forms are examples of twisted Pfister forms in the sense of Hoffmann [1996].

Proposition 4.2. Assume n ≥ 2. If q = ⟨⟨a1, . . . , an; d⟩⟩ and L = K (
√

d) then q is isotropic if and only if
qL is isotropic if and only if (a1) · · · (an) ∈ H n(L , µ⊗n

2 ) is trivial.

Proof. If q is isotropic then qL is isotropic. If qL is isotropic, then as mentioned above, it is hyperbolic as
it is a Pfister form, hence by Proposition 4.1 (since q has dimension 2n and n ≥ 2), q is isotropic over K .
As previously mentioned above (and consequence of the Milnor conjectures), (a1) · · · (an) ∈ H n(L , µ⊗n

2 )

is trivial if and only if the Pfister form qL is isotropic. □

This generalizes a well-known result about quadratic forms of dimension 4, see [Scharlau 1985,
Chapter 2, Lemma 14.2].

5. Failure of the local global principle

In this section, we prove our main Theorem 1 by providing a construction of quadratic forms over
function fields that are locally isotropic yet globally anisotropic. First we prove a general result about the
generalized Pfister forms in Section 4.

Proposition 5.1. Let k be an algebraically closed field of characteristic ̸= 2 and K/k a finitely generated
extension of transcendence degree n ≥ 2. Let a1, . . . , an, d ∈ K × be such that the symbol (a1) · · · (an)

in H n(K , µ⊗n
2 ) becomes unramified over L = K (

√
d). Then the quadratic form q = ⟨⟨a1, . . . , an; d⟩⟩ is

locally isotropic over K .
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Proof. Let v be a discrete valuation on K and w an extension to L , with completions Kv and Lw and
residue fields κ(v) and κ(w), respectively. By assumption, the restriction of the symbol (a1) · · · (an) to
H n(L , µ⊗n

2 ) is unramified atw. By cohomological purity for discrete valuation rings (see [Colliot-Thélène
1995, Section 3.3]) we have a surjective map H n

ét(Rw, µ
⊗n
2 )→ H n

ur(Lw/k, µ⊗n
2 ) where Rw ⊂ Lw is the

valuation ring. By proper base change (see [SGA 43 1973, XII.5.5], see also a general result of Gabber
[Stacks 2005–, Tag 09ZI]), we have an isomorphism H n

ét(Rw, µ
⊗n
2 )∼= H n(κ(w), µ⊗n

2 ). Since κ(w)/k has
transcendence degree < n by Abhyankar’s inequality [1956, Corollary 1(1)] and k is algebraically closed,
we have that κ(w) has 2-cohomological dimension < n by [Serre 2002, II.4.2 Proposition 11]. From all
this, we deduce that H n

ur(Lw/k, µ⊗n
2 )= 0. In particular, the symbol (a1) · · · (an) has trivial restriction to

H n(Lw, µ⊗n
2 ). Thus by Proposition 4.2, we have that qKv

is isotropic. Finally, as this holds for every
discrete valuation v on K , the quadratic form q is locally isotropic over K . □

Now, we will utilize our constructions in Section 3. Let k be an algebraically closed field of characteristic
̸= 2 that is not the algebraic closure of a finite field. Let k0 ⊂ k be a subfield with a discrete valuation
v0 whose residue field has characteristic ̸= 2. Let E1, . . . , En be elliptic curves over k0 given in the
Legendre form (2), with v0(λi ) > 0 for all 1 ≤ i ≤ n. Let X → P1

×· · ·×P1 be the double cover defined
by y2

=
∏n

i=1 xi (xi − 1)(xi − λi )= f (x1, . . . , xn) in (3), and consider the quadratic form

q = ⟨⟨x1, . . . , xn; f ⟩⟩ (4)

over the rational function field k(P1
× · · · × P1)= k(x1, . . . , xn), as in Section 4.

Our main result is that for n ≥ 2, the quadratic form q shows the failure of the local-global principle for
isotropy, with respect to all discrete valuations, for quadratic forms of dimension 2n over k(x1, . . . , xn).

Theorem 5.2. Let k be an algebraically closed field of characteristic ̸= 2 that is not the algebraic closure
of a finite field and assume n ≥ 2. The quadratic form q = ⟨⟨x1, . . . , xn; f ⟩⟩ as in (4) is anisotropic over
k(x1, . . . , xn) yet is isotropic over the completion at every discrete valuation.

Proof. Write K = k(x1, . . . , xn) and L = K (
√

f ). By Proposition 3.2, the restriction of the symbol
(x1) · · · (xn) ∈ H n(K , µ⊗n

2 ) to L is unramified. Hence Proposition 5.1 implies that q is locally isotropic
at every discrete valuation on K .

The restriction of the symbol (x1) · · · (xn) ∈ H n(K , µ⊗n
2 ) to L is nontrivial since its further restriction

to k(E1 × · · · × En) is nontrivial by Theorem 3.3. Hence Proposition 4.2 implies that q is anisotropic
over K . □

Proof of Theorem 1. Using Bogomolov’s trick (see Corollary 1.2), we find x1, . . . , xn ∈ K such that
K/k(x1, . . . , xn) has odd degree. If q is as in (4), then by Theorem 5.2, q is anisotropic yet locally
isotropic over k(x1, . . . , xn). Finally, by Proposition 1.3, q is a counterexample to the local-global
principle for isotropy over K . □

To give an explicit example, let a, b, c ∈ Q \ {0, 1} be any algebraic integers all divisible by a common
odd prime ideal in a number field containing them. For example, take a = b = c = 3. Then over the

https://stacks.math.columbia.edu/tag/09ZI
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function field K = C(x, y, z), the quadratic form

q = ⟨1, x, y, z, xy, xz, yz, (x − 1)(y − 1)(z − 1)(x − a)(y − b)(z − c)⟩

is isotropic over every completion Kv associated to a discrete valuation v on K , and yet q is anisotropic
over K .

Remark 5.3. Let k be any algebraically closed field of characteristic ̸= 2. When K/k is a finitely
generated field of transcendence degree 1, then K = k(X) for a smooth projective curve X over k. Any
binary quadratic form q over K is similar to ⟨⟨a⟩⟩ = ⟨1,−a⟩ for some a ∈ K ×, and q is isotropic if and
only if a is a square. For any discrete valuation v on K , we have that q is isotropic over Kv if and only if
a is a square in Kv, equivalently (since k is algebraically closed and characteristic ̸= 2), v(a) is even.
Thus if q is locally isotropic at all discrete valuations on K then the divisor of the rational function a
on X can be written as 2D for a divisor D on X . The divisor class of D is 2-torsion in Pic(X) and it is
trivial if and only if a is a square in K . Conversely, if X admits a nontrivial 2-torsion element of Pic(X),
then twice this element is the divisor of a rational function a ∈ K and the local-global principle fails for
⟨⟨a⟩⟩. Thus the local-global principle for isotropy fails for K if and only if the Picard group of X admits a
nontrivial 2-torsion element, equivalently (again, since k is algebraically closed and characteristic ̸= 2),
the genus of X is positive. Equivalently, the local-global principle for isotropy holds for quadratic forms
over K if and only if K/k is purely transcendental.

In fact, we see that Proposition 4.2 (and hence Proposition 5.1) is false for n = 1 by considering the
trivial class in H 1(K , µ2) and d ∈ K × any nonsquare.

Remark 5.4. When k is the algebraic closure of a finite field of characteristic ̸= 2, Theorem 5.2 still
holds for n = 2 assuming that the elliptic curves E1 and E2 are not isogenous. Indeed, by Proposition 3.2,
the restriction of the symbol (x1) · (x2) ∈ H 2(K , µ⊗2

2 ) to L is still unramified, and the only thing left to
verify is that it is nontrivial. We can check this by further restriction to k(E1 × E2), where the symbol
is the restriction to the generic point of a class in H 1

ét(E1, µ2)⊗ H 1
ét(E2, µ2) by Section 3. However,

standard computations of the Brauer group of E1 × E2, see [Skorobogatov and Zarhin 2012, Section 3],
show that if E1 is not isogenous to E2, then in fact Br(E1 × E2) ∼= H 1

ét(E1, µ2)⊗ H 1
ét(E2, µ2), so that

each such cup product class is indeed nontrivial in the Brauer group. Then, as before, Proposition 5.1
implies that the local-global principle for isotropy fails for q as in (4) over K , hence Theorem 1 also
holds in this case.

6. A geometric presentation lemma

The method for producing locally isotropic but globally anisotropic quadratic forms of dimension 2n

over function fields of transcendence degree n presented in this work is different from the one employed
in [Auel et al. 2015, Section 6] for n = 2. There, we first proved a kind of geometric presentation
lemma about the existence of nontrivial unramified cohomology (in degree 2) over quadratic extensions.
Specifically, using Hodge theory, we proved [loc. cit., Proposition 6.4] that given any smooth projective



Failure of the local-global principle for isotropy of quadratic forms over function fields 1509

surface S over an algebraically closed field of characteristic zero, there exists a double cover T → S with
T smooth and H 2

ur(k(T )/k, µ⊗2
2 )= Br(T )[2] ̸= 0. It has been an open question ever since whether such

a geometric presentation lemma holds for unramified cohomology in higher degree.

Conjecture 6.1. Let K be a finitely generated field of transcendence degree n over an algebraically
closed field k of characteristic ̸= 2. Then either H n

ur(K/k, µ⊗n
2 ) ̸= 0 or there exists a separable quadratic

extension L/K such that H n
ur(L/k, µ⊗n

2 ) ̸= 0.

Assuming this conjecture, we can give a more direct proof of the existence of quadratic forms
representing a failure of the local-global principle for isotropy without using the construction involving
generalized Kummer varieties in Section 3.

Proposition 6.2. Let K be a finitely generated field of transcendence degree n over an algebraically
closed field k of characteristic ̸= 2. If Conjecture 6.1 holds for K , then the local-global principle for
isotropy of quadratic forms fails to hold in dimension 2n over K .

Before proceeding with the proof of Proposition 6.2, we recall a standard application of the Milnor
conjectures for the Witt group. Since we could not find a suitable reference, we also provide a proof.

Lemma 6.3. Let K be a field of characteristic ̸= 2. If K is a Cn-field then every element in H n(K , µ⊗n
2 )

is a symbol.

Proof. By the Milnor conjectures for the Witt group, as proved by Voevodsky [2003] and Orlov, Vishik,
Voevodsky [2007], there exists a surjective homomorphism en : I n(K ) → H n(K , µ⊗n

2 ) taking n-fold
Pfister forms to symbols, where I n(K ) is the n-th power of the fundamental ideal of the Witt group
of K . Thus it suffices to prove that every element in I n(K ) is represented by a Pfister form. Let q be an
anisotropic quadratic form representing a class in I n(K ). By the Arason–Pfister Hauptsatz (see [Scharlau
1985, Chapter 4, Theorem 5.6]), q has dimension ≥ 2n , but since we are assuming that K is a Cn-field,
every quadratic form of dimension > 2n is isotropic, hence q has dimension 2n .

Now we recall that every anisotropic form q of dimension 2n in I n(K ) is similar to a Pfister form over
(any field) K , see [Kahn 2008, Corollaire 4.3.7]. Indeed, let K (q) be the function field of the projective
quadric defined by q. Then qK (q) ∈ I n(K (q)). Since q is isotropic over K (q), the anisotropic part of
qK (q) over K (q) has dimension smaller than 2n , hence by the Arason–Pfister Hauptsatz must be zero,
thus q is hyperbolic over K (q). Being anisotropic over K and hyperbolic over K (q), the quadratic form
q is thus similar to a Pfister form over K , see [Scharlau 1985, Chapter 4, Theorem 5.4(i)].

Since K is assumed to be a Cn-field, and I n+1(K ) is additively generated by (n+1)-fold Pfister forms
by [loc. cit., Chapter 4, Lemma 5.5], which are hyperbolic as soon as they are isotropic by [loc. cit.,
Chapter 4, Corollary 1.5], we conclude that I n+1(K )= 0. We now argue that any quadratic form in I n(K )
that is similar to a Pfister form is actually a Pfister form. Indeed, if ψ is any Pfister form in I n(K ) and
a ∈ K ×, then ⟨⟨a⟩⟩ ⊗ψ = ψ ⊥ −aψ is in I n+1(K )= 0, hence ψ ∼= aψ . Thus our anisotropic quadratic
form q in I n(K ) is a Pfister form, proving the desired statement. □
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We do not know, in the spirit of [Serre 2002, II.4.5 Remark 3] and [Krashen and Matzri 2015], whether
the statement of Lemma 6.3 holds for Galois cohomology modulo ℓ for primes ℓ ̸= 2.

Proof of Proposition 6.2. First, by Lemma 6.3, every element in H n(K , µ⊗n
2 ) is a symbol since K is a Cn-

field by Tsen–Lang theory [Lang 1952]. Proposition 5.1 (applied with d = 1) implies that for any symbol
(a1) · · · (an) in H n

ur(K/k, µ⊗n
2 ), the n-fold Pfister form ⟨⟨a1, . . . , an⟩⟩ is locally isotropic. If we assume

that H n
ur(K/k, µ⊗n

2 ) ̸= 0, then taking a nontrivial unramified symbol (a1) · · · (an), the n-fold Pfister form
⟨⟨a1, . . . , an⟩⟩ is locally isotropic but is anisotropic by Proposition 4.2, giving a counterexample to the
local-global principle for isotropy over K .

Now assume that H n
ur(K/k, µ⊗n

2 ) = 0 and that H n
ur(L/k, µ⊗n

2 ) ̸= 0 for some separable quadratic
extension L = K (

√
d) of K . By Tsen–Lang theory (e.g., [Serre 2002, II.4.5]), L is also a Cn-field, hence

by Lemma 6.3 every element in H n(L , µ⊗n
2 ) is a symbol. Thus we can choose a nontrivial unramified

symbol (a1) · · · (an)∈ H n
ur(L/k, µ⊗n

2 ). Since the corestriction map H n(L , µ⊗n
2 )→ H n(K , µ⊗n

2 ) preserves
unramified cohomology, and we have assumed that H n

ur(K/k, µ⊗n
2 ) = 0, we see that the corestriction

of (a1) · · · (an) is trivial. By the restriction-corestriction exact sequence for Galois cohomology, see
[Arason 1975, Satz 4.5] or [Serre 2002, I Section 2 Exercise 2], we have that (a1) · · · (an) is in the
image of the restriction map H n(K , µ⊗n

2 )→ H n(L , µ⊗n
2 ), and thus we can take a1, . . . , an ∈ K ×. Then

by Proposition 5.1, the twisted Pfister form ⟨⟨a1, . . . , an; d⟩⟩ is locally isotropic over K but globally
anisotropic. □

However, under the hypothesis in which we prove Theorem 1, namely, that k is not the algebraic
closure of a finite field, our method allows us to prove Conjecture 6.1.

Theorem 6.4. Let k be an algebraically closed field of characteristic ̸= 2. If k is not the algebraic closure
of a finite field then Conjecture 6.1 holds for any finitely generated field K of transcendence degree n
over k.

Proof. By Bogomolov’s trick (Corollary 1.2) we consider K as an extension K/K0 of odd degree over a
rational function field K0 = k(x1, . . . , xn). By Theorem 3.3, the symbol (x1) · · · (xn) ∈ H n(K0, µ

⊗n
2 ) is

nontrivial over the (separable) quadratic extension L0 = K0(
√

f ) for f ∈ K defined by (3). Since K/K0

and L/K0 have relatively prime degree, L = K ⊗K0 L0 is a quadratic extension of K and L/L0 has odd
degree. Thus by a standard restriction-corestriction argument, the symbol (x1) · · · (xn) remains nontrivial
when restricted from L0 to L . By Proposition 3.2, it is unramified over L0, hence it remains unramified
over L . □

Remark 6.5. When k is the algebraic closure of a finite field of characteristic ̸= 2, then Conjecture 6.1
holds for n = 2. Indeed, following the proof of Theorem 6.4, we only need to show that (x1) · (x2) ∈

H 2(K0, µ
⊗n
2 ) is nontrivial over the quadratic extension L0 = K0(

√
f ), which follows from Remark 5.4.

Thus we have reduced Conjecture 6.1 to k the algebraic closure of a finite field. However, the construc-
tion of nontrivial higher degree unramified cohomology on varieties over a finite field (or the algebraic
closure of a finite field) is an open problem. In degree 3, this is related to the integral Tate conjecture.
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Currently, there are no known smooth projective threefolds over a finite field with nontrivial unramified
cohomology in degree 3; investigating this is a favorite problem of Colliot-Thélène, see [Colliot-Thélène
and Kahn 2013, Question 5.4]. The smallest known dimensions in which such varieties exist is 5 (see
[Pirutka 2011]), and recently, 4 (see [Scavia and Suzuki 2022]). Of course, one wonders whether the cup
product class on a product of three elliptic curves, as in Section 3, is nontrivial over a finite field. One
might also investigate the same class on the associated generalized Kummer variety over a finite field.
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Application of a polynomial sieve:
beyond separation of variables

Dante Bonolis and Lillian B. Pierce

Let a polynomial f 2 ZŒX1; : : : ;Xn� be given. The square sieve can provide an upper bound for the
number of integral x 2 Œ�B;B�n such that f .x/ is a perfect square. Recently this has been generalized
substantially: first to a power sieve, counting x 2 Œ�B;B�n for which f .x/D yr is solvable for y 2 Z;
then to a polynomial sieve, counting x 2 Œ�B;B�n for which f .x/ D g.y/ is solvable, for a given
polynomial g. Formally, a polynomial sieve lemma can encompass the more general problem of counting
x2 Œ�B;B�n for which F.y;x/D0 is solvable, for a given polynomial F . Previous applications, however,
have only succeeded in the case that F.y;x/ exhibits separation of variables, that is, F.y;x/ takes the
form f .x/�g.y/. In the present work, we present the first application of a polynomial sieve to count x 2

Œ�B;B�n such that F.y;x/D 0 is solvable, in a case for which F does not exhibit separation of variables.
Consequently, we obtain a new result toward a question of Serre, pertaining to counting points in thin sets.

1. Introduction

Fix an integer m� 2 and integers d; e � 1. Consider the polynomial

F.Y;X/D Y md
CY m.d�1/f1.X/C � � �CY mfd�1.X/Cfd .X/; (1-1)

in which for each 1 � i � d , fi 2 ZŒX1; : : : ;Xn� is a form with degfi Dm � e � i . We are interested in
counting

N.F;B/ WD
ˇ̌
fx 2 Œ�B;B�n\Zn

W 9y 2 Z such that F.y;x/D 0g
ˇ̌
:

Trivially, N.F;B/�Bn; our main result proves a nontrivial upper bound. We assume in what follows
that fd 6�0, since otherwise .0;X/ is a solution to F.Y;X/D0 for all X , and then Bn�N.F;B/�Bn.
(Throughout, we use the convention that A�� B if there exists a constant C , possibly depending on �,
such that jAj � CB:)

Theorem 1.1. Fix n � 3. Fix integers m � 2 and e; d � 1. Let F be defined as in (1-1), with fd 6� 0.
Suppose the weighted hypersurface V .F.Y;X//� P.e; 1; : : : ; 1/ defined by F.Y;X/D 0 is nonsingular
over C. Then

N.F;B/� Bn�1C 1
nC1 .log B/

n
nC1 :

The implicit constant may depend on n;m; d; e, but is otherwise independent of F .
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The main progress achieved in Theorem 1.1 is for n � 4, e � 2; d � 2. The requirement that n � 3

occurs since a key step, Proposition 5.2, is not true for nD 2 (see Remark 5.4). In any case, for nD 2; 3

the result of Theorem 1.1 is superseded by results of Broberg in [5], as described below in (1-14) and
(1-15). When e D 1, the variety V .F.Y;X// � P.e; 1; : : : ; 1/ is unweighted, so that in the setting of
Theorem 1.1, to bound N.F;B/ it is equivalent to count points ŒY W X1 W � � � W Xn� with jY j; jXi j � B

on a nonsingular projective hypersurface of degree at least 2 in Pn. Then the result of Theorem 1.1 (in
the stronger form N.F;B/�m;d;n;" Bn�1C") has already been obtained by work of Heath-Brown and
Browning, appearing in [6; 9; 10; 26; 27], as summarized by Salberger in [42]. Finally, when d D 1, the
result of Theorem 1.1 (aside from uniformity in the coefficients of F ) follows from recent work of the
first author in [2] (see Remark 3.2).

The condition m � 2 is applied in two ways: first, in the construction of certain sieve weights (see
Section 1.2 and the proof of Lemma 1.2), and second, in Section 3.3 when we pass from the weighted
variety to an unweighted variety. For illustration, we also describe how an alternative approach to the
sieve lemma, conditional on GRH, can be devised when mD 1 (see Section 3.2 and Remark 1.3).

Bounding N.F;B/ relates to a question of Serre on counting integral points in thin sets. Let V denote
the affine variety

V D f.Y;X/ 2 AnC1
W F.Y;X/D 0g; (1-2)

and consider the projection
� W V! An; .y;x/ 7! x: (1-3)

Under the hypotheses of Theorem 1.1, the set Z D �.V.Q// is a thin set of type II in An
Q

, in the
nomenclature of Serre. Serre has posed a general question that can be interpreted in our present setting as
asking whether it is possible to prove that

N.F;B/� Bn�1.log B/c (1-4)

for some c. Previous work by Broberg [5] nearly settled Serre’s conjecture for thin sets of type II in
Pn�1 for nD 2; 3; see (1-14) and (1-15) below. For n� 4, Theorem 1.1 represents new progress toward
resolving Serre’s question for certain thin sets of type II. Note that as n!1, the bound in Theorem 1.1
approaches a bound of the strength (1-4). We provide general background on Serre’s question, and state
precisely how Theorem 1.1 relates to previous literature on this question, in Section 1.1 and Section 1.2.

To prove Theorem 1.1, we develop an appropriate polynomial sieve lemma, and then bound each
contribution to the sieve using analytic, algebraic, and geometric ideas. A novel feature of this work is
that we do not assume that F.Y;X/ exhibits separation of variables: that is, when d � 2, F.Y;X/ of
the form (1-1) cannot in general be written as F.Y;X/D g.Y /�G.X/ for polynomials g;G. A formal
polynomial sieve lemma has been formulated previously in a level of generality that does not require
separation of variables; see [8; 13]. However, in those works it has so far only been applied to count
points on a variety that does exhibit separation of variables. To our knowledge, Theorem 1.1 is the first
application of a polynomial sieve to produce an upper bound for N.F;B/ in a case without separation of
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variables. We state precisely how Theorem 1.1 relates to previous literature on so-called square, power,
and polynomial sieves in Section 1.2.

A second strength of Theorem 1.1 is that the exponent in the upper bound for N.F;B/ is independent
of e, where we recall that as a function of X , F has highest degree m � e �d . For any given x 2 Œ�B;B�n

such that F.Y;x/D 0 is solvable, one observes that any solution y to F.y;x/D 0 must satisfy y�Be ,
and there can be at most md solutions y for the given x (or, equivalently, preimages under the projection
� in (1-3)), since the coefficient of Y md in F.Y;X/ is nonzero. Thus an alternative method to bound
N.F;B/ (up to an implicit constant depending on md) would be to count all .nC 1/-tuples f.y;x/ W
y� Be;xi � B W F.y;x/D 0g. Other potential methods might be sensitive to the role of e or size of
d;m (see for example Remark 1.4), while in contrast both the method and the result of Theorem 1.1 do
not depend on e (aside from a possible implicit constant).

Third, we note that the result of Theorem 1.1 is independent of the coefficients of F ; the implicit
constant depends only on F in terms of its degree. To accomplish this, we adapt a strategy of [27], also
recently applied in a similar setting in [3], to show that either N.F;B/ is already acceptably small, or
kFk� B.mde/nC2

. In the latter case, we then show that any dependence on kFk in the sieve method is
at most logarithmic, which we show is allowable for the result in Theorem 1.1.

1.1. Context of Theorem 1.1 within the study of Serre’s question on thin sets. Here we recall the notion
of thin sets defined by Serre in [46, §9.1 p. 121] and [45, p. 19]. Let k be a field of characteristic zero
and let V be an irreducible algebraic variety in Pn

k
(respectively An

k
). A subset M of V .k/ is said to

be a projective (respectively, affine) thin set of type I if there is a closed subset W � V , W ¤ V , with
M �W .k/ (i.e., M is not Zariski dense in V ). A subset M of V .k/ is said to be a projective (respectively,
affine) thin set of type II if there is an irreducible projective (respectively, affine) algebraic variety X with
dim X D dim V , and a generically surjective morphism � WX ! V of degree d � 2 with M � �.X.k//.
Any thin set is a finite union of thin sets of type I and thin sets of type II. From now on we consider only
k DQ, although Serre’s treatment considers any number field.

Given a thin set M � An
Q

, define the counting function

M.B/ WD
ˇ̌
fx 2M \Zn

W max
1�i�n

jxi j � Bg
ˇ̌
;

so that trivially M.B/�Bn for all B� 1. A theorem of Cohen [16] (see also [46, Chapter 13, Theorem 1,
p. 177]) shows that

M.B/�M Bn�1=2.log B/ for some  < 1, (1-5)

where�M denotes that the implicit constant can depend on the coefficients of the equations defining M .
As Serre remarks, this bound is essentially optimal, since the thin set

M D fx D .x1; : : : ;xn/ 2 Zn
W x1 is a squareg (1-6)

has M.B/� Bn�1=2. However, this M arises from a morphism that is singular; it is reasonable to
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expect that the result can be improved under an appropriate nonsingularity assumption (such as in the
setting of Theorem 1.1).

Now let M � Pn�1
Q

be a thin set in projective space. Define the height function H.x/ for x D

Œx1 W � � � W xn� 2 Pn�1
Q

such that .x1; : : : ;xn/ 2 Zn and gcd.x1; : : : ;xn/ D 1 by H.x/ D max1�i�n jxi j.
Define the associated counting function

MH .B/D fx 2M.Q/ WH.x/� Bg

so that trivially MH .B/� Bn. Serre deduces in [46, Chapter 13, Theorem 3] from an application of
(1-5) that

MH .B/�M Bn�1=2.log B/ for some  < 1. (1-7)

Serre raises a general question in [46, p. 178]: is it possible to prove that

MH .B/� Bn�1.log B/c (1-8)

for some c? (The set (1-6) is not an example of a thin set here because if M DfŒx2
1
W x2 W � � � W xn�g �Pn�1

Q

then for any x1 ¤ 0,

Œx1 W x2 W � � � W xn�D x1Œx1 W x2 W � � � W xn�D Œx
2
1 W x1x2 W � � � W x1xn� 2M;

so that M � Pn�1
Q

.)

1.1.1. Results for thin sets of type I. If Z is an irreducible projective variety in Pn�1
Q

of degree d � 2,
Serre deduces from (1-7) that ZH .B/ �Z Bdim ZC1=2.log B/ for some  < 1. Serre asks if it is
possible to prove that ZH .B/�Z Bdim Z .log B/c for some c. (This question is raised in both [46,
p. 178] and [45, p. 27]. Serre provides an example of a quadric for which a logarithmic factor necessarily
arises. See also the question in the case of a hypersurface in Heath-Brown [24, p. 227], formally stated in
both nonuniform and uniform versions as [27, Conjectures 1 and 2].) This is now called the dimension
growth conjecture (in the terminology of [7]), and is often described as the statement that

ZH .B/�Z;" Bdim ZC" for every " > 0. (1-9)

A refined version, credited to Heath-Brown and known as the uniform dimension growth conjecture, is
the statement that

ZH .B/�n;deg Z;" Bdim ZC" for every " > 0. (1-10)

In the case that Z � Pn�1
Q

is a nonsingular projective hypersurface of degree d � 2, as mentioned
before, combined works of Browning and Heath-Brown have proved (1-10) for all n� 3. More generally,
Browning, Heath-Brown and Salberger proved (1-10) for all geometrically integral varieties of degree
d D 2 and d � 6 (see [27] and [12], respectively). Recent work of Salberger has proved (1-9) in all
remaining cases, and has even proved the uniform version (1-10) for d � 4 [43]. See [14] for a helpful
survey, statements of open questions, and new progress such as an explicit bound ZH .B/� CdEBdim Z
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when deg Z D d � 5, for a certain C D C.n/ and E DE.n/. The resolution of the dimension growth
conjecture means that attention now turns to thin sets of type II, the subject of the present article.

1.1.2. Results for thin sets of type II. We turn to the case of thin sets of type II, our present focus. Given
a finite cover � WX ! Pn�1 over Q with n� 2, X irreducible and � of degree at least 2, set

NB.�/D jfP 2X.Q/ WH.�.P //� Bgj (1-11)

for the standard height function above. Serre’s question asks whether

NB.�/��;n Bn�1.log B/c for some c, (1-12)

or in a uniform version,

NB.�/�deg�;n Bn�1.log B/c for some c. (1-13)

For nD 2; 3 work of Broberg via the determinant method proves cases of Serre’s conjecture up to the
logarithmic factor [5]. Precisely, for � WX ! P1 of degree r � 2, Broberg proves

NB.�/��;" B2=rC" for any " > 0. (1-14)

For � WX ! P2 of degree r , Broberg proves

NB.�/��;" B2C" for r � 3, NB.�/��;" B9=4C" for r D 2, for any " > 0. (1-15)

For n� 4, the question remains open whether one can achieve NB.�/� Bn�1C" for all " > 0, although
we record some progress on this for specific types of � in Section 1.2.

Now recall the setting of Theorem 1.1 in this paper, and the affine variety V � AnC1 defined in (1-2)
according to the polynomial F.Y;X/. Under the hypotheses of Theorem 1.1, we have:

(i) The variety V is irreducible (see Remark 3.3).

(ii) The projection � has degree dm> 1 since m� 2.

Thus Z D �.V.Q// is a thin set of type II in An
Q

, and in particular Cohen’s result (1-5) implies that

Z.B/DN.F;B/�F Bn�1=2.log B/ ; (1-16)

following the same reasoning as [46, Chapter 13, Theorem 2, p. 178]. Or, interpreting the setting of
Theorem 1.1 as counting points on a finite cover � of Pn�1 as in (1-11), this shows

NB.�/�N.F;B/�� Bn�1=2.log B/ :

Our new work, Theorem 1.1, improves on (1-16) for each n� 3, for F of the form (1-1) with V .F.Y;X//

nonsingular, and approaches a uniform bound of the strength (1-13) as n!1.

1.2. Context of Theorem 1.1 within sieve methods. We now recall a few recent developments of sieve
methods in the context of counting solutions to Diophantine equations, with a particular focus on progress
toward Serre’s conjecture for type II sets, as described above.
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1.2.1. Square sieve. Let f .X/ 2 ZŒX1; : : : ;Xn� be a fixed polynomial. Let B be a “box,” such as
Œ�B;B�n or more generally

Q
i Œ�Bi ;Bi �. In [25], Heath-Brown codified the square sieve to count the

number of integral values x 2 B such that f .x/ D y2 is solvable over Z, building on a method of
Hooley [31]. At its heart was a formal sieve lemma involving a character sum with Legendre symbols.
Heath-Brown applied this in particular to improve the error term in an asymptotic for the number of
consecutive square-free numbers in a range. In [40], Pierce developed a stronger version of the square
sieve, with a sieving set comprised of products of two primes rather than primes; this effectively allows the
underlying modulus to be larger relative to the box B, by factoring the modulus and using the q-analogue
of van der Corput differencing. Pierce applied this to prove a nontrivial upper bound for 3-torsion in
class groups of quadratic fields [40]; Heath-Brown subsequently used this sieve method to prove there are
finitely many imaginary quadratic fields having class group of exponent 5 [28]; Bonolis and Browning
applied it to prove a uniform bound for counting rational points on hyperelliptic fibrations [3].

1.2.2. Power sieve. The square sieve has been generalized to a power sieve, in order to count integral
values x 2 B with f .x/ D yr solvable, for a fixed r � 2. Recall the question of bounding NB.�/

as in (1-12). For any n � 2, in the special case that � is a nonsingular cyclic cover of degree r � 2,
Munshi observed this can be reduced to counting the number of integral values x 2 Œ�B;B�n with
F.x1; : : : ;xn/D yr solvable, for a nonsingular form F of degree mr for some m � 1. To bound this,
Munshi developed a formal sieve lemma involving a character sum in terms of multiplicative Dirichlet
characters [39]. Munshi applied it to prove thatˇ̌

fx 2 Œ�B;B�n W F.x/D yr is solvable over Zg
ˇ̌
� Bn�1C 1

n .log B/
n�1

n (1-17)

Consequently, this proved NB.�/�Bn�1C 1
n .log B/

n�1
n for nonsingular cyclic covers. (See [2, Remark 1]

for a note on the history of this result; the exponents stated here are slightly different from those presented
in [39].)

In [29] Heath-Brown and Pierce have strengthened the power sieve, by using a sieving set comprised
of products of primes, generalizing the approach of [40]. They used this method to prove that for any
polynomial f .X/ 2 ZŒX1; : : : ;Xn� of degree d � 3 with nonsingular leading form, and for any r � 2,

jfx 2 Œ�B;B�n W f .x/D yr is solvable over Zgj �

8̂̂<̂
:̂

Bn�1Cn.8�n/C4
6nC4 .log B/2; 2� n� 8;

Bn�1C 1
2nC10 .log B/2; nD 9;

Bn�1� n�10
2nC10 .log B/2; n� 10:

(1-18)

This proves Serre’s conjecture (1-12) for NB.�/, for all nonsingular cyclic covers, for n� 10. Indeed,
the bound achieved is even smaller than the general conjecture, which is reasonable due to the imposed
nonsingularity assumption.

Independently, Brandes also developed a power sieve in [4], applied to counting sums and differences
of power-free numbers.
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1.2.3. Polynomial sieve: with separation of variables. The next significant generalization addressed
counting x 2 B for which g.y/ D f .x/ is solvable, for appropriate polynomials g; f . Here, a quite
general framework for a polynomial sieve lemma was developed by Browning in [8]. Specifically, in
that work, Browning applied the polynomial sieve lemma to count x1;x2 such that g.y/D f .x1;x2/ is
solvable, for particular functions f;g, that enabled an application showing the sparsity of like sums of a
quartic polynomial of one variable.

Bonolis [2] further developed a polynomial sieve lemma with a character sum involving trace functions.
Applying this, he proved that for any polynomial g 2 ZŒY � of degree r � 2, and any irreducible form
F 2 ZŒX1; : : : ;Xn� of degree e � 2 such that the projective hypersurface V .F / defined by F D 0 is
nonsingular over C, thenˇ̌

fx 2 Œ�B;B�n W F.x/D g.y/ is solvable over Zg
ˇ̌
� Bn�1C 1

nC1 .log B/
n

nC1 : (1-19)

(This improves (1-17) and recovers the result initially stated in [39]; see [2, Remark 1].) This can also be
seen as an improvement on Cohen’s theorem (1-16) for a special type of thin set (defined as the image of
V D f.y;x/ 2 AnC1 W F.x/� g.y/D 0g under .y;x/ 7! x, under the assumption that V .F / defines a
nonsingular projective hypersurface). The special case of our Theorem 1.1 when d D 1 follows from [2,
Theorem 1.1]; see Remark 3.2.

Notably, the method employed in [2] to prove (1-19) was the first to demonstrate nontrivial averaging
over pairs of primes in the sieving set, and exploiting such a strategy is central to the strength of our
main theorem. We explain explicitly the advantage of such averaging in equations (1-25) and (1-26),
below. For now, we simply state abstractly that any polynomial sieve method tests the solvability of
the desired equation modulo p for primes in a chosen sieving set P . The outcome of applying a sieve
lemma (such as Lemma 1.2 below) is that one must bound from above an expression roughly of the
form jPj�2

P
p¤q2P T .p; q/, where T .p; q/ studies the solvability of the desired equation modulo pairs

p ¤ q 2 P . Previous to [2], papers applying any type of polynomial sieve produced an upper bound
for jT .p; q/j that was uniform over p; q and then summed trivially over p ¤ q 2 P . Instead, averaging
nontrivially over p; q exploits the fact that T .p; q/ is typically smaller than its worst (largest) upper
bound.

Most recently, a geometric generalization of Browning’s polynomial sieve lemma has been developed
over function fields by Bucur, Cojocaru, Lalín and the second author in [13]. They pose an analogue of
Serre’s question (1-8) in that setting (also raised by Browning and Vishe [11]), and apply a polynomial
sieve to prove a bound of analogous strength to (1-19), in the special case of nonsingular cyclic covers
in a function field setting. It remains an interesting open question to achieve a stronger bound such as
(1-18), or to prove results for finite covers that are noncyclic, in such a function field setting.

1.2.4. Polynomial sieve: without separation of variables. So far we have mentioned applications of a
sieve lemma to count solutions to G.Y;X/D 0 when G separates variables as G.Y;X/D g.Y /�f .X/

for some polynomials g; f . More generally, it is reasonable to ask — and this is a motivation for the
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present paper — whether an appropriate polynomial sieve can be employed to count solutions to equations
of the form G.Y;X/D 0 where G.Y;X/ 2 ZŒY;X1; : : : ;Xn� is a polynomial of degree D of the form

G.Y;X/D Y D
CY D�1f1.X/C � � �CYfD�1.X/CfD.X/; (1-20)

where each fi is a form of degree i � e, and we assume that the weighted hypersurface V .G.Y;X///�

P.e; 1; : : : ; 1/ defined by G.Y;X/D 0 is nonsingular. Define

N.G;B/ WD
ˇ̌
fx 2 Œ�B;B�n W 9y 2 Z such that G.y;x/D 0g

ˇ̌
:

Under the assumption fD 6� 0, the aim is to improve on the trivial bound N.G;B/� Bn. To be clear,
the formal sieve lemmas appearing in [8; 13] include this level of generality, but have only been applied
to prove a bound for N.G;B/ when separation of variables occurs. In this paper we accomplish the first
application of the polynomial sieve without assuming separation of variables, but under the additional
assumption that the degree D of G.Y;X/ defined in (1-20) factors as D D md for some m � 2, and
all powers of Y that appear are divisible by m. (To see why this restriction is useful, see the proof
of Lemma 1.2; for an alternative approach when m D 1, conditional on GRH, see Remark 1.3 and
Section 3.2.)

The strength of our approach hinges on a particular formulation of the polynomial sieve, given in
Lemma 1.2. It is worthwhile to compare our formulation with the polynomial sieve presented in [8,
Theorem 1.1]. In [8, Theorem 1.1], the sieve weight system, adapted to counting solutions to (1-20), is
defined as follows:

wp;Bro.k/D ˛C .�p.k/� 1/.D� �p.k//;

in which �p.k/ D jfy 2 Fp W G.y;k/ D 0 2 Fpgj. (These weights are then applied in an inequality
analogous to (3-1) below, to derive a sieve lemma.) Consequently, if G.Y;k/ D 0 is solvable over Z,
the conditions 1 � �p.k/ �D and ˛ > 0 guarantee that wp;Bro.k/ > 0 for any p. In our approach, we
consider simpler weights:

wp.k/D �p.k/� 1:

Thus, in our situation, if G.Y;k/D 0 is solvable over Z, we can only conclude that wp.k/� 0. However,
it is still possible to establish that wp.k/ > 0 for a positive proportion of primes, which suffices for our
application. (Precisely, we obtain !p.k/ > 0 for those p � 1 .mod m/ where m � 2; see (3-2) in the
proof of Lemma 1.2.)

The simplicity of our weight system turns out to be crucial for bounding the terms that appear in the
polynomial sieve lemma. In the setting of the polynomial F.Y;X/ as in (1-1), our main task will be to
prove square root cancellation for the sum X

.z;a/2F
nC1
p

F.ze;a/D0

ep.ha;ui/;



Application of a polynomial sieve: beyond separation of variables 1523

for generic a 2 Fn
p , which can be accomplished by exploiting the smoothness of the variety V .F.Ze;X//.

On the other hand, if we were to adopt [8, Theorem 1.1], the presence of the factor .�p.k//2 would lead
to the exponential sum X

.z1;z2;a/2F
nC2
p

F.ze
1
;a/D0

F.ze
2
;a/D0

ep.ha;ui/;

which is more challenging to handle, due to the highly singular nature of the variety V .F.Ze
1
;X//\

V .F.Ze
2
;X//.

1.3. Overview of the method. We now provide an overview of our method, highlighting four key aspects
of our strategy. To prove a nontrivial upper bound for N.F;B/ via a sieve, we introduce a smooth
nonnegative function W WRn!R�0 defined by W .x/Dw.x=B/, where w is an infinitely differentiable,
compactly supported function that is � 1 on Œ�1; 1�n, and supported in Œ�2; 2�n. Define the smoothed
counting function

S.F;B/ WD
X

k2Zn

F.y;k/D0 solvable

W .k/; (1-21)

which sums over k 2 Zn such that there exists y 2 Z with F.y;k/D 0. By construction

N.F;B/� S.F;B/;

and we may focus on proving a nontrivial upper bound for S.F;B/. We employ the following sieve
lemma, which we prove in Section 3.1. Here and throughout, given a polynomial f , we let kf k denote
the maximum absolute value of any coefficient of f .

Lemma 1.2 (polynomial sieve lemma). Let e; d � 1 and m� 2 be integers. Consider the polynomial

F.Y;X/D Y md
CY m.d�1/f1.X/C � � �CY mfd�1.X/Cfd .X/;

under the assumption that fd 6� 0, and that degfi Dm � e � i for each 1� i � d .
Let B � 1 and define a smooth weight W supported in Œ�2B; 2B�n and � 1 on Œ�B;B�n, as above.

Let P � fp � 1 mod mg be a finite set of primes p 2 ŒQ; 2Q�, with cardinality P . Suppose that QD B�

for some fixed 0< � � 1 and that P �Q= log Q. Suppose also that

P �m;e;d maxflog kfdk; log Bg: (1-22)

For each k 2 Zn and p 2 P define

�p.k/D jfy 2 Fp W F.y;k/D 0 .mod p/gj:

Then

S.F;B/�m;e;d

X
kWfd .k/D0

W .k/C
1

P

X
k

W .k/C
1

P2

X
p;q2P
p¤q

ˇ̌̌̌
ˇX

k

W .k/.�p.k/� 1/.�q.k/� 1/

ˇ̌̌̌
ˇ :
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Remark 1.3. We observe that the same lemma holds for mD 1, conditional on GRH, with (1-22) replaced
by Q�m;e;d maxf.log kFk/˛0 ; .log B/˛0g for some ˛0 > 2. For the sake of illustration, we demonstrate
this in Section 3.2, although we do not apply such a conditional result in this paper.

We now point out four key aspects of our method for applying this sieve lemma to prove Theorem 1.1.
First, for all k and for all primes p, �p.k/�md ; this is because Y md has coefficient 1 in F.Y;X/, so
that for all values of k, F.Y;k/ is of degree md as a polynomial in Y . On the other hand, in the proof
of the lemma, we use the assumption that each prime in the sieving set has p � 1 .mod m/ in order to
provide a lower bound �p.k/� 1�m� 1> 0 for many k, motivating our requirement that m� 2. This
is the first novelty of our method for dealing with a case in which the variables Y;X are not “separated.”

For each pair of primes p ¤ q 2 P , the sieve lemma leads us to study

T .p; q/ WD
X

k2Zn

W .k/.�p.k/� 1/.�q.k/� 1/: (1-23)

After an application of the Poisson summation formula, we see that

T .p; q/D

�
1

pq

�n X
u2Zn

OW

�
u

pq

�
g.u;pq/;

where

g.u;pq/ WD
X

a .mod pq/

.�p.a/� 1/.�q.a/� 1/epq.ha;ui/: (1-24)

Here we write each coordinate of a in terms of its residue class modulo pq, and epq.t/D e2�it=pq . After
showing that g.u;pq/ satisfies a multiplicativity relation, we can focus on the case of prime modulus,
and study

g.u;p/ WD
X
a2Fn

p

.�p.a/� 1/ep.ha;ui/:

We show that the main task to bound g.u;p/ is to bound the exponential sumX
.y;a/2F

nC1
p

F.y;a/D0

ep.ha;ui/:

Here we highlight a second aspect: the fact that the polynomial F.Y;X/ is not homogeneous motivates a
more sophisticated approach to bounding this sum (see Remark 4.6). Given a polynomial H , let V .H /

denote the corresponding variety fH D 0g, and let hX ;U i D
P

i XiUi . Roughly speaking, for each
prime p we divide u 2 Zn into three cases: a type zero case when u � 0 .mod p/, a good case when
V .hX ;ui/ is not tangent to V .F.Y;X// over Fp , and finally a bad case in which V .hX ;ui/ is tangent to
V .F.Y;X// over Fp . (More precisely, we reformulate this in terms of varieties in unweighted projective
space.) In the type zero case, we can only show that g.0;p/� pn�1=2, but such cases are sparse. In the
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remaining two cases, we apply a version of the Weil bound to g.u;p/, obtaining g.u;p/� pn=2 if u is
good and g.u;p/� pn=2C1=2 if u is bad (Proposition 4.2).

A third crucial aspect arises when we assemble this information efficiently inside the third term on the
right-hand side of the sieve lemma, namely

1

P2

X
p¤q2P

jT .p; q/j �
1

P2Q2n

X
p¤q2P

X
u2Zn

ˇ̌̌̌
OW

�
u

pq

�
g.u;pq/

ˇ̌̌̌
: (1-25)

In many earlier applications of the power sieve or polynomial sieve to count solutions to Diophantine
equations, the strategy has been to bound jT .p; q/j uniformly over p ¤ q and simply sum trivially
over p ¤ q. However, recent work of the first author demonstrated how to take advantage of nontrivial
averaging over the sum of p ¤ q 2 P; see [2]. In this paper, we also average nontrivially over p ¤ q and
this contributes to the strength of our main theorem.

In order to average nontrivially over p ¤ q 2 P , we quantify the fact that there cannot be many triples
u;p; q for which u is simultaneously bad for both p and q. Roughly speaking, we characterize the dual va-
riety of the original hypersurface V .F.Y;X// according to an irreducible polynomial G.UY ;U1; : : : ;Un/,
and observe that G.0;u/ ¤ 0 precisely when the hyperplane V .hu;Xi/ is not tangent to V .F.Y;X//

over C. Then we reverse the order of summation in the right-hand side of (1-25), writing it as

1

P2Q2n

X
u2Zn

X
p¤q2P

ˇ̌̌̌
OW

�
u

pq

�
g.u;pq/

ˇ̌̌̌
: (1-26)

The sum over u can be split into case (a) where G.0;u/¤ 0 and case (b) where G.0;u/D 0. In case
(a), we show u is bad modulo p and q only if p and q divide the (nonzero) value of a certain resultant
polynomial; thus there can only be very few such p; q.

A fourth key aspect arises in case (b), for which u is bad for all primes (since the value of the resultant
is zero). To compensate, we show that there are not too many u for which G.0;u/ D 0. This step is
one of the significant novelties of the paper. It requires understanding not the variety V .G.UY ;U // but
V .G.UY ;U //\V .UY /, the intersection with the hyperplane UY D 0. To tackle this, we show that any
polynomial divisor of G.0;U / has degree at least 2 (Proposition 5.2), so that we can apply strong bounds
of Heath-Brown [27] and Pila [41] to count solutions to G.0;u/ D 0 (see (5-18)). To prove the key
result in Proposition 5.2, we employ a geometric argument to show that given a nonsingular projective
hypersurface X and a projective line ` not contained in X , the generic hyperplane containing ` is not
tangent to X . This statement, proved in Section 6 via a strategy suggested by Per Salberger, is critical to
the method and the ultimate strength of Theorem 1.1.

Remark 1.4. It would be interesting to consider bounding N.F;B/, in the setting of Theorem 1.1, by
other methods. As mentioned earlier, one approach is to count all .nC 1/-tuples f.y;x/ 2 ZnC1 W y�

Be;xi � B W F.y;x/ D 0g, for example, by applying the determinant method. Since the range of y

depends on e, such a direct approach is likely to produce a bound for N.F;B/ with an exponent depending
on e. Alternatively, one could fix x2; : : : ;xn (with � Bn�1 such choices) and consider the resulting
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equation as a projective curve in variables y;x1. Supposing that the resulting curve is generically of
degree dme, an application of Bombieri-Pila [1] could count .y;x1/ in the square Œ�Be;Be �2. This could
ultimately lead to a total bound of the form N.F;B/�Bn�1 �Be=dmeC"DBn�1C1=dmC". This putative
outcome appears independent of e, but the method has overcounted x1 in the range Be; nevertheless,
such an approach could be advantageous for large d;m.

1.4. Notation. We use eq.t/D e2� it=q . We denote X D .X1; : : : ;Xn/, U D .U1; : : : ;Un/. Moreover, for
two vectors sD .s1; : : : sn/; tD .t1; : : : ; tn/, we define hs; tiD

Pn
iD1 si ti . We let kFk denote the absolute

value of the maximum coefficient in a polynomial F 2 ZŒX1; : : : ;Xn�; similarly kXk Dmax1�i�n jXi j

for X 2 Zn.

2. Reduction to remove dependence on kF k

Recall that Theorem 1.1 states that the upper bound for N.F;B/ is only dependent on the degree of
F , and not on the coefficients of F . In fact, the sieve methods we apply prove an upper bound for
N.F;B/ that can depend on kFk. In this section we show by alternative methods that we may assume
that kFk � B.mde/nC2

. The method does not rely on assuming m � 2 in (1-1), and so without any
additional trouble we may work more generally in the setting of (1-20).

Lemma 2.1. Let V .G.Y;X//� P.e; 1; : : : ; 1/ be defined by

G.Y;X/D Y D
CY D�1f1.X/C � � �CYfD�1.X/CfD.X/

with each fi a form of degfi D i � e, for fixed D; e � 1 and n� 1. Assume that fD 6� 0 and the weighted
hypersurface V .G.Y;X//� P.e; 1; : : : ; 1/ is absolutely irreducible. Then either

kGk� B.De/nC2

;

or N.G;B/�n;D;e Bn�1.

Remark 2.2. Under the hypotheses of Theorem 1.1, for F as in (1-1), V .F.Y;X// is absolutely irreducible
(following similar reasoning to Remark 3.3). As a result of this lemma, we can obtain the bound claimed
in Theorem 1.1 as long as all later dependence on kFk is at most logarithmic in kFk, which we track as
the argument proceeds.

Proof. The method of proof follows [27, Theorem 4], or the recent similar result [3, Lemma 2.1]. Fix
n;D; e � 1. We start by considering the set of monomials

E WD

(
Y dY X

d1

1
� � �X dn

n W dY eC

nX
iD1

di DDe

)
;

in which the degrees dY ; d1; : : : ; dn vary over all nonnegative integers satisfying dY eC
P

di DDe. It
is easy to see that jEj � .De/nC1.
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Let B � 1 be fixed. Let v denote coordinates .y;x1; : : : ;xn/ and let fv1; : : : vN g enumerate the
set of points that are solutions to G.Y;X/ D 0, with each of the last n coordinates of vj lying in
Œ�B;B�. Note that these count each X 2 Œ�B;B�n for which G.Y;X/ is solvable at least once, so that
N.G;B/ � N �D �N.G;B/. (For the upper bound, we recall that the coefficient of Y D in G.Y;X/

is nonzero, so that any given X can correspond to at most D such Y .) Then, we construct the N � jEj
matrix

C D .ve
i /1�i�N

e2E
:

Notice that rank C � jEj � 1, since the vector a 2 ZjEj n f0g whose entries correspond to the coefficients
of G.Y;X/ is such that Ca D 0. Moreover, a is primitive since the coefficient associated to Y D is
1. Now the strategy is to find another nonzero vector b in the nullspace of C and show that if b is in
the span of a then kGk is small, and if b is not in the span of a then we have an improved count for
N.G;B/. We may assume henceforward that jEj �N , since otherwise we already have the upper bound
N.G;B/�N � jEj � .De/nC1, which suffices for the lemma.

If rank C � jEj � 2, then the nullspace has dimension at least 2, and we can take b 2 ZjEj to be any
element in the nullspace that is not in the span of a. Let H.Y;X/ be the polynomial defined by the
coefficients corresponding to the vector b and consider the polynomial R.X/DRes.G.Y;X/;H.Y;X//,
which is a polynomial in X of degree �D;e;n 1. (See, e.g., [21, Ch 12], which we apply to take the
resultant of two polynomials in the variable Y , whose coefficients are determined by X .) We claim
that R.X/ 6� 0: indeed, if R.X/ � 0, then G and H would share an irreducible component. Since
G.Y;X/D 0 is irreducible, and deg H �De D deg G, it would follow that G is a constant multiple of
H , but this is not possible since we are assuming that a and b are not proportional. Thus R.X/ 6� 0.
Moreover, observe that for any x 2 Zn

R.x/D 0 () G.Y;x/ and H.Y;x/ have a common root:

Note that any x such that G.y;x/D 0 is solvable contributes at least one row to the matrix C ; each such
row also corresponds to a solution to H.y;x/D 0. Thus it follows that

N.G;B/D jfx 2 Œ�B;B�n W 9y 2 Z such that G.y;x/DH.y;x/D 0gj

� jfx 2 Œ�B;B�n W R.x/D 0gj

�n;D;e; Bn�1;

with an implicit constant independent of the coefficients of R, via an application of a trivial counting
bound for the nonzero polynomial R. (This bound is sometimes called the Schwartz-Zippel bound, and a
proof can be found in [27, Theorem 1]; we remark that although in that context the polynomial under
consideration is absolutely irreducible, the method of proof only requires that it is not identically zero.)

The remaining case is when rank C D jEj � 1, so that all jEj � jEj minors vanish, but at least one
.jEj � 1/� .jEj � 1/ minor does not; we claim there is a nonzero b 2 ZjEj in the nullspace of C such that
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jbj D O.BDejEj/D O.B.De/nC2

/. If so, then since a is primitive (and b must be proportional to a) it
follows that jaj � jbj � B.De/nC2

. This shows that kGk� B.De/nC2

as claimed.
An appropriate b can be constructed with entries that are .jEj � 1/� .jEj � 1/ minors, so that the size

estimate jbj DO.BDejEj/ follows from the fact that each entry of C is O.BDe/. For completeness, we
sketch this construction. Without loss of generality, we can let C 0 denote the top jEj � jEj submatrix in
C , and assume that the minor C 0

1;1
(obtained by omitting the first row and first column of C 0) is nonzero.

Define a vector b as follows: for each 1� j � jEj, define the entry bj to be the .1; j /-th cofactor of C0;
in particular b1 ¤ 0 so b is nonzero, and jbj DO.BDe.jEj�1//DO.BDejEj/. We now show that b is in
the nullspace of C . Let ri denote the i -th row of C ; then for each 1� i �N ,

ri �bD det

0BBB@
ri

r2
:::

rjEj

1CCCAD 0: (2-1)

Indeed, for i D 1 or i > jEj, up to sign, ri �b is an jEj � jEj minor of C , and all such minors vanish since
rankC < jEj. For 2� i � jEj, the matrix (2-1) has two identical rows. Thus CbD 0. �

3. Preliminaries on the sieve lemma

In this section we gather together two preliminary steps: first, we prove the sieve inequality in Lemma 1.2;
for m D 1 we provide an alternative proof, conditional on GRH. Second, we formulate an equivalent
nonsingularity condition in unweighted projective space. We also make preliminary remarks on the
sieving set.

3.1. Proof of the polynomial sieve lemma. To prove Lemma 1.2, observe that

S.F;B/D
X

kWfd .k/D0

W .k/C
X

k2ZnW
fd .k/¤0

F.y;k/D0 solvable

W .k/;

since within the first term, y D 0 is always a solution to F.y;k/D 0. We consider the weighted sum

X
kWfd .k/¤0

W .k/

�X
p2P

.�p.k/� 1/

�2

: (3-1)

Fix k such that fd .k/¤ 0 and the polynomial F.Y;k/ is solvable over Z, so that there exists y0 2Z such
that F.y0;k/D 0. For any p 2 P such that p − fd .k/, then y0 6� 0 mod p. Then since p � 1 mod m,
and due to the structure of F in (1-1), we have that fy0; py0; : : : ; 

m�1
p y0g are distinct solutions of

F.Y;k/� 0 .mod p/, where m
p � 1 mod p and p is a primitive m-th root of unity in Fp . In particular,

for such p, �p.k/�m. Consequently, for each k such that fd .k/¤ 0 and F.Y;k/ is solvable, we have
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that X
p2P

.�p.k/� 1/� .m� 1/
X

p2P;p−fd .k/

1�m P �
X

p2P;pjfd .k/

1� .1=2/P; (3-2)

as long as P �m;e;d maxflog kfdk; log Bg. The last step follows since the number !.fd .k// of distinct
prime divisors of fd .k/¤ 0 is at most

!.fd .k//� log.fd .k//= log log.fd .k//

� log.kfdkB
dem/

�m;e;d log kfdkC log B:

Thus the last inequality in (3-2) holds as long as

P �m;e;d maxflog kfdk; log Bg; (3-3)

leading to the corresponding hypothesis in the lemma.
From (3-2) and the nonnegativity of the weight W , we see that

P2
X

k2ZnW
fd .k/¤0

F.y;k/D0 solvable

W .k/�
X

kWfd .k/¤0

W .k/

�X
p2P

.�p.k/� 1/

�2

�

X
k

W .k/

�X
p2P

.�p.k/� 1/

�2

:

Opening the square on the right-hand side, the contribution from p D q 2 P isX
p2P

X
k

W .k/.�p.k/� 1/2�m;d P
X

k

W .k/;

since �p.k/�md for all k, as previously mentioned. The contribution from p ¤ q 2 P is bounded in
absolute value by X

p¤q2P

ˇ̌̌̌X
k

W .k/.�p.k/� 1/.�q.k/� 1/

ˇ̌̌̌
:

Assembling all these terms, we see that Lemma 1.2 is proved.

Remark 3.1. When we apply Lemma 1.2 to prove Theorem 1.1, we can assume that kfdk � kFk �

B.mde/nC2

, by Lemma 2.1. This will allow us to verify that (3-3) holds for our choice of sieving set, as
we will verify in Section 7 when we choose Q in (7-4).

3.2. Alternative proof when m D 1, conditional on GRH. Recall from Section 1.2.4 the general problem
of counting x 2 Œ�B;B�n such that G.y;x/D 0 is solvable in Z, with G.Y;X/ of degree D as in (1-20).
In our main work in this paper, we assume that D Dmd with m� 2 and that G is a polynomial in Y m.
This additional structure allowed us to choose a sieving set P � ŒQ; 2Q� of primes p � 1 .mod m/, so
that all the m-th roots of unity are present in Fp, for each p 2 P . With this property, we could define
sieve weights that exhibit an appropriate lower bound in the form (3-2) for most k in the support of W .k/

and a positive proportion of primes.
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Nevertheless, we can proceed by a different argument to develop a sieve lemma to bound the number
of x 2 Œ�B;B�n such that G.y;x/D 0 is solvable over Z, with no condition on the degree D; that is,
to prove a version of Lemma 1.2 in the case m D 1. As a first step, we naturally try to introduce a
system of weights, according to a fixed set of primes. Let us take P D fQ � p � 2Q W p primeg for
some parameter Q to be chosen optimally with respect to B. In particular, by the prime number theorem,
jPj �Q.log Q/�1 for all Q� 1. Fix k 2 Zn. For each prime p 2 P , set

�p.k/D jfy 2 Fp WG.y;k/D 0 .mod p/gj:

Since G.y;k/ contains the term yD , it is not the zero polynomial in y, and �p.k/�D. Consider, as in
the proof of Lemma 1.2 above, the weighted sumX

kWfD.k/¤0

W .k/

�X
p2P

.�p.k/� 1/

�2

: (3-4)

In order to deduce a sieve lemma, we need a lower bound for the arithmetic weight (the squared term),
for those k for which fD.k/¤ 0 and G.Y;k/D 0 is solvable over Z.

Here is one approach. Let k be fixed, with fD.k/¤ 0 and G.Y;k/D 0 solvable over Z, and k in the
support of W . Then G.Y;k/D .Y �y0/ Qgk.Y / for some y0 2 Z n f0g and some (monic) Qgk.Y / 2 ZŒY �

of degree D�1. For each such k, we can obtain a suitable lower bound for the arithmetic weight in (3-4)
as long as for a positive proportion of p 2 P , Qgk has a root over Fp. Let gk be an irreducible factor of
Qgk. Let Fk denote the splitting field of gk over Q, say Fk D Q.˛k/. Since gk is irreducible, then it
is the minimal polynomial of ˛k in ZŒY �, and it is separable (since we are working over characteristic
zero), and the splitting field is Galois over Q. By Dedekind’s theorem, for all p − ŒOFk

W ZŒ˛k ��, gk splits
completely over Fp precisely when .p/ D pOFk

splits completely in Fk; see, e.g., [37, Theorem 27,
p. 79]. Then X

p2P

.�p.k/� 1/D
X
p2P

ˇ̌
fy 2 Fp W Qgk.y/D 0g

ˇ̌
�

X
p2P

ˇ̌
fy 2 Fp W gk.y/D 0g

ˇ̌
:

If gk is linear in ZŒY �, this sum is of size jPj, which suffices. If deg gk � 2, we continue to argue thatX
p2P

.�p.k/� 1/� deg.gk/
ˇ̌
fp 2 P W gk.Y / completely split over Fpg

ˇ̌
�
ˇ̌
fp 2 P W pOFk

splits completely in Fkg
ˇ̌
�
ˇ̌
fp 2 P W p j ŒOFk

W ZŒ˛k ��g
ˇ̌
: (3-5)

Let

�k.Q/D
ˇ̌
fp �Q W pOFk

splits completely in Fkg
ˇ̌

and N.k/ D jfp j ŒOFk
W ZŒ˛k ��gj. The Chebotarev density theorem, in the unconditional form of [34,

Theorem 1.3], shows thatˇ̌̌̌
�k.Q/�

1

jGkj

Q

log Q

ˇ̌̌̌
D

1

jGkj

Qˇ0

log Qˇ0
COD;A.Q.log Q/�A/ (3-6)
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for every A� 2, as long as Q� exp.10 deg Fk.log jD.Fk/j/
2/. Here Gk is the Galois group Gal.Fk=Q/,

D.Fk/ is the discriminant of the splitting field Fk=Q, and deg Fk D deg jFk=Qj is the degree of the
extension. The implicit constant in the error term depends only on A and deg Fk D jGkj � .D�1/!. The
real number 1=2< ˇ0 < 1, if it exists, is the (real, simple) exceptional zero of the associated Dedekind
zeta function �Fk

; if no exceptional zero exists, that term does not appear in the result.
In particular, under the assumption of GRH for �Fk

, Lagarias and Odlyzko’s Theorem 1.1 in [34] (in
the refined form of Serre [44, Theorem 4]) shows that for any Q> 2, the entire right-hand side of (3-6)
may be replaced by

O.jGkj
�1Q1=2 log.jD.Fk/jQ

deg Fk //DOD.Q
1=2 log Q/COD.Q

1=2 log jD.Fk/j/;

in which the implied constant is absolute and effectively computable. There exists a constant Q0.D/

depending only on D such that the first term is � 1
4

1
.D�1/!

Q.log Q/�1 for all Q�Q0.D/. The second

term is also � 1
4

1
.D�1/!

Q.log Q/�1 if for example Q�Q1.D/.log D.Fk//
˛0 for a constant Q1.D/ and

some fixed ˛0 > 2. This shows that under GRH, for all Q�D .log D.Fk//
˛0 some fixed ˛0 > 2,

�k.Q/��k.Q=2/�D Q= log Q�D jPj: (3-7)

Two tasks remain in order to complete a lower bound for (3-5): (i) to bound D.Fk/ from above, so
that the lower bound Q�D .log D.Fk//

˛0 can be made uniform over k, and (ii) to count

N.k/D jfpjŒOFk
W ZŒ˛k ��gj D !.ŒOFk

W ZŒ˛k ��/� logŒOFk
W ZŒ˛k ��= log logŒOFk

W ZŒ˛k ��:

We note the relation

D.Fk/ŒOFk
W ZŒ˛k ��

2
D Disc.gk/; (3-8)

which holds by [38, Remark 2.25 and equation (8) on p. 38]. (Since gk was assumed to be irreducible
and we are in characteristic zero, then gk is separable and Disc.gk/¤ 0:) Thus for both remaining tasks,
it suffices to bound Disc.gk/ from above, since by (3-8) both

N.k/� log Disc .gk/; log D.Fk/� log Disc .gk/:

Now Disc .gk/ (the resultant of gk.Y / and g0
k
.Y /, as defined in [21, Chapter 13, Proposition 1.1]) is

a polynomial in the coefficients of gk with degree bounded in terms of D. The coefficients of gk are
polynomials in k and the coefficients of G.Y;X/ with degree at most D. Since we only consider k in
the support of W , jkj � B, and the coefficients of gk are�kGkBD . Thus

log Disc .gk/�D log kGkC log B:

In combination with (3-7), we can conclude in (3-5) that for some constant CD ,X
p2P

.�p.k/� 1/�D Q= log Q�CD.log kGkC log B/;
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for all Q � C 0
D

maxf.log kGk/˛0 ; .log B/˛0g for some ˛0 > 2. By taking C 0
D

sufficiently large, we
achieve

P
p2P.�p.k/� 1/� jPj D P . This shows that, conditional on GRH,

P2
X

k2ZnW
fD.k/¤0

G.y;k/D0 solvable

W .k/�
X

kWfD.k/¤0

W .k/

�X
p2P

.�p.k/� 1/

�2

�

X
k

W .k/

�X
p2P

.�p.k/� 1/

�2

:

From here, the remainder of the proof used above for Lemma 1.2 can be repeated, and this completes the
proof of the claim in Remark 1.3.

3.3. Associated variety in unweighted projective space. It is a hypothesis of Theorem 1.1 that the
weighted hypersurface V .F.Y;X//� P.e; 1; : : : ; 1/, defined by F.Y;X/D 0, is nonsingular over C. It
is convenient to relate V .F.Y;X// to a variety in unweighted projective space. We claim that for

F.Y;X/D Y dm
CY .d�1/mf1.X/C � � �Cfd .X/;

then V .F.Y;X//� P.e; 1; : : : ; 1/ is nonsingular if and only if V .F.Ze;X//� Pn is nonsingular. Here,
we again apply the assumption m� 2. Indeed the weighted projective variety is nonsingular if and only
if the only solution of 8̂̂̂̂

<̂̂
ˆ̂̂̂:

F.Y;X/D 0;

@F

@Y
.Y;X/D

d�1P
iD0

fi.X/ �m.d � i/Y m.d�i/�1 D 0;

@F

@Xj
.Y;X/D 0; j D 1; : : : ; n;

(3-9)

on AnC1 is the point P D 0. (By convention we set f0.X/ D 1:) Similarly, the projective variety
V .F.Ze;X// is nonsingular if and only if the only solution of8̂̂̂̂

<̂̂
ˆ̂̂̂:

F.Ze;X/D 0;

@F

@Z
.Ze;X/D

d�1P
iD0

fi.X/ �me.d � i/Zem.d�i/�1 D 0;

@F

@Xj
.Ze;X/D 0; j D 1; : : : ; n;

(3-10)

on AnC1 is the point P D 0. Moreover, note that

@F

@Y
.Y;X/DmY m�1

d�1X
iD0

fi.X/.d � i/Y m.d�i�1/;

@F

@Z
.Ze;X/D emZem�1

d�1X
iD0

fi.X/.d � i/Zem.d�i�1/:

(3-11)
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We will momentarily use this to confirm that if m� 2, a nonzero solution (say P D .y;x/ 2 AnC1) to
(3-9) exists if and only if a solution (namely QD .y1=e;x/ 2 AnC1) to (3-10) exists.

To clarify the role of the assumption m� 2, let us briefly make a general observation. In general, let a
polynomial G.Y;X/ be given as in (1-20) and assume V .G.Y;X//� P.e; 1; : : : ; 1/ is nonsingular; we
may assume e � 2 (since otherwise the variety is already unweighted). Then we claim V .G.Ze;X//

is nonsingular (as a projective variety) if and only if V .G.Y;X//\V .Y / is nonsingular (as a weighted
projective variety). By the chain rule,

@G

@Z
.Ze;X/D eZe�1

�
@G

@Y

�
.Ze;X/:

Observe that

Sing.V .G.Ze;X///D f.z;x/ 2 Pn
W rZ;X G.ze;x/D 0g

D f.0;x/ 2 Pn
W rX G.0;x/D 0g[ f.z;x/ 2 Pn

W rY;X G.ze;x/D 0g

D f.0;x/ 2 Pn
W rX G.0;x/D 0g[∅ (3-12)

under the assumption that V .G.Y;X// is nonsingular. On the other hand, by the Jacobian criterion,

Sing.V .G.Y;X//\V .Y //D f.0;x/ 2 Pn
W rX G.0;x/D 0g:

(Here we have used that G.0;X/ is itself homogeneous in X , so thatrX G.0;X/D0 implies G.0;X/D0

by Euler’s identity.) Since the singular sets are identical, this proves the claim.
Let us apply this in our case with G taken to be the polynomial F.Y;X/, with V .F.Y;X// assumed

to be nonsingular. We consider whether there are any .0;x/ 2 Pn such that rX F.0;x/D 0. Supposing
such .0;x/ exists, it must be the case that .@F=@Y /.0;x/¤ 0, since otherwise .0;x/ would be a singular
point on V .F.Y;X//. If m� 2, then due to the leading factor Y m�1 in (3-11), any point .0;x/2Pn must
lead to .@F=@Y /.0;x/D 0. Consequently there can be no such .0;x), and Sing.V .F.Y;X//\V .Y //

must be empty. Hence by the general argument above, so is Sing.V .F.Ze;X///. In conclusion, if m� 2,
V .F.Y;X// being nonsingular implies V .F.Ze;X// is nonsingular.

However if mD 1, there is no leading factor of Y in (3-11), and indeed at .0;x/, (3-11) evaluates to
fd�1.x/. Thus points .0;x/ for which fd�1.x/¤ 0 and rX F.0;x/D 0 can lead to singular points on
V .F.Y;X//\V .Y / and hence to singular points on F.F.Ze;X//. (Nevertheless, there cannot be too
many singular points, as we will observe in (4-1) below that the singular locus has at most dimension 0.)

In the other direction, suppose that V .F.Ze;X// is nonsingular, so that as computed in (3-12),

Sing.V .F.Ze;X///D f.0;x/ 2 Pn
W rX F.0;x/D 0g[ f.z;x/ 2 Pn

W rY;X F.ze;x/D 0g

is empty. If there were a point .y;x/ in Sing.V .Y;X// then if y D 0 this would produce an element in
the first set on the right-hand side, while if y ¤ 0 then taking z D y1=e (working over C) would produce
a point in the second set on the right-hand side. Thus V .F.Y;X// must be nonsingular (and here we did
not need to apply m� 2).
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Remark 3.2. In the special case that d D 1, then F.Y;X/ D Y m C f1.X/. Thus V .F.Y;X// �

P.e; 1; : : : ; 1/ is nonsingular if and only if V .ZemCf1.X//� Pn is nonsingular, with f1 6� 0 homoge-
neous of degree em. This occurs if and only if V .f1.X// � Pn�1 is nonsingular; in this special case,
the problem we consider falls in the scope of the work in [2, Theorem 1.1], which proves this case of
Theorem 1.1. Our method of proof works regardless, so we allow d D 1 as we continue.

Remark 3.3. Recall the affine hypersurface V � AnC1
C

defined in (1-2) according to the polyno-
mial F.Y;X/. We note that V is irreducible under the conditions of Theorem 1.1. Suppose it is
reducible, so that F.Y;X/DG.Y;X/H.Y;X/ for some nonconstant polynomials. Then F.Ze;X/D

G.Ze;X/H.Ze;X/ so that the projective variety V .F.Ze;X// is reducible. Consequently, by [13,
Lemma 11.1], V .F.Ze;X// is singular, which is a contradiction because by the discussion above,
V .F.Y;X// is nonsingular if and only if V .F.Ze;X// is nonsingular.

3.4. Initial considerations of the sieving set. We suppose that QDB� for some 0< � � 1 to be chosen
later (see (7-4)). We will choose a sieving set

P � ŒQ; 2Q�

comprised of primes with certain properties. In the special case that .e;m/D 1, it is sensible to restrict
our attention to a set P0 of primes in ŒQ; 2Q� such that

(i) p � 1 .mod m/ (recalling m� 2) and

(ii) p � 2 mod e, and

(iii) the reduction of V .F.Y;X// as a weighted variety over Fp is nonsingular.

The first criterion (i) we have used in the proof of the sieve lemma (Lemma 1.2). The second criterion
(ii) ensures that .e;p�1/D 1 so that every y 2 Fp satisfies yD ze for some z 2 Fp . Then for each p 2P ,
we can simply consider the reduction V .F.Ze;X//� Pn

Fp
in place of the weighted variety, so that (iii)

is equivalent to

(iii0) the reduction of V .F.Ze;X//� Pn
Fp

is nonsingular.

By the Chinese remainder theorem and the Siegel–Walfisz theorem on primes in arithmetic progressions,
under the assumption that .e;m/ D 1, there are�m;e Q= log Q primes that satisfy (i) and (ii) in any
dyadic region ŒQ; 2Q�, for all Q sufficiently large. We could then choose the sieving set P0 to be the
subset of such primes for which (iii0) holds; the remaining task is to show there are sufficiently few primes
that violate (iii0).

Recall from Section 3.3 that V .F.Y;X// is nonsingular over C (as a weighted projective variety) if
and only if V .F.Ze;X//� Pn is nonsingular over C. Thus under the hypothesis of Theorem 1.1, the
latter is nonsingular, and consequently there are no nontrivial simultaneous solutions of the system (3-10),
and thus the resultant

r WD Res
�

F;
@F

@Z
;
@F

@X1

; : : : ;
@F

@Xn

�
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of those nC 2 polynomials in nC 1 variables is a nonzero integer. Moreover, by [21, Chapter 13,
Proposition 1.1], r is a polynomial in the coefficients of F with degree bounded in terms of m; e; d . By
[15, Section IV], the reduction Vp.F.Z

e;X// of V .F.Ze;X// modulo p is singular precisely when
pjr , which can only occur for at most !.r/ primes, where

!.r/� log r= log log r �m;e;d log kFk: (3-13)

(Notice that the argument in this paragraph made no assumption on the relative primality of e and m.)
In particular, if .e;m/D 1, then as long as Q is sufficiently large, say Q�m;e;d .log kFk/1Cı0 for

any fixed ı0 > 0 or even Q�m;e;d .log kFk/.log log kFk/, we can conclude that jP0j�m;e;d Q= log Q.
After we choose Q to be a certain power of B (see (7-4)), this will only require a lower bound on B that
is on the order of a power of log kFk, which we will see can be accommodated by the bound on the
right-hand side of our claim in Theorem 1.1.

These remarks all apply in the case that .e;m/ D 1. However, we can also argue more generally
without this assumption, as we demonstrate in the next section, by working not with V .F.Ze;X// as
above, but with a finite collection of varieties Wi , defined according to F. ize;X/ D 0 in Fp, for a
certain primitive root  2 F�p (see Lemma 4.3). Thus we postpone our definition of the sieving set, in
general, until the end of the next section.

4. Estimates for exponential sums

In this section we apply the Weil bound to prove an upper bound for the exponential sum g.u;p/ (see
(1-24)) in the case that u is each of three types: type zero, good, or bad modulo p (Definition 4.1). At the
end, in Section 4.2 we then define the sieving set P .

We note the multiplicativity condition

g.u;pq/ WD
X

a mod pq

.�p.a/� 1/.�q.a/� 1/epq.ha;ui/D g. Nqu;p/g. Npu; q/;

where q Nq � 1 mod p, and p Np � 1 mod q. This leads us to study the key exponential sums with prime
modulus:

g.u;p/ WD
X
a2Fn

p

.�p.a/� 1/ep.ha;ui/:

Let p be a fixed prime of good reduction for F.Ze;X/, so that V .F.Ze;X//� Pn
Fp

is a nonsingular
projective hypersurface. For any point P 2 V .F.Ze;X//, let TP � Pn

Fp
denote the projective tangent

space to V .F.Ze;X// at P . A linear space L is tangent to V .F.Ze;X// at P if TP � L; if L is a
hyperplane, this is equivalent to P being a singular point of V .F.Ze;X//\L (see [20, p. 57]).

Given u 2 Zn with u 6� 0 .mod p/, if V .hX ;ui/ � Pn
Fp

is not tangent to V .F.Ze;X// at any point
(i.e., they intersect transversely), we simply say V .hX ;ui/ is not tangent to V .F.Ze;X//; otherwise,
we will say they are tangent (and as we will discuss below in (4-1), there are at most finitely many points
at which they are tangent).
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Using this terminology, we will classify u 2 Zn in terms of three cases:

Definition 4.1. For u 2 Zn and p 2 P we say that:

(i) u is of type zero mod p if u� 0 .mod p/,

(ii) u is good mod p if u 6� 0 .mod p/ and V .hX ;ui/� Pn
Fp

is not tangent to V .F.Ze;X//� Pn
Fp

,

(iii) u is bad mod p if u 6� 0 .mod p/, and V .hX ;ui/� Pn
Fp

is tangent to V .F.Ze;X//� Pn
Fp

.

(The fact that we define these types in relation to V .F.Ze;X//, is justified by Lemma 4.4, below.) The
main result of this section is the following:

Proposition 4.2. Assume that p > 2 is a prime of good reduction for F.Ze;X/, that is V .F.Ze;X//�

Pn
Fp

is nonsingular.

(i) If u is type zero modulo p then g.u;p/� pn�1=2;

(ii) If u is good modulo p then g.u;p/� pn=2;

(iii) If u is bad modulo p then g.u;p/� p.nC1/=2.

The implied constants can depend on n;m; e; d , but are independent of kFk;u;p.

In a final step of the proof, we will apply the property that if V .F.Ze;X//� Pn is nonsingular, any
hyperplane L has

dimfP 2 V .F.Ze;X// W TP �Lg D dim.Sing.V .F.Ze;X//\L//� 0: (4-1)

Here, by dim.Sing.V // we mean the dimension of the singular locus of a variety V � Pn. We will apply
this in (4-3) over Fp for p a prime of good reduction for F.Ze;X/. The result (4-1) is a special case of
Zak’s theorem on tangencies as in [20, Theorem 7.1, Remark 7.5], valid over any algebraically closed
field, or [33, Lemma 3], valid over any perfect field. More simply, in our setting (4-1) can be shown
directly, and we do so in Remark 4.5.

As preparation for proving Proposition 4.2, we transform g.u;p/ into an exponential sum over solutions
to F.y; a/D 0 by writing

g.u;p/D
X
a2Fn

p

�p.a/ep.ha;ui/�
X
a2Fn

p

ep.ha;ui/

D�ıuD0 �p
n
C

X
a2Fn

p

ep.ha;ui/
X
y2Fp

F.y;a/D0

1

D�ıuD0 �p
n
C

X
.y;a/2F

nC1
p

F.y;a/D0

ep.ha;ui/;
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where ıuD0 D 1 if u� 0 .mod p/ and is 0 otherwise. The task now is to estimate the sum

g.u;p/C ıuD0 �p
n
D

X
.y;a/2F

nC1
p

F.y;a/D0

ep.ha;ui/:

A barrier to doing this efficiently is that the polynomial F.Y;X/ is not homogeneous (see Remark 4.6).
Recall the definition of F.Y;X/ in (1-1), and recall the integer e � 1 fixed in that definition. As a first
step, we prove:

Lemma 4.3. Fix a prime p > 2. Let f D .e;p�1/, and let  2 F�p be a primitive f-th root of unity. Then

X
(y;a/2W

ep.ha;ui/D
1

f

f�1X
iD0

X
(z;a/2Wi

ep.ha;ui/;

where

W D f.y; a/ 2 FnC1
p W F.y; a/D 0g;

Wi D f.z; a/ 2 FnC1
p W F. ize; a/D 0g; for i D 0; : : : ; f � 1:

(This lemma replaces the remarks in Section 3.4 that applied in the special case .e;p� 1/D 1.)

Proof. We start by claiming that for any y 2 F�p there exists an unique i 2 f0; : : : ; f �1g and some z 2 F�p

such that y D  ize: we write e D `k where

.`; q/D 1 for any q j.p� 1/; k D
e

`
:

Note that then f jk and also there exists some integer N such that kj.f N /. Since  is a generator for
the group F�p =F

�f
p , then for any y 2 F�p there exists an unique i 2 f0; : : : ; f � 1g and z1 2 F�p such that

yD  iz
f
1

. On the other hand, we can apply the same principle to z1, finding an unique j 2 f0; : : : ; f �1g

and z2 2 F�p such that z1 D 
j z
f
2

. Thus, y D  iz
f
1
D  i. j z

f
2
/f D  iz

f 2

2
. Iterating this process N

times, we can find zN 2 F�p such that y D  iz
fN

N
with kjf N . Then, y D  i.z

fN =k
N

/k . On the other
hand, since .`;p�1/D 1, we have that z

fN =k
N

D z` for some z 2 F�p , so that y D  iz`k D  ize and this
proves the claim. Moreover, note that once we have obtained z such that y D  ize then we can multiply
z by any f-th root of unity, so that there are f such values z.

Next, for any i 2 f0; : : : ; f � 1g we can consider the map

'i WWi �!W .z; a/ 7! . ize; a/:

From this, we deduce that if .y; a/ is in the image of 'i then

j'�1
i .y; a/j D

�
f if y ¤ 0;

1 if y D 0:

On the other hand, if .0; a/ 2W , then .0; a/ 2Wi for each of i D 0; : : : ; f � 1. The result follows. �
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When we apply Lemma 4.3 it will be convenient to treat all cases analogously as i varies; to do so we
will employ the following lemma.

Lemma 4.4. Fix e � 1 and recall F.Y;X/ from (1-1). Let p be a prime, and let u 2 F
n

p. Then for any
˛ 2 F

�

p the variety V .F.˛Ze;X//\V .hX ;ui/�Pn
Fp

is isomorphic to V .F.Ze;X//\V .hX ;ui/�Pn
Fp

.
In particular, for uD 0, we conclude V .F.˛Ze;X//� Pn

Fp
is isomorphic to V .F.Ze;X//� Pn

Fp
.

Proof. Let ˇ 2 F
�

p be such that ˇe D ˛. Then the change of variables .Z;X/ 7! .ˇZ;X/ induces an
isomorphism between V .F.Ze;X//\V .hX ;ui/ and V .F.˛Ze;X//\V .hX ;ui/. �

4.1. Proof of Proposition 4.2. We are now ready to prove our main result of this section, Proposition 4.2.
In the following, we denote f D .e;p� 1/. An application of Lemma 4.3 leads to

g.u;p/D�ıuD0pn
C

1

f

f�1X
iD0

X
.z;a/2Wi

ep.ha;ui/: (4-2)

4.1.1. Type zero case. Assume u� 0 .mod p/. The right-hand side of (4-2) becomes

g.0;p/D�pn
C

1

f

f�1X
iD0

X
.z;a/2Wi

1D�pn
C

1

f

f�1X
iD0

jWi j:

By definition, for any i D 0; : : : ; f � 1 the set Wi is the set of the Fp-points on the affine variety
V .F. iZe;X//� AnC1

Fp
. By hypothesis, p is of good reduction for V .F.Ze;X//, so V .F.Ze;X//�

Pn
Fp

is nonsingular. Then by Lemma 4.4, we have that V .F. iZe;X//�Pn
Fp

is a nonsingular variety for
each i D 0; : : : ; f �1 (and in particular is absolutely irreducible over Fp), and certainly V .F. iZe;X//

is defined over Fp. Thus the Lang-Weil bound [35] implies that (counting projectively)

jV .F. iZe;X//.Fp/j D pn�1
COm;e;d .p

n�1�1=2/ for each i D 0; : : : ; f � 1;

so that jWi j D pnCOm;e;d;.p
n�1=2/ for each i D 0; : : : ; f � 1. Thus we may conclude that g.0;p/�

pn�1=2.

4.1.2. Good/bad case. Assume u ¤ 0 .mod p/; we may initially argue the good and the bad cases
together. The right hand side of (4-2) becomes

g.u;p/D
1

f

f�1X
iD0

X
.z;a/2Wi

ep.ha;ui/:

In either the good or the bad case, it suffices to estimate each sum

gi.u;p/D
X

.z;a/2Wi

ep.ha;ui/; for i D 0; ::; f � 1:
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First we prove that for any ˛ 2 F�p , gi.u;p/D gi.˛u;p/. Indeed

gi.˛u;p/D
X

.z;a/2Wi

ep.ha; ˛ui/D
X

.z;a/2F
nC1
p

F. i ze;a/D0

ep.ha; ˛ui/

D

X
.z;a/2F

nC1
p

F. i ze;a/D0

ep.h˛a;ui/D
X

.t;b/2F
nC1
p

˛med F. i te;b/D0

ep.hb;ui/

D

X
.t;b/2F

nC1
p

F. i te;b/D0

ep.hb;ui/D gi.u;p/;

where in the fourth step we use the change of variables .z; a/D .˛t; ˛b/, for ˛˛ � 1 .mod p/. Hence

.p�1/gi.u;p/D
X
˛2F�p

gi.˛u;p/

D

X
˛2F�p

X
.z;a/2F

nC1
p

F. i ze;a/D0

ep.ha; ˛ui/

D

X
.z;a/2F

nC1
p

F. i ze;a/D0

X
˛2F�p

ep.˛ha;ui/D
X

.z;a/2F
nC1
p

F. i ze;a/D0

X
˛2Fp

ep.˛ha;ui/�
X

.z;a/2F
nC1
p

F. i ze;a/D0

1

Dp.p�1/
ˇ̌
.V .F. iZe;X//\V .hu;Xi//.Fp/

ˇ̌
� .p�1/

ˇ̌
V .F. iZe;X/.Fp/

ˇ̌
C .p�1/;

where in the last step we have passed to counting points over Fp in the projective sense. Applying [32,
Appendix by N. Katz, Theorem 1], we have that

jV .F. iZe;X//.Fp/j D

n�1X
jD0

pj
COn;m;e;d .p

nCıi
2 /;

j.V .F. iZe;X//\V .hu;Xi//.Fp/j D

n�2X
jD0

pj
COn;m;e;d .p

n�1Cıi;u
2 /;

where ıi D dim.Sing.V .F. iZe;X//// and ıi;u D dim.Sing.V .F. iZe;X//\V .hu;Xi///.
On the other hand, Lemma 4.4 implies that ıi D ı0 and ıi;u D ı0;u for each i . Moreover, ı0 D �1

since we are assuming that p is of good reduction for V .F.Ze;X//. Thus, we obtain

gi.u;p/DO.p
nC1Cı0;u

2 /; (4-3)

with an implicit constant depending only on n;m; e; d . Finally, by (4-1),

ı0;u D

�
0 if V .hu;Xi/ is tangent to V .F.Ze;X//;

�1 otherwise;
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and this completes the proof of the good and bad cases in Proposition 4.2.

Remark 4.5. This remark justifies (4-1). Let V D V .H.X//� Pn be a nonsingular hypersurface and
LD V .ha;Xi/ be a hyperplane. We may suppose without loss of generality that a1¤ 0. By the Jacobian
criterion, Sing.V \L/ is the set of points on the intersection V \L for which the .nC 1/� 2 matrix
with columns rH and a has rank 1. Consequently, Sing.V \L/�W where

W D V \V .g2/\ � � � \V .gn/;

in which for each i D 2; : : : ; n,

gi.X/D a1

@H

@Xi
.X/� ai

@H

@X1

.X/:

On the other hand, W \ V .@H=@X1/ D Sing.V / D ∅ under the hypothesis that V is nonsingular.
Consequently, dim W � 0, implying dim.Sing.V \L//� 0, as desired.

Remark 4.6. It is worth remarking what we have gained from the arguments in this section. Briefly,
suppose u 6� 0 .mod p/ and consider

g.u;p/D
X

.y;a/2F
nC1
p

F.y;a/D0

ep.ha;ui/:

To work directly with this sum rather than passing through the dissection into the components Wi as
we did above, we would first need to homogenize the polynomial F.Y;x/, say defining a homogeneous
polynomial

QF .T;Y;X/D T md.e�1/Y md
C � � �CT m.e�1/Y mfd�1.X/Cfd .X/:

(Here we suppose that e � 2 for this example.) Then observe that Œ1 W 0 W � � � W 0� is a singular point on
V . QF .T;Y;X//� PnC1. Consequently, if one proceeded to estimate g.u;p/, roughly analogous to the
approach in (4-3), by counting points on the complete intersection described by

V . QF .T;Y;X//\V .hu;Xi/\V .T D 1/;

the role of ı0;u in the exponent is now played by a dimension that is always at least 0, ultimately leading
to a result that is larger by a factor of p1=2 than the results we obtain in Proposition 4.2.

4.2. Choice of the sieving set. We can now continue the discussion initiated in Section 3.4, and choose
the sieving set. We suppose that QDB� for some 1=2� � � 1 to be chosen later (see (7-4)). We choose
the sieving set

P � ŒQ; 2Q�

comprised of all primes in this range such that (i) p� 1 .mod m/ (recalling m� 2), and (iii0) the reduction
V .F.Ze;X//� Pn

Fp
is nonsingular.
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By the Siegel–Walfisz theorem on primes in arithmetic progressions, there are�m Q= log Q primes
such that p � 1 .mod m/ in any dyadic region ŒQ; 2Q�, for all Q�m 1 sufficiently large, which we
assume is a condition met henceforward. We recall from (3-13) that at most Om;e;d .log kFk/ primes fail
(iii0). We henceforward assume that

Q�m;e;d .log kFk/.log log kFk/ (4-4)

for an appropriately large implied constant, so that consequently

P D jPj �m Q= log Q�Cm;e;d .log kFk/�m;e;d Q= log Q: (4-5)

When we finally choose Q as a power of B, (4-4) will impose a lower bound on B; we defer this to (7-4).

5. Estimating the main sieve term: the bad-bad case

This section is the technical heart of the paper. We show how to bound the most difficult contribution to
the sieve, which occurs when u is bad with respect to two primes p ¤ q 2 P . (We reserve the treatment
of all other cases, when u is either type zero, or good with respect to at least one of these primes, to
Section 7; these remaining cases are significantly easier.)

We recall from the sieve lemma, Lemma 1.2, that S.F;B/ is bounded above by a sum of three terms.
The first two terms can be bounded simply:X

kWfd .k/D0

W .k/C
1

P

X
k

W .k/� Bn�1
CBnP�1: (5-1)

Here the first term follows from the Schwartz-Zippel trivial bound�n;e;d Bn�1 for the number of zeroes
of fd with k 2 supp.W /, since fd 6� 0 (see, e.g., [27, Theorem 1], which as mentioned before has a
method of proof that applies even if fd is not absolutely irreducible). We will call the remaining, third,
term on the right-hand side of the sieve lemma the main sieve term.

Now we are ready to estimate the main sieve term, which after an application of Poisson summation
inside the definition (1-23) of T .p; q/ is

1

P2

X
p;q2P
p¤q

jT .p; q/j D
1

P2

X
p;q2P
p¤q

�
1

pq

�n ˇ̌̌̌X
u

OW

�
u

pq

�
g.u;pq/

ˇ̌̌̌

�
1

P2Q2n

X
p;q2P
p¤q

X
u

ˇ̌̌̌
OW

�
u

pq

�
g.u;pq/

ˇ̌̌̌
: (5-2)

We will apply Proposition 4.2 to bound g.u;pq/, according to the “type” of u modulo p and q, respectively;
this leads to cases we can abbreviate as zero-zero, zero-good, zero-bad, good-good, good-bad, and bad-bad.
Unsurprisingly, the greatest difficulty is to bound the contribution of the bad-bad case, and we focus on
this first, returning to the other cases in Section 7.
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Recall that W is a nonnegative function with W .u/D w.u=B/ for an infinitely differentiable, non-
negative function w that is � 1 on Œ�1; 1� and vanishes outside of Œ�2; 2�. Thus OW .u/D Bn Ow.Bu/ and
Ow.u/ has rapid decay in u, so that

j OW .u/j � Bn
nY

iD1

.1Cjui jB/
�M (5-3)

for any M � 1; we will for example specify a lower bound on M at (5-22) and can certainly always
assume M � 2n. In particular, we will later apply the fact that for any B;L� 1,X

u2Zn

j OW .u=L/j �maxfBn;Ln
g: (5-4)

5.1. The dual variety. To consider any bad case, it is useful to consider certain facts about the dual
variety. Recall that m� 2 and d; e � 1, and

F.Y;X/D Y md
CY m.d�1/f1.X/C � � �Cfd .X/; (5-5)

in which for each 1� i � d , fi is a polynomial in ZŒX1; : : : ;Xn� with degfi Dm � e � i . By hypothesis,
the variety defined by F.Y;X/D 0 in weighted projective space, denoted V .F.Y;X//�PC.e; 1; : : : ; 1/,
is nonsingular. Recall from Section 3.3 that V .F.Y;X//� PC.e; 1; : : : ; 1/ is nonsingular if and only if
V .F.Ze;X//� Pn

C
is nonsingular. The dual variety V � D V .F.Ze;X//� � Pn

C
of a hypersurface is a

hypersurface. We denote by

G.UY ;U1; : : : ;Un/ (5-6)

the irreducible homogeneous polynomial such that V .G/D V � (see, e.g., [13, Proposition 11.2, Appen-
dix]). Recall that deg F.Ze;X/Dmde; by [19, Proposition 2.9],

deg G Dmde.mde� 1/n�1
� 2:

In our analysis of the bad-bad case in Section 5.2, our strategy is to divide our analysis depending on
whether u has the property G.0;u/¤ 0 or G.0;u/D 0. In the first case, we now show via an explicit
constructive argument that

jfp W u is bad modulo pgj �n;m;e;d log.kFkkuk/: (5-7)

Let us prove this. A given u has the property G.0;u/¤ 0 if and only if the hyperplane V .hu;Xi/�Pn
C

is not tangent to V .F.Ze;X//� Pn
C

; that is, if and only if for any Œz W x� 2 V .F.Ze;X//\V .hX ;ui/,
the matrix 0BBBB@

@F
@Z
.ze;x/ 0

@F
@X1

.ze;x/ u1

:::
@F
@Xn

.ze;x/ un

1CCCCA (5-8)
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has maximal rank (i.e., at least one 2 � 2 minor is nonvanishing). Now define nC 2 polynomials in
Z;X1; : : : ;Xn, with integral coefficients (depending on u) as follows: set

H0;u.Z;X/D F.Ze;X/; HnC1;u.Z;X/D hX ;ui;

and for 1� i � n set

Hi;u.Z;X/D

8̂̂̂̂
<̂
ˆ̂̂:

det

 
@F
@Z
.ze;x/ 0

@F
@X1

.ze;x/ u1

!
for i D 1;

det

 
@F
@Xi�1

.ze;x/ ui�1

@F
@Xi
.ze;x/ ui

!
for 2� i � n:

Then define the resultant (see [21, Chapter 13])

R.u/D Res.H0;u;H1;u; : : : ;HnC1;u/: (5-9)

The following are all equivalent:

(1) u has the property that V .hu;Xi/ is tangent to V .F.Ze;X//.

(2) For some Œz W x� 2 V .F.Ze;X//\V .hX ;ui/, (5-8) has rank < 2.

(3) The polynomials Hi;u.Z;X/ (for 0� i � nC 1) share a common (nonzero) root.

(4) R.u/D 0.

Now we consider the analogues of these statements for each p. Fix a prime p. For a polynomial
L2ZŒU �, let L denote its reduction modulo p. By definition, u is bad modulo p precisely when H i;u (for
0� i � nC1) have a common nontrivial root modulo p, that is if and only if pjRes.H 0;u; : : : ;H nC1;u/.
By [15, Section IV], as a polynomial in U ,

Res.H 0;U ; : : : ;H nC1;U /DR.U /;

where R is defined as in (5-9). (That is, the resultant of the reductions modulo p is the reduction modulo
p of the resultant.) Thus for each u such that G.0;u/¤ 0 so that R.u/¤ 0, we can conclude thatˇ̌

fp W u is bad modulo pg
ˇ̌
D !.Res.H0;u; : : : ;HnC1;u//;

where !.r/ indicates the number of distinct prime divisors of an integer r ; we recall in particular
that !.r/� .log r/=.log log r/. By [21, Chapter 13, Proposition 1.1], the resultant is a homogeneous
polynomial in the coefficients of the forms H0;u; : : : ;HnC1;u (with degree bounded in terms of n;m; e; d ).
Thus, for every value of u such that G.0;u/¤ 0 so that Res.H0;u; : : : ;HnC1;u/ is a nonzero integer,

!.Res.H0;u; : : : ;HnC1;u//�n;m;e;d log.kFkkuk/: (5-10)

Finally, if G.0;u/D 0, then the hyperplane V .hu;Xi/� Pn
C

is tangent to V .F.Ze;X//� Pn
C

so that
(5-8) has rank 1 over C; consequently u is bad for all primes p. Thus in this latter case, we will instead
focus on showing there are sufficiently few solutions to G.0;u/D 0.
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Remark 5.1. It is a common occurrence that one requires the fact that there are “quite few” primes of
bad reduction for a variety of the form V \ fu0X0C � � �unXn D 0g for some variety V and parameter
.u0;u1; : : : ;un/ of interest, in this case V .G/ with G describing the dual of F , and u0 D 0. The fact
that our result (5-7) depends only logarithmically on kFk is important for our ultimate deduction that
the implicit constant in Theorem 1.1 is independent of kFk; see the application in Section 5.2.1. This
motivated the explicit argument we gave above. Alternatively, we thank Per Salberger for pointing out
that the useful references [17, pp. 95–98] and [18] also provide similar constructions leading to explicit
results of the form (5-10) and hence (5-7). We remark that if we did not require logarithmic dependence
on kFk, one could apply a result such as [13, Proposition 11.5(3), Appendix] to conclude immediately
that for all sufficiently large primes (in an inexplicit sense), u is bad modulo p precisely when pjG.0;u/

(so that jfp W u is bad modulo pgj �G log kuk when G.0;u/¤ 0), but with dependence on G and hence
on F that has not been made explicit, and so does not immediately suffice for our application.

5.2. Bad-bad case. We use the above facts to control the contribution of the bad-bad case to the sieve,
which by Proposition 4.2 is bounded by

1

P2Q2n

X
p;q2P
p¤q

X
u2Zn

u bad mod p
u bad mod q

ˇ̌̌̌
OW

�
u

pq

�
g.u;pq/

ˇ̌̌̌
�

QnC1

P2Q2n

X
p;q2P
p¤q

X
u2Zn

u bad mod p
u bad mod q

ˇ̌̌̌
OW

�
u

pq

�ˇ̌̌̌
:

(5-11)

We start by exchanging the order of summation between u and the primes p; q, and then splitting the
sum as X

u2Zn

X
p;q2P
p¤q

u bad mod p
u bad mod q

ˇ̌̌̌
OW

�
u

pq

�ˇ̌̌̌
D

X
u2Zn

G.0;u/D0

X
p;q2P
p¤q

u bad mod p
u bad mod q

C

X
u2Zn

G.0;u/¤0

X
p;q2P
p¤q

u bad mod p
u bad mod q

:

In this section, we will prove that the contribution from G.0;u/¤ 0 isX
u2Zn

G.0;u/¤0

X
p;q2P
p¤q

u bad mod p
u bad mod q

ˇ̌̌̌
OW

�
u

pq

�ˇ̌̌̌
�n;m;e;d Q2n.log B/2: (5-12)

On the other hand, we will prove that the contribution from G.0;u/D 0 is

X
u2Zn

G.0;u/D0

X
p;q2P
p¤q

u bad mod p
u bad mod q

ˇ̌̌̌
OW

�
u

pq

�ˇ̌̌̌
�" P2

�
Q2nB�˛.M�1/

CBn

�
Q2

B1�˛

�n�2C 1
3
C"�

; (5-13)

for a small 0< ˛ < 1 of our choice, and any " > 0. Once we have proved these two inequalities, we will
wrap up the contribution of the bad-bad case in Section 5.2.3.
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5.2.1. The case G.0;u/¤ 0. Proving (5-12) is quite simple; by the decay (5-3) for OW and the bound
(5-10) for counting p; q,X

u2Zn

G.0;u/¤0

X
p;q2P
p¤q

u bad mod p
u bad mod q

ˇ̌̌̌
OW

�
u

pq

�ˇ̌̌̌
� Bn

X
u2Zn

G.0;u/¤0

nY
iD1

�
1C

Bjui j

Q2

��M

!.R.u//2

� Bn
X

u2Zn

nY
iD1

�
1C

Bjui j

Q2

��M

.log.kFkkuk//2

�n;m;e;d Q2n.log B/2:

Here we have used the fact that Q D B� with 1=2 � � � 1 (so that Q2n � Bn), and the fact from
Lemma 2.1 that in the only case we need to consider, log kFk�m;e;d log B. This proves (5-12) with an
implied constant independent of kFk.

5.2.2. The case G.0;u/D 0. Proving (5-13) is a key novel aspect of our proof. Note that if G.0;u/D 0,
then u is bad mod p for all p 2 P . ThenX

u2Zn

G.0;u/D0

X
p;q2P
p¤q

u bad mod p
u bad mod q

ˇ̌̌̌
OW

�
u

pq

�ˇ̌̌̌
� BnP2

X
u2Zn

G.0;u/D0

nY
iD1

�
1C

Bjui j

Q2

��M

: (5-14)

Let 0< ˛ < 1 be a parameter to be chosen later and consider the cube

C˛ D Œ�Q2=B1�˛;Q2=B1�˛ �n � Rn:

This is slightly larger than the “essential support” of the sum over u, so that outside this box we can
exploit decay more efficiently. We will ultimately prove thatX

u2Zn

G.0;u/D0

nY
iD1

�
1C

Bjui j

Q2

��M

�" Q2nB�nB�˛.M�1/
C

�
Q2

B1�˛

�n�2C1=3C"

; (5-15)

for any " > 0. We split the sum asX
u2C˛\Zn

G.0;u/D0

nY
iD1

�
1C

Bjui j

Q2

��M

C

X
u…C˛\Zn

G.0;u/D0

nY
iD1

�
1C

Bjui j

Q2

��M

: (5-16)

In the second sum in (5-16), we can exploit decay:X
u…C˛

G.0;u/D0

nY
iD1

�
1C

Bjui j

Q2

��M

�

nX
jD1

X
u2Zn

G.0;u/D0

juj j>Q2=B1�˛

nY
iD1

�
1C

Bjui j

Q2

��M

�

�
Q2

B

�n
1

B˛.M�1/
:
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The contribution of these u to (5-14) is thus�Q2nP2B�˛.M�1/ for 0< ˛ < 1 and any M � 2n; this
contributes the first term in (5-13).

It remains to deal with the first sum appearing on the right-hand side of (5-16), summing over u 2 C˛
such that G.0;u/D 0. Here we show that there are few solutions to G.0;u/D 0. Recall the definition
of the form G from Section 5.1. Consider V .G.0;U // � Pn�1 defined by G.0;U /D 0 as a function
of U . (First notice that G.0;U / is not identically zero; indeed, if it were then we would conclude that
fUY D 0g � fG.UY ;U1; : : : ;Un/D 0g. Recalling that G.UY ;U / is irreducible, both these projective
varieties have dimension n� 1 so that in fact we must have fG D 0g D fUY D 0g. But this is impossible,
since G has degree > 1.) Thus V .G.0;U // � Pn�1

C
is a projective variety of dimension n � 2 and

deg G.0;U /D deg G.UY ;U / � 2. Moreover, let us decompose G.0;U / into irreducible components,
i.e., by writing

G.0;U /D

LY
`D1

G`.U /; (5-17)

where G`.U / is an irreducible polynomial for each ` � L (and L�n;m;e;d 1). Set d` WD deg G`. We
have X

u2C˛\Zn

G.0;u/D0

nY
iD1

�
1C

Bjui j

Q2

��M

�

X
u2C˛\Zn

G.0;u/D0

1�

LX
`D1

X
u2C˛\Zn

G`.u/D0

1:

In the next section, we shall prove:

Proposition 5.2. Let n� 3. For the homogeneous polynomial G.UY ;U1; : : : ;Un/ 2 CŒUY ;U1; : : : ;Un�

defined in (5-6), G.0;U1; : : : ;Un/ contains no linear factor, that is, we cannot write G.0;U / D

L.U / QH .U / for any linear form L.U / 2 CŒU1; : : : ;Un�.

Remark 5.3. As a consequence of Proposition 5.2, G.0;U1; : : : ;Un/ contains no factor in one or two
variables. For suppose that in the notation of (5-17) some factor G`.U / (after an appropriate GLn.C/

change of variables) can be written as a polynomial g1.U1/ or g2.U1;U2/. Then g1.U1/ is a monomial,
hence a product of linear factors, contradicting the proposition. Alternatively, any form g2.U1;U2/

factors over C into homogeneous linear factors in U1;U2, as a consequence of the fundamental theorem
of algebra applied to g2.1; t/ 2 CŒt �, followed by noting g2.U1;U2/D U

deg g2

1
g2.1;U2=U1/. This again

would contradict the proposition. (Since the statement of Proposition 5.2 is false if nD 2, see Remark 5.4
for an alternative approach for nD 2.)

The crucial point is that Proposition 5.2 implies that for each `D 1; : : : ;L the degree d` � 2 (and G`

depends on at least 3 variables). By [27, Theorem 2] and [41, Theorem A], we have, for any " > 0,

X
u2C˛\Zn

G`.u/D0

1�"

(
.Q2=B1�˛/n�2C" if d` D 2;

.Q2=B1�˛/
n�2C 1

d`
C" if d` > 2:

(5-18)

Within these results, the implied constant is independent of kFk in each case. In particular, we may
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conclude that for each `D 1; : : : ;L,

X
u2C˛\Zn

G`.0;u/D0

1�"

�
Q2

B1�˛

�n�2C 1
3
C"

:

Thus the total contribution of these terms to (5-14) is

�" BnP2

�
Q2

B1�˛

�n�2C 1
3
C"

:

This contributes the second term in (5-13), and hence (5-13) is proved.

5.2.3. Conclusion of the bad-bad sieve term. From (5-12) and (5-13) we conclude that the total contribu-
tion of the bad-bad case (5-11) to the sieve is

QnC1

P2Q2n

�
Q2n.log B/2CQ2nP2B�˛.M�1/

CBnP2

�
Q2

B1�˛

�n�2C 1
3
C"�

�"0 Q
n

�
QP�2.log B/2CQB�˛.M�1/

C

�
B

5
3
Cg.˛/C"0

Q
7
3
C"0

��
; (5-19)

where g.˛/D ˛
�
n� 5

3
C "0

�
, for any "0 > 0. To simplify the third term above, henceforward we assume

QD B� with
3
4
� � � 1: (5-20)

Then the above is

�"0 Q
n.QP�2.log B/2CQB�˛.M�1/

CB�
1

12
Cg.˛/C"0/; (5-21)

for any "0 > 0. In the first term on the right-hand side, we observe by (4-5) that P �Q= log Q so that

QP�2.log B/2�Q�1.log B/4� B�3=4.log B/4:

In the second term, we can choose ˛D 1
24
.n� 5

3
C "0/�1 so g.˛/D 1

24
, and set M �maxf2n; ˛�1C1g.

Regarding the third term, so far this is true for any "0 > 0; let us take "0 D 1=100, say. We conclude that

QnC1

P2Q2n

X
u2Zn

G.0;u/D0

X
p;q2P
p¤q

u bad mod p
u bad mod q

ˇ̌̌̌
OW

�
u

pq

�ˇ̌̌̌
�Qn

�
B�3=4.log B/4CQB�1

CB�
1

24
C 1

100

�
�Qn; (5-22)

since B � Q. The implied constant is independent of kFk. (Here we could even obtain a term that
is o.Qn/, but this will not change our main theorem, since the good-good contribution to the sieve is
O.Qn/.) This completes the treatment of the bad-bad contribution to the sieve, except for the proof of
Proposition 5.2, which we provide in the next section. Then in Section 7 we show that the contributions
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of all the other types to the sieve are also dominated by�Qn, and then conclude the proof of our main
theorem.

Remark 5.4 (the case nD 2). The method of this paper applies for nD 2 up until Proposition 5.2; arguing
as in Remark 5.3 shows that G.0;U1;U2/ factors over C into homogeneous linear factors in U1;U2, so
that proposition is false for n D 2. Thus in the nomenclature of (5-17), each degree d` D 1, and the
estimate (5-18) is replaced by .Q2=B1�˛/n�1. Thus (5-19) is replaced by

Qn
�
QP�2.log B/2CQB�˛.M�1/

CB.n�1/˛C1Q�1
�
�QnC1;

upon taking ˛ D 0 and using Q� B1=2. Ultimately, arguing in this way for nD 2 leads to the choice
QD B1=2.log B/1=2 and the outcome S.F;B/� Bn�1C1=2.log B/1=2, which is essentially no better
than (1-16), aside from the fact that we can remove the dependence on kFk in the implicit constant. In
any case, Broberg’s results (1-14) and (1-15) supersede the outcome of the methods of this paper for
nD 2; 3.

6. Proof of Proposition 5.2

In this section we prove the critical Proposition 5.2 that allows us to deduce all factors in G.0;U / have at
least degree 2, so that we can apply the nontrivial bounds of Heath-Brown and Pila in (5-18). We thank
Per Salberger for suggesting the following strategy to prove the proposition.

Let n� 3. Suppose to the contrary that G.0;U / contains a linear factor, that is,

G.0;U /DL.U / QH .U / (6-1)

for some linear form L. Then by a linear change of variables we can reduce to the case in which we may
assume that L.U /D U1, and conclude that

G.0;U /D U1H.U /

for some homogeneous polynomial H . Then any point .0; 0;u2; : : : ;un/2 fUY DU1D 0g �Pn satisfies
G.0;U /D 0 and thus defines a tangent hyperplane to V .F.Ze;X//� Pn, given by

u2X2C � � �CunXn D 0:

In particular, for all Œu2 W � � � W un� 2Pn�2, this hyperplane contains the line ` given by X2D � � � DXnD 0

in Pn. We note that this line ` is not contained in V .F.Ze;X//, since for example in the coordinates
ŒUY W U1 W U2 W � � � W Un� we see that the point Œ1 W 0 W 0 W � � � W 0� 2 ` but Œ1 W 0 W 0 W � � � W 0� 62 V , since in
the definition of F the coefficient of Zmde is 1. Thus under the assumption (6-1) we have shown that
the generic hyperplane through ` is tangent to V .F.Ze;X//. We will see this is impossible, and our
assumption (6-1) is false (so that Proposition 5.2 is verified), by the following proposition.

Proposition 6.1. Let n� 3. Let X � Pn be a nonsingular hypersurface and let ` be a line not contained
in X . Then the generic hyperplane in Pn containing ` is not tangent to X .
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Let X be given as in the proposition. Without loss of generality we can make a change of coordinates
so that

`D fX2 D � � � DXn D 0g:

Let F 2 CŒX0;X1; : : : ;Xn� be such that X D fF D 0g, and let D denote the degree of F . Our strategy is
to construct the blow-up of X along the zero-dimensional subvariety Z �X , where we define

Z D `\X � Pn:

Under the hypothesis that ` is not contained in X , then deg Z �D. We also define the open set

U WDX nZ:

To prove the proposition, we first notice that we can parametrize the hyperplanes containing ` in Pn by
points in Pn�2 using the map

Pn�2
! fH � Pn

W deg H D 1; `�H g; Œv2 W � � � W vn� 7! fv2X2C � � �C vnXn D 0g:

Thus, it will suffice to show that there exists an open set V �Pn�2 such that for all vD Œv2 W � � � W vn� 2 V ,

X \fv2X2C � � �C vnXn D 0g

is smooth, so that in particular the hyperplane fv2X2C� � �CvnXnD 0g �Pn is not tangent to X . We will
prove this in two steps, first focusing on the intersection of the hyperplane with the open set U DX nZ,
and then focusing on the intersection of the hyperplane with the finite set of points in Z. In agreement
with the citations we apply in what follows, from now on we will use the terminology “regular” for a
scheme instead of “smooth.” For a nonsingular hypersurface such as X , these notions are identical by
the Jacobian criterion [36, Chapter 4, Theorem 2.19 and Example 2.10]; more generally, the notions are
equivalent for any algebraic variety over a perfect field, and in particular over C [36, Chapter 4, Corollary
3.33].

Define a rational map ' WX Ü Pn�2 given by

' W ŒX0 WX1 WX2 W � � � WXn� 7! ŒX2 W � � � WXn�:

This is a regular map on U . We claim that there exists a projective variety QY and two morphisms
� W QY !X , and Q' W QY ! Pn�2 such that:

(i) The diagram
QY

X Pn�2

Q'
�

'

is commutative.

(ii) The morphism � restricts to an isomorphism � W ��1.U /! U .

(iii) The projective variety QY is regular.
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Let us assume this claim for now and see how to conclude the proof of the proposition. Since QY is regular,
we can apply Kleiman’s Bertini theorem [23, Chapter III, Corollary 10.9] to the morphism Q' W QY !Pn�2,
and deduce that given a generic hyperplane H � Pn�2, Q'�1.H /� QY is regular. Let us fix one of these
generic hyperplanes, and call it

H D fu2X2C � � �CunXn D 0g � Pn�2:

By the choice of H , Q'�1.H /\��1.U / is nonsingular. Recall that � is an isomorphism when restricted
to the open set ��1.U /. Thus we also learn that

�. Q'�1.H /\��1.U //D �. Q'�1.H //\U D '�1.H /\U

D fŒx0 W x1 W x2 W � � � W xn� 2 U W u2x2C � � �Cunxn D 0g

is regular. Since such H are generic in Pn�2, we conclude that there is an open set V1 � Pn�2 such that
for all v D Œv2 W � � � W vn� 2 V1, the intersection

U \fv2X2C � � �C vnXn D 0g

is regular.
Let us next focus on the intersection of the hyperplane with the set Z. For any P 2Z, a hyperplane

fv2X2C � � �C vnXn D 0g with Œv2 W � � � W vn� 2 Pn�2 is tangent to X at P if the Jacobian matrix at P ,

Jv.P /D

0BBBBBBB@

@F
@X0

.P / 0

@F
@X1

.P / 0

@F
@X2

.P / v2

:::
:::

@F
@Xn

.P / vn

1CCCCCCCA
;

has rank � 1. From this it is clear that if either @F
@X0

.P / ¤ 0 or @F
@X1

.P / ¤ 0 then rank Jv.P / D 2

for any v 2 Pn�2. On the other hand, if @F
@X0

.P / D @F
@X1

.P / D 0 then rankv.P / � 1 if and only if
vD

�
@F
@X2

.P / W � � � W @F
@Xn

.P /
�

since we are assuming that X is a nonsingular hypersurface. For each P 2Z

we define

CP D

(˚�
@F
@X2

.P / W � � � W @F
@Xn

.P /
�	

if @F
@X0

.P /D @F
@X1

.P /D 0,

∅ otherwise:

If we define VP D Pn�2 nCP , it follows that for any v 2 VP the intersection

X \fv2X2C � � �C vnXn D 0g

is regular at P .
Finally consider the set

V D V1\
T

P2Z

VP :
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Since deg Z � D, then V is a nonempty open subset of Pn�2. For each v 2 V , the hyperplane
v2x2C � � �C vnxn D 0 contains `, and

fv2X2C � � �C vnXn D 0g\ .U [Z/D fv2X2C � � �C vnXn D 0g\X

is regular, or equivalently, nonsingular; thus fv2X2C� � �CvnXnD 0g is not tangent to X . This completes
the proof of Proposition 6.1, except for the proof of properties (i), (ii), and (iii) in the claim.

We now prove the claim of properties (i), (ii) and (iii). From the rational map ' WXÜPn�2 given by

' W ŒX0 WX1 WX2 W � � � WXn� 7! ŒX2 W � � � WXn�;

we consider the graph � D �' of the map ',

� D f.x; '.x// W x 2 U g �X �Pn�2:

Define the Zariski closure QX D � � X � Pn�2. Define the projection map � 0 W QX ! X acting by
.x; '.x//! .x/. Then the blow-up is QX along with a morphism '0 such that

QX

X Pn�2

'0

� 0

'

is a commutative diagram (see, e.g., [22, Chapter 7, p. 82]). Moreover, from the definition of the blow-up
it follows that � 0 restricts to an isomorphism � 0 W .� 0/�1.U /! U , i.e., QX satisfies properties (i) and (ii),
but it might be singular. To resolve this, we apply Hironaka’s resolution of singularities: as a consequence
of [30, Theorem 1] (see also [30, p. 112]), there is a projective variety QY and a morphism f W QY ! QX

such that f is an isomorphism when restricted to the inverse image f �1.V / of the open set V of the
regular points of QX , and such that QY is regular. Then the claim follows by taking � D � 0 ıf , Q' D '0 ıf
and observing that .� 0/�1.U /� V .

7. Concluding arguments

In Section 5 we proved that the contribution of the bad-bad terms to the sieve is�Qn. We now turn to
analyzing the contributions of the other types, as defined in Definition 4.1. We will treat these in three
sections; in each case we apply the relevant bound for jg.u;pq/j from Proposition 4.2 and the bound
(5-4) for OW . Once we have treated these cases, we proceed in Section 7.4 to choose the parameter Q,
and conclude the proof of Theorem 1.1.

7.1. Zero-type cases. We first consider any case in which u is zero-type modulo p, divided into cases
according to whether u is zero-type, good, or bad modulo q. The contribution of the first case (upon
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setting uD pqv and applying (5-4)) is

1

P2Q2n

X
p;q2P
p¤q

X
u2Zn

u zero mod p
u zero mod q

ˇ̌̌̌
OW

�
u

pq

�
g.u;pq/

ˇ̌̌̌
�

Q2n�1

P2Q2n

X
p;q2P
p¤q

X
v2Zn

ˇ̌̌
OW .v/

ˇ̌̌
� BnQ�1:

The contribution of the second case (upon setting uD pv, applying (5-4) with LDQ< B) is

1

P2Q2n

X
p;q2P
p¤q

X
u2Zn

u zero mod p
u good mod q

ˇ̌̌̌
OW

�
u

pq

�
g.u;pq/

ˇ̌̌̌
�

Qn�1=2Qn=2P2

P2Q2n

X
v2Zn

ˇ̌̌̌
OW

�
v

Q

�ˇ̌̌̌
� BnQ�n=2�1=2:

The contribution of the third case (upon setting uD pv, applying (5-4) with LDQ< B) is

1

P2Q2n

X
p;q2P
p¤q

X
u2Zn

u zero mod p
u bad mod q

ˇ̌̌̌
OW

�
u

pq

�
g.u;pq/

ˇ̌̌̌
�

Qn�1=2Qn=2C1=2P2

P2Q2n

X
v2Zn

ˇ̌̌̌
OW

�
v

Q

�ˇ̌̌̌
� BnQ�n=2:

As long as n� 2, all these cases contribute at most� BnQ�1 to the sieve, which is acceptable.

7.2. Good-good case. The contribution to the sieve from the good-good case is:

1

P2Q2n

X
p;q2P
p¤q

X
u2Zn

u good mod p
u good mod q

ˇ̌̌̌
OW

�
u

pq

�
g.u;pq/

ˇ̌̌̌
�

QnP2

P2Q2n

X
u2Zn

ˇ̌̌̌
OW

�
u

Q2

�ˇ̌̌̌
�Qn;

after applying (5-4) with LDQ2 > B, since under the assumption (5-20), � � 1=2.

7.3. Good-bad case. The contribution to the sieve from the good-bad case is

1

P2Q2n

X
p;q2P
p¤q

X
u2Zn

u good mod p
u bad mod q

ˇ̌̌̌
OW

�
u

pq

�
g.u;pq/

ˇ̌̌̌
�

QnC1=2

P2Q2n

X
p2P

X
q¤p2P

X
u2Zn

u bad mod q

ˇ̌̌̌
OW

�
u

pq

�ˇ̌̌̌
: (7-1)

Here we proceed by imitating the key step from Section 5 for the bad-bad case, and sum over q before
summing over u. We again define G.UY ;U / as in (5-6), and let R.u/ denote the resultant (5-9), so thatX

p2P

X
u2Zn

G.0;u/¤0

X
q¤p2P

u bad mod q

ˇ̌̌̌
OW

�
u

pq

�ˇ̌̌̌
� P

X
u2Zn

G.0;u/¤0

ˇ̌̌̌
OW

�
u

Q2

�ˇ̌̌̌
!.R.u//�n;m;e;d PQ2n log B;

with an implied constant independent of kFk (in the first case of Lemma 2.1), by arguing as in the proof
of (5-12).

Notice that in the good-bad case, we do not need to consider a possible contribution from those u

for which G.0;u/D 0: when G.0;u/D 0, then all q have the property that u is bad for q, whereas by
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definition in the good-bad case, u is good for at least one prime. In total, the contribution to the sieve
from the good-bad case is thus

QnC1=2

P2Q2n
�PQ2n.log B/�QnC1=2P�1.log B/�Qn;

since QD B� for some 1=2 � � � 1 and under our acting assumption (4-4), by (4-5), P �Q= log Q.
Thus we can conclude that the total contribution of the good-bad case (7-1) of the sieve is�Qn, with an
implied constant independent of kFk (in the first case of Lemma 2.1).

7.4. Final conclusion of the sieve and choice of parameters. We now assemble all the terms of the main
sieve term in (5-2): we can conclude that

1

P2

X
p;q2P
p¤q

jT .p; q/j � BnQ�1
CQn: (7-2)

The first term is from all zero-type cases, and the last term includes the good-good, good-bad, and bad-bad
cases. We apply this in the sieve lemma, along with the bound (5-1) for the two simple terms in the sieve,
to conclude that (in the first case of Lemma 2.1) our counting function admits the bound

S.F;B/�n;m;e;d .B
n�1
CBnP�1

CBnQ�1
CQn/� .BnP�1

CQn/: (7-3)

Choose

QD Bn=.nC1/.log B/1=.nC1/: (7-4)

The requirement (5-20) is met for all n� 3. (If nD 2, then this argument leads to the choice Q� B2=3,
which does not suffice to prove sufficient decay in the bad-bad case; see Remark 5.4.) Recall from (4-4)
and (4-5) that

P D jPj �m;e;d Q.log Q/�1
�n;m;e;d B

n
nC1 .log B/�

n
nC1

as long as

Q�m;e;d .log kFk/.log log kFk/: (7-5)

Recall also that we require P �m;e;d maxflog kfdk; log Bg in Lemma 1.2. Certainly the first condition
is satisfied under the assumption (7-5). The second condition is satisfied for Q as in (7-4) for all B�n 1.

To meet the requirement (7-5) for Q as chosen in (7-4), it suffices to require that

B�m;e;d .log kFk log log kFk/
nC1

n :

For such B, the conclusion of the sieve process in (7-3) shows that

S.F;B/�n;m;e;d Bn�1C 1
nC1 .log B/

n
nC1 ;
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where the implicit constant is independent of kFk. This suffices for Theorem 1.1. Finally, for all
B�m;e;d .log kFk log log kFk/

nC1
n , we apply the trivial bound

S.F;B/�n Bn
�n;m;e;d .log kFk log log kFk/nC1

� .log kFk/nC2

�n;m;d;e .log B/nC2
�n Bn�1C 1

nC1 .log B/
n

nC1 :

Here we applied the fact from Lemma 2.1 that in the case it remains to prove Theorem 1.1, kFk �
B.mde/nC2

so that log kFk�n;m;d;e log B. This completes the proof of Theorem 1.1.
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via weighted blowings up
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We provide a simple procedure for resolving, in characteristic 0, singularities of a variety X embedded
in a smooth variety Y by repeatedly blowing up the worst singularities, in the sense of stack-theoretic
weighted blowings up. No history, no exceptional divisors, and no logarithmic structures are necessary to
carry this out; the steps are explicit geometric operations requiring no choices; and the resulting algorithm
is efficient.

A similar result was discovered independently by McQuillan (2020).
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1. Introduction

1.1. Classical embedded resolution. All known methods to canonically (or functorially) resolve singu-
larities of a variety X are embedded: first, one locally embeds X into a smooth ambient variety Y , and
then gradually improves the transforms (either proper or weak) X i of X by a series of basic modifications
· · · Y2 → Y1 → Y0 = Y such that each Yi is smooth. In fact, the embedded framework was already used
by Hironaka [1964a; 1964b], then, based on Hironaka’s and Giraud’s works, canonical methods were
introduced by Bierstone-Milman [1997] and Villamayor [1989], and the full functoriality with respect to
smooth morphisms was achieved by Schwartz [1992] and Włodarczyk [2005]. Note that it suffices to
construct a functorial resolution étale-locally as globalization follows from the reembedding principle
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(recalled in Section 8.1) and functoriality. We refer to the methods developed in these papers, as well as
[Encinas and Hauser 2002; Encinas and Villamayor 2003; Kollár 2007], etc., the classical methods.

Basic modifications in the classical methods are blowings up with smooth centers Vi ⊂ Yi , in particular,
this is the way to guarantee that Yi+1 is also smooth. Most naturally, one would like to choose Vi to be the
worst singularity locus for a natural singularity invariant inv(Y,X) : X → I with values in a well-ordered
set so that each blowing up improves the invariant. This would lead to a simplest resolution method
controlled by a geometrically meaningful singularity measure. But it was common knowledge for decades
that this dream is unrealizable; see, for instance, [Kollár 2007, Example 3.6.1] and Section 1.8.

Starting with Hironaka’s work, the classical methods use history and the choice of Vi , as well as
the invariant inv(Yi ,X i ), depends on the whole earlier resolution process rather than just on (Yi , X i ). In
particular, only the center V0 ⊂ Y0 of the first blowup of the process, sometimes known as the “year-zero
center”, and invariant inv(X0,Y0), possess a clear geometric meaning.

Remark 1.1.1. (i) The composed sequence Yn → Y can be canonically realized as a single blowing up
along a highly nonreduced center V , but this is a rather useless presentation, no clear connection between
the geometry of V and the singularities of X is known, and it is even unclear how to show that BlV (Y ) is
smooth if not by a direct computation.

(ii) In classical methods, a basic embedded resolution operates with weak (or principal) transforms, so
the intermediate X i may have new components contained in the exceptional divisor, the center Vi does
not have to lie in the i-th proper (or strict) transform X st

i and though X st
i+1 → X st

i is a blowing up, its
center Vi ∩ X st

i may be singular. Using basic resolution and Hilbert–Samuel function one can develop a
much more technical method, usually called strong resolution, which operates with proper transforms
and hence satisfies Vi ⊂ X i and X i+1 = BlVi (X i ). It outputs a desingularization blowing up sequence
Xn → · · · X0 whose centers are smooth.

As noted in Section 1.3, our desingularization Theorem 1.2.2 works directly with proper transforms,
and thus achieves strong resolution without the need for further reductions.

1.2. Statement of main results. In this paper we show that the unrealizable dream becomes possible
(probably, even the most natural solution) once one enlarges the pool of basic modifications to the class
of weighted blowings up along smooth centers. In fact, just the classical year-zero blowings up with
correct weights, which are encoded in the classical year zero invariant, does the job! A similar result was
obtained independently by McQuillan [2020].

The stumbling block all these years was the fact that weighted blowings up were not a legitimate tool in
embedded resolution because the output ambient variety may be singular. Recently, it was discovered that
such blowings up possess a smooth stack-theoretic refinement, and this makes them an absolutely kosher
embedded resolution tool at the price of working with Deligne–Mumford stacks instead of varieties.
Since the construction is étale-local and the coarse moduli space can be easily resolved (using simple
combinatorial tools going under the name “destackification”), this is not a real burden; see Section 1.6
and Theorem 8.1.3.
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Definition 1.2.1. By a DM pair (X, Y ) we mean a quasicompact Deligne–Mumford stack Y smooth over
a field of characteristic zero and a closed substack X ⊂ Y .

To extend the pool of blowings up we introduce in Section 2 valuative Q-ideals, providing a convenient
formalism to work with Hironaka’s idealistic exponents. The basic examples are called centers, locally
they are of the form J = (xa1

1 , . . . ,xak
k ), where ai ∈ Q>0 and x1, . . . , xn is a regular system of parameters.

A center is called reduced if wi = 1/ai are natural numbers with gcd(w1, . . . ,wk) = 1. Note that a usual
ideal and its normalization give rise to the same valuative ideal, and J l

= (x la1
1 , . . . ,x lak

k ) as valuative
ideals for l ∈ N. In particular, there is a unique reduced center J such that J = J l with l ∈ Q. In Section 3
we associate to any center J a blowing up Bl J (Y ), which is a smooth stack-theoretic enhancement
of the classical weighted blowing up along x1, . . . ,xk with weights w1, . . . ,wk . Such blowings up are
compatible with smooth morphisms f : Y ′

→ Y , that is, Bl f −1 J (Y
′) = Bl J (Y ) ×Y Y ′. In particular,

Bl J (Y ) → (Y ) is an isomorphism outside of V (J ) := V (x1, . . . ,xk), so the proper transform of closed
subschemes is defined as usual.

Theorem 1.2.2 (a step towards resolution). There is a construction which associates to each DM pair
(X, Y ), with X nonempty, a semicontinuous function inv(X,Y ) : X → 4m with values in a well-ordered set
4m and a reduced center J = J (X, Y ) with the associated blowing up F1(X, Y ) : Y1 → Y and proper
transform X1 ⊂ Y1 such that the following conditions hold:

(1) The vanishing locus: V(J ) is precisely the locus where inv(X,Y ) attains its maximal value maxinv(X,Y ).

(2) The invariant drops: maxinv(X1, Y1) < maxinv(X, Y ).

(3) Functoriality: for any smooth morphism f : Y ′
→ Y with X ′

= X ×Y Y ′, one has that inv(X ′,Y ′) =

inv(X,Y ) ◦ f . Furthermore, either f −1 J (X, Y ) = (1), or J (X ′, Y ′) = f −1 J (X, Y ) and hence
(X ′

1, Y ′

1) = (X1, Y1) ×Y Y1.

The set 4m does not depend on X or Y , only on m := dim Y . It is a well-ordered subset 4m ⊂ Q≤m of
the set of sequences of length at most m, described in the context of Theorem 1.2.5 and in Section 5.1.
Moreover, as m varies these sets are nested: 4m ⊂ 4m+1 allowing for the necessary comparison in (3).

The index 1 of F1(X, Y ) indicates that it is a one-step operation on the way to a final product; the final
product is achieved when X is empty so F1 does not exist.

Since 4m is well-ordered, composing the one-step partial resolution blowings up F1(X i , Yi ) : Yi+1 → Yi

one obtains a sequence (Xl, Yl) → · · · → (X0, Y0) = (X, Y ) with Xl = ∅.
The full weighted embedded resolution is obtained by stopping this process once a center containing

an irreducible component of X is chosen, and here an equicodimensionality condition has to be imposed.
From the description of the invariant below one sees that the minimal invariant locus is precisely the
largest codimension component of the smooth locus of X , hence the theorem immediately implies

Corollary 1.2.3 (weighted resolution). For a DM pair (X, Y ) let F(X, Y ) : (Xn, Yn) → · · · → (X0, Y0) =

(X, Y ) denote the maximal sequence of blowings up F1(X i , Yi ) whose centers are nowhere dense in X i .
In particular, Xn → X is proper and birational:
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(1) If X is generically reduced and of constant codimension in Y , then Xn is smooth.

(2) If , in addition, Y ′
→ Y is a smooth morphism and X ′

= X ×Y Y ′, then the sequence F(X ′, Y ′)

is obtained from F(X, Y ) ×Y Y ′ by removing all blowings up with empty centers. In particular,
(X ′

n′, Y ′

n′) = (Xn, Yn) ×Y Y ′.

Remark 1.2.4 (functorial formulation). One can spell out the results in terms of functors on categories.
This is not used in the paper, so we only outline the formulation: F1 can be viewed as a partial resolution
endofunctor on the category of DM pairs with smooth surjective morphisms. Its birational stabilization
F = F◦n

1 gives rise to a resolution endofunctor on the category of generically reduced DM pairs of
constant codimension with arbitrary smooth morphisms:

• (nonembedded resolution) Using standard arguments, one deduces nonembedded resolution — see
Theorem 8.1.1.

• (principalization) Theorem 1.2.2 relies on principalization of ideals on Deligne–Mumford stacks.
See Theorem 6.3.1, where strict transforms in Theorem 1.2.2 and Corollary 1.2.3 are replaced by
weak transforms.

• (coarse resolution) The reader may wonder about the coarse moduli spaces when Y is a variety.
As we note in Section 8.2, the stacks Yi and Xn have finite abelian stabilizers, hence their coarse
moduli spaces Y i and Xn have finite abelian quotient singularities. These are eminently resolvable,
see Section 1.6 and Theorem 8.1.3. The transformations Y i+1 → Y i are best described as the coarse
transformations of the weighted blowings up Yi+1 → Yi .

Finally, we provide a very simple and geometric characterization of the invariant inv(X,Y ) and center
J (X, Y ), and we view this as a part of our main results. We will always order local parameters at a point p
giving a center J = (xa1

1 , . . . ,xak
k ) so that a1 ≤ a2 ≤ · · · and set invJ (p) = (a1, . . . ,ak) ∈ Q≤m

=
⊔m

k=0 Qk .
We provide the set of invariants with the natural lexicographic order, where shorter sequences are declared
to be of larger order.

Theorem 1.2.5. Let (X, Y ) be a variety pair, I ⊂ OY the ideal of X and p ∈ X a point:

(1) There exists a neighborhood p ∈ U and a center J on U such that p ∈ V (J ), I |U ⊆ J and invJ (p) is
maximal possible among such pairs (U, J ). Moreover for all p′

∈ V (J ) we have invJ (p′) = invJ (p)

and is locally maximal at p′. In particular, the invariant inv(X,Y )(p) = invJ (p) is well defined and
upper semicontinuous.

(2) The localization Jp is unique and does not depend on the choice of (U, J ).

(3) If invJ (p) = (a1, . . . ,ak), then the numbers b1 = a1 and bl = al
∏l−1

i=1 bi ! for 2 ≤ l ≤ k are integers.

The theorem is stated for varieties as it is local in nature. The theorem immediately implies that the set
4m of actual invariants is well ordered, and there exists a unique center J = J (X, Y ) whose invariant is
maxinv(X, Y ), whose vanishing locus is the maximality locus of inv(X,Y ) and such that V (IX ) ⊇ V (J ).
The center J (X, Y ) is simply the reduction of J . So, what the algorithm really does — it blows up the



Functorial embedded resolution via weighted blowings up 1561

unique center J such that V (IX ) ⊇ V (J ) and invJ is maximal possible. Loosely speaking, this is just the
center of maximal invariant contained in X .

1.3. Our quest for the present algorithm. Several times during our study, we were positively surprised
by the properties of the algorithm presented here.

In [Abramovich et al. 2020a] we extended the pool of smooth blowings up in the logarithmic setting,
and this allowed to produce algorithms with better efficiency and functoriality properties. That work
required to consider stack-theoretic blowings up with nontrivial weights for monomial parameters, so our
next project was to study what is the natural resolution algorithm that uses weighted blowings up with
arbitrary weights. Our expectation was that the algorithm will be more efficient than the classical ones, but
we did not expect at all that it would not require the history of prior operations, a “memoryless” algorithm
visibly improving singularities by each weighted blowing up, as it turned out to be. The paradigm that
such things do not exist was too strong. We do not know if there exists a simpler algorithm, or a faster
one, or a more geometrically informative one, but to the best of our knowledge currently there is not even
a conjecture in that direction.

Another surprise is that the algorithm shares common features with the strong resolution methods and
uses proper transforms. In particular, the centers (with an appropriate formalism) are contained in X
itself, so it can even be interpreted as a nonembedded algorithm and described without using an ambient
manifold. In fact, while proving the principalization we show that already the weak transform reduces the
invariant on each blowing up, hence the same is true for the proper transform. Since the algorithm is
“memoryless”, independent of the history of prior operations, this allows to work with proper transforms
as well. No need to use Hilbert–Samuel function and much of the usual classical machinery.

Remark 1.3.1. In fact, our method produces a sequence of stack-theoretic modifications Xn → · · · →

X0 = X with a smooth source Fner(X) = Xn such that each fi : X i+1 → X i satisfies the following two
properties:

(i) The method is “memoryless”: fi depends only on X i .

(ii) The resolution is strong in the extended (stack-theoretic) meaning: each fi is a stack-theoretic
blowing up of a weighted smooth center.

Since we only introduce a narrow class of weighted blowings up — blowings up of smooth varieties
along smooth weighted centers, our interpretation of the second property is the following naive one:
(locally) X i embeds into a smooth stack Y and fi is the proper transform of a weighted blowing up
g : Y ′

→ Y along a weighted smooth center J which contains the ideal IX i of OY . However, Quek
and Rydh [2021] define weighted blowings up of arbitrary schemes along arbitrary Rees algebras, not
necessarily smooth, and establish their basic properties. In particular, in the formalism of [Quek and
Rydh 2021], fi is indeed the strict transform of g and it is the weighted blowing up of the restriction of
J onto X i .
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Finally, the choice of the center fits and clarifies very well the classical constructions, see Section 1.5.
Loosely speaking, we just take the year-zero center with correct weights predicted by the year-zero
invariant.

1.4. Weighted blowings up, stacks, and resolutions. Weighted blowings up in a scheme theoretic sense
have been used in birational geometry (as well as many other subjects in mathematics) for a long time.
Varchenko used them to characterize the log canonical threshold of a surface; see [Varčenko 1976;
Kollár et al. 2004, Theorem 6.40]. Reid [1980; 2002] employs them in the foundation of canonical
singularities and in the geometry of surfaces. Kawamata [1992] used them to relate discrepancies to
indices. Martín-Morales [2013; 2014] uses them to efficiently study monodromy zeta functions as well as
explicit Q-desingularizations of certain singularities. Artal Bartolo, Martín-Morales, and Ortigas-Galindo
[Artal Bartolo et al. 2012; 2014] further study the geometry of surfaces. All this on top of the enormous
literature on weighted projective spaces.

All these authors show that weighted blowings up are remarkably efficient in computing invariants
of singularities. In [Martín-Morales 2013; 2014], they are shown, in a wide class of examples, to be
remarkably efficient in finding Q-resolutions, namely modifications with at most quotient singularities.

Most relevant to the present paper, Panazzolo [2006] used scheme theoretic weighted blowings up to
simplify foliations in dimension three, and McQuillan and Panazzolo [2013] revisited the problem using
stack theoretic blowings up. In particular it is shown there that weighted blowings up are unavoidable for
their goals. The paper [McQuillan and Panazzolo 2013] led to the paper [McQuillan 2020] concurrent to
ours.

In our work, stack theoretic modification appeared in [Abramovich et al. 2020a] and shown to be
unavoidable for functoriality of logarithmic resolution, leading us to investigate weighted blowings up in
general.

1.5. Invariants and parameters. The notation for the present invariant invI(p) in [Abramovich et al.
2020a] was a1 · invIX ,a1(p), and extends to arbitrary ideal sheaves on logarithmic orbifolds. Here it is
applied solely when Y is smooth with trivial logarithmic structure.

Both this invariant and our center of blowing up are present in earlier work:
This invariant (a1, . . . , ak) is closely related to invariants developed in earlier papers on resolution of

singularities, in particular [Bierstone and Milman 1997] and [Włodarczyk 2005]. In fact (a1, . . . , ak) is
determined by a sequence (b1, . . . , bk) of integers, which is “interspersed” in Bierstone and Milman’s
richer invariant (H1, s1, b2, . . . , bk, sk). Here b1 is determined by the Hilbert–Samuel function H1 and
the si = 0 since no divisors are present — our invariant is in essence the classical “year zero invariant”.
Invariants of similar nature are already introduced in [Hironaka 1964b].

The center J = (xa1
1 , . . . , xak

k ) can be interpreted in terms of Newton polyhedra, and as such it appears
in [Youssin 1990, Section 1], with a closely related precedent in [Hironaka 1967]. The local parameters
x1, . . . , xk in the definition of J were already introduced in [Bierstone and Milman 1997; Encinas and
Villamayor 2003; Włodarczyk 2005; Abramovich et al. 2020a] as a sequence of iterated hypersurfaces of
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maximal contact for appropriate coefficient ideals, see Section 5.1. In this paper we prove the necessary
properties of the invariant invI(p) and the center J , but many of these properties are directly implied by
these cited works.

In earlier work the ideal (x1, . . . , xk) was used to locally define the unique center of blowing up
satisfying appropriate admissibility and functoriality properties for resolution using smooth blowings up.
A central observation here is that the center (xa1

1 , . . . ,xak
k ) is uniquely defined as a valuative Q-ideal, see

Theorem 5.3.1(3).
As recalled below, in general, after blowing up the reduced ideal (x1, . . . , xk), the invariant does not

drop, and may increase; Earlier work enhanced this invariant by including data of exceptional divisors
and their history, or more recently, logarithmic structures. Another central observation here is that, with
the use of weighted blowings up, no history, no exceptional divisors, and no logarithmic structures are
necessary.

1.6. Tools and methods. The present treatment requires the theory of Deligne–Mumford stacks. The
reader is assumed to be comfortable with their basic notions, such as coherent sheaves and coarse moduli
spaces, though there is little harm in viewing a stack as “locally the quotient of a variety by the action of
a finite group”, in which case coherent sheaves are represented by equivariant sheaves on the variety, and
the coarse moduli space is the schematic (or algebraic space) quotient.

An application of Bergh’s destackification theorem [Bergh 2017, Theorem 1.2] or its generalization
[Bergh and Rydh 2019, Theorem B] allows one to replace Xn ⊂Yn by a smooth embedded scheme X ′

n ⊂Y ′
n

projective over X ⊂ Y , giving a resolution in the schematic sense, see Theorem 8.1.3. Alternatively the
coarse moduli space admits only abelian quotient singularities (see Section 8.2) and can be resolved
directly by combinatorial methods; see [Bogomolov 1992; Abramovich and de Jong 1997; Abramovich
et al. 2002; 2020c; Włodarczyk 2003; Illusie and Temkin 2014; Włodarczyk 2022]. Both destackification
and this resolution process apply in arbitrary characteristics, as the stabilizer group-schemes involved are
tame.1

Our center J can be identified as an idealistic exponent, see [Hironaka 1977], which we present
here through the slightly more flexible formalism of valuative Q-ideals, see Section 2.2, or equivalently
equivariant ideals in the h topology, see Section 2.5. This formalism allows us to show with little effort
that centers are unique and functorial. We believe the formalism, which is inspired by existing work
on Q-ideals, graded families of ideals, and B-divisors, is the correct formalism to consider ideals with
rational multiplicities up to blowings up, a topic permeating birational geometry.

We provide a proof of the theorem based on existing theory of resolution of singularities, using
concepts and methods from [Hironaka 1964a; 1964b; Villamayor 1989; Bierstone and Milman 1997;

1We remind the reader that, by a theorem of de Jong [1997, Corollary 5.15], as stated in [Bergh and Rydh 2019, Theorem 1.4],
any variety X over a field of any characteristic admits a purely inseparable alteration X ′

→ X with X ′ the coarse moduli
space of a smooth Deligne–Mumford stack X ′. Thus, if the field is perfect, resolution of X is reduced to the combination of
destackification of a possibly wild Deligne–Mumford stack X ′ and the resolution of a purely inseparable cover of a smooth
scheme X ′ — using Frobenius we can realize a modification of X as a purely inseparable alteration of X ′.
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2008; Encinas and Villamayor 2003; 2007; Włodarczyk 2005; Kollár 2007], among others. The reader
is assumed to be familiar with the introductory material in [Kollár 2007, 3.1–3.2]. We explicitly use
[loc. cit., Theorem 3.67] (or [Bierstone and Milman 2008, Lemma 3.3]), [Kollár 2007, Theorem 3.92],
and [loc. cit., Proposition 3.99], and our terminology (maximal contact, coefficient ideals) is consistent
with Kollár’s (and others’) treatment.

1.7. Concurrent and future work. As indicated before, Theorem 1.2.2 was discovered independently by
McQuillan [2020].

The present paper is a beginning for several other works, all requiring additional techniques.
The present treatment does not address logarithmic resolutions, a critical requirement of birational

geometry. As Section 8.3 shows this does not follow by accident. The necessary modifications were
worked out by Quek [2022]. This requires, in addition to the present methods, bringing in the theory of
logarithmic structures as in [Abramovich et al. 2020a]. A variant of Quek’s work using smooth Artin
stacks is provided in [Abramovich and Quek 2021]. A variant using only smooth Deligne–Mumford
stacks is provided in [Włodarczyk 2023]. The work [Włodarczyk 2023] provides an alternative view on
the current work, representing the stacks as global quotients of varieties with torus actions.

The present results were discovered along the way of our work [Abramovich et al. 2020b], addressing
resolution of singularities in families and semistable reduction, again using the logarithmic theory of
[Abramovich et al. 2020a]. The chapter [Temkin 2023] indicates how the present methods should be
introduced into that project, and carried out in the appropriate generality of quasiexcellent schemes, to
deduce results in other geometric categories of interest, as is done in [Temkin 2012; Abramovich and
Temkin 2019]. McQuillan’s method [2020] is developed in the generality of quasiexcellent schemes.

Further discussion of these and other aspects is included in the volume [Abramovich et al. 2023].

1.8. Examples: comparing smooth and weighted blowings up.

1.8.1. Blowing up without weights. It is well-known that there exists no classical “memoryless algorithm”
which blows up smooth centers and is compatible with smooth morphisms in the sense of Theorem 1.2.2(3);
for example, see [Kollár 2007, Claim 3.6.3]. We give here slightly different examples.

Consider first the 3-dimensional singularity

x2
= y1 y2 y3.

The singular locus consists of the three lines x = yi = y j = 0, for i ̸= j , meeting at the origin. Due to the
group of permutations acting on the singularity the only possible invariant smooth center is the origin:
{x = y1 = y2 = y3 = 0}, but its blowing up leads to the three points with singularities identical to the
original one, occurring on the three yi -charts. Writing

x = x ′y′

3, y1 = y′

1 y′

3, y2 = y′

2 y′

3, and y3 = y′

3
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we get, after clearing out y2
3 , the equation

x ′2
= y′

1 y′

2 y′

3

in the new coordinates.
Thus functorial embedded desingularization by smooth blowings up, using no additional structure —

called “history” by some authors — is simply impossible, as it may lead to an infinite cycle.2

This paucity of functorial centers leads to choices which are far from optimal, and resulting in worse
singularities.

Consider the equation

x2
= ya

1 ya
2 ya

3 ,

with a ≥ 2 instead. The origin is again the unique possible functorial center, and leads to a singularity of
the form x2

= ya
1 ya

2 y3a−2
3 in the y3-chart. This visibly is a worse singularity.

1.8.2. Weighted blowing up. The main reason for working with smooth centers in Hironaka’s approach
is that we want to keep the ambient space Y smooth.

A birational geometer knows that the singularity x2
= y1 y2 y3 asks for the blowing up of J =

(x2, y3
1 , y3

2 , y3
3). This is the observation used by the authors mentioned in Section 1.4 above. But a

weighted blowing up in the schematic sense gives rise to a singular ambient space Y , with abelian quotient
singularities. For the classical algorithm this is a nonstarter.

As explained in Section 3, we use instead the stack theoretic weighted blowing up of the associated
reduced center — in the example J 1/6

= (x1/3, y1/2
1 , y1/2

2 , y1/2
3 ). The chart corresponding to y3 is of the

form

[Spec C[x ′, y′

1, y′

2, u]/µ2],

evidently smooth, where

y3 = u2, x = x ′u3, y1 = y′

1u2, y2 = y′

2u2,

and µ2 = ±1 acts by (x ′, y′

1, y′

2, u) 7→ (−x ′, y′

1, y′

2, −u). The general equations, and their derivation, are
given in Section 3.

Plugging this into the original equation x2
= y1 y2 y3 we get u6x ′2

= u6 y′

1 y′

2, where the factor u6 is
exceptional, with proper transform

x ′2
= y′

1 y′

2.

2To resolve this, in Hironaka’s classical algorithm one must encode y′
3 = 0 as an exceptional divisor — this is quite natural

and useful. One must then note that upon restriction to the first maximal contact x = 0 the ideal y′
1 y′

1 y′
3 factors an exceptional

“monomial” part y′
3. Unfortunately in general the monomial part makes it impossible to proceed with transverse maximal contact.

One must then separate it from the order-2 locus with a resolution subroutine sometimes called “the monomial stage”. Only then
one can find further maximal contact elements and proceed.
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In other words, the vector of degrees (2, 3, 3, 3) is reduced to (2, 2, 2), an immediate and visible improve-
ment. One more blowing up resolves the singularities (in the category of Deligne–Mumford stacks).3

Similarly, our general algorithm, which requires no knowledge of prior steps taken, assigns to a
singularity a canonical weighted blowing up which improves actual singularities, rather than an intricate
additional auxiliary structure. Consequently the natural centers and resulting valuations are much better
suited for computations of various birational invariants, such as log canonical thresholds, as recalled in
Section 1.4.

1.9. Efficiency. As most algorithms in algebraic geometry, our algorithm is woefully expensive compu-
tationally, and can only be carried out in low dimension and degree. One source for computational costs
here is the use of the iterated factorial in the construction of invariant and centers. Still, empirically the
improvements are significant. Already in [Abramovich et al. 2020a] we showed how more limited use of
stack-theoretic blowings up leads to a vast improvement in efficiency. In examples the present algorithm
is remarkably efficient, with great improvements even on [loc. cit.]. For instance, in the example above,
two weighted blowings up suffice. Cases of interest which were out of reach for computer calculation are
now computed. This adds to the evidence recalled in Section 1.4. Our process is explicitly computable,
and an implementation in SINGULAR [Decker et al. 2019] is available in [Lee et al. 2020].

2. Valuative ideals, idealistic exponents, and centers

To simplify the exposition we will mainly work with schemes. All intermediate constructions can be
extended to Deligne–Mumford stacks, étale topology and geometric points via étale descent, but we
will use this only in the main statements and constructions, including centers, weighted blowings up
and resolution invariants. For completeness, we provide in remarks and complementary sections some
additional material with only outlined arguments; it will not be used and can be safely ignored if the
reader prefers.

2.1. Zariski–Riemann spaces. Given an integral noetherian scheme Y we are interested in understanding
ideals, and more generally Q-ideals, as they behave after arbitrary blowing up. For instance the ideals
(x2, y2) and (x2, xy, y2) coincide after blowing up the origin, and a formalism in which they are the
same object is desirable. We propose to work with the Zariski–Riemann space ZR(Y ) of Y , the projective
limit of all projective birational transformations of Y , whose points consist of all valuation rings R of
K (Y ) extending to a morphism Spec R → Y .

The space ZR(Y ) carries a constant sheaf K = K (Y ), a subsheaf of rings O with stalk at v consisting
of the valuation ring Rv , and a sheaf of ordered groups 0 = K ∗/O∗ such that v : K ∗

→ 0 is the valuation.
The image v(O \ {0}) =: 0+ ⊂ 0 is the valuation monoid consisting of nonnegative sections of 0.

The space ZR(Y ) is quasicompact; see [Temkin 2010, Proposition 3.2.1]. If Y =
⋃

Yi is reduced but
possibly reducible with irreducible components Yi , we define ZR(Y ) :=

⊔
ZR(Yi ).

3Hironaka’s classical algorithm requires many more blowings up, and, as indicated in the previous note, is quite technically
involved.
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Remark 2.1.1. While Theorem 1.2.2 is applied to Deligne–Mumford stacks X ⊂ Y , functoriality means
that we can always work on an étale cover by a scheme X̃ ⊂ Ỹ : the resolution step F1(X ⊂ Y ) is obtained
by étale descent from F1(X̃ ⊂ Ỹ ). In particular we need not introduce ZR(Y ) for a stack. Nevertheless
we note that such ZR(Y ) can be constructed as well, be it by étale descent, or directly as a limit, or as a
suitably normalized fibered product of Y with the Zariski–Riemann space of the coarse moduli space.

2.2. Valuative Q-ideals.

Definition 2.2.1. (1) By a valuative ideal on Y we mean a section γ ∈ H 0(ZR(Y ), 0+). Every ideal I
on every birational model Y ′

→ Y , proper over Y , defines a valuative ideal that we denote v(I) by
taking the minimal element of the image of I in 0+.

(2) The group 0Q = 0 ⊗ Q is also ordered. We denote the monoid of nonnegative elements by 0Q+. By
a valuative Q-ideal we mean a section γ ∈ H 0(ZR(Y ), 0Q+).

(3) Any dominant morphism f : Z → Y induces a map ZR(Z) → ZR(Y ). For a valuative Q-ideal γ

on Y its image under the induced map 0Y ⊗ Q → 0Z ⊗ Q will be denoted f −1(γ ) and called the
preimage of γ on Z .

Ideals with the same integral closure have the same valuative ideal. Every valuative ideal γ defines
an ideal sheaf I ′

γ on every modification Y ′ of Y by taking I ′
γ := { f ∈ OY ′ | v( f ) ≥ γv∀v}, which is

automatically integrally closed. We will use only the ideal Iγ thus defined on Y itself.
The definition of Iγ extends to valuative Q-ideals. Conversely, there is a convenient way to consider

Q-ideals, extending the definition of v(I): given a finite collection fi ∈ OY and ai ∈ Q>0 we write

( f a1
1 , . . . , f ak

k ) := (min{ai · v( fi )})v ∈ H 0(ZR(Y ), 0Q+) (1)

for the naturally associated valuative Q-ideal. When ai are integers this coincides with v( f a1
1 , . . . , f ak

k ).

Remark 2.2.2. As was pointed out by D. Rydh, valuative Q-ideals are equivalent to effective Q-Cartier
divisors on ZR(X). Indeed, any section γ of 0+ is locally the image of an element of O, and since
ZR(X) is quasicompact, finitely many such representatives suffice. Moreover, taking a common birational
model Y ′

→ Y over which all the representative sections are regular, we find that γ is an invertible ideal
on Y ′. Allowing denominators, any valuative Q-ideal γ is written, using the notation of (1), locally on
the model Y ′ as γ = ( f a).

2.3. Complements: idealistic exponents. A valuative Q-ideal which is represented locally on Y itself
as ( f a1

1 , . . . , f ak
k ) is an idealistic exponent. This notion coincides with Hironaka’s [1977, Definition 3]

by [loc. cit., Remark (2.2)]. Hironaka’s notation (J , b), with J ⊂ OY , b ∈ N translates to the valuative
Q-ideal J 1/b. Hironaka’s definition of pullback of an idealistic exponent under a dominant morphism
Y ′

→ Y extends to an arbitrary valuative Q-ideal.
As indicated in the next section, these are related to Rees algebras [Encinas and Villamayor 2007] or

graded families of ideals [Lazarsfeld 2004, Section 2.4.B]. This relationship was pursued in greater depth
by Quek [2022].
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2.4. Centers and admissibility.

Definition 2.4.1. (1) By a center J on a regular scheme Y we mean a valuative Q-ideal for which there
is an affine covering Y = ∪Ui and regular systems of parameters (x (i)

1 , . . . , x (i)
k ) = (x1, . . . , xk) on Ui

such that JUi = (xa1
1 , . . . , xak

k ) for some a j ∈ Q>0 independent of i .

(2) A center J is admissible for a valuative Q-ideal β if Jv ≤ βv for all v. A center is admissible for an
ideal I if it is admissible for the associated valuative Q-ideal v(I), in which case we use the suggestive
notation I ⊆ J .

(3) The center J is reduced if wi = 1/ai are positive integers with gcd(w1, . . . , wk) = 1. For any center
J we write J = (x1/w1

1 , . . . , x1/wk
k ) for the unique reduced center such that J ℓ

= J for some ℓ ∈ Q>0.

In Section 3 below we define the blowing up of (x1/w1
1 , . . . , x1/wk

k ). In Section 5.2 we show how
admissibility is manifested in terms of this blowing up, and becomes very much analogous to the notion
used in earlier resolution algorithms.

Remark 2.4.2. Using the coordinates as in (1), the center J corresponds to a unique monomial valuation
associated to the cocharacter

(a−1
1 , . . . , a−1

k , 0, . . . , 0),

where v
(∏

xci
i

)
=

∑k
i=1 ci/ai .

The definition of centers extends to stacks similarly to usual ideals.

Definition 2.4.3. Let Y be a Deligne–Mumford stack:

(1) By Cov(Y ) we denote the category of étale covers Y ′
→ Y with Y ′ a scheme and Y -morphisms

between the covers.

(2) A center J on Y is a compatible family of centers J ′ on the elements Y ′ of Cov(Y ): for any morphism
f : Y ′′

→ Y ′ in Cov(Y ) one has f −1 J ′
= J ′′.

Partial regular families of parameters are preserved by preimages under smooth and, more generally,
regular morphisms (see [Stacks 2005–, 07R6]), hence we have:

Lemma 2.4.4. If f : Y ′
→ Y is a regular morphism of regular schemes and J is a center on Y , then f −1 J

is a center on Y ′.

Remark 2.4.5. In fact, the inverse is also true: is f is surjective, γ is a valuative Q-ideal and f −1γ is a
center, then γ is a center. As a corollary one obtains an extension of these claims to stacks and the claim
that a center on a stack can be defined using a single presentation rather than the whole category Cov(Y ).
However, we will not need these natural but not completely trivial results.
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2.5. Complements: relation with the h topology. The following observation is not used in the paper, so
we just outline it without proof. Valuative Q-ideals are closely related to what we call equivariant ideals
in the h topology, where Zariski open coverings and alterations generate a cofinal collection of coverings;
see [Voevodsky 1996, Definition 3.1.5 and Theorem 3.1.9]. The structure sheaf OXh is the sheafification
of the presheaf U 7→ 0(OU ). In fact, OXh (U ) = 0(OU sn ), where U sn is the seminormalized reduction
of U ; see [Huber and Jörder 2014, Proposition 4.5]. Any finitely generated ideal J ⊆ OXh is generated
by ideals Ji ⊆ OYi on a Zariski cover Y ′

= ∪Yi of an alteration Y ′
→ Y . Refining the alteration we can

achieve that pullbacks of Ji agree on the intersections, so J comes from an ideal J ′ on Y ′ and hence
yields a valuative ideal γ ′ on Y ′. Refining Y ′ further we can achieve that Y ′

→ Y is a Galois alteration,
namely it splits into a composition of a Galois cover Y ′

→ Y ′′, with Galois group G, and a generically
radicial alteration Y ′′

→ Y . On the level of sets ZR(Y ′)/G = ZR(Y ′′) = ZR(Y ), hence γ ′ comes from a
valuative Q-ideal γ if and only if γ ′ is G-equivariant. In fact, the latter happens if and only if one can
choose Y ′ and J ′ so that already J ′ is G-equivariant.

3. Weighted blowings up

Stack theoretic projective spectra were considered informally by Miles Reid, introduced officially in
[Abramovich and Hassett 2011] to study moduli spaces of varieties, and treated in Olsson’s book [2016,
Section 10.2.7].

The manuscript by Quek and Rydh [2021] provides foundations for stack-theoretic blowings up. The
presentation here is rather terse as complete details already appear there. The local equations we present
here can be found in [Kollár et al. 2004, page 167], where they are developed for the study of log canonical
thresholds. The graded algebras we present below are special cases of the graded families of ideals
discussed in [Lazarsfeld 2004, Section 2.4.B], especially Example 2.4.8.

From now on Y is a smooth Deligne–Mumford stack over a field k of characteristic zero. In Sections 3–5,
if not said to the contrary, Y is also assumed to be a variety.

3.1. Graded algebras and their Proj. Given a quasicoherent graded algebra A =
⊕

m≥0 Am on Y with
associated Gm-action defined by (t, s) 7→ tms for s ∈Am we define its stack-theoretic projective spectrum
to be

ProjY A := [(SpecOY
A \ S0)/Gm],

where the vertex S0 is the zero scheme of the ideal
⊕

m>0 Am ; see [Quek and Rydh 2021, Section 1.2].
When A1 is coherent and generates A over A0 this agrees with the construction in [Hartshorne 1977,
II.7, page 160]; see [Quek and Rydh 2021, Corollary 1.6.2]. As usual ProjY A carries an invertible
sheaf OProjY A(1) corresponding to the graded module A(1). When A is finitely generated over OY with
coherent graded components the resulting morphism ProjY A → Y is proper; see [Quek and Rydh 2021,
Proposition 1.6.1(ii)].
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3.2. Rees algebras of ideals. If I is an ideal on Y , its Rees algebra is AI :=
⊕

m≥0 I
m , and the blowing

up of I is Y ′
= BlY (I) := ProjY (AI). It is the universal birational map making IOY ′ invertible, in this

case Y ′
→ Y projective; see definition [Hartshorne 1977, II.7, page 163].

3.3. Rees algebras of valuative Q-ideals.

Definition 3.3.1. (1) Given a valuative Q-ideal γ we define its Rees algebra to be

Aγ :=

⊕
m∈N

Imγ .

(2) The blowing up of γ is defined to be Y ′
= BlY (γ ) := ProjY Aγ .

At least when γ = ( f a1
1 , . . . , f ak

k ) is an idealistic exponent, Y ′
→ Y satisfies a corresponding universal

property; see [Quek and Rydh 2021, Proposition 3.5.3]. Since we will not use this property in this paper,
we just mention that the valuative Q-ideal E = γOY ′ , in a suitable sense of Zariski–Riemann spaces
of stacks, or as an h-ideal, becomes an invertible ideal sheaf on Y ′. We only show this below for the
blowing up of a center.

Note that if Y1 → Y is flat and Y ′

1 = BlY (γOY1) then Y ′

1 = Y ′
×Y Y1.

3.4. Weighted blowings up: local equations. Now consider the situation where γ is a center of the
special form J = (x1/w1

1 , . . . , x1/wk
k ), with wi ∈ N. In this case the algebra Aγ =

⊕
m∈N Imγ , with

Imγ =
(
xb1

i · · · xbn
n |

∑
wi bi ≥ m

)
is finitely generated. It is the integral closure inside OY [T, T −1

] of the
simpler algebra with generators (xi )T wi . We can therefore describe BlY (J ) = BlY (γ ), which deserves to
be called a stack-theoretic weighted blowing up, explicitly in local coordinates, as follows [Quek and
Rydh 2021, Corollary 4.4.4]:

The chart associated to x1 has local variables u, x ′

2, . . . , x ′
n , where

• x1 = uw1 ,

• x ′

i = xi/uwi for 2 ≤ i ≤ k, and

• x ′

j = x j for j > k.

The group µw1 acts through

(u, x ′

2, . . . , x ′

k) 7→ (ζw1u, ζ−w2
w1

x ′

2, . . . , ζ
−wk
w1

x ′

k)

and trivially on x ′

j , j > k, giving an étale local isomorphism of the chart with

[Spec k[u, x ′

2, . . . , x ′

n]/µw1].

It is easy to see that these charts glue to a stack-theoretic modification Y ′
→ Y with a smooth Y ′ and its

coarse space is the classical (singular) weighted blowing up.
Write E = (u) for the exceptional ideal. Then v(E) = (x1/w1

1 , . . . , x1/wk
k ), and this persists on all

charts, in other words the center (x1/w1
1 , . . . , x1/wk

k ) becomes an invertible ideal sheaf on Y ′.
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We sometimes, but not always, insist on gcd(w1, . . . , wk) = 1, in which case the center is reduced.
We will however need to consider the proper transform of the locus H = {x1 = 0}, where it may happen
that gcd(w2, . . . , wk) ̸= 1. The relationships are summarized by the following lemma, which uses the
construction of the root stack Y (E1/c) along a divisor E (for a treatment on a stack see [Abramovich and
Fantechi 2016, Section 1.1]) and follows from [Quek and Rydh 2021, Corollary 3.2.1] or by considering
the charts:

Lemma 3.4.1. If J ′
= (x1/w1

1 , . . . , x1/wk
k ) and J ′′

= (x1/cw1
1 , . . . , x1/cwk

k ) with wi , c positive integers, and
if Y ′, Y ′′

→Y are the corresponding blowings up, with E ′, E ′′ the exceptional divisors, then Y ′′
=Y ′(

c
√

E ′)

is the root stack of Y ′ along E ′.
Write H = {x1 = 0}, and H ′

→ H the blowing up of the reduced center J ′

H associated to J ′

H :=

(x1/w2
2 , . . . , x1/wk

k ), with exceptional EH . Then the proper transform H̃ ′
→ H of H via the blowing up of

J ′′ is the root stack H ′( (cc′)
√

EH ) of H ′ along EH ⊂ H ′, where c′
= gcd(w2, . . . , wk). Therefore H̃ ′ is the

blowing up of J ′

H
1/(cc′)

.

3.5. Derivation of equations. Let us derive the description in Section 3.4 above, in a manner similar to
[Quek and Rydh 2021, Lemma 1.3.1]. Write yi = xi T wi . The x1-chart is the stack [SpecA[y−1

1 ]/Gm].
The slice W1 := SpecA[y−1

1 ]/(y1 − 1) is stabilized by µw1 , so the embedding W1 ⊂ SpecA[y−1
1 ] gives

rise to a morphism φ : [W1/µw1] → [SpecA[y−1
1 ]/Gm]. This is an isomorphism: the equation uw1 = x1

describes a µw1-torsor on SpecA[y−1
1 ] mapping to W1 equivariantly via T 7→u−1. The resulting morphism

SpecA[y−1
1 ] → [W1/µw1] descends to [SpecA[y−1

1 ]/Gm] → [W1/µw1] which is an inverse to φ.
It thus remains to show that [W1/µw1] has the local description above. Since T −w1 = y−1

1 x1 ∈ A[y−1
1 ]

and A is integrally closed in OY [T, T −1
] we have u := T −1

∈ A[y−1
1 ], and its restriction to W1 satisfies

uw1 = x1. For i = 2, . . . , k we write x ′

i for the restriction of yi , obtaining x ′

i = xi/uwi . Now W1 is normal
and finite birational over Spec k[u, x ′

2, . . . , x ′
n], hence they are isomorphic.

3.6. Complements: local toric description of weighted blowings up [Quek and Rydh 2021, Section 4.5.5].
Again working locally, assume that Y = Spec k[x1, . . . , xn]. It is the affine toric variety associated to the
monoid Nn

⊂ σ = Rn
≥0. Here the generator ei of Nn corresponds to the monomial valuation vi associated

to the divisor xi = 0, namely vi (x j ) = δi j .
The monomial x1/wi

i defines the linear function on σ whose value on (b1, . . . , bn) is its valuation bi/wi .
The ideal (x1/w1

1 , . . . , x1/wk
k ) thus defines the piecewise linear function mini {bi/wi }, which becomes

linear precisely on the star subdivision 6 = vJ ⋆ σ with

vJ = (w1, . . . , wk, 0, . . . , 0).

This defines the scheme theoretic weighted blowing up Y ′; see [Reid 1980, Section 4]. Note that this
cocharacter vJ is a multiple of the valuation associated to the exceptional divisor of the center.

Since vJ is assumed integral, we can apply the theory of toric stacks [Borisov et al. 2005; Fantechi
et al. 2010; Geraschenko and Satriano 2015a; 2015b; Gillam and Molcho 2015]. We have a smooth toric
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stack Y ′
→ Y ′ associated to the same fan 6 with the cone σi = ⟨vJ , e1, . . . , êi , . . . , en⟩ endowed with the

sublattice Ni ⊂ N generated by the elements vJ , e1, . . . , êi , . . . , en , for all i = 1, . . . , k. This toric stack
is precisely the stack theoretic weighted blowing up Y ′

→ Y . One can derive the equations in Section 3.4
from this toric picture.

4. Coefficient ideals

In this section we recall some notions from the classical embedded resolution. By Y we denote a smooth
k-variety.

4.1. Graded algebra and coefficient ideals. Fix an ideal I ⊂ OY and an integer a > 0. We use the
notation of [Abramovich et al. 2020a], except that we use the saturated coefficient ideal as in [Kollár
2007; Abramovich et al. 2020b], which is consistent with the Rees algebra approach of [Encinas and
Villamayor 2007]:

Definition 4.1.1. (1) Consider the graded subalgebra G =G(I, a)⊆OY [T ] generated by placing D≤a−iI
in degree i . Its graded pieces are

G j =

∑
∑a−1

i=0 (a−i)·bi ≥ j

Ib0 · (D≤1I)b1 · · · (D≤a−1I)ba−1,

where the sum runs over all monomials in the ideals I, . . . ,D≤a−1I of weighted degree

a−1∑
i=0

(a − i) · bi ≥ j.

(2) Let I ⊂ OY and a ≥ 1 an integer. Define the coefficient ideal

C(I, a) := Ga!.

The product rule, and the trivial inclusion D≤1D≤a−1I ⊂ (1), imply that DGk+1 ⊂ Gk for k ≥ 0. The
formation of G and C(I, a) is functorial for smooth morphisms: if Y1 → Y is smooth then C(I, a)OY1 =

C(IOY1, a). This follows since the formation of D≤1I, ideal product, and ideal sum are all functorial.

4.2. Maximal contact. For the rest of the section we assume that I ⊂OY has maximal order ≤ a. Recall
that an element x ∈ D≤a−1I which is a regular parameter at p ∈ Y is called a maximal contact element
at p, and its vanishing locus a maximal contact hypersurface at p. In general, maximal contact only
exists locally. For completeness, any parameter is a maximal contact element for the unit ideal.

The coefficient ideal combines sufficient information from derivatives of I so that when one restricts
C(I, a) to a hypersurface of maximal contact H no information necessary for resolution is lost. For
example, this is manifested in the equivalence (in the sense of [Bierstone and Milman 1997]) of (I, a)

and C(I, a)|H .
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4.3. Invariance. Now consider I ⊂ OY and assume that x1 ∈ D≤a−1I is a maximal contact element at
p ∈ Y . The ideals Gi enjoy a strong invariance property summarized in the following theorem:4

Theorem 4.3.1. Let x1 and x ′

1 be maximal contact elements at p, and x2, . . . , xn ∈ OY,p such that
(x1, x2, . . . , xn) and (x ′

1, x2, . . . , xn) are both regular sequences of parameters. There is a scheme Ỹ with
point p̃ ∈ Ỹ and two morphisms φ, φ′

: Ỹ → Y with φ( p̃) = φ′( p̃) = p, both étale at p, satisfying

(1) φ∗x1 = φ′∗x ′

1,

(2) φ∗xi = φ′∗xi for i = 2, . . . , n, and

(3) φ∗Gi = φ′∗Gi .

This is [Kollár 2007, Theorem 3.92], generalizing [Włodarczyk 2005, Lemma 3.5.5].5

4.4. Formal decomposition. We now pass to formal completions. Fixing a field of coefficients kp =

k(p) ↪→ ÔY,p and extending to a regular sequence of parameters we have ÔY,p = kp[[x1, . . . , xn]]. We use
the reduction homomorphism kp[[x1, . . . , xn]] → kp[[x2, . . . , xn]] and the inclusion kp[[x2, . . . , xn]] →

kp[[x1, . . . , xn]].
We have G j = (x j

1 ) + (x j−1
1 )G1 + · · · + (x1)G j−1 +G j since the ideal on the left contains every term

on the right. Write C j = G j kp[[x2, . . . , xn]] ⊂ kp[[x2, . . . , xn]] via the reduction homomorphism sending
x1 to 0, and C̃ j = C j kp[[x1, . . . , xn]] ⊂ kp[[x1, . . . , xn]] its image via inclusion. We hope the reader can
distinguish the notation C j from C̃ j .

Proposition 4.4.1. Denoting the completions Ĝ j = G j ÔY,p and Ĉ(I, a) = C(I, a)ÔY,p, we have

Ĝ j = (x j
1 ) + (x j−1

1 )̃C1 + · · · + (x1)̃C j−1 + C̃ j ,

in particular

Ĉ(I, a) = (xa!

1 ) + (xa!−1
1 C̃1) + · · · + (x1C̃a!−1) + C̃a!.

Proof. We write x = x1. Apply induction on j , noting that Ĝ0 = (1) so that we may start with (1) = C̃0

and inductively assume the equality holds up to j − 1.
For an integer M > j the ideals Ĝ j ⊃ (x M) are stable under the linear operator x∂/∂x . Hence the

quotient Ĝ j/(x M) inherits a linear action, with m-eigenspaces we denote xm
· Ĝ(m)

j ⊂ xmkp[[x2, . . . , xn]],
giving

Ĝ j/(x M+1) = Ĝ(0)
j ⊕ x · Ĝ(1)

j ⊕ · · · ⊕ xm
· Ĝ(m)

j ⊕ · · · ⊕ x M
· Ĝ(M)

j ,

with Ĝ(m)
j ⊂ kp[[x2, . . . , xn]] and equality holding for m ≥ j . Note that Ĝ(0)

j = C j .

4The reader familiar with [Kollár 2007, Section 3.53] will recognize that Gi are all MC-invariant: G1 ·D≤1Gi ⊂ Gi , hence
they are homogeneous in the sense of [Włodarczyk 2005].

5These are the easier properties of coefficient ideals. We emphasize that we do not require the harder part (4) of [Włodarczyk
2005, Lemma 3.5.5] or [Kollár 2007, Theorem 3.97] describing the behavior after a sequence of blowings up.
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The subspaces Ĝ(m)
j ⊂ kp[[x2, . . . , xn]] are independent of the choice of M ≥ m. Moreover x j

· Ĝ(m)
j ⊂

Ĝ j ∩ x j
· kp[[x2, . . . , xn]], so that

Ĝ(m)
j =

∂ j

∂x j (x j
· Ĝ(m)

j ) ⊂ Ĝ j−m ∩ kp[[x2, . . . , xn]] ⊂ C j−m .

Taking ideals we obtain
Ĝ j ⊂ Ĝ(0)

j + (x )̃C j−1 + · · · + (x j−1)̃C1 + (x j ).

Induction gives
(x )̃C j−1 + · · · + (x j−1)̃C1 + (x j ) = (x)Ĝ j−1 ⊂ Ĝ j .

Together with C j = Ĝ(0)
j ⊂ Ĝ j the equality follows. □

By [Kollár 2007, Proposition 3.99] we have (D≤ j C(I, a))a!
⊂ C(I, a)a!− j . This implies:

Corollary 4.4.2. (̃Ca!− j )
a!

⊂ C̃a!− j
a!

.

5. Invariants, local centers, and admissibility

In this section we continue to work on a smooth variety Y and fix an ideal I ⊆ OY . All definitions and
results will be local at a point p, and to simplify notation we will use the same letter Y after passing to
a neighborhood, where a maximal contact at p is defined (a pedantic reader can simply work with the
localization Yp = Spec(OY,p) instead).

5.1. Existence of invariants and centers.

Definition 5.1.1. (1) For an ideal I ⊂OY and sequence of parameters x1, . . . ,xk at p one defines I[1]= I
and recursively ideals I[i] and integers bi by setting bi = ordp(I[i]) and I[i +1] = C(I[i], bi )|V (x1,...,xi ),
ending with either k = 1, I = (1) or I[k + 1] = 0. The sequence of parameters x1, . . . ,xk at p is called a
maximal contact sequence if each xi is a maximal contact for (I[i], bi ) at p.

(2) To a maximal contact sequence we associate the invariant invI(p) = (a1, . . . ,ak), where ai =

bi/
∏i−1

j=1 b j ! and the center J = Jp(I) = (xa1
1 , . . . ,xak

k ).

Obviously, a maximal contact sequence exists, and it is empty if and only if I = 0 at p, in which
case we also have that J = 0 and inv = () is empty. The other extreme occurs when I = (1), in which
case J = (1) and inv = (0). Note also that invI[1](p) = (a1, invI[2](p)/(a1 − 1)!) the concatenation, and
x2, . . . , xk are lifts of the parameters for I[2]. In the notation of Section 4.4, I[2] = Ca1!.

The invariant and center in Definition 5.1.1(2) require the choice of a maximal contact sequence. The
goal of Section 5 is to prove that the invariant and the center (as a valuative Q-ideal) are independent of
the choice of maximal contacts. This is at once a consequence and a generalization of Theorem 4.3.1.

A posteriori, this will also imply that invI(p) is the maximal invariant of a center admissible for I at
p and J is the unique center of maximal invariant admissible for I at p — a characterization which can
be used as a choice-free definition.
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Remark 5.1.2. The string (b1, . . . ,bk) was used as a singularity invariant in [Abramovich et al. 2020a],
but it is its rescaling (a1, . . . ,ak) which gives a natural definition of the canonical center J independent
of choices.

We order the set of invariants lexicographically, with truncated sequences considered larger, for instance

(1, 1, 1) < (1, 1, 2) < (1, 2, 1) < (1, 2) < (2, 2, 1).

The invariant takes values in a well-ordered subset 4n, n = dim Y , since it is order-equivalent to
(b1, . . . , bk). Explicitly write 41 = N≥1 and

4n = 41 ⊔

⊔
a≥1

{a} ×
4n−1

(a − 1)!
.

In particular, the denominators are bounded in terms of the previous entries of the invariant.

Theorem 5.1.3 [Abramovich et al. 2020a]. Keep the above notation, then:

(1) The invariant invI(p) is independent of the choices.

(2) The invariant function invI : Y → 4n is constructible and upper-semicontinuous.

(3) The invariant is functorial for smooth morphisms: if f : Y ′
→ Y is smooth and I ′

= f −1I, then
invI ′ = invI ◦ f .

Proof. (3) Since both ordp(I) and the formation of coefficient ideals are functorial for smooth morphisms,
the invariant is functorial for smooth morphisms, once parameters are chosen.

(1) We now show that the choices of maximal contacts do not change the invariant. The integer
a1 =ordp(I)=max{a :Ip ⊆ma

p} requires no choices. Given a regular sequence of parameters (x1, . . . , xn)

extending (x1, . . . , xk), and given another maximal contact element x ′

1, we may choose constants ti , and
replace x2, . . . , xn by x2 + t2x1, . . . , xn + tnx1 so that also (x ′

1, x2, . . . , xn) is a regular sequence of
parameters.

Taking étale φ, φ′
: Ỹ → Y as in Theorem 4.3.1, we have φ∗I[2] = φ′∗I[2]

′, where I[2]
′ is defined

using x ′

1. By induction a2, . . . , ak are independent of choices. Hence (a1, . . . , ak) is independent of
choices.

(2) Since the closed subscheme V (D≤a−1I) is the locus where ordp(I) ≥ a, the order is constructible
and upper-semicontinuous. The subscheme V (D≤a1−1I) is contained in V (x1) on which invp(I[2])

is constructible and upper-semicontinuous by induction, hence invp(I) is constructible and upper-
semicontinuous. □

Remark 5.1.4. Theorem 5.1.3(3) allows to extend the definition of inv to the case of smooth stacks Y .
Indeed, if I is an ideal, choose a smooth presentation p1,2 : Y1 ⇒ Y0 of Y and let Ii ⊆OYi be the pullbacks
of I. Then invI1 = invI0 ◦ pi for i = 1, 2, hence invI0 factors through Y0 → |Y | uniquely. A similar
argument shows that the induced map invI : |Y | → 4n is independent of the presentation.

Concerning the independence of J , we note the following consequence of Theorem 4.3.1:
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Lemma 5.1.5. If x ′

1 is another maximal contact element such that (x ′

1, x2, . . . , xn) is a regular sequence
of parameters at p, then J ′

= (x ′

1
a1, xa2

2 , . . . , xak
k ) is also a center associated to I at p.

Proof. As above, this follows since φ∗I[2] = φ′∗I[2]
′, where I[2]

′ is defined using x ′

1. □

5.2. Admissibility of centers. As in earlier work on resolution of singularities, admissibility allows
flexibility in studying the behavior of ideals under blowings up of centers. This becomes important when
an ideal is related to the sum of ideals with different invariants of their own, but all admitting a common
admissible center.

In this section we assume that a1 is a positive integer and ai ≤ ai+1. We deliberately do not assume
(a1, . . . , ak) is invp(I) — see Remark 5.3.2.

5.2.1. Admissibility and blowing up. Recall that by Definition 2.4.1(2), a center J = (xa1
1 , . . . , xak

k ) is I-
admissible at p if the inequality (xa1

1 , . . . , xak
k ) ≤ v(I) of valuative Q-ideals is satisfied on a neighborhood

of p.
Very much in analogy to the notion used in earlier resolution algorithms, this can be described in

terms of the associated weighted blowing up Y ′
= BlJ (Y ) → Y along J := (x1/w1

1 , . . . , x1/wk
k ) as follows:

let E = JOY ′ , which is an invertible ideal sheaf. Note that since a1w1 is an integer also JOY ′ = Ea1w1

is an invertible ideal sheaf. Therefore J = (xa1
1 , . . . , xak

k ) is I-admissible if and only if Ea1w1 is IOY ′

admissible, if and only if IOY ′ = Ea1w1I ′, with I ′ an ideal.

Definition 5.2.2. In the situation as above, I ′ is called the weak transform of I under the weighted
blowing up.

We will only use this operation when J is the center associated to I, which is shown to be I-admissible
below.

Remark 5.2.3. In terms of its monomial valuation, J is admissible for I if and only if vJ ( f ) ≥ 1 for all
f ∈ I. This means that if f =

∑
cᾱxα1

1 · · · xαn
n then

∑k
i=1 αi/ai ≥ 1 whenever cᾱ ̸= 0. This is convenient

for testing admissibility, as long as one remembers that vJ m = vJ /m.

If Y1 → Y is smooth and J is I-admissible then JOY1 is IOY1-admissible, with the converse holding
when Y1 → Y is surjective.

5.2.4. Working with rescaled centers. For induction to work in the arguments below, it is worthwhile to
consider blowings up of centers of the form

J 1/c
:= (x1/(w1c)

1 , . . . , x1/(wkc)
k )

for a positive integer c. We also use the notation Jα
:= (xa1α

1 , . . . , xakα
k ) throughout — this being an

equality of valuative Q-ideals.

5.2.5. Basic properties. The description in Section 5.2.1 of the monomial valuation of J immediately
provides the following lemmas:
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Lemma 5.2.6. If J is both I1-admissible and I2-admissible then J is I1 + I2-admissible. If J is I-
admissible then J k is Ik-admissible. More generally if J c j is I j -admissible then J

∑
c j is

∏
I j -admissible.

Indeed if vJ ( f ) ≥ 1 and vJ (g) ≥ 1 then vJ ( f + g) ≥ 1 and vJ ( f c1 · gc2) ≥ c1 + c2, etc.

Lemma 5.2.7. If J is I-admissible then J ′
= J (a1−1)/a1 is D(I)-admissible. If a1 > 1 and J (a1−1)/a1 is

I-admissible then J is x1I-admissible.

Proof. For the first statement note that if
∑k

i=1 αi/ai ≥ 1 and α j ≥ 1 then

vJ

(
∂(xα1

1 · · · xαn
n )

∂x j

)
=

k∑
i=1

αi/ai − 1/a j ≥ 1 − 1/a1,

so

vJ ′

(
∂(xα1

1 · · · xαn
n )

∂x j

)
≥ 1,

as needed. The other statement is similar. □

As in Section 4.4 by kp = k(p) we denote a fixed field of coefficients.

Lemma 5.2.8. For I0 ⊂ kp[[x2, . . . , xn]] write Ĩ0 = I0kp[[x1, . . . , xn]]. Assume (xa2
2 , . . . , xak

k ) is I0-
admissible. Then (xa1

1 , . . . , xak
k ) is Ĩ0-admissible.

Proof. Here for generators of Ĩ0 we have
∑k

i=1 αi/ai =
∑k

i=2 αi/ai . □

Lemma 5.2.9. J is I-admissible if and only if J (a1−1)! is C(I, a1)-admissible.

Proof. When I has order <a1 then J is not admissible for I and J (a1−1)! is not admissible for C(I, a1)= (1).
When I has order ≥ a1 this combines Lemmas 5.2.6 and 5.2.7 for the terms defining C(I, a1). □

This statement is only relevant, and will only be used, when I has order a1. If a1 < a := ord(I) then
J (a1−1)! is in general not C(I, a)-admissible. For instance J = (x1) is admissible for I = (x1x2) but not
for C(I, 2) = (x2

1 , x1x2, x2
2).

Lemma 5.2.10. Assume (x1, x2, . . . , xn) and (x ′

1, x2, . . . , xn) are both regular sequences of parameters,
and suppose (xa1

1 , xa2
2 , . . . , xak

k ) ≤ v(x ′

1
a1). Then (xa1

1 , xa2
2 , . . . , xak

k ) = (x ′

1
a1, xa2

2 , . . . , xak
k ) as centers.

Proof. We may rescale ai and assume they are all integers. The inequality (xa1
1 , xa2

2 , . . . , xak
k ) ≤ v(x ′

1
a1)

implies that x ′

1
a1 lies in the integral closure (xa1

1 , xa2
2 , . . . , xak

k )int, hence

(x ′

1
a1, xa2

2 , . . . , xak
k )int

⊂ (xa1
1 , xa2

2 , . . . , xak
k )int.

Since these two ideals have the same Hilbert–Samuel functions they coincide. □
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5.3. Unique admissibility of Jp(I). Finally, we prove the second main result of Section 5 in addition to
Theorem 5.1.3.

Theorem 5.3.1. Let Y be a smooth variety, p ∈Y a point, and I⊆OY an ideal with invI(p)= (a1, . . . ,ak):

(1) If x1, . . . ,xk is a maximal contact sequence at p and J = (xa1
1 , . . . , xak

k ) the corresponding center,
then J is I-admissible at p.

(2) invI(p) = max
(x ′

1
b1 ,...,x ′

k
bk )≤v(I)

(b1, . . . , bk),

in other words, invI(p) is the maximal invariant of a center admissible for I.

(3) Locally at p, J is the unique admissible center with invariant invI(p). In particular, it is in fact
independent of the maximal contact sequence (x1, . . . ,xk).

(4) Locally at p, any point p′ with invI(p′) = invI(p) lies in V (J ).

Proof. We first prove (1). We can work on formal completions as the usual admissibility is equivalent
to the formal one: J is dominated by I at p if and only if the completion Ĵ = J ÔY,p is dominated by
Î = IÔY,p. Applying Lemma 5.2.9, we replace I by C = C(I, a1) and rescale the invariant up to a1!.
Recall that by Proposition 4.4.1

Ĉ = (xa1!
1 ) + (xa1!−1

1 C̃1) + · · · + (x1C̃a1!−1) + C̃a1!.

The inductive hypothesis implies that Ĵ (a1−1)! is Ca1!-admissible. By Lemma 5.2.8 Ĵ (a1−1)! is C̃a1!-
admissible. By Corollary 4.4.2 and Lemma 5.2.7 Ĵ (a1−1)! is (xa1!− j

1 C̃ j )-admissible, so by Lemma 5.2.6
Ĵ (a1−1)! is Ĉ-admissible, as needed.

We prove (2) and (3) simultaneously. Assume (b1, . . . , bm) ≥ (a1, . . . , ak). If J ′
= (x ′

1
b1, . . . , x ′

k
bk ) is

admissible for I then b1 ≤ a1. Since our chosen center J has b1 = a1 this maximum is achieved. Let
ℓ = max{i : bi = a1} ≥ 1. Evaluating J ′ < v(I) ≤ v(xa1) at the divisorial valuation of x1 = 0 we have that
x1 ∈ (x ′

1, . . . , x ′

ℓ)+m2
p, and after reordering we get that (x1, x ′

2, . . . , x ′
n) is a regular system of parameters.

By Lemma 5.2.10 we may write J ′
= (xa1

1 , x ′

2
b2, . . . , x ′

k
bk ). Working on formal completions we may

replace x ′

i by a suitable x ′

i + αx1 so we may assume x ′

i ∈ kp[[x2, . . . , xn]].
As in the proof of (1) above, we may replace I and invI(p) by the coefficient ideal C = C(I, a1) and

the rescaled invariant (a1 − 1)!(a1, . . . , ak), and for the formal completions one has

Ĉ = (xa1!
1 ) + (xa1!−1

1 C̃1) + · · · + (x1C̃a1!−1) + C̃a1!.

By induction (a1 − 1)!(a2, . . . , ak) is the maximal invariant for Ca1!, with unique center (xa2
2 , . . . , xak

k ).
By functoriality, the invariant is maximal for C̃a1!. But J ′

= (xa1
1 , x ′

2
b2, . . . , x ′

k
bk ) < v(̃Ca1!) is equivalent

to (x ′

2
b2, . . . , x ′

k
bk ) < v(̃Ca1!). It follows that (a1 − 1)!(a1, . . . , ak) is the maximal invariant of a center

admissible for C(I, a1), with unique center J .
Finally, (4) follows from the same induction using the classical fact that a maximal contact to (I, a1)

contains all neighboring points p′ with ordp′(I) = a1 (for example, see the proof of Theorem 5.1.3(2)). □
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Remark 5.3.2. (1) Stated in terms of the monomial valuation vJ associated to J , the theorem says it
is the unique monomial valuation with lexicographically minimal weights (w1, . . . , wn) satisfying
v(I) = 1.

(2) As an example for the added flexibility provided by admissibility, the center (x6
1 , x6

2) is (x3
1 x3

2)-
admissible because this is the corresponding invariant, but also (x5

1 , x15/2
2 ) is admissible. This second

center becomes important when one considers instead the ideal (x5
1 +x3

1 x3
2), or even (x5

1 +x3
1 x3

2 +x8
2),

whose invariant is
(
5, 15

2

)
, as described in Section 7 below.

Corollary 5.3.3. We have invIk (p) = k · invI(p) and invC(I,a1)(p) = (a1 −1)!invI(p) when a1 = ordp(I).

Proof. Indeed J k is admissible for Ik if and only if J is admissible for I, and Lemma 5.2.9 provides the
analogous statement for the coefficient ideal. □

6. Principalization and resolution

6.1. The maximal center. Our local construction of centers Jp(I) can be globalized as follows along
the maximality locus of the invariant.

Theorem 6.1.1. (1) For any smooth variety Y and an ideal I ⊆ OY there exists a unique I-admissible
center J = J (I) such that invJ = max invI and p ∈ V (J ) if and only if invI(p) = max invI .

(2) Compatibility with smooth morphisms f : Y ′
→ Y : either f −1 J (I) = (1), or f −1 J (I) = J (I ′), where

I ′
= f −1I.

(3) If Y is a smooth stack of finite type over a field of characteristic zero and I is an ideal on Y , then
associating to each presentation f : Y ′

→ Y the center J ( f −1I) one obtains a center on Y , which will be
denoted J (I).

Proof. Uniqueness in (1) follows from the local uniqueness in Theorem 5.3.1(3). Moreover, it implies that
it suffices to establish the existence locally at p. If invI(p) = max invI then locally at p such a center is
provided by Theorem 5.3.1, and otherwise the center is empty in a neighborhood of p.

Recall that the invariant is compatible with arbitrary smooth morphisms by Theorem 5.1.3(3). If
maxinv(I ′) < maxinv(I), then the invariant at any p′

∈ f (Y ′) is smaller than maxinv(I), and hence
V (J ) ∩ f (Y ′) = ∅ and f −1(J ) = (1). If maxinv(I ′) = maxinv(I), then the center f −1(J ) satisfies
the condition defining J (I ′). Since such a center is unique by (1), we obtain (2). Finally, (3) is a
straightforward consequence of (2). □

Definition 6.1.2. The center J = J (I) defined by Theorem 6.1.1 will be called the maximal I-admissible
center.

6.2. The invariant drops. The main miracle about the maximal I-admissible center is that blowing it up
one automatically reduces the invariant of the weak transform of I (see Definition 5.2.2). For inductive
reasons we prefer to prove a slightly stronger claim:
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Theorem 6.2.1. Assume that Y is a smooth k-stack and I ̸= (1) is a coherent ideal on Y , and c > 0 a
natural number. Consider the blowing up fc : Y ′

c = BlJ 1/c(Y ) of the rescaled reduction J 1/c of the maximal
I-admissible center J = J (I), and let I ′

= E−a1w1c f −1
c I be the weak transform of I, where maxinv(I) =

(a1, . . . ,ak) and (w1, . . . ,wk) are the corresponding weights. Then maxinv(I ′) < maxinv(I).

Proof. All players in the assertion are compatible with surjective smooth morphisms by Theorems 5.1.3(3)
and 6.1.1(2), hence we can replace Y and I by an étale cover and the pullback of I. Thus, we can
assume that Y is a scheme and it suffices to prove that if p ∈ Y satisfies invI(p) = (a1, . . . ,ak), then any
p′

∈ f −1
c (p) satisfies invI ′(p′) < (a1, . . . ,ak). In particular, working locally at p we can assume that

J = (xa1
1 , . . . , xak

k ) for a maximal contact sequence (x1, . . . ,xk), and hence J 1/c
:= (x1/(w1c)

1 , . . . , x1/(wkc)
k ).

If k = 0 the ideal is (0) and there is nothing to prove. When k = 1 the ideal is (xa1
1 ), which becomes

exceptional with weak transform I ′
= (1). We now assume k > 1.

Again using Proposition 4.4.1, we choose formal coordinates, work with C̃ := Ĉ(I, a1), and write

C̃ = (xa1!
1 ) + (xa1!−1

1 C̃1) + · · · + (x1C̃1) + C̃a1!.

Writing C̃OY ′
c
= Ea1!w1cC̃′, we will first show that invp′ (̃C′) < (a1 − 1)! · (a1, a2, . . . , ak) for all points p′

over p.
Write H = {x1 = 0}, and H ′

→ H the blowing up of the reduced center J H associated to JH :=

(xa2
2 , . . . , xak

k ). By Lemma 3.4.1 the proper transform H̃ ′
→ H of H via the blowing up of J is the

blowing up of J 1/(cc′)

H , allowing for induction.
We now inspect the behavior on different charts. On the x1-chart we have x1 = uw1c so the first term

becomes (xa1!
1 ) = Ea1!w1c

· (1) and invp′ C̃′
= inv(1) = 0.6 This implies that on all other charts it suffices

to consider p′
∈ H̃ ′

∩ E , as all other points belong to the x1-chart. By the inductive assumption, for such
points we have

invp′((Ca1!)
′) < (a1 − 1)! · (a2, . . . , ak).

Note that the term (xa1!
1 ) in C̃ is transformed, via x1 = uw1cx ′

1 to the form Ea1!w1c(x ′

1
a1!). It follows that

ordp′ (̃C′) ≤ a1!, and if ordp′ (̃C′) < a1! then a fortiori invp′ (̃C′) < invp (̃C).
If on the other hand ordp′ (̃C′) = a1! then the variable x ′

1 is a maximal contact element. Using the
inductive assumption we compute

invp′((x ′a1!
1 ) + (̃Ca1!)

′) = (a1!, invp′((Ca1!)
′)) < (a1!, invp′(Ca1!)) = (a1 − 1)!(a1, . . . , ak).

Since C̃′ includes this ideal, we obtain again invp′ (̃C′) < invp (̃C), as claimed.
We deduce that invp′(I ′) < invp(I) as well. As in [Kollár 2007, Theorem 3.67; Bierstone and Milman

2008, Lemma 3.3; Abramovich et al. 2020a; 2020b], we have the inclusions I ′(a1−1)!
⊂ C̃′

⊂ Ĉ(I ′, a1),7

6This reflects the fact that before passing to the coefficient ideal ord(I′) < a1 on this chart — it need not become a unit ideal
in general!

7These are the “easy” inclusions — which hold even in the logarithmic situation.
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hence ordp′(I ′) ≤ a1. We may again assume x ′

1 is a maximal contact element and ordp′(I ′) = a1. By
Theorem 5.3.1(2)

invp′(I ′(a1−1)!) ≥ invp′ (̃C′) ≥ invp′(Ĉ(I ′, a1)).

By Corollary 5.3.3 we have invp′(I ′(a1−1)!) = invp′(Ĉ(I ′, a1)) giving equalities throughout, hence

invp′(I ′) =
1

(a1−1)!
invp′ (̃C′) <

1
(a1−1)!

invp (̃C) = invp(I),

as needed. □

6.3. The principalization theorem. It remains to summarize our results. First, we obtain principalization.
Given a pair (Y, I) consisting of a smooth Deligne–Mumford k-stack Y and an ideal I ⊂OYét , let J = J (I)

be the maximal I-admissible center with reduction J , let Y1 = Bl J (Y ) and let I1 be the weak transform
of I. We set P1(Y, I) = (Y1, I1).

Theorem 6.3.1 (principalization). (1) Partial principalization:

(a) P1 reduces the invariant: maxinv(I1) < maxinv(I).
(b) If f : Y ′

→ Y is smooth and I ′
= f −1I, then either P1(Y, I) pullbacks to the empty blowing up

of Y ′, or P1(Y ′, f −1I) = P1(Y, I)×Y Y ′. In particular, P1 is compatible with surjective smooth
morphisms.

(2) Full principalization:

(a) The sequence (Yi+1, Ii+1)=P1(Yi , Ii ) starting with (Y0, I0)= (Y, I) stabilizes and this happens
at the smallest n with In = (1).

(b) The principalization blowings up sequence P(Y, I) : Yn → · · · → Y is compatible with arbitrary
smooth morphisms f : Y ′

→ Y : the sequence P(Y ′, f −1I ′) is obtained from P(Y, I)×Y Y ′ by
removing all empty blowings up.

Proof. Claim (1) is covered by Theorems 6.2.1 and 6.1.1(2). Since the set of invariants 4n is well-ordered
and attains its minimum (0) on the trivial ideal (1), we obtain (2a). The functoriality of P follows from
the functoriality of P1. □

As a corollary we deduce embedded resolution. This is a standard reduction, except the fact that here
we are also able to replace the weak transform by the proper transform.

Proof of Theorems 1.2.2 and 1.2.5. Given a DM pair X ⊂ Y consider the ideal I = IX defining X
in Y , and set inv(X,Y ) = invI and J (X, Y ) = J (I). Thus, we take Y1 → Y to be the same weighted
blowing up as in P1(Y, I) and take X1 to be the proper transform of X . Since I1 ⊆ IX1 we obtain that
maxinv(X1, Y1) ≤ maxinv(I1). Therefore all assertions of the two theorems follow from the properties
of the center J (I) and the invariant invI proven in Theorems 6.1.1 and 6.3.1. □

Note that in the deduction of Corollary 1.2.3 we also used that if X is of codimension c at p ∈ Y , then
invI(p) ≥ (1, . . . ,1) of length c, and the equality holds if and only if X is smooth at p.
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7. An example

Consider the plane curve
X = V (x5

+ x3 y3
+ yk)

with k ≥ 5. Its resolution depends on whether or not k ≥ 8.

7.1. The case k ≥ 8. This curve is singular at the origin p. We have a1 = ordp(IX ) = 5. Since
D≤4I = (x, y2) we may take x1 = x and H = V (x). A direct computation provides the coefficient ideal

C(IX , 5)|H = (D≤3(IX )|H )120/2
= (y180),

with b2 = 180 and a2 =
180
4!

=
15
2 . Rescaling, we need to take the weighted blowup of J = (x1/3, y1/2):

• In the x-chart we have x = u3, y = u2 y′, giving

Y ′

x = [Spec k[u, y′
]/µ3],

the action given by (u, y′) 7→ (ζ3u, ζ3 y′). The equation of X becomes

u15(1 + y′3
+ u2k−15 y′k),

with proper transform X ′
x = V (1 + y′3

+ u2k−15 y′k) smooth.

• In the y-chart we have y = v2, x = v3x ′, giving

Y ′

y = [Spec k[x ′, v]/µ2],

the action given by (x ′, v) 7→ (−x ′, −v). The equation of X becomes v15(x ′5
+ x ′3

+ v2k−15), with
proper transform X ′

y = V (x ′5
+ x ′3

+ v2k−15).
Note that X ′

y is smooth when k = 8. Otherwise it is singular at the origin with invariant (3, 2k−15),
which is lexicographically strictly smaller than

(
5, 15

2

)
; A single weighted blowing up resolves the

singularity.

7.2. The case k ≤ 7. Consider now the same equation with k = 7 (the cases k = 5, 6 being similar). We
still take a1 = 5, x1 = x and H = V (x). This time

C(IX )|H = ((IX )|H )120/5
= (y168),

with b2 = 7 · (4!) and a2 = 7. We take the weighted blowup of J = (x1/7, y1/5):

• In the x-chart we have x = u7, y = u5 y′, giving

Y ′

x = [Spec k[u, y′
]/µ7],

the action given by (u, y′) 7→ (ζ7u, ζ−5
7 y′). The equation of X becomes

u35(1 + uy′3
+ y′7),

with proper transform X ′
x = V (1 + uy′3

+ y′7) smooth.
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• In the y-chart we have y = v5, x = v7x ′, giving

Y ′

y = [Spec k[x ′, v]/µ5],

the action given by (x ′, v) 7→ (ζ−7
5 x ′, ζ5v). The equation of X becomes v35(x ′5

+ vx ′3
+ 1), with

smooth proper transform X ′
y = V (x ′5

+ vx ′3
+ 1).

8. Further comments

8.1. Nonembedded resolution. Given two embeddings X ⊂Y1 and X ⊂Y2 such that dimp(Y1)=dimp(Y2)

for all p ∈ X , the two embeddings are étale locally equivalent. By functoriality the embedded resolutions
of X ⊂ Y1 and X ⊂ Y2 are étale locally isomorphic, hence the resolutions X ′

1 → X and X ′

2 → X coincide.
Our resolutions also satisfy the reembedding principle [Abramovich et al. 2020a, proposition 2.12.3]:

given an embedding Y ⊂Y1 :=Y ×Spec k[x0] and invp(IX⊂Y )= (a1, . . . , ak) with parameters (x1, . . . , xk)

we have invp(IX⊂Y1) = (1, a1, . . . , ak) with parameters (x0, x1, . . . , xk). The proper transform X ′

1 of X
in Y ′

1 is disjoint from the x0-chart, and on every other chart we have Y ′

1 = Y ′
×Spec k[x0] so that X ′

1 = X ′

and induction applies.
Since every pure-dimensional stack can be étale locally embedded in pure codimension, we deduce:

Theorem 8.1.1 (nonembedded resolution). There is a functor Fner associating to a pure-dimensional
reduced stack X of finite type over a characteristic-0 field k a proper, generically representable and
birational morphism Fner(X) → X with Fner(X) regular. This is functorial for smooth morphisms: if
X1 → X is smooth then Fner(X1) = Fner(X) ×X X1.

Remark 8.1.2. Of course one can deduce functorial resolution of X which is not pure dimensional just
by applying Fner to the normalization of X . One can also use other operations to separate components,
for example, the disjoint union of the schematic closures of the generic points of X does the job.

Carefully using Bergh’s destackification theorem we also obtain:

Theorem 8.1.3 (coarse resolution). There is a construction Fcrs associating to a pure-dimensional reduced
stack X of finite type over a characteristic-0 field k a projective birational morphism Fcrs(X) → X with
Fcrs(X) smooth. This is functorial for smooth representable morphisms X1 → X , namely, Fcrs(X1) =

Fcrs(X) ×X X1.

Proof. We apply [Bergh and Rydh 2019, Theorem 7.1], using Fner(X) → X → Spec k for X → T → S in
that theorem. This provides a projective morphism Fner(X)′ → Fner(X), functorial for smooth morphisms
X1 → X , such that the relative coarse moduli space Fner(X)′ → Fner(X)′ → X is projective over X , and
such that Fner(X)′ and Fner(X)′ are regular. We may take Fcrs(X) = Fner(X)′. □

Remark 8.1.4. In general, Fcrs(X) is only representable (even projective) over X , but not over k. This
implies that when X is an algebraic space (or projective) so is Fcrs(X). Of course one can replace in the
construction relative destackification by absolute destackification. In such a case, the resulting resolution
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of the coarse moduli space X would be an algebraic space, but the construction would not be compatible
with smooth morphisms.

8.2. Note on stabilizers. Even though Bergh’s destackification is known for tame stacks, one might
wonder about the stabilizers occurring in our resolution. We note, however, that the stabilizers of a
weighted blowing up locally embed in IY × Gm , where IY denotes the inertia stack of Y . We therefore
have that the stabilizers of Yn locally embed in IY × Gn

m . In particular, if Y is a scheme then Yn has
abelian inertia, and its coarse moduli space has abelian quotient singularities.

8.3. Note on exceptional loci. We show by way of an example that the exceptional loci produced in our
algorithm do not necessarily have normal crossings with centers.

Consider I = (x2 yz + yz4) ⊂ C[x, y, z]. Then maxinv(I) = (4, 4, 4) is attained at the origin with
center (x4, y4, z4) and reduced center (x, y, z). In the z-chart one obtains the ideal (y3(x2

3 + z)). The new
invariant is (2, 2) with reduced center (y3, x2

3 + z), which is tangent to the exceptional z = 0.
The methods of [Abramovich et al. 2020a] suggest using the logarithmic derivative in z, resulting in

the invariant (3, 3, ∞) with center (y3
3 , x3

3 , z3/2) and reduced Kummer center (y3, x3, z1/2). This reduces
logarithmic invariants respecting logarithmic, hence exceptional, divisors. A general algorithm is worked
out in [Quek 2022].
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