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Unramifiedness of weight 1 Hilbert Hecke algebras
Shaunak V. Deo, Mladen Dimitrov and Gabor Wiese

We prove that the Galois pseudo-representation valued in the mod pn cuspidal Hecke algebra for GL(2)
over a totally real number field F , of parallel weight 1 and level prime to p, is unramified at any place
above p. The same is true for the noncuspidal Hecke algebra at places above p whose ramification
index is not divisible by p−1. A novel geometric ingredient, which is also of independent interest, is
the construction and study, in the case when p ramifies in F , of generalised 2-operators using Reduzzi
and Xiao’s generalised Hasse invariants, including especially an injectivity criterion in terms of minimal
weights.
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Introduction

Starting with Wiles [1995] and Taylor and Wiles [1995], R = T theorems have been developed and taken
a role as cornerstones in number theory. They provide both the existence of Galois representations with
values in Hecke algebras satisfying prescribed local properties and modularity lifting theorems. The state
of R = T theorems for 2-dimensional representations in residual characteristic p of the absolute Galois
group GQ of Q and Hecke algebras acting on elliptic modular forms is quite satisfactory. In particular, the
notoriously difficult case of Galois representations that are unramified at an odd prime p has been settled
by ground-breaking work of Calegari and Geraghty [2018], in which they show that those correspond to
modular forms of weight 1. More precisely, given an odd irreducible representation ρ̄ : GQ→ GL2(Fp)

unramified outside a finite set of places S not containing p, they show that

RS
Q,ρ̄

∼
−→ T

(1)
ρ̄ ,

where RS
Q,ρ̄ is the universal deformation ring parametrising deformations of ρ̄ which are unramified

outside S and T
(1)
ρ̄ is the local component at ρ̄ of a weight 1 Hecke algebra of a certain level prime to p.
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In this article, we address the corresponding question for parallel weight 1 Hilbert modular forms over
a totally real field F of degree d = [F :Q]⩾ 2 and ring of integers o. We focus on the construction of the
Galois (pseudo-)representation with values in the parallel weight 1 Hecke algebra with p-power torsion
coefficients and proving its local ramification properties. In particular, given a finite set S of places in F
relatively prime to p and a totally odd irreducible representation ρ̄ : GF → GL2(Fp) unramified outside
S we show that there exists a surjective homomorphism

RS
F,ρ̄ ↠ T

(1)
ρ̄ ,

where RS
F,ρ̄ is the universal deformation ring parametrising deformations of ρ̄ which are unramified

outside S and T
(1)
ρ̄ is the local component at ρ̄ of a weight 1 Hecke algebra of a certain level prime to p

(see Corollary 3.10 for a precise statement).
Let Mκ(n, R) be the R-module of Hilbert modular forms of parallel weight κ ⩾ 1 and prime to p level

n over a Zp-algebra R, as in Definition 2.1. This R-module is equipped with a commuting family of
Hecke operators Tq as well as with diamond operators ⟨q⟩ for all primes q of F not dividing n. Let K/Qp

be a finite extension containing the images of all embeddings of F in Qp, and let O be its valuation ring,
ϖ a uniformiser and F=O/ϖ its residue field. We put Mκ(n, K/O)= lim

−−→n Mκ(n,O/ϖ n) and define
the parallel weight 1 Hecke algebra

T(1) = im(O[Tq, ⟨q⟩]q∤np→ EndO(M1(n, K/O))),

as well as its cuspidal quotient T
(1)
cusp acting faithfully on the submodule of parallel weight 1 cuspforms.

We can now state the main results of this article. Let po=
∏

p|p p
ep with ep ⩾ 1. We emphasise that there

is no restriction on the ramification of p in F .

Theorem 0.1. There exists a T(1)-valued pseudo-representation P (1) of GF of degree 2 which is unramified
at all primes q not dividing np and satisfies

P (1)(Frobq)= (Tq, ⟨q⟩).

Moreover, if p−1 does not divide ep for some p | p, then P (1) is also unramified at p and satisfies

P (1)(Frobp)= (Tp, ⟨p⟩),

in particular Tp ∈ T(1).
Finally, the pseudo-representation P (1)cusp obtained after composing P (1) with the natural surjection

T(1)→ T
(1)
cusp is unramified at all p | p and satisfies

P (1)cusp(Frobp)= (Tp, ⟨p⟩).

The strategy of the proof is based on the doubling method developed in [Wiese 2014], further simplified
and conceptualised in [Dimitrov and Wiese 2020] and [Calegari and Geraghty 2018]. The parallel weight 1
Hilbert modular forms over O/ϖ n can be mapped into some higher weight in two ways, per prime p
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dividing p, either by multiplication by a suitable power of the total Hasse invariant, or by applying a V -
operator. That doubling map is used by Calegari and Specter [2019] to prove an analogue of Theorem 0.1
when F =Q, for which they successfully develop the notion of a p-ordinary pseudo-representation. In
that case, one knows by a result of Katz that the doubling map is injective. Furthermore, the existence of
the Hecke operator Tp acting on weight 1 modular forms and the knowledge of its precise effect on the
q-expansion (both due to Gross) allow one to show that the image of the doubling map is contained in
the p-ordinary part of the higher weight space.

The existence of an optimally integral Hecke operator Tp acting on parallel weight 1 Hilbert modular
forms with arbitrary coefficients having the desired effect on their q-expansions (see [Diamond 2021]
improving on and correcting previous works such as [Emerton et al. 2017] and [Dimitrov and Wiese
2020]) allows us to adapt the overall Calegari–Specter strategy to the Hilbert modular setting, while
slightly generalising and clarifying some aspects of their arguments (see Section 3), the main challenge
being to prove the injectivity of the doubling map. Note that the simple calculation in [Dimitrov and Wiese
2020] showing injectivity after restriction to an eigenspace is insufficient as the Hecke algebra modulo
p need not be semisimple. Instead, we observe that the injectivity of the doubling map would follow
from the injectivity of a certain generalised 2-operator, introduced in the foundational work of Andreatta
and Goren [2005] for Hilbert modular forms in characteristic p defined over the Deligne–Pappas moduli
space. When p is unramified in F , the theory of partial 2-operators was also developed by Diamond and
Sasaki [2023] in a more general setting using a slightly different approach from that of [Andreatta and
Goren 2005]. However, when p is ramified in F , the results of [Diamond and Sasaki 2023] do not apply,
while those of [Andreatta and Goren 2005] are not sufficiently precise for our purposes, as the Hilbert
modular forms defined over the Deligne–Pappas model “miss” some weights, and as a consequence
the injectivity result of the latter paper is not optimal. In order to tackle this problem, we go back to
the root of the problem and work with the Pappas–Rapoport moduli space, which does not miss any
weight.

Capitalising on the theory of generalised Hasse invariants developed by Reduzzi and Xiao [2017]
in this context, we carefully revisit [Andreatta and Goren 2005] and develop in Section 1E the needed
theory of generalised 2-operators over the Pappas–Rapoport moduli space and prove a refined injectivity
criterion in terms of the minimal weights. In particular, we show that the generalised 2-operators are
indeed injective on parallel weight 1 Hilbert modular forms provided their weight is minimal at p. By the
recent works of Diamond and Kassaei [2017; 2023] (see Section 1C) weight 1 Hilbert modular forms
having “nonminimal” weight at p could only possibly exist when p− 1 divides ep, and are products of
forms of partial weight 0 at p with generalised Hasse invariants.

In order to show the vanishing of the space of Katz cuspforms of partial weight 0 at p, and thus complete
the proof of the last parts of the Theorem, in Section 1D we construct a partial Frobenius endomorphism
8pe of this space and show that it is simultaneously injective and nilpotent. Our construction is inspired
by the one in [Diamond and Sasaki 2023, Section 9.8] in the case when p is unramified in F . We also
compute its effect on q-expansions, which is crucially used in our proof and, in order to avoid having to
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switch between different cusps, we only study the partial Frobenius operator of an appropriate power of
p, rather than of p itself.

In the language of linear representations, we prove the following result, which can be seen as a first
step towards an R = T theorem.

Corollary (Corollary 3.10). For every non-Eisenstein maximal ideal m of T(1) (see Definition 3.8) there
exists a representation

ρm : GF → GL2(T
(1)
m ),

unramified at all primes q not dividing n such that tr(ρm(Frobq))= Tq and det(ρm(Frobq))= ⟨q⟩.

We believe that our modest contribution to the theory of generalised 2-operators in the setting of
the Pappas–Rapoport splitting model is worthwhile on its own, beyond the application to our main
theorem. On our way to the injectivity criterion, we also explore some related themes, such as the relation
between Hilbert modular forms defined over the Pappas–Rapoport model with those defined over the
Deligne–Pappas model, and the q-expansion and vanishing loci of the generalised Hasse invariants defined
by Reduzzi and Xiao. We hope that it bridges the gap between many existing references in the literature
and also clarifies some important aspects of the theory of mod p Hilbert modular forms. In the meantime,
motivated by geometric Serre weight conjectures, Diamond [2023] extended the techniques of [Diamond
and Sasaki 2023] to also construct partial 2-operators which have an optimal effect on weights in the case
where p ramifies in F . Moreover, Diamond [2023] generalised the construction of the partial Frobenius
operators (our partial Frobenius operator 8pe is essentially Diamond’s V e

p ). Note that Diamond also
describes kernels of partial 2-operators in terms of images of his partial Frobenius maps Vp; see [loc. cit.,
Theorem 9.1.1]. However, our construction is less technical because we restrict to the Rapoport locus and
we only consider the case of weights 0 at p.

Notation. Throughout the paper, we will use the following notation. We let F be a totally real number
field of degree d ⩾ 2 and ring of integers o. We denote by Q ⊂ C the subfield of algebraic numbers
and denote by GF = Gal(Q/F) the absolute Galois group of F . For every prime q of F we denote by
Frobq ∈ GF a fixed choice of an arithmetic Frobenius at q. Let p be a prime of F dividing p. Fixing
an embedding ιp of Q into a fixed algebraic closure Qp of Qp allows one to see the absolute Galois
group GFp = Gal(Qp/Fp) of Fp as a decomposition subgroup of GF at p, and we let Ip denote its inertia
subgroup. Furthermore, we fix a finite extension K/Qp containing the images of all embeddings of F in
Qp, and let O be its valuation ring, ϖ a uniformiser and F=O/(ϖ) its residue field.

For a prime p of F dividing p, denote the residue field of Fp by Fp and the ring of Witt vectors of Fp

by W (Fp). We also let fp and ep denote the residue and the ramification index of p, respectively. Let
6 be the set of infinite places of F , which we view as embeddings F ↪→Qp via ιp. We have a natural
partitioning 6 =

∐
p|p 6p where 6p contains exactly those embeddings inducing the place p. For σ ∈6p,

we denote by σ its restriction to the maximal unramified subfield of Fp or, equivalently, the induced
embedding of Fp(σ ) into Fp. Furthermore, we let 6p = {σ | σ ∈6p} and 6 = {σ | σ ∈6} =

∐
p|p 6p. As
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a general rule, elements of 6 will be called σ whereas τ usually designates an element of 6. In both
cases, p(σ ) and p(τ ) denotes the underlying prime ideal. When either σ or τ is clear from the context,
we will just denote this prime ideal by p. In particular, an element τ ∈6p denotes both an embedding
Fp(τ ) ↪→ F and the corresponding p-adic one W (Fp(τ )) ↪→O. Denoting the absolute arithmetic Frobenius
on F by φ, we have 6p = {φ

j
◦ τ | j ∈ Z} ≃ Z/ fpZ≃Gal(Fp/Fp) for any choice τ ∈6p. For any τ ∈6p,

we let 6τ = {σ ∈ 6p | σ = τ } = {στ,i | 1 ⩽ i ⩽ ep}, where the numbering is chosen in an arbitrary, but
fixed way. As an abbreviation, we write τ̃ = στ,ep .

Let C be a fixed set of representatives, all relatively prime to p, for the narrow class group of F .

1. Hilbert modular forms in finite characteristic

This section refines the theory of 2-operators developed by Andreatta and Goren [2005], when p ramifies
in F , in the setting of Hilbert modular forms defined over the Pappas–Rapoport splitting models for
Hilbert modular varieties with the aim of proving the injectivity of the doubling map in Section 2. Along
the way, we will need the generalised Hasse invariants of Reduzzi and Xiao [2017], results of Diamond
and Kassaei [2017; 2023] about minimal weights as well as a partial Frobenius operator generalised from
[Diamond and Sasaki 2023].

Throughout this section we fix an ideal n of o relatively prime to p and having a prime factor which
does not divide 6d, where d denotes the different of F .

1A. Pappas–Rapoport splitting models for Hilbert modular varieties. Since we allow our base field F
to ramify at p, we have to be careful with the model we choose for our Hilbert modular variety.

Fix c ∈ C. We first consider the functor from the category of locally Noetherian Zp-schemes to the
category of sets which assigns to a scheme S the set of isomorphism classes of tuples (A, λ, µ) where:

(i) A is a Hilbert–Blumenthal abelian variety (HBAV) over S, i.e., an abelian S-scheme of relative
dimension d, together with a ring embedding o ↪→ EndS(A).

(ii) λ is a c-polarisation of A/S, i.e., an isomorphism λ : A∨→ A⊗o c of HBAV’s over S such that the
induced isomorphism Homo(A, A⊗o c)≃ Homo(A, A∨) sends elements of c (resp. of the cone c+

of its totally positive elements) to symmetric elements (resp. to polarisations),

(iii) µ is a µn-level structure on A, i.e., an o-linear closed embedding of S-schemes µ : µn→ A, where
µn denotes the Cartier dual of the constant group scheme o/n over S.

Under our assumption on n above, this functor is representable by a Zp-scheme XDP of finite type, called
the Deligne–Pappas moduli space; see [Andreatta and Goren 2005, Remark 3.3] and [Dimitrov and
Tilouine 2004, Lemma 1.4].

Suppose now that A is an HBAV over a locally Noetherian O-scheme S with structure map s : A→ S
and let �1

A/S be the sheaf of relative differentials of A over S. Define

ωS = s∗�1
A/S,
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i.e., ωS is the sheaf of invariant differentials of A over S. Consider the decomposition

o⊗Z OS = (o⊗Z Zp)⊗Zp OS =
∏
p|p

op⊗Zp OS =
∏
τ∈6

op(τ )⊗W (Fp(τ )),τ OS. (1)

It implies that we have a corresponding decomposition

ωS =
⊕
τ∈6

ωS,τ . (2)

The sheaf ωS,τ is locally free over S of rank ep(τ ); see [Reduzzi and Xiao 2017, Section 2.2]. Note that
on ωS,τ , the action of W (Fp(τ )) ⊂ op(τ ) is via τ . Fix a uniformiser ϖp(τ ) of op(τ ). From the product
decomposition above, we get an action of op(τ ) on ωS,τ . Denote the action of ϖp(τ ) on ωS,τ by [ϖp(τ )].

We are now ready to present the Pappas–Rapoport model. Consider the functor from the category of
locally Noetherian O-schemes to the category of sets which assigns to a scheme S the set of isomorphism
classes of tuples (A, λ, µ, (Fp)p|p) where (A, λ, µ) is as above and for all p | p, Fp is a collection
(F i

τ )τ∈6p,0⩽i⩽ep of o⊗OS-modules, which are locally free as OS-modules, such that:

• 0= F0
τ ⊂ · · · ⊂ Fep

τ = ωS,τ .

• For any σ = στ,i ∈ 6τ , the OS-module ωS,τ,i = ωS,σ = F i
τ/F i−1

τ is locally free of rank 1 and
annihilated by [ϖp] − σ(ϖp). Note that the numbering here depends on the one for 6τ .

This functor is representable by a smooth O-scheme X of finite type called the Pappas–Rapoport moduli
space; see [Reduzzi and Xiao 2017, Proposition 2.4] and [Dimitrov and Tilouine 2004, Lemma 1.4].

In order to better understand the relation between the Deligne–Pappas and the Pappas–Rapoport moduli
spaces, we recall that the Rapoport locus XRa is the open subscheme of XDP classifying HBAV’s s : A→ S
satisfying the following condition introduced by Rapoport: s∗�1

A/S is a locally free o⊗Z OS-module
of rank 1. Then XRa is the smooth locus of XDP and its complement is supported in the special fibre
and has codimension at least 2 in it. The forgetful map X → XDP

O induces an isomorphism on the open
subscheme XRa

O ; see [Reduzzi and Xiao 2017, Proposition 2.4]. If p is unramified in F , the different
schemes agree: X = XRa

O = XDP
O ; see [Reduzzi and Xiao 2017, Section 1].

Let A be the universal abelian scheme over X with structure morphism s :A→ X . Let ωX = s∗�1
A/X .

Note that the restriction of ωX to XRa
O is a locally free sheaf of rank 1 over o⊗ZOXRa

O
. As abbreviation we

write ω,ωτ , ωτ,i , ωσ for ωX , ωX ,τ , ωX ,τ,i , ωX ,σ . In particular, for each τ ∈6, the sheaf ωτ is equipped
with a filtration the graded pieces of which are the invertible sheaves ωσ for σ ∈ 6τ . In [Reduzzi and
Xiao 2017] this is referred to as the universal filtration. We point out explicitly that the last graded piece
ωτ̃ is a quotient of ωτ .

Next we give, following Katz, a geometric definition of the space of Hilbert modular forms.

Definition 1.1. A Katz Hilbert modular form of weight k =
∑

σ∈6 kσσ ∈ Z[6], level n and coefficients
in an O-algebra R is a global section of the line bundle ω⊗k

=
⊗

σ∈6 ω
⊗kσ
σ over X ×O R. We will denote

by MKatz
k (c, n; R) the corresponding R-module.
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Its R-submodule of cuspforms SKatz
k (c, n; R) consists of those Katz Hilbert modular forms that vanish

along the cuspidal divisor of any toroidal compactification of X ×O R; see [Reduzzi and Xiao 2017,
Section 2.11].

As X admits toroidal compactifications (see [Reduzzi and Xiao 2017, Section 2.11]) which are smooth
and proper over O and to which ωσ extends for all σ ∈ 6, the Koecher principle implies, in view of
[Stacks 2005–, Tag 02O5], that MKatz

k (c, n; R) is a finitely generated R-module.

Remark 1.2. When the weight k ∈ Z[6] is parallel, i.e., kσ = κ ∈ Z for all σ ∈6, one also could define
a Katz Hilbert modular form of parallel weight κ ∈ Z, level n and coefficients in a Zp-algebra R as a
global section of the line bundle

(∧d s∗�1
A/XDP

)⊗κ over XDP
×Zp R. By Zariski’s main theorem applied

to the proper birational map X → XDP
O between normal varieties, this would lead to the same space as in

Definition 1.1.

1B. Generalised Hasse invariants. From this point onwards we will work over F. Let X be the Pappas–
Rapoport moduli space over F, i.e., the special fibre X ×O F of X . There is a natural morphism
X→ XDP

×Zp F obtained by forgetting the filtrations. Let XRa
= XRa

×Zp F. We have the equality

o⊗Z F=
∏
p|p

op⊗Zp F≃
∏
τ∈6

op(τ )⊗W (Fp(τ )),τ F=
∏
τ∈6

F[x]/(xep(τ )), (3)

coming from (1). Note that the last equality of (3) depends on the choice of the uniformiser ϖp(τ ) of op(τ ),
made in the previous subsection for every τ ∈6, and allows us to view ωτ as an OX [x]/(xep)-module. If
S is a locally Noetherian F-scheme and A is an HBAV over S satisfying the Rapoport condition, then ωS,τ

is a locally free OS[x]/(xep(τ ))-module of rank 1. Hence, there is a unique filtration on ωS,τ satisfying the
Pappas–Rapoport conditions given by xep(τ )−iωS,τ for 0 ⩽ i ⩽ ep(τ ). We point out again that the definition
of X depends on the numbering of the embeddings in 6τ fixed above, but that X is independent of any
such choice; see also [Reduzzi and Xiao 2017, Remark 2.3].

If p | p and τ ∈6p, then suppose the universal filtration on ωτ is given by (F i
τ )0⩽i⩽ep . We now recall

Reduzzi and Xiao’s constructions of generalised Hasse invariants hσ given in [Reduzzi and Xiao 2017].
Let p | p and τ ∈ 6p and assume first that 2 ⩽ i ⩽ ep. There is a map F i

τ → F i−1
τ which sends a local

section z of F i
τ to the section x · z of F i−1

τ , where the action of x is given by [ϖp(τ )]. Hence, we get
a map F i

τ/F i−1
τ → F i−1

τ /F i−2
τ inducing a section hτ,i = hστ,i of ωτ,i−1⊗ω

−1
τ,i over X . This hσ is the

generalised Hasse invariant at σ = στ,i ; see [Reduzzi and Xiao 2017, Construction 3.3] and [Emerton
et al. 2017, Section 2.11] for more details. As (ωτ )|XRa is a locally free sheaf over OXRa[x]/(xep) of rank
1, we have (F i

τ )|XRa = (xep−iωτ )|XRa . It follows that hτ,i is a nowhere vanishing section over XRa and
multiplication by hτ,i induces an isomorphism between (ωτ,i )|XRa and (ωτ,i−1)|XRa .

For the case i = 1, the generalised Hasse invariant hτ,1 is defined as a global section over X of
ω
⊗p
φ−1◦τ,ep

⊗ω⊗−1
τ,1 ; see [Reduzzi and Xiao 2017, Construction 3.6] for more details. We let hτ =

∏
σ∈6τ

hσ =∏ep
i=1 hτ,i . It is a modular form of weight p · φ̃−1 ◦ τ − τ̃ .

https://stacks.math.columbia.edu/tag/02O5
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Remark 1.3. Let A be the universal abelian scheme over X and Ver : A(p)→ A be the Verschiebung mor-
phism, where A(p)= A×F,φF. It induces mapsωτ→ω

(p)
φ−1◦τ

and further Fep
τ /F

ep−1
τ → (Fep

φ−1◦τ
/Fep−1

φ−1◦τ
)(p).

Note that Fep
τ /F

ep−1
τ =ωτ,ep , (Fep

φ−1◦τ
/Fep−1

φ−1◦τ
)(p)=ω

⊗p
φ−1◦τ,ep

and the resulting section of ω⊗p
φ−1◦τ,ep

⊗ω⊗−1
τ,ep

over X is precisely given by hτ ; see [Reduzzi and Xiao 2017, Lemma 3.8]. Moreover, its restriction
to XRa coincides with Andreatta and Goren’s partial Hasse invariant constructed in [Andreatta and
Goren 2005, Definition 7.12]. In particular, when p is unramified in F , the generalised Hasse invariants
constructed by Reduzzi and Xiao are the same as the partial Hasse invariants constructed by Andreatta
and Goren.

We will now determine the geometric q-expansions of these generalised Hasse invariants. We will
mostly follow conventions of [Dimitrov 2004, Section 8]. Let∞c be the standard infinity cusp whose
Tate object is given by (Gm ⊗Z c∗)/qo; see [Dimitrov and Wiese 2020, Section 2.3]. Here c∗ = c−1d−1.
Let X∧ be the formal completion of a toroidal compactification of X along the divisor at the cusp∞c;
see [Dimitrov 2004, Theorem 8.6]. By [loc. cit.], the pull back of ω to X∧ is canonically isomorphic to
OX∧ ⊗ c. Choosing an identification

F⊗ c ∼−→ F⊗ o (4)

one can canonically identify ωτ | X∧ with τ(OX∧ ⊗ o)=OX∧[x]/(xep(τ )) (see (3)). A global section of ωτ
over X∧ is an element of{ ∑

ξ∈c+∪{0}

aξqξ
∣∣ aξ ∈ F[x]/(xep(τ )) and au2ξ = τ(u)aξ ,∀u ∈ o

×, u− 1 ∈ n
}
,

whereas a section z of ωτ,i over X∧ is an element of{
xep(τ )−i

·

∑
ξ∈c+∪{0}

bξqξ
∣∣ bξ ∈ F and bu2ξ = τ(u)bξ ,∀u ∈ o

×, u− 1 ∈ n
}

whose q-expansion is given by
∑

ξ∈c+∪{0} bξq
ξ with respect to the choice of basis of ωτ,i | X∧ corresponding

to xep(τ )−i .

Lemma 1.4. Let p | p, τ ∈6p. Then for every 1 ⩽ i ⩽ ep, the geometric q-expansion of the generalised
Hasse invariant hτ,i at∞c is 1. In particular, it does not vanish at any cusp.

Proof. When i > 1, as x · z is a section of ωτ,i−1 having by definition the same q-expansion, one concludes
that hτ,i has q-expansion 1, thus proving the claim in that case. In the remaining case of i = 1, we
observe that the q-expansion of hτ =

∏ep(τ )
i=1 hτ,i at∞c is 1 by Remark 1.3 and [Andreatta and Goren

2005, Proposition 7.14]. Hence the q-expansion of hτ,1 at∞c is 1. Finally, since the hτ,i can be defined
in any level, we deduce their nonvanishing at all cusps from the nonvanishing at∞c. □

We now collect some properties of the generalised Hasse invariants that will be used in the sequel. Let
Zσ ⊂ X be the divisor of hσ and, in order to shorten the notation, we let Zτ,i = Zστ,i .
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Lemma 1.5. The complement of XRa in X coincides with
⋃
τ∈6

⋃ep(τ )
i=2 Zτ,i . Moreover, for any I ⊆ 6,

the intersection
⋂
σ∈I Zσ is, either empty, or equidimensional of dimension d − |I |. In particular, the

zero loci of two different generalised Hasse invariants do not have a common divisor.

Proof. The first claim has been established in [Emerton et al. 2017, Proposition 2.13 (2)]. For the second,
if ∩σ∈I Zσ is nonempty, then the tangent space computation in [Reduzzi and Xiao 2017, Theorem 3.10]
ensures the correct dimension. □

Remark 1.6. Diamond and Kassaei also prove Lemma 1.5 and obtain in addition the nonemptiness of
the intersection; see [Diamond and Kassaei 2023, Proposition 5.8]. Here we sketch a constructive proof,
following ideas of Andreatta and Goren [2003], if ep(τ ) is odd for all τ ∈6.

Let A = E ⊗Z o∗, where E is a supersingular elliptic curve over F. We see, as in [Andreatta and
Goren 2003, Proof of Theorem 10.1], that ωA,τ ≃ F[x]/(xep(τ )) for all τ ∈6. Let FrobA : A→ A(p) be
the Frobenius map and H = ker(FrobA)[

∏
p|p p

[ep/2]]. By imitating the calculations of [Andreatta and
Goren 2003, Section 8] (more specifically [Andreatta and Goren 2003, Proposition 6.5, Lemmas 8.6, 8.9,
Proposition 8.10]), one sees that if A(1) = A/H , then

ωA(1),τ ≃ x [ep(τ )/2] · F[x]/(xep(τ ))
⊕

xep(τ )−[ep(τ )/2] · F[x]/(xep(τ )) for all τ ∈6. (5)

Note that A(1) is a c′-polarised HBAV over F for some c′ ∈ C. Let a⊂ o be an ideal relatively prime
to p such that ac′ and c represent the same element in the narrow class group of F . Let H (1) be an
o-invariant subgroup scheme of A(1)[a] isomorphic to o/a and let A(2) = A(1)/H (1). By [Kisin and Lai
2005, Section 1.9], A(2) is a c-polarised HBAV over F and since a is relatively prime to p, we have
ωA(2) = ωA(1) . Endowing each ωA(2),τ with the “alternating” filtration between the two summands in (5)
yields a point in

⋂
τ∈6

⋂ep(τ )
i=2 Zτ,i , showing that the latter is nonempty.

If ep(τ ) is odd, then the filtration on ωA(2),τ described above is unique. Moreover, as A(2) is supersingular
(i.e., its p-torsion subgroup has no étale component), the map ωA(2),τ → ωA(2),φ−1◦τ induced by the
Verschiebung morphism is the zero map. Hence, we conclude, using the structure of ωA(2),τ and the
definition of the Hasse invariant hτ,1, that any such point also lies in Zτ,1. Thus, if ep(τ ) is odd for all
τ ∈6, then we get a point in

⋂
τ∈6

⋂ep(τ )
i=1 Zτ,i .

We illustrate the weights of the generalised and partial Hasse invariants in Table 1, where we let τ ∈6
and write e = ep(τ ) as abbreviation.

One of the advantages of Definition 1.1 is that it allows us to define mod p Hilbert modular forms
in any weight k =

∑
σ∈6 kσσ ∈ Z[6], while the definition in [Andreatta and Goren 2005] was missing

some weights when p ramifies in F , namely theirs are indexed by 6, instead of 6. Indeed, the space of
modular forms introduced by Andreatta and Goren [2005, Propisition 5.5] is

MAG
k̄ (c, n; F)= H0

(
XRa,

⊗
τ∈6

ω
kτ
τ̃

)
, where k̄ =

∑
τ∈6

kτ τ ∈ Z[6]. (6)
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weights

φ−1
◦ τ τ φ ◦ τ

· · · e− 1 e 1 2 · · · e− 1 e 1 2 · · ·

hφ−1◦τ,e 1 −1
hτ,1 p −1
hτ,2 1 −1
...

. . .
. . .

hτ,e−1 1 −1
hτ,e 1 −1
hφ◦τ,1 p −1
hφ◦τ,2 1 −1

hτ p −1

Table 1. Weights of Hasse invariants.

We will denote by SAG
k̄
(c, n; F) the subspace of MAG

k̄
(c, n; F) consisting of cuspforms, which are defined

as modular forms such that the constant coefficient of the q-expansion at every cusp vanishes. If
k=

∑
σ∈6 kσσ ∈Z[6], then for every τ ∈6, let kτ =

∑
σ∈6τ

kσ and define k̄ :=
∑

τ∈6 kτ τ ∈Z[6]. We let

H RX
k =

∏
τ∈6

ep(τ )∏
i=2

h
∑i−1

j=1 kτ, j

τ,i , (7)

where kτ, j = kστ, j . In view of the table of weights of the generalised Hasse invariants, for every τ ∈6,
the (τ, i)-component of the weight of f/H RX

k is 0 if 1 ⩽ i ⩽ ep(τ )− 1 and the τ̃ = (τ, ep(τ ))-component
is kτ . Since H RX

k is invertible on XRa, we obtain the following result.

Lemma 1.7. The restriction from X to XRa yields an injection of MKatz
k (c, n; F) into MAG

k̄
(c, n; F) sending

f to f/H RX
k .

A converse is described in Lemma 1.12 below.

1C. Minimal weights. We recall the notion of minimal weight of a mod p Hilbert modular form.

Definition 1.8. We define the minimal weight of 0 ̸= f ∈ MKatz
k (c, n; F) to be the unique weight k ′ such

that f = g ·
∏
σ∈6 hnσ

σ , where g ∈ MKatz
k′ (c, n; F) and the integers (nσ )σ∈6 are as large as possible.

Lemma 1.9. The notion of minimal weight is well defined.

Proof. First note that Zσ is nonempty for every σ ∈6. Indeed, this follows from [Diamond and Kassaei
2023, Corollary 5.7]. Alternatively, we have shown in Remark 1.6 that Zτ,i is nonempty for every τ ∈6
and 2≤ i ≤ ep(τ ). Moreover, it is well known that the zero locus of hτ =

∏ep(τ )
i=1 hτ,i in XRa is nonempty

for every τ ∈6; see [Andreatta and Goren 2005, Corollary 8.18]. By Lemma 1.5, the Hasse invariants
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hτ,i with τ ∈ 6 and 2 ≤ i ≤ ep(τ ) are invertible on XRa. Therefore, it follows that the divisor Zτ,1 is
nonempty for every τ ∈6.

Recall from Lemma 1.5 that the zero loci of two different generalised Hasse invariants do not have
a common divisor. Let jσ be the order of vanishing of a Hilbert modular form f ̸= 0 on Zσ . So, if
we divide f by

∏
σ∈6 h jσ

σ , we get the modular form g needed in Definition 1.8. Hence, it follows that
the notion of minimal weight is indeed well defined; see also the proof of [Andreatta and Goren 2005,
Theorem 8.19] and [Diamond and Kassaei 2023, Section 8]. □

Remark 1.10. When p is unramified in F (i.e.,6=6), the notion of minimal weights from Definition 1.8
is the same as the one introduced by Andreatta and Goren [2005, Section 8.20]. On the other hand,
when p is ramified, multiplying 0 ̸= f ∈ MKatz

k (c, n; F) having minimal weight k with arbitrary powers of
generalised Hasse invariants (hτ,i with 2 ⩽ i ⩽ ep) yields forms sharing the same k̄ but whose weights are
not minimal anymore.

Diamond and Kassaei [2017; 2023] define the minimal cone by

Cmin
=

{∑
τ∈6

ep(τ )∑
i=1

kτ,iστ,i ∈Q[6]

∣∣∣ ∀τ ∈6,∀1 ⩽ i < ep(τ ), kτ,i+1 ⩾ kτ,i , pkτ,1 ⩾ kφ−1◦τ,ep(τ )

}
.

Regarding the minimal weights for Hilbert modular forms, Diamond and Kassaei prove the following
result in [Diamond and Kassaei 2017, Corollary 5.3], when p is unramified in F , and in [Diamond and
Kassaei 2023, Corollary 8.2], when p is ramified in F .

Proposition 1.11 (Diamond and Kassaei). The minimal weight of 0 ̸= f ∈ MKatz
k (c, n; F) belongs to Cmin.

The minimal weights allow us to further elaborate on the relation between the modular forms defined
by Andreatta and Goren [2005] and those of Definition 1.1.

Lemma 1.12. Let k̄ ∈ Z[6]. There is a finite subset K ⊂ Cmin such that for every f ∈ MAG
k̄
(c, n; F),

there is k ′ ∈ K , a modular form g ∈ MKatz
k′ (c, n; F) and a product of generalised Hasse invariants

H =
∏
τ∈6

∏ep(τ )
i=1 h jτ,i

τ,i with jτ,i ∈ Z and jτ,1 ⩾ 0, such that the restriction to XRa of g · H equals f . In
particular, f and g have the same geometric q-expansion at the cusp∞c.

Proof. The result is trivial for f = 0. Seeing 0 ̸= f ∈ MAG
k̄
(c, n; F) as a meromorphic section of the line

bundle
⊗

τ∈6 ωτ̃
⊗kτ over X , we let jτ,i ∈ Z be the order of vanishing of f along the divisor Zτ,i defined

by the Hasse invariant hτ,i for τ ∈6 and 1 ⩽ i ⩽ ep(τ ). As f is holomorphic on XRa, which intersects
every irreducible component of Zτ,1 nontrivially by Lemma 1.5, we deduce that jτ,1 ⩾ 0. Dividing f by
H =

∏
τ∈6

∏ep(τ )
i=1 h jτ,i

τ,i yields a holomorphic section on all of X , i.e., a Katz modular form g in a weight
k ′ which is by construction minimal, hence belongs to Cmin by Proposition 1.11. As the q-expansions
of all generalised Hasse invariants at the cusp∞c equal 1 by Lemma 1.4, both f and g have the same
q-expansion.

We next prove that given k̄, there are only finitely many k ′ ∈ Cmin that can appear for nonzero modular
forms in MAG

k̄
(c, n; F) via the method in the previous paragraph. Since dividing by hτ,1 (for any τ ∈6)
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subtracts (p− 1) from the sum of the weights, whereas multiplying or dividing by hτ,i for τ ∈ 6 and
2 ⩽ i ⩽ ep(τ ) leaves that sum unchanged, we deduce that

∑
σ∈6 k ′σ ⩽

∑
τ∈6 kτ . As in the language of

[Diamond and Kassaei 2023], the minimal cone is contained in the standard cone, we have k ′σ ⩾ 0 for all
σ ∈6 and the claimed finiteness follows. □

The finiteness of K in Lemma 1.12 yields the following result.

Corollary 1.13. The F-vector space MAG
k̄
(c, n; F) is finite dimensional.

We now further use the work of Diamond and Kassaei to study the minimality of the weight for modular
forms of parallel weight one.

Corollary 1.14. Suppose f ∈ MKatz
1 (c, n; F) is a nonzero Hilbert modular form and k is its minimal

weight. Then, for any prime p | p, either kσ = 1 for all σ ∈ 6p (in that case, we say that the weight is
minimal at p), or kσ = 0 for all σ ∈6p, the latter case being possible only if (p− 1) divides ep.

Proof. By Proposition 1.11, we know that k ∈ Cmin. By definition of Cmin one has kσ ⩾ 0 for all σ ∈6
and, moreover, if kσ = 0 with σ ∈6p for some p | p, then kσ = 0 for all σ ∈6p.

We assume for the rest of this proof that kσ = 0 for all σ ∈6p. Denote the weight of the Hasse invariant
hτ,i by wτ,i . By the definition of the minimal weight, there exist integers nτ,i ⩾ 0 such that∑

σ∈6p

σ =
∑
τ∈6p

ep∑
i=1

nτ,iwτ,i . (8)

From the description of wτ,i (see Table 1), it follows that for all i ⩾ 2 one has nτ,i = nτ,i−1 + 1 and
furthermore pnτ,1 = nφ−1◦τ,1+ ep. It is then easy to find that nτ,1 = ep/(p− 1) for all τ ∈6p, showing
that p− 1 divides ep. □

The following result, the proof of which will be completed in the next subsection, shows that one can
be more precise when restricting to cuspforms.

Proposition 1.15. Let p be a prime of F dividing p. Let k =
∑

σ∈6 kσσ ∈ Z[6] be a weight such that
kσ = 0 for all σ ∈6p. Then SKatz

k (c, n; F)= 0.

Proof. By Lemma 1.7, SKatz
k (c, n; F) injects into SAG

k̄
(c, n; F), which is zero by Proposition 1.22. Alter-

natively, if there is a unique prime p of F dividing p, then k = 0 and Koecher’s principle applied to an
embedding of the connected scheme X in a toroidal compactification implies that H0(X,OX ) consists
only of forms which are constant, thus it does not contain any nonzero cuspforms. □

Corollary 1.16. The weight of any nonzero parallel weight 1 cuspform is minimal.

Proof. Let f be a nonzero cuspform of parallel weight 1 and let k be its minimal weight. Suppose the
minimal weight k is not

∑
σ∈6 σ . Then by Corollary 1.14 we already know that there exists p | p such

that kσ = 0 for all σ ∈6p. Moreover, as the generalised Hasse invariants do not vanish at any cusp (see
Lemma 1.4), we have constructed a nonzero cuspform of weight k, contradicting Proposition 1.15. This
proves the corollary. □
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Remark 1.17. Confusion may arise from the fact that parallel weight 1 forms in our sense have weight
exponents ep(τ ) when seen as a modular form in MAG

k̄
(c, n; F) as

∧ep(τ ) ωτ ≃ ω
⊗ep(τ )
τ̃ for τ ∈6 over the

Rapoport locus (see Lemma 1.7).

1D. Partial Frobenius operator. Fix c ∈ C and let e ∈ N be such that peep = (α) with α ∈ o+ and
α ≡ pe

≡ 1 (mod n). Also let β ∈ o+ such that pe
= α ·β. In order to lighten notation, we let Y = XRa

denote the Rapoport locus and let s :A→ Y be the universal c-polarised HBAV endowed with µn-level
structure. Let A(pe)

=A×Y,Fre Y be the base change by the e-th power of absolute Frobenius Fr : Y → Y .
The e-th power of Verschiebung then defines an isogeny over Y

A(p
e) Vere

−→A,

the kernel of which we denote by H . It is a finite group scheme with an o/(pe)-action. Hence we can
apply the Chinese remainder theorem to obtain the direct product decomposition H = Hp× H ′p, where
Hp = H [α] is the p-component of H and H ′p = H [β] is the product of p′-components of H for all p′ ̸= p

dividing p. We now define the abelian variety

B =A(p
e)/H ′p,

through which Vere factors, leading to an isogeny over Y

B
VA

//

t

��

A.
s

~~

Y

(9)

Lemma 1.18. The abelian variety B inherits a µn-level structure and an α−1c-polarisation λα.

Proof. As A(pe)
→ B is a p-primary isogeny, the µn-level structure on A(pe) yields one on B.

Regarding the polarisation, following a suggestion of the referee (see also [Kisin and Lai 2005,
Section 1.9]), we claim that the kernel of the composed isogeny

δ : B⊗o c
VA⊗1
−−→A⊗o c

λ−1
−→A∨

V∨A
−−→ B∨

equals the α-torsion of B⊗o c, i.e., ker(δ) is α-torsion and has the same order as (B⊗o c)[α]. As the
order of finite flat group schemes is locally constant, it suffices to check this pointwise on the ordinary
locus of Y which is dense.

As Vere is étale at an ordinary closed point y ∈ Y , its kernel is isomorphic to the constant group
scheme given by o/peo, whence ker(VAy )≃ o/αo. Consequently, the kernel of the dual isogeny V∨Ay

is
isomorphic to the Cartier dual µαo of o/αo. This gives us a short exact sequence of finite flat commutative
group schemes

0→ c/αc≃ ker(VAy )⊗o c ↪→ ker(δy)
λ−1
◦(VAy⊗1)

−−−−−−−→ ker(V∨Ay
)≃ µαo→ 0.
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As the connected-étale sequence of any finite flat group scheme over a perfect field splits (see [Tate
1997, Section 3.7]), we deduce that ker(δy) is isomorphic to the group scheme (c/αc)×µαo. In particular
ker(δy) is α-torsion and has the same order as (By⊗o c)[α]. Therefore, it follows that ker(δ)= (B⊗o c)[α].

Since (B ⊗o c)/(B ⊗o c)[α] is canonically isomorphic to B ⊗o (α
−1c), we deduce an isomorphism

B⊗o (α
−1c) ∼−→ B∨ the inverse of which is the desired α−1c-polarisation λα. □

We now verify that the HBAV B/Y satisfies the Rapoport condition. Recall that ωA/Y = s∗�1
A/Y and

ωB/Y := t∗�1
B/Y .

Lemma 1.19. For any τ ∈6 \6p, the map V ∗A,τ : ωA/Y,τ → ωB/Y,τ is an isomorphism.
On the other hand, if τ ∈6p, then the isogeny A(pe)

→ B induces an isomorphism

ωB/Y,τ ≃ ωA(pe)/Y,τ ≃ (Fre)∗ωA/Y,φ−e◦τ .

Proof. Let rp be the projection of o/(pe) on its p-primary component and let γ ∈ o be such that its image
in o/(pe) represents rp. The image of γ ′ = 1− γ in o/(pe) represents the complementary idempotent
r ′p = 1− rp. As γ ′ kills ker(VA), the isogeny B γ ′·

−→ B factors through VA, yielding a factorisation

ωB/Y //

γ ′·

&&
ωA/Y

V ∗A
// ωB/Y

If p′ | p and p′ ̸= p, the projection of γ ′ on the p′-component of o/(pe) is 1. Hence, it induces the identity
on the p′-component of ωB/Y . So the map V ∗A is split on the p′-component and hence ωB/Y,τ is isomorphic
to a direct summand of ωA/Y,τ for all τ ∈6p′ . Recall that both ωB/Y,τ and ωA/Y,τ are locally free sheaves
over Y of the same rank. Therefore, after passing to their stalks, we conclude that V ∗A,τ is an isomorphism
for all τ ∈6p′ .

Similarly, as γ annihilates the kernel of the isogeny A(pe)
→ B, we obtain an isomorphism between

ωA(pe)/Y,τ and ωB/Y,τ for all τ ∈6p. This proves the lemma. □

We get a c-polarisation on B from the α−1c-polarisation λα (which is obtained in Lemma 1.18) after
identifying α−1c with c by multiplication by α. Thus, using Lemma 1.19, the universal property of A→ Y
yields a Cartesian diagram

B //

t
��

A,

s
��

□

Y
φα

// Y,

(10)

from which we deduce a natural isomorphism φ∗αωA/Y
∼
−→ ωB/Y of o⊗OY -modules.

Let k =
∑

σ∈6 kσσ ∈ Z[6] be a weight such that kσ = 0 for all σ ∈6p. By Lemma 1.19

V ∗A : ω
⊗k
A/Y

∼
−→ ω⊗k

B/Y . (11)
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Definition 1.20. Let k =
∑

σ∈6 kσσ ∈ Z[6] be a weight such that kσ = 0 for all σ ∈ 6p. The partial
Frobenius operator 8pe is defined as the composition of the adjunction morphism coming from (10)
with (11)

8pe : H0(Y, ω⊗k
A/Y )

φ∗α−→ H0(Y, ω⊗k
B/Y )

(V ∗A)
−1

∼
−−−→ H0(Y, ω⊗k

A/Y ).

We next study the effect of 8pe on q-expansions. To this end, we recall the definition and properties of
Tate objects. For fractional ideals a, b, c of o such that ab⊂ c and a cone C in c∗

+
, we let

Ta,b = (Gm ⊗ a∗)/qb
→ S◦C = Spec(R◦C)

be the Tate HBAV over the Noetherian algebra R◦C ⊃ F[[qξ , ξ ∈ c+]] (for more details we refer to [Dimitrov
2004, Section 2], where R◦C is denoted by R∧C ⊗RC R). It is equipped with a µn-level structure which
depends on the choice of an isomorphism between a/na and o/n. Moreover, the natural isomorphism

λa,b : T∨a,b = Tb,a→ Ta,b⊗o (ab
−1)

endows Ta,b with a canonical ab−1-polarisation. Note that Tc,o = (Gm ⊗ c∗)/qo is a Tate HBAV at the
standard cusp∞c of Y fitting, by universality of A/Y , into a Cartesian diagram

Tc,o //

��

A

s

��

□

S◦C
αY

// Y.

(12)

This gives a natural isomorphism α∗YωA/Y ≃ ωTc,o/S◦C
and further, by adjunction and choice of canonical

trivialisations using (4), we obtain a q-expansion map at the cusp∞c:

H0(Y, ω⊗k
A/Y )

α∗Y−→ H0(S◦C , ω
⊗k
Tc,o/S◦C

)≃ R◦C .

Next we describe Vere on Tate objects. Define T (pe)
c,o = Tc,o ×S◦C ,Fre S◦C as the base change by the

e-th power of absolute Frobenius. Note that T (pe)
c,o = Tpec,o and the relative Frobenius map Frobe

Tc,o :

Tc,o→ Tpec,o is the map induced by the inclusion pec ↪→ c. The pe-th Verschiebung is the dual of the
pe-th relative Frobenius on T∨c,o, i.e., Vere

= (Frobe
T∨c,o
)∨. We do not identify ((T∨c,o)

(pe))∨ with T (pe)
c,o

(as is usually done while defining Verschiebung) in order to get the desired maps on Tate objects. In
particular, Frobe

T∨c,o
: To,c→ Tpeo,c is the map induced by the inclusion peo ↪→ o. Therefore, its dual map

Vere
: Tc,peo→ Tc,o is the natural projection obtained by going modulo qo.

Our next aim is to specialise φα to the Tate objects. It follows from the previous paragraph that the
base change of (9) to S◦C is given by the following commutative diagram:

Tc,αo
VT

//

!!

Tc,o

~~

S◦C
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where the map VT is the natural projection obtained by going modulo qo. Combining with (10), we get
the following Cartesian diagram:

Tc,αo //

��

B //

t
��

A

s

��

□ □

S◦C
αY

// Y
φα

// Y

(13)

On the other hand, considering the c-polarised HBAV Tc,o over S◦αC gives a Cartesian diagram:

Tc,αo //

��

Tc,o //

��

A

s

��

□ □

S◦C
fα

// S◦αC

α′Y
// Y,

(14)

where fα is induced by the morphism R◦αC→ R◦C sending qξ to qαξ . We would like to emphasise that αC
is considered as a cone in c∗

+
, hence the dual cone (used in the construction of R◦αC , see [Dimitrov 2004,

Section 2]) is considered as a cone in c (and not in α−1c). In particular, the morphism R◦αC→ R◦C , qξ 7→qαξ

is not étale.

Lemma 1.21. Under the notation developed above, φα ◦αY = α
′

Y ◦ fα.

Proof. The proof proceeds by showing that the c-polarisation and µn-level structure on Tc,αo obtained
from the base change in (13) coincide with the ones obtained from the base change in (14). This, along
with the universality of A/Y , implies φα ◦αY = α

′

Y ◦ fα.
As Mumford’s construction of Tate objects presented in [Dimitrov 2004, Section 2] is functorial in

(a, b, c) and C , we deduce that the c-polarisation on Tc,αo arising from (14) is obtained from λc,αo after
identifying α−1c with c by multiplication by α.

We now derive the c-polarisation on Tc,αo via the base change in (13). To do this, we proceed as
in the proof of Lemma 1.18 to first obtain an α−1c-polarisation on Tc,αo from λc,o. From the proof of
Lemma 1.18, it follows that the kernel of the isogeny

Tc,αo⊗o c→ Tc,o⊗o c→ To,c→ Tαo,c.

is just the α-torsion of Tc,αo⊗o c. Here the first map is induced by VT (the natural projection given by
going modulo qo), the second map is λ−1

c,o , and the final map is induced by the inclusion αo⊂ o. Therefore,
this composition of maps induces an isomorphism

λ : T∨c,αo = Tαo,c ∼−→ (Tc,αo⊗o c)⊗o α
−1o= Tc,αo⊗o α

−1c,

which is the α−1c-polarisation on Tc,αo induced from λc,o. From the description of the maps above, it
follows that λ= λc,αo. Hence, the c-polarisation on Tc,αo via the base change in (13) is obtained from λc,αo

by identifying α−1c with c by multiplication by α. Therefore, it follows that these two c-polarisations on
Tc,αo coincide.
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As α ≡ 1 (mod n), the multiplication by α map preserves the µn-level structure of Tc,o. Hence, the
µn-level structure on Tc,αo induced by fα is same as the one coming from the quotient map Tc,peo→ Tc,αo.
This concludes the proof of the lemma. □

We are now ready to compute the effect of 8pe on q-expansions at∞c.

Proposition 1.22. Let k̄ =
∑

τ∈6 kτ τ ∈ Z[6] such that kτ = 0 for all τ ∈6p. Then the map 8pe defines
an endomorphism of MAG

k̄
(c, n; F), sending f =

∑
ξ∈c+

aξqξ to 8pe( f ) =
∑

ξ∈c+
aξqαξ . In particular,

the restriction of 8pe to SAG
k̄
(c, n; F) is injective and nilpotent, hence SAG

k̄
(c, n; F)= {0}.

Proof. By definition, the q-expansion of 8pe( f ) at∞c is the image of f under the map H0(Y, ω⊗k
A/Y )→

H0(S◦C , ω
⊗k
Tc,αo/S◦C

) coming from the Cartesian diagram (13), followed by (V ∗T )
−1. By Lemma 1.21, one

can use instead the Cartesian diagram (14). Hence, the q-expansion of 8pe( f ) at∞c can be obtained as
the image of f under the adjunction morphism

H0(Y, ω⊗k
A/Y )

α′Y
∗

−→ H0(S◦αC , ω
⊗k
Tc,o/S◦αC

)
f ∗α−→ H0(S◦C , ω

⊗k
Tc,αo/S◦C

)

followed by the map (V ∗T )
−1
:H0(S◦C , ω

⊗k
Tc,αo/S◦C

) ∼−→H0(S◦C , ω
⊗k
Tc,o/S◦C

). Since the q-expansion
∑

ξ∈c+
aξqξ

of f at the cusp∞c is independent of a particular choice of a cone, it is given by the image of f under
the map α′Y

∗
: H0(Y, ω⊗k

A/Y )→ H0(S◦αC , ω
⊗k
Tc,o/S◦αC

). As fα is induced by the map sending qξ to qαξ we
deduce that f ∗α

(∑
ξ∈c+

aξqξ
)
=

∑
ξ∈c+

aξqαξ . Finally, as VT is induced from the identity map on the torus
Gm⊗c

∗, the morphism V ∗T is the identity on the q-expansions, i.e., (V ∗T )
−1

(∑
ξ∈c+

aξqαξ
)
=

∑
ξ∈c+

aξqαξ ,
yielding the desired formula.

The rest follows from the q-expansion principle and the finite dimensionality of SAG
k̄
(c, n; F). □

1E. Refined injectivity criterion for 2-operators. The purpose of this section is to extend the definition
of the Andreatta–Goren operators 2AG

τ for τ ∈6 and prove an injectivity criterion refining [Andreatta and
Goren 2005, Proposition 15.10] when p ramifies in F . Given f ∈ MKatz

k (c, n; F), by Lemma 1.7 and the
discussion after it, 2AG

τ ( f/H RX
k ) defines a meromorphic section over X , whose poles lie outside XRa. A

careful study of the order at these poles will first show that multiplication by H RX
k leads to a holomorphic

section and further allow us to establish Proposition 1.28 (injectivity criterion). If p is unramified in F ,
our 2-operators coincide exactly with those of Andreatta and Goren, and in that case everything that we
prove here has already been proved in [Andreatta and Goren 2005]; see also [Diamond and Sasaki 2023].

The construction of 2AG
τ goes via the Kummer cover. By definition, the ordinary locus Xord of

XRa is endowed with a Galois cover X (µ(p))ord
→ Xord with group (o/(p))×, where X (µ(p)) is the

Deligne–Pappas moduli space of level pn. Taking the quotient by the p-Sylow subgroup yields a cover
π : XKum

→ Xord with group
∏

p|p(o/p)
×, called the Kummer cover. Let π̃ : X̃ → X be the normal

closure of X in XKum. It can be described explicitly using the generalised Hasse invariants as follows.
For τ ∈6, we write p= p(τ ), f = fp and we let

Hτ =
f−1∏
j=0

(hφ− j◦τ )
p j
. (15)
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It is a modular form of weight (p f
−1)̃τ and XKum is obtained by adjoining a (p f

−1)-th root sτ of it for
all τ ∈6. The nowhere vanishing section sτ provides a trivialisation of the line bundle π∗ωτ̃ over XKum

(see [Andreatta and Goren 2005, Definition 7.4]), and by definition of the normalisation, it also defines a
section over X̃ ; see [Andreatta and Goren 2005, Proposition 7.9]. As

H p
φ−1◦τ

= Hτ · (hτ )p f
−1, (16)

H p
φ−1◦τ

/Hτ is a (p f
− 1)-th power, this construction does not depend on the choice of τ ∈6p.

Next we describe the Kodaira–Spencer maps. By [Reduzzi and Xiao 2017, Theorem 2.9] there is a
decomposition

�1
X/F =

⊕
τ∈6

�1
X/F,τ (17)

where each �1
X/F,τ is endowed with a filtration whose successive subquotients are naturally isomorphic

to ω⊗2
τ,i with 1 ⩽ i ⩽ ep for p = p(τ ) in descending order, i.e., ω⊗2

τ̃ = ω
⊗2
τ,ep is naturally a quotient. As

the map π : XKum
→ Xord is étale, we have �1

XKum/F
= π∗�1

Xord/F
, the elements of which we view as

meromorphic sections of the sheaf π̃∗�1
X/F over X̃ . Given a section of π̃∗�1

X/F, we denote by a subscript
τ ∈6 its projection onto the τ -component via (17). Consider the surjective map

KSτ : π̃∗�1
X/F,τ → π̃∗ω⊗2

τ̃ .

Definition 1.23. Let k =
∑

σ∈6 kσσ ∈ Z[6] and kτ =
∑

σ∈6τ
kσ for τ ∈ 6. Let f ∈ MKatz

k (c, n; F).
Recall that f/H RX

k ∈ MAG
k̄
(c, n; F) (see Lemma 1.7). We put

H AG
k =

∏
τ∈6

skτ
τ and Hk = H AG

k ·π
∗(H RX

k ).

Similarly to [Andreatta and Goren 2005, Definition 7.19], we further put

r( f )= π∗( f/H RX
k )/H AG

k = π∗( f )/Hk ∈ H0(XKum,OXKum)

where we restricted f and H RX
k to Xord.

Definition 1.24. For τ ∈6, we define the generalised 2-operator acting on f ∈ MKatz
k (c, n; F) as

2τ ( f )= KSτ (d(r( f ))τ ) · Hk ·π
∗(hτ )= H RX

k ·2
AG
τ

(
f

H RX
k

)
,

viewed as an element of H0(XKum, π∗ω⊗k′) where:

(1) If τ ̸= φ−1
◦ τ , then

k ′σ =


kσ + 1 if σ = στ,ep(τ ) = τ̃ ,

kσ + p if σ = σφ−1◦τ,ep(τ ) = φ̃
−1 ◦ τ ,

kσ otherwise.
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(2) If τ = φ−1
◦ τ , then

k ′σ =
{

kσ + p+ 1 if σ = στ,ep(τ ) = τ̃ ,
kσ otherwise.

We will now prove that 2τ ( f ) yields an element of MKatz
k′ (c, n; F). In order to prove this, we proceed

as in [Andreatta and Goren 2005] to calculate the poles of d(r( f ))τ along the divisors of the generalised
Hasse invariants.

Using the trivialisation of the line bundles π∗ωτ̃ given by the sections sτ and the generalised Hasse
invariants hτ,i ’s for i > 1, we get trivialisations of π∗ωτ,i for all τ ∈ 6 and 1 ⩽ i ⩽ ep(τ ). Using these
trivialisations we can view the pullbacks π̃∗hτ,i and π̃∗hτ of Hasse invariants as functions over X̃ (see
[Andreatta and Goren 2005, Section 12.32] for more details), whose differentials are denoted by d(hτ,i )
and d(hτ ), respectively (viewed as meromorphic sections of π̃∗�1

X/F).
For τ ′ ∈ 6, we let Z̃ be an irreducible component of the effective Weil divisor of X̃ associated to

π̃∗(hτ ′) (see Section 1B). From the construction of X̃ and [Andreatta and Goren 2005, Section 9.3,
Proposition 9.4] (see also [Andreatta and Goren 2005, Section 12.32]), we can choose a uniformiser δ at
the generic point of Z̃ such that δ p

fp(τ ′)−1
= Hτ ′ (see (15) for the definition of Hτ ′). We fix this choice

from now on and let vδ be the corresponding normalised discrete valuation. For the sake of readability,
we will often drop π̃∗ from the notation when pulling back Hilbert modular forms, especially generalised
Hasse invariants; for instance, we usually write vδ(hτ ) for vδ(π̃∗(hτ )).

We will first calculate vδ((dδ)τ ), where (dδ)τ is viewed as a meromorphic section of π̃∗�1
X/F,τ over X̃ .

We also prove some complementary results which will be used in the proof of the injectivity criterion.

Lemma 1.25. (i) Let τ ∈6 different from τ ′. Then (dδ)τ = 0.

(ii) There is a unique 1 ⩽ i0 ⩽ ep(τ ′) (depending on Z̃ ) such that vδ(hτ ′,i0)= p fp(τ ′) − 1 and vδ(hτ ′,i )= 0
for all i ̸= i0. Moreover, vδ(hτ ′)= p fp(τ ′) − 1 and vδ(hτ )= 0 if τ ̸= τ ′.

(iii) vδ(d(hτ ′,i ))⩾ 0 for all i and for i0 found in (ii) , vδ(d(hτ ′,i0))= 0.

(iv) vδ(sτ ′)= 1, vδ(sτ )= p j if τ = φ j
◦ τ ′ and vδ(sτ )= 0 if τ ̸= φ j

◦ τ ′ for any integer j .

(v) vδ((dδ)τ ′)= 2− p fp(τ ′) .

(vi) (dδ)τ ′ = D+ g · (d(hτ ′,i0))τ ′ where g =−δ2−p
fp(τ ′)
·
(∏ fp(τ ′)−1

j=1 (hφ− j◦τ ′)
p j )
·
(∏

j ̸=i0
hτ ′, j

)
and D is

a meromorphic section of π̃∗�1
X/F,τ ′ such that vδ(D)⩾ 0.

(vii) KSτ ′(d(hτ ′,ep(τ ′))τ ′) ̸= 0 and if Z̃ is an irreducible component of the effective Weil divisor of X̃
associated with π̃∗(hτ ′,ep(τ ′)), then vδ(KSτ ′(d(hτ ′,ep(τ ′))τ ′)s

−2
τ ′ )=−2.

Proof. Recall that we have chosen δ such that δ p
fp(τ ′)−1

= Hτ ′ . Hence

−δ p
fp(τ ′)−2dδ =

( fp(τ ′)−1∏
j=1

(hφ− j◦τ ′)
p j

)
· d(hτ ′).
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Since XRa is Zariski dense in X , it follows from [Andreatta and Goren 2005, Lemma 12.34] that
(d(hτ ′))τ = 0 if τ ̸= τ ′. Hence, we get dδ = (dδ)τ ′ , which implies that (dδ)τ = 0 if τ ̸= τ ′. Now

d(hτ ′)= d
(ep(τ ′)∏

i=1

hτ ′,i

)
=

ep(τ ′)∑
i=1

(∏
j ̸=i

hτ ′, j

)
· d(hτ ′,i ).

Since δ is a uniformiser at the generic point of Z̃ , there is a unique i0 such that vδ(hτ ′,i0) > 0. Note
that vδ(hτ ′,i )= 0 for i ̸= i0 and vδ(d(hτ ′,i ))⩾ 0 for all i . Moreover, it follows from [Reduzzi and Xiao
2017, Theorem 3.10] that vδ(d(hτ ′,i0))= 0. So (ii) and (iii) follow from the discussion above. Combining
this with (16) gives (iv). Hence, vδ(d(hτ ′))= vδ(

∏
i ̸=i0

hτ ′,i (d(hτ ′,i0)))= 0 from which (v) follows and
combining this with (ii) and (iii) gives us (vi).

We will now prove statement (vii). Recall that, by [Reduzzi and Xiao 2017, Theorem 2.9], �1
X/F,τ ′

admits a canonical filtration whose successive subquotients are (isomorphic to) ω⊗2
τ ′,i with 1 ⩽ i ⩽ ep(τ ′).

Recall that KSτ ′ is the surjective map from π̃∗�1
X/F,τ ′ onto its first subquotient π̃∗ω⊗2

τ ′,ep(τ ′)
. On the other

hand, by [Reduzzi and Xiao 2017, Theorem 3.10], �1
Zτ ′,ep(τ ′)/F,τ

′ admits a canonical filtration whose

successive subquotients are (isomorphic to) ω⊗2
τ ′,i with 1 ⩽ i < ep(τ ′). Here Zτ ′,ep(τ ′) ⊂ X is the divisor of

hτ ′,ep(τ ′) . Therefore, we conclude that KSτ ′(d(hτ ′,ep(τ ′))τ ′) ̸= 0. Since sτ ′ gives a trivialisation of the line
bundle π∗ωτ̃ ′ , vδ(KSτ ′(d(hτ ′,ep(τ ′))τ ′)s

−2
τ ′ ) is well defined. We conclude vδ(KSτ ′(d(hτ ′,ep(τ ′))τ ′)s

−2
τ ′ )=−2

by combining [Reduzzi and Xiao 2017, Theorem 3.10] with (iii) and (iv); see also [Andreatta and Goren
2005, Proposition 12.37]. This concludes the proof of the lemma. □

In order to compute vδ(d(r( f ))τ ), it is sufficient to work in the discrete valuation ring obtained by
localising at the generic point of Z̃ . Letting r( f )= u

δn , with vδ(u)= 0, we have

d(r( f ))τ =
(du)τ
δn −

nu(dδ)τ
δn+1 . (18)

Lemma 1.26. Let τ ∈6 and let f ∈ MKatz
k (c, n; F). Then

(i) vδ((du)τ )⩾ inf{0, vδ((dδ)τ )},

(ii) vδ(d(r( f ))τ )⩾ vδ(r( f )), if τ ̸= τ ′,

(iii) vδ(d(r( f ))τ ′)⩾ vδ(r( f ))− (p fp(τ ′) − 2), if p | vδ(r( f )),

(iv) vδ(d(r( f ))τ ′)= vδ(r( f ))− (p fp(τ ′) − 1), if p ∤vδ(r( f )).

Proof. Let τ ∈6. The proof of (i) is similar to the proof of [Andreatta and Goren 2005, Proposition 12.35]
and we reproduce parts of it here. Let B (resp. B̃) be the local ring of the generic point of π̃(Z̃) (resp.
of Z̃ ). As in [loc. cit., Corollary 9.6], we have B ⊂ Bet

⊂ B̃ where Bet is étale over B and B̃ = Bet
[δ].

Writing u =
∑p

fp(τ ′)−2
h=0 uhδ

h with uh ∈ Bet, we have

(du)τ =
p fp(τ ′)−2∑

h=0

(δh(duh)τ + huhδ
h−1(dδ)τ ).
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Now δh(duh)τ lies in B̃ ⊗Bet �1
Bet/F

, which is the same as π̃∗�1
B/F since Bet is étale over B. Hence

δh(duh)τ has no poles and (i) follows. Combining this inequality with (18) and Lemma 1.25(i), (v) gives
us the other parts of the lemma. □

Finally we are ready to prove that 2τ ( f ) is also a mod p Hilbert modular form.

Proposition 1.27. Let τ ∈6, f ∈ MKatz
k (c, n; F) and k ′ be as in Definition 1.24. Then 2τ ( f ) descends to

a global section of the line bundle ω⊗k′ over Xord, and further extends to a section over X , yielding an
element 2τ ( f ) ∈ MKatz

k′ (c, n; F).

Proof. The descent follows by applying [Andreatta and Goren 2005, Theorem 12.39] to f/H RX
k .

As KSτ is a surjective map of locally free sheaves with a locally free kernel over the normal scheme X̃ ,
the orders of the poles of KSτ (d(r( f ))τ ) are less than or equal to the orders of the poles of d(r( f ))τ ,
i.e., vδ(KSτ (d(r( f ))τ ))⩾ vδ(d(r( f ))τ ) (see the proof of [loc. cit., Proposition 12.37] for more details).
Note that r( f ) · Hk = π

∗( f ) has no poles on X̃ , i.e., vδ(π∗ f ) ⩾ 0. Combining Lemma 1.25(ii) and
Lemma 1.26, we get that 2τ ( f ) has no poles over X̃ . Hence, the section obtained by descending from
XKum to Xord extends to all of X and is thus a Hilbert modular form. □

The effect of 2τ on the geometric q-expansions of Hilbert modular forms will be used in Section 2B
and can be described as follows. The identification (4), used in defining the geometric q-expansion∑

ξ∈c+∪{0} aξ ( f )qξ of f at the cusp∞c, allows one to consider the map

τ̄c : F⊗ c ∼−→ F⊗ o↠ F[x]/(xep(τ ))↠ F,

where the middle map is given by the idempotent at τ . By [Andreatta and Goren 2005, Corollary 12.40]
we obtain the following q-expansion at the cusp∞c:

2τ ( f )=
∑
ξ∈c+

τ̄c(1⊗ ξ)aξqξ . (19)

The proof of our main theorem uses the injectivity of 2τ on certain mod p Hilbert modular forms.

Proposition 1.28. Let f ∈ MKatz
k (c, n; F) and let τ ∈ 6p. Suppose p ∤kτ,ep and hτ,ep does not divide f .

Then 2τ ( f ) ̸= 0.
In particular, if the weight of f ̸= 0 is minimal at p, and p ∤kτ,ep , then 2τ ( f ) ̸= 0.

Proof. We follow the proof of [Andreatta and Goren 2005, Proposition 15.10]. Let δ be the uniformiser at
the generic point of an irreducible component of the Weil divisor of X̃ attached to π̃∗hτ,ep chosen just
before Lemma 1.25. As vδ(π̃∗( f ))= 0, using Lemma 1.25(ii),(iv) (see also [loc. cit., Proposition 15.9])
we deduce

n := vδ(r( f ))=−
f−1∑
j=0

p j kφ j◦τ − (p
fp − 1)

ep−1∑
j=1

kτ, j ≡−kτ,ep (mod p).
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Hence p ∤n and Lemma 1.26 (i) shows that the right most term in (18) has a strictly lower valuation than
the other term on the right hand side. Thus, Lemma 1.25 (vi) shows that

d(r( f ))τ = D′−
nuδ2−p fp(τ )

·
(∏ fp(τ )−1

j=1 (hφ− j◦τ )
p j )
·
(∏

j ̸=ep hτ, j
)

δn+1 (dhτ,ep)τ ,

where D′ is a meromorphic section of (π̃∗�1
X/F)τ and the right most term has a strictly smaller valuation

than D′. Combining this with Lemma 1.25 (vii), we get that KSτ (d(r( f ))τ ) ̸= 0. This implies that
2τ ( f ) ̸= 0. □

Remark 1.29. When p is unramified in F , Proposition 1.28 can also be deduced from [Diamond
and Sasaki 2023, Theorem 8.2.2] whose proof is different. Furthermore, Diamond and Sasaki [2023,
Theorem 9.8.2] also determine the kernel of 2τ in terms of the partial Frobenius operator at τ that they
define. Meanwhile, the case when p is ramified in F has been treated in [Diamond 2023]. Proposition 1.28
follows from [Diamond 2023, Theorem 5.2.1] and the kernel of 2τ is described in terms of partial
Frobenius operators in [loc. cit., Corollary 9.1.2].

2. Doubling and Hecke algebras

2A. Hilbert modular forms of parallel weight 1. It is important to distinguish between Katz Hilbert
modular forms defined on the fine moduli space and those on the coarse quotient by the action of the
totally positive units of o. The latter enjoy the good Hecke theory for GL(2) and are the natural objects
to study in relation with two dimensional Galois representations; see [Dimitrov and Wiese 2020]. In
this section, we will define Hilbert modular forms of parallel weight building on Definition 1.1. Even
though we give a definition valid in all levels n that are prime to p, we nevertheless need to consider
the following condition (which is stronger than the one we imposed in Section 1) expressing that n is
sufficiently divisible:

n is divisible by a prime above a prime number q splitting completely in F(
√
ϵ | ϵ ∈ o×+) and

such that q ≡−1 (mod 4ℓ) for all prime numbers ℓ such that [F(µℓ) : F] = 2.
(20)

This condition ensures that XDP is a scheme on which [ϵ] ∈ E = o×+/{ϵ ∈ o
×
| ϵ− 1 ∈ n}2 acts properly

and discontinuously by sending (A, λ, µ) to (A, ϵλ, µ); see [Dimitrov 2009, Lemma 2.1(iii)]. For any
c ∈ C, any Zp-algebra R, and any parallel weight k, this induces an action of E on MKatz

k (c, n; R), whose
invariants are denoted by MKatz

k (c, n; R)E . The following definition is equivalent to the one used in
[Dimitrov and Wiese 2020, Section 2.2].

Definition 2.1. If n satisfies (20), then the space of Hilbert modular forms over a Zp-algebra R of
(parallel) weight κ ∈ Z and level n is given by

Mκ(n, R)=
⊕
c∈C

MKatz
k (c, n; R)E ,
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where k =
∑

σ∈6 κσ . For a general level n, let q1 ̸= q2 be primes such that both nq1 and nq2 satisfy (20)
and define

Mκ(n, R)= Mκ(nq1, R)∩Mκ(nq2, R),

where the intersection can be taken in Mκ(nq1q2, R). Note that the primes q1 and q2 can be chosen from
a set of primes of positive density and that the definition does not depend on this choice.

For f ∈ Mκ(n, R), we let
∑

b∈I∪{(0)} a(b, f )qb be the adelic q-expansion of f , where I denotes the
group of fractional ideals of F ; see [Dimitrov and Wiese 2020, Section 2.6].

We denote by Sκ(n, R) the R-submodule of Mκ(n, R) consisting of Hilbert modular cuspforms.

For f ∈ Mκ(n, R) and c ∈ C, we will let fc denote the corresponding E-invariant element of
MKatz

k (c, n; R) or, equivalently, its geometric q-expansion at the cusp∞c; see [Dimitrov and Wiese 2020,
Section 2.5]. Recall that when n satisfies (20), Mκ(n, R) is endowed with Hecke and diamond operators;
see [Dimitrov and Wiese 2020, Sections 3.1–3.3]. When n is not sufficiently divisible, Hecke and diamond
operators exist nonetheless because they stabilise the intersection Mκ(nq1, R)∩Mκ(nq2, R), where the
auxiliary primes q1, q2 may be chosen appropriately. When it is not clear from the context, a superscript
between parentheses indicates the weight of the space of Hilbert modular forms on which an operator acts,
e.g., T (1)

p . Since we are interested in torsion coefficients, we let Mκ(n, K/O)= lim
−−→n Mκ(n,O/ϖ n), where

the inductive limit is taken by identifying Mκ(n,O/ϖ n) with the subspace Mκ(n,O/ϖ n)⊗O (ϖO) of
Mκ(n,O/ϖ n+1).

2B. Doubling. We shall rely on the following lifting result.

Lemma 2.2. Suppose that n satisfies (20). There exists a κ0 ∈ Z such that for all κ ⩾ κ0 and all n ∈ N,
the natural map

Mκ(n,O)⊗O O/ϖ n
→ Mκ(n,O/ϖ n)

is a Hecke equivariant isomorphism.

Proof. The proof of [Dimitrov and Wiese 2020, Lemma 2.2] works unchanged after replacing Zp by O
and p by ϖ n . □

We also need a generalisation of the total Hasse invariant modulo ϖ n .

Lemma 2.3. Suppose that n satisfies (20). For every n ∈ N, there is a κn ∈ N such that (κn − 1) is a
multiple of (p− 1)pn−1, and a modular form hn ∈ Mκn−1(n,O/ϖ n) having q-expansion equal to 1 at
∞c for all c ∈ C. In particular, it does not vanish at any cusp.

Proof. Let h ∈ Mp−1(n, F) be the usual Hasse invariant see [Dimitrov and Wiese 2020, Section 3.4].
For r such that r(p− 1) is big enough to apply Lemma 2.2, the modular form hr

∈ Mr(p−1)(n,O) has
q-expansion congruent to 1 modulo ϖ at each cusp∞c, c ∈ C. A big enough power of it satisfies the
required congruence relation and condition on the weight. □
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The theory of generalised 2-operators presented in Section 1E allows us to prove the following result.

Lemma 2.4. Assume that n satisfies (20). Then there does not exist any 0 ̸= f ∈ M1(n, F) such that fc has
minimal weight at a fixed prime p dividing p (see Corollary 1.14) for all c ∈ C and such that a(b, f )= 0
for all ideals b⊂ o not divisible by p.

Proof. Assume such an f exists. The minimality of the weight at p implies that there exists a τ ∈ 6p

such that h τ̃ does not divide fc (the proof of Corollary 1.14 implies that this is true for all τ ∈6p). Let
b= (ξ)c−1. Then, by definition, aξ = a(b, f ) and this is zero unless p | b, in which case p | (ξ). Thus, it
follows that τ̄c(1⊗ ξ)= 0. By (19), this shows that the geometric q-expansion of 2τ ( fc) vanishes at∞c

for all c ∈ C, i.e., 2τ ( fc)= 0, contradicting the injectivity criterion from Proposition 1.28. □

For p | p and n ∈ N, we define the Vp-operator by (see [Diamond 2021], improving on and correcting
previous works such as [Emerton et al. 2017] and [Dimitrov and Wiese 2020], for the definition of T (1)

p )

Vp,n = ⟨p⟩
−1(hnT (1)

p − T (κn)
p hn)

with hn and κn from Lemma 2.3. A simple computation on q-expansions (see [Dimitrov and Wiese 2020,
Proposition 3.6]) shows that Vp,n has the following effect on adelic q-expansions:

a((0), Vp,n f )= a((0), f )[p−1
],

a(r, Vp,n f )= a(p−1r, f )

for nonzero ideals r⊆ o.

Proposition 2.5. Let p | p be a prime and assume that n satisfies (20).

(i) If f ∈ S1(n, K/O) and a(b, f )= 0 for all ideals b⊂ o not divisible by p, then f = 0.

(ii) For all n ∈ N, the “doubling map”

(hn, Vp,n) : S1(n,O/ϖ n)⊕2 ( f,g) 7→hn f+Vp,n g
−−−−−−−−−→ Mκn (n,O/ϖ

n)

is injective and compatible with the Hecke operators Tq for q ∤np. The Hecke operator T (κn)
p acts on

the image by the formula T (κn)
p ◦ (hn, Vp,n)= (hn, Vp,n) ◦

( T (1)p

−⟨p⟩
1
0

)
. In particular, the image Wp,n of

(hn, Vp,n) lies in the p-ordinary part of Mκn (n,O/ϖ n) and is stable under all Hecke operators Tq
for q ∤np.

If (p− 1) does not divide ep, then the same statements hold after replacing the spaces S1(n, K/O) and
S1(n,O/ϖ n) by M1(n, K/O) and M1(n,O/ϖ n), respectively.

Proof. (i) For f ∈ S1(n,O/ϖ), the claim is precisely the content of Lemma 2.4, in view of Corollaries 1.14
and 1.16. The induction step from n − 1 to n follows from the q-expansion principle and the exact
sequence

0→ S1(n,O/ϖ)⊗Oϖ
n−1O→ S1(n,O/ϖ n)→ S1(n,O/ϖ n−1).

(ii) The injectivity follows from (i) applied to the first component of an element in the kernel. The matrix
is obtained from a calculation as in [Dimitrov and Wiese 2020, Lemma 3.7]. □
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2C. Hecke algebras. For κ⩾1 and n∈N, we consider the following complete Artinian (resp. Noetherian)
semi-local O-algebras

T(κ)n = im
(
O[Tq, ⟨q⟩]q ∤np→ EndO(Mκ(n,O/ϖ n))

)
,

T(κ)cusp,n = im
(
O[Tq, ⟨q⟩]q ∤np→ EndO(Sκ(n,O/ϖ n))

)
, resp.,

T(κ) = im
(
O[Tq, ⟨q⟩]q ∤np→ EndO(Mκ(n, K/O))

)
= lim
←−−

n
T(κ)n ,

T(κ)cusp = im
(
O[Tq, ⟨q⟩]q ∤np→ EndO(Sκ(n, K/O))

)
= lim
←−−

n
T(κ)cusp,n.

(21)

Note that they all contain ⟨p⟩ for p | p since p is relatively prime to n. Moreover, the restriction to the
cusp space gives surjective morphisms T

(κ)
n ↠ T

(κ)
cusp,n and T(κ)↠ T

(κ)
cusp. We also consider the torsion free

Hecke O-algebra:

T
(κ)
O = im

(
O[Tq, ⟨q⟩]q∤np→ EndO(Mκ(n,O))

)
.

Let In be the annihilator of T
(κ)
O acting on Mκ(n,O)⊗O (O/ϖ n). Then we have natural surjective ring

homomorphisms

T(κ)n ↠ T
(κ)
O /In and T(κ) ↠ T

(κ)
O ,

the latter coming from the fact that the intersection
⋂

n In is zero. For sufficiently large κ , both homomor-
phisms are isomorphisms due to Lemma 2.2. However, this need no longer be true in our principal case
of interest κ = 1 since the inclusions

M1(n,O)⊗O (O/ϖ n) ↪→ M1(n,O/ϖ n) and M1(n,O)⊗O (K/O) ↪→ M1(n, K/O)

need not be isomorphisms, in general. The kernel of T(1) ↠ T
(1)
O is a finitely generated torsion O-module,

which is isomorphic to the kernel of T
(1)
n →T

(1)
O /In for n ∈N sufficiently large. Recall that multiplication

by the Hasse invariant hn allows us to see M1(n,O/ϖ n) inside Mκn (n,O/ϖ n) equivariantly for all Hecke
operators Tq and ⟨q⟩ for q ∤np, yielding a surjection T

(κn)
n ↠ T

(1)
n (see Proposition 2.5). For a prime p | p,

consider also the Hecke algebra:

T̃(κn)
n = T(κn)

n [T
(κn)
p ] ⊂ EndO(Mκn (n,O/ϖ

n)). (22)

Corollary 2.6. Suppose that n satisfies (20). Let p | p. Then for any n ∈ N, there is a surjection sending
T (κn)
p to U (considered as a polynomial variable):

T̃(κn)
n ↠ T(1)cusp,n[T

(1)
p ,U ]/(U 2

− T (1)
p U +⟨p⟩).

The same statement holds after replacing T
(1)
cusp,n by T

(1)
n , provided (p− 1)∤ep.

Proof. The injection from Proposition 2.5 gives a morphism T̃
(κn)
n →EndO(S1(n,O/ϖ n)⊕2) of O-algebras

compatible with Tq and ⟨q⟩ for all q ∤np and, hence, we get a surjection T
(κn)
n ↠ T

(1)
cusp,n . Moreover, T (κn)

p

acts on the image of S1(n,O/ϖ n)⊕2 via the matrix
( T (1)p

−⟨p⟩
1
0

)
, whence it is annihilated by its characteristic

polynomial U 2
− T (1)

p U + ⟨p⟩ and does not satisfy any nontrivial linear relation over T
(1)
n [T

(1)
p ], thus
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proving the existence of the desired homomorphism. For the surjectivity, let us observe that the image of
S1(n,O/ϖ n)⊕2 is contained in the T (κn)

p -ordinary subspace of Mκn (n,O/ϖ n), and that the endomorphism
T (κn)
p + ⟨p⟩(T (κn)

p )−1 of the latter space acts on the former as
( T (1)p

0
0

T (1)p

)
. Finally, assuming (p− 1)∤ep

allows us to apply Proposition 2.5 with M1(n,O/ϖ n) instead of S1(n,O/ϖ n), leading to the validity of
the result with T

(1)
cusp,n replaced by T

(1)
n . □

3. Pseudo-representations for weight 1 Hecke algebras

3A. Pseudo-representations of degree 2. In this section, we recall some definitions due to Chenevier
[2014] and Calegari and Specter [2019].

Definition 3.1. Let R be a complete Noetherian local O-algebra with maximal ideal m and residue field
R/m= F considered with its natural m-adic topology. An R-valued pseudo-representation of degree 2 of
GF is a tuple P = (T, D) consisting of continuous maps T, D : GF → R such that

(i) D is a group homomorphism GF → R×,

(ii) T (1)= 2 and T (gh)= T (hg)= T (g)T (h)− D(g)T (g−1h) for all g, h ∈ GF .

We extend T : GF → R to an R-linear map R[GF ] → R and we denote this map by T as well.
Given g ∈ GF , we define D(g− 1) := D(g)− T (g)+ 1.
The pseudo-representation P = (T, D) is said to be unramified at p if D(h−1)= T (g(h−1))= 0 for

all g ∈ GF and all h ∈ Ip.

Any continuous representation ρ : GF → GL2(R) yields a degree 2 pseudo-representation Pρ =
(tr ◦ρ, det ◦ρ). The converse is true when the semisimple representation ρ̄ :GF→GL2(F) corresponding
to the residual pseudo-representation is absolutely irreducible; see [Chenevier 2014, Theorem 2.22].
Further, if ρ is unramified outside a finite set of places S, then so is Pρ . Again, the converse is true in the
residually absolutely irreducible case. This can be seen by applying [loc. cit.] to the Galois group of the
maximal extension of F unramified outside S over F .

We introduce a notion of ordinarity inspired from Calegari and Specter [2019].

Definition 3.2. Let P̃ = (P, αp) with P = (T, D) a degree 2 pseudo-representation of GF over R and
αp ∈ R a root of X2

− T (Frobp)X + D(Frobp) ∈ R[X ].
We say that P̃ is ordinary at p of weight κ ⩾ 1, if for all h, h′ ∈ Ip and all g ∈ GF we have

(i) D(h− 1)= 0 and T (h− 1)= χκ−1
p (h)− 1, where χp denotes the p-adic cyclotomic character,

(ii) T
(
g(h−χκ−1

p (h))(h′ Frobp−αp)
)
= 0.

Remark 3.3. Note that our notion of p-ordinary pseudo-representations implies the one of Calegari and
Specter [2019, Definition 2.5]. Let P = (T, D) : GF → R2 be a degree 2 pseudo-representation and
let (T , D) : GF → F2 be its residual pseudo-representation. Suppose there exists a lift Frobp ∈ GFp of
the arithmetic Frobenius at p such that the polynomial X2

− T (Frobp)X + D(Frobp) has distinct roots
in F. Then (P, αp) is a p-ordinary pseudo-representation in the sense of Definition 3.2 if and only if it is
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p-ordinary in the sense of Calegari–Specter. However, if this hypothesis does not hold, then we expect
that the two notions are not equivalent.

Let P = (T , D) :GF→ F2 be a fixed degree 2 pseudo-representation unramified outside np∞. Denote
by Pps

= (T ps, Dps) : GF → (Rps)2 the universal deformation of P unramified outside np∞ in the
category of complete Noetherian local O-algebras with residue field F and consider the quotient

Rps
[X ]/(X2

− T ps(Frobp)X + Dps(Frobp))↠ Rord (23)

which classifies pairs (P, αp) such that P is a deformation of P unramified outside np∞ and (P, αp) is
ordinary at p of weight κ . The universal ring Rord, classifying deformations of P which are unramified
outside np∞ and are ordinary at p of weight κ , is the quotient of the ring Rps

[X ]/(X2
− T ps(Frobp)X +

Dps(Frobp)) by the ideal generated by the set{
Dps(h− 1), T ps(h− 1)−χκ−1

p (h)+ 1, T ps(g(h−χκ−1
p (h))(h′ Frobp−X)

)
| h, h′ ∈ Ip, g ∈ GF

}
and a direct computation shows that Rord is independent of the choice of Frobp.

Note that Rord is a finite Rps-algebra. As Rps is a local ring, it follows that Rord is a semi-local ring and
all of its maximal ideals contain the unique maximal ideal mps of Rps. After going modulo mps in Rord, it
is easy to see, using the description of the ideal from the previous paragraph, that the number of maximal
ideals of Rord is the number of distinct α ∈ F such that (P, α) is a p-ordinary pseudo-representation of
weight κ .

Now suppose P is unramified at p and κ ≡ 1 (mod p− 1). Then we have

T
(
g(h−χκ−1

p (h))(h′ Frobp−X)
)
= T (g(h− 1)h′ Frobp)− XT (g(h− 1))= T (h′ Frobp g(h− 1))= 0.

Here we are repeatedly using the fact that T (g(h−1))=0 for all g∈G F and h ∈ Ip, which is a consequence
of the assumption that P is unramified at p. Thus, in this case, we see that (P, α) is a p-ordinary pseudo-
representation of weight κ if and only if α is a root of the polynomial X2

− T (Frobp)X + D(Frobp).
Hence, in this case, Rord is a semi-local Noetherian ring with two maximal ideals if the polynomial
X2
− T (Frobp)X + D(Frobp) has two distinct roots and it is a local Noetherian ring otherwise.

3B. Existence of an ordinary Hecke algebra-valued pseudo-representation. We continue to use the
notation from Section 2. In particular, suppose that n satisfies (20). Let m be any maximal ideal of T(1)

(or equivalently of T
(1)
n for some n) and denote also by m the maximal ideals of T(κn) and T

(κn)
n defined

as the pull-back of m⊂ T
(1)
n .

Lemma 3.4. There exists a T
(κn)
n,m -valued pseudo-representation P (κn)

n,m of GF of degree 2 which is unramified
at all primes q ∤np and P (κn)

n,m (Frobq)= (Tq, ⟨q⟩). In particular, after replacing O by a finite unramified
extension, there exists a unique semisimple Galois representation

ρm : GF → GL2(T
(1)/m)

unramified outside np∞ satisfying

tr(ρm(Frobq))= Tq (mod m) and det(ρm(Frobq))= ⟨q⟩ (mod m)

for all primes q ∤np.



1492 Shaunak V. Deo, Mladen Dimitrov and Gabor Wiese

Proof. After enlarging K , we may assume that it contains all the eigenvalues of T(κn) acting on Mκn (n,O).
The O-algebra T(κn) generated by the Hecke operators outside the level and p is torsion-free and reduced,
hence T

(κn)
m ⊗O K =

∏
g∈N K where N denotes the set of newforms occurring in Mκn (n,O)m. As is well

known, one can attach to each such eigenform g a GF -pseudo-representation Pg of degree 2 unramified
outside np∞ such that Pg(Frobq) = (a(q, g), ψg(q)N(q)κn−1) for all q ∤np, where ⟨q⟩g = ψg(q)g.
Since the natural homomorphism T

(κn)
m → T

(κn)
m ⊗O K is injective, in view of the Chebotarev Density

Theorem, we obtain a T
(κn)
m -valued GF -pseudo-representation P (κn)

m unramified outside np∞ such that
P (κn)
m (Frobq)= (Tq, ⟨q⟩N(q)κn−1) for all q ∤np; see [Chenevier 2014, Corollary 1.14].
Note that N(q)κn−1

≡ 1 (modϖ n). Composing P (κn)
m with the surjection T

(κn)
m ↠ T

(κn)
n,m , we get the

desired pseudo-representation. Finally T
(κn)
n /m = T

(1)
n /m along with [Chenevier 2014, Theorem A]

finishes the proof of the lemma. □

Let Rps
m be the universal deformation ring of the corresponding degree 2 pseudo-representation Pm =

(tr ◦ρm, det ◦ρm) unramified outside np∞ in the category of complete Noetherian local O-algebras with
residue field F (chosen large enough in order to contain the residue field of T

(1)
m ). Using the surjection

T
(κn)
m ↠ T

(κn)
n,m ↠ T

(1)
n,m and then passing to the projective limit T

(1)
m = lim

←−−n T
(1)
n,m, we obtain the following

result.

Corollary 3.5. For any maximal ideal m of T(1), there exists a T
(1)
m -valued pseudo-representation P (1)m of

GF of degree 2 which is unramified for all primes q ∤np and P (1)m (Frobq)= (Tq, ⟨q⟩). It yields a surjection
Rps
m ↠ T

(1)
m .

Note that for a maximal ideal m of T
(κn)
n , the algebra T̃

(κn)
n,m is in general only semi-local (see (22)). By

the main result of [Dimitrov and Wiese 2020], ρm is unramified at p, allowing us to consider the ideal

m̃=
(
m, (T (κn)

p )2− ̂tr(ρm(Frobp))T
(κn)
p + ̂det(ρm(Frobp))

)
⊂ T̃(κn)

n , (24)

where ̂tr(ρm(Frobp)) and ̂det(ρm(Frobp)) are some lifts of tr(ρm(Frobp)) and det(ρm(Frobp)), respectively
in T

(κn)
n . Note that the ideal m̃ does not depend on the choices of these lifts.

Let T̃
(κn)
n,m̃ be the completion of T̃

(κn)
n with respect to m̃. The algebra T̃

(κn)
n,m̃ then has at most two local

components. Let Rord
m be the universal O-algebra classifying deformations of Pm unramified outside

primes dividing np∞ and ordinary at p of weight 1 (see (23)).

Lemma 3.6. There exists a p-ordinary T̃
(κn)
n,m̃ -valued pseudo-representation P̃ (κn)

n,m = (P
(κn)
n,m , T (κn)

p ) of degree
2 and weight 1 of GF such that P (κn)

n,m (Frobq)= (Tq, ⟨q⟩) for all q ∤np. It yields a surjection Rord
m ↠ T̃

(κn)
n,m̃ .

Proof. Let T̃(κn)=T(κn)[T (κn)
p ] and denote also by m̃ the ideal of T̃(κn) defined as the pull-back of m̃⊂ T̃

(κn)
n .

Let T̃
(κn)
m̃ be the completion of T̃(κn) with respect to m̃.

We have T̃
(κn)
m̃ ⊗O K =

∏
g∈Ñ K , where Ñ denotes the subset of N (see the proof of Lemma 3.4)

consisting of newforms occurring in Mκn (n,O)m̃. As p does not divide n, any g ∈ Ñ is an eigenvector
for T (κn)

p (resp. ⟨p⟩) whose eigenvalue a(p, g) (resp. ψg(p)) is necessarily a p-adic unit by (24), i.e., g is
p-ordinary. By a result due to Hida and Wiles, when g is ordinary at all places dividing p, and to Saito
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[2009] and Skinner [2009] in general, p-adic Galois representation ρg attached to g is ordinary at p, i.e.,
its restriction to GFp has a one-dimensional unramified quotient on which Frobp acts by the (unique)
p-adic unit root αp,g of the Hecke polynomial X2

−a(p, g)X +ψg(p)N(p)κn−1. This implies that αp,g is
also a root of X2

− tr(ρg)(Frobp)X +det(ρg)(Frobp), for any choice of a Frobenius element Frobp ∈GFp .
Thus, the pseudo-representation Pg = (tr(ρg), det(ρg)) is p-ordinary of weight κn with respect to αp,g in
the sense of Definition 3.2.

Since T̃
(κn)
m̃ is a semi-local finite O-algebra, applying Hensel’s lemma to each local component shows that

the polynomial X2
−T (κn)

p X+⟨p⟩N(p)κn−1 admits a unique unit root U in T̃
(κn)
m̃ . By the Chebotarev density

theorem, gluing the p-ordinary pseudo-representations P̃g= (Pg, αp,g) for all g∈ Ñ gives us a T̃
(κn)
m̃ -valued

p-ordinary pseudo-representation (P (κn)
m ,U ) of weight κn such that P (κn)

m (Frobq)= (Tq, ⟨q⟩N(q)κn−1) for
all q ∤np. We have χκn−1

p (g)≡ 1 (modϖ n) for all g ∈ G F . Hence, the reduction of (P (κn)
m ,U ) to T̃

(κn)
n,m̃

is a p-ordinary pseudo-representation of weight 1. Note that by Hensel’s lemma, U reduces to T (κn)
p in

T̃
(κn)
n,m̃ , since the former (resp. the latter) is the unique unit root of X2

− T (κn)
p X + ⟨p⟩N(p)κn−1 in T̃

(κn)
m̃

(resp. in T̃
(κn)
n,m̃ ). As N(q)κn−1

≡ 1 (modϖ n) for all q ∤np, this completes the proof of the lemma. □

3C. Proof of the main theorem. In the proof of Theorem 0.1 we can assume without loss of generality
that n satisfies (20), because given any prime q, the Hecke algebra in level n is a quotient of the one in
level nq. Moreover, since the algebra T(1) is semi-local, equal to the product of T

(1)
m where m runs over

its maximal ideals, it is enough to prove the theorem after localisation at m.
Recall that in Corollary 3.5 we constructed a T

(1)
m -valued pseudo-representation P (1)m = (T, D) of

GF , whose image under the surjective homomorphism T
(1)
m ↠ T

(1)
cusp,m ↠ T

(1)
cusp,n,m will be denoted by

P (1)n,m = (Tn, Dn), for n ∈ N. This gives the first row of the following commutative diagram:

Rps
m

Corollary 3.5
// //

��

T
(1)
cusp,m // // T

(1)
cusp,n,m� _

��

Rord
m

Lemma 3.6
// // T̃

(κn)
n,m̃

Corollary 2.6
// // T

(1)
cusp,n,m[T

(1)
p ,U ]/(U 2

− T (1)
p U +⟨p⟩).

(25)

The morphisms in the second row come from Lemma 3.6 and Corollary 2.6. Combining them, we see
that P̃ (1)n,m = (P

(1)
n,m,U ) is a p-ordinary pseudo-representation of weight 1.

We now perform the key “doubling” step, as presented in [Calegari and Specter 2019, Proposition 2.10],
and slightly improved upon, since the surjectivity of the composed map Rord

m → T
(1)
cusp,n,m[T

(1)
p ,U ]/

(U 2
− T (1)

p U +⟨p⟩) will not be used in the sequel. One has

T(1)cusp,n,m[T
(1)
p ,U ]/(U 2

− T (1)
p U +⟨p⟩)= T(1)cusp,n,m[T

(1)
p ]⊕U ·T(1)cusp,n,m[T

(1)
p ].

Since P̃ (1)n,m is ordinary at p of weight 1, for all g ∈ GF and h ∈ Ip the following equality holds:

Tn(gh Frobp)− Tn(g Frobp)=U (Tn(gh)− Tn(g)) ∈ T(1)cusp,n,m[T
(1)
p ] ∩UT(1)cusp,n,m[T

(1)
p ] = {0},

hence Tn(gh)= Tn(g), i.e., P (1)n,m is unramified at p.
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Note that U satisfies the following relations

U 2
− T (1)

p U +⟨p⟩ = 0 and U 2
− Tn(Frobp)U + Dn(Frobp)= 0

in the ring T
(1)
cusp,n,m[T

(1)
p ,U ]/(U 2

− T (1)
p U +⟨p⟩). Indeed, the second relation follows from the fact that

(P (1)n,m,U ) is a p-ordinary pseudo-representation of weight 1. As the former polynomial is minimal, one
obtains the desired equality (Tn(Frobp), Dn(Frobp))= (T

(1)
p , ⟨p⟩), in particular T (1)

p ∈ T
(1)
cusp,n,m. Letting

n vary finishes the proof of Theorem 0.1 for T
(1)
cusp,m.

In order to obtain the theorem for T
(1)
m , we replace T

(1)
cusp,m by T

(1)
m , T

(1)
cusp,n,m by T

(1)
n,m, and S1(n,O/ϖ n)

by M1(n,O/ϖ n) throughout. The arguments continue to work if we assume that p−1 does not divide ep,
which is used in Corollary 2.6.

Corollary 3.7. Let p | p. Then T (1)
p ∈T

(1)
cusp, i.e., for all n∈N, the Hecke operator T (1)

p acts on S1(n,O/ϖ n)

by an element of T
(1)
cusp,n . Moreover, if (p− 1)∤ep, then one also has T (1)

p ∈ T(1).

3D. Non-Eisenstein ideals.

Definition 3.8. A maximal ideal m of T(κ) (or of T
(κ)
n ) is called Eisenstein if the corresponding (T(κ)m /m)-

valued pseudo-representation of GF is the sum of two (T(κ)m /m)-valued characters, where T
(κ)
m /m is an

algebraic closure of T
(κ)
m /m.

We now prove that in the non-Eisenstein case it suffices to consider the cuspidal Hecke algebra.

Proposition 3.9. The localisation of the natural surjection T
(κ)
n ↠ T

(κ)
n,cusp at any non-Eisenstein maximal

ideal m of T
(κ)
n is an isomorphism.

Proof. It suffices to prove that the localisation of Mκ(n,O/ϖ n)/Sκ(n,O/ϖ n) at a non-Eisenstein
ideal vanishes. By multiplication by a suitable power of hn which does not vanish at any cusp (see
Lemma 2.3), we can assume that κ is sufficiently large so that Lemma 2.2 applies yielding Mκ(n,O/ϖ n)=

Mκ(n,O)⊗O (O/ϖ n). Hence the natural Hecke equivariant morphism

Mκ(n,O)/Sκ(n,O)→ Mκ(n,O/ϖ n)/Sκ(n,O/ϖ n)

is surjective. The former, however, can be Hecke equivariantly embedded into Mκ(n,C)/Sκ(n,C) which
is well known to be generated by Eisenstein series whose Galois representations are reducible. This
proves the proposition. □

Henceforth we assume m to be a non-Eisenstein ideal of T(1), so that the corresponding residual
Galois representation ρm is absolutely irreducible. Therefore, by combining Theorem 0.1 with a result of
Chenevier [2014, Theorem 2.22], we get a representation

ρm : GF → GL2(T
(1)
m ),

unramified outside np∞, and uniquely characterised by the property that for all primes q ∤np one has
tr(ρm(Frobq)) = Tq and det(ρm(Frobq)) = ⟨q⟩. By combining Theorem 0.1 with Proposition 3.9, we
deduce that the pseudo-representation P (1)m is unramified at all primes p | p and, by the discussion after
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Definition 3.1, we conclude that ρm is unramified at these primes as well. Let S be the set of places
of F dividing n∞ and let RS

F,ρm
be the universal deformation ring of ρm unramified outside S in the

category of complete Noetherian local O-algebras with residue field F. Hence ρm induces an O-algebra
homomorphism RS

F,ρm
→ T

(1)
m .

As T(1) is generated by Tq and ⟨q⟩ for q ∤np as an O-algebra, we obtain the following result.

Corollary 3.10. There exists a surjective homomorphism RS
F,ρm

↠ T
(1)
m of O-algebras.
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