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We consider Shimura varieties associated to a unitary group of signature (n − 2, 2). We give regular
p-adic integral models for these varieties over odd primes p which ramify in the imaginary quadratic
field with level subgroup at p given by the stabilizer of a selfdual lattice in the hermitian space. Our
construction is given by an explicit resolution of a corresponding local model.
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1. Introduction

1A. This paper is a contribution to the problem of constructing regular integral models for Shimura
varieties over places of bad reduction. There are several implicit examples of constructions of such regular
integral models in special cases; see, for example, work of de Jong [1993], Genestier [2000], Pappas
[2000b], Faltings [1997] and the very recent work of Pappas and Zachos [2022]. Here, we consider
Shimura varieties associated to unitary groups of signature (r, s) over an imaginary quadratic field F0.
These Shimura varieties are of PEL type, so they can be written as a moduli space of abelian varieties
with polarization, endomorphisms and level structure. Shimura varieties have canonical models over the
“reflex” number field E . In the cases we consider here the reflex field is the field of rational numbers Q if
r = s and E = F0 otherwise.

Constructing such well-behaved integral models is an interesting and hard problem whose solution has
many applications to number theory. The behavior of these depends very much on the “level subgroup”.
Here, the level subgroup is the stabilizer of a selfdual lattice in the hermitian space. This stabilizer, by
what follows below, is not connected when n is even, so not parahoric. However, by using work of
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Rapoport and Zink [1996] and Pappas [2000b] we construct p-adic integral models, which have simple
and explicit moduli descriptions, and are étale locally around each point isomorphic to certain simpler
schemes the naive local models. Inspired by the work of Pappas and Rapoport [2005] and Krämer [2003],
we consider a variation of the above moduli problem where we add in the moduli problem an additional
subspace in the deRham filtration Fil0(A)⊂ H 1

dR(A) of the universal abelian variety A, which satisfies
certain conditions. This is essentially an instance of the notion of a “linear modification” introduced
in [Pappas 2000b]. We then show that the blow-up of this model along a smooth (non-Cartier) divisor
produces a semistable integral model of the corresponding Shimura variety, i.e., it is regular and the
irreducible components of the special fiber are smooth divisors crossing normally. We expect that our
construction will find applications to the study of arithmetic intersections of special cycles and Kudla’s
program; see [Zhang 2021; Bruinier et al. 2020; He et al. 2023] for important applications of integral
models of unitary Shimura varieties to number theory.

1B. To explain our results, we need to introduce some notation. We consider the group G of unitary
similitudes for a hermitian vector space (W, φ) of dimension n > 3 over an imaginary quadratic field
F0 ⊂ C, and fix a conjugacy class of homomorphisms h : ResC/R Gm→ GR corresponding to a Shimura
datum (G, Xh) of signature (r, s) = (n − 2, 2) (see Section 6). Let us mention here that the case
(r, s) = (1, 2), when n = 3, was studied in [Pappas 2000b, 4.5, 4.15]; see also [Pappas and Rapoport
2009, Section 6].

We assume that F0/Q is ramified over p, where p is an odd prime number. Let F1 = F0⊗Qp and
V =W ⊗Q Qp. We fix a square root π of p and we set k = Fp. We assume that the hermitian form φ on
V is split, i.e., that there is a basis e1, . . . , en such that φ(ei , en+1− j )= δi j for i, j ∈ {1, . . . n}.

In addition, we denote by 3 the standard lattice On
F1

in V and we let L be the self-dual multichain
consisting of {π k3}k∈Z. Denote by K the stabilizer of 3 in G(Qp) and let G be the (smooth) group
scheme of automorphisms of the polarized chain L over Zp; see [Pappas and Rapoport 2009, Section 1.5].
Then G(Zp) = K and the group scheme G has G ⊗Zp Qp as its generic fiber. It turns out that when n
is odd the stabilizer K is a parahoric subgroup. When n is even, K is not a parahoric subgroup since it
contains a parahoric subgroup with index 2 and the corresponding parahoric group scheme is its connected
component K ◦; see [Pappas and Rapoport 2009, Section 1.2] for more details.

Choose also a sufficiently small compact open subgroup K p of the prime-to-p finite adelic points
G(Ap

f ) of G and set K = K p K . The Shimura variety ShK (G, X) with complex points

ShK (G, X)(C)= G(Q)\X ×G(A f )/K

is of PEL type. We set O = OEv where v the unique prime ideal of E above (p).
Next, we follow [Rapoport and Zink 1996, Definition 6.9] to define the moduli scheme Anaive

K over
O whose generic fiber agrees with ShK (G, X) (see also Section 6). A point of Anaive

K with values in the
O-scheme S is the isomorphism class of the following set of data (A, λ, η):

(1) An L-set of abelian varieties A = {A3}.
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(2) A Q-homogeneous principal polarization λ of the L-set A.

(3) A K p-level structure

η : H1(A,A
p
f )≃W ⊗A

p
f mod K p

which respects the bilinear forms on both sides up to a constant in (Ap
f )
×; see [loc. cit.] for details.

The set A should satisfy the determinant condition (i) of [loc. cit.]

For the definitions of the terms employed here we refer to [loc. cit., 6.3–6.8] and [Pappas 2000b,
Section 3]. The functor Anaive

K is representable by a quasiprojective scheme over O. The moduli scheme
Anaive

K is connected to the naive local model Mnaive, see Section 2 for the explicit definition of Mnaive, via
the local model diagram

Ãnaive
K

Anaive
K Mnaive

πK qK (1B.1)

where the morphism πK is a G-torsor and qK is a smooth and G-equivariant morphism (see Section 6).
Equivalently, using the language of algebraic stacks, there is a relatively representable smooth morphism

Anaive
K → [G\Mnaive

]

where the target is the quotient algebraic stack. In particular, since G is smooth, the above imply that
Anaive

K is étale locally isomorphic to Mnaive.
One can now consider a variation of the moduli of abelian schemes Aspl

K over Spec OF1 where we add
in the moduli problem an additional subspace in the Hodge filtration Fil0(A)⊂ H 1

dR(A) of the universal
abelian variety A with certain conditions to imitate the definition of the splitting local model M; see
Section 6B for the explicit definition of Aspl

K and Section 2 where we define M for general signature
(r, s). (Actually, M is a generalization of Krämer’s local models [Krämer 2003, Definition 4.1]). There
is a forgetful morphism

τ :Aspl
K →Anaive

K ⊗O OF1

defined by forgetting the extra subspace. Moreover, Aspl
K has the same étale local structure as M and is

a linear modification of Anaive
K ⊗O OF1 in the sense of [Pappas 2000b, Section 2] (see also [Pappas and

Rapoport 2005, Section 15]). Therefore, there is a local model diagram for Aspl
K similar to (1B.1) but

with Mnaive replaced by M. Note, that there is also a corresponding forgetful morphism

τ1 :M→Mnaive
⊗O OF1 .

In Section 2, we show that τ−1
1 (∗) is isomorphic to the Grassmannian Gr(2, n)k . Here, ∗ is the

“worst point” of Mnaive, i.e., the unique closed G-orbit supported in the special fiber; see [Pappas 2000b,
Section 4] for more details. Under the local model diagram, (see Section 6), τ−1

1 (∗) corresponds to the
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locus where the Hodge filtration Fil0(A) of the universal abelian scheme A is annihilated by the action of
the uniformizer π . Consider the blow-up Abl

K of Aspl
K along this locus.

1C. The main result of the paper is the following theorem.

Theorem 1.1. Abl
K is a semistable integral model for the Shimura variety ShK (G, X).

Since blowing-up commutes with étale localization and the étale local structure of the moduli scheme
Aspl

K is controlled by the local structure of the local model M, it is enough to show the above statement
for the corresponding local models. In particular, it suffices to prove:

Theorem 1.2. The blow-up Mbl of M along the smooth irreducible component τ−1
1 (∗) of its special fiber

is regular and has special fiber a divisor with normal crossings.

To show the above theorem, we explicitly calculate an affine chart U of M in a neighborhood of τ−1
1 (∗).

In fact, we consider a more general situation where we calculate U for a general signature (r, s) and we
show that G-translates of U cover M.

Proposition 1.3. An affine chart U ⊂M containing a preimage of the worst point is isomorphic to

Spec OF1[X, Y ]/(X − X t , X · (Is + Y t
· Y )− 2π Is)

where X, Y are of sizes s× s and (n− s)× s respectively.

When (r, s)= (n−1, 1), Krämer [2003] shows that U , and so M, has semistable reduction. Therefore,
she obtains a semistable integral model for the corresponding Shimura variety.

When (r, s)= (n− 2, 2), U does not have semistable reduction anymore and so M does not give us a
resolution. However, we use the explicit description of U above to calculate the blow-up of M along the
G-invariant smooth subscheme τ−1

1 (∗). The blow-up gives a G-birational projective morphism

rbl
:Mbl

→M

such that Mbl is regular and has special fiber a reduced divisor with normal crossings. We quickly see
that the corresponding blow-up Abl

K of the integral model Aspl
K inherits the same nice properties as Mbl.

In fact, there is a local model diagram for Abl
K similar to (1B.1) but with Mnaive replaced by Mbl. See

Theorem 6.1 for the precise statement about the model Abl
K .

Let us mention here that we can obtain similar results for the Shimura varieties ShK ′(G, X) where
K ′ = K p K ◦ (see Section 6). (Recall that K ◦ is the parahoric connected component of the stabilizer K .)
Also, we can apply these results to obtain regular (formal) models of the corresponding Rapoport–Zink
spaces.

Let us now explain the lay-out of the paper. In Section 2, we recall the definitions of certain variants
of local models for ramified unitary groups. In Section 3, we give explicit equations that describe the
affine chart U of the splitting model M for a general signature (r, s) and we also show that G-translates
of U cover M. For the rest of the paper we assume (r, s) = (n− 2, 2). In Section 4, we construct the
semistable resolution ρ : Ubl

→ U of the affine chart U . In Section 5, we show that Mbl has semistable
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reduction by using the results of Section 4 and the structure of local models. In Section 6, we apply the
above results to construct regular integral models for the corresponding Shimura varieties.

2. Preliminaries: local models and variants

We use the notation of [Pappas 2000b]. We take F =Qp[t]/(t2
− pu) and OF = Zp[t]/(t2

− pu), where
p is an odd prime and u is a unit in Zp. For n > 3, we set V = Fn and denote by ei , 1 ≤ i ≤ n, the
standard OF -generators of the standard lattice 3= On

F ⊂ V . Fix a uniformizer π of OF with π2
= pδ.

Also, since p ̸= 2, δ = π2/p has a square root in a finite étale extension of Spec(Zp). After such a base
extension there is a uniformizer π such that π2

= p. We will assume that we have such a uniformizer
and suppress the notation of the étale base extension.

Set k = Fp. The uniformizing element π induces a Zp- linear mapping on 3 which we denote by t .
We define a nondegenerate alternating Qp-bilinear form ⟨ , ⟩ : V × V →Qp given by

⟨ei , te j ⟩ = δi, j , ⟨ei , e j ⟩ = 0, ⟨tei , te j ⟩ = 0.

The restriction ⟨ , ⟩ : On
F × On

F → Zp is a perfect Zp-bilinear form. Using the duality isomorphism
HomF (V, F) ∼= HomQp(V,Qp) given by composing with the trace TrF/Qp : F → Qp we see, as in
[Pappas 2000b, Section 3], that there exists a unique nondegenerate hermitian form φ : V × V → F such
that

⟨x, y⟩ = TrF/Qp(π
−1φ(x, y)), x, y ∈ V .

We take G := GUn := GU (φ) and we choose a partition n = r + s; we refer to the pair (r, s) as the
signature. By replacing φ by −φ if needed, we can make sure that s ≤ r and so we assume that s ≤ r
(see [Pappas and Rapoport 2009, Section 1.1] for more details). Identifying G⊗ F ≃ GLn,F ×Gm,F , we
define the cocharacter µr,s as (1(s), 0(r), 1) of D×Gm , where D is the standard maximal torus of diagonal
matrices in GLn; for more details we refer the reader to [Smithling 2011, Section 3.2]. We denote by E
the reflex field of {µr,s}; then E =Qp if r = s and E = F otherwise; see [Pappas and Rapoport 2009,
Section 1.1]. We set O := OE .

Next, we denote by K the stabilizer of3 in G(Qp). We also let L be the self-dual multichain consisting
of {π k3}k∈Z. Here G=Aut(L) is the group scheme over Zp with K =G(Zp) the subgroup of G(Qp) fixing
the lattice chain L. When n is odd, the stabilizer K is a parahoric subgroup but when n is even, K is not a
parahoric subgroup since it contains a parahoric subgroup with index 2. The corresponding parahoric group
scheme is its connected component K ◦; see [Pappas and Rapoport 2009, Section 1.2] for more details.

We briefly recall the definition of certain variants of local models for ramified unitary groups.

2A. Rapoport–Zink local models and variants. Let Mnaive be the functor which associates to each
scheme S over Spec O the set of subsheaves F of O ⊗OS-modules of 3⊗OS such that:

(1) F as an OS-module is Zariski locally on S a direct summand of rank n.

(2) F is totally isotropic for ⟨ , ⟩⊗OS . item (Kottwitz condition) chart |F (X)= (X +π)r (X −π)s .
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The functor Mnaive is represented by a closed subscheme, which we again denote Mnaive, of Gr(n, 2n)⊗
Spec O; hence Mnaive is a projective O-scheme. (Here we denote by Gr(n, d) the Grassmannian scheme
parametrizing locally direct summands of rank n of a free module of rank d.) Mnaive is the naive local
model of Rapoport and Zink [1996]. Also, Mnaive supports an action of G.

Proposition 2.1. (a) We have
Mnaive

⊗O E ∼= Gr(s, n)⊗ E .

In particular, the generic fiber of Mnaive is smooth and geometrically irreducible of dimension rs.

(b) We have

dim Mnaive
⊗O k ≥

{
n2/4 if n is even,
(n2
− 1)/4 if n is odd.

In particular, Mnaive is not flat if |r − s|> 1.

Proof. See [Pappas 2000b, Proposition 3.8; Krämer 2003, Proposition 2.2; 2003, Corollary 2.3]. □

The flat closure of Mnaive
⊗O E in Mnaive is by definition the local model Mloc.

In [Pappas 2000b, Section 4], Pappas introduces the wedge local model M∧, in order to correct the
nonflatness problem, by imposing the following additional condition:

∧
r+1(t −π | F)= (0) and ∧

s+1 (t +π | F)= (0).

More precisely, M∧ is the closed subscheme of Mnaive that classifies points given by F which satisfy
the wedge condition. The scheme M∧ supports an action of G and the immersion i :M∧→Mnaive is
G-equivariant. It is easy to see that:

Proposition 2.2. The generic fibers of Mnaive and M∧ coincide, in particular the generic fiber of M∧ is a
smooth, geometrically irreducible variety of dimension rs.

Proof. See [Krämer 2003, Proposition 3.4] and [Arzdorf 2009, Lemma 1.1]. □

Also, Mloc
⊂M∧ and Mloc

⊗ E =M∧⊗ E . As in [Pappas 2000b, Section 4] and [Pappas and Rapoport
2009, Section 2.4.2, Section 5.5], the worst point of M∧, i.e., the unique closed G-orbit which lies in the
closure of any other orbit, is given by the k-valued point F = t3⊂3⊗ k ∼= (k[t]/(t2))n .

It is conjectured in [Pappas 2000b] that M∧ is flat for n ≥ 2 and any signature and so Mloc
=M∧. It

has been shown, see [Pappas 2000b, Theorem 4.5], that this is true for the signature (n− 1, 1). For more
general lattice chains, the wedge condition turns out to be insufficient, see [Pappas and Rapoport 2009,
Remarks 5.3, 7.4]. In [loc. cit.], the authors introduced a further refinement of the moduli problem by
also adding the so-called “spin condition” (for more information we refer the reader to [loc. cit.]); this
will play no role in this paper.

Next, we consider the moduli scheme M over OF , the splitting (or Krämer) local model as in [Pappas
and Rapoport 2005, Remark 14.2] and [Krämer 2003, Definition 4.1], whose points for an OF -scheme S
are Zariski locally OS-direct summands F0,F1 of ranks s, n respectively, such that:
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(1) (0)⊂ F0 ⊂ F1 ⊂3⊗OS .

(2) F1 = F⊥1 , i.e., F1 is totally isotropic for ⟨ , ⟩⊗OS .

(3) (t +π)F1 ⊂ F0.

(4) (t −π)F0 = (0).

The functor is represented by a projective OF -scheme M. The scheme M supports an action of G and
there is a G-equivariant morphism

τ :M→M∧⊗O OF

which is given by (F0,F1) 7→ F1 on S-valued points. (Indeed, we can easily see, as in [Krämer 2003,
Definition 4.1], that τ is well defined.)

Proposition 2.3. The morphism τ :M→M∧⊗O OF induces an isomorphism on the generic fibers.

Proof. It follows by [Krämer 2003, Remark 4.2] and the proof of [Pappas 2000b, Proposition 3.8]. □

The following discussion appears in [Pappas 2000a]. Over the special fiber, the condition (4) amounts
to tF0 = (0). Thus, we have

(0)⊂ F0 ⊂ t3⊗ k ⊂ F⊥0 ⊂3⊗ k.

Also, we have
(0)⊂ (t−1(F0))

⊥
⊂ t3⊗ k ⊂ t−1(F0)⊂3⊗ k.

The spaces t−1(F0),F⊥0 have rank n+s, 2n−s = n+r respectively. Fixing F0, the rank of t−1(F0)∩F⊥0
influences the dimension of the space of allowable F1 since

F0+ (t−1(F0))
⊥
⊂ F1 ⊂ t−1(F0)∩F⊥0 .

Note that F0 ⊂ t3⊗ k ≃ kn
⊗OS . Hence, we consider the morphism

π :M⊗ k→ Gr(s, n)⊗ k

given by (F0,F1) 7→ F0. This has a section

φ : Gr(s, n)⊗ k→M⊗ k

given by F0 7→ (F0,F1) with F1 = t3⊗ k. The image of the section φ is an irreducible component
of M ⊗O k which is the fiber τ−1(t3) over the worst point. Hence, τ−1(t3) is isomorphic to the
Grassmannian Gr(s, n)⊗ k of dimension rs. Also, observe that {(F0,F1) | rank(t−1(F0)∩F⊥0 )= n} ⊂
τ−1(t3) since when t−1(F0)∩F⊥0 has rank n then t−1(F0)∩F⊥0 = t3 which gives F1 = t3.

However, the morphism π has fibers of positive dimension over points of Gr(s, n)⊗k which correspond
to subspaces of Gr(s, n)⊗k on which the dimension t−1(F0)∩F⊥0 is more than n. Actually, t−1(F0)∩F⊥0
has maximal dimension, i.e., t−1(F0)⊂ F⊥0 , if and only if F0 ⊂ t3⊗ k ≃ kn

⊗OS is totally isotropic for
the (nondegenerate) symmetric form on t3⊗ k which is defined as {tv, tw} := ⟨tv,w⟩; see the proof
of [Krämer 2003, Theorem 4.5] for more details. Denote by Q(s, n) the smooth closed subscheme of
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Gr(s, n)⊗ k of dimension s(2n− 3s− 1)/2 which parametrizes all these isotropic s-subspaces F0 in the
n-space kn

⊗OS . For such F0 ∈Q(s, n) we have that t−1(F0)⊂ F⊥0 and thus the fiber π−1(F0) is given
by F1 with F1 = F⊥1 such that

F0 ⊂ (t−1(F0))
⊥
⊂ F1 ⊂ t−1(F0).

We can see that these {F1} correspond to Lagrangian subspaces in t−1(F0)/(t−1(F0))
⊥ which have

dimension 2s. This is a smooth s(s+ 1)/2-dimensional scheme which we denote by L(s, 2s). From the
above discussion we see that π−1(Q(s, n)) is a L(s, 2s)-bundle over Q(s, n) with dimension rs. Thus,
π−1(Q(s, n)) is an irreducible component of M⊗ k which intersects with τ−1(t3) over Q(s, n).

Krämer [2003] shows that τ defines a resolution of M∧ in the case that the signature is (n− 1, 1). In
particular, she proves that M is regular with special fiber a reduced divisor with simple normal crossings.
Also she shows that the special fiber of M consists of two smooth irreducible components of dimension
n− 1 — one of which being isomorphic to Pn−1

k (this corresponds to τ−1(t3)), and the other one being a
P1

k-bundle over a smooth quadric (this corresponds to π−1(Q(1, n))) — which intersect transversely in a
smooth irreducible variety of dimension n− 2 (this corresponds to Q(1, n)).

3. An affine chart

The goal of this section is to write down the equations that define M in a neighborhood U of (F0, t3)
for a general signature (r, s); see Proposition 3.1. We also deduce, see Proposition 3.7, that G-translates
of U cover M. (Recall from Section 2 that (F0, t3) is a point in the fiber of τ :M→M∧⊗O OF over
the worst point.) In order to find the explicit equations that describe U , we use similar arguments as in
the proof of [Krämer 2003, Theorem 4.5]. In our case we consider:

F1 =

[
A
In

]
, F0 = X =

[
X1

X2

]
where A is of size n×n, X is of size 2n×s and X1, X2 are of size n×s; with the additional condition that
F0 has rank s and so X has a nonvanishing s× s-minor. We also ask that (F0,F1) satisfy the following
four conditions:

(1) F⊥1 = F1.

(2) F0 ⊂ F1.

(3) (t −π)F0 = (0).

(4) (t +π)F1 ⊂ F0.

Observe that

Mt =

[
0n pIn

In 0n

]
of size 2n× 2n is the matrix giving multiplication by t :
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(1) The condition that F1 is isotropic translates to

At
= A.

(2) The condition F0 ⊂ F1 translates to

∃Y : X =
[

A
In

]
· Y

where Y is of size n× s. Thus, we have[
X1

X2

]
=

[
A
In

]
· Y =

[
AY
InY

]
and so X1 = AY and X2 = Y .

(3) The condition (t −π)F0 = (0) is equivalent to

Mt · X =
[
πX1

πX2

]
,

which amounts to [
pX2

X1

]
=

[
πX1

πX2

]
.

Thus, X1 = πX2 which translates to AY = πY by condition (2).

(4) The last condition (t +π)F1 ⊂ F0 translates to

∃Z : Mt ·

[
A
In

]
+

[
π A
π InY

]
= X · Z t

where Z is of size n× s. This amounts to[
pIn +π A
A+π In

]
=

[
X1 Z t

X2 Z t

]
.

From the above we get A+π In = X2 Z t which by condition (2) translates to A= Y Z t
−π In. Thus, A can

be expressed in terms of Y, Z . In addition, by condition (2) and in particular by the relations X1 = AY
and X2 = Y we deduce that the matrix X is given in terms of Y, Z . Also from Y = X2 we get that the
matrix Y is given in terms of A, X . (Below we will also show that Z can be expressed in terms of A, X .)

For later use, we break up the matrices Y, Z into blocks as follows. We write

Y =
[

Y1

Y2

]
, Z =

[
Z1

Z2

]
where Y1, Z1 are of size s × s and Y2, Z2 are of size (n− s)× s. Observe from X1 = πX2 that all the
entries of X1 are in the maximal ideal and thus a minor involving entries of X1 cannot be a unit. Recall
that the matrix X has a nonvanishing s × s-minor and X2 = Y from condition (2). Therefore, we can
assume that Y1 = Is up to a change of basis.
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We replace A by Y Z t
−π In . Hence, conditions (1) and (3) are equivalent to

ZY t
= Y Z t , (3.1)

Y Z t Y = 2πY. (3.2)

Here, we want to mention how we can express Z in terms of A, X . From the above we have Y Z t
= A+π In

and Y =
[ Is

Y2

]
which gives

[ Z t

Y2 Z t

]
= A+π In . Next, we break the matrices A, In into blocks: A =

[ A1
A2

]
,

In =
[ I1

I2

]
where A1, I1 are of size s×n and A2, I2 are of size (n− s)×n. Hence, from

[ Z t

Y2 Z t

]
= A+π In

we obtain Z t
= A1+π I1 and thus Z = At

1+π I t
1.

From the above we deduce that an affine neighborhood of M around (F0, t3) is given by U =
Spec OF [Y, Z ]/(Y1− Is, ZY t

− Y Z t , Y Z t Y − 2πY ).
Our goal in this section is to prove the simplification of equations given by the following proposition.

Proposition 3.1. The affine chart U ⊂M is isomorphic to

Spec OF [Y2, Z1]/(Z1− Z t
1, Z1(Is + Y t

2Y2)− 2π Is).

Proof. From (3.1) we get [
Z1

Z2

]
· [Is | Y t

2] =

[
Is

Y t
2

]
· [Z t

1 | Z
t
2],

which gives [
Z1 Z1Y t

2
Z2 Z2Y t

2

]
=

[
Z t

1 Z t
2

Y2 Z1 Y2 Z t
2

]
.

From the above relation we obtain the relations Z1 = Z t
1 and Z2 = Y2 Z t

1. Thus, Z1 is symmetric and Z2

can be expressed in terms of Y2, Z1.
Next, the relation (3.2) amounts to[

Is

Y2

]
· [Z t

1 | Z
t
2] ·

[
Is

Y2

]
=

[
2π Is

2πY2

]
which is equivalent to [

Z t
1+ Z t

2Y2

Y2 Z t
1+ Y2 Z t

2Y2

]
=

[
2π Is

2πY2

]
.

From this we get Z t
1+ Z t

2Y2= 2π Is which translates to Z1(Is+Y t
2Y2)= 2π Is as Z t

1= Z1 and Z2= Y2 Z t
1.

From all the above the proof of the proposition follows. □

As corollaries of the above result we have:

Corollary 3.2. For (r, s)= (n− 1, 1), the corresponding affine chart U will be isomorphic to:

U ∼= Spec
(

OF [(yi )1≤i≤n, a]
/ (

a
n∑

c=1

y2
c − 2π, y1− 1

))
. □

Remark 3.3. For the above signature, Krämer [2003] shows that U is regular with special fiber a divisor
with simple normal crossings.
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Corollary 3.4. For (r, s)= (n− 2, 2) the corresponding affine chart U will be isomorphic to

U ∼= Spec(OF [(xi )3≤i≤n, (yi )3≤i≤n, a, b, c]/(Z1 N − 2π I2))

where

Z1 =

(
a b
b c

)
, N =

(
1+

∑n
i=3 x2

i
∑n

i=3 xi yi∑n
i=3 xi yi 1+

∑n
i=3 y2

i

)
. □

Remark 3.5. In this case s= 2, U does not have semistable reduction as one of the irreducible components
of the special fiber of U is not smooth. More precisely, over the special fiber (π = 0) U has three irreducible
components given by

Ti = {(Z1, N ) | Z1 N = 0, rank Z1 ≤ i, rank N ≤ 2− i}, for i = 0, 1, 2.

We can easily see that T0, T2 are smooth but T1 is singular. We resolve the singularities of U in Section 3
by blowing up the irreducible component T0 or in other words by blowing up the ideal (Z1) generated
by the entries of Z1. Observe from the above and the proof of Proposition 3.1 that A = Y ·

[ Z1
Z2

]t and
Z2 = Y2 Z t

1 over the special fiber. Hence, Z1 = 0, i.e., a = b = c = 0, gives A = 0 which corresponds to
F1 = t3. Thus T0 = U ∩ τ−1(t3) where τ :M→M∧⊗O OF ; see Section 2A.

Remark 3.6. For a general signature (r, s), over the special fiber of U we have that Z1 = Z t
1 and

Z1(Is + Y t
2Y2)= 0. As in Remark 3.5, Z1 = 0 gives A = 0 which corresponds to F1 = t3.

Moreover, from the above and the definition of the (nondegenerate) symmetric form { , } on t3⊗ k
(see Section 2A) we have {F0,F0} = Y t

·Y = Is +Y t
2Y2 since F0 =

[ X1
X2

]
where X1 = πX2, X2 = Y and

Y =
[ Is

Y2

]
. Thus, from the rank of Is + Y t

2Y2 we read how isotropic F0 is with respect to { , }. When the
rank of the matrix Is + Y t

2Y2 is zero, which actually occurs, we have {F0,F0} = 0.
From all the above, we can easily see that U contains points (F0,F1) where F0 ∈Q(s, n) and F1 = t3.

(Recall from Section 2A that Q(s, n) is the closed subscheme of Gr(s, n)⊗ k which contains all the
totally isotropic s-subspaces F0 with respect to the symmetric form { , }.)

Proposition 3.7. When s ≥ 1, G-translates of U cover M.

Proof. From Section 2A, we have the forgetful G-equivariant morphism τ :M→M∧⊗O OF given by
(F0,F1) 7→F1. As in [Pappas 2000b, Section 4] and [Pappas and Rapoport 2009, Sections 2.4.2, 5.5], the
worst point of M∧⊗O OF is given by the k-valued point t3. The reason for this terminology is that the
geometric special fiber of M∧⊗O OF embeds into an appropriate affine flag variety, where it decomposes
into unions of finitely many Schubert cells, and the worst point is the unique closed Schubert cell. This
one point stratum lies in the closure of any other stratum and the inclusion relations between the Schubert
varieties are given by the Bruhat order. From the construction of splitting local models and the above, in
order to show that G-translates of U cover M it is enough to prove that G-translates of U cover τ−1(t3).

Recall that K is the stabilizer of 3 in G(Qp) and K ◦ is the neutral component of K , i.e., the parahoric
stabilizer of 3. When n is odd K = K ◦ and when n is even K/K ◦ ≃ Z/2Z; see §2. Also, G is the smooth
group scheme of automorphisms of the polarized chain L over Zp with G(Zp)= K and G◦ is the neutral
component of G with G◦(Zp)= K ◦.
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From Section 2A, we have that τ−1(t3) ∼= Gr(s, n)⊗ k and Gk acts via its action by reduction to
t3/t23. This action factors through the orthogonal group O(n)k of the symmetric form { , } on t3⊗ k
and gives the map Gk → O(n)k . As in [Pappas and Rapoport 2008, Section 4] (see also [Tits 1979,
Section 3.11]), G◦k has SO(n)k as its maximal reductive quotient if n is even and O(n)k if n is odd via its
action by reduction to t3/t23. The maps G◦k → O(n)k and G◦k → SO(n)k are surjective when n is odd
and even respectively. Therefore, the map Gk→ O(n)k is always surjective.

Next, the O(n)-action on Gr(s, n) has a finite number of orbits. More precisely, there are s+ 1 orbits
Q(0), Q(1), . . . , Q(s) where Q(i)= {F0 ∈Gr(s, n) | dim(rad(F0))= i}; see [Barbasch and Evens 1994,
Section 4]. For example in the case s = 2 there are three O(n)-orbits: F0 can either contain no isotropic
vectors at all or one isotropic vector or be totally isotropic. Observe that Q( j) is contained in the (Zariski)
closure of Q(i) if and only if j ≥ i and Q(s) = Q(s, n) is the unique closed orbit; see for example
[Barbasch and Evens 1994, Section 3.1] and [Arbarello et al. 1985]. Thus, Q(s, n) is contained in the
closure of each orbit Q(i).

Lastly, from Remark 3.6 we have that U contains points (F0, t3) with F0 ∈Q(s, n) and so U contains
points from all the orbits. Therefore, from all the above we deduce that the G-translates of U cover
τ−1(t3). □

Conjecture 3.8. When s ≥ 1, the scheme M is flat over Spec OF , Cohen–Macaulay and normal. It’s
special fiber is reduced.

Remark 3.9. (a) By Proposition 3.7, to prove the conjecture, it is enough to show that the affine chart U
has the above properties. More precisely, the hard part of the conjecture is to prove that the special
fiber of U is reduced and Cohen–Macaulay.

(b) For (r, s)= (n− 1, 1), the conjecture is true as we can see from Remark 3.3.

(c) The above conjecture is supported by some computer calculations that we obtained with the help of
Macaulay 2. In particular, we verified the conjecture when (r, s)= (n−2, 2)where n=5, 6, 7, 8, 9, 10
for various primes p > 2.

4. A blow-up

In what follows, we assume (r, s)= (n− 2, 2). The goal of this section is to find a semistable resolution
of the affine chart U (see Corollary 4.2).

From Corollary 3.4 we have that U ∼= Spec B where B is the quotient ring

B = OF [(xi )3≤i≤n, (yi )3≤i≤n, a, b, c]/J

and J is the ideal generated by the entries of the relation:(
a b
b c

) (
Q(x) P(x, y)

P(x, y) Q(y)

)
= 2π

(
1 0
0 1

)
,

where Q(x)= 1+
∑n

i=3 x2
i , Q(y)= 1+

∑n
i=3 y2

i and P(x, y)=
∑n

i=3 xi yi .
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Now, we will explicitly calculate the blow-up Ubl of Spec(B) along the ideal (a, b, c). By Remark 3.5,
Ubl is the blow-up of U along the smooth subscheme U ∩ τ−1(t3). Let ρ : Ubl

→ U be the blow-up
morphism. Define

U ′ := Proj(B[t1, t2, t3]/J ′)

where

J ′ = (t1 Q(x)− t3 Q(y), t2 Q(y)+ t1 P(x, y), t2 Q(x)+ t3 P(x, y), at2− bt1, at3− ct1, bt3− ct2).

By definition, Ubl is a closed subscheme of the projective Spec(B)-scheme U ′ (as the blow-up Ubl may
be, a priori, cut out by more equations). In fact, as a result of our analysis we will see that Ubl

= U ′.

Proposition 4.1. (a) U ′ has semistable reduction over OF .

(b) The closed immersion Ubl
→ U ′ is an isomorphism.

Proof. There are three affine patches that cover U ′: For t1 = 1 the affine open chart is given by
V (J1)= Spec R1/J1 where R1 = OF [(xi )3≤i≤n, (yi )3≤i≤n, a, t2, t3] and

J1 = (t2 Q(y)+ P(x, y), Q(x)− t3 Q(y), a(Q(x)+ t2 P(x, y))− 2π).

We will show that the scheme V (J1) has semistable reduction over OF . It suffices to prove that V (J1) is
regular and its special fiber is reduced with smooth irreducible components that have smooth intersections
with correct dimensions. First we observe that

J1 = (t2 Q(y)+ P(x, y), Q(x)− t3 Q(y), a(t3− t2
2 )Q(y)− 2π).

Over the special fiber (π = 0) we have V (J 1)= Spec R1/J 1 where

J 1 = (t2 Q(y)+ P(x, y), Q(x)− t3 Q(y), a(t3− t2
2 )Q(y))

and R1 = k[(xi )3≤i≤n, (yi )3≤i≤n, a, t2, t3]. Let V (Ii )= Spec R1/Ii of dimension 2(n− 2), where

I1 = (a, t2 Q(y)+ P(x, y), Q(x)− t3 Q(y)),

I2 = (t3− t2
2 , t2 Q(y)+ P(x, y), Q(x)− t2

2 Q(y)),

I3 = (Q(y), P(x, y), Q(x)).

We can easily see that
V (J 1)= V (I1)∪ V (I2)∪ V (I3).

Using the Jacobi criterion we see that V (Ii ) are smooth and that their intersections

I1+ I2 = (a, t3− t2
2 , t2 Q(y)+ P(x, y), Q(x)− t2

2 Q(y)),

I1+ I3 = (a, Q(y), P(x, y), Q(x)),

I2+ I3 = (t3− t2
2 , Q(y), P(x, y), Q(x)),

I1+ I2+ I3 = (a, t3− t2
2 , Q(y), P(x, y), Q(x)),
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are also smooth and with the correct dimensions. By the above, we get that V (Ii ) are the smooth
irreducible components of V (J 1).

Now, we prove that the special fiber of V (J1) is reduced by showing that

J 1 = I1 ∩ I2 ∩ I3.

Recall that J 1 = (m1,m2, a(t3 − t2
2 )Q(y)) where m1 := t2 Q(y)+ P(x, y) and m2 := Q(x)− t3 Q(y).

Clearly, J 1 ⊂ I1 ∩ I2 ∩ I3. Let g ∈ I1 ∩ I2 ∩ I3. Thus, g ∈ I1 and

g = f1a+ f2m1+ f3m2 ≡ f1a mod J 1

for fi ∈ R1. Also, g ∈ I2 and so f1a ∈ I2. I2 is a prime ideal and a /∈ I2. Thus, f1 ∈ I2 and

f1 = h1(t3− t2
2 )+ h2m1+ h3m2 ≡ h1(t3− t2

2 ) mod J 1

for hi ∈ R1. Lastly, g ∈ I3 and from the above we obtain h1 ∈ I3 as a, (t3− t2
2 ) /∈ I3. Thus,

h1 = k1 Q(y)+ k2 P(x, y)+ k3 Q(x)≡ Q(y)(k1− k2t2+ k3t3) mod J 1

for ki ∈ R1. Therefore, g ≡ a(t3 − t2
2 )Q(y)(k1 − k2t2 + k3t3) ≡ 0 mod J 1 and so g ∈ J 1. Hence,

J 1 = I1 ∩ I2 ∩ I3.
Next, we can easily see that the ideals I1, I2, I3 are principal over V (J1). In particular, for I1 we have

I1 = (a), for I2 we have I2 = (t3− t2) and for I3 we get I3 = (Q(y)). From the above we deduce that
V (J1) is regular; see [Hartl 2001, Remark 1.1.1].

From all the above discussion we deduce that V (J1) has semistable reduction over O . By symmetry,
we get similar results for t3 = 1.

For t2 = 1, the affine open chart is given by V (J2)= Spec R2/J2 where

R2 = OF [(xi )3≤i≤n, (yi )3≤i≤n, b, t1, t3]

and

J2 = (Q(y)+ t1 P(x, y), Q(x)+ t3 P(x, y), b(1− t1t3)P(x, y)− 2π).

To show that V (J2) has semistable reduction one proceeds exactly as above. In this case, the special fiber
of V (J2) is isomorphic to Spec R2/J 2 where

J 2 = (Q(y)+ t1 P(x, y), Q(x)+ t3 P(x, y), b(1− t1t3)P(x, y))

and R2 = k[(xi )3≤i≤n, (yi )3≤i≤n, b, t1, t3]. Let V (I ′i )= Spec R2/I ′i of dimension 2(n− 2), where

I ′1 = (b, Q(y)+ t1 P(x, y), Q(x)+ t3 P(x, y)),

I ′2 = (1− t1t3, Q(y)+ t1 P(x, y), Q(x)+ t3 P(x, y)),

I ′3 = (P(x, y), Q(y), Q(x)).
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and their intersections

I ′1+ I ′2 = (b, 1− t1t3, Q(y)+ t1 P(x, y), Q(x)+ t3 P(x, y)),

I ′1+ I ′3 = (b, Q(y), P(x, y), Q(x)),

I ′2+ I ′3 = (1− t1t3, Q(y), P(x, y), Q(x)),

I ′1+ I ′2+ I ′3 = (b, 1− t1t3, Q(y), P(x, y), Q(x)).

As in the case t1 = 1, by using the Jacobi criterion we see that the irreducible components V (I ′i ) are
smooth and they intersect transversely. Also, by a similar argument as above we can easily see that V (J2)

is regular and its special fiber is reduced. Now, the semistability of V (J2) follows.
By the above, we conclude that U ′ is regular, of relative dimension 2(n−2), that U ′ is OF -flat and that

its special fiber is a reduced divisor with normal crossings. This shows part (a). Let us show part (b). The
blow-up Ubl is a closed subscheme of U ′. By the above, U ′ is integral of dimension 2(n− 2). However,
the dimension of the blow-up Ubl is also 2(n− 2). Indeed, on one hand Ubl is a closed subscheme of U ′

while on the other hand it is birational to Spec(B). We deduce that Ubl
= U ′ which is the claim in (b). □

As a consequence of the above proposition we obtain:

Corollary 4.2. The morphism ρ : Ubl
→ U is a semistable resolution, i.e., Ubl has semistable reduction

over OF .

Proof. It follows from part (a) and (b) of Proposition 4.1. □

Remark 4.3. From the proof of Proposition 4.1 we obtain that the special fiber of Ubl has three irreducible
components. In fact, we explicitly describe the equations defining these irreducible components over the
three affine patches that cover Ubl. It is then easy to see that the exceptional locus of ρ : Ubl

→ U is the
irreducible component of the special fiber of Ubl

Proj
(

k[(xi )3≤i≤n, (yi )3≤i≤n][t1, t2, t3]
(t1 Q(x)− t3 Q(y), t2 Q(y)+ t1 P(x, y), t2 Q(x)+ t3 P(x, y))

)
that corresponds to V (I1) and V (I ′1) for the affine patches t1 = 1 and t2 = 1 respectively.

5. A resolution for the local model

We use the notation from Section 2. In particular, recall the morphism

τ :M→M∧⊗O OF

and the following isomorphisms over the generic fiber

M⊗ F ∼=M∧⊗ F ∼=Mloc
⊗ F. (5.1)

Let Z = τ−1(t3) be the smooth G-invariant subscheme of dimension 2(n− 2), which is supported in
the special fiber. (Recall from Section 2 that t3 is the worst point of M∧ and τ−1(t3)∼= Gr(2, n)⊗ k.)
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We consider the blow-up of M along the subscheme Z . This gives a G-birational projective morphism

rbl
:Mbl

→M

which induces an isomorphism on the generic fibers.

Theorem 5.1. The scheme Mbl is regular and has special fiber a reduced divisor with normal crossings.

Proof. From Proposition 3.7 we have that the G-translates of U cover M and since rbl is G-equivariant
we obtain that the G-translates of the open Ubl

= (rbl)−1(U)⊂Mbl cover Mbl. Therefore, it is enough to
show the conclusion of the theorem for the blow-up Ubl of U at the ideal (a, b, c) and by Corollary 4.2
the proof of the theorem follows. □

Remark 5.2. It would be useful to have a simple moduli-theoretic description of the blow-up Mbl similar
in spirit to the description of M given in Section 2.

We just proved that Mbl has semistable reduction, and is therefore flat over OF . Combining all the
above we have

Mbl rbl
−→M τ

−→M∧⊗O OF

which factors through Mloc
⊗O OF ⊂M∧⊗O OF because of flatness; the generic fiber of all of these is

the same as we can see from (5.1). Then, we obtain that Mbl
→Mloc

⊗O OF is a G-equivariant birational
projective morphism.

6. Application to Shimura varieties

6A. Unitary Shimura data. We now discuss some Shimura varieties to which we can apply these results.
We follow [Pappas and Rapoport 2009, Section 1.1] for the description of the unitary Shimura varieties;
see also [Pappas 2000b, Section 3].

Let F0 be an imaginary quadratic field and fix an embedding ϵ : F0 ↪→C. Let O be the ring of integers
of F0 and denote by a 7→ ā the nontrivial automorphism of F0. Assuming n > 3, we let W = Fn

0 be a
n-dimensional F0-vector space, and we suppose that φ :W ×W → F0 is a nondegenerate hermitian form.
Set WC = W ⊗F0,ϵ C. Choosing a suitable isomorphism WC

∼= Cn we may write φ on WC in a normal
form φ(w1, w2)=

t w̄1 Hw2 where

H = diag(−1, . . . ,−1, 1, . . . , 1).

We denote by s (resp. r ) the number of places, where −1, (resp. 1) appears in H . We will say that φ has
signature (r, s). By replacing φ by −φ if needed, we can make sure that s ≤ r and so we assume that
s ≤ r . Let J :WC→WC be the endomorphism given by the matrix −

√
−1H . We have J 2

=− id and so
the endomorphism J gives an R-algebra homomorphism h0 : C→ EndR(W ⊗Q R) with h0(

√
−1)= J

and hence a complex structure on W ⊗Q R=WC. For this complex structure we have

TrC(a;W ⊗Q R)= s · ϵ(a)+ r · ϵ(a), a ∈ F0.
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Denote by E the subfield of C which is generated by the traces above (the “reflex field”). We have that
E = Q if r = s and E = F0 otherwise. The representation of F0 on W ⊗Q R with the above trace is
defined over E , i.e., there is an n-dimensional E-vector space W0 on which F0 acts such that

TrE(a;W0)= s · a+ r · ā

and such that W0⊗E C together with the above F0-action is isomorphic to W ⊗Q R with the F0-action
induced by ϵ : F0 ↪→ C and the above complex structure.

Next, fix a nonzero element a ∈ F0 with ā =−a and set

ψ(x, y)= TrF0/Q(a
−1φ(x, y))

which is a nondegenerate alternating form W ⊗Q W →Q. This satisfies

ψ(av,w)= ψ(v, āw), for all a ∈ F0, v, w ∈W.

By replacing a by −a, we can make sure that the symmetric R-bilinear form on WC given by ψ(x, J y)
for x, y ∈WC is positive definite. Let G be the reductive group over Q which is given by

G(Q)= {g ∈ GLF0(W ) | ψ(gv, gw)= c(g)ψ(v,w), c(g) ∈Q×}.

The group G can be identified with the unitary similitude group of the form φ. Set

GU (r, s) := {A ∈ GLn(C) |
t AH A− = c(A)H, c(A) ∈ R×}.

By the above, the embedding ϵ : F0 ↪→ C induces an isomorphism G(R) ∼= GU (r, s). We define a
homomorphism h : ResC/R Gm,C→ GR by restricting h0 to C×. Then h(a) for a ∈ R× acts on W ⊗Q R

by multiplication by a and h(
√
−1) acts as J . Consider hC(z, 1) : C×→ G(C)∼= GLn(C)×C×. Up to

conjugation hC(z, 1) is given by

µr,s(z)= (diag(z(s), 1(r)), z);

this is a cocharacter of G defined over the number field E . Denote by Xh the conjugation orbit of h(i)
under G(R). The pair (G, h) gives rise to a Shimura variety Sh(G, h) which is defined over the reflex
field E .

6B. Unitary integral models. We continue with the notations and assumptions of the previous paragraph.
In particular, we take G = GUn and X = Xh above that define the unitary similitude Shimura datum
(G, X). Assume that (r, s)= (n− 2, 2).

Assume that p is an odd prime number and is ramified in F0. Let F1= F0⊗Qp and V =W⊗Q Qp. We
fix a square root π of p and we set k = Fp. In addition, we assume that the hermitian form φ on V is split.
This means that there exists a basis e1, . . . , en of V such that φ(ei , en+1− j ) = δi j for i, j ∈ {1, . . . , n}.
We denote by 3 the standard lattice On

⊗Z Zp in V . Denote by K the stabilizer of 3 in G(Qp).
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We let L be the self-dual multichain consisting of {π k3}k∈Z. Here G = Aut(L) is the group scheme
over Zp with K = G(Zp) the subgroup of G(Qp) fixing the lattice chain L. Denote by K ◦ the neutral
component of K . As in Section 2, when n is odd K = K ◦ and when n is even K/K ◦ ≃ Z/2Z.

Choose also a sufficiently small compact open subgroup K p of the prime-to-p finite adelic points
G(Ap

f ) of G and set K = K p K and K ′ = K p K ◦. As was observed in [Pappas and Rapoport 2009,
Section 1.3], the Shimura varieties ShK ′(G, X) and ShK (G, X) have isomorphic geometric connected
components. Therefore, from the point of view of constructing reasonable integral models, we may
restrict our attention to ShK (G, X); since K corresponds to a lattice set stabilizer, this Shimura variety is
given by a simpler moduli problem. The Shimura variety ShK (G, X) with complex points

ShK (G, X)(C)= G(Q)\X ×G(A f )/K

is of PEL type and has a canonical model over the reflex field E . We set O = OEv where v the unique
prime ideal of E above (p).

We consider the moduli functor Anaive
K over SpecO given in [Rapoport and Zink 1996, Definition 6.9]:

A point of Anaive
K with values in the SpecO-scheme S is the isomorphism class of the following set of

data (A, λ, η):

(1) An L-set of abelian varieties A = {A3}.

(2) A Q-homogeneous principal polarization λ of the L-set A.

(3) A K p-level structure

η : H1(A,A
p
f )≃W ⊗A

p
f mod K p

which respects the bilinear forms on both sides up to a constant in (Ap
f )
×; see [loc. cit.] for details.

The set A should satisfy the determinant condition (i) of [loc. cit.].

For the definitions of the terms employed here we refer to [6.3–6.8] and [Pappas 2000b, Section 3].
The functor Anaive

K is representable by a quasiprojective scheme over O. Since the Hasse principle is
satisfied for the unitary group, we can see as in [loc. cit.] that there is a natural isomorphism

Anaive
K ⊗O Ev = ShK (G, X)⊗E Ev.

As is explained in [Rapoport and Zink 1996] and [Pappas 2000b] the naive local model Mnaive is
connected to the moduli scheme Anaive

K via the local model diagram

Anaive
K

ψ1
←− Ãnaive

K
ψ2
−→Mnaive

where the morphism ψ1 is a G-torsor and ψ2 is a smooth and G-equivariant morphism. Therefore, there is
a relatively representable smooth morphism

Anaive
K → [G\Mnaive

]

where the target is the quotient algebraic stack.
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As we mentioned in Section 2, the scheme Mnaive is never flat and by the above, the same is true for
Anaive

K . Denote by Aflat
K the flat closure of ShK (G, X)⊗E Ev in Anaive

K . Recall from Section 2 that the
flat closure of Mnaive

⊗O Ev in Mnaive is by definition the local model Mloc. By the above we can see,
as in [Pappas and Rapoport 2009], that there is a relatively representable smooth morphism of relative
dimension dim(G),

Aflat
K → [G\M

loc
].

This of course implies imply that Aflat
K is étale locally isomorphic to the local model Mloc.

One can now consider a variation of the moduli of abelian schemes Aspl
K where we add in the moduli

problem an additional subspace in the Hodge filtration Fil0(A)⊂ H 1
dR(A) of the universal abelian variety

A (see [Haines 2005, Section 6.3] for more details) with certain conditions to imitate the definition of the
splitting local model M. Aspl

K associates to an OF1-scheme S the set of isomorphism classes of objects
(A, λ, η,F0). Here (A, λ, η) is an object of Anaive

K (S). Set F1 := Fil0(A). The final ingredient F0 of an
object of Aspl

K is the subspace F0 ⊂F1 ⊂ H 1
dR(A) of rank s which satisfies the following conditions:

(t +π)F1 ⊂F0, (t −π)F0 = (0).

There is a forgetful morphism

τ :Aspl
K →Anaive

K ⊗O OF1

defined by (A, λ, η,F0) 7→ (A, λ, η). Moreover, Aspl
K has the same étale local structure as M; it is a

“linear modification” of Anaive
K ⊗O OF1 in the sense of [Pappas 2000b, Section 2]; see also [Pappas and

Rapoport 2005, Section 15]. Also we want to mention that under the local model diagram the subspace
F1 corresponds to F1 of (F0,F1) ∈M.

Theorem 6.1. For every K p as above, there is a scheme Abl
K , flat over Spec(OF1), with

Abl
K ⊗OF1

F1 = ShK (G, X)⊗E F1,

and which supports a local model diagram

Ãbl
K (G, X)

Abl
K Mbl

π
reg
K q reg

K (6B.1)

such that:

(a) π reg
K is a G-torsor for the parahoric group scheme G that corresponds to K p.

(b) q reg
K is smooth and G-equivariant.

(c) Abl
K is regular and has special fiber which is a reduced divisor with normal crossings.
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Proof. By the above, we have

Ãspl
K

Aspl
K M

πK qK (6B.2)

with πK a G-torsor and qK smooth and G-equivariant. We set

Ãbl
K = Ãspl

K ×M Mbl

which carries a diagonal G-action. Since Mbl
→M is given by a blow-up, is projective, and we can see

[Pappas 2000b, Section 2] that the quotient

π
reg
K : Ã

bl
K →Abl

K := G\Ãbl
K (G, X)

is represented by a scheme and gives a G-torsor. (This is an example of a linear modification, see [Pappas
2000b, Section 2].) In fact, since blowing-up commutes with étale localization, Abl

K is the blow-up of
Aspl

K along the locus of its special fiber where tF1 = 0. The projection gives a smooth G-morphism

q reg
K : Ã

bl
K →Mbl

which completes the local model diagram. Property (c) follows from Theorem 5.1 and properties (a) and
(b) which imply that Abl

K and Mbl are locally isomorphic for the étale topology. □

Corollary 6.2. Abl
K is the blow-up of Aspl

K along the locus of its special fiber where the deRham filtration
F1 = Fil0(A) is annihilated by the action of the uniformizer π .

Proof. It follows from the proof of the above theorem. □

Remarks 6.3. (1) From the above discussion, we can obtain a semistable integral model for the Shimura
variety ShK ′(G, X) where K ′ = K p K ◦. In this case, the corresponding local models Mloc of
ShK ′(G, X) agree with the Pappas–Zhu local models MK ◦(G, µr,s) for the local model triples
(G, {µr,s}, K ◦); see [Pappas and Zhu 2013, Theorem 1.2] and [Pappas and Zhu 2013, Section 8] for
more details.

(2) Similar results can be obtained for corresponding Rapoport–Zink formal schemes; see [He et al.
2020, Section 4] for an example of this parallel treatment.
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