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We realize two families of combinatorial symmetric functions via the complex character theory of the finite
general linear group GLn(Fq): chromatic quasisymmetric functions and vertical strip LLT polynomials.
The associated GLn(Fq) characters are elementary in nature and can be obtained by induction from certain
well-behaved characters of the unipotent upper triangular groups UTn(Fq). The proof of these results also
gives a general Hopf algebraic approach to computing the induction map. Additional results include a
connection between the relevant GLn(Fq) characters and Hessenberg varieties and a reinterpretation of
known theorems and conjectures about the relevant symmetric functions in terms of GLn(Fq).

1. Introduction

The chromatic symmetric function sits at a nexus of disparate areas of mathematics. At face value,
this symmetric function encodes the coloring problem of a graph as an analogue of the chromatic
polynomial [40]. However, through a well-known equivalence between the ring of symmetric functions
and the representation theory of the symmetric groups (see, e.g., [35]), some chromatic symmetric
functions are also complex characters of the symmetric group [21]. By way of a t-analogue known as the
chromatic quasisymmetric function, Brosnan and Chow [10] and Guay-Paquet [25] independently proved
that the characters corresponding to indifference graphs are afforded by symmetric group representations
on the cohomology rings of regular semisimple Hessenberg varieties, as predicted by a conjecture of
Shareshian and Wachs [39]. Thus, certain questions about graphs, representation theory, and algebraic
geometry coincide in the combinatorics of these symmetric functions, and vice versa.

At about the same time, a sequence of superficially unrelated developments occurred in the character
theory of the group of unipotent upper triangular matrices UTn over a finite field Fq . Unlike the symmetric
group, the conjugacy classes and irreducible characters of UTn are exceptionally complicated and
cannot be described with modern combinatorial tools [26]. However, beginning with the work of
André [8], a theory of well-behaved reducible characters — known a supercharacters — has developed,
leading to a combinatorial representation theory of UTn without irreducible characters, as in [3; 4]. A
recent example given by Aliniaeifard and Thiem [7] constructs supercharacters which are imbued with
Catalan combinatorics coming from a family of normal subgroups of UTn . These same subgroups and
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supercharacters will appear in this paper, where they will be indexed by indifference graphs using a
canonical bijection between Catalan-enumerated objects.

This paper uses the representation theory of the general linear group GLn over Fq to establish a
connection between the supercharacter theory of UTn and the chromatic (quasi)symmetric function. Both
UTn and its subgroups are contained in GLn . The main result, Theorem 3.1, shows that up to a factor of
(q − 1)n , inducing the trivial character from each of these subgroups gives a map{

indifference graph
indexed subgroups

}
IndGLn

(−) (1)
−−−−−→

{
chromatic quasisymmetric functions for
indifference graphs evaluated at t = q

}
,

using an implicit identification between characters of GLn with unipotent support and symmetric functions
coming from the Hall algebra; more details can be found in Section 3. This result is a GLn(Fq)-analogue
of the Brosnan–Chow–Guay-Paquet theorem, in which cohomology rings are replaced by a permutation
representation on the cosets of certain unipotent subgroups.

The remaining sections of the paper explore the implications of the main result for the theory of
chromatic quasisymmetric functions. Many of these consequences are reminiscent of consequences of
the Brosnan–Chow–Guay-Paquet theorem. Along with Theorem 3.1 itself, these similarities come as a
surprise, especially since the association between characters of GLn and symmetric functions used above
is markedly different from the classical association for the symmetric groups. Intuition notwithstanding,
each result appears to be straightforward, or even inevitable once the right perspective is achieved.

Section 4 relates Theorem 3.1 to the study of Hessenberg varieties, but not the ones appearing in the
Brosnan–Chow–Guay-Paquet theorem. Instead, the values of the GLn characters in Theorem 3.1 count
the points of a nilpotent Hessenberg variety over Fq associated to an ad-nilpotent ideal. The analogous
complex Hessenberg varieties have been studied by Precup and Sommers [38], who found an independent
connection to the chromatic quasisymmetric function via Poincaré polynomials. Corollary 4.5 links these
results by showing that the Poincaré polynomials for certain complex Hessenberg varieties also count the
points of the corresponding Hessenberg variety over Fq .

The chromatic quasisymmetric functions of indifference graphs are also closely related to another
family of symmetric functions known as unicellular LLT polynomials [11] (see also [28]), and Section 5
reframes this relationship as a GLn representation theoretic one. There is a second, more standard
realization of symmetric functions as unipotent characters of GLn , and up to a twist by the involution ω,
Theorem 5.1 gives a map{

indifference graph
indexed subgroups

}
projunipotent ◦ IndGLn

(−) (1)
−−−−−−−−−−−−→

{
unicellular LLT polynomials

evaluated at t = q

}
,

where projunipotent is the operation which replaces a character of GLn with the sum of its irreducible
unipotent constituents. In fact, by applying the composite map to additional characters of UTn — including
supercharacters — Theorem 5.1 finds the larger family of vertical strip LLT polynomials as unipotent
characters of GLn . These symmetric functions are known to appear in the representation theory of
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quantum groups [34], affine Hecke algebras [23], and the symmetric groups [25; 28], but this is their first
appearance in the representation theory of GLn .

Finally, both chromatic quasisymmetric functions and LLT polynomials are the subject of “positivity
conjectures” which are at least partially open. Such a conjecture postulates that when a particular
symmetric function is expressed in a chosen basis, the coefficient of each basis element will be a
polynomial in t with nonnegative coefficients. For chromatic quasisymmetric functions, the modified
Stanley–Stembridge conjecture [39, Conjecture 1.3] (see also [42]) concerns the elementary basis, and
is almost entirely open. For LLT polynomials, positivity in the Schur basis has been established by
Grojnowski and Haiman [23], but no “positive” combinatorial formula is known in general [27]. Section 6
describes the meaning of these conjectures — and one more, recently resolved by D’Adderio [13] and
Alexandersson and Sulzgruber [6] — in GLn representation theory. This does not lead to immediate
progress on any conjecture, but it may be a useful guide for future work.

The method of proof for Theorems 3.1 and 5.1 may also be of independent interest. At a high level,
I am able to translate Guay-Paquet’s proof in [25] into the (super)character theory of UTn and GLn in
such a way that both results follow immediately. However, this translation also gives a more general
Hopf algebraic conduit from the combinatorial representation theory of UTn to that of GLn . Since
matters of UTn character theory are usually very difficult, the tractability of this approach alone is a
significant development. These results begin to answer lingering questions from [3] about the Hopf
algebraic enumerative invariants of certain supercharacters of UTn .

A short summary of the aforementioned framework and the machinery of [25] is given in this paragraph.
In [2], Aguiar, Bergeron, and Sottile constructively classify all Hopf algebra homomorphisms from an
arbitrary Hopf algebra to the Hopf algebra of symmetric functions Sym using linear functionals of the
domain. This generalizes Zelevinsky’s theory of PSH algebras, which completely describes the character
theory of GLn by constructing a collection of homomorphisms from a Hopf algebra cf(GL•) of GLn-class
functions to Sym. In [19], I construct an analogous Hopf algebra cf(UT•) on the class functions of
UTn , and show that induction IndGLn

UTn
induces a Hopf algebra homomorphism to cf(GL•). By composing

induction with any of Zelevinsky’s maps to Sym, the classification of [2] can be used to describe the
induction map itself, and Theorems 3.8 and 5.11 do so. The classification of [2] was also used in [25] to
construct the chromatic quasisymmetric function using a Hopf algebra structure on Hessenberg varieties,
and I show that this coincides with induction of Catalan supercharacters and related objects.

This Hopf algebraic approach builds on the previously understood relationship between the combina-
torics of unipotent subgroups and of finite groups of Lie type, including GLn [9; 22; 32; 45]. Future work
should continue to push this connection: it may be possible to transplant some of the framework in this
paper and [19] into other Lie types. In doing so, one might find the generalized LLT polynomials defined
in [23], yet-to-be-discovered variants of the chromatic quasisymmetric function, and more nilpotent
Hessenberg varieties.

The remainder of the paper is organized as follows. Section 2 describes the general background material
for the paper. Section 3 concerns Theorem 3.1 and the chromatic quasisymmetric function, and Section 4
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relates these results to Hessenberg varieties. Section 5 concerns Theorem 5.1 and the vertical strip LLT
polynomial, and is essentially independent of Sections 3 and 4. Finally, Section 6 connects my results to
various positivity conjectures.

2. Preliminaries

This section gives the shared preliminary material for Sections 3 and 5. This includes definitions of each
of the relevant Hopf algebras, background material from representation theory and combinatorics, and a
short review of the theory of combinatorial Hopf algebras.

2A. Hopf algebras and (quasi)symmetric functions. This section will describe the Hopf algebras of
quasisymmetric and symmetric functions, and their role as universal objects in the theory of combinatorial
Hopf algebras. Throughout this paper, the term “Hopf algebra” will refer to a graded connected Hopf
algebra over the field of complex numbers C, and all homomorphisms and sub-Hopf algebras are graded.

A composition of n ∈ Z≥0 is a finite (possibly empty) sequence of positive integers α = (α1, . . . , αk)

with α1+ · · ·+αk = n. Call each αi a part of α, and write ℓ(α)= k for the number of parts of α. The
monomial quasisymmetric function associated to the composition α is

Mα =

∑
i1<···<iℓ(α)

xα1
i1

xα2
i2
· · · xαℓ(α)iℓ(α) ∈ C[[x]].

where x = {x1, x2, . . .} is an infinite, totally ordered set of commuting indeterminates. The Hopf algebra
of quasisymmetric functions is the graded commutative, noncocommutative Hopf algebra

QSym= C -span{Mα | α is a composition}.

The product of QSym is inherited from C[[x]] and the coproduct is given by deconcatenation:

1(Mα)=
∑

ℓ(α)≥k≥0

M(α1,...,αk)⊗M(αk ,...,αℓ(α)).

A partition of n is a composition of n is with nonincreasing parts. Let

P =
⊔
n≥0

P(n) with P(n)= {partitions of n}.

The Hopf algebra of symmetric functions is the cocommutative sub-Hopf algebra

Sym= C -span{mλ | λ ∈ P} ⊆QSym with mλ =

∑
sort(α)=λ

Mα,

where sort(α) denotes the partition obtained by listing the parts of α in nonincreasing order.
Three additional bases of Sym will be used in later sections. The first basis consists of the elementary

symmetric functions {eλ | λ ∈ P} defined by

eλ = eλ1 · · · eλℓ where ek = m(1k).
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The second basis comprises the Schur functions {sλ | λ ∈ P}, which I will not define; see [35, I.3]. The
final basis consists of the Hall–Littlewood elements Pλ(x; t) [35, III.2], which are discussed further in
Section 3A.

The antipode of Sym acts as (−1)nω on the n-th graded component, where ω is the involutive
automorphism of Sym defined in [35, I.4], given by ω(sλ)= sλ′ , where λ′ denotes the transpose partition
of λ: (λ′)i = #

{
j ∈ [ℓ(λ)] | λ j ≥ i

}
for 1≤ i ≤ λ1.

2A1. Combinatorial Hopf algebras. This section will give an abridged description of the framework for
classifying Hopf algebra homomorphisms to QSym established in [2]. The original result also includes an
explicit formula for any such map, which is omitted from this paper as the relevant maps are already known.

A combinatorial Hopf algebra (CHA) is a pair (H, ζ ) where H is a Hopf algebra and ζ : H → C is
an algebra homomorphism, which will be called a zeta function in order to avoid confusion with group
characters. An important example of a CHA is QSym with the first principal specialization,

(QSym, ps1) with ps1 :QSym→ C, Mα 7→

{
1 if ℓ(α)≤ 1,
0 otherwise.

Remark 2.1. The name “first principal specialization” comes from the fact that ps1 is equivalent to
specializing x1 = 1 and xi = 0 for i > 1 in any quasisymmetric function.

A CHA morphism between combinatorial Hopf algebras (H, ζ ) and (H ′, ζ ′) is a graded Hopf algebra
homomorphism 9 : H → H ′ for which ζ = ζ ′ ◦9. For example, the inclusion of Sym into QSym gives
a CHA morphism (Sym, ps1)→ (QSym, ps1).

Theorem 2.2 [2, Theorem 4.1]. Let (H, ζ ) be a combinatorial Hopf algebra. There is a unique CHA
morphism

cano : (H, ζ )→ (QSym, ps1).

A consequence of Theorem 2.2 is that for every Hopf algebra H , there is a bijection

{homomorphisms H →QSym} ←→ {combinatorial Hopf algebras (H, ζ )},

9 7→ (H, ps1 ◦9), cano←[ (H, ζ ),

where cano refers to the Hopf algebra homomorphisms underlying the CHA morphism in Theorem 2.2.
This paper will frequently appeal to this bijective interpretation.

2B. Dyck paths and related objects. The results of this paper build on the combinatorics of Dyck paths,
indifference graphs, and Schröder paths, each of which are described in this section.

A Dyck path of size n ≥ 0 is a lattice path consisting of 2n steps east E = (1, 0) and south S = (0,−1)
from (0, 0) to (n,−n) which does not go below the main diagonal y =−x . Let

D =
⊔
n≥0

Dn with Dn = {Dyck paths of size n}.
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For example,

= (EESESS) ∈ D3. (2.3)

It is well known that the size of Dn is the n-th Catalan number, 1
n+1

(2n
n

)
; see, for instance, [41].

An indifference graph of size n ≥ 0 is a simple, undirected graph γ with vertex set [n] = {1, . . . , n}
and edge set E(γ ) satisfying

for each {i < l} ∈ E(γ ), {{ j, k} | i ≤ j < k ≤ l} ⊆ E(γ ).

The empty graph on ∅ is the unique indifference graph of size zero. Let

IG =
⊔
n≥0

IGn with IGn = {indifference graphs on [n]}.

For example,

γ =
1 2 3 4

∈ IG4 but σ =
1 2 3 4

/∈ IG4,

as {1, 4} ∈ E(σ ) but {3, 4} /∈ E(σ ).
There is a size-preserving bijection between Dyck paths and indifference graphs. Label the unit squares

above y =−x in the fourth quadrant of Z×Z by edges so that the square with lower right corner ( j,−i)
is labeled by {i, j}; for example,

{1,2} {1,3}

{2,3}

shows the first three of these unit squares with their labels. For any Dyck path π , let

Area(π)= {{i, j} | the unit square {i, j} is below π}

and if π has size n, define the graph of π to be

Graph(π)= ([n],Area(π)).

For example, taking the Dyck path in (2.3),

Area


= {{1, 2}, {2, 3}} and Graph


= 1 2 3

. (2.4)

Proposition 2.5 [41, Solution 187]. For n ≥ 0, the map π 7→ Graph(π) is a bijection from Dn to IGn .

Remark 2.6. Both Dn and IGn also correspond to the family of integer partitions bounded termwise by
(n− 1, . . . , 2, 1) [41, Item 167]. Reflecting a Dyck path π across y =−x gives the Ferrer’s shape (in
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French notation) of such a partition, and the edges of Graph(π) are the excluded squares. For example,
the objects in (2.4) correspond to λ= (1).

A common generalization of Dyck paths will appear in Sections 5 and 6. A Schröder path of size
n ≥ 0 is a lattice path from (0, 0) to (n,−n) consisting of steps E , S, and D = (1,−1) that never goes
below the main diagonal. Thus, every Dyck path is a Schröder path, but there are more Schröder paths,
for example

= (EEDSS). (2.7)

Say that a Schröder path σ is tall if σ has no D steps along the main diagonal. Let

T S =
⊔
n≥0

T Sn with T Sn = {tall Schröder paths of size n}.

The Schröder path in (2.7) above is tall, as is any Dyck path, taken as a Schröder path. The number of
tall Schröder paths by size is given by the small Schröder numbers, [37, A001003].

Finally, for any tall Schröder path σ ∈ T S, define

Area(σ )= {{i, j} | the unit square {i, j} is completely below σ }

and

Diag(σ )= {{i, j} | σ has a diagonal step through the unit square {i, j}},

so that taking σ as in (2.7) gives Area(σ )= {{1, 2}, {2, 3}} and Diag(σ )= {{1, 3}}.

2C. Supercharacter theory. Let G be a finite group, let Irr(G) denote the irreducible complex characters
of G, and let cf(G) denote the space of complex-valued class functions on G. The set Irr(G) is an
orthonormal basis for cf(G) under the inner product ⟨ · , · ⟩ : cf(G)⊗ cf(G)→ C defined by

⟨χ,ψ⟩ =
1
|G|

∑
g∈G

χ(g)ψ(g),

where ψ(g) denotes the complex conjugate of ψ(g).
Following Diaconis and Isaacs [15], a supercharacter theory (Cl, Ch) of G comprises a set partition Cl

of G and a basis of orthogonal characters Ch for the space

scf(G)= {φ : G→ C | φ is constant on each part of Cl},

such that scf(G) contains the regular character regG . Since

regG(g)=
{
|G| if g = 1G ,
0 otherwise,

the final condition above is equivalent to {1G} ∈ Cl.
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The elements of Cl and Ch are respectively called superclasses and supercharacters. Every group has
at least one supercharacter theory, with superclasses given by conjugacy classes and supercharacters given
by irreducible characters, and in this case scf(G)= cf(G).

Each supercharacter theory of G comes with two canonical bases: the supercharacters in Ch and the
set of superclass identifier functions

{δK | K ∈ Cl} with δK (g)=
{

1 if g ∈ K ,
0 otherwise.

(2.8)

These bases are each orthogonal. For any χ ∈ scf(G), define an element χ⟩ ∈ scf(G)∗ by

χ⟩ : scf(G)→ C, ψ 7→ ⟨ψ, χ⟩, (2.9)

so that scf(G)∗ = {χ⟩ | χ ∈ scf(G)}.
The rest of the section describes a particular collection of supercharacter theories originating in the

work of Aliniaeifard and Thiem [7]. Fix a prime power q , let Fq denote the field with q elements, and let
GLn = GLn(Fq). The unipotent upper triangular group is the subgroup

UTn = {g ∈ GLn | (g− 1n)i, j ̸= 0 only if i < j}

where 1n denotes the n×n identity matrix. This group has a family of normal subgroups — called normal
pattern subgroups — indexed by indifference graphs [36, Lemma 4.1]: for γ ∈ IGn , let

UTγ = {g ∈ UTn | gi, j = 0 if {i, j} ∈ E(γ )}

where E(γ ) denotes the edge set of γ . If π ∈ Dn is the Dyck path for which γ = Graph(π), UTγ can be
visualized in terms of π : UTγ is the subset of elements of UTn with nonzero entries occurring only on
the diagonal or above the path π . For example, using the graph and Dyck path from (2.4),

UT
1 2 3

=

1
1

1
0
0 0

0 ∗
0 .

The paper [7] also shows that the set {UTγ | γ ∈ IGn} is a lattice under containment. This order is
dual to the spanning subgraph relation on IGn , in that the containment UTγ ⊆UTσ holds if and only if σ
is a spanning subgraph of γ . The top element of this lattice is UTn , corresponding to the edgeless graph
([n],∅), and |UTn : UTγ | = q |E(γ )| for all γ ∈ IGn .

The lattice structure on normal pattern subgroups partitions the set UTn into parts

UT◦γ = {g ∈ UTγ | g /∈ UTσ for any σ ⊋ γ }

for each γ ∈ IGn . Similarly, IGn indexes the parts of a partition of the set of irreducible characters
Irr(UTn) of UTn: let

ÛT◦γ = {ψ ∈ Irr(UTn) | UTγ ⊆ ker(ψ) and UTσ ̸⊆ ker(ψ) for each σ ⊋ γ }.
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for each γ ∈ IGn , and further define
χγ =

∑
ψ∈ÛT◦γ

ψ(1)ψ.

Proposition 2.10 [7, Section 3.2]. With

Ch= {UT◦γ | γ ∈ IGn} and Cl= {χγ | γ ∈ IGn},

the pair (Cl, Ch) is a supercharacter theory of UTn .

For the remainder of the paper, write δγ = δUT◦γ for the superclass identifier functions in this superchar-
acter theory. In addition to these functions and the supercharacters, the space scf(UTn) has two interesting
bases: {δ̄γ | γ ∈ IGn} and {χγ | γ ∈ IGn}, with

δ̄γ =
∑
σ⊇γ

δσ and χγ =
∑
σ⊆γ

χσ .

Remarkably, if 1 ∈ cf(UTγ ) denotes the character of the trivial representation then

χγ = IndUTn
UTγ (1)= q |E(γ )|δ̄γ , (2.11)

the character of the UTn-module C[UTn/UTγ ].

2D. Homomorphisms between Hopf algebras of class functions. In [45, III], Zelevinsky defines a
graded connected Hopf algebra on the space

cf(GL•)=
⊕
n≥0

cf(GLn),

with structure maps coming from the parabolic induction and restriction functors. The paper [19] defines
a similar Hopf structure on the spaces

scf(UT•)=
⊕
n≥0

scf(UTn) and cf(UT•)=
⊕
n≥0

cf(UTn),

in which scf(UTn) is the subspace of class functions defined in Section 2C, with scf(UT•) a sub-Hopf
algebra of cf(UT•). This section will describe several homomorphisms involving these Hopf algebras.

In [25, Section 6], Guay-Paquet defines a C[t]-Hopf algebra on the free C[t]-module C[t][IG], and
specializing t 7→ q−1 gives a Hopf algebra over C; see [19, Section 7]. Recall the basis {δ̄γ | γ ∈ IG} of
scf(UT•) defined in Section 2C.

Theorem 2.12 [19, Corollary 7.2]. The map γ 7→ δ̄γ is an isomorphism from Guay-Paquet’s specialized
Hopf algebra to scf(UT•).

A second map comes from the induction functors IndGLn
UTn
: cf(UTn)→ cf(GLn): let

IndGL
UT =

⊕
n≥0

IndGLn
UTn
: cf(UT•)→ cf(GL•). (2.13)
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Theorem 2.14 [19, Theorem 6.1]. The map IndGL
UT is a Hopf algebra homomorphism.

The homomorphism IndGL
UT also induces a linear map on dual spaces. Using the identification in (2.8),

the dual of the direct sum cf(GL•) becomes a product

cf(GL•)∗ =
∏
n≥0

cf(GLn)
∗
=

{
(χn⟩)n≥0 | χn ∈ cf(GLn)

}
.

Making the analogous identification for cf(UT•)∗ and scf(UT•)∗, Frobenius reciprocity gives that

(χn⟩)n≥0 ◦ IndGL
UT =

(
ResGLn

UTn
(χn)⟩

)
n≥0.

If ResGLn
UTn
(χn) ∈ scf(UT•) for each n ≥ 0, the same equation applies when considering each side as an

element of scf(UT•)∗.

3. The chromatic quasisymmetric function as a GLn character

This section will state and prove Theorem 3.1, following some initial context. Recall the Hopf algebras
scf(UT•) and cf(UT•) from Section 2D. The Hopf algebra of GL-class functions with unipotent support
is the image

cfuni
supp(GL•)= IndGL

UT(cf(UT•))⊆ cf(GL•).

Zelevinsky [45] has defined a Hopf algebra isomorphism p{1} : cfuni
supp(GL•)→ Sym which will be used in

the theorem; see Section 3A. Finally, for each indifference graph γ , recall the subgroup UTγ defined in
Section 2C, and let Xγ (x; t) denote the chromatic quasisymmetric function of γ in an indeterminate ‘t’,
which will be formally defined in Section 3B.

Theorem 3.1. For n ≥ 0 and γ ∈ IGn ,

IndGLn
UTγ (1)= (q − 1)n p−1

{1}(Xγ (x; q)).

I will describe briefly how the results in this section prove Theorem 3.1. Define a Hopf algebra
homomorphism c{1} : scf(UT•)→QSym as the composite map in the diagram

scf(UT•)

cfuni
supp(GL•) Sym QSym

IndGL
UT

c{1}

p{1}

∼=

inclusion

(3.2)

of Hopf algebra homomorphisms. By the transitivity of induction, the theorem is equivalent to computing
the image of the character χγ = IndUTn

UTγ (1) ∈ scf(UT•) under c{1}.
Recalling the theory of combinatorial Hopf algebras from Section 2A1, there is a unique combinatorial

Hopf algebra structure on scf(UT•) for which c{1} is a CHA morphism to (QSym, ps1), and this structure
is given by a zeta function of the Hopf algebra scf(UT•). Theorem 3.8 computes this zeta function, and
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Proposition 3.13 shows that it is essentially the same as one defined by Guay-Paquet [25]. This leads to a
formula for c{1} on the basis {δ̄γ | γ ∈ IG} of scf(UT•) from Section 2C, stated formally in Corollary 3.14:

c{1}(δ̄γ )= (q − 1)n Xγ (x; q−1) for γ ∈ IGn. (3.3)

From here, the theorem follows from an identity of Shareshian–Wachs [39]. Recalling from Section 2C
that χγ = q |E(γ )|δ̄γ , [39, Proposition 2.6] reformulates (3.3) as

c{1}(χγ )= (q − 1)nq |E(γ )|Xγ (x; q−1)= (q − 1)n Xγ (x; q).

The results used in the proof are given in the remainder of this section, which comprises two subsections.
Section 3A describes the zeta functions of the Hopf algebras cfuni

supp(GL•) and scf(UT•) needed to make
Diagram (3.2) a diagram of combinatorial Hopf algebras. Then, Section 3B uses results from [25] and
Section 2 to describe the chromatic quasisymmetric function as the image of a CHA morphism from
scf(UT•) and subsequently shows that up to a power of (q − 1) this map coincides with c{1}.

3A. Factoring c{1} through cfuni
supp(GL•). This section describes the Hopf algebra cfuni

supp(GL•) and its
isomorphism with Sym.

An element g ∈ GLn is called unipotent if g− 1n is nilpotent. There is a canonical indexing of the
unipotent GLn-conjugacy classes by partitions; this is stated without proof in [45, 10.1] so a bit more detail
has been included here. The Jordan canonical form of an element g ∈ GLn is defined over any field that
contains every root of the characteristic polynomial of g. Assuming that g is unipotent, the characteristic
polynomial is (t − 1)n , so the Jordan canonical form of g is defined over Fq . The Jordan matrices
corresponding to (t − 1)n are naturally indexed by partitions of n: λ= (λ1, λ2, . . . , λℓ) corresponds to

Jλ =


Jλ1 0 · · · 0
0 Jλ2 · · · 0
...

...
. . .

...

0 0 · · · Jλℓ

 with Jk =


1 1 0 · · · 0
0 1 1 · · · 0
...
...
...
. . .

...

0 0 0 · · · 1

 .
Thus, if we write Oλ for the GLn conjugacy class of Jλ, the set of unipotent elements of GLn is partitioned
by the conjugacy classes {Oλ | λ ∈ Pn}.

This shows that an element of GLn is unipotent if and only if it is conjugate to an element of UTn(Fq),
so that the sub-Hopf algebra cfuni

supp(GL•) from Section 3 is exactly

cfuni
supp(GL•)=

⊕
n≥0

{ψ ∈ cf(GLn) | ψ(h)= 0 for h ∈ GLn not unipotent},

the space of GL-class functions with support only on unipotent elements. This fact is the source of the
notational choice “cfuni

supp”.
The preceding paragraphs demonstrate that cfuni

supp(GL•) has a P-indexed basis of identifier functions
δλ = δOλ

for unipotent conjugacy classes,

cfuni
supp(GL•)= C -span{δλ | λ ∈ P}.
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Zelevinsky [45, 10.13] (see also [35, IV.4.1]) constructs a graded Hopf algebra isomorphism

p{1} : cfuni
supp(GL•)→ Sym, δλ 7→ P̃λ(x; q)= q−n(λ)Pλ(x; q−1), (3.4)

where n(λ)=
∑λ1

i=1

(λ′i
2

)
, Pλ(x; t) is an element of the Hall–Littlewood ‘P’ basis of Sym[t] defined in

[35, III.2], and we have specialized t = q−1.
In the framework of Theorem 2.2, the isomorphism p{1} is equivalent to a zeta function of cfuni

supp(GL•).
This datum was also determined by Zelevinsky in [45]. The regular unipotent elements of GLn are the
members of the conjugacy class O(n). Using the notation of Section 2D, define a linear functional

δ∗(•)⟩ = (δ
∗

(n)⟩)n≥0 ∈ cf(GL•)∗ with δ∗(n)⟩ =
δ(n)⟩

⟨δ(n), δ(n)⟩
,

so that for ψ ∈ cf(GLn), the value of δ∗(•)⟩(ψ) is the value of ψ at any regular unipotent element, ψ(J(n)).
By embedding cfuni

supp(GL•) into cf(GL•), δ∗(•)⟩ is also a linear functional on cfuni
supp(GL•).

Proposition 3.5 [45, 10.8]. The map δ∗(•)⟩ is a zeta function of the Hopf algebra cfuni
supp(GL•) and p{1} is

the unique CHA morphism (cfuni
supp(GL•), δ∗(•)⟩)→ (QSym, ps1).

Remark 3.6. In [45], this result is stated in terms of symmetric functions, since the language of CHAs
was not yet available. However, the underlying theory naturally extends to this context, essentially because
the inclusion (Sym, ps1) ↪→ (QSym, ps1) is a CHA morphism.

Now consider the Hopf algebra scf(UT•). Recall that ([n],∅) is the minimal indifference graph on n
vertices and define a linear functional

(q − 1)•δ∗([•],∅)⟩ = ((q − 1)nδ∗([n],∅)⟩)n≥0 ∈ scf(UT•)∗ with δ∗([n],∅)⟩ =
δ([n],∅)⟩

⟨δ([n],∅), δ([n],∅)⟩
.

Remark 3.7. There is an unfortunate coincidence of notation between the class functions δ∗(n) and δ∗([n],∅),
and care should be taken to distinguish between the two: up to normalization δ∗(n) is the GLn-class function
which identifies the conjugacy class O(n) of regular unipotent elements, and δ∗([n],∅) is the UTn-class
function which identifies the superclass

UT◦([n],∅) = {X ∈ UTn | X i,i+1 ̸= 0 for 1≤ i < n}.

However, the two are closely related, as described in the proof of Theorem 3.8 below.

Theorem 3.8. The linear functional (q − 1)•δ∗([•],∅)⟩ is a zeta function of scf(UT•) and

(q − 1)•δ∗([•],∅)⟩ = δ
∗

(•)⟩ ◦ IndGL
UT,

so IndGL
UT is a CHA morphism

(scf(UT•), (q − 1)•δ∗([•],∅)⟩)
IndGL

UT
−−−→ (cf(GL•), δ∗(•)⟩).



A unipotent realization of the chromatic quasisymmetric function 1749

Proof. The first and third assertions follow from the second. The proof of the second assertion will make
use of the fact that the superclass UT◦([n],∅) is also the set of all regular unipotent elements in UTn , so
that δ([n],∅) = ResGLn

UTn
(δ(n)).

For γ ∈ IGn , Frobenius reciprocity (as described in Section 2D) gives

δ∗(•)⟩ ◦ IndGL
UT(δ̄γ )=

ResGLn
UTn
(δ(n))⟩(δ̄γ )

⟨δ(n), δ(n)⟩
=
⟨δ̄γ , δ([n],∅)⟩

⟨δ(n), δ(n)⟩
=


⟨δ([n],∅), δ([n],∅)⟩

⟨δ(n), δ(n)⟩
if γ = ([n],∅),

0 otherwise,

with the last equation following from the definition of δ̄γ , the minimality of ([n],∅), and the orthogonality
of the superclass identifiers; see Section 2C. Direct computation then gives that

⟨δ([n],∅), δ([n],∅)⟩

⟨δ(n), δ(n)⟩
=
|GLn|

|O(n)|

|UT◦([n],∅)|

|UTn|
= (q − 1)n,

where the final equality comes from the order formulas

O(n) =
|GLn|

qn−1(q − 1)
and UT◦([n],∅) = (q − 1)n−1 |UTn|

qn−1 . □

Now recall the map c{1} defined in Diagram (3.2). Theorem 3.8 and Proposition 3.5 give the following.

Corollary 3.9. The map c{1} is the unique CHA morphism

c{1} : (scf(UT•), (q − 1)•δ∗([•],∅)⟩)→ (QSym, ps1).

Remark 3.10. Theorem 3.8 actually establishes the stronger result that (q−1)•δ∗([•],∅)⟩ is a zeta function
of cf(UT•), and that we may extend the domain of the CHA morphisms IndGL

UT and c{1} to the combinatorial
Hopf algebra

(
cf(UT•), (q − 1)•δ∗([•],∅)⟩

)
. While this level of generality is unnecessary for the scope of

this work, it may be of general interest.

3B. The chromatic quasisymmetric function. This section defines the chromatic quasisymmetric function
of a graph and describes how it can be realized as the image of a character of GLn(Fq) under a particular
a CHA morphism, leading to a proof of Theorem 3.1.

Let γ be a simple, undirected graph with vertex set [n] and edge set E(γ ). A coloring of γ is a function
κ : [n] → Z>0. A coloring κ of γ is proper if κ(i) ̸= κ( j) for all {i, j} ∈ E(γ ). The γ -ascent number of
a coloring κ is

ascγ (κ)=
∣∣{{i, j} ∈ E(γ ) | i < j and κ(i) < κ( j)}

∣∣. (3.11)

For example, if κ : [5] → Z>0 is given by κ(1)= 2, κ(2)= 5, κ(3)= 1, and κ(4)= 5, then

asc
1 2 3 4

(κ)=
∣∣{{1, 2}, {3, 4}}

∣∣= 2.

In this example, κ is a proper coloring of the given graph.
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The chromatic quasisymmetric function of γ is

Xγ (x; t)=
∑

κ:[n]→Z>0
proper

tascγ (κ)xκ(1)xκ(2) · · · xκ(n) ∈QSym[t],

so that Xγ (x; t) is a polynomial in an indeterminate t whose coefficients — by properties of the ascent
statistic — are quasisymmetric functions. For an indifference graph γ ∈ IGn , it is known that these
coefficients are elements of Sym [39, Theorem 4.5]. For example,

X
1 2 3

(x; t)= tm(2,1)+ (t2
+ 4t + 1)m(13).

However, this property is not used, and a novel proof of it follows from Corollary 3.14 below; see
Remarks 3.15 (R1).

Evaluating the indeterminate t in Xγ (x; t) at a complex number gives an actual (quasi)symmetric
function. For example, Xγ (x; 1) is the ordinary chromatic symmetric function of the graph γ , as defined
by Stanley in [40]. In Theorem 3.1 the chromatic quasisymmetric functions are evaluated at q , the order
of the finite field Fq .

In [25], Guay-Paquet constructs the chromatic quasisymmetric by way of a homomorphism of C[t]-
Hopf algebras. By evaluating at t = q−1 as in Theorem 2.12, this result descends to a Hopf algebra
homomorphism scf(UT•)→QSym. Define a linear functional

ζ0 : scf(UT•)→ C, δ̄γ 7→

{
1 if γ = ([n],∅),
0 otherwise.

The following theorem is translated from its original context in [25] to that of the Hopf algebra scf(UT•)
using the Hopf algebra isomorphism in Theorem 2.12.

Theorem 3.12 [25, Theorem 57]. The map ζ0 is a zeta function of scf(UT•), and the unique CHA
morphism

(scf(UT•), ζ0)→ (QSym, ps1)

is given by
δ̄γ 7→ Xγ (x; q−1).

Along with Theorem 2.2, this result is the key to compute the image of the map c{1} defined at the outset
of Section 3. Recall the zeta function (q−1)•δ∗([•],∅)⟩ of the Hopf algebra scf(UT•) defined in Section 3A.

Proposition 3.13. Let γ be an indifference graph of size n ≥ 0. Then

(q − 1)•δ∗([•],∅)⟩(δ̄γ )=
{

(q − 1)n if γ = ([n],∅),
0 otherwise.

Proof. By definition, δ̄γ =
∑

σ⊇γ δσ . Explicit computation then gives

⟨(q − 1)nδ([n],∅), δ̄γ ⟩
⟨δ([n],∅), δ([n],∅)⟩

= (q − 1)n
∑

σ⊇γ ⟨δ([n],∅), δσ ⟩

⟨δ([n],∅), δ([n],∅)⟩
.
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Using the orthogonality of the basis {δγ | γ ∈ IGn} and the minimality of ([n],∅) under the spanning
subgraph order on IGn , the above expression reduces to the desired formula. □

Thus, on homogeneous elements of degree n, the zeta functions (q − 1)•δ∗([•],∅)⟩ and ζ0 only differ by
a factor of (q − 1)n . This leads to the following result, which is a restatement of (3.3) and accordingly
the last step in the proof of Theorem 3.1.

Corollary 3.14. Let γ be an indifference graph of size n ≥ 0. Then

c{1}(δ̄ζ )= (q − 1)n Xγ (x; q−1).

Proof. By comparison with the Hopf algebra homomorphism in Theorem 3.12, it is clear that the given
map is a graded Hopf algebra homomorphism, and further, that

ps1((q − 1)n Xγ (x; q−1))= (q − 1)nζ0(δ̄γ )= (q − 1)•δ∗([•],∅)⟩(δ̄γ ).

Thus, the given map is a CHA morphism

(scf(UT•), (q − 1)•δ∗([•],∅)⟩)→ (QSym, ps1).

By Theorem 2.2, the above map must be equal to c{1}. □

Remarks 3.15. (R1) As the image of c{1} is Sym⊆QSym, Corollary 3.14 gives a novel proof that the
coefficients of Xγ (x; t) are symmetric functions.

(R2) Proposition 3.13 also shows that ζ0 = (δ
∗

([n],∅)⟩)n≥0; however this fact seems not to have any
representation theoretic significance beyond its relation to the proof above.

4. Connections to Hessenberg varieties

This section will describe the relationship between the characters IndGLn
UTγ (1) in Theorem 3.1, certain

Hessenberg varieties over Fq , and the analogous Hessenberg varieties over C. These results follow a short
overview of Hessenberg varieties. Throughout, the algebraic groups defined over Fq in Section 2C and
their analogues over C are used, so the underling field will be explicitly written for each such group to
avoid confusion.

Take a field K ∈ {Fq ,C}, and for n ≥ 0 let Bn(K) denote the subgroup of upper triangular matrices in
GLn(K). For each subspace M ⊆Matn(K) which is stable under conjugation by elements of Bn(K) and
each matrix A ∈Matn(K), the Hessenberg variety associated to A and M is

BM
A = {gBn(K) ∈ GLn(K)/Bn(K) | g−1 Ag ∈ M}.

This is a slight variation — apparently due to [44] — of the original definition in [14], which requires
that M contain all upper triangular matrices. The generalization is crucial, since the following results
exclusively concern Hessenberg varieties associated to strictly upper triangular subspaces known as
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ad-nilpotent ideals. For γ ∈ IGn , let

utγ (K)= {A ∈Matn(K) | Ai, j ̸= 0 only if i < j and (i, j) /∈ γ }

= UTγ (K)− 1.

These sets are in fact ideals in the algebra (and Lie algebra) of upper triangular matrices. Key examples
of the Hessenberg varieties of the form Butγ (K)

A have been known for some time, but a specific study of
these varieties is quite recent; see [31; 38].

Proposition 4.1. Let n ≥ 0 and γ ∈ IGn . For any A ∈Matn(Fq) with 1+ A ∈ GLn(Fq),

IndGLn(Fq )

UTγ (Fq )
(1)(1+ A)= (q − 1)nq |E(γ )||Butγ (Fq )

A |.

Proof. The proof will compute the left side of the equation directly. Equation (2.11) and the standard
formula for induced character values give

IndGLn(Fq )

UTγ (Fq )
(1)(1+ A)=

∣∣{hUTγ (Fq) ∈ GLn(Fq)/UTγ (Fq) | h−1(1+ A)h ∈ UTγ (Fq)}
∣∣.

Each left Bn(Fq) coset in GLn(Fq) comprises q |E(γ )|(q−1)n left UTγ (Fq) cosets, and for each hUTγ (Fq)⊆

gBn(Fq), it is the case that h−1(1+ A)h ∈ UTγ (Fq) if and only if g−1(1+ A)g ∈ UTγ (Fq), because
UTγ (Fq) is normalized by Bn(Fq). Finally, g−1(1+ A)g ∈ UTγ (Fq) if and only if g−1 Ag ∈ utγ (Fq), in
which case gBn(Fq) belongs to Butγ (Fq )

A . □

This result reveals a relationship between the chromatic quasisymmetric function and Hessenberg
varieties for ad-nilpotent ideals over Fq . To state this relationship precisely, recall the degree-shifted
Hall–Littlewood elements P̃λ(x; t) from Section 3A, and define Laurent polynomials dγλ (t) by

Xγ (x; t)=
∑
λ∈Pn

dγλ (t)P̃λ(x; t). (4.2)

Each P̃λ(x; t) is a polynomial in t−1 rather than t , so there is some subtlety to this definition: one
must first express t−|E(γ )|Xγ (x; t) in the basis Pλ(x; t−1) of Sym[t−1

] and then multiply each term by
appropriate powers of t to obtain (4.2).

Evaluating both sides of (4.2) at t = q and applying the map p−1
{1} defined in Section 3A gives

1
(q − 1)n

IndGLn(Fq )

UTγ (Fq )
(1)=

∑
λ∈Pn

dγλ (q)δλ,

where Theorem 3.1 is used to evaluate the left side. Each side of the above equation is a class function,
so for any partition λ ∈ Pn we can evaluate both sides at an element 1+ A ∈ Oλ for some fixed partition
λ ∈ Pn , Proposition 4.1 gives

q |E(γ )||Butγ (Fq )

A | = dγλ (q). (4.3)
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The coefficients dγλ (t) also appear in the complex geometry of Hessenberg varieties for ad-nilpotent sub-
spaces in a manner discovered by Precup and Sommers in [38]. For the following theorem, note that the dis-
cussion of Jordan canonical form in Section 3A shows that the similarity classes of nilpotent matrices over
any field are indexed by partitions of n: the class indexed by λ∈Pn consists of all matrices similar to Jλ−1.

Theorem 4.4 [38, Equation (4.7)]. For n ≥ 0, take γ ∈ IGn and λ ∈ Pn . Then∑
k≥0

βλk tk/2
= t−|E(γ )|dγλ (t),

where βλk denotes the k-th Betti number of Butγ (C)
A for any nilpotent matrix A ∈Matn(C) in the similarity

class indexed by λ.

Thus, [38] shows that the dγλ (t) are in fact polynomials. Combining this result with (4.3) leads to the
following corollary.

Corollary 4.5. For n≥ 0, take γ ∈ IGn and λ∈Pn . Let A∈Matn(Fq) be a nilpotent elements in similarity
class indexed by λ. Then ∑

k≥0

βλk qk/2
= |Butγ (Fq )

A |,

where the numbers βλk are as in Theorem 4.4.

Remarks 4.6. (R1) Aside from this paper, I am aware of two works about Hessenberg varieties over Fq .
The preprint [17] concerns the Hessenberg variety associated to a split regular element of GLn(Fq) and a
subspace containing all upper triangular matrices; under some nontrivial assumptions on q a result similar
to Corollary 4.5 is established. This generalizes Fulman’s use of Weil conjecture machinery on a subset
of smooth Hessenberg varieties in order prove some identities on q-Eulerian numbers [18].

(R2) In [31], Ji and Precup give a combinatorial formula for the polynomials dγλ (t) by constructing
an affine paving of Butγ (C)

A . Precup has also suggested that a second proof of Corollary 4.5 could be
obtained from a careful study of this paving, which would independently reprove Theorem 3.1 (private
communication, 2022).

5. The vertical strip LLT polynomial as a GLn character

This section gives a second result of the same type as Theorem 3.1, in that it interprets a family of
t-graded symmetric functions as the images of certain GLn characters obtained by induction from UTn

under a particular isomorphism; see Table 1. Here, the initial UTn characters come from a larger set
{ψσ | σ ∈ T S} indexed by the set of tall Schröder paths T S from Section 2B, the map to Sym is a
homomorphism p1 : cf(GL•)→ Sym which records the unipotent constituent of a character, and the
symmetric functions are the vertical strip LLT polynomials Gσ (x; t), also indexed by the set T S. Each
object mentioned will be defined in this section.
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Theorem 3.1 Theorem 5.1

indexing set indifference graphs γ ∈ IGn
tall Schröder

paths σ ∈ T Sn

UTn-characters permutation characters χγ pseudosupercharacters ψσ

symmetric functions chromatic quasisymmetric vertical strip LLT
functions Xγ (x; t) polynomials Gσ (x; t)

map to Sym p{1} : cfuni
supp(GL•)→ Sym p1 : cf(GL•)→ Sym

meaning of records unipotently supported records the irreducible
map to Sym GLn-class functions unipotent constituents

Table 1. A comparison of the results of Theorems 3.1 and 5.1 in degree n.

Theorem 5.1. Let σ be a tall Schröder path. Then

p1 ◦ IndGL
UT(ψ

σ )= (q − 1)|Diag(σ )|ωGσ (x; q),

where Diag(σ ) is the set of diagonal steps in σ .

I will now describe the meaning of this result in greater depth and outline its proof. In the study of finite
groups of Lie type, including GLn , Deligne–Lusztig theory identifies an exemplary set of irreducible char-
acters known as unipotent characters. For GLn , the unipotent characters are relatively well understood and
will be described in Section 5B. Here, the relevant fact is that Zelevinsky [45] has shown that the subspace

cfuni
char(GL•)= C -span{irreducible unipotent characters of GLn , n ≥ 0}

is a sub-Hopf algebra of cf(GL•), and that cfuni
char(GL•) is isomorphic to Sym. Furthermore, [45]

shows that the orthogonal projection from cf(GL•) to cfuni
char(GL•) (with respect to the inner product

⟨ · , · ⟩ in Section 2C) is a Hopf algebra homomorphism. Consequently, there is a homomorphism
p1 : cf(GL•)→ Sym obtained by projecting onto cfuni

char(GL•) and then applying the aforementioned
isomorphism, as in the diagram

cf(GL•)

cfuni
char(GL•)

Sym
p1

∼=
(5.2)

of Hopf algebra homomorphisms. The map p1 faithfully records the irreducible unipotent constituents
of any class function of GLn , which can be recovered by reversing the isomorphism cfuni

char(GL•)∼= Sym.
Thus, Theorem 5.1 states that the vertical strip LLT polynomial Gσ (x; q) determines the irreducible
unipotent constituents of the character IndGL

UT(ψ
σ ).
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An interesting connection arises from the interplay of Theorems 3.1 and 5.1. Carlsson and Mellit [11,
Proposition 3.5] show that for a Dyck path π ∈ Dn , the plethystic relationship

(t − 1)n XGraph(π)(x; t)
[

x
t − 1

]
= Gπ (x; t)

holds, where Graph(π) is the indifference graph associated to π in Section 2B. It is also known [35, IV.4]
that the composite map

Sym
p−1
{1}
−−→ cfuni

supp(GL•) ↪−→ cf(GL•)
p1
−−→ Sym

is an isomorphism which can be expressed in plethystic notation as f [x] 7→ ω f
[ x

t−1

]∣∣
t=q , so my results

give a GLn-representation theoretic interpretation of Carlsson and Mellit’s result; at the same time, [11,
Proposition 3.5] could be used to prove Theorem 5.1 via Theorem 3.1.

The proof of Theorem 3.1 will instead use the machinery of combinatorial Hopf algebras, which has
the benefit of giving a new description of the map p1 ◦ IndGL

UT. Define a Hopf algebra homomorphism
c1 : scf(UT•)→QSym as the composite map in the diagram

scf(UT•)

cfuni
supp(GL•) cf(GL•) Sym QSym

IndGL
UT

p1

c1
(5.3)

of Hopf algebras, so that Theorem 5.1 describes c1 implicitly. By definition, c1 can be computed by
inducing a character of UTn to GLn and recording its unipotent constituents as symmetric functions.
However, Theorem 2.2 shows that c1 is also determined by the zeta function ps1 ◦c1 of the Hopf algebra
scf(UT•). It happens that this zeta function coincides exactly with one defined by Guay-Paquet, so that a
result of [25] — restated in Corollary 5.16 — shows that

c1(δ̄Graph(π))= Gπ (x; q−1) for π ∈ D. (5.4)

Several known identities for LLT polynomials complete the proof; these are given in Proposition 5.18.
The remainder of the section is divided into three parts. First, Section 5A describes the characters ψσ

appearing in Theorem 5.1 and shows that this family includes both the permutation characters and
supercharacters of scf(UT•). Then, Section 5B describes the map c1 as a CHA morphism to (QSym, ps1),
defining the necessary combinatorial Hopf algebra structures on scf(UT•) and cf(GL•) along the way.
Finally, Section 5C formally defines the vertical strip LLT polynomial, shows how it can be realized as
the image of a CHA morphism, and concludes with a proof of Theorem 5.1.

Remark 5.5. It is possible to “remove” the factors of q − 1 in Theorem 5.1. With results in Section 5A,
work of Andrews and Thiem [9, Remark on p. 490] and Aliniaeifard and Thiem [7, Remark (1) on p. 13]
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show that each ψσ is the sum of (q−1)|Diag(σ )| distinct characters which each have the same image under
p1 ◦ IndGL

UT; this image must be ωGσ (x; q).

5A. The pseudosupercharactersψσ . This section will define the charactersψσ appearing in Theorem 5.1.
Recall the terminology used for Schröder paths in Section 2B and the characters of UTn defined in
Section 2C.

For σ ∈ T Sn , the pseudosupercharacter indexed by σ is the class function

ψσ =
∑

S⊆Diag(σ )

(−1)|Diag(σ )−S|χ ([n],Area(σ )∪S)
∈ scf(UT•).

The definition of Diag(σ ) ensures that each graph ([n],Area(σ ) ∪ S) above is in fact an indifference
graph. For example, with

σ = we have ψσ =−χ
1 2 3

+χ
1 2 3

. (5.6)

A noteworthy family of examples is the pseudosupercharacters indexed by Dyck paths: for π ∈ D,
Diag(π)=∅, from which it follows that

ψπ = χGraph(π).

Proposition 5.7. Let σ be a tall Schröder path of size n ≥ 0. Then ψσ is a character, and in particular

ψσ =
∑

E(γ )⊆(Area(σ )∪Diag(σ ))
Diag(σ )⊆E(γ )

χγ ,

where the sum is over indifference graphs γ ∈ IGn satisfying the given conditions.

Proof. Using the definition of ψσ ,

ψσ =
∑

S⊆Diag(σ )

(−1)|Diag(σ )−S|
∑

E(γ )⊆Area(σ )∪S

χγ ,

where the sum is over indifference graphs γ as in the proposition. Reversing the order of summation
above, we obtain

ψσ =
∑

E(γ )⊆Area(σ )∪Diag(σ )

( ∑
T⊆Diag(σ )

T⊇E(γ )∩Diag(σ )

(−1)|Diag(σ )−T |
)
χγ ,

where the innermost sum is over subsets T of Diag(σ ) that contain E(γ )∩Diag(σ ). Combining terms in
this sum, the proposition follows from the binomial theorem. □

As an example of Proposition 5.7, the pseudosupercharacter in (5.6) expands as the sum of superchar-
acters

ψσ = χ
1 2 3

+χ
1 2 3

.
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The final result in this section shows that every supercharacter of scf(UTn) occurs as a pseudosuper-
character. Given a Dyck path π , a peak of π is a sequence of steps ES; say that a peak is tall if the first
step E does not begin on the diagonal x =−y. For example,

= (EESESSES)

has three peaks, but only two tall peaks. Define the Mesa path of π ∈ Dn to be the tall Schröder path
Mesa(π) ∈ T Sn obtained by first constructing Dyck(π) and then replacing each tall peak E S with a
diagonal step D; for example,

Mesa


= = (EDDSES).

Proposition 5.8. Let π be a Dyck path. Then ψMesa(π)
= χGraph(π).

Proof. By assumption,

Area(π)= Area(Mesa(π))∪Diag(Mesa(π)),

so by Proposition 5.7,

ψMesa(π)
=

∑
γ⊆Graph(π)

Diag(Mesa(π))⊆E(γ )

χγ .

Now suppose that an indifference graph γ is a proper spanning subgraph of Graph(π). Then γ must
be missing at least one edge {i, j} such that the unit square indexed by {i, j} is bordered directly by a
tall peak of π , so that {i, j} ∈ Diag(Mesa(π)), and χγ does not appear in the sum above. Thus the only
summand above is χGraph(π). □

5B. Factoring c1 through cf(GL•). This section will describe the unipotent characters of GLn , and
their relation to the Hopf algebra structure of cf(GL•). As stated at the outset of Section 5, unipotent
characters originate in Deligne–Lusztig theory, and are typically defined using cohomological induction.
However, the unipotent characters of GLn can also be described with much more elementary methods; see
[16, Theorem 15.8 and proof] for the details. This paper will take this alternate description as a definition:
an irreducible character of GLn is unipotent if it is a constituent of IndGLn

Bn
(1), where Bn = Bn(Fq) is the

subgroup of upper triangular matrices in GLn .
It is also known that irreducible unipotent characters of GLn are indexed by the partitions of n [16,

Theorem 15.8]; write χλ for the unipotent character corresponding to λ ∈ P(n). This paper follows the
convention of [35] in which χ (1

n) is the trivial character 1 of GLn and χ (n) is the Steinberg character Stn;
this differs from the convention of [45] and others by the transposition of each partition.
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The homomorphism p1 was constructed by Zelevinsky [45, 9.4], and is given by

p1 : cf(GL•)→ Sym, ψ 7→
∑
λ

⟨ψ, χλ⟩sλ. (5.9)

As a linear transformation, p1 has a right inverse sλ 7→ χλ, and [45] shows that this right inverse is also a
Hopf algebra homomorphism. Thus, the image

cfuni
char(GL•)= C -span{χλ | λ ∈ P} ⊆ cf(GL•)

is a sub-Hopf algebra of cf(GL•) through which p1 factors, as shown in Diagram (5.2).
By Theorem 2.2, the map p1 is equivalent to a zeta function of the Hopf algebra cf(GL•). This zeta

function is also given in [45], and is

St•⟩ = (Stn⟩)n≥0 ∈ cf(GL•)∗.

Proposition 5.10 [45, 9.4–5]. The map St•⟩ is a zeta function of cf(GL•) and p1 is the unique CHA
morphism (cf(GL•),St•⟩)→ (QSym, ps1).

Now, for n ≥ 0, write regUTn
for the regular character of UTn . Define a linear functional

reg•⟩ = (regUTn
⟩)n≥0 ∈ scf(UT•)∗.

Theorem 5.11. The function reg•⟩ is a zeta function of scf(UT•) and

reg•⟩ = St•⟩ ◦ IndGL
UT,

so IndGL
UT is a CHA morphism

(scf(UT•), reg•⟩)
IndGL

UT
−−−→ (cf(GL•),St•⟩).

Proof. It is sufficient to prove that reg•⟩ = St•⟩ ◦ IndGL
UT. Doing so requires the well-known fact (see, for

example, [45, 10.3]) that for unipotent X ∈ GLn ,

Stn(X)=
{
|UTn| if X = 1n ,
0 for other unipotent X .

As a consequence,

ResGLn
UTn
(Stn)= regUTn

.

With this, the claim follows from Frobenius reciprocity as described in Section 2D:

St•⟩ ◦ IndGL
UT =

(
ResGLn

UTn
(Stn)⟩

)
n≥0 = reg•⟩. □

Remark 5.12. Like Theorem 3.8, Theorem 5.11 actually shows that IndGL
UT is a CHA morphism from the

larger combinatorial Hopf algebra (cf(UT•), reg•⟩) to (QSym, ps1).
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5C. The vertical strip LLT polynomial. The vertical strip LLT polynomial indexed by a tall Schröder
path σ is

Gσ (x; t)=
∑
κ∈A(σ )

tasc([n],Area(σ ))(κ)xκ(1)xκ(2) · · · xκ(n) ∈ C[[x]][t],

where the sum is over the set A(σ ) of functions κ : [n] → Z>0 which satisfy κ(i) < κ( j) for each i < j
with {i, j} ∈ Diag(σ ). Viewed as a polynomial in t , the coefficients of Gσ (x; t) are actually symmetric
functions [28, Lemma 10.2], though this is not obvious. For example,

G (x; t)= tm(2,1)+ (t2
+ 2t)m(13).

Remark 5.13. There are several essentially equivalent definitions of LLT polynomials; the one above is
due to [11] in the unicellular case and to [13] (see also [5]) in general.

If σ is a Dyck path, so that Diag(σ )=∅, then the sum in Gσ (x; t) is over all possible colorings; this
special case is know as a unicellular LLT polynomial. In [25], Guay-Paquet realizes the unicellular LLT
polynomials by way of a homomorphism of Hopf algebras over C[t]. By evaluating at t = q−1 as in
Theorem 2.12, this result descends to a Hopf algebra homomorphism scf(UT•)→QSym. Define a linear
functional

ζ1 : scf(UT•)→ C, δ̄γ 7→ 1.

Theorem 5.14 [25, Theorem 57]. The map ζ1 is a zeta function of scf(UT•), and the unique CHA
morphism

(scf(UT•), ζ1)→ (QSym, ps1)

is given by
δ̄Graph(π) 7→ Gπ (x; q−1) for π ∈ D.

Now recall the zeta function reg•⟩ defined in the previous section.

Proposition 5.15. As a zeta function of the Hopf algebra scf(UT•), reg•⟩ is equal to ζ1; in particular

reg•⟩(δ̄γ )= 1 for γ ∈ IG.

Proof. This follows from direct computation: if γ ∈ IGn ,

reg•⟩(δ̄γ )= ⟨δ̄γ , regUTn
⟩ = δ̄γ (1n)= 1. □

The uniqueness result of Theorem 2.2 now gives the following, which restates (5.4).

Corollary 5.16. The map c1 is the CHA morphism described in Theorem 5.14. In particular,

c1(δ̄Graph(π))= Gπ (x; q−1) for π ∈ D.

Remark 5.17 (cf. Remarks 3.15(R1)). Corollary 5.16 can be used to give a novel proof that the unicellular
LLT polynomial Gπ (x; t) has symmetric coefficients.

The proof of Theorem 5.1 is given below following two identities for LLT polynomials.
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Proposition 5.18 [6, Theorem 2.1; 11, Proposition 3.4]. Let n be a positive integer.

(1) For any Dyck paths π ∈ Dn ,

q |Area(π)|GDyck(π)(x; q−1)= ωGDyck(π)(x; q).

(2) For any tall Schröder paths σ ∈ T Sn ,

(q − 1)|Diag(σ )|Gσ (x; q)=
∑

S⊆Diag(σ )

(−1)|Diag(σ )−S|GArea−1(Area(σ )∪S)(x; q),

where Area−1(Area(σ )∪ S) denotes the unique Dyck path with area Area(σ )∪ S.

Proof of Theorem 5.1. For π ∈D, (2.11) states that χGraph(π)
=q |Area(π)|δ̄Graph(π), so by Proposition 5.18(i),

c1(χ
Graph(π))= ωGπ (x; q).

Combining this with Proposition 5.18(ii) and the linearity of ω,

c1(ψ
σ )=

∑
S⊆Diag(σ )

(−1)|Diag(σ )−S|ωGπ+S(x; q)= (q − 1)|Diag(σ )|ωGσ (x; q). □

6. Positivity conjectures

Recall the bases of Sym given in Section 2A. An element f (x; t) ∈ Sym[t] is said to be e-positive if the
coefficients aλ(t) in

f (x; t)=
∑
λ∈P

aλ(t)eλ

are polynomials in t with nonnegative coefficients: aλ(t) ∈ Z≥0[t]. Likewise, if the coefficients of f (x; t)
in any other basis of Sym have this property — for example, the Schur basis {sλ |λ∈P}— say that f (x; t)
is positive in that basis. The positivity of the symmetric functions in this paper are of some interest, and
this section will describe the meaning of positivity in the context of GLn(Fq) representation theory.

For the chromatic quasisymmetric functions in Section 3B, e-positivity generalizes the Stanley–
Stembridge conjecture [42, Conjecture 5.5], which by [24] is the t = 1 case below.

Conjecture 6.1 [39, Conjecture 1.3]. For each γ ∈ IG, Xγ (x; t) is e-positive.

Special cases of Conjecture 6.1 have explicit solutions, as in [1; 12; 29; 30].
For the vertical strip LLT polynomials in Section 5C, Schur positivity has implications for the study of

Macdonald polynomials [28]. Adapting results from the case of general LLT polynomials, it is known
[23, Corollary 6.9] that Gσ (x; t) is positive in the Schur basis for every σ ∈ T S. However, their proof
is algebraic and does not construct the Schur coefficients. In some special cases, explicit formulas are
known, including the q-Kostka numbers [33] and the results of [30; 43], but in general these coefficients
are a mystery.

Open Problem 6.2 [27, Open Problem 6.6]. Find a (manifestly positive) combinatorial formula for the
Schur coefficients of Gσ (x; t).
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The e-positivity of vertical strip LLT polynomials is also the subject of study; in this context, the
paradigm is altered by considering the shifted polynomial Gσ (x; t+1). The e-positivity of shifted vertical
strip LLT polynomials is proved in [13, Theorem 5.5], and the paper [6] gives an explicit combinatorial
formula the e-coefficients, which will be restated in Section 6C. Using Theorem 5.1, this formula implies
a result about the characters IndGL

UT(ψ
σ ), inadvertently giving some representation theoretic intuition for

the t↔ t + 1 shift.
Returning to the general discussion of positivity, if a polynomial f (x; t) ∈ Sym[t] is positive with

respect to a certain basis, then evaluating t at any positive integer will give a symmetric function with
nonnegative integer coefficients in the chosen basis. Thus, evaluating t = q above gives positivity results
about the GLn characters in this paper. Conversely, polynomial equations can be verified on any infinite
set — like the set of prime powers — so GLn characters offer a novel approach to some of the open
problems above.

This section reinterprets each of the positivity statements above in the context of GLn representation
theory. Section 6A will discuss the e-positivity of the chromatic quasisymmetric function, Section 6B will
discuss Schur positivity of the vertical strip LLT polynomials, and Section 6C will discuss the implications
of the e-positivity of vertical strip LLT polynomials.

6A. Interpreting the e-positivity of Xγ (x; t). In light of Theorem 3.1, there should be a restatement of
Conjecture 6.1 involving the characters IndGLn

UTγ (1). However, the isomorphism p{1} in Theorem 3.1 does
not associate eλ to a character of GLn , so some interpretation is required. My choice to use the particular
restatement below is informed by ongoing work on the subject.

Recall the Steinberg character Stn ∈ cf(GLn) defined in Section 5B. For any partition λ= (λ1, . . . , λℓ),
define Stλ ∈ cf(GL•) to be the product

Stλ = Stλ1 Stλ2 · · · Stλℓ .

Conjecture 6.3. Let n ≥ 0 and γ ∈ IGn . There are polynomials aγλ (t) ∈ Z≥0[t] such that for each prime
power q the character

ηγ =
∑
λ∈Pn

aγλ (q)Stλ

satisfies (q − 1)nηγ (u)= IndGLn
UTγ (1)(u) for every unipotent element u ∈ GLn(Fq).

Proposition 6.4. Conjectures 6.1 and 6.3 are equivalent.

Proof. For a class function ψ ∈ cf(GLn), write ψ |uni ∈ cf
uni
supp(GL•) for the element defined by

ψ |uni(g)=
{
ψ(g) if g is unipotent,
0 otherwise,

so that Conjecture 6.3 states
∑

λ∈Pn
aγλ (q)Stλ|uni =

1
(q−1)n IndGLn

UTγ (1).
I now claim that p{1}(Stλ|uni)= eλ, so that with the preceding remarks and Theorem 3.1 the proof will

be complete. The claim is relatively well-known to experts, but a proof sketch is included for the sake of
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completeness. Direct computation gives that Stn|uni = q(
n
2)δ(1n) (see the proof of Theorem 5.11), and

p{1}(q(
n
2)δ(1n))= P̃(1n)(x; q)= en,

with the second equality due to the definition of the Hall–Littlewood polynomial; see [35, III.2 (2.8)].
The claim then follows from the fact that the extension of ψ 7→ ψuni to all of cf(GL•) is a Hopf algebra
homomorphism to cfuni

supp(GL•) [45, 10.1]. □

Remarks 6.5. (R1) A direct proof of Conjecture 6.3 would probably find an organic realization of the
character ηγ using the representation theory of GLn , and in a manner which does not depend on q .
Ongoing work has identified a promising candidate for the character ηγ , but has not led to any
progress on the conjecture itself.

(R2) It is not clear that Conjecture 6.3 offers an easier approach to Conjecture 6.1 than other equivalent
statements. However, as the clearest restatement of Conjecture 6.1 in the GLn(Fq) context, the wide
interest in e-positivity seems to justify its inclusion.

6B. Interpreting the Schur positivity of Gσ (x; t). Let σ be a tall Schröder path and write

Gσ (x; t)=
∑
λ∈P

bσλ (t)sλ.

It is immediate that each bσλ (t) is a polynomial in t with integral coefficients, and the content of [23,
Corollary 6.9] is that the coefficients of this polynomial are nonnegative.

Recall from Section 5B that the irreducible unipotent characters of GLn are {χλ | λ ∈ Pn}, and that
p1(χ

λ)= sλ for each partition λ ∈ P . Thus, for a tall Schröder path σ , Theorem 5.1 implies that

(q − 1)|Diag(σ )|bσλ (q)= ⟨χ
λ′, IndGL

UT(ψ
σ )⟩, (6.6)

which is the multiplicity of the irreducible unipotent GLn-module indexed by λ′ in the GLn-module
affording IndGL

UT(ψ
σ ). Thus, Theorem 5.1 implies the known fact that bσλ (q) is nonnegative for each

prime power q, but falls short of giving a second proof of Schur positivity: a polynomial with negative
coefficients can still take on infinitely many positive values. Nonetheless, progress on Open Problem 6.2
might be obtained through explicit representation theoretic formulas.

Open Problem 6.7. For n ≥ 0, σ ∈ T Sn , and λ ∈ Pn , find a combinatorial formula for ⟨χλ
′

, IndGL
UT(ψ

σ )⟩

as a function of q.

Such a formula would almost certainly be divisible by (q − 1)|Diag(σ )| in a straightforward manner; see
Remark 5.5. This would give an answer to Open Problem 6.2.

6C. Interpreting the e-positivity of Gσ (x; t). The final section of this paper will show how the explicit
e-positivity formula for vertical strip LLT polynomials given in [6] leads to a deeper understanding of the
characters IndGL

UT(ψ
σ ) from Theorem 5.1; see Corollary 6.10. I will begin by recalling the main result of [6].
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Fix a graph γ = ([n], E(γ )) on [n]. An orientation of γ is a collection of directed edges

θ = {(i, j) | {i, j} ∈ E(γ )},

so that ([n], θ) is a directed graph whose underlying undirected graph is γ . For example, with

γ =
1 2 3 4

and θ = {(2, 1), (1, 3), (3, 2), (3, 4)} (6.8)

we have

([n], θ)=
1 2 3 4

.

Write O(γ ) for the set of orientations of γ . For θ ∈ O(γ ) and i ∈ [n], say that the highest reachable
vertex from i under θ is

hrv(θ, i)=max{ j ∈ [n] | there is an increasing path in ([n], θ) from i to j}.

For example, taking γ and θ as in (6.8)

hrv(θ, 1)= 4, hrv(θ, 2)= 2, hrv(θ, 3)= 4, and hrv(θ, 4)= 4.

Finally, for θ ∈O(γ ), the type of θ is the partition type(θ) ∈ Pn obtained by truncating all zeros from the
nonincreasing reordering of the sequence(∣∣{i ∈ [n] | hrv(θ, i)= 1}

∣∣, . . . , ∣∣{i ∈ [n] | hrv(θ, i)= n}
∣∣).

For example, taking γ and θ as in (6.8), type(θ)= (3, 1).

Theorem 6.9 [6, Theorem 2.9]. For n ≥ 0, let σ ∈ T Sn and let γ be the natural unit interval order on [n]
with edge set E(γ )= Area(σ )∪Diag(σ ). Then

Gσ (x; t)=
∑

Diag(σ )-ascending
θ∈O(γ )

(t − 1)|{{i, j}∈Area(σ )|(i, j) ∈ θ with i < j}|etype(θ),

where the sum is over orientations θ ∈O(γ ) with (i, j) ∈ θ for each i < j with {i, j} ∈ Diag(σ ).

Evaluating the identity above at t = q , the expression q − 1 can be interpreted as |F×q |, the number of
units in the field Fq . As |F×q | is a positive integer, it can be interpreted as the multiplicity of a submodule,
as will be discussed at the end of this section.

The Gelfand–Graev character of GLn [22] is the class function

0n =
1

(q − 1)n−1 IndGL
UT(ψ

E Dn−1 S),

where ψ E Dn−1 S is as defined in Section 5A; as the name suggests, 0n is actually a character of GLn; see
Remark 5.5. The degenerate Gelfand–Graev character [45, 12] indexed by a partition λ= (λ1, . . . , λℓ) is

0λ = 0λ1 · · ·0λℓ .
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Corollary 6.10. For n ≥ 0, let σ ∈ T Sn , and let γ be the natural unit interval order on [n] with edge set
E(γ )= Area(σ )∪Diag(σ ). Then

IndGL
UT(ψ

σ )=
∑

Diag(σ )-ascending
θ∈O(γ )

(q − 1)|{{i, j}∈E(γ )|(i, j) ∈ θ with i < j}|0type(θ),

where the sum is over orientations θ ∈O(γ ) with (i, j) ∈ θ for each i < j with {i, j} ∈ Diag(σ ).

Proof. Since the map p1 restricts to an isomorphism from cfuni
supp(GL•) to Sym (discussed in Section 5),

and the involution ω is also an isomorphism, it is sufficient to establish that the above equation holds
after the application of ω ◦ p1 to both sides. By Theorems 5.1 and 6.9, the left side becomes

ω ◦ p1 ◦ IndGL
UT(ψ

σ )=
∑

Diag(σ )-ascending
θ∈O(γ )

(q − 1)|{{i, j}∈E(γ )|(i, j) ∈ θ with i < j}|etype(θ),

so the claim will follow from ω ◦ p1(0n)= en . This fact is known, but a short proof is included below
for completeness.

Theorem 5.1 states that ω ◦ p1(0n)= G E Dn−1 S(x; q). With Diag(NDn−1S)= {{i, i + 1} | 1≤ i < n},
the definition of vertical strip LLT polynomials given in Section 5C becomes

G E Dn−1 S(x; q)=
∑

κ:[n]→Z>0
κ(1)<···<κ(n)

xκ(1) · · · xκ(n) = en. □

This result implies that the GLn-module affording IndGL
UT(ψ

σ ) decomposes into a direct sum of submod-
ules that each afford some degenerate Gelfand–Graev character. Exhibiting this decomposition explicitly
would give a new proof of Corollary 6.10 and Theorem 6.9.

Open Problem 6.11. Find a module theoretic proof of Corollary 6.10.
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