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A modification of the linear sieve,
and the count of twin primes

Jared Duker Lichtman

We introduce a modification of the linear sieve whose weights satisfy strong factorization properties, and
consequently equidistribute primes up to size x in arithmetic progressions to moduli up to x'%!7. This
surpasses the level of distribution x¥7 with the linear sieve weights from well-known work of Bombieri,
Friedlander, and Iwaniec, and which was recently extended to x’/!? by Maynard. As an application, we
obtain a new upper bound on the count of twin primes. Our method simplifies the 2004 argument of
Wau, and gives the largest percentage improvement since the 1986 bound of Bombieri, Friedlander, and
Iwaniec.

1. Introduction

Given a finite set .4 of positive integers, sieve methods offer a broad framework for estimating the number
of elements in A all whose prime factors exceed z, denoted by S(A, z), in terms of the approximate
density g(d) = g(d) of multiples of d in A, denoted by A;. Note one often expects

S(A, ) ~ AT —g(p)).
p<z
Combinatorial sieves may be viewed as refinements of the basic inclusion-exclusion principle, and are
described by a sequence of weights A(d) € {—1, 0, 1} supported on integers up to some level D > 1. We
refer the reader to Opera de Cribro [Friedlander and Iwaniec 2010] for a more thorough introduction to
the subject.
In particular, the upper bound weights AT (d) for the linear sieve satisfy

log D
S(A,z)<|A|H<1—g(p>>(F<ff?)+o(1))+ Y @A~ Ag@) (1D
p<z d<D
pld=p<z

as D — oo, provided g = g4 satisfies some mild conditions. Here the function F' : R>; — Ry is
defined by a delay-differential equation, as in (2-5). For sets .4 sufficiently equidistributed in arithmetic
progressions the second sum over d < D in (1-1) contributes negligibly, in which case the main term is

S(A ) ST =g F ),

p<z
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2 Jared Duker Lichtman

where z = D'/$. In fact, F(s) — 1 as s — 0o so the main term confirms the naive expectation in this
case. Moreover, F is optimal in the sense that the bound (1-1) is attained sharply for a particular set A.

We introduce this sieve theory setup more formally in Section 2.2 below, and define the sieve weights A™
explicitly in Section 3; see [Friedlander and Iwaniec 2010, Section 12] for further details on the linear
sieve (8 = 2), as well as [loc. cit., Section 11] for its generalization to the B-sieve.

The linear sieve is powerful when combined with equidistribution estimates which make the final sum
in (1-1) small. For example, the Bombieri—Vinogradov theorem shows that for every ¢, A > 0, letting
Q = x'/27¢ we have

w(x;q,a)— () a

sup Le.A )
(@) " (logx)4

q<0 @9=1

1-2)

So by taking D = Q, (1-1) can give a good upper bound when the set A is related to the primes, such as
when A= {p+2: p < x}, in which case (1-1) gives an upper bound for the count of twin primes.
The estimate (1-2) may be viewed as an assertion of the generalized Riemann hypothesis on average

over moduli up to Q = x!/27%. It remains an important open problem to extend the range to Q = x!/?*?

for some fixed § > 0. Indeed, Elliott and Halberstam [1970] conjectured such an extension up to Q = x1-
for any € > 0.

In some contexts it suffices to relax the setup in (1-2) in order to raise the level of distribution. In
particular, in the case of a fixed residue class a € Z, and the absolute values replaced by well-factorable
weights A(q) (see Definition 2.1), the celebrated result of Bombieri, Friedlander and Iwaniec [Bombieri

et al. 1986] raised the level up to Q = x*/77¢,

w(x) X
> x(q)(n(x; q.a) - —) Lahe ———. (1-3)
1<0 »(q) (log x)

(g.a)=1
While the linear sieve weights are not themselves well-factorable, Iwaniec [1980] constructed a well-
factorable variant AT of the weights AT (and so (1-3) holds with A = A1), which are only slightly altered
from AT so that A enjoys an analogous linear sieve bound as in (1-1), notably with an identical form of
the main term,

log D ~
S(A. 2 < lA]]a _g<p>>(F(1L) +o<1)> + Y @A - Al@).  (1-4)
0gz
p<z d<D
pld=p<z
The bound (1-3) stood for several decades, but quite recently Maynard [2020] managed to extend
the level in (1-3) further to Q = x7/>7¢ in the case of the weights A = AT, Given the currently

7/12 is a natural barrier for these

available equidistribution estimates for primes, we note the level x
weights.
In this article, we modify the technical construction of the linear sieve weights to avoid this barrier,

and thereby produce new sieve weights that induce stronger equidistribution estimates for primes.
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Theorem 1.1. Let D = x'%V7~¢_ There exists a sequence 1*(d) € {—1, 0, 1} satisfying:

(1) Equidistribution for primes: For any fixeda € Z, A, € > 0, we have

) i*(d)(n(x; d,a)— @> Cate .
o)) S ogay

d<D
(d,a)=1

(2) Sieve upper bound: Fors > 1,z = D5 we have

S(A 2 <A [ —gpDF* &) o)+ Y Z*@)(Adl — [Alg(@),

P<z d<D
pld=p<z

where F*(s) < 1.000081F (s) when 1 < s < 3, for the linear sieve function F as in (2-5).

The key feature of Theorem 1.1 is to obtain equidistribution up to level x'/17

at the cost of only a tiny
loss in the main term. See Theorem 2.12 and Proposition 5.4 for full technical statements and additional

variations that may be of independent interest.

1.1. Application to twin primes. We expect that Theorem 1.1 should give numerous improvements to
sieve bounds related to the primes. As proof of concept in this direction, we give a new upper bound for
the count of twin primes up to x, denoted by 7, (x). Recall Hardy and Littlewood [1923] conjectured the
asymptotic formula

2x 1-2/p )
M)~ G [!:[2 T 1/ = - (1-5)

Theorem 1.2. As x tends to infinity, we have
o (x) < 3.2995611(x).

Theorem 1.2 gives a 2.94% refinement from the previous record bound of Wu [2004]. For reference,
this gives the largest percentage improvement since the work of Bombieri, Friedlander, and Iwaniec
[1986]. See Table 1 for a chronology of the known upper bounds on m,(x)/I1(x). Also see Siebert
[1976], Riesel and Vaughan [1983, Lemma 5] for numerically explicit forms of Selberg’s bound [1952].

The main ingredients for these results come from applying sieve bounds to the set A={p+2: p < x},
and using equidistribution of primes in arithmetic progressions to handle remainder terms. Bombieri
and Davenport obtained 7, (x)/T1(x) < 4 as a consequence of the Bombieri—Vinogradov theorem (1-2)
and a standard sieve upper bound of level x!/>~¢. More generally, if one proves level of distribution
x%=¢ then one immediately obtains m,(x)/T1(x) < 2/6. Bombieri, Friedlander and Iwaniec proved
m(x)/T(x) < % by the well-factorable variant (1-3) level of distribution x47-E, together with the linear
sieve with well-factorable remainder (1-4).
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Year Author(s) o (x)/TI(x) <
1919 Brun [1919] O(1)

1947 Selberg [1952] 8

1964 Pan [1964] 6

1966 Bombieri and Davenport [1966] 4

1978 Chen [1978] 39171

1983 Fouvry and Iwaniec [1983] 3.7777--- =34/9
1984 Fouvry [1984] 3.7647--- =64/17
1986 Bombieri, Friedlander and Iwaniec [1986] 3.5

1986 Fouvry and Grupp [1986] 3.454

1990 Wu [1990] 3418

2003 Cai and Lu [2003] 3.406

2004 Wu [2004] 3.39951

Table 1. Upper bounds for mp(x)/IT(x).

The other key ingredient to subsequent improvements is the switching principle, introduced in Chen’s
celebrated result [1973] that there are infinitely many primes p such that p + 2 has at most two prime
factors. The basic insight is to use a weighted sieve inequality to split the problem into multiple cases,
apply sieve bounds to A = {p +2: p < x} in certain cases, and then reinterpret the remaining cases as
new sieving problems for switched sets B = {m — 2 < x} where the numbers m are constructed from .4
(as prescribed depending on the case).

1.2. Outline of main ideas in Theorem 1.1. Maynard’s new equidistribution results show equidistribution
of the primes with sieve weights AT (), provided d = p; - - - p, is restricted to suitably well-factorable
integers. Unfortunately, the original linear sieve weights only partially satisfy these well-factorable

conditions. In particular for > 0, when looking at the linear sieve of level x”/1>*" some integers d in

7/12

its support do not satisfy the conditions, which means that x is the limit for the linear sieve given our

current equidistribution technology. Nevertheless, the key observation here is that only a few exceptional d

10/17 1
204°

may be precisely characterized in terms of 7 (given specifically as Ps, Pg in (3-6)). In particular, as n > 0

fail to satisfy these conditions. Moreover up to level x ,l.e, n < the anatomy of exceptional d
grows the family of exceptional integers contribute O(17°) to the sieve bound. However, we note this
characterization breaks down when n > Jm, and the contribution becomes considerably larger and more
complicated.

As such we carefully revise the construction of the linear sieve, altering a few particular inclusion-
exclusion steps in order to avoid the exceptional integers d with bad factorizations. Once these terms no
longer contribute to the sieve, this produces a worse and more complicated main term, but since there are
only a very small number of such terms the resulting loss is small. And since these modified weights
now satisfy stronger factorization properties in their support, we can now leverage the full strength of
Maynard’s equidistribution results.
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Notation

We use the Vinogradov < and 3> asymptotic notation, and the big oh O(-) and o( - ) asymptotic notation.
Weuse f~g, f<Sg,and f 2 gtodenote f = (1+o(l))g, f < (14+o0(l)g,and f > (1+0(1))g,
respectively. Dependence on a parameter will be denoted by a subscript.

The letter p will always be reserved to denote a prime number, 77 (x) is the prime counting function,
and 7 (x; d, a) is the count of primes up to x congruent to a (mod d). We use ¢ to denote the Euler totient
function, u the Mobius function, and e(x) := e?™** the complex exponential. We use 1 to denote the
indicator function of a statement. For example, for a set A denote

0, else.

1, ifaeA, aodA 1, ifa,...,a;€eAandag ¢ A,
1a€A= 1 =
0, else,

Finally, we refer to various sieve weights referred places throughout the article, so we take a moment
to list them here:

We generically write A to denote a sequence of weights in {0, =1}. In particular, A™ and A~ refer to
the (upper and lower bound) weights of the linear sieve, given by restrictions of the Mdbius function,
AE(d) = u(d)1zep+. Analogously, the modified (upper bound) linear sieve weights A* are given by
A*(d) = ju(d)14ep+. Here the support sets DT and D* are defined in (3-1) and (3-5). We also write A"
to refer to the weights A* or A~ (and D to refer to DT or D7), depending on whether r is odd or even.

The well-factorable weights A* are defined in (5-17). Following Iwaniec, this construction involves
certain auxiliary weights at intermediate steps, namely, A(p, .. p,) defined in (5-14), and kggl Dy =

...........

defined in (5-16).

2. Technical setup and results

2.1. Factorization of weights and their level of distribution.

Definition 2.1 (well-factorable). Let O € R>;. A sequence A(q) is well-factorable of level Q, if for every
factorization Q = Q10> into Oy, 02 € R, there exist sequences 1, y» such that:

(D) Iy1(gDl, ly2(g2)| < 1 forall g1, g2 € N.
(2) vi(g) =0if g ¢[1, Q;] fori =1,2.
(3) We have A = y1 x , i.e.,
M) =Y ra)r(g).

9=49192

Bombieri, Friedlander and Iwaniec [1986, Theorem 10] established level of distribution x*7—¢ with
well-factorable weights.
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Theorem 2.2 [Bombieri et al. 1986]. Fix any a € Z and let A, ¢ > 0. For any well-factorable sequence X\
of level Q < x*7=¢ we have

Z k(é])(ﬂ(x; q.a) = w) La,Ae %
1< ¢(q) (log x)

(g.a)=1
Maynard [2020] considered a natural strengthening of well-factorable sequences.
Definition 2.3 (triply well-factorable). Let O € R>. A sequence A(q) is triply well-factorable of level Q,

if for every factorization Q = Q10203 into Q1, Oz, O3 € Ry, there exist sequences y1, y2, ¥3 such
that:

(1) Iv1(@Dl, 1v2(g2)l, lvs(g3)| < 1 for all g1, g2, g3 € N.
(2) vi(q) =0if g ¢ [1, Q;] fori =1,2,3.
(3) We have L =y %y x 3, i.e.,
M= Y n@Drn@)ysg).
q9=4919293

The definitions of well-factorable and triply well-factorable sequences are quite natural and relatively
simple from a conceptual standpoint. Maynard [2020, Theorem 1.1] obtains powerful equidistribution
results for triply well-factorability that are beyond the scope of well-factorability. Unfortunately, triply
well-factorability is too restrictive a condition for us to produce Theorem 1.1. As such we are forced to
identify the precise mechanism that enables Maynard’s equidistribution results, and extract the following

technical definition that is implicit in [Maynard 2020].!

Definition 2.4 (programmably factorable). Let 0 < § < 107>. For x € R.j, a sequence A(g) is
programmably factorable of level Q (relative to x, §), if for every N € [x20, x1/3+3/2] there exists a
factorization Q = Q10,03 with Q1, 02, O3 € R>, satisfying the system
Q1 < Nx™°,
N?Q, 03 <x'™,
N?Q10305 <27,
NQ10305 <x*7.

And for every such factorization Q = Q1 0, Q3 there exist sequences y1, ¥2, ¥3 such that:

2-1)

(D) Iv1i(gDl, 1y2(g2)1, ly3(g3)] < 1 for all g1, g2, g3 € N.
(2) vi(q) =0if g ¢[1, Q;] fori =1,2,3.

ndeed, the definition of programmably factorable in the special case 03 =1 gives the implicit condition (which is implied
by well-factorable) that enables Bombieri, Friedlander and Iwaniec to get equidistribution (1-3); also see Lemma 5 in [Fouvry
and Grupp 1986].
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(3) We have A = y1 x y» % 3, 1.€.,
M= Y ni@)n@ygs).

9=919293

Programmable factorability is the key technical definition in this article. It is named in allusion to the

linear programming-type system of inequalities (2-1) that the factors satisfy. The diagram below displays
the various implications among the definitions:

A is triply well-factorable of level ) =———————=—=> X is well-factorable of level Q

!

A 1s programmably factorable of level Q (relative to x, §)

In the key result [Maynard 2020, Theorem 1.1], Maynard extended the level of distribution up to
Q < x3/3 for programmably factorable weights. Note that level x3/° is the natural barrier for (2-1) to
admit a solution.

Theorem 2.5 [Maynard 2020]. Fixanya € Z and let A, € > 0. For any programmably factorable sequence
X of level Q < x3/37¢ (relative to x, £/50), we have

> A(q)(n(x g, a)—ﬁ) oo Tt
(@) " (log )

q<Q
(g,a)=1

Remark 2.6. Theorem 1.1 in [Maynard 2020] was stated for triply factorable sequences, but its proof in
fact gives the result for programmably factorable sequences.

Note the weights A1 are composed of well-factorable — but not necessarily programmably factorable —
sequences of given level D. Nevertheless, Maynard showed the upper bound weights A of sieve level
D = x"/12=¢ are programmably factorable of level D < Q = x>/°~¢ (relative to x, £/50). By Theorem 2.5
this gives [Maynard 2020, Theorem 1.2] below.

Corollary 2.7 [Maynard 2020]. For any fixeda € Z and A, & > 0, the weights AT from (2-4) of sieve level
D = x"127¢ satisfy
PN <n<x d,a)— @> Cahe .
Pt v (d) (log.x)
(d,a)=1

Later, in Proposition 5.4, we shall obtain technical improvements of Corollary 2.7 for Iwaniec’s
weights A* (both upper and lower), in special cases where equidistribution is restricted to moduli which
are smooth, or otherwise amenable to programmable factorization.

We may summarize the definitions and results of the section up to this point as follows:

A is triply well-factorable of level Q:
o Equidistributed for Q < x3/°
o Can take A = A for D < Q3.
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A is well-factorable of level Q:
« Equidistributed for Q < x*/7
e Can take A = AT for D < Q.
A is programmably factorable of level Q (relative to x, 4):
o Equidistributed for Q < x3/°
e Cantake A = AT for D < Q < x7/12,

For each type of sequence, we have outlined their corresponding levels of distribution, and the levels
at which the type is satisfied by the upper bound weights for the linear sieve. Observe well-factorability
is flexible enough to accommodate the linear sieve to any level, but has weaker equidistribution. On the
other hand, triple well-factorability has stronger equidistribution, but is too rigid to accommodate the
linear sieve (at nontrivial levels). Finally, programmable factorability also has strong equidistribution in
addition to (nontrivially) accommodating the linear sieve, though at the cost of conceptual technicality.

Remark 2.8. In general, A well-factorable of level Q directly implies A triply well-factorable of level
0?3 2 In particular, for A = AT the triply well-factorable level Q%3 < x%/° is sharp.?

2.2. Sieve theory setup and bounds. We recall the standard sieve-theoretic notation. Given a finite
set A C N, set of primes P, and a threshold z > 0, we define A; = {n € A:d | n} and remainder r 4 via

|Aal = (@] Al +ra(d),

where g is a multiplicative function, with 0 < g(p) < 1 for p € P (we assume g(p) =0 if p ¢ P). Also
define P(z) = Hp<z,pe7> pand V(z) = ]_[p | p()(1 — &(p)). The central object of interest is the sifted
sum
S(A2)=SAP.2) =D Lupe=1. (2-2)
neA

Later for our application of interest, we will set g(d) = 1/¢(d). For now, it suffices for us to assume

forall 2 <w <z,
V(w) B logz 1 i
o wl_p[qa g(p) =1 w(1+0(logw». (2-3)
peP

Remark 2.9. The proof of the upper bound for the standard linear sieve only requires a one-sided
inequality for V (w)/V (z), whereas our modification requires the above two-sided condition (2-3).

2Indeed, take any factorization Q = Q1 0,03, with (say) Q1 = Q> > Q03 > 1. Note 03 < Ql/ 3 1f A is well- -factorability of
level Q/ Q3 = Q1 Q2, there are sequences y1, y; supported on [1, O], [1, Q2] with A =y %y = yy *yp *3. Here 8(q) =145—1.
Hence A is triply well-factorable of level info—p, 0,05 O/03 > /3.

3Indeed, consider the factorization Q= Q| 0> Q3 with (Q1, 07, 03) = (Ql/3—¢ pl/3—¢ l/3+28) Thenforq = p, PaD3

of size p1, pp ~ Q1/3, P3 -Q1/9, we see p1, p2 > Q1 = Q». Thus all sequences y; supported on Q; satisty y; *y,*y3(q) =0.
In particular y; %y % y3 # AT.
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The basic result which we shall adapt is the linear sieve with well-factorable remainder, as in [Friedlander
and Iwaniec 2010, Theorem 12.20].

Theorem 2.10 [Friedlander and Iwaniec 2010]. Let ¢ > 0 and D > 1 be sufficiently small and large,
respectively. Then for s > 1 and z = D'/*, we have

S(A, 2) <AV ()(F(s) + O(e)) + Z M (dyra@),
d| P@)

S(AD 2 LAV +0E) — Y. A~ (@drad),
d|P(2)

where the implied constant only depends that of (2-3). Here the weights A= are
T+ _ +
Fdy= Y a@) (2-4)
j<exp(e=?)

for some well-factorable sequences )\j# of level D. The functions F, f : RT™ — R satisfy the system of
delay-differential equations

sF(s)=2e" [s
sf(s)=0 [s

B F(6s) = fs—1),

(2-5)
21 (sf(s)' = F(s— D).

NN

Remark 2.11. See [Iwaniec 1980, Theorem 1] for an alternate formulation and proof, which gives sharper
quantitative bounds than O (¢). However, it is more technical than necessary for our purposes.

The main result of this article is the following modification of the linear sieve with programmably
factorable remainder.

Theorem 2.12. Let A be a finite set of positive integers with density function g(d) satisfying (2-3),
and F (s) the function defined by the system (2-5). Let ¢ > 0 and x > 1 be sufficiently small and large,
respectively. Then forn >0, D = x1M241 g > 1, and 7 = D'/S, we have

S(A.2) <JAIV@F* )+ 0@) + Y. A (drad),
d|P(2)

where the implied constant only depends that of (2-3). Here the weights A* are

M= ) 1@ (2-6)
Jj<exp(e™3)

for some programmably factorable sequences )\j of level D (relative to x, €/50). Forn < ﬁ we have

F*(s) = F(s)+ O(°), and F*(s) < 1.000081F (s) for 1 <s <3,n= z%ﬁ.

Note Theorem 2.5, applied to each A = Aj above, immediately implies the following.
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Corollary 2.13. Given any fixed a € Z and A. Forn < the weights .* as in (2-6) of level D = x7/12+n

204’
satisfy
T (x) X
x*(d)(n(x d, a)——) Loy ——.
(%;;l (d) " (log x)A

3. Programmably factorable support
The upper and lower bound weights A* for the linear sieve of level D are defined by
W (d) = p(d)Lgep=,

where D* = D*(D) are the standard support sets

T={p1-p:D>pi > >p, and py-- pi_yp} < D for each odd I < r}, o
D ={pi---p,:D?>p1>...2p,, and p;--- pj_1p; < D for each even [ < r}.
We may also write D) to denote Dt or D~, when r is even or odd, respectively.
Observe that both sets satisfy the containment D* (D) c D¥!'(D), where
DYl =(py---p, DY >p>...>p,and p;--- pi_1p; < D foreach [ <r}). (3-2)

We shall return to this observation later in the section.

Maynard [2020] deduces Corollary 2.7 for AT from the general Theorem 2.5 by means of the following
key result [loc. cit., Proposition 9.1] (along with a construction of Iwaniec we shall address in later
sections), which programmably factorizes elements of the support D

Proposition 3.1 [Maynard 2020]. Let 0 < § < 1073 and let D = x7/12*505, N € [x2, x1/343/2) Then
every d € DT (D) has a factorization d = dyd»d5 such that dy < Nx~% and

N%dydi < x'7°,  N%did3d; <x*°, Ndidydi < x*°. (3-3)

Remark 3.2. The level x”/1? is sharp in this construction. Indeed, heuristically speaking, the linear sieve
weights are not programmably factorable of level D = x7/1>*7 for any 5 > 0, because the support set con-
tains obstructing (families of) elements d € D+ (D) of the form d = p; - - - p, where p; ~ - - -~ pg~ D'/,
or where p; &~ py &~ D*7 and p3 ~ p4 ~ D'/7. This heuristic description of the obstructions is made
precise by the families Py, Pg (in (3-6) below), and thereby tells us how we should restrict the support set
in order to increase the level (namely, to D* in (3-5) below).

For n > 0, level D = x"/12%7_ we define the modified weights 1* = Ay,

2 (d) = n(d)1gepr, (3-4)
for the support set D*,

D* =D """ Ulpr--p, €D i py - pi @ P i <1y i € {4, 6)). (3-5)
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Here P4 and P = Ps.1 U Pg 2 are exceptional subsets of DT (7124 given by

Pa={pi--pa:p1 <x/ and pyps > x4},

Po.i = {p1--pe: p1p2 <x and pyp3ps > x4 and pg > x1/1275), (3-6)

Po2={p1--ps: p1. pap3 < x'/°**" and pipy, papsps > x4 and ps > x'/12731).

The modified support set D* = Dy is understood to depend on 1 > 0 (as do P4, Pe), but we will
suppress this for notational convenience.
In this section, we establish a programmable factorization of the elements of the support D* provided

10/17,

D <x e, n < 20 7 This will serve as the key technical input for the proof of Theorem 2.12.

Proposition 3.3 (factorization of elements of D*). Let 0 < 8 < 107, and take 0 < n < 204 — 36 and
N e [x%, x1/378/2], Ifd € D* for D = x1/1240=308 then we may factor d = didyds such that dy < Nx—%
and

N%dydi < x'7°,  N%did3d; <x*7°, Ndidydi < x*°. (3-7)

On the first attempt working through technicalities, we encourage the reader to set § = 0 in order to
better view the key features.
Before proving the proposition, we need some lemmas. The first gives a general-purpose criterion to

factor an integer d.

Lemma 3.4. Let D = x/124t1=50 Jor —gr <n < 60 A factorization d = d\d,d; satisfies (3-7), provided
di, do, ds > 1 satisfy

dy € [xV/6F2 xVA=3m gy < Nx~° and d3 < D/Ndo. (3-8)

Proof. By (3-8), Nd; < D/d, and so
N2d, dz < D?/dy < x2T/120=508)=(1/6+2m) _ 18

’

’

2a'1d d <D < 3(7/12+r7—508)+(1/4—3;7):x -5
<

207/1247=508)+3(1/4=3n) _ 23/12=Tn—1005 _ ,2—8

Nd\djd; < D*d3 ,
using n € ( 3 60) This gives (3-7). O
The above criterion implies factorizations in the following special cases.

Lemma 3.5. Let D = x /1271750 oy < %. Forr >4, let x'/%721 > py > ... > p, be primes for which
d = py---p, € DY(D). Suppose d, is one of the subproducts in {pi p4, p2p3, PP, p2p3ps}. Then d
has a factorization d = d\d,d; satisfying (3-7), provided

dy € [x /6421 1/4=3n]

Proof. Let C = D/Nd; and note either p; < N or p; < C, since

p% < D3 = y2BON1241-508) _ (1/3+41-505 < 1y 10 — NC.
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As the base case r = 4, by Lemma 3.4 it suffices for each b to

We proceed by induction on r > 4.
< N, d; < C. Indeed, this holds when d, = p, p3 ps since p% < AC,

factor p; - - - ps/dy = dids for d;
and similarly:

,d3

NC/p; implies p| p3 = dids for some di < N
NC/p, implies p,p3 = dids for some dj < N, d3z

o If d) = pyp4 then pZ < D/pipa2p3

<
<

NN N

2

2< c.
e If d) = p1 p4 then p%éD/plpzm C.

2

i < C.

e If d, = pyp3 then p D/p1p2p3 < NC/p; implies p| ps = dids for some dy < N, d3

Now for r > 5, we inductively assume a factorization p; - - - p,—1 = didrds withd; < N, d3 < C. Then
pr <D/p1---pr—1 = NC/(ac) so either d|p, < N or dzp, < C, extending the factorization. Hence
Lemma 3.4 applies again, and completes the proof. (I

Finally, if the primes dividing d are small enough, we may use the greedy algorithm to factor d as
follows.

Lemma 3.6. Let D = x"/12+1730 oy < %. Forr >4, let x'/%T21 > py > ... > p, be primes for which
d=pi---p, € DN(D), and ps < x> if r > 6. Then d has a factorization d = abc satisfying (3-7),
provided there is a factorization p| p p3 ps = didyd; satisfying

dl < Nx—(s, d3 < xl—za/DN, d2 DZ/xl —38 _x1/6+217+38 (3_9)

Proof. Let D| = Nx~% D, = D2/x1_3‘3, D; = x1_25/(DN), so that d; < D; by assumption.

We now greedily append primes to d; while preserving d; < D; for all i, i.e., where at the j-th step we
replace d; — d;p; (for one of i =1, 2, 3) provided d; p; < D;. Starting from j =5, we stop either when
we have exhausted all primes (i.e., j =r), ord; p; > D; for eachi =1, 2, 3. In the former case, we have
the desired did,ds =d = p1--- p, and d; < D; so we easily get

= Nx_‘s,
N’D,D3 =x'7°,

< x5~(3/5)7172458 < x276
ND]DSD% — D8x—3+108 < xS-(3/5)—3—3908 < x2—8.

9’

Thus d1dxd; =d = p; - - - p, gives the desired factorization.
In the latter case, there exists a terminal index j < r for which d;p; > D; foralli =1, 2, 3. Note if j
is odd, then d; p; < D; for some i, since
D _ DiD:Ds
pi---pj-1 didods

P} <

So the terminal j is even with j > 6. By assumption p; < ps < x /12757 js smaller than the width of
the interval [x!/6¥27 x1/4=31] And since d» < Dy = x'/%72" < d, p;, we deduce e, := d, p; lies in the
interval ey € [x1/6+2n x1/4=3n],
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Thus letting E3 := Dy Ds3/e;, for each [ > j in turn we shall greedily append the prime p; onto either
d; or d3 while preserving d; < Dy and d3 < E3. Indeed, for all [ > j,

) D D\D,D; D\E;3
pr < = < ,
pr---pi—1  didadspj---pi—1  didspjyrcc pi-a

so there is a factorization eje3 =dd3pjy1--- py withey < Dy =N and e3 < E3 = D/(Aezxza). Hence
the result now follows by Lemma 3.4 for the factorization ejeze3 = didodspj---pr=p1--- pi. |

Proof of Proposition 3.3. We shall consider 3 cases, depending on the sizes of p; and p, p3 compared to
the endpoints of the key interval [x!/6+27 x1/4=3n],

Casel (p; > D2/x —x1/6+2’7) Let dz :=p1, C:=D/Nd>. Note C = D/Nd> > D**/N > 1.

Next D > p1 = p1p2 implies p2 D/p1 = NC, so either pp < N or p, < C. Similarly, since
pL-Pj— 1pj.<Df0ra11]<r wegetpj<AC/(p2 - pj—1) for 3 < j <r. As such, we may factor
p2---pr=dids fordy < N,d; < C. Hence by Lemma 3.4 p;--- p, = d1d2d3 satisfies (3-7).

In the remaining cases, we assume p| < xl/6+2n, By Lemma 3.5, it remains to consider p; p3 > x1/4=3n

or prp3 < x/6+21 Note

1/3 _ _
Paps < Pl/ (p1pzp§)l/3 < (VO 13 p1/3 = (1/3A/6+T/12+430-500) _ (1/4+0—165 (3-10)

Case 2 (pop3 > x'/473" and p; < x!/6+27). The proof follows by Lemma 3.5 if py p4 € [x /6427 x1/4=3n],
Thus by definition of P4, in this case we may assume

paps < x'/0F2, (3-11)

129+508

Hence we have ps < x , since

p2> pa(p1pap3)/D > (pap3)’ /D > x> WD p = x 1/6-1004303, (3-12)

If pips > x1/6+2’7 then the proof follows by Lemma 3.5 where dy = p| p4 is < x(1/6+2m+12n+305
204 — 3.

Else p1ps < x1/6+2n We shall apply Lemma 3.6 with dy = pj pa.

If either Nx % or xl_%/DN is greater than x1/4+n—165 p2p3, by (3-10), then Lemma 3.6 com-
pletes the proof with (di, d3) = (pap3, 1) or (1, pap3), respectively. Otherwise, Nx %, x!=2) /DN e
[x1/6=21—645 y1/44n=163] qince x /D = x>/12=1+3% But then, using n <

x /4730 since n <

1
108>
max(Nx 2, x'=2 /DN) > (x!72 ) D)1/2 = x(5/D/12-0/24245 _ (1/642n )

(3-13)
min(Nx_s, x1—28/DN) > x1/6—2)7—645 > x1/8+7’[/2—85 2 (p2p3)1/2 2 p3’

129+508

by (3-10), which suffices again for Lemma 3.6. Note ps < x < x!/12-57 when r > 6, using

1
N < 35 — 39.

Case 3 (pop3 < x'/6F21 and p; < x/6+21). By Lemma 3.5, it suffices to consider either p| psy < x /621
or pyps > x/473n,
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Subcase 3.1 (p; ps < x'/6+27). Suppose we can show pg < x!/1275" (when r > 6). Then since x! 3% /D >
D*/x>7% either Nx~% or x!=2% /DN is greater than D?/x'~3. Thus Lemma 3.6 will complete the proof,
with (d1, d2, d3) = (p1pa, p2p3, 1) or (1, p2p3, p1pa).

If p1p3 > x'/473" then in this subcase

1/12—5n
9

PiD3
M S (pap) = py = i
4

> p4x

so ps < x7. Hence ps < ps < x'/1275 since n < which completes the proof.

108’
Else pip3 < x'/4737. By Lemma 3.5, it suffices p;p3 < x!/6+27. Then we see p3 > x!'/12757 implies

p1 < x Y120 If further pypr > x'/4737, then similarly

pP1p2 _
K112+ P pr=pa > p3x1/12 57;’
pP1P3

so p3 < x!21. Hence pg < p3 < x/1275 since n < which completes the proof.

1/6427

204’
Else pips < x'/4731. By Lemma 3.5, we may assume p;p; < X

Similarly, suppose psp3ps < x/473". By Lemma 3.5 we may assume psp3p4 < x'/6+27 and so

< (papspa)P < x@INZHQIN < (1/12-5n

using n < which completes the proof.

204 ’

Thus we may assume pyp3ps > x'/473. But unless pg < x!/127"  this subcase will contradict the
definition of Pg 1 in (3-6), hence completing the proof.

Subcase 3.2 (p; p4 > x VA3 I dy, = P2pP3ps < x1/6+21 then Lemma 3.6 completes the proof with
(dy,d3) = (p1, 1) or (1, p1), since

< (papapa)'? < xUDA/6+2m) < (171251

for n < ﬁ. And if pyp3ps € [x1/6+2n x1/4=3n] the proof follows by Lemma 3.5.

Else pap3ps > x'/473 Note py < x'/127" and p; = p1pa/ps > x/7*" and prp3ps < x'/430. Also
note we may factor p;ps =dd; fordy < N, dz < x!= 2‘S/DN (Indeed this follows if N or x'~ 2‘S/DN
exceeds x'/413 > py ps. Else N, x' 72 /DN e [x/6—41=28  x1/4431] which also works similarly as with
(3-13), since py < x /1241 < x1/6=401=28 and p; < x1/6+21 < x1/26/12=0=8) by < %.)

If further pg > x /12751 then this subcase contradicts the definition of Ps.2 in (3-6). Hence we have
pe < x/1275% and so by the above paragraph Lemma 3.6 completes the proof with d» = ps p3.

Combining all cases completes the proof of Proposition 3.3. O

3.1. Refined factorization of D™ Proposition 3.3 (programmably) factorizes each d e D* C DT (x7/12+7),
and forms the key step to prove the weights A* are programmably factorable. With applications in
mind to twin primes, we shall similarly (programmably) factorize certain subsets of the well-factorable
support D¥!l, as in (3-2).



A modification of the linear sieve, and the count of twin primes 15

477 x3/3), depending on

In the following result, we factorize d € DYel(D) for variable level D € (x
the anatomy of d. As D* C D", this has implications to both upper and lower bounds for the standard

linear sieve.

Proposition 3.7. Ler DV''(D) as in (3-2) for D = x7/1241730 gpg — L <y < go — 308. Let x /A3 >
PL > ... > p, be primes for whichd = py - - - p, € D¥(D). Then d has factorlzatlon d = abc satisfying
(3-7) if p3 < xV/1275 or if

dy € [x /T2 VAN svith dy | prpaps, da # pa.

Proof. Fori =1, 2, 3, suppose d = p; - - - p; lies [x1/6+2n x1/4=3n] and let A= Nx—%, C = x‘SD/Ndz.
Since p; - --pj_lp? < Dforalli < j<r, we get p? < AC/(pig1---pj—1) fori < j <r. As such, we
may factor p;j41--- p, =dids for dy < A,d; < C. Hence by Lemma 3.4 p;--- p, = didrds satisfies
(3-7).

Else, by assumption p; < x!/® 737 50 we may assume further p; < x!/©+21_In particular this gives

pf < D/d,. For the remaining d> | p1 p2 p3:

e If dy = pap3 then p7 < D/dy = AC implies py < Aor p; < C.

NN

2
<
e If d = p p3 then p% < D/dy = AC implies py < Aor p, <C.

o If d) = p; then p% < D/p1d, implies a factorization p; p3 =dids ford; < A,ds < C.

For each d, above, we factored py p p3 =ddrdz fordy < A,d3; <C. Since py--- pj_ 1p2- < Dforall j<r,
by induction we may factor p; --- p, =didydsz ford; < A,d; < C. By Lemma 3.4 py--- p, =ddyds
satisfies (3-7).

Finally, suppose p3 < x!/1277 is less than the width of the interval [x!/627 x!/4=37]  Since
p1 < x1/6+21 we have p; p3 < x!/4737 50 by the above argument we may assume d; := p p3 < x'/6+21,

Then p2 D1 p2 < D implies

1738
p% < x@DTN2N) -\ 5/12-0+475 _ ’
D
since n < 60 —308. Thus p; < Nx~% or P2 < xl_z‘s/DN, so there is a factorization pj pr p3 = didad;
satisfying (3-9). Hence the same greedy argument as in Lemma 3.6 completes the proof, with p3 playing

the role of pg. O

Taking the maximum valid 1 as above, we may reexpress the above factorization of level x?, § = % +n,
as follows. Note the maximum 6 for which ¢ € [é +2n, % — 317] is given by

0(1) = (3-14)

2— 1
= >3
1+t 1
o 1ft<5.

Similarly the maximum 6 = 5 + 7 for which t < ;5 —Snis £(3 —1).
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Corollary 3.8. Let p; > ... > p, be primes and write p; = x". Ifd = py - -- p, € DN (x?75%) then
there is a factorization d = dd»d3 satisfying (3-7) provided

0 < 0(t),
for O(t) as in (3-14). Moreover if t; < %, then it suffices that

3—1

60 <O(t,n,t3) := max{ ,0(11),0(1),0(t1 +tr+13),0(t1 +1),0(t1 +13),0(t +l‘3)}. (3-15)

4. Modification of the linear sieve

In this section we shall bound the modified linear sieve, analogous to the bounds for the linear sieve
(sometimes called the Jurkat—Richert theorem). This bound will form the basis for our final result in the

next section, in which we modify the construction of Iwaniec’s weights.

Proposition 4.1. Let ¢ > 0 be sufficiently small. For n < ﬁ, the modified weights A* as in (3-4) of level
D = x7/12H0=¢ satisfy

S(A, 2) < |A|V(z)<F*(log—D) +0(1)) + Y A Dra),

logz d| P(z)
where F* = F ' is a function satisfying F*(s) = F(s) + O () for F as in (2-5).

Remark 4.2. It suffices for our purposes to obtain qualitative error o(1) in the factor accompanying F*.
Though as with the Jurkat—Richert theorem, with greater care one should obtain a quantitative refinement,
e.g., O((log D)~1/9); see (12.4)—(12.8) in [Friedlander and Iwaniec 2010].

We now adapt the proof. Let D = x"12t0 and Dy = x7/12. Forn > 1, primes p; = ... = pp, if
p1- -+ pn € DT(D) then there exists a minimal index / < n such that p; - - - p; ¢ DT (D). By definition
such minimal / is odd. (Explicitly, this occurs when p; --- p;_| P13 > Dbut p;-- pu_i pfn < D for all
odd m < 1.) Similarly, if p; - - - p,, ¢ D* there exists a minimal index / < n such that p; - - - p; ¢ D*, which
is also odd.

Indeed, to show this let / < n be the minimal index such that py --- p; ¢ D*. If (p1, ..., p;) ¢ P; for all
j <1, j €{4,6}, then clearly / > j must be odd, as with D" (D). On the other hand, if (pi, ..., p;) € P;
for some j <1, j € {4, 6}, a priori one might expect / could be even. However, the key point in this case
is that py --- pj € DT(Dy) C D* (since p; -+ p; ~ D’ by definition of P;). Thus / > j is the minimal
index such that p; - -- p; ¢ DV (Dy), and hence must be odd as claimed.

Using this minimal index, we show the following lemma.

Lemma 4.3. Let h be a multiplicative function with 0 < h(p) < 1 for all primes p. Then we have

[ -np) <D 1 @h@.

pln d|n
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Proof. Note if h = 1 identically, we interpret the product as 1,—;. Now by definition,

> k)~ [ [ =hp) =D wdhd) =Y udhd)=— Y udh(d).
d|n pln d|n d|n d|n
deD* d¢D*

Then splitting up d ¢ D* by its minimal index,

=D n@hd =) > hpi--p) Y, ubhbd) =0,

d|n odd! pr<:<p1<z pi--pibln
d¢D* pi-pi-1€D* b| P(pr)
p1--pi¢D*
since & > 0 and the inner sum over b factors as ]_[p |(P(p1) n)(l —h(p)) =20, since h(p) < 1. O

By Lemma 4.3 with h(d) = 1, we have

L1 < Y A% (), (4-1)

d|n

in which case we obtain

SAP.=Y lapey=1 <Y, > M= > rd|Al

neA neAd|(n,P(z)) d| P(z)

(4-2)
=X Z A (d)g(d) + Z A (d)ra(d) =:XV*(D,z)+ R%(D, 2).
d| P(2) d|P(2)
Following Lemma 4.3 with & = g, we have the identity

VID. = ) pdsd=V@+Y, D gpr Ve, (4-3)

d|P(z) odd n Pn<-<p1<z

deD* Pl pn—1€D*

Pl"'Pn¢D*

and similarly

VID,=V@+Y, Y. gpi-pd)Vp)=V@+ ) Va(D,2).  (4-4)

oddn Pn<<p1<z odd n
pr-pa1€DT(D)

p1--pugDT (D)

Then the difference of V* and V1 is

VAD. -V =Y Y g p)V(pnA, 4-5)

oddn pn<--<p1<z

where A is the difference of indicator functions,

A=1prpgrt =1 ppgpro) =lppepronor =1 propeprm)
pr-pn-1€D p1---pn_1€DT(D) p1-pn—1€D* p1-Pu—1€EDT(D)\D*
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recalling D* C DT (D). Note if a point is (py, ..., ps) € Pe then its projection is (p1, ..., ps) ¢ Ps. So
by definitions of D*, DT (D) from (3-5), (3-1), for odd n we have the identities

Lypeprone = ) Lprepper; -1, PnEDH (D\D* (D) (4-6)
P11 Pn—1€D* je(4,6} p1-+-pn—1€DT (Do)
j<n
L ppgD (D) Z Lpr.ppep; -1 p1pn#DT (D) : 4-7)
pr-pu—1