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A modification of the linear sieve,
and the count of twin primes

Jared Duker Lichtman

We introduce a modification of the linear sieve whose weights satisfy strong factorization properties, and
consequently equidistribute primes up to size x in arithmetic progressions to moduli up to x10/17. This
surpasses the level of distribution x4/7 with the linear sieve weights from well-known work of Bombieri,
Friedlander, and Iwaniec, and which was recently extended to x7/12 by Maynard. As an application, we
obtain a new upper bound on the count of twin primes. Our method simplifies the 2004 argument of
Wu, and gives the largest percentage improvement since the 1986 bound of Bombieri, Friedlander, and
Iwaniec.

1. Introduction

Given a finite set A of positive integers, sieve methods offer a broad framework for estimating the number
of elements in A all whose prime factors exceed z, denoted by S(A, z), in terms of the approximate
density gA(d) = g(d) of multiples of d in A, denoted by Ad . Note one often expects

S(A, z) ≈ |A|

∏
p<z

(1 − g(p)).

Combinatorial sieves may be viewed as refinements of the basic inclusion-exclusion principle, and are
described by a sequence of weights λ(d) ∈ {−1, 0, 1} supported on integers up to some level D ⩾ 1. We
refer the reader to Opera de Cribro [Friedlander and Iwaniec 2010] for a more thorough introduction to
the subject.

In particular, the upper bound weights λ+(d) for the linear sieve satisfy

S(A, z) ⩽ |A|

∏
p<z

(1 − g(p))

(
F

(
log D
log z

)
+ o(1)

)
+

∑
d⩽D

p | d⇒p<z

λ+(d)(|Ad | − |A|g(d)) (1-1)

as D → ∞, provided g = gA satisfies some mild conditions. Here the function F : R⩾1 → R⩾1 is
defined by a delay-differential equation, as in (2-5). For sets A sufficiently equidistributed in arithmetic
progressions the second sum over d ⩽ D in (1-1) contributes negligibly, in which case the main term is

S(A, z) ≲ |A|

∏
p<z

(1 − g(p))F(s),

MSC2020: primary 11N35, 11N36; secondary 11N05.
Keywords: linear sieve, well-factorable weights, level of distribution, switching principle, Buchstab identity.

© 2025 The Author, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://msp.org/ant/
https://doi.org/10.2140/ant.2025.19-1
https://doi.org/10.2140/ant.2025.19.1
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


2 Jared Duker Lichtman

where z = D1/s . In fact, F(s) → 1 as s → ∞ so the main term confirms the naïve expectation in this
case. Moreover, F is optimal in the sense that the bound (1-1) is attained sharply for a particular set A.

We introduce this sieve theory setup more formally in Section 2.2 below, and define the sieve weights λ+

explicitly in Section 3; see [Friedlander and Iwaniec 2010, Section 12] for further details on the linear
sieve (β = 2), as well as [loc. cit., Section 11] for its generalization to the β-sieve.

The linear sieve is powerful when combined with equidistribution estimates which make the final sum
in (1-1) small. For example, the Bombieri–Vinogradov theorem shows that for every ε, A > 0, letting
Q = x1/2−ε we have ∑

q⩽Q

sup
(a,q)=1

∣∣∣∣π(x; q, a) −
π(x)

ϕ(q)

∣∣∣∣ ≪ε,A
x

(log x)A . (1-2)

So by taking D = Q, (1-1) can give a good upper bound when the set A is related to the primes, such as
when A = {p + 2 : p ⩽ x}, in which case (1-1) gives an upper bound for the count of twin primes.

The estimate (1-2) may be viewed as an assertion of the generalized Riemann hypothesis on average
over moduli up to Q = x1/2−ε. It remains an important open problem to extend the range to Q = x1/2+δ

for some fixed δ > 0. Indeed, Elliott and Halberstam [1970] conjectured such an extension up to Q = x1−ε

for any ε > 0.
In some contexts it suffices to relax the setup in (1-2) in order to raise the level of distribution. In

particular, in the case of a fixed residue class a ∈ Z, and the absolute values replaced by well-factorable
weights λ(q) (see Definition 2.1), the celebrated result of Bombieri, Friedlander and Iwaniec [Bombieri
et al. 1986] raised the level up to Q = x4/7−ε,∑

q⩽Q
(q,a)=1

λ(q)

(
π(x; q, a) −

π(x)

ϕ(q)

)
≪a,A,ε

x
(log x)A . (1-3)

While the linear sieve weights are not themselves well-factorable, Iwaniec [1980] constructed a well-
factorable variant λ̃+ of the weights λ+ (and so (1-3) holds with λ = λ̃+), which are only slightly altered
from λ+ so that λ̃+ enjoys an analogous linear sieve bound as in (1-1), notably with an identical form of
the main term,

S(A, z) ⩽ |A|

∏
p<z

(1 − g(p))

(
F

(
log D
log z

)
+ o(1)

)
+

∑
d⩽D

p | d⇒p<z

λ̃+(d)(|Ad | − |A|g(d)). (1-4)

The bound (1-3) stood for several decades, but quite recently Maynard [2020] managed to extend
the level in (1-3) further to Q = x7/12−ε in the case of the weights λ = λ̃+. Given the currently
available equidistribution estimates for primes, we note the level x7/12 is a natural barrier for these
weights.

In this article, we modify the technical construction of the linear sieve weights to avoid this barrier,
and thereby produce new sieve weights that induce stronger equidistribution estimates for primes.
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Theorem 1.1. Let D = x10/17−ε. There exists a sequence λ̃∗(d) ∈ {−1, 0, 1} satisfying:

(1) Equidistribution for primes: For any fixed a ∈ Z, A, ε > 0, we have

∑
d⩽D

(d,a)=1

λ̃∗(d)

(
π(x; d, a) −

π(x)

ϕ(d)

)
≪a,A,ε

x
(log x)A .

(2) Sieve upper bound: For s ⩾ 1, z = D1/s , we have

S(A, z) ⩽ |A|

∏
p<z

(1 − g(p))(F∗(s) + o(1)) +

∑
d⩽D

p | d⇒p<z

λ̃∗(d)(|Ad | − |A|g(d)),

where F∗(s) ⩽ 1.000081F(s) when 1 ⩽ s ⩽ 3, for the linear sieve function F as in (2-5).

The key feature of Theorem 1.1 is to obtain equidistribution up to level x10/17 at the cost of only a tiny
loss in the main term. See Theorem 2.12 and Proposition 5.4 for full technical statements and additional
variations that may be of independent interest.

1.1. Application to twin primes. We expect that Theorem 1.1 should give numerous improvements to
sieve bounds related to the primes. As proof of concept in this direction, we give a new upper bound for
the count of twin primes up to x , denoted by π2(x). Recall Hardy and Littlewood [1923] conjectured the
asymptotic formula

π2(x) ∼
2x

(log x)2

∏
p>2

1 − 2/p
(1 − 1/p)2 =: 5(x). (1-5)

Theorem 1.2. As x tends to infinity, we have

π2(x) ≲ 3.299565(x).

Theorem 1.2 gives a 2.94% refinement from the previous record bound of Wu [2004]. For reference,
this gives the largest percentage improvement since the work of Bombieri, Friedlander, and Iwaniec
[1986]. See Table 1 for a chronology of the known upper bounds on π2(x)/5(x). Also see Siebert
[1976], Riesel and Vaughan [1983, Lemma 5] for numerically explicit forms of Selberg’s bound [1952].

The main ingredients for these results come from applying sieve bounds to the set A = {p +2 : p ⩽ x},
and using equidistribution of primes in arithmetic progressions to handle remainder terms. Bombieri
and Davenport obtained π2(x)/5(x) ≲ 4 as a consequence of the Bombieri–Vinogradov theorem (1-2)
and a standard sieve upper bound of level x1/2−ε. More generally, if one proves level of distribution
xθ−ε then one immediately obtains π2(x)/5(x) ≲ 2/θ . Bombieri, Friedlander and Iwaniec proved
π2(x)/5(x) ≲ 7

2 by the well-factorable variant (1-3) level of distribution x4/7−ε, together with the linear
sieve with well-factorable remainder (1-4).
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Year Author(s) π2(x)/5(x) ≲

1919 Brun [1919] O(1)
1947 Selberg [1952] 8
1964 Pan [1964] 6
1966 Bombieri and Davenport [1966] 4
1978 Chen [1978] 3.9171
1983 Fouvry and Iwaniec [1983] 3.7777 · · · = 34/9
1984 Fouvry [1984] 3.7647 · · · = 64/17
1986 Bombieri, Friedlander and Iwaniec [1986] 3.5
1986 Fouvry and Grupp [1986] 3.454
1990 Wu [1990] 3.418
2003 Cai and Lu [2003] 3.406
2004 Wu [2004] 3.39951

Table 1. Upper bounds for π2(x)/5(x).

The other key ingredient to subsequent improvements is the switching principle, introduced in Chen’s
celebrated result [1973] that there are infinitely many primes p such that p + 2 has at most two prime
factors. The basic insight is to use a weighted sieve inequality to split the problem into multiple cases,
apply sieve bounds to A = {p + 2 : p ⩽ x} in certain cases, and then reinterpret the remaining cases as
new sieving problems for switched sets B = {m − 2 ⩽ x} where the numbers m are constructed from A
(as prescribed depending on the case).

1.2. Outline of main ideas in Theorem 1.1. Maynard’s new equidistribution results show equidistribution
of the primes with sieve weights λ̃+(d), provided d = p1 · · · pr is restricted to suitably well-factorable
integers. Unfortunately, the original linear sieve weights only partially satisfy these well-factorable
conditions. In particular for η > 0, when looking at the linear sieve of level x7/12+η, some integers d in
its support do not satisfy the conditions, which means that x7/12 is the limit for the linear sieve given our
current equidistribution technology. Nevertheless, the key observation here is that only a few exceptional d
fail to satisfy these conditions. Moreover up to level x10/17, i.e., η < 1

204 , the anatomy of exceptional d
may be precisely characterized in terms of η (given specifically as P4, P6 in (3-6)). In particular, as η > 0
grows the family of exceptional integers contribute O(η5) to the sieve bound. However, we note this
characterization breaks down when η ⩾ 1

204 , and the contribution becomes considerably larger and more
complicated.

As such we carefully revise the construction of the linear sieve, altering a few particular inclusion-
exclusion steps in order to avoid the exceptional integers d with bad factorizations. Once these terms no
longer contribute to the sieve, this produces a worse and more complicated main term, but since there are
only a very small number of such terms the resulting loss is small. And since these modified weights
now satisfy stronger factorization properties in their support, we can now leverage the full strength of
Maynard’s equidistribution results.
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Notation

We use the Vinogradov ≪ and ≫ asymptotic notation, and the big oh O( · ) and o( · ) asymptotic notation.
We use f ∼ g, f ≲ g, and f ≳ g to denote f = (1 + o(1))g, f ⩽ (1 + o(1))g, and f ⩾ (1 + o(1))g,
respectively. Dependence on a parameter will be denoted by a subscript.

The letter p will always be reserved to denote a prime number, π(x) is the prime counting function,
and π(x; d, a) is the count of primes up to x congruent to a (mod d). We use ϕ to denote the Euler totient
function, µ the Möbius function, and e(x) := e2π i x the complex exponential. We use 1 to denote the
indicator function of a statement. For example, for a set A denote

1a∈A =

{
1, if a ∈ A,

0, else,
1a0 /∈A

a1,...,ai ∈A =

{
1, if a1, . . . , ai ∈ A and a0 /∈ A,

0, else.

Finally, we refer to various sieve weights referred places throughout the article, so we take a moment
to list them here:

We generically write λ to denote a sequence of weights in {0, ±1}. In particular, λ+ and λ− refer to
the (upper and lower bound) weights of the linear sieve, given by restrictions of the Möbius function,
λ±(d) = µ(d)1d∈D± . Analogously, the modified (upper bound) linear sieve weights λ∗ are given by
λ∗(d) = µ(d)1d∈D∗ . Here the support sets D± and D∗ are defined in (3-1) and (3-5). We also write λ(r)

to refer to the weights λ+ or λ− (and D(r) to refer to D+ or D−), depending on whether r is odd or even.
The well-factorable weights λ̃± are defined in (5-17). Following Iwaniec, this construction involves

certain auxiliary weights at intermediate steps, namely, λ(D1,...,Dr ) defined in (5-14), and λ
(r)
(D1,...,Dr )

=

λ(D1,...,Dr ) ∗λ(r) defined in (5-15). The analogous construction starting from λ∗ gives modified weights λ̃∗,
defined in (5-16).

2. Technical setup and results

2.1. Factorization of weights and their level of distribution.

Definition 2.1 (well-factorable). Let Q ∈ R⩾1. A sequence λ(q) is well-factorable of level Q, if for every
factorization Q = Q1 Q2 into Q1, Q2 ∈ R⩾1, there exist sequences γ1, γ2 such that:

(1) |γ1(q1)|, |γ2(q2)| ⩽ 1 for all q1, q2 ∈ N.

(2) γi (q) = 0 if q /∈ [1, Qi ] for i = 1, 2.

(3) We have λ = γ1 ∗ γ2, i.e.,

λ(q) =

∑
q=q1q2

γ1(q1)γ2(q2).

Bombieri, Friedlander and Iwaniec [1986, Theorem 10] established level of distribution x4/7−ε with
well-factorable weights.
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Theorem 2.2 [Bombieri et al. 1986]. Fix any a ∈ Z and let A, ε > 0. For any well-factorable sequence λ

of level Q ⩽ x4/7−ε, we have∑
q⩽Q

(q,a)=1

λ(q)

(
π(x; q, a) −

π(x)

ϕ(q)

)
≪a,A,ε

x
(log x)A .

Maynard [2020] considered a natural strengthening of well-factorable sequences.

Definition 2.3 (triply well-factorable). Let Q ∈ R⩾1. A sequence λ(q) is triply well-factorable of level Q,
if for every factorization Q = Q1 Q2 Q3 into Q1, Q2, Q3 ∈ R⩾1, there exist sequences γ1, γ2, γ3 such
that:

(1) |γ1(q1)|, |γ2(q2)|, |γ3(q3)| ⩽ 1 for all q1, q2, q3 ∈ N.

(2) γi (q) = 0 if q /∈ [1, Qi ] for i = 1, 2, 3.

(3) We have λ = γ1 ∗ γ2 ∗ γ3, i.e.,

λ(q) =

∑
q=q1q2q3

γ1(q1)γ2(q2)γ3(q3).

The definitions of well-factorable and triply well-factorable sequences are quite natural and relatively
simple from a conceptual standpoint. Maynard [2020, Theorem 1.1] obtains powerful equidistribution
results for triply well-factorability that are beyond the scope of well-factorability. Unfortunately, triply
well-factorability is too restrictive a condition for us to produce Theorem 1.1. As such we are forced to
identify the precise mechanism that enables Maynard’s equidistribution results, and extract the following
technical definition that is implicit in [Maynard 2020].1

Definition 2.4 (programmably factorable). Let 0 < δ < 10−5. For x ∈ R>1, a sequence λ(q) is
programmably factorable of level Q (relative to x , δ), if for every N ∈ [x2δ, x1/3+δ/2

] there exists a
factorization Q = Q1 Q2 Q3 with Q1, Q2, Q3 ∈ R⩾1, satisfying the system

Q1 ⩽ N x−δ,

N 2 Q2 Q2
3 ⩽ x1−δ,

N 2 Q1 Q4
2 Q3

3 ⩽ x2−δ,

N Q1 Q5
2 Q2

3 ⩽ x2−δ.

(2-1)

And for every such factorization Q = Q1 Q2 Q3 there exist sequences γ1, γ2, γ3 such that:

(1) |γ1(q1)|, |γ2(q2)|, |γ3(q3)| ⩽ 1 for all q1, q2, q3 ∈ N.

(2) γi (q) = 0 if q /∈ [1, Qi ] for i = 1, 2, 3.

1Indeed, the definition of programmably factorable in the special case Q3 = 1 gives the implicit condition (which is implied
by well-factorable) that enables Bombieri, Friedlander and Iwaniec to get equidistribution (1-3); also see Lemma 5 in [Fouvry
and Grupp 1986].
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(3) We have λ = γ1 ∗ γ2 ∗ γ3, i.e.,

λ(q) =

∑
q=q1q2q3

γ1(q1)γ2(q2)γ3(q3).

Programmable factorability is the key technical definition in this article. It is named in allusion to the
linear programming-type system of inequalities (2-1) that the factors satisfy. The diagram below displays
the various implications among the definitions:

λ is triply well-factorable of level Q +3

��

λ is well-factorable of level Q

λ is programmably factorable of level Q (relative to x , δ)

In the key result [Maynard 2020, Theorem 1.1], Maynard extended the level of distribution up to
Q < x3/5 for programmably factorable weights. Note that level x3/5 is the natural barrier for (2-1) to
admit a solution.

Theorem 2.5 [Maynard 2020]. Fix any a ∈ Z and let A, ε > 0. For any programmably factorable sequence
λ of level Q ⩽ x3/5−ε (relative to x , ε/50), we have∑

q⩽Q
(q,a)=1

λ(q)

(
π(x; q, a) −

π(x)

ϕ(q)

)
≪a,A,ε

x
(log x)A .

Remark 2.6. Theorem 1.1 in [Maynard 2020] was stated for triply factorable sequences, but its proof in
fact gives the result for programmably factorable sequences.

Note the weights λ̃+ are composed of well-factorable — but not necessarily programmably factorable —
sequences of given level D. Nevertheless, Maynard showed the upper bound weights λ̃+ of sieve level
D = x7/12−ε are programmably factorable of level D ⩽ Q = x3/5−ε (relative to x , ε/50). By Theorem 2.5
this gives [Maynard 2020, Theorem 1.2] below.

Corollary 2.7 [Maynard 2020]. For any fixed a ∈ Z and A, ε > 0, the weights λ̃+ from (2-4) of sieve level
D = x7/12−ε satisfy ∑

d⩽D
(d,a)=1

λ̃+(d)

(
π(x; d, a) −

π(x)

ϕ(d)

)
≪a,A,ε

x
(log x)A .

Later, in Proposition 5.4, we shall obtain technical improvements of Corollary 2.7 for Iwaniec’s
weights λ̃± (both upper and lower), in special cases where equidistribution is restricted to moduli which
are smooth, or otherwise amenable to programmable factorization.

We may summarize the definitions and results of the section up to this point as follows:

λ is triply well-factorable of level Q:

• Equidistributed for Q < x3/5.

• Can take λ = λ̃+ for D ⩽ Q2/3.
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λ is well-factorable of level Q:

• Equidistributed for Q < x4/7.

• Can take λ = λ̃+ for D ⩽ Q.

λ is programmably factorable of level Q (relative to x , δ):

• Equidistributed for Q < x3/5.

• Can take λ = λ̃+ for D ⩽ Q < x7/12.

For each type of sequence, we have outlined their corresponding levels of distribution, and the levels
at which the type is satisfied by the upper bound weights for the linear sieve. Observe well-factorability
is flexible enough to accommodate the linear sieve to any level, but has weaker equidistribution. On the
other hand, triple well-factorability has stronger equidistribution, but is too rigid to accommodate the
linear sieve (at nontrivial levels). Finally, programmable factorability also has strong equidistribution in
addition to (nontrivially) accommodating the linear sieve, though at the cost of conceptual technicality.

Remark 2.8. In general, λ well-factorable of level Q directly implies λ triply well-factorable of level
Q2/3.2 In particular, for λ = λ̃+ the triply well-factorable level Q2/3 < x2/5 is sharp.3

2.2. Sieve theory setup and bounds. We recall the standard sieve-theoretic notation. Given a finite
set A ⊂ N, set of primes P , and a threshold z > 0, we define Ad = {n ∈ A : d | n} and remainder rA via

|Ad | = g(d)|A| + rA(d),

where g is a multiplicative function, with 0 ⩽ g(p) < 1 for p ∈ P (we assume g(p) = 0 if p /∈ P). Also
define P(z) =

∏
p<z,p∈P p and V (z) =

∏
p | P(z)(1 − g(p)). The central object of interest is the sifted

sum

S(A, z) = S(A,P, z) =

∑
n∈A

1(n,P(z))=1. (2-2)

Later for our application of interest, we will set g(d) = 1/ϕ(d). For now, it suffices for us to assume
for all 2 ⩽ w ⩽ z,

V (w)

V (z)
=

∏
w⩽p<z

p∈P

(1 − g(p)) =
log z
log w

(
1 + O

(
1

log w

))
. (2-3)

Remark 2.9. The proof of the upper bound for the standard linear sieve only requires a one-sided
inequality for V (w)/V (z), whereas our modification requires the above two-sided condition (2-3).

2Indeed, take any factorization Q = Q1 Q2 Q3, with (say) Q1 ⩾ Q2 ⩾ Q3 ⩾ 1. Note Q3 ⩽ Q1/3. If λ is well-factorability of
level Q/Q3 = Q1 Q2, there are sequences γ1, γ2 supported on [1, Q1], [1, Q2] with λ = γ1 ∗γ2 = γ1 ∗γ2 ∗δ. Here δ(q) = 1q=1.
Hence λ is triply well-factorable of level infQ=Q1 Q2 Q3 Q/Q3 ⩾ Q2/3.

3Indeed, consider the factorization Q = Q1 Q2 Q3 with (Q1, Q2, Q3)= (Q1/3−ε, Q1/3−ε, Q1/3+2ε). Then for q = p1 p2 p3
of size p1, p2 ∼ Q1/3, p3 ∼ Q1/9, we see p1, p2 > Q1 = Q2. Thus all sequences γi supported on Qi satisfy γ1 ∗γ2 ∗γ3(q) = 0.
In particular γ1 ∗ γ2 ∗ γ3 ̸= λ̃+.
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The basic result which we shall adapt is the linear sieve with well-factorable remainder, as in [Friedlander
and Iwaniec 2010, Theorem 12.20].

Theorem 2.10 [Friedlander and Iwaniec 2010]. Let ε > 0 and D > 1 be sufficiently small and large,
respectively. Then for s ⩾ 1 and z = D1/s , we have

S(A, z) ⩽ |A|V (z)(F(s) + O(ε)) +

∑
d | P(z)

λ̃+(d)rA(d),

S(A, z) ⩾ |A|V (z)( f (s) + O(ε)) −

∑
d | P(z)

λ̃−(d)rA(d),

where the implied constant only depends that of (2-3). Here the weights λ̃± are

λ̃±(d) =

∑
j⩽exp(ε−3)

λ±

j (d) (2-4)

for some well-factorable sequences λ±

j of level D. The functions F, f : R+
→ R satisfy the system of

delay-differential equations

s F(s) = 2eγ
[s ⩽ 3] (s F(s))′ = f (s − 1),

s f (s) = 0 [s ⩽ 2] (s f (s))′ = F(s − 1).
(2-5)

Remark 2.11. See [Iwaniec 1980, Theorem 1] for an alternate formulation and proof, which gives sharper
quantitative bounds than O(ε). However, it is more technical than necessary for our purposes.

The main result of this article is the following modification of the linear sieve with programmably
factorable remainder.

Theorem 2.12. Let A be a finite set of positive integers with density function g(d) satisfying (2-3),
and F(s) the function defined by the system (2-5). Let ε > 0 and x > 1 be sufficiently small and large,
respectively. Then for η ⩾ 0, D = x7/12+η, s ⩾ 1, and z = D1/s , we have

S(A, z) ⩽ |A|V (z)(F∗(s) + O(ε)) +

∑
d | P(z)

λ̃∗(d)rA(d),

where the implied constant only depends that of (2-3). Here the weights λ̃∗ are

λ̃∗(d) =

∑
j⩽exp(ε−3)

λ∗

j (d) (2-6)

for some programmably factorable sequences λ∗

j of level D (relative to x , ε/50). For η < 1
204 we have

F∗(s) = F(s) + O(η5), and F∗(s) ⩽ 1.000081F(s) for 1 ⩽ s ⩽ 3, η =
1

204 .

Note Theorem 2.5, applied to each λ = λ∗

j above, immediately implies the following.
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Corollary 2.13. Given any fixed a ∈ Z and A. For η < 1
204 , the weights λ̃∗ as in (2-6) of level D = x7/12+η

satisfy ∑
d⩽D

(d,a)=1

λ̃∗(d)

(
π(x; d, a) −

π(x)

ϕ(d)

)
≪a,A,η

x
(log x)A .

3. Programmably factorable support

The upper and lower bound weights λ± for the linear sieve of level D are defined by

λ±(d) = µ(d)1d∈D±,

where D±
= D±(D) are the standard support sets

D+
= {p1 · · · pr : D1/2 ⩾ p1 ⩾ · · · ⩾ pr , and p1 · · · pl−1 p3

l ⩽ D for each odd l ⩽ r},

D−
= {p1 · · · pr : D1/2 ⩾ p1 ⩾ . . . ⩾ pr , and p1 · · · pl−1 p3

l ⩽ D for each even l ⩽ r}.
(3-1)

We may also write D(r) to denote D+ or D−, when r is even or odd, respectively.
Observe that both sets satisfy the containment D±(D) ⊂ Dwell(D), where

Dwell
= {p1 · · · pr : D1/2 ⩾ p1 ⩾ . . . ⩾ pr and p1 · · · pl−1 p2

l ⩽ D for each l ⩽ r}. (3-2)

We shall return to this observation later in the section.
Maynard [2020] deduces Corollary 2.7 for λ̃+ from the general Theorem 2.5 by means of the following

key result [loc. cit., Proposition 9.1] (along with a construction of Iwaniec we shall address in later
sections), which programmably factorizes elements of the support D+.

Proposition 3.1 [Maynard 2020]. Let 0 < δ < 10−3 and let D = x7/12−50δ, N ∈ [x2δ, x1/3+δ/2
]. Then

every d ∈ D+(D) has a factorization d = d1d2d3 such that d1 ⩽ N x−δ and

N 2d2d2
3 ⩽ x1−δ, N 2d1d4

2 d3
3 ⩽ x2−δ, Nd1d5

2 d2
3 ⩽ x2−δ. (3-3)

Remark 3.2. The level x7/12 is sharp in this construction. Indeed, heuristically speaking, the linear sieve
weights are not programmably factorable of level D = x7/12+η for any η > 0, because the support set con-
tains obstructing (families of) elements d ∈D+(D) of the form d = p1 · · · pr where p1 ≈ · · · ≈ p6 ≈ D1/7,
or where p1 ≈ p2 ≈ D2/7 and p3 ≈ p4 ≈ D1/7. This heuristic description of the obstructions is made
precise by the families P4, P6 (in (3-6) below), and thereby tells us how we should restrict the support set
in order to increase the level (namely, to D∗ in (3-5) below).

For η > 0, level D = x7/12+η, we define the modified weights λ∗
= λ∗

η,

λ∗(d) = µ(d)1d∈D∗, (3-4)

for the support set D∗,

D∗
= D+(x7/12) ∪ {p1 · · · pr ∈ D+(x7/12+η) : p1 · · · pi /∈ Pi , i ⩽ r, i ∈ {4, 6}}. (3-5)
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Here P4 and P6 = P6,1 ∪P6,2 are exceptional subsets of D+(x7/12+η), given by

P4 = {p1 · · · p4 : p1 < x1/6+2η and p2 p4 > x1/4−3η
},

P6,1 = {p1 · · · p6 : p1 p2 < x1/6+2η and p2 p3 p4 > x1/4−3η and p6 > x1/12−5η
},

P6,2 = {p1 · · · p6 : p1, p2 p3 < x1/6+2η and p1 p4, p2 p3 p4 > x1/4−3η and p6 > x1/12−5η
}.

(3-6)

The modified support set D∗
= D∗

η is understood to depend on η > 0 (as do P4, P6), but we will
suppress this for notational convenience.

In this section, we establish a programmable factorization of the elements of the support D∗ provided
D < x10/17, i.e., η < 1

204 . This will serve as the key technical input for the proof of Theorem 2.12.

Proposition 3.3 (factorization of elements of D∗). Let 0 < δ < 10−5, and take 0 < η < 1
204 − 3δ and

N ∈ [xδ, x1/3−δ/2
]. If d ∈ D∗ for D = x7/12+η−50δ, then we may factor d = d1d2d3 such that d1 ⩽ N x−δ

and

N 2d2d2
3 ⩽ x1−δ, N 2d1d4

2 d3
3 ⩽ x2−δ, Nd1d5

2 d2
3 ⩽ x2−δ. (3-7)

On the first attempt working through technicalities, we encourage the reader to set δ = 0 in order to
better view the key features.

Before proving the proposition, we need some lemmas. The first gives a general-purpose criterion to
factor an integer d .

Lemma 3.4. Let D = x7/12+η−50δ for −
1
84 < η < 1

60 . A factorization d = d1d2d3 satisfies (3-7), provided
d1, d2, d3 ⩾ 1 satisfy

d2 ∈ [x1/6+2η, x1/4−3η
], d1 ⩽ N x−δ and d3 ⩽ D/Nd2. (3-8)

Proof. By (3-8), Nd3 ⩽ D/d2 and so

N 2d2d2
3 ⩽ D2/d2 ⩽ x2(7/12+η−50δ)−(1/6+2η)

= x1−δ,

N 2d1d4
2 d3

3 ⩽ D3d2 ⩽ x3(7/12+η−50δ)+(1/4−3η)
= x2−δ,

Nd1d5
2 d2

3 ⩽ D2d3
2 ⩽ x2(7/12+η−50δ)+3(1/4−3η)

= x23/12−7η−100δ < x2−δ,

using η ∈
(
−

1
84 , 1

60

)
. This gives (3-7). □

The above criterion implies factorizations in the following special cases.

Lemma 3.5. Let D = x7/12+η−50δ for η < 1
60 . For r ⩾ 4, let x1/6+2η > p1 ⩾ . . .⩾ pr be primes for which

d = p1 · · · pr ∈ D+(D). Suppose d2 is one of the subproducts in {p1 p4, p2 p3, p2 p4, p2 p3 p4}. Then d
has a factorization d = d1d2d3 satisfying (3-7), provided

d2 ∈ [x1/6+2η, x1/4−3η
].

Proof. Let C = D/Nd2 and note either p1 ⩽ N or p1 ⩽ C , since

p2
1 ⩽ D2/3

= x2/3(7/12+η−50δ) < x1/3+4η−50δ ⩽ D/d2 = NC.
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We proceed by induction on r ⩾ 4. As the base case r = 4, by Lemma 3.4 it suffices for each b to
factor p1 · · · p4/d2 = d1d3 for d1 ⩽ N , d3 ⩽ C . Indeed, this holds when d2 = p2 p3 p4 since p2

1 ⩽ AC ,
and similarly:

• If d2 = p2 p4 then p2
3 ⩽ D/p1 p2 p3 ⩽ NC/p1 implies p1 p3 = d1d3 for some d1 ⩽ N , d3 ⩽ C .

• If d2 = p1 p4 then p2
3 ⩽ D/p1 p2 p3 ⩽ NC/p2 implies p2 p3 = d1d3 for some d1 ⩽ N , d3 ⩽ C .

• If d2 = p2 p3 then p2
4 ⩽ D/p1 p2 p3 ⩽ NC/p1 implies p1 p4 = d1d3 for some d1 ⩽ N , d3 ⩽ C .

Now for r ⩾ 5, we inductively assume a factorization p1 · · · pr−1 = d1d2d3 with d1 ⩽ N , d3 ⩽C . Then
p2

r ⩽ D/p1 · · · pr−1 = NC/(ac) so either d1 pr ⩽ N or d3 pr ⩽ C , extending the factorization. Hence
Lemma 3.4 applies again, and completes the proof. □

Finally, if the primes dividing d are small enough, we may use the greedy algorithm to factor d as
follows.

Lemma 3.6. Let D = x7/12+η−50δ for η < 1
60 . For r ⩾ 4, let x1/6+2η > p1 ⩾ . . .⩾ pr be primes for which

d = p1 · · · pr ∈ D+(D), and p6 < x1/12−5η if r ⩾ 6. Then d has a factorization d = abc satisfying (3-7),
provided there is a factorization p1 p2 p3 p4 = d1d2d3 satisfying

d1 ⩽ N x−δ, d3 ⩽ x1−2δ/DN , d2 ⩽ D2/x1−3δ
= x1/6+2η+3δ. (3-9)

Proof. Let D1 = N x−δ, D2 = D2/x1−3δ, D3 = x1−2δ/(DN ), so that di ⩽ Di by assumption.
We now greedily append primes to di while preserving di ⩽ Di for all i , i.e., where at the j -th step we

replace di 7→ di p j (for one of i = 1, 2, 3) provided di p j ⩽ Di . Starting from j = 5, we stop either when
we have exhausted all primes (i.e., j = r ), or di p j > Di for each i = 1, 2, 3. In the former case, we have
the desired d1d2d3 = d = p1 · · · pr and di ⩽ Di so we easily get

D1 = N x−δ,

N 2 D2 D2
3 = x1−δ,

N 2 D1 D4
2 D3

3 = D5x−1+5δ ⩽ x5·(3/5)−1−245δ < x2−δ,

N D1 D5
2 D2

3 = D8x−3+10δ ⩽ x8·(3/5)−3−390δ < x2−δ.

Thus d1d2d3 = d = p1 · · · pr gives the desired factorization.
In the latter case, there exists a terminal index j < r for which di p j > Di for all i = 1, 2, 3. Note if j

is odd, then di p j ⩽ Di for some i , since

p3
j ⩽

D
p1 · · · p j−1

=
D1 D2 D3

d1d2d3
.

So the terminal j is even with j ⩾ 6. By assumption p j ⩽ p6 ⩽ x1/12−5η is smaller than the width of
the interval [x1/6+2η, x1/4−3η

]. And since d2 ⩽ D2 = x1/6+2η < d2 p j , we deduce e2 := d2 p j lies in the
interval e2 ∈ [x1/6+2η, x1/4−3η

].
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Thus letting E3 := D2 D3/e2, for each l > j in turn we shall greedily append the prime pl onto either
d1 or d3 while preserving d1 < D1 and d3 < E3. Indeed, for all l > j ,

p2
l ⩽

D
p1 · · · pl−1

=
D1 D2 D3

d1d2d3 p j · · · pl−1
⩽

D1 E3

d1d3 p j+1 · · · pl−1
,

so there is a factorization e1e3 = d1d3 p j+1 · · · pl with e1 ⩽ D1 = N and e3 ⩽ E3 = D/(Ae2x2δ). Hence
the result now follows by Lemma 3.4 for the factorization e1e2e3 = d1d2d3 p j · · · pl = p1 · · · pl . □

Proof of Proposition 3.3. We shall consider 3 cases, depending on the sizes of p1 and p2 p3 compared to
the endpoints of the key interval [x1/6+2η, x1/4−3η

].

Case 1 (p1 ⩾ D2/x = x1/6+2η). Let d2 := p1, C := D/Nd2. Note C = D/Nd2 ⩾ D2/3/N ⩾ 1.
Next D ⩾ p3

1 ⩾ p1 p2
2 implies p2

2 ⩽ D/p1 = NC , so either p2 ⩽ N or p2 ⩽ C . Similarly, since
p1 · · · p j−1 p2

j ⩽ D for all j ⩽ r , we get p2
j ⩽ AC/(p2 · · · p j−1) for 3 ⩽ j ⩽ r . As such, we may factor

p2 · · · pr = d1d3 for d1 ⩽ N , d3 ⩽ C . Hence by Lemma 3.4 p1 · · · pr = d1d2d3 satisfies (3-7).

In the remaining cases, we assume p1 < x1/6+2η. By Lemma 3.5, it remains to consider p2 p3 > x1/4−3η

or p2 p3 < x1/6+2η. Note

p2 p3 ⩽ p1/3
1 (p1 p2 p3

3)
1/3 ⩽ (x1/6+2η)1/3 D1/3

= x1/3(1/6+7/12+3η−50η) < x1/4+η−16δ. (3-10)

Case 2 (p2 p3 > x1/4−3η and p1 < x1/6+2η). The proof follows by Lemma 3.5 if p2 p4 ∈ [x1/6+2η, x1/4−3η
].

Thus by definition of P4, in this case we may assume

p2 p4 < x1/6+2η. (3-11)

Hence we have p4 < x12η+50δ, since

p2 > p2(p1 p2 p3
3)/D > (p2 p3)

3/D > x3((1/4)−3η)/D = x1/6−10η+50δ. (3-12)

If p1 p4 > x1/6+2η, then the proof follows by Lemma 3.5 where d2 = p1 p4 is < x (1/6+2η)+12η+50δ <

x1/4−3η, since η < 1
204 − 3δ.

Else p1 p4 < x1/6+2η. We shall apply Lemma 3.6 with d2 = p1 p4.
If either N x−δ or x1−2δ/DN is greater than x1/4+η−16δ ⩾ p2 p3, by (3-10), then Lemma 3.6 com-

pletes the proof with (d1, d3) = (p2 p3, 1) or (1, p2 p3), respectively. Otherwise, N x−δ, x1−2δ/DN ∈

[x1/6−2η−64δ, x1/4+η−16δ
], since x/D = x5/12−η+50δ. But then, using η < 1

108 ,

max(N x−δ, x1−2δ/DN ) ⩾ (x1−2δ/D)1/2
= x (5/2)/12−η/2+24δ > x1/6+2η > p2,

min(N x−δ, x1−2δ/DN ) ⩾ x1/6−2η−64δ > x1/8+η/2−8δ ⩾ (p2 p3)
1/2 ⩾ p3,

(3-13)

by (3-10), which suffices again for Lemma 3.6. Note p6 < x12η+50δ < x1/12−5η when r ⩾ 6, using
η < 1

204 − 3δ.

Case 3 (p2 p3 < x1/6+2η and p1 < x1/6+2η). By Lemma 3.5, it suffices to consider either p1 p4 < x1/6+2η

or p1 p4 > x1/4−3η.
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Subcase 3.1 (p1 p4 < x1/6+2η). Suppose we can show p6 < x1/12−5η (when r ⩾ 6). Then since x1−3δ/D >

D4/x2−6δ , either N x−δ or x1−2δ/DN is greater than D2/x1−3δ . Thus Lemma 3.6 will complete the proof,
with (d1, d2, d3) = (p1 p4, p2 p3, 1) or (1, p2 p3, p1 p4).

If p1 p3 > x1/4−3η then in this subcase

x1/12+η > (p2 p3)
1/2 ⩾ p3 = p4

p1 p3

p1 p4
> p4x1/12−5η,

so p4 < x6η. Hence p6 ⩽ p4 < x1/12−5η since η < 1
108 , which completes the proof.

Else p1 p3 < x1/4−3η. By Lemma 3.5, it suffices p1 p3 < x1/6+2η. Then we see p3 > x1/12−5η implies
p1 < x1/12+7η. If further p1 p2 > x1/4−3η, then similarly

x1/12+7η > p1 ⩾ p2 = p3
p1 p2

p1 p3
> p3x1/12−5η,

so p3 < x12η. Hence p6 ⩽ p3 < x1/12−5η since η < 1
204 , which completes the proof.

Else p1 p2 < x1/4−3η. By Lemma 3.5, we may assume p1 p2 < x1/6+2η.
Similarly, suppose p2 p3 p4 < x1/4−3η. By Lemma 3.5 we may assume p2 p3 p4 < x1/6+2η, and so

p6 ⩽ (p2 p3 p4)
1/3 ⩽ x (2/3)/12+(2/3)η ⩽ x1/12−5η,

using η < 1
204 , which completes the proof.

Thus we may assume p2 p3 p4 > x1/4−3η. But unless p6 < x1/12−5η, this subcase will contradict the
definition of P6,1 in (3-6), hence completing the proof.

Subcase 3.2 (p1 p4 > x1/4−3η). If d2 = p2 p3 p4 < x1/6+2η, then Lemma 3.6 completes the proof with
(d1, d3) = (p1, 1) or (1, p1), since

p6 ⩽ (p2 p3 p4)
1/3 ⩽ x (1/3)(1/6+2η) ⩽ x1/12−5η

for η < 1
204 . And if p2 p3 p4 ∈ [x1/6+2η, x1/4−3η

] the proof follows by Lemma 3.5.
Else p2 p3 p4 > x1/4−3η. Note p4 < x1/12+η and p1 = p1 p4/p4 > x1/6−4η and p2 p3 p4 < x1/4+3η. Also

note we may factor p1 p4 = d1d3 for d1 ⩽ N , d3 ⩽ x1−2δ/DN (Indeed this follows if N or x1−2δ/DN
exceeds x1/4+3η ⩾ p1 p4. Else N , x1−2δ/DN ∈ [x1/6−4η−2δ, x1/4+3η

], which also works similarly as with
(3-13), since p4 < x1/12+η < x1/6−4η−2δ and p1 < x1/6+2η < x1/2(5/12−η−δ) by η < 1

60 .)
If further p6 > x1/12−5η, then this subcase contradicts the definition of P6,2 in (3-6). Hence we have

p6 ⩽ x1/12−5η, and so by the above paragraph Lemma 3.6 completes the proof with d2 = p2 p3.

Combining all cases completes the proof of Proposition 3.3. □

3.1. Refined factorization of Dwell. Proposition 3.3 (programmably) factorizes each d∈D∗
⊂D+(x7/12+η),

and forms the key step to prove the weights λ∗ are programmably factorable. With applications in
mind to twin primes, we shall similarly (programmably) factorize certain subsets of the well-factorable
support Dwell, as in (3-2).
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In the following result, we factorize d ∈ Dwell(D) for variable level D ∈ (x4/7, x3/5), depending on
the anatomy of d . As D±

⊂ Dwell, this has implications to both upper and lower bounds for the standard
linear sieve.

Proposition 3.7. Let Dwell(D) as in (3-2) for D = x7/12+η−50δ and −
1

84 < η < 1
60 − 30δ. Let x1/4−3η ⩾

p1 ⩾ . . . ⩾ pr be primes for which d = p1 · · · pr ∈ Dwell(D). Then d has factorization d = abc satisfying
(3-7) if p3 ⩽ x1/12−5η, or if

d2 ∈ [x1/6+2η, x1/4−3η
] with d2 | p1 p2 p3, d2 ̸= p3.

Proof. For i = 1, 2, 3, suppose d2 = p1 · · · pi lies [x1/6+2η, x1/4−3η
], and let A = N x−δ , C = xδ D/Nd2.

Since p1 · · · p j−1 p2
j ⩽ D for all i < j ⩽ r , we get p2

j ⩽ AC/(pi+1 · · · p j−1) for i < j ⩽ r . As such, we
may factor pi+1 · · · pr = d1d3 for d1 ⩽ A, d3 ⩽ C . Hence by Lemma 3.4 p1 · · · pr = d1d2d3 satisfies
(3-7).

Else, by assumption p1 < x1/(4)−3η so we may assume further p1 < x1/(6)+2η. In particular this gives
p2

1 ⩽ D/d2. For the remaining d2 | p1 p2 p3:

• If d2 = p2 p3 then p2
1 ⩽ D/d2 = AC implies p1 ⩽ A or p1 ⩽ C .

• If d2 = p1 p3 then p2
2 ⩽ D/d2 = AC implies p2 ⩽ A or p2 ⩽ C .

• If d2 = p2 then p2
3 ⩽ D/p1d2 implies a factorization p1 p3 = d1d3 for d1 ⩽ A, d3 ⩽ C .

For each d2 above, we factored p1 p2 p3 =d1d2d3 for d1 ⩽ A, d3 ⩽C . Since p1 · · · p j−1 p2
j ⩽ D for all j ⩽r ,

by induction we may factor p1 · · · pr = d1d2d3 for d1 ⩽ A, d3 ⩽ C . By Lemma 3.4 p1 · · · pr = d1d2d3

satisfies (3-7).
Finally, suppose p3 ⩽ x1/12−5η is less than the width of the interval [x1/6+2η, x1/4−3η

]. Since
p1 < x1/6+2η, we have p1 p3 < x1/4−3η so by the above argument we may assume d2 := p1 p3 < x1/6+2η.
Then p3

2 ⩽ p1 p2
2 ⩽ D implies

p2
2 ⩽ x (2/3)(7/12+η) < x5/12−η+47δ

=
x1−3δ

D
,

since η < 1
60 − 30δ. Thus p2 ⩽ N x−δ or p2 ⩽ x1−2δ/DN , so there is a factorization p1 p2 p3 = d1d2d3

satisfying (3-9). Hence the same greedy argument as in Lemma 3.6 completes the proof, with p3 playing
the role of p6. □

Taking the maximum valid η as above, we may reexpress the above factorization of level xθ , θ =
7

12 +η,
as follows. Note the maximum θ for which t ∈

[1
6 + 2η, 1

4 − 3η
]

is given by

θ(t) =

{
2−t

3 if t > 1
5 ,

1+t
2 if t ⩽ 1

5 .
(3-14)

Similarly the maximum θ =
7

12 + η for which t ⩽ 1
12 − 5η is 1

5(3 − t).
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Corollary 3.8. Let p1 ⩾ . . . ⩾ pr be primes and write pi = x ti . If d = p1 · · · pr ∈ Dwell(xθ−50δ), then
there is a factorization d = d1d2d3 satisfying (3-7) provided

θ ⩽ θ(t1),

for θ(t) as in (3-14). Moreover if t1 ⩽ 1
5 , then it suffices that

θ ⩽ θ(t1, t2, t3) := max
{

3 − t3
5

, θ(t1), θ(t2), θ(t1 + t2 + t3), θ(t1 + t2), θ(t1 + t3), θ(t2 + t3)
}
. (3-15)

4. Modification of the linear sieve

In this section we shall bound the modified linear sieve, analogous to the bounds for the linear sieve
(sometimes called the Jurkat–Richert theorem). This bound will form the basis for our final result in the
next section, in which we modify the construction of Iwaniec’s weights.

Proposition 4.1. Let ε > 0 be sufficiently small. For η ⩽ 1
204 , the modified weights λ∗ as in (3-4) of level

D = x7/12+η−ε satisfy

S(A, z) ⩽ |A|V (z)
(

F∗

(
log D
log z

)
+ o(1)

)
+

∑
d | P(z)

λ∗(d)rA(d),

where F∗
= F∗

η is a function satisfying F∗(s) = F(s) + O(η5) for F as in (2-5).

Remark 4.2. It suffices for our purposes to obtain qualitative error o(1) in the factor accompanying F∗.
Though as with the Jurkat–Richert theorem, with greater care one should obtain a quantitative refinement,
e.g., O((log D)−1/6); see (12.4)–(12.8) in [Friedlander and Iwaniec 2010].

We now adapt the proof. Let D = x7/12+η and D0 = x7/12. For n ⩾ 1, primes p1 ⩾ . . . ⩾ pn , if
p1 · · · pn /∈ D+(D) then there exists a minimal index l ⩽ n such that p1 · · · pl /∈ D+(D). By definition
such minimal l is odd. (Explicitly, this occurs when p1 · · · pl−1 p3

l > D but p1 · · · pm−1 p3
m ⩽ D for all

odd m < l.) Similarly, if p1 · · · pn /∈D∗ there exists a minimal index l ⩽ n such that p1 · · · pl /∈D∗, which
is also odd.

Indeed, to show this let l ⩽ n be the minimal index such that p1 · · · pl /∈D∗. If (p1, . . . , p j ) /∈P j for all
j ⩽ l, j ∈ {4, 6}, then clearly l > j must be odd, as with D+(D). On the other hand, if (p1, . . . , p j ) ∈ P j

for some j ⩽ l, j ∈ {4, 6}, a priori one might expect l could be even. However, the key point in this case
is that p1 · · · p j ∈ D+(D0) ⊂ D∗ (since p1 · · · p j ≈ D

6
7 by definition of P j ). Thus l > j is the minimal

index such that p1 · · · pl /∈ D+(D0), and hence must be odd as claimed.
Using this minimal index, we show the following lemma.

Lemma 4.3. Let h be a multiplicative function with 0 ⩽ h(p) ⩽ 1 for all primes p. Then we have∏
p | n

(1 − h(p)) ⩽
∑
d | n

λ∗(d)h(d).
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Proof. Note if h = 1 identically, we interpret the product as 1n=1. Now by definition,∑
d | n

λ∗(d)h(d) −

∏
p | n

(1 − h(p)) =

∑
d | n

d∈D∗

µ(d)h(d) −

∑
d | n

µ(d)h(d) = −

∑
d | n

d /∈D∗

µ(d)h(d).

Then splitting up d /∈ D∗ by its minimal index,

−

∑
d | n

d /∈D∗

µ(d)h(d) =

∑
odd l

∑
pl<···<p1<z
p1···pl−1∈D∗

p1···pl /∈D∗

h(p1 · · · pl)
∑

p1···pl b | n
b | P(pl )

µ(b)h(b) ⩾ 0,

since h ⩾ 0 and the inner sum over b factors as
∏

p | (P(pl ),n)(1 − h(p)) ⩾ 0, since h(p) ⩽ 1. □

By Lemma 4.3 with h(d) = 1, we have

1n=1 ⩽
∑
d | n

λ∗(d), (4-1)

in which case we obtain

S(A,P, z) =

∑
n∈A

1(n,P(z))=1 ⩽
∑
n∈A

∑
d | (n,P(z))

λ∗(d) =

∑
d | P(z)

λ∗(d)|Ad |

= X
∑

d | P(z)

λ∗(d)g(d) +

∑
d | P(z)

λ∗(d)rA(d) =: X V ∗(D, z) + R∗

A(D, z).
(4-2)

Following Lemma 4.3 with h = g, we have the identity

V ∗(D, z) :=

∑
d | P(z)
d∈D∗

µ(d)g(d) = V (z) +

∑
odd n

∑
pn<···<p1<z
p1···pn−1∈D∗

p1···pn /∈D∗

g(p1 · · · pn)V (pn), (4-3)

and similarly

V +(D, z) = V (z) +

∑
odd n

∑
pn<···<p1<z

p1···pn−1∈D+(D)

p1···pn /∈D+(D)

g(p1 · · · pn)V (pn) =: V (z) +

∑
odd n

Vn(D, z). (4-4)

Then the difference of V ∗ and V + is

V ∗(D, z) − V +(D, z) =

∑
odd n

∑
pn<···<p1<z

g(p1 · · · pn)V (pn)1, (4-5)

where 1 is the difference of indicator functions,

1 := 1 p1···pn /∈D∗

p1···pn−1∈D∗

− 1 p1···pn /∈D+(D)

p1···pn−1∈D+(D)

= 1p1···pn∈D+(D)\D∗

p1···pn−1∈D∗

− 1 p1···pn /∈D+(D)

p1···pn−1∈D+(D)\D∗

,
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recalling D∗
⊂ D+(D). Note if a point is (p1, . . . , p6) ∈ P6 then its projection is (p1, . . . , p4) /∈ P4. So

by definitions of D∗, D+(D) from (3-5), (3-1), for odd n we have the identities

1p1···pn∈D+(D)\D∗

p1···pn−1∈D∗

=

∑
j∈{4,6}

j<n

1(p1,...,p j )∈P j · 1p1···pn∈D+(D)\D+(D0)

p1···pn−1∈D+(D0)

, (4-6)

1 p1···pn /∈D+(D)

p1···pn−1∈D+(D)\D∗

=

∑
j∈{4,6}

j<n

1(p1,...,p j )∈P j · 1 p1···pn /∈D+(D)

p1···pn−1∈D+(D)\D+(D0)

. (4-7)

We may plug (4-6) and (4-7) into 1. In addition, we strategically add and subtract the indicator function
of {p1 · · · pn /∈ D+(D), p1 · · · pn−1 ∈ D+(D0)}, which together give

1 =

∑
j∈{4,6}

j<n

1(p1,...,p j )∈P j ·
(
1p1···pn∈D+(D)\D+(D0)

p1···pn−1∈D+(D0)

− 1 p1···pn /∈D+(D)

p1···pn−1∈D+(D)\D+(D0)

)
=

∑
j∈{4,6}

j<n

1(p1,...,p j )∈P j ·
(
1p1···pn∈D+(D)\D+(D0)

p1···pn−1∈D+(D0)

+ 1 p1···pn /∈D+(D)

p1···pn−1∈D+(D0)

− 1 p1···pn /∈D+(D)

p1···pn−1∈D+(D)\D+(D0)

− 1 p1···pn /∈D+(D)

p1···pn−1∈D+(D0)

)
=

∑
j∈{4,6}

j<n

1(p1,...,p j )∈P j ·
(
1 p1···pn /∈D+(D0)

p1···pn−1∈D+(D0)

− 1 p1···pn /∈D+(D)

p1···pn−1∈D+(D)

)
.

Thus plugging 1 back into (4-5) gives

V ∗(D, z) − V +(D, z)

=

∑
j∈{4,6}

∑
p j <···<p1<z
(p1,...,p j )∈P j

∑
odd n> j

∑
pn<···<p j+1<p j

g(p1 · · · pn)V (pn)
(
1 p1···pn /∈D+(D0)

p1···pn−1∈D+(D0)

− 1 p1···pn /∈D+(D)

p1···pn−1∈D+(D)

)
.

Recalling the definition of Vn(D, z) in (4-4), since g is multiplicative we have

V ∗(D, z) − V +(D, z)

=

∑
j∈{4,6}

∑
p j <···<p1<z
(p1,...,p j )∈P j

g(p1 · · · p j )
∑

odd n> j

(
Vn− j

(
D0

p1 · · · p j
, p j

)
− Vn− j

(
D

p1 · · · p j
, p j

))

=

∑
j∈{4,6}

∑
p j <···<p1<z
(p1,...,p j )∈P j

g(p1 · · · p j )

(
V +

(
D0

p1 · · · p j
, p j

)
− V +

(
D

p1 · · · p j
, p j

))
. (4-8)

as V +(D, z) − V +(D′, z) =
∑

odd n[Vn(D, z) − Vn(D′, z)].
Now assuming the two-sided condition (2-3) for g, the proof of [Friedlander and Iwaniec 2010,

Theorem 11.12] (see (12.4)–(12.8)) gives asymptotic equality,

V +(D, z) = V (z)
{

F
(

log D
log z

)
+ O((log D)−1/6)

}
(z ⩽ D), (4-9)
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so that (4-8) becomes

V ∗(D, z) = V (z)
{

F
(

log D
log z

)
+O((log D)−1/6)

}
+

∑
j∈{4,6}

∑
p j <···<p1<z
(p1,...,p j )∈P j

g(p1 · · · p j )V (p j )

×

{
F

(
log D0/p1 · · · p j

log p j

)
−F

(
log D/p1 · · · p j

log p j

)
+O

(
log

(
D

p1 · · · p j

)−1/6)}
. (4-10)

By partial summation and the prime number theorem, for each j we have,∑
p j <···<p1<z
(p1,...,p j )∈P j

g(p1 · · · p j )V (p j )F
(

log D0/p1 · · · p j

log p j

)

=
( 7

12 + η
) ∫

(x1,...,x j )∈Pj

dx1 · · · dx j

x1 · · · x j−1x2
j

F
(

7/12 − x1 − · · · x j

x j

)
+ O((log D)−1/6).

Here Pj is the polytope in Euclidean space R j corresponding to P j , as below.
Hence from (4-10), we obtain

V ∗(D, z) = V (z)
{

F∗

(
log D
log z

)
+ O((log D)−1/6)

}
(z ⩽ D), (4-11)

where the function F∗ satisfies

s F∗(s)−s F(s)

=
( 7

12+η
)
·

∑
j∈{4,6}

∫
(x1,...,x j )∈Pj

dx1 · · · dx j

x1 · · · x j−1x2
j

[
F

(
7/12−x1−·· · x j

x j

)
−F

(
7/12+η−x1−·· · x j

x j

)]
. (4-12)

Namely, P4 ⊂ R4 is given by

P4 =
{
(x1, . . . , x4) ∈ D+

( 7
12 + η

)
: x1 < 1

6 + 2η and x2 + x4 > 1
4 − 3η

}
,

and P6 = P6,1 ∪ P6,2 ⊂ R6 is given by

P6,1 =
{
(x1, . . . , x6) ∈ D+

( 7
12+η

)
: x1+x2 < 1

6+2η and x6 > 1
12−5η and x2+x3+x4 > 1

4−3η
}
,

P6,2 =
{
(x1, . . . , x6) ∈ D+

( 7
12+η

)
: x1, x2+x3 < 1

6+2η

and x6 > 1
12−5η and x1+x4, x2+x3+x4 > 1

4−3η
}
. (4-13)

Similarly, D+ is the set in Euclidean space corresponding to D+, namely,

D+(τ ) = {(x1, . . . , xr ) : x1 > · · · > xr > 0 and x1 + · · · xl−1 + 3xl < τ for each odd 1 ⩽ l ⩽ r}.

Hence Proposition 4.1 follows.
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4.1. Sieve function computation. We now compute F∗ in terms of F .

Proposition 4.4. Let η =
1

204 . Then for 1 ⩽ s ⩽ 3, we have

F∗(s) ⩽ 1.000081F(s). (4-14)

Proof. From (4-12) we have

s F∗(s) = s F(s) +
( 7

12 + η
)
· 2eγ η(J4 + J6), (4-15)

for integrals J j , j ∈ {4, 6},

J j :=
1

2eγ η

∫
(x1,...,x j )∈Pj

dx1 · · · dx j

x1 · · · x j−1x2
j

[
F

(
7/12 − x1 − · · · x j

x j

)
− F

(
7/12 + η − x1 − · · · x j

x j

)]
=

∫
(x1,...,x j )∈Pj

dx1 · · · dx j

x1 · · · x j

[( 7
12 − x1 − · · · − x j

)( 7
12 + η − x1 − · · · − x j

)]−1
,

since s F(s) = 2eγ for s ∈ [1, 3]. In particular |Pj | = O(η j ) implies J j = O(η j ), and so from (4-15) we
obtain F∗(s) = F(s) + O(η5).

For η =
1

204 , we use Mathematica4 to compute that

J4 ⩽ 0.016896. (4-16)

Next we bound J6. For (x1, . . . , x6)∈ P6 we have x4 < 1
2(x2+x3)< 1

12 +η and 7
12 +η−x1−· · ·−x6 > x5

so

J6 ⩽
∫

P6

dx1 dx2 dx3

x1x2x3

∫
1/12−5η<x6<x5<x4<1/12+η

dx4 dx5 dx6

x4x2
5 x6(x5 − η)

,

where P6 = P6,1 ∪ P6,2 is the (3-dimensional) projection of P6, given explicitly by

P6,1 =
{
(x1, x2, x3) ∈ D+

( 7
12+η

)
: x1+x2 < 1

6+2η and x3 > 1
12−5η and x2+2x3 > 1

4−3η
}
,

P6,2 =
{
(x1, x2, x3) ∈ D+

( 7
12+η

)
: x1, x2+x3 < 1

6+2η and x3 > 1
12−5η and x1+x3, x2+2x3 > 1

4−3η
}
.

For η =
1

204 , we compute J6 ⩽ (J6,1 + J6,2)J6,0 where

J6,0 =

∫
1/12−5η<x6<x5<x4<1/12+η

dx4 dx5 dx6

x4x2
5 x6(x5 − η)

⩽ 2.33838,

J6,1 =

∫
P6,1

dx1 dx2 dx3

x1x2x3
⩽ 0.000806853,

J6,2 =

∫
P6,2

dx1 dx2 dx3

x1x2x3
⩽ 0.00397946.

Hence combining with (4-16), for s ∈ [1, 3] we conclude

F∗(s)
F(s)

⩽ 1 +
( 7

12 + η
)
· η(J4 + (J6,1 + J6,2)J6,0) ⩽ 1.000081. □

4The Mathematica package and code are available at arxiv.org/abs/2109.02851.
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5. Factorable remainder, after Iwaniec

In Theorem 2.10, Iwaniec constructed a well-factorable variant λ̃± of the weights λ± from the (Jurkat–
Richert) linear sieve. In this section, we prove Theorem 2.12 for the programmably factorable variant λ̃∗

by adapting Iwaniec’s construction, similarly building on the Jurkat–Richert type Proposition 4.1 that we
obtained in the previous section. We shall also prove a technical variation on this result, with a variable
level depending on anatomy of the moduli.

To set up the construction, we first adapt [Friedlander and Iwaniec 2010, Proposition 12.18]. Denote
P(z, u) = P(z)/P(u) =

∏
u<p⩽z p.

Proposition 5.1. Let η > 0, and D = x (7/12+η)/(1+ε+τ) for ε > 0 sufficiently small. Let D∗
r be defined

by (5-8). Let λ(r) be the standard (upper and lower, for r odd and even, resp.) weights for the linear sieve
of level Dε. Then for u = Dε2

, τ = ε9,

S(A, z) ⩽ |A|V (z){F∗(s) + O(ε5)}

+

∑
0⩽r⩽ε−2

∑
(D1,...,Dr )∈D∗

r

(−1)r

γ (D1, . . . , Dr )

∑
p1···pr | P(z,u)

D j <p j⩽D1+τ
j

∑
b | P(u)
b⩽Dε

λ(r)(b)rA(bp1 · · · pr ). (5-1)

Proof. First we write

S(A, z) ⩽ S∗(A, z) −

∑
odd n⩽N

Sn(A, z) (5-2)

for any N ⩾ 1, where

S∗(A, z) :=

∑
0⩽r⩽ε−2

(−1)r
∑

u⩽pr <...p1<z
p1···pr ∈D∗

|Ap1···pr |, Sn(A, z) :=

∑
pn<···<p1<z
p1···pn−1∈D∗

p1···pn /∈D∗

S(Ap1···pn , pn).

We apply the inequality (5-2), not for A = (an) itself but rather for the subsequence Ã = (an1(n,P(u))=1).
Here we take u = Dε2

, and then return to A by means of the fundamental lemma.
Let z = D1/s with 2 ⩽ s ⩽ ε−1. Since z > u, the only change to the above bound (5-2) when passing to

Ã is the term S∗(Ã, z), provided that N is not too large in terms of ε. Specifically, we require the lower
bound for pn (by induction, the linear sieve conditions imply p1 · · · pm < D1−2−m

)

pn ⩾ (D/p1 · · · pn−1)
1/3 ⩾ D21−N /3 (5-3)

to be larger than u = Dε2
, which certainly holds provided

N ⩽ 1
2

log 1
ε
. (5-4)

Now it remains to evaluate S∗(Ã, z),

S∗(Ã, z) =

∑
0⩽r⩽ε−2

(−1)r
∑

u⩽pr <...p1<z
p1···pr ∈D∗

|Ãp1···pr |. (5-5)
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For each r , we break the range in the inner sum into boxes. Namely, we let D1, . . . , Dr run over numbers
of form

Dε2(1+τ) j
, j = 0, 1, 2, . . . , (5-6)

with τ = ε9. We denote by D+
r = D+

r (D) the set of r-tuples (D1, . . . , Dr ) with Dr ⩽ . . . ⩽ D1 ⩽
√

D
such that

D+

r =

{
{(D1, . . . , Dr ) : D1 · · · Dm−1 D3

m < D for all odd m ⩽ r} if r even,

{(D1, . . . , Dr ) : D1 · · · Dm−1 D3
m < D1/(1+τ) for all odd m ⩽ r} if r odd.

We note, for ε > 0 sufficiently small, the cardinalities of the D+
r are bounded by∑

0⩽r⩽ε−2

|D+

r | ⩽ exp(ε−3). (5-7)

Hereafter let D = x (7/12+η)/(1+τ+ε), and define

D∗

r = {(D1, . . . , Dr ) ∈ D+

r (D) : (D1, . . . , Di ) /∈ Pi,r for i ⩽ r, i ∈ {4, 6}}. (5-8)

where P4,r , P6,r are (τ -enlarged, for even r ) analogues of the polytopes P4, P6 in (3-6), e.g.,

P4,r =

{
{(D1, . . . , D4) : D1+τ

1 < x1/6+2η and (D2 D4)
1/(1+τ) > x1/4−3η

} if r even,

{(D1, . . . , D4) : D1 < x1/6+2η and D2 D4 > x1/4−3η
} if r odd.

Observe each integer p1 · · · pr has a unique vector (D1, . . . , Dr ) such that pi ∈ (Di , D1+τ
i ] for all i ⩽ r ,

inducing a map ν : N →
⋃

r D+
r . As a convention ν(1) = ( ) is the empty vector. By construction, for even

r if p1 · · · p4 /∈ P4 then ν(p1 · · · p4) /∈ P4,r , and if (D1, . . . , D4) /∈ P4,r then ν−1(D1, . . . , D4)∩P4 = ∅
for odd r . Continuing this argument, we deduce

p1 · · · pr ∈ D∗
=⇒ ν(p1 · · · pr ) ∈ D∗

r if r even,

(D1, . . . , Dr ) ∈ D∗

r =⇒ ν−1(D1, . . . , Dr ) ⊂ D∗ if r odd.
(5-9)

Without loss, we may restrict D∗
r to vectors with nonempty preimage in D∗. Hence by construction,

(5-5) becomes5

S∗(Ã, z) ⩽
∑

0⩽r⩽ε−2

∑
(D1,...,Dr )∈D∗

r

(−1)r

γ (D1, . . . , Dr )

∑
p1···pr | P(z)

D j <p j⩽D1+τ
j

|Ãp1···pr |, (5-10)

where γ (D1, . . . , Dr )= k1! · · · kℓ! for the corresponding multiplicities ki ⩾1 (i.e., we have r = k1+· · ·+kℓ

and D1 = · · · = Dk1 < Dk1+1 = · · · = Dk2 < · · · = Dr .). Note the term r = 0 corresponds to |Ã| with
p1 = · · · = pr = 1.

5Indeed, we have reverse engineered the definition of D∗
r just so that (5-10) holds.
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Now by the fundamental lemma [Friedlander and Iwaniec 2010, Theorem 6.9], we have upper (and
lower) bounds

|Ãp1···pr | = S(Ap1···pr , u) ⩽ g(p1 · · · pr )|A|V (u){1 + O(e−1/ε)} +

∑
b⩽Dε

λ(r)(b)rA(bp1 · · · pr ),

(with ⩽ replaced by ⩾ for the lower bound) where λ(r) is the upper (lower) bound β-sieve of level Dε

when r is even (odd). For further details on the fundamental lemma and β-sieve, we refer the reader to
[Friedlander and Iwaniec 2010, Sections 6 and 11].

Plugging back into (5-10), we get

S(A, z) ⩽ S∗(Ã, z)

⩽
∑

0⩽r⩽ε−2

∑
(D1,...,Dr )∈D∗

r

(−1)r

γ (D1, . . . , Dr )

∑
p1···pr | P(z)

D j <p j⩽D1+τ
j

×

{
g(p1 · · · pr )|A|V (u){1 + O(e−1/ε)} +

∑
b⩽Dε

λ(r)(b)rA(bp1 · · · pr )

}
. (5-11)

We now compare the main term above to that of the modified linear sieve, as in (4-3)–(4-11) from the
proof of Proposition 4.1, namely,

V ∗(D, z) :=

∑
d | P(z)/P(u)

λ∗(d)g(d) = V (z){F∗(s) + o(1)}.

The difference between these main terms is accounted for by those d with two close prime factors, within
a ratio Dτ , and those d near the boundary. The former contribution is∑

d | P(z)/P(u)
p⩽p′<pDτ

pp′
| d

g(d) ⩽
∑

u⩽p<z
p⩽p′<pDτ

g(pp′) ·

∏
u⩽p<z

(1 + g(p)),

and the latter contribution is ∑
r

∑
u<pr <...p1<z

D1/(1+τ)<p1···p3
m<D

g(p1 · · · pr ), (5-12)

where m is the first index (m ⩽ r ) for which this occurs. Both contributions may be shown to be O(ε5),
see [Friedlander and Iwaniec 2010, pages 254–255]. Hence the Proposition follows. □

Remark 5.2. We make a minor technical point. Namely, at an admissible cost O(ε5) we may assume
Equation (5-1) holds, where D∗

r is further restricted to vectors (D1, . . . , Dr ) satisfying

ν−1(D1/(1+τ)

1 , . . . , D1/(1+τ)
r ) ⊂ D∗, (5-13)
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regardless of parity of r . To show this, note by definitions of P4,r , P6,r the integers p1 · · · pr with
p j ∈ [D1/(1+τ)

j , D j ], j ⩽ r , that lie outside D∗ must satisfy

x1/6+2η/p1 or x1/12−5η/p6 ∈ [x−2τ , x2τ
].

Then for B1 = x1/6+2η+2τ , B6 = x1/12−5η+2τ , we have∑
Bi⩾pi⩾max(B/x4τ ,u)

g(pi ) ≪ log
log Bi

log max(Bi/x4τ , u)
≪

log x4τ

log u
≪

τ

ε2 ,

and so the contribution of such integers to the main term of (5-11) is

≪

∑
r

∑
u<pr <···<p1<z

Bi⩾pi >max(Bi /x4τ ,u),i∈{1,6}

g(p1 · · · pr ) ≪
τ

ε2

∏
u<p<z

(1 + g(p)) ≪
τ

ε2

log z
log u

≪ ε5.

Hence (5-13) follows.

We now proceed to Theorem 2.12. For each vector (D1, . . . , Dr ) ∈ Dr we define the weight λ(D1,...,Dr )

supported on d in ν−1(D1, . . . , Dr ), namely,

λ(D1,...,Dr )(d) := 1d=p1···pr

D j <p j⩽D1+τ
j ∀ j

. (5-14)

Next, we may decompose an integer d into its u-smooth and rough components, d = b(p1 · · · pr ). Recall
D(r)

= D±, λ(r)
= λ± (depending on the parity of r ), and for b | P(u) we have λ(r)(b) = µ(b) if b ∈ D(r),

and λ(r)(b) = 0 else. Thus we may define the convolution λ
(r)
(D1,...,Dr )

:= λ(D1,...,Dr ) ∗ λ(r), i.e.,

λ
(r)
(D1,...,Dr )

(d) =

{
µ(b) if d = bp1 · · · pr for b ∈ D(r)(Dε), b | P(Dε2

), and D j < p j ⩽ D1+τ
j ∀ j ⩽ r,

0 else.
(5-15)

Hence the remainder in (5-1) equals∑
0⩽r⩽ε−2

∑
(D1,...,Dr )∈D∗

r

(−1)r

γ (D1, . . . , Dr )

∑
d | P(z)

λ
(r)
(D1,...,Dr )

(d)rA(d) =

∑
d | P(z)

λ̃∗(d)rA(d)

for the weights

λ̃∗
=

∑
0⩽r⩽ε−2

∑
(D1,...,Dr )∈D∗

r

(−1)r

γ (D1, . . . , Dr )
λ

(r)
(D1,...,Dr )

. (5-16)

Recalling the cardinality of D∗
r ⊂ D+

r from (5-7), it suffices to show the weights λ
(r)
(D1,...,Dr )

are pro-
grammably factorable for each vector in D∗

r . To this we have the following.

Lemma 5.3. For an integer d denote the vector ν(d) = (D1, . . . , Dr ) from (5-9). If d has a factorization
as in (3-7) at level D, then the corresponding weights λν(d) and λ

(r)
ν(d), as in (5-14) and (5-15), resp., are

programmably factorable sequences of levels D1+τ and D1+τ+ε
= x7/12+η, resp. (relative to x , ε/50).
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Proof. By assumption for each N ∈ [1, x1/3
], there is a factorization d = d1d2d3 satisfying the system

(3-7). For j = 1, 2, 3, write d j =
∏

i∈I j
pi for the induced partition of indices {1, . . . , r} = I1 ∪ I2 ∪ I3.

Thus letting Q j =
∏

i∈I j
Di , the factorization D1 · · · Dr = Q1 Q2 Q3 satisfies (2-1), since Di < pi .

Further, writing the corresponding subvectors (Di )i∈I j for j = 1, 2, 3, the weights λ(Di )i∈I j
are 1-

bounded, supported on [1, Q1+τ
j ], and give the desired triple convolution,

λ(D1,...,Dr ) = λ(Di )i∈I1
∗ λ(Di )i∈I2

∗ λ(Di )i∈I3
.

Hence λ(D1,...,Dr ) is programmably factorable of level D1+τ as claimed. Similarly λ
(r)
(D1,...,Dr )

= λ(Di )i∈I1
∗

λ(Di )i∈I2
∗ λ

(r)
(Di )i∈I3

is programmably factorable of level D1+τ+ε. □

Now for each vector (D1, . . . , Dr ) ∈ D∗
r , by (5-13) there exists d = p1 · · · pr ∈ D∗ for some primes

pi ∈ (D1/(1+τ)

i , Di ]. Then for all N ∈ [1, x1/3
] Proposition 3.3 gives a factorization of d as in (3-7), and

so by Lemma 5.3 λ
(r)
(D1,...,Dr )

is programmably factorable of level x7/12+η.
This completes the proof of Theorem 2.12.

5.1. Variable level of distribution for the linear sieve weights. We now return to Iwaniec’s well-factorable
weights λ̃± for the (upper and lower) linear sieve, given explicitly from (5-15) as the weighted sum,

λ̃±
=

∑
0⩽r⩽ε−2

∑
(D1,...,Dr )∈D±

r

(−1)r

γ (D1, . . . , Dr )
λ

(r)
(D1,...,Dr )

. (5-17)

We introduce the analogous set of well-factorable vectors Dwell
r = Dwell

r (D),

Dwell
r = {(D1, . . . , Dr ) : D1 · · · Dm−1 D2

m < D for all m ⩽ r}. (5-18)

Note D±
r ⊂ Dwell

r , having dropped parity conditions on the indices m ⩽ r .
We have the following technical variation on Theorem 2.12 for the original linear sieve.

Proposition 5.4. Let (D1, . . . , Dr ) ∈ Dwell
r (D) and write D = xθ , Di = x ti for i ⩽ r . If θ ⩽ θ(t1) − ε as

in (3-14), then ∑
b=p1···pr

Di <pi⩽D1+τ
i

∑
d=bc≤xθ

c | P(pr )
(d,a)=1

λ̃±(d)

(
π(x; d, a) −

π(x)

ϕ(d)

)
≪a,A,ε

x
(log x)A . (5-19)

Moreover if t1 ⩽ 1
5 and r ⩾ 3, then (5-19) holds provided that θ ⩽ θ(t1, t2, t3) − ε as in (3-15).

If t1 ⩽ 1
5 and r ⩽ 2, then provided θ ⩽ 1

5(3 − u) − ε,

∑
b=p1···pr

Di <pi⩽D1+τ
i

∑
d=bc⩽xθ

c | P(xu)
(d,a)=1

λ̃±(d)

(
π(x; d, a) −

π(x)

ϕ(d)

)
≪a,A,ε

x
(log x)A .
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In particular for r = 0 (i.e., the empty vector), θ ⩽ 1
5(3 − u) − ε, this simplifies as

∑
d⩽xθ

d | P(xu)
(d,a)=1

λ̃±(d)

(
π(x; d, a) −

π(x)

ϕ(d)

)
≪a,A,ε

x
(log x)A .

Proof. Given (D1, . . . , Dr ), take an integer b = p1 · · · pr with Di < pi ⩽ D1+τ
i . Then for all multiples

d of b with d/b | P(pr ), the weight λ
(s)
(D′

1,...,D′
s)
(d) vanishes unless the vector (D′

1, . . . , D′
s) extends

(D1, . . . , Dr ). That is, D′

i = Di for all i ⩽ r . Conversely, given such a vector (D′

1, . . . , D′
s) we have

λ
(s)
(D′

1,...,D′
s)
(d ′) = 0 unless the first s primes of d ′ are p1 · · · ps with Di < pi ⩽ D1+τ

i , i ⩽ r . So by the
definition of λ̃± as in (5-17), we have∑

b=p1···pr

Di <pi⩽D1+τ
i

∑
d=bc⩽xθ

c | P(pr )
(d,a)=1

λ̃±(d) =

∑
r⩽s⩽ε−2

∑
(D′

1,...,D′
s)∈D±

s
D′

i =Di ,i⩽r

(−1)s

γ (D′

1, . . . , D′
s)

∑
d⩽xθ

(d,a)=1

λ
(s)
(D′

1,...,D′
s)
(d). (5-20)

Here we have extended (by zero) the inner sum to all d ⩽ xθ , (d, a) = 1.
Next, take such a vector (D′

1, . . . , D′
s) ∈ D±

s (xθ ) with D′

i = Di for i ⩽ r . Each integer d = p1 · · · ps

with D′

i < pi ⩽ (D′

i )
1+τ lies in d ∈ Dwell(xθ+τ ). In particular p1 ⩽ D1+τ

1 ⩽ x t1+τ so by Corollary 3.8,
d has a factorization as in (3-7) at level xθ(t1+τ). Since θ(t) is continuous (in fact, piecewise linear),
for τ > 0 sufficiently small θ(t1 + τ) ⩾ θ(t1) − ε ⩾ θ . Thus by Lemma 5.3 the weights λ

(s)
(D1,...,Ds)

are
programmably factorable sequences of level xθ . Hence for each such vector, by Theorem 2.5 we have∑

d⩽xθ

(d,a)=1

λ
(s)
(D′

1,...,D′
s)
(d) ≪a,A,ε

x
(log x)A . (5-21)

Plugging (5-21) back into (5-20) gives the bound (5-19), as claimed.
Moreover, if t1 ⩽ 1

5 and r ⩾ 3 then proceeding as in the above paragraph, by Corollary 3.8 d will factor
as in (3-7) to level xθ(t1+τ,t2+τ,τ3+τ). Again θ(t, u, v) is continuous, so for τ > 0 sufficiently small

θ(t1 + τ, t2 + τ, τ3 + τ) ⩾ θ(t1, t2, t3) − ε ⩾ θ.

Hence (5-19) also follows in this case.
Similarly if t1 ⩽ 1

5 and r ⩽ 2, proceeding as above with d = p1 · · · ps , the assumption d/b | P(xu)

implies s ⩽ 2 or p3 ⩽ D1+τ
3 ⩽ xu+τ . Thus by Corollary 3.8 d will factor as in (3-7) to level x (3−u−τ)/5 ⩾ xθ .

Hence (5-19) follows in this case as well. □

5.2. Equidistribution for products of primes. We use an extension of Theorem 2.5 to products of k
primes. This is the analogue in the programmably factorable setting of [Wu 1990, Lemma 7] extending
Theorem 2.2 of Bombieri, Friedlander and Iwaniec.
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Proposition 5.5. Let ε > 0 and λ be a programmably factorable sequence of level D ⩽ x3/5−ε (relative
to x , ε/50). Take real numbers ε1, . . . , εk ⩾ ε such that

∑
i⩽k εi = 1. Then for any fixed integer a ∈ Z,

A, B > 0, letting 1 = 1 + (log x)−B we have∑
d⩽D

(d,a)=1

λ(d)

( ∑
p1···pk≡a (mod d)

xεi /1<pi⩽xεi ∀i⩽k

1 −
1

ϕ(d)

∑
(p1···pk ,d)=1

xεi /1<pi⩽xεi ∀i⩽k

1
)

≪a,ε,A,B
x

(log x)A . (5-22)

Proof. This follows by the same proof method as in Theorem 2.5 (i.e., [Maynard 2020, Theorem 1.1]).
Indeed, Maynard just uses the Heath-Brown identity to decompose the indicator function of primes into
Type I/II sums. A similar decomposition holds for products of k primes, after which we may apply the
same Type I/II estimates in Propositions 5.1 and 5.2 of [Maynard 2020]. □

In addition, by replacing Theorem 2.5 with Proposition 5.5 in the proof, we obtain analogues of
Proposition 5.4 for the linear sieve weights λ = λ̃± in the case of products of k primes.

Corollary 5.6. Let (D1, . . . , Dr ) ∈ Dwell
r (D) and write D = xθ , Di = x ti for i ⩽ r . Let ε > 0 and real

numbers ε1, . . . , εk ⩾ ε such that
∑

i⩽k εi = 1. Fix an integer a ∈ Z, A, B > 0, and let 1 = 1+ (log x)−B .
If θ ⩽ θ(t1) − ε as in (3-14),∑

b=p′

1···p
′
r

Di <p′

i⩽D1+τ
i

∑
d=bc⩽xθ

c | P(p′
r )

(d,a)=1

λ̃±(d)

( ∑
p1···pk≡a (mod d)

xεi /1<pi⩽xεi ∀i⩽k

1 −
1

ϕ(d)

∑
(p1···pk ,d)=1

xεi /1<pi⩽xεi ∀i⩽k

1
)

≪a,ε,A,B
x

(log x)A . (5-23)

Moreover if t1 ⩽ 1
5 , r ⩾ 3, then (5-23) holds provided that θ ⩽ θ(t1, t2, t3) − ε as in (3-15).

In addition, if r ⩽ 2, u ⩽ tr , t1 ⩽ 1
5 , and θ ⩽ 3−u

5 − ε, then∑
b=p′

1···p
′
r

Di <p′

i⩽D1+τ
i

∑
d=bc⩽xθ

c | P(xu)
(d,a)=1

λ̃±(d)

( ∑
p1···pk≡a (mod d)

xεi /1<pi⩽xεi ∀i⩽k

1 −
1

ϕ(d)

∑
(p1···pk ,d)=1xεi /1<pi⩽xεi ∀i⩽k

1
)

≪a,ε,A,B
x

(log x)A .

(5-24)

6. Upper bound for twin primes

Now we shall apply the modified sieve to the set of twin primes

A := {p + 2 : p ⩽ x}.

In this case the sieve notation specializes as P = {p > 2} and g(d) = 1/ϕ(d) for odd d, so that
V (z) =

∏
2<p<z(1−1/ϕ(p)). Recall V (z) ∼S2/eγ log z by Mertens theorem, for the Hardy–Littlewood

constant S2 = 2
∏

p>2(1 − 2/p)/(1 − 1/p)2 appearing in 5(x) = S2x/(log x)2.
We begin in the spirit of Fouvry and Grupp [1986], and apply a weighted sieve inequality. To each

nonswitched term, we apply the Buchstab identity in order to lower the sieve threshold down to z = xϵ

for some tiny ϵ > 0. By Proposition 5.4, such smooth sums will satisfy level of distribution 1
5(3 − ϵ).
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Combined with variations on a theme, which identify programmably factorable weights in certain cases,
the consequent increase in level will be sufficient to obtain the bound in Theorem 1.2. For a final bit of
savings, we use refinements obtained by Wu’s iteration method [2004].

Before moving on, we note that sieve methods and the switching principle have also yielded progress
on the Goldbach problem. Indeed, the upper bound in [Wu 2004, Theorem 3] for twin primes is obtained
by using the same formulae as in [loc. cit., Theorem 1] for the Goldbach problem, except for altering
the level from 1

2 to 4
7 (this amounts to replacing factors of 4 with 7

2 in a few instances). Importantly, the
quantitative upper bounds for twin primes are much stronger than those of the Goldbach problem. This is
because the latter relies on level 1

2 from Bombieri and Vinogradov for a growing residue a = N , while
the former may appeal to level of distribution 4

7 from Bombieri, Friedlander and Iwaniec for the fixed
residue a = 2 (and now the subsequent improvements of Maynard). As such our methods have nothing
new to say for the Goldbach problem.

6.1. Lemmas. We begin with a standard lemma for x1/u-rough numbers in terms of the Buchstab function
ω(u) = ( f (u) + F(u))/(2eγ ) for linear sieve functions f , F as in Theorem 2.10. Alternatively, ω is
directly defined via

ω(u) =
1
u

for 1 ⩽ u ⩽ 2,

(uω(u))′ = ω(u − 1) for 2 ⩽ u.

Lemma 6.1. Let x ⩾ 2 and y = x1/u . Then we have∑
n⩽x

p | n⇒p⩾y

1 = ω(u)
x

log y
+ O

(
x

(log y)2

)
.

Proof. This is [Wu 1990, Lemma 12]. □

The argument of Wu makes essential use of weighted sieve inequalities, as in [Wu 2004, Lemmas 4.1
and 4.2]. We shall employ the latter inequality in the special case d = 1, σ = 1.

Lemma 6.2. For 3
10 ⩾ ρ ⩾ τ3 > τ2 > τ1 ⩾ ρ ′ ⩾ 1

20 , we have

5S(A, xρ) ≲
∑

1⩽n⩽21

0n,

where

01 := 4S(A, xρ′

) + S(A, xτ1),

02 := −

∑
xρ′⩽p<xρ

S(Ap, xρ′

),

03 := −

∑
xρ′⩽p<xτ2

S(Ap, xρ′

),

04 := −

∑
xρ′⩽p<xτ3

S(Ap, xρ′

),

012 :=

∑ ∑∑
xρ′

⩽p1<p2<xτ1

xτ3⩽p3<xρ

S(Ap1 p2 p3, p2),

013 :=

∑ ∑∑
xρ′

⩽p1<xτ1⩽p2<xτ2⩽p3<xρ

S(Ap1 p2 p3, p2),

014 :=

∑ ∑∑
xρ′

⩽p1<xτ1

xτ2⩽p2<p3<xρ

S(Ap1 p2 p3, p2),
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05 :=

∑ ∑
xρ′⩽p1<p2<xτ2

S(Ap1 p2, xρ′

),

06 :=

∑ ∑
xρ′

⩽p1<xτ1

xτ2⩽p2<xτ3

S(Ap1 p2, xρ′

),

07 :=

∑ ∑
xρ′

⩽p1<p2<xτ1

S(Ap1 p2, p1),

08 :=

∑ ∑
xρ′

⩽p1<xτ1⩽p2<xτ2

S(Ap1 p2, p1),

09 :=

∑ ∑∑
xτ1⩽p1<p2<p3<xτ3

S(Ap1 p2 p3, p2),

010 :=

∑ ∑∑
xτ1⩽p1<p2<xτ2⩽p3<xρ

S(Ap1 p2 p3, p2),

011 :=

∑ ∑∑
xτ1⩽p1<xτ2⩽p2<p3<xτ3

S(Ap1 p2 p3, p2),

015 :=

∑ ∑∑
xτ1⩽p1<xτ2⩽p2<xτ3⩽p3<xρ

S(Ap1 p2 p3, p2),

016 :=

∑ ∑∑ ∑
xτ2⩽p1<p2<p3<p4<xτ3

S(Ap1 p2 p3 p4, p3),

017 :=

∑ ∑∑ ∑
xτ2⩽p1<p2<p3<xτ3⩽p4<xρ

S(Ap1 p2 p3 p4, p3),

018 :=

∑ ∑∑ ∑
xτ2⩽p1<p2<xτ3⩽p3<p4<xρ

S(Ap1 p2 p3 p4, p3),

019 :=

∑ ∑∑ ∑
xτ1⩽p1xτ2

xτ3⩽p2<p3<p4<xρ

S(Ap1 p2 p3 p4, p3),

020 :=

∑ ∑∑ ∑ ∑
xτ2⩽p1<xτ3⩽p2<p3<p4<p5<xρ

S(Ap1 p2 p3 p4 p5, p4),

021 :=

∑ ∑∑ ∑ ∑∑
xτ3⩽p1<p2<p3<p4<p5<p6<xρ

S(Ap1 p2 p3 p4 p5 p6, p5).

Proof. This is [Wu 2004, Lemma 4.2] with d = 1, σ = 1. Here we simplify Wu’s notation slightly, using
(d1/s, d1/κ3, d1/κ2, d1/κ1, d1/s′

) = (xρ, xτ3, xτ2, xτ1, xρ′

). The basic proof idea is to iterate the Buchstab
identity and to strategically neglect some terms by positivity. □

6.2. Computations. Given 0.1 ⩽ ρ ′ ⩽ τ1 < 0.2 ⩽ τ2 < τ3 ⩽ ρ ⩽ 0.3., we define integrals In =

In(ρ, ρ ′, τ1, τ2, τ3) by

In =

∫
Dn

ω

(
1 − t − u − v

u

)
dt du dv

tu2v
(9 ⩽ n ⩽ 15),

In =

∫
Dn

ω

(
1 − t − u − v − w

v

)
dt du dv dw

tuv2w
(16 ⩽ n ⩽ 19),

I20 =

∫
D20

ω

(
1 − t − u − v − w − x

w

)
dt du dv dw dx

tuvw2x
,

I21 =

∫
D21

ω

(
1 − t − u − v − w − x − y

x

)
dt du dv dw dx dy

tuvwx2 y
,

(6-1)

where ω is the Buchstab function, and where the domains Dn are

D9 = {(t, u, v) : τ1 < t < u < v < τ3},

D10 = {(t, u, v) : τ1 < t < u < τ2 < v < ρ},

D11 = {(t, u, v) : τ1 < t < τ2 < u < v < τ3},

D12 = {(t, u, v) : ρ ′ < t < u < τ1, τ3 < v < ρ},

D13 = {(t, u, v) : ρ ′ < t < τ1 < u < τ2 < v < ρ},

D14 = {(t, u, v) : ρ ′ < t < τ1, τ2 < u < v < ρ},
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D15 = {(t, u, v) : τ1 < t < τ2 < u < τ3 < v < ρ},

D16 = {(t, u, v, w) : τ2 < t < u < v < w < τ3},

D17 = {(t, u, v, w) : τ2 < t < u < v < τ3 < w < ρ},

D18 = {(t, u, v, w) : τ2 < t < u < τ3 < v < w < ρ},

D19 = {(t, u, v, w) : τ1 < t < τ2, τ3 < u < v < w < ρ},

D20 = {(t, u, v, w, x) : τ2 < t < τ3 < u < v < w < x < ρ},

D21 = {(t, u, v, w, x, y) : τ3 < t < u < v < w < x < y < ρ}.

Recall the definitions (3-14) and (3-15),

θ(t) =

{2−t
3 if t > 1

5 ,
1+t

2 if t ⩽ 1
5 .

We let θϵ =
3−ϵ

5 and

θ(t, u, v) := max
{

3−v

5
, θ(t), θ(u), θ(t + u + v), θ(t + u), θ(t + v), θ(u + v)

}
.

We also define

G1 = 4G(ρ ′) + G(τ1), G3 = G0 + G(τ2),

G2 = G0 + G(ρ), G4 = G0 + G(τ3),
(6-2)

where for c ⩽ 1
5 ,

G(c) =
1
ϵ

F(θϵ/ϵ) −
1
ϵ

∫ c

ϵ

dt
t

f ((θϵ − t)/ϵ) +
1
ϵ

∫ c

ϵ

∫ t

ϵ

dt du
tu

F((θϵ − t − u)/ϵ)

−

∫ c

ϵ

∫ t

ϵ

∫ u

ϵ

dt du dv

tuv2 f ((θ(t, u, v)− t − u − v)/v), (6-3)

and for c > 1
5 ,

G(c) = −
1
ϵ

∫ c

1/5

dt
t

f ((θ(t) − t)/ϵ) +

∫ c

1/5

∫ ρ′

ϵ

dt du
tu2 F((θ(t) − t − u)/u) (6-4)

as well as

G0 = −
1
ϵ

∫ 1/5

ρ′

dt
t

f ((θϵ − t)/ϵ) +
1
ϵ

∫ 1/5

ρ′

∫ ρ′

ϵ

dt du
tu

F((θϵ − t − u)/ϵ)

−

∫ 1/5

ρ′

∫ ρ′

ϵ

∫ u

ϵ

dt du dv

tuv2 f ((θ(t, u, v)− t − u − v)/v). (6-5)
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We similarly let

G5 =
1
ϵ

∫ 1/5

ρ′

∫ t

ρ′

dt du
tu

F((θϵ − t − u)/ϵ) +
1
ρ ′

∫ τ2

1/5

∫ t

ρ′

dt du
tu

F((θ(t) − t − u)/ρ ′)

−

∫ 1/5

ρ′

∫ t

ρ′

∫ ρ′

ϵ

dt du dv

tuv2 f ((θ(t, u, v)− t − u − v)/v),

G6 =
1
ρ ′

∫ τ3

τ2

∫ τ1

ρ′

dt du
tu

F((θ(t) − t − u)/ρ ′),

G7 =
1
ϵ

∫ τ1

ρ′

∫ t

ρ′

dt du
tu

F((θϵ − t − u)/ϵ) −

∫ τ1

ρ′

∫ t

ρ′

∫ u

ϵ

dt du dv

tuv2 f ((θ(t, u, v)− t − u − v)/v),

G8 =
1
ϵ

∫ 1/5

τ1

∫ τ1

ρ′

dt du
tu

F((θϵ − t − u)/ϵ) +

∫ τ2

1/5

∫ τ1

ρ′

dt du
tu2 F((θ(t) − t − u)/u)

−

∫ 1/5

τ1

∫ τ1

ρ′

∫ u

ϵ

dt du dv

tuv2 f ((θ(t, u, v)− t − u − v)/v).

(6-6)

Recall the sieve functions F, f satisfy F(s)= 2eγ /s for s ∈ [1, 3], f (s)= 2eγ log(s−1)/s for s ∈ [2, 4]

and F(s) = 2eγ /s ·
[
1 +

∫ s−1
2 f (t) dt

]
for all s ⩾ 1.

The main bound is the following.

Proposition 6.3. Let 0 < ϵ ⩽ 0.1 ⩽ ρ ′ ⩽ τ1 < 0.2 ⩽ τ2 < τ3 ⩽ ρ ⩽ 0.3. Then for In , Gn , and G(c) as in
(6-1), (6-2), (6-6), and (6-3), we have

S(A, xρ) ≲
5(x)

5eγ

( 8∑
n=1

Gn + G
( 1

5

) 21∑
n=9

In

)
. (6-7)

Proof. We first bound S(A, xc) for c ∈
[
ϵ, 1

5

]
. By the Buchstab identity,

S(A, xc) = S(A, xϵ) −

∑
xϵ⩽p<xc

S(Ap, p).

Iterating twice more, we obtain

S(A, xc) = S(A, xϵ)−
∑

xϵ⩽p1<xc

S(Ap1, xϵ)+
∑

xϵ⩽p2<p1<xc

S(Ap1 p2, xϵ)−
∑

xϵ⩽p3<p2<p1<xc

S(Ap1 p2 p3, p3).

(6-8)
To each term S(Ad , xϵ) above, we apply the linear sieve of level xθϵ for θϵ =

1
5(3−ϵ), as in Theorem 2.10.

And to each term S(Ap1 p2 p3, p3), we apply the linear sieve of level xθ for θ = θ(t1, t2, t3), where pi = x ti .
To handle the corresponding error terms, note for primes xϵ ⩽ p2 < p1 < xc ⩽ x1/5 and d ∈{1, p1, p1 p2},

the prime factors of q/d above are bounded by xϵ so that the sets Aq are equidistributed to level θϵ .
Hence for each xϵ ⩽ p2 < p1 < x1/5, by Proposition 5.4 with u = ϵ, b = 1, p1, p1 p2, we have∑

q⩽xθϵ

q | P(xϵ)

λ̃+(q)

(
|Aq | −

|A|

ϕ(q)

)
=

∑
q⩽xθϵ

q | P(xϵ)

λ̃+(q)

(
π(x; q, −2) −

π(x)

ϕ(q)

)
≪A

x
(log x)A
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and ∑
p1

∑
q=p1m⩽xθϵ

m | P(xϵ)

λ̃−(q)

(
|Aq | −

|A|

ϕ(q)

)
≪A

x
(log x)A

and ∑
p2,p1

∑
q=p1 p2m⩽xθϵ

m | P(xϵ)

λ̃+(q)

(
|Aq | −

|A|

ϕ(q)

)
≪A

x
(log x)A .

In addition for each p3 < p2 < p1 < x1/5, pi = x ti , letting θ = θ(t1, t2, t3), by Proposition 5.4 with
b = p1 p2 p3, ∑

p3,p2,p1

∑
q=p1 p2 p3m⩽xθ

m | P(p3)

λ̃−(q)

(
|Aq | −

|A|

ϕ(q)

)
≪A

x
(log x)A .

Thus for c ⩽ 1
5 , the linear sieve bounds give

S(A, xϵ) ≲ |A|V (xϵ)F
(

θϵ

ϵ

)
(6-9)

and ∑
xϵ⩽p1<xc

S(Ap1, xϵ) ≳
∑

xϵ⩽p1<xc

|A|g(p1)V (xϵ) f
(

θϵ −t1
ϵ

)
(6-10)

and ∑
xϵ⩽p2<p1<xc

S(Ap1 p2, xϵ) ≲
∑

xϵ⩽p2<p1<xc

|A|g(p1 p2)V (xϵ)F
(

θϵ −t1−t2
ϵ

)
(6-11)

and ∑
xϵ⩽p3<p2<p1<xc

S(Ap1 p2 p3, p3) ≳
∑

xϵ⩽p3<p2<p1<xc

|A|g(p1 p2 p3)V (p3) f
(

θ−t1−t2−t3
t3

)
. (6-12)

Hence by (6-9), (6-10), (6-11), (6-12), we observe that (6-8) becomes

S(A, xc)≲−|A|

∑
xϵ⩽p3<p2<p1<xc

g(p1 p2 p3)V (p3) f
(

θ−t1−t2−t3
ϵ

)
+|A|V (xϵ)

(
F

(
θϵ

ϵ

)
−

∑
xϵ⩽p1<xc

g(p1) f
(

θϵ −t1
ϵ

)
+

∑
xϵ⩽p2<p1<xc

g(p1 p2)F
(

θϵ −t1−t2
ϵ

))
. (6-13)

Recall V (z) ∼ S2/eγ log z by Merten’s theorem. Thus by partial summation and the prime number
theorem, we obtain

S(A, xc) ≲
5(x)

eγ
G(c), (6-14)

for G(c) as in (6-3). Hence for c = ρ ′, τ1 we have c ∈
[
ϵ, 1

5

]
, so we bound 01 as

01 = 4S(A, xρ′

) + S(A, xτ1) ≲
5(x)

eγ
(4G(ρ ′) + G(τ1)) =

5(x)

eγ
G1.
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Now consider c, c′
∈

[ 1
5 , 2

7

]
. We shall apply the linear sieve of level θ(t1), as in (3-14). In general, for

p1 = x t1 and θ(t1) as in (3-14), Proposition 5.4 gives∑
p1

∑
p1 | q,q⩽xθ(t1)

q/p1 | P(p1)

λ̃−(q)

(
|Aq | −

|A|

ϕ(q)

)
≪A

x
(log x)A ,

so that for c, c′
∈

[ 1
5 , 2

7

]
, the linear sieve of level θ(t1) gives∑

xc′⩽p1<xc

S(Ap1, p1) ≳
∑

xc′⩽p1<xc

|A|g(p1)V (p1) f
(

θ(t1)−t1
t1

)
. (6-15)

Thus by partial summation and the prime number theorem,

02 =

∑
xρ′⩽p<xρ

S(Ap, xρ′

) ≲
5(x)

eγ
(G + G(ρ)) =

5(x)

eγ
G2.

Similarly, we obtain

0n ≲
5(x)

eγ
Gn for 1 ⩽ n ⩽ 8. (6-16)

Finally, for the remaining 0n , we apply the switching principle. Namely, for 09 we have

09 =

∑ ∑∑
xτ1⩽p1<p2<p3<xτ3

S(Ap1 p2 p3, p2) = S(B, x1/2) + O(x1/2) (6-17)

for the set

B = {p1 p2 p3m − 2 ⩽ x : xτ1 ⩽ p1 < p2 < p3 < xτ3, p′
| m ⇒ p′ ⩾ p2}. (6-18)

Note since p2, p1 > xτ1 > x0.1, each m above has at most 7 prime factors.
Now by a standard subdivision argument, B is similarly equidistributed in arithmetic progressions

as is A. Indeed, the basic idea is to partition B =
⋃

r⩽7 B
(r), where B(r) is the subset corresponding to

integers m with r prime factors. Then we cover the prime tuples (p1, . . . , pr ) into hypercubes of the form

[1l1, 1l1+1) × · · · × [1lr , 1lr +1)

for 1 = 1+(log x)−B with B > 0 sufficiently large, and apply Corollary 5.6 with u = ϵ, b = 1. This gives∑
q⩽xθϵ

q | P(xϵ)

λ̃+(q)

(
|Bq | −

|B|

ϕ(q)

)
≪A

x
(log x)A .

Similarly for each xε < p′

3 < p′

2 < p′

1 < x1/5, by Corollary 5.6 with u = ϵ and b = p′

1, p′

1 p′

2, we have∑
p′

1

∑
q=p′

1m′⩽xθϵ

m′
| P(xϵ)

λ̃−(q)

(
|Bq | −

|B|

ϕ(q)

)
≪A

x
(log x)A
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and ∑
p′

2,p′

1

∑
q=p′

1 p′

2m′⩽xθϵ

m′
| P(xϵ)

λ̃+(q)

(
|Bq | −

|B|

ϕ(q)

)
≪A

x
(log x)A .

In addition for each p′

3 < p′

2 < p′

1 < x1/5, p′

i = x ti , letting θ = θ(t1, t2, t3), by Corollary 5.6 with
b = p′

1 p′

2 p′

3, we have ∑
p′

3,p′

2,p′

1

∑
q=p′

1 p′

2 p′

3m′⩽xθ

m′
| P(p′

3)

λ̃−(q)

(
|Bq | −

|B|

ϕ(q)

)
≪A

x
(log x)A .

Iterating the Buchstab identity, we have

S(B, x1/2)

⩽ S(B, x1/5)

= S(B, xϵ) −

∑
xϵ⩽p′

1<x1/5

S(Bp′

1
, xϵ) +

∑
xϵ⩽p′

2<p′

1<x1/5

S(Bp′

1 p′

2
, xϵ) −

∑
xϵ⩽p′

3<p′

2<p′

1<x1/5

S(Bp′

1 p′

2 p′

3
, p′

3),

and hence by the linear sieve bounds we obtain

09 ≲ S(B, x1/2) ⩽ S(B, x1/5) ≲ e−γ
G

( 1
5

)
log x

S2|B|. (6-19)

Now to compute |B| in (6-18), by Lemma 6.1 we have

|B| ∼
x

log x

∫
τ1<t1<t2<t3<τ2

dt1 dt2 dt3
t1t2

2 t3
ω

(
1 − t1 − t2 − t3

t2

)
=

x
log x

· I9.

Thus we have 09 ≲ e−γ G
( 1

5

)
5(x)I9. Similarly, we obtain

0n ≲ G
( 1

5

)5(x)

eγ
In (for 9 ⩽ n ⩽ 21). (6-20)

Hence plugging (6-16), (6-20) into Lemma 6.2 completes the proof. □

Let
ρ = 0.27195, τ3 = 0.24589,

ρ ′
= 0.12313, τ2 = 0.20867,

ϵ = 0.002, τ1 = 0.16288.

(6-21)

For such choices of parameters, we compute the following integrals from Proposition 6.3,∑
9⩽n⩽21

In ⩽ 0.174404,
∑

1⩽n⩽8

Gn ⩽ 28.34581, G
( 1

5

)
⩽ 5.99237.
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Thus by Proposition 6.3, we obtain the bound

π2(x) ≲ S(A, xρ) ≲
5(x)

5eγ

( 8∑
n=1

Gn + G
( 1

5

) 21∑
n=9

In

)
≲ 3.300425(x). (6-22)

We also record the individual bounds (see table at end of paper).

6.3. Completing the proof of Theorem 1.2. We shall refine our argument in certain cases for which Wu’s
iteration method [2004] applies directly without modification. As such we have chosen simplicity over
full optimization.

In the lemma below, we consider the cases of sets Ap1 p2 , where p1, p2 lie in a prescribed range, and
such that for all multiples bp1 p2, the sets Abp1 p2 are equidistributed to level xθ (we also need level xθ for
corresponding switched sets B of integers mbp1 p2 − 2).

Lemma 6.4. Let θ ∈
[ 1

2 , 1
]
, s ∈ [2, 3], and A= {p +2 : p ⩽ x}. There is a function Hθ (s), monotonically

increasing in θ for fixed s and decreasing in s for fixed θ , such that the following holds: For each
(D1, D2) ∈ Dwell

2 (xθ ), we have

∑
D1<p1<D1+τ

1
D2<p2<D1+τ

2

S(Ap1 p2, z) ≲
5(x)

eγ

∑
D1<p1<D1+τ

1
D2<p2<D1+τ

2

log x
ϕ(p1 p2) log z

(
F(s) −

2eγ

s
Hθ (s)

)
, (6-23)

where zs
= xθ/p1 p2, provided (5-22) holds for λ = λ̃+ at level D = xθ with (xε1, xε2) = (D1, D2), and

provided for all vectors (D1, . . . , Dr ) ∈ Dwell
r (xθ ) extending (D1, D2),

∑
b=p1···pr

Di <pi⩽D1+τ
i

∑
b | d,d⩽xθ

(d,a)=1

λ̃±(d)

(
π(x; d, a) −

π(x)

ϕ(d)

)
≪a,ε,A

x
(log x)A .

Proof. Wu iterates the weighted sieve inequality [Wu 2004, Lemmas 4.1 and 4.2] on the subset of
(nonswitched) terms whose sieving parameter s lies in the interval s ∈ [2, 3]. This yields a recurrence
relation for a function Hθ (s), which encodes the percent savings over the (normalized) linear sieve
s F(s)/(2eγ ).

Starting from a term S(Ap1 p2, z), each successive iteration of the weighted sieve inequality is composed
of terms of the form S(Abp1 p2, z′) for some multiple bp1 p2 corresponding to some vector extending
(D1, D2). By assumption, all such sets are equidistributed to level xθ , when weighted by the upper/lower
linear sieve. Similarly, the switched sets are also equidistributed to level xθ (here we only need the upper
bound weights λ̃+). Finally, the savings function Hθ (s) inherits the stated monotonicity properties by
construction of the iteration. □
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The function Hθ depends on the known level of distribution xθ (i.e., Wu used θ =
1
2 for Goldbach, and

θ =
4
7 for twin primes). For parameters as in Tables 1 and 2 of [Wu 2004, pages 30–32],

H1/2(t) ⩾



0.0223939 if 2.0 < t ⩽ 2.2,

0.0217196 if 2.2 < t ⩽ 2.3,

0.0202876 if 2.3 < t ⩽ 2.4,

0.0181433 if 2.4 < t ⩽ 2.5,

0.0158644 if 2.5 < t ⩽ 2.6,

0.0129923 if 2.6 < t ⩽ 2.7,

0.0100686 if 2.7 < t ⩽ 2.8,

0.0078162 if 2.8 < t ⩽ 2.9,

0.0072943 if 2.9 < t ⩽ 3.0,

0 else,

and

H4/7(t) ⩾



0.0287118 if 2.0 ⩽ t ⩽ 2.1,

0.0280509 if 2.1 < t ⩽ 2.2,

0.0264697 if 2.2 < t ⩽ 2.3,

0.0241936 if 2.3 < t ⩽ 2.4,

0.0214619 if 2.4 < t ⩽ 2.5,

0.0183875 if 2.5 < t ⩽ 2.6,

0.0149960 if 2.6 < t ⩽ 2.7,

0.0117724 if 2.7 < t ⩽ 2.8,

0.0094724 if 2.8 < t ⩽ 2.9,

0.0090024 if 2.9 < t ⩽ 3.0,

0 else.

As such, Wu [2004, Theorem 3] obtained π2(x)/5(x) ≲ 7
2(1 − H4/7(2.1)) ⩽ 3.39951.

To complete our proof of Theorem 1.2 we apply Lemma 6.4, now valid up to level x7/12 by Corollary 2.7
and Proposition 5.5 for λ̃+. Note when the largest integration variable is t ⩾ 1

5 , we have θ(t)=
1
3(2−t)⩽ 7

12
if and only if t ⩾ 1

4 . A key feature we use to satisfy the conditions of Lemma 6.4 is that the level xθ(t1)

persists, since the largest prime p1 = x t1 is preserved through successive iterations.
Thus, in practice, Lemma 6.4 simply amounts to modifying the integral in G2 by substituting

F(s) −
2eγ

s Hθ (s) in for F(s), s = (θ(t) − t − u)/u, when t ⩾ 1
4 (the only parameter ⩾ 1

4 is ρ, so
we only refine G2). Denote this as GWu

2 . For ease we also use Hθ (s) ⩾ H4/7(s), by monotonicity in θ .
Doing so, with the same parameter choices (6-21), we obtain GWu

2 ⩽ −5.598667 and hence

π2(x) ≲
5(x)

5eγ

(
GWu

2 +

∑
1⩽n ̸=2⩽8

Gn + G
( 1

5

) ∑
9⩽n⩽21

In

)
≲ 3.2995525(x). (6-24)

This completes the proof of Theorem 1.2.
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n Gn n In n In

1 39.00163 9 0.0332157 17 0.000315
2 −5.591009 10 0.0228322 18 0.000269
3 −3.986553 11 0.0092564 19 0.000164
4 −5.060499 12 0.0150101 20 ⩽ 2.70 · 10−6

5 1.864133 13 0.0547244 21 ⩽ 5.50 · 10−9

6 0.741181 14 0.0260202
7 0.453663 15 0.0124636
8 0.923736 16 0.0001314

Table 2. Values of G1, . . . , G8 and I9, . . . , I21.

For slight numerical gains, one may compute Hθ (s) when θ ∈
[4

7 , 7
12

]
, by tweaking the formulae in

[Wu 2004]. More substantially, Wu defined a lower bound savings hθ (s), for a substitution of f (s) by
f (s) +

2eγ

s hθ (s). But in practice, to compute h would require derivations (analogous to H ) of as yet
undetermined formulae. We leave these to the reader.
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Ranks of abelian varieties in cyclotomic twist families
Ari Shnidman and Ariel Weiss

Let A be an abelian variety over a number field F , and suppose that Z[ζn] embeds in EndF̄ A, for some root
of unity ζn of order n = 3m . Assuming that the Galois action on the finite group A[1 − ζn] is sufficiently
reducible, we bound the average rank of the Mordell–Weil groups Ad(F), as Ad varies through the family
of µ2n-twists of A. Combining this result with the recently proved uniform Mordell–Lang conjecture, we
prove near-uniform bounds for the number of rational points in twist families of bicyclic trigonal curves
y3

= f (x2), as well as in twist families of theta divisors of cyclic trigonal curves y3
= f (x). Our main tech-

nical result is the determination of the average size of a 3-isogeny Selmer group in a family of µ2n-twists.

1. Introduction

Let A be an abelian variety over a number field F and let G F = Gal(F/F). Any G F -stable subgroup
H ⊂ AutF A gives rise to a twist family of abelian varieties Aξ over F , indexed by the elements ξ of the
Galois cohomology set H 1(G F , H). The base change of Aξ to F is isomorphic to AF , but with G F -action
twisted by ξ . Our goal is to study the distributions of the ranks of the Mordell–Weil groups Aξ (F) in
such twist families, and to give some applications.

Every abelian variety A has the automorphism −1, and since H 1(G F , {±1})≃ F×/F×2, we obtain the
quadratic twist family of A. The average rank of Aξ (F) in quadratic twist families has been extensively
studied in the case of elliptic curves [Brumer 1992; Heath-Brown 1994; Katz and Sarnak 1999; Smith 2017;
Bhargava et al. 2019], with [Bhargava et al. 2019] addressing many cases in higher dimension as well.

In this paper, we consider the case H = µ2n , the group of 2n-th roots of unity, where n = 3m for
some m ≥ 1. More precisely, we assume that there is a G F -equivariant ring embedding Z[ζ ] ↪→ EndF A,
where ζ = ζn ∈ F is a root of unity of order n. We say that such an A has ζ -multiplication. For example,
the Jacobian J of a curve of the form y3

= x f (x3m−1
) has ζ -multiplication induced from the order n

automorphism (x, y) 7→ (ζ 3x, ζ y).
Since µ2n =⟨−ζ ⟩⊂ AutF A, there is a twist Ad for each d ∈ F×/F×2n

≃ H 1(G F , µ2n). In the example
above, Jd is the d-th quadratic twist of the Jacobian of y3

= x f
( 1

d x3m−1)
. In Section 5B, we recall a

height function h : F×/F×2n
→ R with the property that the sets 6X := {d ∈ F×/F×2n

: h(d) < X} are
finite. When F = Q, the height h(d) is the absolute value of the smallest integer representing d. The
average rank of Ad(F) is then, by definition,

avgd rk Ad(F)= lim
X→∞

avg
d∈6X

rk Ad(F).
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In general, it is not known whether this limit exists or even if the limsup is finite. In the latter case, we
say that the average rank of Ad(F) is bounded.

1A. Mordell–Weil ranks. If A has ζ -multiplication, the endomorphism 1 − ζ ∈ EndF A descends to an
isogeny π : A → A′ over F (see Section 2). The kernel A[π ] is a G F -stable subgroup of the 3-torsion
group A[3], and hence is a finite-dimensional F3-vector space. We show that the average rank of Ad(F)
is bounded, assuming that the G F -action on A[π ] is sufficiently reducible.

Theorem 1.1. Let A be an abelian variety with ζ3m -multiplication over F.

(i) If A[π ] is a direct sum of characters, then avgd rk Ad(F) is bounded.

(ii) If A[π ] has a full flag, then avgd rk Ad(F), over squarefree d ∈ F×/F×2n , is bounded.

Here, we say that A[π ] has a full flag if there are G F -modules 0 = H0 ⊂ H1 ⊂ · · · ⊂ Hk = A[π ] such
that dimF3 Hi+1/Hi = 1. We say that d ∈ F×/F×2n is squarefree if v(d)≡ 0 or 1 (mod 2n), for all finite
places v of F . Theorem 1.1 is a simultaneous generalization of [Bhargava et al. 2019, Theorem 2.2] and
[Bhargava et al. 2020, Theorem 5] to a larger class of twist families of abelian varieties.

If J is the Jacobian of y3
= x f (x3m−1

), then the representation theoretic conditions on J [π ] translate
into conditions on the Galois group Gal( f ) of the splitting field of f (x) over F . More generally, we
deduce the following result from Theorem 1.1:

Corollary 1.2. Let f (x) ∈ F[x] be separable and nonconstant, and let J be the Jacobian of either
y3m

= f (x) or y3
= x f (x3m−1

).

(i) If Gal( f )≃ (Z/2Z)k , for some k ≥ 0, then avgd rk Jd(F) is bounded.

(ii) If Gal( f ) is an extension of (Z/2Z)k by a 3-group, then avgd rk Jd(F), over squarefree d ∈ F×/F×2n ,
is bounded.

Our proof of Theorem 1.1 gives an explicit upper bound on the average rank, however, the bound
depends on subtle arithmetic properties of A. The following crude upper bound has the virtue that it
applies to a large class of abelian varieties and depends only mildly on A.

Theorem 1.3. Suppose that A[π ] has a full flag and that A admits a ζn-stable principal polarization.
Let S be the set of places of F dividing 3fA∞, where fA is the conductor of A. Then the average rank
of Ad(F), for squarefree d ∈ F×/F×2n , is at most dim A · (#S + 3−#S).

For most A, this bound is significantly weaker than what our method actually gives. An interesting
case is when A has complex multiplication (CM), i.e., dim A = 3m−1, in which case dimF3 A[π ] = 1
and the reducibility hypotheses are automatically satisfied. When the complex multiplication is defined
over F , we obtain especially strong results:

Theorem 1.4. Suppose that dim A = 3m−1, so that A has complex multiplication by Z[ζ3m ]. Assume more-
over that ζ3m ∈ F , so that the complex multiplication is defined over F. Then the average Z[ζ3m ]-module
rank of Ad(F) is at most 1

2 , and at least 50% of twists Ad have rank 0.
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In the CM case, we expect that 100% of twists Ad have rank 0, in which case our result is halfway
towards the analogue of Goldfeld’s conjecture in this context.

Such A arise as factors of the Jacobians of the curves y3m
= xa(1 − x)b, which have good reduction

away from 3. Even when the CM is not defined over F , we obtain average rank bounds that depend only
on dim A. Over Q, for example, the average rank of Ad(Q) is at most 19

9 dim A by Theorem 1.3, a bound
which can be improved to 13

9 dim A with a more refined analysis.

1B. Rational points on curves. Theorem 1.1 has concrete consequences for the arithmetic of curves C/F
of genus g ≥ 2. It was nearly 40 years ago that Faltings proved that C(F) is a finite set, but very recently,
there has been significant progress towards a uniform upper bound on #C(F). Building on work of
Dimitrov, Gao, and Habegger [Dimitrov et al. 2021], Kühne [2021] has shown that

#C(F)≤ c1+rk Jac(F)
g ,

where cg is a constant depending only g. Building on this work, Gao, Ge, and Kühne [Gao et al. 2021]
proved the more general uniform Mordell–Lang conjecture for closed subvarieties of abelian varieties.
These results reduce the question of uniform bounds for rational points on a large class of varieties to a
question about ranks of abelian varieties.

By combining these results with Theorem 1.1, we show that “near-uniformity” holds for twists of
bicyclic trigonal curves:

Theorem 1.5. Let f (x) ∈ F[x] be separable, of degree at least two, and with all of its roots nonzero
elements of F. Consider the bicyclic trigonal curve C : y3

= f (x2), and let Cd : dy3
= f (dx2) be the

corresponding sextic twist family. Then for every ε > 0, there is a constant Nε such that the lower density
of classes d ∈ F×/F×6 for which

#Cd(F)≤ Nε

is at least 1 − ε.

To prove Theorem 1.5, we apply Theorem 1.1 not to the Jacobian of C , but to the Prym variety for the
double cover C → C ′, where C ′

: y3
= f (x); see Section 9. We remark that the constant Nε depends

only on ε, deg( f ), and #S (using the notation of Theorem 1.3).
Unlike the curves in Theorem 1.5, a general cyclic trigonal curve C : y3

= f (x) has no sextic twists,
so it may seem that Theorem 1.1 says nothing about rational points on the twists of C itself. However, for
these curves, we can consider sextic twists of a theta divisor 2⊂ J = Jac(C). Recall that 2 is birational
to the symmetric power C (g−1), so its rational points parametrize low-degree points on C . We can choose
2 so that it is preserved by the µ2n-action (see Section 9), which allows us to consider the twist 2d ⊂ Jd ,
for each d ∈ F×.

Theorem 1.6. Let f (x) ∈ F[x] be separable and suppose that Gal( f ) ≃ (Z/2Z)k for some k ≥ 0. Let
C : y3

= f (x), and suppose that Jac(C) is geometrically simple. Let 2 ⊂ Jac(C) be a symmetric theta
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divisor. Then for every ε > 0, there is a constant Nε such that the lower density of classes d ∈ F×/F×6

for which
#2d(F)≤ Nε

is at least 1 − ε.

This result again follows from Theorem 1.1 and [Gao et al. 2021], and Nε depends only on ε, deg( f ),
and #S. Since the results of [Gao et al. 2021] are ineffective, we cannot say anything explicit about the
constant Nε in general. However, one can prove explicit results in this direction by instead combining our
work with the Chabauty method. We illustrate this by way of an example.

Theorem 1.7. Consider the sextic twist family Cd : y3
= (x2

− d)(x2
− 4d) of genus-3 curves. For at

least 1
3 of squarefree d ∈ Z such that d ≡ 2 or 11 (mod 36), we have #Cd(Q)≤ 5.

The curve Cd admits a double cover p : Cd → Ed to the elliptic curve Ed : y3
= (x − d)(x − 4d).

Moreover, Cd embeds in the abelian surface Pd = Jac(Cd)/p∗ Pic0(Ed). By making the rank bound in
Theorem 1.1 explicit, we show that rk Pd(Q)≤ 1 for at least 1

3 of twists d . Then we invoke, and generalize
slightly, Stoll’s uniform Chabauty result for twist families [2006].

The same method works for sextic twist families of the form Ca,d : y3
= (x2

− d)(x2
− ad). To

prove the existence of twists with rk Pa,d(Q)≤ 1, we must check that a certain local 3-adic root number
takes the value −1 for some twist d. We can verify this condition in Magma for seemingly any given
curve Ca,d , but it would be nice to have a proof for all or most values of a.1 It would also be interesting
to prove explicit results for symmetric squares of trigonal plane quartics, as in Theorem 1.6, by using
[Caro and Pasten 2023].

1C. 3-isogeny Selmer groups. Having discussed some applications of Theorem 1.1, let us discuss its
proof. Theorem 1.1 follows from a more precise result about Selmer groups. Let A/F be an abelian
variety with ζ -multiplication and admitting a 3-isogeny φ : A → B. If A[φ] ⊂ A[π ], or equivalently, if φ
is ζ -linear, then each twist Ad is endowed with its own 3-isogeny φd : Ad → Bd . For each d , we consider
the φd -Selmer group Selφd (Ad), which sits in the exact sequence

0 → Bd(F)/φd Ad(F)→ Selφd (Ad)→ X(Ad)[φd ] → 0.

The main technical result of this paper is the exact computation of avgd # Selφd (Ad).
To state the precise result, we recall the global Selmer ratio c(φd)=

∏
v cv(φd), where for each place v

of F , we define

cv(φd)=
#coker(Ad(Fv)→ Bd(Fv))
#ker(Ad(Fv)→ Bd(Fv))

.

For v ∤ 3∞, we have cv(φd)= cv(Bd)/cv(Ad), where cv(A) is the Tamagawa number of A over Fv . Thus,
up to some subtle factors at places v above 3 and ∞, the number c(φd) is the ratio of the global Tamagawa

1In [Shnidman and Weiss 2023, Theorem 1.4], we prove that a positive proportion of Pa,d have rank at most 1 in the case
that a is a square, using a different argument which sidesteps the root number question.
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numbers c(Bd)/c(Ad). In particular, we have cv(φd) ∈ 3Z, and cv(φd) = 1 for all but finitely many v
(having fixed d).

We say A[φ] is almost everywhere locally a direct summand of A[π ] if, for almost all places v of F ,
the G Fv -module A[φ] is a direct summand of A[π ].

Theorem 1.8. Assume that A[φ] is almost everywhere locally a direct summand of A[π ]. Then
avgd # Selφd (Ad)= 1 + avgd c(φd), where both averages are finite and taken over d ∈ F×/F×2n , ordered
by height.

This result is a simultaneous generalization of [Bhargava et al. 2019, Theorem 2.1] and [Bhargava et al.
2020, Theorem 1]. Interestingly, the condition of being everywhere locally a direct summand, which
is automatically satisfied for the families considered in [Bhargava et al. 2019; 2020], seems to be an
obstruction to computing the average size of # Selφd (Ad) in the entire family of twists, at least using our
methods. In any case, if we only consider squarefree twists, then this obstruction goes away:

Theorem 1.9. Let φ : A → B be a ζ -linear 3-isogeny. Then the average size of # Selφd (Ad) over squarefree
d ∈ F×/F×2n is finite and equal to 1 + avgd c(φd).

The quantity avgd c(φd) is governed by local arithmetic data which can be made explicit in certain cases.
For example, in Theorem 1.4 we have c(πd)= c(φd)= 1 for all d. However, in general, computing the
exact value of avgd c(φd) is hard. Nonetheless, one can give an explicit upper bound on avgd # Selφd (Ad)

depending only on F , dim A, and the number of primes dividing the conductor of A (Proposition 5.5).
In Section 6 we show how to deduce Theorem 1.1 from Theorems 1.8 and 1.9. In the remainder of the

introduction, we discuss the proofs of the latter two results.

1D. Methods. We prove Theorems 1.8 and 1.9 using geometry-of-numbers methods. As in the previous
works [Bhargava et al. 2019; 2020] of the first author and his collaborators, we first identify the elements of
Selφd (Ad) with SL2(F)-orbits of binary cubic forms of discriminant d . We then wish to use lattice-point
counting techniques, which have been extended to global fields in [Bhargava et al. 2015], to count the num-
ber of such orbits of bounded discriminant. However, it is not at all clear (and indeed, it is not always true)
that the SL2(F)-orbits corresponding to Selmer elements are integral, i.e., that they contain cubic forms
whose coefficients are algebraic integers. This integrality is of course essential for lattice-point counting.

For the quadratic twist families considered in [Bhargava et al. 2019], integrality follows quickly once
it is realized that the local Selmer conditions are very mild outside the finitely many primes dividing
the conductor of A. One needs only to “clear denominators” at those finitely many primes, and then
the Selmer orbits become integral. For the families considered in this paper, the question of integrality
is more subtle. The first interesting case is the family of sextic twists E : y2

= x3
+ d considered in

[Bhargava et al. 2020], which is the unique twist family of elliptic curves with 3-power ζ -multiplication.
In that special family, the authors give an explicit bijection between Selmer elements and binary cubic
forms. Integrality is then proven using a direct connection with Bhargava’s higher composition laws.
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In the more general setup of this paper, we cannot rely on such an explicit parametrization, nor do we
expect one to exist. Instead, our method is more abstract and involves two independent steps. First, we
give a complete analysis of the integral arithmetic invariant theory for the representation Sym3 Z2 of SL2,
in the sense that we identify precisely which SL2(Fv)-orbits of binary cubic forms, over a local field Fv ,
have integral representatives. We show that once the valuation of the discriminant v(d) is at least 3, all
orbits have integral representatives, and we determine what happens for v(d)≤ 2 as well. Our strategy is
to translate the question into one about cubic rings, whose local structure we understand well. Second,
we study the Selmer groups Selφd (Ad) from a purely cohomological point of view, in the spirit of Mazur
and Rubin [2007]; see also [Klagsbrun et al. 2013]. Upon comparing the results, we find that for all but
finitely many primes v, the Selmer orbits of discriminant d are v-integral, except possibly when v(d)= 2.
In particular, the Selmer orbits are integral when d is squarefree. When v(d)= 2, we find that the local
direct summand condition on A[φ] ⊂ A[π ] exactly matches up with the local integrality condition.

1E. Future directions. In many situations, the integral orbits of a reductive group G acting on a rep-
resentation V have been shown to parametrize Selmer elements in a certain explicit family of abelian
varieties [Bhargava and Shankar 2015a; 2015b; Bhargava and Ho 2016; Bhargava and Gross 2014; Thorne
2013; Laga 2023]. The results of this paper show that there is a tremendous amount of flexibility in these
constructions, in the sense that (G, V ) can be used to parametrize Selmer elements in very different looking
families over the same space of invariants V//G (which is A1 in our case). Our analysis of the integral
arithmetic invariant theory of (SL2,Sym3 Z2) can be adapted to some of these other representations
(G, V ), so it would be interesting to understand the following (vaguely formulated) question. For which
families φ : A → B of isogenies of abelian varieties over S = V//G can the elements of Selφs (As), for
s ∈ S(F), be parametrized by orbits of G(F) on V (F)?

1F. Outline. We begin in Section 2 with basics on abelian varieties with ζ -multiplication. Sections 3–6
are the technical heart of the paper. In Section 3, we give a complete analysis of the integral arithmetic
theory for the representation Sym3 Z2 of SL2. In Section 4, we give a parallel, but independent analysis of
the Selmer groups Selφd (Ad) of the twists φd of a general ζ -linear 3-isogeny. In Section 5, we combine
these two sections and prove Theorems 1.8 and 1.9. In Section 6, we apply the results of Section 5 to
prove Theorems 1.1 and 1.3.

The remainder of the paper is devoted to applications of our main results. In Section 7, we study the
average ranks of the Jacobians of the curves y3

= x f (x3m−1
) and y3m

= f (x) and prove Corollary 1.2. In
Section 8, we give explicit results for abelian varieties with CM and prove Theorem 1.4. In Section 9,
we study rational points in twist families of curves as in Section 1B, and prove Theorems 1.5 and 1.6.
Finally, in Section 10, we study twist families of genus-3 curves and prove Theorem 1.7.

2. Abelian varieties with ζ -multiplication

Let F be a field of characteristic 0. Fix an odd prime p, an integer n = pm , and a primitive n-th root of
unity ζ = ζn . In this section, ϕ denotes Euler’s totient function.
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Definition 2.1. An abelian variety with ζ -multiplication is a pair (A, ιA), where A is an abelian variety
over F and ιA : Z[ζ ] ↪→ EndF A is a G F -equivariant injective ring homomorphism.

We usually suppress any mention of ιA and view Z[ζ ] as a subring of EndF A. In this section, we
collect some basic facts and constructions relating to abelian varieties with ζ -multiplication.

2A. The isogeny π . If A is an abelian variety with ζ -multiplication, then since 1 − ζ divides p in Z[ζ ],
the map 1 − ζ ∈ EndF A is an isogeny whose degree is a power of p.

Lemma 2.2. The kernel of 1 − ζ is G F -stable, and hence is an F-subgroup of A[p]. In particular, there
is an abelian variety A(1) over F , such that the endomorphism 1 − ζ of A over F descends to an isogeny
π : A → A(1) over F.

Proof. If P ∈ AF [1 − ζ ] and σ ∈ G F , then ζ σ
−1

= ζ i for some i ∈ (Z/nZ)× and

ζ(Pσ )= (ζ σ
−1
(P))σ = (ζ i P)σ = Pσ ,

which shows that Pσ ∈ AF [1 − ζ ]. Hence, AF [1 − ζ ] descends to an F-subgroup H of A. Thus, we
obtain a an isogeny π : A → A/H =: A(1) over F .

The equality of ideals (1 − ζ )ϕ(n) = (p) in Z[ζ ] shows that AF [1 − ζ ] ⊂ AF [p]. □

If ζ ∈ F , then A(1) = A/A[1 − ζ ] ≃ A, and π : A → A(1) can be identified with the endomorphism
1 − ζ . If ζ /∈ F , then A(1) = A/A[π ] is a twist of A which we now identify:

Lemma 2.3. A(1) is the twist of A corresponding to the cocycle σ 7→
1−ζ σ

1−ζ
∈ H 1(F,Z[ζ ]×).

Proof. Over F(ζ ), the map η : A/A[1 − ζ ] → A given by x 7→ (1 − ζ )x defines an isomorphism.
Hence, A(1) is the twist corresponding to the cocycle σ 7→ ηση−1. □

The abelian variety A(1) also has ζ -multiplication. Iterating Lemma 2.2, for each integer s, we obtain an
abelian variety A(s)= A/A[(1−ζ )s]. As in Lemma 2.3, A(s) is isomorphic to the twist of A corresponding
to the cocycle

σ 7→
(1 − ζ σ )s

(1 − ζ )s
∈ H 1(F,Z[ζ ]×).

We define π s to be the corresponding isogeny A = A(0) → A(s).
Note that A(ϕ(n)) ≃ A and that πϕ(n) : A → A is multiplication by pu, for some unit u ∈ Aut A. In par-

ticular, when writing A(s), we can always consider s modulo ϕ(n)= pm−1(p−1), and we have inclusions

A[π ] ⊂ A[π2
] ⊂ · · · ⊂ A[πϕ(n)−1

] ⊂ A[πϕ(n)] = A[p].

In general, the Galois action on A(s) is related to the Galois action on A in a convoluted way. However,
on a subset of the torsion of A, the action is especially simple.

Lemma 2.4. Let s = pr for some 0 ≤ r < m, and let i ∈ Z. Then, as G F -modules,

A(is)[π s
] ≃ A[π s

] ⊗χ i
p,

where χp is the mod p cyclotomic character.
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Proof. By Lemma 2.3, the abelian variety A(is) is the twist of A corresponding to the cocycle

σ 7→
(1 − ζ σ )is

(1 − ζ )is
∈ H 1(F,Z[ζ ]×).

Equivalently, there is an isomorphism φ : A → A(is) over F(ζ ) such that for all σ ∈ G F and P ∈ A(F),
we have

(φ−1)σ ◦φ(P)=
(1 − ζ σ )is

(1 − ζ )is P.

Hence, if P ∈ A[π s
] and σ ∈ G F , then in A(is)[π s

], we have

(φ(P))σ =
(1 − ζ σ )is

(1 − ζ )is φ(P
σ ).

Suppose that σ : ζ 7→ ζ j for some j ∈ (Z/nZ)×. Then, since (1 − ζ pr
)φ(Pσ )= (1 − ζ )pr

φ(Pσ )= 0,
we have

(1 − ζ σ )i pr

(1 − ζ )i pr φ(P
σ )= (1 + ζ + ζ 2

+ · · · + ζ s−1)i pr
φ(Pσ )

= (1 + ζ pr
+ ζ 2pr

+ · · · + ζ pr ( j−1))iφ(Pσ )

= j iφ(Pσ ).

Since, by definition, j (mod p)= χp(σ ), we see that (φ(P))σ = χp(σ )
iφ(Pσ ), as claimed. □

2B. ζ -linear isogenies. We keep the notation n = pm and ζ = ζn .

Definition 2.5. Let (A, ιA) and (B, ιB) be abelian varieties over F with ζ -multiplication, and let φ : A → B
be an isogeny. We say that φ is ζ -linear if ιB(α) ◦φ = φ ◦ ιA(α) for all α ∈ Z[ζ ].

Lemma 2.6. If φ : A → B is a ζ -linear p-isogeny, then A[φ] ⊂ A[π ]. Conversely, if H ⊂ A[π ] is a
G F -stable subgroup of order p, then the quotient B := A/H inherits a ζ -multiplication from A, and the
canonical p-isogeny φ : A → B is ζ -linear.

Proof. Since φ is ζ -linear, if P ∈ A[φ], then so is ζ P . Hence, the action of ζ is given by a homomorphism
µn =µpm → AutF A[φ] ≃ (Z/pZ)×, which must of course be trivial. Thus, ζ acts as the identity on A[φ],
so A[φ] ⊂ A[1 − ζ ] = A[π ].

For the converse, since ιA(ζ ) fixes H , we have ker(φ)=ker(φ◦ιA(ζ )), so that φ◦ιA(ζ ) factors through φ.
That is, there exists an automorphism ζB : B → B such that φ ◦ ιA(ζ )= ζB ◦φ. This automorphism ζB

has order n and has the same minimal polynomial as ιA(ζ ). Thus, the map ιB : Z[ζ ] → EndF B given by
ζ 7→ ζB is a ζ -multiplication on B, and the p-isogeny φ is ζ -linear by construction. □

2C. Twists. If (A, ιA) has ζn-multiplication, then ιA induces an inclusion Z[ζ2n]
×

⊂ AutF A of G F -
modules. For each d ∈ F×, let Ad be the twist of A corresponding to the image of d under

F×
→ F×/F×2n

≃ H 1(F, µ2n)→ H 1(F,AutF A).

Then Ad is an abelian variety over F that becomes isomorphic to A over F(d1/2n). Moreover, Ad also
has ζn-multiplication.
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Remark 2.7. If AutF A = µ2n , then distinct 2n-th power classes d give nonisomorphic Ad . However,
if AutF A ⊋ µ2n , then the map H 1(F, µ2n) → H 1(F,AutF A) need not be injective, and hence the
twists Ad need not be distinct.

Now let φ : A → B be a ζ -linear p-isogeny over F . By Lemma 2.6, the automorphisms ±ζ ∈ AutF A
preserve the subgroup A[φ], giving an inclusion of G F -modules µ2n ↪→ AutF (φ), where AutF (φ) is the
subgroup of AutF A stabilizing A[φ]. For d ∈ F×, let φd : Ad → Bd be the twist of φ corresponding to
the image of d under

F×
→ F×/F×2n

≃ H 1(F, µ2n)→ H 1(F,AutF (φ)).

Then φd is a ζ -linear p-isogeny over F . Similarly, we may twist the isogeny π : A → A(1) to obtain
πd : Ad → A(1)d , and this is the canonical isogeny “π” associated to Ad (and its ζ -multiplication).

Remark 2.8. By Lemma 2.3, the abelian variety A(1) is the twist of A corresponding to the cocycle
ξ : σ 7→

1−ζ σ

1−ζ
in H 1(F,Z[ζn]

×). When n = 3, we have Z[ζ2n]
×

= µ6, and since 1−ζ
6√

−27
∈ µ6, the

cocycle ξ is in the same cohomology class as −27 ∈ F×/F×6. It follows that A(1) = A−27, which is
the quadratic twist of A by the mod 3 cyclotomic character. More generally, we have A(

1
2ϕ(n)) = A(p∗)n ,

where p∗
= (−1)(p−1)/2 p is such that Q(

√
p∗) ⊂ Q(ζp). However, for general s and n, the twist A(s)

need not be isomorphic to Ad , for any d ∈ F×/F×2n .

3. Integral orbits of binary cubic forms

In this section, we classify the integral SL2(F)-orbits on the space of binary cubic forms over a local
field F . We first recall some facts from [Bhargava et al. 2020, §2] and [Bhargava 2004, Theorem 13].

Let V = Sym3 Z2 be the space of binary cubic forms. The group SL2 acts on V , and the ring of
invariant functions is generated by the usual polynomial discriminant Disc : V → Z. Let F be any
field of characteristic not 2 or 3, and for any d ̸= 0 in F , define V (F)d := { f ∈ V (F) : Disc( f ) = d}.
There is a unique reducible SL2(F)-orbit of cubic forms f ∈ V (F)d . The stabilizer of such an f is a
commutative F-group scheme Cd of order 3. The Galois action on Cd(F) is by the quadratic character
χd : Gal(F(

√
d)/F)→ {±1}.

Proposition 3.1. The group H 1(F,Cd) is in bijection with the SL2(F)-orbits on V (F)d .

Now let F be a local field of residue characteristic neither 2 nor 3, with surjective discrete valuation
v : F×

→ Z, ring of integers OF , maximal ideal m and residue field F of cardinality q .
We wish to determine which SL2(F)-orbits in V (F)d have representatives in V (OF )d . We call these

orbits the integral orbits, and we let H 1
int(Cd) be the subset of H 1(F,Cd) that they correspond to under

the bijection of Proposition 3.1. Of course, a necessary condition for there to be any integral orbits at all
is that d ∈ OF . We see that even though the abstract group H 1(F,Cd) depends only on the square-class
of d , the notion of integrality depends on the actual value of d , and in particular its valuation.
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We recall some facts about cubic rings over F and over OF [Bhargava et al. 2013]. The action of SL2

on V extends to the following action of GL2: if γ =
(a

c
b
d

)
, then

(γ · f )(x, y)=
1

det γ
f (ax + cy, bx + dy).

If R is a principal ideal domain, then a cubic ring over R is an R-algebra S that is free of rank 3 as an
R-module. The discriminant of S is a well-defined element of R×/R×2.

Proposition 3.2 (Levi, Delone–Faddeev, Gan–Gross–Savin). For any principal ideal domain R, there is
a discriminant preserving bijection between GL2(R)-orbits on V (R) and isomorphism classes of cubic
rings over R. Moreover, this bijection is functorial in R.

Proof. Building on [Levi 1914; Delone and Faddeev 1940; Gan et al. 2002], it is shown in [Bhargava
et al. 2013] that the bijection sends a cubic R-ring S to any binary cubic form representing the cubic map
S/R → ∧

2
R(S/R), s 7→ s ∧ s2, which is functorial in R. □

If γ ∈ GL2(F) and f ∈ V (F), then Disc(γ f )= det(γ )2 Disc( f ). It follows that isomorphism classes of
cubic F-algebras L of discriminant d are in bijection with GL2(F)±1-orbits on V (F)d . Here, GL2(F)±1

is the subgroup of GL2(F) consisting of elements with determinant ±1. Since SL2(F) has index 2 in
GL2(F)±1, the GL2(F)±1-orbits break up into at most two SL2(F)-orbits. It is a fun exercise to show that
there are exactly two orbits if and only if L is a field; the orbits are represented by f (x, y) and f (y, x).

Remark 3.3. The trivial class in H 1(F,Cd) corresponds to the unique orbit of reducible forms of
discriminant d . Hence, α ∈ H 1(F,Cd) is nontrivial if and only if the corresponding cubic algebra L is a
field (if and only if L is generated over F by a root of f (x, 1)). The trivial class corresponds to F × Ed ,
where Ed = F[x]/(x2

− d) is the quadratic F-algebra of discriminant d. Note that the trivial class is
represented by d

4 x3
+ xy2, which is integral as long as d is.

From the functoriality in Proposition 3.2 applied to the base change OF ↪→ F , we deduce:

Proposition 3.4. Let α ∈ H 1(F,Cd), and let L be the corresponding cubic F-algebra. Then α is integral
if and only if there is an OF -order S ⊂ OL with v(Disc S)= v(d).

Proof. The “only if” direction is clear. For the “if” direction, observe that any OF -order S ⊂ OL has
discriminant congruent to d modulo F×2. So if v(Disc S)= v(d), then we see that Disc(S) is congruent to
d modulo O×2

F . Thus we may choose bases so that S corresponds to a binary cubic form with coefficients
in OF of exact discriminant d. □

The following two facts about cubic orders will be useful [Bhargava et al. 2013, Propositions 15–16].

Proposition 3.5. Let L be an étale cubic F-algebra. Suppose f (x, y) corresponds to the maximal
order OL under the bijection of Proposition 3.2. Then the factorization type of f (x, y) over the residue
field F is the factorization type of the maximal ideal m of OF in the ring OL .

Proposition 3.6. Let f (x, y) ∈ V (OF )d correspond to a cubic ring S over OF . Then the sub-OF -rings
S′

⊂ S of index q correspond bijectively with the zeros of f (mod m) in P1(F).
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d ∈ F×2
−3d ∈ F×2

ζ3 ∈ F dim H 1(F,Cd)= 2
dim H 1

un(F,Cd)= 1

ζ3 /∈ F dim H 1(F,Cd)= 1
dim H 1

un(F,Cd)= 1
dim H 1(F,Cd)= 1
dim H 1

un(F,Cd)= 0

Table 1. Dimensions of H 1(F,Cd) and H 1
un(F,Cd).

We also need the following result, which requires char F ̸= 3, and which describes the subgroup
H 1

un(F,Cd)⊂ H 1(F,Cd) of unramified classes.

Proposition 3.7. Suppose 0 ̸= α ∈ H 1(F,Cd) corresponds to the cubic extension L/F. Then α ∈

H 1
un(F,Cd) if and only if L is unramified.

Proof. Let fL ∈ V (F) be the corresponding binary cubic form. If L is unramified, then since fL becomes
reducible over L , the restriction of α to H 1(L ,Cd) is trivial. Thus, α is an unramified class. If L is
ramified, then fL remains irreducible over every unramified extension of F , and hence α is ramified. □

Lemma 3.8. Assume the residue characteristic of F is not 3. Then:

(i) dim H 1(F,Cd)= dim H 0(F,Cd)+ dim H 0(F,C−3d).

(ii) dim H 1
un(F,Cd)= dim H 0(F,Cd).

When d has even valuation, these dimensions are computed in Table 1.

Proof. First note that Cd is Cartier dual to C−3d ≃ Cd ⊗µ3. Since the residue characteristic is not 3,
the Euler–Poincaré characteristic formula [Milne 1986, I.2.8] immediately gives (i). Let IF ⊂ G F

be the inertia group and let g be the Frobenius element of G F/IF . Then the groups H 1
un(F,Cd) ≃

H 0(IF ,Cd)/(g − 1)H 0(IF ,Cd) and H 0(IF ,Cd)[g − 1] = H 0(F,Cd) have the same cardinality, which
proves (ii). The table is computed using the fact that dim H 0(F,Cd)= 1 if and only if d ∈ F×2 and the
dimension is 0 otherwise. □

The main result of this section is the following classification of the integral orbits in V (F)d .

Theorem 3.9. Let OF be the ring of integers of a local field F with charOF/m> 3, and let d ∈ OF be
nonzero.

(a) If v(d)= 0, then H 1
int(F,Cd)= H 1

un(F,Cd).

(b) If v(d) is odd, then H 1
int(F,Cd)= H 1(F,Cd)= 0.

(c) If v(d)= 2, then the only nonintegral classes are the nontrivial unramified classes.

(d) If v(d) > 2, then all classes are integral.
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Proof. (a) This case follows from Propositions 3.4 and 3.7.

(b) We have H 1(F,Cd)= 0 by Lemma 3.8 (since H 0(F,Cd)= 0 whenever d has odd valuation). By
Remark 3.3, the trivial class is integral.

(c) The ramified classes α correspond to totally ramified cubic extensions L/F . For such L we have
v(DiscOL) = v(d), and hence these α are integral by Proposition 3.4. If H 1(F,Cd) has a nontrivial
unramified class α, then it corresponds to the unique unramified cubic extension L/F , which has unit
discriminant. By Proposition 3.4, α is integral if and only if OL has an order of index q . By Proposition 3.5,
the binary form corresponding to OL has no root over F. So by Proposition 3.6, OL has no order of
index q . Hence the nontrivial unramified classes are indeed nonintegral.

(d) If α ∈ H 1(F,Cd) corresponds to a ramified cubic extension L/F , then OL has discriminant of
valuation 2. By Propositions 3.5 and 3.6, OL has a unique order S of index q , and hence v(Disc S)= 4.
Note that if S0 is a cubic OF -ring, then S′

0 = OF +mS0 is a subring of S of index q2 and Disc(S′

0) =

q4 Disc(S0). Thus, by considering the orders OF +mkOL and OF +mk S, we can find an order S′
⊂ OL

with v(Disc S′)= 2k, for any k ≥ 1.
Next let α ∈ H 1(F,Cd) be a nontrivial unramified class corresponding to the unramified cubic

extension L/F . Then v(Disc(OF + mOL)) = 4. By Proposition 3.6, there are q + 1 suborders S′
⊂

OF +mOL of index q , so that v(Disc S′)= 6. As before, we deduce that there exists an order S′′
⊂ OL

with v(Disc S′′)= 2k, for any k ≥ 2. □

4. Local Selmer conditions for ζ -linear isogenies

Let F be a finite extension of Qp with surjective discrete valuation v, ring of integers OF , uniformizer
ϖ , and residue field F. Let m ≥ 1, n = 3m , and let ζ = ζn be a primitive n-th root of unity. Let A, B be
abelian varieties over F that admit ζ -multiplication.

Let φ : A → B be a ζ -linear 3-isogeny over F , as defined in Section 2B. For each d ∈ F×, we consider
the 3-isogeny φd : Ad → Bd , as in Section 2C. We will assume in this section that A[φ](F) ̸= 0, that is,
that A[φ] is generated by a rational point. This can always be achieved by replacing φ with an appropriate
twist, so there is no loss in generality. We also assume that 0 ≤ v(d) < 2n, again with no loss in generality.

The group H 1(F, Ad [φd ]) is a finite-dimensional F3-vector space. In fact, if χd : G F → F×

3 is the
quadratic character cutting out F(

√
d), then Ad [φd ] ≃ A[φ] ⊗ χd is isomorphic to Cd from Section 3.

Thus, H 1(F, Ad [φd ])≃ H 1(F,Cd). The exact sequence

0 → Ad [φd ] → Ad → Bd → 0

induces a Kummer map

∂d : Bd(F)→ H 1(F, Ad [φd ]).

We call its image im(∂d)⊂ H 1(F, Ad [φd ]) the subgroup of soluble classes. The goal of this section is to
prove the following theorem describing the soluble classes and to compute the local Selmer ratios of φd .
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Theorem 4.1. Assume that char F ̸= 3, that A has good reduction, and that A[φ](F) ̸= 0. Suppose that
0 ≤ v(d) < 2n.

(a) If v(d)= 0, then im(∂d)= H 1
un(F, Ad [φd ]).

(b) If v(d) is odd, or more generally, if F(
√

d)/F is ramified, then im(∂d)= H 1(F, Ad [φd ])= 0.

(c) If v(d) > 0 is even and d /∈ F×2, then H 1
un(F, Ad [φd ])= 0.

(d) If v(d) > 0 is even and d ∈ F×2, then write d = ϖ v(d)u with u ∈ O×

F and let s = gcd(3m, v(d)).
Then im(∂d)∩ H 1

un(F, Ad [φd ])= 0 if and only if Au[φ] is a direct summand of Au[π
s
].

We retain these assumptions on A and F for the remainder of this section.

4A. Nonsquare and unramified twists. We first prove parts (a)–(c).

Proof of Theorem 4.1(a)–(c). For (a), assume at first that char F> 3. Then F(d1/2n) is unramified over F ,
since v(d)= 0 and (char F, 2n)= 1. Since Ad is isomorphic to A over F(d1/2n), it has good reduction
over an unramified extension, and hence has good reduction already over F . Since Ad has good reduction
and char F ∤ deg(φd), the image of the Kummer map ∂d is exactly the unramified classes [Česnavičius
2016, Proposition 2.7(d)]. The proof just given works even when char F = 2, as long as F(

√
d)/F is

unramified. When this extension is ramified, the result follows from (b). Part (b) itself follows from
Theorem 3.9(b). The case char F = 2 was not dealt with there, but the proof is identical.

For (c), we have H 1
un(F, Ad [φd ])= H 1

un(F,Cd)= 0 by Lemma 3.8, since H 0(F,Cd)= 0 whenever
d /∈ F×2. □

4B. Twists of positive valuation. The proof of Theorem 4.1(d) will take more work. Indeed, we will
compute more generally the size of im(∂d) for all d (including d /∈ F×2) such that v(d) is even and
positive. Let s = gcd(v(d), 3m), and write d =ϖ v(d)u for u ∈O×

F . Recall the map π s
: A → A(s) defined

in Section 2, and let ψ s
: B → A(s) be the isogeny such that ψ s

◦φ = π s .

4B1. Extension classes. For each t ∈ F×, let κs
t be the extension class corresponding to the short exact

sequence

0 → At [φt ] → At [π
s
t ]

φt
−→ Bt [ψ

s
t ] → 0. (4-1)

Thus κs
t = 0 if and only if At [φt ] is a direct summand of At [π

s
t ] as a G F -module. Similarly, let κ̂s

t be the
class of the extension

0 → Bt [ψ
s
t ] → Bt [π

s
t ]

ψ s
t

−−→ A(s)t [φ
(s)
t ] → 0. (4-2)

Thus, κ̂s
t = 0 if and only if Bt [ψ

s
t ] is a direct summand of Bt [π

s
t ].

Remark 4.2. By Lemma 2.4, the cocycle κ̂s
t is equal to the class of the extension

0 → B(−s)
t [ψ−s

t ] → B(−s)
t [π s

t ] → At [φt ] → 0.
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d ∈ F×2
−3d ∈ F×2 d,−3d /∈ F×2

ζ3 ∈ F dim H 1(F, Ad [φd ])= 2
dim H 1

un(F, Ad [φd ])= 1
dim H 1(F, Ad [φd ])= 0
dim H 1

un(F, Ad [φd ])= 0

ζ3 /∈ F dim H 1(F, Ad [φd ])= 1
dim H 1

un(F, Ad [φd ])= 1
dim H 1(F, Ad [φd ])= 1
dim H 1

un(F, Ad [φd ])= 0
dim H 1(F, Ad [φd ])= 0
dim H 1

un(F, Ad [φd ])= 0

Table 2. Dimensions of H 1(F, Ad [φd ]) and H 1
un(F, Ad [φd ]).

Here, we have φ ◦ψ−s
t = π s

: B(−s)
t → Bt . By duality, κ̂s

t is the class of the extension

0 → B̂t [φ̂t ] → B̂t [π̂
s
t ] → Ât [ψ̂

−s
t ] → 0.

Thus κ̂s
t = 0 if and only if B̂t [φ̂t ] is a direct summand of B̂t [π̂

s
t ], which explains the notation.

Let |κs
u | and |κ̂s

u | denote the orders of the classes κs
u and κ̂s

u in their respective Ext-groups.

4B2. The image of ∂d . The following theorem relates the size of im ∂d to |κs
u | and |κ̂s

u | and will finish the
proof of Theorem 4.1(d).

Theorem 4.3. Assume that v(d) is even and positive, and write d =ϖ v(d)u with u ∈ O×

F .

# im ∂d ∩ H 1
un(F, Ad [φd ])=

{
|κs

u | if d ∈ F×2,

1 otherwise.
(i)

#
(

im ∂d

im ∂d ∩ H 1
un(F, Ad [φd ])

)
=


3

|κ̂s
u |

if − 3d ∈ F×2,

1 otherwise.
(ii)

In particular, if d ∈ F×2, then im ∂d ∩ H 1
un(F, Ad [φd ])= 0 if and only if Au[φu] is a direct summand of

Au[π
s
u ].

The proof of Theorem 4.3 requires several preliminary results.

Lemma 4.4. The dimensions of H 1(F, Ad [φd ]) and H 1
un(F, Ad [φd ]) are as in Table 2.

Proof. Since H 1(F, Ad [φd ])≃ H 1(F,Cd) and H 1
un(F, Ad [φd ])≃ H 1

un(F,Cd), the dimensions in Table 2
are identical to those in Table 1. The bottom right cell is only relevant when char F = 2, and follows from
Lemma 3.8(i). □

Lemma 4.5. If t ∈ F×2s , then At [π
s
t ] ≃ A[π s

] and Bt [π
s
t ] ≃ B[π s

] as G F -modules.

Proof. By the definition of At , there is an isomorphism φ : A → At over F(t1/2n) such that if P ∈ A[π s
]

and σ ∈ G F , then in At [π
s
t ], we have

(φ(P))σ =
σ(t1/2n)

t1/2n φ(Pσ ).

If t ∈ F×2s , then σ(t1/2n)

t1/2n ∈ ⟨ζ s
⟩. Since ζ s acts as the identity on A[π s

], we see that At [π
s
t ] ≃ A[π s

].
The proof that Bt [π

s
t ] ≃ B[π s

] is identical. □
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Remark 4.6. In particular, if s = 1, the condition in Theorem 4.1(d) is simply that A[φ] is a direct
summand of A[π ], which is independent of u.

Corollary 4.7. (i) There is an isomorphism between

0 → Au[φu] → Au[π
s
u ]

φu
−→ Bu[ψ

s
u] → 0

and
0 → Ad [φd ] → Ad [π s

d ]
φd

−→ Bd [ψ s
d ] → 0

as short exact sequences of G F -modules.

(ii) There is an isomorphism between

0 → Bu[ψ
s
u] → Bu[π

s
u ]

ψ s
u

−−→ A(s)u [φ(s)u ] → 0

and
0 → Bd [ψ s

d ] → Bd [π s
d ]

ψ s
d

−−→ A(s)d [φ
(s)
d ] → 0

as short exact sequences of G F -modules.

Proof. The first claim follows from Lemma 4.5 together with the observation that the isomorphism
Au[π

s
u ] → Ad [π s

d ] restricts to an isomorphism Au[φu] → Ad [φd ]. The second claim follows similarly. □

Lemma 4.8. Suppose that v(d)= 2a · 3r is even and positive, and let k be an unramified extension of F.
For X ∈ {A, B}, we have Xd [3](k)= Xd [π3r

d ](k).

Proof. Let Fun be the maximal unramified extension of F , let L = Fun(
√

d), and let M = L(d1/n) =

Fun(d1/2n). Since k ⊂ L , it suffices to show that Xd [3](L)= Xd [π3r

d ](L).
The extension M/L is tamely ramified of order 3n−r , and we can choose a generator τ of Gal(M/L)

so that τ(d1/2n)/d1/2n
= ζ 3r

. Since X has good reduction, we have X [3] ⊂ X (L). Since X and Xd are
isomorphic over L(d1/n), it follows that Xd [3] ⊂ X (M).

Now, if φ : Xd → X is an isomorphism over M and P ∈ Xd(M), then by definition,

φ(P)τ = τ(d1/2n)/d1/2nφ(Pτ )= ζ 3r
φ(Pτ ).

Hence, if P ∈ Xd [3](L), then φ(P) ∈ X [3] ⊂ X [3](L), so φ(P)= ζ 3r
φ(P). It follows that

0 = (1 − ζ 3r
)φ(P)= (1 − ζ )3

r
φ(P)= π3r

φ(P)= φ(π3r

d P),

where the second equality uses the fact that P is a 3-torsion point. It follows that P ∈ Xd [π3r

d ], so
Xd [π3r

d ](L)= Xd [3](L). □

From (4-1), we obtain a long exact sequence

0 → Ad [φd ](F)→ Ad [π s
d ](F)

φd
−→ Bd [ψ s

d ](F)
δd

−→ H 1(F, Ad [φd ]).

Similarly, from (4-2), there is a long exact sequence

0 → Bd [ψ s
d ](F)→ Bd [π s

d ](F)
ψ s

d
−−→ A(s)d [φ

(s)
d ](F)

δ̂d
−→ H 1(F, Bd [ψ s

d ]). (4-3)
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Clearly im δd ⊂ im ∂d , and ∂d induces an injective map

Bd [π s
d ](F)

Bd [ψ s
d ](F)

↪→
im ∂d

im δd
.

Proposition 4.9. We have

im δd = im ∂d ∩ H 1
un(F, Ad [φd ]).

Proof. Consider the Kummer exact sequence

0 → Ad [φd ](F)→ Ad(F)
φd

−→ Bd(F)
∂d

−→ H 1(F, Ad [φd ]).

Since char F ̸= 3, we have Bd(F)/φd Ad(F) = Bd [3∞
](F)/φd Ad [3∞

](F), so ∂d depends only on the
exact sequence

0 → Ad [φd ](F)→ Ad [3∞
](F)

φd
−→ Bd [3∞

](F)
∂d

−→ H 1(F, Ad [φd ]).

By Lemma 4.8, this exact sequence is the same as

0 → Ad [φd ](F)→ Ad [π s
d ](F)

φd
−→ Bd [π s

d ](F)
∂d

−→ H 1(F, Ad [φd ]).

By Corollary 4.7, the long exact sequence

0 → Ad [φd ](F)→ Ad [π s
d ](F)

φd
−→ Bd [ψ s

d ](F)
δd

−→ H 1(F, Ad [φd ])

is isomorphic to the long exact sequence

0 → Au[φu](F)→ Au[π
s
u ](F)

φu
−→ Bu[ψ

s
u](F)

δu
−→ H 1(F, Au[φu]).

Since Au has good reduction, the image of δu is contained in H 1
un(F, Au[φu]) [Česnavičius 2016, Propo-

sition 2.7(d)]. Thus the image of δd is contained in both H 1
un(F, Ad [φd ]) and im ∂d .

Conversely, if y ∈ Bd [π s
d ](F) \ Bd [ψ s

d ](F), then ∂d(y) is the cocycle σ 7→ xσ − x , where φd(x)= y.
But x ∈ Ad [3] \ Ad [π s

d ], so by Lemma 4.8, x cannot be defined over an unramified extension of F . It
follows that ∂d(y) /∈ H 1

un(F, Ad [φd ]). Hence im δd ⊃ im ∂d ∩ H 1
un(F, Ad [φd ]). □

We next relate the sizes of the images of δd and δ̂d to the sizes of |κs
u | and |κ̂s

u |.

Lemma 4.10. If d ∈ F×2, then # im δd = |κs
u |. Similarly, if −3d ∈ F×2, then # im δ̂d = |κ̂s

u |.

Proof. By duality, we have Au[φu]≃ B̂u[φ̂u]⊗χ3. Thus, the two claims of the lemma are in fact equivalent
to each other; see Remark 4.2. We prove the second one. Since −3d ∈ F×2, we have A(s)u [φ

(s)
u ] = F3 as a

G F -module. Moreover, by definition we have δ̂d(1)= κ̂s
d . By Corollary 4.7, |κ̂s

d | = |κ̂s
u |. It follows that

|κ̂s
u | = # im δ̂d . □

Proof of Theorem 4.3. If d ∈ F×2, then part (i) follows immediately from Proposition 4.9 and Lemma 4.10.
If d /∈ F×2, then H 1

un(F, Ad [φd ])= 0 by Table 2.
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d ∈ F×2
−3d ∈ F×2 d,−3d /∈ F×2

ζ3 ∈ F
|κs

u |

|κ̂s
u |

1

ζ3 /∈ F
|κs

u |

3

3
|κ̂s

u |
1

Table 3. Values of c(φd) over local fields F , when v(d) is even and positive.

By Lemma 4.8 and Proposition 4.9,

im ∂d

im ∂d ∩ H 1
un(F, Ad [φd ])

is isomorphic to the image of the injective map

Bd [π s
d ](F)

Bd [ψ s
d ](F)

→
im ∂d

im δd

induced by ∂d . From (4-3), we have

#
(

Bd [π s
d ](F)

Bd [ψ s
d ](F)

)
=

#A(s)d [φ
(s)
d ](F)

# im δ̂d
.

If −3d ∈ F×2, this is 3
|κ̂s

u |
by Lemma 4.10. If −3d /∈ F×2, then H 1(F, Ad [φd ]) = H 1

un(F, Ad [φd ]) by
Table 2, so the result follows from Proposition 4.9. □

4C. Local Selmer ratios. For applications, we record the local Selmer ratios

c(φd)=
# coker(Ad(F)→ Bd(F))
# ker(Ad(F)→ Bd(F))

=
# im(∂d)

#Ad [φd ](F)
,

which have implicitly been computed in the previous subsection.

Theorem 4.11. Assume that char F ̸= 3, that A has good reduction, and that A[φ](F) = Z/3Z. Then
c(φd)= 1 unless v(d) is even and positive. If v(d) is even and positive, write d =ϖ v(d)u with u ∈ O×

F ,
and let s = gcd(3m, v(d)). Let κs

u and κ̂s
u be the classes defined in the previous section, and write |κs

u |

and |κ̂s
u | for their orders. Then c(φd) is as in Table 3.

Proof. If neither d nor −3d is a square in F , then #Ad [φd ](F) = 1, and by Table 2, # im(∂d) = 1, so
c(φd) = 1 as claimed. Henceforth, we assume that either d or −3d is a square in F . When v(d) = 0,
then Ad has good reduction, so by [Shnidman 2021, Proposition 3.1]

c(φd)= c(Bd)/c(Ad)= 1,

where c(Ad) and C(Bd) are the Tamagawa numbers of Ad and Bd . When v(d) is odd, then im(∂d)= 0
(Theorem 4.1) and Ad [φd ](F) = 0, so again c(φd) = 1. So it remains to compute c(φd) when v(d) is
even and positive. This is done by combining the formula for # im ∂d in Theorem 4.3 with the fact that
#Ad [φd ](F)= 3 if d is a square and 1 otherwise. The result of this computation is Table 3. □
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5. Selmer groups and integrality

We return to the global setting of the introduction, so that F is a number field and n = 3m for some m ≥ 1.
Recall that ζ ∈ F is a primitive n-th root of unity. Let φ : A → B be a ζ -linear 3-isogeny over F . Recall
from Section 2 that there is a twist A(1) of A, and an isogeny π : A → A(1), which becomes isomorphic
to the endomorphism 1 − ζ over F(ζ ).

For any F-algebra K , define B(K ) = K ×/K ×2n . The notation is meant to suggest that B is the
classifying stack Bµ2n . For d ∈ B(F), let φd : Ad → Bd be a twist of φ corresponding to

d ∈ F×/F×2n
≃ H 1(F, µ2n)→ H 1(F,AutF (φ)),

as in Section 2C. The Selmer group Selφd (Ad) is the subgroup of H 1(F, Ad [φd ]) consisting of classes
whose restriction lies in the image of the Kummer map

∂d,v : Bd(Fv)/φd(Ad(Fv)) ↪→ H 1(Fv, Ad [φd ])

for all places v of F . Sometimes we use the notation Sel(φd) instead of the more clunky Selφd (Ad).
The goal of this section is to compute the average size of Selφd (Ad) as d varies. The idea is to view

Selmer elements as SL2(F)-orbits of binary cubic forms and then apply geometry-of-numbers counting
techniques. To carry this out, we must show that the orbits corresponding to Selmer elements have
representatives with bounded denominator. In fact, we will show that this boundedness only holds if A[φ]

is almost everywhere locally a direct summand of A[π ].

5A. Integrality of Selmer elements. We assume for simplicity that A[φ] ≃ Z/3Z as group schemes.
This is not really a constraint, since there is always a quadratic twist of A with this property. This
assumption implies that Ad [φd ] ≃ Cd , where Cd is the order 3 group scheme cut out by the quadratic
field of discriminant d , from Section 3.

Recall the space V of binary cubic forms from Section 3. Recall also the set V (F)d of cubic forms of
discriminant d, whose SL2(F)-orbits are in bijection with H 1(F,Cd)≃ H 1(F, Ad [φd ]). Similarly, for
each place v of F , there is a bijection between SL2(Fv)-orbits on the set V (Fv)d and H 1(Fv, Ad [φd ]).
Let V (Fv)sol

d denote the subset of V (Fv)d corresponding to classes α ∈ H 1(Fv, Ad [φd ]) in the image
of ∂d,v . Similarly, let V (F)sel

d denote the subset of V (F)d corresponding to classes in Selφd (Ad). Define

V (F)sel
=

⋃
0̸=d∈OF

V (F)sel
d and V (Fv)sol

=
⋃

d∈Ov(2n)
V (Fv)sol

d ,

where Ov is the ring of integers in Fv, and Ov(2n)= {d ∈ Ov : v(d) < 2n}. Similarly, define

V (F)sel
sq.free =

⋃
0̸=d∈OF sq.free

V (F)sel
d and V (Fv)sol

sq.free =
⋃

d∈Ov(2)
V (Fv)sol

d ,

where Ov(2)= {d ∈Ov : v(d)< 2} and the union on the left runs over elements d ∈OF that are squarefree.
Of course, these sets depend on the initial choices of A and φ.
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In order to count the SL2(F)-orbits on V (F)sel and V (F)sel
sq.free of bounded discriminant, we wish

to prove that these orbits have representatives in V (OF ), or at least representatives with denominators
that are uniformly bounded. Since SL2 has class number 1, this is ultimately a local question, and it is
enough to prove that for almost all v, each SL2(Fv)-orbit in V (Fv)sol and V (Fv)sol

sq.free has a representative
in V (Ov). For V (F)sel

sq.free, this integrality holds without any conditions. However, for V (F)sel, we are
forced to assume that A[φ] is almost everywhere locally a direct summand of A[π ], as defined in the
introduction.

The following integrality result is crucial for the proofs of Theorems 5.2 and 5.3 below.

Theorem 5.1. Let v ∤ 6∞ be a place of F at which A has good reduction.

(i) Every element of V (Fv)sol
sq.free is SL2(Fv)-equivalent to an element of V (Ov).

(ii) If A[φ] is a direct summand of A[π ] as a G Fv -module, then every element of V (Fv)sol is SL2(Fv)-
equivalent to an element of V (Ov).

Proof. For each d ∈ Ov, we must show that each class of H 1(Fv, Ad [φd ])≃ H 1(Fv,Cd) that lies in the
image of ∂d,v corresponds to an integral orbit of discriminant d. This follows from a comparison of
Theorem 3.9 with Theorem 4.1 and Remark 4.6. □

5B. Average size of the Selmer group. There is a natural height function on B(F) defined as follows.
Let M∞ be the set of archimedean places of F . If d ∈ B(F) with lift d0 ∈ F×, then define the ideal
I = {a ∈ F : a2nd0 ∈ OF }. The height of d is then

h(d)= Nm(I )2n
∏
v∈M∞

|d0|v.

This is independent of the lift d0, by the product formula. If F = Q, then h(d) = |d0|, where d0 is
the unique 2n-th power free integer representing d. For any X > 0, there are finitely many d ∈ B(F)
with h(d) < X .

In order to state a robust version of Theorems 1.8 and 1.9, we recall from [Bhargava et al. 2020] the
notion of functions on F that are defined by local conditions. Let F∞ =

∏
v∈M∞

Fv. We say a function
ψ : F → [0, 1] is defined by local congruence conditions if there exist local functions ψv : Fv → [0, 1] for
every finite place v of F , and a function ψ∞ : F∞ → [0, 1], such that the following two conditions hold:

(1) For all w ∈ F , the product ψ∞(w)
∏
v /∈M∞

ψv(w) converges to ψ(w).

(2) For each finite place v, and for v = ∞, the function ψv is nonzero on some open set and locally
constant outside some closed subset of Fv of measure 0.

A subset of F is said to be defined by local congruence conditions if its characteristic function is defined
by local congruence conditions.
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Let 60 be a fundamental domain for the action of F× on F defined by α ·β = α2nβ. We may take 60

so that it is defined by local congruence conditions. For any X > 0, let FX denote the set of d ∈ F× such
that h(d) < X . Then 60 ∩ FX is finite and we think of the abelian varieties Ad as elements of 60, so that
the set of all Ad , with d ∈ B(F) and h(d) < X , is naturally in bijection with the finite set 60 ∩ FX .

A family of twists {Ad} defined by local congruence conditions is then a subset 6 ⊂ 60 defined by
local congruence conditions. In that case, the characteristic function χ6 of 6 factors as

χ6 = χ6,∞
∏
v /∈M∞

χ6v .

For each finite place v of F , let 6v be the subset of Fv whose characteristic function is χ6v , and let 6∞

be the subset of F∞ whose characteristic function is χ6,∞.
We say that 6 is large if 6v contains the set Ov(2) := {d ∈ Ov : v(d) < 2} for all but finitely

many finite places v, and if 6∞ is a nonempty union of cosets in B(F∞). By construction, we have
60,v = Ov(2n)⊃ Ov(2) for all finite v, so 60 is itself large.

If f is a positive function on B(F) and 6 ⊂60, we write 6(X)=6 ∩ FX and define

avg6 f (d)= lim
X→∞

1
#6(X)

∑
d∈6(X)

f (d).

Our formula for avg6 Selφd (Ad) is most neatly formulated in terms of the global Selmer ratios c(φd)

defined in the introduction, and first defined in [Bhargava et al. 2020].

Theorem 5.2. Let 6 be a large family of twists Ad . For each k ∈ Z, let Tk ⊂ 6 be the subset of d ∈ 6

such that c(φd)= 3k . Assume either that A[φ] is almost everywhere locally a direct summand of A[π ] or
that 6v = Ov(2) for all but finitely many v. If Tk is nonempty, then

avg
d∈Tk

# Selφd (Ad)= 1 + 3k .

When they are nonempty, the sets Tk are countable disjoint unions of large sets. Using the uniformity
estimate [Bhargava et al. 2015, Theorem 17] and copying the argument from [Bhargava et al. 2020,
pp. 319–320], we deduce Theorem 5.2 from the following result. To state it, we define for any d =

(dv)v∈M∞
∈ B(F∞),

c∞(φd) :=

∏
v∈M∞

cv(φdv ).

We also let 6∞ denote the image of 6∞ in the finite group B(F∞).

Theorem 5.3. Let 6 be a large family of twists Ad . Assume either that A[φ] is almost everywhere locally
a direct summand of A[π ] or that 6v = Ov(2) for all but finitely many v. Then

avg6 # Selφd (Ad)= 1 +

∫
d∈6∞

c∞(φd)µ∞(d)∫
d∈6∞

µ∞(d)

∏
v /∈M∞

∫
d∈6v

cv(φd)µv(d)∫
d∈6v

µv(d)
,

where µv is any Haar measure on Ov and µ∞ is the uniform measure on B(F∞).
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Proof. Assume at first that A[φ](F)≃ Z/3Z, as in Section 5A. Then the left-hand side is equal to the limit
as X → ∞ of the average number of SL2(F)-orbits of discriminant d in V (F)sel, for d in the finite set
6∩ FX . Given our key result Theorem 5.1, Theorem 5.3 now follows exactly as in the proof of [Bhargava
et al. 2020, Theorem 11], and we refer the reader there for the details. Note that two proofs were given in
that paper, one in the case F = Q and one for general number fields F . The proof over general fields F
relies on the geometry-of-numbers machinery developed in the preprint [Bhargava et al. ≥ 2025], which
has still not appeared. One can alternatively make use of the techniques in [Bhargava et al. 2015], again
using Theorem 5.1 as a key input, to deduce the formula for general F . Note that in [Bhargava et al. 2015],
the authors count cubic extensions of F with prescribed local conditions (ordered by discriminant), exactly
by counting integral SL2(F)-orbits of binary cubic forms with prescribed local conditions.

The proof in the general case where A[φ](F) ̸= Z/3Z is exactly the same except we identify elements
of Selφd (Ad) with orbits of binary cubic forms of discriminant dk, where k ∈ OF is chosen so that
F(

√
k)= F(A[φ]), as is done in [Bhargava et al. 2019, §4]. □

Taking 6 = 60 in Theorem 5.3, we deduce Theorem 1.8, and taking 6 = {d : d ∈ Ov(2) ∀v}, we
deduce Theorem 1.9.

5C. Explicit Selmer rank bounds. The following consequence of Theorem 5.2 will be helpful in giving
explicit average rank bounds.

Proposition 5.4. Let φ : A → B, 6, and Tk be as in Theorem 5.2. Then:

(i) For each d ∈ F×, we have

c(φd)=
# Sel(φd)

# Sel(φ̂d)
·

#B̂d [φ̂d ](F)
#Ad [φd ](F)

.

(ii) If Tk is nonempty, then it has positive density and

avg
d∈Tk

dimF3 Sel(φd)⊕ Sel(φ̂d)≤ |k| + 3−|k|.

(iii) For a proportion of at least 1 −
1

2·3|k| of d ∈ Tk , we have dimF3 Sel(φd)⊕ Sel(φ̂d)= |k|.

Proof. Since φ and φ̂ determine dual local conditions in their respective Selmer groups [Česnavičius 2017,
B.1], the Greenberg–Wiles formula [Neukirch et al. 2000, 8.7.9] applies and gives (i). The argument for
(ii) is then exactly the same as [Bhargava et al. 2020, Theorem 50].

For (iii), we may assume k ≥ 0, by switching φ and φ̂ if necessary. By (i), we have

dim Sel(φd)+ dim Sel(φ̂d)= k if and only if dim Sel(φ̂d)= 0,

at least for the 100% of d such that #B̂d [φ̂d ](F) = #Ad [φd ](F) = 1. By Theorem 5.2, the average
size of Sel(φ̂d) for d ∈ Tk is 1 + 3−k . Hence, if s0 is the lim inf of the natural density of d ∈ Tk with
# Sel(φ̂d)= 1, then

s0 + 3(1 − s0)≤ 1 + 3−k,

and hence s0 ≥ 1 −
1

2·3|k| . □
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Proposition 5.5. Let φ : A → B and Tk be as in Theorem 5.2, with 6 the set of squarefree twists. Let S
be the set of places of F dividing 3fA∞, where fA is the conductor of A. Then Tk = ∅ if |k|> #S. As a
consequence, we have avg6 dimF3 Sel(φd)⊕ Sel(φ̂d)≤ #S + 3−#S .

Proof. If v ∤ 3 is a prime of good reduction, then by Theorem 4.11 and the assumption that d is squarefree,
cv(φd)= 1. On the other hand, directly from the definition, we see that cv(φd)≥

1
3 for any v. Hence,

c(φd)=

∏
v|3fA∞

cv(φd)≥

∏
v|3 f A∞

1
3

= 3−#S.

For almost all d ∈6, we have Ad [φd ](F)= 0 = B̂d [φ̂d ](F), in which case Proposition 5.4(i) gives

c(φd)c(φ̂d)=
# Sel(φ̂d)

# Sel(φd)
·

# Sel(φd)

# Sel(φ̂d)
= 1.

By the above, we also have c(φ̂d) ≥ 3−#S , and hence c(φd) ≤ 3#S . Since 3−#S
≤ c(φd) ≤ 3#S , we have

Tk = ∅ if |k|> #S. The second claim now follows from Proposition 5.4(ii). □

6. The average rank is bounded in cyclotomic twist families

In this section, we apply Theorems 1.8 and 1.9 to prove Theorems 1.1 and 1.3, i.e., to bound the average
Mordell–Weil rank of Ad(F).

Proof of Theorem 1.1(ii). Since A[π ] admits a full flag, by Lemma 2.4, so does A(i)[π ] for each
i = 1, . . . , 2 · 3m−1

− 1. Hence, for each i , there is a sequence of ζ -linear 3-isogenies

A(i) = B(i)0
φ
(i)
1

−−→ B(i)1 → · · · → B(i)k−1
φ
(i)
k

−−→ B(i)k = A(i+1).

By Theorem 1.9, for each i, j , the average rank of Sel(φ(i)j,d), for squarefree d ∈ F×/F×2n is bounded.
Recall [Bhargava et al. 2019, Lemma 9.1], that if ψ1 : A1 → A2 and ψ2 : A2 → A3 are isogenies of

abelian varieties, then there is an exact sequence

Selψ1(A1)→ Selψ2◦ψ1(A1)→ Selψ2(A2). (6-1)

Hence, for each d , we have

rk Ad(F)≤ dimF3

Ad(F)
3Ad(F)

≤ dimF3 Sel3(Ad)

≤

2·3m−1
−1∑

i=0

k∑
j=1

dimF3 Sel(φ(i)j,d)

≤

2·3m−1
−1∑

i=0

k∑
j=1

# Sel(φ(i)j,d).
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Here, the second inequality follows inductively from (6-1), and the third inequality follows from the
trivial inequality k ≤ 3k for all k ∈ Z. Taking the average over d , the result follows from Theorem 1.9. □

In the remainder of this section, we prove Theorem 1.1(i). The proof just given does not apply: by
assumption, B(i)0 [φ

(i)
1 ] is a direct summand of A(i)[π ], however, there is no reason that B(i)j−1[φ

(i)
j ] should

be a direct summand of B(i)j−1[π ]. Hence, we cannot directly apply Theorem 1.8 to get the result. Instead,
we exploit the fact that we can take the isogenies φ(i)j in any order, together with the following dual
version of Theorem 1.8:

Corollary 6.1. Let B,C be abelian varieties over F with ζ -multiplication and a ζ -linear 3-isogeny
φ : B → C defined over F. Suppose that Ĉ[φ̂] is almost everywhere locally a direct summand of Ĉ[π ].
Then the average size of the Selmer group Sel(φd) is bounded.

Proof. Let φ̂ : Ĉ → B̂ be the dual isogeny, which is itself a ζ -linear 3-isogeny, with respect to the
natural ζ -multiplication structure on Ĉ and B̂. Let B = B2n as in Section 5. For each d ∈ B(F),
Proposition 5.4(i) gives

# Sel(φd)

# Sel(φ̂d)
=

#Bd [φd ](F)

#Ĉd [φ̂d ](F)
c(φd).

The classes d for which Bd [φd ](F)= Z/3Z or Ĉd [φ̂d ](F)= Z/3Z, form a union of at most two square-
classes in B(F), so we can ignore these values of d when trying to bound the average size of Sel(φd). In
any case, up to a harmless factor of 3, the formula reads

# Sel(φd)

# Sel(φ̂d)
= c(φd).

By Theorem 1.8 applied to φ̂, the average size of # Sel(φ̂d) is bounded. In fact, if we restrict to the set
Tk = Tk(φ̂)⊂ B(F) where c(φ̂d)= 3k , then the average size is equal to 1 + 3k by Theorem 5.2. Since
c(φd)= 1/c(φ̂d), the average size of Sel(φd) is equal to 3−k

+ 1, and in particular converges, at least on
this set Tk .

To see that the average size of # Sel(φd) converges (to the expected number) on all of B(F), we can argue
as in [Bhargava et al. 2020, §6.4], using the uniformity estimate [Bhargava et al. 2013, Proposition 29] to
give a tail bound for those binary cubic forms with large square part in their discriminant. The uniformity
estimate applies to elements of # Sel(φ̂d) since, under the hypotheses of the corollary, they are represented
by integral binary cubic forms. However, we need to bound the average size of c(φd)# Sel(φ̂d) and not
# Sel(φ̂d), so we also need to control the size of c(φd). By Table 3, we have c(φd)= O(3m), where m is
the number of primes v of F with v(d) even and positive. Moreover, each element of Sel(φ̂d) corresponds
to a binary cubic form whose discriminant has norm divisible by q2

v , for all such v. Since

3m
∏
v(d)=2

q−2
v ≫ 3q−2

v1
≫ q−2

v1
,

the same argument as in [loc. cit.] goes through. We refer there for the details. □
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Lemma 6.2. Let F be any field and suppose there is a commutative diagram of isogenies of abelian
varieties over F ,

A B1

B2 C

φ1

φ2 ψ2

ψ1

such that φ2 maps A[φ1] isomorphically onto B2[ψ1]. Then ψ2 induces an injection

B1(F)
φ1(A(F))

↪→
C(F)

ψ1(B2(F))
.

In particular, there is an embedding Selφ1(A) ↪→ Selψ1(B2).

Proof. Taking cohomology, we obtain the following commutative diagram, with exact rows:

0 A[φ1](F) A(F) B1(F) H 1(F, A[φ1])

0 B2[ψ1](F) B2(F) C(F) H 1(F, B2[ψ1])

φ2

φ1

φ2

δ1

ψ2 φ2

ψ1 ∂1

Consider the composite of maps

B1(F)
ψ2

−−→ C(F)→
C(F)

ψ1(B2(F))
.

We show that the kernel is exactly φ1(A(F)) and, therefore, that there is an injection

ψ2 :
B1(F)

φ1(A(F))
↪→

C(F)
ψ1(B2(F))

,

from which the result follows. If x ∈ A(F), then ψ2(φ1(x))= ψ1(φ2(x))= 0. Conversely, if y ∈ B1(F)
and ψ2(y)= ψ1(z) for some z ∈ B2(F), then

φ2(δ1(y))= ∂1(ψ2(y))= ∂1(ψ1(z))= 0.

Since φ2 is an isomorphism on cohomology, it follows that δ1(y) = 0 and, hence, that y is in the
image of φ1. □

Recall that A[π ] decomposes as a direct sum of characters, so that A[π ](F) = ⟨P1, . . . , Pk⟩, and
Gal(F/F) stabilizes each of the subgroups ⟨Pi ⟩. Thus, π factors as a product of ζ -linear 3-isogenies:

A = B0 A(1) = Bk

B1 = A/⟨P1⟩ · · · Bk−1 = A/⟨P1, . . . , Pk−1⟩

π

φ1
φ2 φk−1

φk

Moreover, each of the maps φi : Bi−1 → Bi can be twisted to a map φi,d : Bi−1,d → Bi,d .
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Corollary 6.3. For each i = 1, . . . , k, the average size of Selφi,d (Bi−1,d), for d ∈ B(F), is bounded.

Proof. The assumption that A[π ] decomposes as a sum of characters means that we can take the Pi ’s in
any order. Hence, for each i, d , there is a commutative diagram

Bi−1,d Bi,d

B ′

k−1,d A(1)d

φi,d

ψi,d

where
B ′

k−1,d :=
Ad

⟨P1, . . . , Pi−1, Pi+1 . . . , Pk⟩

and ker(ψi,d)= ker(φi,d)= ⟨Pi ⟩.
By Lemma 2.4, since A[π ] is completely reducible, so is A(1)[π ] and hence so is Â(1)[π ]. Thus

Â(1)[ψ̂i,d ] is a direct summand of Â(1)[π ]. It follows from Corollary 6.1 that the average size of
Selψi,d (B

′

k−1,d) is bounded. By Lemma 6.2, we have embeddings Selφi,d (Bi−1,d) ↪→ Selψi,d (B
′

k−1,d) for
each d ∈ B(F), so the average size of Selφi,d (Bi−1,d) is bounded as well. □

Proof of Theorem 1.1(i). By Lemma 2.4, since A[π ] is completely reducible, so is A(i)[π ] for all i . Hence,
we can factor A(i) → A(i+1) as

A(i) = B(i)0
φ
(i)
1

−−→ B(i)1 → · · · → B(i)k−1
φ
(i)
k

−−→ B(i)k = A(i+1).

By Corollary 6.3, for each i, j , the average rank of Sel(φ(i)j,d) is bounded. The result now follows exactly
as in the proof of Theorem 1.1(ii). □

Proof of Theorem 1.3. The hypotheses imply that the Rosati involution associated to the polarization
restricts to complex conjugation on the subring Z[ζ ]. Thus, after identifying A ≃ Â and A−3n ≃ Â−3n ,
we can factor multiplication by −3 on Ad as the composition

Ad
π3m−1

d
−−−−→ A(3

m−1)
d = A−3nd

π̂3m−1
d

−−−−→ Âd ,

where the middle equality is Remark 2.8. As in the proof of Theorem 1.1(ii), we can factor π3m−1

d as a
product of dim A 3-isogenies φ j,d . By duality, π̂3m−1

d factors as the product of the dual isogenies φ̂ j,d .
Thus, for each d , we have

rk Ad(F)≤ dimF3

Ad(F)
3Ad(F)

≤ dimF3 Sel3(Ad)

≤

dim A∑
j=1

dimF3 Sel(φ j,d)⊕ Sel(φ̂ j,d)

and hence, by Proposition 5.5,

avgd rk Ad(F)≤ dim A · (#S + 3−#S). □
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7. The average rank in twist families of trigonal Jacobians

Next we use Theorem 1.1 to prove Corollary 1.2. In this section, F is a number field and ζ ∈ F is a
primitive 3m-th of unity, for some m ≥ 1. Let n = 3m , as always.

7A. Trigonal Jacobians. Let f (x) ∈ F[x] be a monic separable polynomial such that f (0) ̸= 0, and
let C be the smooth projective curve with affine model

C : y3
= x f (x3m−1

).

If m > 1, then C has a unique rational point ∞ at infinity, and has genus g = 3m−1 deg( f ). In fact, we
will assume m > 1, since the case m = 1 will be subsumed by the results of Section 7B.

Let J = Jac(C) be the Jacobian of C , a g-dimensional principally polarized abelian variety over F .
The automorphism (x, y) 7→ (ζ 3x, ζ y) induces an automorphism of JF of order 3m , which we again
call ζ , and which endows J with ζn-multiplication. As in Section 2, the endomorphism 1 − ζ ∈ EndF (J )
descends to an isogeny π : J → J (1) over F .

Lemma 7.1. Let G be an extension of (Z/2Z)k by a 3-group H. Then every irreducible representation
ρ : G → GLN (F3) is one-dimensional. Consequently, any G-representation V over F3 admits a full flag.

Proof. Since H ◁ G is normal and ρ is semisimple, ρ|H is also semisimple. Now, any nontrivial
representation V over F3 of a 3-group contains a nonzero fixed vector [Serre 1977, Proposition 26].
Thus, by semisimplicity and induction on dim V , we see that ρ|H is trivial. Thus, ρ factors through a
representation of (Z/2Z)k . For any g ∈ (Z/2Z)k , ρ(g) ∈ GLN (F3) has order at most 2, so its minimal
polynomial, either X ± 1 or X2

− 1, has distinct F3-rational roots. Hence, ρ(g) is diagonalizable, and
since (Z/2Z)k is abelian, the operators ρ(g) are simultaneously diagonalizable. In other words, ρ is a
direct sum of characters. Since ρ is irreducible, it follows that ρ is one-dimensional. □

We first prove Corollary 1.2 for Jacobians of the curves C : y3
= x f (x3m−1

). In Theorem 7.4, we will
address the curves C : y3m

= f (x).

Proof of Corollary 1.2. By assumption Gal( f ) is an extension of (Z/2Z)k by a 3-group H . By Theorem 1.1,
it is enough to show that the Galois representation J [π ] has a full flag, and splits as a direct sum of
characters if H = 1.

Lemma 7.2. J [π3m−1
] = J [1 − ζ3] is a maximal isotropic F3-subspace of J [3] of dimension g.

Proof. Degree considerations show that dim J [1 − ζ3] = g, so we need only show that J [1 − ζ3] is
isotropic with respect to the Weil pairing J [3]× J [3] → µ3. Now, the Rosati involution † sends the ideal
(1 − ζ3)= (

√
−3) to itself (by Lemma 10.4 below), and ⟨αP, Q⟩ = ⟨P, α† Q⟩ for all α ∈ End(JF ) and

P, Q ∈ J [3]. If P, Q ∈ J [(
√

−3)], we may write Q =
√

−3(R), for some R ∈ J [3]. We then compute

⟨P, Q⟩ = ⟨P,
√

−3(R)⟩ = ⟨−
√

−3(P), R⟩ = 1,

showing that J [1 − ζ3] = J [
√

−3] is isotropic. □
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It follows that dimF3 J [π ] = deg( f ). Explicitly, if α is a root of f and β3m−1
= α, then the divisor

(β, 0)+ (ζ 3β, 0)+ (ζ 3·2β, 0)+ · · · + (ζ 3m
−3β, 0)− 3m−1

∞

is fixed by ζ , and J [π ] is generated by the above divisor classes. Moreover, if K is the splitting field
of f over F , then each of these divisors defines an element of J (K ).

The action of G F on J [π ] induces a homomorphism ρ : G F → GLN (F3), where N = deg( f ), whose
kernel is exactly G K . The image is therefore isomorphic to Gal(K/F), which is an extension of (Z/2Z)k

by a 3-group H . Hence, by Lemma 7.1, J [π ] admits a full flag. If, moreover, H = 1, then J [π ] is
completely reducible, as explained in the proof of Lemma 7.1. □

7B. Iterated triple covers and Pryms. For our second class of Jacobians, let f (x) ∈ F[x] be a monic
separable polynomial of degree N > 1. Let C be the smooth projective curve with affine model y3m

= f (x).
The degree n = 3m map C → P1, sending (x, y) 7→ x , has Galois group µn , at least over F . If 3 ∤ N ,
then the fiber above infinity is a unique F-rational point and C has genus g =

1
2(N −1)(3m

−1). If 3 | N ,
then the fiber above infinity may have more than one point and they may not be F-rational.

Let J = Jac(C) be the Jacobian. The order 3m automorphism (x, y) 7→ (x, ζ y) of C induces an
automorphism ζ on J . When m = 1, this endows J with ζ3-multiplication, and we are in a trigonal
situation similar to Section 7A. However, if m ≥ 2, the automorphism ζ ∈ AutF (J ) does not give rise to
a ζn-multiplication on J , as we have defined it in this paper.

Example 7.3. Consider the curve C : y9
= x2

− 1 of genus 4. This admits a degree three map to the
elliptic curve E : y3

= x2
− 1, and the Jacobian J = Jac(C) is isogenous to A × E , for some abelian

3-fold A ⊂ J . The order 9 automorphism ζ induces an order 9 automorphism on A and an order 3
automorphism on E . It thereby endows A with ζ9-multiplication and E with ζ3-multiplication, but it does
not give a ζ9-multiplication on J . Indeed, the minimal polynomial for ζ ∈ EndF J is 89(x)83(x) and
not 89(x)= x6

+ x3
+ 1.

While J does not admit ζn-multiplication, it is nonetheless isogenous to a product of abelian varieties
P1 × P2 × · · · × Pm where each Pi has ζ3i -multiplication (see Lemma 7.5). In any case, we have
µ2n ⊂ AutF J , and we may speak of the twists Jd , for each d ∈ F×/F×2n .

Theorem 7.4. Assume that Gal( f ) is an extension of (Z/2Z)k by a 3-group H. Then the average rank of
the twists Jd for squarefree d ∈ F×/F×2n is bounded. If H = 1, then the average rank of the twists Jd ,
for all d ∈ F×/F×2n is bounded.

Proof. Let C ′
: y3m−1

= f (x), and let J ′ be its Jacobian. Note that when m = 1, we have C ′
≃ P1

and J ′
= 0. The map q : C → C ′ sending (x, y) 7→ (x, y3) induces a surjection q∗ : J → J ′, and we let P

be the identity component of the kernel, i.e., P is the (generalized) Prym variety for the cover q . Since q
is a ramified triple cover, the map q∗

: J ′
→ J is injective. We may identify q∗

= q̂∗, and it follows that
the kernel of q∗ is already connected, and hence equal to P .

Lemma 7.5. P admits ζ3m -multiplication.
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Proof. It is enough to show that the minimal polynomial for ζ3m , as an endomorphism of P , is 83m (x)=

x2·3m−1
+ x3m−1

+ 1. For this, it is enough to show that the characteristic polynomial of ζ3m , acting on the
homology lattice H1(PC,Z) is 83m (x)N−1. By [Arul 2021, Lemma 3.16], the characteristic polynomial
of ζ3m acting on H1(CC,Z)≃ H1(JC,Z) is (1 + x + x2

+ · · · + x3m
−1)N−1. The claim now follows, by

induction on m. □

Let π : P → P (1) be the isogeny over F descending 1− ζ over F(ζ ), as usual. Note that P[π ] ⊂ P[3]

since P has ζ3m -multiplication, whereas J [1 − ζ ] is not in general contained in J [3].

Lemma 7.6. The representation G F → AutF3 P[π ] factors through Gal( f ).

Proof. If α1, . . . , αN are the roots of f (x), then the divisor classes (αi , 0)− (α j , 0) generate the group
J [1 − ζ ] [Schaefer 2018, §3] and so the G F -action on P[π ] ⊂ J [1 − ζ ] factors through Gal( f ). □

Now we finish the proof of Theorem 7.4. By Lemmas 7.1 and 7.6, the Galois module P[π ] has a
full flag, and is completely reducible if H = 1. Thus Theorem 1.1 says that the average rank of Pd , for
squarefree d ∈ F×/F×2·3m

, is bounded (and without the squarefree condition if H = 1). Up to isogeny,
we have Jd ≃ Pd × J ′

d , where J ′

d is the twist of J ′ (which has µ2·3m−1 twists) by the image of d under
F×/F×2·3m

→ F×/F×2·3m−1
. By induction, the average rank of J ′

d , for d ∈ F×/F×2·3m
is bounded. (We

view the family J ′

d over B2·3m , instead of the more natural B2·3m−1 , but the same proof works for this
slightly “redundant” family as well.) Thus the average rank of Jd is bounded. □

Remark 7.7. Combining the two families considered in this section, we obtain similar results for the
curves Ck, j : y3k

= x f (x3 j
). The Jacobian Jac(Ck, j ) is isogenous to

∏k
r=1 Pr, j , where each Pr, j =

Prym(Cr, j → Cr−1, j ) is a generalized Prym variety with ζ3r+ j -multiplication.

8. CM abelian varieties

Next, we prove Theorem 1.4. Let ζ = ζ3m be a primitive 3m-th root of unity. We recall our definition of
complex multiplication:

Definition 8.1. An abelian variety A over a number field F has complex multiplication by Z[ζ ] if A has
dimension 3m−1 and a G F -equivariant ring embedding Z[ζ ] ↪→ EndF A.

Proof of Theorem 1.4. Set g = 3m−1
= dim A. The assumption Q(ζ ) ⊂ F ensures that A ≃ A(1) by

Lemma 2.3. Hence, we can view the 3-isogeny π : A → A(1) as an endomorphism of A, and we have
π2g

= 3u for some automorphism u of A. By the multiplicativity of the global Selmer ratio [Shnidman
2021, Corollary 3.5], we have

c(πd)
2g

= c(π2g
d )= c([3]u)= c([3]). (8-1)

We claim that c([3])= 1. If v is an infinite prime, then since F ⊃ Q(ζ ), we have Fv ≃ C and cv([3])=

#A[3](C)−1
= 3−2g. If v ∤ 3 is a finite prime then cv([3])= cv(Ad)/cv(Ad)= 1. Finally,

∏
v|3 cv([3])=

3g[F :Q], by [Shnidman 2021, Proposition 3.1]. Let [F : Q] = 2N . Then F has N complex places, so
c([3])= 3−2gN

· 3g·2N
= 1, as claimed. By (8-1), we also have c(πd)= 1 for all d ∈ F×/F×6g.
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It follows from Theorem 5.2 that the average size of Selπd (Ad) is 1 + 1 = 2. Since 2r ≤ 3r
− 1 for all

integers r , we have for all d:

rkZ[ζ ] Ad(F)≤ dimF3 Selπd (Ad)≤
1
2
(3rk Selπd (Ad ) − 1)=

1
2
(# Selπd (Ad)− 1).

Thus, the average Z[ζ ]-rank of Ad(F) is at most 1
2 . The second part of the theorem follows from

Proposition 5.4(ii). □

Over general number fields F , it is no longer true that c(πd)= 1 for all d, even for abelian varieties
with complex multiplication. Moreover, one must consider more than one 3-isogeny to bound the average
rank of Ad(F), in general. However, one can still prove upper bounds which are significantly stronger
than Theorem 1.3. For example, for CM abelian varieties A of dimension g = 3m−1 over Q with ζ3m -
multiplication, we can show that the average rank of Ad(F) is at most 13

9 g. Over the totally real field
Q(ζ3m + ζ 3m ), we can also prove that an explicit positive proportion of twists have rk Ad(F) = 0. We
omit these proofs, since they are somewhat technical and could probably be optimized further. Finally,
we remark that the only other result in the literature in this direction that we are aware of is [Diaconu and
Tian 2005], which proves that an infinite but density zero set of twists of the degree p Fermat Jacobian
over Q(ζp + ζ p) have rank 0.

9. Rational points on hyperbolic varieties

Proof of Theorem 1.5. It is not enough to simply invoke Theorem 1.1 and [Kühne 2021, Theorem 4],
since Jac(Cd), is not the d-th sextic twist of J = Jac(C) in our sense. Indeed, the twists Cd come
from the involution τ(x, y)= (−x, y), which does not induce −1 on Jac(C). Instead, we consider the
Prym variety P = ker(Jac(C) → Jac(C/τ)), and its dual P̂ . Note that ζ preserves P , and τ restricts
to −1 on P . Thus, Theorem 1.1 applies to the twist family Pd , for d ∈ F×/F×6, and it follows that
avgd rk P̂d(F)= avgd rk Pd(F) is bounded.

The inclusion Pd ↪→ Jac(Cd) induces a surjection q : Jac(Cd)→ P̂d . Suppose that Cd(F) is nonempty
and that z0 ∈ Cd(F). Then composing with the Abel–Jacobi map Cd ↪→ Jac(Cd), using z0 as base point,
we obtain a map j : Cd → P̂d . We prove that j is injective on points, except possibly at the fixed points
of τ (the points where x = 0 and the point(s) at infinity). If j (w)= j (z), then w− z is the pullback of a
divisor on Cd/τ . Thus τ(w− z)≡ w− z, and so τ(w)+ z ≡ w+ τ(z). But if D is a divisor of degree 2
on a nonhyperelliptic curve C , then by Riemann–Roch, we have h0(D) = 2 + 1 − g + h0(K − D) =

3 − g + g − 2 = 1. Thus, we must have τ(w)+ z = w+ τ(z). If τ(w) = τ(z), then w = z, as desired.
The only other possibility is that τ(w)= w and τ(z)= z. This proves the claimed injectivity.

Thus, to prove Theorem 1.5, we may replace Cd with the image of j , which is a closed irreducible
curve in P̂d . By [Gao et al. 2021, Theorem 1.1], there is a constant c such that #Cd(F) ≤ c1+rk P̂d (F),
for all d. But since avgd rk P̂d(F) is bounded, this implies that for all ε > 0, there exists Nε such that
Cd(F)≤ Nε for at least 1 − ε of twists d . □



68 Ari Shnidman and Ariel Weiss

In order to set up the proof (and statement) of Theorem 1.6, we need to give a precise description of theta
divisors for the curves C with affine model y3

= f (x). Recall that for any smooth projective curve C/F
of genus g ≥ 2, the symmetric power C (g−1) parametrizes effective divisors D on C of degree g − 1.
Given κ ∈ Div(C) of degree g −1, there is a morphism C (g−1)

→ Jac(C) sending D 7→ D −κ . Its image
is the theta divisor, denoted 2=2κ . The divisor itself depends on κ , though its class in the Néron–Severi
group of Jac(C) does not. If 2κ is canonical, then 2 is preserved by the involution −1 on Jac(C), by
Riemann–Roch. Such a κ exists over F , but need not exist over F , in general. If in addition there exists
µn ⊂ AutF (C) which fixes κ , then for each d ∈ F×/F×2n , we may consider the twist 2d of 2, which is
a divisor in Jac(C)d .

In our case, let f : C → P1 be the degree three map (x, y) 7→ x . The ramification divisor has the
form 2D, and satisfies KC = f ∗KP1 + 2D. Hence κ = D − f ∗0 is a half-canonical divisor (over F)
which is fixed by the µ3-action. We therefore obtain sextic twists 2d ⊂ Jac(C)d , for each d ∈ F×/F×6,
as in the statement of Theorem 1.6.

Proof of Theorem 1.6. This now follows from Theorem 1.1 and [Gao et al. 2021, Theorem 1.1]. □

10. Abelian surfaces with ζ3-multiplication

For our final application, we study a family of abelian surfaces with ζ3-multiplication, arising as Prym
varieties. We prove results on the Mordell–Weil groups in sextic twist families of such surfaces, and give
applications to explicit uniform bounds on rational points in sextic twist families of bielliptic trigonal
curves of genus 3 (Theorem 1.7). For some recent results on rank statistics in larger families of Prym
surfaces, see [Laga 2023].

Let F be a number field and let f (x)= x2
+ ax + b ∈ F[x] be a quadratic polynomial with nonzero

discriminant and b ̸= 0. Then y3
= f (x2) = x4

+ ax2
+ b is an affine model of a smooth projective

plane quartic curve C . Note the double cover π : (x, y) 7→ (x2, y) to the elliptic curve E : y3
= f (x).

We refer to these genus-3 curves as bielliptic Picard curves; see [Laga and Shnidman 2023]. As in
Section 9, we consider the Prym variety P = PrymC/E , i.e., the kernel of the map J = Jac(C) → E
induced by Albanese functoriality. The Prym P need not be principally polarized over Q, but it admits a
polarization λ : P → P̂ whose kernel is order 4 [Mumford 1974]. The ζ3-multiplication on J induces
ζ3-multiplication on P , and hence we may speak of the sextic twists Pd . In fact, Pd is itself the Prym
variety of Cd : y3

= x4
+ adx2

+ bd2, which covers the elliptic curve Ed : y3
= x2

+ adx + bd2.

Lemma 10.1. Let π : P → P−27 denote the descent of 1 − ζ to F. Then P[π ](F)≃ (Z/3Z)2 is spanned
by (s, 0)− (−s, 0) and (t, 0)− (−t, 0), where ±s,±t are the four roots of f (x2).

In order to apply our result to P , we assume that f (x) has linear factors over F , so that P[π ]

decomposes as a direct sum of two 1-dimensional Galois modules, corresponding to the quadratic
characters G F → F×

3 cut out by the fields F(s) and F(t). Then Theorem 1.1 says that the average rank
of Pd(F) is bounded, and it is interesting to ask whether there is some positive proportion of d with
rk Pd(Q) ≤ 1, so that we may apply the Chabauty method. We do not quite prove that such a positive
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proportion of d exists for general Pryms of this type, but we can prove it in seemingly any given example
with the help of explicit computations. We demonstrate the idea by proving the following result stated in
the introduction:

Theorem 1.7. Consider the sextic twist family Cd : y3
= (x2

− d)(x2
− 4d) of genus-3 curves. For at

least 1
3 of squarefree d ∈ Z such that d ≡ 2 or 11 (mod 36), we have #Cd(Q)≤ 5.

We will use the following variant of Chabauty’s method:

Theorem 10.2 (Stoll). Let C be a smooth projective curve of genus g ≥ 2 over a number field F , and let H
be a G F -stable subgroup of AutF C. Embed C ↪→ Jac(C) using any positive degree H-invariant divisor
as basepoint. Suppose there is a quotient B of Jac(C) such that the composition ι : C ↪→ Jac(C)→ B is
an embedding, and suppose there exists H ↪→ AutF B, compatible with the H-action on C , via ι. Then
for all but finitely many H-twists Cξ with rk Bξ (F) < dim B, we have

#Cξ (F)≤ fC(rk Bξ (F)+ g − dim B)+ #C triv
ξ (F)+ #C triv,non-tors

ξ (F) \ C triv
ξ (F).

Here, fC is the explicit function defined in [Stoll 2006, §3] and C triv
ξ is the subscheme of points fixed

by some nontrivial automorphism in H , and C triv,non-tors
ξ is the subscheme of trivial points which map to

nontorsion points of B.

Proof. This is a straightforward generalization of [Stoll 2006, Theorem 5.1], which is the special case
where B = Jac(C). (We have stated an ineffective version of the result, which is sufficient for our purposes.
This is what allows us to use the function fC as opposed to Stoll’s f̃C .) The proof is the same, except
that instead of the nondegenerate pairing

�(C/F)× Jac(C)(F)⊗ Q → F

used in [Stoll 2006, §6], we use the nondegenerate pairing �(C/F)B
× B(F)⊗Q → F , where �(C/F)B

is the image of ι∗ :�(B/F)→�(C/F). □

We deduce Theorem 1.7 from Theorem 10.2 and the following theorem, whose proof will occupy the
remainder of this section:

Theorem 10.3. Let C : y3
= (x2

− 1)(x2
− 4), and let P be the corresponding Prym variety. Let 6 be the

set of squarefree d ∈ Z such that d ≡ 2 or 11 (mod 36).2 Then the average rank of Pd , for d ∈6, is at
most 7

3 ≈ 2.33. Moreover, for at least 1
3 of d ∈6, we have rk Pd ≤ 1.

Proof of Theorem 1.7. The curve C embeds in B = P̂ = J/π∗E , the dual of the Prym P; see
[Barth 1987, 1.12]. We apply Theorem 10.2 to the cyclic group H of order six generated by (x, y) 7→

(−x, ζ3 y). We embed C in its Jacobian using the point ∞=[0 :1 :0]. Consulting [Stoll 2006, Lemma 3.1],
we have fC(r)≤ 4 when C is a plane quartic and r ≤ 2. We have C triv

d (Q)= {∞} for all d ∈6, so the
second term in Theorem 10.2 is 1. The third term is 0 since all eight of the trivial points on C map to torsion
points of B. Indeed, the points with y = 0 map to 3-torsion points on Jac(Cd), and if P = (0, y0) ∈ Cd ,

26 is the set of d such that d,−3d /∈ Q×2
2 ∪ Q×2

3 .
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then 2P −2∞ ∈ π∗Ed ; hence P is sent to a 2-torsion point on B = Jd/π
∗Ed . Altogether we get a bound

of Cξ (F)≤ 5 in Stoll’s theorem, which combined with Theorem 10.3 proves Theorem 1.7. □

10A. Bielliptic Picard curves. Before proving Theorem 10.3, we prove some preliminary lemmas.

Lemma 10.4. Let (J, λ) be the Jacobian of a curve C with a nontrivial automorphism ζ inducing ζ -
multiplication on J . Then the Rosati involution α 7→ λ−1α̂λ on End(J ) restricts to complex conjugation
on Z[ζ ] ⊂ End(J ).

Proof. Let D0 be a degree g − 1 divisor fixed by ζ . Consider the theta divisor

2= {D − D0 : deg(D)= g − 1, D effective} ⊂ J

and set L = OJ (2). We have λ = ϕL : J → Ĵ . Since 2 is fixed by ζ , we have ζ ∗L ≃ L and hence
ϕL = ϕζ ∗L = ζ̂ ϕLζ . Rearranging, we see that the Rosati involution sends ζ to ζ−1

= ζ . □

Remark 10.5. The proof shows, more generally, that if α is an automorphism of a curve C , and α∗ is the
induced automorphism of Jac(C), then the Rosati involution sends α∗ to its inverse.

Now let C : y3
= x4

+ ax2
+ b be a bielliptic Picard curve defined over Q. Let P be the Prym surface

for the covering C → E where E : y3
= x2

+ ax + b. Since P has ζ3-multiplication, the endomorphism
[−3] : P → P factors as [−3] = π−27 ◦π , where π : P → P−27 is the canonical (3, 3)-isogeny coming
from Lemma 2.2 (see also Remark 2.8). Let πd : Pd → P−27d be the sextic twist family of (3, 3)-isogenies,
and let π̂d : P̂−27d → P̂d denote the dual isogeny.

Lemma 10.6. Sel(π−27d)≃ Sel(π̂d).

Proof. Let Cd : y3
= x4

+ adx2
+ bd2, let Ed : y3

= x2
+ adx + bd2, and let Jd = Jac(Cd).3 The abelian

variety Pd is, by definition, ker(Jd → Ed), where the map Jd → Ed is induced by the double cover
Cd → Ed . Let λJ denote the principal polarization of Jd , and let ζJ be the automorphism of Jd induced
by the map (x, y) 7→ (x, ζ3 y) on Cd . By Lemma 10.4 we have a commutative diagram

Pd Jd Ĵd P̂d

Pd Jd Ĵd P̂d

ζ

λd

λJ

ζ ζ̂ ζ̂

λd

λJ

3Note that this is not the same as the d-th sextic twist coming from the ζ -multiplication on J . The latter is isomorphic to the
d-th quadratic twist of the Jacobian of dy3

= f (x2), and is in general not a Jacobian.
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It follows that ζ−1
= λ−1

d ζ̂ λd in End(Pd), and hence

(1 − ζ̂−1) ◦ λd = λd ◦ (1 − ζ )

over F . Over F we must therefore have π̂−27d ◦ λd = λ−27d ◦πd , and since λd is prime-to-3, we deduce
Sel(πd)≃ Sel(π̂−27d). □

Since [−3] = π−27 ◦π , it follows that

rk(Pd)≤ dimF3 Sel3(Pd)≤ dimF3(Sel(πd)⊕ Sel(π−27d))= dimF3 Sel(πd)+ dimF3 Sel(π̂d).

The following result relates the parity of dimF3 Sel3(Pd) to the global Selmer ration c(πd).

Proposition 10.7. Let d ∈ Q× be such that P−27d [π−27d ](Q)= 0, and write c(πd)= 3m . Then we have
the congruence dimF3 Sel3(Pd)≡ m (mod 2).

Proof. By the Greenberg–Wiles formula, we have # Sel(πd)/# Sel(π̂d) = c(πd) = 3m . Since [−3] =

πd ◦π−27d , we have an exact sequence

0 → Sel(πd)→ Sel3(Pd)→ Sel(π−27d)→
X(P−27d)[π−27d ]

πd(X(Pd)[3])
→ 0.

Exactness on the left is because P−27d [π−27d ](Q) = 0. By Lemma 10.6, there is an isomorphism
Sel(π−27d)≃ Sel(π̂d), so we see that

m ≡ dimF3 Sel3(Pd)+ dimF3

X(P−27d)[π−27d ]

πd(X(Pd)[3])
(mod 2). (10-1)

Let
⟨ ·, · ⟩ : X(P−27d)×X(P̂−27d)→ Q/Z

be the Cassels–Tate pairing. Using the polarization λ−27d : P−27d → P̂−27d , define

⟨ ·, · ⟩λ : X(P−27d)×X(P−27d)→ Q/Z

by ⟨x, y⟩λ=⟨x, λ−27d(y)⟩. As in [Shnidman 2021, Theorems 4.3, 4.4], if x ∈X(P−27d)[π−27d ], then y is
in the image of πd : X(Pd)→ X(P−27d) if and only if ⟨x, λ−27d(y)⟩λ = 0 for all y ∈ X(P−27d)[π−27d ].
Thus, the Cassels–Tate pairing ⟨ ·, · ⟩λ restricts to a nondegenerate paring on the finite group

X(P−27d)[π−27d ]

π(X(Pd)[3])
.

Moreover, since both Pd and P−27d are prime-to-3 polarized, this pairing is antisymmetric, and therefore
alternating. The nondegeneracy implies that it has even F3-rank. Combining with (10-1), we deduce the
desired congruence modulo 2. □

The following general lemma will be used to compute local Selmer ratios below.

Lemma 10.8. Let α : A → B be an isogeny of abelian varieties over a nonarchimedean characteristic 0
local field F. Then cℓ(α)cℓ(α̂)= #(OF/ deg(α)OF ).
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Proof. By [Česnavičius 2017, B.1], the groups B(F)/αA(F) and Â(F)/α̂ B̂(F) are orthogonal comple-
ments under Tate–Shatz local duality

H 1(F, A[α])× H 1(F, B̂[α̂])→ Q/Z.

Thus

cℓ(α)cℓ(α̂)=
#B(F)/αA(F)

#A(F)[α]
·

# Â(F)/α̂ B̂(F)
#B̂(F)[α̂]

=
#H 1(F, A[α])

#A(F)[α] · #B̂(F)[α̂]
= #(OF/ deg(α)OF ),

where the final equality follows from the Euler–Poincaré characteristic formula. □

10B. The example. Now specialize to the context of Theorem 10.3 and the specific curves Cd : y3
=

(x2
− d)(x2

− 4d).
The isogeny π : P → P−27 factors as

P
φ

−→ B
ψ

−→ P−27,

where B = P/⟨(1, 0)− (−1, 0)⟩. Since (1, 0)− (−1, 0) ∈ P[π ], we obtain twists φd : Pd → Bd and
ψd : Bd → P−27d by Lemma 2.6.

Let us compute the local Selmer ratios for φd and ψd , for all d ∈6 (where 6 is as in Theorem 10.3).
For any d ∈ Q×, we have c∞(φd)= c∞(ψd), since the kernels of φ and ψ are both Z/3Z. Note that P
has good reduction at all p > 3, since C does. Thus, for d ∈6 and for all p ∤ 6∞, by Theorem 4.11, we
have cp(φd)= 1 = cp(ψd). If p = 2, then since d ≡ 2, 3 (mod 4), neither d nor −3d is a square in Q2, so
by Table 2, c2(φd)= 1 = c2(ψd) as well. To compute the ratios c3(φd) and c3(ψd), we use Lemma 10.8.
By multiplicativity, we have

c3(φd)c3(ψd)c3(φ−27d)c3(ψ−27d)= c3([3])= 9.

Since d,−27d /∈ Q×2
3 , all four of these local Selmer ratios are integers, and the same is true for the dual

isogenies. Thus, by Lemma 10.8, each ratio must be either 1 or 3. Hence, of the four Selmer ratios
c3(φd), c3(ψd), c3(φ−27d), c3(ψ−27d), exactly two are 3 and the other two are 1.

Lemma 10.9. If d ∈6, then c3(φd) ̸= c3(ψd).

Proof. By Proposition 10.7, the parity of dimF3 Sel3(Pd) is odd if and only if c(πd)= c(φd)c(ψd) is an
odd power of 3. Hence, by our local computations at all other primes p ̸= 3 given above, the parity of
dimF3 Sel3(Pd) is odd if and only if c3(φd) ̸= c3(ψd). Since Jac(Cd) is prime-to-3-isogenous to Pd × Ed ,
we have Sel3(Jd)= Sel3(Pd)⊕ Sel3(Ed). Also, letting K = Q(ζ3) and X ∈ {Jd , Pd , Ed}, we have

dim Sel3(X)≡ dim Selπ (X)+ dim Selπ−27(X−27)= dim Selπ (X K ) (mod 2),

where π is the map induced by 1 − ζ on divisors, and X K is the base change to K . It follows that
c(φd) ̸= c(ψd) if and only if dim Selπ (Jd,K )− dim Selπ (Ed,K ) is odd. The latter two π-Selmer groups
can be computed in Magma [Bosma et al. 1997] for any choice of d , using the command PhiSelmerGroup.
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In fact, it is enough to take d = 2, since the isomorphism class of Ad over Q3 depends only on the image
of d in Q×

3 /Q
×6
3 , and all elements of 6 map to the sixth-power class of d = 2.4 For d = 2, we find that

dim Selπ (Jd,K )− dim Selπ (Ed,K )= 1. □

To recap, for d ∈ 6, we have c(φd) = c3(φd)c∞(φd) and c(ψd) = c3(ψd)c∞(ψd), and we know
c∞(φd)= c∞(ψd) (which is equal to 1 or 1/3, depending on the sign of d) and {c3(φd), c3(ψd)} ⊂ {1, 3}.
Combining this with Lemma 10.9, we conclude that exactly one of c(φd) and c(ψd) is 1 and the other is 3±1.

Proof of Theorem 10.3. For all d, we have

rk Pd(Q)≤ rk(Sel(πd)⊕ Sel(π̂d))≤ rk(Sel(φd)⊕ Sel(φ̂d))+ rk(Sel(ψd)⊕ rk Sel(ψ̂d)).

For d ∈6, we have seen that exactly one of c(φd) and c(ψd) is 1 and the other is 3±1. Thus, the average
rank of Pd(Q) for d ∈ 6 is at most

(
1 +

4
3

)
=

7
3 , by Proposition 5.4. This proves the first claim of

Theorem 10.3.
Next we show that dimF3 Sel3(Pd) = 1 for at least 1

3 of d ∈ 6. Without loss of generality we may
assume that c(φd) = 1 and c(ψd) = 3±1. By Proposition 5.4(iii), for at least 1

2 of d ∈ 6, we have
Sel(φd)= 0 = Sel(φ̂d), and for at least 5

6 of d ∈6, we have dimF3 Sel(ψd)⊕ Sel(ψ̂d)= 1. Thus, for at
least 5

6 −
1
2 =

1
3 of d ∈6, we have

dimF3 Sel3(Pd)≤ dim Sel(φd)+ dim Sel(φ̂d)+ dim Sel(ψd)+ dim Sel(ψ̂d)≤ 1.

This implies that rk Pd(Q)≤ 1 for at least 1
3 of d ∈6. □

10C. More general curves. It is plausible that for every Prym P associated to some curve Ca,b : y3
=

(x2
− a)(x2

− b), our method shows that rk Pd ≤ 1 for a positive proportion of d. This holds if one can
check a certain 3-adic condition on the numbers c3(φd) and c3(ψd), exactly as in the proof of Lemma 10.9.
This condition is satisfied in all examples we checked, but we do not have a proof in general. Since the
local Selmer ratios c3(φa,b,d) and c3(ψa,b,d) are locally constant as functions on Q3

3 = {(a, b, d)}, we
can at least say that this condition holds for a large class of bielliptic Picard curves Ca,b, with a and b
satisfying certain congruence conditions modulo a power of 3.

In [Shnidman and Weiss 2023], we prove that a positive proportion of Pd have rank at most 1, in the
case where a/b is a square, using an extra argument which avoids the local 3-adic computation. In general,
we have the following result, whose proof is an easier version of the argument given above, so we omit it.

Theorem 10.10. Fix a ∈ Q \ {0,±1}. For d ∈ Q×/Q×6, let Pa,d be the Prym surface for the genus-3
curve y3

= (x2
− d)(x2

− ad). Then rk Pa,d(Q)≤ 2 for a positive proportion of d.

4To check this, use the fact that Z×6
3 = 1 + 9Z3.
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Picard rank jumps for K3 surfaces with bad reduction
Salim Tayou

Let X be a K3 surface over a number field. We prove that X has infinitely many specializations where
its Picard rank jumps, hence extending our previous work with Shankar, Shankar and Tang to the case
where X has bad reduction. We prove a similar result for generically ordinary nonisotrivial families
of K3 surfaces over curves over Fp which extends previous work of Maulik, Shankar and Tang. As a
consequence, we give a new proof of the ordinary Hecke orbit conjecture for orthogonal and unitary
Shimura varieties.
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1. Introduction

Let X be a K3 surface over a number field K . Let X → S be a smooth projective model, where
S ↪→ Spec(OK ) is an open subset of the spectrum of the ring of integers OK . For every place P of OK

with finite residual field k(P), we have an injective specialization map

Pic(X K ) ↪→ Pic(Xk(P)),

and both groups have finite rank, the Picard rank, denoted ρ(X K ) and ρ(Xk(P)) respectively.
Inspired by the classical density result of Noether–Lefschetz loci for weight-2 polarized variations

of Hodge structures, see [Voisin 2002; Oguiso 2003], Charles [2014] asked what can be said about the
arithmetic Noether–Lefschetz locus

NL = {P ∈ S | ρ(X K ) < ρ(Xk(P))}.

In a prior work [Shankar et al. 2022, Theorem 1.1], we proved that the set NL is infinite under the
additional assumption that X has potentially everywhere good reduction, i.e., up to taking a finite extension

MSC2020: 11G18, 14G40, 14J28.
Keywords: K3 surfaces, GSpin Shimura varieties, Arakelov theory.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://msp.org/ant/
https://doi.org/10.2140/ant.2025.19-1
https://doi.org/10.2140/ant.2025.19.77
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


78 Salim Tayou

of K , we assumed that S = Spec(OK ). The first main result of this paper is the following unconditional
result.

Theorem 1.1. Let X be a K3 surface over a number field K . Then the set NL is infinite.

This theorem is a particular instance of Theorem 4.1 which is formulated for GSpin Shimura varieties
and which has many other applications. As a consequence, Theorems 1.4, 1.6, and Corollary 1.7 in
[Shankar et al. 2022] hold with no assumptions on the reduction type. In particular, we have the following
theorem.

Theorem 1.2. Let K be a number field and A an abelian surface over K . Then there exist infinitely many
places where A has good reduction, and the reduction is geometrically nonsimple.

1A. Picard rank jumps over function fields. Let p ≥ 5 be a prime number. Let X → S be a family of
K3 surfaces over a curve S over Fp. Let η be the generic point of S . For every s ∈ S (Fp), we have
similarly an inequality of Picard ranks

ρ(Xη) ≤ ρ(Xs),

and one can introduce similarly the Noether–Lefschetz locus as the subset of S where the above inequality
is strict:

NL = {s ∈ S (Fp) | ρ(Xη) < ρ(Xs)}.

Maulik, Shankar and Tang [Maulik et al. 2022a, Theorem 1.1] proved that if S is proper and the family
X → S is generically ordinary and not isotrivial then the set NL is infinite. Our second main theorem
in this paper is to remove the properness assumption in their result.

Theorem 1.3. Let X → S be a generically ordinary nonisotrivial family of K3 surfaces over a smooth
curve S over Fp with p ≥ 5. Suppose that the discriminant of the generic geometric Picard lattice is
prime to p. Then the locus NL is infinite.

The theorem is also a particular instance of Theorem 4.8 for GSpin Shimura varieties, which has
several other applications and also has an analogue for unitary Shimura varieties, see Theorem 6.1. In
particular, we have the following theorem which extends [Maulik et al. 2022b, Theorem 1(1)] to the
quasiprojective case.

Theorem 1.4. Let A be a nonisotrivial ordinary abelian surface over the function field of a curve over Fp.
Then A has infinitely many smooth and nonsimple specializations.

Both Theorem 1.1 and Theorem 1.3 are motivated by the density of Hodge loci in polarized variations
of Hodge structure of weight 2 of K3 type; see for example [Voisin 2002; Oguiso 2003; Tayou 2020].
Recent density results for general polarized variations of Hodge structures of level less than 2 as in [Tayou
and Tholozan 2023; Baldi et al. 2024] suggest that density of Hodge loci in arithmetic and function field
settings are natural problems to investigate, and we hope to address these questions in future work.



Picard rank jumps for K3 surfaces with bad reduction 79

1B. Hecke orbit conjecture. As an application of Theorem 1.3, we give a new proof of the Hecke
orbit conjecture for orthogonal and certain unitary Shimura varieties. We refer to [Maulik et al. 2022a,
Section 1.2] for the context and prior results on this conjecture.

Theorem 1.5. Let MFp be the reduction at p ≥ 5 of the integral model of a Shimura variety of either:

(1) Orthogonal type associated to a lattice of signature (b, 2) having discriminant prime to p.

(2) Unitary type associated to an imaginary quadratic field K split at p and to a Hermitian lattice over
OK of signature (n, 1) with discriminant prime to p.

Then the prime-to-p Hecke orbit of an ordinary point is Zariski dense in MFp .

The density of Hecke orbits in characteristic zero is a consequence of the work of Clozel and Ullmo
[2005], see also [Eskin and Oh 2006] for a dynamical approach using Ratner theory. Chai [1995] first
proved the Hecke orbit conjecture for the ordinary locus of the moduli space of principally polarized
abelian varieties. For orthogonal and some unitary Shimura varieties, a first proof of the Hecke orbit
conjecture in the ordinary case has been obtained by Maulik, Shankar and Tang [2022a] and our approach
is inspired from theirs. Very recently, Pol Van Hoften [2024] proved this conjecture for the ordinary locus
of Shimura varieties of abelian type under certain conditions on the reflex field and using completely
different methods.

1C. Strategy of the proof. Theorem 1.1 and Theorem 1.3 are proved using a strategy initiated by Chai
and Oort [2006] and Charles [2018] for the product of two modular curves and subsequently used in
[Maulik et al. 2022b; Shankar and Tang 2020] for Hilbert modular surfaces over number fields and Siegel
threefolds over Fp. Here we follow the set-up in [Shankar et al. 2022] and [Maulik et al. 2022a] to which
we refer for more details. For Theorem 1.1, we first translate it into an intersection-theory-type statement
between a curve and a sequence of divisors in the integral model of a toroidal compactification of a
Shimura variety of GSpin type. For this matter, we use the Arakelov intersection theory with prelog
forms developed in [Bruinier et al. 2007]. We follow a similar approach for Theorem 1.3, using the usual
intersection theory on the reduction modulo p of the aforementioned compactification of the integral
model of a GSpin Shimura variety. The new ingredients which were missing in both [Shankar et al. 2022]
and [Maulik et al. 2022a] are the local estimates on multiplicities of intersection with special divisors at
points of bad reduction and the estimates of extra terms coming from the boundary divisors in the global
intersection numbers coming from the work of [Bruinier and Zemel 2022]; see also [Engel et al. 2023] for
a recent approach. These are the main contributions of this paper. To obtain the first estimates, we use an
explicit description of the special divisors in the formal completions along toroidal boundary components.
This allows us to define in each case a decreasing sequence of positive definite lattices (Ln, Q) which
computes the local intersection number. We give an estimate on the growth of the successive minima of
these lattices, then a geometry-of-numbers-type argument allows us to derive the desired estimates. To
obtain the bounds on the extra terms in the global intersection number, we use the explicit expressions
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from [Bruinier and Zemel 2022] and [Bruinier 2002] combined with an equidistribution result from [Duke
1988; Eskin and Oh 2006].

1D. Organization of the paper. The key input of this paper is the description of the special divisors
in terms of local coordinates of integral models of toroidal compactifications of Shimura varieties of
GSpin type. In Section 2, we explain these constructions following [Howard and Madapusi Pera 2020]
and [Madapusi Pera 2016], and the section culminates with a description of the special divisors in
formal completions along locally closed boundary divisors. In Section 3, we recall briefly Arakelov
arithmetic intersection theory with prelog forms following [Bruinier et al. 2007], and we assemble
different ingredients from the literature [Bruinier and Zemel 2022; Howard and Madapusi Pera 2020;
Borcherds 1999] to state the modularity of the generating series of special divisors in the integral models
of toroidal compactifications of Shimura varieties of GSpin type. In Section 4, we state the archimedean
and finite place estimates needed to prove our main theorems, and then we prove the archimedean
estimates. Section 5 is devoted to estimating contributions from bad reduction places. Finally, we prove
the application to Hecke orbit conjecture in Section 6.

2. GSpin Shimura varieties: integral models and their compactifications

This section summarizes the construction of the GSpin Shimura variety, its toroidal compactifications
and their integral models following [Bruinier and Zemel 2022; Howard and Madapusi Pera 2020;
Madapusi Pera 2019; Andreatta et al. 2018], see also [Kisin 2010; Madapusi Pera 2016; Pink 1989] for
earlier work. The ultimate goal is to describe the special divisors in formal completions along the toroidal
boundary strata. The familiar reader may wish to skip directly to Section 2D for these results.

2A. The GSpin Shimura variety. Let (L , Q) be an even quadratic lattice of signature (b, 2) with b ≥ 1
and with associated even bilinear form

( . ) : L × L → Z

such that Q(x) = (x .x)/2 ∈ Z for all x ∈ L .
Let G = GSpin(LQ) be the algebraic group over Q of spinor similitudes defined as in [Madapusi Pera

2016, Section 1.2]. The group G(R) acts on the Hermitian symmetric space

D =: {z ∈ P(LC) | (z.z) = 0, (z.z̄) < 0}.

The pair (G,D) is the GSpin Shimura datum. Its reflex field is Q by [Madapusi Pera 2016, Section 3.1].
For K ⊂ G(A f ) a compact open subgroup, the GSpin Shimura variety

M(C) = G(Q)\D× G(A f )/K

is the set of complex points of a Deligne–Mumford stack M defined over Q. In what follows, we
choose the compact open group K ⊂ G(A f ) as in [Andreatta et al. 2018, Equation (4.1.2)]. Its image in
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SO(LQ)(A f ) stabilizes L ⊗ Ẑ ⊆ L ⊗ A f and is equal to the subgroup that acts trivially on the quotient
L̂∨/L̂ = L∨/L , where the dual lattice L∨ is defined as

L∨
= {x ∈ LQ | ∀y ∈ L , (x .y) ∈ Z}.

The Shimura variety M carries a line bundle of weight-1 modular forms that we denote by LQ and we
refer to [Andreatta et al. 2018, Section 4.1] for a definition. The Shimura datum (G,D) is of Hodge type
by [Andreatta et al. 2017, Section 2.2]: there exists a Shimura datum of Siegel type (GSg,DSg) and a
compact open subgroup K sg

⊂ Gsg(A f ) such that we have an embedding of Shimura varieties over Q

M ↪→ MSg.

This is the Kuga–Satake embedding. The pull-back of the universal abelian scheme on MSg yields the
Kuga–Satake abelian scheme A → M .

2B. Toroidal compactifications over C. In this section, we describe the toroidal compactifications of M
as well as the structure of the boundary components following [Bruinier and Zemel 2022] and [Howard
and Madapusi Pera 2020]. See also [Ash et al. 1975] for the general theory of toroidal compactifications
over C.

Recall from [Howard and Madapusi Pera 2020, Section 2.2] that an admissible parabolic subgroup
P ⊆ G is either a maximal proper parabolic subgroup of G or G itself.1 A cusp label representative
8 = (P,D◦, h) is a triple constituted from an admissible parabolic subgroup P , a connected component
D◦

⊂ D and an element h ∈ G(A f ).
Attached to a cusp label representative 8 = (P,D◦, h), there exists a mixed Shimura variety that we

now describe. Let U8 be the unipotent radical of P and let W8 be the center of U8.2 Let Q8 be the
normal subgroup of P defined as in [Pink 1989, Sectoin 4.7], see also [Howard and Madapusi Pera 2020,
2.2]. Define as in [loc. cit.] D8 = Q8(R)W8(C)D◦ and let K8 = hK h−1

∩ Q8(A f ). We define then the
mixed Shimura variety

M8(C) = Q8(Q)\D8 × Q8(A f )/K8. (2B.1)

By [Pink 1989, Proposition 12.1], M8(C) has a canonical model M8 also defined over Q. Let Q8 =

Q8/W8 and D8 = W8(C)\D8. Let K 8 be the image of K8 under the quotient map Q8(A f )→ Q8(A f ).
Then from the data (Q8,D8, K 8) we define similarly to (2B.1) a mixed Shimura variety Mφ and we
have a canonical morphism

M8 → M8. (2B.2)

This map has a torsor structure that we now describe. Let 08 = K8 ∩ W8(Q). It is a Z-lattice in W8(Q).
By [Howard and Madapusi Pera 2020, Proposition 2.3.1], the map (2B.2) is canonically a torsor under
the torus T8,Q whose cocharacter group is 08.

1Gad is simple in our case.
2We follow the notation of [Madapusi Pera 2019] which differs from other references.



82 Salim Tayou

The mixed Shimura variety M8 has itself a fibration structure over a pure Shimura variety constructed
as follows; see [Madapusi Pera 2019, 2.1.7] for more details.

Let Gh
8 = Q8/U8 be the Levi quotient of Q8, V8 = U8/W8 the unipotent radical of Q8 and let

Dh
8 = V8(R)\D8. Then the pair (Gh

8,Dh
8) is a pure Shimura datum with reflex field equal to Q. Let

K h
8 ⊂ Gh

8(A f ) be the image of K8. Then the quotient

Mh
8(C) = Gh

8(Q)\(Dh
8 × Gh

8(A f ))/K h
8

is the set of complex points of a Shimura variety which admits a canonical model Mh
8 defined over Q

and we have a canonical map

M8 → Mh
8. (2B.3)

By [Madapusi Pera 2019, 2.1.12], there exists a natural abelian scheme AK (8) → Mh
8 such that the map

(2B.3) is a torsor under AK (8).
In what follows, we will describe the above data for the GSpin Shimura variety introduced in Section 2A

following [Howard and Madapusi Pera 2020, Section 4] and [Bruinier and Zemel 2022, Section 3]. Let 8

be a cusp label representative. The admissible parabolic subgroup P is the stabilizer of a totally isotropic
subspace I8 of LQ of dimension at most 2. The dimension-0 case corresponds to P = G. If P is the
stabilizer of a primitive isotropic line IQ ⊂ LQ, then the cusp label representative is said to be of type III.
If P is the stabilizer of a primitive isotropic plane JQ ⊂ LQ, then 8 is said to be of type III. We will
follow the notation of [Bruinier and Zemel 2022] and denote by ϒ , resp. 4, a cusp label representative of
type II, resp. of type III.

Given two cusp label representatives 81 and 82, there is a notion of a K -morphism 81
(γ,q2)K
−−−→ 82

given by γ ∈ G(Q) and q2 ∈ Q82(A f ) which we don’t define here and refer to [Madapusi Pera 2019,
2.1.14] for the definition, see also [Howard and Madapusi Pera 2020, Definition 2.4.1].

Let 8 be a cusp label representative. By the general theory of toroidal compactifications, see [Pink
1989, 4.15] or [Ash et al. 1975, Chapter II, Section 1.1] for the definitions, there exists a canonical open
nondegenerate self-adjoint convex cone C8 ⊂ W8(R) homogeneous under P(R) and which allows to
realize D◦ as a tube domain inside an affine space, see [Madapusi Pera 2019, 2.1.5]. We define the
extended cone C∗

8 as in [Madapusi Pera 2019, 2.1.22]: for any map 8′ (γ,q)K
−−−→ 8, the conjugation by γ −1

induces an embedding

int(γ −1) : W8′(R) ↪→ W8(R)

and we define then

C∗

8 =

⋃
8′→8

int(C8′).

This cone lies between C8 and its topological closure in W8(R) but in general, it is neither open nor
closed. See also [Pink 1989, Definition-Proposition 4.22] for more details.

Recall from [Howard and Madapusi Pera 2020, Definition 2.4.3] that a rational polyhedral cone
decomposition (rpcd for short) of C∗

8 is a collection 68 = {σ } of rational polyhedral cones σ ⊂ W8(R)
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satisfying natural compatibility conditions (we don’t recall these conditions here and invite the reader to
consult the reference above for more information). The rpcd 68 is said to be smooth if it is smooth in
the sense of [Pink 1989, Section 5.2] with respect to the lattice 08. It is complete if

C∗

8 =

⋃
σ∈68

σ.

2B1. Boundary components of type II. Let ϒ be a cusp label representative of type II. Then P is the
stabilizer of a primitive isotropic plane JQ ⊆ LQ and let J = JQ ∩ h.L , where h ∈ G(A f ) acts on L via
the map G(A f ) → SO(LQ)(A f ). Then by [Howard and Madapusi Pera 2020, page 31], the group Wϒ is
identified with

∧2 JQ; hence it is one-dimensional. The lattice 0ϒ ⊂ Wϒ is also of rank 1. The open
convex cone Cϒ is given by a half line R+

\{0} and the extended cone is C∗

ϒ = {0} ∪ Cϒ .
Let Mϒ and Mϒ be the mixed Shimura varieties associated to ϒ . Then Mϒ → Mϒ is a torsor under

the one-dimensional torus Tϒ with cocharacter group 0ϒ . The group Gh
ϒ is equal to SL2 and Dh

ϒ is equal
to the Poincaré upper half-plane. The Shimura variety Mh

ϒ is a modular curve and the abelian scheme
Aϒ is equal to the Kuga–Sato variety D ⊗ E where E → Mh

ϒ is the universal elliptic curve over Mh
ϒ and

D is the positive definite plane J⊥/J ; see [Bruinier and Zemel 2022, Corollary 3.17] and [Zemel 2020,
Proposition 4.3] for details and proofs. Notice that our choice for the compact open subgroup K gives
exactly the stable orthogonal group used in [Bruinier and Zemel 2022] and [Zemel 2020].

The only possible cone decomposition of C∗

ϒ in this situation is 6ϒ ={{0}, Cϒ∪{0}} and this determines
a partial compactification Mϒ ↪→ Mϒ,6 which is a fibration by A1

C
over Mϒ . Finally, there is only one

boundary divisor denoted by Bϒ associated to the ray Cϒ .

2B2. Boundary components of type III. Let 4 be a cusp label representative of type III. Then P is the
stabilizer of a primitive isotropic line IQ ⊂ LQ and let I = IQ ∩ h.L . Set K I = I ⊥/I . Then by [Howard
and Madapusi Pera 2020, Equation (4.4.2)], we have U4 = W4 and we have an isomorphism of vector
spaces

K I,Q ⊗ IQ ≃ W4(Q).

The lattice (K I , Q) is a Lorentzian lattice of signature (b − 1, 1). Under the above isomorphism, and
assuming we have chosen a primitive generator of I , the open convex cone C4 ⊂ W4(R), see [Howard
and Madapusi Pera 2020, Section 2.4] is identified with a connected component of the light cone

{x ∈ K I,R, Q(x) < 0}.

The spaces Mh
4 and M4 are equal and are Shimura varieties of dimension zero that we can describe as

follows. Let (Gm,H0) be the Shimura data given by

H0 := {2πϵ : ϵ2
= −1},

on which R× acts naturally through the quotient R×/R×

+. There is a morphism of mixed Shimura data
(Q4,D4) → (Gm,H0) given by a canonical character v4 : Q4 → Gm defined as in [Howard and Mada-
pusi Pera 2020, Equation (4.4.1)] and a map D4 → H0 given as in [loc. cit., Equation (4.6.3)]. Then the
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Shimura variety Shν4(K4)(Gm,H0) is zero-dimensional and the canonical map M4 → Shν4(K4)(Gm,H0)

is a torsor under the torus T4 = Spec(Q[qα]α∈0∨

4
) with cocharacter group 04 = K I by [Bruinier and

Zemel 2022, Proposition 3.7].
The intermediate cone C∗

8 can be described explicitly as follows, see also [Bruinier and Zemel 2022,
page 23]: for any type-II boundary component ϒ with corresponding isotropic plane J containing I , the
quotient J/I has a generator ω4,ϒ lying on the boundary of the C4. Hence

C∗

4 = C4 ∪

⋃
ϒ

Rω4,ϒ .

The rays Rω4,ϒ will be referred to as the external rays and the rays in C4 are the inner rays.

2B3. Toroidal compactifications. Recall from [Howard and Madapusi Pera 2020, Definition 2.4.4] that a
K -admissible rational polyhedral cone decomposition for (G,D) is a collection 6 = {64, 6ϒ } such that
64 and 6ϒ are rpcd for any cusp label representative 4 and ϒ respectively satisfying the compatibility
conditions of [loc. cit., Definitions 2.4.3, 2.4.4]. It is said smooth (resp. complete) if every 68 is smooth
(resp. complete).

A toroidal stratum representative is a pair (8, σ) where 8 is a cusp label representative and σ ⊂ C∗

8 is
a rational polyhedral cone whose interior is contained in C8. There is similarly a notion of K -morphism
between stratum representatives, see [loc. cit., Definition 2.4.6] and the set of K -isomorphism classes of
toroidal stratum representatives will be denoted StartK (G,D, 6). We say that 6 is finite if

|StartK (G,D, 6)| < ∞.

Let 6 be a finite K -admissible complete cone decomposition. The main result of [Pink 1989, Sec-
tion 12], see also [Madapusi Pera 2019, Theorem 2.1.27], ensures that there exists a proper toroidal
compactification

M ↪→ M6

in the category of Deligne–Mumford stacks over Q such that M6 is proper over Q and has a stratification

M6
=

⊔
(8,σ)∈StartK (G,D,6)

B8,σ (2B.4)

by locally closed subspaces indexed by the finite set of strata StartK (G,D, 6). The stratum indexed by
(8, σ) lies in the closure of the stratum index by (8′, σ ′) if and only if there is a K -morphism of strata
representatives (8, σ) → (8′, σ ′). Then the closure of the stratum B8,σ

K is given by

B8,σ =

⋃
(8′,σ ′)→(8,σ)

B8′,σ ′

.

Moreover, by [Howard and Madapusi Pera 2020, Theorem 3.4.1] following the work of Harris and
Zucker [2001], the line bundle of weight-1 modular forms L extends to a line bundle on M6 which we
still denote L by abuse of notation.
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Let (8, σ) be a toroidal stratum representative. Then (8, σ) determines a partial compactification
of the mixed Shimura variety M8 ↪→ M8(σ ) with boundary component index by σ denoted by Z8(σ ).
Pink proved that there is a canonical isomorphism [Pink 1989, Corollary 7.17, Theorem 12.4], see also
[Madapusi Pera 2019, Theorem 2.1.27], of Deligne–Mumford stacks

1K (8, σ)\Zσ (σ ) ≃ B8,σ ,

where 1K (8, σ) is the finite group defined in [Madapusi Pera 2019, 2.1.19]. The latter induces an
isomorphism of formal Deligne–Mumford stacks

1K (8, σ)\M̂8(σ ) ≃ M̂6, (2B.5)

where M̂8(σ ) is the completion of M8(σ ) along the locally closed subspace Z8(σ ) and M̂6 is the formal
completion of M6 along the locally closed stratum B8,σ .

Our goal in the next two sections is to make the above isomorphisms explicit for type-II and type-III
boundary strata.

2B4. Formal completion along type-II boundary strata. Let ϒ be a cusp label representative of type II.
By the discussion in Section 2B1, there is a unique choice of a one-dimensional ray σ and hence a unique
choice of boundary stratum representative (ϒ, σ ) which corresponds to a locally closed divisor Bϒ,σ .

The morphism Mϒ → Mϒ is then a torsor under a one-dimensional torus Tϒ with cocharacter group
0ϒ ≃Z, i.e., Tϒ ≃Spec(Q[q, q−1

]). The partial compactification Tϒ(σ ) is then isomorphic to Spec(Q[q])

and the partial toroidal compactification of Mϒ is given as a twisted torus embedding over Mϒ with fiber
Spec(Q[q]). Hence we have the following description of M̂ϒ(σ )

M̂ϒ(6)
Spf(Q[[X ]])
−−−−−→ Mϒ

D⊗E
−−→ Mh

ϒ .

2B5. Formal completion along type-III boundary strata. Let (4, σ ) be a toroidal stratum representative
of type III such that σ is a one-dimensional inner ray. The corresponding boundary component is denoted
by B8,σ and is a locally closed divisor. Write σ = Rω, where ω ∈ C4 ∩ K is an integral primitive
generator that satisfies (ω.ω) < 0.

The morphism M4 → Shν4(K4)(Gm,H0) is a torsor under the torus

T4 = Spec(Q[qα]α∈0∨

4
).

The partial compactification T4(σ ) is equal to

T4(σ ) = Spec(Q[qα](α.ω)≥0,α∈0∨

4
)

and the ideal defining the boundary divisor is given by Iσ = (qα, (α, ω) > 0). It is generated by qω′ for
any ω′

∈ 0∨

4 for which (ω, ω′) = 1. We fix such ω′.
The formal completion along the boundary divisor is then given by

T̂4(σ ) = Spec(Q[qα, α ∈ 0∨

4 ∩ ω⊥
][[qω′]]),
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and the map M4(σ ) → Shν4(K4)(Gm,H0) is a twisted torus embedding with fibers T̂4(σ ). We will
trivialize this fibration following an approach similar to [Howard and Madapusi Pera 2020, page 34].

First choose an auxiliary isotropic line I∗ ⊂ LQ such that (I.I∗) ̸= 0. Then by [Howard and Mada-
pusi Pera 2020, Equation (4.6.6)] and the discussion that follows, this determines a section

(Gm,H0)
s

−→ (Q4,D4).

The section s determines a Levi decomposition Q4 = Gm ⋉U4. Let K0 ⊂ Gm(A f ) be a compact open
subgroup small enough such that the image under the section s is contained in K4 and let

K4,0 = K0 ⋉ (U4(A f ∩ K4)) ⊂ K4.

Then by reasoning similarly to [Howard and Madapusi Pera 2020, Proposition 4.6.2], we have the
following.

Proposition 2.1. We have an isomorphism of formal algebraic spaces⊔
a∈Q×

>0\A×

f /K0

T̂4(σ )/C
≃

−→ M̂K4,0(σ )/C,

and the map

M̂K4,0(σ )/C → M̂K4
(σ )/C

is a formally étale map of formal Deligne–Mumford stacks given by the quotient by K4/K4,0. In
particular, if K is neat, then the above map is a formally étale surjection of algebraic spaces.

Proof. The same proof as in [Howard and Madapusi Pera 2020, Proposition 4.6.2] works with no change
in our setting. □

2C. Integral models. We recall in this section the construction of integral models of GSpin Shimura
varieties and their compactifications following [Howard and Madapusi Pera 2020; Andreatta et al. 2018;
Madapusi Pera 2019]. We assume henceforth that the lattice (L , Q) is a maximal lattice, i.e., there is no
strict superlattice in LQ containing L over which Q is Z-valued.

By [Andreatta et al. 2018, Section 4.4], there exists a flat and normal integral model M → Spec(Z)

which is a Deligne–Mumford stack of finite type over Z. It enjoys the following properties:

(1) If the lattice (L , Q) is almost self dual at a prime p then the restriction of the integral model to
Spec(Z(p)) is smooth.3

(2) If p is odd and p2 does not divide the discriminant of (L , Q), the restriction of M to Spec(Z(p)) is
regular.

(3) If n ≥ 6, the reduction mod p is geometrically normal.

(4) The line bundle of modular forms of weight 1 extends to a line bundle on M that we denote by L.

3See [Howard and Madapusi Pera 2020, Definition 6.1.1].
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Furthermore, given a K -admissible polyhedral complete cone decomposition, M admits by [Mada-
pusi Pera 2019, Theorem 4.1.5] a toroidal compactification M6 proper over Spec(Z) and which extends
the compactification M6 previously defined over Q. Moreover, it has a stratification

M6
=

⊔
(8,σ)∈StartK (G,D,6)

B8,σ (2C.1)

which extends the stratification in (2B.4) and such every stratum is flat over Z. The unique open stratum
is M and its complement is a Cartier divisor. Moreover, for any cusp label representative (8, σ), the
tower of maps

M8(σ ) → Mφ → Mh
8

has an integral model
M8(σ ) → Mφ → Mh

8

which satisfies the following: the abelian scheme A8 has an extension A8 → Mh
8 such that the map

Mφ →Mh
8 is a torsor under A8 and the map M8(σ ) →Mφ is a twisted torus embedding with structure

group the torsor T4 extending T4. Finally, the boundary component Z8(σ ) has a flat extension Z8(σ )

such that we have an isomorphism of completions:

1K (8, σ)\M̂8(σ ) ≃ M̂6 (2C.2)

extending the isomorphism in (2B.5). See [Madapusi Pera 2019, Theorem 4.1.5] and [Howard and
Madapusi Pera 2020, Section 8.1] for more details.

Fix a prime p. The goal of the next two subsections is to describe the formal completions of M6 along
the boundary divisors of these compactifications explicitly over Z(p) in the type-II and the type-III case.

2C1. Type II. Let (ϒ, σ ) be a toroidal stratum representative of type II where σ is the unique one-
dimensional ray.

Let Tϒ = Spec(Z(p)[q, q−1
]) with partial compactification Tϒ(σ ) = Spec(Z(p)[q]). By (2C.1) and

[Madapusi Pera 2019, Theorem 4.1.5(2–4)], the morphism Mϒ → Mϒ is a torsor under Tϒ and the
morphism Mϒ →Mh

4 is a torsor under D ⊗E , where E →Mh
4 is the universal elliptic curve. Moreover,

the partial toroidal compactification of M4 is given as a twisted torus embedding over Mϒ with fibers
isomorphic to Tϒ(σ ). In particular, the formal completion of Mϒ along the boundary component is
describe by the following diagram:

M̂ϒ(σ )
T̂ϒ (σ )
−−→ Mϒ

D⊗E
−−→ Mh

ϒ , (2C.3)

where T̂ϒ(σ ) = Spf(Z(p)[[q]]).

2C2. Type III. Let (4, σ ) be a toroidal stratum representative of type III such that σ is one-dimensional
and generated by a primitive integral element ω ∈ C4 with (ω.ω) = −2N . Let T4 = Spec(Z(p)[qα]α∈0∨

4
)

and recall that we have a T4 torsor structure

M4 → Shν4(K4)(Gm,H0).
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The cone σ determines a partial compactification T4(σ )= Spec(Z(p)[qα](α,ω)≥0,α∈0∨

4
) and also a partial

compactification M4 ↪→ M4(σ ) which is a twisted torus embedding with fibers T4(σ ).
The boundary divisor in T4(σ ) is defined by the ideal Iσ = (qα, (α, ω) > 0). If ω′

∈ 0∨

4 is as before an
element such that (ω′.ω) = 1, then Iσ = (qω′). The formal completion of T4(σ ) along Iσ is then given by

T̂4 = Spf(Z(p)[qα, α ∈ 0∨

4 ∩ ω⊥
][[qω′]]).

Recall that we have a morphism of Shimura data

(Q4,D4)
v4
−→ (Gm,H0),

and let s be the section of v4 defined in Section 2B5. Let K0 ⊂ A×

f be a compact open subgroup such
that s(K0) ⊂ K4. We can furthermore assume that K0 factors as

K0 = Z×

p .K p
0 .

Let F be the abelian extension of Q determined by the reciprocity morphism in global class field theory:

rec : Q×

>0\A×

f /K0 ≃ Gal(F/Q).

Fix a prime P ⊂ OF above p and let R be the localization of OF at P. Then using similar arguments as
in [Howard and Madapusi Pera 2020, Proposition 8.2.3], we have the following proposition.

Proposition 2.2. There is an isomorphism⊔
Q×

>0\A×

f /K0

T̂4(σ )/R → M̂4,0(σ )/R

of formal Deligne–Mumford stacks over R whose base change to C agrees with Proposition 2.1. Moreover,
the map

M̂4,0(σ )/R → M̂4(σ )/R

is an étale map of Deligne–Mumford stacks given as the quotient by K4/K4,0.

The proof follows from the description given over C Proposition 2.1, the flatness of both sides over Z(p)

and the fact the normalization of Spec(Z(p)) in ShK0(Gm,H0) is isomorphic to
⊔

a∈Q×

>0\A×

f /K0
Spec(R),

see [Howard and Madapusi Pera 2020, Proposition 8.2.3] for a proof and more details.

2D. Special divisors. We continue to assume in this section that the lattice (L , Q) is maximal and let 6

be a smooth K -admissible cone decomposition.
For every β ∈ L∨/L , m ∈ Q(β)+ Z such that m > 0, one can define a special divisor Z(β, m) → M

following [Andreatta et al. 2018, Definition 4.5.6]. We recall briefly the definition and refer to [loc. cit.]
for more details.

The Shimura variety M carries the family of Kuga–Satake abelian varieties A → M. For any scheme
S →M, a group of special quasiendomorphisms Vβ(AS) is defined in [Andreatta et al. 2018, Section 4.5].
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Then the functor sending a scheme S to

Z(β, m)(S) = {x ∈ Vβ(AS) | Q(x) = m}

is representable by a Deligne–Mumford stack which is étale locally an effective Cartier divisor on M.
We will rather consider its image in M by a procedure described in [Howard and Madapusi Pera 2020]
after Proposition 6.5.2. By abuse of notation, we also denote by Z(β, m) its closure in M6 , which is
again a Cartier divisor.

In what follows, we will give an explicit description of Z(β, m) in the formal completions of M6

along its boundary components. Since for our purposes we only need β = 0 and m coprime to p, we will
only describe what happens in this situation and we abbreviate for short Z(β, m) = Z(m). We assume
that m ≥ 1 is coprime to p for the rest of this section.

By [Andreatta et al. 2018, page 434], Z(m)(C) has a complex uniformization as follows: for any
g ∈ G(A f ), let Lg = g.L̂ ∩ LQ and consider the sub-Hermitian domain of D

D◦(λ) = {x ∈ D◦
| (x, λ) = 0},

where λ ∈ Lg, Q(λ) = m. Then Z(m)(C) is equal to the union of D◦(λ) for g ∈ G(A f ) and λ ∈ Lg with
Q(λ) = m.

For any λ ∈ Lg with Q(λ) = m, let Gλ be the fixator of λ, Lλ the orthogonal lattice to λ in LQ, and let
Dλ ⊂ D be the orthogonal to λ. Notice that Dλ does not depend on g but only on λ ∈ LC. Notice that
since m is coprime to p, the lattice Lλ is also maximal at p. Then (Gλ, Dλ) is again a Shimura datum of
GSpin associated to the lattice (Lλ, Q) which is of signature (b − 1, 2) and has reflex field equal to Q. If
we choose Kλ ⊂ Gλ(A f ) a compact open subgroup as in [Andreatta et al. 2018, Equation (4.1.2)], then
Kλ ⊂ K ∩ Gλ(A f ) and we obtain a morphism of complex Shimura varieties

Mλ(C) → M(C).

By the description [loc. cit., Equation (2.4)], the union over g ∈ G(A f ), λ ∈ Lg with Q(λ) = m of the
images of Mλ(C) is equal to Z(m)(C).

Now since (Gλ, Dλ) is again a Shimura variety of GSpin type associated to a lattice maximal at p,
the discussion in the previous sections applies verbatim to the Shimura variety Mλ and yields similar
description for the compactification and the integral model over Z(p). In particular, we have a map between
integral models Mλ → M over Z(p) which factors through Z(m) by [Howard and Madapusi Pera 2020,
page 82].

Mλ → Z(m) ↪→ M

and the union over of images of such maps for g ∈ G(A f ) and λ ∈ Lg with Q(λ) = m is equal to Z(m).4

Let (8, σ) be a toroidal stratum representative for M. From the description of the parabolic subgroups
of GSpin(b, 2), we have the following lemma.

4This union is in fact finite.
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Lemma 2.3. The group P ∩ Gλ is an admissible parabolic subgroup of Gλ if and only if λ ∈ I ⊥

8 .

Notice also that if λ /∈ I ⊥

8 , then the image of Dλ in M6(C) will not intersect the boundary components
parametrized by 8, as its projection to the Baily–Borel compactification will not do so. Hence they will
not appear in the formal completions of M6 along these boundary components.

We can write 8 = (P,D◦, h) and let λ ∈ Lg with Q(λ) = m such that λ ∈ I ⊥

8 . Lemma 2.3 shows
that (8, σ) can also be seen as a toroidal stratum representative with respect to (Gλ,Dλ) by considering
P ∩ Gλ; see [Madapusi Pera 2016, Section 2.1.28] for more details. Let Mλ,ϒ be the integral model over
Z(p) of the mixed Shimura variety associated to 8. We get then a morphism of mixed Shimura varieties

Mλ,8 → M8,

as well as a morphism of partial compactifications respecting the strata

Mλ,8(σ ) → M8(σ ).

By [Madapusi Pera 2019, Proposition 2.1.29], the morphism induced at the level of formal completions
along the boundary strata given by σ is compatible with the toroidal compactifications of Mλ and M. In
particular, we get a commutative diagram

M̂λ,8(σ ) //

��

M̂8(σ )

��

Ẑ(m) // M̂6

where the right vertical map is an étale cover of Deligne–Mumford stacks, the left vertical map is an étale
cover of an open and closed subset by [Howard and Madapusi Pera 2020, page 82]. Finally, the union
over g ∈ G(A f ), λ ∈ Lg with Q(λ) = m of the images of the left map covers the whole Ẑ(m).

2D1. Special divisors along type-II boundary components. Let (ϒ, σ ) be a toroidal stratum representative
of type II.

Let λ ∈ L with Q(λ) = m such that λ ∈ I ⊥

ϒ and m is coprime to p. We have a morphism of formal
completions of the partial compactifications of mixed Shimura varieties

M̂λ,ϒ(σ ) → M̂ϒ(σ ).

Let x ∈ Bϒ,σ (Fp) ⊂ Mϒ(σ )(Fp) and let OMϒ (σ ),x be the local ring at x . Let x̄ be the image of x in
Mϒ(Fp) and let z the image in Mh

ϒ(Fp). If follows from (2C.3) that the formal completion ÔMϒ (σ ),x is
isomorphic to

ÔMϒ (σ ),x ≃ Zp[[X ]] ⊗̂ ÔM8,x̄ .

Moreover, the pull-back of the torsor Mϒ → Mh
ϒ to Spf(ÔMh

ϒ ,z) is trivial, as it is trivial by reduction to
Fp and we can lift formally any section. Hence

ÔM8,x̄ ≃ ÔD⊗E,x̄ .
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For λ ∈ D, consider the map over Mh
ϒ

D ⊗ E (λ.)⊗Id
−−−→ E . (2D.1)

Its kernel is flat over Mh
ϒ . Let Iλ ⊂ λ be the ideal defining it. Then Îλ ↪→ ÔD⊗E,x̄ is flat over ÔMh

ϒ ,z .

Proposition 2.4. The formal completion Ẑ(m) along x is the union over λ ∈ D with Q(λ) = m of the
vanishing loci inside ÔMϒ (σ ),x of the ideals Zp[[X ]] ⊗̂ Îλ.

Proof. Let λ ∈ L such that λ ∈ J⊥ and Q(λ) = m. Then we have a description of the mixed Shimura
variety Mϒ,λ similar to (2C.3), namely, it has a fibration structure which fits into the following diagram:

M̂λ,ϒ(σ )
T̂ϒ (σ )

//

��

Mλ,ϒ

Dλ⊗E
//

��

Mh
λ,ϒ

��

M̂ϒ(σ )
T̂ϒ (σ )

//Mϒ
D⊗E

//Mh
ϒ

One can check that Dλ = λ⊥, where λ is the image of λ in D = J⊥/J . Moreover, the right vertical map
in the above diagram is an étale cover and the vertical middle map is equivariant with respect to the
inclusion

λ⊥
⊗ E ↪→ D ⊗ E,

and the left vertical map has image given by an open and closed subset of Ẑ(m).
Let z′

∈Mh
λ,ϒ(Fp) be a point mapping to z, then ÔMh

λ,ϒ,z′
≃ ÔMh

ϒ,z
. Hence the above diagram becomes

at the level of completed local rings

Spf(Zp[[X ]] ⊗̂ Ôλ⊥⊗E,x ′) //

��

Spf(Ôλ⊥⊗E,x ′) //

��

Spf(ÔMh
λ,ϒ,z′

)

≃

��

Spf(Zp[[X ]] ⊗̂ ÔD⊗E,x̄) // Spf(ÔD⊗E,x̄) // Spf(ÔMh
ϒ,z

)

where the vertical map is contained in the kernel of the map (2D.1). By considering all the λ ∈ J⊥ that
map to a given class λ ∈ D, we get that the image is exactly the kernel of the map (2D.1) and hence the
image of left vertical map is defined by the ideal Zp[[X ]] ⊗̂ Îλ, see [Zemel 2020, Equation (26)] for a
description over C. Finally, since Ẑ(m) is equal to the union of such images, the conclusion follows. □

2D2. Special divisors along type-III boundary components. Let (4, σ ) be a stratum representative of
type III. Let K I = I ⊥/I be the Lorentzian lattice as introduced in Section 2B2 and we continue to assume
that σ is a one-dimensional inner ray. Let ω ∈ K I ∩ C4 be a generator of σ with (ω.ω) = −2N , N ≥ 1.
Let ω′

∈ K ∨

I be an element such that (ω.ω′) = 1.
Let λ ∈ L with Q(λ) = m and such that λ ∈ I ⊥. The projection λ ∈ K I defines a divisor in the torus

T4 = Spec(Z(p)[qα
]α∈0∨

4
) given by the equation qλ

= 1.
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In the partial compactification T4 ↪→T4(σ ), the equation of this divisor becomes qλ
−1 = 0 if (λ.ω)≥ 0

or q−λ
− 1 = 0 otherwise. Notice also that this divisor intersects the toric boundary divisor defined by σ

if and only if (ω.λ) = 0. We will hence restrict ourselves to this latter situation and we denote by

T4(λ, σ ) ↪→ T4(σ )

the divisor defined by λ. By construction, it only depends on the class of λ in K I .

Proposition 2.5. Let Ẑ(m) be the formal completion of Z(m) along the boundary component of M4

index by (4, σ ). Then the following diagram is commutative and compatible with Proposition 2.1.⊔
a∈Q×

>0\A×

f /K0

⊔
λ∈K ,Q(λ)=m,(λ.ω)=0 T̂4,0(λ, σ )/C

//

��

⊔
a∈Q×

>0\A×

f /K0
T̂4,0(σ )

��

Ẑ(m) // M̂6

The vertical maps are étale coverings of formal Deligne–Mumford stacks and the union over λ ∈ I ⊥

covers Ẑ(m).

Proof. Let λ ∈ L ∩ I ⊥ with Q(λ) = m and such that projection λ ∈ I ⊥/I is orthogonal to ω. Then we have
similarly a description of the mixed Shimura variety Mλ,4 associated to the Shimura datum (Gλ,Dλ) as
a torus fibration and such that the following diagram is commutative:

M̂λ,4(σ )
T̂4,0(λ,σ )

//

��

S(Gm,H0)/R

��

M̂4(σ )
T̂4,0(σ )

// S(Gm,H0)/R

The left vertical map is equivariant with respect to the inclusion T̂4(λ, σ ) ↪→ T̂4(σ ) and its image only
depends on λ ∈ I ⊥/I . Since the formal completion Ẑ(m) is the union over λ ∈ L of the images of the
left vertical maps, we get the desired result. □

3. Arithmetic intersection theory and modularity

We recall in this section the Arakelov arithmetic intersection theory on M6 following [Bruinier et al.
2007], the modularity results of the special divisors from [Howard and Madapusi Pera 2020; Borcherds
1999] and its extension to complex toroidal compactification by [Bruinier and Zemel 2022]. Then we
derive a further extension to the integral model of the toroidal compactifications of GSpin Shimura
varieties.

3A. Modularity of special divisors. Let (L , Q) be a maximal quadratic lattice with signature (b, 3) and
assume that b ≥ 3.
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Let K ⊂ G(A f ) be the compact open subgroup from Section 2A and let 6 be a K -admissible smooth
polyhedral cone decomposition. Denote by M6 the toroidal compactification of the integral model of
the GSpin Shimura variety constructed in Section 2C. Let ĈH1

(M6,Dpre)Q be the first Chow group of
prelog forms as defined in [Bruinier et al. 2007, Definition 1.15].

Let ϒ be a cusp label representative of type II. Then there is a unique one-dimensional ray in the
cone decomposition associated to ϒ and we denote by abuse of notation Bϒ the closure of the boundary
divisor associated to ϒ .

Consider now (4, σ ) a toroidal stratum representative of type III such that σ is a one-dimensional
inner ray in the cone decomposition 6. Then we denote by B4,σ the closed boundary divisor in M6

associated to (4, σ ).
Let β ∈ L∨/L and m ∈ Q(β)+ Z with m > 0. For every toroidal stratum representative ϒ and (4, σ ),

let µϒ(β, m) and µ4,ω(β, m) be the real numbers defined by (4E.1) and (4F.1), see also [Bruinier and
Zemel 2022]. Consider then the following divisor on M6:

Z tor(β, m) = Z(β, m) +

∑
ϒ

µϒ(µ, m) ·Bϒ
+

∑
(4,ω)

µ4,ω(µ, m) ·B4,ω, (3A.1)

where the two last sums are over toroidal stratum representatives of type II and type III respectively. Then
by [Bruinier and Zemel 2022], the Cartier divisor Z tor(β, m) can be endowed with a Green function 8β,m

such that the resulting pair
Ẑ tor

(β, m) = (Z tor(β, m), 8β,m)

is an element of the first Chow group of prelog forms ĈH1
(M6,Dpre)Q. For m = 0 and β = 0, we define

Ẑ(0, 0) to be any arithmetic divisor whose is class is the dual of the hermitian line bundle L̂= (L, ∥ · ∥pet)

endowed with the Petersson metric ∥z∥2
= [z, z̄].

Consider then the following generating series

8L :=

∑
β∈L∨/L

∑
m∈Q(β)+Z

Ẑ tor
(β, m)qmeβ ∈ C[L∨/L][[q1/DL ]] ⊗ ĈH1

(M6,Dpre)Q,

where (eβ)β∈L∨/L is a basis of the C-vector space C[L∨/L], DL is the discriminant of L , and q = e2iπτ ,
where τ ∈ H is in the upper-half plane.

Let
ρL : Mp2(Z) → AutC(C[L∨/L])

be the Weil representation associated to the quadratic lattice (L , Q), where Mp2(R) is the metaplectic
double cover if Mp2(R). For k ∈

1
2 Z, let Modk(ρL) denote the vector space of vector valued modular

forms of weight k with respect to ρL . We then have the following theorem.

Theorem 3.1. The generating series 8L is the Fourier development of a vector-valued modular forms of
weight 1 +

b
2 and representation ρL , i.e.,

8L ∈ Mod1+b/2(ρL) ⊗ ĈH1
(M6,Dpre)Q.
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Proof. Let F ∈ M !

1−b/2(ρL) be a weakly holomorphic modular form of weight 1 −
b
2 with respect to the

complex conjugate Weil representation of ρL such that F has integral principal part, and let 9 be the
associated Borcherds product. Then by [Bruinier and Zemel 2022, Theorem 5.5], the divisor in M6(C)

of 9(F)C is equal to ∑
β∈L∨/L

∑
m∈Q(β)+Z

cβ(−m)Z tor(β, m)(C).

Since Borcherds products are defined rationally by [Howard and Madapusi Pera 2020, Theorem A],
we only need to check that the divisor of the Borcherds products has the expected form over Z and this
will be automatic if all the special divisors and the boundary divisors are flat. By [Madapusi Pera 2019,
Theorem 4.1.5], the boundary divisors are flat and by [Howard and Madapusi Pera 2020, Proposition 7.2.2],
the special divisors are flat over Z

[ 1
2

]
and over Z if b ≥ 4. For b = 3, one can use the algebraic version

of the Borcherds embedding trick as in [Howard and Madapusi Pera 2020, Section 9.2] to prove that
no further components appear at 2 and hence the divisor of the Borcherds product has the correct form.
Hence we conclude by the criterion in [Bruinier and Zemel 2022, Proposition 5.4]. □

4. The main estimates and proof of the main theorems

We state in this section the local and global estimates that will allow us to prove Theorem 1.1 and
Theorem 1.3. Then we will prove the global estimates and we postpone the proof of local estimates to the
next section.

4A. Number field setting. Let X be K3 surface over a number field K . Given an embedding τ : K ↪→ C,
let (L , Q) be a maximal lattice containing the transcendental lattice of X τ (C). It is an even lattice of
signature (b, 2) whose genus is independent from τ . We can assume furthermore that b ≥ 3, as the case
b ≤ 2 has already been treated, see [Charles 2018; Shankar and Tang 2020].

Let M be the integral model of the GSpin Shimura variety associated to the lattice (L , Q) and, given
an admissible polyhedral cone decomposition 6, let M6 be its toroidal compactifications as in Section 2.
By [Madapusi Pera 2015], the K3 surface has an associated Kuga–Satake abelian variety which we can
also assume to be defined over the number field K , up to taking a finite extension. Hence it defines a
K -point of M6 . By the extension property of the integral model, there exists N ≥ 1 such that, up to
taking a finite extension of K , we have a flat morphism over Z:

Spec
(
OK

[ 1
N

])
→ M,

and by properness, this map extends to

ρ : Y = Spec(OK ) → M6.

By construction, the image of this map is not contained in any special divisor. A prime over N is said to
be a prime of bad reduction and otherwise of good reduction.
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As in [Shankar et al. 2022, Theorem 2.4], we will rather prove the following more general version,
which is easily seen to imply Theorem 1.1.

Theorem 4.1. Let Y ∈ M6(OK ) with smooth reduction outside N. Let D ∈ Z>0 be a fixed integer
represented by (L , Q) and coprime to N. Assume that YK ∈ M(K ) is not contained in any special divisor
Z(m)(K ). Then there are infinitely many places P of K of good reduction such that YP lies in the image
of Z(Dm2) → M for some m ∈ Z>0 coprime to N.

Let ρ : Y → M6 be as in the previous theorem. We first begin by the following proposition.

Proposition 4.2. There exists a refinement of the cone decomposition 6, such that the map ρ : Y → M6

satisfies the following property: for any prime P of bad reduction, the image of the closed point {P} under
ρ is contained in a stratum which is a locally closed divisor of M6 .

Proof. Let sP ∈ Y be the closed point P of Y . By (2C.1), the image of sP lies in a stratum indexed either
by either a type-II boundary component ϒ or a type-III (4, σ ) toroidal stratum representative. In the
type-II case, the boundary is already a divisor and there is nothing to prove. In the type-III case, let r be
the dimension of the cone σ . Then we get a morphism

Spf(W (Fp)) → M̂6
, (4A.1)

where M̂6 is the formal completion along the boundary component defined by (4, σ ). By a similar
analysis to Section 2C2, we have an étale cover of formal Deligne–Mumford stacks

T̂4(σ ) → M̂6
.

Hence the map (4A.1) lifts to a morphism

Spf(W (Fp)) → T̂4(σ ), (4A.2)

where

T̂4(σ ) = Spf(Zp[qα
| (α, σ ) = 0] ⊗Zp Zp[[qα

| (α, σ ) > 0]]).

Hence this corresponds to a map

Zp[[qα
| (α, C) > 0]] ⊗ Zp[qα

| (α, C) = 0] → W (Fp).

The linear form on 0∨

4 given by sending an element α to the p-adic valuation of the image of qα

under the above map is represented by an element ω ∈ 04 which satisfies (ω.α) > 0 whenever (α.σ ) > 0;
hence ω is in σ . The cocharacter defined by ω is in fact tangent to the map given in (4A.2). Let σ ′ in σ

be the ray defined by ω and let 6′ be the new cone decomposition obtained by refining 6 and which
contains σ ′ as a one-dimensional ray. Then M6′

is a blow-up of M6 and by the preceding discussion,
the point sP belongs to the boundary divisor parametrized by (4, σ ′). Since there are only finitely many
primes of bad reduction, then by repeating this procedure finitely many times, we get the desired cone
decomposition. □
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We will work from now on with the toroidal compactification given by the above proposition. For
m ≥ 1 an integer, let Z(m) be the closed special divisor Z(0, m) ↪→ M6 and Ẑ tor

(m) the arithmetic
divisor associated to Z tor(m) by (3A.1). The pullback via the period map ρ : Y → M6 allows us to
define the height hẐ tor

(m)
(Y) of Y with respect to the arithmetic divisor Ẑ tor

(m) as its image under the
composition

ĈH1
(M6,Dpre)Q → ĈH1

(Y,Dpre)Q
d̂eg
−→ R, Ẑ tor

(m) → hẐ tor
(m)

(Y).

By choice of the lattice (L , Q), the arithmetic curve Y intersects properly the divisors Z(m), B4,ω and
Bϒ for every ϒ and (4, ω). Hence we have

hẐ tor
(m)

(Y) =

∑
τ :K ↪→C

8m(Yτ ) +

∑
P

(Y.Z tor(m))P log|OK /P|, (4A.3)

where for τ : K ↪→ C, we use Yτ to denote the point in M(C) induced by

Spec(C)
τ

−→ Spec(OK ) = Y → M6.

We have

(Y.Z tor(m))P = (Y.Z(m))P +

∑
ϒ

µϒ(m)(Y.Bϒ)P +

∑
(4,ω)

µ4,ω(m) · (Y.B4,ω)P. (4A.4)

Let us denote by OY×M6Z(m),v the étale local ring of Y ×M Z(m) at v. Then

(Y.Z(m))P =

∑
v∈Y×MZ(m)(FP)

length(OY×M6Z(m),v), (4A.5)

where FP denotes the residue field of P.
Let

(Y.Z(m)) =

∑
P

(Y.Z(m))P log|OK /P|.

The first new contribution of this paper is to prove the following estimate which results from Borcherds
modularity and ad hoc bounds on the multiplicities µϒ(m) and µ4,ω(m).

Proposition 4.3. As m → ∞, we have

(Y.Z(m)) +

∑
τ :K ↪→C

8m(Yτ ) = O(mb/2).

As a corollary, we get the following bound, which is referred to as the diophantine bound in [Shankar
et al. 2022, Equation (5.2)].

Corollary 4.4. For any finite place P, we have the following bound:

(Y.Z(m))P = O(mb/2 log m), 8m(Yτ ) = O(mb/2 log m).
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For our next estimate, we recall the notion of asymptotic density from [Shankar et al. 2022]: for a
subset S ⊂ Z>0, the logarithmic asymptotic density of S is defined to be

lim sup
X→∞

log|SX |

log X
,

where SX := {a ∈ S | X ≤ a < 2X}.
Recall from Theorems 5.7 and 6.1 in [loc. cit.] that we have the following estimate:

Proposition 4.5. There exists a subset Sbad ⊂ Z>0 of zero logarithmic asymptotic density such that∑
τ :K ↪→C

8m(Yτ ) = c(m) log(m) + o(mb/2 log(m)),

where −c(m) ≍ mb/2 and is defined in [loc. cit., Section 3.3].

For a prime P of good reduction, i.e., where the intersection of Y and Z(m) above P is supported
in M, we have the following estimate which follows easily from [loc. cit., Theorem 7.1].

Proposition 4.6. Let P be a finite place of good reduction. Let D ∈ Z≥1 coprime to N. For X ∈ Z>0, let
SD,X denote the set {

m ∈ Z>0
∣∣ X ≤ m < 2X,

m
D

∈ Z ∩ (Q×)2, (m, N ) = 1
}
.

Then we have ∑
m∈SD,X

(Y.Z(m))P = o(X (b+1)/2 log X).

Finally, for a prime P of bad reduction, we prove the following proposition which is the second new
contribution of this paper.

Proposition 4.7. Let P a finite place of bad reduction. Let D ∈ Z≥1 coprime to N. For X ∈ Z>0, let SD,X

be the set defined in the previous proposition. Then we have∑
m∈SD,X

(Y.Z(m))P = o(X (b+1)/2 log X).

4B. Function field setting. We assume in this section that the lattice (L , Q) is self-dual at p. Then the
Shimura variety M has smooth reduction at p and we denote its reduction by MFp . Given an admissible
cone decomposition 6, we denote by M6

Fp
the reduction of the toroidal compactification M6 . We first

give a new formulation of Theorem 1.3, see Theorem 4.8, then we will give the main estimates that will
allow us to prove the latter.

Let X → S be a generically ordinary nonisotrivial family of K3 surfaces over a smooth curve S

over Fp. The quadratic lattice (L , Q) in this case corresponds to a maximal quadratic lattice orthogonal
to the generic geometric Picard group in the K3 lattice. Hence (L , Q) has discriminant coprime to p by
assumption and we get a period map by [Madapusi Pera 2015, section 4]

ρ : S → MFp ,
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which is a finite map and the image of the generic point is in the ordinary locus. The locus in S where
the Picard rank jumps corresponds then exactly to the union over m ≥ 1 of the intersections S ∩Z(m)Fp .
Hence Theorem 1.3 follows from the following theorem.

Theorem 4.8. Let S → MFp be a finite map with generically ordinary image and not contained in any
special divisor. Then there exists infinitely many closed points in S in the union of Z(m)Fp for integers m
coprime with p.

Let S be a smooth curve as in the theorem above. By properness, we can extend the map

ρ : S → M6
Fp

,

where S is the smooth compactification of S . We have the following proposition whose proof is similar
to Proposition 4.2 and hence we omit it.

Proposition 4.9. There exists a refinement of the cone decomposition 6 such that the image of S in MFp

intersects the boundary only in strata corresponding to locally closed divisors.

Let 6 be a polyhedral cone decomposition which satisfies the conditions of the previous proposition.
By abuse of notation, if D ⊂ M6

Fp
is a Cartier divisor, we write

(D.S ) = degS ρ∗D.

We have then the following global estimate.

Proposition 4.10. As m → ∞, we have

(Z(m)Fp
.S ) = |c(m)|(S .LFp) + o(mb/2).

For any integer m, we have the decomposition

(Z(m)Fp
.S ) =

∑
P∈Fp

m P(Z(m)Fp , S ),

where m P(Z(m)Fp , S ) is the multiplicity of intersection at P . Our next goal is to estimate in average
these local multiplicities and we start by the good reduction case already treated in [Maulik et al. 2022a,
Proposition 7.11, Theorem 7.18].

Let S be as in [loc. cit., Section 7.1], i.e., a set of integers of positive density such that every m ∈ S is
coprime to p and is representable by the quadratic lattice (L , Q).

For P ∈ (S ∩M)(Fp), we define as in [loc. cit., Definition 7.6]

gP(m) =
h p

p − 1
|c(m)|,

where h p is the order of vanishing of the Hasse invariant at P , see [loc. cit.] The following proposition is
the combination of Proposition 7.11 and Theorem 7.18 from [loc. cit.].
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Proposition 4.11. Let P ∈ S (Fp). Then:

(1) If P is not supersingular then∑
m∈SX

m P(Z(m)Fp .S ) = O(Xb/2 log X).

(2) There exists an absolute constant 0 < α < 1 such that for any supersingular point P we have∑
m∈SX

m P(Z(m)Fp .S ) = α
∑

m∈SX

gp(m) + O(X (b+1)/2).

Our new contribution in this setting is the following theorem which gives an estimate on intersection
multiplicities at points where S intersects the boundary of M6

p .

Proposition 4.12. Let P ∈ S (Fp) a point mapping to the boundary of M6
Fp

. Then we have the following
estimate: ∑

m∈SX

m P(Z(m)Fp .S ) = O(Xb/2 log X).

4C. Proof of the main theorems. Assuming the estimates in the previous section we now indicate how
to prove Theorem 1.1 and Theorem 1.3.

Proof of Theorem 1.1. It is enough to prove Theorem 4.1 in a similar way to [Shankar et al. 2022,
Section 8]. For convenience of the reader, we will sketch the proof. Assume for the sake of contradiction
that there are only finitely many primes of good reduction such that Y intersects a special divisor of
the form Z(Dm2) where Dm2 is coprime with N and is represented by (L , Q). By Proposition 4.3 and
Proposition 4.5, there exists a subset Sbad ⊂ Z>0 of logarithmic asymptotic density zero such that

(Y.Z(m)) = −c(m) log(m) + o(mb/2 log(m)) ≍ mb/2 log(m).

Let Sgood
D,X = {m ∈ SD,X , m /∈ Sbad, (m, N ) = 1}, then one can easily check that |Sgood

D,X | ≍ X1/2 and
c(m) ≫ Xb/2 log X for m ∈ Sgood

D,X . Hence we get∑
m∈Sgood

D,X

(Y.Z(m)) ≍ X (b+1)/2 log X. (4C.1)

On the other hand, by Propositions 4.5 and 4.7, we get by summing over the finitely many places where
either Y intersects a Z(Dm2) or which are of bad reduction∑

m∈Sgood
D,X

(Y.Z(m)) = o(X (b+1)/2 log X),

which contradicts (4C.1). □

Proof Theorem 1.3. The proof is similar: assume that there are only finitely many points in the union(⋃
m,m∧p=1 Z(m) ∩ S

)
(Fp) and let S be a set as in Section 4B. Then by Proposition 4.10, we have∑

m∈SX

(Z(m)Fp .S ) =

∑
m∈SX

|c(m)|(S .LFp) + o(Xb/2+1).
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On the other hand, by Propositions 4.11 and 4.12 we have∑
m∈SX

(Z(m)Fp .S ) =

∑
m∈SX

∑
P∈

(⋃
m,m∧p=1 Z(m)∩S

)
(Fp)

m P(Z(m)Fp .S )

= α
∑

m∈SX

|gP(m)| + O(X (b+1)/2).

≤ α
∑

m∈SX

|c(m)|(S .LFp) + O(X (b+1)/2),

where the last equality results from the fact that the Hasse invariant is a section of L⊗p−1
Fp

. These two
estimates contradict each other, hence the result. □

4D. Global estimate. We prove in this section simultaneously Propositions 4.3 and 4.10.
By Theorem 3.1, the generating series∑

β∈L∨/L

∑
m∈Q(β)+Z

hẐ tor
(β,m)

(Y)qmeβ

and ∑
β∈L∨/L

∑
m∈Q(β)+Z

(Z tor(β, m)Fp .S )qmeβ

are elements of Mod1+b/2(ρL). Classical estimates on the growth of coefficients of modular forms imply
that (see [Tayou 2020, Example 2.3] for more details)

hẐ tor
(m)

(Y) = O(mb/2)

and
(Z(m)tor

Fp
.S ) = |c(m)|(S .LFp) + o(mb/2).

By (4A.3) and (4A.4), we can write

(Y.Z(m)) +

∑
τ :K ↪→C

8m(Yτ )

= hẐ tor
(m)

(Y) −

∑
ϒ

µϒ(m)(Y.Bϒ)P log|OK /P| −

∑
4

µ4,σ (m) · (Y.B4,σ )P log|OK /P| (4D.1)

and similarly, we can write

(S .Z(m)Fp) = (Z tor(m)Fp .S ) −

∑
ϒ

µϒ(m)(S .Bϒ,Fp) −

∑
4,σ

µ4,ω(m) · (S .B4,σ
Fp

). (4D.2)

Hence we only have to bound the growth of the multiplicities µϒ(m) and µ4,ω(m).5 This is given by
the following lemma.

Proposition 4.13. As m → ∞, we have the following estimates:

(1) For any type-II cusp label representative ϒ , we have

µϒ(m) ≪ϵ mb/2−1+ϵ .

5ω is the unique integral generator of σ .
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(2) For any type-III toroidal stratum representative (4, σ ) such that σ is a ray, we have

µ4,ω(m) ≪ϵ m(b−1)/2+ϵ .

This proposition will be proved in the following two sections.

4E. Estimates on type-II multiplicities. The goal of this section is to prove the type-II estimate in
Proposition 4.13. First we recall some notation associated to isotropic planes introduced in [Bruinier and
Zemel 2022, Section 3.2].

Let ϒ = (P,D◦, h) be a cusp label representative corresponding to a boundary component of type II.
Recall from Section 2B1 that P is the stabilizer of an isotropic plane JQ and J = JQ ∩ h.L is a primitive
isotropic plane of h.L ∩ LQ.

To simplify the notation, assume that h.L ∩ LQ = L , the reader may otherwise replace L by Lh =

h.L ∩ LQ in what follows. Define then

JL∨ = JR ∩ L∨, J⊥

L = J⊥
∩ L , J⊥

L∨ = J⊥
∩ L∨, and D = J⊥

L /J.

The lattice D is positive definite lattice of rank b − 2. Its dual lattice can be described as

D∨
= J⊥

L∨/JL∨ .

and the discriminant lattice is given by

1D = D∨/D = J⊥

L∨/(J⊥

L + JL∨ = L∨

J /(L + JL∨),

where L∨

J is the subgroup of L∨

L + J⊥

L∨ = {µ ∈ L∨
| ∃ν ∈ L such that (µ, λ) = (ν, λ)∀λ ∈ J }.

Let 2D denote the vector-valued Theta function associated to D defined by

2D(τ ) =

∑
β∈D∨

q Q(β)eβ+D ∈ C[1D][[q1/|1D |
]].

It is an element of Mb/2−1(ρD), which is the space of vector-valued modular forms of weight b
2 −1 with

respect to the Weil representation ρD associated to the positive definite lattice (D, Q). We can also write

2D(τ ) =

∑
β∈D∨/D

∑
m≥0

c(D, β, m)qmeβ,

where for β ∈ D∨/D, m ∈ Q(β) + Z, m ≥ 0, we have

c(D, β, m) = |{λ ∈ β + D, Q(λ) = m}|.

Following Bruinier and Zemel’s notation [2022, Section 4.4], define

↑
L
D (2D)(τ ) =

∑
β∈J⊥

L∨/J

q Q(β)/2eβ+L =

∑
β∈L∨/L

∑
m∈Q(β)+L

c(D, β, m)qmeβ ∈ Mb/2−1(ρL),
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where c(D, β, m) = 0 if β /∈ J⊥

L∨/J⊥ or m /∈ Q(β) + Z, and otherwise c(D, β, m) = c(D, β, m) where
β is the image of β under the reduction map J⊥

L∨
→ D∨/D.

In particular, we have

q
d

dq
↑

L
D (2D)(τ ) =

∑
β∈L∨/L

∑
m∈Q(β)+L

mc(D, β, m)qmeβ,

which is a quasimodular form in the sense of [Imamoğlu et al. 2014, Definition 1].
Then by [Bruinier and Zemel 2022, Definition 4.18, Proposition 4.21 4.15], we can define

µϒ(m) =
1

b − 2
CT

(〈
q

d
dq

↑
L
D (2D), F+

m

〉
L

)
, (4E.1)

where F+
m is the holomorphic part of the harmonic mass form Fm,0 from [Bruinier and Zemel 2022,

Proposition 4.2]. A direct computation shows then (see also the second formula in [Bruinier 2002,
Theorem 2.14])

µϒ(m) =
2

b − 2
mc(D, 0, m).

Classical estimates on coefficients of modular forms, see for example [Sarnak 1990, Proposition 1.5.5],
show that

|c(D, β, m)| ≪ϵ mb/2−2+ϵ (4E.2)

for all ϵ > 0. Hence we get that
|µϒ(m)| ≪ϵ mb/2−1+ϵ,

which proves the first part of Proposition 4.13.

4F. Estimates on type-III multiplicities. In this section, we prove the estimates on the type-III multiplic-
ities in Proposition 4.13.

Let (4, σ ) be a toroidal stratum representative of type III such that σ is a ray. Keeping the notation
from Section 2B2, let IQ be the isotropic line of LQ whose stabilizer is the parabolic subgroup attached
to 4 and let I = IQ ∩ h.L . To simplify notation, we assume that h.L = L , the reader may notice that this
is harmless, up to replacing L by h.L in what follows.

The line I is an isotropic line of L and the lattice K I = I ⊥/I is Lorentzian. Let CR be the cone of
negative elements of the Lorentzian space K I,R and let C = CR ∩ K . As is explained in Section 2B2, the
ray ω is generated by an element ω ∈ K I ∩ C which is primitive and such that Q(ω) = −N . Following
[Bruinier and Zemel 2022, Definition 4.18], we define

µ4,ω(m) =

√
N

8
√

2π
8K

m

(
ω

√
N

)
. (4F.1)

Let v =
ω

√
N

. By [Bruinier 2002, Proposition 2.11 and Theorem 2.14], we have

8K
m (v) = 8K

m
(
v, 1

2 +
b
4

)
=

20
( b−1

2

)
(4πm)b/2

1 +
b
2

∑
λ∈K I ,Q(λ)=m

F
( b−1

2 , 1, 1 +
b
2 ;

m
(Q(λ

v⊥ ))

)
(4π |Q(λv⊥)(b−1)/2|)

,
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where F(a, b, c; z) is the usual Gauss hypergeometric function given by

F(a, b, c; z) =

∞∑
n=0

(a)n(b)n

(c)n

zn

n!
,

and (a)n = 0(a + n)/0(a). Recall that the above series has 1 as a radius of convergence and converges
absolutely in the unit circle |z| = 1 if R(c − a − b) > 0. In our situation, the latter quantity is equal
to 1 + b/2 − 1 − (b − 1)/2 =

1
2 > 0. Hence the series F((b − 1)/2, 1, 1 + b/2; z) is globally bounded

over the unit disc. For λ ∈ K such that Q(λ) = m, we have m = Q(λv) + Q(λv⊥) and Q(λv) ≤ 0, hence
0 < m ≤ Q(λv⊥). Hence we get

|8K
m (v)| ≪

√
m.

∑
√

mλ∈K I ,Q(λ)=1

1
Q(λv⊥)(b−1)/2 ≪

√
m

∑
N≥1

∑
Q(λ⊥

v )∈[N ,N+1[
√

mλ∈K I
Q(λ)=1

1
N (b−1)/2 .

By Proposition 4.14 below, we have

|{λ ∈ K I,R, Q(λ) = 1,
√

mλ ∈ K , Q(λ⊥

v ) ∈ [N , N + 1[}| ≪ϵ mb/2−1+ϵ N b/2−2.

Hence

|8K
m (v)| ≪ϵ m(b−1)/2+ϵ

∑
N≥1

N b/2−2

N (b−1)/2 ≪ϵ m(b−1)/2+ϵ
∑
N≥1

1
N 3/2 ≪ϵ m(b−1)/2+ϵ,

which proves the second part of Proposition 4.13.

Proposition 4.14. Let m ≥ 1 be an integer and X > 0 a positive real number. Then

|{λ ∈ K I,R, Q(λ) = 1,
√

mλ ∈ K I , Q(λ⊥

v ) ∈ [N , N + 1[}| ≪ϵ mb/2−1+ϵ N b/2−2.

Proof. Recall that (K I , Q) is a quadratic lattice of signature (b − 1, 1) and we have a canonical measure
µ∞ on the quadric K1 := {x ∈ K I,R | Q(x) = 1} defined as follows: for W an open subset of KR, let

µ∞(W ∩ K1) = lim
ϵ→0

Leb({x ∈ W, |Q(x) − 1| < ϵ})

2ϵ
.

Here Leb is the Lebesgue measure on KR for which the lattice K is of covolume 1. One can then prove
that (see for example the proof of [Shankar et al. 2022, Corollary 4.12]):

µ∞({λ ∈ K1, Q(λv⊥) ∈ [X, X + 1[}) ≪ Xb/2−2.

On the other hand, by the equidistribution of integral points in quadrics, see [Eskin and Oh 2006; Duke
1988],6 we have

|{λ ∈ K1,
√

mλ ∈ K , Q(λ⊥

v ) ∈ [N , N + 1[}| ≪ϵ mb/2−1+ϵµ∞({λ ∈ K1, Q(λv⊥) ∈ [X, X + 1[}),

which yields the desired result. □

6Or the circle method.
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5. Bounding the contribution from bad reduction places

In this section we prove Propositions 4.7 and 4.12. Let M6 be as before the toroidal compactification of
the GSpin Shimura variety associated to a quadratic lattice (L , Q) and a K -admissible polyhedral cone
decomposition 6. The lattice (L , Q) is assumed to be maximal in the number field case and moreover
self-dual at p in the function field case.

5A. Bad reduction in the number field setting. In this section, we prove Proposition 4.7. We assume
hence that the lattice (L , Q) is maximal and that the polyhedral cone decomposition 6 is chosen in such
way that Proposition 4.2 is satisfied.

By the choice of the cone decomposition 6, the intersection points of Y and M6 lie either in a
boundary divisor of type II or a boundary divisor of type III associated to a toroidal stratum representative
(4, σ ) of type III where σ is a ray.

Let P be a prime of bad reduction, i.e., where Y intersects the boundary of M6 . Let KP be the
completion at P of the number field K and vP its normalized valuation. Let kP be the residue field of P
and k̄P an algebraic closure.

5A1. Type-II degeneration. Assume in this section that the boundary point lies in Bϒ
Fp

where ϒ is a cusp
label representative of type II.

Let J be the primitive isotropic plane associated to ϒ and let D = J⊥

L /J ; see Section 4E for notation.
Recall from (2B.5) and (2C.3) that the completion of M6 along the boundary divisor Bϒ fits into the

following commutative diagram:

M̂ϒ
π

//

=

��

M̂6

M̂ϒ

Spf(Zp[[X ]])
//Mϒ

D⊗E
//Mh

ϒ

where the map π is an étale map of formal Deligne–Mumford stacks.
The formal completion of Y along P induces a map

Spf(OKP) → M̂6,

which lifts by étaleness of π to a map

Spf(OKP) → M̂ϒ .

Denoting by x the image of the closed point sP, then we get a map of local rings

9 : ÔM̂ϒ ,x → OKP .

Let m ≥ 1 be an integer coprime to N . By Proposition 2.4, the formal completion of the divisor Z(m)

is described as the union over λ ∈ D with Q(λ) = m, of the vanishing set of the ideals Zp[X ]]⊗ Îλ. If fλ



Picard rank jumps for K3 surfaces with bad reduction 105

is a generator of Îλ,7 then the multiplicity of intersection of the branch parametrized by λ at P is equal to

v(λ) = vP(9( fλ)).

Hence the multiplicity of intersection of Y and Z(m) at P is given by

(Y.Z(m))P =
1
d

∑
λ∈D,Q(λ)=m

v(λ),

where d is the degree of π at ρ(sP).
For an integer n, define the set

Ln = {λ ∈ D | v(λ) ≥ n}, (5A.1)

and notice that (Ln) is a decreasing chain of sets. It follows then

(Y.Z(m))P ≤

∑
λ∈D,Q(λ)=m

v(λ) ≤

∑
n≥1

|{λ ∈ Ln | Q(λ) = m}|. (5A.2)

The proposition below should be compared to what happens in the good reduction case in [Shankar
et al. 2022, Section 7]. For a definition of the successive minima used, we refer to [Eskin and Katznelson
1995, Definition 2.2].

Proposition 5.1. The sequence (Ln, Q)n is a decreasing sequence of positive definite lattices which all
have the same rank r ≤ b − 2. Moreover, the following holds:

(1)
⋂

n Ln = {0}.

(2) For every n ≥ 1, pLn ⊆ Ln+1.

(3) For 1 ≤ r ≤ b − 2, let µi (Ln) be the i-th successive minima of Ln and let ai (Ln) =
∏

1≤k≤i µi (Ln).
Then we have

ai (Ln) ≫ϵ ni/(b+ϵ).

Proof. Let λ, λ′
∈ Ln . From (2D.1), we see that ker(pλ) ∩ ker(pλ′) and thus

Îλ+λ ⊂ Îλ + Îλ′ .

It follows that
v(λ + λ′) ≥ min{v(λ), v(λ′)} ≥ n.

We conclude that Ln ⊆ D is a subgroup and (Ln, Q) is obviously positive definite. Moreover, since the
curve Y is not contained in any special divisor, (1) follows immediately.

For (2), let λ ∈ Ln with v(λ) ≥ n ≥ 1. Then Îpλ is the ideal defining the kernel of the composition

D ⊗ Ê → Ê → Ê,

over Spf(ÔMh ,z).

7Recall that Z(m) is Cartier.
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Since the multiplication by p map is ramified at 0 with ramification degree equal to p, we conclude that

v(pλ) ≥ pv(λ) ≥ n + 1.

This also proves that the lattices Ln have the same rank.
For (3), let n ≥ 1 and let w0 be a vector in Ln such that Q(w0) = µ1(Ln)

2. By choosing m0 = µ1(Ln)
2,

the height bound Corollary 4.4 implies

n ≤ (Y.Z(m0))P ≪ϵ m(b+ϵ)/2.

Hence µ1(Ln) ≫ϵ n1/(b+ϵ). Since ai (n) ≥ µ1(n)r , this concludes the proof. □

Proposition 5.2. Let D ∈ Z≥1. For X ∈ Z>0, let SD,X denote the set{
m ∈ Z>0 | X ≤ m < 2X,

m
D

∈ Z ∩ (Q×)2, (m, N ) = 1
}
.

Then we have ∑
m∈SD,X

(Y.Z(m))P = o(X (b+1)/2 log X).

Proof. We have∑
m∈SD,X

(Y.Z(m))P ≤

∑
m∈SD,X

∑
n≥1

|{λ ∈ Ln | Q(λ) = m}| =

∑
n≥1

∑
m∈SD,X

|{λ ∈ Ln | Q(λ) = m}|.

By [Eskin and Katznelson 1995, Lemma 2.4], we have the following estimate which only depends on the
rank r of the lattices Ln and hence not on n∑

m∈SD,X

|{λ ∈ Ln | Q(λ) = m}| ≪

r∑
j=0

X j

a j (Ln)
.

On the other hand, if λ ∈ Ln with Q(λ) = m ∈ SD,X , then µ1(Ln)
2
≤ m ≤ X ; hence n ≪ X (b+ϵ)/2 and

∑
m∈SD,X

(Y.Z(m))P ≪

∑
m∈SD,X

Oϵ(X (b+ϵ)/2)∑
n≥1

|{λ ∈ Ln | Q(λ) = m}|

≪

r∑
j=0

X (b+ϵ)/2∑
n≥1

X j/2

n j/(b+ϵ)

≪

r∑
j=0

X j/2+(1− j/(b+ϵ))(b+ϵ)/2
= O(X (b+ϵ)/2).

Hence the result. □

5A2. Type-III degeneration. Let (4, σ ) be a toroidal stratum representative of type III such that σ is a
ray. We use notation from Section 2B2.
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By our choice of 6, the curve Y touches the boundary of M6 at a locally closed boundary divisor B4,σ.
Let M̂6 be the formal completion of M6 along B4,σ and hence we get a map

Ŷ → M̂6. (5A.3)

By Section 2B5, the following maps of formal Deligne–Mumford stacks are finite étale:⊔
Q×

>0\A×

f /K0

T̂4/R → M̂4,σ → M̂6.

Hence map (5A.3) lifts to map

Ŷ → Spf(Zp[qα | α ∈ 0∨

4 ∩ ω⊥
][[qω′]]).

This corresponds to a morphism

Z(p)[[qω′]][qα]α∈0∨

4,(α.ω)=0 → OKP . (5A.4)

Let λ ∈ K I = 04 with Q(λ) = m. By Section 2D2 the branch of the special divisor Z(m) parametrized
by λ intersects the boundary only if (λ.ω) = 0. In the latter case, by Proposition 2.5, its equation is given
by qλ

− 1 and the multiplicity of intersection of Y with the branch given by λ is the p-adic valuation of
the element qλ

− 1 under the map (5A.4).
Let x ∈ B4,σ (Fp) be the image of P. Then by the previous discussion, we conclude that

(Y.Z(m))P =
1
d

∑
λ∈K I ∩ω⊥,Q(λ)=m

vp(qλ
− 1),

where d is the degree of the map (5A.3) at x .
For n ≥ 1, let

Ln = {λ ∈ K I ∩ ω⊥
| vp(qλ

− 1) ≥ n}.

Then we can rewrite the multiplicity intersection at P as

(Y.Z(m))P =
1
d

∑
n≥1

{λ ∈ Ln | Q(λ) = m}.

Proposition 5.3. The lattices (Ln, Q) are positive definite lattices of rank r ≤ b − 1 independent from n
and they satisfy the following properties:

(1)
⋂

n Ln = {0}.

(2) For every n ≥ 1, pLn ⊆ Ln+1.

(3) For 1 ≤ r ≤ b − 1, let µi (Ln) be the i-th successive minima and let ai (Ln) =
∏

1≤k≤i µi (Ln). Then
we have

ai (Ln) ≫ϵ ni/(b+ϵ).

Proof. The proof is similar to the proof of Proposition 5.1. Let λ, λ′
∈ K ∩ ω⊥. By writing

qλ+λ′

− 1 = qλ(qλ′

− 1) + qλ
− 1,
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we get that Ln is a lattice and it is obviously positive definite as K I is Lorentzian and ω is a negative
normed vector.

Let π be a uniformizer of OKP and let λ ∈ Ln . Then qλ
= 1 + πn.u for some u ∈ OKP . Hence

q pλ
− 1 = (1 + πn.u)p

− 1 =

∑
i≥1

( p
i

)
πni ui

= πn+1u′.

Hence (2). The rest of the proof is similar to Proposition 5.1. □

As a consequence, we get the following proposition, whose proof is identical to that of Proposition 5.2
and we omit it.

Proposition 5.4. Let D ∈ Z≥1 be coprime to N. For X ∈ Z>0, let SD,X denote the set{
m ∈ Z>0 | X ≤ m < 2X,

m
D

∈ Z ∩ (Q×)2, (m, N ) = 1
}
.

Then we have ∑
m∈SD,X

(Y.Z(m))P = o(X (b+1)/2 log X).

5B. Function field setting. In this section, we prove Proposition 4.11. We assume here that the lattice
(L , Q) is self-dual at p and we let MFp be the mod p GSpin Shimura variety associated to (L , Q). Let
6 be a polyhedral cone decomposition which satisfies Proposition 4.9.

Let S → M6
Fp

be a finite map as before and let P ∈ S (Fp) be a point mapping to the boundary
of M6

Fp
. Let denote k = Fp. The point P lies either in a boundary stratum of type II or type III. We treat

each case separately.

5B1. Type-II degeneration. Assume that the image of P is in Bϒ
Fp

(k) where ϒ is a cusp label representative
of type II.

Let Ŝ ≃ Spf(k[[t]]) be the formal completion of S along s. Then by reasoning similarly to Section 5A1,
specifically using the reduction mod p of (2C.3), we get for every λ ∈ D with Q(λ) = m ≥ 1, m coprime
to N a map

8p : ÔMϒ,Fp ,x → k[[t]],

Let v(λ) denote the t-adic valuation of the generator fλ of Iλ,p. Then similarly to the number field
case, we have:

Lemma 5.5. The multiplicity of intersection of S and Z(m)Fp at P satisfies

m P(S ,Z(m)Fp) ≪

∑
n≥1

|{λ ∈ Ln | Q(λ) = m}|.

Now we are ready to prove Proposition 4.12.
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Proposition 5.6. The sequence of lattices (Ln, Q) satisfy the same properties as in Proposition 5.1 and
letting S be as in Section 4B, we have the following estimate for X > 0:∑

m∈SX

m P(S ,Z(m)Fp) = Oϵ(X (b+ϵ)/2)

Proof. The same proof as in Proposition 5.1 shows that the lattices (Ln, Q) enjoy the same properties of
the aforementioned proposition. For the second part, we have∑

m∈SX

m P(S ,Z(m)Fp) ≪

∑
m∈SX

∑
n≥1

|{λ ∈ Ln | Q(λ) = m}|

≪

O(X (b+ϵ)/2)∑
n=1

|{λ ∈ Ln | Q(λ) ≤ m}|

≪

O(X (b+ϵ)/2)∑
n=1

r∑
j=0

X j/2

a j (Ln)

≪

r∑
j=0

O(X (b+ϵ)/2)∑
n=1

X j/2

n j/(b+ϵ)
= O(X (b+ϵ)/2). □

5B2. Type-III degeneration. Assume now that there exists a toroidal stratum representative (4, σ ) such
that σ is a ray and such that P lies in B4,σ

Fp
(k). Using a similar approach to Section 5A2 by taking

reduction mod p, we get a map

k[qα | α ∈ 0∨

4 ∩ ω⊥
][[qω′]] → k[[t]],

sending qω′ to an element of the ideal (t). Let v denote the t-adic valuation on k[[t]]. Then, for m coprime
to N , the multiplicity of intersection of S and Z(m)Fp at P satisfies

m P(S ,Z(m)Fp) ≤

∑
λ∈K I ∩ω⊥,Q(λ)=m

v(qλ
− 1).

If we define the sequence lattices Ln as

Ln = {λ ∈ K ∩ ω⊥
| v(qλ

− 1) ≥ n},

then

m P(S ,Z(m)Fp) ≤

∑
n≥1

|{λ ∈ Ln, Q(λ) = m}|.

Now the rest of the proof is similar to Section 5A2. This proves Proposition 4.12 in the remaining
type-III case.

6. Applications

In this section, we present a proof of Theorem 1.5. This approach is inspired from [Maulik et al. 2022a].
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6A. Hecke orbit conjecture.

6A1. The orthogonal case. Since GSpin Shimura varieties are finite covers of orthogonal ones, it is
enough to prove the result for GSpin Shimura varieties.

Let MFp be the reduction mod p ≥ 5 of a GSpin-type Shimura variety with hyperspecial level at p
associated to a lattice (L , Q), which is assumed to be self-dual at p and of signature (b, 2). We will
prove Theorem 1.5 by induction on b, which is also the dimension of MFp .

The case b = 1 is immediate: the prime-to-p Hecke orbit of x is infinite, hence Zariski dense.
Assume now that n ≥ 2 and the result of Theorem 1.5 holds for all ordinary points in GSpin Shimura

varieties of dimension less than b − 1 with hyperspecial level at p. Let x be an ordinary point in M(Fp)

and let Tx be the Zariski closure of its prime-to-p Hecke orbit. Then Tx has positive dimension and
intersects the ordinary locus nontrivially. Hence we can find a smooth quasiprojective curve S and a
finite map

S → MFp

whose image is contained in Tx and which is contained in the ordinary locus. Moreover, we can assume
that this image is not contained in any special divisor. Indeed, the same argument used for proper curves
in [Maulik et al. 2022a, Lemma 8.11] works in our setting with no change. By Theorem 1.3, the curve S

intersects infinitely many divisors Z(m)Fp with (m, p) = 1. The special divisors Z(m)Fp are themselves
the union of GSpin Shimura varieties of dimension b − 1 with hyperspecial level at p since m is coprime
to p. Let y ∈ S (Fp)∩Z ′(m)(Fp) for some irreducible component Z ′(m) of Z(m). Then y is ordinary
and the prime-to-p Hecke orbit of y in Z ′(m)Fp is Zariski dense by the induction hypothesis. Since
this orbit is a suborbit of the Hecke orbit in MFp , we conclude that Z ′(m)Fp ⊂ Tx . Furthermore, it is
straightforward to check that the collection of the divisors Z ′(m)Fp must be infinite by Theorem 1.3.
Hence we conclude that Tx = MFp which is the desired result.

6A2. The unitary case. We prove in this section the Hecke orbit conjecture in the unitary case using the
reduction to the orthogonal case already used in [Maulik et al. 2022a, Remark 8.12] and in [Shankar et al.
2022, Section 9.3].

Let MFp be the mod p points of the canonical model of a unitary Shimura variety associated to an
imaginary quadratic field k, a unitary group of signature (r, 1) with hyperspecial level at p as described
in [Bruinier et al. 2020, Section 2.1] such that p is split in k. Consider the family of special divisors
ZKra(m) as described in [loc. cit., Section 2.5] which are themselves unitary Shimura varieties associated
to unitary groups of signature (r − 1, 1) and hyperspecial at p when p does not divide m. Then using
a similar argument to [Shankar et al. 2022, Section 9.3] and further explained in [Maulik et al. 2022a,
Remark 8.12], we have the following theorem which is a consequence of Theorem 1.3.

Theorem 6.1. Assume that p ≥ 5 and let S → MFp be a finite map from a smooth quasiprojective curve
S over Fp and with generically ordinary image. Then the union over m prime to p of the intersections
S ∩ZKra(m) is infinite.
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Now the Hecke orbit conjecture in the unitary case is an easy consequence of the above theorem and
the induction method explained in the previous paragraph.
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Curves with few bad primes
over cyclotomic Zℓ-extensions

Samir Siksek and Robin Visser

Let K be a number field, and S a finite set of nonarchimedean places of K , and write O× for the group
of S-units of K . A famous theorem of Siegel asserts that the S-unit equation ε+ δ = 1, with ε, δ ∈ O×,
has only finitely many solutions. A famous theorem of Shafarevich asserts that there are only finitely
many isomorphism classes of elliptic curves over K with good reduction outside S. Now instead of a
number field, let K = Q∞,ℓ which denotes the Zℓ-cyclotomic extension of Q. We show that the S-unit
equation ε+ δ = 1, with ε, δ ∈ O×, has infinitely many solutions for ℓ ∈ {2, 3, 5, 7}, where S consists
only of the totally ramified prime above ℓ. Moreover, for every prime ℓ, we construct infinitely many
elliptic or hyperelliptic curves defined over K with good reduction away from 2 and ℓ. For certain primes
ℓ we show that the Jacobians of these curves in fact belong to infinitely many distinct isogeny classes.

1. Introduction

Let ℓ be a rational prime and r a positive integer. Write Qr,ℓ for the unique degree ℓr totally real
subfield of

⋃
∞

n=1 Q(µn), where µn denotes the set of ℓn-th roots of 1. We let Q∞,ℓ =
⋃

r Qr,ℓ; this is
the Zℓ-cyclotomic extension of Q, and Qr,ℓ is called the r-th layer of Q∞,ℓ. Now let K be a number
field, and write K∞,ℓ = K · Q∞,ℓ and Kr,ℓ = K · Qr,ℓ. To ease notation we shall sometimes write K∞

for K∞,ℓ. We write O∞ (or O∞,ℓ) for the integers in K∞ (i.e., the integral closure of Z in K∞), and
write Or (or Or,ℓ) for the integers of Kr,ℓ. Clearly O∞,ℓ =

⋃
r Or,ℓ. The motivation for the present paper

is a series of conjectures and theorems that suggest that the arithmetic of curves (respectively abelian
varieties) over K∞ is similar to the arithmetic of curves (respectively abelian varieties) over K . One of
these is the following conjecture of Mazur [1972], which in essence says that the Mordell–Weil theorem
continues to hold over K∞.

Conjecture (Mazur). Let A/K∞ be an abelian variety. Then A(K∞) is finitely generated.

Another is a conjecture of Parshin and Zarhin [1989, page 91] which is the analogue of Faltings’
theorem (Mordell conjecture) over K∞.

Conjecture (Parshin and Zarhin). Let X/K∞ be a curve of genus ≥ 2. Then X (K∞) is finite.
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A third is the following theorem of Zarhin [2010, Corollary 4.2], which asserts that the Tate homomor-
phism conjecture (also a theorem of Faltings [1983] over number fields) continues to hold over K∞.

Theorem (Zarhin). Let A, B be abelian varieties defined over K∞,ℓ, and denote their respective ℓ-adic
Tate modules by Tℓ(A), Tℓ(B). Then the natural embedding

HomK∞
(A, B)⊗ Zℓ ↪→ HomGal(K∞/K∞)

(Tℓ(A), Tℓ(B))

is a bijection.

Mazur’s conjecture is now known to hold for certain elliptic curves. For example, if E is an elliptic
curve defined over Q then E(Q∞) is finitely generated thanks to theorems of Kato, Ribet and Rohrlich
[Greenberg 2001, Theorem 1.5]. From this one can deduce [Greenberg 2001, Theorem 1.24] that X (Q∞)

is finite for curves X/Q of genus ≥ 2 equipped with a nonconstant morphism to an elliptic curve X → E
defined over Q. We also note that the conjecture of Parshin and Zarhin follows easily from Mazur’s
conjecture and Faltings’ theorem. Indeed, using the Abel–Jacobi map we can deduce from Mazur’s
conjecture that X (K∞) = X (Kr ) for suitably large r , and we know that X (Kr ) is finite by Faltings’
theorem.

It is natural to wonder whether other standard conjectures and theorems concerning the arithmetic of
curves and abelian varieties over number fields continue to hold over K∞. The purpose of this paper is to
give counterexamples to potential generalizations of certain theorems of Siegel and Shafarevich to K∞.
A theorem of Siegel (e.g., [Abramovich 2009, Theorem 0.2.8]) asserts that (P1

− {0, 1,∞})(OK ,S) is
finite for any number field K and any finite set of primes S; modern proofs can be found in [Kim 2005;
Lawrence and Venkatesh 2020; Poonen 2021]. We show that the corresponding statement over Q∞,ℓ is
false, at least for ℓ= 2, 3, 5, 7. We denote by υℓ the totally ramified prime of Q∞,ℓ above ℓ (the precise
meaning of primes in infinite extensions of Q is clarified in Section 2).

Theorem 1. Let ℓ= 2, 3, 5 or 7. Let

S =

{
{υℓ} if ℓ= 2, 5, 7,
∅ if ℓ= 3.

(1)

Let OS denote the S-integers of Q∞,ℓ. Then (P1
− {0, 1,∞})(OS) is infinite.

Remarks. • There have been several recent papers showing that P1
− {0, 1,∞} and other punctured

curves have no or few integral points over various infinite families of number fields e.g., [Freitas et al.
2020; 2021a; 2021b; 2022; Triantafillou 2021]. In particular, it is shown in [Freitas et al. 2020] that
(P1

− {0, 1,∞})(O∞) = ∅ for ℓ ̸= 3. The obstruction given in [loc. cit.] for ℓ ̸= 3 is local in nature.
In essence, Theorem 1 complements this result, showing that we can obtain infinitely many integral or
S-integral points in the absence of the local obstruction. The proof of Theorem 1 is constructive.

• Theorem 1 strongly suggests that the conjecture of Parshin and Zarhin does not admit a straightforward
generalization to the broader context of integral points on hyperbolic curves. We also remark that there
is a critical difference over K∞ between complete curves X of genus ≥ 2 and P1

− {0, 1,∞}. For the
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former, the group of K∞-points of the Jacobian is expected to be finitely generated by Mazur’s conjecture.
For the latter, the analogue of the Jacobian is the generalized Jacobian which is Gm × Gm , and its group
of K∞-points is (Gm × Gm)(K∞)= O×

∞
×O×

∞
, which is infinitely generated.

Variants of the proof of Theorem 1 give the following.

Theorem 2. Let ℓ= 2, 3 or 5. Let S = {υℓ} and write OS for the S-integers of Q∞,ℓ. Let

k ∈

{
{1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 24} if ℓ= 2, 3,
{1, 2, 4} if ℓ= 5.

Then (P1
− {0, k,∞})(OS) is infinite.

Let ζℓn denote a primitive ℓn-th root of 1, and write �n,ℓ = Q(ζℓn ), and �+

n,ℓ = Q(ζℓn + ζ−1
ℓn ). Let

�∞,ℓ =

∞⋃
n=1

�n,ℓ, �+

∞,ℓ =

∞⋃
n=1

�+

n,ℓ.

We note the inclusions �∞,ℓ ⊃�+

∞,ℓ ⊃ Q∞,ℓ. Nagell [1969, page 181] points out that 1+ ζℓn is a unit for
ℓ odd, and that therefore the equation ε+ δ = 1 has the solution ε = −ζℓn , δ = 1 + ζℓn in units belonging
to �n,ℓ. It follows straightforwardly from this (see the beginning of Section 3) that P1

−{0, 1,∞} has
infinitely many integral points defined over �∞,ℓ. Many of our constructions of S-integral points on
P1

− {0, 1,∞} apply in greater generality to the fields �∞,ℓ and �+

∞,ℓ, where the statements are in fact
much cleaner. For example, we prove the following theorem.

Theorem 3. Let ℓ be an odd prime. Then (P1
− {0, 1,∞})(O(�+

∞,ℓ)) is infinite.

Here O(�+

∞,ℓ) denotes the integers of �+

∞,ℓ.
Shafarevich’s conjecture asserts that for a number field K , a dimension n, a degree d , and a finite set of

places S, there are only finitely many isomorphism classes of polarized abelian varieties defined over K
of dimension n with degree-d polarization and with good reduction away from S. This conjecture was
proved by Shafarevich for elliptic curves (i.e., n = 1) and by Faltings [1983] in complete generality. If
we replace K by Q∞,ℓ then the Shafarevich conjecture no longer holds. For example, consider

Eε : εY 2
= X3

− X,

where ε ∈ O×
∞

. This elliptic curve has good reduction away from the primes above 2. Moreover, Eε,
Eδ are isomorphic over Q∞ if and only if ε/δ is a square in O×

∞
. As O×

∞
/(O×

∞
)2 is infinite, we deduce

that there are infinitely many isomorphism classes of elliptic curves over Q∞ with good reduction away
from the primes above 2. It is however natural to wonder if a sufficiently weakened version of the
Shafarevich conjecture continues to hold over Q∞. Indeed, the curves Eε in the above construction form
a single Q-isomorphism class. This it is natural to ask if, for suitable ℓ and finite set of primes S, does
the set of elliptic curves over Q∞ with good reduction outside S form infinitely many Q-isomorphism
classes?
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Theorem 4. Let ℓ = 2, 3, 5, or 7. Let S be given by (1) and let S′
= S ∪ {υ2} where υ2 is the unique

prime of Q∞,ℓ above 2. Then, there are infinitely many Q-isomorphism classes of elliptic curves defined
over Q∞,ℓ with good reduction away from S′ and with full 2-torsion in Q∞,ℓ. Moreover, these elliptic
curves form infinitely many distinct Q∞,ℓ-isogeny classes.

Remarks. • By [Freitas et al. 2020, Lemma 2.1], a rational prime p ̸= ℓ is inert in Q∞,ℓ if and only if
pℓ−1

̸≡ 1 (mod ℓ2). It follows from this that 2 is inert in Q∞,ℓ for ℓ= 3, 5, 7 and 11.

• Faltings’ proof [1983] of the Mordell conjecture can be considered to have three major steps. In the
first step, Faltings proves the Tate homomorphism conjecture. In the second step, Faltings derives the
Shafarevich conjecture from the Tate homomorphism conjecture, and in the final step Faltings uses the
“Parshin trick” to deduce the Mordell conjecture from the Shafarevich conjecture. Although Zarhin has
extended the Tate homomorphism conjecture to K∞, Theorem 4 suggests that there is no plausible strategy
for proving the conjecture of Parshin and Zarhin by mimicking Faltings’ proof of the Mordell conjecture.

It is natural to wonder if the isogeny classes appearing in the proof of Theorem 4 are finite or infinite.
Rather reassuringly they turn out to be finite.

Theorem 5. Let E be an elliptic curve over Q∞,ℓ without potential complex multiplication. Then the
Q∞,ℓ-isogeny class of E is finite.

The original version of Shafarevich’s conjecture [1963] (also proved by Faltings [1983, Korollar 1])
states that for a given number field K , a genus g and a finite set of places S, there are only finitely many
isomorphism classes of genus-g curves C/K with good reduction away from S. Again this statement
becomes false if we replace K by Q∞,ℓ for any prime ℓ.

Theorem 6. Let g ≥ 2 and let ℓ= 3, 5, 7, 11 or 13. There are infinitely many Q-isomorphism classes of
genus-g hyperelliptic curves over Q∞,ℓ with good reduction away from {υ2, υℓ}.

Theorem 7. Let ℓ ≥ 11 be an odd prime and let g =
⌊
ℓ−3

4

⌋
. There are infinitely many Q-isomorphism

classes of genus-g hyperelliptic curves over Q∞,ℓ with good reduction away from {υ2, υℓ}. Moreover, if

ℓ ∈ {11, 23, 59, 107, 167, 263, 347, 359},

then the Jacobians of these curves form infinitely many distinct Q∞,ℓ-isogeny classes.

The paper is structured as follows. In Section 2 we recall basic results on units and S-units of the
cyclotomic field Q(ζℓn ). In Sections 3–6 we employ identities between cyclotomic polynomials to give
constructive proofs of Theorems 1, 2 and 3. Section 7 gives a proof of Theorem 5, making use of a deep
theorem of Kato to control the Q∞,ℓ-points on certain modular curves. Section 8 uses the integral and
S-integral points on P1

−{0, 1,∞} furnished by Theorem 1 to construct infinite families of elliptic curves
over Q∞,ℓ for ℓ= 2, 3, 5, 7, with good reduction away from {υ2, υℓ}, which are used to give a proof of
Theorem 4. Sections 9 and 10 give proofs of Theorems 6 and 7, making use of the relation, due to Kummer,
between the class number of Q(ζℓn )+, and the index of cyclotomic units in the full group of units.



Curves with few bad primes over cyclotomic Zℓ-extensions 117

2. Units and S-units of Q(ζ )

Let K be a subfield of Q. We denote the integers of K (i.e., the integral closure of Z in K ) by O(K ).
Let p be a rational prime. By a prime of K above p we mean a map υ : K → Q ∪ {∞} satisfying the
following:

• υ(p)= 1, υ(0)= ∞.

• υ|K × : K ×
→ Q is a homomorphism.

• υ(1 + b)= 0 whenever υ(b) > 0.

Suppose K =
⋃

Kn where K0 ⊂ K1 ⊂ K2 ⊂ · · · is a tower of number fields (i.e., finite extensions of Q),
with K0 = Q. One sees that the primes of K above p are in one-to-one correspondence with sequences
{pn} where:

• pn is a prime ideal of O(Kn).

• pn+1 | pnO(Kn+1).

• p0 = pZ.

Indeed, from υ one obtains the corresponding sequence {pn} via the formula pn = {α ∈O(Kn) : υ(α)> 0}.
Given a sequence {pn}, we can recover the corresponding υ by letting

υ(α)= ordpn (α)/ ordpn (p)

whenever α ∈ K ×
n . Given a finite set of primes S of K , we define the S-integers of K to be the set

O(K , S) of all α ∈ K such that υ(α)≥ 0 for every prime υ /∈ S. We let O(K , S)× be the unit group of
O(K , S); this is precisely the set of α ∈ K × such that υ(α) = 0 for every prime υ /∈ S. If S = ∅ then
O(K , S)= O(K ) are the integers of K and O(K , S)× = O(K )× are the units of K .

Fix a rational prime ℓ. For a positive integer n, let ζℓn denote a primitive ℓn-th root of 1 which is
chosen so that

ζ ℓ
ℓn+1 = ζℓn .

Let �n,ℓ = Q(ζℓn ); this has degree ϕ(ℓn), where ϕ is Euler totient function. Let

�∞,ℓ =

∞⋃
n=1

�n,ℓ.

The prime ℓ is totally ramified in each �n,ℓ, and we denote by λn the unique prime ideal of O(�n,ℓ)

above ℓ. Thus
ℓ ·O(�n,ℓ)= λϕ(ℓ

n)
n . (2)

We write υℓ for the unique prime of �∞,ℓ above ℓ. For now fix n ≥ 1 if ℓ ̸= 2 and n ≥ 2 if ℓ= 2. We
recall that λn = (1 − ζℓn ) ·O(�n,ℓ). If ℓ∤s then (1 − ζ s

ℓn ) ·O(�n,ℓ)= λn; we can see this by applying the
automorphism ζℓn 7→ ζ s

ℓn to (2).
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Lemma 8. Let s be an integer and let t = ordℓ(s). Suppose t < n. Then

(1 − ζ s
ℓn ) ·O(�n,ℓ)= λℓ

t

n .

Moreover,

υℓ(1 − ζ s
ℓn )=

1
ℓn−1−t(ℓ− 1)

.

Proof. Write ζ = ζℓn . Note that ζ s is a primitive ℓn−t -th root of 1. Thus

(1 − ζ s) ·O(�n−t,ℓ)= λn−t .

As ℓ is totally ramified in �n,ℓ, we have

(1 − ζ s) ·O(�n,ℓ)= λ
[�n,ℓ:�n−t,ℓ]
n = λℓ

t

n .

For the final part of the lemma,

υℓ(1 − ζ s)=
ordλn (1 − ζ s)

ordλn (ℓ)
=

ℓt

ϕ(ℓn)
=

1
ℓn−1−t(ℓ− 1)

. □

Cyclotomic units and S-units. Write Vn for the subgroup of O(�n, {υℓ})
× generated by

{±ζℓn , 1 − ζ k
ℓn : 1 ≤ k < ℓn

}

and let
Cn = Vn ∩O(�n)

×.

The group Cn is called [Washington 1997, Chapter 8] the group of cyclotomic units in �n . We will often
find it more convenient to work with the group Vn .

Lemma 9. The abelian group Vn/⟨±ζℓn ⟩ is free with basis

{1 − ζ k
ℓn : 1 ≤ k < ℓn/2, ℓ∤k}. (3)

Proof. The torsion subgroup of Vn is the torsion subgroup of �×
n which is ⟨±ζℓn ⟩. Thus Vn/⟨±ζℓn ⟩ is

torsion free. By definition of Vn , the group Vn/⟨±ζℓn ⟩ is generated by 1 − ζ k
ℓn with ℓn ∤k. Write k = ℓr d

with ℓ ∤d; thus r < n. Suppose r ≥ 1. Then,

1 − ζ k
ℓn = 1 − ζ ℓ

r d
ℓn

=

ℓr
−1∏

i=0

(1 − ζ d
ℓnζ

i
ℓr ) using 1 − Xℓr

=

ℓr
−1∏

i=0

(1 − ζ i
ℓr X)

=

ℓ−1∏
i=0

(1 − ζ d+iℓn−r

ℓn ).

It follows that Vn/⟨±ζℓn ⟩ is generated by 1 − ζ k
ℓn with ℓ ∤k. If ℓn/2< k < ℓn and ℓ∤k then

1 − ζ k
ℓn = −ζ k

ℓn (1 − ζ ℓ
n
−k

ℓn ). (4)
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Thus (3) certainly generates Vn/⟨±ζ
n
ℓ ⟩. Note that (3) has cardinality ϕ(ℓn)/2 where ϕ is the Euler totient

function. It therefore suffices to show that Vn has rank ϕ(ℓn)/2. A well-known theorem [Washington
1997, Theorem 8.3] states that Cn has finite index in O(�n)

× and thus, by Dirichlet’s unit theorem, Cn has
rank −1 +ϕ(ℓn)/2. We note that Cn is the kernel of the surjective homomorphism Vn → Z, sending µ
to ordλn (µ). Thus Vn has rank ϕ(ℓn)/2 completing the proof. □

Lemma 10. Let n ≥ 2 if ℓ ̸= 2 and n ≥ 3 if ℓ= 2. Then Vn−1 ⊂ Vn . Moreover,∏
1≤k<ℓn/2

ℓ∤k

(1 − ζ k
ℓn )

ck ∈ ⟨±ζℓn , Vn−1⟩

if and only if ck = cm whenever k ≡ m (mod ℓn−1).

Proof. The group Vn−1 is generated, modulo roots of unity, by 1 − ζ d
ℓn−1 with ℓ ∤d. By the proof of

Lemma 9,

1 − ζ d
ℓn−1 = 1 − ζ ℓdℓn =

ℓ−1∏
i=0

(1 − ζ d+iℓn−1

ℓn ).

The lemma follows from Lemma 9. □

Given a ∈ Zℓ, it makes sense to reduce a modulo ℓn and therefore it makes sense to write ζ a
ℓn . We

write {a}n for the unique integer satisfying

0 ≤ {a}n < ℓ
n/2, {a}n ≡ ±a (mod ℓn).

Lemma 11. Let a1, . . . , ar ∈ Zℓ and c1, . . . , cr ∈ Z. Suppose:

(i) c1 ̸= 0.

(ii) a1 ̸≡ 0 (mod ℓ).

(iii) a1 ̸= ±a2,±a3, . . . ,±ar (mod ℓn).

Write
εn =

∏
1≤i≤r

(1 − ζ
ai
ℓn )

ci . (5)

Then, εn /∈ ⟨±ζℓn , Vn−1⟩ for all sufficiently large n.

Proof. If a j ≡ 0 (mod ℓ) then (1 − ζ
a j
ℓn ) ∈ Vn−1. We may therefore suppose a j ̸≡ 0 (mod ℓ) for all j .

Write
δn =

∏
1≤i≤r

(1 − ζ
{ai }n
ℓn )ci .

In view of the identity (4) it will be sufficient to show that δn /∈ ⟨±ζℓn , Vn−1⟩ for n sufficiently large. Also,
in view of Lemma 10, it is sufficient to show for sufficiently large n that {a1}n ̸≡ {a j }n (mod ℓn) for all
2 ≤ j ≤ n. This is equivalent to a1 ̸= ±a j for 2 ≤ j ≤ n which is hypothesis (iii). This completes the
proof. □
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The following corollary easily follows from Lemma 11.

Corollary 12. Let a1, . . . , ar ∈ Zℓ and c1, . . . , cr ∈ Z. Suppose:

(i) c1 ≡ 1 (mod 2).

(ii) a1 ̸≡ 0 (mod ℓ).

(iii) a1 ̸= ±a2,±a3, . . . ,±ar (mod ℓn).

Let εn be as in (5). Then, εn /∈ ⟨±ζℓn , Vn−1, V 2
n ⟩ for all sufficiently large n.

Units and S-units from cyclotomic polynomials. For m ≥ 1, let 8m(X) ∈ Z[X ] be the m-th cyclotomic
polynomial defined by

8m(X)=

∏
1≤i≤m
(i,m)=1

(X − ζ i
m).

These satisfy the identity [Washington 1997, Chapter 2]

Xm
− 1 =

∏
d | m

8d(X). (6)

It follows from the Möbius inversion formula that

8m(X)=

∏
d | m

(Xd
− 1)µ(m/d), (7)

where µ denotes the Möbius function.

Lemma 13. Let ℓ be a prime and n ≥ 1. Let m ≥ 1, and suppose ℓn ∤m:

(a) 8m(ζℓn ) ∈ Vn ⊆ O(�n,ℓ, S)×, where S = {υℓ}.

(b) If m ̸= ℓu for all u ≥ 0, then 8m(ζℓn ) ∈ Cn ⊆ O(�n,ℓ)
×.

Moreover,

υℓ(8ℓt (ζℓn ))=

{
1/(ℓn−1(ℓ− 1)), t = 0,
1/ℓn−t , 1 ≤ t ≤ n − 1.

Proof. Let t = ordℓ(m) < n. Observe that 8m(X) | (Xm
−1). Hence 8m(ζℓn ) ·O(�n,ℓ) divides (1− ζm

ℓn ) ·

O(�n,ℓ). By Lemma 8 we have (1 − ζm
ℓn ) ·O(�n,ℓ)= λℓ

t

n , giving (a).
For (b), write m = ℓt k where k> 1. Then8m(X) divides the polynomial (Xm

−1)/(Xℓt
−1). Therefore

8m(ζℓn ) ·O(�n,ℓ) divides
(1 − ζm

ℓn )

(1 − ζ ℓ
t

ℓn )
·O(�n,ℓ)=

λℓ
t

n

λℓ
t

n
= 1 ·O(�n,ℓ).

Thus 8m(ζℓn ) is a unit, giving (b).
The final part of the lemma follows from Lemma 8, and the formulae

8ℓt (X)=

{
X − 1, t = 0,
(Xℓt

− 1)/(Xℓt−1
− 1), t ≥ 1. □
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Lemma 14. Let n ≥ 2 if ℓ ̸= 2 and n ≥ 3 if ℓ= 2. Then Vn/⟨±ζℓn ⟩ is free with basis

{8m(ζℓn ) : 1 ≤ m < ℓn/2, ℓ∤m}.

Proof. This follows from Lemma 9 thanks to identities (6) and (7). □

3. The S-unit equation over Q(ζℓn)+

We continue with the notation of the previous section. In particular, let K be a subfield of Q and S be a finite
set of primes of K . Let k be a nonzero rational integer. We shall make frequent use of the correspondence
between elements of (P1

− {0, k,∞})(O(K , S)) and the set of solutions to the S-unit equation

ε+ δ = k, ε, δ ∈ O(K , S)×,

sending ε ∈ (P1
− {0, k,∞})(O(K , S)) to (ε, δ)= (ε, k − ε).

Now, as before, let ℓ be a rational prime and n is a positive integer. If ℓ= 2 suppose n ≥ 2. Let ζ = ζℓn ,
and write �+

n,ℓ = Q(ζ + 1/ζ ) for the index-2 totally real subfield of �n,ℓ. Let

�+

∞,ℓ =

∞⋃
n=1

�+

n,ℓ.

In this section, for suitable S, we produce solutions to S-unit equations over �+

∞,ℓ.
As before, 8m denotes the m-cyclotomic polynomial. It is convenient to record the first few 8m :

81 = X − 1, 82 = X + 1, 83 = X2
+ X + 1,

84 = X2
+ 1, 85 = X4

+ X3
+ X2

+ X + 1, 86 = X2
− X + 1,

87 = X6
+ X5

+ X4
+ X3

+ X2
+ X + 1, 88 = X4

+ 1,

89 = X6
+ X3

+ 1, 810 = X4
− X3

+ X2
− X + 1.

We shall call a polynomial F ∈ Z[X ] supercyclotomic if it is of the form Xm f1 f2 · · · fk where each
fi (X) is a cyclotomic polynomial. We know, thanks to Lemma 13, that if F is supercyclotomic and ℓ is
a prime, then F(ζℓn ) ∈ O(�n, {υℓ})

× for n sufficiently large. We wrote a short computer program that
lists all supercyclotomic polynomials of degree at most 20 and searches for ternary relations of the form
F − G = k H with F , G, H supercyclotomic, gcd(F,G, H)= 1 and k is a positive integer. Note that any
such relation F − G = k H gives points

εn = F(ζℓn )/H(ζℓn ) ∈ (P1
− {0, k,∞})(O(�n, {υℓ})),

for n sufficiently large. We found the following ternary relations between supercyclotomic polynomials:

82(X)2 −83(X)= X, (8)

82(X)2 −84(X)= 2X, (9)

82(X)2 −86(X)= 3X, (10)

82(X)2 −81(X)2 = 4X, (11)
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82(X)4 −810(X)= 5X83(X), (12)

82
2(X)83(X)−81(X)286(X)= 6X84(X), (13)

87(X)−81(X)6 = 7X86(X)2, (14)

82(X)4 −81(X)4 = 8X84(X), (15)

82(X)485(X)−81(X)4810(X)= 10X84(X)3. (16)

From the identities (6) and (7) one easily sees that F(X k) is supercyclotomic for any supercyclotomic
polynomial F and any positive integer k; thus each of the nine identities above in fact yields an infinite
family of identities. We pose the following open problems:

• Are there ternary linear relations between supercyclotomic polynomials that are outside these nine
families?

• Classify all ternary linear relations between supercyclotomic polynomials.

Lemma 15. Let c :�ℓ →�ℓ denote complex conjugation. Let n ≥ 1 and let ζ = ζℓn be an ℓn-th root of 1.
Let m ≥ 1 and suppose ℓn ∤m. Then

8m(ζ )
c

8m(ζ )
=

{
ζ−ϕ(m), m ≥ 2,
−ζ−1, m = 1.

Proof. Note that ζ c
= ζ−1. So

81(ζ )
c

81(ζ )
=
ζ−1

− 1
ζ − 1

= −ζ−1,
82(ζ )

c

82(ζ )
=
ζ−1

+ 1
ζ + 1

= ζ−1.

Let m ≥ 3. The polynomial 8m is monic of degree ϕ(m), and its roots are the primitive m-th roots of 1
which come in distinct pairs η, η−1. Thus the trailing coefficient is 1. It follows that Xϕ(m)8m(X−1) is
monic and has the same roots as 8m , therefore

8m(X)= Xϕ(m)8m(X−1).

Hence
8m(ζ )

c

8m(ζ )
=
8m(ζ

−1)

8m(ζ )
= ζ−ϕ(m). □

Lemma 16. Let ℓ be a prime. Let F ∈ Z[X ] be a product of powers of cyclotomic polynomials. Suppose
that the exponents of 81(X) and 82(X) in the factorization of F are both even. Then F has even degree
and, for suitably large n, we have

ζ− deg(F)/2 F(ζ ) ∈ O(�+

n,ℓ, S)×,

where ζ = ζℓn and S = {υℓ}.

Proof. We note that 8m has degree ϕ(m) which is even for m ≥ 3. It follows from this that F has even
degree. From Lemma 13 we have ζ− deg(F)/2 F(ζ )∈O(�n,ℓ, S)× for suitably large n. To prove the lemma
we need to show that ζ− deg(F)/2 F(ζ ) is fixed by complex conjugation. Let G be either 82

1, or 82
2, or 8m

with m ≥ 3. We claim that ζ− deg(G)/2G(ζ ) is fixed by complex conjugation. Since F is a product of
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such G, the lemma follows from our claim. The claim is trivially true for G = 82
1 and G = 82

2, and
follows immediately from Lemma 15 for G =8m with m ≥ 3. □

Lemma 17. Let S = {υℓ}. Let

k ∈ {1, 2, 3, 4, 5, 6, 7, 8, 10}.

Then (P1
− {0, k,∞})(O(�+

∞,ℓ, S)) is infinite.

Proof. The proof makes use of identities (8)–(16). Each identity has the form P − Q = k X R, where
P , Q, and R are supercyclotomic polynomials. Let n be sufficiently large so that ζℓn is not a root of
P Q R, and write

εn =
P(ζℓn )

ζℓn R(ζℓn )
, δn =

−Q(ζℓn )

ζℓn R(ζℓn )
.

From the identity P − Q = k X R we see that εn + δn = k. We note the following features of the triples
(P, Q, R) common to all the identities (8)–(16):

• In every case, P , Q, R are products of powers of cyclotomic polynomials where the exponents of
81 and 82 are both even.

• Write d = deg(P). Then deg(Q)= d and deg(R)= d − 2. Indeed as supercyclotomic polynomials
are monic, the relation P − Q = k X R forces P and Q to have the same degree as soon as k ≥ 2.

We may rewrite εn as

εn =
ζ

−d/2
ℓn P(ζℓn )

ζ
−(d−2)/2
ℓn R(ζℓn )

, δn =
−ζ

−d/2
ℓn Q(ζℓn )

ζ
−(d−2)/2
ℓn R(ζℓn )

.

By Lemma 16, we have εn , δn ∈O(�+

n,ℓ, S)× for n suitably large, and therefore εn is an O(�+
∞,, S)-point

on P1
−{0, k,∞}. To complete the proof we need to show that we obtain infinitely many distinct points

as we vary n. We will do this for k = 10. The other cases are similar. Note that

εn =
82(ζℓn )485(ζℓn )

ζℓn84(ζℓn )3
=

(1 − ζ 2
ℓn )

7(1 − ζ 5
ℓn )

ζℓn (1 − ζℓn )5(1 − ζ 4
ℓn )3

∈ Vn.

To show that we obtain infinitely many distinct εn it is enough to show that εn /∈ Vn−1 for n sufficiently
large. This follows by an easy application of Lemma 10; to illustrate this let ℓ= 5 and suppose εn ∈ Vn−1.
Note that 1 − ζ 5

5n ∈ Vn−1. It follows that

(1 − ζ5n )−5(1 − ζ 2
5n )

7(1 − ζ 4
5n )

−3
∈ ⟨±ζℓn , Vn−1⟩.

Now in the product on the left the exponent of 1 − ζ5n is −5 whereas the exponent of 1 − ζ 1+5n−1

5n is 0,
contradicting Lemma 10. The proof is similar for ℓ= 2, and for ℓ ̸= 2, 5. It follows that we have infinitely
many O(�+

∞,ℓ, S)-points on P1
− {0, 10,∞}. □

Proof of Theorem 2 for ℓ = 2 and 3. For ℓ = 2, 3, we have �+

∞,ℓ = Q∞,ℓ. Indeed, if ℓ = 2 then
Qn,2 = �+

n+2,2 and if ℓ = 3 then Qn,3 = �+

n+1,3. Therefore Theorem 2 with ℓ = 2 and 3 follows
immediately from Lemma 17 for k ∈ {1, 2, 3, 4, 5, 6, 7, 8, 10}.
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Also, if ℓ=2, then the infinitely many solutions ε+δ=6 yield infinitely many solutions for 2ε+2δ=12
and 4ε + 4δ = 24. And if ℓ = 3, then the infinitely many solutions ε + δ = 4 yield infinitely many
solutions 3ε+3δ= 12, and similarly the infinitely many solutions ε+δ= 8 yield infinitely many solutions
3ε+ 3δ = 24. This proves Theorem 2 for ℓ= 2, 3 and k ∈ {12, 24}. □

Proof of Theorem 1 for ℓ = 2. Theorem 1 for ℓ= 2 is simply a special case of Theorem 2. □

4. The unit equation over Q(ζℓn)+

For roots of unity α, β, we let

E(α, β)=
α2

+α−2

(αβ−1 +α−1β)(αβ +α−1β−1)
=

88(α)

84(αβ)84(α/β)
,

F(α, β)=
β2

+β−2

(αβ−1 +α−1β)(αβ +α−1β−1)
=

88(β)

84(αβ)84(β/α)
.

We easily check that

E(α, β)+ F(α, β)= 1. (17)

Lemma 18. Suppose ℓ is odd and n ≥ 1. Let ζ = ζℓn . Let i , j be integers satisfying i , j , i + j ,
i − j ̸≡ 0 (mod ℓn). Then E(ζ i , ζ j ), F(ζ i , ζ j ) ∈ O(�+

n,ℓ)
×, and satisfy the unit equation

ε+ δ = 1, ε, δ ∈ O(�+

n,ℓ)
×. (18)

Moreover,

υℓ(E(ζ i , ζ j )− F(ζ i , ζ j ))=
ℓordℓ(i+ j)

+ ℓordℓ(i− j)

ℓn−1(ℓ− 1)
. (19)

Proof. It is clear that E(ζ i , ζ j ), F(ζ i , ζ j ) are fixed by complex conjugation ζ 7→ ζ−1 and so belong
to �+

n,ℓ. By Lemma 13, E(ζ i , ζ j ) and F(ζ i , ζ j ) are units. It remains to check (19). We observe

E(ζ i , ζ j )− F(ζ i , ζ j )=
(ζ i− j

− ζ j−i )(ζ i+ j
− ζ−i− j )

(ζ i− j + ζ j−i )(ζ i+ j + ζ−i− j )
=
(ζ 2(i− j)

− 1)(ζ 2(i+ j)
− 1)

84(ζ i− j )84(ζ i+ j )
.

The denominator is a unit by Lemma 13. Now (19) follows from Lemma 8. □

Proof of Theorem 3. We deduce this from Lemma 18. Let us take for example i = 2 and j = 1. Let n ≥ 2
and let

εn = E(ζ 2
ℓn , ζℓn ), δn = F(ζ 2

ℓn , ζℓn ).

By Lemma 18, εn , δn ∈ O(�+

∞,ℓ)
× and satisfy εn + δn = 1. Thus εn ∈ (P1

− {0, 1,∞})(O(�+

∞,ℓ)).
Moreover,

υℓ(2εn − 1)= υℓ(εn − δn)=

{
2/(ℓn−1(ℓ− 1)), ℓ > 3,
2/3n−1, ℓ= 3,

by (19). Thus εn ̸= εm whenever n ̸= m. Hence (P1
− {0, 1,∞})(O(�+

∞,ℓ)) is infinite. □
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Remark. Theorem 3 applies only for ℓ odd; for ℓ= 2 it is easy to show that the statement is false. Indeed,
let ηn be the prime ideal of O(�+

n,2) above 2. Then O(�+

n,2)/ηn ∼= F2, and a solution to ε+ δ = 1 with ε,
δ ∈ O(�+

n,2)
× reduced modulo ηn gives 1 + 1 ≡ 1 (mod 2) which is impossible.

Proof of Theorem 1 for ℓ = 3. We recall that Q∞,3 = �+

∞,3. Therefore Theorem 1 for ℓ = 3 follows
immediately from Theorem 3. □

5. The S-unit equation over Q∞,5

The purpose of the is section is to prove Theorems 1 and 2 for ℓ= 5. These in fact follow immediately
from the following lemma.

Lemma 19. Let υ5 be the unique prime of Q∞,5 above 5, and write S = {υ5}. Then:

(i) (P1
− {0, k,∞})(O(Q∞,5, S)) is infinite for k = 1, 4.

(ii) (P1
− {0, 2,∞})(O(Q∞,5)) is infinite.

Proof. Let a ∈ Z×

5 be the element satisfying

a2
= −1, a ≡ 2 (mod 5);

such an element exists and is unique by Hensel’s lemma. Let σ :�∞,5 →�∞,5 be the field automorphism
satisfying

σ(ζ5n )= ζ a
5n

for n ≥ 1. Note that σ is an automorphism of order 4, and fixes a subfield of �∞,5 of index 4. This
subfield is precisely Q∞,5.

Let
F = (x1x2

2 + x3x2
4)(x

2
1 x4 + x2x2

3),

G = (x2
1 x2 + x2

3 x4)(x1x2
4 + x2

2 x3),

H = (x1 − x3)(x2 − x4)(x1x2 − x3x4)(x1x4 − x2x3).

Observe F , G, H are invariant under the 4-cycle (x1, x2, x3, x4). One can check that F − G = H . Let
n ≥ 2 and write ζ = ζ5n . Let

εn =
F(ζ, ζ a, ζ a2

, ζ a3
)

H(ζ, ζ a, ζ a2
, ζ a3

)
, δn = −

G(ζ, ζ a, ζ a2
, ζ a3

)

H(ζ, ζ a, ζ a2
, ζ a3

)
.

From the identity F − G = H we have εn + δn = 1. We shall show that εn , δn ∈ O(Q∞,5, S)×.
Since σ cyclically permutes ζ, ζ a, ζ−1, ζ−a we conclude that f (ζ, ζ a, ζ−1, ζ−a) ∈ Q∞,5 for f = F ,

G, H . Thus εn , δn ∈ Q∞,5. Moreover,

F = x2x3
3 x2

4 ·82(x1x2
2/x3x2

4)82(x2
1 x4/x2x2

3),

G = x2
2 x3

3 x4 ·82(x2
1 x2/x2

3 x4)82(x1x2
4/x2

2 x3),

H = x2x3
3 x2

4 ·81(x1/x3) ·81(x2/x4) ·81(x1x2/x3x4) ·81(x1x4/x2x3).
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Hence

εn =
82(ζ

2+4a)82(ζ
4−2a)

81(ζ 2)81(ζ 2a)81(ζ 2+2a)81(ζ 2−2a)

=
(1 − ζ 4+8a)(1 − ζ 8−4a)

(1 − ζ 2)(1 − ζ 2a)(1 − ζ 2+2a)(1 − ζ 2−2a)(1 − ζ 2+4a)(1 − ζ 4−2a)
.

and

δn =
−ζ 2a82(ζ

4+2a)82(ζ
2−4a)

81(ζ 2)81(ζ 2a)81(ζ 2+2a)81(ζ 2−2a)

=
−ζ 2a(1 − ζ 8+4a)(1 − ζ 4−8a)

(1 − ζ 2)(1 − ζ 2a)(1 − ζ 2+2a)(1 − ζ 2−2a)(1 − ζ 4+2a)(1 − ζ 2−4a)
.

We checked, using the fact that a ≡ 7 (mod 25), that the exponents of ζ in the above expressions for
εn and δn all have 5-adic valuation 0 or 1. It follows from this that εn , δn ∈ Vn ⊆ O(�n, S)× for n ≥ 2.
Hence εn , δn ∈ Q∞,5 ∩O(�n, S)× = O(Q∞,5, S)× for n ≥ 2. To complete the proof of the lemma for
k = 1 it is enough to show that εn ̸= εm for n>m, and for this it is enough to show that εn /∈ ⟨±ζ5n , Vn−1⟩

for n ≥ 2. Since a ≡ 7 (mod 25) we see that

4 + 8a ≡ 10, 8 − 4a ≡ 5, 2 + 4a ≡ 5, 4 − 2a ≡ 15 (mod 25).

Thus the factors
1 − ζ 4+8a, 1 − ζ 8−4a, 1 − ζ 2+4a, 1 − ζ 4−2a

all belong to Vn−1. Hence it is enough to show that

(1 − ζ 2)(1 − ζ 2a)(1 − ζ 2+2a)(1 − ζ 2−2a) (20)

does not belong to ⟨±ζ5n , Vn−1⟩. However, the exponents 2, 2a, 2 + 2a, 2 − 2a are respectively 2, 4, 1, 3
modulo 5, and hence certainly distinct modulo 5n−1. It follows from Lemma 10 that the product (20)
does not belong to ⟨±ζ5n , Vn−1⟩ completing the proof for k = 1.

The proof for k = 2 is similar, and is based on the identity F − G = 2H , where

F = (x2
1 + x1x3 + x2

3)(x
2
2 + x2x4 + x2

4)= x2
3 x2

4 ·83(x1/x3) ·83(x2/x4),

G = (x2
1 − x1x3 + x2

3)(x
2
2 − x2x4 + x2

4)= x2
3 x2

4 ·86(x1/x3) ·86(x2/x4),

H = (x1x4 + x2x3)(x1x2 + x3x4)= x2x2
3 x4 ·82(x1x4/x2x3) ·82(x1x2/x3x4),

and likewise the proof for k = 4 is based on the identity F − G = 4H , where

F = (x1 + x3)
2(x2 + x4)

2
= x2

3 x2
4 ·82(x1/x3)

282(x2/x4)
2,

G = (x1 − x3)
2(x2 − x4)

2
= x2

3 x2
4 ·81(x1/x3)

281(x2/x4)
2,

H = (x1x2 + x3x4)(x1x4 + x2x3)= x2x2
3 x4 ·82(x1x2/x3x4)82(x1x4/x2x3). □

Remark. It is appropriate to remark on how the identities in the above proof were found. Write

9m(X, Y )= Y ϕ(m)8m(X/Y )
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for the homogenization of the m-th cyclotomic polynomial. Now consider

f (x1, x2, x3, x4)=9m(u, v),

where u, v are monomials in variables x1, x2, x3, x4. Let ℓ be a prime. We see that evaluating any such f
at (ζ α, ζ β, ζ γ , ζ δ) gives an element of Vn (provided that it does not vanish). We considered products of
such f of total degree up to 20 and picked out ones that are invariant under the 4-cycle (x1, x2, x3, x4),
and searched for ternary relations between them. This yielded the identities used in the above proof.

Proof of Theorems 1 and 2 for ℓ= 5. Theorems 1 and 2 for ℓ= 5 follow immediately from Lemma 19. □

6. The S-unit equation over Q∞,7

Lemma 20. Let υ7 be the unique prime of Q∞,7 above 7, and write S = {υ7}. Then

(P1
− {0, 1,∞})(O(Q∞,7, S))

is infinite.

Proof. In view of the proof of Lemma 19, it would be natural to seek polynomials F , G, H in variables
x1, . . . , x6 satisfying the following properties:

• F ± G = H .

• F , G, H are invariant under the 6-cycle (x1, x2, . . . , x6).

• Each is a product of polynomials

f (x1, x2, . . . , x6)=9m(u, v),

with u, v monomials in x1, . . . , x6.

Unfortunately, an extensive search has failed to produce any such triple of polynomials. We therefore
need to proceed a little differently.

Let a ∈ Z7 be the element satisfying

a2
+ a + 1 = 0, a ≡ 2 (mod 7);

such an element exists and is unique by Hensel’s lemma. Let σ , c :�∞,7 →�∞,7 be the field automor-
phisms satisfying

σ(ζ7n )= ζ a
7n , c(ζ7n )= ζ−1

7n

for n ≥ 1. Then Q∞,7 is the field fixed by the subgroup of Gal(�∞,7/Q) generated by σ and c. We work
with polynomials in variables x1, x2, x3. Let

F = (x1x2
2 + x3

3)(x2x2
3 + x3

1)(x3x2
1 + x3

2),

G = (x1 − x2)(x2 − x3)(x3 − x1)(x1x2 − x2
3)(x2x3 − x2

1)(x3x1 − x2
2),

H = (x2
1 x2 + x3

3)(x
2
2 x3 + x3

1)(x
2
3 x1 + x3

2).
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These satisfy the identity F − G = H . Moreover, they are invariant under the 3-cycle (x1, x2, x3) and all
the factors are of the form9m(u, v) where m = 1 or 2, and where u, v are suitable monomials in x1, x2, x3.
Evaluating any of F , G, H at (ζ, ζ a, ζ a2

) yields an S-unit belonging to �⟨σ ⟩

n,7. Now we let

F ′
=

F(x2
1 , x2

2 , x2
3)

x6
1 x6

2 x6
3

, G ′
=

G(x2
1 , x2

2 , x2
3)

x6
1 x6

2 x6
3

, H ′
=

H(x2
1 , x2

2 , x2
3)

x6
1 x6

2 x6
3

.

Observe that the rational functions F ′, G ′, H ′ satisfy F ′
− G ′

= H ′ and are moreover invariant under the
3-cycle (x1, x2, x3). Moreover, F ′, G ′, H ′ evaluated at (ζ, ζ a, ζ a2

) yield S-units belonging to �⟨σ ⟩

n,7. We
need to check that these in fact belong to Qn−1,7 =�

⟨σ,c⟩
n,7 and so we need to check that these expressions

are invariant under c. This follows immediately on observing that F ′, G ′, H ′ may be rewritten as

F ′
=

(
x1x2

2

x3
3

+
x3

3

x1x2
2

)(
x2x2

3

x3
1

+
x3

1

x2x2
3

)(
x3x2

1

x3
2

+
x3

2

x3x2
1

)
,

G ′
=

(
x1

x2
−

x2

x1

)(
x2

x3
−

x3

x2

)(
x3

x1
−

x1

x3

)(
x1x2

x2
3

−
x2

3

x1x2

)(
x2x3

x2
1

−
x2

1

x2x3

)(
x3x1

x2
2

−
x2

2

x3x1

)
,

H ′
=

(
x2

1 x2

x3
3

+
x3

3

x2
1 x2

)(
x2

2 x3

x3
1

+
x3

1

x2
2 x3

)(
x2

3 x1

x3
2

+
x3

2

x3
3 x1

)
.

Thus F ′, G ′, H ′ evaluated at (ζ, ζ a, ζ a2
) yield elements of O(Q∞,7, S)×. We write

εn =
F ′(ζ, ζ a, ζ a2

)

H ′(ζ, ζ a, ζ a2
)
, δn = −

G ′(ζ, ζ a, ζ a2
)

H ′(ζ, ζ a, ζ a2
)
.

Then εn , δn belong to O(Q∞,7, S)× and satisfy εn + δn = 1. In fact it is straightforward to check that
εn /∈ ⟨±ζ7n , Vn−1⟩, from which it follows that εn ̸= εm for n > m. The details are similar to those of the
proof of Lemma 19 and we omit them. □

7. Isogeny classes of elliptic curves over Q∞,ℓ

The purpose of this section is to prove Theorem 5. Since isogenous elliptic curves share the same set of
bad primes, the corresponding theorem over number fields is an immediate consequence of Shafarevich’s
theorem. However, as we intend to show in the following section, Shafarevich’s theorem does not
generalize to elliptic curves over Q∞,ℓ. We shall instead rely on a theorem of Kato to control Q∞,ℓ-points
on certain modular Jacobians.

Our first lemma shows that there are only finitely many primes that can divide the degree of a cyclic
isogeny of E .

Lemma 21. Let ℓ be a prime and let E/Q∞,ℓ be an elliptic curve without potential complex multiplication.
Then there is a constant B, depending on E , such that for primes p ≥ B, the elliptic curve E has no
p-isogenies defined over Q∞,ℓ.

Proof. Let n be the least positive integer such that E admits a model defined over Qn,ℓ. By a famous
theorem of Serre [1972], there is a constant B, depending on E , such that for p ≥ B the mod p
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representation

ρE,p : Gal(Q/Qn,ℓ)→ GL2(Fp)

is surjective. We may suppose that B ≥ 5. Thus, for p ≥ B, the Galois group Gal(Qn,ℓ(E[p])/Qn,ℓ) is
isomorphic to GL2(Fp) which is nonsolvable. We will show that E has no p-isogeny defined over Q∞,ℓ.
Suppose otherwise. Then such an isogeny is in fact defined over Qm,ℓ for some m ≥ n. It follows that the
extension Qm,ℓ(E[p])/Qm,ℓ has Galois group isomorphic to a subgroup of a Borel subgroup of GL2(Fp),
with is solvable. As the extension Qm,ℓ/Qn,ℓ is cyclic, we conclude that Qm,ℓ(E[p])/Qn,ℓ is solvable.
However, this contains the nonsolvable subextension Qn,ℓ(E[p])/Qn,ℓ, giving a contradiction. □

We shall make use of the following theorem of Kato [2004, Theorem 14.4] building on work of
Rohrlich [1984].

Theorem 22 (Kato). Let ℓ be a prime. Let A be an abelian variety defined over Q and admitting a
surjective map J1(N )→ A for some N ≥ 1. Then A(Q∞,ℓ) is finitely generated.

Lemma 23. Let p, ℓ be primes. Let E be an elliptic curve defined over Q∞,ℓ without potential complex
multiplication. Then, for m sufficiently large, E has no pm-isogenies defined over Q∞,ℓ.

Proof. Let r be the least positive integer such that the modular curve X = X0(pr ) has genus at least 2, and
write J = J0(pr ) for the corresponding modular Jacobian. It follows from Kato’s theorem that J (Q∞,ℓ) is
finitely generated, and therefore that J (Q∞,ℓ)= J (Qn,ℓ) for some n ≥ 1. Consider the Abel–Jacobi map

X ↪→ J, P 7→ [P − ∞]

where ∞ ∈ X (Q) denotes the infinity cusp. It follows from this embedding that X (Q∞,ℓ) = X (Qn,ℓ).
By Faltings’ theorem, this set is finite.

Let k = #X (Q∞,ℓ) and let s = kr . To prove the lemma we in fact show that E has no cyclic isogenies
of degree ps defined over Q∞,ℓ. Suppose otherwise, and let ψ : E → E ′ be a cyclic isogeny of degree ps

defined over Q∞,ℓ. Then, we may factor ψ into a sequence of cyclic isogenies defined over Q∞,ℓ

E = E0
ψ1
−→ E1

ψ2
−→ E2 · · ·

ψk
−→ Ek = E ′,

where ψi is of degree pr. Note that Ei and E j are nonisomorphic over Q for i ̸= j ; indeed they
are related by a cyclic isogeny and E does not have potential complex multiplication. Thus the elliptic
curves E0, E1, . . . , Ek support distinct Q∞,ℓ-points on X = X0(pr ). This contradicts the fact that
#X (Q∞,ℓ)= k. □

Remark. A famous theorem of Serre [1968, Section 2.1] asserts that the p-adic Tate module of a non-CM
elliptic curve defined over a number field is irreducible. It is in fact possible to deduce Lemma 23 from
Serre’s theorem for ℓ ̸= p, but we have been unable to do this for ℓ= p.

Proof of Theorem 5. Let E ′ belong to the Q∞,ℓ-isogeny class of E . Let ψ : E → E ′ be an isogeny defined
over Q∞,ℓ. This has kernel of the form Z/a × Z/ab where a, b are positive integers, and so it can be
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factored into a composition
E → E/E[a] ∼= E → E ′,

where the final morphism is cyclic of degree b. Thus to prove the proposition, it is enough to show that
E has finitely many cyclic isogenies defined over Q∞,ℓ. The degree of any such isogeny is divisible by
primes p< B where B is as in Lemma 21. Also, for any p< B, we know the exponent of p in the degree
of a cyclic isogeny E → E ′ is bounded by Lemma 23. Thus there are finitely many cyclic isogenies of E
defined over Q∞,ℓ. □

8. From S-unit equations to elliptic curves

The aim of this section is to prove Theorem 4. We start by recalling a few facts about Legendre elliptic
curves; see Proposition III.1.7 of [Silverman 1986] and its proof. Let K be a field of characteristic ̸= 2
and let λ ∈ (P1

− {0, 1,∞})(K ). Associated to λ is the Legendre elliptic curve

Eλ : Y 2
= X (X − 1)(X − λ).

This model respectively has discriminant and j-invariant

1= 16λ2(1 − λ)2, j =
64(λ2

− λ+ 1)3

λ2(1 − λ)2
. (21)

Moreover, for λ, µ ∈ (P1
− {0, 1,∞})(K ), the Legendre elliptic curves Eλ and Eµ are isomorphic over

K (or over K ) if and only if

µ ∈

{
λ,

1
λ
, 1 − λ,

1
1−λ

,
λ

λ−1
,
λ−1
λ

}
.

Now let K be a number field and S a finite set of nonarchimedean places. We let S′ be the set of
nonarchimedean places which are either in S or above 2. We let λ ∈ (P1

− {0, 1,∞})(O(K , S)). Then λ,
1 − λ ∈ O(K , S)×. It follows from the expression for the discriminant that Eλ has good reduction away
from S′.

Proof of Theorem 4. Let ℓ= 2, 3, 5 or 7. Let S be given by (1) and let S′
= S ∪ {υ2} as in the statement

of Theorem 4. In proving Theorem 1 we constructed, for each positive integer n, elements εn , δn = 1−εn ,
belonging Q∞,ℓ ∩ Vn ⊆ O(Q∞,ℓ, S)×, and moreover verified, for n ≥ 2, that εn /∈ ⟨ζℓn , Vn−1⟩. We let

En : Y 2
= X (X − 1)(X − εn).

Then En is defined over Q∞,ℓ and has good reduction away from S′. We claim, for n > m, that En and
Em are not isomorphic, even over Q. To see this, suppose En and Em are isomorphic. Then εn equals one
of ε±1

m , δ±1
m , (−εmδm)

±1. This gives a contradiction as all of these belong to ⟨±ζℓn , Vn−1⟩. This proves
the claim.

It remains to show that the En form infinitely many isogeny classes over Q∞,ℓ. However, this
immediately follows from Theorem 5 and the following lemma. □
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Lemma 24. For n sufficiently large, En does not have potential complex multiplication.

Proof. Suppose En has potential complex multiplication by an order R in an imaginary quadratic field K .
Write j = j (En). We claim that Q( j)/Q is a cyclic Galois extension of order ℓn for some n. Note that
Q( j) is a subextension of Q∞,ℓ of finite degree, and is thus contained in Qm,ℓ for some m. Hence Q( j) is
the fixed field of some subgroup H (say) of G = Gal(Qm,ℓ/Q). As G is cyclic, the group H is a normal
subgroup, and therefore Q( j)/Q is a Galois extension. Moreover, Gal(Q( j)/Q)∼= G/H which is cyclic
of order ℓn for some n, proving our claim.

By standard CM theory [Shimura 1971, Theorem 5.7], we know that Gal(K ( j)/K ) ∼= Pic(R) and
[Q( j) : Q] = [K ( j) : K ]. Since in our case Q( j)/Q is Galois, Gal(Q( j)/Q)∼= Gal(K ( j)/K )∼= Pic(R).
However, Q( j)⊂ Q∞,ℓ is totally real. It follows [Shimura 1971, page 124] that Pic(R) is an elementary
abelian 2-group. However Q( j)/Q is cyclic of order ℓn . Thus, j ∈ Q if ℓ ̸= 2, and j ∈ Q1,2 = Q(

√
2)

if ℓ= 2. However, from the expression for j in (21) we know that [Q(εn) : Q( j)] ≤ 6. Thus εn belongs
to a subfield of Q∞,ℓ of degree at most 12. The lemma follows since, by Siegel’s theorem, the S-unit
equation has only finitely many solutions in any number field. □

9. Hyperelliptic curves over Q∞,ℓ with few bad primes

Let ℓ be an odd prime. Let g ≥ 2 be an integer satisfying{
g ≡ (ℓ− 3)/4 or − 1 (mod (ℓ− 1)/2) if ℓ≡ 3 (mod 4),
g ≡ −1 (mod (ℓ− 1)/4) if ℓ≡ 1 (mod 4).

(22)

Then there is a positive integer k such that

k ·

(
ℓ− 1

2

)
=

{
2g + 1 or 2g + 2 if ℓ≡ 3 (mod 4),
2g + 2 if ℓ≡ 1 (mod 4).

(23)

Let n ≥ 2 be a positive integer satisfying

ℓn−1
≥ k. (24)

In this section we construct a hyperelliptic Dn curve of genus g defined over Qn−1,ℓ with good reduction
away from the primes above 2, ℓ.

Write

Zn = {ζ ∈�n,ℓ : ζ ℓ
n
= 1, ζ ℓ

i
̸= 1 if i < n}

for the set of primitive ℓn-th roots of 1. Write

Z+

n = {ζ + ζ−1
: ζ ∈ Zn} ⊂�+

n,ℓ.

We note that any element of Z+
n generates �+

n,ℓ.

Lemma 25. #Z+

n =
1
2ℓ

n−1(ℓ− 1).
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Proof. We note that #Zn = ϕ(ℓn)= ℓn−1(ℓ− 1). Suppose α, β ∈ Zn . Then

(α+α−1)− (β +β−1)= α−1
· (1 −αβ) · (1 −αβ−1). (25)

Thus α+α−1
= β +β−1 if and only if α = β or α = β−1. The lemma follows. □

Write
Gn = Gal(�+

n,ℓ/Qn−1,ℓ), Hn = Gal(�+

n,ℓ/�
+

n−1,ℓ).

We note that these are both cyclic subgroups of Gal(�+

n,ℓ/Q) having orders

#Gn = (ℓ− 1)/2, #Hn = ℓ.

Lemma 26. Fix ζ ∈ Zn . Let

ηi = ζ 1+ℓn−1(i−1)
+ ζ−1−ℓn−1(i−1), 1 ≤ i ≤ ℓ. (26)

Then η1, . . . , ηℓ ∈ Z+
n form a single orbit under the action of Hn , but have pairwise disjoint orbits under

the action of Gn .

Proof. Let κ ∈ Gal(�n,ℓ/Q) be given by κ(ζ ) = ζ 1+ℓn−1
. We note that κ has order ℓ and fixes �n−1,ℓ.

We denote the restriction of κ to �+

n,ℓ by τ ; this is a cyclic generator of Hn . Note that

ηi = τ i−1(ζ + ζ−1), 1 ≤ i ≤ ℓ.

Let σ1, σ2 ∈ Gn . Let 1 ≤ i < j ≤ ℓ and suppose σ1(ηi ) = σ2(η j ). Thus σ1τ
i−1(η1) = σ2τ

j−1(η1),
so τ 1− jσ−1

2 σ1τ
i−1 fixes η1. As η1 generates �+

n,ℓ, we have τ 1− jσ−1
2 σ1τ

i−1
= 1 is the identity element

in Gal(�+

n,ℓ/Q). However, Gal(�+

n,ℓ/Q) is abelian, so

τ i− j
= σ−1

1 σ2 ∈ Gn ∩ Hn = {1}.

Since 1 ≤ i ≤ j ≤ ℓ and τ has order ℓ we have i = j . □

The Galois group Gn acts faithfully on Z+
n . This action has ℓn−1 orbits. Assumption (24) ensures that

the number of orbits is at least k. If k > ℓ, then we extend the list η1, . . . , ηℓ ∈ Z+
n to η1, . . . , ηk ∈ Z+

n ,
so that the ηi continue to have disjoint orbits under the action of Gn; if ℓ = 3 the choice of η4 will be
important later, and we choose η4 = ζ 2

+ ζ−2. Consider the curve

Dn : Y 2
=

k∏
j=1

∏
σ∈Gn

(X − ησj ). (27)

Lemma 27. The curve Dn is hyperelliptic of genus g, is defined over Qn−1,ℓ, and has good reduction
away from the primes above 2 and ℓ.

Proof. Our assumption on the orbits ensures that the polynomial on the right hand-side of (27) is separable.
By (23), the degree of the polynomial is either 2g+1 or 2g+2. Thus Dn is a hyperelliptic curve of genus g.
A priori, Dn is defined over �+

n,ℓ. However, the roots of the hyperelliptic polynomial are permuted by
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the action of Gn = Gal(�+

n,ℓ/Qn−1,ℓ) and so the polynomial belongs to Qn−1,ℓ[X ]. Hence Dn is defined
over Qn−1,ℓ.

Let u1, . . . , ud be the roots of the hyperelliptic polynomial. Then the discriminant of hyperelliptic
polynomial is ∏

1≤i< j≤d

(ui − u j )
2.

However, ui , u j are distinct elements of Z+
n . Thus there are α, β ∈ Zn with α ̸= β, β−1 such that

ui = α+α−1, u j = β +β−1. From the identity (25),

ui − u j = α−1(1 −αβ−1)(1 −αβ).

Since αβ and αβ−1 are nontrivial ℓ-power roots of 1, we see that ui − u j is a {υℓ}-unit, and hence the
discriminant of the hyperelliptic polynomial of Dn is a {υℓ}-unit. □

Given four pairwise distinct elements z1, z2, z3, z4 of a field K , we shall employ the notation
(z1, z2; z3, z4) to denote the cross ratio

(z1, z2; z3, z4)=
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
.

We extend the cross ratio to four distinct elements z1, z2, z3, z4 of P1(K ) in the usual way. We let GL2(K )
act on P1(K ) via fractional linear transformations

γ (z)=
az + b
cz + d

, γ =

(
a b
c d

)
.

It is well-known and easy to check that these fractional linear transformations leave the cross ratio
unchanged:

(γ (z1), γ (z2); γ (z3), γ (z4))= (z1, z2; z3, z4).

Lemma 28. Let K be an algebraically closed field of characteristic 0. Let

D : Y 2
=

d∏
i=1

(X − ai ), D′
: Y 2

=

d∏
i=1

(X − bi )

be genus-g curves defined over K where the polynomials on the right are separable. If D, D′ are
isomorphic then there is some permutation µ ∈ Sd such that for all quadruples of pairwise distinct indices
1 ≤ r, s, t, u ≤ d

(ar , as; at , au)= (bµ(r), bµ(s); bµ(t), bµ(u)).

Proof. We shall make use of the following standard description (e.g., [Baker et al. 2005, Proposition 6.11])
of isomorphisms of hyperelliptic curves: every isomorphism π : D → D′ is of the form

π(X, Y )=

(
aX + b
cX + d

,
eY

(cX + d)g+1

)
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for some

γ =

(
a b
c d

)
∈ GL2(K ), e ∈ K ×.

Observe that π(ai , 0) has Y -coordinate 0; thus

{γ (a1), . . . , γ (ad)} = {b1, . . . , bd}.

Hence there is a permutation µ ∈ Sd such that γ (ai )= bµ(i). The lemma follows from the invariance of
the cross ratio under the action of GL2(K ). □

Lemma 29. Let ℓ≥ 11 be prime. Then there is some a ∈ Z×

ℓ of order ℓ− 1 such that

1+a2
̸≡0,±(1−a2), ±(a+a3), ±(a−a3),±(1+a3), ±(1−a3), ±(a+a2), ±(a−a2) (mod ℓ). (28)

Proof. Making use of the fact that a polynomial of degree n has at most n roots, we see that the number
of a ∈ Fℓ that do not satisfy (28) is (very crudely) bounded by 37. An element a ∈ Z×

ℓ of order ℓ−1 is the
unique Hensel lift of an element a ∈ F×

ℓ of order ℓ− 1. There are precisely ϕ(ℓ− 1) elements of order
ℓ− 1 in F×

ℓ . A theorem of Shapiro [1943, page 23], asserts that ϕ(n) > nlog 2/ log 3 for n ≥ 30. We note
that if ℓ≥ 317 then ϕ(ℓ− 1)≥ 316log 2/ log 3

≈ 37.8, and so the lemma holds for ℓ≥ 317. For the range
11 ≤ ℓ≤ 317 we checked the lemma by brute force computer enumeration. □

Lemma 30. Let n > m be sufficiently large. Then Dn and Dm are nonisomorphic, even over Q.

Proof. Note that all roots of the hyperelliptic polynomial for Dn in (27) belong to Z+
n . It follows

from (25) that the cross ratio of any four of them belongs to Vn . Suppose Dn and Dm are isomorphic.
Let u1, u2, u3, u4 be any distinct roots of the hyperelliptic polynomial for Dn given in (27). Then, by
Lemma 28,

(u1, u2; u3, u4) ∈ Vm ⊆ Vn−1.

We shall obtain a contradiction through a careful choice of the four roots u1, . . . , u4.
We first suppose that k ≥ 2 and ℓ≥ 5. Let ζ = ζℓn and b = 1+ℓn−1. Then, by Lemma 26, η1 = ζ +ζ−1

and η2 = ζ b
+ ζ−b. Let a ∈ Z×

ℓ have order ℓ− 1. Let κ ∈ Gal(�n,ℓ/Qn−1,ℓ) be given by κ(ζ ) = ζ a .
Then κ is a cyclic generator for Gal(�n,ℓ/Qn−1,ℓ). We shall denote the restriction of κ to �+

n,ℓ by µ.
Then µ is a cyclic generator for Gn = Gal(�+

n,ℓ/Qn−1,ℓ) having order (ℓ− 1)/2. We shall take

u1 = η1 = ζ + ζ−1, u2 = µ(η1)= ζ a
+ ζ−a, u3 = η2 = ζ b

+ ζ−b, u4 = µ(η2)= ζ ab
+ ζ−ab.

We compute the cross ratio with the help of identity (25), finding

(u1, u2; u3, u4)=
(1 − ζ 1+b)(1 − ζ 1−b)(1 − ζ a+ab)(1 − ζ a−ab)

(1 − ζ 1+ab)(1 − ζ 1−ab)(1 − ζ a+b)(1 − ζ a−b)
.

As b ≡ 1 (mod ℓ), and clearly a ̸≡ ±1 (mod ℓ), it is easy to check that 1 + b is the only one out of the
eight exponents of ζ above that is ±2 (mod ℓ). Therefore by Lemma 11, the cross ratio is not an element
of ⟨±ζℓn , Vn−1⟩ for n sufficiently large, giving a contradiction for the case k ≥ 2 and ℓ≥ 5.
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Next we suppose that k = 1. It follows from (23) that ℓ≥ 11. We choose a ∈ Z×

ℓ as in Lemma 29, and,
as above, take µ to be the corresponding generator of Gn of order (ℓ− 1)/2 ≥ 5. We take

ui = µi−1(η1)= ζ ai−1
+ ζ−ai−1

, 1 ≤ i ≤ 4;

observe that these are four roots of the hyperelliptic polynomial of Dn given in (27). The assumption that
ℓ≥ 11 ensures that a has order ≥ 10 and so u1, u2, u3, u4 are indeed pairwise distinct. We compute the
cross ratio with the help of identity (25), finding

(u1, u2; u3, u4)=
(1 − ζ 1+a2

)(1 − ζ 1−a2
)(1 − ζ a+a3

)(1 − ζ a−a3
)

(1 − ζ 1+a3
)(1 − ζ 1−a3

)(1 − ζ a+a2
)(1 − ζ a−a2

)
.

Using Lemma 10 and our choice of a given by Lemma 29 we conclude that this cross ratio does not
belong to ⟨±ζℓn , Vn−1⟩ for n sufficiently large. This gives a contradiction for the case k = 1.

Finally, we consider ℓ = 3. It follows from (23) that k ≥ 5. Recall our choices of η1, η2, η3 in
Lemma 26, and our choice of η4 = ζ 2

+ζ−2 in the particular case ℓ= 3. We choose the four roots ui = ηi

for i = 1, . . . , 4, and obtain

(u1, u2; u3, u4)=
(1 − ζ 2+2×3n−1

)(1 − ζ−2×3n−1
)(1 − ζ 3+3n−1

)(1 − ζ−1+3n−1
)

(1 − ζ 3)(1 − ζ−1)(1 − ζ 2)(1 − ζ−3n−1
)

.

As before, with the help of Lemma 11, we easily verify that the cross ratio is not an element of ⟨±ζℓn , Vn−1⟩

for n sufficiently large. This completes the proof. □

Proof of Theorem 6. If ℓ= 3 or 5 then (22) does not impose any restriction on the genus. Therefore we
obtain, as above, for every genus g ≥ 2, infinitely many Q-isomorphism classes of genus-g hyperelliptic
curves, defined over Q∞,ℓ, with good reduction away from {υ2, υℓ}.

It remains to deal with ℓ= 7, 11 and 13. Here, (22) imposes the restriction

g ≡


1 or 2 mod 3 if ℓ= 7,
2 or 4 mod 5 if ℓ= 11,
2 mod 3 if ℓ= 13.

We very briefly sketch how to remove the restriction. Instead of Dn defined as in (27), we consider the
more general

Dn : Y 2
= h(X) ·

k∏
j=1

∏
σ∈Gn

(X − ησj )

where

• h is a monic divisor of X (X − 1)(X + 1);

• k and h are chosen to obtain the desired genus;

• η j ∈ Z+
n are chosen as before.
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These Dn are clearly defined over Qn−1,ℓ. To check that they have good reduction away from S′
={υ2, υℓ},

we need to verify that the difference of any two distinct roots u, v of the hyperelliptic polynomial belongs
to O(�n, S′)×. The proof of Lemma 27 shows this if u, v ∈ Z+

n . For the remaining possible differences
it is enough to note that

α+α−1
= α−184(α), α+α−1

+ 1 = α−183(α), α+α−1
− 1 = α−186(α),

which are all units by Lemma 13. We omit the remaining details. □

10. Isogeny classes of hyperelliptic curves over Q∞,ℓ

A beautiful theorem of Kummer asserts that the index of the cyclotomic units Cn in the full unit
group O(�n,ℓ)

× equals the class number h+
n of �+

n,ℓ. In this section, with the help of Kummer’s
theorem, we prove for certain primes ℓ the existence of infinitely many isogeny classes of hyperelliptic
Jacobians over Q∞,ℓ with good reduction away from ℓ. We first prove a few elementary lemmas.

Lemma 31. Let K be a field of characteristic not 2, and let L = K (
√
α1, . . . ,

√
αr ), where αi ∈ K ×.

Then for any x ∈ K such that
√

x ∈ L , we have

x = α
e1
1 · · ·αer

r q2

for some integers ei ∈ Z and q ∈ K .

Proof. Let M be a field of characteristic not 2, and let d ∈ M be a nonsquare. Let x ∈ M and suppose
√

x ∈ M(
√

d). Then
√

x = y + z
√

d for some y, z ∈ M . Squaring, we deduce that yz = 0. Thus x = y2

or x = dz2.
We now prove the lemma by induction on r . The above establishes the case r = 1. Let r ≥ 2, and let

x ∈ K satisfy
√

x ∈ L . Letting M = K (
√
α1, . . . ,

√
αr−1) we see that x ∈ M and

√
x ∈ M(

√
αr ). Thus,

by the above,
√

x ∈ M or
√

xαr ∈ M . In other words,√
x ·αe

r ∈ M = K (
√
α1, . . . ,

√
αr−1)

for some e ∈ {0, 1}. By the inductive hypothesis, there are e1, . . . , er−1 ∈ Z and q ∈ K such that

x ·αe
r = α

e1
1 · · ·α

er−1
r−1 q2.

The proof is complete on taking er = −e. □

Lemma 32. Let ℓ be an odd prime. Let q ∈�∞,ℓ satisfy q2
∈ Vn . If the class number h+

n of �+

n,ℓ is odd,
then q ∈ Vn .

Proof. Let q ∈ �∞,ℓ satisfy q2
∈ Vn ⊂ �n,ℓ. As the extension �∞,ℓ/�n,ℓ is pro-ℓ, we conclude

that q ∈ �n,ℓ. However, Vn ⊆ O(�n,ℓ, {υℓ})
×, where, as usual, υℓ denotes the prime above ℓ. Thus

q ∈ O(�n,ℓ, {υℓ})
×. We claim that

[O(�n,ℓ, {υℓ})
×

: Vn] = h+

n .



Curves with few bad primes over cyclotomic Zℓ-extensions 137

The lemma follows immediately from the claim. To prove the claim, consider the commutative diagram
with exact rows

1 Cn Vn Z 1

1 O(�n,ℓ)
× O(�n,ℓ, {υℓ})

× Z 1

κ

κ

where κ(α)= ord(1−ζ )(α). By the snake lemma,

O(�n,ℓ, {υℓ})
×/Vn ∼= O(�n,ℓ)

×/Cn.

Write C+
n = Cn ∩�+

n,ℓ. The aforementioned theorem of Kummer asserts that

[O(�n,ℓ)
×

: Cn] = [O(�+

n,ℓ)
×

: C+

n ] = h+

n ;

see, for example, [Washington 1997, Exercise 8.5] for the first equality, and [loc. cit., Theorem 8.2] for
the second. This proves the claim. □

Lemma 33. Let K be a field of characteristic ̸= 2. Let f ∈ K [X ] be a monic separable polynomial of
odd degree d ≥ 5. Write f =

∏d
i=1(X − αi ) with αi ∈ K . Let C/K be a hyperelliptic curve given by

Y 2
= f (X) with Jacobian J . Then

K (J [2])= K (α1, . . . , αd), K (J [4])= K (J [2])({
√
αi −α j }1≤i, j≤d).

Proof. Write ∞ for the point at infinity on the given model for C . The expression given for K (J [2])

is well-known; it may be seen by observing (see, for example [Schaefer 1995]) that the classes of the
classes of degree 0 divisors [(αi , 0)− ∞] with i = 1, . . . , d generate J [2].

Yelton [2015, Theorem 1.2.2] gives a high-powered proof of the given expression for K (J [4]). For
the convenience of the reader we give a more elementary argument. Let L = K (J [2]). The theory of
2-descent on hyperelliptic Jacobians furnishes, for any field M ⊇ L , an injective homomorphism [Schaefer
1995; Stoll 2001]

J (M)/2J (M) ↪→
d∏

i=1

M∗/(M∗)2

known as the X −2-map. This in particular sends the 2-torsion point [(αi , 0)− ∞] to(
(αi −α1), . . . , (αi −αi−1),

∏
j ̸=i

(αi −α j ), (αi −αi+1), . . . , (αi −αd)

)
.

The field K (J [4]) is the smallest extension of M of L such that all the images of the 2-torsion generators
[(αi , 0)− ∞] are trivial in

∏d
i=1 M∗/(M∗)2. This is plainly the extension

M = L({
√
αi −α j }1≤i, j≤d). □
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Lemma 34. Let p be a prime for which 2 is a primitive root (i.e., 2 is a generator for F×
p ). Let G be a

cyclic group of order p, and let V be an F2[G]-module with dimF2(V )= p − 1. Suppose that the action
of G on V − {0} is free. Then V is irreducible.

Proof. Let W be a F2[G]-submodule of V , and write d = dimF2(W ). Since the action of G on V −{0}

is free, the set W − {0} consists of G-orbits, all having size p. However, #(W − {0}) = 2d
− 1, and

so p | (2d
− 1). By assumption, 2 is a primitive root modulo p, therefore (p − 1) | d. Since W is an

F2-subspace of V , which has dimension p − 1, we see that W = 0 or W = V . □

Lemma 35. Let ℓ= 2p + 1, where ℓ and p are odd primes. Suppose 2 is a primitive root modulo p. Let
g = (ℓ− 3)/4. Let n ≥ 2 and let Dn/Qn−1,ℓ be the hyperelliptic curve defined in Section 9. Let A/Q∞,ℓ

be an abelian variety and let φ : J (Dn)→ A be an isogeny defined over Q∞,ℓ. Then φ = 2rφodd where
φodd : J (Dn)→ A is an isogeny of odd degree.

We remark if ℓ and p are primes with ℓ= 2p + 1 then p is called a Sophie Germain prime, and ℓ is
called as safe prime.

Proof of Lemma 35. Note that, in the notation of Section 9, k = 1, and the hyperelliptic polynomial for Dn

has odd degree 2g+1= (ℓ−1)/2= p, and consists of a single orbit under action of Gn =Gal(�+
n /Qn−1,ℓ):

Dn : y2
=

∏
σ∈Gn

(X − ησ1 ), η1 = ζℓn + ζ−1
ℓn .

In particular, the hyperelliptic polynomial is irreducible over Q∞,ℓ. It follows from this (e.g., [Stoll 2001,
Lemma 4.3]) that J (Q∞,ℓ)[2] = 0, where J denotes J (Dn) for convenience. We note, by Lemma 33,
that Q∞,ℓ(J [2])= Q∞,ℓ(η1)=�+

∞,ℓ. We consider the action of G∞ := Gal(�+

∞,ℓ/Q∞,ℓ) on J [2]. The
group G∞ is cyclic of order (ℓ− 1)/2 = p. Any element fixed by this action belongs to J (Q∞,ℓ)[2] = 0.
Thus G∞ acts freely on V − {0}, where V := J [2].

Now let φ : J → A be an isogeny defined over Q∞,ℓ. Then W := ker(φ)∩ J [2] is a subgroup of V
stable under the action of G∞, and therefore an F2[G∞]-submodule of the F2[G∞]-module V . Observe
that dimF2(V ) = 2g = p − 1. By hypothesis, 2 is a primitive root modulo p. We apply Lemma 34 to
deduce that W = 0 or W = V . Therefore, either φ already has odd degree, or J [2] ⊆ ker(φ). In the latter
case, observe that φ = 2φ′ where φ′

: J → A is an isogeny defined over Q∞,ℓ of degree deg(φ)/22g.
As φ has finite degree, by repeating the argument we eventually arrive at φ = 2rφodd. □

Lemma 36. Let ℓ = 2p + 1, where ℓ and p are odd primes. Suppose 2 is a primitive root modulo p.
Suppose that the class number h+

n of �+

n,ℓ is odd for all n. Let g = (ℓ− 3)/4. For n ≥ 2 let Dn/Qn−1,ℓ be
the genus-g hyperelliptic curve defined in Section 9. Let n > m be sufficiently large. Then there are no
isogenies J (Dn)→ J (Dm) defined over Q∞,ℓ.

The assumption that h+
n is odd for all n may seem at first sight very restrictive. However, it is conjectured

[Buhler et al. 2004] that h+

n+1 = h+
n for all but finitely many pairs (ℓ, n). Moreover, Washington [1978]

has shown that ordp(hn) remains bounded as n → ∞, for any fixed prime p.
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Proof of Lemma 36. Write Jn for J (Dn). Suppose there is an isogeny φ : Jn → Jm defined over Q∞,ℓ.
By Lemma 35 we may suppose that φ has odd degree, and so ker(φ) ∩ Jn[4] = 0. Thus φ restricted
to Jn[4] induces an isomorphism of Gal(Q/Q∞,ℓ)-modules Jn[4] ∼= Jm[4]. In particular, Q∞,ℓ(Jn[4])=

Q∞,ℓ(Jm[4]). As in the proof of Lemma 35 we have Q∞,ℓ(Jn[2]) = Q∞,ℓ(Jm[2]) = �+

∞,ℓ. Thus, by
Lemma 33, the equality Q∞,ℓ(Jn[4])= Q∞,ℓ(Jm[4]) may be rewritten as

�+

∞,ℓ({
√
ϑn,i −ϑn, j }1≤i, j≤(ℓ−1)/2)=�+

∞,ℓ({
√
ϑm,i −ϑm, j }1≤i, j≤(ℓ−1)/2),

where ϑr,i := µi−1
r (ζℓr + ζ−1

ℓr ) where µr is a cyclic generator of Gr . This, in particular, implies that√
ϑn,2 −ϑn,1 ∈�+

∞,ℓ({
√
ϑm,i −ϑm, j }1≤i, j≤(ℓ−1)/2).

We apply Lemma 31 to obtain

ϑn,2 −ϑn,1 = ±

∏
1≤i< j≤(ℓ−1)/2

(ϑm,i −ϑm, j )
ei, j · q2

for some integers ei, j ∈ Z and q ∈ �+

∞,ℓ. By Lemma 32, we have q ∈ Vn . The generator µn of Gn is
given by µn(ζℓn + ζ−1

ℓn )= ζ a
ℓn + ζ−a

ℓn where a ∈ Z×

ℓ has order (ℓ− 1). Note

ϑn,2 −ϑn,1 = ζ a
ℓn + ζ−a

ℓn − ζℓn − ζ−1
ℓn = ζ−a

ℓn (1 − ζ a+1
ℓn )(1 − ζ a−1

ℓn ).

Thus,
(1 − ζ a+1

ℓn )(1 − ζ a−1
ℓn ) ∈ ⟨±ζℓn , Vm, V 2

n ⟩.

However, (a + 1) ̸≡ ±(a − 1) (mod ℓ). Now Corollary 12 gives a contradiction. □

Proof of Theorem 7. Let ℓ≥ 11. Let

g =

⌊
ℓ−3

4

⌋
=

{
(ℓ− 3)/4, ℓ≡ 3 (mod 4),
(ℓ− 5)/4, ℓ≡ 1 (mod 4).

Thus g satisfies (22). Let Dn be as in Section 9. By Lemma 27, the hyperelliptic curve Dn/Qn−1,ℓ has
genus g, and good reduction away from {υ2, υℓ}. Moreover, by Lemma 30, we have Dn and Dm are
nonisomorphic, even over Q, for n > m sufficiently large.

Now suppose

(i) ℓ= 2p + 1 where p is also an odd prime;

(ii) 2 as a primitive root modulo p.

It then follows from Lemma 36 that J (Dn) and J (Dm) are nonisogenous over Q∞,ℓ provided h+
n is odd

for all n, where h+
n denotes the class number of �+

n,ℓ. Write hn for the class number of �n,ℓ. It is known
thanks to the work of Estes [1989] that h1 is odd for all primes ℓ satisfying (i) and (ii); a simplified proof
of this result is given Stevenhagen [1994, Corollary 2.3]. Moreover, Ichimura and Nakajima [2012] show,
for primes ℓ ≤ 509, that the ratio hn/h1 is odd for all n. The primes 11 ≤ ℓ ≤ 509 satisfying both (i)
and (ii) are 11, 23, 59, 107, 167, 263, 347, 359. Thus for these primes hn is odd for all n. As h+

n | hn (see
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for example [Washington 1997, Theorem 4.10]), we know for these primes that h+
n is odd for all n. This

completes the proof. □

Remarks. • A key step in our proof of Theorem 7 is showing that J (Dn)[2] is irreducible as an F2[G∞]-
module whenever ℓ = 2p + 1 where p is a prime having 2 as a primitive root. It can be shown for all
other ℓ that the F2[G∞]-module J (Dn)[2] is in fact reducible.

• Another key step is the argument in the proof of Lemma 36 showing that for n > m sufficiently large,
the Jacobians J (Dn) and J (Dm) are not related via odd degree isogenies defined over Q∞,ℓ. This step
can be made to work, with very minor modifications to the argument, for all ℓ≥ 11, and all choices of
genus g given in (22).
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Vanishing results for the coherent cohomology
of automorphic vector bundles over the Siegel variety

in positive characteristic
Thibault Alexandre

We prove vanishing results for the coherent cohomology of the good reduction modulo p of the Siegel
modular variety with coefficients in some automorphic bundles. We show that for an automorphic bundle
with highest weight λ near the walls of the antidominant Weyl chamber, there is an integer e ≥ 0 such
that the cohomology is concentrated in degrees [0, e]. The accessible weights with our method are
not necessarily regular and not necessarily p-small. Since our method is technical, we also provide an
algorithm written in SageMath that computes explicitly the vanishing results.
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1. Introduction

1.1. History and motivation. The cohomology of automorphic vector bundles on Shimura varieties has
played important roles in the study of arithmetic properties of automorphic representations as explained
in [Harris 1985]. Let p be a prime number and N ≥ 3 be an integer such that p ∤N . Consider the
Siegel modular variety Sh of level N and genus g ≥ 1 over Fp. It is defined as the fine moduli space of
abelian schemes of dimension g over Fp with a principal polarization and a basis of their N -torsion. This
scheme is smooth and not proper over Fp but we can consider a smooth toroidal compactification Shtor as
defined in [Faltings and Chai 1990]. This article is concerned with the coherent cohomology of Shtor.
We consider automorphic vector bundles that are defined as the contracted product of the Hodge vector
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bundle � with an algebraic representation of GLg. Over a field of characteristic p > 0, there are two
important indecomposable (but not necessarily irreducible) algebraic representations of highest weight λ:
the standard module1(λ) and the costandard module ∇(λ).1 Note that these two algebraic representations
are isomorphic and irreducible when the weight λ is p-small for GLg.2 We use the same notation to
denote the corresponding automorphic vector bundles on the Siegel modular variety. To better understand
the coherent cohomology of Shtor, it is convenient to know that all but certain cohomological degrees
must be zero. Lan and Suh [2012; 2013] prove many vanishing results for the coherent cohomology of
PEL Shimura varieties. Let W denote the Weyl group of Sp2g and I denote the type of the parabolic
subgroup P ⊂ Sp2g that stabilizes the Hodge filtration on the Siegel upper half-plane Hg. In the Siegel
case, Lan and Suh were able to access automorphic bundles 1(λ)∨ in all Weyl chambers as long as the
weight λ can be written

λ= w ·µ+ k, (1)

where w is an element of the minimal left coset representatives I W of type I , µ is a sufficiently regular
weight [Lan and Suh 2012, Definition 7.18] which is p-small for Sp2g and such that |µ|re,+ < p [Lan
and Suh 2012, 7.22] and k is a positive parallel weight.3 They use results from [Polo and Tilouine
2002] on dual Bernstein–Gelfand–Gelfand complexes and a geometric plethysm that imposes many
restrictions on the size of the weight compared to p. We note that for such a weight λ, we have
1(λ)∨ = ∇(−w0λ)=1(−w0λ). As there is only a finite number of p-small characters for Sp2g, their
method accesses only a finite number of weights up to positive parallel weights.

1.2. Main results. Let Dred denote the boundary of the toroidal compactification and let ∇
sub(λ) denote

the subcanonical extension ∇(λ)(−Dred) of the costandard automorphic vector bundle of highest weight λ.
Our main result is a general recipe to produce new vanishing results from old ones. Namely, we define a
nondecreasing function gI0,e on the power set of characters

gI0,e : P(X∗)→ P(X∗)

that depends on a subset I0 ⊂ I where I is the type of the parabolic subgroup of Sp2g that stabilizes the
Hodge filtration and an integer 0 ≤ e ≤ d − 1 where d = g(g + 1)/2 is the dimension of Shtor. Note that
the definition of gI0,e is technical and not very helpful because it is a byproduct of our method which
relies on the partial degeneration of multiple spectral sequences. We describe these spectral sequences
and give the exact definition of gI0,e in the overview of the strategy.

Theorem (Theorem 6.16). Assume that p > g2. Let C be a set of characters λ for which the cohomology
H i (Shtor,∇sub(λ)) is concentrated in degrees [0, e + 1]. Then, the image of C by the function gI0,e is a set
of characters λ for which the cohomology H i (Shtor,∇sub(λ)) is concentrated in degrees [0, e].

1In the context of a highest weight category (see [Riche 2016, 3.7] for a general introduction to this notion), one is also
concerned with the simple module L(λ) and the tilting module T (λ).

2It means that, for all α ∈ φ+, ⟨λ+ ρ, α∨
⟩ ≤ p, where ρ is the half-sum of positive roots.

3It means of the form (k, k, . . . , k) for some k > 0.
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Figure 1. g = 2, p = 5.

Moreover, in the extreme cases e = 0 and e = d −1, our method produces new vanishing results without
any prior knowledge. These results can then be used in the other cases 0< e < d − 1. We illustrate our
results in the special case g = 2, p = 5 in Figure 1.

The accessible weights with this method are not necessarily regular and not necessarily p-small (even
up to a positive parallel weight) but they belong to the antidominant Weyl chamber.4 Since the definition
of the function gI0,e is hard to grasp, we have implemented on SageMath an algorithm that compute the
vanishing results with our method. Our method produces vanishing results for automorphic bundles ∇(λ)

where λ is not necessarily of the form w ·µ+ k as in (1). In particular, we have no reason to expect that
1(λ)= ∇(λ). The p-smallness restriction is replaced with a much weaker restriction coming from the
theory of G-Zip called orbitally p-closeness. We note that in the special case g = 2, p = 5, the only
p-small character for Sp4 is (0, 0), which means that the method of Lan and Suh is only able to access
weights of the form wρ− ρ+ k.

1.3. Overview of the strategy. The first step is to consider the flag bundle π : Y tor
I0

→ Shtor over the Siegel
modular variety that parametrizes refinements of type I0 ⊂ I of the Hodge filtration of the universal
semiabelian scheme on Shtor. Let d0 denote the dimension of Y tor

I0
over Fp. Let P0 denote the parabolic

subgroup of Sp2g of type I0. For each character λ ∈ X∗(P0), we have a line bundle Lλ on Y tor
I0

such that

π∗Lλ = ∇(λ).

Following the result from [Brunebarbe et al.], the second step is to use a result of [Goldring and Koskivirta
2019a] about the existence of generalized Hasse invariants on the stack Sp2g -ZipFlagµ,I0 to prove that

4It corresponds to the dominant Weyl chamber in the work of Lan and Suh.
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certain line bundles Lλ are D-ample (see Definition 5.2) on Y tor
I0

where D is a certain effective Cartier
divisor whose associated reduced divisor is the boundary Dred. The third step is to use a logarithmic
version of the Kodaira–Nakano vanishing in positive characteristic due to Esnault and Viehweg to see
that under the hypothesis p > d0 := dim Y tor

I0
, we have

H i (Y tor
I0
, �

d0−e
Y tor

I0
(log Dred)⊗Lsub

λ )= 0

for all i > e and all λ that admits generalized Hasse invariants. The fourth step is to filter the bundle

�
d0−e
Y tor

I0
(log Dred)⊗Lsub

λ

with an increasing filtration F•,

Fk = π∗�
d0−e−k
Shtor (log Dred)∧�

k
Y tor

I0
(log Dred)⊗Lsub

λ ,

and then consider the corresponding spectral sequence. It is a spectral sequence starting at the second
page E i, j

2 whose limit is zero when i + j > e by the logarithmic Kodaira–Nakano vanishing considered
above. In general, it is impossible to extract information on the second page of a spectral sequence
whose limit is zero. However, if we can show that the second page degenerates (at least partially),
then we can deduce that some terms E i, j

2 must be zero.5 The aim is to determine the vanishing results
needed to ensure the partial degeneration of this spectral sequence. From the partial degeneration, we can
deduce new vanishing results. Our method is technical as it involves recursively an unknown number
of spectral sequences. Moreover, in the course of the argument, we are forced to contemplate tensor
products of automorphic bundles ∇(λ)⊗ ∇(µ). To relate the cohomology of this tensor product to the
cohomology of other automorphic bundles, we consider the spectral sequence associated to a ∇-filtration
(see Definition 2.6) whose existence is ensured by [Mathieu 1990] and, like before, we determine the
vanishing results needed to ensure its partial degeneration. The definition of the function gI0,e on the
power set of characters is a byproduct of our method that relies on the partial degeneration of relevant
spectral sequences. More precisely, let Cample,I0 denote the set of characters such that Lλ is D-ample
on Y tor

I0
, r0 denote the relative dimension of π : Y tor

I0
→ Shtor, (µk

j ) j denote the set of weights of the
GLg-module 3k Sym2 std,6 sM =

∑
α∈M α for any M ⊂ φ+ and ρI0 =

1
2

∑
α∈φ+

L \φ+

I0
α. For any set C of

characters, we define

gI0,e(C) := µd−e
( d

d−e)
+ X∗(P0)

+
∩ (−2ρI0 + Cample,I0)∩

⋂
k, j,M

(sM − 2ρI0 −µd−e+k
j + C),

where the last intersection is taken over the set of k, j,M where 0 ≤ k ≤ e, 1 ≤ j ≤
( d

d−e

)
+ k and

M ⊂ φ+

L −φ+

I0
such that |M | = r0 − k with the exception of j =

( d
d−e

)
when k = 0.

5In the case e = 0, the spectral sequence is concentrated on one row which explains why we do not need any prior vanishing
results.

6Actually, to follow the convention in Definition 3.10, we need to twist these weights by w0w0,GLg and assume they are
ordered in a way that w0w0,GLg (µ

n
(dn)
)is the highest weight.
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1.4. Organization of the paper. In Section 2, we recall some results of algebraic representation of
reductive groups in positive characteristic. In Section 3, we recall the definition of the Siegel modular
variety and the different automorphic vector bundles. In Section 4, we recall how the theory of G-Zip
can be used to study the EO stratification of the Siegel modular variety. In particular, we recall the main
result of [Goldring and Koskivirta 2019a] about generalized Hasse invariants. In Section 5, we prove
that line bundles of weight λ on the flag bundle over the Siegel modular variety that admit generalized
Hasse invariants are D-ample. We also recall a logarithmic version of the Kodaira–Nakano vanishing
in positive characteristic due to Esnault and Viehweg. In Section 6, we present our general method for
producing new vanishing results and we give more details in the case g = 2. In Section 7, we explain
how to compute new vanishing results with an algorithm written in SageMath and we plot the results we
have obtained in some special cases with g = 2 and g = 3. See github.com/ThibaultAlexandre/vanishing-
results-over-the-siegel-variety to download the algorithm.

2. Recollection on group theory

In this section, we follow mostly [Jantzen 2003] for generalities about algebraic representations of
reductive groups over a field of positive characteristic. Let k be a field of positive characteristic p > 0
and G a geometrically connected split reductive algebraic group over k. The weights of the adjoint
representation of G on its Lie algebra g define a set of roots φ. We fix a Borel pair (B, T ) defined
over k where B is a Borel subgroup and T ⊂ B is a maximal torus. This choice of Borel pair determines
a subset of simple roots 1 and positive roots φ+. We use a nonstandard convention for the positive
roots as we declare α to be positive if the root group U−α is contained in B.7 Let ρ denote the half-
sum of positive roots as Q-character of T . If I ⊂ 1, we write φI (resp. φ+

I ) for the set of roots (resp.
positive roots) generated from I . We write W for the Weyl group of G, l : W → N for its length
function and w0 for its longest element. If I ⊂ 1, let WI ⊂ W denote the subgroup generated by the
reflections sα where α ∈ I and let I W ⊂ W denote the set of minimal length representatives of WI \W .
We write ⟨ · , · ⟩ : X∗(T )× X∗(T )→ Z for the perfect pairing between the characters X∗(T ) of T and
the cocharacters X∗(T ) of T . Since the characteristic of k is assumed to be positive, G is endowed with
a relative Frobenius morphism ϕ : G → G(p) where G(p)

:= G ×k,σ k (with σ : k → k the Frobenius
morphism of k) is again a reductive group over k. Unlike when the characteristic of k is 0, the category of
algebraic representations of G on finite-dimensional vector spaces is no longer semisimple. The simple
objects L(λ) are still indexed by their highest weight λ but not every representation can be split into a
direct sum of simple objects. This category Repk(G) has the structure of a highest weight category; see
[Riche 2016, 3.7] for a general introduction to this notion.

Definition 2.1 [Jantzen 2003, Part I, Section 5.8]. Let λ : T → Gm be a character of T . We define a line
bundle Lλ on the flag variety G/B as the B-quotient of the vector bundle G ×k A1

→ G, where B acts

7It simplifies the statement of the Proposition 3.20.

https://github.com/ThibaultAlexandre/vanishing-results-over-the-siegel-variety
https://github.com/ThibaultAlexandre/vanishing-results-over-the-siegel-variety
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on G ×k A1 by

(g, x)b = (gb−1, λ(b−1)x),

and where λ is naturally extended by 0 on the unipotent part of B. The global section group H 0(G/B,Lλ)
is given the structure of a G-module through left translation. As a consequence we get an algebraic
representation of G, and we will denote it simply ∇(λ).

Proposition 2.2 [Jantzen 2003, Part II, Section 2.6]. The G-module ∇(λ) is nonzero exactly when λ
is dominant. Moreover, its highest T -weight is λ and we call ∇(λ) the induced module or costandard
module of highest weight λ.

Remark 2.3. A different convention can be found in the literature where we set the dominance to be
relative to B.

Definition 2.4 [Jantzen 2003, Part II, Section 2.13]. Let λ ∈ X∗(T ) be a character. The standard module
of highest weight λ can be defined

1(λ) := ∇(−w0λ)
∨,

where w0 is the longest element of the Weyl group W of G and ∨ denotes the linear dual in Repk(G).

As a consequence from the definitions, ∇(λ) and 1(λ) must have the same characters but they are
usually not simple and not isomorphic. However L(λ) is the socle of ∇(λ) and the head of 1(λ); see
[Jantzen 2003, Part II, Chapter 2]). We recall Kempf’s vanishing theorem.

Proposition 2.5 [Jantzen 2003, Part II, Section 4.5]. Let λ be a dominant character. For each i > 0, we
have

H i (G/B,Lλ)= 0.

More generally, let P be a standard parabolic of type I ⊂ 1 and λ a I -dominant character of P (i.e.,
⟨λ, α∨

⟩ ≥ 0 for all α ∈1\I and ⟨λ, α∨
⟩ = 0 for all α ∈ I ). There is an associated line bundle Lλ on G/P

and we have

H i (G/P,Lλ)= 0

for all i > 0.

Proof. We give a sketch of the argument. The first step is to show that Lλ is ample over the flag variety
G/B exactly when λ is strictly dominant by reducing to the case G = SL2 and G/B = P1

k . Then, in
characteristic 0, we can conclude with the Kodaira–Nakano vanishing theorem since the canonical bundle
ωG/B of G/B is antiample. Indeed, we have an isomorphism

ωG/B = L−2ρ

and if we consider a dominant character λ, the line bundle

ω−1
G/B ⊗OG/B Lλ = L2ρ+λ
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is ample since 2ρ + λ is strictly dominant. The Kodaira–Nakano vanishing theorem applied to L2ρ+λ

says that
H i (G/B, ωG/B ⊗L2ρ+λ︸ ︷︷ ︸

=Lλ

)= 0

for all i > 0. In positive characteristic, we can conclude with Serre’s cohomological criterion for ampleness
and the formula in [Jantzen 2003, Part II, Section 3.19] with the Steinberg module ∇((pr

− 1)ρ). □

We insist on the fact that the proof in [loc. cit., Part II, Section 5.3] of the more general Borel–Weil–Bott
theorem which gives information on the higher cohomology groups of Lλ when λ is no longer dominant
requires to divide by binomial numbers

(n
k

)
with n ≥ p, which is impossible in characteristic p. Actually,

one can find counterexamples to the Borel–Weil–Bott theorem in positive characteristic; see [loc. cit.,
Part II, Section 15.8]. In characteristic 0, it is easier to understand tensor product of highest weight
representations: we know that L(λ)⊗ L(µ) is a direct sum of L(λ′) where λ′ can be expressed as λ+µ′

where µ′
≤ µ is a weight of L(µ). Going back to our positive characteristic case, we would like to have

a weaker but similar kind of result for ∇(λ)’s.

Definition 2.6. Let V be an algebraic representation of G. We say that:

(1) V admits a ∇-filtration if there is a finite filtration

0 = V n ⊊ V n−1 ⊊ · · · ⊊ V 0
= V

with graded pieces
V i/V i+1

≃ ∇(νi )

for some dominant characters νi .

(2) V admits a 1-filtration if there is a finite filtration

0 = V n ⊊ V n−1 ⊊ · · · ⊊ V 0
= V

with graded pieces
V i/V i+1

≃1(νi )

for some dominant characters νi .

Remark 2.7. In the setting of a highest weight category, tilting modules are defined as modules that
admit both a ∇- and a 1-filtration.

The following proposition states the existence of a ∇-filtration for a tensor product ∇(λ)⊗∇(µ) and
gives some details about its graded pieces. This result is due to Donkyn [1985] when G does not contain
any components of type E7, E8 or that p ̸= 2. His approach relies on a case by case analysis of each
Dynkin diagram and requires long and difficult calculations. A more general proof, without the technical
restrictions, was given later by Mathieu. We first need a lemma.

Lemma 2.8. Let λ, µ denote T -characters such that Ext1G(∇(λ),∇(µ)) ̸= 0. Then, λ≥ µ.
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Proof. We have

Ext1G(∇(λ),∇(µ))= H 1(G,1(−w0λ)⊗ ∇(µ))

= H 1(P,1(−w0λ)⊗µ) by [Jantzen 2003, Part II, Section 4.7]

and by [loc. cit., Part II, Section 4.10 b)], there exists a weight ν of 1(−w0λ) such that −(ν+µ) is a
N-linear combination of positive roots φ+. In particular, we have −ν ≥ µ. Since w0(−w0λ)= −λ is the
lowest weight of 1(−w0λ), we deduce that λ≥ −ν ≥ µ. □

Proposition 2.9 [Mathieu 1990]. Let λ,µ be two dominant characters in X∗(T ). Then ∇(λ)⊗ ∇(µ)

admits a ∇-filtration (V i )i≥0 with graded pieces

V i/V i+1
≃ ∇(λ+µi ),

where (µi )i is a collection of weights of ∇(µ) with µ0 = µ. In particular, the first graded piece is given
by V 0/V 1

= ∇(λ+µ).

Proof. We add some details to the result of Mathieu to explain how to get a filtration with the desired
properties. The result of Mathieu assumes that G is a connected, simply connected, semisimple algebraic
group over an algebraically closed field k of characteristic p > 0 and it is not hard to reduce to this case.
By [Mathieu 1990, Theorem 1], there exists a filtration

0 = V n
⊂ V n−1

⊂ · · · ⊂ V 1
⊂ · · · V 0

= ∇(λ)⊗ ∇(µ),

where for each i the graded piece V i/V i+1 is a costandard module ∇(νi ) for some dominant character νi .
The character class of ∇(λ)⊗ ∇(µ) is

ch(∇(λ)⊗ ∇(µ))=

∑
i

ch ∇(λ+µi ),

where the sum is taken over some weights (µi )i of ∇(µ). As the highest weight of this module, λ+µ

contributes to the sum. Note that the nonzero terms are those such that λ+µi is dominant. We choose an
ordering of the (µi )i such that whenever µi < µ j for some i, j then i > j . It implies that there exists a
permutation σ on 0, 1, . . . , n − 1 such that

V i/V i+1
= ∇(λ+µσ(i))

for all i between 0 and n−1. We remake the argument in [Jantzen 2003, Part 11, Section 4.16, Remark 4] to
explain how to reorganize the terms. If σ(i)<σ(i+1) for some i , 0≤ i ≤n−2, then λ+µσ(i)≮λ+µσ(i+1)

and the exact sequence

0 → ∇(λ+µσ(i+1))→ V i/V i+2
→ ∇(λ+µσ(i))→ 0

is split because Ext1G(∇(λ+µσ(i+1)),∇(λ+µσ(i)))= 0 by Lemma 2.8. It shows that

V i/V i+2
= ∇(λ+µσ(i+1))⊕ ∇(λ+µσ(i))
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and we can replace V i+1 by a submodule Ṽ i+1 between V i+2 and V i such that Ṽ i+1/V i+2
=∇(λ+µσ(i))

and V i/Ṽ i+1
= ∇(λ+µσ(i+1)). We iterate this process to produce the desired filtration. □

Remark 2.10. (1) Not all the weights µ′
≤ µ of ∇(µ) such that λ+µ′ is dominant will contribute to

the filtration.

(2) Even if we will not need it, we note that the dual statement says that tensor products of standard
modules 1(λ)⊗1(µ) admit a 1-filtration.

Corollary 2.11. Let V and W be two algebraic representations of G that admit a ∇-filtration. Then,
V ⊗ W admits a ∇-filtration.

We recall the Donkyn criterion.

Proposition 2.12. Let V be an algebraic representation of G. The following proposition are equivalent:

(1) V admits a ∇-filtration.

(2) For all dominant characters λ and i > 0, ExtiG(1(λ), V )= 0.

(3) For all dominant characters λ, Ext1G(1(λ), V )= 0.

Proof. See [Jantzen 2003, Part II, Section 4.16]. □

Corollary 2.13. Let V and W be two algebraic representations of G. If V admits a ∇-filtration and W is
a direct factor of V , then W admits a ∇-filtration.

3. Recollection on Siegel varieties

In this section, we follow [Faltings and Chai 1990] for generalities about Siegel varieties. We denote by
SchFp the category of schemes over Fp and A f the finite adeles of Q.

Definition 3.1. Let A and A′ be abelian schemes of relative dimension g over a scheme S. A quasiisogeny
A → A′ is an equivalence class of pairs (α, N ) where α : A → A′ is an isogeny over S and N is a positive
integer with the relation

(α, N )∼ (α′, N ′) if and only if N ′α = Nα′.

Definition 3.2. Let V be the Z-module Z2g with the standard nondegenerate symplectic pairing

ψ : V × V → Z

such that ψ(x, y)=
t x J x where

J =

(
0 Ig

−Ig 0

)
.

We denote by Sp2g the algebraic group over Z of 2g × 2g matrices M that preserves the symplectic
pairing ψ , i.e., such that

t M J M = J.
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In the following proposition, we define the Siegel modular variety of level K as a scheme over Fp

when the level is small enough and p is a prime such that K p = Sp2g(Zp).

Proposition 3.3 [Faltings and Chai 1990]. Let K ⊂ Sp2g(A f ) be a subgroup that can be written as
K = K p K p for K p ⊂ Sp2g(Qp) hyperspecial and K p

⊂ Sp2g(A
p
f ) compact open. Consider the fibered

category in groupoids Ag,K on SchFp whose S-points are groupoids with:

• Objects: (A/S, λ, ψ) where A/S is abelian scheme over S of relative dimension g, λ : A → A∨ is a
Z(p)-multiple of a principal polarization and for all primes l ̸= p and all geometric points s ∈ S, ψl is a
Kl-orbit of symplectic isomorphisms from H1(As,Ql) to V ⊗ Ql which is invariant under π1(S, s). The
structure of symplectic Ql-vector space on the l-adic étale homology group H1(As,Ql) (it is also the
rational Tate module of As) is the one induced by the polarization (which is an isomorphism since we
tensor by Ql) and the Weil paring.

• Morphisms: A morphism (A/S, λ, ψ)→ (A′/S, λ′, ψ ′) is a quasiisogeny α : A → A′ over S such that
the diagram

A A′

A∨ A′∨

α

λ λ′

α∨

is commutative up to a constant in Z(p) and the pullback of ψl by the quasiisogeny α is ψ ′

l .

If the level away from p, K p, is small enough,8 then Ag,K is representable by a smooth integral quasipro-
jective scheme over Fp.

Remark 3.4. Without the hypothesis on the smallness of K , Ag,K is only a Deligne–Mumford stack
over Fp.

Notation 3.5. We fix some notation for the rest of this section. Let G denote the algebraic group Sp2g

over Fp where g ≥ 1. We fix a neat finite level K that can be written as K = K p K p for K p ⊂ G(Qp)

hyperspecial and K p
⊂ G(Ap

f ) compact open. Let Sh denote the smooth quasiprojective variety Ag,K

over Fp. Let µ : Gm → G denote the minuscule cocharacter that stabilizes the Hodge filtration9 and let
P+

:= Pµ, P := P−µ denote the associated opposite parabolic subgroups with common Levi subgroup
L = GLg over Fp. We consider the Borel B of upper triangular matrices in G = Sp2g, so that B ⊂ P . We
write φL (resp. φ+

L ) for the roots of L (resp. positive roots of L).

Denote by π : A → Sh the universal abelian scheme and e : Sh → A its neutral section. The universal
polarization of A gives to the algebraic de Rham cohomology H1

dR of A over Sh the structure of a
Sp2g-torsor over Sh.

8It is the case in particular when K is the kernel of the reduction map Sp2g(Z)→ Sp2g(Z/NZ) with N ≥ 3 such that p ∤N .
9It maps z to

( z Ig
0

0
z−1 Ig

)
with our choice of symplectic pairing in Definition 3.2.



Vanishing results over the Siegel modular variety 153

Proposition 3.6. The de Rham cohomology H1
dR is equipped with a Hodge filtration

0 →�→ H1
dR →�∨

→ 0,

where
�= e∗�1

A/Sh

and
�∨

= R1π∗OA.

We call � the Hodge vector bundle, it is a locally free sheaf of rank g over Sh. Moreover, the Hodge
bundle � is totally isotropic for the symplectic pairing on H1

dR which allows us to identify the Hodge
filtration with a P-torsor on Sh.

Proof. The Hodge filtration comes from the degeneration at the second page of the Hodge-de Rham
spectral sequence which is a result of Deligne and Illusie [1987] in the case of abelian schemes. The
vector bundle � is locally free of rank g because π : A → Sh is smooth. Actually, we also have an
isomorphism

�≃ π∗�
1
A/Sh.

Indeed, as a group scheme π satisfies

�1
A/Sh = π∗e∗�1

A/Sh

and for any proper morphism f : X → Y with geometrically connected fibers, we have

f∗OX = OY .

From the projection formula, we deduce

π∗�
1
A/Sh = π∗(π

∗e∗�1
A/Sh ⊗OA)= e∗�1

A/Sh ⊗π∗OA =�1
A/Sh. □

The Siegel modular variety Sh is not proper but we can consider a toroidal compactification.

Definition 3.7 [Faltings and Chai 1990, Chapter 4; Lan 2012, Theorem 2.15]. Let C be the cone of
all positive semidefinite symmetric bilinear forms on X∗(T )⊗Z R whose radicals are defined over Q.
Let 6 = {σα}α be a smooth GL(X∗(T ))-admissible decomposition in polyhedral cones of C as defined
in [Faltings and Chai 1990, Chapter 4, Definition 2.2/2.3]. We assume that 6 admits a GL(X∗(T ))-
equivariant polarization function as defined in [Faltings and Chai 1990, Chapter 4, Definition 2.4]. See
[Ash et al. 1975] or [Kempf et al. 1973] for a proof of the existence of such polyhedral cone decompositions.
We consider the corresponding toroidal compactification Shtor,6 of the Siegel modular variety Sh. It is a
smooth and projective scheme over Fp which satisfies the following properties:

(1) The complementary Dred = Shtor,6
− Sh, when endowed with its reduced structure, is a Cartier divisor

with normal crossings.

(2) The universal abelian scheme f : A → Sh extends to a semiabelian scheme f tor
: Ator

→ Shtor such
that �tor

:= e∗�1
Ator/Shtor,6 is a vector bundle that extends the Hodge bundle to Shtor,6 .
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(3) By [Faltings and Chai 1990, Chapter 4] or [Lan 2012, Theorem 2.15, (2)] the semiabelian scheme
f tor

: Ator
→ Shtor can be compactified into a proper and log-smooth scheme f̄ tor

: Ator
→ Shtor which is

projective and smooth over Fp

A Ator Ator

Sh Shtor Spec Fp

f

f tor

f̄ tor

and we denote again Dred the normal crossing divisor Ator
− A.

(4) Following [Faltings and Chai 1990, Chapter 4] or [Lan 2012, Theorem 2.15, (3)], the log-de Rham
complex �•

Ator/Shtor is the complex of log-differentials �i
Ator/Shtor :=3i�1

Ator/Shtor where

�1
Ator/Shtor =�1

Ator(log Dred)/( f̄ tor)
∗
�1

Shtor(log Dred).

(5) The log-de Rham cohomology

H1
log − dR := R1( f̄ tor)∗�

•

Ator/Shtor

is a Sp2g-torsor that extends H1
dR on Sh.

(6) The logarithmic Hodge-de Rham spectral sequence

E i, j
1 = R j ( f̄ tor)∗�

i
Ator/Shtor =⇒ Hi

log − dR := Ri ( f̄ tor)∗�
•

Ator/Shtor

degenerates at page 1. It defines a P-reduction of the Sp2g-torsor H1
log − dR on Shtor,6 that extends the

Hodge filtration on Sh.

From now on, we drop the superscript 6 to denote Shtor,6 since the coherent cohomology does not
depend on this choice.

Definition 3.8 [Faltings and Chai 1990]. We define the minimal compactification as the projective scheme

Shmin
:= Proj

(⊕
n≥0

H 0(Shtor, ω⊗n)

)
,

where ω = det�tor is the Hodge line bundle.

The minimal compactification Shmin is a normal and projective variety (independent of the choice
of 6) but it is not smooth in general. Moreover, the Hodge line bundle ω descends to an ample line
bundle on Shmin. From this construction, one can see that Shtor is the normalization of the blow-up of
Shmin along a coherent sheaf of ideals J of OShmin and we write

ϕ : Shtor
→ Shmin

for the induced morphism. The pullback ϕ∗J is of the form OShtor(−D) where D is an effective Cartier
divisor whose associated reduced Cartier divisor is Dred. In particular, we deduce that there exists η0 > 0
such that ω⊗η(−D) is ample on Shtor for every η ≥ η0. In general, ω fails to be ample on Shtor.
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Remark 3.9. The effective Cartier divisor D depends on the choice of the GL(X∗(T ))-equivariant
polarization function on the decomposition in polyhedral cones 6.

We are now able to define automorphic vector bundles with contracted products.

Definition 3.10. Let V be a finite-dimensional algebraic representation of L = GLg. We define the
associated vector bundle W(V ) on Sh (resp. its canonical extension to Shtor) to be the contracted product
of V with the GLg-torsor � (resp. �tor). If λ ∈ X∗(T ) is an L-dominant character, we write simply ∇(λ)

for the vector bundle corresponding to the induced representation H 0(L/BL ,Lλ) of L . It corresponds to
the costandard representation of highest weight w0w0,Lλ.

Remark 3.11. We apologize for the weird convention in Definition 3.10. The advantage of this convention
is to keep an easy formula in Proposition 3.20.

We recall the Kodaira–Spencer isomorphism.

Proposition 3.12 [Faltings and Chai 1990, Chapter 3, Section 9]. The Kodaira–Spencer map

ρKS : Sym2�→�1
Shtor(log Dred)

is an isomorphism. This allows us to identify the logarithmic differentials �1
Shtor(log Dred) with the

automorphic vector bundle W(Sym2 stdL)= ∇(0, . . . , 0,−2). In particular, we have an isomorphism of
line bundles

�d
Shtor(log Dred)≃ ∇(−2ρL),

where d is the dimension of Shtor and

ρL
=

1
2

∑
α∈φ+\φ+

L

α.

Recall that the Hodge filtration on Sh is canonically identified with a P-torsor that extends to the
toroidal compactification Shtor. From now on, I0 denotes a subset of I and P0 denotes its associated
intermediate parabolic subgroup B ⊂ P0 ⊂ P .

Definition 3.13. Let S → Sh be a S-valued point of Sh and denote by A/S the corresponding abelian
scheme. The flag bundle YI0 is the scheme over Sh whose S-valued points are P0-reductions of the
P-torsor corresponding to the Hodge filtration of A.

From the definition of YI0 , we get a smooth proper morphism π : YI0 → Sh where each fiber is
isomorphic to the flag variety P/P0.

Remark 3.14. In the special case I0 = I , the flag bundle YI0 coincide with the Siegel modular variety Sh.

The flag bundle YI0 extends to a flag bundle Y tor
I0

over the toroidal compactification Shtor because we
have seen that the Hodge filtration over Sh extends to Shtor in Definition 3.7(7). It implies by base change
that the universal P0-torsor on YI0 extends to Y tor

I0
. This allows us to define automorphic vector bundles

on YI0 from algebraic representations of P0.
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Definition 3.15. Let V be a finite-dimensional algebraic representation of P0. We define the associated
vector bundle L(V ) on YI0 (resp. its canonical extension on Y tor

I0
) as the contracted product of V with

the universal P0-torsor on YI0 (resp. Y tor
I0

). If λ ∈ X∗(P0) is a character, we write simply Lλ for the
corresponding line bundle.

Remark 3.16. In the special case where I0 = ∅, note that we have X∗(P0)= X∗(T ).

There is an easy relation between Lλ and ∇(λ) that we want to explain. We first recall the proper base
change theorem for coherent cohomology.

Proposition 3.17 (proper base change, nonreduced case). Let f : X → S be a proper morphism between
locally noetherian schemes. Let F be a coherent sheaf over X which is flat over S. Let p ≥ 0 and s ∈ S. If
θ

p
s : (R p f∗F)s ⊗OS,s k(s)→ H p(Xs,F|Xs ) is surjective, then there is an open neighborhood U of s such

that for all s ′
∈ U , θ p

s′ is an isomorphism and the following conditions are equivalent:

(1) θ p−1
s is surjective.

(2) R p f∗F is free on U.

Under these conditions, the formation of R p f∗F commutes under base change. This means that for
any g : S′

→ S, we have g∗ R p f∗F ≃ R p f ′
∗
g′∗F where the maps are defined in the following cartesian

diagram:
X ′ X

S′ S

f ′

g′

f

g

Proof. See [Hartshorne 1977, Part III, Theorem 12.11]. □

Remark 3.18. (1) We assume θ−1
s to be the zero morphism.

(2) The reference in Proposition 3.17 states a coherent base change theorem only for geometric points
of S. To see how it implies the base change for any morphism S′

→ S, see [Conrad, Proposition 2.1].

Lemma 3.19. Let X and Y be two Artin stacks and π : Y → X a proper representable morphism. Let L
be a coherent sheaf over Y , flat over X , such that for all geometric points x : Spec k̄ → X fitting in the
cartesian diagram

Yx := Y ×X ,x Spec k̄ Y

Spec k̄ X

πx

i

π

x

the complex R(πx)∗L|Yx is concentrated in degree 0. Then, the complex Rπ∗L is also concentrated in
degree 0.
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Proof. Consider a presentation f : X →X of the Artin stack X where X is a scheme and f is a surjective
and smooth morphism. Consider the double cartesian diagram

Yx := Y ×X,x Spec k̄ Y := X ×X Y Y

Spec k̄ X X

πx

i

π̃

f ′

π

x f

where x is a geometric point of X . For any i > 0, we have H i (Yx ,L|Yx ) = 0 by hypothesis. As a
consequence, the base change morphism for the first cartesian diagram

θ i
x : Ri π̃∗L|Y ⊗OX,x k(x)→ H i (Yx ,L|Yx )

is surjective. By Proposition 3.17, we deduce that θ i
x ′ is an isomorphism for all x ′ in a neighborhood of x .

We deduce that Ri π̃∗L|Y is zero for all i > 0. Since f is flat, the base change theorem for the second
cartesian diagram says that there is an isomorphism

f ∗
◦ Rπ∗L → Rπ̃∗ ◦ ( f ′)

∗L.

Since f is faithfully flat, it implies that Rπ∗L is concentrated in degree 0. □

Proposition 3.20. Let λ be a character of P0. Denote by π : YI0 → Sh the flag bundle defined before. We
have a canonical isomorphism

π∗Lλ ≃ ∇(λ),

where we see λ as a character of T to construct ∇(λ). This isomorphism extends to the toroidal
compactifications Y tor

I0
and Shtor.

Proof. This isomorphism is a formal consequence of the definition of automorphic vector bundles in
Definitions 3.10 and 3.15 and standard base change theorem combined with Kempf’s theorem. We have a
cartesian diagram

YI0 ⌊P0\∗⌋

Sh ⌊P\∗⌋

π

ζ̃

π̃

ζ

where the horizontal arrows corresponds to the universal P-torsor on Sh and the universal P0-torsor on YI0

and where the vertical arrow π̃ between the classifying stacks is induced by the inclusion P0 ⊂ P . For
every λ ∈ X∗(P0), we have a line bundle Lλ on the classifying stack of P0. We denote by ∇(λ) the vector
bundle on the classifying stack of P associated to the P-module H 0(P/P0,Lλ). By definition, we have
isomorphisms

π̃∗Lλ = ∇(λ), ζ̃ ∗Lλ = Lλ, ζ ∗
∇(λ)= ∇(λ)
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on ⌊P\∗⌋. Since ζ is flat, we have a base change theorem in the derived category of quasicoherent sheaves
over Sh which says that the natural map

ζ ∗
◦ Rπ̃∗Lλ → Rπ∗ ◦ ζ̃ ∗Lλ

is an isomorphism. If λ is I0-dominant, Kempf’s vanishing theorem from Proposition 2.5 combined with
Lemma 3.19 implies that

Rπ∗Lλ = π∗Lλ, Rπ̃∗Lλ = π̃∗Lλ,

and we get

π∗Lλ ≃ ∇(λ).

For the toroidal compactifications, the proof is exactly the same. □

4. G-Zips and stratifications

Let Sh denote the Siegel modular variety over Fp of genus g ≥ 1 and neat level K ⊂ Sp2g(A f ) such that K p

is hyperspecial. The Siegel modular variety Sh has the Ekedahl–Oort stratification (EO stratification)
which is a genuine new structure which does not exist in characteristic 0. For the modular curve defined
over Fp, there are two strata: the ordinary locus and the supersingular locus. The ordinary locus is an open
subscheme corresponding to ordinary elliptic curves over Fp and the supersingular locus is a reduced
closed subscheme corresponding to supersingular elliptic curves over Fp. Hence, the closure of the
ordinary locus is the whole modular curve. In the series of papers [Wedhorn 1999; Moonen and Wedhorn
2004; Pink et al. 2011; 2015], Moonen, Wedhorn, Pink and Ziegler define an Artin stack G-Zipµ which
depends on the reductive group G over Fp and a cocharacter µ of G. The underlying topological space
of this stack is finite and its topology captures the closure relations of the EO stratification. Furthermore,
one can construct a morphism

ζ : Sh → G-Zipµ

from the G-torsor H1
dR corresponding to de Rham cohomology of the universal abelian scheme. In his

thesis, Zhang [2018] has proven that ζ is a smooth morphism. One can recover the EO stratification on
Sh through a pullback of some substack w of G-Zipµ. Recall that P is the parabolic associated to −µ

defined in Notation 3.5 and I ⊂1 is its type. The EO stratification on the Shimura variety can be further
generalized on the flag bundle YI0 corresponding to a standard parabolic subgroup P0 ⊂ P of type I0 ⊂ I .
Goldring and Koskivirta [2019b] define a stack G-ZipFlagµ,I0 , a smooth morphism

ζI0 : YI0 → G-ZipFlagµ,I0

and one can define a stratification of the flag bundle YI0 through the pullback of a collection of some
substacks [w] of G-ZipFlagµ,I0 . For the convenience of the reader, we recall how [Goldring and Koskivirta
2019a; 2019b] use the formalism of G-Zips and G-ZipFlags to define and study the stratifications on the
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Siegel modular variety Sh and its flag bundle YI0 . In particular, we recall their result on the existence of
generalized Hasse invariants.

4.1. General theory. In order to consider the stratification of the stack G-ZipFlagµ,I0 for all I0 ⊂ I , it is
convenient to use a general zip datum Z and to define a stack G-ZipZ for a general reductive group G
over k, a field of positive characteristic.

Definition 4.1. A zip datum of exposant n ≥ 1 is a tuple

Z = (G, P, L , Q,M, ϕn),

where G is a reductive group over Fp, ϕ : G → G is the relative Frobenius map and P, Q ⊂ G ×Fp Fp

are parabolics over Fp with Levi subgroups L ⊂ P , M ⊂ Q such that ϕn(L)= M . We write U and V for
the unipotent radical of P and Q.

Definition 4.2. A morphism of zip data of exposant n ≥ 1

Z = (G, P, L , Q,M, ϕn)→ Z ′
= (G ′, P ′, L ′, Q′,M ′, ϕ′n)

is the data of a group morphism f : G → G ′ such that f (♢)⊂ ♢′ for ♢ = G, P, L , Q,M,U, V .

Recall that for each g ≥ 1, we have a minuscule cocharacter µ : Gm → Sp2g defined over Fp. The
couple (Sp2g, µ) (Sp2g is defined over Fp) is a cocharacter datum according to the following definition.

Definition 4.3. A cocharacter datum is a couple (G, µ) where G is a reductive group over Fp and
µ : Gm → G is a cocharacter defined over Fp. A morphism of cocharacter data

(G, µ)→ (G ′, µ′)

is a group morphism f : G → G ′ such that µ= f ◦µ′. A cocharacter data (G, µ) determines a opposite
parabolic subgroup Pµ, P−µ with common Levi subgroup L = P−µ ∩ Pµ.

From a cocharacter datum (G, µ) we can construct a zip datum of exposant n

Zµ = (G, P, L , Q,M, ϕn)

by setting P = P−µ, Q = ϕn(Pµ), L = P−µ∩ Pµ, M = ϕn(L). We explain how to define a stack G-ZipZ

from a zip datum Z .

Definition 4.4. Let Z be a zip datum and S be a scheme over Fp. A zip of type Z over S is a tuple

I = (I, IP , IQ, ψ),

where I is a G-torsor over S, IP ⊂ I is a P-reduction of I, IQ ⊂ I is a Q-reduction of I and

ψ : (ϕn)
∗
(IP/U )→ IQ/V

is an isomorphism of M-torsors over S. A morphism of zips of type Z over S

I = (I, IP , IQ, ψ)→ I ′
= (I ′, I ′

P , I
′

Q, ψ
′)
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is a morphism of G-torsors f : I → I ′ over S such that f (♢) ⊂ ♢′ for ♢ = IP , IQ and such that the
following diagram commutes

(ϕn)∗(IP/U ) IQ/V

((ϕ′)
n
)
∗
(I ′

P/U ′) I ′

Q/V ′

ψ

ψ ′

where the vertical arrows are induced by f .

Proposition 4.5. Let Z be a zip datum and S be a scheme over Fp. The category G-ZipZ(S) of zips of
type Z over S is a groupoid. The association S → G-ZipZ(S) defines an algebraic stack over Fp that we
simply denote G-ZipZ .

Proof. See [Pink et al. 2015, Propositions 3.2 and 3.11]. □

Note that the association Z → G-ZipZ defines a functor from the category of zip data to the category
of algebraic stacks over Fp. We simply write G-Zipµ instead of G-ZipZµ when the zip datum comes
from a cocharacter datum (G, µ). Most of the interesting properties of G-ZipZ can be deduced from its
presentation as a quotient stack. From now on, we fix a zip datum of exposant n

Z = (G, P, L , Q,M, ϕn).

Proposition 4.6. G-ZipZ is a smooth stack of dimension 0 over Fp and it is presented as a quotient stack

⌊EZ\G⌋,

where EZ = {(x, y) ∈ P × Q | ϕn(x̄)= ȳ}, x → x̄ denotes the natural projection P → L , Q → M and
(x, y) ∈ EZ acts on g ∈ G by

(x, y)g = xgy−1.

Proof. See [Pink et al. 2015, Propositions 3.2 and 3.11]. □

Denote by W the Weyl group of G, I ⊂1 the type of the parabolic P , J ⊂1 the type of the parabolic
Q, WI ⊂ W the subgroup generated by the reflexions in I , I W the set of elements w that are of minimal
length in WIw, WJ ⊂ W the subgroup generated by the reflexions in J and W J the set of elements w
that are of minimal length in wWJ . The element of maximal length in W (resp. WI and WJ ) is denoted
w0 (resp. w0,I and w0,J ). Denote by z the element w0w0,J .

Proposition 4.7. If there exists a Borel pair (B, T ) of G defined over Fp, then there exists an element
z ∈ W such that the triple (B, T, z) is a W -frame for Z. It means that the following conditions are
satisfied:

(1) B ⊂ P.

(2) zBz−1
⊂ Q.

(3) ϕ(B ∩ L)= zBz−1
∩ M.
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Proof. See the proof of [Pink et al. 2011, Proposition 3.7]. □

For each w ∈ W , we choose a lift ẇ in NG(T ). The following proposition explains how G decomposes
in EZ -orbits.

Proposition 4.8. The map w 7→ Gw := EZẇż−1 restricts to bijections between:10

(1) I W and the EZ -orbits of G.

(2) W J and the EZ -orbits of G.

Moreover, we have the following dimension formula for all w ∈
I W ∪ W J

dim Gw = l(w)+ dim(P).

Proof. See [Pink et al. 2011, Theorems 7.5 and 11.2]. □

Corollary 4.9. The stack G-ZipZ can be decomposed as

G-ZipZ
=

⊔
w∈

I W

⌊EZ\Gw⌋.

The stack G-ZipZ has a topology which describes the closure relations between the Gw.

Proposition 4.10. The underlying topological space of G-ZipZ is homeomorphic to the finite topological
space I W where the topology is given by the partial order

w ≼ w′ if and only if there is v ∈ WI such that vwxv−1x−1
≤ w′,

where x is the unique element of minimal length in WJw0WI and ≤ is the Bruhat order.

Proof. The result follows from the isomorphism

Gw =

⊔
w′≼w,w′∈

I W

Gw′

for all w ∈
I W which is proven in [Pink et al. 2011, Theorem 6.2]. □

We simply write [w] for the locally closed substack ⌊EZ\Gw⌋ of G-ZipZ . Now, we describe how to
define a more general stack G-ZipFlagZ,P0 which depends on the zip datum Z and an auxiliary parabolic
subgroup B ⊂ P0 ⊂ P .

Definition 4.11. Let B ⊂ P0 ⊂ P be a parabolic subgroup of P and S be a scheme over Fp. A zip flag of
type (Z, P0) over S is a tuple

J = (I ,J ),

where I = (I, IP , IQ, ψ) is a zip of type Z over S and J ⊂ IP is a P0-reduction of the P-torsor IP . A
morphism of zip flags of type (Z, P0) over S

J = (I ,J )→ J ′
= (I ′,J ′)

10In the case G = Sp2g , these two bijections coincide.
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is a morphism of zip I → I ′ of type Z over S such that the underlying morphism of G-torsor I → I ′

restricts to a morphism of P0-torsor J → J ′ over S.

Proposition 4.12. Let B ⊂ P0 ⊂ P be a parabolic subgroup of P and S be a scheme over Fp. The
category G-ZipFlagZ,P0(S) of zip flags of type (Z, P0) over S is a groupoid. The association S →

G-ZipFlagZ,P0(S) defines an algebraic stack over Fp that we simply denote G-ZipFlagZ,P0 .

From now on, we fix an auxiliary parabolic subgroup B ⊂ P0 ⊂ P .

Proposition 4.13. The stack G-ZipFlagZ,P0 is a smooth stack of dimension dim(P/P0) over Fp and it
can be presented as the quotient stack

⌊EZ,P0\G⌋,

where EZ,P0 := EZ ∩ (P0 × G)⊂ P0 × Q acts on G by restriction of the EZ -action on G. It can also be
presented as the quotient stack

⌊EZ × P0\G × P⌋,

where ((x, y), p0) ∈ EZ × P0 acts on (g, p) ∈ G × P through the formula

((x, y), p0).(g, p)= (xgy−1, xpp−1
0 ).

Definition 4.14. The map sending a zip flag J = (I ,J ) of type (Z, P0) over S to the zip I of type Z
over S defines a morphism of algebraic stacks over Fp

π : G-ZipFlagZ,P0 → G-ZipZ .

Proposition 4.15. The inclusion EZ,P0 ⊂ EZ induces a morphism

⌊EZ,P0\G⌋ → ⌊EZ\G⌋

which corresponds to π through the isomorphisms in Proposition 4.13.

Proposition 4.16. The morphism π : G-ZipFlagZ,P0 → G-ZipZ is proper and smooth with fibers isomor-
phic to the flag variety P0/P.

Proof of Propositions 4.12, 4.13, 4.15 and 4.16. See [Goldring and Koskivirta 2019b, Theorem 2.1.2]. □

It is natural to hope for a stratification of G-ZipFlagZ,P0 that generalizes the stratification on G-ZipZ

however the EZ,P0-orbits of G are not as easy to understand as the EZ -orbits. Instead, we define a smooth
surjective map

G-ZipFlagZ,P0 → G-ZipZ0,

where Z0 is a zip datum constructed from Z and P0 and then pullback the stratification of G-ZipZ0 .

Definition 4.17. We denote by Z0 the zip datum

Z0 = (G, P0, L0, Q0,M0, ϕ
n)
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where Q0 is a parabolic subgroup of Q defined by

Q0 = ϕn(P0 ∩ L)Ru(Q)⊂ Q,

with Ru(Q) the unipotent radical of Q and where L0, M0 are the Levi subgroups of P0, Q0.

Proposition 4.18. We have inclusions

EZ,P0 ⊂ EZ0 ⊂ P0 × Q0

and the induced maps
G-ZipFlagZ,P0 ψ1

−→ G-ZipZ0 ψ2
−→ ⌊P0\G/Q0⌋

are smooth and surjective.

Proof. See [Goldring and Koskivirta 2019b, Section 3.1]. □

Definition 4.19. The fine stratification of G-ZipFlagZ,P0 is the stratification of G-ZipZ0 pulled back
by ψ1 and the coarse stratification of G-ZipFlagZ,P0 is the stratification of the Bruhat stack ⌊P0\G/Q0⌋

pulled back by ψ2 ◦ψ1. If w ∈
I0 W ∪ W J0 , then we write G-ZipFlagZ,P0

w for the corresponding fine strata.

In the special case where P0 = B is the Borel subgroup, the map ψ2 is an isomorphism, so the coarse
and the fine stratifications of G-ZipFlagZ,P0 coincide. Note that if we have an inclusion of auxiliary
parabolics B ⊂ P0 ⊂ P1 ⊂ P , then there exists natural maps making the following diagram 2-cartesian:

G-ZipFlagZ,P0 ⌊P0\G/Q0⌋

G-ZipFlagZ,P1 ⌊P1\G/Q1⌋

However, we don’t know if a similar statement holds if we replace the Bruhat stacks with G-ZipZ0 and
G-ZipZ1 .

Corollary 4.20. The stack G-ZipFlagZ,P0 can be decomposed as

G-ZipFlagZ,P0 =

⊔
w∈

I0 W

G-ZipFlagZ,P0
w

and for all w ∈
I0 W , we have the closure relation

G-ZipFlagZ,P0
w =

⊔
w′≼w,w′∈

I0 W

G-ZipFlagZ,P0
w′ ,

where the order on I0 W is the one introduced in Proposition 4.10 with I replaced by I0.

Corollary 4.21. Let w ∈
I0 W ∪ W J0 and G-ZipFlagZ,P0

w be the corresponding fine strata. Then
G-ZipFlagZ,P0

w is a smooth stack over Fp of pure dimension l(w)+ dim P − dim G.

Now we want to construct some sections of vector bundles on G-ZipZ , G-ZipFlagZ,P0 and relate
their nonvanishing loci to the stratification we have introduced. We start by introducing vector bundles
on G-ZipZ .



164 Thibault Alexandre

Definition 4.22. Let ρ : L → GL(V ) be a finite-dimensional algebraic representation of the Levi L .
Consider the map f : EZ → L which is the composition of the first projection EZ → P with the quotient
map P → L . The composition ρ ◦ f is an algebraic representation of EZ . It induces a locally free sheaf
W(V ) of rank dimFp V on ⌊EZ\G⌋. If λ∈ X∗(T ) is a I -dominant character of T , we simply denote ∇(λ)

the locally free sheaf W(H 0(L/BL ,Lλ)). Note that H 0(L/BL ,Lλ) is the costandard L-representation of
highest weight w0w0,Lλ.

More generally, we can define vector bundles on G-ZipFlagZ,P0 .

Definition 4.23. Let ρ : P0 → GL(V ) be a finite-dimensional algebraic representation of the parabolic P0.
Consider the first projection map f : EZ,P0 → P0. The composition ρ ◦ f is an algebraic representation
of EZ,P0 and it induces a locally free sheaf L(V ) of rank dimFp

V on ⌊EZ,P0\G⌋. If λ∈ X∗(L0)⊂ X∗(T )
is a character of L0, we also denote by Lλ the line bundle L(λ) where we see λ as a one-dimensional
representation of P0.

We have defined vector bundles ∇(λ) on G-ZipZ and line bundles Lλ on G-ZipFlagZ,P0 for certain
characters λ ∈ X∗(T ). The next proposition gives a direct relation between them.

Proposition 4.24. Recall that π : G-ZipFlagZ,P0 → G-ZipZ is the proper and smooth map that forgets
the P0-torsor from a zip flag of type (Z, P0). Let λ ∈ X∗(L0) be an I0-dominant character of L0. We have
a canonical isomorphism

π∗Lλ ≃ ∇(λ).

Proof. Consider the cartesian diagram

G-ZipFlagZ,P0 ⌊∗/P0⌋

G-ZipZ
⌊∗/P⌋

π

ζ̃

π̃

ζ

where the horizontal maps are given by the universal P0-torsor on G-ZipFlagZ,P0 and the universal
P-torsor on G-ZipZ . For each character λ ∈ X∗(P0), we have a line bundle Lλ on ⌊∗/P0⌋ and a vector
bundle ∇(λ) on ⌊∗/P⌋ (corresponding to the induced P-representation H 0(P/P0,Lλ)) that satisfies

ζ̃ ∗Lλ = Lλ, ζ ∗
∇(λ)= ∇(λ).

It is straightforward from the definitions that

π̃∗Lλ = ∇(λ).

As the map is fibered in P/P0 by Proposition 4.16, we know by Proposition 2.5 and Lemma 3.19 that for
a I0-dominant character λ, we have

Rπ̃∗Lλ = π̃∗Lλ, Rπ∗Lλ = π∗Lλ.
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Since ζ is flat, we conclude as in the end of the proof of Proposition 3.20 with the base change theorem
in the derived category that says that the natural map

ζ ∗
◦ Rπ̃∗Lλ → Rπ∗ ◦ ζ ∗Lλ

is an isomorphism. □

On the Bruhat stack Brh = ⌊B\G/B⌋, we have the Bruhat stratification

Brh =

⊔
w∈W

Brhw,

where Brhw = ⌊B\BwB/B⌋ and for all w ∈ W we have the closure relation

Brhw =

⊔
w′≤w,w′∈W

Brhw′,

where ≤ is the Bruhat order. We consider the morphism

ψ : G-ZipFlagZ,B
→ Brh

defined as the composition of the morphism induced by the inclusion

EZ,B ⊂ B × zBz−1

with the isomorphism
αz : ⌊B\G/zBz−1

⌋ → ⌊B\G/B⌋,

that sends x to xz. We use this stack to construct some sections on G-ZipFlagZ,P0 .

Proposition 4.25. Given two characters (λ, η) ∈ X∗(T )× X∗(T ), the associated line bundle Lλ,η on Brh
has the following properties:

(1) We have a canonical isomorphism ψ∗Lλ,η = Lλ+p σ (zη), where σ : Fp → Fp is the inverse of the
Frobenius.

(2) For all w ∈ W , we have H 0(Brhw,Lλ,η) ̸= 0 ⇔ η = −w−1λ.

(3) dimFp H 0(Brhw,Lλ,−w−1λ)= 1.

(4) For any nonzero s ∈ H 0(Brhw,Lλ,−w−1λ) viewed as a rational function on Brhw, one has

div(s)= −

∑
α∈Ew

⟨λ,wα∨
⟩Brhwsα ,

where Ew = {α ∈ φ+
|wsα <w and l(wsα)= l(w)− 1}. The set of wsα for α ∈ Ew is called the set

of lower neighbors of w.

Proof. For (i), see [Goldring and Koskivirta 2019a, Lemma 3.1.1]. For (ii) to (iv), see [loc. cit.,
Theorem 2.2.1]. □

Definition 4.26. Let w ∈ W and n ≥ 0. We define by induction on n, the element w(n) by setting

(1) w(0) = e,

(2) w(n) = σ
(w(n−1)w) if n ≥ 1.
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Proposition 4.27. The function

Dw : X∗(T )→ X∗(T ),

λ 7→ λ− p
σ
(zw−1λ),

induces a Q-linear automorphism of X∗(T )⊗Z Q. If χ is a character, its inverse by Dw is given by the
Q-character

λ=
−1

prn − 1

rn−1∑
i=0

pi (zw−1)(i) σ
i
χ,

where r is an integer such that (zw−1)(r) = e and n is an integer such that χ is defined over Fpn .

Proof. See [Goldring and Koskivirta 2019a, Lemma 3.1.3]. □

Having defined sections on stacks G-ZipZ , we can study their vanishing locus.

Definition 4.28. Let λ ∈ X∗(P0) be a L0-dominant character of P0 and

s ∈ H 0(G-ZipFlagZ,P0
w ,Lλ),

a nonzero section. We say that s is a generalized Hasse invariant for G-ZipFlagZ,P0
w if there exists some

d ≥ 1 such that sd extends to G-ZipFlagZ,P0
w with nonvanishing locus G-ZipFlagZ,P0

w . We define the sets

CHa,I0,w = {λ ∈ X∗(P0) | Lλ has a generalized Hasse invariant for G-ZipFlagZ,P0
w }

and

CHa,I0 =

⋂
w∈W

CHa,I0,w.

Now, we give a strong result for the existence of generalized Hasse invariants on the stack G-ZipFlagZ,P0 .

Proposition 4.29. Let λ ∈ X∗(P0) be a L0-dominant character, w be an element of I0 W and s be a
nonzero section of H 0(G-ZipFlagZ,P0

w ,Lλ). Then, the following statements are equivalent:

(1) s is a generalized Hasse invariant for G-ZipFlagZ,P0
w .

(2) For all α ∈ Ew, we have
rn−1∑
i=0

⟨(zw−1)(i)(σ
i
λ),wα∨

⟩pi > 0,

where r is an integer such that (zw−1)(r) = e and n is an integer such that λ is defined over Fpn .

Proof. See [Goldring and Koskivirta 2019a, Proposition 3.2.1]. □

Example 4.30. We give more details in the case G = Sp4 and Z = Zµ with µ the cocharacter that
stabilizes the Hodge filtration of the Siegel datum. The Levi L is GL2. We denote by s1 and s2 the simple
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reflections associated to the simple roots (1,−1) and (0, 2). We represent the elements of W in the
diagram

w0 = s2s1s2s1

w1 = s2s1s2 w′

1 = s1s2s1

w2 = s2s1 w′

2 = s1s2

w3 = s2 w′

3 = s1

e

where an arrow is drawn from w to w′ if w′
≤ w and l(w′)= l(w)− 1. For each w ∈ W and λ ∈ X∗, we

denote by sλ,w the quasisection in H 0(G-ZipFlagZ,B
w ,Lλ) obtained via pullback from a nonzero quasi-

section of H 0(Brhw,Lχ,−w−1χ ) where χ is a Q-character such that Dw(χ)= λ.11 We write λ= (k1, k2)

and we compute div(sλ,w) for each w:

div(sλ,w0)=
1

p2 − 1
((p − 1)(k1 − k2)[w1] − (k2 + pk1)[w

′

1]),

div(sλ,w1)=
1

p − 1
(−k1[w2] − k2[w

′

2]),

div(sλ,w′

1
)=

1
p2 + 1

(−((p − 1)k1 + (p + 1)k2)[w2] + ((p + 1)k1 − (p − 1)k2)[w
′

2]),

div(sλ,w2)=

(
k1

p + 1
−

k2

p − 1

)
[w3] +

−k2

p − 1
[w′

3],

div(sλ,w′

2
)= −

(
k1

p − 1
+

k2

p + 1

)
[w3] +

−k1

p − 1
[w′

3],

div(sλ,w3)=
1

p2 + 1
(k2 − pk1)[e],

div(sλ,w′

3
)=

1
p + 1

(k1 − k2)[e].

We deduce that the set of characters

C1 :=

{
λ= (k1, k2)

∣∣∣ 0> k1 >
p − 1
p + 1

k2 and k2 > pk1

}

11Quasisection means a section of a certain positive tensorial power of Lλ.
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has generalized Hasse invariants for all strata of G-ZipFlagZ,B
w . Since the character of the Levi are

X∗(L)= Z(1, 1) and the minimal length left coset representatives are

I W = {e, w3, w2, w1},

we deduce that the following set of characters

C2 := {λ= (k1, k1) | k1 < 0}

has generalized Hasse invariant for all strata of G-ZipZ .

Example 4.31. We give some details in the case G = Sp6. The Levi L is GL3 and we denote by s1, s2

and s3 the simple reflections associated to the simple roots (1,−1, 0), (0, 1,−1) and (0, 0, 2). The Weyl
group W is isomorphic to S3 ⋉ (Z/2Z)3 (48 elements). The computations can be painful without a
computer, so we have implemented an algorithm in SageMath that computes the divisor of all the sw,λ for
any g ≥ 2. See github.com/ThibaultAlexandre/generalized-hasse-invariants to download the algorithm.
Take p = 7, w = s1s2s3, and λ= (−1,−3,−5). We get

div(sw,λ)=
5
6 [s2s3] +

1
2 [s3s1] +

1
6 [s1s2].

Koskivirta and Goldring introduced a notion called orbitally p-closeness that guarantees a character to
have generalized Hasse invariants for all strata without having to compute all the div(sw,λ). However,
this notion is not necessary for a character to have Hasse invariants.

Definition 4.32. Let λ be a character of T . For every coroot such that ⟨λ, α∨
⟩ ̸= 0, we set

Orb(λ, α∨)=

{
|⟨λ,wα∨

⟩|

|⟨λ, α∨⟩|

∣∣∣ w ∈ W ⋊Gal(Fp/Fp)

}
and we say that λ is

(1) orbitally p-close if maxα∈φ Orb(λ, α∨)≤ p − 1,

(2) Z0-ample if ⟨λ, α∨
⟩> 0 for all α ∈ I\I0 and ⟨λ, α∨

⟩< 0 for all α ∈ φ+
\φ+

L .

Proposition 4.33. Let λ be a character of P0. If λ is orbitally p-close and Z0-ample then, there exists
d ≥ 1 such that for all w ∈

I0 W and all nonzero section s in

H 0(G-ZipFlagZ,P0
w ,Lλ),

the d-th power sd extends to G-ZipFlagZ,P0
w with nonvanishing locus G-ZipFlagZ,P0

w .

Proof. See [Goldring and Koskivirta 2019a, Proposition 3.2.3]. □

4.2. G-Zip associated to the universal abelian scheme. In this subsection, we specialize our discussion
to the Siegel case. Recall that the Siegel modular variety Sh is a smooth scheme over k = Fp. We denote by
π : YI0 → Sh the Siegel flag bundle of type I0 ⊂ I . Recall that π extends to the toroidal compactifications
π : Y tor

I0
→ Shtor. We also have a minimal compactification Shmin for the Shimura variety but not for the

https://github.com/ThibaultAlexandre/generalized-hasse-invariants
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flag bundle. The goal of this subsection is to define the maps ζ and ζI0 . We need some results on the
Hodge and conjugate filtrations of abelian schemes. We recall a result due to Deligne and Illusie.

Proposition 4.34. Let S be a scheme of characteristic p. Let f : A → S be an abelian scheme over S.
Consider the Hodge to de Rham spectral sequence

E i, j
2 = R j f∗�i

A/S =⇒ H i+ j
dR (A/S).

and the conjugate spectral sequence

E ′

1
i, j

= Ri f∗(H j (�•

A/S)) =⇒ H i+ j
dR (A/S).

Then

(1) E i, j
2 degenerates at page 2,

(2) E ′

1
i, j degenerates at page 1.

Proof. See [Deligne and Illusie 1987, Corollaire 2.4 and Remarques 2.6(iv)]. □

Definition 4.35. Let S be a scheme of characteristic p. Let f : A → S be an abelian scheme over S.
The Hodge filtration of A over S is the two-step underlying filtration on H 1

dR(A/S) coming from the
degeneration of the Hodge to de Rham spectral sequence

0 → π∗�
1
A/S → H 1

dR(A/S)→ R1π∗OA → 0.

Definition 4.36. The conjugate filtration is the two-step underlying filtration on H 1
dR(A/S) coming from

the degeneration of the conjugate spectral sequence

0 → R1π∗H0(�•

A/S)→ H 1
dR(A/S)→ π∗H1(�•

A/S)→ 0.

The Hodge and the conjugate filtration are related on their graded pieces by the Cartier isomorphism
which of we recall the definition.

Definition 4.37. Let S be a scheme of characteristic p and f : A → S be a smooth morphism.12 The
Cartier morphism is a map of graded algebras

C−1
:

⊕
i

�i
A(p)/S →

⊕
i

Hi (F∗�
•

A/S),

where F : A → A(p) is the relative geometric Frobenius of A over S. It is enough to define it in degree 0
and 1 and then use the graded algebra structure to extend it. In degree 0, it is the map F∗

:OA(p) → F∗OA.
In degree 1, it is a map

�1
A(p)/S → H1(F∗�

•

A/S)

coming from the S-derivation δ : OA(p) → H1(F∗�
•

A/S) satisfying (we use the isomorphism OA(p) =

OA ⊗OS,F∗ OS)

(1) δ( f s ⊗ s ′)= δ( f ⊗ s ps ′),

(2) δ( f g ⊗ s ′)= f pδ(g ⊗ s)+ g pδ( f ⊗ s)

12Such as an abelian scheme A over S.
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for all f, g ∈ OA and s, s ′
∈ OS . If f ∈ OA and s ∈ OS , we define δ( f ⊗ s) to be the cohomology class

of s f p−1d f .

Proposition 4.38 [Cartier 1957]. The Cartier morphism C−1 is an isomorphism and it satisfies:

(1) C−1(1)= 1.

(2) C−1(w∧w′)= C−1(w)∧ C−1(w′) for all w ∈�i
A(p)/S , w′

∈�i ′

A(p)/S .

(3) C−1(d( f ⊗ 1))= [ f p−1d f ].

The Hodge filtration and the conjugate filtration of an abelian scheme f : A → S of relative dimension g
can be seen as a P-reduction I and a Q-reduction I of the G = Sp2g-torsor H 1

dR(A/S) where P and Q
are the maximal parabolic subgroups associated to the cocharacter datum (Sp2g, µ).

13 With the Cartier
isomorphism, we can construct an isomorphism

ψ : (ϕ)∗(IP/U )→ IQ/V

of M-torsors. In other words, we can construct a zip (H 1
dR(A/S), IP , IQ, ψ) over S of type Z =

(G, P, L , Q,M, ϕ).

Definition 4.39. The morphism
ζ : Sh → G-ZipZ

is the classifying map of the universal zip I = (H1
dR, IP , IQ, ψ) associated to the universal abelian scheme

f : A → Sh over Sh. For all w ∈
I W , we define the locally closed subscheme Shw := ζ−1(G-ZipZ

w).

Over YI0 , we have a universal PI0-reduction J of the P-torsor IP corresponding to the Hodge filtration.
The pair (I ,J ) is a zip flag of type (Z, I0).

Definition 4.40. The morphism
ζI0 : YI0 → G-ZipFlagZ,I0

is the classifying map of the universal zip flag (I ,J ) of type (Z, I0). For all w ∈
I0 W , we define the

locally closed subscheme (YI0)w := ζ−1
I0
(G-ZipFlagZ

w).

Proposition 4.41. The morphisms ζ and ζI0 are smooth and surjective.

Proof. See [Zhang 2018, Theorem 3.1.2] for the smoothness. See [Oort 2001] for the surjectivity. □

As generalizations lift along flat morphisms [Stacks 2005–, Tag 03HV], we deduce in particular that
we have the following closure relations:

(1) For all w ∈
I W, Shw =

⊔
w′≼w,w′∈

I W
Shw′ .

(2) For all w ∈
I0 W, (YI0)w =

⊔
w′≼w,w′∈

I0 W
(YI0)w′ .

We give a statement about the extension of these results on the toroidal compactifications.

13See the paragraph after Definition 4.3.

https://stacks.math.columbia.edu/tag/03HV
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Proposition 4.42. The universal zip I extends to a zip of type Z over the toroidal compactification Shtor

of Sh. The corresponding classifying morphism ζ tor extends the morphism ζ :

Shtor G-ZipZ

Sh

ζ tor

ζ

Proof. See [Goldring and Koskivirta 2019a, Theorem 6.2.1]. □

Corollary 4.43. The universal zip flag (I ,J ) extends to a zip flag of type (Z, I0) over the toroidal
compactification Shtor of Sh. The corresponding classifying morphism ζ tor

I0
extends the morphism ζI0 :

Y tor
I0

G-ZipFlagZ,I0

YI0

ζ tor
I0

ζI0

Proposition 4.44. The morphisms ζ tor and ζ tor
I0

are smooth.

Proof. See [Andreatta 2023, Theorem 1.2.]. □

5. Positive automorphic line bundles and Kodaira vanishing

Let Shtor be a smooth and projective toroidal compactification of the special fiber of the Siegel modular
variety as in Definition 3.7. Let I0 ⊂ I be a subset and π : Y tor

I0
→ Shtor be the associated flag bundle that

parametrizes P0-reduction of the Hodge filtration over Shtor. In the last section, we have defined smooth
morphisms

ζ tor
: Shtor

→ G-ZipZµ

and
ζ tor

I0
: Y tor

I0
→ G-ZipFlagZµ,P0,

which allowed us to construct generalized Hasse invariants on the stratification of Shtor and Y tor
I0

. We
denote by Dred the normal crossing Cartier divisors supported on the boundary of Shtor. Recall that there
exists an effective Cartier divisor D whose associated reduced divisor is Dred and an integer η0 > 0 such
that ω⊗η(−D) is ample on Shtor for every η ≥ η0.14 To lighten our notation, we write D, Dred instead
of π−1 D, π−1 Dred when no confusion is possible. Following the result of [Brunebarbe et al.], we use
the generalized Hasse invariants to prove that certain line bundles Lλ are D-ample on the flag bundle
Y tor

I0
.15 The motivation for this notion comes from the determinant ω of the Hodge bundle �tor which is

not ample on Shtor but only D-ample. Finally, we state a Kodaira–Nakano-like vanishing theorem for
D-ample line bundles in positive characteristic from [Esnault and Viehweg 1992].

14See the paragraph after Definition 3.8.
15See Definition 5.2.



172 Thibault Alexandre

5.1. Positive line bundles. We recall the main positivity notion we will need for our automorphic line
bundles. In this subsection X is a projective variety over k, a field of any characteristic.

Definition 5.1 [Lazarsfeld 2004, Chapter 1]. Let L a line bundle over X :

(1) L is ample if for any coherent module F over X , there is an integer n0 ≥ 1 such that for all n ≥ n0,
the sheaf F ⊗L⊗n is globally generated.

(2) Equivalently, L is ample if for any subvariety V ⊂ X , we have

c1(L)dim V
· [V ]> 0,

where c1(L) denotes the first Chern class of L and · the intersection product in the Chow ring of X .

(3) Equivalently, L is ample if for any subvariety V ⊂ X , there is an integer d ≥ 1, a nonzero section s
of L⊗d

|V and a point x ∈ V such that s(x)= 0.

(4) L is nef if for any subvariety V ⊂ X , we have c1(L)dim V
· [V ] ≥ 0.

(5) Equivalently, L is nef if for any subvariety V ⊂ X , there is an integer d ≥ 1 and a nonzero section s
of L⊗d

|V .

(6) L is big if there is an integer n ≥ 1 and an ample line bundle A such that L⊗n
⊗A⊗−1 is globally

generated.

We now define the nonstandard notion of D-ample line bundle on a pair (X, D). It is a notion that
appears in [Esnault and Viehweg 1992] without being explicitly named.

Definition 5.2. Let D be an effective Cartier divisor of X and L a line bundle over X . We say that L is
D-ample if

∃η0 > 0,∀η ≥ η0, L⊗η(−D) is ample.

We recall some known facts about D-ample line bundles. Since we have not find a reference, we
reprove them.

Proposition 5.3. Le D be an effective Cartier divisor of X and L a line bundle over X. We have the
following implication.

L is ample =⇒ L is D-ample.

Proof. If L is ample, then L⊗η(−D)= L⊗η
⊗OX (−D) must be ample for all η ≥ 1 large enough. □

Proposition 5.4. Let L be a line bundle over X. The following assertions are equivalent:

(1) L is nef and big.

(2) There exists an effective Cartier divisor D on X such that L is D-ample.

Proof. Assume that there exists an effective Cartier divisor D on X such that L is D-ample. If L is not
nef, then there is a curve C ⊂ X such that the intersection product

c1(L) · [C]
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is negative. It implies that the intersection product

c1(L⊗η(−D)) · [C] = η (c1(L) · [C])︸ ︷︷ ︸
<0

−D · [C]

must be negative when η is large enough, which contradicts the D-ampleness of L. Moreover, since we
can write L⊗η0 as a tensor product

L⊗η0 = L⊗η0(−D)⊗OX (D)

of an ample line bundle with an effective line bundle, L is big. We are left to show the implication (1)⇒ (2).
Since L is big, there exists an integer n0 ≥ 1 and an ample line bundle A such that L⊗n0 ⊗A⊗−1

=OX (D)
with D an effective divisor. In particular, the line bundle L⊗n0(−D) is ample. Since L is nef and the
tensor product of an ample line bundle with a nef line bundle is ample, the line bundle L⊗n(−D) is ample
for all integer n ≥ n0. □

Proposition 5.5. Let D be an effective Cartier divisor and L a line bundle over X. If L and L′ are
D-ample line bundles on X , then L⊗L′ is D-ample. If L⊗n is D-ample for a positive integer n, then L is
D-ample.

Proof. Assume that L and L′ are D-ample line bundles. In particular, L′ is nef by Proposition 5.4. For
n ≥ 1 large enough, the bundle

(L⊗L′)
⊗n
(−D)= L⊗n(−D)⊗ (L′)

⊗n

is ample as the tensor product of an ample line bundle with a nef line bundle. If L⊗n is D-ample for
some n ≥ 1, it implies that L⊗n , hence L, is nef. It also means that there is an integer η0 ≥ 1 such that
L⊗nη0(−D) is ample. Thus, the bundle

L⊗η−nη0 ⊗L⊗nη0(−D)= L⊗η(−D)

is ample for all η ≥ nη0. □

Proposition 5.6. Let D be an effective Cartier divisor, n ≥ 1 an integer and L a line bundle over X. The
following assertions are equivalent:

(1) L is D-ample.

(2) L is nD-ample.

Proof. Assume that L is D-ample. In particular L is nef and consider η0 ≥ 1 such that L⊗η(−D) is ample
for all η ≥ η0. The bundle

L⊗η(−nD)= L⊗η−nη0 ⊗(L⊗η0(−D))⊗n

is ample for all η ≥ nη0 as a tensor product of a nef line bundle with an ample line bundle. Assume that
L is nD-ample. It implies that the bundle

(L⊗η(−D))⊗n
= L⊗nη(−nD)

is ample for all η large enough. □
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5.2. D-ample automorphic line bundles. It is now convenient to introduce a relevant subset of characters
of P0.

Definition 5.7. We set

Cample,I0 = {λ ∈ X∗(P0)Lλ is D-ample on Y tor
I0

}.

Proposition 5.8. The subset Cample,I0 is a saturated cone of X∗(P0) by Proposition 5.5 and we call it the
D-ample cone of Y tor

I0
.

Definition 5.9. Let λ ∈ X∗(P0) and w ∈
I0 W . We call a generalized Hasse invariant for Lλ any section s

of L⊗d
λ (for some d ≥ 1) over Y tor

I0,w
that vanishes exactly on the boundary Y tor

I0,w
− Y tor

I0,w
. Any Lλ with

λ ∈ CHa,I0,w admits a generalized Hasse invariant obtained as a pullback by ζ tor
I0

.

We can now state and give a proof of the main result of this section.

Theorem 5.10. If λ ∈ X∗(P0) is a character in CHa,I0 , then Lλ is D-ample on Y tor
I0

.

Proof. We start by proving that Lλ is nef on Y tor
I0

for any λ ∈ CHa,I0 . Let V be a subvariety of Y tor
I0

and
consider the minimal element w of I0 W such that V ⊂ Y tor

I0,w
. Such an element always exists because

Y tor
I0,w0

= Y tor
I0

. We consider a generalized Hasse invariant s ∈ H 0(Y tor
I0,w

,L⊗d
λ ) (for some d ≥ 1) and we

claim that the restriction s|V is not identically zero. If it were, we would have

V ⊂ Y tor
I0,w

− Y tor
I0,w

=

⊔
w′≼w,w′ ̸=w

Y tor
I0,w′,

which would contradict the minimality of w (V is irreducible). In particular, we have shown that Lλ is
nef. Let λ be a character in CHa,I0 . Recall that η0 ≥ 1 is an integer such that ω⊗η(−D) is ample for all
η ≥ η0. Since Lλ is π -ample, we deduce that

Lλ ⊗ (π∗ω⊗η(−D))⊗m

is ample on Y tor
I0

for m large enough. Since λ belongs to CHa,I0 and the inequalities that define CHa,I0 are
strict, we know that for all n large enough,

L⊗n
λ ⊗π∗ω⊗−η

has generalized Hasse invariants for all strata Y tor
I0,w

, so it is nef. Hence, we know

Lλ ⊗ (π∗ω⊗η(−D))⊗m
⊗ (L⊗n

λ ⊗π∗ω⊗−η)⊗m
= L⊗nm+1

λ (−m D)

is ample on Y tor
I0

for n,m large enough. We consider some integer n0,m0 ≥ 1 such that L⊗n0m0+1
λ (−m0 D)

is ample. Since Lλ is nef, we must have L⊗η
λ (−m0 D) ample for all η ≥ n0m0 + 1. In particular, Lλ is

m0 D-ample, hence D-ample by Proposition 5.6. □

Remark 5.11. The theorem can be rephrased as an inclusion

CHa,I0 ⊂ Cample,I0 .
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Using Proposition 4.33 for the existence of generalized Hasse invariants on the stack G-ZipFlagZµ,P0 ,
we get:

Theorem 5.12. Let λ be a character of P0. If λ is orbitally p-close and Z0-ample, then Lλ is D-ample
on Y tor

I0
.

5.3. A logarithmic Kodaira–Nakano vanishing theorem in positive characteristic. In this subsection,
we review the Kodaira–Nakano vanishing theorem in positive characteristic due to Deligne and Illusie
[1987] and a logarithmic version due to Esnault and Viehweg [1992]. Let X be a smooth projective
variety of dimension n over a perfect field k of characteristic p> 0. Let Dred be a normal crossing divisor
of X . We have an open immersion τ : U := X − Dred → X .

Proposition 5.13. Recall that X is a smooth projective variety over k and let L be an ample line bundle
over X. Denote by d the dimension of X. Assume that (X,L) lifts to W2(k) and p ≥ d , then

∀i + j > d, H i (X, � j
X ⊗L)= 0.

Proof. The detailed proof can be found in [Deligne and Illusie 1987]. □

Over the flag bundle Y tor
I0

of the toroidal compactification of the Siegel modular variety, we have seen
that certain line bundles Lλ are D-ample for some effective divisor D supported on the boundary. This
motivates this refined version of the result of Deligne and Illusie due to Esnault and Viehweg.16

Proposition 5.14. Recall that X is a smooth projective variety over k. Recall that Dred denotes a normal
crossing divisor on X. Let D be an effective Cartier divisor whose associated reduced divisor is Dred and
let L be a D-ample line bundle on X. Denote by d the dimension of X. Assume that the triple (X, Dred,L)
lifts to W2(k) and p ≥ d , then

∀i + j > d, H i (X, � j
X (log Dred)⊗L(−Dred))= 0.

Proof. The proof of [Esnault and Viehweg 1992, Proposition 11.5] shows that

∀i + j <min(d, p), H i (X, � j
X (log Dred)⊗L−1)= 0,

which is equivalent to

∀i + j >max(2d − p, d), H i (X, � j
X (log Dred)⊗L(−Dred))= 0

by Serre duality. We use that for all i + j = n, the pairing �i
X (log Dred)⊗�

j
X (log Dred)→�n

X (log Dred)

mapping α⊗β to α∧β is perfect. □

Remark 5.15. Motivated by Proposition 5.4, one might be tempted to replace the assumption D-ample
by nef and big. However, the Proposition 5.14 requires a normal crossing divisor.

16This result already appears in [Lan and Suh 2013].



176 Thibault Alexandre

6. Vanishing for automorphic vector bundles

In this section, we prove our vanishing results announced in Section 1.2. We start with some preliminary
results concerning the spectral sequence associated to the cohomology of a filtered sheaf. Next, we
construct the function gI0,e on the power set of characters and prove that it produces new vanishing results
from old ones. Finally, we give more details in the special case g = 2 as it is easier than the general case.

6.1. Spectral sequence associated to a filtered sheaf. We consider a scheme morphism f : X → S and a
sheaf F on X endowed with an increasing filtration F• with graded pieces

∀k ∈ Z, grk = Fk/Fk−1.

Proposition 6.1. There is a spectral sequence starting at page 2

E t,k
2 = Rt+k f∗(grk) =⇒ Rt+k f∗(F).

Proof. This result is well-known: see the appendix of [Esnault and Viehweg 1992] for example. We just
recall how the differentials of the second page are defined. For all k ∈ Z, there is an exact sequence

0 → Fk−1/Fk−2 → Fk/Fk−2 → Fk/Fk−1 → 0

and the differentials are the connecting morphisms

∀i ≥ 0, Ri f∗(grk)→ Ri+1 f∗(grk−1). □

From the study of this spectral sequence, we deduce several results.

Lemma 6.2. Let i0 ≥ 0 and assume

∀k ∈ Z, Ri0 f∗(grk)= 0.

Then,
Ri0 f∗(F)= 0.

Proof. We pass from a page of a spectral sequence to the next one by taking cohomology and since
E i0−k,k

2 = Ri0 f∗(grk)= 0 for all k ∈ Z, we have

∀a ≥ 2,∀k ∈ Z, E i0−k,k
a = 0.

Thus,
∀a ≥ 2,∀k ∈ Z, E i0−k,k

∞
= 0

and
Ri0 f∗(F)= 0. □

Lemma 6.3. Let i0 ≥ 0 and assume that there exists n ∈ Z such that for all k > n, grk = 0. If

Ri0 f∗(F)= 0,∀k ≤ n − 1, Ri0+1 f∗(grk)= 0,

then
Ri0 f∗(grn)= 0.
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k

n + 1 0 0 0 0 0

n f∗(grn) R1 f∗(grn) R2 f∗(grn) R3 f∗(grn) · · ·

n − 1 0 f∗(grn−1) R1 f∗(grn−1) R2 f∗(grn−1) · · ·

n − 2 0 0 f∗(grn−2) R1 f∗(grn−2) · · ·

n − 3 0 0 0 f∗(grn−3) · · ·

−n −n + 1 −n + 2 −n + 3 · · · t

Figure 2. E2-page of the spectral sequence.

Proof. For a visual support, see the Figure 2. From the hypothesis on the graded pieces, we know
that for all a ≥ 2, the differential with target E−n+i0,n

a vanishes. Since for all k ≤ n − 1 we have
Ri0+1 f∗(grk) = 0, then for all a ≥ 2 the differential with source E−n+i0,n

a must vanish. Thus, we get
Ri0 f∗(grn)= E−n+i0,n

2 = E−n+i0,n
∞ and E−n+i0,n

∞ = 0 as a graded piece of Ri0 f∗(F). □

6.2. The general case. The goal of this subsection is to explain how to deduce new vanishing results for
the coherent cohomology from known ones. Other Shimura varieties could be considered but we have
restricted ourselves to the Siegel case for simplicity. We recall the notation. Let Shtor be the special fiber
over Fp of the Siegel modular variety of genus g ≥ 2 and π : Y tor

I0
→ Shtor the flag bundle in P/P0 where

P0 ⊂ Sp2g is a parabolic subgroup of type I0 ⊂ I ⊂1 which is contained in the parabolic P ⊂ Sp2g of
type I . We denote by Dred the normal crossing divisor supported on the boundary of Shtor. We use the
same notation Dred for the normal crossing divisor π−1 Dred of Y tor

I0
when no confusion is possible. We

denote by d, d0 the dimension of Shtor, Y tor
I0

and r0 = d0 − d the relative dimension of π . We choose a
system of positive roots in a way to obtain

I = {ei − ei+1 | i = 1, . . . , g − 1} ⊂1= {ei − ei+1 | i = 1, . . . , g − 1} ∪ {2eg}.

The Levi subgroup L of P ⊂ Sp2g is GLg and to each representation V of L , we have an associated
vector bundle W(V ) on Shtor. With our conventions, the Hodge bundle � is the vector bundle of rank g
associated to the standard representation stdL of L . To each character λ of P0, we have an associated
line bundle Lλ on Y tor

I0
. Assuming that p ≥ d0, the basic idea is to use the logarithmic Kodaira–Nakano

vanishing theorem (see Proposition 5.14) on the flag bundle Y tor
I0

with D-ample line bundle Lλ. Since the
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determinant of

�1
Y tor

I0
(log Dred)

is a line bundle over Y tor
I0

, it is not hard to express it as an automorphic bundle and it provides vanishing
results for cohomology groups H i with i > 0. The accessible weights with this method are regular. To
access less regular weights, a natural idea is to use the logarithmic Kodaira–Nakano vanishing theorem for

�m
Y tor

I0
(log Dred)

with m<d0. However, this bundle is not a line bundle and doesn’t seem related to automorphic bundles (see
Remark 6.9). A solution is to filter it by automorphic vector bundles and then use the associated spectral
sequence. The following result is well-known but since we haven’t found a reference, we give a proof.

Lemma 6.4. We have an exact sequence of vector bundles

0 → π∗�1
Shtor(log Dred)→�1

Y tor
I0
(log Dred)→�1

Y tor
I0
/Shtor → 0.

Proof. By [Deligne 1970, II, Section 3], we have a commutative diagram

0 π∗�1
Shtor π∗�1

Shtor(log Dred) π∗ODred 0

0 �1
Y tor

I0
�1

Y tor
I0
(log Dred) Oπ−1 Dred 0

a b

where the rows are exact (use also that π is flat for the first row). Since π is smooth, ker a = 0 and by the
snake lemma, the sequence

0 → ker b → 0 →�1
Y tor

I0
/Shtor →�1

Y tor
I0
(log Dred)/π

∗�1
Shtor(log Dred)→ 0

is exact. The desired exact sequence is obtained from b. □

Definition 6.5. Let e ≥ 0 be an integer. We define an increasing filtration F• of �d0−e
Y tor

I0
(log Dred) by

Fk = π∗�
d0−e−k
Shtor (log Dred)∧�

k
Y tor

I0
(log Dred),

with graded pieces

grk = π∗�
d0−e−k
Shtor (log Dred)⊗�k

Y tor
I0
/Shtor .

From the Proposition 6.1, we get an associated spectral sequence starting at page 2 for each λ ∈ X∗(P0)

E t,k
2,e,λ = H t+k(Y tor

I0
, grk ⊗Lλ(−Dred)) =⇒ H t+k(Y tor

I0
, �

d0−e
Y tor

I0
(log Dred)⊗Lλ(−Dred)). (2)

This spectral sequence doesn’t degenerate in general, so we need to consider weights λ that ensure
partial degeneration results. This will allow us to deduce vanishing results for tensor product of the form

�k
Shtor(log Dred)⊗ ∇(λ).
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Another difficulty arises because, in positive characteristic, algebraic representations of reductive groups
are not semisimple, so we can’t easily deduce vanishing results for automorphic bundles from vanishing
results for such tensor products. However, from Proposition 6.7, �k

Shtor(log Dred) admits a ∇-filtration if
p > d and we can use Corollary 2.11 to see that the tensor product �k

Shtor(log Dred)⊗ ∇(λ) admits also
a ∇-filtration: this will allow us to deduce new vanishing results for automorphic bundles. Since our
method relies heavily on partial degeneration results that requires vanishing results, we can think of it as
a way to deduce new vanishing results from known ones. This is why we present them in two steps:

• Degeneration: We determine the vanishing results we need to ensure the degeneration of relevant
spectral sequences.

• Propagation: Given a set of known vanishing results, we determine the new vanishing results we
can deduce from them.

To lighten our notation, we will denote the subcanonical automorphic bundle by ∇
sub(λ) instead of

∇(λ)(−Dred) and Lsub(V ) instead of L(V )(−Dred). We introduce some notation for the weights of our
automorphic bundles.

Definition 6.6. For all n ≥ 0, we set

(µn
j )1≤ j≤(d

n)
= (w0w0,Lν

n
j )1≤ j≤(d

n)
,

where the νn
j are the characters of the L-representation

∧
n Sym2 stdL .

We assume that νn
(d

n)
is the highest weight.

Proposition 6.7. If p > d = g(g + 1)/2, then for any n ≥ 1 the vector bundle �n
Shtor(log Dred) admits a

filtration

0 = Vs ⊊ Vs−1 ⊊ · · · ⊊ V0
=�n

Shtor(log Dred),

where the graded pieces are automorphic vector bundles of the form ∇(µn
j ) with µn

j dominant.

Proof. Recall from Proposition 3.12 that the Kodaira–Spencer map induces an isomorphism

�1
Shtor(log Dred)= W(Sym2 stdL)= ∇(0, . . . , 0,−2).

We only need to see that for any 1 ≤ n ≤ g(g +1)/2, the GLg-module 3n Sym2 stdL admits a ∇-filtration.
The module

Sym2 stdL = ∇(2, 0, . . . , 0)

is already a costandard module. From Proposition 2.9, the module

(Sym2 stdL)
⊗n
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admits also a ∇-filtration. Since p> g(g+1)/2 ≥ n, p does not divide n! and the surjection of G-modules

(Sym2 stdL)
⊗n

→3n Sym2 stdL

admits a GLg-equivariant section s defined by the formula

s(v1 ∧ · · · ∧ vn)=
1
n!

∑
σ∈Sn

ε(σ )vσ(1) ⊗ · · · ⊗ vσ(n).

As a direct factor of (Sym2 stdL)
⊗n , the Corollary 2.13 implies that 3n Sym2 stdL admits a ∇-filtration.

□

Proposition 6.8. We have an isomorphism

�1
Y tor

I0
/Shtor = L(Lie L/Lie(P0 ∩ L))∨,

and for all i ≥ 0, the vector bundle �i
Y tor

I0
/Shtor is filtered by line bundles

L−sM , where sM =

∑
α∈M

α for all M ⊂ φ+

L −φ+

I0
such that |M | = i.

In particular, �r0
Y tor

I0
/Shtor ≃ L−2ρI0

with

ρI0 =
1
2

∑
α∈φ+

L \φ+

I0

α.

Proof. Consider the cartesian diagram

Y tor
I0

⌊P0\∗⌋

Shtor
⌊P\∗⌋

π

ζ̃

π̃

ζ

where the horizontal arrows correspond to the universal P-torsor on Shtor and the universal P0-torsor on
Y tor

I0
and where the vertical arrow π̃ between the classifying stacks is induced by the inclusion P0 ⊂ P .

Coherent sheaves on the classifying stack ⌊P0\∗⌋ are algebraic representations of P0 and clearly, we have

�1
π̃ = Lie(P)/Lie(P0)

∨,

where the action of P0 on Lie(P) is induced by the restriction of the adjoint action of P . From the
isomorphism

ζ̃ ∗�1
π̃ =�1

π ,

we deduce that
�1

Y tor
I0
/Shtor = L(Lie(P)/Lie(P0)

∨).

Since the T -weights on Lie(P)/Lie(P0)
∨ are the −α with α ∈ φ+

L −φ+

I0
, the result follows. □
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Remark 6.9. The exact sequence

0 → π∗�1
Shtor(log Dred)→�1

Y tor
I0
(log Dred)→�1

Y tor
I0
/Shtor → 0

doesn’t seem to split and we cannot prove the vanishing of the abelian group

Ext1OY tor
I0

(�1
Y tor

I0
/Shtor, π

∗�1
Shtor(log Dred))

using known vanishing results because the vector bundle

π∗�1
Shtor(log Dred)⊗�1∨

Y tor
I0
/Shtor

is filtered by the Lλ with λ∈ X∗(P0) outside the antidominant Weyl chamber for which the first cohomology
is nonzero in general. Outside the case I0 = I , we don’t even know if �1

Y tor
I0
(log Dred) is automorphic.

In other words, we don’t know if �1
Y tor

I0
(log Dred) is of the form L(V ) for an algebraic representation V

of P0.

6.2.1. Degeneration. Multiple subsets of X∗(P0) will occur in the formulations of our degeneration
results, we gather them in the following definition.

Definition 6.10. Consider an integer 0 ≤ e ≤ d − 1. We denote C0
deg, C1

deg,e and C2
deg,e the following sets

of characters:

C0
deg := {λ ∈ X∗(P0) | λ− 2ρI0 ∈ X∗(P0)

+
},

C1
deg,e :=

{
λ ∈ X∗(P0) | ∀i > e + 1,∀ j,∀1 ≤ k ≤ e,∀M ⊂ φ+

L −φ+

I0
such that

|M | = r0 − k, H i (Shtor,∇sub(µd−e+k
j + λ− sM))= 0

}
,

C2
deg,e :=

{
λ ∈ X∗(P0) | ∀i > e + 1,∀ j ̸=

( d
d−e

)
H i (Shtor,∇sub(µd−e

j + λ− 2ρI0))= 0
}
.

Lemma 6.11. Let λ ∈ C0
deg and F be a coherent sheaf on Shtor. For all 0 ≤ i ≤ r0 and n ≥ 0, we have the

following isomorphism

H n(Y tor
I0
, π∗F ⊗�i

Y tor
I0
/Shtor ⊗Lsub

λ )= H n(Shtor,F ⊗π∗(�
i
Y tor

I0
/Shtor ⊗Lsub

λ )).

Proof. Let i ≥ 0. We know by Proposition 6.8 that the vector bundle �i
Y tor

I0
/Shtor is filtered by line bundles

L−sM , where sM =

∑
α∈M

α for all M ⊂ φ+

L −φ+

I0
such that |M | = i.

From the definition of C0
deg and the fact that the roots in φ+

L −φ+

I0
are I0-dominant, we know that all λ−sM are

I0-dominant characters. From Kempf’s vanishing theorem (see Proposition 2.5 and Lemma 3.19), we get

∀M ∀k > 0, Rkπ∗(Lλ−sM )= 0

and by Lemma 6.2 we deduce

∀k > 0, Rkπ∗(�
i
Y tor

I0
/Shtor ⊗Lλ)= 0.
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Since π∗OShtor(−Dred)= OY tor
I0
(−Dred), the projection formula implies

∀k > 0, Rkπ∗(�
i
Y tor

I0
/Shtor ⊗Lλ(−Dred))= 0.

Using again the projection formula, it implies that the Leray spectral sequence

E t,k
2 = H t(Shtor, Rkπ∗(π

∗F ⊗�i
Y tor

I0
/Shtor ⊗Lsub

λ )) =⇒ H t+k(Y tor
I0
, π∗F ⊗�i

Y tor
I0
/Shtor ⊗Lsub

λ )

is concentrated on one row and we get the desired isomorphisms. □

Proposition 6.12. Assume that p > d = g(g + 1)/2. Let e ≥ 0 and i > e be integers. For any character

λ ∈ C0
deg ∩ C1

deg,e ∩ C2
deg,e,

the vanishing

H i (Y tor
I0
, �

d0−e
Y tor

I0
(log Dred)⊗Lsub

λ )= 0

implies the vanishing

H i (Shtor,∇sub(µd−e
( d

d−e)
+ λ− 2ρI0))= 0.

Proof. We use Lemma 6.2 for the filtration of

π∗�d−e+k
Shtor (log Dred)⊗�

r0−k
Y tor

I0
/Shtor ⊗Lsub

λ

obtained from the one defined in Proposition 6.8 to see that the vanishing

∀1 ≤ k ≤ e, H i+1(Y tor
I0
, π∗�d−e+k

Shtor (log Dred)⊗�
r0−k
Y tor

I0
/Shtor ⊗Lsub

λ )= 0,

follows from the vanishing

H i+1(Y tor
I0
, π∗�d−e+k

Shtor (log Dred)⊗Lsub
λ−sM

)= 0 (3)

for all 1 ≤ k ≤ e and all M ⊂ φ+

L −φ+

I0
such that |M | = r0 − k. Since λ ∈ C0

deg, we know by Lemma 6.11
that

H i+1(Y tor
I0
, π∗�d−e+k

Shtor (log Dred)⊗Lsub
λ−sM

)= H i+1(Shtor, �d−e+k
Shtor (log Dred)⊗ ∇

sub(λ− sM)).

We use Propositions 2.9 and 6.7 to see that the bundle

�d−e+k
Shtor (log Dred)⊗ ∇

sub(λ− sM)

admits a filtration where the graded pieces are isomorphic to

∇(µd−e+k
j + λ− sM).

By Lemma 6.2, we deduce that the vanishing in equality (3) follows from λ ∈ C1
deg,e. Since

H i (Y tor
I0
, �

d0−e
Y tor

I0
(log Dred)⊗Lsub

λ )= 0
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k

2 0 0 0 0 0

1 H 0(gr1 ⊗Lsub
λ ) H 1(gr1 ⊗Lsub

λ ) H 2(gr1 ⊗Lsub
λ ) H 3(gr1 ⊗Lsub

λ ) 0

0 0 0 0 0 0

−1 0 0 0 0 0

−1 0 1 2 3 t

Figure 3. E2-page of the spectral sequence when e = 0.

by hypothesis, we can apply Lemma 6.3 to E2,d0−e,λ to deduce that

H i (Shtor, �d−e
Shtor(log Dred)⊗ ∇

sub(λ− 2ρI0))= 0.

Combining again the Propositions 2.9 and 6.7, we know that

�d−e
Shtor(log Dred)⊗ ∇

sub(λ− 2ρI0)

admits a ∇-filtration. Since λ ∈ C2
deg,e, we use again Lemma 6.3 for the ∇-filtration of �d−e

Shtor(log Dred)⊗

∇
sub(λ− 2ρI0) to see that

H i (Shtor,∇sub(µd−e
( d

d−e)
+ λ− 2ρI0))= 0. □

6.2.2. Propagation. In this section, we construct a nondecreasing function on the power set of characters
that gives new vanishing results from known ones. Our main result is Theorem 6.16.

Definition 6.13. For all k ≥ 0, we define a subset Ck
van of X∗ as

Ck
van = {λ ∈ X∗

| ∀i > k, H i (Shtor,∇sub(λ))= 0}.

Remark 6.14. Ck
van always contains the nondominant characters.

Definition 6.15. We define a function gI0,e : P(X∗)→ P(X∗) by

gI0,e(C)= µd−e
( d

d−e)
+ X∗(P0)

+
∩ (−2ρI0 + Cample,I0)∩

⋂
k, j,M

(sM − 2ρI0 −µd−e+k
j + C)

for all C ⊂ X∗ where the last intersection is taken over the set of k, j,M where 0 ≤ k ≤ e, 1 ≤ j ≤
( d

d−e

)
+ k

and M ⊂ φ+

L −φ+

I0
such that |M | = r0 − k with the exception of j =

( d
d−e

)
when k = 0.
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k

2 0 0 0 0 0

1 H 0(gr1 ⊗Lsub
λ ) H 1(gr1 ⊗Lsub

λ ) H 2(gr1 ⊗Lsub
λ ) H 3(gr1 ⊗Lsub

λ ) H 4(gr1 ⊗Lsub
λ )

0 0 H 0(gr0 ⊗Lsub
λ ) H 1(gr0 ⊗Lsub

λ ) H 2(gr0 ⊗Lsub
λ ) H 3(gr0 ⊗Lsub

λ )

−1 0 0 0 0 0

−1 0 1 2 3 t

Figure 4. E2-page of the spectral sequence when e = 1.

Theorem 6.16. Assume that p > d0. Let C be a subset of Ce+1
van . Then, we have

gI0,e(C)⊂ Ce
van.

In other words, if we have a set C of characters λ for which the cohomology

H i (Shtor,∇sub(λ))

is concentrated in degrees [0, e + 1], then the image of C by the function gI0,e is a set of characters λ for
which the cohomology H i (Shtor,∇sub(λ)) is concentrated in degrees [0, e].

Proof. Since gI0,e is nondecreasing, it suffices to show gI0,e(Ce+1
van ) ⊂ Ce

van. Let λ ∈ gI0,e(Ce+1
van ) be a

character and define λ′
:= λ+ 2ρI0 −µd−e

( d
d−e)

. From the definition of gI0,e, we first deduce that

λ′
∈ C0

deg ∩ C1
deg ∩ C2

deg

and

λ′
∈ Cample,I0 .

Since the triple (Y tor
I0
, Dred,Lλ′) lifts to Z/p2Z and p ≥ d0, we apply Proposition 5.14 to see that

H i (Shtor, �
d0−e
Y tor

I0
(log Dred)⊗Lsub

λ′ )= 0

for all i + d0 − e > d0 (i.e., i > e) and we use Proposition 6.12 (as p > d0 ≥ d) to see that

H i (Shtor,∇sub(µd−e
( d

d−e)
+ λ′

− 2ρI0))= H i (Shtor,∇sub(λ))= 0

for all i > e. □
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Figure 5. g = 2, p = 5. The weights λ = (k1 ≥ k2) such that the cohomology is
concentrated in degree 0 contains in particular the positive parallel weights (k, k) below
(−4,−4). The vanishing results in the region located near the positive parallel line comes
from the degeneration with I = {(1,−1)} and the rest corresponds to the degeneration
with I = ∅.

Remark 6.17. The theorem is still valid if we use a subset C′

ample,I0
of Cample,I0 instead of Cample,I0 in the

definition of gI0,e. In particular, by Theorem 5.12, we can use it with the subset of orbitally p-close and
Z0-ample characters.

6.3. The Siegel threefold case. In this subsection, we give more details in the case g = 2 because we
believe it already contains some of the idea of the general method and it requires less notation. Assume
that p is a prime larger than g2

= 4. The Siegel threefold Shtor is projective variety of dimension d = 3
over Fp. From the Kodaira–Spencer isomorphism, we have an identification

�1
Shtor(log Dred)= ∇(0,−2).

From Proposition 6.7, we know that any exterior power of Sym2 stdGL2 admits a ∇-filtration. It directly
implies that we have

�2
Shtor(log Dred)= ∇(−1,−3),

�3
Shtor(log Dred)= ∇(−3,−3),

and the weights of these three automorphic vector bundles are

(µ1
j ) j = {(−2, 0), (−1,−1), (0,−2)},

(µ2
j ) j = {(−3,−1), (−2,−2), (−1,−3)},

(µ3
j ) j = {(−3,−3)}.
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We start with the case I0 =∅. The associated complete flag bundle π : Y tor
→ Shtor parametrizes quotient

line bundles of the rank 2 Hodge bundle �tor. It is a P1-fibration and we have an identification:

�1
Y tor/Shtor = L−2ρ = L(−1,1).

For any integer 0 ≤ e ≤ d −1 = 2, we have an increasing filtration on the bundle �4−e
Y tor (log Dred) given by

Fk = π∗�4−e−k
Shtor (log Dred)∧�

k
Y tor(log Dred)

with graded pieces
grk = π∗�4−e−k

Shtor (log Dred)⊗�k
Y tor/Shtor .

For any character λ= (k1 ≥ k2), we have an associated spectral sequence

E t,k
2,e,λ = H t+k(Y tor,π∗�4−e−k

Shtor (log Dred)⊗�
k
Y tor/Shtor⊗Lsub

λ ) =⇒ H t+k(Y tor,�4−e
Y tor (log Dred)⊗Lsub

λ )

starting at page 2. We will study this spectral sequence for each e, starting with e = 0. In this case (see
the corresponding figure), the second page of the spectral sequence is concentrated in one row as the only
graded piece is gr1 = π∗�3

Shtor(log Dred)⊗�1
Y tor/Shtor . In particular, the spectral sequence degenerates at

page 2 and we get

H i (Y tor, π∗�3
Shtor(log Dred)⊗�1

Y tor/Shtor ⊗Lsub
λ )= H i (Y tor, �4

Y tor(log Dred)⊗Lsub
λ )

for all i ≥ 0. Moreover, if we assume that λ−2ρ is dominant (which is equivalent to k1 ≥ k2 +2), we get

H i (Y tor, π∗�3
Shtor(log Dred)⊗�1

Y tor/Shtor ⊗Lsub
λ )= H i (Shtor,∇(−3,−3)⊗ ∇

sub(k1 − 1, k2 + 1))

= H i (Shtor,∇sub(k1 − 4, k2 − 2))

for all i ≥ 0. We assume that L(k1,k2) is D-ample on Y tor and we use the logarithmic Kodaira–Nakano
vanishing theorem to see that

H i (Y tor, �4
Y tor(log Dred)⊗Lsub

λ )= 0

for all i > 0. We summarize this discussion by saying that we have

H i (Shtor,∇sub(k1 − 4, k2 − 2))= 0

for all i > 0 and (k1, k2) such that

• k1 ≥ k2 + 2,

• (k1, k2) ∈ Cample,∅.

Now, we consider the spectral sequence in the case e = 1 (see the corresponding figure).
The graded pieces are gr1 = π∗�2

Shtor(log Dred)⊗�1
Y tor/Shtor and gr0 = π∗�3

Shtor(log Dred). The limit
is H i (Y tor, �3

Y tor(log Dred)⊗Lsub
λ ) and by the logarithmic Kodaira–Nakano theorem, it vanishes for all

i > 1 when (k1, k2) ∈ Cample,∅. The critical differential is

d1,1
: H 2(Y tor, π∗�2

Shtor(log Dred)⊗�1
Y tor/Shtor ⊗Lsub

λ )→ H 3(Y tor, π∗�3
Shtor(log Dred)⊗Lsub

λ ),
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because when d1,1
= 0, we have E1,1

2 = E1,1
∞

and E2,1
2 = E2,1

∞
. Under the additional hypothesis k1 ≥ k2+2,

we deduce that

H i (Y tor, π∗�2
Shtor(log Dred)⊗�1

Y tor/Shtor ⊗Lsub
λ )= H i (Shtor,∇(−1,−3)⊗ ∇

sub(k1 − 1, k2 + 1))= 0

for all i > 1 and (k1, k2) ∈ Cample,∅. Consider an integer i = 2 or 3. The tensor product of automorphic
vector bundles

∇(−1,−3)⊗ ∇
sub(k1 − 1, k2 + 1)

is filtered by the automorphic bundles

∇
sub(µ2

j + (k1 − 1, k2 + 1))

where j = 1, 2, 3 and if we ask for the vanishing

H i+1(Shtor,∇sub(µ2
j + (k1 − 1, k2 + 1)))= 0

for j = 1, 2, it will imply

H i (Shtor,∇sub((−1,−3)+ (k1 − 1, k2 + 1)))= H i (Shtor,∇sub(k1 − 2, k2 − 2))= 0.

To see that the critical differential d1,1 is zero, it is sufficient to have

H 3(Y tor, π∗�3
Shtor(log Dred)⊗Lsub

λ )= H 3(Shtor,∇sub(k1 − 3, k2 − 3))= 0.

We summarize this discussion by saying that we have

H i (Shtor,∇sub(k1 − 2, k2 − 2))= 0

for all i > 1 and (k1, k2) such that

• k1 ≥ k2 + 2,

• (k1, k2) ∈ Cample,∅,

• H 3(Shtor,∇sub(µ2
j + (k1 − 1, k2 + 1)))= 0 for j = 1, 2,

• H 3(Shtor,∇sub(k1 − 3, k2 − 3))= 0.

Now, we consider the spectral sequence in the case e = 2. The graded pieces are

gr1 = π∗�1
Shtor(log Dred)⊗�1

Y tor/Shtor and gr0 = π∗�2
Shtor(log Dred).

The limit is
H i (Y tor, �2

Y tor(log Dred)⊗Lsub
λ )

and by the logarithmic Kodaira–Nakano theorem, it vanishes for all i > 2 when (k1, k2) ∈ Cample,∅. The
differential

d2,1
: H 3(Y tor, π∗�1

Shtor(log Dred)⊗�1
Y tor/Shtor ⊗Lsub

λ )→ H 4(Y tor, π∗�2
Shtor(log Dred)⊗Lsub

λ )︸ ︷︷ ︸
=0
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is already 0 since the Siegel threefold has dimension 3. Under the additional hypothesis k1 ≥ k2 + 2, we
deduce that

H i (Y tor, π∗�1
Shtor(log Dred)⊗�1

Y tor/Shtor ⊗Lsub
λ )= H i (Shtor,∇(0,−2)⊗ ∇

sub(k1 − 1, k2 + 1))= 0

for all i > 2 and (k1, k2) ∈ Cample,∅. The tensor product of automorphic vector bundles

∇(0,−2)⊗ ∇
sub(k1 − 1, k2 + 1)

is filtered by the automorphic bundles

∇
sub(µ1

j + (k1 − 1, k2 + 1)),

where j = 1, 2, 3 and since the vanishing

H i+1(Shtor,∇sub(µ2
j + (k1 − 1, k2 + 1)))= 0

for j = 1, 2 is automatic, it implies the vanishing of

H i (Shtor,∇sub((0,−2)+ (k1 − 1, k2 + 1)))= H i (Shtor,∇sub(k1 − 1, k2 − 1)).

We summarize this discussion by saying that we have

H i (Shtor,∇sub(k1 − 1, k2 − 1))= 0

for all i > 2 and (k1, k2) such that

• k1 ≥ k2 + 2,

• (k1, k2) ∈ Cample,∅.

We consider the case I0 = I = {(1,−1)}. This case corresponds to Y tor
I0

= Shtor. In this degenerate case,
the spectral sequence is trivial and the D-ample automorphic line bundle are powers of the determinant
of the Hodge bundle : ∇(k, k) for all k < 0. By the logarithmic Kodaira–Nakano vanishing theorem, we
have

H i (Shtor, �
j
Shtor(log Dred)⊗ ∇

sub(k, k))= 0

for all i + j > 3 and k < 0. In the case j = 3, we get

H i (Shtor,∇sub(k − 3, k − 3))= 0

for all i > 0. In the case j = 2, we get

H i (Shtor,∇sub(k − 1, k − 3))= 0

for all i > 1. In the case j = 1, we get

H i (Shtor,∇sub(k, k − 2))= 0

for all i > 2.
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Figure 6. g =2, p =11. Notice that since the orbitally p-close condition is less restrictive
with p = 11 than with p = 5, we are able to access more weights. However, if we look
far enough, we notice the same phenomenon with the two regions corresponding to
I = {(1,−1)} and I = ∅.

7. Degeneration algorithm

7.1. Presentation. From the description of the degeneration of the different spectral sequences in
the case of the Siegel threefold, it is clear that an algorithm implemented on a computer could be
useful to make the vanishing results more explicit. We present an algorithm written in SageMath
that uses our main result (Theorem 6.16) to compute new vanishing results from known ones. See
github.com/ThibaultAlexandre/vanishing-results-over-the-siegel-variety

The algorithm depends on the following parameters:

(1) The genus g ≥ 2 (the case g = 1 is obvious).

(2) A prime p such that p > g2.

(3) A set of known vanishing result Cvan for each cohomological degree.

(4) The integer e that appears on the spectral sequence (2).

(5) A subset I0 ⊂1 for the choice of the flag bundle Y tor
I0

over the Siegel modular variety.

In the special case where e = 0, our algorithm does not need any vanishing result for the degeneration
process as the spectral sequence (2) is concentrated on one row. In the special case where e = d − 1, the
degeneration is automatic as it is given by the vanishing of the coherent cohomology in degree i > d.
Then, these results can be used to run the algorithm with e = 1 and with differents I0 ⊂1 and so on.

https://github.com/ThibaultAlexandre/vanishing-results-over-the-siegel-variety
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Figure 7. g = 2, p = 31.

Our SageMath code defines a class SiegelVariety with some methods that can be used to compute
vanishing results. We create the Siegel threefold X over F7.

In [1]: X = SiegelVariety(g = 2, p = 7)

If the next line returns True, it means that the automorphic line bundle L(−2,−8) is D-ample on the
complete flag variety Y over X .

In [2]: X.ample([],[-2,-8])

Out[2]: True

The next line compute vanishing results for characters λ = (k1, k2) with −50 ≤ k2 ≤ k1 ≤ 0 using the
function gI0,e in the case where I0 = ∅ and e = 0. The results are registered in the list Cvan. It returns
True if the algorithm has found new vanishing results.

In [3]: X.compute([], e = 0, kmin = -50, kmax = 0)

Out[3]: True

The next line runs the compute method for each I0 ⊂ I and 0 ≤ e ≤ d − 1. We only need to specify
the range of characters λ= (k1, k2) we want to consider. It returns True if the algorithm has found new
vanishing results. You may want to run this command several times until it returns False.

In [4]: X.computeAll(-50, 0)

Out[4]: True
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Figure 8. g = 3, p = 11.

The next line returns True if we know that

H i (X,∇sub(−4,−6))= 0

for all i > 1.

In [5]: X.vanishes(1,(-4,-6))

Out[5]: True

If the next line returns False, it means we don’t know if

H i (X,∇sub(−4,−6))= 0

for all i > 0.

In [6]: X.vanishes(0,(-4,-6))

Out[6]: False

7.2. Explicit vanishing for G = Sp4. We plot some vanishing results we have obtained for the Siegel
threefold with our algorithm. We have also added the p-small characters for Sp4 with a twist by −w0 to
have them in the antidominant Weyl chamber.

7.3. Explicit vanishing for G = Sp6. We plot some vanishing results we have obtained in the case g = 3
with our algorithm. The weights live in a three-dimensional space and we need six different labels.
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Figure 9. g = 3, p = 691.
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Super-Hölder vectors and the field of norms
Laurent Berger and Sandra Rozensztajn

Let E be a field of characteristic p. In a previous paper of ours, we defined and studied super-Hölder
vectors in certain E-linear representations of Zp. In the present paper, we define and study super-Hölder
vectors in certain E-linear representations of a general p-adic Lie group. We then consider certain p-adic
Lie extensions K∞/K of a p-adic field K , and compute the super-Hölder vectors in the tilt of K∞. We
show that these super-Hölder vectors are the perfection of the field of norms of K∞/K . By specializing
to the case of a Lubin–Tate extension, we are able to recover E((Y )) inside the Y -adic completion of its
perfection, seen as a valued E-vector space endowed with the action of O×K given by the endomorphisms
of the corresponding Lubin–Tate group.
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Introduction

Let E be a field of characteristic p, for example a finite field. In our paper [Berger and Rozensztajn
2022], we defined and studied super-Hölder vectors in certain E-linear representations of the p-adic Lie
group Zp. These vectors are a characteristic p analogue of locally analytic vectors. They allowed us to
recover E((X)) inside the X -adic completion of its perfection, seen as a valued E-vector space endowed
with the action of Z×p given by a · f (X)= f ((1+ X)a − 1).

In the present paper, we define and study super-Hölder vectors in certain E-linear representations of a
general p-adic Lie group. We then consider certain p-adic Lie extensions K∞/K of a p-adic field K ,
and compute the super-Hölder vectors in the tilt of K∞. We show that these super-Hölder vectors are the
perfection of the field of norms of K∞/K . By specializing to the case of a Lubin–Tate extension, we are
able to recover E((Y )) inside the Y -adic completion of its perfection, seen as a valued E-vector space
endowed with the action of O×K given by the endomorphisms of the corresponding Lubin–Tate group.
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We now give more details about the contents of our paper. Let 0 be a p-adic Lie group. It is known that
0 always has a uniform open pro-p subgroup G. Let G be such a subgroup, and let Gi =G pi

for i ⩾ 0. Let
M be an E-vector space, endowed with a valuation valM such that valM(xm)= valM(m) if x ∈ E×. We
assume that M is separated and complete for the valM -adic topology. We say that a function f : G→ M
is super-Hölder if there exist constants e > 0 and λ,µ ∈ R such that valM( f (g)− f (h))⩾ pλ · pei

+µ

whenever gh−1
∈ Gi , for all g, h ∈ G and i ⩾ 0. If M is now endowed with an action of G by isometries,

and m ∈ M , we say that m is a super-Hölder vector if the orbit map g 7→ g ·m is a super-Hölder function
G→ M . We let MG-e-sh,λ denote the space of super-Hölder vectors for given constants e and λ as in
the definition above. The space of vectors of M that are super-Hölder for a given e is independent of
the choice of the uniform subgroup G, and denoted by Me-sh. When G = Zp and e = 1, we recover the
definitions of [Berger and Rozensztajn 2022]. If 0 is a p-adic Lie group and e = 1, we get an analogue
of locally Qp-analytic vectors. If K is a finite extension of Qp, 0 is the Galois group of a Lubin–Tate
extension of K , and e = [K :Qp], we seem to get an analogue of locally K -analytic vectors.

From now on, assume that p ̸= 2. Let K be a p-adic field and let K∞/K be an almost totally ramified
p-adic Lie extension, with Galois group 0 of dimension d ⩾ 1. The tilt of K∞ is the fraction field ẼK∞

of lim
←−−x 7→x p OK∞/p. It is a perfect complete valued field of characteristic p, endowed with an action of

0 by isometries. The field ẼK∞ naturally contains the field of norms X K (K∞) of the extension K∞/K ,
and it is known that ẼK∞ is the completion of the perfection of X K (K∞). We have the following result
(Theorem 2.2.3).

Theorem A. We have Ẽd-sh
K∞ =

⋃
n⩾0 ϕ

−n(X K (K∞)).

Assume now that K is a finite extension of Qp, with residue field k, and let LT be a Lubin–Tate
formal group attached to K . Let K∞ be the extension of K generated by the torsion points of LT, so that
Gal(K∞/K ) is isomorphic to O×K . The field of norms X K (K∞) is isomorphic to k((Y )), and O×K acts on
this field by the endomorphisms of the Lubin–Tate group: a · f (Y )= f ([a](Y )). Let d = [K :Qp]. The
following (Theorem 3.2.1) is a more precise version of Theorem A in this situation.

Theorem B. If j ⩾ 1, then Ẽ
1+p jOK -d-sh,d j
K∞ = k((Y )).

If K =Qp and K∞/K is the cyclotomic extension, Theorem B was proved in [Berger and Rozensztajn
2022]. A crucial ingredient of the proof of this theorem was Colmez’ analogue of Tate traces for ẼK∞ . If
the Lubin–Tate group is of height ⩾ 2, there are no such traces (we state and prove a precise version of
this assertion in Section 3.2). Instead of Tate traces, we use a theorem of Ax and a precise characterization
of the field of norms X K (K∞) inside ẼK∞ in order to prove Theorem A.

As an application of Theorem B, we compute the perfectoid commutant of Aut(LT). If b∈O×K and n∈Z,
then u(Y )= [b](Y qn

) is an element of Ẽ+K∞ that satisfies the functional equation u ◦ [g](Y )= [g] ◦ u(Y )
for all g ∈O×K . Conversely, we prove the following (Theorem 3.3.1).

Theorem C. If u ∈ Ẽ+K∞ is such that valY (u) > 0 and u ◦ [g] = [g] ◦u for all g ∈O×K , there exists b ∈O×K
and n ∈ Z such that u(Y )= [b](Y qn

).
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In the last section, we give a characterization of super-Hölder functions on a uniform pro-p group in
terms of their Mahler expansions (Theorem 4.3.4). In order to do so, we prove some results of independent
interest on the space of continuous functions on Od

K with values in a valued E-vector space M as above.
At the end of [Berger and Rozensztajn 2022], we suggested an application of super-Hölder vectors for

the action of Zp to the p-adic local Langlands correspondence for GL2(Qp). We hope that this general
theory of super-Hölder vectors, especially in the Lubin–Tate case, will have applications to the p-adic
local Langlands correspondence for other fields than Qp.

1. Super-Hölder functions and vectors

In this section, we define super-Hölder vectors inside a valued E-vector space M endowed with an action
of a p-adic Lie group 0. The definition is very similar to the one that we gave for 0 = Zp in [Berger and
Rozensztajn 2022]. The main new technical tool is the existence of uniform open subgroups of 0. These
uniform subgroups look very much like Zd

p in a sense that we make precise.

1.1. Uniform pro- p groups. Uniform pro-p groups are defined at the beginning of Section 4 of [Dixon
et al. 1991]. We do not recall the definition, nor the notion of rank of a uniform pro-p group, but
rather point out the following properties of uniform pro-p groups. A coordinate (below) is simply a
homeomorphism.

Proposition 1.1.1. If G is a uniform pro-p group of rank d, then:

(1) Gi = {g pi
, g ∈ G} is an open normal (and uniform) subgroup of G for i ⩾ 0.

(2) We have [Gi : Gi+1] = pd for i ⩾ 0.

(3) There is a coordinate c : G→ Zd
p such that c(Gi )= (pi Zp)

d for i ⩾ 0.

(4) If g, h ∈ G, then gh−1
∈ Gi if and only if c(g)− c(h) ∈ (pi Zp)

d .

Proof. Properties (1)–(4) are proved in Section 4 of [Dixon et al. 1991]. Alternatively, a uniform
pro-p group G has a natural integer valued p-valuation ω such that (G, ω) is saturated [Klopsch 2005,
Remark 2.1]. Properties (1)–(4) are then proved in Section 26 of [Schneider 2011]. □

For example, the pro-p group Zd
p is uniform for all d ⩾ 1.

Lemma 1.1.2. If G is a uniform pro-p group, and H is a uniform open subgroup of G, there exists j ⩾ 0
such that Gi+ j ⊂ Hi for all i ⩾ 0.

Proof. This follows from the fact that {Gi }i⩾0 forms a basis of neighborhoods of the identity in G. □

A p-adic Lie group is a p-adic manifold that has a compatible group structure. For example, GLn(Zp)

and its closed subgroups are p-adic Lie groups. We refer to [Schneider 2011] for a comprehensive
treatment of the theory. Every uniform pro-p group is a p-adic Lie group. Conversely, we have the
following.
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Proposition 1.1.3. Every p-adic Lie group 0 has a uniform open subgroup G, and the rank of G is the
dimension of 0.

Proof. See Interlude A of [Dixon et al. 1991, pages 97–98]. □

Proposition 1.1.4. Let G be a pro-p group of finite rank, and N a closed normal subgroup of G. There
exists an open subgroup G ′ of G such that G ′, G ′ ∩ N and G ′/G ′ ∩ N are all uniform.

Proof. This is stated and proved on page 64 of [Dixon et al. 1991] (their H is our G ′). □

1.2. Super-Hölder functions and vectors. Let M be an E-vector space, endowed with a valuation valM

such that valM(xm)= valM(m) if x ∈ E×. We assume that M is separated and complete for the valM -adic
topology. Throughout this section, G denotes a uniform pro-p group.

Definition 1.2.1. We say that f : G→ M is super-Hölder if there exist constants λ,µ ∈ R and e > 0
such that valM( f (g)− f (h))⩾ pλ · pei

+µ whenever gh−1
∈ Gi , for all g, h ∈ G and i ⩾ 0.

Remark 1.2.2. If G = Zp and e = 1, we recover the functions defined in [Berger and Rozensztajn 2022,
Section 1.1]; see also Remark 1.12 of [loc. cit.].

In the above definition, e will usually be equal to either 1 or dim(G).

We let Hλ,µ
e (G,M) denote the space of functions such that valM( f (g) − f (h)) ⩾ pλ · pei

+ µ

whenever gh−1
∈ Gi , for all g, h ∈ G and i ⩾ 0, and Hλ

e (G,M)=
⋃
µ∈R Hλ,µ

e (G,M) and He(G,M)=⋃
λ∈R Hλ

e (G,M).
If M, N are two valued E-vector spaces, and f : M → N is an E-linear map, we say that f is

Hölder-continuous if there exists c > 0, d ∈ R such that valN ( f (x))⩾ c · valM(x)+ d for all x ∈ M .

Proposition 1.2.3. If π : M → N is a Hölder-continuous linear map, we get a map He(G,M) →
He(G, N ).

Proof. Take c, d ∈R of Hölder continuity for π , f ∈Hλ,µ
e (G,M), and g, h ∈G with gh−1

∈Gi . We have
valN (π( f (g))−π( f (h)))⩾ c ·valM( f (g)− f (h))+d ⩾ cpλ · pei

+(µ+d), so that π ◦ f ∈Hλ′,µ′

e (G, N )
with pλ

′

= cpλ, and µ′ = µ+ d . □

Proposition 1.2.4. If α : G→ H is a group homomorphism, we get a map α∗ :He(H,M)→He(G,M).

Proof. By definition of the subgroups Gi and Hi , we have α(Gi )⊂ Hi for all i . Take f ∈Hλ,µ
e (H,M),

and g, h ∈ G with gh−1
∈ Gi . We have valM( f (α(g))− f (α(h))) ⩾ pλ · pei

+µ as α(g)α(h)−1
∈ Hi ,

so that α∗( f )= f ◦α ∈Hλ,µ
e (G,M). □

Proposition 1.2.5. Suppose that M is a ring, and that valM(mm′)⩾valM(m)+valM(m′) for all m,m′∈M.
If c ∈ R, let Mc = MvalM⩾c:

(1) If f ∈Hλ,µ
e (G,Mc) and g ∈Hλ,ν

e (G,Md), and ξ =min(µ+ d, ν+ c), then f g ∈Hλ,ξ
e (G,Mc+d).

(2) If λ,µ ∈ R, then Hλ,µ
e (G,M0) is a subring of C0(G,M).

(3) If λ ∈ R, then Hλ
e (G,M) is a subring of C0(G,M).
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Proof. Items (2) and (3) follow from item (1), which we now prove. If x, y ∈ G, then

( f g)(x)− ( f g)(y)= ( f (x)− f (y))g(x)+ (g(x)− g(y)) f (y),

which implies the claim. □

We now assume that M is endowed with an E-linear action by isometries of G. If m ∈ M , let
orbm : G→ M denote the function defined by orbm(g)= g ·m.

Definition 1.2.6. Let MG-e-sh,λ,µ be those m ∈ M such that orbm ∈H
λ,µ
e (G,M), and let MG-e-sh,λ and

MG-e-sh be the corresponding sub-E-vector spaces of M .

Remark 1.2.7. We assume that G acts by isometries on M , but not that G acts continuously on M , namely
that G×M→ M is continuous. However, let Mcont denote the set of m ∈ M such that orbm : G→ M is
continuous. It is easy to see that Mcont is a closed sub-E-vector space of M , and that G×Mcont

→ Mcont

is continuous; compare with Section 3 of [Emerton 2017]. We then have M sh
⊂ Mcont.

Lemma 1.2.8. If m ∈ M , then m ∈ MG-e-sh,λ,µ if and only if for all i ⩾ 0, we have valM(g ·m −m) ⩾
pλ · pei

+µ for all g ∈ Gi .

Proof. If m ∈ M , then m ∈ MG-e-sh,λ,µ if and only if the function orbm is in Hλ,µ
e (G,M), that is, for all

g, h with gh−1
∈ Gi , we have valM(g ·m − h ·m) ⩾ pλ · pei

+µ. As G acts by isometries, we have
valM(g ·m− h ·m)= valM(h−1g ·m−m). The result follows, as h−1g = h−1

· gh−1
· h ∈ Gi . □

Lemma 1.2.9. The space MG-e-sh,λ,µ is a closed sub-E-vector space of M.

Lemma 1.2.10. If i0 ⩾ 0, and m ∈ M is such that valM(g ·m −m) ⩾ pλ · pei
+µ for all g ∈ Gi with

i ⩾ i0, then m ∈ MG-e-sh,λ.

Proof. Take i < i0, and let Ri be a set of representatives of Gi0\Gi . This is a finite set, so there
exists µi ∈ R such that valM(r · m − m) ⩾ pλ · pei

+ µi for all r ∈ Ri . If g ∈ Gi , it can be written
as g = hr for some h ∈ Gi0 and r ∈ Ri . We then have g · m − m = hr · m − h · m + h · m − m, so
that valM(g ·m −m) ⩾ min(valM(r ·m −m), valM(h ·m −m)) (recall that G acts by isometries), so
valM(g ·m−m)⩾ min(pλ · pei

+µi , pλ · pei0 +µ)⩾ pλ · pei
+min(µ,µi ) as i0 > i . If µ′ is the min of

µ and the µi for 0 ⩽ i < i0, then m ∈ MG-e-sh,λ,µ′ . □

Recall that if k ⩾ 0, then Gk is also a uniform pro-p group.

Lemma 1.2.11. If k ⩾ 0 then MG-e-sh,λ
= MGk -e-sh,λ+k .

Proof. Note that (Gk)i = Gi+k . The inclusion MG-e-sh,λ
⊂ MGk -e-sh,λ+k is obvious, and the reverse

inclusion follows from Lemma 1.2.10. □

Proposition 1.2.12. The space M H -e-sh does not depend on the choice of a uniform open subgroup H ⊂G.

Proof. Let H and H ′ be uniform open subgroups of G. The group H ∩ H ′ contains an open uniform
subgroup by Proposition 1.1.3, so to prove the proposition, we can further assume that H ′ ⊂ H . We
then have H ′i ⊂ Hi for all i , so that if m ∈ M H -e-sh,λ,µ, then m ∈ M H ′-e-sh,λ,µ. This implies that
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M H -e-sh,λ
⊂ M H ′-e-sh,λ. Conversely, by Lemma 1.1.2, there exists j such that H j ⊂ H ′. The previous

reasoning implies that M H ′-e-sh,λ
⊂ M H j -e-sh,λ. Lemma 1.2.11 now implies that M H j -e-sh,λ

= M H -e-sh,λ− j .
These inclusions imply the proposition. □

Definition 1.2.13. If 0 is a p-adic Lie group that acts by isometries on M , we let Me-sh
= MG-e-sh where

G is any uniform open subgroup of 0.

Remark 1.2.14. If e ⩽ f , then M f -sh
⊂ Me-sh.

Recall that G is a uniform pro-p group. If a closed normal subgroup N of G acts trivially on M , then
G/N acts on M .

Proposition 1.2.15. If a closed normal subgroup N of G acts trivially on M , then MG-e-sh
= MG/N -e-sh.

Proof. By Proposition 1.1.4, G has an open subgroup G ′ such that G ′ and G ′/N ′ are uniform (where
N ′ = G ′ ∩ N ). By Proposition 1.2.12, we have MG-e-sh

= MG ′-e-sh and MG/N -e-sh
= MG ′/N ′-e-sh. Let

π : G ′ → G ′/N ′ denote the projection. We have π(G ′i ) = (G
′/N ′)i for all i . Hence if m ∈ M , then

valM(g ·m −m) ⩾ pλ · pei
+µ for all g ∈ G ′i if and only if valM(π(g) ·m −m) ⩾ pλ · pei

+µ for all
π(g) ∈ (G ′/N ′)i . □

Proposition 1.2.16. Suppose that M is a ring, and that g(mm′) = g(m)g(m′) and valM(mm′) ⩾
valM(m)+ valM(m′) for all m,m′ ∈ M and g ∈ G:

(1) If v ∈ R and m,m′ ∈ MG-e-sh,λ,µ
∩MvalM⩾v, then m ·m′ ∈ MG-e-sh,λ,µ+v.

(2) If m ∈ MG-e-sh,λ,µ
∩M×, then 1/m ∈ MG-e-sh,λ,µ−2 valM (m).

Proof. Item (1) follows from Proposition 1.2.5 and Lemma 1.2.8. Item (2) follows from

g
(

1
m

)
−

1
m
=

m− g(m)
g(m)m

. □

2. The field of norms

Let K be a p-adic field, and let K∞ be an algebraic Galois extension of K , whose Galois group G
is a p-adic Lie group of dimension ⩾ 1. We assume that K∞/K is almost totally ramified, namely
that the inertia subgroup of G is open in G. Let d = dim(G) and let ℓ = pd . Let Ẽ+K∞ denote the ring
lim
←−−x 7→xℓ OK∞/p. This is a perfect domain of characteristic p, which has a natural action of G. The map
(y j ) j⩾0 7→ (ydi )i⩾0 gives an isomorphism between lim

←−−x 7→x p OK∞/p and Ẽ+K∞ , so that Ẽ+K∞ is the ring of
integers of the tilt of K̂∞; see Section 3 of [Scholze 2012].

If x = (xi )i⩾0, and x̂i is a lift of xi to OK∞ , then ℓi valp(x̂i ) is independent of i ⩾ 0 such that xi ̸= 0.
We define a valuation on Ẽ+K∞ by valE(x)= limi→+∞ ℓ

i valp(x̂i ).
The aim of this section is to compute (̃E+K∞)

d-sh. Given Definition 1.2.13, we assume from now on
(replacing K by a finite subextension if necessary) that G is uniform and that K∞/K is totally ramified.
Let k denote the common residue field of K and K∞.
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2.1. The field of norms. Let E(K∞) denote the set of finite extensions E of K such that E ⊂ K∞.
Let X K (K∞) denote the set of sequences (xE)E∈E(K∞) such that xE ∈ E for all E ∈ E(K∞), and
NF/E(xF )= xE whenever E ⊂ F with E, F ∈ E(K∞).

If n ⩾ 0, let Kn = K Gn
∞ so that [Kn+1 : Kn] = ℓ, {Kn}n⩾0 is a cofinal subset of E(K∞), and X K (K∞)=

lim
←−−NKn/Kn−1

Kn . If x = (xn)n⩾0 ∈ X K (K∞), let valE(x)= valp(x0).

Theorem 2.1.1. Let K and K∞ be as above:

(1) If x, y ∈ X K (K∞), then {NKn+ j/Kn (xn+ j + yn+ j )} j⩾0 converges for all n ⩾ 0.

(2) If we set (x + y)n = lim j→+∞NKn+ j/Kn (xn+ j + yn+ j ), then x + y ∈ X K (K∞), and the set X K (K∞)
with this addition law, and componentwise multiplication, is a field of characteristic p.

(3) The function valE is a valuation on X K (K∞), for which it is complete.

(4) If ϖ = (ϖn)n⩾0 is a norm compatible sequence of uniformizers of OKn , the valued field X K (K∞) is
isomorphic to k((ϖ)) (with val(ϖ)= valp(ϖ0)).

Proof. By a result of Sen [1972], K∞/K is strictly APF in the terminology of Section 1.2 of [Wintenberger
1983]; see 1.2.2 of [loc. cit.]. The theorem is then proved in Section 2 of [loc. cit.]. □

Let X+K (K∞)= lim
←−−NKn/Kn−1

OKn be the ring of integers of the valued field X K (K∞).
If c > 0, let I c

n = {x ∈ OKn such that valp(x) ⩾ c}. If m, n ⩾ 0, the map OKn/I c
n → OKm+n/I c

m+n is
well-defined and injective.

Proposition 2.1.2. There exists c(K∞/K )⩽ 1 such that if 0< c ⩽ c(K∞/K ), then

valp(NKn+k/Kn (x)/x [Kn+k :Kn]− 1)⩾ c

for all n, k ⩾ 0 and x ∈OKn+k .

Proof. See [Wintenberger 1983] as well as Section 4 of [Cais and Davis 2015]. The result follows from
the fact (see 1.2.2 of [Wintenberger 1983]) that the extension K∞/K is strictly APF. One can then apply
1.2.1, 4.2.2 and 1.2.3 of [Wintenberger 1983]. □

Using Proposition 2.1.2, we get a map ι : X+K (K∞)→ lim
←−−x 7→xℓ OK∞/I c

∞
given by

(xn)n⩾0 ∈ lim
←−−

NKn/Kn−1

OKn 7→ (x̄n)n⩾0.

Let lim
←−−x 7→xℓ OKn/I c

n denote the set of (xn)n⩾0 ∈ lim
←−−x 7→xℓ OK∞/I c

∞
such that xn ∈OKn/I c

n for all n ⩾ 0.

Proposition 2.1.3. Let 0< c ⩽ c(K∞/K ) be as in Proposition 2.1.2:

(1) The natural map Ẽ+K∞→ lim
←−−x 7→xℓ OK∞/I c

∞
is a bijection.

(2) The map ι : X+K (K∞)→ lim
←−−x 7→xℓ OK∞/I c

∞
= Ẽ+K∞ is injective and isometric.

(3) The image of ι is lim
←−−x 7→xℓ OKn/I c

n .
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Proof. See [Wintenberger 1983] and Section 4 of [Cais and Davis 2015]. We give a few more details for
the convenience of the reader. Item (1) is classical; see for instance Proposition 4.2 of [Cais and Davis
2015]. The map ι is obviously injective and isometric. For (3), choose x = (xn)n⩾0 ∈ lim

←−−x 7→xℓ OKn/I c
n ,

and choose a lift x̂n ∈OKn of xn . One proves that {NKn+ j/Kn (x̂n+ j )} j⩾0 converges to some yn ∈OKn , and
that (yn)n⩾0 ∈ X+K (K∞) is a lift of (xn)n⩾0. See Section 4 of [loc. cit.] for details, for instance the proof
of Lemma 4.1. □

Proposition 2.1.3 allows us to see X+K (K∞), and hence ϕ−n(X+K (K∞)) for all n ⩾ 0, as a subring
of Ẽ+K∞ .

Proposition 2.1.4. The ring
⋃

n⩾0 ϕ
−n(X+K (K∞)) is dense in Ẽ+K∞ .

Proof. See Section 4.3 of [Wintenberger 1983]. □

2.2. Decompleting the tilt. We now compute (̃E+K∞)
d-sh. Since Proposition 2.2.1 below is vacuous if

p = 2, we assume in this section that p ̸= 2.

Proposition 2.2.1. If 0< c ⩽ 1−1/(p−1), and x ∈OK∞ is such that valp(g(x)− x)⩾ 1 for all g ∈ Gn ,
then the image of x in OK∞/I c

∞
belongs to OKn/I c

n .

Proof. If valp(g(x)− x) ⩾ 1 for all g ∈ Gal(K alg/Kn), then by Theorem 1.7 of [Le Borgne 2010] (an
optimal version of a theorem of Ax), there exists y ∈ Kn such that valp(x − y) ⩾ 1− 1/(p− 1). This
implies the proposition. □

Proposition 2.2.2. If c = pγ is as above, then X+K (K∞)⊂ (̃E
+

K∞)
G-d-sh,γ,0.

Proof. Take x = (xn)n⩾0 ∈ lim
←−−x 7→xℓ OKn/I c

n . If g ∈ Gi , then g(xn)= xn for n ⩽ i , so that valE(gx− x)⩾
pdi pγ . □

Theorem 2.2.3. We have:

(1) (̃E+K∞)
G-d-sh,0,0

⊂ X+K (K∞).

(2) (̃E+K∞)
d-sh
=

⋃
n⩾0 ϕ

−n(X+K (K∞)) and Ẽd-sh
K∞ =

⋃
n⩾0 ϕ

−n(X K (K∞)).

Proof. Take c ⩽ min(c(K∞/K ), 1− 1/(p − 1)). Take x = (xn)n⩾0 ∈ lim
←−−x 7→xℓ OK∞/p. If n ⩾ 0 and

x ∈ (̃E+K∞)
G-d-sh,0,0, then valE(g(x)− x) ⩾ pdn if g ∈ Gn . This implies that valp(g(xn)− xn) ⩾ 1 if

g ∈ Gn . By Proposition 2.2.1, the image of xn in OK∞/I c
∞

belongs to OKn/I c
n . Hence the image of x

in lim
←−−x 7→xℓ OK∞/I c

∞
belongs to lim

←−−x 7→xℓ OKn/I c
n . By Proposition 2.1.3, x belongs to X+K (K∞). This

proves (1).
Since valE(ϕ(x))= p · valE(x), item (2) follows from (1) and Propositions 2.2.2 and 1.2.16. □

Remark 2.2.4. We have Ẽd-sh
K∞ ⊂ Ẽ1-sh

K∞ . The field Ẽ1-sh
K∞ contains the field of norms X K (L∞) of any

p-adic Lie extension L∞/K contained in K∞. Indeed, ẼL∞ ⊂ ẼK∞ and if e = dim Gal(L∞/K ), then
X K (L∞)⊂ Ẽe-sh

L∞ ⊂ Ẽ1-sh
K∞ (see Proposition 1.2.15).

Can one give a description of Ẽ1-sh
K∞ , for example along the lines of Section 5 of [Berger 2016]?



Super-Hölder vectors and the field of norms 203

3. The Lubin–Tate case

We now specialize the constructions of the previous section to the case when K∞ is generated over K by
the torsion points of a Lubin–Tate formal group.

3.1. Lubin–Tate formal groups. Let K be a finite extension of Qp of degree d , with ring of integers OK ,
inertia index f , ramification index e, and residue field k. Let q = p f

=Card(k) and let π be a uniformizer
of OK . Let LT be the Lubin–Tate formal OK -module attached to π ; see [Lubin and Tate 1965]. We
choose a coordinate Y on LT. For each a ∈ OK we get a power series [a](Y ) ∈ OK [[Y ]], that we now
see as an element of k[[Y ]]. In particular, [π ](Y ) = Y q . Let S(T,U ) ∈ k[[T,U ]] denote the reduction
mod π of the power series giving the addition law in LT in that coordinate. Recall that S(T, 0)= T and
S(0,U )=U .

Lemma 3.1.1. If a, b ∈OK and i ⩾ 0, then valY ([a+ pi b](Y )− [a](Y ))⩾ pdi .
Furthermore, [1+π i

](Y )= Y + Y q i
+O(Y q i

+1).

Proof. We have [π ](Y ) = Y q , so valY ([π ](Y )) ⩾ p f . Writing p = uπ e for a unit u, we see that
valY ([pi b](Y ))⩾ pdi if b ∈ OK . If a, b ∈ OK and i ⩾ 0, then [a+ bpi

](Y )= S([a](Y ), [bpi
](Y )). We

have S(T,U )= T +U +T U · R(T,U ), so that [a+bpi
](Y )−[a](Y )= S([a](Y ), [bpi

](Y ))−[a](Y ) ∈
[bpi
](Y ) · k[[Y ]]. This implies the first result.

The second claim follows likewise from the fact that [1+π i
](Y )= S(Y, [π i

](Y ))= Y +[π i
](Y )+Y ·

[π i
](Y ) · R(Y, [π i

](Y )). □

Let E = k((Y )). Let En = k((Y 1/qn
)) and let E∞ =

⋃
n⩾0 En . These fields are endowed with the

Y -adic valuation valY , and we let E+⋆ denote the ring of integers of E⋆. The group O×K acts on En by
a · f (Y 1/qn

)= f ([a](Y 1/qn
)).

Lemma 3.1.2. If j ⩾ 1 ( j ⩾ 2 if p = 2), then 1+ p jOK is uniform, and (1+ p jOK )i = 1+ pi+ jOK .

Proof. The map 1+ p jOK →OK , given by x 7→ p− j
· logp(x − 1), is an isomorphism of pro-p groups

taking 1+ pi+ jOK to piOK . □

Recall that d = [K :Qp], that f = [k : Fp], and that q = p f .

Proposition 3.1.3. We have E+n = (E
+
n )

1+p jOK -d-sh,d j− f n,0.

Proof. If b ∈OK and i, j ⩾ 0, then by Lemma 3.1.1, we have

valY ([1+ pi+ j b](Y 1/qn
)− Y 1/qn

)⩾ 1/qn
· pd(i+ j)

= pd j− f n
· pdi .

Lemma 3.1.2 then implies that Y 1/qn
∈(E+n )

1+p jOK -d-sh,d j− f n,0. The lemma follows from Proposition 1.2.16
and Lemma 1.2.9. □

Corollary 3.1.4. We have E= E1+p jOK -d-sh,d j .

Proof. This follows from Proposition 3.1.3 with n = 0, and Proposition 1.2.16. □

Proposition 3.1.5. If ε > 0, then k[[Y ]]1+p jOK -d-sh,d j+ε
⊂ k[[Y p

]].
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Proof. Take f (Y ) ∈ k[[Y ]]. There is a power series h(T,U ) ∈ k[[T,U ]] such that

f (T +U )= f (T )+U · f ′(T )+U 2
· h(T,U ).

If m ⩾ 0, Lemma 3.1.1 implies that [1+πm
](Y )= Y + Y qm

+O(Y qm
+1). Therefore,

f ([1+πm
](Y ))= f (Y )+ (Y qm

+O(Y qm
+1)) · f ′(Y )+O(Y 2qm

).

If f (Y ) /∈ k[[Y p
]], then f ′(Y ) ̸= 0. Let µ= valY ( f ′(Y )). The above computations imply that valY ( f ([1+

π ei+ej
](Y ))− f (Y ))= pd j

· pdi
+µ for i ≫ 0.

This implies the claim, since π eOK = pOK . □

Corollary 3.1.6. We have E
1+p jOK -d-sh,d j− f n
∞ = En .

Proof. We prove that, more generally,

E1+p jOK -d-sh,d j−ℓ
∞

= k((Y 1/pℓ)).

Take f (Y 1/pm
) ∈ (E+

∞
)1+p jOK -d-sh,d j−ℓ where f (Y ) ∈ k[[Y ]]. Since valY (h p)= p · valY (h) for all h ∈ Ẽ+,

we have f pm
(Y )∈ (E+

∞
)1+p jOK -d-sh,d j−ℓ+m , where f pm

(Y )∈ E[[Y ]] is f pm
(Y )= f (Y 1/pm

)pm
. If m ⩾ℓ+1,

then Proposition 3.1.5 implies that f pm
(Y )∈ E[[Y p

]], so that f (Y )= g(Y p), and f (Y 1/pm
)= g(Y 1/pm−1

).
This implies the claim. □

3.2. Decompletion of Ẽ. Since we use the results of Section 2.2, we once more assume that p ̸= 2. Let Ẽ

denote the Y -adic completion of E∞.

Theorem 3.2.1. We have Ẽ1+p jOK -d-sh,d j
= E, and Ẽd-sh

= E∞.

Proof. Let K∞ = K (LT[π∞]) denote the extension of K generated by the torsion points of LT, and
let 0 = Gal(K∞/K ). The Lubin–Tate character χπ gives rise to an isomorphism χπ : 0→ O×K . For
n ⩾ 1, let Kn = K (LT[πn

]). If (πn)n⩾1 is a compatible sequence of primitive πn-torsion points of LT,
then πn is a uniformizer of OKn , ϖ = (πn)n⩾0 belongs to lim

←−−NKn/Kn−1
OKn , and X K (K∞) = k((ϖ)) by

Theorem 2.1.1. If g ∈ 0, then g(ϖ)= [χπ (g)](ϖ), so that if we identify 0 and O×K , then X K (K∞)= E

with its action of O×K . Proposition 2.1.4 implies that Ẽ= ẼK∞ as valued fields with an action of (an open
subgroup of) O×K . We can therefore apply Theorem 2.2.3, and get (̃E+)d-sh

= E+
∞

. This implies the second
statement. The first one then follows from Corollary 3.1.6. □

Remark 3.2.2. In the above proof, note that K 1+pnOK
∞ = Kne, so that the numbering is not the same as in

Section 2.1.

Remark 3.2.3. We can define Lubin–Tate 0-modules over E as in Section 3.2 of [Berger and Rozensztajn
2022]. The results proved in that section carry over to the Lubin–Tate setting without difficulty.

In Theorem 2.9 of [Berger and Rozensztajn 2022], we proved Theorem 3.2.1 above in the cyclotomic
case, using Tate traces. There are no such Tate traces in the Lubin–Tate case if K ̸=Qp. We now explain
why this is so. More precisely, we prove that there is no 0-equivariant k-linear projector Ẽ→ E if K ̸=Qp.
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Choose a coordinate T on LT such that logLT(T ) =
∑

n⩾0 T qn
/πn , so that log′LT(T ) ≡ 1 mod π . Let

∂ = 1/ log′LT(T ) · d/dT be the invariant derivative on LT. Let ϕq = ϕ
f where q = p f .

Lemma 3.2.4. We have dγ (Y )/dY ≡ χπ (γ ) in E for all γ ∈ 0.

Proof. Since log′LT ≡ 1 mod π , we have ∂ = d/dY in E. Applying ∂ ◦ γ = χπ (γ )γ ◦ ∂ to Y , we get the
claim. □

Lemma 3.2.5. If γ ∈ 0 is nontorsion, then Eγ=1
= k.

Proposition 3.2.6. If K ̸=Qp, there is no 0-equivariant map R : E→ E such that R(ϕq( f ))= f for all
f ∈ E.

Proof. Suppose that such a map exists, and take γ ∈ 0 nontorsion and such that χπ (γ ) ≡ 1 mod π .
We first show that if f ∈ E is such that (1− γ ) f ∈ ϕq(E), then f ∈ ϕq(E). Write f = f0+ ϕq(R( f ))
where f0 = f − ϕq(R( f )), so that R( f0) = 0 and (1− γ ) f0 = ϕq(g) ∈ ϕq(E). Applying R, we get
0= (1−γ )R( f0)= g. Hence g = 0 so that (1−γ ) f0 = 0. Since Eγ=1

= k by Lemma 3.2.5, this implies
f0 ∈ k, so that f ∈ ϕq(E).

However, Lemma 3.2.4 and the fact that χπ (γ )≡ 1 mod π imply that γ (Y )= Y + fγ (Y p) for some
fγ ∈ E, so that γ (Y q/p) = Y q/p

+ ϕq(gγ ). Hence (1− γ )(Y q/p) ∈ ϕq(E) even though Y q/p does not
belong to ϕq(E). Therefore, no such map R can exist. □

Corollary 3.2.7. If K ̸=Qp, there is no 0-equivariant k-linear projector ϕ−1
q (E)→ E. A fortiori, there is

no 0-equivariant k-linear projector Ẽ→ E.

Proof. Given such a projector 5, we could define R as in Proposition 3.2.6 by R =5 ◦ϕ−1
q . □

3.3. The perfectoid commutant of Aut(LT). In Section 3.1 of [Berger and Rozensztajn 2022], we
computed the perfectoid commutant of Aut(Gm). We now use Theorem 3.2.1 to do the same for Aut(LT).
We still assume that p ̸= 2.

Theorem 3.3.1. If u ∈ Ẽ+ is such that valY (u) > 0 and u ◦[g] = [g]◦u for all g ∈O×K , there exists b ∈O×K
and n ∈ Z such that u(Y )= [b](Y qn

).

Recall that a power series f (Y ) ∈ k[[Y ]] is separable if f ′(Y ) ̸= 0. If f (Y ) ∈ Y · k[[Y ]], we say that f
is invertible if f ′(0) ∈ k×, which is equivalent to f being invertible for composition (denoted by ◦). We
say that w(Y ) ∈ Y · k[[Y ]] is nontorsion if w◦n(Y ) ̸= Y for all n ⩾ 1. If w(Y )=

∑
i⩾0wi Y i

∈ k[[Y ]] and
m ∈ Z, let w(m)(Y )=

∑
i⩾0w

pm

i Y i . Note that (w ◦ v)(m) = w(m) ◦ v(m).

Proposition 3.3.2. Let w(Y ) ∈ Y + Y 2
· k[[Y ]] be a nontorsion series, and let f (Y ) ∈ Y · k[[Y ]] be a

separable power series. If w(m) ◦ f = f ◦w for some m ∈ Z, then f is invertible.

Proof. This is a slight generalization of [Lubin 1994, Lemma 6.2]. Write

f (Y )= fnY n
+O(Y n+1),

f ′(Y )= g j Y j
+O(Y j+1),

w(Y )= Y +wr Y r
+O(Y r+1),
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with fn, g j , wr ̸= 0. Since w is nontorsion, we can replace w by w◦pℓ for ℓ≫ 0 and assume that r ⩾ j+1.
We have

w(m) ◦ f = f (Y )+w(m)r f (Y )r +O(Y n(r+1))= f (Y )+w(m)r f r
n Y nr

+O(Y nr+1).

If j = 0, then n = 1 and we are done, so assume that j ⩾ 1. We have

f ◦w = f (Y +wr Y r
+O(Y r+1))

= f (Y )+wr Y r f ′(Y )+O(Y 2r )

= f (Y )+wr g j Y r+ j
+O(Y r+ j+1).

This implies that nr = r + j , hence (n−1)r = j , which is impossible if r > j unless n = 1. Hence n = 1
and f is invertible. □

Lemma 3.3.3. If u ∈ Ẽ+ is such that valX (u) > 0 and u ◦ [g] = [g] ◦ u for all g ∈O×K , then u ∈ (̃E+)d-sh.

Proof. The group O×K acts on Ẽ+ by g · u = u ◦ [g]. By lemmas 3.1.1 and 3.1.2, the function g 7→ [g] ◦ u
is in Hλ

d(1+ pOK , Ẽ+), where pλ = valY (u). □

Proof of Theorem 3.3.1. Take u ∈ Ẽ such that valY (u) > 0 and u ◦ [g] = [g] ◦ u for all g ∈ O×K . By
Lemma 3.3.3 and Theorem 3.2.1, there is an m ∈ Z such that f (Y )= u(Y )pm

belongs to Y · k[[Y ]] and
is separable. Take g ∈ 1+πOK such that g is nontorsion, and let w(Y )= [g](Y ) so that u ◦w = w ◦ u.
We have f ◦ w = w(m) ◦ f . By Proposition 3.3.2, f is invertible. In addition, f ◦ w = w(m) ◦ f if
w(Y )= [g](Y ) for all g ∈O×K . Hence f0 · ḡ = ḡ pm

· f0, so that a pm
= a for all a = ḡ ∈ k. This implies

that Fq ⊂ Fp|m| , so that m = f n for some n ∈ Z. Hence w(m) = w, and f ◦ [g] = [g] ◦ f for all g ∈O×K .
Theorem 6 of [Lubin and Sarkis 2007] implies that f ∈ Aut(LT). Hence there exists b ∈O×K such that
u(Y )= [b](Y qn

). □

4. Mahler expansions and super-Hölder functions

In Section 1.3 of [Berger and Rozensztajn 2022], we proved an analogue of Mahler’s theorem for
continuous functions Zp → M , and then gave a characterization of super-Hölder functions in terms
of their Mahler expansions. We now indicate how these results generalize to functions G→ M for a
uniform pro-p group G. Given the definition of super-Hölder functions and the existence of a coordinate
c : G→ Zd

p as in Proposition 1.1.1, it is enough to study functions Zd
p→ M . We generalize the setting a

little bit, and study functions Od
K → M where K is a finite extension of Qp. Let K be such a field, fix a

uniformizer π of OK and let k be the residue field of K . Let q = Card(k).

4.1. Good bases and wavelets. Let X = Od
K , which we endow with the valuation valX (x1, . . . , xd) =

mini valπ (xi ). For n ⩾ 0, let Xn = π
n X = {x ∈ X, valX (x)⩾ n}.

We endow X with the valX -adic topology. For any set Y , we denote by LC(X, Y ) the set of locally
constant functions X → Y . For n ⩾ 0 we denote by LCn(X, Y ) the subset of elements of LC(X, Y )
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that factor through X/Xn . Let I =
⋃

n⩾0 In be a set of indices, where In ⊂ In+1 for all n ⩾ 0, and
Card(In)= Card(X/Xn)= qnd . Let E be a field of characteristic p.

Definition 4.1.1. A family {hi }i∈I is a good basis of LC(X, E) if it is a basis of the E-vector space
LC(X, E) such that for all n ⩾ 0, {hi }i∈In is a basis of LCn(X, E).

Let M be (as usual) an E-vector space with a valuation valM , such that valM(ax)= valM(x) for all
a ∈ E× and x ∈ M . We assume that M is separated and complete for the valM -adic topology.

Proposition 4.1.2. Every f ∈ LCn(X,M) can be written uniquely as
∑

i∈In
hi ·mi for some elements

mi ∈ M. Moreover, infx∈X valM( f (x))= infi∈In valM(mi ).

Proof. Let {δx}x∈X/Xn be the basis of LCn(X, E) defined as follows: δx is the characteristic function of
x + Xn . Then f ∈ LCn(X,M) is equal to

∑
x∈X/Xn

δx · f (x).
As {hi }i∈In is also a basis of LCn(X, E), we can write δx =

∑
i∈In

ai,x hi for some elements ai,x ∈ E . We
now have f =

∑
i∈In

hi ·mi where mi =
∑

x∈X/Xn
ai,x f (x). This formula implies that infi∈In valM(mi )⩾

infx∈X valM( f (x)).
On the other hand we can also write hi =

∑
x∈X/Xn

bx,iδx for some elements bx,i ∈ E , so that
f (x)=

∑
i∈In

bx,i mi . This implies that infi∈In valM(mi )⩽ infx∈X valM( f (x)). □

We now give an example of a particularly nice good basis of LC(X, E), the basis of wavelets; see
Section I.3 of [Colmez 2010] and Section 2.1 of [de Shalit 2016]. Let T be a set of representatives of
X/X1 in X , chosen so that the representative of 0 is 0. For each n ⩾ 0, let Rn be the set of representatives
of X/Xn defined as follows: R0 = {0}, and for n ⩾ 1, Rn =

{∑n−1
i=0 π

i xi , xi ∈ T for all i
}
. We have

R1= T , and Rn ⊂Rn+1 for all n. Let R=
⋃

n⩾0 Rn . If r ∈R let ℓ(r) be the smallest n such that r ∈Rn .
For r ∈R, let χr be the characteristic function of the closed disc r + Xℓ(r) = {x ∈ X, valX (x− r)⩾ ℓ(r)}.

Proposition 4.1.3. The set {χr }r∈R is a good basis of LC(X, E).

Proof. We prove that for all n ⩾ 0, the set {χr }r∈Rn is a basis of LCn(X, E). Consider the basis {δr }r∈Rn

of LCn(X, E), where δr is the characteristic function of r + Xn . We have

χr =
∑

r ′∈Rn−ℓ(r)

δr+πℓ(r)r ′ .

This implies that if we write Rn = (Rn \Rn−1) ⊔ · · · ⊔ (R1 \R0) ⊔R0 and we express the family
{χr }r∈Rn in terms of the basis {δr }r∈Rn , we get a unipotent matrix. This shows that {χr }r∈Rn is also a
basis of LCn(X, E). □

4.2. Expansions of continuous functions. We show that every continuous function X → M has a
convergent expansion along a good basis of X , and prove some continuity estimates in terms of the
coefficients of the expansion. If {mi }i∈I is a family of M , we say that mi→ 0 if infi /∈In valM(mi )→+∞

as n→+∞.
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Theorem 4.2.1. Let {hi }i∈I be a good basis of LC(X, E).
If {mi }i∈I is a family of M such that mi → 0, the function f : X → M given by f =

∑
i∈I hi ·mi

belongs to C0(X,M), and infx∈X valM( f (x))= infi∈I valM(mi ).
Conversely, if f ∈ C0(X,M), there exists a unique family {mi ( f )}i∈I of elements of M such that

mi ( f )→ 0 and such that f =
∑

i∈I hi ·mi ( f ).

Proof. Let {mi }i∈I be a family of M such that mi→ 0. If fn =
∑

i∈In
hi ·mi , then fn ∈C0(X,M), and f

is the uniform limit of the fn . We have infX valM( fn(x))= infi∈In valM(mi ) by Proposition 4.1.2. Since
mi→0, we have infi∈I valM(mi )= infi∈In valM(mi ) for n≫0. Hence infX valM( fn(x))= infi∈I valM(mi )

for n≫0. Since infx∈X valM( f (x))=limn infx valM( fn(x)), we have infx∈X valM( f (x))=infi∈I valM(mi ).
We now prove the converse. Let Mn={m∈M, valM(m)⩾n}, let πn :M→M/Mn be the projection, and

for each n, fix a lift ψn :M/Mn→M . Take f ∈C0(X,M), and let fn =ψn ◦πn ◦ f . As f and fn coincide
modulo Mn , f is the uniform limit of the fn . On the other hand, πn ◦ f is locally constant, and therefore
so is fn . As X is compact, there exists some k(n)⩾ 0 such that fn ∈ LCk(n)(X,M). By Proposition 4.1.2,
we can write fn =

∑
i∈I hi ·mi,n , where mi,n = 0 if i /∈ Ik(n). We have valM(mi,n−mi,n′)⩾ min(n, n′) by

construction, so that for each i , the sequence {mi,n}n converges to some mi ∈ M . Moreover, if i /∈ Ik(n),
then valM(mi )⩾ n, so that mi → 0. The continuous function

∑
i∈I hi ·mi is the uniform limit of the fn ,

so that finally f =
∑

i∈I hi ·mi . □

Proposition 4.2.2. Take f ∈C0(X,M) and t ∈ Z⩾0. If {hi }i∈I is a good basis of LC(X, E), and we write
f =

∑
i hi ·mi with mi → 0, then infi ̸∈It valM(mi ) depends only on f and not on the choice of the good

basis.

Proof. Fix two good bases {hi }i∈I and {h′i }i∈I of LC(X, E). There exists a family {λi, j }(i, j)∈I×I of
elements of E such that hi =

∑
j λi, j h′j for all i . Moreover, if i ∈ Ic then λi, j = 0 for all j ̸∈ Ic. Now

write f =
∑

i∈I hi ·mi ( f )=
∑

i∈I h′i ·m
′

i ( f ). We also have

f =
∑

i

(∑
j

λi, j h′j

)
·mi ( f )=

∑
j

h′j ·
(∑

i

λi, j mi ( f )
)
,

so that m′j ( f )=
∑

i λi, j mi ( f ). If j ̸∈ It , then m′j ( f )=
∑

i ̸∈It
λi, j mi ( f ), as λi, j = 0 if i ∈ It and j ̸∈ It .

This implies that inf j ̸∈It valM(m′j ( f ))⩾ infi ̸∈It valM(mi ( f )).
By symmetry, we get that inf j ̸∈It valM(m′j ( f ))= infi ̸∈It valM(mi ( f )). □

Theorem 4.2.3. Take f ∈ C0(X,M) and t ∈ Z⩾0.
If {hi }i∈I is a good basis of LC(X, E), and we write f =

∑
i hi ·mi with mi → 0, then

inf
i ̸∈It

valM(mi )= inf
x,y∈X

valX (x−y)⩾t

valM( f (x)− f (y)).

Proof. Let Ct( f )= infx,y∈X,valX (x−y)⩾t valM( f (x)− f (y)) and Bt( f )= infi ̸∈It valM(mi ).
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If x ∈ X and z ∈ X t , then f (x+ z)− f (x)=
∑

i∈I (hi (x+ z)−hi (z)) ·mi ( f ). As hi ∈ LCt(X, E) for
i ∈ It , the above equality gives us

f (x + z)− f (x)=
∑
i ̸∈It

(hi (x + z)− hi (z)) ·mi ( f ).

This implies that Ct( f )⩾ Bt( f ).
We now prove the converse inequality. By Proposition 4.2.2, Bt( f ) is independent of the choice

of a good basis, and we choose the wavelet basis of Proposition 4.1.3. Write f =
∑

r∈R χr ·mr ( f ),
so that we want to show that valM(mr ( f )) ⩾ Ct( f ) for all r /∈ Rt . If x ∈ X , define gx : X → M by
gx(z)= f (x +π t z)− f (x), and write gx =

∑
r∈R χr ·mr (gx). For each r ∈R, we can write uniquely

r = rt +π
t s with rt ∈Rt , where s = 0 if r ∈Rt , and s ̸= 0 ∈Rℓ(r)−t if r /∈Rt . For x ∈Rt and r /∈Rt ,

the map z 7→ χr (x +π t z)−χr (x) is the zero function if rt ̸= x , and is χs if rt = x . This implies that if
x ∈Rt , then

gx(z)=
∑
r∈R

(χr (x +π t z)−χr (x)) ·mr ( f )

=

∑
r /∈Rt

(χr (x +π t z)−χr (x)) ·mr ( f )

=

∑
s /∈R0

χs(z) ·mx+π t s( f ).

Therefore if x ∈Rt , then m0(gx)= 0 and ms(gx)=mx+π t s( f ) if s ̸= 0. We have infs∈R valM(ms(gx))=

infz∈X valM(gx(z))⩾Ct( f ), so that valM(ms(gx))⩾Ct( f ) for all x ∈ X and s ∈R. This implies that for
all x ∈Rt and s ̸= 0, valM(mx+π t s( f ))⩾Ct( f ). Hence for all r /∈Rt , we have valM(mr ( f ))⩾Ct( f ). □

4.3. Mahler bases. We now construct some other examples of good bases. For n ⩾ 0, let Intn(OK ) denote
the set of polynomials f (T ) ∈ K [T ] such that deg(P)⩽ n and f (OK )⊂OK . Recall (see for instance
Section 1.2 of [de Shalit 2016]) that a Mahler basis for OK is a sequence {hn}n⩾0 with hn(T ) ∈ K [T ]
of degree n, and such that {h0, . . . , hn} is a basis of the free OK -module Intn(OK ) for all n ⩾ 0. For
example, if K =Qp, we can take hn(T )=

(T
n

)
. Let {hn}n⩾0 be a Mahler basis for OK . Each hn defines a

function OK →OK and hence OK → k. Let I = Z⩾0 and let In = {0, . . . , qn
− 1} for n ⩾ 0.

Proposition 4.3.1. If {hn}n⩾0 is a Mahler basis for OK , then {hi }i∈I is a good basis of LC(OK , k).

Proof. By Theorem 1.2 of [de Shalit 2016], {h0, . . . , hqm−1} is a basis of the k-vector space LCm(OK , k)
for all m ⩾ 0. This implies the claim. □

We now specialize to K = Qp. Write N for Z⩾0 and n for an element (n1, . . . , nd) ∈ Nd . For each
n ∈ Nd , we denote by hn the function Zd

p→ E given by (x1, . . . , xd) 7→
(x1

n1

)
· · ·

(xd
nd

)
. For m ∈ Z⩾0, let

Im = {n ∈ Nd such that max(n1, . . . , nd)⩽ pm
− 1}.

Proposition 4.3.2. The functions {hn}n∈Nd form a good basis of LC(Zd
p, Fp).

Proof. The claim follows from Proposition 4.3.1 for K =Qp, and Lemma 4.3.3 below. □
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Lemma 4.3.3. If X and X ′ are as in Section 4.1, and {hi }i∈I and {h′j } j∈J are good bases of LC(X, E)
and LC(X ′, E), then {hi ⊗ h′j }(i, j)∈I×J is a good basis of LC(X × X ′, E), with (I × J )n = In × Jn .

Let G be a uniform pro-p group, and let c : G → Zd
p be a coordinate as in Proposition 1.1.1. The

theorem below follows from Proposition 4.3.2 and Theorems 4.2.1 and 4.2.3.

Theorem 4.3.4. If {mn}n∈Nd is a sequence of M such that mn→ 0, the function f : G→ M given by
f (g)=

∑
n∈Nd

(c1(g)
n1

)
· · ·

(cd (g)
nd

)
mn belongs to C0(G,M). We have infg∈G valM( f (g))=infn∈Nd valM(mn).

Conversely, if f ∈ C0(G,M), there exists a unique sequence {mn( f )}n∈Nd such that mn( f )→ 0 and
such that f (g)=

∑
n∈Nd

(c1(g)
n1

)
· · ·

(cd (g)
nd

)
mn( f ).

We have f ∈Hλ,µ
e (G,M) if and only if for all i ⩾ 0, we have valM(mn( f ))⩾ pλ · pei

+µ whenever
max(n1, . . . , nd)⩾ pi .

Remark 4.3.5. The first two assertions in the above theorem also follow from Theorem 1.2.4 in Section III
of [Lazard 1965] (we thank Konstantin Ardakov for pointing this out).

We finish by considering the case G =OK for K a finite extension of Qp, and working with a Mahler
basis for OK . Let K be a finite extension of Qp as before. Assume that E is an extension of k. Let
{hn}n⩾0 be a Mahler basis for OK . If f ∈ C0(OK ,M), write f =

∑
n⩾0 hnmn( f ) with mn( f )→ 0. Let

e denote the ramification index of K .

Proposition 4.3.6. If f =
∑

n⩾0 hnmn( f ) as above, then f ∈Hλ,µ
t (OK ,M) if and only if valM(mn( f ))⩾

pλ · pti
+µ whenever n ⩾ pdi .

Proof. This follows from Theorem 4.2.3, since valp(x − y)⩾ i if and only if valπ (x − y)⩾ ei , and since
qe
= pd . □

In this situation we can also define a slightly different version of super-Hölder functions. We say that a
function f :OK → M is in Hλ,µ

K ,t (OK ,M) if valM( f (x)− f (y))⩾ pλ · pti
+µ whenever valπ (x− y)⩾ i .

We then have

Hλ+t (e−1),µ
te (OK ,M)⊂Hλ,µ

K ,t (OK ,M)⊂Hλ,µ
te (OK ,M).

In particular, HK ,t(OK ,M)=Hte(OK ,M). If K/Qp is unramified then Hλ,µ
K ,t (OK ,M)=Hλ,µ

t (OK ,M).
Moreover we have the following criterion:

Proposition 4.3.7. If f =
∑

n⩾0 hnmn( f ) as above, then f ∈Hλ,µ
K ,t (OK ,M) if and only if valM(mn( f ))⩾

pλ · pti
+µ whenever n ⩾ q i .

Example 4.3.8. For all n ⩾ 0, there exists cn(T ) ∈ Intn(OK ) such that [a](Y ) =
∑

n⩾0 cn(a)Y n . This
implies that valY (mn(a 7→ [a](Y )))⩾ n, so that the function a 7→ [a](Y ) is in H0,0

d (OK , E[[Y ]]), and in
H0,0

K , f (OK , E[[Y ]]) where q = p f .



Super-Hölder vectors and the field of norms 211

References

[Berger 2016] L. Berger, “Multivariable (ϕ, 0)-modules and locally analytic vectors”, Duke Math. J. 165:18 (2016), 3567–3595.
MR Zbl

[Berger and Rozensztajn 2022] L. Berger and S. Rozensztajn, “Decompletion of cyclotomic perfectoid fields in positive
characteristic”, Ann. H. Lebesgue 5 (2022), 1261–1276. MR Zbl

[Cais and Davis 2015] B. Cais and C. Davis, “Canonical Cohen rings for norm fields”, Int. Math. Res. Not. 2015:14 (2015),
5473–5517. MR Zbl

[Colmez 2010] P. Colmez, “Fonctions d’une variable p-adique”, pp. 13–59 in Représentations p-adiques de groupes p-adiques,
II: Représentations de GL2(Qp) et (ϕ, 0)-modules, edited by L. Berger et al., Astérisque 330, Soc. Math. France, Paris, 2010.
MR Zbl

[Dixon et al. 1991] J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-p groups, Lond. Math. Soc. Lect. Note
Ser. 157, Cambridge Univ. Press, 1991. MR Zbl

[Emerton 2017] M. Emerton, Locally analytic vectors in representations of locally p-adic analytic groups, Mem. Amer. Math.
Soc. 1175, Amer. Math. Soc., Providence, RI, 2017. MR Zbl

[Klopsch 2005] B. Klopsch, “On the Lie theory of p-adic analytic groups”, Math. Z. 249:4 (2005), 713–730. MR Zbl

[Lazard 1965] M. Lazard, “Groupes analytiques p-adiques”, Inst. Hautes Études Sci. Publ. Math. 26 (1965), 389–603. MR Zbl

[Le Borgne 2010] J. Le Borgne, “Optimisation du théorème d’Ax–Sen–Tate et application à un calcul de cohomologie galoisienne
p-adique”, Ann. Inst. Fourier (Grenoble) 60:3 (2010), 1105–1123. MR Zbl

[Lubin 1994] J. Lubin, “Non-Archimedean dynamical systems”, Compos. Math. 94:3 (1994), 321–346. MR Zbl

[Lubin and Sarkis 2007] J. D. Lubin and G. Y. Sarkis, “Extrinsic properties of automorphism groups of formal groups”, J.
Algebra 315:2 (2007), 874–884. MR Zbl

[Lubin and Tate 1965] J. Lubin and J. Tate, “Formal complex multiplication in local fields”, Ann. of Math. (2) 81 (1965),
380–387. MR Zbl

[Schneider 2011] P. Schneider, p-adic Lie groups, Grundl. Math. Wissen. 344, Springer, 2011. MR Zbl

[Scholze 2012] P. Scholze, “Perfectoid spaces”, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245–313. MR Zbl

[Sen 1972] S. Sen, “Ramification in p-adic Lie extensions”, Invent. Math. 17 (1972), 44–50. MR Zbl

[de Shalit 2016] E. de Shalit, “Mahler bases and elementary p-adic analysis”, J. Théor. Nombres Bordeaux 28:3 (2016), 597–620.
MR Zbl

[Wintenberger 1983] J.-P. Wintenberger, “Le corps des normes de certaines extensions infinies de corps locaux: applications”,
Ann. Sci. École Norm. Sup. (4) 16:1 (1983), 59–89. MR Zbl

Communicated by Wee Teck Gan
Received 2023-03-16 Accepted 2024-02-13

laurent.berger@ens-lyon.fr UMPA, ENS de Lyon, UMR 5669 du CNRS, Lyon, France

sandra.rozensztajn@ens-lyon.fr UMPA, ENS de Lyon, UMR 5669 du CNRS, Lyon, France

mathematical sciences publishers msp

https://doi.org/10.1215/00127094-3674441
http://msp.org/idx/mr/3577371
http://msp.org/idx/zbl/1395.11084
https://doi.org/10.5802/ahl.150
https://doi.org/10.5802/ahl.150
http://msp.org/idx/mr/4526253
http://msp.org/idx/zbl/1522.11121
https://doi.org/10.1093/imrn/rnu098
http://msp.org/idx/mr/3384447
http://msp.org/idx/zbl/1342.13028
http://www.numdam.org/item/AST_2010__330__13_0/
http://msp.org/idx/mr/2642404
http://msp.org/idx/zbl/1223.11144
http://msp.org/idx/mr/1152800
http://msp.org/idx/zbl/0744.20002
https://doi.org/10.1090/memo/1175
http://msp.org/idx/mr/3685952
http://msp.org/idx/zbl/1430.22020
https://doi.org/10.1007/s00209-004-0717-1
http://msp.org/idx/mr/2126210
http://msp.org/idx/zbl/1065.22005
http://www.numdam.org/item?id=PMIHES_1965__26__389_0
http://msp.org/idx/mr/209286
http://msp.org/idx/zbl/0139.02302
https://doi.org/10.5802/aif.2548
https://doi.org/10.5802/aif.2548
http://msp.org/idx/mr/2680825
http://msp.org/idx/zbl/1304.11130
http://www.numdam.org/item?id=CM_1994__94_3_321_0
http://msp.org/idx/mr/1310863
http://msp.org/idx/zbl/0843.58111
https://doi.org/10.1016/j.jalgebra.2007.02.013
http://msp.org/idx/mr/2351898
http://msp.org/idx/zbl/1129.14061
https://doi.org/10.2307/1970622
http://msp.org/idx/mr/172878
http://msp.org/idx/zbl/0128.26501
https://doi.org/10.1007/978-3-642-21147-8
http://msp.org/idx/mr/2810332
http://msp.org/idx/zbl/1223.22008
https://doi.org/10.1007/s10240-012-0042-x
http://msp.org/idx/mr/3090258
http://msp.org/idx/zbl/1263.14022
https://doi.org/10.1007/BF01390022
http://msp.org/idx/mr/319949
http://msp.org/idx/zbl/0242.12012
https://doi.org/10.5802/jtnb.955
http://msp.org/idx/mr/3610689
http://msp.org/idx/zbl/1409.11113
https://doi.org/10.24033/asens.1440
http://msp.org/idx/mr/719763
http://msp.org/idx/zbl/0516.12015
mailto:laurent.berger@ens-lyon.fr
mailto:sandra.rozensztajn@ens-lyon.fr
http://msp.org




Guidelines for Authors

Authors may submit manuscripts in PDF format on-line at the Submission page at the ANT website.

Originality. Submission of a manuscript acknowledges that the manuscript is original and and is not,
in whole or in part, published or under consideration for publication elsewhere. It is understood also
that the manuscript will not be submitted elsewhere while under consideration for publication in this
journal.

Language. Articles in ANT are usually in English, but articles written in other languages are welcome.

Length There is no a priori limit on the length of an ANT article, but ANT considers long articles
only if the significance-to-length ratio is appropriate. Very long manuscripts might be more suitable
elsewhere as a memoir instead of a journal article.

Required items. A brief abstract of about 150 words or less must be included. It should be self-
contained and not make any reference to the bibliography. If the article is not in English, two versions
of the abstract must be included, one in the language of the article and one in English. Also required
are keywords and subject classifications for the article, and, for each author, postal address, affiliation
(if appropriate), and email address.

Format. Authors are encouraged to use LATEX but submissions in other varieties of TEX, and excep-
tionally in other formats, are acceptable. Initial uploads should be in PDF format; after the refereeing
process we will ask you to submit all source material.

References. Bibliographical references should be complete, including article titles and page ranges.
All references in the bibliography should be cited in the text. The use of BibTEX is preferred but not
required. Tags will be converted to the house format, however, for submission you may use the format
of your choice. Links will be provided to all literature with known web locations and authors are
encouraged to provide their own links in addition to those supplied in the editorial process.

Figures. Figures must be of publication quality. After acceptance, you will need to submit the original
source files in vector graphics format for all diagrams in your manuscript: vector EPS or vector PDF

files are the most useful.

Most drawing and graphing packages (Mathematica, Adobe Illustrator, Corel Draw, MATLAB, etc.)
allow the user to save files in one of these formats. Make sure that what you are saving is vector
graphics and not a bitmap. If you need help, please write to graphics@msp.org with details about how
your graphics were generated.

White space. Forced line breaks or page breaks should not be inserted in the document. There is no
point in your trying to optimize line and page breaks in the original manuscript. The manuscript will
be reformatted to use the journal’s preferred fonts and layout.

Proofs. Page proofs will be made available to authors (or to the designated corresponding author) at a
Web site in PDF format. Failure to acknowledge the receipt of proofs or to return corrections within the
requested deadline may cause publication to be postponed.

http://dx.doi.org/10.2140/ant
mailto:graphics@msp.org


Algebra & Number Theory
Volume 19 No. 1 2025

1A modification of the linear sieve, and the count of twin primes
JARED DUKER LICHTMAN

39Ranks of abelian varieties in cyclotomic twist families
ARI SHNIDMAN and ARIEL WEISS

77Picard rank jumps for K3 surfaces with bad reduction
SALIM TAYOU

113Curves with few bad primes over cyclotomic Zℓ-extensions
SAMIR SIKSEK and ROBIN VISSER

143Vanishing results for the coherent cohomology of automorphic vector bundles over the Siegel variety in
positive characteristic

THIBAULT ALEXANDRE

195Super-Hölder vectors and the field of norms
LAURENT BERGER and SANDRA ROZENSZTAJN

A
lgebra

&
N

um
ber

Theory
2025

Vol.19,
N

o.1


	 vol. 19, no. 1, 2025
	Masthead and Copyright
	01
	1. Introduction
	1.1. Application to twin primes
	1.2. Outline of main ideas in Theorem 1.1

	Notation
	2. Technical setup and results
	2.1. Factorization of weights and their level of distribution
	2.2. Sieve theory setup and bounds

	3. Programmably factorable support
	3.1. Refined factorization of Dwell

	4. Modification of the linear sieve
	4.1. Sieve function computation

	5. Factorable remainder, after Iwaniec
	5.1. Variable level of distribution for the linear sieve weights
	5.2. Equidistribution for products of primes

	6. Upper bound for twin primes
	6.1. Lemmas
	6.2. Computations
	6.3. Completing the proof of 0=theorem.111=Theorem 1.2

	Acknowledgments
	References

	02
	1. Introduction
	1A. Mordell–Weil ranks
	1B. Rational points on curves
	1C. 3-isogeny Selmer groups
	1D. Methods
	1E. Future directions
	1F. Outline

	2. Abelian varieties with zeta-multiplication
	2A. The isogeny pi
	2B. zeta-linear isogenies
	2C. Twists

	3. Integral orbits of binary cubic forms
	4. Local Selmer conditions for zeta-linear isogenies
	4A. Nonsquare and unramified twists
	4B. Twists of positive valuation
	4B1. Extension classes
	4B2. The image of d

	4C. Local Selmer ratios

	5. Selmer groups and integrality
	5A. Integrality of Selmer elements
	5B. Average size of the Selmer group
	5C. Explicit Selmer rank bounds

	6. The average rank is bounded in cyclotomic twist families
	7. The average rank in twist families of trigonal Jacobians
	7A. Trigonal Jacobians
	7B. Iterated triple covers and Pryms

	8. CM abelian varieties
	9. Rational points on hyperbolic varieties
	10. Abelian surfaces with zeta_3-multiplication
	10A. Bielliptic Picard curves
	10B. The example
	10C. More general curves

	Acknowledgments
	References

	03
	1. Introduction
	1A. Picard rank jumps over function fields
	1B. Hecke orbit conjecture
	1C. Strategy of the proof
	1D. Organization of the paper

	2. GSpin Shimura varieties: integral models and their compactifications
	2A. The GSpin Shimura variety
	2B. Toroidal compactifications over C
	2B1. Boundary components of type II
	2B2. Boundary components of type III
	2B3. Toroidal compactifications
	2B4. Formal completion along type-II boundary strata
	2B5. Formal completion along type-III boundary strata

	2C. Integral models
	2C1. Type II
	2C2. Type III

	2D. Special divisors
	2D1. Special divisors along type-II boundary components
	2D2. Special divisors along type-III boundary components


	3. Arithmetic intersection theory and modularity
	3A. Modularity of special divisors

	4. The main estimates and proof of the main theorems
	4A. Number field setting
	4B. Function field setting
	4C. Proof of the main theorems
	4D. Global estimate
	4E. Estimates on type-II multiplicities
	4F. Estimates on type-III multiplicities

	5. Bounding the contribution from bad reduction places
	5A. Bad reduction in the number field setting
	5A1. Type-II degeneration
	5A2. Type-III degeneration

	5B. Function field setting
	5B1. Type-II degeneration
	5B2. Type-III degeneration


	6. Applications
	6A. Hecke orbit conjecture
	6A1. The orthogonal case
	6A2. The unitary case


	Acknowledgments
	References

	04
	1. Introduction
	2. Units and S-units of Q()
	3. The S-unit equation over Q(n)+
	4. The unit equation over Q(n)+
	5. The S-unit equation over Q,5
	6. The S-unit equation over Q,7
	7. Isogeny classes of elliptic curves over Q,
	8. From S-unit equations to elliptic curves
	9. Hyperelliptic curves over Q, with few bad primes
	10. Isogeny classes of hyperelliptic curves over Q,
	Acknowledgements
	References

	05
	1. Introduction
	1.1. History and motivation
	1.2. Main results
	1.3. Overview of the strategy
	1.4. Organization of the paper

	2. Recollection on group theory
	3. Recollection on Siegel varieties
	4. G-Zips and stratifications
	4.1. General theory
	4.2. G`3́9`42`"̇613A``45`47`"603A-Zip associated to the universal abelian scheme

	5. Positive automorphic line bundles and Kodaira vanishing
	5.1. Positive line bundles
	5.2. D-ample automorphic line bundles
	5.3. A logarithmic Kodaira–Nakano vanishing theorem in positive characteristic

	6. Vanishing for automorphic vector bundles
	6.1. Spectral sequence associated to a filtered sheaf
	6.2. The general case
	6.2.1. Degeneration
	6.2.2. Propagation

	6.3. The Siegel threefold case

	7. Degeneration algorithm
	7.1. Presentation
	7.2. Explicit vanishing for G = `3́9`42`"̇613A``45`47`"603ASp4
	7.3. Explicit vanishing for G = `3́9`42`"̇613A``45`47`"603ASp6

	Acknowledgements
	References

	06
	Introduction
	1. Super-Hölder functions and vectors
	1.1. Uniform pro-p groups
	1.2. Super-Hölder functions and vectors

	2. The field of norms
	2.1. The field of norms
	2.2. Decompleting the tilt

	3. The Lubin–Tate case
	3.1. Lubin–Tate formal groups
	3.2. Decompletion of E"0365E
	3.3. The perfectoid commutant of Aut(LT)

	4. Mahler expansions and super-Hölder functions
	4.1. Good bases and wavelets
	4.2. Expansions of continuous functions
	4.3. Mahler bases

	References

	Guidelines for Authors
	Table of Contents

