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Smooth numbers are orthogonal to nilsequences
Lilian Matthiesen and Mengdi Wang

The aim of this paper is to study distributional properties of integers without large or small prime factors.
Define an integer to be [y′, y]-smooth if all of its prime factors belong to the interval [y′, y]. We identify
suitable weights g[y′,y](n) for the characteristic function of [y′, y]-smooth numbers that allow us to
establish strong asymptotic results on their distribution in short arithmetic progressions. Building on these
equidistribution properties, we show that (a W -tricked version of) the function g[y′,y](n)− 1 is orthogonal
to nilsequences. Our results apply in the almost optimal range (log N )K < y ⩽ N of the smoothness
parameter y, where K ⩾ 2 is sufficiently large, and to any y′ <min(

√
y, (log N )c).

As a first application, we establish for any y > N 1/
√

log9 N asymptotic results on the frequency with
which an arbitrary finite complexity system of shifted linear forms ψ j (n)+a j ∈ Z[n1, . . . , ns], 1⩽ j ⩽ r ,
simultaneously takes [y′, y]-smooth values as the ni vary over integers below N.
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1. Introduction

Let y > 0 be a real number. A positive integer n is called y-smooth if its largest prime factor is at most y.
The y-smooth numbers below N form a subset of the integers below N which is, in general, sparse but
enjoys good equidistribution properties in arithmetic progressions and short intervals. These distributional
properties turn y-smooth numbers into an important technical tool for many arithmetic questions. As an
example for one of the striking applications of smooth numbers within analytic number theory, we mention
[Vaughan 1989], which introduced smooth numbers in combination with a new iterative method to the
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study of bounds in Waring’s problem. Wooley [1992] extended these methods and achieved substantial
improvements on Waring’s problem by working with smooth numbers. We refer to Granville’s survey
[2008] (see in particular Section 6) for a more comprehensive overview of applications of smooth numbers
within number theory.

In the present paper, we prove new results on the equidistribution of smooth numbers in short intervals
and arithmetic progressions. Our principal aim is to prove higher uniformity of y-smooth numbers in a
sense that will be made precise below and for y ranging over an almost optimal range. In addition, we
prove that provided y is not too small, the set of y-smooth numbers is sufficiently well distributed to
guarantee the existence of nontrivial solutions to arbitrary finite complexity systems of linear equations.

In order to state our main results precisely, we first introduce a subset of the y-smooth numbers as well
as a weighted version of its characteristic function that are both central to the rest of this paper. Given
any real numbers 0 < y′ ⩽ y, we may consider the set of y-smooth numbers that are free from prime
factors smaller than y′. We call such numbers [y′, y]-smooth and denote their set by

S([y′, y]) := {n ∈ N : p | n ⇒ p ∈ [y′, y]}.

Given any x > 0, the subset of [y′, y]-smooth numbers ⩽ x and its cardinality are denoted by

S(x, [y′, y]) := S([y′, y])∩ [1, x] and 9(x, [y′, y]) := |S(x, [y′, y])|.

Our notation extends the following standard notation for y-smooth numbers:

S(y) := S([1, y]), S(x, y) := S(x, [1, y]), and 9(x, y)=9(x, [1, y]).

With this notation, we define the weighted characteristic function

g[y′,y](n)=
n

α(n, y)9(n, [y′, y])
1S([y′,y])(n) (n ∈ N)

of [y′, y]-smooth numbers, where α(n, y) denotes the saddle point1 associated to S(n, y). If 1 ⩽ A < W
are coprime integers, we further define a W -tricked version of g[y′,y] by setting

g(W,A)
[y′,y]

(m)=
φ(W )

W
g[y′,y](W m + A) (m ∈ N).

In the definitions of the functions g[y′,y] and g(W,A)
[y′,y]

, the normalisations are chosen such that their average
values are roughly 1.

Following these preparations, we are now ready to state the main result of this paper. The notation
around nilsequences will be recalled in Section 8. Throughout this paper we write logk x to denote the
k-fold iterated logarithm of x .

Theorem 1.1 (higher uniformity). Let N be a large positive parameter and let K ′ ⩾ 1, K > 2K ′ and d ⩾ 0
be integers. Let 1

2 log3 N ⩽ y′ ⩽ (log N )K ′

and suppose that (log N )K < y < N η for some sufficiently

1We recall the definition in Section 3.
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small η ∈ (0, 1) depending on the value of d. Let (G/0,G•) be a filtered nilmanifold of complexity Q0

and degree d. Finally, let w(N )=
1
2 log3 N, W =

∏
p<w(N ) p and define δ(N )= exp(−

√
log4 N ).

If K is sufficiently large depending on the degree d of G•, then the estimate∣∣∣∣W
N

∑
n⩽(N−A)/W

(g(W,A)
[y′,y]

(n)− 1)F(g(n)0)
∣∣∣∣ ≪d (1 + ∥F∥Lip)δ(N )Q0 +

1
logw(N )

(1-1)

holds uniformly for all 1 ⩽ A ⩽ W with gcd(A,W )= 1, all polynomial sequences g ∈ poly(Z,G•) and
all 1-bounded Lipschitz functions F : G/0 → C.

Remark 1.2. Since gcd(A,W )= 1, we may, when working with W n + A ∈ S([y′, y]), restrict without
loss of generality to the case y′ ⩾ w(N ). In applications where y is not too small, the contribution from
S(y) \ S([w(N ), y]) can often be taken care of separately, leading to a result for S(y) in the end.

Theorem 1.1 constitutes the first of two parts necessary in order to establish asymptotic results on the
number of [y′, y]-smooth solutions to finite complexity systems of linear forms using the nilpotent circle
method. We emphasise that the setting of smooth numbers studied in the present paper is significantly
more difficult than those settings considered in previous applications such as, e.g., [Green and Tao 2010],
[Matthiesen 2018; 2020] or [Matthiesen 2012], which concern primes, a large class of multiplicative
functions, and numbers representable by binary quadratic forms, respectively. The reason for this increase
in difficulty lies partly in the sparsity of the set of y-smooth numbers and partly in the unavailability of
sieve methods to study this set.

The parameter w(N ) is determined by the distribution of y-smooth numbers in arithmetic progressions
and chosen in such a way that the subset of y-smooth numbers in any fixed reduced residue class
modulo W (N ) =

∏
p<w(N ) p is sufficiently well-distributed in arithmetic progressions. At the end of

Section 2, we will discuss in more detail the need for applying such a “W -trick” when studying y-smooth
numbers. In addition to the W -trick, the value y′ may be used to further influence how well the resulting
set of [y′, y]-smooth numbers is distributed in progressions. Increasing the parameter y′ beyond the
value of w(N ) leads to better error terms for larger moduli in the distribution of [y′, y]-smooth numbers
in progressions. The proof of Theorem 1.1 relies on information on the distribution of [y′, y]-smooth
numbers in short intervals and in arithmetic progressions, which we establish in Sections 4 and 5.

From a technical perspective, our focus in Theorem 1.1 has been to establish a result in which the
lower bound on the range of the smoothness parameter y is as small as possible in terms of N, while
the W -trick (i.e., the value of W ) is still independent of y. This allows one to combine this result in
applications with inductive or recursive arguments in the y-parameter. We remark that when focussing on
larger values of y, the function w(N ) in the statement can be chosen larger and consequently the bounds
in this result improve.

As a first application, we estimate, for large values of y, the frequency with which an arbitrary finite
complexity system of shifted linear forms ψ j (n)+ a j ∈ Z[n1, . . . , ns], 1 ⩽ j ⩽ r , simultaneously takes
[y′, y]-smooth values as the ni vary over integers below N.
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Theorem 1.3 (linear equations in smooth numbers). Let r, s ⩾ 2 be integers and let N > 2 be a parameter.
We consider the following setup:

(i) Let ψ1, . . . , ψr : Zs
→ Z be linear forms that are pairwise linearly independent over Q, and let

a1, . . . , ar ∈ [−N , N ]∩Z be integers. Let L denote the maximum of the absolute values of the coefficients
of ψ1, . . . , ψr .

(ii) Let K ⊆ [−1, 1]
s be a fixed convex set of positive s-dimensional volume volK> 0, and suppose that

the dilated copy
NK = {Nk ∈ Rs

: k ∈ K}

satisfies ψ j (NK)+ a j ⊆ [1, N ] for all 1 ⩽ j ⩽ r .

(iii) Let 1
2 log3 N ⩽ y′ ⩽ (log N )K ′

for some fixed K ′ ⩾ 1. Let η ∈ (0, 1) be sufficiently small in terms of
r and s and suppose that y ⩽ N η.

If y ⩽ N η is sufficiently large to ensure that 9(N , y) > N/log8 N, then∑
n∈Zs∩NK

r∏
j=1

g[y′,y](ψ j (n)+ a j )= vol(K)N s
∏
p<y′

βp + or,s,L(N s),

as N → ∞ and where

βp =
1
ps

∑
u∈(Z/pZ)s

r∏
j=1

p
p − 1

1ψ j (u)+a j ̸≡0 (mod p).

We note as an aside that, as shown in [Green and Tao 2010, Section 4], this result implies an asymptotic
count of the number of solutions in [y′, y]-smooth numbers to systems of linear equations satisfying the non-
degeneracy condition stated in [loc. cit., Theorem 1.8]. Theorem 1.3 is the first instance of a result of its kind
for smooth numbers that applies in sparse situations where9(N , y)= o(N ). We mainly include this result
for illustration and remark that we have not tried to optimise the lower bound on9(N , y)/N.2 Theorem 1.3
follows by combining Theorem 1.1 with a “trivial” majorising function. Once suitable majorising functions
are available on the full range of y on which Theorem 1.1 applies, a version of Theorem 1.3 will follow
on that range of y, making Theorem 1.3 redundant. For this reason, we chose not to optimise the bounds.

The following unweighted version of Theorem 1.3 is an easy consequence of an asymptotic lower
bound on the weight factor that appears in the definition of g[y′,y](n).

Corollary 1.4. With the notation and under the assumptions of Theorem 1.3 the following holds. If
y ⩽ N η is sufficiently large to ensure that 9(N , y) > N/ log8 N and 1

2 log3 N ⩽ y′ ⩽ (log N )K ′

for some
fixed K ′ ⩾ 1, then the number N (N ,K) of n ∈ Zs

∩ NK for which the given system of linear polynomials
(ψ j (n)+ a j )1⩽ j⩽r takes simultaneous [y′, y]-smooth values satisfies

N (N ,K) :=

∑
n∈Zs∩NK

r∏
j=1

1S([y′,y])(ψ j (n)+ a j )≫ vol(K)N s−r9(N , [y′, y])r
∏

p

βp

for all sufficiently large N.
2As this application only involves fairly large values in y, the bounds in Theorem 1.3 could be improved by establishing

better bounds in Theorem 1.1 for large values of y.
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Previous work and discussion. Before turning towards Theorem 1.1, we shall first discuss previous work
in the direction of Theorem 1.3, partly because this work illustrates for which range of the smoothness
parameter y one can hope to prove such a result.

In the dense case where y > N ε for any ε > 0, Theorem 1.3 has been proved by Lachand [2017] with
S([y′, y]) replaced by S(y) and with W = 1, A = 0. The special case of Lachand’s result where s = 2 and
a1 = · · · = ar = 0 also follows from work of Balog, Blomer, Dartyge and Tenenbaum [Balog et al. 2012].
The latter paper studies smooth values of binary forms and can be applied to F(n1, n2)=

∏r
i=1 ψi (n1, n2).

In a similar spirit, Fouvry [2010] investigated smooth values of absolutely irreducible polynomials
F(X) ∈ Z[X1, . . . , Xn] with n ⩾ 2 and deg F ⩾ 3 and showed that∑

n∈Zn∩[−N ,N ]

1S(N d−δ)(F(n))≫ N n

for all δ < 4
3 and all N > N0(F), which also corresponds to the dense setting.

Concerning the sparse setting, i.e., smaller values of y, it follows from [Lagarias and Soundararajan
2011; 2012] that the lower threshold on y for which our counting function satisfies

N (N ,K)→ ∞, as N → ∞,

is y> (log N )κ for some κ ⩾ 1. More precisely, Lagarias and Soundararajan studied primitive solutions to
the equation A+B =C in smooth numbers. Using our notation they proved in [Lagarias and Soundararajan
2012, Theorem 1.5] that GRH implies∑

0<n1+n2⩽N
gcd(n1,n2)=1

1S(y)(n1)1S(y)(n2)1S(y)(n1 + n2)≫
9(N , y)3

N
(1-2)

for any y ⩾ (log N )κ and κ > 8. On the other hand, they showed in [loc. cit., Theorem 1.1] that the
abc conjecture implies that the left-hand side above is bounded independent of N if y = (log N )κ and
κ < 1. In view of this latter result, and with applications in the spirit of Theorem 1.3 in mind, the
range of y in which we prove Theorem 1.1 is optimal up to the size of the exponent K . Indeed, the
left-hand side above is a special case of the expression N (N ,K) studied in Corollary 1.4 when ignoring
the parameter y′. When combined with a simple majorising function, Theorem 1.3 and Corollary 1.4
follow from Theorem 1.1, the Green–Tao–Ziegler inverse theorem [Green et al. 2012] for the U k-norms 3

and the generalised von Neumann theorem [Green and Tao 2010]. The existence of a suitable majorising
function for g[y′,y] on a larger range of y would imply an analogue of Theorem 1.3 on the intersection of
that range and the range on which Theorem 1.1 holds. Such an analogue can only hold provided that
y > (log N )K for some sufficiently large K .

3To be precise, we require the quantitative version of the inverse theorem due to Manners [2018] in order to deduce explicit
bounds from a very simple majorising function. A majorising function of the correct average order on a larger range of y would al-
low us to use the original qualitative inverse theorem [Green et al. 2012] instead. Since the first version of our paper appeared on the
arXiv, a very substantial improvement to [Manners 2018] has been obtained by Leng, Sah and Sawhney [Leng et al. 2024]. We note
that, in view of the bounds we obtain in Theorem 1.1, the range of y to which Theorem 1.3 and Corollary 1.4 apply would, without
further optimisation, not significantly improve by exchanging in our proof the application of [Manners 2018] for [Leng et al. 2024].
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Unconditional versions of the result (1-2) of [Lagarias and Soundararajan 2012, Theorem 1.5], but with
more restrictive ranges for y, have been established by a number of authors. Harper [2016, Corollary 1]
significantly improved those ranges and showed, almost matching the conditional range, that if K > 1 is
sufficiently large then the asymptotic formula∑

0<n1+n2⩽N

1S(y)(n1)1S(y)(n2)1S(y)(n1 + n2)=
9(N , y)3

2N

(
1 + O

(
log(u + 1)

log y

))
holds for all y ⩾ (log N )K , where u = (log N )/ log y.

Concerning smooth solutions to Diophantine equations in many variables, there is a vast literature on
Waring’s problem in smooth numbers. Building on [Harper 2016] mentioned before, Drappeau and Shao
[2016] studied Waring’s problem in y-smooth numbers for y ⩾ (log N )K and K > 1 sufficiently large,
which is the currently largest possible range of y. We refer to that paper for references to previous work
on this question.

Turning towards Theorem 1.1, the closest previous result is due to Lachand [2017] who proved, starting
out from a Möbius inversion formula for 1S(y), that∑

n⩽N

(
1S(y) −

9(N , y)
N

)
F(g(n)0)= o((1 + ∥F∥Lip)9(N , y))

for any ε > 0 and uniformly for x ⩾ y ⩾ exp((log N )/(log log N )1−ε). We shall explain at the end of
Section 2 why, when restricting to large values of y, neither a W -trick nor the restriction to integers with
prime factors in the interval [y′, y] is necessary.

As exponential phases e(θnk) for θ ∈ R, k ∈ N, form a special case of the nilsequences F(g(n)0)
in Theorem 1.1, previous work on this question includes all work on exponential sum (and Weyl sum)
estimates over smooth numbers. The latter is a well-studied subject. Our proof indeed builds on some of
this previous work, in particular on that of [Harper 2016; Drappeau and Shao 2016; Wooley 1995].

2. Outline of the proof and overview of the paper

The proof of Theorem 1.1 occupies most of this paper. After recalling some of the background on smooth
numbers in Section 3, we investigate in Section 4 the distribution of [y′, y]-smooth numbers in short
intervals and the results we prove here may be of independent interest. The results of this section motivate
the definition of the weighted function g[y′,y](n) as well as an auxiliary weighted function h[y′,y](n), and
we prove that these functions are equidistributed in short intervals. After extending in Section 5.1 work of
Harper on the distribution of y-smooth numbers in progressions, we deduce in Section 5.2 that a W -tricked
version of g[y′,y](n) is equidistributed in short arithmetic progressions. The work in Sections 4 and 5
(i.e., the fact that g[y′,y](n) is equidistributed in short arithmetic progressions) prepares the ground for the
proof of the noncorrelation estimate (1-1). It allows us in Section 8 to reduce the task of proving (1-1) to
the case in which the polynomial sequence g is “equidistributed”. Using a Montgomery–Vaughan-type
decomposition, this task is further reduced in Section 9.2 to a Type II sum estimate. More precisely, we
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reduce our task to bounding bilinear sums of the (slightly simplified) form∑
m∈[y′,y]

∑
N/m<n⩽(N+N1)/m

1S([y′,y])(n)3(m)F(g(mn)0).

Swapping the order of summation reduces this problem to that of bounding the correlation of the
(W -tricked) von Mangoldt functions with equidistributed nilsequences, provided we can show an impli-
cation of the form

(g(m)0)m⩽N is equidistributed =⇒ (g(mn)0)m⩽N/n is equidistributed for most n ∈ S(N , [y′, y]).

A precise version of this implication will be established in Section 8.2. The proof of this implication
builds on the material from Sections 5, 6 and 7. More precisely, it relies on a strong recurrence result for
polynomial sequences over [y′, y]-numbers that is proved in Section 7. The recurrence result in turn relies
on Weyl sum estimates for [y′, y]-smooth numbers that we establish in Section 6 by extending [Drappeau
and Shao 2016]. As the Weyl sum estimates by themselves are in fact too weak for our purposes, we
need to combine them with a bootstrapping argument, which requires good bounds on the distribution of
smooth numbers in short arithmetic progressions (as established in Section 5) as input. The final section
contains the proof of Theorem 1.3.

The most difficult part of this work is to ensure that y can be chosen as small as (log N )K in our
main result. To achieve this, we need to run the bootstrapping argument in Section 7 in four different
stages of iterations, using the full scale of results proved in Sections 4 and 5, and we have to choose our
parameters in Sections 8 and 9 very carefully. Similarly, working with y as small as (log N )K requires us
to use a Montgomery–Vaughan-type reduction to a Type II sum estimate in Section 9 instead of working
with the intrinsic decomposition that was used, e.g., in [Harper 2016, Section 3] to establish minor arc
estimates for exponential sums over smooth numbers. (The intrinsic decomposition appears in the proofs
of Lemmas 6.2 and 6.4.) Harper’s approach, which in principle generalises to the nilsequences setting,
involves an application of the Cauchy–Schwarz inequality and reduces the minor arc estimate to bounds
on degree-1 Weyl sums

∑
n⩽N e(nθ) for irrational θ . The losses of the Cauchy–Schwarz application

in this approach can be compensated for by the strong bounds available for degree-1 Weyl sums for
irrational θ . When working with an irrational (=equidistributed) nilsequence n 7→ F(g(n)0) instead of
n 7→ e(θn) for irrational θ , the savings on the corresponding sum

∑
n⩽N F(g(n)0) are usually much

weaker, and in our case too weak in order to compensate for the loss of the Cauchy–Schwarz application
when y = (log N )K.

Smooth numbers and the “W-trick”. A result of the form of Theorem 1.1 requires as a necessary
condition that the function it involves, here g(W,A)

[y′,y]
, is equidistributed in arithmetic progressions to small

moduli. The reason for this is that additive characters n 7→ e(an/q), where a, q ∈ N and e(x)= e2π i x,
form a special case of the nilsequences n 7→ F(g(n)0) that appear in the statement. The function g(W,A)

[y′,y]
is

a weighted version of the characteristic function of [y′, y]-smooth numbers, restricted to a reduced residue
class A modulo W. Both the use of a W -trick, i.e., the restriction to integers of the form n = W m + A, as
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well as the restriction to the subset of y-smooth numbers that are coprime to P(y′) :=
∏

p<y′ p are a means
to ensure equidistribution in progressions. The weight is introduced in order to guarantee equidistribution
in short intervals and progressions.

We proceed to explain why the W -trick is used. Combining work of Soundararajan [2008] and Harper
[2012b] on the distribution of smooth numbers in progressions with work of de la Bretèche and Tenenbaum
[2005] one may deduce that

9(x, y; q, a) :=

∑
n⩽x

n≡a (mod q)

1S(y)(n)∼
1

φ(q)

∑
n⩽x

gcd(n,q)=1

1S(y)(n)∼
9(x, y)

q

∏
p | q

1 − p−α(x,y)

1 − p−1

for (log x)2 < y ⩽ x , 2 ⩽ q ⩽ y2, and (a, q)= 1, as log x/ log q → ∞.
When α(x, y) is sufficiently close to 1, which happens when y is sufficiently close to x , the final

product over prime divisors p | q will be approximately 1 and the above asymptotic implies that S(y) is
equidistributed in all residue classes (reduced and nonreduced) modulo q for all small values of q. The
necessary condition for the validity of Theorem 1.1 is met in this situation and no W -trick is required.

Once α(x, y) is no longer close to 1, the product over prime factors p | q in the asymptotic formula
above genuinely depends on q. In this case, S(y) is seen to be equidistributed in the reduced residue
classes modulo a fixed integer q . However, the density of S(y) within a reduced class will differ from that
in a nonreduced class modulo q , the latter being obtained by dividing out the common factor and applying
the asymptotic formula with q replaced by a suitable divisor of q. To remove this discrepancy between
reduced and nonreduced residue classes, one may use a W -trick with a slowly growing function w(N ).
Fixing a reduced residue A (mod W ), one is then interested in the count of y-smooth integers of the form
n = W (qm + a)+ A, which satisfies

9(x, y; Wq,Wa + A)∼
9(x, y)

Wq

( ∏
p | W

1 − p−α(x,y)

1 − p−1

) ∏
p′ | q,p′ ∤ W

1 − p′−α(x,y)

1 − p′−1 .

If W = P(w(N )) is the product of all primes p <w(N ), then all prime factors p′ that appear in the final
product satisfy p′ ⩾ w(N ), i.e., are large. If q is not too large, this allows one to show that the final
product is asymptotically equal to 1, with an error term that depends on w(N ). This ensures, within any
fixed reduced residue class A (mod W ), that the necessary condition for the validity of Theorem 1.1 holds.

3. Smooth numbers

In this section we collect general properties of smooth numbers that we will frequently make use of
within this paper. Recall the definitions of the sets S(y), S([y′, y]), S(y, x) and S([y′, y], x) from the
introduction. The relative quantity

u :=
log x
log y

(3-1)

frequently appears when describing properties of S(x, y) and S(x, [y′, y]).
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3.1. The summatory function of 1S( y). Let

9(x, y)= |S(x, y)| =

∑
n⩽x

1S(y)(n)

denote the number of y-smooth numbers below x . As a function of x , 9(x, y) may be viewed as the
summatory function of the characteristic function 1S(y) of y-smooth numbers. The latter function is
completely multiplicative and the associated Dirichlet series is given by

ζ(s, y)=

∑
n∈S(y)

n−s
=

∏
p⩽y

(1 − p−s)−1 (ℜ(s) > 0).

Rankin’s trick shows that 9(x, y)⩽ xσ ζ(σ, y) for all σ > 0. The (unique) saddle point of the function
σ 7→ xσ ζ(σ, y) that appears here is usually denoted by α(x, y) and we have α(x, y) ∈ (0, 1). Hildebrand
[1986a, Lemma 4] (see also [Hildebrand and Tenenbaum 1986, Lemma 2]) showed that

α(x, y)= 1 −
log(u log(u + 1))

log y
+ O

(
1

log y

)
(log x < y ⩽ x). (3-2)

This saddle point can be used in order to asymptotically describe 9(x, y). More precisely, Hildebrand
and Tenenbaum [1986, Theorems 1, 2] proved that, uniformly for y/ log x → ∞,

9(x, y)=
xαζ(α, y)

α
√

2π log x log y

(
1 + O

(
1

log(u + 1)
+

1
log y

))
, (3-3)

where α = α(x, y) > 0 and u = (log x)/ log y. In applications, it is frequently necessary to understand
the relation between 9(cx, y) and 9(x, y) as c > 0 varies. In this direction, Theorem 3 of [Hildebrand
and Tenenbaum 1986] shows that

9(cx, y)=9(x, y)cα(x,y)
(

1 + O
(

1
u

+
log y

u

))
, (3-4)

uniformly for x ⩾ y ⩾ 2 and 1 ⩽ c ⩽ y.
The following related lemma is a consequence of (3-2).

Lemma 3.1. Suppose that x > 2 is sufficiently large and that log x < y ⩽ x. Then

α(cx, y)−α(x, y)≪ 1/ log y
uniformly for all c ∈ [1, 2].

Proof. We write cx = x + x ′ and expand out the expression that (3-2) provides for α(x + x ′, y) when
taking into account the definition (3-1) of u. The lemma follows provided we can show that log2(x +x ′)=

log2 x + O(1) and log3(x + x ′)= log3 x + O(1). Both of these estimates may be deduced by repeated
application of the identity log(t + t ′)= log t + log(1 + t ′/t) combined with the observation that for t > 2
(in particular, for large t) the inequality t ⩾ t ′ is preserved in the sense that T > T ′ if T := log t and
T ′

:= log(1 + t ′/t). Finally, the bound log(1 + t ′/t)≪ 1 provides the shape of the error term. □

3.2. The truncated Euler product. On the positive real line, the Dirichlet series ζ(σ, y) can be estimated
and we will frequently use the following lemma which is [Montgomery and Vaughan 2007, Lemma 7.5].
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Lemma 3.2. Suppose that y ⩾ 2. If max{2/ log y, 1 − 4/ log y} ⩽ σ ⩽ 1, then∏
p⩽y

(1 − p−σ )−1
≍ log y.

If 2/ log y ⩽ σ ⩽ 1 − 4/ log y, then∏
p⩽y

(1 − p−σ )−1
=

1
1 − σ

exp
(

y1−σ

(1 − σ) log y

{
1 + O

(
1

(1 − σ) log y

)
+ O(y−σ )

})
.

3.3. The summatory function of 1S([ y′, y]). De la Bretèche and Tenenbaum [2005] analysed the quantities

9m(x, y)=

∑
n∈S(x,y)
(n,m)=1

1 and
9m(x/d, y)
9(x, y)

and established asymptotic estimates for these expressions under certain assumptions on m and d . Observe
that

9P(y′)(x, y)=9(x, [y′, y])

for P(y′)=
∏

p<y′ p. We shall require versions of two of the results from [de la Bretèche and Tenenbaum
2005] that are restricted to the case m = P(y′) but come with sufficiently good explicit error terms. To
state these results, define for any given integer m ∈ N the restricted Euler product

gm(s)=

∏
p | m

(1 − p−s) (s ∈ C). (3-5)

The following lemma is a consequence of [de la Bretèche and Tenenbaum 2005, Théorème 2.1].

Lemma 3.3. Let K ′ > 0 and K >max(2K ′, 1) be constants, let x ⩾ 2 and y′ ⩽ (log x)K ′

. Then

9(x, [y′, y])= gP(y′)(α(x, y))9(x, y)
(

1 + O
(

log2 x
log x

+
1

log y

))
uniformly for all (log x)K < y ⩽ x.

Proof. This result follows from [de la Bretèche and Tenenbaum 2005, Théorème 2.1 and Corollaire 2.2]. We
need to verify that the error term is of the shape claimed in the statement above. Let m = P(y′)=

∏
p<y′ p.

Since y′< y1/2 and π(y′)≪ y1/2/(log y), we are either in the situation C1 or C2 of [loc. cit., Corollaire 2.2].
Observe that in our case ū := min(u, y/ log y)= u = log x/ log y and

Wm = WP(y′) = log pπ(y′) ≍ log y′
≪ log log x .

Hence, ϑm ≪ (log log x)/ log y (≪ 1).
If C1 holds, then the error term in the expression for 9P(y′)(x, y) is bounded by

E∗
:= E∗

m(x, y)≪
ϑm log(u + 2)

u
≪
(log2 x)2

log x
.

If condition C2 holds, then y1/ log(u+2)
≪ ω(P(y′)) < y′ ⩽ (log x)K ′

and, hence,

log y ≪ (log2 x) log(u + 2)≪ (log2 x)2.
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This shows that log(u + 2)≍ log2 x and

E∗
≪

ϑ2
mx

log(u + 2)
≪

(log2 x)2

(log y)2 log(u + 2)
≪

1
log y

,

as required. □

By restricting [de la Bretèche and Tenenbaum 2005, Théorème 2.4] to the situation of the present
paper, we obtain:

Lemma 3.4. (i) If y′ ⩽ (log x)K ′

for some constant K ′ > 0, then we have

9P(y′)(x/d, y)≪ d−α9P(y′)(x, y)

uniformly for all max(y′2, (log x)2) < y ⩽ x , 1 ⩽ d ⩽ x/y.

(ii) If , moreover, 1 ⩽ d ⩽ exp((log x)1/3), the following more precise statement holds. We have

9P(y′)(x/d, y)= d−α9P(y′)(x, y)
(

1 + O
(

log3 x
log2 x

))
uniformly for all max(y′2, (log x)2) < y ⩽ x and 1 ⩽ d ⩽ exp((log x)1/3), where y′ ⩽ (log x)K ′

and
K ′ > 0 as before.

Proof. Part (i) is a direct application of [de la Bretèche and Tenenbaum 2005, Théorème 2.4(i)] combined
with Lemma 3.3, when taking into account that δ = 0 according to the remark following (2.8) of that
paper, since y > log2 x .

Concerning part (ii), Lemma 3.3 implies that the asymptotic formula given in the statement is equivalent
to

9P(y′)(x/d, y)= d−αgP(y′)(α(x, y))9(x, y)
(

1 + O
(

log3 x
log2 x

))
.

The statement thus follows from [de la Bretèche and Tenenbaum 2005, Théorème 2.4(ii)] provided we can
show that under our assumptions the error term in that result is in fact of the above-stated shape. In the
notation of [loc. cit., Théorème 2.4(ii)] we therefore need to show that hm = o(1) and (1 − t2/(2u2))bu

=

1 + o(1) as x → ∞, where o(1) needs to be made explicit in both cases. In the former case, we have

hm =
1

u y
+ t

(1 + Em)

u
+ E∗

m(x, y)≪
log2(2y)

log y
+

1
log2 x

+
log d
log x

+
log d
log y

Em

u
,

where we used that u y = u + (log y)/ log(u +2)≫ (log y)/ log2(2y) (cf. [de la Bretèche and Tenenbaum
2005, (2.18)]) and that E∗

m(x, y)≪ 1/(log2 x) by the previous proof. For the term (1+ Em)/u, we obtain

Em =
ϑm(u log(u + 2))ϑm

1 +ϑm log(u + 2)
.

Note that ϑm = (log pω(m))/ log y = (log y′)/ log y ⩽ 1
2 for y ⩾ y′2. Further, u log(u + 2)⩾ 1. Hence,

Em

u
≪

ϑm log1/2(u + 2)
u1/2(1 +ϑm log(u + 2))
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If log y > (log2 x)3, then

log d
log y

Em

u
≪

log d
log y

log1/2(u + 2)
u1/2(log2 x)2

≪
(log d)(log2 x)1/2

(log x)1/2(log y)1/2 log2 x
≪

log d
(log x)1/2(log2 x)2

.

If log y ⩽ (log2 x)3 and since log2 x ≪ log y, we have

t
Em

u
≪ t

ϑm log1/2(u + 2)
u1/2(1 +ϑm log(u + 2))

≪ t
ϑm(log2 x)1/2(log y)1/2

(log x)1/2
(
1 +

1
(log2 x)2 log(u + 2)

)
≪ t

(log2 x)2

(log x)1/2
≪

log d
log y

(log2 x)2

(log x)1/2
≪
(log d) log2 x
(log x)1/2

.

It remains to analyse (1 − t2/(2u2))bu. Since

t
u

=
log d
log x

= o(1),

we have (
1 −

t2

2u2

)bu

= exp
(
−C

t2

u

)
= 1 + O

(
1

log y

)
for some constant C > 0. The final step above follows since

t2

u
=

(log d)2

(log y) log x
≪

1
log y

by our assumption on d . □

4. Smooth numbers in short intervals

Our aim in this section is to show that a suitably weighted version of the function 1S([y′,y]) is equidistributed
in short intervals. More precisely, we will consider intervals contained in [x, 2x] that are of length at
least x/(log x)c. The error terms in Lemmas 3.3 and 3.4 are too weak in order to allow one to work with
intervals as short as x/(log x)c. Better error terms are, however, available when considering the quantity

9P(y′)(x/d, y)
9P(y′)(x, y)

=
9(x/d, [y′, y])

9(x, [y′, y])
instead of

9P(y′)(x/d, y)
9(x, y)

.

In the first subsection below we prove asymptotic formulas for the former quotient. In the second
subsection we introduce a suitable smooth weight for 1S([y′,y]) and prove that the correspondingly weighted
[y′, y]-smooth numbers are equidistributed in short intervals of the above form.

4.1. The local behaviour of 9(x, [ y′, y]). In order to analyse the distribution of S([y′, y]) in short
intervals, we need to compare 9(x, [y′, y]) to 9(x(1 + 1/z), [y′, y]). In the notation of Lemma 3.4 this
means that our d is very close to 1. Recall that u = (log x)/ log y. We split our analysis below into two
cases according to whether u is large or small.
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Lemma 4.1 (local behaviour of 9P(y′) for large u). Let x > 2 be a parameter, let K ′ > 0 and K ⩾

max(2K ′, 2) be constants and suppose that y′ ⩽ (log x)K ′

and (log x)K < y < exp((log x)1/3). Let
α = α(x, y) denote the saddle point associated to S(x, y). Then

∣∣9(x, [y′, y])− (1 + z−1)−α9
(
(1 + z−1)x, [y′, y]

)∣∣ ≪9(x, [y′, y])

( √
log y

z log1/6 x
+

OA(1)
logA x

)
for all z > 1.

Proof. We will follow the strategy via Perron’s formula employed in [Hildebrand and Tenenbaum 1986,
Lemma 8; de la Bretèche and Tenenbaum 2005, Section 4.2], and start by bounding Euler factors from
the relevant Dirichlet series. Suppose that s = α+ iτ and (log x)−1/4 ⩽ τ ⩽ (log y)−1. Then4 for any
y′ ⩽ p ⩽ y, we have

|1 − p−α
|

|1 − p−s |
=

(
1 +

2(1 − cos(τ log p))
pα(1 − p−α)2

)−1/2

⩽ exp
(
−c1

1 − cos(τ log p)
pα(1 − p−α)2

)
⩽ exp

(
−c2

(τ log p)2

pα

)
,

where we took advantage of the fact that 1 − p−α
≍ 1 for all p ⩽ y since α > 1

2 . Hence,∏
y′⩽p⩽y

|1 − p−α
|

|1 − p−s |
⩽ exp

(
−c2

τ 2

yα
∑

y′⩽p⩽y

(log p)2
)
⩽ exp

(
−c2

τ 2

yα
∑

y/2⩽p⩽y

(log p)2
)

⩽ exp(−c3τ
2 y1−α log y)⩽ exp

(
−c4τ

2u log(u + 1) log y
)

⩽ exp(−c4τ
2 log x). (4-1)

By invoking bounds of the above Euler factors in different regimes of τ , de la Bretèche and Tenenbaum
[2005, (4.50)] deduced from Perron’s formula that

9(x, [y′, y])=
1

2π i

∫ α+i/ log y

α−i/ log y
ζm(s, y)x s ds

s
+ O(xαζm(α, y)R), (4-2)

where

R = exp
(

−c5u
(log 2u)2

)
+ exp(−(log y)4/3), m = P(y′)=

∏
p<y′

p,

and

ζm(s, y)=

∏
p⩽y,p ∤m

(1 − p−s)−1.

The approximation (4-2) applies in our situation since u>(log x)3/2>(log y)3/2 and π(y′)=ω(P(y′))<

(log x)K ′

<
√

y, which ensures that the conditions [de la Bretèche and Tenenbaum 2005, (4.40)] are
satisfied. Under our assumption that log x < y < exp((log x)1/3), we have

R ≪ exp(−c5(log x)1/2)+ exp(−(log log x)4/3)≪A (log x)−A.

4See the proof of [Hildebrand and Tenenbaum 1986, Lemma 8] for more details.
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The bound (4-1) allows us to further truncate the integral in (4-2). More precisely,∣∣∣∣∫ α±i/ log y

α±i/(log x)1/3
ζm(s, y)x s ds

s

∣∣∣∣ ⩽ ζm(α, y) xα

α

∫ 1/ log y

1/(log x)1/3
exp(−c4τ

2 log x) dτ

⩽
ζm(α, y)xα

α log y
exp(−c4(log x)−1/3)

⩽9(x, [y′, y]) exp(−c6(log x)−1/3),

which implies that

9(x, [y′, y])=
1

2π i

∫ α+i/(log x)1/3

α−i/(log x)1/3
ζm(s, y)x s ds

s
+ OA

(
9(x, [y′, y])

(log x)A

)
. (4-3)

The latter approximation then yields

9(x, [y′, y])− (1 + z−1)−α9(x(1 + z−1), [y′, y])

=
1

2π i

∫ α+i/(log x)1/3

α−i/(log x)1/3
ζm(s, y)x s(1 − (1 + z−1)s−α

) ds
s

+ OA

(
9(x, [y′, y])

(log x)A

)
≪ ζm(α, y)xα

∫ 1/(log x)1/3

−1/(log x)1/3
|1 − (1 + z−1)iτ |

dτ
α

+ OA

(
9(x, [y′, y])

(log x)A

)
≪
ζm(α, y)xα

z

∫ 1/(log x)1/3

−1/(log x)1/3
|τ | dτ + OA

(
9(x, [y′, y])

(log x)A

)
≪
ζm(α, y)xα

z(log x)2/3
+ OA

(
9(x, [y′, y])

(log x)A

)
≪9(x, [y′, y])

( √
log y

z(log x)1/6
+ OA((log x)−A)

)
,

as claimed. □

The previous lemma applies to y < exp((log x)1/3). Below, we establish an analogous result in the
complementary range where exp((log x)1/4)⩽ y ⩽ x . In this case, 1 −α(x ′, y) is very small as x ′ ranges
over [x, 2x], and the error terms in Lemma 3.3 are also very good. This allows us to reduce the problem of
asymptotically evaluating 9(x(1+ z−1), [y′, y]) to that of bounding 9(x(1+ z−1), y)−9(x, y). Bounds
on the latter difference have been established by [Hildebrand 1986b, Theorem 3] in the case where
u = (log x)/ log y is small, which applies to our current situation.5

Lemma 4.2 (local behaviour of 9P(y′) for small u). Let x > 2 be a parameter, suppose that y′ ⩽ (log x)K ′

for some fixed K ′ > 0 and that exp((log x)1/4) ⩽ y ⩽ x , and let α = α(x, y) denote the saddle point
associated to S(x, y). Then∣∣9(x(1 + z−1), [y′, y])− (1 + z−1)α9(x, [y′, y])

∣∣ ≪9(x, [y′, y])
(log2 x)2

log y
(4-4)

holds uniformly for 1 ⩽ z ⩽ y5/12.

5Hildebrand’s theorem has been extended by several authors and we refer to the survey paper [Granville 2008, Section 4.1]
for a discussion of these extensions and references.
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Proof. Under the assumptions on y it follows from (3-2) that the saddle point α(x, y) is very close to 1.
More precisely, writing u′

= (log x ′)/ log y, we have

α(x ′, y)= 1 −
log(u′ log(u′

+ 1))
log y

+ O
(

1
log y

)
= 1 + O

(
log2 x ′

log y

)
= 1 + O

(
log2 x

(log x)1/4

)
(4-5)

uniformly for all x ′
∈ [x, 2x] and y ⩾ exp((log x)1/4). This implies, in particular, that

(1 + z−1)α = (1 + z−1)(1 + z−1)O((log2 x/ log y)
= (1 + z−1)

(
1 + O

(
log2 x
z log y

))
for α = α(x, y). Substituting this formula into (4-4) and rearranging the resulting expression reduces our
task to that of establishing

9
(
x(1 + z−1), [y′, y]

)
−9(x, [y′, y])=

9(x, [y′, y])

z

(
1 + O

(
z(log2 x)2

log y

))
.

By Lemma 3.3, the difference on the left-hand side satisfies

9
(
x(1 + z−1), [y′, y]

)
−9(x, [y′, y])

= gP(y′)(αz)9(x(1 + z−1), y)− gP(y′)(α)9(x, y)+ O
(
9(x, [y′, y])

(
log2 x
log x

+
1

log y

))
, (4-6)

where αz = α(x(1 + z−1), y) is the saddle point associated to S(x(1 + z−1), y). In order to simplify the
main term above, we seek to relate gP(y′)(αz) to gP(y′)(α). Following [de la Bretèche and Tenenbaum
2005, Section 3.6], define γm(s) := log gm(s) and let γ ′

m(s) denote the derivative with respect to s. Since
αz ⩽ α, we then have

log
(

gP(y′)(αz)

gP(y′)(α)

)
=

∫ αz

α

γ ′

P(y′)(σ ) dσ ⩽ (α−αz) sup
αz⩽σ⩽α

γ ′

P(y′)(σ )

and shall estimate the latter two factors in turn. Since 1< 1+ z−1 < 2 for z > 1, it follows from (4-5) that

α−αz ≪
log2 x

log1/4 x
.

Concerning the second factor, we have

γ ′

P(y′)(σ )=

∑
p⩽y′

log p
pσ − 1

≪

∑
n⩽y′

3(n)
nσ

≪ y′1−σ
∑
n⩽y′

3(n)
n

≪ log y′
≪ log2 x

since log y′
≪ log2 x and 1 − σ ≪ε log−1/4+ε x by (4-5). Hence

gP(y′)(αz)

gP(y′)(α)
= exp

(
log

(
gP(y′)(αz)

gP(y′)(α)

))
= exp

(
O

(
(log2 x)2

log1/4 x

))
= 1 + O

(
(log2 x)2

log1/4 x

)
.

Substituting this expression into (4-6), we obtain

9(x(1 + z−1), [y′, y])−9(x, [y′, y])

= gP(y′)(α)
{
9(x(1 + z−1), y)−9(x, y)

}
+ O

(
9(x, [y′, y])

(log2 x)2

log y

)
,
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where we used Lemma 3.3 and (3-3) to simplify the error term. To the right-hand side, we may now
apply Theorems 1 and 3 of [Hildebrand 1986b], which assert that

9(x(1 + z−1), y)−9(x, y)=
9(x, y)

z

{
1 + Oε

(
log(u + 1)

log y

)}
holds uniformly for exp((log2 x)5/3+ε)⩽ y ⩽ x and 1⩽ z ⩽ y5/12. Thus, under our assumptions on z and y,

9(x(1 + z−1), [y′, y])−9(x, [y′, y])

=
gP(y′)(α)9(x, y)

z

{
1 + O

(
log(u + 1)

log y

)}
+ O

(
9(x, [y′, y])

(log2 x)2

log y

)
.

Another application of Lemma 3.3 to the right-hand side yields the desired result. □

4.2. Equidistribution of weighted [ y′, y]-smooth numbers in short intervals. The correction factors in
Lemmas 4.1 and 4.2 suggest to consider the smoothly weighted version

n 7→ n1−α(x,y)1S([y′,y])(n)

of the characteristic function of [y′, y]-smooth numbers. This choice of weight allows us to deduce from
these lemmas that the new weighted function is equidistributed in all short intervals of length at least
x(log x)−c, a property that is required in Section 7 and, indirectly, in Section 8. For simplicity, we further
normalise our weighted function to mean value 1 in the following lemma.

Lemma 4.3 (equidistribution in short intervals). Let N > 2 be a parameter and define the weighted and
normalised function

h[y′,y](n) :=
Nα

9(N , [y′, y])

n1−α

α
1S([y′,y])(n) (N ⩽ n ⩽ 2N ), (4-7)

where α = α(N , y). Let y′ ⩽ (log N )K ′

for some fixed K ′ > 0, let K = max(2, 2K ′), and suppose that
(log N )K < y ⩽ N. Then∑

N0<n⩽N0+N1

h[y′,y](n)= N1

{
1 + O

(
log3 N
log2 N

)}
+ O

(
N

log1/24 N

)
uniformly for all N ⩽ N0 < N0 + N1 ⩽ 2N such that N1 ≫ N exp(−(log N )1/4/4).

Proof. By partial summation,∑
n∈S([y′,y])

N0<n⩽N0+N1

n1−α
= (N0 + N1)

1−α9(N0 + N1, [y′, y])

− N 1−α
0 9(N0, [y′, y])− (1 −α)

∫ N0+N1

N0

9(t, [y′, y])

tα
dt. (4-8)

We seek to bound the right-hand side with the help of Lemmas 4.1 and 4.2. To start with, suppose that
y < exp((log N )1/4). For N ⩽ N0 < t ⩽ N0 + N1 ⩽ 2N, we have t = N (1 + 1/z), where z > 1 and
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(t/N )−α ≍ 1. Hence,

9(t, [y′, y])= (t/N )α9(N , [y′, y])

(
1 + O

( √
log y

z(log N )1/6
+ OA((log N )−A)

))
= (t/N )α9(N , [y′, y])(1 + O((log N )−1/24))

for y < exp((log N )1/4) by Lemma 4.1. Thus,

Nα

9(N , [y′, y])

∑
n∈S([y′,y])

N0<n⩽N0+N1

n1−α
= (N0 + N1)− N0 − (1 −α)

∫ N0+N1

N0

1 dt + O
(

N
(log N )1/24

)
= αN1 + O

(
N

(log N )1/24

)
,

which establishes the lemma when y < exp((log N )1/4).
Suppose next that exp((log N )1/4)⩽ y ⩽ N. In view of the restriction on the size of z in Lemma 4.2,

we cannot apply this lemma in the current situation with x = N (which would correspond to the choice in
the first part of the proof), but need to choose x = N0 instead. For this purpose, let α′

= α(N0, y) denote
the saddle point associated to S(N0, y) and note that

|α′
−α| = |α(N0, y)−α(N , y)| ≪ (log y)−1

≪ (log N )−1/4

by Lemma 3.1 and the lower bound on y.
For N ⩽ N0 < t ⩽ N0 + N1 with N exp(−(log N )1/4/4)⩽ N1 ⩽ N, we have

t = N0(1 + 1/z), where 1< z ≪ exp((log N )1/4/4)= o(y5/12),

and (t/N0)
−α′

≍ 1. Hence, Lemma 4.2 applies and yields

9(t, [y′, y])= (t/N0)
α′

9(N0, [y′, y])

(
1 + O

(
(log2 N )2

log1/4 N

))
. (4-9)

Each of the three terms arising in the partial summation expression (4-8) involves a weighted count of the
form 9(t, [y′, y])/tα. With this and (4-9) in mind, observe that

(t/N0)
α′

t−α
= (t/N0)

α′
−αN−α

0 = N−α
0 (1 + 1/z)α

′
−α

= N−α
0 (1 + O(|α−α′

|))

= N−α
0 (1 + O(log N )−1/4),

since

|(1 + 1/z)a − 1a
| ⩽

∫ 1+1/z

1
|a|ta−1 dt ⩽ |a|

z
⩽ |a|

for 0< |a|< 1, which we applied with a = α′
−α ≪ (log N )−1/4.

Hence, it follows from (4-8) and (4-9) that

Nα
0

9(N0, [y′, y])

∑
n∈S([y′,y])

N0<n⩽N0+N1

n1−α
= (N0 + N1)− N0 − (1 −α)

∫ N0+N1

N0

1 dt + O
(

N (log2 N )2

(log N )1/4

)

= α(N , y)N1 + O
(

N (log2 N )2

(log N )1/4

)
.
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The lemma then follows since

(N0/N )−α9(N0, [y′, y])

9(N , [y′, y])
= 1 + O

(
log3 N
log2 N

)
by Lemma 3.3 and part (ii) of Lemma 3.4. □

Working with functions h[y′,y] : [N , 2N ] → R whose support is restricted to a dyadic interval is too
restrictive for the purposes of our main theorem. The following lemma provides an intrinsically defined
function g[y′,y] : N → R that approximates any function h[y′,y] on the interval [N , 2N ] where the latter
function is defined.

Lemma 4.4. Define

g[y′,y](n)=
n

α(n, y)9(n, [y′, y])
1S([y′,y]) (n ∈ N), (4-10)

and suppose that N ⩽ n < 2N and that h[y′,y] is defined on [N , 2N ]. Then

g[y′,y](n)= h[y′,y](n)
(

1 + O
(

log3 N
log2 N

))
,

provided that N is sufficiently large.

Proof. This follows immediately from Lemmas 3.1 and 3.4(ii). □

5. Major arc analysis: smooth numbers in arithmetic progressions and a W -trick

Extending previous work of Soundararajan [2008], Harper [2012b] proved that for y ⩽ x , ε > 0,
2 ⩽ q ⩽ y4

√
e−ε, and (a, q)= 1,

9(x, y; q, a) :=

∑
n⩽x

n≡a (mod q)

1S(y)(n)∼
1

φ(q)
9q(x, y)

as log x/ log q → ∞ provided that y is sufficiently large in terms of ε. This shows that, for y ∈ (log x, x],
the y-smooth numbers up to x are equidistributed within the reduced residue classes to a given modulus q
provided x is sufficiently large. Our aim in this section is to construct a subset of the y-smooth numbers
with the property that its elements are equidistributed in the reduced residue classes of any modulus
q ⩽ (log x)c. More precisely, we will show that, after applying a W -trick, the [y′, y]-smooth numbers
for any y′ ⩽ (log N )K ′

, K ′ > 0, have this property. In addition, we will construct a suitable weight for
this subset which allows us to retain equidistribution when we restrict any of the above progressions to a
shorter interval of suitable length. These equidistribution properties will be required in order to reduce
in Section 8 the task of establishing a noncorrelation estimate with nilsequences to the case where the
nilsequence is highly equidistributed.

5.1. Smooth numbers in arithmetic progressions. In this subsection we extend [Harper 2012b, Theorem 1]
and show that numbers without small and large prime factors are equidistributed in progressions. More



Smooth numbers are orthogonal to nilsequences 1899

precisely, defining
9(x, [y′, y]; q, a)=

∑
n⩽x

n≡a (mod q)

1S([y′,y])(n),

we show the following:

Theorem 5.1. Let K ′, K ′′ > 0 and K > max(2K ′, 2) be constants, let x ⩾ 2 be a parameter and let
1 ⩽ y′ ⩽ (log x)K ′

and (log x)K < y ⩽ x. If q < (log x)K ′′

, p | q ⇒ p < y′ and (a, q)= 1, then

9(x, [y′, y]; q, a)=
9(x, [y′, y])

φ(q)
(1 + O(log−1/5 x)),

provided that K and K/K ′′ are sufficiently large.

Remark. The theorem generalises to the case where q ⩽ (log x)K ′′

but p | q ̸⇒ p < y′. In this case,
9(x, [y′, y]) needs to be replaced by 9q(x, [y′, y]).

As we require explicit error terms, we do not follow the proof strategy from [Harper 2012b], but
instead start by establishing a version of the Perron-type bound given in [Harper 2012a, Proposition 1]
that applies to

9(x, [y′, y], χ) :=

∑
n⩽x

χ(n)1S([y′,y]).

Proposition 5.2. There exist a small absolute constant ϱ ∈ (0, 1) and a large absolute constant C > 1
such that the following is true. Let K ′ > 0 and K >max(2K ′, 2) be constants, let 1 ⩽ y′ ⩽ (log x)K ′

and
(log x)K < y ⩽ x , and suppose that x is large. Suppose that χ is a nonprincipal Dirichlet character with
conductor r ⩽ xϱ, and to modulus q ⩽ x , such that L(s, χ)=

∑
n χ(n)n

−s has no zeros in the region

ℜ(s) > 1 − ε, |ℑ(s)| ⩽ H,

where C/ log y < ε⩽ min(α/2, 1/(2K ′)) and y0.9ε log2 x ⩽ H ⩽ min(xϱ, y5/6). Suppose, moreover, that
at least one of the following holds:

(i) y ⩾ (Hr)C .

(ii) ε ⩾ 40 log log(qy H)/ log y.

Then we have the bound

9(x, χ; [y′, y])≪9(x, [y′, y])
(
(log x)−1/5

+
√

log x log y(H−1/2
+ x−0.4ε log H)

)
.

Remark 5.3. The (log x)−1/5 term in the bound can be omitted when y < exp(log1/4 x), i.e., when the
proof involves an application of Lemma 4.1 and avoids Lemma 4.2.

The proof of Proposition 5.2 presented below follows the proof of Harper’s original result [2012a,
Proposition 1] very closely. It involves an application of Perron’s formula to relate 9(x, [y′, y];χ) to its
Dirichlet L-function, defined as

L(s, χ; [y′, y])=

∑
n∈S([y′,y])

χ(n)
ns =

∏
y′⩽p⩽y

(1 −χ(p)p−s)−1 (ℜs > 0),
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which is followed by a contour shift in the resulting contour integral. The following lemma will be used
in order to estimate the integrals on the new contour.

Lemma 5.4. Suppose that α = α(x, y) is the saddle point associated to S(x, y). Then under the
assumptions of the proposition, we have∣∣log L(σ + i t, χ; [y′, y])− log L(α+ i t, χ; [y′, y])

∣∣ ⩽ (α− σ) log x
2

for all α− 0.8ε ⩽ σ ⩽ α and |t | ⩽ H/2.

Before proving this lemma, we complete the proof of the proposition.

Proof of Proposition 5.2 assuming Lemma 5.4. The truncated version of Perron’s formula as given in
[Montgomery and Vaughan 2007, Theorems 5.2 and 5.3] yields

9(x, [y′, y];χ)=
1

2π i

∫ α+i H/2

α−i H/2
L(s, χ; [y′, y])

x s

s
ds

+ O
(

xα

H

∑
n∈S([y′,y])

χ0(n)
nα

+

∑
x/2<n<2x
n∈S([y′,y])

χ0(n)min
{

1,
x

H |x − n|

})
, (5-1)

where α = α(x, y). Since x/(H |x − n|)⩽ H−1/2 whenever |x − n|> x H−1/2, we have

min
{

1,
x

H |x − n|

}
⩽

{
1 if |x − n| ⩽ x H−1/2,

H−1/2 if |x − n|> x H−1/2.

Thus, the second error term in (5-1) is bounded above by∑
n∈S([y′,y])
x/2<n<2x

H−1/2χ0(n)+
∑

|x−n|⩽x H−1/2

n∈S([y′,y])

1 ≪
xα

H 1/2 L(α, χ0; [y′, y])

+
∣∣9(x + x H−1/2, [y′, y])−9(x − x H−1/2, [y′, y])

∣∣.
Since the first error term in (5-1) is smaller than the first term in the preceding line, it suffices to estimate
the two terms in the bound above in order to bound the error in (5-1).

Concerning the first term, Lemma 3.3, combined with formulas (3-3) and (3-5), shows that

xαL(α, χ0; [y′, y])≪ xα
∑

n∈S([y′,y])

n−α
≪ xαζ(α, y)

∏
p<y′

(1 − p−α)

≪9(x, [y′, y])
√

log x log y. (5-2)

Concerning the second term, applying Lemma 4.1 if y < exp(log1/4 x) and Lemma 4.2 if exp(log1/4 x)⩽
y ⩽ x shows that

9(x(1 + H−1/2), [y′, y])−9(x(1 − H−1/2), [y′, y])

≪
(
(1 + H−1/2)α − (1 − H−1/2)α + H−1/2

+ (log x)−1/5)9(x, [y′, y])

≪ (H−1/2
+ (log x)−1/5)9(x, [y′, y]),
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provided that H ⩽ y5/6 so that z = H 1/2 ⩽ y5/12 in the application of Lemma 4.2, and where we used an
integral to bound the difference. This shows that

9(x, [y′, y];χ)=
1

2π i

∫ α+i H/2

α−i H/2
L(s, χ; [y′, y])

x s

s
ds

+ O
(
9(x, [y′, y])

{
(log x)−1/5

+ H−1/2
√

log x log y
})
. (5-3)

Since L(s, χ; [y′, y]) is defined and has no singularities in ℜs > 0, shifting the line of integration to
ℜs = α− 0.8ε shows that the integral above is equal to∫ H/2

−H/2
L(α− 0.8ε+ i t, χ; [y′, y])

xα−0.8ε+i t

α− 0.8ε+ i t
dt ±

∫ α

α−0.8ε
L
(
σ ±

i H
2
, χ; [y′, y]

)
xσ±i H/2

σ ±
i H
2

dσ,

where the final expression indicates the sum over the two horizontal pieces. Multiplying each of their
integrands by a trivial factor of the form L(α± i H/2, χ; [y′, y])+1−1 and applying Lemma 5.4, each of
the horizontal integrals is seen to be bounded by

L(α, χ0; [y′, y])

H

∫ α

α−0.8ε
x (α−σ)/2xσ dσ ≪

xαL(α, χ0; [y′, y])

H
.

A similar argument shows that the vertical integral is bounded by

L(α, χ0; [y′, y])xα−0.8ε+0.4ε
∫ H/2

−H/2

dt
α+ |t |

≪ xαL(α, χ0; [y′, y])x−0.4ε
(

1
α

+ log H
)

≪
√

log x log y9(x, [y′, y])x−0.4ε log H,

where we applied (5-2). Putting everything together,

9(x, χ; [y′, y])≪9(x, [y′, y])
(
(log x)−1/5

+
√

log x log y(H−1/2
+ x−0.4ε log H)

)
,

as required. It remains to prove the lemma. □

Proof of Lemma 5.4. Reinterpreting the given difference as an integral shows that it is bounded above by

(α− σ) sup
σ⩽σ ′⩽α

∣∣∣∣ L ′(σ ′
+ i t, χ; [y′, y])

L(σ ′ + i t, χ; [y′, y])

∣∣∣∣ = (α− σ) sup
σ⩽σ ′⩽α

∣∣∣∣ ∑
n∈S([y′,y])

3(n)χ(n)
nσ ′+i t

∣∣∣∣.
We may replace the summation condition in the final sum by n ∈ [y′, y] when bounding the contribution
from proper prime powers pk

∈ [y′, y] with p < y′ and pk > y with p ⩽ y separately. Bounding this
contribution from proper prime powers trivially, the expression above is seen to be

≪ (α− σ) sup
σ⩽σ ′⩽α

∣∣∣∣ ∑
y′⩽p⩽y

log p χ(n)
pσ ′+i t

∣∣∣∣ + (α− σ)
∑
p⩽y

log p
p2(α−0.8ε)

≪ (α− σ)

(
sup

α−0.8ε⩽σ ′⩽α

∣∣∣∣∑
n⩽y

3(n)χ(n)
nσ ′+i t

∣∣∣∣ + sup
α−0.8ε⩽σ ′⩽α

∣∣∣∣∑
n⩽y′

3(n)χ(n)
nσ ′+i t

∣∣∣∣ + y1−α−0.1ε

1 −α
+

1
ε

)
,
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as 2(α − 0.8ε) ⩾ α + 0.4ε if ε ⩽ α/2. In the case that condition (i) of Proposition 5.2 holds, that is
y ⩾ (Hr)C, it follows from [Harper 2012a, Lemma 1] that

sup
α−0.8ε⩽σ ′⩽α

∣∣∣∣∑
n⩽y

3(n)χ(n)
nσ ′+i t

∣∣∣∣ ≪
y1−α−0.1ε

1 −α
+ log(r H)+ log0.9 q +

1
ε

since log2(qy H)/H ≪ y−0.9ε whenever y0.9ε log2 x ⩽ H. Otherwise, condition (ii) of Proposition 5.2
holds by assumption, and we have log2(qy H) < y2ε/40

= y0.05ε. Thus it follows from [Harper 2012a,
Lemma 2] that the previous estimate holds in this case as well.

Concerning the sum over n ⩽ y′, we shall show that, for all sufficiently large x ,

sup
α−0.8ε⩽σ ′⩽α

∣∣∣∣∑
n⩽y′

3(n)χ(n)
nσ ′+i t

∣∣∣∣< log x
4
.

To see this, note that if 1 − 1/ log y′ < σ ′ ⩽ 1, then∣∣∣∣∑
n⩽y′

3(n)χ(n)
nσ ′+i t

∣∣∣∣ ⩽ ∑
n⩽y′

3(n)
nσ ′

≪ log y′
≪ K ′ log2 x = o(log x).

If α− 0.8ε ⩽ σ ′ < 1 − 1/ log y′, then partial summation and the prime number theorem imply that∣∣∣∣∑
n⩽y′

3(n)χ(n)
nσ ′+i t

∣∣∣∣ ≪
y′1−σ ′

1 − σ ′
≪ y′1−σ ′

log y′
≪ y′1−α y′0.8ε log y′

≪ y(1−α)/2(log x)0.4 log y′,

where we also used that ε ⩽ 1/(2K ′) and y′ < y1/2. On recalling the estimate (3-2), that is,

1 −α =
log(u log(u + 1))+ O(1)

log y
,

and noting that log(u + 1)≪ log2 x , the above is seen to be bounded by

≪ (u log(u + 1))1/2(log x)0.4 log y′
≪

K ′(log x)9/10(log2 x)3/2

(log y)1/2
= o(log x),

as required.
Collecting everything together, we conclude that∣∣log L(σ + i t, χ; [y′, y])− log L(α+ i t, χ; [y′, y])

∣∣
≪ (α− σ)

((
y−0.1ε

+
1
4

)
log x + log(r H)+ log0.9 q +

1
ε

)
.

Since ε > C/ log y, q < x and r, H ⩽ xϱ, we obtain∣∣log L(σ + i t, χ; [y′, y])− log L(α+ i t, χ; [y′, y])
∣∣

≪ (α− σ)
(
(e−0.1C

+ 4−1
+ 2ϱ+ C−1) log x + log0.9 x

)
.

The claimed bound thus follows provided C > 1 is sufficiently large, 0< ϱ < 1 sufficiently small and x
is sufficiently large. □
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Proof of Theorem 5.1. Since (a, q)= 1, character orthogonality implies that

9(x, [y′, y]; q, a)=
1

φ(q)

∑
χ (mod q)

χ̄(a)
∑

n∈S(x,[y′,y])

χ(n)

=
1

φ(q)
9(x, [y′, y];χ0)+

1
φ(q)

∑
χ (mod q)
χ ̸=χ0

χ̄(a)9(x, [y′, y];χ).

If p | q ⇒ p < y′, then

9(x, [y′, y], χ0)=

∑
n⩽x, (n,q)=1

1S([y′,y])(n)=9(x, [y′, y]).

To complete the proof, it thus suffices to show that

9(x, [y′, y];χ)≪9(x, [y′, y]) log−1/5 x

uniformly for all nonprincipal characters χ (mod q).
The classical zero-free region (cf. [Montgomery and Vaughan 2007, Theorem 11.3]) implies that there

is an absolute constant 0< κ ⩽ 1 such that
∏
χ ̸=χ0

L(σ + i t, χ) has at most one, necessarily simple, zero
in the region

{s : σ > 1 − κ/ log(q H), |t |< H}.

If such an exceptional zero exists, let χSiegel denote the corresponding character. We consider the cases
χ ̸= χSiegel and χ = χSiegel separately.

Suppose first that χ ̸= χSiegel and let r ⩽ q ⩽ (log x)K ′′

denote the conductor of χ . We claim that the
conditions of Proposition 5.2 are satisfied if we choose

H = min{yκ/(2C), exp(log2/3 x), y5/6, xϱ} and ε = κ/ log(q H).

Suppose that x is sufficiently large to ensure that exp(log2/3 x) < xϱ and suppose that C > 1 ⩾ κ . If
K > 2C K ′′/κ (or, in other words, if K/K ′′ is sufficiently large), then

q ⩽ (log x)K ′′

< (log x)κK/(2C) < yκ/(2C).

We thus have q H< yκ/C and, hence, ε=κ/ log(q H)>C/ log y. The upper bound ε<min(α/2, 1/(2K ′′))

holds as soon as x , and hence H, is sufficiently large. Concerning the conditions on H, suppose first that
H = exp(log2/3 x). In this case, ε ≍ log−2/3 x and y0.9ε

≪ exp(log1/3 x). Hence, H > y0.9ε log2 x holds
as soon as x is sufficiently large. Next, suppose that H ̸= exp(log2/3 x). In this case, min(yκ/(2C), y5/6)⩽

exp(log2/3 x) and ε ≍ 1/ log y ≫ 1/ log2/3 x . From ε ≍ 1/ log y we obtain y0.9ε
≪ 1, and thus H >

y0.9ε log2 x holds provided that the exponent K in y > (log x)K satisfies min(5K/6, Kκ/(2C)) > 2 and
provided that x is sufficiently large. With the below application of Proposition 5.2 in mind, observe that
the lower bound ε≫ 1/ log2/3 x , which holds in either of the above two cases, implies that

x−0.4ε
≪ exp(−c log1/3 x) (c > 0).

Finally, observe that condition (i) of Proposition 5.2 is satisfied since r H ⩽ q H ⩽ yκ/C ⩽ y1/C in view
of κ ⩽ 1.
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This shows that Proposition 5.2 applies to all χ (mod q), χ ̸= χSiegel and yields

9(x, [y′, y];χ)≪9(x, [y′, y])
(
(log x)−1/5

+
√

log x log y(H−1/2
+ x−0.4ε log H)

)
≪9(x, [y′, y])(log x)−1/5.

To see that the latter bound holds, we shall show that the second and third terms in the bound above make
a negligible contribution. Indeed, the third term is bounded as follows:√

log x log y x−0.4ε log H ≪
√

log x log y exp(−c log1/3 x)(log y + log2/3 x)

≪ exp(−c′ log1/3 x),

where c, c′ > 0 are positive constants. Further, if H = exp(log2/3 x), then the second term is bounded by√
log x log y H−1/2

≪ exp(−(log x)2/3/2 + log2 x),

which is negligible. If H ̸= exp(log2/3 x), then log y ≪ log2/3 x and ε ≍ 1/(log y), and the second term
satisfies √

log x log y H−1/2
≪

√
log x log y

y−9ε/20

log x
≪

(
log y
log x

)1/2

≪ (log x)−1/3,

which is also negligible. This concludes the case of unexceptional characters.
We now consider the contribution of the potential exceptional character χ = χSiegel. Following [Harper

2012a, Section 3.3], we split the analysis into two cases according to the size of y. Suppose first that
y′2 ⩽ y ⩽ x1/(log log x)2. Applying the truncated Perron formula (5-3) with H = y5/6, we obtain

9(x, [y′, y];χ)=
1

2π i

∫ α+iy5/6/2

α−iy5/6/2
L(s, χ; [y′, y])x s ds

s
+ O

(
9(x, [y′, y])

{
(log x)−1/5

+ y−5/12
√

log x log y
})
. (5-4)

As in [Harper 2012a], we proceed by bounding the integrand in absolute value from above. The argument
used in Section 3.3 of that work is partly based on ideas from [Soundararajan 2008]. In our case, only
small modifications are required. To start with, we have∣∣∣∣ L(α+ i t, χ; [y′, y])

L(α, χ0; [y′, y])

∣∣∣∣ =

∏
y′⩽p⩽y

∣∣∣∣1 −χ(p)p−α−i t

1 −χ0(p)p−α

∣∣∣∣−1

⩽
∏

y′⩽p⩽y
p ∤ q

∣∣∣∣1 +

∑
k⩾1

1 − ℜ(χ(p)p−i t)

pkα

∣∣∣∣−1

⩽ exp
{
−

∑
y′⩽p⩽y

p ∤ q

1 − ℜ(χ(p)p−i t)

pα

}
⩽ exp

{
−

∑
y1/2⩽p⩽y

p ∤ q

1 − ℜ(χ(p)p−i t)

pα

}
,

since y′2 < y. The next step is to show that in the final expression the argument of the exponential
function satisfies ∑

y1/2⩽p⩽y
p ∤ q

1 − ℜχ(p)p−i t

pα
≫

u

log2(u + 1)
,
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provided that |t | ⩽ y/2 and y ⩽ x1/(log log x)2. The proof of this bound proceeds by splitting the range of
t into |t | ⩽ 1/(2 log y) and 1/(2 log y)⩽ |t | ⩽ y/2. On the latter range, the proof of the second part of
[Soundararajan 2008, Lemma 5.2] is employed. In that proof, all sums over primes can be restricted to
the range y1/2 ⩽ p ⩽ y, p ∤ q. On the former range, Harper’s argument [2012a, p. 17] applies directly.
For sake of completeness, we summarise this argument here. Since p ⩽ y and t ⩽ 1/(2 log y), we have
|t log p|⩽ 1

2 and, by analysing the cases χ(p)= 1 and χ(p)= −1 for the quadratic character χ = χSiegel

separately, one obtains∑
y1/2⩽p⩽y,p ∤ q

1 − ℜχ(p)p−i t

pα
≫

∑
y1/2⩽p⩽y,p ∤ q

1 −χ(p)
pα

⩾
1

log y

( ∑
y1/2⩽p⩽y,p ∤ q

log p
pα

−

∑
y1/2⩽p⩽y,p∤q

χ∗

Siegel(p) log p

pα

)
,

where χ∗

Siegel is the primitive character that induces χSiegel. Harper’s argument is based on a combination
of partial summation and the asymptotic evaluation of

∑
n⩽x 3(n)χ(n) together with the observation that

a Siegel zero has a negative contribution in that asymptotic evaluation. The error terms in the asymptotic
evaluation in [Montgomery and Vaughan 2007, Theorem 11.16 and Exercise 11.3.1.2] are small when
q < (log x)K ′′

. Thanks to the minus sign in the final expression above, the contribution from the Siegel
zero to this expression is positive and can therefore be ignored when seeking a lower bound. See [Harper
2012a, Section 3.3] for the remaining details.

Returning to (5-4), the above bounds and an application of (5-2) yield

9(x, [y′, y];χ)≪ L(α, χ0; [y′, y])e−c3u(log u)−2
xα log y +

9(x, [y′, y])

log1/5 x

≪9(x, [y′, y])
(√

log x(log y)3/2e−c3u(log u)−2
+ log−1/5 x

)
.

Since u = (log x)/ log y ≫ log log2 x when y ⩽ exp((log x)/ log log2 x), the first term in the bound is
OA(9(x, [y′, y])(log x)−A) and we thus have

9(x, [y′, y];χ)≪ (log x)−1/59(x, [y′, y])

if χ = χSiegel and y ⩽ x1/(log log x)2.
It remains to analyse the range x1/(log log x)2 ⩽ y ⩽ x of y. In this case too, we follow the overall

strategy used in [Harper 2012a] but need to make a number of technical changes arising from our slightly
different situation. Observe that

9(x, [y′, y];χ)=

∑
n∈S(x,[y′,y])

χ(n)=

∑
n∈S(x,y)
(n,P(y′))=1

χ(n)⩽
∑
d⩽x

d|P(y′)

∣∣∣∣ ∑
n∈S(x/d,y)

χ(n)
∣∣∣∣,

where we applied Möbius inversion in order to remove the coprimality condition. Our next aim is to show
that, at the expense of an acceptable error term, the sum over d can be further truncated in such a way that
log(x/d)≍ log x uniformly for all values of d that remain in the sum. Recall that α(x, y)> 1−1/K +o(1)
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and that 9(x, y′)⩽ x1−1/K ′
+o(1). Let K ∗ > K be sufficiently large so that α(x, y)(1−1/K ∗) > 1−1/K ′.

Then the m = 1 case of [de la Bretèche and Tenenbaum 2005, Theorem 2.4(i)], which applies uniformly
for 1 ⩽ d ⩽ x , implies that∑

x1−1/K∗
⩽d⩽x

d|P(y′)

9(x/d, y)≪9(x, y)x−(1−1/K ∗)α
∑

x1−1/K∗⩽d⩽x

1S(y′)(d)

≪9(x, y)x−(1−1/K ∗)αx1−1/K ′
+o(1)

≪9(x, y)x−c4 (5-5)

for some positive constant c4 > 0. Assuming for the moment that this bound is sufficiently good, it
remains to analyse the expression ∑

d⩽x1−1/K∗

d | P(y′)

∣∣∣∣ ∑
n∈S(x/d,y)

χ(n)
∣∣∣∣,

where log(x/d)≍ log x . Fouvry and Tenenbaum [1996, Lemme 2.1] (see also their Lemme 2.2 and its
deduction) studied bounds on character sums such as the inner sum above in a larger range for y than the
one under current consideration. In view of the truncation of the sum over d and the bound q ⩽ (log x)K ′′

on the modulus of χ , [loc. cit., Lemme 2.1(i)] applies uniformly to the above character sum for each d.
By invoking [de la Bretèche and Tenenbaum 2005, Theorem 2.4(i)] in the case m = 1, we obtain∑

d⩽x1−1/K∗

d | P(y′)

∣∣∣∣ ∑
n∈S(x/d,y)

χ(n)
∣∣∣∣ ≪

∑
d⩽x1−1/K∗

d | P(y′)

d−α9(x, y) exp
(
−c

√
log y

)
≪ exp

(
−c

√
log y

)
9(x, y)

∏
p⩽y′

(1 − p−α)−1. (5-6)

It remains to express the bounds (5-6) and (5-5) in terms of 9(x, [y′, y]). By Lemma 3.3 and the first
part of Lemma 3.2, we have

9(x, y)≪9(x, [y′, y])
∏
p⩽y′

(1 − p−α)−1.

Since log y′
≍ log2 x and 1 − α ≪ (log2 x)2+ε/ log x for x1/(log log x)2 ⩽ y ⩽ x , it follows from the first

part of Lemma 3.2 (or direct computation) that
∏

p⩽y′(1 − p−α)−1
≪ log y′. Hence, it follows from (5-6)

and (5-5) that

9(x, [y′, y];χ)≪A (log x)−A9(x, [y′, y])

if χ = χSiegel and x1/(log log x)2 ⩽ y ⩽ x . Taking A =
1
5 completes the proof. □

5.2. W-trick and equidistribution of weighted smooth numbers in short APs. The choice of our weight
factor n1−α ensures that the weighted version h[y′,y](n) of 1S([y′,y]) is equidistributed in short intervals
and, by invoking Theorem 5.1, also in short progressions n ≡ a (mod q), provided the residue class a is
coprime to the modulus q of the progression and q < y′. Establishing noncorrelation with nilsequences
later requires equidistribution in almost all residue classes a (mod q). Given any Q ∈ N and 1 ⩽ A < Q,
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gcd(Q, A)= 1, we consider the following renormalised restrictions:

h(Q,A)
[y′,y]

(m)=
φ(Q)

Q
h[y′,y](Qm + A) (m ∼ (N − A)/Q), (5-7)

g(Q,A)
[y′,y]

(m)=
φ(Q)

Q
g[y′,y](Qm + A) (m ∈ N). (5-8)

Letw(N )= 1
2 log3 N, let W =W (N )=

∏
p⩽w(N ) p and observe for later use thatw(N )=(log3 N ′)/2+o(1)

for any N ′
∈ (N/ log N , N ]. We will mainly be interested in the case where

• Q = W (N ), or

• Q = W̃ for some W̃ ⩽ (log N )K ′′

such that W (N ) | W̃ and p | W̃ ⇒ p ⩽ w(N )

in (5-7) and (5-8).
The following lemma is an immediate consequence of Theorem 5.1 and Lemma 4.3.

Lemma 5.5 (equidistribution in short progression). Let K ′, K ′′ > 0 and K >max(2K ′, 2) be constants
and let N ⩾ 2 be a parameter. Suppose that y′ ⩽ (log N )K ′

, and that (log N )K < y ⩽ N. Then, provided
that K and K/K ′′ are sufficiently large, the following estimate holds uniformly for all N0, N1 such that

N < N0 < N0 + N1 ⩽ 2N

and N1 ≫ N exp(−(log1/4 N )/4), for all q ⩽ (log N )K ′′

such that p | q ⇒ p< y′ and all a (mod q) such
that gcd(a, q)= 1:∑

N0<m⩽N0+N1
m≡a (mod q)

h[y′,y](m)−
N1

φ(q)
≪

N1

φ(q)
log3 N
log2 N

+
N

φ(q) log1/24 N
+

N

log1/5 N
.

Proof. Recall the definition (4-7) of h[y′,y](n). On omitting the weight factor Nα/(α9(N , [y′, y])) for
the moment, partial summation yields∑
N0<n⩽N0+N1

n1−α1n≡a (mod q)1S([y′,y])(n)

= (N0+N1)
1−α9(N0+N1, [y′, y];q,a)−(N0)

1−α9(N0,[y′, y];q,a)−(1−α)
∫ N0+N1

N0

9(t,[y′, y];q,a)
tα

dt.

Theorem 5.1 implies

9(t, [y′, y]; q, a)=
9(t, [y′, y])

φ(q)
(1 + O(log−1/5 N )) (5-9)

whenever N ⩽ t ⩽ 2N and provided that K is sufficiently large. Inserting this expansion into the previous
expression and recalling the partial summation application (4-8), we see that the contribution from the
main term in (5-9) can be reinterpreted as a sum over n1−α1S([y′,y]) that is not restricted to a progression.
More precisely,

φ(q)
∑

N0<n⩽N0+N1

n1−α1n≡a (mod q)1S([y′,y])(n)

=

∑
N0<n⩽N0+N1

n1−α1S([y′,y])(n)+ O
(

N 1−α9(N , [y′, y])

log1/5 N

)
. (5-10)
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The shape of the error term above follows by several applications of Lemmas 3.4(i) and 3.3. On reinserting
the weights into (5-10) and invoking Lemma 4.3, we obtain∑

N0⩽m⩽N0+N1
m≡a (mod q)

h[y′,y](m)=
1

φ(q)

∑
N0⩽n⩽N0+N1

h[y′,y](n)+ O
(

N

log1/5 N

)

=
N1

φ(q)

(
1 + O

(
log3 N
log2 N

))
+ O

(
N

φ(q)(log N )1/24

)
+ O

(
N

log1/5 N

)
provided that N1 ≫ N exp(−(log N )1/4/4). □

By analysing the asymptotic order of the weight factor in h[y′,y], we may deduce from the previous
result an upper bound on the unweighted count of [y′, y]-smooth numbers in short intervals. This bound
will be integral in the application of an bootstrapping argument in Section 7.

Corollary 5.6 ([y′, y]-smooth numbers in short intervals). Let K ′, K ′′ > 0 and K > max(2K ′, 2) be
constants and let N ⩾ 2 be a parameter. Suppose that 1 ⩽ y′ ⩽ (log N )K ′

and that (log N )K < y ⩽ N.
Let P ⊆ [N , 2N ] be any progression of length |P| ⩾ N exp(−(log1/4 N )/4) and common difference
q ⩽ (log N )K ′′

such that p | q ⇒ p < y′.
Then the following assertions hold provided that K and K/K ′′ are sufficiently large.

(1) Suppose that |P| ⩾ L := N/(log N )ℓ for some constant ℓ > 0. Then

|S(2N , [y′, y])∩ P| ≪1
9(2N , [y′, y]) · |P|

N
,

where 1= log3 N + (log N )ℓ−1/24.

(2) If , instead, |P| ⩾ L := N exp(−Cϖ(N )) and q ⩽ N/L ⩽ exp(Cϖ(N )) = o(log N ) for some
ϖ(N )= o(log2 N ), then

|S(2N , [y′, y])∩ P| ≪1
9(2N , [y′, y]) · |P|

N
,

where 1= logϖ(N ).

Proof. Note that if n ∈[N , 2N ] is an element of S([y′, y]), then h[y′,y](n) ̸=0 and N 1−α⩽n1−α⩽ (2N )1−α,
so that

h[y′,y](n)=
Nα

9(N , [y′, y])

n1−α

α
≍

N
9(N , [y′, y])

(n ∈ [N , 2N ] ∩ S([y′, y])). (5-11)

We shall show that in either of the two cases in the statement
q
φ(q)

≪1,

which then leaves us with the task of deducing from Lemma 5.5 that∑
n∈P

h[y′,y](n)≪1|P|.

In order to bound q/φ(q), consider the decomposition q = q1q2, where q1 is composed of primes
p ⩽ϖ and q2 is composed of primes p >ϖ . Then
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p | q1

(1 − p−1)−1
≪ logϖ.

Concerning the product over prime divisors of q2, we obtain∏
p | q,p>ϖ

(1 − p−1)−1
≪ exp

( ∑
p | q,p>ϖ

p−1
)

≪ 1 + O
(

log q
ϖ logϖ

)
, (5-12)

where we used the bound ω(q2)⩽ (log q)/ logϖ . Thus,

q
φ(q)

≪ logϖ +
log q
ϖ

≪ log2 q,

where we choseϖ logϖ=logq . In case (2), we use this bound directly and obtain q/φ(q)≪logϖ(N )=1.
In case (1), we have q/φ(q)≪ log2 q ≪ log3 N ≪1.

Turning towards the application of Lemma 5.5, note that for |P|= N1/q the bound in that lemma satisfies

N1

φ(q)
log3 N
log2 N

+
N

φ(q) log1/24 N
+

N

log1/5 N
≪ |P|

(
q
φ(q)

log3 N
log2 N

+ (N/|P|)(log N )−1/24
)
.

If |P|> N (log N )−ℓ, we obtain

N1

φ(q)
log3 N
log2 N

+
N

φ(q) log1/24 N
+

N

log1/5 N
≪ |P|

(
q
φ(q)

log3 N
log2 N

+ (log N )ℓ−1/24
)

≪ |P|1,

provided 1≫ (log N )ℓ−1/24, which holds under the assumptions of (1).
If, instead, log(N/|P|)≪ϖ(N )= o(log2 N ), then

N1

φ(q)
log3 N
log2 N

+
N

φ(q) log1/24 N
+

N

log1/5 N
≪ |P|

(
q
φ(q)

log3 N
log2 N

+ o(1)
)

= o(|P|),

which concludes the proof. □

In addition to the above result, we shall need an analogous bound that is valid on much shorter intervals
but may in return have a larger value of 1. For y-smooth numbers, such a result appears as “Smooth
Numbers Result 3” in [Harper 2016]; see also [Drappeau and Shao 2016, Lemma 3.3] for a slight extension.
The lemma below will be used in Section 6, where we extend some of the results of [Drappeau and Shao
2016], as well as in Section 7, where it will find application in those situations where the progressions are
too short for the previous corollary to be used.

Lemma 5.7. Let K ′ > 0, K ⩾ max(2K ′, 2), x > 2, 1 ⩽ y′ ⩽ (log x)K ′

and (log x)K < y ⩽ x. Suppose
that P ⊆ [x, 2x] is an arithmetic progression. Then, provided that x is sufficiently large, we have

#{n ∈ P : n ∈ S([y′, y])} ≪ (x/|P|)1−α9(x, [y′, y])|P|

x
log x .

Proof. Let X ⩾ x denote the smallest element of P. This lemma is a generalisation of [Harper 2016,
Smooth Numbers Result 3], which bounds ∑

X⩽n⩽X+Z
n≡a (mod q)

1S(y)(n)
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under the assumptions that q ⩾ 1 and qy ⩽ Z ⩽ X , i.e., concerns progressions of length |P| ⩾ y. The
proof of [Harper 2016, Smooth Numbers Result 3] carries over directly to the situation where S(y) is
replaced by S([y′, y]), with one small exception: The application of [de la Bretèche and Tenenbaum 2005,
Théorème 2.4(i)] with m = 1 needs to be replaced by an application of Lemma 3.4(i), which is [loc. cit.,
Théorème 2.4(i)] with m = P(y′). While in the former case, the bound holds uniformly for 1 ⩽ d ⩽ x , it
is only available for 1 ⩽ d ⩽ x/y in our case.

Replacing the assumption that qy ⩽ Z by qy2 ⩽ 2Z ensures that d < X/y in all applications of [loc. cit.,
Théorème 2.4(i)]. More precisely, we have

Xqy
Z2 j+1 ⩽

X
y

for all admissible values of j in Harper’s proof.
It remains to consider the case where |P|< y2/2, which corresponds to the case |P|< y addressed in

(the proof of) [Drappeau and Shao 2016, Lemma 3.3]. By bounding the left-hand side in our statement
trivially by |P|, and observing that |P|

−1+α
≫ y(−1+α)/2, it suffices to show that

yα−19(x, [y′, y])

xα
log x ≫ 1.

Note that yα−1
= (u log(u + 1)+ O(1))−1 in view of (3-2) and observe that

yα−19(x, [y′, y])

xα
log x ≫ yα−1

∏
y′⩽p⩽y(1 − p−α)−1√

log x log y
log x ≫ yα−1

∏
y′⩽p⩽y

(1 − p−α)−1

by Lemma 3.3 and (3-3). We split the analysis of the product over primes into two cases according to the
size of y. When exp(log x/ log2 x)⩽ y ⩽ x , noting that α ⩽ 1, we have∏

y′⩽p⩽y

(1 − p−α)−1
≫

∏
p⩽y(1 − p−1)−1∏
p⩽y′(1 − p−1)−1 ≫

log y
1 + log y′

≫
log x

(log2 x)2
.

Hence,

yα−1
∏

y′⩽p⩽y

(1 − p−α)−1
≫

log y
log x log(u + 1)

log x
(log2 x)2

≫
log x

(log2 x)3 log3 x
≫ 1.

When y′2 ⩽ y ⩽ exp(log x/ log2 x), we have u ⩾ log2 x and α⩽ 1−(log3 x)/ log y + O(1/ log y). Hence,
the second conclusion of Lemma 3.2 shows that

y−1+α
∏

y′⩽p⩽y

(1 − p−α)−1
≫ y−1+α

∏
√

y⩽p⩽y

(1 − p−α)−1

≫ y−1+α exp
(

y1−α(1 + o(1))− 2y(1−α)/2(1 + o(1))
(1 −α) log y

)
≫ exp

(
y1−α(1 + o(1))− (log y1−α)2

log y1−α

)
≫ 1,

where we used that y1−α
≍ u log u, where u → ∞ as x → ∞, implies that y(1−α)/2

= o(y1−α). □
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6. Weyl sums for numbers without small and large prime factors

As technical input in the proof of the orthogonality of (h(W,A)
[y′,y]

(n)− 1) to nilsequences, we shall require
bounds on Weyl sums where the summation variable is restricted to integers in S([y′, y]). Drappeau and
Shao [2016, Section 5] established bounds on Weyl sums for smooth numbers S(x, y) by extending the
methods from Harper’s minor arc analysis [2016]. Our aim in this section is to obtain analogous bounds for
Weyl sums over S(x, [y′, y]), that is, for Weyl sums over numbers free from small and large prime factors.

Following the notation in [Drappeau and Shao 2016], define for any given parameters Q, x > 0 and
coprime integers 0< a ⩽ q ⩽ Q the major arcs

M(q, a; Q, x)= {θ ∈ [0, 1) : |qθ − a| ⩽ Qx−k
}

and
M(Q, x)=

⋃
0⩽a<q⩽Q
(a,q)=1

M(q, a; Q, x). (6-1)

Given any positive integer k, define the following smooth Weyl sum of degree k:

Ek(x, [y′, y]; θ) :=

∑
n∈S(x,[y′,y])

e(θnk).

The main objective of this section is to establish the theorem below.

Theorem 6.1 (Weyl sums, xη-smooth case). Let k > 0 be a fixed positive integer and suppose that
η ∈ (0, 1/(4k)]. Let K > 2K ′ > 2 and suppose that y′ ⩽ (log x)K ′

< (log x)K < y ⩽ xη and that K is
sufficiently large. Let α = α(x, y) denote the saddle point associated to S(x, y), and let θ ∈ T := R/Z be
a frequency. Then:

(1) If x is sufficiently large and θ ̸∈ M(x1/12, x), we have

Ek(x, [y′, y]; θ)≪ x1−c

for some c = c(k, ε) > 0.

(2) If x is sufficiently large, θ ∈ M(x1/12, x) and if 0 < a < q ⩽ x0.1 are coprime integers such that
|qθ − a| ⩽ q−1, then

Ek(x, [y′, y]; θ)≪ Q−c+2(1−α)(log x)59(x, [y′, y])

for some c = c(k, ε) > 0 and Q = q + xk
∥qθ∥.

We prove the two parts of this lemma in turn. The former case, in which θ is “highly irrational”, will
be handled by extending results of [Wooley 1995]. For this purpose, we first establish an auxiliary lemma
generalising [loc. cit., Lemma 2.3], which in turn builds on an argument of [Vaughan 1989].

Lemma 6.2. Suppose that θ ∈ T is a frequency and r ∈ N. If 1 ⩽ y′ < y ⩽ M < x , then we have∑
n∈S(x,[y′,y])
(n,r)=1

e(nkθ)≪ y(log x) max
y′⩽p⩽y

∑
v∈B(M,p,y)
(v,r)=1

sup
β∈T

∣∣∣∣ ∑
u∈S(x/M,[y′,p])

(u,r)=1

e(ukvkθ + uβ)
∣∣∣∣ + M,

where B(M, p, y)= {M < v ⩽ Mp : p | v, v ∈ S([p, y])}.
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Proof. We start by decomposing the elements n ∈ S(x, [y′, y]) in a similar fashion as in [Vaughan 1989,
Lemma 10.1]. By considering the prime factorisation n = pk1

1 · · · pks
s , where the prime factors are ordered

in decreasing order y ⩾ p1 > · · ·> ps ⩾ y′, it is immediate that, for every given M ∈ [y, x) and every
n ∈ S(x, [y′, y]) with n > M, there is a unique triple (u, v, p) such that n = uv and such that v is the
smallest initial factor in the factorisation above that exceeds M. More precisely,

(1) y′ ⩽ p ⩽ y and p | v,

(2) u ∈ S(x/v, [y′, p]),

(3) M < v ⩽ Mp and v ∈ S([p, y]).

Using this factorisation, the exponential sum can be decomposed as∑
n∈S(x,[y′,y])
(n,r)=1

e(nkθ)=

∑
y′⩽p⩽y

∑
v∈B(M,p,y)
(v,r)=1

∑
u∈S(x/v,[y′,p])

(u,r)=1

e(ukvkθ)+ O(M),

where the error term O(M) bounds the contribution from all n ∈ S(x, [y′, y]) with n ⩽ M. As in [Vaughan
1989, (10.9)], we can use the orthogonality principle to remove the dependence on v in the restriction
u ∈ S(x/v, [y′, p]). Since v > M, the inner sum above is equal to∫

T

( ∑
u∈S(x/M,[y′,p])

(u,r)=1

e(ukvkθ + uβ)
)( ∑

m⩽x/v

e(−mβ)
)

dβ

≪ sup
β∈T

∣∣∣∣ ∑
u∈S(x/M,[y′,p])

(u,r)=1

e(ukvkθ + uβ)
∣∣∣∣ ∫

T

min{x/v, ∥β∥
−1

} dβ

≪ log x sup
β∈T

∣∣∣∣ ∑
u∈S(x/M,[y′,p])

(u,r)=1

e(ukvkθ + uβ)
∣∣∣∣.

The lemma follows by combining this bound with the previous expression. □

The following lemma is a generalisation of the Weyl sum estimate for y-smooth numbers given by
[Wooley 1995], and it relies on the observation that the conclusion of [loc. cit., Lemma 3.1] continues to
hold when we restrict the y-smooth numbers to [y′, y]-smooth numbers.

Lemma 6.3 (Weyl sum, θ is highly irrational). Let k ∈ N be a fixed positive integer and suppose that
σ ∈

(
0, 1

2

)
and η ∈ (0, σ/(4k)]. Then there exists c = c(k, σ ) > 0 such that the following statement is true.

Let 1 ⩽ y′ < y ⩽ xη and θ ∈ (0, 1). Then, if θ ̸∈ M(xσ , x), we have

Ek(x, [y′, y]; θ)≪ x1−c.

Proof. We seek to apply a modified version of [Wooley 1995, Lemma 3.1] in a similar way as at the start
of the proof of [loc. cit., Theorem 4.2]. Wooley’s lemma produces bounds on

f (θ; x, y) := Ek(x, [1, y]; θ)
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in terms of M and q , where M = xλ > y is a parameter such that λ ∈
( 1

2 , 1
)

and q is any natural number
such that ∥qθ∥ = |qθ − a| < q−1 for some a ∈ Z with (a, q) = 1. As we shall explain below, one
can deduce from the proof of the lemma that the same bounds hold for Ek(x, [y′, y]; θ) in place of
f (θ; x, y) = Ek(x, [1, y]; θ), i.e., for the exponential sum relevant to us. In order for those bounds to
be useful, additional assumptions on M and q are necessary, and our first aim is to show that, under the
assumption of our lemma, we can choose M and q in such a way that

M > y, q ⩽ 2(yM)k, |qθ − a|< (yM)−k/2 and q > (x/M)k . (6-2)

These conditions correspond to those in place at the start of the proof of [Wooley 1995, Theorem 4.2].
When combined6 with the upper bound produced by [loc. cit., Lemma 3.1] it follows that

Ek(x, [y′, y]; θ)≪ x1−c(k,σ ), (6-3)

once we prove that the lemma can be extended to the case of [y′, y]-smooth numbers.
Concerning the conditions (6-2), let 0 < σ ∗ < σ/2. Then σ ∗

+ 2kη < σ < 1
2 . By the Dirichlet

approximation theorem, there is a positive integer q ⩽ xk−σ ∗

and some a ∈ Z with (a, q)= 1 such that

∥qθ∥ = |qθ − a| ⩽ xσ
∗
−k < xσ−k .

Since θ ̸∈ M(xσ , x), this implies that q > xσ. Let M be defined by the equation

xk−σ ∗

= 2(yM)k .

Then, since σ ∗
+ 2η < 1

2 , we have

y < xη < x1−σ ∗/k−η2−1/k ⩽ M = 2−1/k x1−σ ∗/k y−1 ⩽ x1−σ ∗/k

as soon as x is sufficiently large. Hence, y < M. If we write M = xλ, then the above line of inequalities
also shows that λ ∈

( 1
2 , 1

)
since σ ∗/k + η < 1

2 . Observe further that σ ∗
+ kη < σ implies that

q > xσ > 2xσ
∗
+kη ⩾ (x/M)k

as soon as x is sufficiently large. Hence, all conditions from (6-2) are satisfied and (6-3) therefore follows
under the assumptions of our lemma.

It remains to show that [Wooley 1995, Lemma 3.1] can be extended to the case of exponential sums over
[y′, y]-smooth numbers. The proof strategy is to follow the original argument, applied to the exponential
sum Ek(x, [y′, y]; θ) instead of Ek(x, [1, y]; θ), and explain how all dependencies on y′ that appear in
any of the bounds on the way can be removed, so as to eventually arrive at an intermediate bound that
agrees with the corresponding bound in the original proof. Following the original proof through to the
end shows then that the upper bound that [loc. cit., Lemma 3.1] provides for f (θ; x, y)= Ek(x, [1, y]; θ)

is also an upper bound for Ek(x, [y′, y]; θ).

6See the proof of [loc. cit., Theorem 4.2] for details.
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Turning to the details, let M = xλ for any λ ∈
( 1

2 , 1
)

and let q ∈ N be such that |qθ − a| < q−1 for
some a ∈ Z with (a, q)= 1. The r = 1 case of Lemma 6.2 (which replaces [Wooley 1995, Lemma 2.3])
produces a prime y′ < p ⩽ y and some frequency γ ∈ T such that

Ek(x, [y′, y]; θ)≪ (log x)y
∑

v∈S(My,y)

∣∣∣∣ ∑
u∈S(x/M,[y′,p])

e(ukvkθ + uγ )
∣∣∣∣ + M.

Note carefully that the sum over v only involves y-smooth numbers. Following the argumentation of the
start of the proof of [loc. cit., Lemma 3.1] (which involves expressing the absolute value of the inner sum
as ε(v, θ)

∑
u∈S(x/M,[y′,p]) e(ukvkθ + uγ ) for some ε(v, θ) ∈ C of unit modulus, reinterpreting certain

exponential sums, as well as two applications of Hölder’s inequality) shows that, for all positive integers
t, w ∈ N,( ∑

v∈S(My,y)

∣∣∣∣ ∑
u∈S(x/M,[y′,p])

ye(ukvkθ + uγ )
∣∣∣∣)2tw

≪ (My)2w(t−1)
(∑

c

nc

)2w−2(∑
c

n2
c

)
Jw(θ),

where Jw(θ) is as in [loc. cit., (3.4)] and where nc denotes the number of solutions to the equation
uk

1 +· · ·+uk
t = c with ui ∈ S(x/M, [y′, p]). Since p ⩽ y, we have S(x/M, [y′, p])⊂ S(x/M, y), which

implies that
∑

c n2
c is trivially bounded above by

∫
T

∣∣∑
u∈S(x/M,y) e(ukθ)

∣∣2t dθ . Using the trivial bound∑
c nc ≪ (x/M)t for the remaining sum over c completes our task of removing all dependencies on y′

from the upper bound on the given exponential sum Ek(x, [y′, y]; θ). To summarise, we obtain( ∑
v∈S(My,y)

∣∣∣∣ ∑
u∈S(x/M,[y′,p])

e(ukvkθ+uγ )
∣∣∣∣)2tw

≪ (My)2w(t−1)(x/M)t (2w−2) Jw(θ)
∫

T

∣∣∣∣ ∑
u∈S(x/M,y)

e(ukθ)

∣∣∣∣2t

dθ,

corresponding to the bound in [loc. cit., (3.5)]. □

The following final lemma of this section is an easy generalisation of [Drappeau and Shao 2016,
Proposition 5.7], which itself generalises the k = 1 case established in [Harper 2016, Theorem 1].

Lemma 6.4 (Weyl sum, θ is irrational). Suppose that θ = a/q + δ for some q ∈ N, a ∈ Z and δ ∈ R

such that (a, q) = 1 and |δ| ⩽ 1/(2q). Further, let x > 2, 1 ⩽ y′ ⩽ (log x)K ′

for some K ′ ⩾ 1 and let
y′2 ⩽ y ⩽ x. Write Q = q + xk

∥qθ∥, and assume that 4y3Q3 ⩽ x. Then there exists some constant
c = c(k) > 0 such that

Ek(x, [y′, y]; θ)≪ Q−c+2(1−α)(log x)59(x, [y′, y]).

Proof. The proof of [Drappeau and Shao 2016, Proposition 5.7] carries over almost directly when replacing
any application of [loc. cit., Lemma 3.2] by one of Lemma 3.4(i) combined with Lemma 3.3. In doing
so, we however have to ensure that the stronger condition that 1 ⩽ d ⩽ x/y of Lemma 3.4(i) is satisfied.
For this reason we make the stronger assumption that 4y3Q3 ⩽ x instead of 4y2Q3 ⩽ x . As only fairly
straightforward changes are required, we explain below how to deduce our lemma from the proof of
[Drappeau and Shao 2016, Proposition 5.7], instead of repeating the entire proof.
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Extracting, as before, the greatest common divisor of n ∈ S(x, [y′, y]) and q∞, we obtain

Ek(x, [y′, y]; θ)=

∑
d | q∞

d⩽x

1S([y′,y])(d)
∑

n⩽x/d
(n,q)=1

1S([y′,y])(n)e(nkdkθ).

We claim that the contribution from those terms with d >Q1/2 and those terms with n ⩽ x/Q is negligible,
in the sense that

Ek(x, [y′, y]; θ)=

∑
d | q∞

d⩽Q1/2

1S([y′,y])(d)
∑

x/Q⩽n⩽x/d
n∈S([y′,y])
(n,q)=1

e(nkdkθ)+ Oε

(
9(x, [y′, y])

Qα/2−ε

)
. (6-4)

We start with the contribution from max(x/y,Q1/2) < d ⩽ x . In this case x/d < y < x1/3. Note that
q ⩽ Q ⩽ x1/3 has ω(q)⩽ log x prime factors. Hence, the contribution to Ek(x, [y′, y]; θ) is bounded by∑

d | q∞

x/y<d⩽x

y ⩽ x1/39(x, log x)⩽ x1/3+o(1)

by Erdős’s bound stated in [Montgomery and Vaughan 2007, Section 7.1.1, Exercise 12]. Since α > 1
2

and Q < x1/3, it follows that
x1/3+o(1)

≪ Q−α/29(x, [y′, y]).

If Q1/2 < d < x/y, then Lemma 3.4(i) applies and we obtain∑
d | q∞

Q1/2<d⩽x/y

9(x/d, [y′, y])1S([y′,y])(d)

≪9(x, [y′, y])
∑

Q1/2<d⩽x/y
d | q∞

d−α1S([y′,y])(d)

≪9(x, [y′, y])Q−α/2
∑

d | q∞

d−α/21S([y′,y])(d)≪9(x, [y′, y])Q−α/2 exp
(∑

p>y′

p | q

p−α/2
+ O(1)

)
≪9(x, [y′, y])Q−α/2 exp

(
O

(
y′−α/2 log Q

log y′

))
≪ε 9(x, [y′, y])Q−α/2+ε,

since α > 1
2 .

To remove the contribution from n ⩽ x/Q we may now assume that d <Q1/2. This contribution is
trivially bounded above by∑

d<Q1/2

∑
n⩽x/Q
(n,d)=1

1S([y′,y])(dn)⩽9(x/Q1/2
; [y′, y])≪ Qα/29(x; [y′, y]),

where we used Lemma 3.4(i) together with the bound Q1/2 < x/y which follows from the assumption
that 4y3Q3 ⩽ x . This shows that (6-4) holds.

Following [Drappeau and Shao 2016], set L = 4yQ and decompose any element of [x/Q, x/d] ∩

S([y′, y]) as the unique product mn for which m ∈ [L , yL] and P+(m)⩽ P−(n), which is possible since
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y< Ly< x/Q by the assumption that 4y3Q3 ⩽ x . Decomposing the range of m dyadically and extracting
the largest prime factor of m implies that

Ek(x, [y′, y]; θ)≪ log x sup
L⩽M⩽yL

E (M)+
9(x, [y′, y])

Qα/4 ,

where

E (M)=

∑
d | q∞

d⩽Q1/2

d∈S([y′,y])

∑
y′⩽p⩽y

∑
m∈S([y′,p])

M/p⩽m⩽min{2M,yL}/p

∑
n∈S([p,y])
(pmn,q)=1

x/(pmQ)⩽n⩽x/(pmd)

e((pmnd)kθ).

The dependence of the summation condition of the inner sum on m can be removed with the help of the
same trick as in the proof of Lemma 6.2, which leads to

E (M)≪ (log x) sup
β∈[0,1)

∑
d|q∞

d⩽Q1/2

d∈S([y′,y])

∑
y′⩽p⩽y

∑
m∈S([y′,p]):

M/p⩽m⩽min{2M,yL}/p

∣∣∣∣ ∑
n∈S([p,y])
(pmn,q)=1

x/(2MQ)⩽n⩽x/(Md)

e((pmnd)kθ +βn)
∣∣∣∣.

An application of Cauchy–Schwarz, combined with the bound∑
d|q∞

d⩽Q1/2

d∈S([y′,y])

1 ⩽ Qε/2
∑
d|q∞

d⩽Q1/2

d∈S([y′,y])

d−ε ⩽ Qε/2 exp
(

O(1)
∑
p|q

p−ε

)
≪ Qε/2Qo(1)

≪ε Qε,

which follows from ω(d)⩽ (log Q)/ log y′, we obtain

E (M)≪ε (log x)QεM1/2S1(M)1/2,

where S1(M) is defined as in [Drappeau and Shao 2016, display just below (5.3)] except that the sum
over primes runs over y′ ⩽ p ⩽ y:

S1(M)=

∑
d|q∞

d⩽Q

∑
y′⩽p⩽y

∑
M/p<m⩽2M/p

∣∣∣∣ ∑
n∈S([p,y])
(pmn,q)=1

x/(2MQ)⩽n⩽x/(Md)

e((pmnd)kθ +βn)
∣∣∣∣2

.

Here we relaxed the summation conditions on d (to match the corresponding sum in [loc. cit.]) and,
following [Harper 2016; Drappeau and Shao 2016], on m, which allows one to later use a standard
exponential sum estimate where the summation variable runs over a full interval. Expanding out the
square, swapping the order of summation, applying the triangle inequality and relaxing some of the
summation conditions in the outer sum leads to

S1(M)≪

∑
d|q∞

d⩽Q

∑
y′⩽p⩽y

∑
n1,n2∈S([y′,y])
(n1n2,q)=1

x/(2MQ)<n1⩽n2⩽x/(Md)

∣∣∣∣ ∑
M/p<m⩽2M/p

e((pmd)kθ(nk
1 − nk

2))

∣∣∣∣.
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Note carefully that instead of relaxing the condition n1, n2 ∈ S([p, y]) to n1, n2 ∈ S(y), as in [Drappeau
and Shao 2016], we replaced it by n1, n2 ∈ S([y′, y]). We now follow the analysis of S1(M) from [loc. cit.],
with the only change that in the definitions of S j , j ∈ {2, . . . , 5}, the variables n1 and n2 continue to be
restricted to S([y′, y]). Instead of bounding the quantity S5(M; r ′, d; n1, b; T ) with the help of [loc. cit.,
Lemma 3.3], we use Lemma 5.7, which produces the analogous bound with 9(x/(Md), y) replaced by
9(x/(Md), [y′, y]). In the definition of S ′

3, we include the restriction to n1 ∈ S([y′, y]). Adapting the
analysis of S3 requires the lower bound

9(x/(Md), y)≍

(
x

Md

)α′

(log x log y)−1/2
∏

y′⩽p⩽y

(1 − p−α′

)−1

≫

(
x

Md

)α′

(log x log y)−1/2
≫

(
x

Md

)α′
+o(1)

≫

(
x

Md

)α
,

where α′
= α(x/(Md), y), which follows from Lemma 3.3, the asymptotic expansion (3-3) as well as the

bound α′
= α(x/(Md), y) > α(x, y) = α implied by the lower bound M ⩽ L = 4yQ > log x and the

estimate (3-2).
The remaining analysis in the proof of [loc. cit., Proposition 5.7] involves two applications of [loc. cit.,

Lemma 3.2], which may be replaced by applications of Lemma 3.4(i) combined with Lemma 3.3 since
for d ⩽ Q and M ⩽ yL we have

Md ⩽ yLQ ⩽ 4y2Q2 ⩽ x/(yQ)⩽ x/y,

thanks to our stronger assumption that 4y3Q3 ⩽ x . This ensures that d ⩽ x/(yM) in the first application
and that M < x/y in the second application, i.e., that the conditions of Lemma 3.4(i) are satisfied. Our
lemma thus follows from the proof of [loc. cit., Proposition 5.7]. □

Proof of Theorem 6.1. The first part of the result follows directly from Lemma 6.3 applied with σ =
1
12 .

Concerning the second part, suppose that θ ∈M(x1/12, x) and recall that by definition (6-1) there exists a
positive integer q ⩽ x0.1 such that ∥qθ∥⩽ x1/12x−k. For any such value of q , we have Q = q +∥qθ∥xk ⩽

2x1/12 and 4y3Q3 ⩽ x since y < xη and η < 1
4 . It then follows from Lemma 6.4 that

Ek(x, [y′, y]; θ)≪ Q−c+2(1−α)(log x)59(x, [y′, y]). □

7. Strongly recurrent polynomial sequences over smooth numbers

Our aim in this section is to show that if a sequence {∥βnk
∥}n∈S(x,[y′,y]) is strongly recurrent, then β is

very close to a rational with small denominator q . More precisely:

Theorem 7.1. Let N > 2 be a parameter, let θ ∈ R, and let k ⩾ 1 be a fixed integer. Let K ′ > 0,
K > max(2, 2K ′), 1 ⩽ y′ ⩽ (log N )K ′

, and suppose that (log N )K ⩽ y ⩽ N η for some small constant
η = η(k) ∈ (0, 1). Let δ : R>0 → R>0 be a function of N that satisfies

log5 N ≪ δ(N )−1 < log2 N
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for all sufficiently large N. Finally suppose that 0< ε ⩽ δ/2 and that ε < δ(N )−O(1)(log N )−C1 for some
fixed constant C1 ⩾ 1. Then the following assertion holds provided that K and C1 are sufficiently large
depending on k.

If the bound ∥nkθ∥ ⩽ ε holds for at least δ9(N , [y′, y]) elements n ∈ S(N , [y′, y]), then there exists a
positive integer 0< q ≪ δ−O(1) such that

∥qθ∥ ≪ εδ−OC1 (1)/N k .

The corresponding problem for strongly recurrent unrestricted polynomial sequences {∥βnk
∥}n⩽x has

been treated in [Green and Tao 2012a, Section 3] where the polynomial case was reduced to the linear
case via an application of bounds in Waring’s problem. While a suitable Waring-type result was proved
in [Drappeau and Shao 2016, Theorem 2.4] for the set S(x, y), no such result is currently available for
the sparse subset S(x, [y′, y]), although we expect such an analogue to hold.

For this reason, our approach proceeds instead via first reducing the problem via Fourier analysis to
bounds on Weyl sums over S(x, [y′, y]), which can then be combined with the results of Section 6. The
Fourier analysis reduction is standard (see [Green and Tao 2012b, Proposition 3.1 and Lemma 3.2]). The
bounds on the relevant Weyl sums obtained in Section 6 by themselves are, however, not strong enough
in order to deduce the theorem above; they only provide part (1) of Lemma 7.4 below. In particular,
those bounds on ∥qθ∥ are not strong enough in order to later analyse the correlation of g[y′,y](n) with
nilsequences for very small values of y, that is, when log y ≪ log log x . To work around this problem, we
will employ a bootstrapping argument in order to improve the bounds on ∥qθ∥. This argument is based on
the combination of the following lemma due to [Drappeau and Shao 2016, Lemma 3.7] (which is a higher-
dimensional version of the bootstrapping argument used in the proof of [Green and Tao 2012b, Lemma 3.2])
and the bounds we obtained in Section 5.2 on equidistribution of S([y′, y]) in short progressions.

Lemma 7.2 [Drappeau and Shao 2016, bootstrapping lemma]. Let k > 0 be a fixed integer and let
ε′, δ ∈ (0, 1). Let 1⩽ L ⩽ x be parameters and let A ⊂[x, 2x] be a nonempty subset with the property that

|A ∩ P| ⩽1
|A ||P|

x

for some1⩾ 1 and for any arithmetic progression P ⊆ [x, 2x] of length at least L and common difference
q = 1. Suppose that, for some ϑ ∈ R with ∥ϑ∥ ⩽ ε′/(Lxk−1), there are at least δ|A | elements m ∈ A

satisfying ∥mkϑ∥ ⩽ ε′. Then either ε′
≫ δ/1 or

ϑ ≪1δ−1ε′/xk .

Remark 7.3. The original statement of [Drappeau and Shao 2016, Lemma 3.7] does not restrict the progres-
sions P to have common difference q =1. An inspection of the proof reveals, however, that the correspond-
ing assumption is only required for progressions with common difference q = 1, i.e., for discrete intervals.

Theorem 7.1 is an immediate consequence of the following lemma, which will help us structure our
proof.
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Lemma 7.4. Let θ ∈ R, k ⩾ 1 a fixed integer, and let K ′ > 0 and K > max(2K ′, 2) be constants. Let
1 ⩽ y′ ⩽ (log x)K ′

and suppose that (log x)K ⩽ y ⩽ xη for some small constant η ∈ (0, 1). Let δ = δ(x)
be such that δ(x)−B

≪B x for all B > 0 and suppose that 0< ε ⩽ δ/2. Suppose that there are at least
δ9(x, [y′, y]) elements n ∈ S(x, [y′, y]) for which ∥nkθ∥ ⩽ ε. Then:

(1) There is some integer 0< q ≪ δ−O(1) and a constant c > 0 depending on k such that

∥qθ∥ ≪ δ−O(1)(log x)10/c/xk

provided K is sufficiently large in terms of c.

(2) If , furthermore, δ(x)>(log2 x)−1 and ε<δ(x)−O(1)(log x)−C1 for some fixed constant C1 ⩾5+20/c,
then the integer 0< q ≪ δ−O(1) from part (1) satisfies

∥qθ∥ ≪ εδ−O(1)(log x)C1/xk,

provided that K is sufficiently large in terms of c.

(3) Under the assumptions of part (2) the integer 0< q ≪ δ−O(1) from part (1) satisfies the bound

∥qθ∥ ≪ εδ−OC1 (1)(log3 x)/xk,

provided that K is sufficiently large in terms of c.

(4) If , in addition to all previous assumptions, δ−1
≫ log5 x , then the integer 0< q ≪ δ−O(1) from part (1)

is such that

∥qθ∥ ≪ εδ−OC1 (1)/xk,

provided that K is sufficiently large in terms of c.

Proof of Lemma 7.4. Suppose that I ⊆ [0, 1] is an interval of length |I | = ε, and that there are at least
δ9(x, [y′, y]) elements n ∈ S(x, [y′, y]) such that nkθ (mod Z) ∈ I . By approximating the characteristic
function of the interval I by a suitable smooth Lipschitz function F, we obtain∣∣∣∣ ∑

n∈S(x,[y′,y])

F(nkθ (mod Z))

∣∣∣∣ ⩾ δ′9(x, [y′, y]) (7-1)

for some δ′ ∈ [δ/2, δ]. We may assume that F is supported on a set of measure δ. Hence, on rescaling F
and redefining δ′ in the bound above as δ′ = δC for some C ⩾ 1, we may assume that ∥F∥Lip = 1, which
implies that, for every k ∈ Z,

|F̂(k)| =

∫
R/Z

F(θ)e(−θk) dθ ⩽ ∥F∥∞ ⩽ ∥F∥Lip = 1. (7-2)

Following the proof of [Green and Tao 2012b, Lemma 3.1], our next step is to approximate F by a
function whose Fourier transform is finitely supported, with a support defined in terms of δ′. For this
purpose, consider the Fejér kernel K (θ)= χQ ∗χQ(θ), where χQ(θ)= (δ′/16)1Q(θ) is the normalised
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characteristic function of the short interval Q = [−δ′/16, δ′/16]. Since
∫

R/Z
K = 1 and by (7-2), the

convolution F1 = F ∗ K satisfies

∥F − F1∥∞ ⩽ δ′

4
and |F̂1(k)| ⩽ 1 for all k ∈ Z.

The rapid decay of the Fourier coefficients of K allows one to approximate F1 by a finite truncation of its
Fourier series as follows. If

F2(θ) :=

∑
0<|q|≪δ′−3

F̂1(q)e(qθ), then ∥F2 − F1∥∞ ⩽
δ′

4
.

When applying both of these approximations to (7-1) and then swapping the order of summation, it
follows from the triangle inequality that

δ′

2
9(x, [y′, y])⩽

∑
0<|q|≪δ′−3

|F̂1(q)|
∣∣∣∣ ∑
n∈S(x,[y′,y])

e(qnkθ)

∣∣∣∣ ⩽ ∑
0<|q|≪δ′−3

∣∣∣∣ ∑
n∈S(x,[y′,y])

e(qnkθ)

∣∣∣∣.
By the pigeonhole principle there therefore is some integer 0< |q| ≪ δ′−3 such that

δ′49(x, [y′, y])≪

∣∣∣∣ ∑
n∈S(x,[y′,y])

e(qnkθ)

∣∣∣∣ = |Ek(x, [y′, y]; qθ)|. (7-3)

Following the above reduction via Fourier analysis, we are now in the position to invoke the bounds
on Weyl sums over smooth numbers from Section 6. To start with, the first part of Theorem 6.1 shows
that if qθ (mod Z) does not belong to M(x1/12, x), then the right-hand side of (7-3) is bounded by

Ek(x, [y′, y]; qθ)≪ x1−c
≪ xαx1−α−c

≪ x−c′

9(x, [y′, y]),

where c′
:= c − (1 − α) and where the lower bound 9(x, [y′, y]) ≫ xα+o(1) follows from (3-3) and

Lemma 3.2. Observe that c′ > 0 provided that K is sufficiently large in terms of c since 1 −α(x, y)⩽
1/K + o(1) by (3-2). Hence, δ′4 ≪ x−c′

and, thus, x ≪ δ′
−4/c′

= δ−4C/c′

, contradicting our assumptions
on δ, which implies δ−4C/c′

≪B x1/B for all B > 0.
It follows that qθ (mod Z)∈M(x1/12, x). In this case, the second part of Theorem 6.1, applied with θ re-

placed by qθ (and applied in the special case where, in the statement of Theorem 6.1, q =a =1), shows that∑
n∈S(x,[y′,y])

e(qnkθ)≪ (1 + xk
∥qθ∥)−c+2(1−α)(log x)59(x, [y′, y]).

Suppose that K is sufficiently large to ensure that c − 2(1 −α) > c/2. Then it follows from the Fourier
analysis bound (7-3) that

1 + xk
∥qθ∥ ≪ δ−8C/c(log x)10/c,

and hence
∥qθ∥ ≪ δ−8C/c(log x)10/cx−k,

which proves part (1). For later use in the proofs of all remaining parts, we record the following
consequence of part (1) and our assumptions.
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Recurrence condition. Let 0< q ≪ δ−O(1) denote the integer produced by part (1). Then we have

∥nkqθ∥ ⩽ q∥nkθ∥< ε′ (7-4)

for some ε′
≍ qε≪ δ−O(1)ε and for at least δ9(x, [y′, y]) elements n of S(x, [y′, y]).

To establish part (2), observe that in view of Lemma 5.7, the conditions of Lemma 7.2 are satisfied for the
set A = S(2x, [y′, y]) and any lower bound L ⩾ 1 with a correction factor of the form1= (x/L)1−α log x .
Moreover, we have

∥qθ∥ ≪ δ−8C/c(log x)10/cx−k
= ε′/(Lxk−1)

if we set L = ε′δ8C/c(log x)−10/cx and with ε′ as in (7-4). In this case,

ε′1⩽ ε′(log x)(ε′δ8C/c(log x)−10/c)α−1
≪ (qε)αδ−O(1)(log x)1+5/c

≪ (log x)−αC1δ−O(1)(log x)1+5/c
= o(δ(x))

provided that C1 is sufficiently large depending on c. Here, we used that α > 1
2 if K > 2. To find a simple

bound for 1, note that

x/L ≪ (εqδ8C/c(log x)−10/c)−1
≪ (log x)C1δ−O(1)(log x)10/c

≪ (log x)3C1/2,

provided that C1 is sufficiently large (e.g., C1 ⩾ 5 + 20/c), which implies that

1= (x/L)1−α log x ≪ (log x)1+3C1(1−α)/2
≪ (log x)3C1/4+1 ⩽ (log x)C1 .

Thus, in view of the recurrence condition above, the conclusion of part (2) follows from Lemma 7.2,
applied with the given value of ε′ and ϑ := qθ , provided that C1 is sufficiently large in terms of c.

To prove part (3), we use the information from part (2), i.e., that the positive integer q ≪ δ−O(1)

produced by part (1) satisfies

∥qθ∥ ≪ εδ−O(1)(log x)C1/xk . (7-5)

We shall now apply the short intervals case of Corollary 5.6(1). This result and the recurrence condition
imply that the conditions of the bootstrapping lemma are satisfied for the set A = S(x, [y′, y]), the lower
bound L = x/(log x)ℓ and

1= log3 x + (log x)ℓ−1/24

for any constant ℓ > 0. Observe that, since ε < δ−O(1)(log x)−C1 and δ(x)−1 < log2 x , a bound of the
form ℓ⩽ C1 implies

ε′δ(x)−O(1)1< δ(x)−O(1)(log3 x + (log x)ℓ−1/24)(log x)−C1

< (log x)−C1+o(1)
+ (log x)−1/24+o(1)

= o(δ(x)).

This ensures that the bootstrapping lemma produces bounds on ∥qθ∥ in all applications below.
Let 0 ⩽ j < 24C1 be an integer, and suppose inductively that

∥qθ∥ ≪ εδ−OC1 (1)(log x)C1− j/24/xk,
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the case j = 0 being (7-5). Let ℓ := C1 − j/24, and L = x/(log x)ℓ. Then the bootstrapping lemma,
applied with ε′ replaced by εδ−OC1 (1), implies that

∥qθ∥ ≪ εδ−OC1 (1)(log x)C1−( j+1)/24/xk

if j + 1 < 24C1. Recalling the shape of 1, we pick up a (log3 x)-factor when j + 1 ⩾ 24C1 and thus
ℓ− 1/24 ⩽ 0, and obtain

∥qθ∥ ≪ εδ−OC1 (1)(log3 x)/xk

as claimed.
It remains to establish part (4). In view of part (3), we have

∥qθ∥ ≪ εδ−OC1 (1)(log3 x)/xk

and there are δ9(x, [y′, y]) elements n ∈ S(x, [y′, y]) for which ∥nkqθ∥ < ε′ by (7-4). We shall now
appeal to Corollary 5.6(2) in order to remove the (log3 x)-factor from the bound. For this purpose
let ϖ(x) = log4 x and recall the recurrence condition. Then Corollary 5.6(2) shows that the condi-
tions of Lemma 7.2 are satisfied for the set A = S(x, [y′, y]), the lower bound L = x/ log3 x and
1= logϖ(x)≪ log5 x ≪ δ−1. By the assumptions on δ and ϖ(x) it follows easily that

1ε′δ−OC1 (1) ≪ δ−OC1 (1)(log x)−C1 = o(δ).

Hence, Lemma 7.2 applied with ε′ replaced by εδ−OC1 (1) finally leads to the bound

∥qθ∥ ≪ εδ−OC1 (1)/xk . □

8. Noncorrelation with nilsequences: a reduction and general lemmas

The aim of this section is to first establish an initial reduction of the noncorrelation estimate stated in
Theorem 1.1 to the case where the nilsequence is equidistributed. In preparation for the proof of the reduced
version we then show that most sequences in certain sparse families of subsequences of an equidistributed
polynomial sequence are equidistributed. We start by recalling some notation around nilsequences.

Definition 8.1 (filtered nilmanifold). Let d,mG ⩾ 0 be integers and let M > 0. We define a filtered
nilmanifold G/0 of degree d, dimension mG and complexity at most M to be an s-step nilmanifold G/0,
for some 1⩽ s ⩽ d , of dimension mG in the sense of [Green and Tao 2012b, Definition 1.1] such that G is
equipped with a filtration G• of degree d ⩾ s in the sense of that definition and such that the Lie algebra g=

log G is equipped with an M-rational Malcev basis adapted to G• in the sense of [loc. cit., Definition 2.1].

A Malcev basis X gives rise to a metric dX on G/0 (see [loc. cit., Definition 2.2]). With respect to
this metric, Lipschitz functions can be defined. More precisely, if F : G/0→ C, we define (see [loc. cit.,
Definition 1.2]) the Lipschitz norm

∥F∥Lip := ∥F∥∞ + sup
x,y∈G/0, x ̸=y

|F(x)− F(y)|
dX (x, y)

and call F a Lipschitz function if ∥F∥Lip <∞.
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Definition 8.2 (polynomial sequence and nilsequence). Given a nilpotent Lie group G and a filtration

G• : G = G0 = G1 ⊇ G2 ⊇ · · · ⊇ Gd ⊇ Gd+1 = {idG},

the set poly(Z,G•) of polynomial sequences is defined as the set of all maps g : Z → G such that,
if ∂hg(n) := g(n + h)g(n)−1, the j-th discrete derivative ∂h j . . . ∂h1 g takes values in G j for all j ∈

{1, . . . , d + 1} and all h1 . . . h j ∈ Z. If g ∈ poly(Z,G•) and F : G/0 → C is a Lipschitz function, then
the sequence Z → F(g( · )0) is called a nilsequence.

With this notation in place, we restate the main result of our paper, which shows that n 7→(g(W,A)
[y′,y]

(n)− 1)
is orthogonal to nilsequences.

Theorem 8.3 (noncorrelation with nilsequences). Let N be a large positive parameter and let K ′ ⩾ 1,
K > 2K ′ and d ⩾ 0 be integers. Let 1

2 log3 N ⩽ y′ ⩽ (log N )K ′

and suppose that (log N )K < y0 < y< N η

for some sufficiently small η ∈ (0, 1) depending the value of d. Let (G/0,G•) be a filtered nilmanifold
of complexity Q0 and degree d. Finally, let w(N ) =

1
2 log3 N + o(1), W = P(w(N )) and define

δ(N )= exp(−
√

log4 N ).
If K is sufficiently large depending on the degree d of G•, then the estimate∣∣∣∣ W̃

N

∑
n⩽(N−A)/W̃

(g(W̃ ,A)
[y′,y]

(n)− 1)F(g(n)0)
∣∣∣∣ ≪d,C (1 + ∥F∥Lip)δ(N )Q0 +

1
logw(N )

(8-1)

holds uniformly for all W̃ = Wq , where q ⩽ (log y0)
C satisfies p | q ⇒ p <w(N ) and C ⩾ 1 is a fixed

constant, for all 1 ⩽ A ⩽ W̃ with gcd(A,W ) = 1, all polynomial sequences g ∈ poly(Z,G•) and all
1-bounded Lipschitz functions F : G/0 → C.

By decomposing the summation range 1 ⩽ n ⩽ (N − A)/W̃ into dyadic intervals n ∼ (N ′
− A)/W̃ for

N ′
∈ (N/ log N , N ] and the initial segment 1 ⩽ n ≪ N/(W̃ log N ), and approximating g[y′,y] by h[y′,y]

on each dyadic interval, it follows from Lemma 4.4 that the task of proving Theorem 8.3 may be reduced
to proving that the estimate∣∣∣∣ W̃

N

∑
n∼(N−A)/W̃

(h(W̃ ,A)
[y′,y]

(n)− 1)F(g(n)0)
∣∣∣∣ ≪d,C (1 + ∥F∥Lip)δ(N )Q0 +

1
logw(N )

(8-2)

holds under the assumptions of Theorem 8.3 and for the function h(W̃ ,A)
[y′,y]

that is defined on the interval
n ∼ (N − A)/W̃.

8.1. Reduction to noncorrelation with equidistributed nilsequences. Observe that the bound in the
statement of Theorem 8.3 holds trivially unless

Q0 ⩽ δ(N )−1.

This information can be used in combination with Green and Tao’s factorisation theorem for polynomial
sequences (which states that every polynomial sequence is the product of a slowly varying sequence, a
highly equidistributed sequence and a periodic polynomial sequence) together with our results on the
distribution of n 7→ h[y′,y] in short arithmetic progressions in order to reduce the statement to one in which
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the sequence g can be assumed to be equidistributed. Before stating the reduced version and proving the
reduction, we recall the relevant definitions around equidistribution as well as the factorisation theorem.

Definition 8.4 (δ-equidistributed and totally δ-equidistributed sequence [Green and Tao 2012b, Defini-
tion 1.2]). Let G/0 be a nilmanifold.

(1) Given a length N > 0 and an error tolerance δ > 0, a finite sequence (g(n)0)n∈[N ] is said to be
δ-equidistributed if we have ∣∣∣∣En∈[N ] F(g(n)0)−

∫
G/0

F
∣∣∣∣ ⩽ δ∥F∥Lip

for all Lipschitz functions F : G/0 → C.

(2) A finite sequence (g(n)0)n∈[N ] is said to be totally δ-equidistributed if we have∣∣∣∣En∈P F(g(n)0)−
∫

G/0
F

∣∣∣∣ ⩽ δ∥F∥Lip

for all Lipschitz functions F : G/0 → C and all arithmetic progressions P ⊂ [N ] of length at least δN.

Definition 8.5 (rational sequence [Green and Tao 2012b, Definition 1.17]). Let G/0 be a nilmanifold
and let Q > 0 be a parameter. We say that γ ∈ G is Q-rational if γ r

∈0 for some integer r , 0< r ⩽ Q. A
Q-rational point is any point in G/0 of the form γ0 for some Q-rational group element γ . A sequence
(γ (n))n∈Z is Q-rational if every element γ (n)0 in the sequence is a Q-rational point.

Definition 8.6 (smooth sequences [Green and Tao 2012b, Definition 1.18]). Let G/0 be a nilmanifold
with a Malcev basis X . Let (ε(n))n∈Z be a sequence in G, and let M, N ⩾ 1. We say that (ε(n))n∈Z is
(M, N )-smooth if we have d(ε(n), idG)⩽ M and d(ε(n), ε(n − 1))⩽ M/N for all n ∈ [N ], where idG

denotes the identity element of G.

The following proposition is Green and Tao’s factorisation theorem [2012b, Theorem 1.19] for poly-
nomial sequences, which asserts that any polynomial sequence can be decomposed into a product of a
smooth, a highly equidistributed and a rational polynomial sequence.

Proposition 8.7 (Green–Tao factorisation theorem [2012b]; see also [Tao and Teräväinen 2023]). Let
m, d ⩾ 1, and let M0, N ⩾ 1 and A > 0 be real numbers. Suppose that G/0 is an m-dimensional
nilmanifold together with a filtration G• of degree d. Suppose that X is an M0-rational Malcev basis
adapted to G• and that g ∈ poly(Z,G•). Then there is an integer M with M0 ⩽ M ≪ M OA,m,d (1)

0 , a rational
subgroup G ′

⊆ G, a Malcev basis X ′ for G ′/0′ in which each element is an M-rational combination of
the elements of X , and a decomposition g = εg′γ into polynomial sequences ε, g′, γ ∈ poly(Z,G•) with
the following properties:

(1) ε : Z → G is (M, N )-smooth.

(2) g′
: Z → G ′ takes values in G ′, and the finite sequence (g′(n)0′)n∈[N ] is totally 1/M A-equidistributed

in G ′/0′, using the metric dX ′ on G ′/0′.

(3) γ : Z → G is M-rational, and (γ (n)0)n∈Z is periodic with period at most M.
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With the above notation in place, we may now state the equidistributed version of Theorem 8.3 and
deduce this theorem from it.

Proposition 8.8 (orthogonality to equidistributed nilsequences). Let N be a large positive parameter, let
K ′ ⩾ 1, K > 2K ′ and d ⩾ 0 be integers. Let 1

2 log3 N ⩽ y′ ⩽ (log N )K ′

and suppose that (log N )K < y0 <

y ⩽ N η for some η∈ (0, 1) that is sufficiently small depending on d. Letw(N )= 1
2 log3 N, W = P(w(N ))

and δ(N )= exp(−C0
√

log4 N )) with C0 ∈ [1, (log N )1/4].
Let G/0 be a nilmanifold together with a filtration G• of degree d , and suppose that X is a

δ(N )−1-rational Malcev basis adapted to G•. Let g ∈ poly(Z,G•) be any polynomial sequence such that
the finite sequence (g(n)0)n⩽2N/W is totally δ(N )E0-equidistributed for some E0 > 1. Let F : G/0 → C

be any 1-bounded Lipschitz function such that
∫

G/0 F = 0.
If 1⩽ q ⩽ (log y0)

C is (w(N )−1)-smooth, where 1⩽C ≪ 1, if 0⩽ a< q and 0< A<W are integers
such that (W, A)= 1 (and thus (Wa + A,Wq)= 1), and if 0< N1 ⩽ N, then we have∣∣∣∣Wq

N

∑
m∈N:

N<Wqm<N+N1

h(W,A)
[y′,y]

(qm + a)F(g(m)0)
∣∣∣∣ ≪d,dim G,∥F∥Lip,E1 δ(N )

E1 (8-3)

for any given E1 ⩾ 1, provided that E0 is sufficiently large with respect to d, dim G and E1, provided that
K is sufficiently large depending on the degree d of G•, and provided that N is sufficiently large in terms
of dim G, d and E0.

Proposition 8.8 implies Theorem 8.3. We shall prove that Proposition 8.8 implies (8-2), from which
Theorem 8.3 follows. We may assume that Q0 ⩽ δ(N )−1 as (8-2) is trivially true otherwise. Let
B > 1 be a parameter. Then, by Proposition 8.7, applied with N replaced by 2N/W̃, there exists
Q0 ⩽ Q ≪ QOB,dim G,d (1)

0 and a factorisation of the polynomial sequences g as εg′γ that satisfies properties
(1)–(3) of that proposition. In particular, the polynomial sequence γ : Z → G gives rise to a q̃-periodic
function γ ( · )0 :Z→ G/0 for some period 1⩽ q̃ ⩽ Q, and the sequence ε :Z→ G is (Q, 2N/W̃ )-smooth.
The sequence g′

: Z → G ′ takes values in a Q-rational subgroup G ′ of G, it is a polynomial sequence with
respect to the filtration G ′

•
:= G• ∩ G ′ and the finite sequence (g′(n)0′)n⩽2N/W̃ is Q−B-equidistributed in

G ′/0′, where 0′
= 0 ∩ G ′ and where equidistribution is defined with respect to the metric dX ′ arising

from a Malcev basis X ′ adapted to G ′
•
. The existence of the Malcev basis X ′ is guaranteed by [Green and

Tao 2012b, Lemma A.10], which also allows us to assume that each of its basis elements is a Q-rational
combination of basis elements from X .

In order to reduce the noncorrelation estimate to the case where the polynomial sequence is highly
equidistributed, we seek to decompose the summation range of n in (8-2) into (short) subprogressions on
which γ and ε are almost constant. Splitting the interval (N/W̃ , 2N/W̃ ] into arithmetic progressions
with common difference q̃, we obtain∑

n∼N/W̃

(h(W̃ ,A)
[y′,y]

(n)− 1)F(g(n)0)=

∑
0⩽a<q̃

∑
n∼N/W̃

n≡a (mod q̃)

(h(W̃ ,A)
[y′,y]

(n)− 1)F(ε(n)g′(n)γa0),

where γa ∈ G is such that γ (n)0 = γa0 whenever n ≡ a (mod q̃).
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Since F is a Lipschitz function and since dX is right-invariant (see [Green and Tao 2012b, Appendix A]),
we deduce that, for any n0, n ∈ Z,∣∣F(ε(n0)g′(n)γa0)− F(ε(n)g′(n)γa0)

∣∣ ⩽ ∥F∥Lip dX

(
ε(n0)g′(n)γa, ε(n)g′(n)γa

)
= ∥F∥Lip dX (ε(n0), ε(n)).

It then follows from the assumption ε is (Q, 2N/W̃ )-smooth that

dX (ε(n0), ε(n))⩽
Q|n0 − n|

N/W̃

whenever n, n0 ⩽ 2N/W̃, and therefore∣∣F(ε(n0)g′(n)γa0)− F(ε(n)g′(n)γa0)
∣∣ ≪∥F∥Lip log−1 Q (8-4)

if, in addition, |n0 − n| ≪ N/(W̃ Q log Q). With this in mind, we refine the partition of our summation
range and consider a subpartition

(N/W̃ , 2N/W̃ ] =

⋃
j

Pj ,

where each Pj is a “short” progression of common difference q̃ , as before, but with diameter bounded by
O(N/(QW̃ log Q)). The bound on the diameter ensures that ε is almost constant on each Pj . Note that
the total number of short progressions Pj is O(q̃ Q log Q). By fixing an element εj ∈ ε(Pj ) in the image
of Pj under ε for each progression Pj , we obtain∑
n∼N/W̃

(h(W̃ ,A)
[y′,y]

(n)− 1)F(g(n)0)

=

∑
j

∑
n∈Pj

(h(W̃ ,A)
[y′,y]

(n)− 1)F(εj g′(n)γa0)

+ O
{

sup
Pj

sup
n∈Pj

∣∣F(εj g′(n)γa0)− F(ε(n)g′(n)γa0)
∣∣( ∑

n∼N/W̃

h(W̃ ,A)
[y′,y]

(n)+
N

W̃

)}
. (8-5)

By construction or, more precisely, by Lemma 5.5, we have∑
n∼N/W̃

h(W̃ ,A)
[y′,y]

(n)≪ N/W̃ .

Bounding the error in (8-5) with the help of this bound and (8-4), we obtain∑
n∼N/W̃

(h(W̃ ,A)
[y′,y]

(n)− 1)F(g(n)0)=

∑
j

∑
n∈Pj

(h(W̃ ,A)
[y′,y]

(n)− 1)F(εj g′(n)γa0)+ O
(

N

W̃ log Q

)
.

Observe that in the argument of F, apart from two constant factors, only the sequence g′ occurs,
which has the property that (g′(n)0)n⩽2N/W̃ is Q−B-equidistributed. We aim to use this equidistribution
property in combination with Proposition 8.8 in order to bound the correlations on the right-hand side
above. For this purpose, we shall now first show that the sequence n 7→ εj g′(n)γa can be reinterpreted as
a polynomial sequence n 7→ g∗(n) that is equidistributed on some filtered nilmanifold H/3. At the same
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time, we show that F(εj g′(n)γa0)= F̃(g∗(n)3) for a Lipschitz function F̃ : H/3→ C. As a second
step, we carry out a reduction that allows us to assume that

∫
H/3 F̃ = 0. And, thirdly and finally, we will

apply Proposition 8.8 and complete the proof. We denote these steps (1)–(3) below.

(1) Define g∗(n) := γ−1
a g′(n)γa . For an application of Proposition 8.8, it is necessary to verify that g∗ is

a polynomial sequence and that it inherits the equidistribution properties of g′. These questions have been
addressed by Green and Tao [2012a, Section 2] and we follow their argument here. Let H = γ−1

a G ′γa

and define H• = γ−1
a (G ′)•γa . Let 3= 0 ∩ H and define F̃ = F̃a, j : H/3→ R via

F̃(x3)= F(εjγax0).

Then g∗
∈ poly(Z, H•), we have F̃(g∗(n)3)= F(εj g′(n)γa0), and the correlation that we seek to bound

takes the form ∑
n∈Pj

(h(W̃ ,A)
[y′,y]

(n)− 1)F̃(g∗(n)3). (8-6)

The “Claim” from the end of [Green and Tao 2012a, Section 2] guarantees the existence of a Malcev
basis Y for H/3 adapted to H• such that each basis element Yi is a QO(1)-rational combination of basis
elements X i from X . Thus, there is C ′

= O(1) such that Y is QC ′

-rational. Furthermore, the “Claim”
implies that there is c′ > 0, depending only on dim G and on the degree d of G•, such that whenever B is
sufficiently large the sequence

(g∗(n)3)n⩽2N/W̃ (8-7)

is totally Q−c′ B+O(1)-equidistributed in H/3, equipped with the metric dY induced by Y . Taking B
sufficiently large, we may assume that the sequence (8-7) is totally M−c′ B/2-equidistributed. Finally,
the “Claim” also provides the bound ∥F̃∥Lip ⩽ QC ′′

∥F∥Lip for some C ′′
= O(1). This shows that all

conditions of Proposition 8.8 are satisfied except for
∫

H/3 F̃ = 0.

(2) Let µ(F̃)=
∫

H/0 F̃ denote the mean value of F̃ and observe that µ(F̃)≪ 1 since F̃ is 1-bounded.
Then

∫
H/0 F = 0 if F := F̃ −µ(F̃) : H/0 → C and∑

n∈Pj

(h(W̃ ,A)
[y′,y]

(n)− 1)F̃(g∗(n)3)=

∑
n∈Pj

(h(W̃ ,A)
[y′,y]

(n)− 1)F(g∗(n)3)+ O
(∣∣∣∣∑

n∈Pj

(h(W̃ ,A)
[y′,y]

(n)− 1)
∣∣∣∣)

=

∑
n∈Pj

(h(W̃ ,A)
[y′,y]

(n)− 1)F(g∗(n)3)+ O
(

|Pj |

logw(N )

)
by Lemma 5.5. We may thus assume that

∫
H/0 F̃ = 0.

(3) By the previous two steps it remains to bound∑
j

∑
n∈Pj

(h(W̃ ,A)
[y′,y]

(n)− 1)F̃(g∗(n)3),

where we may assume that
∫

H/0 F̃ = 0 and that (g∗(n)3)n⩽2N/W̃ is Q−c′ B/2-equidistributed. Since Pj

has common difference q̃ < Q, the bound on the diameter of Pj implies that |Pj | ≫ N/(q̃ QW̃ log Q).
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Note further that Q ≪ QOB,d,dim G(1)
0 ≪ δ(N )−C for some C = OB,d,dim G(1) since Q0 ⩽ δ(N )−1. We may

suppose that N is sufficiently large for C ⩽ (log N )1/4 to hold. Define δ′(N )= δ(N )−C.
We may thus apply Proposition 8.8 with Wq replaced by W̃ q̃ = W (qq̃), with δ replaced by δ′, with

E0 = c′B/2, g = g∗, G/0 = H/3, X = Y , and with N1 ≫ N/(Q log Q) > Nδ′(N )E1/2 (assuming
that E1 > 2, which we may) to deduce that∑

j

∑
n∈Pj

(h(W̃ ,A)
[y′,y]

(n)− 1)F̃(g∗(n)3)≪d

∑
j

(1 + ∥F̃∥Lip)δ
′(N )E1

N

W̃ q̃

≪d (1 + QC ′′

∥F∥Lip)δ
′(N )E1

q̃ QN log Q

W̃ q̃

≪d (1 + ∥F∥Lip)QO(1)δ′(N )E1
N

W̃
≪d (1 + ∥F∥Lip)δ(N )Q0

N

W̃
,

provided that B, and hence E1, is sufficiently large to imply the final bound. This completes the proof of
the deduction of (8-2) and, hence, Theorem 8.3. □

8.2. Sparse families of linear subsequences of equidistributed nilsequences. In Section 9.2 we will
relate our task of bounding the one-parameter correlation (8-3) to that of bounding a bilinear sum. This
reduction naturally leads to the problem of understanding equidistribution properties in families of linear
subsequences of polynomial sequences that arise as follows. Let (g(n)0)n⩽N be a polynomial sequence
and consider the family of sequences

{n 7→ (g(mn)0)n⩽N/m}m∈S([y′,y])∩[M,2M),

where the parameter m ∈ [M, 2M) is further restricted to the sparse set S([y′, y]), yielding a sparse family
of subsequences. Our aim in this subsection is to show that if (g(n)0)n⩽N is δ-equidistributed for a suitable
choice of δ, then almost all sequences in this family are δ1/C -equidistributed. Equidistribution properties
in unrestricted families of linear subsequences have been studied by the first author in [Matthiesen
2018, Section 7]. In this section we show that, thanks to the sparse recurrence result from Section 7,
the unrestricted result [loc. cit., Proposition 7.4] can indeed be extended to the sparse situation where
m ∈ S([y′, y]). Part of this section follows [loc. cit., Section 7] very closely.

The proof of Proposition 8.11 below uses the notion of a horizontal character [Green and Tao 2012b,
Definition 1.5] on a nilmanifold G/0, which is defined to be a continuous additive homomorphism
η : G → R/Z which annihilates 0. The set of horizontal characters may be equipped with a height
function |η| as defined in [loc. cit., Definition 2.6]. This specific height function is called the modulus
of η. All that is relevant to us in the present paper is that there are at most QO(1) horizontal characters
η : G → R/Z of modulus |η| ⩽ Q.

If η : G → R/Z is a horizontal character and g ∈ poly(Z,G•), where G• is a filtration of degree d,
then η ◦ g : Z → R/Z is a polynomial of degree at most d . For an arbitrary polynomial P : Z → R/Z of
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degree at most d , we may define two sets of coefficients, α0, . . . , αd and β0, . . . , βd , in R/Z via

P(n)= α0 +α1

(n
1

)
+ · · · +αd

(n
d

)
= βdnd

+ · · · +β1n +β0.

The smoothness norm [Green and Tao 2012b, Definition 1.5] of P with respect to N is then defined to be

∥P∥C∞[N ] = sup
1⩽ j⩽d

N j
∥α j∥R/Z

and we have

∥P∥C∞[N ] ≪d sup
1⩽ j⩽d

N j
∥β j∥R/Z and sup

1⩽ j⩽d
N j

∥qβ j∥R/Z ≪ ∥P∥C∞[N ]

for some positive integer q ≪d 1 by [loc. cit., Lemma 3.2].
Smoothness norms and horizontal characters allow one to characterise δ-equidistributed polynomial

sequences in the following sense:

Lemma 8.9 [Green and Tao 2012b, Theorem 2.9]. Let mG and d be nonnegative integers, let 0<δ< 1
2 and

let N ⩾ 1. Suppose that G/0 is an mG-dimensional nilmanifold together with a filtration G• of degree d
and that X is a δ−1-rational Malcev basis adapted to G•. Suppose g ∈ poly(Z,G•). If (g(n)0)n⩽N is not
δ-equidistributed, then there exists a nontrivial horizontal character η with 0< |η| ≪ δ−Od,mG (1) such that

∥η ◦ g∥C∞[N ] ≪ δ−Od,mG (1),

where Cd is a sufficiently large constant depending only on d.

In order to pass between the notions of equidistribution and total equidistribution for polynomial
sequences, we shall use the following lemma, which is [Matthiesen 2018, Lemma 7.2].

Lemma 8.10. Let N and A be positive integers and let δ : N →[0, 1] be a function that satisfies δ(x)−t
≪t

x for all t > 0. Suppose that G has a δ(N )−1-rational Malcev basis adapted to the filtration G•. Then there
is 1 ⩽ B ≪d,dim G 1 such that the following holds provided N is sufficiently large. If g ∈ poly(Z,G•) is a
polynomial sequence such that (g(n)0)n⩽N is δ(N )A-equidistributed for some A > B, then (g(n)0)n⩽N

is totally δ(N )A/B-equidistributed.

With these preparations in place, we now turn towards the main result of this section.

Proposition 8.11 (equidistribution in sparse families of linear subsequences). Let N be a large positive
parameter, let d ⩾ 0, and let K ′ > 0 and K > max(2K ′, 2). Suppose that 1 ⩽ y′ ⩽ (log N )K ′

and
(log N )K < y ⩽ Nµ, where µ= µ(d) ∈ (0, 1) is sufficiently small depending on d. Let δ : R>0 → R>0

be a function of N that satisfies log5 N ≪ δ(N )−1 and δ(N )−B
≪B log2 N for all B > 0. Suppose

that (G/0,G•) is a nilmanifold together with a filtration G• of degree d and a δ(N )−1-rational Malcev
basis adapted to it. Let g ∈ poly(Z,G•) be a polynomial sequence and suppose that the finite sequence
(g(n)0)n⩽N is totally δ(N )E1-equidistributed in G/0 for some E1 ⩾ 1. Then there is some c1 ∈ (0, 1)
depending on d and dim G such that the following assertion holds for all integers

M ∈ [N 1/2, N/y1/2
] (8-8)

provided that K is sufficiently large depending on d, and that c1 E1 ⩾ 1.
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Given any sequence (Am)m∈N of integers satisfying |Am |⩽ m, write gm(n) := g(mn + Am) and let BM

denote the set of integers m ∈ [M, 2M)∩ S([y′, y]) for which

(gm(n)0)n⩽N/m

fails to be totally δ(N )c1 E1-equidistributed. Then

#BM ≪9(2M, [y′, y])δ(N )c1 E1 .

Proof. Let M be a fixed integer in the range (8-8) and let c1 > 0 to be determined in the course of
the proof. Suppose that E1 > 1/c1. It follows from Lemma 8.10 that for every m ∈ BM , the sequence
(gm(n)0)n⩽N/m fails to be δ(N )c1 E1 B-equidistributed on G/0 for some 1⩽ B ≪d,dim G 1. By Lemma 8.9,
there is a nontrivial horizontal character ηm : G → R/Z of magnitude |ηm | ≪ δ(N )−Od,dim G(c1 E1) such that

∥ηm ◦ gm∥C∞[N/M] ≪ δ(N )−Od,dim G(c1 E1). (8-9)

For each nontrivial horizontal character η : G → R/Z we define the set

Mη = {m ∈ BM : ηm = η}.

Note that this set is empty unless |η| ≪ δ(N )−Od,dim G(c1 E1). Suppose that

#BM ⩾9(2M, [y′, y])δ(N )c1 E1 .

Since there are only M O(1) horizontal characters of modulus bounded by M, it follows from the pigeonhole
principle that there is some η of modulus |η| ≪ δ(N )−Od,dim G(c1 E1) such that

#Mη ⩾9(2M, [y′, y])δ(N )c1 E1C

for some C ≍d,dim G 1. Suppose

η ◦ g(n)= βdnd
+ · · · +β1n +β0.

Then
η ◦ gm(n)= η ◦ g(mn + Am)= α

(m)
d nd

+ · · · +α
(m)
1 n +α

(m)
0 ,

where

α
(m)
j = m j

d∑
i= j

( i
j

)
Ai− j

m βi (0 ⩽ j ⩽ d). (8-10)

The bound (8-9) on the smoothness norm asserts that

sup
1⩽ j⩽d

N j

M j ∥α
(m)
j ∥ ≪ δ(N )−Od,dim G(c1 E1),

which by downwards induction combined with (8-10) implies

sup
1⩽ j⩽d

N j

M j ∥β j m j
∥ ≪ δ(N )−Od,dim G(c1 E1).

Hence,
∥β j m j

∥ ≪ δ(N )−Od,dim G(c1 E1)(M/N ) j (1 ⩽ j ⩽ d)

for every m ∈ Mη.
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In view of the lower bound on #Mη, we seek to apply Theorem 7.1 with k = j ⩽ d and with
the cut-off parameter N in the theorem replaced by M. Observe that all assumptions in Theorem 7.1
about the relation between the parameters N, y, y′, as well as those on the function δ and the size
of ε are sufficiently flexible to allow for N to be replaced by any M with log M ≍ log N. Note that
N/M > y1/2 ⩾ (log N )K/2

≫ (log M)K/2, which allows us to choose

ε = δ(N )−Od,dim G(c1 E1)(M/N ) j < δ(N )−Od,dim G(c1 E1)y− j/2 < δ(N )−Od,dim G(c1 E1)(log M)− j K/2

and C1 = j K/2 in the application of Theorem 7.1. Our assumptions on δ(N ) imply that ε < δ∗/2 for any
δ∗ of the form δ(N )c1 E1C with C ≍d,dim G 1 as soon as N is sufficiently large. Hence, it follows from
Theorem 7.1 that there exists an integer 1 ⩽ q j ≪ δ(N )−Od,dim G(c1 E1) such that

∥q jβ j∥ ≪ δ(N )−Od,dim G(c1 E1)(M/N )− j M− j
= δ(N )−Od,dim G(c1 E1)N− j .

Thus,
β j =

a j

κ j
+ β̃ j , (8-11)

where κ j | q j , gcd(a j , κ j )= 1 and

0 ⩽ β̃ j ≪ δ(N )−Od,dim G(c1 E1)N− j .

Hence,
∥κ jβ j∥ ≪ δ(N )−Od,dim G(c1 E1)N− j . (8-12)

Let κ = lcm(κ1, . . . , κd) and set η̃ = κη. We proceed in a similar fashion as in [Green and Tao 2012a,
Section 3]: The above implies that

∥η̃ ◦ g(n)∥R/Z ≪ δ(N )−Od,dim G(c1 E1)n/N (n ⩽ N ),

which is small provided n is not too large. Indeed, if N ′
= δ(N )c1 E1C ′′

N for some sufficiently large
constant C ′′ ⩾ 1 depending only on d and dim G, and if n ∈ {1, . . . , N ′

}, then

∥η̃ ◦ g(n)∥R/Z ⩽ 1
10 .

Let χ : R/Z → [−1, 1] be a function of bounded Lipschitz norm that equals 1 on
[
−

1
10 ,

1
10

]
and satisfies∫

R/Z
χ(t) dt = 0. Then, by setting F := χ ◦ η̃, we obtain a Lipschitz function F : G/0 → [−1, 1] that

satisfies
∫

G/0 F = 0 and ∥F∥Lip ≪ δ(N )−Od,dim G(c1 E1). By choosing c1 sufficiently small depending on d
and dim G we may ensure that

∥F∥Lip < δ(N )−E1

and, moreover, that
N ′ > δ(N )E1 N .

This choice of N ′, F and c1 implies that, for all sufficiently large values of N, we have∣∣∣∣ 1
N ′

∑
1⩽n⩽N ′

F(g(n)0)
∣∣∣∣ = 1> δ(N )E1∥F∥Lip,

which contradicts our assumption that (g(n)0)n⩽N is totally δ(N )E1-equidistributed. □
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9. Noncorrelation with equidistributed nilsequences

In this section we prove Proposition 8.8, that is to say we show that the function m 7→ 1S([y′,y])(W̃ m + A′)

and its weighted version m 7→ h(W,A)
[y′,y]

(qm + a) are orthogonal to highly equidistributed nilsequences for
w(N )-smooth values of q and 0 ⩽ a < q .

Both of these functions are W -tricked versions of sparse multiplicative functions. Building on a
Montgomery–Vaughan-type decomposition, which allows one to replace twisted sums of multiplicative
functions by bilinear expressions, it was proved in [Matthiesen 2018] that W -tricked and centralised
versions of “dense” multiplicative functions are orthogonal to nilsequences. We shall show that this
approach can be extended to the sparse setting we are looking at here in order to establish Proposition 8.8.

9.1. Removing the weight. We will prove Proposition 8.8 by a sequence of reductions. Recall that

h(W,A)
[y′,y]

(m)=
φ(W )

W
h[y′,y](W m + A)=

φ(W )

W
Nα(W m + A)1−α

α9(N , [y′, y])
1S([y′,y])(W m + A),

where gcd(A,W ) = 1. Our first step is to remove the weight and reduce the correlation estimate for
h(W,A)

[y′,y]
(qm +a) to one that only involves the characteristic function 1S([y′,y])(W̃ m + A′), where W̃ = Wq

and A′
= Wa + A.

Lemma 9.1 (removing the weight). Let W̃ = Wq and A′
= Wa + A and define for any x ∈ N the quantity

T (x) :=

∑
N/W̃<m⩽x

1S([y′,y])(W̃ m + A′)F(g(m)0).

Then the conclusion (8-3) of Proposition 8.8 holds provided that

T (x)≪d,dim G,∥F∥Lip,E1 δ(N )
E1
9(N , [y′, y])

φ(W̃ )
(9-1)

for all x ∈ (N/W̃ , 2N/W̃ ].

Proof. To start with, recall that

φ(W̃ )−1
= (φ(W )q)−1

∏
p | q,p>w(N )

(1 − p−1)−1
≍ (φ(W )q)−1

by (5-12) and note that
Nα(W̃ m + A′)1−α

αN
≍ 1

for N/W̃ < m < (N + N1)/W̃. With this in mind, partial summation shows that

W̃
N
φ(W )

W

∑
N/W̃<m<(N+N1)/W̃

h[y′,y](W̃ m + A′)F(g(m)0)

=
1

9(N , [y′, y])

W̃φ(W )

W

∑
N/W̃<m<(N+N1)/W̃

Nα(W̃ m + A′)1−α

αN
1S([y′,y])(W̃ m + A′)F(g(m)0)
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≪
|T ((N + N1)/W̃ )|φ(W̃ )

9(N , [y′, y])

+
φ(W̃ )

9(N , [y′, y])

∑
N/W̃<m<(N+N1)/W̃

|T (m)|
α

∣∣∣∣( W̃ (m + 1)+ A′

N

)1−α

−

(
W̃ m + A′

N

)1−α∣∣∣∣
≪

φ(W̃ )

9(N , [y′, y])

{∣∣∣∣T (
N + N1

W̃

)∣∣∣∣ + ∑
N/W̃<m<(N+N1)/W̃

|T (m)|(1 −α)

αN

∣∣∣∣∫ W̃ m+A′

W̃ (m+1)+A′

(N/t)α dt
∣∣∣∣}

≪
φ(W̃ )

9(N , [y′, y])

{∣∣∣∣T (
N + N1

W̃

)∣∣∣∣ + W̃
N

∑
N/W̃<m<(N+N1)/W̃

|T (m)|
}

≪d,dim G,∥F∥Lip,E1 δ(N )
E1,

provided that the stated bounds on T (x) hold. □

9.2. Montgomery–Vaughan-type reduction to a Type II estimate. Our proof strategy for establishing
(9-1) is to employ a Montgomery–Vaughan-type decomposition which replaces the given one-parameter
correlation by a bilinear sum and eventually allows us to reduce (9-1) to a noncorrelation estimate of the
von Mangoldt function with nilsequences. Since the parameter y can be very small and since the correlation
involving the von Mangoldt function will have length yc in the end, this approach requires a careful choice
of the cut-off parameter w(N ) in the W -trick and the parameter δ(N ) that controls the level of equidistri-
bution in the nilsequence to ensure that uniform noncorrelation estimates for the von Mangoldt function,
valid over the whole range produced by the Montgomery–Vaughan decomposition, can be deduced.

Proposition 9.2 (reduction to a bilinear correlation). The bound (9-1) holds for all x ∈ (N/W̃ , 2N/W̃ ]

provided that for any sequence (An)n∈N with |An|⩽ n, for any sequence (A′
n)n∈N of integers 0< A′

n < W̃
coprime to W̃ and for any sufficiently large E0 > 1, we have

1
log N

∣∣∣∣ ∑
1<n⩽N+N1

∑
W̃ m+A′

n∈[y′,y]

N<n(W̃ m+A′
n)⩽N+N1

1S([y′,y])(n)3(W̃ m + A′

n)F(g(mn + An)0)

∣∣∣∣ ≪ δ(N )E1
9(N , [y′, y]))

φ(W )q

for all N1 ∈ (0, N ] and all g ∈ poly(Z,G•) such that (g(n)0)n⩽N is totally δ(N )E0-equidistributed. The
implied constant is allowed to depend on d, dim G, ∥F∥Lip and E1.

Proposition 9.2 will be deduced from the following simple lemma, which is inspired by a bound from
[Montgomery and Vaughan 1977], but does not involve a second moment.

Lemma 9.3. Suppose that f : N → C, let N be a positive parameter and let S (N ) ⊂ [N/2, N ] ∩ N

denote a set. Then ∑
n∈S (N )

f (n)⩽
1

log N

∑
n∈S (N )

| f (n)| +
1

log N

∣∣∣∣ ∑
nm∈S (N )

f (nm)3(m)
∣∣∣∣.
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Proof. This is an immediate consequence of the bound∑
N/2⩽n⩽N

log(N/n) f (n)⩽ log 2
∑

N/2⩽n⩽N

| f (n)|. □

Note that we have

T (x)=

∑
N/W̃<m⩽x

1S([y′,y])(W̃ m + A′)F(g(m)0)=

∑
N<n⩽xW̃

n≡A′ (mod W̃ )

1S([y′,y])(n)F
(

g
(

n − A′

W̃

)
0

)
.

Writing N1 := xW̃ − N ∈ (0, N ] and applying Lemma 9.3 to this expression yields

T (x)≪
1

log N

∣∣∣∣ ∑
N<mn⩽N+N1

mn≡A′ (mod W̃ )

1S([y′,y])(mn)3(m)F
(

g
(

nm−A′

W̃

)
0

)∣∣∣∣+O
(
9(N , [y′, y]; W̃ , A′)

log N

)
. (9-2)

If A′
n ∈ {0, W̃ − 1} is such that n A′

n ≡ A′ (mod W̃ ), we may expand the congruence condition on m and
replace m by W̃ m + A′

n . With this choice of A′
n we have

n(W̃ m + A′
n)− A′

W̃
= nm + An

for some integer An with |An| ⩽ n. Hence the first term in the bound on T (x) may be rewritten as

M (x) :=
1

log N

∣∣∣∣ ∑
1⩽n⩽N+N1

∑
N/n<W̃ m+A′

n⩽(N+N1)/n

1S([y′,y])(n(W̃ m + A′

n))3(W̃ m + A′

n)F(g(nm + An)0)

∣∣∣∣.
The error term in (9-2) is negligible in view of Theorem 5.1, Lemma 3.3 and (3-3), provided that
log−1 N ≪E1 δ(N )

E1 which holds for the choice of δ(N ) for Proposition 8.8. Thus (9-1) holds provided
we can show that, under the assumptions of Proposition 8.8, the bound

M (x)≪d,∥F∥Lip δ(N )
E1
9(N , [y′, y]))

φ(W̃ )
(9-3)

holds for all N1 ∈ (0, N ]. To complete the proof of Proposition 9.2, it remains to show that we can
replace the function 3(m)1S([y′,y])(m) by 3(m)1[y′,y](m) in the condition (9-3). This is the content of
the following lemma.

Lemma 9.4 (removing large prime powers). We have

1
log N

∑
N<nm⩽N+N1

nm≡A′ (mod W̃ )
�(m)⩾2, m>y

1S([y′,y])(nm)3(m)≪B δ(N )B9(N , [y′, y]))

φ(W̃ )
.

Proof. Theorem 5.1 and Lemma 3.4(i) show that the left-hand side above is bounded by

≪
log y
log N

∑
p⩽y

∑
k⩾max(2,(log y)/ log p)

max
(A′′,W̃ )=1

9

(
N
pk , [y′, y]; W̃ , A′′

)

≪
log y
log N

9(N , [y′, y])

φ(W̃ )

∑
p⩽y

∑
k⩾max(2,(log y)/ log p)

p−αk
+ O

(
log y
log N

y2

log y

)
,
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where the error term trivially bounds the contribution of those choices of pk for which N/y < pk <

(N + N1)/y′, i.e., to which Lemma 3.4(i) does not apply. This error term is acceptable since y < N η for
some sufficiently small η > 0. The sum over primes in the main term satisfies∑

p⩽y

∑
k⩾max(2,(log y)/ log p)

p−αk
≪

∑
p⩽y1/2

y−α
+

∑
√

y<p⩽y

p−2α
≪

y1/2−α

log y
+ (y1/2)−2α+1

≪ y−1/2u log u ≪ε

log N
log y

(log N )−K/2+ε
≪B δ(N )B log N

log y

for all B > 0, since α > 1
2 and δ(N )= exp(−C0

√
log4 N ). □

9.3. Explicit bounds for the correlation between 3 and nilsequences. In view of the inner sum in
the bilinear expression in Proposition 9.2, we may reduce the problem of establishing that bound to a
noncorrelation estimate for the von Mangoldt function with equidistributed nilsequences. For this purpose,
we require explicit bounds for correlations of length ξ of the W -tricked von Mangoldt function with
nilsequences. A specific requirement on these bounds is that they work with the same W -trick (determined
by w(N ) and independent of ξ ) and are uniform over a large range of ξ . Taking into account that y can
be as small as (log N )K, we shall prove a result that is applicable to ξ ∈ [log N , N ] if w(N ) is suitably
chosen (see Remarks 9.6(ii) below).

Theorem 9.5. Let N0 > 2 be a large constant and N > N0 a parameter. Let x0, w, δ, κ : N>N0 → R>0

be functions that are defined for all sufficiently large integers and satisfy the relations κ(N ) ⩾ 1,
1 ⩽ w(N ) ⩽ 1

2 log2 x0(N ) and κ(N )2w(N )−1/κ(N )
≪B δ(N )B for all N > N0 and all B ⩾ 1. Suppose

that w(N )→ ∞ as N → ∞.
Suppose that G/0 is a filtered nilmanifold of dimension dim G ⩽ κ(N ) and complexity at most δ(N )−1,

let d ⩾ 0 denote its degree, and let g ∈ poly(Z,G•). Let 1 ⩽ q ⩽ (log x0(N ))E, 1 ⩽ E ≪ 1, be an integer,
let W = P(w(N )) and write W̃ = Wq. If 0< A′ < W̃ is an integer such that (W̃ , A′)= 1, then

W̃
ξ

∑
n⩽ξ/W̃

(
φ(W̃ )

W̃
3(W̃ n + A′)− 1

)
F(g(n)0)≪d,B (1 + ∥F∥Lip)δ(N )B

for all ξ ∈ [x0(N ), N ], all B ⩾ 1, and for all Lipschitz functions F : G/0 → C.

Remarks 9.6. (i) Note that ξ/W̃ = ξ 1+o(1) by the definition of W and the conditions on w(N ), δ(N )
and q. More precisely, we have ξ ⩾ x0(N ), W̃ = Wq, W = exp(w(N )+ o(1)) = (log x0(N ))1/2+o(1),
and q ⩽ (log x0(N ))O(1).

(ii) The choices x0(N ) := log N, w(N ) :=
1
2 log3 N, κ(N ) = (log5 N )C with 1 ⩽ C = O(1) and

δ(N )= exp(−C0
√

log4 N )with 1⩽C0 ⩽ (log4 N )1/4 and N > N0 for sufficiently large N0 are permissible
in the theorem above.

(iii) Observe that the parameter choices in (ii) are consistent with the assumptions of Proposition 8.11 as
well as the assumptions of Theorem 7.1.
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Proof. This proof is a small modification of the proof of [Matthiesen 2018, Lemma 9.5] given in the appen-
dix to that paper. The starting point of that proof is the following decomposition of the von Mangoldt func-
tion as3=3♭+3♯. Let idR(x)= x denote the identity function and let χ ♭+χ ♯= idR be a smooth decom-
position with the property that supp(χ ♯)⊂ (−1, 1) and supp(χ ♭)⊂ R\

[
−

1
2 ,

1
2

]
. Then, for any γ ∈ (0, 1),

φ(W̃ )

W̃
3(W̃ n + A′)− 1 =

φ(W̃ )

W̃
3♭(W̃ n + A′)+

(
φ(W̃ )

W̃
3♯(W̃ n + A′)− 1

)
,

where, see [Green and Tao 2010, (12.2)],

3♯(n)= − log ξγ
∑
d | n

µ(d)χ ♯
(

log d
log ξγ

)
(|t | ⩾ 1 ⇒ χ ♯(t)= 0)

is a truncated divisor sum, where

3♭(n)= − log ξγ
∑
d | n

µ(d)χ ♭
(

log d
log ξγ

) (
|t | ⩽ 1

2 ⇒ χ ♭(t)= 0
)

is an average of µ(d) running over large divisors of n.
It follows as in [Green and Tao 2010, Section 12] and [Matthiesen 2018, Appendix A] from the

orthogonality of the Möbius function with nilsequences that

W̃
ξ

∑
n⩽ξ/W̃

φ(W̃ )

W̃
3♭(W̃ n + A′)F(g(n)0)≪∥F∥Lip,G/0,B (log ξ)−B (B > 0).

Here, it is important that W̃ ⩽ (log x0(N ))O(1) ⩽ (log ξ)O(1).
Concerning the contribution from 3♯, define λ♯ : N → R,

λ♯(n) :=
φ(W̃ )

W̃
3♯(W̃ n + A′)− 1.

Since X is δ(N )−1-rational, [Matthiesen 2018, Lemmas A.2 and A.3] imply that the following bound
holds with m = 2d dim G and for every ε > 0

W̃
ξ

∑
n⩽ξ/W̃

λ♯(n)F(g(n)0)≪ ε(1 + ∥F∥Lip)+ ∥λ♯∥U d+1[ξ/W̃ ]
(m/ε)2mδ(N )−O(m)

≪ ε(1 + ∥F∥Lip)+
m2m

∥λ♯∥U d+1[ξ/W̃ ]

(ε2δ(N )O(1))m
. (9-4)

We shall show below that ∥λ♯∥U d+1[ξ/W̃ ]
≪d w(N )−1/2d+1

. Choosing ε = δ(N )B and recalling the
assumption that κ(N )2w(N )−1/κ(N )

≪B δ(N )B and that m = 2d dim G ⩽ 2dκ(N ), it follows that the
above is bounded by

≪d,B (1 + ∥F∥Lip)δ(N )B
+ δ(N )Od (Bκ(N )) ≪d,B (1 + ∥F∥Lip)δ(N )B,

as required.
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The uniformity norm ∥λ♯∥U d+1[ξ/W̃ ]
, can, as in [Matthiesen 2018, Appendix A], be estimated using

[Green and Tao 2010, Theorem D.3] since w(N )⩽ 1
2 log2 x0(N ) is sufficiently small (see the “important

convention” in [loc. cit., Section 5]). In our case, the system of forms takes the shape

9B(n, h)=
(
W̃ (n + ω · h)+ A′

)
ω∈B

, (n, h) ∈ Z × Zd+1,

where B ⊂ {0, 1}
d+1 is any nonempty subset. The corresponding set P9B of exceptional primes consists

of those primes dividing W̃ = Wq , i.e., |P9B | = π(w(N ))≪ log2 ξ/ logw(N ). We further have∏
p ̸∈P9B

β(B)p = 1 + Od

(
1

w(N )

)
and

∏
p∈P9

β(B)p =

(
W̃

φ(W̃ )

)|B|

.

Provided the constant γ is chosen sufficiently small, it follows from [Green and Tao 2010, Theorem D.3]
applied with Kz = {(n, h) : 0< n + ω · h ⩽ z for all ω ∈ {0, 1}

d+1
}, where z = ξ/W̃, that

∥λ♯∥2d+1

U d+1[z] =
vol(Kz)

zd+2

∑
B⊆{0,1}d+1

(−1)|B|
∏

p ̸∈P9B

β(B)p + Od
(
(log ξγ )−1/20 exp(Od(|P9B |))

)
≪d

vol(Kz)

zd+2

1
w(N )

+ exp
(
−

log2 ξ

20
+ Od

(
log2 ξ

logw(N )

))
≪d

1
w(N )

. □

As it provides a different approach which could prove useful for future generalisations, we include a
second, alternative, proof for the special case of Theorem 9.5 in which q = 1. This proof is based on one
of the main results of [Tao and Teräväinen 2023]. For this proof to work, w(n) needs to be redefined as
w(n)= c′ log3 N for some sufficiently small constant c′ > 0.

Alternative proof for special case of Theorem 9.5. Assume for simplicity the choice of parameters from
Remarks 9.6(ii) except for w(N )= 1

2 log3 N, which we replace by w(n)= c′ log3 N for some small c′> 0.
Further, let q = 1 so that W̃ = W and A′

= A.
Define λW,A = W −1φ(W )3(W · +A)− 1. By the proof of [loc. cit., Corollary 1.5] (see the end of

Section 8 in that paper), we have
∥λW,A∥U k [(ξ−A)/W ] ≪ (log2 ξ)

−c (9-5)

provided that the constant c′ > 0 in the definition of w(N ) is sufficiently small to ensure that the estimate
[loc. cit., (8.19)] holds with W = P(w(N )) and N = x0(N ).

Proceeding as in the proof of Theorem 9.5 above, we use [Matthiesen 2018, Lemmas A.2 and A.3]
which show that the following bound holds with m = 2d dim G and for every ε > 0:

W
ξ

∑
n⩽(ξ−A)/W

λW,A(n)F(g(n)0)≪ ε(1 + ∥F∥Lip)+ ∥λW,A∥U d+1[(ξ−A)/W ](m/ε)
2mδ(N )−O(m).

Choosing ε= δ(N )B and recalling that log2 ξ ≫ log2 x0(N )≫ log3 N, the above is seen to be bounded by

≪d (1 + ∥F∥Lip)δ(N )B
+
κ(N )2(log2 ξ)

−c

δ(N )Od (Bκ(N ))
≪d (1 + ∥F∥Lip)δ(N )B,
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where the constants c and the final implied constant depend on the exponent in the bound (9-5) from [Tao
and Teräväinen 2023, Section 8] as well as on the degree d of the filtration. □

9.4. Conclusion of the proof of Proposition 8.8. In view of the reductions carried out in the previous
subsections it remains to show that the condition of Proposition 9.2 is in fact valid in order to complete
the proof of the equidistributed noncorrelation estimate stated in Proposition 8.8. Hence, the proof of
Proposition 8.8 is complete once we have established the following lemma.

Lemma 9.7. Let E1 ⩾ 1. Under the assumptions of Proposition 8.8 and with the notation W̃ = Wq , we
have

1
log N

∣∣∣∣∑
n⩽N

∑
W̃ m+A′

n∈

[y′,min(y,N/n)]

1S([y′,y])(n)3(W̃ m + A′

n)F(g(mn + An)0)

∣∣∣∣ ≪ δ(N )E1
9(N , [y′, y]))

φ(W̃ )

for all sequences (An)n∈N, (A′
n)n∈N of integers such that |An| ⩽ n and gcd(A′

n, W̃ ) = 1, and for all
g ∈ poly(Z,G•) such that the finite sequence (g(n)0)n⩽N is totally δ(N )E0-equidistributed for some
sufficiently large E0 > 1. The implied constant may depend on the degree d of G•, dim G, ∥F∥Lip and E1.

Proof. Splitting the summation range of the outer sum into three intervals and abbreviating

G(m, n)= 1S([y′,y])(n)3(W̃ m + A′

n)F(g(mn + An)0),

we obtain∑
n⩽N

∑
W̃ m+A′

n∈[y′,min(y,N/n)]

G(m,n)=
∑

n<δ2E1 N/y

∑
y′⩽W̃ m+A′

n⩽y

G(m,n)

+

∑
δ2E1 N/y<n⩽N/y2/3

∑
y′⩽W̃ m+A′

n⩽min(N/n,y)

G(m,n)

+

∑
0⩽k⩽K

∑
N/y2/3<n⩽N/(y′2k)

∑
W̃ m+A′

n∈[y′2k ,min(y′2k+1,N/n)]

G(m,n), (9-6)

where K = ⌈log(y2/3/y′)/ log 2⌉ and in particular y′2K
≍ y2/3.

The decomposition above has been chosen in such a way that the contributions from the initial and final
segment are negligible while in the middle segment the summation range of the inner sum is guaranteed to
be sufficiently long and min(y, N/n) is not too small compared to N/n. More precisely, by Lemma 3.4(i),
the final term is trivially bounded above by∑

0⩽k⩽K

y′2k

φ(W̃ )
9

(
N

y′2k , [y′, y]

)
≪
9(N , [y′, y])

φ(W̃ )

∑
0⩽k⩽K

(y′2k)(1−α)
≪
9(N , [y′, y])

φ(W̃ )
(y′2K )(1−α)

≪ y2(1−α)/39(N , [y′, y])

φ(W̃ )
≪ (log N )2/3

9(N , [y′, y])

φ(W̃ )
,

which is acceptable in view of the (log N )−1 factor in the statement.
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Similarly, the first term is trivially bounded above by
y

φ(W̃ )
9

(
δ(N )2E1

N
y
, [y′, y]

)
≪ δ(N )2E1α y1−α9(N , [y′, y])

φ(W̃ )
≪ (log N )δ(N )E1

9(N , [y′, y])

φ(W̃ )
,

since α > 1
2 , which is also acceptable.

It remains to analyse the middle range and we start by observing that the summation range of the
inner sum over W̃ m + A′

n is always sufficiently long, that is, of length ≫ δ(N )E1m1 if m1 denotes
the upper endpoint of the range. In fact, m1 = min(y, N/n) ⩾ y2/3 > y1/2 > y′, which shows that
|min(y, N/n)− y′

| ∼ min(y, N/n) and moreover y′
= o(δ(N )B min(y, N/n)/φ(W̃ )) for any B ≍ 1.

In order to apply Proposition 8.11 on the equidistribution of linear subsequences of an equidistributed
nilsequence, we dyadically decompose the sum over n in the middle range of (9-6) into O(log N )
intervals (M j , 2M j ], where δ(N )2E1 N/y ⩽ M j < N/y2/3, and one potentially shorter interval. Note that
N 1/2 < N y−2 < Nδ(N )2E1 y−1 ⩽ M j , assuming that η < 1

4 (so that y < N 1/4) and that N is sufficiently
large. For each M j as above consider the sum∑

n∼M j

n⩽N/y2/3

1S([y′,y])(n)
∑

W̃ m+A′
n∈[y′,min(y,N/n)]

3(W̃ m + A′

n)F(g(mn + An)0). (9-7)

Let E2> 1 be a parameter to be chosen later. Then, by Proposition 8.11, all but O(δ(N )E29(M j , [y′, y]))

of the finite sequences
(gn(m)0)m⩽N/n, n ∈ (M j , 2M j ] ∩ S([y′, y]),

where gn(m) := g(mn + An), are totally δ(N )E2-equidistributed in G/0 provided that the parameter
E0 > 1 from our assumptions is sufficiently large. We bound the contribution to (9-7) from all exceptional
values of n ∈ (M j , 2M j ] ∩ S([y′, y]) trivially by

O(δ(N )E29(M j , [y′, y]))
min(y, N/M j )

φ(W̃ )
.

For all other values of n ∈ (M j , 2M j ] ∈ S([y′, y]), we seek to apply Theorem 9.5 with the choice of
parameters given in Remarks 9.6(ii). The lower bound M j ⩾ δ(N )2E1 N/y implies that y ⩾ δ2E1 N/M j ⩾

δE2/2 N/n for all n ∈ (M j , 2M j ] provided that E2>4E1. Thus min(N/n, y)⩾ δE2/2 N/n and the sequence

(gn(m)0)m⩽min(N/n,y)

is totally δE2/2-equidistributed in G/0 whenever n is nonexceptional, and ξ = min(y, N/n) satisfies ξ ∈

[log N , N ]. Finally, the upper bound on y′ implies that, for any B ≍1, y′
=o(δ(N )B min(y,N/M j )/φ(q)).

For nonexceptional n as above, it thus follows from Theorem 9.5, applied with B = E2/4, that

φ(W̃ )

min(y, N/M j )

∑
W̃ m+A′

n∈[y′,min(y,N/n)]

3(W̃ m + A′

n)F(g(mn + An)0)

=

∑
W̃ m+A′

n∈[y′,min(y,N/n)]

F(g(mn + An)0)+ Od,E1,∥F∥Lip(δ(N )
E2/4)≪d,E1,∥F∥Lip δ(N )

E2/4,

where we used that p <w(N ) for every p | q .
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Taking the contributions from both exceptional and nonexceptional n ∈ (M j , 2M j ] ∈ S([y′, y]) into
account, the expression (9-7) is thus bounded by

≪d,E1,∥F∥Lip (δ(N )
E2/4 + δ(N )E1)min(y, N/M j )

9(M j , [y′, y])

φ(W̃ )
.

Summing over all j , the contribution of the middle segment to (9-6) is therefore bounded above by

≪d,E1,∥F∥Lip (δ(N )
E2/4 + δ(N )E1)

∑
j

min(y, N/M j )
9(M j , [y′, y])

φ(W̃ )

≪d,E1,∥F∥Lip

δ(N )E1

φ(W̃ )

∑
j

∑
n∼M j

1S([y′,y])(n)min(y, N/n). (9-8)

We shall now make use of the fact that the inner sum in the middle range is guaranteed to be sufficiently
long in order to deduce that we make an δ(N )E1-saving on average on each inner sum provided E0 and,
hence, E2 are sufficiently large. Reversing the steps in the Montgomery–Vaughan-type decomposition
will then complete the proof.

Turning towards the details, recall that for any n ∼ M j the interval [y′,min(y, N/n)] has length
|min(y, N/n)− y′

| ∼ min(y, N/n), so that

min(y, N/n)≪ |min(y, N/n)− y′
| ≪

∑
y′⩽m⩽min(y,N/n)

3(m) (n ∼ M j ),

by the prime number theorem. By combining this estimate with the bound (9-8), the contribution of the
middle segment to (9-6) is seen to be bounded above by

≪
δ(N )E1

φ(W̃ )

∑
j

∑
n∼M j

1S([y′,y])(n)min(y, N/n)

≪
δ(N )E1

φ(W̃ )

∑
j

∑
n∼M j

1S([y′,y])(n)
∑

y′⩽m⩽min(y,N/n)

3(m)1S([y′,y])(m)

≪
δ(N )E1

φ(W̃ )

∑
δ(N )2E1 N/y⩽n<2N/y2/3

∑
y′⩽m⩽min(y,N/n)

3(m)1S([y′,y])(mn)

≪
δ(N )E1

φ(W̃ )

∑
n<2N

1S([y′,y])(n) log n ≪ (log N )δ(N )E1
9(N , [y′, y])

φ(W̃ )
,

provided that E0 is sufficiently large (to ensure that E2 > 4E1), and where the implied constant may
depend on d , dim G, E1 and ∥F∥Lip. The lemma follows when taking into account the (log N )−1-factor
in the statement. □

10. The proof of Theorem 1.3

We will use the transferred generalised von Neumann theorem [Green and Tao 2010, Proposition 7.1]
combined with a simple majorising function in order deduce Theorem 1.3 from Theorem 1.1. There are
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two choices of majorants for h[y′,y] readily available in the case where y ⩾ N ε for any fixed ε ∈ (0, 1).
These can still be used for somewhat smaller values of y. We state both majorant constructions below.

10.1. GPY-type sieve majorant. Consider the following GPY-type sieve majorant for numbers free from
prime factors p < y′:

3χ,y′(n)= log y′

(∑
d | n

µ(d)χ
(

log d
log y′

))2

,

where χ : R → R⩾0 is a smooth function with support in [−1, 1] which takes the value χ(x)= 1 for all
x ∈

[
−

1
2 ,

1
2

]
. In particular,

3χ,y′(n)= log y′

(∑
d | n
d⩽y′

µ(d)χ
(

log d
log y′

))2

,

which implies that 3χ,y′(n) = log y′ for all integers n that are free from prime factors p ⩽ y′. Since
α = 1 − O((ε log N )−1 log2 N ) for y = N ε, Lemma 3.2 shows that ζ(α, y)≍ log y ≍ log N and gP(y′) ≍

(log y′)−1. Thus, by (3-3) and Lemma 3.3, we have

h[y′,N ε](n)⩽
(N/n)αn

9(N , [y′, N ε])
≪

N log N
NgP(y′)(α)ζ(α, N ε)

≪ log y′.

This shows that
h[y′,N ε](n)≪3χ,y′(n) (N < n ⩽ 2N ).

Hence, 3χ,y′(n) satisfies the majorisation property (1) from above. It follows from [Green and Tao 2010,
Theorem D.3] that the W -tricked version of 3χ,y′(n) satisfies the linear forms condition as stated in
[loc. cit., Definition 6.2]. We omit the proof here as it is essentially contained in [loc. cit., Appendix D]
and only mention that it relies on the fact that 3χ,y′ carries the structure of a truncate divisor sum.

10.2. The normalised characteristic function 1S([ y′,N]). An alternative majorant function in the dense
setting is given by the function

ν(n)=
P(y′)

φ(P(y′))
1S([y′,2N ])(n) (n ⩽ 2N ).

Since
1S([y′,2N ])(n)= 1(n,P(y′))=1(n)

for n ⩽ 2N, this function corresponds to the Cramér model for the von Mangoldt function that was studied
in [Tao and Teräväinen 2023]: we have

ν(n)=3Cramér,y′(n) :=
P(y′)

φ(P(y′))
1(n,P(y′))=1(n)

for all n ⩽ 2N.

Lemma 10.1. Let ε ∈ (0, 1). Then we have

h[y′,y](n)≪3Cramér,y′(n)

uniformly for all y > N ε, all n ∈ (N , 2N ] and all sufficiently large N.
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Proof. Since 1(n,P(y′))=1 = 1S([y′,2N ])(n) for n ⩽ 2N, it remains to note that

h[y′,y](n)⩽
n(N/n)α

9(N , [y′, N ε])
≪

N log N
NgP(y′)(α)ζ(α, N ε)

≪ log y′
≍

P(y′)

φ(P(y′))
,

when n ∼ N and y > N ε. □

Let 2 < w(N ) < y′
= (log N )K ′

, W = P(w(N )), 0 < A < W and (A,W ) = 1. Then, by [Tao and
Teräväinen 2023, Corollary 5.3], we have∥∥∥∥φ(W )

W
ν(W · +A)− 1

∥∥∥∥
U k[ N−A

W ]

≪k w(N )−c (10-1)

for some constant c>0. We observe that, using3χ,y′(n) as a majorant for ν, it follows from this uniformity
norm estimate and the generalised von Neumann theorem [Green and Tao 2010, Proposition 7.1] that the
W -tricked version of ν satisfies the linear forms condition from [Green and Tao 2008, Definition 6.2].

10.3. Proof of Theorem 1.3. Let y0 ⩽ y ⩽ N η, where η ∈ (0, 1) is sufficiently small depending on d and
y0 will be determined in the course of the proof, and letw(N )⩽ y′ ⩽ (log N )K ′

for some fixed K ′ ⩾ 1. The
transferred version of the quantitative inverse theorem for U k-norms of [Manners 2018] proved in [Tao and
Teräväinen 2023, Theorem 8.3] allows us to deduce explicit U k-norm estimates from Theorem 1.3, which
we will later combine with the transferred generalised von Neumann theorem [Green and Tao 2010, Propo-
sition 7.1]. More precisely, Theorem 1.1 implies that if 9(N , [y′, y])P(y′)/(Nφ(P(y′)))⩾ (log4 N )−1/2,
then ∣∣∣∣W

N

∑
N/W<n⩽2N/W

(g(W,A)
[y′,y]

(n)− 1)F(g(n)0)
∣∣∣∣ ≪ (1 + ∥F∥Lip)(log4 N )−1

≪
1 + ∥F∥Lip√

log4 N

Nφ(P(y′))

9(N , [y′, y])P(y′)

for all filtered nilmanifolds of dimension O((log5 N )O(1)) and complexity Q0 that is bounded by

Q0 < exp
( 1

2

√
log4 N

)
,

and all nilsequences attached to it. Observe that

(log4 N )−1/2
= o(exp(− exp(C1/δ̃

C2)))

and
exp exp(C1/δ̃

C2)= o
(
exp

( 1
2

√
log4 N

))
for all constants C1,C2 > 1 if δ̃ = 1/ log7 N. Note further that the function from Section 10.2 may be
used as a trivial majorising function for the following rescaled version of g(W,A)

[y′,y]
(n), which essentially

corresponds to 1S([y′,y])(n). We have

P(y′)

φ(P(y′))

9(N , [y′, y])

N
g(W,A)

[y′,y]
(n)≪ ν(n) (n ⩽ (N − A)/W ).

By (10-1), we have
∥ν− 1∥U k [(N−A)/W ] ≪k (log3 N )−c

≪B δ̃
B
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for all B ⩾ 1. Hence the transferred quantitative U k inverse theorem of [Manners 2018], as stated in [Tao
and Teräväinen 2023, Theorem 8.3], implies that uniformly for all 0< A < W with (W, A)= 1 we have

∥g(W,A)
[y′,y]

− 1∥U k([(N−A)/W ]) ≪
δ̃Nφ(P(y′))

9(N , [y′, y])P(y′)
,

which is small compared to the mean value 1 of g(W,A)
[y′,y]

provided that

9(N , [y′, y])P(y′)/(Nφ(P(y′)))= o(log7 N ).

In order to apply the generalised von Neumann theorem [Green and Tao 2010, Proposition 7.1] in our
situation, observe that the o(1) error term in [loc. cit., Proposition 7.1′] corresponds to the error term in
the (D, D, D)-linear forms condition for ν. It follows from [Tao and Teräväinen 2023, Proposition 5.2]
that any function of the form

ν̃(n)=
1
t

t∑
i=1

φ(W )

W
ν(N )(W n + Ai ),

with 0< Ai < W, gcd(Ai ,W )= 1 for all 1 ⩽ i ⩽ t , satisfies the (D, D, D)-linear forms condition from
[Green and Tao 2010, Definition 6.2] for any given D = Or,s,L(1) with an error term of the form

w(N )−c
= (log3 N )−c.

Applying [loc. cit., Proposition 7.1] with

fi (n)=
P(y′)

φ(P(y′))

9(N , [y′, y])

N
g(W,A)

[y′,y]
(n)

and with ν̃ as above, we obtain∑
n∈Zs∩(NK)/W

r∏
j=1

g[y′,y](Wψ j (n)+ A j )=

(
W

φ(W )

)r{ N s volK
W s + os,r,∥9∥

((
N
W

)s )}
provided that

∥g(W,A)
[y′,y]

− 1∥U k([(N−A)/W ]) = o
((
9(N , [y′, y])P(y′)

Nφ(P(y′))

)r−1)
for k = Or,s(1), as well as

w(N )−c
= (linear forms condition error term)= o

((
9(N , [y′, y])P(y′)

Nφ(P(y′))

)r )
.

These conditions are certainly satisfied if

9(N , [y′, y])P(y′)

Nφ(P(y′))
≫ (log8 N )−1.

Since
9(N , [y′, y])P(y′)

Nφ(P(y′))
≍
9(N , y)

N

∏
p⩽y′

1 − p−α(N ,y)

1 − p−1 ⩽
9(N , y)

N
= u−u+o(u)
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by Lemma 3.3, it follows that N−19(N , y)≫ (log8 N )−1. Let y0 be such that

9(N , y0)

N
= (log8 N )−1

and write u0 = (log N )/ log y0. Then

log N
log y0

= u0 < uu0+o(u0)
0 = log8 N

and, if y > y0, then

1 −α(N , y)≪
log(u0 log(u0 + 2))

log y0
≪
(log8 N )2

log N
.

Hence, the first part of Lemma 3.2 applies to gP(y′)(α(N , y)) and yields

gP(y′)(α(N , y))≍
1

log y′
≍
φ(P(y′))

P(y′)

for y ⩾ y0 and y′
= (log N )K ′

. Thus

9(N , [y′, y])P(y′)

Nφ(P(y′))
≍
9(N , y)

N
≫ (log8 N )−1

for y ⩾ y0. From
exp(u2

0) > uu0+o(u0)
0 = log8 N ,

which holds for sufficiently large N, we deduce that y0 < N 1/
√

log9 N.
Suppose now that y0 ⩽ y ⩽ N η. Then we obtain∑

n∈Zs∩NK

r∏
j=1

g[y′,y](ψ j (n)+ a j )

=

∑
A∈{0,...,W−1}

s

∑
W n+A

∈Zs
∩NK

r∏
j=1

g[y′,y](ψ j (W n + A)+ a j )

=

∑
A∈{0,...,W−1}

s

∑
n∈Zs∩(NK−A)/W

r∏
j=1

g[y′,y](Wψ j (n)+ψ j (A)+ a j )

=

(
W

φ(W )

)r{ N s volK
W s + os,r,∥9∥

((
N
W

)s )} ∑
A∈{0,...,W−1}

s

r∏
j=1

1gcd(W,ψ j (A)+a j )=1

= {N s volK+ os,r,∥9∥(N s)}
∏

p<w(N )

βp,

where

βp =
1
ps

∑
u∈(Z/pZ)s

r∏
j=1

p
p − 1

1ψ j (u)+a j ̸≡0 (mod p).

Theorem 1.3 now follows on recalling7 from [Green and Tao 2010, Lemma 1.3] that the condition that the
forms ψi be pairwise linearly independent over Q implies βp = 1+ Os,r,L(p−2) for all primes p>w(N ).

7Observe that our local factors are identical to those defined in [Green and Tao 2010, (1.6)]
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Stacked pseudo-convergent sequences
and polynomial Dedekind domains

Giulio Peruginelli

To the memory of my mother

Let p ∈ Z be a prime, Qp a fixed algebraic closure of the field of p-adic numbers and Zp the absolute
integral closure of the ring of p-adic integers. Given a residually algebraic torsion extension W of Z(p)

to Q(X), by Kaplansky’s characterization of immediate extensions of valued fields, there exists a
pseudo-convergent sequence of transcendental type E = {sn}n∈N ⊂ Qp such that

W = Z(p),E = {φ ∈ Q(X) | φ(sn) ∈ Zp for all sufficiently large n ∈ N}.

We show here that we may assume that E is stacked, in the sense that, for each n ∈ N, the residue
field (resp. the value group) of Zp ∩ Qp(sn) is contained in the residue field (resp. the value group) of
Zp ∩ Qp(sn+1); this property of E allows us to describe the residue field and value group of W . In
particular, if W is a DVR, then there exists α in the completion Cp of Qp, α transcendental over Q,
such that W = Z(p),α = {φ ∈ Q(X) | φ(α) ∈ Op}, where Op is the unique local ring of Cp; α belongs
to Qp if and only if the residue field extension W/M ⊇ Z/pZ is finite. As an application, we provide a
full characterization of the Dedekind domains between Z[X ] and Q[X ].

Introduction

The problem of characterizing the set of the extensions of a valuation domain V with quotient field
K to the field of rational functions K (X) has a long and rich tradition (for example, see [Alexandru
and Popescu 1988; Alexandru et al. 1988; 1990a; 1990b; Kaplansky 1942; Matignon and Ohm 1988;
Peruginelli 2017; Peruginelli and Spirito 2020; 2021]). One recent direction of research is to describe
these extensions by means of pseudo-monotone sequences of K [Peruginelli and Spirito 2021] in the
original spirit of Ostrowski [1935a; 1935b], who introduced the well-known notion of pseudo-convergent
sequence, later expanded by Kaplansky [1942] to study immediate extensions of valued fields.

Here, given a prime p ∈ Z and the DVR Z(p) of Q, we are interested in describing residually algebraic
torsion extensions of Z(p) to Q(X), that is, valuation domains W of Q(X) lying above Z(p) such that the
residue field extension W/M ⊇ Z/pZ is algebraic and the value group 0w of the associated valuation w
to W is contained in the divisible hull of the value group of Z(p) (i.e., the rationals). These valuation
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domains arise naturally as overrings of rings of integer-valued polynomials and Dedekind domains
between Z[X ] and Q[X ] [Eakin and Heinzer 1973; Peruginelli 2023] and also in the description of
closed subfields of Cp [Ioviţă and Zaharescu 1995], the completion of an algebraic closure Qp of the
field of p-adic numbers Qp. In the case when W is a DVR and the residue field extension is finite, by
[Peruginelli 2017, Theorem 2.5 & Proposition 2.2], there exists an element α in Qp, transcendental
over Q, such that W = Z(p),α = {φ ∈ Q(X) | φ(α) ∈ Zp}, where Zp is the absolute integral closure of Zp

(i.e., the integral closure of Zp in Qp; note that Zp is the valuation domain of the unique extension of vp

to Qp). In general, given a residually algebraic torsion extension W of Z(p) to Q(X), there exists a
pseudo-convergent sequence E = {sn}n∈N in Qp such that

W = Z(p),E = {φ ∈ Q(X) | φ(sn) ∈ Zp for all sufficiently large n ∈ N}

(Proposition 2.24). One of the main results of this paper is to show that we may assume that E is
stacked (in a sense we make clear in Section 2; see Theorem 2.5). In particular, if W is a DVR of Q(X)
extending Z(p) such that the extension of the residue fields is infinite algebraic, then there exists α in
Cp \Qp such that W = Z(p),α = {φ ∈ Q(X) | φ(α)∈ Op}, where Op is the completion of Zp (equivalently,
Op is the valuation domain of the unique extension of vp to Cp; see Corollary 2.28). Necessarily, the
(transcendental) extension Qp(α)/Qp has finite ramification.

It is worth recalling that in [Alexandru et al. 1990a, §5.1, & Theorem 5.1] a residually algebraic
torsion extension W of Z(p) to Q(X) is realized as the limit of a sequence of residually transcendental
extensions Wn of Z(p) to Q(X) (i.e., the residue field extension of Wn over Z(p) is transcendental);
moreover, for each n ∈ N, Wn is defined by a minimal pair (sn, δn) (as explained in [Alexandru et al.
1990a, p. 282]; for the definition of minimal pair see Section 1.2). Here, W is realized as the valuation
domain Z(p),E , where, for each n ∈ N, (sn, δn = vp(sn+1 − sn)) is a minimal pair.

The motivations behind these results are based on [Alexandru et al. 1998], in which the authors study
closed subfields of Cp and show that any transcendental element of Cp is the limit of a particular kind of
Cauchy sequence in Qp called distinguished [Alexandru et al. 1998, Proposition 2.2], which allows them
to associate to such an element a set of invariants [Alexandru et al. 1998, Remark 2.4]. The notion of
a stacked sequence that we introduce in this paper is a generalization of the notion of a distinguished
sequence and falls into the well-known class of pseudo-convergent sequences. It allows us to describe
the whole class of residually algebraic torsion extensions of Z(p) to Q(X), which strictly comprise the
valuation domains Z(p),α arising from elements α ∈ Cp \ Qp.

As an application of the above results, we are able to complete the classification of the family of
Dedekind domains R between Z[X ] and Q[X ] started in [Peruginelli 2023]. In that paper we described the
Dedekind domains of this family whose residue fields of prime characteristic are finite fields [Peruginelli
2023, Theorem 2.17]; the description is obtained by means of the notion of rings of integer-valued
polynomials over algebras. We also showed that, given a group G which is the direct sum of a countable
family of finitely generated abelian groups, there exists a Dedekind domain R with finite residue fields of
prime characteristic, Z[X ] ⊂ R ⊆ Q[X ], with class group G [Peruginelli 2023, Theorem 3.1].
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The paper is organized as follows. In Section 1 we recall the relevant notions we need in our paper: First,
we review the definition of a pseudo-convergent sequence of a valued field K and the valuation domain
of K (X) associated to such a sequence in the spirit of Ostrowski [1935a; 1935b], as developed recently
in [Peruginelli and Spirito 2020; 2021]. Then, we recall the notion of a distinguished pair introduced
in [Popescu and Zaharescu 1995], which later was used in [Alexandru et al. 1998] to describe closed
subfields of Cp in terms of a specific kind of pseudo-convergent Cauchy sequence called distinguished.

In Section 2, we introduce the notion of a stacked sequence E = {sn}n∈N in Qp, which turns out to be
a pseudo-convergent sequence of transcendental type such that, for each n ∈ N, the value group (resp. the
residue field) of Zp ∩ Qp(sn) is contained in the value group (resp. the residue field) of Zp ∩ Qp(sn+1).
By Theorem 2.5, every residually algebraic extension W of Zp to Qp(X) can be realized by means of a
stacked sequence E ⊂ Qp, that is,

W = Zp,E = {φ ∈ Qp(X) | φ(sn) ∈ Zp for all sufficiently large n ∈ N}.

Moreover, the above specific property of stacked sequences is crucial for the description of the residue field
and value group of W as the union of the ascending chain of residue fields and value groups of Zp∩Qp(sn),
respectively (Proposition 2.7). We mentioned above that the elements α ∈ Cp \Qp such that the extension
Qp(α)/Qp has finite ramification give raise to DVRs of Q(X); we characterize such elements as the limits
of sequences contained in the maximal unramified extension of a finite extension of Qp (Proposition 2.20).
We close this section by pointing out an incorrect statement in [Ioviţă and Zaharescu 1995], namely, that
the completion of Qp(X) with respect to a residually algebraic torsion extension W of Zp is a subfield
of Cp; this is not true in general and it depends on whether the above sequence E is Cauchy or not. In
Section 2.3, we use the result of Section 2.1 about residually algebraic torsion extensions of Zp to Qp(X)
to characterize the analogous extensions of Z(p) to Q(X) (Proposition 2.24). In Theorem 2.26, we show
that, for any prescribed algebraic extension k of Fp and value group 0, Z ⊆ 0 ⊆ Q, there exists α ∈ Cp,
transcendental over Q, such that Z(p),α has residue field k and value group 0.

Finally, in Section 3 we provide the aforementioned classification of the Dedekind domains between
Z[X ] and Q[X ] by means of the notion of the ring of integer-valued polynomials over an algebra: given
such a domain R, we show that, for each prime p ∈ Z, there exists a finite set E p ⊂ Cp of transcendental
elements over Q such that R = { f ∈ Q[X ] | f (E p)⊆ Op,∀p ∈ P} (Theorem 3.4).

1. Preliminaries

We refer to [Bourbaki 1985a; Engler and Prestel 2005; Ribenboim 1968; Zariski and Samuel 1960]
for generalities about valuation theory. A valuation domain W of the field of rational functions K (X)
is an extension of a valuation domain V of K if W ∩ K = V . We denote by w a valuation associated
to W , by 0w the value group of w and by kw the residue field of W . We recall that an extension W of V
to K (X) is called residually algebraic if the residue field extension is algebraic, and it is called torsion
if 0w is contained in the divisible hull of the value group 0v of V ; see [Alexandru et al. 1990a]. Given a
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valuation domain W with quotient field F , a subfield K of F and the valuation domain V = W ∩ K , we
say that W is an immediate extension of V (or simply immediate over V ) if the value groups (resp. the
residue fields) of V and W are the same. Given a field K with a valuation domain V , we denote by K̂
(resp. V̂ ) the completion of K (resp. V ) with respect to V -adic topology.

1.1. Pseudo-convergent sequences. The following basic material about pseudo-convergent sequences
can be found for example in [Kaplansky 1942; Peruginelli and Spirito 2020; 2021].

Given a valued field (K , v), a sequence E = {sn}n∈N ⊂ K is said to be pseudo-convergent if, for all
n < m < k, we have

v(sn − sm) < v(sm − sk).

In particular, for all n and m>n, we have v(sn−sm)=v(sn−sn+1). For each n ∈N, we set δn =v(sn−sn+1).
The strictly increasing sequence {δn}n∈N of the value group 0v of v is called the gauge of E . The
sequence E is a classical Cauchy sequence in K if and only if the gauge of E is cofinal in 0v. In this
case, E converges to a unique limit α ∈ K̂ . In general, if E = {sn}n∈N ⊂ K is a pseudo-convergent
sequence, we say that an element α ∈ K is a pseudo-limit of E if v(sn −α) is a strictly increasing sequence.
Equivalently, v(sn −α)= δn for each n ∈ N. The set of pseudo-limits LE in K of a pseudo-convergent
sequence E is equal to LE = α+ Br(E) [Kaplansky 1942, Lemma 3], where

Br(E)= {x ∈ K | v(x) > δn,∀n ∈ N}

is a fractional ideal, called the breadth ideal of E . Clearly, E is a Cauchy sequence if and only if
Br(E)= {0}.

As in [Kaplansky 1942, Definitions, p. 306], a pseudo-convergent sequence E = {sn}n∈N ⊂ K is of
transcendental type if, for all f ∈ K [X ], v( f (sn)) is eventually constant. Otherwise, E is said to be of
algebraic type if v( f (sn)) is eventually strictly increasing for some f ∈ K [X ]. The sequence E is of
algebraic type if and only if, for some extension u of v to the algebraic closure K of K , there exists
α ∈ K which is a pseudo-limit of E with respect to u. If F is a subfield of K , then we say that E
is of transcendental type over F if, for all f ∈ F[X ], v( f (sn)) is eventually constant. Almost all the
pseudo-convergent sequences considered in this paper in order to describe residually algebraic torsion
extensions to the field of rational functions are of transcendental type.

Given a pseudo-convergent sequence E = {sn}n∈N ⊂ K , the following is a valuation domain of K (X)
extending V associated to E [Peruginelli and Spirito 2020, Theorem 3.8]:

VE = {φ ∈ K (X) | φ(sn) ∈ V for all sufficiently large n ∈ N}.

Moreover, by the same theorem, X is a pseudo-limit of E with respect to the valuation vE associated
to VE , so, in particular, vE(X − sn)= δn for every n ∈ N. Also, if E is of transcendental type, then, for
all f ∈ K [X ], we have vE( f )= v( f (sn)) for all n sufficiently large; see [Kaplansky 1942, Theorem 2]
or [Peruginelli and Spirito 2020, Theorem 4.9, (a)].
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In the case that E is a Cauchy sequence converging to α ∈ K̂ , we have

VE = Vα = {φ ∈ K (X) | φ(α) ∈ V̂ };

see [Peruginelli and Spirito 2020, Remark 3.10].
Given two pseudo-convergent sequences E = {sn}n∈N, E ′

= {s ′
n}n∈N ⊂ K , we say that E and E ′ are

equivalent if Br(E)= Br(E ′) and, for each k ∈ N, there exist i0, j0 ∈ N such that v(si −s ′

j ) > v(sk+1 −sk)

for each i ≥ i0 and j ≥ j0; see [Peruginelli and Spirito 2020, §5]. By Proposition 5.3 in that work,
E and E ′ are equivalent if and only if VE = VE ′ .

1.2. Distinguished pairs. We suppose in this section that (K , v) is a complete valued field, where v is a
rank-1 discrete valuation (so, in particular, (K , v) is Henselian). Let K be a fixed algebraic closure, and
let v denote the unique extension of v to K . Let also 0v̄ = 0v ⊗ Q be the divisible hull of 0v . Given an
element a ∈ K , let Oa , ka and 0a be the valuation domain of the restriction of v to K (a), the residue
field of Oa and the value group of Oa , respectively.

As in [Khanduja and Saha 1999], given a ∈ K \ K , we set

δK (a)= sup{v(a − c) | c ∈ K , [K (c) : K ]< [K (a) : K ]},

ωK (a)= sup{v(a − a′) | a′
̸= a runs over the K -conjugates of a}.

The following is the well-known Krasner’s lemma. Essentially, given a separable element a ∈ K , if
another element b ∈ K is closer to a than to any of its other conjugates, then K (a) is a subfield of K (b).

Lemma 1.1 (Krasner). If a ∈ K sep and b ∈ K are such that v(a − b) > ωK (a), then K (a)⊆ K (b).

In particular, for every a ∈ K sep, we have δK (a) ≤ ωK (a). Moreover, it follows also that δK (a) is a
maximum, since v is supposed to be discrete. This is known (see, for example, [Popescu and Zaharescu
1995, p. 105]), but for the sake of the reader we give a short proof.

Lemma 1.2. In the above setting,

δK (a)= max{v(a − c) | c ∈ K , [K (c) : K ]< [K (a) : K ]}.

Proof. By Krasner’s lemma, for each of the relevant c we have v(a−c)≤ωK (a). Note that the ramification
index of K (a, c) over K is (strictly) bounded by [K (a) : K ]

2. In particular, since the value v(a − c)
belongs to 0a−c, it follows that there exists N ∈ N, independent from each of the above c, such that
Nv(a − c) ∈ 0v ∼= Z. Hence the set

{v(a − c) | c ∈ K , [K (c) : K ]< [K (a) : K ]}

(which is a subset of 0v̄) is bounded from above and its elements have bounded torsion. It follows that
this set has a maximum, which is equal to δK (a) by its very definition. □

Similar to Krasner’s lemma, we have the following fundamental principle (see [Khanduja and Saha
1999, Theorem 1.1]), first discovered in [Popescu and Zaharescu 1995].
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Theorem 1.3. Suppose that a, b ∈ K are such that v(a − b) > δK (b). Then:

(i) 0b ⊆ 0a .

(ii) kb ⊆ ka .

(iii) [K (b) : K ] | [K (a) : K ].

Next, we recall the definition of a distinguished pair introduced in [Popescu and Zaharescu 1995, p. 105].

Definition 1.4. A pair of elements (b, a) ∈ K 2 is said to be distinguished if the following hold:

(i) [K (b) : K ]< [K (a) : K ].

(ii) For all c ∈ K such that [K (c) : K ]< [K (a) : K ], we have v(a − c)≤ v(a − b).

(iii) For all c ∈ K such that [K (c) : K ]< [K (b) : K ], we have v(a − c) < v(a − b).

Part of the definition of a distinguished pair is related to the notion of a minimal pair, which we now
recall (see, for example, [Alexandru et al. 1988; 1990a; 1990b]).

Definition 1.5. Let (a, δ) ∈ K ×0v̄. We say that (a, δ) is a minimal pair if, for every c ∈ K such that
[K (c) : K ]< [K (a) : K ], we have v(a − c) < δ.

In other words, (a, δ) is a minimal pair if, for every b ∈ B(a, δ) = {x ∈ K | v(a − x) ≥ δ}, we have
[K (b) : K ] ≥ [K (a) : K ] (i.e., a is a “center” of the ball B(a, δ) of minimal degree). By Lemma 1.2,
(a, δ) is a minimal pair if and only if δ > δK (a). In particular, if δ > ωK (a), then (a, δ) is a minimal pair.

Remarks 1.6. Let (b, a) be a distinguished pair.

(1) Note that conditions (i) and (ii) above imply that v(a−b)=δK (a). In fact, by (i) and (ii), it immediately
follows that the inequality “≤” holds. Conversely, by (ii) we also have that v(a − b)≥ v(a − c) for all c
such that [K (c) : K ]< [K (a) : K ]; that is, v(a − b)≥ δK (a).

(2) Note that (iii) is equivalent to the following:

(iii′) For all c ∈ K such that [K (c) : K ]< [K (b) : K ], we have v(b − c) < v(a − b).

This precisely says that (b, v(a − b)) is a minimal pair with respect to K . In fact, if (iii) holds and c ∈ K
is such that [K (c) : K ]< [K (b) : K ], then v(b − c)= v(b − a + a − c)= v(a − c) < v(a − b). Similarly,
(iii′) implies (iii). Note also that (iii′) is equivalent to

v(a − b) > δK (b).

In particular, by the above theorem, 0b ⊆ 0a , kb ⊆ ka and [K (b) : K ] | [K (a) : K ].

(3) Finally, note also that δK (b) < δK (a).
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2. Stacked pseudo-convergent sequences of Q p

Let P⊂Z be the set of prime numbers, and let p ∈P be a fixed prime. We let Z(p) be the localization of Z at
the prime ideal pZ, Zp the ring of p-adic integers and Qp its field of fractions, the field of p-adic numbers.
If vp denotes the usual p-adic valuation, then Zp (resp. Qp) is the completion of Z (resp. Q) with respect
to the p-adic valuation. We denote by Qp a fixed algebraic closure of Qp and still denote the unique
extension of vp to Qp by vp. Note that Qp is a rank-1 nondiscrete valued field with valuation domain
denoted by Zp, the integral closure of Zp in Qp. We will use the well-known fact that Qp has only finitely
many extensions of a given degree; see, for example, [Narkiewicz 2004, Corollary 2, Chapter V, p. 202].

Finally, we let Cp be the completion of Qp with respect to the p-adic valuation, and we denote by Op

the completion of Zp; vp still denotes the unique extension of vp to Cp. For α ∈ Qp \ Qp, we write the
abbreviations δQp(α)= δ(α) and ωQp(α)=ω(α). For α ∈ Cp, we denote by eα (resp. fα) the ramification
index (resp. the residue field degree) of Qp(α) over Qp. Clearly, if α ∈ Qp, then eα · fα <∞; we show
that the converse holds in Remark 2.15. Note that each element of Cp \Qp is transcendental over Qp; we
call such elements simply transcendental. For a transcendental element α ∈ Cp, even if eα · fα = ∞, we
will show in Theorem 2.21 that either one of eα or fα can be finite.

2.1. Residually algebraic torsion extensions of Z p. In this section we describe residually algebraic
torsion extensions of Zp to Qp(X) by means of a suitable class of pseudo-convergent sequences of
transcendental type contained in Qp, called a stacked sequence, which we now introduce. This definition
is a generalization of [Alexandru et al. 1998, p. 135].1

Definition 2.1. Let E = {sn}n≥0 ⊂ Qp be a sequence with s0 ∈ Qp. For every n ≥ 0, we consider the
following properties:

(i) [Qp(sn) : Qp]< [Qp(sn+1) : Qp].

(ii) For every c ∈ Qp such that [Qp(c) : Qp]< [Qp(sn+1) : Qp], we have v(sn+1 − c)≤ v(sn+1 − sn).

(iii) For every c ∈ Qp such that [Qp(c) : Qp]< [Qp(sn) : Qp], we have v(sn − c) < v(sn+1 − sn).

We say that E is unbounded if (i) holds for every n, stacked if (i) and (iii) hold for every n, and strongly
stacked if (i), (ii), (iii) hold for every n. Equivalently, E is stacked if (i) holds and (sn, δn = v(sn+1 − sn))

is a minimal pair for every n ≥ 0, and E is strongly stacked if (sn, sn+1) is distinguished for every n ≥ 0.

Remark 2.2. Let E ={sn}n∈N ⊂ Qp be a stacked sequence. Note that the sequence {v(sn+1−sn)= δn}n∈N

is strictly increasing since [Qp(sn−1) : Qp]< [Qp(sn) : Qp] and (sn, δn) is a minimal pair. In the original
definition of a distinguished sequence E in [Alexandru et al. 1998], the sequence {δn}n∈N is unbounded;
thus, in this case E is a Cauchy sequence. In our setting we are not imposing that restriction; we show in
Lemma 2.3 below that a stacked sequence is a pseudo-convergent sequence of transcendental type of Qp.

1The notion of a distinguished sequence was introduced in [Alexandru et al. 1998]. We cannot borrow that term here for
our sequences for the following reason: by Lemma 2.3, a stacked sequence is pseudo-convergent, and distinguished pseudo-
convergent sequences have already been defined by P. Ribenboim [1958, p. 474] to denote pseudo-convergent sequences of a
valued field whose breadth ideal is a nonmaximal prime ideal.
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The motivation for the terminology of these kind of sequences is due to the following fact. For
each n ∈ N, we abbreviate 0n = 0sn and kn = ksn (i.e., the value group and the residue field of the
valuation domain Osn of Qp(sn), respectively). By Remarks 1.6, v(sn+1 − sn) > δ(sn). Hence, by
Theorem 1.3, we have 0n ⊆ 0n+1 and kn ⊆ kn+1. For each n ∈ N, we set en = e(Qp(sn)|Qp) and
fn = f (Qp(sn)|Qp), the ramification index and the residue field degree of Osn over Zp, respectively; we
remark that [Qp(sn) : Qp] = en fn = dn for each n ∈ N, and since {dn}n∈N is unbounded by assumption,
either {en}n∈N is unbounded or { fn}n∈N is unbounded. Since en |en+1 for each n ∈ N, {en}n∈N is bounded
if and only if en = e for all n ∈ N sufficiently large. Similarly for { fn}n∈N.

By Remarks 1.6, condition (ii) is equivalent to δn = v(sn − sn+1)= δ(sn+1) (note that in general the
inequality δn ≤ δ(sn+1) holds). In other words, among all the elements c ∈ Qp such that

[Qp(sn) : Qp] ≤ [Qp(c) : Qp]< [Qp(sn+1) : Qp],

sn is one of those which is closest to sn+1.

Let E = {tn}n∈N ⊂ Qp be a pseudo-convergent sequence. If {[Qp(tn) : Qp] | n ∈ N} is bounded, then
E is contained in a finite extension K of Qp, and hence E is Cauchy and therefore converges to an
element α ∈ K . In particular, if E is of transcendental type, then the set {[Qp(tn) : Qp]}n∈N is necessarily
unbounded. Stacked sequences are of this kind, as the next lemma shows.

Lemma 2.3. Let E ⊂ Qp be a stacked sequence. Then E is a pseudo-convergent sequence of transcen-
dental type.

Proof. Let E ={sn}n∈N, and set δn = v(sn+1−sn) for each n ∈ N. We have already observed in Remark 2.2
that {δn}n∈N is a strictly increasing sequence. Moreover, for every m>n, we have v(sn−sm)>v(sn−sn−1).
In particular, v(sn−1 − sm)= v(sn−1 − sn) for every m ≥ n. Let now n < m < k. Then

v(sn − sm)= v(sn − sn+1) < v(sm − sm+1)= v(sm − sk),

which shows that E is a pseudo-convergent sequence.
We prove now that E is of transcendental type. Let α ∈ Qp. Then there exists n ∈ N such that

[Qp(α) : Qp]< [Qp(sn) : Qp].

Since (sn, δn) is a minimal pair, v(sn −α) < δn , so, in particular, α cannot be a pseudo-limit of E . This
shows that E has no pseudo-limits in Qp, and thus E is of transcendental type. □

Let E = {sn}n∈N ⊂ Qp be a stacked sequence. In particular, by Lemma 2.3, the sequence

{δn = v(sn+1 − sn)}n∈N

is the gauge of the pseudo-convergent sequence E . Moreover, by the same lemma, if E is Cauchy, then E
converges to a transcendental element α ∈ Cp.

The next proposition shows that any residually algebraic torsion extension of Zp to Qp(X) is obtained
by means of a pseudo-convergent sequence of transcendental type of Qp. We recall that if E ⊂ Qp is a
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pseudo-convergent sequence of transcendental type, then Zp E , the associated valuation domain of Qp(X),
is an immediate extension of Zp and conversely every immediate extension of Zp to Qp(X) can be realized
in this way; see, for example, [Kaplansky 1942; Peruginelli and Spirito 2021]. If Zp,E = Zp E ∩ Qp(X),
then Zp,E is a residually algebraic torsion extension of Zp to Qp(X).

Proposition 2.4. Let W be a residually algebraic torsion extension of Zp to Qp(X). Then there exists a
pseudo-convergent sequence E ⊂ Qp of transcendental type such that

W = Zp,E = {φ ∈ Qp(X) | φ(sn) ∈ Zp for all sufficiently large n ∈ N}.

Proof. Let W be an extension of W to Qp(X). Then W is an immediate extension of Zp to Qp(X) (and,
in particular, is a residually algebraic torsion extension of Zp). By [Kaplansky 1942, Theorems 1 and 2]
or [Peruginelli and Spirito 2021, Theorem 6.2 (a)], there exists a pseudo-convergent sequence E ⊂ Qp of
transcendental type such that W = Zp E . The claim follows by contracting down to Qp(X). □

Clearly, not every pseudo-convergent sequence of transcendental type in Qp is stacked. However,
the next theorem is the converse of Lemma 2.3: it shows that any pseudo-convergent sequence of
transcendental type is equivalent to a strongly stacked sequence. In particular, every stacked sequence is
equivalent to a strongly stacked sequence. Moreover, given a valuation domain Zp,E of Qp(X) associated
to a pseudo-convergent sequence E ⊂ Qp of transcendental type, without loss of generality, we may also
assume that E is strongly stacked.

By [Alexandru et al. 1998, Proposition 2.2], every transcendental element t ∈ Cp is the limit of a
strongly stacked sequence E of Qp. The next theorem is the analog of that result for residually algebraic
extensions W of Zp to Qp(X): for such a valuation W , there exists a strongly stacked sequence E ⊂ Qp

such that W = Zp,E ; it is not difficult to show that, for a transcendental element t ∈ Cp, the valuation
domain

Zp,t = {φ ∈ Qp(X) | φ(t) ∈ Op}

is a residually algebraic torsion extension of Zp.

Theorem 2.5. Let E ⊂ Qp be a pseudo-convergent sequence of transcendental type. Then there exists
a strongly stacked sequence E ′

⊂ Qp which is equivalent to E. In particular, given a residually
algebraic torsion extension W of Zp to Qp(X), there exists a strongly stacked sequence E ′

⊂ Qp

such that W = Zp,E ′ .

Proof. Let E = {tn}n∈N, and let v̄E be a valuation associated to Zp E ⊂ Qp(X).
First, we consider the following subset of 0vE ⊆ Q:

ME(X,Qp)= {vE(X − s) | s ∈ Qp}.

If ME(X,Qp) is not bounded, then there exists a sequence {sn}n∈N ⊂ Qp such that vE(X − sn) tends
to ∞. Necessarily, the sequence {sn}n∈N is Cauchy and so converges to an element s of Qp. Now, for
every n, vE(X − sn)= v̄E(X − sn)= v(tm − sn) for all m sufficiently large since E is of transcendental



1956 Giulio Peruginelli

type (see Section 1.1). Hence E would be a Cauchy sequence equivalent to {sn}n∈N and E would converge
to s, too, which is not possible. Let then δ0 = sup ME(X,Qp) ∈ R. We claim that δ0 ∈ ME(X,Qp); that
is, δ0 is a maximum. Suppose otherwise: there exists a sequence {rk}k∈N ⊂ Qp such that vE(X −rk)↗ δ0.
Then {rk}k∈N ⊂ Qp would be a pseudo-convergent sequence which is not Cauchy, which is not possible,
since Qp is a complete valued field. Hence there exists s0 ∈ Qp such that vE(X − s0)= δ0.

For n > 0, we now choose sn ∈ Qp so that (sn−1, sn) is distinguished. Let Bn be the subset of the α
in Qp satisfying the following properties:

(i) [Qp(α) : Qp]> [Qp(sn−1) : Qp].

(ii) v̄E(X −α) > v̄E(X − sn−1).

(iii) The positive integer [Qp(α) : Qp] − [Qp(sn−1) : Qp] is minimal.

Note that since N is well-ordered, condition (iii) can be satisfied (that is, among the α ∈ Qp satisfying (i)
and (ii), we can find one which also satisfies (iii)). Since v̄E(X −sn−1)= v(tm −sn−1) for all m sufficiently
large, for all such m we also have v̄E(X − sn−1) < v̄E(X − tm). Moreover, without loss of generality, we
may also assume that [Qp(tm) : Qp] > [Qp(sn−1) : Qp] since {[Qp(tm) : Qp]}m∈N is unbounded. This
shows that the set Bn is nonempty. Let

ME(X, Bn)= {v̄E(X −α) | α ∈ Bn},

which is a subset of Q. Let δn = sup ME(X, Bn). Since each element of Bn has the same degree over Qp,
it follows that Bn is contained in a finite extension K of Qp. In particular, it follows as above that
ME(X, Bn) is bounded above. Let δn = sup ME(X, Bn) ∈ R. Next, we show that ME(X, Bn) contains
its upper bound (which is, in particular, a rational number). Suppose otherwise: then there exists a
sequence {αk}k∈N ⊂ Bn such that v̄E(X −αk)↗ δn . In particular, {αk}k∈N would be a pseudo-convergent
sequence of a finite extension of Qp which is not Cauchy, which is impossible. Let sn ∈ Bn be such that
v̄E(X − sn)= δn . Note that

vp(sn − sn−1)= v̄E(sn − X + X − sn−1)= v̄E(X − sn−1)= δn−1.

We now show that (sn−1, sn) is distinguished. Clearly, [Qp(sn−1) : Qp]< [Qp(sn) : Qp].
Let c ∈ Qp be such that [Qp(c) : Qp]< [Qp(sn) : Qp].
If [Qp(c) : Qp]> [Qp(sn−1) : Qp], then, by the minimality of the degree of sn , we have

v̄E(X − c)≤ v̄E(X − sn−1)= δn−1,

so
vp(sn − c)= v̄E(sn − X + X − c)= v̄E(X − c)≤ δn−1 = vp(sn − sn−1).

Suppose now that [Qp(c) : Qp] = [Qp(sn−1) : Qp].
If v̄E(X − c)≤ v̄E(X − sn−2), then v̄E(X − c) < δn−1.
If v̄E(X − c) > v̄E(X − sn−2), then c ∈ Bn−1, so

v̄E(X − c)≤ δn−1 = v̄E(X − sn−1).
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In either case,

vp(sn − c)= v̄E(sn − X + X − c)= v̄E(X − c)≤ δn−1 = vp(sn − sn−1).

Note that, in particular, for n =1, we have that (s0, s1) is distinguished since condition (iii) of Definition 2.1
is empty, since s0 ∈ Qp.

Suppose now that n ≥ 2, and assume by induction that (sn−2, sn−1) is distinguished. Let c ∈ Qp be
such that [Qp(c) : Qp]< [Qp(sn−1) : Qp]. Since (sn−2, sn−1) is distinguished, we have

vp(sn−1 − c)≤ vp(sn−1 − sn−2)= δn−2 < δn−1.

Hence
vp(sn − c)= vp(sn − sn−1 + sn−1 − c)= vp(sn−1 − c) < vp(sn − sn−1).

We now show that E ′
= {sn}n∈N is equivalent to E = {tn}n∈N. Let {λn}n∈N and {δn}n∈N be the gauges

of E and E ′, respectively. We need to show that, for each k ∈ N, there exists n ∈ N such that λk ≤ δn .
Since E ′ is unbounded, there exists n ∈ N such that [Qp(tk) : Qp] < [Qp(sn) : Qp]. Since (sn, δn) is a
minimal pair, we have vp(sn − tk) < δn , so that

λk = v̄E(X − tk)= v̄E(X − sn + sn − tk) < v̄E(X − sn)= δn. (2.6)

Conversely, let n ∈ N. We need to show that there exists k ∈ N such that δn ≤ λk . For all m sufficiently
large, we have

v̄E(X − sn)= vp(tm − sn)= v̄E(tm − X + X − sn),

and since n is fixed and v̄E(tm − X)= λm is strictly increasing, it follows that

v̄E(tm − X)= λm > v̄E(X − sn)

for all such m.
Hence Br(E)= Br(E ′).
Finally, we need to show that, if k ∈ N, then there exist n0,m0 ∈ N such that, for each n ≥ n0 and

m ≥ m0, we have vp(tn −sm)>λk . Let n0 be the smallest integer such that [Qp(tk) : Qp]< [Qp(sn0) : Qp].
As in (2.6) above, λk < vE(X − sn0)= δn0 . Let now m > k and n ≥ n0. Then,

v(tm − sn)= v̄E(tm − X + X − sn) > λk

since
v̄E(tm − X)= λm > λk and v̄E(X − sn)≥ v̄E(X − sn0)= δn0 > λk .

Hence E and E ′ are equivalent.
By [Peruginelli and Spirito 2021, Proposition 5.3], Zp E = Zp E ′ , so, in particular, Zp,E = Zp,E ′ . The

final claim follows by Proposition 2.4. □

The following proposition describes the value group and the residue field of a residually algebraic
torsion extension W of Zp to Qp(X). By Theorem 2.5, W is equal to Zp,E for some strongly stacked
sequence E ⊂ Qp. We keep the notation of Remark 2.2.

Proposition 2.7. Let E = {sn}n∈N ⊂ Qp be a stacked sequence and W = Zp,E . Then we have⋃
n∈N

0n = 0w,
⋃
n∈N

kn = kw.
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Proof. Let w = vE be the valuation associated to Zp,E and v̄E the valuation associated to Zp E .
Since E is of transcendental type, for each f ∈ Qp[X ], we have vE( f )= v( f (sn)) for all n sufficiently

large (see Section 1.1). It follows that, for each φ ∈ Qp(X) with φ = f/g, for some f, g ∈ Qp[X ], we
have that vE(φ)= vE( f )− vE(g) is in 0n for all n sufficiently large. Hence 0w ⊆

⋃
n 0n . Conversely,

let n ∈ N and f ∈ Qp[X ] be of degree smaller than [Qp(sn) : Qp]. Then, each root αi of f (X) in Qp has
degree smaller than [Qp(sn) : Qp] and so, since (sn, δn) is a minimal pair, we have

vp(sn −αi ) < δn, (2.8)

which implies that

v̄E(X −αi )= v̄E(X − sn + sn −αi )= vp(sn −αi ), (2.9)

and so

vE( f (X))=

∑
i

v̄E(X −αi )=

∑
i

vp(sn −αi )= vp( f (sn)), (2.10)

which shows that0n ⊆0w. Note that v̄E(X−αi )=v(sm−αi ) for each m ≥n, and so vE( f (X))=v( f (sm))

for each m ≥ n.
Let now n ∈ N and c̄ = f (sn) ∈ kn for some f (sn) ∈ O∗

n , where f ∈ Qp[X ] has degree strictly smaller
than [Qp(sn) : Qp]. In particular, c̄ ̸= 0. As in (2.10), vE( f (X))= v( f (sm))= 0 for each m ≥ n. Let αi

be a root of f (X) in Qp. Then, by (2.9), v̄E(X −αi )= vp(sn −αi )= vp(di ) for some di ∈ Qp. Then

v̄E

(
(X −αi )/di

(sn −αi )/di
− 1

)
= v̄E

(
X − sn

sn −αi

)
= δn − vp(sn −αi ) > 0,

where the last inequality holds by (2.8). Therefore, (X −αi )/di and (sn −αi )/di coincide over the residue
field of W . In particular,

f (X)
f (sn)

=

∏
i

(X −αi )

(sn −αi )
=

∏
i

(X −αi )/di

(sn −αi )/di
, (2.11)

and since each factor of the last product has residue 1 in W , it follows that f (X) and f (sn) coincide over
the residue field of W (which contains both f (X) and f (sn)). Since f ∈ Zp,E = W , this shows that kn is
contained in the residue field kw of W .

Conversely, let φ = f/g ∈ W ⊂ Qp(X) for some f, g ∈ Qp[X ]. Let αi and β j be the roots in Qp of f
and g, respectively. There exists n ∈ N such that [Qp(αi ) : Qp] < [Qp(sn) : Qp] and [Qp(β j ) : Qp] <

[Qp(sn) : Qp] for all i and j . Hence, as in (2.9), we have

v̄E(X −αi )= vp(sn −αi ), v̄E(X −β j )= v(sn −β j ) for all i, j,

which again, as in (2.10), shows that

vE(φ(X))= v(φ(sn)).

Moreover, this last equation holds if we replace sn by sm for all m ≥ n. If vE(φ(X))= 0, then, as in (2.11),
one can show that φ(X) and φ(sn) coincide over the residue field of W , so that kw ⊆ kn . □
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The following corollary gives a further characterization of the residue field and the value group of
a residually algebraic torsion extension W of Zp: either the residue field of W is an infinite algebraic
extension of Fp, or the value group 0w is nondiscrete.

Corollary 2.12. Let W be a residually algebraic torsion extension of Zp to Qp(X), and let e = e(W |Zp)

and f = f (W |Zp) be the ramification index and the residue field degree, respectively. Then e · f = ∞.

Proof. By Theorem 2.5, there exists a stacked sequence E = {sn}n∈N ⊂ Qp such that W = Zp,E . By
Proposition 2.7, 0w=

⋃
n 0n and kw=

⋃
n kn . Remark 2.2 shows that either the sequence {en =[0n :Z]}n∈N

or { fn = [kn : Fp]}n∈N is unbounded; therefore, either e = e(W |Zp) or f = f (W |Zp) is infinite. □

The following proposition is analogous to [Alexandru et al. 1998, Proposition 2.3]. It shows that the
sequence of ramification indexes, residue field degrees and gauges attached to a residually algebraic
torsion extension W of Zp do not depend on the strongly stacked sequence E ⊂ Qp such that W = Zp,E

(Theorem 2.5).

Proposition 2.13. Let W ⊂ Qp(X) be a residually algebraic torsion extension of Zp. Let E = {sn}n∈N,
E ′

= {tn}n∈N ⊂ Qp be strongly stacked sequences with gauges {δn}n∈N, {δ′n}n∈N, respectively, such that
W = Zp,E = Zp,E ′ . Then, for each n ∈ N, we have

(i) [Qp(sn) : Qp] = [Qp(tn) : Qp] and δn = δ′n ,

(ii) esn = etn and fsn = ftn .

Proof. Without loss of generality, we may assume that in Qp(X) we have Zp E = Zp E ′ ; we will let
W = Zp E = Zp E ′ and denote by w a valuation associated to W .

(i) We have s0, t0 ∈ Qp. There exists n ∈ N, n ≥ 1, such that

w(X − sn−1)≤ w(X − t0) < w(X − sn),

otherwise t0 would be a pseudo-limit of E , which is not possible. In particular,

vp(sn − t0)= w(sn − X + X − t0)= w(X − t0)≥ w(X − sn−1)= δn−1.

If n > 1, we have [Qp(t0) : Qp]< [Qp(sn−1) : Qp], so by (iii) of Definition 2.1 we have that

vp(sn − t0)= vp(sn−1 − t0) < vp(sn − sn−1)= δn−1,

which is impossible. Hence n = 1, so vp(s1 − t0) = w(X − t0) ≥ w(X − s0). Reversing the roles of s0

and t0, we get the other inequality, so w(X − s0)= w(X − t0)= δ0 = δ′0.
Let n ∈ N, and suppose that, for each m ≤ n, we have [Qp(sm) : Qp] = [Qp(tm) : Qp] and δm = δ′m .
Since [Qp(sn) : Qp] = [Qp(tn) : Qp]< [Qp(tn+1) : Qp], by (ii) of Definition 2.1 we have

vp(tn+1 − sn)≤ vp(tn+1 − tn)= δ′n = δn.

Now,
vp(tn+1 − sn)= vp(tn+1 − tn + tn − sn)≥ δn
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since vp(tn − sn)=w(tn − X + X − sn)≥ δn = δ′n . This implies that vp(tn+1 − sn)= δn , and so (sn, tn+1)

is distinguished. Moreover, we have

vp(tn+1 − sn+1)= w(tn+1 − X + X − sn+1) > δn = δ′n = vp(tn+1 − sn).

Now, if [Qp(sn+1) : Qp] < [Qp(tn+1) : Qp], then, since (sn, tn+1) is distinguished, we would have
vp(sn+1 − tn+1) ≤ vp(tn+1 − sn), which is impossible. Hence [Qp(sn+1) : Qp] ≥ [Qp(tn+1) : Qp]. The
other inequality is proved in a symmetrical way, so [Qp(sn+1) : Qp] = [Qp(tn+1) : Qp].

Suppose now that w(X − sn+1) < w(X − tn+1). Then

vp(sn+2 − tn+1)= w(sn+2 − X + X − tn+1) > w(X − sn+1)= vp(sn+2 − sn+1),

which is not possible since (sn+1, sn+2) is distinguished. Hence w(X − sn+1)≥ w(X − tn+1). The other
inequality is proved similarly, so δn+1 = δ′n+1 as claimed.

(ii) For each n ∈ N, let 0n and 0′
n and kn and k ′

n be the value groups and residue fields, respectively, of
Qp(sn) and Qp(tn). Let en = esn , e′

n = etn , fn = fsn , f ′
n = ftn .

Clearly, e0 = e′

0 and f0 = f ′

0 since s0, t0 ∈ Qp.
Let n ≥ 1. If f ∈ Qp[X ] has degree strictly smaller than [Qp(sn) : Qp] = [Qp(tn) : Qp], then by (2.10)

we have w( f (X))= vp( f (sn)) and also w( f (X))= vp( f (tn)), so vp( f (sn))= vp( f (tn)). This proves
that 0n = 0′

n , and so en = e′
n .

Suppose now that f ∈ Qp[X ] of degree strictly smaller than [Qp(sn) : Qp] = [Qp(tn) : Qp] is such that
vp( f (sn))= vp( f (tn))= 0. In particular, w( f (X))= 0 by (2.10). By (2.11) and the analogous equation
where sn is replaced by tn , we get that f (sn) and f (tn) have the same residue as f (X), so, in particular,
kn = k ′

n . Therefore, fn = f ′
n . □

2.2. Residually algebraic extensions of Z p which are DVRs. In this section we characterize DVRs of
Qp(X) extending Zp such that the residue field extension is algebraic, necessarily of infinite degree by
Corollary 2.12; this fact has already been noted in a different way in [Peruginelli 2017, p. 4217]. We will
see in Section 2.3 that there is no such restriction on the residue field degree for DVRs of Q(X) which
are residually algebraic extensions of Z(p) (see Corollary 2.28).

Given α ∈ Cp, we denote by Op,α the unique valuation domain of Qp(α) lying over Zp (i.e., Op,α =

Op ∩ Qp(α)). We also set
Zp,α = {φ ∈ Qp(X) | φ(α) ∈ Op},

which is a valuation domain of Qp(X) and coincides with the previous definition if α ∈ Qp.

Proposition 2.14. Let α ∈ Cp be a transcendental element. Then there exists a Cauchy stacked sequence
E ⊆ Qp converging to α. Moreover, the valued fields (Qp(X),Zp,α) and (Qp(α),Op,α) are isomorphic.
In particular, the ramification index e(Zp,α |Zp) is equal to eα, the residue field degree f (Zp,α |Zp) is
equal to fα and eα · fα = ∞.

Note that the last condition implies that either eα or fα is infinite. It can happen that exactly one of
these two quantities is finite (see Theorem 2.21).
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Proof. The proof of the first claim follows also by [Alexandru et al. 1998, Proposition 2.2], but we give
here a different proof based on the previous results.

By Theorem 2.5, there exists a stacked sequence E ⊂ Qp such that Zp,α = Zp,E . Since the valua-
tion domains Zp E ,Zpα ⊂ Qp(X) contract down to Qp(X) to the same valuation domain, there exists
σ ∈ Gal(Qp/Qp) such that σ(Zpα)= Zpσ(α) = Zp E . By [Peruginelli and Spirito 2021, Proposition 5.3],
E is then a Cauchy sequence converging to σ(α). Since Zp,α = Zp,σ (α), without loss of generality, we
may assume that E converges to α.

Since α is transcendental over Qp, the evaluation homomorphism evα :Qp(X)→Qp(α), φ(X) 7→φ(α),
is an isomorphism. It is easy to see that evα(Zp,α)=Op,α . Hence Zp,α and Op,α have the same ramification
indexes and residue field degrees over Zp.

Finally, the last claim follows by Corollary 2.12. □

Remark 2.15. By Proposition 2.14, we may conclude that, in general,

for α ∈ Cp,we have eα · fα <∞ if and only if α ∈ Qp.

The next lemma may be well known, but lacking a reference we give a short proof.

Lemma 2.16. Let p ∈ Z be a prime, K1 and K2 finite extensions of Qp and L = K1K2 the compositum.
Let e1 be the ramification index of K1 over Qp and e the ramification index of L over K2. Then e ≤ e1.

Proof. If K1 is a tame extension of Qp, then the ramification index of L over Qp is equal to

lcm{e(K1 |Qp), e(K2 |Qp)}

(see, for example, [Chabert and Halberstadt 2018]), so e divides e1 and the claim is true.
We give a self-contained proof which works in general. Let L ′ be the normal closure of L over Qp and

I the inertia group of the maximal ideal ML ′ of OL ′ over Zp. Let Gi be the Galois group Gal(L ′
|Ki ) for

i = 1, 2 and G the Galois group Gal(L ′
|L). Since L = K1K2, we have G = G1 ∩ G2. The inertia group

of ML ′ over MK1 is equal to I ∩ G1, and the inertia group of ML ′ over ML is equal to I ∩ G. We have

e =
e(L ′

|K2)

e(L ′ |L)
=

#(I ∩ G2)

#(I ∩ G)
, e1 =

e(L ′
|Qp)

e(L ′ |K1)
=

#I
#(I ∩ G1)

.

Note that I ∩ G = (I ∩ G1)∩ (I ∩ G2). Therefore, the claim follows by the following general fact for
finite groups: given a finite group G with two subgroups H1 and H2, we have

#H2

#(H1 ∩ H2)
= [H2 : H1 ∩ H2] ≤

#G
#H1

= [G : H1],

which follows immediately since the map h2 H1 ∩ H2 7→ h2 H1 from the set {h2(H1 ∩ H2) | h2 ∈ H2} of
left cosets of H1 ∩ H2 in H2 to the set {gH1 | g ∈ G} of left cosets of H1 in G is injective. □

The following result is analogous to [Peruginelli 2017, Theorem 2.5].

Theorem 2.17. Let W be a DVR of Qp(X) which is a residually algebraic extension of Zp. Then there
exists a transcendental element α ∈ Cp such that W = Zp,α.



1962 Giulio Peruginelli

Proof. Note that, by Corollary 2.12, the residue field of W is an infinite algebraic extension of Fp.
By Theorem 2.5, there exists a stacked sequence E ={sn}n∈N ⊂Qp such that W =Zp,E . By assumption,

the ramification index e(W |Zp) = e is finite. By Remark 2.2 and Proposition 2.7, there exists n0 ∈ N

such that 0w = 0n = 0n0 for each n ≥ n0. Equivalently, en = en0 = e for each n ≥ n0. Let n ≥ n0. Note
that δn = vp(sn+1 − sn) ∈ 0OKn

, where Kn = Qp(sn, sn+1). Note that the ramification index of Qp(si )

over Qp is equal to e for i = n, n + 1. By Lemma 2.16, the ramification index of Kn over Qp is bounded
by e2. If d =

∏e2

i=1 i , then dδn ∈ Z for each n ≥ n0. This shows that the gauge {δn}n∈N of E has bounded
denominator, so δn ↗ ∞, and thus E is Cauchy and converges to a (unique) element α of Cp \ Qp since
E is of transcendental type by Lemma 2.3. In particular, W = Zp,α. □

Remark 2.18. We say an element α ∈ Cp has bounded ramification if the extension Qp(α)⊇ Qp has finite
ramification. We denote by Cbr

p the set of all elements of Cp of bounded ramification; clearly, Qp ⊂ Cbr
p .

A transcendental element α ∈ Cp has bounded ramification if and only if the set of ramification indexes
{en}n∈N attached to a stacked sequence E ⊂ Qp converging to α is bounded; in fact, by Theorem 2.17,
the integer e such that e = en for all n sufficiently large is equal to e(Qp(α)|Qp).

We remark that not all the transcendental elements α ∈ Cp have bounded ramification. For example,
according to [Ioviţă and Zaharescu 1995], there exist generic transcendental elements t ∈ Cp for Cp; that
is, the completion of Qp(t) is equal to Cp. In particular, the value group of the unique valuation of Op,t

is equal to Q, so the corresponding ramification index is ∞. Hence, by Proposition 2.7, Zp,t has value
group equal to Q and therefore the set of ramification indexes {en}n∈N is unbounded.

We show in Theorem 2.21 that given any algebraic extension k of Fp and group 0 such that Z ⊆0⊆ Q,
there exists a transcendental element α ∈ Cp such that Zp,α has residue field k and value group 0, provided
that either [k : Fp] is infinite or 0 is not discrete (this condition being necessary by Corollary 2.12).

Lemma 2.19. Let l be an infinite algebraic extension of Qp such that e(l |Qp) is finite. Then l is contained
in the maximal unramified extension K unr of a finite extension K of Qp.

Proof. For each n ∈ N, let Q
(n)
p be the compositum of all the extensions of Qp of degree bounded by n.

Clearly, Qp =
⋃

n∈N Q
(n)
p and Q

(n)
p ⊂ Q

(n+1)
p for each n ∈ N. Since Qp has only finitely many extensions

of bounded degree, Q
(n)
p = Qp(tn) for some tn ∈ Qp. Now, for each n ∈ N, we let Qp(tn)∩ l = Qp(sn) for

some sn ∈ l. Clearly, l =
⋃

n∈N Qp(sn) and Qp(sn)⊂ Qp(sn+1) for each n ∈ N. Since 0sn ⊆ 0sn+1 ⊆ 0l

for each n ∈ N and 0l is discrete by assumption, there exists n0 ∈ N such that 0sn = 0sn0
for each n ≥ n0.

Therefore, if K = Qp(sn0), then sn ∈ K unr for each n ≥ n0, so that l ⊆ K unr. □

The next proposition shows that a transcendental element t of Cp with bounded ramification arise as
the limit of sequences contained in the maximal unramified extension K unr of a finite extension K of Qp.
We don’t know whether there exists a stacked sequence in K unr which converges to t .

Proposition 2.20. Let t ∈ Cbr
p . Then t is the limit of a sequence contained in the maximal unramified

extension of a finite extension of Qp.
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Proof. By [Ioviţă and Zaharescu 1995, Theorem 1], the completion of Q̂p(t)∩ Qp is equal to Q̂p(t).
In particular, there exists a Cauchy sequence E = {sn}n∈N ⊂ Q̂p(t)∩ Qp converging to t . Now, since
Qp(t)⊂ Q̂p(t) and Q̂p(t)∩ Qp ⊂ Q̂p(t) are immediate extensions, it follows that Q̂p(t)∩ Qp has value
group 0t and residue field kt . By Lemma 2.19, Q̂p(t)∩ Qp is contained in the maximal unramified
extension of a finite extension of Qp. The statement follows. □

The following result is not new; see for example [Lampert 1986, Lemma 2]. The present proof is
different because it employs the notion of stacked sequence.

Theorem 2.21. Let k be an algebraic extension of Fp and 0 a totally ordered group with Z ⊆ 0 ⊆ Q

such that either [k : Fp] or [0 : Z] is infinite (the last condition is equivalent to 0 being not discrete). Then
there exists a transcendental element α ∈ Cp such that kα = k and 0α = 0. In particular, Zp,α has residue
field k and value group 0.

Note that, by Corollary 2.12, the last claim shows that [k : Fp] · [0 : Z] = ∞ is necessary.

Proof. Since Fp is countable, we may suppose that k =
⋃

n∈N kn , where kn is a finite extension of Fp,
kn ⊆ kn+1 and k0 = Fp. Similarly, 0 =

⋃
n∈N 0n , where 0n is a discrete group, 0n ⊆ 0n+1 and 00 = Z.

Let f = [k : Fp] and e = [0 : Z]; then, either e or f is infinite. Without loss of generality, we may assume
that, for each n, [kn+1 : kn][0n+1 : 0n]> 1.

For each n ∈ N, there exists a local field Kn = Qp(sn) with residue field kn and value group 0n . By
induction, we may also assume that Kn ⊂ Kn+1. Let {λn}n∈N ⊂ Q be a strictly increasing sequence in Q

which is unbounded and λ0 < δ0 = v(s1 − s0).
We define now a sequence E = {tn}n∈N ⊂ Qp such that, for each n ∈ N, n ≥ 1, we have

(i) Qp(tn)= Qp(sn),

(ii) (tn−1, δn−1 = vp(tn − tn−1)) is a minimal pair,

(iii) δn−1 > λn−1.

In particular, E is a stacked sequence by conditions (i) and (ii) and Cauchy by condition (iii) and the
assumption on {λn}n∈N.

We set t0 = s0 ∈ Qp, t1 = s1 ̸∈ Qp and δ0 = vp(t1 − t0). Note that (t0, δ0) is a minimal pair. We proceed
by induction on n. We assume that, for all m < n, we have chosen tm ∈ Qp such that conditions (i), (ii)
and (iii) above are satisfied.

We now show how to choose tn . We choose an ∈ Qp, an ̸= 0, such that

vp(an) >max{ω(tn−1)− vp(sn), λn−1 − vp(sn)}.

We then set
tn = ansn + tn−1.

Note that Qp(tn) ⊆ Qp(sn) since by induction Qp(tn−1) = Qp(sn−1) and the last field is contained in
Qp(sn). Now, since δn−1 =vp(tn−tn−1)>ω(tn−1), it follows by Krasner’s lemma that Qp(tn−1)⊆Qp(tn).
This containment and the fact that sn = (tn − tn−1)/an show that sn is in Qp(tn), so that Qp(tn)= Qp(sn).
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Moreover, note also that δn−1 > λn−1. Hence E = {tn}n∈N is a stacked sequence which is Cauchy, so E
converges to a transcendental element α of Cp. By Proposition 2.7, Zp,E = Zp,α has residue field k and
value group 0, as desired. By Proposition 2.14, Zp,α is isomorphic to Op,α, so it follows that 0α = 0

and kα = k. □

Remark 2.22. We remark that, without condition (iii) above in the proof of Theorem 2.21, in general we
may only conclude that there exists a stacked sequence E ⊂ Qp (which may not be Cauchy) such that
the valuation domain Zp,E has residue field k and value group 0. If instead 0 is discrete by assumption,
condition (iii) is not necessary: in fact, there exists n0 ∈ N such that 0n = 0n0 = 0 for all n ≥ n0; that is,
Kn = Qp(sn) is an unramified extension of Kn0 for all n > n0. Hence E ⊂

⋃
n∈N Kn is Cauchy, and so

Zp,E = Zp,α, where α ∈ Cbr
p is the transcendental limit of E .

We close this section showing that the statement of [Ioviţă and Zaharescu 1995, Proposition 1] is wrong,
namely, in general the completion of Qp(X) with respect to a residually algebraic torsion extension W
of Zp may not be a subfield of Cp. The mistake is due to the fact that if W = Zp,E for some pseudo-
convergent sequence E ⊂ Qp of transcendental type, then X is a pseudo-limit of E with respect to w and
may not be a limit (that is, E may not be Cauchy).

Proposition 2.23. Let W be a residually algebraic torsion extension of Zp to Qp(X). Then the completion
Q̂p(X) with respect to W is (isomorphic to) a subfield of Cp if and only if there exists a transcendental
element α in Cp such that W = Zp,α.

Proof. By Theorem 2.5, there exists a pseudo-convergent sequence E = {sn}n∈N ⊂ Qp of transcendental
type such that W = Zp,E .

Suppose that Q̂p(X)⊆ Cp. In particular, X ∈ Cp, so there exists a Cauchy sequence F = {tn}n∈N ⊂ Qp

which tends to X . Since Qp(X)⊂ Qp(X) is an algebraic extension and Cp is algebraically closed, then
also the completion of Qp(X) with respect to W = Zp E is contained in Cp. Without loss of generality, we
may suppose that the restriction of vp to Qp(X) is equal to w. In particular, w(X − tn)= vp(X − tn)↗ ∞.
Since E is of transcendental type, for each n, there exists m0 such that w(X − tn) < w(X − sm) for each
m ≥ m0. This shows that the gauge of E tends to infinity, and thus E is Cauchy; in particular, E converges
to a transcendental element α ∈ Cp. Therefore, W = Zp,α.

Conversely, let W = Zp,α for some transcendental element α ∈ Cp. Then, by Proposition 2.14, the
completion Q̂p(X) with respect to Zp,α is isomorphic to the completion of Qp(α) and therefore can be
identified to a subfield of Cp. □

In particular, if W = Zp,E for some stacked non-Cauchy sequence E ⊂ Qp, then Q̂p(X)⊈ Cp.

2.3. Residually algebraic torsion extensions of Z( p). We now characterize residually algebraic torsion
extensions of Z(p) to Q(X). We remark that such a valuation domain may have an extension to Qp(X)
which is a residually algebraic extension of Zp but is not torsion. For example, let α∈Qp be transcendental
over Q. Then Z(p),α is torsion but Zp,α is not (the one dimensional valuation overring of Zp,α is
Qp[X ](pα(X)), where pα(X) is the minimal polynomial of α over Qp).
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Given α ∈ Cp, we consider the following valuation domain of Q(X):

Z(p),α = {φ ∈ Q(X) | φ(α) ∈ Op},

which is just the contraction to Q(X) of Zp,α considered in Section 2.1. Similarly, if E = {sn}n∈N ⊂ Qp

is a pseudo-convergent sequence of transcendental type, then we set

Z(p),E = {φ ∈ Q(X) | φ(sn) ∈ Zp for all sufficiently large n ∈ N},

which is equal to Zp,E ∩ Q(X).
The next proposition is analogous to Proposition 2.4 and characterizes residually algebraic torsion

extensions of Z(p) to Q(X) in terms of pseudo-convergent sequences of Qp which are of transcendental
type over Q; clearly, every pseudo-convergent sequence of transcendental type of Qp belongs to this
class. As a particular case, we find again part of the result of [Peruginelli 2017, Theorem 2.5].

Proposition 2.24. Let p ∈ P, and let W be a residually algebraic torsion extension of Z(p) to Q(X). Then
there exists a pseudo-convergent sequence E ⊂ Qp of transcendental type over Q such that W = Z(p),E .
More precisely, let e and f be the ramification index and residue field degree of W over Z(p), respectively.
Let Q̂(X) be the completion of Q(X) with respect to the W -adic topology. Then the following conditions
are equivalent:

(1) Q̂(X) is a finite extension of Qp.

(2) X is algebraic over Qp.

(3) W = Z(p),α for some α ∈ Qp transcendental over Q.

(4) e f <∞.

If any one of these conditions holds, then the sequence E above is Cauchy and converges to α (and E is
therefore of algebraic type over Qp). Moreover, we have 0w = 0α and kw = kα.

If e f = ∞, then E ⊂ Qp is of transcendental type over Qp and Z(p),E ⊂ Zp,E is an immediate
extension.

Proof. Note that, since W is a torsion extension of Z(p), the p-adic completion Qp of Q is contained in
Q̂(X); see for example the arguments given in the proof of [Alexandru et al. 1988, Corollary 2.6].

If Q̂(X) is a finite extension of Qp, then clearly X is algebraic over Qp, so (1) implies (2). If X is
algebraic over Qp, we may identify X with some α ∈ Qp; Qp(α) is a finite extension of Qp and is hence
complete. So, Q̂(X)= Qp(α). As in the proof of [Peruginelli 2017, Theorem 2.5] it follows easily that
W = Z(p),α. Therefore, (2) implies (3).

If W = Z(p),α for some α ∈ Qp transcendental over Q, then, by [Peruginelli 2017, Proposition 2.2],
e f <∞, so (3) implies (4). Finally, (4) implies (1) by [Peruginelli 2017, Lemma 2.4] because e(Ŵ |Zp)=e
and f (Ŵ |Zp)= f .

Note that if E ⊂ Qp is a pseudo-convergent sequence such that Z(p),E = Z(p),α , then by Lemma 2.27
below we have Zp,E = Zp,α, so by [Peruginelli and Spirito 2021, Proposition 5.3] we have that E is
Cauchy and converges to α.



1966 Giulio Peruginelli

The claims about the value group and residue field of Z(p),α follow by [Peruginelli 2017, Proposi-
tion 2.2].

If e f = ∞, then X is transcendental over Qp by the previous part of the proof; in particular, the field
of rational functions Qp(X) is contained in the completion Q̂(X). If W̃ = Ŵ ∩ Qp(X), then W̃ is a
residually algebraic torsion extension of Zp to Qp(X), so by Theorem 2.5 there exists a stacked sequence
E ⊂ Qp such that W̃ = Zp,E (by Lemma 2.3, E is a pseudo-convergent sequence of transcendental type,
necessarily unbounded). Restricting down to Q(X), we get W = Z(p),E . Finally, since W ⊂ Ŵ is an
immediate extension, it follows that Z(p),E ⊂ Zp,E is an immediate extension, too. Hence the value group
and residue field of Z(p),E are the same as those of Zp,E , respectively (see Proposition 2.7). □

The following statement is the analog of Proposition 2.23 for residually algebraic torsion extensions
of Z(p) to Q(X).

Corollary 2.25. Let W be a residually algebraic torsion extension of Z(p) to Q(X). Then the completion
Q̂(X) with respect to W is (isomorphic to) a subfield of Cp if and only if there exists α∈Cp, transcendental
over Q, such that W = Z(p),α.

Proof. According to Proposition 2.24, when passing to the completion, either X is algebraic over Qp or X
is transcendental over Qp, and consequently either Q̂(X)⊂ Qp ⊂ Cp or Qp(X)⊂ Q̂(X), respectively. In
the first case, W =Z(p),α for some α∈Qp ⊂Cp transcendental over Q. In the second case, Q̂p(X)= Q̂(X),
where the completion of Qp(X) is considered with respect to the valuation domain W̃ = Ŵ ∩ Qp(X).
In particular, by Proposition 2.23, in this case we get that Q̂(X)⊆ Cp if and only if there exists a
transcendental element α ∈ Cp such that W = Z(p),α. □

In particular, if W = Z(p),E for some stacked non-Cauchy sequence E ⊂ Qp, then Q̂(X) is not contained
in Cp.

The following result is the analog of Theorem 2.21 for building residually algebraic torsion extensions W
of Z(p) to Q(X) with prescribed residue field k and value group 0. Note that, contrary to that theorem,
we are no longer assuming that [k : Fp] · [0 : Z] = ∞.

Theorem 2.26. Let k be an algebraic extension of Fp and 0 a totally ordered group such that Z ⊆ 0 ⊆ Q.
Then there exists α ∈ Cp, transcendental over Q, such that Z(p),α has residue field k and value group 0.

Proof. Let e = [0 : Z] and f = [k : Fp]. If e f < ∞, then it is well known that there exists α ∈ Qp

transcendental over Q such that Op,α has residue field k and value group 0. Hence, by [Peruginelli 2017,
Proposition 2.2], Z(p),α is the desired extension of Z(p).

If e f = ∞, then, by Theorem 2.21, there exists a transcendental element α ∈ Cp such that Zp,α has
residue field k and value group 0. Clearly, Zp,α∩Q(X)= Z(p),α is a residually algebraic torsion extension
of Z(p) to Q(X). Moreover, by Proposition 2.14, Zp,α = Zp,E for some stacked Cauchy sequence E ⊂ Qp

which converges to α. In particular, Z(p),α = Z(p),E . By the last part of Proposition 2.24, Z(p),E ⊂ Zp,E

is an immediate extension, so Z(p),α has residue field k and value group 0. □
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Now we are able to describe the DVRs of Q(X) which are residually algebraic extensions of Z(p) for
some p ∈ P. We recall that every σ ∈ GQp = Gal(Qp/Qp) extends uniquely to a continuous automorphism
of Cp; see [Alexandru et al. 1998, §3]. Given α, β ∈ Cp, we say that α and β are conjugate (over Qp) if
there exists σ ∈ GQp = Gal(Qp/Qp) such that σ(α)= β; the orbit of an element α ∈ Cp is finite if and
only if α ∈ Qp; see [Alexandru et al. 1998, Remark 3.2].

We prove first the following lemma.

Lemma 2.27. Let p ∈ P and W be a valuation domain of Qp(X) such that W ∩ Q(X)= Z(p),α for some
α ∈ Cp. Then W = Zp,α.

Proof. Let n ≥ 0 be an integer such that pn
· α = α0 ∈ Op. The field isomorphism X 7→ X/pn maps

Z(p),α to Z(p),α0 and Zp,α to Zp,α0 , respectively. Hence, in order to prove the statement, without loss of
generality, we may assume that α ∈ Op.

Let w be a valuation associated to W . We note first that, since X ∈ Z(p),α, it follows that w(X)≥ 0.
Let f ∈ W ∩ Qp[X ], say f (X)=

∑d
i=0 αi X i . Then, for g(X)=

∑d
i=0 ai X i

∈ Q[X ], we have

w( f − g)≥ min
0≤i≤d

{vp(αi − ai )+ iw(X)}.

Therefore, if we choose ai ∈ Q sufficiently vp-adically close to αi for each i = 0, . . . , d, we have
w( f − g)≥ 0. In particular, g ∈ W ∩ Q(X)= Z(p),α. The polynomial h = f − g is in Zp[X ]; therefore
f (α) = h(α)+ g(α) ∈ Op, so that f ∈ Zp,α. Therefore W ∩ Qp[X ] ⊆ Zp,α ∩ Qp[X ]. Similarly, one
can easily show that the other containment holds, so W ∩ Qp[X ] = Zp,α ∩ Qp[X ]. In the same way,
MW ∩Qp[X ] = Mp,α ∩Qp[X ], where MW and Mp,α are the maximal ideals of W and Zp,α , respectively.

Let now ψ ∈ Zp,α; since Zp[X ] ⊂ Qp[X ] ∩ Zp,α, we may suppose that ψ = f/g, where f, g ∈

Qp[X ] ∩ Zp,α. Clearly, g(α) ̸= 0; then, there exists n ∈ N, n ≥ 1, and c ∈ Qp, c ̸= 0, such that
vp(c)+ vp(g(α)n) = 0. We consider then the rational function ψn

= c f n/cgn
= f1/g1, which still is

in Zp,α. Note that f1 ∈ Zp,α ∩ Qp[X ] = W ∩ Qp[X ] and g1 ∈ Z∗
p,α ∩ Qp[X ] = W ∗

∩ Qp[X ] since
vp,α( f1)≥ vp,α(g1)= 0 (the ∗ denotes the set of units of the valuation domains). In particular,

w( f1)≥ 0 = w(g1),

which proves that ψn
∈ W . Since W is integrally closed, it follows that ψ ∈ W . Hence Zp,α ⊆ W . The

equality follows because both rings are extensions of Zp to Qp(X), and in the case that α is algebraic
over Qp, the one-dimensional valuation overring of Zp,α is nonunitary (i.e., Qp[X ](q), where q ∈ Qp[X ]

is the minimal polynomial of α). □

Corollary 2.28. Let W be a DVR of Q(X) which is a residually algebraic extension of Z(p) for some
p ∈ P. Then there exists α ∈ Cbr

p , transcendental over Q, such that W = Z(p),α. The element α belongs
to Qp if and only if the residue field extension Z/pZ ⊆ W/M is finite.

Moreover, for α, β ∈ Cp, we have Z(p),α = Z(p),β if and only if there exists σ ∈ GQp such that σ(α)=β.

Proof. Let f = [W/M : Z/pZ]. If f <∞, then the claim follows by [Peruginelli 2017, Theorem 2.5] and
corresponds to the first case of Proposition 2.24: W = Z(p),α for some α ∈ Qp which is transcendental
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over Q. If f = ∞, then we are in the last case of Proposition 2.24, so W = Z(p),E for some pseudo-
convergent sequence in Qp of transcendental type. As in the proof of Proposition 2.24, we denote by Ŵ
the completion of W ; since the ramification index e(W |Z(p)) is finite, W̃ = Ŵ ∩ Qp(X) is a residually
algebraic torsion extension of Zp to Qp(X) which is a DVR, so by Theorem 2.17, W̃ = Zp,α for some
α∈ Cbr

p \Qp. Hence W = W̃ ∩Q(X)= Z(p),α . Note that α is transcendental over Qp and hence also over Q.
We prove now the final claim. Suppose there exists σ ∈ GQp such that σ(α)= β. If φ ∈ Z(p),α, then

φ(α) is defined and belongs to Op. In particular, σ(φ(α))=φ(σ(α))=φ(β)∈ Zp. Hence Z(p),α ⊆ Z(p),β ,
and the other containment is proved in a symmetrical way.

Conversely, suppose that Z(p),α = Z(p),β . By Lemma 2.27, it follows that Zp,α = Zp,β . Note that the
last two valuation domains are the contraction to Qp(X) of the valuation domains

Zpα = {φ ∈ Qp(X) | φ(α) ∈ Op} and Zpβ = {φ ∈ Qp(X) | φ(α) ∈ Op}

of Qp(X), respectively. By [Bourbaki 1985b, Chapter VI, §8, 6., Corollary 1], there exists a Qp(X)-
automorphism σ of Qp(X) such that σ(Zpα) = Zpβ . It is easy to check that σ(Zpα) = Zpσ(α). In
particular, Zpσ(α) = Zpβ . If σ(α)−β ̸= 0, let c ∈ Zp be such that vp(c) > vp(σ (α)−β). Let a ∈ Qp be
such that vp(a − σ(α))≥ vp(c). Then the polynomial (X − a)/c is in Zpσ(α) and not in Zpβ , which is a
contradiction. □

Note that, for a DVR W as in the statement of Corollary 2.28, there exists α ∈ Op ⊂ Cp of bounded
ramification such that W = Z(p),α if and only if X ∈ W . This last condition occurs for example if W is
an overring of Z[X ].

3. Polynomial Dedekind domains

In order to describe the family of Dedekind domains lying between Z[X ] and Q[X ], we briefly recall the
notion of integer-valued polynomials on algebras; see [Chabert and Peruginelli 2016; Peruginelli and
Werner 2017], for example. Let D be an integral domain with quotient field K and A a torsion-free D
algebra. We embed K and A into the extended K -algebra B = A ⊗D K , and this allows us to evaluate
polynomials over K at elements of A. If f ∈ K [X ] and a ∈ A are such that f (a) ∈ A, then we say that f
is integer-valued at a. In general, given a subset S of A, we denote by

IntK (S, A)= { f ∈ K [X ] | f (s) ∈ A,∀s ∈ S}

the ring of integer-valued polynomials over S. We omit the subscript K if A = D.
In our setting, let

O =

∏
p∈P

Op ⊂

∏
p∈P

Cp.

Given α = (αp) ∈
∏

p∈P Cp and f ∈ Q[X ], we have f (α)= ( f (αp)), which is an element of
∏

p∈P Cp.
If E =

∏
p∈P E p is a subset of

∏
p Cp, then

IntQ(E,O)= { f ∈ Q[X ] | f (α) ∈ O,∀α ∈ E};
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that is, a polynomial f is in IntQ(E,O) if f (αp) ∈ Op for each αp ∈ E p and p ∈ P. By an argument
similar to [Chabert and Peruginelli 2016, Remark 6.3], there is no loss in generality to suppose that a
subset of

∏
p∈P Cp is of the form

∏
p∈P E p when dealing with such rings of integer-valued polynomials.

We remark that we have the following representation for the ring IntQ(E,O) as an intersection of
valuation overrings (see [Peruginelli 2023, (2.2)], for example):

IntQ(E,O)=

⋂
p∈P

⋂
αp∈E p

Z(p),αp ∩

⋂
q∈P irr

Q[X ](q), (3.1)

where P irr denotes the set of irreducible polynomials in Q[X ]. By [Peruginelli 2017, Proposition 2.2], the
valuation domain Z(p),αp of Q(X) has rank 1 if and only if αp is transcendental over Q and has rank 2
otherwise (in the last case, note that necessarily α ∈ Qp).

A totally similar argument to [Peruginelli 2023, Lemma 2.5] shows that, for p ∈ P, we have

(Z \ pZ)−1(IntQ(E,O))= IntQ(E p,Op)= { f ∈ Q[X ] | f (E p)⊆ Op}.

We also need to recall the following definition introduced in [Peruginelli 2023].

Definition 3.2. We say that a subset E of O is polynomially factorizable if, for each g ∈ Z[X ] and
α = (αp) ∈ E , there exist n, d ∈ Z, n, d ≥ 1, such that g(α)n/d is a unit of O; that is, vp(g(αp)

n/d)= 0
for all p ∈ P.

The next theorem characterizes which rings of integer-valued polynomials IntQ(E,O) are Dedekind
domains. Given p ∈ P and a subset E p of Cp, we say that E p has finitely many GQp = Gal(Qp/Qp)-orbits
if E p contains finitely many equivalence classes under the relation of conjugacy over Qp (we stress that
E p may not necessarily contain a full GQp -orbit). By Corollary 2.28, this condition holds if and only if
the set {Z(p),αp | αp ∈ E p} is finite. Furthermore, if E p ⊆ Qp, then the number of GQp -orbits is finite if
and only if E p is a finite set.

Theorem 3.3. Let E =
∏

p∈P E p ⊂
∏

p Cp. Then IntQ(E,O) is a Dedekind domain if and only if , for
each prime p, E p is a subset of Cbr

p of transcendental elements over Q with finitely many GQp -orbits and
E is polynomially factorizable.

Moreover, if the above conditions hold, then the class group of IntQ(E,O) is isomorphic to the direct
sum of the class groups IntQ(E p,Op), p ∈ P, and, if E p = {α1, . . . , αn}, where the αi are pairwise
nonconjugate over Qp, then Cl(IntQ(E p,Op))= Z/eZ ⊕ Zn−1, where e is the greatest common divisor
of the ramifications indexes of αi over Qp.

In particular, assuming that E p is formed by pairwise nonconjugate elements over Qp for each p ∈ P,
IntQ(E,O) is a PID if and only if E is polynomially factorizable and, for each p ∈ P, E p contains at
most one element αp ∈ Op ∩ Cbr

p such that αp is transcendental over Q and unramified over Qp.

Proof. Let R = IntQ(E,O).
Suppose that the above conditions on E are satisfied. By (3.1), R is equal to an intersection of DVRs.

Moreover, R has finite character; that is, for every nonzero f ∈ R, f belongs to finitely many maximal
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ideals of the family of DVRs appearing in (3.1): in fact, if f (X) = g(X)/n for some g ∈ Z[X ] and
n ∈ Z, n ̸= 0, then f is divisible only by finitely many q ∈ P irr; since E is polynomially factorizable, by
[Peruginelli 2023, Lemma 2.12], the set {p ∈ P | ∃αp ∈ E p, vp(g(αp)) > 0} is finite, so that f belongs to
finitely many maximal ideals of the family Z(p),αp , αp ∈ E p, p ∈ P. Hence R is a Krull domain.

Suppose that R is not a Dedekind domain. By [Heitmann 1974, Proposition 2.2], there exists a maximal
ideal M ⊂ R of height strictly greater than one. If M ∩ Z = (0), then, since Z[X ] ⊆ R ⊆ Q[X ], it follows
that RZ\{0} = Q[X ] and 2 ≤ ht M = ht (MZ\{0})≤ dim(Q[X ])= 1, a contradiction. Hence M ∩ Z = pZ

for some p ∈ P. If we now localize at p, we have that (Z \ pZ)−1 R = Rp = IntQ(E p,Op), which is a
Dedekind domain by [Eakin and Heinzer 1973, Theorem]. So (Z\ pZ)−1 M ⊂ Rp cannot have dimension
strictly greater than one, a contradiction.

Conversely, suppose that R is a Dedekind domain. In particular, for each p ∈ P,

(Z \ pZ)−1 R = Rp = IntQ(E p,Op)

is a Dedekind domain, so {Z(p),αp | αp ∈ E p} is a finite set of DVRs (because p is contained in only
finitely many maximal ideals of these valuation overrings) which implies that E p is a subset of Cbr

p of
transcendental elements over Q and E p has finitely many GQp -orbits. Since every polynomial of R is
contained in only finitely many maximal ideals, it follows easily that E is polynomially factorizable.

Finally, suppose that R is a Dedekind domain. As in [Peruginelli 2023, Lemma 2.14], we have
Cl(R) =

⊕
p∈P Cl(Rp), where Rp = IntQ(E p,Op) for p ∈ P. The claim about the class group of Rp

follows by [Peruginelli 2023, Proposition 2.10] or by [Eakin and Heinzer 1973, Theorem], since, for each
p ∈ P, we are assuming that E p = {α1, . . . , αn} is formed by pairwise nonconjugate elements over Qp.

The claim about when IntQ(E,O) is a PID is now straightforward. □

Let Ẑ =
∏

p∈P Zp. In [Peruginelli 2023, Theorem 2.17], we show that if R is a Dedekind domain
between Z[X ] and Q[X ] such that the residue fields of prime characteristic are finite fields, then
R = IntQ(E, Ẑ), for some E =

∏
p E p ⊂ Ẑ such that E is polynomially factorizable and, for each

p ∈ P, E p is a finite subset of Zp of transcendental elements over Q. Now, we are able to complete the
classification of the Dedekind domains R, Z[X ] ⊂ R ⊆ Q[X ], without any restriction on the residue fields.

Theorem 3.4. Let R be a Dedekind domain such that Z[X ] ⊂ R ⊆ Q[X ]. Then R is equal to IntQ(E,O)
for some polynomially factorizable subset E =

∏
p∈P E p ⊂O such that, for each prime p, E p ⊂ Op ∩Cbr

p

is a finite set of transcendental elements over Q.

Proof. Note first that, by [Peruginelli 2018, Theorem 3.14], no valuation overring of W of R can be a
residually transcendental extension of W ∩Q since, for such a valuation domain W , the domain W ∩Q[X ]

is not Prüfer. Hence, for each prime ideal P ⊂ R such that P ∩ Z = pZ, p ∈ P, RP is a DVR of Q(X)
which is a residually algebraic extension of Z(p). By Corollary 2.28, there exists α ∈ Op ∩ Cbr

p such that
Rp = Z(p),α. Let E p be the subset of Cbr

p formed by all such αp. Note that, since p is contained in only
finitely many maximal ideals P of R, it follows that E p is a finite set; moreover, each element of E p is
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transcendental over Q since RP is a DVR. It now follows that

R =

⋂
p∈P

⋂
P⊂R

P∩Z=pZ

RP ∩ Q[X ] =

⋂
p∈P

IntQ(E p,Op)= IntQ(E,O).

The rest of the statement follows by Theorem 3.3. □

Finally, the next corollary describes the PIDs among the family of Dedekind domains between Z[X ]

and Q[X ].

Corollary 3.5. Let R be a PID such that Z[X ] ⊂ R ⊆ Q[X ]. Then R is equal to IntQ(E,O) for some
E =

∏
p∈P E p ⊂O such that, for each prime p, E p contains at most one element αp ∈ Op ∩Cbr

p such that
αp is transcendental over Q and unramified over Qp and E = {α = (αp)} is polynomially factorizable.

Proof. By Theorem 3.4, the ring R is equal to IntQ(E,O) for some polynomially factorizable subset
E =

∏
p∈P E p ⊂ O such that, for each prime p, E p ⊂ Op ∩ Cbr

p is a set of transcendental elements
over Q with finitely many GQp -orbits. Since by hypothesis the class group of R is trivial, it follows by
Theorem 3.3 that, for each p ∈ P, E p contains at most one element, which is transcendental over Q and
unramified over Qp. □

Remark 3.6. As we mentioned in the Introduction, given a group G which is the direct sum of a countable
family of finitely generated abelian groups, there exists a Dedekind domain R between Z[X ] and Q[X ]

with class group G [Peruginelli 2023, Theorem 3.1]. The domain R of that construction is equal to
IntQ(E,O) for some polynomially factorizable subset E =

∏
p∈P E p, where E p is a finite subset of Qp

of transcendental elements over Q. In particular, R has finite residue fields of prime characteristic
[Peruginelli 2023, Theorem 2.17]; the reason is that the valuation overrings Z(p),αp of R in (3.1) have
finite residue fields precisely because αp is chosen in Qp for each p ∈ P (Proposition 2.24).

Now, by means of Theorem 2.26, with the same method used in [Peruginelli 2023, Theorem 3.1],
we can build a Dedekind domain R, Z[X ] ⊂ R ⊆ Q[X ], with prescribed class group G as above and
prescribed residue fields of prime characteristic, which can be finite or infinite algebraic extensions of the
prime field Fp according to whether the above elements αp ∈ E p ⊂ Cbr

p transcendental over Q are either
algebraic or transcendental over Qp.
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[Ioviţă and Zaharescu 1995] A. Ioviţă and A. Zaharescu, “Completions of r.a.t.-valued fields of rational functions”, J. Number
Theory 50:2 (1995), 202–205. MR

[Kaplansky 1942] I. Kaplansky, “Maximal fields with valuations”, Duke Math. J. 9 (1942), 303–321. MR

[Khanduja and Saha 1999] S. K. Khanduja and J. Saha, “A generalized fundamental principle”, Mathematika 46:1 (1999), 83–92.
MR

[Lampert 1986] D. Lampert, “Algebraic p-adic expansions”, J. Number Theory 23:3 (1986), 279–284. MR

[Matignon and Ohm 1988] M. Matignon and J. Ohm, “A structure theorem for simple transcendental extensions of valued
fields”, Proc. Amer. Math. Soc. 104:2 (1988), 392–402. MR

[Narkiewicz 2004] W. Narkiewicz, Elementary and analytic theory of algebraic numbers, 3rd ed., Springer, 2004. MR

[Ostrowski 1935a] A. Ostrowski, “Untersuchungen zur arthmetischen Theorie der Körper, I”, Math. Z. 39:1 (1935), 269–320.
MR

[Ostrowski 1935b] A. Ostrowski, “Untersuchungen zur arithmetischen Theorie der Körper, II–III”, Math. Z. 39:1 (1935),
321–404. MR

[Peruginelli 2017] G. Peruginelli, “Transcendental extensions of a valuation domain of rank one”, Proc. Amer. Math. Soc. 145:10
(2017), 4211–4226. MR

[Peruginelli 2018] G. Peruginelli, “Prüfer intersection of valuation domains of a field of rational functions”, J. Algebra 509
(2018), 240–262. MR

[Peruginelli 2023] G. Peruginelli, “Polynomial Dedekind domains with finite residue fields of prime characteristic”, Pacific J.
Math. 324:2 (2023), 333–351. MR

[Peruginelli and Spirito 2020] G. Peruginelli and D. Spirito, “The Zariski–Riemann space of valuation domains associated to
pseudo-convergent sequences”, Trans. Amer. Math. Soc. 373:11 (2020), 7959–7990. MR

[Peruginelli and Spirito 2021] G. Peruginelli and D. Spirito, “Extending valuations to the field of rational functions using
pseudo-monotone sequences”, J. Algebra 586 (2021), 756–786. MR

[Peruginelli and Werner 2017] G. Peruginelli and N. J. Werner, “Non-triviality conditions for integer-valued polynomial rings on
algebras”, Monatsh. Math. 183:1 (2017), 177–189. MR

[Popescu and Zaharescu 1995] N. Popescu and A. Zaharescu, “On the structure of the irreducible polynomials over local fields”,
J. Number Theory 52:1 (1995), 98–118. MR

[Ribenboim 1958] P. Ribenboim, “Corps maximaux et complets par des valuations de Krull”, Math. Z. 69 (1958), 466–479. MR

[Ribenboim 1968] P. Ribenboim, Théorie des valuations, Sémin. Math. Sup. 9, Presses Univ. Montréal, 1968. MR

[Zariski and Samuel 1960] O. Zariski and P. Samuel, Commutative algebra, II, Van Nostrand, Princeton, NJ, 1960. MR

Communicated by Anand Pillay
Received 2023-03-21 Revised 2024-06-10 Accepted 2024-10-21

gperugin@math.unipd.it Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova,
Padova, Italy

mathematical sciences publishers msp

http://msp.org/idx/mr/782296
http://msp.org/idx/mr/782297
http://msp.org/idx/arx/1805.08869
https://doi.org/10.1216/JCA-2016-8-1-1
http://msp.org/idx/mr/3482343
https://doi.org/10.2307/2038634
https://doi.org/10.2307/2038634
http://msp.org/idx/mr/319975
https://doi.org/10.1007/3-540-30035-X
http://msp.org/idx/mr/2183496
http://projecteuclid.org/euclid.dmj/1077310578
http://msp.org/idx/mr/369351
https://doi.org/10.1006/jnth.1995.1014
http://msp.org/idx/mr/1316815
http://projecteuclid.org/euclid.dmj/1077493226
http://msp.org/idx/mr/6161
https://doi.org/10.1112/S0025579300007580
http://msp.org/idx/mr/1750405
https://doi.org/10.1016/0022-314X(86)90073-9
http://msp.org/idx/mr/846958
https://doi.org/10.2307/2046985
https://doi.org/10.2307/2046985
http://msp.org/idx/mr/962804
https://doi.org/10.1007/978-3-662-07001-7
http://msp.org/idx/mr/2078267
https://doi.org/10.1007/BF01201361
http://msp.org/idx/mr/1545505
https://doi.org/10.1007/BF01201362
http://msp.org/idx/mr/1545506
https://doi.org/10.1090/proc/13574
http://msp.org/idx/mr/3690607
https://doi.org/10.1016/j.jalgebra.2018.05.012
http://msp.org/idx/mr/3812201
https://doi.org/10.2140/pjm.2023.324.333
http://msp.org/idx/mr/4619855
https://doi.org/10.1090/tran/8185
https://doi.org/10.1090/tran/8185
http://msp.org/idx/mr/4169679
https://doi.org/10.1016/j.jalgebra.2021.07.004
https://doi.org/10.1016/j.jalgebra.2021.07.004
http://msp.org/idx/mr/4293698
https://doi.org/10.1007/s00605-016-0951-8
https://doi.org/10.1007/s00605-016-0951-8
http://msp.org/idx/mr/3634352
https://doi.org/10.1006/jnth.1995.1058
http://msp.org/idx/mr/1331768
https://doi.org/10.1007/BF01187423
http://msp.org/idx/mr/97392
http://msp.org/idx/mr/249425
https://doi.org/10.1007/978-3-662-29244-0
http://msp.org/idx/mr/120249
mailto:gperugin@math.unipd.it
http://msp.org


msp
ALGEBRA AND NUMBER THEORY 19:10 (2025)

https://doi.org/10.2140/ant.2025.19.1973

Affine Deligne–Lusztig varieties via
the double Bruhat graph, I:

Semi-infinite orbits
Felix Schremmer

We introduce a new language to describe the geometry of affine Deligne–Lusztig varieties in affine flag
varieties. This first part of a two-paper series develops the definition and fundamental properties of the
double Bruhat graph by studying semi-infinite orbits. This double Bruhat graph was originally introduced
by Naito and Watanabe to study periodic R-polynomials. We use it to describe the geometry of many
affine Deligne–Lusztig varieties, overcoming a previously ubiquitous regularity condition.

1. Introduction

Shimura varieties play a central role in the Langlands program. By giving the Shimura variety an
interpretation as a moduli space (e.g., of certain abelian varieties), one obtains an integral model whose
generic fibre recovers the original Shimura variety [Rapoport 2005; Kisin and Pappas 2018; Pappas 2023].
The special fibre of such an integral model is then known as the mod p reduction of the Shimura variety.
In the case of a parahoric level structure, the geometry of each special fibre is closely related to the
geometry of corresponding affine Deligne–Lusztig varieties. Similar affine Deligne–Lusztig varieties
occur in the special fibres of moduli spaces of local G-shtukas [Viehmann 2018].

We consider a reductive group G defined over a local field F, whose completion of the maximal
unramified extension we denote by F̆. Given a parahoric subgroup K ⊂ G(F̆), we associate the affine
Deligne–Lusztig variety X K

x (b) to any two elements x and b in G(F̆) [Rapoport 2005, Definition 4.1]. It
is defined as a locally closed subvariety of the partial flag variety associated with K. It has the structure
of a finite-dimensional scheme or perfect scheme over the residue field k of F̆, whose geometric points
are given by

Xx(b) = X K
x (b) = {g ∈ G(F̆)/K | g−1bσ(g) ∈ K x K } ⊂ G(F̆)/K .

Here, σ denotes the Frobenius of F̆/F. One notes that the affine Deligne–Lusztig variety depends, up to
isomorphism, only on the double coset K x K ⊂ G(F̆) and the σ -conjugacy class

[b] = {g−1bσ(g) | g ∈ G(F̆)}.
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The intersection of these two sets K x K ∩ [b] is known as Newton stratum and its geometry is closely
related to that of the affine Deligne–Lusztig variety. The most important questions, in increasing order of
difficulty, are the following:

(Q1) When is Xx(b) empty? Equivalently, when is the Newton stratum empty?

(Q2) If Xx(b) ̸= ∅, what is its dimension?

(Q3) How many irreducible components of any given dimension does Xx(b) have?

The final question is especially interesting when the given dimension is equal to dim Xx(b), i.e., if one
asks for the top-dimensional irreducible components. The number of such irreducible components will in
general be infinite. However, the σ -centralizer of b,

Jb(F) = {g ∈ G(F̆) | g−1bσ(g) = b},

acts by left multiplication on Xx(b). There are only finitely many orbits of irreducible components up to
the Jb(F)-action, which is how (Q3) should be understood. Equivalently, one may ask for the number of
top-dimensional irreducible components of the Newton stratum.

The first step towards answering these three questions is to give suitable parametrizations for the double
cosets

K \ G(F̆)/K = {K x K | x ∈ G(F̆)}

and σ -conjugacy classes
B(G) = {[b] | b ∈ G(F̆)}.

We will assume that the group G is split and choose a split maximal torus T. For this introduction, this
merely provides a slightly more convenient notation. More importantly, this restriction is essential for the
remainder of the article due to the dependence on the earlier work [Görtz et al. 2006] with this assumption.

We first consider the case of a hyperspecial subgroup K. If G is already defined over the ring of
integers OF̆ of F̆, then K = G(OF̆ ) would be a typical example of this. For hyperspecial K, the double
cosets K \G(F̆)/K are parametrized by the dominant elements of the cocharacter lattice X∗(T ). Explicitly,
evaluation at a uniformizer assigns to each cocharacter µ ∈ X∗(T ) a representative µ̇ ∈ T (F̆), and then
each double coset K x K contains the representative of precisely one dominant cocharacter µ. We also
write KµK for K µ̇K. Then the Cartan decomposition is given by

G(F̆) =
⊔

µ∈X∗(T )
dominant

KµK .

If K = I is an Iwahori subgroup, the double cosets I \G(F̆)/I are parametrized by the extended affine
Weyl group W̃. This group can be defined as NG(T )(F̆)/T (OF̆ ) and it is isomorphic to the semidirect
product of the Weyl group W = NG(T )(F̆)/T (F̆) of G with the cocharacter lattice X∗(T ). Here, we
write NG(T ) for the normalizer of T inside G. Choosing for each x ∈ W̃ a representative ẋ ∈ NG(T )(F̆),
the double coset I x I = I ẋ I is independent of this choice. We obtain the Iwahori–Bruhat decomposition

G(F̆) =
⊔

x∈W̃
I x I.
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For general parahoric levels, one may parametrize K \ G(F̆)/K by suitable double cosets in W̃, but
we will not consider this case.

The σ -conjugacy class of an element b ∈ G(F̆) is uniquely determined by two invariants; this is a
celebrated result of Kottwitz [1985; 1997]. These invariants are known as the (dominant) Newton point
ν(b) ∈ X∗(T ) ⊗ Q and the Kottwitz point κ(b) ∈ π1(G). Here, π1(G) = X∗(T )/Z8∨ is the Borovoi
fundamental group and Z8∨ is the coroot lattice. Following [He 2014, Theorem 3.7], one may also
parametrize the set B(G) using σ -conjugacy classes in W̃.

Since the Kottwitz point κ : G(F̆) → π1(G) parametrizes the connected components of the partial flag
variety, we get that κ(x) = κ(b) is a necessary condition for Xx(b) ̸= ∅. Once this condition is imposed,
we may focus on comparing the above parametrization for x with the Newton point ν(b).

In the case of hyperspecial level, our three initial questions have been mostly solved after concentrated
effort by many researchers. For the split case under consideration, we can summarize the results as
follows (while still providing references for the general case).

Theorem 1.1. Assume that K is hyperspecial. Let [b] ∈ B(G) and µ ∈ X∗(T ) be a dominant coweight.

(a) The affine Deligne–Lusztig variety Xµ(b) is nonempty if and only if the Mazur inequality is satisfied,
that is, κ(b) = κ(µ) and ν(b) ≤ µ in the dominance order of X∗(T ) ⊗ Q. This was conjectured by
Kottwitz and Rapoport, and proved in [Rapoport and Richartz 1996; Gashi 2010; He 2014].

(b) If Xµ(b) ̸= ∅, it is equidimensional of dimension

dim Xµ(b) =
1
2

(
⟨µ − ν(b), 2ρ⟩ − def(b)

)
.

Here, def(b) denotes the defect of b, which is defined as rkF (G) − rkF (Jb); see [Chai 2000; Kottwitz
2006]. This was conjectured by Rapoport, and proved in [Görtz et al. 2006; Viehmann 2006; Hamacher
2015; Takaya 2025].

(c) The Jb(F)-orbits of irreducible components of Xµ(b) are in bijection with a certain basis of the
weight space Mµ(λ(b)) of the irreducible quotient Mµ of the highest-weight Verma module Vµ. Here,
λ(b) ∈ X∗(T ) is the largest cocharacter satisfying λ(b) ≤ ν(b) and κ(λ(b)) = κ(b). This was conjectured
by Chen and Zhu, and proved in [Zhou and Zhu 2020; Nie 2022].

We see that once κ(µ) = κ(b) is required, the difference µ − ν(b), resp. µ − λ(b), determines most
properties of Xµ(b), using, e.g., the fact that the dimension of the weight space Mµ(λ(b)) can be approx-
imated using the dimension of Vµ(λ(b)), which is Kostant’s partition function applied to the difference
µ − λ(b). Under certain regularity conditions, the dimensions of the two weight spaces will be equal.

Let us now summarize the most important results known in the case of Iwahori level structure. Assume
that K = I is an Iwahori subgroup. Pick an element x ∈ W̃ ∼= W ⋉ X∗(T ) and write it as x = wtµ, where
w ∈ W and µ ∈ X∗(T ). The element t ∈ F is the uniformizer, so the representative of tµ in G is given by
the image of t under the cocharacter µ. We set

B(G)x = {[b] ∈ B(G) | I x I ∩ [b] ̸= ∅} = {[b] ∈ B(G) | Xx(b) ̸= ∅}.
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It should not be surprising that B(G)x contains a unique minimal and a unique maximal element, and
both have been explicitly described [Viehmann 2014; 2021; Schremmer 2022].

For any [b] ∈ B(G)x , we know that dim Xx(b) ≤ dx(b) [He 2016, Theorem 2.30], where dx(b) is the
virtual dimension defined in [He 2014, Section 10]. It is defined as

dx(b) =
1
2

(
ℓ(x) + ℓ(η(x)) − ⟨ν(b), 2ρ⟩ − def(b)

)
.

The definition of η(x) ∈ W is somewhat technical, so we will not recall it here. A striking feature of the
virtual dimension is that it is a simple sum of four terms, the first two only depending on x ∈ W̃ and the latter
two only depending on [b] ∈ B(G). The virtual dimension behaves best when the element x satisfies a cer-
tain regularity condition known as being in a shrunken Weyl chamber; see [Schremmer 2022, Example 2.8].

Theorem 1.2. Let x ∈ W̃, denote the largest element in B(G)x by [bx ] and the smallest one by [mx ].

(a) Suppose that dim Xx(bx) = dx(bx). Then

B(G)x = {[b] ∈ B(G) | [mx ] ≤ [b] ≤ [bx ]}.

For each [b] ∈ B(G)x , the variety Xx(b) is equidimensional of dimension dim Xx(b) = dx(b) [Milićević
and Viehmann 2020, Theorem 1.1]. The elements x satisfying this condition have been classified; see
[Schremmer 2022, Theorem 1.2].

(b) Suppose that x lies in a shrunken Weyl chamber. Then dim Xx(mx) = dx(mx) [Viehmann 2021,
Theorem 1.1(2)]. For each [mx ] ≤ [b] ∈ B(G) with ν(bx) − ν(b) sufficiently large, we have Xx(b) ̸= ∅
and dim Xx(b) = dx(b) [He 2021, Theorem 1.1].

While in a quantitative sense “most” elements of W̃ lie in a shrunken Weyl chamber, the examples
coming from Shimura varieties typically do not. In fact, the difference between virtual dimension and
dimension for basic [b] can be quite large for these examples.

It should not be a surprise that there are many examples where dimension and virtual dimension
differ. For nonshrunken elements, the notion of virtual dimension behaves poorly. For example, it is
not compatible with certain natural automorphisms of the reductive group G that preserve the Iwahori
subgroup I (and hence induce isomorphisms of affine Deligne–Lusztig varieties). Even for shrunken
elements, we expect to have dim Xx(b) = dx(b) only for “small” elements [b] ∈ B(G)x .

The case (a) in Theorem 1.2 is known as the cordial case. While (Q1) and (Q2) have “ideal” answers
in this case, these descriptions are too good to be true in general. It is known that the set B(G)x will in
general contain gaps and that affine Deligne–Lusztig varieties may fail to be equidimensional. If x is
cordial, the answer to (Q3) does not seem to be known in general.

We may summarize that (Q1) and (Q2) are well understood if [b] ∈ B(G) is small relative to x and
x is in a shrunken Weyl chamber, or if x enjoys some exceptionally good properties.

Moreover, all three questions are perfectly understood in the case that [b] = [bx ] is the largest
σ -conjugacy class in B(G)x , also known as the generic σ -conjugacy class of I x I. We have dim Xx(bx) =

ℓ(x) − ⟨ν(bx), 2ρ⟩ [He 2016, Theorem 2.23]. Up to the Jb(F)-action, there is only one irreducible
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component in Xx(bx) [Milićević and Viehmann 2020, Lemma 3.2]. In order to describe [bx ] in terms
of x , one may (and arguably should) use the quantum Bruhat graph [Milićević 2021; Schremmer 2022].

The goal of this paper and its sequel is to introduce a new concept, which generalizes the virtual
dimension in the case of Theorem 1.2(b) and also generalizes the known theory for the generic σ -conjugacy
class. We give answers to all three above questions in many cases that were previously intractable.

In this article, we follow one of the oldest approaches towards affine Deligne–Lusztig varieties in the
affine flag variety, namely the one developed by Görtz, Haines, Kottwitz and Reuman [Görtz et al. 2006,
Section 6]. They consider the case of a split group G, an equal characteristic field F and an integral
σ -conjugacy class [b] ∈ B(G); the element x ∈ W̃ is allowed to be arbitrary. They compare the geometric
properties of Xx(b) (especially questions (Q1)–(Q3)) to similar geometric properties of intersections, in
the affine flag variety, of I x I with certain semi-infinite orbits.

Given a Borel B = T U , we get another decomposition of G(F̆), resp. the affine flag variety:

G(F̆) =
⊔

y∈W̃
U (L)y I.

The individual pieces U (L)y I are called semi-infinite orbits. Each Borel containing our fixed torus T
gives rise to a different decomposition. In our notation, we will fix B and then consider the semi-infinite
orbit decompositions associated with the conjugates u Bu−1

=
u B for various u ∈ W.

In order to understand Xx(b) following [Görtz et al. 2006, Theorem 6.3.1], we have to understand the
intersections

I x I ∩
uU (F̆)y I ⊂ G(L)/I (1.3)

for various u ∈ W and y ∈ W̃ ∩[b]. One may ask questions (Q1)–(Q3) analogously for these intersections.
Unfortunately, not many answers to these questions have been given in the previous literature, leaving basic
geometric properties of (1.3) largely open. There is a decomposition of (1.3) into subvarieties parametrized
by folded alcove walks [Parkinson et al. 2009, Theorem 7.1], which has been used to study affine Deligne–
Lusztig varieties [Milićević et al. 2019], but these results have often been difficult to apply in practice.

One may always find an element v ∈ W such that I x I ⊆
vU (L)x I, and we will use this semi-infinite

orbit to approximate I x I. Doing so (in the proof of Theorem 5.2 below), we can compare the intersection
(1.3) to the intersection

(vU (F̆) ∩
uw0U (F̆))x I ∩

uU (F̆)y I (1.4)

for v ∈ W such that I x I ⊆
vU (F̆)x I. We write w0 ∈ W for the longest element, so that uw0 B is the Borel

subgroup opposite to u B. As an application of our findings, we will later see in Proposition 4.14 that
(1.4) can equivalently be expressed as the intersection of three semi-infinite orbits, since

(vU (F̆) ∩
uw0U (F̆))x I = (vU (F̆)x I ) ∩ (uw0U (F̆)x I ).

The first part of this paper studies intersections of the form (1.4). This is a question of independent
interest, whose answer we want to later apply to affine Deligne–Lusztig varieties. A different motivation to
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study intersections as in (1.4) is the following: One may naturally ask about the intersections of arbitrary
semi-infinite orbits

uU (F̆)x I ∩
vU (F̆)y I ⊂ G(F̆)/I. (1.5)

Observe that the group uU (F̆) ∩
vU (F̆) acts by left multiplication on (1.5), and the orbits of this action

will be infinite-dimensional (unless u = vw0). However, each such orbit will contain a point of (1.4), so
we may see (1.4) as a finite-dimensional space of representatives of (1.5). Moreover, the intersection (1.5)
is empty if and only if the intersection (1.4) is empty.

We study the intersection (1.4) for arbitrary x, y, u, v in Section 3. By comparing the valuation of root
subgroups with the extended affine Weyl group, we get a decomposition of (1.4) into finitely many locally
closed subvarieties, each of them irreducible and finite-dimensional.

It turns out that there is very convenient combinatorial tool to parametrize the subvarieties of this
decomposition and to describe their dimensions. This is the double Bruhat graph, a combinatorial object
introduced in [Naito and Watanabe 2017, Section 5.1] in order to study periodic R-polynomials. The
double Bruhat graph is a finite graph associated with the finite Weyl group W, and it generalizes the
aforementioned quantum Bruhat graph. We compare the double Bruhat graph with some foundational
literature on the quantum Bruhat graph in Section 4.

Thus, our first main result expresses the intersections of semi-infinite orbits using the double Bruhat
graph.

Theorem 1.6 (see Theorem 4.6). Let x, y ∈ W̃ and u, v ∈ W. Denote by w0 ∈ W the longest element.
Then the intersection

uU (F̆)x I ∩ (uw0U (F̆) ∩
vU (F̆))y I ⊂ G(F̆)/I

has finite dimension (or is empty). We provide a decomposition into finitely many locally closed subsets
of the affine flag variety, parametrized by certain paths in the double Bruhat graph. Each subset is
irreducible, smooth and we calculate its dimension explicitly.

Finally, in Section 5, we apply these results on semi-infinite orbits to questions on affine Deligne–Lusztig
varieties. We review the theory of [Görtz et al. 2006] and study the approximation of I x I by semi-infinite
orbits. We introduce a new regularity condition on elements x ∈ W̃ that we call superparabolic. While
this is a fairly restricting assumption, it covers in a quantitative sense “most” elements in the extended
affine Weyl group.

Theorem 1.7 (see Theorem 5.7). Let x ∈ W̃ and choose an integral element [b] ∈ B(G). We give a
necessary condition for Xx(b) ̸= ∅ and an upper bound d for its dimension, both in terms of the double
Bruhat graph. This improves previously known estimates such as Mazur’s inequality or He’s virtual
dimension. We also give an upper bound for the number of Jb(F)-orbits of d-dimensional irreducible
components of Xx(b).

If x = wtµ is superparabolic, and µdom
− ν(b) is small relative to the superparabolicity condition

imposed, then the above “necessary condition” for Xx(b) ̸= ∅ becomes sufficient, and the above upper
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bound for the dimension is sharp, i.e., dim Xx(b) = d. If moreover the Newton point of [b] is regular,
then the above upper bound for the number of irreducible components is sharp.

If x is in a shrunken Weyl chamber, the superparabolicity condition is simply a superregularity condition
like the ones typically studied in the literature, e.g., [Milićević 2021; Milićević and Viehmann 2020; He
and Yu 2021]. While some affine Deligne–Lusztig varieties associated with superregular elements x have
been described in the past, this was only possible in the cases where [b] ∈ B(G) is either the largest
element [bx ] ∈ B(G)x or relatively small in B(G)x (in the sense of Theorem 1.2(b)). Our result “fills the
gap”, describing the geometry of Xx(b) when [b] is relatively large with respect to x .

Moreover, there are plenty of superparabolic elements which do not lie in any shrunken Weyl chamber.
In fact, in a quantitative sense, “most” elements which do not lie in shrunken Weyl chambers are
superparabolic. These cases have rarely been studied in the past, and the geometry of Xx(b) has only
been understood in very specific situations (such as x being cordial or [b] = [bx ]). Theorem 1.7 fully
answers our main questions for superparabolic x ∈ W̃ and many [b] ∈ B(G).

Theorem 1.7 crucially assumes that F is of equal characteristic, the group G is split and the element [b]

is integral. The assumption on F can easily be removed from the theorem by using formal arguments
comparing the equal characteristic case with the mixed characteristic case; see [He 2014, Section 6.1].
It is reasonable to expect that the assumption of G being split can be lifted if one finds an appropriate
generalization of [Görtz et al. 2006] to nonsplit groups. It is unfortunately unclear how to lift the
assumption of [b] being integral for the method of this paper to work. The generalization of [Görtz et al.
2006] to nonintegral σ -conjugacy classes [b] is given in [Görtz et al. 2010], but the connection between
the latter paper and the double Bruhat graph remains unclear. In the second part of this two-paper series,
we will consider a different approach towards the geometry of Xx(b). This approach comes without
any assumptions on G, F, [b], but requires superregular elements x ∈ W̃ instead of the more permissible
notion of superparabolic elements considered here.

By introducing the double Bruhat graph, we can capture the delicate interplay between x ∈ W̃ and
[b] ∈ B(G), which is not accounted for, e.g., by the notion of virtual dimension. Using this new language,
we give new insights on the geometry of affine Deligne–Lusztig varieties, filling a conceptual vacuum of
what dim Xx(b) “should be” when it cannot be virtual dimension. In this paper and its sequel, we hope to
give a glimpse of what a generalization of Theorem 1.1 to the Iwahori level might look like.

2. Notation

Let Fq be a finite field and F = Fq((t)) the field of formal Laurent series. We denote the usual t-adic
valuation by νt . Then OF = Fq [[t]] is its ring of integers. Choose an algebraic closure k = Fq and denote
by L = F̆ = k((t)) the completion of the maximal unramified extension of F. We write OL = k[[t]] for its
ring of integers. Denote the Frobenius of L/F by σ , i.e.,

σ
(∑

i
ai t i

)
=

∑
i
(ai )

q t i .
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We consider a split reductive group G defined over OF . We fix a split maximal torus and a Borel
T ⊂ B ⊂ G both defined over OF . As our Iwahori subgroup I, we choose the preimage of B(k) under
the projection G(OL) → G(k).

Denote the (co)character lattices of T by X∗(T ), resp. X∗(T ), and the (co)root systems by 8 ⊂ X∗(T ),
resp. 8∨

⊂ X∗(T ). The positive roots defined by B are denoted by 8+. We let W = NG(T )/T be the
Weyl group of W and W̃ = NG(T )(L)/T (OL) the extended affine Weyl group. Under the isomorphism
W̃ ∼= W ⋉X∗(T ), we write elements x ∈ W̃ as x =wtµ for w ∈ W, µ∈ X∗(T ). A representative of εµ

∈ W̃
is given by evaluating the cocharacter µ at the inverse of the uniformizer t ∈ L , i.e., by µ(t−1)∈ NG(T )(L).

Denote by U the unipotent radical of B, so that B = U T. For each α ∈ 8, we denote the corresponding
root subgroup by Uα ⊂ G. These come with an isomorphism to Uα

∼= Ga , the 1-dimensional additive
group over F, from the construction of the Bruhat–Tits building.

The set of affine roots is 8af = 8 × Z. For each affine root a = (α, n), we define the affine root
subgroup Ua ⊂ Uα(L) to be the set of elements of the form Uα(r tn) with r ∈ k. The natural action of W̃
on 8af is given by

(wtµ)(α, n) = (wα, n − ⟨µ, α⟩).

We denote the positive affine roots by 8+

af ; these are those a ∈ 8af with Ua ⊂ I. By abuse of notation,
we denote the indicator function of positive roots by 8+ as well. Then

a = (α, n) ∈ 8+

af ⇐⇒ n ≥ 8+(−α) :=

{
1, α ∈ 8−,

0, α ∈ 8+.

Denote the set of simple roots by 1 ⊆ 8+ and the set of simple affine roots by 1af ⊆ 8+

af . The latter are
given by the roots of the form (α, 0) for α ∈ 1 as well as (−θ, 1) whenever θ is the highest root of an
irreducible component of 1.

For x =wtµ
∈ W̃, we denote by LP(x)⊆ W the set of length positive elements as introduced by [Schrem-

mer 2022, Section 2.2]. We remark that LP(x) is always nonempty, and it collapses to one single element if
and only if x satisfies a mild regularity condition known as a shrunken Weyl chamber [Görtz et al. 2010, Def-
inition 7.2.1]. This is equivalent to x lying in the lowest two-sided Kazhdan–Lusztig cell. If LP(x) = {v},
then the element η(x) occurring in the definition of virtual dimension above is given by v−1wv.

3. Semi-infinite orbits

For any u ∈ W, the affine flag variety can be decomposed into semi-infinite orbits

G(L)/I =
⊔

x∈W̃

uU (L)x I.

Each element of the finite Weyl group W yields a different decomposition of G(L)/I, so one may naturally
ask how these decompositions are related. Given u, v ∈ W and x, y ∈ W̃, we would like to understand

uU (L)x I ∩
vU (L)y I ⊂ G(L)/I.

Up to multiplying both sides by x−1 on the left and relabelling, it suffices to study intersections
uw0U (L)y I ∩

vU (L)I ⊂ G(L)/I.
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Here, we write w0 ∈ W for the longest element of the Weyl group such that uw0 B(L) is the Borel subgroup
opposite to u B(L).

Let us enumerate the positive roots as 8+
= {β1, . . . , β#8+}. Then every element g ∈

vU (L) can be
written in the form g = Uvβ1(g1) · · · Uvβ#8+

(g#8+), with g1, . . . , g#8+ ∈ L . For each such element g, there
exists a uniquely determined y ∈ W̃ with gI ∈

uw0U (L)y I, and we wish to compute that element y in
terms of the gi ∈ L .

In order to facilitate this computation, we make two simplifications. First, let us restrict the enumeration
of positive roots 8+

= {β1, . . . , β#8+} such that

{β ∈ 8+
| (uw0)

−1vβ ∈ 8+
} = {β1, . . . , βn}

for some n ∈ {0, . . . , #8+
}. Then

Uvβ1(g1) · · · Uvβn (gn) ∈
uw0U (L)

by choice of the labelling of the positive roots. Hence we may replace g by

g′
= Uvβn+1(gn+1) · · · Uvβ#8+

(g#8+),

using that gI ∈
uw0U (L)y I if and only if g′ I ∈

uw0U (L)y I.
For now, we expressed g′

∈
vU (L) ∩

uU (L) using an arbitrary enumeration of the roots

{β ∈ 8+
| u−1vβ ∈ 8+

} = {βn+1, . . . , β#8+}.

Our second simplification is to use not just any such enumeration, but rather a specific one with extra
structure, namely a reflection order.

Lemma 3.1 [Dyer 1993, Proposition 2.13; Papi 1994]. Let ≺ be a total order on 8+. Then the following
are equivalent:

(a) For all α, β ∈ 8+ with α + β ∈ 8+, we have

α ≺ α + β ≺ β or β ≺ α + β ≺ α.

(b) There exists a uniquely determined reduced word for the longest element w0 = sα1 · · · sα#8+
with

corresponding simple roots α1, . . . , α#8+ ∈ 1 such that

α1 ≺ sα1(α2) ≺ · · · ≺ sα1 · · · sα#8+−1
(α#8+). □

A total order satisfying these equivalent conditions is called a reflection order. The following important
facts on reflection orders will be used frequently.

Lemma 3.2. Let ≺ be a reflection order and write 8+
= {β1 ≺ · · · ≺ β#8+}.

(a) For 1 ≤ a ≤ b ≤ #8+ and u ∈ W, the subsets

Uuβa (L)Uuβa+1(L) · · · Uuβb(L) and Uuβb+1(L) · · · Uuβ#8+
(L)U−uβ1(L)U−uβ2(L) · · · U−uβa−1(L)

are subgroups of G(L).
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(b) For n = 0, . . . , #8+ and u = sβn+1 · · · sβ#8+
∈ W, we have

{β ∈ 8+
| u−1β ∈ 8−

} = {βn+1, . . . , β#8+}.

Any u ∈ W arises in this way for some reflection order ≺ and some index n ∈ {0, . . . , #8+
}.

Proof. (a) If α, β ∈ {βa, . . . , βb}, then any positive linear combination of α, β that lies in 8+ will also
lie in this set. The fact that the first subset of G(L) is a subgroup thus follows from the known theory of
root subgroups [Springer 1998, Proposition 8.2.3].

Let us study the second subset. If both α, β lie in {βb+1, . . . , β#8+}, or both lie in {−β1, . . . ,−βa−1},
so will their sum (if it is in 8). So suppose that α ∈ {βb+1, . . . , β#8+} and β ∈ {−β1, . . . ,−βa−1} satisfy
α + β ∈ 8.

If α + β ∈ 8+, then α = (α + β) + (−β) is expressed as the sum of two positive roots, which cannot
both be ≺ α. Hence α + β ≻ α; thus α + β ∈ {βb+1, . . . , β#8+} as well.

If α + β ∈ 8−, then −β = α − (α + β) is expressed as the sum of two positive roots, which cannot
both be ≻ −β. Hence −(α + β) ≺ −β, so α + β ∈ {−β1, . . . ,−βa−1}. The claim follows as above.

(b) Let w0 = sα1 · · · sα#8+
be the reduced word such that βi = sα1 · · · sαi−1(αi ) for i = 1, . . . , #8+. Then

uw0 = sβn+1 · · · sβ#8+
· · · sβ#8+

· · · sβ1 = sβn · · · sβ1 = sα1 · · · sαn .

Hence
{β ∈ 8+

| u−1β ∈ 8−
} = {β ∈ 8+

| (uw0)
−1β ∈ 8+

}

= 8+
\ {β ∈ 8+

| (uw0)
−1β ∈ 8−

}

= 8+
\ {α1, sα1(α2), . . . , sα1 · · · sαn−1(αn)}

= 8+
\ {β1, . . . , βn} = {βn+1, . . . , β#8+}.

This shows the first claim. Now for any given u ∈ W, we can find some reduced word uw0 = sα1 · · · sαn .
Continue it to the right to a reduced word for w0 to obtain the desired reflection order. □

So when studying intersections as above, i.e.,

uw0U (L)y I ∩ (uU (L) ∩
vU (L))I ⊂ G(L)/I, (3.3)

we may write
uU (L) ∩

vU (L) = Uuβ1(L) · · · Uuβn (L)

for a suitable reflection order β1 ≺ · · · ≺ β#8+ . With this notation, the fundamental method to evaluate
intersections as in (3.3) is given by the following lemma.

Lemma 3.4. Let ≺ be a reflection order and write 8+
= {β1 ≺ · · · ≺ β#8+}. Let x ∈ W̃, u ∈ W and

1 ≤ n ≤ #8+. Consider an element of the form

g = Uuβ1(g1) · · · Uuβn (gn) ∈
uU (L).

Let m = νL(gn) ∈ Z, b = (uβn, m) ∈ 8af and u′
= usβn .
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(a) If x−1b ∈ 8+

af , then
gx I = Uuβ1(g1) · · · Uuβn−1(gn−1)x I/I ∈ G(L)/I.

(b) If x−1b ∈ 8−

af , then there are polynomials f1, . . . , fn−1 with

fi ∈ Z[X i+1, . . . , Xn−1, Y ],

allowing us to write

gx I ∈ U−uβn (L) · · · U−uβ#8+
(L)Uuβ1(g̃1) · · · Uuβn−1(g̃n−1)rbx I/I ⊂ G(L)/I,

where
g̃i = gi + fi (gi+1, . . . , gn−1, g−1

n ) ∈ L .

The polynomial fi is a sum of monomials

ϕX ei+1
i+1 · · · X en−1

n−1 Y f

satisfying the conditions ϕ ∈ Z and

ei+1βi+1 + · · · + en−1βn−1 − fβn = βi .

It depends only on the datum of G, B, T, ≺, but not on g nor x. We have

Uuβ1(g1) · · ·Uuβn−1(gn−1)U−uβn (g
−1
n ) ∈ U−uβn (g

−1
n )U−uβn+1(L) · · ·U−uβ#8+

(L)Uuβ1(g̃1) · · ·Uuβn−1(g̃n−1).

Proof. The statement in (a) is immediately verified, since x−1(uβn, νL(gn)) ∈ 8+

af is equivalent to
x−1

Uuβn (gn) ∈ I. So let us prove (b).
Using the fact x−1(−b) ∈ 8+

af , we get

Uuβn (gn)x I = Uuβn (gn)U−uβn (−g−1
n )x I.

Following the usual combinatorics of root subgroups, e.g., [Springer 1998, Lemma 8.1.4] or [Parkinson
et al. 2009, equation (7.6)], we rewrite this as

· · · = U−uβn (g
−1
n )U−uβn (−g−1

n )Uuβn (gn)U−uβn (−g−1
n )x I

= U−uβn (g
−1
n )(−uβn)

∨(−g−1
n )n−uβn x I

= U−uβn (g
−1
n )rbx I.

Here, the cocharacter (−uβn)
∨ is understood as function L → T (L) and n−uβn ∈ NG(T )(L) is a repre-

sentative of the reflection s−uβn ∈ W.
It remains to evaluate

g′
:= Uuβ1(g1) · · · Uuβn−1(gn−1)U−uβn (g

−1
n ) ∈

u′

U (L),

where we write u′
= usβn · · · sβ#8+

∈ W. By [Springer 1998, Proposition 8.2.3], we may write

Uuβn−1(gn−1)U−uβn (g
−1
n ) = U−uβn (g

−1
n )

[∏
i, j

Uβi, j (ci, j g−i
n g j

n−1)
]
Uuβn−1(gn−1),

where the product is taken over all indices i, j ∈ Z≥1 with βi, j := −iuβn + juβn−1 ∈ 8. The product can
be evaluated in any fixed order, up to changing the structure constants ci, j . By the construction of the
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Bruhat–Tits building, the structure constants are in Z; see [Bruhat and Tits 1972, Example 6.1.3(b)] or
[Springer 1998, Chapter 9].

We want to iterate this procedure. We claim for all 1 ≤ j ≤ n that we can write

Uuβ j (g j ) · · · Uuβn−1(gn−1)U−uβn (g
−1
n ) = U−uβn (g

( j)
n ) · · · U−uβ#8+

(g( j)
#8+)Uuβ1(g

( j)
1 ) · · · Uuβn−1(g

( j)
n−1) (∗)

subject to the conditions

g( j)
n = g−1

n ,

g( j)
i = gi + f ( j)

i (gi+1, . . . , gn−1, g−1
n ) for j ≤ i < n,

g( j)
i = f ( j)

i (g j+1, . . . , gn−1, g−1
n ) for 1 ≤ i < j or n < i ≤ #8+.

Here, the polynomials f ( j)
i are required to have the analogous properties as claimed in the lemma, i.e.,

the monomial ϕX e j+1
j+1 · · · X en−1

n−1 Y f may only occur f ( j)
i if

e j+1β j+1 + · · · + en−1βn−1 − fβn =

{
βi , i < n,

−βi , i > n.

This long claim is trivially verified for j = n. In an inductive step, assume it has been proved
for some 1 < j ≤ n. We multiply the right-hand side of (∗) by Uuβ j−1(g j−1) and apply [Springer
1998, Proposition 8.2.3] to sort the resulting product into our usual order. By Lemma 3.2, the result
indeed lies in U−uβn (L) · · · U−uβ#8+

(L)Uuβ1(L) · · · Uuβn−1(L), so this defines the elements g( j−1)

i ∈ L for
i = 1, . . . , #8+.

It is straightforward to see (but cumbersome to write down in full detail) that our required conditions
for the g( j−1)

i are true precisely because they are true for the g( j)
i . This finishes the induction. Specializing

to j = 1 proves the lemma. □

We want to iterate this lemma. Doing so, we obtain the following result.

Proposition 3.5. Let 8+
= {β1 ≺ · · · ≺ β#8+} and u ∈ W. Pick gI ∈

uU (L)I/I. For each n = 0, . . . , #8+,
consider the Borel subgroup of G associated with the element usβn+1 · · · sβ#8+

∈ W and the corresponding
decomposition of the affine flag variety into semi-infinite orbits. This allows us to define x0, . . . , x#8+ =

1 ∈ W̃ to be the uniquely determined elements such that

gI ∈ (
usβn+1 ···sβ#8+ U (L))xn I/I, n = 0, . . . , #8+.

Define

{n1 < · · · < nN } :=
{
n ∈ {1, . . . , #8+

} | xn ̸= xn−1
}
.

Choose a representative of gI in uU (L) and write

gI = Uuβ1(g1) · · · Uuβ#8+
(g#8+)I, g1, . . . , g#8+ ∈ L .

Then, for n = 0, . . . , #8+, we have the following:
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(1) We may write

gI ∈ U−uβn+1(L) · · · U−uβ#8+
(L)Uuβ1(g

(n)
1 ) · · · Uuβn (g

(n)
n )xn I

for elements g(n)
1 , . . . , g(n)

n ∈ L , which are determined uniquely through polynomial identities

g(n)
i − gi = f (n)

i (g(i+1)
i+1 , . . . , g(#8+)

#8+ ), f (n)
i ∈ Z[X±1

i+1, . . . , X±1
#8+],

subject to the following condition: The polynomial f (n)
i depends only on the datum of G, B, T, u, ≺ and

the indices in {n1, . . . , nN } ∩ {n + 1, . . . , #8+
}. It is a sum of monomials

ϕX ei+1
i+1 · · · X e#8+

#8+ , ϕ, ei+1, . . . , e#8+ ∈ Z,

subject to the conditions βi = ei+1βi+1 + · · · + e#8+β#8+ and

∀h ∈ {i + 1, . . . , #8+
}, eh < 0 =⇒ h ∈ {n + 1, . . . , #8+

} ∩ {n1, . . . , nN }.

(2) Suppose that n ≥ 1. If g(n)
n = 0, then n /∈ {n1, . . . , nN } and xn−1 = xn Otherwise, define

bn := (uβn, νL(g(n)
n )) ∈ 8af.

If x−1
n (bn) ∈ 8+

af , then n /∈ {n1, . . . , nN } and xn−1 = xn .
If x−1

n (bn) ∈ 8−

af , then n ∈ {n1, . . . , nN } and xn−1 = rbxn .

(3) The values of νL(g(nh)
nh ) ∈ Z for h ∈ {1, . . . , N } depend only on gI ∈ G(L)/I, and not on the chosen

representative Uuβ1(g1) · · · Uuβ#8+
(g#8+) ∈ G(L).

Proof. By Lemma 3.2, we get

sβn+1 · · · sβ#8+
8+

= {−βn+1, . . . ,−β#8+, β1, . . . , βn}.

So indeed
usβn+1 ···sβ#8+ U (L) = U−uβn+1(L) · · · U−uβ#8+

(L)Uuβ1(L) · · · Uuβn (L),

as claimed indirectly in (a).
We explain how to find the elements g(n)

i via induction on #8+
−n, proving (b) along the way. For the

inductive start, note that we have to choose f (#8+)
•

≡ 0, so that g(#8+)
i = gi .

For the inductive step, suppose now that we have constructed the elements g(n)
1 , . . . , g(n)

n for some
n ∈ {1, . . . , #8+

}. Define bn as in (b). If (xn)
−1bn ∈ 8+

af , we may apply Lemma 3.4(a) to

gI ∈ U−uβn+1(L) · · · U−uβ#8+
(L)Uuβ1(g

(n)
1 ) · · · Uuβn (g

(n)
n )xn I.

By the choice of xn−1, we get xn−1 = xn . We set g(n−1)
i = g(n)

i for i = 1, . . . , n − 1.
If (xn)

−1bn ∈ 8−

af , we may apply Lemma 3.4(b) to see

gI ∈ U−uβn (L) · · · U−uβ#8+
(L)Uuβ1(g̃

(n)
1 ) · · · Uuβn−1(g̃

(n)
n−1)rbxn I.

By choice of xn−1, we get xn−1 = rbxn . In particular n ∈ {n1, . . . , nN }. The elements g̃(n)
•

are polynomials
in the g(n)

•
as in Lemma 3.4(b). We set g(n−1)

i := g̃(n)
i .
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Observe that in any case, the value of g(n−1)
i − g(n)

i is a polynomial with integer coefficients in
g(n)

i+1, . . . , g(n)
n−1, (g

(n)
n−1)

−1 subject to the conditions of Lemma 3.4(b). Using a simple induction on
#8+

− i , one can now see that g(n)
i − gi has the desired shape as claimed in (a), by composition of these

polynomials. This finishes the proof of (a).
If n ∈ {n1, . . . , nN }, the value of bn is uniquely determined by xnx−1

n+1, which in turn is determined by
gI ∈ G(L)/I alone. Hence (c) follows. □

Corollary 3.6. In the setting of Proposition 3.5, we have gI = I if and only if Uuβn (gn) ∈ I for
n = 1, . . . , #8+.

Proof. If each Uuβn (gn) lies in I, then so does their product; hence gI = I.
If conversely gI = I, then all xn ∈ W̃ must be equal to 1. Now part (b) of Proposition 3.5 shows that

each gn must be zero or satisfy x−1
n (uβn, νL(gn)) ∈ 8+

af . Since xn = 1, the latter condition is equivalent
to Uuβn (gn) ∈ I. □

Definition 3.7. Let ≺, x0, u, gI be as in Proposition 3.5. We define the semi-infinite type of gI to be the
set

type(gI ) = {(nh, νL(g(nh)
nh

)) | h = 1, . . . , N } ⊂ Z × Z.

Any subset of Z × Z of the above form is called an admissible type for (x0, u, ≺).

Lemma 3.8. Let 8+
= {β1 ≺ · · · ≺ β#8+} be a reflection order and u ∈ W. Choose an arbitrary subset

{n1 < · · · < nN } ⊆ {1, . . . , #8+
} and values νh ∈ Z for h = 1, . . . , N. Define bh := (uβnh , νh) ∈ 8af.

(1) The set {(n1, ν1), . . . , (nN , νN )} defines an admissible type for (rb1 · · · rbN , u, ≺) if and only if

rbN · · · rbh+1(bh) ∈ 8−

af

for h = 1, . . . , N.

(2) There is a locally closed and reduced k-sub-ind-scheme

T = Tu,≺,(n1,ν1),...,(nN ,νN )

of the affine flag variety whose k-valued points are given by precisely those elements

gI ∈ Uuβ1(L) · · · Uuβ#8+
(L)I/I ⊂ G(L)/I

which satisfy type(gI ) = {(n1, ν1), . . . , (nN , νN )}.

Proof. (a) The given condition for the bh is certainly necessary by Proposition 3.5. Conversely, if this
condition is satisfied, one may iteratively choose values for gi in Proposition 3.5 to construct an element
gI ∈ G(L)/I of the desired type.

(b) The definition of type(gI ) in terms of L-valuations allows us to write gI ∈ T (k) in terms of vanishing
or nonvanishing of certain polynomials over k. Hence we get a well-defined reduced subscheme with
these geometric points. □
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We call Tu,≺,(n1,ν1),...,(nN ,νN ) a type variety. These type varieties are analogues of the Gelfand–Goresky–
MacPherson–Serganova strata in the affine Grassmannian; see [Kamnitzer 2010]. We need the following
numerical datum to describe their dimensions. This can be seen as finite a replacement for the infinite
dimension of uU (L)x I.

Definition 3.9. Let x = wtµ
∈ W̃, u ∈ W and α ∈ 8.

(a) We define the length functional, following [Schremmer 2022, Definition 2.5], as

ℓ(x, α) = ⟨µ, α⟩ +8+(α) − 8+(wα).

(b) We define
ℓu(x) :=

∑
α∈8+

ℓ(x−1, uα) = ⟨−u−1wµ, 2ρ⟩ − ℓ(u) + ℓ(w−1u).

The claimed identity can easily be seen along the lines of [loc. cit., Corollary 2.11]. This result
moreover proves that ℓu(x) ≤ ℓ(x), with equality holding if and only if u ∈ LP(x−1). From [loc. cit.,
Lemma 2.9], we see

ℓu(x) = dim
(
(I ∩

uU (L))x I/I
)
− dim

(
(I ∩

uw0U (L))x I/I
)
.

Proposition 3.10. Let τ = {(n1, ν1), . . . , (nN , νN )} be an admissible type for (x, u, ≺). Then T =

Tu,≺,(n1,ν1),...,(nN ,νN ) is a finite-dimensional irreducible smooth affine scheme over k. We have

dim T =
1
2(N − ℓu(x)).

Proof. First consider the case N =0. Then evidently T is just a point over k, given by T (k)={I }⊂ G(L)/I.
Suppose now N ≥ 1. We prove the claim via induction on nN (with the inductive start being the

case nN undefined, i.e., N = 0 above). For m ∈ Z, we define the truncation map tr≤m : L → L as

tr≤m

(∑
i∈Z

ai t i
)

=
∑
i≤m

ai t i .

Denote its image by L≤m , which is easily equipped with the structure of an k-ind-scheme. We define the
map of k-ind-schemes

f1 : T → L≤−8+(uβ1), Uuβ1(g1) · · · Uuβ#8+
(g#8+)I ∈ T (k) 7→ tr≤−8+(uβ1)(g1).

In order to check that this is well-defined, suppose that

Uuβ1(g1) · · · Uuβ#8+
(g#8+)I = Uuβ1(g̃1) · · · Uuβ#8+

(g̃#8+)I ∈ T (k)

for some g•, g̃• ∈ L . Then

[Uuβ1(g1) · · · Uuβ#8+
(g#8+)]−1

[Uuβ1(g̃1) · · · Uuβ#8+
(g̃#8+)] ∈

uU (L) ∩ I.

By Corollary 3.6 and the reflection order property, we conclude Uuβ1(g̃1−g1)∈ I. Hence tr≤−8+(uβ1)(g1)=

tr≤−8+(uβ1)(g̃1). This shows well-definedness of the map f1.
Define the reflection order ≺

′
=≺

β1 as in [Björner and Brenti 2005, Proposition 5.2.3], so

sβ1(β2) ≺
′ sβ1(β3) ≺

′
· · · ≺

′ sβ1(β#8+) ≺
′ β1.



1988 Felix Schremmer

Define moreover the type

τ ′
= {(ni − 1, νi ) | i ∈ {1, . . . , N } and ni > 1}.

Write T ′
= Tusβ1 ,≺′,τ ′ . Then the inductive assumption applies to T ′. For all Uuβ1(g1) · · · Uuβ#8+

(g#8+)I ∈

T (k), one easily checks Uuβ2(g2) · · · Uuβ#8+
(g#8+)I ∈ T ′(k).

Observe that Uuβ1(L) normalizes Uuβ2(L) · · · Uuβ#8+
(L). By the definition of the variety T ′, we

see that (Uuβ1(L) ∩ I )T ′(k) = T ′(k). Hence we obtain a well-defined map of k-ind-schemes f2 :

T × (Uuβ1(L) ∩ I ) → T ′ sending gI ∈ T (k) and Uuβ1(h) ∈ I to

Uuβ1(h − f1(gI ))gI ∈ T ′(k).

Define

x ′
= w′tµ′

=

{
x, n1 > 1,

rb1 x, n1 = 1,

such that τ ′ is admissible for (x ′, usβ1, ≺
′). Thus T ′(k) ⊂

usβ1w0U (L)x ′ I, allowing us to write elements
g′ I ∈ T ′(k) in the form

g′ I = U−uβ2(g
′

1) · · · U−uβ#8+
(g′

#8+−1)Uuβ1(g
′

#8+)x ′ I.

Here, we have

Uuβ1(g
′

#8+) ∈
x ′

I ⇐⇒ (x ′)−1(uβ1, νL(g′

#8+)) ∈ 8+

af

⇐⇒ νL(g′

#8+) ≥ ⟨−w′µ′, uβ1⟩ +8+(−(w′)−1uβ1) =: m + 1 ∈ Z.

Thus we obtain a well-defined morphism of k-ind-schemes ϕ1 : T ′
→ L≤m sending g′ I ∈ T ′(k) as

represented above to tr≤m(g′

#8+) (check well-definedness using Corollary 3.6 as above).
Let S ⊂ L be the k-sub-ind-scheme defined by the following condition for z ∈ L:

z ∈ S(k) :⇐⇒

{
νL(z) ≥ m + 1 if n1 > 1,

νL(z) = ν1 if n1 = 1.

We would like to define the map of k-ind-schemes ϕ2 : T ′
× S → T sending g′ I ∈ T ′(k) and z ∈ S(k) to

ϕ2(g′ I, z) = Uuβ1(z − ϕ1(g′ I ))g′ I.

Let us check that ϕ2 is well-defined, i.e., takes values in T as claimed. For i = 2, . . . , #8+, we have

usβi ···sβ#8+ U (L)ϕ2(g′ I, z) =
usβi ···sβ#8+ U (L)g′ I

=
(usβ1 )ssβ1

(βi )···ssβ1
(β#8+ )sβ1 U (L)g′ I.

Moreover, computing

ϕ2(g′ I, z) ∈ U−uβ2(L) · · · U−uβ#8+
(L)Uuβ1(z)x ′ I,

we can apply Lemma 3.4 to get ϕ2(g′ I, z) ∈
uw0U (L)x I by the condition z ∈ S(k). Comparing the

definitions of τ and τ ′, we get ϕ2(g′ I, z) ∈ T (k).
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For a sufficiently large integer M ≫ 0, one checks that we have an isomorphism of k-ind-schemes

T × (Uuβ1(L≤M) ∩ I ) → T ′
× (S ∩ L≤M)

sending gI ∈ T (k) and Uuβ1(h) ∈ Uuβ1(L≤M) ∩ I to f2(gI, h) ∈ T ′(k) and

−h + ϕ1( f2(gI, h)) + f1(gI ) ∈ S(k) ∩ L≤M .

Its inverse is the map sending g′ I ∈ T ′(k) and z ∈ S(k) ∩ L≤M to ϕ2(g′ I, z) ∈ T (k) and

Uuβ1

(
−z + f1(ϕ2(g′ I, z)) + ϕ1(g′ I )

)
∈ Uuβ1(L≤M) ∩ I.

By the inductive assumption, T ′ is a finite-dimensional irreducible smooth affine scheme over k. The
same conditions hold true for S ∩ L≤M (which is either an affine space over k or the product of a pointed
affine line with an affine space). Hence the same conditions all hold true for T × (Uuβ1(L≤M) ∩ I ). It
follows that they must also hold true for T itself. Moreover, we have

dim T ′
− dim T = dim(Uuβ1(L≤M) ∩ I ) − dim(S ∩ L≤M)

=

{
m + 1 − 8+(−uβ1) if n1 > 1,

ν1 − 8+(−uβ1) if n1 = 1.

By induction, we know 2 dim T ′
= N ′

− ℓusβ1
(x ′), with N ′

= N if n1 > 1 and N ′
= N − 1 if n1 = 1. We

show 2 dim T = N − ℓu(x), using a case distinction depending on whether n1 > 1 or not.
First consider the case n1 = 1. From [Schremmer 2022, Lemma 2.12] or direct calculation, we get

ℓusβ1
(x ′) = ℓusβ1

(rb1 x) = ℓusβ1
(rb1) + ℓu(x).

We calculate

ℓusβ1
(rb1) = ℓusβ1

(suβ1 tν1uβ∨

1 ) = ⟨−ν1β
∨

1 , 2ρ⟩ − ℓ(usβ1) + ℓ(u).

Since β1 is simple, the above expression simplifies to

· · · = −2ν1 − 1 + 28+(−uβ1).

We conclude

dim T = dim T ′
− ν1 + 8+(−uβ1) =

1
2(N ′

− ℓusβ1
(x ′)) − ν1 + 8+(−uβ1)

=
1
2

(
N − ℓu(x) + 2ν1 − 28+(−uβ1)

)
− ν1 + 8+(−uβ1) =

1
2(N − ℓu(x)).

Let us now consider the case n1 > 1. Then we calculate

ℓusβ1
(x) =

∑
α∈8+

ℓ(x−1, usβ1α) =
∑

α∈sβ18+

ℓ(x−1, uα)

= ℓu(x) − ℓ(x−1, uβ1) + ℓ(x−1, −uβ1) = ℓu(x) − 2ℓ(x−1, uβ1).

We compute

ℓ(x−1, uβ1) = ℓ(w−1t−wµ, uβ1) = ⟨−wµ, uβ1⟩ +8+(uβ1) − 8+(w−1uβ1) = m + 8+(uβ1).
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The claimed dimension formula for T follows just as above:

dim T = dim T ′
− m − 8+(uβ1) =

1
2(N − ℓusβ1

(x)) − m − 8+(uβ1)

=
1
2(N − ℓu(x) + 2ℓ(x−1, uβ1)) − m − 8+(uβ1) =

1
2(N − ℓu(x)).

This finishes the induction and the proof. □

Lemma 3.11. Let (n1, ν1), . . . , (nN , νN ) be an admissible type for (y, u, ≺). Define y =x1, . . . , x#8++1 =

1 ∈ W̃ as in Proposition 3.5, i.e.,

xn−1 =

{
xn, n /∈ {n1, . . . , nN },

r(uβn,νh)xn, n = nh ∈ {n1, . . . , nN }.

Define integers m1, . . . , m#8+ ∈ Z as follows: If n = nh ∈ {n1, . . . , nN }, we put mn = νh . Otherwise, we
let mn ∈ Z be the smallest value such that

x−1
n (uβn, mn) ∈ 8+

af.

Let M > 0. There is a reduced and finite-dimensional k-subscheme T̃M ⊂ L#8+

≤M whose k-valued points
are

T̃M(k) =
{
(g1, . . . ,g#8+) ∈ L#8+

≤M such that νL(gn+ f (n+1)
n (gi+1, . . . ,g#8+)) ≥ mn ∀n ∈ {1, . . . ,#8+

},

νL(gn+ f (n+1)
n (gn+1, . . . ,g#8+)) = mn ∀n ∈ {n1, . . . ,nN }

}
.

If M > mi for all i , then

dim T̃M =

#8+∑
n=1

(M − mn + 1).

We get a surjective map

f : T̃M →
(
Uuβ1(L≤M) · · · Uuβ#8+

(L≤M)x I
)
∩ T(n1,ν1),...,(nN ,νN ),

(g1, . . . , g#8+) 7→ Uuβ1(g1) · · · Uuβ#8+
(g#8+)x I.

Proof. For each point (g1, . . . , g#8+) in the desired set for T̃M(k), the t-valuations of the individual
coordinates g1, . . . , g#8+ can be bounded from below in terms of the datum {(n1, ν1), . . . , (nN , νN )}, by
the defining properties of the polynomials f (•)

•
. So indeed this set can be identified with the k-valued

points of a finite-dimensional k-scheme, which we denote by T̃M .
The dimension of T̃M is can be determined as follows. For g#8+ , the conditions simply state g#8+ ∈

L≤M and νL(g#8+) ≥ m#8+ or = m#8+ . In any case, the allowed values for g#8+ form an irreducible
(M − m#8+ + 1)-dimensional scheme over k.

We may continue like this. For any given gn+1, . . . , g#8+ ∈ L , the space of allowed values for gn has
the form

gn ∈ L≤M such that νL(gn − c) ≥ mn or = mn,

where c is a constant independent of gn . We find a unique c̃ ∈ L≤mn such that νL(c̃−c) ≥ mn +1. Now the
allowed gn are precisely the elements of the form gn = −c̃ + g̃n , where g̃n ∈ L≤M has t-valuation ≥ mn
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or = mn . So as long as mn < M , we see that the space of allowed gn is irreducible of dimension M−mi +1.
The dimension formula follows.

Well-definedness and surjectivity of f are immediate from Proposition 3.5. □

We note the following useful facts.

Lemma 3.12. Let x ∈ W̃ and u ∈ W.

(a) Let z = wztµz ∈ W̃ such that, for all α ∈ 8+,

⟨wz, uα⟩ ≤ −2ℓ(x).

Then ℓu(x) = ℓ(zx) − ℓ(z).

(b) If a = (α, m) ∈ 8af satisfies u−1α ∈ 8+ and x−1a ∈ 8−

af , then ℓu(rax) < ℓu(x).

(c) Suppose that y = x1, . . . , x#8++1 = 1 ∈ W̃ and m1, . . . , m#8+ are as in Lemma 3.11. Then
#8+∑
n=1

(8+(−uβn) − mn) = 2(ℓuw0(y) + N ).

Proof. (1) This follows easily from the theory of length functionals from [Schremmer 2022]. Write
x = wtµ and observe LP(z−1) = LP(x−1z−1) = {wzu}. Then

ℓ(zx) = ℓ(x−1z−1) =
∑

α∈8+

ℓ(x−1z−1, wzux)

=
∑

α∈8+

ℓ(x−1, uα) + ℓ(z−1, wzux) = ℓu(x) + ℓ(z),

where we used [loc. cit., Corollary 2.10 and Lemma 2.12].

(2) Let z be as in (a). Then u−1α ∈ 8+ is equivalent to ℓ(z, α) ≪ 0, so za ∈ 8+

af . This shows
ℓ(zrax) < ℓ(zx). We conclude by (a).

(3) We show for all q ∈ {1, . . . , #8+
+ 1} that

2
#8+∑
n=q

(8+(−uβn) − mn) = ℓuq (xq) + #{n ∈ {n1, . . . , nN } | n > q},

where uq = usβq · · · sβ#8+
∈ W.

For q = 1, this is the desired statement. We do induction on #8+
+ 1 − q. In the case q = #8+

+ 1,
both sides of the equation are easily seen to vanish.

In the inductive step, let us write xq = wq tµq. Then

mq = ⟨−wqµq , uβq⟩ +8+(w−1
q uβq) =⇒ 8+(−uβq) − mq = ℓ(x−1

q , −uβq).

Note that

uq = suβq uq+1 = uq+1ssβ#8+
···sβq+1 (βq ),

with sβ#8+
· · · sβq+1(βq) being a simple root by Lemma 3.1. We conclude that

uq8+
= {uβq} ∪ (uq+18

+) \ {−uβq}.
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Consider the case q + 1 /∈ {n1, . . . , nN }. Then xq = xq+1, and

ℓuq (xq) = ℓuq+1(xq) + ℓ(x−1
q , uβq) − ℓ(x−1

q , −uβq)

= ℓuq+1(xq+1) + 2ℓ(x−1
q , uβq).

Hence

2
#8+∑
n=q

(8+(−uβn) − mn) = 2ℓ(x−1
q , −uβq) + 2

#8+∑
n=q+1

(8+(−uβn) − mn)

=
ind.

2ℓ(x−1
q , −uβq) + ℓuq+1(xq+1) + #{n ∈ {n1, . . . , nN } | n > q + 1}

= ℓuq (xq) + #{n ∈ {n1, . . . , nN } | n > q}.

Consider now the case q = nh − 1 for some h ∈ {1, . . . , N }. Then xq = rbq+1 xq+1 = r(uβq ,νh)xq+1. By
[Schremmer 2022, Lemma 2.12], we calculate

ℓuq (xq) = ℓuq (r(uβq ,νh)xq xq+1) = ℓuq (r(uβq ,νh)) + ℓsuβq uq (xq+1)

= ℓuq (suβq tνhuβ∨
q ) + ℓuq+1(xq+1).

Here,
ℓuq (suβq tνhuβ∨

q ) = νh⟨−u−1
q suβq uβ∨

q , 2ρ⟩ − ℓ(uq) + ℓ(uq+1)

= νh⟨u−1
q uβ∨

q , 2ρ⟩ − ℓ(uq) + ℓ(uq(u−1
q uβq))

= 2(8+(−uβq) − νh) − 1,

since u−1
q uβq = −sβ#8+

· · · sβq+1(βq) is the negative of a simple root.
We conclude

2
#8+∑
n=q

(8+(−uβn) − mn) = 2(8+(−uβq) − νh) + 2
#8+∑

n=q+1
(8+(−uβn) − mn)

=
ind.

2(8+(−uβq) − νh) + ℓuq+1(xq+1) + #{n ∈ {n1, . . . , nN } | n > q + 1}

= ℓuq+1(xq+1) + ℓuq (suβq tνhuβ∨
q ) + 1 + #{n ∈ {n1, . . . , nN } | n > q + 1}

= ℓuq (xq) + #{n ∈ {n1, . . . , nN } | n > q}.

This finishes the induction and the proof. □

We reformulate this proposition to describe arbitrary intersections of semi-infinite orbits.

Theorem 3.13. Let u, v ∈ W and x = wx tµx, y ∈ W̃. Pick a reflection order 8+
= {β1 ≺ · · · ≺ β#8+}

and an index n ∈ {0, . . . , #8+
} such that

u−1v = sβn+1 · · · sβ#8+
.

Then we get a decomposition into locally closed subsets(
(uU (L) ∩

vU (L))x I
)
∩ (uw0U (L)y I ) =

⊔
τ

xTτ ⊂ G(L)/I,

where τ runs through all τ = {(n1, ν1), . . . , (nN , νN )} which are admissible types for (x−1 y, w−1
x u, ≺)

and satisfy the additional constraint N = 0 or nN ≤ n. Each piece xTτ = xTw−1
x u,≺,τ ⊂ G(L)/I is a
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locally closed subset of the affine flag variety, and an irreducible smooth affine k-scheme of dimension

dim xTτ =
1
2(ℓu(x) − ℓu(y) + #τ).

Proof. For all β ∈ 8+, we have

Uuβ(L) ⊆
vU (L) ⇐⇒ v−1uβ ∈ 8+

⇐⇒
Lem. 3.2

β ∈ {β1, . . . , βn}.

Hence
uU (L) ∩

vU (L) = Uuβ1(L) · · · Uuβn (L),

x−1(uU (L) ∩
vU (L))x = Uw−1

x uβ1
(L) · · · Uw−1

x uβn
(L).

By Proposition 3.5, we obtain a decomposition of the corresponding subset of the affine flag variety

Uw−1
x uβ1

(L) · · · Uw−1
x uβn

(L)I ⊂ G(L)/I

into types {(n1, ν1), . . . , (nN , νN )} with nN ≤ n. Denote by T = Tw−1
x u,≺,τ the subset associated with

such a type τ as in Lemma 3.8. We have

T ⊂ x−1uw0U (L)y I =
w−1

x uw0U (L)x−1 y I

if and only if τ is admissible for (x−1 y, w−1
x u, ≺). It remains to compute the dimension of T using

Proposition 3.10 and [Schremmer 2022, Lemma 2.12]:

2 dim T = N − ℓw−1
x u(x−1 y)

= N − ℓw−1
x u(x−1) − ℓu(y) = N + ℓu(x) − ℓu(y). □

Remark 3.14. (a) It seems reasonable to expect that each type variety Tu,≺,τ should be a product of
affine lines and pointed affine lines over k, but the proof of such a statement would probably require
undue analysis of the polynomials f (•)

•
or some major progress towards Zariski’s cancellation problem.

We don’t need such a precise description.

(b) Given u, v, there are in general several possible reflection orders satisfying v−1u = sβn+1 · · · sβ#8+
for

n = ℓ(w0v
−1u). While the geometry of the intersection(

(uU (L) ∩
vU (L))x I

)
∩ (uw0U (L)y I )

does not depend on the choice of reflection order, the decomposition into subsets indexed by types tends
to do that; i.e., different reflection orders yield different subsets. It is not clear how these are related,
aside from the simple observation that subsets of maximal dimension parametrize irreducible components
of maximal dimension. We will prove that the number of such subsets xTτ of any given dimension is
independent of the chosen reflection order.

(c) For each given (x, u, ≺), there exist only finitely many admissible types. This is straightforward
to prove directly, and will immediately follow from a later result (see Lemma 4.4). So Theorem 3.13
provides a decomposition into finitely many locally closed pieces.
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Example 3.15. Consider the group G = GL3. Let T be the torus of diagonal matrices and B be the upper
triangular matrices. Let u = v = w0 and

x = w0tρ∨

=

0 0 t−1

0 1 0
t 0 0

 .

We denote our simple roots by 1 = {α, β} corresponding to the diagonal matrices α̇ = diag(t, t−1, 0) and
β̇ = (0, t, t−1). We choose the reflection order α ≺ α +β ≺ β. Then the admissible types for (x, u, ≺)

are given by the cardinality-1 type {(−α − β, −1)} as well as the cardinality-3 types

{(−β, 0), (−α − β, −1), (−α, 0)}, {(−α, −1), (−α − β, 0), (−β, −1)}.

We see that the intersection
w0U (L)I ∩ U (L)x I ⊂ G(L)/I

has dimension
1
2(3 − ℓw0(x)) =

1
2

(
3 − ⟨−ρ∨, 2ρ⟩ + ℓ(w0)

)
=

1
2(3 + 4 + 3) = 5,

and the number of 5-dimensional irreducible components is two.

4. Double Bruhat graph

There is a more convenient and natural way to encode the datum of an admissible type (n1,ν1), . . . , (nN ,νN ).
This construction is due to [Naito and Watanabe 2017, Section 5.1], used originally to describe periodic
R-polynomials of affine Weyl groups.

Definition 4.1. Let 8+
= {β1 ≺ · · · ≺ β#8+} be a reflection order and v, w ∈ W.

(a) The double Bruhat graph DBG(W ) is a finite directed graph. Its set of vertices is W. For each w ∈ W
and α ∈ 8+, there is an edge w

α
−→ wsα.

(b) A unlabelled path p̄ in DBG(W ) is a sequence of adjacent edges

p̄ : v = u1
α1

−→ u2
α2

−→ · · ·
αℓ

−→ uℓ+1 = w.

We call p̄ an unlabelled path from v to w of length ℓ( p̄) = ℓ. We say p̄ is increasing with respect to ≺ if
α1 ≺ · · · ≺ αℓ. We say that p̄ is bounded by n ∈ Z if each occurring root αi has the form αi = β j for j ≤ n.

(c) A labelled path or path p in DBG(W ) consists of an unlabelled path

p̄ : v = u1
α1

−→ u2
α2

−→ · · ·
αℓ

−→ uℓ+1 = w

together with integers m1, . . . , mℓ ∈ Z subject to the condition

mi ≥ 8+(−uiαi ) =

{
0, ℓ(ui+1) > ℓ(ui ),

1, ℓ(ui+1) < ℓ(ui ).

We write p as
p : v = u1

(α1,m1)
−−−→ u2

(α2,m2)
−−−→ · · ·

(αℓ,mℓ)
−−−→ uℓ+1 = w.
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The weight of p is
wt(p) = m1α

∨

1 + · · · + mℓα
∨

ℓ ∈ Z8∨.

The length of p is ℓ(p) = ℓ( p̄) = ℓ. We say that p is increasing with respect to ≺ if p̄ is. We say that
p is bounded by n ∈ Z if p̄ is.

(d) The set of all paths from v to w that are increasing with respect to ≺ and bounded by n ∈ Z is denoted
by paths≺

⪯n(v ⇒ w). We also write

paths≺(v ⇒ w) := paths≺

⪯#8+(v ⇒ w)

for the set of all increasing paths from v to w.

Example 4.2. This is the double Bruhat graph of type A2, where we denote the simple roots by 1 =

{α1, α2} and the corresponding simple reflections by S ={s1, s2}. For each root α ∈8+
={α1, α2, α1+α2}

and each w ∈ W, there is an edge w → wsα with label α and the converse edge wsα → w with the same
label, making each edge appear doubled (which explains the graph’s name):

s1s2s1

s1s2 s2s1

s1 s2

1

α1 α2

α2
α1+α2

α1
α1+α2

α2α1

α1+α2

The two reflection orders are given by

α1 ≺ α1 + α2 ≺ α2,

α2 ≺ α1 + α2 ≺ α1.

Remark 4.3. One could similarly study paths in the double Bruhat graph bounded from below by a
root βm , or even paths such that α1, . . . , αℓ(p) ∈ {βm, . . . , βn} for fixed indices m, n ∈ Z. However, this
extra generality would not yield any new information:

If w0 = sα1 · · · sα#8+
is the reduced expression corresponding to our reflection order and 0≤m ≤n ≤#8+,

we could consider a different reflection order ≺
′ coming from the reduced word

w0 = sαm+1 · · · sα#8+
s−w0α1 · · · s−w0αm .

If we write 8+
= {β ′

1 ≺
′
· · · ≺

′ β ′

#8+}, then

βi = sα1 · · · sαm β ′

i−m, i = m + 1, . . . , n.

This would give a one-to-one correspondence of paths which are increasing for ≺ and where all roots lie
between m and n and paths which are increasing for ≺

′ and bounded by n − m.
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The comparison between types and paths is given as follows.

Lemma 4.4. Let 8+
= {β1 ≺ · · · ≺ β#8+} be a reflection order, x = wtµ

∈ W̃ and u ∈ W. Let moreover
n ∈ {0, . . . , #8+

}.
Let A be the set of all admissible types {(n1, ν1), . . . , (nN , νN )} for (x, u, ≺) satisfying the condition

n1 < · · · < nN ≤ n. Define

P := {p ∈ paths≺

⪯n(w
−1u ⇒ u) | wt(p) = u−1wµ}.

Then we get a bijective map A −→∼ P sending a type τ = {(n1, ν1), . . . , (nN , νN )} of cardinality N to the
length-N path

p : w−1u
(βn1 ,m′

1)
−−−−→ · · ·

(βnN ,m′

N )
−−−−→ u

in P, where (β ′

h, m′

h) := rbN · · · rbh (bh) ∈ 8+

af and bh = (uβnh , νh) ∈ 8af for h = 1, . . . , N.

Remark 4.5. We remark that if µ /∈ Z8∨ in the above lemma, then one trivially gets P = ∅ by the
definition of the double Bruhat graph. Moreover, it is clear that such an x cannot be a product of affine
reflections; hence trivially A = ∅ by the definition of admissible types. The statement is more interesting
when µ ∈ Z8∨, that is, when x lies in the nonextended affine Weyl group.

Proof of Lemma 4.4. For now, we fix arbitrary integers 1 ≤ n1 < · · · < nN ≤ n and ν1, . . . , νN ∈ Z. Define
the set

τ = {(n1, ν1), . . . , (nN , νN )} ⊂ Z × Z.

For h ∈ {1, . . . , N }, define bh := (uβnh , νh) ∈ 8af and

b′

h = (β ′

h, m′

h) := rbN · · · rbh (bh) ∈ 8af.

Finally, we write down something that may or may not be a path in DBG(W ) as

p : usβnN
· · · sβn1

(βn1 ,m′

1)
−−−−→ · · ·

(βnN ,m′

N )
−−−−→ u.

We want to show that τ ∈ A if and only if p ∈ P, since the desired bijection is immediate from this.
The key observation is that, for h ∈ {1, . . . , N },

rbN · · · rbh+1(bh) ∈ 8−

af ⇐⇒ rbN · · · rbh (bh) ∈ 8+

af

⇐⇒ β ′

h ∈ 8+

af

⇐⇒ (usβnN
· · · sβnh

βnh , m′

h) ∈ 8+

af

⇐⇒ m′

h ≥ 8+(usβnN
· · · sβnh

(βnh )).

Thus τ is an admissible type for some (x̃, u, ≺) if and only if p is a well-defined path in the double
Bruhat graph. In this case, it is clear that p is increasing with respect to ≺ and bounded by n.

We calculate

rb1 · · · rbN = rb′

N
· · · rb′

1
= sβ ′

N
· · · sβ ′

1
t

m′

N sβ′
1
···sβ′

N−1
(β ′

N )∨+···+m′

1(β
′

1)
∨

.

In the case
suβn1

· · · suβnN
̸= w,
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we see that τ cannot be admissible for (x, u, ≺) and p does not start in w−1u. So assume from now on that

suβn1
· · · suβnN

= w.

Then we can simplify

rb1 · · · rbN = · · · = wt
m′

N sβ′
1
···sβ′

N−1
(β ′

N )∨+···+m′

1(β
′

1)
∨

.

We compute for h = 1, . . . , N that

m′

hsβ ′

1
· · · sβ ′

h−1
(β ′

h) = m′

h(sβ ′

1
· · · sβ ′

N
)(sβ ′

N
· · · sβ ′

h
)β ′∨

h = m′

hw
−1sβ ′

N
· · · sβ ′

h
β ′∨

h = m′

hw
−1uβ∨

h .

We conclude
rb1 · · · rbN = wtw−1u wt(p).

Hence τ is admissible for (x, u, ≺) if and only if wt(p) = u−1wµ. □

We can state the double Bruhat version of Theorem 3.13 as follows. It can be seen as an analogue of
[Parkinson et al. 2009, Theorem 7.1]. Their result studies slightly different intersections in the affine flag
variety and uses folded alcove walks rather than paths in the double Bruhat graph.

Theorem 4.6. Let u, v∈W and x =wx tµx, y =wy tµy ∈ W̃. Pick a reflection order 8+
={β1 ≺· · ·≺β#8+}

and an index n ∈ {0, . . . , #8+
} such that

u−1v = sβn+1 · · · sβ#8+
.

Then we get a decomposition into locally closed subsets(
(uU (L) ∩

vU (L))x I
)
∩ (uw0U (L)y I ) =

⊔
p

xTp,

where p runs through all paths p ∈ paths≺

⪯n(w
−1
y u ⇒ w−1

x u) such that

u wt(p) = wyµy − wxµx .

Each variety xTp ⊆ G(L)/I is an irreducible smooth affine k-scheme of dimension

dim(xTp) = dim Tp =
1
2(ℓu(x) − ℓu(y) + ℓ(p)). □

The aim of this section is to develop the basic properties of the double Bruhat graph. For the remainder
of this section, fix a reflection order 8+

= {β1 ≺ · · · ≺ β#8+}. We first introduce a couple of immediate
properties about paths in paths≺

⪯·
( · ⇒ · ). Part (a) of the following lemma is an adaption of the duality

antiautomorphism from [Lenart et al. 2015, Proposition 4.3].

Lemma 4.7. Let u, v ∈ W and n ∈ Z.

(a) Denote by ≻ the reflection order obtained by reversing ≺. Then we have a bijection

paths≺

⪯n(u ⇒ v) → paths≻

⪰n(w0v ⇒ w0u),(
w1

(α1,n1)
−−−→ · · ·

(αℓ,nℓ)
−−−→ wℓ+1

)
7→

(
w0wℓ+1

(αℓ,nℓ)
−−−→ · · ·

(α1,n1)
−−−→ w0w1

)
,

that preserves both the weight and the length of each path.
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(b) Let ≺
′ be the reflection order defined by

α ≺
′ β ⇐⇒ −w0α ≺ −w0β.

Then we have a bijection

paths≺

⪯n(u ⇒ v) → paths≺
′

⪯′n(w0uw0 ⇒ w0vw0),(
w1

(α1,n1)
−−−→ · · ·

(αℓ,nℓ)
−−−→ wℓ+1

)
7→

(
w0w1w0

(−w0α1,n1)
−−−−−→ · · ·

(−w0αℓ,nℓ)
−−−−−→ w0wℓ+1w0

)
,

that preserves the lengths of paths. It sends path of weight ω to a path of weight −w0ω.

(c) Let x ∈ � be of length zero in W̃ and write it as x = wtµ. Then we have a bijection

paths≺

⪯n(u ⇒ v) → paths≺

⪯n(wu ⇒ wv),(
w1

(α1,n1)
−−−→ · · ·

(αℓ,nℓ)
−−−→ wℓ+1

)
7→

(
ww1

(α1,n1−⟨µ,w1α1⟩)
−−−−−−−−−→ · · ·

(αℓ,nℓ−⟨µ,wℓαℓ⟩)
−−−−−−−−−→ wwℓ+1

)
,

that preserves the lengths of paths. It sends a path of weight ω to a path of weight ω + v−1µ − u−1µ.

Proof. This proof is a straightforward verification. □

It is rather natural and very fruitful to compare the definition of the double Bruhat graph with the
similar concept of the quantum Bruhat graph. The quantum Bruhat graph can be defined as a subgraph of
the double Bruhat graph, containing all those paths

p : u1
(α1,m1)
−−−→ · · ·

(αℓ,mℓ)
−−−→ uℓ+1

satisfying the additional constraint that for each n ∈ {1, . . . , mℓ} either

• ℓ(un+1) = ℓ(un) + 1 and mn = 0 or

• ℓ(un+1) = ℓ(un) + 1 − ⟨α∨
n , 2ρ⟩ and mn = 1.

The quantum Bruhat graph was introduced by Brenti, Fomin and Postnikov [Brenti et al. 1999] in order
to study certain solutions to the Yang–Baxter equations related to the quantum Chevalley–Monk formula.
It has since occurred frequently in literature on quantum cohomology of flag varieties, e.g., in [Postnikov
2005]. Due to its relationship to the affine Bruhat order discovered by Lam and Shimozono [2010], it
since has played a major role in the study of affine Bruhat order and affine Deligne–Lusztig varieties,
e.g., in [Milićević 2021; Milićević and Viehmann 2020; He and Yu 2021; Schremmer 2024].

The initial article [Brenti et al. 1999] is of special interest to us, since we may identify its main
result as a crucial statement on the double Bruhat graph. The authors derive the fundamental properties
of the quantum Bruhat graph as an application of their main result, which we may recognize as the
aforementioned embedding of the quantum Bruhat graph into the double Bruhat graph.

Let us recall the main result of [loc. cit.] in the authors’ language. They construct a family of solutions to
the Yang–Baxter equations for the finite Weyl group W as follows: Choose a field K of characteristic zero,
and multiplicative functions E1, E2 : 8+

→ K, i.e., functions satisfying

Ei (α + β) = Ei (α)Ei (β) whenever α, β, α + β ∈ 8+.
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We have to assume that there is no root α ∈ 8+ such that E1(α) = E2(α) = 0. Choose moreover
constants κα ∈ K depending only on the length of α ∈ 8+. Define for each α ∈ 8+ the following K -linear
endomorphism of the group algebra K [W ]:

Rα : K [W ] → K [W ], w 7→

{
w + pαsαw, ℓ(sαw) > ℓ(w),

w + qαsαw, ℓ(sαw) < ℓ(w).

Here, we define the scalars

pα =
κα E1(α)

E1(α) − E2(α)
, qα =

κα E2(α)

E1(α) − E2(α)
∈ K .

Then the linear functions {Rα}α∈8+ satisfy the Yang–Baxter equations. We do not wish to recall how
these equations are defined, referring the reader to the original article [Brenti et al. 1999] for the details.
We do want to note, however, the following consequence of the Yang–Baxter equations, which is proved
completely analogously to [loc. cit., Proposition 2.5]:

Proposition 4.8. Let 8+
= {β1 ≺ · · · ≺ β#8+} = {γ1 ≺

′
· · · ≺

′ γ#8+} be two reflection orders on 8+ and
0 ≤ n ≤ #8+ such that

sβ1 · · · sβn = sγ1 · · · sγn .

Then
Rβ1 · · · Rβn = Rγ1 · · · Rγn

as endomorphisms on K [W ]. □

How is this related to the double Bruhat graph? We can make the following choices, which are
essentially universal:1

Write 1 = {α1, . . . , α#1} and let K be the field of formal Laurent series over Q in 2 + #1 formal
variables, denoted by

K = Q((κs, κl, eα1, . . . , eα#1)).

To an element of the root lattice λ = c1α1 + · · · + c#1α#1, we associate the element

eλ
= (eα1)c1 · · · (eα#1)c#1 ∈ K.

Define E1(α) = 1 and E2(α) = eα
∈ K for all α ∈ 8+. We put κα = κs if α is short and κα = κl if α is

long. Then we observe

Rα(w) = w +
καe8+(−w−1α)α

1 − eα
sαw = w +

∑
i≥8+(−w−1α)

καeiαsαw.

This basically describes all paths from w−1 to w−1 or w−1sα in the double Bruhat graph associated to the
dual root system, with the restriction that the only occurring edge may be w−1 α∨

−→ w−1sα . Composition

1We may focus on irreducible root systems, where only one of the two functions E1, E2 is allowed to vanish on the highest
root. If this is without loss of generality E1, replacing (E1, E2) by (1, E2/E1) yields the same solutions R•. Now a universal
solution would be given by choosing E1(α) = eα and κα ∈ {κs , κl } for the subring R contained in our choice of K generated by
these values and the inverses 1/(E1(α) − 1). However, R is not a field, and we would like to expand the geometric series.
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of the linear operators R• along a reflection order recovers precisely our notion of paths in the double
Bruhat graph which are increasing with respect to that reflection order.

Corollary 4.9. Let 8+
= {β1 ≺ · · · ≺ β#8+} = {γ1 ≺

′
· · · ≺

′ γ#8+} be two reflection orders on 8+ and
0 ≤ n ≤ #8+ such that

sβ1 · · · sβn = sγ1 · · · sγn .

Let u, v ∈ W, µ ∈ Z8∨ and ℓs, ℓl ∈ Z≥0.
Let p≺ be the number of paths p ∈ paths≺

⪯n(u ⇒ v) such that wt(p) = µ, ℓ(p) = ℓs + ℓl and the
number of short (resp. long) roots occurring as labels in p is equal to ℓs (resp. ℓl). Define p≺′ similarly.
Then p≺ = p≺′ .

Proof. Construct the operators R∨
•

as above for the dual root system 8∨, and consider the Q-coefficient
of κ

ℓs
l κ

ℓl
s eµv−1 in the expansion of

R∨

β∨
n

· · · R∨

β∨

1
u−1

∈ K [W ].

By construction, this number is equal to p≺. By Proposition 4.8, it is also equal to p≺′ . □

It is convenient to use the language of multisets when keeping track of the lengths and weights of
paths. Recall that a multiset is a modification of the concept of a set, where elements are allowed to be
contained multiple times in a multiset.

Formally, we may define a multiset M as a tuple (|M |, m) where |M | is any set and m : |M | →

Z≥1 ∪ {+∞} is a function (to be thought of as counting how often an element occurs in M). We write
x ∈ M meaning x ∈ |M |, and say that x has multiplicity m(x) in M. If x /∈ M, we say that x has multiplicity
zero in M.

If f is a map from |M | to some abelian group (e.g., the real numbers), we write∑
x∈M

f (x) :=
∑

x∈|M |

m(x) f (x),

meaning that elements are summed with multiplicity (depending on the function and the abelian group,
such a sum may or may not be well-defined). The cardinality of M can then be defined as

#M :=
∑

x∈M
1 ∈ Z≥0 ∪ {∞}.

If M, M ′ are two multisets, we define their additive union M ∪ M ′ by declaring that x has multiplicity
m1 + m2 in M ∪ M ′, where m1 ∈ Z≥0 ∪ {+∞} is the multiplicity of x in M and m2 the multiplicity of x
in M ′.

When explicitly writing down multisets via a list of elements (the number of occurrences expressing
the multiplicity), we use the notation { · }m to distinguish from the usual set notation { · }.

Definition 4.10. Let 8+
= {β1 ≺ · · · ≺ β#8+} be a reflection order and n ∈ {0, . . . , #8+

}.

(a) We write
π≻n = sβn+1 · · · sβ#8+

∈ W.
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(b) If u, v ∈ W, we define
wts(u ⇒ v 99K vπ≻n)

to be the multiset
{(wt(p), ℓ(p)) | p ∈ paths≺

⪯n(u ⇒ v)}m,

i.e., the multiplicity of (ω, e) ∈ wts(u ⇒ v 99K vπ≻n) is equal to the number of paths in paths≺

⪯n(u ⇒ v)

of weight ω and length e.
We use the shorthand notation

wts(u ⇒ v) := wts(u ⇒ v 99K v).

The reflection order does not occur any more in the wts(· · · )-notation, due to Corollary 4.9 (and
the usual observation w0 = sβ1 · · · sβ#8+

). From Lemma 3.2, we see that ℓ(π≻n) = #8+
− n and that,

for each u ∈ W, one may find a suitable reflection order ≺ with u = π≻#8+−ℓ(u). Hence the notation
wts(u ⇒ v 99K w) is well-defined for all u, v, w ∈ W.

We note the following immediate properties.

Lemma 4.11. Let u, v, v′
∈ W. Then the multiset wts(u ⇒ v 99K v′) is nonempty if and only if the

following inequality on the Bruhat order of W is satisfied:

v−1v′
≤ u−1v′.

In this case, we have

max{e | (ω, e) ∈ wts(u ⇒ v 99K v′)} = ℓ(u−1v′) − ℓ(v−1v′).

Proof. Let us pick a reflection order 8+
= {β1 ≺ · · · ≺ β#8+} with v′

= vπ≻n . Write the corresponding
reduced word as w0 = sα1 · · · sα#8+

.
The multiset in question is nonempty if there is a sequence 1 ≤ i1 < · · · < ie ≤ n of indices such that

v = usβi1
· · · sβie

⇐⇒ vsα1 · · · sαn = usα1 · · · ŝαi1
· · · ŝαie

· · · sαn

⇐⇒ u−1vsα1 · · · sαn = sα1 · · · ŝαi1
· · · ŝαie

· · · sαn .

Using the subword criterion for Bruhat order, the existence of such indices i1, . . . , ie is equivalent to the
Bruhat order inequality

u−1vsα1 · · · sαn ≤ sα1 · · · sαn ,

and the maximal number e is equal to the difference in lengths of the two sides. Now we compute

sα1 · · · sαn = sβn+1 · · · sβ#8+
sα1 · · · sα#8+

= π≻nw0.

Hence the above Bruhat order condition becomes u−1v′w0 ≤ v−1v′w0. The claim follows using the
Bruhat order antiautomorphism induced by multiplication by w0. □

Remark 4.12. We can use these multisets to summarize Theorem 4.6 as follows: The number of pieces Tp

of dimension d occurring in (
(uU (L) ∩

vU (L))x I
)
∩ (uw0U (L)y I )
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is equal to the multiplicity of the tuple

(u−1wyµy − u−1wxµx , 2d − ℓu(x) + ℓu(y))

in the multiset

wts(w−1
y u ⇒ w−1

x u 99K w−1
x v).

We finish this section by comparing the double Bruhat graph more directly to the quantum Bruhat
graph.

Proposition 4.13. Let u, v ∈ W. Denote by d(u ⇒ v) the distance of a shortest path in the quantum
Bruhat graph from u to v, and by wt(u ⇒ v) the weight of such a path. Let (ω, e) ∈ wts(u ⇒ v).

(1) We have ω ≥ wt(u ⇒ v).

(2) We have

e ≤ ⟨ω, 2ρ⟩ + ℓ(v) − ℓ(u).

If the equality holds, then ω = wt(u ⇒ v) and e = d(u ⇒ v).

(3) The multiplicity of

(wt(u ⇒ v), d(u ⇒ v))

in the multiset wts(u ⇒ v) is equal to 1.

Proof. Pick a reflection order ≺, and a path p ∈ paths≺(u ⇒ v) of weight ω and length e. Write it as

p : u = u1
(α1,m1)
−−−→ · · ·

(αe,me)
−−−→ ue+1 = v.

(a) Using the triangle inequality for the quantum Bruhat graph [Postnikov 2005, Lemma 1], we get

wt(u ⇒ v) ≤ wt(u1 ⇒ u2) + · · · + wt(ue ⇒ ue+1).

At each step, apply [Schremmer 2022, Lemma 4.7] to get

· · · ≤ 8+(−u1α1)α
∨

1 + · · · +8+(−ueαe)α
∨

e

≤ m1α
∨

1 + · · · + meα
∨

e = ω.

(b) For each edge ui
(αi ,mi )
−−−→ ui+1, we estimate

⟨miα
∨

i , 2ρ⟩ = mi ⟨α
∨

i , 2ρ⟩ ≥ 8+(−uiαi )⟨α
∨

i , 2ρ⟩.

If uiαi is a positive root, we evaluate · · · = 0 ≥ ℓ(ui )− ℓ(ui+1) + 1. If uiαi is a negative root, we apply
[Brenti et al. 1999, Lemma 4.3] to see ⟨α∨

i , 2ρ⟩ ≥ ℓ(ui ) − ℓ(ui+1) + 1. In any case, we get

⟨miα
∨

i , 2ρ⟩ ≥ ℓ(ui ) − ℓ(ui+1) + 1,

with equality holding if and only if there is an edge ui →ui+1 in the quantum Bruhat graph of weight miα
∨

i .
Iterating this over all edges of the path p, we get the desired inequality.
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If equality holds, we get a path in the quantum Bruhat graph

p′
: u1 → · · · → ue

of length e and weight ω. Moreover, p′ is increasing with respect to our reflection order. By [Brenti et al.
1999, Theorem 6.4], p′ must be a shortest path, so e = d(u ⇒ v) and ω = wt(u ⇒ v).

(c) In view of the proof of (b), we have to see that there exists a unique shortest path in the quantum
Bruhat graph which is increasing for ≺. This statement is found again in [loc. cit., Theorem 6.4]. □

As an application of our findings so far, we are able to prove the following identity.

Proposition 4.14. Let x ∈ W̃ and u ∈ W. Then

(uU (L)x I ) ∩ (vU (L)x I ) = (uU (L) ∩
vU (L))x I.

Proof. The group H :=
uU (L)∩vU (L) acts on both sides of this equation by left multiplication. Moreover,

each H -orbit in uU (L) contains an element of uU (L) ∩
vw0U (L). We see that each H -orbit of

(uU (L)x I ) ∩ (vU (L)x I )

contains an element of the intersection

Y := (uU (L) ∩
vw0U (L))x I ∩ (vU (L)x I ).

We claim that Y = x I. Indeed, Y/I ⊆ G(L)/I is decomposed into pieces according to the multiset

wts(w−1
x v ⇒ w−1

x v 99K w−1
x u).

By Lemma 4.11, we see that this multiset only contains tuples of the form (ω, 0), i.e., all elements in
there correspond to length-zero paths from w−1

x v to w−1
x v in the double Bruhat graph. Since there is

exactly one such path, we conclude that Y/I is irreducible of dimension zero, that is, a point. So the
inclusion x I ⊆ Y is an equality.

We summarize that

(uU (L)x I ) ∩ (vU (L)x I ) = HY = H x I = (uU (L) ∩
vU (L))x I. □

5. Affine Deligne–Lusztig varieties

In this section, we study affine Deligne–Lusztig varieties in the affine flag variety. So the parahoric
subgroup is I and the variety Xx(b) is parametrized by x ∈ W̃ and [b] ∈ B(G). In addition to the restriction
on split groups over a local field of equal characteristic, we also fix a σ -conjugacy class [b] ∈ B(G)

whose Newton point ν(b) ∈ X∗(T ) ⊗ Q is integral, i.e., contained in X∗(T ). Then b = tν(b)
∈ W̃ is our

canonical representative of [b] ∈ B(G). Our three main questions regarding the geometry of Xx(b) are
answered by Görtz, Haines, Kottwitz and Reuman in terms of intersections of semi-infinite orbits with
affine Schubert cells. Due to different choices of Iwahori subgroups, we have a few signs different from
the original source. We define the dimension of the empty variety to be −∞.
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Theorem 5.1 [Görtz et al. 2006, Theorem 6.3.1]. Let x, z ∈ W̃. Then

dim
(
Xx(b) ∩ U (L)z−1 I/I

)
= dim

(
I x I/I ∩ (zU (L))zbz−1 I/I

)
.

The number of (Jb(F)∩U (L))-orbits of top-dimensional irreducible components in Xx(b)∩U (L)z−1 I/I
is equal to the number of top-dimensional irreducible components in

I x I/I ∩ (zU (L))zbz−1 I/I. □

The statement on irreducible components is missing in the cited source, but follows since the proof
method allows us to compare admissible subsets in Xx(b) ∩ U (L)z−1 I/I with admissible subsets in the
other intersection. A generalization of Theorem 5.1 to nonintegral [b] can be found in [Görtz et al. 2010,
Theorem 11.3.1], but it is unclear how our methods can be applied to that generalized statement, or how a
connection to the double Bruhat graph would be given in general.

If we write z = utµz , then
(zU (L))zbz−1 I =

uU (L)tuν(b) I.

Our main result describing the intersection of that set with I x I is the following.

Theorem 5.2. Let x = wx tµx, y = wy tµy ∈ W̃. Let vx ∈ LP(x) and u ∈ W. Pick a reflection order ≺ and
an index n ∈ {0, . . . , #8+

} such that π≻n = u−1wxvxw0. Then

(I x I/I ) ∩ (uw0U (L)y I/I ) =
⊔
p∈P

T̃ p ⊂ G(L)/I,

where
P = {p ∈ paths≺

⪯n(w
−1
y u ⇒ w−1

x u) | wt(p) = u−1wyµy − u−1wxµx}

and each T̃ p ⊂ G(L)/I is a locally closed k-subscheme of finite dimension

dim T̃ p =
1
2(ℓ(x) − ℓu(y) + ℓ(p)) − codim(Tp ∩ (x−1 I x I ) ⊆ Tp).

Here, Tp ⊂ G(L)/I is the variety from Theorem 4.6. If Tp ∩ x−1 I x I is dense in Tp, then T̃ p is irreducible.

Proof. We may write I x I/I = I (x)x I/I ∼= I (x), where I (x) is the finite-dimensional k-group

I (x) =
∏
a

Ua,

with the product taken over all positive affine roots a ∈ 8+

af such that x−1a ∈ 8−

af . If a = (α, m) is
such a root, recall that the root subgroup Ua is defined as the subvariety Ua = {Uα(htm) | h ∈ k}. The
length positivity of vx implies (wxvxw0)

−1α ∈ 8+. Thus we can rewrite the condition vx ∈ LP(x) as
I (x) ⊂

wxvxw0U (L), or
I x I = (I ∩

wxvxw0U (L))x I.

Observe that we have an isomorphism of k-ind-schemes

(wxvxw0U (L) ∩
uU (L)) × (wxvxw0U (L) ∩

uw0U (L)) →
wxvxw0U (L),

(g1, g1) 7→ g1g2.
(5.3)
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Such an isomorphism may, e.g., be obtained by decomposing U (L) into a suitable product of root
subgroups Uα(L) as discussed in the beginning of Section 3.

Using (5.3), we can write each element g ∈ I (x) uniquely in the form g =g1g2, with g1 ∈ I (x)∩uw0U (L)

and g2 ∈ I (x) ∩
uU (L). Then gx I ∈

uw0U (L)y I holds if and only if g2x I ∈
uw0U (L)y I. Hence the

decomposition (5.3) yields an isomorphism

(I x I ∩
uw0U (L)y I )/I = (I (x)x I ∩

uw0U (L)y I )/I
∼=

(
(I (x) ∩

uw0U (L))x I/I
)
×

(
(I (x) ∩

uU (L))x I ∩
uw0U (L)y I

)
/I. (5.4)

The first variety (I (x)∩
uw0U (L))x I/I ∼= I (x)∩

uw0U (L) is just an affine space over k whose dimension
is given by the number of positive affine roots a = (α, m) with x−1a ∈ 8−

af and (uw0)
−1α ∈ 8+. By

[Schremmer 2022, Lemma 2.9], we can express this quantity as

S1 :=
∑

α∈8−

max(0, ℓ(x−1, uα)).

Let us moreover define

S2 :=
∑

α∈8−

min(0, ℓ(x−1, uα)).

Then −S1−S2 is simply the sum over all ℓ(x−1, −uα) for α ∈8+, which we denoted by ℓu(x). Conversely,
S1 − S2 is the sum over all |ℓ(x−1, uα)|, which equals ℓ(x) by [loc. cit., Corollary 2.10, Lemma 2.6]. We
conclude

dim I (x) ∩
uU (L) = S1 =

1
2(ℓ(x) − ℓu(x)).

It remains to study the second factor in (5.4). Following Theorem 4.6, we may take the decomposition

[
wxvxw0U (L) ∩

uU (L)]x I =
⊔
p

xTp,

with the union taken over all paths p ∈ paths≺

⪯n(u
′
⇒ w−1

x u) and all u′
∈ W. Using Theorem 4.6, we

conclude that xTp ∩
uw0U (L)y I is empty if p /∈ P and equal to xTp if p ∈ P. Hence the second factor in

(5.4) can be decomposed as(
(I ∩

wxvxw0U (L) ∩
uU (L))x I ∩

uw0U (L)y I
)
/I =

⊔
p∈P

(xTp ∩ I x I/I ).

We have

dim(xTp ∩ I x I/I ) = dim Tp − codim(Tp ∩ x−1 I x I/I ⊆ Tp).

So the piece T̃ p corresponding to I (x) ∩
uw0U (L) and xTp ∩ I x I under (5.4) has dimension

1
2(ℓ(x) − ℓu(x)) +

1
2(ℓu(x) − ℓu(y) + ℓ(p)) − codim(Tp ∩ x−1 I x I/I ⊆ Tp).

Cancelling the common term ℓu(x), we get the claimed formula. If Tp ∩ x−1 I x I is dense in Tp, then
Tp ∩ x−1 I x I is irreducible itself. Thus T̃ p is isomorphic to the direct product of the affine space
I (x) ∩

uw0U (L) and the irreducible variety Tp ∩ x−1 I x I, and hence is irreducible itself. □
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We are especially interested in those situations where all p ∈ P satisfy the property Tp ⊆ x−1 I x I. This
is not guaranteed at all, as one may choose p and x independently to obtain examples where the inclusion
is far from being satisfied. Nonetheless, we can develop some regularity conditions imposed on (x, y)

that guarantee this inclusion.

Lemma 5.5. Let 8+
= {β1 ≺ · · · ≺ β#8+} be a reflection order, u, v ∈ W and p ∈ paths≺(u ⇒ v). Pick

gI ∈ Tp and write it as
gI = Uvβ1(g1) · · · Uvβ#8+

(g#8+)I ∈ Tp.

Then, for m = 1, . . . , #8+, we have

νL(gm) ≥ −3⟨ρ∨, βm⟩⟨wt(p), ρ⟩,

where ρ is the half-sum of positive roots and ρ∨ the half-sum of positive coroots.

Proof. Write our path as
p : u = u1

(α1,m1)
−−−→ · · ·

(αℓ(p),mℓ(p))
−−−−−−→ uℓ(p)+1 = v.

Denote the type corresponding to p under Lemma 4.4 by τ = {(n1, ν1), . . . , (nℓ(p), νℓ(p))}. This means
αi = βni and

(sαℓ(p)
· · · sαi+1(αi ), mi ) = r(αℓ(p),νℓ(p)) · · · r(αi+1,νi+1)(αi , νi ) ∈ 8af.

We also write α′
:= sαℓ(p)

· · · sαi+1(αi ) ∈ 8.
Let f (•)

•
be the rational polynomials used in the definition of Tp = Tu,≺,τ , i.e., the polynomials from

Proposition 3.5. We use them to define the values (g(m)
i )1≤i≤m≤#8+ via the identities

g(m)
i = gi + f (m)

i (g′

i+1, . . . , g′

#8+),

g′

m = g(m)
m .

Let m ∈ {1, . . . , #8+
} and let h = h(m) ∈ {0, . . . , ℓ(p)} be maximal such that αh′ ≺ βm for all h′

≤ h.
Then the condition g ∈ Tp implies, by definition, that g′

m = 0 or

r(uαℓ(p),νℓ(p)) · · · r(uαh+1,νh+1)(uβm, νL(g′

m)) ∈ 8+

af .

Observe that we can write
r(uαℓ(p),νℓ(p)) · · · r(uαh+1,νh+1)(uβm, νL(g′

m)) = r(uα′

h+1,mh+1) · · · r(uα′

ℓ(p),mℓ(p))(uβm, νL(g′

m))

= (vβm, νL(g′

m)) +

ℓ(p)∑
i=h+1

ci (uα′

i , mi )

for elements ci ∈ {0, ±1, ±2, ±3} describing the pairings between the occurring roots. Thus

νL(g′

m) ≥ −3
ℓ(p)∑

i=h+1
mi ≥ −3

ℓ(p)∑
i=h+1

mi ⟨α
∨

i , ρ⟩ ≥ −3⟨wt(p), ρ⟩.

We claim for all m ∈ {1, . . . , #8+
} and i ∈ {1, . . . , n} that

νL(g(m)
i − g′

i ) ≥ −3⟨ρ∨, βi ⟩⟨wt(p), ρ⟩.
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Induction on m − i : For m = i , we have g(m)
i = g′

i by definition, so there is nothing to prove.
So let now i < m and suppose the claim has been proved for all pairs of smaller difference.
If βm /∈ {α1, . . . , αℓ(p)}, then applying Lemma 3.4 (which is how the polynomials f (•)

•
were constructed)

yields g(m)
i = g(m−1)

i , so we are done by induction immediately.
So suppose now that βm ∈ {α1, . . . , αℓ(p)}. Applying Lemma 3.4, we see that g(m−1)

i has the form

g(m−1)
i = g(m)

i +
∑

cei+1,...,em (g(m)
i+1)

ei+1 · · · (g(m)
m )em ,

with the sum taken over all possible integers ei+1, . . . , em−1 ≥ 0, em < 0 such that

βi = ei+1βi+1 + · · · + emβm

and structure constants cei+1,...,em ∈Z. By the inductive assumption and the above estimate on νL(g′
•
), we see

νL [(g(m)
i+1)

ei+1 · · · (g(m)
n−1)

en−1] ≥ −3⟨wt(p), ρ⟩⟨ρ∨, ei+1βi+1 + · · · + eim−1βm−1⟩.

An entirely similar argument to the one presented above shows moreover νL(g′
m) ≤ 3⟨wt(p), 2ρ⟩, so that

νL((g′

m)em ) ≥ −3em⟨wt(p), ρ⟩⟨ρ∨, βm⟩.

We conclude

νL [cei+1,...,em (g(m)
i+1)

ei+1 · · · (g(m)
m )em ] ≥ −3⟨wt(p), ρ⟩⟨ρ∨, ei+1βi+1 + · · · + emβm⟩

= −3⟨wt(p), ρ⟩⟨ρ∨, βi ⟩.

Hence
νL(g(m)

i − g(m−1)
i ) ≥ −3⟨ρ∨, βi ⟩⟨wt(p), ρ⟩.

This finishes the induction.
In particular, we see

νL(gm) ≥ −3⟨ρ∨, βm⟩⟨wt(p), ρ⟩

for all m. □

We finally define the class of elements in W̃ where Theorem 5.2 and Lemma 5.5 describe affine
Deligne–Lusztig varieties fully.

Definition 5.6. Let x = wtµ
∈ W̃, J ⊆ 1 and C ∈ R>0. We say that x is (J, C)-superparabolic if there

exists v ∈ W such that

(a) all α ∈ 8J satisfy ℓ(x, vα) = 0 and

(b) all α ∈ 8+
\ 8J and v′

∈ vWJ satisfy

⟨µ, v′α⟩ > C⟨ρ∨, α⟩.

This is a generalization of the J -adjusted and J -superdominant elements from [Lenart et al. 2015]. If
x is (J, 2)-superparabolic and v as in the above definition, then one easily checks LP(x) = vWJ . We can
interpret condition (b) above as a regularity condition of the length functional, in particular(

∀α ∈ 8+
\ 8J , ℓ(x, vα) > 1 + C⟨ρ∨, 2ρ⟩

)
=⇒ condition (b) of Definition 5.6
=⇒

(
∀α ∈ 8+

\ 8J , ℓ(x, vα) > C − 1
)
.
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Theorem 5.7. Let x = wtµ
∈ W̃ and b = tν(b) be an element with integral dominant Newton point

ν(b) ∈ X∗(T )dom. Define for each v ∈ LP(x) and u ∈ W the multiset

E(u, v) := {e | (u−1µ − ν(b), e) ∈ wts(u ⇒ wu 99K wv)}m .

Put max∅ := −∞ and define

e : = max
u∈W

min
v∈LP(x)

max(E(u, v)) ∈ Z ∪ {−∞},

d : =
1
2

(
ℓ(x) + e − ⟨ν(b), 2ρ⟩

)
∈ Z ∪ {−∞}.

(a) If there exists for every u ∈ W some v ∈ LP(x) with E(u, v) =∅, i.e., if e = d = −∞, then Xx(b) =∅.

(b) If Xx(b) ̸= ∅, then dim Xx(b) ≤ d.

(c) Write C = 3⟨µdom
− ν(b), ρ⟩ and suppose that x is (J, C)-superparabolic for some J ⊆ 1. Define

the multiset E as the additive union
E =

⋃
v∈LP(x)

E(vw0(J ), v).

Then Xx(b) ̸= ∅ if and only if E ̸= ∅. In this case, e = max(E) and dim Xx(b) = d.

(d) Assume Xx(b) ̸= ∅ and let 6d be the set of d-dimensional irreducible components of Xx(b). Then
the number of Jb(F)-orbits in 6d is

#(6d/Jb(F)) ≤
∑

u∈W
min
v∈W

(multiplicity of e in E(u, v)).

If we are in the situation of (c) and b is regular, i.e., ⟨ν(b), α⟩ ̸= 0 for all α ∈ 8, then #(6d/Jb(F)) is
equal to the multiplicity of e in E.

Proof. We use Theorem 5.1 to reduce questions on the affine Deligne–Lusztig variety to the situation of
Theorem 5.2.

So let z = utµz ∈ W̃. Then Xx(b) ∩ U (L)z−1 I/I is closely related to the intersection

(I x I/I ) ∩ (uU (L)t−uν(b) I/I ).

Pick v ∈ LP(x). By Theorem 5.2, the latter intersection can be decomposed into pieces (T̃ p)p∈P with

P = {p ∈ paths≺

⪯n(uw0 ⇒ w−1uw0) | wt(p) = (uw0)
−1(uν(b)) − (uw0)

−1wµ}.

Here, ≺ is a reflection order chosen such that π≻n = w0u−1wvw0. The number of paths in P having a
given length ℓ ∈ Z≥0 is equal to the multiplicity of

(w0(ν(b) − u−1wµ), ℓ)
in the multiset

wts(uw0 ⇒ w−1uw0 99K vw0).

By Lemma 4.7(a) and (b), this is also equal to the multiplicity of (u−1wµ − ν(b), ℓ) in

wts(w0u ⇒ w0w
−1u 99K w0v) = wts(w−1u ⇒ u 99K wv).

By definition, this is the multiplicity of ℓ in the multiset E(w−1u, v).



Affine Deligne–Lusztig varieties via the double Bruhat graph, I 2009

We see that if E(w−1u, v) = ∅ then Xx(b) ∩ U (L)z−1 I = ∅. Otherwise,

dim
(
Xx(b) ∩ U (L)z−1 I/I

)
= max

p
dim T̃ p ≤

1
2

(
ℓ(x) + max(E(w−1u, v))− ℓuw0(t

uν(b))
)
.

Observe ℓuw0(t
uν(b)) = ⟨ν(b), 2ρ⟩. This shows (a) and (b).

In particular, we have dim T̃ p ≤ d for all p. If equality holds, then T̃ p must be irreducible by
Theorem 5.2. Hence the number of d-dimensional irreducible components in Xx(b)∩U (L)z−1 I/I is equal
to the number of pieces T̃ p satisfying dim T̃ p = d , which is at most the multiplicity of e in E(w−1u, v).
Observe that the action of T (F) ⊆ JB(F) simply permutes the intersections Xx(b) ∩ U (L)z−1 I/I by
changing the value of µz . Thus the number #(6d/Jb(F)) is at most equal to∑

u∈W
(number of d-dimensional irreducible components in (Xx(b) ∩ U (L)u−1 I )).

We get the desired estimate in (d).
Let us now assume the regularity condition from (c). Let v1 ∈ W be chosen such that v−1

1 µ is dominant.
We have LP(x) = v1WJ .

If u ∈ W satisfies w−1u /∈ LP(x) = v1WJ , we find a positive root α ∈ 8+
\8J with v−1

1 w−1uα ∈ 8−.
Hence

⟨µ, −w−1uα⟩ ≥ C = 3⟨v−1
1 µ − ν(b), ρ⟩.

We conclude
w−1uµ ≤ µdom

− Cα∨
̸≥ ν(b).

Hence E(u, v) = ∅ for all v ∈ LP(x), proving

I x I ∩
uU (L)t−uν(b) I = ∅.

Let us now consider the case w−1u ∈ LP(x). Then also v := w−1uw0(J ) ∈ LP(x). Consider the
pieces T̃ p as constructed above for this pair (u, v), i.e., for paths p from uw0 to w−1uw0. We claim
Tp ⊆ x−1 I x I for all occurring paths p, using Lemma 5.5: Indeed if

gI = Uw−1uw0β1(g1) · · · Uw−1uw0βn (gn)I ∈ Tp

and w0w0(J )w0 = π≻βn , then −w08
+

J = {βn+1, . . . , β#8+}. The condition that p is bounded above by n
yields

w−1uw0β1, . . . , w
−1uw0βn ∈ w−1u(8−

\ 8J ).

Since w−1u ∈ LP(x), the superparabolicity condition implies

⟨µ, w−1uw0βi ⟩ < −C⟨ρ∨, βi ⟩.

By Lemma 5.5, we obtain xUw−1uw0βi (gi )x−1
∈ I. This shows the claim Tp ⊆ x−1 I x I.

By Theorem 5.2, we see that T̃ p is irreducible of dimension

dim T̃ p =
1
2

(
ℓ(x) + ℓ(p) − ⟨ν(b), 2ρ⟩

)
.
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This completely describes nonemptiness, dimension and top-dimensional irreducible components of
Xx(b) ∩ U (L)z−1 I/I. So Xx(b) ̸= ∅ if and only if E ̸= ∅, and in this case

dim Xx(b) =
1
2

(
ℓ(x) + max(E) − ⟨ν(b), 2ρ⟩

)
.

We saw E(u, v) = ∅ whenever u /∈ LP(x), so e ≤ max(E) by definition of e. Conversely, we get
max(E) ≤ e from (b) and the above dimension calculation. Thus max(E) = e. We conclude (c).

Assume now that [b] is regular as in the final claim of (d). Then Jb(F) = T (F), so the number of
Jb(F)-orbits of d-dimensional irreducible components in Xx(b) is equal to∑

u∈W
(number of d-dimensional irreducible components in (Xx(b) ∩ U (L)u−1 I )).

Observe that each summand is equal to the number of d-dimensional pieces T̃ p corresponding to u ∈ W.
By the above analysis using the superparabolicity assumption, this number is equal to the multiplicity
of e in E(w−1u, w−1uw0(J )) (thus zero if w−1u /∈ LP(x)). The final claim of (d) follows. □

Remark 5.8. If x is not superparabolic, we do not expect that the converse of Theorem 5.7(a) holds in
general. Even if Xx(b) ̸= ∅, we do not expect that equality holds in (b) or (d) in general. It is easy to
find counterexamples using a computer search.

Corollary 5.9. Let x = wtµ
∈ W̃ and [b] ∈ B(G). Let v ∈ W such that v−1µ is dominant. Put C =

3⟨v−1µ − ν(b), ρ⟩ and assume that
⟨v−1µ, α⟩ ≥ C

for all simple roots α. Define the multiset

E = {e ∈ Z | (v−1µ − ν(b), e) ∈ wts(v ⇒ wv)}m .

Then Xx(b) ̸= ∅ if and only if E ̸= ∅. In this case, the dimension of Xx(b) is

dim Xx(b) =
1
2

(
ℓ(x) + max(E) − ⟨ν(b), 2ρ⟩

)
,

and the number of Jb(F)-orbits of top-dimensional irreducible components is equal to the multiplicity of
max(E) in E.

Proof. The regularity condition on (x, b) implies that ν(b) must be regular. In particular, [b] is integral.
Now apply the previous theorem. □

Remark 5.10. We saw in Proposition 4.13 that the set {ω | (ω, e) ∈ wts(v ⇒ wv)} contains a unique
minimum, which is given by the weight of a shortest path in the quantum Bruhat graph from v to wv.
The above corollary shows under some strong regularity conditions that the set B(G)x contains a unique
maximum [bx ], being the element of Newton point ν(bx) = v−1µ − wt(v ⇒ wv). It moreover follows
that this element [bx ] satisfies

d(v ⇒ wv) = ℓ(x) − ⟨ν(bx), 2ρ⟩ = dim Xx(bx)

and that Xx(bx) has, up to Jbx (F)-action, only one top-dimensional irreducible component.
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It is a well-known result of Viehmann [2014, Section 5] that B(G)x always contains a unique maximum
for arbitrary G and x . She moreover provides a combinatorial description in terms of the Bruhat order on
the extended affine Weyl group.

The description of the generic σ -conjugacy class [bx ] in terms of the quantum Bruhat graph is known
due to Milićević [2021]. Her proof is more combinatorial in nature, following Viehmann’s description
of [bx ] using the Bruhat order and a comparison of the Bruhat order with the quantum Bruhat graph due
to Lam and Shimozono [2010]. Her combinatorial methods have been refined since, so that a description
of [bx ] using the quantum Bruhat graph is known for arbitrary G and x [Sadhukhan 2023; He and Nie
2024; Schremmer 2022]. Our corollary recovers Milićević’s original result using an entirely different proof
method, which moreover reveals how to find the quantum Bruhat graph itself in the affine flag variety.

The aforementioned geometric properties of Xx(bx) are well known for arbitrary G and x , as described
in the Introduction. We can interpret Proposition 4.13, i.e., essentially [Brenti et al. 1999, Theorem 6.4],
as a combinatorial shadow of these geometric facts.

Remark 5.11. Let us compare Corollary 5.9 to the situation of affine Deligne–Lusztig varieties in the
affine Grassmannian, i.e., where the parahoric subgroup K = G(OL) is hyperspecial. Given [b] ∈ B(G)

and a dominant µ ∈ X∗(T ), we can compare the affine Deligne–Lusztig variety Xµ(b) ⊂ G(L)/K with
Xw0tµ(b) ⊂ G(L)/I following [He 2014, Theorem 10.1]. If x = w0tµ satisfies the regularity conditions
from Corollary 5.9, this means we should study the multiset wts(1 ⇒ w0).

Given any reflection order 8+
= {β1 ≺ · · · ≺ β#8+}, there exists a unique unlabelled path of maximal

length from 1 to w0, given by

p̄ : 1 β1
−→ sβ1

β2
−→ · · ·

β#8+

−−→ w0.

Each arrow in this path is increasing the length in W. Thus, the labelled paths p in the double Bruhat
graph with underlying unlabelled path p̄ are precisely the paths of the form

p : 1 (β1,m1)
−−−→ sβ1

(β2,m2)
−−−→ · · ·

(β#8+ ,m#8+ )
−−−−−−→ w0

for integers m1, . . . , m#8+ ≥ 0. In the situation of Corollary 5.9, we see that Xx(b) ̸= ∅ if and only if
µ − ν(b) is a sum of positive coroots, in which case we get

dim Xx(b) =
1
2

(
ℓ(x) + #8+

− ⟨ν(b), 2ρ⟩
)
.

The number of top-dimensional irreducible components of Xx(b) is equal to the number of different ways
to express µ − ν(b) as a sum of positive coroots. This latter quantity is known as Kostant’s partition
function, which is also known to describe the dimension of the ν(b)-weight space associated with the
Verma module Vµ. Under the regularity assumption made, this is also equal to the dimension of the
ν(b)-weight space of the irreducible quotient Mµ by Kostant’s multiplicity formula.

In view of [He 2014, Theorem 10.1], we recover Theorem 1.1 in the setting of Corollary 5.9. While
this is a fairly restrictive setting, one may expect that statements similar to Corollary 5.9 hold true in
much higher generality.
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Affine Deligne–Lusztig varieties via
the double Bruhat graph, II:

Iwahori–Hecke algebra
Felix Schremmer

We introduce a new language to describe the geometry of affine Deligne–Lusztig varieties in affine flag
varieties. This second part of a two-paper series uses this new language, i.e., the double Bruhat graph,
to describe certain structure constants of the Iwahori–Hecke algebra. As an application, we describe
nonemptiness and dimension of affine Deligne–Lusztig varieties for most elements of the affine Weyl
group and arbitrary σ -conjugacy classes.

1. Introduction

In a seminal paper, Deligne and Lusztig [1976] introduced a class of varieties, which they use to describe
many representations of finite groups of Lie type. An analogous construction yields the so-called affine
Deligne–Lusztig varieties, which play an important role, e.g., in the reduction of Shimura varieties
[Rapoport 2005; He 2018]. Continuing the treatment of [Schremmer 2025], we study affine Deligne–
Lusztig varieties in affine flag varieties.

Let G be a reductive group defined over a local field F, whose completion of the maximal unramified
extension we denote by F̆. Denote the Frobenius of F̆/F by σ and pick a σ -stable Iwahori subgroup
I ⊆ G(F̆). The affine Deligne–Lusztig variety Xx(b) associated to two elements x, b ∈ G(F̆) is the
reduced ind-subscheme of the affine flag variety G(F̆)/I with geometric points

Xx(b)= {g ∈ G(F̆)/I | g−1bσ(g) ∈ I x I }.

Observe that the isomorphism type of Xx(b) only depends on the σ -conjugacy class

[b] = {g−1bσ(g) | g ∈ G(F̆)}

and the Iwahori double coset I x I ⊆ G(F̆). These Iwahori double cosets are naturally parametrized by
the extended affine Weyl group W̃ of G, and we get

G(F̆)=
⊔

x∈W̃
I ẋ I.

MSC2020: 11G25, 20C08, 20G25.
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Many geometric properties of the double cosets I ẋ I for various x ∈ W̃ can be understood via the
corresponding Iwahori–Hecke algebra H = H(W̃ ). This algebra and its representation theory received
tremendous interest since the discovery of the Satake isomorphism [1963]. There are a few different and
mostly equivalent constructions of this algebra in use. For now, we summarize that this is an algebra over
a suitable base field or ring with a basis given by formal variables Tx for x ∈ W̃. The element Tx ∈ H
can be thought of as the representation-theoretic analogue of the Iwahori double coset I x I ⊆ G(F̆). For
example, if x, y ∈ W̃, we can write

I x I · I y I =
⋃
z

I z I,

where the union is taken over all z ∈ W̃ such that the Tz-coefficient of Tx Ty ∈ H is nonzero. For a general
overview over the structure theory of Iwahori–Hecke algebras and its applications to the geometry of the
affine flag variety, we refer to [He 2016].

The set of σ -conjugacy classes B(G)= {[b] | b ∈ G(F̆)} is the second main object of interest in the
definition of affine Deligne–Lusztig varieties. It is a celebrated result of Kottwitz [1985; 1997] that
each σ -conjugacy class [b] is uniquely determined by two invariants, known as its Newton point and its
Kottwitz point. From [He 2014, Theorem 3.7], we get a parametrization of B(G) using the extended
affine Weyl group W̃. For each x ∈ W̃, consider its σ -conjugacy class in W̃, denoted by

O = {y−1xσ(y) | y ∈ W̃ }.

Two elements that are σ -conjugate in W̃ will also be σ -conjugate in G(F̆), but the converse does not
hold true in general. We obtain a surjective but not injective map

{σ -conjugacy classes O ⊆ W̃ } → B(G),

sending O to [ẋ] ∈ B(G) for any x ∈ O.
The analogous construction in the Iwahori–Hecke algebra is the formation of a σ -twisted cocenter, i.e.,

the quotient of H by the submodule [H,H]σ generated by

[h, h′
]σ = hh′

− h′σ(h), h, h′
∈ H.

An important result of He and Nie [2014, Theorem C] gives a full description of this cocenter. For each
σ -conjugacy class O ⊆ W̃ and any two elements of minimal length x1, x2 ∈O, they prove that the images
of Tx1 and Tx2 in the cocenter of H agree. Denoting the common image by TO, they prove moreover that
these TO form a basis of the cocenter, parametrized by all σ -conjugacy classes O ⊆ W̃.

With these preferred bases {Tx} of H and {TO} of the quotient, we obtain structure constants expressing
the image of each Tx in the cocenter as a linear combination of the TO’s. These are known as class
polynomials, so we write

Tx ≡
∑

O⊆W̃
σ -conj. class

fx,OTO (mod [H,H]σ ).

These representation-theoretic structure constants are often hard to determine. However, they are very
useful for studying affine Deligne–Lusztig varieties, especially the following main three questions:
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(Q1) When is Xx(b) empty? Equivalently, when is the Newton stratum empty?

(Q2) If Xx(b) ̸= ∅, what is its dimension?

(Q3) How many top-dimensional irreducible components, up to the action of the σ -centralizer of b, does
Xx(b) have?

It is an important result of He that these main questions can be fully answered in terms of the class
polynomials; see [He 2014, Theorem 6.1; 2016, Theorem 2.19]. The class polynomials can moreover be
used to count rational points of Newton strata; see [He et al. 2024, Proposition 3.7].

In the previous article [Schremmer 2025], we showed that the same main questions can also be answered,
in some cases, using the combinatorial notion of a double Bruhat graph. This is an explicitly described finite
graph, introduced in [Naito and Watanabe 2017, Section 5.1] in order to describe periodic R-polynomials.
Following a result of Görtz, Haines, Kottwitz and Reumann [Görtz et al. 2006, Section 6] comparing
affine Deligne–Lusztig varieties with certain intersections in the affine flag variety, we showed that the
double Bruhat graph appears naturally as a way to encode certain subvarieties of the affine flag variety.

Write x = wtµ ∈ W̃, v ∈ W, and assume that a regularity condition of the form

∀α ∈8+, ⟨v−1µ, α⟩ ≫ ⟨µdom
− ν(b), 2ρ⟩

is satisfied. Assume moreover that the group G is split over F. Then [Schremmer 2025, Corollary 5.9]
shows that the questions of nonemptiness, dimension and top-dimensional irreducible components are
determined by the set of paths from v to wv in the double Bruhat graph that are increasing with respect
to some fixed reflection order ≺ and of weight µdom

− ν(b). Our first main result states that this set of
paths determines the full class polynomial, and that the assumption of a split group can be removed.

Theorem 1.1 (see Theorem 4.10). Assume that the group G is quasisplit. Let x = wεµ ∈ W̃, v ∈ W and
O ⊆ W̃ such that a regularity condition of the form

∀α ∈8+, ⟨v−1µ, α⟩ ≫ ⟨µdom
− ν(O), 2ρ⟩

is satisfied. Then the class polynomial fx,O can be expressed in terms of paths in the double Bruhat graph
from v to σ(wv) that are increasing with respect to some fixed reflection order. For a suitable parametriza-
tion of the Iwahori–Hecke algebra as an algebra over the polynomial ring Z[Q] (Definition 4.1), the class
polynomial is explicitly given by

fx,O =
∑

p
Qℓ(p),

where the sum is taken over all paths p in the double Bruhat graph from v to σ(wv) that are increasing
with respect to some fixed reflection order and such that ν(O) is the σ -average of v−1µ− wt(p).

The assumption of a quasisplit group can be removed following [Görtz et al. 2015, Section 2], though
it requires more cumbersome notation to write down statements in full generality; see [Schremmer 2022,
Section 4.2].
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We will prove Theorem 1.1 as a consequence of the following more fundamental result, computing the
structure constants of the multiplication of our standard basis vectors in H.

Theorem 1.2 (see Theorem 4.2). Let x = wxε
µx, z = wzε

µz ∈ W̃, and vz ∈ W satisfying a regularity
condition of the form

∀α ∈8+, ⟨v−1
z µz, α⟩ ≫ ℓ(x).

Define polynomials ϕx,z,y via
Tx Tz =

∑
y∈W̃

ϕx,z,yTy ∈ H(W̃ ).

Pick an element y = wyε
µy ∈ W̃ and vx ∈ W such that a regularity condition of the form

∀α ∈8+, ⟨v−1
x µx , α⟩ ≫ ℓ(x)+ ℓ(z)− ℓ(y)

is satisfied. Then we can describe the structure constant ϕx,z,y in terms of paths in the double Bruhat
graph. Explicitly, we have ϕx,z,y = 0 unless wy = (wxvx)

−1vy . In this case, we have

ϕx,z,y =
∑

p
Qℓ(p),

where the sum is taken over all paths in the double Bruhat graph from vx to wzvz that are increasing with
respect to some reflection order and of weight

wt(p)= v−1
x µx + v−1

z µz − (wzvz)
−1µy .

Theorem 4.2 below actually proves a stronger statement, requiring only a weaker regularity condition
of the form

∀α ∈8+, ⟨v−1µx , α⟩ ≫ ℓ(x)− ℓ(y−1z).

The resulting description of ϕx,z,y is more involved, however, replacing the single path p by pairs of
bounded paths in the double Bruhat graph. Theorem 1.2 as stated here is sufficient to derive Theorem 1.1.

So under some very strong regularity conditions, the double Bruhat graph may also be used to understand
multiplications of Iwahori double cosets I x I · I z I in G(F̆). Theorems 1.1 and 1.2 give insight in the
generic behaviour of class polynomials and products in the Iwahori–Hecke algebra, solving infinitely
many previously intractable questions using a finite combinatorial object. From a practical point of view,
this allows us to quickly derive many crucial properties of the weight multisets of the double Bruhat graph
by referring to known properties of the Iwahori–Hecke algebra or affine Deligne–Lusztig varieties. Using
some of the most powerful tools available to describe affine Deligne–Lusztig varieties and comparing
them to the double Bruhat graph, we obtain the following result.

Theorem 1.3 (see Theorem 5.4). Let x = wεµ ∈ W̃ and v ∈ W, satisfying the regularity condition

∀α ∈8+, ⟨v−1µ, α⟩ ≥ 2 rk(G)+ 14,

where rk(G) is the rank of a maximal torus in the group G.
Pick an arbitrary σ -conjugacy class [b] ∈ B(G). Let P be the set of all paths p in the double Bruhat

graph from v to σ(wv) that are increasing with respect to some fixed reflection order such that the
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λ-invariant of [b] (see [Hamacher and Viehmann 2018, Section 2]) satisfies

λ(b)= v−1µ− wt(p).

Then P ̸= ∅ if and only if Xx(b) ̸= ∅. If p is a path of maximal length in P, then

dim Xx(b)=
1
2

(
ℓ(x)+ ℓ(p)− ⟨ν(b), 2ρ⟩ − def(b)

)
.

We give a similar description in terms of the dominant Newton points of [b] rather than the λ-invariant.

Theorem 1.3 gives full answers to the questions (Q1) and (Q2) for arbitrary [b] ∈ B(G) as long as the
element x ∈ W̃ satisfies a somewhat mild regularity condition (being linear in the rank of G).

The proofs given in this article are mostly combinatorial in nature, and largely independent of its
predecessor article [Schremmer 2025]. We will rely only on some basic facts on the double Bruhat graph
established in [Schremmer 2025, Section 4]. The best known ways to compute the structure constants of
Theorem 1.2 and the class polynomials fx,O are given by certain recursive relations involving simple
affine reflections in the extended affine Weyl group. Similarly, the Deligne–Lusztig reduction method
[1976] of Görtz and He [2010, Section 2.5] provides such a recursive method to describe many geometric
properties of affine Deligne–Lusztig varieties, in particular the ones studied in this paper series. On the
double Bruhat side, these are mirrored by the construction of certain bijections between paths due to Naito
and Watanabe [2017, Section 3.3]. We recall these bijections and derive the corresponding properties of
the weight multisets in Section 3. We study the consequences for the Iwahori–Hecke algebra in Section 4,
and the resulting properties of affine Deligne–Lusztig varieties in Section 5.

In Section 6, we finish this series of two papers by listing a number of further-reaching conjectures,
predicting a relationship between the geometry of affine Deligne–Lusztig varieties and paths in the double
Bruhat graph in various cases. These conjectures are natural generalizations of our results, and withstand
an extensive computer search for counterexamples.

Recall that our main goal is to find and prove a description of the geometry of affine Deligne–Lusztig
varieties in the affine flag variety that is as concise and precise as the known analogous statements for the
affine Grassmannian (as summarized in [Schremmer 2025, Theorem 1.1]). Our conjectures and partial
results towards proving them suggest that the language of the double Bruhat graph is very useful for this
task, and might even be the crucial missing piece towards a full description.

We would like to remark that once a conjecture is found that describes the geometry of Xx(b) for
arbitrary x, b in terms of the double Bruhat graph, a proof of such a conjecture might simply consist of a
straightforward comparison of the Deligne–Lusztig reduction method [1976] due to Görtz and He [2010]
with the analogous recursive relations of the double Bruhat graph that are discussed in this article.

2. Notation

We fix a nonarchimedean local field F whose completion of the maximal unramified extension will be
denoted by F̆. We write OF and OF̆ for the respective rings of integers. Let ε ∈ F be a uniformizer. The
Galois group 0 = Gal(F̆/F) is generated by the Frobenius σ .
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In the context of Shimura varieties, one would choose F to be a finite extension of the p-adic numbers.
When studying moduli spaces of shutkas, F would be the field of Laurent series over a finite field.

In any case, we fix a reductive group G over F. Via [Görtz et al. 2015, Section 2], we may reduce
questions regarding affine Deligne–Lusztig varieties of G to the case of a quasisplit group. In order to
minimize the notational burden, we assume that the group G is quasisplit throughout this paper.

We construct its associated affine root system and affine Weyl group following [Haines and Rapoport
2008; Tits 1979].

Fix a maximal F̆-split torus TF̆ ⊆ G F̆ and write T for its centralizer in G F̆ , so T is a maximal torus
of G F̆ . Write A = A(G F̆ , TF̆ ) for the apartment of the Bruhat–Tits building of G F̆ associated with TF̆ .
We pick a σ -invariant alcove a in A. Its stabilizer is a σ -invariant Iwahori subgroup I ⊂ G(F̆).

Denote the normalizer of T in G by NG(T ). Then the quotient

W̃ = NG(T )(F̆)/(T (F̆)∩ I )

is called the extended affine Weyl group, and W = NG(T )(F̆)/T (F̆) is the ( finite) Weyl group. The Weyl
group W is naturally a quotient of W̃. We denote the Frobenius action on W and W̃ by σ as well.

The affine roots as constructed in [Tits 1979, Section 1.6] are denoted by 8af. Each of these roots
a ∈8af defines an affine function a : A → R. The vector part of this function is denoted by cl(a) ∈ V ∗,
where V = X∗(S)⊗ R = X∗(T )00 ⊗ R. Here, 00 = Gal(F/F̆) is the absolute Galois group of F̆, i.e., the
inertia group of 0 = Gal(F/F). The set of ( finite) roots is1 8 := cl(8af).

Each affine root in 8af divides the standard apartment into two half-spaces, one being the positive
and one the negative side. Those affine roots where our fixed alcove a is on the positive side are called
positive affine roots. If moreover the alcove a is adjacent to the root hyperplane, it is called a simple affine
root. We denote the sets of simple, resp. positive, affine roots by 1af ⊆8+

af ⊆8af.
Writing Waf for the extended affine Weyl group of G, we get a natural σ -equivariant short exact

sequence (see [Haines and Rapoport 2008, Lemma 14])

1 → Waf → W̃ → π1(G)00 → 1.

Here, π1(G) := X∗(T )/Z8∨ denotes the Borovoi fundamental group.
For each x ∈ W̃, we denote by ℓ(x) ∈ Z≥0 the length of a shortest alcove path from a to xa. The

elements of length zero are denoted by �. The above short exact sequence yields an isomorphism of �
with π1(G)00 , realizing W̃ as semidirect product W̃ =�⋉ Waf.

Each affine root a ∈8af defines an affine reflection ra on A. The group generated by these reflections
is naturally isomorphic to Waf (see [Haines and Rapoport 2008]), so by abuse of notation, we also write
ra ∈ Waf for the corresponding element. We define Saf := {ra | a ∈1af}, called the set of simple affine
reflections. The pair (Waf, Saf) is a Coxeter group with length function ℓ as defined above.

1This is different from the root system that [Tits 1979] and [Haines and Rapoport 2008] denote by 8; it coincides with the
root system called 6 in [Haines and Rapoport 2008].



Affine Deligne–Lusztig varieties via the double Bruhat graph, II 2021

We pick a special vertex x ∈ A that is adjacent to a. Since we assumed G to be quasisplit, we may and
do choose x to be σ -invariant. We identify A with V via x 7→ 0. This allows us to take the decomposition
8af =8× Z, where a = (α, k) corresponds to the function

V → R, v 7→ α(v)+ k.

From [Haines and Rapoport 2008, Proposition 13], we moreover get decompositions W̃ = W ⋉ X∗(T )00

and Waf = W ⋉Z8∨. Using this decomposition, we write elements x ∈ W̃ as x = wεµ, with w ∈ W and
µ ∈ X∗(T )00 . For a = (α, k) ∈8af, we have ra = sαεkα∨

∈ Waf, where sα ∈ W is the reflection associated
with α. The natural action of W̃ on 8af can be expressed as

(wεµ)(α, k)= (wα, k − ⟨µ, α⟩).

We define the dominant chamber C ⊆ V to be the Weyl chamber containing our fixed alcove a. This
gives a Borel subgroup B ⊆ G, and corresponding sets of positive/negative/simple roots 8+,8−,1⊆8.

By abuse of notation, we denote by 8+ also the indicator function of the set of positive roots, i.e.,

∀α ∈8, 8+(α)=

{
1, α ∈8+,

0, α ∈8−.

The sets of positive and negative affine roots can be expressed as

8+

af = (8+
× Z≥0)⊔ (8

−
× Z≥1)= {(α, k) ∈8af | k ≥8+(−α)},

8−

af = −8+

af =8af \8
+

af = {(α, k) ∈8af | k <8+(−α)}.

One checks that 8+

af are precisely the affine roots that are sums of simple affine roots.
Decompose 8 as a direct sum of irreducible root systems, 8=81 ⊔ · · · ⊔8c. Each irreducible factor

contains a uniquely determined highest root θi ∈8+

i . Now the set of simple affine roots is

1af = {(α, 0) | α ∈1} ∪ {(−θi , 1) | i = 1, . . . , c} ⊂8+

af.

We call an element µ ∈ X∗(T )00 ⊗ Q dominant if ⟨µ, α⟩ ≥ 0 for all α ∈ 8+. Similarly, we call it
C-regular for a real number C if

|⟨µ, α⟩| ≥ C

for each α ∈8+. If µ ∈ X∗(T )00 is dominant, then the Newton point of εµ ∈ W̃ is given by the σ -average
of µ, defined as

avgσ (µ)=
1
N

N∑
i=1
σ i (µ),

where N > 0 is any integer such that the action of σ N on X∗(T )00 is trivial.
An element x =wεµ ∈ W̃ is called C-regular if µ is. We write LP(x)⊆ W for the set of length positive

elements as introduced in [Schremmer 2022, Section 2.2]. If x is 2-regular, then LP(x) consists only of
one element, namely the uniquely determined v ∈ W such that v−1µ is dominant.

For elements µ,µ′ in X∗(T )00 ⊗ Q (resp. X∗(T )00 or X∗(T )0), we write µ ≤ µ′ if the difference
µ′

−µ is a Q≥0-linear combination of positive coroots.
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3. Double Bruhat graph

We recall the definition of the double Bruhat graph following [Naito and Watanabe 2017, Section 5.1]. It
turns out that the paths we studied in order to understand affine Deligne–Lusztig varieties are a certain
subset of the paths studied by Naito–Watanabe in order to study Kazhdan–Lusztig theory, or more
precisely periodic R-polynomials.

Definition 3.1. Let ≺ be a total order on 8+, and let moreover v,w ∈ W.

(a) The double Bruhat graph DBG(W ) is a finite directed graph. Its set of vertices is W. For each w ∈ W
and α ∈8+, there is an edge w α

−→ wsα.

(b) A nonlabelled path p̄ in DBG(W ) is a sequence of adjacent edges

p̄ : v = u1
α1

−→ u2
α2

−→ · · ·
αℓ

−→ uℓ+1 = w.

We call p̄ a nonlabelled path from v to w of length ℓ( p̄)= ℓ. We say p̄ is increasing with respect to ≺ if
α1 ≺ · · · ≺ αℓ. In this case, we moreover say that p̄ is bounded by n ∈ Z if αℓ = βi for some i ≤ n.

(c) A labelled path or path p in DBG(W ) consists of an unlabelled path

p̄ : v = u1
α1

−→ u2
α2

−→ · · ·
αℓ

−→ uℓ+1 = w

together with integers m1, . . . ,mℓ ∈ Z subject to the condition

mi ≥8+(−uiαi )=

{
0, ℓ(ui+1) > ℓ(ui ),

1, ℓ(ui+1) < ℓ(ui ).

We write p as

p : v = u1
(α1,m1)
−−−→ u2

(α2,m2)
−−−→ · · ·

(αℓ,mℓ)
−−−→ uℓ+1 = w.

The weight of p is

wt(p)= m1α
∨

1 + · · · + mℓα
∨

ℓ ∈ Z8∨.

The length of p is ℓ(p)= ℓ( p̄)= ℓ. We say that p is increasing with respect to ≺ if p̄ is. In this case, we
say that p is bounded by n ∈ Z if p̄ is.

(d) The set of all paths from v to w that are increasing with respect to ≺ and bounded by n ∈ Z is denoted
by paths≺

⪯n(v ⇒ w). We also write

paths≺(v ⇒ w)= paths≺

⪯#8+(v ⇒ w).

(e) The order ≺ is called a reflection order if, for all roots α, β ∈8+ with α+β ∈8+, we have

α ≺ α+β ≺ β or β ≺ α+β ≺ α.

We will frequently use the immediate properties of these paths as developed in [Schremmer 2025,
Section 4]. For this section, our main result describes how these paths behave with respect to certain
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simple affine reflections. Fix a reflection order

8+
= {β1 ≺ · · · ≺ β#8+}

and write
π≻n = sβn+1 · · · sβ#8+

∈ W

as in [Schremmer 2025, Definition 4.10].

Theorem 3.2. Let u, v ∈ W and n ∈ {0, . . . , #8+
}. Pick a simple affine root a = (α, k) ∈1af such that

(vπ≻n)
−1α ∈8−.

(a) If u−1α ∈8−, then there exists an explicitly described bijection of paths

ψ : paths≺

⪯n(sαu ⇒ sαv)→ paths≺

⪯n(u ⇒ v)

satisfying for each p ∈ paths≺

⪯n(sαu ⇒ sαv) the conditions

ℓ(ψ(p))= ℓ(p), wt(ψ(p))= wt(p)+ k(v−1α∨
− u−1α∨).

(b) If u−1α ∈8+, then there exists an explicitly described bijection of paths

ϕ : paths≺

⪯n(sαu ⇒ sαv)⊔ paths≺

⪯n(sαu ⇒ v)→ paths≺

⪯n(u ⇒ v)

satisfying for each p ∈ paths≺

⪯n(sαu ⇒ sαv) and p′
∈ paths≺

⪯n(sαu ⇒ v) the conditions

ℓ(ϕ(p))= ℓ(p), wt(ϕ(p))= wt(p)+ k(v−1α∨
− u−1α∨),

ℓ(ϕ(p′))= ℓ(p′)+ 1, wt(ϕ(p′))= wt(p′)− ku−1α∨.

The proof of this theorem can essentially be found in Section 3.3 of [Naito and Watanabe 2017],
which is a rather involved and technical construction. One may obtain a weaker version of Theorem 3.2
by comparing the action of simple affine reflections on semi-infinite orbits with [Schremmer 2025,
Theorem 4.6]. While such a weaker result would be sufficient for our geometric applications, we do need
the full strength of Theorem 3.2 for our conclusions on the Iwahori–Hecke algebra. Moreover, we would
like to explain the connection between our paper and [Naito and Watanabe 2017]. Let us hence recall
some of the notation used by Naito and Watanabe:

Definition 3.3. (a) By ≤∞/2, we denote the semi-infinite order on W̃ as introduced in [Lusztig 1980]. It
is generated by inequalities of the form

wεµ <∞/2 r(α,k)wεµ,

where (α, k) ∈8+

af, w ∈ W and µ ∈ X∗(T )00 satisfy w−1α ∈8+.

(b) For w, y ∈ W̃, we denote by P≺
r (y, w) the set of paths in W̃ of the form

5 : y = y1
(β1,m1)
−−−→ y2

(β2,m2)
−−−→ · · ·

(βℓ,mℓ)
−−−→ yℓ+1 = w

such that the following two conditions are both satisfied:
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• For each i = 1, . . . , ℓ, we have yi+1 >∞/2 yi . Writing yi = wiε
µi , we have

yi+1 = wi sβi ε
µi +miβ

∨

i .

• The roots βi are all positive and satisfy β1 ≺ · · · ≺ βℓ.

We denote the number of edges in 5 by ℓ(5) := ℓ.

These paths P≺
r ( · , · ) occur with exactly the same name in [Naito and Watanabe 2017] and are called

translation-free paths. They also consider a larger set of paths, where so-called translation edges are
allowed, which is however less relevant for our applications.

From the definition of the semi-infinite order, we easily obtain the following relation between the paths
in W̃ and the paths in the double Bruhat graph. This can be seen as a variant of [Naito and Watanabe
2017, Proposition 5.2.1].

Lemma 3.4. Let y = w1ε
µ1, w = w2ε

µ2 ∈ W̃. Then the map

9 : P≺

r (y, w)→ {p ∈ paths≺(w1 ⇒ w2) | wt(p)= µ2 −µ1},(
5 : y = y0

(β1,m1)
−−−→ y1

(β2,m2)
−−−→ · · ·

(βℓ,mℓ)
−−−→ yℓ+1 = w

)
7→

(
8(5) : w1 = cl(y0)

(β1,m1)
−−−→ cl(y1)

(β2,m2)
−−−→ · · ·

(βℓ,mℓ)
−−−→ cl(yℓ+1)

)
,

is bijective and length-preserving (i.e., ℓ(9(5))= ℓ(5)). □

The main results of [Naito and Watanabe 2017, Section 3.3] can be summarized as follows.

Theorem 3.5. Let y, w∈ W̃ and pick a simple affine reflection s ∈ Saf such that y<∞/2 sy and sw<∞/2w.

(a) [Naito and Watanabe 2017, Proposition 3.3.2]: There is an explicitly described bijection

ψ : P≺

r (y, sw)→ P≺

r (sy, w).

The map ψ preserves the lengths of paths. Its inverse map ψ ′
= ψ−1 is also explicitly described.

(b) [Naito and Watanabe 2017, Proposition 3.3.1]: There is an explicitly described bijection

ϕ : P≺

r (sy, sw)⊔ P≺

r (sy, w)→ P≺

r (y, w).

For 5 ∈ P≺
r (sy, sw), we have ℓ(ϕ(5))= ℓ(5). For 5 ∈ P≺

r (sy, w), we have ℓ(ϕ(5))= ℓ(5)+ 1. Its
inverse map ϕ′

= ϕ−1 is also explicitly described. □

In view of Lemma 3.4, we immediately get the special case of Theorem 3.2 for the sets paths≺(u ⇒ v),
i.e., if n =#8+. By inspecting the proof and the explicit constructions involved in the proof of Theorem 3.5,
we will obtain the full statement of Theorem 3.2. In order to facilitate this task, we introduce a technique
that we call “path padding”.

Definition 3.6. Let u, v ∈ W and 0 ≤ n ≤ #8+. Fix positive integers mi for i = 1, . . . , #8+. Then we
define the padding map

pad(mi )
: paths≺

⪯n(u ⇒ v)→ paths≺(u ⇒ vπ≻n),
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sending a path p ∈ paths≺

⪯n(u ⇒ v) to the composite path

pad(mi )
(p) : u

p
⇒ v

(βn+1,mn+1)
−−−−−−→ vsβn+1

(βn+2,mn+2)
−−−−−−→ · · ·

(β#8+ ,m#8+ )
−−−−−−→ vsβn+1 · · · sβ#8+

= vπ≻n.

Lemma 3.7. Let u, v ∈ W and 0 ≤ n ≤ #8+. Pick a simple affine root a = (α, k) ∈ 1af such that
(vπ≻n)

−1α ∈8−.

(a) Suppose that u−1α ∈8−. For each collection of integers (mi ≥ 4)1≤i≤#8+ , there is a unique map

ψ̃ : paths≺

⪯n(sαu ⇒ sαv)→ paths≺

⪯n(u ⇒ v)

and a collection of integers (m′

i ≥ mi − 3)1≤i≤#8+ such that the following diagram commutes:

paths≺

⪯n(sαu ⇒ sαv) paths≺(sαu ⇒ sαvπ≻n)
⊔

µ∈Z8∨

P≺
r (rau, ravπ≻nε

µ)

paths≺

⪯n(u ⇒ v) paths≺(u ⇒ vπ≻n)
⊔

µ∈Z8∨

P≺
r (u, vπ≻nε

µ)

ψ̃

pad(mi ) 9−1

∼

ψ∼

pad(m′
i ) 9−1

∼

The map ψ on the right comes from Theorem 3.5(a). The map ψ̃ has an explicit description independent of
the integers (mi ). Moreover, ψ̃ satisfies the weight and length constraints as required in Theorem 3.2(a).

Similarly, there exist integers (m′′

i ≥ mi − 3)i and a uniquely determined and explicitly described
map ψ̃ ′ making the following diagram commute:

paths≺

⪯n(u ⇒ v) paths≺(u ⇒ vπ≻n)
⊔

µ∈Z8∨

P≺
r (u, vπ≻nε

µ)

paths≺

⪯n(sαu ⇒ sαv) paths≺(sαu ⇒ sαvπ≻n)
⊔

µ∈Z8∨

P≺
r (rau, ravπ≻nε

µ)

ψ̃ ′

pad(mi ) 9−1

∼

ψ ′∼

pad(m′′
i ) 9−1

∼

(b) Suppose that u−1α∈8+. For each collection of integers (mi ≥4)1≤i≤#8+ , the explicitly described maps

ϕ1 :
⊔

µ∈Z8∨

P≺
r (rau, ravπ≻nε

µ)→
⊔

µ∈Z8∨

P≺
r (u, vπ≻nε

µ),

ϕ2 :
⊔

µ∈Z8∨

P≺
r (rau, vπ≻nε

µ)→
⊔

µ∈Z8∨

P≺
r (u, vπ≻nε

µ),

ϕ′
:

⊔
µ∈Z8∨

P≺
r (u, vπ≻nε

µ)→
⊔

µ∈Z8∨

P≺
r (rau, ravπ≻nε

µ)⊔ P≺
r (rau, vπ≻nε

µ)

from Theorem 3.5(b) can be lifted, up to padding and 9−1 as in (a), to uniquely determined maps

ϕ̃1 : paths≺

⪯n(sαu ⇒ sαv)→ paths≺

⪯n(u ⇒ v),

ϕ̃2 : paths≺

⪯n(sαu ⇒ v)→ paths≺

⪯n(u ⇒ v),

ϕ̃′
: paths≺

⪯n(u ⇒ v)→ paths≺

⪯n(sαu ⇒ sαv)⊔ paths≺

⪯n(sαu ⇒ sαv).

All three maps are explicitly described in a way that is independent of the integers (mi ). The maps ϕ1

and ϕ2 moreover satisfy the desired length and weight compatibility relations from Theorem 3.2(b).
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Proof. We only explain how to obtain the map ψ̃ from the map ψ , as the other cases are analogous. So
pick any path p ∈ paths≺

⪯n(sαu ⇒ sαv). Write it as

p : sαu = w1
(γ1,n1)
−−−→ w2

(γ2,n2)
−−−→ · · ·

(γℓ(p),nℓ(p))
−−−−−−→ wℓ(p)+1 = sαv.

Then

pad(mi )
(p) : sαu = w1

(γ1,n1)
−−−→ · · ·

(γℓ(p),nℓ(p))
−−−−−−→ sαwℓ(p)+1 = sαv

(βn+1,mn+1)
−−−−−−→ · · ·

(β#8+ ,m#8+ )
−−−−−−→ sαvπ≻n.

Define γℓ(p)+i = βn+i and nℓ(p)+i = mℓ(p)+i for i = 1, . . . , #8+
− ℓ(p). Then we can write

pad(mi )
(p) : sαu = w1

(γ1,n1)
−−−→ · · ·

(γℓ′ ,nℓ′ )
−−−−→ wℓ′+1 = vπ≻n

such that ℓ′ = ℓ(p)+ (#8+
− n). Writing µ := wt(pad(mi )

(p))+ k((vπ≻n)
−1α∨

− u−1α∨), we may
express the path 5 :=9−1(pad(mi )

(p)) ∈ P≺
r (rau, ravπ≻βnε

µ) as

5 :rau =w1ε
−kw−1

1 α∨ (γ1,n1)
−−−→w2ε

n1γ
∨

1 −kw−1
1 α∨ (γ2,k2)

−−−→· · ·
(γℓ′ ,nℓ′ )

−−−−→wℓ′+1ε
wt(pad(mi )

(p))−kw−1
1 α∨

=ravπ≻nε
µ.

We now apply the map ψ as defined in [Naito and Watanabe 2017, Section 3.3]. For this, we need to
determine the set

Dra (5)= {d ∈ {1, . . . , ℓ′} | (α, k)= (w−1
d γd , nd)}.

Since mi ≥ 4 for all i , we get

Dra (5)=
{
d | d ∈ {1, . . . , ℓ(p)} and (α, k)= (w−1

d γd , nd)
}

⊆ [1, ℓ(p)].

In particular, the set Dra (5) depends only on p and not the integers (mi ).
Naito–Watanabe construct the path ψ(5) as follows: Write Dra (5) = {d1 < · · · < dm}, which we

allow to be the empty set.
For each index q ∈ {1, . . . ,m}, we define rq ∈ {dq + 2, . . . , dq+1} (where dm+1 = ℓ′ + 1) to be the

smallest index such that

w−1
rq
α ∈8+ and γrq−1 ≺ w−1

rq
α ≺ γrq .

The existence of such an index rq is proved in [Naito and Watanabe 2017, Lemma 2.3.2]. For i =

1, . . . , #8+
− n, note that there is no positive root β satisfying γi ≺ β ≺ γi+1 (resp. γℓ′ ≺ β if i =

#8+
− n ≥ 1). Hence r1, . . . , rm ≤ n and they only depend on the path p, not the integers (mi ).

We introduce the shorthand notation

xh := whε
n1γ

∨

1 +···+nh−1γ
∨

h−1−kw−1
1 α∨

such that 5 is of the form x1 → · · · → xℓ′+1. Then ψ(5) is defined as the composition of 5′

0, . . . ,5
′
m ,

given by

5′

0 : u = rax1
(γ1,n′

1)
−−−→ rax2

(γ2,n′

2)
−−−→ · · ·

(γd1−1,n′

d1−1)
−−−−−−→ raxd1,

5′

q : raxdq = xdq+1
(γdq +1,ndq +1)
−−−−−−→ · · ·

(γrq −1,nrq −1)
−−−−−−→ xrq

(w−1
rq α,k)

−−−−→ raxrq

(γrq ,n
′
rq )

−−−−→ · · ·
(γdq+1−1,n′

dq+1−1)
−−−−−−−−→ raxdq+1,
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where we write
n′

i := ni + k⟨α∨, wiγi ⟩, i = 1, . . . , ℓ′.

Since r1, . . . , rm ≤ n, we may write ψ(5)=9−1(pad(m′

i )
(p′)), with

m′

i = mi − k⟨α∨, vsβn+1 · · · sβi−1(βi )⟩, i > n.

The path p′ is the composition of the paths p′

0, . . . , p′
m defined as

p′

0 : u = sαw1
(γ1,n′

1)
−−−→ ·· ·

(γd1−1,n′

d1−1)
−−−−−−→ sαwd1−1,

p′

q : sαwdq =wdq+1
(γdq +1,ndq +1)

−−−−−−−→ ·· ·
(γrq −1,nrq −1)
−−−−−−→wrq

(w−1
rq α,k)

−−−→ sαwrq

(γrq ,n
′

r ′
q
)

−−−−→ ·· ·

(γdq+1−1,n′

dq+1−1)

−−−−−−−−−→ sαwdq+1 .

We see that p′ as defined above is explicitly described only in terms of p and independently of the (mi ).
To summarize, we chose integers (m′

i ) only depending on (mi ), u, v, n,≺, a with the following property:
for each path p ∈ paths≺

⪯n(sαu ⇒ sαv), we may write

ψ(9−1 pad(mi )
(p))=9−1(pad(m′

i )
(p′)) for some path p′

∈ paths≺

⪯n(u ⇒ v).

It follows that the function ψ̃ as claimed exists. It is uniquely determined since 9−1 and pad(m′

i )
are

injective. Moreover, we saw that p′
:= ψ̃(p) can be explicitly described depending only on p and not the

integers (mi ).
The function ψ̃ preserves lengths of paths by construction. Using the explicit description, it is possible

to verify that it also satisfies the weight constraint stated in Theorem 3.2(a). The interested reader is invited
to verify that the constructions of ψ ′, ϕ1, ϕ2, ϕ

′ of Naito and Watanabe carry through in similar ways. □

With the main lemma proved, we can conclude Theorem 3.2 immediately. Indeed, it remains to show
that the functions ψ̃ and ϕ̃ := (ϕ̃1, ϕ̃2) from Lemma 3.7 are bijective. Since ψ is bijective with ψ ′ being
its inverse, it follows from the categorical definition and a bit of diagram chasing that ψ̃ is bijective with
ψ̃ ′ its inverse. Similarly, one concludes that ϕ̃ is bijective with ϕ̃′ its inverse. The main result of this
section is proved.

Remark 3.8. (a) Theorem 3.2 can be conveniently restated using the language of weight multisets from
[Schremmer 2025, Definition 4.10]. For u, v ∈ W and 0 ≤ n ≤ #8+, we write wts(u ⇒ v 99K vπ≻n) for
the multiset

{(wt(p), ℓ(p)) | p ∈ paths≺

⪯n(u ⇒ v)}m .

We proved that this yields a well-defined multiset wts(u ⇒ v 99K v′) for all u, v, v′
∈ W.

If a = (α, k) ∈1af is a simple affine root with (v′)−1α ∈8− and u−1α ∈8−, then

wts(u ⇒ v 99K v′)= {(ω+ k(v−1α∨
− u−1α∨), e) | (ω, e) ∈ wts(sαu ⇒ sαv 99K sαv′)}m .

If (v′)−1α ∈8− and u−1α ∈8+, then wts(u ⇒ v 99K v′) is the additive union of the two multisets

{(ω+ k(v−1α∨
− u−1α∨), e) | (ω, e) ∈ wts(sαu ⇒ sαv 99K sαv′)}m

∪{(ω− ku−1α∨, e) | (ω, e) ∈ wts(sαu ⇒ v 99K v′)}m .
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(b) The double Bruhat graph can be seen as a generalization of the quantum Bruhat graph; see [Schremmer
2025, Proposition 4.13]. It is very helpful to compare results about the double Bruhat graph with the
much better developed theory of the quantum Bruhat graph.

Under this point of view, one obtains a version of Theorem 3.2 for the quantum Bruhat graph. This
is a well-known recursive description of weights in the quantum Bruhat graph; see [Lenart et al. 2015,
Lemma 7.7].

(c) The remainder of this paper will mostly study consequences of recursive relations from Theorem 3.2.
By studying the proof of Theorem 4.2 below, one may see that the weight multiset is already uniquely
determined by these recursive relations together with a few additional facts to fix a recursive start. This
can be seen as an alternative proof that the weight multiset is independent of the chosen reflection order;
see [Schremmer 2025, Corollary 4.9].

4. Iwahori–Hecke algebra

Let us briefly motivate the definition of the Iwahori–Hecke algebra associated with an affine Weyl group.
Under suitable assumptions on our group and our fields, the Hecke algebra H(G, I ) is classically

defined to be the complex vector space of all compactly supported functions f : G(F)→ C satisfying
f (i1gi2) = f (g) for all g ∈ G(F), i1, i2 ∈ I ∩ G(F). It becomes an algebra where multiplication is
defined via convolution of functions. In this form, it occurs in the classical formulation of the Satake
isomorphism [1963].

It is proved by Iwahori and Matsumoto [1965, Section 3] for split G that H(G, I ) has a basis given by
{Sx | x ∈ W̃ } over C where the multiplication is uniquely determined by the conditions

Sx Sy = Sxy, x, y ∈ W̃ and ℓ(xy)= ℓ(x)+ ℓ(y),

Sra Sx = q Sra x + (q − 1)Sx , x ∈ W̃, a ∈1af and ℓ(rax) < ℓ(x).

Here, q := #(OF/mOF ) is the cardinality of the residue field of F. The basis element Sx corresponds to
the indicator function of the coset I x I ⊆ G(F̆).

With the convenient change of variables Tx := q−ℓ(x)/2Sx ∈H(G, I ), the above relations get the equally
popular form

Tx Ty = Txy, x, y ∈ W̃ and ℓ(xy)= ℓ(x)+ ℓ(y),

Tra Tx = Tra x + (q1/2
− q−1/2)Tx , x ∈ W̃, a ∈1af and ℓ(rax) < ℓ(x).

Since the number q is independent of the choice of affine root system, we define the Iwahori–Hecke
algebra of W̃ as follows.

Definition 4.1. The Iwahori–Hecke algebra H(W̃ ) of W̃ is the algebra over Z[Q] defined by the generators

Tx , x ∈ W̃
and the relations

Tx Ty = Txy, x, y ∈ W̃ and ℓ(xy)= ℓ(x)+ ℓ(y),

Tra Tx = Tra x + QTx , x ∈ W̃, a ∈1af and ℓ(rax) < ℓ(x).
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One easily sees that H(W̃ ) is a free Z[Q]-module with basis {Tx | x ∈ W̃ }, and that each Tx is invertible,
because

Tra (Tra − Q)= 1, a ∈1af.

All results presented in this article can be immediately generalized to most other conventions for the
Iwahori–Hecke algebra, e.g., by substituting Q = q1/2

− q−1/2.

4.1. Products via the double Bruhat graph. We are interested in the question of how to express arbitrary
products of the form Tx Ty with x, y ∈ W̃ in terms of this basis. This is related to understanding the
structure of the subset I x I · I y I ⊆ G(F̆). While it might be too much to ask for a general formula, we
can understand these products (and thus the Iwahori–Hecke algebra) better by relating it to the double
Bruhat graph. Our main result of this section is the following:

Theorem 4.2. Let C1 > 0 be a constant and define C2 := (8#8+
+ 4)C1.

Let x = wxε
µx, z = wzε

µz ∈ W̃ such that x is C2-regular and z is 2ℓ(x)-regular. Define polynomials
ϕx,z,yz ∈ Z[Q] via

Tx Tz =
∑

y∈W̃
ϕx,z,yzTyz ∈ H(W̃ ).

Pick an element y = wyε
µy ∈ W̃ such that ℓ(x)− ℓ(y) < C1. Let

LP(x)= {vx}, LP(y)= {vy}, LP(z)= {vz}

and define the multiset

M :=
{
ℓ1 + ℓ2 | (ω1, ℓ1) ∈ wts(vx ⇒ vy 99K wzvz), (ω2, ℓ2) ∈ wts(wxvxw0 ⇒ wyvyw0 99K wywzvz)

such that v−1
y µy = v−1

x µx −ω1 +w0ω2
}

m .

Here, w0 ∈ W denotes the longest element. Then

ϕx,z,yz =
∑

e∈M
Qe.

Remark 4.3. (a) In principle, we have the following recursive relations to calculate Tx Tz as long
as all occurring elements are in shrunken Weyl chambers, e.g., 2-regular: Pick a simple affine root
a = (α, k) ∈1af. If xra < x (i.e., v−1

x α ∈8+), then

Tx Tz = Txra Tra Tz =

{
Txra Tra z, raz > z (i.e., (wzvz)

−1α ∈8+),

Txra Tra z + QTxra Tz, raz < z (i.e., (wzvz)
−1α ∈8−).

This kind of recursive relation is analogous to the recursive behaviour of the multiset wts(vx ⇒ vy 99K

wzvz); see Theorem 3.2.
Similarly, if rax < x (i.e., (wxvx)

−1α ∈8−), we get

Tx Tz = Tra Tra x Tz =
∑

y∈W̃
ϕra x,z,yzTra Tyz

=
∑

y∈W̃
ϕra x,z,yz ·

{
Tra yz, ra yz > yz (i.e., (wywzvz)

−1α ∈8+),

Tra yz + QTyz, ra yz < yz (i.e., (wywzvz)
−1α ∈8−).
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This kind of recursive relation is analogous to the recursive behaviour of the multiset wts(wxvxw0 ⇒

wyvyw0 99K wywzvz); see Theorem 3.2.
For the proof of Theorem 4.2, we have to apply these recursive relations iteratively while keeping track

of the length and regularity conditions to ensure everything happens inside the shrunken Weyl chambers.

(b) Let us compare Theorem 4.2 to the quantum Bruhat graph. In view of [Schremmer 2025, Proposi-
tion 4.13], it follows that ϕx,z,yz = 0 unless

v−1
y µy ≤ v−1

x µx − wtQB(W )(vx ⇒ vy)− wtQB(W )(wyvy ⇒ wxvx).

By [Schremmer 2024, Theorem 4.2], this latter inequality is equivalent to the Bruhat order condition
y ≤ x , which is (by the definition of the Iwahori–Hecke algebra) always a necessary condition for ϕx,z,yz

to be nonzero.

(c) If the condition ℓ(x)− ℓ(y) < C1 gets strengthened to ℓ(x)+ ℓ(z)− ℓ(yz) < C1, it follows that the
product yz must be length-additive, so vy = wzvz [Schremmer 2022, Lemma 2.13]. One of the simple
facts on the double Bruhat graph [Schremmer 2025, Lemma 4.11] yields

wts(wxvxw0 ⇒ wyvyw0 99K wywzvz)=

{
∅, wyvy ̸= wxvx ,

{(0, 0)}m, wyvy = wxvx .

So the multiset M as defined in Theorem 4.2 is empty unless wyvy = wxvx , in which case it will be
equal to

M = {ℓ | (ω, ℓ) ∈ wts(vx ⇒ vy) such that v−1
y µy = v−1

x µx −ω}m .

This recovers Theorem 1.2.
The unique smallest element of wts(vx ⇒ vy) from [Schremmer 2025, Proposition 4.13] corresponds to

the uniquely determined largest element in W̃ having nonzero coefficient in Tx Tz . This element is known
as the Demazure product of x and z in W̃. We recover the formula for the Demazure product of x and z in
terms of the quantum Bruhat graph from [He and Nie 2024, Proposition 3.3] in the situation of Theorem 4.2.

Definition 4.4. (a) For x ∈ W̃ and w ∈ W, we define the multiset Y (x, w) as follows: the underlying set
|Y (x, w)| is a subset of W̃ × Z, and the multiplicity of the pair (y, e) ∈ W̃ × Z in Y (x, w) is defined via

Tx Twε2ρ∨ℓ(x) =
∑

(y,e)∈Y (x,w)
QeTywε2ρ∨ℓ(x) .

(b) We define the usual product group structure on W̃ × Z, i.e.,

(y1, e1) · (y2, e2) := (y1 y2, e1 + e2)

for y1, y2 ∈ W̃ and e1, e2 ∈ Z. If M is a multiset with |M | ⊆ W̃ × Z, we write M · (y, e) for the multiset
obtained by the right action of (y, e) ∈ W̃ × Z.

Lemma 4.5. Let x, z ∈ W̃ such that z is 2ℓ(x)-regular.

(a) Write z = wzε
µz and LP(z)= {vz}. Then

Tx Tz =
∑

(y,e)∈Y (x,wzvz)

QeTyz.
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(b) Let a = (α, k) ∈1af with xra < x and w ∈ W. If w−1α ∈8+, we have

Y (x, w)= Y (xra, sαw) · (ra, 0).

If w−1α ∈8−, we express Y (x, w) as the additive union of multisets

Y (x, w)=
(
Y (xra, sαw) · (ra, 0)

)
∪

(
Y (xra, w) · (1, 1)

)
.

(c) For y = wyε
µy ∈ W̃ and e ∈ Z, the multiplicity of (y, e) ∈ Y (x, w) agrees with the multiplicity of

(y−1, e) in Y (x−1, cl(y)w), where cl(y) ∈ W is the classical part of y ∈ W ⋉ X∗(T )00 .

Proof. (a) The regularity condition allows us to write z as the length-additive product

z = z1 · z2, z1 = wzvzε
2ρ∨ℓ(x), z2 = v−1

z εµz−vz2ρ∨ℓ(x).

Then we get
Tx Tz = Tx Tz1 Tz2 =

∑
(y,e)∈Y (x,wzvz)

Tyz1 Tz2 .

By the regularity of z1, it follows that LP(yz1)= LP(z1)= {1} for each y ≤ x in the Bruhat order. Thus
Tyz1 Tz2 = Tyz1z2 = Tyz for each (y, e) ∈ Y (x, wzvz).

(b) Let z = wεµ with µ superregular and dominant, as in (a). Use the fact

Tx Tz = Txra Tra Tz

and evaluate Tra Tz depending on whether w−1α is positive or negative.

(c) We consider the symmetrizing form of H(W̃ ) given by

τ : H(W̃ )→ Z[Q],
∑

x∈W̃
ax Tx 7→ a1.

One checks that τ(Tx Tx−1) = 1 and τ(Tx Ty) = 0 for x, y ∈ W̃ with xy ̸= 1; see [Bonnafé 2017,
Section 4.1D]. It follows from this that τ(hh′) = τ(h′h) for all h, h′

∈ H(W̃ ), and that τ(Tx−1h) is the
Tx -coefficient of h for x ∈ W̃.

Moreover, note that Tx 7→ Tx−1 defines an antiautomorphism of the Z[Q]-algebra H(W̃ ), and that τ is
invariant under this map.

Fix y ∈ W̃ and assume that both z and yz are 2ℓ(x)-regular. We calculate∑
e∈Z

(multiplicity of (y, e) in Y (x, wzvz))Qe
= (coefficient of Tyz in Tx Tz)

= τ(T(yz)−1 Tx Tz)

= τ(Tz−1 Tx−1 Tyz)

= (coefficient of Tz in T −1
x Tyz)

=
∑
e∈Z

(multiplicity of (y−1, e) in Y (x−1, wywzvz))Qe.

Comparing coefficients of Qe in Z[Q], the claim follows. □
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Remark 4.6. The connection to our previous article [Schremmer 2025] is given as follows: For x, z as in
Lemma 4.5, the regularity condition on z basically ensures that z I z−1 behaves like wzvz U (L), so we can
approximate I z I by the semi-infinite orbit I z vz U (L)= I wzvz U (L)z. Then I x I · I z I is very close to

I x I ·
wzvz U (L)z =

⋃
(y,e)∈Y (x,wzvz)

I y wzvz U (L)z ⊆ G(F̆).

Now observe for any y ∈ W̃ that

I x I ∩ I y wzvz U (L) ̸= ∅ ⇐⇒ y ∈ I x I ·
wzvz U (L).

So the multiset Y (x, w) is the representation-theoretic correspondent of the main object of interest in
[Schremmer 2025, Theorem 5.2].

Lemma 4.7. Let x = wxε
µx ∈ W̃ and pick elements u1, u2 ∈ W, as well as vx ∈ LP(x).

(a) The multiset wts(vx ⇒ u1 99K u2) is equal to the additive union of multisets⋃
(wyε

µy ,e)∈Y (x,u2)

{
(v−1

x µx − u−1
1 µy +ω, e + ℓ) | (ω, ℓ) ∈ wts(wxvx ⇒ wyu1 99K wyu2)

}
m .

(b) The multiset wts(wxvxw0 ⇒ u2w0 99K u1) is equal to the additive union of multisets⋃
u3∈W

(wyε
µy ,e)∈Y (x,u3)

s.t. wyu3=u1

{
(w0u−1

2 wyµy −w0v
−1
x µx +ω, e + ℓ) | (ω, ℓ) ∈ wts(vxw0 ⇒ w−1

y u2w0 99K u3)
}

m .

Proof. (a) Induction on ℓ(x). In the case ℓ(x)= 0, we get Y (x, u2)= {(x, 0)}m . From [Schremmer 2025,
Lemma 4.7(c)], we indeed get that wts(vx ⇒ u1 99K u2) is equal to

{(v−1
x µx − u−1

1 µx +ω, ℓ) | (ω, ℓ) ∈ wts(wxvx ⇒ wx u1 99K wx u2)}m .

Now in the inductive step, pick a simple affine root a = (α, k) with xra < x . This means v−1
x α ∈8+ and

vx ′ := sαvx ∈ LP(x ′), where

x ′
:= wx ′εµx ′

:= xra = wx sαεsα(µx )+kα∨

.

Let us first consider the case u−1
2 α ∈8+. Then Y (x, u2)= Y (x ′, sαu2) · (ra, 0) by Lemma 4.5(b). We get⋃

(wyε
µy ,e)∈Y (x,u2)

{
(v−1

x µx − u−1
1 µy +ω, e + ℓ) | (ω, ℓ) ∈ wts(wxvx ⇒ wyu1 99K wyu2)

}
m

=
⋃

(wy′ε
µy′
,e)∈Y (x ′,sαu2)

{
(v−1

x ′ µ
′
x + kv−1

x α∨
− (sαu1)

−1µy′ − ku−1
1 α∨

+ω, e + ℓ) |

(ω, ℓ) ∈ wts(wx ′vx ′ ⇒ wy′(sαu1) 99K wy′(sαu2))
}

m .

By the inductive assumption, this is equal to

{(ω+ k(v−1
x α∨

− u−1
1 α∨), ℓ) | (ω, ℓ) ∈ wts(sαvx ⇒ sαu1 99K sαu2)}m .

By Theorem 3.2(a), this is equal to wts(vx ⇒ u1 99K u2), using the assumption u−1
2 α ∈8+ again.
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In the converse case where u−1
2 α ∈8−, we argue entirely similarly. Use Lemma 4.5 to write

Y (x, u2)=
(
Y (x ′, sαu2) · (ra, 0)

)
∪

(
Y (x ′, u2) · (1, 1)

)
.

Considering Theorem 3.2(b), the inductive claim follows.

(b) One may argue similarly to (a), tracing through somewhat more complicated expressions to reduce
to Theorem 3.2 again. Instead, we show that (a) and (b) are equivalent. Recall that wxvxw0 ∈ LP(x−1)

[Schremmer 2022, Lemma 2.12]. By (a), we see that wts(wxvxw0 ⇒ u2w0 99K u1) is equal to⋃
(wyε

µy ,e)∈Y (x−1,u1)

{
((wxvxw0)

−1(−wxµx)− (u2w0)
−1µy +ω, e + ℓ) |

(ω, ℓ) ∈ wts(vxw0 ⇒ wyu2w0 99K wyu1)
}
.

In view of Lemma 4.5(c), we recover the claim in (b). □

Lemma 4.8. Let C1, e ≥ 0 be two nonnegative integers. Define C2 := (8e + 4)C1.
Let x, y ∈ W̃ such that x is C2-regular and ℓ(x)− ℓ(y) < C1. Let u ∈ W. Write

x = wxε
µx , y = wyε

µy ,

LP(x)= {vx}, LP(y)= {vy}.

Define the multiset

M :=
{
ℓ1 + ℓ2 | (ω1, ℓ1) ∈ wts(vx ⇒ vy 99K u), (ω2, ℓ2) ∈ wts(wxvxw0 ⇒ wyvyw0 99K wyu)

such that v−1
y µy = v−1

x µx −ω1 +w0ω2
}

m .

Then the multiplicity of (y, e) in Y (x, u) agrees with the multiplicity of e in M.

Proof. Induction on e. Consider the inductive start e = 0. If 0 ∈ M , then ℓ1 = ℓ2 = 0 and vx = vy by
definition of M . Hence x = y, and indeed 0 ∈ M has multiplicity 1. Similarly, (y, 0) also has multiplicity 1
in Y (x, u).

If 0 /∈ M , we see x ̸= y and indeed (y, 0) /∈ Y (x, u) for x ̸= y. This settles the inductive start.
In the inductive step, let us write x as a length-additive product x = x1x2x3, where

x1 = ε4C1wxvxρ
∨

, x2 = wxε
µx−8C1vxρ

∨

, x3 = ε4C1vxρ
∨

.

Note that the inductive assumptions are satisfied for C1, e − 1, x2 and any element y′
∈ W̃ such that

ℓ(x2)− ℓ(y′) < C1.
The length-additivity of x = x1x2x3 implies

Y (x, u)=
{
(y1 y2 y3, e1 + e2 + e3) | (y3, e3) ∈ Y (x3, u),

(y2, e2) ∈ Y (x2, cl(y3)u), (y1, e1) ∈ Y (x1, cl(y2) cl(y3)u)
}

m .

Pick elements

(y3, e3) ∈ Y (x3, u), (y2, e2) ∈ Y (x2, cl(y3)u), (y1, e1) ∈ Y (x1, cl(y2) cl(y3)u)

such that ℓ(y1 y2 y3) > ℓ(x)− C1 and e1 + e2 + e3 = e.



2034 Felix Schremmer

In this case, we certainly get ℓ(yi ) > ℓ(xi )− C1 for i = 1, 2, 3. Since x1, x2, x3 are 4C1-regular by
construction, it follows that each yi is 2C1-regular by yi ≤ xi and ℓ(yi ) > ℓ(xi )− C1 (studying how
regularity behaves in a sequence of Bruhat covers from yi to xi ). We claim that

ℓ(y1 y2 y3)= ℓ(y1)+ ℓ(y2)+ ℓ(y3).

We can study the question of length-additivity of such products using [Schremmer 2022, Lemma 2.13].
This lemma expresses the condition ℓ(xy)= ℓ(x)+ ℓ(y) in terms of the length functionals ℓ(x, · ) and
ℓ(y, · ) as defined in [loc. cit., Definition 2.5]. Using the aforementioned lemma, it suffices to see that
ℓ(y1 y2)= ℓ(y1)+ ℓ(y2) and ℓ(y2 y3)= ℓ(y2)+ ℓ(y3) (using regularity). If y1 y2 is not a length-additive
product, we use [loc. cit., Lemma 2.13] to find a root α ∈ 8 with ℓ(y1, cl(y2)α) > 0 and ℓ(y2, α) < 0.
By regularity, this means ℓ(y1, cl(y2)α) > C1 and ℓ(y2, α) <−C1. Using [loc. cit., Corollary 2.10 and
Lemma 2.12], we get

ℓ(y1 y2)=
∑
β∈8

1
2 |ℓ(y1, cl(y2)β)+ ℓ(y2, β)|

≤ −C1 +
∑
β∈8

1
2(|ℓ(y1, cl(y2)β)| + |ℓ(y2, β)|)= ℓ(y1)+ ℓ(y2)− C1.

This contradicts the above assumption ℓ(y1 y2 y3) > ℓ(x)− C1 ≥ ℓ(y1)+ ℓ(y2)+ ℓ(y3)− C1. The proof
that y2 y3 is length-additive is completely analogous.

Let us consider the special case e1 = e3 = 0 separately. Then y1 = x1 and y3 = x3. The length-additivity
of the product x1 y2x3 implies that LP(y2)= {vx} and cl(y2)= wx . Using Lemma 4.7(a), we can express
{(0, 0)}m = wts(vx ⇒ vx 99K u) in the form⋃

(wyε
µy ,e′)∈Y (x2,u)

{(. . . , e′
+ ℓ) | (ω, ℓ) ∈ wts(wxvx ⇒ wyvx 99K wyu)}m .

From this and [Schremmer 2025, Lemma 4.11], it follows that Y (x2, u) contains only one element (y′, e′)

with cl(y′)= wx , and that this element must be equal to (x2, 0).
We see that, if e1 = e3 = 0, we must also have e2 = 0. This case has been settled before.
We hence assume that e1 + e3 > 0. In particular, we may apply the inductive assumption to x2, y2, e2.

Recall that the multiplicity of (y, e) in Y (x, u) is equal to the number of tuples (with multiplicity)

(y3, e3) ∈ Y (x3, u), (y2, e2) ∈ Y (x2, cl(y3)u), (y1, e1) ∈ Y (x1, cl(y2) cl(y3)u)

such that e1 + e2 + e3 = e and y = y1 y2 y3 (necessarily length-additive). Hence LP(y2)= {cl(y3)vy} and
wy = cl(y1) cl(y2) cl(y3). By induction, the multiplicity of (y, e) in Y (x, u) is also equal to the number
of tuples (with multiplicity)

(y3, e3) ∈ Y (x3, u),

(ω1, ℓ1) ∈ wts(vx ⇒ cl(y3)vy 99K cl(y3)u),

(ω2, ℓ2) ∈ wts(wxvxw0 ⇒ cl(y1)
−1wyvyw0 99K cl(y1)

−1wyu),

(y1, e1) ∈ Y (x1, cl(y1)
−1wyu),
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satisfying e = e1 + ℓ1 + ℓ2 + e3 and

y−1
1 yy−1

3 = cl(y1)
−1wy cl(y3)

−1ε(cl(y3)vy)(v
−1
x µx2−ω1+w0ω2).

The latter identity can be rewritten, if we write y3 = w3ε
µ3 and y1 = w1ε

µ1 , as

v−1
y µy = v−1

x µx2 −ω1 +w0ω2 + v−1
y µ3 + (wyvy)

−1w1µ1.

We see that we may study the contributions of (y3, e3, ω1, ℓ1) and (y1, e1, ω2, ℓ2) separately.
We may combine the above data for (y3, e3, ω1, ℓ1), noticing that we are only interested in the multiset{
(−v−1

y µ3 +ω1 + v−1
x µx3, e3 + ℓ1) | (w3ε

µ3, e3) ∈ Y (x3, u), (ω1, ℓ1) ∈ wts(vx ⇒ w3vy 99K w3u)
}

m .

By Lemma 4.7(a), the above multiset agrees with wts(vx ⇒ vy 99K u).
Similarly, we may combine the data for (y1, e1, ω2, ℓ2), noticing that we are only interested in the

multiset{
(w0(wyvy)

−1w1µ1 +ω2 −w0(wxvx)
−1µx1, e1 + ℓ2) |

u′
∈ W, (w1ε

µ1, e1) ∈ Y (x1, u′) such that w1u′
= wyu,

(ω2, ℓ2) ∈ wts(wxvxw0 ⇒ w−1
1 wyvyw0 99K w

−1
1 wyu)

}
m .

By Lemma 4.7(b), the above multiset agrees with wts(wxvxw0 ⇒ wyvyw0 99K wyu).
We summarize that the multiplicity of (y, e) in Y (x, u), i.e., the number of tuples

(y3, e3, ω1, ℓ1, ω2, ℓ2, y1, e1)

with multiplicity as above, is equal to the number of tuples

(λ1, f1) ∈ wts(vx ⇒ vy 99K u),

(λ2, f2) ∈ wts(wxvxw0 ⇒ wyvyw0 99K wyu)
satisfying e = f1 + f2 and

v−1
y µy = v−1

x µx2 − λ1 + v−1
x µx3 +w0λ2 + (wxvx)

−1µx1 .

Up to evaluating the product x = x1x2x3 ∈ W ⋉ X∗(T )00 , this finishes the induction and the proof. □

Corollary 4.9. Let x = wxε
µx, z = wzε

µz ∈ W̃. Write

Tx Tz =
∑

y∈W̃

∑
e≥0

ny,e QeTyz, ny,e ∈ Z≥0.

Pick elements vx ∈ LP(xx), vz ∈ LP(xz), e ∈ Z≥0 and y = wyε
µy ∈ W̃. Then ny,e is at most equal to the

multiplicity of the element (
v−1

x (µx −w−1
x wyµy), e

)
in the multiset

wts(vx ⇒ w−1
y wxvx 99K wzvz).
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Proof. Let us write H(W̃ )≥0 for the subset of those elements of H(W̃ ) which are nonnegative linear
combinations of elements of the form QeTx for e ∈ Z≥0 and x ∈ W̃. For dominant coweights λ1, λ2 ∈

X∗(T )00 , we obtain

Tεwx vx λ1 x Tzεvzλ2 = Tεwx vx λ1 Tx TzTεvzλ2

=
∑

y∈W̃

∑
e≥0

ny,e QeTεwx vx λ1 TyzTεvzλ2 ∈
∑

y∈W̃

∑
e≥0

ny,e QeTεwx vx λ1 yzεvzλ2 +H(W̃ )≥0.

So the quantity ny,e can only increase if we replace (x, y, z) by (εwxvxλ1 x, εwxvxλ1 y, zεwzvzλ2). Choosing
our dominant coweights λ1, λ2 appropriately regular, the claim follows from Lemma 4.8. □

Proof of Theorem 4.2. In view of Corollary 4.9 and the definition of paths in the double Bruhat graph, it
follows easily that, for all x, y, z ∈ W̃, the degree of the polynomial ϕx,y,z in Z[Q] is bounded from above
by #8+ (reproving this well-known fact). Thus the theorem follows by assuming e ≤ #8+ in Lemma 4.8
(noticing that also the multiset M cannot contain elements > #8+ using the definition of paths in the
double Bruhat graph). □

4.2. Class polynomial. Choose for each σ -conjugacy class O ⊆ W̃ a minimal-length element xO ∈ O.
Then the class polynomials associated with each x ∈ W̃ are the uniquely determined polynomials
fx,O ∈ Z[Q] satisfying

Tx ≡
∑
O

fx,OTxO (mod [H,H]σ ),

where [H,H]σ is the Z[Q]-submodule of H generated by the elements of the form

[h, h′
]σ = hh′

− h′σ(h) ∈ H.

These polynomials fx,O ∈ Z[Q] are independent of the choice of minimal-length representatives xO ∈ O,
and there is an explicit algorithm to compute them; see [He and Nie 2014]. Using this algorithm, one
easily sees the following boundedness property: Whenever ℓ(x) < ℓ(xO), we must have fx,O = 0. The
main result of this section is the following.

Theorem 4.10. Let B > 0 be any real number. There exists an explicitly described constant B ′ > 0,
depending only on B and the root system 8, such that the following holds true:

Let x = wεµ ∈ W̃ be B ′-regular and write LP(x) = {v}. For each σ -conjugacy class O ⊆ W̃ with
⟨v−1µ− ν(O), 2ρ⟩ ≤ B and κ(O)= κ(x), we have

fx,O =
∑

(ω,e)∈wts(v⇒σ(wv)) s.t.
ν(O)=avgσ (v

−1µ−ω)

Qe
∈ Z[Q].

Remark 4.11. (a) Our proof reduces Theorem 4.10 to Theorem 4.2. This yields a short and instructive
proof, but results in a very large value of B ′. One may alternatively compare the aforementioned algorithm
of He and Nie directly with Theorem 3.2 to obtain a significantly smaller value of B ′.
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(b) Explicit formulas for the full class polynomials, rather than just degree and sometimes leading
coefficients, have been very rare in the past. One exception to this is the elements with finite Coxeter part
as studied in [He et al. 2024]. In the setting of Theorem 4.10, this means that v−1σ(wv)∈ W has a reduced
expression in W where every occurring simple reflection lies in a different σ -orbit in S. Then the class
polynomial from [loc. cit., Theorem 7.1] is, translating to our notation as above, given by Qℓ(v−1σ(wv)).

Write v−1σ(wv)= sα1 · · · sαn for such a reduced expression as above, and choose a reflection order ≺

with α1 ≺ · · · ≺ αn . Then one sees that there is only one unlabelled ≺-increasing path from v to σ(wv)
in the double Bruhat graph, given by

v → vsα1 → · · · → vsα1 · · · sαn = σ(wv).

This path has length n. Since the simple coroots α1, . . . , αn lie in pairwise distinct σ -orbits, it follows
for any coroot ω ∈ Z8∨ that there is at most one choice of integers m1, . . . ,mn ∈ Z with

m1α
∨

1 + · · · + mnα
∨

n ≡ ω ∈ X∗(T )0.

With a bit of bookkeeping, one may explicitly describe wts(v ⇒ σ(wv)) as a multiset of pairs (ω, n),
each with multiplicity 1, for exactly those coweights ω which are nonnegative linear combinations of
the simple coroots α∨

1 , . . . , α
∨
n . This easy double Bruhat theoretic calculation recovers [He et al. 2024,

Theorem 7.1] in the setting of Theorem 4.10.

(c) Let J ⊆1 be the support of v−1σ(wv) in W. Let v J
∈ W J be the unique minimal-length element

in v J. Write v = v Jv1 and σ(wv)= v Jv2 so that v1, v2 ∈ WJ . Choosing a suitable reflection order, we
get a one to one correspondence between paths in the double Bruhat graph of W from v to σ(wv) and
paths in the double Bruhat graph of WJ from v1 to v2. The resulting statement on class polynomials
recovers [He and Nie 2015, Theorem C] in the setting of Theorem 4.10.

Proof of Theorem 4.10. Define C1 := B + 1, and let C2 > 0 be as in Theorem 4.2.
By choosing B ′ appropriately, we may assume that we can write x as a length-additive product

x = x1x2, x1 = wvεµ1, x2 = v−1εµ2

such that x1 is 2ℓ(x2)-regular and x2 is C2-regular. Observe that LP(x2)= {v} and LP(x1)= {1}. Then

Tx = Tx1 Tx2 ≡ Tx2σ(Tx1) (mod [H,H]σ ).

Write H≤ℓ(x)−B−1 for the Z[Q]-submodule of H generated by all elements Tz satisfying ℓ(z) < ℓ(x)− B.
Using Theorem 1.2, we may write

Tx2 Tσ(x1) ≡
∑

(ω,e)∈wts(v⇒σ(wv))

QeT
εv

−1µ−ω (mod H≤ℓ(x)−B−1).

So if O satisfies ⟨v−1µ− ν(O), 2ρ⟩ ≤ B, we see that

fx,O =
∑

(ω,e)∈wts(v⇒σ(wv))

Qe f
εv

−1µ−ω,O.
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Here, we used the above observation that fy,O = 0 if ℓ(y) < ⟨ν(O), 2ρ⟩. By regularity of v−1µ with
respect to ω, we see that v−1µ−ω is always dominant and 1-regular in the above sum. Hence

f
εv

−1µ−ω,O =

{
1 if ν(O)= avgσ (v

−1µ−ω),

0 otherwise.
The claim follows. □

5. Affine Deligne–Lusztig varieties

One crucial feature of the class polynomials fx,O is that they encode important information on the
geometry of affine Deligne–Lusztig varieties.

Theorem 5.1 [He 2016, Theorem 2.19]. Let x ∈ W̃ and [b] ∈ B(G). Define

fx,[b] :=
∑
O

Qℓ(O) fx,O ∈ Z[Q],

where the sum is taken over all σ -conjugacy classes O ⊂ W̃ whose image in B(G) is [b]. For each such
σ -conjugacy class O, we write

ℓ(O)= min{ℓ(y) | y ∈ O}.

Then Xx(b) ̸= ∅ if and only if fx,[b] ̸= 0. In this case,

dim Xx(b)=
1
2(ℓ(x)+ deg( fx,[b]))− ⟨ν(b), 2ρ⟩

and the number of Jb(F)-orbits of top-dimensional irreducible components in Xx(b) is equal to the
leading coefficient of fx,[b]. □

Combining with the explicit description of class polynomials from Theorem 4.10, we conclude the
following.

Proposition 5.2. Let B > 0 be any real number. There exists an explicitly described constant B ′ > 0,
depending only on B and the root system 8, such that the following holds true:

Let x =wεµ ∈ W̃ be B ′-regular and write LP(x)={v}. Let [b] ∈ B(G) such that ⟨v−1µ−ν(b), 2ρ⟩< B
and κ(b)= κ(x). Let E denote the multiset

E = {e | (ω, e) ∈ wts(v ⇒ σ(wv)) such that ν(b)= avgσ (v
−1µ−ω)}m .

Then Xx(b) ̸= ∅ if and only if E ̸= ∅. In this case, set e := max(E). Then

dim Xx(b)=
1
2(ℓ(x)+ e − ⟨ν(b), 2ρ⟩),

and the number of Jb(F)-orbits of top-dimensional irreducible components of Xx(b) is equal to the
multiplicity of e in E.
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Proof. Let O ⊆ W̃ be the unique σ -conjugacy class whose image in B(G) is [b] (unique by regularity).
Then ℓ(O)= ⟨ν(b), 2ρ⟩ and fx,[b] = Qℓ(O) fx,O. Expressing

fx,O =
∑
e∈E

Qe

using Theorem 4.10, the statements follow immediately using Theorem 5.1. □

For split groups, this recovers [Schremmer 2025, Corollary 5.9] up to possibly different regularity
constraints. In practice, one may use Proposition 5.2 to deduce statements on the double Bruhat graph
from the well-studied theory of affine Deligne–Lusztig varieties.

Corollary 5.3. Let u, v ∈ W and let J = supp(u−1v)⊆1 be the support of u−1v in W, and ω ∈ Z8∨.

(a) Suppose that ℓ(u−1v) is equal to dQB(W )(u ⇒ v), the length of a shortest path from u to v in the
quantum Bruhat graph. Then (ω, ℓ(u−1v)) ∈ wts(u ⇒ v) whenever ω ≥ wtQB(W )(u ⇒ v) and ω ∈ Z8∨

J .

(b) If ω ∈ Z8∨

J with ω ≥ 2ρ∨

J , which denotes the sum of positive coroots in 8∨

J , we have

(ω, ℓ(u−1v)) ∈ wts(u ⇒ v).

Proof. Assume without loss of generality that the group G is split. Reducing to the double Bruhat graph
of WJ as in Remark 4.11(d), we may and do assume that J =1.

Let B = ⟨ω, 2ρ⟩ + 1 and B ′ > 0 as in Proposition 5.2. Choose x = wεµ ∈ W̃ to be B ′-superregular
such that LP(x)= {u} and v = wu. Let [b] ∈ B(G) be the σ -conjugacy class containing εu−1µ−ω, so that
ν(b)= u−1µ−ω.

(a) By [Milićević and Viehmann 2020, Proposition 4.2], the element x is cordial. By [Milićević and
Viehmann 2020, Theorem 1.1] and [Görtz et al. 2015, Theorem B], we get Xx(b) ̸= ∅ and

dim Xx(b)=
1
2

(
ℓ(x)+ ℓ(u−1v)− ⟨ν(b), 2ρ⟩

)
.

The claim follows.

(b) Similar to (a), using [He 2021, Theorem 1.1]. This celebrated result of He shows that if ω ≥ 2ρ∨ and
supp(u−1v)=1, then Xx(b) ̸= ∅ and

dim Xx(b)=
1
2

(
ℓ(x)+ ℓ(u−1v)− ⟨ν(b), 2ρ⟩

)
.

The claim follows again. □

The reader who wishes to familiarize themselves more with the combinatorics of double Bruhat graphs
may take the challenge and prove the above corollary directly.

We now want to state the main result of this section, describing the nonemptiness pattern and dimensions
of affine Deligne–Lusztig varieties associated with sufficiently regular elements x ∈ W̃ and arbitrary
[b] ∈ B(G). We let λ(b) ∈ X∗(T )0 be the λ-invariant as introduced in [Hamacher and Viehmann 2018,
Section 2]. By conv : X∗(T )0 → X∗(T )00 ⊗ Q, we denote the convex hull map from [Schremmer 2022,
Section 3.1], so that ν(b)= conv(λ(b)).
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Our regularity condition is given as follows: Decompose the (finite) Dynkin diagram of 8 into its
connected components, so we have 8 = 81 ⊔ · · · ⊔8c. Denote by θi ∈ 8+

i the uniquely determined
highest root, and write it as linear combination of simple roots

θi =
∑
α∈1

ci,αα.

Define the regularity constant C to be

C = 1 + max
i=1,...,c

∑
α∈1

ci,α ∈ Z.

With that, we can state our main result as follows.

Theorem 5.4. Let x =wεµ ∈ W̃ be C-regular and [b] ∈ B(G) such that κ(b)= κ(x). Write LP(x)= {v}

and define E to be either of the following two sets E1 or E2:

E1 := {e | (ω, e) ∈ wts(v ⇒ σ(wv)) such that λ(b)≡ v−1µ−ω ∈ X∗(T )0},

E2 := {e | (ω, e) ∈ wts(v ⇒ σ(wv)) such that ν(b)= conv(v−1µ−ω)}.

Then Xx(b) ̸= ∅ if and only if E ̸= ∅. In this case,

dim Xx(b)=
1
2

(
ℓ(x)+ max(E)− ⟨ν(b), 2ρ⟩ − def(b)

)
.

Remark 5.5. (a) Since conv(λ(b)) = ν(b), we have E1 ⊆ E2. The inclusion may be strict, and it is a
nontrivial consequence of Theorem 5.4 that the two sets have the same maxima.

(b) If 8 is irreducible, the regularity constant C is equal to the Coxeter number of 8 and explicitly given
as follows:

Cartan type An Bn Cn Dn E6 E7 E8 F4 G2

C = n+1 2n 2n 2n−2 12 18 30 12 6

(c) Unlike in Proposition 5.2, we get no information on the number of top-dimensional irreducible
components. The main advantage of Theorem 5.4 over Proposition 5.2 comes from the different regularity
conditions, making Theorem 5.4 more applicable.

(d) The unique minimum in wts(v ⇒ σ(wv)) from [Schremmer 2025, Proposition 4.13] corresponds to
the unique maximum in B(G)x . This recovers the formula for the generic Newton point from [He and
Nie 2024, Proposition 3.1] in the setting of Theorem 5.4.

(e) If the difference between v−1µ and ν(b) becomes sufficiently large, the maximum max(E) can be
expected to be is ℓ(v−1σ(wv)) (see [Schremmer 2025, Lemma 4.11] or Corollary 5.3(b) above) and we
recover the notion of virtual dimension from [He 2014, Section 10]. In fact, one may use Corollary 5.3(b)
to recover [He 2021, Theorem 1.1] in the situation of Theorem 5.4. This line of argumentation is ultimately
cyclic, since a special case of [He 2021, Theorem 1.1] was used in the proof of Corollary 5.3(b). We
may however summarize that Corollary 5.3(b) is the double Bruhat theoretic correspondent of [He 2021,
Theorem 1.1]. Similarly, most known results on affine Deligne–Lusztig varieties correspond to theorems
on the double Bruhat graph and vice versa.
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(f) The proof method for Theorem 5.4 is similar to the proof of [He 2014, Proposition 11.5] or equivalently
the proof of [He 2021, Theorem 1.1].

Proof of Theorem 5.4. We assume without loss of generality that the group G is of adjoint type, following
[Görtz et al. 2015, Section 2]. This allows us to find a coweight µv ∈ X∗(T )00 satisfying for each simple
root α ∈1 the condition

⟨µv, α⟩ =8+(−vα)=

{
1, vα ∈8−,

0, vα ∈8+.

It follows that ⟨µv, β⟩ ≥8+(−vβ) for all β ∈8+. Define

x1 := wvεv
−1µ−µv , x2 = v−1εvµv ∈ W̃ .

By the choice of µv, we see that v−1µ − µv is dominant and (C−1)-regular. The above estimate
⟨µv, β⟩ ≥8+(−vβ) implies v ∈ LP(x2). Hence x = x1x2 is a length-additive product. We obtain

Tx = Tx1 Tx2 ≡ Tσ−1(x2)Tx1 (mod [H,H]σ ).

Define the multiset Y via
Tσ−1(x2)Tx1 =

∑
(y,e)∈Y

QeTyx1 ∈ H. (5.6)

Then each (y, e)∈Y satisfies y ≤σ−1(x2) in the Bruhat order. Writing y =wyε
µy , we getµdom

y ≤σ−1(µv)

in X∗(T )00 . We estimate

max
β∈8

|⟨µy, β⟩| = max
β∈8+

⟨µdom
y , β⟩ = max

i
⟨µdom

y , θi ⟩ ≤ max
i

⟨µv, θi ⟩ ≤ C − 1,

by the choice of C . It follows that
yx1 = wywvε

v−1µ−µv+(wv)
−1µy ,

with v−1µ−µv + (wv)−1µy being dominant. For any dominant coweight λ ∈ X∗(T )00 , we can multiply
(5.6) by Tελ to obtain

Tσ−1(x2)Tx1ελ = Tσ−1(x2)Tx1 Tελ =
∑

(y,e)∈Y
Tyx1 Tελ =

∑
(y,e)∈Y

Tyx1ελ .

In light of Lemma 4.5, we see that the multiset Y is equal to the multiset Y (σ−1(x2), wv) defined earlier.
For each (y, e) ∈ Y, write yx1 = w̃yε

µ̃y to define the sets

E1(yx1) := {e | (ω, e) ∈ wts(1 ⇒ σ(w̃y)) such that λ(b)= µ̃y −ω ∈ X∗(T )0},

E2(yx1) := {e | (ω, e) ∈ wts(1 ⇒ σ(w̃y)) such that ν(b)= conv(µ̃y −ω)}.

Define E(yx1) to be E1(yx1) or E2(yx1) depending on whether E was chosen as E1 or E2. By
Lemma 4.7(a), we may write wts(σ−1(v)⇒ wv) as the additive union of multisets

wts(σ−1(v)⇒ wv)=
⋃

(wyε
µy ,e)∈Y (σ−1(x2),wv)

{(µv − (wv)−1µy +ω, e + ℓ) | (ω, ℓ) ∈ wts(1 ⇒ wywv)}m

=
⋃

(y,e)∈Y
{(v−1µ− µ̃y +ω, e + ℓ) | (ω, ℓ) ∈ wts(1 ⇒ w̃y)}m . (5.7)
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Note that the definition of the sets E1, E2, E1(yx1), E2(yx1) does not change if we apply σ−1 to the
occurring weights ω. Hence (5.7) implies

E =
⋃

(y,e)∈Y
{e + ℓ | ℓ ∈ E(yx1)}.

By definition of the multiset Y, the class polynomials of fx,O for arbitrary σ -conjugacy classes O ⊂ W̃
are given by

fx,O =
∑

(y,e)∈Y
Qe fyx1,O.

By Theorem 5.1, we see that Xx(b) ̸= ∅ if and only if X yx1(b) ̸= ∅ for some (y, e) ∈ Y. In this case, the
dimension of Xx(b) is the maximum of

dim X yx1(b)+
1
2(ℓ(x)− ℓ(yx1)+ e),

where (y, e) runs through all elements of Y satisfying X yx1(b) ̸= ∅.
We see that it suffices to prove the following claim for all (y, e) ∈ Y :

X yx1(b) ̸= ∅ if and only if E(yx1) ̸= ∅ and in this case, we have

dim X yx1(b)=
1
2

(
ℓ(yx1)+ max(E(yx1))− ⟨ν(b), 2ρ⟩ − def(b)

)
.

(∗)

Writing yx1 = w̃εµ̃, we saw above that µ̃ is dominant. Applying [Milićević and Viehmann 2020,
Theorem 1.2] to the inverse of yx1, or equivalently [He 2021, Theorem 4.2] directly to yx1, we see
that the element yx1 is cordial in the sense of [Milićević and Viehmann 2020]. This gives a convenient
criterion to check X yx1(b) ̸=∅ and to calculate its dimension. We saw in Corollary 5.3(a) that the multiset
wts(1 ⇒ σ(w̃y)) must satisfy the analogous conditions. Let us recall these results.

The uniquely determined largest Newton point in B(G)yx1 = B(G)w̃εµ̃ is avgσ (µ̃); see [He 2021,
Theorem 4.2].

Let J ′
= supp(w̃) ⊆ 1 be the support of w̃ and J =

⋃
i σ

i (J ′) = suppσ (w̃) its σ -support. Let
πJ : X∗(T )00 → X∗(T )00 ⊗ Q be the corresponding function from [Chai 2000, Definition 3.2] or
equivalently [Schremmer 2022, Section 3.1]. Then πJ (µ̃) is the unique smallest Newton point occurring
in B(G)yx1 ; see [Viehmann 2021, Theorem 1.1].

The condition of cordiality [Milićević and Viehmann 2020, Theorem 1.1] implies that B(G)yx1 contains
all those [b] ∈ B(G) with the correct Kottwitz point κ(b)= κ(yx1)= κ(x) and Newton point

πJ (µ̃)≤ ν(b)≤ avgσ (µ̃).

In this case, we know moreover from [Milićević and Viehmann 2020, Theorem 1.1] that X yx1(b) is
equidimensional of dimension

dim X yx1(b)=
1
2

(
ℓ(yx1)+ ℓ(w̃)− ⟨ν(b), 2ρ⟩ − def(b)

)
.

This condition on Newton points is equivalent to avgσ (µ̃)−ν(b) being a nonnegative Q-linear combination
of simple coroots of J, or equivalently µ̃−λ(b) being a nonnegative Z-linear combination of these coroots.
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On the double Bruhat side, note that (ω, e) ∈ wts(1 ⇒ w̃) implies ω ∈ Z8∨

J ′ and e ≤ ℓ(w̃). This can
either be seen directly, similar to the proof of [Schremmer 2025, Lemma 4.11], or as in Corollary 5.3,
reducing to [Viehmann 2021, Theorem 1.1]. From Corollary 5.3, we know conversely that any ω ≥ 0
with ω ∈ Z8∨

J ′ satisfies (ω, ℓ(w̃)) ∈ wts(1 ⇒ w̃).
Comparing these explicit descriptions of dim X yx1(b) and max(E(yx1)), we conclude the claim (∗). □

6. Outlook

We saw that the weight multiset of the double Bruhat graph can be used to describe the geometry of
affine Deligne–Lusztig varieties in many cases. This includes the case of superparabolic elements x
together with sufficiently large integral [b] ∈ B(G) in split groups [Schremmer 2025, Theorem 5.7], as
well as the case of sufficiently regular elements x together with arbitrary [b] ∈ B(G) (Theorem 5.4). One
may ask how much the involved regularity constants can be improved, and whether a unified theorem
simultaneously generalizing [Schremmer 2025, Theorem 5.7] and Theorem 5.4 can be found. Towards this
end, we propose a number of conjectures that would generalize our theorems in a straightforward manner.

Let x = wεµ ∈ W̃ and [b] ∈ B(G). If Xx(b) ̸= ∅, define the integer D ∈ Z≥0 such that

dim Xx(b)=
1
2

(
ℓ(x)+ D − ⟨ν(b), 2ρ⟩ − def(b)

)
,

and denote the number of Jb(F)-orbits of top-dimensional irreducible components in Xx(b) by C ∈ Z≥1.
We would like to state the following conjectures. The first conjecture makes a full prediction of the
nonemptiness pattern and the dimension for elements x in the shrunken Weyl chamber and arbitrary
[b] ∈ B(G).

Conjecture 6.1. Suppose that x lies in a shrunken Weyl chamber, i.e., LP(x) = {v} for a uniquely
determined v ∈ W. Define E to be either of the multisets

E1 := {e | (ω, e) ∈ wts(v ⇒ σ(wv)) such that λ(b)≡ v−1µ−ω ∈ X∗(T )0}m,

E2 := {e | (ω, e) ∈ wts(v ⇒ σ(wv)) such that ν(b)= conv(v−1µ−ω)}m .

We make the following predictions.

(a) Xx(b) ̸= ∅ if and only if E ̸= ∅ and κ(x)= κ(b) ∈ π1(G)0 (the latter condition on Kottwitz points
is automatically satisfied if E = E1).

(b) If Xx(b) ̸= ∅, then max(E)= D.

(c) If Xx(b) ̸= ∅, then C is at most the multiplicity of D in E (which may be +∞ for E2).

The multiset E1 is always contained in E2, since ν(b)= conv(λ(b)). The inclusion may be strict. So
in fact we are suggesting two different dimension formulas for shrunken x , and claim that both yield the
same answer, which moreover agrees with the dimension.

For sufficiently regular x , Theorem 5.4 shows (a) and (b). Under some strong superregularity conditions,
Proposition 5.2 shows (c) with equality. While both proofs can certainly be optimized with regards to the



2044 Felix Schremmer

involved regularity constants, proving Conjecture 6.1 as stated will likely require further methods. It is
unclear how to show the conjecture, e.g., for the particular element x = w0ε

−2ρ∨

, since the proof method
for Theorem 5.4 fails.

It is easy to see that Conjecture 6.1 is compatible with many known results on affine Deligne–Lusztig va-
rieties, such as the ones recalled in the introduction of the previous article [Schremmer 2025, Theorem 1.2].
By Corollary 5.3, we see that parts (a) and (b) of Conjecture 6.1 hold true for cordial elements x . If x is
of the special form x = w0ε

µ with µ dominant, then x is in a shrunken Weyl chamber and we know that
(c) holds; see [Schremmer 2025, Remark 6.11].

Our second conjecture suggests how the double Bruhat graph can be used for elements x which are
not necessarily in shrunken Weyl chambers.

Conjecture 6.2. Suppose that [b] is integral, i.e., of defect zero. Define for each v ∈ LP(x) and u ∈ W
the multiset

E(u, v) := {e | (ω, e) ∈ wts(u ⇒ σ(wu) 99K σ(wv)) such that u−1µ−ω = λ(b) ∈ X∗(T )0}m .

Set max∅ := −∞ and define

d := max
u∈W

min
v∈LP(x)

max(E(u, v)) ∈ Z≥0 ∪ {−∞},

c :=
∑

u∈W
min

v∈LP(x)
(multiplicity of d in E(u, v)) ∈ Z≥0.

We make the following predictions:

(a) If there exists for every u ∈ W some v ∈ LP(x) with E(u, v)= ∅, i.e., if d = −∞, then Xx(b)= ∅.

(b) If Xx(b) ̸= ∅, then D ≤ d.

(c) If Xx(b) ̸= ∅ and D = d , then C ≤ c.

If the group is split, then [Schremmer 2025, Theorem 5.7] proves (a), (b) and (c). Moreover, under
some strong superparabolicity assumptions, we get the full conjecture including equality results for (b)
and sometimes (c). We expect that a similar superparabolicity statement holds true for nonsplit groups,
but it is unclear what the involved regularity constants should be, which is why we did not formulate a
precise, falsifiable conjecture.

If the element x ∈ W̃ is in a shrunken Weyl chamber with LP(x) = {v}, then the multiset E1 from
Conjecture 6.1 is equal to the multiset E(v, v) from Conjecture 6.2. If we moreover assume that
Conjecture 6.1 holds true, then we get parts (a), (b) and (c) of Conjecture 6.2.

Compatibility of Conjecture 6.2 with previously known results is a lot harder to verify. We ex-
pect that one does not have to account for all pairs (u, v) as in Conjecture 6.2 to accurately describe
nonemptiness and dimension of Xx(b), similar to [Schremmer 2025, Theorem 5.7(c)] or Conjecture 6.1.
However, we cannot make a precise prediction how such a refinement of Conjecture 6.2 should look
in general.
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Nonetheless, extensive computer searches did not yield a single counterexample to either conjecture.
Most straightforward generalizations of these conjectures, however, can be disproved quickly using such
a computer search [SageMath 2020; Sage-Combinat 2008].

Example 6.3. For both conjectures, the estimate on the number of irreducible components is only an
upper bound. Indeed, it suffices to consider elements of the form x = w0ε

µ for dominant cocharacters µ.
Then, as discussed in [Schremmer 2025, Remark 5.11], the number C is equal to the dimension of the
λ(b)-weight space of the irreducible Weyl module Mµ. The element x lies in a shrunken Weyl chamber,
and the multiplicity of d = D in E1 = E(v, v) is equal to the dimension of the λ(b)-weight space in the
Verma module Vµ. These numbers are not equal in general.

Example 6.4. One may ask whether it is possible to find for each nonshrunken x an element v ∈ LP(x)
such that the analogous statement of Conjecture 6.1 holds true. While this is certainly possible, say, for
cordial elements x , such a statement cannot be expected to hold true in general. We may choose G = GL4

and x = s3s2s1ε
µ, where the pairing of µ with the simple roots α1, α2, α3 is given by 1,−1, 1 respectively.

Then LP(x)= {s2, s2s3}. For [b] basic, we have D = 3, yet the analogous statements of Conjecture 6.1
for both possible choices of v in LP(x) would predict D = 5.

Example 6.5. Conjecture 6.2 should not be expected to hold for nonintegral [b]. Indeed, it suffices to
choose G = GL3 and x =wεµ to be of length zero such that the action of x on the affine Dynkin diagram
is nontrivial. Let [b] = [x], so that B(G)x = {[b]}. Define

E(u, v) := {e | (ω, e) ∈ wts(u ⇒ wu 99K wv) such that u−1µ−ω = λ(b) ∈ X∗(T )0}m

for u, v ∈ W = LP(x). Since w ̸= 1, we have E(u, v)= ∅ whenever v = uw0. A statement analogous to
Conjecture 6.2(a) would thus predict that Xx(b)= ∅, which is absurd.

Example 6.6. The converse of Conjecture 6.2(a) should not be expected to hold, even for [b] basic. The
construction in Conjecture 6.2 can fail to detect (J, w, δ)-alcove elements, and hence falsely predict a
nonempty basic locus. For a concrete example, one may choose G = GL3 and x to be the shrunken
element x = s2ε

ρ∨

, with ⟨ρ∨, α⟩ = 1 for all simple roots α. Then LP(x)= {1}. For u = s1s2 and [b] = [1]

basic, we have E(u, 1) ̸= ∅.
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Paucity of rational points
on fibrations with multiple fibres

Tim Browning, Julian Lyczak and Arne Smeets

Given a family of varieties over the projective line, we study the density of fibres that are everywhere
locally soluble in the case that components of higher multiplicity are allowed. We use log geometry to
formulate a new sparsity criterion for the existence of everywhere locally soluble fibres and formulate new
conjectures that generalise previous work of Loughran and Smeets. These conjectures involve geometric
invariants of the associated multiplicity orbifolds on the base of the fibration in the spirit of Campana. We
give evidence for the conjectures by providing an assortment of bounds using Chebotarev’s theorem and
sieve methods, with most of the evidence involving upper bounds.
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1. Introduction

Let X be a smooth, proper, geometrically irreducible variety over Q, which is equipped with a dominant
morphism π : X → P1 with geometrically integral generic fibre. We shall refer to such fibrations as
standard. The focus of this article is on situations where multiple fibres are present. Work of Colliot-
Thélène, Skorobogatov and Swinnerton-Dyer [Colliot-Thélène et al. 1997] shows that the set X (Q) of
Q-rational points on X is not Zariski dense when there are at least 5 geometric double fibres. Our goal is
to put this kind of result on a quantitative footing by analysing the simpler question of solubility over the
ring of adèles AQ. Let

Nloc(π, H, B) = #{x ∈ P1(Q) ∩ π(X (AQ)) : H(x) ⩽ B}, (1-1)
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where H is a height function on P1(Q). In general, we will need to allow the height H to be any adelic
height on a line bundle O(d). However, most of the time we shall use an O(1)-height. In this case we will
simply write Nloc(π, H, B) = Nloc(π, B). Usually we will take the naive height H(x) = max{|x0|, |x1|}

if x ∈ P1(Q) is represented by a vector x = (x0, x1) ∈ Z2
prim, in which case it is easy to prove that

#{x ∈ P1(Q) : H(x) ⩽ B} ∼
2

ζ(2)
B2 as B → ∞.

Loughran and Smeets [2016] have shown that

Nloc(π, B) ≪
B2

(log B)1(π)
(1-2)

for a certain exponent 1(π) ⩾ 0 that is defined in terms of the data of the fibration. (Here, as throughout
our work, all implied constants are allowed to depend on the fibration π .) Roughly speaking, the size
of 1(π) is determined by the number of nonsplit fibres of π , thereby lending credence to a philosophy
put forward by Serre [1990] and further developed by Loughran [2018]. In [Loughran and Smeets 2016,
Conjecture 1.6] it is conjectured that the upper bound (1-2) is sharp provided that the fibre of π over
every closed point of P1 has an irreducible component of multiplicity 1. (In fact, [Loughran and Smeets
2016] works over arbitrary number fields k and concerns fibrations X → Pn over projective space of
arbitrary dimension, but we shall restrict to k = Q and n = 1 in our work.) Our goal is to explore what
happens to Nloc(π, B) when the assumption about components of multiplicity 1 is violated.

There are relatively few examples in the number theory literature that feature standard fibrations with
multiple fibres. When the generic fibre of π is rationally connected, it follows from work of Graber,
Harris and Starr [Graber et al. 2003] that every fibre contains a geometrically integral component of
multiplicity 1. In particular, when dim X = 2, we must look to fibrations over P1 into curves of positive
genus to find examples with multiple fibres. Let c, d, f ∈ Q[t] be nonzero polynomials such that f is
square-free of even degree and such that f and c − d are coprime. Let π : X → P1 be a smooth, proper
model of the affine variety cut out by the pair of equations

x2
− c(t) = f (t)y2, x2

− d(t) = f (t)z2. (1-3)

Then it follows from [Colliot-Thélène et al. 1997, Proposition 4.1] that all the fibres of π over the zeros
of f are double fibres and that the generic fibre is a geometrically integral curve whose projective model
is isomorphic to a curve of genus 1. When deg( f )⩾ 6, as pointed out in [Loughran and Matthiesen 2024,
Theorem 1.4], the argument of [Colliot-Thélène et al. 1997, Corollary 2.2] implies that Nloc(π, B)= O(1).
Further examples involving genus-2 fibrations over P1 have been worked out in [Stoppino 2011].

In the spirit of [Campana 2005], our approach to this problem comes from relating the arithmetic of
π : X → P1 to the arithmetic of the orbifold base (P1, ∂π ) for a certain Q-divisor ∂π , in the sense of
Definition 4.6. For each closed point D ∈ (P1)(1), we let m D ⩾ 1 denote the minimum multiplicity of the
irreducible components of π−1(D). We will call the fibre over D multiple if m D > 1. We emphasise that
we have not defined the multiplicity of a fibre as the greatest common divisor of the multiplicities of its
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components, as is common in some applications, but rather as the minimum. Then we may define

∂π =

∑
D∈(P1)(1)

(
1 −

1
m D

)
[D]. (1-4)

With this notation, we make the following conjecture.

Conjecture 1.1. Let π : X → P1 be a standard fibration such that the Q-divisor −(KP1 + ∂π ) is ample.
Then

Nloc(π, B) = Oε(B2−deg ∂π+ε)

for any ε > 0.

Note that −deg(KP1 + ∂π ) = 2 − deg ∂π . Hence −(KP1 + ∂π ) is ample if and only if deg ∂π < 2. The
main feature of Conjecture 1.1 is that we expect Nloc(π, B) to be much smaller in the presence of multiple
fibres. Our remaining results give evidence towards this, as well as a proposal about the replacement
of Bε by an explicit nonpositive power of log B.

In the case that deg ∂π > 2, the Mordell orbifold conjecture shows that the rational points of X can only
lie in finitely many fibres of π . This conjecture follows from the abc-conjecture, as shown by Smeets
[2017]. Examples where the conclusion can be proven unconditionally are found in [Colliot-Thélène et al.
1997]. It remains unclear what can be said generally about the number of everywhere locally soluble
fibres in this situation. In the intermediate case deg ∂π = 2, very little is known about the number of
soluble or everywhere locally soluble fibres.

1.1. Upper bounds. For each closed point D ∈ (P1)(1), let SD be the set of geometrically irreducible
components of π−1(D) of multiplicity m D , and let κ(D) be the residue field. For any number field N/Q,
we write

δD,N (π) =
#{σ ∈ 0D,N : σ acts with a fixed point on SD}

#0D,N
, (1-5)

where 0D,N is a finite group through which the action of Gal(N/N ) on SD factors. (We take δD,N (π) = 0
when no such components exist.) Note that

0 ⩽ δD,N (π) ⩽ 1. (1-6)

Moreover, we shall write δD(π) = δD,κ(D)(π). When π−1(D) has components of multiplicity 1, this
agrees with the definition given in [Loughran and Smeets 2016, (1.4)]. A natural analogue of the exponent
appearing in [Loughran and Smeets 2016, Theorem 1.2] is then

1(π) =

∑
D∈(P1)(1)

(1 − δD(π)), (1-7)

which agrees with the exponent appearing in (1-2) whenever π−1(D) contains a multiplicity-1 component
for every D ∈ (P1)(1).

The following upper bound treats the case of one multiple fibre above a degree-1 point of P1 and is
consistent with Conjecture 1.1.
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Theorem 1.2. Let π : X → P1 be a standard fibration with a unique multiple fibre at 0. Then

Nloc(π, B) ≪
B2−deg ∂π

(log B)1(π)
,

where 1(π) is given by (1-7).

It is tempting to suppose that the same estimate continues to hold when there is more than one closed
point of P1 above which multiple fibres exist. However, in Theorem 7.1, we shall illustrate that a smaller
exponent than 1(π) is sometimes necessary.

Let π : X →P1 be a standard fibration, and let D ∈ (P1)(1), which we suppose is defined by an irreducible
binary form g ∈ Q[x, y]. Assume first that g(1, 0) ̸= 0. Then the residue field is κ(D) = Q[x]/(g(x, 1)).
Moreover, for any d ∈ N and any v ∈ Q, let h(x) = h(1)(x)e1 · · · h(sD)(x)es be the factorisation of
h(x) = g(xd , v) into distinct irreducible polynomial h(i)(x). We define N (i)

D,d,v = Q[x]/(h(i)(x)) and

ND,d,v = N (1)
D,d,v × · · · × N (sD)

D,d,v. (1-8)

For typical v this forms a number field of degree deg(g)+ d , but in general an étale algebra of possibly
lower degree is formed since h need not be irreducible nor separable. It still remains to deal with the case
g(1, 0) = 0. But then D = ∞ and we apply the same construction to the polynomial g(1, vyd) ∈ Q[y].

We may now define

2v(π) =

∑
D∈(P1)(1)

sD∑
k=1

(1 − δD,N (k)
D,d,v

(π)) (1-9)

in the notation of (1-5). Our main upper bound is as follows.

Theorem 1.3. Let π : X → P1 be a standard fibration with multiple fibres at 0 and ∞ and nowhere else.
Let d = gcd(m0, m∞). Then

Nloc(π, B) ≪
B2−deg ∂π

(log B)
min

v∈Q×/Q×,d 2v(π)
.

It will be convenient to put

2(π) = min
v∈Q×/Q×,d

2v(π). (1-10)

Let us first note that 2(π) ⩾ 0 by (1-6). Secondly, 1(π) and 2(π) can be different; in Theorem 7.1 we
will see an example with 2(π) = 0 but 1(π) = 1. However, we will see that

2(π) = 1(π) if gcd(m0, m∞) = 1. (1-11)

The following result shows that there are only finitely many values that 2v(π) can take.

Proposition 1.4. Let π : X → P1 be a standard fibration, and let D ∈ (P1)(1). Let E be the field of
definition of the elements of SD , and let N/Q be a number field. Then δD,N (π) = δD,N∩Enormal(π), where
Enormal is the normal closure of E.



Paucity of rational points on fibrations with multiple fibres 2053

As we have seen, our understanding of Nloc(π, B) is inexorably linked to the arithmetic of the orbifold
base (P1, ∂π ). The study of rational points on orbifolds is the focus of work by Pieropan, Smeets, Tanimoto
and Várilly-Alvarado [Pieropan et al. 2021], which offers a far-reaching conjectural asymptotic formula
for any orbifold (Y, ∂) with Q-ample divisor −(KY + ∂). Pieropan and Schindler [2024] have verified
many cases of the conjecture when Y is a split toric variety over Q. Their work covers the orbifolds that
arise in the proof of Theorems 1.2 and 1.3 and would yield the upper bound Nloc(π, B) = O(B2−deg ∂π ).
In order to achieve the desired nonpositive powers of log B, we need to incorporate extra Chebotarev-type
conditions that arise when counting locally soluble fibres.

The proofs of Theorems 1.2 and 1.3 are based on the large sieve and will be carried out in Section 6. A
crucial ingredient will be a sparsity criterion, which gives explicit control over which fibres are everywhere
locally soluble. This criterion will be proved in Section 5 using log geometry and may be of independent
interest.

The condition deg ∂π < 2 restricts us to only considering fibrations over P1 with at most three multiple
fibres, and the multiplicities of these fibres cannot be too large. Extending Theorem 1.3 to three multiple
fibres represents a formidable challenge. The easiest such case corresponds to the Q-divisor

∂π =
1
2 [0] +

1
2 [1] +

1
2 [∞].

Conjecture 1.1 would predict that Nloc(π, B) = Oε(B1/2+ε) for any ε > 0. However, the best upper bound
we have is due to [Browning and Van Valckenborgh 2012], which only yields the exponent 3

5 + ε.

1.2. A new conjecture. We are now ready to reveal a new conjecture for the density of locally soluble
fibres for standard fibrations in which multiple fibres are allowed. Let π : X → P1 be a standard fibration,
and let θ : P1

→ (P1, ∂π ) be a finite étale orbifold morphism, as defined in Definition 4.2.
We assume that (P1, ∂π ) does not admit a finite étale orbifold morphism which factors through θ ,

and θ is a G-torsor under a finite étale group scheme G. Let θv : Cv → P1 denote the twist of θ by
any v ∈ H1(Gal(Q/Q), G), which is a torsor under the inner twist Gv of G [Skorobogatov 2001, p. 20].
Finally, let πv : Xv → Cv denote the normalisation of the pullback of π along θv . We will only consider v

for which Cv(Q) ̸= ∅, in which case we identify Cv
∼= P1.

Conjecture 1.5. Let π : X → P1 be a standard fibration such that the Q-divisor −(KP1 + ∂π ) is ample
and X (AQ) ̸= ∅. Then there exists a constant cπ > 0 such that

Nloc(π, B) ∼ cπ

B2−deg ∂π

(log B)
min

v∈H1(Gal(Q/Q),G)
1(πv)

,

where 1(πv) is given by (1-7).

Note that it follows from Proposition 1.4 that 1(πv) takes only finitely many values. In the special
case that the orbifold base is simply connected as an orbifold, which in the setting of Theorem 1.3 covers
the case gcd(m0, m∞) = 1, the exponent will simply equal 1(π). Thus Conjecture 1.5 implies that

Nloc(π, B) ∼ cπ

B2−deg ∂π

(log B)1(π)
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in this case, which is consistent with the upper bound in Theorem 1.2. In Corollary 4.9 we take G = µd

and prove that 2v(π) = 1(πv) in (1-9). Hence the upper bound in Theorem 7.1 is also consistent with
Conjecture 1.5. In Section 7 we provide further evidence for the conjecture by establishing a range of
estimates for the variant Nloc,S(π, B) of Nloc(π, B), in which local solubility is only required away from
a finite set S of primes. In Theorem 7.2, for example, we establish a precise lower bound for Nloc,S(π, B)

in the case that π : X → P1 is a standard fibration for which the only nonsplit fibres lie over 0 and ∞.
One further source of examples that can be used to illustrate our conjectures is the class of Halphen

surfaces. These were introduced by Halphen [1882] and correspond to standard fibrations admitting
a unique multiple fibre. In Theorems 7.3–7.8 we provide several estimates for Nloc,S(π, B) that are
consistent with Conjecture 1.5 for appropriate surfaces of Halphen type. In the proof of Theorem 7.8
we are led to a concrete problem in analytic number theory that was solved by Friedlander and Iwaniec
[2010, Theorem 11.31]. Indeed, we need matching upper and lower bounds for the number of positive
integers a, b satisfying a6

+b2 ⩽ x , as x → ∞, such that the only prime divisors of a6
+b2 are those that

split in a given cubic Galois extension K/Q. It would be useful to have a similar result for non-Galois
extensions, but this appears to be difficult.

Remark 1.6. Returning to the example (1-3), we see that the associated Q-divisor ∂π has degree 1
2 deg( f ).

Since f is assumed to have even degree, it follows that −(KP1 + ∂π ) is ample only when deg( f ) = 2.
When f is a quadratic polynomial, Conjecture 1.1 implies that Nloc(π, B) = Oε(B1+ε) for any ε > 0.
The orbifold base (P1, ∂π ) admits µ2-covers, and it is possible to apply Conjecture 1.5 to predict an
explicit power of log B. The outcome will depend on the Galois action on the geometric components of
the fibres.

1.3. Further questions. We expect similar conjectures to hold when looking at fibrations π : X → Y
over other bases for which −(KY + ∂π ) is Q-ample. However, when dim(Y ) > 1 the sparsity criterion
we work out in Section 5 will be significantly more complicated. Moreover, care also needs to be taken
around the effect of thin subsets of Y (Q) on the counting problem. A counter-example to the most naive
expectation has recently been provided [Browning et al. 2023] in the case that Y is a split quadric in P3.

In a different direction, when Y = P1, we can extend the definition (1-1) by defining Nloc(π, B; Z) to
be the number of x ∈ (P1(Q) \ Z) ∩ π(X (AQ)) for which H(x) ⩽ B for any thin subset Z ⊆ P1(Q). It
is then very natural to ask whether or not we should expect a bound of the shape

Nloc(π, B; Z) ≪
B1/m0+1/m∞

(log B)1(π)
,

where 1(π) is given by (1-7), if we have the freedom to remove any thin set Z . Of course, as pointed out
by the anonymous referee, it is not completely clear whether anything is left if we are able to remove
arbitrary thin sets from P1(Q).

1.4. Summary of the paper. The main sparsity criterion for locally soluble fibres is Theorem 5.5. It
is proved using log geometry in Section 5 and leads to Chebotarev-type conditions about the splitting
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behaviour of primes. In Section 2 we shall collect together some basic group-theoretic results that allow
us to interpret the output from Chebotarev’s theorem. Section 3 uses recent work of Arango-Piñeros,
Keliher and Keyes [Arango-Piñeros et al. 2022] to count pairs of power-full integers which lie in the
multiplicative span of Frobenian sets of primes. In Section 4 we shall introduce the necessary background
on orbifolds that is required to interpret the exponent of log B in Conjecture 1.5. Section 6 contains
the proof of Theorems 1.2 and 1.3 and is based on an application of the large sieve. Finally, Section 7
builds on the work in Section 3 and contains new evidence for Conjecture 1.5, including estimates for
Nloc,S(π, B) in the case of Halphen surfaces and other families admitting multiple fibres.

2. Group-theoretic results

We will need some preliminary results on the density of primes with a prescribed splitting behaviour.
Using Chebotarev’s theorem, we will be able to translate it into statements about groups and group actions.
We begin by proving some results in elementary group theory.

2.1. Group theory lemmas. Let G be a finite group, and let H ⊆ G be a subgroup. For an element g ∈ G,
we will write Fixg(G/H) for the set of fixed points of g under the natural action of G on G/H .

Lemma 2.1. Let C ⊆ G be a conjugacy class. Then we have∑
g∈C

# Fixg(G/H) =
#G
#H

#(C ∩ H).

Proof. First note that, for conjugate elements g, y ∈ C , there is an element u ∈ G such that u−1 yu = g.
Hence

{x ∈ G : x−1gx = y} = {x ∈ G : (ux)−1 y(ux) = y} = u−1 Staby,

whose cardinality is #G/#C by the orbit-stabiliser theorem since C is the orbit of y under conjugation.
We now see that ∑

g∈C

# Fixg(G/H) = #{(g, x H) ∈ C × G/H : gx H = x H}

= #{(g, x H) ∈ C × G/H : x−1gx ∈ H}.

Hence ∑
g∈C

# Fixg(G/H) =
1

#H
#{(g, x) ∈ C × G : x−1gx ∈ H ∩ C}

=
1

#H
#{(g, x, y) ∈ C × G × (H ∩ C) : x−1gx = y}

=
1

#H
#C ·

#G
#C

· #(C ∩ H),

which proves the lemma. □

Lemma 2.2. Let S and T be subgroups of G. Then

#S#T = #(S ∩ T )#(ST ).
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Proof. Consider the action S × T on G by (s, t)g = sgt−1. The stabiliser of eG equals the image of
diagonal map S ∩ T ↪→ S × T , and the set ST is the orbit of eG . The result now follows from the
orbit-stabiliser formula. □

2.2. Density of primes. Let F/Q be a number field with ring of integers OF . Define PF,m to be the set
of rational primes p unramified in F which are divisible by exactly m primes pi ⊆ OF of degree 1. Let

PF =

⋃
m⩾1

PF,m .

We define

δ(E , K ) = 1 −

d∑
m=1

m dens
(
PK ,m ∩

⋃
E∈E

PE

)
for a finite set E of number fields and any number field K ⊆ Q with d = [K : Q]. If E = {E} consists of
a single number field E ⊆ Q, we will write δ(E, K ) = δ(E , K ). The main result of this section is the
following result.

Theorem 2.3. Let E be a finite set of number fields and K ⊆ Q a number field with d = [K : Q]. Define

δ(E , K ) = 1 −

d∑
m=1

m dens
(
PK ,m ∩

⋃
E∈E

PE

)
.

Let L ⊆ Q be a Galois extension of Q which contains both K and all E ∈ E . Then

δ(E , K ) = 1 −
#{σ ∈ Gal(L/K ) : σ fixes a conjugate of some E ∈ E }

#Gal(L/K )
.

The quantity δ(E , K ) generalises a quantity that is implicit in [Loughran and Smeets 2016, (1.4)]. Let
π : X → P1 be a standard fibration, and let D be a closed point of P1 with residue field κ(D). Let ID(π)

be the set of geometrically irreducible components of π−1(D) of multiplicity 1, and let ED be the set of
number fields obtained from taking the algebraic closure of Q in the function field of each irreducible
component of π−1(D), i.e., the minimal finite extensions of Q over which the irreducible components of
π−1(D) split into their geometrically irreducible components. Then

δD(π) = 1 − δ(ED, κ(D))

in [Loughran and Smeets 2016, (1.4)]. Moreover, if we take SD to be the set of geometrically irreducible
components of π−1(D) of minimal multiplicity m D and we let ED be the set of fields of definition of the
elements of SD , then we also have

δD,N (π) = 1 − δ(ED, N ) (2-1)

in (1-5) for any number field N/Q.

Proof of Theorem 2.3. Write G = Gal(L/Q), and let K be the fixed field of the subgroup H1 of G.
Similarly, let E ∈ E be the fixed fields of the subgroups H ∈ H of G. Let P ′

K ,m denote the set of primes
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in PK ,m that are unramified in L , and similarly for each P ′

E . Then we have

P ′

K ,m = {primes p ∈ Z unramified in L for which # FixFrobp(G/H1) = m}

and

P ′

E = {primes p ∈ Z unramified in L for which # FixFrobp(G/H) ⩾ 1}.

Note that

Cm =

{
g ∈ G : # Fixg(G/H1) = m,

∑
H∈H

# Fixg(G/H) ⩾ 1
}

is closed under conjugation, since conjugate elements have the same number of fixed points. By Cheb-
otarev’s theorem, in the form presented in [Serre 2012, Theorem 3.4], for example, we therefore obtain

dens
(
PK ,m ∩

⋃
E∈E

PE

)
= dens

(
P ′

K ,m ∩

⋃
E∈E

P ′

E

)
=

#Cm

#G
.

Let T =
⋃

t∈G,H∈H t Ht−1, which we note is closed under conjugation. Since g ∈ G has at least a
fixed point on one of the G/H if and only if g ∈ T , we arrive at

d∑
m=1

m dens
(
PK ,m ∩

⋃
E∈E

PE

)
=

1
#G

d∑
m=1

m #Cm =
1

#G

∑
g∈T

# Fixg(G/H1).

We may now conclude from Lemma 2.1 that

d∑
m=1

m dens
(
PK ,m ∩

⋃
E∈E

PE

)
=

#(T ∩ H1)

#H1
. (2-2)

The statement of the theorem follows on noting that H1 = Gal(L/K ) and

T = {σ ∈ G : σ fixes a conjugate of some E ∈ E }. □

Note that we could not have applied the Chebotarev theorem to #(T ∩ H1), since T ∩ H1 is not
necessarily fixed under conjugation in G. It is however closed under conjugation in H1.

2.3. Computation of δ in specific cases. Theorem 2.3 allows us to compute the density δ(E , K ) in the
common Galois closure L of both K and each E ∈ E . The following theorem says that this can be reduced
to a computation in a Galois closure of the fields E ∈ E .

Proposition 2.4. Let Enormal be the normal closure of the compositum of the E ∈ E in Q. Then

δ(E , K ) = δ(E , Enormal
∩ K ).

Proof. We adopt the notation from the proof of Theorem 2.3. Let A{ j} be the subgroups of G indexed by
a set J , which are of the form t Ht−1 for t ∈ G and H ∈ H . For a set I ⊆ J , we write AI

=
⋂

i∈I A{i}.
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The field Enormal
∩ K corresponds to the subgroup ⟨H1, AJ

⟩ ⊆ G generated by H1 and AJ . (Since AJ is
normal, one can actually show that ⟨H1, AJ

⟩ = H1 AJ .) It follows from Lemma 2.2 that

#(S ∩ H1)

#H1
=

#(S ∩ ⟨H1, AJ
⟩)

#⟨H1, AJ ⟩

when S is equal to AI for any I ⊆ J . Since both sides are additive in S, the statement extends to
S = T =

⋃
j∈J A{ j} by the principle of inclusion and exclusion. □

Proof of Proposition 1.4. Combine Proposition 2.4 with (2-1). □

Our remaining results summarise some special situations in which we can use Theorem 2.3 and
Proposition 2.4 to calculate the densities δ(E , K ) easily.

Lemma 2.5. If E ⊆ K for some E ∈ E , then δ(E , K ) = 0.

Proof. Since K , E are the fixed fields of the subgroups H1, H ′
⊆ Gal(L/Q), we have E ⊆ K if and only

if H ′
⊇ H1. But then H1 ⊆ H ′

⊆ T =
⋃

t∈G,H∈H t Ht−1, whence #(T ∩ H1)/#H1 = 1 in (2-2). □

Let us now consider some cases in which E contains a single element.

Lemma 2.6. If E/Q is Galois, then δ(E, K ) = 1 − deg(E ∩ K )/deg E.

Proof. Since E/Q is Galois, E is also Galois over Enormal
∩ K = E ∩ K . Thus we conclude δ(E, K ) =

δ(E, E ∩ K ) = 1 − 1/[E : E ∩ K ]. □

Lemma 2.7. If K/Q is Galois and K E = Enormal, then δ(E, K ) = 1 − deg(E ∩ K )/deg E.

Proof. Since K E = Enormal and K/Q is Galois, we have H1 ∩ A{ j}
= AJ for all j ∈ J . Thus

#(T ∩ H1)

#H1
=

#AJ

#H1
=

deg K
deg Enormal =

deg K
deg K E

in (2-2). Since K is Galois, we have [K E : K ] = [E : E ∩ K ], from which the lemma follows. □

3. Pairs of integers with Frobenian conditions

We say that a set P of rational primes is Frobenian if there is a finite Galois extension K/Q and a union
of conjugacy classes H in Gal(K/Q) such that P is equal to the set of primes p that are unramified in K
and for which the Frobenius conjugacy class of p in Gal(K/Q) lies in H . In this section we produce an
asymptotic formula for the density of coprime integers a0, a1 which are both power-full and lie in the
multiplicative span of a Frobenian set of primes.

It will be convenient to introduce the notation

cS(α) =

∏
p∈S

(
1 −

1
pα

)
(3-1)

for any α > 0 and any finite set of primes S. We shall prove the following result.
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Proposition 3.1. For i ∈ {0, 1}, let mi ∈ N and let Pi be a Frobenian set of rational primes of density ∂i .
Then, for any finite set of primes S, we have

#{(a0, a1) ∈ Z2
prim : |ai | ⩽ B, p /∈ S ⇒ [mi | vp(ai ) and (p | ai ⇒ p ∈ Pi )]} ∼ cmi ,Pi ,S

B1/m0+1/m1

(log B)2−∂0−∂1

as B → ∞, where

cmi ,Pi ,S =
4m1−∂0

0 m1−∂1
1

0(∂0)0(∂1)
·

cS
( 1

m0
+

1
m1

)
cS

( 1
m0

)
cS

( 1
m1

) ∏
p∈P0∩P1

p ̸∈S

(
1 −

1
p2

)

×

∏
p∈P0∩S

(
1 −

1
p

) ∏
p∈P0

(
1 −

1
p

)−1+∂0 ∏
p ̸∈P0

(
1 −

1
p

)∂0

×

∏
p∈P1∩S

(
1 −

1
p

) ∏
p∈P1

(
1 −

1
p

)−1+∂1 ∏
p ̸∈P1

(
1 −

1
p

)∂1
.

There are only O(1) elements with a0a1 = 0 that contribute to the counting function. Let M(B) =

M(mi , Pi , B, S) denote the overall contribution with a0a1 ̸= 0. Hence, on accounting for signs, we have

M(B) = 4#
{
(a0, a1) ∈ N2

:
a0, a1 ⩽ B, gcd(a0, a1) = 1,

p /∈ S ⇒ [mi | vp(ai ) and (p | ai ⇒ p ∈ Pi )]

}
.

For (a0, a1) appearing in the counting function, we may clearly write

a0 = b0um0
0 and a1 = b1um1

1 ,

where p | b0b1 ⇒ p ∈ S, gcd
(
u0u1,

∏
p∈S p

)
= 1, and p | ui ⇒ p ∈ Pi . Moreover, we have gcd(b0, b1) =

gcd(u0, u1) = 1. Let Q = P0 ∩ P1.
We proceed by introducing the counting functions

Mi (x) = #{v ⩽ x : p | v ⇒ p ∈ Pi,S}

for i = 0, 1, where Pi,S = Pi \ (S ∩ Pi ). On using the Möbius function to detect the condition
gcd(u0, u1) = 1, we may now write

M(B) = 4
∑

b0,b1∈N
gcd(b0,b1)=1
p |b0b1⇒p∈S

∑
k∈N

p |k⇒p∈QS

µ(k)M0(k−1(B/b0)
1/m0)M1(k−1(B/b1)

1/m1),

where QS = Q \ (S ∩ Q). The treatment of Mi (x) is handled by the following result.

Lemma 3.2. Let i ∈ {0, 1}. Then

Mi (x) ∼
κi,S

0(∂i )

x
(log x)1−∂i

as x → ∞, where

κi,S =

∏
p∈Pi ∩S

(
1 −

1
p

) ∏
p∈Pi

(
1 −

1
p

)−1+∂i ∏
p ̸∈Pi

(
1 −

1
p

)∂i
. (3-2)
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Proof. Let i ∈ {0, 1}. There are several approaches to estimating Mi (x), but the one we shall adopt is via a
general result of [Wirsing 1967] on mean values of multiplicative arithmetic functions g : N → [0, 1]. (In
fact, this result applies to general nonnegative multiplicative arithmetic functions under further assumptions
on the behaviour of g at prime powers.) Suppose that∑

p⩽x

g(p) log p ∼ τ x

for some τ > 0. Then it follows that∑
n⩽x

g(n) ∼
e−γ τ

0(τ)

x
log x

∏
p⩽x

(
1 +

g(p)

p
+

g(p2)

p2 + · · ·

)
,

where γ is Euler’s constant.
In our case we take

g(n) =

{
1 if p | n ⇒ p ∈ Pi,S ,
0 otherwise.

Then, since Pi is a Frobenian set of primes of density ∂i , it follows from the Chebotarev density theorem
that ∑

p⩽x

g(p) log p =

∑
p⩽x

p∈Pi,S

log p ∼ ∂i log x

as x → ∞. Hence τ = ∂i and we obtain

M(x) ∼
e−γ ∂i

0(∂i )

x
log x

∏
p⩽x

p∈Pi,S

(
1 −

1
p

)−1

as x → ∞. It remains to study∏
p⩽x

p∈Pi,S

(
1 −

1
p

)−1
=

∏
p∈Pi ∩S

(
1 −

1
p

) ∏
p⩽x

p∈Pi

(
1 −

1
p

)−1
.

However, on appealing to [Arango-Piñeros et al. 2022, Theorem A], we quickly arrive at the expression∏
p⩽x

p∈Pi

(
1 −

1
p

)−1
∼

(
log x
e−γK

)∂i

as x → ∞, where

e−γK = e−γ
∏

p∈Pi

(
1 −

1
p

)∂−1
i −1 ∏

p ̸∈Pi

(
1 −

1
p

)−1
.

It now follows that ∏
p⩽x

p∈Pi,S

(
1 −

1
p

)−1
∼ κi,S(log x)∂i eγ ∂i

in the notation of lemma. Inserting this into our previous asymptotic formula for Mi (x), we finally arrive
at the statement of the lemma. □
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We clearly have

(log(k−1(B/bi )
1/mi ))−(1−∂i ) = m1−∂i

i (log B)−(1−∂i )

(
1 + O

(
log kbi

log B

))
for i = 0, 1. Hence, on substituting Lemma 3.2 into our previous expression for M(B), we thereby obtain

M(B) = 4
∑

b0,b1∈N
gcd(b0,b1)=1
p |b0b1⇒p∈S

∑
k∈N

p |k⇒p∈QS

Ab0,b1,k(B) + o
(

B1/m0+1/m1

(log B)2−∂0−∂1

)
,

with

Ab0,b1,k(B) =
κ0,Sκ1,S

0(∂0)0(∂1)
·
µ(k)m1−∂0

0 m1−∂1
1 (k−1(B/b0)

1/m0)(k−1(B/b1)
1/m1)

(log B)2−∂0−∂1

=
κ0,Sκ1,S

0(∂0)0(∂1)
· m1−∂0

0 m1−∂1
1 ·

B1/m0+1/m1

(log B)2−∂0−∂1
·
µ(k)

k2 ·
1

b1/m0
0 b1/m1

1

and where κ0,S , κ1,S are given by (3-2)
Next, on recalling the notation of (3-1), a simple calculation furnishes the identities∑

b0,b1∈N
gcd(b0,b1)=1
p |b0b1⇒p∈S

1

b1/m0
0 b1/m1

1

=
cS

( 1
m0

+
1

m1

)
cS

( 1
m0

)
cS

( 1
m1

) and
∑
k∈N

p |k⇒p∈QS

µ(k)

k2 =

∏
p∈P0∩P1

p ̸∈S

(
1 −

1
p2

)
.

Hence it follows that the asymptotic formula in Proposition 3.1 holds with the leading constant

cmi ,Pi ,S = 4 ·
κ0,Sκ1,S

0(∂0)0(∂1)
· m1−∂0

0 m1−∂1
1 ·

cS
( 1

m0
+

1
m1

)
cS

( 1
m0

)
cS

( 1
m1

) ·

∏
p∈P0∩P1

p ̸∈S

(
1 −

1
p2

)
,

where κ0,S , κ1,S are given by (3-2). This therefore completes the proof of Proposition 3.1.

4. Orbifolds and étale orbifold morphisms

Campana [2004] related the study of fibrations π : X → Y of varieties over a fixed field k to orbifolds on
the base. He studied multiplicity orbifolds, but since these are the only orbifolds in this paper we will
simply call them orbifolds. In this section we summarise the construction of the most important invariant
of orbifolds.

4.1. Orbifold pairs. Throughout this section, let k be an arbitrary field of characteristic 0.

Definition 4.1. An orbifold is a pair (B, 1), where B is a normal, proper k-scheme and 1 is a Q-divisor

1 =

∑
D

(
1 −

1
m D

)
[D]

for positive integers m D associated to prime divisors D on B. We call m D the multiplicity of the orbifold
over D.
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Definition 4.2. Let (B, 1) be an orbifold on a normal and proper k-variety B. A finite étale (orbifold)
morphism is a morphism θ : C → B, with C normal, which is

(i) finite,

(ii) étale away from 1,

(iii) has the property e(D′/D) | m D for any prime divisor D′
| D (meaning any prime divisor D′

⊆ C
above D ⊆ B), where e(D′/D) is the ramification index.

Let us explain the use of the word étale. Consider a finite dominant morphism θ : C → B between
integral, normal, proper k-varieties. Then we can always endow B with an orbifold structure such that θ

becomes a finite étale orbifold morphism by assigning m D = lcm{e(D′/D) : D′
| D}. If B has an orbifold

divisor 1 under which θ is a finite étale orbifold morphism, then we can endow C with the Q-divisor

1C =

∑
D′

(
1 −

1
m D′

)
[D′

], where m D′ =
m D

e(D′/D)
.

This is the unique orbifold structure on C such that the orbifold morphism (C, 1C) → (B, 1) is étale in
codimension 1, in the sense of [Campana 2011, Definition 2.21]. In the latter case, the Riemann–Hurwitz
formula yields

KC,1C = θ∗K B,1,

where K B,1 = K B + 1 is the canonical divisor class on an orbifold (B, 1). (This statement can be
proven along similar lines to the proof of Proposition 4.7 (c).)

Proposition 4.3. Let C1, C2 → C be morphisms of normal k-varieties. Let V =
∼

C1 ×C C2 be the
normalisation of the product C1 ×C C2:

C1 ×C C2

V

C2

C1

C

Let DV ⊆ V be a prime divisor lying above prime divisors Di ⊆ Ci and D ⊆ C. Then

e(DV /D1) =
e2

gcd(e1, e2)
,

where ei = e(Di/D) for i = 1, 2.

Proof. Replacing the prime divisors with their generic points we can compute the normalisation étale
locally over D. Hence we assume k is algebraically closed and consider the normalisation of the
tensor product of the two homomorphisms ϱi : k[[t]] → k[[ti ]] given by t 7→ tei

i . The tensor product is
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R = k[[t1, t2]]/(t
e1
1 − te2

2 ) generated by the images of the ti . Let us define d = gcd(e1, e2), and let ζ ∈ k
be a primitive d-th root of unity. We can write R as the product

R =

∏
i

k[[t1, t2]]/(t
e1/d
1 − ζ i te2/d

2 ).

All factors are principal ideal domains, since polynomials Xa
− λY b with λ ∈ k× and gcd(a, b) = 1 are

irreducible over an algebraically closed field. We will compute the integral closure of each component
separately. Let us write α1e1 + α2e2 = d for αi ∈ Z. Then T = tα2

1 tα1
2 is integral in each factor since

T e1/d
= t2 · (te1/d

1 /te2/d
2 )α2 and T e2/d

= t1 · (te2/d
2 /te1/d

1 )α1 . It follows that

k[[t1, t2]]/(t
e1/d
1 − ζ i te2/d

2 ) ↪→ k[[T ]]

is the integral closure. Finally, to compute e(DV /D1), we look at the image of t1 under the map

k[[t1]] → k[[T ]],

which has valuation e2/d . □

Remark 4.4. Campana [2011, Definition 11.1] defines the orbifold fundamental group π1(X |1) for a
complex orbifold (X |1) and relates it to covers unramified away from 1. Likewise, we can define the
(algebraic) orbifold fundamental group and relate it to the structure of all finite étale orbifold morphisms
over a fixed base (B, 1) of dimension 1. (Note that we could do this in arbitrary dimension if we allow
finite étale morphisms to be defined away from a codimension-2 locus.) Consider the category FEt(B,1)

of all finite étale orbifold morphisms to (B, 1), where the morphisms are given by B-morphisms. Given
a point x̄ ∈ B(k̄) \ supp(1), we have the fibre functor

F : FEt(B,1) → Sets

given by C 7→ Cx̄ , and one can show that (FEt(B,1), F) is a Galois category. The only nontrivial part
is to show that FEt(B,1) has products, but this follows from Proposition 4.3. In particular, this implies
that, for any two finite étale covers of (C, ∂), there is another cover mapping to both. We define the
(algebraic) orbifold fundamental group πorb

1 (B, 1) to be the automorphism group of the fibre functor F .
Many relations between the topological and algebraic fundamental group can be directly translated to
fundamental groups of orbifolds. For example, if k ⊆ C then

πorb
1 (B, 1) =
∧

π1(B(C)|1).

Campana [2011, Sections 11 and 12] studied the complex orbifold fundamental group and provided
several results and conjectures about their structure.

For our application we will need the following definition.

Definition 4.5. Let G/k be a finite étale group and (B, 1) an orbifold. Let θ : C → B be a finite étale
orbifold morphism endowed with a G-action on C , which is compatible with θ . We say that θ is a
G-torsor (of orbifolds) if the restriction of θ away from the support of 1 is a G-torsor.
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Since we are dealing with curves, it makes sense to talk about torsors. The natural morphism G ×C →

C ×B C is not necessarily an isomorphism over B, but it is so over B \ 1 by definition. Since G × C is
a smooth curve over k, this morphism factors through the normalisation G × C →

∼

C ×B C → C ×B C .
Now G ×C →

∼

C ×B C is a morphism between normal curves, which is an isomorphism on a dense open
subset. Note that this agrees with the observation that

∼

C ×B C → C is unramified by Proposition 4.3;
∼

C ×B C is just a union of copies of C .

4.2. Orbifold base of a fibration. As we saw in Section 1, we can associate a natural orbifold to any
fibration. In this section we discuss this further before passing to our reasoning behind Conjecture 1.5.

Definition 4.6. Consider a fibration π : X → Y , which we assume is a morphism between integral,
normal, proper k-schemes such that the generic fibre is geometrically irreducible. For a prime divisor
D ⊆ Y with generic point ηD , we define m D as the minimum multiplicity of the components of XηD as a
divisor on X . The orbifold base of π is (Y, ∂π ), where

∂π =

∑
D

(
1 −

1
m D

)
[D].

Possibly up to thin sets, we expect the geometry of the base orbifold (Y, ∂π ) to govern the arithmetic
properties of the fibration. We henceforth focus our attention on standard fibrations π : X → P1 defined
over Q, with the aim of interpreting the growth of the counting function Nloc(π, B) that was defined
in (1-1). Occasionally we will write N ◦

loc(π, B) for the same counting function but excluding the finitely
many points in the orbifold divisors ∂π .

Let us begin by discussing the conjectured power of B in Conjecture 1.5, which is equal to

2 − deg ∂π = −deg(KP1,∂π
), (4-1)

where KP1,∂π
= KP1 +∂π . The following result relates the geometry of π to the geometry of a normalisation

of the fibre product of π with a finite cover.

Proposition 4.7. Let π : X → P1 be a standard fibration, and let

θ : P1
→ P1

be a (possibly ramified) finite cover of degree d. We define πθ : Xθ → P1 to be the normalisation of the
fibre product of θ and π . Then we have the following properties.

(a) πθ : Xθ → P1 is a standard fibration.

(b) The orbifold multiplicities m P ′ for πθ satisfy

m P ′ ⩾
m P

e(P ′/P)

for any prime divisor P ′ of P1, where P = θ(P ′). We have equality precisely when condition (iii) in
Definition 4.2 is satisfied at P ′.
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(c) We have

deg(KP1,∂πθ
) ⩾ d deg(KP1,∂π

),

with equality precisely when θ is a finite étale orbifold morphism.

Proof. (a) This is clear from the definition.

(b) Consider a component Z ′ of the fibre of πθ over a prime divisor P ′ of P1. Suppose that Z ′ lies over
Z ⊆ X and P ′ lies over P . Let m P ′(Z ′) and m P(Z) denote the multiplicities of these components in their
respective fibres. We wish to apply Proposition 4.3 with C1 → C being the morphism θ : P1

→ P1 and
C2 → C being the morphism π : X → P1. Then V → C1 is the morphism πθ : Xθ → P1. It follows that

e(Z ′/P ′) =
e(Z/P)

gcd(e(Z/P), e(P ′/P))
.

Hence, since the ramification indices over a codimension-1 point are precisely the multiplicities of the
different components of the fibre, we obtain

m P ′(Z ′) =
m P(Z)

gcd(m P(Z), e(P ′/P))
.

Since m P(Z) ⩾ m P and gcd(m P(Z), e(P ′/P)) ⩽ e(P ′/P), we conclude

m P ′(Z ′) ⩾ m P/e(P ′/P)

for all components Z ′ in the fibre over P ′.
Clearly, if m P ′ = m P/e(P ′/P), we have e(P ′/P) | m P . Now suppose that e(P ′/P) | m P . To prove

the statement we must show that there is a component Z ′ over P ′ with m P(Z ′) = m P/e(P ′/P). By the
definition of m P , there exists a component Z over P with m P = m P(Z). Now let Z ′ be any component
over P ′ which lies over P . Then

m P ′(Z ′) =
m P(Z)

gcd(m P(Z), e(P ′/P))
=

m P

gcd(m P , e(P ′/P))
=

m P

e(P ′/P)
.

This concludes the proof of part (b).

(c) We will prove the result for orbifolds equipped with a degree-d morphism (C ′, ∂ ′) → (C, ∂) for
general smooth curves C and C ′, in order to distinguish between the two copies of P1. The statement is
invariant under base change, so we can assume we are working over an algebraically closed field k = k̄.
We begin by noting that

deg KC,∂ = 2g(C) − 2 +

∑
P∈C (1)

(
1 −

1
m P

)
and

deg KC ′,∂ ′ = 2g(C ′) − 2 +

∑
P ′∈C ′(1)

(
1 −

1
m P ′

)
.
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The Riemann–Hurwitz formula yields

2g(C ′) − 2 = d(2g(C) − 2) +

∑
P ′∈C ′(1)

(e(P ′/P) − 1),

where P = θ(P ′). Hence

deg KC ′,∂ ′ = d(2g(C) − 2) +

∑
P ′∈C ′(1)

(
e(P ′/P) −

1
m P ′

)
.

It now follows that

deg KC ′,∂ ′ − d deg KC,∂ =

∑
P ′∈C ′(1)

(
e(P ′/P) −

1
m P ′

)
− d

∑
P∈C (1)

(
1 −

1
m P

)
=

∑
P∈C (1)

[(∑
P ′ | P

e(P ′/P) − d
)

+

(
d

m P
−

∑
P ′ | P

1
m P ′

)]
.

Using
∑

P ′ | P e(P ′/P) = d , we see that the first terms all vanish and so

deg KC ′,∂ ′ − d deg KC,∂ =

∑
P∈C (1)

∑
P ′ | P

(
e(P ′/P)

m P
−

1
m P ′

)
.

This is clearly nonnegative by (b), and we have equality if and only if condition (iii) of Definition 4.2 is
satisfied at all P ′. □

In the setting of this result, it follows that the points in Nloc(π, B) that are counted by Nloc(πθ , Hθ , B)

are expected to contribute at most to the same order of B, where Hθ is the pullback height along θ . Indeed,
in Conjecture 1.1, we have

Nloc(πθ , Hθ , B) = Oε((B1/d)
deg(−K

P1,∂πθ
)+ε

)

for any ε>0, where we use B1/d since Hθ is an O(d)-height on P1. Hence, in the light of Proposition 4.7 (c),
we should expect no higher-order contribution from Nloc(πθ , Hθ , B) to Nloc(π, B). Moreover, we should
obtain the same exponent of B when θ is a finite étale orbifold morphism.

We are now ready to address the possible power of log B. Let π : X → P1 be a standard fibration, and
suppose that θ : P1

→ P1 is a G-torsor of orbifolds under a finite étale group scheme G of degree d, as
presented in Definition 4.5. We write θv : Cv → P1 for the twists of θ by v ∈ H1(Gal(Q/Q), G). Finally,
we shall write πv : Xv → Cv for the normalisation of the pullback of π along θv , which is a torsor under
the inner twists Gv of G [Skorobogatov 2001, p. 20]. We usually restrict to the v for which Cv(Q) ̸= ∅
and identify Cv

∼= P1. For our applications, G will be abelian and we will have Gv
∼= G.

We are now ready to compare the counting function N ◦

loc(π, B) with the counting functions

N ◦

loc(πv, Hv, B)

for various v ∈ H1(Gal(Q/Q), G), where Hv is the pullback height along θv. (Note that this is an
O(d)-height on the domain Cv

∼= P1 of θv when Cv(Q) ̸= ∅.)
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Proposition 4.8. In the setting above we have the following:

(a) A point x ∈ P1(Q) is counted by N ◦

loc(π, B) if and only if there exists v ∈ H1(Gal(Q/Q), G) and
y ∈ Cv(Q) such that θv(y) = x and such that y is counted by N ◦

loc(πv, Hv, B).

(b) We have

N ◦

loc(π, B) =

∑
v∈H1(Gal(Q/Q),G)

1
#Gv(Q)

N ◦

loc(πv, Hv, B).

(c) Let θ−1
v (D)=

⋃
1⩽i⩽sD

E (i)
v be a decomposition into irreducible components, and write N (i)

v = κ(E (i)
v )

for their function fields. Then

1(πv) =

∑
D∈(P1)(1)

sD∑
i=1

(1 − δD,N (i)
D,v

(π)),

where δD,N (i)
D,v

is given by (1-5).

(d) The expression 1(πv) only assumes finitely many values.

Proof. (a) Let U ⊆ P1 be the image of the étale locus of θ . The restrictions θv : Uv → U are Gv-torsors,
and so we have a partition

U (Q) =

⊔
v∈H1(Gal(Q/Q),G)

θv(Uv(Q)).

Furthermore, the fibre of πv over y ∈ Uv(Q) is isomorphic to the fibre of π over x = θv(y). Hence one of
these fibres is locally soluble precisely when the other is. Finally, since θ : P1

→ P1 has degree d, the
pullback of the O(1)-height pulls back to an O(d)-height.

(b) This follows from the partition in (a) and the fact that each fibre has #Gv(Q) points.

(c) This directly follows from the definition of δD,N and πv.

(d) This follows from Proposition 1.4. □

In the setting of Theorem 1.3, we consider µd -covers parametrised by Q×/Q×,d . The following result
therefore follows from part (c) of Proposition 4.8.

Corollary 4.9. We have 1(πv) = 2v(π) in (1-9).

In principle there might be infinitely many twists πv for which 1(πv) differs from the expected
exponent 1(π) defined in (1-7). The following example illustrates an instance where the points counted
by the covers for which 1(πv) = 1(π) can form a nontrivial cothin set in P1(Q).

Example 4.10. Consider the fibration π : X → P1 with three double fibres over 0, −1 and ∞, together
with precisely one other nonsplit fibre over 1 which has multiplicity 1 and is split by a quadratic extension
K/Q. Let Cv be the conic

v1x2
1 + v2x2

2 = x2
0



2068 Tim Browning, Julian Lyczak and Arne Smeets

in P2 defined by v = (v1, v2) ∈ Q×/Q×,2
×Q×/Q×,2. We apply the partition in part (b) of Proposition 4.8

with the full family of twists

θv : Cv → P1, [x0 : x1 : x2] 7→ [v1x2
0 : v2x2

1 ].

This is the finest partition in the sense of Remark 4.4 since we have πorb
1 (P1, ∂π ) = Z/2Z×Z/2Z and any

θv is geometrically a universal orbifold cover. Consider the fibres θ−1
v (1) as v varies, which on algebras

are biquadratic étale Q-algebras
∏

i N (i)
1,v. Infinitely many of these contain the splitting field K of the

fibre, and for such v we have

1 − δ1,Q < 1 = 1 − δ1,N (α)
1,v

(π) <
∑

i

(1 − δ1,N (i)
1,v

(π)),

where α is such that K ⊆ N (α)
1,v . However, each of these infinitely many (Z/2Z × Z/2Z)-covers factors

through only two Z/2Z-covers. Hence the set of points counted through the v for which

1 − δ1,Q ̸=

∑
i

(1 − δ1,N (i)
1,v

(π))

is a thin set. In the case of a nontrivial Galois action on the components of the multiple fibres, we will
need to deal with them in a similar manner to conclude that the points counted in the covers θv for
1(πv) ̸= 1(π) form a thin set.

5. A sparsity criterion

In this section we derive a sparsity condition for the fibres of a morphism f : X → Y to have a Qp-point
under geometric conditions on X , Y and f . After fixing a model f : X → Y over ZS away from finitely
many primes S, and after possibly enlarging S for p ̸∈ S and t̃ ∈ Y (Fp), we will give an exact criterion
for which lifts t ∈ Y (Zp) of t̃ we can lift an Fp-point on the Fp-scheme Xt̃ to a Zp-point on Xt .

The exact criterion, Theorem 5.5, is based on a version of Hensel’s lemma which takes into account
the intersection multiplicities of a component of a fibre of f with the point in Xt(Zp), and the lifting
is done in such a way that these required relations are preserved at each step. In order to include this
information naturally, we use a logarithmic structure. For a basic introduction to log geometry with a
view towards arithmetic applications, the reader is referred to [Loughran et al. 2020, §5].

5.1. Logarithmic lifting in families. Let k be a number field. Let X and Y be smooth, proper varieties
over k, and let D and E be strict normal crossing divisors on X and Y , respectively, where f −1(E) ⊆ D.
Assume that the induced morphism f : (X, D) → (Y, E) is a toroidal morphism, i.e., a toroidal morphism
between toroidal embeddings, or equivalently, a log smooth morphism of (Zariski) log regular schemes.
Fix Q ∈ Y (k). We want to understand when f −1(Q) is everywhere locally soluble.

Let S be a finite set of places including all places of bad reduction for f . This means that we have a
good model f̄ : (X , D) → (Y , E ) for f over Ok,S with the property that f̄ −1(E ) ⊆ D such that (X , D)

and (Y , E ) are still log regular, and such that f̄ is still log smooth with respect to the divisorial log
structures induced by D and E .
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Let v /∈ S be a finite place of k. Let Qv ∈ Y (Ov) be the unique lift of Q ∈ Y (k) to an Ov-point. We will
give necessary and sufficient conditions for the existence of an Ov-point Pv on X such that f (P)v = Qv

for v ≫ 0.
If Qv ̸⊆ E , then the Ov-point Qv can be seen as a morphism

Qv : (Spec Ov)
†
→ (Y , E )

of log schemes, where (Spec Ov)
† is the scheme Spec Ov equipped with the divisorial log structure induced

by the closed point. This morphism induces a morphism of associated Kato fans

F(Qv) : Spec N ∼= F((Spec Ov)
†) → F(Y , E ).

In other words, we get an N-valued point F(Qv) ∈ F(Y , E )(N).
If Qv is the image of Pv ∈ X (Ov), then clearly F(Qv) cannot lie anywhere in F(Y , E )(N); it needs

to be an element of the potentially smaller set

image(F(X , D)(N) → F(Y , E )(N)).

This means that if F(Qv) does not lie in the image of F(X , D)(N), then surely Qv cannot lift to an
Ov-point on X . This is a sparsity criterion in the sense of [Loughran and Smeets 2016, §2] but still a
rather naive one, since it does not take important arithmetic information into account.

Definition 5.1. Let Pv be an Fp-point on X . With the notation above, we define F(X , D)(N)Pv
as the

subset of F(X , D)(N) with the property that Pv lies in the logarithmic stratum associated to the image
of the closed point N>0 of Spec N.

Proposition 5.2. With notation as above, let Pv be an Fp-point on XQv
, and assume that F(Qv) does

not lie in

image(F(X , D)(N)Pv
→ F(Y , E )(N)).

Then Pv ∈ XQv
(Fp) does not lift to Pv ∈ XQv

(Ov).

Proof. Assume that Pv lifts; i.e., Qv = f̄ (Pv) for some Pv ∈ X (Ov) with Pv = Pv mod v (which
is the image of Spec Fv under Pv). Therefore the image of F(Pv) ∈ F(X , D)(N) under the map
F(X , D)(N) → F(Y , E )(N) comes from F(X , D)(N)Pv

, as desired. □

Remark 5.3. In fact, the above sparsity condition can often be phrased in a more classical way. Let
π : X → P1 be a standard fibration, and suppose we have a projective model π : X → P1

OS
with X

smooth over OS . Let h ∈ OS[x, y] be an irreducible binary form; in practice we will only need to consider
the finitely many h for which the fibre of π over V (h) ⊆ P1 is nonsplit. After possibly enlarging S, we
may argue as follows. Suppose that we have a point Qv in the fibre XPv

over a point Pv ∈ P1(Ov) for
v ̸∈ S. Let Zi be the geometrically irreducible components of XV (h) which contain Qv ∈ XPv

. Then we
may conclude that v(h(Pv)) lies in the positive linear span of the multiplicities mi of Zi . Indeed, in the
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local ring of Qv, we have the factorisation π∗h =
∏

i hmi
i . Hence

v(h(Pv)) = v(π∗h(Qv)) =

∑
miv(hi (Qv)).

Moreover, since we are only considering the components containing Qv , we clearly have v(hi (Qv)) > 0
for each i . In this way one can use Proposition 5.2 to give a sparsity criterion for general fibrations that
generalises [Loughran and Smeets 2016, Theorem 2.8] after excluding a subscheme of codimension at
least 2 on the base.

We are considering the log smooth setting since then we can provide a converse result to Proposition 5.2
using the logarithmic Hensel lemma [Loughran et al. 2020, Proposition 5.13].

Proposition 5.4. If Pv is an Fv-point on XQv
, the following are equivalent:

(a) Pv lifts to an Ov-point on XQv
;

(b) F(Qv) ∈ image(F(X , D)(N)Pv
→ F(Y , E )(N)).

Proof. Since we have already shown that (a) implies (b), it remains to prove the reverse implication. This
is an application of [Loughran et al. 2020, Proposition 5.13]. Indeed, let s†

= Spec Fv , with the standard
log structure of rank 1, and S†

= Spec Ov. Let j : s†
→ S† be the canonical closed immersion.

By assumption there is an element pv ∈ F(X , D)(N)Pv
which maps to F(Qv) ∈ F(Y , E )(N), and

there is an Fv-point u : Spec Fv → X on the associated stratum of (X , D). We can uniquely make u into
a morphism of log schemes s†

→ (X , D) such that F(u) = pv under the identification F(N) = F(s†),
similar to the proof of Proposition 6.1 in [Loughran et al. 2020].

Since F( f ) maps F(u) to F(Qv), we have a commutative diagram

s†

S†

(X , D)

(Y , E )

u

Qv

j f̄

Now [Loughran et al. 2020, Proposition 5.13] provides a lift S†
→ (X , D) of Qv. The morphism of

schemes which underlies this lift is the Ov-point Pv we are looking for. □

5.2. Sparsity criteria. Using Proposition 5.4, we can give precise conditions for locally solubility. We
allow ourselves to work over a general number field k/Q and so define a standard fibration to be a
dominant morphism π : X → P1 with geometrically integral generic fibre such that X is a smooth, proper,
geometrically irreducible k-variety.

Let E be the reduced divisor of P1 of the nonsplit fibres of π . Let D be the reduced divisor underlying
π−1(E). By embedded resolutions of singularities, there exists a birational morphism X ′

→ X such that
the pullback D′ of D has strict normal crossings. Since X \ D ∼= X ′

\ D′ over P1, we see that Nloc(π
′, B)

differs by a constant from Nloc(π, B), where π ′
: X ′

→ X → Y is the composition. Thus, for the purposes
of upper and lower bounds, we can assume without loss of generality that the reduced subschemes of the
nonsplit fibres of π have strict normal crossings.
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Theorem 5.5. Let X → P1 be a standard fibration whose nonsplit fibres in their reduced subscheme
structure are sncd. There exists a finite set of primes S and a model X → P1

OS
such that the following

holds for v /∈ S. Fix a point Q ∈ P1(OS) for which the fibre X Q is split. Then any Fv-point Pv ∈ XQ(Fv)

lifts to a point Pv ∈ XQ(Ov) precisely if , for every closed point V (h) ∈ (P1)(1), we have that v(h(Q))

lies in the positive linear span of the multiplicities mi of the components of XV (h) that contain Pv.

From now on, when we have fixed a place v ̸∈ S, we will assume that a closed point V (h) ∈ (P1)(1) is
given by an Ov-primitive irreducible form h ∈ Ov[x, y].

Note that the last condition in Theorem 5.5 is trivially satisfied for all closed points V (h) for which
v(h(Q)) = 0 and also for those for which XV (h) is split. By restricting S further, we can assume that
there is at most one nonsplit fibre XV (h) for which we have to check this condition.

Proof of Theorem 5.5. By the definition of D on X and E on P1, we see that (X, D) → (P1, E) is log
smooth. For a suitable finite set of primes S, this extends to OS-schemes and divisors such that D ⊆ X

and E ⊆ P1
OS

still have strict normal crossings and (X , D) → (P1
OS

, E ) is also log smooth. We will check
that this model satisfies the condition.

Consider Pv ∈ XQ(Fv), and let V (h) ⊆ P1
OS

be the unique nonsplit fibre containing Qv = π(Pv).
Suppose that we can write v(h(Q)) =

∑
i ai mi , with ai > 0 integers and mi the multiplicities of the r

components of Xv(h) which contain Pv . Around Pv and Qv the Kato fans have affine charts Nr and N.
Under this identification, we have F(Qv) = v(h(Q)) ∈ N, and F(X , D)(N) → F(P1

OS
, E )(N) is given

by (ui ) 7→
∑

mi ui . Hence the result follows from Proposition 5.4. □

Remark 5.6. In [Loughran and Smeets 2016, §2] the following was proven: if v(h(Q)) = 1, then XQ is
a regular scheme. This implies that any Fv-point on XQ which lies on the intersection of at least two
components of the reduction XQ,v does not lift to a Qv-point on XQ. This last statement directly follows
from our criterion above since then the valuation v(h(Q)) = 1 cannot possibly lie in the positive linear
span of two positive integers.

The above conditions make it easy to check if an Fv-point lifts. However, one cannot deduce the
existence of Fv-points purely from valuations and multiplicities, as explained by Loughran and Matthiesen
[2024, Lemma 6.2]. In general, this only allows us to give necessary conditions for local solubility.

Corollary 5.7. Let X → P1 be a standard fibration, and let Q ∈ P1(k). There exists a finite set of places S
such that, for each v ̸∈ S with X Q(kv) ̸= ∅, the following condition is satisfied: for every closed point
D = V (h) ∈ (P1)(1), we have either v(h(Q)) > m D , or v(h(Q)) = m D and v belongs to

TD = {v /∈ S : Frobv fixes an element of SD}.

(Recall that SD is the set of geometric components of X D of minimum multiplicity m D .)

In the special case that the nonsplit fibres all lie above k-rational points in P1, we can (after possibly
extending the set S again) make this even more precise, as follows.
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Corollary 5.8. Let X → P1 be a standard fibration, and let Q ∈ P1(k). Assume that the nonsplit fibres
of X → P1 all lie above k-rational points. Then X Q(kv) ̸= ∅ precisely if , for every V (h) ∈ (P1)(1), the
fibre XV (h) has a stratum fixed by Frobv which lies on the intersection of components of multiplicity mi

such that v(h(Q)) lies in the positive linear span of the mi .

Proof. We will start with S and X → P1
OS

as above. By the results above we have that Pv ∈ X Q(kv)

reduces to an Fv-point on X . Since this Fv-points lifts we get the result.
For the inverse implication we will need to enlarge S, as follows. Firstly we do so to assume that all

fibres of X \ D → P1
OS

\ E are geometrically integral. Consider an Fv-point on P1
OS

\ E for v ̸∈ S. Its
fibre in X lies in the open stratum X \ D and contains a smooth Fv-point by Lang–Weil. Now let W be
a geometric component of a nonopen stratum of (X, D), which is defined over k ′/k. The closure W of
W will have geometrically irreducible fibres over all but finitely many places of k ′. Hence after enlarging
S we see that W has an Fv′-point for all v′

| v for v ̸∈ S. Since there are only finitely many strata and each
has again finitely many geometric components, we can enlarge S to make this true for all possible W .

Suppose now that Frobv fixes a geometric component W of a stratum which has k ′/k as its field of
definition. Consider the multiplicities mi of the components that contain W . Since Frobv fixes W , we
conclude that there is a place v′

| v of k ′ of residue degree 1. For this v′, we see that W contains an
Fv′ = Fv-point. We can lift this point under the conditions in Theorem 5.5. □

6. Multiple fibres via the large sieve

We place ourselves in the setting of Theorems 1.2 and 1.3. Let π : X → P1 be a standard fibration with
orbifold divisor

∂π =

(
1 −

1
m0

)
[0] +

(
1 −

1
m∞

)
[∞],

in the notation of (1-4) for m0, m∞ ∈N. Note that 2−deg ∂π =1/m0+1/m∞. We define d =gcd(m0, m∞).
We shall apply the theory from Section 4 to the family of µd -torsors

θv : P1
→ P1, [x0 : x1] → [v0xd

0 : v1xd
1 ],

which are parametrised by v = v1/v0 ∈ Q×/Q×,d
= H1(Gal(Q/Q), µd). Let πv : Xv → P1 be the

normalisation of the pullback of π along θv.
The main result of this section is the following, which pertains to the density of locally soluble fibres

on the standard fibration πv : Xv → P1 relative to the pullback height Hv along θv. We denote by
rad(n) =

∏
p |n p the square-free radical of any n ∈ N.

Proposition 6.1. Let ε > 0, and let v = v1/v0 ∈ Q×/Q×,d . Then

Nloc(πv, Hv, B) ≪ε cv,ε B1/m0+1/m∞,

where

cv,ε =
|v0v1|

ε

rad(v0)|v0|1/m0 rad(v1)|v1|1/m∞

. (6-1)
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Furthermore, if |v0v1| ⩽ Bε, then

Nloc(πv, Hv, B) ≪ε cv,ε

B1/m0+1/m∞

(log B)2v(π)
,

where 2v(π) is given by (1-9).

We shall begin the proof of this result in Section 6.2. Our argument is based on the large sieve, which
is recalled in Section 6.1. Taking the result on faith for the moment, we proceed to show how it can be
used to establish Theorems 1.2 and 1.3.

Remark 6.2. Proposition 6.1 is consistent with Conjecture 1.5 for a fixed choice of v ∈ Q×/Q×,d . Indeed,
we have Hv(x) = H(x)d , where H(x) is an O(1)-height on P1. It follows that

Nloc(πv, B) = Nloc(πv, H, B) = Nloc(πv, Hv, Bd) ≪v

Bd/m0+d/m∞

(log B)2v(π)
.

The orbifold base of πv is (Xv, ∂πv
), with

∂πv
=

(
1 −

d
m0

)
[0] +

(
1 −

d
m∞

)
[∞]

by part (b) of Proposition 4.7. It follows from (4-1) and part (c) of Proposition 4.7 that

d
m0

+
d

m∞

= −d deg Kπ,∂π
= 2 − deg ∂πv

.

Moreover, 2v(π) = 1(πv) by part (c) of Proposition 4.8.

Proof of Theorem 1.2. In this case there is only one multiple fibre above 0, and so m∞ = 1 and d = 1.
Thus H1(Gal(Q/Q), µd) is the trivial group, and it follows directly from Proposition 6.1 that

Nloc(π, B) ≪
B1/m0+1

(log B)21(π)
.

We have already seen that 1/m0 + 1 = 2 − deg ∂π . Moreover, we saw that 21(π) = 1(π) in (1-11). □

Proof of Theorem 1.3. We appeal to the decomposition in part (b) of Proposition 4.8. This gives

Nloc(π, B) ≪

∑
v=v1/v0∈Q×/Q×,d

Nloc(πv, Hv, B).

For any δ > 0, we clearly have∑
n>x

1
rad(n)nδ

<

∞∑
n=1

(n/x)δ/2

rad(n)nδ
= x−δ/2

∏
p

(
1 +

∞∑
k=1

1
p1+kδ/2

)
≪δ x−δ/2.

Let ε > 0. In the light of the latter bound, it follows from the first part of Proposition 6.1 that there
exists δ(ε) > 0 such that the terms with |v0v1| > Bε make an overall contribution Oε(B1/m0+1/m∞−δ(ε))

to Nloc(π, B). For the terms with |v0v1| ⩽ Bε, we apply the second part of Proposition 6.1.
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This easily leads to the conclusion that

Nloc(π, B) ≪ε B1/m0+1/m∞−δ(ε)
+

∑
|v0v1|⩽Bε

cv,ε

B1/m0+1/m∞

(log B)2v(π)
≪ε

B1/m0+1/m∞

(log B)2(π)
,

where 2(π) is given by (1-10). The statement of the theorem follows, since we have already remarked
that 1/m0 + 1/m∞ = 2 − deg ∂π . □

6.1. The large sieve. We begin by stating the version of the large sieve that we shall use in this paper.

Lemma 6.3. Let m ∈ N, let B0, B1 ⩾ 1 and let � ⊆ Z2. For each prime p, assume that there exists
ω̄(p) ∈ [0, 1) such that the reduction modulo pm of � has cardinality at most (1 − ω̄(p))p2m . Then

#{x ∈ � : |xi | ⩽ Bi for i = 0, 1} ≪
(B0 + Q2m)(B1 + Q2m)

L(Q)

for any Q ⩾ 1, where

L(Q) =

∑
q⩽Q

µ2(q)
∏
p |q

ω̄(p)

1 − ω̄(p)
.

Proof. When m = 1, this is a straightforward rephrasing of the multidimensional large sieve worked out
in [Kowalski 2008, Theorem 4.1]. The extension to m > 1 is routine and will not be explained here. □

6.2. Preliminary steps. Recall that d = gcd(m0, m∞). Henceforth, we usually write v = (v0, v1) ∈ Z2
prim

for the point v = v1/v0 ∈ Q×/Q×,d . We may clearly proceed under the assumption that v0 and v1 are
both free of d-th powers.

Let S be a large enough finite set of primes, as required for the arguments in Section 5 to go through.
Suppose that E1, . . . , Er ∈ (P1)(1) are the closed points distinct from 0 and ∞, where πv is not smooth.
For each 1 ⩽ j ⩽ r , assume that E j = V (h j ) for a square-free binary form h j ∈ ZS[x0, x1]. We may
further assume that h j is irreducible over Q and coprime to the monomial x0x1, and that the coefficients
of h j are relatively coprime.

We proceed by defining the sets

T0 = {p /∈ S : Frobp fixes an element of S0},

T∞ = {p /∈ S : Frobp fixes an element of S∞},

U j = {p /∈ S : Frobp fixes an element of SE j }

for 1⩽ j ⩽ r . The fibre Xv,y of the fibration πv : Xv → P1 has a Qp-point precisely if Xπv(y) does, and thus
we can apply the sparsity conditions in Corollary 5.7. This yields the upper bound Nloc(πv, B) ⩽ Mv(B),
where Mv(B) is defined to be the number of y = (y0, y1) ∈ Z2 such that gcd(v0 y0, v1 y1) = 1 and
max{|v0 yd

0 |, |v1 yd
1 |} ⩽ B, with

p ̸∈ S ⇒


[vp(x0) = m0 and p ∈ T0] or vp(x0) > m0,

[vp(x1) = m∞ and p ∈ T∞] or vp(x1) > m∞,

p∥h j (x) ⇒ p ∈ U j ,
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where (x0, x1) = (v0 yd
0 , v1 yd

1 ). We write v0 = a0w
′

0 and y0 = b0z0, where w′

0z0 is coprime to all the
primes in S and p | a0b0 ⇒ p ∈ S. Let p ̸∈ S. Then vp(w

′

0zd
0) = m0 if and only if vp(w

′

0) = 0 and
vp(z0) = m0/d , since w′

0 is free of d-th powers. Similarly, if vp(w
′

0zd
0) > m0, then either vp(z0) > m0/d ,

or vp(z0) = m0/d and p | w′

0. This suggests that we may write

v0 = a0w0, y0 = b0sm0/d
0 tm0/d

0 u0,

where

• p | a0b0 ⇒ p ∈ S;

• p | s0w0u0 ⇒ p ̸∈ S;

• s0 and t0 are square-free;

• p | w0 ⇒ p | s0;

• p | t0 ⇒ p ∈ T0; and

• u0 is (m0/d + 1)-full.

Similarly, we have a factorisation

v1 = a1w1, y1 = b1sm∞/d
1 tm∞/d

1 u1,

where

• p | a1b1 ⇒ p ∈ S;

• p | s1w1u1 ⇒ p ̸∈ S;

• s1 and t1 are square-free;

• p | w1 ⇒ p | s1;

• p | t1 ⇒ p ∈ T∞; and

• u1 is (m∞/d + 1)-full.

There are Oε(|v0v1|
ε) choices for ai , si , wi ∈ Z for i = 0, 1 by the standard estimate for the divisor

function. We fix a choice of b0, b1, u0, u1 and write

A0 = a0bd
0 sm0

0 ud
0w0 and A1 = a1bd

1 sm∞

1 ud
1w1. (6-2)

Note that we have gcd(A0, A1) = 1. Moreover, let

R0 =

(
B

|A0|

)1/m0

, R1 =

(
B

|A1|

)1/m∞

,

and

g j (t) = h j (A0tm0
0 , A1tm∞

1 ) for 1 ⩽ j ⩽ r . (6-3)
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The binary form g j (t0, t1) is square-free and coprime to the monomial t0t1 since h j (t0, t1) satisfies these
properties. For a (possibly infinite) set T of primes, let

1T (n) =

{
1 if p | n ⇒ p ∈ T ,
0 otherwise.

In what follows, we will also write T c to denote the complement of T in the full set of primes.
Then, with all this notation in mind, we have

Mv(B) ≪

∑
v0=a0w0

∑
v1=a1w1

∑
b0,b1

p |b0b1⇒p∈S

∑
u0,u1∈Z

L(R0, R1),

where

L(R0, R1) =

∑
(t0,t1)∈Z2

|t0|⩽R0,|t1|⩽R1

µ2(t0t1)1T0(t0)1T∞
(t1)

r∏
j=1

1♯
U j

(t0, t1) (6-4)

and where

1♯
U j

(t0, t1) =

{
1 if p∥g j (t) ⇒ p ∈ U j ,

0 otherwise.

The trivial bound for L(R0, R1) is

L(R0, R1) ≪
B1/m0+1/m∞

|A0|1/m0 |A1|1/m∞

≪
B1/m0+1/m∞

|s0||v0|1/m0 |s1||v1|1/m∞ |b0u0|d/m0 |b1u1|d/m∞

by (6-2). Clearly
|si | ≫ rad(vi ) for i = 0, 1 (6-5)

for a suitable implied constant depending only on S. Note that∑
|b0|>J

p |b0⇒p∈S

|b0|
−d/m0 ≪

1
J d/m0

for any J ⩾ 1. Similarly, ∑
|u0|>J

u0 is (m0/d+1)-full

|u0|
−d/m0 ≪

1
J d2/(m0(m0+d))

.

Let ε > 0. In what follows it will be convenient to recall the notation (6-1) for cv,ε in the statement
of Proposition 6.1. It now follows that the overall contribution to Mv(B) from parameters b0, u0 in the
range min(|b0|, |u0|) > Bε or parameters b1, u1 in the range min(|b1|, |u1|) > Bε is clearly

≪ε cv,ε B1/m0+1/m∞−ε/(m2
0m2

∞)

since we have seen that there are Oε(|v0v1|
ε) choices for ai , si , wi ∈ Z associated to a particular choice

of v. Thus we deduce that

Mv(B) ≪ε

∑
v0=a0w0

∑
v1=a0w1

∑
|b0|,|b1|⩽Bε

p |b0b1⇒p∈S

∑
|u0|,|u1|⩽Bε

L(R0, R1) + cv,ε B1/m0+1/m∞−ε/(m2
0m2

∞). (6-6)
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6.3. Application of the large sieve. We shall now apply Lemma 6.3 to estimate (6-4), which we shall
apply with m = 2. Let � ⊆ Z2 be the set of vectors t ∈ N2 such that 1T0(t0)1T∞

(t1) = 1 and for which
p ∈ U j whenever there exists an index j such that p∥g j (t). For any prime p ̸∈ S, let

A0(p) = {t ∈ (Z/p2Z)2
: p | t0 and p /∈ T0}

and
A∞(p) = {t ∈ (Z/p2Z)2

: p | t1 and p /∈ T∞}.

Similarly, let
B j (p) = {t ∈ (Z/p2Z)2

: p∥g j (t) and p /∈ U j }

for 1 ⩽ j ⩽ r . Then #� mod p2 ⩽ (1 − ω̄(p))p4, where

ω̄(p) =
#(A0(p) ∪ A∞(p) ∪ B1(p) ∪ · · · ∪ Br (p))

p4 .

In particular, we have ω̄(p) ∈ [0, 1). The following result is concerned with estimating this quantity.

Lemma 6.4. Let p ̸∈ S, and let d = gcd(m0, m∞). Then

ω̄(p) =
1T c

0
(p)

p
+

1T c
∞
(p)

p
+

r∑
j=1

1U c
j
(p)ν j (p; v)

p2 + O
(

gcd(p, A0 A1)

p2

)
,

where
ν j (p; v) = #{t ∈ F2

p : h j (v0td
0 , v1td

1 ) = 0}.

Proof. Recall that gcd(A0, A1) = 1, that g j (t0, t1) is defined in (6-3), and that g j (t0, t1) is square-free
and coprime to the monomial t0t1. If p | A0 A1, we take the trivial upper bound

#(A0(p) ∪ A∞(p) ∪ B1(p) ∪ · · · ∪ Br (p)) = O(p3),

whence ω̄(p) = O(1/p), which is satisfactory.
Suppose henceforth that p ∤A0 A1. We proceed by noting that the intersection of any two sets in the

union A0(p) ∪ A∞(p) ∪ B1(p) ∪ · · · ∪ Br (p) contains O(p2) elements of (Z/p2Z)2. Thus

ω̄(p) =
1T c

0
(p)

p
+

1T c
∞
(p)

p
+

r∑
j=1

#B j (p)

p4 + O
(

1
p2

)
.

Turning to #B j (p) for j ∈ {1, . . . , r}, we write u = x + p y for x, y ∈ F2
p. Thus

#{t ∈ (Z/p2Z)2
: p2

| g j (t)} =

∑
x∈F2

p
g j (x)=0

#{ y ∈ F2
p : y.∇g j (x) = −g j (x)/p}.

On enlarging S, we can assume that ∇g j (x) ̸= 0 for any x in the sum. Thus each of the O(p) values
of x produces O(p) choices of y, giving

#{t ∈ (Z/p2Z)2
: p2

| g j (t)} = O(p2).
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Hence

#B j (p) = 1U c
j
(p)p2 #{t ∈ F2

p : g j (t) = 0} + O(p2).

Putting this together, we have shown that

ω̄(p) =
1T c

0
(p)

p
+

1T c
∞
(p)

p
+

r∑
j=1

1U c
j
(p)λ j (p; A0, A1)

p2 + O
(

1
p2

)
,

where

λ j (p; A0, A1) = #{t ∈ F2
p : h j (A0tm0

0 , A1tm∞

1 ) = 0}

for 1 ⩽ j ⩽ r . In order to complete the proof of the lemma, it will suffice to prove that

λ j (p; A0, A1) = ν j (p; v) + O(1) (6-7)

for 1 ⩽ j ⩽ r , in the notation of the lemma.
To see this, let e be the least common multiple of m0 and m∞, so that e = m0m∞/d. We pick a

generator α ∈ F∗
p of F∗

p/(F
∗
p)

e. Then it is easily confirmed that

⟨αde/m0⟩ = (F∗

p)
d/(F∗

p)
m0 and ⟨αde/m∞⟩ = (F∗

p)
d/(F∗

p)
m∞

on noting that (F∗
p)

m0 and (F∗
p)

m∞ are subgroups of (F∗
p)

d . (Indeed, to check the first equality, for
example, it suffices to confirm that αde/m0 has order m0/d in F∗

p.) The group (F∗
p)

d/(F∗
p)

m0 has order
N0 = gcd(m0, p −1) and, likewise, (F∗

p)
d/(F∗

p)
m∞ has order N∞ = gcd(m∞, p −1). It follows from this

that any nonzero d-th power in Fp can be represented as um0αedk/m0 for some k ∈ Z/N0Z, and such a
representation is unique up to multiplication of u by one of the m0-th roots of unity in Fp, of which there
are N0.

Similarly, we can represent any nonzero d-th power in Fp as um∞αedℓ/m∞ for some ℓ ∈ Z/N∞Z in
exactly N∞ ways.

We will use this to partition the counting function ν j and remember to divide by N0 N∞ when collecting
the parts. Define

λ j (p; A0, A1; k, ℓ) = #{t ∈ F2
p : h j (A0tm0

0 αedk/m0, A1tm∞

1 αedℓ/m∞) = 0}

for any k ∈ Z/N0Z and ℓ ∈ Z/N∞Z. Let β = α−edk/m0−edℓ/m∞ . On multiplying through by βdeg(h j ) and
recalling that h j is homogeneous, we obtain

λ j (p; A0, A1; k, ℓ) = #{t ∈ F2
p : h j (A0tm0

0 αedk/m0β, A1tm∞

1 αedℓ/m∞β) = 0}

= #{t ∈ F2
p : h j (A0tm0

0 α−edℓ/m∞, A1tm∞

1 α−edk/m0) = 0}.

But ed/m∞ = m0 and ed/m0 = m∞. Hence a simple change of variables yields

λ j (p; A0, A1; k, ℓ) = λ j (p; A0, A1; 0, 0). (6-8)
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Let ν∗

j (p; A0, A1) denote the contribution to ν j (p; A0, A1) from t0t1 ̸= 0, and also similarly for
λ∗

j (p; A0, A1; k, ℓ). Then we may write

ν j (p; A0, A1) = ν∗

j (p; A0, A1) + O(1)

=
1

N0 N∞

∑
k∈Z/N0Z

∑
ℓ∈Z/N∞Z

λ∗

j (p; A0, A1; k, ℓ)+ O(1)

= λ∗

j (p; A0, A1; 0, 0) + O(1)

by (6-8). Noting that λ∗

j (p; A0, A1; 0, 0) = λ j (p; A0, A1) + O(1), we have therefore shown that

λ j (p; A0, A1) = ν j (p; A0, A1) + O(1).

At this point we recall the factorisation (6-2) together with the fact that vi = ai siwi for i = 0, 1. Hence,
since p ∤A0 A1, a simple change of variables shows that

ν j (p; A0, A1) = #{t ∈ F2
p : h j (v0(b0sm0/d

0 t0)d , v1(b1sm∞/d
1 t1)d) = 0} = ν j (p; v),

from which the claim (6-7) follows. □

We will need to study the average size of ω̄(p) as p varies. We break this into the following results.

Lemma 6.5. We have ∑
p⩽x
p ̸∈T0

1
p

= (1 − δ0,Q(π)) log log x + O(1)

and ∑
p⩽x

p ̸∈T∞

1
p

= (1 − δ∞,Q(π)) log log x + O(1)

in the notation of (1-5).

Proof. This is a straightforward consequence of the Chebotarev density theorem in the form presented in
[Serre 2012, Theorem 3.4], for example. □

Our next result concerns the average behaviour of the function ν j (p; v) in Lemma 6.4, as we average
over primes p /∈ U j . This is more difficult and requires the use of notation introduced at the start of
Section 2.2, which we recall here. For a number field F/Q, let PF denote the set of primes p ∈ Z that
are unramified in F and for which there exists a prime ideal p | poF of residue degree 1. For any positive
integer m ⩽ [F : Q], we write PF,m for the subset of p ∈ PF for which there are precisely m prime
ideals above p of residue degree 1.

For each j ∈ {1, . . . , r}, define the étale algebra

NE j ,d,v1/v0 = Q[x]/(r j (x)),

where r j (x) = h j (xd , v1/v0). As in (1-8), this has a factorisation into number fields

NE j ,d,v1/v0 = N (1)
× · · · × N (s),

where N (k)
= N (k)

E j ,d,v for 1 ⩽ k ⩽ s, where the dependency of s on j is suppressed for legibility.
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Lemma 6.6. For each j ∈ {1, . . . , r}, we have∑
p⩽x
p ̸∈U j

ν j (p; v)

p2 =

s∑
k=1

(1 − δD,N (k)(π)) log log x + O(1 + ω(v0v1))

in the notation of (1-5), where ω(n) denotes the number of distinct prime factors of n ∈ Z.

Proof. We have ∑
p⩽x
p ̸∈U j

ν j (p; v)

p2 =

∑
p⩽x
p ̸∈U j
p ∤v0v1

ν j (p; v)

p2 +

∑
p⩽x
p ̸∈U j
p |v0v1

ν j (p; v)

p2 .

Since gcd(v0, v1) = 1, the second term is seen to be

≪

∑
p⩽x

p |v0v1

1
p

≪ ω(v0v1).

Next, we see that ∑
p⩽x
p ̸∈U j
p ∤v0v1

ν j (p; v)

p2 =

∑
p⩽x
p ̸∈U j
p ∤v0v1

#{t ∈ Fp : h j (td , v1/v0) = 0}

p
+ O(1).

Write r j (t) = h j (td , v1/v0), and let r j (t) = r (1)
j (t) · · · r (s)

j (t) be its factorisation into irreducible factors
over Q. Then N (k) is the number field Q[t]/(r (k)

j ) for 1 ⩽ k ⩽ s. We have

∑
p⩽x
p ̸∈U j
p ∤v0v1

ν j (p; v)

p2 =

s∑
k=1

∑
p⩽x
p ̸∈U j
p ∤v0v1

#{t ∈ Fp : r (k)
j (t) = 0}

p
+ O(1).

To begin with, it follows from the prime ideal theorem that∑
p⩽x

#{t ∈ Fp : r (k)
j (t) = 0}

p
= log log x + O(1 + ω(v0v1)).

Next, we note that p ∈ U j if and only if Frobp fixes a component of SE j . Let F j denote the set of
fields of definition of the elements of SE j . Then, for any p ̸∈ S, the condition p ∈ U j is equivalent to
the condition p ∈ PF j :=

⋃
F∈F j

PF . Likewise, for any positive integer m ⩽ [N (k)
: Q], we will have

#{t ∈ Fp : r (k)
j (t) = 0} = m if and only if p ∈ PN (k),m . Hence

∑
p⩽x
p ̸∈U j

ν j (p; v)

p2 =

s∑
k=1

(
log log x −

[N (k)
:Q]∑

m=1

m
∑
p⩽x

p∈PN (k),m∩PF j

1
p

)
+ O(1 + ω(v0v1)).

The remaining sum over primes is susceptible to a further application of the Chebotarev density theorem.
Once coupled with Theorem 2.3 and (2-1), this leads to the statement of the lemma. □
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We may combine the previous two results to produce a lower bound for the quantity L(Q) in Lemma 6.3,
with the choice of ω̄(p) from Lemma 6.4.

Lemma 6.7. For any ε > 0, we have the lower bound

L(Q) ≫ε

(log Q)2v(π)

|A0 A1|ε
,

where 2v(π) is given by (1-9).

Proof. Since 1 − ω̄(p) ⩽ 1, we have

L(Q) ⩾
∑
q⩽Q

µ2(q)
∏
p |q

ω̄(p).

There are many results in the literature concerning mean values of nonnegative arithmetic functions.
However, we can get by with the relatively crude lower bound found in [Friedlander and Iwaniec 2010,
Theorem A.3], which is based on an application of Rankin’s trick. Let γ : N → R⩾0 be a multiplicative
arithmetic function that is supported on square-free integers and which satisfies∑

y<p⩽x

γ (p) log p ⩽ a log(x/y) + b (6-9)

for any x > y > 2 for appropriate constants a, b > 0. Then it follows from [Friedlander and Iwaniec 2010,
Theorem A.3] that ∑

n⩽x

γ (n) ≫

∏
p⩽x

(1 + γ (p)), (6-10)

where the implied constant is allowed to depend on a and b. We seek to apply this with

γ (n) = µ2(n)
∏
p |n

ω̄(p).

It is clear from Lemma 6.4 that ω̄(p) = O(1/p). Hence∑
y<p⩽x

γ (p) log p ≪ 1 +

∑
y<p⩽x

log p
p

≪ 1 + log(x/y)

uniformly in v0 and v1. Hence (6-9) holds for a, b = O(1), and it follows from (6-10) that

L(Q) ≫

∏
p⩽Q

(1 + ω̄(p))

for an absolute implied constant. On appealing once more to Lemma 6.4, we find that

log
( ∏

p⩽Q

(1 + ω̄(p))

)
=

∑
p⩽Q
p/∈T0

1
p

+

∑
p⩽Q
p/∈T∞

1
p

+

r∑
j=1

∑
p⩽Q
p/∈U j

ν j (p; v)

p2 + O(1 + ω(A0 A1)).

These sums are estimated using Lemmas 6.5 and 6.6, leading to the conclusion that

log
( ∏

p⩽Q

(1 + ω̄(p))

)
= 2̃(π, v1/v0) log log Q + O(1 + ω(A0 A1)),
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where

2̃(π, v1/v0) = 2 − δ0,Q(π) − δ∞,Q(π) +

r∑
j=1

s∑
k=1

(1 − δE j ,N (k)
E j ,d,v1/v0

(π))

in the notation of (1-5). Clearly 2̃(π, v1/v0) = 2v(π), the latter being defined in (1-9). Hence the
statement of the lemma follows on exponentiating and using the fact that ω(n) ≪ log |n|/ log log |n| for
any nonzero n ∈ Z. □

6.4. Completion of the proof of Proposition 6.1. We begin by focussing on the estimation of the quantity
L(R0, R1) that was defined in (6-4). In view of (6-2), we see that

A0 = v0(b0sm0/d
0 u0)

d and A1 = v1(b1sm∞/d
1 u1)

d .

Recall that si | vi for i = 0, 1. Taking Q = Bε, we note that

Rm0
0 =

B
|A0|

⩾
B

|v0(s0b0u0)m0 |
⩾ B1−(1+3m0)ε ⩾ Q4m0,

provided that ε ⩽ 1/(1+7m0). Similarly, we can assume that R1 ⩾ Q4 if ε > 0 is chosen to be sufficiently
small. Hence, with these choices, we have

(R0 + Q4)(R1 + Q4) ≪ R0 R1 ≪
B1/m1+1/m∞

|A0|1/m0 |A1|1/m∞

.

We may now apply Lemma 6.7 in Lemma 6.3 to deduce that

L(R0, R1) ≪ε

B1/m0+1/m∞

|A0|1/m0 |A1|1/m∞

·
|A0 A1|

ε

(log B)2v(π)
.

Substituting into (6-6), recalling (6-5) and summing over b0, b1, u0, u1, the statement of Proposition 6.1
easily follows.

7. Examples: lower bounds and asymptotics

Let π : X → P1 be a standard fibration. It is clear from the constructions in Section 5 that we are only
able to interpret local solubility conditions outside a finite set of places of S which depends on π . This
set S should contain a set of places for which Corollary 5.8 holds, and such a set can be determined
explicitly. With more work one might be able to incorporate local solubility at places in S, but this should
not change the order of growth, which is the main interest in this paper. Accordingly, for any finite set S
of primes, we introduce the counting function

Nloc,S(π, B) = #{x ∈ P1(Q) ∩ π(X (AS
Q)) : H(x) ⩽ B},

where H is the usual height function on P1(Q) and AS
Q

is the set of adèles away from S. We clearly
have Nloc,S(π, B) ⩾ Nloc(π, B), and we expect these two counting functions to have the same order of
magnitude.
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We shall prove several results about Halphen surfaces. Let m > 1 be an integer. A Halphen pencil is a
geometrically irreducible pencil of plane curves of degree 3m with multiplicity m at nine base points
P1, . . . , P9. We let X be the Halphen surface of order m obtained by blowing up P2 at these nine points,
as introduced in [Halphen 1882]. We shall assume that P1, . . . , P9 are globally defined over Q, so that X
is a smooth, proper, geometrically integral surface defined over Q. In fact, X is a rational elliptic surface
and we obtain a standard morphism π : X → P1 such that there exists a unique fibre of multiplicity m. In
particular, π does not admit a section.

7.1. Lower bounds. In this section we establish an array of lower bounds for Nloc,S(π, B). The following
result demonstrates that Conjecture 1.5 would be false with the exponent 1(π) and that it is indeed
sometimes necessary to take a smaller exponent.

Theorem 7.1. Let π : X → P1 be a standard fibration. Assume it only has nonsplit fibres above 0,
1 and ∞, comprising geometrically irreducible double fibres over 0 and ∞, and a nonsplit fibre of
multiplicity 1 above 1 that is split by a quadratic extension. Then there is a finite set of places S such that

B ≪ Nloc,S(π, B) ≪ B.

Proof. Suppose that F = Q(
√

d) is the quadratic extension that splits the fibre above 1 for square-free
d ∈ Z. Then it is clear that

0 ⩽ 2(π) = min
K/Q quadratic

(1 − δ1,K (π)) ⩽ 1 − δ1,F (π) = 0.

Hence the upper bound is a direct consequence of Theorem 1.3.
For the lower bound, we compose the exact counting problem using Corollary 5.8. Thus there exists a

finite set of places S, containing the prime divisors of 2d , such that

Nloc,S(π, B) =
1
2

#
{
(a, b) ∈ Z2

prim :
|a|, |b| ⩽ B, p /∈ S ⇒ [2 | vp(a) and 2 | vp(b)],

[p /∈ S and p | a − b] ⇒ p ∈ PF

}
.

The lower bound is provided by taking pairs (a, b) of the form (u2, dv2). □

In this result we have 2 − deg ∂π = 1, so that the exponent of B matches the predicted exponent of B
in Conjectures 1.1 and 1.5. We also have

δ0,Q(π) = δ∞,Q(π) = 1 and δ1,Q(π) =
1
2 ,

so that 1(π) =
1
2 . However, we saw in the proof that 2(π) = 0. Thus Theorem 7.1 is in agreement with

Conjecture 1.5.
Let us describe what is going on geometrically. Consider the finite étale orbifold µ2-cover θv : P1

→ P1

given by (x : y) 7→ (x2
: vy2) and the pullback fibrations πv : Xv → P1 obtained from normalisation of the

pullback of π along θv . By Proposition 4.7, we see that the two double fibres of π pull back to components
of multiplicity 1 on πv. Also, all fibres which do not lie over 1 in the composition Xv

πv
−→ P1 θv

−→ P1 are
split. We proceed by studying the fibres over 1.
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First we study the fibre of 1 in θv. For v ∈ Q×/Q×,2, we have θ−1(1) = Spec A, where A is the
degree-2 étale algebra Q(

√
v) if v /∈ Q×,2 and Q × Q for v ∈ Q×,2. This gives

1(πv) =

∑
D′ | D

(1 − δD′(πv)) =


0 if v ≡ d,
1
2 +

1
2 = 1 if v ≡ 1,

1
2 otherwise,

where the sum ranges over all points D′ lying above D = 1 ∈ (P1)(1). In the first case, the fibre over 1
(which is split by F) pulls back to an F-point and becomes split. In the second case, the fibre pulls back
to two Q-points. In the last case, the fibre is irreducible and its residue field is linearly disjoint from the
splitting field, and we obtain 1(πv) = 1(π), in general.

Theorem 7.1 indicates that the main contribution to the point count comes from the single cover πd .
If we were to exclude the thin set of points coming from this cover, we are left with infinitely many
covers πv, with 1(πv) = 1(π) for v ̸= 1. Proposition 4.7 (b) implies that the covers have no multiple
fibres, since it gives

m P ′ =
m P

gcd(m P , e(P ′/P))
=

2
gcd(2, 2)

= 1

for each P ′
| 0, ∞. Hence, in the light of the original Loughran–Smeets conjecture [2016, Conjecture 1.6],

we expect the remaining covers to contribute order B/
√

log B to the counting function, apart from the
cover corresponding to 1, which should contribute order B/ log B.

Our second lower bound deals with the case of precisely two nonsplit fibres and is consistent with
Conjecture 1.5 since deg ∂π = 2 − 1/m0 − 1/m∞.

Theorem 7.2. Let π : X → P1 be a standard fibration for which the only nonsplit fibres lie over 0 and ∞.
Then there is a finite set of places S such that

Nloc,S(π, B) ≫
B1/m0+1/m∞

(log B)1(π)
.

Proof. We begin by using Corollary 5.8 to give explicit conditions for local solubility away from S after
passing to an sncd model X ′

→ P1. This leads to the conclusion that Nloc,S(π, B) is equal to the number
of x = (x0 : x1) ∈ P1(Q) with H(x) ⩽ B such that, for each i ∈ {0, 1} and every p ̸∈ S, Frobp fixes a
collection of intersecting components Z j of X ′

Di
such that vp(xi ) ∈ ⟨m(Z j )⟩N, where Di = V (xi ). The

following is clearly a sufficient condition for the fibre over x to have a Qp-point: for all i , the Frobenius
Frobp fixes a component of Z of minimal multiplicity in X ′

Di
and m(Z) | vp(xi ). The density ∂i of rational

primes p for which Frobp fixes an element of SDi is equal to δDi (π)= δDi ,κ(Di )(π) in the notation of (1-5).
Hence the statement of the theorem now follows from Proposition 3.1 and (1-7). □

7.2. Halphen surfaces with one nonsplit fibre. Generically, a Halphen surface has no other nonsplit
fibres apart from the multiple one. Even in these cases the counting problem still depends on the Galois
action on the components of the multiple fibres and how these components intersect. We record some
results which illustrate this phenomenon; it will be convenient to keep in mind the notation (3-1).
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We begin with the following result, which agrees with Conjecture 1.5 since deg ∂π = 1 − 1/m and
1(π) = 0.

Theorem 7.3. Let X → P1 be a Halphen surface with a single nonsplit fibre over 0, that is the fibre of
multiplicity m. Suppose that this fibre has a geometric component fixed by Gal(Q/Q). Then there exists a
finite set S such that

Nloc,S(π, B) ∼ cπ,S B1+1/m,

where

cπ,S =
2cS

(
1 +

1
m

)
ζ(2)cS

( 1
m

) ∏
p∈S

(
1 +

1
p

)−1
.

Proof. By Corollary 5.8, we see that there is a finite set of places S such that

Nloc,S(π, B) =
1
2 #{(a, b) ∈ Z2

prim : |a|, |b| ⩽ B, p /∈ S ⇒ m | vp(a)}.

We may apply Proposition 3.1 with m0 = m and m1 = 1, and with P0 = P1 equal to the full set of
rational primes. In particular ∂0 = ∂1 = 1, and it follows that Nloc,S(π, B) ∼ cπ,S B1+1/m as B → ∞,
where

cπ,S =
2cS

(
1 +

1
m

)
cS(1)cS

( 1
m

) ∏
p ̸∈S

(
1 −

1
p2

) ∏
p∈S

(
1 −

1
p

)2

in the notation of (3-1). The statement easily follows on simplifying the expression for the constant. □

The following two results agree with Conjecture 1.5 since in both cases we have deg ∂π = 1−1/m and
1(π) =

2
3 . Moreover, in these two examples, we have multiple fibres which do not have a geometrically

integral component. This demonstrates the need to define (1-5) in terms of SD for each divisor D, which
allows us to work with the Galois action on the components of a fibre of minimum multiplicity.

Theorem 7.4. Let X → P1 be a Halphen surface with a single nonsplit fibre over 0, that is the fibre of
multiplicity m. Suppose that this fibre consists of three conjugate lines split by a cubic Galois extension
K/Q that do not all meet in a point. Then there exists a finite set S such that

Nloc,S(π, B) ∼ cπ,S
B1+1/m

(log B)2/3 ,

where

cπ,S =
2m2/3cS(1)1/3cS

(
1 +

1
m

)
0

( 1
3

)
cS

( 1
m

) ∏
p∈PK

p ̸∈S

(
1 +

1
p

)(
1 −

1
p

)1/3 ∏
p ̸∈PK

p ̸∈S

(
1 −

1
p

)1/3
.

Proof. Suppose that the three conjugate lines are split by the cubic Galois extension K/Q. By Corollary 5.8,
we see that there is a finite set of places S such that Nloc,S(π, B) is equal to

1
2 #{(a, b) ∈ Z2

prim : |a|, |b| ⩽ B, [p /∈ S and p | a] ⇒ [m | vp(a) and p ∈ PK ]},
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where PK is the set of rational primes p that are unramified in K and split completely. We may apply
Proposition 3.1 with m0 = m and m1 = 1, and with P0 = PK and P1 equal to the full set of rational
primes. In particular, ∂0 =

1
3 and ∂1 = 1. It follows that

Nloc,S(π, B) ∼ cπ,S
B1+1/m

(log B)2/3 ,

where

cπ,S =
2m2/3

0
( 1

3

) ·
cS

(
1 +

1
m

)
cS

( 1
m

) ∏
p∈PK

p ̸∈S

(
1 −

1
p2

) ∏
p∈PK ∩S

(
1 −

1
p

) ∏
p∈PK

(
1 −

1
p

)−2/3 ∏
p ̸∈PK

(
1 −

1
p

)1/3
.

The statement of the proposition follows on simplifying this expression. □

The next result agrees with Conjecture 1.5 since

deg ∂π = 1 −
1
m

and 1(π) =
2
3
.

Theorem 7.5. Let X → P1 be a Halphen surface with a single nonsplit fibre over 0, that is the fibre of
multiplicity m. Suppose that this fibre consists of three conjugate lines split by a cubic Galois extension
K/Q that do meet in a point. Then there exists a finite set S such that

B1+1/m

(log B)2/3 ≪ Nloc,S(π, B) ≪
B1+1/m

(log B)2/3 .

Proof. The upper bound follows from Theorem 1.2. The lower bound was proven in Theorem 7.2. □

Theorem 7.5 illustrates the need for the nonsplit fibres to be sncd; the counting problem for this setting
will be

[p /∈ S and p | a] ⇒ [(3m | vp(a)) or (m | vp(a) and p ∈ PK )].

The condition 3m | vp(a) comes from a Galois fixed component of multiplicity 3m on the multiple fibre
of the sncd-model of X . However, no such component exists on the multiple fibre of X itself.

7.3. Halphen surfaces with two nonsplit fibres. In practice, it can be difficult to construct Halphen
surfaces with more than one nonsplit fibre. We present two such examples, both of which verify
Conjecture 1.5.

Theorem 7.6. There exists a Halphen surface X → P1 of degree 2 with two nonsplit fibres: the multiple
fibre is geometrically irreducible and has multiplicity 2, and the other is an sncd divisor of Kodaira
classification I6 split by a cubic Galois extension K/Q. Moreover, there exists a finite set of places S, and
an explicit constant cπ,S > 0 such that

Nloc,S(π, B) ∼ cπ,S
B1+1/2

(log B)2/3 .
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Proof. Let us first fix the cyclic cubic number field K/Q. Now choose two sets of three conjugate points
Pi , Qi ∈ P2(K ), indexed by i ∈ Z/3Z. We let Ri be the intersecting point of the lines Pi+1 Pi+2 and
Qi+1 Qi+2. For generic choices of Pi and Qi , the Ri are well-defined and there is a unique smooth cubic
through the nine points Pi , Qi and Ri .

We will consider X = BlPi ,Qi ,Ri P2. The two nonsplit fibres of X come from the double cubic passing
through these nine points, and the sextic curve which is geometrically the union of the six lines Pi+1 Pi+2

and Qi+1 Qi+2. Under blowup the first curve turns into a geometrically integral fibre of multiplicity 2,
and the other into six lines meeting in a cycle. The three lines P1 P2, P2 P3 and P3 P1 are permuted by
Gal(K/Q) and no longer meet on X . For a generic choice of Pi and Qi , there will be no other nonsplit
fibres.

Let us assume the multiple fibre lies above 0 and the other nonsplit fibre over ∞. The fibres of X → P1

are all sncd, so we can directly compose the counting problem to find that

Nloc,S(π, B) =
1
2 #{(a, b) ∈ Z2

prim : |a|, |b| ⩽ B, p /∈ S ⇒ 2 | vp(a), [p /∈ S and p | b] ⇒ p ∈ PK }.

Such a counting problem is dealt with by Proposition 3.1. □

Theorem 7.7. There exists a Halphen surface X → P1 of degree 3 with two nonsplit fibres: the multiple
fibre is geometrically irreducible and has multiplicity 3, and the other is a non-sncd divisor of Kodaira
classification I3 split by a cubic Galois extension K/Q. Moreover, there exists a finite set of places S such
that

B1+1/3

(log B)2/3 ≪ Nloc,S(π, B) ≪
B1+1/3

(log B)2/3 .

We will return to this surface in Section 7.4 to create another interesting example. There we will
assume that the multiple fibre lies over 0 and the remaining nonsplit fibre lies over ∞.

Proof of Theorem 7.7. Let E/Q be an elliptic curve with E(Q)tors = Z/9Z. Let K/Q be a cyclic cubic
number field K/Q such that rank E(Q) < rank E(K ). We will fix

(i) a generator σ ∈ Gal(K/Q),

(ii) a generator A ∈ E(Q)tors,

(iii) B ∈ E(K ) \ E(Q) such that B + σ(B) + σ 2(B) = O ∈ E(Q), and any

(iv) C ∈ E(K ) \ E(Q).

With this notation in mind, consider the nine points

Pi = σ i (C),

Qi = σ i (−2C + B + A),

Ri = σ i (C − 3A).

For general choices, we find that BlPi ,Qi ,Ri P2 is a Halphen surface of degree 3. In particular, there is
a smooth cubic through the nine points, which becomes the geometrically irreducible triple fibre on X .
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Moreover, we have ∑
i

(Pi + Qi + Ri ) − Pj + R j = O,

so that there is a cubic curve which passes through all nine points except Pj and has a singularity at R j .
The union of these three curves becomes the nonsplit I3-fibre split by K .

For the lower bound we may apply Theorem 7.2, and the upper bound follows from Theorem 1.2. □

7.4. A nonsplit fibre over a point of higher degree. Our final result concerns a surface of Halphen type
with a fibration over P1 that has one multiple fibre and a nonsplit fibre over a degree-2 point. Our local
solubility criteria do not apply to this case in general, but we are nonetheless able to deduce explicit
criteria.

Consider the Halphen surface π : X → P1 from Theorem 7.7 with m = 3, with a multiple fibre over 0
and a nonsplit fibre over ∞ split by a Galois cubic extension K/Q. Let π ′

: X ′
→ P1 be the normalisation

of the pullback of π along the morphism θ : P1
→ P1 given by [u : v] 7→ [u2

: u2
+v2

]. We claim that the
surface X ′ has a unique multiple fibre over u = 0, whose multiplicity is 3, and that the only other nonsplit
fibre lies over the degree-2 point u2

+ v2
= 0 and is split by K . To see this we note that the fibres of the

pullback of X are precisely the fibres of X ′, and normalisation only changes the fibres over 0 and ∞.
The multiplicities of the new fibres can then be computed using Proposition 4.3. Note that ∂π ′ =

2
3 [0] and

1(π ′) = 1 − δu2+v2(π ′) =
2
3 . We shall now prove the following result, which is easily seen to agree with

the prediction in Conjecture 1.5.

Theorem 7.8. For the surface π ′
: X ′

→ P1 as above, there exists a finite set S such that

B4/3

(log B)2/3 ≪ Nloc,S(π
′, B) ≪

B4/3

(log B)2/3 .

Proof. The upper bound follows directly from Theorem 1.2. To prove the lower bound, we note that,
for all but finitely many points x ∈ P1(Q), the fibre of X ′

→ P1 is isomorphic to the fibre of X → P1

over θ(x) ∈ P1(Q). Hence we can apply the criterion in Corollary 5.8 to determine local solubility for X .
Noting that vp(u2) is divisible by 3 precisely if this is true for vp(u), we find that Nloc,S(π

′, B) is

1
2

#
{
(u, v) ∈ Z2

prim :
|u|, |v| ⩽ B, p /∈ S ⇒ 3 | vp(u),

[p /∈ S and p | u2
+ v2

] ⇒ p ∈ PK

}
+ O(1).

On restricting to positive coprime u and v and demanding that u is a cube, we arrive at the lower bound

Nloc,S(π
′, B) ⩾ 1

2 M(B) + O(1),

where
M(B) = #{(u, v) ∈ Z2

prim : 0 ⩽ u3, v ⩽ B, p | u6
+ v2

⇒ p ∈ PK }.

Note that u3, v ⩽ B whenever u6
+ v2 ⩽ B2. Hence

M(B) ⩾ #{(u, v) ∈ Z2
⩾0 : gcd(u, v) = 1, u6

+ v2 ⩽ B2, p | u6
+ v2

⇒ p ∈ PK }.
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The right-hand side is exactly the quantity estimated via the β-sieve in [Friedlander and Iwaniec 2010,
Theorem 11.31], with the outcome that

M(B) ≫

(
B2

log(B2)

)2/3

.

The statement of the theorem now follows. □
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