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Sym-Noetherianity for powers of GL-varieties
Christopher H. Chiu, Alessandro Danelon,

Jan Draisma, Rob H. Eggermont and Azhar Farooq

Much recent literature concerns finiteness properties of infinite-dimensional algebraic varieties equipped
with an action of the infinite symmetric group, or of the infinite general linear group. In this paper, we
study a common generalisation in which the product of both groups acts on infinite-dimensional spaces,
and we show that these spaces are topologically Noetherian with respect to this action.

1. Introduction

1.1. Sym-Noetherianity and GL-Noetherianity. It has been well-established since the 1980s that if Z is
finite-dimensional variety, then the topological space ZN, equipped with the inverse-limit topology of the
Zariski topologies, has the property that if

X1 ⊇ X2 ⊇ X3 ⊇ · · ·

is a descending chain of closed subvarieties, each stable under the infinite symmetric group Sym =⋃
n Sym([n]) permuting the copies of Z , then Xn = Xn+1 for all n ≫ 0. We say that ZN is Sym-

Noetherian; see [Cohen 1967; 1987; Aschenbrenner and Hillar 2007; Hillar and Sullivant 2012] for the
relevant literature.

On the other hand, the third author proved that if Z is a GL-variety: a (typically infinite-dimensional)
affine variety equipped with a suitable action of the infinite general linear group GL=

⋃
n GLn — see below

for precise definitions — then Z is topologically GL-Noetherian. See [Draisma 2019] for Noetherianity,
and see [Bik et al. 2023a; 2023b] for the structure theory of GL-varieties.

1.2. Our result: Sym × GL-Noetherianity. Given a GL-variety Z , the group Sym×GL acts naturally
on ZN, and our main goal in this paper is to prove the following theorem.
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Theorem 1.1 (main theorem). Let Z be a GL-variety over a field of characteristic zero. Then ZN is
topologically Sym×GL-Noetherian. In other words, every descending chain

X1 ⊇ X2 ⊇ · · ·

of Sym×GL-stable closed subvarieties of ZN stabilises eventually. Equivalently, any Sym×GL-stable
closed subvariety of ZN is defined by finitely many Sym×GL-orbits of polynomial equations.

Below we give two examples of Sym×GL-varieties; these illustrate that even when Z is a rather
simple GL-variety, ZN will have many Sym×GL-stable closed subvarieties.

Example 1.2. Consider the space of N × N-matrices where Sym permutes the rows, and GL acts
simultaneously on all rows. We can think about this space as ZN, where Z is the space AN with the
obvious GL-action. We write xi, j (i, j ∈N) for the coordinates on this space. Let X be a Sym×GL-stable
proper closed subvariety of this space. Let f be a nonzero polynomial vanishing identically on X involving
only the xi j with 1≤ i, j ≤ n, chosen such that n is minimal among all defining equations of X. We claim
that X is contained in the variety of matrices with rank at most n− 1. Indeed, suppose that a matrix A
in X has rank at least n. Then by basic linear algebra the Sym×GL-orbit of A projects dominantly in the
affine space An×n corresponding to the upper left n×n-block. This implies that f is the zero polynomial;
a contradiction.

Also, by the minimality of n, there must exist a matrix in X whose rank is n−1. However, it is not easy
to completely classify the Sym×GL-stable closed subvarieties of ZN containing a matrix of rank n−1 and
no matrices of rank n. For instance, fix any matroid M of rank n−1 on the ground set [m] := {1, . . . ,m}
and let R ⊆ Am×(n−1) be the variety defined by the determinants of the (n− 1)× (n− 1)-submatrices
whose rows correspond to nonbases of M. Regard R as a subvariety of AN×N by extending with zeros
and set X M := (Sym×GL)R. This Sym×GL-stable subvariety of AN×N is the common zero set of two
classes of polynomials: all monomials containing variables from at least m + 1 distinct rows, and the
Sym-orbits of all products of the form ∏

π∈Sym([m])
det(x[π(Iπ ), Jπ ]),

where each Iπ ⊆[m] is an (n−1)-element set that is not a basis of M, each Jπ is an arbitrary (n−1)-element
subset of N, and x[π(Iπ ), Jπ ] stands for the matrix of variables xi j with i ∈ π(Iπ ) and j ∈ Jπ .

Now suppose that M,M ′ are loopless matroids on ground sets [m], [m′], both realisable over the
algebraic closure of the ground field. We then claim that X M = X M holds (if and) only if M,M ′ are
isomorphic. Indeed, if X M = X M ′ , then let p ∈ Am×(n−1)

⊆ AN×N realise M, so that p ∈ X M = X M ′ .
This means that p satisfies all equations for X M ′ . Since M is loopless, all rows of p are nonzero, and the
monomial equations for X M ′ imply that m′ ≥m. The converse follows by taking a realisation of M ′. That
the determinantal equations for X M ′ vanish on p imply that, after a permutation, all nonbases of M ′ are also
nonbases of M. Again, the converse holds by taking a realisation of M ′. Hence M and M ′ are isomorphic.

We conclude that the considerable combinatorial complexity of the class of realisable matroids is
contained in the classification problem for Sym×GL-subvarieties of ZN.
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Remark 1.3. Already the classification of Sym-stable closed subvarieties of (A1)N is nontrivial [Nagpal
and Snowden 2020], so it is not so surprising that also the classification of Sym×GL-stable closed
subvarieties of ZN in Example 1.2 is difficult.

Example 1.4. Let Z be the space of symmetric N×N matrices, acted upon by GL via (g, A) 7→ g AgT.
It is not hard to classify the GL-stable closed subvarieties of Z : they are the empty set and the varieties
of matrices whose rank is bounded by some k ∈ {0, . . . ,∞}.

Now let X be a Sym×GL-stable proper closed subvariety of ZN, and let n be minimal such that there
exists a nonzero polynomial that vanishes on X and involves only coordinates on the first n copies of Z .
Then it follows from [Eggermont 2015, Proposition 3.3] that X is contained in the variety Xn,r of N-tuples
in which every n-tuple has a nontrivial linear combination whose rank is at most some integer r . However,
completely classifying all Sym×GL-stable closed subvarieties of Xn,r seems completely out of reach.

1.3. A generalisation: Symk
× GL-Noetherianity. We prove the main theorem by establishing first the

following more general result.

Theorem 1.5. Let Z1, . . . , Zk be GL-varieties over a field of characteristic zero. Then the variety
ZN

1 × · · ·× ZN
k is Symk

×GL-Noetherian.

Here there is one copy of GL that acts diagonally, and there are k copies of Sym that act on separate
copies of N. We believe it is impossible to prove the main theorem without considering multiple copies
of Sym. Indeed, covering a proper closed Sym×GL-stable subvariety of ZN requires partitioning N into
finitely many parts such that the points in Z labelled by the indices in one same part behave in a similar
fashion. The following example illustrates this point.

Example 1.6. Let Z be the space of N×N-matrices over a field of characteristic zero, equipped with the
GL-action given by (g, A) 7→ g AgT. Let X be the closed Sym×GL-stable subvariety of ZN consisting
of all infinite matrix tuples (A1, A2, . . .) such that each Ai is either symmetric or skew-symmetric. It is
easy to see that X is defined by the Sym×GL-orbit of the equation (x112+ x121)(x112− x121), where xi jk

is the ( j, k)-entry of the i-th matrix. We will see that the Sym×GL-Noetherianity of X follows from
the Sym2

×GL-Noetherianity of the “smaller” variety ZN
1 × ZN

2 , where Z1 ⊆ Z is the GL-subvariety
of symmetric matrices, and Z2 ⊆ Z is the GL-subvariety of skew-symmetric matrices. Here the term
“smaller” refers to the fact that both Z1 and Z2 are quotients of Z . The exact meaning of smaller varieties
is given in Section 2.7.2.

1.4. Relation to existing literature. The main theorem generalises the results mentioned in Section 1.1:
taking for Z a finite-dimensional affine variety with trivial GL-action, one recovers the Sym-Noetherianity
of ZN; and on the other hand, if Z is a GL-variety, then considering chains X1 ⊇ X2 ⊇ · · · in which
each X i is of the form ZN

i with Zi ⊆ Z a GL-subvariety, one recovers the GL-Noetherianity of Z .
The proof of the main theorem will reflect these two special cases. We will use the proof method from

[Draisma 2019] for the GL-Noetherianity of Z , and similarly, we will use methods for Sym-varieties from
[Draisma et al. 2022]. In fact, we do not explicitly use Higman’s lemma in our proofs as is classically
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done [Aschenbrenner and Hillar 2007; Hillar and Sullivant 2012; Draisma 2014], and in passing we give
a new proof of the Sym-Noetherianity of ZN for a finite-dimensional variety Z . However, our proof
only yields a set-theoretic Noetherianity result, while in the pure Sym-setting (much) stronger results are
known: increasing chains of Sym-stable ideals in the coordinate ring of ZN with Z a finite-dimensional
variety stabilise [Cohen 1967; 1987; Aschenbrenner and Hillar 2007; Hillar and Sullivant 2012], and
even finitely generated modules over such rings with a compatible Sym-action are Noetherian [Nagel and
Römer 2019]. In the pure GL-setting, however, such stronger Noetherianity results are known only for
very few classes of GL-varieties: over a field of characteristic zero ring-theoretic Noetherianity holds for
a direct sum of copies of the first symmetric power S1 [Sam and Snowden 2016; 2019], for the second
symmetric power S2, for

∧2 [Nagpal et al. 2016], for S1
⊕ S2 and for S1

⊕
∧2 [Sam and Snowden 2022].

Partitions of N into finitely many subsets also feature in the classification of symmetric subvarieties of
infinite affine space (A1)N [Nagpal and Snowden 2020], and while our proofs do not logically depend on
this classification, that paper did serve as an inspiration.

1.5. Organisation of this paper. This paper is organised as follows. In Sections 2.1 and 2.2 we introduce
polynomial functors and affine varieties over the categories Vec, FIop

×Vec and (FIop)k ×Vec. This
language happens to be more convenient than a purely infinite-dimensional approach, as shown in
Remark 2.9. In Section 2.3 we introduce the category PM with morphisms between (FIop)k × Vec-
varieties, in which, for the reasons explained in Example 1.6 and above it, k varies. In Section 2.4 we
describe (FIop)k ×Vec-varieties of product type. The simplest ones among these are of the form

Z : (V ; S1, . . . , Sk) 7→
k∏

i=1
Zi (V )Si ,

which are the ones of interest in our Theorems 1.1 and 1.5. Reformulations of our main theorem and its
generalisation Theorem 1.5 in this language are in Remark 2.19.

Our proofs rely on induction on the “complexity” of product-type (FIop)k ×Vec-varieties. The several
well-founded orders used in this induction are the topic of Section 2.7, which builds on FI-techniques
developed in Sections 2.5 and 2.6. We introduce orders on

(1) polynomial functors (Section 2.7.1),

(2) Vec-varieties with a specified closed embedding in B× Q where B is a finite-dimensional algebraic
variety and Q is a suitable polynomial functor (Section 2.7.2),

(3) (FIop)k ×Vec-varieties of product type in the category PM (Section 2.7.3),

(4) closed subvarieties of (FIop)k ×Vec-varieties of product type (Section 2.7.4).

Then in Section 3 we formulate and prove the parameterisation theorem, Theorem 3.1, the core technical
result of this paper. The statement roughly says that if X is a proper closed (FIop)k ×Vec-subvariety of
a variety Z of product type, then X is covered by finitely many morphisms in PM from (FIop)l ×Vec-
varieties of product form that are smaller than Z in the sense of Section 2.7.3. We prove this theorem by
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induction on closed subvarieties mentioned in (4). The description of these smaller (FIop)l×Vec-varieties
of product type relies on Proposition 3.3. This proposition allows to partition points according to their
common behaviour with respect to a specific defining equation, similarly to what happens in [Draisma
2019]. Indeed, our Lemma 3.8 is proven as an iteration of the argument for the embedding theorem in
[Bik et al. 2023b], which in turn uses a technique developed in [Draisma 2019]. Essential for applying
Proposition 3.3 is the operation of shifting over a tuple of finite sets, described in Section 2.6. In the final
Section 4 we use all the above to prove that all (FIop)k×Vec-varieties of product type are Noetherian via
an induction on their order of Section 2.7.3. Theorem 1.5 and the main theorem follow as corollaries.

1.6. Notation and conventions.

• For a nonnegative integer k, we set [k] := {1, . . . , k}; so in particular [0] =∅.

• Let S be a finite set. We denote by |S| the cardinality of S.

• Throughout this paper, we work over a field K of characteristic zero.

• Sym denotes the infinite symmetric group. It is defined as the direct limit over Sym(n), the symmetric
group on the set [n], with the obvious inclusion maps.

• GL denotes the infinite general linear group. It is defined as the direct limit of GLn , the general linear
group on K n, with inclusion maps GLn→ GLn+1 given by

g 7→
(

g 0
0 1

)
.

• The category of schemes over K is denoted by SchK . A product X ×Y of two schemes will always
mean a product in this category.

• A variety X here is a reduced affine scheme of finite type over K. By K [X ] we denote its coordinate
ring, so X = Spec K [X ]. If Y is a subvariety of X, then we write I(Y )⊆ K [X ] for the (radical) ideal of
functions on X vanishing on Y.

• If f ∈ K [X ] then we write X [1/ f ] := Spec(K [X ] f ).

• Let ϕ : X→ Y be a morphism of varieties. We denote by ϕ#
: K [Y ] → K [X ] the induced morphism

on coordinate rings.

• By a point x of a variety X we always mean a closed point of X, i.e., an element of X (K ).

2. The categories of (FIop)k × Vec-varieties

2.1. Vec-varieties. Let K be a field of characteristic zero, and let Vec be the category of finite-dimensional
vector spaces over K with K -linear morphisms. We will be working with Vec-varieties, a functorial
finite-dimensional counterpart of GL-varieties. Below, we quickly recap the theory of polynomial functors:
definitions, relevant properties; and we define the notion of Vec-variety. See Remark 2.6 for the connection
with GL-varieties.
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Definition 2.1. A polynomial functor is a functor P : Vec→ Vec such that for each U, V ∈ Vec the map
P : HomVec(U, V )→ HomVec(P(U ), P(V )) is polynomial, and such that the degree of this polynomial
map is upper-bounded independently of U, V. The minimal such bound is called the degree of P.

We will also regard a polynomial functor P as a functor Vec→SchK by composing with the embedding
Vec→SchK given by V 7→Spec(SymK (V

∗)), the spectrum of the symmetric algebra on the dual space V ∗

of V. Every polynomial functor P equals P0⊕ · · ·⊕ Pd , where d is the degree of P and Pi is defined as

Pi (V ) := {v ∈ P(V ) | ∀t ∈ K : P(t idV )v = t iv}.

Considering P as a functor Vec→ SchK we have P(V ) = P0(V )× · · · × Pd(V ). We note that P0 is
a constant polynomial functor, which assigns a fixed vector space P(0) ∈ Vec to all V ∈ Vec and the
identity map to each linear map. We call P pure if P0 = {0}.

Let X, Y : Vec→ SchK be functors. A closed immersion ι : X→ Y is a natural transformation such
that ι(V ) : X (V )→ Y (V ) is a closed immersion for all V ∈Vec. In particular, X is then a subfunctor of Y.

Definition 2.2. An affine Vec-scheme is a functor X : Vec→ SchK that admits a closed immersion
X → P with P : Vec→ SchK a polynomial functor. A Vec-variety is an affine Vec-scheme X such
that X (V ) is reduced for all V ∈ Vec. The category of affine Vec-schemes is the full subcategory of the
functor category SchVec

K whose objects are affine Vec-schemes.

Spelled out explicitly, a Vec-variety X can be described by the data of a polynomial functor P
and a subvariety X (V ) ⊆ P(V ) for each V ∈ Vec such that, for each ϕ ∈ HomVec(U, V ), the linear
map P(ϕ) maps X (U ) into X (V ). A morphism of Vec-varieties τ : X → Y consists of a morphism
of varieties τ(V ) : X (V )→ Y (V ) for each V ∈ Vec such that, for each ϕ ∈ HomVec(U, V ), we have
τ(V ) ◦ X (ϕ)= Y (ϕ) ◦ τ(U ).

Remark 2.3. The subcategory of Vec-varieties is closed under taking closed immersions and finite prod-
ucts. To see the latter, note that the product of X, Y :Vec→SchK in SchVec

K is given by V 7→ X (V )×Y (V );
and furthermore, given closed immersions X ↪→ P and Y ↪→ Q, the assignment

X (V )× Y (V )→ P(V )× Q(V )

defines a closed immersion of the product X × Y into the polynomial functor P ⊕ Q.

Lemma 2.4. The category of affine Vec-schemes admits fibre products.

Proof. First note that for morphisms of affine Vec-schemes X→ Y and Z→ Y the fibre product X ×Y Z
of X and Z over Y exists in the functor category SchVec

K and is given by

(X ×Y Z)(V ) := X (V )×Y (V ) Z(V ).

Moreover, since Y (V ) is affine (or more generally since Y (V ) is separated; see [Stacks, Tag 01KR]) the
natural morphism X (V )×Y (V ) Z(V )→ X (V )× Z(V ) is a closed immersion. The statement then follows
by Remark 2.3. □

https://stacks.math.columbia.edu/tag/01KR


Sym-Noetherianity for powers of GL-varieties 2097

The main result of [Draisma 2019] says that Vec-varieties are topologically Noetherian.

Theorem 2.5 [Draisma 2019, Theorem 1]. Let X be a Vec-variety. Then every descending chain of
Vec-subvarieties

X = X0 ⊇ X1 ⊇ X2 ⊇ · · ·

stabilises, that is, there exists N ≥ 0 such that for each n ≥ N we have Xn = Xn+1.

Remark 2.6. If X is a Vec-variety, then X∞ := lim←n X (K n) is a GL-variety in the sense of [Bik et al.
2023b]. This yields an equivalence of categories between Vec-varieties and GL-varieties. Most of our
reasoning will be in the former terminology, but could be rephrased in the latter.

2.2. (FIop)k × Vec-varieties. Let FI be the category of finite sets with injections.

Definition 2.7. Let k ∈ Z≥0. An (FIop)k × Vec-variety is a covariant functor X from (FIop)k to the
category of Vec-varieties.

Explicitly, an (FIop)k×Vec-variety is given by the following data: for any k-tuple (S1, . . . , Sk) we have
a Vec-variety X (S1, . . . , Sk), and for any k-tuple of injective maps ι= (ι1 : S1→ T1, . . . , ιk : Sk→ Tk),
we have a corresponding morphism X (ι) : X (T1, . . . , Tk)→ X (S1, . . . , Sk) of Vec-varieties and the usual
requirements that X (τ ◦ ι)= X (ι) ◦ X (τ ) and X (idS1, . . . , idSk )= idX (S1,...,Sk).

Again, there are natural notions of morphism and closed immersion of (FIop)k ×Vec-varieties, and we
call an (FIop)k ×Vec-variety Noetherian if every descending chain of closed (FIop)k ×Vec-subvarieties
stabilises.

Remark 2.8. In particular, any contravariant functor from FI to finite-dimensional affine varieties, i.e.,
an FIop-variety, is trivially an FIop

× Vec-variety. In this generality, FIop-varieties are certainly not
Noetherian; see [Hillar and Sullivant 2012, Example 3.8].

However, we will be largely concerned with (FIop)k×Vec-varieties defined as follows. Let Z1, . . . , Zk

be Vec-varieties, define
X (S1, . . . , Sk) := Z S1

1 × · · ·× Z Sk
k (1)

and for ι= (ι1, . . . , ιk) : (S1, . . . , Sk)→ (T1, . . . , Tk) define X (ι) as the product of the natural projections
Z Ti → Z Si associated to ιi . We will prove that (FIop)k×Vec-varieties of this form are, indeed, Noetherian.

Note that we may also regard a (FIop)k × Vec-variety as a functor (FIop)k × Vec → SchK . For
fixed k, the (FIop)k ×Vec-varieties thus form a category by considering it as the full subcategory in the
corresponding functor category.

Remark 2.9. If X is an (FIop)k ×Vec-variety, then the group Symk
×GL acts on the inverse limit

lim
←−−

n1,...,nk ,n
X ([n1], . . . , [nk])(K n).

This gives a functor from (FIop)k × Vec-varieties to (infinite-dimensional) schemes equipped with a
Symk

×GL-action. Unlike in Remark 2.6, this is not quite an equivalence of categories (even under
reasonable restrictions on the Symk

×GL-action). For example, X ([n1], . . . , [nk]) could be empty for
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large ni and a fixed nontrivial GL-variety for smaller ni . We will consider an explicit example of this
type later in Example 2.35. In that case, the inverse limit is empty but the (FIop)k ×Vec-variety is not
trivial. Our theorems will be formulated in the richer category of (FIop)k ×Vec-varieties.

2.3. Partition morphisms and the category PM. Suppose we are given a point p in some X (S1,...,Sk)(V ),
where X is as in (1). Then the components of p labelled by one of the finite sets Si may exhibit different
behaviours, which prompts us to further partition Si into subsets labelling components where the behaviour
is similar. See Example 1.6 for an instance of this phenomenon. In that case, p will be in the image of
some partition morphism; for Example 1.6 this is further explained in Example 2.15. Partition morphisms
are defined below, after another motivating example.

Example 2.10. We revisit a step in the classification of Sym-invariant subvarieties of infinite affine
space from [Nagpal and Snowden 2020]. We do so in the FI-framework, where this corresponds to
closed FIop-subvarieties of the FIop-variety X (S) := (A1)S

= AS, where, for an injection π : S→ T,
the map X (π) is the corresponding projection AT

→ AS. Let Z be a proper closed FIop-subvariety
of X. By (the FI-analogue of) [Nagpal and Snowden 2020, Proposition 2.6], the number of distinct
coordinates of points in Z(S) is bounded by some natural number l, independently of S. This means
that for every S ∈ FI, Z(S) is contained in the union over all partitions of S into subsets T1, . . . , Tl

of the morphism ϕ(T1, . . . , Tl) : A
l
→ X (S) that maps (p1, . . . , pl) to the tuple (qi )i∈S with qi = p j

for the unique j ∈ [l] with i ∈ S j . The morphisms ϕ(T1, . . . , Tl) for varying (T1, . . . , Tl) ∈ FIl form
a partition morphism into X from the constant (FIop)l-variety Y : (T1, . . . , Tl) 7→ Al, an object that is
arguably simpler than X. In the definition that follows, we generalise this notion to the setting where X is
an arbitrary (FIop)k ×Vec-variety.

Definition 2.11. Let X be an (FIop)k ×Vec-variety and let Y be an (FIop)l ×Vec-variety. A partition
morphism Y → X consists of

(1) a map π : [l] → [k]; and

(2) for each l-tuple of finite sets (T1, . . . , Tl) a morphism

ϕ(T1, . . . , Tl) : Y (T1, . . . , Tl)→ X
( ⊔

j∈π−1(1)
T j , . . . ,

⊔
j∈π−1(k)

T j

)
of Vec-varieties in such a manner that for any l-tuple ι= (ι j ) j ∈ HomFI(S j , T j )

l the following diagram
of Vec-variety morphisms commutes:

Y (T1, . . . , Tl)
ϕ(T1,...,Tl ) //

Y (ι1,...,ιl )

��

X
( ⊔

j∈π−1(1)
T j , . . . ,

⊔
j∈π−1(k)

T j

)
X
( ⊔

j∈π−1(1)

ι j ,...,
⊔

j∈π−1(k)

ι j

)
��

Y (S1, . . . , Sl)
ϕ(S1,...,Sl )

// X
( ⊔

j∈π−1(1)
S j , . . . ,

⊔
j∈π−1(k)

S j

)
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Remark 2.12. Note that if we take k = l and π = id[k], then a partition morphism is just a morphism of
(FIop)k ×Vec-varieties.

There is a natural way to compose partition morphisms: if (π, ϕ) is a partition morphism Y → X as
above and (ρ, ψ) is a partition morphism Z→Y , where Z is an (FIop)m×Vec-variety, then (π, ϕ)◦(ρ, ψ)
is the partition morphism given by the data π ◦ ρ : [m] → [k] and the morphisms

ϕ

( ⊔
n∈ρ−1(1)

Rn, . . . ,
⊔

n∈ρ−1(l)
Rn

)
◦ψ(R1, . . . ,Rm) :Z(R1, . . . ,Rm)→X

( ⊔
n∈(π◦ρ)−1(1)

Rn, . . . ,
⊔

n∈(π◦ρ)−1(k)
Rn

)
.

A tedious but straightforward computation shows that partition morphisms turn the class of (FIop)k×Vec-
varieties, with varying k, into a category. We call this category PM.

Definition 2.13. Let X be an (FIop)k×Vec-variety, let Y be an (FIop)l×Vec-variety, and let (π, ϕ) :Y→ X
be a partition morphism. Let S1, . . . , Sk ∈ FI and V ∈ Vec. The (set-theoretic) image of (π, ϕ) in
X (S1, . . . , Sk)(V ) is defined as the set of all points of the form (X (ι1, . . . , ιk)(V )◦ϕ(T1, . . . , Tl)(V ))(q),
where T1, . . . , Tl are finite sets, q is a point in Y (T1, . . . , Tl)(V ), and each ιi is a bijection from Si

to
⊔

j∈π−1(i) T j . The partition morphism (π, ϕ) is called surjective if its image in X (S1, . . . , Sk)(V )
equals X (S1, . . . , Sk)(V ) for all choices of S1, . . . , Sk and V.

Remark 2.14. In the previous definition, each bijection ιi induces a partition of the set Si . Furthermore,
if a partition morphism (π, ϕ) is surjective and for every i the Vec-variety

X (∅, . . . ,∅, {∗},∅, . . . ,∅),

where {∗} is a singleton in the i-th position, is nonempty, then the map π is automatically surjective,
so that π induces a partition of [l] into k labelled, nonempty parts. This is our reason for calling the
morphisms in PM partition morphisms.

The following example rephrases Example 1.6 in the current terminology.

Example 2.15. Let Z be the Vec-variety that maps V to V ⊗ V, and let Z1, Z2 be the closed Vec-
subvarieties consisting of symmetric and skew-symmetric tensors, respectively. Consider the FIop

×Vec-
variety defined by S 7→ Z S, and for every finite set S let X (S) be the closed Vec-subvariety given by the
points x = (xs)s∈S ∈ Z(V )S such that each component xs is either symmetric or skew-symmetric. Note
that X is a closed FIop

×Vec-subvariety. Let Y be the (FIop)2×Vec-variety defined by

Y (S1, S2)= Z S1
1 × Z S2

2 .

We now construct a partition morphism ϕ : Y → X as follows. The map π : [2]→ [1] is the only possible
map, and for every V ∈ Vec and (S1, S2) ∈ FIop2, the map

ϕ(S1, S2)(V ) : Y (S1, S2)(V )= Z1(V )S1 × Z2(V )S2 → X (S1 ⊔ S2)(V )

is defined by
((xs1)s1∈S1, (xs2)s2∈S2) 7→ (xs)s∈S1⊔S2 .



2100 Christopher H. Chiu, Alessandro Danelon, Jan Draisma, Rob H. Eggermont and Azhar Farooq

Note that the partition morphism ϕ is surjective. In particular, we say that X is covered by Y, and, as we
have already hinted in Example 1.6, Y is in some sense smaller than the assignment S 7→ Z S. The fact
that we can do this in general is the content of the parameterisation theorem (Theorem 3.1).

The following lemma is immediate.

Lemma 2.16. Let X be an (FIop)k×Vec-variety, let X ′ be a closed (FIop)k×Vec-subvariety of X, and let
(π, ϕ) be a partition morphism from an (FIop)l×Vec-variety Y to X. Then Y ′ := (π, ϕ)−1(X ′) defined by

Y ′(T1, . . . , Tl) := ϕ(T1, . . . , Tl)
−1

(
X ′

( ⊔
j∈π−1(1)

T j , . . . ,
⊔

j∈π−1(k)
T j

))
is a closed (FIop)l×Vec-subvariety of Y, and the data of π together with the restrictions of the morphisms
ϕ(T1, . . . , Tl) gives a partition morphism from Y ′ to X. Moreover, if (π, ϕ) is surjective, then so is its
restriction to Y ′→ X ′.

The following easy proposition is crucial in our approach to the main theorem.

Proposition 2.17. If (π, ϕ) is a surjective partition morphism from Y to X, and Y is a Noetherian
(FIop)l ×Vec-variety, then X is a Noetherian (FIop)k ×Vec-variety.

Proof. Let X1⊇ X2⊇· · · be a descending chain of closed (FIop)k×Vec-subvarieties. By Lemma 2.16, the
preimages Yi := (π, ϕ)

−1(X i ) are closed (FIop)l ×Vec-subvarieties of Y. Hence the chain Y1 ⊇ Y2 ⊇ · · ·

stabilises by assumption. The surjectivity of (π, ϕ) implies the surjectivity of its restriction to Yi → X i .
This implies that X i is uniquely determined by Yi , and hence the chain X1 ⊇ X2 ⊇ · · · stabilises at the
same point. □

2.4. Product type. We now introduce the (FIop)k ×Vec varieties of product type. Essentially, these
are the varieties from Remark 2.8, but for our proofs we will need a finer control over these products.
Therefore, we will work over a general base Vec-variety Y, and keep track of the “constant parts” Bi of
the Vec-varieties whose products we consider.

Definition 2.18. Let Y be a Vec-variety and k, n1, . . . , nk ∈ Z≥0. For each i ∈ [k], let Bi be a Vec-
subvariety of Y ×Ani, and Qi be a pure polynomial functor. By construction each Vec-variety Bi × Qi

has a morphism to Y induced by the projection Y × Ani → Y. We define the (FIop)k × Vec-variety
Z = [Y ; B1× Q1, . . . , Bk × Qk] via

Z(S1, . . . , Sk) := (B1× Q1)×Y · · · ×Y (B1× Q1)︸ ︷︷ ︸
cardinality-of-S1 times

×Y (B2× Q2)×Y · · · ×Y (Bk × Qk),

where for every index i ∈ [k] the fibre product over Y of Bi × Qi with itself is taken |Si | times, and
these copies are labelled by the elements of Si ; and where the morphism Z(T1, . . . , Tk)→ Z(S1, . . . , Sk)

corresponding to ι : S→ T is the projection as in Remark 2.8. We also write the above product in a more
compact notation as

(B1× Q1)
S1
Y ×Y · · · ×Y (Bk × Qk)

Sk
Y .

We say that Z is an (FIop)k ×Vec-variety of product type (over Y ).



Sym-Noetherianity for powers of GL-varieties 2101

Note that Z(S1, . . . , Sk) is naturally a closed Vec-subvariety of

Y ×
k∏

i=1
(Ani × Qi )

Si ,

where the product is over K. Moreover, if k = 0, then by definition Z = Y.
When we talk of (FIop)k×Vec-varieties of product type, we will always specify each Bi together with

its closed embedding in Y ×Ani ; the reason being that, in the proof of the main theorem, we aim to argue
by induction on both Y and ni .

Remark 2.19. The settings of Theorems 1.1 and 1.5 can be rephrased in our current terminology as
follows. Consider Vec-varieties Z1, . . . , Zk . Then for every i ∈ [k] there exist ni ∈ Z≥0, a closed
subvariety Ai ⊆ Ani, and a pure polynomial functor Qi such that Zi ⊆ Ai × Qi . Define Y to be a point,
and Bi := Y × Ai . Then the variety ZN

1 × · · ·× ZN
k of Theorem 1.5 is a subvariety of the product-type

(FIop)k ×Vec-variety
[Y ; B1× Q1, . . . , Bk × Qk],

with k = 1 being the special case addressed in Theorem 1.1.

Remark 2.20. In [Draisma et al. 2022], for FIop-varieties (no dependence on Vec), the notion of product
type is more restrictive. Essentially, there the last three authors considered a single finite-dimensional
affine variety Z with a morphism to a finite-dimensional, irreducible, affine variety Y, with the additional
requirement that K [Z ] is a free K [Y ]-module. This then ensures that each irreducible component of
Z S maps dominantly to Y. In [Draisma et al. 2022] this is used to count the orbits of Sym(S) on these
irreducible components.

The following example describes the partition morphisms between product-type varieties. It is particu-
larly relevant as this is the shape of the partition morphisms we will be dealing with in our proof of the
parameterisation theorem (Theorem 3.1).

Example 2.21. Let Z ′ := [Y ′; B ′1 × Q′1, . . . , B ′l × Q′l] and Z := [Y ; B1 × Q1, . . . , Bk × Qk] be an
(FIop)l ×Vec-variety and an (FIop)k ×Vec-variety of product type over Y ′ and Y, respectively. We want
to construct a partition morphism (π, ϕ) : Z ′→ Z . Consider the following data:

• Let π : [l] → [k] be any map.

• Let α : Y ′→ Y be a morphism of Vec-varieties.

• For each j ∈ [l] let β j : B ′j×Q′j→ Bπ( j)×Qπ( j) be a morphism of Vec-varieties such that the following
diagram commutes:

B ′j × Q′j

��

β j
// Bπ( j)× Qπ( j)

��

Y ′ α
// Y

(2)
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For each (T1, . . . , Tl) ∈ FIl we define the morphism of Vec-varieties

ϕ(T1, . . . , Tl) : Z ′(T1, . . . , Tl)→ Z
( ⊔

j∈π−1(1)
T j , . . . ,

⊔
j∈π−1(k)

T j

)
as follows. Let Si :=

⊔
j∈π−1(i) T j . Then for any V ∈ Vec the element

((b′j,t , q ′j,t)t∈T j ) j∈[l] ∈ (B ′1× Q′1)
T1
Y ′(V )×Y ′ · · · ×Y ′ (B ′l × Q′l)

Tl
Y ′(V )

is mapped to the element

(((β j (V )(b′j,t , q ′j,t))t∈T j ) j∈π−1(i))i∈[k] ∈ (B1× Q1)
S1
Y (V )×Y · · · ×Y (Bk × Qk)

Sk
Y (V ).

By construction, the pair (π, ϕ) is a partition morphism Z ′→ Z . Conversely, every partition morphism
Z ′→ Z is of this form. Indeed, from a general partition morphism Z ′→ Z , α is recovered by taking
all T j empty and β j is recovered by taking T j a singleton and all T j ′ with j ′ ̸= j empty. That (2) commutes
then follows by applying the commuting diagram from the definition of a partition morphism to the
morphism (∅, . . . ,∅, . . . ,∅)→ (∅, . . . , {∗}, . . . ,∅) in FIl.

2.5. The leading monomial ideal. The following definition gives a size measure for a closed subvariety
B ⊆ Y ×An.

Definition 2.22. Let Y be a Vec-variety, n ∈ Z≥0 and B a closed Vec-subvariety of Y ×An. For V ∈ Vec
consider the ideal I(B(V )) of K [Y (V )][x1, . . . , xn] defining B(V ). We fix the lexicographic order
on monomials in x1, . . . , xn , and denote by LM(B) the set of those monomials that appear as leading
monomials of monic polynomials in I(B(V )), i.e., those with leading coefficient 1 ∈ K [Y (V )].

Indeed, L M(B) is well-defined:

Lemma 2.23. The set LM(B) does not depend on the choice of V.

Proof. Let V ∈ Vec and consider the linear maps ι : 0→ V and π : V → 0. If f ∈ I(B(V )) is monic
with leading monomial xu, then applying Y (ι)# to all coefficients of f yields a polynomial in I(B(0))
which is monic with leading monomial xu. This shows that the leading monomials of monic polynomials
in I(B(V )) remain leading monomials of monic elements in I(B(0)). One obtains the converse inclusion
by applying Y (π)#. □

The following lemma monitors the size of LM of the constant parts after a base change in product-type
varieties. It is used in Proposition 2.28.

Lemma 2.24. Let Y ′→ Y be a morphism of Vec-varieties, let B be a closed Vec-subvariety of Y ×An,
and define B ′ := Y ′×Y B ⊆ Y ′×An. Then LM(B ′)⊇ LM(B).

Proof. Pulling back a monic equation for B(V ) along Y ′(V )×An
→ Y (V )×An yields a monic equation

for B ′(V ) with the same leading monomial. □
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2.6. Shifting over tuples of finite sets. Shifting over a finite set is a standard technique in the theory of
FI-modules [Church et al. 2015], and was also used by the last three authors in [Draisma et al. 2022] to
turn certain FIop-varieties into products. The third author used the operation of shifting over a vector
space in [Draisma 2019] to prove what became “the embedding theorem” for GL-varieties in [Bik et al.
2023b, Theorems 4.1, 4.2]. Here we describe this operation in the context of (FIop)k ×Vec-varieties.

Definition 2.25. Let X be an (FIop)k ×Vec-variety and let S = (S1, . . . , Sk) ∈ FIk. Then the shift ShS X
of X over S is the (FIop)k ×Vec-variety defined by

(ShS X)(T1, . . . , Tk) := X (S1 ⊔ T1, . . . , Sk ⊔ Tk)

and, for injections ιi : Ti → T ′i ,

(ShS X)(ι1, . . . , ιk) := X (idS1 ⊔ι1, . . . , idSk ⊔ιk).

Remark 2.26. Consider a tuple S = (S1, . . . , Sk) in (FIop)k and define the covariant functor

ShS : (FIop)k ×Vec→ (FIop)k ×Vec

by assigning to each tuple (T1, . . . , Tk) the tuple (S1 ⊔ T1, . . . , Sk ⊔ Tk) and assigning to each morphism
ι : (ι1, . . . , ιk) : (T1, . . . , Tk)→ (T ′1, . . . , T ′k) the morphism ι⊔ idS . In particular ShS X is the composition
X ◦ShS .

Remark 2.27. Let V ∈ Vec. While ShS X (T1, . . . , Tk)(V ) and X (S1 ⊔ T1, . . . , Sk ⊔ Tk)(V ) coincide as
sets, the action induced by functoriality of the k copies of the symmetric group on them is different.
Indeed, the groups Sym(T1)× · · · × Sym(Tk) and Sym(S1 ⊔ T1)× · · · × Sym(Sk ⊔ Tk) act, respectively,
on the former and on the latter.

The following proposition describes the shift operation on product-type varieties.

Proposition 2.28. The shift ShS Z over S = (S1, . . . , Sk) of an (FIop)k ×Vec-variety

Z := [Y ; B1× Q1, . . . , Bk × Qk]

of product type is itself isomorphic to a variety of product type:

ShS Z ∼= [Y ′; B ′1× Q1, . . . , B ′k × Qk]

with
Y ′ := (B1× Q1)

S1
Y ×Y · · · ×Y (Bk × Qk)

Sk
Y and B ′i := Y ′×Y Bi .

Furthermore, each B ′i is naturally a Vec-subvariety of Y ′×Ani, and we have LM(B ′i )⊇ LM(Bi ).

Proof. Straightforward. The last statement follows from Lemma 2.24. □

2.7. Well-founded orders. In this paper a preorder ⪯ on a class is a reflexive and transitive relation. We
also write B ⪰ A for A ⪯ B. Furthermore, write A ≺ B or B ≻ A to mean that A ⪯ B but not B ⪯ A.
The preorder is well-founded if it admits no infinite strictly decreasing chains A1 ≻ A2 ≻ · · · .
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In this section we first recall a well-founded preorder on polynomial functors. Building on it, we define
well-founded preorders

• on varieties appearing in the definition of (FIop)k ×Vec-varieties of product type,

• on product-type varieties, and

• on closed subvarieties of a fixed product-type variety.

2.7.1. Order on polynomial functors.

Definition 2.29. For polynomial functors P, Q, we write P ⪯ Q if P ∼= Q or else, for the largest e
with Pe ̸∼= Qe, Pe is a quotient of Qe.

This is a well-founded partial order on polynomial functors; see [Draisma 2019, Lemma 12].

2.7.2. Order on Vec-varieties of type B×Q. Consider Vec-varieties Y, Y ′, integers n, n′, pure polynomial
functors Q, Q′, and Vec-subvarieties B ⊂ Y ×An, B ′ ⊂ Y ′×An′. We say that B ′× Q′ ⪯ B× Q if

(1) Q′ ≺ Q in the order of Definition 2.29; or

(2) Q′ ∼= Q, n′ = n and LM(B ′)⊇ LM(B).

This is a preorder on Vec-varieties of this type.

Remark 2.30. We remark that ⪯ is defined on Vec-varieties with a specified product decomposition
B× Q where B is a Vec-variety with a specified closed embedding into a specified product Y ×An of a
Vec-variety Y and some n. It is not a preorder on Vec-varieties without further data.

Lemma 2.31. The preorder on Vec-varieties defined as above is well-founded.

Proof. Suppose we have an infinite strictly decreasing chain

B1× Q1 ≻ B2× Q2 ≻ · · ·

with Bi ⊆ Yi ×Ani. Then we have Q1 ⪰ Q2 ⪰ · · · . By the well-foundedness of ⪰ on polynomial functors,
there exists a j ≥ 1 such that both Qi and ni are constant for i ≥ j. But then

LM(Bi )⊊ LM(Bi+1)⊊ · · · ,

which contradicts Dickson’s lemma. □

2.7.3. Order on product-type varieties. Consider an (FIop)k×Vec-variety Z :=[Y ; B1×Q1, . . . , Bk×Qk],
and an (FIop)l ×Vec-variety Z ′ := [Y ′; B ′1× Q′1, . . . , B ′l × Q′l]. We say that Z ′ ⪯ Z if there exists a map
π : [l] → [k] with the following properties:

(1) B ′j × Q′j ⪯ Bπ( j)× Qπ( j) holds for all j ∈ [l].

(2) For all j whose π -fibre π−1(π( j)) has cardinality at least 2 we have B ′j × Q′j ≺ Bπ( j)× Qπ( j).

(3) If π is a bijection, then either at least one of the inequalities in (1) is strict, or else Y ′ is a closed
Vec-subvariety of Y.
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Lemma 2.32. Suppose Z ′ ⪯ Z is witnessed by π : [l] → [k] and suppose that at least one of the
following holds:

• l ̸= k, or

• at least one of the inequalities in (1) is strict.

Then we have Z ′ ≺ Z.

Proof. Assume, on the contrary, that σ : [k] → [l] witnesses Z ⪯ Z ′. Construct a directed graph 0 with
vertex set [l] ⊔ [k] and an arrow from each j ∈ [l] to π( j) and an arrow from each i ∈ [k] to σ(i). Like
any digraph in which each vertex has out-degree 1, 0 is a union of disjoint directed cycles (here of
even length) plus a number of trees rooted at vertices in those cycles and directed towards those roots.
Moreover, those cycles have the same number of vertices in [l] as in [k].

The assumptions imply that at least one of the vertices of 0 does not lie on a directed cycle. Without
loss of generality, there exists an i ∈ [k] not in any cycle such that j := σ(i) lies on a cycle. Let n be half
the length of that cycle, so that (σπ)n( j)= j. Then we have

B ′j × Q′j ⪯ Bπ( j)× Qπ( j) ⪯ · · · ⪯ Bπ(σπ)n−1( j)× Qπ(σπ)n−1( j) ≺ B ′(σπ)n( j)× Q′(σπ)n( j) = B ′j × Q′j ,

where the strict inequality holds because σ−1( j) has at least two elements: i and π(σπ)n−1( j). By
transitivity of the preorder from Section 2.7.2, we find B ′j × Q′j ≺ B ′j × Q′j , which however contradicts
the reflexivity of that preorder. □

Lemma 2.33. The relation ⪯ is a well-founded preorder on varieties in PM of product type.

Proof. For reflexivity we may take π equal to the identity. For transitivity, if π : [l] → [k] witnesses
Z ′ ⪯ Z and σ : [k] → [m] witnesses Z ⪯ Z ′′, then τ := σ ◦π witnesses Z ′ ⪯ Z ′′— here we note that if
|τ−1(τ ( j))|> 1 for some j ∈ [l], then either |π−1(π( j))|> 1 or else |σ−1(σ (π( j)))|> 1; in both cases
we find that B ′j × Q′j ≺ B ′′τ( j)× Q′′τ( j).

For well-foundedness, suppose that we had a sequence Z1 ≻ Z2 ≻ Z3 ≻ · · · , where

Zi = [Yi ; Bi,1× Qi,1, . . . , Bi,ki × Qi,ki ],

and where πi : [ki+1] → [ki ] is a witness to Zi ≻ Zi+1. We note that ki > 0 for all i . Otherwise
0= ki = ki+1= · · · and then Zi = Yi ≻ Zi+1= Yi+1≻ · · · implies that Yi ⊋ Yi+1 ⊋ · · · , which contradicts
the Noetherianity of the Vec-variety Yi ; see Theorem 2.5.

From the chain, we construct an infinite rooted forest with vertex set [k1] ⊔ [k2] ⊔ · · · as follows: [k1]

is the set of roots, and we attach each j ∈ [ki+1] via an edge with πi ( j); the latter is called the parent of
the former. We further label each vertex j ∈ [ki ] with the product Bi, j × Qi, j .

We claim that πi is an injection for all i ≫ 0, i.e., that there are only finitely many vertices with more
than one child. Indeed, if not, then by König’s lemma the forest would have an infinite path starting at a
root in [k1] and passing through infinitely many vertices with at least two children. By construction, the
labels B× Q decrease weakly along such a path and strictly whenever going from a vertex to one of its
more than one children, a contradiction to Lemma 2.31.
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For even larger i , the ki are constant, say equal to k, and hence the πi are bijections. After reordering,
we may assume that the πi all equal the identity on [k]. Moreover, for all such i we still have Bi, j×Qi, j ⪰

Bi+1, j×Qi+1, j ⪰· · · for all j ∈ [k], and all these chains stabilise. When they do, we have Yi ⊋Yi+1 ⊋ · · · ,
which is a strictly decreasing chain of Vec-varieties — but this again contradicts the Noetherianity of
Vec-varieties. □

2.7.4. Order on closed subvarieties of product-type varieties in PM. Consider the (FIop)k ×Vec-variety
Z = [Y ; B1× Q1, . . . , Bk × Qk] and let X be a closed (FIop)k ×Vec-subvariety of Z ; X is not required
to be of product type. We define

δX := min
(S1,...,Sk)∈FIk

{ k∑
i=1
|Si | : X (S1, . . . , Sk) ̸= Z(S1, . . . , Sk)

}
Let X and X ′ be closed (FIop)k ×Vec-subvarieties of Z . Then we say X ′ ⪯ X if δX ′ ≤ δX . This is a
well-founded preorder on the (FIop)k ×Vec-subvarieties of Z .

Remark 2.34. If f is a nonzero equation for X (S1, . . . , Sk)(V )with
∑

i |Si |= δX , then f may still “come
from smaller sets”. More specifically, there might exist a k-tuple (S′1, . . . , S′k) with |S′i | ≤ |Si | for all i ∈ [k]
and with strict inequality for at least one i , an FIk-morphism ι := (ι1, . . . , ιk) : (S′1, . . . , S′k)→ (S1, . . . , Sk),
and an element f ′ ∈ K [Z(S′1, . . . , S′k)(V )] such that Z(ι)(V )#( f ′) = f . This is related to Remark 2.9.
The following example demonstrates this phenomenon.

Example 2.35. Consider the FIop
×Vec-variety Z := [Spec(K );A1

]. The coordinate ring K [Z(S)] is
isomorphic to the polynomial ring over K in |S| variables. Let n ∈ Z>0 and define the proper closed
variety X of Z by

X (S) :=
{

Z(S) for |S|< n,
∅ otherwise.

Then δX is equal to n and computed by the element 1 ∈ K [Z([n])], which is the image of 1 ∈ K [Z(∅)]
under the natural map K [Z(∅)] → K [Z([n])].

3. Covering (FIop)k × Vec-varieties by smaller ones

3.1. The parameterisation theorem. The goal of this section is to prove the following core result, which
says that any proper closed subvariety of an (FIop)k ×Vec-variety of product type is covered by finitely
many smaller such varieties.

Theorem 3.1 (parameterisation theorem). Consider an (FIop)k ×Vec-variety Z of product type and let
X ⊊ Z be a proper closed (FIop)k ×Vec-subvariety. Then there exist a finite number of quadruples
consisting of

• an l ∈ Z≥0;

• an (FIop)l ×Vec-variety Z ′ of product type with Z ′ ≺ Z ;

• a k-tuple S = (S1, . . . , Sk) ∈ FIk ; and

• a partition morphism (π, ϕ) : Z ′→ ShS Z ;
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such that for any T1, . . . , Tk ∈ FIk, any V ∈ Vec, and any p ∈ X (T1, . . . , Tk)(V ) there exist: one
of these finitely many quadruples; finite sets U1, . . . ,Uk ; and bijections σi : Ti → Si ⊔ Ui ; such
that p lies in the image under Z(σ1, . . . , σk)(V ) of the image of (π, ϕ) in ShS(Z)(U1, . . . ,Uk)(V ) =
Z(S1 ⊔U1, . . . , Sk ⊔Uk)(V ).

Remark 3.2. Recall Definition 2.13 of the image of a partition morphism. Explicitly, the conclusion
above means that there exist finite sets U ′1, . . . ,U

′

l and, for each i ∈ [k], a bijection ιi :Ui→
⊔

j∈π−1(i) U ′j ,
and a point q ∈ Z ′(U ′1, . . . ,U

′

l )(V ) such that

(Z(σ1, . . . , σk)(V ) ◦ (ShS Z)(ι1, . . . , ιl)(V ) ◦ϕ(U ′1, . . . ,U
′

l )(V ))(q)= p.

Informally, we will say that all points in X are hit by finitely many partition morphisms from varieties Z ′

in PM of product type with Z ′ ≺ Z .

3.2. A key proposition. The proof of Theorem 3.1 uses a key proposition that we establish first. The
reader may prefer to read only the statement of this proposition and postpone its proof until after reading
the proof of Theorem 3.1 in Section 3.5.

Proposition 3.3. Let Y be a Vec-variety; n ∈ Z≥0; B a closed Vec-subvariety of Y × An; Q a pure
polynomial functor; and X a proper closed Vec-subvariety of B× Q ⊆ Y ×An

× Q. Then there exist

• a proper closed Vec-subvariety Y0 of Y ;

• a Vec-variety Y ′ together with a morphism α : Y ′→ Y ;

• k ∈ Z≥0;

and, for each l = 0, . . . , k,

• an integer nl ∈ Z≥0;

• a closed Vec-subvariety Bl ⊆ Y ′×Anl ;

• a pure polynomial functor Ql ;

• and a morphism βl : Bl × Ql→ B× Q,

such that the following properties hold:

(1) For each l = 0, . . . , k, we have that Bl × Ql ≺ B × Q in the preorder from Section 2.7.2, and the
following diagram commutes:

Bl × Ql
βl
//

��

B× Q

��

Y ′
α

// Y

(2) Let m ∈ Z≥0, let V ∈Vec, and let p1, . . . , pm ∈ X (V )⊆ Y (V )×An
×Q(V ) be points whose images

in Y (V ) are all equal to the same point y ∈ Y (V ) \ Y0(V ). Then there exist indices l j ∈ {0, . . . , k}
for j ∈ [m] and points p′j ∈ Bl j (V )× Ql j (V ) whose images in Y ′(V ) are all equal to the same
point y′ and such that βl j (V )(p

′

j )= p j for all j ∈ [m].
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Remark 3.4. The condition βl j (V )(p
′

j ) = p j , together with the commuting diagram in (1), implies
α(y′)= y.

Remark 3.5. The labelling by l ∈ {0, . . . , k} rather than by l ∈ [k] is chosen because in the proof of
Proposition 3.3 the data for l = 0 are chosen in a slightly different manner than those for l > 0. However,
in the statement of that proposition, all l play equivalent roles.

To apply Proposition 3.3 in the proof of Theorem 3.1 we will do a shift over an appropriate k-tuple
of finite sets. After this shift, we deal with the points of X lying over Y0 by induction, while we cover
those in the complement by a partition morphism constructed with the morphisms α and β j ’s, and whose
domain is a product-type variety strictly smaller than Z . Before proving Proposition 3.3 in Section 3.4,
we demonstrate its statement in two special cases.

Example 3.6. Consider the case where Y = Spec K and n = 0; then B ⊆ Y ×An is also isomorphic to
Spec K. Let Q be an arbitrary polynomial functor. In this case, X is a proper closed Vec-subvariety of Q
and by [Bik et al. 2023b] there exist k ∈ Z≥0, (finite-dimensional) varieties B0, . . . , Bk , pure polynomial
functors Q0, . . . , Qk ≺ Q and morphisms βl : Bl × Ql → Q such that X is the union of the images
of the βl . This is an instance of Proposition 3.3 with Y0 = ∅, Y ′ = Y, and α = idY . Note that then
Bl × Ql ≺ Q since Ql ≺ Q, so the specific choice of embedding Bl ⊆ Anl is not relevant.

Example 3.7. Consider the case where Y is constant, that is, just given by a (finite-dimensional) variety,
and Q = 0. Since X is a proper closed subvariety of B ⊆ Y ×An, there exist a V ∈ Vec and a nonzero
function f ∈ K [B(V )] that vanishes identically on X (V ).

Then f is represented by a polynomial in K [Y (V )][x1, . . . , xn], also denoted by f . We may reduce f
modulo I(B(V )) in such a manner that its leading term c · xu has the property that c ∈ K [Y (V )] is
nonzero and xu

̸∈ LM(B). Then we take for Y0 the closed subvariety of Y defined by the vanishing of c
and for Y ′ the complement Y \ Y0, with α : Y ′→ Y being the inclusion. Furthermore, we take k = 0,
and B0 to be the intersection of B with Y ′ × An and with the vanishing locus of f in Y × An. Then
LM(B0) ⊇ LM(B) and since c is invertible on Y ′ and f vanishes on B0, xu

∈ LM(B0) \ LM(B). To
verify (2) of Proposition 3.3, we observe that the p j all map to the same point in Y ′ = Y \Y0, i.e., p j lies
in the set B0 ⊆ B, and we can just take p′j := p j for all j.

3.3. Iterated partial derivatives. The main technical result for proving Proposition 3.3 is Lemma 3.8
below. This is essentially an iteration of the argument used to establish the embedding theorem in
[Bik et al. 2023b], which involves directional derivatives of a function defining a Vec-variety along a
direction lying in an irreducible subobject of the top-degree part of the ambient polynomial functor.

Lemma 3.8. Let B be a Vec-variety and Q a pure polynomial functor. Decompose

Q = R1⊕ · · ·⊕ Rt ,

where the Ri are irreducible objects in the abelian category of polynomial functors, arranged in weakly
increasing degrees. Denote with R≤s the functor

⊕s
i=1 Ri , so that R≤0 = 0. Let X be a proper closed

Vec-subvariety of B× Q.
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Then there exist

• a k ∈ Z≥0;

• U0, . . . ,Uk ∈ Vec with partial sums U≤s :=
⊕s

i=0 Ui for s ≥ 0;

• indices 0= s0 < s1 ≤ · · · ≤ sk ≤ t ;

• for each l ∈ {0, . . . , k} a nonzero function hl ∈ K [B(U≤l)× R≤sl (U≤l)] (so that h0 ∈ K [B(U0)]);
and

• for each l ∈ {1, . . . , k}, a nonzero coordinate xl ∈ Rsl (Ul)
∗ and a function rl in K [B(U≤l) ×

(R≤sl (U≤l)/Rsl (Ul))] such that
hl = xl · hl−1+ rl;

and such that, moreover, the function hk vanishes on X (U≤k).

Remark 3.9. It is here that we use the fact that K has characteristic zero, in at least two different ways:
the fact that an arbitrary polynomial functor is a direct sum of irreducible ones, and the fact that, by
acting with the Lie algebra of GLn , we can go from an equation to an equation of weight (1, . . . , 1). We
think that our main theorem may be true in positive characteristic as well, but the proof would be more
technical and involve techniques from [Bik et al. 2024], where the theory of GL-varieties in positive
characteristic is developed.

Proof. Let U be a finite-dimensional vector space for which there exists a nonzero f ∈ K [B(U )×Q(U )]
that vanishes identically on X (U ). Without loss of generality, U = K n for some n. Since the vanishing
ideal of X (U ) is a GL(U )-module, we may assume that f is a weight vector with respect to the standard
maximal torus in GL(U ) = GLn . Furthermore, by enlarging U if necessary (n = deg( f ) suffices) we
may assume that the weight of f is (1, . . . , 1) (see [Snowden 2021, Lemma 3.2]; strictly speaking, our
GL(U )-action is contragredient to the action there, and writing (−1, . . . ,−1) would be more consistent).

Choose sk as the maximal index in [t] such that f involves coordinates in Rsk (U )
∗; if no such index

exists, then k is set to zero, and we may take U0 =U and h0 = f ∈ K [B(U0)] and we are done.
After acting with the symmetric group Sym([n]) if necessary, we may assume that f contains at

least one coordinate in Rsk (U )
∗ of weight (0, . . . , 0, 1, . . . , 1) =: (0n′, 1nk ), where there are n′ zeroes

and nk ones, with n′+nk = n. We set U ′ := K n′ and Uk := K nk, so that U =U ′⊕Uk . Since f has weight
(1, . . . , 1), we can decompose

f =
( N∑

i=1
fi · yi

)
+ r

where N ≥ 1, the fi have weight (1n′, 0nk ); the yi are elements in Rsk (U )
∗ of weight (0n′, 1nk ) and hence

lie in Rsk (Uk)
∗; and r does not contain elements in Rsk (Uk)

∗. This implies that the fi are elements of
K [B(U ′)× R≤sk (U

′)] and r is an element of K [B(U ′⊕Uk)× (R≤sk (U
′
⊕Uk)/Rsk (Uk))]. Furthermore,

we may assume that the fi are linearly independent over K.
Now act on f with upper triangular elements of gl(Uk). With respect to this action, the fi are

constants, the yi are replaced by higher-weight vectors in Rsk (Uk)
∗, and r remains an element of
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K [B(U ′⊕Uk)×(R≤sk (U
′
⊕Uk)/Rsk (Uk))]. We can choose a sequence of such upper triangular elements

that takes y1 to a nonzero highest weight vector v in Rsk (Uk)
∗, and the same sequence will take each yi to

a scalar multiple of v. Since the fi are linearly independent, the term f1 · v in the result is not cancelled.
Hence after this action, f has been transformed to the desired shape

f = h · xk + r

with h ∈ K [B(U ′)× R≤sk (U
′)], xk a nonzero highest weight vector in Rsk (Uk)

∗ and r lies in the ring

K [B(U ′⊕Uk)× (R≤sk (U
′
⊕Uk)/Rsk (Uk))].

Now we treat the pair (U ′, h) in exactly the same manner as we treated the pair (U, f ), dragging r along
in the process: pick sk−1 maximal such that h contains elements from Rsk−1(U

′)∗. By acting with the
symmetric group Sym([n′]) on f we may assume that h contains an element from Rsk−1(U

′)∗ of weight
(0n′′, 1nk−1), with n′′+ nk−1 = n′. Then set U ′′ = K n′′ and Uk−1 = K nk−1, so that U ′ = U ′′⊕Uk−1. By
acting on f with upper triangular elements of gl(Uk−1) we transform it into the shape

f = (h̃ · xk−1+ r̃) · xk + r,

where xk has not changed, r has changed within the space K [B(U ′⊕Uk)× (R≤sk (U
′
⊕Uk)/Rsk (Uk))],

xk−1 is a highest weight vector in Rsk−1(Uk−1)
∗, h̃ lies in K [B(U ′′)× R≤sk−1(U

′′)], and r̃ lies in the ring

K [B(U ′′⊕Uk−1)× (R≤sk−1(U
′′
⊕Uk−1)/Rsk−1(Uk−1))].

Continuing in this fashion, we eventually put f in the form

f = xk(xk−1(· · · (x2(x1h0+ r1)+ r2) · · · )+ rk−1)+ rk

where h0 ∈ K [B(U0)] and U0 is the space left over from U after splitting off all the Ui with i > 0. Now set

hl := xl(xl−1(· · · (x2(x1h0+ r1)+ r2) · · · )+ rl−1)+ rl

and we are done. □

3.4. Proof of Proposition 3.3. This section contains the proof of the Proposition 3.3, and, for clarity’s
sake, we spell it out in a concrete example at the end.

Remark 3.10. We recall that, for any Vec-variety Z and any U ∈ Vec, the shift ShU Z of Z over U
is the Vec-variety defined by (ShU Z)(V ) = Z(U ⊕ V ). There is a natural morphism ShU Z → Z of
Vec-varieties: for V ∈ Vec, this morphism (ShU Z)(V )= Z(U ⊕ V )→ Z(V ) is just Z(πV ), where πV

is the projection U ⊕ V → V.

Lemma 3.11. Let Y be a Vec-variety, n ∈ Z≥0, and B a closed Vec-subvariety of Y ×An. Then for any
U ∈ Vec, ShU B is a closed Vec-subvariety of (ShU Y )×An, and LM(B)= LM(ShU (B)).

Proof. This follows from Lemma 2.24. □
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Remark 3.12. Let X be a Vec-variety, U ∈ Vec and f ∈ K [X (U )]. We define (ShU X)[1/ f ] to be the
Vec-variety given by V 7→ X (U ⊕ V )[1/ f ], where we identify f with its image under the natural map
K [X (U )] → K [X (U ⊕ V )]. Note that the action of the group GL on the coordinate ring of ShU X is
the identity on the element f . In particular, for every V ∈ Vec, (ShU X [1/ f ])(V ) ⊆ ShU X (V ) is the
distinguished open set of points not vanishing on the single f .

Proof of Proposition 3.3. Since X is a proper closed subvariety of B × Q, we apply the machinery of
Lemma 3.8. Decompose Q as R1 ⊕ · · · ⊕ Rt , where the Rs are irreducible polynomial functors and
deg(Rs)≤ deg(Rs+1) for all s = 1, . . . , t − 1. Write R≤s := R1⊕ · · ·⊕ Rs and R>s := Rs+1⊕ · · ·⊕ Rt ,
so that R≤0 = {0} and R>t = {0}.

By Lemma 3.8, we can construct a sequence of vector spaces U0,U1, . . . ,Uk with partial sums U≤l :=⊕l
i=0 Ui , indices 0= s0< s1≤· · ·≤ sk≤ t , nonzero coordinates xl ∈ Rsl (Ul)

∗ for l ∈[k], nonzero functions
hl ∈ K [B(U≤l) × R≤sl (U≤l)] for l = 0, . . . , k and functions rl ∈ K [B(U≤l) × (R≤sl (U≤l)/Rsl (Ul))]

for l ∈ [k] such that
hl = xl · hl−1+ rl (A)

for each l = 1, . . . , k and such that hk that vanishes on X (U≤k).
Now h0 ∈ K [B(U0)] is represented by a polynomial in K [Y (U0)][x1, . . . , xn], and after reducing

modulo I(B(U0)), we may assume that its leading term equals c · xu where c ∈ K [Y (U0)] is nonzero
and xu

̸∈ LM(B).
Now set U :=U≤k =U0⊕ · · ·⊕Uk . Then we construct the relevant data as follows.

(1) Define Y0 as the closed Vec-subvariety of Y defined by the vanishing of c, so that

Y0(V ) := {y ∈ Y (V ) | ∀ϕ ∈ HomVec(V,U0) : c(Y (ϕ)y)= 0}.

(2) Set Y ′ := (ShU Y )[1/c] with α : Y ′→ Y the restriction to Y ′ of the natural morphism ShU Y → Y.

(3) Let B0 be the closed Vec-subvariety of (ShU B)[1/c] defined by the vanishing of the single equation h0.
Note that B0 is a closed Vec-subvariety of Y ′×An0 with n0 :=n. Define Q0 :=Q and β0 : B0×Q0→ B×Q
as the identity on Q and equal to the restriction to B0 of the natural morphism ShU B→ B on B0. Note
that LM(B0)⊇ LM(B) by virtue of Lemma 3.11, and since h0 ∈ I(B0(U0)) has leading term c · xu and c
is invertible on Y ′, we have xu

∈ LM(B0) \LM(B). Thus B0× Q0 ≺ B× Q.

(4) For l ∈ [k], set
Ql := ((ShU R≤sl )/(R≤sl (U )⊕ Rsl ))⊕ R>sl .

Here we recall that, for any pure polynomial functor R, the top-degree part of ShU R is naturally isomorphic
to that of R, and its constant part is isomorphic to R(U ) (see [Draisma 2019, Lemma 14] for the first
statement; the second is proved in a similar fashion). So, since we ordered the irreducible factors Rs

by ascending degrees, Rsl is naturally a subobject of the top-degree part of ShU R≤sl ; and the constant
polynomial functor R≤sl (U ) is the constant part of ShU R≤sl . Both are modded out, and we have Ql ≺ Q.
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(5) For l ∈ [k], we define Bl as

Bl := (ShU B)[1/c]× R≤sl (U )×A1
⊆ Y ′×An

× R≤sl (U )×A1 ∼= Y ′×Anl .

where nl := n+ dim(R≤sl (U ))+ 1. Note that the factor R≤sl (U ) is precisely the constant term modded
out in the definition of Ql ; the role of the factor A1 will become clear below.

(6) To construct βl : Bl × Ql → B × Q we proceed as follows. Let Xl be the closed Vec-subvariety
of B× R≤sl defined by the vanishing of hl . Then (A) shows that, on the distinguished open subvariety
(ShU≤l−1 Xl)[1/hl−1], the coordinate xl can be expressed as a function on ShU≤l−1 B×((ShU≤l−1 R≤sl )/Rsl )

evaluated at Ul . Since Rsl is irreducible, each coordinate on it can be thus expressed; this is a crucial
point in the proof of [Draisma 2019, Lemma 25]. This implies that the projection

ShU≤l−1 B×ShU≤l−1 R≤sl → (ShU≤l−1 B)× (ShU≤l−1 R≤sl )/Rsl

restricts to a closed immersion of (ShU≤l−1 Xl)[1/hl−1] into the open subvariety of the right-hand side
where hl−1 is nonzero. This statement remains true when we replace U≤l−1 everywhere by the larger
space U. After also inverting c, we find a closed immersion

(ShU Xl)[1/hl−1][1/c] → (ShU B)[1/c]× (ShU R≤sl )/Rsl ×A1,

where the map to the last factor is given by 1/hl−1. By [Bik 2020, Proposition 1.3.22] the inverse
morphism from the image of this closed immersion lifts to a morphism of ambient Vec-varieties

ι : Bl × (ShU R≤sl )/(R≤sl (U )⊕ Rsl )
∼= (ShU B)[1/c]× (ShU R≤sl )/Rsl ×A1

→ ShU (B× R≤sl )

that hits all the points in (ShU Xl)[1/hl−1][1/c]. Finally, we define βl := β
′

l × idR>sl
where β ′l is the

composition of ι and the natural morphism ShU (B× R≤sl )→ B× R≤sl .

Property (1) in the proposition holds by construction. We now verify property (2). Thus let V ∈ Vec,
m ∈ Z≥0, and let p1, . . . , pm ∈ X (V ) ⊆ Y (V )×An

× Q(V ). Assume that the images of p1, . . . , pm

in Y (V ) are all equal to y, and that y ̸∈ Y0(V ). By definition of Y0, this means that there exists a
ϕ ∈ HomVec(V,U ) such that c(Y (ϕ)(y)) ̸= 0.

On the other hand, we have hk(X (ψ)(p j )) = 0 for all j and all ψ : V → U, because hk vanishes
identically on X. For j ∈ [k] define

l j :=min{l | ∀ψ ∈ HomVec(V,U ) : hl(X (ψ)(p j ))= 0}.

Put differently, l j is the smallest index l such that the projection of p j in B× R≤sl lies in Xl ⊆ B× R≤sl .
Note that, if l j > 0, then there exists a linear map ψ : V →U such that hl j−1(X (ψ)(p j )) ̸= 0.

Since HomVec(V,U ) is irreducible, there exists a linear map ϕ : V→U such that first, c(Y (ϕ)(y)) ̸= 0;
and second, hl j−1(X (ϕ)(p j )) ̸= 0 for all j with l j > 0.

We now define the p′j as follows. First, we decompose p j = (p j,1, p j,2), where p j,1 ∈ B(V )×R≤sl j
(V )

and p j,2 ∈ R>sl j
(V ). Similarly, we decompose the point p′j = (p

′

j,1, p′j,2) to be constructed.
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(1) Set p′j,2 := p j,2 for all j. Recall that we had defined s0 := 0, so that this implies that if l j = 0, then
the component p′j,2 of p′j in Q equals the component p j,2 of p j in Q.

(2) If l j = 0, then p j,1 ∈ B(V ), and p′j,1 ∈ B0(V ) ⊆ (ShU B)[1/c](V ) is defined as B(ϕ⊕ idV )(p j,1).
Note that p′j,1 does indeed lie in B0(V ); this follows from the fact l j = 0, so that h0(B(ψ)(p j,1))= 0 for
all ψ : V →U0, and hence also for all ψ that decompose as ψ ′ ◦ (ϕ⊕ idV ).

Furthermore, note that β0(V )(p′j ) = p j ; this follows from the equality πV ◦ (ϕ⊕ idV ) = idV . Also,
the image of p′j in Y ′(V ) equals Y (ϕ⊕ idV )(y)=: y′.

(3) If l := l j > 0, then p j,1 ∈ B(V )× R≤sl (V ) with sl ≥ 1, and p′j,1 is constructed as follows. First apply
(B× R≤sl )(ϕ⊕ idV ) to p j,1 and then forget the component in Rsl (V ). The morphism β ′l was constructed
in such a manner that β ′l (V )(p

′

j,1)= p j,1 and therefore βl(V )(p′j )= p j . Note that also the image of p′j
in Y ′(V ) equals y′. □

Example 3.13. Write Y for the polynomial functor V → V ⊕ V and write K [xi , yi | i ∈ [n]] for the
coordinate ring of Y (K n). Consider the Vec-subvariety B of Y ×A1 defined by y1− t · x1, where t is the
coordinate of A1. Then LM(B)=∅ and B(V ) is the set of triples (v, λv, λ) with v ∈ V and λ ∈ K. Set
Q(V ) := S2V, and choose coordinates zi j , i ≤ j on Q(K n) by writing an arbitrary element of Q(K n) as

n∑
i=1

zi i e2
i +

∑
1≤i< j≤n

2zi j ei e j .

Note that Q is an irreducible polynomial functor, so, in the notation of Proposition 3.3, we have R= R1=Q.
Define the Vec-subvariety

X ⊂ B× Q ⊂ Y ×A1
× Q

by
X (V ) := {(v,w, λ, q) | (v,w, λ) ∈ B(V ) and w2, q are linearly dependent}.

An equation for X (K 2) is the determinant

f := z12 y2
1 − z11 y1 y2 = t2(z12x2

1 − z11x1x2) ∈ K [B(U0)× Q(U0)]

with U0 := K 2. Define U1 := ⟨e3, e4⟩ ∼= K 2, so that U0⊕U1 = K 4. Acting on f equation with the (upper
triangular) elements E1,3 and E2,4 of the Lie algebra gl(U0⊕U1) gives the equation

h1 := z34(x2
1 t2)+ (2z14x1x3− 2z13x1x4− z11x3x4)t2

that, by construction, vanishes on X (U0⊕U1). Note that z34 ∈ Q(U1)
∗, h0 := x2

1 t2
∈ K [B(U0)] (and we

let c be the leading coefficient: c := x2
1 ), and the rest belongs to K [B(U0⊕U1)× Q(U0⊕U1)/Q(U1)].

By acting with permutations (3, i) and (4, j) with i < j on h1 we find that, where h0 is nonzero, on X
we have

zi j =−
1
h0
· (2z1 j x1xi − 2z1i x1x j − z11xi x j )t2. (3)

A similar expression can be found for zi i , with the same denominator h0.
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In this case, Y0 from the proposition is the Vec-subvariety of Y defined by c = x2
1 . This consists of all

pairs (0, w) ∈ V ⊕ V . The preimage in X consists of all quadruples (0, 0, λ, q) with q arbitrary.
Set U :=U0⊕U1, Y ′ := ShU Y [1/c], and let B0 be the vanishing locus of h0 in ShU B[1/c] ⊂ Y ′×A1.

Note that we have t2
∈ LM(B0)— indeed, t even vanishes identically on B0. With Q0 := Q we find

B0× Q0 ≺ B× Q, and we define the map

β0 : B0× Q0→ B× Q

as B(πV )|B0 × idQ(V ) for every V ∈ Vec. This covers all the points in X (V ) of the form (v, 0, 0, q)
with v, q arbitrary.

Finally, consider the map

ShU (B× Q)[1/h0][1/c] → ShU (B× Q)/Q×A1 ∼= (ShU B× Q(U )×A1)× (ShU Q/(Q(U )⊕ Q))

=: B1× Q1

where the coordinate on A1 is given by 1/h0. This is a closed immersion, because where h0 is nonzero,
coordinates on Q(V ) with can be recovered from the coordinates on the right-hand side via (3). We use
this to construct the map

β1 : B1× Q1 = ShU (B× Q)/Q×A1
→ ShU (B× Q)→ B× Q.

The first arrow is given by the identity on the coordinates not in Q(V ), while the coordinates on Q(V )
are computed via (3). The second arrow projects into B(V )×Q(V ). This map hits points in X (V ) of the
form (v, λv, λ, µ(λv)2) with v, λ nonzero.

3.5. Proof of Theorem 3.1. The (FIop)k ×Vec-variety Z is of product type; hence by Definition 2.18 it
can be written as

Z = [Y ; B1× Q1, . . . , Bk × Qk]

for some Vec-subvarieties Bi of Y ×Ani and pure polynomial functors Qi . Furthermore, X is a proper
closed (FIop)k ×Vec-subvariety of Z .

We prove, by induction on the quantity δX , that all points in X can be hit by partition morphisms from
finitely many (FIop)k ×Vec-varieties Z ′ of product type with Z ′ ≺ Z . So in the proof we may assume
that this is true for all proper closed (FIop)k ×Vec-subvarieties X ′ ⊊ Z with δX ′ < δX .

Let (S1, . . . , Sk) ∈ FIk be such that
∑

i |Si | = δX and X (S1, . . . , Sk) ̸= Z(S1, . . . , Sk). If all Si

are empty, then set Y ′ := X (∅, . . . ,∅), a proper closed Vec-subvariety of Y, B ′i := Y ′ ×Y Bi , and
Z := [Y ′; B ′1× Q1, . . . , B ′k × Qk]. The partition morphism (id[k], ϕ) with ϕ(T1, . . . , Tk) the inclusion∏

i (B
′

i × Qi )
Ti →

∏
i (Bi × Qi )

Ti has X in its image, and we have Z ′ ≺ Z because the Qi remain the
same, LM(B ′i )⊇ LM(Bi ) by Lemma 2.24, and Y ′ is a proper closed Vec-subvariety of Y. In this case, no
shift of Z is necessary.

Next assume that not all Si are empty. First we argue that the points of X (T1, . . . , Tk), where, for
some i , |Ti | is strictly smaller than |Si |, are hit by partition morphisms from finitely many Z ′ ≺ Z . We
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give the argument for i = k. Define the k-tuple S to be shifted over as S := (∅, . . . ,∅, Tk) ∈ FIk, and
define the (FIop)k−1

×Vec- variety Z ′ of product type

Z ′ := [(Bk × Qk)
Tk ; B ′1× Q1, . . . , B ′k−1× Qk−1]

with B ′i = (Bk×Qk)
Tk×Y Bi . Consider the partition morphism (π, ϕ) : Z ′→ShS Z , where π : [k−1]→[k]

is the inclusion and ϕ(T1, . . . , Tk−1) is the natural isomorphism of Vec-varieties

Z ′(T1, . . . , Tk−1)→ (ShS Z)(T1, . . . , Tk−1,∅)= Z(T1, . . . , Tk−1, Tk).

Note that π witnesses Z ′ ⪯ Z since the Qi with i ≤ k− 1 remain the same and LM(B ′i )⊇ LM(Bi ) by
Lemma 2.24. Furthermore, since k− 1< k, we have Z ′ ≺ Z by Lemma 2.32. All points in X where the
last index set has cardinality |Tk | are hit by this partition morphism. Since there are only finitely many
values of |Tk | that are strictly smaller than |Sk |, we are done.

So it remains to hit points in X (T1, . . . , Tk) where |Ti | ≥ |Si | for all i . In this phase we will apply
Proposition 3.3.

As by assumption not all Si are empty, after a permutation of [k] we may assume that Sk ̸=∅. Let ∗
be an element of Sk and define S̃k := Sk \ {∗}. Consider the Vec-varieties

Z(S1, . . . , Sk)= (B1× Q1)
S1
Y ×Y · · · ×Y (Bk × Qk)

S̃k
Y ×Y (Bk × Qk)

{∗},

Ỹ := Z(S1, . . . , Sk−1, S̃k)= (B1× Q1)
S1
Y ×Y · · · ×Y (Bk × Qk)

S̃k
Y .

Set B̃k := Ỹ ×Y Bk ⊆ Ỹ ×Ank, and note that X (S1, . . . , Sk) is a proper closed Vec-subvariety of B̃k×Qk .
We may therefore apply Proposition 3.3 to Ỹ , nk, B̃k, Qk and X (S1, . . . , Sk).

First consider the proper closed Vec-subvariety Y0 of Ỹ promised by Proposition 3.3, and let X ′

be the largest closed (FIop)k × Vec-subvariety of Z that intersects Z(S1, . . . , Sk−1, S̃k) in Y0. Then
X ′(S1, . . . , S̃k) ̸= Z(S1, . . . , S̃k), and thus δX ′≤ δX−1<δX . Hence, by the induction hypothesis, all points
in X ′(T1, . . . , Tk) can be hit by finitely many partition morphisms from varieties Z ′ ≺ Z of product type.

Next we consider the remaining pieces of data from Proposition 3.3. First, we have the Vec-variety Y ′

with a morphism α : Y ′ → Ỹ . Further, we have an integer s ∈ Z≥0 and for each i = 0, . . . , s we
have integers n′k+i ; Vec-varieties B ′k+i ⊆ Y ′ ×An′k+i ; pure polynomial functors Q′k+i ; and morphisms
βk+i : B ′k+i × Q′k+i → B̃k × Qk satisfying the conditions (1) and (2).

Define B ′i := Y ′×Y Bi for i = 1, . . . , k− 1 and the (FIop)k+s
×Vec-variety

Z ′ := [Y ′; B ′1× Q1, . . . , B ′k−1× Qk−1, B ′k × Q′k, . . . , B ′k+s × Q′k+s].

Now the map π : [k+s]→ [k] that is the identity on [k−1] and maps [k+s]\[k−1] to {k} witnesses that
Z ′ ⪯ Z ; here we use that B ′k+ j ×Q′k+ j ≺ Bk×Qk for j ∈ {0, . . . , s} by the conclusion of Proposition 3.3,
and also Lemma 2.24 to show that B ′i×Qi ⪯ Bi×Qi for i ∈[k−1]. In fact, we have Z ′≺ Z by Lemma 2.32.

Now the base variety Y ′ of Z ′ comes with a morphism α to the base variety Ỹ of ShS Z ; we have
morphisms βi : B ′i × Qi → B̃i × Qi for i = 1, . . . , k − 1 (the natural map B ′i → B̃i times the identity
on Qi ) and the morphisms βk+ j : B ′k+ j × Q′k+ j → B̃k × Qk defined earlier. By Example 2.21, these data
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yield a partition morphism (π, ϕ) : Z ′→ ShS Z . We have to show that this partition morphism hits all
points in X that are not in X ′.

First we show, for a V ∈ Vec, that a point p ∈ ShS X (T̃1, . . . , T̃k)(V ) whose projection to Ỹ (V ) is not
in Y0(V ) lies in the image of ϕ(T̃1, . . . , T̃k)(V ). To this end, we write

p = ((pi,t)t∈T̃i
)i∈[k]

with

pi,t ∈ ShS X (∅, . . . ,∅, {t},∅, . . . ,∅)(V )= Ỹ (V )×Y (V ) Bi (V )× Qi (V )⊂ Ỹ (V )×Ani × Qi (V ),

where the singleton {t} is in the i-th position. We write pi,t = (ỹ, ai,t , bi,t) with ỹ ∈ Ỹ (V ), ai,t ∈ Ani,
and bi,t ∈ Qi (V ).

By definition of a fibre product, the pi,t all have the same projection ỹ in Ỹ (V ) \Y0(V ), and hence we
can apply (2) of Proposition 3.3 to the points pk,t with t ∈ T̃k . This yields integers lt ∈ {0, . . . , s} and
points p′k,t ∈ B ′k+lt

(V )×Q′k+lt
(V ) for t ∈ T̃k whose images in Y ′(V ) are all equal, say to y′ ∈ Y ′(V ), and

which satisfy βk+lt (V )(p
′

k,t)= pk,t for all t . This implies that α(y′)= ỹ.
Define

T ′k+ j := {t ∈ T̃k | lt = j},

j = 0, . . . , s, and set T ′i := T̃i for i = 1, . . . , k − 1. In Z ′(T ′1, . . . , T ′k+s) we define the point q =
((qi,t)t∈T ′i )i∈[k+s] as follows. We set qi,t to be (y′, ai,t , bi,t) for i = 1, . . . , k−1 and t ∈ T ′i , and qi,t = p′k,t
for i = k, . . . , k+ s and t ∈ T ′i . Then

ϕ(T ′1, . . . , T ′k+s)(q)= p,
as desired.

Now, more generally, consider a point p in X (T1, . . . , Tk)(V ) \ X ′(T1, . . . , Tk)(V ), where the cardi-
nalities satisfy |Ti | ≥ |Si |. Then there exists an FIk-morphism ι= (ι1, . . . , ιk) : S→ (T1, . . . , Tk) such
that X (ι)(p) /∈ Y0(V ). Define T̃i := Ti \ Im(ιi ) and extend ι to an isomorphism ιe : S ⊔ (T̃1, . . . , T̃k)→

(T1, . . . , Tk) by defining ιi on T̃i to be the inclusion. Consider X (ιe)(p) ∈ X (S ⊔ (T̃1, . . . , T̃k))(V ). This
is also a point in ShS X (T̃1, . . . , T̃k)(V ) whose projection to Ỹ (V ) does not lie in Y0(V ). We can therefore
find a point q as described above showing that X (ιe)(p) is in the image of (π, ϕ) : Z ′ → ShS Z ; by
Definition 2.13, then so is p. □

4. Proof of the main theorem

The most general version of our Noetherianity result is the following.

Theorem 4.1. Any (FIop)k ×Vec-variety of product type is Noetherian.

Proof. We proceed by induction along the well-founded order on objects of product type in PM from
Section 2.7.3.

Let Z be an (FIop)k × Vec-variety of product type and let X1 ⊇ X2 ⊇ · · · be a descending chain
of closed (FIop)k ×Vec-subvarieties. Then either all X i are equal to Z , or there exists an i0 such that
X := X i0 is a proper closed (FIop)k ×Vec-subvariety of Z . In the latter case, by Theorem 3.1, there exist
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a finite number of objects Z1, . . . , Z N in PM of product type, along with k-tuples S1, . . . , SN ∈ FIk and
partition morphisms (π j , ϕ j ) : Z j → ShS j Z such that every point of X is hit by one of these. By the
induction hypothesis, all Z j s are Noetherian. For each j, by Lemma 2.16, the preimage in Z j of the chain
(ShS j X i )i≥i0 is a chain of closed subvarieties, which therefore stabilises. As soon as these N chains have
all stabilised, then so has the chain (X i )i — here we have used a version of Proposition 2.17. □

To deduce from this Theorems 1.1 and 1.5, we consider GL-varieties Z1, . . . , Zk as well as the product
Z := ZN

1 × · · ·× ZN
k . Recall Remark 2.9.

Proof of Theorem 1.5. We need to prove that any descending chain Z ⊇ X1 ⊇ . . . of Symk
×GL-stable

closed subvarieties of Z stabilises.
To each Zi is associated a Vec-variety, which by abuse of notation we also denote Zi ; see Remark 2.6.

Furthermore, Zi is a closed subvariety of Bi × Qi for some finite-dimensional variety Bi and some pure
polynomial functor Qi , and hence Z is a closed subvariety of

(B1× Q1)
N
× · · ·× (Bk × Qk)

N.

Now each X i defines a closed (FIop)k ×Vec-subvariety X̃ i of

Z̃ := [Y ; B1× Q1, . . . , Bk × Qk],

where Y is a point. By Theorem 4.1, the X̃ i stabilise. As soon as they do, so do the X i . □

Proof of the main theorem. Apply Theorem 1.5 with k = 1. □
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On the boundedness of canonical models
Junpeng Jiao

It is conjectured that the canonical models of varieties (not of general type) are bounded when the Iitaka
volume is fixed. We confirm this conjecture when a general fiber of the corresponding Iitaka fibration is
in a fixed bounded family of polarized log Calabi–Yau pairs.

1. Introduction

Throughout this paper, we work over the complex number field C.
By analogy with the definition of volumes of divisors, the Iitaka volume of a Q-divisor is defined as

follows: Let X be a normal projective variety and D be a Q-Cartier divisor. When the Iitaka dimension
κ(D) of D is nonnegative, the Iitaka volume of D is defined to be

Ivol(D) := lim sup
m→∞

κ(D)! h0(X,OX (⌊m D⌋))

mκ(D) .

For the definition of the Iitaka dimension, see [Lazarsfeld 2004, Definition 2.1.3].
For a pair (X,1), if the Iitaka dimension of the log canonical divisor K X +1 is nonnegative, it

is conjectured that a general fiber of the Iitaka fibration of K X +1 is birationally equivalent to a log
Calabi–Yau pair, according to the abundance conjecture. The main theorem states that, when a general
fiber of K X +1 belongs to a fixed bounded family with bounded polarization, the Iitaka volume of the
log canonical divisor lies in a set satisfying the descending chain condition (DCC). Furthermore, if the
Iitaka volume is fixed, then the canonical model is in a bounded family.

Theorem 1.1. Fix C a log bounded class of polarized log Calabi–Yau pairs, I ⊂ [0, 1] ∩ Q a DCC set of
rational numbers, n a positive integer and v a positive rational number. Suppose (X,1) is a projective klt
pair of dimension n, L is a divisor on X , and f : X → Z is a contraction which is birationally equivalent
to the Iitaka fibration of K X +1.

If a general fiber (Xg,1g, Lg) of f is in C and coeff(1)⊂ I, then

(1) Ivol(K X +1) is in a DCC set, and

(2) if Ivol(K X +1)= v is a constant, then

Proj
∞⊕

m=0

H 0(X,OX (mK X + ⌊m1⌋))

is in a bounded family.
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Theorem 1.1 is a special case of the following conjecture.

Conjecture 1.2. Let n be a positive integer, v a nonnegative rational number, and I ⊂ [0, 1] ∩ Q a DCC
set of rational numbers. Let D(n, v, I) be the set of varieties Z such that

• (X,1) is a projective klt pair of dimension n,

• coeff(1)⊂ I,

• Ivol(K X +1)= v is a constant, and

• f : X 99K Z is the Iitaka fibration associated with K X +1, where

Z = Proj
∞⊕

m=0

H 0(X,OX (m(K X +1))).

Then D(n, v, I) is in a bounded family.

An interesting application of Theorem 1.1 is when X → Z is a Fano-type fibration whose general
fibers are ϵ-lc. In this case, a general fiber of f is bounded according to the Birkar-BAB theorem, see
[Birkar 2021b], and −K X will induce a natural polarization on a general fiber. We have the following
corollary.

Corollary 1.3. Let n be a positive integer, v a positive rational number and I ⊂ [0, 1] ∩ Q a DCC set of
rational numbers. Suppose (X,1) is a projective klt pair of dimension n and f : X → Z is a contraction
such that

• coeff(1)⊂ I,

• K X +1∼Q,Z 0, and

• 1 is big over Z.

Then

• Ivol(K X +1) is in a DCC set, and

• if Ivol(K X +1)= v is a constant, then

Proj
∞⊕

m=0

H 0(X,OX (mK X + ⌊m1⌋))

is in a bounded family.

According to [Birkar et al. 2010], the canonical ring R(X, K X +1) :=
⊕

∞

m=0 H 0(X,OX (m(K X +1)))

is finitely generated, which implies that Z = Proj
⊕

∞

m=0 H 0(X,OX (m(K X +1))) is well-defined and
v = Ivol(K X +1) is a positive rational number. The validity of Conjecture 1.2 has been established
in different scenarios: when K X +1 is big, it was proved in [Hacon et al. 2014]; for the case where a
general fiber of f is ϵ-lc Fano-type, it was demonstrated in [Li 2024]; and when f is an elliptic curve,
[Filipazzi 2024] shows that X is actually bounded in codimension one. Notably, around the same time
this paper was completed, [Birkar 2021a] provided a proof of Conjecture 1.2 for the situation where a
general fiber of f belongs to a bounded family.
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It is shown in [Hacon et al. 2013] that the boundedness of varieties of general type is connected with
the DCC of volumes of the log canonical divisors. We think that the following conjecture is closely
related to Conjecture 1.2.

Conjecture 1.4. Let n ∈ N, and consider a DCC set I ⊂ [0, 1] ∩ Q. Then the set of Iitaka volumes

{Ivol(K X +1) | X is projective, (X,1) is klt, dim X = n and coeff(1)⊂ I}

is a DCC set.

The main idea is to prove the DCC of Iitaka volumes and the boundedness of the canonical models
when the locus of singular fibers of the Iitaka fibrations is “bounded”. We show that, in this case, we can
choose a uniform base such that the moduli part (see Theorem 2.11) descends.

To be precise, we are interested in the following set of pairs and the corresponding Iitaka fibrations.

Definition 1.5. Fix a DCC set I ⊂ [0, 1] ∩ Q and positive integers n, r , l. Let D(n, I, l, r) be the set of
pairs (X,1) satisfying the following conditions:

• (X,1) is a projective klt pair of dimension n.

• coeff(1)⊂ I.

• f : X → Z is the canonical model of (X,1).

• A general fiber (Xg,1g) of f has a good minimal model.

• Let (Z ′, BZ ′ + MZ ′) be the generalized pair defined in Theorem 2.12; then l MZ ′ is nef and Cartier.

• There is a Q-Cartier integral divisor D and a Q-divisor F ∈ |K X +1|Q/Z such that (X,Supp(1−F))
is log smooth over Z \ D and

Ivol(K X +1+ f ∗D)≤ r Ivol(K X +1).

Theorem 1.6. Fix a DCC set I ⊂ [0, 1] ∩ Q and positive integers n, r , l. Then the set

{Ivol(K X +1) | (X,1) ∈ D(n, I, l, r)}

satisfies the DCC.

As an application, we prove the following boundedness result.

Theorem 1.7. Fix a DCC set I ⊂ [0, 1] ∩ Q, positive integers n, r , l and a positive rational number v.
Then the set

{Proj R(X, K X +1) | (X,1) ∈ D(n, I, l, r), Ivol(K X +1)= v}

is bounded.

The idea is to prove that we can choose an snc model (see Definition 2.10) of (X,1− F)→ Z to
be in a bounded family: this is why we need the last condition in Definition 1.5. We believe that the
existence of D and the integer r naturally comes from a suitable moduli space of a general fiber of f .
Theorem 1.1 is an application of Theorems 1.6 and 1.7 based on this idea.
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2. Preliminaries

Notation and conventions. Let I ⊂ Q be a subset. We say I satisfies the DCC if there is no strictly
decreasing subsequence in I. For a birational morphism f : Y → X and a divisor B on X , f −1

∗
(B)

denotes the strict transform of B on Y , and Exc( f ) denotes the sum of the reduced exceptional divisors
of f . For a Q-divisor D, a map defined by the linear system |D| means a map defined by |⌊D⌋|. Given
two Q-Cartier Q-divisors A and B, A ∼Q B means that there is an integer m > 0 such that m(A− B)∼ 0.
For a Q-divisor D, we write D = D≥0 − D≤0 as the difference of its positive and negative parts.

A subpair (X,1) consists of a normal variety X and a Q-divisor1 on X such that K X +1 is Q-Cartier.
We call (X,1) a pair if, in addition, 1 is effective. If g : Y → X is a birational morphism and E is a
divisor on Y , the discrepancy a(E, X,1) is −coeffE(1Y ), where KY +1Y := g∗(K X +1). A subpair
(X,1) is called sub-klt (resp. sub-lc) if, for every birational morphism Y → X as above, a(E, X,1)>−1
(resp. ≥ −1) for every divisor E on Y . A pair (X,1) is called klt (resp. lc) if (X,1) is sub-klt (resp.
sub-lc) and (X,1) is a pair.

Let (X,1) and (Y,1Y ) be two subpairs, and let h : Y → X be a birational morphism. We say that
(Y,1Y )→ (X,1) is a crepant birational morphism if KY +1Y ∼Q h∗(K X +1) and h∗1Y =1. Two
pairs (X i ,1i ), i = 1, 2, are crepant birationally equivalent if there is a subpair (Y,1Y ) and two crepant
birational morphisms (Y,1Y )→ (X i ,1i ), i = 1, 2.

A generalized pair (X,1+ MX ) consists of a normal variety X equipped with a projective morphism
X → U , a birational morphism f : X ′

→ X where X is normal, a Q-boundary 1, and a Q-Cartier divisor
MX ′ on X ′ such that K X +1+ MX is Q-Cartier, MX ′ is nef over U , and MX = f∗MX ′ . Let 1′ be the
Q-divisor such that

K X ′ +1′
+ MX ′ = f ∗(K X +1+ MX ).

We call (X,1+ MX ) a generalized klt (resp. lc) pair if (X ′,1′) is sub-klt (resp. sub-lc). When U is a
point we drop it by saying X is projective.

A contraction is a projective morphism f : X → Z with f∗OX = OZ ; hence it is surjective with
connected fibers. A fibration means a contraction X → Z such that dim X > dim Z . Let X → Z be a
fibration and R a Q-divisor on X . We write R = Rv + Rh , where Rv is the vertical part and Rh is the
horizontal part.

For a scheme X , a stratification of X is a disjoint union
∐

i X i of finitely many locally closed subschemes
X i ↪→ X such that the morphism

∐
i X i → X is both a monomorphism and surjective.

The language of the b-divisor was introduced by Shokurov.

Definition 2.1. Let X be a projective scheme. We say a formal sum B =
∑

aνν, aν ∈ Q, where the sum
ranges over all divisorial valuations of X , is a b-divisor if the set

FX = {ν | aν ̸= 0 and the center ν on X is a divisor}

is finite. The trace BY of B is the sum
∑

aνBν , where the sum now ranges over the elements of FY .
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Notice that, by definition, a generalized pair (X,1+ MX ) defines a b-divisor M.

Definition 2.2. For a klt pair (X,1) with a projective morphism µ : X → U , by [Birkar et al. 2010], the
canonical ring

R(X/U, K X +1) :=

⊕
m≥0

µ∗OX (m(K X +1))

is a finitely generated OU -algebra. We define the canonical model of (X,1) over U to be

Proj R(X/U, K X +1).

When U is a point we drop it by saying X is projective.

Next, we state some results that we will use in what follows.

Theorem 2.3 [Hacon et al. 2013, Theorem 2.12]. Let f : X → U be a surjective projective morphism
and (X,1) a dlt pair such that

• for a very general point u ∈ U , the fiber (Xu,1u) has a good minimal model, and

• the ring R(X/U, K X +1) is finitely generated.

Then (X,1) has a good minimal model over U.

Theorem 2.4 [Birkar and Zhang 2016, Theorem 1.3]. Let d and l be two positive integers and I ⊂ [0, 1]

a DCC set of real numbers. Then there is a positive number m0 depending only on d, l and I satisfying
the following. Assume that

• (Z , B) is a projective lc pair of dimension d,

• coeff(B) ∈ I,

• l M is a nef Cartier divisor, and

• K Z + B + M is big,

then the linear system |m(K Z + B + M)| defines a birational map for every positive integer m such that
m0 | m.

Theorem 2.5 [Birkar and Zhang 2016, Theorem 8.1]. Let I be a DCC set of nonnegative real numbers
and d a natural number. Then there is a real number e ∈ (0, 1) depending only on I and d such that, if

• (Z , B) is projective lc of dimension d,

• M =
∑
µ j M j , where M j are nef Cartier divisors,

• the coefficients of B and the µ j are in I, and

• K Z + B + M is a big divisor,

then K Z + eB + eM is a big divisor.
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Theorem 2.6 [Filipazzi 2018, Theorem 1.10]. Let I ⊂ [0, 1]∩Q be a DCC set, (W, D) a log smooth pair
with D reduced, and M a fixed Q-Cartier Q-divisor on W . Suppose D is the set of all projective simple
normal crossing pairs (Z , B) such that coeff(B)⊂ I, there exists a birational morphism f : Z → W and
f∗B ≤ D. Then, the set

{vol(K Z + B + f ∗M) | (Z , B) ∈ D}

satisfies the DCC.

Theorem 2.7 [Filipazzi 2018, Theorem 1.12]. Let (Z,Supp(B))→T be a projective log smooth morphism
and {xi }i≥1 ⊂ T a set of closed points. Denote by (Zi , Bi ) the pair given by the fiber product (Z,B)×T xi .
Assume that

• 0 ≤ B ≤ red(B), and

• there is a Q-divisor M on Z such that Mi = M|Zi is nef for every i .

Then, we have vol(K Zi + Bi + Mi )= vol(K Z j + B j + M j ) for every i, j ∈ N.

Definition 2.8. Let X and Z be normal quasiprojective varieties and f : X → Z a contraction. Let R be
a Q-divisor on X such that K X + R is Q-Cartier. We call (X, R)→ Z an lc-trivial fibration if

• (X, R) is sub-klt over the generic point of Z ,

• K X + R ∼Q,Z 0, and

• h0(Xη,OXη(⌈R≤0⌉))= 1, where Xη is the generic fiber of f .

Definition 2.9 [Kollár 2007, Definition 8.3.6]. Let f : X → Z be a projective morphism between normal
projective varieties, R be a Q-divisor on X and B be a divisor on Z . We say that f : X → Z and the
divisors R and B satisfy the standard normal crossing assumption if the following hold:

• X and Z are smooth.

• Supp(R)+ Supp( f ∗B) and B are snc divisors.

• (X,Supp(R)) is log smooth over Z \ B.

In practice, the assumptions on X and the divisors R and B are completely harmless. By contrast, it
takes some work to reduce the problems on Z to problems on the following “nice” birational model of Z .

Definition 2.10. An snc model of f : (X, R)→ Z is a birational model Z ′
→ Z such that there is a reduced

divisor D′ on Z ′, a Q-divisor B on Z , and a crepant birational morphism φ : (X ′, R′)→ (X, R + f ∗B),
such that the morphism X ′

→ Z ′ and R′, D′ satisfy the standard normal crossing assumption.

The following is a general version of the canonical bundle formula given in [Kollár 2007].

Theorem 2.11 (the canonical bundle formula). Let X, Z be normal projective varieties and f : (X, R)→ Z
an lc-trivial fibration with generic fiber Xη. Suppose B is a reduced divisor on Z such that f has slc
fibers in codimension 1 over Z \ B; that is, if D is a prime divisor not contained in B, then

• no component of Rv dominates D, and

• (X, R + f ∗D) is sub-lc over the generic point of D.
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Then one can write
K X + R ∼Q f ∗(K Z + BZ + MZ ),

where the following hold:

(a) MZ = M(X/Z , R) is the moduli part. It is a b-divisor depending only on the crepant birational
equivalence class of (Xη, R|Xη) and Z such that the following hold:

• There is a birational morphism Z ′
→ Z such that MZ is the pushforward of MZ ′ := M(X ′/Z ′, R′)

and MZ ′′ = M(X ′′/Z ′′, R′′)= π∗MZ ′ for any birational morphism Z ′′
→ Z ′, where X ′ is the

normalization of the main component of X ×Z Z ′ and (X ′, R′)→ (X, R) is a crepant birational
morphism. In this case, we say M descends on Z ′.

• If X → Z and R, B satisfy the standard normal crossing assumption, see Definition 2.9, then M
descends on Z.

(b) BZ is the unique Q-divisor supported on B for which there is a codimension ≥ 2 closed subset
W ⊂ Z such that the following hold:

• (X \ f −1(W ), R + f ∗(B − BZ )) is lc.
• Every irreducible component of B is dominated by an lc center of (X, R + f ∗(B − BZ )).

(c) If the morphism X → Z and the divisors R and B satisfy the standard normal crossing assumption, see
Definition 2.9, then BZ is also the unique smallest Q-divisor such that Rv+ f ∗(B − BZ )≤ red( f ∗B).

Proof. Items (a) and (b) follow from [Kollár 2007, Theorem 8.5.1].
For (c): when Rh ≥ 0, item (c) is [Kollár 2007, Theorem 8.3.7]. We use the idea in this result to

tackle the general case. If the morphism X → Z and the divisors R and B satisfy the standard normal
crossing assumption, then (Z ,Supp(B)) is log smooth. We replace R with R + f ∗(B − BZ ) and BZ with
BZ + (B − BZ )= B; then

• there is a codimension ≥ 2 closed subset W ⊂ Z such that (X \ f −1(W ), R) is sub-lc, and

• every irreducible component of B is dominated by an lc center of (X, R).

It is easy to see that, to prove (c), we only need to prove that W can be chosen to be the empty set, which
is equal to saying that (X, R) is lc.

Suppose (X, R) is not lc, and consider the diagram

(X ′, R′)

f ′

��

πX
// (X, R)

f
��

Z ′

π
// Z

where π is birational, πX is crepant birational, f ′
: X ′

→ Z ′ is equidimensional and πX extracts a non-lc
place of (X, R), which is denoted by E . Thus we have that coeffE(R′) > 1. Applying (a) and (b) for the
lc-trivial fibration f ′

: (X ′, R′)→ Z ′, we have

K X ′ + R′
∼Q f ′∗(K Z ′ + B ′

+ MZ ′).
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By assumption, X → Z and the divisors R and B satisfy the standard normal crossing assumption. Then
M descends on Z , π∗MZ = MZ ′ and K Z ′ + B ′

∼Q π
∗(K Z + B). Because (Z , B) is lc, (Z ′, B ′) is sub-lc.

Let B̃ be a reduced divisor on Z ′ such that f ′ has slc fibers in codimension 1 over Z ′
\ B̃. By (b), B ′ is

the unique Q-divisor for which there is a codimension ≥ 2 closed subset W ′
⊂ Z ′ such that

• (X ′
\ f ′−1(W ′), R′

+ f ′∗(B̃ − B ′)) is sub-lc, and

• every irreducible component of B ′ is dominated by an lc center of (X ′, R′
+ f ′∗(B̃ − B ′)).

Because f ′ is equidimensional, coeffE(R′
+ f ′∗(B̃ − B ′)) ≤ 1 and coeffE(R′) > 1, we then have that

coeffE( f ′∗(B̃ − B ′)) < 0. Since B̃ is reduced and E is vertical, we have coeff f ′(E)(B ′) > 1, which
contradicts the fact that (Z ′, B ′) is sub-lc. □

The next theorem says that the canonical bundle formula works on the Iitaka fibration of a klt pair.

Theorem 2.12. Let (X,1) be an n-dimensional projective klt pair, let f : X → Z be a contraction such
that κ(Xη, K Xη +1|Xη) = 0, where Xη is the generic fiber of f , and let g : W → Z be a birational
morphism. Then there is a commutative diagram

X
f

��

X ′
h X

oo

f ′

��

Z Z ′

h
oo

such that the following hold:

(1) h and h X are birational, h factors through g, and f ′ is equidimensional.

(2) Z ′ is smooth and X ′ has only quotient singularities.

(3) There are a klt pair K X ′ +1′, an effective Q-divisor F ′ on X ′, and (Z ′, BZ ′ + MZ ′) a generalized klt
pair such that

• M descends on Z ′,
• K X ′ +1′

∼Q f ′∗(K Z ′ + BZ ′ + MZ ′)+ F ′,
• f ′

∗
OX ′(m F ′)∼= OZ ′ for any m ≥ 0,

• h X ∗OX ′(m(K X ′ +1′))∼= OX (m(K X +1)) for all m ≥ 0,
• (X,1), (X ′,1′) and (Z ′, BZ ′ + MZ ′) have the same canonical models, and
• Ivol(K X +1)= Ivol(K ′

X +1′)= vol(K Z ′ + BZ ′ + MZ ′).

(4) If coeff(1) is in a DCC set and a general fiber (Xg,1g) of f has a good minimal model, then
coeff(BZ ′) and coeff(BZ ) are in a DCC set, where BZ := h∗BZ ′ .

Proof. Fix R with Rh ≤ 0 such that f is an lc-trivial fibration for the subpair (X,1+ R). Notice that such
an R exists by the assumption κ(Xη, K Xη +1|Xη) = 0, and the choice of Rh is unique. Let M be the
moduli b-divisor of this lc-trivial fibration. By the weak semi-stable reduction theorem by Abramovich
and Karu [2000], we can construct X ′ and Z ′ satisfying (1) and (2) such that M descends on Z ′.
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For (3), because (X,1) is klt, we can choose a sufficiently large integer k such that if we define
1′

:= (h X )
−1
∗
1+ (1−1/k)E , where E is the reduced exceptional divisor, then K X ′ +1′

≥ h∗

X (K X +1).
Also by the semistable reduction, X ′ has a toroidal structure (X ′

\ Supp(1′)) ⊂ X ′, and we have that
(X ′,1′) is klt. It is easy to see that

(h X )∗OX ′(m(K X ′ +1′))∼= OX (m(K X +1))

for all m ≥ 0; hence κ(X, K X +1)= κ(X ′, K X ′ +1′).
If κ(X, K X +1)< 0, choose a ≫ 0 such that a(K X ′ +1′) is Cartier. Because κ(Xη, K Xη +1|Xη)= 0,

we may also assume that h0(X ′
η,OX ′

η
(a(K X ′

η
+1′

|X ′
η
)))=1. Since Z ′ is smooth and f ′ is equidimensional,

by [Hartshorne 1980, Corollary 1.7], f ′
∗
OX ′(a(K X ′ +1′)) is a reflexive sheaf of rank 1. Moreover, since Z ′

is smooth, f ′
∗
OX ′(a(K X ′ +1′)) is a line bundle on Z ′; denote it by OZ ′(D). Choose a general sufficiently

ample divisor A′ on Z ′ such that OZ ′(A′
+ D) is big. Let A := (1/a)A′; then f ′

∗
OX ′(a(K X ′ +1′

+ f ′∗ A))
is a big line bundle and κ(X ′, K X ′ +1′

+ f ′∗ A)= dim Z ′
≥ 0. Because A′ is general, (X ′,1′

+ f ′∗ A)
is klt. It is easy to see that, to prove (3), we may replace (X ′,1′) with (X ′,1′

+ f ′∗ A) and assume
κ(X, K X +1)≥ 0.

Suppose κ(X, K X +1)≥ 0 and choose a ≫ 0 such that H 0(X ′,OX ′(a(K X ′ +1′))) > 0; then we can
choose L ∈ |a(K X ′ +1′)|. Define

G := max{N | N is an effective Q-divisor such that L ≥ f ′∗N }

and
D :=

1
a

G and F ′
:=

1
a
(L − f ′∗G).

Then we have K X ′ +1′
∼Q f ′∗D + F ′. It is easy to see that h0(X ′

η,OX ′
η
(m F ′

|X ′
η
)) = 1 for all m ≥ 0.

Because f ′ is equidimensional, f ′
∗
OX ′(m F ′) is a reflexive sheaf of rank 1 for every m ≥ 0. Moreover,

since Z ′ is smooth, f ′
∗
OX ′(m F ′) is an invertible sheaf for every m ≥ 0. Since Supp(F ′) does not contain

the whole fiber over any codimension 1 point on Z ′, it is easy to see that f ′
∗
OX ′(m F ′)∼=OZ ′ for all m ≥ 0.

Let X ′
η be the generic fiber of f ′; then (K X ′ +1′)|X ′

η
∼Q F ′

|X ′
η
. Because f ′

∗
OX ′(m F ′)∼=OZ ′ , we have

H 0(X ′
η,OX ′

η
(⌈(1′

− F ′)≤0⌉))= 1 and f ′
: (X ′,1′

− F ′)→ Z ′ is an lc-trivial fibration. By the canonical
bundle formula, there is a generalized pair (Z ′, BZ ′ + MZ ′) such that

K X ′ +1′
− F ′

∼Q f ′∗(K Z ′ + BZ ′ + MZ ′).

Also because f ′
∗
OX ′(m F ′)∼= OZ ′ , there is an integer l > 0 such that

H 0(X ′,OX ′(ml(K X ′ +1′)))∼= H 0(Z ′,OZ ′(ml(K Z ′ + BZ ′ + MZ ′)))

for all m ≥ 0. Then (X,1), (X ′,1′) and (Z ′, BZ ′ + MZ ′) all have the same canonical models, and
Ivol(K X +1)= Ivol(K ′

X +1′)= vol(K Z ′ + BZ ′ + MZ ′).
For (4), if coeff(1) is in a DCC set, by the construction of 1′, coeff(1′) is also in a DCC set. Because

(X ′,1′) is a klt pair, by the main theorem of [Birkar et al. 2010], R(X ′/Z , K X ′ +1′) is finitely generated.
Because a general fiber (Xg,1g) has a good minimal model and K X ′ +1′

−h∗(K X +1) is effective and
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exceptional over X , we have that a general fiber (X ′
g,1

′
g) of (X ′,1′)→ Z ′ has a good minimal model.

By Theorem 2.3, (X ′,1′) has a good minimal model over Z ′; we denote it by hY : (X ′,1′) 99K (Y,1Y ).
By (2), K X ′ +1′

∼Q,Z ′ F ′ and f ′
∗
OX ′(m F ′)∼= OZ ′ for all m ≥ 0; therefore Z ′ is the canonical model of

(X ′,1′) over Z ′. By the definition of good minimal models, we have KY +1Y ∼Q,Z ′ 0 and (hY )∗F ′
= 0.

Since coeff(1′) is in a DCC set and 1Y is the pushforward of 1′, coeff(1Y ) is also in a DCC set.
Let B ′ be the unique smallest reduced divisor on Z ′ such that f ′ has slc fibers in codimension 1 over
Z ′

\ B ′. By Theorem 2.11, there is a codimension ≥ 2 closed subset W ⊂ Z ′ such that BZ ′ is the smallest
Q-divisor supported on B ′ such that (X ′

\ f ′−1(W ),1′
− F ′

+ f ′∗(B ′
− BZ ′)) is sub-lc.

Because K X ′ +1′
− F ′

∼Q,Z ′ 0, KY +1Y ∼Q,Z ′ 0, and (hY )∗(1
′
− F ′)= 0, we have that BZ ′ is also

the smallest Q-divisor supported on B ′ such that (Y \ f −1
Y (W ),1Y + hY ∗ f ′∗(B ′

− BZ ′)) is lc. Because
coeff(1Y ) is in a DCC set, by [Hacon et al. 2014, Theorem 1.1], coeff(BZ ′) is in a DCC set. □

Remark 2.13. Suppose (X,1) is a projective klt pair and f : X 99K Z is the canonical model of
(X,1). Let g : Y → X be a resolution of the indeterminacy of f . Choose a sufficiently large integer k
such that if we define 1Y := g−1

∗
1+ (1 − 1/k)E , where E is the reduced exceptional divisor, then

KY +1Y ≥ g∗(K X +1).
Because KY +1Y − g∗(K X +1) is effective and exceptional over X , Z is also the canonical model

of (Y,1Y ) and κ(Yη, KYη +1Y |Yη) = 0. By Theorem 2.12, the contraction Y → Z defines a moduli
b-divisor M and a generalized pair (Z ′, B ′

+ MZ ′) with a birational morphism Z ′
→ Z , Z is also the

canonical model of (Z ′, BZ ′ + MZ ′), and Ivol(K X +1)= Ivol(KY +1Y )= vol(K Z ′ + BZ ′ + MZ ′).
Furthermore, if coeff(1) is in a DCC set, then coeff(1Y ) is also in a DCC set. If a general fiber

(Xg,1g) of f has a good minimal model, then a general fiber (Yg,1Yg ) of fY has a good minimal model,
and therefore coeff(B ′) is in a DCC set by Theorem 2.12.

3. DCC of Iitaka volumes

Lemma 3.1. Fix a positive integer C and a finite set I ⊂ [0, 1] ∩ Q. Suppose Z → T is a family of
projective smooth varieties, where T is of finite type. Let A be a relative very ample divisor on Z over T .
Let S be a set of generalized pairs such that, for every (Z , BZ + MZ ) ∈ S, there is a closed point t ∈ T
such that

• there is a birational morphism φ : Z → Zt , and

• φ∗MZ ∼Q D1−D2 for two effective Q-divisors Dk with coeff(Dk)⊂ I and degAt
(Dk)≤ C , k = 1, 2.

Then there is a smooth projective morphism Z ′
→ T ′, where T ′ is of finite type, and finitely many

Q-divisors Mk on Z ′ over T ′ such that, for any (Z , BZ + MZ ) ∈ S, there is a closed point t ′
∈ T ′ and an

isomorphism ψ : Zt → Z ′

t ′ such that ψ∗φ∗MZ ∼Q Mk |Z ′

t ′
.

Proof. Since the coefficients of Dk , k = 1, 2, are in a finite set I, there is a positive number δ such
that coeff(Dk) > δ, which implies (1/δ)Dk ≥ ⌊Dk⌋, k = 1, 2. Because degAt

(Dk) ≤ C , we have that
degAt

(Supp(Dk)) ≤ C/δ. By boundedness of the Chow variety, see [Kollár 1996, §1.3], there is a
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morphism Z ′
→ T ′ and a divisor D on Z ′ such that, for every closed point t ∈ T , there is a closed point

t ′
∈ T ′ and an isomorphism ψ : Zt ′ → Z ′

t such that Supp(ψ∗Dk)⊂ D|Z ′

t ′
, k = 1, 2.

Let R be a component of D, let S → T ′ be the normalization of the Stein factorization of R → T ′ such
that S → T ′ is finite and S is normal, and consider the diagram

Z ′′

��

// Z ′

��

S // T ′

Because S → T ′ is finite, S is irreducible and Z ′′
→ S is flat, we have that Z ′′ is a quasiprojective variety.

Z ′′ is normal by [EGA IV3 1966, 5.12.7]. Replacing Z ′
→ T ′ by Z ′′

→ S finitely many times, we may
assume that the fibers of R → T ′ are irreducible for every component R of D.

Since, for every component R of D, the coefficients of R in D1 and D2 are in a finite set, there are
only finitely many possibilities for D1, D2 and D1 − D2. Then there are only finitely many Q-divisors
Mk on Z ′ over T ′ such that ψ∗φ∗MZ ∼Q Mk |Zt for some k. □

The next theorem says that if we bound the Iitaka volume of (X,1)∈D(n, I, l, r), then we can choose
the snc model of X → Proj R(X, K X +1) to be in a bounded family depending only on n, I, l and r .

Theorem 3.2. Fix a DCC set I ⊂ [0, 1] ∩ Q, positive integers n, l, r, v > 0, and a positive number δ > 0.
Define D′(n, I, l, r, v, δ) to be the set of n-dimensional projective pairs (X,1) such that

• (X,1) ∈ D(n, I, l, r),

• Ivol(K X +1)≤ v, and

• if Z is the canonical model of (X,1), then there is an effective ample Q-divisor H on Z with
coeff(H) > δ such that

Ivol(K X +1+ f ∗H)≤ r Ivol(K X +1).

Then there is a family of projective log smooth pairs (Z,P) → T , where T is a scheme of finite type,
and finitely many Q-divisors Mk , k ∈ 3, on Z , where 3 is a finite index set, such that, for every
(X,1) ∈ D′(n, I, l, r, v, δ), there is a closed point t ∈ T such that the following hold:

• Zt is birationally equivalent to the canonical model of (X,1),

• If M is the moduli b-divisor corresponding to (X,1) 99K Z defined in Remark 2.13, then MZt ∼Q

Mk |Zt for some k ∈3,

• There is a birational morphism X ′
→ X and a Q-divisor F ′ on X ′ such that the morphism X ′

→ Zt

and 1′
− F ′, Pt satisfy the standard normal crossing assumption, where 1′ is the strict transform

of 1 plus the exceptional divisor and F ′
∈ |K X ′ +1′

|Q/Zt . In particular, M descends on Zt .

• If (Z ′, BZ ′ + MZ ′) is the generalized pair defined in Remark 2.13 such that there is a birational
morphism φt : Z ′

→ Zt , then B := φt∗BZ ′ ≤ Pt .
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Proof. We replace I by I ∪ {1 − 1/k, k ∈ N}; note that I is still a DCC set.

Step 1: We prove that Z is birationally bounded.
Suppose κ(X, K X +1)= d ≤ n; then dim Z = d . Let Z ′

→ Z be a projective birational morphism and
(Z ′, BZ ′ + MZ ′) be the generalized klt pair defined in Remark 2.13, and denote the morphism Z ′

→ Z
by h. By Theorem 2.12 (4), coeff(BZ ′) is in a DCC set I ′ depending only on I, d, n. By assumption,
l MZ ′ is nef and Cartier. We may assume that {1 − 1/k, k ∈ N} ⊂ I ′.

By Theorem 2.4, there is an integer r ′ such that |r ′(K Z ′ + BZ ′ + MZ ′)| defines a birational map
φ : Z ′ 99K W . Let h′

: Z ′′
→ Z ′ be a birational morphism such that φ extends to a morphism φ′

: Z ′′
→ W .

Because (Z ′, BZ ′ + MZ ′) is generalized klt, we can choose an integer k ≫ 0 such that if we define

BZ ′′ := h′−1
∗

BZ ′ +

(
1 −

1
k

)
E,

where E is the reduced h′-exceptional divisor, then K Z ′′ + BZ ′′ + MZ ′′ −h′∗(K Z ′ + BZ ′ + MZ ′) is effective
and exceptional over Z ′. Then we replace (Z ′, BZ ′ + MZ ′) by (Z ′′, BZ ′′ + MZ ′′); we may assume that
|r ′(K Z ′ + BZ ′ + MZ ′)| defines a birational morphism φ : Z ′

→ W . Note that we keep coeff(BZ ′) ⊂ I ′,
Z is still the canonical model of (Z ′, BZ ′ + MZ ′) and vol(K Z ′ + BZ ′ + MZ ′)= Ivol(K X +1)≤ v.

Because |r ′(K Z ′ + BZ ′ + MZ ′)| defines a birational morphism φ : Z ′
→ W , there is a very ample divisor

A on W such that r ′(K Z ′ + BZ ′ + MZ ′)∼ φ∗ A + F1, where F1 is a φ-exceptional Q-divisor. Because

Ad
≤ vol(r ′(K Z ′ + BZ ′ + MZ ′))= r ′d Ivol(K X +1) < r ′dC,

by boundedness of the Chow variety, see [Kollár 1996, §1.3], W is in a bounded family. Then there
exists a projective morphism W ′

→ T over a scheme T of finite type and a relative very ample divisor A′

depending only on n, I, l, v, such that there is a closed point t ∈ T and an isomorphism χ : W → W ′
t

such that χ∗A′
t = A. Because r ′ is fixed and the coefficients of BZ ′ are in a DCC set I ′, it is easy to see

that the coefficients of F1 are also in a DCC set Ĩ.
Passing to a stratification of T and a log resolution of the generic fiber of W ′

→ T , we may assume that
there is a birational morphism ξ : W → W ′, and W → T is a smooth morphism. Let A be a very ample
divisor on W over T . Then there is an integer r ′′ such that r ′′ξ∗A′

−A is big over T . After increasing r ′,
replacing Z ′ by a birational model and (W, A) by (Wt ,At), we may assume W is smooth and there is a
very ample divisor A on W such that

Ad
≤ vol(r ′(K Z ′ + BZ ′ + MZ ′)).

Step 2: We construct a birational map Z ′ 99K Z !, two morphisms h!
: Z !

→ Z , φ!
: Z !

→ W and an ample
Q-divisor L ! on Z !.

Let m be the Cartier index of H , and define

L ′
:=

1
r ′
(φ∗ A + F1)+ (2d + 1)φ∗ A + (2d + 1)mh∗H

∼Q K Z ′ + BZ ′ + MZ ′ + (2d + 1)φ∗ A + (2d + 1)mh∗H. (3-1)



On the boundedness of canonical models 2131

Because H is an effective ample Q-divisor on Z , by [Birkar et al. 2010], the canonical model of
K Z ′ + BZ ′ + MZ ′ + (2d + 1)φ∗ A + (2d + 1)mh∗H exists; denote it by h′

: Z ′ 99K Z !. Then

h′

∗
(K Z ′ + BZ ′ + MZ ′ + (2d + 1)φ∗ A + (2d + 1)mh∗H)∼Q h′

∗
L ′

is ample, and we write L !
:= h′

∗
L ′. Because φ∗ A and mh∗H are nef Cartier divisors, by [Birkar and Zhang

2016, Lemma 4.4], both φ∗ A and h∗H are h′-trivial, so there are two birational morphisms φ!
: Z !

→ W
and h!

: Z !
→ Z as in the following diagram:

Z ′

h

vv

φ

((

h′

��

Z Z !h!

oo
φ!

// W

Because L ! is ample and effective and W is smooth, by the negativity lemma, L !
= φ!∗φ!

∗L !
− FW , where

FW is effective and has the same support as Exc(φ!). Then we have

Supp(φ!∗φ!
∗L !)⊃ Exc(φ!) and Z !

\ Supp(L !)⊇ W \ Supp(φ!
∗L !).

Step 3: We use the two birational morphisms Z !
→ Z , Z !

→ W and ampleness of L ! to show that if there
is a Q-Cartier integral divisor D and a Q-divisor F ∈ |K X +1|Q/Z on X such that (X,Supp(1− F)) is
log smooth over Z \ D, then (X,Supp(1− F)) is log smooth over W \ Supp(φ!

∗
L !

+φ!
∗
h!∗D).

Consider the diagram

X
f
��

X !
g

oo

f !

��

Z Z !

h!

oo

where X ! is the normalization of the main component of X ×Z Z !. Because Supp(h!∗D)= h!−1(Supp(D))
and X → Z is smooth over Z \Supp(D), we have that X !

→ Z ! is smooth over Z !
\Supp(h!∗D). Because

Z ! is normal, f !−1(Z !
\ Supp(h!∗D)) is normal and

f !−1(Z !
\ Supp(h!∗D))∼= f −1(Z \ Supp(D))×Z\Supp(D) Z !

\ Supp(h!∗D).

Define K X ! +1!
′

− F !
′

:= g∗(K X +1− F), where 1!
′

and F !
′

are two effective Q-divisors with
no common component. Suppose 1!

′

= 1!
′′

+ 1v and F !
′

= F !
′′

+ Fv, where 1v and Fv are f !-
vertical and not supported on f !−1(Supp(h!∗D)), and the prime components of 1!

′′

and F !
′′

are either
f !-horizontal or supported on f !−1(Supp(h!∗D)). Because f ! is smooth over Z !

\ Supp(h!∗D), we have
that 1v| f !−1(Z !\Supp(h!∗ D)) and Fv| f !−1(Z !\Supp(h!∗ D)) are the pullback of two divisors on Z !

\ Supp(h!∗D).
It is easy to see that there is a Q-divisor R! on X ! such that Supp(R!) ⊂ f !−1(Supp(h!∗D)) and
1v − Fv − R!

∼Q, f ! 0. Let 1! and F ! be two effective Q-divisors without common component such
that 1!

− F !
=1!

′′

− F !
′′

+ R!; then K X ! +1!
− F !

∼Q, f ! 0.
If P is a component of Supp(1!

− F !), then it is either supported on f !−1(h!∗D) or is f !-horizontal.
Then Supp(1!

− F !) does not contain any irreducible component of the fiber over any prime divisor on Z !
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that is not contained in Supp(h!∗D), and we have

Supp(1!
− F !)|(Z !\Supp(h!∗ D)) = Supp(1− F)×Z (Z !

\ Supp(h!∗D)).

Because (X,1) ⊂ D(n, I, l, r), by definition of D(n, I, l, r), we know that (X,Supp(1− F)) is log
smooth over Z \ D, and hence f !

: (X !,Supp(1!
− F !))→ Z ! is log smooth over Z !

\ Supp(h!∗D).
Recall that Z !

\ Supp(L !)⊇ W \ Supp(φ!
∗L !). Then

Z !
\ Supp(h!∗D)⊇ Z !

\ {Supp(L !
+ h!∗D)} ⊇ W \ {Supp(φ!

∗L !
+φ!

∗h!∗D)}

and X !
→ W is isomorphic to X !

→ Z ! over W \{Supp(φ!
∗L !

+φ!
∗h!∗D)}. Then (X !,Supp(1!

−F !))→ W
is log smooth over W \ {Supp(φ!

∗L !
+φ!

∗h!∗D)}.

Step 4: We prove that (W,Supp(φ!
∗L !

+φ∗BZ ′ +φ!
∗h!∗D)) is log bounded.

Because Supp(φ!
∗L !

+ BW +φ!
∗h!∗D)= Supp(φ∗(φ

∗ A + F1 + BZ ′ + h∗(D + H))), we only need to
prove that (W,Supp(φ∗(φ

∗ A + F1 + BZ ′ +h∗(D + H)))) is log bounded. Recall that W is bounded by A
by construction; we only need to work on the boundary.

Recall that the coefficients of F1 and BZ ′ are in a DCC set and coeff(H) ≥ δ by assumption. Then
there is a positive number δ′ < 1 such that (F1 + BZ ′)/δ′ ≥ red(F1 + BZ ′). By assumption, A and D are
two effective integral divisors, so we only need to prove that there exists a constant v′ > 0 such that

Ad−1.φ∗(red(φ∗ A + F1 + BZ ′ + h∗D)+ h∗H) < v′.

By the projection formula, this is equivalent to proving

(φ∗ A)d−1.(red(φ∗ A + F1 + BZ ′ + h∗D)+ h∗H) < v′.

Let G = 2((2d + 1)+ 1)φ∗ A. By [Hacon et al. 2013, Lemma 3.2], we have

Gd−1.(red(φ∗ A + F1 + BZ ′ + h∗D))≤ 2d vol
(

K Z ′ +
1
δ′

BZ ′ +φ∗ A +
1
δ′

F1 + h∗D + G
)
. (3-2)

Recall that the coefficients of BZ ′ are in a DCC set I ′ and the Cartier index of the b-divisor M is l,
according to the assumption that (X,1) ⊂ D(n, I, l, r). By Theorem 2.5, there is a positive number
e< 1 depending only on I ′ and l such that K Z ′ +eBZ ′ + MZ ′ is big. Because MZ ′ is pseudo-effective and

K Z ′ +
1
δ′

BZ ′ +

1
δ′

− 1
1 − e

(K Z ′ + eBZ ′ + MZ ′)+ MZ ′ ∼Q

1
δ′

− e
1 − e

(K Z ′ + BZ ′ + MZ ′),

for any divisor E , we have that

vol
(

E + K Z ′ +
1
δ′

BZ ′

)
≤ vol

(
E +

1
δ′

− e
1 − e

(K Z ′ + BZ ′ + MZ ′)

)
.

Because φ∗ A and F1 are effective, it is easy to see that

φ∗ A+
1
δ′

F1+G ≤

(
1+2((2d+1)+1)+ 1

δ′

)
(φ∗ A+F1)∼Q

(
1+2((2d+1)+1)+ 1

δ′

)
r ′(K Z ′ +BZ ′ +MZ ′).
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Then we have

vol
(

K Z ′ +
1
δ′

BZ ′ +φ∗ A +
1
δ′

F1 + h∗D + G
)

≤ vol
( 1
δ′

− e
1 − e

(K Z ′ + BZ ′ + MZ ′)+φ∗ A +
1
δ′

F1 + h∗D + G
)

≤ vol
(( 1

δ′
− e

1 − e
+ r ′

+ 2r ′((2d + 1)+ 1)+ r ′

δ′

)
(K Z ′ + BZ ′ + MZ ′)+ h∗D

)
≤ v′′d vol(K Z ′ + BZ ′ + MZ ′ + h∗D),

(3-3)

where

v′′
:=

( 1
δ′

− e
1 − e

+ r ′
+ 2r ′((2d + 1)+ 1)+ r ′

δ′

)d

.

Recall that, by construction, H 0(X,m(K X +1+ f ∗D))∼= H 0(Z ′,m(K Z ′ + BZ ′ + MZ ′ + h∗D)) for
all m ≫ 0 sufficiently divisible. Then we have

vol(K Z ′ + BZ ′ + MZ ′ + h∗D)= Ivol(K X +1+ f ∗D)≤ r Ivol(K X +1)≤ rC,

where the second inequality is from the definition of D(n, I, l, r). Then we have

Gd−1.(red(φ∗ A + F1 + BZ ′ + h∗D))≤ 2drC ′′v.

Because φ∗ A and h∗H are nef, we have that

(φ∗ A)d−1.h∗H ≤ (φ∗ A + h∗H)d ≤ r ′d vol(K Z ′ + BZ ′ + MZ ′ + H)

≤ r ′d Ivol(K X +1+ f ∗H)≤ r ′drC. (3-4)

Let v′
:= 2dC ′′v/(2(2d +1)+1)d +r ′drC . Then (φ∗ A)d−1.(red(φ∗ A+ F1 + BZ ′ +h∗D)+h∗H)< v′. By

boundedness of the Chow varieties, see [Kollár 1996, §1.3], (W,Supp(φ∗(φ
∗ A+F1+BZ ′ +h∗D+h∗H)))

is log bounded, and therefore (W,Supp(φ∗(φ
∗ A + F1 + h∗D))) is log bounded.

Step 5: We take a log resolution of (W, φ∗(φ
∗ A + F1 + h∗D)) to get a log bounded family (Z,P)→ T ,

then show the moduli part M descends on Zt by using the standard normal crossing assumptions.
By the definition of log boundedness, there is a flat morphism (Z,P) → T such that, for a closed

point t ∈ T , we have (W, φ∗(φ
∗ A + F1 + h∗D))∼= (Zt ,Pt). Because f !

: (X !,Supp(1!
− F !))→ W is

log smooth over W \Supp(φ!
∗L !

+φ!
∗h!∗D) and Supp(φ!

∗L !
+φ!

∗h!∗D)= Supp(φ∗(φ
∗ A + F1 +h∗D)),

there is a rational contraction ft : X ! 99K Zt such that (X !,Supp(1!
− F !)) is log smooth over Zt \Pt .

After passing to a stratification of T and log resolution of the generic fiber of Z → T , we can
assume (Zt ,Pt) is log smooth for every closed point t ∈ T . We choose a birational model Z ′ of Z as in
Theorem 2.12 such that φ : Z ′

→ Zt is still a birational morphism.
We replace X by a higher birational model which resolves the indeterminacy of X ! 99KZt , replace1 by

its strict transform plus the exceptional divisor, and choose F ∈|K X +1|Q/Zt . Because (X !,Supp(1!
−F !))

is log smooth over Zt \Pt , we may assume that the morphism X → Zt and divisors 1− F , Pt satisfy
the standard normal crossing assumptions. Hence the corresponding moduli b-divisor descends on Zt .
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Because (X,1)→ Z has the same generic fiber (Xη,1η) as f : (X,1)→Zt and κ(Xη, K Xη +1η)= 0,
the moduli b-divisor M of (X,1) → Z descends on Zt . Also because φ : Z ′

→ Zt is a birational
morphism, we have MZ ′ = φ∗MZt .

Step 6: We show that the boundary part is Q-linearly equivalent to the difference of two Q-divisors on Zt

both with bounded degrees. Therefore, the boundary part is bounded up to Q-linear equivalence.
By Theorem 2.5, there is a rational number e < 1 depending only on I, d, and l such that both

K Z ′ + BZ ′ + MZ ′ and K Z ′ + BZ ′ +eMZ ′ are big divisors. By Theorem 2.4, there is an integer r̃ depending
only on I, d , l and e such that both |mr̃(K Z ′ + BZ ′ + MZ ′)| and |mr̃(K Z ′ + BZ ′ +eMZ ′)| define birational
maps for all integers m ≥ 1. By assumption, l MZt is Cartier, so we may choose r̃ = r ′l for some integer
r ′

≫ 0 such that both r̃ MZ ′ and r̃ eMZ ′ are Cartier divisors and both |r̃(K Z ′ + ⌊r̃ BZ ′⌋/r̃ + MZ ′)| and
|r̃(K Z ′ + ⌊r̃ BZ ′⌋/r̃ + eMZ ′)| define birational maps. Let

D′′

1 ∈

∣∣∣∣r̃(
K Z ′ +

⌊r̃ BZ ′⌋

r̃
+ MZ ′

)∣∣∣∣, D′′

2 ∈

∣∣∣∣r̃(
K Z ′ +

⌊r̃ BZ ′⌋

r̃
+ eMZ ′

)∣∣∣∣
be general members. Define two effective Q-divisors

D′

1 ∼Q

K Z ′ + ⌊r̃ BZ ′⌋/r̃ + MZ ′

1 − e
, D′

2 ∼Q

K Z ′ + ⌊r̃ BZ ′⌋/r̃ + eMZ ′

1 − e
.

It is easy to see that the coefficients of D′

1 and D′

2 are in a discrete set that depends only on r, r̃ , e, I.
Let D1 = φ∗D′

1 and D2 = φ∗D′

2. It is easy to see the degrees of D1 and D2 with respect to A in W are
bounded. Because the coefficients of D1 and D2 are in a finite set and MZ = D1 − D2, by Lemma 3.1,
up to replacing the family, there are finitely many divisors Mk , k ∈3, on Z such that MZt = Mk |Zt for
some k ∈3. □

Theorem 3.3. Suppose (Z,P)→ T is a family of projective log smooth pairs, where T is of finite type,
and let M be a Q-Cartier Q-divisor on Z. Fix an integer l > 0 and a DCC set I ⊂ [0, 1] ∩ Q. For a
closed point t ∈ T , let S(I,Z,P,M, T, t) denote the set of generalized pairs (Z ′, BZ ′ + MZ ′) such that

• (Z ′,Supp(BZ ′)) is log smooth,

• coeff(BZ ′) ∈ I,

• there is a birational morphism φ : Z ′
→ Zt ,

• φ∗BZ ′ ≤ P|Zt ,

• M descends on Zt , and

• MZ ′ = φ∗(M|Zt ).

Let S(I,Z,P,M, T ) :=
⋃

t∈T S(I,Z,P,M, T, t). Then the set

{vol(K Z ′ + BZ ′ + MZ ′) | (Z ′, BZ ′ + MZ ′) ∈ S(I,Z,P,M, T )}

satisfies the DCC.
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Proof. Let T ′
⊂ T be the subset such that M|Zt is nef for every t ∈ T ′. Fix a closed point 0 ∈ T ′. For any

closed point t ∈ T ′ and (Z ′, BZ ′ + MZ ′) ∈ S(I,Z,P,M, T, t), because (Zt ,Pt) is log smooth, by the
proof of [Filipazzi 2018, Theorem 1.10], we may assume that φ : Z ′

→ Zt only blows up strata of Pt .
On the other hand, by the proof of Lemma 3.1, after replacing T by an étale cover, we may assume
every stratum of (Z,P) has irreducible fibers over T . Therefore, we may find a sequence of blowups
g : Z ′

→ Z such that Z ′
= Z ′

t . It is easy to see that there is a unique divisor BZ ′ supported on the strict
transform of P and the exceptional locus of g such that BZ ′ = BZ ′ |Z ′

t
. Let Y = Z ′

0 be the fiber over 0 of
Z ′

→ T and BY := BZ ′ |Z ′

0
. By Theorem 2.7, we have that

vol(K Z ′ + BZ ′ +φ∗M|Zt )= vol(KY + BY + (g∗M)|Z ′

0
).

Then the set

{vol(K Z ′ + BZ ′ + MZ ′) | (Z ′, BZ ′ + MZ ′) ∈ S(I,Z,P,M, T, t)}

is independent of t ∈ T . Now apply Theorem 2.6. □

Proof of Theorem 1.6. Fix an arbitrary constant v > 0, let

D(n, I, l, r, v−) := {(X,1) ∈ D(n, I, l, r), Ivol(K X +1)≤ v}.

We only need to prove {Ivol(K X +1) | (X,1) ∈ D(n, I, l, r, v−)} is a DCC set.
Fix (X,1) ∈ D(n, I, l, r, v−). Because Z is the canonical model of K X +1, by Theorem 2.12, there

is a generalized pair (Z ′, BZ ′ + MZ ′) and a birational morphism h : Z ′
→ Z such that Z is the canonical

model of K Z ′ + BZ ′ + MZ ′ . Let BZ be the pushforward of BZ ′ ; then K Z + BZ + MZ is ample.
By Theorem 2.4, there is an integer r ′>0 which only depends on I and l such that |r ′(K Z ′+BZ ′+MZ ′)|

defines a birational map. Choose a general member H ′
∈ |r ′(K Z ′ + BZ ′ + MZ ′)|, and let H := h∗H ′.

Then H is ample and the coefficients of H are bounded below by a positive number δ′. By definition of
the canonical model, h∗H ≤ H ′, by Theorem 2.12 (3),

H 0(X,OX (ml(K X +1)))∼= H 0(Z ′,OZ ′(ml(K Z ′ + BZ ′ + MZ ′))),

and we have that

Ivol(K X +1+ f ∗H)≤ (1 + r)d Ivol(K X +1). (3-5)

Then (X,1) and H satisfy the conditions in Theorem 3.2.
Let (Z,P)→ T be the bounded family, let Mk , k ∈ 3, be the Q-divisors defined in Theorem 3.2,

and let D′ be the set of generalized klt pairs (W ′, BW ′ + MW ′) such that

• (W ′,Supp(BW ′)) is log smooth,

• there is a morphism φ : W ′
→ Zt for a closed point t ∈ T ,

• MW ′ = φ∗(Mk |Zt ) for some k ∈3, and

• coeff(BW ′) is in a fixed DCC set and φ∗(BW ′)≤ Pt .
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Since Z is the canonical model of (X,1), we have Ivol(K X + 1) = vol(K Z + BZ + MZ ). Let
(Z ′, BZ ′ + MZ ′) be a generalized pair as in Theorem 2.12 such that there is a birational morphism
ψt : Z ′

→Zt for a closed point t ∈ T . By Theorem 2.12 (3), vol(K Z + BZ + MZ )= vol(K Z ′ + BZ ′ + MZ ′),
and, by Theorem 3.2, ψt∗BZ ′ ≤ Pt and MZ ′ = ψ∗

t Mk . Then (Z ′, BZ ′ + MZ ′) ∈ D′ and

{Ivol(K X +1) | (X,1) ∈ D(n, I, l, r, v−)} ⊂ {vol(K Z ′ + BZ ′ + MZ ′) | (Z ′, BZ ′ + MZ ′) ∈ D′
}.

Because 3 is a finite set, by Theorem 3.3, the set {vol(K Z ′ + BZ ′ + MZ ′) | (Z ′, BZ ′ + MZ ′) ∈D′
} satisfies

the DCC, and hence {Ivol(K X +1) | (X,1) ∈ D(n, I, l, r, v−)} satisfies the DCC. □

4. Boundedness of canonical models

In this section, we follow the method of [Hacon et al. 2018, Chapter 7].

Definition 4.1. Let (Z , B) be a pair. Define a b-divisor MB by assigning to any divisorial valuation µ

MB(µ)=

{
mult0(B) if the center of µ is a divisor 0 on Z ,
1 otherwise.

(4-1)

Theorem 4.2. Let v be a positive rational number, and let I ⊂ [0, 1] be a DCC set of positive rational
numbers. Suppose (Z,P)→ T is a family of projective log smooth pairs, where T is of finite type, and
M is a Q-Cartier Q-divisor on Z . Let S(v, I,Z,P,M, T ) be the set of generalized pairs (Z ′, BZ ′+MZ ′)

such that

• (Z ′, BZ ′ + MZ ′) is generalized klt,

• vol(K Z ′ + BZ ′ + MZ ′)= v,

• coeff(BZ ′)⊂ I,

• there is a closed point t ∈ T and a birational morphism φ : Z ′
→ Zt ,

• φ∗BZ ′ ≤ Pt ,

• M descends on Zt , and

• MZ ′ = φ∗(M|Zt ).

Let (Z , BZ + MZ ) be the canonical model of (Z ′, BZ ′ + MZ ′). Then Z is in a bounded family depending
only on v, I, (Z,P)→ T and M.

Proof. It suffices to show that, for any generalized pair (Z ′, BZ ′ +MZ ′)⊂S(v, I,Z,P,M, T ), there is an
integer N >0 such that if (Z , BZ +MZ ) is the canonical model of (Z ′, BZ ′+MZ ′), then N (K Z +BZ +MZ )

is Cartier and very ample.
Suppose this is not the case: let {(Z ′

i , Bi
Z ′

i
+ MZ ′

i
), i ≥ 1} ⊂ S(v, I,Z,P,M, T ) be a sequence and

(Zi , Bi
Zi

+ M i
Zi
) the corresponding canonical model such that i !(K Zi + Bi

Zi
+ M i

Zi
) is not very ample for

every i ≥ 1. Let {ti ∈ T, i ≥ 1} be the corresponding sequence of closed points, and let φi : Z ′

i → Zti be
the corresponding morphisms. By the construction, we have φi∗Bi

Z ′

i
≤ Pti and M i

Z ′

i
= φ∗

i (M|Zti
). After

replacing T by a closed subset, we assume that {ti ∈ T, i ≥ 1} is dense in T .



On the boundedness of canonical models 2137

Step 1: We prove that there exists a birational morphism g : Z ′
→ Z such that

• g is obtained by blowing up the corresponding strata of MP , and

• vol(KZ ′
ti
+8i

|Z ′
ti
+ g∗M|Z ′

ti
)= v for every i ≥ 1, where 8i is the Q-divisor supported on MP,Z ′

such that 8i
|Z ′

ti
= MBi

Z ′
i
,Z ′

ti
.

Applying [Filipazzi 2018, Proposition 5.1] to (Zt1,Pt1 +M|Zt1
), we obtain a model Z ′

t1 → Zt1 and the
morphism g : (Z ′,P ′

:= MP,Z ′)→Z obtained by blowing up the corresponding strata of MP . We define
8ti = MBi

Z ′
i
,Z ′

ti
. Passing to a subsequence, we may also assume that, for any irreducible component P of

the support of P ′, the coefficients of 8ti along Pti are nondecreasing. Let 8i be the Q-divisor supported
on P ′ such that 8i

|Z ′
ti

=8ti . Then the coefficients of 8i are nondecreasing.
We claim that, for any i ≥ 1, we have

vol(KZ ′
ti
+8ti + g∗M|Z ′

ti
)= v.

To prove this, we may fix i . Applying the above cited result to (Zti ,Pti +M|Zti
), we obtain a model

Z ′′
ti → Z ′

ti and the corresponding morphism g′
: (Z ′′,P ′′

:= MP,Z ′′)→ Z ′ obtained by blowing up the
corresponding strata of MP . By the above cited result again, we have

vol(KZ ′′
ti
+9ti + g′∗g∗M|Z ′′

ti
)= v,

where 9ti := MBi
Z ′

i
,Z ′′

ti
. If 9 is the divisor supported on Supp(MP ′,Z ′′) such that 9|Z ′′

ti
=9ti , then

v = vol(KZ ′′
ti
+9ti + g′∗g∗M|Z ′′

ti
)

= vol(KZ ′′
t1

+9|Z ′′
t1

+ g′∗g∗M|Z ′′
t1
)

= vol(KZ ′
t1

+8i
|Z ′

t1
+ g∗M|Z ′

t1
)

= vol(KZ ′
ti
+8ti + g∗M|Z ′

ti
), (4-2)

where the second and the fourth equalities follow from Theorem 2.7 and the third one follows from
[Filipazzi 2018, Proposition 5.1].

Step 2: We show that, after replacing T by an open subset, Z ′ by a resolution and {ti , i ≥ 1} by a
subsequence, there exist effective Q-divisors A and E i on Z ′ such that

• A is ample over T ,

• E i
:= E1

+8i
−81,

• KZ ′ +8i
+ g∗M ∼Q A+ E i , and

• (Z ′,Supp(8i
+ E i )) is log smooth over T

for every i ≥ 1.
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Because g∗M|Z ′
ti

is nef for every i ∈ N and {ti ∈ T, i ≥ 1} is dense in T , we have that g∗M|Z ′
t

is nef
for a very general point t ∈ T . Note that KZ ′

t1
+81

|Z ′
t1

+ g∗M|Z ′
t1

is big. Suppose

vol(KZ ′
t1

+81
|Z ′

t1
+ g∗M|Z ′

t1
)= v > 0.

Then by [Filipazzi 2018, Theorem 1.12], we have vol(KZ ′
t
+81

|Z ′
t
+g∗M|Z ′

t
)= v for a very general point

t ∈ T . Since sections on the very general fiber agree with sections on the generic fiber by semicontinuity of
cohomology groups, KZ ′ +81

+g∗M is big over the generic point of T , and we have that KZ ′ +81
+g∗M

is big over T .
Let A be a general relatively ample Q-divisor on Z ′ and E1 be an effective Q-divisor on Z ′ such that

KZ ′ +81
+ g∗M ∼Q A+ E1.

Define E i
:= E1

+8i
−81; then E i is effective and KZ ′ +8i

+ g∗M ∼Q A+ E i .
After taking a log resolution of the generic fiber and replacing T by an open subset, we may assume

that there is a fiberwise log resolution h : Z∗
→ Z ′ of P ′

+ E over T . By the negativity lemma, there
exists a Q-divisor F on Z∗ which is supported on the exceptional divisor over Z such that A∗

:= h∗A−F
is relatively ample over T . Let 8i∗

:= M8i ,Z∗ . Because (Z ′,81) is lc, if we write

KZ∗ +81∗
+ h∗g∗M ∼Q A∗

+ E1∗,

then E1∗ is effective and supported on the Supp(h−1
∗

E1) plus the h-exceptional divisors. Therefore,
(Z∗,Supp(E1∗)) is log smooth over T . Notice that 8i

−81 is effective and supported on P ′. Define
E i∗

:= E1∗
+ h−1

∗
(8i

−81); then

KZ∗ +8i∗
+ h∗g∗M ∼Q A∗

+ E i∗

and (Z∗,Supp(E i∗)) is log smooth over T .
Then we replace Z ′, 8i , g, A and E i by Z∗, 8i∗, h ◦ g, A∗ and E i∗, respectively. Suppose

k = min{i | ti ∈ T, i ≥ 1}.

Then we pass to a subsequence of {ti , i ∈ N} and replace t1, 81 and E1 by tk , 8k and Ek , respectively.

Step 3: In this step we construct a Q-divisor 8̂ on Z ′ such that

• 8̂≤81,

• (Z ′
ti , 8̂|Z ′

ti
) is klt for every i ≥ 1,

• vol(KZ ′
t1

+ 8̂|Z ′
t1

+ g∗M|Z ′
t1
)= v, and

• (Z1, B1
Z1

+ M1
Z1
) is the canonical model of (Z ′

t1, 8̂|Z ′
t1

+ g∗M|Z ′
t1
).

Since (Z1, B1
Z1

+ M1
Z1
) is generalized klt, we slightly decrease the coefficients of components of 81

corresponding to the exceptional divisor of Z ′
t1 99K Z1 to define a Q-divisor 8̂ such that

• 8̂≤81,

• (Z ′
t1, 8̂|Z ′

t1
) is klt,



On the boundedness of canonical models 2139

• vol(KZ ′
t1

+ 8̂|Z ′
t1

+ g∗M|Z ′
t1
)= v, and

• (Z1, B1
Z1

+ M1
Z1
) is the canonical model of (Z ′

t1, 8̂|Z ′
t1

+ g∗M|Z ′
t1
).

Note we have 8̂≤81
≤82

≤ · · · . Because (Z ′,Supp(8i
+ E i )) is log smooth over T and (Z ′

t1, 8̂|Z ′
t1
)

is klt, we have that (Z ′
ti , 8̂|Z ′

ti
) is klt for every i .

Step 4: We show that there exist a sufficiently small positive number ϵ ∈ (0, 1) and a birational contraction
ψ : Z ′ 99KW over T such that

• ψ is the relative canonical model of
(
Z ′, ϵ

1+ϵ
81

+
1

1+ϵ
8̂+ g∗M

)
, and

• ψti : Z ′
ti 99KWti is the canonical model of

(
Z ′

ti ,
(
ϵ

1+ϵ
81

+
1

1+ϵ
8̂+ g∗M

)∣∣
Z ′

ti

)
for every i ≥ 1.

Because 8t1 = MBi
Z ′

1
,Z ′

t1
, for any common resolution Y of Z ′

1 and Z ′
t1 , we have M8t1 ,Y ≥ MB1

Z ′
1
,Y .

Also because vol(K Z ′

1
+ B ′

Z ′

1
+ M1

Z ′

1
)= vol(KZ ′

t1
+8t1 + g∗M|Z ′

t1
), by [Filipazzi 2018, Lemma 5.2],

(Z ′

1, B ′

Z ′

1
+ M1

Z ′

1
) has the same canonical model as (Z ′

t1,8t1 + g∗M|Z ′
t1
), which is (Z1, B1

Z1
+ M1

Z1
). In

particular, there is a birational contraction Z ′
t1 99K Z1.

Since (Z ′
t1, 8̂|Z ′

t1
) is klt and (Z ′,Supp(8i

+ A + E i )) is log smooth over T , we can choose ϵ ≪ 1
such that (Z ′

ti , 8̂|Z ′
ti
+ ϵE1

|Z ′
ti
) is klt for every i ≥ 1 and g∗M+ ϵA is ample over T . We then have that

(Z ′
ti , 8̂|Z ′

ti
+ ϵE1

|Z ′
ti
+ (g∗M+ ϵA)|Z ′

ti
) is generalized klt with nef part (g∗M+ ϵA)|Z ′

ti
for every i ≥ 1.

Because

KZ ′
t1

+ 8̂|Z ′
t1

+ ϵE1
|Z ′

t1
+ (g∗M+ ϵA)|Z ′

t1
∼Q KZ ′

t1
+ 8̂|Z ′

t1
+ g∗M|Z ′

t1
+ ϵ(KZ ′

t1
+81

|Z ′
t1

+ g∗M|Z ′
t1
)

and Z1 is both the canonical model of (Z ′
t1, 8̂|Z ′

t1
+ g∗M|Z ′

t1
) and (Z ′

t1,8
1
|Z ′

t1
+ g∗M|Z ′

t1
), we have that

Z1 is also the canonical model of (Z ′
t1, 8̂|Z ′

t1
+ ϵE1

|Z ′
t1

+ (g∗M+ ϵA)|Z ′
t1
).

Because g∗M+ ϵA is ample over T , we can choose a general effective Q-divisor H ∼Q g∗M+ ϵA
and replace T by an open neighborhood of t1 such that (Z ′

ti , 8̂|Z ′
ti
+ ϵE1

|Z ′
ti
+H|Z ′

ti
) is klt for every i ≥ 1

and (Z ′,Supp(8̂+ ϵE1
+H)) is log smooth over T . It is easy to see that Z1 is also the canonical model

of (Z ′
t1, 8̂|Z ′

t1
+ ϵE1

|Z ′
t1

+H|Z ′
t1
).

Because H|Z ′
t1

is ample and (Z ′
t1, 8̂|Z ′

t1
+ϵE1

|Z ′
t1
+H|Z ′

t1
) is klt, (Z ′

t1, 8̂|Z ′
t1
+ϵE1

|Z ′
t1
+H|Z ′

t1
) has a good

minimal model, according to [Birkar et al. 2010, Theorem 1.2] and [Kollár and Mori 1998, Theorem 3.3].
Because (Z ′,Supp(8̂+ ϵE1

+H)) is log smooth over T , by [Hacon et al. 2018, Corollary 1.4], suppose
ψ : Z ′ 99K W is the relative canonical model of (Z ′, 8̂ + ϵE1

+ H) over T . Then, fiber by fiber,
ψti : Z ′

ti 99KWti gives the canonical model for (Z ′
ti , 8̂|Z ′

ti
+ ϵE1

|Z ′
ti
+H|Z ′

ti
) for all i ≥ 1. In particular,

Wt1 is the canonical model of (Z ′
t1, 8̂|Z ′

t1
+ ϵE1

|Z ′
t1

+H|Z ′
t1
), and it is isomorphic to Z1.

By the definition of the canonical model, KW +ψ∗(8̂+ ϵE1
+H) is ample over T . We recall that

KZ ′ + 8̂+ ϵE1
+H ∼Q KZ ′ + 8̂+ g∗M+ ϵ(KZ ′ +81

+ g∗M). Then

KW +ψ∗(8̂+ ϵE1
+H)∼Q (1 + ϵ)

(
KW +ψ∗

(
ϵ

1+ϵ
81

+
1

1+ϵ
8̂+ g∗M

))
and KW +ψ∗

(
ϵ

1+ϵ
81

+
1

1+ϵ
8̂+ g∗M

)
is ample over T . Thus KWti

+ψ∗

(
ϵ

1+ϵ
81

+
1

1+ϵ
8̂+ g∗M

)∣∣
Wti

is ample for every i ≥ 1.
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Because Z ′ 99KW is KZ ′ + 8̂+ ϵE1
+H-nonpositive and

KZ ′ + 8̂+ ϵE1
+H ∼Q (1 + ϵ)

(
KZ ′ +

ϵ

1+ϵ
81

+
1

1+ϵ
8̂+ g∗M

)
,

Z ′ 99KW is KZ ′ +
ϵ

1+ϵ
81

+
1

1+ϵ
8̂+ g∗M-nonpositive. Also because

KWti
+ψ∗

(
ϵ

1+ϵ
81

+
1

1+ϵ
8̂+ g∗M

)∣∣∣
Wti

is ample, ψti : Z ′
ti 99KWti is the canonical model of(

Z ′

ti ,
(
ϵ

1+ϵ
81

+
1

1+ϵ
8̂+ g∗M

)∣∣∣
Z ′

ti

)
.

Step 5: We show that ψti is also the canonical model of (Z ′
ti ,8

k
|Z ′

ti
+ g∗MZ ′

ti
) for every i, k ≥ 1 and

finish the proof of the theorem.
Notice that, by Theorem 2.7,

v = vol(KZ ′
tk

+8k
|Z ′

tk
+ g∗M|Z ′

ti
)= vol(KZ ′

t1
+8k

|Z ′
t1

+ g∗M|Z ′
t1
)

for all k > 1. By the construction of 8̂, we have

8̂≤81
≤82

≤83
≤ · · ·

and vol(KZ ′
t1

+ 8̂|Z ′
t1

+ g∗M|Z ′
t1
)= v; hence

vol
(

KZ ′
t1

+

(
ϵ

1+ϵ
81

+
1

1+ϵ
8̂

)∣∣∣
Z ′

t1

+ g∗M|Z ′
t1

)
= v.

Because (Z ′,Supp(8̂+81)) is log smooth over T , by [Filipazzi 2018, Theorem 1.12], we have

vol
(

KZ ′
t1

+

(
ϵ

1+ϵ
81

+
1

1+ϵ
8̂

)∣∣∣
Z ′

t1

+ g∗M|Z ′
t1

)
= vol

(
KZ ′

ti
+

(
ϵ

1+ϵ
81

+
1

1+ϵ
8̂

)∣∣∣
Z ′

ti

+ g∗M|Z ′
ti

)
= v

for every i ≥ 1.
It follows from [Filipazzi 2018, Lemma 5.2] that ψti : Z ′

ti 99K Wti is also the canonical model of
(Z ′

ti ,8
k
|Z ′

ti
+ g∗M|Z ′

ti
) for every k ≥ 1,

ψti ∗8
k
|Z ′

ti
= ψti ∗

(
ϵ

1+ϵ
81

+
1

1+ϵ
8̂

)∣∣∣
Z ′

ti

,

and there is an isomorphism αi : Zi → Wti . Let N > 0 be an integer such that

N
(

KW +ψ∗

(
ϵ

1+ϵ
81

+
1

1+ϵ
8̂

)
+ψ∗g∗M

)
is very ample over T . Then

N
(

KWti
+ψ∗

(
ϵ

1+ϵ
81

+
1

1+ϵ
8̂

)∣∣∣
Z ′

ti

+ψ∗g∗M|Wti

)
is very ample for every i ≥ 1. Since

ψti ∗

(
ϵ

1+ϵ
81

+
1

1+ϵ
8̂

)∣∣∣
Z ′

ti

= ψti ∗8
i
|Z ′

ti
= αi∗Bi

Zi
,

we have that N (K Zi + Bi
Zi

+ M i
Zi
) is very ample for every i ≥ 1, which is the required contradiction. □
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Proof of Theorem 1.7. Define D(n, I, l, r, v) to be the set

{(X,1) | (X,1) ∈ D(n, I, l, r) and Ivol(K X +1)= v}.

Suppose (Z , BZ +MZ ) is the canonical model of (X,1)∈D(n, I, l, r, v). Let (Z ′, BZ ′ +MZ ′) be the gen-
eralized pair defined in Theorem 2.12 (3). Then (Z , BZ + MZ ) is the canonical model of (Z ′, BZ ′ + MZ ′).

By Theorem 3.2, there is a log bounded log smooth family of projective varieties (Z,P)→ T and
finitely many Q-divisors Mk , k ∈3, on Z such that there is a closed point t ∈ T and a birational morphism
φ : Z ′

→Zt such that φ∗BZ ′ ≤Pt . Then we have (Z ′, BZ ′ +MZ ′)∈
⋃

k∈3 S(v, I,Z,P,Mk, T ). Because
3 is a finite set, Z is in a bounded family according to Theorem 4.2. □

5. Weak boundedness

The definition of weak boundedness is introduced in [Kovács and Lieblich 2010].

Definition 5.1. A (g,m)-curve is an irreducible smooth curve C◦ whose smooth compactification C has
genus g and which satisfies the requirement that C \ C◦ consists of m closed points.

Definition 5.2. Let W be a proper scheme with a line bundle N , and let U be an open subset of a proper
variety. We say a morphism ξ : U → W is weakly bounded with respect to N if there exists a function
bN : Z2

≥0 → Z such that, for every pair (g,m) of nonnegative integers, for every (g,m)-curve C◦
⊆ C ,

and for every morphism C◦
→ U , one has deg ξ∗

CN ≤ bN (g,m), where ξC : C → W is the induced
morphism. The function bN will be called a weak bound, and we will say that ξ is weakly bounded
by bN .

We say a quasiprojective variety U is weakly bounded if there exists a compactification i : U ↪→ W
such that i : U ↪→ W is weakly bounded with respect to an ample line bundle N on W . The following
lemma says that if a projective variety U is weakly bounded with respect to an embedding U ↪→ W , then
it is also weakly bounded with respect to any other compactification U ↪→ W ′ and any ample line bundle
on W ′ (possibly by a different weak bound).

Lemma 5.3. Let U be a weakly bounded quasiprojective variety with a compactification i : U ↪→ W
such that i : U ↪→ W is weakly bounded with respect to an ample line bundle N on W . Then, for any
compactification i ′

: U ↪→ W ′ and any ample line bundle N ′ on W ′, i ′
: U ↪→ W ′ is weakly bounded with

respect to N ′.

Proof. Let g : W ′′
→ W and h : W ′′

→ W ′ be a common resolution of W and W ′. Let A′′ be an ample
Cartier divisor on W ′′, A a Cartier divisor on W such that OW (A)= N , and A′ a Cartier divisor on W ′

such that OW ′(A′)= N ′.
Suppose C◦

⊂ C is a (g,m)-curve for a pair of nonnegative integers (g,m) and C◦
→ U is a morphism

that extends to a morphism ξ : C → W . By definition, there exists a function bN : Z2
≥0 → Z such that

deg ξ∗N ≤ bN (g,m).
Because A is ample, g∗ A is big, and there exist an effective divisor F on W ′′ and l, n ∈ N such that

lg∗ A ∼ n A′′
+ F ′′. Write Supp(F ′′)=

⋃
1≤i≤k W ′′

i , where the W ′′

i are reduced divisors.
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Suppose C◦
→ U extends to a morphism ξ ′′

: C → W ′′. Then ξ := g ◦ ξ ′′. We claim that there exists a
positive number c depending only on U ↪→ W ′′ and A′′ such that deg ξ ′′∗ A′′

≤ cbN (g,m), which means
i ′′

: U ↪→ W ′′ is weakly bounded.
We argue by induction on the dimension of U . If dim(U ) = 1, then W ′′ is the normalization of W ,

g∗ A and F ′′ are ample, and

deg ξ ′′∗ A′′
= deg ξ ′′∗

( l
n

g∗ A −
1
n

F ′′

)
≤

l
n

deg ξ∗ A ≤
l
n

bN (g,m).

Thus we may assume the claim is true in dimension one less.
Suppose dim(U ) > 1. We have the following two cases.

(1) If ξ ′′(C) ̸⊂ Supp(F ′′), then

deg ξ ′′∗(n A′′)= deg ξ ′′∗(lg∗ A − F)≤ deg ξ ′′∗(lg∗ A)= deg ξ∗(l A)≤ lbN (g,m).

Let c0 := l/n; then we have
deg ξ ′′∗ A′′

≤ c0bN (g,m).

(2) If ξ ′′(C)⊂ Supp(F ′′), let W ′′

i be the irreducible component of Supp(F) that contains ξ ′′(C). Define
Wi = g(W ′′

i ) and Ui := U ∩Wi . It is easy to see that Ui ↪→ Wi is naturally weakly bounded with respect to
A|Wi by bN (g,m). Also because dim(Ui )< dim(U ) and we assume the claim is true in lower dimensions,
there exists ci > 0 such that

deg ξ ′′∗ A′′
≤ ci bN (g,m).

Because Supp(F)=
⋃

1≤i≤k W ′′

i has only finitely many components, let c = max{ci , 0 ≤ i ≤ k}. Then
in both cases we have

deg ξ ′′∗ A′′
≤ cbN (g,m)

and i ′′
: U ↪→ W ′′ is weakly bounded with respect to OX ′′(A′′).

Next we use the weak boundedness of i ′
: U ↪→ W ′′ to show that i ′

: U ↪→ W ′ is weakly bounded.
Because A′′ is ample, there exist d, r ∈ N such that d A′′

∼ rg′∗ A′
+ H ′′, where H ′′ is an ample Cartier

divisor. Let ξ ′
:= g′

◦ ξ ′′
: C → W ′. We have

deg ξ ′∗(r A′)= deg ξ ′′∗(rg′∗ A′)≤ deg ξ ′′∗(rg′∗ A′
+ H ′′)= deg ξ ′′∗(d A′′)≤ dcbN (g,m).

Thus
deg ξ ′∗ A′

≤
dc
r

bN (g,m),

and i ′
: U ↪→ W ′ is weakly bounded with respect to OX ′(A′). □

Lemma 5.4. Let T be a quasiprojective variety. Then we can decompose T into finitely many locally
closed subsets, T =

⋃
Ti , such that each Ti is weakly bounded.

Proof. By the definition of weakly bounded, if a variety U is weakly bounded, then any open subset
U ◦

⊂ U is also weakly bounded. Therefore, we may replace T with a stratification and assume that T is
smooth and projective; we only need to show that T has a weakly bounded open subset.
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Fix an integer n ≥ 2, and let A be a general very ample divisor on Pn
T such that KPn

T /T + A is also
very ample. Then Supp(A) is smooth and dominates T and, by the generic smoothness theorem, there is
a normal open subset T1 ⊂ T such that Supp(AT1) is smooth over T1, where AT1 := A|T1 .

Since KPn
T /T + A is ample and A is smooth, by the adjunction formula, K A/T = (KPn

T /T + A)|A is
very ample, and we have that AT1 → T1 is a family of canonically polarized smooth varieties. We may
assume that T1 is irreducible and every fiber of AT1 → T1 has Hilbert polynomial h(m)= χ(ω⊗m

At
).

Write M◦

h for the (Deligne–Mumford) stack of canonically polarized smooth varieties with Hilbert
polynomial h and M◦

h for its coarse moduli space. It is easy to see that g maps AT1 to T1 ∈ M◦

h(T1). Let
ψ : T1 → M◦

h be the induced moduli map.
By [Kovács and Patakfalvi 2017, Corollary 6.20], there is a diagram

A′

��

A′′

��

g
oo

h
// AT1

��

T ′ T ′′oo // T1

with Cartesian squares such that

• T ′′
→ T1 is finite surjective, and

• A′
→ T ′ is a family of canonically polarized smooth varieties for which the induced moduli map

ψ ′
: T ′

→ M◦

h is finite.

Since the diagram is Cartesian,

K A′′/T ′′ = g∗K A′/T ′ = h∗K AT1/T1 .

Because h is finite and K AT1/T1 is ample, K A′′/T ′′ is ample and T ′′
→ T ′ is quasifinite. It is easy to see

that both

T ′′
→ T ′ ψ

′

−→ M◦

h and T ′′
→ T1

ψ
−→ M◦

h

give the moduli map ψ ′′
: T ′′

→ M◦

h induced by A′′
→ T ′′; thus we have that ψ : T1 → M◦

h is quasifinite.
By [Kovács and Lieblich 2010, Lemma 6.2], the stack M◦

h is weakly bounded with respect to Mh and
λ ∈ Pic(Mh) by a function b(g, d), where Mh is a compactification of M◦

h and λ is an ample line bundle
according to [Kovács and Patakfalvi 2017]. Let T̂1 be a compactification of T1 such that ψ : T1 → M◦

h

extends to a morphism T̂1 → Mh . Let T c
1 be the Stein factorization of T̂1 → Mh and denote the finite

morphism by ψc
: T c

1 → Mh .
Suppose C◦

⊆ C is a (g, d)-curve. Let C◦
→ T1 be a morphism, and let ξ : C → T c

1 be its closure.
Then ψc

◦ ξ : C → Mh is the closure of C◦
→ T1

ψ
−→ M◦

h . By the definition of weakly boundedness,

deg(ψc
◦ ξ)∗λ≤ b(g, d),

and hence T1 is weakly bounded with respect to T c
1 and ψ∗λ. Because ψ is a finite morphism, ψ∗λ is

ample, and hence T1 is weakly bounded. □
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Theorem 5.5 [Kovács and Lieblich 2010, Proposition 2.14]. Let T be a quasicompact quasiseparated
reduced C-scheme, and let U → T be a smooth morphism. Given a projective T -variety and a polarization
over T , (M,OM(1)), an open subvariety M◦ ↪→M over T , and a weak bound b, there exists a T -scheme
of finite type Wb

M◦ and a morphism 2 : Wb
M◦ × U → M◦ such that, for every geometric point t ∈ T and

for every morphism ξ : Ut → M◦
t ⊂ Mt that is weakly bounded by b, there exists a point p ∈ Wb

M◦
t

such
that ξ =2|{p}×Ut .

In particular, if M◦ is weakly bounded and M is the compactification, by definition, every morphism
ξ : Ut →M◦

t ⊂Mt is weakly bounded by a weak bound b; hence ξ =2|{p}×Ut for a closed point p ∈Wb
M◦

t
.

6. Hilbert scheme and the moduli part

6.1. Parameter space. A class of polarized log Calabi–Yau pairs is a set C consisting of triples (X,1, H)
such that

• (X,1) is a pair,

• H is an effective ample divisor,

• K X +1∼Q 0, and

• (X,1+ ϵH) is lc for a positive number ϵ ≪ 1.

A family of polarized log Calabi–Yau pairs over a normal base scheme S consists of a flat, proper
morphism f : X → S, a Q-divisor 1 on X and a Q-Cartier divisor H such that K X/S +1 is Q-Cartier
and all fibers (Xs,1s, Hs) are polarized log Calabi–Yau pairs. We denote it by (X,1, H)→ S.

Given a class of polarized log Calabi–Yau pairs C , we define MC (S) to be the set of families of polar-
ized log Calabi–Yau pairs over S, (X,1, H)→ S, such that K X +1 is Q-Cartier and (Xs,1s, Hs) ∈ C

for every closed point s ∈ S.
Suppose C is a class of n-dimensional polarized log Calabi–Yau pairs. We say C is bounded if the

following two equivalent conditions hold:

• There exists a positive number C and a positive integer d such that, for every (Y, D, H) ∈ C , d H is
very ample without higher cohomology, (d H)n ≤ C , and (d H)n−1. red(D)≤ C .

• There is a flat projective morphism Z → S over a scheme of finite type, two divisors P,L on Z
which are flat over S, and a positive integer d such that, for every (Y, D, H) ∈ C , there is a closed
point s ∈ S and an isomorphism φ : (Y, d H)→ (Zs,Ls) such that φ∗D ≤ Ps .

If the first condition holds, then there is a (nonunique) natural choice of the scheme S in the second
condition. By boundedness of the Chow variety, see [Kollár 1996, §1.3], we may assume that Y has a
fixed Hilbert polynomial H(t) with respect to d H . Let P be the projective space of dimension H(1)−1
with a fixed coordinate system. By the proof of [Kovács and Patakfalvi 2017, Proposition 6.11], because
normality is an open condition, we may choose H′ to be the locally closed subset of the Hilbert scheme
of P which parametrizes all irreducible normal subvarieties of P with Hilbert polynomial H(t), and we
let F : XH′ → H′ be the universal family.
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Let 3 be a finite set, and let pi (t), i ∈3, be |3| polynomials such that deg pi (t)= deg H(t)− 1 for
every i . Let

Hi := Hilbpi (t)(XH′/H′)

be the locally closed subset of the relative Hilbert scheme which parametrizes closed pure dimensional
subschemes Di ⊂ XH′ such that Di → H′ is a flat family of varieties with Hilbert polynomial pi (t). Let
Di → Hi be its universal family. For simplicity of notation, we define H := H1 ×H′ · · · ×H′ H|3| and

(XH,DH) :=

(
XH′ ×H′ H,

∑
Di ×Hi H

)
.

Remark 6.1. Let C be a bounded class of polarized log Calabi–Yau pairs. With the same notation as
above, let (X,1) be a klt pair and L be a divisor on X , and suppose a general fiber of a contraction
f : (X,1, L)→ Z is in C ; that is, there is an open subset U ⊂ Z such that, for every closed point u ∈ U ,
(Xu,1|Xu , L|Xu ) ∈ C .

Write 1=
∑
1i as the sum of irreducible components and define 1i,u :=1i |Xu , 1i :=1i |X , for a

closed point u ∈ U . Because the degree of Supp(1i,u) is bounded from above, by boundedness of the
Chow varieties, the Hilbert polynomial of 1i,u is in a finite set {pi (t), i ∈3}; see [Kollár 1996, §1.3].
Let (XH,DH)→ H be the family constructed as above. By the construction of H, every closed point
u ∈ U corresponds to a closed point in H, and there is a morphism U → H.

Notice that 1i,u may not be irreducible for every u ∈ U , and two irreducible components of 1u may be
considered as two divisors or just one divisor, depending on the divisor 1i on X . That means, given two
contractions (X i ,1i )→ Z i , i = 1, 2, satisfying the given conditions, even if (X1

u1
,11

u1
)∼= (X2

u2
,12

u2
),

u1 and u2 may corresponds to different points in H.
Since d L is very ample without higher cohomology and f : X → Z is flat over U , we have that

f∗OX (d L) is locally free over U . Replacing U with an open subset, we may assume that f∗OX (d L) is in
fact free. Fixing a basis in the space of sections then gives a map U → H′, and XU → U is isomorphic
to the pullback of the universal family XH′ → H′. Similarly, each irreducible component 1i of 1 gives a
map U → Hi . Hence there is a morphism φ : U → H such that f : (XU ,Supp(1U ))→ U is isomorphic
to the pullback of (XH,DH)→ H by φ.

Suppose α = (α1, . . . , αk) is a vector of rational numbers and

1U = α Supp(1U ) :=

∑
αi Supp(1i,U ).

By the construction of DH, (XU ,1U ) is isomorphic to the pullback of (XH, αDH)→ H by φ. If there
is a point u ∈ U such that (Xu,1u) is a log Calabi–Yau pair, then (Xφ(u), αDφ(u)) is a log Calabi–Yau
pair. If coeff(1)⊂ I is a DCC set, then, by [Hacon et al. 2014, Theorem 1.5], αDH is in a finite set and
there are only finitely many αDH.

Moreover, by Lemma 7.4 in the first arXiv version of [Birkar 2023], after replacing H by a stratification
of a locally closed subvariety, we may assume that H is smooth and (XH, αDH) is klt log Calabi–Yau
over H, and hence (XH, αDH)→ H is an lc-trivial fibration.
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6.2. Moduli part. In this section, we deal with algebraic fibrations whose general fibers are log Calabi–
Yau pairs. We claim that such a contraction naturally induces an lc-trivial fibration, and then any such
fibration has a moduli b-divisor by the canonical bundle formula.

Theorem 6.2. Let (X,1) be a projective lc pair, and let f : (X,1)→ Z be a contraction to a projective
normal Q-factorial variety. Suppose that a general fiber (Xg,1g) is a log Calabi–Yau pair. Assume there
is a subpair (X ′,1′), a crepant birational morphism g : (X ′,1′)→ (X,1) and a divisor D on Z such
that the morphism h := f ◦ g : X ′

→ Z is smooth over Z \ D and Supp(1′) is simple normal crossing
over Z \ D.

Then there is a Q-divisor 3′ on X ′ such that

• (X ′
η,3

′

Xη)
∼= (X ′

η,1
′

Xη), where η is the generic point of Z ,

• Supp(3′) is log smooth over Z \ D, and

• (X ′,3′)→ Z is an lc-trivial fibration.

Proof. Since (Xg,1g) is a log Calabi–Yau pair, we have K X ′
η
+1′

η ∼Q 0, and hence there exists a vertical
Q-divisor B ′ such that K X ′ +1′

+ B ′
∼Q 0.

Suppose B ′
= R + G, where Supp(R) ̸⊂ h−1(Supp(D)) and Supp(G)⊂ h−1(Supp(D)). Because R

is vertical, h is smooth over the generic point of h(Supp(R)) and Z is Q-factorial, h(R) is a well-defined
Q-Cartier divisor on Z ; denote it by RZ . Also because h is smooth over Z \ Supp(D), there exists a
Q-divisor FR supported on h−1(Supp(D)) such that R + FR = h∗ RZ . Hence

K X ′ +1′
+ B ′

− (R + FR)∼Q,h 0.

Let 3′
:=1′

+ B ′
− (R + FR); then K X ′ +3′

∼Q,h 0 and 3′
η =1′

η. Write 1′
=1′

≥0 −1′

≤0. Because
1′

≤0 is g-exceptional, it is easy to see that (X ′,3′)→ Z is an lc-trivial fibration. Because Supp(1′) is
log smooth over Z \ D, Supp(FR)⊂ h−1(D) and Supp(B ′

− R)⊂ h−1(D), we have that Supp(3′) is log
smooth over Z \ D. □

Proposition 6.3. Let f : (X,1) → Z be an lc-trivial fibration between normal projective varieties,
ρ : Z ′

→ Z a surjective morphism from a projective normal variety Z ′ and f ′
: (X ′,1′)→ Z ′ the lc-trivial

fibration induced by the normalization of the main component of the base change.

(X,1)

f

��

(X ′,1′)
ρX
oo

f ′

��

Z Z ′
ρ

oo

Let M and M ′ be the moduli b-divisors of f and f ′. Then the following hold:

(1) If M descends on Z and M ′ descends on Z ′, then ρ∗MZ = M ′

Z ′ .

(2) If ρ is finite, then ρ∗MZ = M ′

Z ′ . In particular, M descends on Z if and only if M ′ descends on Z ′.
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Proof. Result (1) is [Ambro 2005, Proposition 3.1].
For (2), let g′

: W ′
→ Z ′ and g : W → Z be birational morphisms such that M ′ descends on W ′ and M

descends on W and ρ : Z ′
→ Z lifts to a morphism ρW : W ′

→ W . Then ρ∗

W MW = M ′

W ′ by (1). Because
ρ is finite and any g-exceptional divisor is only dominated by g′-exceptional divisors, the pushforward of
ρ∗

W MW = M ′

W ′ to Z ′ gives ρ∗MZ = M ′

Z ′ . □

Theorem 6.4. Let (X,1) be an lc pair, and let f : (X,1)→ Z be an lc-trivial fibration to a smooth
projective variety Z. Suppose X ′

→ X is a log resolution of (X,1) and (X ′,1′) is a subpair such that
g : (X ′,1′)→ (X,1) is a crepant birational morphism. Suppose D ⊂ Z is a smooth divisor on Z such
that (X ′,Supp(1′)) is log smooth over the generic point ηD of D. Let Y be the normalization of the
irreducible component of f −1(D) that dominates D, and let 1Y be the Q-divisor on Y such that

KY +1Y = (K X +1+ f ∗D)|Y .

Let MZ denote the moduli part of (X,1) → Z. Suppose there is a smooth divisor B on Z such that
B + D is a reduced simple normal crossing divisor and the morphism h : X ′

→ Z and 1′, B satisfy
the standard normal crossing assumptions. Then (Y,1Y )→ D is an lc-trivial fibration and its moduli
b-divisor N is equal to the restriction of M up to Q-linear equivalence.

Proof. By assumption, h is smooth over Z \ B, D is smooth and the singular locus of h−1(D) is contained
in h−1(B)∩ h−1(D). After blowing up a sequence of smooth subvarieties whose centers are contained in
the singular locus of h−1(D), we may assume that (X ′,Supp(1′

+ h∗(B + D))) is log smooth. It is easy
to see that the morphism h : X ′

→ Z and 1′, B also satisfy the standard normal crossing assumption.
Let E ′ be the irreducible component of h∗D that dominates D, and let 1′

E ′ be the Q-divisor on E ′

such that
KE ′ +1′

E ′ = (K X ′ +1′
+ h∗D)|E ′ .

It is easy to see that the generic fiber of (E ′,1′

E ′)→ D is crepant birationally equivalent to the generic
fiber of (Y,1Y )→ D, which means the two lc-trivial fibrations have the same moduli part. Then we only
need to prove the result for (E ′,1′

E ′)→ Z .
By the canonical bundle formula, there is a divisor BZ supported on B such that

K X ′ +1′
+ h∗D ∼Q h∗(K Z + BZ + MZ + D) (6-1)

and
K X +1+ f ∗D ∼Q f ∗(K Z + BZ + MZ + D). (6-2)

Because B + D is reduced and (Z , B + D) is log smooth, (Z , B + D) is an lc pair. By the canonical
bundle formula,

K X ′ +1′
+ h∗D + h∗(B − BZ )∼Q h∗(K Z + B + D + MZ ).

Because h : X ′
→ Z and 1′, B satisfy the standard normal crossing assumptions, the moduli part M

descends on Z and (Z , B + D + MZ ) is generalized lc. Thus, by [Ambro 2004, Theorem 3.1],

(X ′,1′
+ h∗D + h∗(B − BZ ))
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is sub-lc. Because Z is smooth and B−BZ is effective and Q-Cartier, after replacing1′ by1′
+h∗(B−BZ ),

1 by 1+ f ∗(B − BZ ) and BZ by BZ + (B − BZ )= B, we can assume that B = BZ and every irreducible
component of B is dominated by an irreducible component of 1′ which has coefficient 1, and (X,1) is
still a pair. Since K X ′ +1′

+ h∗D = g∗(K X +1+ f ∗D), we have that (X,1+ f ∗D) is lc.
Let g(E ′)= E , and suppose h∗D = E ′

+ E ′

1 and f ∗D = E + E1. Recall that Y is the normalization
of E . Restricting (6-1) to E ′ and (6-2) to E , by the adjunction formula, there are a Q-divisor 1′

E ′ and an
effective Q-divisor 1Y such that

(K X ′ +1′
+ h∗D)|E ′ ∼Q KE ′ +1′

E ′

∼Q h∗

E ′(K D + B|D + MZ |D),

(K X +1+ f ∗D)|Y ∼Q KY +1Y

∼Q f ∗

E(K D + B|D + MZ |D).

It follows that1′

E ′ =1
′
|E ′ + E ′

1|E ′ , (E ′,1′

E ′) is sub-lc, 1Y is effective and KE ′ +1′

E ′ ∼Q g∗

E ′(KY +1Y ),
where gE ′ : E ′

→ Y is the birational morphism induced by g|E ′ : E ′
→ E . It follows that 1′

E ′,≤0 is
gE ′-exceptional, and hence (E ′,1′

E ′)→ D is an lc-trivial fibration.

(E ′,1′

E ′)
� � //

g′

E ′

��

(X ′,1′)

g
��

h

��

(Y,1Y )
� � //

fE
��

(X,1)

f
��

D �
�

// Z

By the canonical bundle formula for (E ′,1′

E ′)→ D, we have

KE ′ +1′

E ′ ∼Q h∗

E ′(K D + BD + ND). (6-3)

To prove ND ∼Q MZ |D , we only need to prove that BD = B|D .
Since the morphism X ′

→ Z and 1′, B satisfy the standard normal crossing assumption, M descends
on Z . Similarly, because B + D is snc, (D,Supp(B|D)) is log smooth and (E ′,Supp(1′

E ′)) is log smooth
over D \ B ∩ D, we have that ND descends on D. For the same reason, the morphism E ′

→ D and 1′

E ′ ,
B|D satisfy the standard normal crossing assumption. By the construction of the boundary divisor, BD is
the unique smallest Q-divisor supported on B|D such that

1′

E ′,v + h∗

E ′(B|D − BD)≤ red(h∗

E ′(B|D)),

where 1′

E ′,v is the vertical part of 1′

E ′ . Because every irreducible component of B is dominated by an
irreducible component of1′ which has coefficient 1 and every irreducible component of B|D is dominated
by an irreducible component of 1′

E ′ =1′
|E ′ + E ′

1|E ′ which has coefficient 1, we have B|D = BD and the
result follows. □
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Theorem 6.5. Let S be a normal projective variety and F : (YS,RS)→ S be an lc-trivial fibration such
that the corresponding moduli b-divisor M descends on S. Suppose there exists an open subset H ↪→ S
such that (YS,Supp(RS)) is log smooth over H. Let Z be a projective normal variety and φ : Z → S be a
morphism which maps the generic point of Z into H. Assume (X,1)→ Z is an lc-trivial fibration whose
generic fiber is crepant birationally equivalent to the generic fiber of (YS,RS)×S Z → Z. Let M be the
moduli b-divisor of f . If M descends on Z , then we have

MZ = φ∗MS .

Proof. Let (Yφ(Z),Rφ(Z))→ φ(Z) be the contraction induced by the restriction of (YS,RS)→ S on
φ(Z). Because (YS,Supp(RS)) is log smooth over H and the generic point of φ(Z) is in H, we have that
(Yφ(Z),Rφ(Z))→φ(Z) is an lc-trivial fibration over an open subset of φ(Z). We denote the corresponding
moduli b-divisor by N . Let SZ → φ(Z) be a birational morphism such that N descends on SZ . We have
the following two cases:

Case 1: SZ = S. Because φ is surjective, M descends on Z and M descends on S, by Proposition 6.3,
we have φ∗MS ∼Q MZ .

Case 2: SZ is a subvariety of S of codimension ≥ 1. Consider the diagram

(YD,RD)

��

//

**

(ỸS̃, R̃S̃)

��

**

(YSZ ,RSZ )

��

// (YS,RS)

��

D �
�

//

g ++

S̃ h

**SZ // S

where

• S̃ → S is a log resolution of (S,S \H),

• D is a divisor on S̃ that dominates SZ ,

• (S̃, D + h−1(S \H)) is log smooth, and

• (YSZ ,RSZ )→ SZ , (YD,RD)→ D and (Ỹ, R̃)→ S̃ are induced by the pullback of (Y,R)→ S.

It is easy to see that (Ỹ,Supp(R̃))→ S̃ is log smooth over S̃ \ h−1(S \H).
After replacing Z by a higher birational model and (X,1)→ Z by the corresponding pullback, we

may assume that Z → SZ is surjective. Because the generic fiber of (X,1)→ Z is crepant birationally
equivalent to the generic fiber of the pullback of (YS,RS) → S via φ, it is also crepant birationally
equivalent to the generic fiber of the pullback of (YSZ ,RSZ )→ SZ . Then, by Proposition 6.3, we have
MZ = φ∗NSZ .

Because the generic point of φ(Z) is in H, we have D ̸⊂ h−1(S \H). By Theorem 6.4, the induced
morphism (YD,RD)→ D is an lc-trivial fibration, and the corresponding moduli divisor MD is equal to
MS̃ |D = (h∗MS)|D . By Proposition 6.3, MD = g∗MSZ , and hence MZ = φ∗MSZ = φ∗MS . □
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Theorem 6.6 [Ambro 2005, Theorem 3.3]. Let f : (X,1)→ S be an lc-trivial fibration over a variety S
such that the geometric generic fiber X η̄ is a projective variety and 1η̄ is effective. Then there exists a
diagram

(X,1)
f

��

(X !,1!)

f !

��

S

8

44Sτ
oo

ρ
// S!

i

ww π
// S∗

such that

(1) f !
: (X !,1!)→ S! is an lc-trivial fibration,

(2) τ and π are generically finite and surjective morphisms and ρ is surjective,

(3) there exists a nonempty open subset U ⊂ S and an isomorphism

(X,1)×S U
∼=

//

**

(X !,1!)×S! U

ttU

(4) 8 : S 99K S∗ is an extension of the period map defined in [Ambro 2005, Section 2], and

(5) i : S! 99K S is a rational map such that the generic fiber of f ! is equal to the pullback of f via i .

Furthermore, if S is proper, then one can choose S, S! and S∗ to be proper. Let M and M ! be the
corresponding moduli b-divisors of f and f !. Then we have

(6) M ! is b-nef and big, and

(7) if M descends on S and M ! descends on S!, then τ ∗MS = ρ∗M !

S! .

Although it is not written in [Ambro 2005], (4) and (5) are implied by its proof.

Theorem 6.7. Let (XH, αDH)→H be the lc-trivial fibration defined in Remark 6.1. Then, after passing to
a stratification of H and replacing (XH, αDH)→H by the corresponding pullback, we have the diagram

(XH, αDH)

F
��

(X !

H!, αD!

H!)

F !

��

H

8

44Hτ
oo

ρ
// H! π

//

i

vv H∗

where

• τ is finite,

• π is étale,

• 8 is a morphism on H,

• H∗ is weakly bounded and smooth,

• (XH,DH)×H H ∼= (X !

H!,D!

H!)×H! H, and

• (XH,DH)→ H and (X !

H!,D!

H!)→ H! have fiberwise log resolutions.
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Furthermore, there exist a smooth compactification H∗ ↪→ S∗ and a positive integer l such that if
f : (X,1)→ Z is an lc trivial fibration, where

• Z is smooth and projective,

• there is a rational map φ : Z 99KH, and

• the generic fiber of f is isomorphic to the generic fiber of the pullback of (XH, αDH)→ H by φ,

then there exists a b-divisor Mfix on birational models of Z such that

• Mfix is effective,

• Mfix
Z ′ ∼Q MZ ′ for every birational map Z ′

→ Z ,

• l Mfix is b-Cartier, and

• if 8 ◦φ extends to a morphism Z → S∗, then Supp(Mfix
Z )⊃ Z \ U , where U = (8 ◦φ)−1H∗.

Proof. Step 1: We construct the stratification of H, define H and H∗, define the lc-trivial fibration
F !

: (X !

H!, αD!

H!)→ H! and construct the diagram satisfying the requirements.
Because αDH is effective, by Theorem 6.6, we have the following diagram:

(XH, αDH)

F

��

(X !

H!, αD!

H!)

F !

��

H

8

44Hτ
oo

ρ
// H! π

//

i

vv H∗

We replace H by an open subset such that

• F has a fiberwise log resolution.

Then we replace H∗ by an open subset, and H! and H by the corresponding preimages such that

• π is étale,

• H∗ is weakly bounded and smooth, and

• (X !

H!,D!

H!)→ H! has a fiberwise log resolution.

Next we replace H by an open subset and H by the corresponding preimage such that

• τ is finite,

• 8 is a morphism on H,

• (XH,DH)×H H ∼= (X !

H!,D!

H!)×H! H, and

• (XH,DH)→ H has a fiberwise log resolution.

Then we repeat this construction with the complement of H. By Noetherian induction, we have a
stratification of H satisfying the properties.
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Step 2: We construct smooth compactifications H ↪→ S, H! ↪→ S !, and H∗ ↪→ S∗, a Q-divisor Mfix
S

on S, and a Q-divisor M!fix
S ! on S ! such that

• Mfix
S ∼Q MS , where M is the moduli b-divisor of F ,

• M!fix
S ! ∼Q M!

S ! , where M! is the moduli b-divisor of F !,

• Supp(M!fix
S ! )⊃ π−1(S∗

\H∗), and

• τ(Supp(ρ∗M!fix
S ! ))⊂ Supp(Mfix

S ).

Let (YH,RH)→ (XH, αDH) and (Y !

H!,R!

H!)→ (X !

H!, αD!

H!) be crepant birational morphisms which
are fiberwise log resolutions of F and F !. After taking smooth compactifications of the bases H, H, H!

and H∗, and choosing extensions of the fibrations, we have the following diagram:

(YS,RS)

F
��

(Y !

S !,R!

S !)

F !

��

S

8

44Sτ
oo

ρ
// S ! π

//

i

vv S∗

Recall that H∗ is weakly bounded. By Lemma 5.3, we may assume that H∗ ↪→ S∗ is weakly bounded
with respect to an ample divisor H on S∗.

Furthermore, by choosing the compactification appropriately, we may assume that the moduli part
M! of F ! descends on S ! and the moduli part M of F descends on S. By Theorem 6.6, we have
τ ∗MS = ρ∗M!

S ! .
Because M!

S ! is big, we can fix a section of M!fix
S ! ∈ |M!

S ! |Q such that Supp(M!fix
S ! )⊃ π−1(S∗

\H∗).
Because τ ∗MS = ρ∗M!

S ! , we can choose Mfix
S such that τ(Supp(ρ∗M!fix

S ! ))⊂ Supp(Mfix
S ).

Step 3: We show that, to construct Mfix satisfying the requirements, we are free to replace Z by a higher
birational model.

Let h : Z ′
→ Z be a birational morphism such that M descends on Z ′. Suppose there exists a b-divisor

Mfix satisfying the requirements. Because Z is smooth, Mfix
Z is Q-Cartier. Note Mfix

Z ′ ∼Q MZ ′ is nef. By
the negativity lemma, Mfix

Z ′ ≤ f ∗Mfix
Z , and we have

Supp(Mfix
Z ′ )⊂ f −1 Supp(Mfix

Z ).

Then Supp(Mfix
Z ′ ) ⊃ Z ′

\ h−1(U ) implies that Supp(Mfix
Z ) ⊃ Z \ U , so we can replace Z by a higher

birational model such that M descends on Z .

Step 4: We construct Mfix and finish the proof.
We have the following two cases:

Case 1: The generic point of φ(Z) is contained in Supp(Mfix
S ). We stratify S further to the disjoint

union of the irreducible components of Supp(Mfix
S ) and its complement, then replace (X , αDH)→ S by

its restriction and repeat this process. By Noetherian reduction, this will stop.
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Case 2: The generic point of φ(Z) is not contained in Supp(Mfix
S ). Because (YS,Supp(RS)) is log

smooth over H, the generic fiber of (X,1)→ Z is crepant birationally equivalent to the generic fiber of
the pullback of (YS,RS)→ S via φ, and the generic point of φ(Z) is contained in H, by Theorem 6.5,
we have φ∗MS ∼Q MZ . We define the b-divisor Mfix by

• Mfix
Z := φ∗Mfix

S , and

• Mfix
Z ′ = h∗Mfix

Z for any birational morphism h : Z ′
→ Z .

Suppose lMfix
S is Cartier and l Mfix is b-Cartier.

Because Supp(M!fix
S ! )⊃ π−1(S∗

\H∗), τ(Supp(ρ∗M!fix
S ! ))⊂ Supp(Mfix

S ), and π ◦ρ =8◦τ , we have
Supp(Mfix

S )⊃ τ(Supp(ρ∗M!fix
S ! ))⊃8−1(S∗

\H∗), and thus

8 ◦φ(Z \ Supp(φ∗Mfix
S ))⊂ H∗.

Also because φ∗Mfix
S ∼Q Mfix

Z and (8 ◦φ)−1(H∗)= U , we have Supp(Mfix
Z )⊃ Z \ U . □

Suppose there is a family of bases U → T of log Calabi–Yau fibrations whose fibers are parametrized
by the Hilbert scheme defined in Remark 6.1. That is, every fiber Ut is the base of a log Calabi–Yau
fibration whose fibers belong to the moduli defined in Remark 6.1. Then, for a closed point t ∈ T , we have
a moduli map φ : Ut → H. Let φ∗

: Ut → H∗ be the composition of φ : Ut → H with 8 : H → H∗. We
define U t := Ut ×H∗ H! (possibly not connected). Because H×H! (X !

H!, αD!

H!)
∼=H×H (XH, αDH), there

exists a finite cover V → U t such that V ×H! (X !

H!, αD!

H!)
∼= V ×H (XH, αDH). The next theorem says:

if there exists a morphism 2 : U → H∗ such that φ∗
=2|Ut , then we can find a relative compactification

of U ↪→ Z over T , so that the moduli b-divisor of the log Calabi–Yau fibration over Ut descends on Zt .

Theorem 6.8. Consider the diagram

(Y !

S !,R!

S !)

��

S ! π
// S∗

H!
?�

OO

π |H!

// H∗
?�

OO

where

• S∗ and S ! are smooth schemes,

• H∗ ↪→ S∗ and H! ↪→ S ! are dense open subsets,

• π |H! is étale,

• (Y !

S !,Supp(R!

S !)) is log smooth over H!, and

• (Y !

H!,R!

H!) → H! is an lc-trivial fibration whose moduli b-divisor M! descends on S !, where
(Y !

H!,R!

H!) := (Y !

S !,R!

S !)×S ! H!.
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Suppose there is a family of smooth quasiprojective (possibly not proper) varieties U → T , where T is
of finite type, and a morphism 2 : U → H∗. Let U := U ×H∗ H!. Then, after passing to a stratification
of T , there is a family of projective varieties Z → T and a Q-Cartier Q-divisor M on Z such that Zs is
a compactification of Us for every closed point s ∈ T and, for any closed point t ∈ T , if (X,1)→ Z is
an lc-trivial fibration such that

• there is a closed point t ∈ T together with a birational morphism Z → Zt , and

• there exist a scheme V and a finite cover V → U t such that, for every irreducible component Vi of V ,
the generic fiber of (X,1)×Zt Vi → Vi is crepant birationally equivalent to the generic fiber of

(Y !

H!,R!

H!)×H! Vi → Vi ,

then the moduli part M of (X,1)→ Z descends on Zt and MZt = M|Zt

Proof. To prove the result, we may assume S∗ is irreducible.
After passing to a stratification of T , we may assume that T is smooth and U → T is a smooth

morphism. Because H!
→ H∗ is étale, U → T is smooth and U → U is étale. Let K ( Ũ)/K (U) be the

Galois closure of K (U)/K (U) and Ũ → U be the Galois cover with group G. After replacing U by an
open subset and passing T to a stratification, we assume that Ũ t → Ut is an étale morphism for every
closed point t ∈ T . Note the fiber of Ũ → T may not be irreducible.

The composition of Ũ → U and base change of 2 : U → H∗ via U → U defines a morphism
8̃◦

: Ũ → H!. Suppose Ũ ↪→ Z̃ ′ is a compactification over T such that 8̃◦ extends to a morphism
Z̃ ′

→ S !. Because Ũ is smooth, we may let Z̃ → Z̃ ′ be a G-equivariant log resolution of (Z̃ ′, Z̃ ′
\ Ũ)

which is an isomorphism over Ũ . Note 8̃◦ extends to a morphism 8̃ : Z̃ → S !. After replacing T by a
finite cover, we may assume every strata of (Z̃, Z̃ \ Ũ) is irreducible over T . By the generic smoothness
theorem, after passing to a stratification of T , we may assume that (Z̃s, j , (Z̃s \ Ũ s)|Z̃s, j

) is log smooth
for every closed point s ∈ T and every connected component Z̃s, j of Z̃s .

Let Z be the quotient of Z̃ by G. Because Z̃ is a compactification of Ũ over T and the quotient
of Ũ by G is U , we have that Z is a compactification of U over T . Next, we show that Z satisfies the
requirements.

Suppose (X,1)→ Z is an lc-trivial fibration that satisfies the conditions, let Z → Zt be the corre-
sponding birational morphism and V → U t the corresponding finite cover, and denote its moduli b-divisor
by M . We replace V by V ×U t

Ũ t and assume V → U t factors through V → Ũ t . Because V → Ũ t and
Ũ t → Ut are finite covers, we can choose a compactification V ↪→ W such that the induced morphisms
W → Z̃ t and W → Zt are finite covers.

Write

(Y !

Ũ t
,R!

Ũ t
) := (Y !

H!,R!

H!)×H! Ũ t ,

where the morphism Ũ t → H! is 8̃◦
| Ũ t

. Because (Y !

S !,Supp(R!

S !)) is log smooth over H!, we then
have that (Y !

Ũ t
,Supp(R!

Ũ t
)) is log smooth over Ũ t . Let Z̃ t,i be any irreducible component of Z̃ t ,
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and let Ũ t,i := Ũ t ∩ Z̃ t,i . Because (Z̃ t,i , (Z̃ t \ Ũ t)|Z̃ t,i
) is log smooth, the moduli b-divisor M̃ i of a

compactification of (Y !

H!,R!

H!)×H! Ũ t,i → Ũ t,i descends on Z̃ t,i according to Definition 2.9. We define
M̃ to be the b-divisor on Z̃ t whose restriction on Z̃ t,i is M̃ i .

Let Vi be an irreducible component of V which dominates Ũ t,i . By assumption, the generic fiber of
(X,1)×Zt Vi → Vi is crepant birationally equivalent to the generic fiber of (Y !

H!,R!

H!)×H! Vi → Vi ;
hence the generic fiber of (X,1)×Zt Wi → Wi is crepant birationally equivalent to the generic fiber of
(Y !

Ũ t
,R!

Ũ t
)× Ũ t

Vi → Vi , where Wi is the irreducible component of W corresponding to Vi . Note that
the moduli b-divisor only depends on the crepant birational equivalence class of the generic fiber. By
Proposition 6.3, because the moduli b-divisor M̃ i descends on Z̃ t,i and Z̃ t,i → Wi is a finite cover, the
moduli b-divisor of a compactification of (X,1)×Zt Vi → Vi descends on Wi . Also because Wi → Zt is
a finite cover, M descends on Zt . By considering every irreducible component of Z̃ t , we have that M̃Z̃ t

is equal to the pullback of MZt .
Recall that 8̃◦ extends to a morphism 8̃ : Z̃ → S !. Because (Y !

H!,Supp(R!

H!)) is log smooth over H!,
the generic point of Z̃ t,i maps into H! and M̃ i descends on Z̃ t,i for every irreducible component Z̃ t,i

of Z̃ t . Then, by Theorem 6.5, we have

M̃Z̃ t
= (8̃|Z̃ t

)∗M!

S ! .

Let M̃ := 8̃∗M!

S ! . Because Z̃ → Z is the quotient by G and
∑

g∈G g∗M̃ is G-invariant,

1
|G|

∑
g∈G

g∗M̃

is equal to the pullback of a Q-Cartier Q-divisor M on Z .
Because M̃Z̃ t

is equal to the pullback of MZt and M̃Z̃ t
= M̃|Z̃ t

, we have that M̃|Z̃ t
is equal to the

pullback of a Q-divisor on Zt . By the construction of M, we have MZt = M|Zt . □

7. Proof of Theorem 1.1

Proof of Theorem 1.1. We use the same notation as in Remark 6.1 and Theorem 6.7.
Let C > v be any fixed number. To prove the DCC, we only need to prove that if Ivol(K X +1)≤ C ,

then Ivol(K X +1) is in a DCC set. By Theorem 2.12, we can construct a generalized pair (Z ′, BZ ′ + MZ ′)

and birational morphism Z ′
→ Z such that

• coeff(BZ ′) belongs to a DCC set I ′,

• the moduli b-divisor M of f descends on Z ′,

• Ivol(K X +1)= vol(K Z ′ + BZ ′ + MZ ′), and

• (X,1) has the same canonical model as (Z ′, BZ ′ + MZ ′).

After replacing Z by Z ′, and BZ ′ and MZ ′ by BZ and MZ , respectively, we only need to prove that
vol(K Z + BZ + MZ ) belongs to a DCC set. To this end, we add {1 − 1/k, k ∈ N} into I ′ and assume that
{1 − 1/k, k ∈ N} ⊂ I ′.
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By Remark 6.1, we have an lc-trivial fibration (XH, αDH) → H corresponding to the class C of
polarized log Calabi–Yau pairs. Consider the diagram

(XH, αDH)

F
��

(X !

H!, αD!

H!)

F !

��

H

8

33Hτ
oo

ρ
// H! π

//

i

vv H∗

constructed in Theorem 6.7. Because H has only finitely many irreducible components, to prove the results,
we may assume H is irreducible. Let S∗ be the compactification of H∗, l be the positive integer defined
in Theorem 6.7, and (YH,RH) → (XH, αDH) and (Y !

H!,R!

H!) → (X !

H!, αD!

H!) be crepant birational
morphisms which are fiberwise log resolutions of F and F !.

Since a general fiber (Xg,1g, Lg) is in C , by Remark 6.1, there is an open subset U ↪→ Z such that
(XU ,1|XU ) is crepant birationally equivalent to the pullback of (YH,RH)→ H by a morphism U → H.
Let h : Z ′

→ Z be a birational morphism such that U → H 8
−→ H∗ extends to a morphism φ : Z ′

→ S∗.
Let k be a sufficiently large integer such that K Z ′ + h−1

∗
BZ + (1 − 1/k)E + MZ ′ ≥ h∗(K Z + BZ + MZ ),

where E is the exceptional divisor of h. Then we replace Z by Z ′, BZ by h−1
∗

BZ + (1 − 1/k)E , and MZ

by MZ ′ , and assume that there is a morphism φ : Z → S∗. Note that we keep the facts that coeff(BZ ) is
in the DCC set I ′, the moduli b-divisor M of f descends on Z , Ivol(K X +1)= vol(K Z + BZ + MZ ),
and (X,1) has the same canonical model as (Z , BZ + MZ ).

Because dim Z ≤ dim X = n, to prove the results, we may assume dim Z = d is fixed. Let Mfix be the
b-divisor defined in Theorem 6.7. Then

• Mfix
Z is effective and nef,

• Mfix
Z ′ ∼Q MZ ′ for every birational map Z ′ 99K Z , and

• l Mfix
Z is Cartier.

By Step 1 of the proof of Theorem 3.2, there is a positive integer r depending only on d , l, and I ′ such
that, after replacing Z by a birational model and BZ by the strict transform plus (1 − 1/k)E , where E
denotes the reduced exceptional divisor and k is a sufficiently large integer, there is a birational contraction
g : Z → W and a very ample divisor A on W such that g∗ A + F ′

∼ r(K Z + BZ + Mfix
Z ) for an effective

Q-divisor F ′
≥ 0. Because

vol(A)≤ vol(r(K Z + BZ + Mfix
Z ))= rd Ivol(K X +1)≤ rdC,

W is in a bounded family W → S and there is a relative very ample divisor A on W such that A|W0 ∼ A,
where 0 is a closed point of S such that W ∼= W0.

After passing to a stratification of S, we may assume W→ S has a fiberwise log resolution W ′ G
−→W→ S.

Because A is relatively very ample, we can stratify S further, so that there exists a sufficiently large
integer r ′, a relative very ample divisor A′ on W ′ and an effective divisor E ∼ r ′G ∗A−A′ such that E|W ′

s

is effective for every closed point s ∈ S. Then we replace W by W ′

0, A by A′
|W ′

0
, F ′ by r ′F ′

+ E|W ′

0
,
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Z by a birational model, and BZ by the strict transform plus (1 − 1/k)E , where E denotes the reduced
exceptional divisor and k is a sufficiently large integer. We have

• A is very ample,

• W is smooth, and

• g∗ A + F ′
∼ r(K Z + BZ + Mfix

Z ) for an effective Q-divisor F ′
≥ 0.

We define F := F ′
+ r((2d + 1)l − 1)Mfix

Z . Then F is effective, Supp(Mfix
Z )⊂ Supp(F), and g∗ A + F ∼

r(K Z + BZ + (2d + 1)l Mfix
Z ).

Next, we construct a birational open subset of Z which maps into H∗ via φ and belongs to a bounded
family of quasiprojective varieties. This is similar to Step 2 of the proof of Theorem 3.2.

Recall that H∗ ↪→ S∗ is weakly bounded with respect to an ample Cartier divisor 3 on S∗. Let
Z 99K Zc be the canonical model of K Z + BZ + (2d + 1)l Mfix

Z + (2d + 1)φ∗3+ (2d + 1)g∗ A. By
[Birkar and Zhang 2016, Lemma 4.4], Z 99K Zc is Mfix

Z -, g∗ A- and φ∗3-trivial. Then there are two
morphisms g′

: Zc → W and φ′
: Zc → S∗. Let BZc and Fc be the pushforward of BZ and F on Zc. Then

K Zc + BZc + (2d + 1)l Mfix
Zc

+ (2d + 1)φ′∗3+ (2d + 1)g′∗ A is ample: note l Mfix
Zc

is nef, effective and
Cartier. Because K Zc + BZc + (2d + 1)l Mfix

Zc
∼Q (g′∗ A + Fc)/r , we have

1
r
(g′∗ A + Fc)+ (2d + 1)φ′∗3+ (2d + 1)g′∗ A

is ample. We denote it by A′; clearly A′ is effective.
Z

g

vv

φ

((
��

W Zc
φ′

//
g′

oo S∗

Because coeff(BZ ) is in a DCC set I ′ and r(K Z + BZ + (2d + 1)l Mfix
Z )∼ g∗ A + F , with

{r(K Z + BZ + (2d + 1)l Mfix
Z )} = {r BZ } = {F},

coeff(F) is in a DCC set I ′′
= I ′′(I ′, d, r). In particular, there is a positive number δ such that coeff(F)>δ.

The proof of the following claim is deferred until after the main proof.

Claim: (W,Supp(g′
∗
(A′

+ BZc))), which is equal to (W,Supp(A+g′
∗
(φ′∗3+ Fc + BZc))), is log bounded.

Because A′ is ample and effective and W is smooth, we have that g′(Supp(A′)) is pure of codimension 1
and g′(Supp(A′))= Supp(g′

∗
A′). By the negativity lemma, A′

= g′∗g′
∗

A′
− E ′, where E ′ is an effective ex-

ceptional Q-divisor such that Supp(E ′)=Exc(g′). Because A′
≥0, we have that Exc(g′)⊂Supp(g′∗g′

∗
A′)

and
W \ Supp(g′

∗
A′)∼= Zc \ Supp(g′∗g′

∗
A′).

By Theorem 6.7, φ(Z \Supp(Mfix
Z ))⊂H∗. Since Supp(Mfix

Z )⊂ Supp(F) and φ(Z \Supp(Mfix
Z ))⊂H∗,

we have Supp(Mfix
Zc
)⊂ Supp(Fc)⊂ Supp(A′) and φ′(Zc \ Supp(Mfix

Zc
))⊂ H∗. Let

Uc := Zc \ Supp(g′∗g′

∗
A′)= W \ Supp(g′

∗
A′).

It is easy to see that Uc ⊂ Zc \ Supp(Mfix
Zc
) and φ′(Uc)⊂ H∗.
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Because (W,Supp(g′
∗
(A′

+ BZc))) is log bounded, there is a family of varieties U → T over a scheme
of finite type T and a closed point t ∈ T such that

Ut ∼= W \ g′

∗
(A′

+ BZc)⊂ Uc.

Because H∗ is weakly bounded, by applying Theorem 5.5 with M0
:= H∗

× T , there exists a finite type
scheme W and a morphism W × U → H∗

× T over T such that, if we let 2 : W × U → H∗ be the
composition of W × U → H∗

× T with the projection H∗
× T → H∗, then φ′

|Ut =2|{p}×Ut for a closed
point p ∈ W . We replace U → T by W × U → W × T .

Let V := U ×H H; then V → U is a finite cover. By Theorem 6.6 and the fact that (XU ,1|XU ) is
crepant birationally equivalent to the pullback of (YS,RS)→ S via U → H ↪→ S, for every irreducible
component Vi of V , the generic fiber of (X,1)×Z Vi → Vi is crepant birationally equivalent to the
generic fiber of (Y !

H!,R!

H!)×H! Vi → Vi . Then, up to passing to a stratification of T , by Theorem 6.8,
there is a compactification U ↪→ Z/T and a Q-Cartier Q-divisor M on Z such that the moduli b-divisor
M of (X,1) descends on Zt and MZt = M|Zt .

Let P := Z \ U ; then Pt = Supp(g′
∗
(A′

+ BZc)). After passing to a log resolution of the generic fiber
and passing to a stratification of T , we may assume that (Z,P)→ T is a projective log smooth morphism.
We also replace M by its pullback. Note: we still have that M descends on Zt and MZt = M|Zt .

Let h : Z ′
→ Z be a log resolution of (Z , BZ ) such that the isomorphism Uc ∼= Ut extends to a morphism

Z ′
→ Zt . We replace Z with Z ′ and BZ with its strict transform plus (1 − 1/k)E , where E denotes the

reduced exceptional divisor and k is a sufficiently large integer. Note that we keep vol(K Z + BZ + MZ )

and the canonical model of (Z , BZ + MZ ), and we still have coeff(BZ ′)⊂ I ′.
Since Supp(g∗BZ ) = Supp(g′

∗
BZc) and Supp(g′

∗
(A′

+ BZc)) ⊂ Pt , the pushforward of BZ ′ on Zt is
contained in Pt . Also because M descends on Zt , we have that M descends on Z ′; hence (Z ′, BZ ′ + MZ ′)

is a generalized klt pair and coeff(BZ ′)⊂ I ′ is a DCC set. Then, by Theorems 3.3 and 4.2, conclusions
(i) and (ii) follow. □

Proof of claim. We use the same notation as in the proof of Theorem 1.1.
Because W is bounded by the construction, A and 3 are integral divisors, coeff(BZc) is in a DCC set,

coeff(Fc) is bounded from below, and A is very ample on W , by boundedness of the Chow variety, we
only need to prove that the intersection numbers

Ad−1.g′

∗
φ′∗3, Ad−1.g′

∗
BZc and Ad−1.g′

∗
Fc

are bounded from above.
First we show that there is a constant C1 such that

vol(K Z + BZ + (2d + 1)l Mfix
Z )≤ C1.

By Theorem 2.5, there is a rational number e ∈ (0, 1) such that K Z +BZ +eMZ is big. By the log-concavity
of the volume function, we have that

vol(K Z + BZ + Mfix
Z )≥ λd vol(K Z + BZ + eMfix

Z )+ (1 − λ)d vol(K Z + BZ + (2d + 1)l Mfix
Z ), (7-1)
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where

λ=
(2d + 1)l − 1
(2d + 1)l − e

< 1.

By assumption, vol(K Z + BZ + Mfix
Z )≤ C , and hence vol(K Z + BZ + (2d + 1)l Mfix

Z )≤ C/(1 − λ)d .
Second we prove that Ad−1.g′

∗
φ′∗3 is bounded from above, which is equivalent to proving that

Ad−1.g∗φ
∗3 is bounded from above. The idea is to show that Ad−1.g∗φ

∗3 is equal to the degree of a
divisor on a (g,m)-curve, with g + m bounded, then apply weak boundedness.

Let A1, . . . , Ad−1 ∈ |g∗ A| be d − 1 general members of the linear system. Because g∗ A is base point
free, the elements of {Supp(Ai ), i = 1, . . . , d − 1} are smooth divisors and intersect along a smooth
curve C . By the adjunction formula,

(g∗ A)d−1.(K Z + BZ + (2d + 1)l Mfix
Z + (d − 1)g∗ A)= deg(KC + BZ |C + (2d + 1)l Mfix

Z |C).

Consider the diagram

Z
g

~~ ��

Z̃h
oo

h1��

W Z1g1
oo

where Z1 is the canonical model of K Z + BZ + (2d + 1)l Mfix
Z + (2d + 1)g∗ A and Z̃ is a resolution of

indeterminacies of Z 99K Z1. By [Birkar and Zhang 2016, Lemma 4.4], Z 99K Z1 is g∗ A-trivial, so there
is a birational morphism g1 : Z1 → W . By the projection formula,

(g∗ A)d−1.(K Z + BZ + (2d + 1)l Mfix
Z + (2d + 1)g∗ A)

= (h∗g∗ A)d−1.(h∗(K Z + BZ + (2d + 1)l Mfix
Z + (2d + 1)g∗ A))

= (g∗

1 A)d−1.(h1∗h∗(K Z + BZ + (2d + 1)l Mfix
Z + (2d + 1)g∗ A))

= (g∗

1 A)d−1.(K Z1 + BZ1 + (2d + 1)l Mfix
Z1

+ (2d + 1)g∗

1 A),

where BZ1 is the pushforward of BZ . Since Z1 is the canonical model of

K Z + BZ + (2d + 1)l Mfix
Z + (2d + 1)g∗ A,

K Z1 + BZ1 + (2d + 1)l Mfix
Z1

+ (2d + 1)g∗

1 A is ample. By the binomial theorem, we have

(K Z1 + BZ1 + (2d + 1)l Mfix
Z1

+ (2d + 1)g∗

1 A + g∗

1 A)d

=

∑
0≤i≤d

(d
i

)
(g∗

1 A)d−i .(K Z1 + BZ1 + (2d + 1)l Mfix
Z1

+ (2d + 1)g∗

1 A)i .

Because g∗

1 A and K Z1 + BZ1 + (2d + 1)l Mfix
Z1

+ (2d + 1)g∗

1 A are both nef, we have

(g∗

1 A)d−i .(K Z1 + BZ1 + (2d + 1)l Mfix
Z1

+ (2d + 1)g∗

1 A)i ≥ 0
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for every 0 ≤ i ≤ d. Then

(g∗

1 A)d−1.(K Z1 + BZ1 + (2d + 1)l Mfix
Z1

+ (2d + 1)g∗

1 A)

≤

(d
1

)
(g∗

1 A)d−1.(K Z1 + BZ1 + (2d + 1)l Mfix
Z1

+ (2d + 1)g∗

1 A)

≤ (K Z1 + BZ1 + (2d + 1)l Mfix
Z1

+ (2d + 1)g∗

1 A + g∗

1 A)d

= vol(K Z1 + BZ1 + (2d + 1)l Mfix
Z1

+ (2d + 2)g∗

1 A).

Since Z 99K Z1 is g∗ A-trivial and Z1 is also the canonical model of K Z +BZ +(2d+1)l Mfix
Z +(2d+2)g∗ A,

we have

vol(K Z1 + BZ1 + (2d +1)l Mfix
Z1

+ (2d +2)g∗

1 A)= vol(K Z + BZ + (2d +1)l Mfix
Z + (2d +2)g∗ A)

≤ vol(K Z + BZ + (2d +1)l Mfix
Z + (2d +2)(g∗ A + F))

= vol((1+ (2d +2)r)(K Z + BZ + (2d +1)l Mfix
Z ))

≤

(
1+ (2d +2)r

r

)d

C1.

Then we have

deg(KC + BZ |C + (2d + 1)l Mfix
Z |C)= (g∗ A)d−1.(K Z + BZ + (2d + 1)l Mfix

Z + (d − 1)g∗ A)

≤ (g∗ A)d−1.(K Z + BZ + (2d + 1)l Mfix
Z + (2d + 1)g∗ A)

≤

(
1 + (2d + 2)r

r

)d

C1. (7-2)

By the construction of Mfix
Z , we have that Z \ Supp(Mfix

Z ) maps into H∗, so C \ Supp(Mfix
Z |C) maps

into H∗. Suppose C◦
:= C \ Supp(Mfix

Z |C) is a (g,m)-curve. Then m ≤ degC(l Mfix
Z |C) and

2g − 2 + (2d + 1)m ≤ deg(KC + BZ |C + (2d + 1)l Mfix
Z |C)

is bounded. Because H∗ is weakly bounded with respect to3 and C◦ is a (g,m)-curve with 2g+(2d+1)m
bounded, we have that (g∗ A)d−1.φ∗3=C.φ∗3=degC(φ

∗3|C) is bounded and, by the projection formula,
Ad−1.g∗φ

∗3 is bounded.
Third we show that Ad−1.g′

∗
BZc is bounded from above, which is equivalent to proving that Ad−1.g∗BZ

is bounded from above. Because coeff(BZ )⊂ I ′ is in a DCC set, l Mfix
Z is nef and Cartier and K Z +BZ +MZ

is big, by [Birkar and Zhang 2016, Theorem 8.1], there exists e depending only on d and I ′ such that
K Z + eBZ + MZ is big. Thus we have

Ad−1.g∗BZ ≤
1

1−e
(g∗ A)d−1.((1 − e)BZ + K Z + eBZ + MZ )=

1
1−e

(g∗ A)d−1.(K Z + BZ + MZ ).

Since Mfix
Z and g∗ are effective, we have

(g∗ A)d−1.(K Z + BZ + MZ )≤ (g∗ A)d−1.(K Z + BZ + (2d + 1)l Mfix
Z + (2d + 1)g∗ A).

We then apply the last inequality of (7-2).
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Finally we prove that Ad−1.g′
∗
Fc is bounded from above, which is equivalent to proving that Ad−1.g∗F

is bounded from above. Because K Z + BZ + (2d + 1)l Mfix
Z ∼Q (g∗ A + F)/r , we have

Ad−1.g∗F = (g∗ A)d−1.F ≤ (g∗ A)d−1.r(K Z + BZ + (2d + 1)l Mfix
Z ),

which is also bounded by (7-2). □

Proof of Corollary 1.3. After replacing X with a Q-factorization and 1 with its strict transform, we may
assume X is Q-factorial. Let δ be a sufficiently small positive rational number such that (X, (1+δ)1) is klt.

Since K X + (1+ δ)1∼Q,Z δ1 is big over Z , by [Birkar et al. 2010], there exists the relative canonical
model X 99K X ′ of K X + (1 + δ)1 over Z , and hence K X ′ + (1 + δ)1′ is ample over Z , where 1′ is the
pushforward of 1. For a general fiber (X ′

g,1
′
g) of f ′

: X ′
→ Z , we have that K X ′

g
+ (1 + δ)1′

g is ample.
Because X 99K X ′ is a birational contraction and K X +1∼Q,Z 0, we have K X ′ +1′

∼Q,Z 0, which
implies K X ′

g
+1′

g ∼Q 0. Thus

−K X ′
g
∼Q 1

′

g ∼Q
1
δ
(K X ′

g
+ (1 + δ)1′

g)

is ample. Note K X +1 is crepant birationally equivalent to K X ′ +1′. Then Ivol(K X +1)= Ivol(K X ′ +1′)

and (X,1) and (X ′,1′) have the same canonical model. We replace (X,1) with (X ′,1′).
Because coeff(1) is in a DCC set I, by [Hacon et al. 2014, Theorem 1.5], there exists a finite subset

I ′
⊂ I such that coeff(1g)⊂ I ′. Furthermore, there is a positive rational number ϵ ∈ (0, 1) depending

only on I ′ such that (Xg,1g) is ϵ-lc. By the Birkar-BAB theorem [Birkar 2021b, Theorem 1.1], Xg is
in a bounded family only depending on ϵ and dim Xg. Because dim Xg ≤ dim X = n, by boundedness,
there exist positive integers l and C depending only on ϵ and n such that −l K Xg is very ample without
higher cohomology and vol(−l K Xg )= (−l K Xg )

dim Xg ≤ C .
Since coeff(1g) is in a finite set I ′, there exists δ′> 0 such that coeff(1g)≥ δ

′. Because1g ∼Q −K Xg ,
we have

red(1g).(−l K Xg )
dim Xg−1

≤
1
δ′
(−K Xg )(−l K Xg )

dim Xg−1
≤

1
lδ′
(−l K Xg )

dim Xg ≤
C
lδ′
.

Because −l K Xg is very ample without higher cohomology,

(−l K Xg )
dim Xg ≤ C and red(1g).(−l K Xg )

dim Xg−1
≤

C
lδ′
,

we have that (Xg,1g,−l K Xg ) is in a log bounded class of polarized log Calabi–Yau pairs. We define
L := −l K X , then apply Theorem 1.1. □
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Geometry of PCF parameters
in spaces of quadratic polynomials

Laura DeMarco and Niki Myrto Mavraki

We study algebraic relations among postcritically finite (PCF) parameters in the family fc(z)= z2
+ c.

It is known that an algebraic curve in C2 contains infinitely many PCF pairs (c1, c2) if and only if the
curve is special (i.e., the curve is a vertical or horizontal line through a PCF parameter, or the curve
is the diagonal). Here we extend this result to subvarieties of arbitrary dimension in Cn for any n ≥ 2.
Consequently, we obtain uniform bounds on the number of PCF pairs on nonspecial curves in C2 and the
number of PCF parameters in real algebraic curves in C, depending only on the degree of the curve. We
also compute the optimal bound for the general curve of degree d . For d = 1, we prove that there are only
finitely many nonspecial lines in C2 containing more than two PCF pairs, and similarly, that there are only
finitely many (real) lines in C = R2 containing more than two PCF parameters.

1. Introduction

For each c ∈ C, let fc(z)= z2
+c. Recall that the polynomial fc is postcritically finite (PCF) if the critical

point at z0 = 0 has a finite forward orbit. In this article, we study algebraic relations among the PCF
parameters c ∈ C.

Our starting point is the following theorem of Ghioca, Krieger, Nguyen, and Ye, which continued a
study of dynamical orbit relations initiated in [Baker and DeMarco 2011]. Generalizations to algebraic
curves in other polynomial families were obtained in [Favre and Gauthier 2022].

Theorem 1.1 [Ghioca et al. 2017]. Let C be an irreducible complex algebraic curve in C2. Then C
contains infinitely many PCF pairs (c1, c2) if and only if C is either

(1) a vertical line {x = c1} for a PCF fc1 ; or

(2) a horizontal line {y = c2} for a PCF fc2 ; or

(3) the diagonal {x = y}

in coordinates (x, y) on C2.

Note that a real algebraic curve in R2 passing through a PCF parameter c0 in the Mandelbrot set
(identifying R2 with C) gives rise to a complex algebraic curve in C2 passing through the PCF pair (c0, c̄0).
So the above result also controls PCF points on real curves in C. See Figure 1 and Section 5.

MSC2020: 11G50, 37F46.
Keywords: Mandelbrot set, postcritically finite maps, quadratic polynomials, special points, unlikely intersections, uniformity,

bifurcation measure, equidistribution.
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Figure 1. The Mandelbrot set with PCF parameters marked in yellow. There are only finitely
many real lines in C containing more than two PCF parameters; see Theorem 1.8.

Theorem 1.1 was motivated by analogies between the PCF maps in the space of quadratic polynomials
and the elliptic curves with complex multiplication (CM) in the space of j-invariants; see, for example,
[Silverman 2012, Chapter 6; Jones 2013, Conjecture 3.11]. It was known that the only algebraic curves in
C2 with infinitely many CM pairs are the modular curves (together with the infinite collection of vertical
or horizontal lines through a CM point) [André 1998; Edixhoven 1998].

Our first result is an extension of Theorem 1.1 to arbitrary dimensions, exactly analogously to the
classification of special subvarieties in the CM case [Pila 2011; Edixhoven 2005]:

Theorem 1.2. Let n ≥ 2. Let X be an irreducible complex algebraic subvariety in Cn . There is a Zariski
dense set of special points in X if and only if X is special.

By definition, a parameter c∈C is special if fc is PCF. For any positive integer n, a point (c1, . . . ,cn)∈Cn

is special if ci is special for all i = 1, . . . , n. We say that an irreducible curve C ⊂ C2 is special if it is
one of the three types listed in Theorem 1.1. The special subvarieties of Cn are the preimages of special
curves from projections to C2, and their intersections. More precisely, an irreducible subvariety Z of Cn

is special if and only if there exist a partition S0 ∪ · · · ∪ Sr of {1, . . . , n}, where r ≥ 0 and Sk ̸= ∅ for
each k > 0, and a collection of PCF parameters ci ∈ C for i ∈ S0 such that

Z =

( ⋂
i∈S0

{xi = ci }

)
∩

( r⋂
k=1

⋂
j∈Sk

{x j = xik }

)
,

where (x1, . . . , xn) are the coordinates of Cn and ik := min Sk for each k > 0. Note that the dimension of
Z is equal to r .

Although Theorem 1.2 is worded the same as statements about modular curves, the proof methods
are (necessarily) very different. As in the proof of Theorem 1.1, it is important that the PCF parameters
are a set of algebraic numbers with bounded Weil height, which is not the case for singular moduli, and
in fact of height 0 for a dynamically defined height on P1(Q). This allows the use of certain arithmetic
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equidistribution theorems for points of small height; we rely on the recent equidistribution result of
[Yuan and Zhang 2023] (though we could have used the older result of [Yuan 2008] as we explain in
Remark 2.5). Focusing then on an archimedean place, and via the slicing of positive currents, we reduce
the proof of Theorem 1.2 to Luo’s theorem on the inhomogeneity of the Mandelbrot set [Luo 2021].

As an application of Theorem 1.2, we obtain uniform versions of Theorem 1.1, in the spirit of Scanlon’s
automatic uniformity [Scanlon 2004] (though we give a direct proof, not relying on [Scanlon 2004,
Theorem 2.4]).

Theorem 1.3. Fix d ∈ N. There is a constant M(d) <∞ such that

#{special points in C} ≤ M(d),

for all complex algebraic curves C ⊂ C2 of degree d without special components.

It is natural to ask how many special points can lie on a nonspecial curve in C2. We obtain an explicit
bound for the general curve of degree d:

Theorem 1.4. Fix d ∈ N, and let Xd denote the Chow variety of all plane curves with degree ≤ d. There
exists a Zariski-closed strict subvariety Vd ⊂ Xd such that

#{special points in C} ≤
1
2 d(d + 3)

for all curves C ∈ Xd \ Vd .

The upper bound in Theorem 1.4 is optimal:

Theorem 1.5. There is a Zariski-dense subset Sd ⊂ Xd such that

#{special points in C} =
1
2 d(d + 3)

for all curves C ∈ Sd .

Note that 1
2 d(d + 3) is the dimension of the space Xd , and this is no accident. It is well known that

there exists a curve of degree d through any collection of Nd =
1
2 d(d + 3) points in C2. Choosing those

points to be special, we can build a Zariski-dense collection of curves in Xd containing at least Nd special
points. The upper bound of Theorem 1.4 is obtained by showing there are no unexpected symmetries
among general special-point configurations, as a consequence of Theorem 1.2 and the explicit description
of the special subvarieties.

Our proof does not give a complete description of the exceptional variety Vd in Theorem 1.4, though the
methods can be used to classify its positive-dimensional components. For example, in the case of d = 1,
we show:

Theorem 1.6. All but finitely many nonspecial lines in C2 contain at most 2 special points.

In other words, the subvariety V1 of Theorem 1.4 can be taken to be the union of the 1-parameter
families in X1 of horizontal and vertical lines, together with a finite set of points in X1. A more detailed
result about lines in C2 is stated as Proposition 4.4. The analogue of Theorem 1.6 in the setting of CM
points in C2 was proved in [Bilu et al. 2017].
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Note that the finite set of nonspecial lines in C2 containing at least 3 special points is not empty. For
example, the line {y = −x} passes through (0, 0), (i,−i), and (−i, i); the line {y = i x} passes through
(0, 0), (−1,−i), and (i,−1); and {y = −i x} passes through (0, 0), (−1, i), and (−i,−1).

Question 1.7. How many nonspecial lines in C2 pass through at least 3 distinct special points, and what
is the optimal value of M(1) in Theorem 1.3?

As mentioned after Theorem 1.1, a real algebraic curve in R2
= C passing through a given parameter

c in the Mandelbrot set gives rise to a complex algebraic curve in C2 passing through the point (c, c̄)
(see Section 5). Moreover, the subset of such curves is Zariski dense in Xd for each degree d ≥ 1.
Theorems 1.3 and 1.4 therefore apply to bound PCF parameters on real algebraic curves of a given degree
in R2

= C. For example, we have:

Theorem 1.8. There is a uniform bound on the number of PCF parameters on any real algebraic curve in
R2

= C depending only on the degree of the curve (as long as the curve does not contain the real axis).
Moreover, there are only finitely many real lines in C that contain more than two PCF parameters.

Note that the finite set of real lines in C containing more than two PCF parameters is not empty: the
real axis contains infinitely many and the imaginary axis contains at least 3 (at c = 0 and c = ±i).

Remark 1.9. Finiteness results analogous to Theorem 1.6, upon replacing “lines” with “curves of degree d”
and the bound of 2 with 1

2 d(d+3), do not hold for d>1. For example, for algebraic curves of degree d =2,
we know there is a conic through any 5 given points in C2, and 5 is the optimal bound on special points in
general conics (by Theorems 1.4 and 1.5), but there is a Zariski-dense set of curves in the 3-dimensional
space of conics

x2
+ y2

+ Axy + B(x + y)+ C = 0

in C2 containing at least 6 special points. Indeed, 3 given special points in C2 (generally) determine the
coefficients A, B,C , and the (x, y) 7→ (y, x) symmetry of the curve (generally) guarantees an additional 3
special points. For real conics in R2

= C, one can do the same with symmetry under complex conjugation;
see Figure 2.

Outline. In Section 2, we prove Theorem 1.2. Section 3 provides a brief review of the Chow variety
Xd and basic results on families of curves passing through points. Section 4 contains the proofs of
Theorems 1.3, 1.4, 1.5, and 1.6. Finally, in Section 5, we look at real algebraic curves passing through
PCF parameters in the Mandelbrot set and prove Theorem 1.8.

2. Proof of Theorem 1.2

In this section we prove Theorem 1.2. In fact we prove a stronger result, showing that our classification
theorem remains true if we treat small points in addition to the special points. Our notion of size is given
by a height function

hcrit(c1, . . . , cn) :=

n∑
i=1

ĥ fci
(0)≥ 0 (2-1)
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Figure 2. A general real conic in R2 contains no more than 5 PCF parameters, but there are
infinitely many symmetric conics with at least 6 special points.

for (c1, . . . , cn) ∈ Qn . Here ĥ fci
is the canonical height associated to the quadratic polynomial z2

+ ci ,
introduced in [Call and Silverman 1993]. We say that a sequence {xk} ⊂ Qn is small if hcrit(xk)→ 0
as k → ∞. Notice that our special points of Cn are precisely the zeros of hcrit.

Let Y ⊂ Cn be a variety. A sequence {xk} ⊂ Y is called generic if no subsequence lies in a proper
subvariety of Y .

Theorem 2.1. Let n ≥ 2. Let X be an irreducible algebraic subvariety in Cn defined over Q. Then X
contains a generic sequence of small points if and only if X is special.

The idea of considering points that are small with respect to some height function originates in
[Bogomolov 1980]; in a dynamical context, see, for example, [Ghioca et al. 2015, Conjecture 2.3]
or [Zhang 2006].

Remark 2.2. In Theorem 2.1 we have assumed that X is defined over Q, which is not the case in
Theorem 1.2. However, our special points are defined over Q so that a subvariety that contains a Zariski
dense set of special points is automatically defined over Q. Therefore, Theorem 1.2 follows from
Theorem 2.1. Note here that the structure of the special subvarieties ensures that they contain a Zariski
dense set of special points.

Remark 2.3. Assuming X is a curve in C2, the conclusion of Theorem 2.1 is not contained in [Ghioca
et al. 2017] but follows immediately from the proof of Theorem B in [Favre and Gauthier 2022].

2.1. Arithmetic equidistribution. The first key ingredient in our proof is the following equidistribution
theorem. Let M denote the Mandelbrot set in C. Let µM denote the bifurcation measure on M. As
computed in [DeMarco 2001, §6], µM is proportional to the harmonic measure supported on ∂M for
the domain Ĉ \M, relative to the point at ∞. The support of µM is equal to the boundary of M; it has
continuous potentials and total mass equal to 1

2 .
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Theorem 2.4. Let n ≥ 2 and H ⊂ Cn be an irreducible hypersurface defined over a number field K .
Assume that the projection p j : H → Cn−1 omitting the j-th coordinate is dominant. Then for any generic
sequence {xk} ⊂ H(K ) of small points, their Gal(K/K )-orbits equidistribute to the probability measure

µ j := c(π1|H )
∗(µM)∧ · · · ∧ (π j−1|H )

∗(µM)∧ (π j+1|H )
∗(µM)∧ · · · ∧ (πn|H )

∗(µM)

on H(C), where πi : Cn
→ C is the projection to the i-th coordinate, (πi |H )

∗µM is the pullback as a
(1, 1)-current, and c> 0 is a positive constant. That is, for any continuous function ϕ on H with compact
support in the smooth part of H, we have

1

# Gal(K/K ) · xk

∑
y∈Gal(K/K )·xk

ϕ(y)→

∫
ϕ dµ j as k → ∞.

To prove Theorem 2.4, we rely on the recent theory on adelic line bundles developed in [Yuan and
Zhang 2023]. We let f : A1

× P1
→ A1

× P1 be the algebraic family of unicritical quadratic polynomials

f (t, z)= (t, z2
+ t),

defined over Q. Let L be the line bundle on A1
× P1, isomorphic to O(1) on fibers P1 and such

that f ∗L = 2L . We denote by L f the f -invariant extension of L as defined in [Yuan and Zhang 2023,
Theorem 6.1.1]. Let i : A1

→ A1
× P1 be defined by i(t)= (t, 0) and define

Lcrit := i∗L f .

This is an adelic line bundle on A1 as in [Yuan and Zhang 2023, §6.2.1]. Furthermore, by [Yuan and
Zhang 2023, Lemma 6.2.1], the height associated to Lcrit is given by

hLcrit
(t)= ĥ ft (0)= hcrit(t) (2-2)

for each t ∈ A1(Q), where hcrit is the height defined in (2-1) with n = 1. By construction, we have

c1(Lcrit)= µM (2-3)

at the archimedean place of Q.

Remark 2.5. To prove Theorem 2.4, we use the recent equidistribution theory in quasiprojective varieties
developed in [Yuan and Zhang 2023]. However, it is known that Lcrit extends to define an adelic metrized
line bundle on the projective line P1; see, for example, [Favre and Rivera-Letelier 2006, §6.5]. Arguments
similar to the ones in [Mavraki et al. 2023] would allow us to use the equidistribution result established in
[Yuan 2008] instead, applied to a projective compactification of the H in Theorem 2.4 and a modification
of the metrized line bundles M j we define in (2-4) below, but the results from [Yuan and Zhang 2023]
considerably simplify the exposition here.

Proof of Theorem 2.4. Fix j as in the statement of the theorem. As µM has continuous potentials,
we deduce that µ j does not put mass on the singular locus H sing of H, so we may replace H with
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H \ H sing and assume that H is smooth. We define a metrized line bundle on the smooth, quasiprojective
hypersurface H by

M j =

⊗
i ̸= j

(πi |H )
∗(Lcrit). (2-4)

This defines an adelic line bundle on H, so that M j ∈ P̂ic(H)Q in the notation of [Yuan and Zhang 2023].
By [Yuan and Zhang 2023, Theorem 6.1.1] we know that L f is nef in the sense of [Yuan and Zhang
2023] and by the functoriality of nefness we also have that M j is nef; see [Yuan and Zhang 2023, page 8].
In what follows we work with the standard absolute on C. As in [Yuan and Zhang 2023, Lemma 6.3.7],
we know from (2-3) that the curvature form associated to Lcrit (at the archimedean place of Q) is equal
to µM. Since c1(Lcrit)

∧2
≡ 0, we thus see that

c1(M j )
∧(n−1)

= (n − 1)! (π1|H )
∗(µM)∧ · · · ∧

∧

(π j |H )
∗(µM)∧ · · · ∧ (πn|H )

∗(µM),

where the ·̂ means the j-th term is omitted and the pullbacks are defined in the sense of currents. Our
assumption that the projection p j is dominant ensures that this measure is nontrivial. By [Yuan and
Zhang 2023, Lemma 5.4.4], we infer that M j is nondegenerate as defined in [Yuan and Zhang 2023,
§6.2.2]. In other words, the adelic line bundle M j satisfies all the assumptions of [Yuan and Zhang 2023,
Theorem 5.4.3]. Thus, if {yk} ⊂ H(Q) is a generic sequence with hM j

(yk)→ hM j
(H), then its Galois

conjugates equidistribute with respect to the probability measure associated to c1(M j )
∧(n−1).

Now let {xk} ⊂ H(Q) be a generic sequence of small points, as in the statement of the theorem. Note
that

hM j
(x)=

∑
i ̸= j

hcrit(πi (x))

for x ∈ H(Q) so that by (2-2) we have

lim
k→∞

hM j
(xk)= 0. (2-5)

Therefore, by the number field case of the fundamental inequality [Yuan and Zhang 2023, Theorem 5.3.3],
we have that

hM j
(H)≤ 0. (2-6)

Note that here we have used the fact that M j is nef and nondegenerate. By the nefness of M j we also
have that hM j

(H)≥ 0 by [Yuan and Zhang 2023, Proposition 4.1.1]. Thus,

hM j
(H)= 0.

Therefore, the result follows by the equidistribution theorem [Yuan and Zhang 2023, Theorem 5.4.3]. □

2.2. Inhomogeneity of M. To deduce Theorem 2.1, we will combine Theorem 2.4 with the following
result of Luo that the Mandelbrot set has no local symmetries.

Theorem 2.6 [Luo 2021]. Let U be an open set in C with U ∩ ∂M ̸= ∅. Suppose ϕ : U → V is a
conformal isomorphism such that ϕ(U ∩ ∂M)= V ∩ ∂M. Then ϕ is the identity.



2170 Laura DeMarco and Niki Myrto Mavraki

We begin by proving Theorem 2.1 for a certain class of hypersurfaces.

Proposition 2.7. Let n ≥ 2. Assume that H ⊂ Cn is an irreducible hypersurface, defined over Q, which
projects dominantly on each collection of n − 1 coordinates and which contains a generic sequence of
small points. Then n = 2 and H ⊂ C2 is the diagonal line.

Proof. Let H be a hypersurface as in the statement defined over a number field K . In particular H
contains a generic small sequence. Since H projects dominantly on each collection of n − 1 coordinates,
we may apply Theorem 2.4 to deduce that the Gal(K/K )-orbits of our sequence equidistribute with
respect to µ j for all j (for the µ j in the statement of Theorem 2.4). In particular

T ∧ (πn−1|H )
∗(µM)= α · T ∧ (πn|H )

∗(µM) (2-7)

for some constant α > 0, where T = (π1|H )
∗(µM)∧ · · · ∧ (πn−2|H )

∗(µM) is an (n − 2, n − 2)-current
on H.

For n = 2, equation (2-7) means that (π1|H )
∗(µM)= α · (π2|H )

∗(µM) on the curve H in C2. But the
projections are locally invertible away from finitely many points, so the measure equality induces a local
isomorphism between a neighborhood of a point in ∂M⊂ C and its image. Theorem 2.6 then implies that
this local isomorphism is the identity. That is, the curve H must be the diagonal line in C2 as claimed.

Assume now that n ≥ 3. Let π : H → Cn−2 be the projection to the first n − 2 coordinates. Observe
that T = π∗(ν) for the measure ν = p∗

1(µM)∧ · · · ∧ p∗

n−2(µM) on Cn−2, where pi : Cn−2
→ C is the

projection to the i-th coordinate.
By our assumption, π is dominant and the fiber-dimension theorem yields that the fibers

Hz := H ∩ {x1 = z1, . . . , xn−2 = zn−2} ⊂ H

are curves for z = (z1, . . . , zn) in a Zariski open and dense subset of Cn−2. Note that each (1, 1)-current
p∗

jµM has continuous potentials on Cn−2, so the measure ν does not charge pluripolar sets. Thus the fiber
Hz is a curve for ν-almost every z, and, by the characterization of slicing of currents as in [Bassanelli and
Berteloot 2007, Proposition 4.3], equation (2-7) implies that∫

Cn−2

(∫
Hz

ϕ dπn−1|
∗

Hz
(µM)(x)

)
dν(z)= α

∫
Cn−2

(∫
Hz

ϕ dπn|
∗

Hz
(µM)(x)

)
dν(z), (2-8)

for every continuous and compactly supported function ϕ on H. It follows that we have equality of
measures

πn−1|
∗

Hz
(µM)= α ·πn|

∗

Hz
(µM) (2-9)

for ν-almost every z := (z1, . . . , zn−2) in Cn−2. In detail, suppose there exists a point z0 in the support
of ν, where Hz0 is a curve such that

πn−1|
∗

Hz0
(µM) ̸= α ·πn|

∗

Hz0
(µM).
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Then we can find a continuous function ψz0 on Hz0 such that∫
Hz0

ψz0πn−1|
∗

Hz0
(µM) ̸= α

∫
Hz0

ψz0πn|
∗

Hz0
(µM).

Note that the measures πi |
∗

Hz
(µM) vary continuously as functions on z on a neighborhood of z0, by the

continuity of the potentials. We thus infer that∫
Hz

ψz0πn−1|
∗

Hz
(µM) ̸= α

∫
Hz

ψz0πn|
∗

Hz
(µM)

for all z in a small open neighborhood U of z0. We can therefore find ϕ = h ·ψz0 , where h is a continuous
function supported on U and for which the equality (2-8) fails.

Again by Theorem 2.6, equation (2-9) yields that Hz is special for ν-almost all z. Since T does not charge
pluripolar sets and since H projects dominantly on each n −1 coordinates, we infer that H ⊂ π−1

(n−1,n)(1),
where π(i, j) : Cn

→ C2 is the projection to the i-th and j-th coordinates. Repeating the argument using
the equalities of all measures µ j , we get

H ⊂

⋂
i ̸= j∈{1,...,n}

π−1
(i, j)(1).

But since H has dimension n − 1 and n ≥ 3 this is impossible. This completes our proof. □

2.3. Proof of Theorem 2.1. We can now complete the proof of Theorem 2.1 (and so also of Theorem 1.2)
by reducing it to Proposition 2.7. This argument is inspired by [Ghioca et al. 2018].

First we show that if Theorem 2.1 holds for hypersurfaces X , then it holds in general. So assume
that the theorem is true when X is a hypersurface and let X be an irreducible subvariety of Cn with
dimension d < n − 1 which contains a generic sequence of small points. Permuting the coordinates if
necessary, we may assume that X projects dominantly to the first d coordinates. Now let π( j) : Cn

→ Cd+1

denote the projection to the first d and the j-th coordinates. Let X j denote the Zariski closure of
π−1
( j) (π( j)(X)) in Cn . Each X j is a hypersurface in Cn and contains a generic sequence of small points.

Therefore by our assumption X j must be special. If X ⊂ X j is special, then our claim follows. Otherwise
X j = {(x1, . . . , xn) ∈ Cn

: x j = c j } for a special point c j or X j = {(x1, . . . , xn) ∈ Cn
: x j = xk}

for some k ∈ {1, . . . , d}. From the precise form of each X j , it is easy to see that
⋂n

j=d+1 X j has
dimension d = dim X . But X ⊂

⋂n
j=d+1 X j , so we must have X =

⋂n
j=d+1 X j and our claim follows.

Therefore, it suffices to prove Theorem 2.1 for hypersurfaces X . Arguing by induction on n, we may
further assume that X projects dominantly on each n − 1 coordinates. Indeed, if n = 2 and the curve X is
vertical or horizontal then since it contains a generic sequence of small points, it must be special. Assume
now that n ≥ 3, and that X does not project dominantly on, say, the last n − 1 coordinates. Then it has
the form X = C × X0 for a hypersurface X0 ⊂ Cn−1 (see, e.g., [Mavraki et al. 2023, Lemma 3.1]). By
induction, Theorem 2.1 follows by Proposition 2.7. As explained in Remark 2.2, Theorem 1.2 also holds.
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3. Maximal variation and the lower bound

In this section, we provide some basic background on the Chow variety Xd of curves of degree ≤ d in C2,
and we prove lower bounds on the number of special points in families of curves.

3.1. Chow and maximal variation. Fix integer d ≥ 1. We work with the Chow variety Xd of algebraic
curves in the plane C2, defined over the field C of complex numbers, of degree ≤ d . As a variety, Xd is
simply the complement of a single point in a projective space P

Nd
C

, where

Nd =

(d+2
2

)
− 1 =

d(d+3)
2

.

Indeed, each curve is the vanishing locus of a nonzero homogeneous polynomial F(x, y, z) of degree d ,
uniquely determined up to scale, and evaluated at points of the form (x, y, 1) for (x, y) ∈ C2. We exclude
the polynomial F(x, y, z)= zd .

Let C → V be a family of plane algebraic curves, parameterized by an algebraic variety V defined
over C. There is an induced map from V to Xd for some degree d. We say that the family C → V is
maximally varying if the induced map V → Xd has finite fibers. For each integer m ≥ 1, we let

Cm
V := C ×V · · · ×V C (3-1)

denote the m-th fiber power of C over V. There is a natural map

ρm : Cm
V → C2m

defined by sending a tuple of m points x1, . . . , xm on a curve C ∈ V to the m-tuple (x1, . . . , xm) in (C2)m .

Proposition 3.1. Suppose that V is an irreducible quasiprojective complex algebraic variety of dimen-
sion ℓ≥ 1. If C → V is a maximally varying family of curves in C2 of degree ≤ d , then the natural map
ρm is dominant for all m ≤ ℓ and generically finite for m = ℓ.

Proof. The result is clear for m = 1, because the image of C in C2 cannot be contained in a single
algebraic curve if the image of V in Xd is not a point. For m > 1, it suffices to show that the image of
ρm contains the union of subvarieties of the form {(z1, . . . , zm−1)} × U(z1,...,zm−1), where U(z1,...,zm−1) is
Zariski open in C2, over a Zariski dense and open subset of points (z1, . . . , zm−1) ∈ (C2)m−1. Indeed,
the dominance follows because the maps are algebraic, and the generic finiteness for m = ℓ follows
because dim Cm

V = ℓ+ m.
We proceed by induction. We have already seen that the result holds for m = 1 and any ℓ≥ 1. Now

assume ℓ > 1, and fix 1 < m ≤ ℓ. Assume the result holds for ρm−1. Then, as the smooth part V sm of
V is Zariski open and dense, the image of ρm−1 restricted to Cm−1

V over V sm contains a Zariski open
set U ⊂ C2(m−1). Choose any point (z1, . . . , zm−1) in U . Suppose that λ0 ∈ V sm is a parameter for which
Cλ0 contains the points z1, . . . , zm−1. There is a subvariety V1 of V containing λ0 and with codimension
≤ m − 1 consisting of curves Cλ that persistently contain the points z1, . . . , zm−1. In particular, the
dimension of V1 is at least 1. Maximal variation implies that the image of ρ1 on C over V1 is dominant
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to C2. It follows that ρm on Cm
V1

is dominant to {(z1, . . . , zm−1)}× C2. Letting the point (z1, . . . , zm−1)

vary over the image of ρm−1, we use the induction hypothesis to see that ρm is dominant from Cm
V

to C2m . □

3.2. A lower bound on the number of special points. For a family of plane algebraic curves C → V
parameterized by V, recall the definition of Cm

V in (3-1).

Proposition 3.2. Suppose that C → V is a maximally varying family of irreducible, complex algebraic
curves in C2, over an irreducible quasiprojective complex algebraic variety V of dimension ℓ≥ 1. Then
the preimage ρ−1

ℓ (S) of the set of special points S ⊂ C2ℓ is Zariski dense in CℓV . In particular, there is a
Zariski dense set of curves λ ∈ V for which the fiber Cλ contains at least ℓ distinct special points of C2.

Proof. By maximal variation, we know that the fiber product CℓV maps generically finitely and dominantly
by ρℓ to C2ℓ. The special points are Zariski dense in the image. This implies that the set of points
P = (λ, x1, . . . , xℓ) ∈ ρ−1

ℓ (S)⊂ CℓV is Zariski dense in CℓV , where λ ∈ V and {x1, . . . , xℓ} is a collection
of special points on the fiber Cλ of C over λ. In particular, the xi must be generally all distinct. □

4. Optimal general upper bounds

In this section we prove Theorems 1.3, 1.4, 1.5, and 1.6. For each integer d ≥ 1, let Xd denote the Chow
variety of all algebraic curves in C2 of degree ≤ d defined over C.

4.1. The uniform bound of Theorem 1.3. Let C → V denote a family of algebraic curves in C2,
parameterized by an irreducible, quasiprojective variety V over C of dimension ℓ ≥ 1, for which the
general curve in the family is irreducible. As introduced in Section 3.1, there is a natural map

ρ1 : C → C2,

sending each curve to its image in C2. Recall the definitions of Cm
V and

ρm : Cm
V → C2m

given there, for each integer m ≥ 1. Recall also that the family is maximally varying if the induced map
V → Xd has finite fibers. From Proposition 3.1, we know that maximal variation implies that the maps
ρm are dominant for all m ≤ dim V.

Proposition 4.1. Suppose that C → V is a maximally varying family of curves in C2 with ℓ= dim V > 0.
Assume the general curve in the family is irreducible. Then the Zariski closure of the image in C2(ℓ+1) of
the fiber power Cℓ+1

V by ρℓ+1 is not special, unless ℓ= 1 and C is a family of horizontal or vertical lines
in C2.

As a consequence we have:

Theorem 4.2. For any family C → V of curves in C2 — irreducible or not, maximally varying or not —
there is a uniform upper bound M = M(C) on the number of special points on Cλ, for all λ ∈ V over
which the fiber Cλ of C has no special irreducible components.
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Proof of Theorem 4.2. Assume Proposition 4.1. If V or the generic curve is reducible, we work with
irreducible components. If the family fails to be maximally varying, it is convenient to factor through
the image of V in the Chow variety Xd for some degree d. So we now assume that V is an irreducible
subvariety in Xd of dimension ≥ 1 and the associated curve family C → V consists of generally irreducible
curves and not exclusively of horizontal or vertical lines.

Consider the fiber powers Cm
V → V for each m ≥ 1. Suppose there is a generic sequence of points

Cn ∈ V for which the number of special points of the curves Cn ⊂ C2 is larger than n, for each n ∈ N. This
implies that the special points of C2m are Zariski dense in the images ρm(Cm

V ) for every m ≥ 1. Indeed,
this is clear for m = 1 because ρ1 maps C dominantly to C2. For each positive integer m ≥ 2, the set of
special points in ρm(Cm

V ) includes the m-tuples formed from the n distinct special points on Cn; note that
this set of m-tuples in C2m is symmetric under permutation of the m copies of C2. Let Zm be the Zariski
closure of these special points within ρm(Cm

V ); note that Zm is also symmetric under permutation of the m
copies of C2. Because {Cn} is a generic sequence in V, note also that ρ−1

m (Zm) must project dominantly
to V. If Zm is not equal to all of ρm(Cm

V ), then ρ−1
m (Zm) is contained in a subvariety H ⊂ Cm

V which is
a family of hypersurfaces over V that are symmetric with respect to permutation of the components in
each fiber C × · · · × C . Now consider the projections from Cm

V → Cm−1
V forgetting one factor, restricted

to the hypersurface H. By the symmetry of H, each of these projections is generically finite and of the
same degree, say r(m). So over a Zariski open subset of V, this bounds the number of points on a given
curve C ; in particular this contradicts the assumption on the sequence of curves Cn . So the special points
of C2m must be Zariski dense in ρm(Cm

V ) for every m ≥ 1.
From Theorem 1.2, the density of special points in ρm(Cm

V ) implies that (the Zariski closure) of ρm(Cm
V )

is special. But taking m = dim V + 1, this contradicts Proposition 4.1.
So there is a uniform bound on the number of special points in the curve C ⊂ C2 for all curves C

in a Zariski open subset U of V. We then repeat the argument on each of the finitely many irreducible
components of V \ U . We continue until we are left with families of vertical or horizontal lines. □

Proof of Proposition 4.1. From Proposition 3.1, we know that the map ρm : Cm
V → C2m is dominant for all

m ≤ ℓ and generically finite for m = ℓ. Note that dim Cℓ+1
V = 2ℓ+ 1< 2ℓ+ 2, so the map

ρℓ+1 : Cℓ+1
V → C2(ℓ+1)

cannot be dominant. Consider the projections πi j from Cℓ+1
V to C2 defined by composing ρℓ+1 with

(x1, . . . , x2ℓ+2) 7→ (xi , x j )

for each pair 1 ≤ i < j ≤ 2ℓ+ 2.
Assume ℓ > 1. The projections πi j are dominant for all pairs i < j , because they factor through the

dominant maps Cℓ+1
V → CℓV → C2ℓ, where the first arrow forgets the k-th factor of C over V for some

choice of indices {2k −1, 2k} not containing i or j , and the second arrow is ρℓ. In view of the structure of
special subvarieties from Theorem 1.2, we see immediately that ρℓ+1(Cℓ+1

V ) cannot be special in C2ℓ+2.
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Now suppose that ℓ= 1, and assume that C is not a family of vertical or horizontal lines. We aim to
show that ρ2(C2

V ) is not a special hypersurface in C4. Note that a general curve C in the family C projects
dominantly to both coordinates in C2. It follows that ρ2(C2

V ) cannot be contained in the hyperplane
{xi = ci } for a special parameter ci and any i ∈ {1, 2, 3, 4}. Because the curves over V are not all equal
to the diagonal line in C2, the space ρ2(C2

V ) also cannot be contained in the special hypersurfaces defined
by {xk = xk+1} for k ∈ {1, 3}. Recalling the definition of special subvarieties, it remains to check that
ρ2(C2

V ) does not lie in any of the hypersurfaces {x1 = x3}, {x1 = x4}, {x2 = x3}, or {x2 = x4}. But for a
general choice of curve C in the family, the product C × C ⊂ C4 maps dominantly to the spaces of pairs
with coordinates (x1, x3), (x2, x4), (x2, x3), or (x1, x4). This proves that ρ2(C2

V ) is not special.
Finally suppose that C is a family of vertical or horizontal lines. For concreteness, we can take V = C

and λ∈ V corresponding to the vertical line {x = λ} for λ∈ V. Then the image of C2
V in C4 is the set of all

4-tuples (λ, x2, λ, x4) for any (λ, x2, x4)∈ C3. In other words, the image of C2
V is the special hypersurface

defined by {x1 = x3}. Similarly for families of horizontal lines. □

Proof of Theorem 1.3. The theorem is an immediate consequence of Theorem 4.2, taking V = Xd . □

4.2. Optimal general bound over Chow; proof of Theorems 1.4 and 1.5. Let V = Xd be the Chow
variety of all affine curves of degree ≤ d in C2 and C → V the universal family of such curves. Recall
from Section 3.1 that

Nd := dim V =
1
2 d(d + 3).

Consider the fiber power CNd+1
V → V and its image under the natural map

ρ := ρNd+1 : CNd+1
V → C2(Nd+1).

Suppose that S is a special subvariety of C2(Nd+1) that is contained in the Zariski closure of the image
ρ(CNd+1

V ) for which ρ−1(S) projects dominantly to V. We aim to show that S must lie in the union of
special diagonals

1i, j := {(x1, . . . , x2Nd+2) ∈ C2Nd+2
: (xi , xi+1)= (x j , x j+1)} (4-1)

for odd integers i and j satisfying 1 ≤ i < j ≤ 2Nd + 1.
This classification will imply the two theorems. Indeed, if there were a generic sequence of elements

Cn ∈ V for which the curve Cn ⊂ C2 contains at least Nd + 1 distinct special points of C2, then the
(Nd +1)-tuples of such points will be special in C2(Nd+1) and will lie outside of the special diagonals 1i, j .
From Theorem 1.2, each irreducible component Z of the Zariski closure of these special points in C2(Nd+1)

is itself a special subvariety, and by construction is contained in the closure of ρ(CNd+1
V ). As {Cn} is

a generic sequence of points in V, the preimage ρ−1(Z) of each component will project dominantly
to V. In other words, this Z is a special subvariety of the type described, but not contained in the special
diagonals 1i, j , leading to a contradiction. This will prove Theorem 1.4. The equality of Theorem 1.5 is
then a consequence of the lower bound in Proposition 3.2.



2176 Laura DeMarco and Niki Myrto Mavraki

For the proof, suppose that S is a special subvariety of C2(Nd+1) that is contained in the Zariski closure
of the image ρ(CNd+1

V ) for which ρ−1(S) projects dominantly to V. Recall that our goal is to show that S
must lie in the union of the special diagonals 1i, j . We begin with a few important observations. First,
note that dim ρ−1(S) ≥ dim S, so the dominance of the projection to V implies that a general fiber of
this projection has dimension ≥ dim S − Nd . In other words, the intersection of S with C × · · · × C in
C2(Nd+1) has dimension at least

dim S − Nd = Nd + 2 − codim S,

for a general curve C in V. Moreover, as the image ρ(CNd+1
V ) is not itself special in C2(Nd+1) by

Proposition 4.1, we have that S ⊊ ρ(CNd+1
V )⊊ C2(Nd+1). Therefore, the codimension of S in C2(Nd+1) is

at least 2. We begin by working case by case through some examples of special subvarieties, as classified
in Theorem 1.2, to see that they either cannot be contained in ρ(CNd+1

V ) or that ρ−1(S) cannot project
dominantly to V, unless S is contained in one of the special diagonals. We then handle the general case.

• S = {x1 = c1 and x2 = c2}: A general curve C ∈ V does not pass through the point (c1, c2) ∈ C2, so
ρ−1(S) cannot project dominantly to V.

• S = {x1 = c1 and x3 = c3}: A general curve in C2 of degree d projects dominantly to its first coordinate,
so ρ−1(S) does project dominantly to V in this case. However, the intersection of S with a general fiber
C ×· · ·×C ⊂ C2Nd+2 has dimension only Nd −1< dim S − Nd , so this S could not have been contained
in the closure of ρ(CNd+1

V ).

• S = {x1 = c1 and x2 = x3}: Again this S has codimension 2, while the intersection with C × · · ·× C
for a general curve C ∈ V has dimension only Nd − 1.

• S = 11,3 = {x1 = x3 and x2 = x4}: These relations again impose conditions on two of the Nd + 1
components of C ×· · ·× C . But note that any collection of Nd + 1 points (x1, x2), . . . , (x2Nd+1, x2Nd+2)

in C2 satisfying (x1, x2)= (x3, x4) lie on some curve of degree d, because at most Nd of the points are
distinct. So all of 11,3 is contained in ρ(CNd+1

V ). The intersection of 11,3 with a general C ×· · ·× C has
dimension Nd , which is the expected dimension.

• S = {x1 = c1 and x2 = x3 = x4}: Again we impose relations on only two of the Nd + 1 components
of C ×· · ·×C , but there are too many relations; a general curve does not intersect both (c1, y) and (y, y)
for any choice of y ∈ C. Consequently, the preimage ρ−1(S) in CNd+1

V does not project dominantly to V.

• S = {x1 = c1 and x2 = x3 and x4 = c4}: These three relations are imposed upon only two of the Nd +1
components of C ×· · ·×C . As in the previous example, a general curve C does not intersect both (c1, y)
and (y, c4) for any choice of y ∈ C. The preimage ρ−1(S) in CNd+1

V does not project dominantly to V.

In general, recall that since S is special it is defined by imposing “special relations” of the form xi = ci

for a PCF parameter ci or xk = xℓ for i, k, ℓ ∈ {1, . . . , 2Nd + 2}. In general, we see that if we define S
by imposing up to Nd + 1 special relations on the coordinates of the Nd + 1 components of a general
product C ×· · ·×C in C2(Nd+1), as long as no one point is constant (as in the first example) nor that there
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are three relations on coordinates of two components (as in the last two examples), nor that two of the
coordinates are required to agree (so as to be a subvariety of a special diagonal 1i, j ), then the preimage
ρ−1(S) in CNd+1

V will project dominantly to V, but the general intersection of S with C ×· · ·×C will not
have sufficiently large dimension. That is, this S will not lie in ρ(CNd+1

V ) in C2(Nd+1). If we specify that
one of the components is a fixed special point, or if there are at least three relations imposed upon a pair
of components of C × · · ·× C (as is the case if codim S > Nd + 1), then the preimage ρ−1(S) will not
project dominantly to V. This completes the proofs of Theorems 1.4 and 1.5.

4.3. Lines and the proof of Theorem 1.6. The classification of special subvarieties (Theorem 1.2) and
the proof strategy in Section 4.2 for Theorem 1.4 suggest that the general curve in a “generically chosen”
maximally varying family C → V of curves in C2 with dimension ℓ= dim V, in any degree, intersects at
most ℓ distinct special points. Here we show this is indeed the case in degree d = 1. Before doing so, we
give an example where this expectation fails.

Example 4.3 (an exceptional family of lines). Consider the pencil of lines in C2 passing through a given
special point P , parameterized by V ≃ P1; for example, take P = (−1,−2) ∈ C2. Because we can
connect any special point in C2 to P with a line, there are infinitely many lines in this family containing
at least 2 special points, though dim V = 1.

Less obvious is the fact that the general bound on the number of special points in a line, for the family
of lines in Example 4.3, is also 2. That is, there are at most finitely many lines in C2 through the special
point P containing more than 2 distinct special points of C2. On the other hand, if we consider the pencil
of lines in C2 passing through a nonspecial point such as P = (1, 1), then all but finitely many lines in
the family have at most 1 special point. These facts are contained in the following proposition:

Proposition 4.4. Let V ⊂ X1 be an irreducible curve in the Chow variety of lines in C2, not consisting
exclusively of vertical or horizontal lines. Then, outside of finitely many parameters λ ∈ V, the lines of the
family intersect at most 1 special point in C2, unless V is

(1) the family of all lines through a special point P = (p1, p2) ∈ C2;

(2) the family of lines defined by Lλ = {(x, y) ∈ C2
: x + y = λ}, for λ ∈ C;

(3) the family of lines Lλ containing (c1, λ) and (λ, c2) for special parameters c1 ̸= c2, for λ ∈ C.

In each of these 3 cases, outside of a finite set of parameters λ ∈ V, there are at most 2 special points on
the line Lλ; moreover, there are infinitely many parameters λ ∈ V for which the line Lλ contains exactly 2
special points of C2.

Proof. Let V ⊂ X1 be an irreducible algebraic curve defined over C, not consisting of vertical or horizontal
lines. Let C → V denote this family of lines over V. Consider the special points in ρ2(C2

V ) in C4, for the
map ρ2 defined in Section 3.1. Note that their Zariski closure must contain the special diagonal surface

11,3 = {(x1, x2, x3, x4) ∈ C4
: (x1, x2)= (x3, x4)},
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because ρ1 is dominant to C2 (in which special points are Zariski dense). The general bound on the
number of special points on lines L ∈ V is 1 unless either

(S) there is a special surface contained in the Zariski closure ρ2(C2
V ), other than the diagonal 11,3,

intersecting L × L in a curve for general L ∈ V ; or

(C) there is a special curve contained in the Zariski closure ρ2(C2
V ), not contained in 11,3, intersecting

L × L in a nonempty finite set for general L ∈ V.

Indeed, if an infinite collection of lines L in V had at least 2 special points, then the Zariski closure of
those pairs of points would not be contained in 11,3 and would form a special subvariety lying in ρ2(C2

V ).
Some irreducible component Z of this Zariski closure is positive dimensional (because it contains an
infinite collection of points), and it must have dimension < dim ρ2(C2

V ) = 3 because the hypersurface
ρ2(C2

V ) in C4 cannot be special by Proposition 4.1. Thus, Z is either a curve or a surface. Because the
collection of lines L containing these special points was infinite in the curve V, some component Z
must have preimage ρ−1

2 (Z) that projects dominantly to V. The dimension of the intersection of Z with
the general L × L , as described in cases (S) and (C), then follows by dimension count, exactly as in
Section 4.2.

We will see that cases (1) and (2) of the proposition correspond to the existence of special surfaces of
type (S), and case (3) of the proposition gives rise to special curves of type (C). For each of the families
(1), (2), and (3), it is clear that there are infinitely many lines in the family containing at least 2 distinct
special points. It will remain to show that there are at most 2 special points on all but finitely many lines
in each of these families.

We work case by case, considering each type of special surface or curve in C4:

(S1) {x ∈ C4
: xi = ci and x j = c j } for i < j in {1, 2, 3, 4}: If {i, j} is {1, 2} or {3, 4}, then this special

surface is contained in ρ2(C2
V ) if and only if V is the pencil of lines through the special point P = (ci , c j ),

and we denote these surfaces by

SP,1 := {P} × C2 and SP,2 := C2
× {P}.

If {i, j} is {1, 3}, {2, 4}, {1, 4}, or {2, 3}, then the intersection with L × L is finite for general L ∈ V, so
this surface cannot be of type (S).

(S2) {x ∈ C4
: xi = ci and x j = xk} for three distinct indices i, j, k: If { j, k} is {1, 2} or {3, 4}, then the

surface is not contained in ρ2(C2
V ) because the intersections of L with {x = y} and {x = ci } are finite for

general L ∈ V. If {i, j} = {1, 2}, the intersection of the special surface with L × L is again generally
finite; other cases are similar, and none can be of type (S).

(S3) {xi = x j and xk = xm} with disjoint pairs of indices {i, j} and {k,m} in {1, 2, 3, 4}: If the pairs are
{1, 2} and {3, 4}, then the intersection with L × L is finite for general L ∈ V, so it cannot be of type (S).
If the pairs are {1, 3} and {2, 4}, then the special subvariety is the special diagonal surface

11,3 = {(x1, x2)= (x3, x4)}.
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If they are {1, 4} and {2, 3}, then the surface lies in ρ2(C2
V ) if and only if the points on L come in symmetric

pairs (so (x, y) ∈ L if and only if (y, x) ∈ L) for general L ∈ V. In other words, the family of lines is of
the form

x + y = b

for a nonconstant function b on V, and we denote this special surface by

D := {x1 = x4 and x2 = x3}.

For this family of lines, a point (x, y) on the line is special if and only if (y, x) is special, so there are
infinitely many such lines with at least two distinct special points.

(S4) {xi = x j = xk} for three distinct indices i, j, k: There is at least one pair of indices which is either
{1, 2} or {3, 4}. But then the intersection with L × L is finite for general L ∈ V, so this surface cannot be
of type (S).

We now consider the existence of special curves of type (C). We work case by case again, considering
each type of special curve in C4.

(C1) {x ∈ C4
: xi = ci , x j = c j , xk = ck} for i < j < k in {1, 2, 3, 4}: There is a pair of indices equal to

{1, 2} or {3, 4}. So the product L × L intersects this curve for a general L ∈ V if and only if the family of
lines persistently contains a special point P . In other words, the family must be case (1) of the proposition,
and the Zariski closure ρ2(C2

V ) also contains the surfaces SP,1 and SP,2 of type (S1).

(C2) {xi = ci , x j = c j , xk = xm} for disjoint pairs {i, j} and {k,m}: If {i, j} = {1, 2}, then the general
intersection with L × L is empty unless the lines contain P = (c1, c2) for all L ∈ V. In particular, this
family of lines must be case (1) of the proposition, and the Zariski closure ρ2(C2

V ) also contains the
surfaces SP,1 and SP,2 of type (S1). Similarly for {i, j} = {3, 4}. If {i, j} = {1, 3}, then the equality
x2 = x4 in L × L would imply that c1 = c3 because L is degree 1 and not horizontal for all L , making
this special curve lie in the diagonal 11,3. Similarly for {i, j} = {2, 4}. So, for each of these cases, the
curve cannot be of type (C).

For {i, j} = {1, 4} with c1 = c4, the relation x2 = x3 implies that the general line in the family must
intersect points of the form (c1, y) and (y, c1) for some y ∈ C (where the y value can vary with the
line). If y = c1 for a general line, then the family of lines must be case (1) with P = (c1, c1), and the
Zariski closure ρ2(C2

V ) also contains the surfaces SP,1 and SP,2 of type (S1). If y ̸= c1 for a general line
in the family, then the pair of points (c1, y) and (y, c1) determine the line uniquely; the family must
be of the form x + y = λ, and the Zariski closure ρ2(C2

V ) also contains the surface D of type (S3). For
{i, j} = {1, 4} with c1 ̸= c4, the relation x2 = x3 implies that the general line in the family must intersect
points of the form (c1, y) and (y, c4) for some y ∈ C (where the y value must vary with the line). The
family of lines is therefore case (3) of the proposition, and the Zariski closure ρ2(C2

V ) contains the curve
of type (C) defined by

Cc1,c4,1 := {x1 = c1 and x4 = c4 and x2 = x3}.
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By the symmetry of ρ2(C2
V ), we see that the curve

Cc1,c4,2 = {x2 = c4 and x3 = c1 and x1 = x4}

is also contained in ρ2(C2
V ), for the same family of lines. The case of {i, j} = {2, 3} leads to the same

conclusion.

(C3) {xi = ci , x j = xk = xm}: Assume first that i = 1. The relations determine a curve of type (C) if the
lines of the family contain both (c1, y) and (y, y) for some y ∈ C (where the value of y can vary with
the line). If the general line intersects the point P = (c1, c1), then the family is case (1), and the Zariski
closure ρ2(C2

V ) also contains the surfaces SP,1 and SP,2 of type (S1). If y ̸= c1 for a general line, then the
lines must be horizontal, and this case has been ruled out by assumption. Similarly for i = 2, 3, 4.

(C4) {x1 = x2 = x3 = x4}: This curve is contained in the diagonal surface 11,3.

The case-by-case analysis shows that the three types of families of lines listed in the proposition are
the only families of lines that give rise to special subvarieties of type (S) or type (C). Thus, any other
1-parameter maximally varying family of lines has at most 1 special point on the general line in the family.

To see that the bound is at most 2 on the three types of exceptions (1), (2), and (3), we look again
at the cases and the structure of the Zariski closure of the special points in ρ2(C2

V ). Suppose we are in
case (1), and assume there are at least 3 distinct special points on infinitely many lines L in the family.
Then, considering pairs of special points on a line L , with neither equal to the given special P ∈ C2, we
build a component of the Zariski closure of special points in ρ2(C2

V ) that is neither in 11,3 nor in the
surfaces SP,1 or SP,2 of type (S1) above. Similarly for case (2), choosing pairs of distinct special points
that are not symmetric (as (x, y) and (y, x)) leads to a component of the Zariski closure of special points
in ρ2(C2

V ) that is neither in 11,3 nor in the surface D of type (S3). And finally, for case (3), the existence
of pairs of points that are distinct and not equal to the pair (c1, λ) and (λ, c4) as described in case (C2)
leads to a special component not contained in 11,3 nor in the curves Cc1,c4,1 or Cc1,c4,2.

Thus, it remains to observe that a family of lines C → V over a curve V cannot be exhibited as a family
of the form (1), (2), or (3) in two distinct ways. For example, as there is a unique line through distinct
points P and Q in C2, there cannot be a family of lines exhibited as case (1) of the proposition for two
distinct special points P ̸= Q. It is also clear that there is no point P ∈ C2 in every line of the family of
case (2), so cases (1) and (2) cannot coincide. Given a family as in case (3), we can easily compute that
there are at most two lines in the family containing any given point P ∈ C2, so cases (3) and (1) cannot
coincide. The family of lines in case (2) has constant slope, while those of case (3) have slopes varying
with λ because c1 ̸= c2, so the cases (2) and (3) cannot coincide. Finally, we check that a family of lines
cannot be exhibited as case (3) for distinct special pairs (c1, c2) and (c′

1, c′

2) with c1 ̸= c2 and c′

1 ̸= c′

2. If
so, there would be a quadratic relation that must be satisfied for all parameters λ ∈ C, namely

c1λ
2
− c2λ

2
− λ2c′

1 + λ2c′

2 + 2c2c′

1λ− 2c1c′

2λ+ c2
1c′

2 − c2
1c2 + c1c2

2 − c2
2c′

1 = 0,

which implies that (c1, c2)= (c′

1, c′

2).
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This proves that the bound is at most 2 for each of these exceptional families. To see that the bound is
optimal, we observe that the families are constructed to have infinitely many lines containing at least 2
special points. □

Proof of Theorem 1.6. The Chow variety of lines X1 has dimension 2. From Theorem 1.4, we know that
there is a finite union V1 of irreducible curves and points in X1 such that there are at most 2 special points
on each line L ̸∈ V1. Now fix an irreducible curve C ⊂ V1, and assume it is not the family of vertical or
horizontal lines in C2. From Proposition 4.4, there is again a bound of 2 on the number of special points
for all but finitely many L ∈ C . This completes the proof. □

5. Real algebraic curves in R2

In this section, we observe that Theorems 1.3, 1.4, 1.5, and 1.6 apply to real algebraic curves in R2

passing through PCF parameters in the Mandelbrot set, in particular providing a proof of Theorem 1.8.
Suppose P(x, y) ∈ R[x, y] is a polynomial with degree d ≥ 1. Writing x =

1
2(c + c̄) and y =

1
2i (c − c̄),

we obtain a polynomial of c and c̄ of degree d with complex coefficients. In this way, any real algebraic
curve in R2 passing through a collection {c1, . . . , cm} of PCF parameters in C gives rise to a complex
algebraic curve in C2 passing through special points {(c1, c̄1), . . . , (cm, c̄m)}. (Recall that the set of special
parameters is symmetric under complex conjugation.)

For example, if we begin with the line in R2 defined by

{(x, y) ∈ R2
: ax + by = r}

with a, b, r ∈ R, then this line contains c ∈ C if and only if the complex line{
(x, y) ∈ C2

:
1
2(a − ib)x +

1
2(a + ib)y = r

}
contains the point (c, c̄) in C2. In particular, taking b = 1 and a = r = 0 shows that the real axis in C

corresponds to the diagonal line x = y in C2. Note that the vertical and horizontal lines in C2 cannot
arise by this construction.

Example 5.1. The imaginary axis in C contains the three PCF parameters {i, 0,−i} and corresponds
to the complex line y = −x in C2. Other than the real and imaginary axes in C, we do not know any
examples of real lines with more than two PCF parameters.

We see immediately that Theorem 1.3 applies to real algebraic curves in each degree d ≥ 1, implying
there is a uniform bound on the number of PCF parameters on any such curve, depending only on the
degree. And so does Theorem 1.6, as the real axis in C is the only line containing infinitely many PCF
parameters, implying that there are only finitely many real lines in C passing through more than two PCF
parameters. This completes the proof of Theorem 1.8.

Note that the set of all complex algebraic curves of degree d built from real curves in the above way is
Zariski-dense in the Chow variety Xd of all complex curves of degree ≤ d in C2. Therefore, Theorem 1.4
also holds for real algebraic curves. Finally, observing that there always exists a real algebraic curve of
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degree d through any collection of 1
2 d(d +3) points in C, we see that Theorem 1.5 also holds by choosing

the curves to pass through collections of PCF parameters, so the bound of 1
2 d(d + 3) is optimal for a

general real curve in degree d.

Example 5.2. Holly Krieger pointed out to us that Theorem 1.6 also implies there are only finitely
many horizontal real lines in C that contain more than one PCF parameter. Indeed, if two distinct PCF
parameters, say c1 and c2, have the same nonzero imaginary part, then c2 − c1 = c̄2 − c̄1 ∈ R, and the four
pairs (c1, c̄2), (c̄2, c1), (c2, c̄1), and (c̄1, c2) are on the complex line

x + y = α := c1 + c̄2

in C2. We do not know of any examples of horizontal lines, other than the real axis in C, containing more
than one PCF parameter.
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An asymptotic orthogonality relation for GL(n,R)

Dorian Goldfeld, Eric Stade and Michael Woodbury

Orthogonality is a fundamental theme in representation theory and Fourier analysis. An orthogonality
relation for characters of finite abelian groups (now recognized as an orthogonality relation on GL(1)) was
used by Dirichlet to prove infinitely many primes in arithmetic progressions. Asymptotic orthogonality
relations for GL(n), with n ≤ 3, and applications to number theory, have been considered by various
researchers over the last 45 years. Recently, the authors of the present work have derived an explicit
asymptotic orthogonality relation, with a power savings error term, for GL(4,R). Here we extend those
results to GL(n,R), n ≥ 2.

For n ≤ 5, our results are contingent on the Ramanujan conjecture at the infinite place, but otherwise
are unconditional. In particular, the case n = 5 represents a new result. The key new ingredient for
the proof of the case n = 5 is the theorem of Kim and Shahidi that functorial products of cusp forms
on GL(2)× GL(3) are automorphic on GL(6). For n > 5 (assuming again the Ramanujan conjecture
holds at the infinite place), our results are conditional on two conjectures, both of which have been
verified in various special cases. The first of these conjectures regards lower bounds for Rankin–Selberg
L-functions, and the second concerns recurrence relations for Mellin transforms of GL(n,R) Whittaker
functions.

Central to our proof is an application of the Kuznetsov trace formula, and a detailed analysis, utilizing
a number of novel techniques, of the various entities — Hecke–Maass cusp forms, Langlands Eisenstein
series, spherical principal series Whittaker functions and their Mellin transforms, and so on — that arise
in this application.

1. Introduction 2186
2. Preliminaries 2195
3. Spectral decomposition of L2(SL(n,Z)\hn) 2200
4. Kuznetsov trace formula 2203
5. Asymptotic formula for the main term 2208
6. Bounding the geometric side 2209
7. Bounding the Eisenstein spectrum E 2216
8. An integral representation of p(n)T,R(y) 2221
9. Bounding I(m)T,R 2230
10. Bounding p(n)T,R(y) 2238
Appendix: Auxiliary results 2248
Acknowledgments 2258
References 2258

Dorian Goldfeld is partially supported by Simons Collaboration Grant number 567168.
MSC2020: 11F55, 11F72.
Keywords: orthogonality, Hecke–Maass cusp forms, Kuznetsov trace formula.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://msp.org/ant/
https://doi.org/10.2140/ant.2025.19-11
https://doi.org/10.2140/ant.2025.19.2185
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


2186 Dorian Goldfeld, Eric Stade and Michael Woodbury

1. Introduction

1.1. Brief description of the main result of this paper. Let n ≥ 1 be a rational integer, s ∈ C, and
AQ = R × A f denote the ring of adeles over Q, where A f denotes the finite adeles. The family of unitary
cuspidal automorphic representations π of GL(n,AQ) and their standard L-functions

L(s, π)= L∞(s, π) ·
∏

p

L p(s, π)

were first introduced by Godement and Jacquet [1972] and have played a major role in modern number
theory. In the special case of n = 1 the Euler products

∏
p L p(s, π) are just Dirichlet L-functions.

In this paper we focus on the unitary cuspidal automorphic representations of GL(n,AQ) with trivial
central character which are globally unramified. For n ≥ 2, these can be studied classically in terms of
Hecke–Maass cusp forms on

SL(n,Z)\ GL(n,R)/(O(n,R) · R×),

where

hn
:= GL(n,R)/(O(n,R) · R×)

is a generalization of the classical upper half-plane. In fact h2
:=

{( y x
0 1

) ∣∣ y > 0, x ∈ R
}

is isomorphic to
the classical upper half-plane.

For n ≥ 2, Hecke–Maass cusp forms are smooth functions φ : hn
→ C which are automorphic for

SL(n,Z) with moderate growth and which are joint eigenfunctions of the full ring of invariant differential
operators on GL(n,R) and are also joint eigenfunctions of the Hecke operators. Such globally unramified
Hecke–Maass forms can be classified in terms of Langlands parameters which (assuming the cusp form
is tempered) are n pure imaginary numbers (α1, α2, . . . , αn) ∈ (i · R)n that sum to zero. Further, the
Hecke–Maass cusp forms φ with Langlands parameters (α1, . . . , αn) can be ordered in terms of their
Laplace eigenvalues λ1(φ) given by

λ1(φ)=
1

24(n
3
− n)− 1

2(α
2
1 +α2

2 + · · · +α2
n),

as proved by Stephen Miller [2002].
Let φ be a Hecke–Maass cusp form for SL(n,Z) for n ≥ 2 and set

⟨φ, φ⟩ :=

∫
SL(n,Z)\hn

φ(g)φ(g) dg

to denote the Petersson norm of φ. The Hecke–Maass cusp forms form a Hilbert space over C with
respect to the Petersson inner product.

Definition 1.1.1 (L-function of a Hecke–Maass cusp form). Let φ be a Hecke–Maass cusp form for
SL(n,Z). Then for s ∈ C with Re(s) sufficiently large we define the L-function L(s, φ) :=

∑
∞

k=1 λ(k)k
−s,

where λ(k) is the k-th Hecke eigenvalue of φ.
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Definition 1.1.2 (asymptotic orthogonality relation for GL(n,R)). Let {φ j } j=1,2,... (with associated
Langlands parameters α( j)

= (α
( j)
1 , α

( j)
2 , . . . , α

( j)
n )) denote an orthogonal basis of Hecke–Maass cusp

forms for SL(n,Z) with L-function given by L(s, φ j ) :=
∑

∞

k=1 λ j (k)k−s. Fix positive integers ℓ,m.
Then, for T → ∞, we have

lim
T →∞

∑
∞

j=1 λ j (ℓ) λ j (m) hT (α
( j))/L j∑

∞

j=1 hT (α( j))/L j
=

{
1 + o(1) if ℓ= m,
o(1) if ℓ ̸= m,

where L j = L(1,Adφ j ) and hT (α
( j)) is a smooth function of the variables α( j), T (for T > 0), with

support on the Laplace eigenvalues λ1(φ j ), where 0< λ1(φ j )≪ T.

Remark 1.1.3 (power savings error term). The asymptotic orthogonality relation has a power savings
error term if o(1) can be replaced with O(T −θ ) for some fixed θ > 0. The error terms o(1), O(T −θ ) will
generally depend on L , M. This type of asymptotic orthogonality relation was first conjectured by Fan
Zhou [2014].

Remark 1.1.4 (normalization of Hecke–Maass cusp forms). The approach we take in proving asymptotic
orthogonality relations for GL(n,R) is the Kuznetsov trace formula presented in Section 4, where
λ j (ℓ)λ j (m)/⟨φ j , φ j ⟩ (which are independent of the way the φ j are normalized) appears naturally on the
spectral side of the trace formula leading to an asymptotic orthogonality relation of the form

lim
T →∞

∑
∞

j=1 λ j (ℓ)λ j (m)hT (α
( j))/⟨φ j , φ j ⟩∑

∞

j=1 hT (α( j))/⟨φ j , φ j ⟩
=

{
1 + o(1) if ℓ= m,
o(1) if ℓ ̸= m.

(1.1.5)

If we normalize φ j so that its first Fourier coefficient is equal to 1 then it is shown in Proposition 4.1.4 that

⟨φ j , φ j ⟩ = cn L(1,Adφ j )
∏

1≤i ̸=k≤n

0
( 1

2(1 +α
( j)
i −α

( j)
k )

)
(cn ̸= 0).

This allows us (with a modification of the test function hT ) to replace the inner product ⟨φ j , φ j ⟩ appearing
in (1.1.5) with the adjoint L-function L j as in Definition 1.1.2. The main reason for doing this is that
there are much better techniques developed for bounding special values of L-functions, as opposed to
bounding inner products of cusp forms. So having L−1

j in the asymptotic orthogonality relation instead
of ⟨φ j , φ j ⟩

−1 will allow us to obtain better error terms in applications.

Orthogonality relations as in Definition 1.1.2 have a long history going back to Dirichlet (for the case
of GL(1)) who introduced the orthogonality relation for Dirichlet characters to prove infinitely many
primes in arithmetic progressions. Bruggeman [1978] was the first to obtain an asymptotic orthogonality
relation for GL(2), which he presented in the form

lim
T →∞

∞∑
j=1

λ j (ℓ)λ j (m) · 4π2e−λ1(φ j )/T

T cosh
(
π

√
λ1(φ j )−

1
4

) =

{
1 if ℓ= m,
0 if ℓ ̸= m,

where {φ j } j=1,2,... goes over an orthogonal basis of Hecke–Maass cusp forms for SL(2,Z). This is not
quite in the form of Definition 1.1.2 but it can be put into that form with some work. Other versions of
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GL(2)-type orthogonality relations with important applications were obtained by Sarnak [1987], and, for
holomorphic Hecke modular forms, by Conrey, Duke and Farmer [Conrey et al. 1997] and J. P. Serre [1997].

The first asymptotic orthogonality relations for GL(3) with power savings error term were proved
independently by Blomer [2013] and Goldfeld and Kontorovich [2013]. Goldfeld, Stade and Woodbury
[Goldfeld et al. 2021b] were the first to obtain a power savings asymptotic orthogonality relation, as in
Definition 1.1.2 for GL(4).

A major breakthrough was obtained by Matz and Templier [2021] who unconditionally proved an
asymptotic orthogonality relation for SL(n,Z), as in (1.1.5), for a wide class of test functions for all n ≥ 2
(with power savings) but without the harmonic weights given by the inverse of the adjoint L-function at 1.
Their results were further strengthened in [Finis and Matz 2021]. The principal tool used to prove the
asymptotic orthogonality relation in [Matz and Templier 2021] was the Arthur–Selberg trace formula,
whereas our approach is the natural generalization of the earlier results [Blomer 2013; Goldfeld and
Kontorovich 2013; Goldfeld et al. 2021b], which were based on the Kuznetsov trace formula.

Blomer [2021] presented a very nice exposition comparing the Arthur–Selberg and Kuznetsov trace
formulae, which we now briefly summarize for the application to asymptotic orthogonality relations.

• The first key difference between these trace formulae is that the spectral side of the Kuznetsov trace
formula has harmonic weights L−1

j , while the Arthur–Selberg trace formula does not have these harmonic
weights. For GL(n) with n > 3 it is not currently known how to remove these weights (see [Buttcane and
Zhou 2020] for how to remove the weights on GL(3)). Blomer [2021] remarked that “ for applications to
L-functions involving period formulae it is often desirable to have an additional factor 1/L(1,Adφ) in the
cuspidal spectrum, but in other situations one may prefer a summation formula without an extra L-value.”

• The second major difference between these trace formulae is that the spectral side of the Kuznetsov trace
formula does not contain residual spectrum, while the Arthur–Selberg trace formula does. As pointed
out by a referee, the bulk of the work in [Matz and Templier 2021] consists in bounding the unipotent
contribution on the geometric side of the Arthur trace formula so that it stays in line with the error term
coming from the residual Eisenstein contribution on the spectral side given by Lapid and Müller [2009].
These residual Eisenstein series do not appear in the Kuznetsov trace formula, which leads to a very
strong conjectural error term in Theorem 1.5.1. In fact, the largest error term on the spectral side of the
Kuznetsov trace formula arises from the tempered Eisenstein series coming from the maximal parabolic
having (n − 1, 1) Levi block decomposition. For explicit comparisons between our main theorem and
the results of [Matz and Templier 2021], see Remark 1.5.4.

• There are certain applications of our results using the Kuznetsov trace formula approach that go beyond
the results in [Matz and Templier 2021; Finis and Matz 2021]. Recall that λ j (p) denotes the p-th Hecke
eigenvalue of the Maass form φ j . Fan’s thesis concerns the so-called vertical Sato–Tate problem, which
is a conjecture about the distribution of λ j (p), where p is fixed and j varies. This problem was studied
by Bruggeman [1978] and Sarnak [1987] (for Maass forms), and Serre [1997] and Conrey, Duke and
Farmer [Conrey et al. 1997] (for holomorphic forms), who showed by fixing p and varying j that λ j (p)
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is an equidistributed sequence with respect to the Plancherel measure which depends on p. Strikingly,
as observed by Fan Zhou [2014], if we give each Hecke eigenvalue λ j (p) the weight L−1

j , then the
distribution involves the Sato–Tate measure which is independent of p. Jana [2021] generalized the results
of Zhou, but he only obtained an asymptotic formula without a power savings error term. A problem for
the future would be to combine Jana’s approach with the methods of this paper. Jana also obtains bounds
toward Sarnak’s density hypothesis using this strategy that are stronger than anything known using the
Arthur–Selberg trace formula.

The main aim of this paper is to explicitly work out an asymptotic orthogonality relation for SL(n,Z)

via the Kuznetsov trace formula for a special choice of test function h(n)T,R whose form is that of a Gaussian
times a fixed polynomial. We do not address applications in this paper and leave that to future research. See
[Blomer 2021] for various applications of the Arthur–Selberg and Kuznetsov trace formulae and how they
compare. We also point out that the Kuznetsov trace formula was generalized by Jacquet and Lai [1985]
who developed the relative trace formula which has had a wide following with new types of applications.

See Theorem 1.5.1 for the statement of our main theorem. The proof we give assumes the Ramanujan
conjecture at ∞ but it is possible to prove a weaker result by dropping this assumption. Otherwise the
proof is unconditional for n ≤ 5. In particular, the case n = 5 represents a complete, new result. For
n > 5, our result is conditional on two conjectures.

1.2. Ishii–Stade conjecture. The Ishii–Stade conjecture (see Section 8.2) concerns the normalized
Mellin transform W̃n,α(s) of the GL(n,R) Whittaker function Wn,α(y) defined in Definition 2.3.3. Here,
s = (s1, s2, . . . , sn−1) ∈ Cn−1, and α = (α1, α2, . . . , αn)= Cn−1 satisfies

∑n
i=1 αi = 0.

Suppose integers m and δ, with 1 ≤ m ≤ n − 1 and δ ≥ 0, are given. The Ishii–Stade conjecture
expresses W̃n,α(s) as a finite linear combination, with coefficients that are rational functions of the s j ’s
and αk’s, of shifted Mellin transforms

W̃n,α(s +6),

where 6 ∈ (Z≥0)
n−1 and the m-th coordinate of 6 is ≥ δ. In other words, for such δ and m, the conjecture

expresses the Mellin transform W̃n,α(s) in terms of shifts of this Mellin transform by at least δ units to
the right in the variable sm .

Much as recurrence relations of the form

0(s)= [(s + δ− 1)(s + δ− 2) · · · (s + 1)s]−10(s + δ)

for Euler’s Gamma function imply concrete results concerning analytic continuation, poles, and residues
of that function, so will the Ishii–Stade conjecture allow us to obtain explicit information about the
behavior of W̃n,a(s) beyond its original, a priori domain of definition. This explicit information will
be crucial to the analysis of our test function hT , and consequently, to our derivation of an asymptotic
orthogonality relation as in Definition 1.1.2.

We have been able to prove the Ishii–Stade conjecture for GL(n,R) with 2 ≤ n ≤ 5. See Section 8.2
below.
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1.3. Lower bound conjecture for Rankin–Selberg L-functions. Fix n ≥ 2. Let n = n1 + · · · + nr be
a partition of n with ni ∈ Z>0 (i = 1, . . . , r). The second conjecture we require for the proof of the
asymptotic orthogonality relation for GL(n,R) is a conjecture on the lower bound for Rankin–Selberg
L-functions L(s, φk × φk′) on the line Re(s) = 1, where φk , φk′ (for 1 ≤ k < k ′

≤ r) are Hecke–Maass
cusp forms for SL(nk,Z), SL(nk′,Z), respectively. For a Hecke–Maass cusp form φ with Langlands
parameters (α1, . . . , αn), let

c(φ)= (1 + |α1|)(1 + |α2|) · · · (1 + |αn|) (1.3.1)

denote the analytic conductor of φ as defined by Iwaniec and Sarnak [2000].

Conjecture 1.3.2 (lower bounds for Rankin–Selberg L-functions). Let ε > 0 be fixed. Then we have the
lower bound

|L(1 + i t, φk ×φk′)| ≫ε (c(φk) · c(φk′))−ε(|t | + 2)−ε.

Remark 1.3.3. Conjecture 1.3.2 follows from Langlands’ conjecture that φk × φk′ is automorphic for
SL(nk ·nk′,Z). This can be proved via the method of de la Valée Poussin as in [Sarnak 2004]. Interestingly,
Sarnak’s approach can be extended to prove Conjecture 1.3.2 if φk′ is the dual of φk (see [Goldfeld and Li
2018; Humphries and Brumley 2019]). Stronger bounds can also be obtained if one assumes the Lindelöf
or Riemann hypothesis for Rankin–Selberg L-functions.

If nk = n′

k = 2, it was proved by Ramakrishnan [2000] that φk ×φk′ is automorphic for SL(4,Z), thus
proving the lower bound conjecture for n ≤ 4. Further, for nk = 2 and n′

k = 3, it was proved by Kim and
Shahidi [2002] that φk ×φk′ is automorphic for SL(6,Z), thus proving the lower bound conjecture for n ≤5.

1.4. Constructing the test functions. Fix an integer n ≥ 2. We now construct two complex-valued test
functions on the space of Langlands parameters

{α = (α1, . . . , αn) ∈ Cn
| α1 + · · · +αn = 0}

that will be used in our proof of the orthogonality relation for GL(n,R).
We begin by introducing an auxiliary polynomial that is used in constructing the test functions.

Definition 1.4.1 (the polynomial F (n)
R (α)). Let R ∈Z>0 and let α= (α1, . . . , αn) be a Langlands parameter.

Then we define

F (n)
R (α) :=

n−2∏
j=1

∏
K ,L ⊆ (1,2,...,n)

#K=#L= j

(
1 +

∑
k∈K

αk −

∑
ℓ∈L

αℓ

)R
2

.

Note that if α ∈ (iR)n , then F (n)
1 (α) is the square root of a polynomial in α of degree 2D(n), where

D(n)=

n−2∑
j=1

1
2

(n
j

)((n
j

)
− 1

)
=

1
2

(2n
n

)
−

n(n − 1)
2

− 2n−1. (1.4.2)
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By abuse of notation, we refer to F (n)
R as a polynomial, although this is not strictly the case unless R is

even. For α with bounded real and imaginary parts, say |Re(α j )|< R and |Im(α j )|< T 1+ε, we have

|F (n)
R (α)| ≪ T ε+R·D(n) (T → +∞), (1.4.3)

with an implicit constant depending on n, ε, R.

Definition 1.4.4 (the test functions pn,#
T,R(α) and h(n)T,R(α)). Let R ∈ Z>0 and T → +∞. Then for a

Langlands parameter α = (α1, . . . , αn), we define

pn,#
T,R(α) := e(α

2
1+α2

2+···+α2
n)/(2T 2)

·F (n)
R

(
α

2

) ∏
1≤ j ̸=k≤n

0

(
1 + 2R +α j −αk

4

)
,

h(n)T,R(α) :=
|pn,#

T,R(α)|
2∏

1≤ j ̸=k≤n 0((1 +α j −αk)/2)
.

We observe that, by Stirling’s formula for the Gamma function and by (1.4.2) and (1.4.3), we have

|h(n)T,R(α)| ≪ T R·((2n
n )−2n)− n(n−1)

2 (1.4.5)

whenever |Re(α j )| is bounded and |Im(α j )| < T 1+ε for 1 ≤ j ≤ n. The implied constant in (1.4.5)
depends on n, ε, and R.

Remark 1.4.6 (positivity of h(n)T,R). Writing α = (α1, α2, . . . , αn) with α j = i t j and t j ∈ R for each
j = 1, 2, . . . , n, the function h(n)T,R(α) is positive. This is the case because 0

( 1+iu
2

)
0

( 1−iu
2

)
=

∣∣0(1+iu
2

)∣∣2

for u ∈ R.

Remark 1.4.7 (Whittaker transform of the test function). The symbol # in the test function pn,#
T,R means

this function is the Whittaker transform of p(n)T,R . See Section 8.

1.5. The main theorem.

Theorem 1.5.1. Fix n ≥ 2. Let {φ j } j=1,2,... denote an orthogonal basis of Hecke–Maass cusp forms for
SL(n,Z) (assumed to be tempered at ∞) with associated Langlands parameter

α( j)
= (α

( j)
1 , α

( j)
2 , . . . , α( j)

n ) ∈ (i · R)n

and L-function L(s, φ j ) :=
∑

∞

k=1 λ j (k)k−s.
Fix positive integers ℓ,m. Then assuming the Ishii–Stade conjecture (Conjecture 8.2.3) and the lower

bound conjecture for Rankin–Selberg L-functions (Conjecture 1.3.2), we prove that for T → ∞

∞∑
j=1

λ j (ℓ) λ j (m)
h(n)T,R(α

( j))

L j
= δℓ,m ·

n−1∑
i=1

ci · T R·((2n
n )−2n)+n−i

+Oε,R,n
(
(ℓm)

n2
+13
4 · T R·((2n

n )−2n)+ε),
where δℓ,m is the Kronecker symbol, L j = L(1,Ad φ j ), and c1, . . . , cn−1> 0 are absolute constants which
depend at most on R and n.

Because Conjectures 1.3.2 and 8.2.3 are known to be true for 2 ≤ n ≤ 5 (see Remark 1.3.3 and
Section 8.2), the above result is unconditional for such n.
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Remark 1.5.2. Qiao Zhang [2023] recently proved the lower bound

|L(1 + i t, φk ×φk′)| ≫ (c(φk) · c(φk′))−θk,k′ (|t | + 2)−
1
2 nknk′ (1−1/(nk+nk′ ))−ε, (1.5.3)

with θk,k′ = nk + nk′ + ε. This improves on the bound of Brumley [2006; 2013, Appendix], who obtained
nearly the same result but with the term nknk′/2 replaced by nknk′ . Assuming (1.5.3) we can replace the
error term in Theorem 1.5.1 with

Oε,R,n,ℓ,m
(
T R·((2n

n )−2n)+n−1+
n(n−2)

6 (θk,k′−
8

n2 )
)
.

So if one could prove (1.5.3) with θk,k′ < 8/n2 this would give a power savings error term in our main theo-
rem and would remove the assumption of the lower bound conjecture (Conjecture 1.3.2). In fact, the proof
establishes a black box by which improvements to bounds on Rankin–Selberg L-functions result in better
power savings error terms for the continuous spectrum contribution to the asymptotic orthogonality relation.

Remark 1.5.4. A variant of Theorem 1.5.1 is obtained unconditionally in [Matz and Templier 2021; Finis
and Matz 2021], without the arithmetic weights L−1

j and with different test functions, which are indicator
functions of α( j)

∈ T�, where� is a Weyl group invariant bounded open subset of i ·a∗, where a is the Lie
algebra of the subgroup of diagonal matrices with positive entries. Additionally, the results of [Matz and
Templier 2021; Finis and Matz 2021] do not give the polynomial weights of size T R·((2n

n )−2n)−n(n−1)/2

coming from h(n)T,R(α) (see (1.4.5)).
The error term obtained in [Finis and Matz 2021], in the present setting of SL(n,Z), is ≪T (n−1)(n+2)/2−1

as T →∞. Here, (n−1)(n+2)/2 is the dimension of the generalized upper half-plane hn, and the error term
obtained by Finis and Matz has exponent equal to that dimension minus 1. By comparison, if one removes
the polynomial weights T R·((2n

n )−2n)−n(n−1)/2 from the error term in Theorem 1.5.1 above, then one obtains
an error term that is ≪ T n(n−1)/2+ε. Also note that our main term is of a stronger form than that of [Matz
and Templier 2021; Finis and Matz 2021], in that ours gives a sum of n−1 different high-order asymptotics.

More recently, Jana [2021] obtained a proof of the asymptotic orthogonality relation defined in
Definition 1.1.2, using the Kuznetsov trace formula and not the Selberg trace formula, with applications
to the equidistribution of Satake parameters with respect to the Sato–Tate measure, second-moment
estimates of central values of L-functions as strong as Lindelöf on average, and distribution of low-lying
zeros of automorphic L-functions in the analytic conductor aspect. The paper of Jana does not contain
a power savings error term.

Remark 1.5.5. It is possible to remove the assumption of Ramanujan at the infinite place with more
work, which results in a weaker power savings error term in Theorem 1.5.1. For a Maass form φ with
Langlands parameter α, note that the test function hT,R(α) is positive. This is true because, even if α is a
Langlands parameter of an element in the complementary spectrum, −α is a permutation of ᾱ. A weaker
version of Theorem 1.5.1 can be proved if one assumes that almost all (except for a set of zero density)
are tempered. Such results have been obtained in [Matz and Templier 2021; Finis and Matz 2021].
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Proof of Theorem 1.5.1. Computing the inner product of certain Poincaré series in two ways (see the
outline in Section 1.6 below), we obtain a Kuznetsov trace formula relating the so-called geometric and
spectral sides. The geometric side consists of a main term M and a Kloosterman contribution K. The
spectral side also consists of two components: a cuspidal (i.e., discrete) contribution C and an Eisenstein
(i.e., continuous) contribution E .

The left-hand side of the theorem is precisely C. The first set of terms on the right-hand side comes
from the asymptotic formula for M given in Proposition 5.0.1. The power of T in the error term comes
from the bound for E given in Theorem 7.1.1 (which also gives a factor of (ℓm)1/2−1/(n2

+1)). A bound
for K, which is a (finite) sum of terms Iw, with the same power of T but with the given power of ℓm
follows as a consequence of Proposition 6.0.1. □

1.6. Outline of the key ideas in the proofs. Fix n ≥ 2. The GL(n,R) orthogonality relation appears
directly in the spectral side of the Kuznetsov trace formula for GL(n,R), which we now discuss. The
Kuznetsov trace formula is obtained by computing the inner product of two Poincaré series on SL(n,Z)\hn

in two different ways. The Poincaré series are constructed in a similar manner to Borel Eisenstein series
by taking all Un(Z)\ SL(n,Z) translates of a certain test function which we choose to be the p(n)T,R test
function in Definition 1.4.4 multiplied by a character and a power function (see Definition 2.3.7).

The first way of computing the inner product of two Poincaré series is to replace one of the Poincaré
series with its spectral expansion into cusp forms and Eisenstein series and then unravel the other Poincaré
series with the Rankin–Selberg method. This gives the spectral contribution which has two parts: the
cuspidal contribution and the Eisenstein contribution. The second way of computing the inner product
is to replace one of the Poincaré series with its Fourier Whittaker expansion and then unravel the other
Poincaré series with the Rankin–Selberg method. This is called the geometric contribution to the trace
formula, which also consists of two parts: a main term, and the so-called Kloosterman contribution. The
precise results of these computations are given in Theorems 4.1.1 and 4.2.1, respectively.

Bounding the Eisenstein contribution. The key component of the Eisenstein contribution to the
Kuznetsov trace formula is the inner product of an Eisenstein series and the Poincaré series P M

given in Definition 2.3.7. By unraveling the Poincaré series in the inner product (see Proposition 4.1.2)
we essentially obtain the M-th Fourier coefficient of the Eisenstein series multiplied by the Whittaker
transform of p(n)T,R . The explicit formula for the M-th Fourier coefficient of the most general Langlands
Eisenstein series given in Proposition 4.1.5 allows us to effectively bound all the terms in the integrals
appearing in the Eisenstein contribution except for the product of adjoint L-functions

r∏
k=1

nk ̸=1

L∗(1,Adφk)
−

1
2 (1.6.1)

appearing in that proposition. When considering the Eisenstein contribution to the Kuznetsov trace
formula for GL(n,R), all the adjoint L-functions in the above product are for cusp forms φk of lower
rank nk < n. Now in the special case that ℓ= m = 1, our main theorem, Theorem 1.5.1, for GL(n,R)
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gives a sharp bound for the sum of reciprocals of all adjoint L-functions of lower rank. This allows us to
inductively prove a power savings bound for the product (1.6.1).

Asymptotic formula for the geometric contribution. We prove that the geometric contribution is a sum
of expressions Iw over elements w in the Weyl group of SL(n,Z). The Iw are complicated multiple sums
of multiple integrals weighted by Kloosterman sums (see (4.2.2)). If w1 is the trivial element of the Weyl
group then we obtain an asymptotic formula for Iw1 (see Proposition 5.0.1), while for all other Weyl
group elements Iwi , with i > 1, we obtain error terms with strong bounds for |Iwi | (see Proposition 6.0.1)
which are bounded by the final error term on the right side of our main theorem.

The key terms in (4.2.2), the formula for Iw, are the Kloosterman sums and two appearances of the test
function p(n)T,R: one that is twisted by the Weyl group element w and one that is not. For the Kloosterman
sums, we rely on bounds given by [Da̧browski and Reeder 1998]. The task of giving strong bounds for
p(n)T,R(y) occupies Sections 8, 9 and 10. We deal with the combinatorics of the twisted p(n)T,R-function, and
we combine the bounds for it, the other p(n)T,R-function and the Kloosterman sums in Section 6.

The function p(n)T,R is the inverse Whittaker transform of the test function pn,#
T,R given in Definition 1.4.4

above. Thanks to a formula of [Goldfeld and Kontorovich 2012], we can realize this as an integral of the
product of pn,#

T,R , the Whittaker function Wα (see Definition 2.3.3), and certain additional gamma factors.
We then write the Whittaker function as the inverse Mellin transform of its Mellin transform: W̃n,α(s).
This leads to the formula (valid for any ε > 0)

p(n)T,R(y)=
1

2n−1

∫
Re(α1)=0

· · ·

∫
Re(αn−1)=0

e
α2

1+α2
2+···+α2

n
T 2/2 F (n)

R (α)
∏

1≤ j ̸=k≤n

0
( 1+2R+α j −αk

4

)
0

(α j −αk
2

)
·

∫
Re(s1)=ε

· · ·

∫
Re(sn−1)=ε

(n−1∏
j=1

y
j (n− j)

2
j (πy j )

−2s j

)
W̃n,α(s) ds dα.

To estimate the growth of p(n)T,R(y) uniformly in y and T as T → +∞, we shift the line of integration in
the s-integrals to Re(s)= −a, with a = (a1, . . . , an−1), where ai > 0 for i = 1, . . . , n − 1. We remark
that this is precisely where the Ishii–Stade conjecture is required. It is well known that

W̃2,α(s)= 0(s +α)0(s −α),

and hence understanding the values of W̃2,α(s) for Re(s) < 0 is straightforward by applying the functional
equation for the Gamma function or, equivalently, using an integral representation of the Gamma function
valid for Re(s) < 0. A similar strategy can be used when n = 3. However, for n ≥ 4, the analogous method
seems intractable because the Mellin transform is not just a ratio of Gamma functions, but an integral of
such. To overcome this difficulty, we apply the Ishii–Stade conjecture to describe the values of W̃n,α(s)
in terms of sums of the Mellin transform of shifts of the s-variables. See also Remark 8.2.11 below.

The Cauchy residue formula allows us to express p(n)T,R as a sum of the shifted s-integral (termed the
shifted p(n)T,R term and denoted by p(n)T,R(y; −a)) and many residue terms. The description of the shifted
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p(n)T,R and residue terms is given in Section 8.3. In order to bound p(n)T,R(y; −a) it is convenient to introduce
the function IT,R(−a) := p(n)T,R(1; −a).

The next step is to use a result of Ishii and Stade (see Theorem 8.1.5) which allows us to write the Mellin
transform W̃n,α(s) as an integral transformation of W̃n−1,β(z) against certain additional gamma factors. It
is important to note that β = (β1, . . . , βn−1) ∈ Cn−1 can be expressed in terms of α = (α1, . . . , αn). By
carefully teasing apart the portion of α which determines β and that which doesn’t, we are able to separate
out the gamma factors that don’t depend on β and bound I(n)T,R(−a) by the product of a power of T and
I(n−1)

T,R (−b) for a certain b = (b1, . . . , bn−1) ∈ Rn−2. This gives an inductive procedure, therefore, for
bounding the shifted p(n)T,R term.

In Section 10.2 we set notation for describing the (r−1)-fold shifted residue terms. This requires
generalizing a result of Stade (see Theorem 10.1.1) on the first set of residues of W̃n,α(s) (i.e., those
that occur at Re(si )= 0) to, first, higher-order residues (i.e., taking the residue with respect to multiple
values si ), and second, to residues which occur along the lines Re(si ) = −k for k ∈ Z≥0. This result,
together with a teasing out of the variables similar to that described above, allows us to bound an
(r−1)-fold residue term as the product of certain powers of T and the variables y1, . . . , yn−1 times

r∏
j=1

I(n j )

T,R (−a( j)), where n = n1 + · · · + nr .

Applying the bounds on I(n j )

T,R that we inductively established for bounding the shifted p(n)T,R term, and
keeping careful track of all of the exponents and terms a( j), we eventually show that the bound for the
shifted main term is in fact valid for every residue term as well.

Remark 1.6.2. In comparison to the results of [Goldfeld and Kontorovich 2013; Goldfeld et al. 2021b],
we are using a slightly different normalization of the Gamma functions and the auxiliary polynomial F (n)

R

in the definition of the test functions pn,#
T,R and h(n)T,R (see Definition 1.4.4). Adjusting for this difference the

results obtained here when applied to n = 3 and n = 4 recover the previously proven asymptotic formulae.

2. Preliminaries

2.1. Notational conventions.

Definition 2.1.1 (hat notation for summation). Suppose that m ∈ Z+ and x = (x1, . . . , xm) ∈ Cm. For any
0 ≤ k ≤ m, define

x̂k := x1 + · · · + xk .

Note that empty sums are assumed to be zero.

Definition 2.1.2 (integration notation). Let n ≥ 2. We will often be working with n- and (n−1)-tuples
of real or complex numbers. We will denote such tuples without a subscript and use subscripts to refer
to the components. For example, we set y = (y1, . . . , yn−1) ∈ Rn−1

>0 , s = (s1, . . . , sn−1) ∈ Cn−1 and
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α = (α1, . . . , αn) ∈ Cn such that
α1 + · · · +αn = 0.

In such cases, we denote integration over all such variables x = (x1, . . . , xk) subject to condition(s)
C = (C1, . . . , Ck) via ∫

C

F(x) dx :=

∫
C1

· · ·

∫
Ck

F(x1, . . . , xk) dx1 dx2 · · · dxk .

For example, given β = (β1, . . . , βn−1) ∈ Cn−1 with β̂n−1 = 0, we denote integration over all such β with
Re(β j )= b j for each j = 1, . . . , n − 2 via∫

β̂n−1=0
Re(β)=b

F(β) dβ :=

∫
Re(β1)=b1

· · ·

∫
Re(βn−2)=bn−2

F(β1, . . . , βn−2) dβ1 dβ2 · · · dβn−2.

We extend this notation liberally to integrals over s, z and α and apply it also to integrals over the
imaginary parts in the sequel.

Definition 2.1.3 (polynomial notation). Our analysis will often require us to bound certain polynomials
in a trivial way. Namely, for complex variables x j , with j = 1, 2, . . . , k, if |x j | ≪ T 1+ε for each j
and P(x1, x2, . . . , xk) is a polynomial, then |P(x1, x2, . . . , xk)| ≪ T ε+deg P. So, the relevant information
about P is its degree. This being the case, we will use the notation Pd(x) (with x = (x1, . . . , xk)) to
represent an unspecified polynomial of degree less than or equal to d in the variable(s) x . Note that this
notation agrees with the commonly employed practice (also used throughout these notes) of using ε to
represent an unspecified positive real number whose precise value is not specified and may differ from
one usage to another.

Definition 2.1.4 (vector or matrix notation depending on context). Given a vector a=(a1, . . . ,an−1)∈Rn−1,
we shall define the diagonal matrix

t (a) := diag(a1a2 · · · an−1, a1a2 · · · an−2, . . . , a1, 1).

2.2. Structure of GL(n). Suppose n is a positive integer. Let Un(R)⊆ GL(n,R) denote the set of upper
triangular unipotent matrices.

Definition 2.2.1 (character of Un(R)). Let M = (m1, . . . ,mn−1) ∈ Zn−1. For an element x ∈ Un(R) of
the form

x =


1 x1,2 x1,3 · · · x1,n

1 x2,3 · · · x2,n
. . .

...

1 xn−1,n

1

 , (2.2.2)

we define the character

ψM(x) := m1x1,2 + m2x2,3 + · · · + mn−1xn−1,n. (2.2.3)
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Definition 2.2.4 (generalized upper half-plane). We denote the set of (real) orthogonal matrices O(n,R)⊆

GL(n,R), and we set

hn
:= GL(n,R)/(O(n,R) · R×).

Every element (via the Iwasawa decomposition of GL(n) [Goldfeld 2015]) of hn has a coset representative
of the form g = xy, with x as above and

y =


y1 y2 · · · yn−1

y1 y2 · · · yn−2

. . .
y1

1

 , (2.2.5)

where yi > 0 for each 1 ≤ i ≤ n −1. The group GL(n,R) acts as a group of transformations on hn by left
multiplication.

Definition 2.2.6 (Weyl group and relevant elements). Let Wn ∼= Sn denote the Weyl group of GL(n,R).
We consider it as the subgroup of GL(n,R) consisting of permutation matrices, i.e., matrices that have
exactly one 1 in each row/column and all zeros otherwise. An element w ∈ Wm is called relevant if

w = w(n1,n2,...,nr ) :=

 Inr

. .
.

In1

 ,

where Ini is the identity matrix of size ni × ni and n = n1 +· · ·+ nr is a composition (a way of writing n
as a sum of positive integers; see Section 8.3). The long element of Wn is wlong := w(1,1,...,1).

Definition 2.2.7 (other subgroups of GL(n,R)). We define

Uw :=
(
w−1

·
tUn(R) ·w

)
∩ Un(R),

0w :=
(
w−1

·
tUn(Z) ·w

)
∩ Un(Z)= SL(n,Z)∩ Uw,

where tUn denotes the transpose of Un , i.e., the set of lower triangular unipotent matrices.

2.3. Basic functions on the generalized upper half-plane hn.

Definition 2.3.1 (power function). Let α = (α1, . . . , αn) ∈ Cn, with α̂n = 0. Let ρ = (ρ1, . . . , ρn), where
ρi =

n+1
2 − i for i = 1, 2, . . . , n. We define a power function on xy ∈ hn by

I (xy, α)=

n∏
i=1

dαi +ρi
i =

n−1∏
i=1

yα̂n−i +ρ̂n−i
i , (2.3.2)

where di =
∏

j≤n−i y j is the j-th diagonal entry of the matrix g = xy as above.

Definition 2.3.3 (Jacquet’s Whittaker function). Let g ∈GL(n,R)with n ≥2. Let α=(α1,α2, . . . ,αn)∈Cn,
with α̂n = 0. We define the completed Whittaker function W ±

α : GL(n,R)/(O(n,R) · R×)→ C by the
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integral

W ±

α (g) :=

∏
1≤ j<k≤n

0
( 1+α j −αk

2

)
π (1+α j −αk)/2

·

∫
U4(R)

I (wlongug, α)ψ1,...,1,±1(u) du,

which converges absolutely if Re(αi −αi+1) > 0 for 1 ≤ i ≤ n − 1 (see [Goldfeld et al. 2021a]), and has
meromorphic continuation to all α ∈ Cn satisfying α̂n = 0.

Remark 2.3.4. With the additional gamma factors included in this definition (which can be considered as
a “completed” Whittaker function) there are n! functional equations, which is equivalent to the fact that
the Whittaker function is invariant under all permutations of α1, α2, . . . , αn . Moreover, even though the
integral (without the normalizing factor) often vanishes identically as a function of α, this normalization
never does.

If g is a diagonal matrix in GL(n,R) then the value of W ±
n,α(g) is independent of sign, so we drop

the ±. We also drop the ± if the sign is +1.

Definition 2.3.5 (Whittaker transform and its inverse). Assume n ≥ 2. Let α = (α1, α2, . . . , αn) ∈ Cn

with α̂n = 0. Set y := (y1, y2, . . . yn−1) and t (y) as in Definition 2.1.4. Let f : Rn−1
+ → C be an integrable

function. Then we define the Whittaker transform f #
: H n

→ C (where H n
:= {α ∈ Cn

| α̂n = 0}) by

f #(α) :=

∞∫
y1=0

· · ·

∞∫
yn−1=0

f (y)Wα(t (y))
n−1∏
k=1

dyk

yk(n−k)+1
k

, (2.3.6)

provided the above integral converges absolutely and uniformly on compact subsets of Rn−1
+ . The inverse

Whittaker transform [Goldfeld and Kontorovich 2012, Theorem 1.6] is

f (y)=
1

πn−1

∫
α̂n=0

Re(α)=0

f #(α)W−α(t (y))∏
1≤k ̸=ℓ≤n 0

(
αk−αℓ

2

) dα,

provided the above integral converges absolutely and uniformly on compact subsets of (iR)n.

Definition 2.3.7 (normalized Poincaré series). Let M = (m1,m2, . . . ,mn−1) ∈ Zn−1 with mi ̸= 0 for
each i = 1, . . . , n − 1. As with y, we may think of M as a matrix. Let g ∈ hn. Then we define

P M(g, α) :=
1

√
cn

·

n−1∏
k=1

m
−

k(n−k)
2

k

∑
γ∈Un(Z)\ SL(n,Z)

ψM(γ g) · p(n)T,R(Mγ g) · I (γ g, α), (2.3.8)

where cn is the (nonzero) constant given in Proposition 4.1.4. We extend the definition of ψM and p(n)T,R

to all of hn by setting ψM(xy) := ψM(x) and p(n)T,R(xy) := p(n)T,R(y).

Remark 2.3.9. This definition, up to the normalizing factor
√
cn

∏n−1
k=1 mk(n−k)/2

k , of the Poincaré series
agrees with that used in [Goldfeld et al. 2021b] with the minor caveat that pT,R takes on a slightly different
normalization in terms of the polynomial F (n)

R and in the gamma factors appearing in Definition 1.4.4.
The normalizing factor is inserted so that in the Kuznetsov trace formula the cuspidal term is precisely
the orthogonality relation in Theorem 1.5.1.
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2.4. Fourier expansion of the Poincaré series.

Definition 2.4.1 (twisted character). Let

Vn :=

v =

v1
v2

. . .
vn


∣∣∣∣∣∣∣v1, . . . , vn ∈ {±1}, v1 · · · vn = 1

 .
Let M = (m1, . . . ,mn−1) ∈ Zn−1, and consider ψM the additive character (see (2.2.3)) of Un(R). Then
for v ∈ Vn , we define the twisted character ψvM : Un(R)→ C by ψvM(g) := ψM(v

−1gv).

Definition 2.4.2 (Kloosterman sum). Fix L = (ℓ1, . . . , ℓn−1), M = (m1, . . . ,mn−1) ∈ Zn−1. Let ψL , ψM

be characters of Un(R). Let w ∈ Wn , where Wn is the Weyl group of GL(n). Let

c =


1/cn−1

cn−1/cn−2
. . .

c2/c1
c1

 ,

with ci ∈ Z>0. Then the Kloosterman sum is defined as

Sw(ψL , ψM , c) :=

∑
γ=Un(Z)\0∩Gw/0w

γ=β1cwβ2

ψL(β1) ψM(β2),

with notation as in Definition 11.2.2 of [Goldfeld 2015]. The Kloosterman sum Sw(ψ,ψ ′, c) is well-
defined (i.e., independent of the choice of Bruhat decomposition for γ ) if and only if it satisfies the
compatibility condition ψ(cwuw−1)= ψ ′(u). It is defined to be zero otherwise. (See [Friedberg 1987].)

Proposition 2.4.3 (M-th Fourier coefficient of the Poincaré series P L ). Let L = (ℓ1, . . . , ℓn−1) and
M = (m1, . . . ,mn−1) ∈ Zn−1 satisfy

∏n−1
i=1 ℓi ̸= 0 and

∏n−1
i=1 mi ̸= 0. If Re(αk −αk+1) is sufficiently large

for each k = 1, . . . , n − 1, then∫
Un(Z)\Un(R)

P L(ug, α) ·ψM(m) d∗u =

∑
w∈Wn

∑
v∈Vn

∞∑
c1=1

· · ·

∞∑
cn−1=1

Sw(ψL , ψ
v
M , c)Jw(g;α,ψL , ψ

v
M , c)

√
cn

∏n−1
k=1(ℓ

k(n−k)
2

k cαk−αk+1+1
k )

,

where

Jw(g;α,ψL , ψ
v
M , c)=

∫
Uw(Z)\Uw(R)

∫
Uw(R)

ψL(wug) p(n)T,R(Lcwug) I (wug, α)ψvM(u) d∗u,

Uw(R)=
(
w−1

· Un(R) ·w
)
∩ Un(R), Uw(R)=

(
w−1

·
tUn(R) ·w

)
∩ Un(R),

and tm denotes the transpose of a matrix m.

Proof. See Theorem 11.5.4 of [Goldfeld 2015]. □
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3. Spectral decomposition of L2(SL(n, Z)\hn)

3.1. Hecke–Maass cusp forms for SL(n, Z).

Definition 3.1.1 (Langlands parameters). Let n ≥2. A vector α= (α1, . . . , αn)∈Cn is termed a Langlands
parameter if α̂n = 0.

Definition 3.1.2 (Hecke–Maass cusp forms). Fix n ≥ 2. A Hecke–Maass cusp form with Langlands
parameter α ∈ Cn for SL(n,Z) is a smooth function φ : hn

→ C which satisfies φ(γ g)= φ(g) for all γ ∈

SL(n,Z), g ∈ hn. In addition φ is square integrable, is an eigenfunction of the algebra of Hecke operators
on hn, and is an eigenfunction of the algebra of GL(n,R) invariant differential operators on hn, with the
same eigenvalues under this action as the power function I (∗, α). The Laplace eigenvalue of φ is given by

n3
− n

24
−
α2

1 +α2
2 + · · · +α2

n

2
.

See Section 6 in [Miller 2002]. The Hecke–Maass cusp form φ is said to be tempered at ∞ if the
Langlands parameters α1, . . . , αn are all pure imaginary.

Proposition 3.1.3 (Fourier expansion of Hecke–Maass cusp forms). Assume n ≥ 2. Let φ : hn
→ C be a

Hecke–Maass cusp form for SL(n,Z) with Langlands parameters α ∈ Cn. Then for g ∈ hn, we have the
Fourier–Whittaker expansion

φ(g)=

∑
γ∈Un−1(Z)\ SLn−1(Z)

∞∑
m1=1

· · ·

∞∑
mn−2=1

∑
mn−1 ̸=0

Aφ(M)∏n−1
k=1 |mk |

k(n−k)
2

W sgn(mn−1)
α

(
t (M)

(
γ 0
0 1

)
g
)
,

where M = (m1,m2, . . . ,mn−1), t (M) is the toric matrix in Definition 2.1.4 and Aφ(M) is the M-th
Fourier coefficient of φ.

Proof. See Section 9.1 of [Goldfeld 2015]. □

Definition 3.1.4 (L-function associated to a Hecke–Maass form φ). Let s ∈ C with Re(s) sufficiently
large. Then the L-function associated to a Hecke–Maass cusp form φ is defined as

L(s, φ) :=

∞∑
m=1

Aφ(m, 1, . . . , 1)
ms

and has holomorphic continuation to all s ∈ C and satisfies a functional equation s → 1 − s. If φ is a
simultaneous eigenfunction of all the Hecke operators then L(s, φ) has the Euler product

L(s, φ)=

∏
p

(
1 −

A(p, 1, . . . , 1)
ps +

A(1, p, 1, . . . , 1)
p2s −

A(1, 1, p, . . . , 1)
p3s

+ · · · + (−1)n−1 A(1, . . . , 1, p)
p(n−1)s +

(−1)n

pns

)−1

.

3.2. Langlands Eisenstein series for SL(n, Z).

Definition 3.2.1 (parabolic subgroup). For n ≥ 2 and 1 ≤ r ≤ n, consider a partition of n given by
n = n1 + · · · + nr with positive integers n1, . . . , nr . We define the standard parabolic subgroup
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P := Pn1,n2,...,nr :=




GL(n1) ∗ · · · ∗

0 GL(n2) · · · ∗
...

...
. . .

...

0 0 · · · GL(nr )


 .

Letting Ir denote the r × r identity matrix, the subgroup

NP
:=




In1 ∗ · · · ∗

0 In2 · · · ∗
...

...
. . .

...

0 0 · · · Inr




is the unipotent radical of P . The subgroup

MP
:=




GL(n1) 0 · · · 0
0 GL(n2) · · · 0
...

...
. . .

...

0 0 · · · GL(nr )




is the standard choice of Levi subgroup of P .

Definition 3.2.2 (Hecke–Maass form 8 associated to a parabolic P). Let n ≥ 2. Consider a partition n =

n1+· · ·+nr , with 1< r < n. Let P :=Pn1,n2,...,nr ⊂ GL(n,R). For i = 1, 2, . . . , r , let φi : GL(ni ,R)→ C

be either the constant function 1 (if ni = 1) or a Hecke–Maass cusp form for SL(ni ,Z) (if ni > 1). The
form 8 := φ1 ⊗ · · · ⊗φr is defined on GL(n,R)= P(R) (where K = O(n,R)) by the formula

8(nmk) :=

r∏
i=1

φi (mi ) (n ∈ NP ,m ∈ MP , k ∈ K )

where m ∈ MP has the form

m =


m1 0 · · · 0
0 m2 · · · 0
...

...
. . .

...

0 0 · · · mr

 ,

with mi ∈ GL(ni ,R). In fact, this construction works equally well if some or all of the φi are Eisenstein
series.

Definition 3.2.3 (character of a parabolic subgroup). Let n ≥ 2. Fix a partition n = n1 + n2 + · · ·+ nr

with associated parabolic subgroup P := Pn1,n2,...,nr . Define

ρP ( j)=

{
1
2(n − n1), j = 1
1
2(n − n j )− n1 − · · · − n j−1, j ≥ 2.

(3.2.4)

Let s = (s1, s2, . . . , sr ) ∈ Cr satisfy
∑r

i=1 ni si = 0. Consider the function (see Definition 2.3.1)

| · |
s
P

:= I ( · , α)
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on GL(n,R), where

α =

( n1 terms︷ ︸︸ ︷
s1 − ρP (1)+

1−n1
2

, s1 − ρP (1)+
3−n1

2
, . . . , s1 − ρP (1)+

n1−1
2

,

n2 terms︷ ︸︸ ︷
s2 − ρP (2)+

1−n2
2

, s2 − ρP (2)+
3−n2

2
, . . . , s2 − ρP (2)+

n2−1
2

, . . . ,

nr terms︷ ︸︸ ︷
sr − ρP (r)+

1−nr
2

, sr − ρP (r)+
3−nr

2
, . . . , sr − ρP (r)+

nr −1
2

)
.

The conditions
∑r

i=1 ni si = 0 and
∑r

i=1 niρP (i)= 0 guarantee that α’s entries sum to zero. When g ∈ P ,
with diagonal block entries mi ∈ GL(ni ,R), one has

|g|
s
P

=

r∏
i=1

|det(mi )|
si ,

so that | · |
s
P

restricts to a character of P which is trivial on NP.

Definition 3.2.5 (Langlands Eisenstein series twisted by Hecke–Maass forms of lower rank). Let 0 =

SL(n,Z), with n ≥ 2. Consider a parabolic subgroup P = Pn1,...,nr of GL(n,R) and functions 8 and | · |
s
P

as given in Definitions 3.2.2 and 3.2.3, respectively. Let

s = (s1, s2, . . . , sr ) ∈ Cr , where
r∑

i=1

ni si = 0.

The Langlands Eisenstein series determined by this data is defined by

EP,8(g, s) :=

∑
γ ∈ (P ∩0)\0

8(γ g) · |γ g|
s+ρP
P (3.2.6)

as an absolutely convergent sum for Re(si ) sufficiently large, and extends to all s ∈ Cr by meromorphic
continuation.

For k = 1, 2, . . . , r , let α(k) := (αk,1, . . . , αk,nk ) denote the Langlands parameters of φk . We adopt
the convention that if nk = 1 then αk,1 = 0. Then the Langlands parameters of EP,8(g, s) (denoted by
αP,8(s)) are

( n1 terms︷ ︸︸ ︷
α1,1 + s1, . . . , α1,n1 + s1,

n2 terms︷ ︸︸ ︷
α2,1 + s2, . . . , α2,n2 + s2, . . . ,

nr terms︷ ︸︸ ︷
αr,1 + sr , . . . , αr,nr + sr

)
. (3.2.7)

Definition 3.2.8 (the M-th Fourier coefficient of EP,8). Let s = (s1, s2, . . . , sr )∈Cr, where
∑r

i=1 ni si =0.
Consider EP,8(∗, s) with associated Langlands parameters αP,8(s) as defined in (3.2.7). Let M =

(m1,m2, . . . ,mn−1) ∈ Zn−1
>0 . Then the M-th term in the Fourier–Whittaker expansion of EP,8 is∫

Un(Z)\Un(R)

EP,8(ug, s) ψM(m) du =
AEP,8(M, s)∏n−1
k=1 mk(n−k)/2

k

WαP,8 (s)(Mg),
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3.3. Langlands spectral decomposition for SL(n, Z).

Definition 3.3.1 (Petersson inner product). Let n ≥ 2. For F,G ∈ L2(SL(n,Z)\hn) we define the
Petersson inner product to be

⟨F,G⟩ :=

∫
SL(n,Z)\hn

F(g)G(g) dg.

For g = xy ∈ hn, with

x =


1 x1,2 x1,3 · · · x1,n

1 x2,3 · · · x2,n
. . .

...
1 xn−1,n

1

 , y =


y1 y2 · · · yn−1

y1 y2 · · · yn−2
. . .

y1

1

 ,

the measure dg is given by dx dy, with

dx =

∏
1≤i< j≤n

dxi, j , dy =

n−1∏
k=1

dyk

yk(n−k)+1 .

The Langlands spectral decomposition for SL(n,Z) states that

L2(SL(n,Z)\hn)= (cuspidal spectrum) ⊕ (residual spectrum) ⊕ (continuous spectrum).

We shall be applying the Langlands spectral decomposition to Poincaré series which are orthogonal to the
residual spectrum.

Theorem 3.3.2 (Langlands spectral decomposition for SL(n,Z)). Let φ1, φ2, φ3, . . . denote an orthogonal
basis of Hecke–Maass forms for SL(n,Z). Assume that F,G ∈ L2(SL(n,Z)\hn) are orthogonal to the
residual spectrum. Then for g ∈ GL(n,R) we have

F(g)=

∞∑
j=1

⟨F, φ j ⟩
φ j (g)

⟨φ j , φ j ⟩
+

∑
P

∑
8

cP

∫
n1s1+···+nr sr =0

Re(s)=0

⟨F, EP,8(∗ , s)⟩EP,8(g , s) ds,

⟨F,G⟩ =

∞∑
j=1

⟨F, φ j ⟩ ⟨φ j ,G⟩

⟨φ j , φ j ⟩
+

∑
P

∑
8

cP

∫
n1s1+···+nr sr =0

Re(s)=0

⟨F, EP,8(∗ , s)⟩⟨EP,8(∗ , s), G⟩ ds,

where the sum over P ranges over parabolics associated to partitions n =
∑r

k=1 nk , while the sum
over 8 (see Definition 3.2.2) ranges over an orthonormal basis of Hecke–Maass forms associated to P .
Furthermore, cP is a fixed nonzero constant.

Proof. For proofs see [Arthur 1979; Langlands 1976; Mœglin and Waldspurger 1995]. □

4. Kuznetsov trace formula

The Kuznetsov trace formula is derived by computing the inner product of two Poincaré series in two
different ways. More precisely, let L = (ℓ1, . . . , ℓm−1),M = (m1, . . . ,mn−1) ∈ Zn−1, with

∏n−1
i=1 mi ̸= 0

and
∏n−1

i=1 ℓi ̸= 0, and consider the Petersson inner product ⟨P L , P M
⟩.
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In particular since P L, P M
∈ L2(SL(n,Z)\hn) (see [Friedberg 1987]), the inner product can be

computed with the spectral expansion of the Poincaré series. The geometric approach utilizes the Fourier
Whittaker expansion of the Poincaré series which involve Kloosterman sums.

The trace formula takes the form

C + E︸ ︷︷ ︸
spectral side

= M+K︸ ︷︷ ︸
geometric side

. (4.0.1)

Here C is the cuspidal contribution and E is the Eisenstein contribution. See Theorem 4.1.1 for their
precise definitions. The geometric side consists of terms corresponding to elements of the Weyl group.
The identity element gives the main term M, and the Kloosterman contribution K is the sum of the
remaining terms. See Theorem 4.2.1 for their precise definitions. The Kloosterman term K and the
Eisenstein contribution E will be small with the special choice of the test function pT,R , and they constitute
the error term in the main theorem.

4.1. Spectral side of the Kuznetsov trace formula. The first way to compute the inner product of the
Poincaré series uses the spectral decomposition of the Poincaré series.

Recall also the definition of the adjoint L-function: L(s,Adφ) := L(s, φ× φ̄)/ζ(s), where L(s, φ× φ̄)

is the Rankin–Selberg convolution L-function as in Section 12.1 of [Goldfeld 2015].

Theorem 4.1.1 (spectral decomposition for the inner product of Poincaré series). Fix n ≥ 2 and L =

(ℓ1, . . . , ℓn−1), M = (m1, . . . ,mn−1) ∈ Zn−1. Then for α0 :=
(
−

n−1
2 + j − 1

)
j=1,...,n we have

⟨P L(∗, α0), P M(∗, α0)⟩ = C + E .

With the notation of the spectral decomposition theorem (Theorem 3.3.2) the cuspidal contribution to
the Kuznetsov trace formula is

C :=

∞∑
i=1

λφi (M)λφi (L) · |pn,#
T,R(α

(i))|2

L(1,Adφi ) ·
∏

1≤ j ̸=k≤n 0((1 +α
(i)
j −α

(i)
k )/2)

and the Eisenstein contribution to the Kuznetsov trace formula is

E :=

∑
P

∑
8

cP

∫
n1s1+···+nr sr =0

Re(s j )=0

AEP,8(L , s) AEP,8(M, s) · |pn,#
T,R(α(P,8)(s))|

2 ds

for constants cP > 0.

Proof. The proof follows from the Langlands spectral decomposition theorem (Theorem 3.3.2) with the
choices F = P L and G = P M. We have

⟨P L , P M
⟩ =

∞∑
j=1

⟨P L , φ j ⟩ ⟨φ j , P M
⟩

⟨φ j , φ j ⟩
+

∑
P

∑
8

cP

∫
n1s1+···+nr sr =0

Re(s j )=0

⟨F, EP,8(∗ , s)⟩⟨EP,8(∗ , s), G⟩ ds.
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We then insert the inner products given in Proposition 4.1.2 below. Doing so, we see that the cuspidal
spectrum is

∞∑
i=1

⟨P L , φi ⟩⟨φi , P M
⟩

⟨φi , φi ⟩
=

∞∑
i=1

Aφi (M)Aφi (L)
cn · ⟨φi , φi ⟩

|pn,#
T,R(α

(i))|2.

From Proposition 4.1.4, we see that

Aφ(M)Aφ(L)= |Aφ(1)|2λφ(M)λφ(L)=
cn · ⟨φ, φ⟩ · λφ(M)λφ(L)

L(1,Adφ)
∏

1≤ j ̸=k≤n 0
( 1+α j −αk

2

) .
The cuspidal part is now immediate. The contributions from the Eisenstein series are computed in like
manner using Proposition 4.1.5. □

Proposition 4.1.2 (the inner product of P M with an Eisenstein series or Hecke–Maass form). Let M =

(m1,m2, . . . ,mn−1). Consider the Eisenstein series EP,8(∗, s), with associated Langlands parameters
αP,8(s). Let φ denote a Hecke–Maass cusp form for SL(n,Z) with Langlands parameter α and M-th
Fourier coefficient Aφ(M). Then for α0 :=

(
−

n−1
2 + j − 1

)
j=1,...,n ,

⟨φ, P M(∗, α0)⟩ =
1

√
cn

Aφ(M) · pn,#
T,R(α),

⟨EP,8(∗, s), P M(∗, α0)⟩ =
1

√
cn

AEP,8(M, s) · pn,#
T,R(αP,8(s)),

where the inner products on the left are defined by analytic continuation and cn is the nonzero constant
(depending only on n) from Proposition 4.1.4.

Proof. We outline the case of the Hecke–Maass forms. The series definition of the Poincaré series
converges absolutely for sufficiently large Re(α′

i −α′

i+1) (1 ≤ i ≤ n − 1). It follows that for such α′ we
may unravel the Poincaré series P M(∗, α′) in the inner product ⟨φ, P M

⟩ with the Rankin–Selberg method.
The inner product picks out the M-th Fourier coefficient of φ multiplied by a certain Whittaker transform
of p(n)T,R(My) · I (y, α′). This Whittaker transform has analytic continuation in α′ to a region including α0.
For sufficiently large Re(α′

i −α′

i+1), we have from (2.3.8) that

⟨φ, P M(∗, α′)⟩ =
Aφ(M)

√
cn

∏n−1
k=1 mk(n−k)

k

∞∫
y1=0

· · ·

∞∫
yn−1=0

p(n)T,R(My)·I (y, α′) · Wα(My)
n−1∏
k=1

dyk

yk(n−k)+1
k

. (4.1.3)

Note that I (y, α0)= 1. The integral in (4.1.3) converges (as a function of α′) to a region which includes α0.
It follows that the analytic continuation in α′ to α0 of the inner product satisfies

⟨φ, P M(∗, α0)⟩ =
1

√
cn

· Aφ(M) · pn,#
T,R(α).

The proof for EP,8 is the same. □

For n ≥ 2, consider a Hecke–Maass cusp form φ for SL(n,Z) with Fourier Whittaker expansion given
by Proposition 3.1.3. Assume φ is a Hecke eigenform. Let Aφ(1) := Aφ(1, 1, . . . , 1) denote the first
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Fourier–Whittaker coefficient of φ. Then we have

Aφ(M)= Aφ(1) · λφ(M),

where λφ(M) is the Hecke eigenvalue (see Section 9.3 in [Goldfeld 2015]), and λφ(1)= 1.

Proposition 4.1.4 (first Fourier–Whittaker coefficient of a Hecke–Maass cusp form). Assume n ≥ 2. Let
φ be a Hecke–Maass cusp form for SL(n,Z) with Langlands parameters α = (α1, . . . , αn). Then the first
coefficient Aφ(1) is given by

|Aφ(1)|2 =
cn · ⟨φ, φ⟩

L(1,Adφ)
∏

1≤ j ̸=k≤n 0
( 1+α j −αk

2

) ,
where cn ̸= 0 is a constant depending on n only.

Proof. See [Goldfeld et al. 2021a]. □

Proposition 4.1.5 (the M-th Fourier coefficient of EP,8). Let s=(s1,s2, . . . ,sr )∈Cr, where
∑r

i=1 ni si =0.
Consider EP,8(∗, s) with associated Langlands parameters αP,8(s) as defined in (3.2.7). Assume that each
Hecke–Maass form φk (with 1 ≤ k ≤ r ) occurring in8 has Langlands parameters α(k) := (αk,1, . . . , αk,nk )

with the convention that if nk = 1 then αk,1 = 0. We also assume that each φk is normalized to have
Petersson norm ⟨φk, φk⟩ = 1.

Let L∗(1+ s j − sℓ, φ j ×φℓ) denote the completed Rankin–Selberg L-function if n j ̸= 1 ̸= nℓ; otherwise
define

L∗(1 + s j − sℓ, φ j ×φℓ)=


L∗(1 + s j − sℓ, φ j ) if nℓ = 1 and n j ̸= 1,
L∗(1 + s j − sℓ, φℓ) if n j = 1 and nℓ ̸= 1,
ζ ∗(1 + s j − sℓ) if n j = nℓ = 1,

where ζ ∗(w)= π−w/20(w/2)ζ(w) is the completed Riemann ζ -function. Also define

L∗(1,Adφk)= L(1,Adφk)
∏

1≤i ̸= j≤nk

0

(
1 +αk,i −αk, j

2

)
,

with the convention that L∗(1,Ad 1)= 1.
Let M = (m1,m2, . . . ,mn−1) ∈ Zn−1

>0 . Per our convention (Definition 2.1.4), we may think of M as a
vector or a diagonal matrix. Then the M-th term in the Fourier–Whittaker expansion of EP,8 is∫

Un(Z)\Un(R)

EP,8(ug, s) ψM(m) du =
AEP,8(M, s)∏n−1
k=1 mk(n−k)/2

k

WαP,8 (s)(Mg),

where AEP,8(M, s)= AEP,8((1, . . . , 1), s) · λEP,8(M, s),

λEP,8((m, 1, . . . , 1), s)=

∑
c1,...,cn∈Z>0
c1c2···cn=m

λφ1(c1) · · · λφr (cr ) · cs1
1 · · · csr

r (4.1.6)
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is the (m, 1, . . . , 1)-th (or more informally the m-th) Hecke eigenvalue of EP,8, and

AEP,8((1, . . . , 1), s)= d0

r∏
k=1

nk ̸=1

L∗(1,Adφk)
−

1
2

∏
1≤ j<ℓ≤r

L∗(1 + s j − sℓ, φ j ×φℓ)
−1

for some constant d0 ̸= 0 depending only on n.

Proof. See [Goldfeld et al. 2024]. □

4.2. Geometric side of the Kuznetsov trace formula. In this section, we obtain explicit descriptions of the
terms M and K appearing on the geometric side of the Kuznetsov trace formula. In order to do this, we
introduce Kloosterman sums for SL(n,Z), which appear in the Fourier expansion of the Poincaré series.
In the inner product ⟨P L , P M

⟩ we replace P L with its Fourier expansion and unravel P M following the
Rankin–Selberg method.

Theorem 4.2.1 (geometric side of the trace formula). Fix L=(ℓ1, . . . ,ℓn−1) and M=(m1, . . . ,mn−1)∈Zn−1

(cn is a nonzero constant; see Proposition 4.1.4). It follows that for α0 :=
(
−

n−1
2 + j − 1

)
j=1,...,n

⟨P L(∗, α0), P M(∗, α0)⟩ = M+K.

For w1 the trivial element in the Weyl group Wn , we define

M := Iw1 and K :=

∑
w∈Wn
w ̸=w1

Iw,

where

Iw :=

∑
v∈Vn

∞∑
c1=1

· · ·

∞∑
cn−1=1

Sw(ψL , ψ
v
M , c)

cn ·
∏n−1

k=1(mkℓk)
k(n−k)

2

∞∫
y1=0

· · ·

∞∫
yn−1=0

∫
Uw(Z)\Uw(R)

∫
Uw(R)

·ψL(wuy) ψvM(u)p
(n)
T,R(Lcwuy) p(n)T,R(My) d∗u

dy1 · · · dyn−1∏n−1
k=1 yk(n−k)+1

k

. (4.2.2)

Proof. We compute the inner product

lim
α→α0

⟨P L(∗, α), P M(∗, α)⟩

= lim
α→α0

∫
SL(n,Z)\hn

P L(g, α) · P M(g, α) dg

=
1

√
cn

∏n−1
k=1 m

k(n−k)
2

k

lim
α→α0

∫
Un(Z)\hn

P L(g, α) ·ψM(g) p(n)T,R(Mg) I (g, α) dg

=
1

√
cn

(n−1∏
k=1

m
−

k(n−k)
2

k

)
lim
α→α0

∫
y∈Rn−1

y>0

( ∫
Un(Z)\Un(R)

P L(uy, α) ·ψM(m) du
)

p(n)T,R(My) I (y, α) dy.

Note that, as α → α0, the function I (g, α)→ 1 (for any g ∈ hn) and
∏n−1

k=1 cαk−αk+1+1
k → 1. It follows

from this and Proposition 2.4.3 above that
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cn ·

n−1∏
k=1

(mkℓk)
k(n−k)/2

· lim
α→α0

⟨P L(∗, α), P M(∗, α)⟩

= lim
α→α0

∑
w∈Wn

∑
v∈Vn

∞∑
c1=1

· · ·

∞∑
cn−1=1

Sw(ψL , ψ
v
M , c)

cn ·
∏n−1

k=1(miℓi )
i(n−i)

2
∏n−1

k=1 cαk−αk+1+1
k

·

∞∫
y1=0

· · ·

∞∫
yn−1=0

∫
Uw(Z)\Uw(R)

∫
Uw(R)

ψL(wuy) ψvM(u)p
(n)
T,R(Lcwuy) p(n)T,R(My)

· I (wuy, α)I (y, α) d∗u
dy1 · · · dyn−1∏n−1

k=1 yk(n−k)+1
k

=

∑
w∈Wn

∑
v∈Vn

∞∑
c1=1

· · ·

∞∑
cn−1=1

Sw(ψL , ψ
v
M , c)

cn ·
∏n−1

k=1(mkℓk)
k(n−k)

2

·

∞∫
y1=0

· · ·

∞∫
yn−1=0

∫
Uw(Z)\Uw(R)

∫
Uw(R)

ψL(wuy) ψvM(u)p
(n)
T,R(Lcwuy) p(n)T,R(My) du

dy1 · · · dyn−1∏n−1
k=1 yk(n−k)+1

k

=

∑
w∈Wn

Iw,

as claimed. □

5. Asymptotic formula for the main term

Proposition 5.0.1 (main term in the trace formula). Let L = (ℓ1, . . . , ℓn−1), M = (m1, . . . ,mn−1)∈ Zn−1

satisfy
∏n−1

i=1 ℓi ̸= 0 and
∏n−1

i=1 mi ̸= 0. There exist fixed constants c1, . . . , cn−1 > 0 (depending only on R
and n) such that the main term M in the Kuznetsov trace formula (4.0.1) is given by

M = δL ,M ·

((n−1∑
i=1

ci · T R(2·D(n)+n(n−1))+n−i
)

+O(T R(2·D(n)+n(n−1)))

)
,

where
D(n)=

1
2

(2n
n

)
−

n(n − 1)
2

− 2n−1

and δL ,M is the Kronecker symbol (i.e., δL ,M = 0 if L ̸= Mand δL ,L = 1).

Proof. It follows from the definition M = Iw1 , making the change of variables y 7→ M−1 y and noting
that Uw1(Z)= Un(Z) and Uw1(R)= Un(R), that

M =
1
cn

·

∞∫
y1=0

· · ·

∞∫
yn−1=0

( ∫
Un(Z)\Un(R)

ψL(u)ψM(m) d∗u
)

pT,R(L M−1 y) pT,R(y)
dy1 · · · dyn−1∏n−1

i=1 yi(n−i)+1
i

= δL ,M · dn

∞∫
y1=0

· · ·

∞∫
yn−1=0

|p(n)T,R(y)|
2 dy1 · · · dyn−1∏n−1

i=1 yi(n−i)+1
i

= δL ,M · dn⟨pT,R, pT,R⟩

= δL ,M · dn

∫
α̂n=0

Re(α)=0

|pn,#
T,R(α)|

2∏
1≤ j ̸=k≤n 0

(α j −αk
2

) dα

= δL ,M dn · ⟨pn,#
T,R, pn,#

T,R⟩,
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where the representation in terms of the norm of pn,#
T,R follows from the Plancherel formula in Corollary 1.9

of [Goldfeld and Kontorovich 2012] and dn is a nonzero constant depending only on n. Hence the main
term for GL(n) is thus

M = δL ,Mdn ·

∫
α̂n=0

Re(α j )=0

∣∣e(α2
1+···+α2

n)/(2T 2)F (n)
R

(
α
2

) ∏
1≤ j ̸=k ≤n 0

( 2R+1+α j −αk
4

)∣∣2∏
1≤ j ̸=k≤n 0

(α j −αk
2

) dα.

Let α j = iτ j with τ j ∈ R. It then follows from Stirling’s asymptotic formula that

M ∼ δL ,Mdn ·

∫
τ̂n=0

e(−τ
2
1 −···−τ 2

n )/T 2
(
F (n)

R

(
iτ
2

))2 ∏
1≤ j<k ≤n

(1 + |τ j − τk |)
2R dτ.

If we now make the change of variables τ j → τ j T for each j = 1, . . . , n, and we use the fact that
the degree of F (n)

1 is D(n) (see Definition 1.4.1) it follows that, if L = M, as T → ∞ we have M ∼

cT R·(2D(n)+n(n−1))+n−1, where

c = dn ·

∫
τ̂n=0

e−τ 2
1 −···−τ 2

n

(
F (n)

R

(
iτ
2

))2 ∏
1≤ j<k ≤n

(1 + |τ j − τk |)
2R dτ,

and otherwise, the main term is zero. This gives the i = 1 term in the statement of the proposition. The
method of proof can be extended by using additional terms in Stirling’s asymptotic expansion for the
Gamma function to obtain the additional terms. □

Remark 5.0.2. Note that this doesn’t agree with [Goldfeld et al. 2021b] in the case of n = 4 because we
have used a different normalization. Namely, the linear factors of F (n)

R agree with those defined previously,
but we take a different power of each. Also, the gamma factors which appear in pn,#

T,R have a different R:
namely, what was 2 + R in each gamma factor previously has been replaced by 2R + 1 here.

6. Bounding the geometric side

The goal of this section is to use the bound given in Theorem 10.0.1 to prove the following, i.e., to
bound K, the geometric side of the Kuznetsov trace formula.

Proposition 6.0.1. Let Iw be as above. Let M = (m1, . . . ,mn−1), L = (ℓ1, . . . , ℓn−1) ∈ (Z>0)
n−1. Let

ρ ∈
1
2 + Z. Let D(n)=

1
2

(2n
n

)
−

n(n−1)
2 − 2n−1 as in (1.4.2). Then for R sufficiently large and any ε > 0,

we have

|Iw| ≪ε,R T ε+R(2D(n)+n(n−1))+ (n−1)(n+4)
2 −⌊ n−1

2 ⌋−ρn−8(w)
·

n−1∏
i=1

(ℓi mi )
2ρ+

n2
+1
4 ,

where if w = w(n1,...,nr ) with r ≥ 2,

8(w) :=8(n1, . . . , nr ) :=
1
2

r−1∑
k=1

(nk + nk+1)(n − n̂k)n̂k .
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Remark 6.0.2. Assuming the lower bound conjecture for Rankin–Selberg L-functions, the resulting
bound for the Eisenstein series contribution to the Kuznetsov trace formula (see Theorem 7.1.1) is of the
magnitude T to the power R(2D(n)+n(n −1))+ε. Therefore, given Proposition 6.0.1 and Lemma A.13(
which says that 8(w)≥8(1, n − 1)=

n(n−1)
2

)
, in order for the bound from the geometric side of the

trace formula to be less than the Eisenstein series contribution, it suffices that

(n − 1)(n + 4)
2

−

⌊
n − 1

2

⌋
− ρn −

n(n − 1)
2

≤ 0,

which simplifies to give

ρ ≥

{
3
2 −

3
2n if n is odd,

3
2 −

1
n if n is even.

Since we require that ρ ∈
1
2 + Z, we find that it suffices to take ρ =

3
2 universally, meaning that the

exponent of each term ℓi mi can be taken to be n2
+13
4 . In particular, for the case of n = 4, we see that this

exponent is 29
4 , which is an improvement on the bound of 15

2 obtained in [Goldfeld et al. 2021b].

As remarked above, the main result that we will need is Theorem 10.0.1 or, more specifically,
Remark 10.0.5, which states that for any 0< ε < 1

2 , and for a = (a1, a2, . . . , an−1) satisfying ⌊a j⌋+ ε <

a j < ⌈a j⌉ − ε for each j = 1, . . . , n − 1, we have

|p(n)T,R(y)| ≪ δ−
1
2 (y) · ∥y∥

2a
· T ε+

(n+4)(n−1)
4 +R·(D(n)+ n(n−1)

2 )−
∑n−1

j=1 B(a j ). (6.0.3)

(The terms δ−1/2(y), ∥y∥
2a are defined in Section 6.1 below. The function B is defined in Theorem 9.0.2.)

This bound for p(n)T,R(y) is obtained via an integral representation denoted by p(n)T,R(y; b) (see (8.1.4))
over variables s = (s1, . . . , sn) valid for any b = (b1, . . . , bn) with b j > 0 for each j = 1, . . . , n − 1. The
integral is taken over the lines Re(s j )= b j . Essentially, the bound is then obtained by moving the lines
of integration to Re(s j )= −a j for some a = (a1, . . . , an1) ∈ (R>0)

n−1.
The strategy for proving Proposition 6.0.1 will be to, first, introduce notation to rewrite Iw in a

simplified form. We do this in Section 6.1. Then, in Section 6.2 we give bounds for Iw obtained by
applying (6.0.3) to |pT,R(Lcwuy)| (with a parameter a = (a1, . . . , an−1)) and to |pT,R(My)| (with a
parameter b = (b1, . . . , bn−1)) for general a, b ∈ (R>0)

n−1. In particular, we establish (6.2.2), bounding
|Iw| in terms of the product of three independent quantities K (c, w; a), X (u, w; a) and Y (y, w; a, b).
In Section 6.3, we will show that K (c, w; a) will converge provided that a satisfies certain conditions
(independent of w), and that for this choice of a, X (u, w; a) also converges. We then determine b
(dependent on w and a) for which Y (y, w; a, b) is also convergent. Finally, in Section 6.4, we complete
the proof of Proposition 6.0.1 by simplifying the expression for the given choices of a and b.

6.1. Rewriting Iw. Let Tn(R) and Un(R) be the subgroups of GLn(R) consisting of diagonal matri-
ces (with positive terms) and upper triangular unipotent matrices, respectively. Recall that if t =

diag(t1, . . . , tn) ∈ Tn(R) and u ∈ Un(R), the modular character δ : Tn(R) → R is defined to satisfy
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d(t−1ut)= δ(t) du. Explicitly, it is given by

δ(t)=

n∏
i=1

t2i−n−1
i .

More generally, if a = (a1, . . . , an−1) ∈ Rn−1, for

y = (y1, . . . , yn−1) := diag(y1 · · · yn−2 yn−1, . . . , y1 y2, y1, 1),

with y1, . . . , yn−1 > 0, we define

∥y∥
a

:=

n−1∏
k=1

yak
k .

One checks that in the special case of a j =
j (n− j)

2 for j = 1, . . . , n − 1,

δ−
1
2 (y)= ∥y∥

a. (6.1.1)

Similarly, if tUn(R) is the subgroup of GLn(R) consisting of lower triangular unipotent matrices and

Uw := (w−1 tUn(R)w)∩ Un(R),

then we can consider the character δw on Tn(R) which satisfies d(tut−1)= δw(t) du upon restricting the
measure on Un(R) to Uw. It can be checked that

δw(y)= δ
1
2 (y) · δ−

1
2 (wyw−1). (6.1.2)

Recall from Theorem 4.2.1 that for L = (ℓ1, . . . , ℓn−1),M = (m1, . . . ,mn−1) ∈ (Z>0)
n−1 and

c =


1/cn−1

cn−1/cn−2
. . .

c2/c1
c1

 ,

where ci ∈ Z>0 for i = 1, . . . , n − 1, the Kloosterman contribution to the Kuznetsov trace formula is
given by

K =

∑
w∈Wn
w ̸=w1

Iw,

where, using the notation defined above and letting dy× denote the measure
∏n−1

k=1 dyk/yk ,

Iw := c−1
n

∑
v∈Vn

∞∑
c1=1

· · ·

∞∑
cn−1=1

Sw(ψL ,ψ
v
M ,c)

·

∫
y=(y1,...,yn−1)
y1,...,yn−1>0

∫
Uw(Z)\Uw(R)

∫
Uw(R)

δ
1
2 (L M)·δ(y)·ψL(wuy)ψvM(u)p

(n)
T,R(Lcwuy) p(n)T,R(My)d∗u dy×. (6.1.3)

We recall that by [Friedberg 1987], Iw is identically zero unless w is relevant (see Definition 2.2.6).
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6.2. Bounds for Iw in terms of a and b. Since p(n)T,R(g) is determined by the Iwasawa decomposition
of g, we first make the change of variables u 7→ y−1uy. Then (6.1.3) implies that

|Iw| ≪

∑
v∈Vn

∞∑
c1=1

· · ·

∞∑
cn−1=1

|Sw(ψL , ψ
v
M , c)|

·

∫
y=(y1,...,yn−1)
y1,...,yn−1>0

∫
Uw(Z)\Uw(R)

∫
Uw(R)

· δ
1
2 (M)·δ

1
2 (L)·δw(y)·δ(y)·|p(n)T,R(Lcwyu)| |p(n)T,R(My)| d∗u dy×. (6.2.1)

For the purposes of our analysis, we break up the integral in the y-variables. To this end, let

I0 := (0, 1], I1 = (1,∞).

For τ = (τ1, . . . , τn−1) ∈ {0, 1}
n−1, define

Iτ := Iτ1 × · · · × Iτn−1 .

Hence, ∫
y=(y1,...,yn−1)
y1,...,yn−1>0

=

∑
τ∈{0,1}n−1

∫
Iτ

,

and (6.2.1) becomes
|Iw| ≪

∑
τ

|Iw(τ )|,

where

|Iw(τ )| :=

∑
v∈Vn

∞∑
c1=1

· · ·

∞∑
cn−1=1

|Sw(ψL , ψ
v
M , c)|

· · ·

∫
y1∈Iτ1

∫
y2∈Iτ2

· · ·

∫
yn−1∈Iτn−1

∫
Uw(Z)\Uw(R)

∫
Uw(R)

δ
1
2 (M) · δ

1
2 (L) · δw(y) · δ(y)

· |p(n)T,R(Lcwyu)| |p(n)T,R(My)| d∗u dy×. (6.2.2)

Our strategy is now to, for each choice of τ , replace the terms with p(n)T,R with the bound from (6.0.3)
(in the first instance using a choice of a = (a1, . . . , an−1) ∈ Rn−1, and in the second instance using
b = (b1, . . . , bn−1) ∈ Rn−1). Then we need to find choices of a and b for which the corresponding
integrals converge and give good bounds.

Recall that if g = utk is the Iwasawa decomposition of an element g ∈ GLn(R), then p(n)T,R(g)= p(n)T,R(t).
With this in mind, consider the Iwasawa decomposition wu = u0tk, where u0 ∈ Un(R), t ∈ Tn(R) and
k ∈ O(n,R). Then

Lcwyu = Lc(wyw−1)u0tk = u1Lc(wyw−1)tk (u1 = (Lcwyw−1)−1u0(Lcwyw−1))

is the Iwasawa form of Lcwyu; hence

|p(n)T,R(Lcwyu)| = |p(n)T,R(Lcwyw−1t)|.
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Recall that the Iwasawa form of wu is assumed to be u0tk, meaning wu = u0tk, where u0 ∈ Un(R),
t ∈ Tn(R) and k ∈ O(n,R). It can be shown [Jacquet 1967] that

t2
=


1/ξn−1

ξn−1/ξn−2
. . .

ξ2/ξ1

ξ1

 , (6.2.3)

where ξi = ξi (wu) ≥ 1 for any u ∈ Uw. For example, in the case n = 4 and w = wlong = w(1,1,1,1), we
find that Uwlong = U4(R) and, for

u =


1 x12 x13 x14

0 1 x23 x24

0 0 1 x34

0 0 0 1

 ,

that
ξ1(wlongu)= 1 + x2

12 + x2
13 + x2

14,

ξ2(wlongu)= 1 + x2
23 + x2

24 + (x12x24 − x14)
2
+ (x12x23 − x13)

2
+ (x13x24 − x14x23)

2,

ξ3(wlongu)= 1 + x2
34 + (x23x34 − x24)

2
+ (x12x23x34 − x13x34 − x12x24 + x14)

2.

In general, the values ξi are always of the form 1 plus a sum of squares of functions consisting of the
entries of u.

From (6.0.3), replacing a with b, we see that |p(n)T,R(My)| is bounded by

≪ δ(M)−
1
2 · ∥M∥

2b
· δ(y)−

1
2 · ∥y∥

2b
· T ε+

(n+4)(n−1)
4 +R·(D(n)+ n(n−1)

2 )−
∑n−1

j=1 B(b j ).

To similarly bound |p(n)T,R(Lcwyw−1t)|, we first remark that since

c = c1


d1d2 · · · dn−1

d1d2 · · · dn−2
. . .

d1

1

 =: c1d, where di =
ci−1ci+1

c2
i

,

setting c0 = cn := 1 (and a0 = an := 0 as usual), we see that

δ−
1
2 (c) · ∥c∥2a

= δ(c)−
1
2

n−1∏
i=1

(
ci−1ci+1

c2
i

)2ai

=

n−1∏
k=1

c−1+2ai−1−4ai +2ai+1
k .

Therefore, it follows that

|p(n)T,R(Lcwyw−1t)| ≪
δ(L)−

1
2 · ∥L∥

2a
· δ(t)−

1
2 · ∥t∥2a∏n−1

k=1 c1−2ai−1+4ai −2ai+1
k

· δ(wyw−1)−
1
2

· ∥wyw−1
∥

2a
· T ε+

(n+4)(n−1)
4 +R·(D(n)+ n(n−1)

2 )−
∑n−1

j=1 B(a j ).
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Recall that if t = t (u) is as in (6.2.3), if we define, for a = (a1, . . . , an−1), b = (b1, . . . , bn−1) ∈ Rn−1,

K (w; a) :=

∑
v∈Vn

∞∑
c1=1

· · ·

∞∑
cn−1=1

|Sw(ψL , ψ
v
M , c)|∏n−1

i=1 c1−2ai−1+4ai −2ai+1
i

,

X (w; a) :=

∫
Uw(Z)\Uw(R)

∫
Uw(R)

δ(t)−
1
2 · ∥t∥2a d∗u,

and for a given choice of τ = (τ1, . . . , τn−1) ∈ {0, 1}
n−1

Y (τ, w; a, b) :=

∫
y1∈Iτ1

∫
y2∈Iτ2

· · ·

∫
yn−1∈Iτn−1

∥y∥
2b

· ∥wyw−1
∥

2a dy×,

then the bound on |Iw(τ )| given in (6.2.2) can be replaced by

|Iw(τ )| ≪ T ε+
(n+4)(n−1)

2 +R·(2D(n)+n(n−1))−
∑n−1

j=1(B(a j )+B(b j ))

· K (w; a) · X (w; a) · Y (τ,w; a, b) · ∥L∥
2a

· ∥M∥
2b. (6.2.4)

We remark that in simplifying/finding Y (τ, w; a, b), we have used (6.1.2). The basic strategy to prove
Proposition 6.0.1 is now clear: we first find a such that both K (w; a) and X (w; a) converge; then given
this choice of a, we determine a particular value of b for which Y (τ,w; a, b) converges as well; finally,
we work out the corresponding bounds on ∥L∥

2a , ∥M∥
2b and

∑n−1
j=1(B(a j )+ B(b j )).

6.3. Restrictions on the parameters a and b. The trivial bound (see [Da̧browski and Reeder 1998]) for
the Kloosterman sum is given by

S(1, 1, c)≪ δ
1
2 (c)= c1c2 · · · cn−1.

Hence K (w; a) is convergent whenever a is chosen such that

∥c∥2a
=

n−1∏
k=1

c2ak−1−4ak+2ak+1
k ≪ δ−

1
2 −ε(c).

From (6.1.1), if we set a j =
j (n− j)

2 (1+ε), then ∥c∥2a
= δ−1−ε(c)≪ δ−1/2−ε(c). More generally, K (w; a)

converges in the case

a j := ρ+
j (n − j)

2
(1 + ε), ρ > 0, j = 1, . . . , n − 1. (6.3.1)

That this choice of a makes K (w; a) converge is a consequence of the easily verifiable fact that

∥c∥2a
= (c1cn−1)

−2ρ
· δ−1−ε(c).

We assume henceforth that a satisfies (6.3.1).
We next consider the convergence of X (w; a). Recall that the Iwasawa form of wu is assumed to be

u0tk, meaning wu = u0tk, where u0 ∈ Un(R), t ∈ Tn(R) and k ∈ O(n,R). Indeed, t is given by (6.2.3).
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Then

X (w; a)=

∫
Uw(Z)\Uw(R)

∫
Uw(R)

δ(t)−
1
2 · ∥t∥2a d∗u ≪

∫
Uw(Z)\Uw(R)

∫
Uw(R)

δ−
3
2 −ε(t) d∗u.

The fact that the right-hand side converges is a consequence of [Jacquet 1967].
We now turn to the convergence of Y (τ, w; a, b). Applying Lemma A.1 (which describes ∥wyw−1

∥
2a),

we see that

Y (τ, w; a, b)=

∫
Iτ

( s∏
i=1

ni∏
j=1

y
2b(n−n̂i + j)−2(an̂i−1−a(n̂i−1+ j)+an̂i )

n−n̂i + j

)
dy×

=

s∏
i=1

ni∏
j=1

Yn−n̂i + j (τ, w; a, b),

where

Yn−n̂i + j (τ, w; a, b) :=

∫
Iτn−n̂i + j

y
2bn−n̂i + j −2(an̂i−1−an̂i−1+ j +an̂i )

n−n̂i + j

dyn−n̂i + j

yn−n̂i + j
.

Hence, in order to bound Y (τ, w; a, b) (and thereby show that Iw(τ ) converges), we must choose
b = (b1, . . . , bn−1) such that Yn−n̂i + j (τ, w; a, b) converges. Clearly

bn−n̂i + j = an̂i−1 − an̂i−1+ j + an̂i + (−1)τn−n̂i + j ·
ε

2
(i = 1, . . . , s, j = 1, . . . , ni ) (6.3.2)

suffices, since making this choice implies that, for each k = 1, . . . , n − 1,

Yk(τ, w; a, b)=

{∫ 1
0 yε (dy/y) if τk = 0,∫
∞

1 y−ε (dy/y) if τk = 1,

which converges
(
and gives the same value 1

ε

)
in either case.

6.4. Proof of Proposition 6.0.1. We have now shown that if w=w(n1,...,nr ) and we choose a as in (6.3.1)
and b via (6.3.2) accordingly, the right-hand side of (6.2.4) converges, and hence gives a bound for |Iw|.
Therefore, in order to complete the proof of Proposition 6.0.1, we need to first show that

∥L∥
2a

· ∥M∥
2b

≪

n−1∏
i=1

(ℓi mi )
2ρ+

n2
+1
4 ,

and second that the given choice of a and b gives the claimed bound for the power of T appearing
in (6.2.4).

To complete the first of these tasks we note that, by (6.3.1) and the fact that j (n − j) is maximized
(in j) when j =

n
2 , we have

a j = ρ+
j (n − j)

2
(1 + ε)≤ ρ+

n2

8
(1 + ε) < ρ+

n2
+ 1
8

(6.4.1)

for ε < 1/n2 and 1 ≤ j ≤ n − 1. Similarly, using (6.3.1) and (6.3.2) we compute that, for 1 ≤ i ≤ s and
1 ≤ j ≤ ni ,

bn−n̂i + j = ρ+
1
2( j2

+ j (2n̂i−1 − n)+ n̂i (n − n̂i ))+ ε (6.4.2)
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for ε sufficiently small. Note that the right-hand side of (6.4.2) is a concave up parabola in j , and therefore,
on the interval 1 ≤ j ≤ ni , can attain its maximum only at j = 1 or j = ni . So, if we can show that bn−n̂i +1

and bn−n̂i +ni both satisfy a suitable upper bound, then the same bound will hold for all 1 ≤ j ≤ ni .
We consider first the endpoint j = ni . Using (6.4.2) and the fact that n̂i − ni = n̂i−1, we find that

bn−n̂i +ni = ρ+
1
2 n̂i−1(n − n̂i−1)+ ε.

Again, j (n − j) is maximized when j =
n
2 , so we conclude that

bn−n̂i +ni ≤ ρ+
n2

8
+ ε < ρ+

n2
+ 1
8

(6.4.3)

for ε sufficiently small.
Next we consider the endpoint j = 1. From (6.4.2) we find that

bn−n̂i +1 = ρ+
1
2(1 − n + n̂i (n − n̂i )+ 2n̂i−1)+ ε

≤ ρ+
1
2(−1 − n + n̂i (n − n̂i )+ 2n̂i )+ ε, (6.4.4)

where the last step follows because n̂i−1 = n̂i − ni ≤ n̂i − 1. We find using calculus that, as a function
of n̂i , the right-hand side of (6.4.4) is maximized when n̂i =

n+2
2 . So

bn−n̂i +1 ≤ ρ+
1
2

(
−1 − n +

n + 2
2

(
n −

n + 2
2

)
+ n + 2

)
+ ε

= ρ+
n2

8
+ ε ≤ ρ+

n2
+ 1
8

(6.4.5)

for ε small enough. From (6.4.3) and (6.4.5) it follows, again, that

bn−n̂i + j ≤ ρ+
n2

+ 1
8

for all 1 ≤ i ≤ s and 1 ≤ j ≤ ni . This and (6.4.1) yield the desired bound on ∥L∥
2a

· ∥M∥
2b.

The second task is accomplished using Lemma A.9. □

7. Bounding the Eisenstein spectrum E

Recall that if L =(ℓ1, . . . ,ℓn−1), M =(m1, . . . ,mn−1)∈Zn−1, with
∏n−1

i=1 ℓi mi ̸= 0, then, by Theorem 4.1.1,
the Eisenstein contribution to the Kuznetsov trace formula is given by

E =

∑
P

∑
8

EP,8,

where
EP,8 := cP

∫
n1s1+···+nr sr =0

Re(s j )=0

AEP,8(L , s) AEP,8(M, s) · |pn,#
T,R(α(P,8)(s))|

2 ds.

In this section we give bounds for E in the case that L = (ℓ, 1, . . . , 1) and M = (m, 1, . . . , 1), with
ℓ,m ̸= 0.
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7.1. The Eisenstein contribution E to the Kuznetsov trace formula. The main result of this section is
the following.

Theorem 7.1.1 (bounding the Eisenstein contribution E). Fix n ≥ 2 and a sufficiently large integer
R > 0. Let L = (ℓ, 1, . . . , 1), M = (m, 1, . . . , 1) ∈ Zn−1 with ℓ,m ̸= 0. Then, assuming the lower bound
conjecture for Rankin–Selberg L-functions (see Conjecture 1.3.2), for T → ∞ we have the bound∑

P

∑
8

|EP,8| ≪ (ℓm)
1
2 −

1
n2+1

+ε
· T R·((2n

n )−2n)+ε. □

7.2. Proof of Theorem 7.1.1.

Proof. We proceed by induction on n, beginning with the case n = 2. In this case, the only parabolic
subgroup is the minimum parabolic, or Borel, subgroup B = P1,1, and the only function 8 corresponding
to B (see Definition 3.2.2) is the constant function 8= 1. The Eisenstein contribution in this case, then,
is simply the quantity EB,1.

By Theorem 4.1.1 in the case n = 2, we have

EB,1 = cB

∫
Re s1=0

AEB,1(ℓ, s) AEB,1(m, s) · |p2,#
T,R(α(B,1)(s))|

2 ds1,

where s = (s1,−s1). Now note that, by (3.2.7), α
(B,1)(s) = s. Moreover, by Definition 1.4.1, we have

F (2)
R ≡ 1, so by Definition 1.4.4, we have

p2,#
T,R(α(B,1)(s))= es2

1/T 2
0

(
2R + 1 + 2s1

4

)
0

(
2R + 1 − 2s1

4

)
.

Furthermore, we see from Proposition 4.1.5 that

|AEB,1(ℓ, s)| ≪ |ζ ∗(1 + 2s1)|
−1

∑
c1,c2∈Z>0

c1c2=ℓ

|cα1
1 cα2

2 | ≪ ℓε
∣∣∣∣0(

1 + 2s1

2

)
ζ(1 + 2s1)

∣∣∣∣−1

.

Then

|EB,1| ≪ (ℓm)ε
∫

Re(s1)=0

es2
1/T 2

∣∣0( 2R+1+2s1
4

)
0

( 2R+1−2s1
4

)∣∣2∣∣0( 1+2s1
2

)
ζ(1 + 2s1)

∣∣2 |ds1|.

We may restrict our integration to the domain | Im(s)| ≤ T, since es2
1/T 2

decays exponentially otherwise.
On this domain, we use Stirling’s bound (9.2.1) for the Gamma function, as well as the Vinogradov bound

|ζ(1 + i t)|−1
≪ (1 + |t |)ε (t ∈ R).

We get

|EB,1| ≪ (ℓm)ε
∫

Re(s1)=0
Im(s1)≤T

|1 + s1|
2R−1+ε

|ds1|,

from which it follows immediately that |EB,1| ≪ T 2R+ε. So our desired result holds in the case n = 2.
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We now proceed to the general case. For n > 2, in order to establish bounds for EP,8, we need to
know that our main theorem is true for all k < n. The reason this is needed is because we have to bound
Rankin–Selberg L-functions L(s, φk ×φk′), with 2 ≤ k, k ′ < n. This will require knowing the Weyl law
with harmonic weights (Theorem 7.2.3) for 2 ≤ k, k ′ < n. We may assume by induction, however, that
this is indeed the case, i.e., the Weyl law with harmonic weights holds for all 2 ≤ k < n.

Now recall that, for the parabolic P associated to a partition n = n1 + · · · + nr , we have

EP,8 =

∫
n1s1+···+nr sr =0

Re(s j )=0

AEP,8(L , s) AEP,8(M, s) · |pn,#
T,R(α(P,8)(s))|

2 ds

where αP,8(s) is given by (see (3.2.7))

( n1 terms︷ ︸︸ ︷
α1,1 + s1, . . . , α1,n1 + s1,

n2 terms︷ ︸︸ ︷
α2,1 + s2, . . . , α2,n2 + s2 . . . . ,

nr terms︷ ︸︸ ︷
αr,1 + sr , . . . , αr,nr + sr

)
.

Since
∑nk

i=1 αk,i = 0 for all 1 ≤ k ≤ r we see that
r∑

k=1

nk∑
i=1

(αk,i + sk)
2
=

r∑
k=1

nk∑
i=1

(α2
k,i + s2

k ).

Now, for any β = (β1, . . . , βn) ∈ (iR)n , where β̂n = 0, we have

pn,#
T,R(β) :=

(
β2

1 +β2
2 + · · · +β2

n

2T 2

)
·F (n)

R

(
β

2

) ∏
1≤ i< j ≤n

∣∣∣∣0(
2R + 1 +βi −β j

4

)∣∣∣∣2

.

It follows that

pn,#
T,R(α(P,8)(s))= exp

(∑r
k=1

∑nk
i=1(α

2
k,i + s2

k )

2T 2

)
F (n)

R

(
α
(P,8)(s)

2

)
·

r∏
k=1

nk ̸=1

∏
1≤ i< j ≤nk

∣∣∣∣0(
2R + 1 +αk,i −αk, j

4

)∣∣∣∣2

·

∏
1≤k<k′≤r

nk∏
i=1

nk′∏
j=1

∣∣∣∣0(
2R + 1 + sk − sk′ +αk,i −αk′, j

4

)∣∣∣∣2

.

By Proposition 4.1.5, the m-th coefficient of EP,8 is given by

AEP,8((m, 1, . . . , 1), s)=

r∏
k=1

nk ̸=1

L∗(1,Adφk)
−

1
2

∏
1≤i< j≤r

L∗(1 + si − s j , φi ×φ j )
−1

·

∑
1≤c1,c2,...,cr ∈Z

c1c2···cr =m

λφ1(c1) · · · λφr (cr ) · cs1
1 · · · csr

r

up to a nonzero constant factor with absolute value depending only on n. To bound the divisor sum
above we will use the bound of Luo, Rudnick and Sarnak [Luo et al. 1999] for the m-th Hecke Fourier
coefficient of a GL(κ) (for κ ≥ 2) Hecke–Maass cusp form φ given by

|λφ(m, 1, . . . , 1)| ≤ m
1
2 −1/(κ2

+1)+ε.
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(A slightly stronger result has been obtained by Kim and Sarnak [Kim 2003]. However, the stated result
above is sufficient for our purposes.) We immediately obtain the following bound for the divisor sum:∑

1≤c1,c2,...,cr ∈ Z
c1c2···cr =m

|λφ1(c1) · · · λφr (cr ) · cs1
1 · · · csr

r | ≪ m
1
2 −1/(n2

+1)+ε.

It follows that

|EP,8| ≪ (mℓ)
1
2 −

1
n2+1

+ε
·

(∑r
k=1

∑nk
i=1 α

2
k,i

T 2

)
·

∫
n1s1+···+nr sr =0

Re(s j )=0,Im(s j )≪T

∣∣∣∣F (n)
R

(
α
(P,8)(s)

2

)∣∣∣∣2( r∏
k=1

nk ̸=1

∏
1≤ i< j ≤nk

∣∣∣∣0(
2R + 1 +αk,i −αk, j

4

)∣∣∣∣4)

·

( ∏
1≤k<k′≤r

nk∏
i=1

nk′∏
j=1

∣∣∣∣0(
2R + 1 + sk − sk′ +αk,i −αk′, j

4

)∣∣∣∣4)
·

( r∏
k=1

nk ̸=1

|L∗(1,Adφk)|
−1

)
·

( ∏
1≤k<k′≤r

|L∗(1 + sk − sk′, φk ×φk′)|−2
|ds|

)

≪ (mℓ)
1
2 −

1
n2+1

+ε
r∏

k=1
nk ̸=1

exp
(
α2

k,1 + · · · +α2
k,nk

T 2

)

·

∫
n1s1+···+nr sr =0

Re(s j )=0,Im(s j )≪T

∣∣∣∣F (n)
R

(
α
(P,8)(s)

2

)∣∣∣∣2 r∏
k=1

nk ̸=1

1
|L(1,Adφk)|

∏
1≤ i< j ≤nk

∣∣0( 2R+1+αk,i −αk, j
4

)∣∣4∣∣0( 1+αk,i −αk, j
2

)∣∣2

·

∏
1≤k<k′≤r

1
|L(1 + sk − sk′, φk ×φk′)|2

nk∏
i=1

nk′∏
j=1

∣∣0( 2R+1+sk−sk′+αk,i −αk′, j
4

)∣∣4∣∣0( 1+sk−sk′+αk,i −αk′, j
2

)∣∣2
|ds|.

Lemma 7.2.1. Assume |sk |≪ T 1+ε and |αk, j |≪ T 1+ε for 1≤k ≤r and 1≤ j ≤nk . Then for α :=α
(P,8)(s)

and α(k) as in Definition A.16, we have

|F (n)
R (α

(P,8)(s))|
2
≪

( r∏
k=1

nk ̸=1

|F (nk)
R (α(k))|2

)
· T R·B(n)+ε,

where B(n)= 2D(n)− 2
∑r

k=1,nk ̸=1 D(nk).

Proof. This follows immediately from Lemma A.27. □

It follows from Lemma 7.2.1 that for |α(k)|2 = α2
k,1 + · · · +α2

k,nk
, we have

|EP,8| ≪ (mℓ)
1
2 −

1
n2+1

+εT R·B(n)+ε
r∏

k=1
nk ̸=1

exp
(

|α(k)|2

T 2

)∣∣F (nk)
R

(
α(k)

2

)∣∣2 ∏
1≤ i< j ≤nk

|0((2R+1+αk,i −αk, j )/4)|4

|0((1+αk,i −αk, j )/2)|2

|L(1,Adφk)|

·

∫
n1s1+···+nr sr =0

Re(s j )=0,|Im(s j )|≪T

∏
1≤k<k′≤r

1
|L(1+sk−sk′,φk×φk′)|2

nk∏
i=1

nk′∏
j=1

∣∣0( 2R+1+sk−sk′+αk,i −αk′, j
4

)∣∣4∣∣0( 1+sk−sk′+αk,i −αk′, j
2

)∣∣2
|ds|
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≪ (mℓ)
1
2 −

1
n2+1

+ε
·T R·B(n)+ε

r∏
k=1

nk ̸=1

|h(nk)
T,R(α

(k))|

|L(1,Adφk)|

·

∫
n1s1+···+nr sr =0

Re(s j )=0,|Im(s j )|≪T

∏
1≤k<k′≤r

1
|L(1+sk−sk′,φk×φk′)|2

nk∏
i=1

nk′∏
j=1

∣∣0( 2R+1+sk−sk′+αk,i −αk′, j
4

)∣∣4∣∣0( 1+sk−sk′+αk,i −αk′, j
2

)∣∣2
|ds|.

where

h(nk)
T,R(α

(k))= exp
(

|α(k)|2

T 2

)
F (nk)

R

(
α(k)

2

)2 ∏
1≤ i ̸= j ≤nk

0
( 2R+1+αk,i −αk, j

4

)2

0
( 1+αk,i −αk, j

2

) .

Next ∏
1≤k<k′≤r

nk∏
i=1

nk′∏
j=1

∣∣0( 2R+1+sk−sk′+αk,i −αk′, j
4

)∣∣4∣∣0(1+sk−sk′+αk,i −αk′, j
2

)∣∣2
≪ T (2R−1)

∑
1≤k<k′≤r nk ·nk′ .

We obtain the bound

|EP,8| ≪ (mℓ)
1
2 −

1
n2+1

+ε
· T R·B(n)+ε+(2R−1)·

∑
1≤k<k′≤r nk ·nk′

·

r∏
k=1

|h(nk)
T,R(α

(k))|

|L(1,Adφk)|

∫
n1s1+···+nr sr =0

Re(s j )=0,|Im(s j )|≪T

∏
1≤k<k′≤r

|ds|
|L(1 + sk − sk′, φk ×φk′)|2

.

Next, we bound the s-integral above. It follows from Langlands’ conjecture (see Conjecture 1.3.2) that
for |Im(sk)|, |Im(sk′)| ≪ T we have the bound

|L(1 + sk − sk′, φk ×φk′)|−2
≪ T ε.

This together with the bound ∫
n1s1+···+nr sr =0

Re(s j )=0, |Im(s j )|≪T

|ds| ≪ T r−1,

implies that

|EP,8| ≪ (mℓ)
1
2 −

1
n2+1

+εT R·B(n)+(2R−1)
∑

1≤k<k′≤r nk ·nk′+(r−1)+ε
·

( r∏
k=1

|h(nk)
T,R(α

(k))|

|L(1,Adφk)|

)
. (7.2.2)

Since each nk < n (for k = 1, 2, . . . , r), we can apply our inductive procedure together with the
following theorem to bound

∑
8 |EP,8|.

Theorem 7.2.3 (Weyl law with harmonic weights for GL(nk)with nk < n). Suppose nk ∈Z with 2≤nk<n.
Let {φ1, φ2, . . . } be an orthogonal basis of Hecke–Maass cusp forms for GL(nk) ordered by eigenvalue. If
α( j) are the Langlands parameters of φ j , then

∞∑
j=1

h(nk)
T,R(α

( j))

L j
≪n T 2R·(D(k)+ nk (nk−1)

2 )+nk−1. (7.2.4)
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Proof. In [Goldfeld et al. 2021b], all that was needed to prove this statement for n = 4 was to have it be
true for nk = 2 and nk = 3, which was already known. A similar induction argument works in general. □

It immediately follows from the bounds (7.2.2) and (7.2.4) that∑
8

|EP,8| ≪ (mℓ)
1
2 −

1
n2+1

+ε T R·B(n)+(2R−1)
∑

1≤k<k′≤r nk ·nk′+(r−1)+ε
· T

∑r
k=1 (2R·(D(k)+ nk (nk−1)

2 )+nk−1).

Recall that B(n)= 2D(n)− 2
∑r

k=1 D(nk), which implies that∑
8

|EP,8| ≪ (mℓ)
1
2 −

1
n2+1

+εT 2R·D(n)+2R(
∑

1≤k<k′≤r nk ·nk′+
∑r

k=1
nk (nk−1)

2 )+
∑r

k=1 nk−
∑

1≤k<k′≤r nk ·nk′−1+ε.

Next,
∑

1≤k<k′≤r nk · nk′ +
∑r

k=1
nk(nk−1)

2 =
n(n−1)

2 by Lemma A.22 and
∑r

k=1 nk = n. It follows that∑
8

|EP,8| ≪ (mℓ)
1
2 −

1
n2+1

+ε T 2R·(D(n)+ n(n−1)
2 )+n−1−

∑
1≤k<k′≤r nk ·nk′+ε.

To complete the proof, we need to sum over all parabolics P . It suffices, therefore, to consider the “worst
case scenario” among the possible partitions n = n1 + · · · + nr for which the expression∑

1≤k<k′≤r

nknk′

is minimized. It is easy to see that this occurs when r = 2 and {n1, n2} = {n − 1, 1}, giving the bound
n − 1. It follows that ∑

P

∑
8

|EP,8| ≪ (mℓ)
1
2 −

1
n2+1

+ε T 2R·(D(n)+ n(n−1)
2 )+ε.

Using (1.4.2), this immediately implies the desired result. □

Remark 7.2.5. Jana and Nelson [2019] proved the bound∑
c(φ j )≤T n

1
L j

≪ T n2
−n, (7.2.6)

where c(φ) is the analytic conductor given in (1.3.1). This is an unsmoothed version of Theorem 7.2.3.
Our result is a smoothed version, and it doesn’t seem possible to derive a bound as in (7.2.6) with a sharp
cutoff without using a different approach.

8. An integral representation of p(n)
T,R( y)

Recall (see 1.4.4) that

pn,#
T,R(α) := e(α

2
1+α2

2+···+α2
n)/(2T 2)

·F (n)
R

(
α

2

) ∏
1≤ j ̸=k ≤n

0

(
1 + 2R +α j −αk

4

)
.
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Using the formula for the inverse Lebedev–Whittaker transform given in [Goldfeld and Kontorovich
2012], it follows that

p(n)T,R(y) :=
1

πn−1

∫
α̂n=0

Re(α)=0

pn,#
T,R(α) Wn,α(y)∏

1≤ j ̸=k ≤n 0
(α j −αk

2

) dα

=
1

πn−1

∫
α̂n=0

Re(α)=0

e
α2

1+α2
2+···+α2

n
2T 2 ·F (n)

R

(
α

2

) ∏
1≤ j ̸=k ≤n

0R

(
α j −αk

2

)
Wn,α(y) dα,

where

0R(z) :=
0

( 1
2

( 1
2 + R + z

))
0(z)

.

The strategy in this section for giving a representation of p(n)T,R(y) follows the same general outline
as was used to obtain the results for GL(3) and GL(4) given in [Goldfeld and Kontorovich 2013] and
[Goldfeld et al. 2021b], respectively. As in the prior works, we express the Whittaker function as the
inverse Mellin transform of its Mellin transform. (See Section 8.1.) Plugging this into the above formula
gives an integral representation of p(n)T,R(y) in terms of an additional variable s = (s1, . . . , sn−1).

8.1. Normalized Mellin transform of Whittaker function. We introduce (as in [Ishii and Stade 2007])
the following Mellin transform and its inverse.

Definition 8.1.1 (normalized Mellin transform of Whittaker function). Let n ∈Z+ and α=(α1, . . . ,αn)∈Cn

such that α̂n = 0. Let Wn,α(y) be the Whittaker function of Definition 2.3.3. The Mellin transform is

W̃n,α(s) := 2n−1
∫

∞

0
· · ·

∫
∞

0
Wn,2α(y)

n−1∏
j=1

(πy j )
2s j

dy j

y
1+

j (n− j)
2

j

, (8.1.2)

and the inverse Mellin transform is given by

Wn,α(y)=
1

2n−1

∫
s=(s1,...,sn−1)

Re(s)=2b

(n−1∏
j=1

y
j (n− j)

2
j (πy j )

−s j

)
W̃n, α2 (

s
2) ds. (8.1.3)

As a consequence of this definition, we have

p(n)T,R(y)=
1

(2π)n−1

∫
α̂n=0

Re(α)=0

e
α2

1+···+α2
n

T 2/2 ·F (n)
R (α)

( ∏
1≤ j ̸=k≤n

0R(α j −αk)

)

·

∫
s=(s1,...,sn−1)

Re(s)=b

(n−1∏
j=1

y
j (n− j)

2
j (πy j )

−2s j

)
W̃n,α(s) ds dα, (8.1.4)

where b = (b1, . . . , bn−1) with each b j > 0.
We use the following theorem to make (8.1.4) explicit and to begin setting up an inductive method to

bound p(n)T,R(y) for all n ≥ 2.
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Theorem 8.1.5 (Ishii–Stade). Let m ≥ 2 and ε > 0. Fix a Langlands parameter α ∈ Cm. Let s ∈ Cm−1

with Re(s) > ε. Then

W̃m,α(s)=
∫

z=(z1,...,zm−2)
Re(z)=ε

(m−1∏
j=1

0

(
s j − z j−1 +

(m − j)αm

m − 1

)
0

(
s j − z j −

jαm

m − 1

))
·

W̃m−1,β(z)
(2π i)m−2 dz, (8.1.6)

where

z0 := −0 +
0 ·αm

m − 1
= 0, zm−1 := αm −

(m − 1)αm

m − 1
= 0

and

β = (β1, . . . , βm−1) :=

(
α1 +

αm

m − 1
, . . . , αm−1 +

αm

m − 1

)
.

8.2. A shifted p(n)
T,R term and the Ishii–Stade conjecture. Our goal is to insert (8.1.6) into (8.1.4) and

then shift the lines of integration in s to Re(s)= −a, to the left of some of the poles of W̃n,α(s), which
(see Theorem 10.1.1) occur at Re(si )= −δ for every 1 ≤ i ≤ n − 1 and δ ∈ Z≥0. By Cauchy’s residue
formula, this allows us to describe p(n)T,R(y) in terms of a the sum of a shifted p(n)T,R term and finitely many
shifted residue terms.

Definition 8.2.1 (shifted p(n)T,R term). Let n ≥ 2 be an integer and a = (a1, . . . , an−1) ∈ Rn−1. The shifted
p(n)T,R term is given by the same formula as (8.1.4) but with b replaced by −a:

p(n)T,R(y; −a) :=
1

(2π)n−1

∫
α̂n=0

Re(α)=0

e
α2

1+···+α2
n

T 2/2 ·F (n)
R (α)

( ∏
1≤ j ̸=k≤n

0R(α j −αk)

)

·

∫
s=(s1,...,sn−1)

Re(s)=−a

(n−1∏
j=1

y
j (n− j)

2
j (πy j )

−2s j

)
W̃n,α(s) ds dα. (8.2.2)

One might be tempted to insert (8.1.6) into (8.2.2), but this is invalid if n > 3, because Theorem 8.1.5
requires that Re(si ) > ε for each i = 1, . . . , n − 1. To overcome this difficulty, we use shift equations as
given in the following conjecture. This allows us to evaluate W̃n,α(s) for Re(s) < 0.

Conjecture 8.2.3 (Ishii–Stade). Let m, n ∈ Z with 1 ≤ m ≤ n − 1; let δ ∈ Z≥0. Let

(x)n :=
0(x + n)
0(x)

= x(x + 1) · · · (x + n − 1).

Then there exists a positive integer r and, for each i with 1 ≤ i ≤ r , a polynomial Pi (s, α) and an
(n − 1)-tuple 6i ∈ (Z≥0)

n−1, such that

W̃n,α(s)=

[ ∏
1≤ j1< j2<···< jm≤n

(sm +α j1 +α j2 + · · · +α jm )δ

]−1 r∑
i=1

Pi (s, α)W̃n,α(s +6i ), (8.2.4)

where the mth coordinate of each 6i is at least δ. Moreover, for each i , we have

deg(Pi (s, α))+ 2|6i | = δ
( n

m

)
.
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Proof of conjecture for 2 ≤ n ≤ 5. Note that the case δ = 0 of the conjecture is trivial. Moreover, for a
given m and n with 1 ≤ m ≤ n − 1, it’s enough to prove the conjecture for δ = 1. The case δ > 1 then
follows by applying the case δ = 1 to itself iteratively.

For δ = 1 and n = 2 or n = 3, the conjecture follows immediately from the explicit formulae

W̃2,α(s)= 0(s +α)0(s −α),

W̃3,α(s)=
0(s1 +α1)0(s1 +α2)0(s1 +α3)0(s2 −α1)0(s2 −α2)0(s2 −α3)

0(s1 + s2)
,

respectively, together with the functional equation 0(s + 1) = s0(s). The case δ = 1 and n = 4 is a
consequence of [Stade and Trinh 2021, equations (21), (29), and (31)].

We now consider the case δ = 1 and n = 5. Note that it suffices to derive the appropriate recurrence
relations for m = 1 and m = 2 (that is, for the variables s1 and s2); the cases m = 3 and m = 4 then follow
from the invariance of W̃5,α(s) under the involution

(s1, s2, s3, s4, α1, α2, α3, α4, α5)→ (s4, s3, s2, s1,−α1,−α2,−α3,−α4,−α5).

We follow an approach developed by Taku Ishii (personal correspondence). First, consider the case
m = 1: we wish to show that [ 5∏

i=1

(s1 +αi )

]
W̃5,α(s) (8.2.5)

is equal to a finite sum of terms Pi (s, α)W̃n,α(s +6i ), where the first coordinate of each 6i ∈ (Z≥0)
4 is

at least 1, and deg(Pi (s, α))+ 2|6i | = 5 for each i . To this end, let

σ = (σ1, σ2, σ3, σ4, σ5)= (−s1, s1 − s2, s2 − s3, s3 − s4, s4); (8.2.6)

note that
∑

i σi = 0. Since s1 + σ1 = 0, we have[ 5∏
i=1

(s1 +αi )

]
W̃5,α(s)=

[ 5∏
i=1

(s1 +αi )−

5∏
i=1

(s1 + σi )

]
W̃5,α(s). (8.2.7)

But for indeterminates T, x1, x2, x3, x4, x5, we have
5∏

i=1

(T + xi )= T 5
+ T 4 P1(x)+ T 3 P2(x)+ T 2 P3(x)+ T P4(x)+ P5(x), (8.2.8)

where Pk(x) is the elementary symmetric polynomial of degree k in x1, x2, x3, x4, x5. So by (8.2.7) above,[ 5∏
i=1

(s1 +αi )

]
W̃5,α(s)

=
[
s5

1 + s4
1 P1(α)+ s3

1 P2(α)+ s2
1 P3(α)+ s P4(α)+ P5(α)

]
W̃5,α(s)

−
[
s5

1 + s4
1 P1(σ )+ s3

1 P2(σ )+ s2
1 P3(σ )+ s P4(σ )+ P5(σ )

]
W̃5,α(s)

=
[
s3

1{P2(α)−P2(σ )}+s2
1{P3(α)−P3(σ )}+s1{P4(α)−P4(σ )}+{P5(α)−P5(σ )}

]
W̃5,α(s), (8.2.9)

since P1(α)= P1(σ )= 0.
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Now let ek , for 1 ≤ k ≤ 4, be the four-tuple with a 1 in the k-th place and zeroes elsewhere. By [Ishii
and Oda 2014, Proposition 3.6], we have

Pk(α)− Pk(σ )= Zk − Ck

(as operators acting on functions in the variable s = (s1, s2, s3, s4)), where the “Capelli elements” Ck

annihilate W̃5,α(s), and

Z2 f (s)= f (s+e1)+ f (s+e2)+ f (s+e3)+ f (s+e4),

Z3 f (s)= P1(σ3, σ4, σ5) f (s+e1)+P1(σ1, σ4, σ5) f (s+e2)+P1(σ1, σ2, σ5) f (s+e3)

+P1(σ1, σ2, σ3) f (s+e4),

Z4 f (s)= P2(σ3, σ4, σ5) f (s+e1)+P2(σ1, σ4, σ5) f (s+e2)+P2(σ1, σ2, σ5) f (s+e3)

+P2(σ1, σ2, σ3) f (s+e4)+ f (s+e1+e3)+ f (s+e1+e4)+ f (s+e2+e4),

Z5 f (s)= P3(σ3, σ4, σ5) f (s+e1)+P3(σ1, σ4, σ5) f (s+e2)+P3(σ1, σ2, σ5) f (s+e3)

+P3(σ1, σ2, σ3) f (s+e4)+P1(σ5) f (s+e1+e3)+P1(σ3) f (s+e1+e4)+P1(σ1) f (s+e2+e4).

So by (8.2.9),[ 5∏
i=1

(s1 +αi )

]
W̃5,α(s)=

[
s3

1 Z2 + s2
1 Z3 + s1 Z4 + Z5

]
W̃5,α(s)

=
[
s3

1 + s2
1 P1(σ3, σ4, σ5)+ s1 P2(σ3, σ4, σ5)+ P3(σ3, σ4, σ5)

]
W̃5,α(s + e1)

+
[
s3

1 + s2
1 P1(σ1, σ4, σ5)+ s1 P2(σ1, σ4, σ5)+ P3(σ1, σ4, σ5)

]
W̃5,α(s + e2)

+
[
s3

1 + s2
1 P1(σ1, σ2, σ5)+ s1 P2(σ1, σ2, σ5)+ P3(σ1, σ2, σ5)

]
W̃5,α(s + e3)

+
[
s3

1 + s2
1 P1(σ1, σ2, σ3)+ s1 P2(σ1, σ2, σ3)+ P3(σ1, σ2, σ3)

]
W̃5,α(s + e4)

+
[
s1 + P1(σ5)

]
W̃5,α(s + e1 + e3)

+
[
s1 + P1(σ3)

]
W̃5,α(s + e1 + e4)

+
[
s1 + P1(σ1)

]
W̃5,α(s + e2 + e4). (8.2.10)

Recalling that the Pk’s are the elementary symmetric polynomials of degree k in their arguments, we see

s3
1 + s2

1 P1(a, b, c)+ s1 P2(a, b, c)+ P3(a, b, c)= (s1 + a)(s1 + b)(s1 + c),

for indeterminates a, b, c. So (8.2.10) gives[ 5∏
i=1

(s1 +αi )

]
W̃5,α(s)= (s1 + σ3)(s1 + σ4)(s1 + σ5)W̃5,α(s + e1)

+ (s1 + σ1)(s1 + σ4)(s1 + σ5)W̃5,α(s + e2)

+ (s1 + σ1)(s1 + σ2)(s1 + σ5)W̃5,α(s + e3)

+ (s1 + σ1)(s1 + σ2)(s1 + σ3)W̃5,α(s + e4)

+ (s1 + σ5)W̃4,α(s + e1 + e3)

+ (s1 + σ3)W̃5,α(s + e1 + e4)

+ (s1 + σ1)W̃5,α(s + e2 + e4)
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= (s1 + s2 − s3)(s1 + s3 − s4)(s1 + s4)W̃5,α(s + e1)

+ (s1 + s4)W̃5,α(s + e1 + e3)+ (s1 + s2 − s3)W̃5,α(s + e1 + e4),

where we have the last step by the definition (8.2.6) of the σi ’s. This is our desired shift equation in s1.
The shift equation in s2 is derived analogously. A fundamental difference in this derivation is that, in

place of (8.2.8), we use the following expression involving Schur polynomials sµ (see [Macdonald 1979,
Section I.3], especially Exercise 10 of that section):∏

1≤i< j≤5

(T + xi + x j )=

∑
µ=(µ1,µ2,...,µ5)∈S

(
T
2

)10−(µ1+µ2+···+µ5)

dµ sµ(x1, x2, . . . , x5).

Here,

S =
{
(µ1, µ2, . . . , µ5) ∈ (Z≥0)

5
: µi ≤ 5 − i (1 ≤ i ≤ 5) and µ1 ≥ µ2 ≥ · · · ≥ µ5

}
,

and dµ is the determinant of the matrix (( 2(5−i)
µ j +5− j

))
1≤i, j≤5

.

The Schur polynomials are symmetric polynomials in the xk’s and are therefore expressible in terms of
the elementary symmetric polynomials in the xk’s. Techniques like those employed above, in the case
m = 1, therefore apply. We omit the details. □

Remark 8.2.11. The above proof, in the case m = 1 (that is, for the variable s1—and therefore also for
the variable sn−1), generalizes to the case of GL(n,R) for any n ≥ 2. For 2 ≤ m ≤ n − 2, we do not yet
have a proof that works for all n ≥ 2, though we expect that the above ideas and techniques should prove
relevant. Indeed, using the above methods, and applying Mathematica to help with the more arduous
calculations, we have been able to verify Conjecture 8.2.3 in full generality for n ≤ 7.

We further note that, alternatively, one might continue W̃n,α(s) in the s j ’s by shifting or deforming the
lines of integration in (8.1.6). Unfortunately such an approach has, thus far, failed to yield suitable results.
In particular, the residues that one obtains in moving these lines of integration past poles of the integrand are
quite complicated, and do not seem to lend themselves to bounds of the type required to estimate p(n)T,R(y).

8.3. p(n)
T,R( y) is a sum of a shifted term and residues. Besides the shifted p(n)T,R-term (because we cross

poles of W̃n,α(s) upon shifting the lines of integration) there are also many residue terms. The residue
terms will be parametrized by compositions of n. Recall that a composition of length r of a positive
integer n is a way of writing n = n1 +· · ·+ nr as a sum of strictly positive integers. Two sums that differ
in the order define different compositions. Compare this, on the other hand with partitions which are
compositions of n for which the order doesn’t matter.

Definition 8.3.1 (a-admissible compositions). Let a = (a1, . . . , an−1) ∈ Rn−1. A composition n =

n1 + · · · + nr is termed a-admissible if

an̂i > 0 for all i = 1, . . . , r − 1.
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The set of a-admissible compositions of length greater than 1 is

Ca := {compositions n = n1 + · · · + nr | 2 ≤ r ≤ n, an̂i > 0 for all i = 1, . . . , r − 1}.

Remark 8.3.2. At times we may also notate a composition n = n1 + · · · + nr as an ordered list C =

(n1, . . . , nr ).

Definition 8.3.3 ((r−1)-fold residue term). Suppose that r ≥2 and C ∈Ca is given by n =n1+· · ·+nr . Let

δC := (δ1, δ2, . . . , δr−1) ∈ (Z≥0)
r−1,

with 0 ≤ δi ≤ ⌊an̂i ⌋ for each i = 1, . . . , r −1. If C has length 2, we write δC = δ. We define the (r−1)-fold
residue term

p(n)T,R(y; −a, δC) :=

∫
α̂n=0

Re(α)=0

e
α2

1+···+α2
n

T 2/2 ·F (n)
R (α)

( ∏
1≤ j ̸=k≤n

0R(α j −αk)

)

·

(r−1∏
i=1

y
n̂i (n−n̂i )

2 +2(α̂n̂i +δi )

i

)
·

∫
Re(s j )=−a j

j /∈{n̂1,...,n̂r−1}

( ∏
j /∈{n̂1,...,n̂r−1}

y
j (n− j)

2 −2s j

j

)

· Res
sn̂1=−α̂n̂1−δ1

(
Res

sn̂2=−α̂n̂2−δ2

(
· · ·

(
Res

sn̂r−1=−α̂n̂r−1−δr−1

W̃n,α(s)
)
· · ·

))
ds dα. (8.3.4)

Remark 8.3.5. In the shifted integral (8.3.4), if −ai > 0 for some i , there will be no residues coming
from the integral in si because we are not shifting past any poles. For this reason, one only obtains residue
terms p(n)T,R(y; −a, δC) in the case that C is a-admissible. That said, (8.3.4) makes perfect sense even if
C is not a-admissible. In this case, p(n)T,R(y; −a, δC) is identically zero.

Proposition 8.3.6. Suppose that a = (a1, . . . , an−1) ∈ Rn−1. Then there exists constants κ(C) such that

p(n)T,R(y)= p(n)T,R(y; −a) +

∑
C∈Ca

κ(C)
∑

δC=(δ1,...,δr−1)
0≤δi ≤⌊an̂i ⌋

p(n)T,R(y; −a, δC).

Before giving the proof, we make some preliminary remarks and observations.

Remark 8.3.7. Notice that an element σ of the symmetric group Sn (i.e., the group of permutations of a
set of n elements) acts on α = (α1, . . . , αn) and, by extension, on α̂k via

σ · α̂k := ασ(1) +ασ(2) + · · · +ασ(k).

We can consider the analog to (8.3.4) obtained by replacing each instance of α̂m with σ · α̂m :∫
α̂n=0

Re(α)=0

e
α2

1+···+α2
n

T 2/2 ·F (n)
R (α) ·

( ∏
1≤ j ̸=k≤n

0R(α j −αk)

)( ∏
i∈{n̂1,...,n̂r−1}

y
i(n−i)

2 +2(σ ·α̂i +δi )

i

)

·

∫
Re(s j )=−a j

j∈{n̂1,...,n̂r−1}

( ∏
j /∈{n̂1,...,n̂r−1}

y
j (n− j)

2 −2s j

j

)
Res

si1=−σ ·α̂i1−δi1

(
Res

si2=−σ ·α̂i2−δi2

· · · Res
sik =−σ ·α̂ik −δik

W̃n,α(s)
)

ds dα
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We make two observations:

• As C varies over all compositions of length r and σ varies over all possible permutations and δC

varies over all (Z≥0)
r−1, one obtains all possible (r−1)-fold residues coming from shifting the lines of

integration in p(n)T,R(y). This is a consequence of Theorem 10.1.1 below.

• The action of Sn on ordered subsets of {α1, α2, . . . , αn} given by permuting the indices is trivial on
W̃n,α(s), i.e., W̃n,σ (α)(s)= W̃n,α(s), and on the function

e
α2

1+···+α2
n

T 2/2 ·F (n)
R (α) ·

( ∏
1≤ j ̸=k≤n

0R(α j −αk)

)
.

This implies that relabeling the variables α1, α2, . . . αn by ασ−1(1), ασ−1(2), . . . , ασ−1(n) everywhere doesn’t
change the value of the integral, and recovers the original integral given in (8.3.4).

Remark 8.3.8. The constant κ(C) is the size of the (generic) orbit of the action of Sn on the set

A = {α̂n̂1, . . . , α̂n̂r−1}.

Hence, defining the stabilizer of A to be

Stab(A) := {σ ∈ Sn | σ · α̂m = α̂m for each m = n̂1, . . . , n̂r−1},

we see that

κ(C)=
#Sn

# Stab(A)
=

n!∏r−1
i=1 (ni !)

.

Since the exact value of κ(C) is irrelevant to our application, we omit its proof below and leave it instead
to the interested reader.

Proof of Proposition 8.3.6. Beginning with (8.1.4), we see that p(n)T,R(y) = p(n)T,R(y; b) for any b =

(b1, . . . , bn−1) with bi > 0 for each i = 1, . . . , n − 1. In order to compare this with p(n)T,R(y; −a), we suc-
cessively shift the lines of integration in the variables sk for each k such that −ak < 0 (in descending order).
If −ak > 0 then shifting the line of integration from Re(s)= bk to Re(sk)= −ak doesn’t change the value
of the integral in sk . In other words, there is a residue term if and only if the composition C is admissible.

Beginning with the fact that

p(n)T,R(y)= p(n)T,R(y; b) for any b = (b1, . . . , bn−1) for which b j > 0 for all j,

we may shift the line of integration in sn−1 to Re(sn−1)= −an−1. In doing so, provided that an−1 > 0,
we pass poles at sn−1 = −σ · α̂1 − δ1 for each 0 ≤ δ ≤ ⌊a1⌋. Hence, taking into account Remark 8.3.7,
and considering n = (n − 1)+ 1 (denoted by (n − 1, 1)), it follows that

p(n)T,R(y)= p(n)T,R(y; (b1, b2, b3, . . . ,−an−1))

+ κ((n − 1, 1)) ·
∑
δ(n−1,1)

p(n)T,R(y; (b1, b2, . . . ,−an−1), δ(n−1,1)), (8.3.9)

where κ((n−1, 1)) is a constant (which can be verified to agree with the description given in Remark 8.3.8.)
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We now shift the line of integration in sn−2 to Re(sn−2)= −an−2. As before, provided that an−2 > 0,
the Cauchy residue theorem and Remark 8.3.7 give

p(n)T,R(y)= p(n)T,R(y; (b1, . . . , bn−3,−an−2,−an−1))

+ κ((n − 2, 2))
∑
δ(n−2,2)

p(n)T,R(y; (b1, . . . , bn−3,−an−2,−an−1), δ(n−2,2))

+ κ((n − 1, 1))
∑
δ(n−1)

p(n)T,R(y; (b1, . . . , bn−3,−an−2,−an−1), δ(n−1,1))

+ κ((n − 2, 1, 1))
∑

δ(n−2,1,1)

p(n)T,R(y; (b1, . . . , bn−3,−an−2,−an−1), δ(n−2,1,1)) (8.3.10)

for constants κ(C) for each of C = (n − 1, 1), (n − 2, 2), (n − 2, 1, 1) as claimed.
We next repeat this process shifting the integrals in sn−3 for each of the terms on the right of (8.3.10),

and then again for sn−4 and so forth (skipping those sm for which am < 0) until all of the lines of integration
have been moved to Re(sm)= −am for every possible integral. The claimed formula is now evident. □

8.4. Example: GL(4). We now consider the special case of W̃4,α(s) where

α = (α1, α2, α3, α4) ∈ (iR)4, α̂4 = 0.

Fix ε>0. Recall that p(4)T,R(y)= p(4)T,R(y; (ε, ε, ε)). If we now shift the lines of integration to Re(s)= (−a)
where a = (a1, a2, a3) ∈ R3, then we get additional residue terms corresponding to each composition
4 = n1 + · · · + nr and each δC ∈ (Z≥0)

r as follows.
In general the composition n = n1 + · · ·+ nr (by abuse of notation, we also think of this as a vector

(n1, . . . , nr ) so that n̂k = n1 + · · · + nk) corresponds to taking an (r−1)-fold residue in the variables
sn̂1, sn̂2, . . . , sn̂r−1 . Here is a table of the residues corresponding to the different compositions:

composition C residues in s-variables δC

1 + 3 s1 = −α1 − δ1 (δ1)

2 + 2 s2 = −α1 −α2 − δ2 (δ2)

3 + 1 s3 = −α1 −α2 −α3 − δ3 (δ3)

1 + 1 + 2 s1 = −α1 − δ1, s2 = −α1 −α2 − δ2 (δ1, δ2)

1 + 2 + 1 s1 = −α1 − δ1, s3 = −α1 −α2 −α3 − δ3 (δ1, δ3)

2 + 1 + 1 s2 = −α1 −α2 − δ2, s3 = −α1 −α2 −α3 − δ3 (δ2, δ3)

In each case 0 ≤ δi ≤ ⌊ai⌋. Not included in the table are the triple residues in si = −α̂i − δi for each
i = 1, 2, 3. These correspond to the composition 4 = 1 + 1 + 1 + 1 and δC = (δ1, δ2, δ3).

8.5. The integral I(m)
T,R(−a) in terms of an explicit recursive formula for W̃m,α(s). At first glance, the

following definition appears to be relevant only for the shifted p(n)T,R-term, as it is essentially equal to
p(n)T,R((1, . . . , 1); −a), and not for the shifted residue terms. However, it will turn out to be pivotal to
bounding the residue terms as well.



2230 Dorian Goldfeld, Eric Stade and Michael Woodbury

Definition 8.5.1 (the integral I(m)T,R). Let m ≥2 be an integer and a=(a1, . . . ,am−1)∈Rm−1. Then we define

I(m)T,R(−a) :=

∫
α̂m=0

Re(α)=0

e
α2

1+···+α2
m

T 2/2 ·F (n)
R (α)

( ∏
1≤ j ̸=k≤m

0R(α j −αk)

) ∫
s=(s1,...,sm−1)

Re(s)=−a

|W̃m,α(s)| ds dα. (8.5.2)

As alluded to above, inserting the result of Theorem 8.1.5 into (8.2.2), we find that

|p(n)T,R(y,−a)| ≪

(n−1∏
j=1

y
j (n− j)

2 −2a j

j

)
I(n)T,R(−a).

Hence, giving a bound for p(n)T,R(y) requires only that we bound I(m)T,R(−a) in the case of m = n. However,
much more is true: we will show that if C is the composition n = n1 +· · ·+nr , then p(n)T,R(y; −a, δC) can
be bounded by the same product of yi ’s as above times a certain power of T and a product of the form

r−1∏
ℓ=1

I(nℓ)T,R (−a(ℓ))

for certain values a(ℓ) = (a(ℓ)1 , . . . , a(ℓ)nℓ−1) which depend on the value of a = (a1, . . . , an−1) ∈ Rn−1.
The significance of this fact should not be understated. Without it, we would be required to treat nearly

every possible composition C (hence each possible residue term) individually. Indeed, returning to the case
of n = 4, as noted in Section 8.4 above, there were seven residue terms. The only symmetries that we were
able to exploit in [Goldfeld et al. 2021b] to help were that the (1, 3) and (3, 1) residues were equivalent, and
the (1, 1, 2) and (2, 1, 1) residues were equivalent as well. This left five individual distinct cases, each of
which required several pages of work to bound. So, although the method of this paper does require dealing
with some tricky notation and combinatorics, it eliminates the need to treat each residue on its own terms.

9. Bounding I(m)
T,R

Recall that for α = (α1, . . . , αm) ∈ Cm satisfying α̂m = 0 and a = (a1, a2, . . . , an−1) ∈ Rn−1,

I(m)T,R(−a) :=

∫
α̂m=0

Re(α)=0

e
α2

1+···+α2
m

T 2/2 ·F (m)
R (α)

∏
1≤ j ̸=k≤m

|0R(α j −αk)|

∫
Re(s)=−a

|W̃m,α(s)| ds dα. (9.0.1)

Theorem 9.0.2. Let I(m)T,R(−a) be as above and set D(m)= deg(F (m)
1 (α)). Then, for any 0< ε < 1

2 ,

I(m)T,R(−a)≪ T ε+
(m+4)(m−1)

4 +R·(D(m)+ m(m−1)
2 )−

∑m−1
j=1 B(a j ),

where

B(c)=


0 if c < 0,
⌊c⌋ + 2(c − ⌊c⌋) if 0< ⌊c⌋ + ε < c ≤ ⌊c⌋ +

1
2 ,

⌈c⌉ if 1
2 < ⌈c⌉ −

1
2 ≤ c < ⌈c⌉ − ε.

The implicit constant depends on ε, R and m.
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Theorem 8.1.5 allows us to write W̃m,α(s) in terms of an integral of the product of several Gamma
functions and the lower-rank Mellin transform W̃m−1,β(z), where

β = (β1, . . . , βm−1) :=

(
α1 +

αm

m − 1
, . . . , αm−1 +

αm

m − 1

)
.

Using this, we are able siphon off the contribution to the integrand of (9.0.1) that is independent of the
variable β. This in turn allows us to relate I(m)T,R to I(m−1)

T,R and prove the result inductively.

9.1. Symmetry of integration in α. Since the integrand of (9.0.1) is invariant under the action of σ ∈ Sm

acting on α = (α1, . . . , αm), we may restrict the integration to a fundamental domain. A choice of such a
fundamental domain is

Im(α1)≥ Im(α2)≥ · · · ≥ Im(αm). (9.1.1)

Hence, (9.0.1) is equal, up to a constant, to the same integral but restricted to α satisfying (9.1.1). In the
sequel we will always assume that (9.1.1) holds.

9.2. Extended exponential zero set. Recall that Stirling’s asymptotic formula (for σ ∈ R fixed and t ∈ R

with |t | → ∞) is given by
0(σ + i t)∼

√
2π · |t |σ−

1
2 e−

π
2 |t |. (9.2.1)

Definition 9.2.2 (exponential and polynomial factors of a ratio of Gamma functions). We call |t |σ−1/2

the polynomial factor of 0(σ + i t), and e−(π/2)|t | is called the exponential factor. For a ratio of Gamma
functions, the polynomial (respectively, exponential) factor is composed of the polynomial (respectively,
exponential) factors of each individual Gamma function.

Lemma 9.2.3 (extended exponential zero set). Assume that α ∈ Cm is a Langlands parameter satisfying

Im(α1)≥ Im(α2)≥ · · · ≥ Im(αm).

Then the integrand of I(m)T,R (as a function of s) has exponential decay outside of the set I = I1 × I2 ×

· · · × Im−1, where

I j :=

{
s j

∣∣∣∣ −

j∑
k=1

Im(αk)≤ Im(s j )≤ −

j∑
k=1

Im(αm−k+1)

}
.

Remark 9.2.4. See [Goldfeld et al. 2021b] for the definition of the exponential zero set of an integral.
The extended exponential zero set given in Lemma 9.2.3 contains the exponential zero set for I(m)T,R .

Proof. We first prove Lemma 9.2.3 in the case that m = 2. In the formula (9.0.1) for I(n)T,R , replace
W̃2,α(s1) with 0(s1 +α1)0(s1 +α2). Then assuming (9.1.1), the exponential factor is e(π/2)E(s,α), where

E(s, α)= |Im(s1)+ Im(α1)| + |Im(s1)+ Im(α2)| − 2 Im(α1).

We see, therefore, that the exponential factor E(s, α) is negative unless

Im(s1)+ Im(α1)≥ 0 and Im(s1)+ Im(α2)≤ 0 ⇐⇒ − Im(α1)≤ Im(s1)≤ − Im(α2),

as claimed.
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Let us suppose that m ≥ 3 and c = (c1, c2, . . . , cm−1), with c j > 0 ( j = 1, 2, . . . ,m − 1). In order to
prove Lemma 9.2.3 using induction on m, we make use of the change of variables

β j = α j +
αm

m − 1
, j = 1, . . . ,m − 1.

Observe that
β1 + · · · +βm−1 = 0.

By Lemma A.19 in the case that k = m − 1,

α2
1 + · · · +α2

m = β2
1 + · · · +β2

m−1 +
m

m − 1
α2

m .

Then in the integrand for I(m)T,R(c) we may substitute the formula for W̃m,α(s) given in Theorem 8.1.5. We
also use the fact (see Lemma A.26) that

∏
1≤ j ̸=k≤m

0(α j −αk)=

( ∏
1≤ j ̸=k≤m−1

0(β j −βk)

)
·

(m−1∏
i=1

0(αm −αi )0(αi −αm)

)
,

and, via Stirling,
m−1∏
i=1

0(αm −αi )0(αi −αm)≪ eπ Im(αm).

Note that (9.1.1) implies that Im(αm)≤ 0; hence,

I(m)T,R(c)≪

∫
Re(αm)=0

e
m

m−1
α2

m
T 2/2

∫
β̂m−1=0
Re(β)=0

e
β2

1 +···+β2
m−1

T 2/2 · |P(D(m)−D(m−1))R(αm, β)|

·F (m−1)
R (β)

∏
1≤ j ̸=k≤m−1

|0R(β j −βk)|

∫
Re(z j )=b j
1≤ j≤m−2

|W̃m−1,β(z)|

·

m−1∏
j=1

∫
Re(s j )=c j

∣∣∣∣0(
s j − z j−1 +

(m − j)αm

m − 1

)
0

(
s j − z j −

jαm

m − 1

)
·0R

(
−m

m − 1
αm −β j

)
0R

(
β j +

m
m − 1

αm

)∣∣∣∣ ds j dz dα.

By the induction hypothesis, the second row of this expression has exponential decay outside of the set{
z = (z1, . . . , zm−2)

∣∣∣∣ −

j∑
k=1

βk ≤ Im(z j )≤ −

k∑
j=1

βm− j

}
(9.2.5)

for each k = 1, 2, . . . ,m − 2. (Recall that z0 = zm−1 = 0.)
The assumption Im(α j )≥ Im(αm) and the definition of β j above imply that

Im(α j −αm)= Im
(
β j +

m
m − 1

αn

)
≥ 0 ( j = 1, 2, . . . ,m − 1).
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Thus, the exponential factor coming from the final line in the expression above is e(π/2)E(s,z,β,αm), where

E(s, z, β, αn)=

n−1∑
j=1

(∣∣∣∣Im(
s j − z j−1 +

n − j
n − 1

αn

)∣∣∣∣ + ∣∣∣∣Im(
s j − z j −

j
n − 1

αn

)∣∣∣∣ − Im
(

n
n − 1

αn +β j

))

=

n−1∑
j=1

(∣∣∣∣Im(
s j − z j−1 +

n − j
n − 1

αn

)∣∣∣∣ + ∣∣∣∣Im(
s j − z j −

j
n − 1

αn

)∣∣∣∣) − n Im(αn).

We know the integral defining I(m)T,R(−a) is convergent. Therefore, it must be the case that E(s, z, β, αm)≤0.
In order to find where E = 0, i.e., where there is not exponential decay, we seek values

ϵ1,1, ϵ2,1, . . . , ϵ1,m−1, ϵ2,m−1 ∈ {±1}

for which
m−1∑
j=1

(
ϵ1, j Im

(
s j − z j−1 +

m − j
m − 1

αm

)
+ ϵ2, j Im

(
s j − z j −

j
m − 1

αm

))
= m Im(αm). (9.2.6)

In order for the s-variables to cancel it is clear that for each j = 1, 2, . . . ,m − 1 it need be true that
ϵ j := ϵ1, j = −ϵ2, j . With this assumption, (9.2.6) simplifies:

m−1∑
j=1

(
ϵ j Im

(
z j − z j−1 +

m
m − 1

αm

))
= m Im(αm).

In order for this to hold true, it is necessary that ϵ j = 1 for all j , since otherwise, the coefficients of αm on
each side of the inequality wouldn’t match. On the other hand, ϵ j = 1 for all j is sufficient as well since

m−1∑
j=1

Im(z j−1 − z j )= Im(z0 − zm−1)= 0.

This unique solution to (9.2.6) implies, therefore, that there is exponential decay in the integrand of I(m)T,R

above unless Im
(
z j−1 −

m− j
m−1αm

)
≤ Im(s j )≤ Im

(
z j +

j
m−1αm

)
. The inductive assumption (9.2.5) implies

Im
(

z j−1 −
m − j
m − 1

αm

)
≥ −

j−1∑
k=1

(
βk −

αm

m − 1

)
−αm = −

j∑
k=1

α j ,

Im
(

z j +
j

m − 1
αm

)
≤ −

j∑
k=1

(
βk −

αm

m − 1

)
= −

m∑
k=1

αk,

thus yielding the desired bounds on Im(s j ).
To complete the proof, we remark that if −a < 0, in order to use the result of Theorem 8.1.5, we need

to first apply the shift equations given in Corollary 9.2.8 below. This will allow us to rewrite I(m)T,R(−a) as
a sum over terms all of which have the same basic form as that for I(m)T,R(c) with c > 0. Each of these
terms has precisely the same exponential factor since this depends only on the imaginary parts of the
arguments of the Gamma functions; hence the same exponential zero set is determined in general. □
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For each j = 1, . . . , n, we define

B j (s j , α) :=

∏
K⊆{1,...,n}

#K= j

(
s j +

∑
k∈K

αk

)
. (9.2.7)

Using this, the following corollary is easily deduced. (See [Goldfeld et al. 2021b] for the case of n = 4.)

Corollary 9.2.8. Let r = (r1, . . . , rn−1) ∈ Zn−1
≥0 . There exists a sequence of shifts σ = (σ1, . . . , σn−1) ∈

Zn−1
≥0 and polynomials Qσ,r (s, α) such that

|W̃n,α(s)| ≪

∑
σ

|Qσ,r (s, α)|∏n−1
j=1|B j (s j , α)|

r j
|W̃n,α(s + r + σ)|,

where

Qσ,r (s, α)=

n−1∏
j=1

Pσ j ,r j (s, α), deg(Pσ j ,r j (s, α))= r j

((n
j

)
− 2

)
− 2σ j .

9.3. Proof of Theorem 9.0.2 in the case m = 2.

Proof. As in the proof of Lemma 9.2.3, we can replace W̃2,(α,−α)(s) with 0(s +α)0(s −α) and estimate
using Stirling’s bound. We may, moreover, restrict s to the exponential zero set − Im(α)≤ Im(s)≤ Im(α)
to see that

I(2)T,R(−a)=

∫
α̂n=0

Re(α)=0

e
α2

T 2 ·|0R(2α)0R(−2α)|
∫

s=(s1,...,sn−1)
Re(s)=−a

|W̃2,(α,−α)(s)| ds dα

≪

∫
α̂n=0

Re(α)=0

e
α2

T 2 · (1 + |2 Im(α)|)R+
1
2

∫
Re(s)=−a

− Im(α)≤Im(s)≤Im(α)

(1 + |Im(s)− Im(α)|)−a−
1
2

· (1 + |Im(s)+ Im(α)|)−a−
1
2 ds dα.

Due to the presence of the term eα
2/T 2

, we may assume moreover that Im(α)≤ T 1+ε. Thus, we have the
bound

I(2)T,R(−a)≪

∫
Re(α)=0

0≤Im(α)≤T ε+1

(1 + 2|α|)R+
1
2

∫
Re(s)=−a

− Im(α)≤Im(s)≤Im(α)

(1 +α− s)−a−
1
2 (1 +α− s)−a−

1
2 ds dα

≪

∫
Re(α)=0

0≤Im(α)≤T ε+1

(1 + 2|α|)R+
1
2 −min {a+

1
2 ,2a} dα ≪ T ε+R+

3
2 −min {a+

1
2 ,2a}.

In the statement of Theorem 9.0.2, the claimed bound is I(2)T,R(−a)≪ T ε+R+3/2−B(a), where B(a) is as
defined in Theorem 9.0.2. We have in fact proved that I(2)T,R(−a)≪ T ε+R+3/2−B ′(a), where

B ′(a)= max
{
a +

1
2 , 2a

}
=

{
2a if ε < a ≤

1
2 ,

a +
1
2 if a ≥

1
2 .
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If, a < 0, then we may shift the integral over Re(s)= −a to be as close to Re(s)= 0 as desired; indeed,
we may make the shift to the point that the error can be absorbed into the ε-term in the power of T.
Therefore, since B(a)≤ B ′(a) for all a > 0, the theorem follows. □

9.4. Proof of Theorem 9.0.2 for general m.

Proof. Let m ≥ 3 and assume that Theorem 9.0.2 has been shown to be true for all integers 2 ≤ k < m. It
follows from Corollary 9.2.8 with r j = ⌈a j⌉ that

I(m)T,R(−a)≪

∑
σ

∫
α̂m=0

Re(α)=0

e
α2

1+···+α2
m

T 2/2 ·F (m)
R (α)

∏
1≤ j ̸=k≤m

|0R(α j −αk)|

· · ·

∫
s=(s1,...,sm−1)

Re(s)=−a

|Pd(m)−2|σ |(s, α)|∏m−1
j=1 |B j (s j , α)|

⌈a j ⌉
|W̃m,α(s + r + σ)| ds dα.

By Theorem 8.1.5,

I(m)T,R(−a)≪

∑
σ

∫
α̂m=0

Re(α)=0

e
α2

1+···+α2
m

T 2/2 ·F (m)
R (α)

∏
1≤ j ̸=k≤m

|0R(α j −αk)|

∫
Re(s)=−a

|Pd(m)−2|σ |(s, α)|∏m−1
j=1 |B j (s j , α)|

⌈a j ⌉

·

∫
z=(z1,...,zm−2)

Re(z)=b

(m−1∏
j=1

∣∣∣∣0(
s j + ⌈a j⌉ + σ j − z j−1 +

(m − j)αm

m − 1

)∣∣∣∣
·

∣∣∣∣0(
s j + ⌈a j⌉ + σ j − z j −

jαm

m − 1

))∣∣∣∣ · |W̃m−1,β(z)| dz ds dα.

Next, we use the functional equation for the Gamma function to rewrite

0

(
s j + ⌈a j⌉ + σ j − z j−1 +

(m − j)αm

m − 1

)
0

(
s j + ⌈a j⌉ + σ j − z j −

jαm

m − 1

)
= P2σ j (s, z, α)0

(
s j + ⌈a j⌉ − z j−1 +

(m − j)αm

m − 1

)
0

(
s j + ⌈a j⌉ − z j −

jαm

m − 1

)
.

Additionally, we use the fact that the integrand has exponential decay unless |α1|, . . . , |αm | ≤ T 1+ε, and
by Lemma 9.2.3, each of the variables s j are bounded in terms of α. This means that we may replace the
polynomials P2σ j with the bound T ε+2σ j. Note that in doing so, the dependence on σ is removed:

I(m)T,R(−a)

≪ T ε+
∑m−1

j=1 ⌈a j ⌉((
m
j )−2)

∫
α̂m=0

Re(α)=0

e
α2

1+···+α2
m

T 2/2 ·F (m)
R (α)

∏
1≤ j ̸=k≤m

|0R(α j −αk)|

∫
s=(s1,...,sm−1)

Re(s)=−a

∫
z=(z1,...,zm−2)

Re(z)=b

(m−1∏
j=1

∣∣0(
s j + ⌈a j⌉ − z j−1 +

(m− j)αm
m−1

)
0

(
s j + ⌈a j⌉ − z j −

jαm
m−1

)∣∣
|B j (s j , α)|

⌈a j ⌉

)
· |W̃m−1,β(z)| dz ds dα.
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Notice that the conclusion of Proposition 9.4.2 follows from the last several steps by simply replacing s
by s + L in the integrand (or, equivalently, replacing Re(s)= −a by Re(s)= −a + L in the domain of
integration), and then at the step where the functional equation of Gamma is used to remove σ from the
Gamma functions, we remove L in the exact same fashion.

We deduce that

I(m)T,R(−a)

≪ T ε+
∑m−1

j=1 ⌈a j ⌉((
m
j )−2)

·

∫
α̂m=0

Re(α)=0

e
α2

1+···+α2
m

T 2/2 ·F (m)
R (α)

∏
1≤ j ̸=k≤m−1

|0R(α j−αk)|

·

∫
z=(z1,...,zm−2)

Re(z)=b

m−1∏
j=1

∫
Re(s j )=⌈a j ⌉−a j

∣∣0(
s j−z j−1−

(m− j)α̂
m−1

)
0

(
s j−z j+

j α̂
m−1

)∣∣
|B j (s j ,α)|

⌈a j ⌉

∣∣∣∣0R

(
n

n−1
α̂−β j

)
0R

(
β j−

m
m−1

α̂

)∣∣∣∣
·|W̃m−1,β(z)|ds j dz dα.

Note that we have also made the change of variable s 7→ s j −⌈a j⌉ for each j = 1, 2, . . . ,m − 1, and we
are using the notation α̂ := −αm . (Using the terminology of Lemma A.19 in the case of k = m − 1, we
have α̂ = α̂m−1.) As in the case of n = 2, due to the presence of the exponential terms, we see that the
integral has exponential decay unless |α j | ≪ T 1+ε.

Lemma 9.4.1. Let α = (α1, . . . , αm) and β j = α j −
α̂

m−1 be as above. In particular, they are purely
imaginary with |βk |, |α̂ j |< T 1+ε. Suppose, moreover, that α is in j-general position. Then∫

Re(s j )=⌈a j ⌉−a j

∣∣0(
s j − z j−1 −

(m− j)α̂
m−1

)
0

(
s j − z j +

j α̂
m−1

)∣∣
|B j (s j , α)|

⌈a j ⌉

∣∣∣∣0R

(
m

m − 1
α̂−β j

)
0R

(
β j −

m
m − 1

α̂

)∣∣∣∣ ds j

≪ T ε+R+
1
2 +max{0,2(⌈a j ⌉−a j )−1}

∑
L⊆{1,...,m}

#L= j

∏
K⊆{1,...,m}

#K= j
K ̸=L

(
1 +

∣∣∣∣∑
ℓ∈L

αℓ −

∑
k∈K

αk

∣∣∣∣)−[a j ]

.

Proof. Let I j denote the integral we are seeking to bound.
The polynomial part (see Definition 9.2.2) of the Gamma functions in I j is

|Q j (s, z, α)| ≪

(
1 + Im

(
β j −

n
n − 1

α̂

))ε+R+
1
2

(1 + |Im(s j − z j )|)
⌈a j ⌉−a j −Re(z j )−

1
2

· (1 + |Im(s j − z j−1)|)
⌈a j ⌉−a j −Re(z j−1)−

1
2 ,

and the exponential factor (when taking all I j in unison) is negative for any s j outside of the interval I j

defined in Lemma 9.2.3. That lemma together with the presence of the other exponential terms in our
integral allow us to take trivial bounds for the polynomial part, namely that

Q j (s, z, α)≪ T ε+R+
1
2 +max{0,2(⌈a j ⌉−a j )−1}.
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(Recall that 0 ≤ Re(z j ).) Thus we see that

I j ≪ T ε+R+
1
2 +max{0,2(⌈a j ⌉−a j )−1}

∫
Re(s j )=⌈a j ⌉−a j

Im(s j )∈I j

∏
J⊆{1,...,n}

#J= j

∣∣∣∣s j +

∑
k∈J

αk

∣∣∣∣−⌈a j ⌉

ds j .

The desired result now follows easily from this and the statement of Lemma A.3. □

Combining Lemma 9.4.1 with the bound for I(n)T,R(−a) given immediately before the statement of the
lemma, and applying Lemmas A.19, A.26 and A.27 (in the case that k = n − 1 and γ1 = 0), we now have
the bound

I(m)T,R(−a)≪

∑
L⊆{1,...,m}

#L= j

T ε+(R+
1
2)(m−1)+

∑m−1
j=1 (max{0,2(⌈a j ⌉−a j )−1}+⌈a j ⌉((

m
j )−2))

·

∫
Re(α̂)=0

e
m

m−1
α̂2

2T 2

·

∫
β̂m−1=0
Re(β)=0

e
β2

1 +···+β2
m−1

T 2/2 ·P R
D(m)−D(m−1)(α̂, β) ·F

(m−1)
R (β)

∏
1≤ j ̸=k≤m−1

|0R(β j −βk)|

·

m−1∏
j=1

∏
K⊆{1,...,m}

#K= j
K ̸=L

(
1 +

∣∣∣∣∑
ℓ∈L

αℓ −

∑
k∈K

αk

∣∣∣∣)−[a j ] ∫
z=(z1,...,zm−2)

Re(z)=b

|W̃m−1,β(z)| dz dβ dα̂.

To be more explicit, the polynomial P R
D(m)−D(m−1)(α̂, β) is the portion of F (m)

R (α) which involves the
terms αm .

At this point, we combine each of the terms in the final row with the corresponding term in F (m)
R (α).

Strictly speaking, what is actually happening here is that this has the effect of reducing the power of each
factor of F (m)

R (α) by at most
max{⌈a1⌉, . . . , ⌈am−1⌉}.

Since each of the corresponding exponents remains positive, the net result is to reduce the overall power
of T by

ε+

m−1∑
j=1

⌈a j⌉

((m
j

)
− 1

)
.

Using this, and accounting for the integration in α̂ (which may be assumed to take place only for
|Im(α̂)| ≤ T 1+ε), we now may write

I(m)T,R(−a)≪ T ε+(R+
1
2)(n−1)+R(D(m)−D(m−1))+1+

∑m−1
j=1 (max{0,2(⌈a j ⌉−a j )−1}−⌈a j ⌉)∫

β̂m−1=0
Re(β)=0

e
β2

1 +···+β2
m−1

2T 2 ·F (m−1)
R (β)

∏
1≤ j ̸=k≤m−1

|0R(β j −βk)|

∫
z=(z1,...,zm−2)

Re(z)=b

|W̃m−1,β(z)| dz dβ.

Obviously, at this point we want to apply the inductive hypothesis. Since at this point we only need to
do so in the case that b j > 0 (i.e., −a j < 0) for all j = 1, . . . ,m − 2, the reduction in the powers of
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the exponents of any one of the factors of F (m)
R (α), as occurred above, leaves the overall power positive.

Therefore, there is no issue, and we can assert (additionally applying Lemma A.5) the bound

I(m)T,R(−a)≪ T ε+(R+
1
2)(m−1)+R(D(m)−D(m−1))+1+A(m−1)

· T R(D(m−1)+ (m−1)(m−2)
2 )−

∑m−1
j=1 B(a j )

= T ε+R(D(m)+ m(m−1)
2 )+ n+1

2 +A(m−1)−
∑m−1

j=1 B(a j ).

Taking A(m)=
m+1

2 + A(m − 1) gives the claimed bound. Since A(2)=
3
2 , it follows that

A(3)=
4
2 + A(2)=

1
2(4 + 3), . . . , A(m)=

1
2((m + 1)+ m + · · · + 3)=

1
4(m + 4)(m − 1),

as claimed. □

In the course of proving Theorem 9.0.2 we also established the following result that we record here
since it will be useful in its own right.

Proposition 9.4.2. Suppose that L = (ℓ1, ℓ2, . . . , ℓm−1) ∈ (Z≥0)
m−1. Then∫

α̂m=0
Re(α)=0

e
α2

1+···+α2
m

2T 2 ·F (m)
R (α)

∏
1≤ j ̸=k≤m

|0R(α j −αk)|

∫
s=(s1,...,sm−1)

Re(s)=−a

|W̃m,α(s + L)| ds dα

≪ T ε+2|L|
·

∫
α̂m=0

Re(α)=0

e
α2

1+···+α2
m

2T 2 ·F (m)
R (α)

∏
1≤ j ̸=k≤m

|0R(α j −αk)|

∫
s=(s1,...,sm−1)

Re(s)=−a

|W̃m,α(s)| ds dα.

As a shorthand for this result, we write I(m)T,R(−a + L)≪ T ε+2|L|
· I(m)T,R(−a).

10. Bounding p(n)
T,R( y)

In this section we prove the following.

Theorem 10.0.1. Let n ≥ 2 and ε ∈
(
0, 1

4

)
. Suppose that a = (a1, a2, . . . , an−1) satisfies ⌊a j⌋+ ε < a j <

⌈a j⌉−ε for each j = 1, . . . , n −1. Let C be the set of compositions n = n1 +· · ·+nr with r ≥ 2. Then, for

1a(C) := {δC = (δ1, . . . , δr−1) ∈ Zr−1
| 0 ≤ δ j < an̂ j ( j = 1, . . . , r − 1)},

and B(c) as defined in Theorem 9.0.2, we have

|p(n)T,R(y)| ≪ |p(n)T,R(y; −a)| +
∑
C∈C

∑
δC∈1a(C)

|p(n)T,R(y; −a, δC)|, (10.0.2)

where

|p(n)T,R(y; −a)| ≪

n−1∏
j=1

y
n(n− j)

2 +2a j

j · T ε+
(n+4)(n−1)

4 +
R
2 ·((2n

n )−2n)−
∑n−1

j=1 B(a j ) (10.0.3)

and

|p(n)T,R(y; −a, δC)|≪

n−1∏
j=1

y
n(n− j)

2 +2a j

j ·T ε+
(n+4)(n−1)

4 +
R
2 ·((2n

n )−2n)−
∑n−1

j=1 B(a j )−
1
2

∑r−1
k=1(nk+nk+1)(an̂k −δk). (10.0.4)

The implicit constant depends on both ε and n.
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Remark 10.0.5. Note that (10.0.4) is bounded by (10.0.3). Therefore, letting D(n)= 1
2

(2n
n

)
−

n(n−1)
2 −2n−1

as in (1.4.2), Theorem 10.0.1 implies that

|p(n)T,R(y)| ≪

n−1∏
j=1

y
n(n− j)

2 +2a j

j · T ε+
(n+4)(n−1)

4 +R·(D(n)+ n(n+1)
2 )−

∑n−1
j=1 B(a j ).

10.1. Explicit single residue formula. In order to bound the terms p(n)T,R(y; −a, δC) we need an explicit
formula for the residues of the Mellin transform of the GL(n) Whittaker function. The following result
establishes this for the case of single residues (i.e., when the composition C has length 2) as a corollary of
Conjecture 8.2.3 combined with a theorem of Stade [2001] for the “first” residues, i.e., for those residues
corresponding, in the notation of the theorem, to δ = 0.

Theorem 10.1.1. Let W̃m,α(s) be the Mellin transform of the Whittaker function on GL(n,R) with purely
imaginary parameters α = (α1, . . . , αn) in general position. Let σ ∈ Sn act on α via

σ ·α := (ασ(1), ασ(2), . . . , ασ(n)).

The poles of W̃n,α(s) occur, for each 1 ≤ m ≤ n − 1, at

sm ∈ {−σ · α̂m − δ | σ ∈ Sn, δ ∈ Z≥0}.

The residue at sm = −α̂m − δ is equal to a sum over shifts L = (ℓ1, ℓ2, . . . , ℓn−1) of terms of the form∏
K⊆{1,2,...,n}

#(K∩{1,2,...,m}) ̸=m−1
#K=m

((∑
i∈K

αi

)
− α̂m − δ

)−1

δ

( m∏
i=1

n∏
j=m+1

0(α j −αi − δ)

)
·P((n

m)−2)δ−2|L|
(s, α)W̃m,β(s ′

+ L ′)W̃n−m,γ (s ′′
+ L ′′),

where

s ′
=

(
s j +

j
m
α̂m

)∣∣∣∣
1≤ j≤m

, s ′′
=

(
sm+ j +

n − m − j
n − m

α̂m

)∣∣∣∣
1≤ j≤n−m

, (10.1.2)

with L ′
= (ℓ1, . . . , ℓm−1) and L ′′

= (ℓm+1, . . . , ℓn−1) being the portion of L corresponding to s ′ and s ′′

respectively. It is the case that ℓm−1 = ℓm+1 = 0. Note that we take as definition that W̃1 := 1. The same
formula holds for the residue at sm = −σ · α̂m − δ by replacing each instance of α j with ασ( j).

Remark 10.1.3. Another way of writing the above expression for the residue would be to take the product
over all K ⊆ {1, . . . , n} with #K = m and replace 0(α j −αi − δ) with 0(α j −αi ). The two versions are
equivalent because if K \ {1, . . . ,m} = { j}, then {1, . . . ,m} \ K = {k} and((∑

i∈K

αi

)
− α̂m − δ

)−1

δ

0(α j −αk)= 0(α j −αk − δ).

Sketch of proof. In the case that δ = 0, this result (for L = (0, . . . , 0) ∈ Cn−1) agrees with [Stade 2001,
Theorem 3.1]. If δ > 0, we need to first apply Conjecture 8.2.3 to rewrite the expression for W̃n,α(s)
around sm = −αm − δ as a sum over shifts L = (ℓ1, . . . , ℓn−1) ∈ (Z≥0)

n−1 (with ℓm ≥ δ for each L) of
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terms W̃n,α(s + L). Of all of these terms, the only ones for which there is a pole at sm = −α̂m − δ are
those for which ℓm = δ, in which case we can use the above-referenced theorem of Stade to write down
the residue. Doing so, we obtain the alternative expression referenced in Remark 10.1.3. □

10.2. Explicit higher residue formulae. In order to generalize Theorem 10.1.1, we first establish notation
related to the (r−1)-fold residue of W̃n,α(s) at

sn̂ℓ = −α̂n̂ℓ − δn̂ℓ, ℓ= 1, . . . , r − 1.

To this end, let s( j)
:= (s( j)

1 , . . . , s( j)
n j −1), where s( j)

k = sn̂ j−1+k . By abuse of notation, we write

s :=
(
s(1)1 , s(1)2 , . . . , s(1)n1−1︸ ︷︷ ︸

=:s(1)

, s(2)1 , s(2)2 , . . . , s(2)n2−1︸ ︷︷ ︸
=:s(2)

, . . . , s(k)1 , s(k)2 , . . . , s(k)nk−1︸ ︷︷ ︸
=:s(k)

)
∈ Cn−r ,

which agrees with the original s = (s1, . . . , sn−1) but removes sn̂1, . . . , sn̂r−1 .
Similarly, if α = (α1, . . . , αn), we define

α(ℓ) := (α
(ℓ)
1 , . . . , α

(ℓ)
ℓ ) ∈ Cnℓ, α

(ℓ)
j := αn̂ℓ−1+ j −

1
nℓ
(α̂n̂ℓ − α̂n̂ℓ−1),

and
|α( j)

|
2
:= (α

( j)
1 )2 + (α

( j)
2 )2 + · · · + (α( j)

n j
)2.

If a ∈ Rn−1 then by Re(s)= −a we mean that Re(s j )= −a j for each j ̸= n̂1, . . . , n̂r−1.
With this notation in place, we can now state a generalization of Theorem 10.1.1.

Corollary 10.2.1. Let n = n1+· · ·+nr (r ≥ 2), and set n̂ℓ :=
∑ℓ

j=1 n j as above. For each ℓ= 1, . . . , r −1,
let b(ℓ) = (b(ℓ)1 , b(ℓ)2 , . . . , b(ℓ)nℓ−1) with

b(ℓ)j = α̂iℓ−1 +
j

nℓ
(α̂n̂ℓ − α̂n̂ℓ−1) for each 1 ≤ j ≤ nℓ − 1.

Let δ j ∈ Z≥0 for j = 1, . . . , r − 1. There exist positive shifts L = (L(1), . . . , L(r)) with L(ℓ) =

(L(ℓ)1 , . . . , L(ℓ)nℓ−1) ∈ (Z≥0)
r such that the iterated residue of W̃n,α(s) at

sn̂r−1 = −α̂n̂r−1 − δr−1, . . . , sn̂1 = −α̂n̂1 − δ1

is equal to a sum over all such shifts of

Pd(s, α)
( r∏
ℓ=1

W̃nℓ,α(ℓ)(s
(ℓ)

+ b(ℓ) + L(ℓ))
) r−1∏

j=1

∏
K⊆{1,2,...,n̂ j+1}

#(K∩{1,...,n̂ j })̸=n̂ j −1
#K=n̂ j

((∑
i∈K

αi

)
− α̂n̂ j − δ j

)−1

δ j

·

∏
1≤k<m≤r

nk∏
i=1

nm∏
j=1

0
(
α
(m)
j −α

(k)
i +

1
nm
(α̂n̂m − α̂n̂m−1)−

1
nk
(α̂n̂k − α̂n̂k−1)− δm

)
,

where

d =

[r−1∑
ℓ=1

δℓ

(( n̂ℓ+1
n̂ℓ

)
− 2

)]
− 2|L|.

Proof. This follows easily by induction with the base case being Theorem 10.1.1. □
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Remark 10.2.2. Although it is possible to rewrite each of the terms
(∑

i∈K αi
)
− α̂n̂ℓ − δℓ appearing in

the statement of Corollary 10.2.1 in terms of the variables α( j) and α̂( j)
m for various j and m, the exact

description is unnecessary for our purposes.

10.3. Proof of Theorem 10.0.1. As a first step, note that Proposition 8.3.6 implies that (10.0.2) follows
from (10.0.3) and (10.0.4).

As shown in Section 8.5, the shifted p(n)T,R-term satisfies

|p(n)T,R(y,−a)| ≪

(n−1∏
j=1

y
j (n− j)

2 −2a j

j

)
I(n)T,R(−a).

Combined with the bound from Theorem 9.0.2, this gives (10.0.3).
To complete the proof, we need to show that (10.0.4) holds. We do this in Section 10.5. Although this

proof is valid for any r ≥ 2, as a warmup, we first prove the special case r = 2 (i.e., the case of single
residues) in Section 10.4. □

10.4. Bounds for single residue terms. In this section1 we bound p(n)T,R(y; −a, δC) in the case that
C = (m, n − m). Since C is a composition of length 2, we may take (see Definition 8.3.3) δC = δ ∈ Z≥0.

Proof of (10.0.4) when r = 2. Using Lemmas A.19, A.26 and A.28, we can rewrite

e
α2

1+···+α2
n

T 2/2 F (n)
R (α)

∏
1≤ j ̸=k≤n

0R(α j −αk)

in terms of β, γ and αn . Thus, together with Theorem 10.1.1, we see that Definition 8.3.3 in the case of a
single residue term (i.e., r = 2) satisfies the bound

p(n)T,R(y; −a, δC)

≪

∫
Re(α̂m)=0

y
m(n−m)

2 +α̂m+δ
m · e

n
m(n−m)

α̂2
m

T 2/2

∫
β̂m=0

Re(β)=0

e
|β|

2

T 2/2

∫
γ̂n−m=0
Re(γ )=0

e
|γ |

2

T 2/2

·

(
F (m)

R (β) ·
∏

1≤i ̸= j≤m

0R(βi −β j )

)(
F (n−m)

R (γ ) ·
∏

1≤i ̸= j≤n−m

0R(γi − γ j )

)

·

m∏
i=1

n−m∏
j=1

(
0R

(
βi − γ j +

nα̂m

m(n − m)

)
0R

(
γ j −βi −

nα̂m

m(n − m)

)
0

(
γ j −βi −

nα̂m

m(n − m)
− δ

))

·

(∏
j ̸=m

∫
Re(s j )=−a j

j ̸=m

y
j (n− j)

2 −s j

j

)
PR(D(n)−D(m)−D(n−m))−δ((n

m)−m(n−m)−1)(s, α)

·P((n
m)−2)δ−2|L|

(s, α) · W̃m,β(s ′
+ L ′)W̃n−m,γ (s ′′

+ L ′′) ds dγ dβ dα̂m .

1Note that this section will be superseded by Section 10.5, which will prove the bound for any admissible C with length(C)≥2.
This section treats the case length(C)= 2.
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In order to have the correct power of ym , we need to shift the line of integration in α̂m to Re(α̂m)= am −δ.
Note that by Lemma A.14, no poles are crossed in doing so, and by Lemma A.15, taking β = βi −γ j and
z = nα̂m/(m(n − m)), we may replace the third-to-last line by

Pm(n−m)R−n(am−δ)−m(n−m)δ(s, α̂m, β, γ ).

Let |β|
2
:= β2

1 +· · ·+β2
m , and define |γ |

2 similarly. Replacing the integral over α̂m by T ε+1 and factoring
out the powers of y j , we see that

|p(n)T,R(y; −a, δC)| ≪

(n−1∏
j=1

y
j (n− j)

2 +a j

j

)
· T ε+((n

m)−2)δ+R(D(n)−D(m)−D(n−m))−δ((n
m)−m(n−m)−1)

· T −2|L|+m(n−m)R−n(am−δ)−m(n−m)δ+1
·

∫
β̂m=0

Re(β)=0

e
|β|

2

T 2/2

∫
γ̂n−m=0
Re(γ )=0

e
|γ |

2

T 2/2

·

(
F (m)

R (β) ·
∏

1≤i, j≤k

0R(βi −β j )

)(
F (n−m)

R (γ ) ·
∏

1≤i, j≤n−k

0R(γi − γ j )

)

·

∫
Re(s j )=−a j
1≤ j≤n−1

j ̸=m

|W̃m,β(s ′
+ L ′)| · |W̃n−m,γ (s ′′

+ L ′′)| ds dγ dβ.

Note that by Proposition 9.4.2 we may remove the dependence on the shift L . Hence

|p(n)T,R(y; −a, δC)| ≪

(n−1∏
j=1

y
j (n− j)

2 +a j

j

)
· T ε+R(D(n)−D(m)−D(n−m)+m(n−m))+δ(n−1)

· T −nam+1
∫

β̂m=0
Re(β)=0

e
β2

1 +···+β2
m

T 2/2

∫
γ̂n−m=0
Re(γ )=0

e
γ 2

1 +···+γ 2
n

T 2/2

·

(
F (m)

R (β) ·
∏

1≤i ̸= j≤k

0R(βi −β j )

)(
F (n−m)

R (γ ) ·
∏

1≤i ̸= j≤n−k

0R(γi − γ j )

)

·

∫
Re(s j )=−a j
1≤ j≤n−1

j ̸=m

|W̃m,β(s ′)| · |W̃n−m,γ (s ′′)| ds dγ dβ.

By (10.1.2),

s ′

j = s j −
j

m
(α̂m − δ) and s ′′

j = sm+ j −
n − m − j

n − m
(α̂m − δ).

Thus the integrals in β and γ above are essentially the product of I(m)T,R(−a′) and I(n−m)
T,R (−a′′). The only

issue is that because, as seen in the fact that the variables s ′ and s ′′ are shifted, we have

a′

j = a j −
j

m
(am − δ) and a′′

j = am+ j −
n − m − j

n − m
(am − δ).
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Therefore, we can rewrite the previous formula as

|p(n)T,R(y; −a, δC)| ≪

(n−1∏
j=1

y
j (n− j)

2 +a j

j

)
· T ε+R(D(n)−D(m)−D(n−m)+m(n−m))

· T δ(n−1)−nam+1
· I(m)T,R(−a′) · I(n−m)

T,R (−a′′).

By Theorem 9.0.2, we have

|p(n)T,R(y; −a, δC)| ≪

(n−1∏
j=1

y
j (n− j)

2 +a j

j

)
· T ε+R(D(n)−D(m)−D(n−m)+m(n−m))

· T δ(n−1)−nam+1
· T ε+C(m)+R·(D(m)+ m(m−1)

2 )−
∑m−1

j=1 B(a′

j )

· T ε+C(n−m)+R·(D(n−m)+ (n−m)(n−m−1)
2 )−

∑n−m−1
j=1 B(a′′

j ),

Recall that C(k)=
(k+4)(k−1)

4 . Hence, using the elementary identity

C(m)+ C(n − m)= C(n)−
m(n − m)

2
− 1

together with Lemma A.6,

|p(n)T,R(y; −a, δC)| ≪

(n−1∏
j=1

y
j (n− j)

2 +a j

j

)
· T ε+R(D(n)+m(n−m)+ m(m−1)

2 +
(n−m)(n−m−1)

2 )

· T δ(n−1)+C(n)− m(n−m)
2 −nam−

∑m−1
j=1 B(a j )+

n−2
2 (am−δ+1)+B(am)

≪

(n−1∏
j=1

y
j (n− j)

2 +a j

j

)
· T ε+C(n)+R(D(n)+ n(n−1)

2 )−
∑n−1

j=1 B(a j )

· T
n−2

2 (δ−am+1)− m(n−m)
2 −n(δ−am)+B(am)−δ.

This gives the desired bound provided that the exponent of the final T is negative. Using the facts that
−

m(n−m)
2 is maximized when m = 1 or m = n − 1 and B(am)≤ am +

1
2 , we see that the final exponent is

−
n
2
(am − δ)+

n − 1
2

−
m(n − m)

2
≤ −

n
2
(am − δ), (10.4.1)

as claimed. □

10.5. Bounds for (r−1)-fold residues. We consider a composition C of n of length r ≥ 2 given by
n = n1 + · · · + nr . We may also write C = (n1, . . . , nr ). Let n̂ℓ =

∑ℓ
j=1 n j as usual.

As a final piece of notation, let β = (β1, . . . , βr ) be defined via

βi := α̂n̂i − α̂n̂i−1 .

Note that
∑r

i=1 βi = 0 and more generally, defining β̂m =
∑m

i=1 βi , α̂n̂i = β̂i . Since (assuming that
α̂n = 0) the Jacobians of the changes of variables

α 7→ (α(1), α̂n̂1, α
(2), α̂n̂2, . . . , α̂n̂r−1, α

(r))

and
(α̂n̂1, . . . , α̂n̂r−1) 7→ (β1, . . . , βr−1)

are trivial, we see that (for β1 + · · · +βr = 0)

dα = dβ dα(1) dα(2) · · · dα(r). (10.5.1)
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Proof of (10.0.4) when r ≥ 2. Note that

b(ℓ)j = α̂n̂ℓ−1 +
j

nℓ
(α̂n̂ℓ − α̂n̂ℓ−1)= β̂ℓ−1 +

j
nℓ
βℓ for each 1 ≤ j ≤ nℓ − 1.

Recall that by Definition 8.3.3,

p(n)T,R(y; −a, δC) :=

∫
α̂n=0

Re(α)=0

e
α2

1+···+α2
n

T 2/2 ·F (n)
R (α)

( ∏
1≤ j ̸=k≤n

0R(α j −αk)

)

·

(r−1∏
i=1

y
n̂i (n−n̂i )

2 +α̂n̂i +δi

n̂i

)
·

∫
Re(s j )=−a j

j /∈{n̂1,...,n̂r−1}

( ∏
j /∈{n̂1,...,n̂r−1}

y
j (n− j)

2 −s j

j

)

· Res
sn̂1=−α̂n̂1−δ1

(
Res

sn̂2=−α̂n̂2−δ2

(
· · ·

(
Res

sn̂r−1=−α̂n̂r−1−δr−1

W̃n,α(s)
)
· · ·

))
ds dα.

Using Remark A.29 and Corollary 10.2.1, we can bound |p(n)T,R(y; −a, δC)| by a sum over certain
shifts L each of the form∫
β̂r =0

Re(β)=0

e(
β2

1
n1

+···+
β2

r
nr
) 2

T 2 ·

(r−1∏
j=1

y
n̂ j (n−n̂ j )

2 +β̂ j +δ j

n̂ j

∫
α̂
( j)
n j =0

Re(α( j))=0

e
|α( j)

|
2

T 2/2

)

·Pd1−2|L|(α)·

∫
Re(s)=−a

( ∏
j /∈{n̂1,...,n̂r−1}

y
j (n− j)

2 −s j

j

)
·Pd2(s,α)

·

∏
1≤k<m≤r

nk∏
i=1

nm∏
j=1

0

(
α
(m)
j −α

(k)
i +

βm

nm
−
βk

nk
−δk

) ∏
ϵ∈{±1}

0R

(
ϵ

(
α
(m)
j −α

(k)
i +

βm

nm
−
βk

nk

))

·

r∏
ℓ=1

(
F (nℓ)

R (α(ℓ))

( ∏
1≤ j ̸=k≤nℓ

0R(α
(ℓ)
j −α

(ℓ)
k )

)
W̃nℓ,α(ℓ)(s

(ℓ)
+b(ℓ)+L(ℓ))

)
ds dα(1) dα(2) · · ·dα(r) dβ,

where

d1 =

r−1∑
ℓ=1

δℓ

(( n̂ℓ+1
n̂ℓ

)
− 2

)
,

d2 = R ·

(
D(n)−

r∑
ℓ=1

D(nℓ)
)

−

r−1∑
ℓ=1

[
δℓ

(( n̂ℓ+1
n̂ℓ

)
− nℓ+1n̂ℓ − 1

)]
are the degrees coming from Remark A.29 and Corollary10.2.1 respectively and b(ℓ) is as in Corollary10.2.1.
Note that, in addition to using the change of variables (10.5.1), we have used Lemmas A.18 and A.20 to
break up e2|α|

2/T 2
and rewrite the product of 0(α j −αk) in terms of α(1), . . . , α(r) and β.

The next step is to shift the lines of integration in the variables β j for j = 1, . . . , r −1 (or, equivalently,
β̂ j for j = 1, . . . , r − 1) such that the real part of the exponent of each term yn̂ j is n̂ j (n−n̂ j )

2 + a j . In
particular, this implies that we must shift the line of integration of β̂ j to
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Re(β̂ j )= an̂ j − δ j ⇐⇒ Re(β j )= Re(β̂ j − β̂ j−1)= (an̂ j − δ j )− (an̂ j−1 − δ j−1). (10.5.2)

Provided that R is sufficiently large, Lemma A.14 implies that this shift can be made without passing any
poles. Moreover, Lemma A.15 implies that∏
1≤k<m≤r

nk∏
i=1

nm∏
j=1

0

(
α
(k)
i −α

(m)
j +

βk

nk
−
βm

nm
− δm

) ∏
ϵ∈{±1}

0R

(
ϵ

(
α
(k)
i −α

(m)
j +

βk

nk
−
βm

nm

))

≍

∏
1≤k<m≤r

nk∏
i=1

nm∏
j=1

(
1 +

∣∣∣∣Im(
α
(k)
i −α

(m)
j +

βk

nk
−
βm

nm

)∣∣∣∣)R−Re ( βk
nk

−
βm
nm
)−δm

. (10.5.3)

Note that the presence of the term e(β
2
1/n1+···+β2

r /nr )(2/T 2) implies that there is exponential decay for
|Im(β j )| ≫ T 1+ε. As we will see momentarily, besides the polynomial terms Pd1(α), Pd2(s, α) and
(10.5.3), we just get a product of I(n j )

T,R (−c( j)) for some (to be determined) values −c(ℓ). The upshot is
that all of these polynomials can be bounded by T to the degree of the polynomial plus ε. Hence, we can
bound the expression above by

T ε+r−1+d−2|L|
·

(n−1∏
j=1

y
j (n− j)

2 +a j

j

)
·

r∏
ℓ=1

( ∫
α̂
(ℓ)
nℓ =0

Re(α(ℓ))=0

e
|α(ℓ)|2

T 2/2 ·F (nℓ)
R (α(ℓ))

·

∫
Re(s(ℓ))=−a(ℓ)

( ∏
1≤ j ̸=k≤nℓ

0R(α
(ℓ)
j −α

(ℓ)
k )

)
|W̃nℓ,α(ℓ)(s

(ℓ)
+b(ℓ)+L(ℓ))| ds(ℓ) dα(ℓ)

)
, (10.5.4)

where d = d1 + d2 + d3, with d1 and d2 as above and

d3 = R ·

r∑
ℓ=1

nℓn̂ℓ −

r−1∑
k=1

(
(nk + nk+1)(an̂k − δk)+ δknk+1n̂k

)
is the bound coming from the terms described in (10.5.3), simplified using Lemma A.21. Combining
everything, we find that d equals

R ·

(
D(n)−

r∑
ℓ=1

D(nℓ)+
∑

1≤k<m≤r

nknm

)
−

r−1∑
k=1

(
δk + (nk + nk+1)(an̂k − δk)

)
.

Recall that the bound on p(n)T,R(y; −a, δC) is a sum of expressions of the form given in (10.5.4) for
various shifts L . However, using Proposition 9.4.2, we can remove the dependence on the shifts. Hence,

|p(n)T,R(y;−a,δC)|

≪ T ε+d+r−1
·

(n−1∏
j=1

y
j (n− j)

2 +a j

j

)

·

r∏
ℓ=1

( ∫
α̂
(ℓ)
nℓ =0

Re(α(ℓ))=0

e
|α(ℓ)|2

T 2/2 ·F (nℓ)
R (α(ℓ))

·

∫
Re(s(ℓ))=−a(ℓ)

( ∏
1≤ j ̸=k≤nℓ

0R(α
(ℓ)
j −α

(ℓ)
k )

)
|W̃nℓ,α(ℓ)(s

(ℓ)
+b(ℓ))|ds(ℓ) dα(ℓ)

)
. (10.5.5)
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Thus, setting c(ℓ) = a(ℓ) − Re(b(ℓ)), where

b(ℓ) = (b(ℓ)1 , . . . , b(ℓ)n̂ j
), b(ℓ)j = β̂ℓ−1 +

j
nℓ
βℓ,

we find that

|p(n)T,R(y; −a, δC)| ≪

(n−1∏
j=1

y
j (n− j)

2 +a j

j

)
· T ε+r−1+d

·

r∏
ℓ=1

I(ℓ)T,R(−c(ℓ)).

Let C(m) :=
(m+4)(m−1)

4 . We now apply Theorem 9.0.2 to each I(nℓ)T,R to obtain

|p(n)T,R(y; −a, δC)| ≪ T ε+r−1+d+
∑r
ℓ=1 (R(D(nℓ)+

nℓ(nℓ−1)
2 )+C(nℓ)−

∑nℓ−1
k=1 B(c(ℓ)k ))

·

n−1∏
j=1

y
j (n− j)

2 +a j

j .

Now we generalize the proof of Lemma A.6, keeping in mind that a < B(a) < a +
1
2 , to simplify the

expression
r∑
ℓ=1

nℓ−1∑
j=1

B(c(ℓ)j )≥

r∑
ℓ=1

nℓ−1∑
j=1

(
an̂ℓ+ j − Re(β̂ℓ−1)−

j
nℓ

Re(βℓ)
)

=

( n−1∑
j=1

a j

)
−

( r−1∑
k=1

an̂k

)
−

r∑
ℓ=1

[
(nℓ − 1)Re(β̂ℓ−1)+

nℓ − 1
2

Re(βℓ)
]

≥

n−1∑
j=1

(
B(a j )−

1
2

)
−

r−1∑
k=1

an̂k −

r∑
ℓ=1

[
(nℓ − 1)Re

(
β̂ℓ −

1
2βℓ

)]
= −

n − 1
2

+

n−1∑
j=1

B(a j )−

r−1∑
k=1

an̂k −

r∑
ℓ=1

[
(nℓ − 1)

(
Aℓ −

1
2(Aℓ − Aℓ−1)

)]
= −

n − 1
2

+

n−1∑
j=1

B(a j )−

r−1∑
k=1

an̂k −
1
2

r∑
ℓ=1

[(nℓ − 1)(Aℓ + Aℓ−1)].

Next, we write the sum over ℓ as
r∑
ℓ=1

[(nℓ − 1)(Aℓ + Aℓ−1)] =

r∑
ℓ=1

(nℓ − 1)Aℓ +

r∑
ℓ=1

(nℓ − 1)Aℓ−1

=

r∑
ℓ=1

(nℓ − 1)Aℓ +

r−1∑
ℓ=0

(nℓ+1 − 1)Aℓ

= (n1 − 1)A0 + (nr − 1)Ar +

r−1∑
ℓ=1

(nℓ + nℓ+1 − 2)Aℓ

=

r−1∑
k=1

(nk + nk+1 − 2)(an̂k − δk)

We plug this back in to get

−

r∑
ℓ=1

nℓ−1∑
j=1

B(c(ℓ)j )≤
n−1

2
−

n−1∑
j=1

B(aℓ)+
r−1∑
k=1

an̂k +
1
2

r−1∑
k=1

(nk + nk+1 − 2)(an̂k − δk),
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from which it follows that the exponent of T in the bound for |p(n)T,R(y; −a, δC)| above is

ε+ r − 1 + d +

r∑
ℓ=1

((
R
(

D(nℓ)+
nℓ(nℓ − 1)

2

)
+ C(nℓ)

)
−

nℓ−1∑
k=1

B(c(ℓ)k )

)

= ε+ d ′
+ R

(
D(n)+

n(n − 1)
2

)
+ C(n)−

n−1∑
j=1

B(a j ),

where

d ′
= r − 1 + d ′′

+
n−1

2
+

1
2

r−1∑
k=1

(nk + nk+1 − 2)(an̂k − δk)− C(n)+
r∑
ℓ=1

C(nℓ)+
r−1∑
k=1

an̂k

= d ′′
+

n−1
2

+
1
2

r−1∑
k=1

(nk + nk+1 − 2)(an̂k − δk)+

r−1∑
k=1

an̂k −
1
2

∑
1≤k<m≤r

nknm

and

d ′′
= d − R ·

(
D(n)−

r∑
ℓ=1

D(nℓ)+
∑

1≤k<m≤r

nknm

)
= −

r−1∑
k=1

(
δk + (nk + nk+1)(an̂k − δk)

)
.

Hence,

d ′
=

n − 1
2

−

r−1∑
k=1

(
δk + (nk + nk+1)(an̂k − δk)

)
+

1
2

r−1∑
k=1

(nk + nk+1 − 2)(an̂k − δk)+

r−1∑
k=1

an̂k −
1
2

∑
1≤k<m≤r

nknm

=
n − 1

2
−

r−1∑
k=1

(nk + nk+1)(an̂k − δk)+
1
2

r−1∑
k=1

(nk + nk+1)(an̂k − δk)−
1
2

∑
1≤k<m≤r

nknm

=
1
2

(
n − 1 −

r−1∑
k=1

(nk + nk+1)(an̂k − δk)−
∑

1≤k<m≤r

nknm

)
.

Note that if r = 2 and n1 = m and δ1 = δ, then this expression becomes

n − 1
2

−
n
2
(am − δ)−

m(n − m)
2

,

which agrees with (10.4.1).
Therefore, to complete the proof, we need only show that n − 1 −

∑
1≤k<m≤r nknm ≤ 0. Indeed,

n − 1 −

∑
1≤k<m≤r

nknm = n − 1 −

r−1∑
k=1

r∑
m=k+1

nknm = n − 1 −

r−1∑
k=1

nk(n − n̂k)≤ n − 1 − n1(n − n1)≤ 0,

(with the final inequality being equality if and only if n1 = 1 or n1 = n − 1), as desired. □

Remark 10.5.6. A critical step in the proof of (10.0.4) (either in the case of single residues, as is proved in
Section 10.4 or higher-order residues, as in Section 10.5) is to shift the lines of integration in the variables
α̂m or β̂ j . A feature of this work that is quite different from the case of GL(4) as proved in [Goldfeld et al.
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2021b], is that no poles are crossed when making these shifts. This represents a major simplification.
Recall from the discussion of Section 8.4 that in the case of n = 4 there are two fundamentally different
types of single residues, two different types of double residues and a triple residue. As it turned out, when
making the additional shift for each of the single and double residues, one ends up with five additional
residue terms. Taken all together, it was necessary to complete the analysis of writing down explicitly
what the residues are in terms of Gamma functions, finding the exponential zero set, applying Stirling’s
formula and then obtaining a bound for ten(!) separate residues integrals. All of this was in addition to
performing these steps for the shifted p(4)T,R-term.

Appendix: Auxiliary results

In an effort to avoid obstructing the flow of the argument in the main body of this paper, we will include
here the many technical results that are used throughout. We remind the reader that the notational
conventions that are used throughout the paper and this appendix are given in Definition 2.1.1.

Lemma A.1. Suppose that w = w(n1,n2,...,nr ) for some composition n = n1 + · · ·+ n2 with r ≥ 2. Then, if
y = (y1, . . . , yn−1), it follows that wyw−1 is equal to(

yn−n̂1+1, yn−n̂1+2, . . . , yn−1︸ ︷︷ ︸
n1 − 1 terms

,

( n−1∏
k=n−n̂2

yk

)−1

, . . . ,

(n−n̂i−2−1∏
k=n−n̂i

yk

)−1

, yn−n̂i +1, yn−n̂i +2, . . . , yn−n̂i−1−1︸ ︷︷ ︸
ni − 1 terms

,

(n−n̂i−1−1∏
k=n−n̂i+1

yk

)−1

, . . . ,

(n−n̂s−2−1∏
k=1

yk

)−1

, yn−n̂1+1, yn−n̂1+2, . . . , yn−1︸ ︷︷ ︸
nr − 1 terms

)
.

In particular,

∥wyw−1
∥

ak =

r∏
i=1

ni∏
j=1

y
−an̂i−1+an̂i−1+ j −an̂i
n−n̂i + j .

Proof. Let w=w(n1,n2,...,nr ) as above. In order to carefully analyze y′
=wyw−1, we define xi :=

∏i
j=1 y j .

This notation implies that y = diag(xn−1, xn−2, . . . , x1, 1). Now, let us think of the matrix y as a block
diagonal of the form y = diag(A1, A2, . . . , Ar ), where

Ai = diag(xn−n̂i−1−1, xn−n̂i−1−2, . . . , xn−n̂i−1−ni ) ∈ GL(ni ,R).

Thus,
y′

= wyw−1
= diag(Ar , Ar−1, . . . , A1)= xn−n1 diag(Br , Br−1, . . . , B1).

Let 1 ≤ i ≤ r and 0 ≤ j ≤ ni − 1 and set

zn̂i−1+ j :=
xn−n̂i + j

xn−n1

.

Then (y′

1, y′

2, . . . , y′

n−1), the Iwasawa y-variables of y′ satisfy y′

i = zi/zi−1. For j ̸= 0, therefore, we see
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y′

n̂i−1+ j =
xn−n̂i + j

xn−n̂i + j−1
=

∏n−n̂i + j
k=1 yk∏n−n̂i + j−1
ℓ=1 yℓ

= yn−n̂i + j ,

and, for j = 0,

y′

n̂i
=

xn−n̂i+1

xn−n̂i+1−1
=

xn−n̂i+1

xn−n̂i +ni −1
=

∏n−n̂i+1
k=1 yk∏n−n̂i−1−1
ℓ=1 yℓ

=

(ni +ni+1−1∏
k=1

yn−n̂i+1+k

)−1

,

from which the statement of the lemma follows directly. □

Definition A.2. We say that α = (α1, . . . , αn) ∈ Cn is in j -general position if the set{∑
k∈J

αk

∣∣∣∣ J ⊆ {1, . . . , n}, #J = j
}

consists of
(n

j

)
distinct elements. We say that α is in general position if it is in j -general position for each

j = 1, . . . , n − 1.

Lemma A.3. Suppose that there exists ε > 0 such that for each j = 1, . . . , n − 1, the real part of s j

is bounded by at least ε from any integer. Assume that α is in j-general position, Re(αi ) = 0 for each
i = 1, . . . , n − 1 , and r j ∈ Z≥0. Assume that

Im(α1)≥ Im(α2)≥ · · · ≥ Im(αn),

and let I j = [− Im(α1 + · · · +α j ),− Im(αn + · · · +αn− j+1)]. If r j ≥ 2, then∫
Re(s j )=σ j
Im(s j )∈I j

∏
J⊆{1,...,n}

#J= j

∣∣∣∣s j +

∑
k∈J

αk

∣∣∣∣−r j

ds j ≪

∑
L⊆{1,...,n}

#L= j

∏
K⊆{1,...,n}

#K= j
K ̸=L

(
1 +

∣∣∣∣∑
ℓ∈L

αℓ −

∑
k∈K

αk

∣∣∣∣)−r j

.

If r j = 1 there is an extra power of ε in the exponent (in which case the implicit constant will depend
on ε), and if r j = 0, the integral is bounded by(

1 +

j∑
k=1

αk −

j∑
ℓ=1

αn+1−ℓ

)
.

Remark A.4. The implicit ≪–constant depends on σ j , but in applications this will always be bounded.

Proof. The bound in the case of r j = 0 is obvious, so we may assume henceforth that r j ≥ 1. Consider
the set

A j :=

{∑
k∈J

αk

∣∣∣∣ J ⊆ {1, . . . , n}, #J = j
}
.

For a fixed choice α in j-general position, let A1 be the element of A j that has the greatest imaginary
part, A2 the next greatest imaginary part and so on. Hence − Im(A1) <− Im(A2) < · · ·<− Im(A(n

j)
).
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Write s j =σ j +i t j . Note that I j =[− Im(A1),− Im(A(n
j)
)]. Upon applying Lemma A.3 from [Goldfeld

et al. 2021b], one obtains the bound∫
I j

∏
J⊆{1,...,n}

#J= j

∣∣∣∣s j +

∑
k∈J

αk

∣∣∣∣−r j

ds j ≪ (1 + Im(A1)− Im(A(n
j)
))ε
(n

j)−1∏
k=1

(1 + Im(Ak − Ak+1))
−r j .

This is one of the possible summands on the right-hand side of the statement of the lemma. Hence,
regardless of the specific ordering which may arise for the given choice of α, the claim follows. □

Lemma A.5. Let a ∈ R. Then

max{0, 2(⌈a⌉ − a)− 1} − ⌈a⌉ ≤

{
−⌈a⌉ if a ∈

(
⌈a⌉ −

1
2 , ⌈a⌉

]
,

−⌊a⌋ − 2(a − ⌊a⌋) if a ∈
(
⌊a⌋, ⌊a⌋ +

1
2

]
.

Proof. First, let us assume that a ∈
(
⌈a⌉ −

1
2 , ⌈a⌉

]
. Then ⌈a⌉ − a < 1

2 ; hence

max{0, 2(⌈a⌉ − a)− 1} − ⌈a⌉ = −⌈a⌉.

On the other hand, assuming that a ∈
(
⌊a⌋, ⌊a⌋ +

1
2

]
, we see that

max{0, 2(⌈a⌉ − a)− 1} − ⌈a⌉ = ⌈a⌉ − 2a − 1 = ⌊a⌋ − 2a = −⌊a⌋ − 2(a − ⌊a⌋),

as claimed. □

Lemma A.6. Suppose that a1, . . . , an ∈ R>0. Let

B(a) :=


0 if a < 0,
⌊a⌋ + 2(a − ⌊a⌋) if 0< ⌊a⌋ + ε < a ≤ ⌊a⌋ +

1
2 ,

⌈a⌉ if 1
2 < ⌈a⌉ −

1
2 ≤ a < ⌈a⌉ − ε.

Then, for any δm ∈ Z≥0 with 0< am − δm ,
m−1∑
j=1

B
(

a j −
j

m
(am − δm)

)
+

n−m−1∑
j=1

B
(

am+ j −
n − m − j

n − m
(am − δm)

)
≥

( n−1∑
j=1

B(a j )

)
−

n−2
2
(am − δm + 1)− B(am).

Proof. We consider first the case of r −
1
2 ≤ a j < r for some r ∈ Z and all j = 1, 2, . . . , n − 1. For any

a ∈ R, note that

a ≤ B(a)≤ a +
1
2 ; (A.7)

hence
m−1∑
j=1

B
(

a j −
j

m
(am − δm)

)
≥

(m−1∑
j=1

a j

)
−

m − 1
2

(am − δm)≥

(m−1∑
j=1

B(a j )−
1
2

)
−

m − 1
2

(am − δm)

=

(m−1∑
j=1

B(a j )

)
−

m − 1
2

(am − δm + 1).
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Figure 1. Comparing graph of B(x) (thick black) to B4(x) (dotted red) and B3(x) (dotted blue) bounds.

Combining this with the other terms (which are easily shown to satisfy the analogous bound), the desired
result is immediate. □

Remark A.8. The function B(x) appears prominently in Theorem 10.0.1 and is critical in bounding the
geometric side of the Kuznetsov trace formula. Its graph is shown in Figure 1 in comparison to two other
functions B4 and B3.

In the case of GL(4), the function B4 appears [Goldfeld et al. 2021b] (see Theorem 4.0.1) as a bound
for the pT,R function. Indeed, making necessary adjustments due to a different choice of normalization
factors (see Remark 1.6.2), the result of [loc. cit.] is that

|p(4)T,R(1; −a)| ≪ T ε+27R+12−
∑3

i=1 B4(ai ).

Theorem 10.0.1 establishes the same result but with B4 replaced by B. Although the improvement is
slight, we remark that it is essential in Lemma A.6 and evidently allows the inductive method of the
present paper to lead to the same asymptotic orthogonality relation as was established directly in [loc. cit.].

With a bit of work, one can show that the function B3, also graphed in Figure 1, appeared in [Goldfeld
and Kontorovich 2013] as a bound for

|p(3)T,R(1; −a)| ≪ T ε+6R+7−
∑2

i=1 B3(ai ).

Although this looks to be an improvement on our result here, the method of [Goldfeld and Kontorovich
2013] contained an error which the present method (and the method of [Goldfeld et al. 2021b]) corrects.

Lemma A.9. Let ε > 0. Then for any ρ ∈
1
2 +Z there exists 0< ε′ < 1

2 sufficiently small such that, setting
δ = 2ε′/n2, if a = (a1, . . . , an−1), where

a j := ρ+
j (n − j)

2
(1 + δ),

and, for w = w(n1,...,nr ), b(a, w)= b = (b1, . . . , bn−1), where

bn−n̂i + j := an̂i−1 − an̂i−1+ j + an̂i ±
δ

2
,
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(meaning that a and b satisfy (6.3.1) and (6.3.2), respectively), then, letting B be the function defined in
Theorem 9.0.2,

n−1∑
j=1

(B(a j )+ B(b j ))≥

⌊
n − 1

2

⌋
+ nρ+8(n1, . . . , nr )− ε,

where

8(n1, . . . , nr ) :=

r−1∑
k=1

(nk + nk+1)
(n − n̂k)n̂k

2
.

Proof. We first note that although the bound B(x)≥ x holds for any x ∈ R, for any ε > 0, B(x)≥ x +
1
2 −ε

provided that x is sufficiently close to a half integer. Lemma A.11 (as justified in Remark A.12) asserts
that if n is odd then n − 1 elements from the set of all the possible values of ak and bk are indeed within
ε of a half integer, and if n is even then n − 2 of values have this property. Hence,

n−1∑
k=1

(B(ak)+ B(bk))≥

⌊
n − 1

2

⌋
+

n−1∑
k=1

(ak + bk)− ε. (A.10)

Since bn−n̂i + j = an̂i−1 − an̂i−1+ j + an̂i ±
δ
2 , we see that

ni∑
j=1

(bn−n̂i + j + an̂i−1+ j )∼ ni (an̂i−1 + an̂i ).

Therefore, summing over i , we see (making use of the fact that a0 = an = 0) that
n−1∑
k=1

(bk + ak)=

r∑
i=1

ni (an̂i−1 + an̂i )=

r−1∑
i=1

(ni + ni+1)an̂i

=

r−1∑
k=1

(nk + nk+1)

(
ρ+

(n − n̂k)n̂k

2
+ ε′

)
∼ ρ(2n − n1 − nr )+

r−1∑
k=1

(nk + nk+1)
(n − n̂k)n̂k

2︸ ︷︷ ︸
=:8(n1,...,nr )

.

Combining this with (A.10), the desired result is now immediate. □

Lemma A.11. Let C = (n1, . . . , nr ) be a composition of n with r ≥ 2. Suppose that ρ ∈
1
2 +Z. Set a0 := 0,

an := 0 and for each 1 ≤ k ≤ n −1 we have ak := ρ+
k(n−k)

2 and for each 1 ≤ i ≤ r and 1 ≤ j ≤ ni we let
bi, j := an̂i−1 − an̂i−1+ j + an̂i .

Then

#{k | ak /∈ Z} + #{(i, j) | bi, j /∈ Z} =


2n − n1 − nr − 1 if n is odd,

n
2

− 1 +

⌊n1
2

⌋
+

⌊nr
2

⌋
+

r−1∑
i=2

⌈ni
2

⌉
if n is even.

Remark A.12. Note that the quantity given in Lemma A.11 in the case of n odd is 2n−n1−nr −1 ≥ n−1
for any composition C (with equality precisely when r = 2). If n is even then

n
2

− 1 +

⌊
n1

2

⌋
+

⌊
nr

2

⌋
+

r−1∑
i=2

⌈
ni

2

⌉
≥

n
2

+
n1

2
+

nr

2
− 2 +

r−1∑
i=2

ni

2
= n − 2.

Equality in this case occurs precisely when n1 and nr are both odd and all other ni are even.
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Proof. For notational purposes, set

A(n) := #{1 ≤ k ≤ n − 1 | ak /∈ Z},

B(C) := #{(i, j), 1 ≤ i ≤ r, 1 ≤ j ≤ ni | bi, j /∈ Z}.

We first consider the case of n odd, for which k(n−k)
2 ∈ Z for all integers k. Therefore, A(n)= n − 1.

As for B(C), note that bi, j is equal to ρ plus an integer as long as i ̸= 1, r . Otherwise, b1, j , br, j ∈ Z.
Hence B(C)= n − n1 − nr .

In the case of n even, k(n−k)
2 ∈ Z exactly when k is even. Hence A(n)=

n
2 − 1. To the end of finding

B(C), we introduce the notation

Bi (C) := #{1 ≤ j ≤ ni | bi, j /∈ Z},

for which it is clear that B(C)=
∑r

i=1 Bi (C).
The cardinality of Bi (C) depends, obviously, on the integrality of bi, j . To determine this, we first

assume that i = 1. Then

b1, j = −
j (n − j)

2
+

n1(n − n1)

2
.

Therefore (since n is even), bi, j ∈ Z if and only if j ≡ n1 (mod 2). This implies that

B1(C) :=

{n1−1
2 if n1 is odd,

n1
2 if n1 is even,

or more concisely, #B1(C)=
⌊ n1

2

⌋
. The determination of Br (C) is similar: #Br (C)=

⌊nr
2

⌋
.

For 1< i < r , we see that

bi, j = ρ+
n̂i−1(n − n̂i−1)

2
−
(n̂i−1 + j)(n − n̂i−1 − j)

2
+
(n̂i−1 + ni )(n − n̂i−1 − ni )

2

= ρ+ n̂i−1(n − n̂i−1 − ni )−
(n̂i−1 + j)(n − n̂i−1 − j)

2
+

ni (n − ni )

2

≡
1
2

+
(n̂i−1 + j)(n − n̂i−1 − j)

2
+

ni (n − ni )

2
(mod Z).

We see again that the integrality of bi, j depends on the parity of ni . If ni is odd,

Bi (C)= #
{

1 ≤ j ≤ ni

∣∣∣∣ (n̂i−1 + j)(n − n̂i−1 − j)
2

/∈ Z

}
,

and if ni is even,

Bi (C)= #
{

1 ≤ j ≤ ni

∣∣∣∣ (n̂i−1 + j)(n − n̂i−1 − j)
2

∈ Z

}
.

One can check, arguing case by case as above, that in any event, the answer is Bi (C)=
⌈ ni

2

⌉
. □

Lemma A.13. Suppose that (n1, . . . , nr ) ∈ Cr . The function

8(n1, . . . , nr ) :=

r−1∑
k=1

(nk + nk+1)
(n1 + · · · + nk)(nk+1 + · · · + nr )

2
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is invariant under permutations, i.e., for any σ ∈ Sr , we have 8(n1, . . . , nr ) =8(nσ(1), . . . , nσ(r)). In
particular, if P = n1 +· · ·+nr is a partition of n then 8(P) :=8(n1, . . . , nr ) is well-defined. Moreover,
among all partitions P of n (with r ≥ 2),

8(P)≥8(n − 1, 1)=8(1, n − 1)=
n(n − 1)

2
.

Proof. Suppose that n = n1 + · · · + nr = m1 + · · · + mr , where

m j =


n j if j ̸= k, k + 1,
nk+1 if j = k,
nk if j = k + 1.

Then one can show by an elementary (albeit tedious) computation that 8(n1, . . . , nr )=8(m1, . . . ,mr ).
In other words, 8 is invariant under any transposition τ ∈ Sr , hence invariant under all of Sr .

Suppose that n = n1+· · ·+nr . If nk = n′

k +n′′

k for some 1 ≤ k ≤ r , then one shows via a straightforward
computation that

8(n1, . . . , nk−1, n′

k, n′′

k , nk+1, . . . , nr−1)−8(n1, . . . , nr )=
nkn′

kn′′

k

2
.

If n = n1 + · · · + nr with r > 2, it then follows, setting n0 := min{n1, n2, . . . , nr }, that

8(n1, . . . , nr ) > 8(n0, n − n0)=
nn0(n − n0)

2
.

Among all 1 ≤ n0 ≤
n
2 , the right-hand side is minimized when n0 = 1. □

Recall that

0R(z) :=
0

( 1
2

(1
2 + R + z

))
0(z)

,

as defined at the beginning of Section 8.

Lemma A.14. If δ ∈ Z and β ∈ iR are fixed, then the function 0R(β + z)0R(−β − z)0(−β − z − δ) is
holomorphic for all z with |Re(z)|< R.

Proof. The fact that |z|< R implies that 0R(±z) is holomorphic is immediate, so the only question is
what happens at the (simple) poles of 0(−β − z − δ). But these occur at z = −β + k for some integer k
which corresponds to zeros of 0R(β + z) or 0R(−β − z). □

Lemma A.15. For δ ∈ Z fixed and z, β ∈ C and |Re(z +β)+ δ|< R, we have the bound

0R(β + z)0R(−β − z)0(−β − z − δ)≍ (1 + |Im(β + z)|)R−Re(β+z)−δ.

Proof. This follows immediately from the Stirling bound |0(σ + i t)| ∼
√

2π |t |σ−
1
2 eπ |t |/2. □

Definition A.16. Let α = (α1, . . . , αn) ∈ Cn be Langlands parameters satisfying α̂n = 0. Let n =

n1 + · · · + nr be a partition of n with n1, . . . , nr ∈ Z+. Then for each ℓ = 1, . . . , r we define α(ℓ) :=

(α
(ℓ)
1 , . . . , α

(ℓ)
nℓ ) ∈ Cnℓ , where

α
(ℓ)
j := αn̂ℓ−1+ j −

1
nℓ
(α̂n̂ℓ − α̂n̂ℓ−1), |α(ℓ)|2 :=

nℓ∑
j=1

(α
(ℓ)
j )

2.
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Remark A.17. Note that
∑nℓ

j=1 α
(ℓ)
j = 0 for each ℓ. In particular nℓ = 1 implies α(ℓ)1 = 0.

Lemma A.18. We have |α|
2
=

∑n
i=1 α

2
i =

∑r
ℓ=1

(
|α(ℓ)|2 +

1
nℓ
(α̂n̂ℓ − α̂n̂ℓ−1)

2
)
.

Proof. Computing directly, and using the fact that
∑nℓ

j=1 α
(ℓ)
j = 0, we find that

n∑
j=1

α2
j =

r∑
ℓ=1

nℓ∑
j=1

α2
n̂ℓ−1+ j =

r∑
ℓ=1

nℓ∑
j=1

(
α
(ℓ)
j +

1
nℓ
(α̂n̂ℓ − α̂n̂ℓ−1)

)2

=

r∑
ℓ=1

nℓ∑
j=1

(
(α
(ℓ)
j )

2
+

2
nℓ
α
(ℓ)
j (α̂n̂ℓ − α̂n̂ℓ−1)+

1
n2
ℓ

(α̂n̂ℓ − α̂n̂ℓ−1)
2
)

=

r∑
ℓ=1

(
|α(ℓ)|2 +

1
nℓ
(α̂n̂ℓ − α̂n̂ℓ−1)

2
)
,

as claimed. □

Lemma A.19. Suppose that n ≥2 and α1, α2, . . . , αn ∈C satisfies α1+α2+· · ·+αn =0. Set α̂k =
∑k

j=1 α j

for fixed k ∈ {1, 2, . . . , n}, and define β j := α j −
1
k α̂k , γ j := α j+k +

1
n−k α̂k . Then

n∑
i=1

α2
i =

k∑
i=1

β2
i +

n−k∑
i=1

γ 2
i +

n
k(n − k)

α̂2
k .

Proof. This is easily deduced as a special case of Lemma A.18 in the case that r = 2, n1 = k, n2 = n − k,
β = α(1) and γ = α(2). □

Lemma A.20. We continue the notation of Lemma A.18. Then∏
1≤i ̸= j≤n

0R(αi −α j )=

r∏
ℓ=1

( ∏
1≤i, j≤nℓ

0R(α
(ℓ)
i −α

(ℓ)
j )

)

·

∏
1≤k<m≤r

nk∏
i=1

nm∏
j=1

∏
ϵ∈{±1}

0R

(
ϵ

(
α
(k)
i −α

(m)
j +

1
nk
(α̂n̂k −α̂n̂k−1)−

1
nm
(α̂n̂m −α̂n̂m−1)

))
.

Proof. Note that if k ̸= m, then for any 1 ≤ i ≤ nk and 1 ≤ j ≤ nm ,

αn̂k−1+i −αn̂m−1+ j = α
(k)
i −α

(m)
j +

1
nk
(α̂n̂k − α̂n̂k−1)−

1
nm
(α̂n̂m − α̂n̂m−1),

and for any 1 ≤ i ̸= j ≤ nℓ we have αn̂ℓ−1+i −αn̂ℓ−1+ j = α
(ℓ)
i −α

(ℓ)
j . This immediately implies the desired

formula. □

Lemma A.21. Suppose that (β1, . . . , βr ) satisfies β̂r = 0. Suppose that n = n1 + · · · + nr and set
n̂k =

∑k
j=1 n j . Then

∑
1≤k<m≤r

∑nk
i=1

∑nm
j=1

(
βk/nk −βm/nm

)
=

∑r−1
j=1(n j + n j+1)β̂ j .
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Proof. We calculate∑
1≤k<m≤r

nk∑
i=1

nm∑
j=1

(
βk

nk
−
βm

nm

)
=

r∑
m=2

m−1∑
k=1

nk∑
i=1

(
nm
βk

nk
−βm

)
=

r∑
m=2

m−1∑
k=1

(nmβk − nkβm)

=

r∑
m=2

(nm β̂m−1 − n̂m−1βm)=

r∑
m=2

(nm β̂m−1 − n̂m−1(β̂m − β̂m−1))

=

r∑
m=2

((nm + n̂m−1)β̂m−1 − n̂m−1β̂m)=

r∑
m=2

(n̂m β̂m−1 − n̂m−1β̂m).

This final sum telescopes to give
∑r−1

j=1(n̂ j+1 − n̂ j−1)β̂ j . Since n̂ j+1 − n̂ j−1 = n j + n j+1, this implies
the claimed result. □

The following result can be interpreted as a consequence—by counting (half) the number of gamma
factors on each side of the equality—of Lemma A.20. Alternatively, proving it independent of Lemma A.20
gives further evidence that the product decomposition is correct.

Lemma A.22. Let n = n1 + · · · + nr . We have
∑

1≤k<k′≤r nk · nk′ +
∑r

k=1
nk(nk−1)

2 =
n(n−1)

2 .

Proof. We use induction on r . If r = 1, the formula obviously holds. Let n = m + nr , where m =

n1 + · · · + nr−1. Then, by induction,

n(n − 1)
2

=
(m + nr )(m + nr − 1)

2
=

m(m − 1)
2

+
mnr + (m − 1)nr

2
+

n2
r

2

=

r−1∑
k=1

nk(nk − 1)
2

+

∑
1≤k<k′≤r−1

nk · nk′ + mnr +
nr (nr − 1)

2
.

Since mnr = n1nr + n2nr + · · · + nr−1nr , it is evident that the desired formula holds. □

Lemma A.23. Suppose n = n1 + · · · + nr . Then

n2
+

r∑
ℓ=1

(
nℓ(nℓ − 1)

2
− nℓn̂ℓ

)
=

n(n − 1)
2

.

Proof. If r = 1 the result is obviously true. Suppose that the result holds for r = k. Write n =

n1 + · · · + nk + nk+1 = n̂k + nk+1. Then

n2
+

k+1∑
ℓ=1

(
nℓ(nℓ − 1)

2
− nℓn̂ℓ

)
= n2

+

k∑
ℓ=1

(
nℓ(nℓ − 1)

2
− nℓn̂ℓ

)
+

nk+1(nk+1 − 1)
2

− nk+1n

= n2
− n̂2

k +

(
n̂2

k +

k∑
ℓ=1

(
nℓ(nℓ − 1)

2
− nℓn̂ℓ

)
+

nk+1(nk+1 − 1)
2

− nk+1n
)

= n2
− n̂2

k +
n̂k(n̂k + 1)

2
+

nk+1(nk+1 − 1)
2

− nk+1n

= n2
− n̂2

k +
n̂k(n̂k + 1)

2
+
(n − n̂k)(n − n̂k − 1)

2
− (n − n̂k),

which can easily be shown now to simplify to n(n−1)
2 , as claimed. □
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Remark A.24. Note that Lemmas A.22 and A.23 are equivalent provided that

n2
−

r∑
ℓ=1

nℓn̂ℓ =

∑
1≤k<k′≤r

nknk′ . (A.25)

This can be verified by expanding the left-hand side as follows:

n2
−

r∑
ℓ=1

nℓn̂ℓ = (n1 + · · · + nr )n̂r −

r∑
ℓ=1

nℓn̂ℓ =

r∑
ℓ=1

(nℓ(n − n̂ℓ)− nℓn̂ℓ)=

r∑
ℓ=1

nℓ(n − nℓ).

That this final expression is equal to right-hand side of (A.25) is clear.

Lemma A.26. Let α1, α2, . . . , αn ∈ C satisfy α1 + α2 + · · · + αn = 0. Set α̂k :=
∑k

j=1 α j , and let βi

(1 ≤ i ≤ k) and γ j (1 ≤ j ≤ n − k) be as in the previous lemma. We have∏
1≤i ̸= j≤n

0R(αi −α j )=

( ∏
1≤i ̸= j≤k

0R(βi −β j )

)( ∏
1≤i ̸= j≤n−k

0R(γi − γ j )

)

·

k∏
i=1

n−k∏
j=1

0R

(
βi − γ j +

n
k(n − k)

α̂k

)
0R

(
γ j −βi −

n
k(n − k)

α̂k

)
.

Proof. This is easily deduced as a special case of Lemma A.20 when r = 2, n1 = k, n2 = n − k, β = α(1)

and γ = α(2). □

We recall the definition of the polynomial given in Definition 1.4.1:

F (n)
R (α) :=

n−2∏
j=1

∏
K ,L ⊆ (1,2,...,n)

#K=#L= j

(
1 +

∑
k∈K

αk −

∑
ℓ∈L

αℓ

)R
2

.

Also, we remind the reader of the polynomial notation P given in Definition 2.1.3.

Lemma A.27. Let n = n1 +· · ·+nr , α, and α(ℓ) be as in Definition A.16. Set D(n)= deg(F (n)
1 (α)). Then

F (n)
R (α)= Pd R(α)

r∏
ℓ=1

nℓ ̸=1

F (nℓ)
R (α(ℓ)), where d = d(n1, . . . , nr )= D(n)−

r∑
ℓ=1

nℓ ̸=1

D(nℓ).

Proof. This follows from the fact that if I, J ⊆ {1, 2, . . . , nℓ} with #I = #J then(∑
i∈I

α
(ℓ)
i

)
−

(∑
j∈J

α
(ℓ)
j

)
=

(∑
i∈I

αn̂ℓ−1+i

)
−

(∑
j∈J

αn̂ℓ−1+ j

)
.

Therefore, each F (nℓ)
R (α(ℓ)) constitutes a unique factor of F (n)

R (α) for each ℓ= 1, . . . , r . □

Lemma A.28. Suppose that δ ∈ Z≥0 and R > δ. Then

F (n)
R (α) ·

∏
K⊆{1,2,...,n}

#(K∩{1,2,...,m}) ̸=m−1
#K=m

((∑
i∈K

αi

)
− α̂m − δ

)−1

δ

≪ F (m)
R (β) ·F (n−m)

R (γ ) ·Pd(α),

where d = R(D(n)− D(m)− D(n − m))− δ
((n

m

)
− m(n − m)− 1

)
.
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Proof. Let M := {1, 2, . . . ,m}. Then

#{K ⊆ {1, 2, . . . , n} | #K = m, #(K ∩ M) ̸= 0, 1} =

( n
m

)
− m(n − m)− 1.

From the definition of F (n)
R (α) given in Definition 1.4.1, we see that for each such K there are factors(

1 +

∑
i∈K

αi −

∑
j∈M

α j

)R/2(
1 −

∑
i∈K

αi +

∑
j∈M

α j

)R/2

of F (n)
R (α)/[F (m)

R (β)F (n−m)
R (γ )] for which(

1 +
∑

i∈K αi −
∑

j∈M α j
)R/2(1 −

∑
i∈K αi +

∑
j∈M α j

)R/2(∑
i∈K αi −

∑
j∈M α j − δ

)
δ

≪

(
1 −

(∑
i∈K

αi −

∑
j∈M

α j

)2)R−δ
2

.

This bound holds because the degree of the Pochhammer symbol in the denominator is δ, and by
assumption, the degree of the numerator is R > δ. Combining all such terms with the remaining factors
of F (n)

R (α)/[F (m)
R (β)F (n−m)

R (γ )] gives a polynomial of degree d . □

Remark A.29. Let n = n1+n2+· · ·+nr and n̂ℓ=
∑ℓ

i=1 ni . The result of Lemma A.28 clearly generalizes
to the case of taking multiple residues at sn̂ℓ = −α̂n̂ℓ − δℓ for each ℓ= 1, . . . , r − 1 (in reverse order). In
this case, taking the product on the left-hand side over all of the terms we obtain

F (n)
R (α) ·

r−1∏
ℓ=1

∏
K⊆{1,2,...,n̂ℓ+1}

#(K∩{1,...,n̂ℓ})̸=n̂ℓ−1
#K=n̂ℓ

((∑
i∈K

αi

)
− α̂n̂ℓ − δℓ

)−1

δℓ

≪ Pd(α) ·

r∏
ℓ=1

F (nℓ)
R (α(ℓ)),

where

d = R ·

(
D(n)−

r∑
ℓ=1

D(nℓ)
)

−

r−1∑
ℓ=1

[
δℓ

(( n̂ℓ+1
n̂ℓ

)
− nℓ+1n̂ℓ − 1

)]
.
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On the equivalence between
the effective adjunction conjectures
of Prokhorov–Shokurov and of Li

Jingjun Han, Jihao Liu and Qingyuan Xue

Prokhorov and Shokurov introduced the effective adjunction conjecture, also known as the effective
basepoint-freeness conjecture, which asserts that the moduli component of an lc-trivial fibration is
effectively basepoint-free. Li proposed a variation of this conjecture, known as the 0-effective adjunction
conjecture, and demonstrated that a weaker version of his conjecture follows from the original Prokhorov–
Shokurov conjecture.

In this paper, we prove the equivalence between Prokhorov–Shokurov’s and Li’s effective adjunction
conjectures. The key to our proof is establishing uniform rational polytopes for canonical bundle formulas.
This relies on recent advancements in the minimal model program theory of algebraically integrable
foliations, primarily developed by Ambro–Cascini–Shokurov–Spicer and Chen–Han–Liu–Xie.

1. Introduction

We work over the field of complex numbers C.
Prokhorov and Shokurov famously proposed the effective basepoint-freeness conjecture concerning

the moduli part of lc-trivial fibrations.

Conjecture 1.1 [Prokhorov and Shokurov 2009, Conjecture 7.13]. Let d be a positive integer and
00 ⊂ [0, 1] a finite set of rational numbers. Then there exists a positive integer I depending only on d and
00 satisfying the following conditions. Assume that

(1) f : (X, B) → Z is an lc-trivial fibration such that dim X − dim Z = d, and

(2) the coefficients of the horizontal/Z part of B belong to 00.

Then IM is basepoint-free, where M is the moduli part of f : (X, B) → Z.

Conjecture 1.1 is known for its complexity and has only been proven for the case d = 1, as detailed in
[Prokhorov and Shokurov 2009, Theorem 8.1]. The noneffective version of this conjecture for d = 2 was
recently proven in [Ascher et al. 2023, Theorem 1.4]. However, for d ≥ 3, Conjecture 1.1 remains largely
unresolved.
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Keywords: algebraically integrable foliation, canonical bundle formula, uniform rational polytope.
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The importance of Conjecture 1.1 lies in its close relationship with moduli theory. Specifically, since the
moduli parts of lc-trivial fibrations characterize the moduli space of the general fiber of the family X → Z ,
Conjecture 1.1 is crucial for the study of the moduli of varieties, especially log Calabi–Yau varieties; see,
for example, [Ascher et al. 2023].

Recent developments in moduli theory suggest that, instead of considering only pairs with standard
or rational coefficients, it is more natural to include pairs with arbitrary coefficients in [0, 1] or

( 1
2 , 1

]
;

cf. [Kollár 2023, 6.26–6.28]. In particular, pairs with irrational coefficients need to be considered. Since
Conjecture 1.1 only considers lc-trivial fibrations with rational horizontal coefficients, it is natural to inquire
whether a generalization of Conjecture 1.1 for lc-trivial fibrations with irrational coefficients is feasible.
Fortunately, Z. Li has proposed such a variation in [Li 2024, Conjecture 3.5(1)], adopting the notation of
0-basepoint-freeness. In this paper, we propose a stronger version of [Li 2024, Conjecture 3.5(1)].

Definition 1.2 [Li 2024, Definition 3.4]. Let 0 ⊂ (0, 1] be a set. A b-divisor D on a normal projective
variety X is called 0-basepoint-free if there exist a1, . . . , ak ∈0 and basepoint-free b-divisors D1, . . . , Dk

such that
∑k

i=1 ai = 1 and D =
∑k

i=1 ai Di .

Conjecture 1.3 [Li 2024, Conjecture 3.5(1)]. Let d be a positive integer and 0 ⊂ [0, 1] a DCC set of
real numbers. Then there exist a positive integer I , a finite set 00 ⊂ (0, 1] depending only on d , and 0

satisfying the following conditions. Assume that

(1) f : (X, B) → Z is an lc-trivial fibration such that dim X − dim Z = d, and

(2) the coefficients of the horizontal/Z part of B belong to 0.

Then IM is 00-basepoint-free, where M is the moduli part of f : (X, B) → Z.

It is evident that Conjecture 1.3 implies Conjecture 1.1. This raises the intriguing question of whether
the two conjectures are, in fact, equivalent. Supporting this possibility, Z. Li introduced a less stringent
form of Conjecture 1.3 in [Li 2024, Conjecture 3.5(2)] and proved that Conjecture 1.1 implies this weaker
version. However, it remains unproven whether [Li 2024, Conjecture 3.5(2)] implies Conjecture 1.1.
Additionally, [Li 2024, Conjecture 3.5(2)] is notably more complex than Conjecture 1.3.

In our paper, we demonstrate that Prokhorov–Shokurov’s Conjecture 1.1 and Li’s Conjecture 1.3 are,
in fact, equivalent.

Theorem 1.4. For any positive integer d , Conjecture 1.1 in relative dimension d (i.e., dim X −dim Z = d)
and Conjecture 1.3 in relative dimension d are equivalent.

As an immediate corollary, we prove Conjecture 1.3 when d = 1:

Corollary 1.5. Conjecture 1.3 holds when d = 1.

Idea of the proof. The idea behind the proof of Theorem 1.4 is to establish uniform rational polytopes
for canonical bundle formulas (see Theorem 3.4 below). Roughly speaking, given an lc-trivial fibration
f : (X, B) → Z with moduli part M , we aim to establish a uniform decomposition (X, B) =

∑
ai (X, Bi ),
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where
∑

ai = 1, the horizontal/Z coefficients of Bi are rational, and each f : (X, Bi ) → Z is an lc-
trivial fibration with moduli part Mi , so that M =

∑
ai Mi . By “uniform”, we mean that the ai and the

horizontal/Z coefficients of Bi depend only on dim X − dim Z and the horizontal/Z coefficients of B.
Establishing such a uniform decomposition is a natural idea. In fact, it is straightforward to establish

such a uniform decomposition without the condition “M =
∑

ai Mi ” using [Han et al. 2024, Theorem
5.6]. Similar results can be found in [Li 2024] as well. However, proving M =

∑
ai Mi is a difficult task.

The existence of such a decomposition with M =
∑

ai Mi is already nontrivial even when uniformity is
not required [Jiao et al. 2022, Theorem 2.23]. This is because the coefficient of the discriminant part of
the canonical bundle formula f : (X, B) → Z and f : (X, Bi ) → Z are of the forms 1− lctηD (X, B; f ∗D)

and 1 − lctηD (X, Bi ; f ∗D), respectively, yet we only have

lctηD (X, B; f ∗D) ≥

∑
ai lctηD (X, Bi ; f ∗D)

in general. The uniform decomposition shows that not only the inequality becomes equality but also the
equality holds for any X, Z , and any divisor D over Z simultaneously (as M is a b-divisor).

The key new ingredient we need for the proof of the existence of the uniform decomposition is the
minimal model program theory for algebraically integrable foliations, which has been established very
recently [Ambro et al. 2021; Chen et al. 2023].

More precisely, let F be the foliation induced by f : X → Z and Bh the horizontal/Z part of B. The
key observation is that if f is equidimensional and (X,F, Bh) is lc satisfying Property (∗) (see [Ambro
et al. 2021, Definitions 2.13 and 3.5]), then KF + Bh is exactly the moduli part of f : (X, B) → Z
[Ambro et al. 2021, Proposition 3.6]. Therefore, if we can decompose (X,F, Bh) into foliated triples
with Property (∗) uniformly, then it automatically induces a decomposition of M. Such a decomposition
is possible (see Theorem 3.2) if we replace “Property (∗)” with the condition “weak ACSS” (see [Chen
et al. 2023, Definition 7.2.3]), thanks to the existence of uniform rational lc polytopes for foliations
[Liu et al. 2024a, Theorem 1.8; 2024b, Theorem 1.3; Das et al. 2023, Theorem 1.5; Chen et al. 2023,
Theorem 2.4.7]. The rest of the proof involves a series of changes of models that preserve the moduli
part of the canonical bundle formula, relying on the fact that for lc-trivial fibrations which are crepant
over the generic point of the base, the moduli parts of the canonical bundle formulas are the same (see
Lemma 2.14).

2. Preliminaries

Notations and definitions. We adopt the standard notations and definitions from [Kollár and Mori 1998;
Birkar et al. 2010] and use them freely. For foliations and generalized foliated quadruples, we follow
[Chen et al. 2023], which generally aligns with the notations and definitions from [Cascini and Spicer
2020; 2021; Ambro et al. 2021], but there may be minor differences. For b-divisors and generalized
pairs, we follow the notations and definitions from [Birkar and Zhang 2016; Han and Li 2022; Hacon
and Liu 2023]. For the canonical bundle formula, we adhere to [Chen et al. 2023], which is generally
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consistent with the classical definitions. For the reader’s convenience, we provide the following notations
and definitions that are either not commonly used in the literature or have minor differences from the
classical definitions:

Definition 2.1. Let m be a positive integer and v ∈ Rm . The rational envelope of v is the minimal rational
affine subspace of Rm which contains v. For example, if m = 2 and v =

(√
2

2 , 1 −

√
2

2

)
, then the rational

envelope of v is (x1 + x2 = 1) ⊂ R2
x1x2

.
For any set of nonnegative real numbers 0, we define

0+ :=

({∑
γi

∣∣∣ γi ∈ 0

}
∪ {0}

)
∩ [0, 1], D(0) :=

{
m − 1 + γ

m

∣∣∣ m ∈ N+, γ ∈ 0+

}
.

For any real number t and R-divisor D =
∑

di Di , where Di are the irreducible components of D, we
define D≤t

:=
∑

di ≤t di Di and D>t
:=

∑
di >t di Di .

Definition 2.2 (lc-trivial fibration [Chen et al. 2023, Definition 11.3.1]). Let (X, B) be a subpair and
f : X → Z a contraction. We say that f : (X, B) → Z is an lc-trivial fibration if

(1) (X, B) is sub-lc over the generic point of Z ,

(2) K X + B ∼R,Z 0, and

(3) there exists a birational morphism h : Y → X with KY + BY = h∗(K X + B) such that −B≤0
Y is

R-Cartier and
κσ (Y/Z , −B≤0

Y ) = 0.

We remark that the classical definition of an lc-trivial fibration replaces condition (3) with

(3′) rank f∗OX (⌈A∗(X, B)⌉) = 1

[Kawamata 1998; Ambro 2004; Kollár 2007; Fujino and Gongyo 2014]. It is worth mentioning that, in
this paper, we only consider lc-trivial fibrations f : (X, B) → Z such that B ≥ 0 over the generic point
of Z . In this case, both (3) and (3′) automatically hold, so there will be no confusion in the notation.

Definition 2.3 (discriminant and moduli parts [Ambro et al. 2021, Definition 2.3]). Let (X, B) be a
subpair and f : X → Z a contraction such that (X, B) is generically sub-lc/Z . In the following, we
fix a choice of K X and a choice of K Z , and suppose that for any birational morphisms g : X → X and
gZ : Z → Z , K X and K Z are chosen as the Weil divisors such that g∗K X = K X and (gZ )∗K Z = K Z .

For any prime divisor D on Z , we define

bD(X, B; f ) := 1 − sup{t | (X, B + t f ∗D) is sub-lc over the generic point of D}.

Although f ∗D may not be well-defined everywhere, it is at least defined near the generic point of D,
which suffices for our purposes. We then define the discriminant part of f : (X, B) → Z as

BZ :=

∑
D is a prime divisor on Z

bD(X, B; f )D.
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Next, we define the trace moduli part of f . By Definition-Theorem 2.6, there exists an equidimensional
contraction f ′

: X ′
→ Z ′ associated with birational morphisms h′

: X ′
→ X and h′

Z : Z ′
→ Z such that

Z ′ is smooth and f ◦ h′
= h′

Z ◦ f ′. Write K X ′ + B ′
:= h′∗(K X + B), and let BZ ′ be the discriminant part

of f ′
: (X ′, B ′) → Z ′. Define

MX ′ := K X ′ + B ′
− f ′∗(K Z ′ + BZ ′).

We then define the trace moduli part of f : (X, B) → Z as

MX := h′

∗
MX ′ .

It is easy to check that MX does not depend on the choice of f ′.
By construction, there exist b-divisors B on Z and M on X satisfying the following. For any

contraction f ′′
: X ′′

→ Z ′′ associated with birational morphisms h′′
: X ′′

→ X and h′′

Z : Z ′′
→ Z such

that f ◦ h′′
= h′′

Z ◦ f ′′, BZ ′′ is the discriminant part of f ′′
: (X ′′, B ′′) → Z ′′, and MX ′′ is the trace moduli

part of f ′′
: (X ′′, B ′′) → Z ′′, where K X ′′ + B ′′

:= h′′∗(K X + B). We call B the discriminant b-divisor of
f : (X, B) → Z and M the moduli part of f : (X, B) → Z . By construction, B is uniquely determined,
and M is uniquely determined for any fixed choices of K X and K Z .

Remark 2.4 (base moduli part). The moduli part M defined in Definition 2.3 follows the same notation
as in [Ambro et al. 2021], which is defined on X rather than on the base Z .

For any lc-trivial fibration f : (X, B) → Z , the canonical bundle formula indicates that

K X + B ∼R f ∗(K Z + BZ + M Z
Z ),

where BZ is the discriminant part and M Z is a b-divisor. Such M Z is also called the “moduli part” of
f : (X, B) → Z in many references. To avoid any confusion, we call such M Z the base moduli part
of f : (X, B) → Z .

It is clear that M ∼R f ∗M Z as b-divisors. Moreover, for lc-trivial fibrations, the effective basepoint-
freeness and the effective 0-basepoint-freeness of the moduli part are equivalent to those of the base
moduli part.

Remark 2.5. We can similarly define lc-trivial fibrations, discriminant parts, and base moduli parts for
foliations. We refer the reader to [Chen et al. 2023, Definition 11.3.1, Definition-Lemma 11.5.1] for
details. We do not need them in the rest of the paper.

Definition-Theorem 2.6 [Ambro et al. 2021, Theorem 2.2; Liu et al. 2023, Definition-Theorem 6.5].
Let X be a normal quasiprojective variety, X → U a projective morphism, X → Z a contraction, and
B an R-divisor on X . Then there exist a toroidal pair (X ′, 6X ′)/U , a log smooth pair (Z ′, 6Z ′), and a
commutative diagram

X ′ h
//

f ′

��

X

f
��

Z ′
hZ
// Z
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satisfying the following:

(1) h and hZ are projective birational morphisms.

(2) f ′
: (X ′, 6X ′) → (Z ′, 6Z ′) is a toroidal contraction.

(3) Supp(h−1
∗

B) ∪ Supp Exc(h) is contained in Supp 6X ′ .

(4) X ′ has at most toric quotient singularities.

(5) f ′ is equidimensional.

(6) X ′ is Q-factorial klt.

We call any such f ′
: (X ′, 6X ′) → (Z ′, 6Z ′) (associated with h and hZ ) which satisfies (1–6) an

equidimensional model of f : (X, B) → Z .

Definition 2.7 (foliated log smooth [Ambro et al. 2021, §3.2; Das et al. 2023, Definition 2.17]). Let
(X,F, B) be a foliated triple such that F is algebraically integrable. We say that (X,F, B) is foliated
log smooth if there exists a contraction f : X → Z satisfying the following.

(1) X has at most quotient toric singularities.

(2) F is induced by f .

(3) (X, 6X ) is toroidal for some reduced divisor 6X such that Supp B ⊂ 6X . In particular, (X, Supp B)

is toroidal, and X is Q-factorial klt.

(4) There exists a log smooth pair (Z , 6Z ) such that

f : (X, 6X ) → (Z , 6Z )

is an equidimensional toroidal contraction.

Definition 2.8 (weak ACSS [Das et al. 2023, Definitions 4.1–4.3]). Let (X,F, B) be a foliated triple, G
a reduced divisor on X , and f : X → Z a contraction. We say that (X,F, B; G)/Z is weak ACSS if the
following conditions hold:

(1) (X,F, B) is lc.

(2) (Z , f (G)) is log smooth and G = f −1( f (G)).

(3) f is equidimensional and F is induced by f .

(4) For any closed point z ∈ Z and any reduced divisor 6 ≥ f (G) on Z such that (Z , 6) is log smooth
near z,

(X, B + G + f ∗(6 − f (G)))

is lc over a neighborhood of z.

We say that (X,F, B) is weak ACSS if (X,F, B; G)/Z is weak ACSS for some reduced divisor G on X
and some contraction f : X → Z .
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Results on foliations with weak ACSS singularities.

Lemma 2.9 [Chen et al. 2023, Lemma 7.3.3]. Let (X,F, B) be a foliated triple such that F is al-
gebraically integrable. Suppose that (X,F, B) is foliated log smooth, associated with a contraction
f : (X, 6X ) → (Z , 6Z ) (as in Definition 2.7(3)). Let G be the vertical/Z part of 6X and Bh the
horizontal/Z part of B. Then (X,F, Supp Bh

; G)/Z is weak ACSS.

Proposition 2.10 (cf. [Ambro et al. 2021, Proposition 3.6; Chen et al. 2023, Proposition 7.3.6]). Let
(X,F, B) be a foliated triple, f : X → Z a contraction, and G a reduced divisor on X such that
(X,F, B; G)/Z is weak ACSS. Let M be the moduli part of f : (X, B + G) → Z. Then:

(1) KF + B ∼ MX .

(2) KF + B ∼Z K X + B + G.

Moreover, we can choose KF depending only on the choices of K X and K Z such that KF + B = MX .

Proof. This follows from [Ambro et al. 2021, Proposition 3.6] or [Chen et al. 2023, Proposition 7.3.6].
Note that if we choose KF = K X/Z − R as in the proof of [Chen et al. 2023, Proposition 7.3.6], then we
actually obtain the equality KF + B = MX . □

Proposition 2.11. Let (X,F, B)/Z be a foliated triple and G a reduced divisor on X such that Z is
Q-factorial, (X,F, B; G)/Z is weak ACSS, and

κσ (X/Z , KF + B) = κι(X/Z , KF + B) = 0.

Then we may run a (KF + B)-MMP/Z with scaling of an ample/Z divisor, which terminates with a model
(X ′,F ′, B ′)/Z such that KF ′ + B ′

∼R,Z 0, where F ′ and B ′ are the pushforwards of F and B on X ′,
respectively. Moreover, (X ′,F ′, B ′

; G ′)/Z is weak ACSS, where G ′ is the pushforward of G on X ′.

Proof. The main part of the proposition follows from [Chen et al. 2023, Proposition 11.2.1]. The
“moreover” part follows from [Chen et al. 2023, Lemma 9.1.4]. □

Theorem 2.12 [Das et al. 2023, Theorem 1.5; Chen et al. 2023, Theorem 2.4.7]. Let r be a positive
integer, v0

1, . . . , v
0
m positive real numbers, and v0 := (v0

1, . . . , v
0
m). Then there exists an open set U ∋ v0

of the rational envelope of v0 depending only on r and v0 satisfying the following statement:
Let

(
X,F,

∑m
j=1 v0

j B j
)

be an lc foliated triple such that F is an algebraically integrable foliation of
rank r and B j ≥ 0 are distinct Weil divisors. Then

(
X,F,

∑m
j=1 v j B j

)
is lc for any (v1, . . . , vm) ∈ U.

Theorem 2.13 (cf. [Chen et al. 2023, Theorem 11.1.5]). Let (X,F, B) be an lc foliated triple, f : X → Z
a contraction, and G a reduced divisor on X such that (X,F, B; G)/Z is weak ACSS. Let M be the
moduli part of f : (X, B + G) → Z. Then M descends to X.

Proof. This follows from [Chen et al. 2023, Theorem 11.1.5 and Lemma 5.3.2]. □

Lemma 2.14. Let (X, B) and (X ′, B ′) be two subpairs. Let f : (X, B) → Z and f ′
: (X ′, B ′) → Z ′ be

two lc-trivial fibrations over U such that f and f ′ are birationally equivalent (i.e., there exist birational
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maps h : X ′ 99K X and hZ : Z ′ 99K Z such that f ◦h = hZ ◦ f ′), and (X, B) and (X ′, B ′) are crepant over
the generic point of Z. Let M and M Z be the moduli part and the base moduli part of f : (X, B) → Z ,
respectively, and let M ′ and M ′ Z ′

be the moduli part and the base moduli part of f ′
: (X ′, B ′) → Z ′,

respectively. Then M = M ′ for any compatible choices of K X and K Z , and M Z
∼R M ′Z ′

.

Proof. The proof follows along the same lines as the proof of [Chen et al. 2023, Lemma 11.4.3].
Possibly passing to a common base and resolving the indeterminacy of h : X ′ 99K X , we may assume

that f = f ′, X = X ′, and Z = Z ′. Replacing f : X → Z with an equidimensional model, we may
assume that f is equidimensional and Z is smooth. Now K X + B = K X + B ′ over the generic point
of Z , so B − B ′ is vertical/Z . Since K X + B ∼R,Z 0 and K X + B ′

∼R,Z 0, we have B − B ′
∼R,Z 0, so

B − B ′
= f ∗ P for some R-divisor P on Z (cf. [Chen et al. 2024, Lemma 2.5]).

Let BZ and B ′

Z be the discriminant parts of f : (X, B) → Z and f : (X, B ′) → Z , respectively. By
the definition of the discriminant part, BZ = B ′

Z + P . Therefore,

MX = K X + B − f ∗(K Z + BZ ) = K X + B − f ∗(K Z + B ′

Z + P) = K X + B ′
− f ∗(K Z + B ′

Z ) = M ′

X .

Since we may pass to an arbitrarily high model, we have M = M ′. By the definition of the base moduli
part, we have M Z

∼R M ′Z ′

. □

Lemma 2.15 (cf. [Han et al. 2021, Lemma 3.8; 2022, Lemma 2.18]). Let a1, . . . , ak ∈ (0, 1] be real
numbers such that

∑k
i=1 ai = 1. Let (X, B1), . . . , (X, Bk) be subpairs and D ≥ 0 be an R-Cartier

R-divisor on X. Then k∑
i=1

ai lct(X, Bi ; D) ≤ lct
(

X,

k∑
i=1

ai Bi ; D
)

.

Proof. We may assume that lct(X, Bi ; D) > −∞ for any i . For any 1 ≤ i ≤ k, let bi := lct(X, Bi ; D)

and s :=
∑k

i=1 ai bi . Since (X, Bi + bi D) is lc for any i and

k∑
i=1

ai Bi + s D =

k∑
i=1

ai (Bi + bi D),

it follows that
(
X,

∑k
i=1 ai Bi + s D

)
is lc. Thus, the lemma follows. □

3. Uniform rational polytopes for canonical bundle formulas

In this section, we establish the existence of uniform rational polytopes for canonical bundle formulas. We
present two versions of this uniform decomposition theorem (Theorems 3.3 and 3.4), whose statements and
initial proofs are similar but diverge subsequently. The arguments in Theorem 3.3 are more straightforward
and clear from the perspective of uniform decomposition theorems. However, we will apply Theorem 3.4
to prove Theorem 1.4.

Lemma 3.1. Let X and X ′ be two normal quasiprojective varieties that are birational to each other. Let
D =

∑m
i=1 v0

i Di be an R-Cartier R-divisor on X and D′
=

∑m
i=1 v0

i D′

i an R-Cartier R-divisor on X ′ such
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that D and D′ are crepant (i.e., there are projective birational morphisms p : W → X and q : W → X ′

such that p∗D = q∗D′), where Di and D′

i are Q-divisors. Then for any vector v = (v1, . . . , vm) in the
rational envelope of v0 := (v0

1, . . . , v
0
m) in Rm , D(v) :=

∑m
i=1 vi Di and D′(v) :=

∑m
i=1 vi D′

i are crepant.

Proof. We may write D =
∑c

i=1 ri Di and D′
=

∑c
i=1 ri D′

i , where Di and D′

i are Q-divisors and r1, . . . , rc

are linearly independent over Q. By [Han et al. 2024, Lemma 5.3], Di and D′

i are Q-Cartier for each i .
Let p : W → X and q : W → X ′ be a common resolution. Then

c∑
i=1

ri p∗Di = p∗D = q∗D′
=

c∑
i=1

ri q∗D′

i ,

so c∑
i=1

ri (p∗Di − q∗D′

i ) = 0.

Thus, p∗Di = q∗D′

i for each i . In particular, for any u = (u1, . . . , uc) ∈ Rc, D(u) :=
∑c

i=1 ui Di and
D′(u) :=

∑c
i=1 ui D′

i are crepant. Since for any vector v in the rational envelope of v0, there exists a
unique vector u ∈ Rc such that D(u) = D(v) and D′(u) = D′(v), the lemma follows. □

Theorem 3.2 (uniform weak ACSS rational polytope). Let r be a positive integer and v0
1, . . . , v

0
m real

numbers. Then there exists an open subset U ∋ v0 of the rational envelope of v0 := (v0
1, . . . , v

0
m) in Rm

depending only on r and v0 satisfying the following.
Let (X,F, B) be an lc foliated triple, f : X → Z a contraction, and G a reduced divisor on X such

that rankF = r and (X,F, B; G)/Z is weak ACSS. Assume that

• B =
∑m

i=1 v0
i Bi , where Bi ≥ 0 are Weil divisors, and

• B(v) :=
∑m

i=1 vi Bi for any v = (v1, . . . , vm) ∈ Rm .

Then (X,F, B(v); G)/Z is weak ACSS for any v ∈ U.

Proof. We verify all the conditions of Definition 2.8 for (X,F, B(v); G)/Z . Condition (1) follows from
Theorem 2.12. Conditions (2) and (3) are obvious. Therefore, we only need to check condition (4). Note
that this does not directly follow from [Han et al. 2024, Theorem 5.6] because dim X is not fixed.

We only need to show that there exists an open subset U ∋ v0 of the rational envelope of v0 such that
for any closed point z ∈ Z and any log smooth pair (Z , 6) such that 6 ≥ f (G), we have that

(X, B(v) + G + f ∗(6 − f (G)))

is lc over a neighborhood of z for any v ∈ U . Possibly adding components to 6, we may assume that z is
an lc center of (Z , 6). Let Gz := G + f ∗(6 − f (G)). Then Gz = f −1(6), (X, B(v0)+ Gz) is lc over a
neighborhood of z, and (X, B(v0)+ Gz)/Z satisfies Property (∗) [Ambro et al. 2021, Definition 2.13]
over a neighborhood of z.

Let 61, . . . , 6dim Z be the irreducible components of 6 which contain z and let V be an irreducible
component of f −1(z). Then V is an irreducible component of

⋂dim Z
i=1 f −1(6i ). In particular, there exist

prime divisors Gi ⊂ f −1(6i ) such that V is a component of
⋂dim Z

i=1 Gi . Since each Gi is a component
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of Gz , each Gi is an lc place of (X, B(v0) + Gz). Thus any component of
⋂n

i=1 Gi is an lc center of
(X, B(v0) + Gz) for any 1 ≤ n ≤ dim Z [Ambro 2011, Theorem 1.1]. In particular, V is an lc center
of (X, B(v0) + Gz), and there exists a sequence of lc centers

V =: Vdim Z ⊊ Vdim Z−1 ⊊ · · · ⊊ V1 := G1

such that each Vn is an irreducible component of
⋂n

i=1 Gi . We let νn : Wn → Vn be the normalization of
Vn and let τn : Vn → Vn−1 be the natural inclusions. Then there exist morphisms ιn : Wn → Wn−1 such
that τn ◦ νn = νn−1 ◦ ιn for any n ≥ 2. Since f is equidimensional, dim Vn = dim Wn = dim X − n for
any n.

For any v that is contained in the rational polytope of v0 and any 0 ≤ n ≤ dim Z , we define an R-divisor
Bn(v) on Wn in the following way:

• W0 := X and B0(v) := B(v) + Gz .

• Suppose that we have already constructed Bn(v) for some n ≤ dim Z − 1 such that the image of Wm

in Wn is an lc center of (Wn, Bn(v0)) for any m > n, and v → Bn(v) is a Q-affine function from the
rational envelope of v0 to WeilR(Wn). Since the image of Wn+1 in Wn is of codimension 1, we may
define

KWn+1 + Bn+1(v0) := (KWn + Bn(v0))|Wn+1

by usual adjunction. Since v is contained in the rational envelope of v0, by [Han et al. 2024,
Lemma 5.3], KWn + Bn(v) is R-Cartier for any v that is contained in the rational envelope of v0.
Thus there exist uniquely defined R-divisors Bn+1(v) such that

KWn+1 + Bn+1(v) = (KWn + Bn(v))|Wn+1 .

• By [Kollár 2013, Theorem 4.9(3)], the image of Wm in Wn+1 is an lc center of (Wn+1, Bn+1(v0)) for
any m > n + 1. Moreover, since adjunction D → D|Wn+1 is a Q-affine function from DivR(Wn) to
DivR(Wn+1), v → Bn+1(v) is a Q-affine function from the rational envelope of v0 to WeilR(Wn+1).
Thus we may repeat this process.

We let W := Wdim Z and BW (v) := Bdim Z (v). Let h : Y → W be a Q-factorial dlt modification of
(W, BW (v0)) and BY (v) := h−1

∗
BW (v)+ E for any v, where E is the reduced h-exceptional divisor. Then

KY + BY (v0) := h∗(KW + BW (v0)).

By [Han et al. 2024, Lemma 5.4], for any v that is contained in the rational envelope of v0, we have

KY + BY (v) = h∗(KW + BW (v)).

Let 00 := {0, 1, v0
1, . . . , v

0
m}. Then by our construction, the coefficients of BY (v0) belong to 0 := D(00).

Since Y is Q-factorial, by the ACC for lc thresholds [Hacon et al. 2014, Theorem 1.1], there exists a real
number t < 1 depending only on r and v0 such that (Y, B ′

Y (v0) := BY (v0)
≤t

+ Supp B>t
Y (v0)) is lc.
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For any v that is contained in the rational envelope of v0, we define B ′

Y (v) to be the unique R-divisor
such that for any prime divisor D on Y ,

multD B ′

Y (v) :=


multD BY (v) if D is a component of BY (v0)

≤t ,
1 if D is a component of BY (v0)

>t ,
0 otherwise.

By our construction, v → B ′

Y (v) is a Q-affine function from the rational envelope of v0 to WeilR(Y ).
Since dim Y = r and the coefficients of B ′

Y (v0) belong to a finite set depend only on r and v0, by [Han
et al. 2024, Theorem 5.6], there exists an open set U ∋ v0 of the rational envelope of v0 depending only
on r and v0 such that (Y, B ′

Y (v)) is lc for any v ∈ U . Possibly shrinking U , we may assume that the
coefficients of BY (v) are ≤ 1 for any v ∈ U .

By our construction, B ′

Y (v) ≥ BY (v) ≥ 0 for any v ∈ U , so (Y, BY (v)) is lc for any v ∈ U . Hence
(W, BW (v)) = (Wdim Z , Bdim Z (v)) is lc for any v ∈ U . Suppose that (Wn, Bn(v)) is lc for some n ≥ 1.
Then by inversion of adjunction [Kawakita 2007, Theorem; Hacon 2014, Theorem 1], we have that
(Wn−1, Bn−1(v)) is lc near the image of Wn in Wn−1 for any v ∈ U . Hence, possibly shrinking to a
neighborhood of the image of Wn in Wn−1, we may assume that (Wn−1, Bn−1(v)) is lc for any v ∈ U .
Thus we may repeat this process and deduce that, possibly shrinking X to a neighborhood of V , we
have that (W0, B0(v)) = (X, B(v)+ Gz) is lc for any v ∈ U . Since V can be any irreducible component
of f −1(z), (X, B(v) + Gz) is lc near f −1(z) for any v ∈ U . Condition (4) follows and we are done. □

It remains interesting to ask whether there exists a uniform ACSS rational polytope, although we do
not do this in our paper.

Theorem 3.3 (uniform rational polytope for canonical bundle formula, I). Let d be a positive integer
and v0

1, . . . , v
0
m real numbers. Then there exists an open subset U ∋ v0 of the rational envelope of

v0 :=(v0
1, . . . ,v

0
m) in Rm, depending only on d and v0, such that the following conditions hold. Assume that

• f : (X, B) → Z is an lc-trivial fibration with dim X = d ,

• (X, B) is lc,

• B =
∑m

i=1 v0
i Bi , where Bi ≥ 0 are Weil divisors,

• B(v) :=
∑m

i=1 vi Bi for any v = (v1, . . . , vm) ∈ Rm , and

• BZ and M are the discriminant part and the moduli part of f : (X, B) → Z , respectively.

Then:

(1) For any v ∈ U , (X, B(v)) is lc and f : (X, B(v)) → Z is an lc-trivial fibration.

(2) For any vectors v1, . . . , vk in U and positive real numbers a1, . . . , ak such that
∑k

i=1 ai = 1, we
have

BZ

( k∑
i=1

aiv
i
)

=

k∑
i=1

ai BZ (vi ) and M
( k∑

i=1

aiv
i
)

=

k∑
i=1

ai M(vi ),

where BZ (v) and M(v) are the discriminant part and the moduli part of f : (X, B(v)) → Z.
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Proof. Step 1. In this step, we consider an equidimensional model of f : (X, B) → Z . We then run an
MMP to achieve an auxiliary model X ′′ and construct an lc-trivial fibration f ′′

: (X ′′, B̃ ′′h(v)+G ′′) → Z ′.

Let f ′
: (X ′, 6X ′) → (Z ′, 6Z ′) be an equidimensional model of f : (X, B) → Z associated with

h : X ′
→ X and hZ : Z ′

→ Z . Let B̃ ′
:= h−1

∗
B + Supp Exc(h) with horizontal/Z ′ part B̃ ′h , and

B̃ ′(v) := h−1
∗

B(v)+Supp Exc(h) with horizontal/Z ′ part B̃ ′h(v) for any v ∈ Rm . Let G ′ be the vertical/Z ′

part of 6X ′ . Denote K X ′ + B ′
:= h∗(K X + B) and K X ′ + B ′(v) := h∗(K X + B(v)) for any v ∈ Rm .

Let F ′ be the foliation induced by f ′. Then (X ′,F ′, B̃ ′h) is foliated log smooth. By Lemma 2.9,
(X ′,F ′, B̃ ′h

; G ′)/Z ′ is weak ACSS. Choose KF ′ as in Proposition 2.10. Then K X ′ − KF ′ is vertical/Z ′

by Proposition 2.10. Therefore,

κσ (X ′/Z ′, KF ′ + B̃ ′h) = κσ (X ′/Z ′, KF ′ + B̃ ′) = κσ (X ′/Z ′, K X ′ + B̃ ′) = κσ (X ′/Z ′, K X ′ + B ′) = 0

and

κι(X ′/Z ′, KF ′ + B̃ ′h) = κι(X ′/Z ′, KF ′ + B̃ ′) = κι(X ′/Z ′, K X ′ + B̃ ′) = κι(X ′/Z ′, K X ′ + B ′) = 0.

By Proposition 2.11, we may run a (KF ′ + B̃ ′h)-MMP/Z ′ with scaling of an ample/Z ′ divisor, which
terminates with a model (X ′′,F ′′, B̃ ′′h)/Z ′ of (X ′,F ′, B̃ ′h)/Z ′ such that KF ′′ + B̃ ′′h

∼R,Z ′ 0. Denote
by f ′′

: X ′′
→ Z ′ the induced morphism. For any v ∈ Rm , let B̃ ′′h(v) and G ′′ be the strict transforms of

B̃ ′h(v) and G ′ on X ′′, respectively. By Proposition 2.11, (X ′′,F ′′, B̃ ′′h
; G ′′)/Z ′ is weak ACSS.

By Theorem 2.12, there exists an open subset U ∋ v0 of the rational envelope of v0, depending
only on d and v0, such that both (X ′′,F ′′, B̃ ′′h(v)) and (X, B(v)) are lc for any v ∈ U . By [Han et al.
2024, Lemma 5.3], K X + B(v) ∼R,Z 0, so f : (X, B(v)) → Z is an lc-trivial fibration for any v ∈ U .
Then f ′

: (X ′, B ′(v)) → Z ′ is an lc-trivial fibration with moduli part M(v) for any v ∈ U . Since
(X ′′,F ′′, B̃ ′′h

; G ′′)/Z ′ is weak ACSS by Theorem 3.2, possibly shrinking U , we may assume that
(X ′′,F ′′, B̃ ′′h(v); G ′′)/Z ′ is weak ACSS for any v ∈ U . By Proposition 2.10 and [Han et al. 2024,
Lemma 5.3],

K X ′′ + B̃ ′′h(v) + G ′′
∼R,Z ′ KF ′′ + B̃ ′′h(v) ∼R,Z ′ 0

for any v ∈ U , so f ′′
: (X ′′, B̃ ′′h(v) + G ′′) → Z ′ is an lc-trivial fibration.

Step 2. In this step, we show that we may let M(v) be the moduli part of f ′′
: (X ′′, B̃ ′′h(v)+ G ′′) → Z ′

and conclude the proof of the theorem.

Let p : W → X ′ and q : W → X ′′ be a common resolution of φ : X ′ 99K X ′′. By construction,
p∗(K X ′ + B ′) ≤ p∗(K X ′ + B̃ ′h) and q∗(KF ′′ + B̃ ′′h) ≤ p∗(KF ′ + B̃ ′h) = p∗(K X ′ + B̃ ′h) over a nonempty
open subset Z ′◦ of Z ′. Moreover, we can write p∗(K X ′ + B ′) − q∗(KF ′′ + B̃ ′′h) = Eφ − Eh such
that Eφ ≥ 0 is supported on p−1(Exc(φ)) and Eh ≥ 0 is supported on p−1(Exc(h)) over Z ′◦. Since
p∗(K X ′ + B ′) − q∗(KF ′′ + B̃ ′′h) ∼R,Z ′ 0, by the negativity lemma, Eφ = Eh = 0.

Thus, we deduce that KF ′′ + B̃ ′′h and K X ′ + B ′ are crepant over the generic point of Z ′. By Lemma 3.1,
KF ′′ + B̃ ′′h(v) and K X ′ + B ′(v) are crepant over the generic point of Z ′ for any v ∈ U . Therefore,
K X ′′ + B̃ ′′h(v) + G ′′ and K X ′ + B ′(v) are crepant over the generic point of Z ′ for any v ∈ U . We let



On the equivalence between the effective adjunction conjectures of Prokhorov–Shokurov and of Li 2273

M(v) be the moduli part of f ′′
: (X ′′, B̃ ′′h(v) + G ′′) → Z ′. By Theorem 2.13, M(v) descends to X ′′ for

any v ∈ U . By Lemma 2.14, M(v) is also the moduli part of f ′
: (X ′, B ′(v)) → Z ′ for any v ∈ U . Hence

M(v) is also the moduli part of f : (X, B(v)) → Z for any v ∈ U .
By Proposition 2.10, MX ′′ = KF ′′ + B̃ ′′h and M(v)X ′′ = KF ′′ + B̃ ′′h(v) for any v ∈ U . Therefore, for

any vectors v1, . . . , vk in U and positive real numbers a1, . . . , ak such that
∑k

i=1 ai = 1, we have

M
( k∑

i=1

aiv
i
)

X ′′

= KF ′′ + B̃ ′′h
( k∑

i=1

aiv
i
)

=

k∑
i=1

ai (KF ′′ + B̃ ′′h(vi )) =

k∑
i=1

ai M(vi ).

Since (X ′′,F ′′, B̃ ′′h(v); G ′′)/Z ′′ is weak ACSS for any v ∈ U , by Theorem 2.13, M(v) descends to X ′′

for any v ∈ U . Thus

M
( k∑

i=1

aiv
i
)

=

k∑
i=1

ai M(vi ).

Let M Z (v) be the base moduli part of f : (X, B(v)) → Z for any v ∈ U . Then for any v ∈ U , M Z (v)

descends to Z ′ and
f ′′∗M Z (v)Z ′ ∼R M(v)X ′′ .

Therefore,

M Z
( k∑

i=1

aiv
i
)

∼R

k∑
i=1

ai M Z (vi )

and k∑
i=1

ai (K Z + BZ (vi ) + M Z (vi )Z ) ∼R K Z + BZ

( k∑
i=1

aiv
i
)

+ M Z
( k∑

i=1

aiv
i
)

Z
.

Thus, k∑
i=1

ai BZ (vi ) ∼R BZ

( k∑
i=1

aiv
i
)

.

By the definition of the discriminant part and Lemma 2.15,

k∑
i=1

ai BZ (vi ) ≥ BZ

( k∑
i=1

aiv
i
)
,

so
k∑

i=1

ai BZ (vi ) = BZ

( k∑
i=1

aiv
i
)

,

and we are done. □

Theorem 3.4 (uniform rational polytope for canonical bundle formula, II). Let d be a positive integer
and v0

1, . . . , v
0
m real numbers. Then there exists an open subset U ∋ v0 of the rational envelope of

v0 :=(v0
1, . . . ,v

0
m) in Rm, depending only on d and v0, such that the following conditions hold. Assume that

• f : (X, B) → Z is an lc-trivial fibration with dim X − dim Z = d ,

• B = Bh
+ Bv, where Bh and Bv are the horizontal/Z part and the vertical/Z part of B, respectively,
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• Bh
=

∑m
i=1 v0

i Bh
i , where Bh

i ≥ 0 are Weil divisors,

• Bh(v) :=
∑m

i=1 vi Bh
i for any v = (v1, . . . , vm) ∈ Rm ,

• Bv
=

∑n
i=1 u0

i Bv
i for some real numbers u0

i and Weil divisors Bv
i , and

• BZ and M are the discriminant part and the moduli part of f : (X, B) → Z , respectively.

Then there exist R-affine functions s1, . . . , sn : Rm
→ R satisfying the following.

Let Bv(v) :=
∑n

i=1 si (v)Bv
i and B(v) := Bh(v) + Bv(v) for any v ∈ Rm . Then:

(1) For any v ∈ U , f : (X, B(v)) → Z is an lc-trivial fibration.

(2) For any vectors v1, . . . , vk in U and positive real numbers a1, . . . , ak such that
∑k

i=1 ai = 1, we have

BZ

( k∑
i=1

aiv
i
)

=

k∑
i=1

ai BZ (vi ) and M
( k∑

i=1

aiv
i
)

=

k∑
i=1

ai M(vi ),

where BZ (v) and M(v) are the discriminant part and the moduli part of f : (X, B(v)) → Z.

Proof. Step 1. In this step we construct s1, . . . , sn .

Let V be the rational envelope of (v0
1, . . . , v

0
m, u0

1, . . . , u0
n) ⊂ Rm+n and let Vm be the image of V in Rm

under the projection πm :Rm+n
→Rm

: (x1, . . . , xm+n)→ (x1, . . . , xm). Then Vm is the rational envelope of
v0, and there exists an affine function τ : Vm → V such that πm◦τ is the identity morphism. Now τ naturally
extends to an affine function β :Rm

→ V ⊂Rm+n . Let πn :Rm+n
→Rn

: (x1, . . . , xm+n)→ (xm+1, . . . , xn)

be the projection and let s := πn ◦ β. Then we may write

s(v) := (s1(v), . . . , sn(v)),

where s1, . . . , sn : Rm
→ R are R-affine functions.

Step 2. This step is almost identical to Step 1 of the proof of Theorem 3.3, with minor differences. In
this step, we consider an equidimensional model of f : (X, B) → Z , run an MMP to achieve an auxiliary
model X ′′, and construct an lc-trivial fibration f ′′

: (X ′′, B̃ ′′h(v) + G ′′) → Z ′.

Let f ′
: (X ′, 6X ′) → (Z ′, 6Z ′) be an equidimensional model of f : (X, B) → Z associated with

h : X ′
→ X and hZ : Z ′

→ Z . Let B̃ ′
:= h−1

∗
B + Supp Exc(h) with horizontal/Z ′ part B̃ ′h , and

B̃ ′(v) := h−1
∗

B(v)+Supp Exc(h) with horizontal/Z ′ part B̃ ′h(v) for any v ∈ Rm . Let G ′ be the vertical/Z ′

part of 6X ′ . Denote K X ′ + B ′
:= h∗(K X + B) and K X ′ + B ′(v) := h∗(K X + B(v)) for any v ∈ Rm .

Let F ′ be the foliation induced by f ′. Then (X ′,F ′, B̃ ′h) is foliated log smooth. By Lemma 2.9,
(X ′,F ′, B̃ ′h

; G ′)/Z ′ is weak ACSS. Choose KF ′ as in Proposition 2.10. Then K X ′ − KF ′ is vertical/Z ′

by Proposition 2.10. Therefore,

κσ (X ′/Z ′, KF ′ + B̃ ′h) = κσ (X ′/Z ′, KF ′ + B̃ ′) = κσ (X ′/Z ′, K X ′ + B̃ ′) = κσ (X ′/Z ′, K X ′ + B ′) = 0,

and

κι(X ′/Z ′, KF ′ + B̃ ′h) = κι(X ′/Z ′, KF ′ + B̃ ′) = κι(X ′/Z ′, K X ′ + B̃ ′) = κι(X ′/Z ′, K X ′ + B ′) = 0.
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By Proposition 2.11, we may run a (KF ′ + B̃ ′h)-MMP/Z ′ with scaling of an ample/Z ′ divisor, which
terminates with a model (X ′′,F ′′, B̃ ′′h)/Z ′ of (X ′,F ′, B̃ ′h)/Z ′ such that KF ′′ + B̃ ′′h

∼R,Z ′ 0. Denote
by f ′′

: X ′′
→ Z ′ the induced morphism. For any v ∈ Rm , let B̃ ′′h(v) and G ′′ be the strict transforms of

B̃ ′h(v) and G ′ on X ′′, respectively. By Proposition 2.11, (X ′′,F ′′, B̃ ′′h
; G ′′)/Z ′ is weak ACSS.

By Theorem 2.12, there exists an open subset U ∋ v0 of the rational envelope of v0 depending only on
d and v0 such that (X ′′,F ′′, B̃ ′′h(v)) is lc for any v ∈ U . Since (X ′′,F ′′, B̃ ′′h

; G ′′)/Z ′ is weak ACSS by
Theorem 3.2, possibly shrinking U , we may assume that (X ′′,F ′′, B̃ ′′h(v); G ′′)/Z ′ is weak ACSS for
any v ∈ U . By Proposition 2.10 and [Han et al. 2024, Lemma 5.3],

K X ′′ + B̃ ′′h(v) + G ′′
∼R,Z ′ KF ′′ + B̃ ′′h(v) ∼R,Z ′ 0

for any v ∈ U , so f ′′
: (X ′′, B̃ ′′h(v) + G ′′) → Z ′ is an lc-trivial fibration.

Step 3. This step is almost identical to Step 2 of the proof of Theorem 3.3 with minor differences. In this
step, we show that we may let M(v) be the moduli part of f ′′

: (X ′′, B̃ ′′h(v)+ G ′′) → Z ′ and conclude
the proof of the theorem.

Let p : W → X ′ and q : W → X ′′ be a common resolution of φ : X ′ 99K X ′′. By construction,
p∗(K X ′ + B ′) ≤ p∗(K X ′ + B̃ ′h) and q∗(KF ′′ + B̃ ′′h) ≤ p∗(KF ′ + B̃ ′h) = p∗(K X ′ + B̃ ′h) over an open
subset Z ′◦ of Z ′. Moreover, we can write p∗(K X ′ + B ′)− q∗(KF ′′ + B̃ ′′h) = Eφ − Eh such that Eφ ≥ 0
is supported on p−1(Exc(φ)) and Eh ≥ 0 is supported on p−1(Exc(h)) over Z ′◦. Since

p∗(K X ′ + B ′) − q∗(KF ′′ + B̃ ′′h) ∼R,Z ′ 0,

by the negativity lemma, Eφ = Eh = 0.
Thus, KF ′′ + B̃ ′′h and K X ′ + B ′ are crepant over the generic point of Z ′. By Lemma 3.1, KF ′′ + B̃ ′′h(v)

and K X ′ + B ′(v) are crepant over the generic point of Z ′ for any v ∈ U . Therefore, K X ′′ + B̃ ′′h(v) + G ′′

and K X ′ + B ′(v) are crepant over the generic point of Z ′ for any v ∈ U . We let M(v) be the moduli part of
f ′′

: (X ′′, B̃ ′′h(v)+ G ′′) → Z ′. By Theorem 2.13, M(v) descends to X ′′ for any v ∈ U . By Lemma 2.14,
M(v) is also the moduli part of f ′

: (X ′, B ′(v)) → Z ′ for any v ∈ U . Hence M(v) is also the moduli
part of f : (X, B(v)) → Z for any v ∈ U .

By Proposition 2.10, MX ′′ = KF ′′ + B̃ ′′h and M(v)X ′′ = KF ′′ + B̃ ′′h(v) for any v ∈ U . Therefore, for
any vectors v1, . . . , vk in U and positive real numbers a1, . . . , ak such that

∑k
i=1 ai = 1, we have

M
( k∑

i=1

aiv
i
)

X ′′

= KF ′′ + B̃ ′′h
( k∑

i=1

aiv
i
)

=

k∑
i=1

ai (KF ′′ + B̃ ′′h(vi )) =

k∑
i=1

ai M(vi ).

Since (X ′′,F ′′, B̃ ′′h(v); G ′′)/Z ′′ is weak ACSS for any v ∈ U , by Theorem 2.13, M(v) descends to X ′′

for any v ∈ U . Thus

M
( k∑

i=1

aiv
i
)

=

k∑
i=1

ai M(vi ).
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Let M Z (v) be the base moduli part of f : (X, B(v)) → Z for any v ∈ U . Then for any v ∈ U , M Z (v)

descends to Z ′ and
f ′′∗M Z (v)Z ′ ∼R M(v)X ′′ .

Therefore,

M Z
( k∑

i=1

aiv
i
)

∼R

k∑
i=1

ai M Z (vi )

and k∑
i=1

ai (K Z + BZ (vi ) + M Z (vi )Z ) ∼R K Z + BZ

( k∑
i=1

aiv
i
)

+ M Z
( k∑

i=1

aiv
i
)

Z
.

Thus, k∑
i=1

ai BZ (vi ) ∼R BZ

( k∑
i=1

aiv
i
)

.

By the definition of the discriminant part and Lemma 2.15,

k∑
i=1

ai BZ (vi ) ≥ BZ

( k∑
i=1

aiv
i
)

,

so k∑
i=1

ai BZ (vi ) = BZ

( k∑
i=1

aiv
i
)

,

and we are done. □

Remark 3.5. The arguments used in Theorems 3.3 and 3.4 also apply to lc-trivial fibrations of generalized
pairs, as all results from [Chen et al. 2023] remain applicable. Due to the technical nature of the arguments,
we omit detailed statements and proofs here.

Remark 3.6. It is also possible to establish uniform rational polytopes for canonical bundle formulas
for lc-trivial fibrations with DCC coefficients, similar to [Li 2024, Theorem 4.1; Chen et al. 2024,
Theorem 1.9; 2025, Theorem 1.1]. The proof follows almost identically to those of Theorems 3.3 and 3.4.
Again, due to the technical nature of the arguments, we omit detailed statements and proofs here.

Since the moduli part is determined by the horizontal part of B, the following direct consequence of
Theorem 1.4 might be useful. Indeed, Corollary 3.7 could also be applied to prove Theorem 1.4 by either
[Li 2024, Proposition 3.3] or [Birkar 2021, Lemma 3.5].

Corollary 3.7. Let d be a positive integer and v0
1, . . . , v

0
m real numbers. Then there exists an open subset

U ∋ v0 of the rational envelope of v0 := (v0
1, . . . , v

0
m) in Rm , depending only on d and v0, such that the

following conditions hold. Assume that

• f : (X, B) → Z is an lc-trivial fibration with dim X − dim Z = d ,

• B =
∑m

i=1 v0
i Bi , where Bi ≥ 0 are Weil horizontal/Z divisors,

• B(v) :=
∑m

i=1 vi Bi for any v = (v1, . . . , vm) ∈ Rm , and

• BZ and M are the discriminant part and the moduli part of f : (X, B) → Z , respectively.
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Then:

(1) For any v ∈ U , f : (X, B(v)) → Z is an lc-trivial fibration.

(2) For any vectors v1, . . . , vk in U and positive real numbers a1, . . . , ak such that
∑k

i=1 ai = 1, we have

BZ

( k∑
i=1

aiv
i
)

=

k∑
i=1

ai BZ (vi ) and M
( k∑

i=1

aiv
i
)

=

k∑
i=1

ai M(vi ),

where BZ (v) and M(v) are the discriminant part and the moduli part of f : (X, B(v)) → Z.

Proof. This is a special case of Theorem 3.4 as there is no vertical/Z part of B. □

When B is a sum of horizontal/Z divisors, Corollary 3.7 is stronger than Theorem 3.3, as Corollary 3.7
requires that dim X − dim Z = d while Theorem 3.3 requires that dim X = d.

4. Proof of the main theorem

Proof of Theorem 1.4. It is evident that Conjecture 1.3 in relative dimension d implies Conjecture 1.1
in relative dimension d. Therefore, we only need to show that Conjecture 1.1 in relative dimension d
implies Conjecture 1.3 in relative dimension d .

Under the notations and assumptions of Conjecture 1.3, suppose that Conjecture 1.1 holds in relative
dimension d . By [Hacon et al. 2014, Theorem 1.5], we may assume that 0 is a finite set {v0

1, . . . , v
0
m} for

some nonnegative integer m. Let Bh be the horizontal/Z part of B, and write Bh
=

∑m
i=1 v0

i Bh
i , where

v0
i ∈ 0 for each i and Bh

i ≥ 0 are Weil divisors. Let Bh(v) :=
∑m

i=1 vi Bh
i for any v := (v1, . . . , vm) ∈ Rm ,

and v0 := (v0
1, . . . , v

0
m). Let BZ and M be the discriminant part and the moduli part of f : (X, B) → Z ,

respectively.
Let U ∋ v0 be an open subset of the rational envelope of v0 as in Theorem 3.4 which depends only on d

and v0, and we let s1, . . . , sn , Bh(v), Bv(v), B(v) be as in Theorem 3.4 for any v ∈ U . Let k := dim U +1
and v1, . . . , vk

∈ U ∩ Qm be vectors depending only on d and v0 such that v0 is contained in the interior
of the convex hull of v1, . . . , vk . Then there exist unique real numbers a1, . . . , ak ∈ (0, 1] such that∑k

i=1 ai = 1 and
∑k

i=1 aiv
i
= v0. By Theorem 3.4,

• Bh(vi ) is the horizontal/Z part of B(vi ) for each i ,

• f : (X, B(vi )) → Z is an lc-trivial fibration for each i , and

• BZ =
∑k

i=1 ai BZ (vi ) and M =
∑k

i=1 ai M(vi ), where BZ (vi ) and M(vi ) are the discriminant part
and the moduli part of f : (X, B(vi )) → Z , respectively.

By Conjecture 1.1 in relative dimension d, there exists a positive integer I depending only on d and 0

such that IM(vi ) is basepoint-free. Therefore, IM is {a1, . . . , ak}-basepoint-free. Let 00 := {a1, . . . , ak},
and Conjecture 1.3 in relative dimension d follows. □

Proof of Corollary 1.5. This now follows from Theorem 1.4 and [Prokhorov and Shokurov 2009,
Theorem 8.1]. □
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We combine the split torsor method and the hyperbola method for toric varieties to count rational points
and Campana points of bounded height on certain subvarieties of toric varieties.
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1. Introduction

We combine the split torsor method and the hyperbola method for toric varieties to count rational
points and Campana points of bounded height on certain subvarieties of smooth split proper toric
varieties. This line of research has been initiated by Blomer and Brüdern [2018] in the setting of diagonal
hypersurfaces in products of projective spaces. Other results in this direction include hypersurfaces and
complete intersections in products of projective spaces [Schindler 2016], improvements for bihomogeneous
hypersurfaces for degree (2, 2) and (1, 2) [Browning and Hu 2019; Hu 2020], as well as generalizations
to hypersurfaces in certain toric varieties [Mignot 2015; 2016; 2018].

The versions of the hyperbola method used in all of these articles are rather close to the original [Blomer
and Brüdern 2018] for products of projective spaces. In our recent work [Pieropan and Schindler 2024], we
established a very general form of the hyperbola method for split toric varieties, in which the height condi-
tion can also globally be given by the maximum of several monomials. The goal of this article is to show
applications of our new hyperbola method. We develop a refined framework for the split torsor method on
split smooth proper toric varieties and show that counting results for subvarieties of projective spaces can be
carried over to toric varieties by a direct application of the hyperbola method [Pieropan and Schindler 2024].
With this we can prove new cases of Manin’s conjecture [Batyrev and Manin 1990; Franke et al. 1989] on
the number of rational points of bounded height on Fano varieties for certain subvarieties in toric varieties.
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The split torsor method provides a parametrization of rational points on Fano varieties via Cox rings
[Derenthal and Pieropan 2020; Salberger 1998]. The Cox ring of a smooth proper toric variety X is a
polynomial ring endowed with a grading by the Picard group of the toric variety [Cox 1995]. Subvarieties of
toric varieties are intersections of hypersurfaces, which are defined by Pic(X)-homogeneous polynomials
in the Cox ring of X . The subvarieties considered in this paper are defined by homogeneous elements in
the Cox ring of the toric variety such that each polynomial involves only variables of the same degree.
With the split torsor method parametrization, the height is given by the maximum of a set of monomials
and this is the correct shape to apply our generalized version of the hyperbola method [Pieropan and
Schindler 2024]. The hyperbola method reduces the counting problem to counting functions over boxes of
different shapes. An advantage of our method is that it is already adapted to the shape of height functions
appearing. Also, compared to earlier versions of the hyperbola method, we do not need estimates for
lower-dimensional boxes, and with this our proofs are relatively short.

We now illustrate our approach on a number of examples. In a similar fashion, it is possible to
apply counting results such as [Birch 1962; Browning and Heath-Brown 2017; Heath-Brown 1996;
Rydin Myerson 2018; 2019], and many others, to subvarieties of toric varieties defined by elements of
the Cox ring each involving only variables of the same degree.

1.1. Results. Let X be a smooth split complete toric Q-variety with open torus T . Let D1, . . . , Ds ∈

Pic(X) be the pairwise distinct classes of the torus-invariant prime divisors on X . For i ∈ {1, . . . , s}, let
ni = dimQ H 0(X, Di ). Let HL be the height associated to a semiample torus-invariant divisor L on X as
discussed in Section 2.2.

Our first result concerns subvarieties of toric varieties defined by linear forms.

Theorem 1.1. Let V ⊆ X be a complete intersection of hypersurfaces Hi,l with 1 ≤ i ≤ s, 1 ≤ l ≤ ti .
Assume that [Hi,l] = Di in Pic(X) for i ∈ {1, . . . , s} such that ti ̸= 0. Assume that V ∩ T ̸= ∅ and
ti ≤ ni − 2 for all i ∈ {1, . . . , s}. Assume that L = −

(
K X +

∑s
i=1

∑ti
l=1[Hi,l]

)
is ample. For B > 0, let

NV (B) be the number of Q-rational points on V ∩ T of HL -height at most B. Then

NV (B) = cB(log B)b−1
+ O(B(log B)b−2(log log B)s),

where b = rk Pic(V ) and c is a positive constant, which is defined by (3-7) with k = b − 1, CM,d given by
(4-1), and ϖi = ni − ti for i ∈ {1, . . . , s}.

We use this result as a toy example to show how to combine the hyperbola method with the universal
torsor method in the context of rather general smooth split toric varieties. We now move on to results
which require a deeper understanding of the underlying Diophantine problems via methods from Fourier
analysis.

We start with a result that concerns subvarieties of toric varieties defined by bihomogeneous polynomials.
It is obtained by combining the framework developed in this paper with the hyperbola method [Pieropan
and Schindler 2024] and preliminary counting results in boxes of different side lengths [Schindler 2016].
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Theorem 1.2. Let V ⊆ X be a smooth complete intersection of hypersurfaces H1, . . . , Ht of the same
degree e1 D1 + e2 D2 in Pic(X). Assume that V ∩ T ̸= ∅, that ni − tei ≥ 2 for i ∈ {1, 2}, and that
n1 + n2 > dim V ∗

1 + dim V ∗

2 + 3 · 2e1+e2e1e2t3, where V ∗

1 , V ∗

2 ⊆ An1+n2 are affine varieties defined in
Section 5. Assume that L = −([K X ] + [H1 + · · · + Ht ]) is ample. Then there is an open subset W ⊆ X
such that the number NV,W (B) of Q-rational points on V ∩ W ∩ T of HL -height at most B satisfies

NV,W (B) = cB(log B)b−1
+ O(B(log B)b−2(log log B)s)

for B > 0, where b = rk Pic(V ) and c is defined in (3-7) with k = b−1, CM,d given by (5-1), ϖi = ni − tei

for i ∈ {1, 2}, and ϖi = ni for i ∈ {3, . . . , s}. The constant c is positive if V (Qv) ̸=∅ for all places v of Q.

Theorems 1.1 and 1.2 are compatible with Manin’s conjecture [Franke et al. 1989], as L|V = −KV by
adjunction. The proofs in Sections 4 and 5 yield an asymptotic formula even if we drop the ampleness
assumption on L .

Theorem 1.2 as well as work of Mignot [2016; 2018] include the case of certain hypersurfaces
in products of projective spaces. However, in comparison to Mignot’s work, we do not require the
condition that the effective cone of the toric variety is simplicial. An example of a split toric variety with
nonsimplicial effective cone — where our theorem applies — is the blow-up at a torus-invariant point of
Pn1 × Pn2 × Y , where n1 and n2 are sufficiently large and Y is a split del Pezzo surface of degree 6.

Our last result concerns sets of Campana points in the sense of [Pieropan et al. 2021] for subvarieties
defined by diagonal equations. We introduce the following integral models. Let X be the Z-toric scheme
defined by the fan of X . For i ∈ {1, . . . , s}, let Di,1, . . . , Di,ni be the torus-invariant prime divisors on X

of class Di .

Theorem 1.3. Let V ⊆ X be an intersection of hypersurfaces H1, . . . , Ht such that Hi is defined by
a homogeneous diagonal polynomial in the Cox ring of X of degree ei Di in Pic(X) and with none
of the coefficients equal to zero. Let V be the closure of V in X . For i ∈ {1, . . . , s}, fix integers
2≤mi,1 ≤· · ·≤mi,ni . Let Dm =

∑s
i=1

∑ni
j=1(1−1/mi, j )Di, j . Assume that V ∩T ̸=∅, that n1, . . . , nt ≥2,

and, for i ∈ {1, . . . , s}, that
∑ni

j=1 1/mi, j > 3, and that

ni −1∑
j=1

1
ei mi, j (ei mi, j + 1)

≥ 1 if ei = 1 and
ni∑

j=1

1
2s0(ei mi, j )

> 1 if ei ≥ 2,

where s0(ei mi, j ) is defined in Lemma 6.1. Let L = −(K X +Dm|X + H1 +· · ·+ Ht) be ample. For B > 0,
let NV (B) be the number of Z-Campana points on (V , Dm|V ) that lie in T and have HL -height at most B.
Then

NV (B) = cB(log B)b−1
+ O(B(log B)b−2(log log B)s),

where b = rk Pic(V ) and c is defined in (3-7) with k = b − 1, CM,d given by (6-11), and ϖ1, . . . ,ϖs

given by (6-10).

The order of growth in Theorem 1.3 is compatible with the Manin-type conjecture for Campana points
[Pieropan et al. 2021], as L|V is the log anticanonical divisor of the pair (V, Dm|V ) by adjunction.
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We now give a number of examples where Theorems 1.2 and 1.3 can be applied. Due to the range of
application of the circle method, we require the Cox ring of the toric variety to have a large number of
variables of the same degree. This holds for toric varieties with several torus-invariant prime divisors of
the same degree and for products of such toric varieties. Here are some concrete examples:

• The projective space Pn has Cox rings with n + 1 variables of the same degree.

• The blow-up of the projective space Pn at l < n + 1 torus-invariant points has Cox rings with n + 1 − l
variables of the same degree.

• The blow-up of a product of toric varieties each with several torus-invariant prime divisors of the same
degree. Indeed, if X and Y are smooth split toric varieties such that the Cox ring of X has nX variables
of the same degree dX , the Cox ring of Y has nY variables of the same degree dY , and P ∈ X × Y is a
point where m X ≤ nX variables of degree dX vanish and mY ≤ nY variables of degree dY vanish, then the
Cox ring of the blow-up of X × Y at P has m X variables of the same degree dX − e and mY variables of
the same degree dY − e, where e is the class of the exceptional divisor.

The structure of this article is as follows. In Section 2 we reformulate the height function and the
multiplicative function µ for Möbius inversion according to the principle of grouping variables of the same
degree. In Section 3 we combine the new framework with the hyperbola method developed in [Pieropan
and Schindler 2024] to obtain a general counting tool for points of bounded height on subvarieties of
toric varieties. Theorems 1.1, 1.2, and 1.3 are proven in Sections 4, 5, and 6, respectively.

2. Toric varieties setting

Here we introduce the geometric setup and notation for the whole paper. We refer the reader to [Salberger
1998, §8] for a concise introduction to toric varieties and their toric models over Z, and to [Cox et al.
2011] for an extensive treatment of toric varieties.

Let 6 be the fan of a complete smooth split toric variety X over a number field K. We denote by
{D1, . . . , Ds}⊆Pic(X) the set of degrees of prime torus-invariant divisors of X . For each i ∈{1, . . . , s}, we
denote by Di,1, . . . , Di,ni the torus-invariant divisors of degree Di and by ρi,1, . . . , ρi,ni the corresponding
rays of 6. Let I := {(i, j) ∈ N2

: 1 ≤ i ≤ s, 1 ≤ j ≤ ni }. Let 6max be the set of maximal cones of 6. For
each maximal cone σ of 6, let Jσ := {(i, j) ∈ I : ρi, j ⊆ σ }, let Iσ = I ∖Jσ , and let Iσ be the set of
indices i ∈ {1, . . . , s} such that {(i, 1), . . . , (i, ni )} ∩ Iσ ̸= ∅.

Let X be the toric scheme defined by 6 over the ring of integers OK of K, and, for each (i, j) ∈ I, let
Di, j be the closure of Di, j in X .

Let R be the polynomial ring over OK with variables xi, j for (i, j) ∈ I and endowed with the Pic(X)-
grading induced by assigning degree Di to the variable xi, j for all (i, j) ∈ I. For every torus-invariant
divisor D =

∑s
i=1

∑ni
j=1 ai, j Di, j on X and every vector x = (xi, j )(i, j)∈I ∈ CI , we write

x D
:=

s∏
i=1

ni∏
j=1

xai, j
i, j .
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By [Salberger 1998, §8], X has a unique universal torsor π : Y → X , and Y ⊆ A#I
OK

is the open subset
whose complement is defined by x Dσ = 0 for all maximal cones σ of 6, where Dσ :=

∑
(i, j)∈Iσ

Di, j for
all σ ∈ 6max.

Let r be the rank of Pic(X). Let C be a set of ideals of OK that form a system of representatives for
the class group of K. As in [Pieropan and Schindler 2024, §6.1], we fix a basis of Pic(X), and, for every
divisor D on X and every tuple c= (c1, . . . , cr ) ∈ Cr , we write c[D]

:=
∏r

i=1 c
bi
i , where [D] = (b1, . . . , br )

with respect to the fixed basis of Pic(X). Then, as in [Pieropan 2016, §2],

X (K) = X (OK) =

⊔
c∈Cr

π c(Y c(OK)),

where π c
: Y c

→ X is the twist of π defined in [Frei and Pieropan 2016, Theorem 2.7]. The fibers of
π |Y c(OK) are all isomorphic to (O×

K)r , and Y c(OK) ⊆ OI
K is the subset of points x ∈

⊕
(i, j)∈I c

[Di, j ] that
satisfy ∑

σ∈6max

x Dσ c−[Dσ ]
= OK. (2-1)

Let N be the lattice of cocharacters of X . Then 6 ⊆ N ⊗Z R. For every (i, j) ∈ I, let νi, j be the unique
generator of ρi, j ∩ N . For every torus-invariant Q-divisor D =

∑s
i=1

∑ni
j=1 ai, j Di, j of X and for every

σ ∈ 6max, let uσ,D ∈ HomZ(N , Q) be the character determined by uσ,D(νi, j ) = ai, j for all (i, j) ∈ Jσ ,
and define D(σ ) := D −

∑s
i=1

∑ni
j=1 uσ,D(νi, j )Di, j . Then D and D(σ ) are linearly equivalent.

2.1. Torus-invariant divisors. We collect properties of toric varieties and their torus-invariant divisors.

Lemma 2.1. (i) Let σ ∈ 6max.

(a) For i ∈ Iσ , there is a unique index ji,σ ∈ {1, . . . , ni } such that (i, ji,σ ) ∈ Iσ . So #Iσ = #Iσ = r .
(b) For i ∈ Iσ , we have (i, j ′) ∈ Jσ for all j ′

∈ {1, . . . , ni }∖ { ji,σ }.
(c) For i ∈ {1, . . . , s}∖ Iσ , we have {(i, 1), . . . , (i, ni )} ⊆ Jσ .

Let D be a torus-invariant Q-divisor on X. For σ ∈ 6max, write

D(σ ) =

s∑
i=1

ni∑
j=1

αi, j,σ Di, j .

For i ∈ {1, . . . , s}, let αi,σ =
∑ni

j=1 αi, j,σ .

(ii) Let σ ∈ 6max. Then D(σ ) =
∑

i∈Iσ αi,σ Di, ji,σ .

(iii) Let σ, σ ′
∈ 6max. If there are i ∈ Iσ and j ∈ {1, . . . , ni } such that Jσ ∩Jσ ′ = Jσ ∖ {(i, j)}, then

Iσ = Iσ ′ and αi ′,σ = αi ′,σ ′ for all i ′
∈ {1, . . . , s}.

(iv) Let σ ∈ 6max and, for every i ∈ Iσ , let ji ∈ {1, . . . , ni }. Then there exists a unique σ ′
∈ 6max such

that Iσ ′ = Iσ , (i, ji ) ∈ Iσ ′ for i ∈ Iσ , and αi,σ ′ = αi,σ for i ∈ {1, . . . , s}.

(v) The relation σ ∼σ ′ if and only if Iσ = Iσ ′ defines an equivalence relation on 6max, and the equivalence
class of σ has cardinality

∏
i∈Iσ ni .

(vi) Let J ⊆ I be minimal with respect to inclusion and such that J ∩ Iσ ̸= ∅ for all σ ∈ 6max. Let
i ∈ {1, . . . , s} such that {(i, 1), . . . , (i, ni )} ∩J ̸= ∅. Then {(i, 1), . . . , (i, ni )} ⊆ J .
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Proof. Part (i) follows from the fact that [Di, j ] = Di for all j ∈ {1, . . . , ni } and that the set {Di : i ∈ Iσ }

is a basis of Pic(X) by [Cox et al. 2011, Theorem 4.2.8] as X is smooth and proper.
Part (ii) follows from part (i) and the fact that, by construction, αi, j,σ = 0 whenever (i, j) ∈ Jσ .
For part (iii) we observe that if σ ̸= σ ′, then Jσ = (Jσ ∩Jσ ′)⊔{(i, j)} and Jσ ′ = (Jσ ∩Jσ ′)⊔{(i, ji,σ )},

where ji,σ is the index defined in part (i). Thus i ∈ Iσ ∩ Iσ ′ , and, for every index i ′
∈ {1, . . . , s} with

i ′
̸= i , we have

Jσ ∩ {(i ′, 1), . . . , (i ′, ni ′)} = Jσ ′ ∩ {(i ′, 1), . . . , (i ′, ni ′)} ⊆ Jσ ∩Jσ ′ .

Recall that
[D(σ )] =

∑
i∈Iσ

αi,σ Di and [D(σ ′)] =

∑
i∈Iσ ′

αi,σ ′ Di .

Now the result follows as [D(σ )] = [D(σ ′)] in Pic(X) and {Di : i ∈ Iσ } is a basis of Pic(X).
For part (iv), we write Iσ = {i1, . . . , ir }. We construct by induction σ1, . . . , σr such that, for each

l ∈ {1, . . . , r},

(i1, ji1), . . . , (il, jil ) ∈ Iσl , Iσl = Iσ , and αi,σl = αi,σ for all i ∈ {1, . . . , s}.

If (i1, ji1) ∈ Iσ , let σ1 = σ . Otherwise, (i1, ji1) ∈ Jσ and by [Salberger 1998, Lemma 8.9] there is
σ1 ∈ 6max such that Jσ1 ∩ Jσ = Jσ ∖ {(i1, ji1)}. Since i1 ∈ Iσ , by part (iii) we have Iσ1 = Iσ and
αi,σ1 = αi,σ for all i ∈ {1, . . . , s}. Assume that we have constructed σl−1 for given l ≤ r . If (il, jil ) ∈ Iσl−1 ,
let σl = σl−1. Otherwise, (il, jil ) ∈ Jσl−1 and by [Salberger 1998, Lemma 8.9] there is σl ∈ 6max such that
Jσl ∩Jσl−1 =Jσl−1∖{(il, jil )}. Since il ∈ Iσl−1 , by part (iii) we have Iσl = Iσl−1 = Iσ and αi,σl =αi,σl−1 =αi,σ

for all i ∈ {1, . . . , s}. Since (i1, ji1), . . . , (il−1, jil−1) ∈ Iσl−1 and Jσl = (Jσl−1 ∩Jσl )∪{(il, jil ,σl−1)}, where
jil ,σl−1 is the index defined in part (i), we conclude that (i1, ji1), . . . , (il, jil ) ∈ Iσl . Take σ ′

= σr . The
uniqueness of σ ′ follows from part (i), as σ ′ is completely determined by Iσ ′ .

Part (v) is a direct consequence of part (iv).
For part (vi), let j ∈ {1, . . . , ni } such that (i, j) ∈ J . By minimality of J , there exists σ ∈ 6max

such that J ∩ Iσ = {(i, j)}. If ni > 1, let j ′
∈ {1, . . . , ni } ∖ { j}. By [Salberger 1998, Lemma 8.9]

there is σ ′
∈ 6max such that Jσ ′ ∩ Jσ = Jσ ∖ {(i, j ′)}. Hence Iσ ′ = (Iσ ∖ {(i, j)}) ∪ {(i, j ′)}. Since

J ∩ (Iσ ∖ {(i, j)}) = ∅ and J ∩ Iσ ′ ̸= ∅, we conclude that (i, j ′) ∈ J . □

2.2. Heights. Let L be a semiample torus-invariant Q-divisor on X . Let HL be the height on X defined
by L as in [Pieropan and Schindler 2024, §6.3]. For σ ∈ 6max, write

L(σ ) =

s∑
i=1

ni∑
j=1

αi, j,σ Di, j and αi,σ =

ni∑
j=1

αi, j,σ

for all i ∈ {1, . . . , s}. Let �K be the set of places of K.

Lemma 2.2. For every ν ∈ �K and every x ∈ Y (K), we have

sup
σ∈6max

|x L(σ )
|ν = sup

σ∈6max

s∏
i=1

sup
1≤ j≤ni

|xi, j |
αi,σ
ν .
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Proof. Fix ν ∈ �K and x ∈ Y (K). By Lemma 2.1 (ii), we have

sup
σ∈6max

|x L(σ )
|ν = sup

σ∈6max

∏
i∈Iσ

|xi, ji,σ |
αi,σ
ν .

For every i ∈ {1, . . . , s}, let ji ∈ {1, . . . , ni } such that |xi, ji |ν = sup1≤ j≤ni
|xi, j |ν . Let σ ∈ 6max. By

Lemma 2.1 (iv) there is σ ′
∈ 6max such that Iσ ′ = Iσ , (i, ji ) ∈ Iσ ′ for all i ∈ Iσ , and αi,σ ′ = αi,σ for all

i ∈ {1, . . . , s}. Then

|x L(σ ′)
|ν =

∏
i∈Iσ ′

|xi, ji |
αi,σ ′

ν =

∏
i∈Iσ

sup
1≤ j≤ni

|xi, j |
αi,σ
ν =

s∏
i=1

sup
1≤ j≤ni

|xi, j |
αi,σ
ν . □

Thus

HL(x) =

∏
ν∈�K

sup
σ∈6max

s∏
i=1

sup
1≤ j≤ni

|xi, j |
αi,σ
ν for all x ∈ Y (K).

2.3. Coprimality conditions. We now rewrite the coprimality condition (2-1) in terms of the notation
introduced in this paper.

Lemma 2.3. For all x ∈
⊕

(i, j)∈I c
[Di, j ],∑

σ∈6max

x Dσ c−[Dσ ]
=

∑
σ∈6max

∏
i∈Iσ

(xi,1, . . . , xi,ni )c
−Di .

Proof. For σ ∈ 6max, let

Xσ =

{∏
i∈Iσ

xi, ji : ji ∈ {1, . . . , ni } ∀i ∈ {1, . . . , s}
}
.

The inclusion ⊆ is clear as x Dσ ∈ Xσ and c−[Dσ ]
=

∏
i∈Iσ c

−Di for all σ ∈ 6max. For the converse
inclusion, fix σ ∈ 6max and x ∈ Xσ . For every i ∈ Iσ , let ji ∈ {1, . . . , ni } such that x =

∏
i∈Iσ xi, ji . By

Lemma 2.1 (iv) there is σ ′
∈ 6max such that Iσ ′ = Iσ and (i, ji ) ∈ Iσ ′ for i ∈ Iσ . Then x Dσ ′ = x . □

2.4. Möbius function. Let IK be the set of nonzero ideals of OK. Let χ :IK
s
→{0, 1} be the characteristic

function of the subset {
b ∈ IK

s
:

∑
σ∈6max

∏
i∈Iσ

bi = OK

}
. (2-2)

For every d ∈ IK
s , let χd : IK

s
→ {0, 1} be the characteristic function of the subset

{b ∈ IK
s
: bi ⊆ di ∀i ∈ {1, . . . , s}}.

As in [Peyre 1995, Lemme 8.5.1], there exists a unique multiplicative function µ : IK
s
→ Z such that

χ =

∑
d∈IK

s

µ(d)χd.

Note that if X = Pn
Q

, the function µ defined above coincides with the classical Möbius function.
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Remark 2.4. Let p ∈ IK be a prime ideal. The function µ is defined recursively by the formula
µ(b) = χ(b) −

∑
b⊊d µ(d) for every b ∈ IK

s and satisfies the following properties:

(i) µ(1) = χ(1) = 1.

(ii) If ei ≥ 2 for some i ∈ {1, . . . , s}, then µ(pe1, . . . , pes ) = 0, as in that case χ(pe1, . . . , pes ) =

χ(pe′

1, . . . , pe′
s ) for e′

i = ei − 1 and e′

l = el for all l ̸= i .

(iii) By induction one shows that µ(pe1, . . . , pes ) = 0 whenever (e1, . . . , es) ̸= 0 and there is σ ∈ 6max

such that ei = 0 for all i ∈ Iσ , as χ(pe1, . . . , pes ) = 1 if and only if there is σ ∈ 6max such that ei = 0 for
all i ∈ Iσ .

(iv) Let
f̃ := min{#J : J ⊆ {1, . . . , s}, J ∩ Iσ ̸= ∅ ∀σ ∈ 6max}.

By property (iii), if µ(pe1, . . . , pes ) ̸= 0, then there are at least f̃ indices i with ei = 1. Let J ⊆ {1, . . . , s}
be smallest with respect to inclusion and such that J ∩ Iσ ̸=∅ for all σ ∈ 6max. Let J ′

= J ∖{ j} for some
j ∈ J . Let ei = 1 for i ∈ J and ei = 0 for i /∈ J . Let e′

i = ei for i ̸= j and e′

j = 0. Then χ(pe1, . . . , pes ) = 0
and χ(pe′

1, . . . , pe′
s ) = 1 by minimality of J . Thus µ(pe1, . . . , pes ) = −1 ̸= 0. Hence

f̃ = min
{ s∑

i=1

ei : (e1, . . . , es) ̸= 0, µ(pe1, . . . , pes ) ̸= 0
}
. (2-3)

For β = (β1, . . . , βs) ∈ Rs
≥0, let

fβ := min
{ s∑

i=1

βi ei : (e1, . . . , es) ̸= 0, µ(pe1, . . . , pes ) ̸= 0
}
.

Lemma 2.5. (i) The series ∑
d∈Is

K

µ(d)∏s
i=1 N(di )βi

converges absolutely if fβ > 1.

(ii) If fβ > 1 and β1, . . . , βs ∈ Z>0, then∑
d∈Is

K

µ(d)∏s
i=1 N(di )βi

> 0.

Proof. For part (i) we follow the proof of [Salberger 1998, Lemma 11.15] and [Pieropan 2016, Proposi-
tion 4]. For p ∈ IK a prime ideal, let

S(p) =

∑
(e1,...,es)∈Zs

≥0

|µ(pe1, . . . , pes )|∏s
i=1 N(p)βi ei

.

As in the two results cited,

lim
b→∞

∑
d∈Is

K∏s
i=1 N(di )≤b

|µ(d)|∏s
i=1 N(di )βi

=

∏
p

S(p).
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By Remark 2.4 (ii), the sum S(p) is finite. By definition of fβ , if µ(pe1, . . . , pes ) ̸= 0 and (e1, . . . , es) ̸= 0,
then fβ ≤

∑s
i=1 βi ei . Thus

S(p) = 1 +
1

N(p) fβ
Q

(
1

N(p)

)
,

where Q : R≥0 → R≥0 is a monotone increasing function. Since µ(pe1, . . . , pes ) is independent of the
choice of p, the function Q is independent of the choice of p. Thus∑

p

1
N(p) fβ

Q
(

1
N(p)

)
≤ [K : Q]Q(1)

∑
n∈Z>0

1
n fβ

.

In part (ii) the series is absolutely convergent by part (i); hence it suffices to show that each factor
of its Euler product

∏
p Sp is positive. For a prime ideal p ∈ IK, let Op be the ring of integers of the

completion Kp of K at the valuation vp defined by p. Endow Kp with the Haar measure normalized such
that Op has volume 1. Then

∫
p jOp

dy = N(p)− j for all j ≥ 0 by [Chambert-Loir et al. 2018, §1.1.13] and
[Neukirch 1999, Proposition II.4.3]. We denote by χ the characteristic function of (2-2), where ideals
of OK are replaced by ideals of Op. By Remark 2.4 (ii),

Sp =

∑
e∈{0,1}s

µ(pe1, . . . , pes )

s∏
i=1

N(p)−ei βi =

∑
e∈{0,1}s

µ(pe1, . . . , pes )

s∏
i=1

βi∏
j=1

∫
pei

dyi, j

=

∫
O

∑s
i=1 βi

p

χ((y1,1, . . . , y1,β1), . . . , (ys,1, . . . , ys,βs ))

s∏
i=1

βi∏
j=1

dyi, j

≥

∫
(O×

p )
∑s

i=1 βi

s∏
i=1

βi∏
j=1

dyi, j =

(
1 −

1
N(p)

)∑s
i=1 βi

> 0,

as χ is a nonnegative function with χ(Op, . . . ,Op) = 1. □

Definition 2.6. A function A : Zs
>0 → R is compatible with Möbius inversion on X if there exist

β1, . . . , βs ∈ Rs
≥0 such that A(d) ≪

∏s
i=1 d−βi

i with f(β1,...,βs) > 1.

Remark 2.7. (i) The inequality fβ > 1 holds whenever β1, . . . , βs > 1.

(ii) If β1 = · · · = βs = 1, then fβ = f̃ by (2-3).

(iii) Case β1 = n1, . . . , βs = ns : As in [Salberger 1998, Lemma 11.15 (d)], let f be the smallest positive
integer such that there are f rays of the fan 6 that are not contained in a maximal cone. Then f ≥ 2, as
X is proper. Moreover,

f = min{#J : J ⊆ I, J ∩ Iσ ̸= ∅ ∀σ ∈ 6max},

and Remark 2.4 combined with Lemma 2.1 (vi) gives

f = min
{∑

i∈J

ni : J ⊆ {1, . . . , s}, J ∩ Iσ ̸= ∅ ∀σ ∈ 6max, #J = f̃
}

= min
{ s∑

i=1

ni ei : (e1, . . . , es) ̸= 0, µ(pe1, . . . , pes ) ̸= 0
}
.
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3. Subvarieties

Here we want to count rational points or Campana points of bounded height in subvarieties of toric
varieties.

From now on K = Q. Let X be a complete smooth split toric variety as in Section 2. Assume that
rk Pic(X) ≥ 2, that is, X is not a projective space. Let L be a semiample toric invariant Q-divisor on X
that satisfies [Pieropan and Schindler 2024, Assumption 6.3]. The latter holds, for example, if L is ample.
Throughout this section, we will abbreviate [Pieropan and Schindler 2024] as [PS24].

Let g1, . . . , gt ∈ R be Pic(X)-homogeneous elements. Let V ⊆ X be the schematic intersection of the
t hypersurfaces defined by g1, . . . , gt . Let T ⊆ X be the torus. Without loss of generality, we can assume
that V ∩ T ̸= ∅. Otherwise, V is contained in a complete smooth split toric subvariety X ′ of X , and we
can replace X by X ′. Fix mi, j ∈ Z≥1 for each (i, j) ∈ I. Let m = (mi, j )(i, j)∈I and

Dm =

s∑
i=1

ni∑
j=1

(
1 −

1
mi, j

)
Di, j .

Let V be the Zariski closure of V in X . We define the intersection multiplicity nv(Di |V , x) of a point
x : SpecOK → V with Di |V at a place v of K to be the colength of the ideal of the fiber product of
SpecOK ×V Di |V after base change to the completion of OK at v. This definition coincides with the one
in [Pieropan et al. 2021, §3] whenever V is regular. Let (V , Dm|V )(Z) be the set of Campana Z-points
on the Campana orbifold (V , Dm|V ) as in [Pieropan et al. 2021, Definition 3.4].

Let NV (B) be the number of points in (V , Dm|V )(Z) ∩ T (Q) of height HL at most B. If mi, j = 1 for
all (i, j) ∈ I, then NV (B) is the set of Q-rational points on V ∩ T of height HL at most B.

For i ∈ {1, . . . , s} and x ∈ Y (Z), let yi = sup1≤ j≤ni
|xi, j |. For σ ∈ 6max, write

L(σ ) =

s∑
i=1

ni∑
j=1

αi, j,σ Di, j and αi,σ =

ni∑
j=1

αi, j,σ for all i ∈ {1, . . . , s}.

Then, by [PS24, Proposition 6.10] and Lemma 2.2,

HL(x) = sup
σ∈6max

s∏
i=1

yαi,σ
i .

By construction,

(V , Dm|V )(Z) = (X , Dm)(Z) ∩ V (Q).

We use the torsor parametrization of (X , Dm)(Z) from [PS24, §6.4]. For B > 0 and d ∈ (Z>0)
s , let

A(B, d) be the set of points x = (xi, j )1≤i≤s,1≤ j≤ni ∈ (Z ̸=0)
I such that

H(x) ≤ B, (3-1)

di | xi, j for all i ∈ {1, . . . , s} and for all j ∈ {1, . . . , ni }, (3-2)

xi, j is mi, j -full for all i ∈ {1, . . . , s} and for all j ∈ {1, . . . , ni }, (3-3)

g1 = · · · = gt = 0. (3-4)
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We observe that A(B, d) is a finite set by [PS24, Lemma 6.11]. Then

NV (B) =
1
2r

∑
d∈(Z>0)s

µ(d)#A(B, d) (3-5)

by Lemma 2.3 and the definition of µ in Section 2.4.
Write

#A(B, d) =

∑
y1,...,ys∈Z>0∏s

i=1 yαi,σ
i ≤B ∀σ∈6max

fd(y1, . . . , ys),

where

fd(y1, . . . , ys) = #
{

x ∈ (Z̸=0)
I

: (3-2), (3-3), (3-4), yi = sup
1≤ j≤ni

|xi, j | ∀i ∈ {1, . . . , s}
}
.

Let
Fd(B1, . . . , Bs) =

∑
1≤yi ≤Bi ,1≤i≤s

fd(y1, . . . , ys).

Lemma 3.1. Assume that

Fd(B1, . . . , Bs) = CM,d

s∏
i=1

Bϖi
i + O

(
CE,d

(
min

1≤i≤s
Bi

)−ϵ
s∏

i=1

Bϖi
i

)
(3-6)

with CM,d , CE,d , ϖ1, . . . ,ϖs , ϵ > 0 such that CM,d and CE,d are compatible with Möbius inversion
on X as functions of the variables d.

Let a be the maximal value of
∑s

i=1 ϖi ui on the polytope P ⊆ Rs defined by
s∑

i=1

αi,σ ui ≤ 1 for all σ ∈ 6max, ui ≥ 0 for all i ∈ {1, . . . , s}.

Let F be the face of P where
∑s

i=1 ϖi ui = a. Let k be the dimension of F.

(i) If F is not contained in a coordinate hyperplane of Rs , then

NV (B) = cBa(log B)k
+ O(Ba(log B)k−1(log log B)s),

where k is the dimension of F and

c = (s − 1 − k)! cP2−r
∑

d∈Zs
>0

µ(d)CM,d . (3-7)

Here, cP = limδ→0 δk+1−s meass−1(Hδ ∩P), where Hδ ⊆ Rs is the hyperplane defined by
∑s

i=1 ϖi ui =

a − δ and meass−1 is the (s−1)-dimensional measure on Hδ given by
∏

1≤i≤s,i ̸=ĩ (ϖi dui ) for any choice
of ĩ ∈ {1, . . . , s}.

(ii) If L is ample, then

a = inf
{

t ∈ R : t[L] −

[ s∑
i=1

ϖi Di

]
is effective

}
and k+1 is the codimension of the minimal face of the effective cone of X containing a[L] −

[∑s
i=1 ϖi Di

]
.

(iii) If [L] =
∑s

i=1 ϖi Di is ample, then the face F is not contained in a coordinate hyperplane, a = 1,
and k = rk Pic(X) − 1.



2292 Marta Pieropan and Damaris Schindler

Proof. (i) Let ti = ϖi ui for all i ∈ {1, . . . , s}. By the assumptions on L , the polytope P is bounded and
nondegenerate by [PS24, Remark 6.2]. Applying [PS24, Theorem 1.1] to #A(B, d) gives

NV (B) = cBa(log B)k
+ O

(
Ba(log B)k−1(log log B)s

∑
d∈(Z>0)s

µ(d)CE,d

)
.

The sums
∑

d∈(Z>0)s in the leading constant c and in the error term converge absolutely by Lemma 2.5 as
CM,d and CE,d are compatible with Möbius inversion on X .

(ii) Let
Rr ↪→ Rs ↪→ RI

be the sequence of injective linear maps dual to

d :

⊕
(i, j)∈I

Di, j Z ↠
s⊕

i=1

Di Z ↠ Pic(X).

Here,

Rs ↪→ RI,

s∑
i=1

ui ei 7→

s∑
i=1

ni∑
j=1

ui ei, j ,

where {e1, . . . , es} denotes the dual basis to {D1, . . . , Ds} and {ei, j : (i, j) ∈ I} denotes the dual basis to
{Di, j : (i, j) ∈ I}. Let P̃ be the polytope defined by∑

(i, j)∈I

αi, j,σ ui, j ≤ 1 for all σ ∈ 6max, ui, j ≥ 0 for all (i, j) ∈ I.

Then P̃ ∩ Rs
= P and ∑

(i, j)∈I

ϖi

ni
ui, j

∣∣∣
P

=

s∑
i=1

( ni∑
j=1

ϖi/ni

)
ui .

By [PS24, Lemma 6.7], the face F of P̃ where the maximal value of the function∑
(i, j)∈I

ϖi

ni
ui, j (3-8)

is attained is contained in P̃ ∩ Rr and hence also in P . Then a is the maximal value of the function (3-8)
on P . The dual linear programming problem is given by minimizing

∑
σ∈6max

λσ on the polytope given
by ∑

σ∈6max

αi, j,σλσ ≥
ϖi

ni
for all (i, j) ∈ I, λσ ≥ 0 for all σ ∈ 6max.

The arguments that can be found in [PS24, §6.5.1] show that a is the smallest real number such that
a[L] −

∑s
i=1

∑ni
j=1(ϖi/ni )Di is effective. As in [PS24, Proposition 6.13], the smallest face of Eff(X)

that contains a[L] −
∑s

i=1 ϖi Di is dual to the cone generated by F in Rr , and the latter is defined by
a

∑s
i=1 αi,σ ui −

∑s
i=1 ϖi ui = 0 for any σ ∈ 6max such that F ⊆

{∑s
i=1 αi, j,σ ui, j = 1

}
. Thus the minimal

face of Eff(X) containing a[L] −
[∑s

i=1 ϖi Di
]

has codimension k + 1.



Points of bounded height on certain subvarieties of toric varieties 2293

(iii) We argue as in the proof of [PS24, Lemma 6.7 (ii)]. Let H̃ ⊆ Rs be the inclusion dual to the surjection⊕s
i=1 RDi → Pic(X)⊗Z R. Then

∑s
i=1 αi,σ ui =

∑s
i=1 ϖi ui for all u ∈ H̃ and all σ ∈ 6max. Thus P∩ H̃

is the set of elements u of H̃ such that u1, . . . , us ≥ 0 and
∑s

i=1 ϖi ui ≤ 1. Since F ⊆ H̃ by [PS24,
Lemma 6.7 (i)], we have F = H̃ ∩

{∑s
i=1 ϖi ui = 1

}
. As in the proof of [PS24, Lemma 6.7 (ii)], we

conclude that F is not contained in a coordinate hyperplane of Rs . □

4. Rational points on linear complete intersections

Proof of Theorem 1.1. For 1 ≤ i ≤ s and 1 ≤ l ≤ ti , let gi,l ∈ R be a linear polynomial defining Hi, j . Then

gi,l =

ni∑
j=1

ci, j,l xi, j , l ∈ {1, . . . , ti },

with ci, j,l ∈ Z, and the gi,1, . . . , gi,ti are linearly independent for all i ∈ {1, . . . , s}. Let mi, j = 1 for all
(i, j) ∈ I. Then

Fd(B1, . . . , Bs) =

s∏
i=1

Fi,di (Bi ),

where, for i ∈ {1, . . . , s}, d ∈ Z>0, and B > 0,

Fi,d(B) = #
{
(xi,1, . . . , xi,ni ) ∈ (Z ̸=0)

ni : sup
1≤ j≤ni

|xi, j | ≤ B, d | xi, j ∀ j ∈ {1, . . . ,ni }, gi,1 = ·· · = gi,ti = 0
}
.

For i ∈{1, . . . , s}, let Wi ⊆Rni be the linear space defined by gi,1 =· · ·= gi,ti =0, and let 3i ⊆ Wi be the
restriction of the standard lattice Zni ⊆ Rni to Wi . Then, by [Bombieri and Gubler 2006, Lemma 11.10.15],
for every T ≥ 1,

#(Zni ∩ [−T, T ]
ni ∩ Wi ) = #(3i ∩ T ([−1, 1]

n
∩ Wi ))

= T ni −ti measni −ti ([−1, 1]
ni ∩ Wi )

det 3i
+ O(T ni −ti −1),

where measni −ti is the (ni − ti )-dimensional measure induced by the Lebesgue measure on Rni . Let

ci =
measni −ti ([−1, 1]

ni ∩ Wi )

det 3i
.

Then applying this estimate with T = B/d gives

Fi,d(B) = ci (B/d)ni −ti + O((B/d)ni −ti −1)

whenever d ≤ B. If d > B, then Fi,d(B) = 0 and the same estimate holds. Hence, for δ > 0,

Fd(B1, . . . , Bs) = CM,d

s∏
i=1

Bni −ti
i + O

(
CE,d

( s∏
i=1

Bni −ti
i

)(
min

1≤i≤s
Bi

)−δ

)
,

where

CM,d =

s∏
i=1

ci

dni −ti
i

, CE,d =

s∏
i=1

d−(ni −ti )+δ
i . (4-1)
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We show that, for δ > 0 sufficiently small, the assumptions of Lemma 3.1 are satisfied. Since ni − ti ≥ 2
for all i ∈ {1, . . . , s} such that ti ̸= 0, if f(n1−t1,...,ns−ts) < 2, by Remark 2.4 (iv), there is ĩ ∈ {1, . . . , s}
such that t ĩ = 0, ĩ ∈ Iσ for all σ ∈ 6max, and n ĩ = 1. Then ρ ĩ,1 is not contained in any maximal cone of 6,
contradicting the fact that X is proper. Thus f(n1−t1,...,ns−ts) ≥ 2. By definition and by Remark 2.4 (ii),

f(n1−t1−δ,...,ns−ts−δ) ≥ f(n1−t1,...,ns−ts) − sδ.

Since V is a smooth complete intersection of smooth divisors, by adjunction [Corti 1992, Proposi-
tion 16.4], we have KV = K X +

∑s
i=1

∑ti
l=1[Hi,l]. Since

s∑
i=1

(ni − ti )Di = −[K X ] −

s∑
i=1

ti Di = −[K X ] −

s∑
i=1

ti∑
l=1

[Hi,l],

Lemma 3.1 gives

NV (B) = cB(log B)b−1
+ O(B(log B)b−2(log log B)s),

where b = rk Pic(X) and c is defined in (3-7) with k = b − 1, CM,d given by (4-1), and ϖi = ni − ti for
i ∈ {1, . . . , s}. The restriction Pic(X) → Pic(V ) is an isomorphism as ti ≤ ni − 2 for all i ∈ {1, . . . , s}.
The leading constant c is positive by Lemma 2.5 (ii). □

5. Bihomogeneous hypersurfaces

Proof of Theorem 1.2. In the setting of Theorem 1.2, the hypersurfaces H1, . . . , Ht are defined by
bihomogeneous polynomials g1, . . . , gt of degree (e1, e2) in the two sets of variables {x1, j : 1 ≤ j ≤ n1}

and {x2, j : 1 ≤ j ≤ n2}. Let mi, j = 1 for all (i, j) ∈ I.
We will apply [Schindler 2016, Theorem 4.4] with

R = t, Fi = gi , Bi = [−1, 1]
ni , Pi = Bi/di , di = ei .

In order to apply the cited result, we need to restrict the points to an open set. Let U ⊆ An1+n2 be the
open set therein. Since the complement of U is the zero set of homogeneous polynomials by [Schindler
2016, Theorems 4.1 and 4.2], the set W := π({x ∈ Y : (x1,1, . . . , x1,n1, x2,1, . . . , x2,n2) ∈ U }) is an open
subset of X . Then

NV,W (B) =
1
2r

∑
d∈(Z>0)s

µ(d)#AW (B, d),

with

AW (B, d) =

∑
y1,...,ys∈Z>0∏s

i=1 yαi,σ
i ≤B ∀σ∈6max

f W
d (y1, . . . , ys)

and

f W
d (y1, . . . , ys) = #

{
x ∈ (Z ̸=0)

I
: (x1,1, . . . , x1,n1, x2,1, . . . , x2,n2) ∈ U (Q), (3-2), (3-3), (3-4),

yi = sup
1≤ j≤ni

|xi, j | ∀i ∈ {1, . . . , s}
}
.
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Let

F W
d (B1, . . . , Bs) =

∑
1≤yi ≤Bi ,1≤i≤s

f W
d (y1, . . . , ys).

Then

F W
d (B1, . . . , Bs) = F̃ W

d1,d2
(B1, B2)

s∏
i=3

Fi,di (Bi ),

where

F̃ W
d1,d2

(B1, B2) = #
{
(x1,1, . . . , x1,n1, x2,1, . . . , x2,n2) ∈ (Z ̸=0)

n1+n2 ∩ U (Q) :

sup
1≤ j≤ni

|yi, j | ≤ Bi/di ∀i ∈ {1, 2}, g1 = · · · = gt = 0
}
,

and, for d ∈ Z>0 and B > 0,

Fi,d(B) = #
{
(xi,1, . . . , xi,ni ) ∈ (Z̸=0)

ni : sup
1≤ j≤ni

|xi, j | ≤ B, d | xi, j ∀ j ∈ {1, . . . , ni }

}
.

If d ≤ Bi , then

Fi,d(B) = 2ni (B/d)ni + O((B/d)ni −δ)

with 0 < δ ≤ 1. If d > B, then Fi,d(B) = 0, and the same estimate holds.
To compute F̃ W

d1,d2
(B1, B2), write xi, j = di yi, j for all (i, j) ∈ I. Then

F̃ W
d1,d2

(B1, B2) = #
{
(y1,1, . . . , y1,n1, y2,1, . . . , y2,n2) ∈ (Z ̸=0)

n1+n2 ∩ U (Q) :

sup
1≤ j≤ni

|yi, j | ≤ Bi/di ∀i ∈ {1, 2}, g1 = · · · = gt = 0
}
,

as the complement of U is the zero set of homogeneous polynomials by [Schindler 2016, Theorems 4.1
and 4.2]. Let V ∗

i ⊆ An1+n2 be the locus where the matrix (∂gl/∂xi, j )1≤l≤t,1≤ j≤ni does not have full rank.
If n1 + n2 > dim V ∗

1 + dim V ∗

2 + 3 · 2e1+e2e1e2t3, then, by [Schindler 2016, Theorem 4.4], there is δ > 0
such that

F̃ W
d1,d2

(B1, B2) = C
2∏

i=1

(Bi/di )
ni −tei + O

((
min
i=1,2

Bi/di
)−δ

2∏
i=1

(Bi/di )
ni −tei

)

= C
2∏

i=1

(Bi/di )
ni −tei + O

(( 2∏
i=1

d−(ni −tei )+δ
i

)(
min
i=1,2

Bi
)−δ

2∏
i=1

Bni −tei
i

)
with C ∈ R≥0 and C > 0 whenever V has nonsingular Qv-points for all places v of Q. Thus

F W
d (B1, . . . , Bs) = CM,d Bn1−te1

1 Bn2−te2
2

s∏
i=3

Bni
i + O

(
CE,d

(
min

1≤i≤s
Bi

)−δ Bn1−te1
1 Bn2−te2

2

s∏
i=3

Bni
i

)
,

where

CM,d = Cd−(n1−te1)
1 d−(n2−te2)

2

s∏
i=3

d−ni
i , CE,d = d−(n1−te1)+δ

1 d−(n2−te2)+δ
2

s∏
i=3

d−ni +δ
i . (5-1)
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Recall that ni − tei ≥ 2 for i ∈ {1, 2}. For δ > 0 sufficiently small, if

fn1−te1−δ,n2−te2−δ,n3−δ,...,ns−δ ≤ 1,

then by Remark 2.4 (iv) there is ĩ ∈ {3, . . . , s} such that ĩ ∈ Iσ for all σ ∈ 6max and n ĩ = 1. Then the ray
ρ ĩ,1 is contained in no maximal cone of 6, contradicting the fact that X is proper.

Since V is a smooth complete intersection, the adjunction formula [Corti 1992, Proposition 16.4] gives
KV = K X + H1 + · · · + Ht . Let ϖi = ni − tei for i ∈ {1, 2} and ϖi = ni for i ∈ {3, . . . , s}. Since

s∑
i=1

ϖi Di = −[K X ] − t (e1 D1 + e2 D2)

= −[K X ] − [H1 + · · · + Ht ],

Lemma 3.1 applied to F W
d (B1, . . . , Bs) and NV,W (B) gives

NV,W (B) = cB(log B)b−1
+ O(Ba(log B)b−2(log log B)s)

for B > 0, where b = rk Pic(X) and c is defined in (3-7) with k = b − 1, CM,d given by (5-1). Moreover,
the restriction Pic(X)→ Pic(V ) is an isomorphism, as t ≤ min{n1, n2}−2. By Lemma 2.5 (ii), the leading
constant c is positive if V (Qv) ̸= ∅ for all places v of Q as C is positive under the same conditions by
[Schindler 2016, Theorems 4.3 and 4.4]. □

6. Campana points on certain diagonal complete intersections

Proof of Theorem 1.3. In the setting of Theorem 1.3, the hypersurfaces H1, . . . , Ht are defined by
homogeneous diagonal polynomials g1, . . . , gt ∈ R with deg gi = ei Di in Pic(X) for all i ∈ {1, . . . , t}.
Then

gi =

ni∑
j=1

ci, j x
ei
i, j

with ci, j ∈ Z ̸=0, and

Fd(B1, . . . , Bs) =

s∏
i=1

Fi,di (Bi ),

where, for i ≤ t ,

Fi,d(B) = #
{
(xi,1, . . . , xi,ni ) ∈ (Z̸=0)

ni :

d | xi, j , xi, j is mi, j -full ∀ j ∈ {1, . . . , ni }, sup
1≤ j≤ni

|xi, j | ≤ B, gi = 0
}

and, for i > t ,

Fi,d(B) = #
{
(xi,1, . . . , xi,ni ) ∈ (Z̸=0)

ni :

sup
1≤ j≤ni

|xi, j | ≤ B, d | xi, j , xi, j is mi, j -full ∀ j ∈ {1, . . . , ni }

}
. (6-1)

For i ≤ t , we estimate Fi,d(B) via the following lemma.
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Lemma 6.1. Let n, e, m1, . . . , mn ∈ Z>0. Let c1, . . . , cn ∈ Z̸=0. Let d be a square-free positive integer.
Assume that n ≥ 2 and 2 ≤ m1 ≤ · · · ≤ mn .

(1) If e = 1, assume that
n∑

j=1

1
m j

> 3 and
n−1∑
j=1

1
em j (em j + 1)

≥ 1.

(2) If e ≥ 2, assume that
n∑

j=1

1
em j

> 3 and
n∑

j=1

1
2s0(em j )

> 1,

where
s0(m) = min

{
2m−1, 1

2 m(m − 1) + ⌊
√

2m + 2⌋
}
, m ∈ Z≥0.

For B > 0, let

Fd(B) = #
{
(x1, . . . , xn) ∈ (Z ̸=0)

n
: d | x j , x j is m j -full ∀ j ∈ {1, . . . , n}, sup

1≤ j≤n
|x j | ≤ B,

n∑
j=1

c j xe
j = 0

}
.

Then there is η > 0 such that
Fd(B) = ce,d B0

+ O(d−1−η B0−η),

where 0 =
∑n

j=1 1/m j − e and ce,d is defined in (6-5) and satisfies 0 ≤ ce,d ≪ d−1−η.

Proof. For every j ∈ {1, . . . , n} and x j ∈ Z ̸=0 that is m j -full, there exist unique u j , v j,1, . . . , v j,m j −1 ∈ Z>0

such that

|x j | = um j
j

m j −1∏
r=1

v
m j +r
j,r , µ2(v j,r ) = 1, gcd(v j,r , v j,r ′) = 1 for all r, r ′

∈ {1, . . . , m j − 1}, r ̸= r ′.

For every choice of u j and v j,r as above, if d | x j with d ∈ Z>0 squarefree, then there exist unique
s j , t j,1, . . . , t j,m j −1 ∈ Z>0 such that

d = s j

m j −1∏
r=1

t j,r , µ2(s j ) = µ2(t j,r ) = 1 for all r ∈ {1, . . . , m j − 1}

gcd(s j , v j,r ) = gcd(s j , t j,r ) = gcd(t j,r , t j,r ′) = 1 for all r, r ′
∈ {1, . . . , m j − 1}, r ̸= r ′

s j | u j , t j,r | v j,r for all r ∈ {1, . . . , m j − 1}.

Write u j = s j ũ j and v j,r = t j,r ṽ j,r for all r ∈ {1, . . . , m j−1}. Write

s = (s1, . . . , sn), t = (t j,r )1≤ j≤n,1≤r≤m j −1.

For j ∈ {1, . . . , n}, write

σ j = s j

m j −1∏
r=1

t j,r , τ j = sm j
j

m j −1∏
r=1

tm j +r
j,r , w j =

m j −1∏
r=1

ṽ
m j +r
j,r .

Let Td(B) be the set of pairs (s, t) ∈ Zn
>0 × Z

∑n
j=1(m j −1)

>0 that satisfy

µ2(σ j ) = 1, d = σ j , τ j ≤ B for all j ∈ {1, . . . , s}.
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Note that the first two conditions imply

#Td(B) ≤

n∏
j=1

mω(d)
j ≪ dϵ, (6-2)

where ω(d) is the number of distinct prime divisors of d . Let Vs,t(B) be the set of

ṽ = (ṽ j,r )1≤ j≤n,1≤r≤m j −1 ∈ Z

∑n
j=1(m j −1)

>0

such that

µ2(t j,r ṽ j,r ) = 1, gcd(s j , ṽ j,r ) = 1 for all j ∈ {1, . . . , n}, r ∈ {1, . . . , m j − 1},

gcd(t j,r ṽ j,r , t j,r ′ ṽ j,r ′) = 1 for all j ∈ {1, . . . , n}, r, r ′
∈ {1, . . . , m j − 1}, r ̸= r ′,

τ jw j ≤ B for all j ∈ {1, . . . , n}.

Let Td(∞) =
⋃

B>0 Td(B) and Vs,t(∞) =
⋃

B>0 Vs,t(B).
Then

Fd(B) =

{∑
ε∈{±1}n

∑
(s,t)∈Td (B)

∑
ṽ∈Vs,t (B) Mεc,γ (Be) if e is odd,

2n ∑
(s,t)∈Td (B)

∑
ṽ∈Vs,t (B) Mc,γ (Be) if e is even,

(6-3)

where c = (c1, . . . , cn), ε = (ε1, . . . , εn), εc = (ε1c1, . . . , εncn), γ = (γ1, . . . , γn) with

γ j = sem j
j

m j −1∏
r=1

te(m j +r)

j,r ṽ
e(m j +r)

j,r for all j ∈ {1, . . . , n},

and

Mεc,γ (Be) = #
{
(ũ1, . . . , ũn) ∈ Zn

>0 : max
1≤ j≤n

γ j ũ
em j
j ≤ Be,

n∑
j=1

ε j c jγ j ũ
em j
j = 0

}
.

An estimate for Mεc,γ (Be) is proven in [Browning and Yamagishi 2021, Theorem 2.7] in the case
where

n−1∑
j=1

1
em j (em j + 1)

≥ 1.

The subsequent paper [Balestrieri et al. 2024, Theorem 5.3] extends the range of applicability of [Browning
and Yamagishi 2021, Theorem 2.7] to the case where

n∑
j=1

1
em j

> 3,

n∑
j=1

1
2s0(em j )

> 1.

Let

2e =

{
1

mn(mn+1)
if e = 1,∑n

j=1
1

2s0(em j )
− 1 if e ≥ 2.

For

0 < δ <
1

(2(n − 1) + 5)emn(emn + 1)
and ϵ > 0,
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the two results cited above give∑
(s,t)∈Td (B)

∑
ṽ∈Vs,t (B)

Mεc,γ (Be) =

∑
(s,t)∈Td (B)

∑
ṽ∈Vs,t (B)

Sεc,γIεc∏n
j=1 γ 1/(em j )

j
B0

+ O(B0(F1 + F2 + F3)), (6-4)

where

Sεc,γ =

∞∑
q=1

1
qn

∑
a(mod q)

gcd(a,q)=1

n∏
j=1

q∑
r=1

exp(2π iaε j c jγ jr em j /q),

Iεc =

∫
∞

−∞

n∏
j=1

(∫ 1

0
exp(2π iλε j c jξ

em j ) dξ

)
dλ,

F1 = Be((2(n−1)+5)δ−1)−0
∑

(s,t)∈Td (B)

∑
ṽ∈Vs,t (B)

( n∏
j=1

B1/m j

γ 1/(em j )
j

) n∑
l=1

γ
1/(eml )

l

B1/ml
,

F2 = B−eδ
∑

(s,t)∈Td (B)

∑
ṽ∈Vs,t (B)

∞∑
q=1

q1−0/e+ϵ

n∏
j=1

gcd(γ j , q)
1

em j γ
−

1
em j

j ,

F3 =

B−eδ2e+ϵ
∑

(s,t)∈Td (B)

∑
ṽ∈Vs,t (B)

∏n
j=1 γ

−
1

m j +1
j if e = 1,

B−eδ2e+ϵ
∑

(s,t)∈Td (B)

∑
ṽ∈Vs,t (B)

∏n
j=1 γ

−
1

em j
+

1
2s0(em j )

j if e ≥ 2.

Let

ce,d =


∑

ε∈{±1}n

∑
(s,t)∈Td (∞)

∑
ṽ∈Vs,t (∞)

Sεc,γ Iεc∏n
j=1 γ

1/(em j )
j

if e is odd,

2n ∑
(s,t)∈Td (∞)

∑
ṽ∈Vs,t (∞)

Sc,γ Ic∏n
j=1 γ

1/(em j )
j

if e is even.
(6-5)

For T > 0, let

f1(q) =

∑
(s,t)∈Td (∞)

n∏
j=1

(gcd(τ e
j , q)

τ e
j

) 1
em j

, f2(q) =

∑
ṽ∈V1,1(∞)

n∏
j=1

(gcd(we
j , q)

we
j

) 1
em j

,

and

f2(q, T, s, t) =

∑
ṽ∈Vs,t (∞)∖Vs,t (T )

n∏
j=1

(gcd(we
j , q)

we
j

) 1
em j

.

Note that, for
∑n

j=1 1/(em j ) > 1, we have

|Iεc| ≪ 1. (6-6)

Similarly as in [Browning and Yamagishi 2021, (2.8), (2.9), (2.12)], the difference between ce,d B0 and
the main term obtained by combining (6-3) and (6-4) is bounded by

B0
∑

(s,t)∈Td (∞)

∑
ṽ∈Vs,t (∞)∖Vs,t (B)

∞∑
q=1

q
1−

∑n
j=1

1
em j

n∏
j=1

γ
−

1
em j

j gcd(γ j , q)
1

em j

≪ B0

∞∑
q=1

q−0/e+ϵ
∑

(s,t)∈Td (∞)

n∏
j=1

(gcd(τ e
j , q)

τ e
j

) 1
em j

f2(q, B, s, t), (6-7)

and ce,d ≪
∑

∞

q=1 q−0/e+ϵ f1(q) f2(q).
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By [Browning and Yamagishi 2021, (3.10)] and the arguments used to prove [Browning and Yamagishi
2021, (3.9)], we have

f2(q) ≪ qϵ (6-8)

and

f2(q, T, s, t) ≪

n∑
i0=1

∑
ṽi,r ,1≤i≤n,1≤r≤mi −1∏mi −1
r=1 ṽ

mi +r
i,r >T/τi if i=i0

n∏
i=1

mi −1∏
r=1

µ2(ṽi,r ) gcd(ṽ
e(mi +r)
i,r , q)1/(emi )

ṽ
(mi +r)/mi
i,r

≪ qϵ

n∑
i=1

∑
ṽi,r ,1≤r≤mi −1∏mi −1
r=1 ṽ

mi +r
i,r >T/τi

mi −1∏
r=1

µ2(ṽi,r ) gcd(ṽ
e(mi +r)
i,r , q)1/(emi )

ṽ
(mi +r)/mi
i,r

.

Our next goal is to provide an upper bound for sums of the type occurring in this estimate for
f2(q, T, s, t).

Lemma 6.2. Let m ∈N≥2, e ∈N, and let A >0 be a real parameter. Then, for every 0<ϵ <1/(m(m+1)),
we have ∑

vr ∈N,1≤r≤m−1∏m−1
r=1 vm+r

r >A

m−1∏
r=1

µ2(vr ) gcd(v
e(m+r)
r , q)1/(em)

v
(m+r)/m
r

≪m,ϵ A−
1

m(m+1)
+ϵq

m−1
em(m+1)

+ϵ
.

Proof. We first consider the sum

S1 :=

∑
vr ∈N,1≤r≤m−1∏m−1

r=1 vm+r
r >A

m−1∏
r=1

1

v
(m+r)/m
r

for A > 1. A dyadic decomposition for each of the variables vr , 1 ≤ r ≤ m − 1, leads to the upper bound

S1 ≪

∑
l1,...,lm−1∈N

2(m+1)l1+···+(2m−1)lm−1>A

2−
1
m l1−···−

(m−1)
m lm−1 .

Note that, for each k ∈ (1/m)N, we have

#
{

l1, . . . , lm−1 ∈ N :
1
m

l1 + · · · +
m−1

m
lm−1 = k

}
≪m km−2.

We deduce that
S1 ≪m

∑
k∈(1/m)N

r(k)>0

km−22−k,

where r(k) is the number of (l1, . . . , lm−1) ∈ Nm−1 such that both

1
m

l1 + · · · +
m−1

m
lm−1 = k and 2(m+1)l1+···+(2m−1)lm−1 > A.

Observe that if r(k) > 0, then there exists (l1, . . . , lm−1) ∈ Nm−1 with

1
m

l1 + · · · +
m−1

m
lm−1 = k
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and
m(m + 1)k = (m + 1)(l1 + · · · + (m − 1)lm−1)

≥ (m + 1)l1 +
m+2

2
2l2 + · · · +

2m−1
m−1

(m − 1)lm−1 >
log A
log 2

,

i.e.,

S1 ≪m

∑
k∈(1/m)N

m(m+1)k>log A/ log 2

km−22−k
≪m,ϵ A−

1
m(m+1)

+ϵ
.

Note that the upper bound for S1 also holds for A ≤ 1 and ϵ < 1/(m(m + 1)).
We now turn to the sum in the statement of the lemma. If vr is a square-free natural number and

dr = gcd(v
e(m+r)
r , q), then we can write

dr = dr,1d2
r,2 · · · de(m+r)

r,e(m+r), µ2(dr, j ) = 1 for all 1 ≤ j ≤ e(m + r), gcd(dr, j , dr, j ′) = 1 for all j ̸= j ′.

Writing vr = v′
r
∏e(m+r)

j=1 dr, j and d ′
r =

∏e(m+r)
j=1 dr, j , we find that

S2 :=

∑
vr ∈N,1≤r≤m−1∏m−1

r=1 vm+r
r >A

m−1∏
r=1

µ2(vr ) gcd(v
e(m+r)
r , q)1/(em)

v
(m+r)/m
r

≪

∑
dr,1d2

r,2···d
e(m+r)
r,e(m+r) |q

1≤r≤m−1

∑
v′

r ∈N,1≤r≤m−1∏m−1
r=1 (d ′

r v
′
r )

m+r >A

m−1∏
r=1

d1/(em)
r

(d ′
rv

′
r )

(m+r)/m

≪

∑
dr,1d2

r,2···d
e(m+r)
r,e(m+r) |q

1≤r≤m−1

m−1∏
r=1

(
d1/(em)

r

d ′(m+r)/m
r

) ∑
v′

r ∈N,1≤r≤m−1∏m−1
r=1 (d ′

r v
′
r )

m+r >A

m−1∏
r=1

1
(v′

r )
(m+r)/m .

By using the upper bound for S1, we find that, for ϵ > 0 sufficiently small,

S2 ≪ϵ,m

∑
dr,1d2

r,2···d
e(m+r)
r,e(m+r) |q

1≤r≤m−1

m−1∏
r=1

(
d1/(em)

r

d ′(m+r)/m
r

)
A−

1
m(m+1)

+ϵ

(m−1∏
r=1

(d ′

r )
m+r

) 1
m(m+1)

≪ϵ,m A−
1

m(m+1)
+ϵ

∑
dr,1d2

r,2···d
e(m+r)
r,e(m+r) |q

1≤r≤m−1

m−1∏
r=1

(d
1

em
r (d ′

r )
−

m+r
m+1 )

≪ϵ,m A−
1

m(m+1)
+ϵ

∑
dr,1d2

r,2···d
e(m+r)
r,e(m+r) |q

1≤r≤m−1

m−1∏
r=1

d
1

em −
m+r

e(m+r)(m+1)

r

≪ϵ,m A−
1

m(m+1)
+ϵ

∑
dr |q

1≤r≤m−1

m−1∏
r=1

d
1

em(m+1)

r ≪ϵ,m A−
1

m(m+1)
+ϵq

m−1
em(m+1)

+ϵ
. □
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Lemma 6.2 shows that we can bound f2(q, T, s, t) by

f2(q, T, s, t) ≪

n∑
i=1

(T
τi

)−
1

mi (mi +1)
+ϵ

q
mi −1

emi (mi +1)
+ϵ

.

In the following we write

1i =
mi − 1

emi (mi + 1)
.

Then (6-7) is bounded by

S3 := B0

n∑
i=1

∞∑
q=1

q−0/e+1i +ϵ
∑

(s,t)∈Td (∞)

n∏
j=1

(gcd(τ e
j , q)

τ e
j

) 1
em j

(
B
τi

)−
1

mi (mi +1)
+ϵ

≪ B0

n∑
i=1

B−
1

mi (mi +1)
+ϵ

∑
(s,t)∈Td (∞)

∞∑
q=1

q−0/e+1i +ϵτ
1

mi (mi +1)

i

n∏
j=1

(gcd(τ e
j , q)

τ e
j

) 1
em j

.

As we will encounter similar expressions in our further analysis, we introduce, for E, D > 0 and d
squarefree, the sum

Sd(D, E) := d E
∑

(s,t)∈Td (∞)

∞∑
q=1

q−0/e+D+ϵ

n∏
j=1

(gcd(τ e
j , q)

τ e
j

) 1
em j

.

We write q = q1q2 with gcd(q1, d) = 1 and such that all prime divisors of q2 divide d . We then obtain

Sd(D, E) ≪ d E
∑

(s,t)∈Td (∞)

∞∑
q1=1

q−0/e+D+ϵ

1

∞∑
q2=1

p |q2⇒p |d

q−0/e+D+ϵ

2

n∏
j=1

(gcd(τ e
j , q2)

τ e
j

) 1
em j

.

If we assume −0/e + D < −1, then the sum over q1 is absolutely convergent. For a given vector
(s, t) ∈ Td(∞) and a prime p, we write τ j,p for the power of p which exactly divides τ j . We find that

Sd(D, E) ≪

∑
(s,t)∈Td (∞)

d E
∏
p |d

( ∞∑
l=0

pl(−0/e+D+ϵ)

n∏
j=1

(gcd(τ e
j,p, pl)

τ e
j,p

) 1
em j

)
.

We now split the summation over l into the term l = 0, where we use the inequality τ j,p ≥ pm j , and we
bound the rest by a geometric sum for l ≥ 1 using gcd(τ e

j,p, pl) ≤ τ e
j,p:

Sd(D, E) ≪D

∑
(s,t)∈Td (∞)

d E+ϵ
∏
p |d

(p−n
+ p−0/e+D+ϵ)

≪D dϵ
∏
p |d

(pE−n
+ p−0/e+D+E+ϵ).

If −0/e + D + E < −1, then we deduce that

Sd(D, E) ≪D d−1−η (6-9)

for some η > 0.



Points of bounded height on certain subvarieties of toric varieties 2303

Applying (6-9) to S3 with

D = 1i and E =
2mi − 1

mi (mi + 1)
,

we obtain S3 ≪ B0−ηd−1−η for some η > 0. Hence

Fd(B) = ce,d B0
+ O(B0(d−1−η B−η

+ F1 + F2 + F3)).

We use the bound in (6-8) and apply (6-9) with D = E = 0 to get ce,d ≪ d−1−η.
It remains to estimate the error terms F1, F2, and F3. We rewrite F1 as

F1 = Beδ(2(n−1)+5)

n∑
l=1

B−
1

ml

∑
(s,t)∈Td (B)

∑
ṽ∈Vs,t (B)

∏
1≤ j≤n

j ̸=l

γ
−

1
em j

j .

As in [Browning and Yamagishi 2021, §3] and [Balestrieri et al. 2024, §6], we have

F1 ≪ B−
1

mn (mn+1)
+eδ(2(n−1)+5)

∑
(s,t)∈Td (B)

n∏
j=1

τ
−

1
m j +1

j

≪ d
−

∑n
j=1

m j
m j +1 +ε

B−
1

mn (mn+1)
+eδ(2(n−1)+5)

,

where the last estimate follows from∑
(s,t)∈Td (B)

n∏
j=1

τ
−

1
m j +1

j ≤

∑
(s,t)∈Td (B)

n∏
j=1

σ
−

m j
m j +1

j

≤ d
−

∑n
j=1

m j
m j +1 #Td(B) ≪ d

−
∑n

j=1
m j

m j +1 +ε

by (6-2). Combining the arguments for F3 in [Browning and Yamagishi 2021, §3] and in [Balestrieri
et al. 2024, §6] and the estimate above, we have

F3 ≪ B−eδ2e+ϵ
∑

(s,t)∈Td (B)

n∏
j=1

τ
−

1
m j +1

j ≪ d
−

∑n
j=1

m j
m j +1 +ϵ

B−eδ2e+ϵ .

Since
∑n

j=1(m j/(m j + 1)) ≥
2
3 n > 1 is satisfied for n ≥ 2, we have F1, F3 ≪ d−1−η B−η for a suitable

η > 0. Since

F2 = B−eδ
∞∑

q=1

q1−0/e+ϵ f1(q) f2(q),

the estimate (6-8) combined with (6-9) for D = 1 and E = 0 yields F2 ≪ d−1−η B−eδ, as 0/e > 2. □

By Lemma 6.1 and [Pieropan and Schindler 2024, Lemma 5.6],

Fd(B1, . . . , Bs) =

s∏
i=1

(cM,i Bϖi
i + O(dνi +ε

i Bϖi −δ
i )),
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where

ϖi =


∑ni

j=1
1

mi, j
− ei if i ≤ t,∑ni

j=1
1

mi, j
if i > t,

(6-10)

νi < −1 for i ≤ t , νi = −
2
3 ni if i > t , cM,i is the constant cei ,di defined in (6-5) if i ≤ t , and also

cM,i = 2ni
(∏ni

j=1 cmi, j ,di

)
, where cmi, j ,di is the constant defined in [Pieropan and Schindler 2024, (5.11)].

Thus

Fd(B1, . . . , Bs) = CM,d

s∏
i=1

Bϖi
i + O

(
CE,d

(
min

1≤i≤s
Bi

)−δ
s∏

i=1

Bϖi
i

)
,

where

CM,d =

s∏
i=1

cM,i . (6-11)

Lemma 6.1 and [Pieropan and Schindler 2024, (5.14), (5.15)] give

CM,d, CE,d ≪

s∏
i=1

d−βi
i

with βi > 1 whenever ni ≥ 2, and βi > 2
3 − ε otherwise. For ε > 0 sufficiently small, βi + β j > 1 for

every i, j ∈ {1, . . . , s}. Thus, by Remark 2.4 (iv), if fβ1,...,βs ≤ 1, then there exists an index ĩ ∈ {1, . . . , s}
such that ĩ ∈ Iσ for all σ ∈ 6max and n ĩ = 1. Then the ray ρ ĩ,1 is contained in no maximal cone of 6,
contradicting the fact that X is proper.

Since ci, j ̸=0 for all i ∈{1, . . . , t}, j ∈{1, . . . , ni }, the adjunction formula [Corti 1992, Proposition 16.4]
gives KV = (K X + H1 + · · · + Ht)|V . Since

s∑
i=1

ϖi Di = −K X −

s∑
i=1

ni∑
j=1

(
1 −

1
mi, j

)
Di +

t∑
i=1

ei Di

= −(K X + [Dm|X ] + [H1 + · · · + Ht ]),

Lemma 3.1 gives
NV (B) = cB(log B)b−1

+ O(B(log B)b−2(log log B)s),

where b = rk Pic(X) and c is defined in (3-7) with k = b − 1, CM,d given by (6-11), and ϖ1, . . . ,ϖs

given by (6-10). Moreover, the restriction Pic(X) → Pic(V ) is an isomorphism as ni ≥ 3 for 1 ≤ i ≤ t . □
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