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Perfectoid towers and their tilts:
with an application to the étale
cohomology groups of local log-regular rings

Shinnosuke Ishiro, Kei Nakazato and Kazuma Shimomoto

To initiate a systematic study on the applications of perfectoid methods to Noetherian rings, we introduce
the notions of perfectoid towers and their tilts. We mainly show that the tilting operation preserves several
homological invariants and finiteness properties. Using this, we also provide a comparison result on étale
cohomology groups under the tilting. As an application, we prove finiteness of the prime-to- p-torsion
subgroup of the divisor class group of a local log-regular ring that appears in logarithmic geometry in the
mixed characteristic case.
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1. Introduction

In recent years, the perfectoid technique has become one of the most effective tools in commutative ring
theory and singularity theory in mixed characteristic. The tilting operation S ~ S” for a perfectoid ring
S is a central notion in this method, which makes a bridge between objects in mixed characteristic and
objects in positive characteristic. However, perfectoid rings themselves are too big to fit into Noetherian
ring theory. Hence, for applications, one often requires distinguished Noetherian ring extensions that
approximate perfectoids. Indeed, in many earlier works (such as [7], [8] and [17]), one constructs a highly
ramified tower of regular local rings or local log-regular rings:

RyCSRICRC---

that converges to a (pre)perfectoid ring. Our purposes in this paper are to axiomatize the above towers
and establish a kind of Noetherization of perfectoid theory. As an application, we show a finiteness result
on the divisor class groups of local log-regular rings.

Fix a prime p. The highly ramified towers in the positive characteristic case are of the form

RgRl/PgRl/Pzg,,,.

This type of tower also appears when one considers the perfect closure of a reduced [ ,-algebra. Thus we
formulate this class as a tower-theoretic analogue of perfect [ ,-algebras, and call them perfect towers
(Definition 3.2). Next, we introduce perfectoid towers as a generalization of perfect towers, which includes
the towers applied so far (cf. Proposition 3.58 and Example 3.62). A perfectoid tower is given by a direct
system of rings Ry My 1 LI satisfying seven axioms in Definition 3.4 and Definition 3.21. If we
assume that each R; is Noetherian, then these axioms are essential to cope with two main difficulties
which we explain below.

The first difficulty is that the residue ring R;/pR; on each layer is not necessarily semiperfect.
We overcome it by axioms (b), (c), and (d); these ensure the existence of a surjective ring map
Fi i Rit1/pRi+1 — R;/pR; which gives a decomposition of the Frobenius endomorphism. We call F;
the i-th Frobenius projection, and define a ring R;'b (j = 0) as the inverse limit of Frobenius projections
starting at R;/pR;. Then the resulting tower

ts.b
R;.b 0 Riv.b Lo

is perfect, and thus we obtain the tilting operation ({R;};>o0, {fi}i>0) ~ ({Ris'b},-zo, {tis'b},-zo). We remark
that this strategy is an axiomatization of the principal arguments in [37].

The second one is that each Ris‘b could be imperfect. Because of this, the Witt ring W(Rl.s‘b) is often
uncontrollable. On the other hand, the definition of Bhatt—-Morrow—Scholze’s perfectoid rings [5] contains
an axiom involving Fontaine’s theta map 05 : W (S ") — S (see Definition 3.49(3)), where perfectness of § b
is quite effective. Our axioms (f) and (g) are the substitutes for it; these require the Frobenius projections
to behave well, especially on the p-torsion parts. This idea is closely related to Gabber and Ramero’s
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characterization of perfectoid rings ([17, Corollary 16.3.75]; see also Theorem 3.50). Indeed, we apply it
to deduce that the completed direct limit of a perfectoid tower is a perfectoid ring (Corollary 3.52).

We then verify fundamental properties of the tilting operation for towers. For example, the tilt
({Rf‘b}[zo, {tis 'b},-zo) is a perfectoid tower with respect to an ideal IS » - R(S)‘b which is the kernel of the
0-th projection Rg'b — Ro/pRo (Proposition 3.41). It induces an isomorphism between two perfectoid
objects of different characteristics modulo the defining ideals (Lemma 3.39). Moreover, this operation
preserves several finiteness properties such as Noetherianness on each layer (Proposition 3.42). A key to
deducing these statements is the following result (see Remark 3.40 for homological interpretation).

Main Theorem 1 (see Theorem 3.35). 18'b is a principal ideal. Moreover, we have isomorphisms of
= (R}) p-tor (i = 0) that are compatible with {tl‘.y'b}izo and {t;}i>o.

or

(possibly) nonunital rings (Rl.s'b)lg.b_t

Under certain normality assumptions, we obtain a comparison result on the finiteness of étale cohomology
groups under tilting for towers (Proposition 4.7). This proposition is considered to rework the crucial
part of the proof of [8, Theorem 3.1.3] in a systematic way. Actually, our proposition applies beyond the
regular case.

As a typical example, we investigate certain towers of local log-regular rings; this class of rings
is defined by Kazuya Kato, and is central to logarithmic geometry (readers interested in logarithmic
geometry can refer to [17], [26] and [34]). By Kato’s structure theorem, a complete local log-regular
ring (R, Q, @) of mixed characteristic is of the form C(k)[Q D N"]/(p — f) where C (k) is a Cohen ring
of the residue field k of R (see Theorem 2.22). Gabber and Ramero gave a systematic way to build a
perfectoid tower (in our sense) over it, which consists of local log-regular rings (Construction 3.56). In
this paper, we reveal that its tilt also consists of local log-regular rings, and arises from C(k)[Q®N"1/(p)
(Theorem 3.61). It says that these two rings on the starting layers fit into a Noetherian variant of the
tilting correspondence in perfectoid theory (e.g. Z,, corresponds to [, [x])).

We regard Theorem 3.61 to be of fundamental importance in the search on the singularities of Noetherian
rings via perfectoid methods. For instance, we can investigate the divisor class groups of local log-regular
rings.! The divisor class group of a Noetherian normal domain is an important invariant, but it is often
hard to compute.?> On the other hand, Polstra recently proved a remarkable result stating that the torsion
subgroup of the divisor class group of an F-finite strongly F-regular domain is finite [35]. Based on this

result, we obtain the following finiteness theorem.

Main Theorem 2 (Theorem 4.13). Let (R, Q, o) be a local log-regular ring of mixed characteristic
with perfect residue field k of characteristic tic p > 0, and denote by CI(R) the divisor class group with its
torsion subgroup Cl(R)o. Assume that R“h[ ] is locally factorial, where RS is the completion of the
strict Henselization R*". Then C1(R)r ® Z[p] is a finite group. In other words, the £-primary subgroup
of C1(R)or is finite for all primes € # p and vanishes for almost all primes £ # p.

IK. Kato proved that a local log-regular ring is a normal domain [26].
2Every abelian group is realized as a divisor class group of some Dedekind domain (due to Claborn’s result [9]).
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Our approach to the above theorem is a combination of Theorem 3.61 and Proposition 4.7.

Although we formulated the above theorem only in mixed characteristic, it has an analogue in charac-
teristic p > 0, which is relatively easy as follows from the fact that F-finite log-regular rings are strongly
F-regular (Lemma 2.25) combined with Polstra’s theorem.

For a local log-regular ring (R, Q, ), Gabber and Ramero constructed the isomorphism C1(Q) = CI(R)
where CI(Q) is the divisor class group of the associated monoid [17, Corollary 12.6.43]. It induces the
finite generation of CI(R).

Recently, H. Cai, S. Lee, L. Ma, K. Schwede, and K. Tucker proved that the torsion part of the divisor
class group of a BCM-regular ring is finite (see [6, Theorem 7.0.10.]). Since they also proved that local
log-regular rings are BCM-regular, their result recovers Main Theorem 2. Although their approach relies
on the evaluation of a certain inequality with the perfectoid signature which is defined in [6] as an analogue
of F-signature, it does not use a reduction to positive characteristic and is therefore essentially different
from our approach.

Outline. In Section 2, we discuss several properties of monoids and local log-regular rings needed in
later sections. We also record a shorter proof of the result that local log-regular rings are splinter based
on the direct summand theorem in Section 2C.

In Section 3, we introduce the notions of perfect towers, perfectoid towers, and their tilts. The most
part of this section is devoted to studying fundamental properties of them; in particular, Section 3D deals
with Main Theorem 1. In the last subsection Section 3F, we provide explicit examples of perfectoid
towers consisting of local log-regular rings, and compute their tilts.

In Section 4, we give a proof for Main Theorem 2 using the tilting operation, which is an application
of Sections 2 and 3.

In the Appendix, we review the notion of maximal sequences associated to certain differential modules
due to Gabber and Ramero [17]. This plays an important role in the construction of perfectoid towers of
local log-regular rings (Construction 3.56).

Conventions. « We consistently fix a prime p > 0. If we need to refer to another prime, we denote it by £.

« All rings are assumed to be commutative and unital (unless otherwise stated; cf. Theorem 3.35(2)). We
mean by a ring map a unital ring homomorphism.

e A local ring is a (not necessarily Noetherian) ring with a unique maximal ideal. When a ring R is local,
then we use mg (or simply m if no confusion is likely) to denote its unique maximal ideal. We say that a
ring map f : R — S is local if R and S are local rings and f~!(mg) = mg.

« Unless otherwise stated, a pair (A, ) consisting of a ring A and an ideal / € A will be simply called a
pair.
* The Frobenius endomorphism on an [ ,-algebra R is denoted by Fg. If there is no confusion, we denote

it by Frob.

3The first-named author recently provided an elementary proof of [17, Corollary 12.6.43]. See [25].
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2. Log-regularity

In this section, we discuss several properties of monoids and local log-regular rings. In Section 2A, we
review basic terms on monoids, and examine the behavior of p-times maps which are effectively used in
Gabber and Ramero’s treatment of perfectoid towers (see Construction 3.56). In Section 2B, we review
the definition of local log-regular rings and crucial results by K. Kato, and study the relationship with
strong F-regularity. In Section 2C, we recall Gabber and Ramero’s result which claims that any local
log-regular ring is a splinter (Theorem 2.29), and give an alternative proof for it using the direct summand
Theorem by Y. André [2] (its derived variant is proved by B. Bhatt [4]).

2A. Preliminaries on monoids.

2A1. Basic terms. Here we review the definition of several notions on monoids.

Definition 2.1. A monoid is a semigroup with a unit. A homomorphism of monoids is a semigroup
homomorphism between monoids that sends a unit to a unit.

Throughout this paper, all monoids are assumed to be commutative. We denote by Mnd the category
whose objects are (commutative) monoids and whose morphisms are homomorphisms of monoids.

We denote a unit by 0. Let Q be a monoid and Q* denote the set of all p € Q such that there exists
q € Q such that p+¢g = 0. Let Q87 denote the set of elements a —b for all a, b € Q, wherea—b=a’'— b’
if and only if there exists ¢ € Q such that a +b" + ¢ = a’ + b + ¢. By definition, Q87 is an abelian group.
The following conditions yield good classes of monoids.

Definition 2.2. Let Q be a monoid.
(1) Qs called integral if for x, x" and y € Q, x +y = x" + y implies x = x'.
(2) Q is called fine if it is finitely generated and integral.
(3) Qs called sharp if Q* =0.
(4) Q is called saturated if the following conditions hold.

(a) Q is integral.
(b) For any x € Q87 if nx € Q for some n > 1, then x € Q.

For an integral monoid Q, the map (o : Q@ — Q8 ; g — g — 0 is injective (see [34, Chapter I,
Proposition 1.3.3]). In Definition 2.2(4), we identify Q with its image in Q8”.
Next we recall the definition of a module over a monoid.*

Definition 2.3 (9-module). Let Q be a monoid.
(1) A Q-module is a set M equipped with a binary operation
OxM—>M; (g, x)—~q+x
having the following properties:

4This is called a Q-ser in [34]. We call it as above to follow the convention of the terminology in commutative ring theory.
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(@) 04+ x =x for any x € M;
b) (p+qg)+x=p+(g+x)forany p,g € Qand x € M.

(2) A homomorphism of Q-modules is a (set-theoretic) map f : M — N between Q-modules such that
f@+x)=q+ f(x) forany g € Q and x € M. We denote by Q-Mod the category of Q-modules
and homomorphisms of @-modules.

For a monoid Q and a family of Q-modules {M;};c;, we denote by | [, M; the disjoint union with

iel
the binary operation induced by that of each M;. Then it is the coproduct in Q-Mod.

Definition 2.4 (Monoid algebras). Let R be a ring and let Q be a monoid. Then the monoid algebra
R[Q] is the R-algebra which is the free R-module R®<, endowed with the unique ring structure induced
by the homomorphism of monoids

Q — R[Q]; g i,

For a monoid Q, one obtains the functor
O-Mod — R[Q]-Mod ; M — R[M], (2-1)

which is a left adjoint of the forgetful functor R[Q]-Mod — O-Mod. Notice that (2-1) preserves
coproducts (we use this property to prove Proposition 2.8).

Like ideals (resp. prime ideals, the Krull dimension) of a ring, an ideal (resp. prime ideals, the
dimension) of a monoid is defined as follows.

Definition 2.5. Let Q be a monoid.
(1) A Q-submodule of Q is called an ideal of Q.

(2) Anideal [ is called prime if I # Q and p+¢q € I implies p € I or g € I. Remark that the empty set
& is a prime ideal of Q.

(3) The dimension of a monoid Q is the maximal length d of the ascending chain’ of prime ideals
F=qoCq C---Cqg=QF,
where Q7 is the set of non-unit elements of Q (i.e. 97 = Q\ Q*). We also denote it by dim Q.
Next we review a good class of homomorphisms of monoids, called exact homomorphisms.
Definition 2.6 (Exact homomorphisms). Let P and Q be monoids.

(1) A homomorphism of monoids ¢ : P — Q is said to be exact if the diagram of monoids

P—Y 0

L, |

psr Ly Qsr

is cartesian.

S1In this paper, the symbol C is used to indicate proper inclusion for making an analogy to the inequality symbols as in [34].
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(2) An exact submonoid of Q is a submonoid Q' of Q such that the inclusion map Q' <> Q is exact (in
other words, (Q)8? N Q = Q).

There is a quite useful characterization of exact submonoids (Proposition 2.8). To see this, we recall a
graded decomposition of a @-module attached to a submonoid. For a monoid @ and a submonoid Q' C Q,
we denote by Q — Q/Q’ the cokernel of the inclusion map Q" < Q.

Definition 2.7. Let Q be an integral monoid, and let Q' C Q be a submonoid. Then for any g € Q/Q/,
we denote by Q, a Q’-module defined as follows.

o As aset, Q, is the inverse image of g € Q/ Q' under the cokernel Q@ — Q/Q of Q' — Q.

e The operation Q' x Q, — Q, is defined by the rule (g, x) = ¢ +x (where g + x denotes the sum
of g and x in Q).

By definition, Q@ = [[,.5,o0 Q¢ in Q'-Mod. Using this, one can refine a characterization of exact
embeddings described in [34, Chapter I, Proposition 4.2.7].

Proposition 2.8 (cf. [34, Chapter I, Proposition 4.2.7]). Let Q be an integral monoid, and let Q' C Q be
a submonoid. Let 0 : Q' <~ Q be the inclusion map, and let 7[0] : Z[Q'] — Z[Q] be the induced ring
map. Set G := Q/Q’.

(1) The Z[Q'l-module 7[Q] admits a G-graded decomposition Z[Q] = @geG Z[Qg].

(2) The following conditions are equivalent.

(a) The inclusion map 0 : Q' — Q is exact. In other words, (Q)? N Q = Q.
(b) Q=29

(¢) Z[9] splits as a Z[Q']-linear map.

(d) Z]0] is equal to the canonical embedding 7] Qp] — @gec Z[Qgl.

(e) Z[0] is universally injective.

Proof. (1) By applying the functor (2-1) (which admits a right adjoint) to the decomposition Q =] | geG Cos
we find that the assertion follows.

(2) Since Qy = (Q)8 N Q as sets by definition, the equivalence (a)<(b) follows. The assertion
(a)¢(c)<(e) is none other than [34, Chapter I, Proposition 4.2.7]. Moreover, (d) implies (c) obviously.
Thus it suffices to show the implication (b)=>(d). Assume that (b) is satisfied. Then one can decompose Q
into the direct sum of Q'-modules [ | ¢€G Q, with Qo= Q'. Hence the inclusion map Q' — Q is equal to the
canonical embedding Qp < [ | ¢cG Q. Thus the induced homomorphism Z[0] : Z[Qp] — Z[]_[ 2eG Qg]
satisfies (d), as desired. Il

Remark 2.9. In the situation of Proposition 2.8, assume that condition (d) is satisfied. Then the split
surjection 77 : Z[Q] — Z[Q'] has the property that 7 (e9) = e? by the construction of the G-graded
decomposition Z[Q] = @gec Z[Qg]. Moreover, JT(€Q+) - @) because otNQ C(Q)". We use this
fact in our proof for Theorem 2.29.
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Proposition 2.8 implies the following useful lemma.
Lemma 2.10. Let Q be a fine, sharp, and saturated monoid. Let A be a ring. Then there is an embedding
of monoids Q < N such that the induced map of monoid algebras

A[Q] — AINY] (22)
splits as an A[Q]-linear map.
Proof. Since Q is saturated, there exists an embedding Q into some N9 as an exact submonoid in view of
[34, Chapter I, Corollary 2.2.7]. Then by Proposition 2.8, the associated map of monoid algebras

71Q] — ZIN] (2-3)
splits as a Z[ Q]-linear map. By tensoring (2-3) with A, we get the desired split map. (|

2A2. c-times maps on integral monoids. For an integral monoid Q, we denote by Qg the submonoid of
Q87 ®7 Q defined as
Qo:={x®reQ®;Q|xecQ, re}.

Using this, one can define the following monoid which plays a central role in Gabber and Ramero’s
construction of perfectoid towers consisting of local log-regular rings.
Definition 2.11. Let O be an integral monoid. Let ¢ and i be non-negative integers with ¢ > 0.

(1) We denote by Qg) the submonoid of Qg defined as

QY :={y e Qqlc'y e}
(2) We denote by LE.i) : E.i) > QE.HI) the inclusion map, and by Z[Lgi)] :Z[Qg )] — Z[Q£i+l)] the induced
ring map.
In the rest of this subsection, we fix a positive integer ¢ > 0. To prove several properties of Qgi), the

following one is important as a starting point.

Lemma 2.12. Let Q be an integral monoid. Then for every i > 0, the following assertions hold.

(D) Qgi) is integral.

@) ¥V =(@MH".

(3) The c-times map on Qg restricts to an isomorphism of monoids:

fer QD S0Py ey

Proof. (1) Since Q87 ®7 Q is an integral monoid, so is Q?).

(2) Sinceany g € (Qé”)gp satisfies ¢’ g € Q8?, the inclusion map Q8P — (Qg”)gp becomes an isomorphism
¢: 0% ;0> (Qgi))gp ®z Q by extension of scalars along the flat ring map Z — Q. The restriction
¢ :Qq— (QE.’))@ of ¢ is also an isomorphism, and one can easily check that ¢ restricts to the desired

~

canonical isomorphism QEHD - (Q((;i) E})-
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(3) Itis easy to see that the c-times map on Qg restricts to the homomorphism of monoids f,. Since the
abelian group Qg = 98” ®z Q is torsion-free, f, is injective. Moreover, any element y in Qgi) is of the
form x ® r for some x € Q87 and r € Q, which satisfy ¢(x ® £) =y and ¢! (x ® £) € Q. Hence f. is
also surjective, as desired. U

Let us inspect monoid-theoretic aspects of the inclusion LE.") : Qﬁi) s Qith,

Lemma 2.13. Let Q be an integral monoid, and let P € { fine, sharp, saturated. If Q satisfies P, then
E.’) also satisfies P for everyi > 0.

Proof. Assume that Q is sharp. Pick x, y € Qgi) such that x + y = 0. Then ¢'x = 0 because Q is sharp.

Since le) is a submonoid of the torsion-free group Q%7 ®z Q, we have x = 0. Next, if Q is fine or

saturated, then it suffices to show the case i = 1 by Lemma 2.12(2). If Q is fine, then there exists a finite

system of generators {x, ..., x,} of Q. Hence Qél) also has a finite system of generators {x i® %}j:] -
Finally, assume that QE“ is saturated. Pick an element x of (le))gp such that nx € QED. Then the
element cx of Q87 satisfies n(cx) = c(nx) € Q. Hence cx € Q because Q is saturated. O

The assumption of fineness on Q induces several finiteness properties.
Lemma 2.14. Let Q be a fine monoid. Then for every i > 0, the following assertions hold.
(1) The ring map Z[:]: 2[QP] — 7[ QY™ is module-finite.
) QEHI)/Q?) = (Q£i+l))gp/(Q£i))gp as monoids. Moreover, QEiJF])/QEi)forms a finite abelian group.
(3) For a prime p > 0, we have ‘QgH)/Qg) = p° for some s > (.
Proof. In view of Lemma 2.12(2), it suffices to deal with the case when i = 0 only. Here notice that
v_o
(1) Let {%xl, e, %x,} be the system of generators of le) obtained in the proof of Lemma 2.13 where

%xj =X Q® % Then the Z[Q]-algebra Z[Qﬂl)] is generated by {e%x‘, el ez’l-x"}, and each et¥i € Z[QEU]

is integral over Z[Q]. Hence Z[LEO)] is module-finite, as desired.

(2) By [34, Chapter I, Proposition 1.3.3], le) /Q is identified with the image of the composition

QY > (@) — () Q¥ (2-4)

. ) ; 1 1 ONTE 1 1, _1 _1
Since Q. is generated by X1y ey o X, We see (Q¢ )8 s generated by XLy ey Xy =X e, — Xy
as a monoid. On the other hand, —%xj =(c— 1)%xj mod Q8? for j =1,...,r. Hence (le))gp/ggp is

generated by {%x ; mod Q8P }J.=1 _, as amonoid. Therefore, the composite map (2-4) is surjective, and
(le))gp / Q8P is a finitely generated torsion abelian group. Thus, le) /Q coincides with ( QEI))W / Q8P
which is a finite abelian group, as desired.

(3) Since there exists a surjective group homomorphism

fRZ/pZ x - x T/ pZ — (QV) Q% (ﬁl,...,ﬁnHn1(§x1)+---+nr(%x,) mod Q7

r
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we have p" = ‘(QS))gp/Qg”} | Ker(f)|. Hence }(Qg))gp/Qgp’ = p* for some s > 0. Thus the assertion
follows from (2). O

By assuming saturatedness, one finds the exactness of Lﬁ.i) : E.i) — Q§i+1).
Lemma 2.15. Let Q be a saturated monoid. Then for every i > 0, LE") : 2") — QéiH) is exact (i.e.,
o n (@ = 9.

(i+1) Dyep @) p; @i+1) (ONT

Proof. 1t suffices to show that Q. N(Q:")8 C Q. . Pick an element a € Q. N (Q¢:")8P. Then
ca € Q. Since O is saturated by Lemma 2.13, it implies that a € Q, as desired. O

If further Q is fine, one can learn more about Z[tg)] : Z[Qgi) 1— Z[Q?H) ] using the exactness of tﬁi)
assured by Lemma 2.15.
Lemma 2.16. Let Q be a fine and saturated monoid. For everyi > 0, set G; := Qé"“)/gﬁ” (which is a
finite abelian group by Lemma 2.14(2)) and K; := FraC(Z[le)]).

(1) For any g € G;, we have an isomorphism on[Qgi)]—modules Z[(Qngl))g] ®Z[Q§”] K; =K,

(2) The base extension K; — Z[Q?H)] K; of Z[Lgi)] is isomorphic to the split injection

® 2100
K; — (Kp®%!: g (a,0,...,0)
o . . (i+1) e\ 1 AGFD A0
as a K;-linear map. In particular, dimg, (Z[QC ]®Z[Q(,’>] K,) =1Q¢ " /Q¢ |
Proof. In view of Lemma 2.12(2) and Lemma 2.13, it suffices to show the assertions only for the case

when i = 0.

(1) Let y, € le) be an element whose image in le) /Q is equal to g. Then we obtain an injective
homomorphism of Q-modules

lg: Q< (le))g ;X X+ Y, (2-5)
which induces an injective Z[Q]-linear map Z[i,] : Z[Q] — Z[(le)) ¢l- Thus it suffices to show that
Coker(Z[ig]) ®z101 Ko = (0), i.e., Coker(Z[i,]) is a torsion Z[Q]-module. On the other hand, we also
have a homomorphism of Q-modules

QMg = Q5 y > y =y,
which induces an embedding of Z[Q]-modules Coker(Z[iy]) < Z[Q8P]/Z[Q]. Since Z[Q%P]/Z[Q] is

Z[ Q]-torsion, the assertion follows.

(2) This follows from the combination of part (1) with Lemma 2.15 and Proposition 2.8(2). O

2B. Local log-regular rings.

2B1. Definition of local log-regular rings. We review the definition and fundamental properties of local
log-regular rings. Unless otherwise stated, we always assume that the monoid structure of a commutative
ring is specified by the multiplicative structure.
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Definition 2.17 [34, Chapter III, Definition 1.2.3]. Let R be a ring and let Q be a monoid with a
homomorphism « : @ — R of monoids. Then we say that the triple (R, O, «) is a log ring. Moreover, we
say that (R, Q, ) is a local log ring if (R, Q, ) is a log ring, where R is a local ring and « ! (R*) = Q*.

In order to preserve the locality of a log structure, we need the locality of a ring map.

Lemma 2.18. Let (R, Q, @) be a local log ring and let (S, mg) be a local ring with a local ring map
¢:R— S. Then (S, Q, p o) is also a local log ring.

Proof. By the locality of ¢, we obtain the equality (¢ o)™ (S*) = Q*, as desired. O
Now we define log-regular rings according to [34].

Definition 2.19. Let (R, Q, @) be a local log ring, where R is Noetherian and Q.= Q/Q* is fine and
saturated. Let I, be the ideal of R generated by the set a(Q"). Then (R, Q, «) is called a log-regular
ring if the following conditions hold.

(1) R/I, is a regular local ring.
(2) dim R =dim R/I, + dim Q.

Remark 2.20. For a monoid Q such that Q is fine and saturated, the natural projection 7 : Q —» Q0 splits
(see [17, Lemma 6.2.10]). Thus, in the situation of Definition 2.19, o extends to the homomorphism of
monoids @ : @ — R along 7. Namely, we obtain another local log-regular ring (R, Q, &) with the same
underlying ring, where Q is fine, sharp, and saturated.

In his monumental paper [26], Kato considered log structures of schemes on the étale sites, and he then
considered them on the Zariski sites [27]. However, we do not need any deep part of logarithmic geometry
and the present paper focuses on the local study of schemes with log structures. We should remark that if
k is any fixed field and Q C N is a fine and saturated monoid, then the monoid algebra k[ Q] is known
as an dffine normal semigroup ring which is actively studied in combinatorial commutative algebra (see
the book [30]). The following theorem is a natural extension of the Cohen—Macaulay property for the
classical toric singularities over a field proved by Hochster [22].

Theorem 2.21 [27, Theorem 4.1]. Every local log-regular ring is Cohen—Macaulay and normal.

Let R be a ring and let Q be a fine sharp monoid. We denote by R[Q™] the ideal of R[Q] generated
by elements ) qeo+ dge?, where ag, is an element of R. Then we denote by R[[Q] the adic completion
of R[Q] with respect to the ideal R[QT].

As to the structure of complete local log-regular rings, we have the following result analogous to the
classical Cohen’s structure theorem, originally proved in [27]. We borrow the presentation from [34,
Chapter III, Theorem 1.11.2].

Theorem 2.22 (Kato). Let (R, Q, «) be a local log ring such that R is Noetherian and Q is fine, sharp,
and saturated. Let k be the residue field of R and mp, its maximal ideal. Let r be the dimension of R/ I,.
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(1) Suppose that R contains a field. Then (R, Q, «) is log-regular if and only if there exists a commutative
diagram
Q——kl[QaeNT]
o ll/f
R———R
where R is the completion along the maximal ideal and  is an isomorphism of rings.

(2) Assume that R is of mixed characteristic p > 0. Let C (k) be a Cohen ring of k. Then (R, Q, ) is

log-regular if and only if there exists a commutative diagram

Q— CILeNT]

la lw

R— R

where R is the completion along the maximal ideal and W is a surjective ring map with Ker(y) = (6)
for some element 8 € my whose constant term is p. Moreover, Ker(y) = (0") for any element
0’ € Ker(y) whose constant term is p.

Proof. Assertion (1) and the first part of (2) are [34, Chapter III, Theorem 1.11.2]. Pick an element
0’ € Ker(y) whose constant term is p. Note that 6 is a regular element that is not invertible. By [34,
Chapter III, Proposition 1.10.13], C(k)[Q ® N"] /(") is a domain of dim Q +r = dim R = dim R. Thus
Ker(y) = (6') holds.b O

The completion of a normal affine semigroup ring with respect to the ideal generated by elements of
the semigroup is a typical example of local log-regular rings:

Lemma 2.23. Let Q be a fine, sharp and saturated monoid and let k be a field. Then (k[[Q], O, 1) is a
local log-regular ring, where 1 : Q — k[ Q]| is the natural injection.

Proof. By [34, Chapter I, Proposition 3.6.1], (k[ Q]l, Q, ¢) is a local log ring. Now applying Theorem 2.22,
it is a local log-regular ring. O

2B2. Log-regularity and strong F-regularity. Strongly F-regular rings are one of the important classes
appearing in the study of F-singularities. Let us recall the definition.

Definition 2.24 (strong F'-regularity). Let R be a Noetherian reduced [ ,-algebra that is F-finite. Let F R
be the same as R as its underlying abelian groups with its R-module structure via restriction of scalars via
the e-th iterated Frobenius endomorphism Fj on R. Then we say that R is strongly F-regular, if for any
element ¢ € R that is not in any minimal prime of R, there exist an e > 0 and a map ¢ € Homgr(F{ R, R)
such that ¢ (Ffc) = 1.

OThis argument is due to Ogus. See the proof of [34, Chapter III, Theorem 1.11.2(2)].
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It is known that strongly F-regular rings are Cohen—Macaulay and normal (for example, see [28,
Proposition 4.4 and Theorem 4.6]). Let us show that log-regularity implies strong F-regularity (in positive
characteristic cases).

Lemma 2.25. Let (R, Q, @) be a local log-regular ring of characteristic p > 0 such that R is F-finite.
Then R is strongly F-regular.

Proof. The completion of R with respect to its maximal ideal is isomorphic to the completion of
k[Q @& N'], and Q is a fine, sharp and saturated monoid by Theorem 2.22 and [34, Chapter I, Proposition
3.4.1]. Then it follows from Lemma 2.10 that O @ N’ can be embedded into N? for d > 0, and
kK[Q®N'] — k[NY] = k[xy, ..., x4] splits as a k[Q ® N']-linear map. Applying [23, Theorem 3.1], we
see that k[Q @ N'] is strongly F-regular. After completion, the complete local ring k[ Q & N"]| is strongly
F-regular in view of [1, Theorem 3.6]. Then by faithful flatness of R — k[Q & N1, [23, Theorem 3.1]
applies to yield strong F-regularity of R. 0

Under the hypothesis in the following proposition, one can easily establish the finiteness of the torsion
part of the divisor class group, which is the first assertion of Theorem 4.13.

Proposition 2.26. Assume that R = C (k)[[Q]l, where C (k) is a Cohen ring with F-finite residue field
k and Q is a fine, sharp, and saturated monoid. Let C1(R) be the torsion subgroup of CI(R). Then
CL(R)tor @ Z(y) is finite for all £ # p, and vanishes for almost all £ # p.

Proof. Since R = C(k)[Q]l, we have
R/pR =k[Q],

which is a local F-finite log-regular ring. There is an induced map CI(R) — CI(R/pR). By restriction,
we have CI(R)ior — CI(R/pR)ir- Then Lemma 2.25 together with Polstra’s result [35] says that
CI(R/pR)o is finite. Let C, be the maximal £-subgroup of CI(R),. Since £ # p, we find that the map
CI(R)tor = CI(R/pR)1or restricted to Cy is injective in view of [18, Theorem 1.2]. In conclusion, Cy is
finite for all £ # p, and C, vanishes for almost all £ # p, as desired. g

2C. Log-regularity and splinters. Local log-regular rings have another notable property; they are splin-
ters. Let us recall the definition of splinters.

Definition 2.27. A Noetherian ring A is a splinter if every finite ring map f : A — B such that
Spec(B) — Spec(A) is surjective admits an A-linear map & : B — A such that ho f =idy.

In general, it is not easy to see which algebraic operations preserve splinters. In fact, it remains
unsolved whether polynomial rings over a splinter are splinters (see [10, Question 1’]). Regarding these
issues, Datta and Tucker proved remarkable results such as [10, Theorem B], [10, Theorem C], and [10,
Example 3.2.1]. See also Murayama’s work [32] for the study of purity of ring extensions.

In order to prove the splinter property, we need a lemma on splitting a map under completion.
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Lemma 2.28. Let R be a ring and let f : M — N be an R-linear map. Consider a decreasing filtration
by R-submodules {M,},cp of M and a decreasing filtration by R-submodules {N)},ea of N such that
f(M,) C N, foreach A € A. Set
M :=1im M/M;, and N :=1lim N/N;.
AEA rEA

Finally, assume that f is a split injection that admits an R-linear map g : N — M such that g o f =idyy,
g(N,) C M, foreach A € A. Then f extends to a split injection M— N.

Proof. By assumption, there is an induced map
MM, 5 NN, S mym,

which is an identity on M /M, . Taking inverse limits, we get an identity map M — N — M, which
proves the lemma. 0

The next result is originally due to Gabber and Ramero [17, Theorem 17.3.12].7 We give an alternative

and short proof, using the direct summand theorem by André [2].
Theorem 2.29. A local log-regular ring (R, Q, &) is a splinter.

Proof. First, we prove the theorem when R is complete. By Remark 2.20, we may assume that Q is fine,
sharp, and saturated. By Theorem 2.22, we have

R=Zk[Q®N'], or R=ECHKIQBNT/(p— f),

depending on whether R contains a field or not. Let us consider the mixed characteristic case. By
Lemma 2.10, there is a split injection C (k)[Q D N"] — C (k)[N?] for some d > 0, which comes from an
injection § : Q ®N" — N that realizes §(Q @ N") as an exact submonoid of N, After dividing out by
the ideal (p — f), we find that the map

ClIeaN1/(p—f)— COIND/(p— f)

splits as a C(k)[Q & N"]|/(p — f)-linear map by Remark 2.9 and Lemma 2.28. Hence, R becomes a
direct summand of the complete regular local ring A := C(k)[x1, ..., xq4]l/(p — f). By invoking [10,
Proposition 2.2.8] and the Direct Summand Theorem [2], we see that R is a splinter. The case where
R =k[[Q ® N'] can be treated similarly.

Next let us consider the general case. Then the completion map R — R is faithfully flat and Risa
complete local log-regular ring (see Theorem 2.22). Hence applying the complete case as above and [10,
Proposition 2.2.8] shows that R is a splinter, as desired. U

7One notices that the treatment of logarithmic geometry in [17] is topos-theoretic, while [27] considers mostly the Zariski
sites.
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3. Perfectoid towers and small tilts

In this section, we establish a tower-theoretic framework to deal with perfectoid objects using the notion
of perfectoid towers. We first introduce the class of perfect towers (Definition 3.2) in Section 3A, and
then define inverse perfection of towers (Definition 3.8) in Section 3B. These notions are tower-theoretic
variants of perfect [ ,-algebras and inverse perfection of rings, respectively. In Section 3C, we give a set
of axioms for perfectoid towers. In Section 3D, we adopt the process of inverse perfection for perfectoid
towers as a new tilting operation. Indeed, we verify the invariance of several good properties under the
tilting; Main Theorem 1 is discussed here. In Section 3E, we describe the relationship between perfectoid
towers and perfectoid rings. This subsection also includes an alternative characterization of perfectoid rings
without Aj,¢. In Section 3F, we calculate the tilts of perfectoid towers consisting of local log-regular rings.

3A. Perfect towers. First of all, we consider the category of towers of rings.
Definition 3.1 (towers of rings).

(1) A tower of rings is a direct system of rings of the form

) 131 15} ti—1 4

Ry R, R, R

and we denote it by ({R;}izo, {fi}iz0) or {Ro— Ry 2> ---}.

(2) A morphism of towers of rings f : ({R;}i=0, {ti}i=0) = ({R]}i0, {t/}i=0) is defined as a collection of
ring maps { f; : R; — R!};>o that is compatible with the transition maps; in other words, f represents
the commutative diagram

Ro R Ry e R;
fol fll fzJ f}l
R} R, R, - R!

For a tower of rings ({R;}i>0, {#i}i>0), we often denote by Ro an inductive limit lim,_, R;. Clearly, an
isomorphism of towers of rings ({R;}i>0, {ti}i>0) — ({R;}izo, {ll-/}izo) induces the isomorphism of rings
R — R.,. For every i > 0, we regard R;| as an R;-algebra via the transition map .

perf s the direct limit of

Recall that the direct perfection of an [ ,-algebra R, which we denote by R
the tower ({R;}i>0, {ti}i>0) where R; = R and t; = Fy for every i > (0. We denote by ¢r : R — RP the
natural map Ry — lim,_, R;. If R is reduced, this tower can be regarded as ring extensions obtained
by adjoining p-th roots_(cf. Example 3.3). We formulate such towers as follows, and call them perfect

towers.

Definition 3.2 (perfect towers). A perfect [ ,-tower (or, perfect tower as an abbreviated form) is a tower
of rings that is isomorphic to a tower of the following form, where R is a reduced [ ,-algebra:

j LN SNy S L 3-1)
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Example 3.3. Let R be a reduced [ ,-algebra. Let RY/P' be the ring of p’-th roots of elements of R
for every i > 0.8 Then the tower R > R/? % RU/P* & ... is a perfect tower. Indeed, we have an
isomorphism F; : RPN RUP ; x = xP. By putting Fy 4+ := Fypo--- o F;, we obtain the desired
commutative ladder:

o 1o ti

RU/P RUP L R
lFo.o lFO,l lFO,i
R R . R
Fr Fgr Fr Fr

3B. Purely inseparable towers and inverse perfection. In this subsection, we define inverse perfection
for towers, which assigns a perfect tower to a tower by arranging a certain type of inverse limits of rings.
For this, we introduce the following class of towers that admit distinguished inverse systems of rings.

Definition 3.4 (purely inseparable towers). Let R be a ring, and let / € R be an ideal.

(1) A tower ({R;}i>o0, {ti}i>0) is called a p-purely inseparable tower arising from (R, I if it satisfies
the following axioms.
(@ Ro=Rand pel.
(b) For any i > 0, the ring map f; : R;/IR; — R;+1/IR;; induced by #; is injective.
(c) For any i > 0, the image of the Frobenius endomorphism on R;;/IR;1 is contained in the

image of 7; : R;/IR; — R;11/IR; 1.

(2) Let ({R;}i>o0, {ti}i>0) be a p-purely inseparable tower arising from (R, I). For any i > 0, we denote
by F; : Ri+1/IR;+1 — R;/IR; the ring map (which uniquely exists by axioms (b) and (c)) such that
the following diagram commutes:

FRi 1 /1R

Rit1/IRiy) ———— Riy1/IRiy
\ ; T (3-2)
F
Ri/IR;.
We call F; the i-th Frobenius projection (of ({R;}i>0, {ti}i>0) associated to (R, I)).

Hereafter, we leave out “p-" from “p-purely inseparable towers” if no confusion occurs. Similarly, we
omit the parenthetic phrase “of ... associated to (R, I)” subsequent to “the i-th Frobenius projection”

(but we should be careful in some situations; cf. Remark 3.38).

Throughout this paper, when a purely inseparable tower ({R;};>0, {f;}i>0) is given and its starting layer
(R, I) is clear from the context, we denote R;/IR; by R; for every i > 0.

Example 3.5. Any perfect tower is a purely inseparable tower. More precisely, ({R}i>0, {Fr}i>0)
appearing in Definition 3.2 is a purely inseparable tower arising from (R, (0)). Indeed, axioms (a) and (c)

8For more details of the ring of p-th roots of elements of a reduced ring, we refer to [28].
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are obvious, and axiom (b) follows from reducedness of R. The i-th Frobenius projection is given by the
identity map on R.

To develop the theory of perfectoid towers, we often use a combination of diagram (3-2) in Definition 3.4
and diagram (3-3) in the following lemma.

Lemma 3.6. Let ({R;}i>o0, {ti}i>0) be a purely inseparable tower arising from some pair (R, I). Then for

every i > 0, the following assertions hold.
(1) Ker(F;) = Ker(FEM). In particular, F; is injective if and only if Ri 1 is reduced.

(2) Any element of Ri1 is a root of a polynomial of the form XP —t;(a) with a € R;. In particular, the
ring map t; : R; < R is integral.

(3) The following diagram commutes:

x

D

F;
\ (3-3)
_

R;.

Proof. Since f; is injective, the commutative diagram (3-2) yields assertion (1). Moreover, (3-2) also
yields the equality x? — #; (F;(x)) = 0 for every x € Ei+ 1. Hence assertion (2) follows. To prove (3), let
us recall the equalities

;iO Ei =FRi+l O;i :;iOEO;ia

where the second one follows from the commutative diagram (3-2). Since 7; is injective, we obtain the
equality Fg = F; of;, as desired. O

Lemma 3.6(3) is essential for defining inverse perfection of towers (cf. Definition 3.8(2)). Moreover,
it provides a useful tool for studying direct perfection on each layer. Recall that for an [ ,-algebra
homomorphism f : R — S, there exists a unique ring map P : RPe — §perf gych that the following
diagram commutes (the notations are explained just before Definition 3.2):

R —)f S

o s

erf f pert erf
Reert L, gperf,

Corollary 3.7. Keep the notation as in Lemma 3.6. Then )Pt (R;)Perf (§i+1 et i an isomorphism

of rings whose inverse map is (F;)P" : (R;11)P*T — (R;)P*™ up to the Frobenius automorphisms.
Proof. By Lemma 3.6(3), F(Em)perf is described as (FRM)Perf = ()P o Fipelf, and it is an automorphism.

Similarly, it follows from the commutative diagram (3-2) that Fl.p erf (7P is the Frobenius automorphism
of (R;)P*!. Hence the assertion follows. O
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Definition 3.8 (inverse perfection of towers). Let ({R;}i>0, {ti}i>0) be a (p-)purely inseparable tower
arising from some pair (R, I).

(1) For any j > 0, we define the j-th inverse quasi-perfection of ({R;}i>0, {ti}i>0) associated to (R, I)
as the limit

— Fiyi — Fj —
(R = Wm{- - — Rjiiy1 —> Rjyi — - — R}
(2) For any j > 0, we define an injective ring map (tj)?'frep : (Rj)?'frep — (RJ-H)?'freP by the rule
A -
)T P (a:)iz0) i= (Fj+i(ai))ixo-

We call the resulting tower ({(Ri)(f'frep}izo, {(ti)(}'frep}izo) the inverse perfection of ({R;}i=0, {ti}i=0)
associated to (R, I).

(3) For any j > 0, we define a ring map (FJA)‘II'frep : (Rj+1)‘11'frep — (Rj)?'frep by the rule
(Fj)?'frep((ai)izo) = (Fj1i(ai)i=o- (3-4)
(4) For any j > 0 and for any m > 0, we denote by CD,(,{ ) the m-th projection map:
(Rj)?ﬁep — Rjpm 5 (@)iso > am-

. . 9. frep 9 frep 9. frep q.frep _q.frep q.frep
If no confusion occurs, we also abbreviate (R;); , (¢;); —, (F}); to Rj o1 , Fj .

Example 3.9. Let R be an [,-algebra. Set R; := R and ¢; := idg for every i > 0. Then the tower
({Ri}i>0, {ti}i>0) is a purely inseparable tower arising from (R, (0)). Moreover, for every j > 0, the
attached j-th inverse quasi-perfection is a limit

; . F F F
RYTP _fim{... 28 R 28 R Z& Ry,
J —
which is none other than the inverse perfection of R.

In the situation of Definition 3.8, we have the commutative diagram:

FR- q.frep
R q. frep (Rj+1p R q. frep
( j+r ( /+1)I

. 3_5
. (tj)ql,fep ( )
(Fj)ql‘trep

q.frep
(R, .

Therefore the tower ({(Ri)‘;'frep}izo, {(t,-)‘,f'frep}izo) is also a purely inseparable tower associated to
(R)T ™, (0)).

In the rest of this subsection, we fix a purely inseparable tower ({R;};>0, {#i}i>0) arising from
some pair (R, I). Keep in mind that the inverse perfection ({(Ri)‘li'fmp},-zo, {(t,-)‘lf'frep},-zo) is given
in Definition 3.8(2), and its Frobenius projections {(Fl-)?'frep }i>0 are described in Definition 3.8(3). Some
basic properties of inverse quasi-perfection are contained in the following proposition.
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Proposition 3.10. The following assertions hold.

(1) For any j > 0, the following assertions hold.
(a) Let J C (R j)‘]]'frep be a finitely generated ideal such that J kc Ker(fb(()j )) for some k > 0 (see
Definition 3.8(4) for CD((Jj )). Then (R j)?ﬁep is J-adically complete and separated.
(b) Let x = (x;)i>0 be an element of(Rj)(;'frep. Then x is a unit if and only if xo € R;/IR; is a unit.
(c) The ring map (F j)?'frep is an isomorphism.

2) ({(Ri)’ll'frep}izo, {(ti)?'frep},-zo) is a perfect tower. In particular, each (Rl-)?frep is reduced.

Proof. (1) Since ({(Rj4)? ™P};>0, {(fj+i)?frep}izo) is the inverse perfection of ({R;;}i>0, {#j+i}i>0),
we are reduced to showing the assertions in the case when j = 0.
(a): By definition, (Ro)‘}'frep is complete and separated with respect to the linear topology induced by the

descending filtration
Ker(@{") 2 Ker(®”) D Ker(®") 2 -- - .

Moreover, since J¥ C Ker(d>(()0)), we have (J ")[pi] C Ker(dDEO)) for every i > 0 by the commutative
diagram (3-2).” On the other hand, since J* is finitely generated, (J kyp'r < (J5)P'] for some r > 0. Thus
the assertion follows from [15, Lemma 2.1.1].

(b): It is obvious that xy € Ry is a unit if x € (RO)KII'frep is a unit. Conversely, assume that xo € Ry is

a unit. Then for every i > 0, xf " is a unit because it is the image of xg in R;. Hence x; is also a unit.
Therefore, we have isomorphisms R;/IR; RN R;/IR; (i > 0) that are compatible with the Frobenius
projections. Thus we obtain the isomorphism between inverse limits (Ro)?‘frep = (RO)?’frep, which
yields the assertion.

(c): Consider the shifting map s : (RO)‘}'frep — (Rl)?'frep defined by the rule so((a;)i>0) := (@i+1)i>0-
Then one can easily check that sg is the inverse map of (Fo)?'frep .

(2) Define F;"P: (R)T ™ — (Ro){ ™ as the composite map (Fo)§ ™o+ o (Fr_){ ™ (if i > 1)

or the identity map (if i = 0). Then the collection {Fg 'ifrep}izo gives a morphism of towers from
F . frej F . frej
(R )‘i P (R >q P
{R)T im0, {(1)F " Phiz0) to {(R)T ™ —— (R)§""™ —— .. }. Using assertion (I-c)
and Lemma 3.6(1), we complete the proof. O

The operation of inverse quasi-perfection preserves the locality of rings and ring maps.

Lemma 3.11. Assume that R; is a local ring for any i > 0, and I # R. Then for any j > 0, the following

assertions hold.

(1) The ring maps tj, tj, and F; are local.

2) (R j)(;'frep is a local ring.

(3) The ring map (tj)CI]'freP : (RJ-)?'frep — (Rj+1)(11'fmp is local.

9The symbol / [P"] for an ideal / in an F p-algebra A is the ideal generated by the elements xP" forxel.
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Proof. As in Proposition 3.10(1), it suffices to show the assertions in the case when j = 0.

(1) Since the diagrams (3-2) and (3-3) are commutative, Fy o to and 7o o Fy are local. Hence 7y and Fj
are local. In particular, the composition Ry — Ro R 1 is local. Since this map factors through 1y, 1y is
also local, as desired.

(2) Let my be the maximal ideal of Ry. Consider the ideal
i i
me)¥ ™ = {(x))i=0 € (R)T ™ | xo0 € mo/ IR},

where mg/ IRy is the maximal ideal of Ry. Then by Proposition 3.10(1-b), (mo)?' e is a unique maximal
ideal of (RO)‘,I' P The assertion follows.

(3) By assertion (2), ({(Ri)?frep}izo, {(li)?'ﬁep},-zo) is a purely inseparable tower of local rings. Hence
by (1), (t0)? "™ is local, 5

A purely inseparable tower also satisfies the following amusing property. This is well-known in positive
characteristic, in which case R; — R;41 gives a universal homeomorphism (i.e. the induced morphism of
schemes Spec R;+1 — Spec R; is a universally homeomorphism). See also Proposition 3.45.

Lemma 3.12. For everyi > 0, assume that R; is I-adically Henselian.'® Then the ring map t; induces an
equivalence of categories:

FEt(R;) > FEt(Ri11),
where EEt(A) is the category of finite étale A-algebras for a ring A.

Proof. By Corollary 3.7, we obtain the commutative diagram of rings

1
Ri — Riny

”iJ lﬂiﬂ

Ri— " Ry (3-6)

¢Ril J/(bRH—I

_ 7Pt .
(Roypert 05 Ry pypet

where 7; (j € {i,i + 1}) is the natural projection, and the bottom map is an isomorphism. Since the
Frobenius endomorphism on any [ ,-algebra gives a universal homeomorphism [38, Tag 0CC6], so does
[0} R by [38, Tag 01YW] and [38, Tag 01YZ]. Hence ¢ 3 induces an equivalence of categories of finite
étale algebras over respective rings in view of [38, Tag OBQN]. The same assertion holds for 7; by the
lifting property of a henselian pair [38, Tag 09ZL]. By going around the diagram (3-6), we finish the
proof. g

10This condition is realized if Ry is I-adically Henselian and each ¢; : R; — R; is integral.
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3C. Axioms for perfectoid towers.

3C1. Remarks on torsion. In the subsequent Section 3C2, we introduce the class of perfectoid towers
as a generalization of perfect towers. For this purpose, we need to deal with a purely inseparable tower
arising from (R, I) in the case when I = (0) at least, and hence plenty of /-torsion elements. Thus we
begin by giving several preliminary lemmas on torsion of modules over rings.

Definition 3.13. Let R be a ring, and let M be an R-module.

(1) Let x € R be an element. We say that an element m € M is x-torsion if x"m = 0 for some n > 0.
We denote by M, o the R-submodule of M consisting of all x-torsion elements in M.

(2) Let I C R be an ideal. We say that an element m € M is I-torsion if m is x-torsion for every x € I.
We denote by M o the R-submodule of M consisting of all /-torsion elements in M. Note that

M (3)-tor = Mxtor = Myn_or for every n > 0.

(3) For an element x € R (resp. an ideal I € R), we say that M has bounded x-torsion (resp. bounded
[ -torsion) if there exists some / > 0 such that x' M, or = (0) (I' M1_1o; = (0)).

(4) For anideal I C R, we denote by ¢; s : Mjor = M /I M the composition of natural R-linear maps:
Mijor— M — M/IM. (3-7)
First we record the following fundamental lemma.

Lemma 3.14. Let R be a ring, and let M be an R-module. Let x € R be an element. Then for every n > 0,

we have
n n
M, ior NX"M = x"M,or.

Proof. Pick an element m € M, o Nx" M. Then m = x"m¢ for some mg € M, and x'm = 0 for some
I > 0. Hence x'*"my = 0, which implies that my € M, and thus m € x" M, ;. The containment

X"Mytor € My tor N x" M 1is clear. Il

Corollary 3.15. Keep the notation as in Lemma 3.14, and suppose further that x Mty = (0). Then the
map @y,m : Myor = M /xM (see Definition 3.13(4)) is injective.

Proof. It is clear from Lemma 3.14. O
Lemma 3.14 is also applied to show a half part of the following useful result.

Lemma 3.16. Keep the notation as in Lemma 3.14, and suppose further that M has bounded x-torsion.
Let M be the x-adic completion of M, and let  : M — M be the natural map. Then the restriction
Yior : Myor —> (]\//? )x-tor Of Y is an isomorphism of R-modules.

Proof. By assumption, there exists some / > 0 such that x' M, 1or = (0). On the other hand, Ker(Yrior) =
M, tor N ﬂflozo x"M is contained in Moy N x' M, which is equal to X' My ior by Lemma 3.14. Hence Yo
is injective.
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Let us prove the surjectivity. Let N denote the x-adic completion of N for every R-module N. Then
we obtain the commutative diagram of R-modules:

0—— Myjor —— M —"— M/M,.op — 0

wl lx/f l (3-8)

0—>ml—>ﬂL>Mmor—>O

where ¢ is the inclusion map and 7 is the natural projection. Since i ot factors through ¥, it suffices to
show that (M )x-tor © Im(L o WMX o) FArst, ¥ag - 1s leeCthe because it is isomorphic to the canonical
isomorphism M, ./ COE=S Mx tor/ (x"). To show that (M )x-tor € Im(7), note that the top row of (3-8)
forms an exact sequence, and it consists of R-modules that have bounded x-torsion. Then by [38, Tag
0923] and right exactness of derived completion functors, Ker(s7) = Im(?) (in fact, the bottom sequence
is also exact because Y, is injective). Since M//]V?_tor is x-torsion free by [14, Chapter II, Lemma 1.1.5],

(M )r-tor € Ker(7). The assertion follows. O
The following lemma is used for proving Main Theorem 1 (cf. Lemma 3.48).

Lemma 3.17. Let R be a ring, and let M be an R-module. Let x € R be an element. Then for every n > 0,

we have

Ann /e (x) € Iy ) +x" 1 (M/x"M). (3-9)

Proof. Pick an element m € M such that xm € x"M. Then x(m — x"~'m’) = 0 for some m’ € M. In
particular, m — x"'m’ € Mynior. Hence m mod x" M lies in the right-hand side of (3-9), as desired. [

In the case when M = R, we can regard M., as a (possibly) nonunital subring of R. This point
of view provides valuable insights. For example, “reducedness” for R, induces a good property on
boundedness of torsions.

Lemma 3.18. Ler (R, I) be a pair such that R; .o does not contain any non-zero nilpotent element of R.
Then IR oy = (0).

Proof. 1t suffices to show that x R;,, = O for every x € I. Pick an element @ € R;.,. Then for a
sufficiently large n > 0, x"a = 0. Hence (xa)" = x"a -a"~! = 0. Thus we have xa = 0 by assumption,
as desired. g

Corollary 3.19. Let ({R;}i>0, {ti}i>0) be a purely inseparable tower arising from some pair (R, I). Then
for everyi > 0 and every ideal J C (R,-)L}'frep, we have J((R,-)(Ii'fmp)J_tOr = (0).

Proof. Since (Ri)?'frep is reduced by Proposition 3.10(2), the assertion follows from Lemma 3.18. [

Furthermore, we can treat R as a positive characteristic object (in the situation of our interest),
even if R is not an [ ,-algebra.
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Lemma-Definition 3.20. If (R, I) is a pair such that p € I and IR = (0), the multiplicative map
Rior = Ripor; x> x” (3-10)
is also additive. We denote by FFy, . the map (3-10).
Proof. This immediately follows from the binomial theorem. (|

3C2. Perfectoid towers and pillars.

Definition 3.21 (perfectoid towers). Let R be aring, and let Iy € R be an ideal. A tower ({R;}i>0, {#i}i>0)
is called a (p)-perfectoid tower arising from (R, Ip) if it is a p-purely inseparable tower arising from
(R, Ip) (cf. Definition 3.4(1)) and satisfies the following additional axioms.

(d) For every i > 0, the i-th Frobenius projection F; : R;+1/IoR;+1 — R;/IpR; (cf. Definition 3.4(2)) is
surjective.

(e) Foreveryi >0, R; is an Ip-adically Zariskian ring (in other words, IpR; is contained in the Jacobson
radical of R;).

(f) Iy is a principal ideal, and R; contains a principal ideal /; that satisfies the following axioms.
(f-1) I} = IyR;.
(f-2) For every i > 0, Ker(F;) = I1(Ri+1/IoRi+1).

(g) For every i > 0, Io(R;)1-or = (0). Moreover, there exists a (unique) bijective map (F;)ior :
(Ri+1) p-tor = (Ri) 1y-tor such that the diagram

$Io.R; 41
(Ri+1) 1-tor — Riy1/IoRi41

m-ml lm (3-11)

(Ri) 1-tor o a R; /Iy R;
0.5

commutes (see Definition 3.13 for the notation; see also Corollary 3.15).

Remark 3.22. If [ is generated by an element whose image in R; is a non-zerodivisor for every i > 0,
then axiom (g) is satisfied automatically. If R; is reduced and Iy = (0), then axiom (g) follows from
axioms (d) and (f). Consequently, if every #; is injective and lim._, R; is a domain, one can ignore axiom
(g) when checking that ({R;}i>0, {fi}i>0) is a perfectoid tower. -

We have some examples of perfectoid towers.

Example 3.23. (1) (cf. [37, Definition 4.4]) Let (R, m, k) be a d-dimensional complete unramified
regular local ring of mixed characteristic p > 0 whose residue field is perfect. Then we have

R=WM)x2, ..., x4l
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For every i > 0, set R; := R[pl/l’i, le/pl, AU x;/p[], and let ¢; : R; — R;4 be the inclusion map.

Then the tower ({R;};>0, {fi}i>0) is a perfectoid tower arising from (R, (p)). Indeed, the Frobenius
projection F; : Ri+1/pRi+1 — R;i/pR; is given as the p-th power map.11

(2) For some generalization of (1), one can build a perfectoid tower arising from a complete local
log-regular ring. For details, see Section 3F.

(3) We note that t; (resp. F;) of a perfectoid tower is not necessarily the inclusion map (resp. the p-th
power map). For instance, let R be a reduced [ -algebra. Set R; := R, t; :== Fg, and F; :=idy for
every i > 0. Then ({R;};>0, {ti}i>0) is a perfectoid tower arising from (R, (0)).

The class of perfectoid towers is a generalization of perfect towers.
Lemma 3.24. Let ({R;};>0, {ti}i>0) be a tower of F ,-algebras. The following conditions are equivalent.
(1) ({Ri}i=o0, {ti}i=0) is a perfect | ,-tower (cf. Definition 3.2).
(2) ({Ri}i>o0, {ti}i>0) is a p-perfectoid tower arising from (Ry, (0)).
Proof. (1) = (2) We may assume that ({R;}i=o, {fi}i=0) is of the form R -5 R -& R I ... (see
Definition 3.2). By Example 3.5, this is a purely inseparable tower arising from (R, (0)). Axiom (e) in

Definition 3.21 is obvious. Axioms (d), (f), and (g) are also satisfied, since the Frobenius projection F;
(cf. Example 3.5) is an isomorphism for any i > 0. This yields the assertion.

(2) = (1) Conversely, assume that ({R;}i>0, {#i}i>0) is a perfectoid tower arising from (Ry, (0)). Since F;
is identified with (F;)¢or in axiom (g), the injectivity of (F;)¢ implies that F; is injective. In other words,
R; is reduced by Lemma 3.6(1). Furthermore, F; is an isomorphism by axiom (d) or the surjectivity of

(Fi)tor- Hence we obtained the desired isomorphism of towers:

1o 1 1) 3

Ry Ry R R3 e
lid[qo ng lF()OF] J{F()OF]OFZ (3_12)
R R R R .
0 Fa 0 P 0 P, 0 P,
The assertion follows. g

For a perfectoid tower ({R;};>0, {t;}i>0) arising from (R, Ip), an ideal I} € R; appearing in axiom (f)
in Definition 3.21 is unique. Indeed, it contains /o R;, and its image via the projection R — R is a fixed
ideal Ker(Fp).

Definition 3.25. We call I, the first perfectoid pillar of ({R;}i>0, {ti}i>0) arising from (R, Iy).

The relationship between Iy and I; can be observed also in higher layers (see Proposition 3.26 below).
In the rest of this section, we fix a perfectoid tower ({R;};>0, {t;}i>0) arising from some pair (R, Iy), and
let I; denote the first perfectoid pillar.

H Axiom (f-2) follows from the normality of R;. The other axioms are clearly satisfied.
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Proposition 3.26. (1) For a sequence of principal ideals {I; C R;}i>2, the following conditions are
equivalent.
(@) F7'(IiR;) = Iiy1Riq1 for every i > 0.
(b) Fi(Iix1R;y1) = I;R; for everyi > 0.
(2) Each one of the equivalent conditions in (1) implies that I fjr | =IiRiy1 for everyi > 0.
(3) There exists a unique sequence of principal ideals {I; C R;};>o that satisfies one of the equivalent
conditions in (1). Moreover, there exists a sequence of elements {f,' € I?,-},-Zo such that I R; = (fi)
and F;(fiy1) = fi for everyi > 0.
Proof. (1) Since the implication (a) = (b) follows from axiom (d) in Definition 3.21, it suffices to show
the converse. Assume that condition (b) is satisfied. Then for every i > 0, the compatibility 7; o F; = F Rios
implies

17 Rit1 =IiRiy (3-13)

because I, is principal. In particular, Ker(F;) = I} Riy1 € I;;1R;41 (cf. axiom (f-2)). On the other
hand, by the surjectivity of F; and the assumption again, we have F,-(Fl._1 (I,-I?,-)) =ILR;, = E(Ii+1§i+1).
Hence

F7Y(IR;) C Liy1Riy1 +Ker(F;) C Iy Riv1 C F7 (IR,
which yields the assertion.
(2) Let us deduce the assertion from (3-13) by induction. By definition, / 1[' = IpR,. We then fix some

i > 1. Suppose that for every 1 <k </, Ikp = I;_1R;. Then IhR; = Il.pi. In particular, R; is I;-adically
Zariskian by axiom (e). Moreover, by (3-13), we have the equalities of R;-modules:

-1
IiRH-I :I,"ii_l'i‘IORi—H :Iiﬁ_l'i'll‘p (IiRi-H)-
Hence by Nakayama’s lemma, we obtain IfH = I; Rj4+ as desired.
(3) By the axiom of (dependent) choice, the existence follows from axiom (d) in Definition 3.21. Let us
show the uniqueness of {I; C R;};>o that satisfies condition (a) in (1). For every i > 0, I; R;4+1 € ;11 by

(2), and hence I; is the inverse image of Ffl(li R;) via the projection R;;| — Ei+1. Since I is fixed,
the assertion follows. O

Definition 3.27. In the situation described in Proposition 3.26(3), we call I; the i-th perfectoid pillar of
({Ri}i0, {ti}i=0) arising from (Ro, Io).

The following property of perfectoid pillars is applied to prove our main result.

Lemma 3.28. Let {I;};>0 denote the system of perfectoid pillars of ({R;}i>0, {ti}i>0), and let m; :
Ri/IoR; — R;/I;R; (i = 0) be the natural projections. Then for every i > 0, there exists a unique
isomorphism of rings

~

F!:Rit1/lis1Riz1 = Ri/LiR;
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such that j o F; = F o mi 1.

Proof. Since F; and m; are surjective, the assertion follows from Ker(sm; o F;) = Fi_l(I,-(R,-/ IhR;)) =
lit1(Rit1/IoRi+1). 0
3D. Tilts of perfectoid towers.

3D1. Invariance of some properties. Here we establish tilting operation for perfectoid towers. For this,
we first introduce the notion of small tilt, which originates in [37].

Definition 3.29 (small tilts). Let ({R;}i>0, {fi}i>0) be a perfectoid tower arising from some pair (R, Ip).
(1) For any j > 0, we define the j-th small tilt of ({R;}i>0, {ti}i>0) associated to (R, Ip) as the j-th
inverse quasi-perfection of ({R;}i>0, {fi}i>0) associated to (R, Ip) and denote it by (R j)j(')b.
(2) Let the notation be as in Lemma 3.28. Then we define / l.s'b := Ker(m; o <I>(()i)) for every i > 0.
Note that the ideal / is‘b - Ris'b has the following property.
Lemma 3.30. Keep the notation as in Definition 3.29. Then for every i > 0 and j > 0, we have
8o _
o (I3") = 1j1iR .
Proof. Since CD(()j) is surjective, we have CD(()j)(Ijs.'b) =1 Ej. On the other hand, since QJ(()j) =Fjo ®§j),
we have
- ) ysb ) psb i) ys.b
FoH @ (157) = @ (1}") + Ker(Fj) = @/ (13").
Hence by condition (a) in Proposition 3.26(1), d>§j )(I;.'b) =1 j+lR j+1. By repeating this procedure
recursively, we obtain the assertion. (|

The next lemma provides some completeness of the small tilts attached to a perfectoid tower of
characteristic p > 0 (see also Remark 3.33).
Lemma 3.31. Let ({R;}i>0, {ti}i>0) be a perfectoid tower arising from (R, (0)). Then, for any element
_ P
f € Rand any j > 0, the inverse limit lim{ - - E)j+1 Rit1/fRj+1 — R;/fR;} is isomorphic to the
f-adic completion of R;.
Proof. Tt suffices to show the assertion when j = 0. Let ({R;};>0, {t/}i>0) denote the standard perfect

tower (3-1) arising from R. By Lemma 3.24, (3-12) gives a canonical isomorphism ({R;};>0, {t;}i>0) E)
({R}i>0, {t/}i=0). If we put Jo = f Ry, then R./JoR] = R/fP'R for every i > 0. Hence we have the
desired canonical isomorphisms:

lim{--- > Ri/f R > Ro/f Ro} > lim R/f”"R = lim R/f"R. 0
n>0 n>0

Example 3.32. Let S be a perfect [,-algebra. Pick an arbitrary f € §, and let S denote the f-adic
completion. We obtain a canonical isomorphism limg . S/fS =38 by applying the above proof to the
tower

id idg id
§=>85=38>...
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Remark 3.33. In the situation of Lemma 3.31, assume further that 7; : R;/fR; — Riy1/f Rit1 is
injective for every i > 0. Then ({R;}i>0, {ti}i>0) is a purely inseparable tower arising from (R, (f))
with Frobenius projections { F;: Rit1/fRi+1 — Ri/fR;i}i>0. Furthermore, it satisfies axioms (d), (f),
and (g) in Definition 3.21. To check this, we may assume that ({R;};>0, {#i}i>0) is the standard perfect
tower (3-1). Then F; is the natural projection R/fl’iHR —» R/ff’iR. It is clearly surjective, and its
kernel is f"i(R/fpi+I R). Let I; be the ideal of R; generated by f € R; (= R). Then IyR; = fpiR and
LRy = fpiR. Hence If7 = IR, and Ker(F;) = I, Ri+1. Finally, note that (R;)y-tor = R f-tor. Then
Io(Ri)1y-tor = f P'R f-tor = (0) by Lemma 3.18, and we can take idg faor 88 the bijection (F)tor fitting into
the diagram (3-11).

Definition 3.34 (tilts of perfectoid towers). Let ({R;}i>0, {ti}i>0) be a perfectoid tower arising from some
pair (R, I). Then we define the tilt of ({R;}i>0, {ti}i>0) associated to (R, I) as the inverse perfection of
({Ri}i>0, {ti}i>0) associated to (R, I), and denote it by ({(Ri);‘b},-zo, {(t,-)i'b}[zo). If no confusion occurs,
we can abbreviate (R,‘)i'b and (ti)s,'b) to Rf'b and tis‘b.

After discussing several basic properties of this tilting operation, we illustrate how to compute the tilts
of perfectoid towers in some specific cases; when they consist of log-regular rings (see Theorem 3.61
and Example 3.62).

We should remark that all results on the perfection of purely inseparable towers (established in
Section 3B) can be applied to the tilts of perfectoid towers.

Let us state Main Theorem 1 in a more refined form. This is an important tool when one wants to
see that a certain correspondence holds between Noetherian rings of mixed characteristic and those of
positive characteristic.

Theorem 3.35. Let ({R;}i>0, {ti}i>0) be a perfectoid tower arising from some pair (R, ly), and let {I;}i>0
be the system of perfectoid pillars. Let ({Ris'b},-zo, {tis'b}izo) denote the tilt associated to (R, Iy).

(1) Forevery j = 0 and every element fjs'b € R“;.'b, the following conditions are equivalent.
(a) f;’b is a generator ofI;'b.

(b) Foreveryi >0, CIJEj)(f;'b) is a generator 0f1j+iﬁj+i.
s.b

In particular, I;'b is a principal ideal, and (I‘?'b )P = I;'bRH].

Jj+1

(2) We have isomorphisms of (possibly) nonunital rings (R‘;.'b) 15 -tor = (R;) 1y-tor that are compatible with
{t;}=0 and {£;"}j=o.

We give its proof in the subsequent Section 3D2. Before that, let us observe that this theorem induces

many good properties of tilting. In the rest of this subsection, we keep the notation as in Theorem 3.35.

Lemma 3.36. For everyi >0, Ris'b is Ig'b—adically complete and separated.

Proof. By Theorem 3.35, the ideal Ié ‘bRis'b C Rf'b is principal. Hence one can apply Proposition 3.10(1-a)
to deduce the assertion. 0

To discuss perfectoidness for the tilt ({ Rf'b}izo, {tf'b},'zo), we introduce the following maps.
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Definition 3.37. For every i >0, we define aring map (F) (R0} /15" (Ris1)}, — (R} /13" (R},
by the rule
. . . i . .
(F)y) (@i mod 1§ (Ris)y)) = (F) 5 " (ci 1) mod I (R,

5. . . b 5.b
where o1 € (Ri+1)}0 . If no confusion occurs, we can abbreviate (F,‘)‘IO to F”.

Remark 3.38. Although the symbols ( - )** and ( - )4 had been used interchangeably before
Definition 3.37, (F,-)S,('Jb differs from (F,-)‘,I(; frep i general.

The following lemma is an immediate consequence of Theorem 3.35(1), but quite useful.

Lemma 3.39. Forevery j >0, CD(()j ) induces an isomorphism
o R}’ /I;"RY S R;/IoR;: amod I3RS’ > @ (a). (3-14)

Moreover, {dD(()i)}i>o is compatible with {t;};>o (resp. {FR.v,b/ImRm}po, resp. {Fli"'b},‘>0) and {tf’b}i>o (resp.
- - i 0 i - - -
{PRi/IoR,- }i=0, resp. {Fi}i=o).

Proof. By axiom (d) in Definition 3.21, (3-14) is surjective. We check the injectivity. By Theorem 3.35(1),
Ig'b is generated by an element f(‘; = Rg'b such that CI>§0)( f(‘; 'b) is a generator of I;R; (i > 0). Note that
({Rj+i}i=0, {tj+i}i=0) 1s a perfectoid tower arising from (R, IoR ). Moreover, {I; R ;}i>0 is the system
of perfectoid pillars associated to (R;, IpR;) (cf. condition (b) in Proposition 3.26(1)). Put Jy := Iy R;.
Then by Theorem 3.35(1) again, we find that J(f’b = fOS'DRj.'b = Ig'ij'b. Since Jg'b = Ker d>(()j), we obtain
the first assertion. L

One can deduce that {CD(()’)}iZo is compatible with the Frobenius projections from the commutativity of

(3-2), because the other compatibility assertions immediately follow from the construction. O

Remark 3.40. Theorem 3.35(2) and Lemma 3.39 can be interpreted as a correspondence of homological
invariants between R; and Rf‘b by using Koszul homologies. Indeed, for any generator fy (resp. fos 'b)
of Iy (resp. Ig'b), the Koszul homology H, (fos'b; Ris'b) is isomorphic to H,(fo; R;) for any ¢ > 0 as an
abelian group.!?

Now we can show the invariance of several properties of perfectoid towers under tilting. The first one
is perfectoidness, which is most important in our framework.

Proposition 3.41. ({Ris’b}izo, {tis'b},-zo) is a perfectoid tower arising from (R(s)'b, Ig‘b).

Proof. By Lemma 3.39 and Remark 3.33, ({Rf'b}izo, {tl.s'b}izo) is a purely inseparable tower arising from
(Rg'b, Ig'b) that also satisfies axioms (d), (f), and (g). Moreover, axiom (e) holds by Lemma 3.36. Hence
the assertion follows. O

Next we focus on finiteness properties. “Small” in the name of small tilts comes from the following
fact.

12Note that (R;) 1, 1or = Anng, (Ip) by axiom (g), and (R} 157 1o = AT (I3") by Corollary 3.19.
1



Perfectoid towers, tilts and étale cohomology groups 2335

Proposition 3.42. For every j > 0, the following assertions hold.

(1) Ift; : Rj — Rjyy is module-finite, then so is t;'b : R‘;'b — R;il Moreover, the converse holds true

when R; is lp-adically complete and separated.

(2) If Rj is a Noetherian ring, then so is R;'b. Moreover, the converse holds true when R; is ly-adically
complete and separated.

(3) Assume that R is a Noetherian local ring, and a generator of IgR is regular. Then the dimension of
R; is equal to that of R;'b.
Proof. (1) By Lemma3.39,7;:R;/IyR; — Rj11/IoR 41 is module-finite if and only if tj'b : R;‘b/lg‘ij.‘b —
R;L/lg'bR;il is so. Thus by Lemma 3.36 and [29, Theorem 8.4], the assertion follows.
(2) One can prove this assertion by applying Lemma 3.36, Lemma 3.39, and [38, Tag 05GH].

(3) By Theorem 3.35, Ig‘ij'b is also generated by a regular element. Thus we obtain the equalities
dimR; =dimR;/IHR; + 1 and dim Rj.'b = dim Rj.'b/lg'bR;'b + 1. By combining these equalities with
Lemma 3.39, we deduce assertion. U

Proposition 3.42(2) says that Noetherianness for a perfectoid tower is preserved under tilting.
Definition 3.43. We say that ({R;}i>0, {ti}i>0) is Noetherian if R; is Noetherian for each i > 0.

Corollary 3.44. If ({R;}i>0, {ti}i>0) is Noetherian, then so is the tilt ({Rf’b}izo, {tis'b}izo). Moreover, the

converse holds true when R; is ly-adically complete and separated for each i > 0.
Proof. This immediately follows from Proposition 3.42(2). U

Finally, let us consider perfectoid towers of henselian rings. Then we obtain the equivalence of
categories of finite étale algebras over each layer.

Proposition 3.45. Assume that R; is ly-adically Henselian for any i > 0. Then we obtain the following
equivalences of categories:

FEL(R') S FEL(R)).
Proof. This follows from Lemma 3.36, Lemma 3.39 and [38, Tag 09ZL]. U

3D2. Proof of Main Theorem 1. We keep the notation as above. Furthermore, we set I; ;= I;R; for every
i > 0. To prove Theorem 3.35, we investigate some relationship between (R;),-or and Ann R; (1,). First
recall that we can regard (R;),-tor @s a nonunital subring of R; by Corollary 3.15. Moreover, the map ¢;
naturally restricts to (R;)y-tor <> (Ri+1)I,-tor> as follows.

Lemma 3.46. For everyi >0, let (t;)ior : (Ri) 1p-tor = (Rit1) 1-tor De the restriction of t;.

(1) (t)tor is the unique map such that ¢, g,., © (tj)ior =1 © @1y, R;-

(2) (t)or © (F})or = (Fi+1)tor o (ti+l)t0r = F(Ri+l)10»tor’
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Proof. Since ¢y, g, is injective by Corollary 3.15, assertion (1) is clear from the construction. Hence
we can regard (#;)ior and (F;)ior as the restrictions of 7; and F;. Thus assertion (2) follows from the
compatibility 7; 0 F; = F;jotjy1 = F R induced by Lemma 3.6(3). O

The map ¢y, g, : (Ri)p-tor <> Ri/IoR; restricts to Anng,([;) — Annﬁi (I_,-). On the other hand,
Anng, (1;) turns out to be equal to (R;)j,-1or by the following lemma.

Lemma 3.47. For everyi >0, I;(R;)1,-tor = 0. In particular, Im(¢pj, g,) € Ann R; I1,).

Proof. By Lemma 3.46(2) and axiom (g) in Definition 3.21, we find that F(g,), ., is injective. In other
words, (R;) j,-tor does not contain any non-zero nilpotent element. Moreover, (R;) 1y-tor = (R;) 1,-1or- Hence
the assertion follows from Lemma 3.18. Il

The following lemma is essential for proving Theorem 3.35.

Lemma 3.48. Foreveryi >0, F; restricts to a Z-linear map Annlgl_+1 (I_,-H) — Annﬁi (I;). Moreover, the

resulting inverse system {Ann R; (I, i)}i>0 has the following properties.
(1) Forevery j >0, hm i0 AnnR (Iﬁ,) = (0).

(2) There are isomorphisms of Z-linear maps lim; i=0 AnnR (Ij+,-) = (Rj)1p-tor (j = 0) that are multi-

plicative, and compatible with {tj }ij and {t;} j>o.

Proof. Since F,-(I_,~+1) = I;, F; restricts to a Z-linear map (Fj)ann : AHHEHI(I_HI) — Annﬁi (I;). Let
@i © (Ri) Ip-tor = Ann R; (1;) be the restriction of ¢y, g,. By Lemma 3.17 and Lemma 3.47, we can write
Annﬁi (I;)) =Im(y;) + I_fl_l. Moreover, Im(g;) N I_fl_l = (0) by Lemma 3.14 and Lemma 3.47. Hence
we have the following ladder with exact rows:

Pit1 = Tpiti—1
0 — (Rit)pgtor — Anng, (Liy) — 1,  ——0

Jv(Fi)tor l l (3-15)

-1

0—>(R,-)10_torL>AnnRi(I_i)—>7§’ ——0

—
where the second and third vertical maps are the restrictions of F;. Since F; (I f 1 1) = 0, both functors

lim, -0 and hm =0 assign (0) to the inverse system (I’ l},-20. Moreover, since (F;)yor 1S bijective,

j+z =~
mizo(RJ +z)10-t0r = (R )Io-tor and mjzo(Rj+l )Io-tor = (0) Hence we find that Liﬂlilzo Annkj+, (Ij-i-i) = (O)»

which is assertion (1). Furthermore, we obtain the isomorphisms of Z-modules:

( v )tor 1<_,> Pj+i
(R ) tyrtor “——— Wm(R; i) fytor ————> lim Anng (T ;47) (3-16)

i>0 l>0
(where (CD(j ))tor denotes the O-th projection map), which are also multiplicative. Let us deduce (2) from it.
Since t = liml>0 fﬁ, by definition, the maps liml>0 @j+i (j = 0) are compatible with {lim, >0(tj +i )tor}1>0
(1nduced by Lemma 3.46(2)) and {t } j>0 by Lemma 3.46(1). On the other hand, the projections (QD( tor
(j = 0) are compatible with {@zzo(tj+l)t0r} j=0 and {(#;)or}j>0. The assertion follows. O
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Let us complete the proof of Theorem 3.35.

Proof of Theorem 3.35. (1) The implication (a) = (b) follows from Lemma 3.30. Let us show the
converse (b)=-(a). For every i > 0, put J_‘j+i = CDEJ)(f;'b), and let 77; and Fl./ be as in Lemma 3.28. Then,
by the assumption, we have the following commutative ladder with exact rows:

= Lit1 = i1
0—— (fi+1) Rit1 Riy1/liy1 ——0
O
— t — i
0 (fi) R; Ri/1I; 0

where (; is the inclusion map. Let us consider the exact sequence obtained by taking inverse limits for
all columns of the above ladder. Then, since each F; is an isomorphism, the map lim,_, 7, : RY >
<—1= J

lim._, R;4;/1;4; is isomorphic to 7; o CID(()j). Thus we find that Ills.‘b = Im(lim,_, ¢;+;). Let us show that

—i>0 —

the ideal Im(lim; _ ¢;4;) C Rj.'b is generated by fjs'b. Fori >0, let u; : R; — (f;) be the R;-linear map
induced by multiplication by f;. Then we obtain the commutative ladder

= Mi+1 — Lit+1 —
Riy1 —— (fiy1) — Rij1

I

= o= T
R; (fi) R;.

Then, since Ker ; = Anng, (I;) for every i > 0, lim,_q 4 is surjective by Lemma 3.48(1). Hence we

have Im(LiLnizo Ljti) = Im(LiLn,-zo(l j+i © M j+i)), where the right hand side is the ideal of R;'b generated

by fjs'b. Thus we obtain the desired implication. Finally, note that by Proposition 3.26(3), we can take a
system of elements { f;'b € R‘;'b} j=0 satisfying condition (b) and such that ( f;fl)p = f;'b (j =0).
(2) We have I;.'b(Rj.'b)l.?.b_tor = (0) by Corollary 3.19. Hence, by assertion (1),
J
(R;'b)lg.b_tor = (Rj.'b)lj.n_tor = AnnR;,»(I;'b) = Ker(lim p;4;) = l(iLnAnnRN (I_j+,-).
i=0 i>0

Thus by Lemma 3.48(2), we obtain an isomorphism (Rj.‘b) 540 = (R;) 1-tor With the desired property. []
0

T

3E. Relation with perfectoid rings. In the rest of this paper, for a ring R, we use the following notation.
Set the inverse limit
R”:=lim{---— R/pR — R/pR — ---— R/pR},

where each transition map is the Frobenius endomorphism on R/pR. It is called the tilt (or tilting) of R.
Moreover, we denote by W (R) the ring of p-typical Witt vectors over R. If R is p-adically complete and
separated, we denote by 6z : W(R") — R the ring map such that the diagram

W(R) - R

l l (3-17)

R* ——— R/pR
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(where the vertical maps are induced by reduction modulo p and the bottom map is the first projection)
commutes.
Recall the definition of perfectoid rings.

Definition 3.49 [5, Definition 3.5]. A ring S is perfectoid if the following conditions hold.

(1) S is w-adically complete and separated for some element @ € S such that @ divides p.
(2) The Frobenius endomorphism on S/pS is surjective.
(3) The kernel of 5 : W(S”) — S is principal.

We have a connection between perfectoid towers and perfectoid rings. To see this, we use the following
characterization of perfectoid rings.

Theorem 3.50 (cf. [17, Corollary 16.3.75]). Let S be a ring. Then S is a perfectoid ring if and only if S
contains an element @ with the following properties.

(1) @? divides p, and S is w-adically complete and separated.

(2) The ring map S/w S — S/@?S induced by the Frobenius endomorphism on S/w?S is an isomor-

phism.

(3) The multiplicative map

Ser-tor = Se-tor 3 § > s (3-18)

is bijective.

Proof. The “if” part follows from [17, Corollary 16.3.75].

For the converse, let @ € § be as in Definition 3.49. Such a @ clearly has property (1) in the
present theorem, and also has property (2) by [5, Lemma 3.10(i)]. To show the remaining part, we set
S = S/Sw-tor- By [8, §2.1.3], the diagram of rings:

S —— 2 5 (S/ S)rea

i |-

§ —>n3 (g/w 3:)red

(where m; is the canonical projection map for i = 1,2, 3,4) is cartesian. Hence Sy .ior (= Ker(iry))
is isomorphic to Ker(w4) as a (possibly) nonunital ring. Since (S/@ S)req is a perfect [F,-algebra, it
admits the Frobenius endomorphism and the inverse Frobenius. Moreover, Ker(r4) is closed under these
operations because (§/ () g)red is reduced. Consequently, there is a bijection (3-18). Hence @ has property
(3), as desired. O

Remark 3.51. In view of the above proof, the “only if” part of Theorem 3.50 can be refined as follows.
For a perfectoid ring S, an element @ € S such that p € w? S and S is w-adically complete and separated
satisfies the properties (2) and (3) in Theorem 3.50.
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Corollary 3.52. Let ({R;}i>0, {ti}i>0) be a perfectoid tower arising from some pair (Ry, ly). Let E;
denote the 11-adic completion of Roo. Then @ is a perfectoid ring.

Proof. Since we have lim,_, Fr,/1or, = (lim, fi)o (lim, ., F;) and lim, _ t; is a canonical isomorphism,
the Frobenius endomorphi;m on Reo / IR can be identified with ﬁl»n»o_ F;. Hence one can immediately
deduce from the axioms in Definition 3.21 that any generator of /1 R, has the all properties assumed on
@ in Theorem 3.50. g

In view of Theorem 3.50, one can regard perfectoid rings as a special class of perfectoid towers.

Example 3.53. Let S be a perfectoid ring. Let zr € S be such that p € w? S and S is w-adically complete
and separated. Set S; = § and ¢; = idg for every i > 0, and Iy = @w”S. Then by Remark 3.51, the tower
({Si}i>0, {ti}i=0) is a perfectoid tower arising from (S, Ip). In particular, Iy Sy,-1or = (0), and FSIO_lor is
bijective.

Moreover, we can treat more general rings in a tower-theoretic way.

Example 3.54 (Zariskian preperfectoid rings). Let R be a ring that contains an element e such that
p € @?R, R is w-adically Zariskian, and R has bounded @ -torsion. Assume that the zr-adic completion
Ris a perfectoid ring. Set R; = R and #; = idg for every i > 0, and Iy = w?”R. Then the tower
({Ri}i>o0, {ti}i>0) is a perfectoid tower arising from (R, Ip). Indeed, axioms (a) and (e) are clear from
the assumption. Since R is perfectoid and R/w PR = R o ? Ié, axioms (b), (c), (d) and (f) hold by
Example 3.53. Similarly, axiom (g) holds by Lemma 3.16 (the map or : Rpj-tor = (1%) Io-tor 18 also an
isomorphism of nonunital rings).

Recall that we have two types of tilting operation at present; one is defined for perfectoid rings, and
the other is for perfectoid towers. The following result asserts that they are compatible.

Lemma 3.55. Let ({Rf'b}iEO’ {t;"b}izO) be the tilt of ({R;}i>0, {ti}i>0) associated to (Ry, ly). Let Rf;ob be
Ris'b. Let (IgR)" be the ideal of RZO that is the inverse image
of IoRoo mod p R, via the first projection. Then there exist canonical isomorphisms

s.b . . s.b .
the Iy"-adic completion of R = lim,

b = . sb 75D psb = psb
R, <—1<£an/10 R — Rx
Frob

under which (IgRo)” € Rgo corresponds to Ig'bRéf C Ré'ob.

Proof. Note that Rf)f is perfect. By Lemma 3.39 and Example 3.32, we obtain the commutative diagram
of rings

. = . sb,psbpshb = s.b
1<Lnl:rob Roo/IoRoo +—— 1<£nFrob ROO/IO R ——— R

| T em

~

Roo/IpRoo +————— R /Iy" Ri === R/ IR,



2340 Shinnosuke Ishiro, Kei Nakazato and Kazuma Shimomoto

where the vertical arrows denote the first projection maps. By [5, Lemma 3.2(i)], we can identify Rgo
with l(iLnFmb Roo/ o R0, and the ideal (IOROO)b - RZO corresponds to the kernel of the leftmost vertical

map. Since the kernel of the rightmost vertical map is Ig‘bRéf , the assertion follows. 0

3F. Examples: complete local log-regular rings.

3F1. Calculation of the tilts. As an example of tilts of Noetherian perfectoid towers, we calculate them
for certain towers of local log-regular rings. Firstly, we review a perfectoid tower constructed in [17].

Construction 3.56. Let (R, Q, @) be a complete local log-regular ring with perfect residue field of
characteristic p > 0. Assume that Q is fine, sharp, and saturated (see Remark 2.20). Let I, € R be the
ideal defined in Definition 2.19. Set A := R/I,. Let (fi1, ..., f;) be a sequence of elements of R whose
image in A is maximal (see Definition A.4). Since the residue field of R is perfect, r is the dimension of
A (see the Appendix). For every i > 0, we consider the ring

Ai=AlT, ..., TA/TY = Fi,. TP = F),

where each f ;j denotes the image of f; in A (j =1, ..., r). Notice that A; is regular by Theorem A.3.
Moreover, we set Q) = Qg) (see Definition 2.11). Furthermore, we define
R :=719V1®zc1 R, R/ :=RITi,...., T /(T = fi,....T" = f), (3-20)
and
R, = Rl/ KRR Rz{/' (3-21)

Lett : R — R;,1 be the ring map that is naturally induced by the inclusion map () : Q@) < QU+D_ Since
R | is afree R-module, #; is universally injective by Lemma 2.15 and condition () in Proposition 2.8(2).

Proposition 3.57. Keep the notation as in Construction 3.56. Let a; : Q) — R; be the natural map. Then
(Ri, QY. ;) is a local log-regular ring.

Proof. We refer the reader to [17, 17.2.5]. O
By construction, we obtain the tower of rings ({R;}i>0, {#;}i>0) (see Definition 3.1).

Proposition 3.58. Keep the notation as in Construction 3.56. Then the tower ({R;}i>0, {ti}i>0) of local

log-regular rings defined above is a perfectoid tower arising from (R, (p)).

Proof. We verify (a)—(g) in Definition 3.4 and Definition 3.21. Axiom (a) is trivial. Since ¢; is universally
injective, axiom (b) follows. Axioms (c) and (d) follow from [17, (17.2.10) and Lemma 17.2.11]. Since
R is of residual characteristic p, axiom (e) follows from the locality. Since #; is injective and R; is a
domain for any i > 0, axiom (g) holds by Remark 3.22.

Finally, let us check that axiom (f) holds. In the case when p = 0, it follows from [17, Theorem
17.2.14(1)]. Otherwise, there exists an element @ € R, that satisfies @w? = pu for some unit u € R;
by [17, Theorem 17.2.14(ii)]. Set I} := (). Then axiom (f-1) holds. Axiom (f-2) follows from [17,
Theorem 17.2.14(iii)]. Thus the assertion follows. Il
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For calculating the tilt of the perfectoid tower constructed above, the following lemma is quite useful.

Lemma 3.59. Keep the notation as in Proposition 3.57. Let k be the residue field of R. Then there exists
a family of ring maps {¢; : C(K)[QY ® (N")D] — R;};=0 which is compatible with the log structures of
{(R;, QY a;)}i>o0 such that the following diagram commutes for every i > 0:

CRHIQD ® (N YD C(k)[QIHD @ (N')E+D]]

lﬁi’i l¢i+l (3-22)

R;€ Rit1

(where the top arrow is the natural inclusion). Moreover, there exists an element 60 € C(k)[Q & N"]|
whose constant term is p such that the kernel of ¢; is generated by 0 for every i > Q.

Proof. First we remark the following. Let k; be the residue field of R;. Then by Lemma 3.11(1) and
Lemma 3.6(2), the transition maps induce a purely inseparable extension k < k;. Moreover, this extension
is trivial because k is perfect. Therefore, we can identify k; with k, and the Cohen ring of R; with C (k).

Next, let us show the existence of a family of ring maps {¢;};>0 with the desired compatibility. Since
(R;, QY. ;) is a complete local log-regular ring, we can take a surjective ring map ¥ : C (k) [QV®N' ] —
R; as in Theorem 2.22; its kernel is generated by an element 6; whose constant term is p, and the diagram

QW —— chQ” eNT]

S )

R;

commutes. For j =1, ..., r, let us denote by fjl/pi the image of T; € R[T}, ..., T;] in R; (see (3-20)
and (3-21)). Note that the sequence fll/ b i, s f,l/ 4 in R; becomes a regular system of parameters of
R /1y, by the reduction modulo I, (see [17, 17.2.3] and [17, 17.2.5]). Thus, for the set of the canonical
basis {e], ..., e;} of N, we may assume y; (¢%) = f jl/ P by the construction of ¥; (see the proof of [34,
Chapter III, Theorem 1.11.2]). Hence we can choose {v;};>¢ so that the diagram:

CIIQPY &N J—— Ch)[QD @ N

l/fzi l‘//i+l (3-23)

R,'( Ri+l

commutes. Thus it suffices to define ¢; : C(k)[Q® & (N)D] — R; as the composite map of the
isomorphism C(K)[QD & (NP S C(k)[9? @ N'] obtained by Lemma 2.12(3) and ;.

Finally, note that the image of 6y € Ker(y) in C (k)[Q® @ N’ is contained in Ker(y;), and its
constant term is still p. Thus, by the latter assertion of Theorem 2.22(2), Ker(1;) is generated by 6.
Hence by taking 6y as 6, we complete the proof. O
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Let us consider the monoids Q) for an integral sharp monoid Q. Since there is the natural inclusion
(@2 0 s QUAD for any i > 0, we obtain a direct system of monoids ({ Q(i)}izo, {L(i)}iz()). Moreover,
the p-times map on QT gives a factorization:

QU+ _xP, QU+D

\ Jlm
xp

QW
From this discussion, we define the small tilt of {Q®};~o.

Definition 3.60. Let Q be an integral monoid, and let ({Q"};>0, {t7};>0) be as above. Then for an
integer j > 0, we define the j-th small tilt of ({Q®};>0, {tV};>0) as the inverse limit

Q)" :=lim{--- - QUTD — QU}, (3-24)

where the transition map QU+D 5 9 ig the p-times map of monoids.
Now we can derive important properties of the tilt of the perfectoid tower given in Construction 3.56.

Theorem 3.61. Keep the notation as in Lemma 3.59.

(1) The tower ({(R,-)E,b)},-zo, {(t,-)fﬁ)}izo) is isomorphic to ({k[Q® @ (N’)(i)]]}izo, {ui}i=0), where u; is
the ring map induced by the natural inclusion Q® @ (N")® — QU+D g (N)(+D,
(2) For every j > 0, there exists a homomorphism of monoids

sb . ~s.b S
a1 Qi = (R

s.b

such that ((Rj)‘z';), Qj , oz‘;'b) is a local log-regular ring.

(3) Forevery j >0, (tj)z'pb) : (Rj)iﬁ) — (Rj+1)f£) is module-finite and (Rj)fﬁ) is F-finite.
Proof. (1) By Lemma 3.59, each R; is isomorphic to C(k)[QY) @ (N)YDT/(p — /HC()[QY @ (N")D]
where £ is an element of C (k)[Q @ N"] which has no constant term. Set S; := k[Q® @ (N")?] for
any i > 0 and let u; : S; < S;+ be the inclusion map induced by the natural inclusion oD @ (N s
QU+D @ (N")@+D | Then the tower ({S;}i=0, {#;}i=0) is a perfect tower. Indeed, each S; is reduced by
Theorem 2.21; moreover, by the perfectness of k£ and Lemma 2.12(3), the Frobenius endomorphism on
Si+1 factors through a surjection G; : S;+; — S;. In particular, ({S;}i>0, {#i}i>0) is a perfectoid tower
arising from (Sp, (0)) and G; is the i-th Frobenius projection (cf. Lemma 3.24).

Put ]7 = fmod pCk)[Q & N"] € Sg. Then each S; is J_‘—adically complete and separated by [15,
Lemma 2.1.1]. Moreover, the commutative diagram (3-22) yields the commutative squares (i > 0):

Siv1/fSis1 — Rit1/pRit

Js |

Si/FSi ——— Ri/pR;
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that are compatible with {u; : S;/ fSi — Sit1/ j_fS,'H}izo and {7;};>0. Hence by Lemma 3.31, we obtain
the isomorphisms

sb = .. G = G —= = .
(R < Wm{- - = S0/ FSj1 —> S;/ TS} = S5 (j=0) (3-25)

that are compatible with the transition maps of the towers. Thus the assertion follows.

(2) Considering the inverse limit of the composite maps QU+ YR i+i > Rjti/pRjyi (i = 0), we

s ‘b — (R; )(p) On the other hand, let&; : Q) — S be the

natural inclusion. Then, since §; is canomcally isomorphic to k[[Q(f ) @ N’]] (S;, oW & a;) is a local
s b

obtain a homomorphism of monoids o
log-regular ring by Theorem 2.22(1). Thus it suffices to show that ((R; ) i p), ozj.'b) is isomorphic to
(S;, oV & a;) as a log ring. Since the transition maps in (3-24) are 1som0rph1sms by Lemma 2.12(3), we
obtain the isomorphisms of monoids

id of

el S0 (0. (3-26)

Qi
Then one can connect (3-26) to (3-25) to construct a commutative diagram using ozj.'b and o ;. Hence the

assertion follows.

(3) By Lemma2 14(1), t; : Rj — R; 41 is module-finite. Hence by Proposition 3.42(1), (tj)(p) (R; )%p)

(Rj+ D ( p) is also module-finite. Finally let us show that (R; ) i p) is F-finite. By assertion (2), (R; )( p isa
complete Noetherian local ring, and the residue field is F-finite because it is perfect. Thus the assertion
follows from [29, Theorem 8.4]. O

Example 3.62. (1) A tower of regular local rings which is treated in [7] and [8] is a perfectoid tower in
our sense. Let (R, m, k) be a d-dimensional regular local ring whose residue field k is perfect and let
X1, ..., Xq be a regular sequence of parameters. Let ey, ..., e; be the canonical basis of N¢. Then
(R, N, a) is a local log-regular ring where  : N — R is a homomorphism of monoids which maps
e; to x;. Furthermore, assume that R is m-adically complete. Then, by Cohen’s structure theorem, R
is isomorphic to

W(k)”:-xla .. -a-xd]]/(p_ f)

where f =x; or f € (p,x1, ..., xq)* (the former case is called unramified, and the latter ramified).
Let us construct a perfectoid tower arising from (R, (p)) along Construction 3.56. Since £ is perfect,
2, is zero by the short exact sequences (A-4) and the definition of itself. This implies that the image
of the empty subset of R in k forms a maximal sequence. Hence R/’ in Construction 3.56 is equal to
R. Moreover, (N9)®) is generated by #el, s %ed. Applying Construction 3.56, we obtain

Ri = R, = ZIN) 1@z RZ RITy, ... T/ (T —x1,... TS —xa)
=wWolx'” . ....x)/" 1/ (0= ).
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Set the natural injection #; : R; = R;4 for any i > 0. Then, by Proposition 3.58, ({R;}i>0, {#i}i>0)
is a perfectoid tower arising from (R, (p)). By Theorem 3.61, its tilt ({(R,-)fﬁ)},-zo, {(fi)fﬁ)}izo) is
isomorphic to the tower k[N¢] < k[(N)D] < k[(N¢)P] < ..., which can be written as

k[[xl,...,xd]]<—>k[[xll/p,...,x;/p]]<—>k|[x11/p2,...,x;/pz]]f—> .
Consider the surjection
S:=WMmBlx,y,z, wl/(xy —zw) = R:= WK)[x, y, z, w]/(xy — zw, p — w)
=WE)x, y, zl/(xy — pz).

where k is a perfect field. Let Q C N* be a saturated submonoid generated by (1,1,0,0), (0,0,1,1),
(1,0,0,1) and (0,1,1,0). Then S admits a homomorphism of monoids «g : @ — S by letting
(1,1,0,0) — x, (0,0,1,1) — y, (1,0,0,1) — z and (0, 1, 1,0) — w. With this, (S, Q,«as) is a
local log-regular ring. The composite map ag : Q — S — R makes R into a local log ring. Indeed,

we can write R = W(k)[Q]l/(p — e@110): hence (R, Q, ag) is log-regular by Theorem 2.22.
Next, note that R/I,, = k. Then, for the same reason in (1), le’ is equal to R. Moreover, oD ig

(#,#,o,o), (0,0,%,#), (ﬁ,o,o%), (0,#,#0).

Thus, applying Construction 3.56, we obtain
R = RIQ"]
=WERIQ 1/ (p— ™)
~ W(k)[[xl/pi’ yl/p"’ Zl/p"’ wl/p’]]/(xl/piyl/pi _Zl/p"wl/p"’ p—w).

generated by

Set a natural injection #; : R; — R;+1. Then, by Proposition 3.58, ({R;}i>0, {#i}i>0) is a perfectoid
tower arising from (R, (p)). Hence

Ro =lim R; = U W(k)l[xl/pi, yl/Pi’ Zl/Pi’ wl/Pi]]/(xl/Piyl/Pi _Zl/Piwl/Pi, p—w),

i>0 i>0

and its p-adic completion is perfectoid. One can calculate the tilt ({Rf'b}izo, {tliv'b}izo) to be k[ Q] —
k[OV] — k[0 — - -- by Theorem 3.61, or, more explicitly,

kllx, y, z, wll/(xy — zw) <> k[x'/P, y1/P 1P /P p(x VP ytip — lppl/py e o

3F2. Towers of split maps and sousperfectoid rings. Recall that Hansen and Kedlaya introduced a new

class of topological rings that guarantees sheafiness on the associated adic spectra (see [21, Definition 7.1]).

Definition 3.63. Let A be a complete and separated Tate ring such that a prime p € A is topologically

nilpotent. We say that A is sousperfectoid if there exists a perfectoid ring B in the sense of Fontaine (see

[21, Definition 2.13]) with a continuous A-linear map f : A — B that splits in the category of topological

A-modules. That is, there is a continuous A-linear map o : B — A such that o o f =idy4.
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Let us show that a perfectoid tower consisting of split maps induces sousperfectoid rings. In view of
Theorem 2.29, one can apply this result to the towers discussed above. See [33] for detailed studies on
algebraic aspects of Tate rings.

Proposition 3.64. Let ({R;}i>0, {ti}i>0) be a perfectoid tower arising from some pair (R, (fy)). Assume
that fy is regular, R is fo-adically complete and separated, and t; splits as an R;-linear map for every
i >0. We equip R [%] with the linear topology in such a way that { f R},>1 defines a fundamental system
of open neighborhoods at 0 € R[%] Then R[%] is a sousperfectoid Tate ring, and hence stably uniform.

In order to prove this, we need the following lemma.

Lemma 3.65. Keep the notations and assumptions as in Proposition 3.64. Then the natural map Ry —

lim;_, R; splits as an Ro-linear map.

Proof. We use the fact that each #; : R; — R, splits as an R;-linear map by assumption. This implies
that the short exact sequence of R-modules

0—-Ry— R, —> R;//R—0
splits for any i > 0. It induces a commutative diagram of R-modules

0 —— Homg,(R;+1/Ro, Roy) —— Hompg (R; 11, Ry) —— Homg (Ro, Rg) —— 0

- T

0 —— Homg, (R; /Ry, Ry) — Homg,(R;, Ry) —— Homg,(Ro, Rp) —— 0

where each horizontal sequence is split exact and each vertical map forms an inverse system induced by
ti : Ri = Rjy+1. Thus g; is surjective and it follows from the snake lemma that ¢; is surjective as well. By
taking inverse limits, we obtain the short exact sequence

0 — lim Homg, (R; /Ry, Ro) — lim Homg, (R;, Ro) i> Hompg,(Ro, Rp) — 0.
i>0 i~0

It follows from [36, Lemma 4.1] that £ is the canonical surjection Hompg, (R, Ro) — Hompg,(Ro, Ro).
Then choosing an inverse image of idg, € Homg,(Ro, Ro) gives a splitting of Ry — Ro. U
Proof of Proposition 3.64. We have constructed an infinite extension R — R such that if I’Q\oo is the
fo-adic completion, then the associated Tate ring I/Q\OO[%] is a perfectoid ring in the sense of Fontaine by
Corollary 3.52 and [5, Lemma 3.21].

By Lemma 2.28 and Lemma 3.65, it follows that the map R[%] — R\OO[%] splits in the category
of topological R[%]—modules (notice that R is fy-adically complete and separated). Thus, R[%] isa
sousperfectoid Tate ring. The combination of [21, Corollary 8.10], [21, Proposition 11.3] and [21, Lemma

11.9] allows us to conclude that R[%

As a corollary, one can obtain the stable uniformity for complete local log-regular rings (see also
Construction 3.56 and Theorem 2.29).

] is stably uniform. 0
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Corollary 3.66. Let (R, Q, o) is a complete local log-regular ring of mixed characteristic with perfect

residue field. We equip R[%] with the structure of a complete and separated Tate ring in such a way that

{P" R},>1 defines a fundamental system of open neighborhoods at 0 € R [%] Then R [%] is stably uniform.
4. Applications to étale cohomology of Noetherian rings

In this section, we establish several results on étale cohomology of Noetherian rings, as applications of
the theory of perfectoid towers developed in Section 3. In Section 4A, for a ring that admits a certain type
of perfectoid tower, we prove that finiteness of étale cohomology groups on the positive characteristic
side carries over to the mixed characteristic side (Proposition 4.7). In Section 4B, we apply this result to
a problem on divisor class groups of log-regular rings.

We prepare some notation. Let X be a scheme and let X4 denote the category of schemes that are étale
over X, and for any étale X-scheme Y, we specify the covering {Y; — Y};c; so that Y; is étale over Y
and the family {Y;};<; covers surjectively Y. For an abelian sheaf 7 on X, we denote by H {(Xg, F) the
value of the i-th derived functor of U € X¢ +— ['(U, F). For the most part of applications, we consider
torsion sheaves, such as Z/nZ and ., for n € N. However, for the multiplicative group scheme G,,, we
often use the following isomorphism:

H'(X4, G,y) = Pic(X).
For the basics on étale cohomology, we often use [12] or [31] as references.

4A. Tilting étale cohomology groups. Let A be a ring with an ideal J, let A be the J-adic completion of
A, and let U C Spec(A) be an open subset. We define the J-adic completion of U to be the open subset
U - Spec(A), which is the inverse image of U via Spec(ﬁ) — Spec(A). We will use the following result
for deriving results on the behavior of étale cohomology under the tilting operation as well as some
interesting results on the divisor class groups of Noetherian normal domains (see Proposition 4.10 and
Proposition 4.11).

Theorem 4.1 (Fujiwara and Gabber). Let (A, J) be a Henselian pair with X := Spec(A) and let A be the
J-adic completion of A.
(1) Forany abelian torsion sheaf 7 on Xg, we have RI" (Spec(A)g, #) > RI'(Spec(A/J )¢, F |spec(a/)))-
(2) Assume that J is finitely generated. Then for any abelian torsion sheaf F on X¢ and any open subset

U C X such that X\ V(J) C U, we have RT (Ug, F) ~ RT (Ug, F).

Proof. The first statement is known as Affine analog of proper base change in [16], while the second one
is known as Formal base change theorem which is [13, Theorem 7.1.1] in the Noetherian case, and [24,
XX, 4.4] in the non-Noetherian case. Il

We will need the tilting invariance of (local) étale cohomology from [8, Theorem 2.2.7]. To state the
theorem and establish a variant of it, we give some notations.
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Definition 4.2. Let (A, /) and (B, J) be pairs such that there exists a ring isomorphism ® : A/[ =B /J.
Then for any open subset U C Spec(B) containing Spec(B) \ V (J), we define an open subset F4 ¢(U) C
Spec(A) as the complement of the closed subset Spec(®)(Spec(B) \ U) C Spec(A).

One can define small tilts of Zariski-open subsets.

Definition 4.3. Let ({R;};>0, {ti}i>0) be a perfectoid tower arising from some pair (R, p), and let
({Rf'b}izo, {tis 'b},-zo) be the tilt associated to (R, Ip). Recall that we then have an isomorphism of rings
CID(()i) : R;.v‘b/](‘;’be'b 2 R;/IpR; for every i > 0. For every i > 0 and every open subset U C Spec(R;)
containing Spec(R;) \ V(IpR;), we define

sb,
Up =F,

;J)’q)i(oi)(U)'

We also denote U;(;b by U*" as an abbreviated form.

Note that by the compatibility described in Lemma 3.39, the operation U ~ U*" is compatible with
the base extension along the transition maps of a perfectoid tower.
Let us give some examples of U*".

Example 4.4 (punctured spectra of regular local rings). Keep the notation as in Example 3.62(1). In this

situation, the isomorphism d>(()0) : Rg'b / I(‘;'b = Ry/Iy in Definition 4.3 can be written as

kllxis ..., xall/(p*”) = R/pR, (4-1)
where p"b € k[[xy, ..., xq4] is some element. Set U := Spec(R) \ V (m). Then, since the maximal ideal
m C R/pR corresponds to the (unique) maximal ideal of k[[xy, ..., xg1/( p“"b), we have

U’ = Spec(k[[x1, ..., xa) \ V((x1, ..., xq)).

Example 4.5 (tilting for preperfectoid rings). Keep the notation as in Example 3.54. Then by Lemma 3.55,
QD(()O) : R(S)'b / Ig‘b = Ry/Iy is identified with the isomorphism

0s: (R/INR) S R/IR (4-2)
which is induced by the bottom map in the diagram (3-17). In this case, we denote FRKW(U ) by U’ in
distinction from U*". ’

The comparison theorem we need, due to Cesnavicius and Scholze, is stated as follows.

Theorem 4.6 [8, Theorem 2.2.7]. Let A be a w-adically Henselian ring with bounded @ -torsion for
an element w € A such that p € wPA. Assume that the w-adic completion of A is perfectoid. Let
U C Spec(A) be a Zariski-open subset such that Spec(A) \ V(w A) C U, and let U’ C Spec(A®) be its
tilt (see Example 4.5).

(1) For every torsion abelian group G, we have RT (Ug, G) = RI‘(U,b

«» G) in a functorial manner with
respectto A, U, and G.
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(2) Let Z be the complement of U < Spec(A). Then for a torsion abelian group G, we have
RT z(Spec(A)g, G) = RT z(Spec(A®)¢, G).

Now we come to the main result on tilting étale cohomology groups. Recall that we have fixed a prime
p > 0.

Proposition 4.7. Let ({R;} >0, {t;}j>0) be a perfectoid tower arising from some pair (R, Iy). Suppose
that R; is ly-adically Henselian for every j > 0. Let £ be a prime different from p. Suppose further that
forevery j >0,t;: Rj — Rj | is a module-finite extension of Noetherian normal domains whose generic
extension is of p-power degree.'> Fix a Zariski-open subset U  Spec(R) such that Spec(R)\V(pR) CU
and the corresponding open subset U*” C Spec(R*") (cf. Definition 4.3). Then, for any fixed i, n > 0 such
that |H (US’,7/€"Z)| < 0o, one has

et
|H (Ust. 2/0"2)| < |H (U, 2/0" 7).

In particular, if H (US"

et

7/€"7) =0, then H (Us, Z/€"Z) = 0.

Proof. Since each R; is a p-adically Henselian normal domain, o is Roo = lim j=0 R;j. Moreover, every
prime £ different from p is a unit in R; and R. Attached to the tower ({R;} >0, {#;}j>0), we get a tower

of finite (not necessarily flat) maps of normal schemes:
U:U()<—~~-<—Uj<—Uj+1<—'-‘. (4-3)

More precisely, let 22 : Spec(R ;1) — Spec(R;) be the associated scheme map. Then the open set U
is defined as the inverse image h;l(U 7), thus defining the map U, — U in the tower (4-3). Since
h; is a finite morphism of normal schemes, Lemma 3.4 of [3] applies to yield a well-defined trace map
Tr: hj*h’;Z/{i”Z — Z/€"7Z such that

*

h*
7/07 = hpi2)07 S 7/0'7 (4-4)

is multiplication by the generic degree of /1 ; (=p-power order). Then this is bijective, as the multiplication
map by p on Z/€"7 is bijective. We have the natural map: Hi(Uj’ét, 7/0"7) — Hi(UjJ,_]’ét, hjfZ/E”Z).
Since h; is affine, the Leray spectral sequence gives H' (U 11 ¢, hjZ/E”Z) = H'(Uj . hj*hjfZ/Z”Z).
Composing these maps, the composite map (4-4) induces

H (Uja. Z/0'2) — H' (Ujs1.6. B3Z/0T) S H (Uj e hjuh52/0°2) 7> H (U, 2/0'2)
and the composition is bijective. Since h;fZ /"7 = 7/¢"Z, we get an injection

H' (Uja,2/0"7) — H' (Uj1.4, Z/€"Z). (4-5)

13The existence of such towers is quite essential for applications to étale cohomology, because the extension degree of each
R; — R is controlled in such a way that the p-adic completion of its colimit is a perfectoid ring.
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Set Uy = l(iglj U;. Since each morphism U, — Uj is affine, by using (4-5) and [38, Tag 09YQ], we
have
H' (U, Z/0"Z) — lim H' (U &, Z/0"2) = H' (Uso,c1. Z/ 0" 2).
J

Thus, it suffices to show that | H! (U &, Z/€"Z)| < |H' (UL

et

Z7/0"7)|. Hence by tilting étale cohomology
using Theorem 4.6, we are reduced to showing

7/0"7)| < |H"(U,S‘b 7]0"7)|, (4-6)

et

|\H (U’

00,6t?

where Ugo is the open subset of Spec(Rgo) that corresponds to Uy, € Spec(R) in view of Example 4.5.
On the other hand, considering the tilt of ({R;};>0, {j};>0) associated to (Ry, Ip), we have a perfect
[ ,-tower ({Rj.'b} =0, {tjs.'b} j=0). Note that each Rj'b is Ig'b—adically Henselian Noetherian ring14 by
Lemma 3.36 and Proposition 3.42(2), and t]s.'b is module-finite by Proposition 3.42(1). Considering the
small tilts of the Zariski-open subsets appearing in (4-3) (see Definition 4.3), we get a tower of finite
maps:
UsAb_Us.b<__” (_Us.b<_Us.b ..
-0 J Jj+1 )

So let Ué;)b be the inverse image of U*” under Spec(Rgg ) — Spec(R*"). Since Uééb — U*" is a universal
homeomorphism, the preservation of the small étale sites [38, Tag 03SI] gives an isomorphism:

H(US, 2/0'7) = H\(U) , 7/0"7). (4-7)

00,6t?

Now the combination of Lemma 3.55 and Theorem 4.1(2) together with the assumption finishes the proof
of the theorem. (|

Remark 4.8. One can formulate and prove the version of Proposition 4.7 for the étale cohomology with
support in a closed subscheme of Spec(R), using Theorem 4.6. Then the resulting assertion gives a
generalization of Cesnavi&ius-Scholze’s argument in [7, Theorem 3.1.3] which is a key part of their proof
for the absolute cohomological purity theorem. One of the advantages of Proposition 4.7 is that it can be
used to answer some cohomological questions on possibly singular Noetherian schemes (e.g. log-regular
schemes) in mixed characteristic.

4B. Tilting the divisor class groups of local log-regular rings. We need a lemma of Grothendieck on
the relationship between the divisor class group and the Picard group via direct limit. Its proof is found in
[19, Proposition (21.6.12)] or [20, XI Proposition 3.7.1].

Lemma 4.9. Let X be an integral Noetherian normal scheme, and let {U;};c; be a family of open subsets
of X. Consider the following conditions.

(1) {U;}ier forms a filter base. In particular, one can define a partial order on I so that it is a directed

set and {U;};cs together with the inclusion maps forms an inverse system.

141t is not obvious whether Rj.'b is normal. However, the normality was used only in the trace argument and we do not need it

in the following argument.
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(2) Let V; := X\ U, forany i € I. Then codimy (V;) > 2.
(3) Forany x € (\;¢; Ui, the local ring Ox . is factorial.
If {U;}icr satisfies condition (2), then the natural map Pic(U;) — CI(X) is injective for any i € 1. If
{U;}ier satisfies conditions (1), (2) and (3), then lim._, Pic(U;) = CI(X). Thus, if U C X is any open

—iel

subset that is locally factorial with codimy (X \ U) > 2, then Pic(U) = CI(X).

Next we establish two results on the torsion part of the divisor class group of a (Noetherian) normal
domain; they are examples of numerous applications of Theorem 4.1 of independent interest.

Proposition 4.10. Let (R, m, k) be a strictly Henselian Noetherian local normal [ ,-domain of dimension
> 2, let X := Spec(R) and fix an ideal J C m. Let {U;};c; be any family of open subsets of X satisfying
(1), (2) and (3) as in the hypothesis of Lemma 4.9 and let U be the [ ,-scheme which is the perfection of
U;.

(1) For any prime £ # p,

CUX)[¢" = lim H' (U)e, Z/0"Z).
iel
(2) Let RYP™ denote the J-adic completion of RYP” . If each U; has the property that X \ V(J) C Uj,

then for any prime £ #+ p,
CICO[" = lim H' (U7, 2/0"2),

iel
where l/]\ioo is inverse image of U™ via the scheme map Spec(l/e\l/”w) — Spec(Rl/poo).
Proof. Let us begin with a remark on the direct limit of étale cohomology groups. For the tran-
sition morphism g : U® — U$® which is affine, there is a functorial map H'((U®)«, Z/€"Z) —
H' ((Ul-oo)ét, g*(Z/Z”Z)) ~H! ((Uioo)ét, Z/Z”Z), which defines the direct system of cohomology groups.

(1) We prove that for any n € N, there is an injection of abelian groups
H'(U.. Z/£"7) = Pic(U)[£"] < CI(X)[€"],
where U C X is an open subset whose complement is of codimension > 2. Indeed, consider the Kummer
exact sequence
Zl’l
00— Z/H"Z = pugn — Gy o, G — 0,

where the identification of étale sheaves um = Z/€"Z follows from the fact that R is strict Henselian (one
simply sends 1 € Z/£"Z to the primitive £”-th root of unity in R). Let U € X be an open subset with its

complement V = X \ U having codimension > 2. Then we have an exact sequence (see [31, Chapter III,

Proposition 4.9])

o0 o0
T (Us, Gp) 2 T'(Ut, G) — H'(Ust, Z/077) — Pic(U) 2= Pic(U).

Since R is strict local and £ # p, Hensel’s lemma yields that R* = (R*)*". Since codimy (V) > 2 and X
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is normal, we have I'(Ug, G,,) = R*. Thus, H' (Ug, Z/£"Z) = Pic(U)[£"]. Note that Pic(U) < CI(U)
restricts to Pic(U)[£"] — CI(U)[£"]. Moreover, the natural homomorphism CI(X) — CI(U) is an
isomorphism, thanks to codimy (V) > 2. Hence H'(Ug, Z/0"7) = Pic(U)[£"] € CI(X)[£"], which
proves the claim.

Since R is normal, the regular locus has complement with codimension > 2. Using this fact, we can
apply Lemma 4.9 to get an isomorphism CI(X)[¢"] = lim, _, H ! ((U,-)ét, z /E”Z). By étale invariance of

cohomology under taking perfection of [ ,-schemes [38, Tag 03SI], we get
CICOL" = lim H' ((Une, Z/€"2) Zlim H' (U, 2/0"Z),
iel iel
as desired.

(2) Since R is Henselian along m and J € m, it is Henselian along J by [38, Tag ODYD]. The perfect
closure of R still preserves the Henselian property along J. Theorem 4.1 yields

H' ((U)a, 2/0'27) = H' (U7, 2/"27)
and the conclusion follows from (1). U

Proposition 4.11. Let A be a Noetherian ring with a regular element t € A such that A is t-adically
Henselian and A — A/t A is the natural surjection between locally factorial domains. Pick an integer
n > 0 that is invertible on A. Then if C1(A) has no torsion element of order n, the same holds for CI(A/tA).
If moreover A is a Q-algebra and C1(A) is torsion-free, then so is CI(A/tA).

Proof. The Kummer exact sequence 0 — wu,, — G, i) G;u — 0 induces the commutative diagram

HY(Spec(A)et, ) ——— Pic(A) — s Pic(A)

I |,

H'(Spec(A/1 A)et, 1tn) —— Pic(A/tA) —2s Pic(A/1A).

By Theorem 4.1, the map « is an isomorphism. Then if Pic(A) has no torsion element of order n, §;
is the zero map. This implies that &, is also the zero map and hence, Pic(A/tA) has no element of
order n. Since both A and A/tA are locally factorial by assumption, we have CI(A) = Pic(A) and
CIl(A/tA) =Pic(A/tA). The assertion follows. O

It is not necessarily true that §; or &, are injective, because we do not assume A to be strictly Henselian.

Lemma 4.12. Let (R, Q, &) be a log-regular ring. Then strict Henselization (R*", Q, M) is also a
log-regular ring, where a®" : Q — R — R is the composition of homomorphisms.

Proof. Since R — R*" is a local ring map, (R*", Q, a®") is a local log ring by Lemma 2.18. Note that
we have the equality I« = I, R®". Since we have the isomorphism R*"/I & = (R/I,)*" by [38, Tag
05WS] and (R/I,)™" is a regular local ring by [38, Tag 06LN], R*"/I . is a regular local ring. Since the



2352 Shinnosuke Ishiro, Kei Nakazato and Kazuma Shimomoto
dimension of R is equal to the dimension of a strict henselization R, we obtain the equalities
dim R*" — dim(R*"/I ) = dim R*" — dim(R/I)*™" = dim R — dim(R/I,) = dim Q.
So the local log ring (R*", Q, o*") is log-regular. (|

Now we can prove the following result on the divisor class groups of local log-regular rings, as an
application of the theory of perfectoid towers.

Theorem 4.13. Let (R, Q, ) be a local log-regular ring of mixed characteristic with perfect residue field
k of characteristic p > 0, and denote by CI1(R) the divisor class group with its torsion subgroup C1(R)or.

(1) Assume that R = W (k)[[ Q] for a fine, sharp, and saturated monoid Q, where W (k) is the ring of
Witt vectors over k. Then CI(R)r @ Z[%] is a finite group. In other words, the £-primary subgroup
of C1(R)or is finite for all primes € # p and vanishes for almost all primes £ # p.
(2) Assume that ﬁ[%] is locally factorial, where R is the completion of the strict Henselization R,
Then CI(R)tor ® Z[%] is a finite group. In other words, the £-primary subgroup of C1(R)o; is finite
for all primes £ # p and vanishes for almost all primes £ # p.
Proof. Assertion (1) was already proved in Proposition 2.26. So let us prove assertion (2). We may
assume that Q is fine, sharp, and saturated by Remark 2.20. The proof given below works for the first
case under the a/SﬂlmptiOIl of local factoriality of ﬁ[%] e
Since R — R*! is a local flat ring map, the induced map CI(R) — CI(R®h) is injective by Mori’s
theorem (cf. [11, Corollary 6.5.2]). Thus, it suffices to prove the theorem for Es\h Moreover, Es\h is
log-regular with respect to the induced log ring structure & : @ — R — Rsh by Lemma 4.12. So without
loss of generality, we may assume that the residue field of R is separably closed (hence algebraically
closed in our case).
Henceforth, we denote R by R for brevity and fix a prime ¢ that is different from p. By Lemma 4.9
and the local factoriality of R[%], we claim that there is an open subset U C X := Spec(R) such that
Pic(U) =Cl(X), X\V(pR)CU and codimyxy(X\U)>2. (4-8)

Indeed, X is a normal integral scheme by Kato’s theorem (Theorem 2.21). Let U be the union of the
regular locus of X and the open Spec(R[%]) C X. Then by Serre’s normality criterion, we see that
codimy (X \ U) > 2. We fix such an open U C X once and for all. Taking the cohomology sequence
associated to the exact sequence

ZI’[
0— Z/0'7 = Gy, 2 G,y — 0
on the strict local scheme X and arguing as in the proof of Proposition 4.10, we have an isomorphism

H'\(Ug, 2/0"Z) = Pic(U)[£"] = CI(X)[£"]. (4-9)
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On the other hand, there is a perfectoid tower of module-finite extensions of local log-regular rings arising
from (R, (p)):

(R, Q, &) = (Ro, @0, ap) = --- = (R}, Q¥ &j) — (Rj31, QUTD ajiy) — - - . (4-10)

Each map is generically of p-power rank in view of Lemma 2.16(2) and Lemma 2.14(3). Moreover, the
tilt of (4-10) (associated to (R, (p))) is given by

s.b s.b s.b

s.b b sb b b b .

where ((R; )‘Eﬁ), Qj:b

,a‘;'b) is a complete local log-regular ring of characteristic p > 0 in view of
Theorem 3.61. The local ring R*’ is strictly Henselian and the complement of U’(= U(sl')b)) has

codimension > 2 in Spec(R*"). By repeating the proof of Proposition 4.10, we obtain an isomorphism

HY (U, 2/0"7) = Pic(US")[€"]. (4-11)

ét
By Lemma 4.9, the map
Pic(U*”)[£"] — CI(R*)[£"] (4-12)

is injective. Combining (4-9), (4-11), (4-12) and Proposition 4.7, it is now sufficient to check that there
exists an integer N > 0 depending only on R*" such that

CI(R*™)[¢N] = U CI(R*™)[¢"], and CI(R*")[¢M] is finite for all £ and zero for almost all ¢ #p.

n>0

Since we know that R*” is strongly F-regular by Theorem 3.61 and Lemma 2.25, the aforementioned
result of Polstra finishes the proof. (|

Appendix: Construction of differential modules and maximality

The content of this appendix is taken from Gabber and Ramero’s treatise [17], whose purpose is to supply
a corrected version of Grothendieck’s original presentation in EGA. So we give only a sketch of the
constructions of relevant modules and maps. Readers are encouraged to look into [17] for more details as
well as proofs. We are motivated by the following specific problem.

Problem A.1. Let (A, my) be a Noetherian regular local ring and fix a system of elements fi, ..., f € A
and a system of integers e1, ..., e, withe; > 1 foreveryi =1, ..., n. We set

B:=A[T1,....,T,1/(T{" = fi, .., T — fo).

Then find a sufficient condition that ensures that the localization B with respect to a maximal ideal n with
my = ANnis regular.

From the construction, it is obvious that the induced ring map A — B is a flat finite injective extension.
Let now (A, my, k) be a Noetherian local ring with residue field k4 := A/my of characteristic p > 0.
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Following the presentation in [17, (9.6.15)], we define a certain kl‘/ P_vector space R4 together with a
map d4 : A — R4 as follows.

Casel: p ¢ mi. Let W, (k4) denote the p-typical ring of length 2 Witt vectors over k4. Then there is
the ghost component map wq : Wa(ks) — k4, and set Vi (ky) := Ker(wg). More specifically, we have
Wy (ka) = ka X ka as sets with addition and multiplication given respectively by

al +c? —(a+c)?
p

(a,b)+(c,d):(a+c,b+d+ ) and (a, b)(c,d) = (ac, a’d +cPb).

Using this structure, we see that V(k4) = 0 X k4 as sets, which is an ideal of W,(k4) and V; (ka)? =0.
This makes V| (k4) equipped with the structure as a k4-vector space by letting x (0, a) := (x, 0)(0, a) for
X € k4. One can define the map of k4-vector spaces

kP — Vitka) ; a (0,aP), (A-1)

which is a bijection. With this isomorphism, we may view V| (k4) as a ki‘/ P_vector space. Next we form
the fiber product ring:

Az =A Xka Wz(kA).
It gives rise to a short exact sequence of A;-modules
0— Vi(ky) > Ay > A— 0, (A-2)

where A, — A is the natural projection, and the A;-module structure of Vj(k,4) is via the restriction of
rings Ay — Ws(k4). From (A-2), we obtain an exact sequence of A-modules:

Vilks) = Qa — Ql\/z — 0,
where we put Q4 = 9}42 17 ®A; A. After applying () ®4 k4 to this sequence, we have another sequence

of k4-vector spaces:

0= Vitka) 2> Qu®aka — 2}, ®4ka — 0. (A-3)

Then this is right exact. Moreover, (A-1) yields a unique k4-linear map ¥4 : Vi(ka) ®x, ki/ P Viky).
Define 4 as the push-out of the diagram:

Va 1p Ja®k" 1/p
Vilks) <— Vi(ka) Ok, kA —> Q4 ®AkA .

More concretely, we have

Vi) ® (Qa®ak)")

Q@ ,
A T

where T = { (¥ (x), —(ja ®ki/p)(x)) le Vi(ka) @k, ki‘/p}. By the universality of push-outs, we get the
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commutative diagram
0 —— Vitka) ®, k" — Qu@aky’ —— QY ; @4k/" —0

P

0 —— Vi(ka) Q4 QY ®ak)" —0.

We define the map
dA A — SZA
as the composite mapping

1 x 7y d id®l —=<
A—A>A2=AXkA WQ(kA)—>9}42/Zﬁ>QA=Q}42/Z®AkL/pE>ﬂA.

Here,d : Ay — Q 1142 /Z is the universal derivation and 1, : A — k4 — Ws(ka), where the first map is the
natural projection and the second one is the Teichmiiller map.

CaseIl: p € mi. We just set 4 := Qk/z ®a ki‘/p, and define ds : A — R4 as the map induced by the

universal derivation d4 : A — Ql\ /7"
Combining Cases [ and II, we have amapdy : A — Q4. If ¢ : (A, my) — (B, mp) is a local ring map

of local rings, this gives rise to the commutative diagram

d
A—25 9,

b

B—)ﬂB.

With this in mind, one can consider the functor A — £, from the category of local rings (A, my4) of
residual characteristic p > 0 to the category of the klt/ P _vector spaces R 4. Some distinguished features in
this construction are as follows:

Proposition A.2 [17, Proposition 9.6.20]. Let ¢ : (A, my) — (B, mp) be a local ring map of Noetherian

local rings such that the residual characteristic of A is p > 0. Then

(1) Suppose that ¢ is formally smooth for the m4-adic topology on A and the mp-adic topology on B.
Then the maps induced by ¢ and 4, namely

(mA/mi) ®k,4 kp — mB/m% and R4 ®Kf1\/p kllg/p — @3,

are injective.
(2) Suppose that
(a) mpB =mg,
(b) the residue field extension ks — kg is separable algebraic,

(c) ¢ is flat.
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Then Sy induces an isomorphism of kl‘/ P_vector spaces:
Q44 B=Qp.
3) IfB= A/mi and ¢ : A — B is the natural map, then ¢ is an isomorphism.
(4) The functor R, and the natural transformation d, commute with filtered colimits.
We provide an answer to Problem A.1 as follows.

Theorem A.3 [17, Corollary 9.6.34]. Let fi, ..., f, be a sequence of elements in A, and let ey, ..., e,

be a system of integers with e; > 1 foreveryi =1, ..., n. Set
C:=A[Ty,....,T,J/ (T = fi, ..., TS — fu).

Fix a prime ideal n C C such thatnN A =my, and let B := C,,. Let E C Q4 be the kl‘/p-vector space
spanned by d 4 fi, ..., da f,. The following conditions are equivalent.

(1) A is a regular local ring, and dimki‘/p E =n.

(2) B is a regular local ring.

In particular, in the situation of the above theorem, B is a regular local ring if A is a regular local ring
and f1, ..., f, is maximal in the sense of the following definition.

Definition A.4. Let (A, my, k4) be a local ring with residual characteristic p > 0. Then we say that
a sequence of elements fi, ..., f, in A is maximal if d4 f1, ..., d4 f, forms a basis of the ki\/ P_vector
space 24.

In general, we have the following fact.

Lemma A.S. Let (A, mg, ka) be a regular local ring of mixed characteristic and assume that f1, ..., fq
is a regular system of parameters of A.

(1) fi1,..., fa satisfies condition (1) of Theorem A.3.

(2) If the residue field k4 of A is perfect, then the sequence f1, ..., fi is maximal.
Proof. (1) In the case that p ¢ mf\, [17, Proposition 9.6.17] gives a short exact sequence
0—>mA/mf\®kAki/p—>SlA—>Q,1<A/Z®kAki‘/p—>O. (A-4)
Then the images f1, ..., f4 form a basis of the ki/ P _vector space my4 /mi‘ Rk, ki‘/ P The desired claim

follows from the left exactness of (A-4).

In the case that p € mi, [17, Lemma 9.6.6] gives a short exact sequence
0— mu/(m3 + pma) > Qu — @, 7 — 0. (A-5)

and we can argue as in the case p ¢ m124.

(2) If k4 is perfect, then Qlch 7= 0. Therefore, (A-4) and (A-5) (in the latter case, one tensors it with

ki/ P over k4) gives the desired conclusion. O
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Reduction modulo p of Noether's problem

Emiliano Ambrosi and Domenico Valloni

Let R be a complete valuation ring of mixed characteristic (0, p) with algebraically closed fraction field
K and residue field k. Let X/R be a smooth projective morphism. We show that if X}, is stably rational,
then HK3I(X . 2) is torsion-free. The proof uses the integral p-adic Hodge theory of Bhatt, Morrow and
Scholze and the study of differential forms in positive characteristic. We then apply this result to study
the Noether problem for finite p-groups.
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3. A stably irrational variety reducing to a rational variety 2365
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1. Introduction

Many techniques to study the birational geometry of varieties are based on specialization methods
in equicharacteristic or in mixed characteristic (see [Voil5; CTP16], for instance), often exploiting
pathological phenomena in positive characteristic [Kol95; Tot16; ABBGvB21].

In this paper we study birational invariants in mixed characteristic. Let us fix a complete valuation ring
R of mixed characteristic (0, p) with algebraically closed fraction field K and residue field £ (necessarily
algebraically closed) and a smooth proper morphism X/R. Motivated by the different behavior of the
Noether problem in positive and zero characteristic (see Section 1.2 for details) we study the following
question:

Question 1.1. What can one say about the generic fiber X ¢ knowing that the special fiber Xy is stably
rational? (The condition means that X; x [P is birational to IP’IICV for some n, N € N.)

In general, X need not be stably rational, as we show for instance in Section 3, where we follow
a suggestion of Colliot-Théleéne and adapt the constructions of [HPT18] to construct smooth proper
morphisms X /R with X g stably irrational and X} rational. On the other hand, we show that the following
vanishing holds:

Theorem 1.2. Let X/R be a smooth proper morphism, and assume that the special fiber Xy, is stably
rational. Then the p-torsion of H;(XK, Z,) vanishes.

MSC2020: 14E08, 14F30, 14M20.
Keywords: Noether’s problem, crystalline cohomology, Artin-Mumford invariant.
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If K C C is an embedding, then the vanishing of Hé3t(X &, Z,)[p] together with smooth-proper base
change in étale cohomology (with £-adic coefficients, £ # p) implies that Hs3ing(X (©), Z) is torsion
free whenever X is stably rational. We recall that the torsion of Hs3ing(X (©), Z) is a stably birational
invariant of smooth proper varieties over C, which is naturally isomorphic to Br(X)/Br(X)giy, where
Br(X) := HéZt(X , G;). This group was used by Artin and Mumford in their seminal paper [AM72] to

give the first elementary example of a unirational threefold which was not rational.

1.1. Strategy. To explain the strategy, we begin by showing an analogous statement concerning global
differential forms. We retain the notation from the previous section. By the Kiinneth formula and Hartogs’
lemma, the vector spaces H(X g, Q’;(K) are stably birational invariants of smooth proper K -varieties, and
therefore they vanish if X is stably rational. If X/R is a smooth proper morphism, the semicontinuity
theorem yields the inequality

(1.1.3) dimy (H (X, ,)) > dimg (H (X, Q).

from which it follows that if Xj is stably rational, then H "Xk, Q%K) = 0 necessarily.
Concerning étale cohomology, as already mentioned, the proper smooth base change asserts that for a
prime ¢ # p one has

HZ(Xk, Z)[€] = HZ (Xg, Zo)[€] =0,

where the last equality follows from the stable birational invariance of H;(X t» Z¢)[€] and the fact that
X is stably rational. For p-adic coefficients, we can replace the smooth proper base-change with the
integral p-adic Hodge theory of Bhatt, Morrow and Scholze, which will play the role of the semicontinuity
theorem (1.1.3). By [BMS18, Theorem 1.1 (ii)], one has the inequality

(1.1.4) dimg (H2yo(Xi/ W) p]) = dimg, (H3 (X k., Z,)[p)),

where Hc3rys(X &/ W) is the third crystalline cohomology group with integral coefficients of X;. Thus,
it would be enough to show that dimk(HSrys(X ) p]) is a stably birational invariant of smooth proper
varieties. It is unclear how to prove this without assuming resolution of singularities, also because
crystalline cohomology behaves badly for open or singular varieties. We prove instead the following

vanishing, which is enough to deduce Theorem 1.2:

Theorem 1.1.5. Let k be an algebraically closed field of characteristic p and X be a smooth proper
k-variety. Assume that

(1) H(X,0x) =0fori =2,3;
(2) H(X, Q%) =0;
(3) Br(X)[p] =0.

Then H2, (X/W)[p] =0.

crys
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The assumptions of Theorem 1.1.5 are satisfied if X is stably rational, since all the conditions are
stably birational invariants of smooth proper varieties. (See [CR11, Theorem 1] for (1); point (2) follows
from Hartog’s lemma; [CTS21, Corollary 6.2.11, p. 170] gives (3).) Hence, Theorem 1.2 follows from
Theorem 1.1.5 and (1.1.4).

1.2. Applications to the Noether problem. As mentioned, our original motivation was the Noether
problem, which we now briefly recall. For a finite group G and a field K, the Noether problem asks
whether P /G is a stably rational variety, where G acts on P in a linear and faithful way. The problem
is well-posed since the stably birational class of the quotient does not depend on the chosen representation
[BK85, Lemma 1.3]. For K = C we can then define the Artin—-Mumford invariant AM(G) of G as
Tors(HSiIlg
The first counterexample of the Noether problem over C was given by Saltman in [Sal84], who for any

(X, Z)) where X/C is any smooth proper birational model of P /G.

prime p produced a finite p-group G for which the quotient P¢./G is not stably rational, by showing that
AM(G) # 0. A general formula for AM(G) was later given by Bogomolov [Bog88, Theorem 3.1], and
this group is now known as the Bogomolov multiplier of G.

The connection to Theorem 1.2 comes from the classical observation that if G is a p-group and K has
characteristic p, then P /G is always rational; see, e.g., [Kun54] and [Gas59].

Keeping the notation as in the previous section, we can fix a finite p-group G, and linear faithful
actions of G on P} and P%. Theorem 1.2 together with the observation above implies the following:

Corollary 1.2.1. If AM(G) # 0, there does not exists a smooth proper X/R such that Xy is stably
birational to P}/ G and X is stably birational to Pk /G.

It follows that all the examples constructed in [Sal84; Bog88] cannot have good stably rational reduction.
This also implies that if AM(G) # 0 and G — PGL,(R) is a representation such that the reduction map
G — PGL, (k) is injective, then one cannot resolve the singularities of P /G relatively to R, i.e., there
cannot be a smooth projective X/R with a R-morphism 7 : X — P% /G which induces a resolution of
singularities on both fibers.

Peyre [Pey08] constructed groups G such that P¢./G is not rational but AM(G) = 0. It is an interesting
question at this point whether there is a p-group G for which a resolution X of P, / G like in the corollary
above exists, but P /G is not stably rational.

Remark 1.2.2. A related phenomenon appears in the recent work of Lazda and Skorobogatov in [LS23].
They prove that, if p =2 and Y — Spec(R) is an abelian surface such that X is not supersingular, then
one can resolve the singularities of ¥ /{£1} to obtain a smooth proper morphism X — Spec(R) such
that the generic fiber is the Kummer variety Kum(Yy) of Y; and the generic fiber is the Kummer variety
Kum(Yk) of Yg.

On the other hand, if Y} is surpersingular, then Kum(Y}) is a rational surface due to [Kat78]. Since
H®(Kum(Yk), Q%K) # 0, the argument in the beginning of Section 1.1 applies, and such Y does not exist.
Since H(Kum(Yy), Q%(k) =0 if and only if X} is supersingular, the group HO(Kum(Yk), Qik) is the
only obstruction to the construction of such Y in this case.
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2. Proof of Theorem 1.1.5

2.1. Notation. Let k be an algebraically closed field of characteristic p > 0 and let X/k be a smooth
proper variety such that

H*(X, 0x) = H(X, Ox) = H(X, Q%) = Br(X)[p] =0.
We let 25 be the de Rham complex of X and we define the following sheaves over X:

. . , . . . 4
Zi =Ker(d : @ — Q) B i=Im(d: Q¢ — QY);  FHy = B—f.
X
For every complex of sheaves J* over X and every i € N, we let 7>;J° (resp. t<;J*) be the upper
(resp. lower) canonical truncation of F* and F= (resp. F=') the upper (resp. lower) naive filtration of J°.

Recall that, for every i € N there exists an exact triangle (see, e.g., [Stacks, Remark 08J5]):
‘L'S,'f}" - F* - Tzi_,_lff'.

2.2. Preliminary reductions. The universal coefficient theorem for crystalline cohomology (see, e.g.,
(11179, (4.9.1), p. 623]), gives us an exact sequence

0— Hy (X/ W)@k — Hig(X) — Hyy (X/W)[p] — 0,

crys

so that, to prove Theorem 1.1.5, it is enough to show that the natural map
HZ,(X/W)®k — HZ(X)

is surjective. In fact, we shall prove that the cycle class map clgr: NS(X) ® k — H(fR(X / k) is surjective,
which is enough due to the commutative diagram

Clcrys

NS(X) @ W —— HZ (X/W)

2.2.1) i l

NS(X) @k —2% 5 H2 (X),
where the first horizontal arrow is the crystalline cycle class map.

2.3. Factorization of the cycle class map. To study clgr : NS(X)®k —> H d2R (X/k), we factorize it in
three arrows. Let ¢ : Z }([— 1] — Q° be the natural inclusion.
Recall that, by construction, the cycle class map clgr : NS(X) @ k — HdzR(X / k) is induced by the dlog
map
dlog: O%[—1] — Q%

(see, e.g., [Stacks, Section OFLE]), which factors through

or-11 L% zL—11 % @
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Hence, the cycle class map factors trough the induced map ¢ : H!'(X, Z}) — HZ (X), giving a first
factorization
clar :NS(X)®k — H' (X, ZY) 5 HE(X/k).

To go further recall from [I1179, (5.1.4), p. 626], that for every i, there is a canonical isomorphism
Héat(X Hp) = Hi- (X, Ox/(0%)?) hence a canonical map « : H?*(X, Wp) —> HY(X, Z! y) induced again
by dlog: Ox/(0%)? — Z)l(. In conclusion, the map clgr : NS(X) ® k — dR(X) factorises further as

clpa®k

NS(X) ® k —“=5 HE (X, pup) ®k = H'(X, Z) > HE(X),

where clgy : NS(X) — Hffat(X , I p) 1s the cycle class map in flat cohomology.

2.4. Studying the factorization. To show that clgg : NS(X) @k — H G%R(X ) is surjective, we show that:
(1) the map clgy : NS(X) — Hffat(X, W p) 18 surjective;

(2) the map « : Hffat(X, wp) @k — H'(X, Z}() is an isomorphism;

(3) themap ¢ : H'(X, Z}) — HZ(X) is surjective.

Proof of (1). The map clgy : NS(X) — Hffat(X , i p) is induced by the connecting map

H' (X, 0%) =Pic(X) = Hi, (X, 11p)
in the long exact sequence associated to the short exact sequence
0—>up—>(9>§((_—)p>(9}—>0

of sheaves in flat site of X. Hence the surjectivity of Clﬂat :NS(X) — Hﬂzat(X , ibp) follows directly from
the assumption Hﬂ (X,0%) = (X 0%) =Br(X) =

Proof of (2). Recall from [I1179, (2.1.23), p. 518] the exact sequence of étale sheaves

dlog

0— O%/O% =5 7L =5 @l o,

where i : Z, — QU is the natural inclusion and C : Z, — QL is the Cartier operator. Since étale
cohomology and Zariski cohomology agree for coherent sheaves, taking the associated long exact

sequence in cohomology, we get an exact sequence
HO(X, ZX) =S HOx, Qx) — Hp (X, up) - H'(X, zX) = H'(X, Q%)

where i is a linear morphism and C is a Frobenius-linear map.
To prove (2), it is then enough to show that HO(X, Z)lf) l—_g HO(X, Q&) is surjective and that

Ker(H'(X, L) =5 H'(X, QL) @k~ H'(X, Z}).

Since H (X, Z x) and H (X, Q! x) are finite-dimensional vector spaces, we can use the following
classical lemma (see, e.g., [Mill6, Lemma 4.13, p. 128]).
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Lemma 2.4.1. Let k be an algebraically closed field of characteristic p > 0 and let V be a finite-
dimensional vector space over k. Let f : V — V be a k-linear isomorphism and let C: V — V be any

Frobenius-linear map. Then:
(a) f — C is surjective.
(b) If C is bijective, then V =ker(f —C) @ k.
Hence to prove (2) it is enough to show that the following maps are isomorphisms:
i:H' (X, Z}) — H'(x,QY), i:H'(X,Z)) - H'(X,Q)), C:H'(X,z)) — H'(X,Q}).

That the map H°(X, Z}) — H°(X, Q%) is an isomorphism follows directly from the exact sequence

of sheaves
0— Zk — Qb 4 Q%

and the assumption H°(X, Q%) = 0.

As for i and C, by comparing dimensions we see that it is enough to prove that

() i: HY(X, Z}) — H'(X, Q}) is injective, and
(i) C: HY(X, Z}) — H'(X, Q) is surjective.
Proof of (1). Since Z }1([—1] =1T1< IQ)Z(I, there is an exact triangle
Zh[-1]1 = Q7' = 207,

so that the map H'(X, Z)lf) — H?*(X, Q;l) is injective, since H (X, rzgfzil) =0, because 1229)2(1 is con-
centrated in degrees > 2. So it is enough to show that the natural map H>(X, Q;l) — H*(X, Qk[—l]) =
H'(X, Q}() induced by the map Q§1 — Q}([— 1] is injective. But the latter fits in the short exact sequence

of complexes
0— Q7 — Q3 — Qy[—1]1— 0,

so that we just need to prove that H?(X, Q;z) = (. This follows from the inclusion
H(X, Q2% = Ker(H(X, @%) % HO(X, %)) € HO(X, Q%) =0
by our assumption on X. Hence i : H'(X, Z;() — HY(X, Q;() is injective.
Proof of (ii). Since k is perfect, from [11179, (2.1.22)] we have a short exact sequence of sheaves
0—>B}(—>Z§(£>Q}(—>O,

where C is the Cartier operator. Hence it is enough to show that H?(X, B}l() is zero. But this follows
from the short exact sequence

(=)? d 1
0—-0x—0x—>By—0

and the assumption H*(X,0x) = H3*(X, O9x) =0.
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Proof of (3). Since H*(X,0x) =0 by assumption, the short exact sequence
0— Z)lf[—l] - 1<1Q%y - O0x =0

shows that the natural map H (X, 2z )1() — H*(X, T<182%) is surjective. So, it is enough to show that the
natural map H2(X, t<1Qy) — H>(X, Qy) = H (X) is surjective. Since there is an exact triangle

T<1Q% = Q% — 7>20%,
it is then enough to show that H?*(X, 7-2Q%) = 0. But
H?*(X, 120%) = ker(H(X, 120Q%[2]) — H(X, Q%)) = H*(X, ker(Q% /By — Q%)) = H(X, 33).
Again, since k is perfect, the inverse Cartier operator [I1179, (2.1.22)] gives an isomorphism H?(£2 VE Q2,50
H*(X, 1:0Q%) ~ HY(X, Q%) =0.

Hence the natural map H'(X, Z}) — H3,(X/k) is surjective. This concludes the proof of (3) and the
proof of Theorem 1.1.5.

3. A stably irrational variety reducing to a rational variety

Let R be the ring of integers of K := C,, and k its residue field. In this last section, we show how to
construct, for every p > 0, examples of smooth proper schemes X — Spec(R) such that X g is not stably
rational and such that X} is rational, as suggested to us by Colliot-Théléne. The construction uses and is
based on the analogous construction in [HPT18] of a family of proper smooth varieties over the complex
number with stably irrational general fiber but with some rational fiber.

3.1. A general lemma. We begin by reducing the construction of examples to the construction of mixed
characteristic families with properties that are easier to check. Let B/R be smooth with geometrically
integral fibers and X — B a smooth proper family of varieties.

Lemma 3.1.1. Assume that there exists a point b € B(C,) such that X, is not stably rational. Then, for
every a € B(k) there exists a lift b’ € B(R) of a such that Xy is not stably rational.

Proof. By [NO21, Corollary 4.1.2], the set
B(C,), :=1{b e B(Cp): X is stably rational}

is a countable union of closed subvarieties. Define now B(C)),, := B(C,) \ B(C,),. By the assumption
on b, the set B(C,), is the countable union of proper closed subvarieties.

Since, by the Hensel lemma, the map 7 : B(R) — B(k) is surjective, we can choose a lift b” of a.
The set 7' (a) € B(R) € B(K) is an open neighborhood of »” in B(K). Since B(C)), is the countable
union of proper closed subvarieties, we can apply [MP12, Lemma 4.29] to deduce that there exists a
b e B(Cp)pr N 7~ !(a). This concludes the proof. O
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3.2. An example. By Lemma 3.1.1, to construct a smooth proper scheme X — Spec(R) such that X is
not stably rational and such that Xj is rational, it is enough to construct a family X — B over R such
that there exist points b € B(C,) and a € B(k) such that X, is stably irrational and X, is rational. Such a
family can be constructed directly using the example of Hassett, Pirutka, and Tschinkel [HPT18]; see
also [CTS21, Section 12.2.2] and [Sch19]. We give some details.

Let X’ — Z be the universal family of quadric bundles over [P’qz;D given in [P’éD X [P’?;D by a bihomogeneous
form of bidegree (2, 2). After choosing coordinates x, y,z and U, V, W, T on IP’?Q X Pga, the variety Z
identifies with the space of bihomogeneous forms F = F(x, y, z, U, V, W, T) of bidegree (2, 2) in [P’t%l X
|]3’<[31 that are symmetric quadratic forms in the variables U, V, W, T, since any such F determines a quadric
bundle over P, via the projection P, x P, — PZ,. In turn, these forms are given by a 4 x 4 symmetric
matrix A = (a;,j)1<;, j<4 Where each entry a; ; = a; j(x, y, z) is a homogeneous polynomial of degree 2.

By the arguments in [Sch19] and Bertini’s theorem, there exists a dense open Zariski Bg C Z such
that the restriction of the family Xg — Bg to Bg parametrizes quadric bundle flat over IP?Q and with
smooth total space.

By spreading out, this construction extends to give a smooth family X — B over Z[1/n] for n large
enough whose base change to Q identifies with Xg — Bg. By the main result of [HPT18], the general
fiber of X(C) — B(C) is not stably rational, hence, for every p, there exists a b € B(C,) such that Y}, is
not stably rational. So, we are left to show that for p > 0, there exists aa € B(Fp) such that X, is rational.

Using Bertini, there exists a rational point r € B(Q) such that the corresponding 4 x 4 symmetric
matrix A = (a; j)1<i,j<4 has a1 = 0. By spreading out, we can choose p >> 0 such that r € B(Q) extends
to a point @ € B(Zp) whose reduction a modulo p defines a flat quadric bundle X, — I]J’%p with smooth
total space, whose associated matrix has a;,; =0. Since a1, =0, for every x € [P’;), the point [1:0:0: 0]
is k(x)-rational point of the fiber of X, — [P’%P in x. In particular the morphism X[ a— [P’%p has a rational
section, hence X, is rational. This concludes the construction of a proper smooth scheme over R with
rational special fiber and stably irrational generic fiber.
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On the Grothendieck ring of a quasireductive
Lie superalgebra

Maria Gorelik, Vera Serganova and Alexander Sherman

Given a Lie superalgebra g and a maximal quasitoral subalgebra b, we consider properties of restrictions
of g-modules to h. This is a natural generalization of the study of characters in the case when § is an
even maximal torus. We study the case of g = g,, with b a Cartan subalgebra, and prove several special
properties of the restriction in this case, including an explicit realization of the h-supercharacter ring.
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1. Introduction

1.1. Maximal toral subalgebras and restriction. Let g be a Lie superalgebra, not necessarily finite-
dimensional. Assume that g contains a subalgebra b such that

(1) t:= bg has diagonalizable adjoint action on g with finite-dimensional weight spaces; and,
(2) h=g', where g' denotes the centralizer of t in g;

We will call subalgebras with the above properties maximal quasitoral. Maximal quasitoral subalgebras
play an analogous role to maximal toral subalgebras of Lie algebras. In the purely even setting, the
restriction of a representation to a maximal toral subalgebra is exactly the data of its character. The
character of a representation is a powerful invariant, and provides (nice) formulas for characters of
irreducible representations is a central problem in representation theory.

For many Lie superalgebras of interest, maximal quasitoral subalgebras are even, i.e., h =t (e.g., for
9bnjn, 0SPm2n, Pu, - . .. See [16] for the definition of these Lie superalgebras). In this case the restriction
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of an irreducible highest weight representation to t completely determines it. But when h # t, as in
the case of the queer Lie superalgebra q,, this longer holds, as for certain simple modules L one has
Res{ L = Res;} T1L and so the restriction map of Grothendieck groups # (g) — # () is not injective.

On the other hand the restriction to b is fine enough to make such distinctions. Choose a Borel
subalgebra b of g containing b (from a triangular decomposition as explained in Section 2.1), and let C be
the full subcategory of g-modules such that each module in C is of finite length, has a diagonal action
of t, and is locally finite over b (these conditions can be slightly weakened; see Corollary 5.2). Write
M (h) for the category of h-modules with diagonal t action and finite-dimensional weight spaces. Then
the restriction functor Resﬁ induces an injective map # (C) — # (M?*(h)), see Corollary 5.2.

It is therefore of interest to understand the h-character of irreducible g-modules. A difficulty that arises
is that the Grothendieck ring of finite-dimensional h-modules does not have a simple manifestation as in the
case of t-modules. Nevertheless a description can be given, and its structure is interesting in its own right.

1.2. #_(g) and 27, (g). Let # (g) denote the Grothendieck group of finite-dimensional g-modules, and
write My, for the natural image of a finite-dimensional module M in % (g). This ring admits two natural
quotients: 4 (g), which is obtained by identifying Mg, = (ITM)g,, and #_ (g), obtained by identifying
Mgy = —(ITM)g,. There is a natural embedding of %7 (g) into 7, (g) x #_(g), and this embedding
becomes an isomorphism over (; thus a proper understanding of ¢, (g) and .#_(g) suffices for the
understanding of JZ (g) (see Section 5 for a precise relationship between .7 (g) and 7, (g) x #_(g)).

The ring %4 (g) behaves like a character ring, and in fact embeds into .#, (t) under the restriction
map; thus the information it carries is less interesting from our standpoint. On the other hand, .#_(g),
the reduced Grothendieck ring, has a nontrivial, even exotic structure as a ring, and will be our main
object of study. The restriction map .#_(g) — #_(t) is sometimes very far from being an embedding;
for instance if g = g, the image of any nontrivial finite-dimensional irreducible module is zero by [3].
Thus is it necessary to study instead J#_(g) — #_(h).

A further advantage of using .#_(g) is that the Duflo-Serganova functor, while not being exact, always
induces a morphism ds, : #_(g) — #_(g,) for appropriate x € gy. It has been known for some time
(see [13]) that for Kac—Moody superalgebras, the map induced by ds, on supercharacters is given by
restriction to t,, the Cartan subalgebra of g,. This is a reflection of a more general property of ds,,
discussed in Section 8, which shows that ds, can always be thought of as a restriction map to g,. Therefore
in our setting the induced map ds, : #_(h) — #_(h,) is also given by restriction of modules from b to
by, where b, is a maximal quasitoral subalgebra of gj.

1.3. Results for g = q,. Let g = q,,; for two weights A, u, write A ~ w if L(A) and L () lie in the same
block of Fin(q,). Then for a g-module M, write schy M for the natural image of M in JZ_(Finb).

Theorem 1.1. schy L(A) = ) schy L(A), (1)
U~
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Equivalently, if u # A then [L(A) : C(u)] =[L(\) : [1IC ()], where C () is an irreducible h-module
of weight L.

See Theorem 9.2 for a proof of this statement, and a stronger result. In Section 6 we present a version
of the above result which holds for a more general Lie superalgebra, but only for particular blocks, those
which are the closest to being typical.

1.3.1. Supercharacter isomorphism. Let C denote the subcategory of h-modules with weights which
appear in some finite-dimensional representation of gl,, = (q,)5. The Weyl group W = §,, has a natural
action on .#_ (C) in this case, and we may consider the invariant subalgebra. We prove that J#_ (€)% has
a basis given by {a; },cp+(g), Where P (g) are the dominant weights for g = q,,, and

m= Y [cw",

weW/ Staby (1)

where (—)" denotes the twisting functor.
It is clear that the supercharacter map induces an embedding schy, : #_(g) — #-(C)"; such a result
holds for any quasireductive Lie superalgebra (see Section 7). For g = q,, we have (see Corollary 9.5):

Theorem 1.2. The map schy : #_(g)g — #_ (C)g is an isomorphism of rings.

Here the subscript () means that we extend scalars to Q). To obtain an isomorphism we only need to
invert 2, in fact. This is a consequence of the work in Section 9.

Remark 1.1. The ring .#_ (g) has a natural basis given by irreducible modules, and an important question
is to understand the relation between this basis and the basis {a; }.

1.3.2. Realization of #_(F (qn)int)- Using the above isomorphism, we are able to provide another realiza-
tion of Z_ (F(9)int), Where F(g)in: denotes the category of finite-dimensional q,-modules with integral
weights. To simplify the explanation for the introduction, we will explain this realization over C.

Let V := C2\M9 denote the complex vector space with basis {v;};cz\(0). Then write

A=N\V=EA"V.

neN

This is a superalgebra, and we write Ay =D, AV for the even part. Let J; € A be the ideal generated
by /\k+1 V. For the following, see Theorem 9.3.

Theorem 1.3. We have an explicit isomorphism of algebras
K- (}—(qn)int) Rz C— (A/Jn)ﬁ-

where, up to a scalar, a, is mapped to vy :=vjA--- Avj,, where ji, ..., ji are the nonzero coordinates

of A.
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1.3.3. Relation to the Duflo—Serganova functor. For q,, the maps ds, depend only on the rank of x,
which is a nonnegative half-integer s € %N. Thus we write ds, = dsg, where s = rank(x), and this gives
amap dsg : F_(F(q,)) = F_(F(qu—2s)). We have the following simple formula for ds; in terms of the
basis {a,}, using the previously noted fact that ds, is given by restriction:

if zerou < 2s

0
dss(a,) = { a, if zerop > 2s

where zero p is the number of zero coordinates that y has, and i’ € P*(g,) is such that ’ and p have the
same nonzero coordinates. In [11], we compute ds; on the basis {[L(1)]} e p+(g) of irreducible modules;
remarkably it admits a similarly simple expression:

0 if zeroA < 2s,

dsg([L(M)]) = { [L(A)] if zeroA > 2s.

1.4. List of notation.

symbol  § symbol  § symbol § symbol  § symbol  §
M(b) 3.1 L)) 4.1 Mg, Mg+ 5.1 E 9.2 P(g) 7
c) 32 () 5.1 Iy, 1 32 Core 9.2 P(g' 7.1
K, 3.1.1 H4(C) 5.1 tc 5.6 F(g) 7.1 smult 9.5
F 3.1.1 H_(C) 5.1 schy, 5.2 Pt(g) 7 dsg 9.5

2. Preliminaries: maximal quasitoral subalgebras and Clifford algebras

We work over the field over of complex numbers, C, and denote by N the set of nonnegative integers. For
a super vector space V we write V = Vi ® V7 for its parity decomposition. Then ITV will denote the
parity-shifted super vector space obtained from V. Let §y := & denote the endomorphism of V given by
8(v) = (=1)PWo.

We work with Lie superalgebras which are not necessarily finite-dimensional. For a Lie superalgebra g
we denote by Fin(g) the category of finite-dimensional g-modules.

2.1. Maximal (quasi)toral subalgebras.

2.1.1. Definition. Let g be Lie superalgebra. We say that a finite-dimensional subalgebra t C gj is a
maximal toral subalgebra if it is commutative, acts diagonally on g under the adjoint representation, and
we have g% = t. In this case we set h := g', and we refer to h as a maximal quasitoral subalgebra of g.
Observe that hy = t.

Denote by A(g) := A C t* the nonzero eigenvalues of t in Ad g, and write Q = ZA. We will assume
throughout that

all eigenspaces g, (v € A U{0}) are finite-dimensional. *)

In particular we assume that § is finite-dimensional. We have

g=h® D go-

aeA
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2.1.2. Triangular decomposition. We choose a group homomorphism y : ZA — R such that y («) # 0 for
all @ € A. Such a homomorphism exists because h = R as a (D-vector space. We introduce the triangular
decomposition A(g) = At (g) [[ A~ (g), with

A*(g) :={a € Ag) | £y (@) > 0},

and define a partial order on t* by
A>v if v—AeNA™.

We set n* := @yea+ge and call a subalgebra of the form b := h @ n™ a Borel subalgebra. We further
assume throughout that

Um™), is finite-dimensional for all v € Q. (**)

Remark 2.1. Several notions of triangular decompositions for Lie superalgebras have appeared in the
literature. In [18] and [20] for example, a notion of positive roots arose from the choice of a generic
hyperplane in h*. Our approach generalizes these approaches and admits a more flexible definition. One
can construct finite-dimensional Lie superalgebras for which our definition gives rise to more triangular
decompositions as compared to [18] and [20]; for example, consider g with gg one-dimensional acting by
real, Q-linearly independent characters on g7.

On the other hand, for simple, finite-dimensional Lie superalgebras our notion of triangular decompo-
sition agrees with that of [20].

2.1.3. Examples.

— If g is a Kac-Moody superalgebra, then, by [21] any maximal toral subalgebra t satisfying (x) is
Cartan subalgebra of gg; one has fh = t.

— If g is a quasireductive Lie superalgebra (dim g < 00, gg is reductive and gy is a semisimple g-module),
then a maximal toral (resp. quasitoral) subalgebra t is a Cartan subalgebra of gg (resp. g). In both
this example and the former, t and ) are unique up to a conjugation by inner automorphism, see [21].

— If we fix an invariant form on a quasireductive Lie superalgebra g (which can be the zero form), we
can construct the affinization g with t=t+CK +Cd and 6 =h+CK+Cd.

— The cases when t # b include the queer Lie superalgebras and their affinizations.

2.2. Clifford algebras. For a vector space V with a symmetric (not necessarily nondegenerate) bilinear
form F, let C£(V, F) denote the corresponding Clifford algebra. This is a superalgebra where the elements
of V are declared to be odd. Write K C V for the kernel of F, so that F induces a nondegenerate form
on V /K, which we also write as F'. We have an isomorphism of superalgebras

CeV,F)=Ct(V/K,F)@ N'K.

The superalgebra C£(V, F) is semisimple if and only if F is nondegenerate.
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2.2.1. Suppose F is nondegenerate, and write m for the dimension of V. We have
CUV,F)= 0"y ifm=2n+1, CV,F)=EndC* ") ifm=2n.

Here Q(r) is the queer superalgebra, i.e., the associative subalgebra of End(C"|C") consisting of the
A B

B A)‘

It follows that C£(V, F) is a simple superalgebra and admits a unique, parity invariant, irreducible

matrices of the form (

module when m is odd, while if m is even there are two irreducible modules that differ by parity.
Moreover, all (Z,-graded) C£(V, F)-modules are completely reducible. For m # 0, if E is an irreducible
representation of C£(V, F') one has

dim Eg = dim Ey =217/

2.2.2. For a nonnegative integer m, we write C£(m) for the Clifford algebra C£(C™, F), where F is the
standard nondegenerate symmetric bilinear form on C”. Clearly C¢£(V, F) = CL(m) if dimV =m and F
is nondegenerate.

2.2.3. Let A;, A, be associative superalgebras and V; be A;-modules; we define the outer tensor product
Vi X'V, as the space V| ® V, endowed by the A ® Aj-action

(a1, a2) (V] ® v2) := (= )PP gy @ ayvy.

One has C€(m) ®CL(n) = CL(m +n); if V| (resp., V,) are simple modules over C£(m 1) (resp., C€(m>)),
then VX'V, is a simple if either m or m» is even, and if m| and m, are both odd then V; ® V, = LG TIL,
where L is simple over C£(n| +my).

2.3. Realization of the irreducible representation of C£(2n). Consider C?" with standard basis ey, . . ., ,,
f1. ..., fn, equipped with the symmetric nondegenerate form (—, —) satisfying:

(ei, [))=0ij, (ei,e))=(fi, f})=0.

Consider the polynomial superalgebra L = C[&1, ..., &,] with odd generators &1, ..., &,. Then we may
realize L as an irreducible representation of C£(2n) via e; — §; and f; O; i.e., e; acts by multiplication
by & and f; acts by the derivation sending &; > §;;. In this way we have defined a surjective morphism
Cf(2n) — End(L) (in fact it is an isomorphism). Every irreducible representation of C£(2n) is isomorphic
to L or I1L.

2.3.1. Continuing with the setup from Section 2.3, if we choose W a maximal isotropic subspace of
C?", then /\"W acts on L, and under this action L is isomorphic to the exterior algebra of W under left
multiplication. Thus given two arbitrary irreducible representations of C£(V), they are isomorphic if and
only if the parities of the one-dimensional W-invariant subspaces of each are the same.
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2.4. The case C£(2n + 1). Next we look at C***! with nondegenerate symmetric form (—, —) and
basis ey, ..., e, fi,..., fn, g Here the inner product relations for the e;’s and f;’s are the same as in
Section 2.3, along with

(g’ei):(g’fj)zos (g,g)=2

Consider the exterior algebra L = C[&, ..., &,+1]. Then we may realize L as the unique irreducible
representation of C£(2n + 1) by e; > &;, fj > 0¢,, and g > &1 + 3, -

2.5. The operator T. Choose an orthonormal basis Hy, ..., H, of C",andlet T = H; - - - H,, € C£(m).
This operator is an eigenvector of O (m) with weight given by the determinant. Thus it is well-defined up
to an orientation on V.

Let V be an irreducible representation of C£(m). If m is odd, then I1V = V, and End¢c(V) =
Cl(m) @ C€(m)dy (here we consider all endomorphisms), where dy (v) = (—DP®Wy. In this case,
T = ¢déy, where ¢ is an odd C£(m)-equivariant automorphism of V. If m is even, then V £ I1(V) and
Ce(m) = End(V). In this case, T = (—1)"§y € End(V), where dim V = 2n.

3. Representation theory of quasitoral Lie superalgebras

3.1. h-modules. Take b as in Section 2.1: h is a finite-dimensional Lie superalgebra with

[t h] =0,

where t = hg. We call Lie superalgebras of this form quasitoral. For a semisimple t-module N, and v € t¥,
write N, for the v-weight space in N.

Denote by M (h) the full subcategory of h-modules N with diagonal action of t and finite-dimensional
weight spaces N,. We set F(h) to be the full subcategory of M (h) consisting of those modules which
are finite-dimensional. The simple modules in M (h) and F () coincide. In this section we study the
questions of restriction, tensor product, and extensions of simple modules in M (h).

We denote by o the antiautomorphism of ¢/(h) induced by the antipode —Id |, (recall that antiautomor-
phism means o (ab) = (—1)P@r® g (b)o (a)). This map induces the standard duality * on F ().

3.1.1. View U(h) as a Clifford algebra over the polynomial algebra S(t); the corresponding symmetric
bilinear form is given on hy by the formula F(H, H') = [H, H'] (see Appendix in [9] for details).

For each A € t*, the evaluation of F at A gives a symmetric form Fy : (H, H") — M([H, H']). We
denote by rk F; the rank of this form. For each A € t* we consider the Clifford algebra

CLQ) = Cl(by, F) =Ub) /UMD (),

where /(1) stands for the kernel of the algebra homomorphism S(t) — C induced by A. We will write
K C by for the kernel of Fj. Then we have an isomorphism of superalgebras

Cl(A) = Cl(rank F5) ® \K;. 2)
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Denote by ¢, : U(h) — CL()\) the canonical epimorphism, and p, : C£(A) — CL(A)/(K,) for the
projection. Let ¢ : h — b be an automorphism of Lie superalgebras, and write also ¢ for the corresponding
automorphism of 2/ (h). Then for every A, ¢ induces isomorphisms of algebras

@1.:1CLO) — CLp™ (), @11 CLOY/ K — CLp™ )/ (K y101)).

We have the commutative diagram

U) Uh)
l‘m l%l(x)
Ce(n) - Cep™" (1) 3)

ll’x ll’wl(x)

OO/ (Ky) ——— Cle™ W)/ (K yi 3y)

For the anti-involution o we also have the same diagram as above, where the induced maps o, , o, are
anti-algebra isomorphisms.

Lemma 3.1. (1) A C€(X)-module N is semisimple if and only if Anng. N = K.

(2) If N is an indecomposable CL(L)-module of length 2, then [N : C(A)] = [N : TI(C(L))].
Proof. These follow from formula (2). Il
3.1.2. Examples.

— If b is quasitoral such that bt is commutative, then F is the zero form.

— For g = g, and h a maximal quasitoral subalgebra, one has dimh = (n|n) and h = q; x --- X q.
Thus in this case the form F is diagonal, and rk F; is the number of nonzero entries of A under the

decomposition t = (q1)g X - - - X (q1)g-

— For g = sq,, and b a maximal quasitoral subalgebra, one has dim h = (n|n — 1). In this case F is not
diagonal.

3.2. Irreducible h-modules. The irreducible h-modules all arise from irreducible modules over C£(1)
for some A € t*. We denote by C (1) a simple C£(A)-module and also view it as an h-module. For A =0
we fix the grading by taking C¢ = C; for all other values of A we fix a grading in an arbitrary way until
further notice. By the above,

dim C(1) =2", where n; := LMJ

2 4

{ueby|luC) =0}=K,.

Set
I, ={A et :rank F,, =imod2} fori =0, 1. (5)
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Then C(A) = IIC()) if and only if A € I;; we will often use the notation TT¢"kF)/2C(}), where
[1rank £)/2C(n) = C (1) = [1C (L) whenever rank F, is odd, and if rank F, is even it has the obvious
meaning.

3.3. Blocks of M(b) and F(h). The blocks of both M(h) and F(h) are parametrized up to parity shift
by A € t¥, as follows: If corank Fj > 0, then there is one block of both M (h) and F(h) on which t acts
by the character A; in both cases this block is equivalent to the category of finite-dimensional modules
over AK;. If corank F; = 0 then for both categories there is one (resp., two) block(s) of b on which t
acts by A when A € I (resp., A € Ip), and the block(s) is (are) semisimple.

3.3.1. Remark. One can think of corank F; as the “atypicality” of its corresponding block. In particular
corank F; = 0 if and only if the block is semisimple and thus its objects are projective in M (), and in
general the block corresponding to A is equivalent to modules over a Grassmann algebra on corank(F) )-
many variables.

3.4. The operator Ty. Let Hy, ..., H, be a basis of by, and define
Ty ={Hy, {---{Hp, 1}---} €eU®)

where {x, y} = xy + (—1) yx denotes the super anticommutator in Z/(h). It is known that up to a scalar,
Ty, does not depend on the choice of a basis; see [8]. This operator anticommutes with by, so the image
of a submodule under 7 remains a submodule.

3.4.1. Action of Ty on simples. The action of Ty, on simple h-modules is deduced from Section 2.5, and
is as follows. If corank F) > 0, then Ty acts by 0. If corank Fj = 0, then T} acts by an automorphism,
although not h-equivariantly. If n is odd, then Ty is a nonzero multiple of ¢, where ¢ is an h-equivariant
odd automorphism. If 7 is even, Ty is a nonzero multiple of §.

In particular when 7 is even, T acts on C(A) by an operator of the form

a) Iy, ®(—a) ey

for a scalar a(A). Thus T distinguishes between C(A) and its parity shift for projective irreducible
modules.

3.4.2. Action of Ty on all of M(h). Let corank Fj > 0. Then the injective hull of C(1) is given by the
Ce(X)-module 1(C(1)) = C(A) ® /\"K,. We claim that

(1) Ty annihilates the radical of 1(C(}));

(2) Im Ty, = C(A) =socle I (C(1)).
In other words, T acts by taking the head of this module to its socle. It follows that we understand
completely the action of Ty on every module in M (h).

To prove our claim, choose a basis fi, ..., f, of K, and extend it to a basis ey, ..., es, f1,..., fr of

b so that Fj(e;, ej) = §;;. Then the image of Ty in C£(b), up to scalar, is given by e - - - es f1 - - - f,. By
considering the action of this operator, the statement is clear.
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3.4.3. Remark. It is possible to uniformly choose the parity of irreducible h-modules as follows. We
consider a linear order on C given by ¢, > ¢ if the real part of ¢, — ¢ is positive or the real part is zero
and the imaginary part is positive. We fix any function

t:t"—>{ceC|c>0}.
Retain the notation from Section 3.1.1. For each A we choose T) € /() in such a way that
Ty = piodp(Ty) € CL(V) /K,

is an anticentral element satisfying T2 = ¢ (1)? (the element T, is unique up to sign).
If A € Iy, then Tj, is even and it acts on C(A) by a nonzero superconstant 7 (A) and we fix a grading
on C(A) by taking
(CM))g={veCW) | Thv=t)v}.

3.4.4. Dualities in F(h). Fix A € t*. The category F(h) has the duality * induced by o, and another
contragredient involution (—)*: F(h) - F(b) induced by the antiautomorphism o”'(a) = a for a € b;
and o'(a) = +/—la fora e b7. Note that o’ induces an anti-involution on C£(A).

The element T, can be written as the product H{...H], where H{, ..., H] is a lift of a basis of
CL(L)/ K, satistying [H/, Hj’.] =0 fori # j. Therefore T; = (—1)T&FD/25/(T,) for A € Iy; this gives
the following useful formula

COF =k FD2e (), (6)

which was first established in [7], Lemma 7. o _
T _ (—1)"h for some

Since o, : CL(A)/K) — CL(—A)/K_, is an anti-isomorphism we have oy Y

i € {0, 1}, and correspondingly C (A)* = IT'C (—A).

3.5. Restriction to quasitoral subalgebra. Given a quasitoral subalgebra b’ C b, we have t = % Chy=t
Thus we have a natural restriction t* — (t')*, and therefore we consider weights A € t* as defining weights
in (V)* naturally. We write F, for the bilinear form induced on h’T by a given weight A € t*, which is
exactly the restriction of Fj to h/T'

Let C¢'(A) be the subalgebra of C£(A) which is generated by f)’T; clearly, C¢'(1) = Cﬁ(h’? F}). Denote
by E’(A) a simple C£’(A)-module.

Proposition 3.1. Write V' = b/T and V = by.

(i) C(A) is simple over C'()) if and only if Lrank?HJ = Lrank?url J

(ii) C(x) is semisimple over CL' (L) if and only if Ker F; = V' NKer F;.
(iii) Ifrank F; # rank F;, then [C(A) : E;]1=[C(A) : TIE}].

Proof. Case (i) follows from (4) and case (ii) follows from part (ii) of Lemma 3.1.
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For (iii) assume that rank F # rank F;. Substituting h by b/ Ker F; we may assume that Ker F =
0 # Ker F;. Then by admits a basis Hj, ..., H,, such that V' is spanned by Hj, ..., H.t; and the matrix
of F, takes the form

Id,-, 0 0 O
0 0 Id, O
0 Id; 0 O
0 0 0 Id
withk+s+p=m,k,s >0and k+s > 0 (since V' # V). Note that Ker F; is spanned by Hp1, ..., H[/,H

and so E; is a simple C£(p — s)-module. If k # 0, then the action of H, to C(%) is an odd involutive
C¢'(1)-homomorphism, so Rescx) C(A) is IT-invariant. Consider the remaining case k = 0. Then
s #0and CL(A) = Cl(p —5) @ CL(2s). Using 2.2.3 we get C(A) = E{ W E”, where E” is a simple
Cf(2s)-module. By the above, dim Eg =dim E% Hence Rescy(p—s) C(A) is Tl-invariant, that is

[C):EI=[C):TTES]
as required. This establishes (iii). O

3.6. Tensor product of irreducible h-modules. Let )\, € t*. We compute C (1) ® C (). Observe that
C(A) ® C(w) is naturally a module over C£(h7/K, N K, Fy4,) and K; N K, € K; 1. Set

K)wlt = Kk+u/(Kk N KM)'
We have an isomorphism of superalgebras
Ce(hy/KnN Ky, Fagp) = CLOT/ Koy, Fayp) @ NK .

Lemma 3.2. C(1) ® C(u) is projective over CL(b7/(K;, N K ), Fy4u).

Proof. 1t suffices to show that /\K, , acts freely. Let v € K, ,,. Then without loss of generality v ¢ K,
so the subalgebra generated by v acts projectively on C(A), and thus also on the tensor product. The
statement now follows from facts about the representation theory of exterior algebras (see [1]). O

3.6.1. Notice that the unique (up to parity) indecomposable projective module P over \K, , is the
free module of rank 1. Thus we have shown that C(A) ® C(u) is a sum of modules of the form
(MC G+ ) ® AKi .

If the rank of either F; or F), is odd, or the rank of Fj, is odd, then the tensor product C(A + ) ® P
is parity invariant, so the explicit decomposition of C (1) ® C () is the appropriate number of copies of
C(A+ 1) ® P and its parity shift, according to a dimension count.

3.6.2. Thus let us suppose that rank Fj, rank F),, and rank F;_,, are all even and we have rank F, = 2n,
forv=A, u, A+ pu.
By Section 2.3, we may realize C(A) as k[&1, ..., &,] and C(w) as k[ny, ..., Nm], so that

C()")®C(/¢L) :k[SI» "'véﬂ» 7717 L] ﬂm]
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Now choose a maximal isotropic subspace U for F; 1, in by. Then the parity decomposition of C(1)QC (i)
is described by the U-invariants on this space. Let u € U. Then because u? acts trivially on this module,
its action on the tensor product is given by (using Section 2.3)

Ut iaiXi-l—iij,
i=1 =1

where a;,b; € C, and X; € {§;, 05} and Y; € {n;, 9y,}. Further, because [U, U] acts trivially, we can
choose Xi,..., X, and Y1, ..., Y, uniformly so that every element of U acts in the way described for
u, with potentially different coefficients a; and b;. Now, suppose that X; = &; for some i. Define an
odd, linear automorphism s; of k[&1, ..., &,] as follows. For J = {iy, ..., i)} S {1, ..., n}\ {i}, write
&, =&, &, and then set

si(§y) =&y, si(6i&y) =§y.

Then under this automorphism, multiplication by &; becomes 9, and vice versa, while for i # j, d¢; and
multiplication by &; become negative themselves. Using this automorphism, we may instead assume
that X; = 0, and in this way we may assume that X; = 9, for all i, and Y; = 9, for all j. Thus
U acts by a subspace of constant coefficient vector fields on k[&1,...,&,, 1, ..., nn]. Write Z C
(1,...,&, M, ..., ny) for the invariants of U in this subspace. Then

cnecuw)’=N\2z.

Thus we have shown the following, still with n; := L%J

Theorem 3.1. If n;, +dim K, , = n; + ny, then up to parity C(A) ® C(n) = C(A + ) @ AK;. 4.
Otherwise

CR)®C() = (COA4 ) @ AK,) @ C*1*.
where a = (n; +ny, —ny4,)/2 —dim K .

Corollary 3.1. The module C(1) @ C () is Il-invariant except for the case when K, K., Kj,, have

even codimensions in b7 and

bT = KA + K/L + KX-HL'

Proof. Note that TT(C(L)) = C(A) ® TT(C) = C(1) implies IT(C(L) ® C(n)) = C(A) @ C(w). On the
other hand, if codim Ker Fj, is odd, then any g7/ K} ,-module is IT-invariant. Therefore C(A) ® C(u)
is IN-invariant if at least one of the numbers codim K, codim K ,, codim K, , is odd. Now assume that
these numbers are even. Note that K; N K, = K, ,NK, = K, NK; . and set

my u 2=dim(K)\ﬂKu), ry 3=dika/(KAﬂKM), rM:=dimKM/(KAﬂKM).
Assume that C (1) ® C(w) is not I1-invariant. By Theorem 3.1 in this case

Nytp + dim K}»,u =ny+ny.
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One has

n, — Lcodim[ﬁ—i—lJ _codimK; _ dimby—ry—m; ,
A‘ —_— —_

2 2 o 2

iy n—dim K, ,—m .
with similar formulae for n, and n;, = lao_That This gives
2

dimKA’M—i—m,\,M—i—rk—l—rﬂ :dlth,

as required. O

4. The irreducible modules L() of g

We now return to the setting of Section 2.1, so that g denotes a Lie superalgebra containing a finite-
dimensional quasitoral subalgebra . Choose a triangular decomposition g=n" @ hPn as in Section 2.1.2.

4.1. Highest weight modules. We call a g-module N a module of highest weight A if N #0 and N, #0
implies v < A.
View C(A) as a b-module with the zero action of n and set

M) :=1Ind} C(V);

the module M (A) has a unique simple quotient, which we denote by L()). Each simple module of highest
weight A is isomorphic to L(A) if rank F) is odd (i.e., if A € I}); if rank F), is even (i.e., if A € ), each
simple module of highest weight A is isomorphic to either L(A) or to ITL()), and these modules are not
isomorphic.

Note that t acts diagonally on M ()) and all weight spaces M (1), are finite-dimensional (since we
assume all weight spaces /(n™), are finite-dimensional); in particular, Resﬁ M ()) lies in M ().

4.2. Duality. In many cases the antiautomorphism (—)* introduced in Section 3.4.4 can be extended
to an antiautomorphism of g which satisfies (a*)* = (=P Dgq. Using this antiautomorphism we can
introduce a contragredient duality on g-modules N satisfying Resg N € M(b), in such a way that
Resy N* = (Resy N)*. The map N = (N*)*is given by v (=1)?™v. By (6), L(\)* = L(3) =TIL()
for A € I} and

LO)*F =k FO2p ) for A € I. (7)

The antiautomorphism (—)* exists for Kac-Moody superalgebras. For gl(m|n) the antiautomorphism
(—)* can be given by the formula a* ;= a' for a € g5 and a* := \/—1a' for a € gy (where a' stands
for the transposed matrix); this antiautomorphism on gl(n|n) induces (—)* for the queer superalgebras
ans 59, Php, PS5,

4.2.1. Remark. The duality (—)* can be defined using a “naive antiautomorphism”, i.e., an invertible map
o' : g — g satisfying o’([a, b]) = [0 (D), o'(a)] via the formula g. f (v) := f(c(g)v) forgeg, f € N*
and v € N. This was done in [9] and [7].

Consider the map 0’ : g — g given by 0'(g) = (v/—1)"g, where m =0 for g € gg and m = 1 for g € g7.

If o’ is a “naive antiautomorphism”, then ¢’6’ is an antiautomorphism.
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5. Grothendieck rings and (super)character morphisms

Let C be a full subcategory of the category of g-modules. In this paper we always assume that all
modules in C are of finite length and that C is a dense subcategory, i.e., for every short exact sequence
0—> M — M — M" — 0 the module M lies in C if and only if M’, M” lie in C. In addition, we usually
assume that I[1C =C.

If B is a super ring, we set Bg := B ®z Q.

5.1. Grothendieck groups. We denote by .7 (C) the Grothendieck group of C, which is the free abelian
group generated by N, for each module N in C, modulo the relation that [N] = [N'] +[N"] whenever
0— N — N — N” — 0 is a short exact sequence in C. When I1C = C, we define the structure of a
Z[fg‘]/(é2 — 1)-module on J#'(C) by setting & Ny, := I1(N)g for N € C. Set #1(C) :=#(C)/(§ F1).
We call the group %~ (C) := % (C)/(§ + 1) the reduced Grothendieck group. We denote by Ny, + the
image of N in 274 (C); later we will use [N] for Ny .
Note that # (C) is an abelian group, so J#4(C) are also abelian groups.

5.1.1. We denote by Irr(C) the set of isomorphism classes of irreducible modules in C modulo IT and
write

Irr(C) = Irr(C)g ]_[ Irr (C)1,

where L € Irr(C)g if IT(L) # L and L € Irr(C)7 if IT(L) = L.
By our assumptions on C, .%# (C) a free Z-module with a basis

{Lgr €Lgr | L € IO} | [{Ler | L € Irr(O)y).
5.1.2. The group %, (C) is a free Z-module with a basis {Lg 1 |L € Irr(C)}.

5.1.3. The reduced Grothendieck group. One has
H_(C) = H_(C)ree D H#-(C)2-tors (8)

where #_ (C)free 18 a free Z-module with a basis {Lg, — | L € Irr(C)§} and 2~ (C)2-or is a free Z/27-module
with a basis {Lg,— | L € Irr(C)7}.

Proposition 5.1. (1) The natural map  : # (C) — #_(C) x 4+ (C) is an embedding.
(2) The image of ¥ is the subgroup consisting of the pairs
< Z mLLgr,+7 Z nLLgr,) )
Lelrr(C) Lelrr(C)
where mp,ny € Zwithm; =ny mod?2 for all L and ny, € {0, 1} for L € Irr(C)y.

(3) The map  induces an isomorphism

A (C)a = A~ (O)a x #4(C)a.
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Proof. For (i) takea € Z (C)(§ —1)NA(C)(E+1). Thena =a4(§ —1)=a_(§+1) forar € ' (C).
Using £2 = 1 we obtain

2a4(1—§)=ay(E— 1> =a_(§*—1)=0.

Since 4 (C) is a free Z-module this gives a4 (§ — 1) =0, so a = 0. This establishes (i).
Assertion (ii) follows from the fact that the subgroup generated by the pairs ¥ (Lg) = (Lgr, 4, Lgr,—)
and ¥ (ITLg) = (Lg,4, —Lg,—) for all L € Irr(C) coincides with the subgroup described in (ii).
Finally, (iii) follows from (ii). O

5.1.4. Grothendieck rings. If C is closed under ®, then ¢ (C), .#+(C) are commutative rings with unity
and 1 in Proposition 5.1 is a ring homomorphism. In this case J#_ (C)-tor 18 an ideal in Z_(C).
If C is rigid, 22 (C) is equipped by an involution * and J#4 (C) and #_ (C)free, £~ (C)2-1or are x-invariant.

5.2. The map chy ¢. Let g’ be a subalgebra of g and let C’ be a category of g’ modules such that restriction
induces a functor Resg, :C — C'. For a suitable category C’ for g’-modules, this functor induces a map
resy : £ (C) — ¢ (C") which is very useful if #'(C’) is simple enough. Below we consider this map for
the cases when g’ = t is a maximal toral subalgebra and for g’ = g* = b, a maximal quasitoral subalgebra.

As we will see below, resy, is an embedding if C is “nice enough”; in this case res; induces an embedding
H4(C) = A4 (M(Y)) and this map is given by the usual (nongraded) characters.

5.2.1. Let b be quasitoral, and let I%(h) be the Z[&]-module consisting of the sums

Z (m, +k,,$)[C(l))] + Z I’I’lv[C(l))], my, k, €,

vely vel

with the £-action given by

S( > (my+k,EICW]+ Y mv[C(V)]> = > (mé&+k)ICOW)+ 3 m[CW)]. (©))

vely vel; vely vel;

For N € M(h) we introduce

chys(N) := Y (my +k,E[CW)]+ Y m,[C(v)] € R(b)

veI() 1)611

where m,, := [N, : C(v)] and k, := [N, : [1(C(v))].
This defines a linear map chy ¢ : # (M(h)) — R(B), which we refer to as the graded h-character of N.
We denote by sch N the image of chy ¢ in Ié(h)/[é(f))(s 4+ 1). Then

schy(N) := 3 (my —k)[CW]+ 3 m [C(v)]

vely vel;
where m/, = 0 if m,, is even and m|, = 1 if m,, is odd.

Lemma 5.1. The maps [N] — chy ¢ N and [N] — schy N define isomorphisms % (M(h)) — I%(h) and
H_(M()) —> ﬁ(h) / ﬁ(b)(é + 1), respectively. These maps are compatible with (—)*.
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5.2.2. Note: Because of this lemma, we will subsequently do away with the notation R(h) and instead
directly identify .7 (M (b)) (and #_ (M (h))) with the corresponding spaces R (h) (and R (h)/ R (hH(1+8))
as presented above.

Proof of Lemma 5.1. We show that chy ¢ is an isomorphism, with the result for schy following easily.
Clearly chy ¢ is surjective, so it suffices to prove injectivity. First we observe that for N in M(h), we
have the following equality in the Grothendieck ring J# (M (h)):

(NI=] @ (co®™ @ncm®™)e @ cor]

vel vel;

This simply follows from the fact that NV has finite Loewy length, since this is true for the algebras C£(A).
It is not difficult to see that a basis of £ (M (bh)) is given by elements of the form

[ @ (cwPmencm®™)e @ coy™],

vely vel
where m,, k, € N. From this the isomorphism easily follows. Compatibility with (—)* is obvious. [

Corollary 5.1. (1) One has chy ¢ TIN =& chy ¢ N, schy IIN = —schy N.

(2) For A € I one has schy L(X) = Y m,[C(n)].
unel

(3) If g admits (—)* as in Section 4.2, then the coefficient of [C (v)] in schy L(A) is zero if rank F), rank F,
are even and rank F), # rank F mod 4.

Proof. The assertions follow from (5) and (7). [
The next corollary is a direct generalization of [25], Proposition 4.2.

Corollary 5.2. Let C be a full subcategory of g-modules with the following properties: each module in C
is of finite length and is locally finite over b, and the restriction to by lies in M(Y). Then the map Resﬁ
induces injective maps chy ¢ : & (C) — & (M(h)) and schy, : Z_(C) — H_(M(bh)).

Proof. Let us check the injectivity of the first map chy ¢ : #(C) — # (M(h)). Any simple module in C
is L(A) or TT(L(A)) for some A € t*. Since every module in C has finite length, .#'(C) is a free Z-module
spanned by [L(A)], E[L(A)] for A € Iy and [L(A)] for A € I]. Assume that

N
chy e (X (ms +KEILGNT) =0,
i=1
where k; = 0 for A; € I} and y () is maximal among y(A;) fori =1,...,s. Thenfori =2,...,s one

has L(};);, =0, so the coefficient of [C(A1)] in ch¢([L(A;)] is zero. Hence (m| + k1&)[L(X1)] = 0. This
gives m1 = ki = 0 and implies the injectivity of chy ¢. The injectivity of schy easily follows. O
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5.3. Example. The category of finite-dimensional g-modules Fin(g) is a rigid tensor category with the
duality N + N* given by the antiautomorphism —Idg. Note that the Grothendieck ring ¢ (Fin(g)) is a
commutative ring with a basis {[L]}, where L runs through isomorphism classes of finite-dimensional
simple modules. Corollary 5.2 gives an embedding chy ¢ : # (Fin(g)) < J# (Fin(h))) ((M]+> chy ¢ M)
which is a ring homomorphism. By abuse of notation we will also denote the image of this homomorphism
by A (Fin(g)).

The duality induces an involution on ¢ (Fin(g)), which we also denote by *. One has £* = £. The
homomorphism chy ¢ : # (Fin(g)) < # (Fin(h)) is compatible with %, so % (Fin(g)) is a *-stable
subring of JZ (Fin(h)).

5.3.1. Remark. Let g be a Kac—Moody superalgebra (so t = h) and let Ay C h* be a lattice containing
A(g) such that the parity p: A — Z, = {6, T} can be extended to p : Ajy — Z;. Assume, in addition,
that for the category C, each N e Chas N, = 0if v & Ajy.

Then C =Cy ® I1(Cy), where N € C lies in Cy if and only if N, C N)(,). We have that

H(C) = H (Cy) x ZIET/(E* — D).

and thus one can recover ¥ (C) from .7 (C+); however we note that C,. is not [1-invariant.

Further, we have in this case that #_ (C) = 2, (C) = ¢ (C4). If C is a tensor category, then C is also
a tensor category (but I1(Cy) is not). In [25], Sergeev and Veselov described the ring ¢ (Cy) for the
finite-dimensional Kac—Moody superalgebras.

5.4. The ring 2# (h). Let h be quasitoral. We write ¢ (h) := ¢ (Fin(h)). The map [N] + chy ¢ N
introduced in Section 5.2 gives an isomorphism of J# () and the free Z-module spanned by [C(v)],
E[C(v)] fori € Iy and [C(v)] for i € I;. We view £ (h) as a commutative algebra endowed with the
involutions (—)* and (—)*. One has C(A) € Irr(C); if and only if A € I;.

One has [Eg] =1, [TI(Eyp)] =& and

[COF e {[C(=MLECM],  [CIF = EIRC@)], for & € Iy (10)
E[CMI=ICW], [CUWIF=IC(=1], [COIF =[CM)], for r €.
5.4.1. The multiplication in ¢, (h) is given by

dim C(A) dim C(v)
dimC(A +v)

C()‘)gr,+c(‘))gr,+ = C()\+V)gr,+~

Let Z[e", v € t*] be the group ring of t*. For N € M(h) we set

chy N := Z dim N, e".

vet*

The map N — ch¢ N induces an embedding 7, (h) — Z[e", v € t*]. The image is the subring of elements
>, mye” where m, is divisible by dim C(v), and we have an isomorphism % (h)g => Q[e", v € t*].
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5.5. Spoiled superalgebras. We call a Z-superalgebra A = Aj® Ay spoiled if 2A7 = A% =0. Given a
superalgebra B, we make it into a spoiled superalgebra B!l by setting, as a ring,

B! = (B ®z Z[e]/(e%, 26)); -

Here ¢ is an element of degree 1. The Z,-grading on B*°! is declared to be B%pon = By and B;p oll _ Bye.
We observe that

B := (Bya.
5.5.1. The algebra #_(h). From now on we will write [M] in place of My, . Using Corollary 3.1 we
obtain that in J#_ () we have the following multiplication law:

+[C(A+v)] ifrank F) +rank F, =rank F)_,andrank F; - rank F;,, = O mod 2,
0 otherwise.

[CWIICM)] = {
As aresult, #_(h) is Z-graded algebra
H_(h) = D A (h); (11)
i=0

where J#_ (h); is spanned by [C(v)] with rank F), = i. We consider the corresponding Z;-grading
o0 o0
A_(h)g =D A0, A-(H)7:=D A~ (H)2it1-
i=0 i=0

One has 7_(h)y- #_(h)7 = 0 and 2.7_(h)7 = 0, so that #_(h) is a spoiled algebra. The following
corollary is clear.

Corollary 5.3. (1) The algebra 2¢_(h) is a spoiled superalgebra with
o o
H_(h)5 =D HA_(0)2i = A_(O)tree, H— (D)1= D H_(H)2i11 = H_(H)2-10r-
i=0 i=0
(2) The algebra ¢ (h) is isomorphic to a subalgebra of Z[e", v € t*] x #_(h) consisting of

(Z m? dim C()e’, 3 m;[CW)]+e 3 m;[C(u)]>
vet* vel vel;
where mff € Z are equal to zero except for finitely many values of v, m}
m; € {0, 1} forv € I.

(3) The algebra ¢ (h)g is isomorphic to Qle”, v € t*] x Z_(H)q.

= m, modulo 2 and

5.5.2. For the rest of this section we set £ (g) := ¢ (Fin(g)), where g is as in Section 4. Let ¥ (g) :
#(g) = #+(g) be the canonical epimorphisms. By Proposition 5.1, ¥4 x y_ gives an embedding
H(9) = H1(g) X A-(9).
We will use the following construction: for any subsets A1 C %4 (h) we introduce
Ar x A_:={aed(h)|yY=(a) € As}.
2 (h)

Note that A, x A_ is a subring of J# (h) if AL are rings.
A (h)
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Lemma 5.2. Let A be a Z[&]-submodule of ¢ (h) with the following property: ifa € # (h) and 2a € A,
thena € A. Then

A=y (A) x Y_(A).
A (h)

Proof. Take a € ¢ () such that ¥ (a) € Y+ (A). Then A contains a — c(1 — &) for some ¢ € # (). Since
A is a Z[£]-submodule, A contains (14 &)(a —c(1 —&)) = (1 4+ &)a. Similarly, A contains (1 — &)a, so
2a € A. Then the assumption gives a € A as required. U

Corollary 54. 7 (g) = ¢ (g) x #_(9).
H (h)

Proof. Recall by Corollary 5.2 that .# (g) is a Z[£]-subring of .Z (h). Take a € J# (h) with 2a € JZ (g).
Write
2a = Z mj, chy ¢ L(L) = sz;[C(u)]
rEPT(g) v
where m;, m), € Z[£], and P (g) is the set of dominant weights of g. Let A be maximal such that m; # 0.
Then m; = 2m},, so we may subtract 2L (), and conclude by induction. O

5.6. Equivariant setting. Suppose that G is a finite group which acts on a quasitoral superalgebra f by
automorphisms. Our main example of this setup is when we consider quasireductive Lie superalgebras in
Section 7.1, and G is the Weyl group.

The group G then acts naturally on .7 (h) by twisting, i.e., g - Vg = Vggr for an h-module V. This
descends to a natural action of G on J#_(bh). Suppose that v € t* and g € G such that gv = v. Then we
have either g - C(v)gr = C(v)gr Or g - C(V)gr = EC(V)g. It follows that on the reduced Grothendieck ring
we have g - [C(v)] = £[C(v)]. Thus Stabg[C (v)] C Stabg v. Define

¢ = {v e t": Stabg[C(v)] = Stabg v}.

We observe that t; is a nonempty, G-stable cone in t*. It need not be open or closed, and it may consist
only of 0. It is clear that I; C ;.

Let v € t*. We introduce the grading on C(v) in the way described in Section 3.4.3. Since T, is
proportional to a product of a basis elements in h/K;, one has

g(T,) =det(gly/k,)T, foreach g € Staby v. (12)

Since g is acting by an orthogonal transformation on h7/K, we have det(g|p./x,) = 1. Therefore for
v € Iy and g € Stabg v we have

glC ()] =det(gly/x,)C (V)]
Corollary 5.5. (1) We have t;NIp={v e ly: det(gh,T/KU) =1 for all g € Stabg v}.

(2) Forv et the element

a= Y  glC]

geG/ Stabg v
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is nonzero and well-defined.

(3) The algebra #_(H)C is naturally a spoiled superalgebra; the even part has a Z-basis given by a,
for a choice of coset representatives v € t; N 1o/ G. The odd part has a Z,-basis given by a, for a
choice of coset representatives v € 1,/ G.

6. h-supercharacters of some highest weight g-modules

We continue to write [N] for the image a module N in the corresponding reduced Grothendieck group.

Fix a triangular decomposition g =n~ @ h @ n™ coming from y : t* — R as in Section 4, and consider
the corresponding category O with respect to b =h®n™. To be precise, O consists of all finitely generated
g-modules which are weight modules and n-locally finite. We take M (X) as in Section 4.1. For weights
A, € t* we write A ~¢ u if L(A) is a composition factor of M (u); then we let ~ be the equivalence
relation on t* generated by ~.

The goal of this section is to prove Theorem 6.1, which in some sense is the best version of Theorem 1.1
that holds in great generality. The idea is to enforce assumptions that guarantee that all Verma modules
with highest weights lying in a fixed equivalence class of interest have an especially nice h-supercharacter.

6.1. Notation. Let o' C a be Lie superalgebras, L’ a simple a’-module, and N an a-module such that
Resg, N has a finite length. Set

Res®, N :L'] —[Res% N : TIL’ if L' 2TIL
smult(N : L'y = | [R5 I = [Res, U (13)
[Resy N : L'] mod 2 if L’ =T1L'.
If Resg N € M(h) we set
QN) = {p e "IN, £0},  sQN):={u e t*| smult(N,, : C()) # 0}. (14)

Then

schy N =Y smult(N, : CL)[CW)].
ves Q(N)

6.2. On schy M ()A). For v € QO we have an isomorphism of f-modules:
M)y =UMT), @ C(R).
By Theorem 3.1 , schy(C(v) ® C(1)) # 0 implies dim C(v) - dim C(A) = dim C (A + v). Therefore
sQMM) C {vet | dimC)-dimCA) =dimCA+v)}. (15)

Corollary 6.1. Assume that F, #0 for ve Q™ \{0}. If corank F) <1 and dim by is even, or corank F) =0,
then
schy M (1) = schy C(R).

Proof. If corank F) =0, or corank F; =1 and dim by is even, then dim C(1) > dim C(A + v) for any v,
so the formula follows from (15). O
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6.3. schy L(L) when corank F, <1. We make the following assumptions on our triangular decomposi-
tion:

(A1) Setting O~ = NA™, we have that y(Q7) C R™ is discrete.
(A2) One has F, # 0 for each v € Q7 \ {0}.

(A3) For X € t* such that corank F; < I, we have that M ()) has finite length as a g-module. (One can
weaken this to assume that it admits a local composition series in the sense of [4].)

Theorem 6.1. Let A C t* be an equivalence class of ~ such that

(A4) corank F <1 for each A € A if dim by is even, and otherwise corank F =0 for each A € A.
Then for each A € A one has
schy L(1) = Y my, schy C(u) (16)

HEA
for somem, € /.

Proof. Assume that the assertion does not hold. Take (i, i/) such that y (' — p) is maximal with the
properties

peA, wgA, schyL(u), #0

(the existence of such a pair follows from (A1)).
By (A3), in the Grothendieck ring of g we may write

[LG1=[Mw]- Y aulLn+v)]

veQ\{0}
n+veA

where a,, € N. We may map the above formula to the Grothendieck ring of h-modules via restriction,
and thus learn that
schy L(p), = schy M (1) — Z schy L(p+v),..

veQ\{0}
n+veA

By (15), schy M(p),y = 0 and the maximality of y(u" — ) implies schy L(u + v),» = 0. Hence
schy L(p), =0, a contradiction. U

We will see in Section 9 that Theorem 6.1 holds for any irreducible highest weight representation of
., without restrictions on corank Fj.

7. On 7_(g) in the case when g is quasireductive

In this section we assume g is quasireductive, i.e., g is finite-dimensional, gj is reductive, and g7 is a
semisimple gg-module (see [22], [18], and [15] for examples and a partial classification of such algebras).
The maximal toral subalgebras t in g5 are the Cartan subalgebras in g5, and the maximal quasitoral
subalgebras h in g are the Cartan subalgebras in g; all such subalgebras are conjugate to one another
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by inner automorphisms because the same is true on the even part (see [14]). We fix such t and h. Let
P(g) C t* be the set of weights appearing in finite-dimensional g-modules, which is the same as the set
of weights appearing in finite-dimensional gg-modules. We fix a positive system of roots on g, and thus
also on gg. We denote by P*(g) the set of dominant weights, i.e.,

Pt (g):={r et |dimL(}L) < oo}
We have
P(g) = PT(g)+ZA = P"(gp) + ZAg.

Write C for the subcategory of F () consisting of modules with weights lying in P(g).

7.1. On schy(F(g)). Define F(g) to be the full subcategory of Fin(g) consisting of modules which are
semisimple over gg.

The Weyl group W of gg acts naturally on b, and thus we are in the setup of Section 5.6; we refer to
that section for the definition of tj,. We see that W preserves the subcategory C. We set

P(g) =ty NP, P gy =t NP (gy.

Recall that
P(g)' Nly:={r e P(g)Nly|Yw € Staby A, det(wly/kerr,) = 1}.

From the theory of reductive Lie algebras, in this case we have a natural bijection P (gg) — P(g)'/W.
Recall that for v € tj;, we set

a, = Z w[C )]

weW/ Staby v
Theorem 7.1. (i) The algebra #_(C)V is naturally a spoiled superalgebra; its even part has 7Z-basis
given by a, for v € Pt (gg)' N Iy and its odd part has a Z,-basis a, for v € (P*(ga) N 11).
(i) schy defines an embedding #_(g) < J¢_ ©".
(iii) For A € P*(g) N Iy one has
schy L(V) =Y kyay
where k, € Z with ky = 1. '
@iv) If » € Pt (g) N1y, then
schy LW = > kuay.

ve]1

with k;, = 1.
(v) P*(g) C Pt (gp)-

Proof. Part (i) follows from Corollary 5.5. For part (ii) let L := L(A) be a simple finite-dimensional
g-module. Clearly all its weights lie in P(g). Because W can be realized from inner automorphisms of g,
it is clear that the schy L(A) must be W-invariant, proving (ii).

Part (iii) uses (7), and part (iv) uses that L(A) = I1L(A). Finally part (v) then follows from (iii). U
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7.1.1. Remark. The algebra 2#_(g) is not naturally spoiled with respect to the embedding into .7_ (h).
For example if g = q2 X qy, then consider the module S 2 Vs(;d) X Vs(t%d), where Vs(tg, Vs(t%d) denote the standard
modules of qp, q; respectively. Then this module is of the form L & I1L for some simple qo X ¢;-module
L. One may check that schy, L is not a homogeneous element of #_ (h), with respect to its spoiled grading
(see Section 5.5.1).

Corollary 7.1. Let . € P (g) N Iy and wy € W be such that woh = —A and L(A)* has highest weight X.
Then we have

LO)*STIL(),  where (—1) = det(woly, /Ker F,)-

Proof. Recall that ¢, : U((h) — CL(L), py : CL(L) — CL())/ K, stand for the canonical epimorphisms. By
Section 3.4.4 we have T = Hj, ...H|, where H{, ..., H)_ is abasis of p,¢,(h;) CCL(L)/K;, satisfying
[H/, H]’.] =0fori # j. Set

T s =Tuor = wo(Hyy) ... wo(H).
From this definition we have C(—1) = C(1)"°. We have 6_, (H/) = —H/, and thus
o2 (T ) = (=D Dwg(H)) .. wo(HY) = (=D det(woly/ k) H . .. Hy, = (—=1)'T .
It follows that C(1)* = ITC(—A). Therefore
(LW = LM ) =dTCWH* =TI'CM).

and we obtain L(X)* = IT'L()) as required. O

8. The DS-functor and the reduced Grothendieck group

In Sections 8.1 and 8.2, g is any Lie superalgebra. We fix x € gy with [x, x] = ¢ € g such that ad c is
semisimple (such elements x are called homological).

8.1. DS-functors: construction and basic properties. The DS-functors were introduced in [5]; we use a
slight generalization (see [6] for a more in-depth treatment). For a g-module M and u € g we set

M" :=Kery u.

Let M be a g-module on which ¢ acts semisimply. Write DS, M = M, := M*/(Imx N M*). Then g*
and g, are Lie superalgebras, where x acts via the adjoint action.

Observe that M*, x M€ are g*-invariant and [x, g°]M* C xM¢, so DS, (M) is a g*-module and g,-
module. This gives the functor DS, : M +— DS, (M) from the category of g-modules with semisimple
action of c to the category of g,-modules.

There are canonical isomorphisms DS, (IT(V)) = I[T(DS,(N)) and

DS, (M) @ DS, (N) =DS,(M ® N).
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8.2. The map ds,. Let a be any subalgebra of g. Write a* for the kernel of adx on a, and similarly
for a“. We view
ay :=a"/([g°, x]Na‘)

as a subalgebra of g,.

Let C(g) be a full subcategory of the category of g-modules with semisimple action of ¢ and C(a) (resp.,
C(g"), C(a*)) be a full subcategory of the category of a-modules (resp., g*, a*) such that the restriction
functors

Res? : C(g) — C(a), Resgx :C(g) — C(g"), Resg :C(a) — C(a).

are well-defined and that for each N € C(g) the g*-modules N* and x N¢ lie in C(g*) (note that N* and
xN¢ are submodules of Resgx (N)).

We denote by C(g,) (resp., by C(a,)) the full category of g,-modules N satisfying Resgi? (N) eC(g")
(resp., Resgt (N) € C(a¥)).

Form =g, a, g*, a*, g, a, we denote the reduced Grothendieck group .#_(C(m)) by R(m), for ease
of notation.

8.2.1. Take M €(C(g) and set N := Resgx M. The action of x gives a g*-homomorphism 6y : N¢ — [T(N°).
One has
91\191‘[(1\/) = 0, Im GH(N) = H(Im QN)

and DS, (M) = Ker 6y /Im 0r(y) as g*-modules. Using the exact sequences
0— Im Ov) = Kery — DS, (M) - 0, 0— Kerfy - N —>Imboy— 0

we obtain [Resgx M°] = [DS,(M)] in R(g"). However if M, is the r # 0 eigenspace of ¢ on M,
x : M, — M, will define an g*-equivariant isomorphism of M,, and thus we have [Resgx M,] =0.
It follows that [Resgx M] = [Resgx M°] = [DSx(M)]. Since DS, (M) is a g,-module this gives the
commutative diagram

R(g) — R(g")

N T (17)
R(gx)

where ds; : R(g) — R(gy) is given by ds, ([M]) := [DS,(M)], and the two other arrows are induced by
the restriction functors Resgx , Resgi respectively.

8.2.2. Remark. If C(g), C(gy) are closed under ®, then ds, is a ring homomorphism.

8.2.3. Example. Suppose that g is quasireductive. Recall that F(g) a rigid tensor category with the
duality N — N* given by the antiautomorphism —Id; since DS, is a tensor functor, it preserves *-duality,
o)

dsy : A_(9) — A_(gx)

is a ring homomorphism compatible with .



On the Grothendieck ring of a quasireductive Lie superalgebra 2393

8.3. ds, and restriction. We present results which explain the relationship between ds, and the restriction
functor.

Lemma 8.1. Suppose that we have a splitting g, C g* so that g* = g, X [x, g°]. Then for M in C(g) we
have
ds,[M] = [Resgx M].

Proof. This follows immediately by applying the restriction R(g*) — R(g,) to our equality [DS, M] =
[Resg. M]. O

Lemma 8.2. Let y € gy with [y, y] = d where add acts semisimply on g and d, ¢ + d act semisimply on
all modules in C(g). Suppose further that [x, y] = 0, and that we have splittings

¢ Coyx [y, g%, ¢ =gy X [x +y, g,

Furthermore suppose that under these splittings, x € g, and
(8y)" = gxty X [x, 9;]

Then we have

dsx+y =ds, Odsy tR(g) — R(gx-i-y)
Proof. This follows immediately from Lemma 8.1 and the corresponding statement for restriction. [
Proposition 8.1. We have the following commutative diagram

R(g) — R(a")

ax
dsxl /‘\resai

R(gx) — R(ax)

where the horizontal arrows are induced by the corresponding restriction functors and resﬁi is induced by

the morphism a* — a,.
Proof. The restriction functors give the commutative diagram

C(g") —— C(a%)

]

C(ge) — C(ax)
which, in combination with (17) gives the diagram

R(g) — R(g") —— R(a%)

>~

R(gy) — R(ay)
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where all arrows except ds, are induced by the restriction functors. By (17), the above diagram is
commutative, and we obtain our result. O

8.3.1. Example: F(g) for g quasireductive. Let E be a simple a*-module. By Proposition 8.1 a finite-
dimensional g-module N we have

smult(DS, (N); E) = smult(Resl, N; E).

For example, let g be a classical Lie superalgebra in the sense of [16] and a := t be a Cartan subalgebra of
gg- The map R(g) — R(t) is given [N]— sch N. If t, is a Cartan subalgebra of (g, )g, then the composed
map R(g) — R(t,) is given by [N] + sch DS, (N). If we fix an embedding t, — t*, we obtain the
Hoyt-Reif formula [13]

schDS,(N) = (sch N)|y, .

8.4. A special case. Consider the case when g, a = ) are as in Section 2.1. Denote by F* the restriction
of the form F to h* and set
I, ={A et | A([x, gl1Nt) =0}

By assumption, given A € I, we have that A|¢ lies in the subspace (t,)*. For A € I, we denote this
element by A, € (t,)*.

Note that for v € I, satisfying rank F‘f“x =rank F, the module Resgx C(v) is simple, so Resgx Clv)=
I1'C(v,) for some i.

Corollary 8.1. Take N € F(g). If schy(N) =", m,[C(w)], then

schy, (DS+(N))) = > m, (=1 [C ()]

pelyrank Fjj=rank F,

where Resgx C(v) =TT C (juy).
Proof. Recall that schy, gives an embedding of J7_(g) to 2#_(h). Applying Proposition 8.1 to F(g) we

obtain for R(m) := J#_ (m) the commutative diagram

schyx
R(g) — R(H")

dsxl Tresgi
schy,

R(gy) — R(by)

where resgi i Ry, — RY+ is induced by the map h* — h,. In light of Proposition 3.1(v) we have
schyx (C () = 0 except for the case rank F;, = rank F),. O

8.4.1. Example. If, in addition, (gx)%x = ay, then, by Corollary 5.2, sch,, gives an embedding of the
reduced Grothendieck ring of g, to J#_ (hy).

For g = gl(m|n), osp(m|n), pn, q., 5q,, and the exceptional Lie superalgebras, for each x we can choose
a suitable h such that (gx)%x =1t,; see [5; 23; 10].
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9. The reduced Grothendieck ring for F(q,)

In this section we describe the reduced Grothendieck ring for F(q,), the category of finite-dimensional
qn,-modules with semisimple action of (q,)g. In addition we will explicitly describe the homomorphisms
dss : #_(qn) = H#-(qu—2s) induced by the DS functor, to be defined. Wherever it is not stated, we set
g := q,. We will mainly concentrate on the category F(q,)inc Which is the full subcategory of finite-
dimensional q,-modules with integral weights, and then reduce the corresponding results for F(q,) to
F(n)int-

9.1. Structure of q,. Recall that q,, is the subalgebra of gl(n|n) consisting of the matrices with the block

A B
T =
A.B (B A)

9.1.1. One has g5 = gl,,. The group GL, acts on g by the inner automorphisms; all triangular decomposi-

form

tions of g, are GL,-conjugated. We denote by t the Cartan subalgebra of gl, spanned by the elements
hi = Tg, o fori =1,...,n, where E;; denotes the (i, j) elementary matrix. Let {¢;}?_, C t* be the
basis dual to {h;}!_,. The algebra b := g4 is a Cartan subalgebra of g,; one has b = t. The elements
H; := Ty, g, form a basis of h; one has [H;, H;] = 25;;h;.

9.1.2. We write 1 € t* as A =) ._, A;&; and denote by Nonzero()) the set of nonzero elements in the
multiset {A;}?_, and by zero A the number of zeros in the multiset {A;}?_,. Recall that rank F;, is equal to
the cardinality of Nonzero(X) (=n — zero A).

We call a weight A € t* integral (resp., half-integral) if A; € Z (resp., A; — % € Z) for all i. We call
a weight A typical if A; + X ; # 0 for all i, j and atypical otherwise; in particular if A is typical then
zero(A) = 0.

We fix the usual triangular decomposition: g =n~ @ h @ n, where AT ={g; —¢&;}1<i<j<n.

9.2. The monoid E and cores. We denote by E the set of finite multisets {g;};_; with a; € C\ {0} and
ai+aj#0forall 1 <i,j<s.

We assign to each finite multiset A := {a;}]_, with ¢; € C the multiset Core(A) € E, obtained by
throwing out all zeros and the maximal number of elements a;, a; with i # j and a; +a; = 0; for example,

Core({1,1,—-1,—-1} =@ and Core({1,1,0,0,0,—1}) ={1}.
We view E as a commutative monoid with respect to the operation
Ao B:=Core(AU B)

(@ is the identity element in E).
For A € t* we set

Core(A) := Core({A;};_;) = Core(Nonzero(1)),
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and denote by x; the central character of L()). From [24] it follows that x, = x, if and only if
Core(A) = Core(v). Observe that A € [y if and only if the cardinality of Core()) is even.

9.2.1. The relation ~. Recall that we write A ~ v if L()X), L(v) lie in the same block in the BGG category
O. By the above,
A~v =— Core(A) = Core(v).

It is known that the above implication becomes an equivalence if both A, v are integral or half-integral; in
fact it follows from the following fact:

)»i—f—)»j:() — )\‘—81'-1—8]"\’)\ (18)

(this easily follows from the formula for Shapovalov determinants established in [9, Theorem 11.1]: from
this formula it follows that for i < j the module M (A) has a primitive vector of weight A —&; +¢; if A is
a “generic weight” satisfying A; + A ; = 0; the usual density arguments (see [2],[17]) imply that M (1) has
a primitive vector of weight A —¢&; +¢; if A is any weight satisfying A; +A; = 0).

9.2.2. Dominant weights. Recall that P (g) denotes the set of dominant weights, i.e.,
Pt(g):={r et |dimL(}L) < oo}.

By [19], A € P*(g) if and only if A; — A;1; € N and A; = A;; implies A; = 0. This implies the

following properties:
(1) PT(g)N 1o = P*(gy) N Io; in particular
P*(g) = {1 € P*(gp) : det(wly/k,) = 1 for all w € Staby A}.

(2) if A € PT(g) is atypical, then A is either integral or half-integral;

(3) the set Nonzero()) uniquely determines a dominant weight for a fixed n.
9.2.3. Grading on C(v). For v € t*, we set
Tv =M, ---Hik

where Nonzero(v) = {v;; > v;, >... >}, and if v;;, = v;,,, then we require that i; > i ;. This formula

determines 7, uniquely; for v € P(g)’ note that we have Ty, = wT, for each w € W.
Since Tv2 = (—1)"("_1)/2}1,-I ... h; the function r : t* — {c € C|c > 0} is given by

t(A)? = (—DHFED2 1_[ Ai, where k :=rank Fy;
P12 £0

for A € Iy we obtain (1) = (—1)ank /2 Hi:/\,-;éo A
As explained in Section 3.4.3, this function ¢ together with a highest weight A determines uniquely
irreducible modules L(A) for each A € P (q,).
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9.2.4. Remark. If v~0,thent(v) € R*. It follows that if A € t*, v ~0, and [C(AM)][C (V)] = E[C (A +V)],
then t (M)t (v) =t(XA +v).

9.2.5. Note that A = —wgX if and only if Core(A) = &; in this case Corollary 7.1 gives L(A)* =
H(rankF;\)/ZL()\‘)‘

9.2.6. Example. For o =¢; —¢; one has T, = H; H;. Since for e € g, N gg one has (ad H;)(ad H;)e =e,
we obtain g, = C,. Moreover, SKC(a) = C(ka) for o € A.

9.3. Embedding into exterior algebra. Let h” be the Lie subalgebra of h over Z generated by Hy, ..., H,,
and let U (h?) be the integral enveloping algebra of hZ. Consider the canonical epimorphism ¢ : ¢ (h%) —
S (hlz), where S(hlz) is the exterior ring generated by &; := ¢o(H;). Note that S(hlz) is a Z-graded
supercommutative ring, free over Z with basis &; , ..., S,-j withl <ij <ip <...<ij<n.

Let Cgr be the subcategory of F(h) consisting of weights A such that A; € R for all i. In particular,

t/lt] € {1, /—1}.

9.3.1. We view thering B :=Z[e" :v e t*]®7z S (h%) as a Z-graded supercommutative ring by defining
the degree of Z[e" : v € t*] to be zero. We construct the ring B**°! as in Section 5.5.

i t(A)
[£(A)]

A (Cr) — B! @, 7[v/—1]

Proposition 9.1. The map [C(L)] — ¢ -e*¢o(Ty) for & € I; gives a ring monomorphism

which is compatible with the action of W. One has

(1) = &y - §iy.,
where Nonzero(A) = {A;; <... <A, ).
Proof. That the map is injective and W-equivariant is straightforward. We show that it is an algebra
homomorphism. First observe that
[CWIICM]#0 = [CWIICM]=E[CA+V)] < ¢o(T,T)) #0 < T, T, = £T,4,.
Suppose that [C(V)][C(A)] # 0. Then we write T, T, = (=1 T4, and ¢o(T3)po(T,) = (—l)jqﬁo(THv).
Fix even vectors v; € C(A); and v, € C(v)g. Since H;C(A) =0if A; =0 we have

T, (0, ® vy) = Tovy, @ T, 1(M)t(v)
v ®uy) =T v, = ——— 0 Q.
ALy U) v AUL vUp |l()»)l‘(l))| A v
Note that v, ® v, is an even vector of IT'C (A +v) = C(A) ® C(v). On the other hand we have
NI (0 ®vy) = (1) Thpy (1 ® vy) = (=11 0+ v) v Q vy,

S 104v) _ (—1)it M. From these equalities it is easy to check our map is a homomorphism.
A lt(A4)|
Injectivity is straightforward. O
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9.3.2. Remark. If we extend scalars to C, the above map defines an embedding
X (h)ec — By®zC.
However this kills the two-torsion part of JZ (h).
9.3.3. One has
oo(hT)) #0 <— T, T, ==£T,+, = Core(A +v) = Core()r) ¢ Core(v).
For example, for [C(2, 0,0, D][C(0, =2, —1,0)] = £[C(2, =2, —1, 1)], we have
Core(A) ={2,1}, Core(v)={-2,—1}, Core(A+v)=0.

9.3.4. Recall that .#_ (h) has a finite Z-grading (see (11)). By Section 9.3.3, .#_ () is also E-graded: set
#—_(h) 4 to be spanned by [C(A)] with Core(A) = A. Then

HA—(h) = @ H_(H)a with A_(H)aA-(H)p C H_(h) Ao,

A€l

Note that #_ (h) 4, = 0 if the cardinality of A is odd or greater than n. Further #_ () 4 is W-stable.

Corollary 9.1. (1) The subring #_(H)z N Z_(H)in is spanned by [C(v)] with v ~ 0. This subring is
generated by [C (ka)] fora € A andk € 7.

(2) Ifv~0and [C(W)]I[C(A)] #O, then [C(W)][C(A)]==£[C(A+Vv)]and A +v ~ A

Proof. The assertion (i) follows from Section 9.2.1. By (i) it is enough to verify (ii) for v :=k(g; —¢;). In
this case the inequality [C (v)][C (A)] #0implies A; = A ; =0. By (18) for such A one has A +k(g; —¢;) ~A.
O

9.3.5. Remark. All integral, nontypical blocks B of g, have that [1B8 = B (indeed, if B is integral
and not typical then it admits a simple module L(A) such that zero(1) > 0; now we conclude with
[12, Theorem 4.1]). Thus we may consider for such blocks the corresponding reduced Grothendieck
group .#_ (B). Then the embedding in Proposition 9.1 exists over the coefficient ring Z[/—1]. If we let
By denote the principal block of q,,, then #_ (By) = #_(h)z N #_(H)in is a ring. In this case, because
t(A) € RT for all A ~ 0, the map in Proposition 9.1 descends to an embedding with integral coefficients
for 7_ (Bp).

9.4. Supercharacters of some highest weight modules.

Lemma 9.1. schy M(1) =) _m,[C(v)].
V~A

Proof. We start from A = 0; in this case schy M (0) = schyU/(n™). Let a1, ..., oy denote the negative

Uun )= P & g, (19)

Lkjaj=v J

roots of g. We have
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By Section 9.2.6, Sk g = C(ka). Since ka ~ 0, the required formula follows from Corollary 9.1(i).
For arbitrary A one has schy M (1) =schy U (n™) @ [C(1)]; the result follows from Corollary 9.1(ii). [J

We need some terminology for the following proposition: for roots a| = €;, —€;,, 00 = €;, —€,, wWe
write o) < ap if max(iy, j1) <min(i, j2). If @ = €; —¢€; is any root, we call the set {i, j} its support. We
note that if we have roots a1, ..., a; with nonoverlapping supports, and positive integers k1, ..., k;, then
§7gq, ® -+ ® Ski gy, is an irreducible h-module.

Proposition 9.2. We have
schyU(n™) = Z my[C(v)]

v~0
where each coefficient m,, is either 0 or 1.

Further if m,, # 0, then v may uniquely be written as
v=ki(ag +---Fa)+ k(@ o),

where all of ki, ..., k, are distinct, the supports of all «;; are distinct, and a; < - - - < «;j,. In this case

r

my[C)] = [ [15% ga - - [ ga;, 1.
i=1

Proof. We use the embedding of Proposition 9.1. Let y, be the image of [(/(n7)),] in R(t) ® S(by)j
(see Proposition 9.1). Since #;, = k for o € A, by (19) one has

w=e" Y ¢o(Tia,)-

(Ky,eeskn)
Zk,‘()t,‘:l)

Recall that ¢o(7z,—¢,) = §;6p. In particular, ¢o(TyTp) = 0 if («|B) # O (where (—|—) stands for the
usual form on t*). Hence

yw=e" Z ¢0(The;),  where U :={(ky, ..., ky) | X ki =v, kikj =0 for (o;|a;) # 0}.

If for any (ki, ..., ky) € U we have k; # k; for all nonzero k;, k; with i # j then itis clear U is a
singleton set and we are done.

Thus suppose that (kq, ..., k,) has k; = k; # 0 for some i # j, and without loss of generality suppose
i=1,j=2 Write a; = ¢, —¢g, fori =1,2; then p; > ¢; and, since (1|az) = 0, the numbers
P1, q1, P2, g2 are pairwise distinct. If p; > ¢» and p; > ¢; then we have negative roots

fl o f o
¥y - =E&p — &gy U= Epy, — &y

with a1 + ar = o} + 5. We may assume that o} = 3 and o), = a4. Since («j|ay), (org|ery) # 0, one has
k3 = k4 = O, SO
(ki,...,kn)=(k1,k1,0,0,ks, ..., ky).
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Observe that (0, 0, kq, k1, ks, ..., ky) € U. One has

¢0(To, Tory + Ta{ Taé) = %_Pl gmgnglh + gplg:ngngql =0.

Therefore we can substitute U by a smaller set, where k; = k; implies that o; = &), — &g, j = &p, — &4,
are such that p; > g; > p; > q; or p; > q; > p; > g;. From this the result follows. O

Corollary 9.2. One has schy M(1) = Y m,[C(v)] with m,, € {0, £1}.

V~A
Theorem 9.1. For A € t* we have schy L(\) = Z k,[C(v)].
VA
Proof. With the help of Lemma 9.1, the proof works in the exact same fashion as Theorem 6.1. O

Corollary 9.3. Let L(v) be a finite-dimensional module. Then
smult(L(A) @ L(v) : L(n)) #0 = Core(u) = Core(r) ¢ Core(v).
When smult(L(A) ® L(v) : L(i)) # O, then either A € Iy orv € I.

9.4.1. Remark. The Kac—Kazhdan modification of O introduced in [17] is closed under tensor product;
the modules in this category are not always of finite length, but the multiplicity is well-defined (see [4]).
In this category the above formula holds for arbitrary L(X) and L(v).

9.4.2. Recall that P(g) := PT(g) +ZA and for v € PT(g) we set

a, = Z w[C(w)].
weW/ Staby v
Lemma 9.2. Suppose that |[Nonzero(v)| is odd with v; = vj # 0 for some i # j; then for A € P*(qy),
[L(A), : C(v)]is even.

Proof. Assume that this does not hold. Without loss of generality we may assume i = 1, j =2, and set
a = €1 — €. Let b’ to be the subalgebra of h generated by Hj, ..., H,, and set q»(«) to be the natural
subalgebra of g,, isomorphic to q, with weight €, ;. Clearly q2(«) x b is a subalgebra of q,.

Then by Theorem 9.1, Core(v) = Core()). We view

N:=>"LMW)via
ieZ
as a gz (o) x h’-module. We will write v = k(g1 + &2) + V' where V' is the corresponding t' = h’a—weight.
We assume that k£ > 0, with the case of k < 0 being similar. By the representation theory of g, the only
irreducible q>-modules with k(e + €2) are those of the form L, (k +i; k — i) for some i > 0. These
are always typical, and are isomorphic to their parity shifts if and only if i = k.
Therefore, since rank F,, is odd, one has

qu(a)xh/(v+ioz) ifi £k,

L (k+i;k—i)®L/(v/)={ .
d2(e) b Loy@)xty (V+ka) ® TTLgy@)xty (v +ka) i =k.
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Because L, ) (k +1i; k —i) is typical,

2dimC(v) ifi #k,

dim L (v + i), =
m Ly ey (V {0y {dimC(u) ifi=k.

Hence, to prove that dim N, is divisible by 2 dim C (v) it is enough to show that mult(N; L, ) xy (v+ka))
is even, where mult denotes that nongraded multiplicity. By the above, for i # k one has

dim L g, @)ty (v +ict)yike =2dim C(v + ka).
Hence it is enough to verify that dim N, is divisible by 2 dim C (v + ko) that is
mult(L(X); C(v+ka))=0 mod 2.
Let {v;}7_, contain i, copies of k and i_ copies of —k. Then {v + ka}?_, contains j, =i —2 copies
of k and j_ copies of —k. Therefore i, —i_ # j. — j_, so
Core(v + ka) # Core(v) = Core())
and thus by Theorem 9.1, mult(L(}); C(v 4+ ko) = O0mod 2 as required. O
Combining Theorem 7.1, Theorem 9.1, and the results of [11], we obtain our main result:

Theorem 9.2. schy defines a morphism of spoiled superalgebras #_(g) — #_(§)V. Further:
(1) For A € P*(q,) N Iy one has

schy L(A) = Z kya,, k, eN.

vePt(g)NIy: v~A
Zero A>zero v
zero A—zero v=0mod 4

(2) For . € P*(g) N1, one has

schy L(A) = > kva,, k, € {0, 1}.

vePt(g)NI : v~i
Zero A>zerov

In both cases k; = 1, and schy L(A) = a; if » € PT(g) is typical.

Proof. The only part that remains to be justified is the inequality zero A > zero v. For this we invoke the
results of [11], where it is shown that if x = H; € (q,)7, and A € PT(qy,), then ds®°* 1L (1) =0. O

Corollary 9.4. For A € P*(g) and v ¢ W P*(g) we have 2dim E, divides dim L()),.

Corollary 9.5. (1) The map N > schy N induces an isomorphism
A (qn)a => A~ (O)g -

(2) For A € B, let F(q,) 4 be the full subcategory of F(q,) consisting of modules of central character
corresponding to A. Then schy restricts to an isomorphism H_(F (qn)a)a — (F-(h) A)g .

(3) The duality is given by a;; = a_(v)
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Proof. 1t is clear that schy has image lying in JZ_ (C)g , and by Corollary 5.2, schy is an embedding. From
Theorem 9.2 and the fact that for each A € P (g) the number of elements v € P (g) satisfying v < A
and v ~ A is finite, it follows that the image of .#_ (g) contains a, for each v € PT(g). Hence the image
is equal to f_(h)g , proving surjectivity giving (i). Part (ii) is an easy consequence of (i).

For (iii) we simply apply Theorem 9.1, and for (iii) we observe that 7_, = o (T}) and ¢t () =¢_,. Thus
it is easy check that C(A)* = C(—2A). O

9.5. The map ds;. For s = % R

Xy =Hyqp1 05 +---+ H,.

2

Then ¢ = x;

is a semisimple element of g5, and we have DS,q, = q,_2,. Further we have a splitting
q5 =qn—2s X[x, g5 ], where q,_25 C g, is the natural embedding such that t, C tis spanned by Ay, ..., h,_2s
and A(gy) ={&i —&jh<izj<n—2s-

We write DS, := DSy, and ds; : R(q,) — R(q,—2,) for the induced homomorphism on reduced
Grothendieck rings. These splittings of g,, in g™ satisfy the hypotheses of Lemma 8.2, thus we have

dS,‘ Ode = dSH_j.
9.5.1. Remark. Fori=1,...,|5] set

- Vo
O (= Ep—25+1 — En-2s4+2, O 1= hp—2s+1 — hu—2s512.

N
Let y,, be a nonzero odd element in g,. Foreach 1 <s < % consider y; := Zl Xy;. Then clearly [y, y;]=0,
1=
and one can show that ds, = ds as defined above.
We view t} as a subspace in t* via the natural embedding ¢, s : t; <> t* (given by &; —> &; € t* for
i=1,...,n—2s).

Corollary 9.6. Take N € F(g). For eachv € tj’;x we have
smult(DS;(N) : C(v)) = smult(N : C (1, 5(v))).

Proof. Retain the notation from Section 8.4 and set u := ¢, ;(v) € t*. Note that t,, is spanned by
hi,hy, ..., hy_ps and t5 =+t
Since t N [xy, g°] is spanned by h,_sy1, ..., hy, for u € I, the restriction of F), to t* written with
respect to the above basis has the diagonal entries 1, . .., 4,—s and zeros on the last s places. In particular,
for € I, one has rank F* = rank F), if and only if 4; =0 fori > n —s, i.e., u € t. By Corollary 8.1
we obtain
smult(DSy(N); C(v)) = (—1)™* smult(N; C(w))

where Resng C(u) = I C(v)). The formulae

.= [] #i=[] #i=7. tw=1

ir i #0 i: v #0
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give Resng C(u) = C(v) as required. O
Corollary 9.7. The map ds, : #_(g) — H#—_(gx,) is given by
0 if zerou <s,
ds, (a,,) = { Jzeron
a, if zerop >,

where ' € PT(g,) is such that Nonzero(u) = Nonzero(u').
Proof. Write schy N =} p+ (4 k@ and schy, DSg(N) =3 p+ (g, Mvay. By Corollary 9.6 k;, = m,
if w=1,s). O

9.5.2. We denote by F(g)in the full subcategory of F(g) with the modules whose weights with nonzero
weight spaces lie in the lattice generated by €, ..., €,.

Corollary 9.8. The kernel of ds, : #_(g) — H#_(gx) is spanned by a, with zero @ < s and the image of
dss is equal to H_(F (gyx, )int)-

Corollary 9.9. For A € P*(g) and v € P (gy,) one has
zerod —zerov —s Z0mod4 = smult(DS;(L(1)) : Ly (v)) =0.

Proof. Combining Theorem 9.2 and Corollary 9.7 we conclude that ds;(sch L(A)) lies in the span of a,
with v € PT(g,) such that n —zero(A) — (n — s — zero(v)) = 0 mod 4 that is zero A — zero v — s = 0 mod 4.
Let vy be maximal (with respect to the standard partial order in t}) such that

smult(DS;(L(A)); Ly, (v)) #0 and zeroA —zerov —s # Omod 4.

The maximality of vy forces zero v # zero v if v > vy and Ly (v) is a subquotient of DS;(L4(A)). By
Theorem 9.2 we obtain [Lg, (v) : C(vp)]|=0if v # v and Ly, (v) is a subquotient of DS (Ly(A)). Therefore
smult(DS;(L(A)); Lg, (vo)) is equal to the coefficient of a,, in schy DS;(L (1)) = dss(schy L(1)), which
is zero by above. O

9.6. Example: q,. Recall that the atypical dominant weights for ¢, are of the form s(e; — &;) for s € %N.
Proposition 9.3. Take g = q, with AT = {a}. For A € P*(q;) one has
a,, if A is typical,

N
schy L) = > aia ifL=sa, seN,

i=1

S
Xg)aiJr%a if)»z(s—l—%)a, s e N.
1=

Proof. If X is typical, the assertion follows from Theorem 6.1. Consider the case when u € PT(qy) is
atypical and u # 0. Write K (i) for the maximal finite-dimensional quotient of Indg2 C(w). It is known
that schy K () = a,,. Further, if 4 = sa for s € N, then it is known (for example see Section 7 of [9])
that we have short exact sequences

0—-Vy— K(a) > L(a) >0, 0—->TIL((s—1a)—> K(sa) > L(sa) >0
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where Vj is a nontrivial extension of C and I1C. On the other hand if © = (s + %)a then for s = 0 we
have K (¢/2) = L(«/2) and for s > 0 we have short exact sequences

0— HL((S — %)a) — K((s + %)(x) — L((s + %)a) — 0.
From these results we can obtain the desired formulas by induction. (|

9.7. Realization of #_(q,). Recall that 7(g)iy denotes the full subcategory of F(g) consisting of the
modules with integral weights and that C denotes the full subcategory of F(h) consists of modules with
weights lying in P(g). We write Ciy for the subcategory of C consisting of those modules with integral
weights.

9.7.1. By Theorem 9.2, the map sch gives embeddings
H(@) = AO, A(F(@ind) = A (Cind) "

Further, we have identified the image of #_(g) (resp., #_(F(g)int)) With the subalgebra spanned by a,
with v € PT(g) (resp., v € P (@)ino).

One has ag = 1; we denote by evy : #_(C) — Z the counit map given by evy(a,) = 8o, for v € PT(g).
One has

H(C) = H_(Cin)™ © A Cpint)"”,

where Cp;,; consists of modules with weights that lie in P(g) and are nonintegral. For b € JZ_ ©)" and
b’ € H#_(Chins)" one has bb' = evo(b)b', s0 H#_(Cpin:) is an ideal of #_ (C). By Corollary 9.8, for x # 0,
ds, (- (Cpins)V) = 0 and the image of ds, lies in J#_ (Ciy). This reduces a study of #_(C) to a study of
H_(Cint)-

9.7.2. The ring #_ (F(9)int) ®z Z[+/—1] can be realized in the following way.
Let V be a free Z[+/—1]-module with a basis {v; | i € Z\ {0}}. Denote by /\V the external ring of V.
This is a N-graded supercommutative ring; we consider (/A\V)*°!, which has

(/\V)spoil _ é’l% 2y @ é N+l
i=0 i=0

where, we recall, ¢ is a formal variable satisfying > = 2¢ = 0. This is an N-graded commutative and

supercommutative ring (which means that (/\V)?pon(/\V)‘j-poil =0if i, j are odd).

We denote by Ejy the set of finite multisets {a;};_, witha; € Z\ {0} and a; +a; #0forall 1 <i, j <s.
For A € Ej, we denote by (/\V)ffoil the span of the elements v;, Avi, A... A Vi, (resp., the elements
evi; Avi, A ... A ;) with Core({iy, ..., ip}) = A if A has an even (resp., an odd) cardinality. Clearly,
this gives a grading

(V) AV < (V)0
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and (/\V);EOil is the subring of (AV)*°! generated by v; A v_;. In other words (/\V)SpOil is a Eip-graded
algebra. For each k we consider the ideal

o0

Jo= Y (Av)PL.

i=k+1

Recall that the map A — Nonzero()) gives a one-to-one correspondence between P71 (g)i, and the
subsets S C Z\ {0} of cardinality at most n. The weights in Iy correspond to the subsets of even cardinality;
the zero weight corresponds to @. We define

U A(F(Q)in) 7 Z[V—11 =5 (AV)*°1/ ],

by setting, for A € I; N P (g),
i)
[t (M)

where v, :=v;, Avi, A...Av;, and Nonzero(A) = {i; > iz > ... > ix}.

V(ay):=¢

Uy,

Combining Corollary 9.5, Proposition 9.1 and Corollary 9.7 we obtain:

Theorem 9.3. (1) The map  : H#_(F(9)in) Q7 Z[v/ —1] = (/\V)SPOH/J" is an isomorphism of Biy-
graded spoiled super rings.

) In partiqlbtlar, for A € Bin, ¥ restricts to an isomorphism of vector spaces W4 @ H_(F(9)4) —
(AV)Y" /.

(3) The map dsg : R(qn)int = R(qn—s)int corresponds to the natural quotient map
(/\V)spoil/Jn N (/\V)SpOﬂ/Jn_S
(one has J,—5 D Jy, for s > 0).

Proof. 1t is clear that ¥ is an isomorphism of Z-modules which preserves the E-grading. The result on
ds; is also clear from the map. Thus it remains to check that ¥ respects multiplication.

Let A, u € PT(g) with A, i € Iy; the case when either is in 1 is much easier. If aya, = 0 then the result
is clear, thus we assume that a,a, # 0. In this case, there exists unique elements A’ € WA and u' € W
such that A’ + .’ is dominant, and thus we have a,a,, = (—l)iaA/+M/, where Ey @ E,y = HiEk/+M/. We
may write Ty, = (=D Ty T, for some j, and it is clear that this j also satisfies v;/4,/ = (—l)jvxvﬂ.
Then as in the proof of Proposition 9.1, we have Ey ® E,» = I/ +HE 4w > Where

(—1)t = % € (+1).

(M)t (p) N
tM4u)

PN LU UONEICED) () 1 (1)
viaan) = D (|t<w+w>|””") - (It(k)l ”*) (lr(m”“)

where we have used that |t (A" + /)| = |t (A)] |7 (w)]. O

Therefore aya, = (—1)/ 4+~ Therefore
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For A € By, we define

#itai > 0)—#ila; <O} "4 » for |A| even

A= ? |
| Mira > 0 il <O)=1 g0 for |A] odd
! .

Note that we have Ao B = A+ B if |A| or | B| is even.

Lemma 9.3. The grading

H(F@in)g=EP A (F@ar), A (F@un)r=ED 4 (F@a)
A=0 A=1
defines another super ring structure on J#_ (F(g)int); note that it does not have the structure of a spoiled

super ring under this grading.

Proof. This follows from the fact that Z_ (F(g)int) 1S Einc-graded, and 2 (F(g) ) #_(F(g)p) =01if |A|
and |B| are odd. Il

Corollary 9.10. If |A| is even, then t (\) € R™, and thus the isomorphism v 4 admits an integral structure.
In particular we have an isomorphism of graded rings:

gpqmmegmmﬁﬁ

Here V7 denotes the free Z-module with basis {v; i € Z \ {0}}.
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Combing a hedgehog over a field

Alexey Ananyevskiy and Marc Levine

We investigate the question of the existence of a nonvanishing section of the tangent bundle on a smooth
affine quadric hypersurface Q° over a given perfect field k. If Q¢ admits a k-rational point, we give a
number of necessary and sufficient conditions for such existence. We apply these conditions in a number
of examples, including the case of the algebraic n-sphere over k, S} C AZ“, defined by the equation

n+l _2
Yo xi =1

1. Introduction

It is an elementary but nonetheless beautiful result found in nearly all introductory courses in differential
topology that, for all n > 1, the tangent bundle 7's>» does not admit a nonvanishing section. One proof
uses the Gauss—Bonnet theorem to show that Euler class of T2 is nonzero by computing its degree
as the Euler characteristic of $?%, namely 2, while the existence of a nonvanishing section would force
the Euler class to vanish. For the odd-dimensional case, the Euler characteristic vanishes, and hence
the Euler class vanishes as well; one can also easily write down explicitly a nonvanishing section
of Tgn+1.

Writing the n-sphere S” as the hypersurface in R"*! defined by the equation Z?;Lll xi2 =1, one can
ask the corresponding question in the algebro-geometric setting: let k£ be a field of characteristic # 2 and
let S € AZH be the hypersurface defined by the equation Z?Ll xi2 = 1. Does the tangent bundle Ty
admit a nonvanishing section? (To avoid any possible misunderstanding, for £ — X a vector bundle on a
k-variety X, a section s : X — E is said to be nonvanishing if the scheme-theoretic intersection of s(X)
with the zero-section of E is the empty scheme. Equivalently, letting k denote the algebraic closure of k,
the set of k points x of X with s(x) = 0 is empty.)

This question for Sép was originally raised by Umberto Zannier (see Remark 1.7 below for his original
formulation). He showed that Sép admits a nonvanishing vector field for odd p and he asked if there is a
nonvanishing vector field on the 2-sphere over (2, motivating our interest in the question of the existence
of nonvanishing vector fields on S} for arbitrary n and k.

We give an essentially complete answer to this question; if k is perfect, this is in fact a special case of
the more general Theorem 1.4 about smooth affine quadric hypersurfaces.

This paper is part of a project that has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement no. 832833).
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Theorem 1.1 (see Theorem 4.1 (1), (3) and Remark 1.10). Let k be a field of characteristic # 2.
(1) If nis odd, then Tsn admits a nonvanishing section.

(2) If n > O'is even, then Ty admits a nonvanishing section if and only if —1 is in the subgroup of k*

generated by the nonzero values of the function Z;’:ll xi2 on k"1,
As the condition in (2) is not very explicit, we reformulate this as follows.

Corollary 1.2 (Corollary 4.3). Let k be a field of characteristic # 2. For n > 0 even, Ts admits a

nonvanishing section if and only if the equation
2n+1

S
i=1
has a solution with the x; € k.

Examples 1.3. Let S}’ be as above.

(1) Suppose that chark = p > 2. Then T has a nonvanishing section for all n > 0.
(2) Suppose k contains a p-adic field Q. Then Tg» has a nonvanishing section for all n > 0.

(3) Suppose that k is a number field, and take n > 0 to be even. Then Ty has a nonvanishing section if
and only if k has no real embeddings.

To see this we apply Corollary 1.2. For (1), since [, C k, it suffices to take k = [F,,. Since every
element x € [ is a sum of two squares [Lam 2005, Proposition I1.3.4], the condition of Corollary 1.2 is
satisfied for all n > 1. See also Remark 1.10 for an explicit nonvanishing section.

For (2), we reduce as above to the case k = Q. If p is odd, then by Hensel’s lemma, each solution to
lei Jfl xl.2 = —11in [, lifts to a solution in Z, so the criterion is satisfied. For p = 2, the class of a unit u
in Z, modulo squares is given by the image of u in (Z/8)*, so it suffices to write 7 as the sum of < 5
squares in Z, and it turns out that four squares are enough: 7 =1+ 1+ 1+4. For those more intrinsically
minded, one has the general result that every nondegenerate quadratic form ¢ in at least five variables
over a local field has a nontrivial zero [Lam 2005, Theorem VI.2.12], which we apply to ¢ = Zle xl.z.

For (3), it is clear that the equation leflrl xi2 = —1 has no solution in k" *! if k admits a real embedding.
Conversely, we may use the Hasse—Minkowski principle for quadratic forms (see, e.g., [Lam 2005, Hasse—

Minkowski principle VI.3.1]) to see that 2?21 xl.z = —1 has a solution in k if k is a purely imaginary
number field. Indeed, it suffices to show that Z?:l xi2 = —1 has a solution in k&, for every place v of k.
This is clear if v is an infinite place, as k, = C by assumption. If v is a finite place, then k, D Q, for

2 _

some prime p, and we have just seen that Z?: 1 X7 = —1 has a solution in Q,, for every prime p.

One can also ask about a general smooth affine quadric Q¢ C AI’C‘H, with & a field of characteristic # 2.
Since every quadratic form over k can be diagonalized, we may assume that Q¢ is defined by an equation
of the form ¢ = 1, where g = Zl'-’:ll a[-)cl.2 € k[xy, ..., xy41], with [ [, a; # 0. Here one has a result of
essentially the same form as for S, with the extra condition that, for even n, Q¢(k) should be nonempty,
that is, ¢ = 1 has a solution in k.
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Let D(gq) be the set of nonzero values of g on k"1 Tet D(q)2 ={a-bla,be D(g)} Ck* and let
[D(q)], [D(q)z] be the subgroups of k* generated by D(gq), D(q)z, respectively.

Theorem 1.4 (Theorem 4.1 (1), (3)). Let k be a perfect field of characteristic # 2, let ¢ = Zfill aix?

i

withay, ..., ay+1 € k™ and let Q° C A,’(’H be the affine quadric hypersurface g = 1.
(1) If nis odd, then Tgo has a nonvanishing section.
(2) Suppose Q°(k) # @. If n > Qs even, then Tgo has a nonvanishing section if and only if —1 € [D(q)].

If Q°(k) = @ and n is even, we only have a necessary condition for the existence of a nonvanishing
section of Tgo.

Theorem 1.5 (Theorem 4.1 (2)). Let k, g and Q° be as above. If n is even and Tgo has a nonvanishing
section, then — 1—[?:11 a; € [D(q)?].

Since a; € D(q) for each i, the above condition is the same as asking for —a; to be in [D(g)?] for
some i. Note that Q°(k) # @ if and only if 1 € D(q), so if Q°(k) # @, we have [D(q)*] = [D(q)], and
—1 € [D(q)] if and only if — ]_[7:11 a; € [D(g)].

Here is a version of Examples 1.3 for general g.

Corollary 1.6 (Corollaries 4.5, 4.7, and 4.9). Let k, g and Q° be as in Theorem 1.4.
(1) Let k =T ,m with p > 2. Then Tgo has a nonvanishing section for all n > 0.

(2) Suppose k is a non-Archimedean local field of characteristic zero, the perfection of a local field of
characteristic p > 2, or the perfection of a function field of a curve over a finite field of characteristic p > 2.
Then for n odd, or n > 4 even, Tgo has a nonvanishing section. If n = 2, then Tge has a nonvanishing
section if Q°(k) # @.

(3) Suppose k is a number field, Q°(k) # & and n > 0 is even. Then Tge has a nonvanishing section if
and only if the equation g = 0 has a nontrivial solution in k, for every real place v of k. Equivalently, for

each real embedding o : k — R, o (a;) <0 for some i. Tgo also has a nonvanishing section if n is odd.

(4) Let k be a perfect field of cohomological dimension < 2. Suppose that n is odd, or that n > 0 is even
and Q°(k) # &. Then Tgo has a nonvanishing section.

Remark 1.7 (unimodular rows and unimodular matrices). Let g = Zf:ll aixl.z € klxy,...,x,+1] be a
quadratic form, defining Q° C A,’ZH as V(g — 1), and let R be the coordinate ring

R:=k[xy,...,xp411/(g —1).
We are assuming that ¢ is nondegenerate, that is, [ [, a; # 0, and that n > 1.
Let V(g) denote the gradient
V(g) :=(q/dx1,...,9q/0xy+1)
and let

V() == (aix1, ..., ans1Xns1),
s02V(q) = V(q).
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We first assume that 2 is invertible in k, so we can rewrite the tangent-normal sequence for Q¢ € A} +
using @(q), as .
V(q)'
0— Tgo — Of —= 0go — 0, (1.8)
where @(q)’ € M, +1x1(R) is the transpose of @(q). Since Q¢ is affine, we can rephrase everything in

terms of R-modules, giving the exact sequence
@ t
0— Tgo— Rt ——(q—)—> R—0,

with T . the R-module of global sections of T.. Since

(1o Xnr) - V@) = 1,
we may split the surjection by (x1, ..., X,11) : R — R"T!, exhibiting T oo as a stably free R-module, and
showing that (xy, ..., x,+1) is a unimodular row, i.e., (x1, ..., x,+1)R is the unit ideal.

It is straightforward to see that the stably free R-module T o is free if and only if there is a matrix
M € GL,,11(R) with the first row (xq, ..., x,41); by dividing the last row of M by det M, we may in
fact take M to have det M =1, so T o is a free R-module if and only if there is a unimodular matrix M
over R with the first row (xq, ..., X5+1).

More generally, we may take k to be an arbitrary commutative ring (even with 2 not a unit), and let
(@ij)1<i,j<n+1 € GL, (k) be an invertible symmetric matrix. Let

n+1

q = Z aijxixj, R:=k[x1,...,x4111/(¢—1), Q7 :=SpecR,
ij=1

Vig) := <Za1jxj, Zazjxj, ey Zam—ljxj)-
J J J

Then the map R"HMR is surjective, and we may define a stably free R-module ‘T o/, by the exact

sequence .

0— Tgo — R X R0, (1.9)
Since (xq, ..., Xp41) - 6(61) =1€R, (x1,...,Xy+1) is a unimodular row over R, and the R-module
% oo/k is free if and only if there is a matrix M € SL,,1{(R) with first row (x1, ..., x,41). Furthermore,

if 2 € k*, then Q° is smooth over k, and T o/ is the R-module of global sections of the relative tangent
bundle Tgo/x — Q° of Q° over Speck.

Note that, for n =2 and 2 € k*, the existence of a unimodular matrix over R with the first row (x1, x2, x3)
is equivalent to the existence of a nonvanishing section of To /. Indeed, Tpo,; admits a nonvanishing
section if and only if we can write o/ = R @ P, with P a rank one projective R-module, which yields
the isomorphism A% Soo/x = P. The exact sequence (1.9) gives an isomorphism A% Too/x = R, 50
P = R and thus Tpo/; = R?. This gives the existence of M € SL3(R) with first row (xy, x2, x3).

The original form of Zannier’s question was in the following terms: taking ¢ :=x>+y?+z2 €k[x, y, z],
for which fields & is the unimodular row (x, y, z) over R the first row in a unimodular matrix over R? He
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showed this was the case for k = Q,, p odd, and asked about k = (,. Note that one can just as well ask
the question for k an arbitrary commutative ring and general ¢ as above; our results only give a criterion
for a positive answer to this question if & is a perfect field with 2 invertible and n = 2. Noting our positive
answer for k = Q,, Zannier asked in a recent private communication about the case k = Z,.

Remark 1.10 (explicit sections). (1) If n is odd or if the quadratic form ¢q := ?;rll al-xl.z

is isotropic over
k (i.e., ¢ = 0 has a nontrivial solution in k), one can write down explicit nonvanishing sections of Tgo.

For n odd, the tangent-normal sequence for Q° C AZ+1,

2a1x1,..., 2,4 1%041)"
0— Too — O'é’:l Garxy, 21 1) Ogp, — 0,
says a section s of Tgo is given by an (n+1)-tuple of regular functions (sy, 52, ..., $,4+1) with
n+1

E apx;s; = 0.

i=1
One can take

§ = (axXx2, —a1X1, . .., Anp1 Xn1, —AnXn),
which is clearly nonvanishing.
This is a special case of the following general result. Let A be a commutative ring, let (ay, ..., az,)
be a unimodular row in A%" (i.e., ay, ..., dom generate the unit ideal in A), and let M be the stably free

A-module defined by the exactness of the sequence

!
0—> M — A™" (@, dom) A—>0
Then M admits the free rank one summand defined by
0 A (—az,ai,....—aym,amm-1) M c A,

Now take n even and suppose ¢ is isotropic. Then after a k-linear change of coordinates and change of

notation, we may assume that
n+1

q =2x1x2+ Z a,‘xi2
i=3
(see, e.g., [Lam 2005, Theorem 1.3.4]). In this case, the tangent-normal sequence for Q° C AZH is

2x2,2%1,2a3%3, ..., Qa4 1%n41)"
0 —> Too — O,é_,{:l (2x2,2x1,2a3x3,....2an+1Xn+1) OQO 0.
Letting
s = (0, a3x3, —X1, asxs, —AsX4, ..., Any1Xn41, —AnXn)
gives a section of Tpe with s =0 given by Q° N (x| = x3 = - - - = x,41 = 0), which is clearly empty.

In particular, let k£ be a field of characteristic p > 2. In a finite field, —1 is a sum of two squares [Lam
2005, Proposition I1.3.4], whence the quadratic form x12 + xz2 4+ 4 xs 41 1s isotropic over k provided
that n > 2. Hence the tangent bundle T to the algebraic n-sphere over k admits a nonvanishing section
for every n > 1.
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(2) Our main results for even n and g anisotropic only give criteria for the existence of a nonvanishing
section, without giving an explicit formula. In the case that Zannier had asked about originally, Séz, Peter
Miiller (private communication, Universitat Wiirzburg, June 27, 2024), noting our existence result and
following a suggestion of Zannier, found an explicit trivialization of Tsé - We quote from his private
communication:

Indeed, some sophisticated computations eventually gave an explicit example over @, (in fact
even over Q(/—7)), ...

Here is Miiller’s example. Let R = Qs [x, v, z]/ (x2+ y2 + 72 — 1), the coordinate ring of Séz. The
polynomial T2 — T + 2 has two roots in Z5, exactly one of which, which we denote by w, is a unit in Z,.
In particular, 2 — w is also a unit in Z,. Miiller gives his example in the form of a 3 x 3 matrix over R
with determinant 2 — w and first row (x, y, z). The explicit matrix is

X y z
—y+z+1 (1-w)x+y+(1+w)z+0 —x—y+2z4+(1—w)
wy+R2—-w)z (1-2w)x+(1+w)y+3z4+1 —-2x4+QR—-w)z—w
Let A; be the dot product of (x, y, z) with the i-th row. Noting that (x, y, z) - (x, ¥, z) =1 in R, this gives
the following two independent nonvanishing sections of Tsé :
2

s1ie, v, ) =(—y+z+1,d—wx+y+(I+w)z+w, —x—y+2z+(1—w) —Ar-(x, ¥, 2),
5206, y, ) =(wy+Q2—-w)z,(1 =20)x+(1+w)y+3z+1, -2x+ 2 —-w)z—w) —A3-(x,y, 2).

Miiller notes that this also works over Q(+/—7), where we take o to be either of the two roots of 72 —T +2
in Q(v=17).

In addition, Miiller’s example gives a positive answer to Zannier’s question over Z instead of (J;, just
divide the last row by the determinant 2 —w € 7.

Remark 1.11 (some nonexamples). Suppose n is even. We have already seen in Remark 1.10 that 7o
has a nonvanishing section if g is isotropic over k. On the other hand, g being isotropic over k implies that
Q¢ has a k-rational point [Lam 2005, Theorem 1.3.4(3)], so if Q°(k) = @, then ¢ is anisotropic over k
and we do not have any explicit method for finding a (possible) nonvanishing section of Tg.. Moreover,
Theorem 1.5 is our only result that considers the case n even and Q°(k) = &, and it only gives us a
necessary condition for Tpe to have a nonvanishing section. Here is a series of examples that are not
covered by any of our results.

Take k = Q, with p > 2. Letu € Z; be a nonsquare modulo p, and let ¢ = uxlz + px% — upx32. It
follows from [Lam 2005, Theorem VI.2.2] that g — xg is anisotropic over @Q,; hence 0?(Q,) = @ and
also ¢ is anisotropic over Q,. Moreover —(u - p - (—up)) =1 in @;/@;2, so —(u - p-(—up)) is in
[D(g)?]; hence the necessary condition in Theorem 1.5 is satisfied. We do not know whether Ty. has a
nonvanishing section in any of these cases.

One final nonexample. Take k = R, ¢ = Z;:l] —xl.z, with n even, and let R be the coordinate ring
of Q° Then we have Q°(R) = &. By a theorem of Ojanguren, Parimala and Sridharan [Ojanguren et al.
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1986, Theorem 3.2], there is an M € SL,,1(R) with
(X1, ..y X)) =(,0,...,00M

in other words, (x1, ..., x,41) is the first row of the unimodular matrix M. Thus the R-module T o is
free, so Tgo is a trivial vector bundle over Q°, and hence admits a nonvanishing section. Our results only
yield the necessary condition

~(=D)"' =1€|D@)’],

which (fortunately!) is true in this case.

The main idea behind the proofs of our results is quite close to the case of the real spheres. We
have already disposed of the case of odd n in Remark 1.10. For n > 0 even, we replace the Euler class
ewp(Tsn) € H"(S", Z) with the Euler class e(Tg0) in the Chow-Witt group (i{"( 0°). For a smooth
k-variety X and a rank-r vector bundle E on X, one has an Euler class e(E) in the (twisted) Chow—
Witt group CH" (X, det"'(E)). In our case, the tangent-normal sequence for Too gives a canonical
isomorphism det Tpo = O g0, which induces an isomorphism CTJ”(Q”, det™!' T, 00) = CT—I"(Q" ) with the
untwisted version of the Chow—Witt group, giving us our Euler class e(Type) € éf{n(Qo). A fundamental
result of Morel [2012, Section 8.2] says that for a smooth affine k-scheme X of dimension n over a
perfect field k and a rank n vector bundle E over X, E admits a nonvanishing section if and only if the
Euler class e(E) vanishes (in this form, the result also relies on work of Asok and Fasel [2016] and Asok,
Hoyois and Wendt [Asok et al. 2017]; see Theorem 2.2 for the discussion).

Since Q° is not proper over k, we do not have a nice analog of the Gauss—Bonnet theorem for Q°, so
we pass to its projective closure Q C P!, defined by the equation Z?;Ll] a,-xi2 = xg, and let Q*° C Q be
the hyperplane section defined by xo = 0.

Let GW (k) denote the Grothendieck—Witt ring of (virtual) regular quadratic forms over k. For
p : X — Speck a smooth projective variety, we have the pushforward map

P« : CHo(X) — CHo(Speck) = GW (k),

which we denote by degsyy : (?PIO(X ) —> GW (k); we call this the quadratic degree map. X has a quadratic
Euler characteristic x (X/k) €e GW (k) and we have a quadratic Gauss—Bonnet theorem [Déglise et al. 2021,
Theorem 4.6.1; Levine and Raksit 2020, Theorem 5.3]: letting Tx be the tangent bundle of X, we have

deggw (e(Tx)) = x (X/k),

so we are all set up to argue as in differential topology.

Getting back to our quadrics, let us first assume that Q° has a k-rational point. We show in Section 2
that e(Tgo) = 0 if and only if x (Q/k) is in the subgroup deggy (CHo(Q>)) € GW(k), and we have an
explicit expression for x (Q/k):

n
x(@/k =(2.2] Tas) + 5001,

where (a, b) is the quadratic form ax? 4 by?, and m - (a, b) is the quadratic form i axi2 + byl?.
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Putting this together, we see that Tg. admits a nonvanishing section if and only if (2, 211 ai>+ 5(1,=1)
is in degGW(éfio( 0%)) € GW(k). We conclude Section 2 by using this criterion to handle the cases
discussed in Examples 1.3 (1), (2) above.

The next step is to use the theory of quadratic forms to rephrase the condition

(2. 2] Tai) + 51, =1) € deggy (CHA(Q™) € GW(k)

in terms of the subgroups [D(g)] and [D(g)*]. This is done in Section 3, relying on properties of
Scharlau’s transfer, Knebusch’s norm principle and basic facts about Pfister forms and Pfister neighbors.
We apply these tools in Section 4 to give our main results, which yield criteria that are much easier to
apply than the one derived in Section 2. We conclude by using this to compute the remaining examples
described above; the case in which Q° does not have a k-rational point is trickier to handle, and we are
only able to arrive at the necessary condition stated in Theorem 1.5.

Throughout the paper we employ the following notation:

k a perfect field with chark # 2

Smy, the category of smooth, separated, finite-type k-schemes

Tx the tangent bundle of X € Smy

X(F) the set of rational points of X for X € Smy and a field extension F/k
GW(F) the Grothendieck—Witt ring of (virtual) regular quadratic forms over a field F
W(F) the Witt ring, the quotient of GW (F') by the hyperbolic forms

GI(F) the ideal in GW (F) generated by the even-dimensional forms

I1(F) the image in W(F') of GI(F)

F* the multiplicative group of nonzero elements of the field F

{ai, aa, ..., a,) | the quadratic form a1x12 —|—a2x22 +-- 4+ a,,x,%

2. Recollections on Chow—Witt groups and a computational criterion

Definition 2.1. Assume & to be a perfect field. We will use the Chow—Witt groups, also known as Chow
groups of oriented cycles, that were introduced in [Barge and Morel 2000]. These groups provide refined
cohomological obstructions to the existence of nonvanishing sections of algebraic vector bundles (see,
e.g., [Asok and Fasel 2015; 2023]). We refer the reader to the expositions in [Fasel 2020; Déglise 2023;
Asok and Fasel 2016, Sections 2, 3] for the properties of these groups that we list below.

We recall from [Morel 2012, Chapter 2] the Milnor-Witt K -theory sheaves KMY, n € Z. These are

MW

Nisnevich sheaves of abelian groups on Smy, with products LMW x LMW . fc m

making the graded
object KMV := P, ., KMW into a sheaf of associative, unital, graded rings on Smy. Given X € Smy and a
line bundle L on X, we have the L-twisted version XMW (L), giving a Nisnevich sheaf on Smy / X. Letting
GW denote the Nisnevich sheaf of Grothendieck—Witt rings, there is a canonical isomorphism ICS/IW =Zgw.

For a field F, and L a dimension one F-vector space, we write KMV (L)(F) for KMY(L)(Spec F).



Combing a hedgehog over a field 2417

For a smooth variety X over k, a line bundle L over X and an integer n > 0, the Chow—Witt group
CH" (X, L) is defined as
CH"(X, L) = Hj,(X; KMV (L)).

We will also use the homological notation with
CH, (X, L) = CH' ™" (X, L@ wy),
where d = dim X and wy is the canonical bundle of X. We put
CH"(X) :=CH" (X, Ox), CH,(X):=CH,(X, Ox).
Chow—Witt groups have the following properties that we will use below.

(1) CH" (X, L) is canonically identified by [Morel 2012, Theorem 5.47] with the n-th cohomology group
of the Rost—-Schmid complex

P V(Lo ) k@)= P KXY (Li®wyx) k()= -— ) KYW(L:®w.x) k(X))
xeX©® xex® reX@
where the sums are taken over all the points of X of the respective codimension, L, is the restriction of L
to x, w,,x is the determinant of the normal bundle for the embedding x — X and d = dim X.

(2) For a line bundle L’ over X there is a canonical isomorphism [Morel 2012, Remark 5.13]
CH'(X,L® (L)®) = CH"(X, L).
(3) For a morphism f : Y — X of smooth varieties over k one has a functorial pullback homomorphism
f*:CH"(X, L) — CH"(Y, f*L)

given by the pullback in the cohomology of sheaves. Further, if f is proper then one has a functorial
pushforward homomorphism [Fasel 2020, Section 2.3]

fx:CH, (Y, f*L) — CH,(X, L)

induced by the transfers on the Rost—Schmid complexes. For a closed embedding i : Z — X of smooth
varieties, with j : X \ Z — X the open embedding of the complement, the localization sequence

CH,(Z,i*L) 5 CH, (X, L) &5 CH, (X \ Z, j*L)

is exact [Fasel 2020, Section 2.2].

(4) Let F/k be a field extension of finite degree. Since k is perfect, F is separable over k, so the field
trace trf : F — k is a nonzero k-linear functional. This gives rise to the Scharlau transfer

(tr])s : GW(F) — GW(k),

an additive homomorphism, which is given on generators (a) € GW(F') by defining (tr,f )«({a)) to be the
quadratic form x +— trkF (ax?) on the k-vector space F. The pushforward homomorphism in Chow—Witt
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groups
Ty Gf{o(Spec F)— a{o(Spec k)

for the morphism 7 : Spec F' — Spec k coincides by [Fasel 2020, Example 1.23] with the Scharlau transfer

(tr,f )« under the identifications

CHo(Spec F) = K}V (F) ZGW(F), CHy(Speck) = K)™ (k) = GW (k).
(5) For a rank-n vector bundle E over a smooth variety X over k one has an Euler class
e(E) = s*s,(1x) € CH" (X, (det E)"),
where s : X — E is the zero section. This class is natural with respect to pullbacks [Asok and Fasel 2016,
Proposition 3.1.1].

(6) Let E be a rank n vector bundle over a smooth affine variety X of dimension n over k. Suppose
that det E = Ox. Then e(E) = 0 if and only if E has a nonvanishing section. For n = 1 there is nothing
to prove, for n = 2 this was shown in [Barge and Morel 2000, Theorem 2.2] and for general n this
follows from the results of [Morel 2012, Chapter 8; Asok et al. 2017, Theorem 1; Asok and Fasel 2016,
Theorem 5.6]; see Theorem 2.2 below for the details.

Theorem 2.2 (Barge—Morel, Morel, Asok—Fasel, Asok—Hoyois—Wendt). Let k be a perfect field and E
be a rank n vector bundle over a smooth affine variety X of dimension n over k. Suppose that det E = Oy.
Then E admits a nonvanishing section if and only if e(E) = 0.

Proof. If n =1, there is nothing to prove, so assume n > 2. It follows from [Morel 2012, Theorem 8.14] that
E admits a nonvanishing section if and only if a certain obstruction-theoretic Euler class ey, (E) € CH" (X)
vanishes. Note that in that work it was assumed n > 4 because of the assumption r # 2 in [Morel 2012,
Theorem 8.1 (3)], which can be removed using [Asok et al. 2017, Theorem 1]. It follows from [Asok and
Fasel 2016, Theorem 5.6] that e,,(E) = 0 if and only if e(E) = 0, whence the claim. O

Remark 2.3. We expect that Theorem 2.2 generalizes to vector bundles with possibly nontrivial determi-
nant and to general fields, removing the assumptions det £ = Oy and k being perfect.

Remark 2.4. Let X be a smooth hypersurface in AZH. Since k[x1, ..., x,4+1] is a UFD, the ideal of X is
principal, Ix = (F). We have the tangent-normal sequence describing the tangent bundle Tx as

0 Tx —> 0% 25 0y >0,
where VF := (0F/dxy, ..., dF/dx,41) is the usual gradient of F. Since X is affine, this sequence splits,
in particular, T is stably trivial and det Tx = Oy, so Theorem 2.2 is applicable to Ty.

Definition 2.5. Let X be a smooth proper variety over a perfect field k£ with the structure morphism
7 : X — Speck. Then the quadratic degree map

degow =y : a{O(X) — @O(Spec k) = GW(k)

is the pushforward homomorphism for the structure morphism.



Combing a hedgehog over a field 2419

Lemma 2.6. Let Q be a smooth projective quadric over a perfect field k. Suppose that Q (k) # &. Then
the quadratic degree map
degsw : CHo(Q) — GW (k)

is an isomorphism.

Proof. Let n = dim Q and consider the commutative square

where O Ly A P" is the resolution of the birational morphism Q --+ P" given by the projection from
a rational point on Q. Note that all maps in this square are proper. This gives a commutative diagram of
pushforward homomorphisms:

CHy(Y) —— CHy(Q)

| |~

CHy(P") —2— GW (k)
It follows from the birational invariance of éT—Io [Feld 2022, Corollary 2.2.11] that f, and g, are
isomorphisms. Recall that wp» = Opn(—n — 1), whence
CH" (P"), n is odd,
CH" (P", Op:(—1)), n is even.

The homomorphism p, is an isomorphism by [Fasel 2013, Corollary 11.8]. Thus 7, = degsy is an

CHy(P") = CH" (P", O(—n — 1)) = {

isomorphism as well. O

Definition 2.7. A smooth projective scheme X over k has a quadratic Euler characteristic x(X/k) €
GW (k), arising from the categorical Euler characteristic of the dualizable object 57X in the motivic
stable homotopy category SH(k), together with Morel’s theorem [2004, Theorem 6.4.1, Remark 6.4.2]
identifying the endomorphisms of the unit in SH(k) with GW (k) (see [Hoyois 2014, Section 1; Levine
2020, Section 2.1] for details). The motivic Gauss—Bonnet theorem [Déglise et al. 2021, Theorem 4.6.1;
Levine and Raksit 2020, Theorem 5.3] gives the identity

X (X/k)=degsy(e(Tx)) € GW(k). (2.8)
Theorem 2.9. Let Q° be the affine quadric over a perfect field k given by the equation

aixi +axy + -+ appixp g =1,
withay, ..., ay+1 € k* and let Q® be the projective quadric given by the equation

a1x12 +a2x% 4+ +an+1x,21+1 =0.
Then the following hold:
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(1) If nis odd, then the tangent bundle Tyo has a nonvanishing section.
(2) If n > 0 is even and the tangent bundle Tgo has a nonvanishing section, then

n+1

(1) +<2, 2. Hai> € deggy (CHo(0) S GW(L).
i=1

n
2
(3) If n > 0is even and Q° has a rational point, then the tangent bundle Tgo has a nonvanishing section

if and only if
n+1

{1, —1) +<2, 2. 1‘[a,~> € deggy (CHY(Q™)) € GW(k).
i=1

Proof. (1) We have settled the case of odd n in Remark 1.10.

n
2

(2), (3) Let Q be the compactification of Q° given by the equation
arx? a3+ A dppixt, =x3

in the projective space P! and let j : Q° — Q be the open embedding. Then Q*° = 0\ j(Q?); let
i: Q% — Q be the closed embedding. Consider the localization sequence and the quadratic degree

homomorphisms
CHo(Q®) —— CHy(Q) —— CHy(Q?)
GW (k)

We have the identifications
CHy(Q) = CH"(Q, wg) = CH"(Q, (det Tp)"),

so we consider the Euler class e(Tp) € CAFI"(Q, (detTp)") as being in éf{o(Q).
Exactness of the localization sequence yields that the Euler class e(Tjp0) =e(j*Tg) = j*e(Tp) vanishes
if and only if e(Tp) € i*éfio( 0°). By (2.8) and [Levine 2020, Corollary 12.2] we have

n+1
(1, —1)+<2,2-Ha,->. (2.10)

i=1

deggy (e(Tg)) = x(Q/k) =

NS

Suppose that Tgo has a nonvanishing section. Then e(Tpo) = 0 and hence e(Tp) is in i*(ﬁlo(Q“).
Taking quadratic degrees and using formula (2.10) we obtain

n+1
n . ~~ ~
deggy (e(Tg)) = 5 - (1. ~1) + <2, 2-T] ai> € deggy (i,CH(Q™)) = degy (CHy(Q%)).
i=1
proving (2) and one implication in (3).
Now suppose that Q° has a rational point and % (1, —1) —I—(2, 2- ]_[?:11 a,-) € degGW(éT{O(QOO)). Note
that degy (CHo(Q™)) = deggy (ixCHo(Q>)), whence Lemma 2.6 combined with (2.10) show that
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e(Tp) € i*éﬁo(QC’o), yielding e(T0) = 0. Remark 2.4 provides an isomorphism det Tpo = Oge, whence
Theorem 2.2 implies that T» has a nonvanishing section, completing the proof of (3). O

Example 2.11. Let S,f be the quadric over a field k given by the equation x> 4+ y? 4+ z2 = 1.

(1) If the equation x? + y> = —1 has a solution over k then the conic C; C [P’,% given by the equation
x? + y2 +z2 =0 has a rational point whence degGW(éTLIO(C ) = GW (k) and Theorem 2.9 yields that
TS;? has a nonvanishing section. In particular [Lam 2005, Example X1.2.4(2) and (6)] yield that this holds
for k = Q, the field of p-adic numbers and for k = [F,» a finite field, with p # 2 in both cases. By
base-change, the same follows if kK D Q, or k has characteristic p, with p # 2. An explicit nonvanishing
section of Tsf, in these cases may be found as in Remark 1.10.

(2) Let k = @, be the field of dyadic numbers. Then the equation x> 4 y?> = —1 has no solution over k
by, e.g., [Lam 2005, Example XI.2.4(7)] and the conic C;, C P? given by the equation x> + y? +z> =0
has no rational points. However, it is clear that C; has a rational point over @, (+/—2). Moreover, since 2
is equivalent to —14 modulo squares in Q; (see, e.g., [Lam 2005, Corollary VI.2.24]), C has the point
(6+/—14, 10, —2 4+ 3/—14) over @»(v/2). A straightforward computation shows that

@2V, (1) = (2, £1),

whence

(1, =)+ (2,2) = @Y (1) + @Y ™).((1) € deggy (CHo(Co)
and Theorem 2.9 (3) yields that Ts,f has a nonvanishing section. Alternatively, we have

Y, (14 V2) = (-

whence
(L —1)+(2,2) = (2, =2) + (1, 1) = @2V?), (1, 1 +v2)) € deggyy (CHo(Ch)).

Note that C does not have a (2,-point, so we cannot apply Remark 1.10. We were not able to produce an
explicit nonvanishing section in this case.

Example 2.12. We can expand on the last example as follows. Let S,f" be the quadric over a field k&

2n+1

given by the equation ) ;"] x =1, n > 0, and suppose k contains a p-adic field Q,. Then TSZH has a

nonvanishing section. Indeed, letting Ck IPZ” be the projective quadric defined by ZZ"H x7 =0,
we have just seen that (1, —1) 4+ (2, 2) is in degGW(CHO(C,%)) C GW (k). But for an arbitrary quadratic

extension k(y/a) of k, we have
(V) (Va)) = (1, —1),

o(l,—1)isin degGW(ﬁ{O(Q)) for every smooth projective quadric Q over k, and thus we have

n- (1, =1) +(2,2) € deggy (CHo(CP)) € deggy (CHo(CF™) S GW (k).
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We then apply Theorem 2.9 (3) to conclude that ngn has a nonvanishing section. Just as in Example 2.11 (1),
we can produce an explicit nonvanishing section if C,f" has a k-rational point. This is the case if Q, C k
with p an odd prime or if n > 2 and ), C k (for this last case, see [Lam 2005, Theorem VI.2.12]).

Remark 2.13. Returning to the example of S22, Nanjun Yang asked if one could completely compute
&IO(Séz). From the localization exact sequence in the proof of Theorem 2.9, we have the isomorphism

CHo(S3,) = GW(Q2)/ deggy (CHo(Ca,)).

We may identify Cq, with the Severi—Brauer variety associated to the standard quaternions Hg, over Q.
By [Serre 1962, XIII, Proposition 6], the Brauer group of a local field K is isomorphic to @/Z by the map

invg : Br(K) — Q/Z,

so, for a degree-2 extension k D , Cq,(k) # < if and only if k splits Hg,, i.e., if and only if the
invariant inv (Hy) in @/Z is zero. But by [Serre 1962, XIII, Proposition 7],

invg (Hx) = 2 - invg, (Hg,) =2 % =0,

so Cq,(Q2(y/a)) # @ for every nonsquare a € Q3.
Thus, (2, 2a) = tro, (/a)/a, (1) isin degGW(ﬁIo(C@z)) for all nonsquares a, so the ideal 7 in GW ()
generated by the forms

{2,u) |lu=3,5T7U{2,2u) |lu=1,3,5,7}

is contained in deg gy, (ﬁ{O(C @,))- Itis easy to see that / is exactly the ideal in GI(Q;) of even-rank forms
in GW(Q,); since degyy (CHo(Cay,)) is clearly contained GI(@;), we have degyy (CHo(Ca,)) = GI(Q@,)
and

CHo(S3,) =2/2

via the mod 2 rank map GW(Q,) — Z/2.

3. Scharlau’s transfer for closed points on a quadric

Definition 3.1. Let F be a field, char F' # 2. We denote by GI(F) € GW(F) the ideal consisting of the
even-dimensional (virtual) regular quadratic forms in the Grothendieck—Witt ring of F.

Definition 3.2. Let £/ F be a field extension of finite degree, char F # 2, and s : E — F be a nonzero
F-linear functional. Then the Scharlau transfer [1969]

s« : GW(E) = GW(F)

is the additive homomorphism such that s, ({a)) is the quadratic form x — s(ax?) on the F-vector space E.
See [Lam 2005, Chapter VII] for some of the properties of the Scharlau transfer.
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Let X be a variety over k. The transfer ideal of X is given by
Gl = D (50 (GW(k(x))) € GW(k),
XEX(())

with the sum taken over all the closed points of X and {s, : k(x) — k},cx, being a chosen set of nonzero
k-linear functionals. Note that GIt}( does not depend on the choices of s, [Lam 2005, Remark VII.1.6(C)].
It is easy to see that the transfer ideal admits an alternative description as

Gy = Y (55)(GW(F)) S GW(k),

F/k finite
X(F)#2

with the sum taken over all the (isomorphism classes) of field extensions F/k of finite degree such that

X r has a rational point and {sg : F — k}r being some chosen set of nonzero k-linear functionals.

Remark 3.3. The transfer ideal s.(GW(F)) € GW (k) for an extension of fields F/k of finite degree is
a classical object of study; see, e.g., [Lam 2005, Chapter VII]. This agrees with the notion introduced
above if one considers F as a zero-dimensional variety Spec F over k.

Lemma 3.4. Let X be a smooth proper variety over a perfect field k. Then
GIY = deg;y (CHo(X)).

Proof. This follows from the description of (ET—IO(X ) via the cohomology of the Rost—Schmid complex
and the fact that the pushforward in (ﬁ-lo for a separable field extension of finite degree coincides with
the Scharlau transfer for the field trace. |

Lemma 3.5. Let E/F be a field extension of even degree, char F =2, and s : E — F be an F-linear
nonzero functional. Then s,(GW(E)) C s,.(GI(E)) + (1, —1) - GW(F).

Proof. Note that the claim does not depend on the choice of s (see [Lam 2005, Remark VII.1.6(C)]).
Without loss of generality we may assume that £ = F(«)/F is a simple extension. Then there is a
nonzero functional s such that s, ({«)) = %[E : F1- (1, —1) [Lam 2005, Theorem VII.2.3]. The claim
follows, since s, (¢) = s, (¢ + {a)) — %[E CF]- (1, —1). O

Definition 3.6. Let g be a regular quadratic form over k. Then we use the following notation:
» D(q) is the set of nonzero values of g.
e D(q)>={a-b|a,be D(q)} is the set of products of pairs of nonzero values of g.
e [D(¢)] and [D(g)?] are the multiplicative subgroups of k* generated by the respective sets.

Note that if 1 € D(g) then [D(gq)] = [D(g)?]. Since all the sets introduced above are stable under
multiplication by squares (k*)2, we will sometimes abuse the notation and denote in the same way the
corresponding subsets of k* /(k*)?.
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Definition 3.7. For a regular quadratic form g over k of dimension n the signed discriminant 61.(q) is
given by the formula

8+(q) = (=1)""" D2 det A,,
where A, is a symmetric matrix representing g. This gives a well-defined map
81 : GW(k) = k*/ (k™).
When restricted to the ideal GI(k), this map becomes a homomorphism.

Lemma 3.8. Let Q be a smooth projective quadric over k defined by a quadratic form q and take ¢ € GIZ.
Then 8+(¢) is in [D(q)?].

Proof. We may assume Q (k) = &; otherwise ¢ is isotropic and D(q) = k*, whence there is nothing to
prove. Springer’s theorem [Lam 2005, Theorem VIIL.2.7] yields that for every closed point x € Q) the
degree [k(x) : k] is even. Hence GIZ C GI(k), whence 6+ restricted to GIZ is a homomorphism. Thus it
is sufficient to check the claim for ¢ = s5.(¢) with ¥ € GW(k(x)) for a closed point x € Q) and s a
chosen k-linear functional s : k(x) — k. Furthermore, by Lemma 3.5, we may assume v € GI(k(x)). By
[Scharlau 1985, Chapter II, Theorem 5.12] we have

8+(5:(¥)) = Nioy/k B£()) € k> / (k)2

The quadric Qg (y) has a rational point, whence gi(y) is isotropic and D(qk)) = k(x)*; in particu-
lar, §+(¥) € D(gk(x)). Then Knebusch’s norm principle [Lam 2005, Theorem VIIL.5.1] implies that
Niwy/k @£ (¥) € [D(9)°]. [

Remark 3.9. If g is a Pfister form then the last result was obtained in [Bhatwadekar et al. 2014,
Lemma 3.6].

Lemma 3.10. Let Q be a smooth projective quadric over k defined by a quadratic form q. Then
(a, b) € GIZ if and only if —ab € [D(q)?].

Proof. Since 64 ({a, b)) = —ab, one implication follows from Lemma 3.8. For the other implication,
first note that we may assume Q (k) = &, since otherwise GIZ = GW (k) and there is nothing to prove.
Then there exists a closed point x € Q) such that [k(x) : k] = 2 and we may choose « € k such that
k(x) = k(4/a). Then for the k-linear functional

s k(o) =k, s(1)=0, s(vo)=1,

one has s, ((1)) = (1, —1), whence
(1,-1) e GIZ .

Taking ¢, ¢p € k™, we have

(1, —c1c2) = (c1)(1, —c2) + (1, —c1) — (1, —1).
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Recalling that GIZ is an ideal in GW (k), it follows that

(1, —c1), {1, —c2) eGIté = (1, —cic2) GGIE. 3.1
We claim that
c,deD(@g) = (l,—cd)e€ GIE . (3.12)

Accepting our claim for the moment, write —ab € [D(q)z] as aproduct, —ab:=[]; a;b;, with a;, b; € D(q).
By (3.12), we have (1, —a;b;) € GIE for each i. By (3.11), it follows that <1, -1 aibi) = (1, ab) is
in GIE. We proceed to prove (3.12).

First suppose that dim Q = 0. Then we may assume g = x12 — ax% and Q = Speck( /o). A straight-
forward computation with the same functional s as above shows that

se((w1 + Vows)) = (1, —(u} — aud) (v] — av3))

for w; = (u1v] +auyvy)/(uv2 + urvy) and wy = 1, which proves (3.12) in this case.

Now suppose that dim Q > 1. Let g(u) = a, q(v) = b and choose some w # 0 such that ¥, (u, w) =
Yy (v, w) =0, where v, is the symmetric bilinear form associated to g. Put ¢ = g(w) and let @« = —a/c.
Then

q(u +Voaw) = qu) +agqw) + 2y, (u, w) = gu) + ag(w) =0.

Thus there is a closed point x € Qo) such that k(x) = k(y/—a/c). Then for the same functional s as
above one has

sy ((~/—a/c)) ={1,—a/c) € GIZ .

The same argument shows that (1, —b/c) is in GIE. Using (3.11), we see that (1, —ab) also belongs to
GI{, and (3.12) follows. O

Remark 3.13. Let Q be a smooth projective quadric over a field k£ defined by a quadratic form ¢. Then
the group [D(g)?] coincides with the group of norms Ng(k) of Q, i.e., with the multiplicative subgroup
of k* generated by the norms N/ (a), with a € F* and F/k being an extension of fields of finite degree
such that O has a rational point [Colliot-Thélene and Skorobogatov 1993, Lemma 2.2].

Definition 3.14. For ay, ay, ..., a, € k* an n-fold Pfister form ({a,, az, ..., a,)) is the quadratic form
[T:_,(1, —a;) of dimension 2". A regular quadratic form g over k is called a Pfister neighbor if there
exists a € k* such that (a) - ¢ is a subform of an n-fold Pfister form with 2"~! < dim g. Note that the
Pfister form containing (a) - g for a Pfister neighbor ¢ is unique [Lam 2005, Proposition X.4.17].

Lemma 3.15. Let g be a Pfister neighbor over a field k with the associated Pfister form ¢ and let Q
and © be the projective quadrics given by g = 0 and ¢ = 0 respectively. Then GIt(r2 = GI} and

[D(¢)*]1=[D($)*] = D(9).
Proof. Suppose ¢ is an n-fold Pfister form and ¢ has dimension m > 2"~!. Let a € k* be such that (a) - ¢

is a subform of ¢. Since the quadrics associated to ¢ and (a) - ¢ are the same and [D(g)*] = [D({a) - ¢)?],
we may assume that g is a subform of ¢. We claim that for a field extension F'/k, Q(F) # @ if and only if
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®(F) # . Indeed, since g is a subform of ¢, we have Q € & C Pinil, and, moreover, Q = ®N L, where
L is some codimension-(2" —m) linear subspace of [P’lzn_l. Thus if Q(F) # & then ®(F) # &. Now let
F be such that ®(F) # &. Then ¢F is isotropic, whence hyperbolic [Lam 2005, Theorem X.1.7], so &
contains a linear subspace L’ C IP’%:_I of dimension 2"~ ! — 1. Letting Lr C IP%:_I be the base-extension
of L C [P’,%n_1 to F, we see that Q  contains the linear subspace L' N Ly C [P’%Vn_1 of dimension at least
2=l 1 —(2"—m)=m—2""!'—1>0, whence Q(F) # @.

The transfer ideals are generated by the Scharlau transfers for the field extensions F/k of finite degree
such that Q(F) # @ (respectively, ®(F) # ), whence it follows from the above that GIE = GIEIE. Then
the equality [D(q)z] = [D(¢)?] follows from Lemma 3.10 because [D(q)z] and [D(¢)?] coincide with
the sets of signed discriminants of the binary forms from the respective transfer ideals. Since 1 € D(¢), we
have [D(¢>)2] = [D(¢)] and the last equality [D(¢)] = D(¢) follows from [Lam 2005, Theorem XI.1.1].

Alternatively, for the equality [D(g)*] = [D(¢)?] one could apply the description of these groups as
the groups of norms [Colliot-Théleéne and Skorobogatov 1993, Lemma 2.2]. O

4. Nonvanishing vector fields on affine quadrics via groups of values

Using the results of the previous section, we can reformulate Theorem 2.9 in a more manageable form.

Theorem 4.1. Let g = a1x12 + a2x§ 4+ 4+ an+1x,%+1 be a quadratic form over a perfect field k with
ai, ..., ayy1 € k>, and let Q° be the affine quadric given by the equation

a1x12 —i—agx% + - +an+1x,%+1 =1
Then the following hold:
(1) If nis odd then the tangent bundle Tpo has a nonvanishing section.

(2) If n > 0 is even and the tangent bundle Tgo has a nonvanishing section then
n+1

—[]a €p@)’l.
i=1
(3) If n > Ois even and Q°(k) # & then the tangent bundle Tg. has a nonvanishing section if and only
if =1 e[D(g)]
Proof. The case of odd n follows from Theorem 2.9 (1), so we assume n > 0 is even. Let Q°° C P" be

the quadric given by ¢ = 0. By Lemma 3.4 we have

a,-n+{2 Z-Hai> € deggy (CHY(Q®) = g {L-n+e2 Hai) €GIY., .

n
2

Note one trivially has 1 € [D(g)?]. Thus, Lemma 3.10 yields (1, —1) € GIEC,o and implies in addition that

n+1
g-(1,—1)+<2,2-1_[ai>eGI“oo = —]_[aiE[D(q)Z]-
i i=1

Applying Theorem 2.9(2) proves (2).
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For (3), note that Q°(k) # @ if and only if 1 € D(q), which implies that [D(g)] = [D(q)z]. Since each
a; is in D(q), we see that — ]_[7:11 a; € [D(q)z] if and only if —1 € [D(g)]. Thus, —1 € [D(q)] if and
only if 2(1, —1) 4+ (2,2 [[; @) is in deg;w (CHo(Q™)), and then Theorem 2.9 (3) implies the claim. [J
Definition 4.2. Let F be a field. The level of F, denoted by s(F), is the minimal integer n such that

—1le D(x12 —I-X% 4+ —i—x,f). If no such n exists then s(F) = oo. The level of a field is either infinite or a
power of 2 [Lam 2005, Pfister’s Level Theorem XI.2.2].

Corollary 4.3. Let S}, n > 1, be the affine quadric over a field k given by the equation
XP4+x3+-axr, =1
Then the tangent bundle Ts» has a nonvanishing section if and only if one of the following holds:

(1) nisodd.
(2) n>0isevenand s(k) <2n+1.

Proof. First assume that char k > 2. Then Remark 1.10 yields that the tangent bundle Ts» has a nonvanishing
section for every n > 1. At the same time —1 is a square or a sum of two squares in a finite field, whence
in k, thus s(k) is 1 or 2 and, in particular, s(k) <2n + 1 for n > 1. This yields the claim in the positive
characteristic.

Assume char k = 0, in particular, k is perfect. By Theorem 4.1 we need to show that for even n one has

~1e[DET+x3+-+x2 )]

if and only if s(k) <2n+ 1. Let m be such that 2m=1 < pn41<2™ Then xf +x§+- . -JHC,%+1 is a Pfister
neighbor with the associated Pfister form xl2 + x22 4+ 4 x%m. Lemma 3.15 yields

[DOG+x3 4+ +x2 )= D +x3+- - +x30).

Thus —1€ [D(xlz+x22+- : -+x2+1)] if and only if s (k) <2™. The claim follows since s (k) is a power of 2. [J

n

Example 4.4. Let S,% be the quadric over a field k given by the equation x> + y> +z2 = 1. If k = R then
Tszf has no nonvanishing sections since by a classical result of Poincaré the real vector bundle T51f (R) has
no nonvanishing continuous sections in the Euclidean topology [tom Dieck 2008, Theorem 6.5.5]. More
generally, Corollary 4.3 yields that Tszf has no nonvanishing sections if and only if s(k) > 8 (including the
case of s (k) = 00). In particular, TS]% has a nonvanishing section for the following fields (cf. Example 2.11):

(1) k a quadratically closed field,

(2) k afield of characteristic p > 2,
(3) k a non-Archimedean local field,
(4) k a purely imaginary number field.

See [Lam 2005, Example XI1.2.4] for the relevant computations of s (k).
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Corollary 4.5. Let k be a perfect field of characteristic % 2 such that every Pfister form of dimension 8 is
hyperbolic, i.e., that I (k)> =0,! and let Q° be the affine quadric over k given by the equation

2 2 2
aixy +axxy +- -t apy1X,, = 1,

with a; € k™. Suppose that n is odd, or that n > 0 is even and Q°(k) # &. Then the tangent bundle Tgo

has a nonvanishing section.

Proof. By Theorem 4.1 it is sufficient to show that for an even n > 0 one has —1 € [D({ay, az, . . ., an+1))].
We claim that already

—le[D(ar. a2, a3))’ 1 S [D({a1. a2, - ... an1))°1 = [D({ar, az. .. ., ang1)].
Indeed, note that the quadratic form (a;, a», a3) is a Pfister neighbor since
(a1} - (a1, az, a3) = (1, a1z, araz)
is a subform of the 2-fold Pfister form ((—aja>, —aja3)) = (1, a1a», aas3, aaz). Then Lemma 3.15 yields
[D(ar1, a2, a3))’]1 = D1, a2, aras, azaz)). (4.6)

Now, the form (1, ajas, a1as, azas, 1) is again a Pfister neighbor with the associated 3-fold Pfister
form ((—ajay, —ajasz, —1)). The latter form is hyperbolic by the assumption, whence its subform
(1, aray, aras, aras, 1) is isotropic by the same dimension count argument as in the proof of Lemma 3.15.
It follows that the equation

xlz + alagxg + a1a3x§ + a2a3x‘% + x52 =0
has a solution over k. This means that
—1 € D(l, a1az, ara3, aza3)),
yielding by (4.6) that —1 € [D({ay, a2, az))?] and thereby the claim. ]
Corollary 4.7. Let k be a number field and let Q° be the affine quadric over k given by the equation
arxf 4+ a4+ anpxli =1,
with a; € k™. Suppose Q°(k) # Q.

(1) If nis odd, then Tgo has a nonvanishing section.
(2) If n > 0 is even, then Tgo has a nonvanishing section if and only if, for each real embedding

o:k—>R,o(a;) <0 for somei.

Ut follows from the Milnor conjecture [Voevodsky 2003, Corollary 7.5; Orlov et al. 2007, Theorem 4.1; Rondigs and @stver
2016, Theorem 1.1] that 1 (k)3 =0 is equivalent to k being of 2-cohomological dimension at most 2.
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Proof. The case of odd n follows from Theorem 4.1 (1).

Forevenn > 0, put g = alxl2 + azxg + -+ an+]xfl+l. Let o : Kk — R be an embedding such that
o(a;) > 0 for all i and let gr be g extended to R using this embedding. Then [D(gr)] € R-(, whence
—1 ¢ [D(q)]. Thus Theorem 4.1 (3) yields one direction of the desired implication.

For the other direction it suffices to show that if n > 0 is even and for every embedding o : k — R one
has o (a;) < 0 for some i then —1 € [D(g)]. Note that the assumption that Q°(k) # & implies that, for
each real embedding o of k, there is a j with o (a;) > 0.

First assume n > 4. Let v be a place of k and consider the quadratic form g + x,% o= alxl2 + azxg +
S an+1x5 T x,f 4o over ky. If v is a finite place, then g + xrzl 4o 18 Isotropic since every quadratic
form of dimension > 5 is isotropic over a local field [Lam 2005, Theorem VI.2.12]. If v is an infinite
place then the assumption o (a;) < O for some i implies that g + x,f 4, is isotropic. Then [Lam 2005,
Hasse—Minkowski Principle VI.3.1] implies that ¢ + xr% 4 1s isotropic over k, whence —1 € D(q).

Now assume n = 2. The form (a1, az, a3) =a lxlz +arx2+asx? is a Pfister neighbor with the associated
Pfister form (1, aa», ajas3, aaz) and Lemma 3.15 yields

[D((a1, a2, a3))*] = D({1, ajaz, ajas, azas)). (4.8)

Let v be a place of k and consider the form ¢’ = (1, aa,, ajas, azaz, 1) over k,. As above, if v is a finite
place then the form ¢’ is isotropic by [Lam 2005, Theorem V1.2.12]. If v is a complex place then ¢’ is
clearly isotropic. If v is a real place with the real embedding o, : k — R then as Q°(k) # &, we have
Q(ky) #@; hence there is a j such that o (a;) > 0. Combined with our assumption that o, (a;) <0 for some
i, we see that at least one of o,(aja2), 0, (a1a3) and o, (aza3) is negative, whence ¢’ is isotropic over k.
Then [Lam 2005, Hasse-Minkowski Principle VI.3.1] implies that ¢’ is isotropic over k meaning that
—1e D((1, aia, aias, axaz)). By (4.8), we thus have —1 € [D({a1, a2, a3))?] and the claim follows. [J

Corollary 4.9. Let k be a field of one of the following types:

(1) a finite field Fpn, p > 2,

(2) a non-Archimedean local field of characteristic zero,

(3) the perfection of a local field of characteristic p > 2,

(4) the perfection of the function field of a curve over a finite field.
Let Q° be the affine quadric over k given by the equation

qi=aixi+apx; +- -+ apxp, =1,

with a; € k*. Suppose that n > 0, and if n =2 and k is of type (2, 3, 4), suppose in addition that Q° has a
k-rational point. Then Tge has a nonvanishing section.

Proof. In all the above cases, k is a perfect field of cohomological dimension < 2, and the result follows
from Corollary 4.5, once we know that Q¢ (k) # @ if n > 2 is even. For k of type (1) every regular quadratic
form in at least three variables is isotropic [Lam 2005, Proposition 1.3.4] and for k of type (2, 3, 4), every
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regular quadratic form in at least five variables is isotropic [Lam 2005, Theorem VI1.2.12, Corollary VI.3.5];
applying this to g — xg shows that Q°(k) # @ in all cases to be considered. g
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Self-correlations of Hurwitz class numbers
Alexander Walker

The asymptotic study of class numbers of binary quadratic forms is a foundational problem in arith-
metic statistics. Here, we investigate finer statistics of class numbers by studying their self-correlations
under additive shifts. Specifically, we produce uniform asymptotics for the shifted convolution sum
> wex Hm)H(n+ ) for fixed £ € Z, in which H(n) denotes the Hurwitz class number.

1. Introduction

The study of class numbers of binary quadratic forms has a rich history, dating back to Lagrange and
Gauss. In Disquisitiones arithmeticae, Gauss made several conjectures about the distribution of class
numbers, including the famous statement that the class number /(—D) of binary quadratic forms of
discriminant — D should diverge to infinity as D — oco. Gauss’ conjecture was established by Heilbronn
[12], with effective lower bounds first obtained through the combined work of Goldfeld [7] and Gross
and Zagier [11].

Moment estimates for class numbers have been studied by many authors, often using Dirichlet’s class
number to reduce the problem to estimates for families of quadratic Dirichlet L-functions at the special
point 1. For example, Wolke [34] proved that

Z h(=n)® = c()X'T2 + OO,(XH”%_%)
n<X

(1-1)

for fixed a > 0, where / (—n) denotes the number of classes of primitive binary quadratic forms of
discriminant —n. Later work of Granville and Soundararajan [10] implies that the main term in (1-1)
holds with some uniform error for any o < log X

In comparison, shifted convolution estimates for class numbers are far less understood. Recent work
of Kumaraswamy [23] considers

b
D(X.0) =Y h(=n)h(-n—20).
n<X
in which Zb denotes restriction to n such that both —» and —n — £ are fundamental discriminants, with
neither congruent to 1 mod 8. Kumaraswamy applies the circle method to prove that

DY) = e X3 (X +0 + Oc(X 30 (X +0)3Fo07e)
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for £ > 1 and all € > 0, uniformly in £ (cf. [23, Theorem 1.1]). For fixed £, this gives a power-saving of
O(X'1/69=€) in the error term.

Unfortunately, the peculiar restriction to 7,7 + £ % 1 mod 8 in [23] is essential, as this work uses the
identity

r2(n) = 12(1—(7”))/1(—;1), (1-2)
(cf. [3, Proposition 5.3.10]) to relate the class number to the Kronecker symbol and r3 (%), the number of
representations of # as a sum of 3 squares, which holds when —# is a fundamental discriminant. Since
(32) =1 for n = +1 mod 8, the identity (1-2) gives no information about ~(—n) on the residue class
—n =1 mod 8.

This article presents an alternative method for studying correlations of class numbers, via the spectral
theory of automorphic forms. In this setting, it is convenient to consider a version of the class number
h(—n) called the Hurwitz class number H (n), in which the classes containing a multiple of x2 + y2 or
x2 —xy + y? are weighted by % and 1, respectively. By convention, we set H(0) = —11—2. Hurwitz class

numbers feature, for one example, in Eichler—Selberg “class number relation” formulas, such as

Z H(4n—m?) =20,(n) + Zmin(d, %), (1-3)

meZ din

which appear in the work of Kronecker and Hurwitz. Here, oy, (n) = )_ dnd’.
More recently, Zagier [36] showed that Hurwitz class numbers arise as the coefficients of a mock
modular form. Specifically, Zagier proved that

L 1 nF(—%,4nn2y) 5
’H(z).—’;H(n)e(nz)—i—gn ﬁ+’; N e(—n’z) (1-4)

defines a harmonic Maass form of weight % on I'g(4). Here, z = x + iy,

e(z) — eZTEinZ’
and I' (B, ) denotes the incomplete gamma function. In particular, one may study Hurwitz class numbers
using automorphic forms.

In this article, we leverage the analytic theory of harmonic Maass forms and mock modular forms to
study the shifted convolution Dirichlet series

D)= 3 HH(1+6)

= ot =

where £ > 1 is a fixed integer. We prove that Dy (s) admits meromorphic continuation to s € C and use
this information to study the self-correlations of Hurwitz class numbers under additive shifts. Our main
theorem is the following result.
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Theorem 1.1. Let 0y,(m) = ) dim dV denote the sum-of-divisors function, with the convention that
oy(m) =0form & Z. Fix £ > 1 and let £, denote the odd part of £. Then, for all € > 0, we have

2X2

252&(3)( (%) (%)—FO——Z(ED))+05(X3+6+X1+€£)‘

> HmH@n+0) =

n<X

For £ < X2/3 this result achieves a uniform error of size O (X /3+€). For larger £, the error term
depends on £ but remains nontrivial when £ < X 17¢,

Since Hurwitz class numbers agree with the ordinary class numbers /(—n) for n not of the form 3m?
or 4m?, the rough upper bound H(n) <« n1/2+o() (¢f. Lemma 7.2) implies the following result as an
immediate corollary.

Corollary 1.2. With notation as above, we have
2X2

252 4‘(3) (2 (%) (%) + U—z(fo)) + O (X3+€ + XH_EEH‘G)

> h(=n—Oh(—n) =
n<X
The error bounds in Theorem 1.1 are of course not sharp. We conjecture that Theorem 1.1 should hold
with a secondary main term and an error of size O ((X £)!1€); specifically, that

2vyv2
Y HmH@n+0) = Tis)(zo_z (£) —0_2(5) +0-2(¢0))

n<X 3

o (20-1(4) —o-1 (%) + 0-1(£0)) + O (X O)'F€).  (1-6)

To support this conjecture, we show (cf. Remark 10.1) that (1-6) holds when the cutoff n < X is replaced
by a certain class of truncations with smoothing.

Paper methodology and outline

To produce shifted convolution estimates that treat all congruence classes equally, we abandon (1-2) in
favor of the generating function H(z) from (1-4). In particular, we treat shifted convolutions involving
weak harmonic Maass forms instead of ordinary modular forms. We also depart from [23] in that we treat
shifted convolutions using the spectral theory of automorphic forms, as opposed to the circle method.

Following some background material on harmonic weak Maass forms and mock modular forms
in Section 2, we relate the Dirichlet series Dy(s) defined in (1-5) to the Petersson inner product
(y3/2|1|2, Py(-,5)), in which Py(z,s) is a particular Poincaré series.

We obtain a meromorphic continuation for Dy(s) by first producing a meromorphic continuation
of (y3/2|H|?, Py(-,5)). This task is complicated by the fact that F(z) := y3/2|#(z)|? is not square-
integrable. To address this, we show in Section 4 that F(z) may be written in the form V(z) + £(z), in
which V € L? and £ is an explicit function involving Eisenstein series and the Jacobi theta function.
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The meromorphic continuations of (£, Py(-,5)) and (V, Py(-,5)) are then computed in Sections 5
and 6, respectively. While (£, P¢(-,5)) can be understood directly, the meromorphic continuation of
(V, Pg(-,5)) is accomplished through spectral expansion of the Poincaré series.

The methods described up to this point apply more generally. To illustrate this, the major results of
Sections 3—6 are presented with # replaced by a generic weak harmonic Maass form “of polynomial
growth” (cf. Section 2B). Our first significant specialization to #(z) occurs in Section 6, where we
leverage the fact that the contribution from the nonholomorphic part of #(z) is unusually simple (cf.
Remark 6.4) to more easily classify the poles and residues of Dy (s) in the right half-plane Re s > %

Our main application, Theorem 1.1, also requires uniform bounds for the growth of Dy (s) in vertical
strips. In Section 7, we address various elementary terms to reduce this problem to growth estimates for
(V, Pe(-,5)).

The spectral expansion of Py(z, s) gives a decomposition (V, Py(-,5)) = Zgisc(8) + Zcont(s) corre-
sponding to contributions from the discrete and continuous spectra of the hyperbolic Laplacian. While
Yeont 18 readily handled, the problem of bounding ¥ gisc () with respect to |Im s| is particularly complicated
and represents the central difficulty of this work.

Ultimately, our bounds for X rely on decay estimates for triple inner products of the form
(y3 / 21H|%, 1 j)» in which p;(z) runs through an orthonormal basis for Hecke—-Maass cusp forms on
[y (4). Similar inner products, of the form (yX¢; ¢2, 1 i) (with ¢y, ¢ automorphic forms of weight k)
have been studied in numerous works, and we mention a few:

o

. @1, ¢, weight k € Z holomorphic cusp forms on I'g(N), by [8];

o

. ¢1, ¢ weight 0 Eisenstein series on I'g(1), by [33];

o

. p1¢ replaced by any polynomial in Maass cusp forms, by [28];

o

. @1, ¢ weight 0 Maass cusp forms on I'g(1), by [19; 20];

o

. ¢1. ¢, weight k € 27 modular forms on Ty (N), by [22].

Of these prior works, (a) and (b) use the Rankin—Selberg method directly, (c) and (e) use the automorphic
kernel, and (d) uses a modified Rankin—Selberg method that introduces an auxiliary Eisenstein series for
the express purpose of unfolding.

Our treatment of (y3/2|H|?, u j) appears in Section 8. More generally, this section produces bounds
for triple inner products of the form (y*| |2, u i), where f is a harmonic Maass form of polynomial
growth of weight k € % + Z. In particular, we prove the following result:

Theorem 1.3. Let [ be a harmonic Maass form of polynomial growth of weight k € % + Z and level N.
Let i be an L?-normalized Hecke—Maass cusp form of weight 0 on To(N), with spectral type t € R. For
all e > 0, we have

DRI F 12 1) <ive (1212570 + 1t P72K) rfeem 31,
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We remark that the space of harmonic Maass forms of polynomial growth includes My (I'g(N)), the
space of modular forms. In this setting, Theorem 1.3 can be used to improve the spectral dependence in
certain results of [22]. (In particular, see [22, Proposition 14].)

Our proof of Theorem 1.3 draws heavy inspiration from [19; 20], though our work is more complicated
in several respects, such as the change from I'g(1) to ['g(N), the change in Whittaker functions (from
K-Bessel functions to incomplete gamma functions), the generalization to half-integral weight, and the
introduction of terms related to the fact that f need not be cuspidal. We also depart from Jutila by
considering individual inner products instead of spectral large sieve inequalities. We suspect that a spectral
large sieve inequality would not improve Theorem 1.1.

In Section 9, we apply these triple product estimates to complete our quantification of the growth
of Dy (s). At this point, our main result follows from a version of Perron’s formula with truncation, as
presented in Section 10.

2. Harmonic weak Maass forms and mock modular forms

The theory of harmonic Maass forms was introduced by Bruinier and Funke in the context of geometric
theta lifts [2]. This section reviews the basic definitions of harmonic Maass forms and mock modular
forms. A good reference for background material is [1, §4].

A weak Maass form of weight k£ on a congruence subgroup I' C SL,(Z) is a smooth function f :§— C
which transforms like a modular form of weight &, is an eigenfunction of the weight k£ Laplacian

A 2( + i viky( L il
=— —+ — i —+i—,
k Yoz T 2 Nox '% y
and has at most linear exponential growth at cusps.
If A f =0, then f is called a harmonic (weak) Maass form of manageable growth. Let H, ,'( (I") denote

the space of weight k harmonic Maass forms of manageable growth on I'. If I' = T'g(N) or ['{(N), then
any f(x+iy)e H, IL (I") admits a Fourier expansion at co of the form

f@ =Y cTmemz)+c )y + > I —k.4xny)e(—nz) 2-1)
n>n+t nzn"
n#0

(cf. [1, Lemma 4.3]), where ['(8, y) := fyoo tB=1e~" dt is the incomplete gamma function. In the case
k =1, the term ¢~ (0) y* ¥ is replaced with ¢~ (0) log y. The first sum in the Fourier expansion (2-1) of
f(z) is called the holomorphic part, and the rest of the right-hand side of (2-1) is the nonholomorphic
part. Any function which arises as the holomorphic part of a harmonic Maass form of manageable growth
is called a mock modular form.

Fourier expansions of analogous shape exist for each cusp of I'. To describe this precisely, we assume
henceforth that k € %Z and I' C T'y(4) and restrict to Maass forms with the theta multiplier system vg.
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That is, where 0(z) := Y, <, ¢(n%z) denotes the Jacobi theta function, we assume that

s = (522" e

for all y = (¢54) € I'. This may also be written f(yz) = vg(y)**(cz + d)* f(z), in which vy is
defined by Ug((‘c‘ 3)) = 6;1(%), where € = 1 ford = 1 mod 4 and ¢; = i for d = 3 mod 4. For
y = (? 3) € GL(2, R) with det y > 0, we define the weight k slash operator by

2k
7= (B2 ra).

Finally, for each cusp a of I', let I'y = (£#,) C I" denote the stabilizer of a. Let o, denote a scaling
matrix for a, i.e., a matrix in GL(2, R) for which 7, = 04(} 1 )oi!. Define the cusp parameter x, € [0, 1)
so that e(x,) = vg(t,). If 24 = 0, the cusp a is called singular; otherwise, a is called nonsingular.

Given all this notation, f(z) admits a Fourier expansion at each cusp a of I', given by
Ja@) = flo,(2) = Y e Me((n+ xa)2)

n>nt
+e (0 F+ D g T =k 47 (n— xq) p)e(—(n— xa)z).  (2-2)

n#x,

where ¢, (0) y1=% appears only when x, = 0. When k = 1 and x, = 0, we replace this term by

¢, (0)log y. Since we work most commonly with the Fourier expansion at a = oo, we retain the shorthand
+ -

cT(n) :=c(n).

2A. The shadow operator ;. This section follows [1, §5.1]. Recall the Maass lowering operator L
defined by L = —iyz(% +i %). We define as well the shadow operator &, = yk_zL_k. By [1, Theorem
5.10], &, maps Hl!< (TCo(N)) surjectively to le_k(Fo (N)), the space of weakly holomorphic modular
forms of weight 2 — k. This map is given by

E(f(2) =(1—k)c=(0)— (4m)' ™% >~ c=(mn' e (nz).

n=zn—

n#0

(2-3)

The form & f is called the shadow of f.

2B. Harmonic Maass forms of polynomial growth. Generically, the coefficient series {C;t (n)} grow
superpolynomially as # — co. In the remainder of this article, we restrict to the special case in which the
coefficients are polynomially bounded in . This is equivalent to the property that f(z) have no poles at
cusps, or that n* £ %, > 0in (2-1) for all a.

Let H,E (I'o(N)) denote the subspace of H,!c (T'o(N)) consisting of forms with at most polynomial
growth at cusps. We remark that the space H, £ features prominently in [31], where it serves as a natural
setting to study L-functions attached to mock modular forms. Note that H, ,B is a subspace of the space of
(not necessarily cuspidal) Maass wave forms of weight k.
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The shadow operator maps & : H Iﬁ(Fo (N))— M,_;(To(N)). In particular, & annihilates H. ,é (To(N))
for k > 2. In other words, H,g = M, for k > 2, so the space H,ﬁ is most interesting for k < 2.

Though exact growth rates for the coefficients cf (n) are not known, adequate on-average bounds
are known from the Rankin—Selberg method as applied to Maass forms (including noncuspidal Maass
forms) in [26]. Specializing to the case of harmonic Maass forms and translating notation, we present the
following result.

Lemma 2.1 (cf. [26, Theorem 5.2]). Fix f(z) € H,g(I‘o(N)) with k € %Z and k # 1. If f has Fourier
expansion (2-2), then

Z |C$E(’7)|2 { faX + Of(X5 log X) if f is cuspidal,

1+ 2 )1 ot X1k 1|+0f(X1+|k—1|—§i§}§§:}I log X) else,

n<X

fOl" some constants C:ta
9

3. Shifted convolutions via inner products

In this section, we show that shifted convolution Dirichlet series of the form (1-5) can be recognized in
terms of Petersson inner products. To begin, we treat a generic form f(z) € H Ig (T'o(NV)) with Fourier
expansion (2-1). We define the £-th Poincaré series Py(z,s) of weight 0 on I'g(N) by

Py(z,s) = Z Im(yz)’e(fyz).

Y€loo\Io(N)

For s with Re s sufficiently large, the Rankin—Selberg unfolding method gives

dx dy
2

oo pl
(yklflz,Pz(-,E))Z/ / VR fo) @)

d
= . / S e(ny, y)e(ng. y)e 2 yy

ny=ny+4

(3-1)

in which c(n, y) denotes the n-th Fourier coefficient of f(z) at the cusp a = oo. In other words, ¢(n, y) =
ct(m)e™ 2™ forn > 1, ¢(0, y) = ¢t (0) + ¢~ (0)y' %, and ¢(n, y) = ¢~ (—n)T(1 — k, —4mny)e 27y
forn < —1.

The contribution of n1,n, > 0 to the inner product is a standard shifted convolution Dirichlet series:

dy T(s+k-1) ct(ny+0)ct(ny)
I+ — + PR / s+k— 1 —2n(ny+n2+L)y 4V
¢ ) Z (n)c™(n2) y (471)s+k 1 Z (ny+£)sTh=1

ni=ny+4

Since f € H lg’ the Dirichlet series in the line above converges absolutely in some right half-plane. More
precisely, Lemma 2.1 gives convergence in Res > 1 + |k—1|, extending to Re s > 1 in the cuspidal case.
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The net contributions from (n1,n,) = (£, 0) and (0, —¢) total
1 t9 (s):=

¢t e (OT(s)  ¢T @) et O (s+k—1) ¢ (0)c= ()T (s—k+1) ¢t (0)e= ()T (s)
(4l (dmg)stk—1 (4ml)ss (Aml)sth=l(s+k—1)

The function 7, 19 (s) is meromorphic in s € C and analytic in Re s > |k—1|. Note that / £9 (s) vanishes when
f is cuspidal.
There is another finite collection of “cross terms” when n; > 0 and n, < 0, which contributes
-1

. o0
I)(s) = Z c+(€—m)c_(m)/ ySthk=lo=dnt=my (1 —k,4nmy)d—y
m=1 0 Y
T(s) et (—mye=(m) _ (s.s+k—1| ¢
= Z 2 Fy 1——,
s—l—k—1m=1 (dmrm)s k-1 s+k m

in which we’ve evaluated the integral via [9, 6.455(1)]. The function / E( (s) is analytic in the right
half-plane Re s > max(0, 1 — k) and has an obvious meromorphic continuation to s € C.
Lastly, we record the contribution of n1, n, < 0, which can be written

oo

_ - “(n+t .
I,/ (s):= Z%Gk(&n,n—kﬁ), with
n=1 (3-2)

& d
Gr(s,n,n+10):= / VI (1 =k, ny)T(1 =k, (n —I—E)y)e”y—y.
0 Y

The two asymptotic expressions (8, y) = T'(8) — y#/B + 0,3()/5“) as y —> 0 and I'(B,y) =
eV yP1(1 + Oﬂ(y_l)) as y — oo imply that G (s, n,n + £) converges absolutely when Re s > |k—1].
In this region, Gy (s, n,n +£) < Gy(Res,n,n) Kres n~ X575 +1 by change of variable. Thus 1, (s)
converges to an analytic function in Re s > 1+ |k—1|, extending to the domain Re s > 1 in the cuspidal case.

We conclude that the unfolding procedure is valid in Re s > 1 4 |k— 1], and that in this region we have
the decomposition

DRI Pe(-.5)) = 1 (s) + 10 (s) + 1) (s) + 1 (s). (3-3)

3A. Application to H(z). The formulas in this section simplify considerably for the specific form
He Hf /2(F0 (4)) defined in (1-4). Recall from (1-5) the definition of the shifted convolution Dirichlet
series

Z Hn)Hn+1)

Dy(s) :=
Som+ 0T

(3-4)
which converges absolutely in Re s > % By (1-4), the coefficients ¢~ (n) of H may be written in terms of

r1(n), the number of representations of # as the square of an integer. Simplifying the various terms at
right in (3-3) produces the formula



Self-correlations of Hurwitz class numbers 2441

- L T(s+1) H(OT(s) HOT(s+3)
W P = PO Sty T o
rr(s—73) B ri (O (s)

12872(4r€)~2s 192w (4ml)s (s + 1)

LT S8 HE—myri(m) (s s+1
54_% o 167 (47 m)S 2 +2

-2
m

mimo )
+ E ———=—G3(s,m5,my). (3-5)
4(47-[)S+% 2 »

m2 T m2 ={
mi, m2>1
2 _
1

many solutions. This phenomenon generalizes to any f € Hf /2(1"0 (N)) for which My ,,(Io(N)) is

The contribution of 7, (s) in the fourth line of (3-5) is a finite sum, since m m% = { has finitely

one-dimensional, since in that case &3/, f  is necessarily a twisted theta function by [30, Theorem A].

Thus, in departure from the general case, we conclude that 7, (s) is analytic in Re s > %

Secondly, we remark that the contribution of 7/ ex (s) bears some resemblance to one side of the Eichler—
Selberg class number relation (cf. (1-3)). More specifically,

{ 1

m2<{

Res
s=0 § 4+ é 167 (4w m)s

I'(s) ! H{—m)r(m) (s s+
201 s+2

which is essentially one of the sums described in [1, §10.3]. It would be interesting to know if the methods
in this paper could be used to produce new class number relations.

4. Automorphic regularization

To produce a meromorphic continuation for the Dirichlet series Dy (s), we first show that the inner product
(yK|#)2, P;(-,5)) has a meromorphic continuation to a larger domain. This latter continuation involves
the spectral decomposition of P;(z, s) with respect to the hyperbolic Laplacian and is complicated by
the fact that y3/2|H(z)|?> & L2(Ty(4)\h). To rectify this, we modify y3/2|#(z)|? by subtracting a linear
combination of automorphic forms chosen to neutralize growth at the cusps of [y (NV).

We define the weight 0 Eisenstein series attached to cusp a of I'g(N) by

Eq.(z,5) = Z Im(o, 'yz)".
y€la\I'o(N)
These Eisenstein series have Fourier expansion at the cusp b of the form
ECI (sz’ w)

F(w_%) 1—w
W%bo(w)y + F( )

1
= O[a=p " + 72 Z%bn(w)lnlw ZKw_,(2ﬂ|n|y)€(HX) (4-1)
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in which 8. denotes the Kronecker delta, K, (y) is the K-Bessel function, and the coefficients @ap, (w)
are described in [4], for example.

As in the previous section, we first consider a general f(z) € H,ﬁ (T'o(N)), with k € %Z (k #1),
specializing to / = H when convenient. Let Fy(z) := yk|f|ga (2)|? = Im(0a2)*| f(0az)|2. If 24 # 0,
then F,(z) decays exponentially as y — oo by the Fourier expansion (2-2), and no regularization is
required. Otherwise, when x, = 0, (2-2) implies that

Fa(2) = y¥1ed 0 + c; 0y 12+ 0(~™) (4-2)

as y — oo for all M > 0. It therefore suffices to regularize growth of sizes yk , !, and yz_k at the
singular cusps.

For k > 1, the Eisenstein series Eq(z, k) counteracts growth of size y¥ at a, while for k < 1 we
utilize Eq(z,2 — k) to address y2~%. Unfortunately, this technique fails to regularize growth of size
y1, since E4(z, w) has a pole at w = 1. In this case, we instead subtract a multiple of the constant
term in the Laurent expansion of Eq(z, w) at w = 1, which we denote Eq(z, 1), and which satisfies
Ea(abz, 1) = 8[q=p)y — mlog y Resy—1 @apo(w) + Cap + O(e™2™) for some constant ¢qp. Thus, for
example,

Vr(2):=F(z) = Y leg (07 Ea(z.2—k) =2 Y Re(c; (0)¢; (0) Eq(z. 1) (4-3)

a:xq=0 a:xqa=0

satisfies Vr(0qz) = O(y* +1ogy)as y — oo when k < 1. If k < %, it follows that Vr € L2(To(N)\h).
The case k > % may be treated analogously.

The situation is more complicated in weights k = % and k = % as here we must regularize terms of

1/2

size yl/ 2. The obvious choice for regularizing y!'/? is to subtract a multiple of E, (z, %), but this term

equals 0 since the completed Eisenstein series ¢*(2w) Eq(z, w) is analytic at w = % Likewise, it is not

possible to regularize with a linear combination of terms of the form lim,, 1 C*Qw)Eq(z, w), as these

grow as yl/2 log y near a.
In weight k = %, the growth of size yl/ 2 comes from the nonholomorphic part (cf. (4-2)). In particular,
we can regularize all cusp growth of size yl/ 2

y1/2|§‘3/2f|2. Specifically, we define

V@)= FE) = Y lef P Ea(2.3) =2 ) Relef (0)c; ) Ealz, ) —4p2 15 /()2 (4-4)

a:xqa=0 a:xqa=0

simultaneously by subtracting an appropriate multiple of

Then V¢ (04z) = O(log y) at each cusp by (2-3), so Vr € L2(To(N)\b).

In weight k = %, we may likewise attempt to regularize by subtracting a function of the form y! /2 lg(2)|?,
where g € My/5(I'9(N)). However, there is no guarantee that a modular form with compatible cusp
growth need exist. If f € H f /2(F0 (N)) is chosen, we may test for the existence of a compatible g using
the basis for M5 (I'g(N)) described in [30, Theorem A]. Since we do not require k = % for our principal
application, we leave the question of the existence of a compatible g as an interesting open problem.
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4A. Automorphic regularization of #(z). In practical terms, the problem of regularizing H(z) reduces
to the problem of computing the constant Fourier coefficients c;t (0) at each singular cusp a of I'g(4). In
this section, we determine these coefficients, as summarized in the following proposition.

Proposition 4.1. Let H € H /2(F0 (4)) denote Zagier’s nonholomorphic Eisenstein series from (1-4). The

cusp a = % is nonsingular for vg; for the other cusps, H(z) has a Fourier expansion of the form (2-2), in

which

0= @O=  GO=0  GO=—r
Consequently, the function
Vi(2) 1=y )P Eao (2. 3) — e Eo (2. 3) 4 o Bz Db = Bz, 1) = —— y310(2) 2
144 27576 27 487 961 6472

lies in L*>(To(4)\h).

Proof. To verify that a = % is nonsingular, we first note that I'y /5 is generated by ¢/, = (:‘11 %) Since
vg(t1/2) =i, we have x;/, = % #0.

As for the singular cusps, we clearly have ¢ (0) = —% and ¢, (0) = é from the Fourier expan-
sion (1-4). To understand the behavior of H(z) near a = 0, we follow [13] and relate #(z) to certain

Eisenstein series of weight 5 3. Specifically, we introduce the Eisenstein series

(2) e
(Z) - ZZ (mz 4+n)3/2|mz +n|2s’

m>0,ne”z
(m,2n)=1

as well as a second Eisenstein series F3/, () := z73/2) 7|25 Es3)5 s(—1/4z). Though E3/5 ¢ converges
only for Res > £, [13, Theorem 2] implies that E3/; ; and F3/; ¢ have meromorphic continuation to
s € C and that

F(z) = =5 (1=i)E32,5(z) — i F35 5(2))
satisfies Fo(z) = H(z2).
To investigate H(z) near the cusp 0, we compute a partial Fourier expansion of Fi|s,(2), where

op = ( 10 ) The functional equation 0(—1/4z) = (—2iz)'/26(z) implies that the weight k = 5 3 slash
operator satisfies

Filoo(2) = (=2i2) 2 Fy(—4k)
3 3 - —3
= —55(-2i2) 73 (1 =23 |27 Fyy,0(2) =i (—55) 24z Ez2,6(2)
= —qa5i|z|* F3/3 5(2) + 25 (1 =) |z|*2% E3 5 4 (2).

Thus H|s,(z) has a Fourier expansion which may be read from the Fourier coefficients of E3/; ¢(z)
and F3/5 o(z). Since we require only the constant Fourier coefficient of |, it suffices to consider the
constant Fourier coefficients of E3/, ¢ and F3/5 .
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By [13, p.93-94], the constant Fourier coefficient of E3/; () equals

]

woisy) Y mE ) 5 eer)

%
m odd 2s+ m odd (m2)2s+2
o(m fs+1) 1— p—4s—1
=ao(s.») ) 4s+2 = ao(s, y)§(4 12) 1242
m(ﬂd

in which ¢ (m) denotes the totient function and «q(s, ») is defined by

2(1+0)VEsT (25 +3) 1oy,
r(2s+2) '

3
o(s, ) = / w3 w2 dw =
Imw=y

By taking the limit as s — 0, we conclude that the constant Fourier coefficient of E3/5 ¢(z) equals
—Q242i)/n-y~ V2,
Similarly, formulas on [13, p.94] show that F3,, ¢ has constant Fourier coefficient

—1/2 Zj(Zm)( ) (%) .

(m/2)2s+1

22513 1 (1 +i)ag(s. p) Z

m even

The sum ZJ mod 2m( )e(]/8) vanishes for m even unless m = 2n2, in which case it equals V20 (2n?).
Thus the constant Fourler coefficient equals

0 Cn?) (s p@n)
22553 1 (14 iao(s. 1) Y B T 22”31+(1+l)ao(S,y)Zn4s+2

n>1 n>1

, ] C4s+1) | —24s—1
:22s+3l +(1+l)a0(s’y)24s+2é-(4s+2) 1_ 1_2—45—2 :

By taking the limit as s — 0, we conclude that the constant Fourier coefficient of F3/; (z) equals
8i —8i/(y1/?). It follows that the constant Fourier coefficient of Moy (2) equals

—i g 1 —2-2i\ 1 1
192 n[ ayl/2 ) 24 8n /¥y’
hence ¢ +t(0) = 2 7 and ¢, (0) = —%. O

5. Inner products involving regularization terms

As before, we fix k € %Z and f(z) € H,g (To(N)) and define F(z) = y*| f(2)|?. In Section 4, we showed
that F(z) differed from an L? function Vr(z) by a sum involving Eisenstein series and theta functions,
at least when k ¢ {% 1}. In this section, we relate (Vr, Pg(-,5)) to (F, P¢(-,5)) by accounting for the
contribution of these regularization terms.



Self-correlations of Hurwitz class numbers 2445

To compute the inner products of the form {E,(-, w), Py(-,5)), we recall the Fourier expansion of
Ey(z, w) from (4-1). We unfold the inner product using the Poincaré series as in (3-1) to produce

1
27.[w+§

Ew_%%ooe(w)f‘(s +w—-DI(s—w)

(Eh(~,u0,1%(',5))::Ezgzggjg ['(s)T(w) ’

(5-D
provided that Re s > % + |Rew — %| to begin. We write ¢@goon (W) = @qn(w) for brevity and remark that
formulas for these coefficients appear in [4].

The functions ¢4, (w) have meromorphic continuation in w. For n # 0, they are analytic at w = 1. By
considering the Laurent expansion of each side of (5-1) at w = 1, we obtain

(Ea(" 1)’ PZ(9§)> = ”‘/’ae(l)

= WF(S —_ 1),

in which Ea(z, 1) is the constant term of the Laurent expansion of E4(z,w) at w = 1 (as defined
immediately before (4-3)).

Lastly, we consider inner products of the form ( y% lg(2)|, Py(-,5)), in which g € M, /2(To(N)).
Suppose that g(z) = Y b(n)e(nz). Then

(21g(2) %, Pe(-,5)) =

T(s—1) 5 b(n+0)b(n)
@n)~3 15 (407

By [30, Theorem A], M />(I'o(N)) is spanned by theta functions of the form x:(n)e(n?tz), with t
square-free and satisfying 4 cond(;)?¢ | N, where cond() denotes the conductor of ¥, x;(n) = (%) if
t=1mod4, and x;(n) = (%) otherwise. We note that cond(x;) =t if f = 1 mod 4 and 4¢ otherwise.
In particular, {b(n)} is supported on integers of the form n?¢, where n € Z and 4¢3 | N. Thus

b(n21;)b(n31)

—1
(n31y)572

1 - P(s—3)
(P2g@IP P 9) = ——F > >
(m)"72 5 5N w2nmndi e
t; square-free

If My/5(To(N )) is one-dimensional (for example, if % is cube-free), then 11 = t, = 1. In this case,
the inner sum n% = n% + £ has finitely many solutions. Otherwise, the sum may be infinite (depending

on {). Since the solution set (1, 1;) of n%tl = n%tz + £ is exponentially sparse in any case, the sum

1

> No matter the

above always converges for Re s > % Thus (y% |g(2)|, P¢(-,5)) is analytic in Re s >
dimension of M /,(To(N)).

Remark 5.1. In fact, { y% |g(2)|?, P¢(-,5)) has a meromorphic continuation to all s € C. To see this,
note that the series above is essentially supported on positive integers x satisfying the generalized Pell
equation ¢;x2 — t, y? = £. When solutions exist, they lie in finitely many classes of linear recurrences.
Splitting ( y% |g(2)|2, P¢(-,5)) along this subdivision, and splitting further to ignore the effect of the
characters y,, and x,,, it suffices to continue series of the form ), -, A4,%, where {4,,} satisfies a
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degree two linear recurrence. Fortunately, such results are known; see for example [29], which treats a
much more general case.

At this point, it is straightforward to relate the inner products (F, Py(-,5)) and (Vr, P¢(-,5)). We
record our results in the following proposition.

Proposition 5.2. Let f € H{(To(N)) and set F(z) = y*| f(2)|?. Fork = 3,

- - ﬁF(s—i—%)F(s—%) + 12 3
F,Py(-, = V¢, Py(-, . (0 w5
(F, Pg(-,5)) = (Vr, Pe(+,5)) + PP E lea (0) 17 @ae (3)

27T (s — 1 =
%)H) Z Re (e (0)c5(0)) @ (1)

a:xg=0

a:xa=0

4T (s — 1) agr(n?ty)agf(nity)
.

(47)5~ 2 (n21y)5" 2

3 31N 24 2
11,6517 niti=nstr+L
t; square-free

in which Vy is defined as in (4-4) and agr (n) denotes the n-th Fourier coefficient of &3, f(z). For k < %
in %Z, we have instead

2nl(s+1—-k)I'(s+k—2)
40y~ 2 (n k3T ()T (2 — k)
2rl(s—1)

(F. Py(-.5)) = (Vr, Pe(-.9) + > e (0P 2—k)

a:x,=0

Y Re(e (0)¢5 (0)ac(D).

xq=0

(4ml)s—1
in which Vy is defined as in (4-3).
As a corollary, we specify the contribution of correction terms in the regularization Vy(z) of H(z).

Corollary 5.3. Let £, denote the odd-part of £. In Res > % we have

3 . _ VAT(s + D (s =32) 20-2(5) —0-2(8) +0-2(L0)
JIH2 P (- 5)) = (Va. Py(- 2 2) 4 2
(V2IH|" Pe(-.5)) = (V. Pe(-.5)) + arl-ir ) 203223)

T(s—1) 20-1(5)—o0_1(5) +o-1(6) T(s—1%) 2
_ , e
(4m)s—1 288¢(2) + 325+3 d%:( +7)

dEgmodZ

Proof. Since £3/,H(z) = L_0(z) by (2-3) and the Fourier expansion (1-4), we have

T 16m

agln) =~y (n).
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Propositions 4.1 and 5.2 then give

V?TTS+%)F@—%)(1

(P2IH2 Py(-.5) = (Vi Po(-.5)) + 2
(403 T(s)

T(s—1) r

- M;ﬁ(ﬁfﬂme(l) + %‘Poe(l)) + J

To simplify further, we give explicit descriptions of the Fourier coefficients ¢.¢(w). Conveniently, the
formulas we require appear in [15, §3.3]:

@ 2—4w L\ _Hl—dw ¢
05,0 2 o1-2w(z) =2 o1-2uw(5) ]
poe(w) = 40z (2w)’ $oot (W) = @ (2w) : (5-3)

in which @ (s) = (1 —27)Z(s), 052) denotes the sum-of-divisors function with its 2-factor removed,
and we adopt the convention that o, (m) = 0 for m & Z. By Euler products, 052) (€) = 0,(£,), where £y
is the odd part of £.

Finally, we note that the series in (5-2) may be written as a divisor sum:

Zrl(n-l-ﬁ)rl(n) _ Z |n2|1_2s=22s_1 Z |d1+d2|1_23=22s Z (d+§)1—2s’

1
g1
n=>0 (n +€) 2 ny,ny€l dy,dre7 dlg
n%—n%=€ didr=t dzg mod 2
d1=d> mod 2
which completes the proof. O

6. Spectral expansion and rightmost poles

As before, fix f € HIE(FO(N)) with k & {%, 1} and define F(z) = y¥| f(z)|2. In this section, we show
that the inner product (F, Py(-,5)) admits meromorphic continuation to s € C. By Proposition 5.2,
it suffices to consider the inner products (Vr, P¢(-,5)) instead, as the regularization terms contribute
explicit terms which are meromorphic in C, either by inspection or as a consequence of Remark 5.1.
Selberg’s spectral theorem (cf. [18, Theorem 15.5]) gives the following spectral expansion of Py (z, s):

Pg(z,s)=Z<Pe(-,s),uj)uj(z)+zg/_ (Pe(-.5). Ea(-. 5 +it))Ea(z. 3 +it)dt,  (6-1)

J
in which a varies through the cusps of I'o(N), Vv = 5 - N [[,5(1 + 1/p) denotes the volume of
Co(N)\b, and {u;} is an orthonormal Hecke eigenbasis for the space of weight 0 Maass cusp forms on
I'o(N). These Maass forms have Fourier expansions at all cusps, which we write in the form

1a(2) = i1y () = 12 3 pjaln) Kigy Q| p)e (). 62)
n#0

We next record two useful lemmas regarding the growth of the coefficients pj, (1) on average. The
first of them concerns the average growth of pj,(m) with respect to m and is taken from [17].
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Lemma 6.1 [17, (8.7)]. Let ju;j be an L2-normalized Maass cusp form on To(N) with Fourier expansion
at a of the form (6-2). Then
D lpjam)* <y (M + |t;])e™ ],
m=<M

Our second lemma is a spectral average generalizing [24, Theorem 6].

Lemma 6.2. Let {jj} denote an orthonormal basis of Maass cusp forms for I'o(N), with Fourier
expansions given by (6-2). For £ > 0 and any € > 0,

= 5 + One(X log X + X( 4eate,
cosh i

Z |,0j (£)|2 X?

ltjl=X

Proof. For level N = 1, this result is [24, Theorem 6]. More generally, we adapt [24, §6], replacing
the level 1 trace formula with one on I'g(/N), as found in [4, Lemma 4.7], for example. To carry out

this generalization, we require the Kloosterman sum estimate Soooo (£, £, ¢) < (£, ¢)Y/2¢1/2d(c) from
[4, Lemma 2.6] as well as the Eisenstein series coefficient estimate

d(0)
1C(1 + 2i1)]|

To see (6-3), one may represent E,(z,s) in terms of Eisenstein series attached to characters via [35,

Pat (% +it) <N L pn,ed()logt, (6-3)

Theorem 6.1] and apply the Fourier coefficient formulas in [35, Proposition 4.1], then apply [32, (3.11.10)].
O

Continuing on, substitution of (6-1) into (Vy, P(-,5)) produces

(Vr P 5)) = D g Pe(-.5) (Vs 1 (2))
j o0
+EZ/_OO<Ea("%+”)vPL’(',E))(Vf,Ea(z,%+il))dl, (6-4)

a

which we call the spectral expansion of (Vr, Py(-,5)). We will refer to the terms at right in (6-4) as the
discrete spectrum and continuous spectrum, respectively. To make this more explicit, we apply (5-1) and
the formula

()7 T(s—3—it;))T(s— % +it))
pj (D)7 2t 2 J
(4ml)s=2 L'(s) ’

(MJ»PZ(’EN =

which follows from [9, 6.621(3)]. We conclude that (Vy, P¢(-,5)) admits a spectral decomposition of
the form Xgisc (5) + Zcont(s), in which

Pdisc () :—W%;PJ(E)F %+itj)r(s_%_ilj)<vf’uj>’

VN Gat (3 +11)0(s—5 +i)0(s— 5 —it)
cont(s) 2/ (47TE)S_7(7T£) ”F(S)F( +il) (

Vi Eqo(-. 3 +i1))dr.
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This spectral expansion is initially defined for Re s > 1 4 |k—1|, provided all expressions converge.
Fortunately, convergence is not an issue:

Lemma 6.3. The functions Zgisc(s) and Zconi(s) converge for all s € C away from their poles.

Proof. In the discrete spectrum Xgisc (), this follows from Lemma 6.2, Stirling’s approximation (providing
decay of size e~ "% ! for fixed s), and the trivial estimate (Ve )| < IIVfIII/2 il 172 <y 1. Here,
we’ve used that [|u;]| = 1 (by definition of 1) and that Vr € L?(Ty(N)\b) by our work in Section 4.
(This estimate is very weak, and will be improved in Section 8.)

In the continuous spectrum, convergence follows from Stirling’s approximation, weak upper bounds for
(Vf, E a( -, % +i t)) derived from the Rankin—-Selberg method and Phragmén-Lindeldf convexity principle,
and (6-3). O

Thus X4isc () defines a meromorphic function on the entire complex plane, with potential poles at
§= %j:i tj —m for integer m > 0 and any spectral type ;. It is analytic in the right half-plane Re s > % +0,
where ® < 7/64 denotes partial progress towards the Ramanujan—Petersson conjecture [21].

The continuous spectrum X¢on(s) also has meromorphic continuation to all s, though the precise
continuation to Res > —M involves both .o (s) and O(M) residue terms extracted through contour

shifts of the integral in X.o,. For a discussion of the continuation process in a similar case, we refer the
1

5 .

Thus (Vr, P¢(-,5)), originally defined for Re s > 1 +|k— 1|, extends meromorphically to a function on

reader to [14, §4] or [15, §3.3.2]. The continuous spectrum is clearly analytic in Re s >

the entire complex plane. Since it is analytic in Re s > % + O, any pole of (F, Py(-,5)) inRes > % + 0
occurs as a pole of the explicit regularization factors presented in Proposition 5.2.

Remark 6.4. In Section 3, we gave the general decomposition
(F. Py(+.5)) = 1,7 (5) + 17(5) + 15(s) + I (5)-

The two terms [ 1? (s) and 1 EX (s) are finite sums and inherit meromorphic continuation to s € C from
the continuations of G and the , F-hypergeometric function. Thus the continuation of (F, Py(-,5))
implies a continuation for / Z (s) + 1, (s). It is possible, albeit challenging, to establish the meromorphic
continuations of / €+ (s) and I, (s) as separate entities. Here, the idea is to first continue 7, (s) by relating
it to the Dirichlet series

i agf(n)azg—f(n +E)

“w—kwtl’
= (n+0)s—w—kpw

which admits meromorphic continuation through relation to the triple inner product (y2 =% |&¢ 1|2, Py(-,3)).
Establishing this continuation is not so difficult when Re w < —1, but in practice we require Re w as
large as —k (to evaluate a particular contour integral representation), and this creates major complications
in weights k < 1.

Fortunately, these problems disappear altogether for /= H, as the series I, (s) defines a finite sum
in this case (cf. Section 3A). To simplify the exposition in this work, we narrow our typical focus
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from f € ng (To(N)) to f = H. Still, the construction of the meromorphic continuations of 1 L,i (s)
and estimates for shifted convolutions of generic mock modular forms of polynomial growth are of
independent interest and will appear in future work.

6A. Classifying the rightmost poles of Dy (s). As an application of our work thus far, we classify the
rightmost poles of the shifted convolution Dirichlet series Dy (s) from (3-4). We prove the following
theorem.

Theorem 6.5. The Dirichlet series Dy(s) is analytic in the right half-plane Res > % and extends
meromorphically to all s € C. If £ =2 mod 4, then Dy(s) = 0 identically. Otherwise, Dy(s) has two
simple poles in the right half-plane Re s > % ats = % and s = 1, with residues

2

i 14

Res Dy (s) = o_2(%) +0-2(L0)),

1
Res Dy(s) = —3—(20-1(5) —0-1(3) + 0-1(Lo).

. . . .. 1
The function Dy(s) is otherwise analytic in Re s > 5.

Proof. Equation (3-5) relates Dy (s) to (y3/2|H|2, Py(-,5)) and Corollary 5.3 relates (y3/2|#|2, Py(-,5))
to (Vx, P¢(-,5)). When combined, this produces

JT%F(S -3) . 20_2(§) —o_z(%) +oa(lo) 720(s —1) 20 (%) —0_4 (%) +0_1({y)

D =
=" 5 252¢(3) eI 3622
(47[)”%(1/%,1’15(',5))_ H(OT (s) H(()
T'(s+1) A/mOT(s+ 1) 1205%2
on® . nOre
327r€s_%s(s—%) 96ﬁ€SF(s+%)
-1
I(s) H(—m)ry(m) (s s+1 E)
_ Fi L
RSP S N O
mimyGsyp(s,m3,my) 23574 £\ 1-25
- d+ 5 . (6-5)
m%—zm§=£ 16T (s + 1) w(s—3) G (@+32)
my,mp=1 dE§ mod

Recall that (Vy, Pe(-,5)) is analytic in Res > % -+ ©. By Huxley’s resolution of the Selberg eigenvalue
conjecture in low level [16], the inner product is in fact analytic in Re s > % Thus, by previous comments,
all but the first two terms at right above are analytic in Re s > % Computation of residues completes the
proof. O

Since Dy (s) has nonnegative coefficients, the Wiener—Ikehara theorem (see [25, Corollary 8.8], for
example) immediately produces the following:
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Corollary 6.6. For fixed £, as X — oo we have

72X?

> HmH®nA+0) ~ m(za_z(g) —0_2(%) +0-2(L0)).
n<X

7. Bounding Dy (s) in vertical strips

To quantify the rate of convergence in Corollary 6.6, we require additional information about the mero-
morphic properties of Dy(s). Specifically, we require uniform estimates for the growth of Dy (s) with
respect to |Im s| in vertical strips outside the domain of absolute convergence.

It suffices to produce growth estimates for each component of the decomposition of Dy (s) given in (6-5).
In this section, we produce uniform estimates for every term besides (47)* +3 (V. Pe(+,5))/ T (s + %),
which requires more involved techniques.

Proposition 7.1. Fix s with Res > 0. Away from poles of Dy(s), we have

3 R V , P . —
Dy(s) < L7RESTE  g3Reste|g=3 ‘W—e(ls))‘
L(s+3)
forall e > 0.
The proof requires a few lemmas, starting with a simple upper bound for the Hurwitz class number.

Lemma 7.2. We have H({) <¢ £27%€ for all € > 0.

Proof. The moment estimate (1-1) implies h(—0) <e £2+€ for all € > 0. Since h(—=€)= Zd2lé h(—t/d?),
we have h(—0) <) ;54 (E/dz)%"'e « £2%€_ The same bound holds for H{)=h(—-0)+0(1). O

We also require uniform estimates for the  F;-hypergeometric function and the function G35, which
are provided by the following two lemmas.

Lemma 7.3. For 1 <m <{—1andRes > 0, we have

sos+3l L m \Res
2F1( 1 m)<<(£> .

S +%
Proof. Following [9, 9.131(1)] and the Euler integral [9, 9.111],
1 1—s 3
ZFI(S,S+21_£):<£) 2F1(2’131—£)
m m s+ 3 m

3
S+ 35
1
A 1 (1—1)*"2dt
= () G+ %)[ ), ¢2 e
O (1=(1=5))
in the region Re s > —%. In this form, we recognize that the hypergeometric function at right in (7-1)
is bounded by 2F1(%, 1, % ‘ 1— %) when Re s > 0. To conclude, note that 5 F; (%, 1, % ! 1— %) = % by
[9, (9.121)]. O
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Lemma 7.4. Fix € > 0. In the region Re s > 0, the function G3 (s, n,n + ) defined in (3-2) satisfies

Gi(s,n,n+10) K |S|Res_2+ee_%|lmsl |S|% + :
3(s,nm, —_— —_—t+t—).
3 (n + L)Res i+l Jn

Proof. We begin with the contour integral representation [5, (8.6.12)]

—k r kyy=®
r—kope = -2 L [ SO g, (72
I'tk) 2xi Jo  sin(ww)
where C is a contour separating the poles of I'(w + k) from those at w =0, 1, . .. arising from 1 /sin(rw).

Here we require & ¢ —N. For k > 0, we may take C as a vertical line with Re w = —e. We apply (7-2)
and the Mellin transform [5, (8.14.4)] to Gy (s, n,n + £) to write

L Pw+k) ([ dy
G =~ ST —k o) a
T Tk 2ni /(_6) Sin(zw)n® (/0 y (1—k, (n + )y)y) w

T 1 F'w4+k)C(s—w-—Kk)csc(mrw)
__ — dw, (7-3)

(k) 2mi J—e) nkTw(n+ s~ w=1(s—w—1)
provided Re s > max(1, k) to begin. Shifting the contour of integration to Re w = —max(1, k) — € passes
finitely many poles from csc(ww) and gives a meromorphic continuation of G to Res > 0 when k > 0.
We now specialize to k = % The contour shift in (7-3) to Rew = —% — € passes a single pole at

w = —1, with residue
1
2T (s — 3) |s[Res—2,=Flims|.

<
Jnm+10)5s  /n(n+ L)Res
Stirling shows that the integrand decays exponentially in |Im w|, for any s. We may therefore truncate
the integral to |[Im w| < %|Ims|. In this range, the estimates |s — w — k| =< |s| and e~ ZIms—w)|
eZmwl=Fms| 4110w us to extract the s-dependence of the integrand. Hence the shifted integral (7-3) is
O((n+ Z)_R”_% |s|R“_%+€e_%|Ims|), which completes the proof. O

Proof of Proposition 7.1. Lemma 7.2 and the divisor estimates 0_,(£) < 1 and 0_; ({) <« £¢ imply that
the terms at right in the first three lines of (6-5) (excluding the term containing (Vy, P¢(-,5))) are

ORes,e(E%_Re”Sl_% +€%—Res+6|sl—% +£—Res+e). (7-4)

By factoring this upper bound in the form £~ Res+€ |s|_% (Z% 102 Is| 4 |s] %), we observe that the second
summand is always dominated by the first or third term, and may be ignored.

It remains to estimate the three terms in the last two lines of (6-5). We first consider the divisor
sum. In the right half-plane Re s > %, we bound |d + £/d|! 73RS « E%_Res, so the divisor sum is
0(8%_R”+E |s|~1), which is nondominant. Otherwise, if Re s < %, we bound |d +£/d | 72ReS « g1 72Res
so the full divisor sum is O(£!=2Res+€|5|=1) This term is dominated by the second term of (7-4) when
Res > 0.
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We next consider the contribution of the hypergeometric term in (6-5). By Lemma 7.3, Stirling’s
formula, and then Lemma 7.2, this term is
{—1
Kres LTR[s|72 7 H(E—m)ry(m) Krese 17RT]5| 72
m=1
in the region Re s > 0. Note that this term is dominated by the first error term in (7-4).
Finally, we consider the term in (6-5) involving G35 (s, m%, m%). By Lemma 7.4, this term is
mym S 2 1
oRes(lsl‘”é Y e (|m|1 + m—z)) (7-5)

m
22 1
mi{—m5={

in the region Re s > 0. The contribution of 1/m, in the parenthetical is

_ 1 _ 1 3
KL Res |s| 24€ Z —— KRes |S| 2+ege(£2 Res +€1 2Res)’
2

2__ 1
my—m5={

in which we’ve used that ~/£ < m; < £ and that the sum has at most d () terms. Since m; > m, the

1/2

contribution of the other term in the parenthetical of (7-5) is at most |s|'/“ times larger. Both upper

bounds are majorized by the contribution of the divisor sum in (6-5). |

8. Noncuspidal spectral inner products

To bound (Vy, Py(-,5)) in vertical strips, we apply the spectral expansion (Vy, Py(-,5)) = Zgisc(s) +
Yeont(s) computed in Section 6. In the discrete spectrum, Stirling’s approximation, dyadic subdivision,
Cauchy—Schwarz, and Lemma 6.2 reduce our task to bounding the inner products (Vs it;). Since Maass
cusp forms are orthogonal to Eisenstein series and to norm-squares of theta functions (cf. [27, Remark
2]), this is equivalent to bounding the unregularized inner products (3/2|H|?, 11;).

While good estimates for inner products of the form (y¥| /|2, j) are known when £ is a holomorphic
cusp form or Maass cusp form (at least on average), the noncuspidal nature of H meters the applicability
of prior results. Fortunately, it is possible to modify work of Jutila [19; 20] in the Maass cusp form case
to address the case of harmonic Maass forms. Working in a somewhat general setting, we prove the
following theorem.

Theorem 8.1. Fix f € H,B (Co(N)) with k € % +Z. Let 1 (z) be an L*-normalized Hecke—Maass cusp
form of weight 0 on T'o(N ), with spectral type t; € R. For all € > 0, we have
(yk|f|2, ,LLJ) < (|tj |2k—1+€ + |tj |3—2k+e)e—%|t]’ |
Our proof of this follows the general method of [19; 20]. Very roughly, this plan involves two steps:

a. We relate (y*| f]%, u i), which is an integral over I'g(V)\b, to an “unfolded” integral over I'so\b,
by introducing an Eisenstein series as an unfolding object. This technique was developed in [19, §2]
for f alevel 1 holomorphic or Maass cusp form, and we adapt it to the case of f € H, ,E (TCo(N)).
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b. The unfolded integral can be understood as an integral transform of a sum involving Fourier coeffi-
cients of f and p; at various cusps. We truncate the sums and integrals and apply estimates for the
Fourier coefficients of f and p; to bound the truncations.

We remark that [20] also applies the spectral large sieve, to produce a fairly sharp upper bound for the

spectral average Z|tj|~T (R, )
argument when f is noncuspidal, we do not apply the spectral large sieve and instead produce bounds for

|2e7!ti | (when f is a Maass cusp form). To simplify parts of our
individual (y¥| £ |2, u ). It would be interesting to determine if our growth estimates for Dy(s) could be
improved by replacing Theorem 8.1 with an appropriate spectral average.

Though not the main focus of this work, we remark that Theorem 8.1 has applications to modular
forms of half-integral weight, since M} (I'g(N)) C H, ,g (Co(N)). For convenient reference, we present
this as a corollary.

Corollary 8.2. Fix k € % +Zand | € My(I'o(N)). Let pj(z) be an L?-normalized Hecke—Maass cusp
form of weight 0 on I'g(N ), with spectral type tj € R. For all € > 0, we have

DR ) < (16125714 4 ] +e)e= 3161,

We remark that Corollary 8.2 improves certain technical results in [22]. In particular, we improve the
tj-dependence of [22, Proposition 14] in any case that our result applies.

8A. Jutila’s extension of the Rankin—Selberg method. The material in this section adapts [19, §2] from
SL(2,Z) to T'y(N). Let ¢(z) be an L? function on [y (N )\b satistying ¢ (z) = O(y_‘s) for some § > 0 as
y — o0 and let Exo(z, s) denote the Weight 0 Eisenstein series at the cusp oo of T'g(N). Since Exo(z, 5)
has a simple pole at s = 1 with res1due 3. [To(N):SLQ2,2)! =Vy ! we have

// N dy // $(2) lim (s—1) Eoolz. s)dx @,
Lo (N)\b To(N)\b s—>1+

We now interchange the limit and integral, which can be justified by expanding E(z,s) in a (rapidly

converging) Fourier series and noting that the pole at s = 1 appears only within the constant phase. The
growth estimate ¢(z) = O( y_‘s) gives convergence in this surviving term and justifies the exchange.
Then, since Re s > 1, the method of unfolding provides

dx d
/f $() "% =Vy lim (s— DR($.s), with
To(N)\b y s—>1+

o0 pl d d
R(¢,s):=/0 /0 sy S

in which R(¢, s) is the typical Rankin—Selberg transform of ¢.
We define R*(¢, s) = {*(25)R(,s) and R (¢, s) = s(s — 1) R*(¢, ), so that (8-1) equals

(8-1)

zVN Res R*(¢, s) = EVNRS@, 1).
6 s=1 6
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Note that R§(¢, s) is entire, in part because ¢ € L?. By the residue theorem,

* _ 1 R3(¢,S)
Ry =5 /@ g2 s

in which O is a contour encircling s = 1 once counterclockwise and g (s) is a rapidly decaying holomorphic
function satisfying g(1) = 1. We bend O into a rectangle connecting ¢ +i7 and 1 —a £ i T, then let
T — oo and use decay in g to render the horizontal components of O negligible. It follows that

R(’;(qﬁ,s)ds 1/1 )g(s)RZ;(qb,S)ds

s—1 2w s—1

1
Ri@ D=5 | )

1 (g(S)R(¢ )+g( —5)
(@) s—1

(8-2)

2mi

R3 (4,1 —s)) ds

We now apply the functional equation of the Eisenstein series on I'g(N) to relate R*(¢, 1 —5) to a
sum of Rankin—Selberg transforms at the other cusps of I'g(N). This takes the form

R*(¢,1—5) = Z Va($) R* (¢, 5), (8-3)

in which y,(s) is an entry of the scattering matrix for I'o(N) and ¢, = ¢|,, under the weight 0 slash
operator. Exact formulas for y, may be obtained by combining [35, Theorem 6.1] and [35, Proposition 4.2].
We have y,(s) = O(1) in fixed vertical strips away from poles. By applying (8-3) to (8-2), we conclude
that

s—1

: L[ (E9R6.5) gy *
rwn =5 [ 7 SR 00 ds.

In our application, we take ¢(z) = ¢;(z) = yk|f(z)|2/Lj (z), where p; is a Maass cusp form on
Fo(N) with || || = 1. We conclude that

(F, 1)) Z/ (8ja=c01sg (s) + (s = g (1 —5)7a(5))¢*(25) R(¢ja 5) ds, (8-4)

120
which generalizes [19, (2.10)]. This expression lets us determine (F, ) while only sampling R(¢jq,s)
on the line Re s = a > 1. We also note that the pole of {*(2s) at s = 5 is canceled by R(¢j. 5); hence
the only poles of the integrand in Re s > 0 are those of R(¢j, s).

Remark 8.3. Following [19, (2.8)], we take g(s) = exp(l —cos 2 ) for some large B > 0. This choice
implies |g(s)| <€ exp(—zexp(|lm s|/ B)) in the vertical strip |[Re s — 1| < w B/3. In particular, the contour
integral (8-4) converges if R(¢jq,s) grows at most exponentially in [Im s|. This will be established in
Remark 8.10.

To bound the Rankin—Selberg transform

oo pl _ dxd
R(¢ja,s):/0 /0 o i L
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we represent f, and jij, as Fourier series, as described in (2-2) and (6-2), then execute the x-integral.
This expresses R(¢jq, s) as a triple sum over integers (77, 12, n3) subject to the relation ny —ny = nj.
As in Section 3, we group these terms based on the signs of n; and 7;, so that

R(Bja,8) = L5(8) + 1;(8) + 17(s) + 10, (5),

denoting the subsums in which (7, n,) are both positive, are both negative, have mixed sign, or contain a
zero, respectively. By changing variables to introduce m := |n; —n,| = |n3| and grouping similar terms,
we write

i)=Y 2Re(cf(n+myct 0pja(m) o] (m,n + xa.s),

m,n+x,>0

I(s)= > 2Re(cg (mcy (n+m)pja(m)) @f (m.n—xa.s),

m,n>1

oo m—1
I7(s) = Z Z 2Re(cj(n)ca_(m —n)pja(m)) @/ (m,n+ xq,5),

m=1n=1—[x,4]

in which the functions (pj+, @i and (,0]?< are defined by
+ % stk—L —2n(2n+m) dy
¢ (m,n,s):= / PITET 2T ATV Ky (2emy) —, (8-5)
0 Y
— * s+k—1 2m@n+m) dy
@; (m,n,s):= y 2e 'T(1 =k, 4mnny)T(1 —k,4n(n+m)y)K;;; 2Qmrmy)—, (8-6)
0 y
X * s+k—1 2m(m—2n) dy
@/ (m,n,s) = y 2e 'T(1—k,4n(m—n)y)K;s; Qmmy)—. (8-7)
0 Y

Here we have assumed without loss of generality that pjq(—m) = pjq(m) for Maass cusp forms of weight
0. Lastly, for singular cusps, we define

I(s) =Y 2Re(c (m)cif (0)pjalm))f (m,0,5)

m>0

+ Z 2Re(c:'(m)c;(O)pja(m))(ijr(m, 0,s—k+1)

m>0

+ ) 2Re(c (m)ef (0)pjalm))e} (m. 0, 5)

m>0

+ ) 2Re(c; (m)c; (0)pja(m))@) (m. 0.5 —k +1). (8-8)

m>0

For nonsingular cusps, we set / ;)a (s) =0, as the corresponding summands vanish or otherwise incorporate
: +
into /; 1 (s).
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Remark 8.4. These decompositions mirror [19; 20], except that we separate ]7; from 7 ia and introduce
1 Jf)a to account for noncuspidality. In fact, ¢ j+ exactly matches an unnamed function from [19, p. 449]. Our

functions @i and ¢ ;‘ can be viewed as variants of the functions (pj+ and @i from [20, (3.4)], respectively.

8B. Representations and estimates for (p;!', (p;.‘, and (p]T. We now record some useful information about
the functions gojr, 10 ]?<, and @ - We first consider ¢ j+, leveraging earlier work of Jutila.

Lemma 8.5 [19, §3]. Define h = A(m,n) := /1—m?2/2n +m)? and set p :=s + k — % The function
(p;' (m,n,s) defined in (8-5) is analytic in Re p > 0 and may be written in either of the forms

JamUiT(p+it)T(p—it))
(47)P(2n +m)PHLT (p 4+ 1)

o3 (m,n5) = A+ 7705 F (pop+in 2o ). 689)

2—1—217”—17 . iy _
o (m,n,s) ((1 X) P T(—it)T(p+itj)2Fy (P, I-p,1 +ilj‘%)

~ (i +m))P2\\1+ 1
it
1-A\ 2 ). ) -1
Proof. These identities are implicit in [19, (3.16)—(3.21)]. 0

In the special case n = 0, we have A = 0 and (8-9) implies that

ﬁF(p + ilj)F(p —il‘j)
(47rm)PF(p + %)

; (m,0,s) = (8-11)

which can also be seen directly via [9, 6.621(3)]. For n # 0, we don’t expect simplification but can still
produce upper bounds. For example, in the text surrounding [20, (4.5)], Jutila applies (8-9) to produce

IC(p+it;))(p—it))l
+ m)ReP(1 4+ 1)ReP|T(p)]

valid for Re p > 0. An upper bound derived from the representation (8-10) is presented in the following

0 (mon.s) Krep o log(2n +m), (8-12)
lemma.

Lemma 8.6 (cf. [20, p. 452]). Fixtj € Rand € > 0. Suppose that A # 0. For any s in a fixed vertical strip
away from poles,

t:|Rep—1 1+ 5|2 1+|Re p|+e o5 |lms|
o m,n,s) < LR“, 1+ il —. (8-13)
’ (n(n+m)) 2 Aty elt]
Proof. For p € Z and nonpositive z € C, consider the integral representation
r'(1+it)r rda- re
2F1<p,1—p,1+itj‘z):/ (iU =prwlCw) w4, (8-14)
B F(pr(1-pr(d+itj+w)

in which the contour B separates the poles of I'(p + w)I'(1 — p + w) from those of I'(—w) [5, (15.6.6)].
We suppose that Re p > 0 and shift the contour B to the line Re w = Re p + €. This shift passes poles
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and extracts residues at w =0, 1, ..., |[Re p + €], totaling
[Re p+e]
(2w — P (L+|pP)z 7
3 PPy |AEIPD

v=0

in which (@), := I'(v + )/ I'(@) denotes the Pochhammer symbol. The same upper bound holds for
the shifted integral, by Stirling’s approximation. We apply this estimate for z = )‘2;; < A1, then apply
Stirling’s approximation to the other factors of (8-10) to complete the case Re p > 0. The case Re p <0

then follows using the invariance of (8-14) under p <> 1 — p. O
We conclude our discussion of <p17" by presenting a uniform upper bound for the size of its residues.

Lemma 8.7. Fixt; € R. For each integer r > 0, we have

L _myp,
Res ‘P;_(m,n,s) L (n+m) |t 2e Zltl
=%—k:l:itj—r

Proof. Stirling’s approximation and (8-10) give

Res f"(m’n’s) < M

1/2,5% 1t
s=L—k+itj—r |tj|1/2e 2141

A—1

AL
The transformation » Fy(a, b, c,z) = (1 —z) 3 Fi(a.c —b,c, ;%7) (cf. [9, 9.131(1)]) relates the hyper-
geometric function above to the finite sum

x+1)—”f+’ iti—r,—r, (it V)v(_r)v<1—k v
L F A~
(2)\ 21—y 1+,\ < Z (1—itj)yv! 1+x>’

which is O, (A7"), uniformly in ;. The claim now follows from the estimate A < n/(n + m), and the

—r1+4+r—itj,
2F1( 1—it

computation for s = % —k —itj —r is identical. O

To understand gof and @; » We express them as contour integral transforms of (pj+. The following

lemma consolidates relevant information about ¢ ]?‘.

Lemma 8.8. The function (pjx (m,n, s) defined in (8-7) admits meromorphic continuation to s € C, with
poles at s = —% Litj—rands = %—k Litj—r,forr € Z>. If tj € Rand Res > 0 away from poles,

we have

@¥(m,n,s)

. . Res—1 k
1 ls—itj|-|s+it;|\"°° _1 m|s| hlte —7|t;|+Z|Ims]|
< ls|72( 1+ - - e THITa
(m—n)k Jm m|s| (m—n)|s—itj|-|s+itj]

A _— 3T
 Sres<y gy (m 1+ Is| 4 |t5]) Te 72T TS (8-15)

for all € > 0 and for some A > 0 depending only on k.
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Proof. The integral representation (7-2) implies that

— 1 r k > d
gf(m.n,s) = — . / w ). (/ ys_é_'”e_z”'"yKn-(hmy)—y) dw
J C(k) 2ni Jo (dn(m—n))?+ksin(rw) \Jo ! y
1 [ T@+k)g) m,0.s—k—w)
= . w,
C'k) 2ni L (4m(m —n))w+k sin(rw)
where C is a contour separating the poles of I'(w+k) from those at w =0, 1, ..., arising from 1 /sin(zr w).

To begin, we require Re s > % + max{Re w : w € C}. To consider general s, we shift the contour C left,
passing poles from I'(w + k) and 1/sin(;rw) and extracting residues involving gojT" (m, 0, s) at shifted
arguments. By (8-11), these residues contribute poles at the poles of I" (s +k— % +i tj) and I’ (s + % +i lj).

To produce growth estimates, we then shift C rightwards, to the contour Re w = |k| + €. This extracts
a sum of residues equal to

Lo (m, 0.5k —q)

""2‘5 (~)?T(q +k)
= [ (k)(4m(m —n))k+a

_ 1
LIk|+e—Res+7] nF(w—I—k)(pjT"(m,O,s—k—w)

+ Res _ )
Z;) ;w:s—i:}:i[j—{-r @m(m —n))@+k sin(rw)I (k)

Stirling’s approximation and Lemma 8.7 show that the exponential decay in the residues in the second line
is e 3 msitj |=5 11|  p=27ltj 1+ 3 Ims| \while the worst polynomial growth is O((m +n -+ |s| + Iti)4)
for some A > 0 depending linearly on |k| and Res. Since Res € (0, |k| + %) when these terms appear,
we may take the constant 4 to depend on k alone.

Exponential decay in |Im w| within the integrand bounds the shifted contour integral to at most a
constant multiple of the integrand near |k| + €. Stirling’s approximation and (8-11) then complete the
proof of (8-15). O

The corresponding properties of @; may be obtained in a similar (though more complicated) way and
are summarized in the following lemma.

Lemma 8.9. The function @ (m,n,s) defined in (8-6) admits meromorphic continuation to s € C, with
poles ats =k — % —m=itjands = %—k—m +itj,form e Z>y. Iftj € Rand Res > 3|k|+ 1, then
forall e > 0 we have

@; (m,n,s) (8-16)

log(m + n) |s —itj||s +it;] Res—k=1 - (n+m)|s|? lk|+€ al 4 Elims]
(n(m +n))k+% 2n+m)(1+A)[s| nls—itj|?|s +itj|? '
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Proof. Using (7-2), we write @ (m,n,s) as a double contour integral,

R / / T(wy + k)T (ws + k)
by 3= T(k)22ri)? Je, Jo, (Amn)witk(dm(n 4+ m))w2tk sin(rw ) sin(rw,)

% k=L wi—w, 27 (2n+m) dy
X / ySTRT T wWIm w2 A (ln myK,-,j(any)7 dw, dw,
0

2 '(w; + k) (ws —I—k)(pj’L(m,n,s—2k—w1 —wy) dw, dwq
(2mi)? /Cl /Cz L' (k)2 (4 n)W1+k (47 (n + m)) w2tk sin(mwy) sin(mw,)

where C; and C, are instances of the contour C described in Lemma 8.8 and Re s > k + % +2max{Rew:
w € C} to begin. As in Lemma 8.8, shifting the contours left produces residues which determine the
poles of @i - To produce growth estimates, we shift C; and C, to the lines Rew; = Rew, = |k| + ¢,
extracting a series of single contour integrals and a double sum of residues from 1/sin(rw;) sin(ww,)
equal to

_1
K22 (DT (g + KT (g2 + K)o (mon.s — 2k — g1 —q2)

8-17
F(k)2(4ﬂn)k+q1 (47-[(m + n))k+q2 ( )

q1 aq2=0
Exponential decay in vertical strips implies that the contour integrals are bounded by their values near the
near axis, whereby the bound (8-12) and Stirling’s approximation gives (8-16). O

Remark 8.10. The upper bounds for (pj+, gof, and @ given in (8-12), (8-15), and (8-16) imply that
R(¢jq, s) satisfies a bound of the form

R(¢ja,5) < (Is| + [t )™ 2l 13 ms] (8-18)

for sufficiently large Re s and some A > 0. Indeed, such a bound holds for each of 1 jt (s), 1 j);(s), 1 J;(s),
and / Jpa(s), by dyadic subdivision of their defining sums, polynomial growth bounds on c:*' (n), and a
bound for pj4(n) such as Lemma 6.1.

Note that (8-18) implies that the contour integral (8-4) for (F, u;) converges for Res sufficiently
large. More specifically, it implies that (F, ;) < |¢; |4e~%14! for some A > 0. These coarse estimates
also show that the integral in (8-4) may be truncated to [Ims| = clog(1 + |¢j|) for some ¢ > 0 while

introducing negligible error. We assume this henceforth.

We conclude this section with an upper bound for @i obtained via (8-13). We assume A > |t; |~ =€ We
also assume that |s| < log |¢; |, which holds without loss of generality by Remark 8.10. The bound (8-13)
implies that the contribution of the residues (8-17) is

k4 _
R —k—é-f- 2 a1—42
0( It esl 3 ek e~y +Flims| § (m+n) z |tj|_ql_qz)
TrestE_T :

(n(m+n))2 " +273 g

Since A =< /n/\/n+ m, the estimate A > |1,‘j|_1_E implies that |tj|2"'26 > mT'H’ Thus, up to |#;|€
factors, the (¢1, ¢2)-sum is dominated by the ¢; = ¢, = 0 term. Our estimate for the ¢; = ¢, = 0 term
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likewise acts as a bound for the shifted double contour and any of the single contour integrals associated
to residues from 1/sin(rw1) or 1/sin(wrw,).

The contribution of the residues from the poles of gojT" (m,n,s—2k —wy —w,) (as either single contour
integrals or residues from single contour integrals) is O((m +n+|s|+ |t ) Ae2lt |+37”|Ims|) for some
A > 0, by Lemma 8.7 and Stirling’s approximation. (At this level of precision it suffices to consider only
the exponential factor in Stirling’s approximation.) Thus
@; (m,n,s)

< |Zj|Res—k—%+e

(n(m-i—n))%Res‘*'%—%e nltl|+2|Ims|+8[Res<|k—1|_%](m+n+|s|+|tj|)A€ 2l 1+ msl (g 19)

8C. Sum truncation. For some (m,n), the functions gz);', gof, and @; may be made arbitrarily small
by taking Res very large. For example, (8-15) implies that (p; (m, n,s) decays with respect to |tj]
as Res — oo provided m < |t; |2+3 for any fixed § > 0. In other words, we may truncate I jxa(s) to
m < |tj 1243 in our estimate for (F, i i), with a negligible error. Likewise, (8-12) and (8-15) imply that
ija(s) may be truncated to m < |¢;|>*.

We claim that j+ (s) and ;1(5) may be truncated to n(m +n) < |t; |2""S at the cost of negligible error.

a

To prove this, we follow [19, (3.25)] and subdivide cases based on whether A < |¢; |_1.

a. If A < |¢;71 and n(m + n) > |tj|2+8, then A2 < [tj|72, so that (2n + m)? > n(n + m)|t;|?
after simplifying. The lower bound 7(m + n) > |t;]>*? implies that 21 +m > |¢;1>+%/2, hence
n+m> |t |2+5/ 2 In this case, (8-12) and (8-16) produce arbitrary polynomial improvements in
|tj| as Re s — oo.

b. If A >> |¢;| 7! and n(m +n) > |1 |2+8 we instead argue using the upper bounds (8-13) and (8-19).

Let J ; and J ia denote the truncations of / J?: and / i to n(m+n) < |t |2+5. Likewise, define J j?;
0 : X 0 1248
and Jja as the truncations of Ija and Ija tom < |tj|77°.

8D. Estimation of the truncated sums. To complete our estimation of the inner product (F, j;), we
bound the sums J J.Jg (s), J ];(s), J ]?;(s), and J ;)a(s) on the line Res = §, where § is the same constant
used to define the truncation conditions. We assume that [Im s| = O(log|¢;|), by Remark 8.10.

We first consider J ;; (s), which we truncated to n(m + n) < |t; |2+, We subdivide into dyadic
intervals, with m ~ M and n ~ L. On each dyadic subsum, we estimate <pj+ (m,n + xy, s) using (8-13),
which outperforms (8-12) in these regimes. Since L(L + M) < |¢; |2+ and A2 < n/(n + m), we have
A > |t |=1=3. This observation, and the free assumption s = O(log |#;]), shows that (8-13) bounds a
given dyadic sum by

;[ 3+0) gl -+ 5 ms] ) |ca (n +m)eg (m)pja(m)]

wr (L(L+M))s s
n~L

(8-20)
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In the sum within (8-20), we apply Cauchy—Schwarz, Lemma 2.1, and Lemma 6.1 to compute

S el Y I mypjam)] < Z|c:(n)|( ) |c+(q)|2) (Z 1pra(m) )

n~L m~M n~L q~M+L m~M

& L3 (L(L + MYFHR=1Y2 (0 4 [g])2e 30, (8-21)

Thus the (L, M )-dependence in (8-20) is L2 M 2 (L(L + M))s T2k or L3 (L(L + M))a+zlk=11,

In the first case, the dominant dyadic interval takes M ~ [¢; |2 and L ~ 1, while in the second case we

dominate by the M ~ 1 and L ~ |¢;| subintervals (up to |¢; |3 factors). Either way, we conclude that

JJ-:(S) < |[j |k+|k—1|+0(5)e—%|tj|+%|Ims|‘ (8—22)

Our treatment of J ia (s) is essentially the same. We again subdivide into dyadic intervals, with m ~ M

and n ~ L, then apply (8-19). The contribution from (m + n + |s| + |lj|)Ae_2”|’f|+37n|lms| within

|A/e_27[|tj

¢ (m,n,s) is clearly O(|¢; ) for some A’ > 0, which will be exponentially nondominant.

Otherwise, (8-19) bounds a given dyadic interval by

’

|3 +0@ gy -+ F s ) |cq (n4+m)ey (”)Pfa(””)|

mor (L(L+M)53
n=L

|—2k

which matches the J ; (s) case except that we’ve multiplied by |; and replaced cc'l" with ¢;". By

Lemma 2.1, the change ¢;" + ¢ does not worsen our estimate. We conclude that
J]:I(S) < |tj ||k—1|_k+0(5)e—%|tj [+ % [Ims| ) (8-23)
We next consider J j)fl(s). By applying (8-15) and disregarding the nondominant contribution of

m 4 n+ |s| + |t ) Ae 2716 1+ Fms| (o find that
j

. m—1 + _
Jj)fl(s) < |Zj|_2+0(5)e_n|tj|+%|1ms| Z |pja(m)| Z g (n)eg (m—n)|

—1/2 k
m m-—n-—x
m<|tj|2+38 n=1-[5,] ( )

El

under the standing assumptions on s. To estimate the sums, we map 7 + m — n in the n-sum, restrict m
to a dyadic interval m ~ M, swap the order of summation, and apply Cauchy—Schwarz and Lemma 2.1:

+ - 1 - % %
Z I,OJa_(1n/12)| Z lea (m — n)cz (n)| < M} Z |cq E{n)|( Z |pja(m)|2) ( Z |cj(m)|2)
(n_%a) n m~M m~M

m~M n=1 n<2M
g ()]

nk

1ol 1 | _
&« MzkHalk=tts a4 |tj|)§e%|tl| Z
n<2M

The remaining #-sum has size O(M 3=kt 3lk=1| log M) by dyadic subdivision, Cauchy—Schwarz, and
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Lemma 2.1. The largest overall contribution to J j>:1 appears when M ~ [t; |2+5, which gives the estimate

|t |2F1H0@) if | > 1,

|£;]372k+06) if k< 1. (8-24)

JX(s) < ezl lmsl {

. ) 0
Finally, we consider J i

Applying (8-12) and (8-15) and ignoring the contribution of (m+n+|s| 4 |t;])1e =271 |+ 5 ltms| gy (8-15)
(since it is nondominant) produces

. . o . 0 .
(s), which we treat according to the four-part decomposition of / ; o (8) in (8-8).

J].Oa(s) K e_”ltj H‘%lImS' |tj | 0(%)

lea” (m)pja(m)| | le m)pja(m)|  leg (m)pja(m)| | ez (m)pja(m)]
k 1 + 1 + k 1 + 1 :
m _§|[j|2—2k m?2 m _7|[j|2 m§|t]|2k

X

m<|tj|2+8
For each term in the parenthetical, we subdivide dyadically on 1, then apply Cauchy—Schwarz, Lemma 2.1,
and Lemma 6.1. In each term, the largest dyadic contribution has m ~ [t; |2+‘3. The first two terms
contribute O(|¢; [¥Tk=11+0®) 31151y while the last two are O(|t; |k~ 1I=k+0@) 341y We conclude

that
|t;|Pk=1H0@) if fo> 1,

J0(s) < emzllrlmsl fp 1+06) if k=1, (8-25)
;|1 72k+0@) if k <0.
By combining the upper bounds derived in this section, we complete our estimation of (F, u;) and
prove Theorem 8.1:
Proof of Theorem 8.1. We estimate (8-4), truncating the contour to [Ims| < ¢ log(1 + |¢j|) with negligible
error by Remark 8.10. We write R(¢jq,5) = Ij"; (s) + I;I(s) + I].Xa(s) + ija(s), truncating each term in
the decomposition as described in Section 8C. Within the truncated contour, we shift to Re s = § (with
negligible error) and apply (8-22), (8-23), (8-24), and (8-25) to produce

(F, ,LLJ) < Z e_j‘tjl(lfj |2k—1+0(3) + |[j |3—2k+0(6))
a
X /(8) |5[a=oo]sg(s) +(s—1)g(l —S)Va(S)‘ . |§*(2S)|87|1ms|d&
The integral is O, s(1), and the proof follows by taking & near 0. O

9. Bounding Dy (s) in vertical strips, part I1

In Section 7, we proved Proposition 7.1, which reduced the problem of bounding Dy (s) to the problem
of bounding (Vy, P¢(-,5)). In this section, we estimate the latter to prove the following theorem.

Theorem 9.1. Fix € > 0 small. In the vertical strip Re s € (% + €, % + 6) away from poles of Dy(s), we
have
%—Res

5 1 3
Dy(s) e £6]s]€- (|s]2 + L3 ]s]* + £]s|72)

The proof follows the decomposition of (Vy, P¢(-,5)) into discrete and continuous spectra.
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9A. Growth of the discrete spectrum X gisc. For convenience, recall that the discrete spectrum equals

Zaisc () 1—%;/&(5” — 3 +it)T(s =3 =it} (V. ).

By the comments at the start of Section 8, we may replace V;; here with the unregularized form
3/213(2)|*. Then, by Theorem 8.1 and Stirling,

1_ 1_ 1t ) _ . -1 - :
Edisc(s) <02 Resls| 3 Rese 7 [Im s| Z |IOJ( )l |tj |2+€|S + ll‘j |Res 1 |S — Zj |Res le 7 max(|¢; |,|Ims|).
cosh %
Here we have used that ¢; € R for Maass forms on 'y (4).
By Lemma 6.2, the mass in the #;j-sum in Xgis(s) concentrates to within |#;| < [Ims|. Thus

| |%—Res+e

1_ N _
Sdisc(s) < £27Res > J‘”( ) |s +itj|Res s —ig;Res—1, 9-1)

osh Z¢;

T
Z|Tm |
¢ 171 <ITm s| 2

Lemma 6.2 implies a short-interval second moment estimate of the form

10 (02 Lrepe o1

_— X1Tepe 4 p2te, _
Z cosh i tj SN + (9-2)
X=<|tj|<X+1

By dividing the range of summation in (9-1) into subintervals of length 1 and applying Cauchy—Schwarz
and (9-2) to each subinterval, we find

Saise(5) KRes,e 2R 2V (Js[RS 1) (|52 + £3) e F sl 9-3)

9B. Growth of the continuous spectrum Y..ont. Recall that the continuous spectrum equals

Pt (3 +it)T(s—%+it)D(s—1—ir) L
cont % ,Ea 5+ dt
Z/ (4]T€)S_§(]T£) ltF(S)F( —‘,—l[) ( H ( 2 ll))

in Res > % To bound the growth of X¢on(s) with respect to |Im s| in this region, we must control the
growth of both ¢, (% + il) and (VH, Ea(. , % + il)). Sufficient estimates for ¢y (% + it) appear in (6-3).

To estimate (Vy., Eq( -, 3+it)), we apply the Phragmén-Lindelof convexity principle to (Vy, Eq(-,0)),
studying the latter outside the critical strip. We prove the following result.

Proposition 9.2. Forall € > 0, (VH, Ea(~, % + it)) Le (14 |t|)%+€e_%|’|.

Proof. To begin, we interpret (V;, Eq(-, w)) via the Rankin—Selberg method. More precisely, we interpret
the inner product using Zagier’s extension of the Rankin—Selberg method to functions with polynomial
growth at cusps, as generalized to congruence subgroups by Gupta [37; 6].

Recall from (4-4) that Vy(z) differs from y3/2|#(z)|? by a linear combination of the functions
Eb(z, %), Eb(z, 1), and y'/2|0(z)|2. It follows that

Vi (0az) = Ya(p) + O(y™™™)
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for all M > 0 as y — 0o, in which () is a linear combination of y~!/2 (from Ey(z, %)), log y, and
¥ (both from E b(z, 1)). We define the Rankin—Selberg transform R,(Vy, w) by

dx dy

Ra(Vio w) = / / (Vo) = 1) (9-4)

We write Vy(z) as a Fourier series and execute the x-integral in (9-4), extraoting the constant Fourier
coefficient. This produces

*° dy
Ra(Vyy, w) ::/ yw-i-% Z |C+(n)|2 —4n(n+xa)y 4
0 n+x,>0 Y

*© w4 - 2 1 2 am(n—x )ydy
) 2 ey (mPT(—3. 4m(n—xa)y) e )y

n>1 Y

1 fm w—1 2 —dn(n+xa) dy
— | »y" 2 |[ra(n)| ™ T HY —
i >

- 2
64m n+x,>0 y

where 0|y, (z) = )5 ra(m)e((n + x4)z). Note that the constant Fourier coefficients of E b( ) and
Ey (z, 1) cancel with corresponding terms in ¥,(y) and do not appear above. It follows that

F(w+3) e > T(w—3) ra(m)|?
(47T)w+% n>—x, (n+ %a)w—i_% 4(4].[)w+% n>—x, (n+x)*"2

- 2 00
'y |ca ()] 1/0 yw-i-%]"(_%,y)zeyd_y‘

=1 (4r(n =)V "2

Ra(VH, w) =

Lemma 2.1 implies that the two Dirichlet series converge in Re w > % Note that the integral above
equals G3/,(w, 1, 1) as defined in (3-2), so by the comments following (3-2), the second line above
converges for Re w > %

To estimate the growth of Ry(Vy, w) on the line Rew = % + €, we must quantify the growth of

G3/2(w, 1, 1) with respect to |[Im w|. This was computed in Lemma 7.4; away from poles, we have
Gy(w.1.1) e |w[Rew—3+e,—Flmuw|

It follows that Rq(Vy, w) < |w|%+€e_%|lmw| on the line Rew = % +e.

The estimate {*(2 —2w)Ra(Vy, 1 —w) K D", £* (2w) Ry (Vy, w) (cf. (8-3)) can be used to produce
bounds in a left half-plane. In particular, we find R,(Vy, w) < |w|%+ee_%IIme on Rew = —% —€.
The Phragmén-Lindelof convexity principle then implies

Ra(Vi, k4 it) < (14 |13 Hee™ 31,

for real . To complete the proof, we note that Rq(Vy, w) = (Vy, Eq(-, w)) within the critical strip
Rew € (0, 1) by [15, Proposition A.3]. (The constant ® defined therein equals 0, since ¥4(y) is a linear
combination of log y, y°, and y_l/ 2 for each a.) O
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By Proposition 9.2, (6-3), and Stirling’s approximation, we have

dt

- Res—1 i |Res—1
s e s — i e st 4

—00

5 (s) < E%—Res+ee§|lms|/oo (1 + m)%—l—e
cont

|S|Res—%

The mass of the integral above concentrates in |¢| < |Im s|; restricting to this range, we find that

E%_R°S+E|S|3—Res+e [Im s|
Teom(s) < z / s +it[Res s —iz|Res
ej‘lmsl —|Ims|

IR
< 0z es+e|sl2+e

(s|Re* + 1), (9-5)

e Z |Ims|
at least in the region Re s > % (where X oy has this one-term description).

9C. Growth of Dy(s). InRes > %, the upper bound for X onc(s) from (9-5) is dominated by the upper
bound for Xgisc(s) from (9-3). It follows that

(V'H’PZ("S)) e E%—Res+€|sl2+é(|s|% _}_E%)

I(s+1) ©-6)

in this region. By combining this estimate with Proposition 7.1 and the convexity principle, we complete
our proof of Theorem 9.1.
Proof of Theorem 9.1. For Re s > 3, the upper bound

2 1 2 \% 2
Dy(s) € (Z A) (Z M) <Y I::QL <1
n>1 " 2

et (I’l +£)Res+% =1 (}’l +Z)Res+%

implies that the result holds on Re s = % + €, for € > 0. The result also holds on the line Re s = % + €,
by Proposition 7.1 and (9-6). The full theorem now follows by the convexity principle.

10. Applying a truncated Perron formula

To prove our main arithmetic result, Theorem 1.1, we apply a truncated Perron formula to Dy (s). Fix
€ > 0. For X nonintegral, we have

> HmH@n-1)

n<X

1 2+e+iT . X y2+e 2X %
=5 o De(s—i)Tds+0( - —}—n_ZX/ZIH(n)H(n—ZNmm(l,m)) (10-1)

by [25, Corollary 5.3]. By Lemma 7.2, the error term in (10-1) is

2X

X2 e . X y2te

n=X/2
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To estimate the integral in (10-1), we shift the contour from Res = 2 4+ ¢ to Res = 1 + €. By
Theorem 6.5, this extracts two residues, which total

3
1X? 5—65 Dy(s)+3X2 §=eIS Dy (s).
-2

Shifting the truncated contour introduces error terms from horizontal contour integrals, which by
Theorem 9.1 are bounded by

24+iT+e€ X* T)€ 2+€ _
0(/ Dg(s——)—d) ¢7) / (T3 + €572 +0T73) " X%do
14T +e T Jite

2
< (LXT)* (XT FXT?+05XT + EXT—%).

Once the contour is shifted to Res = 1 + €, we separate the contribution of the discrete spectrum
Ygisc(s) from the rest of Dy(s). The estimates from Proposition 7.1 and (9-5) imply that the non-X i
terms contribute

1+iT +e 1
0(/ (E|s|)€(|s|2 +472 +
1

—iT+e

Y 1+e
5 )—ds) LK (UXT)S(XL+XT?).
1s|2/ sl

To bound the contribution of X g (s — %) / T'(s), we shift the contour farther left, to Re s = €. This
shift introduces an error term (from the horizontal contours), which has size

O(UXT) - (T3X +L4TX + T> 4 L3T?)),
by (9-3) as well as a finite sum of residues equal to

Y 1+it x1-it

Ri= (— Res Xgisc(s)+ ————— Res Xy (s)).
ET CQ+ity) s=iyis; PQ—itj) s=lig;

The contribution of X i on the contour Res = € is O(((XT)¢ - (T3 + 03 T%)) by (9-3). Evaluating
the residues in R and bounding in absolute values gives

RKX > M«XTE > _ij(ﬁ)l. < XT1+6( )3 ij(ﬁ)IZ)z’

coshmi;
tj|<T tj|<T tj|<T

in which we’ve applied Theorem 8.1 and Cauchy—Schwarz. Lemma 6.2 then implies that R <,
X(ET)E(T? +05T3).
Putting everything together and omitting obviously nondominant errors, we conclude that

> HmH(n—t)
n<X 2

2 X ‘ ‘
= 3 X7 Res Dy(s) + 3% Res Dy(s) + O ((ZXT)E (7+X(T2+65T§ +0)+£7° +eZT§)).
-2
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When £ <« X2/3, these errors are minimized by setting 7 = X 173, producing a collected error of size
O(X%"'e). In the range X2/3 « £ « X, we choose any T € [X/{, X%ﬁ_ﬁ], producing a collected
error of size O(X !*€¢). Using the residue formulas from Theorem 6.5, we conclude that

T2 X?

252—;(3)(20_2(9 —0_a(%) +0_2(L0)) + 0€(X§+e 1 X+,

> HmHn—1() =

n<X
Theorem 1.1 then follows by assuming £ < X and mapping X — X + £.

Remark 10.1. The error terms in Theorem 1.1 may be improved dramatically if the sharp cutoff n < X
is replaced by a smooth cutoff. To this effect, fix a smooth function w(x) with inverse Mellin transform
W (s). We have

1
Y HmH-0w() =5 [ Dils=3)Wxds
n=1 21i J(o4e)
provided both sides converge. If W(s) decays exponentially in |[Ims|, we may shift the contour of
integration left to Res = 1 4 € by Theorem 9.1. This extracts two residues, and the shifted contour

integral contributes O((X £)!*€) by Theorem 9.1. We conclude that

Y HmHMn-w(%) =W(2)X? Res Dy(s) + W(%)X% Res Dy(s) + O (X 0)119),

n>1

which offers some evidence in support of the conjecture (1-6).
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On two definitions of wave-front sets for p-adic groups
Cheng-Chiang Tsai

The wave-front set for an irreducible admissible representation of a p-adic reductive group is the set of max-
imal nilpotent orbits which appear in the local character expansion. By a result of Mceglin and Waldspurger,
they are also the maximal nilpotent orbits whose associated degenerate Whittaker models are nonzero.
However, in the literature there are two versions commonly used, one defining maximality using analytic
closure and the other using Zariski closure. We show that these two definitions are inequivalent for G = Sp,.

1. Introduction

Let F be a finite extension of Q, and G be a connected reductive group over F. Write g := Lie G.
The local character expansion of Howe and of Harish-Chandra [1999, Theorem 16.2] asserts that, for
any irreducible admissible C-representation 7w of G (F), there exist constants co(;r) € C indexed by
nilpotent Ad(G (F))-orbits O C g(F), together with a neighborhood U = U, of 0 € g(F'), such that the
character ®, of & satisfies the following identity of distributions on U':

(O ologh) |y = %:Co(ﬁ)iow- (1)

Here I is the distribution of integrating a function on O with any G (F)-invariant positive measure, and
f@ its Fourier transform, namely f@( ) i=1o( f ).

Moeeglin and Waldspurger [1987] generalized a result of Rodier [1975] and showed that, for O e
max{O : co(m) # 0}, the quantity co () with suitable normalization is equal to the dimension of the
degenerate Whittaker model for rr relative to 0. Degenerate Whittaker models are local analogues and nec-
essary conditions for existence of Fourier coefficients for automorphic forms. The set max{O : co (1) # 0}
is therefore of particular interest, and is typically called the wave-front set. However, there are two partial
orders commonly used in the literature: for two nilpotent Ad(G (F))-orbits O; and O, the partial order
01 < O, is defined either (i) if the analytic closure (using the Hausdorff p-adic topology on g(F')) of
O is strictly contained in the analytic closure of O,, or alternatively (ii) if the Zariski closure of Oy is
strictly contained in the Zariski closure of O;.

Let us denote by WF™ (17) := max{O : co (7r) # 0} the set given by the first definition, and by WF%¥ (17)
the analogous set given by the second definition. Since the Zariski closure is larger than the analytic
closure, we have an obvious inclusion WF™(7) DO WF¥ (7). At the same time, there is the notion
The author is supported by NSTC grants 110-2115-M-001-002-MY3, 113-2115-M-001-002 and 113-2628-M-001-012.
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of geometric wave-front sets: Fix an algebraic closure F of F and let WE™!(1r) (resp. WF% (7)) be
the set of Ad(G(F))-orbits in g(F) that meet those in WE™(rr) (resp. WF?¥(1r)). Again we have
WF™ (1) > WF%¥ (7). We note that by [Poonen 2017, Proposition 3.5.75], any G (F)-orbit O C g(F)
is Zariski dense in the G (F)-orbit it sits in. Hence WFZ¥ (1) is equal to the set of maximal geometric
orbits that appear in (1). We thank Emile Okada for clarifying this.

The set WF™ (;r) was used in [Mceglin and Waldspurger 1987; Mceglin 1996; Gomez et al. 2021]
and many others. On the other hand, WFZ2 (1) was used in, for example, [Waldspurger 2018]. Both
WF™ (7r) and WF% (7) were discussed in [Ciubotaru et al. 2025], while their main results determine
WFZ¥ (1) but not WE™! (7). Nevertheless, in [Jiang et al. 2022] the main conjecture, Conjecture 1.3, is
stated for WFZ¥ (17) but it seems that the spirit might work for WF™(7) as well. Given the abundance
of results on the topic, it is desirable to know how/whether WF™(rr) and WF?¥ (1) (resp. WF™!(r7)
and WFZ¥ (7)) could be different. In fact, the longstanding conjecture about geometric wave-front sets,
proposed and proved for GL,, in [Mceglin and Waldspurger 1987], asserted that:

Conjecture 1.1. For any irreducible admissible representation 7w of G(F), the set WF™\(1) is a singleton.

Since WFZ¥ (1) is obviously nonempty, the validity of Conjecture 1.1 for any 7 is equivalent to the
validities of the following two statements:

Conjecture 1.2 (counterexample in [Tsai 2024, Theorem 1.1]). WF%¥ () is a singleton.
Conjecture 1.3. We have WF™ (1) = WF2¥ (1) or equivalently WF™(r) = WF%¥ (7).

As indicated above, the first counterexample for Conjecture 1.1 is a counterexample to Conjecture 1.2.
The purpose of this paper is to show that Conjecture 1.3 also has a counterexample, in fact, in the case of
split rank 2, which is the smallest absolute rank where Conjecture 1.3 becomes nontrivial.

Let p > 11 be any prime number, g a power of p with ¢ =1 (mod 4), and F any nonarchimedean
local field with residue field F, and fixed uniformizer @ € F. Let G = Sp,/F be the group of linear
operators on F* that preserve the symplectic form

(X, ) =X1y4 4+ X2y3 — X3)2 — X4 1. (2)

Denote by m the maximal ideal and m® = O the ring of integers in F. Consider the Moy—Prasad filtration
(G(F))re1/2)z., “associated to the Siegel parahoric.” It is given by

B ml’l ml’l n

m' m”
G(F),:=1g€G(F):g—1Ids e it ]
m

23 3 3

3

n+1

m
m
m
n+1 m

m

n
n
_mn+1 mn+1 m” m"
mn+1 n+1 m” m"

G(F)nt12:=18€G(F):g—1Ids € it et el et 3)

mn+l mn+1 mn+1 mn+1
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for n € Z¢. The group G(F); is a normal subgroup of G(F)j,2, and the quotient may be identified as

00ba
00cbh
e d0O0
fe0O0

Vi=G(F)i2/G(F) = ca,b,c € Op/m, d, e, f € m/m?

Fix an additive character vy : F — C* that is trivial on m but nontrivial on Of. Consider

000 w!
00w 'O

A=1100 o |€90): (4)
010 0

Denote by ¥4 : V — C* the character B+ ¥/ (Tr(AB)), and by &A its pullback to G(F')1 2. Conjecture 1.3
is disproved by:

Theorem 1.4. For any irreducible component w of the compact induction
. G(F) 7
c—1ndG(F)l/2 YA,
we have that WF™(r) contains two regular nilpotent orbits and also a subregular nilpotent orbit.

Consequently WE?¥ (1) contains only the two regular nilpotent orbits.

In fact, the subregular orbit is the unique one not contained in the analytic closure of the previous
two regular nilpotent orbits. The representation 7 is one of the so-called epipelagic representations in
[Reeder and Yu 2014]. Prior to this work, similar representations for much higher-rank groups had already
been studied in a joint work in progress of Chi-Heng Lo and the author to produce a counterexample to
Conjecture 1.2 for split groups (rather than for ramified groups as in [Tsai 2024]). We also remark that in
the language of the newer paper [Tsai 2023], we have WF™ () = WF™(A) and the result may well be
interpreted as for the wave-front set of A € g(F).

2. Nilpotent orbits

For our G = Spy, the subregular nilpotent Ad(G (F))-orbits correspond to partition [22] and any such
orbit has a representative of the form

0000
Cope = 0000
e baOO0]’
cb00

a,b,ceF.

Denote by v; (1 <i <4) the i-th coordinate vector of our 4-dimensional symplectic space. The operator
eq.b.c defines a nondegenerate quadratic form on span(vy, v2) by

(X, Y)a,b,c = (X, ea,b,cY>v (5)
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where (-, - ) is asin (2). The Ad(G (F))-orbit of e, p  is uniquely determined [Nevins 2011, Proposition 5]
by the isomorphism class of the quadratic form (-, - ), ... Similarly, a regular nilpotent Ad(G (F))-orbit
has a representative of the form

00 0O
10 00 .

ng = 0d 00l de F”. (6)
00-10

The orbit is again uniquely determined by the image of d in F*/(F*)%. We show that:

Lemma 2.1. The element e, . lies in the analytic closure of Ad(G (F))ng if and only if the quadratic
SJorm (-, - )(a.b.c) represents d, namely (v, v)q p.c = d for some v € span(vy, v2).

Proof. Suppose (v, v)q.p. = d for some v € span(vy, v2). Then with a change of basis we may assume
(v2, V2)a.b.c =d, i.e., a = d. We have (with all hidden entries being 0’s) for e, f € F, h € F* that

1 0 1 0
—e 1 10 e 1 _ 1 0
o1 d 0 —f 1 | de d 0 |’
fel 10 —f —e 1] | 2f+de* de 10
h! 0 h T T 0
1 1 0 1 _ h 0
1 de d 0 1 - deh d 0
h | 2f+de* de 10 h='] | 2fh*+de*h* deh h O

For arbitrarily small 7 we can choose e, f € F so that deh = b, 2fh? +de’h? = c. Hence the above
converges to e, p - as desired.

Now suppose e, p . is in the analytic closure of Ad(G(F))ng, i.e., there is a sequence g; € G(F)
such that Ad(g;)~'ng converges to €a.p.c. To show that (-, -),.5 . represents d we follow the method of
[Djokovi¢ 1981, Theorem 6] for real groups. The quadratic form

(X, V)a g = (X, Ad(g) " (na)Y) = (& X, nagi¥)

has to converge to (X, Y),.» . on span(vy, vz). Since being isomorphic to a nondegenerate quadratic form
over F is an open condition in the space of (not necessarily nondegenerate) quadratic forms, for i > 0 we
have that (-, - )a, g lspan(vi,v2) = (*, - )a,b,c. In particular, there exists a 2-dimensional subspace W in F 4
such that the restriction of the form (X, Y), := (X, ngY) is isomorphic to (X, Y)4 p.c-

Observe the form (X, Y)4 restricts to a rank-2 hyperbolic form on span(v;, v3). The orthogonal
complement of span(vy, v3) under it is span(vy) @ span(vs4), where the form has discriminant d on
span(vz) and has span(vs4) in its kernel. The subspace W must not intersect span(vs); hence its image to
F*/ span(vs) = span(vy, va, v3) is again 2-dimensional. Denote by W+ the orthogonal complement of
W in span(vy, vo, v3). Since (-, - )glw = (-, * )a.b.c, We have that

(' s " )dlspan(vl,v3) ® ( N )d|span(vz) = ( " )d|span(v1,v2,v3) = ( P )a,b,c @ ( Tyt )d|Wl
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are isomorphic as quadratic spaces. Since (-, - )g|span(v;,v3) 18 hyperbolic, it is isomorphic to the direct sum
of (-, )4lw+ and some other 1-dimensional quadratic space. By the cancellation theorem of quadratic
spaces [Serre 1973, p. 34, Theorem 4], we then have (-, ), 5. 1S isomorphic to the direct sum of
(- )alspan(v,) and this 1-dimensional space, i.e., (-, - )a,p,c, represents d, as asserted. ]

3. Shalika germs and the proof of Theorem 1.4
We normalize our Fourier transforms as
f(B):= /(F)lﬁ(Tr(AB))f(A)dA,
g

where elements in g(F) = sp,(F) are identified as 4 x 4 matrices as usual, i.e., as in (2). It is known (see
the main result of [Kim and Murnaghan 2003], or [Kaletha 2015, (6.1)] for a more direct exhibition) that,
for any 7 in Theorem 1.4, on some sufficiently small neighborhood U of 0 € g(F) we have

(O ologhly =c¢- Ialu (7)
for some ¢ € Q..
Since p > 11, the hypotheses needed for [DeBacker 2002, Theorem 2.1.5] are satisfied and it gives the
following analogue of (1), the Shalika germ expansion:

14(f) =X co(M)Io(f). ®)

Here O runs over nilpotent Ad(G (F'))-orbits in g(F) as in (1), and f has to be a function of depth —%; a
condition that will be automatically met if f is supported in a small enough neighborhood. Comparing
(1), (7) and (8), we see that the coefficients in (1) satisfy co() = c - co(A). In particular, co () # 0 if
and only if cp(A) # 0, and we have WF™(7) = max{O : co(A) # 0}, where the partial order is given by
the (analytic) closure relation. Fix € € Oy any nonsquare and

0 0 00
0 0 00

1o —o'e 00 ©)
e 0 00

Theorem 1.4 now follows from:

Proposition 3.1. The Shalika germ co(A) is zero for a regular nilpotent orbit O if and only if the closure
of O contains e.

Proposition 3.2. The Shalika germ co(A) is nonzero for the subregular nilpotent orbit O = Ad(G(F))e.

Remark 3.3. It might look like there are smart choices behind ¢ and A. In fact, a random choice of A
has about % probability to work; it secretly needs a certain invariant in O to be a square. Once that is
met, Proposition 3.2 will work for any such A and some e it picks out. Our choice merely gives a nicer
matrix calculation. The assumption ¢ = 1 (mod 4) is also taken to simplify the exposition and is not
essentially needed.
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The rest of the section is devoted to the proofs of Propositions 3.1 and 3.2.

Proof of Proposition 3.1. A result of Shelstad [1989], combined with another by Kottwitz [1999,
Theorem 5.1] (we thank Alexander Bertoloni Meli for clarifying this), showed that, for a regular nilpotent
orbit O, cn(A) =0 if and only if Ad(G (F))A does not meet the Kostant section associated to any element
in O. The theory of the Kostant section also gives that, for any fixed regular O, among the stable orbit
of A there is exactly one rational orbit that meets the Kostant section. We have

1 000 0 0 0 w!
00 10 1 0 0 0
Ad 0-100 A_O—w—loo
00 01 0 0 —-1 0

is in the Kostant section for n_,,-1. Since ¢ = 1 (mod 4), we may fix i := +/—1 a square root of —1
in Of. We have

[\
I
o

1 00 0 0 2w
1—i 00 0 0 0 2o!
Ad 00 %ii A= 0 i o0 0
0 0—3%i 4 -0 0 0
Hence
207100 0 00017 (1 i 00 00 02072
0 10 0 0100| |1 —i 00 100 0
A : . A=
d 0 01 0 oo1o0| |00 1ii 030 0
0 004w ||-100 0 0-1il 001 0

is in the Kostant section for n;,,. We note that both —1 and %i are squares in (’);, and thus Lemma 2.1

shows that n_,,-1 and n; > are exactly the two regular nilpotent orbits whose closure does not contain e.

This shows that if cp(A) = 0 for a regular nilpotent O, then the closure of O must contain e. It remains

to show that for any regular nilpotent orbit O different from that of n_ ;-1 and n; >, we have co(A) = 0.
Let /€ be a square root of € in an unramified quadratic extension of F. The element

J o 0 0
J—| 0 vElo o
0 0 e o
0 0 0 e

has image in G,4(F) = PSp,(F). Since the orbit of A meets the Kostant section for n_,,-1 and n; >, the
orbit of Ad(d)A meets the Kostant section of Ad(d)n_, -1 and Ad(d)n;p. As Ad(d)n_, -1 =n_ ;-
and Ad(d)n;;» = n¢; > are the other two regular nilpotent orbits, using results of Shelstad and Kottwitz
and the classical result that a Kostant section meets an Ad(G (F))-orbit at one point, it remains to prove
that Ad(d)A and A live in different Ad(G (F))-orbits. The element d defines a class ay € Z'(F, Z(G))
and the assertion that Ad(d)A and A live in different Ad(G (F))-orbits is equivalent to the fact that
the image of oy in H'(F, Zg(A)) is nontrivial. Observe that cy is trivial on inertia and sends Frob to
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—1 € uy = Z(G). Since Z;(A) is anisotropic over the maximal unramified extension of F, the image of

ag is nontrivial in H'(F, Zg(A)) = H'(Frob, X.(Zg(A))1,) = H' (Frob, ;13), as claimed. O
Proof of Proposition 3.2. Consider the characteristic function of the set
m® m® m! m!
0 .0 ._—1 0 -1
. m’ m o e+m’ m
X F) : X is of the fi
€ g(F) : X is of the form 0 om0 O 0
etm m®  m° m?

Call this function f. It has the property that f(X 4+ Y) = f(X) whenever Y is of the form

mo mO m_l m‘l

mo mO mO m‘l
mo mo mO mo
0 1,0 0

mmm m

The set of elements of the above form is a Moy—Prasad lattice of depth —%. Since A is of depth —1,
[DeBacker 2002, Theorem 2.1.5] (or its application to Conjecture 2 of that work) shows that (8) holds
for f. Let e be as in (9). We claim that:

Lemma 3.4. Suppose Io(f) # 0 for a nilpotent Ad(G (F))-orbit O. Then e lies in the closure of O.
Lemma 3.5. I4(f) #0.

With both lemmas, (8) gives Y, co(A)Io(f) = I4a(f) # 0. By Proposition 3.1 and Lemma 3.4, the
only nilpotent orbit O that can contribute to the sum is O = Ad(G (F))e, which proves Proposition 3.2. [J

Proof of Lemma 3.4. We have,

10 00 m° m? m-! m!
00-10 m? m? m’ m!

f = A =

orw=1,1 oo Ad@SPPUI=\ o i 0 m0 o
00 01 e+m m? m? mo

For any X € O N Ad(w) supp(f), we observe that

=" 0 0 0 I112n mZn n14n—1 m4n—1
0 =" 0 0 m2n mZn m4n m4n —1

2n

A X N
@ d 0O 0 w™ O €0 m’ —mledm® m¥r m¥

0 0 0 w™ e+m m? m¥  m?

As n goes to 400, such elements converge (or a subsequence does) to an element

0 0 00
sl o 0 00
m? —ole4m® 0 0

€+m mY 00

This element ¢’ lives in the same Ad(G(F))-orbit as e because the bottom-left 2 x 2 matrix defines an
isomorphic quadratic form. O
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Proof of Lemma 3.5. We look at

1000 00 owlz ol
z1 00 0 0w i+H) vz
Adfhoo 1 ol [AT] 1 0 0 0o |’

(00 —2 1_) | -2z 1 0 0

x 00 0 10 0 o‘\ 0 0 oy Iz w1x?
adl 10 y 10 0 c10o0f|, 0 0 o 'y 21+ o 'xy7 'z

00 y O 0010 xly 0 0 0
0 0 0x '] |00 —z 1_) | —2x72z x7ly 0 0

Suppose x, y € O and z € Of. Denote by X, y, z, € € F, the respective reductions. The right-hand side
of the last equation lies in the support of f if and only if

—2% 727 =¢, 7= —ex?,

yA(l+zH) =¢ et +1=¢y2

That is, as long as the curve E = (Eﬁz = }162)24 +1:(x,y) € (Gm)z/[pq) has an [, -point, there exists
g € G(F) such that Ad(g)A € supp(f),i.e., I4(f) #0. Such an [,-point always exists. Indeed, E differs
from its smooth completion E° by eight I]_:q -points (two for x = 0, four for y =0 and two at infinity), and
none of them is defined over [, because € € [, is a nonsquare. Hence E(F,) = E“(F,), while E€ is a
geometrically connected projective smooth genus-1 curve and always has an [, -point. O

Remark 3.6. This “none of the boundary points is defined over the residue field” phenomenon seems to
be related to the vanishing of cn(A) for those O > Ad(G(F))e.

Remark 3.7. Using a special case of [Kim and Murnaghan 2003, Theorem 2.3.1] that Ad(g)A €
9(F)_12 = g € G(F), one may reduce the computation of orbital integrals and thus co(A) and co ()
(for O = Ad(G(F))e) to #E(F,). We predict the dimension of the associated degenerate Whittaker model
to be JT#E([F,]), analogous to [Tsai 2017, Theorem 4.10 and Corollary 6.2].

Remark 3.8. We may also work with representations of depth n + % by replacing A by @ " A and
replacing G(F)1,2 by G(F),+1/2 in Theorem 1.4. The same proof works, except that e needs to be
replaced by @ ~"e, resulting in every O € WF™! (i) being replaced by @ " O.

4. Langlands parameters

The determination of the Langlands parameter corresponding to an individual 7 in Theorem 1.4 is part of
the difficult problem solved in [Kaletha 2015] with deep insight into the rectifying characters and their
relation with transfer factors. The collection of all Langlands parameters corresponding to components 7
in Theorem 1.4 is nevertheless simpler, because it happens in this case that the rectifying characters can
be absorbed into the choice of an irreducible component in c—indgzgl/z Va. We describe the collection of
such Langlands parameters, in the hope that it may be useful to interested readers.
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Consider the ramified quadratic extension E = F (/@ ). Write wg = \/o. A Langlands parameter
we seek for is a homomorphism p : Wr — SOs(C). It has image in O,(C) x O,(C) x SO (C), i.e., p can
be viewed as the sum of two orthogonal self-dual representations and a trivial representation. We have
p = p1 @ pr @ triv, where p; = Ind‘;,/; xj for j=1,2. Write oy =1 and ap = J/—1 for any choice of
square root of —1 in O. Then x; is a character on E* satisfying:

(a) XJ'|F>< =1.
(b) x;(1+xw)=1forall x € O.
(©) xj(0+xwg) =y (2xa;) for all x € Of.

Here v is as chosen before (4). We note that each x; is determined up to a freedom of y;(wg) € {1},
and consequently there are 22 = 4 candidates for such p. Relatedly, there are also 2 components of 7 in
Theorem 1.4.
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Irregular Hodge filtration
of hypergeometric differential equations

Yichen Qin and Daxin Xu

Fedorov and Sabbah—Yu calculated the (irregular) Hodge numbers of hypergeometric connections. In
this paper, we study the irregular Hodge filtrations on hypergeometric connections defined by rational
parameters and provide a new proof of the aforementioned results. Our approach is based on a geometric
interpretation of hypergeometric connections, which enables us to show that certain hypergeometric sums
are everywhere ordinary on |Gy, r, |; i.e., “Frobenius Newton polygon equals the irregular Hodge polygon”.

1. Introduction

Our primary focus is to investigate the Hodge theoretic properties of confluent hypergeometric differential
equations. These differential equations have irregular singularities and are equipped with irregular Hodge
filtrations, which are defined in [Sabbah 2018]. The irregular Hodge theory, initiated by Deligne [2007a;
2007b], extends the classical Hodge theory and has been developed in a series of works; see [Sabbah
2010; Kontsevich and Soibelman 2011; Yu 2014; Esnault et al. 2017; Sabbah and Yu 2015; Sabbah 2018].

Let n > m be two nonnegative integers, A a real number, and o = (o, ..., a,) and B = (B1, ..., Bn)
two nondecreasing sequences of real numbers in [0, 1). Let S be the scheme G,,\{1} (resp. G,,) if n =m
(resp. n > m) with coordinate z. The hypergeometric equation is the linear differential equation defined
by the differential operator

m

n
Hyp; (o: ) =4 [ [(2d: — i) — 2 [ [(zd. — B)). (1.0.0.1)
i=1 j=1
The hypergeometric connection Hyp, (a; B) is the associated connection on the complex algebraic
variety Sc; see (2.1.1.1). We say that the pair («, B) is nonresonant if o; # B; for any i and j. In this
case, the hypergeometric connection Hyp, (o; B) is irreducible and rigid, as seen by combining the works
[Beukers and Heckman 1989] and [Katz 1990].

When n = m, hypergeometric connections have regular singularities at 0, 1, and co. Simpson [1990,
Corollary 8.1] demonstrated that rigid irreducible connections on curves with regular singularities whose
eigenvalues of monodromy actions at singularities have norm 1 underlie complex variations of Hodge
structure. In this case, Fedorov [2018] computed the Hodge numbers associated with the Hodge filtrations
of irreducible hypergeometric connections, and Martin [2021] gave an alternative proof.
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When n > m, hypergeometric connections are called confluent, indicating the merging of singularities,
and have a regular singularity at 0 and an irregular singularity at co. Sabbah [2018, Theorem 0.7] showed
that a rigid irreducible connection on P! with real formal exponents at each singular point admits a
variation of irregular Hodge structure away from singularities. For confluent hypergeometric connections,
Sabbah and Yu [2019] computed the corresponding irregular Hodge numbers. In addition, Castafio
Dominguez and Sevenheck [2021, Theorem 4.7] and Castafio Dominguez, Reichelt and Sevenheck
[Castaiio Dominguez et al. 2019, Theorem 5.8] explicitly calculated the irregular Hodge filtration for
m =0 or 1, respectively.

This article focuses on cases where A, o, and 8 are rational numbers. We explicitly construct the
irregular Hodge filtration Fj;. on hypergeometric connections in Theorem 3.3.1 and provide a uniform
method for reproving the results of Fedorov and Sabbah—Yu.

Theorem 1.0.1 (3.3.1). Suppose (v, B) is nonresonant. We define amap 0 : {1, ... ,n} - R by

n m
0y =(n—myax+#{i | fi <l +(n—k) =Y ai+ > B (1.0.1.1)
i=1 j=1
Then, up to an R-shift,! the jumps of the irregular Hodge filtration on Hyp; («, B) occur at 0 (k) and, for
any p € R, we have

tkgry, Hypa(as B) =#6""(p).

1.1. Application to Frobenius slopes of hypergeometric sums. Our method has an arithmetic application
to the Frobenius slopes of hypergeometric sums: the arithmetic incarnation of hypergeometric functions
[Katz 1990].

Let K be a p-adic field with residue field [, containing an element 7 satisfying 7 ? ~!'= —p. Such an
element 7 corresponds to an additive character ¥ : [, — K> by Dwork’s theory [1974]. Suppose that
(e, B) is nonresonant and that

a; bj Z
a=——7—, Bj= —_— .
p—1 p—1 p—1

Miyatani [2020] showed that there exists a unique Frobenius structure ¢ (up to a scalar) on the analytifica-

tion of the hypergeometric connection Hyp_yn+mw jzn-n(a; B) on Sk, which underlies an overconvergent
F-isocrystal on the special fiber of S (called the hypergeometric F-isocrystal). The Frobenius trace of ¢
at an [, -point a of § is given by the hypergeometric sum Hyp(a; B)(a), defined by

n m n m
Y v (Tr(Z Xi=y yj)) JT e Nmee) [T Nm(y;)).
X1 Xp=ay1-Ym

where w : [F; — K* denotes the Teichmiiller lift, Tr = Try, /¢ and Nm = Nmg,_ /.

p’

lour Hodge numbers 6 (k) are normalized according to the geometric interpretation in Proposition 2.4.1, which is different
from those of Fedorov and Sabbah—Yu by a shift.
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Frobenius eigenvalues of ¢ at a are Weil numbers and have complex absolute valuations g +"~1/2

via an isomorphism K ~ C. When («, f) is resonant, the above hypergeometric sum can also be written
as a sum of n Weil numbers. It is expected that the p-adic valuations of these Frobenius eigenvalues
(called Frobenius slopes) are related to the (irregular) Hodge filtration. Our geometric construction of
hypergeometric connections allows us to show the following result.

Theorem 1.1.1 (4.0.2). Suppose n > m and that a; and B; lie in ﬁl N[0, 1). For every p-power q and
a € G, (Fy), the multiset of Frobenius eigenvalues of Hyp(a; B)(a) (normalized by ord,) coincides with
the multiset of irregular Hodge numbers {6 (1), ..., 0(n)} defined in (1.0.1.1).

Following [Mazur 1972], we encode the information of the p-adic valuations of Frobenius eigenvalues
and (irregular) Hodge numbers into the Newton polygon and the (irregular) Hodge polygon, respectively,
as defined in Definition 4.0.1.

For crystalline cohomology groups of a smooth proper variety over k, Mazur and Ogus showed that the
associated (Frobenius) Newton polygon lies above the Hodge polygon defined by Hodge numbers [Mazur
1972; Berthelot and Ogus 1978]. For F-isocrystals associated with exponential sums, “Newton above
Hodge” type results were studied by Dwork’s school. For example, Dwork [1974], Sperber [1977], and
Wan [1993] proved that Kloosterman sums (hypergeometric sums of type (n, 0) with ¢ = (0, ..., 0)) are
everywhere ordinary on |Gy, f,|; i.e., two polygons coincide for every closed point a € |G, |. We use a
“Newton above Hodge” result of Adolphson and Sperber [1989; 1993] and identify their (combinatorial)
Hodge polygon for the above hypergeometric sums with the irregular Hodge polygon of hypergeometric
connections. Finally, we deduce ‘“Newton equals Hodge” by a criterion for ordinariness due to Wan [1993].

Remark 1.1.2. (i) One may also consider the Frobenius Newton polygon of hypergeometric sums defined
by multiplicative characters of orders dividing p*—1 for a positive integer s. In this case, Adolphson and
Sperber showed that the associated Frobenius Newton polygon lies above their (combinatorial) Hodge
polygon, which can be viewed as an average of irregular Hodge polygons. However, the associated
hypergeometric sums may not be ordinary in the case s > 1. There is an example of hypergeometric
sums (of type (n, m) = (2, 0)) for which the Frobenius Newton polygon lies strictly above Adolphson
and Sperber’s Hodge polygon [1987] for every a € |Gy, F, |-

(i1) The ordinariness of hypergeometric sums also fails in the nonconfluent case (i.e., n = m). For p =31
and the hypergeometric sum defined by o = (0, 0,0,0), 8 = (é, %, %, g) at a = 4 or 17, its Newton
polygon (with slope (% % g, %)) [Drinfeld and Kedlaya 2017, Appendix A.5] strictly lies above the
irregular Hodge polygon (with slope (2, 3, 4, 5)).

1.2. Strategy of proof. The proof of Theorem 1.0.1 can be reduced to calculating the irregular Hodge
filtration on each fiber of Hyp, (o, ). We adopt an approach similar to those used in [Fresan et al. 2022;
Sabbah and Yu 2023; Qin 2024], where the authors calculated the Hodge numbers of motives attached to
Kloosterman and Airy moments. The key ingredient of this argument is an (exponentially) geometric

2In [loc. cit.], the Frobenius slopes are normalized and are different from our convention by a shift of 2.
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interpretation of hypergeometric connections in Corollary 2.3.3. More precisely, there exists a smooth
quasiprojective variety X with a regular function g : X x § — A! such that the hypergeometric connections
are subquotients of the Zs-module H" pr (Oxxs,d+dg), where N = dim X and pr is the projection
pr: X x § — S. Our construction is motivated by Katz’s hypergeometric sums and the function-sheaf
dictionary. A related construction can be found in [Kamgarpour and Yi 2021].

Through this geometric interpretation, each fiber Hyp; («, B), at a closed point a of S is identified with a
subquotient of the twisted de Rham cohomology of the pair (X, g, :=g |pr;1 ( a))» 1-€., the hypercohomology
of the twisted de Rham complex (2%, d+dg,). Then, we reduce to calculate the irregular Hodge filtration
on the twisted de Rham cohomology of the pair (X, g,) (up to a shift).

The irregular Hodge filtration on the twisted de Rham cohomology of the pairs (X, g,) has been studied
in [Yu 2014]. In the context of our case, we can select X = G%‘L’"—l and g, as a Laurent polynomial
with good properties; see Corollary 2.3.3. Under these assumptions, Yu showed that the irregular Hodge
filtration on Hgl’{ m=l(x, ga) can be calculated by the Newton polyhedron filtration on the Newton polytope
A(gg) (3.1.1.1). This identification enables us to prove, via a combinatorial approach, a fiberwise version
of Theorem 1.0.1 as follows.

Theorem 1.2.1 (3.3.3). Up to an R-shift, the jumps of the irregular Hodge filtration F;_on the fiber
Hyp(o; B)q occur at 8(k) from (1.0.1.1) for 1 <k < n. Moreover, we have

dimgr‘fFirr Hyp(a; B =#0"(p) forany p e R.

In addition, our geometric construction allows us to answer a question of Katz [1990, 6.3.8] on the
comparison between modified hypergeometric Z-modules and hypergeometric connections in the resonant
case (see Proposition 2.4.7) when the parameters are rational.

1.3. Organization of this article. We present a geometric interpretation of hypergeometric connections
in Section 2. Section 3 is devoted to the proofs of Theorems 1.2.1 and 1.0.1. In Section 4, we study
hypergeometric sums defined by multiplicative characters of orders dividing p—1 and prove that they are
ordinary (Theorem 1.1.1).

2. Hypergeometric connections

In this section, we give an (exponentially) geometric interpretation of the hypergeometric connections in
Proposition 2.3.1, Corollary 2.3.3, and Proposition 2.4.1. We work with varieties over C in Sections 2
and 3.

2.1. Review of hypergeometric connections following [Katz 1990].

2.1.1. Hypergeometric connections. Letn >m >0 be two integers, @ = (a1, ..., a,) and B= (B, ..., B})
two sequences of nondecreasing rational numbers (and we don’t require that they lie in [0, 1) as in the
introduction), and A € Q. Let Zg be the sheaf of differential operators on the scheme S, which is G,,\{1}
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(resp. Gy,) if n = m (resp. n > m) with coordinate z. Then, the hypergeometric connection Hyp; («; )
on § is defined by the differential operator in (1.0.0.1) as

s/ Hyp, (a; B). (2.1.1.1)
By [Katz 1990, (3.1)], one has for y € Q that

d
HYPA(Ol;ﬁ)@(@,d-l-y?Z)27—[ym(a+)/;ﬁ+y), (2.1.1.2)

where o + y (resp. B + y) is the sequence consisting of o; + y (resp. 8; + ). Furthermore, one has for
w € Q that

[x = w-x]THypa(as B) = Hypsu (e B). (2.1.1.3)

Thanks to the above relations, we can often assume that A = 1 and «; = 0. For simplicity, we denote by
Hyp(a; B) the connection Hyp («; B).

When the pair (o, B) is nonresonant, i.e., o; — 8; ¢ Z for any i and j, Katz [1990, Proposition 3.2]
showed that Hyp(«; B) is irreducible and only depends on ¢ mod Z and 8 mod Z. In this case, we may
assume that o« and f are two nondecreasing sequences of rational numbers in [0, 1).

2.1.2. Modified hypergeometric 9-modules. Given a morphism g between smooth varieties, for a bounded
complex of holonomic algebraic Z-modules, following [Fresan et al. 2022, Appendix A.1], we denote by
g", g+, and g; the derived pullback functor, the pushforward functor, and the pushforward with compact
support functor, respectively. The k-th cohomology of a complex K is denoted by H*(K).

Let mult : G,, x G, — G,, be the product map. The convolution functors , and x on G, are defined,
for two objects M and N of D (Zg,,), by

Mx». N :=multy( MXIN) and M x N :=mult;(MXN),

respectively. These convolution functors are associative and commutative. Moreover, the duality functor D
interchanges * and .

Definition 2.1.3. Let o and 8 be two sequences of rational numbers. For ? € {!, x}, the convolution

Hyp(oer; D) x2 -+ %o Hyp(an; D) %2 Hyp(D; B1) *9 - - - x2 Hyp (D5 )
is a holonomic Zg, -module [Katz 1990, (6.3.6)]. We denote it by Hyp(?; a; 8) and call it a modified

hypergeometric 9-module.

The restrictions of the above two modified hypergeometric 2-modules to S are generally not isomorphic
to the hypergeometric connections. When («, B) is nonresonant, the natural map

Hyp(; o; B) = Hyp(x; o B) (2.1.3.1)

is an isomorphism, as seen by using an argument similar to those in [Katz 1990, Theorem 8.4.2 (5)] and
[Miyatani 2020, Proposition 3.3.3]. In this case, both modified hypergeometric Zg, -modules, restricted
to §, are isomorphic to the hypergeometric connection Hyp(«; 8) by [Katz 1990, (5.3.1)].



2486 Yichen Qin and Daxin Xu

2.2. The Newton polytope of a Laurent polynomial. We study the Newton polytope of a Laurent
polynomial appearing in the geometric interpretation of hypergeometric connections in Proposition 2.4.1.

Definition 2.2.1. Let N be a positive integer and
gzr,....an) = Y c(1)"
tezZN

be a Laurent polynomial in variables zy, ..., zy, with z° = ]_[l | z “fort=(11,...,TN).
(1) The support of g is the subset Supp(g) = {t | c(r) # 0} of ZV.
(2) The Newton polytope A(g) is the convex hull of the set Supp(g) U {0} in RV,

(3) The Laurent polynomial g is called nondegenerate with respect to A(g) (or simply nondegenerate) if,
for each face o C A(g) not passing through 0, the Laurent polynomial g, := ) . ~7~ c(7)z" has no
critical point in (C*)V.

Letn > m >0 and d > 1 be three integers, f : G”+m — A! the Laurent polynomial

m

1y
f:(xz,...,x,,,yl,...,ym,z)|—>2x —Zyl il J, (2.2.1.1)

[T i
and pr, : G, — G, the projection onto the z-coordinate. For a € C*, we set f, = f | 71(a)

with a lattice point (a;, b;) € 2"~ c Rr+m=1,
Lemma 2.2.2. Assume thatn >m =0 and a € C*.

(1) The Laurent polynomial f, is convenient; i.e., the origin is in the interior of A(f,).

(2) The Newton polytope A(f,) is defined by
n n
hnp1:=Y ui<d and  hj=) ui—(n—mu, <d, 2<ip=<n. (22.2.1)
i=2 i=2
(3) The Laurent polynomial f, is nondegenerate with respect to A( f,).
Proof. (1) Let P; for 2 < i < n and R be the points in Z"~! corresponding to x and 1/[]/_ 2x ,
respectively. Observe that O is an interior point of the Newton polytope, as 0 = (Zi:2 P+ R) /n.

(2) A face o0 C A(f,) of dimension n—2 must pass through n—1 points among { P;, R}. So either R & o
or there exists a P;, ¢ o. In the first case, the face lies on the hyperplane defined by the equation 4,1 =d.
In the latter case, the face lies on the hyperplane defined by the equations 4;, = d.

(3) Let o be a face which does not pass through 0. Since the support of f, has n points, it must pass
through at most n—1 points in Supp(f,). Let I C {2, ..., n} be a subset of the indices. Then f, , is
either

jhﬁ’zzzi:xﬁ or 150'—-25213 +'[I o for |[I| <n-—2.

iel iel i=2%

We can check that they are smooth on an_l. Therefore f, is nondegenerate. O
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Lemma 2.2.3. Assume thatn > m # 0 and a € C*.

(1) The cone R>g - A(fy,) is defined by

Lti—I-ijO, 'UjZO
fori=2,...,nand j=1,...,m,

(2) The Newton polytope A(f,) is defined by

ui+v; >0, v; >0, hyqy 3=Zui+zl}j§d
and

hiy'=Y ui+» vj—@m—mu,<d, 2=<ig<n. (2.2.3.1)

(3) The Laurent polynomial f, is nondegenerate with respect to A( f,).

Proof. Let P; and Q; be the points in 7"+ corresponding to monomials xl.d and y;.i for 2 <i <nand
1 < j < m, respectively, and R the lattice point corresponding to

m n
[To/ 1T+
j=1 i=2

In this case, the origin 0 is not an interior point of the Newton polytope. So A(f,) has (n+m+1)-many
vertices. To determine a face of dimension n-+m—2, we need to choose (n+m—1)-many points among

{Pi, Qj, R}.
(1) For the first part, it suffices to determine faces o C A( f;) with dimensions n+m—2 containing O.

o If o does not pass through R, it contains (n+m—2) distinct points in {P;, Q;}. In this case, o misses
one point Q j, and lies on the hyperplane v;, = 0. Otherwise, o misses one point P;,. Hence the
hyperplane is given by the equation u;, = 0. Therefore, R and P;, lie on the two sides of the
hyperplane, respectively, which is absurd.

o If o passes through R, it contains (n+m—3) distinct points in {P;, Q;}. In this case, o has to miss
one Pj, and one @, and lies on the hyperplane u;, +v;, = 0. Otherwise, o misses two P, P;; or
0Oy, O i So o lies on the hyperplane u;, — Uy = Oorvj,—v W= 0. However, the points P, Py or
Q> Qj, lie on different sides of the hyperplane u;, —u;; =0 or vj, —v; = 0, which contradicts the
definition of 0.

(2) For the second part, it suffices to determine faces of dimension n+m—2 that do not pass through the
origin.
« If R ¢ 0, then o contains all points P; and Q ;. In this case, o lies on the hyperplane Y u;+» v, =d.
e If R € 0, then o contains n+m—2 points among {P;, Q;}. In this case, o misses one P;;, and lies on
the hyperplane h;, = d. Otherwise, it misses one Q j, and lies on the hyperplane

n m
Zui+2vj+(n—m)vj0 =d.
i=2 j=1
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However, the points 0 and Q j, are on different sides of the hyperplane.

R
o

P3
P,

(3) Let o be a face which does not pass through 0. Since the support of f, has n+m points, it must pass
through at most n+m—1 points in Supp(f,). Let I C{2,...,n}and J C {1, ..., m} be two subsets of
the indices. Then f, , is either

H"n:1 y['l
foo =) X =Yy or  fuo =fo’—ZY?+a-W for [I|+[J| <n+m—2.
iel jel iel jed =2
To see that the partial Laurent polynomials f, , are all smooth on (Gt =1 it suffices to show that
the system of equations

{fa.oc = axifa,a = ay_,-fa,(r =0|2<i=<n,1=<j=<m}

has no solutions in (G,,)"™"~!. In fact, in the first case above, taking any io € I or jy € J, we have the

equation 0 = 3y, fuo =dx{ ™' or0=10y, fuo =dj¢~', which is impossible if d = 1. If d > 2, then x;,

or yj, is forced to be 0. In the second case, for any io ¢ I or jo & J, we have

m d m d

d H':l)’- d H':H"
Ozaxiofa,or:__'a'i—zl or Ozayjfa,oz_'a‘i,—ia
Yig [Ti=x; Yio [Tieo X

which again forces some y; = 0.

Consequently, all the f, , have no critical points in G*"~!, and therefore f, is nondegenerate. [
Lemma 2.2.4. Assume thatn =m and a € C*.
(1) The cone R>q - A(fy) is defined by
ui+v; >0, v;>0
fori=2,....,nand j=1,...,m.

(2) The Newton polytope A(f,) is defined by
ui+v; >0, v;>0, and h,yq :=Zui+2vj§d. (2.2.4.1)

(3) The Laurent polynomial f, is nondegenerate with respect to A(f,) if a # 1.
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Proof. We use the same notation as in Lemma 2.2.3. The proof of the first assertion is the same as that in
Lemma 2.2.3. The second assertion follows from the observation that the points {P;, Q;, R} all lie on the

Zui+2vj—d:0.

Let o be the face passing through {P;, Q;, R}. If a face t of A(f,) does not contain 0, it is a face

hyperplane

of o. Similar to the proof of Lemma 2.2.3, one can check that, if 7 is a proper face of o, there is no
solution for the system of equations

{fao=0x far =0y fa=0|2=i<n 1=<j=m}
If © = o, the system of equations
(fu= g fa=0y, fa=012<i<n 1<j<m)
has solutions in Gﬁf’”_l if and only if a = 1 (in such cases x; = y; = ¢ € R are solutions). So f; is
nondegenerate with respect to A(f,) if a # 1. 0

Remark 2.2.5. The volume of A(f,) is d"'n/(n +m — 1)!. In fact, the Newton polytope can be
decomposed into n-copies (n-+m—1)-simplexes, and each of them has volume d"*"~!/(n +m — 1)!.

2.3. Geometric interpretations. We present some geometric interpretations of hypergeometric connec-
tions here. Let d be a common denominator of «; and B;, and seta; =d -o; and b; =d - ;. To ¢;
(resp. B;), we associate the character x; : uq — C* (resp. p;) which sends ¢, to ;f (resp. {Zf ). Set
—1 ~1

XXP=X1X X Xn X Py XX P,

i B " (2.3.0.1)

XXP=X2X X Y X Py X=X Py
as products of these characters.

Now we introduce two diagrams as follows:

« Let Ggf”’ be the torus with coordinates x; and y; for 1 <i <nand 1 < j <m. We consider the diagram

n+m
Gm

o @ (2.3.0.2)
Al / \ G

m

where
n m n m
o(xi,yj) =y x'=Y ¥/ and W(xi,yj)zl_[xid/]_[yjl-
i=1 j=1 i=1 j=1

Let the group MZJ”" act on G by multiplication and on A! and G,, trivially. Then, it can be verified

that o and @ are p/;*"-equivariant.
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. Let Gﬁj’m be the torus with coordinates z, x;, and y; for2<i <mand 1 < j <m, and S be G, ;
(resp. Gy \{1}) if n # m (resp. n = m). We consider the diagram

Gi™ ¢ U= S x Gyt

/ \ \ (2.3.0.3)
A

G, S

where pr, is the projection to the z-coordinate and f is the Laurent polynomial

/ ly =175
Xi — Y
DD WAL
defined in (2.2.1.1). Let the group G = p/i*"~ act on G (resp. S x G =1y by multiplication
on the coordinates x; and y; and trivially on z, and on A}, Gum,z, and S trivially. Then f and pr, are

witm=1_equivariant.

Let & = (O, d + dt) be the exponential Z-module on A}. For a regular function 4 : X — A}, we
denote by &M := ht & the connection (Oy, d+ dh) on X.

Proposition 2.3.1. Let o and B be as above. The complexes wE° are ,u?m -equivariant and concentrated
in degree O for ? € {1, +}. Moreover, we have isomorphisms of %g, -modules

n+m

Hyp(x; o; B) = (. £7) Ha
Hyp(!; a; B) ~ (ngo)(ud ,Xx,o)’

X XP)

where the exponent (u”+m

of Wit

Proof. The case of Hyp(!; a; B) can be deduced from the case of Hyp(x; «; B) by applying the duality

, X X p) means taking the (x x p)-isotypic component with respect to the action

functor. So, we only prove the latter case. Recall that the action of ,uZJ“m on Al is trivial in diagram (2.3.0.2).
So the Z,1-module ' is 1y " _equivariant. Since o and @ are both u/;" -equivariant morphisms, ¢, and

ot preserve /L’Z,er -equivariant objects. Hence the complex

91 =py0TE

is /""" -equivariant.

Assume that (n, m) = (1, 0). Then o : G, , — Al is the map x| — xj’ and @ : G,y x, = Gy ; is the
d-th power map. So by the identity

d—1
_ L%)
.0, = G%(OG A+
1=
and the projection formula, we have
) = &* : I_%)
(ZZ74_é; ) —_— é; 69 (ZU:%(DQEH) - (EE) é; ( m’ _% Ci z
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which is concentrated in degree 0. Taking the isotypic component, we have
(w__‘rga)(u;’frm,x xp) (w._i_gX?)(MdaXl) =& Q (w;Og )(/Ld,)a)
= (06, d+dz+ a1 L) = Hyp(ss ar; 2)

in the case where (n, m) = (1, 0). The proof of the case where (n, m) = (0, 1) is similar. In general, we
use induction on n+m. The proof follows from the following lemma. U

Lemma 2.3.2. Let o, o, B and B’ be four sequences of rational numbers with common denominator d,
whose lengths are n, n', m and m’, respectively. We denote by x;, x/, pj, and p} characters of [y
corresponding to o, o], Bj, and B}, respectively. Let o and @ (resp. o’ and @) be the maps for (n, m)
(resp. (n’, m")) in the diagram (2.3.0.2).

Suppose that (wE%) and (wjré"’/) are concentrated in degree 0, and there are isomorphisms of

9-modules +
Hyp(x; o5 B) =~ (w+5‘7)(lh/ ,XXp)’

’ n+m s /
Hyp(xs o'y 1) 2= (i £7 ) a1,
Then (o - ')+ E°%") is also concentrated in degree 0, and we have an isomorphism of Z-modules
. /. / / oo (M"+"/+’"+m, xxx'xpxp)
Hyp(*’aaa’ﬁaﬁ):((ww)+g ) d ’ s
where w - @' = multo(ew x w'), pr and pr’ are the projections from G:™" "+ 1o G and G+,

respectively, and o Bo’ = o opr+ o’ o pr’ is the Thom—Sebastiani sum.

Proof. The proof of this lemma is essentially that of [Katz 1990, Lemma 5.4.3]. Notice that the exterior
product £ X&' is £75°’ Then

(@4 E%) #u (@, £°) = multy (0 E7) R (w0, £°)) = multy (0 x @)1 (ETHE) = (w - ') E7F

By the Kiinneth formula [Hotta et al. 2008, Proposition 1.5.28 (i) and Proposition 1.5.30], we conclude

that (o - ') £7®" is again concentrated in degree 0.

. . . . / / . . . / / . . . . .
Viewing )" -equivariant and ;" -equivariant objects as u/y" """ ¥ -equivariant via the identifica-

tions
n+m ~ , n+m n'+m’ n'+m'

py Tt ™ x 1 and > lxouy ™,

we can verify that both X and mult are ;L2+m+"/+’"/—equivariant. Hence the convolution product *, is

also Mz+m+"/+m/—equivariant. Therefore, we conclude the lemma by taking the corresponding isotypic
components of the above formula. O

Corollary 2.3.3. Let a and B be as above and ay = 0. The complexes of g, -modules pr & I are

Wit equivariant and concentrated in degree 0 for ? € {1, +}. Moreover, we have

Hyp(x; ; B) = (HOpr, £7)(CXxP),
Hyp(; o; B) = (HOpr . £1) G120,
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Proof. Similar to Proposition 2.3.1, we only consider the case of Hyp(x; «; 8). By the construction
n+m—1

of the diagram in (2.3.0.3), the morphisms pr, and f are u, -equivariant. Hence the complex of
%g,,-modules pr,, &f =pr,, fTE is " -equivariant.

By assumption, we set oy = 0, which implies that the character x; is trivial. By Proposition 2.3.1, we

have
)(le,lxixp)

n m
e = (o [t Fl) e 520
i=2 j=1 +
= (pr, ET)GxxP), (2.3.3.1)

where we performed a change of variable z = x; - []/_, xl.d / ]_[;7’:1 yjl to get rid of the variable x; in the
last isomorphism. Because (@ £7) is concentrated in degree 0 and isomorphic to Hyp(x; «; ), so is
(prz+gf')(G,)Z xp). 0

Corollary 2.3.4. Assume that («, B) is nonresonant and o1 = 0. Then, the natural map
(/Hopl‘z;gf)(G’X xp) _y (Hoprz+g.f)(c,)~( xp)
is an isomorphism of 9g,,-modules. In particular, for a closed point® a of S, the forget-support map

Hgl—{,rg—l(631+mfl’ fa)(G,f(Xp) — Hg;m_l(Gijil, fa)(G,)ZXp)

is an isomorphism.

Proof. Using induction on the size of « and , one can verify that the diagram

Hyp(; a5 B) ———— Hyp(x; a; B)

L L

n+m

(Howfé“’)(ﬂym»x P (HOw 7)) Ha "o xxP)
(HOpr £1)(CxxP) s (HOpr_ £F)(G3xr)
is commutative, where the horizontal morphisms are the canonical forget-support morphisms with the

top one being (2.1.3.1), the two upper vertical morphisms are those from Proposition 2.3.1, and the two
lower vertical morphisms are (2.3.3.1). So, we deduce the isomorphism

(HoprZTgf)(G,iXp) — (Hoprz_i_gf)(G,)? xp).

At last, we take the noncharacteristic inverse image along a : Spec(C) — G, and the base change theorem
[Hotta et al. 2008, Theorem 1.7.3 & Proposition 1.5.28] to conclude the isomorphism of twisted de Rham
cohomology groups. O

3The modified hypergeometric 7, -modules Hyp(?, a; B) are smooth on S, on which the hypergeometric connections
Hyp(c; B) are defined.
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Remark 2.3.5. When (o, ) is nonresonant and ¢} = 0, we deduce from Corollary 2.3.3 the isomorphism
[z > (=1)" "2 Hyp(a; B) =~ (H'pr, /)G

by performing a change of variable by sending x; and y; to —x; and —y;, respectively, in the diagram
(2.3.0.3). According to (2.1.1.3), the first term in the above is Hyp(_1y»-= (a; B). In particular, the results
in Corollary 2.3.4 remain valid if we replace f with —f.

2.4. Explicit cyclic vectors for hypergeometric connections. We present explicit cyclic vectors for
Hyp(a; B) in terms of sections of some subquotients of some relative de Rham cohomologies equipped
with their Gauss—Manin connections. This point of view will be used in the computation of Hodge
filtrations in Section 3.

Recall that d is an integer such that ¢; = do; and b; = df; are integers for all i and j, and we take
notation from (2.3.0.3). When («, B) is nonresonant and «; = 0, there exists an isomorphism between the
hypergeometric connection Hyp(a; 8) and (Hoprﬂé’ £)G.xxP)| ¢ by (2.1.3.1) and Corollary 2.3.3. From
now on, we will identify the latter with the relative de Rham cohomology H/ji m=L/8, )Gx1xP on §

equipped with the Gauss—Manin connection, where U = § x G"+"~1,

Proposition 2.4.1. Suppose that oy = 0 and («, B) is nonresonant. The relative de Rham cohomology
”Hﬁ;{ m=LU/8, £)CXxP) admits a cyclic vector, defined by the cohomology class of the differential form

m
a b dxy  dxpdyr dym
o= [y &2 Lot D 2.4.1.1)
, ! Tx Xn Y1 Ym

Remark 2.4.2. Under the above assumption, the isomorphism class of Hyp(«; 8) depends only on the
congruence classes of « and 8 modulo Z. Then, any differential form

satisfying u; = a;, v; = b; modulo d, is a cyclic vector of Hj" ' (U/S, f)&1xP),

Proof. The morphism pr, : U = § x Gm=1 — S in (2.3.0.3) is smooth. It follows that the relative de
Rham cohomologies HfiR(U /S, f) are equipped with the Gauss—Manin connections D := V_; , given by

Vo0 = 20,0+ 20.(f)w (2.42.1)

for0 <i <m+m—1. By Lemmas 2.2.2, 2.2.3, and 2.2.4, the Laurent polynomial f, := f|pr;’(a) is
nondegenerate for each closed point a of S. By [Adolphson and Sperber 1997, Theorems 1.4 and 4.1],
the cohomology group ’Hij(U/S, fa) vanishes if i #n+m — 1.

Now we consider the (G, x x p)-isotypic component of the connection ’HZI'{ m-1 (U/S, f). It remains
to prove that the cohomology class defined by the differential form w (2.4.1.1) is a cyclic vector for
Hag" "~ (U/S, )G,
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Lemma 2.4.3. Letty,...,t, and sy, ..., Sy, be integers, and set

I x X Y1 Ym

as a class in H"+m 1(U/S, f). For each u and v such that 2 <u <n and 1 <v < m, respectively, we

t
( —Eu)cbzxfll-cb and (D+%U)J)=yfj-&)

Proof. We prove the identity (D —t,/d)® = xg - @, and the proof for the rest is identical. By (2.4.2.1),
we have

have

m

y ~
1_[] 1 ]CL).
1_[ 2x

Since U and S are affine, the image of any (n+m—2)-form under the relative differential

Do =

+m—1
Vs QU/gn *Q’ZJ/?

in Hggm_l(U/S, f) is zero. Then, we have

m

dx3  dx,dy; dy - -
0= VU/S(HX 1—[ j - -'-—7--'))—:)=t2-w+xQ-3x2f-a)

d
~ — - i=1Y; - t B
2”""*”'(6”5 ot o=t (o- )
i=2"

This is exactly what we want to prove. O

We show that w (2.4.1.1) satisfies the hypergeometric differential equation Hyp(«; 8). By Lemma 2.4.3,

H(D oe,)a)_l_[x -w and ﬁ(D—@)w:ﬁy?-a)
j=1 j=1

i=2

Then, we deduce from (2.4.2.1) that
n n
H(D —a)w = D(l_[xl-d w) =
i=1 i=2

Lemma 2.4.4. The cohomology class of w in Hig"™ ' (U/S, £)(©X*P) is nonzero.

we have

A [\
s
=

d w:zl_[(D—,Bj)a).
j=1

Proof. The lemma is obviously true if n = 1 and m = 0. In general, assume that @ = 0. Each point
(A,B) € (a;,—bj)+d- 7" +tm=1 corresponds to a differential form

| Endn Lm (2.4.4.1)
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Notice that we can also take the isotypic components on the level of complexes of differential forms, and
the relative differential Vi /g respects the corresponding isotopic components. Thus, the differential form
in (2.4.4.1) defines a cohomology class in ’H’C{f{ m=L/s, £)GX*P) On the other hand, any cohomology
class has a representative that is a linear combination of such differential forms.

Since Hit"~1(U/S, £)(©%*P) is nonzero, we can select a differential form o that defines a nonzero
cohomology class. Given that »(® is a linear combination of differential forms of the form in (2.4.4.1), at
least one of such forms defines a nonzero cohomology class. We may assume, without loss of generality,
that @ itself is of the form in (2.4.4.1). Using Lemma 2.4.3, we obtain a sequence of differential forms
{a)(")}lN: o corresponding to points (AD, BDY such that 0D = (D —y;)w® for some rational number y;,
and

AN, BNy e (a;, —bj) +d - N1

Applying Lemma 2.4.3 again, we observe that o™ can be expressed as a linear combination of { D¥w} e,
and is thus equal to 0. Hence there exists M < N such that »™) has a nonzero cohomology class
and (D — yp)o™ = 0. Thus, Og - o™ is the hypergeometric connection Hyp(ya; @). Since it
is a subconnection of the irreducible connection Hig" ' (U/S, £)(©%*P) it must be isomorphic to
Hgf{m_l (U/S, )@ xxP) leading to a contradiction. O

In summary, we obtain a nonzero morphism

n—1
95/ Hyp(e; B) > EP Os - D' C M~ (U/S, f){G7 (24.4.2)

i=0
defined by sending 1 to w. Since the left-hand side of the morphism is irreducible, it must be a sub-
connection of the irreducible connection ’H,g;{m_l(U /S, £)(GX*P) on the right-hand side. Since both
sides have the same rank, the above morphism is an isomorphism, implying that w is a cyclic vector of
Hyp(a; B) = Hyt "~ WU/, f)(G1xP, O

Remark 2.4.5. If we replace £/ by
(G d—df) = (G d+df)Y,

n

the direct sum @?:_ol Ogs- D'w is the (G, ¥ x p)-isotypic component of Hd}J{m*l(U/S, — f), isomorphic
to the connection Hyp 1y (a; B). To see this, it suffices to notice that the corresponding identities in
Lemma 2.4.3 become

t Ky
( —Eu)a),,sz—x,‘ja)t,s and (D—i-gv)w,,s:—yffa)l,s

in this case. The rest of the proof relies on the above calculation and Remark 2.3.5.

2.4.6. Resonant case. When («, 8) is resonant, the modified hypergeometric 2-module Hyp(x; «; B)
depends only on the classes of o and § modulo Z. Katz [1990, 6.3.8] asked whether Hyp(x; a; B)|s
is isomorphic to the connection Hyp ((«; +r;); (B +5;)) (2.1.1.1) for suitable integers r;, s; € Z. We
provide a positive answer to this question in the following proposition.
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Proposition 2.4.7. When (a, B) is resonant, there exists a positive integer h depending on o mod Z
and B mod Z, such that, for any integers r, s > h, the modified hypergeometric Z-module Hyp(x; «; B)|s

is isomorphic to the hypergeometric connection Hyp((o1, 00 — 1, ..., 0y —1); B+5).
Proof. We may assume that ¢y = 0. Let @1, ..., @, be a representative of a basis of the connection
HIE"NU/S, f)@T%P). More precisely, we can write
‘ = dx;  dx,d d
o= Y s [ [Ty e G dn | du
eczn-\, fezm i=2 =1 *2 Fn Y1 Ym

where only finitely many ¢ ., ¢ are nonzero. We equip Z"*"~! with the partial order defined by the
relation a > b if a —b € N*t"~1_ Let (e, fo) be a maximal element in the set

(e, 1, 1)< (e, f)if e s # 0}

Then we take & to be the maximal value among {|(eo)l;, |(fo0);}.
For any r, s > h, as in Proposition 2.4.1, we define a morphism of Z-modules:

n—1
Zs/Hyp(0,ar =7, ..., — 1 B+5) > @) Os,, - D'w C HIZ" 7 (U/S, YO (24.7.1)
i=0
by sending 1 to
n m
o=[Tatr [t udn
ien =l 2 Xn Y1 Ym

Since, for all (e, f) with € . r #0, we have a; +d -e¢; >a; —d-rand b; +d - f; >b; —d -5 for any i
and j, we deduce that the class defined by

l—lxaier.ei 4 yfbj+d~fj% dx,dy;  dym
! il / X2 Xn Y1 Ym

lies in the image of (2.4.7.1) by Lemma 2.4.3. This morphism is a surjection between two connections of
rank n and is, hence, an isomorphism. O

3. Irregular Hodge filtration of hypergeometric connections

This section aims to calculate the (irregular) Hodge filtrations of hypergeometric connections (see
Theorems 3.3.1 and 3.3.3). Throughout this section, let n > m > 0 be two integers, and let & = (ay, . .., @)
and 8 = (B, ..., Bj) be two sequences of nondecreasing rational numbers in [0, 1).

3.1. Exponential mixed Hodge structures. To explain certain duality on the irregular Hodge filtration of
hypergeometric connections, we use the language of exponential mixed Hodge structures introduced by
Kontsevich and Soibelman [2011]. We recall the basic definitions of exponential mixed Hodge structures
from [Fresan et al. 2022, Appendix].
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Let X be a smooth algebraic variety and K a number field. We denote by MHM (X, K) the abelian
category of mixed Hodge modules on X with coefficients in K. In particular, when X = Spec(C), the
category MHM(X, K) is equivalent to the category of mixed K-Hodge structures. Moreover, the bounded
derived categories D’(MHM(X, K)) admit the six functor formalism. For more details about mixed
Hodge modules, see [Saito 1990].

Let 77 : A' — Spec(C) be the structure morphism. The category EMHS(K) of exponential mixed Hodge
structures with coefficients in K is defined as the full subcategory of MHM(A!, K), whose objects N1
have vanishing cohomology on A!, i.e., those satisfying 7, N" = 0.

There is an exact functor IT: MHM(A!, K) - MHM(A', K) defined by

N s, (N X O ), (3.1.0.1)

where j : G, .¢c — Al is the inclusion and s : A! x Al — A! is the summation map. The functor IT is
a projector onto EMHS(K); i.e., it factors through EMHS(K) with essential image EMHS(K). Using
this functor, the dual of an object M in EMHS(K) is defined by I1([t — —¢]*D(M)), where t is the
coordinate of A!.

For each object IT(N™) of the category EMHS(K), there exists a weight filtration WEMHS on TT(NH),
defined by the weight filtration on NH: WEMHSTT(NH) :— 11(W, NH). We will drop the superscript for
simplicity.

The de Rham fiber functor from EMHS(K) to Vectc is defined by

M(NT) > HIR (AT, TI(V) ® €1, (3.1.0.2)

where TT(N) denotes the underlying Z-module of IT(N") and £’ denotes the exponential Z-module
(Op1,d+dp).

The de Rham fiber functor is faithful, and one can associate an irregular Hodge filtration F_ on the
de Rham fibers of objects in EMHS(K) by [Fresan et al. 2022, Proposition A.10], constructed using a
generalization of Deligne’s filtration [Sabbah 2010, §6.b]; see also [Esnault et al. 2017, §1.6].

3.1.1. Objects of EMHS attached to regular functions. Let X be a smooth affine variety of dimension n
and K a number field. We denote by K ? the trivial Hodge module on X with coefficients in K. For a
regular function g : X — A! and an integer r, we consider the exponential mixed Hodge structures

H' (X, g) :=TI(H "g.KY), HLX, g) :=TI(H "gK}).

The exponential mixed Hodge structures H" (X, g) and H.(X, g) are mixed of weights at least  and
mixed of weights at most r, respectively, by [Fresan et al. 2022, A.19].

The de Rham fiber of Hj(X, g) is isomorphic to HQR’?(X, g) for ? € {&, ¢}. In this case, Esnault,
Sabbah, and Yu showed [Esnault et al. 2017, Proposition 1.7.4] that the irregular Hodge filtration on the
de Rham fiber coincides with the Yu filtration [2014] on the twisted de Rham cohomologies, where the

two filtrations are denoted by Fp, = F Del and Fg, = FYU, respectively, in [loc. cit.].
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3.1.2. Irregular Hodge filtration and Newton monomial filtration. We briefly recall the definition of the
irregular Hodge filtration on the twisted de Rham cohomology following [Yu 2014]. Let X and g be as
above, j : X — X a smooth compactification of X, and D := X\ X the boundary divisor. The pair (X, D)
is called a good compactification of the pair (X, g) if D is normal crossing and g extends to a morphism
g:X - P.

Let P be the pole divisor of g. The twisted de Rham complex (Q.)?(*D)’ V =d+dg) admits a
decreasing filtration F (V) := FO(0)ZM*1, indexed by nonnegative real numbers A, where F' O(%) is the
Yu complex

v
Ox(L—AP]) = QL(og D)(L(1 =M P]) > -+ — QL (log D)(L(p =M P]) — -+~ .
The irregular Hodge filtration on the de Rham cohomology HflR(X , g) is defined by

A
Firr

Hip (X, g) :=im(H (X, F*(V)) = Hix(X, g)), (3.1.0.3)

which is independent of the choice of the good compactification (X, D) [Yu 2014, Theorem 1.7].

When X is isomorphic to a torus G , the regular function g on X is a Laurent polynomial of the form
toric Var’ieltyn Xior smooth proper. Although (Xior, Dior = Xior\X) is not a good compactification for the
pair (X, g) in general, we can still define F{»(V) and the Newton polyhedron filtration FipHip (U, V)
similarly to that in (3.1.0.3) by replacing the good compactification (X, D) with (X(or, Dior),

When g is nondegenerate with respect to A(g), the only nonvanishing twisted de Rham cohomology
group of the pair (X, g) is the middle cohomology group Hj, (X, g) by [Adolphson and Sperber 1997,
Theorem 1.4]. Moreover, we have the following theorem.

Theorem 3.1.1 [Yu 2014, Theorem 4.6]. When g is nondegenerate with respect to A(g), the irregular
Hodge filtration F agrees with the Newton polyhedron filtration Fy, on Hyp (X, g).

In particular, when g is nondegenerate, we have
H' (Xuor, Fip(V)) = H' (I (Xoor, Fip(V))),
which allows us to compute the irregular Hodge filtration using the knowledge of A(g).

Now, we present an explicit way to calculate the Newton polyhedron filtration. For a cohomology class

W=X——AN--A
X1 X

such that the lattice point Q = (g, .. ., g») lies in R>oA(g), we define w(Q) to be the weight of Q in the
sense of [Adolphson and Sperber 1997], i.e., the minimal positive real number w such that Q € w - A(g).
The associated cohomology class of w lies in FI(}PHQR(X , 8) if

w € I'(Xior, 2y, (10g Dior) (L(n — 1) P ).
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Notice that each ray p in the normal fan of A(g) corresponds to an irreducible component P, of P.
Let v, be a primitive vector of the ray p. Then, the multiplicity of w along P, is given by (Q, v,) [Fulton
1993, p. 61]. Taking the multiplicities of P, in P into account, we have

dx dx
Q_l/\.../\ n

e Fip "PHR(X, 2, G.1.11)
X1 Xn

X

as remarked in [Yu 2014, p. 126 footnote].

3.1.3. The EMHS associated with hypergeometric connections. In this subsection, we assume o] = 0
and let ¥ x p be the product of characters associated with o; and $; in (2.3.0.1).

Definition 3.1.2. Let K be the number field @(g“;", g“:j ) and a a closed point of S. For ? € {&, c}, we
define

Eq(a; a; B) := H LG f,) (@ xxp)
as exponential mixed Hodge structures with coefficients in K in the sense of Section 3.1.1.

By Corollary 2.3.3 and the base change theorem, the de Rham fiber of E(a; or; B) is isomorphic to the
fiber of Hyp; (a; B) at the closed point a - A of S for A € @*. In other words, the fiber Hyp; (¢«; B)4 under-
lies the above exponential mixed Hodge structure and is equipped with an irregular Hodge filtration Fi,
which coincides with the Yu filtration on Hgl"{m - (Gﬁf’”_l, fa)(G’)z xP) as explained in Section 3.1.1.

Remark 3.1.3. The geometric interpretations of the hypergeometric connection are not unique, and
their associated Yu filtrations on Hyp(«; 8), coincide only up to certain shifts. For example, we can
alternatively identify Hyp(«; B), with

Hgl—{i-m—l (G’r;1+in—l, fa)(G,)”(xp) ® H(ljR(Gm, x)’

where the Yu filtration on the one-dimensional vector space HéR(Gm, x) jumps at 1. Consequently, we
deduce a new irregular Hodge filtration on Hyp(«; B), which differs from our current one by a shift of 1.
For this reason, we made a choice of a uniform shift for irregular Hodge filtrations on fibers of Hyp(«; B)
at closed points of S, using the exponential mixed Hodge structures in Definition 3.1.2. Moreover, this
specifically chosen shift determines the shift of the function 6 in (1.0.1.1).

Let ¢ be the largest natural number such that o; = 0. We let @ and 8 be the sequences of rational
numbers defined by

0 1 <k<t, =

a = { ' - and By =1-—p. (3.1.3.1)

1_an+t+l—k: t+1§k§nv

Proposition 3.1.4. (1) The dual of the exponential mixed Hodge structure E.(a; «; B) is isomorphic to
E(=D)""a;a; B)(n+m—1).

(2) When («, B) is nonresonant, the exponential mixed Hodge structures E+(a; o; B) for ? € {D, ¢} are
isomorphic. In particular, they are pure of weight n+m—1.
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Proof. (1) The EMHS H't=1(G =1 £ ) is dual to

m
Hn+mfl(G:1n+mfl’ _fa) ® Hgn+2m72(Gnm+m71)v’

which is also isomorphic to H* ™~ 1G] f_yn-m,) @ H2H2m=2(GHm=1)V  We deduce the first

m

assertion by taking their corresponding isotypic components.

(2) Since the de Rham fiber functor is faithful, the forget-support morphism
Ec(a;a; p) — E(a; a; B)

is an isomorphism by Corollary 2.3.4. Hence the exponential mixed Hodge structures E.(a; «; ) and
E(a; a; B) are isomorphic and are pure of weight n+m—1. (|

3.2. A basis in relative twisted de Rham cohomology. In this subsection, we assume o = 0. We define

positive integers s, ..., Su+1 by
1, r=0,
s,={#i:0; <B}, 1<r<m, (3.2.0.1)
n+1, r=m-+1,
and, forr and £ such that0 <r <mand 1 < <s,4| — s, We set
o Asppe—1 Qg 10—d an—d . d—b d—b 2d—by+) 2d—b
gr’z_xz ...xsr:r(_l.xsrzr[ ...xn” .yl yr '.yr+1 ym m.

Let

and w, ¢ = g, - n be the corresponding differential forms in ’Hﬁ[{ m=ly /S, +£)@XxP) where U and §
are defined in (2.3.0.3).

Proposition 3.2.1. If («, B) is nonresonant, then the cohomology classes defined by
wre, 0=<r=<m, 1<€=<s11—5
in Hg;{m_l(U/S, + 1) GXXP) form a basis over Os.

Proof. It suffices to show that Span(w, ¢) = Span(D'w | 0 <i < n — 1) for a cyclic vector w.

To a Laurent monomial g = [/, x;" ]_[;": ! y;j in variables {x;};_, and {y;}]_; we associate a lattice
point P(g) = (U, ..., Up, V1, ..., Uy) € 2" C R If w = g - 7 is the product of a monomial g
with the differential form 5, we set P(w) := P(g) for the corresponding point.

Let r; and ; be the projections from R+~ to [F\R’;l__l and R’]fj , respectively. Then, for the differential

forms w; ¢, we have

T (P(wre)) = (az, ..., Qg 40-1,0540—d, ..., a, —d)
and
m(P(wre)=(d—>by,...,d —by,2d —by11, ...,2d — by,).
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In Lemmas 2.2.2, 2.2.3, and 2.2.4, we have written down the defining inequalities of the cone R>¢- A(f,)
explicitly as u; +v; > 0 and v; > 0. For the points P(w,,¢) corresponding to the values of w, ; at closed
points a of §, we can verify that they satisfy u; +v; > 0 and v; > 0 using the fact that a;, b; < d for any
iand j, and a; > b; when i > s; + 1. Thus, all the points P(w;,¢) lie within the cone Rx¢ - A(f,).

Let P; and Q; be the points corresponding to monomials xl.d and y;l, respectively, for 2 <i <n and
1<j<m.
Lemma 3.2.2. Fora point P € 7" and two integers 2 <ip <nand 1 < jo <m, let wy, w1, and w;
be the corresponding differential forms of the points P, P+ Qj,, and P + P;; in 7= If the i-th
coordinate of P is different from the negative of the jo-th coordinate of P, then we have

Span(wo, w2) = Span(w, wy) in HiZ" "1 (U/S, £)G%xP),

Proof. Let P be the point (#;, s;) € 7" =1 and wy be the associated differential form. By assumption,
we have t;, # —s,. Therefore, we can express

wy = —d ((D — tll)a)o - (D + sﬂ)wo)
ti, —+ Sjo d d '
In particular, we have
Span (a)o, (D — ?) a)o) = Span (( — g) wo, (D + %) a)o).

At last, notice that we have
w] = (D + sdﬂ)a)o and wy = < — 3)&)0

by Lemma 2.4.3 and Remark 2.4.5. 4

Step 1: If s; — 59 = 0, we skip this step and put “)E,le) = w, ¢ for any r and £. Otherwise, for r = 0 and

1 < £ <1 — 50, we replace the differential forms wg ¢ by differential forms w(()]z of the form g - n for some
monomials g such that

Py ) = Plwo.) — Q1.
More precisely, we keep the first n—1 coordinates of P(wg ¢) unchanged and replace the last m coordinates
of P(wp ¢) by that of P(a)((fz):
d—=>b1,2d by, ...,2d — by).

In particular, by Lemma 2.4.3, one has

1 1 1
(D+1-Blol) =we, (D+1-arol)=ol),,

and
(D+1- asl—so)a)(l) = We, 1,

0,51—s0

where e is the least integer such that s, > so = 1.
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) )

We also put a)( = w,¢ for r > 1. Then, using Lemma 3.2.2 for wp = W5y —sp> @1 = D051 —s505 and

W) = W1, WE have

Span{w,¢ | r, €} = Span(..., wo 5 —s (= (D+1—Bo) ), wei(= (D +1—ay_of ) ),...)

0,51—50 0,51 —50
1 1
= Span({wo.1. . . ., Wo.5,—sp—1, D2, s, } U@y |7 = 1,8)),

where 0 <r <m and 1 <¥¢ < 5,41 — s,. Continuing to use Lemma 3.2.2 for wg = a)(() é, w1 = wo,¢, and

a)zza)(()}Lrl ford =s1—s9g—1and sy —sog—2,...,1, we have
1 1
Span{a)r,f |r9 E} = Span({a)o,17 .. Cl)() S1—80— l’a)(() ;1 SO}U{w( ) Ir Z l,ﬁ})
1 1 1
=Span({wo,1,wg;,.. Logn YUl [ =1,0)

= Span(w)} | r, ©).

Step i > 2: Assume that we have already obtained elements a)rfg_ D for i > 2. If s5; = s;—1, we skip this

(i) @i—1) (@)

step and put w, , = w,,  for any r and €. Otherwise, let w,, be differential forms of the form g - for

some monomials g such that
(i-1) . .
Plo®) = Pw,, N—0Qi ifr=i—1,
e (1 1) e
P(w,, ) ifi <r<m.

More precisely, when r <i — 1, we keep the first n—1 coordinates of P(a)g; 1)) unchanged and replace
the last m coordinates of P(w(l Yy by that of P(a)(’)):

d—by,...,d—b;,2d —biyy,...,2d —by).
Similar to Step 1, we use Lemmas 2.4.3 and 3.2.2 (5,41 —s,)-many times to deduce
Span(w\') | r, €) = Span(w., " | r, €) = Span(wy,¢ | 1, £),
where 0 <r <mand 1 <€ <s,| —s,.
After Step m: After m steps, we get a)%) such that
P@)) = (az, ... dg o1, a5 40 —d, ... ay—d,d—bi,....d —by).

Note that there is a bijection between {(r, £)}o</<m,1<t¢<s,.,—s, and {1, ..., n} by sending (r, £) to s, +£—1.

() N

We set &g, +¢—1 = o, via this map. Then, by Lemma 2.4.3, we have

wir1=D+1—a;p))w; forl <i<n-—1.
It follows that
Span(D'é; |0 <i<n—1)=Span(@; | 1 <i <n)
= Span(wy | r, £) = Span(wy.¢ | 1, 0).

By Proposition 2.4.1 and Remark 2.4.2, @ is a cyclic vector, from which we showed that {w, ¢}, , form a
basis. This finishes the proof. O
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3.3. Calculation of the irregular Hodge filtration. Using the fact that a nonresonant hypergeometric
connection is rigid or its geometric interpretation Corollary 2.3.3, it underlies an irregular Hodge module
on P! of weight n + m — 1 by [Sabbah 2018, Theorem 0.7 & p. 78] and, therefore, admits a unique
irregular Hodge filtration Fj.. When n = m, this irregular Hodge module coincides with the variation of
Hodge structures on Hyp(«; B).

Recall that, for («, ), we defined in (1.0.1.1) the numbers

Ok)=(n—myax+#i | fi <l +n—k) =Y ai+) By

i=1 j=1
Theorem 3.3.1. Assume (o, B) is nonresonant.

(1) When o1 = 0, via the isomorphism Hyp(a; B) =~ Hgf{mfl(U/S, F)CXxP) | the irregular Hodge
filtration on Hyp(a; B) can be identified with the following filtration of subbundles:

FhHgm ' wys, nCrP = @ o.,0s

n+m—Il—w(wrs)>p

(2) Up to an R-shift, the jumps of the irregular Hodge filtration on Hyp(«; B) occur at 6 (k) and, for any
p € R, we have

tkgrf, Hyples B) =#5""(p).

Remark 3.3.2. (i) By [Sabbah and Yu 2015, Remark 6.3], the irregular Hodge filtration satisfies the
Griffiths’ transversality; that is, V(Fifr”;’-[yp(oz; B)) C Qg ® Fifr_l”;’-[yp(a; B) for all p e R.

(ii) Inspired by the Griffiths’ transversality, we expect that there exists an oper structure on the hyper-
geometric connections which refines the irregular Hodge filtration. An oper structure is essential in the
geometric Langlands correspondence [Beilinson and Drinfeld 1997; Zhu 2017; Kamgarpour et al. 2023].

To prove the above theorem, we study the Hodge numbers of the irregular Hodge filtration on fibers as
explained in Section 1.2.

Theorem 3.3.3. Up to an R-shift, the jumps of the irregular Hodge filtration F_on the fiber Hyp(c; )4
occur at 0 (k) for 1 <k <n. Moreover, we have dim grgin_ Hyp(a; B =#0~'(p) forany p € R.

3.3.1. Proof of Theorem 3.3.3. We may assume a; =0 by (2.1.1.2). By Corollary 2.3.3 and Definition 3.1.2,
we have ~
FoHyp(a; B)a = FHIgm =1 (GIFm=1] £,)(@ 0%

= F M G = fioapona) 15, (333.1)

irr
where x and p are products of characters corresponding to «; and B; from (2.3.0.1). So it suffices to
compute the irregular Hodge filtration on the twisted de Rham cohomologies Hgl"{ m- (GIHm, £ f,)(GxxP),

Since f, is nondegenerate with respect to A(f,), we can compute the filtration in terms of Newton
polyhedron filtration.



2504 Yichen Qin and Daxin Xu

Let w, ¢ be the basis of Hyp(«; B), from Proposition 3.2.1. Recall that w(w;, ¢) is the minimal positive
real number w such that P(g,¢) € w- A(f,). It follows from (3.1.1.1) that

T _ _ o
.y GF;r m w(w ,Z)Hgl—{m I(GZ1+m l’:tfa)(G,xxp).

We consider an auxiliary filtration G* on Hjt"”" NG £ £,)(@X%P) defined by
G? := Span{w,¢ |n+m — 1 —w(wr¢) > p}. (3.3.3.2)

By the following Lemmas 3.3.4, 3.3.5, and 3.3.6, the filtration F* coincides with G*, which finishes the
proof of the theorem. 0

Lemma 3.3.4. WesetO(n+1)=0(1). ForO<r <mand1 <{ <s,4| —s;, we have
n+m—1—w(w,e) =0(s+1).

Lemma 3.3.5. ForO<p <n+m—1, we have

1

dim grlé Hgl—{m—l (Gnm—s—m—l’ ifg)(G,f( xp) _ dim grr(l;-i-m—l—p Hgl—{m—l (Gnm—i-m—l, :Ffa)(G,)?’ xpfl).

Lemma 3.3.6. The two filtrations F;,_and G* coincide.

Proof of Lemma 3.3.4. By Lemmas 2.2.2, 2.2.3, and 2.2.4, the weight w(w, ¢) equals the number
maxy{hi(gr¢)/d}, where the hy are defined in (2.2.2.1), (2.2.3.1), and (2.2.4.1). We can check that

hs,-‘,—lﬁ(gr,é)
w(w, ) = 28R
d
where we put hy = --- = h, = h,y; when n = m. Now, it suffices to check that n +m — 1 — w(w,¢)

agrees with one of the jumps of the irregular Hodge numbers of Hyp(«; 8),.
If s, + ¢ =n+1, the monomial g, ,41—s, corresponds to the point

(ap,...,a,,d—Dby,...,d—Dby).

Then we have

hn1(8m.n+1-s,) “ =

n+m—1—-—" n;n . :n_l_z;ai+2ﬂj=9(l)'
1= J=

If s, + £ <n—+1, we have

hsr-i-f (gr,f)
d

=n+m—1—(Zai—(n+1—s,—E)—Z,Bj+(2m—r)—(n—m)(ozsr+g—l))

i=1 j=I

n+m-—1-—

n m
= —m)as e +r+m—s—0=) i+ B
i=1 j=1
which is exactly 0 (s, + £). O
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Proof of Lemma 3.3.5. For simplicity, we write
8 (e, B) = dim grg Hyt" = (G, 4 f,) (G170 (3.3.6.1)

Recall that, in (3.1.3.1), we let ¢ be the biggest natural number such that oy = 0. For 1 <k <, the
numbers o and ;41— are 0. And, for t +1 <k <n, we have @,;,_g+;+1 = 1 — ;. Then

n n m m
Zot,-—i—Zo_t,-:n—t and Zﬁj—i-Z/éj:m.
i=1 i=1 j=1 j=1
Similar to the number 6 (k), we let 6 (k) be the numbers

(n—m)ax+#i | fi <ay+(n—k)=Y a+y Bj, 1<k=<n,
i=1 j=1

for the sequences o and ﬂ_ . Then, for 1 <k <t, we have

Ok)+0(t+1—k) = (n—k—Z(xi—i-Zﬂj)+<n—(t+1—k)—Z&i+Z/§j>
i=1 j=l1 i=1 j=1

=2n—t—-1)—-—m—-t)+m=n+m—1.

Fort+1 <k <n, we have
Ok)+6(n—k+1+1)

= ((n—m)ak+#{j|,8j <ak}+n—k—2ai+2ﬂj)

i=1 j=1

n m
+ <(n — M)+t U | B < Gnppir) Fn— =k 1+ D) =) &+ ) '3_1')
-1 =

=n-m)+m+m—t—1)—m—t)+m=n+m—1.
So there exists a permutation o € S, such that 6 (k) + 0(o (k)) =n+m — 1. It follows that
5y, By =#k|0(k)=p}=#k|n+m—1—p=n+m—1-6(k)

=#{k|é(k):n+m—1—p}=5,f+m_1_p(&,ﬁ). O
Proof of Lemma 3.3.6. For simplicity, we write

hy (e, B) :=dimgrf, HiE" (G ~!, £ f,)( @00, (3.3.6.2)
By (3.1.1.1) and the construction of the auxiliary filtration G (3.3.3.2), for every p € Q, we have

GPHIE" NGt £ £,) G0 ¢ FPHIE NG £ f,) G5, (3.3.6.3)

which implies that Y, _, 85 (@, f) < 3", _, hE (e, B).
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To prove the reverse inclusion, we consider the duality between the two filtered vector spaces

1

(Hgl—é—m—l(G:ln%»mfl, :tfa)(G,X Xp)’ 1'71;-1-) and (Hgl—é—m—l(G:lr;I»mfl, :Ffa)(G’Xi Xp’l), Fi:'r)’
induced by Proposition 3.1.4. In particular, we have
Wy B)=ht\,, @ p). (3.3.6.4)

Combining Lemma 3.3.5 and equations (3.3.6.3) and (3.3.6.4), we see for any p € R that

dim GPHE" (G £ f) O = sE (@, B <Y hp(. f)= Y hi@ p)

q=p q=p g>n+m—1—p

< Y sF@p =) s;@p)

g=n+m—1—p q<p
: +m—1 -1 G.X
=dim GPH "~ (G, £ )@ %P,

Hence both sides in (3.3.6.3) have the same dimension for every p. Then Lemma 3.3.6 follows. O

3.3.2. Proof of Theorem 3.3.1. We may assume «; = 0 by (2.1.1.2). By [Sabbah 2018, Proposition 3.54]
and [Mochizuki 2025, Proposition 11.22], the irregular Hodge filtration on Hyp(«; 8) induces those on
fibers Hyp(«; B), at closed points of S; i.e.,

(FyHyp(a; B)a = Fiy(Hyp(a; 8))a.

We have shown in Theorem 3.3.3 that the irregular Hodge filtration on the fibers Hyp(«; f), are given in
terms of the cohomology classes w, s in (3.3.3.2). Hence we deduce that the irregular Hodge filtration on
Hyp(o; B) is the one in assertion (1).

From (1), we deduce that the irregular Hodge numbers rk gr’}ilT ‘Hyp(a; B) are given by

#Hr,s) In+m—1—-w(w,s) = p}
Recall that we have the bijection between the sets
{1,...,n} and {(rnO)|0=r=m,1 <€ <sr41—5},

where s, are numbers defined in (3.2.0.1). Using Lemma 3.3.4, we deduce assertion (2); i.e., the irregular
Hodge numbers rk gry, Hyp(a; B) coincide with the numbers #6~!(p). O

4. Frobenius structures on hypergeometric connections and p-adic estimates

In this section, let p be a prime number and k = [, the finite field with ¢ = p*® elements for an integer s > 1.
Let K be a finite extension of @, with residue field k& containing an element 7 satisfying P~ l=—p.
We fix such an element 77 and denote the associated additive character by v : [F, — K> [Berthelot 1984,
(1.3)]. The g-th power Frobenius on k admits a lift o = id on Ok.
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Let n > m be two integers,

as n b: \"
(ot om )
q—1/i=1 q9—1/j=1

be two sequences of nondecreasing rational numbers in [0, 1) with denominator ¢ — 1. Let w : k* — K*

be the Teichmiiller character, and set x; = @ and p; = w”i. The hypergeometric sum associated to ¥,
Xx=1,---, xn) and p = (p1, ..., pp) is defined, for a € k*, by

Hyp g O D)@ = Y w(Trk/mp(in—Zy,-))-Hxioci)]—[p;l(yj). (4.0.0.1)
i=l1 j=1 i=1 j=1

xi,yjek™
X1 Xy =YL Ym

When (x, p) is nonresonant, the above sum equals (up to a sign) the Frobenius trace of the hypergeometric
overconvergent F-isocrystal sZyp(x, p) at a € G, (k) [Miyatani 2020] and therefore can be written
as a sum of n Frobenius eigenvalues. Its underlying connection is the hypergeometric connection
Hyp(—1ym+m jzn-m (t; B) [Miyatani 2020, Theorem 4.1.3]. When (x, p) is resonant, the above sum can
also be written as a sum of n Frobenius eigenvalues (see Section 4.2.1 for a direct proof by induction
onn).

We are interested in the p-adic valuation of Frobenius eigenvalues (normalized by ord,) of the above
sum (called Frobenius slopes), encoded in the Frobenius Newton polygon [Mazur 1972, §2].

Recall that the irregular Hodge numbers of the hypergeometric connection Hyp(o; B) are given by the
function 6 : {1, ...,n} — @Q (1.0.1.1), defined by

n m
0() = —m)ax+#i | fi <o} +(m—k) =D ai+ ) Bj. (4.0.0.2)
i=1 j=1
Definition 4.0.1. Let§;<- - - <J be the Frobenius slopes of Hyp,,, ,,,,(x; p)(@), normalized by ord, (q) =1,
(resp. irregular Hodge numbers of Hyp(c, B)) with multiplicities A1, ..., Ax. The Newton polygon (resp.
irregular Hodge polygon) is defined as the union of segments in R? joining points P; and P, for
0 <i <k —1, where the P; are given by

i i
j=1 j=1

Theorem 4.0.2. Suppose n > m and the orders of x;, p; divide p — 1. Then, for each a € G,,(k), the
Frobenius Newton polygon of Hyp, ,.,(x; p)(a) coincides with the irregular Hodge polygon defined by
(4.0.0.2).

A “Newton above Hodge” type result for twisted exponential sums was obtained in [Adolphson
and Sperber 1993]. In our case, we show that the (combinatorial) Hodge polygon in [loc. cit.] for
hypergeometric sums coincides with the irregular Hodge polygon of hypergeometric connections. Then,
we apply a result of Wan [1993] to conclude “Newton equals Hodge”.
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4.1. Frobenius Newton polygon above Hodge polygon. In this subsection, we revise Adolphson and

’

Sperber’s definition [1993] of (combinatorial) Hodge polygons and their result on “Newton above Hodge’
for certain twisted exponential sums. Finally, we can identify their Hodge polygon with the irregular
Hodge polygon of hypergeometric connections (Proposition 4.1.7).

4.1.1. Let N be a positive integer,
X =0 s N — K
a multiplicative character, and g : G — A! a morphism defined by a Laurent polynomial

M
gxy, ..., xy) = Zajx”f ek[xli,...,xf\;],

j=1

where {u j}ﬁ”: | 1s a finite subset of ZN and a j € k™. For m € N, we consider the twisted exponential sum

S = Y XM@Y (k). (4.1.1.1)

XEGS{ (ﬂ:qm )

where x ™ = x o Nmg,,, rand Y = o Trr,. /r,. The associated L-function

TI‘I‘l
L(x, & T>=exp(2 Sm(X> 8) ) (4.1.1.2)

m>1 n
is a rational function in T by the Grothendieck-Lefschetz trace formula (or the Dwork trace formula).
Recall that we denote by A = A(g) the convex closure in R generated by the origin and lattices
defined by the exponents {u;} of g in Definition 2.2.1. Let C(g) be the cone over A, i.e., the union of all
rays in RV emanating from the origin and passing through A.
We set M(g) = C(g) NZ". Adolphson and Sperber [1989, (1.7)] considered a subring R(g) of
k[xli, R xi] defined by monomials with exponents in M (g):

R(g) = k[xM®)].

We take d; € [0, g — 2] such that* x; = w~%. We set

o _fa-1-di d#0,
dj dl:()v

and
d=(d,....dy), d={d,,...,dy}, Ng=(q—1"'d+7V.
We define an R(g)-module R;(g) [Adolphson and Sperber 1989, (1.12)] by

Ra(g) = {Z bux"

finite

ueNgNC(g), b, Ek}.

4Adolphson—Sperber’s convention x; = w4 is different from our convention in the beginning of Section 4 by a minus sign.
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There exists a (minimal) positive integer M such that, for all u € (q%lZ)N NC(g), the weight function w (u),
defined as the minimal positive real number w such that u € wA(g), is a rational number with denominator
dividing M. Then w defines an increasing filtration on R(g) by

R(g)i/m = { Z byx" :wu) < ﬁ for all u with b, 7&0}.
ueM(g)

We denote the associated graded module by

R(e)=EP R(@im

i>0
R(&)i/m = R(Q)i/m/R()i-1)/m-

Similarly, we equip R4(g) with a filtration compatible with that of R(g) and let R4 (g) be the associated
graded R(g)-module.

4.1.2. In the following, we assume that g is nondegenerate and that dim A(g) = N.
For 1 <i < N, let g; be the image of x; 3/dx;g in R(g)1, and set

la=51R(®a+ - +gvR (g,
a graded submodule of R (g)aq. For each i > 0, we define a finite set
s c NanC(g)

of exponents as follows [Adolphson and Sperber 1991, §3]: Take a k-linearly independent set of monomials
{x* e S;/M} of weight i /M which spans a k-subspace \7d,,-/M complement to R(g)d,,-/M Nig;ie.,

R(®ai/m=Vaim®RE@aimNIaim).

Sa=Jsi".

i>0

Set

which we also denote by S;z(g), and let V (g) be the volume of A(g). The quotient R()a / I 7 admits a
basis of monomials in S; and has dimension [loc. cit., Lemma 2.8]

dim R(g)a/la = N'V(g).

In this case, the L-function L(y, g; T)(_I)N_I (4.1.1.2) is a polynomial of degree N!V (g) [loc. cit.,
Corollary 2.12]. The g-order of roots of this polynomial are called Frobenius slopes of the twisted
exponential sums Sy, (x, g).

Adolphson and Sperber studied the Frobenius Newton polygon defined by Frobenius slopes of this
L-function (Definition 4.0.1) and compared it with a Hodge polygon defined as below.

For an integer 0 < d < g — 2, let d’ be the nonnegative residue of pd modulo ¢ — 1. Recall that ¢ = p*
for an integer s > 1. Ford = (dy, ...,dy), wesetd' = (d}, ..., dy) and d® the i-th composition of
(=) ond fori > 1. Note that d®) = d.
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We arrange elements of Sg = {ug(1),...,ug(N!V(g))} by w(ug(l)) <--- <w(ug(N'V(g))), and we
repeat this ordering for Sy, ..., Szs-». For an integer £ > 0, we set [loc. cit., Theorem 3.17]

s—1
. e
W(e) :card{J ( > wugn () = M}‘
i=0
When ¢ > sNM, we have W(£) =0.

Definition 4.1.3 (Adolphson—Sperber). The Hodge polygon HP(A(g)4) is defined by the convex polygon
in R? with vertices (0, 0) and

m m
1
(EE_O W), i ;_OZW(E)) m=0,1,...,sNM.

Theorem 4.1.4 [Adolphson and Sperber 1993, Corollary 3.18]. If g is nondegenerate and dim(A(g)) =N,
the Frobenius Newton polygon of L(x, &; T)(_I)M1 lies above the Hodge polygon HP(A(g)4), and their

endpoints coincide.

Definition 4.1.5. We say that (g, x) is ordinary if these two polygons coincide. When the character x is
trivial, we simply say g is ordinary.

4.1.6. In the following, we apply the above theory to the case of hypergeometric sums at the beginning
of Section 4. We may assume that x; is trivial (i.e., oy = 0). Let a be an element of k*. We take
N=n+m—-1,d=(a,...,a,, b1, ..., by), and g to be the nondegenerate function (2.2.1.1)

Yity
fa=a——" 4 x4+ X =y — = Ym.

X)Xy
Then, we recover the hypergeometric sum (4.0.0.1) from (4.1.1.1).

Proposition 4.1.7. If (x, p) is nonresonant and the orders of the characters y; and p; divide p — 1,
then the Hodge polygon HP(A( f,)a) coincides with the irregular Hodge polygon defined by (4.0.0.2)

associated to b b
_ @ _ _Gn _ bt _ _bm
(O,az—p_l,...,an—p_1>, (ﬂl—p_l,...,ﬁm p—1>'
Proof. Since o; and B; have denominators dividing p — 1, the numbers d'*) are equal to d for every i > 1.

In particular, the multiset of slopes of HP(A(f,)4) coincides with w(Sg) = {w (1) | u € S4}.
The cohomology classes w, ¢ = g, - n in Proposition 3.2.1 form a basis of the de Rham cohomology
group HA™ =1 (U,, f,)(@%*F). By the calculation of cohomology groups [loc. cit., §3, Theorem 3.14],

the functions {g, ¢} also form a basis of 17‘;, with d = (ar, ..., ay,, by, ..., l;m). Hence
w(Sg) ={w(gre) |0<r<m,1 <€ <5411 —57}.

By (3.1.1.1), Lemma 3.3.4 and the duality (3.3.6.4), the set of weights w(Sz) coincides with the set of
irregular Hodge numbers (4.0.0.2). Then, the proposition follows. 0

4.2. Frobenius slopes of hypergeometric sums: proof of Theorem 4.0.2. We proceed by induction on n.
Suppose the theorem holds when the rank of the hypergeometric F-isocrystal is less than n.
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4.2.1. Resonant case. We first show that we can deduce the assertion in the resonant case from the
induction hypothesis. We assume there exists i and j such that o; = ;.

We slightly modify our convention on « and B by replacing those «;, 8; = 0 by 1 and then arranging
themasO <o <oy <--- <o, <land 0 < B <--- < B,, < 1. Note that this modification does not
change the multiset {0(1), ..., 0(n)} of irregular Hodge numbers. After twisting by a multiplicative
character, we may assume that x, = p,, = 1 are the trivial characters (i.e., «, = f,, = 1). Then we have
the following identities:

Hyp(nm)(x p)(a)= Z w<2x,+a —Zyj) th(xz)l_[p] )

Xi,yj €k i=1

= Z (le Zy,+ym( >> HXZ(XZ)HIO] (yj
xi,yj €k, ymek i=1
-y ¢<Zx, Zy,) ]_[x,(x,)]_[pj )

Xi,yj €k

m—1

= ¢ Hyp(u_1m—1y (s PN @) =Y (=1)"" IHG(xlf Wwl6w.erh, @211

i=1 j=1
where ¥ = (x1, ..., xn—1) and o' = (o1, ..., Pm—1), and
G x) =Y ¥@)xix)
xek>

denotes the Gauss sum. In particular, the above sum can be written as a sum of n Frobenius eigenvalues
by induction.

Let 0’ be the function (4.0.0.2) defined by rational numbers «;, ..., a,_1 and B1, ..., Bm_1. Then, we
have

Ok)y=0"(k)+1 foralll<k<n-—1

and

0(n) = Z(l—al>+ > Bj=ord (ch Xi) H GW,p; )

Bi<l1
where the second identity follows from Stickelberger’s theorem, saying that

—k k
ordq G('(ﬁ,(,() ):m
Then, the theorem in the resonant case follows from the induction hypothesis and decomposition (4.2.1.1).

4.2.2. Nonresonant case. By the previous argument, we may assume that the assertion for the hyperge-
ometric sum of type (n, m) defined by a resonant pair («, 8) is already proved. It suffices to treat the
nonresonant case. We may assume y; = 1 is trivial.

We set fa(xz, s Xy Vs ev ey Yim) = fu(xg_ o xPT 1, y{’_l, el y,ﬁ_l). We first prove the ordinar-

iness of exponential sums associated to fa (Deﬁmtlon 4.1.5) using a theorem of Wan [1993].
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Let 81, ..., 8min be all the facets of A = A(f,) which do not contain the origin. Let f:f " be the
restriction of fa to §; [Wan 2004, §1.1], which is also nondegenerate [Wan 2004, §3.1]. By [Wan 2004,
Theorem 3.1], f, is ordinary if and only if each ﬁf " is ordinary.

Each Laurent polynomial ff " is diagonal; that is, ff " has exactly n +m — 1 nonconstant terms of
monomials and A ( ];aa ") is (n+m—1)-dimensional [Wan 2004, §2]. Indeed, if Vi, ..., V,;,4,—1 denote the
vertex of §; written as column vectors, the set S(5;) of solutions of

r
Vi e ooy Vipn—1) : =0 (mod 1), r;rational, 0<r; <1,

I'm+n—1

forms an abelian group, which is isomorphic to (Z/(p — 1)Z)"*"~!. We deduce that, for each §;, ff Tis
ordinary by [Wan 2004, Corollary 2.6].
We have a decomposition of exponential sums as follows:

Y Y falxisy)) =Y Hypg (X, p)(@), (42.2.1)

Xi,Yj ek> XisPj

where the sum is taken over all multiplicative characters y; and p; with2 <i <nand 1 < j <m of
orders dividing p — 1. We have a similar decomposition for S; (Section 4.1.2) given by

S1(fa) =|_| Sa(fa).
d

where 1 = (0,0, ...,0) and d is taken over all (n4+m—1)-tuples of rational numbers with denominators
p—1in [0, 1).

On the left-hand side of (4.2.2.1), we have shown “Newton equals Hodge” (i.e., the ordinariness of fa).
Together with the “Newton above Hodge” for each hypergeometric sum (Theorem 4.1.4), we deduce that
“Newton equals Hodge” for each component of the right-hand side. Then, the assertion in the nonresonant
case follows from Proposition 4.1.7. O

In particular, our proof shows Proposition 4.1.7 in the resonant case.
Corollary 4.2.3. Proposition 4.1.7 holds without the nonresonant assumption.

Proof. In the resonant case, the Frobenius Newton polygon equals the irregular Hodge polygon by
Section 4.2.1. By the proof in Section 4.2.2, the Frobenius Newton polygon equals the (combinatorial)
Hodge polygon defined by Adolphson—Sperber. Then, the assertion follows. O
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