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To initiate a systematic study on the applications of perfectoid methods to Noetherian rings, we introduce
the notions of perfectoid towers and their tilts. We mainly show that the tilting operation preserves several
homological invariants and finiteness properties. Using this, we also provide a comparison result on étale
cohomology groups under the tilting. As an application, we prove finiteness of the prime-to-p-torsion
subgroup of the divisor class group of a local log-regular ring that appears in logarithmic geometry in the
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1. Introduction

In recent years, the perfectoid technique has become one of the most effective tools in commutative ring
theory and singularity theory in mixed characteristic. The tilting operation S⇝ S♭ for a perfectoid ring
S is a central notion in this method, which makes a bridge between objects in mixed characteristic and
objects in positive characteristic. However, perfectoid rings themselves are too big to fit into Noetherian
ring theory. Hence, for applications, one often requires distinguished Noetherian ring extensions that
approximate perfectoids. Indeed, in many earlier works (such as [7], [8] and [17]), one constructs a highly
ramified tower of regular local rings or local log-regular rings:

R0 ⊆ R1 ⊆ R2 ⊆ · · ·

that converges to a (pre)perfectoid ring. Our purposes in this paper are to axiomatize the above towers
and establish a kind of Noetherization of perfectoid theory. As an application, we show a finiteness result
on the divisor class groups of local log-regular rings.

Fix a prime p. The highly ramified towers in the positive characteristic case are of the form

R ⊆ R1/p
⊆ R1/p2

⊆ · · · .

This type of tower also appears when one considers the perfect closure of a reduced Fp-algebra. Thus we
formulate this class as a tower-theoretic analogue of perfect Fp-algebras, and call them perfect towers
(Definition 3.2). Next, we introduce perfectoid towers as a generalization of perfect towers, which includes
the towers applied so far (cf. Proposition 3.58 and Example 3.62). A perfectoid tower is given by a direct
system of rings R0

t0
−→ R1

t1
−→ · · · satisfying seven axioms in Definition 3.4 and Definition 3.21. If we

assume that each Ri is Noetherian, then these axioms are essential to cope with two main difficulties
which we explain below.

The first difficulty is that the residue ring Ri/pRi on each layer is not necessarily semiperfect.
We overcome it by axioms (b), (c), and (d); these ensure the existence of a surjective ring map
Fi : Ri+1/pRi+1→ Ri/pRi which gives a decomposition of the Frobenius endomorphism. We call Fi

the i -th Frobenius projection, and define a ring Rs.♭
j ( j ≥ 0) as the inverse limit of Frobenius projections

starting at R j/pR j . Then the resulting tower

Rs.♭
0

t s.♭
0
−→ Rs.♭

1
t s.♭
1
−→ · · ·

is perfect, and thus we obtain the tilting operation ({Ri }i≥0, {ti }i≥0)⇝ ({Rs.♭
i }i≥0, {t

s.♭
i }i≥0). We remark

that this strategy is an axiomatization of the principal arguments in [37].
The second one is that each Rs.♭

i could be imperfect. Because of this, the Witt ring W (Rs.♭
i ) is often

uncontrollable. On the other hand, the definition of Bhatt–Morrow–Scholze’s perfectoid rings [5] contains
an axiom involving Fontaine’s theta map θS :W (S♭)→ S (see Definition 3.49(3)), where perfectness of S♭

is quite effective. Our axioms (f) and (g) are the substitutes for it; these require the Frobenius projections
to behave well, especially on the p-torsion parts. This idea is closely related to Gabber and Ramero’s
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characterization of perfectoid rings ([17, Corollary 16.3.75]; see also Theorem 3.50). Indeed, we apply it
to deduce that the completed direct limit of a perfectoid tower is a perfectoid ring (Corollary 3.52).

We then verify fundamental properties of the tilting operation for towers. For example, the tilt
({Rs.♭

i }i≥0, {t
s.♭
i }i≥0) is a perfectoid tower with respect to an ideal I s.♭

0 ⊆ Rs.♭
0 which is the kernel of the

0-th projection Rs.♭
0 → R0/pR0 (Proposition 3.41). It induces an isomorphism between two perfectoid

objects of different characteristics modulo the defining ideals (Lemma 3.39). Moreover, this operation
preserves several finiteness properties such as Noetherianness on each layer (Proposition 3.42). A key to
deducing these statements is the following result (see Remark 3.40 for homological interpretation).

Main Theorem 1 (see Theorem 3.35). I s.♭
0 is a principal ideal. Moreover, we have isomorphisms of

(possibly) nonunital rings (Rs.♭
i )I s.♭

0 -tor
∼= (Ri )p-tor (i ≥ 0) that are compatible with {t s.♭

i }i≥0 and {ti }i≥0.

Under certain normality assumptions, we obtain a comparison result on the finiteness of étale cohomology
groups under tilting for towers (Proposition 4.7). This proposition is considered to rework the crucial
part of the proof of [8, Theorem 3.1.3] in a systematic way. Actually, our proposition applies beyond the
regular case.

As a typical example, we investigate certain towers of local log-regular rings; this class of rings
is defined by Kazuya Kato, and is central to logarithmic geometry (readers interested in logarithmic
geometry can refer to [17], [26] and [34]). By Kato’s structure theorem, a complete local log-regular
ring (R,Q, α) of mixed characteristic is of the form C(k)[[Q⊕Nr

]]/(p− f ) where C(k) is a Cohen ring
of the residue field k of R (see Theorem 2.22). Gabber and Ramero gave a systematic way to build a
perfectoid tower (in our sense) over it, which consists of local log-regular rings (Construction 3.56). In
this paper, we reveal that its tilt also consists of local log-regular rings, and arises from C(k)[[Q⊕Nr

]]/(p)
(Theorem 3.61). It says that these two rings on the starting layers fit into a Noetherian variant of the
tilting correspondence in perfectoid theory (e.g. Zp corresponds to Fp[[x]]).

We regard Theorem 3.61 to be of fundamental importance in the search on the singularities of Noetherian
rings via perfectoid methods. For instance, we can investigate the divisor class groups of local log-regular
rings.1 The divisor class group of a Noetherian normal domain is an important invariant, but it is often
hard to compute.2 On the other hand, Polstra recently proved a remarkable result stating that the torsion
subgroup of the divisor class group of an F-finite strongly F-regular domain is finite [35]. Based on this
result, we obtain the following finiteness theorem.

Main Theorem 2 (Theorem 4.13). Let (R,Q, α) be a local log-regular ring of mixed characteristic
with perfect residue field k of characteristic p > 0, and denote by Cl(R) the divisor class group with its
torsion subgroup Cl(R)tor. Assume that R̂sh

[ 1
p

]
is locally factorial, where R̂sh is the completion of the

strict Henselization Rsh. Then Cl(R)tor⊗Z
[ 1

p

]
is a finite group. In other words, the ℓ-primary subgroup

of Cl(R)tor is finite for all primes ℓ ̸= p and vanishes for almost all primes ℓ ̸= p.

1K. Kato proved that a local log-regular ring is a normal domain [26].
2Every abelian group is realized as a divisor class group of some Dedekind domain (due to Claborn’s result [9]).
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Our approach to the above theorem is a combination of Theorem 3.61 and Proposition 4.7.
Although we formulated the above theorem only in mixed characteristic, it has an analogue in charac-

teristic p > 0, which is relatively easy as follows from the fact that F-finite log-regular rings are strongly
F-regular (Lemma 2.25) combined with Polstra’s theorem.

For a local log-regular ring (R,Q, α), Gabber and Ramero constructed the isomorphism Cl(Q)∼=Cl(R)
where Cl(Q) is the divisor class group of the associated monoid [17, Corollary 12.6.43]. It induces the
finite generation of Cl(R).3

Recently, H. Cai, S. Lee, L. Ma, K. Schwede, and K. Tucker proved that the torsion part of the divisor
class group of a BCM-regular ring is finite (see [6, Theorem 7.0.10.]). Since they also proved that local
log-regular rings are BCM-regular, their result recovers Main Theorem 2. Although their approach relies
on the evaluation of a certain inequality with the perfectoid signature which is defined in [6] as an analogue
of F-signature, it does not use a reduction to positive characteristic and is therefore essentially different
from our approach.

Outline. In Section 2, we discuss several properties of monoids and local log-regular rings needed in
later sections. We also record a shorter proof of the result that local log-regular rings are splinter based
on the direct summand theorem in Section 2C.

In Section 3, we introduce the notions of perfect towers, perfectoid towers, and their tilts. The most
part of this section is devoted to studying fundamental properties of them; in particular, Section 3D deals
with Main Theorem 1. In the last subsection Section 3F, we provide explicit examples of perfectoid
towers consisting of local log-regular rings, and compute their tilts.

In Section 4, we give a proof for Main Theorem 2 using the tilting operation, which is an application
of Sections 2 and 3.

In the Appendix, we review the notion of maximal sequences associated to certain differential modules
due to Gabber and Ramero [17]. This plays an important role in the construction of perfectoid towers of
local log-regular rings (Construction 3.56).

Conventions. •We consistently fix a prime p>0. If we need to refer to another prime, we denote it by ℓ.

• All rings are assumed to be commutative and unital (unless otherwise stated; cf. Theorem 3.35(2)). We
mean by a ring map a unital ring homomorphism.

• A local ring is a (not necessarily Noetherian) ring with a unique maximal ideal. When a ring R is local,
then we use mR (or simply m if no confusion is likely) to denote its unique maximal ideal. We say that a
ring map f : R→ S is local if R and S are local rings and f −1(mS)=mR .

• Unless otherwise stated, a pair (A, I ) consisting of a ring A and an ideal I ⊆ A will be simply called a
pair.

• The Frobenius endomorphism on an Fp-algebra R is denoted by FR . If there is no confusion, we denote
it by Frob.

3The first-named author recently provided an elementary proof of [17, Corollary 12.6.43]. See [25].
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2. Log-regularity

In this section, we discuss several properties of monoids and local log-regular rings. In Section 2A, we
review basic terms on monoids, and examine the behavior of p-times maps which are effectively used in
Gabber and Ramero’s treatment of perfectoid towers (see Construction 3.56). In Section 2B, we review
the definition of local log-regular rings and crucial results by K. Kato, and study the relationship with
strong F-regularity. In Section 2C, we recall Gabber and Ramero’s result which claims that any local
log-regular ring is a splinter (Theorem 2.29), and give an alternative proof for it using the direct summand
Theorem by Y.André [2] (its derived variant is proved by B. Bhatt [4]).

2A. Preliminaries on monoids.

2A1. Basic terms. Here we review the definition of several notions on monoids.

Definition 2.1. A monoid is a semigroup with a unit. A homomorphism of monoids is a semigroup
homomorphism between monoids that sends a unit to a unit.

Throughout this paper, all monoids are assumed to be commutative. We denote by Mnd the category
whose objects are (commutative) monoids and whose morphisms are homomorphisms of monoids.

We denote a unit by 0. Let Q be a monoid and Q∗ denote the set of all p ∈Q such that there exists
q ∈Q such that p+q = 0. Let Qgp denote the set of elements a−b for all a, b ∈Q, where a−b= a′−b′

if and only if there exists c ∈Q such that a+ b′+ c = a′+ b+ c. By definition, Qgp is an abelian group.
The following conditions yield good classes of monoids.

Definition 2.2. Let Q be a monoid.

(1) Q is called integral if for x, x ′ and y ∈ Q, x + y = x ′+ y implies x = x ′.

(2) Q is called fine if it is finitely generated and integral.

(3) Q is called sharp if Q∗ = 0.

(4) Q is called saturated if the following conditions hold.

(a) Q is integral.
(b) For any x ∈Qgp, if nx ∈Q for some n ≥ 1, then x ∈Q.

For an integral monoid Q, the map ιQ : Q → Qgp
; q 7→ q − 0 is injective (see [34, Chapter I,

Proposition 1.3.3]). In Definition 2.2(4), we identify Q with its image in Qgp.
Next we recall the definition of a module over a monoid.4

Definition 2.3 (Q-module). Let Q be a monoid.

(1) A Q-module is a set M equipped with a binary operation

Q×M→ M ; (q, x) 7→ q + x

having the following properties:

4This is called a Q-set in [34]. We call it as above to follow the convention of the terminology in commutative ring theory.
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(a) 0+ x = x for any x ∈ M ;
(b) (p+ q)+ x = p+ (q + x) for any p, q ∈Q and x ∈ M .

(2) A homomorphism of Q-modules is a (set-theoretic) map f : M→ N between Q-modules such that
f (q + x)= q + f (x) for any q ∈Q and x ∈ M . We denote by Q-Mod the category of Q-modules
and homomorphisms of Q-modules.

For a monoid Q and a family of Q-modules {Mi }i∈I , we denote by
∐

i∈I Mi the disjoint union with
the binary operation induced by that of each Mi . Then it is the coproduct in Q-Mod.

Definition 2.4 (Monoid algebras). Let R be a ring and let Q be a monoid. Then the monoid algebra
R[Q] is the R-algebra which is the free R-module R⊕Q, endowed with the unique ring structure induced
by the homomorphism of monoids

Q→ R[Q] ; q 7→ eq .

For a monoid Q, one obtains the functor

Q-Mod→ R[Q]-Mod ; M 7→ R[M], (2-1)

which is a left adjoint of the forgetful functor R[Q]-Mod → Q-Mod. Notice that (2-1) preserves
coproducts (we use this property to prove Proposition 2.8).

Like ideals (resp. prime ideals, the Krull dimension) of a ring, an ideal (resp. prime ideals, the
dimension) of a monoid is defined as follows.

Definition 2.5. Let Q be a monoid.

(1) A Q-submodule of Q is called an ideal of Q.

(2) An ideal I is called prime if I ̸=Q and p+q ∈ I implies p ∈ I or q ∈ I . Remark that the empty set
∅ is a prime ideal of Q.

(3) The dimension of a monoid Q is the maximal length d of the ascending chain5 of prime ideals

∅= q0 ⊂ q1 ⊂ · · · ⊂ qd =Q+,

where Q+ is the set of non-unit elements of Q (i.e. Q+ =Q \Q∗). We also denote it by dimQ.

Next we review a good class of homomorphisms of monoids, called exact homomorphisms.

Definition 2.6 (Exact homomorphisms). Let P and Q be monoids.

(1) A homomorphism of monoids ϕ : P→Q is said to be exact if the diagram of monoids

P

��

ϕ
// Q

��

Pgp ϕgp
// Qgp

is cartesian.
5In this paper, the symbol ⊂ is used to indicate proper inclusion for making an analogy to the inequality symbols as in [34].
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(2) An exact submonoid of Q is a submonoid Q′ of Q such that the inclusion map Q′ ↪→Q is exact (in
other words, (Q′)gp

∩Q=Q′).

There is a quite useful characterization of exact submonoids (Proposition 2.8). To see this, we recall a
graded decomposition of a Q-module attached to a submonoid. For a monoid Q and a submonoid Q′ ⊆Q,
we denote by Q→Q/Q′ the cokernel of the inclusion map Q′ ↪→Q.

Definition 2.7. Let Q be an integral monoid, and let Q′ ⊆Q be a submonoid. Then for any g ∈Q/Q′,
we denote by Qg a Q′-module defined as follows.

• As a set, Qg is the inverse image of g ∈Q/Q′ under the cokernel Q→Q/Q′ of Q′ ↪→Q.

• The operation Q′×Qg→Qg is defined by the rule (q, x) 7→ q + x (where q + x denotes the sum
of q and x in Q).

By definition, Q =
∐

g∈Q/Q′ Qg in Q′-Mod. Using this, one can refine a characterization of exact
embeddings described in [34, Chapter I, Proposition 4.2.7].

Proposition 2.8 (cf. [34, Chapter I, Proposition 4.2.7]). Let Q be an integral monoid, and let Q′ ⊆Q be
a submonoid. Let θ : Q′ ↪→ Q be the inclusion map, and let Z[θ ] : Z[Q′] → Z[Q] be the induced ring
map. Set G :=Q/Q′.

(1) The Z[Q′]-module Z[Q] admits a G-graded decomposition Z[Q] =
⊕

g∈G Z[Qg].

(2) The following conditions are equivalent.

(a) The inclusion map θ :Q′ ↪→Q is exact. In other words, (Q′)gp
∩Q=Q′.

(b) Q0 =Q′.
(c) Z[θ ] splits as a Z[Q′]-linear map.
(d) Z[θ ] is equal to the canonical embedding Z[Q0] ↪→

⊕
g∈G Z[Qg].

(e) Z[θ ] is universally injective.

Proof. (1) By applying the functor (2-1) (which admits a right adjoint) to the decomposition Q=
∐

g∈G Qg,
we find that the assertion follows.

(2) Since Q0 = (Q′)gp
∩ Q as sets by definition, the equivalence (a)⇔(b) follows. The assertion

(a)⇔(c)⇔(e) is none other than [34, Chapter I, Proposition 4.2.7]. Moreover, (d) implies (c) obviously.
Thus it suffices to show the implication (b)⇒(d). Assume that (b) is satisfied. Then one can decompose Q
into the direct sum of Q′-modules

∐
g∈G Qg with Q0=Q′. Hence the inclusion map Q′ ↪→Q is equal to the

canonical embedding Q0 ↪→
∐

g∈G Qg. Thus the induced homomorphism Z[θ ] : Z[Q0] ↪→ Z
[∐

g∈G Qg
]

satisfies (d), as desired. □

Remark 2.9. In the situation of Proposition 2.8, assume that condition (d) is satisfied. Then the split
surjection π : Z[Q] → Z[Q′] has the property that π(eQ) = eQ

′

by the construction of the G-graded
decomposition Z[Q] =

⊕
g∈G Z[Qg]. Moreover, π(eQ

+

)⊆ e(Q
′)+ because Q+∩Q′ ⊆ (Q′)+. We use this

fact in our proof for Theorem 2.29.
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Proposition 2.8 implies the following useful lemma.

Lemma 2.10. Let Q be a fine, sharp, and saturated monoid. Let A be a ring. Then there is an embedding
of monoids Q ↪→ Nd such that the induced map of monoid algebras

A[Q] → A[Nd
] (2-2)

splits as an A[Q]-linear map.

Proof. Since Q is saturated, there exists an embedding Q into some Nd as an exact submonoid in view of
[34, Chapter I, Corollary 2.2.7]. Then by Proposition 2.8, the associated map of monoid algebras

Z[Q] → Z[Nd
] (2-3)

splits as a Z[Q]-linear map. By tensoring (2-3) with A, we get the desired split map. □

2A2. c-times maps on integral monoids. For an integral monoid Q, we denote by QQ the submonoid of
Qgp
⊗Z Q defined as

QQ := {x ⊗ r ∈Qgp
⊗Z Q | x ∈Q, r ∈Q≥0}.

Using this, one can define the following monoid which plays a central role in Gabber and Ramero’s
construction of perfectoid towers consisting of local log-regular rings.

Definition 2.11. Let Q be an integral monoid. Let c and i be non-negative integers with c > 0.

(1) We denote by Q(i)
c the submonoid of QQ defined as

Q(i)
c := {γ ∈QQ | ciγ ∈Q}.

(2) We denote by ι(i)c :Q(i)
c ↪→Q(i+1)

c the inclusion map, and by Z[ι
(i)
c ] :Z[Q(i)

c ]→Z[Q(i+1)
c ] the induced

ring map.

In the rest of this subsection, we fix a positive integer c > 0. To prove several properties of Q(i)
c , the

following one is important as a starting point.

Lemma 2.12. Let Q be an integral monoid. Then for every i ≥ 0, the following assertions hold.

(1) Q(i)
c is integral.

(2) Q(i+1)
c = (Q(i)

c )
(1)
c .

(3) The c-times map on QQ restricts to an isomorphism of monoids:

fc :Q(i+1)
c

∼=
−→Q(i)

c ; γ 7→ cγ.

Proof. (1) Since Qgp
⊗Z Q is an integral monoid, so is Q(i)

c .

(2) Since any g∈ (Q(i)
c )

gp satisfies ci g∈Qgp, the inclusion map Qgp ↪→ (Q(i)
c )

gp becomes an isomorphism

ϕ :Qgp
⊗Z Q

∼=
−→ (Q(i)

c )
gp
⊗Z Q by extension of scalars along the flat ring map Z→Q. The restriction

ϕ̃ :QQ ↪→ (Q(i)
c )Q of ϕ is also an isomorphism, and one can easily check that ϕ̃ restricts to the desired

canonical isomorphism Q(i+1)
c

∼=
−→ (Q(i)

c )
(1)
c .
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(3) It is easy to see that the c-times map on QQ restricts to the homomorphism of monoids fc. Since the
abelian group QQ =Qgp

⊗Z Q is torsion-free, fc is injective. Moreover, any element γ in Q(i)
c is of the

form x ⊗ r for some x ∈Qgp and r ∈Q, which satisfy c
(
x ⊗ r

c

)
= γ and ci+1

(
x ⊗ r

c

)
∈Q. Hence fc is

also surjective, as desired. □

Let us inspect monoid-theoretic aspects of the inclusion ι(i)c :Q(i)
c ↪→Q(i+1)

c .

Lemma 2.13. Let Q be an integral monoid, and let P ∈ { fine, sharp, saturated}. If Q satisfies P , then
Q(i)

c also satisfies P for every i ≥ 0.

Proof. Assume that Q is sharp. Pick x, y ∈Q(i)
c such that x + y = 0. Then ci x = 0 because Q is sharp.

Since Q(i)
c is a submonoid of the torsion-free group Qgp

⊗Z Q, we have x = 0. Next, if Q is fine or
saturated, then it suffices to show the case i = 1 by Lemma 2.12(2). If Q is fine, then there exists a finite
system of generators {x1, . . . , xr } of Q. Hence Q(1)

c also has a finite system of generators
{

x j⊗
1
c

}
j=1,...,r .

Finally, assume that Q(1)
c is saturated. Pick an element x of (Q(1)

c )gp such that nx ∈ Q(1)
c . Then the

element cx of Qgp satisfies n(cx)= c(nx) ∈Q. Hence cx ∈Q because Q is saturated. □

The assumption of fineness on Q induces several finiteness properties.

Lemma 2.14. Let Q be a fine monoid. Then for every i ≥ 0, the following assertions hold.

(1) The ring map Z[ι
(i)
c ] : Z[Q(i)

c ] → Z[Q(i+1)
c ] is module-finite.

(2) Q(i+1)
c /Q(i)

c ∼= (Q(i+1)
c )gp/(Q(i)

c )
gp as monoids. Moreover, Q(i+1)

c /Q(i)
c forms a finite abelian group.

(3) For a prime p > 0, we have
∣∣Q(i+1)

p /Q(i)
p

∣∣= ps for some s ≥ 0.

Proof. In view of Lemma 2.12(2), it suffices to deal with the case when i = 0 only. Here notice that
Q(0)

c =Q.
(1) Let

{ 1
c x1, . . . ,

1
c xr

}
be the system of generators of Q(1)

c obtained in the proof of Lemma 2.13 where
1
c x j := x j ⊗

1
c . Then the Z[Q]-algebra Z[Q(1)

c ] is generated by {e
1
c x1, . . . , e

1
c xr }, and each e

1
c x j ∈ Z[Q(1)

c ]

is integral over Z[Q]. Hence Z[ι
(0)
c ] is module-finite, as desired.

(2) By [34, Chapter I, Proposition 1.3.3], Q(1)
c /Q is identified with the image of the composition

Q(1)
c ↪→ (Q(1)

c )gp↠ (Q(1)
c )gp/Qgp. (2-4)

Since Q(1)
c is generated by 1

c x1, . . . ,
1
c xr , we see (Q(1)

c )gp is generated by 1
c x1, . . . ,

1
c xr ,−

1
c x1, . . . ,−

1
c xr

as a monoid. On the other hand, −1
c x j ≡ (c− 1) 1

c x j modQgp for j = 1, . . . , r . Hence (Q(1)
c )gp/Qgp is

generated by
{1

c x j modQgp
}

j=1,...,r as a monoid. Therefore, the composite map (2-4) is surjective, and
(Q(1)

c )gp/Qgp is a finitely generated torsion abelian group. Thus, Q(1)
c /Q coincides with (Q(1)

c )gp/Qgp,
which is a finite abelian group, as desired.

(3) Since there exists a surjective group homomorphism

f : Z/pZ× · · ·×Z/pZ︸ ︷︷ ︸
r

↠ (Q(1)
p )

gp/Qgp
; (n1, . . . , nr ) 7→ n1

(
1
p

x1

)
+ · · ·+ nr

(
1
p

xr

)
mod Qgp ,
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we have pr
=

∣∣(Q(1)
p )

gp/Qgp
∣∣|Ker( f )|. Hence

∣∣(Q(1)
p )

gp/Qgp
∣∣= ps for some s ≥ 0. Thus the assertion

follows from (2). □

By assuming saturatedness, one finds the exactness of ι(i)c :Q(i)
c ↪→Q(i+1)

c .

Lemma 2.15. Let Q be a saturated monoid. Then for every i ≥ 0, ι(i)c : Q(i)
c ↪→ Q(i+1)

c is exact (i.e.,
Q(i+1)

c ∩ (Q(i)
c )

gp
=Q(i)

c ).

Proof. It suffices to show that Q(i+1)
c ∩ (Q(i)

c )
gp
⊆ Q(i)

c . Pick an element a ∈ Q(i+1)
c ∩ (Q(i)

c )
gp. Then

ca ∈Q(i)
c . Since Q(i)

c is saturated by Lemma 2.13, it implies that a ∈Q(i)
c , as desired. □

If further Q is fine, one can learn more about Z[ι
(i)
c ] : Z[Q(i)

c ] → Z[Q(i+1)
c ] using the exactness of ι(i)c

assured by Lemma 2.15.

Lemma 2.16. Let Q be a fine and saturated monoid. For every i ≥ 0, set Gi :=Q(i+1)
c /Q(i)

c (which is a
finite abelian group by Lemma 2.14(2)) and Ki := Frac(Z[Q(i)

c ]).

(1) For any g ∈ Gi , we have an isomorphism of Z[Q(i)
c ]-modules Z[(Q(i+1)

c )g]⊗Z[Q(i)
c ]

Ki ∼= Ki .

(2) The base extension Ki → Z[Q(i+1)
c ]⊗

Z[Q(i)
c ]

Ki of Z[ι
(i)
c ] is isomorphic to the split injection

Ki ↪→ (Ki )
⊕|Gi | ; a 7→ (a, 0, . . . , 0)

as a Ki -linear map. In particular, dimKi

(
Z[Q(i+1)

c ]⊗
Z[Q(i)

c ]
Ki

)
= |Q(i+1)

c /Q(i)
c |.

Proof. In view of Lemma 2.12(2) and Lemma 2.13, it suffices to show the assertions only for the case
when i = 0.

(1) Let yg ∈ Q(1)
c be an element whose image in Q(1)

c /Q is equal to g. Then we obtain an injective
homomorphism of Q-modules

ιg :Q ↪→ (Q(1)
c )g ; x 7→ x + yg, (2-5)

which induces an injective Z[Q]-linear map Z[ιg] : Z[Q] ↪→ Z[(Q(1)
c )g]. Thus it suffices to show that

Coker(Z[ιg])⊗Z[Q] K0 = (0), i.e., Coker(Z[ιg]) is a torsion Z[Q]-module. On the other hand, we also
have a homomorphism of Q-modules

(Q(1)
c )g→Qgp

; y 7→ y− yg,

which induces an embedding of Z[Q]-modules Coker(Z[ιg]) ↪→ Z[Qgp
]/Z[Q]. Since Z[Qgp

]/Z[Q] is
Z[Q]-torsion, the assertion follows.

(2) This follows from the combination of part (1) with Lemma 2.15 and Proposition 2.8(2). □

2B. Local log-regular rings.

2B1. Definition of local log-regular rings. We review the definition and fundamental properties of local
log-regular rings. Unless otherwise stated, we always assume that the monoid structure of a commutative
ring is specified by the multiplicative structure.
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Definition 2.17 [34, Chapter III, Definition 1.2.3]. Let R be a ring and let Q be a monoid with a
homomorphism α :Q→ R of monoids. Then we say that the triple (R,Q, α) is a log ring. Moreover, we
say that (R,Q, α) is a local log ring if (R,Q, α) is a log ring, where R is a local ring and α−1(R×)=Q∗.

In order to preserve the locality of a log structure, we need the locality of a ring map.

Lemma 2.18. Let (R,Q, α) be a local log ring and let (S,mS) be a local ring with a local ring map
φ : R→ S. Then (S,Q, φ ◦α) is also a local log ring.

Proof. By the locality of φ, we obtain the equality (φ ◦α)−1(S×)=Q∗, as desired. □

Now we define log-regular rings according to [34].

Definition 2.19. Let (R,Q, α) be a local log ring, where R is Noetherian and Q := Q/Q∗ is fine and
saturated. Let Iα be the ideal of R generated by the set α(Q+). Then (R,Q, α) is called a log-regular
ring if the following conditions hold.

(1) R/Iα is a regular local ring.

(2) dim R = dim R/Iα + dimQ.

Remark 2.20. For a monoid Q such that Q is fine and saturated, the natural projection π :Q↠Q splits
(see [17, Lemma 6.2.10]). Thus, in the situation of Definition 2.19, α extends to the homomorphism of
monoids α :Q→ R along π . Namely, we obtain another local log-regular ring (R,Q, α) with the same
underlying ring, where Q is fine, sharp, and saturated.

In his monumental paper [26], Kato considered log structures of schemes on the étale sites, and he then
considered them on the Zariski sites [27]. However, we do not need any deep part of logarithmic geometry
and the present paper focuses on the local study of schemes with log structures. We should remark that if
k is any fixed field and Q⊆Nd is a fine and saturated monoid, then the monoid algebra k[Q] is known
as an affine normal semigroup ring which is actively studied in combinatorial commutative algebra (see
the book [30]). The following theorem is a natural extension of the Cohen–Macaulay property for the
classical toric singularities over a field proved by Hochster [22].

Theorem 2.21 [27, Theorem 4.1]. Every local log-regular ring is Cohen–Macaulay and normal.

Let R be a ring and let Q be a fine sharp monoid. We denote by R[Q+] the ideal of R[Q] generated
by elements

∑
q∈Q+ aqeq , where aq is an element of R. Then we denote by R[[Q]] the adic completion

of R[Q] with respect to the ideal R[Q+].
As to the structure of complete local log-regular rings, we have the following result analogous to the

classical Cohen’s structure theorem, originally proved in [27]. We borrow the presentation from [34,
Chapter III, Theorem 1.11.2].

Theorem 2.22 (Kato). Let (R,Q, α) be a local log ring such that R is Noetherian and Q is fine, sharp,
and saturated. Let k be the residue field of R and mR its maximal ideal. Let r be the dimension of R/Iα.
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(1) Suppose that R contains a field. Then (R,Q, α) is log-regular if and only if there exists a commutative
diagram

Q

α

��

// k[[Q⊕Nr
]]

ψ
��

R // R̂

where R̂ is the completion along the maximal ideal and ψ is an isomorphism of rings.

(2) Assume that R is of mixed characteristic p > 0. Let C(k) be a Cohen ring of k. Then (R,Q, α) is
log-regular if and only if there exists a commutative diagram

Q

α

��

// C(k)[[Q⊕Nr
]]

ψ
��

R // R̂

where R̂ is the completion along the maximal ideal and ψ is a surjective ring map with Ker(ψ)= (θ)
for some element θ ∈ mR̂ whose constant term is p. Moreover, Ker(ψ) = (θ ′) for any element
θ ′ ∈ Ker(ψ) whose constant term is p.

Proof. Assertion (1) and the first part of (2) are [34, Chapter III, Theorem 1.11.2]. Pick an element
θ ′ ∈ Ker(ψ) whose constant term is p. Note that θ ′ is a regular element that is not invertible. By [34,
Chapter III, Proposition 1.10.13], C(k)[[Q⊕Nr

]]/(θ ′) is a domain of dimQ+ r = dim R = dim R̂. Thus
Ker(ψ)= (θ ′) holds.6 □

The completion of a normal affine semigroup ring with respect to the ideal generated by elements of
the semigroup is a typical example of local log-regular rings:

Lemma 2.23. Let Q be a fine, sharp and saturated monoid and let k be a field. Then (k[[Q]],Q, ι) is a
local log-regular ring, where ι :Q ↪→ k[[Q]] is the natural injection.

Proof. By [34, Chapter I, Proposition 3.6.1], (k[[Q]],Q, ι) is a local log ring. Now applying Theorem 2.22,
it is a local log-regular ring. □

2B2. Log-regularity and strong F-regularity. Strongly F-regular rings are one of the important classes
appearing in the study of F-singularities. Let us recall the definition.

Definition 2.24 (strong F-regularity). Let R be a Noetherian reduced Fp-algebra that is F-finite. Let Fe
∗

R
be the same as R as its underlying abelian groups with its R-module structure via restriction of scalars via
the e-th iterated Frobenius endomorphism Fe

R on R. Then we say that R is strongly F-regular, if for any
element c ∈ R that is not in any minimal prime of R, there exist an e> 0 and a map φ ∈HomR(Fe

∗
R, R)

such that φ(Fe
∗

c)= 1.

6This argument is due to Ogus. See the proof of [34, Chapter III, Theorem 1.11.2(2)].



Perfectoid towers, tilts and étale cohomology groups 2319

It is known that strongly F-regular rings are Cohen–Macaulay and normal (for example, see [28,
Proposition 4.4 and Theorem 4.6]). Let us show that log-regularity implies strong F-regularity (in positive
characteristic cases).

Lemma 2.25. Let (R,Q, α) be a local log-regular ring of characteristic p > 0 such that R is F-finite.
Then R is strongly F-regular.

Proof. The completion of R with respect to its maximal ideal is isomorphic to the completion of
k[Q⊕Nr

], and Q is a fine, sharp and saturated monoid by Theorem 2.22 and [34, Chapter I, Proposition
3.4.1]. Then it follows from Lemma 2.10 that Q ⊕ Nr can be embedded into Nd for d > 0, and
k[Q⊕Nr

] → k[Nd
] ∼= k[x1, . . . , xd ] splits as a k[Q⊕Nr

]-linear map. Applying [23, Theorem 3.1], we
see that k[Q⊕Nr

] is strongly F-regular. After completion, the complete local ring k[[Q⊕Nr
]] is strongly

F-regular in view of [1, Theorem 3.6]. Then by faithful flatness of R→ k[[Q⊕Nr
]], [23, Theorem 3.1]

applies to yield strong F-regularity of R. □

Under the hypothesis in the following proposition, one can easily establish the finiteness of the torsion
part of the divisor class group, which is the first assertion of Theorem 4.13.

Proposition 2.26. Assume that R ∼= C(k)[[Q]], where C(k) is a Cohen ring with F-finite residue field
k and Q is a fine, sharp, and saturated monoid. Let Cl(R)tor be the torsion subgroup of Cl(R). Then
Cl(R)tor⊗Z(ℓ) is finite for all ℓ ̸= p, and vanishes for almost all ℓ ̸= p.

Proof. Since R ∼= C(k)[[Q]], we have

R/pR ∼= k[[Q]],

which is a local F-finite log-regular ring. There is an induced map Cl(R)→ Cl(R/pR). By restriction,
we have Cl(R)tor → Cl(R/pR)tor. Then Lemma 2.25 together with Polstra’s result [35] says that
Cl(R/pR)tor is finite. Let Cℓ be the maximal ℓ-subgroup of Cl(R)tor. Since ℓ ̸= p, we find that the map
Cl(R)tor→ Cl(R/pR)tor restricted to Cℓ is injective in view of [18, Theorem 1.2]. In conclusion, Cℓ is
finite for all ℓ ̸= p, and Cℓ vanishes for almost all ℓ ̸= p, as desired. □

2C. Log-regularity and splinters. Local log-regular rings have another notable property; they are splin-
ters. Let us recall the definition of splinters.

Definition 2.27. A Noetherian ring A is a splinter if every finite ring map f : A → B such that
Spec(B)→ Spec(A) is surjective admits an A-linear map h : B→ A such that h ◦ f = idA.

In general, it is not easy to see which algebraic operations preserve splinters. In fact, it remains
unsolved whether polynomial rings over a splinter are splinters (see [10, Question 1’]). Regarding these
issues, Datta and Tucker proved remarkable results such as [10, Theorem B], [10, Theorem C], and [10,
Example 3.2.1]. See also Murayama’s work [32] for the study of purity of ring extensions.

In order to prove the splinter property, we need a lemma on splitting a map under completion.
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Lemma 2.28. Let R be a ring and let f : M→ N be an R-linear map. Consider a decreasing filtration
by R-submodules {Mλ}λ∈3 of M and a decreasing filtration by R-submodules {Nλ}λ∈3 of N such that
f (Mλ)⊆ Nλ for each λ ∈3. Set

M̂ := lim
←−−
λ∈3

M/Mλ and N̂ := lim
←−−
λ∈3

N/Nλ.

Finally, assume that f is a split injection that admits an R-linear map g : N → M such that g ◦ f = idM ,
g(Nλ)⊆ Mλ for each λ ∈3. Then f extends to a split injection M̂→ N̂ .

Proof. By assumption, there is an induced map

M/Mλ

f
−→ N/Nλ

ḡ
−→ M/Mλ

which is an identity on M/Mλ. Taking inverse limits, we get an identity map M̂ → N̂ → M̂ , which
proves the lemma. □

The next result is originally due to Gabber and Ramero [17, Theorem 17.3.12].7 We give an alternative
and short proof, using the direct summand theorem by André [2].

Theorem 2.29. A local log-regular ring (R,Q, α) is a splinter.

Proof. First, we prove the theorem when R is complete. By Remark 2.20, we may assume that Q is fine,
sharp, and saturated. By Theorem 2.22, we have

R ∼= k[[Q⊕Nr
]], or R ∼= C(k)[[Q⊕Nr

]]/(p− f ),

depending on whether R contains a field or not. Let us consider the mixed characteristic case. By
Lemma 2.10, there is a split injection C(k)[Q⊕Nr

] → C(k)[Nd
] for some d > 0, which comes from an

injection δ :Q⊕Nr
→ Nd that realizes δ(Q⊕Nr ) as an exact submonoid of Nd . After dividing out by

the ideal (p− f ), we find that the map

C(k)[[Q⊕Nr
]]/(p− f )→ C(k)[[Nd

]]/(p− f )

splits as a C(k)[[Q⊕Nr
]]/(p− f )-linear map by Remark 2.9 and Lemma 2.28. Hence, R becomes a

direct summand of the complete regular local ring A := C(k)[[x1, . . . , xd ]]/(p− f ). By invoking [10,
Proposition 2.2.8] and the Direct Summand Theorem [2], we see that R is a splinter. The case where
R = k[[Q⊕Nr

]] can be treated similarly.
Next let us consider the general case. Then the completion map R→ R̂ is faithfully flat and R̂ is a

complete local log-regular ring (see Theorem 2.22). Hence applying the complete case as above and [10,
Proposition 2.2.8] shows that R is a splinter, as desired. □

7One notices that the treatment of logarithmic geometry in [17] is topos-theoretic, while [27] considers mostly the Zariski
sites.
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3. Perfectoid towers and small tilts

In this section, we establish a tower-theoretic framework to deal with perfectoid objects using the notion
of perfectoid towers. We first introduce the class of perfect towers (Definition 3.2) in Section 3A, and
then define inverse perfection of towers (Definition 3.8) in Section 3B. These notions are tower-theoretic
variants of perfect Fp-algebras and inverse perfection of rings, respectively. In Section 3C, we give a set
of axioms for perfectoid towers. In Section 3D, we adopt the process of inverse perfection for perfectoid
towers as a new tilting operation. Indeed, we verify the invariance of several good properties under the
tilting; Main Theorem 1 is discussed here. In Section 3E, we describe the relationship between perfectoid
towers and perfectoid rings. This subsection also includes an alternative characterization of perfectoid rings
without Ainf. In Section 3F, we calculate the tilts of perfectoid towers consisting of local log-regular rings.

3A. Perfect towers. First of all, we consider the category of towers of rings.

Definition 3.1 (towers of rings).

(1) A tower of rings is a direct system of rings of the form

R0
t0
// R1

t1
// R2

t2
// · · ·

ti−1
// Ri

ti
// · · · ,

and we denote it by ({Ri }i≥0, {ti }i≥0) or {R0
t0
−→ R1

t1
−→ · · · }.

(2) A morphism of towers of rings f : ({Ri }i≥0, {ti }i≥0)→ ({R′i }i≥0, {t ′i }i≥0) is defined as a collection of
ring maps { fi : Ri→ R′i }i≥0 that is compatible with the transition maps; in other words, f represents
the commutative diagram

R0 //

f0
��

R1 //

f1
��

R2 //

f2
��

· · · // Ri //

fi
��

· · ·

R′0 // R′1 // R′2 // · · · // R′i // · · · .

For a tower of rings ({Ri }i≥0, {ti }i≥0), we often denote by R∞ an inductive limit lim
−−→i≥0 Ri . Clearly, an

isomorphism of towers of rings ({Ri }i≥0, {ti }i≥0)→ ({R′i }i≥0, {t ′i }i≥0) induces the isomorphism of rings
R∞

∼=
−→ R′

∞
. For every i ≥ 0, we regard Ri+1 as an Ri -algebra via the transition map ti .

Recall that the direct perfection of an Fp-algebra R, which we denote by Rperf, is the direct limit of
the tower ({Ri }i≥0, {ti }i≥0) where Ri = R and ti = FR for every i ≥ 0. We denote by φR : R→ Rperf the
natural map R0→ lim

−−→i≥0 Ri . If R is reduced, this tower can be regarded as ring extensions obtained
by adjoining pi -th roots (cf. Example 3.3). We formulate such towers as follows, and call them perfect
towers.

Definition 3.2 (perfect towers). A perfect Fp-tower (or, perfect tower as an abbreviated form) is a tower
of rings that is isomorphic to a tower of the following form, where R is a reduced Fp-algebra:

R
FR
// R

FR
// R

FR
// · · · . (3-1)
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Example 3.3. Let R be a reduced Fp-algebra. Let R1/pi
be the ring of pi -th roots of elements of R

for every i ≥ 0.8 Then the tower R
t0
−→ R1/p t1

−→ R1/p2 t2
−→ · · · is a perfect tower. Indeed, we have an

isomorphism Fi : R1/pi+1
→ R1/pi

; x 7→ x p. By putting F0,i+1 := F0 ◦ · · · ◦ Fi , we obtain the desired
commutative ladder:

R1/p0

F0,0

��

t0
// R1/p

F0,1

��

t1
// · · ·

ti−1
// R1/pi ti

//

F0,i

��

· · ·

R
FR

// R
FR

// · · ·
FR

// R
FR

// · · · .

3B. Purely inseparable towers and inverse perfection. In this subsection, we define inverse perfection
for towers, which assigns a perfect tower to a tower by arranging a certain type of inverse limits of rings.
For this, we introduce the following class of towers that admit distinguished inverse systems of rings.

Definition 3.4 (purely inseparable towers). Let R be a ring, and let I ⊆ R be an ideal.

(1) A tower ({Ri }i≥0, {ti }i≥0) is called a p-purely inseparable tower arising from (R, I ) if it satisfies
the following axioms.

(a) R0 = R and p ∈ I .
(b) For any i ≥ 0, the ring map t̄i : Ri/IRi → Ri+1/IRi+1 induced by ti is injective.
(c) For any i ≥ 0, the image of the Frobenius endomorphism on Ri+1/IRi+1 is contained in the

image of t̄i : Ri/IRi → Ri+1/IRi+1.

(2) Let ({Ri }i≥0, {ti }i≥0) be a p-purely inseparable tower arising from (R, I ). For any i ≥ 0, we denote
by Fi : Ri+1/IRi+1→ Ri/IRi the ring map (which uniquely exists by axioms (b) and (c)) such that
the following diagram commutes:

Ri+1/IRi+1

Fi ))

FRi+1/IRi+1
// Ri+1/IRi+1

Ri/IRi .

t̄i

OO

(3-2)

We call Fi the i-th Frobenius projection (of ({Ri }i≥0, {ti }i≥0) associated to (R, I )).

Hereafter, we leave out “p-” from “p-purely inseparable towers” if no confusion occurs. Similarly, we
omit the parenthetic phrase “of . . . associated to (R, I )” subsequent to “the i-th Frobenius projection”
(but we should be careful in some situations; cf. Remark 3.38).

Throughout this paper, when a purely inseparable tower ({Ri }i≥0, {ti }i≥0) is given and its starting layer
(R, I ) is clear from the context, we denote Ri/IRi by Ri for every i ≥ 0.

Example 3.5. Any perfect tower is a purely inseparable tower. More precisely, ({R}i≥0, {FR}i≥0)

appearing in Definition 3.2 is a purely inseparable tower arising from (R, (0)). Indeed, axioms (a) and (c)

8For more details of the ring of p-th roots of elements of a reduced ring, we refer to [28].
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are obvious, and axiom (b) follows from reducedness of R. The i-th Frobenius projection is given by the
identity map on R.

To develop the theory of perfectoid towers, we often use a combination of diagram (3-2) in Definition 3.4
and diagram (3-3) in the following lemma.

Lemma 3.6. Let ({Ri }i≥0, {ti }i≥0) be a purely inseparable tower arising from some pair (R, I ). Then for
every i ≥ 0, the following assertions hold.

(1) Ker(Fi )= Ker(FRi+1
). In particular, Fi is injective if and only if Ri+1 is reduced.

(2) Any element of Ri+1 is a root of a polynomial of the form X p
− t i (a) with a ∈ Ri . In particular, the

ring map t i : Ri ↪→ Ri+1 is integral.

(3) The following diagram commutes:

Ri+1

Fi

&&
Ri

t i

OO

FRi

// Ri .

(3-3)

Proof. Since t i is injective, the commutative diagram (3-2) yields assertion (1). Moreover, (3-2) also
yields the equality x p

− t i (Fi (x))= 0 for every x ∈ Ri+1. Hence assertion (2) follows. To prove (3), let
us recall the equalities

t i ◦ FRi
= FRi+1

◦ t i = t i ◦ Fi ◦ t i ,

where the second one follows from the commutative diagram (3-2). Since t i is injective, we obtain the
equality FRi

= Fi ◦ t i , as desired. □

Lemma 3.6(3) is essential for defining inverse perfection of towers (cf. Definition 3.8(2)). Moreover,
it provides a useful tool for studying direct perfection on each layer. Recall that for an Fp-algebra
homomorphism f : R→ S, there exists a unique ring map f perf

: Rperf
→ Sperf such that the following

diagram commutes (the notations are explained just before Definition 3.2):

R
f

//

φR
��

S

φS
��

Rperf f perf
// Sperf.

Corollary 3.7. Keep the notation as in Lemma 3.6. Then (t i )
perf
: (Ri )

perf
→ (Ri+1)

perf is an isomorphism
of rings whose inverse map is (Fi )

perf
: (Ri+1)

perf
→ (Ri )

perf up to the Frobenius automorphisms.

Proof. By Lemma 3.6(3), F(Ri+1)perf is described as (FRi+1
)perf
= (t i )

perf
◦ Fperf

i , and it is an automorphism.
Similarly, it follows from the commutative diagram (3-2) that Fperf

i ◦(t i )
perf is the Frobenius automorphism

of (Ri )
perf. Hence the assertion follows. □
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Definition 3.8 (inverse perfection of towers). Let ({Ri }i≥0, {ti }i≥0) be a (p-)purely inseparable tower
arising from some pair (R, I ).

(1) For any j ≥ 0, we define the j-th inverse quasi-perfection of ({Ri }i≥0, {ti }i≥0) associated to (R, I )
as the limit

(R j )
q. frep
I := lim

←−−
{· · · → R j+i+1

F j+i
−−→ R j+i → · · ·

F j
−→ R j }.

(2) For any j ≥ 0, we define an injective ring map (t j )
q. frep
I : (R j )

q. frep
I ↪→ (R j+1)

q. frep
I by the rule

(t j )
q. frep
I ((ai )i≥0) := (t j+i (ai ))i≥0.

We call the resulting tower
(
{(Ri )

q. frep
I }i≥0, {(ti )

q. frep
I }i≥0

)
the inverse perfection of

(
{Ri }i≥0, {ti }i≥0

)
associated to (R, I ).

(3) For any j ≥ 0, we define a ring map (F j )
q. frep
I : (R j+1)

q. frep
I → (R j )

q. frep
I by the rule

(F j )
q. frep
I ((ai )i≥0) := (F j+i (ai ))i≥0. (3-4)

(4) For any j ≥ 0 and for any m ≥ 0, we denote by 8( j)
m the m-th projection map:

(R j )
q. frep
I → R j+m ; (ai )i≥0 7→ am .

If no confusion occurs, we also abbreviate (R j )
q. frep
I , (t j )

q. frep
I , (F j )

q. frep
I to Rq. frep

j , tq. frep
j , Fq. frep

j .

Example 3.9. Let R be an Fp-algebra. Set Ri := R and ti := idR for every i ≥ 0. Then the tower
({Ri }i≥0, {ti }i≥0) is a purely inseparable tower arising from (R, (0)). Moreover, for every j ≥ 0, the
attached j-th inverse quasi-perfection is a limit

Rq. frep
j = lim

←−−
{· · ·

FR
−→ R

FR
−→ R

FR
−→ R},

which is none other than the inverse perfection of R.

In the situation of Definition 3.8, we have the commutative diagram:

(R j+1)
q. frep
I

(F j )
q. frep
I ))

F
(R j+1)

q. frep
I

// (R j+1)
q. frep
I

(R j )
q. frep
I .

(t j )
q. frep
I

OO

(3-5)

Therefore the tower
(
{(Ri )

q. frep
I }i≥0, {(ti )

q. frep
I }i≥0

)
is also a purely inseparable tower associated to

((R0)
q. frep
I , (0)).

In the rest of this subsection, we fix a purely inseparable tower ({Ri }i≥0, {ti }i≥0) arising from
some pair (R, I ). Keep in mind that the inverse perfection ({(Ri )

q. frep
I }i≥0, {(ti )

q. frep
I }i≥0) is given

in Definition 3.8(2), and its Frobenius projections {(Fi )
q. frep
I }i≥0 are described in Definition 3.8(3). Some

basic properties of inverse quasi-perfection are contained in the following proposition.
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Proposition 3.10. The following assertions hold.

(1) For any j ≥ 0, the following assertions hold.

(a) Let J ⊆ (R j )
q. frep
I be a finitely generated ideal such that J k

⊆ Ker(8( j)
0 ) for some k > 0 (see

Definition 3.8(4) for 8( j)
0 ). Then (R j )

q. frep
I is J -adically complete and separated.

(b) Let x = (xi )i≥0 be an element of (R j )
q. frep
I . Then x is a unit if and only if x0 ∈ R j/IR j is a unit.

(c) The ring map (F j )
q. frep
I is an isomorphism.

(2) ({(Ri )
q. frep
I }i≥0, {(ti )

q. frep
I }i≥0) is a perfect tower. In particular, each (Ri )

q. frep
I is reduced.

Proof. (1) Since ({(R j+i )
q. frep
}i≥0, {(t j+i )

q. frep
I }i≥0) is the inverse perfection of ({R j+i }i≥0, {t j+i }i≥0),

we are reduced to showing the assertions in the case when j = 0.

(a): By definition, (R0)
q. frep
I is complete and separated with respect to the linear topology induced by the

descending filtration
Ker(8(0)0 )⊇ Ker(8(0)1 )⊇ Ker(8(0)2 )⊇ · · · .

Moreover, since J k
⊆ Ker(8(0)0 ), we have (J k)[p

i
]
⊆ Ker(8(0)i ) for every i ≥ 0 by the commutative

diagram (3-2).9 On the other hand, since J k is finitely generated, (J k)pi r
⊆ (J k)[p

i
] for some r > 0. Thus

the assertion follows from [15, Lemma 2.1.1].

(b): It is obvious that x0 ∈ R0 is a unit if x ∈ (R0)
q. frep
I is a unit. Conversely, assume that x0 ∈ R0 is

a unit. Then for every i ≥ 0, x pi

i is a unit because it is the image of x0 in Ri . Hence xi is also a unit.

Therefore, we have isomorphisms Ri/IRi
×xi
−−→ Ri/IRi (i ≥ 0) that are compatible with the Frobenius

projections. Thus we obtain the isomorphism between inverse limits (R0)
q. frep
I

×x
−→ (R0)

q. frep
I , which

yields the assertion.

(c): Consider the shifting map s0 : (R0)
q. frep
I → (R1)

q. frep
I defined by the rule s0((ai )i≥0) := (ai+1)i≥0.

Then one can easily check that s0 is the inverse map of (F0)
q. frep
I .

(2) Define Fq. frep
0,i : (Ri )

q. frep
I → (R0)

q. frep
I as the composite map (F0)

q. frep
I ◦ · · · ◦ (Fi−1)

q. frep
I (if i ≥ 1)

or the identity map (if i = 0). Then the collection {Fq. frep
0,i }i≥0 gives a morphism of towers from

({(Ri )
q. frep
I }i≥0, {(ti )

q. frep
I }i≥0) to

{
(R0)

q. frep
I

F
(R0)

q. frep
I

−−−−−→ (R0)
q. frep
I

F
(R0)

q. frep
I

−−−−−→ · · ·
}
. Using assertion (1-c)

and Lemma 3.6(1), we complete the proof. □

The operation of inverse quasi-perfection preserves the locality of rings and ring maps.

Lemma 3.11. Assume that Ri is a local ring for any i ≥ 0, and I ̸= R. Then for any j ≥ 0, the following
assertions hold.

(1) The ring maps t j , t j , and F j are local.

(2) (R j )
q. frep
I is a local ring.

(3) The ring map (t j )
q. frep
I : (R j )

q. frep
I → (R j+1)

q. frep
I is local.

9The symbol I [p
n
] for an ideal I in an Fp-algebra A is the ideal generated by the elements x pn

for x ∈ I .



2326 Shinnosuke Ishiro, Kei Nakazato and Kazuma Shimomoto

Proof. As in Proposition 3.10(1), it suffices to show the assertions in the case when j = 0.

(1) Since the diagrams (3-2) and (3-3) are commutative, F0 ◦ t0 and t0 ◦ F0 are local. Hence t0 and F0

are local. In particular, the composition R0↠ R0
t0
−→ R1 is local. Since this map factors through t0, t0 is

also local, as desired.

(2) Let m0 be the maximal ideal of R0. Consider the ideal

(m0)
q. frep
I = {(xi )i≥0 ∈ (R0)

q. frep
I | x0 ∈m0/IR0},

where m0/IR0 is the maximal ideal of R0. Then by Proposition 3.10(1-b), (m0)
q. frep
I is a unique maximal

ideal of (R0)
q. frep
I . The assertion follows.

(3) By assertion (2), ({(Ri )
q. frep
I }i≥0, {(ti )

q. frep
I }i≥0) is a purely inseparable tower of local rings. Hence

by (1), (t0)
q. frep
I is local. □

A purely inseparable tower also satisfies the following amusing property. This is well-known in positive
characteristic, in which case Ri → Ri+1 gives a universal homeomorphism (i.e. the induced morphism of
schemes Spec Ri+1→ Spec Ri is a universally homeomorphism). See also Proposition 3.45.

Lemma 3.12. For every i ≥ 0, assume that Ri is I -adically Henselian.10 Then the ring map ti induces an
equivalence of categories:

F.Ét(Ri )
∼=
−→ F.Ét(Ri+1),

where F.Ét(A) is the category of finite étale A-algebras for a ring A.

Proof. By Corollary 3.7, we obtain the commutative diagram of rings

Ri

πi
��

ti
// Ri+1

πi+1
��

Ri

φRi
��

t i
// Ri+1

φRi+1
��

(Ri )
perf (t i )

perf
// (Ri+1)

perf

(3-6)

where π j ( j ∈ {i, i + 1}) is the natural projection, and the bottom map is an isomorphism. Since the
Frobenius endomorphism on any Fp-algebra gives a universal homeomorphism [38, Tag 0CC6], so does
φR j

by [38, Tag 01YW] and [38, Tag 01YZ]. Hence φR j
induces an equivalence of categories of finite

étale algebras over respective rings in view of [38, Tag 0BQN]. The same assertion holds for π j by the
lifting property of a henselian pair [38, Tag 09ZL]. By going around the diagram (3-6), we finish the
proof. □

10This condition is realized if R0 is I -adically Henselian and each ti : Ri → Ri+1 is integral.
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3C. Axioms for perfectoid towers.

3C1. Remarks on torsion. In the subsequent Section 3C2, we introduce the class of perfectoid towers
as a generalization of perfect towers. For this purpose, we need to deal with a purely inseparable tower
arising from (R, I ) in the case when I = (0) at least, and hence plenty of I -torsion elements. Thus we
begin by giving several preliminary lemmas on torsion of modules over rings.

Definition 3.13. Let R be a ring, and let M be an R-module.

(1) Let x ∈ R be an element. We say that an element m ∈ M is x-torsion if xnm = 0 for some n > 0.
We denote by Mx-tor the R-submodule of M consisting of all x-torsion elements in M .

(2) Let I ⊆ R be an ideal. We say that an element m ∈ M is I -torsion if m is x-torsion for every x ∈ I .
We denote by MI -tor the R-submodule of M consisting of all I -torsion elements in M . Note that
M(x)-tor = Mx-tor = Mxn-tor for every n > 0.

(3) For an element x ∈ R (resp. an ideal I ⊆ R), we say that M has bounded x-torsion (resp. bounded
I -torsion) if there exists some l > 0 such that x l Mx-tor = (0) (I l MI -tor = (0)).

(4) For an ideal I ⊆ R, we denote by ϕI,M : MI -tor→ M/I M the composition of natural R-linear maps:

MI -tor ↪→ M ↠ M/I M. (3-7)

First we record the following fundamental lemma.

Lemma 3.14. Let R be a ring, and let M be an R-module. Let x ∈ R be an element. Then for every n > 0,
we have

Mx-tor ∩ xn M = xn Mx-tor.

Proof. Pick an element m ∈ Mx-tor ∩ xn M . Then m = xnm0 for some m0 ∈ M , and x lm = 0 for some
l > 0. Hence x l+nm0 = 0, which implies that m0 ∈ Mx-tor and thus m ∈ xn Mx-tor. The containment
xn Mx-tor ⊆ Mx-tor ∩ xn M is clear. □

Corollary 3.15. Keep the notation as in Lemma 3.14, and suppose further that x Mx-tor = (0). Then the
map ϕ(x),M : Mx-tor→ M/x M (see Definition 3.13(4)) is injective.

Proof. It is clear from Lemma 3.14. □

Lemma 3.14 is also applied to show a half part of the following useful result.

Lemma 3.16. Keep the notation as in Lemma 3.14, and suppose further that M has bounded x-torsion.
Let M̂ be the x-adic completion of M , and let ψ : M → M̂ be the natural map. Then the restriction
ψtor : Mx-tor→ (M̂)x-tor of ψ is an isomorphism of R-modules.

Proof. By assumption, there exists some l > 0 such that x l Mx-tor = (0). On the other hand, Ker(ψtor)=

Mx-tor ∩
⋂
∞

n=0 xn M is contained in Mx-tor ∩ x l M , which is equal to x l Mx-tor by Lemma 3.14. Hence ψtor

is injective.
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Let us prove the surjectivity. Let N̂ denote the x-adic completion of N for every R-module N . Then
we obtain the commutative diagram of R-modules:

0 // Mx-tor

ψMx-tor
��

ι
// M

ψ

��

π
// M/Mx-tor

��

// 0

0 // M̂x-tor
ι̂
// M̂ π̂

// M̂/Mx-tor // 0

(3-8)

where ι is the inclusion map and π is the natural projection. Since ψ ◦ ι factors through ψtor, it suffices to
show that (M̂)x-tor ⊆ Im(ι̂ ◦ψMx-tor). First, ψMx-tor is bijective because it is isomorphic to the canonical
isomorphism Mx-tor/(x l)

∼=
−→ M̂x-tor/(x l). To show that (M̂)x-tor ⊆ Im(ι̂), note that the top row of (3-8)

forms an exact sequence, and it consists of R-modules that have bounded x-torsion. Then by [38, Tag
0923] and right exactness of derived completion functors, Ker(π̂)= Im(ι̂) (in fact, the bottom sequence
is also exact because ψtor is injective). Since M̂/Mx-tor is x-torsion free by [14, Chapter II, Lemma 1.1.5],
(M̂)x-tor ⊆ Ker(π̂). The assertion follows. □

The following lemma is used for proving Main Theorem 1 (cf. Lemma 3.48).

Lemma 3.17. Let R be a ring, and let M be an R-module. Let x ∈ R be an element. Then for every n > 0,
we have

AnnM/xn M(x)⊆ Im(ϕ(xn),M)+ xn−1(M/xn M). (3-9)

Proof. Pick an element m ∈ M such that xm ∈ xn M . Then x(m − xn−1m′) = 0 for some m′ ∈ M . In
particular, m− xn−1m′ ∈ Mxn-tor. Hence m mod xn M lies in the right-hand side of (3-9), as desired. □

In the case when M = R, we can regard MI -tor as a (possibly) nonunital subring of R. This point
of view provides valuable insights. For example, “reducedness” for RI -tor induces a good property on
boundedness of torsions.

Lemma 3.18. Let (R, I ) be a pair such that RI -tor does not contain any non-zero nilpotent element of R.
Then IRI -tor = (0).

Proof. It suffices to show that x RI -tor = 0 for every x ∈ I . Pick an element a ∈ RI -tor. Then for a
sufficiently large n > 0, xna = 0. Hence (xa)n = xna · an−1

= 0. Thus we have xa = 0 by assumption,
as desired. □

Corollary 3.19. Let ({Ri }i≥0, {ti }i≥0) be a purely inseparable tower arising from some pair (R, I ). Then
for every i ≥ 0 and every ideal J ⊆ (Ri )

q. frep
I , we have J ((Ri )

q. frep
I )J -tor = (0).

Proof. Since (Ri )
q. frep
I is reduced by Proposition 3.10(2), the assertion follows from Lemma 3.18. □

Furthermore, we can treat RI -tor as a positive characteristic object (in the situation of our interest),
even if R is not an Fp-algebra.
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Lemma-Definition 3.20. If (R, I ) is a pair such that p ∈ I and IRI -tor = (0), the multiplicative map

RI -tor→ RI -tor; x 7→ x p (3-10)

is also additive. We denote by FRI -tor the map (3-10).

Proof. This immediately follows from the binomial theorem. □

3C2. Perfectoid towers and pillars.

Definition 3.21 (perfectoid towers). Let R be a ring, and let I0⊆ R be an ideal. A tower ({Ri }i≥0, {ti }i≥0)

is called a (p)-perfectoid tower arising from (R, I0) if it is a p-purely inseparable tower arising from
(R, I0) (cf. Definition 3.4(1)) and satisfies the following additional axioms.

(d) For every i ≥ 0, the i-th Frobenius projection Fi : Ri+1/I0 Ri+1→ Ri/I0 Ri (cf. Definition 3.4(2)) is
surjective.

(e) For every i ≥ 0, Ri is an I0-adically Zariskian ring (in other words, I0 Ri is contained in the Jacobson
radical of Ri ).

(f) I0 is a principal ideal, and R1 contains a principal ideal I1 that satisfies the following axioms.

(f-1) I p
1 = I0 R1.

(f-2) For every i ≥ 0, Ker(Fi )= I1(Ri+1/I0 Ri+1).

(g) For every i ≥ 0, I0(Ri )I0-tor = (0). Moreover, there exists a (unique) bijective map (Fi )tor :

(Ri+1)I0-tor→ (Ri )I0-tor such that the diagram

(Ri+1)I0-tor

(Fi )tor

��

ϕI0,Ri+1
// Ri+1/I0 Ri+1

Fi

��

(Ri )I0-tor ϕI0,Ri

// Ri/I0 Ri

(3-11)

commutes (see Definition 3.13 for the notation; see also Corollary 3.15).

Remark 3.22. If I0 is generated by an element whose image in Ri is a non-zerodivisor for every i ≥ 0,
then axiom (g) is satisfied automatically. If R1 is reduced and I0 = (0), then axiom (g) follows from
axioms (d) and (f). Consequently, if every ti is injective and lim

−−→i≥0 Ri is a domain, one can ignore axiom
(g) when checking that ({Ri }i≥0, {ti }i≥0) is a perfectoid tower.

We have some examples of perfectoid towers.

Example 3.23. (1) (cf. [37, Definition 4.4]) Let (R,m, k) be a d-dimensional complete unramified
regular local ring of mixed characteristic p > 0 whose residue field is perfect. Then we have

R ∼=W (k)[[x2, . . . , xd ]].
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For every i ≥ 0, set Ri := R[p1/pi
, x1/pi

2 , . . . , x1/pi

d ], and let ti : Ri → Ri+1 be the inclusion map.
Then the tower ({Ri }i≥0, {ti }i≥0) is a perfectoid tower arising from (R, (p)). Indeed, the Frobenius
projection Fi : Ri+1/pRi+1→ Ri/pRi is given as the p-th power map.11

(2) For some generalization of (1), one can build a perfectoid tower arising from a complete local
log-regular ring. For details, see Section 3F.

(3) We note that ti (resp. Fi ) of a perfectoid tower is not necessarily the inclusion map (resp. the p-th
power map). For instance, let R be a reduced Fp-algebra. Set Ri := R, ti := FR , and Fi := idR for
every i ≥ 0. Then ({Ri }i≥0, {ti }i≥0) is a perfectoid tower arising from (R, (0)).

The class of perfectoid towers is a generalization of perfect towers.

Lemma 3.24. Let ({Ri }i≥0, {ti }i≥0) be a tower of Fp-algebras. The following conditions are equivalent.

(1) ({Ri }i≥0, {ti }i≥0) is a perfect Fp-tower (cf. Definition 3.2).

(2) ({Ri }i≥0, {ti }i≥0) is a p-perfectoid tower arising from (R0, (0)).

Proof. (1)⇒ (2) We may assume that ({Ri }i≥0, {ti }i≥0) is of the form R
FR
−→ R

FR
−→ R

FR
−→ · · · (see

Definition 3.2). By Example 3.5, this is a purely inseparable tower arising from (R, (0)). Axiom (e) in
Definition 3.21 is obvious. Axioms (d), (f), and (g) are also satisfied, since the Frobenius projection Fi

(cf. Example 3.5) is an isomorphism for any i ≥ 0. This yields the assertion.

(2)⇒ (1) Conversely, assume that ({Ri }i≥0, {ti }i≥0) is a perfectoid tower arising from (R0, (0)). Since Fi

is identified with (Fi )tor in axiom (g), the injectivity of (Fi )tor implies that Fi is injective. In other words,
Ri is reduced by Lemma 3.6(1). Furthermore, Fi is an isomorphism by axiom (d) or the surjectivity of
(Fi )tor. Hence we obtained the desired isomorphism of towers:

R0

idR0
��

t0
// R1

F0
��

t1
// R2

F0◦F1
��

t2
// R3

F0◦F1◦F2
��

t3
// · · ·

R0 FR0

// R0 FR0

// R0 FR0

// R0 FR0

// · · · .

(3-12)

The assertion follows. □

For a perfectoid tower ({Ri }i≥0, {ti }i≥0) arising from (R, I0), an ideal I1 ⊆ R1 appearing in axiom (f)
in Definition 3.21 is unique. Indeed, it contains I0 R1, and its image via the projection R1→ R1 is a fixed
ideal Ker(F0).

Definition 3.25. We call I1 the first perfectoid pillar of ({Ri }i≥0, {ti }i≥0) arising from (R, I0).

The relationship between I0 and I1 can be observed also in higher layers (see Proposition 3.26 below).
In the rest of this section, we fix a perfectoid tower ({Ri }i≥0, {ti }i≥0) arising from some pair (R, I0), and
let I1 denote the first perfectoid pillar.

11Axiom (f-2) follows from the normality of Ri . The other axioms are clearly satisfied.
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Proposition 3.26. (1) For a sequence of principal ideals {Ii ⊆ Ri }i≥2, the following conditions are
equivalent.

(a) F−1
i (Ii Ri )= Ii+1 Ri+1 for every i ≥ 0.

(b) Fi (Ii+1 Ri+1)= Ii Ri for every i ≥ 0.

(2) Each one of the equivalent conditions in (1) implies that I p
i+1 = Ii Ri+1 for every i ≥ 0.

(3) There exists a unique sequence of principal ideals {Ii ⊆ Ri }i≥0 that satisfies one of the equivalent
conditions in (1). Moreover, there exists a sequence of elements { f i ∈ Ri }i≥0 such that Ii Ri = ( f i )

and Fi ( f i+1)= f i for every i ≥ 0.

Proof. (1) Since the implication (a)⇒ (b) follows from axiom (d) in Definition 3.21, it suffices to show
the converse. Assume that condition (b) is satisfied. Then for every i ≥ 0, the compatibility t i ◦ Fi = FRi+1

implies
I p
i+1 Ri+1 = Ii Ri+1 (3-13)

because Ii+1 is principal. In particular, Ker(Fi ) = I1 Ri+1 ⊆ Ii+1 Ri+1 (cf. axiom (f-2)). On the other
hand, by the surjectivity of Fi and the assumption again, we have Fi (F−1

i (Ii Ri ))= Ii Ri = Fi (Ii+1 Ri+1).
Hence

F−1
i (Ii Ri )⊆ Ii+1 Ri+1+Ker(Fi )⊆ Ii+1 Ri+1 ⊆ F−1

i (Ii Ri ),

which yields the assertion.

(2) Let us deduce the assertion from (3-13) by induction. By definition, I p
1 = I0 R1. We then fix some

i ≥ 1. Suppose that for every 1≤ k ≤ i , I p
k = Ik−1 Rk . Then I0 Ri = I pi

i . In particular, Ri is Ii -adically
Zariskian by axiom (e). Moreover, by (3-13), we have the equalities of Ri -modules:

Ii Ri+1 = I p
i+1+ I0 Ri+1 = I p

i+1+ I pi
−1

i (Ii Ri+1).

Hence by Nakayama’s lemma, we obtain I p
i+1 = Ii Ri+1 as desired.

(3) By the axiom of (dependent) choice, the existence follows from axiom (d) in Definition 3.21. Let us
show the uniqueness of {Ii ⊆ Ri }i≥0 that satisfies condition (a) in (1). For every i ≥ 0, Ii Ri+1 ⊆ Ii+1 by
(2), and hence Ii+1 is the inverse image of F−1

i (Ii Ri ) via the projection Ri+1→ Ri+1. Since I0 is fixed,
the assertion follows. □

Definition 3.27. In the situation described in Proposition 3.26(3), we call Ii the i -th perfectoid pillar of
({Ri }i≥0, {ti }i≥0) arising from (R0, I0).

The following property of perfectoid pillars is applied to prove our main result.

Lemma 3.28. Let {Ii }i≥0 denote the system of perfectoid pillars of ({Ri }i≥0, {ti }i≥0), and let πi :

Ri/I0 Ri → Ri/Ii Ri (i ≥ 0) be the natural projections. Then for every i ≥ 0, there exists a unique
isomorphism of rings

F ′i : Ri+1/Ii+1 Ri+1
∼=
−→ Ri/Ii Ri



2332 Shinnosuke Ishiro, Kei Nakazato and Kazuma Shimomoto

such that πi ◦ Fi = F ′i ◦πi+1.

Proof. Since Fi and πi are surjective, the assertion follows from Ker(πi ◦ Fi ) = F−1
i (Ii (Ri/I0 Ri )) =

Ii+1(Ri+1/I0 Ri+1). □

3D. Tilts of perfectoid towers.

3D1. Invariance of some properties. Here we establish tilting operation for perfectoid towers. For this,
we first introduce the notion of small tilt, which originates in [37].

Definition 3.29 (small tilts). Let ({Ri }i≥0, {ti }i≥0) be a perfectoid tower arising from some pair (R, I0).

(1) For any j ≥ 0, we define the j-th small tilt of ({Ri }i≥0, {ti }i≥0) associated to (R, I0) as the j-th
inverse quasi-perfection of ({Ri }i≥0, {ti }i≥0) associated to (R, I0) and denote it by (R j )

s.♭
I0

.

(2) Let the notation be as in Lemma 3.28. Then we define I s.♭
i := Ker(πi ◦8

(i)
0 ) for every i ≥ 0.

Note that the ideal I s.♭
i ⊆ Rs.♭

i has the following property.

Lemma 3.30. Keep the notation as in Definition 3.29. Then for every i ≥ 0 and j ≥ 0, we have
8
( j)
i (I s.♭

j )= I j+i R j+i .

Proof. Since 8( j)
0 is surjective, we have 8( j)

0 (I s.♭
j ) = I j R j . On the other hand, since 8( j)

0 = F j ◦8
( j)
1 ,

we have
F−1

j (8
( j)
0 (I s.♭

j ))=8
( j)
1 (I s.♭

j )+Ker(F j )=8
( j)
1 (I s.♭

j ).

Hence by condition (a) in Proposition 3.26(1), 8( j)
1 (I s.♭

j ) = I j+1 R j+1. By repeating this procedure
recursively, we obtain the assertion. □

The next lemma provides some completeness of the small tilts attached to a perfectoid tower of
characteristic p > 0 (see also Remark 3.33).

Lemma 3.31. Let ({Ri }i≥0, {ti }i≥0) be a perfectoid tower arising from (R, (0)). Then, for any element

f ∈ R and any j ≥ 0, the inverse limit lim
←−−
{· · ·

F
−→ j+1 R j+1/ f R j+1

F j
−→ R j/ f R j } is isomorphic to the

f -adic completion of R j .

Proof. It suffices to show the assertion when j = 0. Let ({R′i }i≥0, {t ′i }i≥0) denote the standard perfect

tower (3-1) arising from R. By Lemma 3.24, (3-12) gives a canonical isomorphism ({Ri }i≥0, {ti }i≥0)
∼=
−→

({R′i }i≥0, {t ′i }i≥0). If we put J0 = f R′0, then R′i/J0 R′i = R/ f pi
R for every i ≥ 0. Hence we have the

desired canonical isomorphisms:

lim
←−−
{· · ·

F1
−→ R1/ f R1

F0
−→ R0/ f R0}

∼=
−→ lim
←−−
n≥0

R/ f pn
R
∼=
−→ lim
←−−
n≥0

R/ f n R. □

Example 3.32. Let S be a perfect Fp-algebra. Pick an arbitrary f ∈ S, and let Ŝ denote the f -adic
completion. We obtain a canonical isomorphism lim

←−−Frob S/ f S
∼=
−→ Ŝ by applying the above proof to the

tower
S

idS
−→ S

idS
−→ S

idS
−→ · · · .
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Remark 3.33. In the situation of Lemma 3.31, assume further that t i : Ri/ f Ri → Ri+1/ f Ri+1 is
injective for every i ≥ 0. Then ({Ri }i≥0, {ti }i≥0) is a purely inseparable tower arising from (R, ( f ))
with Frobenius projections {F i : Ri+1/ f Ri+1→ Ri/ f Ri }i≥0. Furthermore, it satisfies axioms (d), (f),
and (g) in Definition 3.21. To check this, we may assume that ({Ri }i≥0, {ti }i≥0) is the standard perfect
tower (3-1). Then F i is the natural projection R/ f pi+1

R ↠ R/ f pi
R. It is clearly surjective, and its

kernel is f pi
(R/ f pi+1

R). Let Ii be the ideal of Ri generated by f ∈ Ri (= R). Then I0 Ri = f pi
R and

I1 Ri+1 = f pi
R. Hence I p

1 = I0 R1 and Ker(F i ) = I1 Ri+1. Finally, note that (Ri )I0-tor = R f -tor. Then
I0(Ri )I0-tor = f pi

R f -tor = (0) by Lemma 3.18, and we can take idR f -tor as the bijection (F i )tor fitting into
the diagram (3-11).

Definition 3.34 (tilts of perfectoid towers). Let ({Ri }i≥0, {ti }i≥0) be a perfectoid tower arising from some
pair (R, I ). Then we define the tilt of ({Ri }i≥0, {ti }i≥0) associated to (R, I ) as the inverse perfection of
({Ri }i≥0, {ti }i≥0) associated to (R, I ), and denote it by ({(Ri )

s.♭
I }i≥0, {(ti )

s.♭
I }i≥0). If no confusion occurs,

we can abbreviate (Ri )
s.♭
I and (ti )

s.♭
I ) to Rs.♭

i and t s.♭
i .

After discussing several basic properties of this tilting operation, we illustrate how to compute the tilts
of perfectoid towers in some specific cases; when they consist of log-regular rings (see Theorem 3.61
and Example 3.62).

We should remark that all results on the perfection of purely inseparable towers (established in
Section 3B) can be applied to the tilts of perfectoid towers.

Let us state Main Theorem 1 in a more refined form. This is an important tool when one wants to
see that a certain correspondence holds between Noetherian rings of mixed characteristic and those of
positive characteristic.

Theorem 3.35. Let ({Ri }i≥0, {ti }i≥0) be a perfectoid tower arising from some pair (R, I0), and let {Ii }i≥0

be the system of perfectoid pillars. Let ({Rs.♭
i }i≥0, {t

s.♭
i }i≥0) denote the tilt associated to (R, I0).

(1) For every j ≥ 0 and every element f s.♭
j ∈ Rs.♭

j , the following conditions are equivalent.

(a) f s.♭
j is a generator of I s.♭

j .

(b) For every i ≥ 0, 8( j)
i ( f s.♭

j ) is a generator of I j+i R j+i .

In particular, I s.♭
j is a principal ideal, and (I s.♭

j+1)
p
= I s.♭

j Rs.♭
j+1.

(2) We have isomorphisms of (possibly) nonunital rings (Rs.♭
j )I s.♭

0 -tor
∼= (R j )I0-tor that are compatible with

{t j } j≥0 and {t s.♭
j } j≥0.

We give its proof in the subsequent Section 3D2. Before that, let us observe that this theorem induces
many good properties of tilting. In the rest of this subsection, we keep the notation as in Theorem 3.35.

Lemma 3.36. For every i ≥ 0, Rs.♭
i is I s.♭

0 -adically complete and separated.

Proof. By Theorem 3.35, the ideal I s.♭
0 Rs.♭

i ⊆ Rs.♭
i is principal. Hence one can apply Proposition 3.10(1-a)

to deduce the assertion. □

To discuss perfectoidness for the tilt ({Rs.♭
i }i≥0, {t

s.♭
i }i≥0), we introduce the following maps.
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Definition 3.37. For every i≥0, we define a ring map (Fi )
s.♭
I0
: (Ri+1)

s.♭
I0
/I s.♭

0 (Ri+1)
s.♭
I0
→ (Ri )

s.♭
I0
/I s.♭

0 (Ri )
s.♭
I0

by the rule

(Fi )
s.♭
I0
(αi+1 mod I s.♭

0 (Ri+1)
s.♭
I0
)= (Fi )

q. frep
I0

(αi+1)mod I s.♭
0 (Ri )

s.♭
I0
,

where αi+1 ∈ (Ri+1)
s.♭
I0

. If no confusion occurs, we can abbreviate (Fi )
s.♭
I0

to F s.♭
i .

Remark 3.38. Although the symbols ( · )s.♭ and ( · )q. frep had been used interchangeably before
Definition 3.37, (Fi )

s.♭
I0

differs from (Fi )
q. frep
I0

in general.

The following lemma is an immediate consequence of Theorem 3.35(1), but quite useful.

Lemma 3.39. For every j ≥ 0, 8( j)
0 induces an isomorphism

8
( j)
0 : R

s.♭
j /I s.♭

0 Rs.♭
j

∼=
−→ R j/I0 R j ; a mod I s.♭

0 Rs.♭
j 7→8

( j)
0 (a). (3-14)

Moreover, {8(i)0 }i≥0 is compatible with {ti }i≥0 (resp. {FRs.♭
i /I s.♭

0 Rs.♭
i
}i≥0, resp. {F s.♭

i }i≥0) and {t s.♭
i }i≥0 (resp.

{FRi/I0 Ri }i≥0, resp. {Fi }i≥0).

Proof. By axiom (d) in Definition 3.21, (3-14) is surjective. We check the injectivity. By Theorem 3.35(1),
I s.♭
0 is generated by an element f s.♭

0 ∈ Rs.♭
0 such that 8(0)i ( f s.♭

0 ) is a generator of Ii Ri (i ≥ 0). Note that
({R j+i }i≥0, {t j+i }i≥0) is a perfectoid tower arising from (R j , I0 R j ). Moreover, {Ii R j+i }i≥0 is the system
of perfectoid pillars associated to (R j , I0 R j ) (cf. condition (b) in Proposition 3.26(1)). Put J0 := I0 R j .
Then by Theorem 3.35(1) again, we find that J s.♭

0 = f s.♭
0 Rs.♭

j = I s.♭
0 Rs.♭

j . Since J s.♭
0 =Ker8( j)

0 , we obtain
the first assertion.

One can deduce that {8(i)0 }i≥0 is compatible with the Frobenius projections from the commutativity of
(3-2), because the other compatibility assertions immediately follow from the construction. □

Remark 3.40. Theorem 3.35(2) and Lemma 3.39 can be interpreted as a correspondence of homological
invariants between Ri and Rs.♭

i by using Koszul homologies. Indeed, for any generator f0 (resp. f s.♭
0 )

of I0 (resp. I s.♭
0 ), the Koszul homology Hq( f s.♭

0 ; Rs.♭
i ) is isomorphic to Hq( f0; Ri ) for any q ≥ 0 as an

abelian group.12

Now we can show the invariance of several properties of perfectoid towers under tilting. The first one
is perfectoidness, which is most important in our framework.

Proposition 3.41. ({Rs.♭
i }i≥0, {t

s.♭
i }i≥0) is a perfectoid tower arising from (Rs.♭

0 , I s.♭
0 ).

Proof. By Lemma 3.39 and Remark 3.33, ({Rs.♭
i }i≥0, {t

s.♭
i }i≥0) is a purely inseparable tower arising from

(Rs.♭
0 , I s.♭

0 ) that also satisfies axioms (d), (f), and (g). Moreover, axiom (e) holds by Lemma 3.36. Hence
the assertion follows. □

Next we focus on finiteness properties. “Small” in the name of small tilts comes from the following
fact.

12Note that (Ri )I0-tor = AnnRi (I0) by axiom (g), and (Rs.♭
i )

I s.♭
0 -tor

= Ann
Rs.♭

i
(I s.♭

0 ) by Corollary 3.19.
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Proposition 3.42. For every j ≥ 0, the following assertions hold.

(1) If t j : R j → R j+1 is module-finite, then so is t s.♭
j : R

s.♭
j → Rs.♭

j+1. Moreover, the converse holds true
when R j is I0-adically complete and separated.

(2) If R j is a Noetherian ring, then so is Rs.♭
j . Moreover, the converse holds true when R j is I0-adically

complete and separated.

(3) Assume that R j is a Noetherian local ring, and a generator of I0 R j is regular. Then the dimension of
R j is equal to that of Rs.♭

j .

Proof. (1) By Lemma 3.39, t j : R j/I0 R j→ R j+1/I0 R j+1 is module-finite if and only if t s.♭
j : R

s.♭
j /I s.♭

0 Rs.♭
j →

Rs.♭
j+1/I s.♭

0 Rs.♭
j+1 is so. Thus by Lemma 3.36 and [29, Theorem 8.4], the assertion follows.

(2) One can prove this assertion by applying Lemma 3.36, Lemma 3.39, and [38, Tag 05GH].

(3) By Theorem 3.35, I s.♭
0 Rs.♭

j is also generated by a regular element. Thus we obtain the equalities

dim R j = dim R j/I0 R j + 1 and dim Rs.♭
j = dim Rs.♭

j /I s.♭
0 Rs.♭

j + 1. By combining these equalities with
Lemma 3.39, we deduce assertion. □

Proposition 3.42(2) says that Noetherianness for a perfectoid tower is preserved under tilting.

Definition 3.43. We say that ({Ri }i≥0, {ti }i≥0) is Noetherian if Ri is Noetherian for each i ≥ 0.

Corollary 3.44. If ({Ri }i≥0, {ti }i≥0) is Noetherian, then so is the tilt ({Rs.♭
i }i≥0, {t

s.♭
i }i≥0). Moreover, the

converse holds true when Ri is I0-adically complete and separated for each i ≥ 0.

Proof. This immediately follows from Proposition 3.42(2). □

Finally, let us consider perfectoid towers of henselian rings. Then we obtain the equivalence of
categories of finite étale algebras over each layer.

Proposition 3.45. Assume that Ri is I0-adically Henselian for any i ≥ 0. Then we obtain the following
equivalences of categories:

F.Ét(Rs.♭
i )

∼=
−→ F.Ét(Ri ).

Proof. This follows from Lemma 3.36, Lemma 3.39 and [38, Tag 09ZL]. □

3D2. Proof of Main Theorem 1. We keep the notation as above. Furthermore, we set I i := Ii Ri for every
i ≥ 0. To prove Theorem 3.35, we investigate some relationship between (Ri )I0-tor and AnnRi

(I i ). First
recall that we can regard (Ri )I0-tor as a nonunital subring of Ri by Corollary 3.15. Moreover, the map t i

naturally restricts to (Ri )I0-tor ↪→ (Ri+1)I0-tor, as follows.

Lemma 3.46. For every i ≥ 0, let (ti )tor : (Ri )I0-tor→ (Ri+1)I0-tor be the restriction of ti .

(1) (ti )tor is the unique map such that ϕI0,Ri+1 ◦ (ti )tor = t i ◦ϕI0,Ri .

(2) (ti )tor ◦ (Fi )tor = (Fi+1)tor ◦ (ti+1)tor = F(Ri+1)I0-tor .
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Proof. Since ϕI0,Ri is injective by Corollary 3.15, assertion (1) is clear from the construction. Hence
we can regard (ti )tor and (Fi )tor as the restrictions of t i and Fi . Thus assertion (2) follows from the
compatibility t i ◦ Fi = Fi+1 ◦ t i+1 = FRi+1

induced by Lemma 3.6(3). □

The map ϕI0,Ri : (Ri )I0-tor ↪→ Ri/I0 Ri restricts to AnnRi (Ii ) ↪→ AnnRi
(I i ). On the other hand,

AnnRi (Ii ) turns out to be equal to (Ri )I0-tor by the following lemma.

Lemma 3.47. For every i ≥ 0, Ii (Ri )I0-tor = 0. In particular, Im(ϕI0,Ri )⊆ AnnRi
(I i ).

Proof. By Lemma 3.46(2) and axiom (g) in Definition 3.21, we find that F(Ri )I0-tor is injective. In other
words, (Ri )I0-tor does not contain any non-zero nilpotent element. Moreover, (Ri )I0-tor = (Ri )Ii -tor. Hence
the assertion follows from Lemma 3.18. □

The following lemma is essential for proving Theorem 3.35.

Lemma 3.48. For every i ≥ 0, Fi restricts to a Z-linear map AnnRi+1
(I i+1)→AnnRi

(I i ). Moreover, the
resulting inverse system {AnnRi

(I i )}i≥0 has the following properties.

(1) For every j ≥ 0, lim
←−−

1
i≥0 AnnR j+i

(I j+i )= (0).

(2) There are isomorphisms of Z-linear maps lim
←−−i≥0 AnnR j+i

(I j+i )∼= (R j )I0-tor ( j ≥ 0) that are multi-

plicative, and compatible with {t s,♭
j } j≥0 and {t j } j≥0.

Proof. Since Fi (I i+1) = I i , Fi restricts to a Z-linear map (Fi )ann : AnnRi+1
(I i+1)→ AnnRi

(I i ). Let
ϕi : (Ri )I0-tor ↪→ AnnRi

(I i ) be the restriction of ϕI0,Ri . By Lemma 3.17 and Lemma 3.47, we can write
AnnRi

(I i )= Im(ϕi )+ I pi
−1

i . Moreover, Im(ϕi )∩ I pi
−1

i = (0) by Lemma 3.14 and Lemma 3.47. Hence
we have the following ladder with exact rows:

0 // (Ri+1)I0-tor
ϕi+1
//

(Fi )tor

��

AnnRi+1
(I i+1) //

��

I pi+1
−1

i+1
//

��

0

0 // (Ri )I0-tor
ϕi

// AnnRi
(I i ) // I pi

−1
i

// 0

(3-15)

where the second and third vertical maps are the restrictions of Fi . Since Fi (I
pi+1
−1

i+1 )= 0, both functors

lim
←−−i≥0 and lim

←−−

1
i≥0 assign (0) to the inverse system {I p j+i

−1
j+i }i≥0. Moreover, since (Fi )tor is bijective,

lim
←−−i≥0(R j+i )I0-tor∼= (R j )I0-tor and lim

←−−

1
i≥0(R j+i )I0-tor= (0). Hence we find that lim

←−−

1
i≥0 AnnR j+i

(I j+i )= (0),
which is assertion (1). Furthermore, we obtain the isomorphisms of Z-modules:

(R j )I0-tor
(8

( j)
0 )tor

←−−−− lim
←−−
i≥0
(R j+i )I0-tor

lim
←−i≥0 ϕ j+i
−−−−−−→ lim

←−−
i≥0

AnnR j+i
(I j+i ) (3-16)

(where (8( j)
0 )tor denotes the 0-th projection map), which are also multiplicative. Let us deduce (2) from it.

Since t s.♭
j = lim

←−−i≥0 t j+i by definition, the maps lim
←−−i≥0 ϕ j+i ( j≥0) are compatible with {lim

←−−i≥0(t j+i )tor} j≥0

(induced by Lemma 3.46(2)) and {t s.♭
j } j≥0 by Lemma 3.46(1). On the other hand, the projections (8( j)

0 )tor

( j ≥ 0) are compatible with {lim
←−−i≥0(t j+i )tor} j≥0 and {(t j )tor} j≥0. The assertion follows. □
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Let us complete the proof of Theorem 3.35.

Proof of Theorem 3.35. (1) The implication (a) ⇒ (b) follows from Lemma 3.30. Let us show the
converse (b)⇒(a). For every i ≥ 0, put f j+i :=8

( j)
i ( f s.♭

j ), and let πi and F ′i be as in Lemma 3.28. Then,
by the assumption, we have the following commutative ladder with exact rows:

0 // ( f i+1)
ιi+1

//

��

Ri+1
πi+1
//

Fi
��

Ri+1/Ii+1 //

F ′i
��

0

0 // ( f i )
ιi

// Ri
πi

// Ri/Ii // 0

where ιi is the inclusion map. Let us consider the exact sequence obtained by taking inverse limits for
all columns of the above ladder. Then, since each F ′i is an isomorphism, the map lim

←−−i≥0 π j+i : R
s.♭
j →

lim
←−−i≥0 R j+i/I j+i is isomorphic to π j ◦8

( j)
0 . Thus we find that I s.♭

j = Im(lim
←−−i≥0 ι j+i ). Let us show that

the ideal Im(lim
←−−i≥0 ι j+i )⊆ Rs.♭

j is generated by f s.♭
j . For i ≥ 0, let µi : Ri → ( f i ) be the Ri -linear map

induced by multiplication by f i . Then we obtain the commutative ladder

Ri+1

Fi
��

µi+1
// ( f i+1)

ιi+1
//

��

Ri+1

Fi
��

Ri
µi
// ( f i )

ιi
// Ri .

Then, since Kerµi = AnnRi
(I i ) for every i ≥ 0, lim

←−−i≥0 µ j+i is surjective by Lemma 3.48(1). Hence we
have Im(lim

←−−i≥0 ι j+i )= Im(lim
←−−i≥0(ι j+i ◦µ j+i )), where the right hand side is the ideal of Rs.♭

j generated
by f s.♭

j . Thus we obtain the desired implication. Finally, note that by Proposition 3.26(3), we can take a
system of elements { f s.♭

j ∈ Rs.♭
j } j≥0 satisfying condition (b) and such that ( f s.♭

j+1)
p
= f s.♭

j ( j ≥ 0).

(2) We have I s.♭
j (R

s.♭
j )I s.♭

j -tor = (0) by Corollary 3.19. Hence, by assertion (1),

(Rs.♭
j )I s.♭

0 -tor = (R
s.♭
j )I s.♭

j -tor = AnnRs.♭
j
(I s.♭

j )= Ker(lim
←−−
i≥0

µ j+i )= lim
←−−
i≥0

AnnR j+i
(I j+i ).

Thus by Lemma 3.48(2), we obtain an isomorphism (Rs.♭
j )I s.♭

0 -tor
∼= (R j )I0-tor with the desired property. □

3E. Relation with perfectoid rings. In the rest of this paper, for a ring R, we use the following notation.
Set the inverse limit

R♭ := lim
←−−
{· · · → R/pR→ R/pR→ · · · → R/pR},

where each transition map is the Frobenius endomorphism on R/pR. It is called the tilt (or tilting) of R.
Moreover, we denote by W (R) the ring of p-typical Witt vectors over R. If R is p-adically complete and
separated, we denote by θR :W (R♭)→ R the ring map such that the diagram

W (R♭)
θR

//

��

R

��

R♭ // R/pR

(3-17)
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(where the vertical maps are induced by reduction modulo p and the bottom map is the first projection)
commutes.

Recall the definition of perfectoid rings.

Definition 3.49 [5, Definition 3.5]. A ring S is perfectoid if the following conditions hold.

(1) S is ϖ -adically complete and separated for some element ϖ ∈ S such that ϖ p divides p.

(2) The Frobenius endomorphism on S/pS is surjective.

(3) The kernel of θS :W (S♭)→ S is principal.

We have a connection between perfectoid towers and perfectoid rings. To see this, we use the following
characterization of perfectoid rings.

Theorem 3.50 (cf. [17, Corollary 16.3.75]). Let S be a ring. Then S is a perfectoid ring if and only if S
contains an element ϖ with the following properties.

(1) ϖ p divides p, and S is ϖ -adically complete and separated.

(2) The ring map S/ϖ S→ S/ϖ p S induced by the Frobenius endomorphism on S/ϖ p S is an isomor-
phism.

(3) The multiplicative map

Sϖ -tor→ Sϖ -tor ; s 7→ s p (3-18)

is bijective.

Proof. The “if” part follows from [17, Corollary 16.3.75].
For the converse, let ϖ ∈ S be as in Definition 3.49. Such a ϖ clearly has property (1) in the

present theorem, and also has property (2) by [5, Lemma 3.10(i)]. To show the remaining part, we set
S̃ := S/Sϖ -tor. By [8, §2.1.3], the diagram of rings:

S
π2

//

π1
��

(S/ϖ S)red

π4
��

S̃
π3

// (S̃/ϖ S̃)red

(where πi is the canonical projection map for i = 1, 2, 3, 4) is cartesian. Hence Sϖ -tor (= Ker(π1))
is isomorphic to Ker(π4) as a (possibly) nonunital ring. Since (S/ϖ S)red is a perfect Fp-algebra, it
admits the Frobenius endomorphism and the inverse Frobenius. Moreover, Ker(π4) is closed under these
operations because (S̃/ϖ S̃)red is reduced. Consequently, there is a bijection (3-18). Henceϖ has property
(3), as desired. □

Remark 3.51. In view of the above proof, the “only if” part of Theorem 3.50 can be refined as follows.
For a perfectoid ring S, an element ϖ ∈ S such that p ∈ϖ p S and S is ϖ -adically complete and separated
satisfies the properties (2) and (3) in Theorem 3.50.
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Corollary 3.52. Let ({Ri }i≥0, {ti }i≥0) be a perfectoid tower arising from some pair (R0, I0). Let R̂∞
denote the I1-adic completion of R∞. Then R̂∞ is a perfectoid ring.

Proof. Since we have lim
−−→i≥0 FRi/I0 Ri = (lim−−→i≥0 t i ) ◦ (lim−−→i≥0 Fi ) and lim

−−→i≥0 t i is a canonical isomorphism,
the Frobenius endomorphism on R̂∞/I0 R̂∞ can be identified with lim

−−→i≥0 Fi . Hence one can immediately
deduce from the axioms in Definition 3.21 that any generator of I1 R̂∞ has the all properties assumed on
ϖ in Theorem 3.50. □

In view of Theorem 3.50, one can regard perfectoid rings as a special class of perfectoid towers.

Example 3.53. Let S be a perfectoid ring. Letϖ ∈ S be such that p ∈ϖ p S and S isϖ -adically complete
and separated. Set Si = S and ti = idS for every i ≥ 0, and I0 =ϖ

p S. Then by Remark 3.51, the tower
({Si }i≥0, {ti }i≥0) is a perfectoid tower arising from (S, I0). In particular, I0SI0-tor = (0), and FSI0-tor is
bijective.

Moreover, we can treat more general rings in a tower-theoretic way.

Example 3.54 (Zariskian preperfectoid rings). Let R be a ring that contains an element ϖ such that
p ∈ϖ p R, R is ϖ -adically Zariskian, and R has bounded ϖ -torsion. Assume that the ϖ -adic completion
R̂ is a perfectoid ring. Set Ri = R and ti = idR for every i ≥ 0, and I0 = ϖ

p R. Then the tower
({Ri }i≥0, {ti }i≥0) is a perfectoid tower arising from (R, I0). Indeed, axioms (a) and (e) are clear from
the assumption. Since R̂ is perfectoid and R/ϖ p R ∼= R̂/ϖ p R̂, axioms (b), (c), (d) and (f) hold by
Example 3.53. Similarly, axiom (g) holds by Lemma 3.16 (the map ψtor : RI0-tor→ (R̂)I0-tor is also an
isomorphism of nonunital rings).

Recall that we have two types of tilting operation at present; one is defined for perfectoid rings, and
the other is for perfectoid towers. The following result asserts that they are compatible.

Lemma 3.55. Let ({Rs.♭
i }i≥0, {t

s.♭
i }i≥0) be the tilt of ({Ri }i≥0, {ti }i≥0) associated to (R0, I0). Let R̂s.♭

∞ be
the I s.♭

0 -adic completion of Rs.♭
∞ := lim

−−→i≥0 Rs.♭
i . Let (I0 R∞)♭ be the ideal of R♭∞ that is the inverse image

of I0 R∞mod pR∞ via the first projection. Then there exist canonical isomorphisms

R♭
∞

∼=
←− lim
←−−
Frob

Rs.♭
∞
/I s.♭

0 Rs.♭
∞

∼=
−→ R̂s.♭

∞

under which (I0 R∞)♭ ⊆ R♭∞ corresponds to I s.♭
0 R̂s.♭

∞ ⊆ R̂s.♭
∞ .

Proof. Note that Rs.♭
∞ is perfect. By Lemma 3.39 and Example 3.32, we obtain the commutative diagram

of rings

lim
←−−Frob R∞/I0 R∞

��

lim
←−−Frob Rs.♭

∞ /I s.♭
0 Rs.♭

∞

��

∼=
oo

∼=
// R̂s.♭
∞

��

R∞/I0 R∞ Rs.♭
∞ /I s.♭

0 Rs.♭
∞

∼=
oo Rs.♭

∞ /I s.♭
0 Rs.♭

∞

(3-19)
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where the vertical arrows denote the first projection maps. By [5, Lemma 3.2(i)], we can identify R♭∞
with lim

←−−Frob R∞/I0 R∞, and the ideal (I0 R∞)♭ ⊆ R♭∞ corresponds to the kernel of the leftmost vertical

map. Since the kernel of the rightmost vertical map is I s.♭
0 R̂s.♭

∞ , the assertion follows. □

3F. Examples: complete local log-regular rings.

3F1. Calculation of the tilts. As an example of tilts of Noetherian perfectoid towers, we calculate them
for certain towers of local log-regular rings. Firstly, we review a perfectoid tower constructed in [17].

Construction 3.56. Let (R,Q, α) be a complete local log-regular ring with perfect residue field of
characteristic p > 0. Assume that Q is fine, sharp, and saturated (see Remark 2.20). Let Iα ⊆ R be the
ideal defined in Definition 2.19. Set A := R/Iα . Let ( f1, . . . , fr ) be a sequence of elements of R whose
image in A is maximal (see Definition A.4). Since the residue field of R is perfect, r is the dimension of
A (see the Appendix). For every i ≥ 0, we consider the ring

Ai := A[T1, . . . , Tr ]/(T
pi

1 − f 1, . . . , T pi

r − f r ),

where each f j denotes the image of f j in A ( j = 1, . . . , r). Notice that Ai is regular by Theorem A.3.
Moreover, we set Q(i)

:=Q(i)
p (see Definition 2.11). Furthermore, we define

R′i := Z[Q(i)
]⊗Z[Q] R, R′′i := R[T1, . . . , Tr ]/(T

pi

1 − f1, . . . , T pi

r − fr ), (3-20)

and
Ri := R′i ⊗R R′′i . (3-21)

Let ti : Ri→ Ri+1 be the ring map that is naturally induced by the inclusion map ι(i) :Q(i) ↪→Q(i+1). Since
R′′i+1 is a free R′′i -module, ti is universally injective by Lemma 2.15 and condition (e) in Proposition 2.8(2).

Proposition 3.57. Keep the notation as in Construction 3.56. Let αi :Q(i)
→ Ri be the natural map. Then

(Ri ,Q(i), αi ) is a local log-regular ring.

Proof. We refer the reader to [17, 17.2.5]. □

By construction, we obtain the tower of rings ({Ri }i≥0, {ti }i≥0) (see Definition 3.1).

Proposition 3.58. Keep the notation as in Construction 3.56. Then the tower ({Ri }i≥0, {ti }i≥0) of local
log-regular rings defined above is a perfectoid tower arising from (R, (p)).

Proof. We verify (a)–(g) in Definition 3.4 and Definition 3.21. Axiom (a) is trivial. Since ti is universally
injective, axiom (b) follows. Axioms (c) and (d) follow from [17, (17.2.10) and Lemma 17.2.11]. Since
R is of residual characteristic p, axiom (e) follows from the locality. Since ti is injective and Ri is a
domain for any i ≥ 0, axiom (g) holds by Remark 3.22.

Finally, let us check that axiom (f) holds. In the case when p = 0, it follows from [17, Theorem
17.2.14(i)]. Otherwise, there exists an element ϖ ∈ R1 that satisfies ϖ p

= pu for some unit u ∈ R1

by [17, Theorem 17.2.14(ii)]. Set I1 := (ϖ). Then axiom (f-1) holds. Axiom (f-2) follows from [17,
Theorem 17.2.14(iii)]. Thus the assertion follows. □



Perfectoid towers, tilts and étale cohomology groups 2341

For calculating the tilt of the perfectoid tower constructed above, the following lemma is quite useful.

Lemma 3.59. Keep the notation as in Proposition 3.57. Let k be the residue field of R. Then there exists
a family of ring maps {φi : C(k)[[Q(i)

⊕ (Nr )(i)]] → Ri }i≥0 which is compatible with the log structures of
{(Ri ,Q(i), αi )}i≥0 such that the following diagram commutes for every i ≥ 0:

C(k)[[Q(i)
⊕ (Nr )(i)]]

� � //

φi
����

C(k)[[Q(i+1)
⊕ (Nr )(i+1)

]]

φi+1
����

Ri
� � ti

// Ri+1

(3-22)

(where the top arrow is the natural inclusion). Moreover, there exists an element θ ∈ C(k)[[Q⊕Nr
]]

whose constant term is p such that the kernel of φi is generated by θ for every i ≥ 0.

Proof. First we remark the following. Let ki be the residue field of Ri . Then by Lemma 3.11(1) and
Lemma 3.6(2), the transition maps induce a purely inseparable extension k ↪→ ki . Moreover, this extension
is trivial because k is perfect. Therefore, we can identify ki with k, and the Cohen ring of Ri with C(k).

Next, let us show the existence of a family of ring maps {φi }i≥0 with the desired compatibility. Since
(Ri ,Q(i), αi ) is a complete local log-regular ring, we can take a surjective ring mapψi :C(k)[[Q(i)

⊕Nr
]]→

Ri as in Theorem 2.22; its kernel is generated by an element θi whose constant term is p, and the diagram

Q(i) //

αi
''

C(k)[[Q(i)
⊕Nr
]]

ψi
����

Ri

commutes. For j = 1, . . . , r , let us denote by f 1/pi

j the image of T j ∈ R[T1, . . . , Tr ] in Ri (see (3-20)

and (3-21)). Note that the sequence f 1/pi

1 , . . . , f 1/pi

r in Ri becomes a regular system of parameters of
Ri/Iαi by the reduction modulo Iαi (see [17, 17.2.3] and [17, 17.2.5]). Thus, for the set of the canonical

basis {e1, . . . , er } of Nr , we may assume ψi (ee j )= f 1/pi

j by the construction of ψi (see the proof of [34,
Chapter III, Theorem 1.11.2]). Hence we can choose {ψi }i≥0 so that the diagram:

C(k)[[Q(i)
⊕Nr
]]
� � //

ψi
����

C(k)[[Q(i+1)
⊕Nr
]]

ψi+1
����

Ri
� � ti

// Ri+1

(3-23)

commutes. Thus it suffices to define φi : C(k)[[Q(i)
⊕ (Nr )(i)]] → Ri as the composite map of the

isomorphism C(k)[[Q(i)
⊕ (Nr )(i)]]

∼=
−→ C(k)[[Q(i)

⊕Nr
]] obtained by Lemma 2.12(3) and ψi .

Finally, note that the image of θ0 ∈ Ker(ψ0) in C(k)[[Q(i)
⊕ Nr
]] is contained in Ker(ψi ), and its

constant term is still p. Thus, by the latter assertion of Theorem 2.22(2), Ker(ψi ) is generated by θ0.
Hence by taking θ0 as θ , we complete the proof. □
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Let us consider the monoids Q(i) for an integral sharp monoid Q. Since there is the natural inclusion
ι(i) :Q(i) ↪→Q(i+1) for any i ≥ 0, we obtain a direct system of monoids ({Q(i)

}i≥0, {ι
(i)
}i≥0). Moreover,

the p-times map on Q(i+1) gives a factorization:

Q(i+1) ×p
//

×p $$ $$

Q(i+1)

Q(i).
?�
ι(i)

OO

From this discussion, we define the small tilt of {Q(i)
}i≥0.

Definition 3.60. Let Q be an integral monoid, and let ({Q(i)
}i≥0, {ι

(i)
}i≥0) be as above. Then for an

integer j ≥ 0, we define the j -th small tilt of ({Q(i)
}i≥0, {ι

(i)
}i≥0) as the inverse limit

Qs.♭
j := lim

←−−
{· · · →Q( j+1)

→Q( j)
}, (3-24)

where the transition map Q(i+1)
→Q(i) is the p-times map of monoids.

Now we can derive important properties of the tilt of the perfectoid tower given in Construction 3.56.

Theorem 3.61. Keep the notation as in Lemma 3.59.

(1) The tower ({(Ri )
s.♭
(p)}i≥0, {(ti )

s.♭
(p)}i≥0) is isomorphic to ({k[[Q(i)

⊕ (Nr )(i)]]}i≥0, {ui }i≥0), where ui is
the ring map induced by the natural inclusion Q(i)

⊕ (Nr )(i) ↪→Q(i+1)
⊕ (Nr )(i+1).

(2) For every j ≥ 0, there exists a homomorphism of monoids

α
s.♭
j :Q

s.♭
j → (R j )

s.♭
(p)

such that ((R j )
s.♭
(p),Q

s.♭
j , α

s.♭
j ) is a local log-regular ring.

(3) For every j ≥ 0, (t j )
s.♭
(p) : (R j )

s.♭
(p)→ (R j+1)

s.♭
(p) is module-finite and (R j )

s.♭
(p) is F-finite.

Proof. (1) By Lemma 3.59, each Ri is isomorphic to C(k)[[Q(i)
⊕ (Nr )(i)]]/(p− f )C(k)[[Q(i)

⊕ (Nr )(i)]]

where f is an element of C(k)[[Q⊕Nr
]] which has no constant term. Set Si := k[[Q(i)

⊕ (Nr )(i)]] for
any i ≥ 0 and let ui : Si ↪→ Si+1 be the inclusion map induced by the natural inclusion Q(i)

⊕ (Nr )(i) ↪→

Q(i+1)
⊕ (Nr )(i+1). Then the tower ({Si }i≥0, {ui }i≥0) is a perfect tower. Indeed, each Si is reduced by

Theorem 2.21; moreover, by the perfectness of k and Lemma 2.12(3), the Frobenius endomorphism on
Si+1 factors through a surjection Gi : Si+1→ Si . In particular, ({Si }i≥0, {ui }i≥0) is a perfectoid tower
arising from (S0, (0)) and Gi is the i-th Frobenius projection (cf. Lemma 3.24).

Put f := f mod pC(k)[[Q⊕Nr
]] ∈ S0. Then each Si is f -adically complete and separated by [15,

Lemma 2.1.1]. Moreover, the commutative diagram (3-22) yields the commutative squares (i ≥ 0):

Si+1/ f Si+1

Gi
��

∼=
// Ri+1/pRi+1

Fi

��

Si/ f Si
∼=

// Ri/pRi
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that are compatible with {ui : Si/ f Si → Si+1/ f Si+1}i≥0 and {t i }i≥0. Hence by Lemma 3.31, we obtain
the isomorphisms

(R j )
s.♭
(p)

∼=
←− lim
←−−
{· · ·

G j+1
−−→ S j+1/ f S j+1

G j
−→ S j/ f S j }

∼=
−→ S j ( j ≥ 0) (3-25)

that are compatible with the transition maps of the towers. Thus the assertion follows.

(2) Considering the inverse limit of the composite maps Q( j+i) α j+i
−−→ R j+i ↠ R j+i/pR j+i (i ≥ 0), we

obtain a homomorphism of monoids αs.♭
j :Q

s.♭
j → (R j )

s.♭
(p). On the other hand, let α j :Q( j)

→ S j be the
natural inclusion. Then, since S j is canonically isomorphic to k[[Q( j)

⊕Nr
]], (S j ,Q( j), α j ) is a local

log-regular ring by Theorem 2.22(1). Thus it suffices to show that ((R j )
s.♭
(p),Q

s.♭
j , α

s.♭
j ) is isomorphic to

(S j ,Q( j), α j ) as a log ring. Since the transition maps in (3-24) are isomorphisms by Lemma 2.12(3), we
obtain the isomorphisms of monoids

Qs.♭
j

id
Qs.♭

j
←−−−Qs.♭

j

∼=
−→Q( j) ( j ≥ 0). (3-26)

Then one can connect (3-26) to (3-25) to construct a commutative diagram using αs.♭
j and α j . Hence the

assertion follows.

(3) By Lemma 2.14(1), t j : R j→ R j+1 is module-finite. Hence by Proposition 3.42(1), (t j )
s.♭
(p) : (R j )

s.♭
(p)→

(R j+1)
s.♭
(p) is also module-finite. Finally let us show that (R j )

s.♭
(p) is F-finite. By assertion (2), (R j )

s.♭
(p) is a

complete Noetherian local ring, and the residue field is F-finite because it is perfect. Thus the assertion
follows from [29, Theorem 8.4]. □

Example 3.62. (1) A tower of regular local rings which is treated in [7] and [8] is a perfectoid tower in
our sense. Let (R,m, k) be a d-dimensional regular local ring whose residue field k is perfect and let
x1, . . . , xd be a regular sequence of parameters. Let e1, . . . , ed be the canonical basis of Nd . Then
(R,Nd , α) is a local log-regular ring where α :Nd

→ R is a homomorphism of monoids which maps
ei to xi . Furthermore, assume that R is m-adically complete. Then, by Cohen’s structure theorem, R
is isomorphic to

W (k)[[x1, . . . , xd ]]/(p− f )

where f = x1 or f ∈ (p, x1, . . . , xd)
2 (the former case is called unramified, and the latter ramified).

Let us construct a perfectoid tower arising from (R, (p)) along Construction 3.56. Since k is perfect,
�k is zero by the short exact sequences (A-4) and the definition of itself. This implies that the image
of the empty subset of R in k forms a maximal sequence. Hence R′′i in Construction 3.56 is equal to
R. Moreover, (Nd)(i) is generated by 1

pi e1, . . . ,
1
pi ed . Applying Construction 3.56, we obtain

Ri = R′i = Z[(Nd)(i)]⊗Z[Nd ] R ∼= R[T1, . . . , Td ]/(T
pi

1 − x1, . . . , T pi

d − xd)

∼=W (k)[[x1/pi

1 , . . . , x1/pi

d ]]/(p− f ).
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Set the natural injection ti : Ri → Ri+1 for any i ≥ 0. Then, by Proposition 3.58, ({Ri }i≥0, {ti }i≥0)

is a perfectoid tower arising from (R, (p)). By Theorem 3.61, its tilt ({(Ri )
s.♭
(p)}i≥0, {(ti )

s.♭
(p)}i≥0) is

isomorphic to the tower k[[Nd
]] ↪→ k[[(Nd)(1)]] ↪→ k[[(Nd)(2)]] ↪→ · · · , which can be written as

k[[x1, . . . , xd ]] ↪→ k[[x1/p
1 , . . . , x1/p

d ]] ↪→ k[[x1/p2

1 , . . . , x1/p2

d ]] ↪→ · · · .

(2) Consider the surjection

S :=W (k)[[x, y, z, w]]/(xy− zw)↠ R :=W (k)[[x, y, z, w]]/(xy− zw, p−w)

=W (k)[[x, y, z]]/(xy− pz).

where k is a perfect field. Let Q⊆N4 be a saturated submonoid generated by (1,1,0,0), (0,0,1,1),
(1,0,0,1) and (0,1,1,0). Then S admits a homomorphism of monoids αS : Q→ S by letting
(1,1,0,0) 7→ x , (0,0,1,1) 7→ y, (1,0,0,1) 7→ z and (0,1,1,0) 7→ w. With this, (S,Q,αS) is a
local log-regular ring. The composite map αR :Q→ S→ R makes R into a local log ring. Indeed,
we can write R ∼=W (k)[[Q]]/(p− e(0,1,1,0)); hence (R,Q,αR) is log-regular by Theorem 2.22.

Next, note that R/IαR
∼= k. Then, for the same reason in (1), R′′i is equal to R. Moreover, Q(i) is

generated by ( 1
pi ,

1
pi , 0, 0

)
,

(
0, 0, 1

pi ,
1
pi

)
,

( 1
pi , 0, 0 1

pi

)
,

(
0, 1

pi ,
1
pi , 0

)
.

Thus, applying Construction 3.56, we obtain

Ri = R[[Q(i)
]]

∼=W (k)[[Q(i)
]]/(p− e(0,1,1,0))

∼=W (k)[[x1/pi
, y1/pi

, z1/pi
, w1/pi

]]/(x1/pi
y1/pi
− z1/pi

w1/pi
, p−w).

Set a natural injection ti : Ri → Ri+1. Then, by Proposition 3.58, ({Ri }i≥0, {ti }i≥0) is a perfectoid
tower arising from (R, (p)). Hence

R∞ = lim
−−→
i≥0

Ri ∼=
⋃
i≥0

W (k)[[x1/pi
, y1/pi

, z1/pi
, w1/pi

]]/(x1/pi
y1/pi
− z1/pi

w1/pi
, p−w),

and its p-adic completion is perfectoid. One can calculate the tilt
(
{Rs.♭

i }i≥0, {t
s.♭
i }i≥0

)
to be k[[Q]] ↪→

k[[Q(1)
]] ↪→ k[[Q(2)

]] ↪→ · · · by Theorem 3.61, or, more explicitly,

k[[x, y, z, w]]/(xy− zw) ↪→ k[[x1/p, y1/p, z1/p, w1/p
]]/(x1/p y1/p

− z1/pw1/p) ↪→ · · · .

3F2. Towers of split maps and sousperfectoid rings. Recall that Hansen and Kedlaya introduced a new
class of topological rings that guarantees sheafiness on the associated adic spectra (see [21, Definition 7.1]).

Definition 3.63. Let A be a complete and separated Tate ring such that a prime p ∈ A is topologically
nilpotent. We say that A is sousperfectoid if there exists a perfectoid ring B in the sense of Fontaine (see
[21, Definition 2.13]) with a continuous A-linear map f : A→ B that splits in the category of topological
A-modules. That is, there is a continuous A-linear map σ : B→ A such that σ ◦ f = idA.
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Let us show that a perfectoid tower consisting of split maps induces sousperfectoid rings. In view of
Theorem 2.29, one can apply this result to the towers discussed above. See [33] for detailed studies on
algebraic aspects of Tate rings.

Proposition 3.64. Let ({Ri }i≥0, {ti }i≥0) be a perfectoid tower arising from some pair (R, ( f0)). Assume
that f0 is regular, R is f0-adically complete and separated, and ti splits as an Ri -linear map for every
i ≥ 0. We equip R

[ 1
f0

]
with the linear topology in such a way that { f n

0 R}n≥1 defines a fundamental system

of open neighborhoods at 0 ∈ R
[ 1

f0

]
. Then R

[ 1
f0

]
is a sousperfectoid Tate ring, and hence stably uniform.

In order to prove this, we need the following lemma.

Lemma 3.65. Keep the notations and assumptions as in Proposition 3.64. Then the natural map R0→

lim
−−→i≥0 Ri splits as an R0-linear map.

Proof. We use the fact that each ti : Ri → Ri+1 splits as an Ri -linear map by assumption. This implies
that the short exact sequence of R-modules

0→ R0→ Ri → Ri/R→ 0

splits for any i ≥ 0. It induces a commutative diagram of R-modules

0 // HomR0(Ri+1/R0, R0) //

αi

��

HomR0(Ri+1, R0) //

βi

��

HomR0(R0, R0) // 0

0 // HomR0(Ri/R0, R0) // HomR0(Ri , R0) // HomR0(R0, R0) // 0

where each horizontal sequence is split exact and each vertical map forms an inverse system induced by
ti : Ri → Ri+1. Thus βi is surjective and it follows from the snake lemma that αi is surjective as well. By
taking inverse limits, we obtain the short exact sequence

0→ lim
←−−
i≥0

HomR0(Ri/R0, R0)→ lim
←−−
i≥0

HomR0(Ri , R0)
h
−→ HomR0(R0, R0)→ 0.

It follows from [36, Lemma 4.1] that h is the canonical surjection HomR0(R∞, R0)↠ HomR0(R0, R0).
Then choosing an inverse image of idR0 ∈ HomR0(R0, R0) gives a splitting of R0→ R∞. □

Proof of Proposition 3.64. We have constructed an infinite extension R→ R∞ such that if R̂∞ is the
f0-adic completion, then the associated Tate ring R̂∞

[ 1
f0

]
is a perfectoid ring in the sense of Fontaine by

Corollary 3.52 and [5, Lemma 3.21].
By Lemma 2.28 and Lemma 3.65, it follows that the map R

[ 1
f0

]
→ R̂∞

[ 1
f0

]
splits in the category

of topological R
[ 1

f0

]
-modules (notice that R is f0-adically complete and separated). Thus, R

[ 1
f0

]
is a

sousperfectoid Tate ring. The combination of [21, Corollary 8.10], [21, Proposition 11.3] and [21, Lemma
11.9] allows us to conclude that R

[ 1
f0

]
is stably uniform. □

As a corollary, one can obtain the stable uniformity for complete local log-regular rings (see also
Construction 3.56 and Theorem 2.29).
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Corollary 3.66. Let (R,Q, α) is a complete local log-regular ring of mixed characteristic with perfect
residue field. We equip R

[ 1
p

]
with the structure of a complete and separated Tate ring in such a way that

{pn R}n≥1 defines a fundamental system of open neighborhoods at 0 ∈ R
[ 1

p

]
. Then R

[ 1
p

]
is stably uniform.

4. Applications to étale cohomology of Noetherian rings

In this section, we establish several results on étale cohomology of Noetherian rings, as applications of
the theory of perfectoid towers developed in Section 3. In Section 4A, for a ring that admits a certain type
of perfectoid tower, we prove that finiteness of étale cohomology groups on the positive characteristic
side carries over to the mixed characteristic side (Proposition 4.7). In Section 4B, we apply this result to
a problem on divisor class groups of log-regular rings.

We prepare some notation. Let X be a scheme and let Xét denote the category of schemes that are étale
over X , and for any étale X -scheme Y , we specify the covering {Yi → Y }i∈I so that Yi is étale over Y
and the family {Yi }i∈I covers surjectively Y . For an abelian sheaf F on Xét, we denote by H i (Xét,F) the
value of the i-th derived functor of U ∈ Xét 7→ 0(U,F). For the most part of applications, we consider
torsion sheaves, such as Z/nZ and µn for n ∈ N. However, for the multiplicative group scheme Gm , we
often use the following isomorphism:

H 1(Xét,Gm)∼= Pic(X).

For the basics on étale cohomology, we often use [12] or [31] as references.

4A. Tilting étale cohomology groups. Let A be a ring with an ideal J , let Â be the J -adic completion of
A, and let U ⊆ Spec(A) be an open subset. We define the J -adic completion of U to be the open subset
Û ⊆ Spec( Â), which is the inverse image of U via Spec( Â)→ Spec(A). We will use the following result
for deriving results on the behavior of étale cohomology under the tilting operation as well as some
interesting results on the divisor class groups of Noetherian normal domains (see Proposition 4.10 and
Proposition 4.11).

Theorem 4.1 (Fujiwara and Gabber). Let (A, J ) be a Henselian pair with X := Spec(A) and let Â be the
J -adic completion of A.

(1) For any abelian torsion sheaf F on Xét,we have R0(Spec(A)ét,F )≃ R0(Spec(A/J )ét,F |Spec(A/J )).

(2) Assume that J is finitely generated. Then for any abelian torsion sheaf F on Xét and any open subset
U ⊆ X such that X \ V (J )⊆U , we have R0(Uét,F )≃ R0(Ûét,F ).

Proof. The first statement is known as Affine analog of proper base change in [16], while the second one
is known as Formal base change theorem which is [13, Theorem 7.1.1] in the Noetherian case, and [24,
XX, 4.4] in the non-Noetherian case. □

We will need the tilting invariance of (local) étale cohomology from [8, Theorem 2.2.7]. To state the
theorem and establish a variant of it, we give some notations.



Perfectoid towers, tilts and étale cohomology groups 2347

Definition 4.2. Let (A, I ) and (B, J ) be pairs such that there exists a ring isomorphism 8 : A/I
∼=
−→ B/J .

Then for any open subset U ⊆ Spec(B) containing Spec(B)\V (J ), we define an open subset FA,8(U )⊆
Spec(A) as the complement of the closed subset Spec(8)(Spec(B) \U )⊆ Spec(A).

One can define small tilts of Zariski-open subsets.

Definition 4.3. Let ({Ri }i≥0, {ti }i≥0) be a perfectoid tower arising from some pair (R, I0), and let
({Rs.♭

i }i≥0, {t
s.♭
i }i≥0) be the tilt associated to (R, I0). Recall that we then have an isomorphism of rings

8
(i)
0 : Rs.♭

i /I s.♭
0 Rs.♭

i

∼=
−→ Ri/I0 Ri for every i ≥ 0. For every i ≥ 0 and every open subset U ⊆ Spec(Ri )

containing Spec(Ri ) \ V (I0 Ri ), we define

U s.♭
I0
:= F

Rs.♭
i ,8

(i)
0
(U ).

We also denote U s.♭
I0

by U s.♭ as an abbreviated form.

Note that by the compatibility described in Lemma 3.39, the operation U ⇝U s.♭ is compatible with
the base extension along the transition maps of a perfectoid tower.

Let us give some examples of U s.♭.

Example 4.4 (punctured spectra of regular local rings). Keep the notation as in Example 3.62(1). In this

situation, the isomorphism 8
(0)
0 : R

s.♭
0 /I s.♭

0

∼=
−→ R0/I0 in Definition 4.3 can be written as

k[[x1, . . . , xd ]]/(ps.♭)
∼=
−→ R/pR, (4-1)

where ps.♭
∈ k[[x1, . . . , xd ]] is some element. Set U := Spec(R) \ V (m). Then, since the maximal ideal

m⊆ R/pR corresponds to the (unique) maximal ideal of k[[x1, . . . , xd ]]/(ps.♭), we have

U s.♭ ∼= Spec(k[[x1, . . . , xd ]]) \ V ((x1, . . . , xd)).

Example 4.5 (tilting for preperfectoid rings). Keep the notation as in Example 3.54. Then by Lemma 3.55,

8
(0)
0 : R

s.♭
0 /I s.♭

0

∼=
−→ R0/I0 is identified with the isomorphism

θ R̂ : (R̂)
♭/I ♭0(R̂)

♭
∼=
−→ R̂/I0 R̂ (4-2)

which is induced by the bottom map in the diagram (3-17). In this case, we denote F
R♭,8(0)0

(U ) by U ♭ in
distinction from U s.♭.

The comparison theorem we need, due to Česnavičius and Scholze, is stated as follows.

Theorem 4.6 [8, Theorem 2.2.7]. Let A be a ϖ -adically Henselian ring with bounded ϖ -torsion for
an element ϖ ∈ A such that p ∈ ϖ p A. Assume that the ϖ -adic completion of A is perfectoid. Let
U ⊆ Spec(A) be a Zariski-open subset such that Spec(A) \ V (ϖ A)⊆U , and let U ♭

⊆ Spec(A♭) be its
tilt (see Example 4.5).

(1) For every torsion abelian group G, we have R0(Uét,G)∼= R0(U ♭

ét,G) in a functorial manner with
respect to A, U , and G.
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(2) Let Z be the complement of U ⊆ Spec(A). Then for a torsion abelian group G, we have

R0Z (Spec(A)ét,G)∼= R0Z (Spec(A♭)ét,G).

Now we come to the main result on tilting étale cohomology groups. Recall that we have fixed a prime
p > 0.

Proposition 4.7. Let ({R j } j≥0, {t j } j≥0) be a perfectoid tower arising from some pair (R, I0). Suppose
that R j is I0-adically Henselian for every j ≥ 0. Let ℓ be a prime different from p. Suppose further that
for every j ≥ 0, t j : R j → R j+1 is a module-finite extension of Noetherian normal domains whose generic
extension is of p-power degree.13 Fix a Zariski-open subset U ⊆Spec(R) such that Spec(R)\V (pR)⊆U
and the corresponding open subset U s.♭

⊆ Spec(Rs.♭) (cf. Definition 4.3). Then, for any fixed i, n ≥ 0 such
that |H i (U s.♭

ét ,Z/ℓnZ)|<∞, one has

|H i (Uét,Z/ℓnZ)| ≤ |H i (U s.♭
ét ,Z/ℓnZ)|.

In particular, if H i (U s.♭
ét ,Z/ℓnZ)= 0, then H i (Uét,Z/ℓnZ)= 0.

Proof. Since each R j is a p-adically Henselian normal domain, so is R∞ = lim
−−→ j≥0 R j . Moreover, every

prime ℓ different from p is a unit in R j and R∞. Attached to the tower ({R j } j≥0, {t j } j≥0), we get a tower
of finite (not necessarily flat) maps of normal schemes:

U =U0← · · · ←U j ←U j+1← · · · . (4-3)

More precisely, let h j : Spec(R j+1)→ Spec(R j ) be the associated scheme map. Then the open set U j+1

is defined as the inverse image h−1
j (U j ), thus defining the map U j+1→ U j in the tower (4-3). Since

h j is a finite morphism of normal schemes, Lemma 3.4 of [3] applies to yield a well-defined trace map
Tr : h j∗h∗j Z/ℓ

nZ→ Z/ℓnZ such that

Z/ℓnZ
h∗j
−→ h j∗h∗j Z/ℓ

nZ
Tr
−→ Z/ℓnZ (4-4)

is multiplication by the generic degree of h j (=p-power order). Then this is bijective, as the multiplication
map by p on Z/ℓnZ is bijective. We have the natural map: H i (U j,ét,Z/ℓnZ)→ H i (U j+1,ét, h∗j Z/ℓ

nZ).
Since h j is affine, the Leray spectral sequence gives H i (U j+1,ét, h∗j Z/ℓ

nZ) ∼= H i (U j,ét, h j∗h∗j Z/ℓ
nZ).

Composing these maps, the composite map (4-4) induces

H i (U j,ét,Z/ℓnZ)→ H i (U j+1,ét, h∗j Z/ℓ
nZ)

∼=
−→ H i (U j,ét, h j∗h∗j Z/ℓ

nZ)
Tr
−→ H i (U j,ét,Z/ℓnZ)

and the composition is bijective. Since h∗j Z/ℓ
nZ∼= Z/ℓnZ, we get an injection

H i (U j,ét,Z/ℓnZ) ↪→ H i (U j+1,ét,Z/ℓnZ). (4-5)

13The existence of such towers is quite essential for applications to étale cohomology, because the extension degree of each
R j → R j+1 is controlled in such a way that the p-adic completion of its colimit is a perfectoid ring.
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Set U∞ = lim
←−− j U j . Since each morphism U j+1→U j is affine, by using (4-5) and [38, Tag 09YQ], we

have
H i (Uét,Z/ℓnZ) ↪→ lim

−−→
j

H i (U j,ét,Z/ℓnZ)∼= H i (U∞,ét,Z/ℓnZ).

Thus, it suffices to show that |H i (U∞,ét,Z/ℓnZ)|≤ |H i (U s.♭
ét ,Z/ℓnZ)|. Hence by tilting étale cohomology

using Theorem 4.6, we are reduced to showing

|H i (U ♭

∞,ét,Z/ℓnZ)| ≤ |H i (U s.♭
ét ,Z/ℓnZ)|, (4-6)

where U ♭
∞ is the open subset of Spec(R♭∞) that corresponds to U∞ ⊆ Spec(R∞) in view of Example 4.5.

On the other hand, considering the tilt of ({R j } j≥0, {t j } j≥0) associated to (R0, I0), we have a perfect
Fp-tower ({Rs.♭

j } j≥0, {t
s.♭
j } j≥0). Note that each Rs.♭

j is I s.♭
0 -adically Henselian Noetherian ring14 by

Lemma 3.36 and Proposition 3.42(2), and t s.♭
j is module-finite by Proposition 3.42(1). Considering the

small tilts of the Zariski-open subsets appearing in (4-3) (see Definition 4.3), we get a tower of finite
maps:

U s.♭
=U s.♭

0 ← · · · ←U s.♭
j ←U s.♭

j+1← · · · .

So let U s.♭
∞ be the inverse image of U s.♭ under Spec(Rs.♭

∞ )→ Spec(Rs.♭). Since U s.♭
∞ →U s,♭ is a universal

homeomorphism, the preservation of the small étale sites [38, Tag 03SI] gives an isomorphism:

H i (U s.♭
ét ,Z/ℓnZ)∼= H i (U s.♭

∞,ét,Z/ℓnZ). (4-7)

Now the combination of Lemma 3.55 and Theorem 4.1(2) together with the assumption finishes the proof
of the theorem. □

Remark 4.8. One can formulate and prove the version of Proposition 4.7 for the étale cohomology with
support in a closed subscheme of Spec(R), using Theorem 4.6. Then the resulting assertion gives a
generalization of Česnavičius-Scholze’s argument in [7, Theorem 3.1.3] which is a key part of their proof
for the absolute cohomological purity theorem. One of the advantages of Proposition 4.7 is that it can be
used to answer some cohomological questions on possibly singular Noetherian schemes (e.g. log-regular
schemes) in mixed characteristic.

4B. Tilting the divisor class groups of local log-regular rings. We need a lemma of Grothendieck on
the relationship between the divisor class group and the Picard group via direct limit. Its proof is found in
[19, Proposition (21.6.12)] or [20, XI Proposition 3.7.1].

Lemma 4.9. Let X be an integral Noetherian normal scheme, and let {Ui }i∈I be a family of open subsets
of X. Consider the following conditions.

(1) {Ui }i∈I forms a filter base. In particular, one can define a partial order on I so that it is a directed
set and {Ui }i∈I together with the inclusion maps forms an inverse system.

14It is not obvious whether Rs.♭
j is normal. However, the normality was used only in the trace argument and we do not need it

in the following argument.
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(2) Let Vi := X \Ui for any i ∈ I . Then codimX (Vi )≥ 2.

(3) For any x ∈
⋂

i∈I Ui , the local ring OX,x is factorial.

If {Ui }i∈I satisfies condition (2), then the natural map Pic(Ui )→ Cl(X) is injective for any i ∈ I . If
{Ui }i∈I satisfies conditions (1), (2) and (3), then lim

−−→i∈I Pic(Ui ) ∼= Cl(X). Thus, if U ⊆ X is any open
subset that is locally factorial with codimX (X \U )≥ 2, then Pic(U )∼= Cl(X).

Next we establish two results on the torsion part of the divisor class group of a (Noetherian) normal
domain; they are examples of numerous applications of Theorem 4.1 of independent interest.

Proposition 4.10. Let (R,m, k) be a strictly Henselian Noetherian local normal Fp-domain of dimension
≥ 2, let X := Spec(R) and fix an ideal J ⊆m. Let {Ui }i∈I be any family of open subsets of X satisfying
(1), (2) and (3) as in the hypothesis of Lemma 4.9 and let U∞i be the Fp-scheme which is the perfection of
Ui .

(1) For any prime ℓ ̸= p,
Cl(X)[ℓn

] ∼= lim
−−→
i∈I

H 1((U∞i )ét,Z/ℓnZ
)
.

(2) Let R̂1/p∞ denote the J -adic completion of R1/p∞ . If each Ui has the property that X \ V (J )⊆Ui ,
then for any prime ℓ ̸= p,

Cl(X)[ℓn
] ∼= lim
−−→
i∈I

H 1((Û∞i )ét,Z/ℓnZ
)
,

where Û∞i is inverse image of U∞i via the scheme map Spec(R̂1/p∞)→ Spec(R1/p∞).

Proof. Let us begin with a remark on the direct limit of étale cohomology groups. For the tran-
sition morphism g : U∞i → U∞j which is affine, there is a functorial map H 1

(
(U∞j )ét,Z/ℓnZ

)
→

H 1
(
(U∞i )ét, g∗(Z/ℓnZ)

)
∼= H 1

(
(U∞i )ét,Z/ℓnZ

)
, which defines the direct system of cohomology groups.

(1) We prove that for any n ∈ N, there is an injection of abelian groups

H 1(Uet ,Z/ℓnZ)∼= Pic(U )[ℓn
] ⊆ Cl(X)[ℓn

],

where U ⊆ X is an open subset whose complement is of codimension ≥ 2. Indeed, consider the Kummer
exact sequence

0→ Z/ℓnZ∼= µℓn → Gm
( )ℓ

n

−−→ Gm→ 0,

where the identification of étale sheaves µℓn ∼= Z/ℓnZ follows from the fact that R is strict Henselian (one
simply sends 1 ∈ Z/ℓnZ to the primitive ℓn-th root of unity in R). Let U ⊆ X be an open subset with its
complement V = X \U having codimension ≥ 2. Then we have an exact sequence (see [31, Chapter III,
Proposition 4.9])

0(Uét,Gm)
( )ℓ

n

−−→ 0(Uét,Gm)→ H 1(Uét,Z/ℓnZ)→ Pic(U )
( )ℓ

n

−−→ Pic(U ).

Since R is strict local and ℓ ̸= p, Hensel’s lemma yields that R× = (R×)ℓ
n
. Since codimX (V )≥ 2 and X
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is normal, we have 0(Uét,Gm)= R×. Thus, H 1(Uét,Z/ℓnZ)∼= Pic(U )[ℓn
]. Note that Pic(U ) ↪→ Cl(U )

restricts to Pic(U )[ℓn
] ↪→ Cl(U )[ℓn

]. Moreover, the natural homomorphism Cl(X) → Cl(U ) is an
isomorphism, thanks to codimX (V ) ≥ 2. Hence H 1(Uét,Z/ℓnZ) ∼= Pic(U )[ℓn

] ⊆ Cl(X)[ℓn
], which

proves the claim.

Since R is normal, the regular locus has complement with codimension ≥ 2. Using this fact, we can
apply Lemma 4.9 to get an isomorphism Cl(X)[ℓn

] ∼= lim
−−→i∈I H 1

(
(Ui )ét,Z/ℓnZ

)
. By étale invariance of

cohomology under taking perfection of Fp-schemes [38, Tag 03SI], we get

Cl(X)[ℓn
] ∼= lim
−−→
i∈I

H 1((Ui )ét,Z/ℓnZ
)
∼= lim
−−→
i∈I

H 1((U∞i )ét,Z/ℓnZ
)
,

as desired.

(2) Since R is Henselian along m and J ⊆m, it is Henselian along J by [38, Tag 0DYD]. The perfect
closure of R still preserves the Henselian property along J . Theorem 4.1 yields

H 1((U∞i )ét,Z/ℓnZ
)
∼= H 1((Û∞i )ét,Z/ℓnZ

)
and the conclusion follows from (1). □

Proposition 4.11. Let A be a Noetherian ring with a regular element t ∈ A such that A is t-adically
Henselian and A→ A/t A is the natural surjection between locally factorial domains. Pick an integer
n> 0 that is invertible on A. Then if Cl(A) has no torsion element of order n, the same holds for Cl(A/t A).
If moreover A is a Q-algebra and Cl(A) is torsion-free, then so is Cl(A/t A).

Proof. The Kummer exact sequence 0→ µn→ Gm
( )n

−−→Gm→ 0 induces the commutative diagram

H 1(Spec(A)ét, µn)
δ1

//

α

��

Pic(A)
( )n

//

��

Pic(A)

��

H 1(Spec(A/t A)ét, µn)
δ2

// Pic(A/t A)
( )n
// Pic(A/t A).

By Theorem 4.1, the map α is an isomorphism. Then if Pic(A) has no torsion element of order n, δ1

is the zero map. This implies that δ2 is also the zero map and hence, Pic(A/t A) has no element of
order n. Since both A and A/t A are locally factorial by assumption, we have Cl(A) ∼= Pic(A) and
Cl(A/t A)∼= Pic(A/t A). The assertion follows. □

It is not necessarily true that δ1 or δ2 are injective, because we do not assume A to be strictly Henselian.

Lemma 4.12. Let (R,Q, α) be a log-regular ring. Then strict Henselization (Rsh,Q, αsh) is also a
log-regular ring, where αsh

:Q→ R→ Rsh is the composition of homomorphisms.

Proof. Since R→ Rsh is a local ring map, (Rsh,Q, αsh) is a local log ring by Lemma 2.18. Note that
we have the equality Iαsh = IαRsh. Since we have the isomorphism Rsh/Iαsh ∼= (R/Iα)sh by [38, Tag
05WS] and (R/Iα)sh is a regular local ring by [38, Tag 06LN], Rsh/Iαsh is a regular local ring. Since the
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dimension of R is equal to the dimension of a strict henselization Rsh, we obtain the equalities

dim Rsh
− dim(Rsh/Iαsh)= dim Rsh

− dim(R/Iα)sh
= dim R− dim(R/Iα)= dimQ.

So the local log ring (Rsh,Q, αsh) is log-regular. □

Now we can prove the following result on the divisor class groups of local log-regular rings, as an
application of the theory of perfectoid towers.

Theorem 4.13. Let (R,Q, α) be a local log-regular ring of mixed characteristic with perfect residue field
k of characteristic p > 0, and denote by Cl(R) the divisor class group with its torsion subgroup Cl(R)tor.

(1) Assume that R ∼= W (k)[[Q]] for a fine, sharp, and saturated monoid Q, where W (k) is the ring of
Witt vectors over k. Then Cl(R)tor⊗Z

[ 1
p

]
is a finite group. In other words, the ℓ-primary subgroup

of Cl(R)tor is finite for all primes ℓ ̸= p and vanishes for almost all primes ℓ ̸= p.

(2) Assume that R̂sh
[ 1

p

]
is locally factorial, where R̂sh is the completion of the strict Henselization Rsh.

Then Cl(R)tor⊗Z
[ 1

p

]
is a finite group. In other words, the ℓ-primary subgroup of Cl(R)tor is finite

for all primes ℓ ̸= p and vanishes for almost all primes ℓ ̸= p.

Proof. Assertion (1) was already proved in Proposition 2.26. So let us prove assertion (2). We may
assume that Q is fine, sharp, and saturated by Remark 2.20. The proof given below works for the first
case under the assumption of local factoriality of R̂sh

[ 1
p

]
.

Since R → R̂sh is a local flat ring map, the induced map Cl(R)→ Cl(R̂sh) is injective by Mori’s
theorem (cf. [11, Corollary 6.5.2]). Thus, it suffices to prove the theorem for R̂sh. Moreover, R̂sh is
log-regular with respect to the induced log ring structure α :Q→ R→ R̂sh by Lemma 4.12. So without
loss of generality, we may assume that the residue field of R is separably closed (hence algebraically
closed in our case).

Henceforth, we denote R̂sh by R for brevity and fix a prime ℓ that is different from p. By Lemma 4.9
and the local factoriality of R

[ 1
p

]
, we claim that there is an open subset U ⊆ X := Spec(R) such that

Pic(U )∼= Cl(X), X \ V (pR)⊆U and codimX (X \U )≥ 2. (4-8)

Indeed, X is a normal integral scheme by Kato’s theorem (Theorem 2.21). Let U be the union of the
regular locus of X and the open Spec

(
R
[ 1

p

])
⊆ X . Then by Serre’s normality criterion, we see that

codimX (X \U ) ≥ 2. We fix such an open U ⊆ X once and for all. Taking the cohomology sequence
associated to the exact sequence

0→ Z/ℓnZ→ Gm
( )ℓ

n

−−→ Gm→ 0

on the strict local scheme X and arguing as in the proof of Proposition 4.10, we have an isomorphism

H 1(Uét,Z/ℓnZ)∼= Pic(U )[ℓn
] ∼= Cl(X)[ℓn

]. (4-9)
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On the other hand, there is a perfectoid tower of module-finite extensions of local log-regular rings arising
from (R, (p)):

(R,Q, α)= (R0,Q(0), α0)→ · · · → (R j ,Q( j), α j )→ (R j+1,Q( j+1), α j+1)→ · · · . (4-10)

Each map is generically of p-power rank in view of Lemma 2.16(2) and Lemma 2.14(3). Moreover, the
tilt of (4-10) (associated to (R, (p))) is given by

(Rs.♭,Qs.♭, αs.♭)= ((R0)
s.♭
(p),Q

s.♭
0 , α

s.♭
0 )→· · ·→ ((R j )

s.♭
(p),Q

s.♭
j , α

s.♭
j )→ ((R j+1)

s.♭
(p),Q

s.♭
j+1, α

s.♭
j+1)→· · · ,

where ((R j )
s.♭
(p),Q

s.♭
j , α

s.♭
j ) is a complete local log-regular ring of characteristic p > 0 in view of

Theorem 3.61. The local ring Rs.♭ is strictly Henselian and the complement of U s.♭(= U s.♭
(p)) has

codimension ≥ 2 in Spec(Rs.♭). By repeating the proof of Proposition 4.10, we obtain an isomorphism

H 1(U s.♭
ét ,Z/ℓnZ)∼= Pic(U s.♭)[ℓn

]. (4-11)

By Lemma 4.9, the map

Pic(U s.♭)[ℓn
] → Cl(Rs.♭)[ℓn

] (4-12)

is injective. Combining (4-9), (4-11), (4-12) and Proposition 4.7, it is now sufficient to check that there
exists an integer N > 0 depending only on Rs.♭ such that

Cl(Rs.♭)[ℓN
] =

⋃
n>0

Cl(Rs.♭)[ℓn
], and Cl(Rs.♭)[ℓN

] is finite for all ℓ and zero for almost all ℓ ̸= p.

Since we know that Rs.♭ is strongly F-regular by Theorem 3.61 and Lemma 2.25, the aforementioned
result of Polstra finishes the proof. □

Appendix: Construction of differential modules and maximality

The content of this appendix is taken from Gabber and Ramero’s treatise [17], whose purpose is to supply
a corrected version of Grothendieck’s original presentation in EGA. So we give only a sketch of the
constructions of relevant modules and maps. Readers are encouraged to look into [17] for more details as
well as proofs. We are motivated by the following specific problem.

Problem A.1. Let (A,mA) be a Noetherian regular local ring and fix a system of elements f1, . . . , fn ∈ A
and a system of integers e1, . . . , en with ei > 1 for every i = 1, . . . , n. We set

B := A[T1, . . . , Tn]/(T
e1

1 − f1, . . . , T en
d − fn).

Then find a sufficient condition that ensures that the localization B with respect to a maximal ideal n with
mA = A∩ n is regular.

From the construction, it is obvious that the induced ring map A→ B is a flat finite injective extension.
Let now (A,mA, k) be a Noetherian local ring with residue field kA := A/mA of characteristic p > 0.
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Following the presentation in [17, (9.6.15)], we define a certain k1/p
A -vector space �A together with a

map dA : A→�A as follows.

Case I: p /∈m2
A. Let W2(kA) denote the p-typical ring of length 2 Witt vectors over kA. Then there is

the ghost component map ω0 : W2(kA)→ kA, and set V1(kA) := Ker(ω0). More specifically, we have
W2(kA)= kA× kA as sets with addition and multiplication given respectively by

(a, b)+ (c, d)=
(

a+ c, b+ d +
a p
+ cp
− (a+ c)p

p

)
and (a, b)(c, d)= (ac, a pd + cpb).

Using this structure, we see that V1(kA)= 0× kA as sets, which is an ideal of W2(kA) and V1(kA)
2
= 0.

This makes V1(kA) equipped with the structure as a kA-vector space by letting x(0, a) := (x, 0)(0, a) for
x ∈ kA. One can define the map of kA-vector spaces

k1/p
A → V1(kA) ; a 7→ (0, a p), (A-1)

which is a bijection. With this isomorphism, we may view V1(kA) as a k1/p
A -vector space. Next we form

the fiber product ring:

A2 := A×kA W2(kA).

It gives rise to a short exact sequence of A2-modules

0→ V1(kA)→ A2→ A→ 0, (A-2)

where A2→ A is the natural projection, and the A2-module structure of V1(kA) is via the restriction of
rings A2→W2(kA). From (A-2), we obtain an exact sequence of A-modules:

V1(kA)→�A→�1
A/Z→ 0,

where we put �A =�
1
A2/Z
⊗A2 A. After applying ( )⊗A kA to this sequence, we have another sequence

of kA-vector spaces:

0→ V1(kA)
jA
−→�A⊗A kA→�1

A/Z⊗A kA→ 0. (A-3)

Then this is right exact. Moreover, (A-1) yields a unique kA-linear map ψA : V1(kA)⊗kA k1/p
A → V1(kA).

Define �A as the push-out of the diagram:

V1(kA)
ψA
←− V1(kA)⊗kA k1/p

A
jA⊗k1/p

A
−−−−→�A⊗A k1/p

A .

More concretely, we have

�A =
V1(kA)⊕ (�A⊗A k1/p

A )

T
,

where T =
{
(ψ(x),−( jA⊗ k1/p

A )(x)) |∈ V1(kA)⊗kA k1/p
A

}
. By the universality of push-outs, we get the
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commutative diagram

0 // V1(kA)⊗kA k1/p
A

ψA

��

// �A⊗A k1/p
A

ψA

��

// �1
A/Z⊗A k1/p

A
// 0

0 // V1(kA) // �A // �1
A/Z⊗A k1/p

A
// 0.

We define the map
dA : A→�A

as the composite mapping

A
1×τkA
−−−→ A2 = A×kA W2(kA)

d
−→�1

A2/Z

id⊗1
−−→�A =�

1
A2/Z
⊗A k1/p

A
ψA
−→�A.

Here, d : A2→�1
A2/Z

is the universal derivation and τkA : A→ kA→W2(kA), where the first map is the
natural projection and the second one is the Teichmüller map.

Case II: p ∈m2
A. We just set �A :=�

1
A/Z⊗A k1/p

A , and define dA : A→�A as the map induced by the
universal derivation dA : A→�1

A/Z.

Combining Cases I and II, we have a map dA : A→�A. If φ : (A,mA)→ (B,mB) is a local ring map
of local rings, this gives rise to the commutative diagram

A
dA
//

φ

��

�A

�φ
��

B
dB
// �B .

With this in mind, one can consider the functor A 7→ �A from the category of local rings (A,mA) of
residual characteristic p > 0 to the category of the k1/p

A -vector spaces �A. Some distinguished features in
this construction are as follows:

Proposition A.2 [17, Proposition 9.6.20]. Let φ : (A,mA)→ (B,mB) be a local ring map of Noetherian
local rings such that the residual characteristic of A is p > 0. Then

(1) Suppose that φ is formally smooth for the mA-adic topology on A and the mB-adic topology on B.
Then the maps induced by φ and �φ , namely

(mA/m
2
A)⊗kA kB→mB/m

2
B and �A⊗K 1/p

A
k1/p

B →�B,

are injective.

(2) Suppose that

(a) mA B =mB ,
(b) the residue field extension kA→ kB is separable algebraic,
(c) φ is flat.
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Then �φ induces an isomorphism of k1/p
A -vector spaces:

�A⊗A B ∼=�B .

(3) If B = A/m2
A and φ : A→ B is the natural map, then �φ is an isomorphism.

(4) The functor �• and the natural transformation d• commute with filtered colimits.

We provide an answer to Problem A.1 as follows.

Theorem A.3 [17, Corollary 9.6.34]. Let f1, . . . , fn be a sequence of elements in A, and let e1, . . . , en

be a system of integers with ei > 1 for every i = 1, . . . , n. Set

C := A[T1, . . . , Tn]/(T
e1

1 − f1, . . . , T en

n − fn).

Fix a prime ideal n ⊆ C such that n∩ A = mA, and let B := Cn. Let E ⊆ �A be the k1/p
A -vector space

spanned by dA f1, . . . , dA fn . The following conditions are equivalent.

(1) A is a regular local ring, and dimk1/p
A

E = n.

(2) B is a regular local ring.

In particular, in the situation of the above theorem, B is a regular local ring if A is a regular local ring
and f1, . . . , fn is maximal in the sense of the following definition.

Definition A.4. Let (A,mA, kA) be a local ring with residual characteristic p > 0. Then we say that
a sequence of elements f1, . . . , fn in A is maximal if dA f1, . . . , dA fn forms a basis of the k1/p

A -vector
space �A.

In general, we have the following fact.

Lemma A.5. Let (A,mA, kA) be a regular local ring of mixed characteristic and assume that f1, . . . , fd

is a regular system of parameters of A.

(1) f1, . . . , fd satisfies condition (1) of Theorem A.3.

(2) If the residue field kA of A is perfect, then the sequence f1, . . . , fd is maximal.

Proof. (1) In the case that p /∈m2
A, [17, Proposition 9.6.17] gives a short exact sequence

0→mA/m
2
A⊗kA k1/p

A →�A→�1
kA/Z
⊗kA k1/p

A → 0. (A-4)

Then the images f 1, . . . , f d form a basis of the k1/p
A -vector space mA/m

2
A⊗kA k1/p

A . The desired claim
follows from the left exactness of (A-4).

In the case that p ∈m2
A, [17, Lemma 9.6.6] gives a short exact sequence

0→mA/(m
2
A+ pmA)→�A→�1

kA/Z
→ 0. (A-5)

and we can argue as in the case p /∈m2
A.

(2) If kA is perfect, then �1
kA/Z
= 0. Therefore, (A-4) and (A-5) (in the latter case, one tensors it with

k1/p
A over kA) gives the desired conclusion. □
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