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To initiate a systematic study on the applications of perfectoid methods to Noetherian rings, we introduce
the notions of perfectoid towers and their tilts. We mainly show that the tilting operation preserves several
homological invariants and finiteness properties. Using this, we also provide a comparison result on étale
cohomology groups under the tilting. As an application, we prove finiteness of the prime-to- p-torsion
subgroup of the divisor class group of a local log-regular ring that appears in logarithmic geometry in the
mixed characteristic case.
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1. Introduction

In recent years, the perfectoid technique has become one of the most effective tools in commutative ring
theory and singularity theory in mixed characteristic. The tilting operation S ~ S” for a perfectoid ring
S is a central notion in this method, which makes a bridge between objects in mixed characteristic and
objects in positive characteristic. However, perfectoid rings themselves are too big to fit into Noetherian
ring theory. Hence, for applications, one often requires distinguished Noetherian ring extensions that
approximate perfectoids. Indeed, in many earlier works (such as [7], [8] and [17]), one constructs a highly
ramified tower of regular local rings or local log-regular rings:

ROCSRICRC---

that converges to a (pre)perfectoid ring. Our purposes in this paper are to axiomatize the above towers
and establish a kind of Noetherization of perfectoid theory. As an application, we show a finiteness result
on the divisor class groups of local log-regular rings.

Fix a prime p. The highly ramified towers in the positive characteristic case are of the form

RgRl/f’gRl/Pzg---.

This type of tower also appears when one considers the perfect closure of a reduced [ ,-algebra. Thus we
formulate this class as a tower-theoretic analogue of perfect [ ,-algebras, and call them perfect towers
(Definition 3.2). Next, we introduce perfectoid towers as a generalization of perfect towers, which includes
the towers applied so far (cf. Proposition 3.58 and Example 3.62). A perfectoid tower is given by a direct
system of rings Ry X Ry LN satisfying seven axioms in Definition 3.4 and Definition 3.21. If we
assume that each R; is Noetherian, then these axioms are essential to cope with two main difficulties
which we explain below.

The first difficulty is that the residue ring R;/pR; on each layer is not necessarily semiperfect.
We overcome it by axioms (b), (c), and (d); these ensure the existence of a surjective ring map
F; : Riy1/pRi+1 — R;i/pR; which gives a decomposition of the Frobenius endomorphism. We call F;
the i-th Frobenius projection, and define a ring R;‘b (j = 0) as the inverse limit of Frobenius projections
starting at R;/pR;. Then the resulting tower

R)’ ) R}’ L
is perfect, and thus we obtain the tilting operation ({R;};>o0, {t;}i>0) ~> ({Rf'b}izo, {tl.s'b}izo). We remark
that this strategy is an axiomatization of the principal arguments in [37].

The second one is that each Ris'b could be imperfect. Because of this, the Witt ring W(Ris'b) is often
uncontrollable. On the other hand, the definition of Bhatt—-Morrow—Scholze’s perfectoid rings [5] contains
an axiom involving Fontaine’s theta map 65 : W (S ") — S (see Definition 3.49(3)), where perfectness of .S b
is quite effective. Our axioms (f) and (g) are the substitutes for it; these require the Frobenius projections
to behave well, especially on the p-torsion parts. This idea is closely related to Gabber and Ramero’s
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characterization of perfectoid rings ([17, Corollary 16.3.75]; see also Theorem 3.50). Indeed, we apply it
to deduce that the completed direct limit of a perfectoid tower is a perfectoid ring (Corollary 3.52).

We then verify fundamental properties of the tilting operation for towers. For example, the tilt
({Rl.s'b}l-zo, {tf‘b}izo) is a perfectoid tower with respect to an ideal Ig o C R(S)'b which is the kernel of the
0-th projection Rg'b — Ro/pRo (Proposition 3.41). It induces an isomorphism between two perfectoid
objects of different characteristics modulo the defining ideals (Lemma 3.39). Moreover, this operation
preserves several finiteness properties such as Noetherianness on each layer (Proposition 3.42). A key to
deducing these statements is the following result (see Remark 3.40 for homological interpretation).

Main Theorem 1 (see Theorem 3.35). Ig'b is a principal ideal. Moreover, we have isomorphisms of
= (R;) p-tor (i = 0) that are compatible with {tliv'b}izo and {t;}i>0.

or

(possibly) nonunital rings (R:’b) 1204

Under certain normality assumptions, we obtain a comparison result on the finiteness of étale cohomology
groups under tilting for towers (Proposition 4.7). This proposition is considered to rework the crucial
part of the proof of [8, Theorem 3.1.3] in a systematic way. Actually, our proposition applies beyond the
regular case.

As a typical example, we investigate certain towers of local log-regular rings; this class of rings
is defined by Kazuya Kato, and is central to logarithmic geometry (readers interested in logarithmic
geometry can refer to [17], [26] and [34]). By Kato’s structure theorem, a complete local log-regular
ring (R, Q, o) of mixed characteristic is of the form C(k)[Q®N"]/(p — f) where C (k) is a Cohen ring
of the residue field k of R (see Theorem 2.22). Gabber and Ramero gave a systematic way to build a
perfectoid tower (in our sense) over it, which consists of local log-regular rings (Construction 3.56). In
this paper, we reveal that its tilt also consists of local log-regular rings, and arises from C (k)[QDN"]/(p)
(Theorem 3.61). It says that these two rings on the starting layers fit into a Noetherian variant of the
tilting correspondence in perfectoid theory (e.g. Z, corresponds to [, [[x])).

We regard Theorem 3.61 to be of fundamental importance in the search on the singularities of Noetherian
rings via perfectoid methods. For instance, we can investigate the divisor class groups of local log-regular
rings.! The divisor class group of a Noetherian normal domain is an important invariant, but it is often
hard to compute.? On the other hand, Polstra recently proved a remarkable result stating that the torsion
subgroup of the divisor class group of an F-finite strongly F-regular domain is finite [35]. Based on this
result, we obtain the following finiteness theorem.

Main Theorem 2 (Theorem 4.13). Let (R, Q, «) be a local log-regular ring of mixed characteristic
with perfect residue field k of characteristic tic p > 0, and denote by CI(R) the divisor class group with its
torsion subgroup Cl1(R)¢or. Assume that R“h[ ] is locally factorial, where RS is the completion of the
strict Henselization R*". Then C1(R)r ® Z[p] is a finite group. In other words, the {-primary subgroup
of C1(R) o is finite for all primes £ # p and vanishes for almost all primes £ # p.

IK. Kato proved that a local log-regular ring is a normal domain [26].
2Every abelian group is realized as a divisor class group of some Dedekind domain (due to Claborn’s result [9]).
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Our approach to the above theorem is a combination of Theorem 3.61 and Proposition 4.7.

Although we formulated the above theorem only in mixed characteristic, it has an analogue in charac-
teristic p > 0, which is relatively easy as follows from the fact that F-finite log-regular rings are strongly
F-regular (Lemma 2.25) combined with Polstra’s theorem.

For a local log-regular ring (R, Q, ), Gabber and Ramero constructed the isomorphism C1(Q) = CI(R)
where CI(Q) is the divisor class group of the associated monoid [17, Corollary 12.6.43]. It induces the
finite generation of CI(R).2

Recently, H. Cai, S. Lee, L. Ma, K. Schwede, and K. Tucker proved that the torsion part of the divisor
class group of a BCM-regular ring is finite (see [6, Theorem 7.0.10.]). Since they also proved that local
log-regular rings are BCM-regular, their result recovers Main Theorem 2. Although their approach relies
on the evaluation of a certain inequality with the perfectoid signature which is defined in [6] as an analogue
of F-signature, it does not use a reduction to positive characteristic and is therefore essentially different

from our approach.

Outline. In Section 2, we discuss several properties of monoids and local log-regular rings needed in
later sections. We also record a shorter proof of the result that local log-regular rings are splinter based
on the direct summand theorem in Section 2C.

In Section 3, we introduce the notions of perfect towers, perfectoid towers, and their tilts. The most
part of this section is devoted to studying fundamental properties of them; in particular, Section 3D deals
with Main Theorem 1. In the last subsection Section 3F, we provide explicit examples of perfectoid
towers consisting of local log-regular rings, and compute their tilts.

In Section 4, we give a proof for Main Theorem 2 using the tilting operation, which is an application
of Sections 2 and 3.

In the Appendix, we review the notion of maximal sequences associated to certain differential modules
due to Gabber and Ramero [17]. This plays an important role in the construction of perfectoid towers of
local log-regular rings (Construction 3.56).

Conventions. « We consistently fix a prime p > 0. If we need to refer to another prime, we denote it by £.

« All rings are assumed to be commutative and unital (unless otherwise stated; cf. Theorem 3.35(2)). We
mean by a ring map a unital ring homomorphism.

A local ring is a (not necessarily Noetherian) ring with a unique maximal ideal. When a ring R is local,
then we use mg (or simply m if no confusion is likely) to denote its unique maximal ideal. We say that a
ring map f : R — S is local if R and S are local rings and f~!(mg) = mg.

 Unless otherwise stated, a pair (A, /) consisting of a ring A and an ideal I € A will be simply called a
pair.

e The Frobenius endomorphism on an [ ,-algebra R is denoted by Fg. If there is no confusion, we denote

it by Frob.

3The first-named author recently provided an elementary proof of [17, Corollary 12.6.43]. See [25].
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2. Log-regularity

In this section, we discuss several properties of monoids and local log-regular rings. In Section 2A, we
review basic terms on monoids, and examine the behavior of p-times maps which are effectively used in
Gabber and Ramero’s treatment of perfectoid towers (see Construction 3.56). In Section 2B, we review
the definition of local log-regular rings and crucial results by K. Kato, and study the relationship with
strong F-regularity. In Section 2C, we recall Gabber and Ramero’s result which claims that any local
log-regular ring is a splinter (Theorem 2.29), and give an alternative proof for it using the direct summand
Theorem by Y. André [2] (its derived variant is proved by B. Bhatt [4]).

2A. Preliminaries on monoids.

2A1. Basic terms. Here we review the definition of several notions on monoids.

Definition 2.1. A monoid is a semigroup with a unit. A homomorphism of monoids is a semigroup
homomorphism between monoids that sends a unit to a unit.

Throughout this paper, all monoids are assumed to be commutative. We denote by Mnd the category
whose objects are (commutative) monoids and whose morphisms are homomorphisms of monoids.

We denote a unit by 0. Let Q be a monoid and Q* denote the set of all p € Q such that there exists
g € Q such that p+¢ = 0. Let Q8 denote the set of elements a — b for alla, b € Q, wherea—b=a' — b’
if and only if there exists ¢ € Q such that a + b’ + ¢ = a’ + b + c¢. By definition, Q7 is an abelian group.
The following conditions yield good classes of monoids.

Definition 2.2. Let Q be a monoid.
(1) Qis called integral if for x, x" and y € Q, x + y = x" + y implies x = x'.
(2) Q is called fine if it is finitely generated and integral.
(3) Qs called sharp if Q* =0.
(4) Q is called saturated if the following conditions hold.

(a) Q is integral.
(b) For any x € 987, if nx € Q for some n > 1, then x € O.

For an integral monoid Q, the map (g : Q@ — Q8 ; g — g — 0O is injective (see [34, Chapter I,
Proposition 1.3.3]). In Definition 2.2(4), we identify Q with its image in Q8”.
Next we recall the definition of a module over a monoid.*

Definition 2.3 (Q-module). Let Q be a monoid.
(1) A Q-module is a set M equipped with a binary operation
OxM—->M; (g, x)—~q+x
having the following properties:

“This is called a Q-set in [34]. We call it as above to follow the convention of the terminology in commutative ring theory.
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(@) 04+x =x for any x € M;
® (p+q9)+x=p+(g+x)forany p,g € Qand x € M.

(2) A homomorphism of Q-modules is a (set-theoretic) map f : M — N between Q-modules such that
flg+x)=qg+ f(x) forany g € Q and x € M. We denote by O-Mod the category of Q-modules
and homomorphisms of Q-modules.

For a monoid Q and a family of Q-modules {M,};c;, we denote by | |.._; M; the disjoint union with

iel
the binary operation induced by that of each M;. Then it is the coproduct in Q-Mod.

Definition 2.4 (Monoid algebras). Let R be a ring and let Q be a monoid. Then the monoid algebra
R[Q] is the R-algebra which is the free R-module R®2, endowed with the unique ring structure induced
by the homomorphism of monoids

Q— R[Q]; qr> €.

For a monoid Q, one obtains the functor
O-Mod — R[Q]-Mod ; M — R[M], 2-1)

which is a left adjoint of the forgetful functor R[Q]-Mod — O-Mod. Notice that (2-1) preserves
coproducts (we use this property to prove Proposition 2.8).

Like ideals (resp. prime ideals, the Krull dimension) of a ring, an ideal (resp. prime ideals, the
dimension) of a monoid is defined as follows.

Definition 2.5. Let Q be a monoid.
(1) A Q-submodule of Q is called an ideal of Q.

(2) Anideal [ is called prime if I # Q and p+q € I implies p € I or g € I. Remark that the empty set
& is a prime ideal of Q.

(3) The dimension of a monoid Q is the maximal length d of the ascending chain® of prime ideals
P=qyCqC--Cqa=9",
where Q7 is the set of non-unit elements of Q (i.e. 9T = Q\ Q*). We also denote it by dim O.
Next we review a good class of homomorphisms of monoids, called exact homomorphisms.
Definition 2.6 (Exact homomorphisms). Let P and Q be monoids.
(1) A homomorphism of monoids ¢ : P — Q is said to be exact if the diagram of monoids

P—Y 50

J (pgp J/
psp =y Q8P
18 cartesian.

S1n this paper, the symbol C is used to indicate proper inclusion for making an analogy to the inequality symbols as in [34].
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(2) An exact submonoid of Q is a submonoid Q' of Q such that the inclusion map Q' < Q is exact (in
other words, (Q)8? N Q = Q).

There is a quite useful characterization of exact submonoids (Proposition 2.8). To see this, we recall a
graded decomposition of a @-module attached to a submonoid. For a monoid @ and a submonoid Q' C Q,
we denote by Q — Q/Q’ the cokernel of the inclusion map Q" — Q.

Definition 2.7. Let Q be an integral monoid, and let Q' C Q be a submonoid. Then for any g € Q/Q/,
we denote by 9, a Q’-module defined as follows.

 As aset, Q, is the inverse image of g € Q/ Q' under the cokernel Q — Q/Q’ of Q' — Q.

o The operation Q' x Q, — Q, is defined by the rule (g, x) = ¢ +x (where g + x denotes the sum
of g and x in Q).

By definition, Q = ]_[geQ /o Q, in Q'-Mod. Using this, one can refine a characterization of exact
embeddings described in [34, Chapter I, Proposition 4.2.7].

Proposition 2.8 (cf. [34, Chapter I, Proposition 4.2.7]). Let Q be an integral monoid, and let Q' C Q be
a submonoid. Let 0 : Q <> Q be the inclusion map, and let 7[0] : Z[Q'] — Z[Q] be the induced ring
map. Set G := Q/Q’.

(1) The Z[Q'1-module Z[ Q) admits a G-graded decomposition Z[Q] = @gEG 7[Qy,].

(2) The following conditions are equivalent.

(@) The inclusion map 6 : Q' <> Q is exact. In other words, (Q)8? N Q = Q.
(b) Q=2

(¢c) Z[0] splits as a Z[ Q'-linear map.

(d) Z[0] is equal to the canonical embedding 7[ Q] — @gGG Z[Qgl.

(e) Z[0] is universally injective.

Proof. (1) By applying the functor (2-1) (which admits a right adjoint) to the decomposition Q@ =] | 2eG Lo
we find that the assertion follows.

(2) Since Qy = (Q)8” N Q as sets by definition, the equivalence (a)<(b) follows. The assertion
(a)&(c)<(e) is none other than [34, Chapter I, Proposition 4.2.7]. Moreover, (d) implies (c) obviously.
Thus it suffices to show the implication (b)=>(d). Assume that (b) is satisfied. Then one can decompose Q
into the direct sum of Q'-modules [ | ¢€G Q, with Qp= Q'. Hence the inclusion map Q' — Q is equal to the
canonical embedding Qo <> | [, Q- Thus the induced homomorphism Z[6] : Z[Qo] < Z[[ [ ,c Qe]
satisfies (d), as desired. U

Remark 2.9. In the situation of Proposition 2.8, assume that condition (d) is satisfied. Then the split
surjection 7 : Z[Q] — Z[Q'] has the property that 7(e9) = e? by the construction of the G-graded
decomposition Z[Q] = @, Z[Q,]. Moreover, 7(e2") Ce@)" because QTN Q' € (Q)+. We use this
fact in our proof for Theorem 2.29.
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Proposition 2.8 implies the following useful lemma.

Lemma 2.10. Letr Q be a fine, sharp, and saturated monoid. Let A be a ring. Then there is an embedding
of monoids Q — N such that the induced map of monoid algebras

A[Q] = AN (2-2)
splits as an A[Q]-linear map.
Proof. Since Q is saturated, there exists an embedding Q into some N¢ as an exact submonoid in view of
[34, Chapter I, Corollary 2.2.7]. Then by Proposition 2.8, the associated map of monoid algebras

71Q] — ZIN] (2-3)
splits as a Z[ Q]-linear map. By tensoring (2-3) with A, we get the desired split map. (I

2A2. c-times maps on integral monoids. For an integral monoid Q, we denote by Qg the submonoid of
Q8 ®7 Q defined as
Qo ={x®reQ¥®;Q|xec9, reQs}.

Using this, one can define the following monoid which plays a central role in Gabber and Ramero’s
construction of perfectoid towers consisting of local log-regular rings.
Definition 2.11. Let O be an integral monoid. Let ¢ and i be non-negative integers with ¢ > 0.
(1) We denote by Qgi) the submonoid of Qg defined as
Q' :={reQalcyeq}
(2) We denote by L?) : E.") — Q§i+1) the inclusion map, and by Z[Lgi)] WAl Ei)] — Z[QEHI)] the induced
ring map.
In the rest of this subsection, we fix a positive integer ¢ > 0. To prove several properties of Qgi), the
following one is important as a starting point.
Lemma 2.12. Let Q be an integral monoid. Then for every i > 0, the following assertions hold.
(1) Qgi) is integral.
2) oV = (@M.
(3) The c-times map on Qq restricts to an isomorphism of monoids:
fe: QEH'D = Qii) ;Y >y
Proof. (1) Since Q%7 ®z Q is an integral monoid, so is Qgi).

(2) Since any g € (Qgi))gp satisfies ¢’ g € Q8P, the inclusion map Q87 < (Qgi))g” becomes an isomorphism
@: 0% ;0 (Q?))gp ®z Q by extension of scalars along the flat ring map Z — Q. The restriction
¢ 00— (QE’))@ of ¢ is also an isomorphism, and one can easily check that ¢ restricts to the desired

canonical isomorphism Qi 5 (QEi’)E‘).
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(3) It is easy to see that the c-times map on Qg restricts to the homomorphism of monoids f,. Since the
abelian group Qg = 9Q8” ®z Q is torsion-free, f, is injective. Moreover, any element y in Qgi) is of the
form x ® r for some x € Q% and r € @, which satisfy c(x ® ) =y and ¢ (x ® £) € Q. Hence f, is
also surjective, as desired. ]

Let us inspect monoid-theoretic aspects of the inclusion ¢ : Q&) < QU™

Lemma 2.13. Let Q be an integral monoid, and let P € { fine, sharp, saturated. If Q satisfies P, then
E.l) also satisfies P for everyi > 0.

(@)

Proof. Assume that Q is sharp. Pick x, y € Q. such that x + y = 0. Then ¢'x = 0 because Q is sharp.

Since Qc is a submonoid of the torsion-free group 987 ®z Q, we have x = 0. Next, if Q is fine or
saturated, then it suffices to show the case i = 1 by Lemma 2.12(2). If Q is fine, then there exists a finite

system of generators {x, ..., x,} of Q. Hence Q(]) also has a finite system of generators {x i ® ! }j:1 -

Finally, assume that QE is saturated. Pick an element x of (QC ))gp such that nx € Q . Then the
element cx of Q87 satisfies n(cx) = c(nx) € Q. Hence cx € Q because Q is saturated. O

The assumption of fineness on Q induces several finiteness properties.
Lemma 2.14. Let Q be a fine monoid. Then for every i > 0, the following assertions hold.
(1) The ring map Z[:]: [0V ] — 7[ QY™™ is module-finite.
(2) Qgiﬂ)/Q(l) = (l+1))g1’/(Q(l))gp as monoids. Moreover, Q(l+1)/Q£i)forms a finite abelian group.
(3) For a prime p > 0, we have |Qg+])/Qg)‘ = p® for some s > (.
Proof. In view of Lemma 2.12(2), it suffices to deal with the case when i = 0 only. Here notice that
(0) = 0.
(1) Let { xl, R %xr} be the system of generators of le) obtained in the proof of Lemma 2.13 where

%xj =X ® ;. Then the Z[Q]-algebra Z] 21)] is generated by {e%xl, el e%"f}, and each ¥/ € Z[le)]
is integral over Z[Q]. Hence Z[Lgo)] is module-finite, as desired.

(2) By [34, Chapter I, Proposition 1.3.3], 21) /@ is identified with the image of the composition

QY e (QM)8 — (D)8 / Q8P (2-4)

Since Q'" is generated by 1 1 Q(l))gl’ i ted by 1 1, _1 _1
¢ g Y oX1s o0, 2Xp, We see (Qc is generated by <x1, ..., 2Xp, —CX1, ..., — Xy
as a monoid. On the other hand, —%xj =(c— 1)%xj mod Q8 for j =1, ..., r. Hence (le))gl’/Qgp is

generated by { xj mod Q%P } .—1__, as amonoid. Therefore, the composite map (2-4) is surjective, and
(oVysr / Q8P is a finitely generated torsion abelian group. Thus, oM /Q coincides with (QMyer /8P,
which is a finite abelian group, as desired.

(3) Since there exists a surjective group homomorphism

FiZIpT x - x T pZ - (QD)P)Q¥ 5 (), ..., 7y) > nl(éxl) . +nr(%xr) mod Q¢
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we have p" = |(Q§;1))gp/Qg1’| | Ker(f)|. Hence |(Q§,1))gp/Qgp| = p* for some s > 0. Thus the assertion
follows from (2). O

By assuming saturatedness, one finds the exactness of L(l) : (’) Q('+l) .

Lemma 2.15. Let Q be a saturated monoid. Then for every i > 0, t(l) : (l) Q(l+1)

Qi N (@iyer = o).

Proof. It suffices to show that QE.HI) N (Qgi))gf’ - Qg.i ). Pick an element a € QE.i DA (QE."))gl’. Then
ca € QC) Since Q is saturated by Lemma 2.13, it implies that a € QE’), as desired. U

is exact (i.e.,

If further Q is fine, one can learn more about Z[1] : Z[Q%] — Z[ QY] using the exactness of 1’
assured by Lemma 2.15.

Lemma 2.16. Let Q be a fine and saturated monoid. For every i > 0, set G; 1= QEHI) / Qgi) (which is a
finite abelian group by Lemma 2.14(2)) and K; := Frac(Z] E.’)]).

(1) For any g € G;, we have an isomorphism of 7| El)] modules Z[(Q(IH))g] ®Z[Q§i>] K; =K,

(2) The base extension K; — Z[Q(’+1)] ) K; OfZ[LCl)] is isomorphic to the split injection

7121
K; — (Kp®%; as (a,0,...,0)
as a K;-linear map. In particular, dimg, (Z[QEZH)] ®Z[Q(”] ) |Q§l+1)/Q(l)|.
Proof. In view of Lemma 2.12(2) and Lemma 2.13, it suffices to show the assertions only for the case

when i = 0.

(1) Let y, € le) be an element whose image in le) /Q is equal to g. Then we obtain an injective
homomorphism of Q-modules

g1 Q> (QM)e 5 x> x +y,, (2-5)
which induces an injective Z[Q]-linear map Z[,] : Z[Q] — Z[(QE.D) ¢l Thus it suffices to show that
Coker(Z[tg]) ®z101 Ko = (0), i.e., Coker(Z[i,]) is a torsion Z[Q]-module. On the other hand, we also
have a homomorphism of Q-modules

QMg = Q%1 y > y— .

which induces an embedding of Z[Q]-modules Coker(Z[,]) < Z[Q8P]/Z[Q]. Since Z[Q8P]/Z[Q] is
Z[Q]-torsion, the assertion follows.

(2) This follows from the combination of part (1) with Lemma 2.15 and Proposition 2.8(2). Ol

2B. Local log-regular rings.

2B1. Definition of local log-regular rings. We review the definition and fundamental properties of local
log-regular rings. Unless otherwise stated, we always assume that the monoid structure of a commutative
ring is specified by the multiplicative structure.
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Definition 2.17 [34, Chapter III, Definition 1.2.3]. Let R be a ring and let Q be a monoid with a
homomorphism « : @ — R of monoids. Then we say that the triple (R, O, ) is a log ring. Moreover, we
say that (R, Q, ) is a local log ring if (R, Q, &) is a log ring, where R is a local ring and a H(R*) = 0"

In order to preserve the locality of a log structure, we need the locality of a ring map.

Lemma 2.18. Let (R, Q, &) be a local log ring and let (S, mg) be a local ring with a local ring map
¢:R— S. Then (S, Q, p o) is also a local log ring.

Proof. By the locality of ¢, we obtain the equality (¢ o) ™! (S*) = Q*, as desired. O
Now we define log-regular rings according to [34].

Definition 2.19. Let (R, Q, @) be a local log ring, where R is Noetherian and Q= Q/Q* is fine and
saturated. Let I, be the ideal of R generated by the set «(Q"). Then (R, Q, «) is called a log-regular
ring if the following conditions hold.

(1) R/I, is a regular local ring.
(2) dimR =dim R/I, + dim Q.

Remark 2.20. For a monoid Q such that Q is fine and saturated, the natural projection 7 : Q — Q splits
(see [17, Lemma 6.2.10]). Thus, in the situation of Definition 2.19, « extends to the homomorphism of
monoids @ : @ — R along 7. Namely, we obtain another local log-regular ring (R, Q, &) with the same
underlying ring, where Q is fine, sharp, and saturated.

In his monumental paper [26], Kato considered log structures of schemes on the étale sites, and he then
considered them on the Zariski sites [27]. However, we do not need any deep part of logarithmic geometry
and the present paper focuses on the local study of schemes with log structures. We should remark that if
k is any fixed field and Q € N¢ is a fine and saturated monoid, then the monoid algebra k[Q] is known
as an daffine normal semigroup ring which is actively studied in combinatorial commutative algebra (see
the book [30]). The following theorem is a natural extension of the Cohen—Macaulay property for the
classical toric singularities over a field proved by Hochster [22].

Theorem 2.21 [27, Theorem 4.1]. Every local log-regular ring is Cohen—Macaulay and normal.

Let R be a ring and let Q be a fine sharp monoid. We denote by R[Q™] the ideal of R[Q] generated
by elements ) geo+ g e?, where a, is an element of R. Then we denote by R[[ Q] the adic completion
of R[Q] with respect to the ideal R[QT].

As to the structure of complete local log-regular rings, we have the following result analogous to the
classical Cohen’s structure theorem, originally proved in [27]. We borrow the presentation from [34,
Chapter III, Theorem 1.11.2].

Theorem 2.22 (Kato). Let (R, Q, o) be a local log ring such that R is Noetherian and Q is fine, sharp,
and saturated. Let k be the residue field of R and mp, its maximal ideal. Let r be the dimension of R/I,.
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(1) Suppose that R contains a field. Then (R, Q, «) is log-regular if and only if there exists a commutative
diagram
Q——kl[QeNT]

T

where R is the completion along the maximal ideal and \ is an isomorphism of rings.

(2) Assume that R is of mixed characteristic p > 0. Let C(k) be a Cohen ring of k. Then (R, Q, ) is

log-regular if and only if there exists a commutative diagram

Q—CHIQeNT]

L

R———R

where R is the completion along the maximal ideal and ' is a surjective ring map with Ker(y) = (6)
for some element 6 € my whose constant term is p. Moreover, Ker(y) = (8") for any element

0’ € Ker(y) whose constant term is p.

Proof. Assertion (1) and the first part of (2) are [34, Chapter III, Theorem 1.11.2]. Pick an element
0’ € Ker(yr) whose constant term is p. Note that 8’ is a regular element that is not invertible. By [34,
Chapter 11, Proposition 1.10.13], C(k)[Q ® N1 /(8’) is a domain of dim Q + r = dim R = dim R. Thus
Ker(y) = (') holds.® O

The completion of a normal affine semigroup ring with respect to the ideal generated by elements of
the semigroup is a typical example of local log-regular rings:

Lemma 2.23. Let Q be a fine, sharp and saturated monoid and let k be a field. Then (k[ Q], O, 1) is a
local log-regular ring, where 1 : Q — k[ Q] is the natural injection.

Proof. By [34, Chapter I, Proposition 3.6.1], (k[ Q]l, Q, ¢) is a local log ring. Now applying Theorem 2.22,
it is a local log-regular ring. Il

2B2. Log-regularity and strong F-regularity. Strongly F-regular rings are one of the important classes
appearing in the study of F-singularities. Let us recall the definition.

Definition 2.24 (strong F-regularity). Let R be a Noetherian reduced [ ,-algebra that is F'-finite. Let F R
be the same as R as its underlying abelian groups with its R-module structure via restriction of scalars via
the e-th iterated Frobenius endomorphism Fg on R. Then we say that R is strongly F-regular, if for any
element ¢ € R that is not in any minimal prime of R, there exist an e > 0 and a map ¢ € Homg(F¢R, R)
such that ¢ (Ffc) = 1.

SThis argument is due to Ogus. See the proof of [34, Chapter III, Theorem 1.11.2(2)].
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It is known that strongly F-regular rings are Cohen—Macaulay and normal (for example, see [28,
Proposition 4.4 and Theorem 4.6]). Let us show that log-regularity implies strong F-regularity (in positive
characteristic cases).

Lemma 2.25. Let (R, Q, @) be a local log-regular ring of characteristic p > 0 such that R is F-finite.
Then R is strongly F-regular.

Proof. The completion of R with respect to its maximal ideal is isomorphic to the completion of
k[Q @& N'], and Q is a fine, sharp and saturated monoid by Theorem 2.22 and [34, Chapter I, Proposition
3.4.1]. Then it follows from Lemma 2.10 that Q @ N" can be embedded into N for d > 0, and
K[QBN']— k[N = k[x1, ..., x4] splits as a k[Q & N"]-linear map. Applying [23, Theorem 3.1], we
see that k[Q & N"] is strongly F-regular. After completion, the complete local ring k[[Q & N"] is strongly
F-regular in view of [1, Theorem 3.6]. Then by faithful flatness of R — k[[Q & N"]], [23, Theorem 3.1]
applies to yield strong F-regularity of R. O

Under the hypothesis in the following proposition, one can easily establish the finiteness of the torsion
part of the divisor class group, which is the first assertion of Theorem 4.13.

Proposition 2.26. Assume that R = C(k)[[Q]l, where C (k) is a Cohen ring with F-finite residue field
k and Q is a fine, sharp, and saturated monoid. Let CI(R) be the torsion subgroup of C1(R). Then
Cl(R)tor ® Z(y) is finite for all £ # p, and vanishes for almost all £ # p.

Proof. Since R = C(k)[Q]], we have
R/pR =k[ Q]

which is a local F-finite log-regular ring. There is an induced map ClI(R) — CI(R/pR). By restriction,
we have CI(R)ior = CI(R/pR)ir. Then Lemma 2.25 together with Polstra’s result [35] says that
CI(R/pR)o is finite. Let Cy be the maximal £-subgroup of CI(R),. Since £ # p, we find that the map
CI(R)tor = CI(R/pR)io restricted to Cy is injective in view of [18, Theorem 1.2]. In conclusion, C; is
finite for all £ # p, and C, vanishes for almost all £ # p, as desired. ]

2C. Log-regularity and splinters. Local log-regular rings have another notable property; they are splin-
ters. Let us recall the definition of splinters.

Definition 2.27. A Noetherian ring A is a splinter if every finite ring map f : A — B such that
Spec(B) — Spec(A) is surjective admits an A-linear map 2 : B — A such that 1o f =idy.

In general, it is not easy to see which algebraic operations preserve splinters. In fact, it remains
unsolved whether polynomial rings over a splinter are splinters (see [10, Question 1’]). Regarding these
issues, Datta and Tucker proved remarkable results such as [10, Theorem B], [10, Theorem C], and [10,
Example 3.2.1]. See also Murayama’s work [32] for the study of purity of ring extensions.

In order to prove the splinter property, we need a lemma on splitting a map under completion.
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Lemma 2.28. Let R be a ring and let f : M — N be an R-linear map. Consider a decreasing filtration
by R-submodules {M, },ca of M and a decreasing filtration by R-submodules {N,},ca of N such that
f(M,) C N, foreach A € A. Set
M :=1lim M/M; and N :=lim N/N;.
AEA rEA

Finally, assume that f is a split injection that admits an R-linear map g : N — M such that g o f =idy,
g(N,) C M, foreach » € A. Then f extends to a split injection M — N.

Proof. By assumption, there is an induced map

MM L NN, S mym,

which is an identity on M /M, . Taking inverse limits, we get an identity map M — N — M, which
proves the lemma. U

The next result is originally due to Gabber and Ramero [17, Theorem 17.3.12].7 We give an alternative
and short proof, using the direct summand theorem by André [2].

Theorem 2.29. A local log-regular ring (R, O, «) is a splinter.

Proof. First, we prove the theorem when R is complete. By Remark 2.20, we may assume that Q is fine,
sharp, and saturated. By Theorem 2.22, we have

RZK[Q®N, or RZCH[QBNT/(p— f),

depending on whether R contains a field or not. Let us consider the mixed characteristic case. By
Lemma 2.10, there is a split injection C(k)[Q ® N"] — C (k)[N?] for some d > 0, which comes from an
injection § : Q ®N" — N that realizes §(Q @ N") as an exact submonoid of N“. After dividing out by
the ideal (p — f), we find that the map

CrIQadN1/(p—f)— COINT/(p— f)

splits as a C(k)[Q & N']/(p — f)-linear map by Remark 2.9 and Lemma 2.28. Hence, R becomes a
direct summand of the complete regular local ring A := C(k)[xy, ..., xqs1/(p — f). By invoking [10,
Proposition 2.2.8] and the Direct Summand Theorem [2], we see that R is a splinter. The case where
R = k[Q & N"] can be treated similarly.

Next let us consider the general case. Then the completion map R — R is faithfully flat and Risa
complete local log-regular ring (see Theorem 2.22). Hence applying the complete case as above and [10,
Proposition 2.2.8] shows that R is a splinter, as desired. O

7One notices that the treatment of logarithmic geometry in [17] is topos-theoretic, while [27] considers mostly the Zariski
sites.
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3. Perfectoid towers and small tilts

In this section, we establish a tower-theoretic framework to deal with perfectoid objects using the notion
of perfectoid towers. We first introduce the class of perfect towers (Definition 3.2) in Section 3A, and
then define inverse perfection of towers (Definition 3.8) in Section 3B. These notions are tower-theoretic
variants of perfect [ ,-algebras and inverse perfection of rings, respectively. In Section 3C, we give a set
of axioms for perfectoid towers. In Section 3D, we adopt the process of inverse perfection for perfectoid
towers as a new tilting operation. Indeed, we verify the invariance of several good properties under the
tilting; Main Theorem 1 is discussed here. In Section 3E, we describe the relationship between perfectoid
towers and perfectoid rings. This subsection also includes an alternative characterization of perfectoid rings
without A;,¢. In Section 3F, we calculate the tilts of perfectoid towers consisting of local log-regular rings.

3A. Perfect towers. First of all, we consider the category of towers of rings.
Definition 3.1 (towers of rings).

(1) A tower of rings is a direct system of rings of the form

1o 1 [5) ti—1 1

Ry R, R, R; cee

and we denote it by ({R;}i>0, {ti}i>0) or {Ro o, R, L\ .y

(2) A morphism of towers of rings f : ({R;}i0, {ti}i=0) = ({R!}i>0, {t/}i>0) is defined as a collection of
ring maps { f; : R; — R};>o that is compatible with the transition maps; in other words, f represents
the commutative diagram

Ry Ry R cee R;
ﬁl ﬂl ﬁl ﬁl
Ry~ Ry —— Ry~ —— K|

For a tower of rings ({R;}i>0, {#;}i>0), we often denote by R an inductive limit lim,_, R;. Clearly, an
isomorphism of towers of rings ({R;}i>0, {ti}i=0) = ({R!}i>0, {t/}i>0) induces the isom_orphism of rings
R i R/ . For every i > 0, we regard R;; as an R;-algebra via the transition map .

Recall that the direct perfection of an [ ,-algebra R, which we denote by RPeT s the direct limit of
the tower ({R;}i>0, {#;}i>0) where R; = R and t; = Fg, for every i > 0. We denote by ¢r : R — RPet the
natural map Ry — lim,_, R;. If R is reduced, this tower can be regarded as ring extensions obtained
by adjoining p’-th roots_(cf. Example 3.3). We formulate such towers as follows, and call them perfect

towers.

Definition 3.2 (perfect towers). A perfect [F,-tower (or, perfect tower as an abbreviated form) is a tower
of rings that is isomorphic to a tower of the following form, where R is a reduced [ ,-algebra:

j LI SNy S LT (3-1)
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Example 3.3. Let R be a reduced F,-algebra. Let R/ "' be the ring of p-th roots of elements of R

. 1 ! t .
for every i > 0.8 Then the tower R —> RU/? 25 RU/P* B ... is a perfect tower. Indeed, we have an
i+1

isomorphism F; : RPN 5 RUP ; x = xP. By putting Fo ;41 := Fpo---o F;, we obtain the desired

commutative ladder:

. .
RPN O pup M eyt

lFo,o lFo.l lFO,i

Fr Fr Fr Fg

3B. Purely inseparable towers and inverse perfection. In this subsection, we define inverse perfection
for towers, which assigns a perfect tower to a tower by arranging a certain type of inverse limits of rings.
For this, we introduce the following class of towers that admit distinguished inverse systems of rings.

Definition 3.4 (purely inseparable towers). Let R be a ring, and let / € R be an ideal.

(1) A tower ({R;}i>0, {ti}i>0) is called a p-purely inseparable tower arising from (R, I) if it satisfies
the following axioms.
(@) Ro=Rand p el.
(b) For any i > 0, the ring map 7; : R;/IR; — R;+1/IR;+ induced by ¢; is injective.
(c) For any i > 0, the image of the Frobenius endomorphism on R;;;/IR;1 is contained in the

image of t; : R;/IR; — Ri11/IR;11.

(2) Let ({R;}i>0, {ti}i>0) be a p-purely inseparable tower arising from (R, ). For any i > 0, we denote
by F; : Ri+1/IR;+1 — R;/IR; the ring map (which uniquely exists by axioms (b) and (c)) such that
the following diagram commutes:

PRy /1R 1

Riy1/IRiy1 ——— Riy1/IRi)
\ ; T (3-2)
Fi
Ri/IR;.
We call F; the i-th Frobenius projection (of ({R;}i>0, {ti}i>0) associated to (R, I)).

Hereafter, we leave out “p-" from “p-purely inseparable towers” if no confusion occurs. Similarly, we
omit the parenthetic phrase “of ... associated to (R, I)” subsequent to “the i-th Frobenius projection”

(but we should be careful in some situations; cf. Remark 3.38).

Throughout this paper, when a purely inseparable tower ({R;};>0, {#i}i>0) is given and its starting layer
(R, I) is clear from the context, we denote R;/IR; by R; for every i > 0.

Example 3.5. Any perfect tower is a purely inseparable tower. More precisely, ({R}i>0, {Fr}i>0)
appearing in Definition 3.2 is a purely inseparable tower arising from (R, (0)). Indeed, axioms (a) and (c)

8For more details of the ring of p-th roots of elements of a reduced ring, we refer to [28].
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are obvious, and axiom (b) follows from reducedness of R. The i-th Frobenius projection is given by the
identity map on R.

To develop the theory of perfectoid towers, we often use a combination of diagram (3-2) in Definition 3.4
and diagram (3-3) in the following lemma.

Lemma 3.6. Let ({R;}i>o0, {ti}i>0) be a purely inseparable tower arising from some pair (R, I). Then for

every i > 0, the following assertions hold.
(1) Ker(F;) = Ker(F§i+1 ). In particular, F; is injective if and only U‘Ei+1 is reduced.
(2) Any element of R;1 is a root of a polynomial of the form X? —t;(a) with a € R;. In particular, the
ring map t; : Rj — R4 is integral.

(3) The following diagram commutes:

F;
\ (3-3)
_—

R;.

Proof. Since t; is injective, the commutative diagram (3-2) yields assertion (1). Moreover, (3-2) also
yields the equality x? — ; (F;(x)) = O for every x € R i+1. Hence assertion (2) follows. To prove (3), let
us recall the equalities

;o Fg = Fg,., ofi=t;0F;of;,

where the second one follows from the commutative diagram (3-2). Since 7; is injective, we obtain the
equality Fg = F; ot;, as desired. O

Lemma 3.6(3) is essential for defining inverse perfection of towers (cf. Definition 3.8(2)). Moreover,
it provides a useful tool for studying direct perfection on each layer. Recall that for an [ ,-algebra
homomorphism f : R — S, there exists a unique ring map P : RPerf — §perf gych that the following
diagram commutes (the notations are explained just before Definition 3.2):

R— s

Pr l ldJs
fperf

Rperf Sperf .
Corollary 3.7. Keep the notation as in Lemma 3.6. Then (;)P°™ : (R;)P" — (R; )P is an isomorphism
of rings whose inverse map is (F;)P : (R; ;1P — (R;)* up to the Frobenius automorphisms.

Proof. By Lemma 3.6(3), F, (Rippert is described as (F EM)Perf = (1;)P o Fl.perf, and it is an automorphism.
Similarly, it follows from the commutative diagram (3-2) that F;’ ° o (7:)P" is the Frobenius automorphism
of (R;)P*. Hence the assertion follows. [l
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Definition 3.8 (inverse perfection of towers). Let ({R;}i>0, {fi}i>0) be a (p-)purely inseparable tower
arising from some pair (R, I).

(1) For any j > 0, we define the j-th inverse quasi-perfection of ({R;}i>0, {ti}i>0) associated to (R, I)
as the limit

_ Fivi — Fj —
(Rj);j'frep i=lm{- - — Rj4ip1 —> Rjpi — - — R;}.
(2) For any j > 0, we define an injective ring map (tj)?'frep : (R.,-)‘II'frep — (R.,-+1)?'frep by the rule
f -
)T " ((@i)i=0) := (j+i(ai))io-

We call the resulting tower ({(R)? ™ };z0, {(1)7 "P)i0) the inverse perfection of ({Ri}i=0, {1i}i=0)
associated to (R, I).

(3) For any j > 0, we define a ring ma; (F-)q'frelD (R -+1)q‘frep — (R ~)q'frep by the rule
y gmap (£';); j+r i1 y
A
(F)T ™ ((a1)i»0) := (Fj+i(ai))iz0- (3-4)
(4) For any j > 0 and for any m > 0, we denote b CID,(,{ ) the m-th projection map:
y y y proj p
(Rj)?frep — Rjpm 5 (@)iso > am.
If no confusion occurs, we also abbreviate (R;)? P, (1;)? ", (F;)T"P 1o R;{'frep, t;"frep : F;"frep.

Example 3.9. Let R be an [,-algebra. Set R; := R and ¢; := idg for every i > 0. Then the tower
({Ri}i>o0, {ti}i>0) is a purely inseparable tower arising from (R, (0)). Moreover, for every j > 0, the
attached j-th inverse quasi-perfection is a limit

. F F F
R —fim{... =% R -5 R & R},
J —
which is none other than the inverse perfection of R.
In the situation of Definition 3.8, we have the commutative diagram:

f F(R url)q.frcp f
q.frep J+D1 q.frep
(Rj+1); (Rj+1);

Te] 3'5
(Fj)l'

A
(R4 P,

Therefore the tower ({(R,')‘I"frep}izo, {(ti)‘}'frep}izo) is also a purely inseparable tower associated to
((R)]™, (0)).

In the rest of this subsection, we fix a purely inseparable tower ({R;}i>0, {fi}i>0) arising from
some pair (R, I). Keep in mind that the inverse perfection ({(Ri)‘ll'frep}[zo, {(t[)?'frep},-zo) is given
in Definition 3.8(2), and its Frobenius projections {(Fi);" frep }i>o are described in Definition 3.8(3). Some
basic properties of inverse quasi-perfection are contained in the following proposition.



Perfectoid towers, tilts and étale cohomology groups 2325

Proposition 3.10. The following assertions hold.

(1) For any j > 0, the following assertions hold.
(a) Let J C (R j)‘;'frep be a finitely generated ideal such that J kc Ker(CD(()j )) for some k > 0 (see
Definition 3.8(4) for QD(()] )). Then (R j)?'frep is J-adically complete and separated.
(b) Let x = (x;)i>0 be an element of (Rj)?'trep. Then x is a unit if and only if xo € R;/IR; is a unit.

. . frep
(c) The ring map (Fj)?

(2) ({(Ri)‘}'frep}izo, {(ti)cl"frep}izo) is a perfect tower. In particular, each (Ri)?'frep is reduced.

is an isomorphism.

Proof. (1) Since ({(R;4:)7™P};>0, {(lj+i)[11'frep}izo) is the inverse perfection of ({R;;}i>0, {j+i}i=0),
we are reduced to showing the assertions in the case when j = 0.
(a): By definition, (Ro);"frep is complete and separated with respect to the linear topology induced by the

descending filtration
Ker(®f”) 2 Ker(®{”) 2 Ker(®3") 2 -+ .

Moreover, since J* C Ker(fb(()o)), we have (J ")[”i] - Ker(fblfo)) for every i > 0 by the commutative
diagram (3-2).2 On the other hand, since J* is finitely generated, (J kyp'r < (JIP' for some r > 0. Thus
the assertion follows from [15, Lemma 2.1.1].

(b): It is obvious that xy € Ry is a unit if x € (Ro)‘ll'frep is a unit. Conversely, assume that xq € Ry is
a unit. Then for every i > 0, xf " is a unit because it is the image of xp in R;. Hence x; is also a unit.
Therefore, we have isomorphisms R;/IR; RN R;/IR; (i > 0) that are compatible with the Frobenius
projections. Thus we obtain the isomorphism between inverse limits (Ro)?frep 5 (Ro)?frep, which
yields the assertion.

(c): Consider the shifting map s : (Ro)‘lf'frep — (Rl)?'frep defined by the rule so((a;)i>0) := (@i+1)i>0-
Then one can easily check that sq is the inverse map of (Fo)‘," frep.

(2) Define Fg'l.frep : (Ri)‘ll'frep — (Ro)?'frep as the composite map (Fo)?'frep 0--+0 (Fi,l)(;'frep ifi>1)
or the identity map (if i = 0). Then the collection {Fé{ ‘l.frep},-zo gives a morphism of towers from

F .fre F . frej
(R P (R P

AR)T " Phizo, ()] " Phiz0) to {(R)] ™ (Ro)| ™
and Lemma 3.6(1), we complete the proof. U

+++}. Using assertion (1-c)

The operation of inverse quasi-perfection preserves the locality of rings and ring maps.

Lemma 3.11. Assume that R; is a local ring for any i > 0, and I # R. Then for any j > 0, the following

assertions hold.
(1) The ring maps tj, t ;, and F; are local.
2) (R j)?'frep is a local ring.
(3) The ring map (tj)?'frep : (Rj)?'frep — (Rj+1)?‘frep is local.

9The symbol / [P"] for an ideal / in an F p-algebra A is the ideal generated by the elements x” " forx e 1.
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Proof. As in Proposition 3.10(1), it suffices to show the assertions in the case when j = 0.

(1) Since the diagrams (3-2) and (3-3) are commutative, Fy o 7o and 7o o Fy are local. Hence 7o and Fj
are local. In particular, the composition Ry — Ro R 1 is local. Since this map factors through 1y, #o is
also local, as desired.

(2) Let mg be the maximal ideal of Ry. Consider the ideal
(m)? " = {(x7)i=0 € (Ro)§ "™ | x0 € mo/ IRy},

where mg /IRy is the maximal ideal of Ro. Then by Proposition 3.10(1-b), (mo)?'frep is a unique maximal
ideal of (Ro)?frep . The assertion follows.

(3) By assertion (2), ({(R)Y ™ }iz0, {(t)? "P}iz0) is a purely inseparable tower of local rings. Hence
by (1), (10)% "™ is local. o

A purely inseparable tower also satisfies the following amusing property. This is well-known in positive
characteristic, in which case R; — R, gives a universal homeomorphism (i.e. the induced morphism of
schemes Spec R;11 — Spec R; is a universally homeomorphism). See also Proposition 3.45.

Lemma 3.12. For everyi > 0, assume that R; is I-adically Henselian."® Then the ring map t; induces an

equivalence of categories:

FEt(R) = FEL(R ),
where FEt(A) is the category of finite étale A-algebras for a ring A.

Proof. By Corollary 3.7, we obtain the commutative diagram of rings

1
Ri — Ri+l

ﬂil lﬂiﬂ

Ri —l) EH—I (3'6)

¢RiJ/ J¢R;+1

n \perf Pt erf
(R)P —— (Ri11)P
where ; (j € {i,i + 1}) is the natural projection, and the bottom map is an isomorphism. Since the
Frobenius endomorphism on any [ ,-algebra gives a universal homeomorphism [38, Tag 0CC6], so does
o} 3 by [38, Tag 01YW] and [38, Tag 01YZ]. Hence ¢ 3 induces an equivalence of categories of finite
étale algebras over respective rings in view of [38, Tag OBQN]. The same assertion holds for 77; by the
lifting property of a henselian pair [38, Tag 09ZL]. By going around the diagram (3-6), we finish the
proof. (Il

10This condition is realized if R is I-adically Henselian and each ¢; : R; — R; 1 is integral.
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3C. Axioms for perfectoid towers.

3C1. Remarks on torsion. In the subsequent Section 3C2, we introduce the class of perfectoid towers
as a generalization of perfect towers. For this purpose, we need to deal with a purely inseparable tower
arising from (R, I) in the case when I = (0) at least, and hence plenty of /-torsion elements. Thus we
begin by giving several preliminary lemmas on torsion of modules over rings.

Definition 3.13. Let R be a ring, and let M be an R-module.

(1) Let x € R be an element. We say that an element m € M is x-torsion if x"m = 0 for some n > 0.
We denote by M, o, the R-submodule of M consisting of all x-torsion elements in M.

(2) Let I C R be an ideal. We say that an element m € M is I-torsion if m is x-torsion for every x € I.
We denote by M., the R-submodule of M consisting of all /-torsion elements in M. Note that
M (xy-tor = My_tor = Myn_or for every n > 0.

(3) For an element x € R (resp. an ideal / € R), we say that M has bounded x-torsion (resp. bounded
[ -torsion) if there exists some [ > 0 such that x! M, o = (0) (I' M1_1or = (0)).

(4) For anideal I C R, we denote by ¢; a1 M1or = M /I M the composition of natural R-linear maps:
Mior—> M — M/IM. (3-7)
First we record the following fundamental lemma.

Lemma 3.14. Let R be a ring, and let M be an R-module. Let x € R be an element. Then for every n > 0,
we have

n n
My or NX"M = x" M 0.

Proof. Pick an element m € M, o N x" M. Then m = x"m for some my € M, and x'm = 0 for some
I > 0. Hence x't"my = 0, which implies that mg € M, or and thus m € x" M, ;. The containment

X"Mtor € My 1or N X" M is clear. U

Corollary 3.15. Keep the notation as in Lemma 3.14, and suppose further that x M or = (0). Then the
map @oy,m = Myor = M /xM (see Definition 3.13(4)) is injective.

Proof. Tt is clear from Lemma 3.14. U
Lemma 3.14 is also applied to show a half part of the following useful result.

Lemma 3.16. Keep the notation as in Lemma 3.14, and suppose further that M has bounded x-torsion.
Let M be the x-adic completion of M, and let  : M — M be the natural map. Then the restriction

Yior : Mytor = (ﬁ )x-tor Of W is an isomorphism of R-modules.

Proof. By assumption, there exists some / > 0 such that x'M,_ior = (0). On the other hand, Ker({ror) =
M, o N ﬂflozo x"M 1is contained in M,_io; N x! M, which is equal to XMy ior by Lemma 3.14. Hence o
is injective.
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Let us prove the surjectivity. Let N denote the x-adic completion of N for every R-module N. Then
we obtain the commutative diagram of R-modules:

L b

0 Mx—tor M M/Mx—tor —0

e | Jw | (3-8)

— h —~ ~

0 M, ior M " M/M, oy — 0

where ¢ is the inclusion map and 7 is the natural projection. Since 1 ot factors through ¥, it suffices to
show that (M Vx-tor © Im(To Yy ). First, ¥y . is bijective because it is isomorphic to the canonical
isomorphism Mo/ (x)) 3 m/ (x"). To show that (M)y.cor < Im(?), note that the top row of (3-8)
forms an exact sequence, and it consists of R-modules that have bounded x-torsion. Then by [38, Tag
0923] and right exactness of derived completion functors, Ker(s7) = Im(?) (in fact, the bottom sequence
is also exact because Y, is injective). Since M//I\Z_tor is x-torsion free by [14, Chapter II, Lemma 1.1.5],

(1\//} )r-tor € Ker(7). The assertion follows. O
The following lemma is used for proving Main Theorem 1 (cf. Lemma 3.48).

Lemma 3.17. Let R be a ring, and let M be an R-module. Let x € R be an element. Then for every n > 0,

we have

Annyg /ey (x) C Im(@eeny pr) +x" (M /x"M). (3-9)

Proof. Pick an element m € M such that xm € x"M. Then x(m — x"~'m’) = 0 for some m’ € M. In

particular, m — x"~'m’ € Mn_ior. Hence m mod x” M lies in the right-hand side of (3-9), as desired. [

In the case when M = R, we can regard M. as a (possibly) nonunital subring of R. This point
of view provides valuable insights. For example, “reducedness” for R; ., induces a good property on
boundedness of torsions.

Lemma 3.18. Let (R, I) be a pair such that R does not contain any non-zero nilpotent element of R.
Then IR 1o = (0).

Proof. Tt suffices to show that xR; ., = O for every x € I. Pick an element a € R;,. Then for a
sufficiently large n > 0, x"a = 0. Hence (xa)" = x"a -a"~! = 0. Thus we have xa = 0 by assumption,
as desired. O

Corollary 3.19. Let ({R;}i>0, {ti}i>0) be a purely inseparable tower arising from some pair (R, I). Then
for every i > 0 and every ideal J < (R;)?"®, we have J((R))" ") .1or = (0).

Proof. Since (R,-)?' frep js reduced by Proposition 3.10(2), the assertion follows from Lemma 3.18. [J

Furthermore, we can treat R; o as a positive characteristic object (in the situation of our interest),
even if R is not an [ ,-algebra.



Perfectoid towers, tilts and étale cohomology groups 2329
Lemma-Definition 3.20. If (R, I) is a pair such that p € I and IR| 1o = (0), the multiplicative map
Riior = Riior; x = x? (3-10)
is also additive. We denote by Fy, the map (3-10).
Proof. This immediately follows from the binomial theorem. (I
3C2. Perfectoid towers and pillars.

Definition 3.21 (perfectoid towers). Let R be a ring, and let /o € R be an ideal. A tower ({R;}i>0, {ti}i>0)
is called a (p)-perfectoid tower arising from (R, Ip) if it is a p-purely inseparable tower arising from
(R, Ip) (cf. Definition 3.4(1)) and satisfies the following additional axioms.

(d) For every i > 0, the i-th Frobenius projection F; : Rj+1/IoR;+1 — R;/IpR; (cf. Definition 3.4(2)) is
surjective.

(e) For everyi >0, R; is an Ip-adically Zariskian ring (in other words, IpR; is contained in the Jacobson
radical of R;).

(f) Iy is a principal ideal, and R; contains a principal ideal /; that satisfies the following axioms.
(f-1) I} = IyR;.
(f-2) For every i > 0, Ker(F;) = I} (Ri+1/IoRi+1).

(g) For every i > 0, Io(R;)1y-or = (0). Moreover, there exists a (unique) bijective map (Fj)ior :

(Ri+1) 1p-tor = (Ri) 1p-tor such that the diagram

$Io.Ri 11
(Ri+1) 1g-tor — Rit1/IoRi+1

m{ lF (3-11)

(R;) 1y-tor o R; /Iy R;
0:R;

commutes (see Definition 3.13 for the notation; see also Corollary 3.15).

Remark 3.22. If ] is generated by an element whose image in R; is a non-zerodivisor for every i > 0,
then axiom (g) is satisfied automatically. If R; is reduced and Iy = (0), then axiom (g) follows from
axioms (d) and (f). Consequently, if every ¢; is injective and lim,_ R; is a domain, one can ignore axiom
(g) when checking that ({R;}i>0, {#}i>0) is a perfectoid tower. B

We have some examples of perfectoid towers.

Example 3.23. (1) (cf. [37, Definition 4.4]) Let (R, m, k) be a d-dimensional complete unramified
regular local ring of mixed characteristic p > 0 whose residue field is perfect. Then we have

R WWH)xa, ..., x4l
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For every i > 0, set R; := R[pl/f’i, le/p

i, R x;/pi], and let ¢; : R; — R;+1 be the inclusion map.
Then the tower ({R;}i>0, {ti}i>0) is a perfectoid tower arising from (R, (p)). Indeed, the Frobenius
projection F; : Riy1/pRi+1 — Ri/pR; is given as the p-th power map.'!

(2) For some generalization of (1), one can build a perfectoid tower arising from a complete local
log-regular ring. For details, see Section 3F.

(3) We note that #; (resp. F;) of a perfectoid tower is not necessarily the inclusion map (resp. the p-th
power map). For instance, let R be a reduced [ -algebra. Set R; := R, t; :== Fg, and F; :=idy for
every i > 0. Then ({R;}i>0, {ti}i>0) is a perfectoid tower arising from (R, (0)).

The class of perfectoid towers is a generalization of perfect towers.
Lemma 3.24. Let ({R;}i>0, {ti}i>0) be a tower of [ ,-algebras. The following conditions are equivalent.
() ({R;}i>o0, {ti}i=0) is a perfect [ ,-tower (cf. Definition 3.2).
(2) ({Ri}i0, {ti}is0) is a p-perfectoid tower arising from (Rp, (0)).
Proof. (1) = (2) We may assume that ({Ri}i=o, {#:}i=0) is of the form R ~% R 28 R & ... (see
Definition 3.2). By Example 3.5, this is a purely inseparable tower arising from (R, (0)). Axiom (e) in

Definition 3.21 is obvious. Axioms (d), (f), and (g) are also satisfied, since the Frobenius projection F;
(cf. Example 3.5) is an isomorphism for any i > 0. This yields the assertion.

(2) = (1) Conversely, assume that ({R;};>0, {fi}i>0) is a perfectoid tower arising from (Ryp, (0)). Since F;
is identified with (F;)r in axiom (g), the injectivity of (F;)q, implies that F; is injective. In other words,
R; is reduced by Lemma 3.6(1). Furthermore, F; is an isomorphism by axiom (d) or the surjectivity of
(Fi)ior- Hence we obtained the desired isomorphism of towers:

Ry o R n Ry 2 R3 SN
lidRO lF() ngoFl lFoOFlon (3_12)
R R R R e
0 Pl 0 Pl 0 P, 0 Pl
The assertion follows. ]

For a perfectoid tower ({R;}i>0, {t;}i>0) arising from (R, Ip), an ideal I} € R; appearing in axiom (f)
in Definition 3.21 is unique. Indeed, it contains Iy R, and its image via the projection R, — R; is a fixed
ideal Ker(Fp).

Definition 3.25. We call I, the first perfectoid pillar of ({R;}i>0, {ti}i>0) arising from (R, Ip).

The relationship between Iy and I, can be observed also in higher layers (see Proposition 3.26 below).
In the rest of this section, we fix a perfectoid tower ({R;};>0, {t;}i>0) arising from some pair (R, I), and
let I denote the first perfectoid pillar.

H Axiom (f-2) follows from the normality of R;. The other axioms are clearly satisfied.
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Proposition 3.26. (1) For a sequence of principal ideals {I; C R;};>2, the following conditions are
equivalent.
(@) F'(IR;) = Iy Riy1 for everyi = 0.
(b) Fi(Iis1Ri11) = LiR; for every i > 0.
(2) Each one of the equivalent conditions in (1) implies that Il.‘il = I;R;1 foreveryi > 0.
(3) There exists a unique sequence of principal ideals {I; C R;};>o that satisfies one of the equivalent

conditions in (1). Moreover, there exists a sequence of elements {]_”,- € Ei}[zo such that I; R; = (]71-)
and F;(fiy1) = fi for everyi > 0.

Proof. (1) Since the implication (a) = (b) follows from axiom (d) in Definition 3.21, it suffices to show
the converse. Assume that condition (b) is satisfied. Then for every i > 0, the compatibility 7, 0 F; = F Riui
implies

1P Rivi =IiRi (3-13)

because [;; is principal. In particular, Ker(F;) = 11§i+1 - Ii+lki+1 (cf. axiom (f-2)). On the other
hand, by the surjectivity of F; and the assumption again, we have F,-(Fl._l(liki)) =ILR;, = Fi(li+1 Ri+1).
Hence

F7'(IiR;) € Liy1Ris1 +Ker(Fy) C Ly Riv1 € F7'(ILRy),

which yields the assertion.

(2) Let us deduce the assertion from (3-13) by induction. By definition, / f’ = IyR;. We then fix some
i > 1. Suppose that for every 1 <k <1, I,f’ = I;y_1R;. Then IhR; = Il.pl. In particular, R; is I;-adically
Zariskian by axiom (e). Moreover, by (3-13), we have the equalities of R;-modules:

-1
IiRi—H :Iiz_l"'IORi—H :I,'p+1+1,'p (IiRi—H)-
Hence by Nakayama’s lemma, we obtain Il.’jrl = I; Rj4+ as desired.

(3) By the axiom of (dependent) choice, the existence follows from axiom (d) in Definition 3.21. Let us
show the uniqueness of {/; C R;};>0 that satisfies condition (a) in (1). For every i >0, [; R;+1 C I;+1 by
(2), and hence I;; is the inverse image of F,"' (I; R;) via the projection R; 41 — R;i. Since Iy is fixed,
the assertion follows. O

Definition 3.27. In the situation described in Proposition 3.26(3), we call I; the i-th perfectoid pillar of
({Ri}i=0, {ti}i=0) arising from (Ro, Ip).

The following property of perfectoid pillars is applied to prove our main result.
Lemma 3.28. Let {I;};>0 denote the system of perfectoid pillars of ({R;i}i>o0, {ti}i>0), and let m; :

Ri/IoR; — R;/I;R; (i = 0) be the natural projections. Then for every i > 0, there exists a unique
isomorphism of rings

1

F/:Riz1/liy1Riv1 = Ri/LiR;
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such that w; o F; = F! o mi41.

Proof. Since F; and m; are surjective, the assertion follows from Ker(s; o F;) = Fl._l(Ii(Ri/ IhR)) =
liv1(Riv1/IoRi ). U
3D. Tilts of perfectoid towers.

3D1. Invariance of some properties. Here we establish tilting operation for perfectoid towers. For this,
we first introduce the notion of small tilt, which originates in [37].

Definition 3.29 (small tilts). Let ({R;}i>0, {fi}i>0) be a perfectoid tower arising from some pair (R, Ip).

(1) For any j > 0, we define the j-th small tilt of ({R;}i>0, {ti}i>0) associated to (R, Iy) as the j-th

inverse quasi-perfection of ({R;}i>o, {#;}i>0) associated to (R, Ip) and denote it by (R j)i(')b.
(2) Let the notation be as in Lemma 3.28. Then we define If'b := Ker(r; o d>(()i )) for every i > 0.
Note that the ideal Il.s 0 - Rf'b has the following property.
Lemma 3.30. Keep the notation as in Definition 3.29. Then for every i > 0 and j > 0, we have
(I3 = Ij4i R,
Proof. Since CD(()j) is surjective, we have CD(()j)(I]S.‘b) =1 Ej. On the other hand, since CID(()j) =F;o CIDEj),
we have
Foi @ (15) = o (1)) + Ker(F)) = o (I").

Hence by condition (a) in Proposition 3.26(1), d>§j )(Ijs.‘b) = 1j+1Rj+1- By repeating this procedure
recursively, we obtain the assertion. O

The next lemma provides some completeness of the small tilts attached to a perfectoid tower of
characteristic p > 0 (see also Remark 3.33).

Lemma 3.31. Let ({R;}i>0, {ti}i>0) be a perfectoid tower arising from (R, (0)). Then, for any element
_ .

f € Rand any j > 0, the inverse limit im{. - - in Rit1/fRj REN R;/fR;} is isomorphic to the

f-adic completion of R;.

Proof. Tt suffices to show the assertion when j = 0. Let ({R;};>0, {t/}i>0) denote the standard perfect

tower (3-1) arising from R. By Lemma 3.24, (3-12) gives a canonical isomorphism ({R;};>0, {fi}i>0) i
({R!}ix0, {t/}iz0). If we put Jo = f Ry, then R!/JoR! = R/fP'R for every i > 0. Hence we have the
desired canonical isomorphisms:

fim{- - =5 Ri/fRi =5 Ro/f Ro} = lim R/f""R = lim R/"R. 0
n>0 n>0

Example 3.32. Let S be a perfect [-algebra. Pick an arbitrary f € §, and let S denote the f-adic
completion. We obtain a canonical isomorphism limg . S/fS =38 by applying the above proof to the
tower

id id id
§>58-5585"S....
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Remark 3.33. In the situation of Lemma 3.31, assume further that 7; : R;/fR; — Riy1/fRi+1 is
injective for every i > 0. Then ({R;}i>0, {ti}i>0) is a purely inseparable tower arising from (R, (f))
with Frobenius projections {F;: Rit1/f Ri+1 — Ri/f Ri}i>o. Furthermore, it satisfies axioms (d), (f),
and (g) in Definition 3.21. To check this, we may assume that ({R;};>0, {fi}i>0) is the standard perfect
tower (3-1). Then F; is the natural projection R/f PR R /f P'R. Tt is clearly surjective, and its
kernel is f”i (R/fp[HR). Let I; be the ideal of R; generated by f € R; (= R). Then IpR; = fpiR and
I\Ris1 = f” R. Hence I” = IyR, and Ker(F;) = I R ;. Finally, note that (R;)z,or = Rf.or. Then
Iy(R)p-or = f P'R f-tor = (0) by Lemma 3.18, and we can take idg faor @S the bijection (FDtor fitting into
the diagram (3-11).

Definition 3.34 (tilts of perfectoid towers). Let ({R;}i>0, {#i}i>0) be a perfectoid tower arising from some
pair (R, I). Then we define the tilt of ({R;}i>0, {ti}i>0) associated to (R, I') as the inverse perfection of
({Ri}i>o0, {t:}i>0) associated to (R, I), and denote it by ({(Ri)sl'b}izo, {(ti);'b}izo). If no confusion occurs,
we can abbreviate (Ri)‘;'b and (ti)i'b) to Rf'b and tlig'b.

After discussing several basic properties of this tilting operation, we illustrate how to compute the tilts
of perfectoid towers in some specific cases; when they consist of log-regular rings (see Theorem 3.61
and Example 3.62).

We should remark that all results on the perfection of purely inseparable towers (established in
Section 3B) can be applied to the tilts of perfectoid towers.

Let us state Main Theorem 1 in a more refined form. This is an important tool when one wants to
see that a certain correspondence holds between Noetherian rings of mixed characteristic and those of
positive characteristic.

Theorem 3.35. Let ({R;}i>o0, {ti}i>0) be a perfectoid tower arising from some pair (R, Iy), and let {I;};>0
be the system of perfectoid pillars. Let ({Ris'b}izo, {tis'b}izo) denote the tilt associated to (R, Ip).
(1) For every j > 0 and every element f;'b € R‘;'b, the following conditions are equivalent.
(a) f;‘b is a generator of I;‘b.

(b) Foreveryi >0, CIDIU)(f;'b) is a generator oij+iEj+i.
s.b

In particular, I;'b is a principal ideal, and (Ijs.ﬁl)l’ = IJS.'ijH.

(2) We have isomorphisms of (possibly) nonunital rings (R‘;.'b) 1-tor = (R}) fy-tor that are compatible with
{tj}j=0 and {t3"};=o.

We give its proof in the subsequent Section 3D2. Before that, let us observe that this theorem induces

many good properties of tilting. In the rest of this subsection, we keep the notation as in Theorem 3.35.

Lemma 3.36. For everyi >0, Rf'b is Ig'b-adically complete and separated.

Proof. By Theorem 3.35, the ideal Ig 'leTv'b - Rf'b is principal. Hence one can apply Proposition 3.10(1-a)
to deduce the assertion. O

To discuss perfectoidness for the tilt ({Ris'b}izo, {tis 'b}izo), we introduce the following maps.
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Definition 3.37. Forevery i >0, we define a ring map (Fi)i(')b : (Ri+1)“}(')b/lg'b(Ri+1)“}(')b — (Ri)j(')b/lg'b(R,‘)”}(')b
by the rule
. . . R . b
(Fi)y (i mod I (Rip)y)) = (F)% " (1) mod I3 (R,

sb . . sb sh
where a1 € (Ri 1)} . If no confusion occurs, we can abbreviate (F;) to F; .

Remark 3.38. Although the symbols ( - )*” and ( - )4'"™P had been used interchangeably before
Definition 3.37, (Fi)s];)b differs from (F,-)‘}(; frep i general.

The following lemma is an immediate consequence of Theorem 3.35(1), but quite useful.
Lemma 3.39. For every j >0, CD(()j ) induces an isomorphism

i b ysb psb = b s i
o R /IR S Rj /IR amod I3RS > o (a). (3-14)
Moreover, {CID((f)}iZo is compatible with {t;};>¢ (resp. {FRs.b/Is,bRs.b}l‘Zo, resp. {Fis'b},-zo) and {tliy'b}izo (resp.
i 0 i

{FR/1oR; }i=0, resp. {Fi}i>0).

Proof. By axiom (d) in Definition 3.21, (3-14) is surjective. We check the injectivity. By Theorem 3.35(1),
Ig'b is generated by an element fOS = R(S)'b such that QDEO)( fg 'b) is a generator of /; R; (i > 0). Note that
({Rj+i}i=0, {tj+i}i=0) is a perfectoid tower arising from (R;, IoR ;). Moreover, {I; R;4;};>0 is the system
of perfectoid pillars associated to (R;, IoR;) (cf. condition (b) in Proposition 3.26(1)). Put Jy := Iy R;.
Then by Theorem 3.35(1) again, we find that Jg'b = fos'ij.‘b = Ig'ij'b. Since Jg’b = Ker QD(()]), we obtain
the first assertion.

One can deduce that {@é’)}izo is compatible with the Frobenius projections from the commutativity of

(3-2), because the other compatibility assertions immediately follow from the construction. (I

Remark 3.40. Theorem 3.35(2) and Lemma 3.39 can be interpreted as a correspondence of homological
invariants between R; and Ris‘b by using Koszul homologies. Indeed, for any generator fy (resp. f(f 'b)
of Iy (resp. I(‘;"b), the Koszul homology Hq(fg'b; Rf'b) is isomorphic to H,(fo; R;) for any ¢ > 0 as an
abelian group.'?

Now we can show the invariance of several properties of perfectoid towers under tilting. The first one
is perfectoidness, which is most important in our framework.

Proposition 3.41. ({Ris'b},-zo, {tis‘b}izo) is a perfectoid tower arising from (R(S)'b, Ié'b).

Proof. By Lemma 3.39 and Remark 3.33, ({Rf'b}izo, {tl.s'b}izo) is a purely inseparable tower arising from
(R(S)‘b, Ig'b) that also satisfies axioms (d), (f), and (g). Moreover, axiom (e) holds by Lemma 3.36. Hence
the assertion follows. O

Next we focus on finiteness properties. “Small” in the name of small tilts comes from the following
fact.

12Note that (R;) 1-tor = Anng, (Ip) by axiom (g), and (R} ) 1 tor = Ann R._V,b(lg'b) by Corollary 3.19.
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Proposition 3.42. For every j > 0, the following assertions hold.

() Ift; : Rj — Rjy is module-finite, then so is t;'b ‘R > R

i sy Moreover, the converse holds true

when R is Iy-adically complete and separated.

(2) If R; is a Noetherian ring, then so is R;'b. Moreover, the converse holds true when R is lp-adically

complete and separated.
(3) Assume that R; is a Noetherian local ring, and a generator of IoR ; is regular. Then the dimension of
R; is equal to that of R‘;'b.
Proof. (1) By Lemma3.39,7;: R;/IoR; — Rj41/IoR 41 is module-finite if and only if £ : R}/ 15" RS —
R;ﬁl / Ig'ij.'il is so. Thus by Lemma 3.36 and [29, Theorem 8.4], the assertion follows.
(2) One can prove this assertion by applying Lemma 3.36, Lemma 3.39, and [38, Tag 05GH].

(3) By Theorem 3.35, Ig'ij.'b is also generated by a regular element. Thus we obtain the equalities
dim R; = dim R;/IyR; + 1 and dim R’” = dim R}’ /I;" R’” + 1. By combining these equalities with
Lemma 3.39, we deduce assertion. |

Proposition 3.42(2) says that Noetherianness for a perfectoid tower is preserved under tilting.
Definition 3.43. We say that ({R;}i>0, {ti}i>0) is Noetherian if R; is Noetherian for each i > 0.

Corollary 3.44. If ({R;}i>0, {ti}i>0) is Noetherian, then so is the tilt ({Rf'b},-zo, {tf'b}izo). Moreover, the

converse holds true when R; is Iy-adically complete and separated for each i > 0.
Proof. This immediately follows from Proposition 3.42(2). U

Finally, let us consider perfectoid towers of henselian rings. Then we obtain the equivalence of
categories of finite étale algebras over each layer.

Proposition 3.45. Assume that R; is ly-adically Henselian for any i > 0. Then we obtain the following
equivalences of categories:

FEt(R") S FEt(R)).
Proof. This follows from Lemma 3.36, Lemma 3.39 and [38, Tag 09ZL]. O

3D2. Proof of Main Theorem 1. We keep the notation as above. Furthermore, we set I; := I, R; for every
i > 0. To prove Theorem 3.35, we investigate some relationship between (R;) j,-cor and Ann R; (1,). First
recall that we can regard (R;),-tor s @ nonunital subring of R; by Corollary 3.15. Moreover, the map z;
naturally restricts to (R;) jy-tor <> (Ri+1)1p-tor» s follows.

Lemma 3.46. For every i > 0, let (t;)tor : (Ri) 1p-tor = (Ri+1) 1-tor De the restriction of t;.

(1) (#)tor is the unique map such that ¢, g,., © (t;)tor = fio ©lo.R; -

(2) (i )tor © (Fi)tor = (Fi+1)tor o (ti+l)tor = F(Ri+l)10-mr'
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Proof. Since ¢y, g, is injective by Corollary 3.15, assertion (1) is clear from the construction. Hence
we can regard (; ) and (F;)ir as the restrictions of 7; and F;. Thus assertion (2) follows from the
compatibility 7; o F; = Fj ;1 0t;4] = Fg,., induced by Lemma 3.6(3). O

The map ¢y, g, : (Ri)1p-tor <> Ri/IoR; restricts to Anng,(l;) < Annﬁi (I;). On the other hand,
Anng, (I;) turns out to be equal to (R;),-tor by the following lemma.

Lemma 3.47. For every i > 0, Ii(R;)jy-or = 0. In particular, Im(¢y, g,) € Anng (I;).

Proof. By Lemma 3.46(2) and axiom (g) in Definition 3.21, we find that Fig,), ., 1s injective. In other
words, (R;),-tor does not contain any non-zero nilpotent element. Moreover, (R;) 1)-tor = (R;),-1or- Hence
the assertion follows from Lemma 3.18. Il

The following lemma is essential for proving Theorem 3.35.

Lemma 3.48. For everyi > 0, F; restricts to a Z-linear map Annﬁ,-H (I_H-l) — Annlgl_ (I,). Moreover, the
resulting inverse system {Ann R, «{, i)}i>0 has the following properties.

(1) Forevery j >0, lim/_, Anng (T 1) = (0).
(2) There are isomorphisms of Z-linear maps lim; i=0 AnnR (I]+,) = (R}) 1p-tor (j = 0) that are multi-
plicative, and compatible with {tj }ij and {t;} j>o.
Pmof Since F;(I;41) = I;, F; restricts to a Z-linear map (F;)ann : Anng. l(TlJrl) — Anng, (I,). Let
: (Ri) 1y-tor = Anng R; (I ) be the restriction of ¢, R;- By Lemma 3.17 and Lemma 3.47, we can write

Ann R, (I;) =Im(g;) + I; e . Moreover, Im(g;) N 1; - = (0) by Lemma 3.14 and Lemma 3.47. Hence
we have the following ladder with exact rows:

Yi+1 - —piti—1
0—— (Ri+1)10—tor—>Annki+l(li+l) I I,'_H —0

l(Fi)tor l l (3-15)

Pi - —pi—1
0 —— (Ri) fy-tor —— Anng (I;) 17 0

— i+l _
where the second and third vertical maps are the restrictions of F;. Since F;(/ f 41 1) = 0, both functors

—1 . e e .
i }i=0. Moreover, since (F;)wr is bijective,

11rnl>0(R]+,)10 tor = (R;) 1o-tor and hml>0(RJ+, ) Io-tor = (0). Hence we find that 11rn i0 AnnR (IH,) =(0),

lim,_, and hm - assign (0) to the inverse system {I

which is assertion (1). Furthermore, we obtain the isomorphisms of Z-modules:

( v )mr 1<_l> Pj+i
(R} fgror <———Hm(R ;1) fy-10r ——— lim Anng (T ;) (3-16)

i>0 l>0

(where (<I> U ))tor denotes the 0-th projection map), which are also multiplicative. Let us deduce (2) from it.
Since t =lim,_, t j+i by definition, the maps lim;_, ¢+ (j = 0) are compatible with {11ml>0(tj+,)tor}j>o
(1nduced by Lemma 3.46(2)) and {t } j>0 by Lemma 3.46(1). On the other hand, the projections (CD( ))tor
(j = 0) are compatible with {lim;_,(#;+i)iwor}j>0 and {(Z;)or} j>0. The assertion follows. |
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Let us complete the proof of Theorem 3.35.

Proof of Theorem 3.35. (1) The implication (a) = (b) follows from Lemma 3.30. Let us show the
converse (b)=-(a). For every i > 0, put f i = @EJ )( f]‘.’"b), and let 77; and F be as in Lemma 3.28. Then,
by the assumption, we have the following commutative ladder with exact rows:

— Lit1 — Tit1
0—— (fi+1) Rit1 Rit1/liy1 ——0
T
- i =5 T
0 D) ‘ R; Ri/l; ———0

where ¢; is the inclusion map. Let us consider the exact sequence obtained by taking inverse limits for
all columns of the above ladder. Then, since each F/ is an isomorphism, the map lim,_, 7., : R —
i —i>0"J J

lim._, R;j4;/1;4; is isomorphic to 7 o CID(()j). Thus we find that I;'b = Im(lim

<——i>0 <~—i>0

tj+i). Let us show that
the ideal Im(lim, _ ¢;4;) C Rj.'b is generated by f;'b. Fori >0, let u; : R; — (f;) be the R;-linear map
induced by multiplication by f;. Then we obtain the commutative ladder

= Mi+1 - Li+1 —
Riy1 —— (fiy1) — Rip

R

= W= i =
R; (fi) R;.

Then, since Ker p; = Anng, (I;) for every i > 0, lim;_q i 18 surjective by Lemma 3.48(1). Hence we

have Im(l(igll.20 Ljiti) = Im(l(iLniz()(Lj—l—i o i j+i)), where the right hand side is the ideal of Rj.'b generated
by f Js . Thus we obtain the desired implication. Finally, note that by Proposition 3.26(3), we can take a
system of elements { f;'b € R;'b} j=0 satisfying condition (b) and such that ( f ;ﬁl)p =f ;'b (j =0).

(2) We have I;'b(R;'b) 10 = (0) by Corollary 3.19. Hence, by assertion (1),
b b b . . -
(R; )Ig"-tor = (Rj )Ij'b-tor = AnnR;.a(I;. )= Kel‘(lfl}g Wjti) = %Annﬁjﬁ(lj-i-i)-

Thus by Lemma 3.48(2), we obtain an isomorphism (R;'b) 1510 = (R;) 1p-tor With the desired property. []

T

3E. Relation with perfectoid rings. In the rest of this paper, for a ring R, we use the following notation.
Set the inverse limit
R’ :=lim{---— R/pR— R/pR— ---— R/pR},

where each transition map is the Frobenius endomorphism on R/pR. It is called the tilt (or tilting) of R.
Moreover, we denote by W (R) the ring of p-typical Witt vectors over R. If R is p-adically complete and
separated, we denote by 6z : W(R”) — R the ring map such that the diagram

W(R) -, R

l l (3-17)

R® — R/pR
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(where the vertical maps are induced by reduction modulo p and the bottom map is the first projection)
commutes.
Recall the definition of perfectoid rings.

Definition 3.49 [5, Definition 3.5]. A ring S is perfectoid if the following conditions hold.

(1) S is w-adically complete and separated for some element zo € S such that = ? divides p.
(2) The Frobenius endomorphism on S/pS is surjective.
(3) The kernel of 0g: W(S") — S is principal.

We have a connection between perfectoid towers and perfectoid rings. To see this, we use the following
characterization of perfectoid rings.

Theorem 3.50 (cf. [17, Corollary 16.3.75]). Let S be a ring. Then S is a perfectoid ring if and only if S
contains an element @w with the following properties.

(1) @w? divides p, and S is w-adically complete and separated.

(2) The ring map S/w S — S/@?S induced by the Frobenius endomorphism on S/w? S is an isomor-

phism.

(3) The multiplicative map

Ser-tor = Sar-tor ; 5 > 5P (3-18)
is bijective.
Proof. The “if” part follows from [17, Corollary 16.3.75].
For the converse, let @ € S be as in Definition 3.49. Such a @ clearly has property (1) in the

present theorem, and also has property (2) by [5, Lemma 3.10(i)]. To show the remaining part, we set
S = S/Sw-tor- By [8, §2.1.3], the diagram of rings:

S —— 2 (S/ S)rea

i |-

§ —77'3) (g/w §)red

(where m; is the canonical projection map for i = 1,2, 3,4) is cartesian. Hence Sy _tor (= Ker(iry))
is isomorphic to Ker(m4) as a (possibly) nonunital ring. Since (S/@ S)eq is a perfect [ ,-algebra, it
admits the Frobenius endomorphism and the inverse Frobenius. Moreover, Ker(r4) is closed under these
operations because (E/ @ $)red is reduced. Consequently, there is a bijection (3-18). Hence @ has property
(3), as desired. O

Remark 3.51. In view of the above proof, the “only if” part of Theorem 3.50 can be refined as follows.
For a perfectoid ring S, an element @ € S such that p € w? S and S is @w-adically complete and separated
satisfies the properties (2) and (3) in Theorem 3.50.
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Corollary 3.52. Let ({R;}i>0, {ti}i>0) be a perfectoid tower arising from some pair (Ro, ly). Let fo\o
denote the I-adic completion of Rx,. Then @ is a perfectoid ring.

Proof. Since we have li_I)nl.20 Fr,/ IR = (/11_511.20 ti)o (li_r>nl.ZO F;) and h_r)nl.zo 1; is a canonical isomorphism,
the Frobenius endomorphism on R /Io R can be identified with lim,

deduce from the axioms in Definition 3.21 that any generator of I, Roo has the all properties assumed on
@ in Theorem 3.50. U

F;. Hence one can immediately

In view of Theorem 3.50, one can regard perfectoid rings as a special class of perfectoid towers.

Example 3.53. Let S be a perfectoid ring. Let @ € S be such that p € @S and S is w -adically complete
and separated. Set S; = S and #; = idg for every i > 0, and Iy = @w?”S. Then by Remark 3.51, the tower
({Si}i=0, {ti}i=0) is a perfectoid tower arising from (S, lp). In particular, 1ySz,-or = (0), and FS,O_lor is
bijective.

Moreover, we can treat more general rings in a tower-theoretic way.

Example 3.54 (Zariskian preperfectoid rings). Let R be a ring that contains an element @ such that
p € PR, R is w-adically Zariskian, and R has bounded = -torsion. Assume that the z -adic completion
Risa perfectoid ring. Set R; = R and f; = idg for every i > 0, and Iy = @w”R. Then the tower
({Ri}i>o0, {t:}i>0) is a perfectoid tower arising from (R, Ip). Indeed, axioms (a) and (e) are clear from
the assumption. Since R is perfectoid and R/w?PR = R Jo? Ié, axioms (b), (c), (d) and (f) hold by
Example 3.53. Similarly, axiom (g) holds by Lemma 3.16 (the map Yor : Rpj-tor — (Ié) Io-tor 1S also an
isomorphism of nonunital rings).

Recall that we have two types of tilting operation at present; one is defined for perfectoid rings, and
the other is for perfectoid towers. The following result asserts that they are compatible.

Lemma 3.55. Let ({R}"}i»0, {7 }i=0) be the tilt of ({R;}i=0, {ti}i=0) associated to (Ro, Ip). Let R, be
Ris'b. Let (IyRoo)® be the ideal of Rﬁo that is the inverse image
of IoRoo mod p R, via the first projection. Then there exist canonical isomorphisms

s.b . . s.b .
the 1" -adic completion of R = lim,

b = g 50 75b psb = psb
Ry, < UmR/Iy Ry — Rx
Tob

11

under which (IpRwo)” € Rgo corresponds to Ig'bRé‘g C Rg'ob.

Proof. Note that Ré‘ob is perfect. By Lemma 3.39 and Example 3.32, we obtain the commutative diagram
of rings

—

. = . b, sbpshb = s.b
1<£1Fr0b Roo/IoRoo +—— 1<lnFrob R /IO R ——— R

| T em

Roo/ IoRoo ————— R3 /13" R ——— R3 /15" R%,
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where the vertical arrows denote the first projection maps. By [5, Lemma 3.2(i)], we can identify Rgo
with limg R /1o Roo, and the ideal (IoRxo)’” € RZO corresponds to the kernel of the leftmost vertical

map. Since the kernel of the rightmost vertical map is Ig 'bR;f , the assertion follows. O

3F. Examples: complete local log-regular rings.

3F1. Calculation of the tilts. As an example of tilts of Noetherian perfectoid towers, we calculate them
for certain towers of local log-regular rings. Firstly, we review a perfectoid tower constructed in [17].

Construction 3.56. Let (R, Q, @) be a complete local log-regular ring with perfect residue field of
characteristic p > 0. Assume that Q is fine, sharp, and saturated (see Remark 2.20). Let I, € R be the
ideal defined in Definition 2.19. Set A := R/I,. Let (fi, ..., f;) be a sequence of elements of R whose
image in A is maximal (see Definition A.4). Since the residue field of R is perfect, r is the dimension of
A (see the Appendix). For every i > 0, we consider the ring

A =A[Ty,....T.)/T = Fi.....TY = F)),

where each f j denotes the image of f;in A (j =1, ..., r). Notice that A; is regular by Theorem A.3.
Moreover, we set Q) := Qg) (see Definition 2.11). Furthermore, we define

R :=7[01®z0 R, R/ :=RIT\,....T.1/(T = fi,....T" — f), (3-20)

and
R :=R ®r R/. (3-21)

Lett; : R; — R, be the ring map that is naturally induced by the inclusion map () : Q) < QU+D_ Since
R | is afree R;-module, #; is universally injective by Lemma 2.15 and condition (e) in Proposition 2.8(2).

Proposition 3.57. Keep the notation as in Construction 3.56. Let a; : Q¥ — R; be the natural map. Then
(Ri, OV, «;) is a local log-regular ring.

Proof. We refer the reader to [17, 17.2.5]. O
By construction, we obtain the tower of rings ({R;};>0, {t;}i>0) (see Definition 3.1).

Proposition 3.58. Keep the notation as in Construction 3.56. Then the tower ({R;}i>0, {ti}i>0) of local
log-regular rings defined above is a perfectoid tower arising from (R, (p)).

Proof. We verify (a)—(g) in Definition 3.4 and Definition 3.21. Axiom (a) is trivial. Since #; is universally
injective, axiom (b) follows. Axioms (c) and (d) follow from [17, (17.2.10) and Lemma 17.2.11]. Since
R is of residual characteristic p, axiom (e) follows from the locality. Since #; is injective and R; is a
domain for any i > 0, axiom (g) holds by Remark 3.22.

Finally, let us check that axiom (f) holds. In the case when p = 0, it follows from [17, Theorem
17.2.14(1)]. Otherwise, there exists an element @ € R, that satisfies @w? = pu for some unit u € R,
by [17, Theorem 17.2.14(ii)]. Set I} := (@). Then axiom (f-1) holds. Axiom (f-2) follows from [17,
Theorem 17.2.14(iii)]. Thus the assertion follows. U
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For calculating the tilt of the perfectoid tower constructed above, the following lemma is quite useful.

Lemma 3.59. Keep the notation as in Proposition 3.57. Let k be the residue field of R. Then there exists
a family of ring maps {¢; : C(k)[QY @ (N")D] — R;};=0 which is compatible with the log structures of
{(R;, Q¥ a;)}i=o such that the following diagram commutes for every i > 0:

CIQD & (NHYD]— C()[QU+D @ (N)+D]

LP:‘ l¢i+1 (3-22)

R;€ Rit1

(where the top arrow is the natural inclusion). Moreover, there exists an element 8 € C(k)[Q & N']

whose constant term is p such that the kernel of ¢; is generated by 6 for every i > (.

Proof. First we remark the following. Let k; be the residue field of R;. Then by Lemma 3.11(1) and
Lemma 3.6(2), the transition maps induce a purely inseparable extension k < k;. Moreover, this extension
is trivial because k is perfect. Therefore, we can identify k; with k, and the Cohen ring of R; with C (k).

Next, let us show the existence of a family of ring maps {¢;};>¢ with the desired compatibility. Since
(R;, 99, o) isa complete local log-regular ring, we can take a surjective ring map ¥, : C PN —
R; as in Theorem 2.22; its kernel is generated by an element 6; whose constant term is p, and the diagram

QY —— ch” eN]

S

R;

commutes. For j =1, ..., r, let us denote by fjl/pi the image of T; € R[T}, ..., T;] in R; (see (3-20)
and (3-21)). Note that the sequence fll/ P i, ey f,]/ pi in R; becomes a regular system of parameters of
R;/1,, by the reduction modulo /,, (see [17, 17.2.3] and [17, 17.2.5]). Thus, for the set of the canonical
basis {ey, ..., e,} of N', we may assume ¥; (¢%) = f jl/ r by the construction of ¥; (see the proof of [34,
Chapter III, Theorem 1.11.2]). Hence we can choose {;};>0 so that the diagram:

CINQY ON—— ChIQ" P oNT]

lﬂtl lllfiﬂ (3-23)

R;€ R+

commutes. Thus it suffices to define ¢; : C(k)[QY @ (N")D] — R; as the composite map of the
isomorphism C(K)[QV & (N)] S C(k)[QP @& N'] obtained by Lemma 2.12(3) and ;.

Finally, note that the image of 6y € Ker(yp) in C (K)[QY) @ N’ is contained in Ker(;), and its
constant term is still p. Thus, by the latter assertion of Theorem 2.22(2), Ker(y;) is generated by 6.
Hence by taking 6y as 6, we complete the proof. U
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Let us consider the monoids Q® for an integral sharp monoid Q. Since there is the natural inclusion
1D 90 < QUHD for any i > 0, we obtain a direct system of monoids ({Q(i)}izo, {L(i)}iz()). Moreover,
the p-times map on QU*1D gives a factorization:

Qli+h Py o+l

\ ]Lm
xp

QW
From this discussion, we define the small tilt of {Q};~.

Definition 3.60. Let Q be an integral monoid, and let ({Q(i)}izo, {t(i)}izo) be as above. Then for an
integer j > 0, we define the j-th small tilt of ({Q®};>0, {t7}i=0) as the inverse limit

Q;.b = lim{- - — QU+ . gy, (3-24)

where the transition map QU+ — QW is the p-times map of monoids.
Now we can derive important properties of the tilt of the perfectoid tower given in Construction 3.56.

Theorem 3.61. Keep the notation as in Lemma 3.59.

(1) The tower ({(Ri)fﬁ)}izo, {(ti)fﬁ)}izo) is isomorphic to ({k[ Q") & (N’)(i)]]}izo, {ui}i=0), where u; is
the ring map induced by the natural inclusion Q® @ (N < QU+D g (N7)(+D,

(2) For every j = 0, there exists a homomorphism of monoids
s.b . ~s.b S
;" Q) = (R

s.b

such that ((Rj)‘zﬁ), QJ. , a‘;'b) is a local log-regular ring.

(3) Forevery j >0, (t.,-)fﬁ) : (Rj)f;) — (R.,-H)fﬁ) is module-finite and (Rj)iﬁ) is F-finite.
Proof. (1) By Lemma 3.59, each R; is isomorphic to C (k)[QY) @ (N")YDT/(p — /HC()[QY & (N
where f is an element of C(k)[Q & N"]| which has no constant term. Set S; := k[0® @ (N")D] for
any i > 0 and let u; : S; = S;41 be the inclusion map induced by the natural inclusion Q¥ @ (N")(®)
QU+D @ (N")(+D_ Then the tower ({S;}i>0, {#;}i=0) is a perfect tower. Indeed, each S; is reduced by
Theorem 2.21; moreover, by the perfectness of k and Lemma 2.12(3), the Frobenius endomorphism on
Si+1 factors through a surjection G; : Siy; — S;. In particular, ({S;}i>0, {#i}i>0) is a perfectoid tower
arising from (Sp, (0)) and G; is the i-th Frobenius projection (cf. Lemma 3.24).

Put f := fmod pC(k)[Q@® N'] € So. Then each S; is f-adically complete and separated by [15,
Lemma 2.1.1]. Moreover, the commutative diagram (3-22) yields the commutative squares (i > 0):

Sit1/ fSi41 — Rit1/pRis

=

Si/fSi ——— Ri/pR;
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that are compatible with {u; : S;/ fSi — Sit1/ ]TS,ur 1}i=0 and {#;};>0. Hence by Lemma 3.31, we obtain
the isomorphisms

(R () < — lim{.- RS 51+1/fSJ+1 2 JFSH S S (=0 (3-25)

that are compatible with the transition maps of the towers. Thus the assertion follows.

(2) Considering the inverse limit of the composite maps QU+ AN Rjti > Rj1i/pRj4i (i =0), we

obtain a homomorphism of monoids oz‘;'b : — (R, )( |- On the other hand, let @; : Q) — S be the
natural inclusion. Then, since S; is canomcally isomorphic to koY @ N’]] (S;, oV, & a;) is a local

log-regular ring by Theorem 2.22(1). Thus it suffices to show that ((R; )( s Q o a;'b) is isomorphic to
(S;, oW, & a;) as a log ring. Since the transition maps in (3-24) are 1som0rphlsms by Lemma 2.12(3), we

obtain the isomorphisms of monoids

id S.l)
s.b

Pl S (j=o0). (3-26)

Q:

Then one can connect (3-26) to (3-25) to construct a commutative diagram using a;'b and @ ;. Hence the
assertion follows.

(3) By Lemma 2.14(1), t; : R; — Rj4 is module-finite. Hence by Proposition 3.42(1), (t])(p) (R; )%p)

(R J+1) (p ) is also module-finite. Finally let us show that (R; ) D ) is F-finite. By assertion (2), (R; ), Dpisa
complete Noetherian local ring, and the residue field is F-finite because it is perfect. Thus the assertion
follows from [29, Theorem 8.4]. O

Example 3.62. (1) A tower of regular local rings which is treated in [7] and [8] is a perfectoid tower in
our sense. Let (R, m, k) be a d-dimensional regular local ring whose residue field & is perfect and let
X1, ..., Xg be aregular sequence of parameters. Let e, ..., e; be the canonical basis of N¢. Then
(R, N9, @) is a local log-regular ring where  : N — R is a homomorphism of monoids which maps
e; to x;. Furthermore, assume that R is m-adically complete. Then, by Cohen’s structure theorem, R
is isomorphic to

W) llxi, ..., xall/(p— f)

where f =x; or f € (p, X1, ..., Xq)? (the former case is called unramified, and the latter ramified).
Let us construct a perfectoid tower arising from (R, (p)) along Construction 3.56. Since k is perfect,
Q, is zero by the short exact sequences (A-4) and the definition of itself. This implies that the image
of the empty subset of R in k forms a maximal sequence. Hence R’ in Construction 3.56 is equal to
R. Moreover, (N4)® is generated by #e T #ed. Applying Construction 3.56, we obtain

R = R = ZIN) )1 @zpna) R = RIT1, ... Tal /(T —x1, ... T —xg)
=Wl ....x/" 1/ (- .
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Set the natural injection ¢; : R; — R;41 for any i > 0. Then, by Proposition 3.58, ({R;}i>0, {fi}i>0)
is a perfectoid tower arising from (R, (p)). By Theorem 3.61, its tilt ({(Ri)fbb)},-zo, {(t,-)f';)},-zo) is
isomorphic to the tower k[N?] < k[(N4)D] — k[(N?)P] < ..., which can be written as

k[[xl,...,xd]]<—>k[[xll/p,...,x;/p]]C—>k[[x11/p2,...,xé/pz]]%--- .
(2) Consider the surjection
S:=Wm)x,y, z, wll/(xy —zw) - R:=W(k)[x, y, z, w]l/(xy —zw, p — w)
= W)lx, y, zl/(xy — p2).

where £ is a perfect field. Let Q C N* be a saturated submonoid generated by (1,1,0,0), (0,0,1,1),
(1,0,0,1) and (0,1,1,0). Then S admits a homomorphism of monoids ag : Q@ — S by letting
1,1,0,0) — x, (0,0,1,1) — vy, (1,0,0,1) — z and (0,1, 1,0) — w. With this, (S, Q, ag) is a
local log-regular ring. The composite map ar : Q — S — R makes R into a local log ring. Indeed,
we can write R = W (k)[Q]/(p — e®110): hence (R, Q, ag) is log-regular by Theorem 2.22.
Next, note that R/I,, = k. Then, for the same reason in (1), R;/ is equal to R. Moreover, oM is

generated by
(ﬁ,#,o, 0), (0,0,##), (#0, 0#), (o,##,O).

Thus, applying Construction 3.56, we obtain
Ri = RIQ"]
=WERIQV1/ (p — ™)
= W[k, y e P (e Py gy,
Set a natural injection #; : R; — R;41. Then, by Proposition 3.58, ({R;}i>0, {#i}i>0) is a perfectoid

tower arising from (R, (p)). Hence

Roo = lim R; = _J W) [Le/7", /7' 210 /oy e gl — 08y — ),

i>0 i>0

and its p-adic completion is perfectoid. One can calculate the tilt ({Ris'b}izo, {tis 'b}izo) to be k[ Q] —
k[OV] — k[QP] — - -- by Theorem 3.61, or, more explicitly,

klx, v, z, wll/(xy — zw) < kl[x/?, y1/P Z1/P wl/PY (x /P yl/p — g P pl/py s o

3F2. Towers of split maps and sousperfectoid rings. Recall that Hansen and Kedlaya introduced a new
class of topological rings that guarantees sheafiness on the associated adic spectra (see [21, Definition 7.1]).

Definition 3.63. Let A be a complete and separated Tate ring such that a prime p € A is topologically
nilpotent. We say that A is sousperfectoid if there exists a perfectoid ring B in the sense of Fontaine (see
[21, Definition 2.13]) with a continuous A-linear map f : A — B that splits in the category of topological
A-modules. That is, there is a continuous A-linear map o : B — A such that o o f =id4.
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Let us show that a perfectoid tower consisting of split maps induces sousperfectoid rings. In view of
Theorem 2.29, one can apply this result to the towers discussed above. See [33] for detailed studies on
algebraic aspects of Tate rings.

Proposition 3.64. Let ({R;}i>0, {ti}i>0) be a perfectoid tower arising from some pair (R, (fp)). Assume
that fy is regular, R is fy-adically complete and separated, and t; splits as an R;-linear map for every
i >0. We equip R[%] with the linear topology in such a way that { f R},>1 defines a fundamental system
of open neighborhoods at 0 € R [%] Then R [%] is a sousperfectoid Tate ring, and hence stably uniform.

In order to prove this, we need the following lemma.

Lemma 3.65. Keep the notations and assumptions as in Proposition 3.64. Then the natural map Ry —

lim, .o R; splits as an Ro-linear map.

Proof. We use the fact that each #; : R; — R; 1 splits as an R;-linear map by assumption. This implies

that the short exact sequence of R-modules
0— R0—>R1—>R,/R—>O
splits for any i > 0. It induces a commutative diagram of R-modules

0—— HOI’I]RO(RI'_H/R(), Ro) E— HomRO(Ri—H y Ro) e HOH]RO(R(), Ro) —0

! T

0—— HOH]RO(Ri/RQ, Ro) e HomRO(RZ-, Ro) e HOI‘I]RO(R(), Ro) — 0

where each horizontal sequence is split exact and each vertical map forms an inverse system induced by
ti : Ri = R;j41. Thus B; is surjective and it follows from the snake lemma that ; is surjective as well. By
taking inverse limits, we obtain the short exact sequence

0 — lim Homg, (R;/Ro, Ro) — lim Hompg, (R;, Ro) —> Homg, (Ro, Ro) — 0.
i=0 i>0
It follows from [36, Lemma 4.1] that A is the canonical surjection Hompg,(Roo, Rg) = Hompg,(Ro, Rop).
Then choosing an inverse image of idg, € Homg, (R, Ro) gives a splitting of Ry — Roo. U

Proof of Proposition 3.64. We have constructed an infinite extension R — R, such that if f’?\oo is the
fo-adic completion, then the associated Tate ring ﬁw[%] is a perfectoid ring in the sense of Fontaine by
Corollary 3.52 and [5, Lemma 3.21].

By Lemma 2.28 and Lemma 3.65, it follows that the map R[%] — I/Q\oo[%] splits in the category
of topological R[flo]-modules (notice that R is fy-adically complete and separated). Thus, R[%] is a
sousperfectoid Tate ring. The combination of [21, Corollary 8.10], [21, Proposition 11.3] and [21, Lemma

11.9] allows us to conclude that R[%

As a corollary, one can obtain the stable uniformity for complete local log-regular rings (see also
Construction 3.56 and Theorem 2.29).

] is stably uniform. (Il
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Corollary 3.66. Let (R, Q, ) is a complete local log-regular ring of mixed characteristic with perfect

residue field. We equip R[%] with the structure of a complete and separated Tate ring in such a way that

{P" R},>1 defines a fundamental system of open neighborhoods at 0 € R [%] Then R [%] is stably uniform.
4. Applications to étale cohomology of Noetherian rings

In this section, we establish several results on étale cohomology of Noetherian rings, as applications of
the theory of perfectoid towers developed in Section 3. In Section 4A, for a ring that admits a certain type
of perfectoid tower, we prove that finiteness of étale cohomology groups on the positive characteristic
side carries over to the mixed characteristic side (Proposition 4.7). In Section 4B, we apply this result to
a problem on divisor class groups of log-regular rings.

We prepare some notation. Let X be a scheme and let X¢; denote the category of schemes that are étale
over X, and for any étale X-scheme Y, we specify the covering {Y; — Y};c; so that Y; is étale over Y
and the family {Y;};c; covers surjectively Y. For an abelian sheaf F on X4, we denote by H' (X4, F) the
value of the i-th derived functor of U € X¢ +— '(U, F). For the most part of applications, we consider
torsion sheaves, such as Z/nZ and u, for n € N. However, for the multiplicative group scheme G,,, we
often use the following isomorphism:

H'(X4, G,) = Pic(X).
For the basics on étale cohomology, we often use [12] or [31] as references.

4A. Tilting étale cohomology groups. Let A be a ring with an ideal J, let A be the J-adic completion of
A, and let U C Spec(A) be an open subset. We define the J-adic completion of U to be the open subset
U C Spec(A), which is the inverse image of U via Spec(A) — Spec(A). We will use the following result
for deriving results on the behavior of étale cohomology under the tilting operation as well as some
interesting results on the divisor class groups of Noetherian normal domains (see Proposition 4.10 and
Proposition 4.11).

Theorem 4.1 (Fujiwara and Gabber). Let (A, J) be a Henselian pair with X := Spec(A) and let A be the
J-adic completion of A.
(1) Forany abelian torsion sheaf # on X¢, we have RI" (Spec(A)s, #) > R (Spec(A/J)st, F Ispec(a/))-
(2) Assume that J is finitely generated. Then for any abelian torsion sheaf 7 on X¢ and any open subset

U C X such that X \ V(J) C U, we have RT (Ug, 7) ~ RT (Us, F).

Proof. The first statement is known as Affine analog of proper base change in [16], while the second one
is known as Formal base change theorem which is [13, Theorem 7.1.1] in the Noetherian case, and [24,
XX, 4.4] in the non-Noetherian case. U

We will need the tilting invariance of (local) étale cohomology from [8, Theorem 2.2.7]. To state the
theorem and establish a variant of it, we give some notations.
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Definition 4.2. Let (A, I) and (B, J) be pairs such that there exists a ring isomorphism ® : A/[ g B/J.
Then for any open subset U C Spec(B) containing Spec(B) \ V (J), we define an open subset F4 ¢ (U) C
Spec(A) as the complement of the closed subset Spec(®)(Spec(B) \ U) C Spec(A).

One can define small tilts of Zariski-open subsets.

Definition 4.3. Let ({R;}i>0, {ti}i>0) be a perfectoid tower arising from some pair (R, Ip), and let
({Ris'b}izo, {tf‘b}izo) be the tilt associated to (R, Ip). Recall that we then have an isomorphism of rings
QD_(@ : Rf'b/lg'be'b = R;/IpR; for every i > 0. For every i > 0 and every open subset U C Spec(R;)
containing Spec(R;) \ V(IpR;), we define

s.b
Ulo = FRI.S‘b,@i(O[)(U)'

We also denote U‘;O'b by U*" as an abbreviated form.

Note that by the compatibility described in Lemma 3.39, the operation U ~» U*” is compatible with
the base extension along the transition maps of a perfectoid tower.
Let us give some examples of U*".

Example 4.4 (punctured spectra of regular local rings). Keep the notation as in Example 3.62(1). In this

situation, the isomorphism CID(()O) : Ré'b / Ig'b = Ry/I in Definition 4.3 can be written as

kllxt, ..., xal/(p*") = R/PR, (4-1)
where p*® € k[x1, ..., x4] is some element. Set U := Spec(R) \ V(m). Then, since the maximal ideal
m C R/pR corresponds to the (unique) maximal ideal of k[[x, ..., x71/( ps'b), we have

U*® = Spec(k[[x1, ..., xa) \ V((x1, ..., xa2)).

Example 4.5 (tilting for preperfectoid rings). Keep the notation as in Example 3.54. Then by Lemma 3.55,
CID(()O) : R(s)'b / Ig'b > Ry/Iy is identified with the isomorphism

0o (R/IJR) S R/IR 4-2)
which is induced by the bottom map in the diagram (3-17). In this case, we denote FR) qI>TO)(U ) by U’ in
distinction from U*".

The comparison theorem we need, due to Cesnavicius and Scholze, is stated as follows.

Theorem 4.6 [8, Theorem 2.2.7]. Let A be a w-adically Henselian ring with bounded w -torsion for
an element w € A such that p € w?A. Assume that the w-adic completion of A is perfectoid. Let
U C Spec(A) be a Zariski-open subset such that Spec(A) \ V(w A) C U, and let U” C Spec(A®) be its
tilt (see Example 4.5).

(1) For every torsion abelian group G, we have RT" (Ug, G) = RI‘(Uéb

» G) in a functorial manner with
respect to A, U, and G.
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(2) Let Z be the complement of U C Spec(A). Then for a torsion abelian group G, we have
RTz(Spec(A)a, G) = RT'z(Spec(A”)a, G).

Now we come to the main result on tilting étale cohomology groups. Recall that we have fixed a prime
p>0.

Proposition 4.7. Let ({R;} >0, {tj}j>0) be a perfectoid tower arising from some pair (R, Iy). Suppose
that R; is ly-adically Henselian for every j > 0. Let £ be a prime different from p. Suppose further that
forevery j >0,t;: Rj — Rj | is a module-finite extension of Noetherian normal domains whose generic
extension is of p-power degree."> Fix a Zariski-open subset U C Spec(R) such that Spec(R)\V (pR) CU
and the corresponding open subset U*” C Spec(R*”) (cf. Definition 4.3). Then, for any fixed i, n > 0 such
that |H (US’,7/€"Z)| < 0o, one has

et
|H'(Us, 2/0"2)| < |H (UL, Z/0"D)\.

In particular, if H (US"

et

7/0"7) =0, then H (Ug, 7/0"Z) = 0.

Proof. Since each R; is a p-adically Henselian normal domain, so is Ro, = lim

lim,_, R ;. Moreover, every

prime ¢ different from p is a unitin R; and R,. Attached to the tower ({R;};>0, {;};>0), we get a tower
of finite (not necessarily flat) maps of normal schemes:

U=U0<—~-<—Uj<—Uj+1<—~-'. (4-3)

More precisely, let 4 : Spec(R;41) — Spec(R;) be the associated scheme map. Then the open set U4
is defined as the inverse image h;l(U ), thus defining the map U;;; — U in the tower (4-3). Since
h; is a finite morphism of normal schemes, Lemma 3.4 of [3] applies to yield a well-defined trace map
Tr: hj*hjfZ/Z"Z — Z/¢"Z such that

*

Z/07 > hji2)07 S 7/0'7 (4-4)

is multiplication by the generic degree of /1 ; (=p-power order). Then this is bijective, as the multiplication
map by p on Z/¢"Z is bijective. We have the natural map: Hi(Uj,ét, 7/0"7) — Hi(UjJ,_]’ét, h;Z/Z”Z).
Since h; is affine, the Leray spectral sequence gives H' (U1 g, h;k.Z/E”Z) = H'(Uj ., hj*hjZ/E"Z).
Composing these maps, the composite map (4-4) induces

H (U0, Z/0'7) = H (Ujs1.6, h5Z)0'7) S H U} a0, hju5Z/0'7) > H (Uj ., 7/€"7)
and the composition is bijective. Since h;‘Z /"7 =7/0"Z, we get an injection

H' (Uja, 2/0"7) — H' (U414, 2/0"7). (4-5)

13The existence of such towers is quite essential for applications to étale cohomology, because the extension degree of each
Rj — Rj is controlled in such a way that the p-adic completion of its colimit is a perfectoid ring.
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Set Uso = l(iLnj U;. Since each morphism U, — Uj is affine, by using (4-5) and [38, Tag 09YQ], we
have
H'(Ug, Z/0"Z) — lim H' (U} &, Z/0"Z) = H' (Uso,e1. Z/£" D).
J

Thus, it suffices to show that |H! (U &, Z/0"Z)| < |\Hi (U

et

Z/2"7)|. Hence by tilting étale cohomology
using Theorem 4.6, we are reduced to showing

\H (U’

00,6t?

7)0"7)| < |H"(U,s'b 2/0"7)|, (4-6)

et

where Ugo is the open subset of Spec(RZo) that corresponds to Us, € Spec(R) in view of Example 4.5.
On the other hand, considering the tilt of ({R;};>0, {t;};>0) associated to (Ry, Ip), we have a perfect
[ ,-tower ({Rj‘b} =05 {tj.‘b} j>0). Note that each Rj.‘b is Ig'b—adically Henselian Noetherian ring14 by
Lemma 3.36 and Proposition 3.42(2), and t;.'b is module-finite by Proposition 3.42(1). Considering the
small tilts of the Zariski-open subsets appearing in (4-3) (see Definition 4.3), we get a tower of finite
maps:
Us'b:Ug'b <—--~<—U;."b <—U}f1 e

So let U2 be the inverse image of U*** under Spec(R5Y) — Spec(R*?). Since USY — U** is a universal
homeomorphism, the preservation of the small étale sites [38, Tag 03SI] gives an isomorphism:

H (U 7/0'7) = H\(US,, 7/0"7). 47

00,6t°

Now the combination of Lemma 3.55 and Theorem 4.1(2) together with the assumption finishes the proof
of the theorem. U

Remark 4.8. One can formulate and prove the version of Proposition 4.7 for the étale cohomology with
support in a closed subscheme of Spec(R), using Theorem 4.6. Then the resulting assertion gives a
generalization of Cesnavigius-Scholze’s argument in [7, Theorem 3.1.3] which is a key part of their proof
for the absolute cohomological purity theorem. One of the advantages of Proposition 4.7 is that it can be
used to answer some cohomological questions on possibly singular Noetherian schemes (e.g. log-regular
schemes) in mixed characteristic.

4B. Tilting the divisor class groups of local log-regular rings. We need a lemma of Grothendieck on
the relationship between the divisor class group and the Picard group via direct limit. Its proof is found in
[19, Proposition (21.6.12)] or [20, XI Proposition 3.7.1].

Lemma 4.9. Let X be an integral Noetherian normal scheme, and let {U;};c; be a family of open subsets
of X. Consider the following conditions.

(1) {U;}icr forms a filter base. In particular, one can define a partial order on I so that it is a directed

set and {U;};cr together with the inclusion maps forms an inverse system.

141t is not obvious whether R; is normal. However, the normality was used only in the trace argument and we do not need it

in the following argument.
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(2) Let Vi := X\ U; forany i € I. Then codimx(V;) > 2.

(3) Forany x € (;; Ui, the local ring Ox  is factorial.

iel
If {U;}ic satisfies condition (2), then the natural map Pic(U;) — CI(X) is injective for any i € 1. If
{Uilier satisfies conditions (1), (2) and (3), then lim, ; Pic(U;) = CI(X). Thus, if U C X is any open

subset that is locally factorial with codimy (X \ U) > 2, then Pic(U) = CI(X).

Next we establish two results on the torsion part of the divisor class group of a (Noetherian) normal
domain; they are examples of numerous applications of Theorem 4.1 of independent interest.

Proposition 4.10. Let (R, m, k) be a strictly Henselian Noetherian local normal [ ,-domain of dimension
> 2, let X := Spec(R) and fix an ideal J C m. Let {U;};c; be any family of open subsets of X satisfying
(1), (2) and (3) as in the hypothesis of Lemma 4.9 and let U be the [ ,-scheme which is the perfection of
U;.
(1) For any prime £ # p,
CIX)[¢"] = lim H' (U ), Z/0"Z).
iel
(2) Let RYP* denote the J-adic completion of RY?” . If each U; has the property that X \ V(J) C U;,
then for any prime £ # p,
ClOO[e = lim H' ((T7)e. Z/€°2),
iel
where ﬁioo is inverse image of U° via the scheme map Spec(k\l/pw) — Spec(RY/P™).

Proof. Let us begin with a remark on the direct limit of étale cohomology groups. For the tran-
sition morphism g : U — U;?o which is affine, there is a functorial map H 1((U](->o)ét, Z/E"Z) —

H! ((Ufo)ét, g*(Z/E"Z)) ~H! ((Ul."o)ét, Z/E”Z), which defines the direct system of cohomology groups.
(1) We prove that for any n € N, there is an injection of abelian groups
H' Uy, Z/€'7) = Pic(U)[£"] € CI(X)[€"],

where U C X is an open subset whose complement is of codimension > 2. Indeed, consider the Kummer
exact sequence
Zn
0= Z/0'7 = jupn — Gy s G,y — 0,
where the identification of étale sheaves um = Z/£"Z follows from the fact that R is strict Henselian (one
simply sends 1 € Z/€"Z to the primitive £"-th root of unity in R). Let U € X be an open subset with its
complement V = X \ U having codimension > 2. Then we have an exact sequence (see [31, Chapter III,

Proposition 4.9])

o o
[ (Ua, Gu) > T (Uat, Gn) — H' (Ui, Z/£"Z) — Pic(U) = Pic(U).

Since R is strict local and £ # p, Hensel’s lemma yields that R* = (R*)¥". Since codimy (V) > 2 and X
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is normal, we have I'(Ug, G,,) = R*. Thus, H'(Ug, Z/£"7) = Pic(U)[£"]. Note that Pic(U) < CI(U)
restricts to Pic(U)[£"] — CI(U)[£"]. Moreover, the natural homomorphism CI(X) — CI(U) is an
isomorphism, thanks to codimy (V) > 2. Hence H'(Ug, 7]0"7) = Pic(U)[£"] < CI(X)[£"], which
proves the claim.

Since R is normal, the regular locus has complement with codimension > 2. Using this fact, we can
apply Lemma 4.9 to get an isomorphism CI(X)[£"] = lim, _, H! ((Ui)ét, Z/E”Z). By étale invariance of

cohomology under taking perfection of [F,-schemes [38, Tag 03SI], we get
CICO[C"] = lim H' (Unew, Z/€"Z) = lim H' ((U)a, 2/€"Z),
iel iel
as desired.

(2) Since R is Henselian along m and J € m, it is Henselian along J by [38, Tag 0DYD]. The perfect
closure of R still preserves the Henselian property along J. Theorem 4.1 yields

H' ((U)a, 2/0'27) = H' (U7, 2/"'7)
and the conclusion follows from (1). O

Proposition 4.11. Let A be a Noetherian ring with a regular element t € A such that A is t-adically
Henselian and A — A/t A is the natural surjection between locally factorial domains. Pick an integer
n > 0 that is invertible on A. Then if C1(A) has no torsion element of order n, the same holds for CI(A/tA).
If moreover A is a Q-algebra and C1(A) is torsion-free, then so is CI1(A/tA).

Proof. The Kummer exact sequence 0 — w, — G, l> Gy — 0 induces the commutative diagram

H'(Spec(A)e, i) —— Pic(A) — s Pic(A)

I |

H(Spec(A/tA)g, 1in) —— Pic(A/tA) —2s Pic(A/1A).

By Theorem 4.1, the map « is an isomorphism. Then if Pic(A) has no torsion element of order n, §;
is the zero map. This implies that 8, is also the zero map and hence, Pic(A/tA) has no element of
order n. Since both A and A/tA are locally factorial by assumption, we have CI(A) = Pic(A) and
Cl(A/tA) = Pic(A/tA). The assertion follows. [l

It is not necessarily true that §; or &, are injective, because we do not assume A to be strictly Henselian.

Lemma 4.12. Let (R, Q, «) be a log-regular ring. Then strict Henselization (R, Q, oM is also a
log-regular ring, where a®" : Q — R — R*M is the composition of homomorphisms.

Proof. Since R — R*" is a local ring map, (R*", Q, a®") is a local log ring by Lemma 2.18. Note that
we have the equality I,s = I, R*®". Since we have the isomorphism R*"/I,« = (R/I,)*" by [38, Tag
05WS] and (R/I,)™" is a regular local ring by [38, Tag 06LN], R*"/I« is a regular local ring. Since the
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dimension of R is equal to the dimension of a strict henselization R*", we obtain the equalities
dim R*" — dim(R*"/I4) = dim R*" — dim(R/I,)*" = dim R — dim(R/I,) = dim Q.
So the local log ring (R™", Q, a*?) is log-regular. O

Now we can prove the following result on the divisor class groups of local log-regular rings, as an
application of the theory of perfectoid towers.

Theorem 4.13. Let (R, O, «) be a local log-regular ring of mixed characteristic with perfect residue field
k of characteristic p > 0, and denote by CI1(R) the divisor class group with its torsion subgroup C1(R)or-

(1) Assume that R = W (k)[[ Q] for a fine, sharp, and saturated monoid Q, where W (k) is the ring of
Witt vectors over k. Then C1(R)ior ® Z[%] is a finite group. In other words, the £-primary subgroup
of C1(R)or is finite for all primes £ % p and vanishes for almost all primes £ # p.

(2) Assume that ﬁ[%] is locally factorial, where R is the completion of the strict Henselization R™".
Then C1(R)tor ® Z[%] is a finite group. In other words, the €-primary subgroup of C1(R)q; is finite
for all primes £ # p and vanishes for almost all primes £ % p.

Proof. Assertion (1) was already proved in Proposition 2.26. So let us prove assertion (2). We may
assume that Q is fine, sharp, and saturated by Remark 2.20. The proof given below works for the first
case under the assumption of local factoriality of R“h[ ]-

Since R — R is a local flat ring map, the induced map CI(R) — Cl(RSh) is 1n]ect1ve by Mori’s
theorem (cf. [11, Corollary 6.5.2]). Thus, it suffices to prove the theorem for RSh Moreover, RSh is
log-regular with respect to the induced log ring structure & : 9 — R — Rsh by Lemma 4.12. So without
loss of generality, we may assume that the residue field of R is separably closed (hence algebraically
closed in our case).

Henceforth, we denote Rsh by R for brevity and fix a prime ¢ that is different from p. By Lemma 4.9
and the local factoriality of R[%], we claim that there is an open subset U C X := Spec(R) such that

Pic(U) =CI(X), X\V(pR)CU and codimy(X\U)> 2. (4-8)

Indeed, X is a normal integral scheme by Kato’s theorem (Theorem 2.21). Let U be the union of the
regular locus of X and the open Spec(R[%]) C X. Then by Serre’s normality criterion, we see that
codimy (X \ U) > 2. We fix such an open U C X once and for all. Taking the cohomology sequence
associated to the exact sequence
Zl’l
0= Z/0'7 = Gy, 2 G,y — 0

on the strict local scheme X and arguing as in the proof of Proposition 4.10, we have an isomorphism

HY\(Ug, 2/0"Z) = Pic(U)[£"] = CI(X)[£"]. 4-9)
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On the other hand, there is a perfectoid tower of module-finite extensions of local log-regular rings arising
from (R, (p)):

(R, Q,a) = (Ro, 90, ap) = --- = (R}, Q¥ &j) = (Rj11, QU D i) — - - . (4-10)

Each map is generically of p-power rank in view of Lemma 2.16(2) and Lemma 2.14(3). Moreover, the
tilt of (4-10) (associated to (R, (p))) is given by

s.b

s.b sb o sb .b .b .b .b .b
(R*?, @, a™”) = ((Ro) (), Q> @y ) = -+ = (R (), Qs &) ) = (Rj1)y)s Qs @) = -

J

where ((R;)()). Q5

,aj.'b) is a complete local log-regular ring of characteristic p > 0 in view of
Theorem 3.61. The local ring R*” is strictly Henselian and the complement of U’’(= U(Sl;b)) has

codimension > 2 in Spec(R*"). By repeating the proof of Proposition 4.10, we obtain an isomorphism

HY U’

et

7/0"7) = Pic(US")[€"]. (4-11)

By Lemma 4.9, the map
Pic(U*")[£"] — CI(R*")[¢"] (4-12)

is injective. Combining (4-9), (4-11), (4-12) and Proposition 4.7, it is now sufficient to check that there
exists an integer N > 0 depending only on R*" such that

CI(R*")[eN] = U CI(R*®)[£"], and CI(R*")[¢M] is finite for all £ and zero for almost all £ # p.

n>0

Since we know that R** is strongly F-regular by Theorem 3.61 and Lemma 2.25, the aforementioned
result of Polstra finishes the proof. (]

Appendix: Construction of differential modules and maximality

The content of this appendix is taken from Gabber and Ramero’s treatise [17], whose purpose is to supply
a corrected version of Grothendieck’s original presentation in EGA. So we give only a sketch of the
constructions of relevant modules and maps. Readers are encouraged to look into [17] for more details as
well as proofs. We are motivated by the following specific problem.

Problem A.1. Let (A, mu) be a Noetherian regular local ring and fix a system of elements f1, ..., f, € A
and a system of integers ey, ..., e, withe; > 1 foreveryi =1, ..., n. We set

B:=A[T,...,T,0/(T{ = fi, ..., TS = f).

Then find a sufficient condition that ensures that the localization B with respect to a maximal ideal n with
my = ANnis regular.

From the construction, it is obvious that the induced ring map A — B is a flat finite injective extension.
Let now (A, my, k) be a Noetherian local ring with residue field k4 := A/my4 of characteristic p > 0.
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Following the presentation in [17, (9.6.15)], we define a certain ki\/ P_vector space R together with a
map dy : A — R4 as follows.

Casel: p ¢ mi. Let Wy (k4) denote the p-typical ring of length 2 Witt vectors over k4. Then there is
the ghost component map g : Wa(ks) — k4, and set Vi(ks) := Ker(wg). More specifically, we have
Wi (ka) = ka X ka as sets with addition and multiplication given respectively by

P P __ )4
a’tc (“+C)> and (a,b)(c.d) = (ac,a’d +cb).

(a,b)+(c,d) = (a—i—c,b—l—d—i—

Using this structure, we see that Vi (ks) =0 x k4 as sets, which is an ideal of W, (k4) and V; (ka)? =
This makes V) (k4) equipped with the structure as a k4-vector space by letting x (0, a) := (x, 0)(0, a) for
X € k4. One can define the map of k4-vector spaces

Ki? = Vitka) ; a0, aP), (A-1)

which is a bijection. With this isomorphism, we may view Vj(k4) as a ki/ P_vector space. Next we form
the fiber product ring:

A=A Xy, Walka).
It gives rise to a short exact sequence of A;-modules
0— Vi(ka) > Ay > A— 0, (A-2)

where A, — A is the natural projection, and the A;-module structure of V| (k4) is via the restriction of

rings A, — Wj(k4). From (A-2), we obtain an exact sequence of A-modules:
Vilks) > Q4 — le/z — 0,

where we put Q4 = Qi‘Z 7 ®h A. After applying () ®4 k4 to this sequence, we have another sequence
of k4-vector spaces:

0— Vi(ka) L Ga @4 ka — QY @1 ks — 0. (A-3)

Then this is right exact. Moreover, (A-1) yields a unique k4-linear map ¥4 : V1(ka) ®x, ki‘/ P Viky).
Define 24 as the push-out of the diagram:

Vitka) 22 Vitkn) @, kY7 229 @ @ kP

More concretely, we have

Q Vitka) ® (R4 ®4 kl\/p)
A= T ,

where T = {(w(x), —(ja ®k114/p)(x)) le Vi(ka) ®x, ki‘/p}. By the universality of push-outs, we get the
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commutative diagram

0 —— Vilka) ®u k" —— Qu@aky’ —— Q@4 ky" —0

P

0 ——— Vi(ka) 24 QY ®aky” —0.

We define the map
dA A —> ﬂA
as the composite mapping

Ixtg d id®l =<
A dy = Ax, Walk) S @, 22 @, =0l ek 25 2,

Here,d : Ay — Q kz /z is the universal derivation and 7z, : A — k4 — Wa(ka), where the first map is the
natural projection and the second one is the Teichmiiller map.

Casell: p mi. We just set 4 1= 9}4/1 ®a kl‘/p, and define d4 : A — R4 as the map induced by the

universal derivation d4 : A — 9}4 /7"
Combining Cases I and II, we have amap d4 : A — 4. If ¢ : (A, my) — (B, mp) is a local ring map

of local rings, this gives rise to the commutative diagram

d
A—25 9,

l, I
dp
B—— SZB.
With this in mind, one can consider the functor A — 2,4 from the category of local rings (A, my4) of

residual characteristic p > 0 to the category of the ki/ P _vector spaces R 4. Some distinguished features in
this construction are as follows:

Proposition A.2 [17, Proposition 9.6.20]. Let ¢ : (A, my) — (B, mp) be a local ring map of Noetherian

local rings such that the residual characteristic of A is p > 0. Then

(1) Suppose that ¢ is formally smooth for the m-adic topology on A and the mp-adic topology on B.
Then the maps induced by ¢ and 4, namely

(t'nA/m%\)Q{)kAkB—>m]g/m%g and SZA@K;/P]‘};/‘D—)SZB,

are injective.
(2) Suppose that

(a) mpB =mgp,
(b) the residue field extension ko — kp is separable algebraic,

(c) ¢ is flat.
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Then 4 induces an isomorphism of ki\/ P_vector spaces:
Qi®4B=Rp.

3)IfB=A/ mi and ¢ : A — B is the natural map, then R is an isomorphism.
(4) The functor R, and the natural transformation d, commute with filtered colimits.
We provide an answer to Problem A.1 as follows.

Theorem A.3 [17, Corollary 9.6.34]. Let fi, ..., f, be a sequence of elements in A, and let ey, ..., e,

be a system of integers with e; > 1 for everyi =1, ..., n. Set
C:=A[T1,....,T,1/ (T = fi, ..., T — fu).

Fix a prime ideal n C C such that nN A =wmy, and let B := Cy,. Let E C Q4 be the ki{p-vector space
spanned by d 4 fi, ..., ds f,. The following conditions are equivalent.

(1) A is a regular local ring, and dimkl‘/p E =n.

(2) B is aregular local ring.

In particular, in the situation of the above theorem, B is a regular local ring if A is a regular local ring
and f1, ..., f, is maximal in the sense of the following definition.

Definition A.4. Let (A, my, k4) be a local ring with residual characteristic p > 0. Then we say that
a sequence of elements fi, ..., f, in A is maximal if d4 f1, ..., d4 f, forms a basis of the ki/ P_vector
space 24.

In general, we have the following fact.

Lemma A.5. Let (A, my, ky) be a regular local ring of mixed characteristic and assume that fi, ..., fu

is a regular system of parameters of A.

(1) fi1,..., fa satisfies condition (1) of Theorem A.3.
(2) If the residue field k4 of A is perfect, then the sequence f, ..., fq is maximal.
Proof. (1) In the case that p ¢ mﬁ, [17, Proposition 9.6.17] gives a short exact sequence
O—>mA/mi®kAki‘/p—>SZA—>§2,1€A/Z®kAk2/p—>O. (A-4)
Then the images f1, ..., f4 form a basis of the kix/ P_vector space my4 /mi Rk, kfll/ P The desired claim

follows from the left exactness of (A-4).
In the case that p € mfx, [17, Lemma 9.6.6] gives a short exact sequence

0—>mA/(m§‘+pmA)—>QA—> Q}(A/Z—>O, (A-5)

and we can argue as in the case p ¢ mi.

(2) If k4 is perfect, then Qlch 7= 0. Therefore, (A-4) and (A-5) (in the latter case, one tensors it with

ki‘/ P over k) gives the desired conclusion. U
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