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Perfectoid towers and their tilts:
with an application to the étale

cohomology groups of local log-regular rings
Shinnosuke Ishiro, Kei Nakazato and Kazuma Shimomoto

To initiate a systematic study on the applications of perfectoid methods to Noetherian rings, we introduce
the notions of perfectoid towers and their tilts. We mainly show that the tilting operation preserves several
homological invariants and finiteness properties. Using this, we also provide a comparison result on étale
cohomology groups under the tilting. As an application, we prove finiteness of the prime-to-p-torsion
subgroup of the divisor class group of a local log-regular ring that appears in logarithmic geometry in the
mixed characteristic case.
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1. Introduction

In recent years, the perfectoid technique has become one of the most effective tools in commutative ring
theory and singularity theory in mixed characteristic. The tilting operation S⇝ S♭ for a perfectoid ring
S is a central notion in this method, which makes a bridge between objects in mixed characteristic and
objects in positive characteristic. However, perfectoid rings themselves are too big to fit into Noetherian
ring theory. Hence, for applications, one often requires distinguished Noetherian ring extensions that
approximate perfectoids. Indeed, in many earlier works (such as [7], [8] and [17]), one constructs a highly
ramified tower of regular local rings or local log-regular rings:

R0 ⊆ R1 ⊆ R2 ⊆ · · ·

that converges to a (pre)perfectoid ring. Our purposes in this paper are to axiomatize the above towers
and establish a kind of Noetherization of perfectoid theory. As an application, we show a finiteness result
on the divisor class groups of local log-regular rings.

Fix a prime p. The highly ramified towers in the positive characteristic case are of the form

R ⊆ R1/p
⊆ R1/p2

⊆ · · · .

This type of tower also appears when one considers the perfect closure of a reduced Fp-algebra. Thus we
formulate this class as a tower-theoretic analogue of perfect Fp-algebras, and call them perfect towers
(Definition 3.2). Next, we introduce perfectoid towers as a generalization of perfect towers, which includes
the towers applied so far (cf. Proposition 3.58 and Example 3.62). A perfectoid tower is given by a direct
system of rings R0

t0
−→ R1

t1
−→ · · · satisfying seven axioms in Definition 3.4 and Definition 3.21. If we

assume that each Ri is Noetherian, then these axioms are essential to cope with two main difficulties
which we explain below.

The first difficulty is that the residue ring Ri/pRi on each layer is not necessarily semiperfect.
We overcome it by axioms (b), (c), and (d); these ensure the existence of a surjective ring map
Fi : Ri+1/pRi+1→ Ri/pRi which gives a decomposition of the Frobenius endomorphism. We call Fi

the i -th Frobenius projection, and define a ring Rs.♭
j ( j ≥ 0) as the inverse limit of Frobenius projections

starting at R j/pR j . Then the resulting tower

Rs.♭
0

t s.♭
0
−→ Rs.♭

1
t s.♭
1
−→ · · ·

is perfect, and thus we obtain the tilting operation ({Ri }i≥0, {ti }i≥0)⇝ ({Rs.♭
i }i≥0, {t

s.♭
i }i≥0). We remark

that this strategy is an axiomatization of the principal arguments in [37].
The second one is that each Rs.♭

i could be imperfect. Because of this, the Witt ring W (Rs.♭
i ) is often

uncontrollable. On the other hand, the definition of Bhatt–Morrow–Scholze’s perfectoid rings [5] contains
an axiom involving Fontaine’s theta map θS :W (S♭)→ S (see Definition 3.49(3)), where perfectness of S♭

is quite effective. Our axioms (f) and (g) are the substitutes for it; these require the Frobenius projections
to behave well, especially on the p-torsion parts. This idea is closely related to Gabber and Ramero’s
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characterization of perfectoid rings ([17, Corollary 16.3.75]; see also Theorem 3.50). Indeed, we apply it
to deduce that the completed direct limit of a perfectoid tower is a perfectoid ring (Corollary 3.52).

We then verify fundamental properties of the tilting operation for towers. For example, the tilt
({Rs.♭

i }i≥0, {t
s.♭
i }i≥0) is a perfectoid tower with respect to an ideal I s.♭

0 ⊆ Rs.♭
0 which is the kernel of the

0-th projection Rs.♭
0 → R0/pR0 (Proposition 3.41). It induces an isomorphism between two perfectoid

objects of different characteristics modulo the defining ideals (Lemma 3.39). Moreover, this operation
preserves several finiteness properties such as Noetherianness on each layer (Proposition 3.42). A key to
deducing these statements is the following result (see Remark 3.40 for homological interpretation).

Main Theorem 1 (see Theorem 3.35). I s.♭
0 is a principal ideal. Moreover, we have isomorphisms of

(possibly) nonunital rings (Rs.♭
i )I s.♭

0 -tor
∼= (Ri )p-tor (i ≥ 0) that are compatible with {t s.♭

i }i≥0 and {ti }i≥0.

Under certain normality assumptions, we obtain a comparison result on the finiteness of étale cohomology
groups under tilting for towers (Proposition 4.7). This proposition is considered to rework the crucial
part of the proof of [8, Theorem 3.1.3] in a systematic way. Actually, our proposition applies beyond the
regular case.

As a typical example, we investigate certain towers of local log-regular rings; this class of rings
is defined by Kazuya Kato, and is central to logarithmic geometry (readers interested in logarithmic
geometry can refer to [17], [26] and [34]). By Kato’s structure theorem, a complete local log-regular
ring (R,Q, α) of mixed characteristic is of the form C(k)[[Q⊕Nr

]]/(p− f ) where C(k) is a Cohen ring
of the residue field k of R (see Theorem 2.22). Gabber and Ramero gave a systematic way to build a
perfectoid tower (in our sense) over it, which consists of local log-regular rings (Construction 3.56). In
this paper, we reveal that its tilt also consists of local log-regular rings, and arises from C(k)[[Q⊕Nr

]]/(p)
(Theorem 3.61). It says that these two rings on the starting layers fit into a Noetherian variant of the
tilting correspondence in perfectoid theory (e.g. Zp corresponds to Fp[[x]]).

We regard Theorem 3.61 to be of fundamental importance in the search on the singularities of Noetherian
rings via perfectoid methods. For instance, we can investigate the divisor class groups of local log-regular
rings.1 The divisor class group of a Noetherian normal domain is an important invariant, but it is often
hard to compute.2 On the other hand, Polstra recently proved a remarkable result stating that the torsion
subgroup of the divisor class group of an F-finite strongly F-regular domain is finite [35]. Based on this
result, we obtain the following finiteness theorem.

Main Theorem 2 (Theorem 4.13). Let (R,Q, α) be a local log-regular ring of mixed characteristic
with perfect residue field k of characteristic p > 0, and denote by Cl(R) the divisor class group with its
torsion subgroup Cl(R)tor. Assume that R̂sh

[ 1
p

]
is locally factorial, where R̂sh is the completion of the

strict Henselization Rsh. Then Cl(R)tor⊗Z
[ 1

p

]
is a finite group. In other words, the ℓ-primary subgroup

of Cl(R)tor is finite for all primes ℓ ̸= p and vanishes for almost all primes ℓ ̸= p.

1K. Kato proved that a local log-regular ring is a normal domain [26].
2Every abelian group is realized as a divisor class group of some Dedekind domain (due to Claborn’s result [9]).
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Our approach to the above theorem is a combination of Theorem 3.61 and Proposition 4.7.
Although we formulated the above theorem only in mixed characteristic, it has an analogue in charac-

teristic p > 0, which is relatively easy as follows from the fact that F-finite log-regular rings are strongly
F-regular (Lemma 2.25) combined with Polstra’s theorem.

For a local log-regular ring (R,Q, α), Gabber and Ramero constructed the isomorphism Cl(Q)∼=Cl(R)
where Cl(Q) is the divisor class group of the associated monoid [17, Corollary 12.6.43]. It induces the
finite generation of Cl(R).3

Recently, H. Cai, S. Lee, L. Ma, K. Schwede, and K. Tucker proved that the torsion part of the divisor
class group of a BCM-regular ring is finite (see [6, Theorem 7.0.10.]). Since they also proved that local
log-regular rings are BCM-regular, their result recovers Main Theorem 2. Although their approach relies
on the evaluation of a certain inequality with the perfectoid signature which is defined in [6] as an analogue
of F-signature, it does not use a reduction to positive characteristic and is therefore essentially different
from our approach.

Outline. In Section 2, we discuss several properties of monoids and local log-regular rings needed in
later sections. We also record a shorter proof of the result that local log-regular rings are splinter based
on the direct summand theorem in Section 2C.

In Section 3, we introduce the notions of perfect towers, perfectoid towers, and their tilts. The most
part of this section is devoted to studying fundamental properties of them; in particular, Section 3D deals
with Main Theorem 1. In the last subsection Section 3F, we provide explicit examples of perfectoid
towers consisting of local log-regular rings, and compute their tilts.

In Section 4, we give a proof for Main Theorem 2 using the tilting operation, which is an application
of Sections 2 and 3.

In the Appendix, we review the notion of maximal sequences associated to certain differential modules
due to Gabber and Ramero [17]. This plays an important role in the construction of perfectoid towers of
local log-regular rings (Construction 3.56).

Conventions. •We consistently fix a prime p>0. If we need to refer to another prime, we denote it by ℓ.

• All rings are assumed to be commutative and unital (unless otherwise stated; cf. Theorem 3.35(2)). We
mean by a ring map a unital ring homomorphism.

• A local ring is a (not necessarily Noetherian) ring with a unique maximal ideal. When a ring R is local,
then we use mR (or simply m if no confusion is likely) to denote its unique maximal ideal. We say that a
ring map f : R→ S is local if R and S are local rings and f −1(mS)=mR .

• Unless otherwise stated, a pair (A, I ) consisting of a ring A and an ideal I ⊆ A will be simply called a
pair.

• The Frobenius endomorphism on an Fp-algebra R is denoted by FR . If there is no confusion, we denote
it by Frob.

3The first-named author recently provided an elementary proof of [17, Corollary 12.6.43]. See [25].
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2. Log-regularity

In this section, we discuss several properties of monoids and local log-regular rings. In Section 2A, we
review basic terms on monoids, and examine the behavior of p-times maps which are effectively used in
Gabber and Ramero’s treatment of perfectoid towers (see Construction 3.56). In Section 2B, we review
the definition of local log-regular rings and crucial results by K. Kato, and study the relationship with
strong F-regularity. In Section 2C, we recall Gabber and Ramero’s result which claims that any local
log-regular ring is a splinter (Theorem 2.29), and give an alternative proof for it using the direct summand
Theorem by Y.André [2] (its derived variant is proved by B. Bhatt [4]).

2A. Preliminaries on monoids.

2A1. Basic terms. Here we review the definition of several notions on monoids.

Definition 2.1. A monoid is a semigroup with a unit. A homomorphism of monoids is a semigroup
homomorphism between monoids that sends a unit to a unit.

Throughout this paper, all monoids are assumed to be commutative. We denote by Mnd the category
whose objects are (commutative) monoids and whose morphisms are homomorphisms of monoids.

We denote a unit by 0. Let Q be a monoid and Q∗ denote the set of all p ∈Q such that there exists
q ∈Q such that p+q = 0. Let Qgp denote the set of elements a−b for all a, b ∈Q, where a−b= a′−b′

if and only if there exists c ∈Q such that a+ b′+ c = a′+ b+ c. By definition, Qgp is an abelian group.
The following conditions yield good classes of monoids.

Definition 2.2. Let Q be a monoid.

(1) Q is called integral if for x, x ′ and y ∈ Q, x + y = x ′+ y implies x = x ′.

(2) Q is called fine if it is finitely generated and integral.

(3) Q is called sharp if Q∗ = 0.

(4) Q is called saturated if the following conditions hold.

(a) Q is integral.
(b) For any x ∈Qgp, if nx ∈Q for some n ≥ 1, then x ∈Q.

For an integral monoid Q, the map ιQ : Q → Qgp
; q 7→ q − 0 is injective (see [34, Chapter I,

Proposition 1.3.3]). In Definition 2.2(4), we identify Q with its image in Qgp.
Next we recall the definition of a module over a monoid.4

Definition 2.3 (Q-module). Let Q be a monoid.

(1) A Q-module is a set M equipped with a binary operation

Q×M→ M ; (q, x) 7→ q + x

having the following properties:

4This is called a Q-set in [34]. We call it as above to follow the convention of the terminology in commutative ring theory.
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(a) 0+ x = x for any x ∈ M ;
(b) (p+ q)+ x = p+ (q + x) for any p, q ∈Q and x ∈ M .

(2) A homomorphism of Q-modules is a (set-theoretic) map f : M→ N between Q-modules such that
f (q + x)= q + f (x) for any q ∈Q and x ∈ M . We denote by Q-Mod the category of Q-modules
and homomorphisms of Q-modules.

For a monoid Q and a family of Q-modules {Mi }i∈I , we denote by
∐

i∈I Mi the disjoint union with
the binary operation induced by that of each Mi . Then it is the coproduct in Q-Mod.

Definition 2.4 (Monoid algebras). Let R be a ring and let Q be a monoid. Then the monoid algebra
R[Q] is the R-algebra which is the free R-module R⊕Q, endowed with the unique ring structure induced
by the homomorphism of monoids

Q→ R[Q] ; q 7→ eq .

For a monoid Q, one obtains the functor

Q-Mod→ R[Q]-Mod ; M 7→ R[M], (2-1)

which is a left adjoint of the forgetful functor R[Q]-Mod → Q-Mod. Notice that (2-1) preserves
coproducts (we use this property to prove Proposition 2.8).

Like ideals (resp. prime ideals, the Krull dimension) of a ring, an ideal (resp. prime ideals, the
dimension) of a monoid is defined as follows.

Definition 2.5. Let Q be a monoid.

(1) A Q-submodule of Q is called an ideal of Q.

(2) An ideal I is called prime if I ̸=Q and p+q ∈ I implies p ∈ I or q ∈ I . Remark that the empty set
∅ is a prime ideal of Q.

(3) The dimension of a monoid Q is the maximal length d of the ascending chain5 of prime ideals

∅= q0 ⊂ q1 ⊂ · · · ⊂ qd =Q+,

where Q+ is the set of non-unit elements of Q (i.e. Q+ =Q \Q∗). We also denote it by dimQ.

Next we review a good class of homomorphisms of monoids, called exact homomorphisms.

Definition 2.6 (Exact homomorphisms). Let P and Q be monoids.

(1) A homomorphism of monoids ϕ : P→Q is said to be exact if the diagram of monoids

P

��

ϕ
// Q

��

Pgp ϕgp
// Qgp

is cartesian.
5In this paper, the symbol ⊂ is used to indicate proper inclusion for making an analogy to the inequality symbols as in [34].
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(2) An exact submonoid of Q is a submonoid Q′ of Q such that the inclusion map Q′ ↪→Q is exact (in
other words, (Q′)gp

∩Q=Q′).

There is a quite useful characterization of exact submonoids (Proposition 2.8). To see this, we recall a
graded decomposition of a Q-module attached to a submonoid. For a monoid Q and a submonoid Q′ ⊆Q,
we denote by Q→Q/Q′ the cokernel of the inclusion map Q′ ↪→Q.

Definition 2.7. Let Q be an integral monoid, and let Q′ ⊆Q be a submonoid. Then for any g ∈Q/Q′,
we denote by Qg a Q′-module defined as follows.

• As a set, Qg is the inverse image of g ∈Q/Q′ under the cokernel Q→Q/Q′ of Q′ ↪→Q.

• The operation Q′×Qg→Qg is defined by the rule (q, x) 7→ q + x (where q + x denotes the sum
of q and x in Q).

By definition, Q =
∐

g∈Q/Q′ Qg in Q′-Mod. Using this, one can refine a characterization of exact
embeddings described in [34, Chapter I, Proposition 4.2.7].

Proposition 2.8 (cf. [34, Chapter I, Proposition 4.2.7]). Let Q be an integral monoid, and let Q′ ⊆Q be
a submonoid. Let θ : Q′ ↪→ Q be the inclusion map, and let Z[θ ] : Z[Q′] → Z[Q] be the induced ring
map. Set G :=Q/Q′.

(1) The Z[Q′]-module Z[Q] admits a G-graded decomposition Z[Q] =
⊕

g∈G Z[Qg].

(2) The following conditions are equivalent.

(a) The inclusion map θ :Q′ ↪→Q is exact. In other words, (Q′)gp
∩Q=Q′.

(b) Q0 =Q′.
(c) Z[θ ] splits as a Z[Q′]-linear map.
(d) Z[θ ] is equal to the canonical embedding Z[Q0] ↪→

⊕
g∈G Z[Qg].

(e) Z[θ ] is universally injective.

Proof. (1) By applying the functor (2-1) (which admits a right adjoint) to the decomposition Q=
∐

g∈G Qg,
we find that the assertion follows.

(2) Since Q0 = (Q′)gp
∩ Q as sets by definition, the equivalence (a)⇔(b) follows. The assertion

(a)⇔(c)⇔(e) is none other than [34, Chapter I, Proposition 4.2.7]. Moreover, (d) implies (c) obviously.
Thus it suffices to show the implication (b)⇒(d). Assume that (b) is satisfied. Then one can decompose Q
into the direct sum of Q′-modules

∐
g∈G Qg with Q0=Q′. Hence the inclusion map Q′ ↪→Q is equal to the

canonical embedding Q0 ↪→
∐

g∈G Qg. Thus the induced homomorphism Z[θ ] : Z[Q0] ↪→ Z
[∐

g∈G Qg
]

satisfies (d), as desired. □

Remark 2.9. In the situation of Proposition 2.8, assume that condition (d) is satisfied. Then the split
surjection π : Z[Q] → Z[Q′] has the property that π(eQ) = eQ

′

by the construction of the G-graded
decomposition Z[Q] =

⊕
g∈G Z[Qg]. Moreover, π(eQ

+

)⊆ e(Q
′)+ because Q+∩Q′ ⊆ (Q′)+. We use this

fact in our proof for Theorem 2.29.
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Proposition 2.8 implies the following useful lemma.

Lemma 2.10. Let Q be a fine, sharp, and saturated monoid. Let A be a ring. Then there is an embedding
of monoids Q ↪→ Nd such that the induced map of monoid algebras

A[Q] → A[Nd
] (2-2)

splits as an A[Q]-linear map.

Proof. Since Q is saturated, there exists an embedding Q into some Nd as an exact submonoid in view of
[34, Chapter I, Corollary 2.2.7]. Then by Proposition 2.8, the associated map of monoid algebras

Z[Q] → Z[Nd
] (2-3)

splits as a Z[Q]-linear map. By tensoring (2-3) with A, we get the desired split map. □

2A2. c-times maps on integral monoids. For an integral monoid Q, we denote by QQ the submonoid of
Qgp
⊗Z Q defined as

QQ := {x ⊗ r ∈Qgp
⊗Z Q | x ∈Q, r ∈Q≥0}.

Using this, one can define the following monoid which plays a central role in Gabber and Ramero’s
construction of perfectoid towers consisting of local log-regular rings.

Definition 2.11. Let Q be an integral monoid. Let c and i be non-negative integers with c > 0.

(1) We denote by Q(i)
c the submonoid of QQ defined as

Q(i)
c := {γ ∈QQ | ciγ ∈Q}.

(2) We denote by ι(i)c :Q(i)
c ↪→Q(i+1)

c the inclusion map, and by Z[ι
(i)
c ] :Z[Q(i)

c ]→Z[Q(i+1)
c ] the induced

ring map.

In the rest of this subsection, we fix a positive integer c > 0. To prove several properties of Q(i)
c , the

following one is important as a starting point.

Lemma 2.12. Let Q be an integral monoid. Then for every i ≥ 0, the following assertions hold.

(1) Q(i)
c is integral.

(2) Q(i+1)
c = (Q(i)

c )
(1)
c .

(3) The c-times map on QQ restricts to an isomorphism of monoids:

fc :Q(i+1)
c

∼=
−→Q(i)

c ; γ 7→ cγ.

Proof. (1) Since Qgp
⊗Z Q is an integral monoid, so is Q(i)

c .

(2) Since any g∈ (Q(i)
c )

gp satisfies ci g∈Qgp, the inclusion map Qgp ↪→ (Q(i)
c )

gp becomes an isomorphism

ϕ :Qgp
⊗Z Q

∼=
−→ (Q(i)

c )
gp
⊗Z Q by extension of scalars along the flat ring map Z→Q. The restriction

ϕ̃ :QQ ↪→ (Q(i)
c )Q of ϕ is also an isomorphism, and one can easily check that ϕ̃ restricts to the desired

canonical isomorphism Q(i+1)
c

∼=
−→ (Q(i)

c )
(1)
c .
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(3) It is easy to see that the c-times map on QQ restricts to the homomorphism of monoids fc. Since the
abelian group QQ =Qgp

⊗Z Q is torsion-free, fc is injective. Moreover, any element γ in Q(i)
c is of the

form x ⊗ r for some x ∈Qgp and r ∈Q, which satisfy c
(
x ⊗ r

c

)
= γ and ci+1

(
x ⊗ r

c

)
∈Q. Hence fc is

also surjective, as desired. □

Let us inspect monoid-theoretic aspects of the inclusion ι(i)c :Q(i)
c ↪→Q(i+1)

c .

Lemma 2.13. Let Q be an integral monoid, and let P ∈ { fine, sharp, saturated}. If Q satisfies P , then
Q(i)

c also satisfies P for every i ≥ 0.

Proof. Assume that Q is sharp. Pick x, y ∈Q(i)
c such that x + y = 0. Then ci x = 0 because Q is sharp.

Since Q(i)
c is a submonoid of the torsion-free group Qgp

⊗Z Q, we have x = 0. Next, if Q is fine or
saturated, then it suffices to show the case i = 1 by Lemma 2.12(2). If Q is fine, then there exists a finite
system of generators {x1, . . . , xr } of Q. Hence Q(1)

c also has a finite system of generators
{

x j⊗
1
c

}
j=1,...,r .

Finally, assume that Q(1)
c is saturated. Pick an element x of (Q(1)

c )gp such that nx ∈ Q(1)
c . Then the

element cx of Qgp satisfies n(cx)= c(nx) ∈Q. Hence cx ∈Q because Q is saturated. □

The assumption of fineness on Q induces several finiteness properties.

Lemma 2.14. Let Q be a fine monoid. Then for every i ≥ 0, the following assertions hold.

(1) The ring map Z[ι
(i)
c ] : Z[Q(i)

c ] → Z[Q(i+1)
c ] is module-finite.

(2) Q(i+1)
c /Q(i)

c ∼= (Q(i+1)
c )gp/(Q(i)

c )
gp as monoids. Moreover, Q(i+1)

c /Q(i)
c forms a finite abelian group.

(3) For a prime p > 0, we have
∣∣Q(i+1)

p /Q(i)
p

∣∣= ps for some s ≥ 0.

Proof. In view of Lemma 2.12(2), it suffices to deal with the case when i = 0 only. Here notice that
Q(0)

c =Q.
(1) Let

{ 1
c x1, . . . ,

1
c xr

}
be the system of generators of Q(1)

c obtained in the proof of Lemma 2.13 where
1
c x j := x j ⊗

1
c . Then the Z[Q]-algebra Z[Q(1)

c ] is generated by {e
1
c x1, . . . , e

1
c xr }, and each e

1
c x j ∈ Z[Q(1)

c ]

is integral over Z[Q]. Hence Z[ι
(0)
c ] is module-finite, as desired.

(2) By [34, Chapter I, Proposition 1.3.3], Q(1)
c /Q is identified with the image of the composition

Q(1)
c ↪→ (Q(1)

c )gp↠ (Q(1)
c )gp/Qgp. (2-4)

Since Q(1)
c is generated by 1

c x1, . . . ,
1
c xr , we see (Q(1)

c )gp is generated by 1
c x1, . . . ,

1
c xr ,−

1
c x1, . . . ,−

1
c xr

as a monoid. On the other hand, −1
c x j ≡ (c− 1) 1

c x j modQgp for j = 1, . . . , r . Hence (Q(1)
c )gp/Qgp is

generated by
{1

c x j modQgp
}

j=1,...,r as a monoid. Therefore, the composite map (2-4) is surjective, and
(Q(1)

c )gp/Qgp is a finitely generated torsion abelian group. Thus, Q(1)
c /Q coincides with (Q(1)

c )gp/Qgp,
which is a finite abelian group, as desired.

(3) Since there exists a surjective group homomorphism

f : Z/pZ× · · ·×Z/pZ︸ ︷︷ ︸
r

↠ (Q(1)
p )

gp/Qgp
; (n1, . . . , nr ) 7→ n1

(
1
p

x1

)
+ · · ·+ nr

(
1
p

xr

)
mod Qgp ,
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we have pr
=

∣∣(Q(1)
p )

gp/Qgp
∣∣|Ker( f )|. Hence

∣∣(Q(1)
p )

gp/Qgp
∣∣= ps for some s ≥ 0. Thus the assertion

follows from (2). □

By assuming saturatedness, one finds the exactness of ι(i)c :Q(i)
c ↪→Q(i+1)

c .

Lemma 2.15. Let Q be a saturated monoid. Then for every i ≥ 0, ι(i)c : Q(i)
c ↪→ Q(i+1)

c is exact (i.e.,
Q(i+1)

c ∩ (Q(i)
c )

gp
=Q(i)

c ).

Proof. It suffices to show that Q(i+1)
c ∩ (Q(i)

c )
gp
⊆ Q(i)

c . Pick an element a ∈ Q(i+1)
c ∩ (Q(i)

c )
gp. Then

ca ∈Q(i)
c . Since Q(i)

c is saturated by Lemma 2.13, it implies that a ∈Q(i)
c , as desired. □

If further Q is fine, one can learn more about Z[ι
(i)
c ] : Z[Q(i)

c ] → Z[Q(i+1)
c ] using the exactness of ι(i)c

assured by Lemma 2.15.

Lemma 2.16. Let Q be a fine and saturated monoid. For every i ≥ 0, set Gi :=Q(i+1)
c /Q(i)

c (which is a
finite abelian group by Lemma 2.14(2)) and Ki := Frac(Z[Q(i)

c ]).

(1) For any g ∈ Gi , we have an isomorphism of Z[Q(i)
c ]-modules Z[(Q(i+1)

c )g]⊗Z[Q(i)
c ]

Ki ∼= Ki .

(2) The base extension Ki → Z[Q(i+1)
c ]⊗

Z[Q(i)
c ]

Ki of Z[ι
(i)
c ] is isomorphic to the split injection

Ki ↪→ (Ki )
⊕|Gi | ; a 7→ (a, 0, . . . , 0)

as a Ki -linear map. In particular, dimKi

(
Z[Q(i+1)

c ]⊗
Z[Q(i)

c ]
Ki

)
= |Q(i+1)

c /Q(i)
c |.

Proof. In view of Lemma 2.12(2) and Lemma 2.13, it suffices to show the assertions only for the case
when i = 0.

(1) Let yg ∈ Q(1)
c be an element whose image in Q(1)

c /Q is equal to g. Then we obtain an injective
homomorphism of Q-modules

ιg :Q ↪→ (Q(1)
c )g ; x 7→ x + yg, (2-5)

which induces an injective Z[Q]-linear map Z[ιg] : Z[Q] ↪→ Z[(Q(1)
c )g]. Thus it suffices to show that

Coker(Z[ιg])⊗Z[Q] K0 = (0), i.e., Coker(Z[ιg]) is a torsion Z[Q]-module. On the other hand, we also
have a homomorphism of Q-modules

(Q(1)
c )g→Qgp

; y 7→ y− yg,

which induces an embedding of Z[Q]-modules Coker(Z[ιg]) ↪→ Z[Qgp
]/Z[Q]. Since Z[Qgp

]/Z[Q] is
Z[Q]-torsion, the assertion follows.

(2) This follows from the combination of part (1) with Lemma 2.15 and Proposition 2.8(2). □

2B. Local log-regular rings.

2B1. Definition of local log-regular rings. We review the definition and fundamental properties of local
log-regular rings. Unless otherwise stated, we always assume that the monoid structure of a commutative
ring is specified by the multiplicative structure.
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Definition 2.17 [34, Chapter III, Definition 1.2.3]. Let R be a ring and let Q be a monoid with a
homomorphism α :Q→ R of monoids. Then we say that the triple (R,Q, α) is a log ring. Moreover, we
say that (R,Q, α) is a local log ring if (R,Q, α) is a log ring, where R is a local ring and α−1(R×)=Q∗.

In order to preserve the locality of a log structure, we need the locality of a ring map.

Lemma 2.18. Let (R,Q, α) be a local log ring and let (S,mS) be a local ring with a local ring map
φ : R→ S. Then (S,Q, φ ◦α) is also a local log ring.

Proof. By the locality of φ, we obtain the equality (φ ◦α)−1(S×)=Q∗, as desired. □

Now we define log-regular rings according to [34].

Definition 2.19. Let (R,Q, α) be a local log ring, where R is Noetherian and Q := Q/Q∗ is fine and
saturated. Let Iα be the ideal of R generated by the set α(Q+). Then (R,Q, α) is called a log-regular
ring if the following conditions hold.

(1) R/Iα is a regular local ring.

(2) dim R = dim R/Iα + dimQ.

Remark 2.20. For a monoid Q such that Q is fine and saturated, the natural projection π :Q↠Q splits
(see [17, Lemma 6.2.10]). Thus, in the situation of Definition 2.19, α extends to the homomorphism of
monoids α :Q→ R along π . Namely, we obtain another local log-regular ring (R,Q, α) with the same
underlying ring, where Q is fine, sharp, and saturated.

In his monumental paper [26], Kato considered log structures of schemes on the étale sites, and he then
considered them on the Zariski sites [27]. However, we do not need any deep part of logarithmic geometry
and the present paper focuses on the local study of schemes with log structures. We should remark that if
k is any fixed field and Q⊆Nd is a fine and saturated monoid, then the monoid algebra k[Q] is known
as an affine normal semigroup ring which is actively studied in combinatorial commutative algebra (see
the book [30]). The following theorem is a natural extension of the Cohen–Macaulay property for the
classical toric singularities over a field proved by Hochster [22].

Theorem 2.21 [27, Theorem 4.1]. Every local log-regular ring is Cohen–Macaulay and normal.

Let R be a ring and let Q be a fine sharp monoid. We denote by R[Q+] the ideal of R[Q] generated
by elements

∑
q∈Q+ aqeq , where aq is an element of R. Then we denote by R[[Q]] the adic completion

of R[Q] with respect to the ideal R[Q+].
As to the structure of complete local log-regular rings, we have the following result analogous to the

classical Cohen’s structure theorem, originally proved in [27]. We borrow the presentation from [34,
Chapter III, Theorem 1.11.2].

Theorem 2.22 (Kato). Let (R,Q, α) be a local log ring such that R is Noetherian and Q is fine, sharp,
and saturated. Let k be the residue field of R and mR its maximal ideal. Let r be the dimension of R/Iα.
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(1) Suppose that R contains a field. Then (R,Q, α) is log-regular if and only if there exists a commutative
diagram

Q

α

��

// k[[Q⊕Nr
]]

ψ
��

R // R̂

where R̂ is the completion along the maximal ideal and ψ is an isomorphism of rings.

(2) Assume that R is of mixed characteristic p > 0. Let C(k) be a Cohen ring of k. Then (R,Q, α) is
log-regular if and only if there exists a commutative diagram

Q

α

��

// C(k)[[Q⊕Nr
]]

ψ
��

R // R̂

where R̂ is the completion along the maximal ideal and ψ is a surjective ring map with Ker(ψ)= (θ)
for some element θ ∈ mR̂ whose constant term is p. Moreover, Ker(ψ) = (θ ′) for any element
θ ′ ∈ Ker(ψ) whose constant term is p.

Proof. Assertion (1) and the first part of (2) are [34, Chapter III, Theorem 1.11.2]. Pick an element
θ ′ ∈ Ker(ψ) whose constant term is p. Note that θ ′ is a regular element that is not invertible. By [34,
Chapter III, Proposition 1.10.13], C(k)[[Q⊕Nr

]]/(θ ′) is a domain of dimQ+ r = dim R = dim R̂. Thus
Ker(ψ)= (θ ′) holds.6 □

The completion of a normal affine semigroup ring with respect to the ideal generated by elements of
the semigroup is a typical example of local log-regular rings:

Lemma 2.23. Let Q be a fine, sharp and saturated monoid and let k be a field. Then (k[[Q]],Q, ι) is a
local log-regular ring, where ι :Q ↪→ k[[Q]] is the natural injection.

Proof. By [34, Chapter I, Proposition 3.6.1], (k[[Q]],Q, ι) is a local log ring. Now applying Theorem 2.22,
it is a local log-regular ring. □

2B2. Log-regularity and strong F-regularity. Strongly F-regular rings are one of the important classes
appearing in the study of F-singularities. Let us recall the definition.

Definition 2.24 (strong F-regularity). Let R be a Noetherian reduced Fp-algebra that is F-finite. Let Fe
∗

R
be the same as R as its underlying abelian groups with its R-module structure via restriction of scalars via
the e-th iterated Frobenius endomorphism Fe

R on R. Then we say that R is strongly F-regular, if for any
element c ∈ R that is not in any minimal prime of R, there exist an e> 0 and a map φ ∈HomR(Fe

∗
R, R)

such that φ(Fe
∗

c)= 1.

6This argument is due to Ogus. See the proof of [34, Chapter III, Theorem 1.11.2(2)].
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It is known that strongly F-regular rings are Cohen–Macaulay and normal (for example, see [28,
Proposition 4.4 and Theorem 4.6]). Let us show that log-regularity implies strong F-regularity (in positive
characteristic cases).

Lemma 2.25. Let (R,Q, α) be a local log-regular ring of characteristic p > 0 such that R is F-finite.
Then R is strongly F-regular.

Proof. The completion of R with respect to its maximal ideal is isomorphic to the completion of
k[Q⊕Nr

], and Q is a fine, sharp and saturated monoid by Theorem 2.22 and [34, Chapter I, Proposition
3.4.1]. Then it follows from Lemma 2.10 that Q ⊕ Nr can be embedded into Nd for d > 0, and
k[Q⊕Nr

] → k[Nd
] ∼= k[x1, . . . , xd ] splits as a k[Q⊕Nr

]-linear map. Applying [23, Theorem 3.1], we
see that k[Q⊕Nr

] is strongly F-regular. After completion, the complete local ring k[[Q⊕Nr
]] is strongly

F-regular in view of [1, Theorem 3.6]. Then by faithful flatness of R→ k[[Q⊕Nr
]], [23, Theorem 3.1]

applies to yield strong F-regularity of R. □

Under the hypothesis in the following proposition, one can easily establish the finiteness of the torsion
part of the divisor class group, which is the first assertion of Theorem 4.13.

Proposition 2.26. Assume that R ∼= C(k)[[Q]], where C(k) is a Cohen ring with F-finite residue field
k and Q is a fine, sharp, and saturated monoid. Let Cl(R)tor be the torsion subgroup of Cl(R). Then
Cl(R)tor⊗Z(ℓ) is finite for all ℓ ̸= p, and vanishes for almost all ℓ ̸= p.

Proof. Since R ∼= C(k)[[Q]], we have

R/pR ∼= k[[Q]],

which is a local F-finite log-regular ring. There is an induced map Cl(R)→ Cl(R/pR). By restriction,
we have Cl(R)tor → Cl(R/pR)tor. Then Lemma 2.25 together with Polstra’s result [35] says that
Cl(R/pR)tor is finite. Let Cℓ be the maximal ℓ-subgroup of Cl(R)tor. Since ℓ ̸= p, we find that the map
Cl(R)tor→ Cl(R/pR)tor restricted to Cℓ is injective in view of [18, Theorem 1.2]. In conclusion, Cℓ is
finite for all ℓ ̸= p, and Cℓ vanishes for almost all ℓ ̸= p, as desired. □

2C. Log-regularity and splinters. Local log-regular rings have another notable property; they are splin-
ters. Let us recall the definition of splinters.

Definition 2.27. A Noetherian ring A is a splinter if every finite ring map f : A → B such that
Spec(B)→ Spec(A) is surjective admits an A-linear map h : B→ A such that h ◦ f = idA.

In general, it is not easy to see which algebraic operations preserve splinters. In fact, it remains
unsolved whether polynomial rings over a splinter are splinters (see [10, Question 1’]). Regarding these
issues, Datta and Tucker proved remarkable results such as [10, Theorem B], [10, Theorem C], and [10,
Example 3.2.1]. See also Murayama’s work [32] for the study of purity of ring extensions.

In order to prove the splinter property, we need a lemma on splitting a map under completion.
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Lemma 2.28. Let R be a ring and let f : M→ N be an R-linear map. Consider a decreasing filtration
by R-submodules {Mλ}λ∈3 of M and a decreasing filtration by R-submodules {Nλ}λ∈3 of N such that
f (Mλ)⊆ Nλ for each λ ∈3. Set

M̂ := lim
←−−
λ∈3

M/Mλ and N̂ := lim
←−−
λ∈3

N/Nλ.

Finally, assume that f is a split injection that admits an R-linear map g : N → M such that g ◦ f = idM ,
g(Nλ)⊆ Mλ for each λ ∈3. Then f extends to a split injection M̂→ N̂ .

Proof. By assumption, there is an induced map

M/Mλ

f
−→ N/Nλ

ḡ
−→ M/Mλ

which is an identity on M/Mλ. Taking inverse limits, we get an identity map M̂ → N̂ → M̂ , which
proves the lemma. □

The next result is originally due to Gabber and Ramero [17, Theorem 17.3.12].7 We give an alternative
and short proof, using the direct summand theorem by André [2].

Theorem 2.29. A local log-regular ring (R,Q, α) is a splinter.

Proof. First, we prove the theorem when R is complete. By Remark 2.20, we may assume that Q is fine,
sharp, and saturated. By Theorem 2.22, we have

R ∼= k[[Q⊕Nr
]], or R ∼= C(k)[[Q⊕Nr

]]/(p− f ),

depending on whether R contains a field or not. Let us consider the mixed characteristic case. By
Lemma 2.10, there is a split injection C(k)[Q⊕Nr

] → C(k)[Nd
] for some d > 0, which comes from an

injection δ :Q⊕Nr
→ Nd that realizes δ(Q⊕Nr ) as an exact submonoid of Nd . After dividing out by

the ideal (p− f ), we find that the map

C(k)[[Q⊕Nr
]]/(p− f )→ C(k)[[Nd

]]/(p− f )

splits as a C(k)[[Q⊕Nr
]]/(p− f )-linear map by Remark 2.9 and Lemma 2.28. Hence, R becomes a

direct summand of the complete regular local ring A := C(k)[[x1, . . . , xd ]]/(p− f ). By invoking [10,
Proposition 2.2.8] and the Direct Summand Theorem [2], we see that R is a splinter. The case where
R = k[[Q⊕Nr

]] can be treated similarly.
Next let us consider the general case. Then the completion map R→ R̂ is faithfully flat and R̂ is a

complete local log-regular ring (see Theorem 2.22). Hence applying the complete case as above and [10,
Proposition 2.2.8] shows that R is a splinter, as desired. □

7One notices that the treatment of logarithmic geometry in [17] is topos-theoretic, while [27] considers mostly the Zariski
sites.
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3. Perfectoid towers and small tilts

In this section, we establish a tower-theoretic framework to deal with perfectoid objects using the notion
of perfectoid towers. We first introduce the class of perfect towers (Definition 3.2) in Section 3A, and
then define inverse perfection of towers (Definition 3.8) in Section 3B. These notions are tower-theoretic
variants of perfect Fp-algebras and inverse perfection of rings, respectively. In Section 3C, we give a set
of axioms for perfectoid towers. In Section 3D, we adopt the process of inverse perfection for perfectoid
towers as a new tilting operation. Indeed, we verify the invariance of several good properties under the
tilting; Main Theorem 1 is discussed here. In Section 3E, we describe the relationship between perfectoid
towers and perfectoid rings. This subsection also includes an alternative characterization of perfectoid rings
without Ainf. In Section 3F, we calculate the tilts of perfectoid towers consisting of local log-regular rings.

3A. Perfect towers. First of all, we consider the category of towers of rings.

Definition 3.1 (towers of rings).

(1) A tower of rings is a direct system of rings of the form

R0
t0
// R1

t1
// R2

t2
// · · ·

ti−1
// Ri

ti
// · · · ,

and we denote it by ({Ri }i≥0, {ti }i≥0) or {R0
t0
−→ R1

t1
−→ · · · }.

(2) A morphism of towers of rings f : ({Ri }i≥0, {ti }i≥0)→ ({R′i }i≥0, {t ′i }i≥0) is defined as a collection of
ring maps { fi : Ri→ R′i }i≥0 that is compatible with the transition maps; in other words, f represents
the commutative diagram

R0 //

f0
��

R1 //

f1
��

R2 //

f2
��

· · · // Ri //

fi
��

· · ·

R′0 // R′1 // R′2 // · · · // R′i // · · · .

For a tower of rings ({Ri }i≥0, {ti }i≥0), we often denote by R∞ an inductive limit lim
−−→i≥0 Ri . Clearly, an

isomorphism of towers of rings ({Ri }i≥0, {ti }i≥0)→ ({R′i }i≥0, {t ′i }i≥0) induces the isomorphism of rings
R∞

∼=
−→ R′

∞
. For every i ≥ 0, we regard Ri+1 as an Ri -algebra via the transition map ti .

Recall that the direct perfection of an Fp-algebra R, which we denote by Rperf, is the direct limit of
the tower ({Ri }i≥0, {ti }i≥0) where Ri = R and ti = FR for every i ≥ 0. We denote by φR : R→ Rperf the
natural map R0→ lim

−−→i≥0 Ri . If R is reduced, this tower can be regarded as ring extensions obtained
by adjoining pi -th roots (cf. Example 3.3). We formulate such towers as follows, and call them perfect
towers.

Definition 3.2 (perfect towers). A perfect Fp-tower (or, perfect tower as an abbreviated form) is a tower
of rings that is isomorphic to a tower of the following form, where R is a reduced Fp-algebra:

R
FR
// R

FR
// R

FR
// · · · . (3-1)
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Example 3.3. Let R be a reduced Fp-algebra. Let R1/pi
be the ring of pi -th roots of elements of R

for every i ≥ 0.8 Then the tower R
t0
−→ R1/p t1

−→ R1/p2 t2
−→ · · · is a perfect tower. Indeed, we have an

isomorphism Fi : R1/pi+1
→ R1/pi

; x 7→ x p. By putting F0,i+1 := F0 ◦ · · · ◦ Fi , we obtain the desired
commutative ladder:

R1/p0

F0,0

��

t0
// R1/p

F0,1

��

t1
// · · ·

ti−1
// R1/pi ti

//

F0,i

��

· · ·

R
FR

// R
FR

// · · ·
FR

// R
FR

// · · · .

3B. Purely inseparable towers and inverse perfection. In this subsection, we define inverse perfection
for towers, which assigns a perfect tower to a tower by arranging a certain type of inverse limits of rings.
For this, we introduce the following class of towers that admit distinguished inverse systems of rings.

Definition 3.4 (purely inseparable towers). Let R be a ring, and let I ⊆ R be an ideal.

(1) A tower ({Ri }i≥0, {ti }i≥0) is called a p-purely inseparable tower arising from (R, I ) if it satisfies
the following axioms.

(a) R0 = R and p ∈ I .
(b) For any i ≥ 0, the ring map t̄i : Ri/IRi → Ri+1/IRi+1 induced by ti is injective.
(c) For any i ≥ 0, the image of the Frobenius endomorphism on Ri+1/IRi+1 is contained in the

image of t̄i : Ri/IRi → Ri+1/IRi+1.

(2) Let ({Ri }i≥0, {ti }i≥0) be a p-purely inseparable tower arising from (R, I ). For any i ≥ 0, we denote
by Fi : Ri+1/IRi+1→ Ri/IRi the ring map (which uniquely exists by axioms (b) and (c)) such that
the following diagram commutes:

Ri+1/IRi+1

Fi ))

FRi+1/IRi+1
// Ri+1/IRi+1

Ri/IRi .

t̄i

OO

(3-2)

We call Fi the i-th Frobenius projection (of ({Ri }i≥0, {ti }i≥0) associated to (R, I )).

Hereafter, we leave out “p-” from “p-purely inseparable towers” if no confusion occurs. Similarly, we
omit the parenthetic phrase “of . . . associated to (R, I )” subsequent to “the i-th Frobenius projection”
(but we should be careful in some situations; cf. Remark 3.38).

Throughout this paper, when a purely inseparable tower ({Ri }i≥0, {ti }i≥0) is given and its starting layer
(R, I ) is clear from the context, we denote Ri/IRi by Ri for every i ≥ 0.

Example 3.5. Any perfect tower is a purely inseparable tower. More precisely, ({R}i≥0, {FR}i≥0)

appearing in Definition 3.2 is a purely inseparable tower arising from (R, (0)). Indeed, axioms (a) and (c)

8For more details of the ring of p-th roots of elements of a reduced ring, we refer to [28].
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are obvious, and axiom (b) follows from reducedness of R. The i-th Frobenius projection is given by the
identity map on R.

To develop the theory of perfectoid towers, we often use a combination of diagram (3-2) in Definition 3.4
and diagram (3-3) in the following lemma.

Lemma 3.6. Let ({Ri }i≥0, {ti }i≥0) be a purely inseparable tower arising from some pair (R, I ). Then for
every i ≥ 0, the following assertions hold.

(1) Ker(Fi )= Ker(FRi+1
). In particular, Fi is injective if and only if Ri+1 is reduced.

(2) Any element of Ri+1 is a root of a polynomial of the form X p
− t i (a) with a ∈ Ri . In particular, the

ring map t i : Ri ↪→ Ri+1 is integral.

(3) The following diagram commutes:

Ri+1

Fi

&&
Ri

t i

OO

FRi

// Ri .

(3-3)

Proof. Since t i is injective, the commutative diagram (3-2) yields assertion (1). Moreover, (3-2) also
yields the equality x p

− t i (Fi (x))= 0 for every x ∈ Ri+1. Hence assertion (2) follows. To prove (3), let
us recall the equalities

t i ◦ FRi
= FRi+1

◦ t i = t i ◦ Fi ◦ t i ,

where the second one follows from the commutative diagram (3-2). Since t i is injective, we obtain the
equality FRi

= Fi ◦ t i , as desired. □

Lemma 3.6(3) is essential for defining inverse perfection of towers (cf. Definition 3.8(2)). Moreover,
it provides a useful tool for studying direct perfection on each layer. Recall that for an Fp-algebra
homomorphism f : R→ S, there exists a unique ring map f perf

: Rperf
→ Sperf such that the following

diagram commutes (the notations are explained just before Definition 3.2):

R
f

//

φR
��

S

φS
��

Rperf f perf
// Sperf.

Corollary 3.7. Keep the notation as in Lemma 3.6. Then (t i )
perf
: (Ri )

perf
→ (Ri+1)

perf is an isomorphism
of rings whose inverse map is (Fi )

perf
: (Ri+1)

perf
→ (Ri )

perf up to the Frobenius automorphisms.

Proof. By Lemma 3.6(3), F(Ri+1)perf is described as (FRi+1
)perf
= (t i )

perf
◦ Fperf

i , and it is an automorphism.
Similarly, it follows from the commutative diagram (3-2) that Fperf

i ◦(t i )
perf is the Frobenius automorphism

of (Ri )
perf. Hence the assertion follows. □
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Definition 3.8 (inverse perfection of towers). Let ({Ri }i≥0, {ti }i≥0) be a (p-)purely inseparable tower
arising from some pair (R, I ).

(1) For any j ≥ 0, we define the j-th inverse quasi-perfection of ({Ri }i≥0, {ti }i≥0) associated to (R, I )
as the limit

(R j )
q. frep
I := lim

←−−
{· · · → R j+i+1

F j+i
−−→ R j+i → · · ·

F j
−→ R j }.

(2) For any j ≥ 0, we define an injective ring map (t j )
q. frep
I : (R j )

q. frep
I ↪→ (R j+1)

q. frep
I by the rule

(t j )
q. frep
I ((ai )i≥0) := (t j+i (ai ))i≥0.

We call the resulting tower
(
{(Ri )

q. frep
I }i≥0, {(ti )

q. frep
I }i≥0

)
the inverse perfection of

(
{Ri }i≥0, {ti }i≥0

)
associated to (R, I ).

(3) For any j ≥ 0, we define a ring map (F j )
q. frep
I : (R j+1)

q. frep
I → (R j )

q. frep
I by the rule

(F j )
q. frep
I ((ai )i≥0) := (F j+i (ai ))i≥0. (3-4)

(4) For any j ≥ 0 and for any m ≥ 0, we denote by 8( j)
m the m-th projection map:

(R j )
q. frep
I → R j+m ; (ai )i≥0 7→ am .

If no confusion occurs, we also abbreviate (R j )
q. frep
I , (t j )

q. frep
I , (F j )

q. frep
I to Rq. frep

j , tq. frep
j , Fq. frep

j .

Example 3.9. Let R be an Fp-algebra. Set Ri := R and ti := idR for every i ≥ 0. Then the tower
({Ri }i≥0, {ti }i≥0) is a purely inseparable tower arising from (R, (0)). Moreover, for every j ≥ 0, the
attached j-th inverse quasi-perfection is a limit

Rq. frep
j = lim

←−−
{· · ·

FR
−→ R

FR
−→ R

FR
−→ R},

which is none other than the inverse perfection of R.

In the situation of Definition 3.8, we have the commutative diagram:

(R j+1)
q. frep
I

(F j )
q. frep
I ))

F
(R j+1)

q. frep
I

// (R j+1)
q. frep
I

(R j )
q. frep
I .

(t j )
q. frep
I

OO

(3-5)

Therefore the tower
(
{(Ri )

q. frep
I }i≥0, {(ti )

q. frep
I }i≥0

)
is also a purely inseparable tower associated to

((R0)
q. frep
I , (0)).

In the rest of this subsection, we fix a purely inseparable tower ({Ri }i≥0, {ti }i≥0) arising from
some pair (R, I ). Keep in mind that the inverse perfection ({(Ri )

q. frep
I }i≥0, {(ti )

q. frep
I }i≥0) is given

in Definition 3.8(2), and its Frobenius projections {(Fi )
q. frep
I }i≥0 are described in Definition 3.8(3). Some

basic properties of inverse quasi-perfection are contained in the following proposition.
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Proposition 3.10. The following assertions hold.

(1) For any j ≥ 0, the following assertions hold.

(a) Let J ⊆ (R j )
q. frep
I be a finitely generated ideal such that J k

⊆ Ker(8( j)
0 ) for some k > 0 (see

Definition 3.8(4) for 8( j)
0 ). Then (R j )

q. frep
I is J -adically complete and separated.

(b) Let x = (xi )i≥0 be an element of (R j )
q. frep
I . Then x is a unit if and only if x0 ∈ R j/IR j is a unit.

(c) The ring map (F j )
q. frep
I is an isomorphism.

(2) ({(Ri )
q. frep
I }i≥0, {(ti )

q. frep
I }i≥0) is a perfect tower. In particular, each (Ri )

q. frep
I is reduced.

Proof. (1) Since ({(R j+i )
q. frep
}i≥0, {(t j+i )

q. frep
I }i≥0) is the inverse perfection of ({R j+i }i≥0, {t j+i }i≥0),

we are reduced to showing the assertions in the case when j = 0.

(a): By definition, (R0)
q. frep
I is complete and separated with respect to the linear topology induced by the

descending filtration
Ker(8(0)0 )⊇ Ker(8(0)1 )⊇ Ker(8(0)2 )⊇ · · · .

Moreover, since J k
⊆ Ker(8(0)0 ), we have (J k)[p

i
]
⊆ Ker(8(0)i ) for every i ≥ 0 by the commutative

diagram (3-2).9 On the other hand, since J k is finitely generated, (J k)pi r
⊆ (J k)[p

i
] for some r > 0. Thus

the assertion follows from [15, Lemma 2.1.1].

(b): It is obvious that x0 ∈ R0 is a unit if x ∈ (R0)
q. frep
I is a unit. Conversely, assume that x0 ∈ R0 is

a unit. Then for every i ≥ 0, x pi

i is a unit because it is the image of x0 in Ri . Hence xi is also a unit.

Therefore, we have isomorphisms Ri/IRi
×xi
−−→ Ri/IRi (i ≥ 0) that are compatible with the Frobenius

projections. Thus we obtain the isomorphism between inverse limits (R0)
q. frep
I

×x
−→ (R0)

q. frep
I , which

yields the assertion.

(c): Consider the shifting map s0 : (R0)
q. frep
I → (R1)

q. frep
I defined by the rule s0((ai )i≥0) := (ai+1)i≥0.

Then one can easily check that s0 is the inverse map of (F0)
q. frep
I .

(2) Define Fq. frep
0,i : (Ri )

q. frep
I → (R0)

q. frep
I as the composite map (F0)

q. frep
I ◦ · · · ◦ (Fi−1)

q. frep
I (if i ≥ 1)

or the identity map (if i = 0). Then the collection {Fq. frep
0,i }i≥0 gives a morphism of towers from

({(Ri )
q. frep
I }i≥0, {(ti )

q. frep
I }i≥0) to

{
(R0)

q. frep
I

F
(R0)

q. frep
I

−−−−−→ (R0)
q. frep
I

F
(R0)

q. frep
I

−−−−−→ · · ·
}
. Using assertion (1-c)

and Lemma 3.6(1), we complete the proof. □

The operation of inverse quasi-perfection preserves the locality of rings and ring maps.

Lemma 3.11. Assume that Ri is a local ring for any i ≥ 0, and I ̸= R. Then for any j ≥ 0, the following
assertions hold.

(1) The ring maps t j , t j , and F j are local.

(2) (R j )
q. frep
I is a local ring.

(3) The ring map (t j )
q. frep
I : (R j )

q. frep
I → (R j+1)

q. frep
I is local.

9The symbol I [p
n
] for an ideal I in an Fp-algebra A is the ideal generated by the elements x pn

for x ∈ I .



2326 Shinnosuke Ishiro, Kei Nakazato and Kazuma Shimomoto

Proof. As in Proposition 3.10(1), it suffices to show the assertions in the case when j = 0.

(1) Since the diagrams (3-2) and (3-3) are commutative, F0 ◦ t0 and t0 ◦ F0 are local. Hence t0 and F0

are local. In particular, the composition R0↠ R0
t0
−→ R1 is local. Since this map factors through t0, t0 is

also local, as desired.

(2) Let m0 be the maximal ideal of R0. Consider the ideal

(m0)
q. frep
I = {(xi )i≥0 ∈ (R0)

q. frep
I | x0 ∈m0/IR0},

where m0/IR0 is the maximal ideal of R0. Then by Proposition 3.10(1-b), (m0)
q. frep
I is a unique maximal

ideal of (R0)
q. frep
I . The assertion follows.

(3) By assertion (2), ({(Ri )
q. frep
I }i≥0, {(ti )

q. frep
I }i≥0) is a purely inseparable tower of local rings. Hence

by (1), (t0)
q. frep
I is local. □

A purely inseparable tower also satisfies the following amusing property. This is well-known in positive
characteristic, in which case Ri → Ri+1 gives a universal homeomorphism (i.e. the induced morphism of
schemes Spec Ri+1→ Spec Ri is a universally homeomorphism). See also Proposition 3.45.

Lemma 3.12. For every i ≥ 0, assume that Ri is I -adically Henselian.10 Then the ring map ti induces an
equivalence of categories:

F.Ét(Ri )
∼=
−→ F.Ét(Ri+1),

where F.Ét(A) is the category of finite étale A-algebras for a ring A.

Proof. By Corollary 3.7, we obtain the commutative diagram of rings

Ri

πi
��

ti
// Ri+1

πi+1
��

Ri

φRi
��

t i
// Ri+1

φRi+1
��

(Ri )
perf (t i )

perf
// (Ri+1)

perf

(3-6)

where π j ( j ∈ {i, i + 1}) is the natural projection, and the bottom map is an isomorphism. Since the
Frobenius endomorphism on any Fp-algebra gives a universal homeomorphism [38, Tag 0CC6], so does
φR j

by [38, Tag 01YW] and [38, Tag 01YZ]. Hence φR j
induces an equivalence of categories of finite

étale algebras over respective rings in view of [38, Tag 0BQN]. The same assertion holds for π j by the
lifting property of a henselian pair [38, Tag 09ZL]. By going around the diagram (3-6), we finish the
proof. □

10This condition is realized if R0 is I -adically Henselian and each ti : Ri → Ri+1 is integral.
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3C. Axioms for perfectoid towers.

3C1. Remarks on torsion. In the subsequent Section 3C2, we introduce the class of perfectoid towers
as a generalization of perfect towers. For this purpose, we need to deal with a purely inseparable tower
arising from (R, I ) in the case when I = (0) at least, and hence plenty of I -torsion elements. Thus we
begin by giving several preliminary lemmas on torsion of modules over rings.

Definition 3.13. Let R be a ring, and let M be an R-module.

(1) Let x ∈ R be an element. We say that an element m ∈ M is x-torsion if xnm = 0 for some n > 0.
We denote by Mx-tor the R-submodule of M consisting of all x-torsion elements in M .

(2) Let I ⊆ R be an ideal. We say that an element m ∈ M is I -torsion if m is x-torsion for every x ∈ I .
We denote by MI -tor the R-submodule of M consisting of all I -torsion elements in M . Note that
M(x)-tor = Mx-tor = Mxn-tor for every n > 0.

(3) For an element x ∈ R (resp. an ideal I ⊆ R), we say that M has bounded x-torsion (resp. bounded
I -torsion) if there exists some l > 0 such that x l Mx-tor = (0) (I l MI -tor = (0)).

(4) For an ideal I ⊆ R, we denote by ϕI,M : MI -tor→ M/I M the composition of natural R-linear maps:

MI -tor ↪→ M ↠ M/I M. (3-7)

First we record the following fundamental lemma.

Lemma 3.14. Let R be a ring, and let M be an R-module. Let x ∈ R be an element. Then for every n > 0,
we have

Mx-tor ∩ xn M = xn Mx-tor.

Proof. Pick an element m ∈ Mx-tor ∩ xn M . Then m = xnm0 for some m0 ∈ M , and x lm = 0 for some
l > 0. Hence x l+nm0 = 0, which implies that m0 ∈ Mx-tor and thus m ∈ xn Mx-tor. The containment
xn Mx-tor ⊆ Mx-tor ∩ xn M is clear. □

Corollary 3.15. Keep the notation as in Lemma 3.14, and suppose further that x Mx-tor = (0). Then the
map ϕ(x),M : Mx-tor→ M/x M (see Definition 3.13(4)) is injective.

Proof. It is clear from Lemma 3.14. □

Lemma 3.14 is also applied to show a half part of the following useful result.

Lemma 3.16. Keep the notation as in Lemma 3.14, and suppose further that M has bounded x-torsion.
Let M̂ be the x-adic completion of M , and let ψ : M → M̂ be the natural map. Then the restriction
ψtor : Mx-tor→ (M̂)x-tor of ψ is an isomorphism of R-modules.

Proof. By assumption, there exists some l > 0 such that x l Mx-tor = (0). On the other hand, Ker(ψtor)=

Mx-tor ∩
⋂
∞

n=0 xn M is contained in Mx-tor ∩ x l M , which is equal to x l Mx-tor by Lemma 3.14. Hence ψtor

is injective.



2328 Shinnosuke Ishiro, Kei Nakazato and Kazuma Shimomoto

Let us prove the surjectivity. Let N̂ denote the x-adic completion of N for every R-module N . Then
we obtain the commutative diagram of R-modules:

0 // Mx-tor

ψMx-tor
��

ι
// M

ψ

��

π
// M/Mx-tor

��

// 0

0 // M̂x-tor
ι̂
// M̂ π̂

// M̂/Mx-tor // 0

(3-8)

where ι is the inclusion map and π is the natural projection. Since ψ ◦ ι factors through ψtor, it suffices to
show that (M̂)x-tor ⊆ Im(ι̂ ◦ψMx-tor). First, ψMx-tor is bijective because it is isomorphic to the canonical
isomorphism Mx-tor/(x l)

∼=
−→ M̂x-tor/(x l). To show that (M̂)x-tor ⊆ Im(ι̂), note that the top row of (3-8)

forms an exact sequence, and it consists of R-modules that have bounded x-torsion. Then by [38, Tag
0923] and right exactness of derived completion functors, Ker(π̂)= Im(ι̂) (in fact, the bottom sequence
is also exact because ψtor is injective). Since M̂/Mx-tor is x-torsion free by [14, Chapter II, Lemma 1.1.5],
(M̂)x-tor ⊆ Ker(π̂). The assertion follows. □

The following lemma is used for proving Main Theorem 1 (cf. Lemma 3.48).

Lemma 3.17. Let R be a ring, and let M be an R-module. Let x ∈ R be an element. Then for every n > 0,
we have

AnnM/xn M(x)⊆ Im(ϕ(xn),M)+ xn−1(M/xn M). (3-9)

Proof. Pick an element m ∈ M such that xm ∈ xn M . Then x(m − xn−1m′) = 0 for some m′ ∈ M . In
particular, m− xn−1m′ ∈ Mxn-tor. Hence m mod xn M lies in the right-hand side of (3-9), as desired. □

In the case when M = R, we can regard MI -tor as a (possibly) nonunital subring of R. This point
of view provides valuable insights. For example, “reducedness” for RI -tor induces a good property on
boundedness of torsions.

Lemma 3.18. Let (R, I ) be a pair such that RI -tor does not contain any non-zero nilpotent element of R.
Then IRI -tor = (0).

Proof. It suffices to show that x RI -tor = 0 for every x ∈ I . Pick an element a ∈ RI -tor. Then for a
sufficiently large n > 0, xna = 0. Hence (xa)n = xna · an−1

= 0. Thus we have xa = 0 by assumption,
as desired. □

Corollary 3.19. Let ({Ri }i≥0, {ti }i≥0) be a purely inseparable tower arising from some pair (R, I ). Then
for every i ≥ 0 and every ideal J ⊆ (Ri )

q. frep
I , we have J ((Ri )

q. frep
I )J -tor = (0).

Proof. Since (Ri )
q. frep
I is reduced by Proposition 3.10(2), the assertion follows from Lemma 3.18. □

Furthermore, we can treat RI -tor as a positive characteristic object (in the situation of our interest),
even if R is not an Fp-algebra.
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Lemma-Definition 3.20. If (R, I ) is a pair such that p ∈ I and IRI -tor = (0), the multiplicative map

RI -tor→ RI -tor; x 7→ x p (3-10)

is also additive. We denote by FRI -tor the map (3-10).

Proof. This immediately follows from the binomial theorem. □

3C2. Perfectoid towers and pillars.

Definition 3.21 (perfectoid towers). Let R be a ring, and let I0⊆ R be an ideal. A tower ({Ri }i≥0, {ti }i≥0)

is called a (p)-perfectoid tower arising from (R, I0) if it is a p-purely inseparable tower arising from
(R, I0) (cf. Definition 3.4(1)) and satisfies the following additional axioms.

(d) For every i ≥ 0, the i-th Frobenius projection Fi : Ri+1/I0 Ri+1→ Ri/I0 Ri (cf. Definition 3.4(2)) is
surjective.

(e) For every i ≥ 0, Ri is an I0-adically Zariskian ring (in other words, I0 Ri is contained in the Jacobson
radical of Ri ).

(f) I0 is a principal ideal, and R1 contains a principal ideal I1 that satisfies the following axioms.

(f-1) I p
1 = I0 R1.

(f-2) For every i ≥ 0, Ker(Fi )= I1(Ri+1/I0 Ri+1).

(g) For every i ≥ 0, I0(Ri )I0-tor = (0). Moreover, there exists a (unique) bijective map (Fi )tor :

(Ri+1)I0-tor→ (Ri )I0-tor such that the diagram

(Ri+1)I0-tor

(Fi )tor

��

ϕI0,Ri+1
// Ri+1/I0 Ri+1

Fi

��

(Ri )I0-tor ϕI0,Ri

// Ri/I0 Ri

(3-11)

commutes (see Definition 3.13 for the notation; see also Corollary 3.15).

Remark 3.22. If I0 is generated by an element whose image in Ri is a non-zerodivisor for every i ≥ 0,
then axiom (g) is satisfied automatically. If R1 is reduced and I0 = (0), then axiom (g) follows from
axioms (d) and (f). Consequently, if every ti is injective and lim

−−→i≥0 Ri is a domain, one can ignore axiom
(g) when checking that ({Ri }i≥0, {ti }i≥0) is a perfectoid tower.

We have some examples of perfectoid towers.

Example 3.23. (1) (cf. [37, Definition 4.4]) Let (R,m, k) be a d-dimensional complete unramified
regular local ring of mixed characteristic p > 0 whose residue field is perfect. Then we have

R ∼=W (k)[[x2, . . . , xd ]].
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For every i ≥ 0, set Ri := R[p1/pi
, x1/pi

2 , . . . , x1/pi

d ], and let ti : Ri → Ri+1 be the inclusion map.
Then the tower ({Ri }i≥0, {ti }i≥0) is a perfectoid tower arising from (R, (p)). Indeed, the Frobenius
projection Fi : Ri+1/pRi+1→ Ri/pRi is given as the p-th power map.11

(2) For some generalization of (1), one can build a perfectoid tower arising from a complete local
log-regular ring. For details, see Section 3F.

(3) We note that ti (resp. Fi ) of a perfectoid tower is not necessarily the inclusion map (resp. the p-th
power map). For instance, let R be a reduced Fp-algebra. Set Ri := R, ti := FR , and Fi := idR for
every i ≥ 0. Then ({Ri }i≥0, {ti }i≥0) is a perfectoid tower arising from (R, (0)).

The class of perfectoid towers is a generalization of perfect towers.

Lemma 3.24. Let ({Ri }i≥0, {ti }i≥0) be a tower of Fp-algebras. The following conditions are equivalent.

(1) ({Ri }i≥0, {ti }i≥0) is a perfect Fp-tower (cf. Definition 3.2).

(2) ({Ri }i≥0, {ti }i≥0) is a p-perfectoid tower arising from (R0, (0)).

Proof. (1)⇒ (2) We may assume that ({Ri }i≥0, {ti }i≥0) is of the form R
FR
−→ R

FR
−→ R

FR
−→ · · · (see

Definition 3.2). By Example 3.5, this is a purely inseparable tower arising from (R, (0)). Axiom (e) in
Definition 3.21 is obvious. Axioms (d), (f), and (g) are also satisfied, since the Frobenius projection Fi

(cf. Example 3.5) is an isomorphism for any i ≥ 0. This yields the assertion.

(2)⇒ (1) Conversely, assume that ({Ri }i≥0, {ti }i≥0) is a perfectoid tower arising from (R0, (0)). Since Fi

is identified with (Fi )tor in axiom (g), the injectivity of (Fi )tor implies that Fi is injective. In other words,
Ri is reduced by Lemma 3.6(1). Furthermore, Fi is an isomorphism by axiom (d) or the surjectivity of
(Fi )tor. Hence we obtained the desired isomorphism of towers:

R0

idR0
��

t0
// R1

F0
��

t1
// R2

F0◦F1
��

t2
// R3

F0◦F1◦F2
��

t3
// · · ·

R0 FR0

// R0 FR0

// R0 FR0

// R0 FR0

// · · · .

(3-12)

The assertion follows. □

For a perfectoid tower ({Ri }i≥0, {ti }i≥0) arising from (R, I0), an ideal I1 ⊆ R1 appearing in axiom (f)
in Definition 3.21 is unique. Indeed, it contains I0 R1, and its image via the projection R1→ R1 is a fixed
ideal Ker(F0).

Definition 3.25. We call I1 the first perfectoid pillar of ({Ri }i≥0, {ti }i≥0) arising from (R, I0).

The relationship between I0 and I1 can be observed also in higher layers (see Proposition 3.26 below).
In the rest of this section, we fix a perfectoid tower ({Ri }i≥0, {ti }i≥0) arising from some pair (R, I0), and
let I1 denote the first perfectoid pillar.

11Axiom (f-2) follows from the normality of Ri . The other axioms are clearly satisfied.
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Proposition 3.26. (1) For a sequence of principal ideals {Ii ⊆ Ri }i≥2, the following conditions are
equivalent.

(a) F−1
i (Ii Ri )= Ii+1 Ri+1 for every i ≥ 0.

(b) Fi (Ii+1 Ri+1)= Ii Ri for every i ≥ 0.

(2) Each one of the equivalent conditions in (1) implies that I p
i+1 = Ii Ri+1 for every i ≥ 0.

(3) There exists a unique sequence of principal ideals {Ii ⊆ Ri }i≥0 that satisfies one of the equivalent
conditions in (1). Moreover, there exists a sequence of elements { f i ∈ Ri }i≥0 such that Ii Ri = ( f i )

and Fi ( f i+1)= f i for every i ≥ 0.

Proof. (1) Since the implication (a)⇒ (b) follows from axiom (d) in Definition 3.21, it suffices to show
the converse. Assume that condition (b) is satisfied. Then for every i ≥ 0, the compatibility t i ◦ Fi = FRi+1

implies
I p
i+1 Ri+1 = Ii Ri+1 (3-13)

because Ii+1 is principal. In particular, Ker(Fi ) = I1 Ri+1 ⊆ Ii+1 Ri+1 (cf. axiom (f-2)). On the other
hand, by the surjectivity of Fi and the assumption again, we have Fi (F−1

i (Ii Ri ))= Ii Ri = Fi (Ii+1 Ri+1).
Hence

F−1
i (Ii Ri )⊆ Ii+1 Ri+1+Ker(Fi )⊆ Ii+1 Ri+1 ⊆ F−1

i (Ii Ri ),

which yields the assertion.

(2) Let us deduce the assertion from (3-13) by induction. By definition, I p
1 = I0 R1. We then fix some

i ≥ 1. Suppose that for every 1≤ k ≤ i , I p
k = Ik−1 Rk . Then I0 Ri = I pi

i . In particular, Ri is Ii -adically
Zariskian by axiom (e). Moreover, by (3-13), we have the equalities of Ri -modules:

Ii Ri+1 = I p
i+1+ I0 Ri+1 = I p

i+1+ I pi
−1

i (Ii Ri+1).

Hence by Nakayama’s lemma, we obtain I p
i+1 = Ii Ri+1 as desired.

(3) By the axiom of (dependent) choice, the existence follows from axiom (d) in Definition 3.21. Let us
show the uniqueness of {Ii ⊆ Ri }i≥0 that satisfies condition (a) in (1). For every i ≥ 0, Ii Ri+1 ⊆ Ii+1 by
(2), and hence Ii+1 is the inverse image of F−1

i (Ii Ri ) via the projection Ri+1→ Ri+1. Since I0 is fixed,
the assertion follows. □

Definition 3.27. In the situation described in Proposition 3.26(3), we call Ii the i -th perfectoid pillar of
({Ri }i≥0, {ti }i≥0) arising from (R0, I0).

The following property of perfectoid pillars is applied to prove our main result.

Lemma 3.28. Let {Ii }i≥0 denote the system of perfectoid pillars of ({Ri }i≥0, {ti }i≥0), and let πi :

Ri/I0 Ri → Ri/Ii Ri (i ≥ 0) be the natural projections. Then for every i ≥ 0, there exists a unique
isomorphism of rings

F ′i : Ri+1/Ii+1 Ri+1
∼=
−→ Ri/Ii Ri
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such that πi ◦ Fi = F ′i ◦πi+1.

Proof. Since Fi and πi are surjective, the assertion follows from Ker(πi ◦ Fi ) = F−1
i (Ii (Ri/I0 Ri )) =

Ii+1(Ri+1/I0 Ri+1). □

3D. Tilts of perfectoid towers.

3D1. Invariance of some properties. Here we establish tilting operation for perfectoid towers. For this,
we first introduce the notion of small tilt, which originates in [37].

Definition 3.29 (small tilts). Let ({Ri }i≥0, {ti }i≥0) be a perfectoid tower arising from some pair (R, I0).

(1) For any j ≥ 0, we define the j-th small tilt of ({Ri }i≥0, {ti }i≥0) associated to (R, I0) as the j-th
inverse quasi-perfection of ({Ri }i≥0, {ti }i≥0) associated to (R, I0) and denote it by (R j )

s.♭
I0

.

(2) Let the notation be as in Lemma 3.28. Then we define I s.♭
i := Ker(πi ◦8

(i)
0 ) for every i ≥ 0.

Note that the ideal I s.♭
i ⊆ Rs.♭

i has the following property.

Lemma 3.30. Keep the notation as in Definition 3.29. Then for every i ≥ 0 and j ≥ 0, we have
8
( j)
i (I s.♭

j )= I j+i R j+i .

Proof. Since 8( j)
0 is surjective, we have 8( j)

0 (I s.♭
j ) = I j R j . On the other hand, since 8( j)

0 = F j ◦8
( j)
1 ,

we have
F−1

j (8
( j)
0 (I s.♭

j ))=8
( j)
1 (I s.♭

j )+Ker(F j )=8
( j)
1 (I s.♭

j ).

Hence by condition (a) in Proposition 3.26(1), 8( j)
1 (I s.♭

j ) = I j+1 R j+1. By repeating this procedure
recursively, we obtain the assertion. □

The next lemma provides some completeness of the small tilts attached to a perfectoid tower of
characteristic p > 0 (see also Remark 3.33).

Lemma 3.31. Let ({Ri }i≥0, {ti }i≥0) be a perfectoid tower arising from (R, (0)). Then, for any element

f ∈ R and any j ≥ 0, the inverse limit lim
←−−
{· · ·

F
−→ j+1 R j+1/ f R j+1

F j
−→ R j/ f R j } is isomorphic to the

f -adic completion of R j .

Proof. It suffices to show the assertion when j = 0. Let ({R′i }i≥0, {t ′i }i≥0) denote the standard perfect

tower (3-1) arising from R. By Lemma 3.24, (3-12) gives a canonical isomorphism ({Ri }i≥0, {ti }i≥0)
∼=
−→

({R′i }i≥0, {t ′i }i≥0). If we put J0 = f R′0, then R′i/J0 R′i = R/ f pi
R for every i ≥ 0. Hence we have the

desired canonical isomorphisms:

lim
←−−
{· · ·

F1
−→ R1/ f R1

F0
−→ R0/ f R0}

∼=
−→ lim
←−−
n≥0

R/ f pn
R
∼=
−→ lim
←−−
n≥0

R/ f n R. □

Example 3.32. Let S be a perfect Fp-algebra. Pick an arbitrary f ∈ S, and let Ŝ denote the f -adic
completion. We obtain a canonical isomorphism lim

←−−Frob S/ f S
∼=
−→ Ŝ by applying the above proof to the

tower
S

idS
−→ S

idS
−→ S

idS
−→ · · · .



Perfectoid towers, tilts and étale cohomology groups 2333

Remark 3.33. In the situation of Lemma 3.31, assume further that t i : Ri/ f Ri → Ri+1/ f Ri+1 is
injective for every i ≥ 0. Then ({Ri }i≥0, {ti }i≥0) is a purely inseparable tower arising from (R, ( f ))
with Frobenius projections {F i : Ri+1/ f Ri+1→ Ri/ f Ri }i≥0. Furthermore, it satisfies axioms (d), (f),
and (g) in Definition 3.21. To check this, we may assume that ({Ri }i≥0, {ti }i≥0) is the standard perfect
tower (3-1). Then F i is the natural projection R/ f pi+1

R ↠ R/ f pi
R. It is clearly surjective, and its

kernel is f pi
(R/ f pi+1

R). Let Ii be the ideal of Ri generated by f ∈ Ri (= R). Then I0 Ri = f pi
R and

I1 Ri+1 = f pi
R. Hence I p

1 = I0 R1 and Ker(F i ) = I1 Ri+1. Finally, note that (Ri )I0-tor = R f -tor. Then
I0(Ri )I0-tor = f pi

R f -tor = (0) by Lemma 3.18, and we can take idR f -tor as the bijection (F i )tor fitting into
the diagram (3-11).

Definition 3.34 (tilts of perfectoid towers). Let ({Ri }i≥0, {ti }i≥0) be a perfectoid tower arising from some
pair (R, I ). Then we define the tilt of ({Ri }i≥0, {ti }i≥0) associated to (R, I ) as the inverse perfection of
({Ri }i≥0, {ti }i≥0) associated to (R, I ), and denote it by ({(Ri )

s.♭
I }i≥0, {(ti )

s.♭
I }i≥0). If no confusion occurs,

we can abbreviate (Ri )
s.♭
I and (ti )

s.♭
I ) to Rs.♭

i and t s.♭
i .

After discussing several basic properties of this tilting operation, we illustrate how to compute the tilts
of perfectoid towers in some specific cases; when they consist of log-regular rings (see Theorem 3.61
and Example 3.62).

We should remark that all results on the perfection of purely inseparable towers (established in
Section 3B) can be applied to the tilts of perfectoid towers.

Let us state Main Theorem 1 in a more refined form. This is an important tool when one wants to
see that a certain correspondence holds between Noetherian rings of mixed characteristic and those of
positive characteristic.

Theorem 3.35. Let ({Ri }i≥0, {ti }i≥0) be a perfectoid tower arising from some pair (R, I0), and let {Ii }i≥0

be the system of perfectoid pillars. Let ({Rs.♭
i }i≥0, {t

s.♭
i }i≥0) denote the tilt associated to (R, I0).

(1) For every j ≥ 0 and every element f s.♭
j ∈ Rs.♭

j , the following conditions are equivalent.

(a) f s.♭
j is a generator of I s.♭

j .

(b) For every i ≥ 0, 8( j)
i ( f s.♭

j ) is a generator of I j+i R j+i .

In particular, I s.♭
j is a principal ideal, and (I s.♭

j+1)
p
= I s.♭

j Rs.♭
j+1.

(2) We have isomorphisms of (possibly) nonunital rings (Rs.♭
j )I s.♭

0 -tor
∼= (R j )I0-tor that are compatible with

{t j } j≥0 and {t s.♭
j } j≥0.

We give its proof in the subsequent Section 3D2. Before that, let us observe that this theorem induces
many good properties of tilting. In the rest of this subsection, we keep the notation as in Theorem 3.35.

Lemma 3.36. For every i ≥ 0, Rs.♭
i is I s.♭

0 -adically complete and separated.

Proof. By Theorem 3.35, the ideal I s.♭
0 Rs.♭

i ⊆ Rs.♭
i is principal. Hence one can apply Proposition 3.10(1-a)

to deduce the assertion. □

To discuss perfectoidness for the tilt ({Rs.♭
i }i≥0, {t

s.♭
i }i≥0), we introduce the following maps.
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Definition 3.37. For every i≥0, we define a ring map (Fi )
s.♭
I0
: (Ri+1)

s.♭
I0
/I s.♭

0 (Ri+1)
s.♭
I0
→ (Ri )

s.♭
I0
/I s.♭

0 (Ri )
s.♭
I0

by the rule

(Fi )
s.♭
I0
(αi+1 mod I s.♭

0 (Ri+1)
s.♭
I0
)= (Fi )

q. frep
I0

(αi+1)mod I s.♭
0 (Ri )

s.♭
I0
,

where αi+1 ∈ (Ri+1)
s.♭
I0

. If no confusion occurs, we can abbreviate (Fi )
s.♭
I0

to F s.♭
i .

Remark 3.38. Although the symbols ( · )s.♭ and ( · )q. frep had been used interchangeably before
Definition 3.37, (Fi )

s.♭
I0

differs from (Fi )
q. frep
I0

in general.

The following lemma is an immediate consequence of Theorem 3.35(1), but quite useful.

Lemma 3.39. For every j ≥ 0, 8( j)
0 induces an isomorphism

8
( j)
0 : R

s.♭
j /I s.♭

0 Rs.♭
j

∼=
−→ R j/I0 R j ; a mod I s.♭

0 Rs.♭
j 7→8

( j)
0 (a). (3-14)

Moreover, {8(i)0 }i≥0 is compatible with {ti }i≥0 (resp. {FRs.♭
i /I s.♭

0 Rs.♭
i
}i≥0, resp. {F s.♭

i }i≥0) and {t s.♭
i }i≥0 (resp.

{FRi/I0 Ri }i≥0, resp. {Fi }i≥0).

Proof. By axiom (d) in Definition 3.21, (3-14) is surjective. We check the injectivity. By Theorem 3.35(1),
I s.♭
0 is generated by an element f s.♭

0 ∈ Rs.♭
0 such that 8(0)i ( f s.♭

0 ) is a generator of Ii Ri (i ≥ 0). Note that
({R j+i }i≥0, {t j+i }i≥0) is a perfectoid tower arising from (R j , I0 R j ). Moreover, {Ii R j+i }i≥0 is the system
of perfectoid pillars associated to (R j , I0 R j ) (cf. condition (b) in Proposition 3.26(1)). Put J0 := I0 R j .
Then by Theorem 3.35(1) again, we find that J s.♭

0 = f s.♭
0 Rs.♭

j = I s.♭
0 Rs.♭

j . Since J s.♭
0 =Ker8( j)

0 , we obtain
the first assertion.

One can deduce that {8(i)0 }i≥0 is compatible with the Frobenius projections from the commutativity of
(3-2), because the other compatibility assertions immediately follow from the construction. □

Remark 3.40. Theorem 3.35(2) and Lemma 3.39 can be interpreted as a correspondence of homological
invariants between Ri and Rs.♭

i by using Koszul homologies. Indeed, for any generator f0 (resp. f s.♭
0 )

of I0 (resp. I s.♭
0 ), the Koszul homology Hq( f s.♭

0 ; Rs.♭
i ) is isomorphic to Hq( f0; Ri ) for any q ≥ 0 as an

abelian group.12

Now we can show the invariance of several properties of perfectoid towers under tilting. The first one
is perfectoidness, which is most important in our framework.

Proposition 3.41. ({Rs.♭
i }i≥0, {t

s.♭
i }i≥0) is a perfectoid tower arising from (Rs.♭

0 , I s.♭
0 ).

Proof. By Lemma 3.39 and Remark 3.33, ({Rs.♭
i }i≥0, {t

s.♭
i }i≥0) is a purely inseparable tower arising from

(Rs.♭
0 , I s.♭

0 ) that also satisfies axioms (d), (f), and (g). Moreover, axiom (e) holds by Lemma 3.36. Hence
the assertion follows. □

Next we focus on finiteness properties. “Small” in the name of small tilts comes from the following
fact.

12Note that (Ri )I0-tor = AnnRi (I0) by axiom (g), and (Rs.♭
i )

I s.♭
0 -tor

= Ann
Rs.♭

i
(I s.♭

0 ) by Corollary 3.19.
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Proposition 3.42. For every j ≥ 0, the following assertions hold.

(1) If t j : R j → R j+1 is module-finite, then so is t s.♭
j : R

s.♭
j → Rs.♭

j+1. Moreover, the converse holds true
when R j is I0-adically complete and separated.

(2) If R j is a Noetherian ring, then so is Rs.♭
j . Moreover, the converse holds true when R j is I0-adically

complete and separated.

(3) Assume that R j is a Noetherian local ring, and a generator of I0 R j is regular. Then the dimension of
R j is equal to that of Rs.♭

j .

Proof. (1) By Lemma 3.39, t j : R j/I0 R j→ R j+1/I0 R j+1 is module-finite if and only if t s.♭
j : R

s.♭
j /I s.♭

0 Rs.♭
j →

Rs.♭
j+1/I s.♭

0 Rs.♭
j+1 is so. Thus by Lemma 3.36 and [29, Theorem 8.4], the assertion follows.

(2) One can prove this assertion by applying Lemma 3.36, Lemma 3.39, and [38, Tag 05GH].

(3) By Theorem 3.35, I s.♭
0 Rs.♭

j is also generated by a regular element. Thus we obtain the equalities

dim R j = dim R j/I0 R j + 1 and dim Rs.♭
j = dim Rs.♭

j /I s.♭
0 Rs.♭

j + 1. By combining these equalities with
Lemma 3.39, we deduce assertion. □

Proposition 3.42(2) says that Noetherianness for a perfectoid tower is preserved under tilting.

Definition 3.43. We say that ({Ri }i≥0, {ti }i≥0) is Noetherian if Ri is Noetherian for each i ≥ 0.

Corollary 3.44. If ({Ri }i≥0, {ti }i≥0) is Noetherian, then so is the tilt ({Rs.♭
i }i≥0, {t

s.♭
i }i≥0). Moreover, the

converse holds true when Ri is I0-adically complete and separated for each i ≥ 0.

Proof. This immediately follows from Proposition 3.42(2). □

Finally, let us consider perfectoid towers of henselian rings. Then we obtain the equivalence of
categories of finite étale algebras over each layer.

Proposition 3.45. Assume that Ri is I0-adically Henselian for any i ≥ 0. Then we obtain the following
equivalences of categories:

F.Ét(Rs.♭
i )

∼=
−→ F.Ét(Ri ).

Proof. This follows from Lemma 3.36, Lemma 3.39 and [38, Tag 09ZL]. □

3D2. Proof of Main Theorem 1. We keep the notation as above. Furthermore, we set I i := Ii Ri for every
i ≥ 0. To prove Theorem 3.35, we investigate some relationship between (Ri )I0-tor and AnnRi

(I i ). First
recall that we can regard (Ri )I0-tor as a nonunital subring of Ri by Corollary 3.15. Moreover, the map t i

naturally restricts to (Ri )I0-tor ↪→ (Ri+1)I0-tor, as follows.

Lemma 3.46. For every i ≥ 0, let (ti )tor : (Ri )I0-tor→ (Ri+1)I0-tor be the restriction of ti .

(1) (ti )tor is the unique map such that ϕI0,Ri+1 ◦ (ti )tor = t i ◦ϕI0,Ri .

(2) (ti )tor ◦ (Fi )tor = (Fi+1)tor ◦ (ti+1)tor = F(Ri+1)I0-tor .
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Proof. Since ϕI0,Ri is injective by Corollary 3.15, assertion (1) is clear from the construction. Hence
we can regard (ti )tor and (Fi )tor as the restrictions of t i and Fi . Thus assertion (2) follows from the
compatibility t i ◦ Fi = Fi+1 ◦ t i+1 = FRi+1

induced by Lemma 3.6(3). □

The map ϕI0,Ri : (Ri )I0-tor ↪→ Ri/I0 Ri restricts to AnnRi (Ii ) ↪→ AnnRi
(I i ). On the other hand,

AnnRi (Ii ) turns out to be equal to (Ri )I0-tor by the following lemma.

Lemma 3.47. For every i ≥ 0, Ii (Ri )I0-tor = 0. In particular, Im(ϕI0,Ri )⊆ AnnRi
(I i ).

Proof. By Lemma 3.46(2) and axiom (g) in Definition 3.21, we find that F(Ri )I0-tor is injective. In other
words, (Ri )I0-tor does not contain any non-zero nilpotent element. Moreover, (Ri )I0-tor = (Ri )Ii -tor. Hence
the assertion follows from Lemma 3.18. □

The following lemma is essential for proving Theorem 3.35.

Lemma 3.48. For every i ≥ 0, Fi restricts to a Z-linear map AnnRi+1
(I i+1)→AnnRi

(I i ). Moreover, the
resulting inverse system {AnnRi

(I i )}i≥0 has the following properties.

(1) For every j ≥ 0, lim
←−−

1
i≥0 AnnR j+i

(I j+i )= (0).

(2) There are isomorphisms of Z-linear maps lim
←−−i≥0 AnnR j+i

(I j+i )∼= (R j )I0-tor ( j ≥ 0) that are multi-

plicative, and compatible with {t s,♭
j } j≥0 and {t j } j≥0.

Proof. Since Fi (I i+1) = I i , Fi restricts to a Z-linear map (Fi )ann : AnnRi+1
(I i+1)→ AnnRi

(I i ). Let
ϕi : (Ri )I0-tor ↪→ AnnRi

(I i ) be the restriction of ϕI0,Ri . By Lemma 3.17 and Lemma 3.47, we can write
AnnRi

(I i )= Im(ϕi )+ I pi
−1

i . Moreover, Im(ϕi )∩ I pi
−1

i = (0) by Lemma 3.14 and Lemma 3.47. Hence
we have the following ladder with exact rows:

0 // (Ri+1)I0-tor
ϕi+1
//

(Fi )tor

��

AnnRi+1
(I i+1) //

��

I pi+1
−1

i+1
//

��

0

0 // (Ri )I0-tor
ϕi

// AnnRi
(I i ) // I pi

−1
i

// 0

(3-15)

where the second and third vertical maps are the restrictions of Fi . Since Fi (I
pi+1
−1

i+1 )= 0, both functors

lim
←−−i≥0 and lim

←−−

1
i≥0 assign (0) to the inverse system {I p j+i

−1
j+i }i≥0. Moreover, since (Fi )tor is bijective,

lim
←−−i≥0(R j+i )I0-tor∼= (R j )I0-tor and lim

←−−

1
i≥0(R j+i )I0-tor= (0). Hence we find that lim

←−−

1
i≥0 AnnR j+i

(I j+i )= (0),
which is assertion (1). Furthermore, we obtain the isomorphisms of Z-modules:

(R j )I0-tor
(8

( j)
0 )tor

←−−−− lim
←−−
i≥0
(R j+i )I0-tor

lim
←−i≥0 ϕ j+i
−−−−−−→ lim

←−−
i≥0

AnnR j+i
(I j+i ) (3-16)

(where (8( j)
0 )tor denotes the 0-th projection map), which are also multiplicative. Let us deduce (2) from it.

Since t s.♭
j = lim

←−−i≥0 t j+i by definition, the maps lim
←−−i≥0 ϕ j+i ( j≥0) are compatible with {lim

←−−i≥0(t j+i )tor} j≥0

(induced by Lemma 3.46(2)) and {t s.♭
j } j≥0 by Lemma 3.46(1). On the other hand, the projections (8( j)

0 )tor

( j ≥ 0) are compatible with {lim
←−−i≥0(t j+i )tor} j≥0 and {(t j )tor} j≥0. The assertion follows. □
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Let us complete the proof of Theorem 3.35.

Proof of Theorem 3.35. (1) The implication (a) ⇒ (b) follows from Lemma 3.30. Let us show the
converse (b)⇒(a). For every i ≥ 0, put f j+i :=8

( j)
i ( f s.♭

j ), and let πi and F ′i be as in Lemma 3.28. Then,
by the assumption, we have the following commutative ladder with exact rows:

0 // ( f i+1)
ιi+1

//

��

Ri+1
πi+1
//

Fi
��

Ri+1/Ii+1 //

F ′i
��

0

0 // ( f i )
ιi

// Ri
πi

// Ri/Ii // 0

where ιi is the inclusion map. Let us consider the exact sequence obtained by taking inverse limits for
all columns of the above ladder. Then, since each F ′i is an isomorphism, the map lim

←−−i≥0 π j+i : R
s.♭
j →

lim
←−−i≥0 R j+i/I j+i is isomorphic to π j ◦8

( j)
0 . Thus we find that I s.♭

j = Im(lim
←−−i≥0 ι j+i ). Let us show that

the ideal Im(lim
←−−i≥0 ι j+i )⊆ Rs.♭

j is generated by f s.♭
j . For i ≥ 0, let µi : Ri → ( f i ) be the Ri -linear map

induced by multiplication by f i . Then we obtain the commutative ladder

Ri+1

Fi
��

µi+1
// ( f i+1)

ιi+1
//

��

Ri+1

Fi
��

Ri
µi
// ( f i )

ιi
// Ri .

Then, since Kerµi = AnnRi
(I i ) for every i ≥ 0, lim

←−−i≥0 µ j+i is surjective by Lemma 3.48(1). Hence we
have Im(lim

←−−i≥0 ι j+i )= Im(lim
←−−i≥0(ι j+i ◦µ j+i )), where the right hand side is the ideal of Rs.♭

j generated
by f s.♭

j . Thus we obtain the desired implication. Finally, note that by Proposition 3.26(3), we can take a
system of elements { f s.♭

j ∈ Rs.♭
j } j≥0 satisfying condition (b) and such that ( f s.♭

j+1)
p
= f s.♭

j ( j ≥ 0).

(2) We have I s.♭
j (R

s.♭
j )I s.♭

j -tor = (0) by Corollary 3.19. Hence, by assertion (1),

(Rs.♭
j )I s.♭

0 -tor = (R
s.♭
j )I s.♭

j -tor = AnnRs.♭
j
(I s.♭

j )= Ker(lim
←−−
i≥0

µ j+i )= lim
←−−
i≥0

AnnR j+i
(I j+i ).

Thus by Lemma 3.48(2), we obtain an isomorphism (Rs.♭
j )I s.♭

0 -tor
∼= (R j )I0-tor with the desired property. □

3E. Relation with perfectoid rings. In the rest of this paper, for a ring R, we use the following notation.
Set the inverse limit

R♭ := lim
←−−
{· · · → R/pR→ R/pR→ · · · → R/pR},

where each transition map is the Frobenius endomorphism on R/pR. It is called the tilt (or tilting) of R.
Moreover, we denote by W (R) the ring of p-typical Witt vectors over R. If R is p-adically complete and
separated, we denote by θR :W (R♭)→ R the ring map such that the diagram

W (R♭)
θR

//

��

R

��

R♭ // R/pR

(3-17)
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(where the vertical maps are induced by reduction modulo p and the bottom map is the first projection)
commutes.

Recall the definition of perfectoid rings.

Definition 3.49 [5, Definition 3.5]. A ring S is perfectoid if the following conditions hold.

(1) S is ϖ -adically complete and separated for some element ϖ ∈ S such that ϖ p divides p.

(2) The Frobenius endomorphism on S/pS is surjective.

(3) The kernel of θS :W (S♭)→ S is principal.

We have a connection between perfectoid towers and perfectoid rings. To see this, we use the following
characterization of perfectoid rings.

Theorem 3.50 (cf. [17, Corollary 16.3.75]). Let S be a ring. Then S is a perfectoid ring if and only if S
contains an element ϖ with the following properties.

(1) ϖ p divides p, and S is ϖ -adically complete and separated.

(2) The ring map S/ϖ S→ S/ϖ p S induced by the Frobenius endomorphism on S/ϖ p S is an isomor-
phism.

(3) The multiplicative map

Sϖ -tor→ Sϖ -tor ; s 7→ s p (3-18)

is bijective.

Proof. The “if” part follows from [17, Corollary 16.3.75].
For the converse, let ϖ ∈ S be as in Definition 3.49. Such a ϖ clearly has property (1) in the

present theorem, and also has property (2) by [5, Lemma 3.10(i)]. To show the remaining part, we set
S̃ := S/Sϖ -tor. By [8, §2.1.3], the diagram of rings:

S
π2

//

π1
��

(S/ϖ S)red

π4
��

S̃
π3

// (S̃/ϖ S̃)red

(where πi is the canonical projection map for i = 1, 2, 3, 4) is cartesian. Hence Sϖ -tor (= Ker(π1))
is isomorphic to Ker(π4) as a (possibly) nonunital ring. Since (S/ϖ S)red is a perfect Fp-algebra, it
admits the Frobenius endomorphism and the inverse Frobenius. Moreover, Ker(π4) is closed under these
operations because (S̃/ϖ S̃)red is reduced. Consequently, there is a bijection (3-18). Henceϖ has property
(3), as desired. □

Remark 3.51. In view of the above proof, the “only if” part of Theorem 3.50 can be refined as follows.
For a perfectoid ring S, an element ϖ ∈ S such that p ∈ϖ p S and S is ϖ -adically complete and separated
satisfies the properties (2) and (3) in Theorem 3.50.
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Corollary 3.52. Let ({Ri }i≥0, {ti }i≥0) be a perfectoid tower arising from some pair (R0, I0). Let R̂∞
denote the I1-adic completion of R∞. Then R̂∞ is a perfectoid ring.

Proof. Since we have lim
−−→i≥0 FRi/I0 Ri = (lim−−→i≥0 t i ) ◦ (lim−−→i≥0 Fi ) and lim

−−→i≥0 t i is a canonical isomorphism,
the Frobenius endomorphism on R̂∞/I0 R̂∞ can be identified with lim

−−→i≥0 Fi . Hence one can immediately
deduce from the axioms in Definition 3.21 that any generator of I1 R̂∞ has the all properties assumed on
ϖ in Theorem 3.50. □

In view of Theorem 3.50, one can regard perfectoid rings as a special class of perfectoid towers.

Example 3.53. Let S be a perfectoid ring. Letϖ ∈ S be such that p ∈ϖ p S and S isϖ -adically complete
and separated. Set Si = S and ti = idS for every i ≥ 0, and I0 =ϖ

p S. Then by Remark 3.51, the tower
({Si }i≥0, {ti }i≥0) is a perfectoid tower arising from (S, I0). In particular, I0SI0-tor = (0), and FSI0-tor is
bijective.

Moreover, we can treat more general rings in a tower-theoretic way.

Example 3.54 (Zariskian preperfectoid rings). Let R be a ring that contains an element ϖ such that
p ∈ϖ p R, R is ϖ -adically Zariskian, and R has bounded ϖ -torsion. Assume that the ϖ -adic completion
R̂ is a perfectoid ring. Set Ri = R and ti = idR for every i ≥ 0, and I0 = ϖ

p R. Then the tower
({Ri }i≥0, {ti }i≥0) is a perfectoid tower arising from (R, I0). Indeed, axioms (a) and (e) are clear from
the assumption. Since R̂ is perfectoid and R/ϖ p R ∼= R̂/ϖ p R̂, axioms (b), (c), (d) and (f) hold by
Example 3.53. Similarly, axiom (g) holds by Lemma 3.16 (the map ψtor : RI0-tor→ (R̂)I0-tor is also an
isomorphism of nonunital rings).

Recall that we have two types of tilting operation at present; one is defined for perfectoid rings, and
the other is for perfectoid towers. The following result asserts that they are compatible.

Lemma 3.55. Let ({Rs.♭
i }i≥0, {t

s.♭
i }i≥0) be the tilt of ({Ri }i≥0, {ti }i≥0) associated to (R0, I0). Let R̂s.♭

∞ be
the I s.♭

0 -adic completion of Rs.♭
∞ := lim

−−→i≥0 Rs.♭
i . Let (I0 R∞)♭ be the ideal of R♭∞ that is the inverse image

of I0 R∞mod pR∞ via the first projection. Then there exist canonical isomorphisms

R♭
∞

∼=
←− lim
←−−
Frob

Rs.♭
∞
/I s.♭

0 Rs.♭
∞

∼=
−→ R̂s.♭

∞

under which (I0 R∞)♭ ⊆ R♭∞ corresponds to I s.♭
0 R̂s.♭

∞ ⊆ R̂s.♭
∞ .

Proof. Note that Rs.♭
∞ is perfect. By Lemma 3.39 and Example 3.32, we obtain the commutative diagram

of rings

lim
←−−Frob R∞/I0 R∞

��

lim
←−−Frob Rs.♭

∞ /I s.♭
0 Rs.♭

∞

��

∼=
oo

∼=
// R̂s.♭
∞

��

R∞/I0 R∞ Rs.♭
∞ /I s.♭

0 Rs.♭
∞

∼=
oo Rs.♭

∞ /I s.♭
0 Rs.♭

∞

(3-19)
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where the vertical arrows denote the first projection maps. By [5, Lemma 3.2(i)], we can identify R♭∞
with lim

←−−Frob R∞/I0 R∞, and the ideal (I0 R∞)♭ ⊆ R♭∞ corresponds to the kernel of the leftmost vertical

map. Since the kernel of the rightmost vertical map is I s.♭
0 R̂s.♭

∞ , the assertion follows. □

3F. Examples: complete local log-regular rings.

3F1. Calculation of the tilts. As an example of tilts of Noetherian perfectoid towers, we calculate them
for certain towers of local log-regular rings. Firstly, we review a perfectoid tower constructed in [17].

Construction 3.56. Let (R,Q, α) be a complete local log-regular ring with perfect residue field of
characteristic p > 0. Assume that Q is fine, sharp, and saturated (see Remark 2.20). Let Iα ⊆ R be the
ideal defined in Definition 2.19. Set A := R/Iα . Let ( f1, . . . , fr ) be a sequence of elements of R whose
image in A is maximal (see Definition A.4). Since the residue field of R is perfect, r is the dimension of
A (see the Appendix). For every i ≥ 0, we consider the ring

Ai := A[T1, . . . , Tr ]/(T
pi

1 − f 1, . . . , T pi

r − f r ),

where each f j denotes the image of f j in A ( j = 1, . . . , r). Notice that Ai is regular by Theorem A.3.
Moreover, we set Q(i)

:=Q(i)
p (see Definition 2.11). Furthermore, we define

R′i := Z[Q(i)
]⊗Z[Q] R, R′′i := R[T1, . . . , Tr ]/(T

pi

1 − f1, . . . , T pi

r − fr ), (3-20)

and
Ri := R′i ⊗R R′′i . (3-21)

Let ti : Ri→ Ri+1 be the ring map that is naturally induced by the inclusion map ι(i) :Q(i) ↪→Q(i+1). Since
R′′i+1 is a free R′′i -module, ti is universally injective by Lemma 2.15 and condition (e) in Proposition 2.8(2).

Proposition 3.57. Keep the notation as in Construction 3.56. Let αi :Q(i)
→ Ri be the natural map. Then

(Ri ,Q(i), αi ) is a local log-regular ring.

Proof. We refer the reader to [17, 17.2.5]. □

By construction, we obtain the tower of rings ({Ri }i≥0, {ti }i≥0) (see Definition 3.1).

Proposition 3.58. Keep the notation as in Construction 3.56. Then the tower ({Ri }i≥0, {ti }i≥0) of local
log-regular rings defined above is a perfectoid tower arising from (R, (p)).

Proof. We verify (a)–(g) in Definition 3.4 and Definition 3.21. Axiom (a) is trivial. Since ti is universally
injective, axiom (b) follows. Axioms (c) and (d) follow from [17, (17.2.10) and Lemma 17.2.11]. Since
R is of residual characteristic p, axiom (e) follows from the locality. Since ti is injective and Ri is a
domain for any i ≥ 0, axiom (g) holds by Remark 3.22.

Finally, let us check that axiom (f) holds. In the case when p = 0, it follows from [17, Theorem
17.2.14(i)]. Otherwise, there exists an element ϖ ∈ R1 that satisfies ϖ p

= pu for some unit u ∈ R1

by [17, Theorem 17.2.14(ii)]. Set I1 := (ϖ). Then axiom (f-1) holds. Axiom (f-2) follows from [17,
Theorem 17.2.14(iii)]. Thus the assertion follows. □
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For calculating the tilt of the perfectoid tower constructed above, the following lemma is quite useful.

Lemma 3.59. Keep the notation as in Proposition 3.57. Let k be the residue field of R. Then there exists
a family of ring maps {φi : C(k)[[Q(i)

⊕ (Nr )(i)]] → Ri }i≥0 which is compatible with the log structures of
{(Ri ,Q(i), αi )}i≥0 such that the following diagram commutes for every i ≥ 0:

C(k)[[Q(i)
⊕ (Nr )(i)]]

� � //

φi
����

C(k)[[Q(i+1)
⊕ (Nr )(i+1)

]]

φi+1
����

Ri
� � ti

// Ri+1

(3-22)

(where the top arrow is the natural inclusion). Moreover, there exists an element θ ∈ C(k)[[Q⊕Nr
]]

whose constant term is p such that the kernel of φi is generated by θ for every i ≥ 0.

Proof. First we remark the following. Let ki be the residue field of Ri . Then by Lemma 3.11(1) and
Lemma 3.6(2), the transition maps induce a purely inseparable extension k ↪→ ki . Moreover, this extension
is trivial because k is perfect. Therefore, we can identify ki with k, and the Cohen ring of Ri with C(k).

Next, let us show the existence of a family of ring maps {φi }i≥0 with the desired compatibility. Since
(Ri ,Q(i), αi ) is a complete local log-regular ring, we can take a surjective ring mapψi :C(k)[[Q(i)

⊕Nr
]]→

Ri as in Theorem 2.22; its kernel is generated by an element θi whose constant term is p, and the diagram

Q(i) //

αi
''

C(k)[[Q(i)
⊕Nr
]]

ψi
����

Ri

commutes. For j = 1, . . . , r , let us denote by f 1/pi

j the image of T j ∈ R[T1, . . . , Tr ] in Ri (see (3-20)

and (3-21)). Note that the sequence f 1/pi

1 , . . . , f 1/pi

r in Ri becomes a regular system of parameters of
Ri/Iαi by the reduction modulo Iαi (see [17, 17.2.3] and [17, 17.2.5]). Thus, for the set of the canonical

basis {e1, . . . , er } of Nr , we may assume ψi (ee j )= f 1/pi

j by the construction of ψi (see the proof of [34,
Chapter III, Theorem 1.11.2]). Hence we can choose {ψi }i≥0 so that the diagram:

C(k)[[Q(i)
⊕Nr
]]
� � //

ψi
����

C(k)[[Q(i+1)
⊕Nr
]]

ψi+1
����

Ri
� � ti

// Ri+1

(3-23)

commutes. Thus it suffices to define φi : C(k)[[Q(i)
⊕ (Nr )(i)]] → Ri as the composite map of the

isomorphism C(k)[[Q(i)
⊕ (Nr )(i)]]

∼=
−→ C(k)[[Q(i)

⊕Nr
]] obtained by Lemma 2.12(3) and ψi .

Finally, note that the image of θ0 ∈ Ker(ψ0) in C(k)[[Q(i)
⊕ Nr
]] is contained in Ker(ψi ), and its

constant term is still p. Thus, by the latter assertion of Theorem 2.22(2), Ker(ψi ) is generated by θ0.
Hence by taking θ0 as θ , we complete the proof. □
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Let us consider the monoids Q(i) for an integral sharp monoid Q. Since there is the natural inclusion
ι(i) :Q(i) ↪→Q(i+1) for any i ≥ 0, we obtain a direct system of monoids ({Q(i)

}i≥0, {ι
(i)
}i≥0). Moreover,

the p-times map on Q(i+1) gives a factorization:

Q(i+1) ×p
//

×p $$ $$

Q(i+1)

Q(i).
?�
ι(i)

OO

From this discussion, we define the small tilt of {Q(i)
}i≥0.

Definition 3.60. Let Q be an integral monoid, and let ({Q(i)
}i≥0, {ι

(i)
}i≥0) be as above. Then for an

integer j ≥ 0, we define the j -th small tilt of ({Q(i)
}i≥0, {ι

(i)
}i≥0) as the inverse limit

Qs.♭
j := lim

←−−
{· · · →Q( j+1)

→Q( j)
}, (3-24)

where the transition map Q(i+1)
→Q(i) is the p-times map of monoids.

Now we can derive important properties of the tilt of the perfectoid tower given in Construction 3.56.

Theorem 3.61. Keep the notation as in Lemma 3.59.

(1) The tower ({(Ri )
s.♭
(p)}i≥0, {(ti )

s.♭
(p)}i≥0) is isomorphic to ({k[[Q(i)

⊕ (Nr )(i)]]}i≥0, {ui }i≥0), where ui is
the ring map induced by the natural inclusion Q(i)

⊕ (Nr )(i) ↪→Q(i+1)
⊕ (Nr )(i+1).

(2) For every j ≥ 0, there exists a homomorphism of monoids

α
s.♭
j :Q

s.♭
j → (R j )

s.♭
(p)

such that ((R j )
s.♭
(p),Q

s.♭
j , α

s.♭
j ) is a local log-regular ring.

(3) For every j ≥ 0, (t j )
s.♭
(p) : (R j )

s.♭
(p)→ (R j+1)

s.♭
(p) is module-finite and (R j )

s.♭
(p) is F-finite.

Proof. (1) By Lemma 3.59, each Ri is isomorphic to C(k)[[Q(i)
⊕ (Nr )(i)]]/(p− f )C(k)[[Q(i)

⊕ (Nr )(i)]]

where f is an element of C(k)[[Q⊕Nr
]] which has no constant term. Set Si := k[[Q(i)

⊕ (Nr )(i)]] for
any i ≥ 0 and let ui : Si ↪→ Si+1 be the inclusion map induced by the natural inclusion Q(i)

⊕ (Nr )(i) ↪→

Q(i+1)
⊕ (Nr )(i+1). Then the tower ({Si }i≥0, {ui }i≥0) is a perfect tower. Indeed, each Si is reduced by

Theorem 2.21; moreover, by the perfectness of k and Lemma 2.12(3), the Frobenius endomorphism on
Si+1 factors through a surjection Gi : Si+1→ Si . In particular, ({Si }i≥0, {ui }i≥0) is a perfectoid tower
arising from (S0, (0)) and Gi is the i-th Frobenius projection (cf. Lemma 3.24).

Put f := f mod pC(k)[[Q⊕Nr
]] ∈ S0. Then each Si is f -adically complete and separated by [15,

Lemma 2.1.1]. Moreover, the commutative diagram (3-22) yields the commutative squares (i ≥ 0):

Si+1/ f Si+1

Gi
��

∼=
// Ri+1/pRi+1

Fi

��

Si/ f Si
∼=

// Ri/pRi
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that are compatible with {ui : Si/ f Si → Si+1/ f Si+1}i≥0 and {t i }i≥0. Hence by Lemma 3.31, we obtain
the isomorphisms

(R j )
s.♭
(p)

∼=
←− lim
←−−
{· · ·

G j+1
−−→ S j+1/ f S j+1

G j
−→ S j/ f S j }

∼=
−→ S j ( j ≥ 0) (3-25)

that are compatible with the transition maps of the towers. Thus the assertion follows.

(2) Considering the inverse limit of the composite maps Q( j+i) α j+i
−−→ R j+i ↠ R j+i/pR j+i (i ≥ 0), we

obtain a homomorphism of monoids αs.♭
j :Q

s.♭
j → (R j )

s.♭
(p). On the other hand, let α j :Q( j)

→ S j be the
natural inclusion. Then, since S j is canonically isomorphic to k[[Q( j)

⊕Nr
]], (S j ,Q( j), α j ) is a local

log-regular ring by Theorem 2.22(1). Thus it suffices to show that ((R j )
s.♭
(p),Q

s.♭
j , α

s.♭
j ) is isomorphic to

(S j ,Q( j), α j ) as a log ring. Since the transition maps in (3-24) are isomorphisms by Lemma 2.12(3), we
obtain the isomorphisms of monoids

Qs.♭
j

id
Qs.♭

j
←−−−Qs.♭

j

∼=
−→Q( j) ( j ≥ 0). (3-26)

Then one can connect (3-26) to (3-25) to construct a commutative diagram using αs.♭
j and α j . Hence the

assertion follows.

(3) By Lemma 2.14(1), t j : R j→ R j+1 is module-finite. Hence by Proposition 3.42(1), (t j )
s.♭
(p) : (R j )

s.♭
(p)→

(R j+1)
s.♭
(p) is also module-finite. Finally let us show that (R j )

s.♭
(p) is F-finite. By assertion (2), (R j )

s.♭
(p) is a

complete Noetherian local ring, and the residue field is F-finite because it is perfect. Thus the assertion
follows from [29, Theorem 8.4]. □

Example 3.62. (1) A tower of regular local rings which is treated in [7] and [8] is a perfectoid tower in
our sense. Let (R,m, k) be a d-dimensional regular local ring whose residue field k is perfect and let
x1, . . . , xd be a regular sequence of parameters. Let e1, . . . , ed be the canonical basis of Nd . Then
(R,Nd , α) is a local log-regular ring where α :Nd

→ R is a homomorphism of monoids which maps
ei to xi . Furthermore, assume that R is m-adically complete. Then, by Cohen’s structure theorem, R
is isomorphic to

W (k)[[x1, . . . , xd ]]/(p− f )

where f = x1 or f ∈ (p, x1, . . . , xd)
2 (the former case is called unramified, and the latter ramified).

Let us construct a perfectoid tower arising from (R, (p)) along Construction 3.56. Since k is perfect,
�k is zero by the short exact sequences (A-4) and the definition of itself. This implies that the image
of the empty subset of R in k forms a maximal sequence. Hence R′′i in Construction 3.56 is equal to
R. Moreover, (Nd)(i) is generated by 1

pi e1, . . . ,
1
pi ed . Applying Construction 3.56, we obtain

Ri = R′i = Z[(Nd)(i)]⊗Z[Nd ] R ∼= R[T1, . . . , Td ]/(T
pi

1 − x1, . . . , T pi

d − xd)

∼=W (k)[[x1/pi

1 , . . . , x1/pi

d ]]/(p− f ).



2344 Shinnosuke Ishiro, Kei Nakazato and Kazuma Shimomoto

Set the natural injection ti : Ri → Ri+1 for any i ≥ 0. Then, by Proposition 3.58, ({Ri }i≥0, {ti }i≥0)

is a perfectoid tower arising from (R, (p)). By Theorem 3.61, its tilt ({(Ri )
s.♭
(p)}i≥0, {(ti )

s.♭
(p)}i≥0) is

isomorphic to the tower k[[Nd
]] ↪→ k[[(Nd)(1)]] ↪→ k[[(Nd)(2)]] ↪→ · · · , which can be written as

k[[x1, . . . , xd ]] ↪→ k[[x1/p
1 , . . . , x1/p

d ]] ↪→ k[[x1/p2

1 , . . . , x1/p2

d ]] ↪→ · · · .

(2) Consider the surjection

S :=W (k)[[x, y, z, w]]/(xy− zw)↠ R :=W (k)[[x, y, z, w]]/(xy− zw, p−w)

=W (k)[[x, y, z]]/(xy− pz).

where k is a perfect field. Let Q⊆N4 be a saturated submonoid generated by (1,1,0,0), (0,0,1,1),
(1,0,0,1) and (0,1,1,0). Then S admits a homomorphism of monoids αS : Q→ S by letting
(1,1,0,0) 7→ x , (0,0,1,1) 7→ y, (1,0,0,1) 7→ z and (0,1,1,0) 7→ w. With this, (S,Q,αS) is a
local log-regular ring. The composite map αR :Q→ S→ R makes R into a local log ring. Indeed,
we can write R ∼=W (k)[[Q]]/(p− e(0,1,1,0)); hence (R,Q,αR) is log-regular by Theorem 2.22.

Next, note that R/IαR
∼= k. Then, for the same reason in (1), R′′i is equal to R. Moreover, Q(i) is

generated by ( 1
pi ,

1
pi , 0, 0

)
,

(
0, 0, 1

pi ,
1
pi

)
,

( 1
pi , 0, 0 1

pi

)
,

(
0, 1

pi ,
1
pi , 0

)
.

Thus, applying Construction 3.56, we obtain

Ri = R[[Q(i)
]]

∼=W (k)[[Q(i)
]]/(p− e(0,1,1,0))

∼=W (k)[[x1/pi
, y1/pi

, z1/pi
, w1/pi

]]/(x1/pi
y1/pi
− z1/pi

w1/pi
, p−w).

Set a natural injection ti : Ri → Ri+1. Then, by Proposition 3.58, ({Ri }i≥0, {ti }i≥0) is a perfectoid
tower arising from (R, (p)). Hence

R∞ = lim
−−→
i≥0

Ri ∼=
⋃
i≥0

W (k)[[x1/pi
, y1/pi

, z1/pi
, w1/pi

]]/(x1/pi
y1/pi
− z1/pi

w1/pi
, p−w),

and its p-adic completion is perfectoid. One can calculate the tilt
(
{Rs.♭

i }i≥0, {t
s.♭
i }i≥0

)
to be k[[Q]] ↪→

k[[Q(1)
]] ↪→ k[[Q(2)

]] ↪→ · · · by Theorem 3.61, or, more explicitly,

k[[x, y, z, w]]/(xy− zw) ↪→ k[[x1/p, y1/p, z1/p, w1/p
]]/(x1/p y1/p

− z1/pw1/p) ↪→ · · · .

3F2. Towers of split maps and sousperfectoid rings. Recall that Hansen and Kedlaya introduced a new
class of topological rings that guarantees sheafiness on the associated adic spectra (see [21, Definition 7.1]).

Definition 3.63. Let A be a complete and separated Tate ring such that a prime p ∈ A is topologically
nilpotent. We say that A is sousperfectoid if there exists a perfectoid ring B in the sense of Fontaine (see
[21, Definition 2.13]) with a continuous A-linear map f : A→ B that splits in the category of topological
A-modules. That is, there is a continuous A-linear map σ : B→ A such that σ ◦ f = idA.
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Let us show that a perfectoid tower consisting of split maps induces sousperfectoid rings. In view of
Theorem 2.29, one can apply this result to the towers discussed above. See [33] for detailed studies on
algebraic aspects of Tate rings.

Proposition 3.64. Let ({Ri }i≥0, {ti }i≥0) be a perfectoid tower arising from some pair (R, ( f0)). Assume
that f0 is regular, R is f0-adically complete and separated, and ti splits as an Ri -linear map for every
i ≥ 0. We equip R

[ 1
f0

]
with the linear topology in such a way that { f n

0 R}n≥1 defines a fundamental system

of open neighborhoods at 0 ∈ R
[ 1

f0

]
. Then R

[ 1
f0

]
is a sousperfectoid Tate ring, and hence stably uniform.

In order to prove this, we need the following lemma.

Lemma 3.65. Keep the notations and assumptions as in Proposition 3.64. Then the natural map R0→

lim
−−→i≥0 Ri splits as an R0-linear map.

Proof. We use the fact that each ti : Ri → Ri+1 splits as an Ri -linear map by assumption. This implies
that the short exact sequence of R-modules

0→ R0→ Ri → Ri/R→ 0

splits for any i ≥ 0. It induces a commutative diagram of R-modules

0 // HomR0(Ri+1/R0, R0) //

αi

��

HomR0(Ri+1, R0) //

βi

��

HomR0(R0, R0) // 0

0 // HomR0(Ri/R0, R0) // HomR0(Ri , R0) // HomR0(R0, R0) // 0

where each horizontal sequence is split exact and each vertical map forms an inverse system induced by
ti : Ri → Ri+1. Thus βi is surjective and it follows from the snake lemma that αi is surjective as well. By
taking inverse limits, we obtain the short exact sequence

0→ lim
←−−
i≥0

HomR0(Ri/R0, R0)→ lim
←−−
i≥0

HomR0(Ri , R0)
h
−→ HomR0(R0, R0)→ 0.

It follows from [36, Lemma 4.1] that h is the canonical surjection HomR0(R∞, R0)↠ HomR0(R0, R0).
Then choosing an inverse image of idR0 ∈ HomR0(R0, R0) gives a splitting of R0→ R∞. □

Proof of Proposition 3.64. We have constructed an infinite extension R→ R∞ such that if R̂∞ is the
f0-adic completion, then the associated Tate ring R̂∞

[ 1
f0

]
is a perfectoid ring in the sense of Fontaine by

Corollary 3.52 and [5, Lemma 3.21].
By Lemma 2.28 and Lemma 3.65, it follows that the map R

[ 1
f0

]
→ R̂∞

[ 1
f0

]
splits in the category

of topological R
[ 1

f0

]
-modules (notice that R is f0-adically complete and separated). Thus, R

[ 1
f0

]
is a

sousperfectoid Tate ring. The combination of [21, Corollary 8.10], [21, Proposition 11.3] and [21, Lemma
11.9] allows us to conclude that R

[ 1
f0

]
is stably uniform. □

As a corollary, one can obtain the stable uniformity for complete local log-regular rings (see also
Construction 3.56 and Theorem 2.29).
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Corollary 3.66. Let (R,Q, α) is a complete local log-regular ring of mixed characteristic with perfect
residue field. We equip R

[ 1
p

]
with the structure of a complete and separated Tate ring in such a way that

{pn R}n≥1 defines a fundamental system of open neighborhoods at 0 ∈ R
[ 1

p

]
. Then R

[ 1
p

]
is stably uniform.

4. Applications to étale cohomology of Noetherian rings

In this section, we establish several results on étale cohomology of Noetherian rings, as applications of
the theory of perfectoid towers developed in Section 3. In Section 4A, for a ring that admits a certain type
of perfectoid tower, we prove that finiteness of étale cohomology groups on the positive characteristic
side carries over to the mixed characteristic side (Proposition 4.7). In Section 4B, we apply this result to
a problem on divisor class groups of log-regular rings.

We prepare some notation. Let X be a scheme and let Xét denote the category of schemes that are étale
over X , and for any étale X -scheme Y , we specify the covering {Yi → Y }i∈I so that Yi is étale over Y
and the family {Yi }i∈I covers surjectively Y . For an abelian sheaf F on Xét, we denote by H i (Xét,F) the
value of the i-th derived functor of U ∈ Xét 7→ 0(U,F). For the most part of applications, we consider
torsion sheaves, such as Z/nZ and µn for n ∈ N. However, for the multiplicative group scheme Gm , we
often use the following isomorphism:

H 1(Xét,Gm)∼= Pic(X).

For the basics on étale cohomology, we often use [12] or [31] as references.

4A. Tilting étale cohomology groups. Let A be a ring with an ideal J , let Â be the J -adic completion of
A, and let U ⊆ Spec(A) be an open subset. We define the J -adic completion of U to be the open subset
Û ⊆ Spec( Â), which is the inverse image of U via Spec( Â)→ Spec(A). We will use the following result
for deriving results on the behavior of étale cohomology under the tilting operation as well as some
interesting results on the divisor class groups of Noetherian normal domains (see Proposition 4.10 and
Proposition 4.11).

Theorem 4.1 (Fujiwara and Gabber). Let (A, J ) be a Henselian pair with X := Spec(A) and let Â be the
J -adic completion of A.

(1) For any abelian torsion sheaf F on Xét,we have R0(Spec(A)ét,F )≃ R0(Spec(A/J )ét,F |Spec(A/J )).

(2) Assume that J is finitely generated. Then for any abelian torsion sheaf F on Xét and any open subset
U ⊆ X such that X \ V (J )⊆U , we have R0(Uét,F )≃ R0(Ûét,F ).

Proof. The first statement is known as Affine analog of proper base change in [16], while the second one
is known as Formal base change theorem which is [13, Theorem 7.1.1] in the Noetherian case, and [24,
XX, 4.4] in the non-Noetherian case. □

We will need the tilting invariance of (local) étale cohomology from [8, Theorem 2.2.7]. To state the
theorem and establish a variant of it, we give some notations.
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Definition 4.2. Let (A, I ) and (B, J ) be pairs such that there exists a ring isomorphism 8 : A/I
∼=
−→ B/J .

Then for any open subset U ⊆ Spec(B) containing Spec(B)\V (J ), we define an open subset FA,8(U )⊆
Spec(A) as the complement of the closed subset Spec(8)(Spec(B) \U )⊆ Spec(A).

One can define small tilts of Zariski-open subsets.

Definition 4.3. Let ({Ri }i≥0, {ti }i≥0) be a perfectoid tower arising from some pair (R, I0), and let
({Rs.♭

i }i≥0, {t
s.♭
i }i≥0) be the tilt associated to (R, I0). Recall that we then have an isomorphism of rings

8
(i)
0 : Rs.♭

i /I s.♭
0 Rs.♭

i

∼=
−→ Ri/I0 Ri for every i ≥ 0. For every i ≥ 0 and every open subset U ⊆ Spec(Ri )

containing Spec(Ri ) \ V (I0 Ri ), we define

U s.♭
I0
:= F

Rs.♭
i ,8

(i)
0
(U ).

We also denote U s.♭
I0

by U s.♭ as an abbreviated form.

Note that by the compatibility described in Lemma 3.39, the operation U ⇝U s.♭ is compatible with
the base extension along the transition maps of a perfectoid tower.

Let us give some examples of U s.♭.

Example 4.4 (punctured spectra of regular local rings). Keep the notation as in Example 3.62(1). In this

situation, the isomorphism 8
(0)
0 : R

s.♭
0 /I s.♭

0

∼=
−→ R0/I0 in Definition 4.3 can be written as

k[[x1, . . . , xd ]]/(ps.♭)
∼=
−→ R/pR, (4-1)

where ps.♭
∈ k[[x1, . . . , xd ]] is some element. Set U := Spec(R) \ V (m). Then, since the maximal ideal

m⊆ R/pR corresponds to the (unique) maximal ideal of k[[x1, . . . , xd ]]/(ps.♭), we have

U s.♭ ∼= Spec(k[[x1, . . . , xd ]]) \ V ((x1, . . . , xd)).

Example 4.5 (tilting for preperfectoid rings). Keep the notation as in Example 3.54. Then by Lemma 3.55,

8
(0)
0 : R

s.♭
0 /I s.♭

0

∼=
−→ R0/I0 is identified with the isomorphism

θ R̂ : (R̂)
♭/I ♭0(R̂)

♭
∼=
−→ R̂/I0 R̂ (4-2)

which is induced by the bottom map in the diagram (3-17). In this case, we denote F
R♭,8(0)0

(U ) by U ♭ in
distinction from U s.♭.

The comparison theorem we need, due to Česnavičius and Scholze, is stated as follows.

Theorem 4.6 [8, Theorem 2.2.7]. Let A be a ϖ -adically Henselian ring with bounded ϖ -torsion for
an element ϖ ∈ A such that p ∈ ϖ p A. Assume that the ϖ -adic completion of A is perfectoid. Let
U ⊆ Spec(A) be a Zariski-open subset such that Spec(A) \ V (ϖ A)⊆U , and let U ♭

⊆ Spec(A♭) be its
tilt (see Example 4.5).

(1) For every torsion abelian group G, we have R0(Uét,G)∼= R0(U ♭

ét,G) in a functorial manner with
respect to A, U , and G.



2348 Shinnosuke Ishiro, Kei Nakazato and Kazuma Shimomoto

(2) Let Z be the complement of U ⊆ Spec(A). Then for a torsion abelian group G, we have

R0Z (Spec(A)ét,G)∼= R0Z (Spec(A♭)ét,G).

Now we come to the main result on tilting étale cohomology groups. Recall that we have fixed a prime
p > 0.

Proposition 4.7. Let ({R j } j≥0, {t j } j≥0) be a perfectoid tower arising from some pair (R, I0). Suppose
that R j is I0-adically Henselian for every j ≥ 0. Let ℓ be a prime different from p. Suppose further that
for every j ≥ 0, t j : R j → R j+1 is a module-finite extension of Noetherian normal domains whose generic
extension is of p-power degree.13 Fix a Zariski-open subset U ⊆Spec(R) such that Spec(R)\V (pR)⊆U
and the corresponding open subset U s.♭

⊆ Spec(Rs.♭) (cf. Definition 4.3). Then, for any fixed i, n ≥ 0 such
that |H i (U s.♭

ét ,Z/ℓnZ)|<∞, one has

|H i (Uét,Z/ℓnZ)| ≤ |H i (U s.♭
ét ,Z/ℓnZ)|.

In particular, if H i (U s.♭
ét ,Z/ℓnZ)= 0, then H i (Uét,Z/ℓnZ)= 0.

Proof. Since each R j is a p-adically Henselian normal domain, so is R∞ = lim
−−→ j≥0 R j . Moreover, every

prime ℓ different from p is a unit in R j and R∞. Attached to the tower ({R j } j≥0, {t j } j≥0), we get a tower
of finite (not necessarily flat) maps of normal schemes:

U =U0← · · · ←U j ←U j+1← · · · . (4-3)

More precisely, let h j : Spec(R j+1)→ Spec(R j ) be the associated scheme map. Then the open set U j+1

is defined as the inverse image h−1
j (U j ), thus defining the map U j+1→ U j in the tower (4-3). Since

h j is a finite morphism of normal schemes, Lemma 3.4 of [3] applies to yield a well-defined trace map
Tr : h j∗h∗j Z/ℓ

nZ→ Z/ℓnZ such that

Z/ℓnZ
h∗j
−→ h j∗h∗j Z/ℓ

nZ
Tr
−→ Z/ℓnZ (4-4)

is multiplication by the generic degree of h j (=p-power order). Then this is bijective, as the multiplication
map by p on Z/ℓnZ is bijective. We have the natural map: H i (U j,ét,Z/ℓnZ)→ H i (U j+1,ét, h∗j Z/ℓ

nZ).
Since h j is affine, the Leray spectral sequence gives H i (U j+1,ét, h∗j Z/ℓ

nZ) ∼= H i (U j,ét, h j∗h∗j Z/ℓ
nZ).

Composing these maps, the composite map (4-4) induces

H i (U j,ét,Z/ℓnZ)→ H i (U j+1,ét, h∗j Z/ℓ
nZ)

∼=
−→ H i (U j,ét, h j∗h∗j Z/ℓ

nZ)
Tr
−→ H i (U j,ét,Z/ℓnZ)

and the composition is bijective. Since h∗j Z/ℓ
nZ∼= Z/ℓnZ, we get an injection

H i (U j,ét,Z/ℓnZ) ↪→ H i (U j+1,ét,Z/ℓnZ). (4-5)

13The existence of such towers is quite essential for applications to étale cohomology, because the extension degree of each
R j → R j+1 is controlled in such a way that the p-adic completion of its colimit is a perfectoid ring.
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Set U∞ = lim
←−− j U j . Since each morphism U j+1→U j is affine, by using (4-5) and [38, Tag 09YQ], we

have
H i (Uét,Z/ℓnZ) ↪→ lim

−−→
j

H i (U j,ét,Z/ℓnZ)∼= H i (U∞,ét,Z/ℓnZ).

Thus, it suffices to show that |H i (U∞,ét,Z/ℓnZ)|≤ |H i (U s.♭
ét ,Z/ℓnZ)|. Hence by tilting étale cohomology

using Theorem 4.6, we are reduced to showing

|H i (U ♭

∞,ét,Z/ℓnZ)| ≤ |H i (U s.♭
ét ,Z/ℓnZ)|, (4-6)

where U ♭
∞ is the open subset of Spec(R♭∞) that corresponds to U∞ ⊆ Spec(R∞) in view of Example 4.5.

On the other hand, considering the tilt of ({R j } j≥0, {t j } j≥0) associated to (R0, I0), we have a perfect
Fp-tower ({Rs.♭

j } j≥0, {t
s.♭
j } j≥0). Note that each Rs.♭

j is I s.♭
0 -adically Henselian Noetherian ring14 by

Lemma 3.36 and Proposition 3.42(2), and t s.♭
j is module-finite by Proposition 3.42(1). Considering the

small tilts of the Zariski-open subsets appearing in (4-3) (see Definition 4.3), we get a tower of finite
maps:

U s.♭
=U s.♭

0 ← · · · ←U s.♭
j ←U s.♭

j+1← · · · .

So let U s.♭
∞ be the inverse image of U s.♭ under Spec(Rs.♭

∞ )→ Spec(Rs.♭). Since U s.♭
∞ →U s,♭ is a universal

homeomorphism, the preservation of the small étale sites [38, Tag 03SI] gives an isomorphism:

H i (U s.♭
ét ,Z/ℓnZ)∼= H i (U s.♭

∞,ét,Z/ℓnZ). (4-7)

Now the combination of Lemma 3.55 and Theorem 4.1(2) together with the assumption finishes the proof
of the theorem. □

Remark 4.8. One can formulate and prove the version of Proposition 4.7 for the étale cohomology with
support in a closed subscheme of Spec(R), using Theorem 4.6. Then the resulting assertion gives a
generalization of Česnavičius-Scholze’s argument in [7, Theorem 3.1.3] which is a key part of their proof
for the absolute cohomological purity theorem. One of the advantages of Proposition 4.7 is that it can be
used to answer some cohomological questions on possibly singular Noetherian schemes (e.g. log-regular
schemes) in mixed characteristic.

4B. Tilting the divisor class groups of local log-regular rings. We need a lemma of Grothendieck on
the relationship between the divisor class group and the Picard group via direct limit. Its proof is found in
[19, Proposition (21.6.12)] or [20, XI Proposition 3.7.1].

Lemma 4.9. Let X be an integral Noetherian normal scheme, and let {Ui }i∈I be a family of open subsets
of X. Consider the following conditions.

(1) {Ui }i∈I forms a filter base. In particular, one can define a partial order on I so that it is a directed
set and {Ui }i∈I together with the inclusion maps forms an inverse system.

14It is not obvious whether Rs.♭
j is normal. However, the normality was used only in the trace argument and we do not need it

in the following argument.
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(2) Let Vi := X \Ui for any i ∈ I . Then codimX (Vi )≥ 2.

(3) For any x ∈
⋂

i∈I Ui , the local ring OX,x is factorial.

If {Ui }i∈I satisfies condition (2), then the natural map Pic(Ui )→ Cl(X) is injective for any i ∈ I . If
{Ui }i∈I satisfies conditions (1), (2) and (3), then lim

−−→i∈I Pic(Ui ) ∼= Cl(X). Thus, if U ⊆ X is any open
subset that is locally factorial with codimX (X \U )≥ 2, then Pic(U )∼= Cl(X).

Next we establish two results on the torsion part of the divisor class group of a (Noetherian) normal
domain; they are examples of numerous applications of Theorem 4.1 of independent interest.

Proposition 4.10. Let (R,m, k) be a strictly Henselian Noetherian local normal Fp-domain of dimension
≥ 2, let X := Spec(R) and fix an ideal J ⊆m. Let {Ui }i∈I be any family of open subsets of X satisfying
(1), (2) and (3) as in the hypothesis of Lemma 4.9 and let U∞i be the Fp-scheme which is the perfection of
Ui .

(1) For any prime ℓ ̸= p,
Cl(X)[ℓn

] ∼= lim
−−→
i∈I

H 1((U∞i )ét,Z/ℓnZ
)
.

(2) Let R̂1/p∞ denote the J -adic completion of R1/p∞ . If each Ui has the property that X \ V (J )⊆Ui ,
then for any prime ℓ ̸= p,

Cl(X)[ℓn
] ∼= lim
−−→
i∈I

H 1((Û∞i )ét,Z/ℓnZ
)
,

where Û∞i is inverse image of U∞i via the scheme map Spec(R̂1/p∞)→ Spec(R1/p∞).

Proof. Let us begin with a remark on the direct limit of étale cohomology groups. For the tran-
sition morphism g : U∞i → U∞j which is affine, there is a functorial map H 1

(
(U∞j )ét,Z/ℓnZ

)
→

H 1
(
(U∞i )ét, g∗(Z/ℓnZ)

)
∼= H 1

(
(U∞i )ét,Z/ℓnZ

)
, which defines the direct system of cohomology groups.

(1) We prove that for any n ∈ N, there is an injection of abelian groups

H 1(Uet ,Z/ℓnZ)∼= Pic(U )[ℓn
] ⊆ Cl(X)[ℓn

],

where U ⊆ X is an open subset whose complement is of codimension ≥ 2. Indeed, consider the Kummer
exact sequence

0→ Z/ℓnZ∼= µℓn → Gm
( )ℓ

n

−−→ Gm→ 0,

where the identification of étale sheaves µℓn ∼= Z/ℓnZ follows from the fact that R is strict Henselian (one
simply sends 1 ∈ Z/ℓnZ to the primitive ℓn-th root of unity in R). Let U ⊆ X be an open subset with its
complement V = X \U having codimension ≥ 2. Then we have an exact sequence (see [31, Chapter III,
Proposition 4.9])

0(Uét,Gm)
( )ℓ

n

−−→ 0(Uét,Gm)→ H 1(Uét,Z/ℓnZ)→ Pic(U )
( )ℓ

n

−−→ Pic(U ).

Since R is strict local and ℓ ̸= p, Hensel’s lemma yields that R× = (R×)ℓ
n
. Since codimX (V )≥ 2 and X
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is normal, we have 0(Uét,Gm)= R×. Thus, H 1(Uét,Z/ℓnZ)∼= Pic(U )[ℓn
]. Note that Pic(U ) ↪→ Cl(U )

restricts to Pic(U )[ℓn
] ↪→ Cl(U )[ℓn

]. Moreover, the natural homomorphism Cl(X) → Cl(U ) is an
isomorphism, thanks to codimX (V ) ≥ 2. Hence H 1(Uét,Z/ℓnZ) ∼= Pic(U )[ℓn

] ⊆ Cl(X)[ℓn
], which

proves the claim.

Since R is normal, the regular locus has complement with codimension ≥ 2. Using this fact, we can
apply Lemma 4.9 to get an isomorphism Cl(X)[ℓn

] ∼= lim
−−→i∈I H 1

(
(Ui )ét,Z/ℓnZ

)
. By étale invariance of

cohomology under taking perfection of Fp-schemes [38, Tag 03SI], we get

Cl(X)[ℓn
] ∼= lim
−−→
i∈I

H 1((Ui )ét,Z/ℓnZ
)
∼= lim
−−→
i∈I

H 1((U∞i )ét,Z/ℓnZ
)
,

as desired.

(2) Since R is Henselian along m and J ⊆m, it is Henselian along J by [38, Tag 0DYD]. The perfect
closure of R still preserves the Henselian property along J . Theorem 4.1 yields

H 1((U∞i )ét,Z/ℓnZ
)
∼= H 1((Û∞i )ét,Z/ℓnZ

)
and the conclusion follows from (1). □

Proposition 4.11. Let A be a Noetherian ring with a regular element t ∈ A such that A is t-adically
Henselian and A→ A/t A is the natural surjection between locally factorial domains. Pick an integer
n> 0 that is invertible on A. Then if Cl(A) has no torsion element of order n, the same holds for Cl(A/t A).
If moreover A is a Q-algebra and Cl(A) is torsion-free, then so is Cl(A/t A).

Proof. The Kummer exact sequence 0→ µn→ Gm
( )n

−−→Gm→ 0 induces the commutative diagram

H 1(Spec(A)ét, µn)
δ1

//

α

��

Pic(A)
( )n

//

��

Pic(A)

��

H 1(Spec(A/t A)ét, µn)
δ2

// Pic(A/t A)
( )n
// Pic(A/t A).

By Theorem 4.1, the map α is an isomorphism. Then if Pic(A) has no torsion element of order n, δ1

is the zero map. This implies that δ2 is also the zero map and hence, Pic(A/t A) has no element of
order n. Since both A and A/t A are locally factorial by assumption, we have Cl(A) ∼= Pic(A) and
Cl(A/t A)∼= Pic(A/t A). The assertion follows. □

It is not necessarily true that δ1 or δ2 are injective, because we do not assume A to be strictly Henselian.

Lemma 4.12. Let (R,Q, α) be a log-regular ring. Then strict Henselization (Rsh,Q, αsh) is also a
log-regular ring, where αsh

:Q→ R→ Rsh is the composition of homomorphisms.

Proof. Since R→ Rsh is a local ring map, (Rsh,Q, αsh) is a local log ring by Lemma 2.18. Note that
we have the equality Iαsh = IαRsh. Since we have the isomorphism Rsh/Iαsh ∼= (R/Iα)sh by [38, Tag
05WS] and (R/Iα)sh is a regular local ring by [38, Tag 06LN], Rsh/Iαsh is a regular local ring. Since the
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dimension of R is equal to the dimension of a strict henselization Rsh, we obtain the equalities

dim Rsh
− dim(Rsh/Iαsh)= dim Rsh

− dim(R/Iα)sh
= dim R− dim(R/Iα)= dimQ.

So the local log ring (Rsh,Q, αsh) is log-regular. □

Now we can prove the following result on the divisor class groups of local log-regular rings, as an
application of the theory of perfectoid towers.

Theorem 4.13. Let (R,Q, α) be a local log-regular ring of mixed characteristic with perfect residue field
k of characteristic p > 0, and denote by Cl(R) the divisor class group with its torsion subgroup Cl(R)tor.

(1) Assume that R ∼= W (k)[[Q]] for a fine, sharp, and saturated monoid Q, where W (k) is the ring of
Witt vectors over k. Then Cl(R)tor⊗Z

[ 1
p

]
is a finite group. In other words, the ℓ-primary subgroup

of Cl(R)tor is finite for all primes ℓ ̸= p and vanishes for almost all primes ℓ ̸= p.

(2) Assume that R̂sh
[ 1

p

]
is locally factorial, where R̂sh is the completion of the strict Henselization Rsh.

Then Cl(R)tor⊗Z
[ 1

p

]
is a finite group. In other words, the ℓ-primary subgroup of Cl(R)tor is finite

for all primes ℓ ̸= p and vanishes for almost all primes ℓ ̸= p.

Proof. Assertion (1) was already proved in Proposition 2.26. So let us prove assertion (2). We may
assume that Q is fine, sharp, and saturated by Remark 2.20. The proof given below works for the first
case under the assumption of local factoriality of R̂sh

[ 1
p

]
.

Since R → R̂sh is a local flat ring map, the induced map Cl(R)→ Cl(R̂sh) is injective by Mori’s
theorem (cf. [11, Corollary 6.5.2]). Thus, it suffices to prove the theorem for R̂sh. Moreover, R̂sh is
log-regular with respect to the induced log ring structure α :Q→ R→ R̂sh by Lemma 4.12. So without
loss of generality, we may assume that the residue field of R is separably closed (hence algebraically
closed in our case).

Henceforth, we denote R̂sh by R for brevity and fix a prime ℓ that is different from p. By Lemma 4.9
and the local factoriality of R

[ 1
p

]
, we claim that there is an open subset U ⊆ X := Spec(R) such that

Pic(U )∼= Cl(X), X \ V (pR)⊆U and codimX (X \U )≥ 2. (4-8)

Indeed, X is a normal integral scheme by Kato’s theorem (Theorem 2.21). Let U be the union of the
regular locus of X and the open Spec

(
R
[ 1

p

])
⊆ X . Then by Serre’s normality criterion, we see that

codimX (X \U ) ≥ 2. We fix such an open U ⊆ X once and for all. Taking the cohomology sequence
associated to the exact sequence

0→ Z/ℓnZ→ Gm
( )ℓ

n

−−→ Gm→ 0

on the strict local scheme X and arguing as in the proof of Proposition 4.10, we have an isomorphism

H 1(Uét,Z/ℓnZ)∼= Pic(U )[ℓn
] ∼= Cl(X)[ℓn

]. (4-9)
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On the other hand, there is a perfectoid tower of module-finite extensions of local log-regular rings arising
from (R, (p)):

(R,Q, α)= (R0,Q(0), α0)→ · · · → (R j ,Q( j), α j )→ (R j+1,Q( j+1), α j+1)→ · · · . (4-10)

Each map is generically of p-power rank in view of Lemma 2.16(2) and Lemma 2.14(3). Moreover, the
tilt of (4-10) (associated to (R, (p))) is given by

(Rs.♭,Qs.♭, αs.♭)= ((R0)
s.♭
(p),Q

s.♭
0 , α

s.♭
0 )→· · ·→ ((R j )

s.♭
(p),Q

s.♭
j , α

s.♭
j )→ ((R j+1)

s.♭
(p),Q

s.♭
j+1, α

s.♭
j+1)→· · · ,

where ((R j )
s.♭
(p),Q

s.♭
j , α

s.♭
j ) is a complete local log-regular ring of characteristic p > 0 in view of

Theorem 3.61. The local ring Rs.♭ is strictly Henselian and the complement of U s.♭(= U s.♭
(p)) has

codimension ≥ 2 in Spec(Rs.♭). By repeating the proof of Proposition 4.10, we obtain an isomorphism

H 1(U s.♭
ét ,Z/ℓnZ)∼= Pic(U s.♭)[ℓn

]. (4-11)

By Lemma 4.9, the map

Pic(U s.♭)[ℓn
] → Cl(Rs.♭)[ℓn

] (4-12)

is injective. Combining (4-9), (4-11), (4-12) and Proposition 4.7, it is now sufficient to check that there
exists an integer N > 0 depending only on Rs.♭ such that

Cl(Rs.♭)[ℓN
] =

⋃
n>0

Cl(Rs.♭)[ℓn
], and Cl(Rs.♭)[ℓN

] is finite for all ℓ and zero for almost all ℓ ̸= p.

Since we know that Rs.♭ is strongly F-regular by Theorem 3.61 and Lemma 2.25, the aforementioned
result of Polstra finishes the proof. □

Appendix: Construction of differential modules and maximality

The content of this appendix is taken from Gabber and Ramero’s treatise [17], whose purpose is to supply
a corrected version of Grothendieck’s original presentation in EGA. So we give only a sketch of the
constructions of relevant modules and maps. Readers are encouraged to look into [17] for more details as
well as proofs. We are motivated by the following specific problem.

Problem A.1. Let (A,mA) be a Noetherian regular local ring and fix a system of elements f1, . . . , fn ∈ A
and a system of integers e1, . . . , en with ei > 1 for every i = 1, . . . , n. We set

B := A[T1, . . . , Tn]/(T
e1

1 − f1, . . . , T en
d − fn).

Then find a sufficient condition that ensures that the localization B with respect to a maximal ideal n with
mA = A∩ n is regular.

From the construction, it is obvious that the induced ring map A→ B is a flat finite injective extension.
Let now (A,mA, k) be a Noetherian local ring with residue field kA := A/mA of characteristic p > 0.
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Following the presentation in [17, (9.6.15)], we define a certain k1/p
A -vector space �A together with a

map dA : A→�A as follows.

Case I: p /∈m2
A. Let W2(kA) denote the p-typical ring of length 2 Witt vectors over kA. Then there is

the ghost component map ω0 : W2(kA)→ kA, and set V1(kA) := Ker(ω0). More specifically, we have
W2(kA)= kA× kA as sets with addition and multiplication given respectively by

(a, b)+ (c, d)=
(

a+ c, b+ d +
a p
+ cp
− (a+ c)p

p

)
and (a, b)(c, d)= (ac, a pd + cpb).

Using this structure, we see that V1(kA)= 0× kA as sets, which is an ideal of W2(kA) and V1(kA)
2
= 0.

This makes V1(kA) equipped with the structure as a kA-vector space by letting x(0, a) := (x, 0)(0, a) for
x ∈ kA. One can define the map of kA-vector spaces

k1/p
A → V1(kA) ; a 7→ (0, a p), (A-1)

which is a bijection. With this isomorphism, we may view V1(kA) as a k1/p
A -vector space. Next we form

the fiber product ring:

A2 := A×kA W2(kA).

It gives rise to a short exact sequence of A2-modules

0→ V1(kA)→ A2→ A→ 0, (A-2)

where A2→ A is the natural projection, and the A2-module structure of V1(kA) is via the restriction of
rings A2→W2(kA). From (A-2), we obtain an exact sequence of A-modules:

V1(kA)→�A→�1
A/Z→ 0,

where we put �A =�
1
A2/Z
⊗A2 A. After applying ( )⊗A kA to this sequence, we have another sequence

of kA-vector spaces:

0→ V1(kA)
jA
−→�A⊗A kA→�1

A/Z⊗A kA→ 0. (A-3)

Then this is right exact. Moreover, (A-1) yields a unique kA-linear map ψA : V1(kA)⊗kA k1/p
A → V1(kA).

Define �A as the push-out of the diagram:

V1(kA)
ψA
←− V1(kA)⊗kA k1/p

A
jA⊗k1/p

A
−−−−→�A⊗A k1/p

A .

More concretely, we have

�A =
V1(kA)⊕ (�A⊗A k1/p

A )

T
,

where T =
{
(ψ(x),−( jA⊗ k1/p

A )(x)) |∈ V1(kA)⊗kA k1/p
A

}
. By the universality of push-outs, we get the
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commutative diagram

0 // V1(kA)⊗kA k1/p
A

ψA

��

// �A⊗A k1/p
A

ψA

��

// �1
A/Z⊗A k1/p

A
// 0

0 // V1(kA) // �A // �1
A/Z⊗A k1/p

A
// 0.

We define the map
dA : A→�A

as the composite mapping

A
1×τkA
−−−→ A2 = A×kA W2(kA)

d
−→�1

A2/Z

id⊗1
−−→�A =�

1
A2/Z
⊗A k1/p

A
ψA
−→�A.

Here, d : A2→�1
A2/Z

is the universal derivation and τkA : A→ kA→W2(kA), where the first map is the
natural projection and the second one is the Teichmüller map.

Case II: p ∈m2
A. We just set �A :=�

1
A/Z⊗A k1/p

A , and define dA : A→�A as the map induced by the
universal derivation dA : A→�1

A/Z.

Combining Cases I and II, we have a map dA : A→�A. If φ : (A,mA)→ (B,mB) is a local ring map
of local rings, this gives rise to the commutative diagram

A
dA
//

φ

��

�A

�φ
��

B
dB
// �B .

With this in mind, one can consider the functor A 7→ �A from the category of local rings (A,mA) of
residual characteristic p > 0 to the category of the k1/p

A -vector spaces �A. Some distinguished features in
this construction are as follows:

Proposition A.2 [17, Proposition 9.6.20]. Let φ : (A,mA)→ (B,mB) be a local ring map of Noetherian
local rings such that the residual characteristic of A is p > 0. Then

(1) Suppose that φ is formally smooth for the mA-adic topology on A and the mB-adic topology on B.
Then the maps induced by φ and �φ , namely

(mA/m
2
A)⊗kA kB→mB/m

2
B and �A⊗K 1/p

A
k1/p

B →�B,

are injective.

(2) Suppose that

(a) mA B =mB ,
(b) the residue field extension kA→ kB is separable algebraic,
(c) φ is flat.
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Then �φ induces an isomorphism of k1/p
A -vector spaces:

�A⊗A B ∼=�B .

(3) If B = A/m2
A and φ : A→ B is the natural map, then �φ is an isomorphism.

(4) The functor �• and the natural transformation d• commute with filtered colimits.

We provide an answer to Problem A.1 as follows.

Theorem A.3 [17, Corollary 9.6.34]. Let f1, . . . , fn be a sequence of elements in A, and let e1, . . . , en

be a system of integers with ei > 1 for every i = 1, . . . , n. Set

C := A[T1, . . . , Tn]/(T
e1

1 − f1, . . . , T en

n − fn).

Fix a prime ideal n ⊆ C such that n∩ A = mA, and let B := Cn. Let E ⊆ �A be the k1/p
A -vector space

spanned by dA f1, . . . , dA fn . The following conditions are equivalent.

(1) A is a regular local ring, and dimk1/p
A

E = n.

(2) B is a regular local ring.

In particular, in the situation of the above theorem, B is a regular local ring if A is a regular local ring
and f1, . . . , fn is maximal in the sense of the following definition.

Definition A.4. Let (A,mA, kA) be a local ring with residual characteristic p > 0. Then we say that
a sequence of elements f1, . . . , fn in A is maximal if dA f1, . . . , dA fn forms a basis of the k1/p

A -vector
space �A.

In general, we have the following fact.

Lemma A.5. Let (A,mA, kA) be a regular local ring of mixed characteristic and assume that f1, . . . , fd

is a regular system of parameters of A.

(1) f1, . . . , fd satisfies condition (1) of Theorem A.3.

(2) If the residue field kA of A is perfect, then the sequence f1, . . . , fd is maximal.

Proof. (1) In the case that p /∈m2
A, [17, Proposition 9.6.17] gives a short exact sequence

0→mA/m
2
A⊗kA k1/p

A →�A→�1
kA/Z
⊗kA k1/p

A → 0. (A-4)

Then the images f 1, . . . , f d form a basis of the k1/p
A -vector space mA/m

2
A⊗kA k1/p

A . The desired claim
follows from the left exactness of (A-4).

In the case that p ∈m2
A, [17, Lemma 9.6.6] gives a short exact sequence

0→mA/(m
2
A+ pmA)→�A→�1

kA/Z
→ 0. (A-5)

and we can argue as in the case p /∈m2
A.

(2) If kA is perfect, then �1
kA/Z
= 0. Therefore, (A-4) and (A-5) (in the latter case, one tensors it with

k1/p
A over kA) gives the desired conclusion. □
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[7] K. Česnavičius, “Purity for the Brauer group”, Duke Math. J. 168:8 (2019), 1461–1486. MR
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Reduction modulo p of Noether’s problem
Emiliano Ambrosi and Domenico Valloni

Let R be a complete valuation ring of mixed characteristic (0, p) with algebraically closed fraction field
K and residue field k. Let X/R be a smooth projective morphism. We show that if Xk is stably rational,
then H 3

Ket(X K , Ẑ) is torsion-free. The proof uses the integral p-adic Hodge theory of Bhatt, Morrow and
Scholze and the study of differential forms in positive characteristic. We then apply this result to study
the Noether problem for finite p-groups.
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3. A stably irrational variety reducing to a rational variety 2365
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1. Introduction

Many techniques to study the birational geometry of varieties are based on specialization methods
in equicharacteristic or in mixed characteristic (see [Voi15; CTP16], for instance), often exploiting
pathological phenomena in positive characteristic [Kol95; Tot16; ABBGvB21].

In this paper we study birational invariants in mixed characteristic. Let us fix a complete valuation ring
R of mixed characteristic (0, p) with algebraically closed fraction field K and residue field k (necessarily
algebraically closed) and a smooth proper morphism X/R. Motivated by the different behavior of the
Noether problem in positive and zero characteristic (see Section 1.2 for details) we study the following
question:

Question 1.1. What can one say about the generic fiber X K knowing that the special fiber Xk is stably
rational? (The condition means that Xk × Pn

k is birational to PN
k for some n, N ∈ N.)

In general, X K need not be stably rational, as we show for instance in Section 3, where we follow
a suggestion of Colliot-Thélène and adapt the constructions of [HPT18] to construct smooth proper
morphisms X/R with X K stably irrational and Xk rational. On the other hand, we show that the following
vanishing holds:

Theorem 1.2. Let X/R be a smooth proper morphism, and assume that the special fiber Xk is stably
rational. Then the p-torsion of H 3

ét(X K , Zp) vanishes.
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If K ⊂ C is an embedding, then the vanishing of H 3
ét(X K , Zp)[p] together with smooth-proper base

change in étale cohomology (with ℓ-adic coefficients, ℓ ̸= p) implies that H 3
sing(X (C), Z) is torsion

free whenever Xk is stably rational. We recall that the torsion of H 3
sing(X (C), Z) is a stably birational

invariant of smooth proper varieties over C, which is naturally isomorphic to Br(X)/Br(X)div, where
Br(X) := H 2

ét(X, Gm). This group was used by Artin and Mumford in their seminal paper [AM72] to
give the first elementary example of a unirational threefold which was not rational.

1.1. Strategy. To explain the strategy, we begin by showing an analogous statement concerning global
differential forms. We retain the notation from the previous section. By the Künneth formula and Hartogs’
lemma, the vector spaces H 0(X K , �i

X K
) are stably birational invariants of smooth proper K -varieties, and

therefore they vanish if X K is stably rational. If X/R is a smooth proper morphism, the semicontinuity
theorem yields the inequality

(1.1.3) dimk(H 0(Xk, �
i
Xk

)) ≥ dimK (H 0(X K , �i
X K

)),

from which it follows that if Xk is stably rational, then H 0(X K , �i
X K

) = 0 necessarily.
Concerning étale cohomology, as already mentioned, the proper smooth base change asserts that for a

prime ℓ ̸= p one has

H 3
ét(X K , Zℓ)[ℓ] ≃ H 3

ét(Xk, Zℓ)[ℓ] = 0,

where the last equality follows from the stable birational invariance of H 3
ét(Xk, Zℓ)[ℓ] and the fact that

Xk is stably rational. For p-adic coefficients, we can replace the smooth proper base-change with the
integral p-adic Hodge theory of Bhatt, Morrow and Scholze, which will play the role of the semicontinuity
theorem (1.1.3). By [BMS18, Theorem 1.1 (ii)], one has the inequality

(1.1.4) dimk(H 3
crys(Xk/W ))[p]) ≥ dimFp(H 3

ét(X K , Zp)[p]),

where H 3
crys(Xk/W ) is the third crystalline cohomology group with integral coefficients of Xk . Thus,

it would be enough to show that dimk(H 3
crys(Xk)[p]) is a stably birational invariant of smooth proper

varieties. It is unclear how to prove this without assuming resolution of singularities, also because
crystalline cohomology behaves badly for open or singular varieties. We prove instead the following
vanishing, which is enough to deduce Theorem 1.2:

Theorem 1.1.5. Let k be an algebraically closed field of characteristic p and X be a smooth proper
k-variety. Assume that

(1) H i (X,OX ) = 0 for i = 2, 3;

(2) H 0(X, �2
X ) = 0;

(3) Br(X)[p] = 0.

Then H 3
crys(X/W )[p] = 0.
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The assumptions of Theorem 1.1.5 are satisfied if X is stably rational, since all the conditions are
stably birational invariants of smooth proper varieties. (See [CR11, Theorem 1] for (1); point (2) follows
from Hartog’s lemma; [CTS21, Corollary 6.2.11, p. 170] gives (3).) Hence, Theorem 1.2 follows from
Theorem 1.1.5 and (1.1.4).

1.2. Applications to the Noether problem. As mentioned, our original motivation was the Noether
problem, which we now briefly recall. For a finite group G and a field K , the Noether problem asks
whether Pn

K /G is a stably rational variety, where G acts on Pn
K in a linear and faithful way. The problem

is well-posed since the stably birational class of the quotient does not depend on the chosen representation
[BK85, Lemma 1.3]. For K = C we can then define the Artin–Mumford invariant AM(G) of G as
Tors(H 3

sing(X, Z)) where X/C is any smooth proper birational model of Pn
K /G.

The first counterexample of the Noether problem over C was given by Saltman in [Sal84], who for any
prime p produced a finite p-group G for which the quotient Pn

C
/G is not stably rational, by showing that

AM(G) ̸= 0. A general formula for AM(G) was later given by Bogomolov [Bog88, Theorem 3.1], and
this group is now known as the Bogomolov multiplier of G.

The connection to Theorem 1.2 comes from the classical observation that if G is a p-group and K has
characteristic p, then Pn

K /G is always rational; see, e.g., [Kun54] and [Gas59].
Keeping the notation as in the previous section, we can fix a finite p-group G, and linear faithful

actions of G on Pn
k and Pn

K . Theorem 1.2 together with the observation above implies the following:

Corollary 1.2.1. If AM(G) ̸= 0, there does not exists a smooth proper X/R such that Xk is stably
birational to Pn

k/G and X K is stably birational to Pn
K /G.

It follows that all the examples constructed in [Sal84; Bog88] cannot have good stably rational reduction.
This also implies that if AM(G) ̸= 0 and G → PGLn(R) is a representation such that the reduction map
G → PGLn(k) is injective, then one cannot resolve the singularities of Pn

R/G relatively to R, i.e., there
cannot be a smooth projective X/R with a R-morphism π : X → Pn

R/G which induces a resolution of
singularities on both fibers.

Peyre [Pey08] constructed groups G such that Pn
C
/G is not rational but AM(G) = 0. It is an interesting

question at this point whether there is a p-group G for which a resolution X of Pn
R/G like in the corollary

above exists, but Pn
K /G is not stably rational.

Remark 1.2.2. A related phenomenon appears in the recent work of Lazda and Skorobogatov in [LS23].
They prove that, if p = 2 and Y → Spec(R) is an abelian surface such that Xk is not supersingular, then
one can resolve the singularities of Y/{±1} to obtain a smooth proper morphism X → Spec(R) such
that the generic fiber is the Kummer variety Kum(Yk) of Yk and the generic fiber is the Kummer variety
Kum(YK ) of YK .

On the other hand, if Yk is surpersingular, then Kum(Yk) is a rational surface due to [Kat78]. Since
H 0(Kum(YK ), �2

YK
) ̸= 0, the argument in the beginning of Section 1.1 applies, and such Y does not exist.

Since H 0(Kum(Yk), �
2
Xk

) = 0 if and only if Xk is supersingular, the group H 0(Kum(YK ), �2
X K

) is the
only obstruction to the construction of such Y in this case.
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2. Proof of Theorem 1.1.5

2.1. Notation. Let k be an algebraically closed field of characteristic p > 0 and let X/k be a smooth
proper variety such that

H 2(X,OX ) = H 3(X,OX ) = H 0(X, �2
X/k) = Br(X)[p] = 0.

We let �•

X be the de Rham complex of X and we define the following sheaves over X :

Z i
X := Ker(d : �i

X → �i+1
X ); Bi

X := Im(d : �i−1
X → �i

X ); Hi
X =

Z i
X

Bi
X

.

For every complex of sheaves F • over X and every i ∈ N, we let τ≥iF
• (resp. τ≤iF

•) be the upper
(resp. lower) canonical truncation of F • and F≥i (resp. F≤i ) the upper (resp. lower) naive filtration of F •.
Recall that, for every i ∈ N there exists an exact triangle (see, e.g., [Stacks, Remark 08J5]):

τ≤iF
•
→ F •

→ τ≥i+1F
•.

2.2. Preliminary reductions. The universal coefficient theorem for crystalline cohomology (see, e.g.,
[Ill79, (4.9.1), p. 623]), gives us an exact sequence

0 → H 2
crys(X/W ) ⊗ k → H 2

dR(X) → H 3
crys(X/W )[p] → 0,

so that, to prove Theorem 1.1.5, it is enough to show that the natural map

H 2
crys(X/W ) ⊗ k → H 2

dR(X)

is surjective. In fact, we shall prove that the cycle class map cldR : NS(X)⊗ k → H 2
dR(X/k) is surjective,

which is enough due to the commutative diagram

(2.2.1)

NS(X) ⊗ W H 2
crys(X/W )

NS(X) ⊗ k H 2
dR(X),

clcrys

cldR

where the first horizontal arrow is the crystalline cycle class map.

2.3. Factorization of the cycle class map. To study cldR : NS(X) ⊗ k → H 2
dR(X/k), we factorize it in

three arrows. Let ι : Z1
X [−1] → �• be the natural inclusion.

Recall that, by construction, the cycle class map cldR : NS(X)⊗k → H 2
dR(X/k) is induced by the dlog

map
dlog : O∗

X [−1] → �•

X

(see, e.g., [Stacks, Section 0FLE]), which factors through

O∗

X [−1]
dlog
−−→ Z1

X [−1]
ι

−→ �•

X .
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Hence, the cycle class map factors trough the induced map ι : H 1(X, Z1
X ) → H 2

dR(X), giving a first
factorization

cldR : NS(X) ⊗ k → H 1(X, Z1
X )

ι
−→ H 2

dR(X/k).

To go further, recall from [Ill79, (5.1.4), p. 626], that for every i , there is a canonical isomorphism
H i

flat(X, µp)
≃
−→ H i−1(X,OX/(O∗

X )p) hence a canonical map α : H 2(X, µp)→ H 1(X, Z1
X ) induced again

by dlog : OX/(O∗

X )p
→ Z1

X . In conclusion, the map cldR : NS(X) ⊗ k → H 2
dR(X) factorises further as

NS(X) ⊗ k
clflat⊗k
−−−−→ H 2

flat(X, µp) ⊗ k
α
−→ H 1(X, Z1

X )
ι

−→ H 2
dR(X),

where clflat : NS(X) → H 2
flat(X, µp) is the cycle class map in flat cohomology.

2.4. Studying the factorization. To show that cldR : NS(X) ⊗ k → H 2
dR(X) is surjective, we show that:

(1) the map clflat : NS(X) → H 2
flat(X, µp) is surjective;

(2) the map α : H 2
flat(X, µp) ⊗ k → H 1(X, Z1

X ) is an isomorphism;

(3) the map ι : H 1(X, Z1
X ) → H 2

dR(X) is surjective.

Proof of (1). The map clflat : NS(X) → H 2
flat(X, µp) is induced by the connecting map

H 1(X,O∗

X ) = Pic(X) → H 2
flat(X, µp)

in the long exact sequence associated to the short exact sequence

0 → µp → O∗

X
(−)p

−−→ O∗

X → 0

of sheaves in flat site of X . Hence the surjectivity of clflat : NS(X) → H 2
flat(X, µp) follows directly from

the assumption H 2
flat(X,O∗

X ) = H 2
ét(X,O∗

X ) = Br(X) = 0.

Proof of (2). Recall from [Ill79, (2.1.23), p. 518] the exact sequence of étale sheaves

0 → O∗

X/(O∗

X )p dlog
−−→ Z1

X
i−C
−−→ �1

X → 0,

where i : Z1
X → �1

X is the natural inclusion and C : Z1
X → �1

X is the Cartier operator. Since étale
cohomology and Zariski cohomology agree for coherent sheaves, taking the associated long exact
sequence in cohomology, we get an exact sequence

H 0(X, Z1
X )

i−C
−−→ H 0(X, �1

X ) → H 2
fppf(X, µp) → H 1(X, Z1

X )
i−C
−−→ H 1(X, �1

X )

where i is a linear morphism and C is a Frobenius-linear map.

To prove (2), it is then enough to show that H 0(X, Z1
X )

i−C
−−→ H 0(X, �1

X ) is surjective and that

Ker(H 1(X, Z1
X )

i−C
−−→ H 1(X, �1

X )) ⊗ k ≃ H 1(X, Z1
X ).

Since H i (X, Z1
X ) and H i (X, �1

X ) are finite-dimensional vector spaces, we can use the following
classical lemma (see, e.g., [Mil16, Lemma 4.13, p. 128]).
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Lemma 2.4.1. Let k be an algebraically closed field of characteristic p > 0 and let V be a finite-
dimensional vector space over k. Let f : V → V be a k-linear isomorphism and let C : V → V be any
Frobenius-linear map. Then:

(a) f − C is surjective.

(b) If C is bijective, then V = ker( f − C) ⊗ k.

Hence to prove (2) it is enough to show that the following maps are isomorphisms:

i : H 0(X, Z1
X ) → H 0(X, �1

X ), i : H 1(X, Z1
X ) → H 1(X, �1

X ), C : H 1(X, Z1
X ) → H 1(X, �1

X ).

That the map H 0(X, Z1
X ) → H 0(X, �1

X ) is an isomorphism follows directly from the exact sequence
of sheaves

0 → Z1
X → �1

X
d
−→ �2

X

and the assumption H 0(X, �2
X ) = 0.

As for i and C , by comparing dimensions we see that it is enough to prove that

(i) i : H 1(X, Z1
X ) → H 1(X, �1

X ) is injective, and

(ii) C : H 1(X, Z1
X ) → H 1(X, �1

X ) is surjective.

Proof of (i). Since Z1
X [−1] = τ≤1�

≥1
X , there is an exact triangle

Z1
X [−1] → �

≥1
X → τ≥2�

≥1
X ,

so that the map H 1(X, Z1
X )→ H 2(X, �

≥1
X ) is injective, since H 1(X, τ≥2�

≥1
X )=0, because τ≥2�

≥1
X is con-

centrated in degrees ≥ 2. So it is enough to show that the natural map H 2(X, �
≥1
X ) → H 2(X, �1

X [−1]) =

H 1(X, �1
X ) induced by the map �

≥1
X → �1

X [−1] is injective. But the latter fits in the short exact sequence
of complexes

0 → �
≥2
X → �

≥1
X → �1

X [−1] → 0,

so that we just need to prove that H 2(X, �
≥2
X ) = 0. This follows from the inclusion

H 2(X, �
≥2
X ) = Ker(H 0(X, �2

X )
d
−→ H 0(X, �3

X )) ⊆ H 0(X, �2
X ) = 0

by our assumption on X . Hence i : H 1(X, Z1
X ) → H 1(X, �1

X ) is injective.

Proof of (ii). Since k is perfect, from [Ill79, (2.1.22)] we have a short exact sequence of sheaves

0 → B1
X → Z1

X
C
−→ �1

X → 0,

where C is the Cartier operator. Hence it is enough to show that H 2(X, B1
X ) is zero. But this follows

from the short exact sequence

0 → OX
(−)p

−−→ OX
d
−→ B1

X → 0

and the assumption H 2(X,OX ) = H 3(X,OX ) = 0.
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Proof of (3). Since H 2(X,OX ) = 0 by assumption, the short exact sequence

0 → Z1
X [−1] → τ≤1�

•

X → OX → 0

shows that the natural map H 1(X, Z1
X ) → H 2(X, τ≤1�

•

X ) is surjective. So, it is enough to show that the
natural map H 2(X, τ≤1�

•

X ) → H 2(X, �•

X ) = H 2
dR(X) is surjective. Since there is an exact triangle

τ≤1�
•

X → �•

X → τ≥2�
•

X ,

it is then enough to show that H 2(X, τ≥2�
•

X ) = 0. But

H 2(X, τ≥2�
•

X ) = ker(H 0(X, τ≥2�
•

X [2]) → H 0(X, �3
X )) = H 0(X, ker(�2

X/B2
X → �3

X )) = H 0(X,H2
X ).

Again, since k is perfect, the inverse Cartier operator [Ill79, (2.1.22)] gives an isomorphism H2(�•

X )∼=�2
X , so

H 2(X, τ≥2�
•

X ) ≃ H 0(X, �2
X ) = 0.

Hence the natural map H 1(X, Z1
X ) → H 2

dR(X/k) is surjective. This concludes the proof of (3) and the
proof of Theorem 1.1.5.

3. A stably irrational variety reducing to a rational variety

Let R be the ring of integers of K := Cp and k its residue field. In this last section, we show how to
construct, for every p ≫ 0, examples of smooth proper schemes X → Spec(R) such that X K is not stably
rational and such that Xk is rational, as suggested to us by Colliot-Thélène. The construction uses and is
based on the analogous construction in [HPT18] of a family of proper smooth varieties over the complex
number with stably irrational general fiber but with some rational fiber.

3.1. A general lemma. We begin by reducing the construction of examples to the construction of mixed
characteristic families with properties that are easier to check. Let B/R be smooth with geometrically
integral fibers and X → B a smooth proper family of varieties.

Lemma 3.1.1. Assume that there exists a point b ∈ B(Cp) such that Xb is not stably rational. Then, for
every a ∈ B(k) there exists a lift b′

∈ B(R) of a such that Xb′ is not stably rational.

Proof. By [NO21, Corollary 4.1.2], the set

B(Cp)r := {b ∈ B(Cp) : Xb is stably rational}

is a countable union of closed subvarieties. Define now B(Cp)nr := B(Cp) \ B(Cp)r . By the assumption
on b, the set B(Cp)r is the countable union of proper closed subvarieties.

Since, by the Hensel lemma, the map π : B(R) → B(k) is surjective, we can choose a lift b′′ of a.
The set π−1(a) ⊆ B(R) ⊆ B(K ) is an open neighborhood of b′′ in B(K ). Since B(Cp)r is the countable
union of proper closed subvarieties, we can apply [MP12, Lemma 4.29] to deduce that there exists a
b′

∈ B(Cp)nr ∩ π−1(a). This concludes the proof. □
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3.2. An example. By Lemma 3.1.1, to construct a smooth proper scheme X → Spec(R) such that X K is
not stably rational and such that Xk is rational, it is enough to construct a family X → B over R such
that there exist points b ∈ B(Cp) and a ∈ B(k) such that Xb is stably irrational and Xa is rational. Such a
family can be constructed directly using the example of Hassett, Pirutka, and Tschinkel [HPT18]; see
also [CTS21, Section 12.2.2] and [Sch19]. We give some details.

Let X ′
→ Z be the universal family of quadric bundles over P2

Q
given in P2

Q
×P3

Q
by a bihomogeneous

form of bidegree (2, 2). After choosing coordinates x, y, z and U, V, W, T on P2
Q

× P3
Q

, the variety Z
identifies with the space of bihomogeneous forms F = F(x, y, z, U, V, W, T ) of bidegree (2, 2) in P2

Q
×

P3
Q

that are symmetric quadratic forms in the variables U, V, W, T , since any such F determines a quadric
bundle over P2

Q
via the projection P2

Q
× P3

Q
→ P2

Q
. In turn, these forms are given by a 4 × 4 symmetric

matrix A = (ai, j )1≤i, j≤4 where each entry ai, j = ai, j (x, y, z) is a homogeneous polynomial of degree 2.
By the arguments in [Sch19] and Bertini’s theorem, there exists a dense open Zariski BQ ⊂ Z such

that the restriction of the family XQ → BQ to BQ parametrizes quadric bundle flat over P2
Q

and with
smooth total space.

By spreading out, this construction extends to give a smooth family X → B over Z[1/n] for n large
enough whose base change to Q identifies with XQ → BQ. By the main result of [HPT18], the general
fiber of X (C) → B(C) is not stably rational, hence, for every p, there exists a b ∈ B(Cp) such that Yb is
not stably rational. So, we are left to show that for p ≫ 0, there exists a a ∈ B(Fp) such that Xa is rational.

Using Bertini, there exists a rational point r ∈ B(Q) such that the corresponding 4 × 4 symmetric
matrix A = (ai, j )1≤i, j≤4 has a1,1 = 0. By spreading out, we can choose p ≫ 0 such that r ∈ B(Q) extends
to a point ã ∈ B(Zp) whose reduction a modulo p defines a flat quadric bundle Xa → P2

Fp
with smooth

total space, whose associated matrix has a1,1 = 0. Since a1,1 = 0, for every x ∈ P2
Fp

, the point [1 : 0 : 0 : 0]

is k(x)-rational point of the fiber of Xa → P2
Fp

in x . In particular the morphism Xa → P2
Fp

has a rational
section, hence Xa is rational. This concludes the construction of a proper smooth scheme over R with
rational special fiber and stably irrational generic fiber.

Acknowledgements

The authors are grateful to Stefan Schreieder for having introduced Valloni to the Noether problem, to
Giuseppe Ancona for many interesting discussions and comments on a preliminary version of the article,
and to Colliot-Thélène for pointing out to us the example in Section 3. The authors also thank the referees
for their comments and for having greatly improved both the statement and proof of our main result.

References

[ABBGvB21] A. Auel, A. Bigazzi, C. Böhning, and H.-C. Graf von Bothmer, “Unramified Brauer groups of conic bundle
threefolds in characteristic two”, Amer. J. Math. 143:5 (2021), 1601–1631. MR

[AM72] M. Artin and D. Mumford, “Some elementary examples of unirational varieties which are not rational”, Proc. Lond.
Math. Soc. (3) 25 (1972), 75–95. MR

https://doi.org/10.1353/ajm.2021.0040
https://doi.org/10.1353/ajm.2021.0040
http://msp.org/idx/mr/4334404
https://doi.org/10.1112/plms/s3-25.1.75
http://msp.org/idx/mr/321934


Reduction modulo p of Noether’s problem 2367

[BK85] F. A. Bogomolov and P. I. Katsylo, “Rationality of some quotient varieties”, Mat. Sb. (N.S.) 126(168):4 (1985), 584–589.
In Russian; translated in Math. USSR-Sb. 54:2 (1986), 571–576. MR

[BMS18] B. Bhatt, M. Morrow, and P. Scholze, “Integral p-adic Hodge theory”, Publ. Math. Inst. Hautes Études Sci. 128 (2018),
219–397. MR

[Bog88] F. A. Bogomolov, “The Brauer group of quotient spaces by linear group actions”, Izv. Akad. Nauk SSSR Ser. Mat. 51:3
(1987), 485–516. In Russian; translated in Math. USSR-Izv. 30:3 (1988), 455–485. MR

[CR11] A. Chatzistamatiou and K. Rülling, “Higher direct images of the structure sheaf in positive characteristic”, Algebra
Number Theory 5:6 (2011), 693–775. MR

[CTP16] J.-L. Colliot-Thélène and A. Pirutka, “Hypersurfaces quartiques de dimension 3: non-rationalité stable”, Ann. Sci.
École Norm. Sup. (4) 49:2 (2016), 371–397. MR

[CTS21] J.-L. Colliot-Thélène and A. N. Skorobogatov, The Brauer–Grothendieck group, Ergebnisse der Math. (3) 71, Springer,
2021. MR

[Gas59] W.Gaschütz, “Fixkörper von p-Automorphismengruppen rein-transzendener Körpererweiterungen von p-Charakteristik”,
Math. Z. 71 (1959), 466–468. MR

[HPT18] B. Hassett, A. Pirutka, and Y. Tschinkel, “Stable rationality of quadric surface bundles over surfaces”, Acta Math.
220:2 (2018), 341–365. MR

[Ill79] L. Illusie, “Complexe de de Rham–Witt et cohomologie cristalline”, Ann. Sci. École Norm. Sup. (4) 12:4 (1979), 501–661.
MR

[Kat78] T. Katsura, “On Kummer surfaces in characteristic 2”, pp. 525–542 in Proceedings of the International Symposium
on Algebraic Geometry (Kyoto, 1977), edited by M. Nagata, Kinokuniya, Tokyo, 1978. MR

[Kol95] J. Kollár, “Nonrational hypersurfaces”, J. Amer. Math. Soc. 8:1 (1995), 241–249. MR

[Kun54] H. Kuniyoshi, “On purely-transcendency of a certain field”, Tohoku Math. J. (2) 6 (1954), 101–108. MR

[LS23] C. D. Lazda and A. N. Skorobogatov, “Reduction of Kummer surfaces modulo 2 in the non-supersingular case”,
Épijournal Géom. Algébrique 7 (2023), art. id. 10. MR

[Mil16] J. S. Milne, Étale cohomology, Princeton Math. Ser. 33, Princeton Univ. Press, 1980. MR

[MP12] D. Maulik and B. Poonen, “Néron–Severi groups under specialization”, Duke Math. J. 161:11 (2012), 2167–2206. MR

[NO21] J. Nicaise and J. C. Ottem, “A refinement of the motivic volume, and specialization of birational types”, pp. 291–322
in Rationality of varieties, edited by G. Farkas et al., Progr. Math. 342, Birkhäuser, Cham, 2021. MR

[Pey08] E. Peyre, “Unramified cohomology of degree 3 and Noether’s problem”, Invent. Math. 171:1 (2008), 191–225. MR

[Sal84] D. J. Saltman, “Noether’s problem over an algebraically closed field”, Invent. Math. 77:1 (1984), 71–84. MR

[Sch19] S. Schreieder, “On the rationality problem for quadric bundles”, Duke Math. J. 168:2 (2019), 187–223. MR

[Stacks] “The Stacks project”, electronic reference, 2005–, available at http://stacks.math.columbia.edu.

[Tot16] B. Totaro, “Hypersurfaces that are not stably rational”, J. Amer. Math. Soc. 29:3 (2016), 883–891. MR

[Voi15] C. Voisin, “Unirational threefolds with no universal codimension 2 cycle”, Invent. Math. 201:1 (2015), 207–237. MR

Communicated by Jean-Louis Colliot-Thélène
Received 2023-04-02 Revised 2024-11-20 Accepted 2024-12-23

eambrosi@unistra.fr IRMA (Université de Strasbourg), 67084 Strasbourg, France

domenico.valloni@epfl.ch EPFL, 1015 Lausanne, Switzerland

mathematical sciences publishers msp

https://www.mathnet.ru/rus/sm1953
https://doi.org/10.1070/SM1986v054n02ABEH002986
http://msp.org/idx/mr/788089
https://doi.org/10.1007/s10240-019-00102-z
http://msp.org/idx/mr/3905467
https://www.mathnet.ru/rus/im1306
https://doi.org/10.1070/IM1988v030n03ABEH001024
http://msp.org/idx/mr/903621
https://doi.org/10.2140/ant.2011.5.693
http://msp.org/idx/mr/2923726
https://doi.org/10.24033/asens.2285
http://msp.org/idx/mr/3481353
https://doi.org/10.1007/978-3-030-74248-5
http://msp.org/idx/mr/4304038
https://doi.org/10.1007/BF01181420
http://msp.org/idx/mr/121365
https://doi.org/10.4310/ACTA.2018.v220.n2.a4
http://msp.org/idx/mr/3849287
https://doi.org/10.24033/asens.1374
http://msp.org/idx/mr/565469
http://msp.org/idx/mr/578870
https://doi.org/10.2307/2152888
http://msp.org/idx/mr/1273416
https://doi.org/10.2748/tmj/1178245169
http://msp.org/idx/mr/70665
https://doi.org/10.46298/epiga.2023.volume7.9657
http://msp.org/idx/mr/4582883
https://www.jstor.org/stable/j.ctt1bpmbk1
http://msp.org/idx/mr/559531
https://doi.org/10.1215/00127094-1699490
http://msp.org/idx/mr/2957700
https://doi.org/10.1007/978-3-030-75421-1_11
http://msp.org/idx/mr/4383702
https://doi.org/10.1007/s00222-007-0080-z
http://msp.org/idx/mr/2358059
https://doi.org/10.1007/BF01389135
http://msp.org/idx/mr/751131
https://doi.org/10.1215/00127094-2018-0041
http://msp.org/idx/mr/3909896
http://stacks.math.columbia.edu
https://doi.org/10.1090/jams/840
http://msp.org/idx/mr/3486175
https://doi.org/10.1007/s00222-014-0551-y
http://msp.org/idx/mr/3359052
mailto:eambrosi@unistra.fr
mailto:domenico.valloni@epfl.ch
http://msp.org




msp
ALGEBRA AND NUMBER THEORY 19:12 (2025)

https://doi.org/10.2140/ant.2025.19.2369

On the Grothendieck ring of a quasireductive
Lie superalgebra

Maria Gorelik, Vera Serganova and Alexander Sherman

Given a Lie superalgebra g and a maximal quasitoral subalgebra h, we consider properties of restrictions
of g-modules to h. This is a natural generalization of the study of characters in the case when h is an
even maximal torus. We study the case of g = qn with h a Cartan subalgebra, and prove several special
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1. Introduction 2369
2. Preliminaries: maximal quasitoral subalgebras and Clifford algebras 2372
3. Representation theory of quasitoral Lie superalgebras 2375
4. The irreducible modules L(λ) of g 2381
5. Grothendieck rings and (super)character morphisms 2382
6. h-supercharacters of some highest weight g-modules 2388
7. On K−(g) in the case when g is quasireductive 2389
8. The DS-functor and the reduced Grothendieck group 2391
9. The reduced Grothendieck ring for F(qn) 2395
Acknowledgements 2406
References 2406

1. Introduction

1.1. Maximal toral subalgebras and restriction. Let g be a Lie superalgebra, not necessarily finite-
dimensional. Assume that g contains a subalgebra h such that

(1) t := h0 has diagonalizable adjoint action on g with finite-dimensional weight spaces; and,

(2) h = gt, where gt denotes the centralizer of t in g;

We will call subalgebras with the above properties maximal quasitoral. Maximal quasitoral subalgebras
play an analogous role to maximal toral subalgebras of Lie algebras. In the purely even setting, the
restriction of a representation to a maximal toral subalgebra is exactly the data of its character. The
character of a representation is a powerful invariant, and provides (nice) formulas for characters of
irreducible representations is a central problem in representation theory.

For many Lie superalgebras of interest, maximal quasitoral subalgebras are even, i.e., h = t (e.g., for
glm|n, ospm|2n, pn, . . . . See [16] for the definition of these Lie superalgebras). In this case the restriction
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of an irreducible highest weight representation to t completely determines it. But when h ̸= t, as in
the case of the queer Lie superalgebra qn , this longer holds, as for certain simple modules L one has
Resgt L ∼= Resgt 5L and so the restriction map of Grothendieck groups K (g)→ K (t) is not injective.

On the other hand the restriction to h is fine enough to make such distinctions. Choose a Borel
subalgebra b of g containing h (from a triangular decomposition as explained in Section 2.1), and let C be
the full subcategory of g-modules such that each module in C is of finite length, has a diagonal action
of t, and is locally finite over b (these conditions can be slightly weakened; see Corollary 5.2). Write
Ms(h) for the category of h-modules with diagonal t action and finite-dimensional weight spaces. Then
the restriction functor Resgh induces an injective map K (C)→ K (Ms(h)), see Corollary 5.2.

It is therefore of interest to understand the h-character of irreducible g-modules. A difficulty that arises
is that the Grothendieck ring of finite-dimensional h-modules does not have a simple manifestation as in the
case of t-modules. Nevertheless a description can be given, and its structure is interesting in its own right.

1.2. K−(g) and K+(g). Let K (g) denote the Grothendieck group of finite-dimensional g-modules, and
write Mgr for the natural image of a finite-dimensional module M in K (g). This ring admits two natural
quotients: K+(g), which is obtained by identifying Mgr = (5M)gr, and K−(g), obtained by identifying
Mgr = −(5M)gr. There is a natural embedding of K (g) into K+(g)× K−(g), and this embedding
becomes an isomorphism over Q; thus a proper understanding of K+(g) and K−(g) suffices for the
understanding of K (g) (see Section 5 for a precise relationship between K (g) and K+(g)× K−(g)).

The ring K+(g) behaves like a character ring, and in fact embeds into K+(t) under the restriction
map; thus the information it carries is less interesting from our standpoint. On the other hand, K−(g),
the reduced Grothendieck ring, has a nontrivial, even exotic structure as a ring, and will be our main
object of study. The restriction map K−(g)→ K−(t) is sometimes very far from being an embedding;
for instance if g = qn the image of any nontrivial finite-dimensional irreducible module is zero by [3].
Thus is it necessary to study instead K−(g)→ K−(h).

A further advantage of using K−(g) is that the Duflo–Serganova functor, while not being exact, always
induces a morphism dsx : K−(g)→ K−(gx) for appropriate x ∈ g1. It has been known for some time
(see [13]) that for Kac–Moody superalgebras, the map induced by dsx on supercharacters is given by
restriction to tx , the Cartan subalgebra of gx . This is a reflection of a more general property of dsx ,
discussed in Section 8, which shows that dsx can always be thought of as a restriction map to gx . Therefore
in our setting the induced map dsx : K−(h)→ K−(hx) is also given by restriction of modules from h to
hx , where hx is a maximal quasitoral subalgebra of gx .

1.3. Results for g = qn. Let g = qn; for two weights λ,µ, write λ∼ µ if L(λ) and L(µ) lie in the same
block of F in(qn). Then for a g-module M , write schh M for the natural image of M in K−(F in h).

Theorem 1.1. schh L(λ)=

∑
µ∼λ

schh L(λ)µ (1)
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Equivalently, if µ ̸∼ λ then [L(λ) : C(µ)] = [L(λ) :5C(µ)], where C(µ) is an irreducible h-module
of weight µ.

See Theorem 9.2 for a proof of this statement, and a stronger result. In Section 6 we present a version
of the above result which holds for a more general Lie superalgebra, but only for particular blocks, those
which are the closest to being typical.

1.3.1. Supercharacter isomorphism. Let C denote the subcategory of h-modules with weights which
appear in some finite-dimensional representation of gln = (qn)0. The Weyl group W = Sn has a natural
action on K−(C) in this case, and we may consider the invariant subalgebra. We prove that K−(C)W has
a basis given by {aλ}λ∈P+(g), where P+(g) are the dominant weights for g = qn , and

aλ =

∑
w∈W/StabW (λ)

[C(λ)w],

where (−)w denotes the twisting functor.
It is clear that the supercharacter map induces an embedding schh : K−(g)→ K−(C)W ; such a result

holds for any quasireductive Lie superalgebra (see Section 7). For g = qn we have (see Corollary 9.5):

Theorem 1.2. The map schh : K−(g)Q → K−(C)WQ is an isomorphism of rings.

Here the subscript Q means that we extend scalars to Q. To obtain an isomorphism we only need to
invert 2, in fact. This is a consequence of the work in Section 9.

Remark 1.1. The ring K−(g) has a natural basis given by irreducible modules, and an important question
is to understand the relation between this basis and the basis {aλ}.

1.3.2. Realization of K−(F(qn)int). Using the above isomorphism, we are able to provide another realiza-
tion of K−(F(g)int), where F(g)int denotes the category of finite-dimensional qn-modules with integral
weights. To simplify the explanation for the introduction, we will explain this realization over C.

Let V := CZ\{0} denote the complex vector space with basis {vi }i∈Z\{0}. Then write

A =
∧

V :=

⊕
n∈N

∧nV .

This is a superalgebra, and we write A0 =
⊕

n∈N

∧2nV for the even part. Let Jk ⊆ A be the ideal generated
by

∧k+1V . For the following, see Theorem 9.3.

Theorem 1.3. We have an explicit isomorphism of algebras

K−(F(qn)int)⊗Z C → (A/Jn)0.

where, up to a scalar, aλ is mapped to vλ := v j1∧ · · · ∧ v jk , where j1, . . . , jk are the nonzero coordinates
of λ.
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1.3.3. Relation to the Duflo–Serganova functor. For qn , the maps dsx depend only on the rank of x ,
which is a nonnegative half-integer s ∈

1
2 N. Thus we write dsx = dss , where s = rank(x), and this gives

a map dss : K−(F(qn))→ K−(F(qn−2s)). We have the following simple formula for dss in terms of the
basis {aλ}, using the previously noted fact that dsx is given by restriction:

dss(aµ)=

{
0 if zeroµ < 2s
aµ′ if zeroµ≥ 2s

where zeroµ is the number of zero coordinates that µ has, and µ′
∈ P+(gx) is such that µ′ and µ have the

same nonzero coordinates. In [11], we compute dss on the basis {[L(λ)]}λ∈P+(g) of irreducible modules;
remarkably it admits a similarly simple expression:

dss([L(λ)])=

{
0 if zero λ < 2s,
[L(λ′)] if zero λ≥ 2s.

1.4. List of notation.

symbol §

M(h) 3.1
C(λ) 3.2
Kλ 3.1.1
Fλ 3.1.1

symbol §

L(λ) 4.1
K (C) 5.1
K+(C) 5.1
K−(C) 5.1

symbol §

Mgr, Mgr,± 5.1
I0, I1 3.2
tG 5.6
schh 5.2

symbol §

4 9.2
Core 9.2
F(g) 7.1
P+(g) 7

symbol §

P(g) 7
P(g)′ 7.1
smult 9.5
dss 9.5

2. Preliminaries: maximal quasitoral subalgebras and Clifford algebras

We work over the field over of complex numbers, C, and denote by N the set of nonnegative integers. For
a super vector space V we write V = V0 ⊕ V1 for its parity decomposition. Then 5V will denote the
parity-shifted super vector space obtained from V . Let δV := δ denote the endomorphism of V given by
δ(v)= (−1)p(v)v.

We work with Lie superalgebras which are not necessarily finite-dimensional. For a Lie superalgebra g

we denote by F in(g) the category of finite-dimensional g-modules.

2.1. Maximal (quasi)toral subalgebras.

2.1.1. Definition. Let g be Lie superalgebra. We say that a finite-dimensional subalgebra t ⊆ g0 is a
maximal toral subalgebra if it is commutative, acts diagonally on g under the adjoint representation, and
we have gt

0
= t. In this case we set h := gt, and we refer to h as a maximal quasitoral subalgebra of g.

Observe that h0 = t.
Denote by 1(g) :=1⊆ t∗ the nonzero eigenvalues of t in Ad g, and write Q = Z1. We will assume

throughout that
all eigenspaces gν (ν ∈1∪ {0}) are finite-dimensional. (*)

In particular we assume that h is finite-dimensional. We have

g = h⊕
⊕
α∈1

gα.
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2.1.2. Triangular decomposition. We choose a group homomorphism γ : Z1→ R such that γ (α) ̸= 0 for
all α ∈1. Such a homomorphism exists because h ∼= R as a Q-vector space. We introduce the triangular
decomposition 1(g)=1+(g)

∐
1−(g), with

1±(g) := {α ∈1(g) | ±γ (α) > 0},

and define a partial order on t∗ by

λ≥ ν if ν− λ ∈ N1−.

We set n±
:= ⊕α∈1±gα and call a subalgebra of the form b := h⊕ n+ a Borel subalgebra. We further

assume throughout that

U(n−)ν is finite-dimensional for all ν ∈ Q. (**)

Remark 2.1. Several notions of triangular decompositions for Lie superalgebras have appeared in the
literature. In [18] and [20] for example, a notion of positive roots arose from the choice of a generic
hyperplane in h∗. Our approach generalizes these approaches and admits a more flexible definition. One
can construct finite-dimensional Lie superalgebras for which our definition gives rise to more triangular
decompositions as compared to [18] and [20]; for example, consider g with g0 one-dimensional acting by
real, Q-linearly independent characters on g1.

On the other hand, for simple, finite-dimensional Lie superalgebras our notion of triangular decompo-
sition agrees with that of [20].

2.1.3. Examples.

– If g is a Kac–Moody superalgebra, then, by [21] any maximal toral subalgebra t satisfying (∗) is
Cartan subalgebra of g0; one has h = t.

– If g is a quasireductive Lie superalgebra (dim g<∞, g0 is reductive and g1 is a semisimple g-module),
then a maximal toral (resp. quasitoral) subalgebra t is a Cartan subalgebra of g0 (resp. g). In both
this example and the former, t and h are unique up to a conjugation by inner automorphism, see [21].

– If we fix an invariant form on a quasireductive Lie superalgebra g (which can be the zero form), we
can construct the affinization ĝ with t̂ = t+ CK + Cd and ĥ = h+ CK + Cd.

– The cases when t ̸= h include the queer Lie superalgebras and their affinizations.

2.2. Clifford algebras. For a vector space V with a symmetric (not necessarily nondegenerate) bilinear
form F , let Cℓ(V, F) denote the corresponding Clifford algebra. This is a superalgebra where the elements
of V are declared to be odd. Write K ⊆ V for the kernel of F , so that F induces a nondegenerate form
on V/K , which we also write as F . We have an isomorphism of superalgebras

Cℓ(V, F)∼= Cℓ(V/K , F)⊗
∧

•K .

The superalgebra Cℓ(V, F) is semisimple if and only if F is nondegenerate.
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2.2.1. Suppose F is nondegenerate, and write m for the dimension of V . We have

Cℓ(V, F)∼= Q(2n+1) if m = 2n + 1, Cℓ(V, F)∼= End(C2n−1
|2n−1

) if m = 2n.

Here Q(r) is the queer superalgebra, i.e., the associative subalgebra of End(Cr
|Cr ) consisting of the

matrices of the form
( A

B
B
A

)
.

It follows that Cℓ(V, F) is a simple superalgebra and admits a unique, parity invariant, irreducible
module when m is odd, while if m is even there are two irreducible modules that differ by parity.
Moreover, all (Z2-graded) Cℓ(V, F)-modules are completely reducible. For m ̸= 0, if E is an irreducible
representation of Cℓ(V, F) one has

dim E0 = dim E1 = 2⌊
m−1

2 ⌋.

2.2.2. For a nonnegative integer m, we write Cℓ(m) for the Clifford algebra Cℓ(Cm, F), where F is the
standard nondegenerate symmetric bilinear form on Cm . Clearly Cℓ(V, F)∼= Cℓ(m) if dim V = m and F
is nondegenerate.

2.2.3. Let A1, A2 be associative superalgebras and Vi be Ai -modules; we define the outer tensor product
V1 ⊠ V2 as the space V1 ⊗ V2 endowed by the A1 ⊗ A2-action

(a1, a2)(v1 ⊗ v2) := (−1)p(a2)p(v1)a1v1 ⊗ a2v2.

One has Cℓ(m)⊗Cℓ(n)∼= Cℓ(m +n); if V1 (resp., V2) are simple modules over Cℓ(m1) (resp., Cℓ(m2)),
then V1⊠V2 is a simple if either m1 or m2 is even, and if m1 and m2 are both odd then V1 ⊗V2 = L ⊕5L ,
where L is simple over Cℓ(n1 + m1).

2.3. Realization of the irreducible representation of Cℓ(2n). Consider C2n with standard basis e1, . . . , en ,
f1, . . . , fn , equipped with the symmetric nondegenerate form (−,−) satisfying:

(ei , f j )= δi j , (ei , e j )= ( fi , f j )= 0.

Consider the polynomial superalgebra L = C[ξ1, . . . , ξn] with odd generators ξ1, . . . , ξn . Then we may
realize L as an irreducible representation of Cℓ(2n) via ei 7→ ξi and f j 7→ ∂ξ j , i.e., ei acts by multiplication
by ξi and f j acts by the derivation sending ξi 7→ δi j . In this way we have defined a surjective morphism
Cℓ(2n)→ End(L) (in fact it is an isomorphism). Every irreducible representation of Cℓ(2n) is isomorphic
to L or 5L .

2.3.1. Continuing with the setup from Section 2.3, if we choose W a maximal isotropic subspace of
C2n , then

∧
•W acts on L , and under this action L is isomorphic to the exterior algebra of W under left

multiplication. Thus given two arbitrary irreducible representations of Cℓ(V ), they are isomorphic if and
only if the parities of the one-dimensional W -invariant subspaces of each are the same.
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2.4. The case Cℓ(2n + 1). Next we look at C2n+1 with nondegenerate symmetric form (−,−) and
basis e1, . . . , en , f1, . . . , fn , g. Here the inner product relations for the ei ’s and fi ’s are the same as in
Section 2.3, along with

(g, ei )= (g, f j )= 0, (g, g)= 2.

Consider the exterior algebra L = C[ξ1, . . . , ξn+1]. Then we may realize L as the unique irreducible
representation of Cℓ(2n + 1) by ei 7→ ξi , f j 7→ ∂ξ j , and g 7→ ξn+1 + ∂ξn+1 .

2.5. The operator T. Choose an orthonormal basis H1, . . . , Hm of Cm , and let T = H1 · · · Hm ∈ Cℓ(m).
This operator is an eigenvector of O(m) with weight given by the determinant. Thus it is well-defined up
to an orientation on V .

Let V be an irreducible representation of Cℓ(m). If m is odd, then 5V ∼= V , and EndC(V ) =

Cℓ(m) ⊕ Cℓ(m)δV (here we consider all endomorphisms), where δV (v) = (−1)p(v)v. In this case,
T = φδV , where φ is an odd Cℓ(m)-equivariant automorphism of V . If m is even, then V ̸∼=5(V ) and
Cℓ(m)= End(V ). In this case, T = (−1)nδV ∈ End(V ), where dim V = 2n.

3. Representation theory of quasitoral Lie superalgebras

3.1. h-modules. Take h as in Section 2.1: h is a finite-dimensional Lie superalgebra with

[t, h] = 0,

where t= h0. We call Lie superalgebras of this form quasitoral. For a semisimple t-module N , and ν ∈ t∗,
write Nν for the ν-weight space in N .

Denote by M(h) the full subcategory of h-modules N with diagonal action of t and finite-dimensional
weight spaces Nν . We set F(h) to be the full subcategory of M(h) consisting of those modules which
are finite-dimensional. The simple modules in M(h) and F(h) coincide. In this section we study the
questions of restriction, tensor product, and extensions of simple modules in M(h).

We denote by σ the antiautomorphism of U(h) induced by the antipode −Id |h (recall that antiautomor-
phism means σ(ab)= (−1)p(a)p(b)σ(b)σ (a)). This map induces the standard duality ∗ on F(h).

3.1.1. View U(h) as a Clifford algebra over the polynomial algebra S(t); the corresponding symmetric
bilinear form is given on h1 by the formula F(H, H ′)= [H, H ′

] (see Appendix in [9] for details).
For each λ ∈ t∗, the evaluation of F at λ gives a symmetric form Fλ : (H, H ′) 7→ λ([H, H ′

]). We
denote by rk Fλ the rank of this form. For each λ ∈ t∗ we consider the Clifford algebra

Cℓ(λ) := Cℓ(h1, Fλ)= U(h)/U(h)I (λ),

where I (λ) stands for the kernel of the algebra homomorphism S(t)→ C induced by λ. We will write
Kλ ⊆ h1 for the kernel of Fλ. Then we have an isomorphism of superalgebras

Cℓ(λ)∼= Cℓ(rank Fλ)⊗
∧

Kλ. (2)



2376 Maria Gorelik, Vera Serganova and Alexander Sherman

Denote by φλ : U(h) → Cℓ(λ) the canonical epimorphism, and pλ : Cℓ(λ) → Cℓ(λ)/(Kλ) for the
projection. Let ϕ : h→ h be an automorphism of Lie superalgebras, and write also ϕ for the corresponding
automorphism of U(h). Then for every λ, ϕ induces isomorphisms of algebras

ϕλ : Cℓ(λ)→ Cℓ(ϕ−1(λ)), ϕλ : Cℓ(λ)/Kλ → Cℓ(ϕ−1(λ))/(Kϕ−1(λ)).

We have the commutative diagram

U(h)

φλ

��

ϕ
// U(h)

φ
ϕ−1(λ)
��

Cℓ(λ)
ϕλ

//

pλ
��

Cℓ(ϕ−1(λ))

p
ϕ−1(λ)
��

Cℓ(λ)/(Kλ)
ϕλ

// Cℓ(ϕ−1(λ))/(Kϕ−1(λ))

(3)

For the anti-involution σ we also have the same diagram as above, where the induced maps σλ, σλ are
anti-algebra isomorphisms.

Lemma 3.1. (1) A Cℓ(λ)-module N is semisimple if and only if Annh1
N = Kλ.

(2) If N is an indecomposable Cℓ(λ)-module of length 2, then [N : C(λ)] = [N :5(C(λ))].

Proof. These follow from formula (2). □

3.1.2. Examples.

– If h is quasitoral such that h1 is commutative, then F is the zero form.

– For g = qn and h a maximal quasitoral subalgebra, one has dim h = (n|n) and h ∼= q1 × · · · × q1.
Thus in this case the form F is diagonal, and rk Fλ is the number of nonzero entries of λ under the
decomposition t ∼= (q1)0 × · · · × (q1)0.

– For g = sqn and h a maximal quasitoral subalgebra, one has dim h = (n|n − 1). In this case F is not
diagonal.

3.2. Irreducible h-modules. The irreducible h-modules all arise from irreducible modules over Cℓ(λ)
for some λ ∈ t∗. We denote by C(λ) a simple Cℓ(λ)-module and also view it as an h-module. For λ= 0
we fix the grading by taking C0 = C; for all other values of λ we fix a grading in an arbitrary way until
further notice. By the above,

dim C(λ)= 2nλ, where nλ :=

⌊
rank Fλ+1

2

⌋
,

{u ∈ h1 | uC(λ)= 0} = Kλ.
(4)

Set

Ii = {λ ∈ t∗ : rank Fλ ≡ i mod 2} for i = 0, 1. (5)
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Then C(λ) ∼= 5C(λ) if and only if λ ∈ I1; we will often use the notation 5(rank Fλ)/2C(λ), where
5(rank Fλ)/2C(λ) ∼= C(λ) ∼= 5C(λ) whenever rank Fλ is odd, and if rank Fλ is even it has the obvious
meaning.

3.3. Blocks of M(h) and F(h). The blocks of both M(h) and F(h) are parametrized up to parity shift
by λ ∈ t∗, as follows: If corank Fλ > 0, then there is one block of both M(h) and F(h) on which t acts
by the character λ; in both cases this block is equivalent to the category of finite-dimensional modules
over

∧
Kλ. If corank Fλ = 0 then for both categories there is one (resp., two) block(s) of h on which t

acts by λ when λ ∈ I1 (resp., λ ∈ I0), and the block(s) is (are) semisimple.

3.3.1. Remark. One can think of corank Fλ as the “atypicality” of its corresponding block. In particular
corank Fλ = 0 if and only if the block is semisimple and thus its objects are projective in M(h), and in
general the block corresponding to λ is equivalent to modules over a Grassmann algebra on corank(Fλ)-
many variables.

3.4. The operator Th. Let H1, . . . , Hn be a basis of h1, and define

Th = {H1, {· · · {Hn, 1} · · · } ∈ U(h)

where {x, y} = xy + (−1)x y yx denotes the super anticommutator in U(h). It is known that up to a scalar,
Th does not depend on the choice of a basis; see [8]. This operator anticommutes with h1, so the image
of a submodule under Th remains a submodule.

3.4.1. Action of Th on simples. The action of Th on simple h-modules is deduced from Section 2.5, and
is as follows. If corank Fλ > 0, then Th acts by 0. If corank Fλ = 0, then Th acts by an automorphism,
although not h-equivariantly. If n is odd, then Th is a nonzero multiple of δφ, where φ is an h-equivariant
odd automorphism. If n is even, Th is a nonzero multiple of δ.

In particular when n is even, T acts on C(λ) by an operator of the form

a(λ) Id(C(λ))0 ⊕(−a(λ)) Id(C(λ))1,

for a scalar a(λ). Thus T distinguishes between C(λ) and its parity shift for projective irreducible
modules.

3.4.2. Action of Th on all of M(h). Let corank Fλ > 0. Then the injective hull of C(λ) is given by the
Cℓ(λ)-module I (C(λ))= C(λ)⊗

∧
•Kλ. We claim that

(1) Th annihilates the radical of I (C(λ));

(2) Im Th = C(λ)= socle I (C(λ)).

In other words, Th acts by taking the head of this module to its socle. It follows that we understand
completely the action of Th on every module in M(h).

To prove our claim, choose a basis f1, . . . , fr of Kλ and extend it to a basis e1, . . . , es, f1, . . . , fr of
h1 so that Fλ(ei , e j )= δi j . Then the image of Th in Cℓ(h), up to scalar, is given by e1 · · · es f1 · · · fr . By
considering the action of this operator, the statement is clear.
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3.4.3. Remark. It is possible to uniformly choose the parity of irreducible h-modules as follows. We
consider a linear order on C given by c2 > c1 if the real part of c2 − c1 is positive or the real part is zero
and the imaginary part is positive. We fix any function

t : t∗ → {c ∈ C | c > 0}.

Retain the notation from Section 3.1.1. For each λ we choose Tλ ∈ U(h) in such a way that

T λ = pλ ◦φλ(Tλ) ∈ Cℓ(λ)/Kλ

is an anticentral element satisfying T 2
λ = t (λ)2 (the element T λ is unique up to sign).

If λ ∈ I0, then Tλ is even and it acts on C(λ) by a nonzero superconstant ±t (λ) and we fix a grading
on C(λ) by taking

(C(λ))0 := {v ∈ C(λ) | Tλv = t (λ)v}.

3.4.4. Dualities in F(h). Fix λ ∈ t∗. The category F(h) has the duality ∗ induced by σ , and another
contragredient involution (−)# : F(h)→ F(h) induced by the antiautomorphism σ ′(a) = a for a ∈ h0

and σ ′(a)=
√

−1a for a ∈ h1. Note that σ ′ induces an anti-involution on Cℓ(λ).
The element T λ can be written as the product H ′

1 . . . H ′

k , where H ′

1, . . . , H ′

k is a lift of a basis of
Cℓ(λ)/Kλ satisfying [H ′

i , H ′

j ] = 0 for i ̸= j . Therefore T λ = (−1)(rank Fλ)/2σ ′(T λ) for λ ∈ I0; this gives
the following useful formula

C(λ)# ∼=5(rank Fλ)/2C(λ); (6)

which was first established in [7], Lemma 7.
Since σλ : Cℓ(λ)/Kλ → Cℓ(−λ)/K−λ is an anti-isomorphism we have σλ(T λ)

t (λ)
= (−1)i T −λ

t (−λ)
for some

i ∈ {0, 1}, and correspondingly C(λ)∗ ∼=5i C(−λ).

3.5. Restriction to quasitoral subalgebra. Given a quasitoral subalgebra h′
⊆ h, we have t′ = h′

0
⊆ h0 = t.

Thus we have a natural restriction t∗ → (t′)∗, and therefore we consider weights λ∈ t∗ as defining weights
in (t′)∗ naturally. We write F ′

λ for the bilinear form induced on h′

1
by a given weight λ ∈ t∗, which is

exactly the restriction of Fλ to h′

1
.

Let Cℓ′(λ) be the subalgebra of Cℓ(λ) which is generated by h′

1
; clearly, Cℓ′(λ)= Cℓ(h′

1
, F ′

λ). Denote
by E ′(λ) a simple Cℓ′(λ)-module.

Proposition 3.1. Write V ′
= h′

1
and V = h1.

(i) C(λ) is simple over Cℓ′(λ) if and only if
⌊ rank Fλ+1

2

⌋
=

⌊ rank F ′

λ+1
2

⌋
.

(ii) C(λ) is semisimple over Cℓ′(λ) if and only if Ker F ′

λ = V ′
∩ Ker Fλ.

(iii) If rank Fλ ̸= rank F ′

λ, then [C(λ) : E ′

λ] = [C(λ) :5E ′

λ].

Proof. Case (i) follows from (4) and case (ii) follows from part (ii) of Lemma 3.1.
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For (iii) assume that rank Fλ ̸= rank F ′

λ. Substituting h by h/Ker Fλ we may assume that Ker Fλ =

0 ̸= Ker F ′

λ. Then h1 admits a basis H ′

1, . . . , H ′
m such that V ′ is spanned by H1, . . . , H ′

p and the matrix
of Fλ takes the form 

Idp−s 0 0 0
0 0 Ids 0
0 Ids 0 0
0 0 0 Idk


with k+s+ p = m, k, s ≥ 0 and k+s> 0 (since V ′

̸= V ). Note that Ker F ′

λ is spanned by Hp+1, . . . , H ′
p+s

and so E ′

λ is a simple Cℓ(p − s)-module. If k ̸= 0, then the action of H ′

k to C(λ) is an odd involutive
Cℓ′(λ)-homomorphism, so ResCℓ′(λ) C(λ) is 5-invariant. Consider the remaining case k = 0. Then
s ̸= 0 and Cℓ(λ) = Cℓ(p − s)⊗ Cℓ(2s). Using 2.2.3 we get C(λ) ∼= E ′

λ ⊠ E ′′, where E ′′ is a simple
Cℓ(2s)-module. By the above, dim E ′′

0
= dim E ′′

1
. Hence ResCℓ(p−s) C(λ) is 5-invariant, that is

[C(λ) : E ′

λ] = [C(λ) :5E ′

λ]

as required. This establishes (iii). □

3.6. Tensor product of irreducible h-modules. Let λ,µ ∈ t∗. We compute C(λ)⊗ C(µ). Observe that
C(λ)⊗ C(µ) is naturally a module over Cℓ(h1/Kλ ∩ Kµ, Fλ+µ) and Kλ ∩ Kµ ⊆ Kλ+µ. Set

Kλ,µ := Kλ+µ/(Kλ ∩ Kµ).

We have an isomorphism of superalgebras

Cℓ(h1/Kλ ∩ Kµ, Fλ+µ)∼= Cℓ(h1/Kλ+µ, Fλ+µ)⊗
∧

Kλ,µ.

Lemma 3.2. C(λ)⊗ C(µ) is projective over Cℓ(h1/(Kλ ∩ Kµ), Fλ+µ).

Proof. It suffices to show that
∧

Kλ,µ acts freely. Let v ∈ Kλ,µ. Then without loss of generality v /∈ Kλ,
so the subalgebra generated by v acts projectively on C(λ), and thus also on the tensor product. The
statement now follows from facts about the representation theory of exterior algebras (see [1]). □

3.6.1. Notice that the unique (up to parity) indecomposable projective module P over
∧

Kλ,µ is the
free module of rank 1. Thus we have shown that C(λ) ⊗ C(µ) is a sum of modules of the form
(5)C(λ+µ)⊗

∧
Kλ,µ.

If the rank of either Fλ or Fµ is odd, or the rank of Fλ+µ is odd, then the tensor product C(λ+µ)⊗ P
is parity invariant, so the explicit decomposition of C(λ)⊗ C(µ) is the appropriate number of copies of
C(λ+µ)⊗ P and its parity shift, according to a dimension count.

3.6.2. Thus let us suppose that rank Fλ, rank Fµ, and rank Fλ+µ are all even and we have rank Fν = 2nν
for ν = λ,µ, λ+µ.

By Section 2.3, we may realize C(λ) as k[ξ1, . . . , ξn] and C(µ) as k[η1, . . . , ηm], so that

C(λ)⊗ C(µ)= k[ξ1, . . . , ξn, η1, . . . , ηm].
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Now choose a maximal isotropic subspace U for Fλ+µ in h1. Then the parity decomposition of C(λ)⊗C(µ)
is described by the U -invariants on this space. Let u ∈ U . Then because u2 acts trivially on this module,
its action on the tensor product is given by (using Section 2.3)

u 7→

n∑
i=1

ai X i +

m∑
j=1

b j Y j ,

where ai , b j ∈ C, and X i ∈ {ξi , ∂ξi } and Y j ∈ {η j , ∂η j }. Further, because [U,U ] acts trivially, we can
choose X1, . . . , Xn and Y1, . . . , Ym uniformly so that every element of U acts in the way described for
u, with potentially different coefficients ai and b j . Now, suppose that X i = ξi for some i . Define an
odd, linear automorphism si of k[ξ1, . . . , ξn] as follows. For J = {i1, . . . , i|J |} ⊆ {1, . . . , n} \ {i}, write
ξJ = ξi1 · · · ξi| j | , and then set

si (ξJ )= ξiξJ , si (ξiξJ )= ξJ .

Then under this automorphism, multiplication by ξi becomes ∂ξi and vice versa, while for i ̸= j , ∂ξ j and
multiplication by ξ j become negative themselves. Using this automorphism, we may instead assume
that X i = ∂ξi , and in this way we may assume that X i = ∂ξi for all i , and Y j = ∂η j for all j . Thus
U acts by a subspace of constant coefficient vector fields on k[ξ1, . . . , ξn, η1, . . . , ηm]. Write Z ⊆

⟨ξ1, . . . , ξn, η1, . . . , ηm⟩ for the invariants of U in this subspace. Then

(C(λ)⊗ C(µ))U =
∧

• Z .

Thus we have shown the following, still with nλ :=
⌊rank Fλ+1

2

⌋
:

Theorem 3.1. If nλ+µ + dim Kλ,µ = nλ + nµ, then up to parity C(λ)⊗ C(µ) ∼= C(λ+ µ)⊗
∧

Kλ,µ.
Otherwise

C(λ)⊗ C(µ)= (C(λ+µ)⊗
∧

Kλ,µ)⊗ C2a
|2a
.

where a = (nλ + nµ − nλ+µ)/2 − dim Kλ,µ.

Corollary 3.1. The module C(λ)⊗ C(µ) is 5-invariant except for the case when Kλ, Kµ, Kλ+µ have
even codimensions in h1 and

h1 = Kλ + Kµ + Kλ+µ.

Proof. Note that 5(C(λ)) = C(λ)⊗5(C) ∼= C(λ) implies 5(C(λ)⊗ C(µ)) ∼= C(λ)⊗ C(µ). On the
other hand, if codim Ker Fλ+µ is odd, then any g1/Kλ+µ-module is 5-invariant. Therefore C(λ)⊗ C(µ)
is 5-invariant if at least one of the numbers codim Kλ, codim Kµ, codim Kλ+µ is odd. Now assume that
these numbers are even. Note that Kλ ∩ Kµ = Kλ+µ ∩ Kµ = Kλ ∩ Kλ+µ. and set

mλ,µ := dim(Kλ ∩ Kµ), rλ := dim Kλ/(Kλ ∩ Kµ), rµ := dim Kµ/(Kλ ∩ Kµ).

Assume that C(λ)⊗ C(µ) is not 5-invariant. By Theorem 3.1 in this case

nλ+µ + dim Kλ,µ = nλ + nµ.
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One has
nλ =

⌊
codim Kλ+1

2

⌋
=

codim Kλ

2
=

dim h1−rλ−mλ,µ

2

with similar formulae for nµ and nλ+µ =
n−dim Kλ,µ−mλ,µ

2
. This gives

dim Kλ,µ + mλ,µ + rλ + rµ = dim h1,

as required. □

4. The irreducible modules L(λ) of g

We now return to the setting of Section 2.1, so that g denotes a Lie superalgebra containing a finite-
dimensional quasitoral subalgebra h. Choose a triangular decomposition g= n−

⊕h⊕n as in Section 2.1.2.

4.1. Highest weight modules. We call a g-module N a module of highest weight λ if Nλ ̸= 0 and Nν ̸= 0
implies ν ≤ λ.

View C(λ) as a b-module with the zero action of n and set

M(λ) := Indgb C(λ);

the module M(λ) has a unique simple quotient, which we denote by L(λ). Each simple module of highest
weight λ is isomorphic to L(λ) if rank Fλ is odd (i.e., if λ ∈ I1); if rank Fλ is even (i.e., if λ ∈ I0), each
simple module of highest weight λ is isomorphic to either L(λ) or to 5L(λ), and these modules are not
isomorphic.

Note that t acts diagonally on M(λ) and all weight spaces M(λ)ν are finite-dimensional (since we
assume all weight spaces U(n−)ν are finite-dimensional); in particular, Resgh M(λ) lies in M(h).

4.2. Duality. In many cases the antiautomorphism (−)# introduced in Section 3.4.4 can be extended
to an antiautomorphism of g which satisfies (a#)# = (−1)p(a)a. Using this antiautomorphism we can
introduce a contragredient duality on g-modules N satisfying Resgh N ∈ M(h), in such a way that
Resgh N #

= (Resgh N )#. The map N −→∼ (N #)# is given by v 7→ (−1)p(v)v. By (6), L(λ)# ∼= L(λ)∼=5L(λ)
for λ ∈ I1 and

L(λ)# ∼=5(rank Fλ)/2L(λ) for λ ∈ I0. (7)

The antiautomorphism (−)# exists for Kac–Moody superalgebras. For gl(m|n) the antiautomorphism
(−)# can be given by the formula a#

:= at for a ∈ g0 and a#
:=

√
−1at for a ∈ g1 (where at stands

for the transposed matrix); this antiautomorphism on gl(n|n) induces (−)# for the queer superalgebras
qn, sqn, pqn, psqn .

4.2.1. Remark. The duality (−)# can be defined using a “naive antiautomorphism”, i.e., an invertible map
σ ′

: g → g satisfying σ ′([a, b])= [σ ′(b), σ ′(a)] via the formula g. f (v) := f (σ (g)v) for g ∈ g, f ∈ N ∗

and v ∈ N . This was done in [9] and [7].
Consider the map θ ′

: g→ g given by θ ′(g)= (
√

−1)m g, where m = 0 for g ∈ g0 and m = 1 for g ∈ g1.
If σ ′ is a “naive antiautomorphism”, then σ ′θ ′ is an antiautomorphism.
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5. Grothendieck rings and (super)character morphisms

Let C be a full subcategory of the category of g-modules. In this paper we always assume that all
modules in C are of finite length and that C is a dense subcategory, i.e., for every short exact sequence
0 → M ′

→ M → M ′′
→ 0 the module M lies in C if and only if M ′,M ′′ lie in C. In addition, we usually

assume that 5C = C.
If B is a super ring, we set BQ := B ⊗Z Q.

5.1. Grothendieck groups. We denote by K (C) the Grothendieck group of C, which is the free abelian
group generated by Ngr for each module N in C, modulo the relation that [N ] = [N ′

] + [N ′′
] whenever

0 → N ′
→ N → N ′′

→ 0 is a short exact sequence in C. When 5C = C, we define the structure of a
Z[ξ ]/(ξ 2

− 1)-module on K (C) by setting ξNgr :=5(N )gr for N ∈ C. Set K±(C) := K (C)/(ξ ∓ 1).
We call the group K−(C) := K (C)/(ξ + 1) the reduced Grothendieck group. We denote by Ngr,± the

image of Ngr in K±(C); later we will use [N ] for Ngr,−.
Note that K (C) is an abelian group, so K±(C) are also abelian groups.

5.1.1. We denote by Irr(C) the set of isomorphism classes of irreducible modules in C modulo 5 and
write

Irr(C)= Irr(C)0
∐

Irr(C)1,

where L ∈ Irr(C)0 if 5(L) ̸∼= L and L ∈ Irr(C)1 if 5(L)∼= L .
By our assumptions on C, K (C) a free Z-module with a basis

{Lgr, ξLgr | L ∈ Irr(C)0}
∐

{Lgr | L ∈ Irr(C)1}.

5.1.2. The group K+(C) is a free Z-module with a basis {Lgr,+|L ∈ Irr(C)}.

5.1.3. The reduced Grothendieck group. One has

K−(C)= K−(C)free ⊕ K−(C)2-tor, (8)

where K−(C)free is a free Z-module with a basis {Lgr,− | L ∈ Irr(C)0} and K−(C)2-tor is a free Z/2Z-module
with a basis {Lgr,− | L ∈ Irr(C)1}.

Proposition 5.1. (1) The natural map ψ : K (C)→ K−(C)× K+(C) is an embedding.

(2) The image of ψ is the subgroup consisting of the pairs( ∑
L∈Irr(C)

mL Lgr,+,
∑

L∈Irr(C)

nL Lgr,−

)
,

where mL , nL ∈ Z with mL ≡ nL mod 2 for all L and nL ∈ {0, 1} for L ∈ Irr(C)1.

(3) The map ψ induces an isomorphism

K (C)Q −→∼ K−(C)Q × K+(C)Q.
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Proof. For (i) take a ∈ K (C)(ξ − 1)∩ K (C)(ξ + 1). Then a = a+(ξ − 1)= a−(ξ + 1) for a± ∈ K (C).
Using ξ 2

= 1 we obtain

2a+(1 − ξ)= a+(ξ − 1)2 = a−(ξ
2
− 1)= 0.

Since K+(C) is a free Z-module this gives a+(ξ − 1)= 0, so a = 0. This establishes (i).
Assertion (ii) follows from the fact that the subgroup generated by the pairs ψ(Lgr)= (Lgr,+, Lgr,−)

and ψ(5Lgr)= (Lgr,+,−Lgr,−) for all L ∈ Irr(C) coincides with the subgroup described in (ii).
Finally, (iii) follows from (ii). □

5.1.4. Grothendieck rings. If C is closed under ⊗, then K (C),K±(C) are commutative rings with unity
and ψ in Proposition 5.1 is a ring homomorphism. In this case K−(C)2-tor is an ideal in K−(C).

If C is rigid, K (C) is equipped by an involution ∗ and K±(C) and K−(C)free,K−(C)2-tor are ∗-invariant.

5.2. The map chh,ξ . Let g′ be a subalgebra of g and let C′ be a category of g′ modules such that restriction
induces a functor Resgg′ : C → C′. For a suitable category C′ for g′-modules, this functor induces a map
resg′ : K (C)→ K (C′) which is very useful if K (C′) is simple enough. Below we consider this map for
the cases when g′

= t is a maximal toral subalgebra and for g′
= gt = h, a maximal quasitoral subalgebra.

As we will see below, resh is an embedding if C is “nice enough”; in this case rest induces an embedding
K+(C)→ K+(M(t)) and this map is given by the usual (nongraded) characters.

5.2.1. Let h be quasitoral, and let R̃(h) be the Z[ξ ]-module consisting of the sums∑
ν∈I0

(mν + kνξ)[C(ν)] +
∑
ν∈I1

mν[C(ν)], mν, kν ∈ Z,

with the ξ -action given by

ξ
( ∑
ν∈I0

(mν + kνξ)[C(ν)] +
∑
ν∈I1

mν[C(ν)]
)

=
∑
ν∈I0

(mνξ + kν)[C(ν)] +
∑
ν∈I1

mν[C(ν)]. (9)

For N ∈ M(h) we introduce

chh,ξ (N ) :=
∑
ν∈I0

(mν + kνξ)[C(ν)] +
∑
ν∈I1

mν[C(ν)] ∈ R̃(h)

where mν := [Nν : C(ν)] and kν := [Nν :5(C(ν))].
This defines a linear map chh,ξ : K (M(h))→ R̃(h), which we refer to as the graded h-character of N .

We denote by sch N the image of chh,ξ in R̃(h)/R̃(h)(ξ + 1). Then

schh(N ) :=
∑
ν∈I0

(mν − kν)[C(ν)] +
∑
ν∈I1

m′

ν[C(ν)]

where m′
ν = 0 if mν is even and m′

ν = 1 if mν is odd.

Lemma 5.1. The maps [N ] → chh,ξ N and [N ] → schh N define isomorphisms K (M(h))→ R̃(h) and
K−(M(h))→ R̃(h)/R̃(h)(ξ + 1), respectively. These maps are compatible with (−)#.
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5.2.2. Note: Because of this lemma, we will subsequently do away with the notation R̃(h) and instead
directly identify K (M(h)) (and K−(M(h))) with the corresponding spaces R̃(h) (and R̃(h)/R̃(h)(1+ξ))
as presented above.

Proof of Lemma 5.1. We show that chh,ξ is an isomorphism, with the result for schh following easily.
Clearly chh,ξ is surjective, so it suffices to prove injectivity. First we observe that for N in M(h), we
have the following equality in the Grothendieck ring K (M(h)):

[N ] =

[ ⊕
ν∈I0

(
C(ν)⊕mν ⊕5C(ν)⊕kν

)
⊕

⊕
ν∈I1

C(ν)mν

]
.

This simply follows from the fact that N has finite Loewy length, since this is true for the algebras Cℓ(λ).
It is not difficult to see that a basis of K (M(h)) is given by elements of the form[ ⊕

ν∈I0

(
C(ν)⊕mν ⊕5C(ν)⊕kν

)
⊕

⊕
ν∈I1

C(ν)mν

]
,

where mν, kν ∈ N. From this the isomorphism easily follows. Compatibility with (−)# is obvious. □

Corollary 5.1. (1) One has chh,ξ 5N = ξ chh,ξ N , schh5N = − schh N.

(2) For λ ∈ I1 one has schh L(λ)=
∑
µ∈I1

mµ[C(µ)].

(3) If g admits (−)# as in Section 4.2, then the coefficient of [C(ν)] in schh L(λ) is zero if rank Fλ, rank Fν
are even and rank Fν ̸≡ rank Fλ mod 4.

Proof. The assertions follow from (5) and (7). □

The next corollary is a direct generalization of [25], Proposition 4.2.

Corollary 5.2. Let C be a full subcategory of g-modules with the following properties: each module in C
is of finite length and is locally finite over b, and the restriction to h lies in M(h). Then the map Resgh
induces injective maps chh,ξ : K (C) ↪→ K (M(h)) and schh : K−(C) ↪→ K−(M(h)).

Proof. Let us check the injectivity of the first map chh,ξ : K (C)→ K (M(h)). Any simple module in C
is L(λ) or 5(L(λ)) for some λ ∈ t∗. Since every module in C has finite length, K (C) is a free Z-module
spanned by [L(λ)], ξ [L(λ)] for λ ∈ I0 and [L(λ)] for λ ∈ I1. Assume that

chh,ξ
( s∑

i=1
(mi + kiξ)[L(λi )]

)
= 0,

where ki = 0 for λi ∈ I1 and γ (λ1) is maximal among γ (λi ) for i = 1, . . . , s. Then for i = 2, . . . , s one
has L(λi )λ1 = 0, so the coefficient of [C(λ1)] in cht([L(λi )] is zero. Hence (m1 + k1ξ)[L(λ1)] = 0. This
gives m1 = k1 = 0 and implies the injectivity of chh,ξ . The injectivity of schh easily follows. □
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5.3. Example. The category of finite-dimensional g-modules F in(g) is a rigid tensor category with the
duality N 7→ N ∗ given by the antiautomorphism −Idg. Note that the Grothendieck ring K (F in(g)) is a
commutative ring with a basis {[L]}, where L runs through isomorphism classes of finite-dimensional
simple modules. Corollary 5.2 gives an embedding chh,ξ : K (F in(g)) ↪→ K (F in(h))) ([M] 7→ chh,ξ M)
which is a ring homomorphism. By abuse of notation we will also denote the image of this homomorphism
by K (F in(g)).

The duality induces an involution on K (F in(g)), which we also denote by ∗. One has ξ∗
= ξ . The

homomorphism chh,ξ : K (F in(g)) ↪→ K (F in(h)) is compatible with ∗, so K (F in(g)) is a ∗-stable
subring of K (F in(h)).

5.3.1. Remark. Let g be a Kac–Moody superalgebra (so t = h) and let 3int ⊂ h∗ be a lattice containing
1(g) such that the parity p :1→ Z2 = {0, 1} can be extended to p :3int → Z2. Assume, in addition,
that for the category C, each N ∈ C has Nν = 0 if ν ̸∈3int.

Then C = C+ ⊕5(C+), where N ∈ C lies in C+ if and only if Nν ⊂ Np(ν). We have that

K (C)= K (C+)× Z[ξ ]/(ξ 2
− 1).

and thus one can recover K (C) from K (C+); however we note that C+ is not 5-invariant.
Further, we have in this case that K−(C)∼= K+(C)∼= K (C+). If C is a tensor category, then C+ is also

a tensor category (but 5(C+) is not). In [25], Sergeev and Veselov described the ring K (C+) for the
finite-dimensional Kac–Moody superalgebras.

5.4. The ring K (h). Let h be quasitoral. We write K (h) := K (F in(h)). The map [N ] 7→ chh,ξ N
introduced in Section 5.2 gives an isomorphism of K (h) and the free Z-module spanned by [C(ν)],
ξ [C(ν)] for i ∈ I0 and [C(ν)] for i ∈ I1. We view K (h) as a commutative algebra endowed with the
involutions (−)∗ and (−)#. One has C(λ) ∈ Irr(C)i if and only if λ ∈ Ii .

One has [E0] = 1, [5(E0)] = ξ and

[C(λ)]∗ ∈ {[C(−λ)], ξ [C(−λ)]}, [C(λ)]#
= ξ (rank Fλ)/2[C(λ)], for λ ∈ I0

ξ [C(λ)] = [C(λ)], [C(λ)]∗ = [C(−λ)], [C(λ)]#
= [C(λ)], for λ ∈ I1.

(10)

5.4.1. The multiplication in K+(h) is given by

C(λ)gr,+C(ν)gr,+ =
dim C(λ) dim C(ν)

dim C(λ+ ν)
C(λ+ ν)gr,+.

Let Z[eν, ν ∈ t∗] be the group ring of t∗. For N ∈ M(h) we set

cht N :=

∑
ν∈t∗

dim Nνeν .

The map N 7→ cht N induces an embedding K+(h) ↪→ Z[eν, ν ∈ t∗]. The image is the subring of elements∑
ν mνeν where mν is divisible by dim C(ν), and we have an isomorphism K+(h)Q −→∼ Q[eν, ν ∈ t∗].
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5.5. Spoiled superalgebras. We call a Z-superalgebra A = A0 ⊕ A1 spoiled if 2A1 = A2
1
= 0. Given a

superalgebra B, we make it into a spoiled superalgebra Bspoil by setting, as a ring,

Bspoil
=

(
B ⊗Z Z[ε]/(ε2, 2ε)

)
0 .

Here ε is an element of degree 1. The Z2-grading on Bspoil is declared to be Bspoil
0

= B0 and Bspoil
1

= B1ε.
We observe that

Bspoil
Q

:= (B0)Q.

5.5.1. The algebra K−(h). From now on we will write [M] in place of Mgr,−. Using Corollary 3.1 we
obtain that in K−(h) we have the following multiplication law:

[C(ν)][C(λ)] =

{
±[C(λ+ ν)] if rank Fλ + rank Fν = rank Fλ+νand rank Fλ · rank Fν ≡ 0 mod 2,
0 otherwise.

As a result, K−(h) is Z-graded algebra

K−(h)=

∞⊕
i=0

K−(h)i (11)

where K−(h)i is spanned by [C(ν)] with rank Fν = i . We consider the corresponding Z2-grading

K−(h)0 :=

∞⊕
i=0

K−(h)2i , K−(h)1 :=

∞⊕
i=0

K−(h)2i+1.

One has K−(h)1 · K−(h)1 = 0 and 2K−(h)1 = 0, so that K−(h) is a spoiled algebra. The following
corollary is clear.

Corollary 5.3. (1) The algebra K−(h) is a spoiled superalgebra with

K−(h)0 =

∞⊕
i=0

K−(h)2i = K−(h)free, K−(h)1 =

∞⊕
i=0

K−(h)2i+1 = K−(h)2-tor.

(2) The algebra K (h) is isomorphic to a subalgebra of Z[eν, ν ∈ t∗] × K−(h) consisting of( ∑
ν∈t∗

m+

ν dim C(ν)eν,
∑
ν∈I0

m−

ν [C(ν)] + ε
∑
ν∈I1

m−

ν [C(ν)]
)

where m±
ν ∈ Z are equal to zero except for finitely many values of ν, m+

ν ≡ m−
ν modulo 2 and

m−
ν ∈ {0, 1} for ν ∈ I1.

(3) The algebra K (h)Q is isomorphic to Q[eν, ν ∈ t∗] × K−(h)Q.

5.5.2. For the rest of this section we set K (g) := K (F in(g)), where g is as in Section 4. Let ψ±(g) :

K (g) → K±(g) be the canonical epimorphisms. By Proposition 5.1, ψ+ × ψ− gives an embedding
K (g) ↪→ K+(g)× K−(g).

We will use the following construction: for any subsets A± ⊂ K±(h) we introduce

A+ ×
K (h)

A− := {a ∈ K (h) | ψ±(a) ∈ A±}.

Note that A+ ×
K (h)

A− is a subring of K (h) if A± are rings.
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Lemma 5.2. Let A be a Z[ξ ]-submodule of K (h) with the following property: if a ∈ K (h) and 2a ∈ A,
then a ∈ A. Then

A = ψ+(A) ×
K (h)

ψ−(A).

Proof. Take a ∈ K (h) such that ψ±(a)∈ψ±(A). Then A contains a −c(1−ξ) for some c ∈ K (h). Since
A is a Z[ξ ]-submodule, A contains (1 + ξ)(a − c(1 − ξ))= (1 + ξ)a. Similarly, A contains (1 − ξ)a, so
2a ∈ A. Then the assumption gives a ∈ A as required. □

Corollary 5.4. K (g)= K+(g) ×
K (h)

K−(g).

Proof. Recall by Corollary 5.2 that K (g) is a Z[ξ ]-subring of K (h). Take a ∈ K (h) with 2a ∈ K (g).
Write

2a =

∑
λ∈P+(g)

mλ chh,ξ L(λ)=

∑
ν

2m′

ν[C(ν)]

where mλ,m′
ν ∈ Z[ξ ], and P+(g) is the set of dominant weights of g. Let λ be maximal such that mλ ̸= 0.

Then mλ = 2m′

λ, so we may subtract 2L(λ)gr, and conclude by induction. □

5.6. Equivariant setting. Suppose that G is a finite group which acts on a quasitoral superalgebra h by
automorphisms. Our main example of this setup is when we consider quasireductive Lie superalgebras in
Section 7.1, and G is the Weyl group.

The group G then acts naturally on K (h) by twisting, i.e., g · Vgr = V g
gr for an h-module V . This

descends to a natural action of G on K−(h). Suppose that ν ∈ t∗ and g ∈ G such that gν = ν. Then we
have either g · C(ν)gr = C(ν)gr or g · C(ν)gr = ξC(ν)gr. It follows that on the reduced Grothendieck ring
we have g · [C(ν)] = ±[C(ν)]. Thus StabG[C(ν)] ⊆ StabG ν. Define

t∗G = {ν ∈ t∗ : StabG[C(ν)] = StabG ν}.

We observe that t∗G is a nonempty, G-stable cone in t∗. It need not be open or closed, and it may consist
only of 0. It is clear that I1 ⊆ t∗G .

Let ν ∈ t∗. We introduce the grading on C(ν) in the way described in Section 3.4.3. Since T ν is
proportional to a product of a basis elements in h1/Kλ, one has

g(T ν)= det(g|h1/Kν
)T ν for each g ∈ StabW ν. (12)

Since g is acting by an orthogonal transformation on h1/Kν we have det(g|h1/Kν
)= ±1. Therefore for

ν ∈ I0 and g ∈ StabG ν we have

g[C(ν)] = det(g|h1/Kν
)[C(ν)].

Corollary 5.5. (1) We have t∗G ∩ I0 = {ν ∈ I0 : det(g|h1/Kν
)= 1 for all g ∈ StabG ν}.

(2) For ν ∈ t∗G , the element

aν :=

∑
g∈G/StabG ν

g[C(ν)]
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is nonzero and well-defined.

(3) The algebra K−(h)
G is naturally a spoiled superalgebra; the even part has a Z-basis given by aν

for a choice of coset representatives ν ∈ t∗G ∩ I0/G. The odd part has a Z2-basis given by aν for a
choice of coset representatives ν ∈ I1/G.

6. h-supercharacters of some highest weight g-modules

We continue to write [N ] for the image a module N in the corresponding reduced Grothendieck group.
Fix a triangular decomposition g= n−

⊕h⊕n+ coming from γ : t∗ → R as in Section 4, and consider
the corresponding category O with respect to b= h⊕n+. To be precise, O consists of all finitely generated
g-modules which are weight modules and n-locally finite. We take M(λ) as in Section 4.1. For weights
λ,µ ∈ t∗ we write λ ∼0 µ if L(λ) is a composition factor of M(µ); then we let ∼ be the equivalence
relation on t∗ generated by ∼0.

The goal of this section is to prove Theorem 6.1, which in some sense is the best version of Theorem 1.1
that holds in great generality. The idea is to enforce assumptions that guarantee that all Verma modules
with highest weights lying in a fixed equivalence class of interest have an especially nice h-supercharacter.

6.1. Notation. Let a′
⊆ a be Lie superalgebras, L ′ a simple a′-module, and N an a-module such that

Resaa′ N has a finite length. Set

smult(N : L ′) :=

{
[Resaa′ N : L ′

] − [Resaa′ N :5L ′
] if L ′

̸∼=5L ′

[Resaa′ N : L ′
] mod 2 if L ′ ∼=5L ′.

(13)

If Resgh N ∈ M(h) we set

�(N ) := {µ ∈ t∗|Nµ ̸= 0}, s�(N ) := {µ ∈ t∗| smult(Nµ : C(µ)) ̸= 0}. (14)

Then
schh N =

∑
ν∈s�(N )

smult(Nν : C(ν))[C(ν)].

6.2. On schh M(λ). For ν ∈ Q− we have an isomorphism of h-modules:

M(λ)λ+ν ∼= U(n−)ν ⊗ C(λ).

By Theorem 3.1 , schh(C(ν)⊗ C(λ)) ̸= 0 implies dim C(ν) · dim C(λ)= dim C(λ+ ν). Therefore

s�(M(λ))⊂
{
ν ∈ t∗ | dim C(ν) · dim C(λ)= dim C(λ+ ν)

}
. (15)

Corollary 6.1. Assume that Fν ̸= 0 for ν ∈ Q−
\{0}. If corank Fλ≤ 1 and dim h1 is even, or corank Fλ= 0,

then
schh M(λ)= schh C(λ).

Proof. If corank Fλ = 0, or corank Fλ = 1 and dim h1 is even, then dim C(λ)≥ dim C(λ+ ν) for any ν,
so the formula follows from (15). □
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6.3. schh L(λ) when corank Fλ ≤ 1. We make the following assumptions on our triangular decomposi-
tion:

(A1) Setting Q−
= N1−, we have that γ (Q−)⊆ R− is discrete.

(A2) One has Fν ̸= 0 for each ν ∈ Q−
\ {0}.

(A3) For λ ∈ t∗ such that corank Fλ ≤ 1, we have that M(λ) has finite length as a g-module. (One can
weaken this to assume that it admits a local composition series in the sense of [4].)

Theorem 6.1. Let 3⊂ t∗ be an equivalence class of ∼ such that

(A4) corank Fλ ≤ 1 for each λ ∈3 if dim h1 is even, and otherwise corank Fλ = 0 for each λ ∈3.

Then for each λ ∈3 one has
schh L(λ)=

∑
µ∈3

mµ schh C(µ) (16)

for some mµ ∈ Z.

Proof. Assume that the assertion does not hold. Take (µ,µ′) such that γ (µ′
−µ) is maximal with the

properties
µ ∈3, µ′

̸∈3, schh L(µ)µ′ ̸= 0

(the existence of such a pair follows from (A1)).
By (A3), in the Grothendieck ring of g we may write

[L(µ)] = [M(µ)] −

∑
ν∈Q−

\{0}

µ+ν∈3

aµν[L(µ+ ν)]

where aµν ∈ N. We may map the above formula to the Grothendieck ring of h-modules via restriction,
and thus learn that

schh L(µ)µ′ = schh M(µ)µ′ −

∑
ν∈Q−

\{0}

µ+ν∈3

schh L(µ+ ν)µ′ .

By (15), schh M(µ)µ′ = 0 and the maximality of γ (µ′
− µ) implies schh L(µ + ν)µ′ = 0. Hence

schh L(µ)µ′ = 0, a contradiction. □

We will see in Section 9 that Theorem 6.1 holds for any irreducible highest weight representation of
qn , without restrictions on corank Fλ.

7. On K−(g) in the case when g is quasireductive

In this section we assume g is quasireductive, i.e., g is finite-dimensional, g0 is reductive, and g1 is a
semisimple g0-module (see [22], [18], and [15] for examples and a partial classification of such algebras).
The maximal toral subalgebras t in g0 are the Cartan subalgebras in g0, and the maximal quasitoral
subalgebras h in g are the Cartan subalgebras in g; all such subalgebras are conjugate to one another
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by inner automorphisms because the same is true on the even part (see [14]). We fix such t and h. Let
P(g)⊂ t∗ be the set of weights appearing in finite-dimensional g-modules, which is the same as the set
of weights appearing in finite-dimensional g0-modules. We fix a positive system of roots on g, and thus
also on g0. We denote by P+(g) the set of dominant weights, i.e.,

P+(g) := {λ ∈ t∗ | dim L(λ) <∞}.

We have
P(g)= P+(g)+ Z1= P+(g0)+ Z10.

Write C for the subcategory of F(h) consisting of modules with weights lying in P(g).

7.1. On schh(F(g)). Define F(g) to be the full subcategory of F in(g) consisting of modules which are
semisimple over g0.

The Weyl group W of g0 acts naturally on h, and thus we are in the setup of Section 5.6; we refer to
that section for the definition of t∗W . We see that W preserves the subcategory C. We set

P(g)′ = t∗W ∩ P(g), P+(g0)
′
= t∗W ∩ P+(g0).

Recall that
P(g)′ ∩ I0 :=

{
λ ∈ P(g)∩ I0 | ∀w ∈ StabW λ, det(w|h1/Ker Fλ)= 1

}
.

From the theory of reductive Lie algebras, in this case we have a natural bijection P+(g0)
′
→ P(g)′/W .

Recall that for ν ∈ t∗W we set
aν =

∑
w∈W/StabW ν

w[C(ν)].

Theorem 7.1. (i) The algebra K−(C)W is naturally a spoiled superalgebra; its even part has Z-basis
given by aν for ν ∈ P+(g0)

′
∩ I0 and its odd part has a Z2-basis aν for ν ∈

(
P+(g0)∩ I1

)
.

(ii) schh defines an embedding K−(g) ↪→ K−(C)W .

(iii) For λ ∈ P+(g)∩ I0 one has
schh L(λ)=

∑
ν

kνaν

where kν ∈ Z with kλ = 1.

(iv) If λ ∈ P+(g)∩ I1, then
schh L(λ)=

∑
ν∈I1

kνaν .

with kλ = 1.

(v) P+(g)⊂ P+(g0)
′.

Proof. Part (i) follows from Corollary 5.5. For part (ii) let L := L(λ) be a simple finite-dimensional
g-module. Clearly all its weights lie in P(g). Because W can be realized from inner automorphisms of g,
it is clear that the schh L(λ) must be W -invariant, proving (ii).

Part (iii) uses (7), and part (iv) uses that L(λ)∼=5L(λ). Finally part (v) then follows from (iii). □
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7.1.1. Remark. The algebra K−(g) is not naturally spoiled with respect to the embedding into K−(h).
For example if g= q2 ×q1, then consider the module S2V (1)

std ⊠V (2)
std , where V (1)

std , V (2)
std denote the standard

modules of q2, q1 respectively. Then this module is of the form L ⊕5L for some simple q2 × q1-module
L . One may check that schh L is not a homogeneous element of K−(h), with respect to its spoiled grading
(see Section 5.5.1).

Corollary 7.1. Let λ ∈ P+(g)∩ I0 and w0 ∈ W be such that w0λ= −λ and L(λ)∗ has highest weight λ.
Then we have

L(λ)∗ ∼=5i L(λ), where (−1)i = det(w0|h1/Ker Fλ).

Proof. Recall that φλ : U(h)→ Cℓ(λ), pλ : Cℓ(λ)→ Cℓ(λ)/Kλ stand for the canonical epimorphisms. By
Section 3.4.4 we have T λ = H ′

2k . . . H ′

1, where H ′

1, . . . , H ′

2k is a basis of pλφλ(h1)⊂ Cℓ(λ)/Kλ satisfying
[H ′

i , H ′

j ] = 0 for i ̸= j . Set

T −λ = Tw0λ = w0(H ′

2k) . . . w0(H ′

1).

From this definition we have C(−λ)= C(λ)w0 . We have σ−λ(H ′

i )= −H ′

i , and thus

σ−λ(T −λ)= (−1)k(2k−1)w0(H ′

1) . . . w0(H ′

k)= (−1)k(2k−1) det(w0|h1/Kλ
)H ′

1 . . . H ′

2k = (−1)i T λ.

It follows that C(λ)∗ =5i C(−λ). Therefore

(L(λ)∗)λ = (L(λ)−λ)∗ = (5i C(λ)∗)∗ =5i C(λ).

and we obtain L(λ)∗ ∼=5i L(λ) as required. □

8. The DS-functor and the reduced Grothendieck group

In Sections 8.1 and 8.2, g is any Lie superalgebra. We fix x ∈ g1 with [x, x] = c ∈ g0 such that ad c is
semisimple (such elements x are called homological).

8.1. DS-functors: construction and basic properties. The DS-functors were introduced in [5]; we use a
slight generalization (see [6] for a more in-depth treatment). For a g-module M and u ∈ g we set

Mu
:= KerM u.

Let M be a g-module on which c acts semisimply. Write DSx M = Mx := M x/(Im x ∩ M x). Then gx

and gx are Lie superalgebras, where x acts via the adjoint action.
Observe that M x , x Mc are gx -invariant and [x, gc

]M x
⊂ x Mc, so DSx(M) is a gx -module and gx -

module. This gives the functor DSx : M 7→ DSx(M) from the category of g-modules with semisimple
action of c to the category of gx -modules.

There are canonical isomorphisms DSx(5(N ))∼=5(DSx(N )) and

DSx(M)⊗ DSx(N )∼= DSx(M ⊗ N ).
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8.2. The map dsx . Let a be any subalgebra of g. Write ax for the kernel of ad x on a, and similarly
for ac. We view

ax := ax/([gc, x] ∩ ac)

as a subalgebra of gx .
Let C(g) be a full subcategory of the category of g-modules with semisimple action of c and C(a) (resp.,

C(gx), C(ax)) be a full subcategory of the category of a-modules (resp., gx , ax ) such that the restriction
functors

Resga : C(g)→ C(a), Resggx : C(g)→ C(gx), Resaax : C(a)→ C(ax).

are well-defined and that for each N ∈ C(g) the gx -modules N x and x N c lie in C(gx) (note that N x and
x N c are submodules of Resggx (N )).

We denote by C(gx) (resp., by C(ax)) the full category of gx -modules N satisfying Resgx
gx (N ) ∈ C(gx)

(resp., Resax
ax (N ) ∈ C(ax)).

For m = g, a, gx , ax , gx , ax we denote the reduced Grothendieck group K−(C(m)) by R(m), for ease
of notation.

8.2.1. Take M ∈C(g) and set N :=Resggx M . The action of x gives a gx -homomorphism θN : N c
→5(N c).

One has
θNθ5(N ) = 0, Im θ5(N ) =5(Im θN )

and DSx(M)= Ker θN/ Im θ5(N ) as gx -modules. Using the exact sequences

0 → Im θ5(N ) → Ker θN → DSx(M)→ 0, 0 → Ker θN → N c
→ Im θN → 0

we obtain [Resggx Mc
] = [DSx(M)] in R(gx). However if Mr is the r ̸= 0 eigenspace of c on M ,

x : Mr → Mr will define an gx -equivariant isomorphism of Mr , and thus we have [Resggx Mr ] = 0.
It follows that [Resggx M] = [Resggx Mc

] = [DSx(M)]. Since DSx(M) is a gx -module this gives the
commutative diagram

R(g)

dsx ##

// R(gx)

R(gx)

OO

(17)

where dsx : R(g)→ R(gx) is given by dsx([M]) := [DSx(M)], and the two other arrows are induced by
the restriction functors Resggx , Resgx

gx respectively.

8.2.2. Remark. If C(g), C(gx) are closed under ⊗, then dsx is a ring homomorphism.

8.2.3. Example. Suppose that g is quasireductive. Recall that F(g) a rigid tensor category with the
duality N 7→ N ∗ given by the antiautomorphism −Id; since DSx is a tensor functor, it preserves ∗-duality,
so

dsx : K−(g) → K−(gx)

is a ring homomorphism compatible with ∗.
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8.3. dsx and restriction. We present results which explain the relationship between dsx and the restriction
functor.

Lemma 8.1. Suppose that we have a splitting gx ⊆ gx so that gx
= gx ⋉ [x, gc

]. Then for M in C(g) we
have

dsx [M] = [Resggx
M].

Proof. This follows immediately by applying the restriction R(gx)→ R(gx) to our equality [DSx M] =

[Resggx M]. □

Lemma 8.2. Let y ∈ g1 with [y, y] = d where ad d acts semisimply on g and d, c + d act semisimply on
all modules in C(g). Suppose further that [x, y] = 0, and that we have splittings

gy
⊆ gy ⋉ [y, gd

], gx+y
= gx+y ⋉ [x + y, gc+d

],

Furthermore suppose that under these splittings, x ∈ gy and

(gy)
x
= gx+y ⋉ [x, gc

y].

Then we have

dsx+y = dsx ◦ dsy : R(g)→ R(gx+y)

Proof. This follows immediately from Lemma 8.1 and the corresponding statement for restriction. □

Proposition 8.1. We have the following commutative diagram

R(g)

dsx
��

// R(ax)

R(gx) // R(ax)

resax
ax

OO

where the horizontal arrows are induced by the corresponding restriction functors and resax
ax is induced by

the morphism ax
→ ax .

Proof. The restriction functors give the commutative diagram

C(gx) // C(ax)

C(gx) //

OO

C(ax)

OO

which, in combination with (17) gives the diagram

R(g)

dsx ##

// R(gx) // R(ax)

R(gx)

OO

// R(ax)

OO



2394 Maria Gorelik, Vera Serganova and Alexander Sherman

where all arrows except dsx are induced by the restriction functors. By (17), the above diagram is
commutative, and we obtain our result. □

8.3.1. Example: F(g) for g quasireductive. Let E be a simple ax -module. By Proposition 8.1 a finite-
dimensional g-module N we have

smult(DSx(N ); E)= smult(Resgax N ; E).

For example, let g be a classical Lie superalgebra in the sense of [16] and a := t be a Cartan subalgebra of
g0. The map R(g)→ R(t) is given [N ] 7→ sch N . If tx is a Cartan subalgebra of (gx)0, then the composed
map R(g) → R(tx) is given by [N ] 7→ sch DSx(N ). If we fix an embedding tx → tx , we obtain the
Hoyt–Reif formula [13]

sch DSx(N )= (sch N )|tx .

8.4. A special case. Consider the case when g, a = h are as in Section 2.1. Denote by F x the restriction
of the form F to hx and set

Ix := {λ ∈ t∗ | λ([x, gc
] ∩ t)= 0}.

By assumption, given λ ∈ Ix we have that λ|tx lies in the subspace (tx)∗. For λ ∈ Ix we denote this
element by λx ∈ (tx)

∗.
Note that for ν ∈ Ix satisfying rank F x

ν|tx = rank Fν the module Reshhx
C(ν) is simple, so Reshhx

C(ν)∼=
5i C(νx) for some i .

Corollary 8.1. Take N ∈ F(g). If schh(N )=
∑

ν mµ[C(µ)], then

schhx

(
DSx(N ))

)
=

∑
µ∈Ix :rank F x

µ=rank Fµ

mµ(−1)iµ [C(µx)].

where Reshhx
C(ν)∼=5iµC(µx).

Proof. Recall that schh gives an embedding of K−(g) to K−(h). Applying Proposition 8.1 to F(g) we
obtain for R(m) := K−(m) the commutative diagram

R(g)

dsx
��

schhx
// R(hx)

R(gx)
schhx

// R(hx)

reshx
hx

OO

where resh
x

hx
: Rhx → Rhx is induced by the map hx

→ hx . In light of Proposition 3.1(v) we have
schhx (C(µ))= 0 except for the case rank F x

µ = rank Fµ. □

8.4.1. Example. If, in addition, (gx)
ax

0
= ax , then, by Corollary 5.2, schax gives an embedding of the

reduced Grothendieck ring of gx to K−(hx).
For g= gl(m|n), osp(m|n), pn, qn, sqn and the exceptional Lie superalgebras, for each x we can choose

a suitable h such that (gx)
tx
0

= tx ; see [5; 23; 10].



On the Grothendieck ring of a quasireductive Lie superalgebra 2395

9. The reduced Grothendieck ring for F(qn)

In this section we describe the reduced Grothendieck ring for F(qn), the category of finite-dimensional
qn-modules with semisimple action of (qn)0. In addition we will explicitly describe the homomorphisms
dss : K−(qn)→ K−(qn−2s) induced by the DS functor, to be defined. Wherever it is not stated, we set
g := qn . We will mainly concentrate on the category F(qn)int which is the full subcategory of finite-
dimensional qn-modules with integral weights, and then reduce the corresponding results for F(qn) to
F(qn)int.

9.1. Structure of qn. Recall that qn is the subalgebra of gl(n|n) consisting of the matrices with the block
form

TA,B :=

(
A B
B A

)
9.1.1. One has g0 = gln . The group GLn acts on g by the inner automorphisms; all triangular decomposi-
tions of qn are GLn-conjugated. We denote by t the Cartan subalgebra of gln spanned by the elements
hi = TEi i ,0 for i = 1, . . . , n, where Ei j denotes the (i, j) elementary matrix. Let {εi }

n
i=1 ⊂ t∗ be the

basis dual to {hi }
n
i=1. The algebra h := qtn is a Cartan subalgebra of qn; one has h0 = t. The elements

Hi := T0,Ei i form a basis of h1; one has [Hi , H j ] = 2δi j hi .

9.1.2. We write λ ∈ t∗ as λ=
∑n

i=1 λiεi and denote by Nonzero(λ) the set of nonzero elements in the
multiset {λi }

n
i=1 and by zero λ the number of zeros in the multiset {λi }

n
i=1. Recall that rank Fλ is equal to

the cardinality of Nonzero(λ) (= n − zero λ).
We call a weight λ ∈ t∗ integral (resp., half-integral) if λi ∈ Z (resp., λi −

1
2 ∈ Z) for all i . We call

a weight λ typical if λi + λ j ̸= 0 for all i, j and atypical otherwise; in particular if λ is typical then
zero(λ)= 0.

We fix the usual triangular decomposition: g = n−
⊕ h⊕ n, where 1+

= {εi − ε j }1≤i< j≤n .

9.2. The monoid 4 and cores. We denote by 4 the set of finite multisets {ai }
s
i=1 with ai ∈ C \ {0} and

ai + a j ̸= 0 for all 1 ≤ i, j ≤ s.
We assign to each finite multiset A := {ai }

s
i=1 with ai ∈ C the multiset Core(A) ∈ 4, obtained by

throwing out all zeros and the maximal number of elements ai , a j with i ̸= j and ai +a j = 0; for example,

Core({1, 1,−1,−1} = ∅ and Core({1, 1, 0, 0, 0,−1})= {1}.

We view 4 as a commutative monoid with respect to the operation

A ⋄ B := Core(A ∪ B)

(∅ is the identity element in 4).
For λ ∈ t∗ we set

Core(λ) := Core({λi }
n
i=1)= Core(Nonzero(λ)),
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and denote by χλ the central character of L(λ). From [24] it follows that χλ = χν if and only if
Core(λ)= Core(ν). Observe that λ ∈ I0 if and only if the cardinality of Core(λ) is even.

9.2.1. The relation ∼. Recall that we write λ∼ ν if L(λ), L(ν) lie in the same block in the BGG category
O. By the above,

λ∼ ν H⇒ Core(λ)= Core(ν).

It is known that the above implication becomes an equivalence if both λ, ν are integral or half-integral; in
fact it follows from the following fact:

λi + λ j = 0 H⇒ λ− εi + ε j ∼ λ (18)

(this easily follows from the formula for Shapovalov determinants established in [9, Theorem 11.1]: from
this formula it follows that for i < j the module M(λ) has a primitive vector of weight λ− εi + ε j if λ is
a “generic weight” satisfying λi +λ j = 0; the usual density arguments (see [2],[17]) imply that M(λ) has
a primitive vector of weight λ− εi + ε j if λ is any weight satisfying λi + λ j = 0).

9.2.2. Dominant weights. Recall that P+(g) denotes the set of dominant weights, i.e.,

P+(g) := {λ ∈ t∗ | dim L(λ) <∞}.

By [19], λ ∈ P+(g) if and only if λi − λi+1 ∈ N and λi = λi+1 implies λi = 0. This implies the
following properties:

(1) P+(g)∩ I0 = P+(g0)
′
∩ I0; in particular

P+(g)= {λ ∈ P+(g0) : det(w|h1/Kλ
)= 1 for all w ∈ StabW λ}.

(2) if λ ∈ P+(g) is atypical, then λ is either integral or half-integral;

(3) the set Nonzero(λ) uniquely determines a dominant weight for a fixed n.

9.2.3. Grading on C(ν). For ν ∈ t∗, we set

Tν := Hi1 . . . Hik

where Nonzero(ν)= {νi1 ≥ νi2 ≥ . . .≥ νik }, and if νi j = νi j+1 then we require that i j ≥ i j+1. This formula
determines Tν uniquely; for ν ∈ P(g)′ note that we have Twν = wTν for each w ∈ W .

Since T 2
ν = (−1)k(k−1)/2hi1 . . . hik the function t : t∗ → {c ∈ C | c > 0} is given by

t (λ)2 = (−1)k(k−1)/2
∏

i :λi ̸=0

λi , where k := rank Fλ;

for λ ∈ I0 we obtain t (λ)2 = (−1)(rank Fλ)/2
∏

i :λi ̸=0 λi .
As explained in Section 3.4.3, this function t together with a highest weight λ determines uniquely

irreducible modules L(λ) for each λ ∈ P+(qn).
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9.2.4. Remark. If ν∼ 0, then t (ν)∈ R+. It follows that if λ∈ t∗, ν∼ 0, and [C(λ)][C(ν)] = ±[C(λ+ν)],
then t (λ)t (ν)= t (λ+ ν).

9.2.5. Note that λ = −w0λ if and only if Core(λ) = ∅; in this case Corollary 7.1 gives L(λ)∗ ∼=

5(rank Fλ)/2L(λ).

9.2.6. Example. For α = εi − ε j one has Tα = H j Hi . Since for e ∈ gα ∩g0 one has (ad H j )(ad Hi )e = e,
we obtain gα ∼= Cα. Moreover, SkC(α)= C(kα) for α ∈1.

9.3. Embedding into exterior algebra. Let hZ be the Lie subalgebra of h over Z generated by H1, . . . , Hn ,
and let U(hZ) be the integral enveloping algebra of hZ. Consider the canonical epimorphism φ0 :U(hZ)→

S(hZ

1
), where S(hZ

1
) is the exterior ring generated by ξi := φ0(Hi ). Note that S(hZ

1
) is a Z-graded

supercommutative ring, free over Z with basis ξi1, . . . , ξi j with 1 ≤ i1 < i2 < . . . < i j ≤ n.
Let CR be the subcategory of F(h) consisting of weights λ such that λi ∈ R for all i . In particular,

tλ/|tλ| ∈ {1,
√

−1}.

9.3.1. We view the ring B := Z[eν : ν ∈ t∗]⊗Z S(hZ

1
) as a Z-graded supercommutative ring by defining

the degree of Z[eν : ν ∈ t∗] to be zero. We construct the ring Bspoil as in Section 5.5.

Proposition 9.1. The map [C(λ)] 7→ εi t (λ)
|t (λ)|

· eλφ0(Tλ) for λ ∈ Ii gives a ring monomorphism

K−(CR) ↪→ Bspoil
⊗Z Z[

√
−1]

which is compatible with the action of W . One has

φ0(Tλ)= ξi1 . . . ξik ,

where Nonzero(λ)= {λi1 ≤ . . .≤ λik }.

Proof. That the map is injective and W -equivariant is straightforward. We show that it is an algebra
homomorphism. First observe that

[C(ν)][C(λ)] ̸= 0 ⇐⇒ [C(ν)][C(λ)] = ±[C(λ+ ν)] ⇐⇒ φ0(TλTν) ̸= 0 ⇐⇒ TλTν = ±Tλ+ν .

Suppose that [C(ν)][C(λ)] ̸= 0. Then we write TλTν = (−1) j Tλ+ν and φ0(Tλ)φ0(Tν)= (−1) jφ0(Tλ+ν).
Fix even vectors vλ ∈ C(λ)0 and vν ∈ C(ν)0. Since Hi C(λ)= 0 if λi = 0 we have

TλTν(vλ ⊗ vν)= Tλvλ ⊗ Tνvν =
t (λ)t (ν)
|t (λ)t (ν)|

vλ ⊗ vν .

Note that vλ ⊗ vν is an even vector of 5i C(λ+ ν)∼= C(λ)⊗ C(ν). On the other hand we have

TλTν(vλ ⊗ vν)= (−1) j Tλ+ν(vλ ⊗ vν)= (−1) j+i t (λ+ ν)vλ ⊗ vν .

Thus t (λ+ν)

|t (λ+ν)|
= (−1)i+ j t (λ)t (ν)

|t (λ+ν)|
. From these equalities it is easy to check our map is a homomorphism.

Injectivity is straightforward. □
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9.3.2. Remark. If we extend scalars to C, the above map defines an embedding

K (h)C ↪→ B0 ⊗Z C.

However this kills the two-torsion part of K (h).

9.3.3. One has

φ0(TλTν) ̸= 0 ⇐⇒ TλTν = ±Tλ+ν H⇒ Core(λ+ ν)= Core(λ)⋄ Core(ν).

For example, for [C(2, 0, 0, 1)][C(0,−2,−1, 0)] = ±[C(2,−2,−1, 1)], we have

Core(λ)= {2, 1}, Core(ν)= {−2,−1}, Core(λ+ ν)= ∅.

9.3.4. Recall that K−(h) has a finite Z-grading (see (11)). By Section 9.3.3, K−(h) is also 4-graded: set
K−(h)A to be spanned by [C(λ)] with Core(λ)= A. Then

K−(h)=

⊕
A∈4

K−(h)A with K−(h)AK−(h)B ⊂ K−(h)A⋄B,

Note that K−(h)A = 0 if the cardinality of A is odd or greater than n. Further K−(h)A is W -stable.

Corollary 9.1. (1) The subring K−(h)∅ ∩ K−(h)int is spanned by [C(ν)] with ν ∼ 0. This subring is
generated by [C(kα)] for α ∈1 and k ∈ Z.

(2) If ν ∼ 0 and [C(ν)][C(λ)] ̸= 0, then [C(ν)][C(λ)] = ±[C(λ+ ν)] and λ+ ν ∼ λ.

Proof. The assertion (i) follows from Section 9.2.1. By (i) it is enough to verify (ii) for ν := k(εi −ε j ). In
this case the inequality [C(ν)][C(λ)] ̸=0 implies λi =λ j =0. By (18) for such λ one has λ+k(εi −ε j )∼λ.

□

9.3.5. Remark. All integral, nontypical blocks B of qn have that 5B = B (indeed, if B is integral
and not typical then it admits a simple module L(λ) such that zero(λ) > 0; now we conclude with
[12, Theorem 4.1]). Thus we may consider for such blocks the corresponding reduced Grothendieck
group K−(B). Then the embedding in Proposition 9.1 exists over the coefficient ring Z[

√
−1]. If we let

B0 denote the principal block of qn , then K−(B0)= K−(h)∅ ∩ K−(h)int is a ring. In this case, because
t (λ) ∈ R+ for all λ∼ 0, the map in Proposition 9.1 descends to an embedding with integral coefficients
for K−(B0).

9.4. Supercharacters of some highest weight modules.

Lemma 9.1. schh M(λ)=

∑
ν∼λ

mν[C(ν)].

Proof. We start from λ = 0; in this case schh M(0) = schh U(n−). Let α1, . . . , αN denote the negative
roots of g. We have

U(n−)ν =

⊕
∑

k jα j =ν

⊗
j

Sk jgα j . (19)
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By Section 9.2.6, Skgα ∼= C(kα). Since kα ∼ 0, the required formula follows from Corollary 9.1(i).
For arbitrary λ one has schh M(λ)= schh U(n−)⊗[C(λ)]; the result follows from Corollary 9.1(ii). □

We need some terminology for the following proposition: for roots α1 = ϵi1 − ϵ j1, α2 = ϵi2 − ϵ j2 , we
write α1 ≺ α2 if max(i1, j1) <min(i2, j2). If α = ϵi − ϵ j is any root, we call the set {i, j} its support. We
note that if we have roots α1, . . . , α j with nonoverlapping supports, and positive integers k1, . . . , k j , then
S j1gα1 ⊗ · · · ⊗ Sk jgα j is an irreducible h-module.

Proposition 9.2. We have

schh U(n−)=

∑
ν∼0

mν[C(ν)]

where each coefficient mν is either 0 or ±1.
Further if mν ̸= 0, then ν may uniquely be written as

ν = k1(α11 + · · · +α1 j1)+ · · · + kr (αr1 + · · · +αr jr ),

where all of k1, . . . , kr are distinct, the supports of all αi j are distinct, and αi1 ≺ · · · ≺ αi ji . In this case

mν[C(ν)] =

r∏
i=1

[Skigαi1] · · · [Skigαi ji
].

Proof. We use the embedding of Proposition 9.1. Let yν be the image of [(U(n−))ν] in R(t)⊗ S(h1)0

(see Proposition 9.1). Since tkα = k for α ∈1, by (19) one has

yν = eν
∑

(k1,...,kN )∑
kiαi =ν

φ0(Tkαi ).

Recall that φ0(Tεp−εq ) = ξqξp. In particular, φ0(TαTβ) = 0 if (α|β) ̸= 0 (where (−|−) stands for the
usual form on t∗). Hence

yν = eν
∑

(k1,...,kN )∈U

φ0(Tkαi ), where U := {(k1, . . . , kN ) |
∑

kiαi = ν, ki k j = 0 for (αi |α j ) ̸= 0}.

If for any (k1, . . . , kN ) ∈ U we have ki ̸= k j for all nonzero ki , k j with i ̸= j then it is clear U is a
singleton set and we are done.

Thus suppose that (k1, . . . , kn) has ki = k j ̸= 0 for some i ̸= j , and without loss of generality suppose
i = 1, j = 2. Write αi = εpi − εqi for i = 1, 2; then pi > qi and, since (α1|α2) = 0, the numbers
p1, q1, p2, q2 are pairwise distinct. If p1 > q2 and p2 > q1 then we have negative roots

α′

1 := εp1 − εq2, α
′

2 := εp2 − εq1

with α1 +α2 = α′

1 +α′

2. We may assume that α′

1 = α3 and α′

2 = α4. Since (α j |α1), (αs |α1) ̸= 0, one has
k3 = k4 = 0, so

(k1, . . . , kN )= (k1, k1, 0, 0, k5, . . . , kN ).
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Observe that (0, 0, k1, k1, k5, . . . , kN ) ∈ U . One has

φ0(Tα1 Tα2 + Tα′

1
Tα′

2
)= ξp1ξq1ξp2ξq2 + ξp1ξq2ξp2ξq1 = 0.

Therefore we can substitute U by a smaller set, where ki = k j implies that αi = εpi − εqi , α j = εp j − εq j

are such that pi > qi > p j > q j or p j > q j > pi > qi . From this the result follows. □

Corollary 9.2. One has schh M(λ)=
∑
ν∼λ

mν[C(ν)] with mν ∈ {0,±1}.

Theorem 9.1. For λ ∈ t∗ we have schh L(λ)=

∑
ν∼λ

kν[C(ν)].

Proof. With the help of Lemma 9.1, the proof works in the exact same fashion as Theorem 6.1. □

Corollary 9.3. Let L(ν) be a finite-dimensional module. Then

smult(L(λ)⊗ L(ν) : L(µ)) ̸= 0 H⇒ Core(µ)= Core(λ)⋄ Core(ν).

When smult(L(λ)⊗ L(ν) : L(µ)) ̸= 0, then either λ ∈ I0 or ν ∈ I0.

9.4.1. Remark. The Kac–Kazhdan modification of O introduced in [17] is closed under tensor product;
the modules in this category are not always of finite length, but the multiplicity is well-defined (see [4]).
In this category the above formula holds for arbitrary L(λ) and L(ν).

9.4.2. Recall that P(g) := P+(g)+ Z1 and for ν ∈ P+(g) we set

aν :=

∑
w∈W/StabW ν

w[C(µ)].

Lemma 9.2. Suppose that |Nonzero(ν)| is odd with νi = ν j ̸= 0 for some i ̸= j ; then for λ ∈ P+(qn),
[L(λ)ν : C(ν)] is even.

Proof. Assume that this does not hold. Without loss of generality we may assume i = 1, j = 2, and set
α = ϵ1 − ϵ2. Let h′ to be the subalgebra of h generated by H3, . . . , Hn , and set q2(α) to be the natural
subalgebra of qn isomorphic to q2 with weight ϵ1, ϵ2. Clearly q2(α)× h′ is a subalgebra of qn .

Then by Theorem 9.1, Core(ν)= Core(λ). We view

N :=

∑
i∈Z

L(λ)ν+iα

as a q2(α)× h′-module. We will write ν = k(ε1 + ε2)+ ν
′ where ν ′ is the corresponding t′ = h′

0
-weight.

We assume that k > 0, with the case of k < 0 being similar. By the representation theory of q2, the only
irreducible q2-modules with k(ϵ1 + ϵ2) are those of the form Lq2(α)(k + i; k − i) for some i > 0. These
are always typical, and are isomorphic to their parity shifts if and only if i = k.

Therefore, since rank Fν is odd, one has

Lq2(α)(k + i; k − i)⊠ Lh′(ν ′)=

{
Lq2(α)×h′(ν+ iα) if i ̸= k,
Lq2(α)×h′(ν+ kα)⊕5Lq2(α)×h′(ν+ kα) i = k.
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Because Lq2(α)(k + i; k − i) is typical,

dim Lq2(α)×h′(ν+ iα)ν =

{
2 dim C(ν) if i ̸= k,
dim C(ν) if i = k.

Hence, to prove that dim Nν is divisible by 2 dim C(ν) it is enough to show that mult(N ; Lq2(α)×h′(ν+kα))
is even, where mult denotes that nongraded multiplicity. By the above, for i ̸= k one has

dim Lq2(α)×h′(ν+ iα)ν+kα = 2 dim C(ν+ kα).

Hence it is enough to verify that dim Nν+kα is divisible by 2 dim C(ν+ kα) that is

mult(L(λ); C(ν+ kα))≡ 0 mod 2.

Let {νi }
n
i=1 contain i+ copies of k and i− copies of −k. Then {ν+ kα}

n
i=1 contains j+ = i+ − 2 copies

of k and j− copies of −k. Therefore i+ − i− ̸= j+ − j−, so

Core(ν+ kα) ̸= Core(ν)= Core(λ)

and thus by Theorem 9.1, mult(L(λ); C(ν+ kα)≡ 0 mod 2 as required. □

Combining Theorem 7.1, Theorem 9.1, and the results of [11], we obtain our main result:

Theorem 9.2. schh defines a morphism of spoiled superalgebras K−(g)→ K−(h)
W . Further:

(1) For λ ∈ P+(qn)∩ I0 one has

schh L(λ)=

∑
ν∈P+(g)∩I0: ν∼λ

zero λ≥zero ν
zero λ−zero ν≡0 mod 4

kνaν, kν ∈ N.

(2) For λ ∈ P+(g)∩ I1 one has

schh L(λ)=

∑
ν∈P+(g)∩I1: ν∼λ

zero λ≥zero ν

kνaν, kν ∈ {0, 1}.

In both cases kλ = 1, and schh L(λ)= aλ if λ ∈ P+(g) is typical.

Proof. The only part that remains to be justified is the inequality zero λ≥ zero ν. For this we invoke the
results of [11], where it is shown that if x = H1 ∈ (qn)1, and λ ∈ P+(qn), then dszero λ+1

x L(λ)= 0. □

Corollary 9.4. For λ ∈ P+(g) and ν /∈ W P+(g) we have 2 dim Eν divides dim L(λ)ν .

Corollary 9.5. (1) The map N 7→ schh N induces an isomorphism

K−(qn)Q −→∼ K−(C)WQ .

(2) For A ∈4, let F(qn)A be the full subcategory of F(qn) consisting of modules of central character
corresponding to A. Then schh restricts to an isomorphism K−(F(qn)A)Q → (K−(h)A)

W
Q

.

(3) The duality is given by a∗
ν = a−w0(ν)
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Proof. It is clear that schh has image lying in K−(C)WQ , and by Corollary 5.2, schh is an embedding. From
Theorem 9.2 and the fact that for each λ ∈ P+(g) the number of elements ν ∈ P+(g) satisfying ν < λ
and ν ∼ λ is finite, it follows that the image of K−(g) contains aν for each ν ∈ P+(g). Hence the image
is equal to K−(h)

W
Q

, proving surjectivity giving (i). Part (ii) is an easy consequence of (i).
For (iii) we simply apply Theorem 9.1, and for (iii) we observe that T−λ = σ(Tλ) and t (λ)= t−λ. Thus

it is easy check that C(λ)∗ ∼= C(−λ). □

9.5. The map dss. For s =
1
2 , . . . ,

n
2 , set

xs = Hn+1−2s + · · · + Hn.

Then c = x2
s is a semisimple element of g0, and we have DSxqn = qn−2s . Further we have a splitting

qc
n =qn−2s⋉[x, qc

n], where qn−2s ⊆qn is the natural embedding such that tx ⊆ t is spanned by h1, . . . , hn−2s

and 1(gx)= {εi − ε j }1≤i ̸= j≤n−2s .
We write DSs := DSxs and dss : R(qn) → R(qn−2s) for the induced homomorphism on reduced

Grothendieck rings. These splittings of gxs in gxs satisfy the hypotheses of Lemma 8.2, thus we have
dsi ◦ ds j = dsi+ j .

9.5.1. Remark. For i = 1, . . . ,
⌊ n

2

⌋
set

αi := εn−2s+1 − εn−2s+2, α∨

i := hn−2s+1 − hn−2s+2.

Let yα be a nonzero odd element in gα . For each 1 ≤ s ≤
n
2 , consider ys :=

s∑
i=1

xαi . Then clearly [ys, ys]= 0,

and one can show that dsys = ds2s as defined above.
We view t∗xs

as a subspace in t∗ via the natural embedding ιn,s : t∗xs
↪→ t∗ (given by εi 7→ εi ∈ t∗ for

i = 1, . . . , n − 2s).

Corollary 9.6. Take N ∈ F(g). For each ν ∈ t∗xs
we have

smult(DSs(N ) : C(ν))= smult(N : C(ιn,s(ν))).

Proof. Retain the notation from Section 8.4 and set µ := ιn,s(ν) ∈ t∗. Note that txs is spanned by
h1, h2, . . . , hn−2s and txs = t.

Since t∩ [xs, g
c
] is spanned by hn−s+1, . . . , hn , for µ ∈ Ix the restriction of Fµ to txs written with

respect to the above basis has the diagonal entries µ1, . . . , µn−s and zeros on the last s places. In particular,
for µ ∈ Ix one has rank F xs

µ = rank Fµ if and only if µi = 0 for i > n − s, i.e., µ ∈ t∗x . By Corollary 8.1
we obtain

smult(DSs(N ); C(ν))= (−1)iµ smult(N ; C(µ))

where Reshhxs
C(µ)∼=5iµC(ν)). The formulae

Tµ =

∏
i : µi ̸=0

Hi =

∏
i : νi ̸=0

Hi = Tν, t (µ)= t (ν)
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give Reshhxs
C(µ)∼= C(ν) as required. □

Corollary 9.7. The map dss : K−(g)→ K−(gxs ) is given by

dss(aµ)=

{
0 if zeroµ < s,
aµ′ if zeroµ≥ s,

where µ′
∈ P+(gx) is such that Nonzero(µ)= Nonzero(µ′).

Proof. Write schh N =
∑

µ∈P+(g) kµaµ and schhx DSs(N )=
∑

ν∈P+(gx )
mνaν . By Corollary 9.6 kµ = mν

if µ= ιn,s(ν). □

9.5.2. We denote by F(g)int the full subcategory of F(g) with the modules whose weights with nonzero
weight spaces lie in the lattice generated by ϵ1, . . . , ϵn .

Corollary 9.8. The kernel of dss : K−(g)→ K−(gx) is spanned by aµ with zeroµ < s and the image of
dss is equal to K−(F(gxs )int).

Corollary 9.9. For λ ∈ P+(g) and ν ∈ P+(gxs ) one has

zero λ− zero ν− s ̸≡ 0 mod 4 H⇒ smult(DSs(L(λ)) : Lgx (ν))= 0.

Proof. Combining Theorem 9.2 and Corollary 9.7 we conclude that dss(sch L(λ)) lies in the span of aν
with ν ∈ P+(gx) such that n − zero(λ)−(n −s −zero(ν))≡ 0 mod 4 that is zero λ−zero ν−s ≡ 0 mod 4.

Let ν0 be maximal (with respect to the standard partial order in t∗x ) such that

smult(DSs(L(λ)); Lgx (ν)) ̸= 0 and zero λ− zero ν− s ̸≡ 0 mod 4.

The maximality of ν0 forces zero ν ̸≡ zero ν0 if ν > ν0 and Lgx (ν) is a subquotient of DSs(Lg(λ)). By
Theorem 9.2 we obtain [Lgx (ν) :C(ν0)]=0 if ν ̸=ν0 and Lgx (ν) is a subquotient of DSs(Lg(λ)). Therefore
smult(DSs(L(λ)); Lgx (ν0)) is equal to the coefficient of aν0 in schh DSs(L(λ))= dss(schh L(λ)), which
is zero by above. □

9.6. Example: q2. Recall that the atypical dominant weights for q2 are of the form s(ε1 −ε2) for s ∈
1
2 N.

Proposition 9.3. Take g = q2 with 1+
= {α}. For λ ∈ P+(q2) one has

schh L(λ)=


aλ if λ is typical,

s∑
i=1

aiα if λ= sα, s ∈ N,

s∑
i=0

ai+ 1
2α

if λ=
(
s +

1
2

)
α, s ∈ N.

Proof. If λ is typical, the assertion follows from Theorem 6.1. Consider the case when µ ∈ P+(q2) is
atypical and µ ̸= 0. Write K (µ) for the maximal finite-dimensional quotient of Indq2

b C(µ). It is known
that schh K (µ)= aµ. Further, if µ= sα for s ∈ N, then it is known (for example see Section 7 of [9])
that we have short exact sequences

0 → V0 → K (α)→ L(α)→ 0, 0 →5L((s − 1)α)→ K (sα)→ L(sα)→ 0
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where V0 is a nontrivial extension of C and 5C. On the other hand if µ= (s +
1
2)α then for s = 0 we

have K (α/2)= L(α/2) and for s > 0 we have short exact sequences

0 →5L
((

s −
1
2

)
α
)
→ K

((
s +

1
2

)
α
)
→ L

((
s +

1
2

)
α
)
→ 0.

From these results we can obtain the desired formulas by induction. □

9.7. Realization of K−(qn). Recall that F(g)int denotes the full subcategory of F(g) consisting of the
modules with integral weights and that C denotes the full subcategory of F(h) consists of modules with
weights lying in P(g). We write Cint for the subcategory of C consisting of those modules with integral
weights.

9.7.1. By Theorem 9.2, the map sch gives embeddings

K−(g) ↪→ K−(C)W , K−(F(g)int) ↪→ K−(Cint)
W .

Further, we have identified the image of K−(g) (resp., K−(F(g)int)) with the subalgebra spanned by aν
with ν ∈ P+(g) (resp., ν ∈ P+(g)int).

One has a0 = 1; we denote by ev0 : K−(C)→ Z the counit map given by ev0(aν)= δ0,ν for ν ∈ P+(g).
One has

K−(C)= K−(Cint)
W

⊕ K−(Cnint)
W ,

where Cnint consists of modules with weights that lie in P(g) and are nonintegral. For b ∈ K−(C)W and
b′

∈ K−(Cnint)
W one has bb′

= ev0(b)b′, so K−(Cnint) is an ideal of K−(C). By Corollary 9.8, for x ̸= 0,
dsx(K−(Cnint)

W )= 0 and the image of dsx lies in K−(Cint). This reduces a study of K−(C) to a study of
K−(Cint).

9.7.2. The ring K−(F(g)int)⊗Z Z[
√

−1] can be realized in the following way.
Let V be a free Z[

√
−1]-module with a basis {vi | i ∈ Z \ {0}}. Denote by

∧
V the external ring of V .

This is a N-graded supercommutative ring; we consider (
∧

V )spoil, which has

(∧
V

)spoil
=

∞⊕
i=0

∧2i V ⊕

∞⊕
i=0

∧2i+1V ε

where, we recall, ε is a formal variable satisfying ε2
= 2ε = 0. This is an N-graded commutative and

supercommutative ring (which means that (
∧

V )spoil
i (

∧
V )spoil

j = 0 if i, j are odd).
We denote by 4int the set of finite multisets {ai }

s
i=1 with ai ∈ Z\{0} and ai +a j ̸= 0 for all 1 ≤ i, j ≤ s.

For A ∈ 4int we denote by (
∧

V )spoil
A the span of the elements vi1 ∧ vi2 ∧ . . .∧ vi p (resp., the elements

εvi1 ∧ vi2 ∧ . . .∧ vi p ) with Core({i1, . . . , i p}) = A if A has an even (resp., an odd) cardinality. Clearly,
this gives a grading (∧

V
)spoil

A

(∧
V

)spoil
B ⊆

(∧
V

)spoil
A⋄B
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and (
∧

V )spoil
∅ is the subring of (

∧
V )spoil generated by vi ∧v−i . In other words

(∧
V

)spoil is a 4int-graded
algebra. For each k we consider the ideal

Jk :=

∞∑
i=k+1

(∧
V

)spoil
i .

Recall that the map λ 7→ Nonzero(λ) gives a one-to-one correspondence between P+(g)int and the
subsets S ⊂ Z\{0} of cardinality at most n. The weights in I0 correspond to the subsets of even cardinality;
the zero weight corresponds to ∅. We define

ψ : K−(F(g)int)⊗Z Z[
√

−1] −→∼ (
∧

V )spoil/Jn

by setting, for λ ∈ Ii ∩ P+(g),

ψ(aλ) := εi t (λ)
|t (λ)|

· vλ,

where vλ := vi1 ∧ vi2 ∧ . . .∧ vik , and Nonzero(λ)= {i1 > i2 > . . . > ik}.
Combining Corollary 9.5, Proposition 9.1 and Corollary 9.7 we obtain:

Theorem 9.3. (1) The map ψ : K−(F(g)int)⊗Z Z[
√

−1] −→∼
(∧

V
)spoil

/Jn is an isomorphism of 4int-
graded spoiled super rings.

(2) In particular, for A ∈ 4int, ψ restricts to an isomorphism of vector spaces ψA : K−(F(g)A) →(∧
V

)spoil
A /Jn .

(3) The map dss : R(qn)int → R(qn−s)int corresponds to the natural quotient map(∧
V

)spoil
/Jn →

(∧
V

)spoil
/Jn−s

(one has Jn−s ⊃ Jn for s > 0).

Proof. It is clear that ψ is an isomorphism of Z-modules which preserves the 4-grading. The result on
dss is also clear from the map. Thus it remains to check that ψ respects multiplication.

Let λ,µ∈ P+(g) with λ,µ∈ I0; the case when either is in I1 is much easier. If aλaµ= 0 then the result
is clear, thus we assume that aλaµ ̸= 0. In this case, there exists unique elements λ′

∈ Wλ and µ′
∈ Wµ

such that λ′
+µ′ is dominant, and thus we have aλaµ = (−1)i aλ′+µ′ , where Eλ′ ⊗ Eµ′ =5i Eλ′+µ′ . We

may write Tλ′+µ′ = (−1) j Tλ′ Tµ′ for some j , and it is clear that this j also satisfies vλ′+µ′ = (−1) jvλvµ.
Then as in the proof of Proposition 9.1, we have Eλ′ ⊗ Eµ′ =5 j+ℓEλ′+µ′ , where

(−1)ℓ =
t (λ)t (µ)
t (λ′+µ′)

∈ {±1}.

Therefore aλaµ = (−1) j t (λ)t (µ)
t (λ′+µ′)

aλ′+µ′ . Therefore

ψ(aλaµ)= (−1) j t (λ)t (µ)
t (λ′ +µ′

(
t (λ′

+µ′)

|t (λ′ +µ′)|
vλ′+µ′

)
=

(
t (λ)
|t (λ)|

vλ

) (
t (µ)
|t (µ)|

vµ

)
where we have used that |t (λ′

+µ′)| = |t (λ)||t (µ)|. □
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For A ∈4int, we define

A :=


#{i : ai > 0}−#{i |ai < 0}

2
mod 2 for |A| even,

#{i : ai > 0}−#{i |ai < 0}−1
2

mod 2 for |A| odd.

Note that we have A ⋄ B = A + B if |A| or |B| is even.

Lemma 9.3. The grading

K−(F(g)int)0 =

⊕
A=0

K−(F(g)A), K−(F(g)int)1 =

⊕
A=1

K−(F(g)A)

defines another super ring structure on K−(F(g)int); note that it does not have the structure of a spoiled
super ring under this grading.

Proof. This follows from the fact that K−(F(g)int) is 4int-graded, and K−(F(g)A)K−(F(g)B)= 0 if |A|

and |B| are odd. □

Corollary 9.10. If |A| is even, then t (λ) ∈ R+, and thus the isomorphism ψA admits an integral structure.
In particular we have an isomorphism of graded rings:⊕

A=0

K−(F(g)A)→

⊕
A=0

(∧
V Z

)spoil
A .

Here V Z denotes the free Z-module with basis {vi : i ∈ Z \ {0}}.
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Combing a hedgehog over a field
Alexey Ananyevskiy and Marc Levine

We investigate the question of the existence of a nonvanishing section of the tangent bundle on a smooth
affine quadric hypersurface Qo over a given perfect field k. If Qo admits a k-rational point, we give a
number of necessary and sufficient conditions for such existence. We apply these conditions in a number
of examples, including the case of the algebraic n-sphere over k, Sn

k ⊂ An+1
k , defined by the equation∑n+1

i=1 x2
i = 1.

1. Introduction

It is an elementary but nonetheless beautiful result found in nearly all introductory courses in differential
topology that, for all n ≥ 1, the tangent bundle TS2n does not admit a nonvanishing section. One proof
uses the Gauss–Bonnet theorem to show that Euler class of TS2n is nonzero by computing its degree
as the Euler characteristic of S2n, namely 2, while the existence of a nonvanishing section would force
the Euler class to vanish. For the odd-dimensional case, the Euler characteristic vanishes, and hence
the Euler class vanishes as well; one can also easily write down explicitly a nonvanishing section
of TS2n+1 .

Writing the n-sphere Sn as the hypersurface in Rn+1 defined by the equation
∑n+1

i=1 x2
i = 1, one can

ask the corresponding question in the algebro-geometric setting: let k be a field of characteristic ̸= 2 and
let Sn

k ⊆ An+1
k be the hypersurface defined by the equation

∑n+1
i=1 x2

i = 1. Does the tangent bundle TSn
k

admit a nonvanishing section? (To avoid any possible misunderstanding, for E→ X a vector bundle on a
k-variety X , a section s : X→ E is said to be nonvanishing if the scheme-theoretic intersection of s(X)
with the zero-section of E is the empty scheme. Equivalently, letting k̄ denote the algebraic closure of k,
the set of k̄ points x of X with s(x)= 0 is empty.)

This question for S2
Qp

was originally raised by Umberto Zannier (see Remark 1.7 below for his original
formulation). He showed that S2

Qp
admits a nonvanishing vector field for odd p and he asked if there is a

nonvanishing vector field on the 2-sphere over Q2, motivating our interest in the question of the existence
of nonvanishing vector fields on Sn

k for arbitrary n and k.
We give an essentially complete answer to this question; if k is perfect, this is in fact a special case of

the more general Theorem 1.4 about smooth affine quadric hypersurfaces.

This paper is part of a project that has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement no. 832833).
MSC2020: 11E81, 14J60.
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Theorem 1.1 (see Theorem 4.1 (1), (3) and Remark 1.10). Let k be a field of characteristic ̸= 2.

(1) If n is odd, then TSn
k

admits a nonvanishing section.

(2) If n > 0 is even, then TSn
k

admits a nonvanishing section if and only if −1 is in the subgroup of k×

generated by the nonzero values of the function
∑n+1

i=1 x2
i on kn+1.

As the condition in (2) is not very explicit, we reformulate this as follows.

Corollary 1.2 (Corollary 4.3). Let k be a field of characteristic ̸= 2. For n > 0 even, TSn
k

admits a
nonvanishing section if and only if the equation

2n+1∑
i=1

x2
i =−1

has a solution with the xi ∈ k.

Examples 1.3. Let Sn
k be as above.

(1) Suppose that char k = p > 2. Then TSn
k

has a nonvanishing section for all n > 0.

(2) Suppose k contains a p-adic field Qp. Then TSn
k

has a nonvanishing section for all n > 0.

(3) Suppose that k is a number field, and take n > 0 to be even. Then TSn
k

has a nonvanishing section if
and only if k has no real embeddings.

To see this we apply Corollary 1.2. For (1), since Fp ⊆ k, it suffices to take k = Fp. Since every
element x ∈ F×p is a sum of two squares [Lam 2005, Proposition II.3.4], the condition of Corollary 1.2 is
satisfied for all n ≥ 1. See also Remark 1.10 for an explicit nonvanishing section.

For (2), we reduce as above to the case k =Qp. If p is odd, then by Hensel’s lemma, each solution to∑2n+1
i=1 x2

i =−1 in Fp lifts to a solution in Zp, so the criterion is satisfied. For p = 2, the class of a unit u
in Z2 modulo squares is given by the image of u in (Z/8)×, so it suffices to write 7 as the sum of ≤ 5
squares in Z2 and it turns out that four squares are enough: 7= 1+1+1+4. For those more intrinsically
minded, one has the general result that every nondegenerate quadratic form φ in at least five variables
over a local field has a nontrivial zero [Lam 2005, Theorem VI.2.12], which we apply to φ =

∑5
i=1 x2

i .
For (3), it is clear that the equation

∑2n+1
i=1 x2

i =−1 has no solution in k2n+1 if k admits a real embedding.
Conversely, we may use the Hasse–Minkowski principle for quadratic forms (see, e.g., [Lam 2005, Hasse–
Minkowski principle VI.3.1]) to see that

∑4
i=1 x2

i = −1 has a solution in k if k is a purely imaginary
number field. Indeed, it suffices to show that

∑4
i=1 x2

i =−1 has a solution in kv for every place v of k.
This is clear if v is an infinite place, as kv = C by assumption. If v is a finite place, then kv ⊃ Qp for
some prime p, and we have just seen that

∑4
i=1 x2

i =−1 has a solution in Qp for every prime p.

One can also ask about a general smooth affine quadric Qo
⊆An+1

k , with k a field of characteristic ̸= 2.
Since every quadratic form over k can be diagonalized, we may assume that Qo is defined by an equation
of the form q = 1, where q =

∑n+1
i=1 ai x2

i ∈ k[x1, . . . , xn+1], with
∏

i ai ̸= 0. Here one has a result of
essentially the same form as for Sn

k , with the extra condition that, for even n, Qo(k) should be nonempty,
that is, q = 1 has a solution in k.
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Let D(q) be the set of nonzero values of q on kn+1, let D(q)2 = {a · b | a, b ∈ D(q)} ⊆ k×, and let
[D(q)], [D(q)2] be the subgroups of k× generated by D(q), D(q)2, respectively.

Theorem 1.4 (Theorem 4.1 (1), (3)). Let k be a perfect field of characteristic ̸= 2, let q =
∑n+1

i=1 ai x2
i

with a1, . . . , an+1 ∈ k× and let Qo
⊆ An+1

k be the affine quadric hypersurface q = 1.

(1) If n is odd, then TQo has a nonvanishing section.

(2) Suppose Qo(k) ̸=∅. If n> 0 is even, then TQo has a nonvanishing section if and only if −1∈ [D(q)].

If Qo(k)=∅ and n is even, we only have a necessary condition for the existence of a nonvanishing
section of TQo .

Theorem 1.5 (Theorem 4.1 (2)). Let k, q and Qo be as above. If n is even and TQo has a nonvanishing
section, then −

∏n+1
i=1 ai ∈ [D(q)2].

Since ai ∈ D(q) for each i , the above condition is the same as asking for −ai to be in [D(q)2] for
some i . Note that Qo(k) ̸=∅ if and only if 1 ∈ D(q), so if Qo(k) ̸=∅, we have [D(q)2] = [D(q)], and
−1 ∈ [D(q)] if and only if −

∏n+1
i=1 ai ∈ [D(q)].

Here is a version of Examples 1.3 for general q .

Corollary 1.6 (Corollaries 4.5, 4.7, and 4.9). Let k, q and Qo be as in Theorem 1.4.

(1) Let k = Fpm with p > 2. Then TQo has a nonvanishing section for all n > 0.

(2) Suppose k is a non-Archimedean local field of characteristic zero, the perfection of a local field of
characteristic p> 2, or the perfection of a function field of a curve over a finite field of characteristic p> 2.
Then for n odd, or n ≥ 4 even, TQo has a nonvanishing section. If n = 2, then TQo has a nonvanishing
section if Qo(k) ̸=∅.

(3) Suppose k is a number field, Qo(k) ̸=∅ and n > 0 is even. Then TQo has a nonvanishing section if
and only if the equation q = 0 has a nontrivial solution in kv for every real place v of k. Equivalently, for
each real embedding σ : k ↪→ R, σ(ai ) < 0 for some i . TQo also has a nonvanishing section if n is odd.

(4) Let k be a perfect field of cohomological dimension ≤ 2. Suppose that n is odd, or that n > 0 is even
and Qo(k) ̸=∅. Then TQo has a nonvanishing section.

Remark 1.7 (unimodular rows and unimodular matrices). Let q =
∑n+1

i=1 ai x2
i ∈ k[x1, . . . , xn+1] be a

quadratic form, defining Qo
⊆ An+1

k as V (q − 1), and let R be the coordinate ring

R := k[x1, . . . , xn+1]/(q − 1).

We are assuming that q is nondegenerate, that is,
∏

i ai ̸= 0, and that n ≥ 1.
Let ∇(q) denote the gradient

∇(q) := (∂q/∂x1, . . . , ∂q/∂xn+1)

and let
∇̃(q) := (a1x1, . . . , an+1xn+1),

so 2∇̃(q)=∇(q).
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We first assume that 2 is invertible in k, so we can rewrite the tangent-normal sequence for Qo
⊆ An+1

k

using ∇̃(q), as
0→ TQo →On+1

Qo
∇̃(q)t
−−−→OQo → 0, (1.8)

where ∇̃(q)t ∈ Mn+1×1(R) is the transpose of ∇̃(q). Since Qo is affine, we can rephrase everything in
terms of R-modules, giving the exact sequence

0→ TQo → Rn+1 ∇̃(q)
t

−−−→ R→ 0,

with TQo the R-module of global sections of TQo . Since

(x1, . . . , xn+1) · ∇̃(q)= 1,

we may split the surjection by (x1, . . . , xn+1) : R→ Rn+1, exhibiting TQo as a stably free R-module, and
showing that (x1, . . . , xn+1) is a unimodular row, i.e., (x1, . . . , xn+1)R is the unit ideal.

It is straightforward to see that the stably free R-module TQo is free if and only if there is a matrix
M ∈ GLn+1(R) with the first row (x1, . . . , xn+1); by dividing the last row of M by det M , we may in
fact take M to have det M = 1, so TQo is a free R-module if and only if there is a unimodular matrix M
over R with the first row (x1, . . . , xn+1).

More generally, we may take k to be an arbitrary commutative ring (even with 2 not a unit), and let
(ai j )1≤i, j≤n+1 ∈ GLn+1(k) be an invertible symmetric matrix. Let

q :=
n+1∑

i, j=1

ai j xi x j , R := k[x1, . . . , xn+1]/(q − 1), Qo
:= Spec R,

∇̃(q) :=
(∑

j

a1 j x j ,
∑

j

a2 j x j , . . . ,
∑

j

an+1 j x j

)
.

Then the map Rn+1 ∇̃(q)
t

−−−→R is surjective, and we may define a stably free R-module TQo/k by the exact
sequence

0→ TQo/k→ Rn+1 ∇̃(q)
t

−−−→ R→ 0. (1.9)

Since (x1, . . . , xn+1) · ∇̃(q) = 1 ∈ R, (x1, . . . , xn+1) is a unimodular row over R, and the R-module
TQo/k is free if and only if there is a matrix M ∈ SLn+1(R) with first row (x1, . . . , xn+1). Furthermore,
if 2 ∈ k×, then Qo is smooth over k, and TQo/k is the R-module of global sections of the relative tangent
bundle TQo/k→ Qo of Qo over Spec k.

Note that, for n=2 and 2∈k×, the existence of a unimodular matrix over R with the first row (x1, x2, x3)

is equivalent to the existence of a nonvanishing section of TQo/k . Indeed, TQo/k admits a nonvanishing
section if and only if we can write TQo/k ∼= R⊕ P, with P a rank one projective R-module, which yields
the isomorphism

∧2
R TQo/k ∼= P. The exact sequence (1.9) gives an isomorphism

∧2
R TQo/k ∼= R, so

P ∼= R and thus TQo/k ∼= R2. This gives the existence of M ∈ SL3(R) with first row (x1, x2, x3).
The original form of Zannier’s question was in the following terms: taking q := x2

+y2
+z2
∈ k[x, y, z],

for which fields k is the unimodular row (x, y, z) over R the first row in a unimodular matrix over R? He
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showed this was the case for k =Qp, p odd, and asked about k =Q2. Note that one can just as well ask
the question for k an arbitrary commutative ring and general q as above; our results only give a criterion
for a positive answer to this question if k is a perfect field with 2 invertible and n = 2. Noting our positive
answer for k =Q2, Zannier asked in a recent private communication about the case k = Z2.

Remark 1.10 (explicit sections). (1) If n is odd or if the quadratic form q :=
∑n+1

i=1 ai x2
i is isotropic over

k (i.e., q = 0 has a nontrivial solution in k), one can write down explicit nonvanishing sections of TQo .
For n odd, the tangent-normal sequence for Qo

⊆ An+1
k ,

0→ TQo →On+1
Qo

(2a1x1,...,2an+1xn+1)
t

−−−−−−−−−−−−→OQo → 0,

says a section s of TQo is given by an (n+1)-tuple of regular functions (s1, s2, . . . , sn+1) with
n+1∑
i=1

ai xi si = 0.

One can take
s = (a2x2,−a1x1, . . . , an+1xn+1,−anxn),

which is clearly nonvanishing.
This is a special case of the following general result. Let A be a commutative ring, let (a1, . . . , a2m)

be a unimodular row in A2m (i.e., a1, . . . , a2m generate the unit ideal in A), and let M be the stably free
A-module defined by the exactness of the sequence

0→ M→ A2m (a1,...,a2m)
t

−−−−−−→ A→ 0.

Then M admits the free rank one summand defined by

0→ A
(−a2,a1,...,−a2m ,a2m−1)
−−−−−−−−−−−−−→ M ⊂ A2m .

Now take n even and suppose q is isotropic. Then after a k-linear change of coordinates and change of
notation, we may assume that

q = 2x1x2+

n+1∑
i=3

ai x2
i

(see, e.g., [Lam 2005, Theorem I.3.4]). In this case, the tangent-normal sequence for Qo
⊆ An+1

k is

0→ TQo →On+1
Qo

(2x2,2x1,2a3x3,...,2an+1xn+1)
t

−−−−−−−−−−−−−−−−→OQo → 0.
Letting

s = (0, a3x3,−x1, a5x5,−a4x4, . . . , an+1xn+1,−anxn)

gives a section of TQo with s = 0 given by Qo
∩ (x1 = x3 = · · · = xn+1 = 0), which is clearly empty.

In particular, let k be a field of characteristic p > 2. In a finite field, −1 is a sum of two squares [Lam
2005, Proposition II.3.4], whence the quadratic form x2

1 + x2
2 + · · ·+ x2

n+1 is isotropic over k provided
that n ≥ 2. Hence the tangent bundle TSn

k
to the algebraic n-sphere over k admits a nonvanishing section

for every n ≥ 1.
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(2) Our main results for even n and q anisotropic only give criteria for the existence of a nonvanishing
section, without giving an explicit formula. In the case that Zannier had asked about originally, S2

Q2
, Peter

Müller (private communication, Universität Würzburg, June 27, 2024), noting our existence result and
following a suggestion of Zannier, found an explicit trivialization of TS2

Q2
. We quote from his private

communication:

Indeed, some sophisticated computations eventually gave an explicit example over Q2 (in fact
even over Q(

√
−7)), . . .

Here is Müller’s example. Let R = Q2[x, y, z]/(x2
+ y2
+ z2
− 1), the coordinate ring of S2

Q2
. The

polynomial T 2
− T + 2 has two roots in Z2, exactly one of which, which we denote by ω, is a unit in Z2.

In particular, 2−ω is also a unit in Z2. Müller gives his example in the form of a 3× 3 matrix over R
with determinant 2−ω and first row (x, y, z). The explicit matrix is x y z

−y+z+1 (1−ω)x+y+(1+ω)z+ω −x−y+2z+(1−ω)
ωy+(2−ω)z (1−2ω)x+(1+ω)y+3z+1 −2x+(2−ω)z−ω

 .

Let λi be the dot product of (x, y, z) with the i-th row. Noting that (x, y, z) · (x, y, z)= 1 in R, this gives
the following two independent nonvanishing sections of TS2

Q2
:

s1(x, y, z)= (−y+ z+ 1, (1−ω)x + y+ (1+ω)z+ω,−x − y+ 2z+ (1−ω))− λ2 · (x, y, z),

s2(x, y, z)= (ωy+ (2−ω)z, (1− 2ω)x + (1+ω)y+ 3z+ 1,−2x + (2−ω)z−ω)− λ3 · (x, y, z).

Müller notes that this also works over Q(
√
−7), where we take ω to be either of the two roots of T 2

−T+2
in Q(

√
−7).

In addition, Müller’s example gives a positive answer to Zannier’s question over Z2 instead of Q2, just
divide the last row by the determinant 2−ω ∈ Z×2 .

Remark 1.11 (some nonexamples). Suppose n is even. We have already seen in Remark 1.10 that TQo

has a nonvanishing section if q is isotropic over k. On the other hand, q being isotropic over k implies that
Qo has a k-rational point [Lam 2005, Theorem I.3.4(3)], so if Qo(k)=∅, then q is anisotropic over k
and we do not have any explicit method for finding a (possible) nonvanishing section of TQo . Moreover,
Theorem 1.5 is our only result that considers the case n even and Qo(k) = ∅, and it only gives us a
necessary condition for TQo to have a nonvanishing section. Here is a series of examples that are not
covered by any of our results.

Take k = Qp with p > 2. Let u ∈ Z×p be a nonsquare modulo p, and let q = ux2
1 + px2

2 − upx2
3 . It

follows from [Lam 2005, Theorem VI.2.2] that q − x2
0 is anisotropic over Qp; hence Qo(Qp)=∅ and

also q is anisotropic over Qp. Moreover −(u · p · (−up)) = 1 in Q×p /Q
×2
p , so −(u · p · (−up)) is in

[D(q)2]; hence the necessary condition in Theorem 1.5 is satisfied. We do not know whether TQo has a
nonvanishing section in any of these cases.

One final nonexample. Take k = R, q =
∑n+1

i=1 −x2
i , with n even, and let R be the coordinate ring

of Qo. Then we have Qo(R)=∅. By a theorem of Ojanguren, Parimala and Sridharan [Ojanguren et al.
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1986, Theorem 3.2], there is an M ∈ SLn+1(R) with

(x1, . . . , xn+1)= (1, 0, . . . , 0)M

in other words, (x1, . . . , xn+1) is the first row of the unimodular matrix M . Thus the R-module TQo is
free, so TQo is a trivial vector bundle over Qo, and hence admits a nonvanishing section. Our results only
yield the necessary condition

−(−1)n+1
= 1 ∈ |D(q)2|,

which (fortunately!) is true in this case.

The main idea behind the proofs of our results is quite close to the case of the real spheres. We
have already disposed of the case of odd n in Remark 1.10. For n > 0 even, we replace the Euler class
etop(TSn ) ∈ H n(Sn,Z) with the Euler class e(TQo) in the Chow–Witt group C̃Hn

(Qo). For a smooth
k-variety X and a rank-r vector bundle E on X , one has an Euler class e(E) in the (twisted) Chow–
Witt group C̃Hn

(X, det−1(E)). In our case, the tangent-normal sequence for TQo gives a canonical
isomorphism det TQo ∼=OQo , which induces an isomorphism C̃Hn

(Qo, det−1 TQo)∼= C̃Hn
(Qo) with the

untwisted version of the Chow–Witt group, giving us our Euler class e(TQo) ∈ C̃Hn
(Qo). A fundamental

result of Morel [2012, Section 8.2] says that for a smooth affine k-scheme X of dimension n over a
perfect field k and a rank n vector bundle E over X , E admits a nonvanishing section if and only if the
Euler class e(E) vanishes (in this form, the result also relies on work of Asok and Fasel [2016] and Asok,
Hoyois and Wendt [Asok et al. 2017]; see Theorem 2.2 for the discussion).

Since Qo is not proper over k, we do not have a nice analog of the Gauss–Bonnet theorem for Qo, so
we pass to its projective closure Q ⊆ Pn+1, defined by the equation

∑n+1
i=1 ai x2

i = x2
0 , and let Q∞ ⊆ Q be

the hyperplane section defined by x0 = 0.
Let GW(k) denote the Grothendieck–Witt ring of (virtual) regular quadratic forms over k. For

p : X→ Spec k a smooth projective variety, we have the pushforward map

p∗ : C̃H0(X)→ C̃H0(Spec k)= GW(k),

which we denote by degGW : C̃H0(X)→GW(k); we call this the quadratic degree map. X has a quadratic
Euler characteristic χ(X/k)∈GW(k) and we have a quadratic Gauss–Bonnet theorem [Déglise et al. 2021,
Theorem 4.6.1; Levine and Raksit 2020, Theorem 5.3]: letting TX be the tangent bundle of X , we have

degGW (e(TX ))= χ(X/k),

so we are all set up to argue as in differential topology.
Getting back to our quadrics, let us first assume that Qo has a k-rational point. We show in Section 2

that e(TQo)= 0 if and only if χ(Q/k) is in the subgroup degGW (C̃H0(Q∞))⊆ GW(k), and we have an
explicit expression for χ(Q/k):

χ(Q/k)=
〈
2, 2

∏
i

ai

〉
+

n
2
⟨1,−1⟩,

where ⟨a, b⟩ is the quadratic form ax2
+ by2, and m · ⟨a, b⟩ is the quadratic form

∑m
i=1 ax2

i + by2
i .
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Putting this together, we see that TQo admits a nonvanishing section if and only if
〈
2, 2

∏
i ai

〉
+

n
2 ⟨1,−1⟩

is in degGW (C̃H0(Q∞)) ⊆ GW(k). We conclude Section 2 by using this criterion to handle the cases
discussed in Examples 1.3 (1), (2) above.

The next step is to use the theory of quadratic forms to rephrase the condition〈
2, 2

∏
i

ai

〉
+

n
2
⟨1,−1⟩ ∈ degGW (C̃H0(Q∞))⊆ GW(k)

in terms of the subgroups [D(q)] and [D(q)2]. This is done in Section 3, relying on properties of
Scharlau’s transfer, Knebusch’s norm principle and basic facts about Pfister forms and Pfister neighbors.
We apply these tools in Section 4 to give our main results, which yield criteria that are much easier to
apply than the one derived in Section 2. We conclude by using this to compute the remaining examples
described above; the case in which Qo does not have a k-rational point is trickier to handle, and we are
only able to arrive at the necessary condition stated in Theorem 1.5.

Throughout the paper we employ the following notation:

k a perfect field with char k ̸= 2
Smk the category of smooth, separated, finite-type k-schemes
TX the tangent bundle of X ∈ Smk

X (F) the set of rational points of X F for X ∈ Smk and a field extension F/k
GW(F) the Grothendieck–Witt ring of (virtual) regular quadratic forms over a field F
W(F) the Witt ring, the quotient of GW(F) by the hyperbolic forms
GI(F) the ideal in GW(F) generated by the even-dimensional forms
I (F) the image in W(F) of GI(F)
F× the multiplicative group of nonzero elements of the field F
⟨a1, a2, . . . , an⟩ the quadratic form a1x2

1 + a2x2
2 + · · ·+ anx2

n

2. Recollections on Chow–Witt groups and a computational criterion

Definition 2.1. Assume k to be a perfect field. We will use the Chow–Witt groups, also known as Chow
groups of oriented cycles, that were introduced in [Barge and Morel 2000]. These groups provide refined
cohomological obstructions to the existence of nonvanishing sections of algebraic vector bundles (see,
e.g., [Asok and Fasel 2015; 2023]). We refer the reader to the expositions in [Fasel 2020; Déglise 2023;
Asok and Fasel 2016, Sections 2, 3] for the properties of these groups that we list below.

We recall from [Morel 2012, Chapter 2] the Milnor-Witt K -theory sheaves KMW
n , n ∈ Z. These are

Nisnevich sheaves of abelian groups on Smk , with products KMW
n ×KMW

m → KMW
n+m making the graded

object KMW
∗
:=

⊕
n∈Z KMW

n into a sheaf of associative, unital, graded rings on Smk . Given X ∈ Smk and a
line bundle L on X , we have the L-twisted version KMW

n (L), giving a Nisnevich sheaf on Smk/X . Letting
GW denote the Nisnevich sheaf of Grothendieck–Witt rings, there is a canonical isomorphism KMW

0
∼=GW .

For a field F, and L a dimension one F-vector space, we write K MW
n (L)(F) for KMW

n (L)(Spec F).
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For a smooth variety X over k, a line bundle L over X and an integer n ≥ 0, the Chow–Witt group
C̃Hn

(X, L) is defined as
C̃Hn

(X, L)= H n
Zar(X;K

MW
n (L)).

We will also use the homological notation with

C̃Hn(X, L)= C̃Hd−n
(X, L ⊗ωX ),

where d = dim X and ωX is the canonical bundle of X . We put

C̃Hn
(X) := C̃Hn

(X,OX ), C̃Hn(X) := C̃Hn(X,OX ).

Chow–Witt groups have the following properties that we will use below.

(1) C̃Hn
(X, L) is canonically identified by [Morel 2012, Theorem 5.47] with the n-th cohomology group

of the Rost–Schmid complex⊕
x∈X (0)

K MW
n (L x⊗ωx/X )(k(x))→

⊕
x∈X (1)

K MW
n−1 (L x⊗ωx/X )(k(x))→· · ·→

⊕
x∈X (d)

K MW
n−d (L x⊗ωx/X )(k(x)),

where the sums are taken over all the points of X of the respective codimension, L x is the restriction of L
to x , ωx/X is the determinant of the normal bundle for the embedding x→ X and d = dim X .

(2) For a line bundle L ′ over X there is a canonical isomorphism [Morel 2012, Remark 5.13]

C̃Hn
(X, L ⊗ (L ′)⊗2)∼= C̃Hn

(X, L).

(3) For a morphism f : Y → X of smooth varieties over k one has a functorial pullback homomorphism

f ∗ : C̃Hn
(X, L)→ C̃Hn

(Y, f ∗L)

given by the pullback in the cohomology of sheaves. Further, if f is proper then one has a functorial
pushforward homomorphism [Fasel 2020, Section 2.3]

f∗ : C̃Hn(Y, f ∗L)→ C̃Hn(X, L)

induced by the transfers on the Rost–Schmid complexes. For a closed embedding i : Z→ X of smooth
varieties, with j : X \ Z→ X the open embedding of the complement, the localization sequence

C̃Hn(Z , i∗L)
i∗
−→ C̃Hn(X, L)

j∗
−→ C̃Hn(X \ Z , j∗L)

is exact [Fasel 2020, Section 2.2].

(4) Let F/k be a field extension of finite degree. Since k is perfect, F is separable over k, so the field
trace trF

k : F→ k is a nonzero k-linear functional. This gives rise to the Scharlau transfer

(trF
k )∗ : GW(F)→ GW(k),

an additive homomorphism, which is given on generators ⟨a⟩ ∈ GW(F) by defining (trF
k )∗(⟨a⟩) to be the

quadratic form x 7→ trF
k (ax2) on the k-vector space F. The pushforward homomorphism in Chow–Witt
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groups
π∗ : C̃H0(Spec F)→ C̃H0(Spec k)

for the morphism π :Spec F→Spec k coincides by [Fasel 2020, Example 1.23] with the Scharlau transfer
(trF

k )∗ under the identifications

C̃H0(Spec F)= K MW
0 (F)∼= GW(F), C̃H0(Spec k)= K MW

0 (k)∼= GW(k).

(5) For a rank-n vector bundle E over a smooth variety X over k one has an Euler class

e(E)= s∗s∗(1X ) ∈ C̃Hn
(X, (det E)∨),

where s : X→ E is the zero section. This class is natural with respect to pullbacks [Asok and Fasel 2016,
Proposition 3.1.1].

(6) Let E be a rank n vector bundle over a smooth affine variety X of dimension n over k. Suppose
that det E ∼=OX . Then e(E)= 0 if and only if E has a nonvanishing section. For n = 1 there is nothing
to prove, for n = 2 this was shown in [Barge and Morel 2000, Theorem 2.2] and for general n this
follows from the results of [Morel 2012, Chapter 8; Asok et al. 2017, Theorem 1; Asok and Fasel 2016,
Theorem 5.6]; see Theorem 2.2 below for the details.

Theorem 2.2 (Barge–Morel, Morel, Asok–Fasel, Asok–Hoyois–Wendt). Let k be a perfect field and E
be a rank n vector bundle over a smooth affine variety X of dimension n over k. Suppose that det E ∼=OX .
Then E admits a nonvanishing section if and only if e(E)= 0.

Proof. If n=1, there is nothing to prove, so assume n≥2. It follows from [Morel 2012, Theorem 8.14] that
E admits a nonvanishing section if and only if a certain obstruction-theoretic Euler class eob(E)∈ C̃Hn

(X)
vanishes. Note that in that work it was assumed n ≥ 4 because of the assumption r ̸= 2 in [Morel 2012,
Theorem 8.1 (3)], which can be removed using [Asok et al. 2017, Theorem 1]. It follows from [Asok and
Fasel 2016, Theorem 5.6] that eob(E)= 0 if and only if e(E)= 0, whence the claim. □

Remark 2.3. We expect that Theorem 2.2 generalizes to vector bundles with possibly nontrivial determi-
nant and to general fields, removing the assumptions det E ∼=OX and k being perfect.

Remark 2.4. Let X be a smooth hypersurface in An+1
k . Since k[x1, . . . , xn+1] is a UFD, the ideal of X is

principal, IX = (F). We have the tangent-normal sequence describing the tangent bundle TX as

0→ TX →On+1
X

∇F
−−→OX → 0,

where ∇F := (∂F/∂x1, . . . , ∂F/∂xn+1) is the usual gradient of F. Since X is affine, this sequence splits,
in particular, TX is stably trivial and det TX ∼=OX , so Theorem 2.2 is applicable to TX .

Definition 2.5. Let X be a smooth proper variety over a perfect field k with the structure morphism
π : X→ Spec k. Then the quadratic degree map

degGW := π∗ : C̃H0(X)→ C̃H0(Spec k)∼= GW(k)

is the pushforward homomorphism for the structure morphism.
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Lemma 2.6. Let Q be a smooth projective quadric over a perfect field k. Suppose that Q(k) ̸=∅. Then
the quadratic degree map

degGW : C̃H0(Q)→ GW(k)

is an isomorphism.

Proof. Let n = dim Q and consider the commutative square

Y

f
��

g
// Q

π
��

Pn p
// Spec k

where Q
g
←− Y

f
−→ Pn is the resolution of the birational morphism Q 99K Pn given by the projection from

a rational point on Q. Note that all maps in this square are proper. This gives a commutative diagram of
pushforward homomorphisms:

C̃H0(Y )

f∗
��

g∗
// C̃H0(Q)

π∗
��

C̃H0(P
n)

p∗
// GW(k)

It follows from the birational invariance of C̃H0 [Feld 2022, Corollary 2.2.11] that f∗ and g∗ are
isomorphisms. Recall that ωPn =OPn (−n− 1), whence

C̃H0(P
n)= C̃Hn

(Pn,O(−n− 1))∼=
{

C̃Hn
(Pn), n is odd,

C̃Hn
(Pn,OPn (−1)), n is even.

The homomorphism p∗ is an isomorphism by [Fasel 2013, Corollary 11.8]. Thus π∗ = degGW is an
isomorphism as well. □

Definition 2.7. A smooth projective scheme X over k has a quadratic Euler characteristic χ(X/k) ∈
GW(k), arising from the categorical Euler characteristic of the dualizable object 6∞

P1 X+ in the motivic
stable homotopy category SH(k), together with Morel’s theorem [2004, Theorem 6.4.1, Remark 6.4.2]
identifying the endomorphisms of the unit in SH(k) with GW(k) (see [Hoyois 2014, Section 1; Levine
2020, Section 2.1] for details). The motivic Gauss–Bonnet theorem [Déglise et al. 2021, Theorem 4.6.1;
Levine and Raksit 2020, Theorem 5.3] gives the identity

χ(X/k)= degGW (e(TX )) ∈ GW(k). (2.8)

Theorem 2.9. Let Qo be the affine quadric over a perfect field k given by the equation

a1x2
1 + a2x2

2 + · · ·+ an+1x2
n+1 = 1,

with a1, . . . , an+1 ∈ k× and let Q∞ be the projective quadric given by the equation

a1x2
1 + a2x2

2 + · · ·+ an+1x2
n+1 = 0.

Then the following hold:
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(1) If n is odd, then the tangent bundle TQo has a nonvanishing section.

(2) If n > 0 is even and the tangent bundle TQo has a nonvanishing section, then

n
2
· ⟨1,−1⟩+

〈
2, 2 ·

n+1∏
i=1

ai

〉
∈ degGW (C̃H0(Q∞))⊆ GW(k).

(3) If n > 0 is even and Qo has a rational point, then the tangent bundle TQo has a nonvanishing section
if and only if

n
2
· ⟨1,−1⟩+

〈
2, 2 ·

n+1∏
i=1

ai

〉
∈ degGW (C̃H0(Q∞))⊆ GW(k).

Proof. (1) We have settled the case of odd n in Remark 1.10.

(2), (3) Let Q be the compactification of Qo given by the equation

a1x2
1 + a2x2

2 + · · ·+ an+1x2
n+1 = x2

0

in the projective space Pn+1 and let j : Qo
→ Q be the open embedding. Then Q∞ = Q \ j (Qo); let

i : Q∞→ Q be the closed embedding. Consider the localization sequence and the quadratic degree
homomorphisms

C̃H0(Q∞)
i∗
//

degGW &&

C̃H0(Q)

degGW
��

j∗
// C̃H0(Qo)

GW(k)

We have the identifications

C̃H0(Q)= C̃Hn
(Q, ωQ)= C̃Hn

(Q, (det TQ)
∨),

so we consider the Euler class e(TQ) ∈ C̃Hn
(Q, (det TQ)

∨) as being in C̃H0(Q).
Exactness of the localization sequence yields that the Euler class e(TQ0)= e( j∗TQ)= j∗e(TQ) vanishes

if and only if e(TQ) ∈ i∗C̃H0(Q∞). By (2.8) and [Levine 2020, Corollary 12.2] we have

degGW (e(TQ))= χ(Q/k)=
n
2
· ⟨1,−1⟩+

〈
2, 2 ·

n+1∏
i=1

ai

〉
. (2.10)

Suppose that TQo has a nonvanishing section. Then e(TQ0) = 0 and hence e(TQ) is in i∗C̃H0(Q∞).
Taking quadratic degrees and using formula (2.10) we obtain

degGW (e(TQ))=
n
2
· ⟨1,−1⟩+

〈
2, 2 ·

n+1∏
i=1

ai

〉
∈ degGW (i∗C̃H0(Q∞))= degGW (C̃H0(Q∞)),

proving (2) and one implication in (3).
Now suppose that Qo has a rational point and n

2 · ⟨1,−1⟩+
〈
2, 2 ·

∏n+1
i=1 ai

〉
∈ degGW (C̃H0(Q∞)). Note

that degGW (C̃H0(Q∞)) = degGW (i∗C̃H0(Q∞)), whence Lemma 2.6 combined with (2.10) show that
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e(TQ) ∈ i∗C̃H0(Q∞), yielding e(TQo)= 0. Remark 2.4 provides an isomorphism det TQo ∼=OQo , whence
Theorem 2.2 implies that TQo has a nonvanishing section, completing the proof of (3). □

Example 2.11. Let S2
k be the quadric over a field k given by the equation x2

+ y2
+ z2
= 1.

(1) If the equation x2
+ y2
= −1 has a solution over k then the conic Ck ⊆ P2

k given by the equation
x2
+ y2
+ z2
= 0 has a rational point whence degGW (C̃H0(Ck))= GW(k) and Theorem 2.9 yields that

TS2
k

has a nonvanishing section. In particular [Lam 2005, Example XI.2.4(2) and (6)] yield that this holds
for k = Qp the field of p-adic numbers and for k = Fpn a finite field, with p ̸= 2 in both cases. By
base-change, the same follows if k ⊃Qp or k has characteristic p, with p ̸= 2. An explicit nonvanishing
section of TS2

k
in these cases may be found as in Remark 1.10.

(2) Let k =Q2 be the field of dyadic numbers. Then the equation x2
+ y2
=−1 has no solution over k

by, e.g., [Lam 2005, Example XI.2.4(7)] and the conic Ck ⊆ P2
k given by the equation x2

+ y2
+ z2
= 0

has no rational points. However, it is clear that Ck has a rational point over Q2(
√
−2). Moreover, since 2

is equivalent to −14 modulo squares in Q2 (see, e.g., [Lam 2005, Corollary VI.2.24]), Ck has the point
(6+
√
−14, 10,−2+ 3

√
−14) over Q2(

√
2). A straightforward computation shows that

(trQ2(
√
±2)

Q2
)∗(⟨1⟩)= ⟨2,±1⟩,

whence

⟨1,−1⟩+ ⟨2, 2⟩ = (trQ2(
√

2)
Q2

)∗(⟨1⟩)+ (tr
Q2(
√
−2)

Q2
)∗(⟨1⟩) ∈ degGW (C̃H0(Ck))

and Theorem 2.9 (3) yields that TS2
k

has a nonvanishing section. Alternatively, we have

(trQ2(
√

2)
Q2

)∗(⟨1+
√

2⟩)= ⟨−2, 1⟩,
whence

⟨1,−1⟩+ ⟨2, 2⟩ = ⟨2,−2⟩+ ⟨1, 1⟩ = (trQ2(
√

2)
Q2

)∗(⟨1, 1+
√

2⟩) ∈ degGW (C̃H0(Ck)).

Note that Ck does not have a Q2-point, so we cannot apply Remark 1.10. We were not able to produce an
explicit nonvanishing section in this case.

Example 2.12. We can expand on the last example as follows. Let S2n
k be the quadric over a field k

given by the equation
∑2n+1

i=1 x2
i = 1, n > 0, and suppose k contains a p-adic field Qp. Then TS2n

k
has a

nonvanishing section. Indeed, letting C2n
k ⊆ P2n

k be the projective quadric defined by
∑2n+1

i=1 x2
i = 0,

we have just seen that ⟨1,−1⟩+ ⟨2, 2⟩ is in degGW (C̃H0(C2
k ))⊆ GW(k). But for an arbitrary quadratic

extension k(
√

a) of k, we have

(trk(
√

a)
k )∗(⟨

√
a⟩)= ⟨1,−1⟩,

so ⟨1,−1⟩ is in degGW (C̃H0(Q)) for every smooth projective quadric Q over k, and thus we have

n · ⟨1,−1⟩+ ⟨2, 2⟩ ∈ degGW (C̃H0(C2
k ))⊆ degGW (C̃H0(C2n

k ))⊆ GW(k).
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We then apply Theorem 2.9 (3) to conclude that TS2n
k

has a nonvanishing section. Just as in Example 2.11 (1),
we can produce an explicit nonvanishing section if C2n

k has a k-rational point. This is the case if Qp ⊆ k
with p an odd prime or if n ≥ 2 and Q2 ⊆ k (for this last case, see [Lam 2005, Theorem VI.2.12]).

Remark 2.13. Returning to the example of S2
Q2

, Nanjun Yang asked if one could completely compute
C̃H0(S2

Q2
). From the localization exact sequence in the proof of Theorem 2.9, we have the isomorphism

C̃H0(S2
Q2
)∼= GW(Q2)/ degGW (C̃H0(CQ2)).

We may identify CQ2 with the Severi–Brauer variety associated to the standard quaternions HQ2 over Q2.
By [Serre 1962, XIII, Proposition 6], the Brauer group of a local field K is isomorphic to Q/Z by the map

invK : Br(K )→Q/Z,

so, for a degree-2 extension k ⊃ Q2, CQ2(k) ̸= ∅ if and only if k splits HQ2 , i.e., if and only if the
invariant invk(Hk) in Q/Z is zero. But by [Serre 1962, XIII, Proposition 7],

invk(Hk)= 2 · invQ2(HQ2)= 2 · 1
2 = 0,

so CQ2(Q2(
√

a)) ̸=∅ for every nonsquare a ∈Q×2 .
Thus, ⟨2, 2a⟩= trQ2(

√
a)/Q2

(⟨1⟩) is in degGW (C̃H0(CQ2)) for all nonsquares a, so the ideal I in GW(Q2)

generated by the forms

{⟨2, u⟩ | u = 3, 5, 7} ∪ {⟨2, 2u⟩ | u = 1, 3, 5, 7}

is contained in degGW (C̃H0(CQ2)). It is easy to see that I is exactly the ideal in GI(Q2) of even-rank forms
in GW(Q2); since degGW (C̃H0(CQ2)) is clearly contained GI(Q2), we have degGW (C̃H0(CQ2))=GI(Q2)

and

C̃H0(S2
Q2
)∼= Z/2

via the mod 2 rank map GW(Q2)→ Z/2.

3. Scharlau’s transfer for closed points on a quadric

Definition 3.1. Let F be a field, char F ̸= 2. We denote by GI(F)⊆ GW(F) the ideal consisting of the
even-dimensional (virtual) regular quadratic forms in the Grothendieck–Witt ring of F.

Definition 3.2. Let E/F be a field extension of finite degree, char F ̸= 2, and s : E→ F be a nonzero
F-linear functional. Then the Scharlau transfer [1969]

s∗ : GW(E)→ GW(F)

is the additive homomorphism such that s∗(⟨a⟩) is the quadratic form x 7→ s(ax2) on the F-vector space E .
See [Lam 2005, Chapter VII] for some of the properties of the Scharlau transfer.
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Let X be a variety over k. The transfer ideal of X is given by

GItr
X =

∑
x∈X(0)

(sx)∗(GW(k(x)))⊆ GW(k),

with the sum taken over all the closed points of X and {sx : k(x)→ k}x∈X(0) being a chosen set of nonzero
k-linear functionals. Note that GItr

X does not depend on the choices of sx [Lam 2005, Remark VII.1.6(C)].
It is easy to see that the transfer ideal admits an alternative description as

GItr
X =

∑
F/k finite
X (F) ̸=∅

(sF )∗(GW(F))⊆ GW(k),

with the sum taken over all the (isomorphism classes) of field extensions F/k of finite degree such that
X F has a rational point and {sF : F→ k}F being some chosen set of nonzero k-linear functionals.

Remark 3.3. The transfer ideal s∗(GW(F))⊆ GW(k) for an extension of fields F/k of finite degree is
a classical object of study; see, e.g., [Lam 2005, Chapter VII]. This agrees with the notion introduced
above if one considers F as a zero-dimensional variety Spec F over k.

Lemma 3.4. Let X be a smooth proper variety over a perfect field k. Then

GItr
X = degGW (C̃H0(X)).

Proof. This follows from the description of C̃H0(X) via the cohomology of the Rost–Schmid complex
and the fact that the pushforward in C̃H0 for a separable field extension of finite degree coincides with
the Scharlau transfer for the field trace. □

Lemma 3.5. Let E/F be a field extension of even degree, char F ̸= 2, and s : E → F be an F-linear
nonzero functional. Then s∗(GW(E))⊆ s∗(GI(E))+⟨1,−1⟩ ·GW(F).

Proof. Note that the claim does not depend on the choice of s (see [Lam 2005, Remark VII.1.6(C)]).
Without loss of generality we may assume that E = F(α)/F is a simple extension. Then there is a
nonzero functional s such that s∗(⟨α⟩) = 1

2 [E : F] · ⟨1,−1⟩ [Lam 2005, Theorem VII.2.3]. The claim
follows, since s∗(φ)= s∗(φ+⟨α⟩)− 1

2 [E : F] · ⟨1,−1⟩. □

Definition 3.6. Let q be a regular quadratic form over k. Then we use the following notation:

• D(q) is the set of nonzero values of q.

• D(q)2 = {a · b | a, b ∈ D(q)} is the set of products of pairs of nonzero values of q .

• [D(q)] and [D(q)2] are the multiplicative subgroups of k× generated by the respective sets.

Note that if 1 ∈ D(q) then [D(q)] = [D(q)2]. Since all the sets introduced above are stable under
multiplication by squares (k×)2, we will sometimes abuse the notation and denote in the same way the
corresponding subsets of k×/(k×)2.
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Definition 3.7. For a regular quadratic form q over k of dimension n the signed discriminant δ±(q) is
given by the formula

δ±(q) := (−1)n(n−1)/2 det Aq ,

where Aq is a symmetric matrix representing q. This gives a well-defined map

δ± : GW(k)→ k×/(k×)2.

When restricted to the ideal GI(k), this map becomes a homomorphism.

Lemma 3.8. Let Q be a smooth projective quadric over k defined by a quadratic form q and take φ ∈GItr
Q .

Then δ±(φ) is in [D(q)2].

Proof. We may assume Q(k)=∅; otherwise q is isotropic and D(q)= k×, whence there is nothing to
prove. Springer’s theorem [Lam 2005, Theorem VII.2.7] yields that for every closed point x ∈ Q(0) the
degree [k(x) : k] is even. Hence GItr

Q ⊆ GI(k), whence δ± restricted to GItr
Q is a homomorphism. Thus it

is sufficient to check the claim for φ = s∗(ψ) with ψ ∈ GW(k(x)) for a closed point x ∈ Q(0) and s a
chosen k-linear functional s : k(x)→ k. Furthermore, by Lemma 3.5, we may assume ψ ∈ GI(k(x)). By
[Scharlau 1985, Chapter II, Theorem 5.12] we have

δ±(s∗(ψ))= Nk(x)/k(δ±(ψ)) ∈ k×/(k×)2.

The quadric Qk(x) has a rational point, whence qk(x) is isotropic and D(qk(x)) = k(x)×; in particu-
lar, δ±(ψ) ∈ D(qk(x)). Then Knebusch’s norm principle [Lam 2005, Theorem VII.5.1] implies that
Nk(x)/k(δ±(ψ)) ∈ [D(q)2]. □

Remark 3.9. If q is a Pfister form then the last result was obtained in [Bhatwadekar et al. 2014,
Lemma 3.6].

Lemma 3.10. Let Q be a smooth projective quadric over k defined by a quadratic form q. Then
⟨a, b⟩ ∈ GItr

Q if and only if −ab ∈ [D(q)2].

Proof. Since δ±(⟨a, b⟩) = −ab, one implication follows from Lemma 3.8. For the other implication,
first note that we may assume Q(k)=∅, since otherwise GItr

Q = GW(k) and there is nothing to prove.
Then there exists a closed point x ∈ Q(0) such that [k(x) : k] = 2 and we may choose α ∈ k such that
k(x)∼= k(

√
α). Then for the k-linear functional

s : k(
√
α)→ k, s(1)= 0, s(

√
α)= 1,

one has s∗(⟨1⟩)= ⟨1,−1⟩, whence

⟨1,−1⟩ ∈ GItr
Q .

Taking c1, c2 ∈ k×, we have

⟨1,−c1c2⟩ = ⟨c1⟩⟨1,−c2⟩+ ⟨1,−c1⟩− ⟨1,−1⟩.
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Recalling that GItr
Q is an ideal in GW(k), it follows that

⟨1,−c1⟩, ⟨1,−c2⟩ ∈ GItr
Q =⇒ ⟨1,−c1c2⟩ ∈ GItr

Q . (3.11)

We claim that
c, d ∈ D(q) =⇒ ⟨1,−cd⟩ ∈ GItr

Q . (3.12)

Accepting our claim for the moment, write−ab∈[D(q)2] as a product,−ab :=
∏

i ai bi , with ai , bi ∈D(q).
By (3.12), we have ⟨1,−ai bi ⟩ ∈ GItr

Q for each i . By (3.11), it follows that
〈
1,−

∏
i ai bi

〉
= ⟨1, ab⟩ is

in GItr
Q . We proceed to prove (3.12).

First suppose that dim Q = 0. Then we may assume q = x2
1 −αx2

2 and Q ∼= Spec k(
√
α). A straight-

forward computation with the same functional s as above shows that

s∗(⟨w1+
√
αw2⟩)= ⟨1,−(u2

1−αu2
2)(v

2
1 −αv

2
2)⟩

for w1 = (u1v1+αu2v2)/(u1v2+ u2v1) and w2 = 1, which proves (3.12) in this case.
Now suppose that dim Q ≥ 1. Let q(u)= a, q(v)= b and choose some w ̸= 0 such that ψq(u, w)=

ψq(v,w)= 0, where ψq is the symmetric bilinear form associated to q . Put c = q(w) and let α =−a/c.
Then

q(u+
√
αw)= q(u)+αq(w)+ 2

√
αψq(u, w)= q(u)+αq(w)= 0.

Thus there is a closed point x ∈ Q(0) such that k(x) ∼= k(
√
−a/c). Then for the same functional s as

above one has
s∗(⟨

√
−a/c⟩)= ⟨1,−a/c⟩ ∈ GItr

Q .

The same argument shows that ⟨1,−b/c⟩ is in GItr
Q . Using (3.11), we see that ⟨1,−ab⟩ also belongs to

GItr
Q and (3.12) follows. □

Remark 3.13. Let Q be a smooth projective quadric over a field k defined by a quadratic form q . Then
the group [D(q)2] coincides with the group of norms NQ(k) of Q, i.e., with the multiplicative subgroup
of k× generated by the norms NF/k(a), with a ∈ F× and F/k being an extension of fields of finite degree
such that QF has a rational point [Colliot-Thélène and Skorobogatov 1993, Lemma 2.2].

Definition 3.14. For a1, a2, . . . , an ∈ k× an n-fold Pfister form ⟨⟨a1, a2, . . . , an⟩⟩ is the quadratic form∏n
i=1⟨1,−ai ⟩ of dimension 2n. A regular quadratic form q over k is called a Pfister neighbor if there

exists a ∈ k× such that ⟨a⟩ · q is a subform of an n-fold Pfister form with 2n−1 < dim q. Note that the
Pfister form containing ⟨a⟩ · q for a Pfister neighbor q is unique [Lam 2005, Proposition X.4.17].

Lemma 3.15. Let q be a Pfister neighbor over a field k with the associated Pfister form φ and let Q
and 8 be the projective quadrics given by q = 0 and φ = 0 respectively. Then GItr

Q = GItr
8 and

[D(q)2] = [D(φ)2] = D(φ).

Proof. Suppose φ is an n-fold Pfister form and q has dimension m > 2n−1. Let a ∈ k× be such that ⟨a⟩ ·q
is a subform of φ. Since the quadrics associated to q and ⟨a⟩ ·q are the same and [D(q)2] = [D(⟨a⟩ ·q)2],
we may assume that q is a subform of φ. We claim that for a field extension F/k, Q(F) ̸=∅ if and only if
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8(F) ̸=∅. Indeed, since q is a subform of φ, we have Q⊆8⊂P2n
−1

k , and, moreover, Q=8∩L , where
L is some codimension-(2n

−m) linear subspace of P2n
−1

k . Thus if Q(F) ̸=∅ then 8(F) ̸=∅. Now let
F be such that 8(F) ̸=∅. Then φF is isotropic, whence hyperbolic [Lam 2005, Theorem X.1.7], so 8F

contains a linear subspace L ′ ⊂ P2n
−1

F of dimension 2n−1
− 1. Letting L F ⊂ P2n

−1
F be the base-extension

of L ⊂ P2n
−1

k to F, we see that QF contains the linear subspace L ′ ∩ L F ⊂ P2n
−1

F of dimension at least
2n−1
− 1− (2n

−m)= m− 2n−1
− 1≥ 0, whence Q(F) ̸=∅.

The transfer ideals are generated by the Scharlau transfers for the field extensions F/k of finite degree
such that Q(F) ̸=∅ (respectively, 8(F) ̸=∅), whence it follows from the above that GItr

Q = GItr
8. Then

the equality [D(q)2] = [D(φ)2] follows from Lemma 3.10 because [D(q)2] and [D(φ)2] coincide with
the sets of signed discriminants of the binary forms from the respective transfer ideals. Since 1∈ D(φ), we
have [D(φ)2] = [D(φ)] and the last equality [D(φ)] = D(φ) follows from [Lam 2005, Theorem XI.1.1].

Alternatively, for the equality [D(q)2] = [D(φ)2] one could apply the description of these groups as
the groups of norms [Colliot-Thélène and Skorobogatov 1993, Lemma 2.2]. □

4. Nonvanishing vector fields on affine quadrics via groups of values

Using the results of the previous section, we can reformulate Theorem 2.9 in a more manageable form.

Theorem 4.1. Let q = a1x2
1 + a2x2

2 + · · · + an+1x2
n+1 be a quadratic form over a perfect field k with

a1, . . . , an+1 ∈ k×, and let Qo be the affine quadric given by the equation

a1x2
1 + a2x2

2 + · · ·+ an+1x2
n+1 = 1.

Then the following hold:

(1) If n is odd then the tangent bundle TQo has a nonvanishing section.

(2) If n > 0 is even and the tangent bundle TQo has a nonvanishing section then

−

n+1∏
i=1

ai ∈ [D(q)2].

(3) If n > 0 is even and Qo(k) ̸=∅ then the tangent bundle TQo has a nonvanishing section if and only
if −1 ∈ [D(q)].

Proof. The case of odd n follows from Theorem 2.9 (1), so we assume n > 0 is even. Let Q∞ ⊆ Pn be
the quadric given by q = 0. By Lemma 3.4 we have

n
2
· ⟨1,−1⟩+

〈
2, 2 ·

∏
i

ai

〉
∈ degGW (C̃H0(Q∞)) ⇐⇒

n
2
·

〈
1,−1⟩+ ⟨2, 2 ·

∏
i

ai

〉
∈ GItr

Q∞ .

Note one trivially has 1 ∈ [D(q)2]. Thus, Lemma 3.10 yields ⟨1,−1⟩ ∈GItr
Q∞ and implies in addition that

n
2
· ⟨1,−1⟩+

〈
2, 2 ·

∏
i

ai

〉
∈ GItr

Q∞ ⇐⇒ −

n+1∏
i=1

ai ∈ [D(q)2].

Applying Theorem 2.9(2) proves (2).
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For (3), note that Qo(k) ̸=∅ if and only if 1∈ D(q), which implies that [D(q)] = [D(q)2]. Since each
ai is in D(q), we see that −

∏n+1
i=1 ai ∈ [D(q)2] if and only if −1 ∈ [D(q)]. Thus, −1 ∈ [D(q)] if and

only if n
2 ⟨1,−1⟩+

〈
2, 2 ·

∏
i ai

〉
is in degGW (C̃H0(Q∞)), and then Theorem 2.9 (3) implies the claim. □

Definition 4.2. Let F be a field. The level of F, denoted by s(F), is the minimal integer n such that
−1 ∈ D(x2

1 + x2
2 +· · ·+ x2

n). If no such n exists then s(F)=∞. The level of a field is either infinite or a
power of 2 [Lam 2005, Pfister’s Level Theorem XI.2.2].

Corollary 4.3. Let Sn
k , n ≥ 1, be the affine quadric over a field k given by the equation

x2
1 + x2

2 + · · ·+ x2
n+1 = 1.

Then the tangent bundle TSn
k

has a nonvanishing section if and only if one of the following holds:

(1) n is odd.

(2) n > 0 is even and s(k)≤ 2n+ 1.

Proof. First assume that char k>2. Then Remark 1.10 yields that the tangent bundle TSn
k

has a nonvanishing
section for every n ≥ 1. At the same time −1 is a square or a sum of two squares in a finite field, whence
in k, thus s(k) is 1 or 2 and, in particular, s(k)≤ 2n+ 1 for n ≥ 1. This yields the claim in the positive
characteristic.

Assume char k = 0, in particular, k is perfect. By Theorem 4.1 we need to show that for even n one has

−1 ∈ [D(x2
1 + x2

2 + · · ·+ x2
n+1)]

if and only if s(k)≤ 2n+1. Let m be such that 2m−1 < n+1≤ 2m. Then x2
1 + x2

2 +· · ·+ x2
n+1 is a Pfister

neighbor with the associated Pfister form x2
1 + x2

2 + · · ·+ x2
2m . Lemma 3.15 yields

[D(x2
1 + x2

2 + · · ·+ x2
n+1)] = D(x2

1 + x2
2 + · · ·+ x2

2m ).

Thus−1∈[D(x2
1+x2

2+· · ·+x2
n+1)] if and only if s(k)≤2m. The claim follows since s(k) is a power of 2. □

Example 4.4. Let S2
k be the quadric over a field k given by the equation x2

+ y2
+ z2
= 1. If k = R then

TS2
k

has no nonvanishing sections since by a classical result of Poincaré the real vector bundle TS2
k
(R) has

no nonvanishing continuous sections in the Euclidean topology [tom Dieck 2008, Theorem 6.5.5]. More
generally, Corollary 4.3 yields that TS2

k
has no nonvanishing sections if and only if s(k)≥ 8 (including the

case of s(k)=∞). In particular, TS2
k

has a nonvanishing section for the following fields (cf. Example 2.11):

(1) k a quadratically closed field,

(2) k a field of characteristic p > 2,

(3) k a non-Archimedean local field,

(4) k a purely imaginary number field.

See [Lam 2005, Example XI.2.4] for the relevant computations of s(k).
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Corollary 4.5. Let k be a perfect field of characteristic ̸= 2 such that every Pfister form of dimension 8 is
hyperbolic, i.e., that I (k)3 = 0,1 and let Qo be the affine quadric over k given by the equation

a1x2
1 + a2x2

2 + · · ·+ an+1x2
n+1 = 1,

with ai ∈ k×. Suppose that n is odd, or that n > 0 is even and Qo(k) ̸=∅. Then the tangent bundle TQo

has a nonvanishing section.

Proof. By Theorem 4.1 it is sufficient to show that for an even n> 0 one has−1∈ [D(⟨a1, a2, . . . , an+1⟩)].
We claim that already

−1 ∈ [D(⟨a1, a2, a3⟩)
2
] ⊆ [D(⟨a1, a2, . . . , an+1⟩)

2
] = [D(⟨a1, a2, . . . , an+1⟩)].

Indeed, note that the quadratic form ⟨a1, a2, a3⟩ is a Pfister neighbor since

⟨a1⟩ · ⟨a1, a2, a3⟩ = ⟨1, a1a2, a1a3⟩

is a subform of the 2-fold Pfister form ⟨⟨−a1a2,−a1a3⟩⟩=⟨1, a1a2, a1a3, a2a3⟩. Then Lemma 3.15 yields

[D(⟨a1, a2, a3⟩)
2
] = D(⟨1, a1a2, a1a3, a2a3⟩). (4.6)

Now, the form ⟨1, a1a2, a1a3, a2a3, 1⟩ is again a Pfister neighbor with the associated 3-fold Pfister
form ⟨⟨−a1a2,−a1a3,−1⟩⟩. The latter form is hyperbolic by the assumption, whence its subform
⟨1, a1a2, a1a3, a2a3, 1⟩ is isotropic by the same dimension count argument as in the proof of Lemma 3.15.
It follows that the equation

x2
1 + a1a2x2

2 + a1a3x2
3 + a2a3x2

4 + x2
5 = 0

has a solution over k. This means that

−1 ∈ D(⟨1, a1a2, a1a3, a2a3⟩),

yielding by (4.6) that −1 ∈ [D(⟨a1, a2, a3⟩)
2
] and thereby the claim. □

Corollary 4.7. Let k be a number field and let Qo be the affine quadric over k given by the equation

a1x2
1 + a2x2

2 + · · ·+ an+1x2
n+1 = 1,

with ai ∈ k×. Suppose Qo(k) ̸=∅.

(1) If n is odd, then TQo has a nonvanishing section.

(2) If n > 0 is even, then TQo has a nonvanishing section if and only if , for each real embedding
σ : k→ R, σ(ai ) < 0 for some i .

1It follows from the Milnor conjecture [Voevodsky 2003, Corollary 7.5; Orlov et al. 2007, Theorem 4.1; Röndigs and Østvær
2016, Theorem 1.1] that I (k)3 = 0 is equivalent to k being of 2-cohomological dimension at most 2.
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Proof. The case of odd n follows from Theorem 4.1 (1).
For even n > 0, put q = a1x2

1 + a2x2
2 + · · · + an+1x2

n+1. Let σ : k→ R be an embedding such that
σ(ai ) > 0 for all i and let qR be q extended to R using this embedding. Then [D(qR)] ⊆ R>0, whence
−1 ̸∈ [D(q)]. Thus Theorem 4.1 (3) yields one direction of the desired implication.

For the other direction it suffices to show that if n > 0 is even and for every embedding σ : k→ R one
has σ(ai ) < 0 for some i then −1 ∈ [D(q)]. Note that the assumption that Qo(k) ̸=∅ implies that, for
each real embedding σ of k, there is a j with σ(a j ) > 0.

First assume n ≥ 4. Let v be a place of k and consider the quadratic form q + x2
n+2 = a1x2

1 + a2x2
2 +

· · · + an+1x2
n+1 + x2

n+2 over kv. If v is a finite place, then q + x2
n+2 is isotropic since every quadratic

form of dimension ≥ 5 is isotropic over a local field [Lam 2005, Theorem VI.2.12]. If v is an infinite
place then the assumption σ(ai ) < 0 for some i implies that q + x2

n+2 is isotropic. Then [Lam 2005,
Hasse–Minkowski Principle VI.3.1] implies that q + x2

n+2 is isotropic over k, whence −1 ∈ D(q).
Now assume n= 2. The form ⟨a1, a2, a3⟩= a1x2

1+a2x2
+a3x2 is a Pfister neighbor with the associated

Pfister form ⟨1, a1a2, a1a3, a2a3⟩ and Lemma 3.15 yields

[D(⟨a1, a2, a3⟩)
2
] = D(⟨1, a1a2, a1a3, a2a3⟩). (4.8)

Let v be a place of k and consider the form q ′ = ⟨1, a1a2, a1a3, a2a3, 1⟩ over kv . As above, if v is a finite
place then the form q ′ is isotropic by [Lam 2005, Theorem VI.2.12]. If v is a complex place then q ′ is
clearly isotropic. If v is a real place with the real embedding σv : k→ R then as Qo(k) ̸= ∅, we have
Qo(kv) ̸=∅; hence there is a j such that σ(a j )>0. Combined with our assumption that σv(ai )<0 for some
i , we see that at least one of σv(a1a2), σv(a1a3) and σv(a2a3) is negative, whence q ′ is isotropic over kv .
Then [Lam 2005, Hasse–Minkowski Principle VI.3.1] implies that q ′ is isotropic over k meaning that
−1 ∈ D(⟨1, a1a2, a1a3, a2a3⟩). By (4.8), we thus have −1 ∈ [D(⟨a1, a2, a3⟩)

2
] and the claim follows. □

Corollary 4.9. Let k be a field of one of the following types:

(1) a finite field Fpn , p > 2,

(2) a non-Archimedean local field of characteristic zero,

(3) the perfection of a local field of characteristic p > 2,

(4) the perfection of the function field of a curve over a finite field.

Let Qo be the affine quadric over k given by the equation

q := a1x2
1 + a2x2

2 + · · ·+ an+1x2
n+1 = 1,

with ai ∈ k×. Suppose that n > 0, and if n = 2 and k is of type (2, 3, 4), suppose in addition that Qo has a
k-rational point. Then TQo has a nonvanishing section.

Proof. In all the above cases, k is a perfect field of cohomological dimension ≤ 2, and the result follows
from Corollary 4.5, once we know that Qo(k) ̸=∅ if n≥2 is even. For k of type (1) every regular quadratic
form in at least three variables is isotropic [Lam 2005, Proposition I.3.4] and for k of type (2, 3, 4), every
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regular quadratic form in at least five variables is isotropic [Lam 2005, Theorem VI.2.12, Corollary VI.3.5];
applying this to q − x2

0 shows that Qo(k) ̸=∅ in all cases to be considered. □
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Self-correlations of Hurwitz class numbers
Alexander Walker

The asymptotic study of class numbers of binary quadratic forms is a foundational problem in arith-
metic statistics. Here, we investigate finer statistics of class numbers by studying their self-correlations
under additive shifts. Specifically, we produce uniform asymptotics for the shifted convolution sumP

n<X H.n/H.nC `/ for fixed ` 2 Z, in which H.n/ denotes the Hurwitz class number.

1. Introduction

The study of class numbers of binary quadratic forms has a rich history, dating back to Lagrange and
Gauss. In Disquisitiones arithmeticae, Gauss made several conjectures about the distribution of class
numbers, including the famous statement that the class number h.�D/ of binary quadratic forms of
discriminant �D should diverge to infinity as D!1. Gauss’ conjecture was established by Heilbronn
[12], with effective lower bounds first obtained through the combined work of Goldfeld [7] and Gross
and Zagier [11].

Moment estimates for class numbers have been studied by many authors, often using Dirichlet’s class
number to reduce the problem to estimates for families of quadratic Dirichlet L-functions at the special
point 1. For example, Wolke [34] proved thatX

n�X

Qh.�n/˛ D c.˛/X 1C˛
2 CO˛

�
X 1C˛

2
� 1

4

�
(1-1)

for fixed ˛ > 0, where Qh.�n/ denotes the number of classes of primitive binary quadratic forms of
discriminant �n. Later work of Granville and Soundararajan [10] implies that the main term in (1-1)
holds with some uniform error for any ˛� log X .

In comparison, shifted convolution estimates for class numbers are far less understood. Recent work
of Kumaraswamy [23] considers

D.X; `/ WD
X
n�X

[
h.�n/h.�n� `/;

in which
P[ denotes restriction to n such that both �n and �n� ` are fundamental discriminants, with

neither congruent to 1 mod 8. Kumaraswamy applies the circle method to prove that

D.X; `/D c`X
3
2 .X C `/

1
2 CO�

�
X

3
2
� 1

30 .X C `/
1
2
C 1

60
C�
�
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for `� 1 and all � > 0, uniformly in ` (cf. [23, Theorem 1.1]). For fixed `, this gives a power-saving of
O.X 1=60��/ in the error term.

Unfortunately, the peculiar restriction to n; nC ` 6� 1 mod 8 in [23] is essential, as this work uses the
identity

r3.n/D 12
�
1�

�
�n

2

��
h.�n/; (1-2)

(cf. [3, Proposition 5.3.10]) to relate the class number to the Kronecker symbol and r3.n/, the number of
representations of n as a sum of 3 squares, which holds when �n is a fundamental discriminant. Since�
�n
2

�
D 1 for n�˙1 mod 8, the identity (1-2) gives no information about h.�n/ on the residue class

�n� 1 mod 8.
This article presents an alternative method for studying correlations of class numbers, via the spectral

theory of automorphic forms. In this setting, it is convenient to consider a version of the class number
h.�n/ called the Hurwitz class number H.n/, in which the classes containing a multiple of x2Cy2 or
x2�xyCy2 are weighted by 1

2
and 1

3
, respectively. By convention, we set H.0/D� 1

12
. Hurwitz class

numbers feature, for one example, in Eichler–Selberg “class number relation” formulas, such asX
m2Z

H.4n�m2/D 2�1.n/C
X
d jn

min
�
d;

n

d

�
; (1-3)

which appear in the work of Kronecker and Hurwitz. Here, ��.n/D
P

d jn d� .
More recently, Zagier [36] showed that Hurwitz class numbers arise as the coefficients of a mock

modular form. Specifically, Zagier proved that

H.z/ WD
X
n�0

H.n/e.nz/C
1

8�
p

y
C

X
n�1

n�
�
�

1
2
; 4�n2y

�
4
p
�

e.�n2z/ (1-4)

defines a harmonic Maass form of weight 3
2

on �0.4/. Here, z D xC iy,

e.z/D e2�inz;

and �.ˇ;y/ denotes the incomplete gamma function. In particular, one may study Hurwitz class numbers
using automorphic forms.

In this article, we leverage the analytic theory of harmonic Maass forms and mock modular forms to
study the shifted convolution Dirichlet series

D`.s/ WD
X
n�1

H.n/H.nC `/

.nC `/sC
1
2

; (1-5)

where `� 1 is a fixed integer. We prove that D`.s/ admits meromorphic continuation to s 2 C and use
this information to study the self-correlations of Hurwitz class numbers under additive shifts. Our main
theorem is the following result.
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Theorem 1.1. Let ��.m/ D
P

d jm d� denote the sum-of-divisors function, with the convention that
��.m/D 0 for m 62 Z. Fix `� 1 and let `o denote the odd part of `. Then, for all � > 0, we have

X
n�X

H.n/H.nC `/D
�2X 2

252 �.3/

�
2��2

�
`
4

�
� ��2

�
`
2

�
C ��2.`o/

�
CO�

�
X

5
3
C�
CX 1C�`

�
:

For `�X 2=3, this result achieves a uniform error of size O�.X
5=3C�/. For larger `, the error term

depends on ` but remains nontrivial when `�X 1��.
Since Hurwitz class numbers agree with the ordinary class numbers h.�n/ for n not of the form 3m2

or 4m2, the rough upper bound H.n/� n1=2Co.1/ (cf. Lemma 7.2) implies the following result as an
immediate corollary.

Corollary 1.2. With notation as above, we have

X
n�X

h.�n� `/h.�n/D
�2X 2

252 �.3/

�
2��2

�
`
4

�
� ��2

�
`
2

�
C ��2.`o/

�
CO�

�
X

5
3
C�
CX 1C�`1C�

�
:

The error bounds in Theorem 1.1 are of course not sharp. We conjecture that Theorem 1.1 should hold
with a secondary main term and an error of size O�..X`/

1C�/; specifically, that

X
n�X

H.n/H.nC `/D
�2X 2

252 �.3/

�
2��2

�
`
4

�
� ��2

�
`
2

�
C ��2.`o/

�
�

2X
3
2

9�

�
2��1

�
`
4

�
� ��1

�
`
2

�
C ��1.`o/

�
CO�

�
.X`/1C�

�
: (1-6)

To support this conjecture, we show (cf. Remark 10.1) that (1-6) holds when the cutoff n�X is replaced
by a certain class of truncations with smoothing.

Paper methodology and outline

To produce shifted convolution estimates that treat all congruence classes equally, we abandon (1-2) in
favor of the generating function H.z/ from (1-4). In particular, we treat shifted convolutions involving
weak harmonic Maass forms instead of ordinary modular forms. We also depart from [23] in that we treat
shifted convolutions using the spectral theory of automorphic forms, as opposed to the circle method.

Following some background material on harmonic weak Maass forms and mock modular forms
in Section 2, we relate the Dirichlet series D`.s/ defined in (1-5) to the Petersson inner product
hy3=2jHj2;P`. � ; Ns/i, in which P`.z; s/ is a particular Poincaré series.

We obtain a meromorphic continuation for D`.s/ by first producing a meromorphic continuation
of hy3=2jHj2;P`. � ; Ns/i. This task is complicated by the fact that F.z/ WD y3=2jH.z/j2 is not square-
integrable. To address this, we show in Section 4 that F.z/ may be written in the form V.z/C E.z/, in
which V 2L2 and E is an explicit function involving Eisenstein series and the Jacobi theta function.
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The meromorphic continuations of hE ;P`. � ; Ns/i and hV;P`. � ; Ns/i are then computed in Sections 5
and 6, respectively. While hE ;P`. � ; Ns/i can be understood directly, the meromorphic continuation of
hV;P`. � ; Ns/i is accomplished through spectral expansion of the Poincaré series.

The methods described up to this point apply more generally. To illustrate this, the major results of
Sections 3–6 are presented with H replaced by a generic weak harmonic Maass form “of polynomial
growth” (cf. Section 2B). Our first significant specialization to H.z/ occurs in Section 6, where we
leverage the fact that the contribution from the nonholomorphic part of H.z/ is unusually simple (cf.
Remark 6.4) to more easily classify the poles and residues of D`.s/ in the right half-plane Re s > 1

2
.

Our main application, Theorem 1.1, also requires uniform bounds for the growth of D`.s/ in vertical
strips. In Section 7, we address various elementary terms to reduce this problem to growth estimates for
hV;P`. � ; Ns/i.

The spectral expansion of P`.z; s/ gives a decomposition hV;P`. � ; Ns/i D†disc.s/C†cont.s/ corre-
sponding to contributions from the discrete and continuous spectra of the hyperbolic Laplacian. While
†cont is readily handled, the problem of bounding†disc.s/with respect to jIm sj is particularly complicated
and represents the central difficulty of this work.

Ultimately, our bounds for †disc rely on decay estimates for triple inner products of the form
hy3=2jHj2; �j i, in which �j .z/ runs through an orthonormal basis for Hecke–Maass cusp forms on
�0.4/. Similar inner products, of the form hyk�1�2; �j i (with �1; �2 automorphic forms of weight k)
have been studied in numerous works, and we mention a few:

a. �1; �2 weight k 2 Z holomorphic cusp forms on �0.N /, by [8];

b. �1; �2 weight 0 Eisenstein series on �0.1/, by [33];

c. �1�2 replaced by any polynomial in Maass cusp forms, by [28];

d. �1; �2 weight 0 Maass cusp forms on �0.1/, by [19; 20];

e. �1; �2 weight k 2 1
2

Z modular forms on �0.N /, by [22].

Of these prior works, (a) and (b) use the Rankin–Selberg method directly, (c) and (e) use the automorphic
kernel, and (d) uses a modified Rankin–Selberg method that introduces an auxiliary Eisenstein series for
the express purpose of unfolding.

Our treatment of hy3=2jHj2; �j i appears in Section 8. More generally, this section produces bounds
for triple inner products of the form hyk jf j2; �j i, where f is a harmonic Maass form of polynomial
growth of weight k 2 1

2
CZ. In particular, we prove the following result:

Theorem 1.3. Let f be a harmonic Maass form of polynomial growth of weight k 2 1
2
CZ and level N .

Let � be an L2-normalized Hecke–Maass cusp form of weight 0 on �0.N /, with spectral type t 2 R. For
all � > 0, we have

hyk
jf j2; �i �N;�

�
jt j2k�1

Cjt j3�2k
�
jt j�e�

�
2
jt j:
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We remark that the space of harmonic Maass forms of polynomial growth includes Mk.�0.N //, the
space of modular forms. In this setting, Theorem 1.3 can be used to improve the spectral dependence in
certain results of [22]. (In particular, see [22, Proposition 14].)

Our proof of Theorem 1.3 draws heavy inspiration from [19; 20], though our work is more complicated
in several respects, such as the change from �0.1/ to �0.N /, the change in Whittaker functions (from
K-Bessel functions to incomplete gamma functions), the generalization to half-integral weight, and the
introduction of terms related to the fact that f need not be cuspidal. We also depart from Jutila by
considering individual inner products instead of spectral large sieve inequalities. We suspect that a spectral
large sieve inequality would not improve Theorem 1.1.

In Section 9, we apply these triple product estimates to complete our quantification of the growth
of D`.s/. At this point, our main result follows from a version of Perron’s formula with truncation, as
presented in Section 10.

2. Harmonic weak Maass forms and mock modular forms

The theory of harmonic Maass forms was introduced by Bruinier and Funke in the context of geometric
theta lifts [2]. This section reviews the basic definitions of harmonic Maass forms and mock modular
forms. A good reference for background material is [1, §4].

A weak Maass form of weight k on a congruence subgroup � �SL2.Z/ is a smooth function f W h!C

which transforms like a modular form of weight k, is an eigenfunction of the weight k Laplacian

�k WD �y2

�
@2

@x2
C
@2

@y2

�
C iky

�
@

@x
C i

@

@y

�
;

and has at most linear exponential growth at cusps.
If �kf D 0, then f is called a harmonic (weak) Maass form of manageable growth. Let H !

k
.�/ denote

the space of weight k harmonic Maass forms of manageable growth on � . If � D �0.N / or �1.N /, then
any f .xC iy/ 2H !

k
.�/ admits a Fourier expansion at1 of the form

f .z/D
X

n�nC

cC.n/e.nz/C c�.0/y1�k
C

X
n�n�

n¤0

c�.n/�.1� k; 4�ny/e.�nz/ (2-1)

(cf. [1, Lemma 4.3]), where �.ˇ;y/ WD
R1

y tˇ�1e�t dt is the incomplete gamma function. In the case
k D 1, the term c�.0/y1�k is replaced with c�.0/ log y. The first sum in the Fourier expansion (2-1) of
f .z/ is called the holomorphic part, and the rest of the right-hand side of (2-1) is the nonholomorphic
part. Any function which arises as the holomorphic part of a harmonic Maass form of manageable growth
is called a mock modular form.

Fourier expansions of analogous shape exist for each cusp of � . To describe this precisely, we assume
henceforth that k 2 1

2
Z and � � �0.4/ and restrict to Maass forms with the theta multiplier system �� .
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That is, where �.z/ WD
P

n2Z e.n2z/ denotes the Jacobi theta function, we assume that

f .
 z/D
�
�.
 z/

�.z/

�2k
f .z/

for all 
 D
�

a b
c d

�
2 � . This may also be written f .
 z/ D �� .
 /

2k.cz C d/kf .z/, in which �� is
defined by ��

��
a b
c d

��
WD ��1

d

�
c
d

�
, where �d D 1 for d � 1 mod 4 and �d D i for d � 3 mod 4. For


 D
�

a b
c d

�
2 GL.2;R/ with det 
 > 0, we define the weight k slash operator by

f j
 .z/ WD
�
�.
 z/

�.z/

��2k
f .
 z/:

Finally, for each cusp a of � , let �a D h˙tai � � denote the stabilizer of a. Let �a denote a scaling
matrix for a, i.e., a matrix in GL.2;R/ for which ta D �a

�
1 1
0 1

�
��1
a . Define the cusp parameter ~a 2 Œ0; 1/

so that e.~a/D �� .ta/. If ~a D 0, the cusp a is called singular; otherwise, a is called nonsingular.
Given all this notation, f .z/ admits a Fourier expansion at each cusp a of � , given by

fa.z/ WD f j�a.z/D
X

n�nC

cCa .n/e..nC ~a/z/

C c�a .0/y
1�k
C

X
n�n�

n¤~a

c�a .n/�.1� k; 4�.n� ~a/y/e.�.n� ~a/z/; (2-2)

where c�a .0/y
1�k appears only when ~a D 0. When k D 1 and ~a D 0, we replace this term by

c�a .0/ log y. Since we work most commonly with the Fourier expansion at aD1, we retain the shorthand
c˙.n/ WD c˙1.n/.

2A. The shadow operator �k. This section follows [1, §5.1]. Recall the Maass lowering operator Lk

defined by Lk D�iy2
�
@
@x
C i @

@y

�
. We define as well the shadow operator �k D yk�2Lk . By [1, Theorem

5.10], �k maps H !
k
.�0.N // surjectively to M !

2�k
.�0.N //, the space of weakly holomorphic modular

forms of weight 2� k. This map is given by

�k.f .z//D .1� k/c�.0/� .4�/1�k
X
n�n�

n¤0

c�.n/n1�ke.nz/:
(2-3)

The form �kf is called the shadow of f .

2B. Harmonic Maass forms of polynomial growth. Generically, the coefficient series fc˙a .n/g grow
superpolynomially as n!1. In the remainder of this article, we restrict to the special case in which the
coefficients are polynomially bounded in n. This is equivalent to the property that f .z/ have no poles at
cusps, or that n˙˙ ~a � 0 in (2-1) for all a.

Let H
]

k
.�0.N // denote the subspace of H !

k
.�0.N // consisting of forms with at most polynomial

growth at cusps. We remark that the space H
]

k
features prominently in [31], where it serves as a natural

setting to study L-functions attached to mock modular forms. Note that H
]

k
is a subspace of the space of

(not necessarily cuspidal) Maass wave forms of weight k.
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The shadow operator maps �k WH
]

k
.�0.N //!M2�k.�0.N //. In particular, �k annihilates H

]

k
.�0.N //

for k > 2. In other words, H
]

k
DMk for k > 2, so the space H

]

k
is most interesting for k � 2.

Though exact growth rates for the coefficients c˙a .n/ are not known, adequate on-average bounds
are known from the Rankin–Selberg method as applied to Maass forms (including noncuspidal Maass
forms) in [26]. Specializing to the case of harmonic Maass forms and translating notation, we present the
following result.

Lemma 2.1 (cf. [26, Theorem 5.2]). Fix f .z/ 2H
]

k
.�0.N // with k 2 1

2
Z and k ¤ 1. If f has Fourier

expansion (2-2), then

X
n�X

jc˙a .n/j
2

.n˙ ~a/k�1
D

(
c˙
f;a

X COf
�
X

3
5 log X

�
if f is cuspidal;

c˙
f;a

X 1Cjk�1jCOf
�
X 1Cjk�1j� 2C4jk�1j

5C8jk�1j log X
�

else;

for some constants c˙
f;a

.

3. Shifted convolutions via inner products

In this section, we show that shifted convolution Dirichlet series of the form (1-5) can be recognized in
terms of Petersson inner products. To begin, we treat a generic form f .z/ 2H

]

k
.�0.N // with Fourier

expansion (2-1). We define the `-th Poincaré series P`.z; s/ of weight 0 on �0.N / by

P`.z; s/ WD
X


2�1n�0.N /

Im.
 z/se.`
 z/:

For s with Re s sufficiently large, the Rankin–Selberg unfolding method gives

hyk
jf j2;P`. � ; Ns/i D

Z 1
0

Z 1

0

ysCk
jf .z/j2e.`z/

dx dy

y2

D

X
n1Dn2C`

Z 1
0

ysCk�1c.n1;y/c.n2;y/e
�2�hy dy

y
;

(3-1)

in which c.n;y/ denotes the n-th Fourier coefficient of f .z/ at the cusp aD1. In other words, c.n;y/D

cC.n/e�2�ny for n� 1, c.0;y/D cC.0/C c�.0/y1�k , and c.n;y/D c�.�n/�.1�k;�4�ny/e�2�ny

for n� �1.
The contribution of n1; n2 > 0 to the inner product is a standard shifted convolution Dirichlet series:

IC
`
.s/ WD

X
n1Dn2C`

cC.n1/cC.n2/

Z 1
0

ysCk�1e�2�.n1Cn2C`/y
dy

y
D
�.sCk�1/

.4�/sCk�1

1X
n2D1

cC.n2C`/cC.n2/

.n2C`/sCk�1
:

Since f 2H
]

k
, the Dirichlet series in the line above converges absolutely in some right half-plane. More

precisely, Lemma 2.1 gives convergence in Re s > 1Cjk�1j, extending to Re s > 1 in the cuspidal case.
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The net contributions from .n1; n2/D .`; 0/ and .0;�`/ total

I0
` .s/ WD

cC.`/c�.0/�.s/

.4�`/s
C

cC.`/cC.0/�.sCk�1/

.4�`/sCk�1
C

c�.0/c�.`/�.s�kC1/

.4�`/ss
C

cC.0/c�.`/�.s/

.4�`/sCk�1.sCk�1/
:

The function I0
`
.s/ is meromorphic in s 2C and analytic in Re s > jk�1j. Note that I0

`
.s/ vanishes when

f is cuspidal.
There is another finite collection of “cross terms” when n1 > 0 and n2 < 0, which contributes

I�` .s/ WD

`�1X
mD1

cC.`�m/c�.m/

Z 1
0

ysCk�1e�4�.`�m/y�.1� k; 4�my/
dy

y

D
�.s/

sC k � 1

`�1X
mD1

cC.`�m/c�.m/

.4�m/sCk�1 2F1

�
s; sC k � 1

sC k

ˇ̌̌̌
1�

`

m

�
;

in which we’ve evaluated the integral via [9, 6.455(1)]. The function I�
`
.s/ is analytic in the right

half-plane Re s >max.0; 1� k/ and has an obvious meromorphic continuation to s 2 C.
Lastly, we record the contribution of n1; n2 < 0, which can be written

I�` .s/ WD

1X
nD1

c�.n/c�.nC `/

.4�/sCk�1
Gk.s; n; nC `/; with

Gk.s; n; nC `/ WD

Z 1
0

ysCk�1�.1� k; ny/�.1� k; .nC `/y/eny dy

y
:

(3-2)

The two asymptotic expressions �.ˇ;y/ D �.ˇ/ � yˇ=ˇ C Oˇ.y
ˇC1/ as y ! 0 and �.ˇ;y/ D

e�yyˇ�1.1COˇ.y
�1// as y!1 imply that Gk.s; n; nC `/ converges absolutely when Re s > jk�1j.

In this region, Gk.s; n; nC `/� Gk.Re s; n; n/�Re s n�Re s�kC1 by change of variable. Thus I�
`
.s/

converges to an analytic function in Re s>1Cjk�1j, extending to the domain Re s>1 in the cuspidal case.
We conclude that the unfolding procedure is valid in Re s > 1Cjk�1j, and that in this region we have

the decomposition

hyk
jf j2;P`. � ; Ns/i D IC

`
.s/C I0

` .s/C I�` .s/C I�` .s/: (3-3)

3A. Application to H.z/. The formulas in this section simplify considerably for the specific form
H 2H

]

3=2
.�0.4// defined in (1-4). Recall from (1-5) the definition of the shifted convolution Dirichlet

series

D`.s/ WD
X
n�1

H.n/H.nC `/

.nC `/sC
1
2

; (3-4)

which converges absolutely in Re s > 3
2

. By (1-4), the coefficients c�.n/ of H may be written in terms of
r1.n/, the number of representations of n as the square of an integer. Simplifying the various terms at
right in (3-3) produces the formula
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hy
3
2 jHj2;P`. � ; Ns/i D

�
�
sC 1

2

�
.4�/sC

1
2

D`.s/C
H.`/�.s/

8�.4�`/s
�

H.`/�
�
sC 1

2

�
12.4�`/sC

1
2

C
r1.`/�

�
s� 1

2

�
128�2.4�`/s�

1
2 s
�

r1.`/�.s/

192�.4�`/s
�
sC 1

2

�
C
�.s/

sC 1
2

`�1X
mD1

H.`�m/r1.m/

16�.4�m/s
2F1

�
s; sC 1

2

sC 3
2

ˇ̌̌̌
1�

`

m

�
C

X
m2

1
�m2

2
D`

m1;m2�1

m1m2

4.4�/sC
3
2

G 3
2
.s;m2

2;m
2
1/: (3-5)

The contribution of I�
`
.s/ in the fourth line of (3-5) is a finite sum, since m2

1
�m2

2
D ` has finitely

many solutions. This phenomenon generalizes to any f 2 H
]

3=2
.�0.N // for which M1=2.�0.N // is

one-dimensional, since in that case �3=2f is necessarily a twisted theta function by [30, Theorem A].
Thus, in departure from the general case, we conclude that I�

`
.s/ is analytic in Re s > 1

2
.

Secondly, we remark that the contribution of I�
`
.s/ bears some resemblance to one side of the Eichler–

Selberg class number relation (cf. (1-3)). More specifically,

Res
sD0

�.s/

sC 1
2

`�1X
mD1

H.`�m/r1.m/

16�.4�m/s
2F1

�
s; sC 1

2

sC 3
2

ˇ̌̌̌
1�

`

m

�
D

1

4�

X
m2<`

H.`�m2/;

which is essentially one of the sums described in [1, §10.3]. It would be interesting to know if the methods
in this paper could be used to produce new class number relations.

4. Automorphic regularization

To produce a meromorphic continuation for the Dirichlet series D`.s/, we first show that the inner product
hyk jHj2;P`. � ; Ns/i has a meromorphic continuation to a larger domain. This latter continuation involves
the spectral decomposition of P`.z; s/ with respect to the hyperbolic Laplacian and is complicated by
the fact that y3=2jH.z/j2 62L2.�0.4/nh/. To rectify this, we modify y3=2jH.z/j2 by subtracting a linear
combination of automorphic forms chosen to neutralize growth at the cusps of �0.N /.

We define the weight 0 Eisenstein series attached to cusp a of �0.N / by

Ea.z; s/D
X


2�an�0.N /

Im.��1
a 
 z/s:

These Eisenstein series have Fourier expansion at the cusp b of the form

Ea.�bz; w/

D ıŒaDb�y
w
C�

1
2
�
�
w� 1

2

�
�.w/

'ab0.w/y
1�w
C

2�wy
1
2

�.w/

X
n¤0

'abn.w/jnj
w� 1

2 Kw� 1
2
.2�jnjy/e.nx/; (4-1)
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in which ıŒ�� denotes the Kronecker delta, K�.y/ is the K-Bessel function, and the coefficients 'abn.w/

are described in [4], for example.
As in the previous section, we first consider a general f .z/ 2 H

]

k
.�0.N //, with k 2 1

2
Z (k ¤ 1),

specializing to f D H when convenient. Let Fa.z/ WD yk jf j�a.z/j
2 D Im.�az/k jf .�az/j2. If ~a ¤ 0,

then Fa.z/ decays exponentially as y !1 by the Fourier expansion (2-2), and no regularization is
required. Otherwise, when ~a D 0, (2-2) implies that

Fa.z/D yk
jcCa .0/C c�a .0/y

1�k
j
2
CO.y�M / (4-2)

as y !1 for all M > 0. It therefore suffices to regularize growth of sizes yk , y1, and y2�k at the
singular cusps.

For k > 1, the Eisenstein series Ea.z; k/ counteracts growth of size yk at a, while for k < 1 we
utilize Ea.z; 2� k/ to address y2�k . Unfortunately, this technique fails to regularize growth of size
y1, since Ea.z; w/ has a pole at w D 1. In this case, we instead subtract a multiple of the constant
term in the Laurent expansion of Ea.z; w/ at w D 1, which we denote zEa.z; 1/, and which satisfies
zEa.�bz; 1/ D ıŒaDb�y � � log y ReswD1 'ab0.w/C Qcab CO.e�2�y/ for some constant Qcab. Thus, for

example,

Vf .z/ WD F.z/�
X

aW~aD0

jc�a .0/j
2Ea.z; 2� k/� 2

X
aW~aD0

Re.cCa .0/c�a .0// zEa.z; 1/ (4-3)

satisfies Vf .�az/DO.yk C log y/ as y!1 when k < 1. If k < 1
2

, it follows that Vf 2L2.�0.N /nh/.
The case k > 3

2
may be treated analogously.

The situation is more complicated in weights k D 1
2

and k D 3
2

, as here we must regularize terms of
size y1=2. The obvious choice for regularizing y1=2 is to subtract a multiple of Ea

�
z; 1

2

�
, but this term

equals 0 since the completed Eisenstein series ��.2w/Ea.z; w/ is analytic at w D 1
2

. Likewise, it is not
possible to regularize with a linear combination of terms of the form limw! 1

2
��.2w/Ea.z; w/, as these

grow as y1=2 log y near a.
In weight k D 3

2
, the growth of size y1=2 comes from the nonholomorphic part (cf. (4-2)). In particular,

we can regularize all cusp growth of size y1=2 simultaneously by subtracting an appropriate multiple of
y1=2j�3=2f j

2. Specifically, we define

Vf .z/ WD F.z/�
X

aW~aD0

jcCa .0/j
2Ea

�
z; 3

2

�
� 2

X
aW~aD0

Re.cCa .0/c�a .0// zEa.z; 1/� 4y
1
2 j� 3

2
f .z/j2: (4-4)

Then Vf .�az/DO.log y/ at each cusp by (2-3), so Vf 2L2.�0.N /nh/.
In weight kD 1

2
, we may likewise attempt to regularize by subtracting a function of the form y1=2jg.z/j2,

where g 2M1=2.�0.N //. However, there is no guarantee that a modular form with compatible cusp
growth need exist. If f 2H

]

1=2
.�0.N // is chosen, we may test for the existence of a compatible g using

the basis for M1=2.�0.N // described in [30, Theorem A]. Since we do not require kD 1
2

for our principal
application, we leave the question of the existence of a compatible g as an interesting open problem.
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4A. Automorphic regularization of H.z/. In practical terms, the problem of regularizing H.z/ reduces
to the problem of computing the constant Fourier coefficients c˙a .0/ at each singular cusp a of �0.4/. In
this section, we determine these coefficients, as summarized in the following proposition.

Proposition 4.1. Let H 2H
]

3=2
.�0.4// denote Zagier’s nonholomorphic Eisenstein series from (1-4). The

cusp aD 1
2

is nonsingular for �� ; for the other cusps, H.z/ has a Fourier expansion of the form (2-2), in
which

cC1.0/D�
1

12
; c�1.0/D

1

8�
; cC

0
.0/D

1

24
; c�0 .0/D�

1

8�
:

Consequently, the function

VH.z/ WDy
3
2 jH.z/j2�

1

144
E1

�
z; 3

2

�
�

1

576
E0

�
z; 3

2

�
C

1

48�
zE1.z; 1/C

1

96�
zE0.z; 1/�

1

64�2
y

1
2 j�.z/j2

lies in L2.�0.4/nh/.

Proof. To verify that aD 1
2

is nonsingular, we first note that �1=2 is generated by t1=2 D
�
�1 1
�4 3

�
. Since

�� .t1=2/D i , we have ~1=2 D
1
4
¤ 0.

As for the singular cusps, we clearly have cC1.0/ D �
1

12
and c�1.0/ D

1
8�

from the Fourier expan-
sion (1-4). To understand the behavior of H.z/ near a D 0, we follow [13] and relate H.z/ to certain
Eisenstein series of weight 3

2
. Specifically, we introduce the Eisenstein series

E 3
2
;s.z/ WD

XX
m>0;n2Z
.m;2n/D1

�
n
m

�
�m

.mzC n/3=2jmzC nj2s
;

as well as a second Eisenstein series F3=2;s.z/ WD z�3=2jzj�2sE3=2;s.�1=4z/. Though E3=2;s converges
only for Re s > 1

4
, [13, Theorem 2] implies that E3=2;s and F3=2;s have meromorphic continuation to

s 2 C and that

Fs.z/ WD �
1

96

�
.1� i/E3=2;s.z/� iF3=2;s.z/

�
satisfies F0.z/DH.z/.

To investigate H.z/ near the cusp 0, we compute a partial Fourier expansion of Fsj�0
.z/, where

�0 D
�

0 �1
4 0

�
. The functional equation �.�1=4z/D .�2iz/1=2�.z/ implies that the weight k D 3

2
slash

operator satisfies

Fsj�0
.z/D .�2iz/�

3
2Fs

�
�

1
4z

�
D�

1
96
.�2iz/�

3
2

�
.1� i/z

3
2 jzj2sF3=2;s.z/� i

�
�

1
4z

�� 3
2 j4zj2sE3=2;s.z/

�
D�

1
192

i jzj2sF3=2;s.z/C
1

48
.1� i/jzj2s24sE3=2;s.z/:

Thus Hj�0
.z/ has a Fourier expansion which may be read from the Fourier coefficients of E3=2;0.z/

and F3=2;0.z/. Since we require only the constant Fourier coefficient of Hj�0
, it suffices to consider the

constant Fourier coefficients of E3=2;s and F3=2;s .
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By [13, p.93-94], the constant Fourier coefficient of E3=2;s.z/ equals

˛0.s;y/
X

m odd

�m

P
j.m/

� j
m

�
m2sC 3

2

D ˛0.s;y/
X

m odd

�m2'.m2/

.m2/2sC 3
2

D ˛0.s;y/
X

m odd

'.m/

m4sC2
D ˛0.s;y/

�.4sC 1/

�.4sC 2/
�
1� 2�4s�1

1� 2�4s�2
;

in which '.m/ denotes the totient function and ˛0.s;y/ is defined by

˛0.s;y/D

Z
ImwDy

w�
3
2 jwj�2sdw D�

2.1C i/
p
�s�

�
2sC 1

2

�
�.2sC 2/

y�
1
2
�2s:

By taking the limit as s ! 0, we conclude that the constant Fourier coefficient of E3=2;0.z/ equals
�.2C 2i/=� �y�1=2.

Similarly, formulas on [13, p.94] show that F3=2;s has constant Fourier coefficient

22sC3i C .1C i/˛0.s;y/
X

m even

m�1=2
P

j.2m/

�
m
j

�
e
�j

8

�
.m=2/2sC1

:

The sum
P

j mod 2m

�
m
j

�
e.j=8/ vanishes for m even unless mD 2n2, in which case it equals

p
2'.2n2/.

Thus the constant Fourier coefficient equals

22sC3i C .1C i/˛0.s;y/
X
n�1

'.2n2/

n4sC3
D 22sC3i C .1C i/˛0.s;y/

X
n�1

'.2n/

n4sC2

D 22sC3i C .1C i/˛0.s;y/2
4sC2 �.4sC 1/

�.4sC 2/

�
1�

1� 2�4s�1

1� 2�4s�2

�
:

By taking the limit as s ! 0, we conclude that the constant Fourier coefficient of F3=2;0.z/ equals
8i � 8i=.�y1=2/. It follows that the constant Fourier coefficient of Hj�0

.z/ equals

�i

192

�
8i �

8i

�
p

y

�
C

1� i

48

�
�2� 2i

�y1=2

�
D

1

24
�

1

8�
p

y
;

hence cC
0
.0/D 1

24
and c�

0
.0/D� 1

8�
. �

5. Inner products involving regularization terms

As before, we fix k 2 1
2

Z and f .z/2H
]

k
.�0.N // and define F.z/D yk jf .z/j2. In Section 4, we showed

that F.z/ differed from an L2 function Vf .z/ by a sum involving Eisenstein series and theta functions,
at least when k 62

˚
1
2
; 1
	
. In this section, we relate hVf ;P`. � ; Ns/i to hF;P`. � ; Ns/i by accounting for the

contribution of these regularization terms.
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To compute the inner products of the form hEa. � ; w/;P`. � ; Ns/i, we recall the Fourier expansion of
Ea.z; w/ from (4-1). We unfold the inner product using the Poincaré series as in (3-1) to produce

hEa. � ; w/;P`. � ; Ns/i D
2�wC

1
2

.4�`/s�
1
2

`w�
1
2'a1`.w/

�.sCw� 1/�.s�w/

�.s/�.w/
; (5-1)

provided that Re s > 1
2
CjRew� 1

2
j to begin. We write 'a1n.w/D 'an.w/ for brevity and remark that

formulas for these coefficients appear in [4].
The functions 'an.w/ have meromorphic continuation in w. For n¤ 0, they are analytic at w D 1. By

considering the Laurent expansion of each side of (5-1) at w D 1, we obtain

h zEa. � ; 1/;P`. � ; Ns/i D
�'a`.1/

.4�`/s�1
�.s� 1/;

in which zEa.z; 1/ is the constant term of the Laurent expansion of Ea.z; w/ at w D 1 (as defined
immediately before (4-3)).

Lastly, we consider inner products of the form hy
1
2 jg.z/j2;P`. � ; Ns/i, in which g 2M1=2.�0.N //.

Suppose that g.z/D
P

b.n/e.nz/. Then

hy
1
2 jg.z/j2;P`. � ; Ns/i D

�
�
s� 1

2

�
.4�/s�

1
2

X
n�0

b.nC `/b.n/

.nC `/s�
1
2

:

By [30, Theorem A], M1=2.�0.N // is spanned by theta functions of the form
P
�t .n/e.n

2tz/, with t

square-free and satisfying 4 cond.�t /
2t jN , where cond.�/ denotes the conductor of �, �t .n/D

�
t
n

�
if

t � 1 mod 4, and �t .n/D
�

4t
n

�
otherwise. We note that cond.�t /D t if t � 1 mod 4 and 4t otherwise.

In particular, fb.n/g is supported on integers of the form n2t , where n 2 Z and 4t3 jN . Thus

hy
1
2 jg.z/j2;P`. � ; Ns/i D

�
�
s� 1

2

�
.4�/s�

1
2

X
t3
1
;t3

2
jN

4
ti square-free

X
n2

1
t1Dn2

2
t2C`

b.n2
1
t1/b.n

2
2
t2/

.n2
1
t1/

s� 1
2

:

If M1=2.�0.N // is one-dimensional (for example, if N
4

is cube-free), then t1 D t2 D 1. In this case,
the inner sum n2

1
D n2

2
C ` has finitely many solutions. Otherwise, the sum may be infinite (depending

on `). Since the solution set .n1; n2/ of n2
1
t1 D n2

2
t2C ` is exponentially sparse in any case, the sum

above always converges for Re s > 1
2

. Thus hy
1
2 jg.z/j2;P`. � ; Ns/i is analytic in Re s > 1

2
no matter the

dimension of M1=2.�0.N //.

Remark 5.1. In fact, hy
1
2 jg.z/j2;P`. � ; Ns/i has a meromorphic continuation to all s 2 C. To see this,

note that the series above is essentially supported on positive integers x satisfying the generalized Pell
equation t1x2� t2y2 D `. When solutions exist, they lie in finitely many classes of linear recurrences.
Splitting hy

1
2 jg.z/j2;P`. � ; Ns/i along this subdivision, and splitting further to ignore the effect of the

characters �t1
and �t2

, it suffices to continue series of the form
P

m�1 A�s
m , where fAmg satisfies a



2446 Alexander Walker

degree two linear recurrence. Fortunately, such results are known; see for example [29], which treats a
much more general case.

At this point, it is straightforward to relate the inner products hF;P`. � ; Ns/i and hVf ;P`. � ; Ns/i. We
record our results in the following proposition.

Proposition 5.2. Let f 2H
]

k
.�0.N // and set F.z/D yk jf .z/j2. For k D 3

2
,

hF;P`. � ; Ns/i D hVf ;P`. � ; Ns/iC
p
��

�
sC 1

2

�
�
�
s� 3

2

�
.4�`/s�

3
2�.s/

X
aW~aD0

jcCa .0/j
2'a`

�
3
2

�
C

2��.s� 1/

.4�`/s�1

X
aW~aD0

Re
�
cCa .0/c

�
a .0/

�
'a`.1/

C
4�
�
s� 1

2

�
.4�/s�

1
2

X
t3
1
;t3

2
jN

4
ti square-free

X
n2

1
t1Dn2

2
t2C`

a�f .n
2
1
t1/a�f .n

2
2
t2/

.n2
1
t1/

s� 1
2

;

in which Vf is defined as in (4-4) and a�f .n/ denotes the n-th Fourier coefficient of �3=2f .z/. For k < 1
2

in 1
2

Z, we have instead

hF;P`. � ; Ns/i D hVf ;P`. � ; Ns/iC
2��.sC 1� k/�.sC k � 2/

.4�`/s�
1
2 .�`/k�

3
2�.s/�.2� k/

X
aW~aD0

jc�a .0/j
2'a`.2� k/

C
2��.s� 1/

.4�`/s�1

X
aW~aD0

Re
�
cCa .0/c

�
a .0/

�
'a`.1/;

in which Vf is defined as in (4-3).

As a corollary, we specify the contribution of correction terms in the regularization VH.z/ of H.z/.

Corollary 5.3. Let `o denote the odd-part of `. In Re s > 3
2

, we have

hy
3
2 jHj2;P`. � ; Ns/i D hVH;P`. � ; Ns/iC

p
��

�
sC 1

2

�
�
�
s� 3

2

�
.4�`/s�

3
2�.s/

�
2��2

�
`
4

�
� ��2

�
`
2

�
C ��2.`o/

4032�.3/

�
�.s� 1/

.4�`/s�1
�
2��1

�
`
4

�
� ��1

�
`
2

�
C ��1.`o/

288 �.2/
C
�
�
s� 1

2

�
32�sC 3

2

X
d j`

d� `
d

mod 2

�
d C `

d

�1�2s
:

Proof. Since �3=2H.z/D� 1
16�

�.z/ by (2-3) and the Fourier expansion (1-4), we have

a�H.n/D�
1

16�
r1.n/:
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Propositions 4.1 and 5.2 then give

hy
3
2 jHj2;P`. � ; Ns/i D hVH;P`. � ; Ns/iC

p
� �

�
sC1

2

�
�
�
s�3

2

�
.4�`/s�

3
2�.s/

�
1

144
'1`

�
3
2

�
C

1
576
'0`

�
3
2

��
�
�.s� 1/

.4�`/s�1

�
1

48
'1`.1/C

1
96
'0`.1/

�
C
�
�
s� 1

2

�
4.4�/sC

3
2

X
n�0

r1.nC`/r1.n/

.nC`/s�
1
2

: (5-2)

To simplify further, we give explicit descriptions of the Fourier coefficients 'a`.w/. Conveniently, the
formulas we require appear in [15, §3.3]:

'0`.w/D
�
.2/
1�2w

.`/

4w�.2/.2w/
; '1`.w/D

22�4w�1�2w

�
`
4

�
� 21�4w�1�2w

�
`
2

�
�.2/.2w/

; (5-3)

in which �.2/.s/D .1� 2�s/�.s/, � .2/� denotes the sum-of-divisors function with its 2-factor removed,
and we adopt the convention that ��.m/D 0 for m 62 Z. By Euler products, � .2/� .`/D ��.`o/, where `0

is the odd part of `.
Finally, we note that the series in (5-2) may be written as a divisor sum:X

n�0

r1.nC `/r1.n/

.nC `/s�
1
2

D

X
n1;n22Z

n2
2
�n2

1
D`

jn2j
1�2s

D 22s�1
X

d1;d22Z
d1d2D`

d1�d2 mod 2

jd1C d2j
1�2s

D 22s
X
d j`

d� `
d

mod 2

�
d C `

d

�1�2s
;

which completes the proof. �

6. Spectral expansion and rightmost poles

As before, fix f 2H
]

k
.�0.N // with k 62

˚
1
2
; 1
	

and define F.z/D yk jf .z/j2. In this section, we show
that the inner product hF;P`. � ; Ns/i admits meromorphic continuation to s 2 C. By Proposition 5.2,
it suffices to consider the inner products hVf ;P`. � ; Ns/i instead, as the regularization terms contribute
explicit terms which are meromorphic in C, either by inspection or as a consequence of Remark 5.1.

Selberg’s spectral theorem (cf. [18, Theorem 15.5]) gives the following spectral expansion of P`.z; s/:

P`.z; s/D
X

j

hP`. � ; s/; �j i�j .z/C
X
a

VN

4�

Z 1
�1

˝
P`. � ; s/;Ea

�
� ; 1

2
C i t

�˛
Ea

�
z; 1

2
C i t

�
dt; (6-1)

in which a varies through the cusps of �0.N /, VN D
�
3
�N

Q
pjN .1C 1=p/ denotes the volume of

�0.N /nh, and f�j g is an orthonormal Hecke eigenbasis for the space of weight 0 Maass cusp forms on
�0.N /. These Maass forms have Fourier expansions at all cusps, which we write in the form

�ja.z/ WD �j j�a.z/D y
1
2

X
n¤0

�ja.n/Kitj .2�jnjy/e.nx/: (6-2)

We next record two useful lemmas regarding the growth of the coefficients �ja.m/ on average. The
first of them concerns the average growth of �ja.m/ with respect to m and is taken from [17].
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Lemma 6.1 [17, (8.7)]. Let �j be an L2-normalized Maass cusp form on �0.N / with Fourier expansion
at a of the form (6-2). Then X

m�M

j�ja.m/j
2
�N .M Cjtj j/e

�jtj j:

Our second lemma is a spectral average generalizing [24, Theorem 6].

Lemma 6.2. Let f�j g denote an orthonormal basis of Maass cusp forms for �0.N /, with Fourier
expansions given by (6-2). For ` > 0 and any � > 0,X

jtj j�X

j�j .`/j
2

cosh� tj
D

X 2

�2
CON;�.X log X CX`�C `

1
2
C�/:

Proof. For level N D 1, this result is [24, Theorem 6]. More generally, we adapt [24, §6], replacing
the level 1 trace formula with one on �0.N /, as found in [4, Lemma 4.7], for example. To carry out
this generalization, we require the Kloosterman sum estimate S11.`; `; c/� .`; c/1=2c1=2d.c/ from
[4, Lemma 2.6] as well as the Eisenstein series coefficient estimate

'a`
�

1
2
C i t

�
�N

d.`/

j�.1C 2i t/j
�N;� d.`/ log t; (6-3)

To see (6-3), one may represent Ea.z; s/ in terms of Eisenstein series attached to characters via [35,
Theorem 6.1] and apply the Fourier coefficient formulas in [35, Proposition 4.1], then apply [32, (3.11.10)].

�

Continuing on, substitution of (6-1) into hVf ;Ph. � ; Ns/i produces

hVf ;P`. � ; Ns/i D
X

j

h�j ;P`. � ; Ns/ihVf ; �j .z/i

C
VN

4�

X
a

Z 1
�1

˝
Ea

�
� ; 1

2
C i t

�
;P`. � ; Ns/

˛ ˝
Vf ;Ea

�
z; 1

2
C i t

�˛
dt; (6-4)

which we call the spectral expansion of hVf ;P`. � ; Ns/i. We will refer to the terms at right in (6-4) as the
discrete spectrum and continuous spectrum, respectively. To make this more explicit, we apply (5-1) and
the formula

h�j ;P`. � ; Ns/i D
�j .`/

p
�

.4�`/s�
1
2

�
�
s� 1

2
� i tj

�
�
�
s� 1

2
C i tj

�
�.s/

;

which follows from [9, 6.621(3)]. We conclude that hVf ;P`. � ; Ns/i admits a spectral decomposition of
the form †disc.s/C†cont.s/, in which

†disc.s/ WD

p
�

.4�`/s�
1
2�.s/

X
j

�j .`/�
�
s� 1

2
C i tj

�
�
�
s� 1

2
� i tj

�
hVf ; �j i;

†cont.s/ WD
VN

2

X
a

Z 1
�1

'a`
�

1
2
C i t

�
�
�
s� 1

2
C i t

�
�
�
s� 1

2
� i t

�
.4�`/s�

1
2 .�`/�it�.s/�

�
1
2
C i t

� ˝
Vf ;Ea

�
� ; 1

2
C i t

�˛
dt:
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This spectral expansion is initially defined for Re s > 1Cjk�1j, provided all expressions converge.
Fortunately, convergence is not an issue:

Lemma 6.3. The functions †disc.s/ and †cont.s/ converge for all s 2 C away from their poles.

Proof. In the discrete spectrum†disc.s/, this follows from Lemma 6.2, Stirling’s approximation (providing
decay of size e��jtj j for fixed s), and the trivial estimate jhVf ; �j ij � kVf k1=2 � k�jk

1=2�f 1. Here,
we’ve used that k�jk D 1 (by definition of �j ) and that Vf 2L2.�0.N /nh/ by our work in Section 4.
(This estimate is very weak, and will be improved in Section 8.)

In the continuous spectrum, convergence follows from Stirling’s approximation, weak upper bounds for˝
Vf ;Ea

�
� ; 1

2
C i t

�˛
derived from the Rankin–Selberg method and Phragmén–Lindelöf convexity principle,

and (6-3). �

Thus †disc.s/ defines a meromorphic function on the entire complex plane, with potential poles at
sD 1

2
˙i tj�m for integer m�0 and any spectral type tj . It is analytic in the right half-plane Re s> 1

2
C‚,

where ‚� 7=64 denotes partial progress towards the Ramanujan–Petersson conjecture [21].
The continuous spectrum †cont.s/ also has meromorphic continuation to all s, though the precise

continuation to Re s > �M involves both †cont.s/ and O.M / residue terms extracted through contour
shifts of the integral in †cont. For a discussion of the continuation process in a similar case, we refer the
reader to [14, §4] or [15, §3.3.2]. The continuous spectrum is clearly analytic in Re s > 1

2
.

Thus hVf ;P`. � ; Ns/i, originally defined for Re s> 1Cjk�1j, extends meromorphically to a function on
the entire complex plane. Since it is analytic in Re s > 1

2
C‚, any pole of hF;P`. � ; Ns/i in Re s > 1

2
C‚

occurs as a pole of the explicit regularization factors presented in Proposition 5.2.

Remark 6.4. In Section 3, we gave the general decomposition

hF;P`. � ; Ns/i D IC
`
.s/C I0

` .s/C I�` .s/C I�` .s/:

The two terms I0
`
.s/ and I�

`
.s/ are finite sums and inherit meromorphic continuation to s 2 C from

the continuations of Gk and the 2F1-hypergeometric function. Thus the continuation of hF;P`. � ; Ns/i
implies a continuation for IC

`
.s/C I�

`
.s/. It is possible, albeit challenging, to establish the meromorphic

continuations of IC
`
.s/ and I�

`
.s/ as separate entities. Here, the idea is to first continue I�

`
.s/ by relating

it to the Dirichlet series
1X

nD1

a�f .n/a�f .nC `/

.nC `/s�w�knwC1
;

which admits meromorphic continuation through relation to the triple inner product hy2�k j�kf j
2;P`. � ; Ns/i.

Establishing this continuation is not so difficult when Rew < �1, but in practice we require Rew as
large as �k (to evaluate a particular contour integral representation), and this creates major complications
in weights k < 1.

Fortunately, these problems disappear altogether for f DH, as the series I�
`
.s/ defines a finite sum

in this case (cf. Section 3A). To simplify the exposition in this work, we narrow our typical focus
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from f 2 H
]

k
.�0.N // to f D H. Still, the construction of the meromorphic continuations of I˙

`
.s/

and estimates for shifted convolutions of generic mock modular forms of polynomial growth are of
independent interest and will appear in future work.

6A. Classifying the rightmost poles of D`.s/. As an application of our work thus far, we classify the
rightmost poles of the shifted convolution Dirichlet series D`.s/ from (3-4). We prove the following
theorem.

Theorem 6.5. The Dirichlet series D`.s/ is analytic in the right half-plane Re s > 3
2

and extends
meromorphically to all s 2 C. If ` � 2 mod 4, then D`.s/ D 0 identically. Otherwise, D`.s/ has two
simple poles in the right half-plane Re s > 1

2
, at s D 3

2
and s D 1, with residues

Res
sD 3

2

D`.s/D
�2

126 �.3/

�
2��2

�
`
4

�
� ��2

�
`
2

�
C ��2.`o/

�
;

Res
sD1

D`.s/D�
1

3�

�
2��1

�
`
4

�
� ��1

�
`
2

�
C ��1.`o/

�
:

The function D`.s/ is otherwise analytic in Re s > 1
2

.

Proof. Equation (3-5) relates D`.s/ to hy3=2jHj2;P`. � ; Ns/i and Corollary 5.3 relates hy3=2jHj2;P`. � ; Ns/i
to hVH;P`. � ; Ns/i. When combined, this produces

D`.s/D
�

5
2�
�
s� 3

2

�
`s� 3

2�.s/
�
2��2

�
`
4

�
� ��2

�
`
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�
C ��2.`o/

252 �.3/
�

�
3
2�.s� 1/

`s�1�
�
sC 1

2

� � 2��1

�
`
4

�
� ��1

�
`
2

�
C ��1.`o/

36 �.2/

C
.4�/sC

1
2 hVH;P`. � ; Ns/i

�
�
sC 1

2

� �
H.`/�.s/

4
p
�`s�

�
sC 1

2

� C H.`/

12`sC 1
2

�
r1.`/

32�`s� 1
2 s
�
s� 1

2

� C r1.`/�.s/

96
p
�`s�

�
sC 3

2

�
�

�.s/

�
�
sC 3

2

� `�1X
mD1

H.`�m/r1.m/

8
p
�ms 2F1

�
s; sC 1

2

sC 3
2

ˇ̌̌̌
1�

`

m

�

�

X
m2

1
�m2

2
D`

m1;m2�1

m1m2G3=2.s;m
2
2
;m2

1
/

16��
�
sC 1

2

� C
22s�4

�
�
s� 1

2

� X
d j`

d� `
d

mod 2

�
d C `

d

�1�2s
: (6-5)

Recall that hVH;P`. � ; Ns/i is analytic in Re s > 1
2
C‚. By Huxley’s resolution of the Selberg eigenvalue

conjecture in low level [16], the inner product is in fact analytic in Re s > 1
2

. Thus, by previous comments,
all but the first two terms at right above are analytic in Re s > 1

2
. Computation of residues completes the

proof. �

Since D`.s/ has nonnegative coefficients, the Wiener–Ikehara theorem (see [25, Corollary 8.8], for
example) immediately produces the following:
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Corollary 6.6. For fixed `, as X !1 we haveX
n�X

H.n/H.nC `/�
�2X 2

252 �.3/

�
2��2

�
`
4

�
� ��2

�
`
2

�
C ��2.`o/

�
:

7. Bounding D`.s/ in vertical strips

To quantify the rate of convergence in Corollary 6.6, we require additional information about the mero-
morphic properties of D`.s/. Specifically, we require uniform estimates for the growth of D`.s/ with
respect to jIm sj in vertical strips outside the domain of absolute convergence.

It suffices to produce growth estimates for each component of the decomposition of D`.s/ given in (6-5).
In this section, we produce uniform estimates for every term besides .4�/sC

1
2 hVH;P`. � ; Ns/i=�

�
sC 1

2

�
,

which requires more involved techniques.

Proposition 7.1. Fix s with Re s > 0. Away from poles of D`.s/, we have

D`.s/�� `
�Re sC�

C `
3
2
�Re sC�

jsj�
3
2 C

ˇ̌̌̌
hVH;P`. � ; Ns/i

�
�
sC 1

2

� ˇ̌̌̌
for all � > 0.

The proof requires a few lemmas, starting with a simple upper bound for the Hurwitz class number.

Lemma 7.2. We have H.`/�� `
1
2
C� for all � > 0.

Proof. The moment estimate (1-1) implies Qh.�`/�� `
1
2
C� for all � > 0. Since h.�`/D

P
d2j`
Qh.�`=d2/,

we have h.�`/�
P

d�1.`=d
2/

1
2
C�
� `

1
2
C�. The same bound holds for H.`/D h.�`/CO.1/. �

We also require uniform estimates for the 2F1-hypergeometric function and the function G3=2, which
are provided by the following two lemmas.

Lemma 7.3. For 1�m� `� 1 and Re s > 0, we have

2F1

�
s; sC 1

2

sC 3
2

ˇ̌̌̌
1�

`

m

�
�

�m

`

�Re s
:

Proof. Following [9, 9.131(1)] and the Euler integral [9, 9.111],

2F1

�
s; sC 1

2

sC 3
2

ˇ̌̌̌
1�

`

m

�
D

�
`

m

�1�s

2F1

�
3
2
; 1
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2
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�1�s�
sC 1

2

� Z 1

0

.1� t/s�
1
2 dt�

1�
�
1� `

m

�
t
�3=2 (7-1)

in the region Re s > �1
2

. In this form, we recognize that the hypergeometric function at right in (7-1)
is bounded by 2F1

�
3
2
; 1; 3

2

ˇ̌
1� `

m

�
when Re s > 0. To conclude, note that 2F1

�
3
2
; 1; 3

2

ˇ̌
1� `

m

�
D

m
`

by
[9, (9.121)]. �
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Lemma 7.4. Fix � > 0. In the region Re s > 0, the function G3=2.s; n; nC `/ defined in (3-2) satisfies

G 3
2
.s; n; nC `/�

jsjRe s�2C�

.nC `/Re s
e�

�
2
jIm sj

�
jsj

1
2

p
nC `

C
1
p

n

�
:

Proof. We begin with the contour integral representation [5, (8.6.12)]

�.1� k;y/ey
D�

y�k

�.k/
�
�

2� i

Z
C

�.wC k/y�w

sin.�w/
dw; (7-2)

where C is a contour separating the poles of �.wCk/ from those at wD 0; 1; : : : arising from 1=sin.�w/.
Here we require k 62 �N. For k > 0, we may take C as a vertical line with Rew D��. We apply (7-2)
and the Mellin transform [5, (8.14.4)] to Gk.s; n; nC `/ to write

Gk D�
�n�k

�.k/

1

2� i

Z
.��/

�.wC k/

sin.�w/nw

�Z 1
0

ys�1�w�.1� k; .nC `/y/
dy

y

�
dw

D�
�

�.k/

1

2� i

Z
.��/

�.wC k/�.s�w� k/ csc.�w/
nkCw.nC `/s�w�1.s�w� 1/

dw; (7-3)

provided Re s >max.1; k/ to begin. Shifting the contour of integration to RewD�max.1; k/�� passes
finitely many poles from csc.�w/ and gives a meromorphic continuation of Gk to Re s > 0 when k > 0.

We now specialize to k D 3
2

. The contour shift in (7-3) to Rew D �3
2
� � passes a single pole at

w D�1, with residue
2�
�
s� 1

2

�
p

n.nC `/ss
�

1
p

n.nC `/Re s
jsjRe s�2e�

�
2
jIm sj:

Stirling shows that the integrand decays exponentially in jImwj, for any s. We may therefore truncate
the integral to jImwj � 1

2
jIm sj. In this range, the estimates js � w � kj � jsj and e�

�
2
jIm.s�w/j

�

e
�
2
jImwj��

2
jIm sj allow us to extract the s-dependence of the integrand. Hence the shifted integral (7-3) is

O..nC `/�Re s� 1
2 jsjRe s� 3

2
C�e�

�
2
jIm sj/, which completes the proof. �

Proof of Proposition 7.1. Lemma 7.2 and the divisor estimates ��2.`/� 1 and ��1.`/� `� imply that
the terms at right in the first three lines of (6-5) (excluding the term containing hVH;P`. � ; Ns/i) are

ORe s;�

�
`

3
2
�Re s
jsj�

3
2 C `

1
2
�Re sC�

jsj�
1
2 C `�Re sC�

�
: (7-4)

By factoring this upper bound in the form `�Re sC�jsj�
3
2 .`

3
2 C `

1
2 jsjC jsj

3
2 /, we observe that the second

summand is always dominated by the first or third term, and may be ignored.
It remains to estimate the three terms in the last two lines of (6-5). We first consider the divisor

sum. In the right half-plane Re s > 1
2

, we bound jd C `=d j1�2 Re s � `
1
2
�Re s , so the divisor sum is

O.`
1
2
�Re sC�

jsj�1/, which is nondominant. Otherwise, if Re s< 1
2

, we bound jdC`=d j1�2 Re s�`1�2 Re s ,
so the full divisor sum is O.`1�2 Re sC�jsj�1/. This term is dominated by the second term of (7-4) when
Re s > 0.
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We next consider the contribution of the hypergeometric term in (6-5). By Lemma 7.3, Stirling’s
formula, and then Lemma 7.2, this term is

�Re s `
�Re s
jsj�

3
2

`�1X
mD1

H.`�m/r1.m/�Re s;� `
1�Re sC�

jsj�
3
2

in the region Re s > 0. Note that this term is dominated by the first error term in (7-4).
Finally, we consider the term in (6-5) involving G3=2.s;m

2
2
;m2

1
/. By Lemma 7.4, this term is

ORe s
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jsj�2C�

X
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1
�m2

2
D`

m1m2

m2 Re s
1

�
jsj

1
2

m1

C
1

m2

��
(7-5)

in the region Re s > 0. The contribution of 1=m2 in the parenthetical is

�Re s jsj
�2C�

X
m2

1
�m2

2
D`

1

m2 Re s�1
1

�Re s jsj
�2C�`�

�
`

1
2
�Re s

C `1�2 Re s
�
;

in which we’ve used that
p
` �m1 � ` and that the sum has at most d.`/ terms. Since m1 �m2, the

contribution of the other term in the parenthetical of (7-5) is at most jsj1=2 times larger. Both upper
bounds are majorized by the contribution of the divisor sum in (6-5). �

8. Noncuspidal spectral inner products

To bound hVH;P`. � ; Ns/i in vertical strips, we apply the spectral expansion hVH;P`. � ; Ns/i D†disc.s/C

†cont.s/ computed in Section 6. In the discrete spectrum, Stirling’s approximation, dyadic subdivision,
Cauchy–Schwarz, and Lemma 6.2 reduce our task to bounding the inner products hVH; �j i. Since Maass
cusp forms are orthogonal to Eisenstein series and to norm-squares of theta functions (cf. [27, Remark
2]), this is equivalent to bounding the unregularized inner products hy3=2jHj2; �j i.

While good estimates for inner products of the form hyk jf j2; �j i are known when f is a holomorphic
cusp form or Maass cusp form (at least on average), the noncuspidal nature of H meters the applicability
of prior results. Fortunately, it is possible to modify work of Jutila [19; 20] in the Maass cusp form case
to address the case of harmonic Maass forms. Working in a somewhat general setting, we prove the
following theorem.

Theorem 8.1. Fix f 2H
]

k
.�0.N // with k 2 1

2
CZ. Let �j .z/ be an L2-normalized Hecke–Maass cusp

form of weight 0 on �0.N /, with spectral type tj 2 R. For all � > 0, we have

hyk
jf j2; �j i �

�
jtj j

2k�1C�
Cjtj j

3�2kC�
�
e�

�
2
jtj j:

Our proof of this follows the general method of [19; 20]. Very roughly, this plan involves two steps:

a. We relate hyk jf j2; �j i, which is an integral over �0.N /nh, to an “unfolded” integral over �1nh,
by introducing an Eisenstein series as an unfolding object. This technique was developed in [19, §2]
for f a level 1 holomorphic or Maass cusp form, and we adapt it to the case of f 2H

]

k
.�0.N //.
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b. The unfolded integral can be understood as an integral transform of a sum involving Fourier coeffi-
cients of f and �j at various cusps. We truncate the sums and integrals and apply estimates for the
Fourier coefficients of f and �j to bound the truncations.

We remark that [20] also applies the spectral large sieve, to produce a fairly sharp upper bound for the
spectral average

P
jtj j�T jhy

k jf j2; �j ij
2e�jtj j (when f is a Maass cusp form). To simplify parts of our

argument when f is noncuspidal, we do not apply the spectral large sieve and instead produce bounds for
individual hyk jf j2; �j i. It would be interesting to determine if our growth estimates for D`.s/ could be
improved by replacing Theorem 8.1 with an appropriate spectral average.

Though not the main focus of this work, we remark that Theorem 8.1 has applications to modular
forms of half-integral weight, since Mk.�0.N //�H

]

k
.�0.N //. For convenient reference, we present

this as a corollary.

Corollary 8.2. Fix k 2 1
2
CZ and f 2Mk.�0.N //. Let �j .z/ be an L2-normalized Hecke–Maass cusp

form of weight 0 on �0.N /, with spectral type tj 2 R. For all � > 0, we have

hyk
jf j2; �j i �

�
jtj j

2k�1C�
Cjtj j

1C�
�
e�

�
2
jtj j:

We remark that Corollary 8.2 improves certain technical results in [22]. In particular, we improve the
tj -dependence of [22, Proposition 14] in any case that our result applies.

8A. Jutila’s extension of the Rankin–Selberg method. The material in this section adapts [19, §2] from
SL.2;Z/ to �0.N /. Let �.z/ be an L2 function on �0.N /nh satisfying �.z/DO.y�ı/ for some ı > 0 as
y!1 and let E1.z; s/ denote the weight 0 Eisenstein series at the cusp1 of �0.N /. Since E1.z; s/

has a simple pole at s D 1 with residue 3
�
� Œ�0.N / W SL.2;Z/��1 D V �1

N
, we haveZ Z

�0.N /nh
�.z/

dx dy

y2
D VN

Z Z
�0.N /nh

�.z/ lim
s!1C

.s� 1/E1.z; s/
dx dy

y2
:

We now interchange the limit and integral, which can be justified by expanding E1.z; s/ in a (rapidly
converging) Fourier series and noting that the pole at s D 1 appears only within the constant phase. The
growth estimate �.z/ D O.y�ı/ gives convergence in this surviving term and justifies the exchange.
Then, since Re s > 1, the method of unfolding providesZ Z

�0.N /nh
�.z/

dx dy

y2
D VN lim

s!1C
.s� 1/R.�; s/; with

R.�; s/ WD

Z 1
0

Z 1

0

�.z/ys�1 dx dy

y
;

(8-1)

in which R.�; s/ is the typical Rankin–Selberg transform of �.
We define R�.�; s/D ��.2s/R.�; s/ and R�

0
.�; s/D s.s� 1/R�.�; s/, so that (8-1) equals

�

6
VN Res

sD1
R�.�; s/D

�

6
VN R�0.�; 1/:
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Note that R�
0
.�; s/ is entire, in part because � 2L2. By the residue theorem,

R�0.�; 1/D
1

2� i

Z
O

g.s/
R�

0
.�; s/

s� 1
ds;

in which O is a contour encircling sD1 once counterclockwise and g.s/ is a rapidly decaying holomorphic
function satisfying g.1/D 1. We bend O into a rectangle connecting a˙ iT and 1� a˙ iT , then let
T !1 and use decay in g to render the horizontal components of O negligible. It follows that

R�0.�; 1/D
1

2� i

Z
.a/

g.s/
R�

0
.�; s/

s� 1
ds�

1

2� i

Z
.1�a/

g.s/
R�

0
.�; s/

s� 1
ds

D
1

2� i

Z
.a/

�
g.s/

s� 1
R�0.�; s/C

g.1� s/

s
R�0.�; 1� s/

�
ds:

(8-2)

We now apply the functional equation of the Eisenstein series on �0.N / to relate R�.�; 1� s/ to a
sum of Rankin–Selberg transforms at the other cusps of �0.N /. This takes the form

R�.�; 1� s/D
X
a


a.s/R
�.�a; s/; (8-3)

in which 
a.s/ is an entry of the scattering matrix for �0.N / and �a D �j�a under the weight 0 slash
operator. Exact formulas for 
a may be obtained by combining [35, Theorem 6.1] and [35, Proposition 4.2].
We have 
a.s/DO.1/ in fixed vertical strips away from poles. By applying (8-3) to (8-2), we conclude
that

R�0.�; 1/D
1

2� i

Z
.a/

�
g.s/R�

0
.�; s/

s� 1
C

g.1� s/

s

X
a


a.s/R
�
0.�a; s/

�
ds:

In our application, we take �.z/ D �j .z/ D yk jf .z/j2�j .z/, where �j is a Maass cusp form on
�0.N / with k�jk D 1. We conclude that

hF; �j i D
VN

12i

X
a

Z
.a/

�
ıŒaD1�sg.s/C .s� 1/g.1� s/
a.s/

�
��.2s/R.�ja; s/ ds; (8-4)

which generalizes [19, (2.10)]. This expression lets us determine hF; �j i while only sampling R.�ja; s/

on the line Re s D a� 1. We also note that the pole of ��.2s/ at s D 1
2

is canceled by R.�ja; s/; hence
the only poles of the integrand in Re s > 0 are those of R.�ja; s/.

Remark 8.3. Following [19, (2.8)], we take g.s/D exp
�
1� cos s�1

B

�
, for some large B > 0. This choice

implies jg.s/j� exp
�
�

1
2

exp.jIm sj=B/
�

in the vertical strip jRe s�1j ��B=3. In particular, the contour
integral (8-4) converges if R.�ja; s/ grows at most exponentially in jIm sj. This will be established in
Remark 8.10.

To bound the Rankin–Selberg transform

R.�ja; s/D

Z 1
0

Z 1

0

ysCk
jfa.z/j

2�ja.z/
dx dy

y2
;
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we represent fa and �ja as Fourier series, as described in (2-2) and (6-2), then execute the x-integral.
This expresses R.�ja; s/ as a triple sum over integers .n1; n2; n3/ subject to the relation n1� n2 D n3.
As in Section 3, we group these terms based on the signs of n1 and n2, so that

R.�ja; s/D ICja.s/C I�ja.s/C I�ja.s/C I0
ja.s/;

denoting the subsums in which .n1; n2/ are both positive, are both negative, have mixed sign, or contain a
zero, respectively. By changing variables to introduce m WD jn1� n2j D jn3j and grouping similar terms,
we write

ICja.s/D
X

m;nC~a>0

2 Re
�
cCa .nCm/cCa .n/�ja.m/

�
'Cj .m; nC ~a; s/;

I�ja.s/D
X

m;n�1

2 Re
�
c�a .n/c

�
a .nCm/�ja.m/

�
'�j .m; n� ~a; s/;

I�ja.s/D

1X
mD1

m�1X
nD1�d~ae

2 Re
�
cCa .n/c

�
a .m� n/�ja.m/

�
'�j .m; nC ~a; s/;

in which the functions 'Cj , '�j , and '�j are defined by

'Cj .m; n; s/ WD

Z 1
0

ysCk� 1
2 e�2�.2nCm/yKitj .2�my/

dy

y
; (8-5)

'�j .m; n; s/ WD

Z 1
0

ysCk� 1
2 e2�.2nCm/y�.1� k; 4�ny/�.1� k; 4�.nCm/y/Kitj .2�my/

dy

y
; (8-6)

'�j .m; n; s/ WD

Z 1
0

ysCk� 1
2 e2�.m�2n/y�.1� k; 4�.m� n/y/Kitj .2�my/

dy

y
: (8-7)

Here we have assumed without loss of generality that �ja.�m/D �ja.m/ for Maass cusp forms of weight
0. Lastly, for singular cusps, we define

I0
ja.s/D

X
m>0

2 Re
�
cCa .m/c

C
a .0/�ja.m/

�
'Cj .m; 0; s/

C

X
m>0

2 Re
�
cCa .m/c

�
a .0/�ja.m/

�
'Cj .m; 0; s� kC 1/

C

X
m>0

2 Re
�
c�a .m/c

C
a .0/�ja.m/

�
'�j .m; 0; s/

C

X
m>0

2 Re
�
c�a .m/c

�
a .0/�ja.m/

�
'�j .m; 0; s� kC 1/: (8-8)

For nonsingular cusps, we set I0
ja.s/D 0, as the corresponding summands vanish or otherwise incorporate

into ICja.s/.
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Remark 8.4. These decompositions mirror [19; 20], except that we separate ICja from I�ja and introduce
I0
ja to account for noncuspidality. In fact, 'Cj exactly matches an unnamed function from [19, p. 449]. Our

functions '�j and '�j can be viewed as variants of the functions 'Cj and '�j from [20, (3.4)], respectively.

8B. Representations and estimates for 'C
j

, '�
j

, and '�
j

. We now record some useful information about
the functions 'Cj , '�j , and '�j . We first consider 'Cj , leveraging earlier work of Jutila.

Lemma 8.5 [19, §3]. Define �D �.m; n/ WD
p

1�m2=.2nCm/2 and set p WD sC k � 1
2

. The function
'Cj .m; n; s/ defined in (8-5) is analytic in Re p > 0 and may be written in either of the forms

'Cj .m; n; s/D

p
� mitj�.pC i tj /�.p� i tj /

.4�/p.2nCm/pCitj�
�
pC 1

2

�.1C�/�p�itj
2F1

�
p;pC i tj ; 2p

ˇ̌̌
2�

1C�

�
; (8-9)

'Cj .m; n; s/D
2�1�2p��p

.n.nCm//p=2

��
1��

1C�

�i tj
2
�.�i tj /�.pC i tj /2F1

�
p; 1�p; 1C i tj

ˇ̌̌
��1

2�

�
C

�
1��

1C�

�� i tj
2
�.i tj /�.p� i tj /2F1

�
p; 1�p; 1� i tj

ˇ̌̌
��1

2�

��
: (8-10)

Proof. These identities are implicit in [19, (3.16)–(3.21)]. �

In the special case nD 0, we have �D 0 and (8-9) implies that

'Cj .m; 0; s/D

p
� �.pC i tj /�.p� i tj /

.4�m/p�
�
pC 1

2

� ; (8-11)

which can also be seen directly via [9, 6.621(3)]. For n¤ 0, we don’t expect simplification but can still
produce upper bounds. For example, in the text surrounding [20, (4.5)], Jutila applies (8-9) to produce

'Cj .m; n; s/�Re p
j�.pC i tj /�.p� i tj /j

.2nCm/Re p.1C�/Re pj�.p/j
log.2nCm/; (8-12)

valid for Re p > 0. An upper bound derived from the representation (8-10) is presented in the following
lemma.

Lemma 8.6 (cf. [20, p. 452]). Fix tj 2 R and � > 0. Suppose that �¤ 0. For any s in a fixed vertical strip
away from poles,

'Cj .m; n; s/��
jtj j

Re p�1

.n.nCm//
Re p

2

�
1C

ˇ̌̌̌
1Cjsj2

�tj

ˇ̌̌̌1CjRe pjC��
e
�
2
jIm sj

e�jtj j
: (8-13)

Proof. For p 62 Z and nonpositive z 2 C, consider the integral representation

2F1

�
p; 1�p; 1Ci tj

ˇ̌̌
z
�
D

Z
B

�.1Ci tj /�.pCw/�.1�pCw/�.�w/

�.p/�.1�p/�.1Ci tjCw/
.�z/w dw; (8-14)

in which the contour B separates the poles of �.pCw/�.1�pCw/ from those of �.�w/ [5, (15.6.6)].
We suppose that Re p > 0 and shift the contour B to the line Rew D Re pC �. This shift passes poles
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and extracts residues at w D 0; 1; : : : ; bRe pC �c, totaling

bRe pC�cX
vD0

.p/v.1�p/v

v! .1C i tj /v
zv� 1C

ˇ̌̌̌
.1Cjpj2/z

tj

ˇ̌̌̌Re pC�

;

in which .˛/v WD �.vC ˛/=�.˛/ denotes the Pochhammer symbol. The same upper bound holds for
the shifted integral, by Stirling’s approximation. We apply this estimate for z D ��1

2�
� ��1, then apply

Stirling’s approximation to the other factors of (8-10) to complete the case Re p > 0. The case Re p < 0

then follows using the invariance of (8-14) under p$ 1�p. �

We conclude our discussion of 'Cj by presenting a uniform upper bound for the size of its residues.

Lemma 8.7. Fix tj 2 R. For each integer r � 0, we have

Res
sD 1

2
�k˙itj�r

'Cj .m; n; s/�r .nCm/r jtj j
� 1

2 e�
�
2
jtj j:

Proof. Stirling’s approximation and (8-10) give

Res
sD 1

2
�kCitj�r

'Cj .m; n; s/�r
.n.mC n//

r
2

jtj j1=2e
�
2
jtj j
�

ˇ̌̌̌
2F1

�
i tj � r; 1C r � i tj ;

1� i tj

ˇ̌̌̌
��1

2�

�ˇ̌̌̌
:

The transformation 2F1.a; b; c; z/D .1� z/�a
2F1.a; c � b; c; z

z�1
/ (cf. [9, 9.131(1)]) relates the hyper-

geometric function above to the finite sum�
�C1

2�

��itjCr

2F1

�
i tj � r;�r;

1� i tj

ˇ̌̌̌
1��

1C�

�
� ��r

rX
vD0

.i tj � r/v.�r/v

.1� i tj /vv!

�
1��

1C�

�v
;

which is Or .�
�r /, uniformly in tj . The claim now follows from the estimate �2 � n=.nCm/, and the

computation for s D 1
2
� k � i tj � r is identical. �

To understand '�j and '�j , we express them as contour integral transforms of 'Cj . The following
lemma consolidates relevant information about '�j .

Lemma 8.8. The function '�j .m; n; s/ defined in (8-7) admits meromorphic continuation to s 2 C, with
poles at s D�1

2
˙ i tj � r and s D 1

2
� k˙ i tj � r , for r 2 Z�0. If tj 2 R and Re s > 0 away from poles,

we have

'�j .m; n; s/

�
1

.m�n/k
p

m

�
js�i tj j�jsCi tj j

mjsj

�Re s�1

jsj�
1
2

�
1C

�
mjsj

.m�n/js�i tj j�jsCi tj j

�jkjC��
e��jtj jC

�
2
jIm sj

C ıŒRe s< 1
2
�k�

�
mC nCjsjC jtj j

�A
e�2�jtj jC

3�
2
jIm sj (8-15)

for all � > 0 and for some A> 0 depending only on k.
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Proof. The integral representation (7-2) implies that

'�j .m; n; s/D
��

�.k/
�

1

2� i

Z
C

�.wC k/

.4�.m� n//wCk sin.�w/

�Z 1
0

ys� 1
2
�we�2�myKitj .2�my/

dy

y

�
dw

D
��

�.k/
�

1

2� i

Z
C

�.wC k/'Cj .m; 0; s� k �w/

.4�.m� n//wCk sin.�w/
dw;

where C is a contour separating the poles of �.wCk/ from those atwD0; 1; : : : , arising from 1=sin.�w/.
To begin, we require Re s > 1

2
CmaxfRew W w 2 C g. To consider general s, we shift the contour C left,

passing poles from �.wC k/ and 1=sin.�w/ and extracting residues involving 'Cj .m; 0; s/ at shifted
arguments. By (8-11), these residues contribute poles at the poles of �

�
sCk� 1

2
˙i tj

�
and �

�
sC 1

2
˙i tj

�
.

To produce growth estimates, we then shift C rightwards, to the contour Rew D jkjC �. This extracts
a sum of residues equal to

jkj� 1
2X

qD0

.�1/q�.qC k/

�.k/.4�.m� n//kCq
�'Cj .m; 0; s� k � q/

C

bjkjC��Re sC 1
2
cX

rD0

X
˙

Res
wDs� 1

2
˙itjCr

��.wC k/'Cj .m; 0; s� k �w/

.4�.m� n//wCk sin.�w/�.k/
:

Stirling’s approximation and Lemma 8.7 show that the exponential decay in the residues in the second line
is e�

3�
2
jIm s˙itj j�

�
2
jtj j� e�2�jtj jC

3�
2
jIm sj, while the worst polynomial growth is O..mCnCjsjCjtj j/

A/

for some A> 0 depending linearly on jkj and Re s. Since Re s 2
�
0; jkjC 1

2

�
when these terms appear,

we may take the constant A to depend on k alone.
Exponential decay in jImwj within the integrand bounds the shifted contour integral to at most a

constant multiple of the integrand near jkjC �. Stirling’s approximation and (8-11) then complete the
proof of (8-15). �

The corresponding properties of '�j may be obtained in a similar (though more complicated) way and
are summarized in the following lemma.

Lemma 8.9. The function '�j .m; n; s/ defined in (8-6) admits meromorphic continuation to s 2 C, with

poles at s D k � 3
2
�m˙ i tj and s D 1

2
� k �m˙ i tj , for m 2 Z�0. If tj 2 R and Re s > 3jkjC 1, then

for all � > 0 we have

'�j .m; n; s/

�
log.mC n/

.n.mC n//kC
1
2

�
js� i tj jjsC i tj j

.2nCm/.1C�/jsj

�Re s�k�1�
1C

�
.nCm/jsj2

njs� i tj j2jsC i tj j2

�jkjC��
e��jtj jC

�
2
jIm sj:

(8-16)
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Proof. Using (7-2), we write '�j .m; n; s/ as a double contour integral,

'�j .m; n; s/D
�2

�.k/2.2� i/2

Z
C1

Z
C2

�.w1C k/�.w2C k/

.4�n/w1Ck.4�.nCm//w2Ck sin.�w1/ sin.�w2/

�

�Z 1
0

ys�k� 1
2
�w1�w2e�2�.2nCm/yKitj .2�my/

dy

y

�
dw2 dw1

D
�2

.2� i/2

Z
C1

Z
C2

�.w1C k/�.w2C k/'Cj .m; n; s� 2k �w1�w2/ dw2 dw1

�.k/2.4�n/w1Ck.4�.nCm//w2Ck sin.�w1/ sin.�w2/
;

where C1 and C2 are instances of the contour C described in Lemma 8.8 and Re s> kC 1
2
C2 maxfRew W

w 2 C g to begin. As in Lemma 8.8, shifting the contours left produces residues which determine the
poles of '�j . To produce growth estimates, we shift C1 and C2 to the lines Rew1 D Rew2 D jkj C �,
extracting a series of single contour integrals and a double sum of residues from 1=sin.�w1/ sin.�w2/

equal to
jkj� 1

2X
q1;q2D0

.�1/q1Cq2�.q1C k/�.q2C k/'Cj .m; n; s� 2k � q1� q2/

�.k/2.4�n/kCq1.4�.mC n//kCq2
: (8-17)

Exponential decay in vertical strips implies that the contour integrals are bounded by their values near the
near axis, whereby the bound (8-12) and Stirling’s approximation gives (8-16). �

Remark 8.10. The upper bounds for 'Cj , '�j , and '�j given in (8-12), (8-15), and (8-16) imply that
R.�ja; s/ satisfies a bound of the form

R.�ja; s/� .jsjC jtj j/
Ae�

�
2
jtj jC

�
2
jIm sj; (8-18)

for sufficiently large Re s and some A> 0. Indeed, such a bound holds for each of ICja.s/, I�ja.s/, I�ja.s/,
and I0

ja.s/, by dyadic subdivision of their defining sums, polynomial growth bounds on c˙a .n/, and a
bound for �ja.n/ such as Lemma 6.1.

Note that (8-18) implies that the contour integral (8-4) for hF; �j i converges for Re s sufficiently
large. More specifically, it implies that hF; �j i � jtj j

Ae�
�
2
jtj j for some A> 0. These coarse estimates

also show that the integral in (8-4) may be truncated to jIm sj D c log.1C jtj j/ for some c > 0 while
introducing negligible error. We assume this henceforth.

We conclude this section with an upper bound for '�j obtained via (8-13). We assume ��jtj j�1�� . We
also assume that jsj � log jtj j, which holds without loss of generality by Remark 8.10. The bound (8-13)
implies that the contribution of the residues (8-17) is

O

�
jtj j

Re s�k� 3
2
C�

.n.mCn//
1
2

Re sCk
2
� 1

4

e��jtj jC
�
2
jIm sj

jkj� 1
2X

q1;q2

�
mCn

n

�q1�q2
2
jtj j
�q1�q2

�
:

Since � �
p

n=
p

nCm, the estimate � � jtj j�1�� implies that jtj j2C2� �
mCn

n
. Thus, up to jtj j�

factors, the .q1; q2/-sum is dominated by the q1 D q2 D 0 term. Our estimate for the q1 D q2 D 0 term
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likewise acts as a bound for the shifted double contour and any of the single contour integrals associated
to residues from 1=sin.�w1/ or 1=sin.�w2/.

The contribution of the residues from the poles of 'Cj .m; n; s�2k�w1�w2/ (as either single contour
integrals or residues from single contour integrals) is O

�
.mCnCjsjC jtj j/

Ae�2�jtj jC
3�
2
jIm sj

�
for some

A> 0, by Lemma 8.7 and Stirling’s approximation. (At this level of precision it suffices to consider only
the exponential factor in Stirling’s approximation.) Thus

'�j .m; n; s/

�
jtj j

Re s�k� 3
2
C�

.n.mC n//
1
2

Re sCk
2
� 1

4

e��jtj jC
�
2
jIm sj
CıŒRe s<jk�1j� 1

2
�.mCnCjsjCjtj j/

Ae�2�jtj jC
3�
2
jIm sj: (8-19)

8C. Sum truncation. For some .m; n/, the functions 'Cj , '�j , and '�j may be made arbitrarily small
by taking Re s very large. For example, (8-15) implies that '�j .m; n; s/ decays with respect to jtj j
as Re s !1 provided m < jtj j

2Cı, for any fixed ı > 0. In other words, we may truncate I�ja.s/ to
m� jtj j

2Cı in our estimate for hF; �j i, with a negligible error. Likewise, (8-12) and (8-15) imply that
I0
ja.s/ may be truncated to m� jtj j

2Cı.
We claim that ICja.s/ and I�ja.s/ may be truncated to n.mCn/� jtj j

2Cı at the cost of negligible error.
To prove this, we follow [19, (3.25)] and subdivide cases based on whether �� jtj j�1.

a. If � � jtj j�1 and n.mC n/ � jtj j
2Cı, then �2 � jtj j

�2, so that .2nCm/2 � n.nCm/jtj j
2

after simplifying. The lower bound n.mC n/� jtj j
2Cı implies that 2nCm� jtj j

2Cı=2, hence
nCm� jtj j

2Cı=2. In this case, (8-12) and (8-16) produce arbitrary polynomial improvements in
jtj j as Re s!1.

b. If �� jtj j�1 and n.mC n/� jtj j
2Cı, we instead argue using the upper bounds (8-13) and (8-19).

Let JCja and J�ja denote the truncations of ICja and I�ja to n.mC n/� jtj j
2Cı. Likewise, define J�ja

and J 0
ja as the truncations of I�ja and I0

ja to m� jtj j
2Cı.

8D. Estimation of the truncated sums. To complete our estimation of the inner product hF; �j i, we
bound the sums JCja.s/, J�ja.s/, J�ja.s/, and J 0

ja.s/ on the line Re s D ı, where ı is the same constant
used to define the truncation conditions. We assume that jIm sj DO.log jtj j/, by Remark 8.10.

We first consider JCja.s/, which we truncated to n.mC n/ � jtj j
2Cı. We subdivide into dyadic

intervals, with m�M and n�L. On each dyadic subsum, we estimate 'Cj .m; nC ~a; s/ using (8-13),
which outperforms (8-12) in these regimes. Since L.LCM /� jtj j

2Cı and �2 � n=.nCm/, we have
�� jtj j

�1�ı. This observation, and the free assumption s D O.log jtj j/, shows that (8-13) bounds a
given dyadic sum by

jtj j
k� 3

2
CO.ı/e��jtj jC

�
2
jIm sj

X
m�M
n�L

jcCa .nCm/cCa .n/�ja.m/j

.L.LCM //
k
2
� 1

4

: (8-20)
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In the sum within (8-20), we apply Cauchy–Schwarz, Lemma 2.1, and Lemma 6.1 to compute

X
n�L

jcCa .n/j
X

m�M

jcCa .nCm/�ja.m/j �
X
n�L

jcCa .n/j

� X
q�MCL

jcCa .q/j
2

�1
2
� X

m�M

j�ja.m/j
2

�1
2

�L
1
2

�
L.LCM /kCjk�1j

�1
2
�
M Cjtj j

�1
2 e

�
2
jtj j: (8-21)

Thus the .L;M /-dependence in (8-20) is L
1
2 M

1
2 .L.LCM //

1
4
C 1

2
jk�1j or L

1
2 .L.LCM //

1
4
C 1

2
jk�1j.

In the first case, the dominant dyadic interval takes M � jtj j
2 and L� 1, while in the second case we

dominate by the M � 1 and L� jtj j subintervals (up to jtj jı factors). Either way, we conclude that

JCja.s/� jtj j
kCjk�1jCO.ı/e�

�
2
jtj jC

�
2
jIm sj: (8-22)

Our treatment of J�ja.s/ is essentially the same. We again subdivide into dyadic intervals, with m�M

and n � L, then apply (8-19). The contribution from .mC nC jsj C jtj j/
Ae�2�jtj jC

3�
2
jIm sj within

'�j .m; n; s/ is clearly O.jtj j
A0e�2�jtj j/ for some A0 > 0, which will be exponentially nondominant.

Otherwise, (8-19) bounds a given dyadic interval by

jtj j
�k� 3

2
CO.ı/e��jtj jC

�
2
jIm sj

X
m�M
n�L

jc�a .nCm/c�a .n/�ja.m/j

.L.LCM //
k
2
� 1

4

;

which matches the JCja.s/ case except that we’ve multiplied by jtj j�2k and replaced cCa with c�a . By
Lemma 2.1, the change cCa 7! c�a does not worsen our estimate. We conclude that

J�ja.s/� jtj j
jk�1j�kCO.ı/e�

�
2
jtj jC

�
2
jIm sj: (8-23)

We next consider J�ja.s/. By applying (8-15) and disregarding the nondominant contribution of

.mC nCjsjC jtj j/
Ae�2�jtj jC

3�
2
jIm sj, we find that

J�ja.s/� jtj j
�2CO.ı/e��jtj jC

�
2
jIm sj

X
m<jtj j2Cı

j�ja.m/j

m�1=2

m�1X
nD1�d~ae

jcCa .n/c
�
a .m� n/j

.m� n� ~a/k
;

under the standing assumptions on s. To estimate the sums, we map n 7!m� n in the n-sum, restrict m

to a dyadic interval m�M , swap the order of summation, and apply Cauchy–Schwarz and Lemma 2.1:

X
m�M

j�ja.m/j

m�1=2

mX
nD1

jcCa .m� n/c�a .n/j

.n� ~a/k
�M

1
2

X
n�2M

jc�a .n/j

nk

� X
m�M

j�ja.m/j
2

�1
2
� X

m�M

jcCa .m/j
2

�1
2

�M
1
2

kC 1
2
jk�1jC 1

2 .M Cjtj j/
1
2 e

�
2
jtj j

X
n�2M

jc�a .n/j

nk
:

The remaining n-sum has size O.M
1
2
� 1

2
kC 1

2
jk�1j log M / by dyadic subdivision, Cauchy–Schwarz, and
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Lemma 2.1. The largest overall contribution to J�ja appears when M � jtj j
2Cı , which gives the estimate

J�ja.s/� e�
�
2
jtj jC

�
2
jIm sj

�
jtj j

2k�1CO.ı/ if k > 1;

jtj j
3�2kCO.ı/ if k < 1:

(8-24)

Finally, we consider J 0
ja.s/, which we treat according to the four-part decomposition of I0

ja.s/ in (8-8).

Applying (8-12) and (8-15) and ignoring the contribution of .mCnCjsjCjtj j/
Ae�2�jtj jC

3�
2
jIm sj in (8-15)

(since it is nondominant) produces

J 0
ja.s/� e��jtj jC

�
2
jIm sj
jtj j

O.ı/

�

X
m�jtj j2Cı

�
jcCa .m/�ja.m/j

mk� 1
2 jtj j2�2k

C
jcCa .m/�ja.m/j

m
1
2

C
jc�a .m/�ja.m/j

mk� 1
2 jtj j2

C
jc�a .m/�ja.m/j

m
1
2 jtj j2k

�
:

For each term in the parenthetical, we subdivide dyadically on m, then apply Cauchy–Schwarz, Lemma 2.1,
and Lemma 6.1. In each term, the largest dyadic contribution has m � jtj j

2Cı. The first two terms
contribute O.jtj j

kCjk�1jCO.ı/e
�
2
jtj j/, while the last two are O.jtj j

jk�1j�kCO.ı/e
�
2
jtj j/. We conclude

that

J 0
ja.s/� e�

�
2
jtj jC

�
2
jIm sj
�

8<:
jtj j

2k�1CO.ı/ if k > 1;

jtj j
1CO.ı/ if k D 1

2
;

jtj j
1�2kCO.ı/ if k < 0:

(8-25)

By combining the upper bounds derived in this section, we complete our estimation of hF; �j i and
prove Theorem 8.1:

Proof of Theorem 8.1. We estimate (8-4), truncating the contour to jIm sj � c log.1Cjtj j/ with negligible
error by Remark 8.10. We write R.�ja; s/D ICja.s/C I�ja.s/C I�ja.s/C I0

ja.s/, truncating each term in
the decomposition as described in Section 8C. Within the truncated contour, we shift to Re s D ı (with
negligible error) and apply (8-22), (8-23), (8-24), and (8-25) to produce

hF; �j i �

X
a

e�
�
2
jtj j
�
jtj j

2k�1CO.ı/
Cjtj j

3�2kCO.ı/
�

�

Z
.ı/

ˇ̌
ıŒaD1� sg.s/C .s� 1/g.1� s/
a.s/

ˇ̌
� j��.2s/je

�
2
jIm sjds:

The integral is Oa;ı.1/, and the proof follows by taking ı near 0. �

9. Bounding D`.s/ in vertical strips, part II

In Section 7, we proved Proposition 7.1, which reduced the problem of bounding D`.s/ to the problem
of bounding hVH;P`. � ; Ns/i. In this section, we estimate the latter to prove the following theorem.

Theorem 9.1. Fix � > 0 small. In the vertical strip Re s 2
�

1
2
C �; 3

2
C �

�
away from poles of D`.s/, we

have
D`.s/�� `

�
jsj� �

�
jsj

5
2 C `

1
4 jsj2C `jsj�

3
2

�3
2
�Re s

:

The proof follows the decomposition of hVH;P`. � ; Ns/i into discrete and continuous spectra.
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9A. Growth of the discrete spectrum †disc. For convenience, recall that the discrete spectrum equals

†disc.s/ WD

p
�

.4�`/s�
1
2�.s/

X
j

�j .`/�
�
s� 1

2
C i tj

�
�
�
s� 1

2
� i tj

�
hVH; �j i:

By the comments at the start of Section 8, we may replace VH here with the unregularized form
y3=2jH.z/j2. Then, by Theorem 8.1 and Stirling,

†disc.s/� `
1
2
�Re s
jsj

1
2
�Re se

�
2
jIm sj

X
j

j�j .`/j

cosh �
2

tj
� jtj j

2C�
jsC i tj j

Res�1
js� i tj j

Re s�1e�� max.jtj j;jIm sj/:

Here we have used that tj 2 R for Maass forms on �0.4/.
By Lemma 6.2, the mass in the tj -sum in †disc.s/ concentrates to within jtj j< jIm sj. Thus

†disc.s/� `
1
2
�Re s jsj

5
2
�Re sC�

e
�
2
jIm sj

X
jtj j<jIm sj

j�j .`/j

cosh �
2

tj
jsC i tj j

Res�1
js� i tj j

Re s�1: (9-1)

Lemma 6.2 implies a short-interval second moment estimate of the formX
X�jtj j�XC1

j�j .`/j
2

cosh� tj
�N;� X 1C�`�C `

1
2
C�: (9-2)

By dividing the range of summation in (9-1) into subintervals of length 1 and applying Cauchy–Schwarz
and (9-2) to each subinterval, we find

†disc.s/�Re s;� `
1
2
�Re sC�

jsj2C�
�
jsjRe s

C 1
��
jsj

1
2 C `

1
4

�
e�

�
2
jIm sj: (9-3)

9B. Growth of the continuous spectrum †cont. Recall that the continuous spectrum equals

†cont D
VN

2

X
a

Z 1
�1

'a`
�

1
2
C i t

�
�
�
s� 1

2
C i t

�
�
�
s� 1

2
� i t

�
.4�`/s�

1
2 .�`/�it�.s/�

�
1
2
C i t

� ˝
VH;Ea

�
� ; 1

2
C i t

�˛
dt

in Re s > 1
2

. To bound the growth of †cont.s/ with respect to jIm sj in this region, we must control the
growth of both 'a`

�
1
2
C i t

�
and

˝
VH;Ea

�
� ; 1

2
C i t

�˛
. Sufficient estimates for 'a`

�
1
2
C i t

�
appear in (6-3).

To estimate
˝
VH;Ea

�
� ; 1

2
Ci t

�˛
, we apply the Phragmén–Lindelöf convexity principle to hVH;Ea. � ; Nw/i,

studying the latter outside the critical strip. We prove the following result.

Proposition 9.2. For all � > 0,
˝
VH;Ea

�
� ; 1

2
C i t

�˛
�� .1Cjt j/

5
2
C�e�

�
2
jt j.

Proof. To begin, we interpret hVH;Ea. � ; Nw/i via the Rankin–Selberg method. More precisely, we interpret
the inner product using Zagier’s extension of the Rankin–Selberg method to functions with polynomial
growth at cusps, as generalized to congruence subgroups by Gupta [37; 6].

Recall from (4-4) that VH.z/ differs from y3=2jH.z/j2 by a linear combination of the functions
Eb

�
z; 3

2

�
, zEb.z; 1/, and y1=2j�.z/j2. It follows that

VH.�az/D  a.y/CO.y�M /



Self-correlations of Hurwitz class numbers 2465

for all M > 0 as y!1, in which  a.y/ is a linear combination of y�1=2 (from Eb.z;
3
2
/), log y, and

y0 (both from zEb.z; 1/). We define the Rankin–Selberg transform Ra.VH; w/ by

Ra.VH; w/ WD

Z 1
0

Z 1

0

yw
�
VH.�az/� a.y/

�dx dy

y2
: (9-4)

We write VH.z/ as a Fourier series and execute the x-integral in (9-4), extracting the constant Fourier
coefficient. This produces

Ra.VH; w/ WD

Z 1
0

ywC
1
2

X
nC~a>0

jcCa .n/j
2e�4�.nC~a/y

dy

y

C

Z 1
0

ywC
1
2

X
n�1

jc�a .n/j
2�
�
�

1
2
; 4�.n� ~a/y

�2
e4�.n�~a/y

dy

y

�
1

64�2

Z 1
0

yw�
1
2

X
nC~a>0

jra.n/j
2e�4�.nC~a/y

dy

y
;

where � j�a.z/D
P

n�0 ra.n/e..nC ~a/z/. Note that the constant Fourier coefficients of Eb

�
z; 3

2

�
and

zEb.z; 1/ cancel with corresponding terms in  a.y/ and do not appear above. It follows that

Ra.VH; w/D
�
�
wC 1

2

�
.4�/wC

1
2

X
n>�~a

jcCa .n/j
2

.nC ~a/
wC 1

2

�
�
�
w� 1

2

�
4.4�/wC

3
2

X
n>�~a

jra.n/j
2

.nC ~a/
w� 1

2

C

X
n�1

jc�a .n/j
2

.4�.n� ~a//
wC 1

2

Z 1
0

ywC
1
2�
�
�

1
2
;y
�2

ey dy

y
:

Lemma 2.1 implies that the two Dirichlet series converge in Rew > 3
2

. Note that the integral above
equals G3=2.w; 1; 1/ as defined in (3-2), so by the comments following (3-2), the second line above
converges for Rew > 3

2
.

To estimate the growth of Ra.VH; w/ on the line Rew D 3
2
C �, we must quantify the growth of

G3=2.w; 1; 1/ with respect to jImwj. This was computed in Lemma 7.4; away from poles, we have

G 3
2
.w; 1; 1/�� jwj

Rew� 3
2
C�e�

�
2
jImwj:

It follows that Ra.VH; w/� jwj
3
2
C�e�

�
2
jImwj on the line Rew D 3

2
C �.

The estimate ��.2� 2w/Ra.VH; 1�w/�
P

b �
�.2w/Rb.VH; w/ (cf. (8-3)) can be used to produce

bounds in a left half-plane. In particular, we find Ra.VH; w/� jwj
7
2
C�e�

�
2
jImwj on Rew D �1

2
� �.

The Phragmén–Lindelöf convexity principle then implies

Ra.VH;
1
2
C i t/� .1Cjt j/

5
2
C�e�

�
2
jt j:

for real t . To complete the proof, we note that Ra.VH; w/ D hVH;Ea. � ; Nw/i within the critical strip
Rew 2 .0; 1/ by [15, Proposition A.3]. (The constant ‚ defined therein equals 0, since  a.y/ is a linear
combination of log y, y0, and y�1=2 for each a.) �
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By Proposition 9.2, (6-3), and Stirling’s approximation, we have

†cont.s/�
`

1
2
�Re sC�e

�
2
jIm sj

jsjRe s� 1
2

Z 1
�1

jsC i t jRe s�1
js� i t jRe s�1 .1Cjt j/

5
2
C�

e� max.jIm sj;jt j/
dt:

The mass of the integral above concentrates in jt j< jIm sj; restricting to this range, we find that

†cont.s/�
`

1
2
�Re sC�

jsj3�Re sC�

e
�
2
jIm sj

Z jIm sj

�jIm sj

jsC i t jRe s�1
js� i t jRe s�1dt

�
`

1
2
�Re sC�

jsj2C�

e
�
2
jIm sj

�
jsjRe s

C 1
�
; (9-5)

at least in the region Re s > 1
2

(where †cont has this one-term description).

9C. Growth of D`.s/. In Re s > 1
2

, the upper bound for †cont.s/ from (9-5) is dominated by the upper
bound for †disc.s/ from (9-3). It follows that

hVH;P`. � ; Ns/i

�
�
sC 1

2

� �� `
1
2
�Re sC�

jsj2C�
�
jsj

1
2 C `

1
4

�
(9-6)

in this region. By combining this estimate with Proposition 7.1 and the convexity principle, we complete
our proof of Theorem 9.1.

Proof of Theorem 9.1. For Re s > 3
2

, the upper bound

D`.s/�

�X
n�1

H.n/2

.nC `/Re sC 1
2

�1
2
�X

n�1

H.nC `/2

.nC `/Re sC 1
2

�1
2

�

X
n�1

H.n/2

nRe sC 1
2

� 1

implies that the result holds on Re s D 3
2
C �, for � > 0. The result also holds on the line Re s D 1

2
C �,

by Proposition 7.1 and (9-6). The full theorem now follows by the convexity principle. �

10. Applying a truncated Perron formula

To prove our main arithmetic result, Theorem 1.1, we apply a truncated Perron formula to D`.s/. Fix
� > 0. For X nonintegral, we haveX
n�X

H.n/H.n� `/

D
1

2� i

Z 2C�CiT

2C��iT

D`

�
s� 1

2

�X s

s
dsCO

�
X 2C�

T
C

2XX
nDX=2

jH.n/H.n� `/jmin
�

1;
X

T jX�nj

��
(10-1)

by [25, Corollary 5.3]. By Lemma 7.2, the error term in (10-1) is

O

�
X 2C�

T
CX 1C�

2XX
nDX=2

min
�

1;
X

T jX�nj

��
DO

�
X 2C�

T

�
:
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To estimate the integral in (10-1), we shift the contour from Re s D 2C � to Re s D 1C �. By
Theorem 6.5, this extracts two residues, which total

1
2
X 2 Res

sD 3
2

D`.s/C
2
3
X

3
2 Res

sD1
D`.s/:

Shifting the truncated contour introduces error terms from horizontal contour integrals, which by
Theorem 9.1 are bounded by

O

�Z 2CiTC�

1CiTC�

D`

�
s� 1

2

�X s

s
ds

�
�
.`T /�

T

Z 2C�

1C�

�
T

5
2 C `

1
4 T 2
C `T �

3
2

�2��
X �d�

� .`XT /�
0
�

X 2

T
CXT

3
2 C `

1
4 XT C `XT �

5
2

�
:

Once the contour is shifted to Re s D 1C �, we separate the contribution of the discrete spectrum
†disc.s/ from the rest of D`.s/. The estimates from Proposition 7.1 and (9-5) imply that the non-†disc

terms contribute

O

�Z 1CiTC�

1�iTC�

.`jsj/�
�
jsj2C `�

1
2 C

`

jsj
3
2

�
X 1C�

jsj
ds

�
� .`XT /�

�
X`CXT 2

�
:

To bound the contribution of †disc
�
s � 1

2

�
=�.s/, we shift the contour farther left, to Re s D �. This

shift introduces an error term (from the horizontal contours), which has size

O
�
.`XT /� � .T

3
2 X C `

1
4 TX CT 2

C `
1
4 T

3
2 /
�
;

by (9-3) as well as a finite sum of residues equal to

R WD
X
jtj j<T

�
X 1Citj

�.2C i tj /
Res

sD 1
2
Citj

†disc.s/C
X 1�itj

�.2� i tj /
Res

sD 1
2
�itj

†disc.s/

�
:

The contribution of †disc on the contour Re s D � is O..`XT /� � .`T 3C `
5
4 T

5
2 // by (9-3). Evaluating

the residues in R and bounding in absolute values gives

R�X
X
jtj j<T

j�j .`/hVH; �j ij

jtj j2
�XT �

X
jtj j<T

j�j .`/j

cosh �
2

tj
�XT 1C�

� X
jtj j<T

j�j .`/j
2

cosh� tj

� 1
2

;

in which we’ve applied Theorem 8.1 and Cauchy–Schwarz. Lemma 6.2 then implies that R ��

X.`T /�.T 2C `
1
4 T

3
2 /.

Putting everything together and omitting obviously nondominant errors, we conclude thatX
n�X

H.n/H.n�`/

D
1
2
X 2 Res

sD 3
2

D`.s/C
2
3
X

3
2 Res

sD1
D`.s/CO�

�
.`XT /�

�
X 2

T
CX

�
T 2
C`

1
4 T

3
2C`

�
C`T 3

C`
5
4 T

5
2

��
:
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When `�X 2=3, these errors are minimized by setting T DX 1=3, producing a collected error of size
O.X

5
3
C�/. In the range X 2=3 � `� X , we choose any T 2 ŒX=`;X

2
5 `�

1
10 �, producing a collected

error of size O.X 1C�`/. Using the residue formulas from Theorem 6.5, we conclude thatX
n�X

H.n/H.n� `/D
�2X 2

252 �.3/

�
2��2

�
`
4

�
� ��2

�
`
2

�
C ��2.`o/

�
CO�

�
X

5
3
C�
CX 1C�`

�
:

Theorem 1.1 then follows by assuming `�X and mapping X 7!X C `.

Remark 10.1. The error terms in Theorem 1.1 may be improved dramatically if the sharp cutoff n�X

is replaced by a smooth cutoff. To this effect, fix a smooth function w.x/ with inverse Mellin transform
W .s/. We have X

n�1

H.n/H.n� `/w
�

n

X

�
D

1

2� i

Z
.2C�/

D`

�
s� 1

2

�
W .s/X sds;

provided both sides converge. If W .s/ decays exponentially in jIm sj, we may shift the contour of
integration left to Re s D 1C � by Theorem 9.1. This extracts two residues, and the shifted contour
integral contributes O..X`/1C�/ by Theorem 9.1. We conclude thatX

n�1

H.n/H.n� `/w
�

n
X

�
DW .2/X 2 Res

sD 3
2

D`.s/CW
�

3
2

�
X

3
2 Res

sD1
D`.s/CO�..X`/

1C�/;

which offers some evidence in support of the conjecture (1-6).
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On two definitions of wave-front sets for p-adic groups
Cheng-Chiang Tsai

The wave-front set for an irreducible admissible representation of a p-adic reductive group is the set of max-
imal nilpotent orbits which appear in the local character expansion. By a result of Mœglin and Waldspurger,
they are also the maximal nilpotent orbits whose associated degenerate Whittaker models are nonzero.
However, in the literature there are two versions commonly used, one defining maximality using analytic
closure and the other using Zariski closure. We show that these two definitions are inequivalent for G = Sp4.

1. Introduction

Let F be a finite extension of Qp and G be a connected reductive group over F. Write g := Lie G.
The local character expansion of Howe and of Harish-Chandra [1999, Theorem 16.2] asserts that, for
any irreducible admissible C-representation π of G(F), there exist constants cO(π) ∈ C indexed by
nilpotent Ad(G(F))-orbits O ⊂ g(F), together with a neighborhood U = Uπ of 0 ∈ g(F), such that the
character 2π of π satisfies the following identity of distributions on U :

(2π ◦ log∗)|U ≡
∑
O

cO(π) ÎO|U . (1)

Here IO is the distribution of integrating a function on O with any G(F)-invariant positive measure, and
ÎO its Fourier transform, namely ÎO( f ) := IO( f̂ ).

Mœglin and Waldspurger [1987] generalized a result of Rodier [1975] and showed that, for O ∈

max{O : cO(π) ̸= 0}, the quantity cO(π) with suitable normalization is equal to the dimension of the
degenerate Whittaker model for π relative to O. Degenerate Whittaker models are local analogues and nec-
essary conditions for existence of Fourier coefficients for automorphic forms. The set max{O : cO(π) ̸= 0}

is therefore of particular interest, and is typically called the wave-front set. However, there are two partial
orders commonly used in the literature: for two nilpotent Ad(G(F))-orbits O1 and O2 the partial order
O1 < O2 is defined either (i) if the analytic closure (using the Hausdorff p-adic topology on g(F)) of
O1 is strictly contained in the analytic closure of O2, or alternatively (ii) if the Zariski closure of O1 is
strictly contained in the Zariski closure of O2.

Let us denote by WFrat(π) := max{O : cO(π) ̸= 0} the set given by the first definition, and by WFZar(π)

the analogous set given by the second definition. Since the Zariski closure is larger than the analytic
closure, we have an obvious inclusion WFrat(π) ⊇ WFZar(π). At the same time, there is the notion
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of geometric wave-front sets: Fix an algebraic closure F of F and let WFrat(π) (resp. WFZar(π)) be
the set of Ad(G(F))-orbits in g(F) that meet those in WFrat(π) (resp. WFZar(π)). Again we have
WFrat(π)⊇ WFZar(π). We note that by [Poonen 2017, Proposition 3.5.75], any G(F)-orbit O ⊂ g(F)
is Zariski dense in the G(F)-orbit it sits in. Hence WFZar(π) is equal to the set of maximal geometric
orbits that appear in (1). We thank Emile Okada for clarifying this.

The set WFrat(π) was used in [Mœglin and Waldspurger 1987; Mœglin 1996; Gomez et al. 2021]
and many others. On the other hand, WFZar(π) was used in, for example, [Waldspurger 2018]. Both
WFrat(π) and WFZar(π) were discussed in [Ciubotaru et al. 2025], while their main results determine
WFZar(π) but not WFrat(π). Nevertheless, in [Jiang et al. 2022] the main conjecture, Conjecture 1.3, is
stated for WFZar(π) but it seems that the spirit might work for WFrat(π) as well. Given the abundance
of results on the topic, it is desirable to know how/whether WFrat(π) and WFZar(π) (resp. WFrat(π)

and WFZar(π)) could be different. In fact, the longstanding conjecture about geometric wave-front sets,
proposed and proved for GLn in [Mœglin and Waldspurger 1987], asserted that:

Conjecture 1.1. For any irreducible admissible representation π of G(F), the set WFrat(π) is a singleton.

Since WFZar(π) is obviously nonempty, the validity of Conjecture 1.1 for any π is equivalent to the
validities of the following two statements:

Conjecture 1.2 (counterexample in [Tsai 2024, Theorem 1.1]). WFZar(π) is a singleton.

Conjecture 1.3. We have WFrat(π)= WFZar(π) or equivalently WFrat(π)= WFZar(π).

As indicated above, the first counterexample for Conjecture 1.1 is a counterexample to Conjecture 1.2.
The purpose of this paper is to show that Conjecture 1.3 also has a counterexample, in fact, in the case of
split rank 2, which is the smallest absolute rank where Conjecture 1.3 becomes nontrivial.

Let p ≥ 11 be any prime number, q a power of p with q ≡ 1 (mod 4), and F any nonarchimedean
local field with residue field Fq and fixed uniformizer ϖ ∈ F. Let G = Sp4/F be the group of linear
operators on F4 that preserve the symplectic form

⟨x⃗, y⃗⟩ = x1 y4 + x2 y3 − x3 y2 − x4 y1. (2)

Denote by m the maximal ideal and m0
=OF the ring of integers in F. Consider the Moy–Prasad filtration

(G(F)r )r∈(1/2)Z≥0 “associated to the Siegel parahoric.” It is given by

G(F)n :=

g ∈ G(F) : g − Id4 ∈


mn mn mn mn

mn mn mn mn

mn+1 mn+1 mn mn

mn+1 mn+1 mn mn


 ,

G(F)n+1/2 :=

g ∈ G(F) : g − Id4 ∈


mn+1 mn+1 mn mn

mn+1 mn+1 mn mn

mn+1 mn+1 mn+1 mn+1

mn+1 mn+1 mn+1 mn+1


 (3)
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for n ∈ Z≥0. The group G(F)1 is a normal subgroup of G(F)1/2, and the quotient may be identified as

V := G(F)1/2/G(F)1 ∼=




0 0 b a
0 0 c b
e d 0 0
f e 0 0

 : a, b, c ∈ OF/m, d, e, f ∈ m/m2

 .
Fix an additive character ψ : F → C× that is trivial on m but nontrivial on OF . Consider

A :=


0 0 0 ϖ−1

0 0 ϖ−1 0
1 0 0 0
0 1 0 0

 ∈ g(F). (4)

Denote byψA : V →C× the character B 7→ψ(Tr(AB)), and by ψ̃A its pullback to G(F)1/2. Conjecture 1.3
is disproved by:

Theorem 1.4. For any irreducible component π of the compact induction

c-indG(F)
G(F)1/2 ψ̃A,

we have that WFrat(π) contains two regular nilpotent orbits and also a subregular nilpotent orbit.
Consequently WFZar(π) contains only the two regular nilpotent orbits.

In fact, the subregular orbit is the unique one not contained in the analytic closure of the previous
two regular nilpotent orbits. The representation π is one of the so-called epipelagic representations in
[Reeder and Yu 2014]. Prior to this work, similar representations for much higher-rank groups had already
been studied in a joint work in progress of Chi-Heng Lo and the author to produce a counterexample to
Conjecture 1.2 for split groups (rather than for ramified groups as in [Tsai 2024]). We also remark that in
the language of the newer paper [Tsai 2023], we have WFrat(π)= WFrat(A) and the result may well be
interpreted as for the wave-front set of A ∈ g(F).

2. Nilpotent orbits

For our G = Sp4, the subregular nilpotent Ad(G(F))-orbits correspond to partition [22
] and any such

orbit has a representative of the form

ea,b,c =


0 0 0 0
0 0 0 0
b a 0 0
c b 0 0

 , a, b, c ∈ F.

Denote by vi (1 ≤ i ≤ 4) the i-th coordinate vector of our 4-dimensional symplectic space. The operator
ea,b,c defines a nondegenerate quadratic form on span(v1, v2) by

(X, Y )a,b,c := ⟨X, ea,b,cY ⟩, (5)



2474 Cheng-Chiang Tsai

where ⟨ · , · ⟩ is as in (2). The Ad(G(F))-orbit of ea,b,c is uniquely determined [Nevins 2011, Proposition 5]
by the isomorphism class of the quadratic form ( · , · )a,b,c. Similarly, a regular nilpotent Ad(G(F))-orbit
has a representative of the form

nd =


0 0 0 0
1 0 0 0
0 d 0 0
0 0 −1 0

 , d ∈ F×. (6)

The orbit is again uniquely determined by the image of d in F×/(F×)2. We show that:

Lemma 2.1. The element ea,b,c lies in the analytic closure of Ad(G(F))nd if and only if the quadratic
form ( · , · )(a,b,c) represents d, namely (v, v)a,b,c = d for some v ∈ span(v1, v2).

Proof. Suppose (v, v)a,b,c = d for some v ∈ span(v1, v2). Then with a change of basis we may assume
(v2, v2)a,b,c = d , i.e., a = d . We have (with all hidden entries being 0’s) for e, f ∈ F, h ∈ F× that

1
−e 1
f 1

f e 1




0
1 0

d 0
1 0




1
e 1

− f 1
− f −e 1

 =


0
1 0

de d 0
2 f +de2 de 1 0

 ,


h−1

1
1

h




0
1 0

de d 0
2 f +de2 de 1 0




h
1

1
h−1

 =


0
h 0

deh d 0
2 f h2

+de2h2 deh h 0

 .
For arbitrarily small h we can choose e, f ∈ F so that deh = b, 2 f h2

+ de2h2
= c. Hence the above

converges to ea,b,c as desired.
Now suppose ea,b,c is in the analytic closure of Ad(G(F))nd , i.e., there is a sequence gi ∈ G(F)

such that Ad(gi )
−1nd converges to ea,b,c. To show that ( · , · )a,b,c represents d we follow the method of

[Djoković 1981, Theorem 6] for real groups. The quadratic form

(X, Y )d,gi := ⟨X,Ad(gi )
−1(nd)Y ⟩ = ⟨gi X, nd gi Y ⟩

has to converge to (X, Y )a,b,c on span(v1, v2). Since being isomorphic to a nondegenerate quadratic form
over F is an open condition in the space of (not necessarily nondegenerate) quadratic forms, for i ≫ 0 we
have that ( · , · )d,gi |span(v1,v2)

∼= ( · , · )a,b,c. In particular, there exists a 2-dimensional subspace W in F4

such that the restriction of the form (X, Y )d := ⟨X, ndY ⟩ is isomorphic to (X, Y )a,b,c.
Observe the form (X, Y )d restricts to a rank-2 hyperbolic form on span(v1, v3). The orthogonal

complement of span(v1, v3) under it is span(v2) ⊕ span(v4), where the form has discriminant d on
span(v2) and has span(v4) in its kernel. The subspace W must not intersect span(v4); hence its image to
F4/ span(v4)∼= span(v1, v2, v3) is again 2-dimensional. Denote by W ⊥ the orthogonal complement of
W in span(v1, v2, v3). Since ( · , · )d |W ∼= ( · , · )a,b,c, we have that

( · , · )d |span(v1,v3) ⊕ ( · , · )d |span(v2)
∼= ( · , · )d |span(v1,v2,v3)

∼= ( · , · )a,b,c ⊕ ( · , · )d |W ⊥
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are isomorphic as quadratic spaces. Since ( · , · )d |span(v1,v3) is hyperbolic, it is isomorphic to the direct sum
of ( · , · )d |W ⊥ and some other 1-dimensional quadratic space. By the cancellation theorem of quadratic
spaces [Serre 1973, p. 34, Theorem 4], we then have ( · , · )a,b,c is isomorphic to the direct sum of
( · , · )d |span(v2) and this 1-dimensional space, i.e., ( · , · )a,b,c, represents d , as asserted. □

3. Shalika germs and the proof of Theorem 1.4

We normalize our Fourier transforms as

f̂ (B) :=

∫
g(F)

ψ(Tr(AB)) f (A) d A,

where elements in g(F)= sp4(F) are identified as 4 × 4 matrices as usual, i.e., as in (2). It is known (see
the main result of [Kim and Murnaghan 2003], or [Kaletha 2015, (6.1)] for a more direct exhibition) that,
for any π in Theorem 1.4, on some sufficiently small neighborhood U of 0 ∈ g(F) we have

(2π ◦ log∗)|U ≡ c · ÎA|U (7)

for some c ∈ Q>0.
Since p ≥ 11, the hypotheses needed for [DeBacker 2002, Theorem 2.1.5] are satisfied and it gives the

following analogue of (1), the Shalika germ expansion:

IA( f )=
∑

cO(A)IO( f ). (8)

Here O runs over nilpotent Ad(G(F))-orbits in g(F) as in (1), and f has to be a function of depth −
1
2 ; a

condition that will be automatically met if f̂ is supported in a small enough neighborhood. Comparing
(1), (7) and (8), we see that the coefficients in (1) satisfy cO(π)= c · cO(A). In particular, cO(π) ̸= 0 if
and only if cO(A) ̸= 0, and we have WFrat(π)= max{O : cO(A) ̸= 0}, where the partial order is given by
the (analytic) closure relation. Fix ϵ ∈ O×

F any nonsquare and

e =


0 0 0 0
0 0 0 0
0 −ϖ−1ϵ 0 0
ϵ 0 0 0

 . (9)

Theorem 1.4 now follows from:

Proposition 3.1. The Shalika germ cO(A) is zero for a regular nilpotent orbit O if and only if the closure
of O contains e.

Proposition 3.2. The Shalika germ cO(A) is nonzero for the subregular nilpotent orbit O = Ad(G(F))e.

Remark 3.3. It might look like there are smart choices behind e and A. In fact, a random choice of A
has about 1

2 probability to work; it secretly needs a certain invariant in O×

F to be a square. Once that is
met, Proposition 3.2 will work for any such A and some e it picks out. Our choice merely gives a nicer
matrix calculation. The assumption q ≡ 1 (mod 4) is also taken to simplify the exposition and is not
essentially needed.
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The rest of the section is devoted to the proofs of Propositions 3.1 and 3.2.

Proof of Proposition 3.1. A result of Shelstad [1989], combined with another by Kottwitz [1999,
Theorem 5.1] (we thank Alexander Bertoloni Meli for clarifying this), showed that, for a regular nilpotent
orbit O, cO(A)= 0 if and only if Ad(G(F))A does not meet the Kostant section associated to any element
in O. The theory of the Kostant section also gives that, for any fixed regular O, among the stable orbit
of A there is exactly one rational orbit that meets the Kostant section. We have

Ad




1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1


 A =


0 0 0 ϖ−1

1 0 0 0
0 −ϖ−1 0 0
0 0 −1 0


is in the Kostant section for n−ϖ−1 . Since q ≡ 1 (mod 4), we may fix i :=

√
−1 a square root of −1

in OF . We have

Ad




1 i 0 0
1 −i 0 0
0 0 1

2 i 1
2

0 0 −
1
2 i 1

2


 A =


0 0 2ϖ−1 0
0 0 0 2ϖ−1

0 1
2 i 0 0

−
1
2 i 0 0 0

 .
Hence

Ad




2ϖ−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2ϖ




0 0 0 1
0 1 0 0
0 0 1 0

−1 0 0 0

 ·


1 i 0 0
1 −i 0 0
0 0 1

2 i 1
2

0 0 −
1
2 i 1

2


 A =


0 0 0 2ϖ−2i
1 0 0 0
0 1

2 i 0 0
0 0 1 0


is in the Kostant section for ni/2. We note that both −1 and 1

2 i are squares in O×

F , and thus Lemma 2.1
shows that n−ϖ−1 and ni/2 are exactly the two regular nilpotent orbits whose closure does not contain e.
This shows that if cO(A)= 0 for a regular nilpotent O, then the closure of O must contain e. It remains
to show that for any regular nilpotent orbit O different from that of n−ϖ−1 and ni/2, we have cO(A)= 0.

Let
√
ϵ be a square root of ϵ in an unramified quadratic extension of F. The element

d :=


√
ϵ

−1 0 0 0
0

√
ϵ

−1 0 0
0 0

√
ϵ 0

0 0 0
√
ϵ


has image in Gad(F)= PSp4(F). Since the orbit of A meets the Kostant section for n−ϖ−1 and ni/2, the
orbit of Ad(d)A meets the Kostant section of Ad(d)n−ϖ−1 and Ad(d)ni/2. As Ad(d)n−ϖ−1 = n−ϵϖ−1

and Ad(d)ni/2 = nϵi/2 are the other two regular nilpotent orbits, using results of Shelstad and Kottwitz
and the classical result that a Kostant section meets an Ad(G(F))-orbit at one point, it remains to prove
that Ad(d)A and A live in different Ad(G(F))-orbits. The element d defines a class αd ∈ Z1(F, Z(G))
and the assertion that Ad(d)A and A live in different Ad(G(F))-orbits is equivalent to the fact that
the image of αd in H 1(F, ZG(A)) is nontrivial. Observe that αd is trivial on inertia and sends Frob to
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−1 ∈ µ2 = Z(G). Since ZG(A) is anisotropic over the maximal unramified extension of F, the image of
αd is nontrivial in H 1(F, ZG(A))= H 1(Frob, X∗(ZG(A))IF )= H 1(Frob, µ2

2), as claimed. □

Proof of Proposition 3.2. Consider the characteristic function of the setX ∈ g(F) : X is of the form


m0 m0 m−1 m−1

m0 m0 ϖ−1ϵ+m0 m−1

m0 m0 m0 m0

ϵ+m m0 m0 m0


 .

Call this function f . It has the property that f (X + Y )= f (X) whenever Y is of the form
m0 m0 m−1 m−1

m0 m0 m0 m−1

m0 m0 m0 m0

m m0 m0 m0

 .
The set of elements of the above form is a Moy–Prasad lattice of depth −

1
2 . Since A is of depth −

1
2 ,

[DeBacker 2002, Theorem 2.1.5] (or its application to Conjecture 2 of that work) shows that (8) holds
for f . Let e be as in (9). We claim that:

Lemma 3.4. Suppose IO( f ) ̸= 0 for a nilpotent Ad(G(F))-orbit O. Then e lies in the closure of O.

Lemma 3.5. IA( f ) ̸= 0.

With both lemmas, (8) gives
∑

O cO(A)IO( f )= IA( f ) ̸= 0. By Proposition 3.1 and Lemma 3.4, the
only nilpotent orbit O that can contribute to the sum is O = Ad(G(F))e, which proves Proposition 3.2. □

Proof of Lemma 3.4. We have,

for w =


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

 , Ad(w) supp( f )=


m0 m0 m−1 m−1

m0 m0 m0 m−1

m0
−ϖ−1ϵ+m0 m0 m0

ϵ+m m0 m0 m0

 .
For any X ∈ O∩ Ad(w) supp( f ), we observe that

ϖ 2n Ad



ϖ n 0 0 0
0 ϖ n 0 0
0 0 ϖ−n 0
0 0 0 ϖ−n


 X ∈ O∩


m2n m2n m4n−1 m4n−1

m2n m2n m4n m4n−1

m0
−ϖ−1ϵ+m0 m2n m2n

ϵ+m m0 m2n m2n

 .
As n goes to +∞, such elements converge (or a subsequence does) to an element

e′
∈


0 0 0 0
0 0 0 0
m0

−ϖ−1ϵ+m0 0 0
ϵ+m m0 0 0

 .
This element e′ lives in the same Ad(G(F))-orbit as e because the bottom-left 2 × 2 matrix defines an
isomorphic quadratic form. □
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Proof of Lemma 3.5. We look at

Ad




1 0 0 0
z 1 0 0
0 0 1 0
0 0 −z 1


 A =


0 0 ϖ−1z ϖ−1

0 0 ϖ−1(1+z2) ϖ−1z
1 0 0 0

−2z 1 0 0

 ,

Ad




x 0 0 0
0 y−1 0 0
0 0 y 0
0 0 0 x−1

 ·


1 0 0 0
z 1 0 0
0 0 1 0
0 0 −z 1


 A =


0 0 ϖ−1xy−1z ϖ−1x2

0 0 ϖ−1 y−2(1+z2) ϖ−1xy−1z
x−1 y 0 0 0

−2x−2z x−1 y 0 0

 .
Suppose x, y ∈ O×

F and z ∈ OF . Denote by x̄, ȳ, z̄, ϵ̄ ∈ Fq the respective reductions. The right-hand side
of the last equation lies in the support of f if and only if{

−2x̄−2 z̄ = ϵ̄,

ȳ−2(1 + z̄2)= ϵ̄
⇐⇒

{
z̄ = −

1
2 ϵ̄ x̄2,

1
4 ϵ̄

2 x̄4
+ 1 = ϵ̄ ȳ2.

That is, as long as the curve E =
(
ϵ̄ ȳ2

=
1
4 ϵ̄

2 x̄4
+ 1 : (x̄, ȳ) ∈ (Gm)

2/Fq

)
has an Fq-point, there exists

g ∈ G(F) such that Ad(g)A ∈ supp( f ), i.e., IA( f ) ̸= 0. Such an Fq -point always exists. Indeed, E differs
from its smooth completion Ec by eight Fq -points (two for x̄ = 0, four for ȳ = 0 and two at infinity), and
none of them is defined over Fq because ϵ̄ ∈ Fq is a nonsquare. Hence E(Fq)= Ec(Fq), while Ec is a
geometrically connected projective smooth genus-1 curve and always has an Fq -point. □

Remark 3.6. This “none of the boundary points is defined over the residue field” phenomenon seems to
be related to the vanishing of cO(A) for those O > Ad(G(F))e.

Remark 3.7. Using a special case of [Kim and Murnaghan 2003, Theorem 2.3.1] that Ad(g)A ∈

g(F)−1/2 =⇒ g ∈ G(F)0, one may reduce the computation of orbital integrals and thus cO(A) and cO(π)
(for O = Ad(G(F))e) to #E(Fq). We predict the dimension of the associated degenerate Whittaker model
to be 1

4 #E(Fq), analogous to [Tsai 2017, Theorem 4.10 and Corollary 6.2].

Remark 3.8. We may also work with representations of depth n +
1
2 by replacing A by ϖ−n A and

replacing G(F)1/2 by G(F)n+1/2 in Theorem 1.4. The same proof works, except that e needs to be
replaced by ϖ−ne, resulting in every O ∈ WFrat(π) being replaced by ϖ−nO.

4. Langlands parameters

The determination of the Langlands parameter corresponding to an individual π in Theorem 1.4 is part of
the difficult problem solved in [Kaletha 2015] with deep insight into the rectifying characters and their
relation with transfer factors. The collection of all Langlands parameters corresponding to components π
in Theorem 1.4 is nevertheless simpler, because it happens in this case that the rectifying characters can
be absorbed into the choice of an irreducible component in c-indG(F)

G(F)1/2 ψ̃A. We describe the collection of
such Langlands parameters, in the hope that it may be useful to interested readers.



On two definitions of wave-front sets for p -adic groups 2479

Consider the ramified quadratic extension E = F(
√
ϖ). Write ϖE =

√
ϖ . A Langlands parameter

we seek for is a homomorphism ρ : WF → SO5(C). It has image in O2(C)×O2(C)×SO1(C), i.e., ρ can
be viewed as the sum of two orthogonal self-dual representations and a trivial representation. We have
ρ = ρ1 ⊕ ρ2 ⊕ triv, where ρ j = IndWF

WE
χ j for j = 1, 2. Write α1 = 1 and α2 =

√
−1 for any choice of

square root of −1 in O×

F . Then χ j is a character on E× satisfying:

(a) χ j |F× ≡ 1.

(b) χ j (1 + xϖ)= 1 for all x ∈ OE .

(c) χ j (1 + xϖE)= ψ(2xα j ) for all x ∈ OE .

Here ψ is as chosen before (4). We note that each χ j is determined up to a freedom of χ j (ϖE) ∈ {±1},
and consequently there are 22

= 4 candidates for such ρ. Relatedly, there are also 22 components of π in
Theorem 1.4.
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Irregular Hodge filtration
of hypergeometric differential equations

Yichen Qin and Daxin Xu

Fedorov and Sabbah–Yu calculated the (irregular) Hodge numbers of hypergeometric connections. In
this paper, we study the irregular Hodge filtrations on hypergeometric connections defined by rational
parameters and provide a new proof of the aforementioned results. Our approach is based on a geometric
interpretation of hypergeometric connections, which enables us to show that certain hypergeometric sums
are everywhere ordinary on |Gm,Fp |; i.e., “Frobenius Newton polygon equals the irregular Hodge polygon”.

1. Introduction

Our primary focus is to investigate the Hodge theoretic properties of confluent hypergeometric differential
equations. These differential equations have irregular singularities and are equipped with irregular Hodge
filtrations, which are defined in [Sabbah 2018]. The irregular Hodge theory, initiated by Deligne [2007a;
2007b], extends the classical Hodge theory and has been developed in a series of works; see [Sabbah
2010; Kontsevich and Soibelman 2011; Yu 2014; Esnault et al. 2017; Sabbah and Yu 2015; Sabbah 2018].

Let n ≥ m be two nonnegative integers, λ a real number, and α = (α1, . . . , αn) and β = (β1, . . . , βm)

two nondecreasing sequences of real numbers in [0, 1). Let S be the scheme Gm\{1} (resp. Gm) if n = m
(resp. n > m) with coordinate z. The hypergeometric equation is the linear differential equation defined
by the differential operator

Hypλ(α;β) := λ

n∏
i=1

(z∂z −αi )− z
m∏

j=1

(z∂z −β j ). (1.0.0.1)

The hypergeometric connection Hypλ(α;β) is the associated connection on the complex algebraic
variety SC; see (2.1.1.1). We say that the pair (α, β) is nonresonant if αi ̸= β j for any i and j . In this
case, the hypergeometric connection Hypλ(α;β) is irreducible and rigid, as seen by combining the works
[Beukers and Heckman 1989] and [Katz 1990].

When n = m, hypergeometric connections have regular singularities at 0, 1, and ∞. Simpson [1990,
Corollary 8.1] demonstrated that rigid irreducible connections on curves with regular singularities whose
eigenvalues of monodromy actions at singularities have norm 1 underlie complex variations of Hodge
structure. In this case, Fedorov [2018] computed the Hodge numbers associated with the Hodge filtrations
of irreducible hypergeometric connections, and Martin [2021] gave an alternative proof.

MSC2020: primary 14D07; secondary 11T23, 14F30, 14F40, 33C15.
Keywords: hypergeometric connections, irregular Hodge filtration, p-adic slopes, exponential sums.
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When n > m, hypergeometric connections are called confluent, indicating the merging of singularities,
and have a regular singularity at 0 and an irregular singularity at ∞. Sabbah [2018, Theorem 0.7] showed
that a rigid irreducible connection on P1 with real formal exponents at each singular point admits a
variation of irregular Hodge structure away from singularities. For confluent hypergeometric connections,
Sabbah and Yu [2019] computed the corresponding irregular Hodge numbers. In addition, Castaño
Domínguez and Sevenheck [2021, Theorem 4.7] and Castaño Domínguez, Reichelt and Sevenheck
[Castaño Domínguez et al. 2019, Theorem 5.8] explicitly calculated the irregular Hodge filtration for
m = 0 or 1, respectively.

This article focuses on cases where λ, α, and β are rational numbers. We explicitly construct the
irregular Hodge filtration F •

irr on hypergeometric connections in Theorem 3.3.1 and provide a uniform
method for reproving the results of Fedorov and Sabbah–Yu.

Theorem 1.0.1 (3.3.1). Suppose (α, β) is nonresonant. We define a map θ : {1, . . . , n} → R by

θ(k)= (n − m)αk + #{i | βi < αk} + (n − k)−
n∑

i=1

αi +

m∑
j=1

β j . (1.0.1.1)

Then, up to an R-shift,1 the jumps of the irregular Hodge filtration on Hypλ(α, β) occur at θ(k) and, for
any p ∈ R, we have

rk grp
Firr

Hypλ(α;β)= #θ−1(p).

1.1. Application to Frobenius slopes of hypergeometric sums. Our method has an arithmetic application
to the Frobenius slopes of hypergeometric sums: the arithmetic incarnation of hypergeometric functions
[Katz 1990].

Let K be a p-adic field with residue field Fp containing an element π satisfying π p−1
= −p. Such an

element π corresponds to an additive character ψ : Fp → K × by Dwork’s theory [1974]. Suppose that
(α, β) is nonresonant and that

αi =
ai

p − 1
, β j =

b j

p − 1
∈

Z

p − 1
.

Miyatani [2020] showed that there exists a unique Frobenius structure ϕ (up to a scalar) on the analytifica-
tion of the hypergeometric connection Hyp(−1)m+np/πn−m (α;β) on SK , which underlies an overconvergent
F-isocrystal on the special fiber of S (called the hypergeometric F-isocrystal). The Frobenius trace of ϕ
at an Fq -point a of S is given by the hypergeometric sum Hyp(α;β)(a), defined by∑

xi ,y j ∈F×
q

x1···xn=ay1···ym

ψ

(
Tr

( n∑
i=1

xi −

m∑
j=1

y j

))
·

n∏
i=1

ωai (Nm(xi ))

m∏
j=1

ω−b j (Nm(y j )),

where ω : F×
p → K × denotes the Teichmüller lift, Tr = TrFq/Fp , and Nm = NmFq/Fp .

1Our Hodge numbers θ(k) are normalized according to the geometric interpretation in Proposition 2.4.1, which is different
from those of Fedorov and Sabbah–Yu by a shift.
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Frobenius eigenvalues of ϕ at a are Weil numbers and have complex absolute valuations q(n+m−1)/2

via an isomorphism K ≃ C. When (α, β) is resonant, the above hypergeometric sum can also be written
as a sum of n Weil numbers. It is expected that the p-adic valuations of these Frobenius eigenvalues
(called Frobenius slopes) are related to the (irregular) Hodge filtration. Our geometric construction of
hypergeometric connections allows us to show the following result.

Theorem 1.1.1 (4.0.2). Suppose n > m and that αi and β j lie in 1
p−1 Z ∩ [0, 1). For every p-power q and

a ∈ Gm(Fq), the multiset of Frobenius eigenvalues of Hyp(α;β)(a) (normalized by ordq ) coincides with
the multiset of irregular Hodge numbers {θ(1), . . . , θ(n)} defined in (1.0.1.1).

Following [Mazur 1972], we encode the information of the p-adic valuations of Frobenius eigenvalues
and (irregular) Hodge numbers into the Newton polygon and the (irregular) Hodge polygon, respectively,
as defined in Definition 4.0.1.

For crystalline cohomology groups of a smooth proper variety over k, Mazur and Ogus showed that the
associated (Frobenius) Newton polygon lies above the Hodge polygon defined by Hodge numbers [Mazur
1972; Berthelot and Ogus 1978]. For F-isocrystals associated with exponential sums, “Newton above
Hodge” type results were studied by Dwork’s school. For example, Dwork [1974], Sperber [1977], and
Wan [1993] proved that Kloosterman sums (hypergeometric sums of type (n, 0) with α = (0, . . . , 0)) are
everywhere ordinary on |Gm,Fp |; i.e., two polygons coincide for every closed point a ∈ |Gm |. We use a
“Newton above Hodge” result of Adolphson and Sperber [1989; 1993] and identify their (combinatorial)
Hodge polygon for the above hypergeometric sums with the irregular Hodge polygon of hypergeometric
connections. Finally, we deduce “Newton equals Hodge” by a criterion for ordinariness due to Wan [1993].

Remark 1.1.2. (i) One may also consider the Frobenius Newton polygon of hypergeometric sums defined
by multiplicative characters of orders dividing ps

−1 for a positive integer s. In this case, Adolphson and
Sperber showed that the associated Frobenius Newton polygon lies above their (combinatorial) Hodge
polygon, which can be viewed as an average of irregular Hodge polygons. However, the associated
hypergeometric sums may not be ordinary in the case s > 1. There is an example of hypergeometric
sums (of type (n,m)= (2, 0)) for which the Frobenius Newton polygon lies strictly above Adolphson
and Sperber’s Hodge polygon [1987] for every a ∈ |Gm,Fp |.

(ii) The ordinariness of hypergeometric sums also fails in the nonconfluent case (i.e., n = m). For p = 31
and the hypergeometric sum defined by α = (0, 0, 0, 0), β =

( 1
5 ,

2
5 ,

3
5 ,

4
5

)
at a = 4 or 17, its Newton

polygon
(
with slope

( 5
2 ,

5
2 ,

9
2 ,

9
2

))
[Drinfeld and Kedlaya 2017, Appendix A.5]2 strictly lies above the

irregular Hodge polygon (with slope (2, 3, 4, 5)).

1.2. Strategy of proof. The proof of Theorem 1.0.1 can be reduced to calculating the irregular Hodge
filtration on each fiber of Hypλ(α, β). We adopt an approach similar to those used in [Fresán et al. 2022;
Sabbah and Yu 2023; Qin 2024], where the authors calculated the Hodge numbers of motives attached to
Kloosterman and Airy moments. The key ingredient of this argument is an (exponentially) geometric

2In [loc. cit.], the Frobenius slopes are normalized and are different from our convention by a shift of 2.
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interpretation of hypergeometric connections in Corollary 2.3.3. More precisely, there exists a smooth
quasiprojective variety X with a regular function g : X ×S → A1 such that the hypergeometric connections
are subquotients of the DS-module HN pr+(OX×S, d + dg), where N = dim X and pr is the projection
pr : X × S → S. Our construction is motivated by Katz’s hypergeometric sums and the function-sheaf
dictionary. A related construction can be found in [Kamgarpour and Yi 2021].

Through this geometric interpretation, each fiber Hypλ(α, β)a at a closed point a of S is identified with a
subquotient of the twisted de Rham cohomology of the pair (X, ga := g|pr−1

z (a)), i.e., the hypercohomology
of the twisted de Rham complex (�•

X , d+dga). Then, we reduce to calculate the irregular Hodge filtration
on the twisted de Rham cohomology of the pair (X, ga) (up to a shift).

The irregular Hodge filtration on the twisted de Rham cohomology of the pairs (X, ga) has been studied
in [Yu 2014]. In the context of our case, we can select X = Gn+m−1

m and ga as a Laurent polynomial
with good properties; see Corollary 2.3.3. Under these assumptions, Yu showed that the irregular Hodge
filtration on Hn+m−1

dR (X, ga) can be calculated by the Newton polyhedron filtration on the Newton polytope
1(ga) (3.1.1.1). This identification enables us to prove, via a combinatorial approach, a fiberwise version
of Theorem 1.0.1 as follows.

Theorem 1.2.1 (3.3.3). Up to an R-shift, the jumps of the irregular Hodge filtration F •

irr on the fiber
Hyp(α;β)a occur at θ(k) from (1.0.1.1) for 1 ≤ k ≤ n. Moreover, we have

dim grp
Firr

Hyp(α;β)a = #θ−1(p) for any p ∈ R.

In addition, our geometric construction allows us to answer a question of Katz [1990, 6.3.8] on the
comparison between modified hypergeometric D-modules and hypergeometric connections in the resonant
case (see Proposition 2.4.7) when the parameters are rational.

1.3. Organization of this article. We present a geometric interpretation of hypergeometric connections
in Section 2. Section 3 is devoted to the proofs of Theorems 1.2.1 and 1.0.1. In Section 4, we study
hypergeometric sums defined by multiplicative characters of orders dividing p−1 and prove that they are
ordinary (Theorem 1.1.1).

2. Hypergeometric connections

In this section, we give an (exponentially) geometric interpretation of the hypergeometric connections in
Proposition 2.3.1, Corollary 2.3.3, and Proposition 2.4.1. We work with varieties over C in Sections 2
and 3.

2.1. Review of hypergeometric connections following [Katz 1990].

2.1.1. Hypergeometric connections. Let n ≥m ≥0 be two integers, α= (α1, . . . , αn) and β= (β1, . . . , β j )

two sequences of nondecreasing rational numbers (and we don’t require that they lie in [0, 1) as in the
introduction), and λ ∈ Q. Let DS be the sheaf of differential operators on the scheme S, which is Gm\{1}
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(resp. Gm) if n = m (resp. n > m) with coordinate z. Then, the hypergeometric connection Hypλ(α;β)

on S is defined by the differential operator in (1.0.0.1) as

DS/Hypλ(α;β). (2.1.1.1)

By [Katz 1990, (3.1)], one has for γ ∈ Q that

Hypλ(α;β)⊗
(
O, d + γ

dz
z

)
≃ Hypλ(α+ γ ;β + γ ), (2.1.1.2)

where α+ γ (resp. β + γ ) is the sequence consisting of αi + γ (resp. β j + γ ). Furthermore, one has for
µ ∈ Q× that

[x 7→ µ · x]
+Hypλ(α;β)≃ Hypλ/µ(α;β). (2.1.1.3)

Thanks to the above relations, we can often assume that λ= 1 and α1 = 0. For simplicity, we denote by
Hyp(α;β) the connection Hyp1(α;β).

When the pair (α, β) is nonresonant, i.e., αi − β j ̸∈ Z for any i and j , Katz [1990, Proposition 3.2]
showed that Hyp(α;β) is irreducible and only depends on α mod Z and β mod Z. In this case, we may
assume that α and β are two nondecreasing sequences of rational numbers in [0, 1).

2.1.2. Modified hypergeometric D-modules. Given a morphism g between smooth varieties, for a bounded
complex of holonomic algebraic D-modules, following [Fresán et al. 2022, Appendix A.1], we denote by
g+, g+, and g† the derived pullback functor, the pushforward functor, and the pushforward with compact
support functor, respectively. The k-th cohomology of a complex K is denoted by Hk(K ).

Let mult : Gm × Gm → Gm be the product map. The convolution functors ⋆∗ and ⋆! on Gm are defined,
for two objects M and N of Db(DGm ), by

M ⋆∗ N := mult+(M ⊠ N ) and M ⋆! N := mult†(M ⊠ N ),

respectively. These convolution functors are associative and commutative. Moreover, the duality functor D

interchanges ⋆! and ⋆∗.

Definition 2.1.3. Let α and β be two sequences of rational numbers. For ? ∈ {!, ∗}, the convolution

Hyp(α1;∅) ⋆? · · · ⋆? Hyp(αn;∅) ⋆? Hyp(∅;β1) ⋆? · · · ⋆? Hyp(∅;βm)

is a holonomic DGm -module [Katz 1990, (6.3.6)]. We denote it by Hyp(?;α;β) and call it a modified
hypergeometric D-module.

The restrictions of the above two modified hypergeometric D-modules to S are generally not isomorphic
to the hypergeometric connections. When (α, β) is nonresonant, the natural map

Hyp(!;α;β)→ Hyp(∗;α;β) (2.1.3.1)

is an isomorphism, as seen by using an argument similar to those in [Katz 1990, Theorem 8.4.2 (5)] and
[Miyatani 2020, Proposition 3.3.3]. In this case, both modified hypergeometric DGm -modules, restricted
to S, are isomorphic to the hypergeometric connection Hyp(α;β) by [Katz 1990, (5.3.1)].
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2.2. The Newton polytope of a Laurent polynomial. We study the Newton polytope of a Laurent
polynomial appearing in the geometric interpretation of hypergeometric connections in Proposition 2.4.1.

Definition 2.2.1. Let N be a positive integer and

g(z1, . . . , zN )=

∑
τ∈ZN

c(τ )zτ

be a Laurent polynomial in variables z1, . . . , zN , with zτ =
∏N

i=1 zτi
i for τ = (τ1, . . . , τN ).

(1) The support of g is the subset Supp(g)= {τ | c(τ ) ̸= 0} of ZN .

(2) The Newton polytope 1(g) is the convex hull of the set Supp(g)∪ {0} in RN .

(3) The Laurent polynomial g is called nondegenerate with respect to 1(g) (or simply nondegenerate) if,
for each face σ ⊂ 1(g) not passing through 0, the Laurent polynomial gσ :=

∑
τ∈σ∩ZN c(τ )zτ has no

critical point in (C×)N .

Let n ≥ m ≥ 0 and d ≥ 1 be three integers, f : Gn+m
m → A1 the Laurent polynomial

f : (x2, . . . , xn, y1, . . . , ym, z) 7→

n∑
i=2

xd
i −

m∑
j=1

yd
j + z ·

∏m
j=1 yd

j∏n
i=2 xd

i
, (2.2.1.1)

and prz : Gn+m
m → Gm the projection onto the z-coordinate. For a ∈ C×, we set fa = f |pr−1

z (a).
We denote by {ui , v j }2≤i≤n,1≤ j≤m the coordinates in Rn+m−1, and identify a monomial

∏
i xai

i ·
∏

j yb j
j

with a lattice point (ai , b j ) ∈ Zn+m−1
⊂ Rn+m−1.

Lemma 2.2.2. Assume that n > m = 0 and a ∈ C×.

(1) The Laurent polynomial fa is convenient; i.e., the origin is in the interior of 1( fa).

(2) The Newton polytope 1( fa) is defined by

hn+1 :=

n∑
i=2

ui ≤ d and hi0 :=

n∑
i=2

ui − (n − m)ui0 ≤ d, 2 ≤ i0 ≤ n. (2.2.2.1)

(3) The Laurent polynomial fa is nondegenerate with respect to 1( fa).

Proof. (1) Let Pi for 2 ≤ i ≤ n and R be the points in Zn−1 corresponding to xd
i and 1/

∏n
i=2 xd

i ,
respectively. Observe that 0 is an interior point of the Newton polytope, as 0 =

(∑n
i=2 Pi + R

)
/n.

(2) A face σ ⊂1( fa) of dimension n−2 must pass through n−1 points among {Pi , R}. So either R ̸∈ σ

or there exists a Pi0 ̸∈ σ . In the first case, the face lies on the hyperplane defined by the equation hn+1 = d .
In the latter case, the face lies on the hyperplane defined by the equations hi0 = d .

(3) Let σ be a face which does not pass through 0. Since the support of fa has n points, it must pass
through at most n−1 points in Supp( fa). Let I ⊂ {2, . . . , n} be a subset of the indices. Then fa,σ is
either

fa,σ =

∑
i∈I

xd
i or fa,σ =

∑
i∈I

xd
i +

a∏n
i=2 xd

i
for |I | ≤ n − 2.

We can check that they are smooth on Gn−1
m . Therefore fa is nondegenerate. □
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Lemma 2.2.3. Assume that n > m ̸= 0 and a ∈ C×.

(1) The cone R≥0 ·1( fa) is defined by

ui + v j ≥ 0, v j ≥ 0

for i = 2, . . . , n and j = 1, . . . ,m,

(2) The Newton polytope 1( fa) is defined by

ui + v j ≥ 0, v j ≥ 0, hn+1 :=

∑
ui +

∑
v j ≤ d

and
hi0 :=

∑
i

ui +

∑
j

v j − (n − m)ui0 ≤ d, 2 ≤ i0 ≤ n. (2.2.3.1)

(3) The Laurent polynomial fa is nondegenerate with respect to 1( fa).

Proof. Let Pi and Q j be the points in Zn+m−1 corresponding to monomials xd
i and yd

j for 2 ≤ i ≤ n and
1 ≤ j ≤ m, respectively, and R the lattice point corresponding to

m∏
j=1

yd
j

/ n∏
i=2

xd
i .

In this case, the origin 0 is not an interior point of the Newton polytope. So 1( fa) has (n+m+1)-many
vertices. To determine a face of dimension n+m−2, we need to choose (n+m−1)-many points among
{Pi , Q j , R}.

(1) For the first part, it suffices to determine faces σ ⊂1( fa) with dimensions n+m−2 containing 0.

• If σ does not pass through R, it contains (n+m−2) distinct points in {Pi , Q j }. In this case, σ misses
one point Q j0 and lies on the hyperplane v j0 = 0. Otherwise, σ misses one point Pi0 . Hence the
hyperplane is given by the equation ui0 = 0. Therefore, R and Pi0 lie on the two sides of the
hyperplane, respectively, which is absurd.

• If σ passes through R, it contains (n+m−3) distinct points in {Pi , Q j }. In this case, σ has to miss
one Pi0 and one Q j0 and lies on the hyperplane ui0 + v j0 = 0. Otherwise, σ misses two Pi0, Pi ′

0
or

Q j0, Q j ′

0
. So σ lies on the hyperplane ui0 − ui ′

0
= 0 or v j0 − v j ′

0
= 0. However, the points Pi0, Pi ′

0
or

Q j0, Q j ′

0
lie on different sides of the hyperplane ui0 − ui ′

0
= 0 or v j0 − v j ′

0
= 0, which contradicts the

definition of σ .

(2) For the second part, it suffices to determine faces of dimension n+m−2 that do not pass through the
origin.

• If R ̸∈ σ , then σ contains all points Pi and Q j . In this case, σ lies on the hyperplane
∑

ui +
∑
v j = d .

• If R ∈ σ , then σ contains n+m−2 points among {Pi , Q j }. In this case, σ misses one Pi0 and lies on
the hyperplane hi0 = d . Otherwise, it misses one Q j0 and lies on the hyperplane

n∑
i=2

ui +

m∑
j=1

v j + (n − m)v j0 = d.
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However, the points 0 and Q j0 are on different sides of the hyperplane.

P3

Q1

P2

R

O

(3) Let σ be a face which does not pass through 0. Since the support of fa has n+m points, it must pass
through at most n+m−1 points in Supp( fa). Let I ⊂ {2, . . . , n} and J ⊂ {1, . . . ,m} be two subsets of
the indices. Then fa,σ is either

fa,σ =

∑
i∈I

xd
i −

∑
j∈J

yd
j or fa,σ =

∑
i∈I

xd
i −

∑
j∈J

yd
j + a ·

∏m
j=1 yd

j∏m
i=2 xd

i
for |I | + |J | ≤ n + m − 2.

To see that the partial Laurent polynomials fa,σ are all smooth on (Gm)
n+m−1, it suffices to show that

the system of equations

{ fa,σ = ∂xi fa,σ = ∂y j fa,σ = 0 | 2 ≤ i ≤ n, 1 ≤ j ≤ m}

has no solutions in (Gm)
n+m−1. In fact, in the first case above, taking any i0 ∈ I or j0 ∈ J , we have the

equation 0 = ∂xi0
fa,σ = dxd−1

i0
or 0 = ∂y j0

fa,σ = d jd−1
j0 , which is impossible if d = 1. If d ≥ 2, then xi0

or y j0 is forced to be 0. In the second case, for any i0 ̸∈ I or j0 ̸∈ J , we have

0 = ∂xi0
fa,σ = −

d
xi0

· a ·

∏m
j=1 yd

j∏n
i=2 xd

i
or 0 = ∂y j fa,σ =

d
y j0

· a ·

∏m
j=1 yd

j∏n
i=2 xd

i
,

which again forces some y j = 0.
Consequently, all the fa,σ have no critical points in Gn+m−1

m , and therefore fa is nondegenerate. □

Lemma 2.2.4. Assume that n = m and a ∈ C×.

(1) The cone R≥0 ·1( fa) is defined by

ui + v j ≥ 0, v j ≥ 0

for i = 2, . . . , n and j = 1, . . . ,m.

(2) The Newton polytope 1( fa) is defined by

ui + v j ≥ 0, v j ≥ 0, and hn+1 :=

∑
ui +

∑
v j ≤ d. (2.2.4.1)

(3) The Laurent polynomial fa is nondegenerate with respect to 1( fa) if a ̸= 1.
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Proof. We use the same notation as in Lemma 2.2.3. The proof of the first assertion is the same as that in
Lemma 2.2.3. The second assertion follows from the observation that the points {Pi , Q j , R} all lie on the
hyperplane ∑

ui +

∑
v j − d = 0.

Let σ be the face passing through {Pi , Q j , R}. If a face τ of 1( fa) does not contain 0, it is a face
of σ . Similar to the proof of Lemma 2.2.3, one can check that, if τ is a proper face of σ , there is no
solution for the system of equations

{ fa,τ = ∂xi fa,τ = ∂y j fa,τ = 0 | 2 ≤ i ≤ n, 1 ≤ j ≤ m}.

If τ = σ , the system of equations

{ fa = ∂xi fa = ∂y j fa = 0 | 2 ≤ i ≤ n, 1 ≤ j ≤ m}

has solutions in Gn+m−1
m if and only if a = 1 (in such cases xi = y j = c ∈ R are solutions). So fa is

nondegenerate with respect to 1( fa) if a ̸= 1. □

Remark 2.2.5. The volume of 1( fa) is dn+m−1n/(n + m − 1)!. In fact, the Newton polytope can be
decomposed into n-copies (n+m−1)-simplexes, and each of them has volume dn+m−1/(n + m − 1)!.

2.3. Geometric interpretations. We present some geometric interpretations of hypergeometric connec-
tions here. Let d be a common denominator of αi and β j , and set ai = d · αi and b j = d · β j . To αi

(resp. β j ), we associate the character χi : µd → C× (resp. ρ j ) which sends ζd to ζ ai
d (resp. ζ b j

d ). Set

χ × ρ = χ1 × · · · ×χn × ρ−1
1 × · · · × ρ−1

m ,

χ̃ × ρ = χ2 × · · · ×χn × ρ−1
1 × · · · × ρ−1

m

(2.3.0.1)

as products of these characters.
Now we introduce two diagrams as follows:

• Let Gn+m
m be the torus with coordinates xi and y j for 1 ≤ i ≤ n and 1 ≤ j ≤ m. We consider the diagram

Gn+m
m

A1
t Gm

σ ϖ (2.3.0.2)

where

σ(xi , y j )=

n∑
i=1

xd
i −

m∑
j=1

yd
j and ϖ(xi , y j )=

n∏
i=1

xd
i

/ m∏
j=1

yd
j .

Let the group µn+m
d act on Gn+m

m by multiplication and on A1
t and Gm trivially. Then, it can be verified

that σ and ϖ are µn+m
d -equivariant.
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• Let Gn+m
m be the torus with coordinates z, xi , and y j for 2 ≤ i ≤ n and 1 ≤ j ≤ m, and S be Gm,z

(resp. Gm,z\{1}) if n ̸= m (resp. n = m). We consider the diagram

Gn+m
m U := S × Gn+m−1

m

A1
t Gm,z S

f prz prz (2.3.0.3)

where prz is the projection to the z-coordinate and f is the Laurent polynomial

n∑
i=2

xd
i −

m∑
j=1

yd
j + z ·

∏m
j=1 yd

j∏n
i=2 xd

i

defined in (2.2.1.1). Let the group G = µn+m−1
d act on Gn+m

m (resp. S × Gn+m−1
m ) by multiplication

on the coordinates xi and y j and trivially on z, and on A1
t , Gm,z , and S trivially. Then f and prz are

µn+m−1
d -equivariant.

Let E t
= (O, d + dt) be the exponential D-module on A1

t . For a regular function h : X → A1
t , we

denote by Eh
:= h+E t the connection (OX , d + dh) on X .

Proposition 2.3.1. Let α and β be as above. The complexesϖ?Eσ are µn+m
d -equivariant and concentrated

in degree 0 for ? ∈ {†,+}. Moreover, we have isomorphisms of DGm -modules

Hyp(∗;α;β)≃ (ϖ+Eσ )(µ
n+m
d ,χ×ρ),

Hyp(!;α;β)≃ (ϖ†Eσ )(µ
n+m
d ,χ×ρ),

where the exponent (µn+m
d , χ×ρ) means taking the (χ×ρ)-isotypic component with respect to the action

of µn+m
d .

Proof. The case of Hyp(!;α;β) can be deduced from the case of Hyp(∗;α;β) by applying the duality
functor. So, we only prove the latter case. Recall that the action ofµn+m

d on A1
t is trivial in diagram (2.3.0.2).

So the DA1
t
-module E t is µn+m

d -equivariant. Since σ andϖ are both µn+m
d -equivariant morphisms, ϕ+ and

σ+ preserve µn+m
d -equivariant objects. Hence the complex

ϕ+Eσ = ϕ+σ
+E t

is µn+m
d -equivariant.

Assume that (n,m)= (1, 0). Then σ : Gm,x1 → A1 is the map x1 7→ xd
1 and ϖ : Gm,x1 → Gm,z is the

d-th power map. So by the identity

ϖ+OGm =

d−1⊕
i=0

(
OGm , d +

i
d

dz
z

)
and the projection formula, we have

(ϖ+Eσ )= E z
⊗ (ϖ+OGm )=

d−1⊕
i=0

E z
⊗

(
OGm , d +

i
d

dz
z

)
,
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which is concentrated in degree 0. Taking the isotypic component, we have

(ϖ+Eσ )(µ
n+m
d ,χ×ρ)

= (ϖ+E xd
1 )(µd ,χ1) = E z

⊗ (ϖ+OGm )
(µd ,χ1)

=

(
OGm , d + dz +α1

dz
z

)
= Hyp(∗;α1;∅)

in the case where (n,m)= (1, 0). The proof of the case where (n,m)= (0, 1) is similar. In general, we
use induction on n+m. The proof follows from the following lemma. □

Lemma 2.3.2. Let α, α′, β and β ′ be four sequences of rational numbers with common denominator d ,
whose lengths are n, n′, m and m′, respectively. We denote by χi , χ ′

i , ρ j , and ρ ′

j characters of µd

corresponding to αi , α′

i , β j , and β ′

j , respectively. Let σ and ϖ (resp. σ ′ and ϖ ′) be the maps for (n,m)
(resp. (n′,m′)) in the diagram (2.3.0.2).

Suppose that (ϖ+Eσ ) and (ϖ ′
+
Eσ ′

) are concentrated in degree 0, and there are isomorphisms of
D-modules

Hyp(∗;α;β)≃ (ϖ+Eσ )(µ
n+m
d ,χ×ρ),

Hyp(∗;α′
;β ′)≃ (ϖ+Eσ

′

)(µ
n+m
d ,χ ′

×ρ′).

Then ((ϖ ·ϖ ′)+Eσ⊞σ
′

) is also concentrated in degree 0, and we have an isomorphism of D-modules

Hyp(∗;α, α′
;β, β ′)≃ ((ϖ ·ϖ ′)+Eσ⊞σ )(µ

n+n′
+m+m′

d ,χ×χ ′
×ρ×ρ′),

where ϖ ·ϖ ′
= mult ◦(ϖ ×ϖ ′), pr and pr′ are the projections from Gn+n′

+m+m′

m to Gn+m
m and Gn′

+m′

m ,
respectively, and σ ⊞ σ ′

= σ ◦ pr + σ ′
◦ pr′ is the Thom–Sebastiani sum.

Proof. The proof of this lemma is essentially that of [Katz 1990, Lemma 5.4.3]. Notice that the exterior
product Eσ ⊠ Eσ ′

is Eσ⊞σ ′

. Then

(ϖ+Eσ ) ⋆∗ (ϖ ′

+
Eσ

′

)= mult+((ϖ+Eσ )⊠ (ϖ ′

+
Eσ

′

))= mult+(ϖ ×ϖ ′)+(Eσ ⊠ Eσ
′

)= (ϖ ·ϖ ′)+Eσ⊞σ
′

.

By the Künneth formula [Hotta et al. 2008, Proposition 1.5.28 (i) and Proposition 1.5.30], we conclude
that (ϖ ·ϖ ′)+Eσ⊞σ

′

is again concentrated in degree 0.
Viewing µn+m

d -equivariant and µn′
+m′

d -equivariant objects as µn+m+n′
+m′

d -equivariant via the identifica-
tions

µn+m
d ≃ µn+m

d × 1 and µn′
+m′

d ≃ 1 ×µn′
+m′

d ,

we can verify that both ⊠ and mult are µn+m+n′
+m′

d -equivariant. Hence the convolution product ⋆∗ is
also µn+m+n′

+m′

d -equivariant. Therefore, we conclude the lemma by taking the corresponding isotypic
components of the above formula. □

Corollary 2.3.3. Let α and β be as above and α1 = 0. The complexes of DGm -modules prz?E f are
µn+m−1

d -equivariant and concentrated in degree 0 for ? ∈ {†,+}. Moreover, we have

Hyp(∗;α;β)≃ (H0prz+E
f )(G,χ̃×ρ),

Hyp(!;α;β)≃ (H0prz†E
f )(G,χ̃×ρ).
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Proof. Similar to Proposition 2.3.1, we only consider the case of Hyp(∗;α;β). By the construction
of the diagram in (2.3.0.3), the morphisms prz and f are µn+m−1

d -equivariant. Hence the complex of
DGm -modules prz+E f

= prz+ f +E t is µn+m−1
d -equivariant.

By assumption, we set α1 = 0, which implies that the character χ1 is trivial. By Proposition 2.3.1, we
have

(ϖ+Eσ )(µ
n+m
d ,χ×ρ)

=

((
x1 ·

n∏
i=2

xd
i

/ m∏
j=1

yd
j

)
+

E x1+
∑m

i=2 xd
i −

∑
j yd

j

)(1×G,1×χ̃×ρ)

= (prz+E
f )(G,χ̃×ρ), (2.3.3.1)

where we performed a change of variable z = x1 ·
∏n

i=2 xd
i /

∏m
j=1 yd

j to get rid of the variable x1 in the
last isomorphism. Because (ϖ+Eσ ) is concentrated in degree 0 and isomorphic to Hyp(∗;α;β), so is
(prz+E f )(G,χ̃×ρ). □

Corollary 2.3.4. Assume that (α, β) is nonresonant and α1 = 0. Then, the natural map

(H0prz†E
f )(G,χ̃×ρ)

→ (H0prz+E
f )(G,χ̃×ρ)

is an isomorphism of DGm -modules. In particular, for a closed point3 a of S, the forget-support map

Hn+m−1
dR,c (Gn+m−1

m , fa)
(G,χ̃×ρ)

→ Hn+m−1
dR (Gn+m−1

m , fa)
(G,χ̃×ρ)

is an isomorphism.

Proof. Using induction on the size of α and β, one can verify that the diagram

Hyp(!;α;β) Hyp(∗;α;β)

(H0ϖ†Eσ )(µ
n+m
d ,χ×ρ) (H0ϖ+Eσ )(µ

n+m
d ,χ×ρ)

(H0prz†E f )(G,χ̃×ρ) (H0prz+E f )(G,χ̃×ρ)

≃

≃ ≃

≃ ≃

is commutative, where the horizontal morphisms are the canonical forget-support morphisms with the
top one being (2.1.3.1), the two upper vertical morphisms are those from Proposition 2.3.1, and the two
lower vertical morphisms are (2.3.3.1). So, we deduce the isomorphism

(H0prz†E
f )(G,χ̃×ρ)

→ (H0prz+E
f )(G,χ̃×ρ).

At last, we take the noncharacteristic inverse image along a : Spec(C)→ Gm and the base change theorem
[Hotta et al. 2008, Theorem 1.7.3 & Proposition 1.5.28] to conclude the isomorphism of twisted de Rham
cohomology groups. □

3The modified hypergeometric DGm -modules Hyp(?, α;β) are smooth on S, on which the hypergeometric connections
Hyp(α;β) are defined.
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Remark 2.3.5. When (α, β) is nonresonant and α1 = 0, we deduce from Corollary 2.3.3 the isomorphism

[z 7→ (−1)n−mz]+Hyp(α;β)≃ (H0prz+E
− f )(G,χ̃×ρ)

by performing a change of variable by sending xi and y j to −xi and −y j , respectively, in the diagram
(2.3.0.3). According to (2.1.1.3), the first term in the above is Hyp(−1)n−m (α;β). In particular, the results
in Corollary 2.3.4 remain valid if we replace f with − f .

2.4. Explicit cyclic vectors for hypergeometric connections. We present explicit cyclic vectors for
Hyp(α;β) in terms of sections of some subquotients of some relative de Rham cohomologies equipped
with their Gauss–Manin connections. This point of view will be used in the computation of Hodge
filtrations in Section 3.

Recall that d is an integer such that ai = dαi and b j = dβ j are integers for all i and j , and we take
notation from (2.3.0.3). When (α, β) is nonresonant and α1 = 0, there exists an isomorphism between the
hypergeometric connection Hyp(α;β) and (H0prz†E f )(G,χ̃×ρ)

|S by (2.1.3.1) and Corollary 2.3.3. From
now on, we will identify the latter with the relative de Rham cohomology Hn+m−1

dR (U/S, f )(G,χ̃×ρ) on S
equipped with the Gauss–Manin connection, where U = S × Gn+m−1

m .

Proposition 2.4.1. Suppose that α1 = 0 and (α, β) is nonresonant. The relative de Rham cohomology
Hn+m−1

dR (U/S, f )(G,χ̃×ρ) admits a cyclic vector, defined by the cohomology class of the differential form

ω =

n∏
i=2

xai
i ·

m∏
j=1

y−b j
j

dx2

x2
· · ·

dxn

xn

dy1

y1
· · ·

dym

ym
. (2.4.1.1)

Remark 2.4.2. Under the above assumption, the isomorphism class of Hyp(α;β) depends only on the
congruence classes of α and β modulo Z. Then, any differential form

n∏
i=2

xui
i ·

m∏
j=1

y−v j
j

dx2

x2
· · ·

dxn

xn

dy1

y1
· · ·

dym

ym
,

satisfying ui ≡ ai , v j ≡ b j modulo d , is a cyclic vector of Hn+m−1
dR (U/S, f )(G,χ̃×ρ).

Proof. The morphism prz : U = S × Gn+m−1
m → S in (2.3.0.3) is smooth. It follows that the relative de

Rham cohomologies Hi
dR(U/S, f ) are equipped with the Gauss–Manin connections D := ∇z∂z , given by

∇z∂zω = z∂zω+ z∂z( f )ω (2.4.2.1)

for 0 ≤ i ≤ n + m − 1. By Lemmas 2.2.2, 2.2.3, and 2.2.4, the Laurent polynomial fa := f |pr−1
z (a) is

nondegenerate for each closed point a of S. By [Adolphson and Sperber 1997, Theorems 1.4 and 4.1],
the cohomology group Hi

dR(U/S, fa) vanishes if i ̸= n + m − 1.
Now we consider the (G, χ̃ × ρ)-isotypic component of the connection Hn+m−1

dR (U/S, f ). It remains
to prove that the cohomology class defined by the differential form ω (2.4.1.1) is a cyclic vector for
Hn+m−1

dR (U/S, f )(G,χ̃×ρ).
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Lemma 2.4.3. Let t2, . . . , tn and s1, . . . , sm be integers, and set

ω̃ :=

n∏
i=2

x ti
i ·

m∏
j=1

ys j
j

dx2

x2
· · ·

dxn

xn

dy1

y1
· · ·

dym

ym

as a class in Hn+m−1
dR (U/S, f ). For each u and v such that 2 ≤ u ≤ n and 1 ≤ v ≤ m, respectively, we

have (
D −

tu
d

)
ω̃ = xd

u · ω̃ and
(

D +
sv
d

)
ω̃ = yd

v · ω̃.

Proof. We prove the identity (D − t2/d)ω̃ = xd
2 · ω̃, and the proof for the rest is identical. By (2.4.2.1),

we have

Dω̃ = z ·

∏m
j=1 yd

j∏n
i=2 xd

i
ω̃.

Since U and S are affine, the image of any (n+m−2)-form under the relative differential

∇U/S :�n+m−2
U/S →�n+m−1

U/S

in Hn+m−1
dR (U/S, f ) is zero. Then, we have

0 = ∇U/S

( n∏
i=2

x ti
i ·

m∏
j=1

ys j
j

dx3

x3
· · ·

dxn

xn

dy1

y1
· · ·

dym

ym

)
= t2 · ω̃+ x2 · ∂x2 f · ω̃

= t2 · ω̃+ x2 ·

(
dxd−1

2 − dx−1
2 · z ·

∏m
j=1 yd

j∏n
i=2 xd

i

)
ω̃ = d

(
xd

2 −

(
D −

t2
d

))
ω̃.

This is exactly what we want to prove. □

We show that ω (2.4.1.1) satisfies the hypergeometric differential equation Hyp(α;β). By Lemma 2.4.3,
we have

n∏
i=2

(D −αi )ω =

n∏
i=2

xd
i ·ω and

m∏
j=1

(D −β j )ω =

m∏
j=1

yd
j ·ω.

Then, we deduce from (2.4.2.1) that
n∏

i=1

(D −αi )ω = D
( n∏

i=2

xd
i ·ω

)
= z

m∏
j=1

yd
j ·ω = z

m∏
j=1

(D −β j )ω.

Lemma 2.4.4. The cohomology class of ω in Hn+m−1
dR (U/S, f )(G,χ̃×ρ) is nonzero.

Proof. The lemma is obviously true if n = 1 and m = 0. In general, assume that ω = 0. Each point
(A, B) ∈ (ai ,−b j )+ d · Zn+m−1 corresponds to a differential form

n∏
i=2

x Ai
i ·

m∏
j=1

yB j
j

dx2

x2
· · ·

dxn

xn

dy1

y1
· · ·

dym

ym
. (2.4.4.1)



Irregular Hodge filtration of hypergeometric differential equations 2495

Notice that we can also take the isotypic components on the level of complexes of differential forms, and
the relative differential ∇U/S respects the corresponding isotopic components. Thus, the differential form
in (2.4.4.1) defines a cohomology class in Hn+m−1

dR (U/S, f )(G,χ̃×ρ). On the other hand, any cohomology
class has a representative that is a linear combination of such differential forms.

Since Hn+m−1
dR (U/S, f )(G,χ̃×ρ) is nonzero, we can select a differential form ω(0) that defines a nonzero

cohomology class. Given that ω(0) is a linear combination of differential forms of the form in (2.4.4.1), at
least one of such forms defines a nonzero cohomology class. We may assume, without loss of generality,
that ω(0) itself is of the form in (2.4.4.1). Using Lemma 2.4.3, we obtain a sequence of differential forms
{ω(i)}N

i=0 corresponding to points (A(i), B(i)) such that ω(i+1)
= (D −γi )ω

(i) for some rational number γi ,
and

(A(N ), B(N )) ∈ (ai ,−b j )+ d · Nn+m−1.

Applying Lemma 2.4.3 again, we observe that ω(N ) can be expressed as a linear combination of {Dkω}k∈N,
and is thus equal to 0. Hence there exists M < N such that ω(M) has a nonzero cohomology class
and (D − γM)ω

(M)
= 0. Thus, OS · ω(M) is the hypergeometric connection Hyp(γM ;∅). Since it

is a subconnection of the irreducible connection Hn+m−1
dR (U/S, f )(G,χ̃×ρ), it must be isomorphic to

Hn+m−1
dR (U/S, f )(G,χ̃×ρ), leading to a contradiction. □

In summary, we obtain a nonzero morphism

DS/Hyp(α;β)→

n−1⊕
i=0

OS · Diω ⊂ Hn+m−1
dR (U/S, f )(G,χ̃×ρ) (2.4.4.2)

defined by sending 1 to ω. Since the left-hand side of the morphism is irreducible, it must be a sub-
connection of the irreducible connection Hn+m−1

dR (U/S, f )(G,χ̃×ρ) on the right-hand side. Since both
sides have the same rank, the above morphism is an isomorphism, implying that ω is a cyclic vector of
Hyp(α;β)≃ Hn+m−1

dR (U/S, f )(G,χ̃×ρ). □

Remark 2.4.5. If we replace E f by

(Gn+m−1
m , d − d f )= (Gn+m−1

m , d + d f )∨,

the direct sum
⊕n−1

i=0 OS · Diω is the (G, χ̃ × ρ)-isotypic component of Hn+m−1
dR (U/S,− f ), isomorphic

to the connection Hyp(−1)n−m (α;β). To see this, it suffices to notice that the corresponding identities in
Lemma 2.4.3 become (

D −
tu
d

)
ωt,s = −xd

uωt,s and
(

D +
sv
d

)
ωt,s = −yd

vωt,s

in this case. The rest of the proof relies on the above calculation and Remark 2.3.5.

2.4.6. Resonant case. When (α, β) is resonant, the modified hypergeometric D-module Hyp(∗;α;β)

depends only on the classes of α and β modulo Z. Katz [1990, 6.3.8] asked whether Hyp(∗;α;β)|S

is isomorphic to the connection Hyp((αi + ri ); (β j + s j )) (2.1.1.1) for suitable integers ri , s j ∈ Z. We
provide a positive answer to this question in the following proposition.
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Proposition 2.4.7. When (α, β) is resonant, there exists a positive integer h depending on α mod Z

and β mod Z, such that, for any integers r, s > h, the modified hypergeometric D-module Hyp(∗;α;β)|S

is isomorphic to the hypergeometric connection Hyp((α1, α2 − r, . . . , αn − r);β + s).

Proof. We may assume that α1 = 0. Let ω̃1, . . . , ω̃n be a representative of a basis of the connection
Hn+m−1

dR (U/S, f )(G,χ̃×ρ). More precisely, we can write

ω̃k =

∑
e∈Zn−1, f ∈Zm

ϵk,e, f

n∏
i=2

xai +d·ei
i

m∏
j=1

y−b j +d· f j
j

dx2

x2
· · ·

dxn

xn

dy1

y1
· · ·

dym

ym
,

where only finitely many ϵk,e, f are nonzero. We equip Zn+m−1 with the partial order defined by the
relation a ≥ b if a − b ∈ Nn+m−1. Let (e0, f0) be a maximal element in the set

{(e′, f ′) | (e′, f ′)≤ (e, f ) if ϵk,e, f ̸= 0}.

Then we take h to be the maximal value among {|(e0)|i , |( f0)| j }.
For any r, s > h, as in Proposition 2.4.1, we define a morphism of D-modules:

DS/Hyp(0, α2 − r, . . . , αn − r;β + s)→

n−1⊕
i=0

OGm · Diω ⊂ Hn+m−1
dR (U/S, f )(G,χ̃×ρ) (2.4.7.1)

by sending 1 to

ω =

n∏
i=2

xai −d·r
i ·

m∏
j=1

y−b j −d·s
j

dx2

x2
· · ·

dxn

xn

dy1

y1
· · ·

dym

ym
.

Since, for all (e, f ) with ϵk,e, f ̸= 0, we have ai + d · ei ≥ ai − d · r and b j + d · f j ≥ b j − d · s for any i
and j , we deduce that the class defined by

n∏
i=2

xai +d·ei
i

m∏
j=1

y−b j +d· f j
j

dx2

x2
· · ·

dxn

xn

dy1

y1
· · ·

dym

ym

lies in the image of (2.4.7.1) by Lemma 2.4.3. This morphism is a surjection between two connections of
rank n and is, hence, an isomorphism. □

3. Irregular Hodge filtration of hypergeometric connections

This section aims to calculate the (irregular) Hodge filtrations of hypergeometric connections (see
Theorems 3.3.1 and 3.3.3). Throughout this section, let n ≥m ≥0 be two integers, and let α= (α1, . . . , αn)

and β = (β1, . . . , β j ) be two sequences of nondecreasing rational numbers in [0, 1).

3.1. Exponential mixed Hodge structures. To explain certain duality on the irregular Hodge filtration of
hypergeometric connections, we use the language of exponential mixed Hodge structures introduced by
Kontsevich and Soibelman [2011]. We recall the basic definitions of exponential mixed Hodge structures
from [Fresán et al. 2022, Appendix].
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Let X be a smooth algebraic variety and K a number field. We denote by MHM(X, K ) the abelian
category of mixed Hodge modules on X with coefficients in K . In particular, when X = Spec(C), the
category MHM(X, K ) is equivalent to the category of mixed K -Hodge structures. Moreover, the bounded
derived categories Db(MHM(X, K )) admit the six functor formalism. For more details about mixed
Hodge modules, see [Saito 1990].

Let π : A1
→ Spec(C) be the structure morphism. The category EMHS(K ) of exponential mixed Hodge

structures with coefficients in K is defined as the full subcategory of MHM(A1, K ), whose objects N H

have vanishing cohomology on A1, i.e., those satisfying π∗N H
= 0.

There is an exact functor 5 : MHM(A1, K )→ MHM(A1, K ) defined by

N H
7→ s∗(N H ⊠ j!OH

Gm
), (3.1.0.1)

where j : Gm,C → A1 is the inclusion and s : A1
× A1

→ A1 is the summation map. The functor 5 is
a projector onto EMHS(K ); i.e., it factors through EMHS(K ) with essential image EMHS(K ). Using
this functor, the dual of an object M in EMHS(K ) is defined by 5([t 7→ −t]∗D(M)), where t is the
coordinate of A1.

For each object 5(N H) of the category EMHS(K ), there exists a weight filtration W EMHS
• on 5(N H),

defined by the weight filtration on N H: W EMHS
n 5(N H) :=5(Wn N H). We will drop the superscript for

simplicity.
The de Rham fiber functor from EMHS(K ) to VectC is defined by

5(N H) 7→ H1
dR(A

1,5(N )⊗ E t), (3.1.0.2)

where 5(N ) denotes the underlying D-module of 5(N H) and E t denotes the exponential D-module
(OA1, d + dt).

The de Rham fiber functor is faithful, and one can associate an irregular Hodge filtration F •

irr on the
de Rham fibers of objects in EMHS(K ) by [Fresán et al. 2022, Proposition A.10], constructed using a
generalization of Deligne’s filtration [Sabbah 2010, §6.b]; see also [Esnault et al. 2017, §1.6].

3.1.1. Objects of EMHS attached to regular functions. Let X be a smooth affine variety of dimension n
and K a number field. We denote by K H

X the trivial Hodge module on X with coefficients in K . For a
regular function g : X → A1 and an integer r , we consider the exponential mixed Hodge structures

Hr (X, g) :=5(Hr−ng∗K H
X ), Hr

c(X, g) :=5(Hr−ng!K H
X ).

The exponential mixed Hodge structures Hr (X, g) and Hr
c(X, g) are mixed of weights at least r and

mixed of weights at most r , respectively, by [Fresán et al. 2022, A.19].
The de Rham fiber of Hr

?(X, g) is isomorphic to Hr
dR,?(X, g) for ? ∈ {∅, c}. In this case, Esnault,

Sabbah, and Yu showed [Esnault et al. 2017, Proposition 1.7.4] that the irregular Hodge filtration on the
de Rham fiber coincides with the Yu filtration [2014] on the twisted de Rham cohomologies, where the
two filtrations are denoted by F •

Del = FDel
−• and F •

Yu = FYu
−• , respectively, in [loc. cit.].
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3.1.2. Irregular Hodge filtration and Newton monomial filtration. We briefly recall the definition of the
irregular Hodge filtration on the twisted de Rham cohomology following [Yu 2014]. Let X and g be as
above, j : X → X a smooth compactification of X , and D := X\X the boundary divisor. The pair (X , D)
is called a good compactification of the pair (X, g) if D is normal crossing and g extends to a morphism
ḡ : X → P1.

Let P be the pole divisor of g. The twisted de Rham complex (�•

X
(∗D),∇ = d + dg) admits a

decreasing filtration Fλ(∇) := F0(λ)≥⌈λ⌉, indexed by nonnegative real numbers λ, where F0(λ) is the
Yu complex

OX (⌊−λP⌋)
∇
−→�1

X (log D)(⌊(1 − λ)P⌋)→ · · · →�
p
X
(log D)(⌊(p − λ)P⌋)→ · · · .

The irregular Hodge filtration on the de Rham cohomology Hi
dR(X, g) is defined by

FλirrH
i
dR(X, g) := im(Hi (X , Fλ(∇))→ Hi

dR(X, g)), (3.1.0.3)

which is independent of the choice of the good compactification (X , D) [Yu 2014, Theorem 1.7].
When X is isomorphic to a torus Gn

m , the regular function g on X is a Laurent polynomial of the form∑
P=(p1,...,pn)

c(P)x P . We refine the normal fan of the Newton polytope 1(g) to make the associated
toric variety X tor smooth proper. Although (X tor, Dtor = X tor\X) is not a good compactification for the
pair (X, g) in general, we can still define FλNP(∇) and the Newton polyhedron filtration FλNPHi

dR(U,∇)
similarly to that in (3.1.0.3) by replacing the good compactification (X , D) with (X tor, Dtor),

When g is nondegenerate with respect to 1(g), the only nonvanishing twisted de Rham cohomology
group of the pair (X, g) is the middle cohomology group Hn

dR(X, g) by [Adolphson and Sperber 1997,
Theorem 1.4]. Moreover, we have the following theorem.

Theorem 3.1.1 [Yu 2014, Theorem 4.6]. When g is nondegenerate with respect to 1(g), the irregular
Hodge filtration F •

irr agrees with the Newton polyhedron filtration F •

NP on Hn
dR(X, g).

In particular, when g is nondegenerate, we have

Hi (X tor, FλNP(∇))= Hi (0(X tor, FλNP(∇))),

which allows us to compute the irregular Hodge filtration using the knowledge of 1(g).
Now, we present an explicit way to calculate the Newton polyhedron filtration. For a cohomology class

ω = x Q dx1

x1
∧ · · · ∧

dxn

xn

such that the lattice point Q = (q1, . . . , qn) lies in R≥01(g), we define w(Q) to be the weight of Q in the
sense of [Adolphson and Sperber 1997], i.e., the minimal positive real number w such that Q ∈ w ·1(g).
The associated cohomology class of ω lies in FλNPHn

dR(X, g) if

ω ∈ 0(X tor, �
n
X tor
(log Dtor)(⌊(n − λ)P⌋)).
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Notice that each ray ρ in the normal fan of 1(g) corresponds to an irreducible component Pρ of P .
Let vρ be a primitive vector of the ray ρ. Then, the multiplicity of ω along Pρ is given by ⟨Q, vρ⟩ [Fulton
1993, p. 61]. Taking the multiplicities of Pρ in P into account, we have

x Q dx1

x1
∧ · · · ∧

dxn

xn
∈ Fn−w(Q)

NP Hn
dR(X, g), (3.1.1.1)

as remarked in [Yu 2014, p. 126 footnote].

3.1.3. The EMHS associated with hypergeometric connections. In this subsection, we assume α1 = 0
and let χ̃ × ρ be the product of characters associated with αi and β j in (2.3.0.1).

Definition 3.1.2. Let K be the number field Q(ζ
ai
d , ζ

b j
d ) and a a closed point of S. For ? ∈ {∅, c}, we

define

E?(a;α;β) := Hn+m−1(Gn+m−1
m , fa)

(G,χ̃×ρ)

as exponential mixed Hodge structures with coefficients in K in the sense of Section 3.1.1.

By Corollary 2.3.3 and the base change theorem, the de Rham fiber of E(a;α;β) is isomorphic to the
fiber of Hypλ(α;β) at the closed point a ·λ of S for λ∈ Q×. In other words, the fiber Hypλ(α;β)aλ under-
lies the above exponential mixed Hodge structure and is equipped with an irregular Hodge filtration Firr,
which coincides with the Yu filtration on Hn+m−1

dR (Gn+m−1
m , fa)

(G,χ̃×ρ) as explained in Section 3.1.1.

Remark 3.1.3. The geometric interpretations of the hypergeometric connection are not unique, and
their associated Yu filtrations on Hyp(α;β)a coincide only up to certain shifts. For example, we can
alternatively identify Hyp(α;β)a with

Hn+m−1
dR (Gn+m−1

m , fa)
(G,χ̃×ρ)

⊗ H1
dR(Gm, x),

where the Yu filtration on the one-dimensional vector space H1
dR(Gm, x) jumps at 1. Consequently, we

deduce a new irregular Hodge filtration on Hyp(α;β)a which differs from our current one by a shift of 1.
For this reason, we made a choice of a uniform shift for irregular Hodge filtrations on fibers of Hyp(α;β)

at closed points of S, using the exponential mixed Hodge structures in Definition 3.1.2. Moreover, this
specifically chosen shift determines the shift of the function θ in (1.0.1.1).

Let t be the largest natural number such that αt = 0. We let ᾱ and β̄ be the sequences of rational
numbers defined by

ᾱi =

{
0, 1 ≤ k ≤ t,
1 −αn+t+1−k, t + 1 ≤ k ≤ n,

and β̄k = 1 −βk . (3.1.3.1)

Proposition 3.1.4. (1) The dual of the exponential mixed Hodge structure Ec(a;α;β) is isomorphic to
E((−1)n−ma; ᾱ; β̄)(n + m − 1).

(2) When (α, β) is nonresonant, the exponential mixed Hodge structures E?(a;α;β) for ? ∈ {∅, c} are
isomorphic. In particular, they are pure of weight n+m−1.
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Proof. (1) The EMHS Hn+m−1
c (Gn+m−1

m , fa) is dual to

Hn+m−1(Gn+m−1
m ,− fa)⊗ H2n+2m−2

c (Gn+m−1
m )∨,

which is also isomorphic to Hn+m−1(Gn+m−1
m , f(−1)n−ma)⊗ H2n+2m−2

c (Gn+m−1
m )∨. We deduce the first

assertion by taking their corresponding isotypic components.

(2) Since the de Rham fiber functor is faithful, the forget-support morphism

Ec(a;α;β)→ E(a;α;β)

is an isomorphism by Corollary 2.3.4. Hence the exponential mixed Hodge structures Ec(a;α;β) and
E(a;α;β) are isomorphic and are pure of weight n+m−1. □

3.2. A basis in relative twisted de Rham cohomology. In this subsection, we assume α1 = 0. We define
positive integers s1, . . . , sm+1 by

sr =


1, r = 0,
#{i : αi < βr }, 1 ≤ r ≤ m,
n + 1, r = m + 1,

(3.2.0.1)

and, for r and ℓ such that 0 ≤ r ≤ m and 1 ≤ ℓ≤ sr+1 − sr , we set

gr,ℓ = xa2
2 · · · xasr +ℓ−1

sr +ℓ−1 · xasr +ℓ−d
sr +ℓ

· · · xan−d
n · yd−b1

1 · · · yd−br
r · y2d−br+1

r+1 · · · y2d−bm
m .

Let

η =
dx2

x2
· · ·

dxn

xn

dy1

y1
· · ·

dym

ym

and ωr,ℓ = gr,ℓ · η be the corresponding differential forms in Hn+m−1
dR (U/S,± f )(G,χ̃×ρ), where U and S

are defined in (2.3.0.3).

Proposition 3.2.1. If (α, β) is nonresonant, then the cohomology classes defined by

ωr,ℓ, 0 ≤ r ≤ m, 1 ≤ ℓ≤ sr+1 − sr

in Hn+m−1
dR (U/S,± f )(G,χ̃×ρ) form a basis over OS .

Proof. It suffices to show that Span(ωr,ℓ)= Span(Diω | 0 ≤ i ≤ n − 1) for a cyclic vector ω.
To a Laurent monomial g =

∏n
i=2 xui

i
∏m

j=1 yv j
j in variables {xi }

n
i=2 and {y j }

m
j=1 we associate a lattice

point P(g)= (u2, . . . , un, v1, . . . , vm) ∈ Zn+m−1
⊂ Rn+m−1. If ω = g · η is the product of a monomial g

with the differential form η, we set P(ω) := P(g) for the corresponding point.
Let π1 and π2 be the projections from Rn+m−1 to Rn−1

ui
and Rm

v j
, respectively. Then, for the differential

forms ωr,ℓ, we have

π1(P(ωr,ℓ))= (a2, . . . , asr +ℓ−1, asr +ℓ − d, . . . , an − d)

and
π2(P(ωr,ℓ))= (d − b1, . . . , d − br , 2d − br+1, . . . , 2d − bm).
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In Lemmas 2.2.2, 2.2.3, and 2.2.4, we have written down the defining inequalities of the cone R≥0 ·1( fa)

explicitly as ui + v j ≥ 0 and v j ≥ 0. For the points P(ωr,ℓ) corresponding to the values of ωr,ℓ at closed
points a of S, we can verify that they satisfy ui + v j ≥ 0 and v j ≥ 0 using the fact that ai , b j ≤ d for any
i and j , and ai ≥ b j when i ≥ s j + 1. Thus, all the points P(ωr,ℓ) lie within the cone R≥0 ·1( fa).

Let Pi and Q j be the points corresponding to monomials xd
i and yd

j , respectively, for 2 ≤ i ≤ n and
1 ≤ j ≤ m.

Lemma 3.2.2. For a point P ∈ Zn+m−1 and two integers 2 ≤ i0 ≤ n and 1 ≤ j0 ≤ m, let ω0, ω1, and ω2

be the corresponding differential forms of the points P , P + Q j0 , and P + Pi0 in Zn+m−1. If the i0-th
coordinate of P is different from the negative of the j0-th coordinate of P , then we have

Span(ω0, ω2)= Span(ω1, ω2) in Hn+m−1
dR (U/S, f )(G,χ̃×ρ).

Proof. Let P be the point (ti , s j ) ∈ Zn+m−1 and ω0 be the associated differential form. By assumption,
we have ti0 ̸= −s j0 . Therefore, we can express

ω0 =
−d

ti0 + s j0

((
D −

ti0

d

)
ω0 −

(
D +

s j0

d

)
ω0

)
.

In particular, we have

Span
(
ω0,

(
D −

ti0

d

)
ω0

)
= Span

((
D −

ti0

d

)
ω0,

(
D +

s j0

d

)
ω0

)
.

At last, notice that we have

ω1 =

(
D +

s j0

d

)
ω0 and ω2 =

(
D −

ti0

d

)
ω0

by Lemma 2.4.3 and Remark 2.4.5. □

Step 1: If s1 − s0 = 0, we skip this step and put ω(1)r,ℓ = ωr,ℓ for any r and ℓ. Otherwise, for r = 0 and
1 ≤ ℓ≤ s1 − s0, we replace the differential forms ω0,ℓ by differential forms ω(1)0,ℓ of the form g ·η for some
monomials g such that

P(ω(1)0,ℓ)= P(ω0,ℓ)− Q1.

More precisely, we keep the first n−1 coordinates of P(ω0,ℓ) unchanged and replace the last m coordinates
of P(ω0,ℓ) by that of P(ω(1)0,ℓ):

(d − b1, 2d − b2, . . . , 2d − bm).

In particular, by Lemma 2.4.3, one has

(D + 1 −β1)ω
(1)
0,ℓ = ω0,ℓ, (D + 1 −αℓ+1)ω

(1)
0,ℓ = ω

(1)
0,ℓ+1,

and

(D + 1 −αs1−s0)ω
(1)
0,s1−s0

= ωe,1,

where e is the least integer such that se > s0 = 1.
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We also put ω(1)r,ℓ = ωr,ℓ for r ≥ 1. Then, using Lemma 3.2.2 for ω0 = ω
(1)
0,s1−s0

, ω1 = ω0,s1−s0 , and
ω2 = ωe,1, we have

Span{ωr,ℓ | r, ℓ} = Span
(
. . . , ω0,s1−s0

(
= (D + 1 −β1)ω

(1)
0,s1−s0

)
, ωe,1

(
= (D + 1 −αs1−s0)ω

(1)
0,s1−s0

)
, . . .

)
= Span({ω0,1, . . . , ω0,s1−s0−1, ω

(1)
0,s1−s0

} ∪ {ω
(1)
r,ℓ | r ≥ 1, ℓ}),

where 0 ≤ r ≤ m and 1 ≤ ℓ≤ sr+1 − sr . Continuing to use Lemma 3.2.2 for ω0 = ω
(1)
0,ℓ, ω1 = ω0,ℓ, and

ω2 = ω
(1)
0,ℓ+1 for ℓ= s1 − s0 − 1 and s1 − s0 − 2, . . . , 1, we have

Span{ωr,ℓ | r, ℓ} = Span({ω0,1, . . . , ω0,s1−s0−1, ω
(1)
0,s1−s0

} ∪ {ω
(1)
r,ℓ | r ≥ 1, ℓ})

= Span({ω0,1, ω
(1)
0,2, . . . , ω

(1)
0,s1−s0

} ∪ {ω
(1)
r,ℓ | r ≥ 1, ℓ})

= Span(ω(1)r,ℓ | r, ℓ).

Step i ≥ 2: Assume that we have already obtained elements ω(i−1)
r,ℓ for i ≥ 2. If si = si−1, we skip this

step and put ω(i)r,ℓ = ω
(i−1)
r,ℓ for any r and ℓ. Otherwise, let ω(i)r,ℓ be differential forms of the form g · η for

some monomials g such that

P(ω(i)r,ℓ)=

{
P(ω(i−1)

r,ℓ )− Qi if r ≤ i − 1,

P(ω(i−1)
r,ℓ ) if i ≤ r ≤ m.

More precisely, when r ≤ i − 1, we keep the first n−1 coordinates of P(ω(i−1)
r,ℓ ) unchanged and replace

the last m coordinates of P(ω(i−1)
r,ℓ ) by that of P(ω(i)r,ℓ):

(d − b1, . . . , d − bi , 2d − bi+1, . . . , 2d − bm).

Similar to Step 1, we use Lemmas 2.4.3 and 3.2.2 (sr+1−sr )-many times to deduce

Span(ω(i)r,ℓ | r, ℓ)= Span(ω(i−1)
r,ℓ | r, ℓ)= Span(ωr,ℓ | r, ℓ),

where 0 ≤ r ≤ m and 1 ≤ ℓ≤ sr+1 − sr .

After Step m: After m steps, we get ω(m)r,ℓ such that

P(ω(m)r,ℓ )= (a2, . . . , asr +ℓ−1, asr +ℓ − d, . . . , an − d, d − b1, . . . , d − bm).

Note that there is a bijection between {(r, ℓ)}0≤r≤m,1≤ℓ≤sr+1−sr and {1, . . . , n} by sending (r, ℓ) to sr +ℓ−1.
We set ω̃sr +ℓ−1 = ω

(m)
r,ℓ via this map. Then, by Lemma 2.4.3, we have

ω̃i+1 = (D + 1 −αi+1)ω̃i for 1 ≤ i ≤ n − 1.

It follows that

Span(Di ω̃1 | 0 ≤ i ≤ n − 1)= Span(ω̃i | 1 ≤ i ≤ n)

= Span(ω(m)r,ℓ | r, ℓ)= Span(ωr,ℓ | r, ℓ).

By Proposition 2.4.1 and Remark 2.4.2, ω̃1 is a cyclic vector, from which we showed that {ωr,ℓ}r,ℓ form a
basis. This finishes the proof. □
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3.3. Calculation of the irregular Hodge filtration. Using the fact that a nonresonant hypergeometric
connection is rigid or its geometric interpretation Corollary 2.3.3, it underlies an irregular Hodge module
on P1 of weight n + m − 1 by [Sabbah 2018, Theorem 0.7 & p. 78] and, therefore, admits a unique
irregular Hodge filtration F •

irr. When n = m, this irregular Hodge module coincides with the variation of
Hodge structures on Hyp(α;β).

Recall that, for (α, β), we defined in (1.0.1.1) the numbers

θ(k)= (n − m)αk + #{i | βi < αk} + (n − k)−
n∑

i=1

αi +

m∑
j=1

β j .

Theorem 3.3.1. Assume (α, β) is nonresonant.

(1) When α1 = 0, via the isomorphism Hyp(α;β) ≃ Hn+m−1
dR (U/S, f )(G,χ̃×ρ), the irregular Hodge

filtration on Hyp(α;β) can be identified with the following filtration of subbundles:

F p
irrH

n+m−1
dR (U/S, f )(G,χ̃×ρ)

=

⊕
n+m−1−w(ωr,s)≥p

ωr,sOS.

(2) Up to an R-shift, the jumps of the irregular Hodge filtration on Hyp(α;β) occur at θ(k) and, for any
p ∈ R, we have

rk grp
Firr

Hyp(α;β)= #θ−1(p).

Remark 3.3.2. (i) By [Sabbah and Yu 2015, Remark 6.3], the irregular Hodge filtration satisfies the
Griffiths’ transversality; that is, ∇(F p

irrHyp(α;β))⊂�1
S ⊗ F p−1

irr Hyp(α;β) for all p ∈ R.

(ii) Inspired by the Griffiths’ transversality, we expect that there exists an oper structure on the hyper-
geometric connections which refines the irregular Hodge filtration. An oper structure is essential in the
geometric Langlands correspondence [Beilinson and Drinfeld 1997; Zhu 2017; Kamgarpour et al. 2023].

To prove the above theorem, we study the Hodge numbers of the irregular Hodge filtration on fibers as
explained in Section 1.2.

Theorem 3.3.3. Up to an R-shift, the jumps of the irregular Hodge filtration F •

irr on the fiber Hyp(α;β)a

occur at θ(k) for 1 ≤ k ≤ n. Moreover, we have dim grp
Firr

Hyp(α;β)a = #θ−1(p) for any p ∈ R.

3.3.1. Proof of Theorem 3.3.3. We may assume α1 =0 by (2.1.1.2). By Corollary 2.3.3 and Definition 3.1.2,
we have

F •

irrHyp(α;β)a ≃ F •

irrH
n+m−1
dR (Gn+m−1

m , fa)
(G,χ̃×ρ)

≃ F •

irrH
n+m−1
dR (Gn+m−1

m ,− f(−1)n−ma)
(G,χ̃×ρ), (3.3.3.1)

where χ̃ and ρ are products of characters corresponding to αi and β j from (2.3.0.1). So it suffices to
compute the irregular Hodge filtration on the twisted de Rham cohomologies Hn+m−1

dR (Gn+m
m ,± fa)

(G,χ̃×ρ).
Since fa is nondegenerate with respect to 1( fa), we can compute the filtration in terms of Newton
polyhedron filtration.
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Let ωr,ℓ be the basis of Hyp(α;β)a from Proposition 3.2.1. Recall that w(ωr,ℓ) is the minimal positive
real number w such that P(gr,ℓ) ∈ w ·1( fa). It follows from (3.1.1.1) that

ωr,ℓ ∈ Fn+m−1−w(ωr,ℓ)

irr Hn+m−1
dR (Gn+m−1

m ,± fa)
(G,χ̃×ρ).

We consider an auxiliary filtration G• on Hn+m−1
dR (Gn+m−1

m ,± fa)
(G,χ̃×ρ) defined by

G p
:= Span{ωr,ℓ | n + m − 1 −w(ωr,ℓ)≥ p}. (3.3.3.2)

By the following Lemmas 3.3.4, 3.3.5, and 3.3.6, the filtration F • coincides with G•, which finishes the
proof of the theorem. □

Lemma 3.3.4. We set θ(n + 1)= θ(1). For 0 ≤ r ≤ m and 1 ≤ ℓ≤ sr+1 − sr , we have

n + m − 1 −w(ωr,ℓ)= θ(sr + ℓ).

Lemma 3.3.5. For 0 ≤ p ≤ n + m − 1, we have

dim grp
G Hn+m−1

dR (Gn+m−1
m ,± fa)

(G,χ̃×ρ)
= dim grn+m−1−p

G Hn+m−1
dR (Gn+m−1

m ,∓ fa)
(G,χ̃−1

×ρ−1).

Lemma 3.3.6. The two filtrations F •

irr and G• coincide.

Proof of Lemma 3.3.4. By Lemmas 2.2.2, 2.2.3, and 2.2.4, the weight w(ωr,ℓ) equals the number
maxk{hk(gr,ℓ)/d}, where the hk are defined in (2.2.2.1), (2.2.3.1), and (2.2.4.1). We can check that

w(ωr,ℓ)=
hsr +ℓ(gr,ℓ)

d
,

where we put h1 = · · · = hn = hn+1 when n = m. Now, it suffices to check that n + m − 1 −w(ωr,ℓ)

agrees with one of the jumps of the irregular Hodge numbers of Hyp(α;β)a .
If sr + ℓ= n + 1, the monomial gm,n+1−sm corresponds to the point

(a2, . . . , an, d − b1, . . . , d − bm).

Then we have

n + m − 1 −
hn+1(gm,n+1−sm )

d
= n − 1 −

n∑
i=1

αi +

m∑
j=1

β j = θ(1).

If sr + ℓ < n + 1, we have

n + m − 1 −
hsr +ℓ(gr,ℓ)

d

= n + m − 1 −

( n∑
i=1

αi − (n + 1 − sr − ℓ)−

m∑
j=1

β j + (2m − r)− (n − m)(αsr +ℓ − 1)
)

= (n − m)αsr +ℓ + r + (n − sr − ℓ)−

n∑
i=1

αi +

m∑
j=1

β j ,

which is exactly θ(sr + ℓ). □
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Proof of Lemma 3.3.5. For simplicity, we write

δ±p (α, β) := dim grp
G Hn+m−1

dR (Gn+m−1
m ,± fa)

(G,χ̃×ρ). (3.3.6.1)

Recall that, in (3.1.3.1), we let t be the biggest natural number such that αt = 0. For 1 ≤ k ≤ t , the
numbers αk and ᾱt+1−k are 0. And, for t + 1 ≤ k ≤ n, we have ᾱn−k+t+1 = 1 −αk . Then

n∑
i=1

αi +

n∑
i=1

ᾱi = n − t and
m∑

j=1

β j +

m∑
j=1

β̄ j = m.

Similar to the number θ(k), we let θ̄ (k) be the numbers

(n − m)ᾱk + #{i | β̄i < ᾱk} + (n − k)−
n∑

i=1

ᾱi +

m∑
j=1

β̄ j , 1 ≤ k ≤ n,

for the sequences ᾱ and β̄. Then, for 1 ≤ k ≤ t , we have

θ(k)+ θ̄ (t + 1 − k)=

(
n − k −

n∑
i=1

αi +

m∑
j=1

β j

)
+

(
n − (t + 1 − k)−

n∑
i=1

ᾱi +

m∑
j=1

β̄ j

)
= (2n − t − 1)− (n − t)+ m = n + m − 1.

For t + 1 ≤ k ≤ n, we have

θ(k)+ θ̄ (n − k + t + 1)

=

(
(n − m)αk + #{ j | β j < αk} + n − k −

n∑
i=1

αi +

m∑
j=1

β j

)
+

(
(n − m)ᾱn−k+t+1 + #{ j | β̄ j < ᾱn−k+t+1} + n − (n − k + t + 1)−

n∑
i=1

ᾱi +

m∑
j=1

β̄ j

)
= (n − m)+ m + (n − t − 1)− (n − t)+ m = n + m − 1.

So there exists a permutation σ ∈ Sn such that θ(k)+ θ̄ (σ (k))= n + m − 1. It follows that

δ±p (α, β)= #{k | θ(k)= p} = #{k | n + m − 1 − p = n + m − 1 − θ(k)}

= #{k | θ̄ (k)= n + m − 1 − p} = δ∓n+m−1−p(ᾱ, β̄). □

Proof of Lemma 3.3.6. For simplicity, we write

h±

p (α, β) := dim grp
Firr

Hn+m−1
dR (Gn+m−1

m ,± fa)
(G,χ̃×ρ). (3.3.6.2)

By (3.1.1.1) and the construction of the auxiliary filtration G (3.3.3.2), for every p ∈ Q, we have

G pHn+m−1
dR (Gn+m−1

m ,± fa)
(G,χ̃×ρ)

⊂ F p
irrH

n+m−1
dR (Gn+m−1

m ,± fa)
(G,χ̃×ρ), (3.3.6.3)

which implies that
∑

q≤p δ
±
q (α, β)≤

∑
q≤p h±

q (α, β).
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To prove the reverse inclusion, we consider the duality between the two filtered vector spaces

(Hn+m−1
dR (Gn+m−1

m ,± fa)
(G,χ̃×ρ), F •

irr) and (Hn+m−1
dR (Gn+m−1

m ,∓ fa)
(G,χ̃−1

×ρ−1), F •

irr),

induced by Proposition 3.1.4. In particular, we have

h±

p (α, β)= h∓

n+m−1−p(ᾱ, β̄). (3.3.6.4)

Combining Lemma 3.3.5 and equations (3.3.6.3) and (3.3.6.4), we see for any p ∈ R that

dim G pHn+m−1
dR (Gn+m−1

m ,± fa)
(G,χ̃×ρ)

=

∑
q≤p

δ±q (α, β)≤

∑
q≤p

h±

q (α, β)=

∑
q≥n+m−1−p

h∓

q (ᾱ, β̄)

≤

∑
q≥n+m−1−p

δ∓q (ᾱ, β̄)=

∑
q≤p

δ±q (α, β)

= dim G pHn+m−1
dR (Gn+m−1

m ,± fa)
(G,χ̃×ρ).

Hence both sides in (3.3.6.3) have the same dimension for every p. Then Lemma 3.3.6 follows. □

3.3.2. Proof of Theorem 3.3.1. We may assume α1 = 0 by (2.1.1.2). By [Sabbah 2018, Proposition 3.54]
and [Mochizuki 2025, Proposition 11.22], the irregular Hodge filtration on Hyp(α;β) induces those on
fibers Hyp(α;β)a at closed points of S; i.e.,

(F •

irrHyp(α;β))a = F •

irr(Hyp(α;β))a.

We have shown in Theorem 3.3.3 that the irregular Hodge filtration on the fibers Hyp(α;β)a are given in
terms of the cohomology classes ωr,s in (3.3.3.2). Hence we deduce that the irregular Hodge filtration on
Hyp(α;β) is the one in assertion (1).

From (1), we deduce that the irregular Hodge numbers rk grp
Firr

Hyp(α;β) are given by

#{(r, s) | n + m − 1 −w(ωr,s)= p}.

Recall that we have the bijection between the sets

{1, . . . , n} and {(r, ℓ) | 0 ≤ r ≤ m, 1 ≤ ℓ≤ sr+1 − sr },

where sr are numbers defined in (3.2.0.1). Using Lemma 3.3.4, we deduce assertion (2); i.e., the irregular
Hodge numbers rk grp

Firr
Hyp(α;β) coincide with the numbers #θ−1(p). □

4. Frobenius structures on hypergeometric connections and p-adic estimates

In this section, let p be a prime number and k = Fq the finite field with q = ps elements for an integer s ≥ 1.
Let K be a finite extension of Qp with residue field k containing an element π satisfying π p−1

= −p.
We fix such an element π and denote the associated additive character by ψ : Fp → K × [Berthelot 1984,
(1.3)]. The q-th power Frobenius on k admits a lift σ = id on OK .
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Let n > m be two integers,

α =

(
αi =

ai

q − 1

)n

i=1
and β =

(
β j =

b j

q − 1

)m

j=1

be two sequences of nondecreasing rational numbers in [0, 1) with denominator q − 1. Let ω : k×
→ K ×

be the Teichmüller character, and set χi = ωai and ρ j = ωb j . The hypergeometric sum associated to ψ ,
χ = (χ1, . . . , χn) and ρ = (ρ1, . . . , ρm) is defined, for a ∈ k×, by

Hyp(n,m)(χ; ρ)(a)=

∑
xi ,y j ∈k×

x1···xn=ay1···ym

ψ

(
Trk/Fp

( n∑
i=1

xi −

m∑
j=1

y j

))
·

n∏
i=1

χi (xi )

m∏
j=1

ρ−1
j (y j ). (4.0.0.1)

When (χ, ρ) is nonresonant, the above sum equals (up to a sign) the Frobenius trace of the hypergeometric
overconvergent F-isocrystal H yp(χ, ρ) at a ∈ Gm(k) [Miyatani 2020] and therefore can be written
as a sum of n Frobenius eigenvalues. Its underlying connection is the hypergeometric connection
Hyp(−1)m+np/πn−m (α;β) [Miyatani 2020, Theorem 4.1.3]. When (χ, ρ) is resonant, the above sum can
also be written as a sum of n Frobenius eigenvalues (see Section 4.2.1 for a direct proof by induction
on n).

We are interested in the p-adic valuation of Frobenius eigenvalues (normalized by ordq ) of the above
sum (called Frobenius slopes), encoded in the Frobenius Newton polygon [Mazur 1972, §2].

Recall that the irregular Hodge numbers of the hypergeometric connection Hyp(α;β) are given by the
function θ : {1, . . . , n} → Q (1.0.1.1), defined by

θ(k)= (n − m)αk + #{i | βi < αk} + (n − k)−
n∑

i=1

αi +

m∑
j=1

β j . (4.0.0.2)

Definition 4.0.1. Let δ1<· · ·<δk be the Frobenius slopes of Hyp(n,m)(χ;ρ)(a), normalized by ordq(q)=1,
(resp. irregular Hodge numbers of Hyp(α, β)) with multiplicities λ1, . . . , λk . The Newton polygon (resp.
irregular Hodge polygon) is defined as the union of segments in R2 joining points Pi and Pi+1 for
0 ≤ i ≤ k − 1, where the Pi are given by

P0 = (0, 0), Pi =

( i∑
j=1

λ j ,

i∑
j=1

λ jδ j

)
for 1 ≤ i ≤ k.

Theorem 4.0.2. Suppose n > m and the orders of χi , ρ j divide p − 1. Then, for each a ∈ Gm(k), the
Frobenius Newton polygon of Hyp(n,m)(χ; ρ)(a) coincides with the irregular Hodge polygon defined by
(4.0.0.2).

A “Newton above Hodge” type result for twisted exponential sums was obtained in [Adolphson
and Sperber 1993]. In our case, we show that the (combinatorial) Hodge polygon in [loc. cit.] for
hypergeometric sums coincides with the irregular Hodge polygon of hypergeometric connections. Then,
we apply a result of Wan [1993] to conclude “Newton equals Hodge”.



2508 Yichen Qin and Daxin Xu

4.1. Frobenius Newton polygon above Hodge polygon. In this subsection, we revise Adolphson and
Sperber’s definition [1993] of (combinatorial) Hodge polygons and their result on “Newton above Hodge”
for certain twisted exponential sums. Finally, we can identify their Hodge polygon with the irregular
Hodge polygon of hypergeometric connections (Proposition 4.1.7).

4.1.1. Let N be a positive integer,

χ = (χ1, . . . , χN ) : (k×)N
→ K ×

a multiplicative character, and g : GN
m → A1 a morphism defined by a Laurent polynomial

g(x1, . . . , xN )=

M∑
j=1

a j xu j ∈ k[x±

1 , . . . , x±

N ],

where {u j }
M
j=1 is a finite subset of ZN and a j ∈ k×. For m ∈ N, we consider the twisted exponential sum

Sm(χ, g)=

∑
x∈GN

m (Fqm )

χ (m)(x)ψ (m)(g(x)), (4.1.1.1)

where χ (m) = χ ◦ NmFqm /kand ψ (m) = ψ ◦ TrFqm /Fp . The associated L-function

L(χ, g; T )= exp
(∑

m≥1

Sm(χ, g)
T m

m

)
(4.1.1.2)

is a rational function in T by the Grothendieck–Lefschetz trace formula (or the Dwork trace formula).
Recall that we denote by 1 = 1(g) the convex closure in RN generated by the origin and lattices

defined by the exponents {u j } of g in Definition 2.2.1. Let C(g) be the cone over 1, i.e., the union of all
rays in RN emanating from the origin and passing through 1.

We set M(g) = C(g) ∩ ZN . Adolphson and Sperber [1989, (1.7)] considered a subring R(g) of
k[x±

1 , . . . , x±

N ] defined by monomials with exponents in M(g):

R(g)= k[x M(g)
].

We take di ∈ [0, q − 2] such that4 χi = ω−di . We set

d̄i =

{
q − 1 − di , di ̸= 0,
di , di = 0,

and

d = (d1, . . . , dN ), d̄ = {d̄1, . . . , d̄N }, Nd = (q − 1)−1d + ZN .

We define an R(g)-module Rd(g) [Adolphson and Sperber 1989, (1.12)] by

Rd(g)=

{∑
finite

bu xu
∣∣∣ u ∈ Nd ∩ C(g), bu ∈ k

}
.

4Adolphson–Sperber’s convention χi = ω−di is different from our convention in the beginning of Section 4 by a minus sign.
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There exists a (minimal) positive integer M such that, for all u ∈
( 1

q−1 Z
)N

∩C(g), the weight functionw(u),
defined as the minimal positive real number w such that u ∈w1(g), is a rational number with denominator
dividing M . Then w defines an increasing filtration on R(g) by

R(g)i/M =

{ ∑
u∈M(g)

bu xu
: w(u)≤

i
M

for all u with bu ̸= 0
}
.

We denote the associated graded module by

R(g)=

⊕
i≥0

R(g)i/M ,

R(g)i/M = R(g)i/M/R(g)(i−1)/M .

Similarly, we equip Rd(g) with a filtration compatible with that of R(g) and let Rd(g) be the associated
graded R(g)-module.

4.1.2. In the following, we assume that g is nondegenerate and that dim1(g)= N .
For 1 ≤ i ≤ N , let ḡi be the image of xi ∂/∂xi g in R(g)1, and set

I d = ḡ1 R(g)d + · · · + ḡN R(g)d,

a graded submodule of R(g)d . For each i ≥ 0, we define a finite set

Si/M
d ⊂ Nd ∩ C(g)

of exponents as follows [Adolphson and Sperber 1991, §3]: Take a k-linearly independent set of monomials
{xµ | µ ∈ Si/M

d } of weight i/M which spans a k-subspace V d,i/M complement to R(g)d,i/M ∩ I d ; i.e.,

R(g)d,i/M = V d,i/M ⊕ (R(g)d,i/M ∩ I d,i/M).

Set
Sd =

⋃
i≥0

Si/M
d ,

which we also denote by Sd(g), and let V (g) be the volume of 1(g). The quotient R(g)d/I d admits a
basis of monomials in Sd and has dimension [loc. cit., Lemma 2.8]

dim R(g)d/I d = N !V (g).

In this case, the L-function L(χ, g; T )(−1)N−1
(4.1.1.2) is a polynomial of degree N !V (g) [loc. cit.,

Corollary 2.12]. The q-order of roots of this polynomial are called Frobenius slopes of the twisted
exponential sums Sm(χ, g).

Adolphson and Sperber studied the Frobenius Newton polygon defined by Frobenius slopes of this
L-function (Definition 4.0.1) and compared it with a Hodge polygon defined as below.

For an integer 0 ≤ d ≤ q −2, let d ′ be the nonnegative residue of pd modulo q −1. Recall that q = ps

for an integer s ≥ 1. For d = (d1, . . . , dN ), we set d ′
= (d ′

1, . . . , d ′

N ) and d(i) the i-th composition of
(−)′ on d for i ≥ 1. Note that d(s) = d.
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We arrange elements of Sd = {ud(1), . . . , ud(N !V (g))} by w(ud(1))≤ · · · ≤w(ud(N !V (g))), and we
repeat this ordering for Sd ′, . . . , Sd(s−1) . For an integer ℓ≥ 0, we set [loc. cit., Theorem 3.17]

W (ℓ)= card
{

j
∣∣∣ s−1∑

i=0

w(ud(i)( j))=
ℓ

M

}
.

When ℓ > s N M , we have W (ℓ)= 0.

Definition 4.1.3 (Adolphson–Sperber). The Hodge polygon HP(1(g)d) is defined by the convex polygon
in R2 with vertices (0, 0) and( m∑

ℓ=0

W (ℓ),
1

s M

m∑
ℓ=0

ℓW (ℓ)

)
, m = 0, 1, . . . , s N M.

Theorem 4.1.4 [Adolphson and Sperber 1993, Corollary 3.18]. If g is nondegenerate and dim(1(g))= N ,
the Frobenius Newton polygon of L(χ, g; T )(−1)N−1

lies above the Hodge polygon HP(1(g)d), and their
endpoints coincide.

Definition 4.1.5. We say that (g, χ) is ordinary if these two polygons coincide. When the character χ is
trivial, we simply say g is ordinary.

4.1.6. In the following, we apply the above theory to the case of hypergeometric sums at the beginning
of Section 4. We may assume that χ1 is trivial (i.e., α1 = 0). Let a be an element of k×. We take
N = n + m − 1, d = (ā2, . . . , ān, b1, . . . , bm), and g to be the nondegenerate function (2.2.1.1)

fa = a
y1 · · · ym

x2 · · · xn
+ x2 + · · · + xn − y1 − · · · − ym .

Then, we recover the hypergeometric sum (4.0.0.1) from (4.1.1.1).

Proposition 4.1.7. If (χ, ρ) is nonresonant and the orders of the characters χi and ρ j divide p − 1,
then the Hodge polygon HP(1( fa)d) coincides with the irregular Hodge polygon defined by (4.0.0.2)
associated to (

0, α2 =
a2

p−1
, . . . , αn =

an
p−1

)
,

(
β1 =

b1
p−1

, . . . , βm =
bm

p−1

)
.

Proof. Since αi and β j have denominators dividing p − 1, the numbers d(i) are equal to d for every i ≥ 1.
In particular, the multiset of slopes of HP(1( fa)d) coincides with w(Sd)= {ω(u) | u ∈ Sd}.

The cohomology classes ωr,ℓ = gr,ℓ · η in Proposition 3.2.1 form a basis of the de Rham cohomology
group Hn+m−1

dR (Ua, fa)
(G,χ̃×ρ). By the calculation of cohomology groups [loc. cit., §3, Theorem 3.14],

the functions {gr,ℓ} also form a basis of V d̄ , with d̄ = (a2, . . . , an, b̄1, . . . , b̄m). Hence

w(Sd̄)= {w(gr,ℓ) | 0 ≤ r ≤ m, 1 ≤ ℓ≤ sr+1 − sr }.

By (3.1.1.1), Lemma 3.3.4 and the duality (3.3.6.4), the set of weights w(Sd) coincides with the set of
irregular Hodge numbers (4.0.0.2). Then, the proposition follows. □

4.2. Frobenius slopes of hypergeometric sums: proof of Theorem 4.0.2. We proceed by induction on n.
Suppose the theorem holds when the rank of the hypergeometric F-isocrystal is less than n.
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4.2.1. Resonant case. We first show that we can deduce the assertion in the resonant case from the
induction hypothesis. We assume there exists i and j such that αi = β j .

We slightly modify our convention on α and β by replacing those αi , β j = 0 by 1 and then arranging
them as 0 < α1 ≤ α2 ≤ · · · ≤ αn ≤ 1 and 0 < β1 ≤ · · · ≤ βm ≤ 1. Note that this modification does not
change the multiset {θ(1), . . . , θ(n)} of irregular Hodge numbers. After twisting by a multiplicative
character, we may assume that χn = ρm = 1 are the trivial characters (i.e., αn = βm = 1). Then we have
the following identities:

Hyp(n,m)(χ;ρ)(a)=
∑

xi ,y j ∈k×

ψ

( n−1∑
i=1

xi +a
y1 · · · ym

x1 · · · xn−1
−

m∑
j=1

y j

)
·

n−1∏
i=1

χi (xi )

m−1∏
j=1

ρ−1
j (y j )

=

∑
xi ,y j ∈k×,ym∈k

ψ

( n−1∑
i=1

xi −

m−1∑
j=1

y j + ym

(
a

y1 · · · ym−1

x1 · · · xn−1
−1

))
·

n−1∏
i=1

χi (xi )

m−1∏
j=1

ρ−1
j (y j )

−

∑
xi ,y j ∈k×

ψ

( n−1∑
i=1

xi −

m−1∑
j=1

y j

)
·

n−1∏
i=1

χi (xi )

m−1∏
j=1

ρ−1
j (y j )

= q Hyp(n−1,m−1)(χ
′
;ρ ′)(a)−ψ(−1)m−1

n−1∏
i=1

G(ψ,χi )

m−1∏
j=1

G(ψ,ρ−1
j ), (4.2.1.1)

where χ ′
= (χ1, . . . , χn−1) and ρ ′

= (ρ1, . . . , ρm−1), and

G(ψ, χi )=

∑
x∈k×

ψ(x)χi (x)

denotes the Gauss sum. In particular, the above sum can be written as a sum of n Frobenius eigenvalues
by induction.

Let θ ′ be the function (4.0.0.2) defined by rational numbers α1, . . . , αn−1 and β1, . . . , βm−1. Then, we
have

θ(k)= θ ′(k)+ 1 for all 1 ≤ k ≤ n − 1

and

θ(n)=

n∑
i=1

(1 −αi )+
∑
β j<1

β j = ordq

(n−1∏
i=1

G(ψ, χi )

m−1∏
j=1

G(ψ, ρ−1
j )

)
,

where the second identity follows from Stickelberger’s theorem, saying that

ordq G(ψ, ω−k)=
k

p−1
.

Then, the theorem in the resonant case follows from the induction hypothesis and decomposition (4.2.1.1).

4.2.2. Nonresonant case. By the previous argument, we may assume that the assertion for the hyperge-
ometric sum of type (n,m) defined by a resonant pair (α, β) is already proved. It suffices to treat the
nonresonant case. We may assume χ1 = 1 is trivial.

We set f̃a(x2, . . . , xn, y1, . . . , ym)= fa(x
p−1
2 , . . . , x p−1

n , y p−1
1 , . . . , y p−1

m ). We first prove the ordinar-
iness of exponential sums associated to f̃a (Definition 4.1.5) using a theorem of Wan [1993].
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Let δ1, . . . , δm+n be all the facets of 1 = 1( f̃a) which do not contain the origin. Let f̃ δi
a be the

restriction of f̃a to δi [Wan 2004, §1.1], which is also nondegenerate [Wan 2004, §3.1]. By [Wan 2004,
Theorem 3.1], f̃a is ordinary if and only if each f̃ δi

a is ordinary.
Each Laurent polynomial f̃ δi

a is diagonal; that is, f̃ δi
a has exactly n + m − 1 nonconstant terms of

monomials and 1( f̃ δi
a ) is (n+m−1)-dimensional [Wan 2004, §2]. Indeed, if V1, . . . , Vm+n−1 denote the

vertex of δi written as column vectors, the set S(δi ) of solutions of

(V1, . . . , Vm+n−1)

 r1
...

rm+n−1

 ≡ 0 (mod 1), ri rational, 0 ≤ ri < 1,

forms an abelian group, which is isomorphic to (Z/(p − 1)Z)n+m−1. We deduce that, for each δi , f̃ δi
a is

ordinary by [Wan 2004, Corollary 2.6].
We have a decomposition of exponential sums as follows:∑

xi ,y j ∈k×

ψ( f̃a(xi , y j ))=

∑
χi ,ρ j

Hyp(n,m)(χ, ρ)(a), (4.2.2.1)

where the sum is taken over all multiplicative characters χi and ρ j with 2 ≤ i ≤ n and 1 ≤ j ≤ m of
orders dividing p − 1. We have a similar decomposition for Sd (Section 4.1.2) given by

S1( f̃a)=

⊔
d

Sd( fa),

where 1 = (0, 0, . . . , 0) and d is taken over all (n+m−1)-tuples of rational numbers with denominators
p − 1 in [0, 1).

On the left-hand side of (4.2.2.1), we have shown “Newton equals Hodge” (i.e., the ordinariness of f̃a).
Together with the “Newton above Hodge” for each hypergeometric sum (Theorem 4.1.4), we deduce that
“Newton equals Hodge” for each component of the right-hand side. Then, the assertion in the nonresonant
case follows from Proposition 4.1.7. □

In particular, our proof shows Proposition 4.1.7 in the resonant case.

Corollary 4.2.3. Proposition 4.1.7 holds without the nonresonant assumption.

Proof. In the resonant case, the Frobenius Newton polygon equals the irregular Hodge polygon by
Section 4.2.1. By the proof in Section 4.2.2, the Frobenius Newton polygon equals the (combinatorial)
Hodge polygon defined by Adolphson–Sperber. Then, the assertion follows. □

Acknowledgements

The authors thank Alberto Castaño Domínguez, Javier Fresán, Lei Fu, Shun Ohkubo, Claude Sabbah,
Christian Sevenheck, Daqing Wan, and Jeng-Daw Yu for their valuable discussions. We are also grateful
to an anonymous referee for careful reading and valuable comments.



Irregular Hodge filtration of hypergeometric differential equations 2513

Qin acknowledges the financial support from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement no. 101020009) for part of this
work. Xu acknowledges financial support from the National Natural Science Foundation of China (grant
nos. 12222118 and 12288201) and the CAS Project for Young Scientists in Basic Research, grant no.
YSBR-033. Part of the work was done when Qin was staying at Morningside Center of Mathematics, and
he would like to thank Morningside Center of Mathematics for its hospitality.

References

[Adolphson and Sperber 1987] A. Adolphson and S. Sperber, “Twisted Kloosterman sums and p-adic Bessel functions, II:
Newton polygons and analytic continuation”, Amer. J. Math. 109:4 (1987), 723–764. MR

[Adolphson and Sperber 1989] A. Adolphson and S. Sperber, “Exponential sums and Newton polyhedra: cohomology and
estimates”, Ann. of Math. (2) 130:2 (1989), 367–406. MR

[Adolphson and Sperber 1991] A. Adolphson and S. Sperber, “On twisted exponential sums”, Math. Ann. 290:4 (1991), 713–726.
MR

[Adolphson and Sperber 1993] A. Adolphson and S. Sperber, “Twisted exponential sums and Newton polyhedra”, J. Reine
Angew. Math. 443 (1993), 151–177. MR

[Adolphson and Sperber 1997] A. Adolphson and S. Sperber, “On twisted de Rham cohomology”, Nagoya Math. J. 146 (1997),
55–81. MR

[Beilinson and Drinfeld 1997] A. Beilinson and V. Drinfeld, “Quantization of Hitchin’s integrable system and Hecke eigen-
sheaves”, preprint, 1997, available at https://math.uchicago.edu/~drinfeld/langlands/QuantizationHitchin.pdf.

[Berthelot 1984] P. Berthelot, “Cohomologie rigide et théorie de Dwork: le cas des sommes exponentielles”, pp. 17–49 in p-adic
cohomology, Astérisque 119-120, Soc. Math. France, Paris, 1984. MR

[Berthelot and Ogus 1978] P. Berthelot and A. Ogus, Notes on crystalline cohomology, Princeton Univ. Press, 1978. MR

[Beukers and Heckman 1989] F. Beukers and G. Heckman, “Monodromy for the hypergeometric function n Fn−1”, Invent. Math.
95:2 (1989), 325–354. MR

[Castaño Domínguez and Sevenheck 2021] A. Castaño Domínguez and C. Sevenheck, “Irregular Hodge filtration of some
confluent hypergeometric systems”, J. Inst. Math. Jussieu 20:2 (2021), 627–668. MR

[Castaño Domínguez et al. 2019] A. Castaño Domínguez, T. Reichelt, and C. Sevenheck, “Examples of hypergeometric twistor
D-modules”, Algebra Number Theory 13:6 (2019), 1415–1442. MR

[Deligne 2007a] P. Deligne, “Théorie de Hodge irrégulière (version originelle)”, pp. 109–114 in Singularités irrégulières:
correspondance et documents, Doc. Math. (Paris) 5, Soc. Math. France, Paris, 2007.

[Deligne 2007b] P. Deligne, “Théorie de Hodge irrégulière (août 2006)”, pp. 115–128 in Singularités irrégulières: correspon-
dance et documents, Doc. Math. (Paris) 5, Soc. Math. France, Paris, 2007.

[Drinfeld and Kedlaya 2017] V. Drinfeld and K. S. Kedlaya, “Slopes of indecomposable F-isocrystals”, Pure Appl. Math. Q.
13:1 (2017), 131–192. MR

[Dwork 1974] B. Dwork, “Bessel functions as p-adic functions of the argument”, Duke Math. J. 41 (1974), 711–738. MR

[Esnault et al. 2017] H. Esnault, C. Sabbah, and J.-D. Yu, “E1-degeneration of the irregular Hodge filtration”, J. Reine Angew.
Math. 729 (2017), 171–227. MR

[Fedorov 2018] R. Fedorov, “Variations of Hodge structures for hypergeometric differential operators and parabolic Higgs
bundles”, Int. Math. Res. Not. 2018:18 (2018), 5583–5608. MR

[Fresán et al. 2022] J. Fresán, C. Sabbah, and J.-D. Yu, “Hodge theory of Kloosterman connections”, Duke Math. J. 171:8
(2022), 1649–1747. MR

[Fulton 1993] W. Fulton, Introduction to toric varieties, Ann. of Math. Stud. 131, Princeton Univ. Press, 1993. MR

https://doi.org/10.2307/2374611
https://doi.org/10.2307/2374611
http://msp.org/idx/mr/900037
https://doi.org/10.2307/1971424
https://doi.org/10.2307/1971424
http://msp.org/idx/mr/1014928
https://doi.org/10.1007/BF01459269
http://msp.org/idx/mr/1119948
https://doi.org/10.1515/crll.1993.443.151
http://msp.org/idx/mr/1241131
https://doi.org/10.1017/S0027763000006218
http://msp.org/idx/mr/1460954
https://math.uchicago.edu/~drinfeld/langlands/QuantizationHitchin.pdf
https://math.uchicago.edu/~drinfeld/langlands/QuantizationHitchin.pdf
http://www.numdam.org/item/AST_1984__119-120__17_0
http://msp.org/idx/mr/773087
https://www.jstor.org/stable/j.ctt130hk6f
http://msp.org/idx/mr/491705
https://doi.org/10.1007/BF01393900
http://msp.org/idx/mr/974906
https://doi.org/10.1017/S1474748019000288
https://doi.org/10.1017/S1474748019000288
http://msp.org/idx/mr/4223435
https://doi.org/10.2140/ant.2019.13.1415
https://doi.org/10.2140/ant.2019.13.1415
http://msp.org/idx/mr/3994570
https://doi.org/10.4310/PAMQ.2017.v13.n1.a5
http://msp.org/idx/mr/3858017
http://projecteuclid.org/euclid.dmj/1077310734
http://msp.org/idx/mr/387281
https://doi.org/10.1515/crelle-2014-0118
http://msp.org/idx/mr/3680374
https://doi.org/10.1093/imrn/rnx044
https://doi.org/10.1093/imrn/rnx044
http://msp.org/idx/mr/3862114
https://doi.org/10.1215/00127094-2021-0036
http://msp.org/idx/mr/4432013
https://doi.org/10.1515/9781400882526
http://msp.org/idx/mr/1234037


2514 Yichen Qin and Daxin Xu

[Hotta et al. 2008] R. Hotta, K. Takeuchi, and T. Tanisaki, D-modules, perverse sheaves, and representation theory, Progr. Math.
236, Birkhäuser, Boston, MA, 2008. MR

[Kamgarpour and Yi 2021] M. Kamgarpour and L. Yi, “Geometric Langlands for hypergeometric sheaves”, Trans. Amer. Math.
Soc. 374:12 (2021), 8435–8481. MR

[Kamgarpour et al. 2023] M. Kamgarpour, D. Xu, and L. Yi, “Hypergeometric sheaves for classical groups via geometric
Langlands”, Trans. Amer. Math. Soc. 376:5 (2023), 3585–3640. MR

[Katz 1990] N. M. Katz, Exponential sums and differential equations, Ann. of Math. Stud. 124, Princeton Univ. Press, 1990.
MR

[Kontsevich and Soibelman 2011] M. Kontsevich and Y. Soibelman, “Cohomological Hall algebra, exponential Hodge structures
and motivic Donaldson–Thomas invariants”, Commun. Number Theory Phys. 5:2 (2011), 231–352. MR

[Martin 2021] N. Martin, “Middle multiplicative convolution and hypergeometric equations”, J. Singul. 23 (2021), 194–204.
MR

[Mazur 1972] B. Mazur, “Frobenius and the Hodge filtration”, Bull. Amer. Math. Soc. 78 (1972), 653–667. MR

[Miyatani 2020] K. Miyatani, “p-adic generalized hypergeometric equations from the viewpoint of arithmetic D-modules”,
Amer. J. Math. 142:4 (2020), 1017–1050. MR

[Mochizuki 2025] T. Mochizuki, “Rescalability of integrable mixed twistor D-modules”, pp. 13–207 in Perspectives on four
decades of algebraic geometry, II, edited by A. Albano et al., Progr. Math. 352, Springer, 2025.

[Qin 2024] Y. Qin, “Hodge numbers of motives attached to Kloosterman and Airy moments”, J. Reine Angew. Math. 808 (2024),
143–192. MR

[Sabbah 2010] C. Sabbah, “Fourier–Laplace transform of a variation of polarized complex Hodge structure, II”, pp. 289–347 in
New developments in algebraic geometry, integrable systems and mirror symmetry (Kyoto, 2008), edited by M.-H. Saito et al.,
Adv. Stud. Pure Math. 59, Math. Soc. Japan, Tokyo, 2010. MR

[Sabbah 2018] C. Sabbah, Irregular Hodge theory, Mém. Soc. Math. Fr. (N.S.) 156, Soc. Math. France, Paris, 2018. MR

[Sabbah and Yu 2015] C. Sabbah and J.-D. Yu, “On the irregular Hodge filtration of exponentially twisted mixed Hodge
modules”, Forum Math. Sigma 3 (2015), e9. MR

[Sabbah and Yu 2019] C. Sabbah and J.-D. Yu, “Irregular Hodge numbers of confluent hypergeometric differential equations”,
Épijournal Géom. Algébrique 3 (2019), art. id. 7. MR

[Sabbah and Yu 2023] C. Sabbah and J.-D. Yu, “Hodge properties of Airy moments”, Tunis. J. Math. 5:2 (2023), 215–271. MR

[Saito 1990] M. Saito, “Mixed Hodge modules”, Publ. Res. Inst. Math. Sci. 26:2 (1990), 221–333. MR

[Simpson 1990] C. T. Simpson, “Harmonic bundles on noncompact curves”, J. Amer. Math. Soc. 3:3 (1990), 713–770. MR

[Sperber 1977] S. Sperber, “p-adic hypergeometric functions and their cohomology”, Duke Math. J. 44:3 (1977), 535–589. MR

[Wan 1993] D. Q. Wan, “Newton polygons of zeta functions and L functions”, Ann. of Math. (2) 137:2 (1993), 249–293. MR

[Wan 2004] D. Wan, “Variation of p-adic Newton polygons for L-functions of exponential sums”, Asian J. Math. 8:3 (2004),
427–471. MR

[Yu 2014] J.-D. Yu, “Irregular Hodge filtration on twisted de Rham cohomology”, Manuscripta Math. 144:1-2 (2014), 99–133.
MR

[Zhu 2017] X. Zhu, “Frenkel–Gross’ irregular connection and Heinloth–Ngô–Yun’s are the same”, Selecta Math. (N.S.) 23:1
(2017), 245–274. MR

Communicated by Hélène Esnault
Received 2024-05-10 Revised 2024-10-14 Accepted 2024-12-05

yichenqin@fudan.edu.cn School of Mathematical Sciences, Fudan University, Shanghai, China

daxin.xu@amss.ac.cn Morningside Center of Mathematics and State Key Laboratory of
Mathematical Sciences, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing, China

mathematical sciences publishers msp

https://doi.org/10.1007/978-0-8176-4523-6
http://msp.org/idx/mr/2357361
https://doi.org/10.1090/tran/8509
http://msp.org/idx/mr/4337918
https://doi.org/10.1090/tran/8848
https://doi.org/10.1090/tran/8848
http://msp.org/idx/mr/4577342
https://doi.org/10.1515/9781400882434
http://msp.org/idx/mr/1081536
https://doi.org/10.4310/CNTP.2011.v5.n2.a1
https://doi.org/10.4310/CNTP.2011.v5.n2.a1
http://msp.org/idx/mr/2851153
https://doi.org/10.5427/jsing.2021.23k
http://msp.org/idx/mr/4317675
https://doi.org/10.1090/S0002-9904-1972-12976-8
http://msp.org/idx/mr/330169
https://doi.org/10.1353/ajm.2020.0030
http://msp.org/idx/mr/4124114
https://doi.org/10.1007/978-3-031-66234-8_2
https://doi.org/10.1515/crelle-2023-0097
http://msp.org/idx/mr/4708119
https://doi.org/10.2969/aspm/05910289
http://msp.org/idx/mr/2683213
https://doi.org/10.24033/msmf.464
http://msp.org/idx/mr/3858663
https://doi.org/10.1017/fms.2015.8
https://doi.org/10.1017/fms.2015.8
http://msp.org/idx/mr/3376737
https://doi.org/10.46298/epiga.2019.volume3.5032
http://msp.org/idx/mr/3978394
https://doi.org/10.2140/tunis.2023.5.215
http://msp.org/idx/mr/4596735
https://doi.org/10.2977/prims/1195171082
http://msp.org/idx/mr/1047415
https://doi.org/10.2307/1990935
http://msp.org/idx/mr/1040197
http://projecteuclid.org/euclid.dmj/1077312386
http://msp.org/idx/mr/476750
https://doi.org/10.2307/2946539
http://msp.org/idx/mr/1207208
https://doi.org/10.4310/ajm.2004.v8.n3.a4
http://msp.org/idx/mr/2129244
https://doi.org/10.1007/s00229-013-0642-x
http://msp.org/idx/mr/3193771
https://doi.org/10.1007/s00029-016-0238-x
http://msp.org/idx/mr/3595893
mailto:yichenqin@fudan.edu.cn
mailto:daxin.xu@amss.ac.cn
http://msp.org


Guidelines for Authors

Authors may submit manuscripts in PDF format on-line at the Submission page at the ANT website.

Originality. Submission of a manuscript acknowledges that the manuscript is original and and is not,
in whole or in part, published or under consideration for publication elsewhere. It is understood also
that the manuscript will not be submitted elsewhere while under consideration for publication in this
journal.

Language. Articles in ANT are usually in English, but articles written in other languages are welcome.

Length There is no a priori limit on the length of an ANT article, but ANT considers long articles
only if the significance-to-length ratio is appropriate. Very long manuscripts might be more suitable
elsewhere as a memoir instead of a journal article.

Required items. A brief abstract of about 150 words or less must be included. It should be self-
contained and not make any reference to the bibliography. If the article is not in English, two versions
of the abstract must be included, one in the language of the article and one in English. Also required
are keywords and subject classifications for the article, and, for each author, postal address, affiliation
(if appropriate), and email address.

Format. Authors are encouraged to use LATEX but submissions in other varieties of TEX, and excep-
tionally in other formats, are acceptable. Initial uploads should be in PDF format; after the refereeing
process we will ask you to submit all source material.

References. Bibliographical references should be complete, including article titles and page ranges.
All references in the bibliography should be cited in the text. The use of BibTEX is preferred but not
required. Tags will be converted to the house format, however, for submission you may use the format
of your choice. Links will be provided to all literature with known web locations and authors are
encouraged to provide their own links in addition to those supplied in the editorial process.

Figures. Figures must be of publication quality. After acceptance, you will need to submit the original
source files in vector graphics format for all diagrams in your manuscript: vector EPS or vector PDF

files are the most useful.

Most drawing and graphing packages (Mathematica, Adobe Illustrator, Corel Draw, MATLAB, etc.)
allow the user to save files in one of these formats. Make sure that what you are saving is vector
graphics and not a bitmap. If you need help, please write to graphics@msp.org with details about how
your graphics were generated.

White space. Forced line breaks or page breaks should not be inserted in the document. There is no
point in your trying to optimize line and page breaks in the original manuscript. The manuscript will
be reformatted to use the journal’s preferred fonts and layout.

Proofs. Page proofs will be made available to authors (or to the designated corresponding author) at a
Web site in PDF format. Failure to acknowledge the receipt of proofs or to return corrections within the
requested deadline may cause publication to be postponed.

http://dx.doi.org/10.2140/ant
mailto:graphics@msp.org


Algebra & Number Theory
Volume 19 No. 12 2025

2307Perfectoid towers and their tilts: with an application to the étale cohomology groups of local log-regular rings
SHINNOSUKE ISHIRO, KEI NAKAZATO and KAZUMA SHIMOMOTO

2359Reduction modulo p of Noether’s problem
EMILIANO AMBROSI and DOMENICO VALLONI

2369On the Grothendieck ring of a quasireductive Lie superalgebra
MARIA GORELIK, VERA SERGANOVA and ALEXANDER SHERMAN

2409Combing a hedgehog over a field
ALEXEY ANANYEVSKIY and MARC LEVINE

2433Self-correlations of Hurwitz class numbers
ALEXANDER WALKER

2471On two definitions of wave-front sets for p-adic groups
CHENG-CHIANG TSAI

2481Irregular Hodge filtration of hypergeometric differential equations
YICHEN QIN and DAXIN XU

A
lgebra

&
N

um
ber

Theory
2025

vol19
no

12


	 vol. 19, no. 12, 2025
	Masthead and Copyright
	01
	1. Introduction
	2. Log-regularity
	2A. Preliminaries on monoids
	2A1. Basic terms
	2A2. c-times maps on integral monoids

	2B. Local log-regular rings
	2B1. Definition of local log-regular rings
	2B2. Log-regularity and strong F-regularity

	2C. Log-regularity and splinters

	3. Perfectoid towers and small tilts
	3A. Perfect towers
	3B. Purely inseparable towers and inverse perfection
	3C. Axioms for perfectoid towers
	3C1. Remarks on torsion
	3C2. Perfectoid towers and pillars

	3D. Tilts of perfectoid towers
	3D1. Invariance of some properties
	3D2. Proof of 0=maintheorem.31=Main Theorem 1

	3E. Relation with perfectoid rings
	3F. Examples: complete local log-regular rings
	3F1. Calculation of the tilts
	3F2. Towers of split maps and sousperfectoid rings


	4. Applications to étale cohomology of Noetherian rings
	4A. Tilting étale cohomology groups
	4B. Tilting the divisor class groups of local log-regular rings

	Appendix: Construction of differential modules and maximality
	Acknowledgements
	References

	02
	1. Introduction
	1.1. Strategy
	1.2. Applications to the Noether problem

	2. Proof of Theorem -
	2.1. Notation
	2.2. Preliminary reductions
	2.3. Factorization of the cycle class map
	2.4. Studying the factorization

	3. A stably irrational variety reducing to a rational variety
	3.1. A general lemma
	3.2. An example

	Acknowledgements
	References

	03
	1. Introduction
	1.1. Maximal toral subalgebras and restriction
	1.2. K-(g) and K+(g)
	1.3. Results for g=qn
	1.3.1. Supercharacter isomorphism
	1.3.2. Realization of K-(F(qn)int)
	1.3.3. Relation to the Duflo–Serganova functor

	1.4. List of notation

	2. Preliminaries: maximal quasitoral subalgebras and Clifford algebras
	2.1. Maximal (quasi)toral subalgebras
	2.1.1. Definition
	2.1.2. Triangular decomposition
	2.1.3. Examples

	2.2. Clifford algebras
	2.2.1. 
	2.2.2. 
	2.2.3. 

	2.3. Realization of the irreducible representation of C(2n)
	2.3.1. 

	2.4. The case C(2n+1)
	2.5. The operator T

	3. Representation theory of quasitoral Lie superalgebras
	3.1. h-modules
	3.1.1. 
	3.1.2. Examples

	3.2. Irreducible h-modules
	3.3. Blocks of M(h) and F(h)
	3.3.1. Remark

	3.4. The operator Th
	3.4.1. Action of Th on simples
	3.4.2. Action of Th on all of M(h)
	3.4.3. Remark
	3.4.4. Dualities in F(h)

	3.5. Restriction to quasitoral subalgebra
	3.6. Tensor product of irreducible h-modules
	3.6.1. 
	3.6.2. 


	4. The irreducible modules L() of g
	4.1. Highest weight modules
	4.2. Duality
	4.2.1. Remark


	5. Grothendieck rings and (super)character morphisms
	5.1.  Grothendieck groups
	5.1.1. 
	5.1.2. 
	5.1.3. The reduced Grothendieck group
	5.1.4.  Grothendieck rings

	5.2. The map chh,
	5.2.1. 
	5.2.2. Note:

	5.3. Example
	5.3.1. Remark

	5.4. The ring K(h)
	5.4.1. 

	5.5. Spoiled superalgebras
	5.5.1. The algebra K-(h)
	5.5.2. 

	5.6. Equivariant setting

	6. h-supercharacters of some highest weight g-modules
	6.1. Notation
	6.2. On schh M()
	6.3. schhL() when corankF1

	7. On K-(g) in the case when g is quasireductive
	7.1. On schh(F(g))
	7.1.1. Remark


	8. The DS-functor and the reduced Grothendieck group
	8.1. DS-functors: construction and basic properties
	8.2. The map dsx
	8.2.1. 
	8.2.2. Remark
	8.2.3. Example

	8.3. dsx and restriction
	8.3.1. Example: F(g) for g quasireductive

	8.4. A special case
	8.4.1. Example


	9. The reduced Grothendieck ring for F(qn)
	9.1. Structure of qn
	9.1.1. 
	9.1.2. 

	9.2. The monoid  and cores
	9.2.1. The relation 
	9.2.2. Dominant weights
	9.2.3. Grading on C()
	9.2.4. Remark
	9.2.5. 
	9.2.6. Example

	9.3. Embedding into exterior algebra
	9.3.1. 
	9.3.2. Remark
	9.3.3. 
	9.3.4. 
	9.3.5. Remark

	9.4. Supercharacters of some highest weight modules
	9.4.1. Remark
	9.4.2. 

	9.5. The map dss
	9.5.1. Remark
	9.5.2. 

	9.6. Example: q2
	9.7. Realization of K-(qn)
	9.7.1. 
	9.7.2. 


	Acknowledgements
	References

	04
	1. Introduction
	2. Recollections on Chow–Witt groups and a computational criterion
	3. Scharlau's transfer for closed points on a quadric
	4. Nonvanishing vector fields on affine quadrics via groups of values
	Acknowledgements
	References

	05
	1. Introduction
	Paper methodology and outline
	2. Harmonic weak Maass forms and mock modular forms
	2A. The shadow operator xi
	2B. Harmonic Maass forms of polynomial growth

	3. Shifted convolutions via inner products
	3A. Application to H(z)

	4. Automorphic regularization
	4A. Automorphic regularization of H(z)

	5. Inner products involving regularization terms
	6. Spectral expansion and rightmost poles
	6A. Classifying the rightmost poles of Dh(s)

	7. Bounding Dh(s) in vertical strips
	8. Noncuspidal spectral inner products
	8A. Jutila's extension of the Rankin–Selberg method
	8B. Representations and estimates for phi-plus, phi-cross, and phi-minus
	8C. Sum truncation
	8D. Estimation of the truncated sums

	9. Bounding Dh(s) in vertical strips, part II
	9A. Growth of the discrete spectrum 
	9B. Growth of the continuous spectrum 
	9C. Growth of Dh

	10. Applying a truncated Perron formula
	Acknowledgments
	References

	06
	1. Introduction
	2. Nilpotent orbits
	3. Shalika germs and the proof of Theorem Theorem 1.4
	4. Langlands parameters
	Acknowledgments
	References

	07
	1. Introduction
	1.1. Application to Frobenius slopes of hypergeometric sums
	1.2. Strategy of proof
	1.3. Organization of this article

	2. Hypergeometric connections
	2.1. Review of hypergeometric connections following [Katz 1990]
	2.2. The Newton polytope of a Laurent polynomial
	2.3. Geometric interpretations
	2.4. Explicit cyclic vectors for hypergeometric connections

	3. Irregular Hodge filtration of hypergeometric connections
	3.1. Exponential mixed Hodge structures
	3.1.1. Objects of EMHS attached to regular functions
	3.1.2. Irregular Hodge filtration and Newton monomial filtration
	3.1.3. The EMHS associated with hypergeometric connections

	3.2. A basis in relative twisted de Rham cohomology
	3.3. Calculation of the irregular Hodge filtration
	3.3.1. Proof of Theorem 3.3.3
	3.3.2. Proof of Theorem 3.3.1


	4. Frobenius structures on hypergeometric connections and p-adic estimates
	4.1. Frobenius Newton polygon above Hodge polygon
	4.2. Frobenius slopes of hypergeometric sums: proof of Theorem 4.0.2

	Acknowledgements
	References

	Guidelines for Authors
	Table of Contents

