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The Lyndon–Demushkin method and crystalline lifts
of G2-valued Galois representations

Zhongyipan Lin

We develop obstruction theory for lifting characteristic-p local Galois representations valued in reductive
groups of type Bl , Cl , Dl or G2. An application of the Emerton–Gee stack then reduces the existence of
crystalline lifts to a purely combinatorial problem when p is not too small.

As a toy example, we show for all local fields K/Qp, with p > 3, all representations ρ̄ :G K →G2(F̄p)

admit a crystalline lift ρ : G K → G2(Z̄p), where G2 is the exceptional Chevalley group of type G2.

1. Introduction

Let K/Qp be a p-adic field. Let G be a connected reductive group over Zp. Let ρ̄ : G K → G(Fp) be a
Galois representation.

We will study whether there exist crystalline lifts of ρ̄ to G(Zp). This question has been raised in
various contexts, such as irreducible geometric Galois representations [Fakhruddin et al. 2018], the Serre
weight conjecture [Gee et al. 2018] and ramification theory [Caruso and Liu 2011].

The pursuit of constructing characteristic-0 lifts of Galois representations (at least in higher dimensions)
is, however, resistant to elementary techniques. Böckle [2003] was able to lift mod ϖ representations to a
mod ϖ 2 representation for G=GLN . Muller [2013] constructed crystalline lifts of mod ϖ representations
valued in G = GL3, and Emerton and Gee [2023] worked the GLN -case for all N. Our earlier work [Lin
2022] answers this question for semisimple representations valued in general reductive groups G.

The method of [Emerton and Gee 2023] is purely local, and is based on an analysis of Galois
cohomology. The image group ρ̄(G K ) is either an irreducible subgroup of G(Fp) or factors through a
proper maximal parabolic P of G. In the former case, our previous work [Lin 2022] shows ρ̄ always admits
a crystalline lift. In this paper, we focus on the latter case. Let P = L⋊UP be the Levi decomposition. Let
r̄ : G K

ρ̄
−→ P(Fp)→ L(Fp) be the Levi factor of ρ̄. Then ρ̄ defines a 1-cocycle [c̄] ∈ H 1(G K , UP(Fp)).

What we will actually do is to construct a lift r :G K→ L(Zp) of r̄ and a lift [c] ∈ H 1(G K , UP(Zp)) of [c̄].
In the GLN -case, all maximal proper parabolics have abelian unipotent radical, so it suffices to consider

abelian cohomology. When G is not GLN , parabolic subgroups with abelian unipotent radical are rare.
For example, when G is the exceptional group G2, all parabolics have nonabelian unipotent radical.

MSC2020: 11F80.
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Fortunately, for groups of type A, B, C, D or G2, the relevant nonabelian Galois cohomology can be
replaced by abelian Galois cohomology equipped with a cup product structure and the strategy considered
in [Emerton and Gee 2023] can be adapted to work. In this paper, we focus on the G2-case, and prove
the following theorem:

Theorem A (Theorem 7.1.3). Assume p >3. Every mod ϖ Galois representation valued in the exceptional
group G2,

ρ̄ : G K → G2(Fp),

admits a crystalline lift ρ◦ : G K → G2(Zp).
Moreover, if ρ̄ factors through a maximal parabolic P= L⋉U and the Levi factor r̄ρ̄ :G K→ L(Fp) of ρ̄

admits a Hodge–Tate regular and crystalline lift r1 : G K → L(Zp) such that the adjoint representation
G K

r1
−→ L(Zp) → GL(Lie(U (Zp))) has Hodge–Tate weights slightly less than 0 (Definition 3.0.4),

then ρ◦ can be chosen such that it factors through the maximal parabolic P and its Levi factor rρ◦ lies on
the same irreducible component of the spectrum of the crystalline lifting ring that r1 does.

1.1. Overview of the method and comparison with [Lin 2023a]. To establish the existence of crystalline
lifts, we proceed in four steps:

Step 1. Construct explicit cochain complexes equipped with a natural cup product structure that compute
abelian Galois cohomology.

Step 2. Show that the cup product considered in Step 1 is nontrivial in certain special cases.

Step 3. Compute the dimension of certain substacks of the reduced Emerton–Gee stack.

Step 4. Invoke the machinery of [Emerton and Gee 2023] to produce crystalline lifts.

After the first draft of this paper was written, we have a more conceptual understanding of some
constructions made in this paper; see the introduction section of [Lin 2023a]. For example, Sections 2
and 4 of this paper are conceptualized under the notion of Heisenberg equations. In [loc. cit.], we also
establish the existence of de Rham lifts for many classical groups and in particular the existence of
crystalline lifts for unramified unitary groups.

However, from the technical perspective, [loc. cit.] parallels this paper, instead of upgrades this paper.
In [loc. cit.], we use Herr complexes as the explicit cochain complex computing Galois cohomology.
Herr complexes are infinite-dimensional cochain complexes and are often not amenable to computation
by hand. We can truncate Herr complexes to a finite-dimensional cochain complex but the truncation
can’t be made explicit in general. The upside of Herr complexes is better functoriality and in the case of
classical groups, we can usually reduce the problems to the GLn-case, which is well-understood.

In this paper, we use Lyndon’s cochain complexes instead. Everything in this paper is totally explicit
and is computable by hand or by a computer algebra system. The downside of this approach is that
the complexity of computation grows exponentially, and quickly becomes out of hand for large-ranked
classical groups.
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We don’t know how to deal with Herr complexes for exceptional groups because of their implicit
nature, and the approach in this paper is still the only one we are aware of. In this paper, we establish the
existence of crystalline lifts for the exceptional group G2, which illustrates the usefulness of Lyndon’s
cochain complexes. Because of its explicit nature, our approach can potentially be extended to deal with
more general exceptional groups, after upgrading the cup product structure to more complicated higher
Massey product structures.

1.2. Obstruction theory for crystalline lifting. In this paper, we consider the case where UP admits a
quotient U such that

• the adjoint group U ad
:=U/Z(U ) is abelian;

• the center Z(U ) is isomorphic to Ga; and

• there is a bijection of obstructions H 2(G K , UP(Fp)) ∼= H 2(G K , U (Fp)).

We call U a Heisenberg quotient of UP . When G is of type Bl , Cl , Dl or G2, it is always possible to
choose a parabolic P whose unipotent radical admits a Heisenberg quotient (see Section 1.1).

Let Spec R be an irreducible component of a crystalline lifting ring Spec Rcrys,λ
r̄ (Section 5.0.2) of r̄ .

Let runiv
: G K → L(R) be the universal family. The Levi factor group acts on U via conjugation

φ : L→ Aut(U ). Write φad
: L→ GL(U ad) and φz

: L→ GL(Z(U )) for the graded pieces of φ.
The theorem we prove is:

Theorem B (Theorem 5.2.1). Let [c̄] ∈ H 1(G K , U (F)) be a characteristic-p cocycle, where U is a
Heisenberg quotient of UP .

Assume

(1) H 2(G K , φad(runiv)) is sufficiently generically regular (Definition 5.1.1) and set-theoretically sup-
ported on the special fiber of Spec R;

(2) p ̸= 2;

(3) there exists a finite Galois extension K ′/K of prime-to-p degree such that φ(r̄)|G K ′
is Lyndon–

Demushkin (Definition 2.0.2); and

(4) there exists a Zp-point of Spec R which is mildly regular (Definition 3.0.1) when restricted to G K ′ .

Then there exists a Zp-point of Spec R which gives rise to a Galois representation r◦ : G K → L(Zp)

such that if we endow U (Zp) with the G K -action G K
r◦
−→ L(Zp)

φ
−→ Aut(U (Zp)), the cocycle [c̄] has a

characteristic-0 lift [c] ∈ H 1(G K , U (Zp)).

Remark. Assumption (3) is automatically satisfied if p is sufficiently large, and (4) is automatically
satisfied if p is sufficiently large and the labeled Hodge–Tate weights φad(λ) are slightly less than 0
(Definition 3.0.4).

Example 1.2.1 (G = GL3). Let ρ̄ : G K → GL3(Fp) be a completely reducible Galois representation.
There are two ways of encoding the data of ρ̄ as a 1-cocycle in Galois cohomology.
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(I) Use the fact ρ̄ factors through a maximal parabolic

P =

∗ ∗ ∗∗ ∗ ∗

0 0 ∗

=
∗ ∗ 0
∗ ∗ 0
0 0 ∗

⋉

1 0 ∗
0 1 ∗
0 0 1

= L ⋉ A,

where A ∼= G⊕2
a is a rank-2 abelian group. Let r̄ : G K

ρ̄
−→ P(Fp)→ L(Fp) be the Levi factor of ρ̄. The

information of ρ̄ is encoded in a 1-cocycle [c̄] ∈ H 1(G K , φ(r̄))=: H 1(G K , A(Fp)). We first construct a
lift r◦ : G K → GL2(Zp) of r̄ . Then we construct a lift [c] ∈ H 1(G K , A(Zp)) of [c̄].

(II) Use the fact ρ̄ factors through a Borel (minimal parabolic)

B =

∗ ∗ ∗0 ∗ ∗
0 0 ∗

=
∗ 0 0

0 ∗ 0
0 0 ∗

⋉

1 ∗ ∗
0 1 ∗
0 0 1

= T ⋉ H,

where the Levi group T is a maximal torus, and the unipotent radical H is the Heisenberg group. Let
r̄ : G K → T (Fp) be the Levi factor of ρ̄. To reconstruct ρ̄ from r̄ , we only need the information of
a 1-cocycle [c̄] ∈ H 1(G K , H(Fp)). We first construct a lift of r̄ , and then construct a lift of c̄. Now
H 1(G K , H(Fp)) is nonabelian Galois cohomology.

We make use of the graded structure of Lie H when we construct a lift of [c̄]. We have a short
exact sequence

1→

1 0 ∗
0 1 0
0 0 1

→ H →

1 ∗
0 1 ∗
0 0 1

→ 1.

We will first construct a lift modulo Z(H), and then extend the lift modulo Z(H) to a cocycle on the
whole unipotent radical H.

Theorem B applies in this situation, so we have a new proof for the group GL3.

1.2.2. We have a short exact sequence of groups 0→ Z(U )→U →U ad
→ 0. Since Z(U ) is a central,

normal subgroup, we have a long exact sequence of pointed sets

H 1(G K , Z(U ))→ H 1(G K , U )→ H 1(G K , U ad)
δ
−→ H 2(G K , Z(U )).

Note that δ is a quadratic form, and there is an associated bilinear form

∪ : H 1(G K , U ad)× H 1(G K , U ad)→ H 2(G K , Z(U ))

defined by x ∪ y = (δ(x + y)− δ(x)− δ(y))/2.
The technical heart of this paper is an analysis of ∪ on the cochain/cocycle level. So we need a

finite cochain complex computing Galois cohomology which interacts nicely with the bilinear form ∪.
Thanks to the theory of Demushkin groups, there is an explicitly defined cochain complex (the so-called
Lyndon–Demushkin complex) which computes H •(G K ′, U ad) and H •(G K ′, Z(U )) after a finite Galois
extension K ′/K. When [K ′ :K ] is prime to p, we can fully understand cup products on the cochain/cocycle
level via Lyndon–Demushkin complexes endowed with G K /G K ′-action.
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We have the following nice obstruction theory:

Theorem C (Corollary 4.3.4). Let p ̸= 2 be a prime integer. Let L be a reductive group over OE and fix
an algebraic group homomorphism L→ Aut(U ). Let r : G K → L(OE) be a Galois representation.

If there exists a finite Galois extension K ′/K of prime-to-p degree such that r |G K ′
is Lyndon–Demushkin

and mildly regular, then there is a short exact sequence of pointed sets

H 1(G K , U (Zp))→ H 1(G K , U (Fp))
δ
−→ H 2(G K , U ad(Zp)),

where δ has a factorization H 1(G K , U (Fp))
p
−→ H 1(G K , U ad(Fp))→ H 2(G K , U ad(Zp)).

1.3. Organization. In Section 2, we review the results of Lyndon and Demushkin and establish some
notation. Sections 3 and 4 form the technical heart of this paper. Sections 5 and 6 are mild generalizations
of results from [Emerton and Gee 2023]. The proofs are almost unchanged and we often just sketch the
ideas of the proof and invite the readers to look at the proofs of [Emerton and Gee 2023].

We prove the main theorem in Section 7.

2. Lyndon–Demushkin theory

Assume p ̸= 2. Let K/Qp be a finite extension containing the p-th root of unity. The maximal pro-p
quotient of the absolute Galois group G K has a very nice description. The following well-known theorem
can be found, for example, in [Serre 2002, Section II.5.6].

Theorem 2.0.1. Let G K (p) be the maximal pro-p quotient of G K . Then G K (p) is the pro-p completion
of the one-relator group

⟨x0, . . . , xn+1 | x
q
0 (x0, x1)(x2, x3) · · · (xn, xn+1)⟩,

where n = [K : Qp], and q = ps is the largest power of p such that K contains the q-th roots of unity.
Here (x, y)= xyx−1 y−1.

Definition 2.0.2. A continuous profinite G K -module A is said to be Lyndon–Demushkin if the image of
G K → Aut(A) is a pro-p group.

2.1. Comparing cohomology of Demushkin groups and Galois cohomology. Let 0disc be the discrete
group with one relator

⟨x0, . . . , xn, xn+1 | x
q
0 (x0, x1)(x2, x3) · · · (xn, xn+1)⟩.

Let K/Qp be a p-adic field containing the group of p-th root of unity. Let A be a Lyndon–Demushkin
G K -module. Write H •(0disc, A) for the usual group cohomology, and write H •(G K , A) for the continuous
profinite cohomology.

Note that there is a functorial map

H •(G K , A)→ H •(0disc, A) (2-1)

induced from the forgetful functor Modcont(G K (p))→Mod(0disc).
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Lemma 2.1.1. Let Fp be the G K -module with trivial G K -action. Then (2-1) induces isomorphisms:

(1) H 1(G K , Fp)= H 1(0disc, Fp).

(2) H 2(G K , Fp)= H 2(0disc, Fp).

Proof. (1) We have

H 1(G K , Fp)= Homcont(G K , Fp)= Homcont(G K (p), Fp),

H 1(0disc, Fp)= Hom(0disc, Fp).

Note that Homcont(G K (p), Fp)= Hom(0disc, Fp) because G K (p) is the pro-p completion of 0disc.

(2) We have a commutative diagram

H 1(G K , Fp)× H 1(G K , Fp)

�� ��

∪ // H 2(G K , Fp)

��

H 1(0disc, Fp)× H 1(0disc, Fp)
∪ // H 2(0disc, Fp)

Note that the first row is a nondegenerate pairing, and H 2(G K , Fp) ∼= Fp by local Tate duality. By
Lyndon’s theorem or Corollary 2.2.2, we have H 2(0disc, Fp)∼= Fp. So it remains to show the cup product
of the second row is nontrivial. Let [c1], [c2] ∈ H 1(0disc, Fp). [c1] ∪ [c2] = 0 if and only if there exists a
group homomorphism

0disc
→

1 c1 ∗

1 c2

1


for some ∗. Indeed, if c1 ∪ c2 = dz for some z ∈ C1(0disc, Fp), then

0disc
→

1 c1 z
1 c2

1


is a group homomorphism by unravelling the definition of cup products; here C1(0disc, Fp) is the usual
cochain group defining group cohomology. Define ci : 0

disc
→ Fp by sending xi to 1 and other generators

to 0, i = 0, 1. Then it is clear [c1] ∪ [c2] ̸= 0. □

Corollary 2.1.2. Let A be a finite Fp-vector space endowed with Lyndon–Demushkin G K -action. Then
there is a canonical isomorphism H •(G K , A)= H •(0disc, A).

Proof. Let G K (p) be the maximal pro-p quotient of G K . Then A is a G K (p)-module. Since G K (p) is a
pro-p group, A must contain the trivial representation Fp. In particular, there is a short exact sequence

0→ Fp→ A→ A′→ 0
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which induces the long exact sequence

H 0(G K , A′) //

��

H 1(G K , Fp) //

��

H 1(G K , A) //

��

H 1(G K , A′) //

��

H 2(G K , Fp)

��

H 0(0disc, A′) // H 1(0disc, Fp) // H 1(0disc, A) // H 1(0disc, A′) // H 2(0disc, Fp)

We apply induction on the length of A. By the five lemma, we have H 1(G K , A)= H 1(0disc, A).
We also have the long exact sequence

H 1(G K , A′) //

��

H 2(G K , Fp) //

��

H 2(G K , A) //

��

H 2(G K , A′) //

��

H 3(G K , Fp)

��

H 1(0disc, A′) // H 2(0disc, Fp) // H 2(0disc, A) // H 2(0disc, A′) // H 3(0disc, Fp)

By Lyndon’s theorem, H 3(0disc, Fp)=0. By local Tate duality, H 3(G K , Fp)=0. Again by the five lemma,
we have H 2(G K , A)= H 2(0disc, A). Finally, both cohomology groups are supported on degrees [0, 2]. □

By induction on the order of A, (2-1) is an isomorphism for any finite p-power torsion group A.

Corollary 2.1.3. Let A be a finite Zp-module endowed with the Lyndon–Demushkin G K -action. Then
there is a canonical isomorphism H •(G K , A)= H •(0disc, A).

Proof. We have a short exact sequence for each k > 0,

0→ lim
←−−

i

1 H k−1(G K , A/pi A)→ H k(G K , A)→ lim
←−−

i
H k(G K , A/pi A)→ 0,

see, for example [Stacks, Tag 0BKN]; here lim
←−−

1
i is the derived inverse limit. The first term is 0 due to the

finiteness of the cohomology of torsion G K -modules. So H k(G K , A)= lim
←−−i H k(G K , A/pi A), and the

corollary is reduced to the p-power torsion case.
We can do the same thing for the discrete cohomology. Since any finite Zp-module is p-adically

complete, the Lyndon–Demushkin complex (see Section 2.3.7) computing H •(0disc, A) is the inverse
limit of the Lyndon–Demushkin complex mod pi. So H k(0disc, A)= lim

←−−i H k(0disc, A/pi ). □

The lemma above tells us that, for our purposes, the cohomology groups of G K (p) can be computed
via the discrete model. So we can make use of the fine machineries of combinatorial group theory.

2.2. Discrete group cohomology of Demushkin groups. The main reference of this subsection is [Lyndon
1950].

Derivations. A derivation of a group G is a left G-module M, together with a map D : G→ M such that
D(uv)= Du+ u Dv.

Say F is a free group with generators x1,. . . xm . Denote by d F J the module of universal derivations.
Then d F J is the free Z[F]-module with basis {dxi | i = 1, . . . , m}.

https://stacks.math.columbia.edu/tag/0BKN
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Let u ∈ F. We can write du ∈ d F J as a linear combination of the basis elements:

du =
∑ ∂u

∂xi
dxi ,

where ∂u
∂xi
∈Z[F]. The computation rules for ∂u

∂xi
can be found in the first line of page 654 of [Lyndon 1950].

Theorem 2.2.1 [Lyndon 1950, Theorem 11.1]. Let G = ⟨x1, . . . , xm |R⟩ be a one-relator group where
R = Qq for no q > 1. Let K be any left G-module. Then

H 2(G, K )∼= K
/(

∂ R
∂x1

, . . .
∂ R
∂xm

)
K

and H n(G, K )= 0 for all n > 2.

Corollary 2.2.2. We have H 2(0disc, Fp)= Fp.

Proof. We have
∂ R
∂x0
= 1+ x0+ · · ·+ xq−2

0 + xq−1
0 x−1

1 ,

∂ R
∂x1
= xq−1

0 x−1
1 (x0− 1),

∂ R
∂x2
= xq

0 (x0, x1)x−1
2 (x3− 1),

∂ R
∂x3
= xq

0 (x0, x1)x−1
2 x−1

3 (x2− 1),

...

∂ R
∂x2k
= xq

0 (x0, x1) · · · (x2k−2, x2k−1)x−1
2k (x2k+1− 1),

∂ R
∂x2k+1

= xq
0 (x0, x1) · · · (x2k−2, x2k−1)x−1

2k x−1
2k+1(x2k − 1),

...

Since
H 2(0disc, Fp)=

Fp

(∂ R/∂x0, . . . , ∂ R/xn+1)
,

it suffices to show
∂ R
∂x0

Fp = · · · =
∂ R

∂xn+1
Fp = 0.

Since Fp is a trivial G K -module, it is clear that

∂ R
∂x1

Fp = · · · =
∂ R

∂xn+1
Fp = 0.

We also have ∂ R
∂x0
= 1+ 1+ · · ·+ 1= q = 0 mod p. □
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Proposition 2.2.3. Let A be a G K -module whose underlying abelian group is a finitely generated
Zp-module such that the image of G K in Aut(A) is a pro-p group. Then

H 2(G K , A)∼= A
/(

∂ R
∂x0

, . . . ,
∂ R

∂xn+1

)
A,

where R = xq
0 (x0, x1)(x2, x3) · · · (xn, xn+1).

Proof. Combine Corollary 2.1.3 and Lyndon’s theorem. □

2.3. Lyndon–Demushkin complex.

2.3.1. Abelian coefficient case. Let A be a G K -module whose underlying abelian group is a finitely
generated Zp-module such that the image of G K in Aut(A) is a pro-p group.

Then there is an explicit co-chain complex computing the Galois cohomology H •(G K , A).
Define C •LD(A) = [C0

LD(A)
d1
−→ C1

LD(A)
d2
−→ C2

LD(A)] as the following cochain complex supported
on degrees [0,2]:

A

 1− x0
...

1− xn+1


−−−−−−−→ A⊕(n+2)

 ∂ R/∂x0
...

∂ R/∂xn+1


T

−−−−−−−−−→ A.

Then, by [Lyndon 1950, Theorem 11.1],

H •(C •L D(A))= H •(G K , A).

The idea of a Lyndon–Demushkin complex is simple. A 1-cochain c∈C1
LD(A) is simply a set-theoretical

function
c : {x0, . . . , xn+1} → A.

We can extend c to be a function on the free group

c : ⟨x0, . . . , xn+1⟩ → A

by setting c(gh) := c(g)+ g · c(h) for any g, h in the free group with n+2 generators. Let

R = xq
0 (x0, x1)(x2, x3) · · · (xn, xn+1)

be the single relation defining the Demushkin group. The differential operator d2
: C1

LD(A)→ C2
LD(A) is

nothing but the evaluation of the extended map c at the relation R, that is, d2(c)= c(R). So a 1-cochain c
is a 1-cocycle if and only if its evaluation at R is 0.

2.3.2. Nilpotent coefficients. Let E/Qp be a finite extension with ring of integers OE , residue field F,
and uniformizer ϖ .

Let U be a unipotent (smooth connected) linear algebraic group over SpecOE , admitting an upper
central series

1=U0 ⊂U1 · · · ⊂Uk =U.
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Assume there exists an embedding ι :U ↪→ GLN ⊂MatN×N such that (ι(x)− 1)k+1
= 0 for all x ∈U.

Write log= log≤k for the truncated logarithmic function 1+ x 7→ x − x2/2+ · · ·+ (−1)k+1xk/k.
Assume p > k. There is an isomorphism of schemes U ∼= Lie U sending g 7→ log g, defined through

the commutative diagram
U

log
��

// GLN

log
��

Lie U // MatN×N

We assume k = 2 from now on because it suffices for our applications.
Fix a Galois action G K→Aut(U )(OE) such that the image group is a pro-p subgroup of Aut(U )(OE).
Let A be an OE -algebra. Recall that a nonabelian crossed homomorphism valued in U (A) is a map

c : G K →U (A) such that
c(gh)= c(g)(g · c(h))

for all g, h ∈ G K . Set c := log(c) : G K → Lie U (A). By the Baker–Campbell–Hausdorff formula,

c(gh)= c(g)+ g · c(h)+ 1
2 [c(g), g · c(h)]. (2-2)

Our definition of the Lyndon–Demushkin cochain complex is motivated by (2-2).

Definition 2.3.3. Let A be an OE -algebra. The Lyndon–Demushkin complex with unipotent coefficients
is defined to be the following cochain complex C •LD(U (A)) supported in degrees [0,2]:

Lie U (A)
d1
−→ (Lie U (A))⊕n+2 d2

−→ Lie U (A),

where d1 is defined by
d1(v)=

(
−v+ xi · v+

1
2 [−v, xi · v]

)
i=0,...,n+1.

We need some preparations before we define d2. An element c = (α0, . . . , αn+1) ∈ C1
LD(U (A)) can be

regarded as a function on the free group with (n+2) generators

c : ⟨x0, . . . , xn+1⟩ → Lie U (A)

by setting c(xi )= αi for each i and extending it to the whole free group by

c(gh) := c(g)+ g · c(h)+ 1
2 [c(g), g · c(h)]

We define d2 as
d2(c) := c(R)= c(xq

0 (x0, x1)(x2, x3) · · · (xn, xn+1)).

Remark 2.3.4. (1) When U is an abelian group, we recover the definition in the previous section for
the cohomology of the abelian U (A).

(2) The main reason we define C •LD(U (A)) this way is because we want to compare it with C •LD(LieU(A)).
Note that C •LD(Lie U (A)) and C •LD(U (A)) have the same underlying group, but their differential d•

is different.
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(3) Note that d2(c) = 0 if and only if c defines a crossed homomorphism c : G K → Lie U (A) in the
sense of (2-2). See the proof of Proposition 2.3.6.

(4) The differential maps are generally nonlinear.

Definition 2.3.5. We define Z i
LD := (d i+1)−1(0), and Bi

LD := d i (C i−1
LD ) for i = 0, 1, 2.

Proposition 2.3.6. We have
H 0(G K , U (A))∼= Z0

LD(U (A))

and a surjection of pointed sets

Z1
LD(U (A))→ H 1(G K , U (A)).

Proof. H 0(G K , U (A)) is by definition the G K -fixed point subset of U (A), while Z0
LD(U (A)) is the subset

of U (A) whose elements are fixed by the x0,. . . , xn+1: if u ∈ U (A) is fixed by xi , then u−1(xi · u)= 1
and taking truncated log of both sides we get d1(log u)= 0.

H 1(G K , U (A)) is by definition the set of equivalence classes of crossed homomorphisms, and
Z1

LD(U (A)) is the set of crossed homomorphisms. □

Lie U has a lower central series filtration. Let Z(U ) be the center of U. Write U ad for U/Z(U ).
Since U is unipotent of class 2, Lie U is isomorphic to its graded Lie algebra Lie U ∼= gr•(Lie U ). We will
fix a grading Lie U ∼= Z(U )⊕U ad of the Lie algebra Lie U once for all. In particular, we fix a projection
pr : Lie U → Z(U ).

2.3.7. Cup products. Let c ∈ C1
LD(U ad(A)). Let c̃ ∈ C1

LD(U (A)) be the (unique) lift of c such that
pr(c̃(x0))= · · · = pr(c̃(xn+1))= 0. Define

Q(c) := pr(d2(c̃))= pr(c̃(R)) ∈ C2
LD(Z(U )(A)).

Lemma. Q(−) is a quadratic form, that is, (x, y) 7→ Q(x + y)− Q(x)− Q(y) is a bilinear form.

Proof. In Definition 2.3.3, we defined it so that c̃(gh) := c̃(g)+ g · c̃(h)+ 1
2 [c̃(g), g · c̃(h)]. So after fully

expanding the expression, c̃(R)=
∑

i αi c(xi )+
∑

i< j [βi c(xi ), γi c(x j )], where αi , βi , γ j ∈⟨x0, . . . , xn+1⟩.
It follows that

Q(c)= pr
(∑

i

αi c(xi )+
∑
i< j

[βi c(xi ), γi c(x j )]

)
=

∑
i< j

pr([βi c(xi ), γi c(x j )]),

which is clearly a quadratic form. □

We define

C1
LD(U ad(A))×C1

LD(U ad(A))
∪
−→ C2

LD(Z(U )(A)), x ∪ y := 1
2(Q(x + y)− Q(x)− Q(y)),

which is a symmetric bilinear form.

Remark. Alternatively, we can choose an arbitrary lift c̃ of c. Now pr(d2(c̃)) is an inhomogeneous
polynomial of degree two. We recover Q by taking the homogeneous part of degree two.
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Lemma 2.3.8. Under the identification C1
LD(U (A))= C1

LD(U ad(A))⊕C1
LD(Z(U )(A)), we have

Z1
LD(U (A))=

{
(x, y) ∈ C1

LD(U ad(A))⊕C1
LD(Z(U )(A)) | d2x = 0, x ∪ x + d2 y = 0

}
.

Proof. This is obvious from the definition of d2 and Q. The projection of d2(x, y) to C2
LD(U ad(A))

is d2x ; and the projection of d2(x, y) to C2
LD(Z(U )(A)) is x ∪ x + d2 y. □

Write H i
LD(U ad(A)) for

Z i
LD(U ad(A))/Bi

LD(U ad(A))

and write H i
LD(Z(U )(A)) for

Z i
LD(Z(U )(A))/Bi

LD(Z(U )(A)).

Lemma 2.3.9. The pairing ∪ on the cochain level induces a symmetric pairing on the cohomology level

H 1
LD(U ad(A))× H 1

LD(U ad(A))
∪
−→ H 2

LD(Z(U )(A)).

Proof. It suffices to show, for all x ∈ Z1
LD(U ad)(A) and y ∈ B1

LD(U ad)(A), that

Q(x + y)− Q(x) ∈ B2
LD(Z(U )(A)).

Let x̃ ∈ C1
LD(U (A)) be the unique extension of x such that pr x̃ = 0. The cochain x̃ represents a group

homomorphism ρx̃ : ⟨x0, . . . , xn+1⟩ → U (A) ⋊ ⟨x0, . . . , xn+1|R⟩ such that ρx̃(R) = 1 mod Z(U )(A).
More explicitly, we define ρx̃(xi ) = (exp(x̃(xi )), xi ) where exp is the truncated exponential map (the
inverse to the truncated log map). Since y is a coboundary, there exists n ∈ U (A) such that nρx̃ n−1 is
represented by a cocycle (x + y, f ) extending x + y (we are exploiting the abelian coefficients here). We
have nρx̃(R)n−1ρx̃(R)−1

= 1 ∈U (A)⋊ ⟨x0, . . . , xn+1|R⟩ since ρx̃(R) lies in the center of U (A). Since
Q(x+y)−d2( f )=nρx̃(R)n−1 and Q(x)=ρx̃(R), we have Q(x+y)−Q(x)=d2 f ∈ B2

LD(Z(U )(A)). □

Recall Z1
LD(U (A)) and Z1

LD(Lie U (A)) are both subsets of C1
LD(U (A)).

Lemma 2.3.10. If Z(U )(F)∼= F, then

Z1
LD(U (F))⊂ Z1

LD(Lie U (F)),

that is, the nonabelian cocycles with U (F)-coefficients are automatically abelian cocycles with (Lie U (F))-
coefficients.

Proof. We have noted in Remark 2.3.4(2) that C1
LD(U (F)) and C1

LD(Lie U (F)) have the same underlying
space. By Lemma 2.3.8, an element of Z1

LD(U (F)) is a pair (x, y) such that d2x = 0 and x ∪ x+d2 y = 0.
By our assumption, C2

LD(Z(U )(F))= H 2(G K , Z(U )(F)) (Corollary 2.2.2) and thus B2
LD(Z(U )(F))= 0

and d2
= 0. So d2 y = 0 automatically, and (x, y) defines an element of Z1

LD(Lie U (F)). □
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3. An analysis of cup products

Let E be a p-adic field with ring of integers OE , residue field F and uniformizer ϖ .
Let U be a smooth connected unipotent group of class 2 over SpecOE , with center Z(U ) ∼= Ga .

Write U ad for U/Z(U ). Assume U ad ∼= G⊕s
a is a vector group.

Definition 3.0.1. Let K ′ be a p-adic field. A Lyndon–Demushkin action G K ′→ Aut(U )(OE) is said to
be mildly regular if the following are satisfied:

(MR1) H 0(G K ′, U ad(E))= 0.

(MR2) The bilinear pairing

∪F : C1
LD(U ad(F))×C1

LD(U ad(F))→ C2
LD(Z(U )(F))

is nondegenerate.

Remark 3.0.2. In practice U is the unipotent radical of a parabolic subgroup of a reductive group
and (MR2) is equivalent to “p being not too small”. We worked out the G2-case in Appendix A, and
showed that if p > 5, (MR2) always holds. The same proof but with more complicated notation should
work for general reductive groups.

In general, (MR2) can be checked by computer algebra systems because it is a finite field vector space
question for a finite number of small p’s. We include an algorithm (written in SageMath) in Appendix B.

The following proposition is a summary of Appendix A:

Proposition 3.0.3. If U is the unipotent radical of the short root parabolic of G2 or the quotient of the
unipotent radical of the long root parabolic of G2 by its center, then (MR2) is true when p ≥ 5.

Definition 3.0.4. Given a tuple of labeled Hodge–Tate weights (see [Emerton and Gee 2023, Subsec-
tion 1.12] for the definition) λ, we say λ is slightly less than 0 if for each σ : K ′ ↪→Qp, λσ consists of
nonpositive integers, and for at least one σ , λσ consists of negative integers. (The cyclotomic character
has Hodge–Tate weight −1.)

Proposition 3.0.5. Assume p ≥ 5. If U is the unipotent radical of the short root parabolic of G2 or the
quotient of the unipotent radical of the long root parabolic of G2 by its center, then G K ′→ Aut(U )(OE)

is mildly regular if U ad(E) is Hodge–Tate of labeled Hodge–Tate weights slightly less than 0.

Proof. If H 0(G K ′, U ad(E)) ̸= 0, then for all embeddings σ : K ↪→ Qp, 0 ∈ λσ . The proposition now
follows from Proposition 3.0.3 and Appendix A. □

3.1. Cup products mod ϖ .

Lemma 3.1.1. The image of Z1
LD(U ad(OE))→ C1

LD(U ad(F)) has codimension at most dimE U ad(E).

Proof. Say dimF C1
LD(U ad(F)) = rankOE C1

LD(U ad(OE)) = N. Since Z1
LD(U ad(OE)) is the kernel of

C1
LD(U ad(OE))→ C2

LD(U ad(OE)), and rankOE C2
LD(U ad(OE))= dimE U ad(E), we have

rankOE Z1
LD(U ad(OE))≥ N − dimE U ad(E).
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Since C2
LD(U ad(OE)) is torsion-free, Z1

LD(U ad(OE)) is saturated in C1
LD(U ad(OE)), and is thus a direct sum-

mand. In particular, the image of Z1
LD(U ad(OE)) in C1

LD(U ad(F)) has dimension ≥N−dimE U ad(E). □

Lemma 3.1.2. If

∪F : C1
LD(U ad(F))×C1

LD(U ad(F))→ C2
LD(Z(U )(F))

is nondegenerate, then the kernel of

∪F : Z1
LD(U ad(OE))/ϖ × Z1

LD(U ad(OE))/ϖ → C2
LD(Z(U )(F))

has dimension at most dimE U ad(E).

Remark. Note that Z1
LD(U ad(F)) ̸= Z1

LD(U ad(OE))/ϖ in general.

The kernel of a bilinear pairing is also called the annihilator.

Proof. For ease of notation, write C for C1
LD(U ad(F)), and write Z for the image of Z1

LD(U ad(OE)) in C .
Note that Z ∼= Z1

LD(U ad(OE))/ϖ by the proof of the above lemma.
Let K ⊂ Z be the kernel of ∪F. Since the cup product on C is nondegenerate, there exists a subspace

F ⊂ C of dimension equal to that of K, such that the restriction of the cup product to (F + K ) is also
nondegenerate. Since F ∩ Z = 0, dim C ≥ dim(F + Z)= dim Z + dim F = dim Z + dim K. The lemma
now follows from the previous lemma. □

We also record the following lemma whose proof is similar.

Lemma 3.1.3. (1) The image of Z1
LD(U ad(F))→ C1

LD(U ad(F)) has codimension at most dimE U ad(E).

(2) If
∪F : C1

LD(U ad(F))×C1
LD(U ad(F))→ C2

LD(Z(U )(F))

is nondegenerate, then the kernel of

∪F : Z1
LD(U ad(F))× Z1

LD(U ad(F))→ C2
LD(Z(U )(F))

has dimension at most dimE U ad(E).

3.2. General cup products in group cohomology. In this subsection, we give a reinterpretation of
Section 2.3.7, which is convenient for theoretic applications.

Let V be a unipotent algebraic group of class 2 over OE . Let 0 be an abstract group, together with
a homomorphism θ : 0→ Aut(V )(OE). By the Lie correspondence, Aut(Lie V )∼= Aut(V ), and thus θ

induces a OE -linear 0-action on Lie V which respects Lie brackets.
We fix a grading Lie V = V1⊕V2 such that [V1, V1] ⊂ V2, and [V, V2] = 0. We will write V for V (OE)

for simplicity.
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Let f :0→V be a crossed homomorphism. By definition, for any g1, g2∈0, f (g1g2)= f (g1)g1 f (g2).
Write c= c1+c2 for log( f ), where c1 values in V1 and c2 values in V2. By the Baker–Campbell–Hausdorff
formula, we have

c(gh)= c(g)+ gc(h)+ [c(g), gc(h)]/2

= (c1(g)+ gc1(h))+ (c2(g)+ gc2(h))+ [c1(g), gc1(h)]/2 (3-1)

Lemma 3.2.1. Let a, b ∈ H 1(0, V1) be two crossed homomorphisms. The 2-cochain B(a, b) : (g, h) 7→

[a(g), gb(h)] is a 2-cocycle.

Proof. By definition, we have

d2(B(a,b))(g1,g2,g3)

= g1[a(g2),g2b(g3)]−[d1a(g1,g2),g1g2b(g3)]+[a(g1),g1d1b(g2,g3)]+[a(g1),g1b(g2)]

= g1[a(g2),g2b(g3)]−[a(g1)+g1a(g2),g1g2b(g3)]+[a(g1),g1b(g2)+g1g2b(g3)]+[a(g1),g1b(g2)]

= 0. □

For crossed homomorphisms a ∈ H 1(0, V1), define Q(a) := B(a, a). By comparing (3-1) and
Section 2.3.7, it is not hard to see the Q(−) defined in this subsection coincides with that of Section 2.3.7
for 1-cocycles when 0 is the discrete Demushkin group.

Since a∪b := (Q(a+b, a+b)−Q(a)−Q(b))/2= (B(a, b)+B(b, a))/2, we have a∪b∈ H 2(0, V2).
Again the cup product defined in this subsection coincides with that of Section 2.3.7 when the settings
overlap.

Lemma 3.2.2. Let 0′ ⊂ 0 be a normal subgroup of finite index. Write 1 for 0/0′. The cup product
∪ : H 1(0′, V1)× H 1(0′, V1)→ H 2(0′, V2) is 1-equivariant.

Proof. Let a, b ∈ H 1(01, V1), and let σ ∈ 0. We have by definition σ · a(g) = σa(σ−1gσ), and
σ · B(a, b)(g, h) = σ B(a, b)(σ−1gσ, σ−1hσ) (see [Serre 2002, Section I.5.8]). We immediately have
σ · B(a, b)= B(σ · a, σ · b). □

Example 3.2.3 (the completely split case). In this paragraph we analyze the special case where the G K ′

action on U ad(F)∼= Lie U ad(F) is trivial and H 2(G K ′, Z(U )(F))= Z(U )(F)= F. It will be used in the
proof of Theorem 3.3.1.

Since the center of Lie U is one-dimensional, the Lie bracket

Lie U ad(F)×Lie U ad(F)
[−,−]
−−−→ Z(U )(F)

is a nondegenerate, alternating pairing. Choose a basis {e1, . . . , ek, e′1, . . . , e′k} of Lie U ad(F) such that
[e′i , e′j ] = [ei , e j ] = 0 and [ei , e′j ] = −[e

′

i , e j ] = δi, j . Since by assumption the G K ′-action on U ad(F) is
trivial, the cup product

∪ : H 1(G K ′, U ad(F))× H 1(G K ′, U ad(F))→ H 2(G K ′, Z(U )(F))
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is isomorphic to the (exterior) direct sum of cup products

∪i : H 1(G K ′, Fei ⊕ Fe′i )× H 1(G K ′, Fei ⊕ Fe′i )→ H 1(G K ′, F).

Write ∧ for the usual cup product H 1(G K ′, F)× H 1(G K ′, F)→ H 2(G K ′, F) which appears in local Tate
duality. By definition, for a, b ∈ H 1(G K ′, F) we have

Q(aei + be′i )= B(aei + be′i , aei + be′i )

= ((g, h) 7→ [a(g)ei + b(g)e′i , a(h)ei + b(h)e′i ])

= ((g, h) 7→ (a(g)b(h)− b(g)a(h)))

= a ∧ b− b∧ a

= 2a ∧ b

and thus, for a1, b1, a2, b2 ∈ H 1(G K ′, F),

B(a1ei + b1e′i , a2ei + b2e′i )= 2(a1 ∧ b2+ a2 ∧ b1).

Since ∧ is a nondegenerate pairing, B is also a nondegenerate pairing.

3.3. Nontriviality of cup products.

Theorem 3.3.1. Let K ′/K be a finite Galois extension of p-adic fields of prime-to-p degree. Let
r : G K → Aut(U )(OE) be a continuous group homomorphism.

If r |G K ′
is Lyndon–Demushkin and mildly regular, then either

(i) H 2(G K , Z(U )(F))= 0, or

(ii) the symmetric bilinear pairing

H 1(G K , U ad(OE))⊗ F× H 1(G K , U ad(OE))⊗ F→ H 2(G K , Z(U )(OE))⊗ F

is nontrivial.

Remark. Notice that

H 1
LD(U ad(OE))∼= H 1(G K ′, U ad(OE)) and H 1(G K ′, U ad(OE))G K = H 1(G K , U ad(OE)).

The symmetric pairing in the theorem is the restriction to H 1(G K ′, U ad(OE)) of the symmetric pairing
defined in Lemma 2.3.9.

Proof. Assume H 2(G K , Z(U )(F)) ̸= 0. Consider the diagram

H 1(G K , U ad(OE))× H 1(G K , U ad(OE)) //
� _

��

H 2(G K , Z(U )(OE))

∼=

��

H 1(G K ′, U ad(OE))× H 1(G K ′, U ad(OE)) // H 2(G K ′, Z(U )(OE))

Z1
LD(U ad(OE))× Z1

LD(U ad(OE))

OO

// C2(Z(U )(OE))

OO
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By Lemma 3.1.2, the kernel of

H 1(G K ′, U ad(OE))/ϖ × H 1(G K ′, U ad(OE))/ϖ → H 2(G K ′, Z(U )(F))

has F-dimension at most dimE U ad(E). Write 1 for G K /G K ′ , which acts on H 1(G K ′, U ad(OE)) with
fixed-point subspace H 1(G K , U ad(OE)).

By an averaging argument (explained below), the kernel of

H 1(G K , U ad(OE))/ϖ × H 1(G K , U ad(OE))/ϖ → H 2(G K , Z(U )(F))

is contained in the kernel of

H 1(G K ′, U ad(OE))/ϖ × H 1(G K ′, U ad(OE))/ϖ → H 2(G K ′, Z(U )(F))

and thus has F-dimension at most dimE U ad(E). (Let [c]∈H 1(G K , U ad(OE))/ϖ and suppose [c]∪[d]=0
for all [d] ∈ H 1(G K , U ad(OE))/ϖ . Let [c′] ∈ H 1(G K ′, U ad(OE))/ϖ . Then

∑
σ∈1 σ([c] ∪ [c′]) =

[c] ∪
∑

σ∈1[c
′
] = 0. Since H 2(G K , Z(U )(F)) ̸= 0, we have H 2(G K , Z(U )(F)) = H 2(G K ′, Z(U )(F))

and thus
∑

σ∈1 σ([c] ∪ [c′])= #1σ([c] ∪ [c′]).)
We remark that as a finitely generated module over a DVR, H 1(G K , U ad(OE)) is the direct sum of its

torsion-free part and its torsion part; and H 1(G K , U ad(E))= H 1(G K , U ad(OE))torsion-free⊗OE E .
By the local Euler characteristic,

dimE H 1(G K , U ad(E))= dimE H 2(G K , U ad(E))+ dimE H 0(G K , U ad(E))+ dimE U ad(E)[K :Qp]

≥ dimE H 2(G K , U ad(E))+ dimE U ad(E).

We will now consider two possibilities: H 2(G K , U ad(F)) ̸= 0 and H 2(G K , U ad(F))= 0.

Case H 2(G K , U ad(F)) ̸= 0. Since H 2(G K , U ad(F)) ̸= 0, H 2(G K , U ad(OE)) is nontrivial. So either we
have dimE H 2(G K , U ad(E)) > 0, or H 2(G K , U ad(OE)) has nontrivial torsion. If H 2(G K , U ad(OE)) has
nontrivial torsion, then again by the local Euler characteristic (mod ϖ version), H 1(G K , U ad(OE)) also
has nontrivial torsion. In either case, dimF H 1(G K , U ad(OE))/ϖ ≥ dimE U ad(E)+ 1. So the kernel of
the cup product is a proper subspace of H 1(G K , U ad(OE))/ϖ .

Case H 2(G K , U ad(F)) = 0. By Nakayama’s lemma, H 2(G K , U ad(OE)) = 0. By [Emerton and Gee
2023], there exists a perfect OE -complex [C0

→C1
→C2

] concentrated in degrees [0, 2] which computes
H •(G K , U ad(OE)). By the universal coefficient theorem, there exists a short exact sequence

0→ H 1(C •)⊗ F→ H 1(C •⊗ F)→ TorOE
1 (H 2(C •), F)→ 0.

So H 1(G K , U ad(OE))⊗OE F = H 1(G K , U ad(F)). We assume (i) and (ii) are false, and try to get a
contradiction. The kernel of

H 1(G K , U ad(OE))⊗ F× H 1(G K , U ad(OE))⊗ F→ H 2(G K , Z(U )(OE))⊗ F

has dimension h1
:= dimF H 1(G K , U ad(F)). By the local Euler characteristic,

h1
= dimE U ad(E)[K :Qp] + dimF H 0(G K , U ad(F)). (3-2)
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By Lemma 3.1.3, the kernel kZ of

Z1
LD(U ad(F))× Z1

LD(U ad(F))→ H 2(G K ′, Z(U )(F))

has dimension at most dimE U ad(E). Since the cup product is trivial on H 1(G K , U ad(F)), we have

dim kZ ≥ dim H 1(G K , U ad(F))+ dim B1
LD(U ad(F))= h1

+ dim B1
LD(U ad(F)). (3-3)

Combining (3-2) and (3-3), we have

dimE U ad(E)≥ dimF kZ ≥ dimE U ad(E)[K :Qp] + dimF H 0(G K , U ad(F))+ dim B1
LD(U ad(F))

So we conclude that

1= [K :Qp], 0= H 0(G K , U ad(F)), 0= B1
LD(U ad(F)).

In particular, we have H 0(G K ′, U ad(F))=U ad(F), and the kernel of the cup product on H 1(G K ′, U ad(F))

has dimension exactly dimE U ad(E). However, by Example 3.2.3, the cup product on H 1(G K ′, U ad(F))

is nondegenerate by local Tate duality. □

Theorem 3.3.1 is used in the following scenario.

Lemma 3.3.2. Let L be a split reductive group over F. Let r : G K → L(F) be a Galois representation
valued in L. Let r ss be the semisimplification of r . Write G K ′ for the kernel of r ss. Then the degree [K ′ : K ]
divides (q − 1)r #WL , where

• r is the rank of L ,

• q is a power of p, and

• #WL is the cardinality of the Weyl group of L.

Proof. By [Lin 2022], r ss is tamely ramified and factors through the normalizer of a maximal torus of L
(after possibly extending the base field). □

In particular, if L = G2 and p > 3, the kernel of r ss defines a Galois extension K ′/K of prime-to-p
degree, and r |G K ′

is Lyndon–Demushkin since it has trivial semisimplification.

4. Nonabelian obstruction theory via the Lyndon–Demushkin cocycle group with external Galois
action

Let K/Qp be a p-adic field. Let E/Qp be a finite extension with ring of integers OE , residue field F,
and uniformizer ϖ .

Let L be a split reductive group over OE . Fix a Galois representation

r◦ : G K → L(OE)

throughout this section.
Let U be a unipotent group over OE whose adjoint group is abelian. Let Z(U ) be the center of U. The

adjoint group U ad is defined to be U/Z(U ).
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Fix a group scheme homomorphism φ : L → Aut(U ) throughout this section. In particular, there
is a Galois action φ(r◦) : G K

r◦
−→ L(OE)

φ(OE )
−−−→ Aut(U )(OE). We will talk about nonabelian Galois

cohomology H •(G K , U (OE)) and H •(G K , U (F)) using this Galois action throughout this section.
Let K ′/K be a prime-to-p, finite Galois extension of K containing the group of p-th root of unity,

such that r◦(G K ′)⊂ L(OE) is a pro-p group. Write 1 for Gal(K ′/K ). Set 0 := G K , and H := G K ′ .

4.1. Nonabelian inflation-restriction.

Nonabelian Galois cohomology. We recall a few facts about the nonabelian version of Galois cohomology.
Let

0→ A→ B→ C→ 0

be a short exact sequence of groups with continuous 0-action. If A→ B is central, that is, A is contained in
the center of B, then we have a long exact sequence of pointed sets (see [Serre 2002, Proposition 43, 5.7])

1→ A0
→ B0

→ C0
−→ H 1(0, A)→ H 1(0, B)→ H 1(0, C)

δ
−→ H 2(0, A).

Let H ⊂ 0 be a closed normal subgroup. Then there is an exact sequence (see [Serre 2002, 5.8])

1→ H 1(0/H, AH )→ H 1(0, A)→ H 1(H, A)0/H . (4-1)

If A is an abelian group, then the sequence above can be upgraded to the inflation-restriction exact sequence:

1→ H 1(0/H, AH )→ H 1(0, A)→ H 1(H, A)0/H
→ H 2(0, AH ).

Theorem 4.1.1 [Koch 2002, Theorem 3.15]. Let 0 be a profinite group, H a normal subgroup of finite
index, and A an (abelian) G-module whose elements have finite order coprime to (0 : H). Then

H n(0/H, AH )= 0
for all n ≥ 1, and the restriction

H n(0, A)→ H n(H, A)0/H

is an isomorphism.
Let R be either OE or F. For ease of notation, write U for U (R) in this paragraph. The fact above

implies the following diagram commutes, with exact columns:

H 1(0, Z(U ))
∼=

res
//

��

H 1(H, Z(U ))1

��

H 1(0, U )
� �

res
//

α1
��

H 1(H, U )1

α2
��

H 1(0, U ad)
∼=

res
//

δ1
��

H 1(H, U ad)1

δ2
��

H 2(0, Z(U ))
� � // H 2(H, Z(U ))

The injectivity of the second line follows from (4-1).
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Proposition 4.1.2. The restriction map of nonabelian 1-cocycles

H 1(0, U )→ H 1(H, U )1

is a bijection.

Proof. This follows from diagram chasing: Let [c] ∈ H 1(H, U )1. Since δ1(res−1(α2[c]))= δ2(α2[c])= 0,
there exists [b] ∈ H 1(0, U ) such that α1(res([b])) = α2([c]). Since α−1

2 (α2([c])) is a H 1(H, Z(U ))1-
torsor, we can twist [b] to make res([b])= [c]. □

4.1.3. Representation-theoretic interpretation of nonabelian 1-cocycles. Let P be a group which is a
semidirect product L⋉U. Let qL :P→L be the quotient map. Fix a section L→P of qL, which allows
us to identify (set-theoretically) P with U×L, and write qU :P→ U be the projection map. For g ∈P,
write g = gUgL such that gU ∈ U×{1} and gL ∈ {1}×L. Let τ̄ : 0→ L be a group homomorphism. Let
τ : 0→P be a lifting of τ̄ . Set c := qU ◦ τ : 0→ U. Then

c(gh)= qU(τ (g)τ (h))= qU(τ (g)Uτ(g)Lτ(h)Uτ(h)L)

= qU(τ (g)Uτ(g)Lτ(h)Uτ(g)−1
L τ(gh)L)= c(g)(τ (g)Lc(h)τ (g)−1

L )

=: c(g)(τ (g)L · c(h))

is a (nonabelian) crossed homomorphism. Two liftings τ1 and τ2 are equivalent if there exists an element
n ∈ U such that τ1 = nτ2n−1. So H 1(0,U) classifies liftings τ of τ̄ up to equivalence.

4.1.4. Lifting characteristic-p cocycles via inflation-restriction. Let [c̄]∈H 1(0, U (F)) be a characteristic-
p cocycle. Assume the restriction [c̄|H ] ∈ H 1(H, U (F)) has a characteristic-0 lift [ch] ∈ H 1(H, U (OE)).
We want to build a lift [c] ∈ H 1(0, U (OE)) of [c̄] using [ch].

Note that when U is an abelian group, this can be easily achieved by taking the average

[c] :=
1

#1

∑
g∈1

g · [ch].

Here we identify H 1(0, U (OE)) with a subset of H 1(H, U (OE)) via Proposition 4.1.2.
Such a trick does not work anymore when U is nonabelian. Nonetheless, we have the following:

Lemma 4.1.5. If there exists [ch]∈H 1(H,U(OE)) and [d]∈H 1(0,U ad(OE)) such that α2([ch])= res([d])
and [ch] mod ϖ = [c̄|H ], then there exists [c] ∈ H 1(0, U (OE)) which is a lifting of [c̄].

H 1(0, Z(U )(OE))
� �

res
//

��

H 1(H, Z(U )(OE))

��

H 1(0, U (OE))
� �

res
//

α1
��

H 1(H, U (OE))

α2
��

∋ [ch]

[d] ∈ H 1(0, U ad(OE)) res
//

δ1
��

H 1(H, U ad(OE))

δ2
��

H 2(0, Z(U )(OE))
� � // H 2(H, Z(U )(OE))
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Proof. Since
δ1([d])= δ2(α2([ch]))= 0,

we have [d] = α1([c′]) for some [c′] ∈ H 1(0, U (OE)). Since res([c′]) and [ch] ∈ H 1(H, U (OE)) have
the same image in H 1(H, U ad(OE)) (via α2), it makes sense to talk about the difference res([c′])−[ch] ∈

H 1(H, Z(U )(OE)).1 Consider the diagram

H 1(0, Z(U )(OE)) //
� _

res
��

H 1(0, Z(U )(F))
δ
//

� _

res
��

H 2(0, Z(U )(OE))� _

��

H 1(H, Z(U )(OE)) // H 1(H, Z(U )(F))
δ
// H 2(H, Z(U )(OE))

Let [c̄′] ∈ H 1(0, Z(U )(F)) be the reduction mod ϖ of [c′]. Since res([c̄′])− [c̄h] has a lift,

δ(res([c̄′] − [c̄h]))= 0 ∈ H 2(H, Z(U )(F))

by the exactness of the second row of the diagram above. Therefore

δ([c̄′] − [c̄])= δ(res([c̄′] − [c̄]))= δ(res([c̄′] − [c̄h]))= 0

and [c̄′] − [c̄] ∈ H 1(0, Z(U )(F)) has a characteristic-0 lift [x], and [c] := [c′] − [x] is a lift of [c̄]. □

The purpose of the whole Section 4 is to prove Theorem 4.3.2, which extends the above lemma.

4.2. External Galois action on the Lyndon–Demushkin cocycle group. The earlier subsection shows
there is an identification

H 1(0, U (OE))∼= H 1(H, U (OE))1.

The goal of this subsection is to upgrade this identification to the cochain level.
Since the Galois action

φ(r◦)|G K ′
: G K ′→U (OE)

is Lyndon–Demushkin, we have a Lyndon–Demushkin complex C •LD(U (OE)) computing H •(H, U (OE)).
Recall from Section 2.3.2 that a 1-cochain c ∈ C1

LD(U (OE)) is the same as a function

c : ⟨x0, . . . , xn+1⟩ → (Lie U )(OE)

such that
c(gh)= c(g)+ g · c(h)+ 1

2 [c(g), g · c(h)]

for all g, h; or, equivalently, a function
c : ⟨x0, . . . , xn+1⟩ →U (OE)

such that
c(gh)= c(g)(g · c(h))

for all g, h.

1 H1(H, U (OE )) is a H1(H, Z(U )(OE ))-principle homogeneous space.
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A cochain c : ⟨x0, . . . , xn+1⟩ → U (OE) lies in Z1
LD(U (OE)) if and only if it factors through the

(discrete) Demushkin group ⟨x0, . . . , xn+1|R⟩ (see the proof of Proposition 2.3.6).
Let c ∈ Z1

LD(OE), regarded as a function ⟨x0, . . . , xn+1|R⟩ → U (OE). Since U (OE) is a pro-p
group, the crossed homomorphism necessarily factors through the pro-p completion, that is, we have a
commutative diagram

⟨x0, . . . , xn+1|R⟩

π

��

c
// U (OE)

G K ′(p) ̂⟨x0, . . . , xn+1 |R⟩
p

ĉ

99

Since we have identified the pro-p quotient of G K ′ with the pro-p completion of ⟨x0, . . . , xn+1 |R⟩,
we can define, for each g ∈ G K , an automorphism αg of Z1

LD(U (OE)) via

αg(c) := (h 7→ g · ĉ(g−1π(h)g)).

So we defined an action of G K on Z1
LD(U (OE)).

For ease of notation, write g · c for αg(c). Note that (g · c)(h)= (αg(c))(h) is different from g · c(h).
We apologize for the confusing notation.

Remark 4.2.1. We don’t know whether or not we can define a G K -action on the whole cochain group
C1

LD(U (OE)). It seems to involve some subtle combinatorial group theory.

Digression. It is curious to know if the cup product

∪ : Z1
LD(U ad(OE))× Z1

LD(U ad(OE))→ C2
LD(Z(U (OE)))

is compatible with the G K -action.
This answer would be affirmative if, for example, for each g ∈ G K , the conjugation by g,

φg : G K ′→ G K ′,

can be lifted to an automorphism of free pro-p groups on (n+2)-generators,

φg : ⟨x0, . . . , xn+1⟩ → ⟨x0, . . . , xn+1⟩.

This is closely related to the so-called Dehn–Nielsen theorem. Classically, Dehn–Nielsen is saying all
automorphism of the fundamental group of the genus g closed surface Mg are induced by a homeo-
morphism. The algebraic version of Dehn–Nielsen can be formulated as, under the usual presentation
of F = ⟨a1, b1, . . . , ag, bg⟩ → ⟨a1, b1, . . . , ag, bg|[a1, b1] · · · [ag, bg]⟩ ∼= π1(Mg), all automorphism of
π1(Mg) are induced from an automorphism of the free group F.

Conjecture (pro-p Dehn–Nielsen). All automorphisms of the pro-p completion of ⟨x0, . . . , xn+1|R⟩ are
induced by an automorphism of the pro-p completion of ⟨x0, . . . , xn+1⟩.
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4.3. Constructing nonabelian cocycles. Recall that H 1(H, U ad)1 = H 1(G K , U ad), where H = G K ′

and K ′/K is a normal extension of prime-to-p degree. Define

(Z1
L D)1 := {x ∈ Z1

LD | image of x in H 1 is contained in (H 1)1}

= {x ∈ Z1
LD | g · x − x ∈ B1

LD for all g ∈ G K }.

Since Z1
LD(U ad(OE))1 is a submodule of a finite flat OE -module, it is finite OE -flat.

We keep all notation from the previous subsections.
Assume Z(U )(OE) = OE from now on. We fix some notation. The quotient U → U/Z(U ) = U ad

induces maps ad : Z1
LD(U (OE))→ Z1

LD(U ad(OE)).

Lemma 4.3.1. Assume that p ̸= 2 and that the cup product

∪ : H 1(G K , U ad(OE))⊗ F× H 1(G K , U ad(OE))⊗ F→ H 2(G K , Z(U )(F)) (4-2)

is nontrivial.
Let (c̄, f̄ )∈ Z1

LD(U (F)) (using Lemma 2.3.8). Assume c̄∈ Z1
LD(U ad(F))1. If c̄ admits a characteristic-0

lift c′ ∈ Z1
LD(U ad)(OE), then (c̄, f̄ ) admits a lift (c, f ) ∈ Z1

LD(U (Zp)) such that c ∈ Z1
LD(U ad(Zp))

1.

Proof. Pick an arbitrary lift f ∈ C1
LD(Z(U )(OE)) of f̄ . Choose a system of representatives {gi } ⊂ G K

of 1. By replacing c′ by the 1-average 1
#1

∑
gi · c′ + some coboundary (which is also a lift of [c̄]), we

assume c′ ∈ Z1
LD(U ad(Zp))

1.
Let λ ∈ Z×p be a scalar.
Since the symmetric bilinear pairing (4-2) is nontrivial, there exists y ∈ Z1

LD(U ad(OE))1 such that
y ∪ y ̸= 0 mod ϖ . Consider

(c′+ λy)∪ (c′+ λy)+ d2( f )= c′ ∪ c′+ d2( f )+ 2λc′ ∪ y+ λ2 y ∪ y ∈ C2(Z(U )(OE))∼=OE ,

which is a degree two polynomial in λ whose Newton polygon has vertices (0,+), (1,+ or 0), (2, 0) and
thus has at least one solution λ0 with positive p-adic valuation; here “+” means a positive number. Set
(c, f ) := (c′+ λ0 y, f ).

We have (c, f ) ∈ Z1
LD(U (Zp)) by Lemma 2.3.8 and c ∈ Z1

LD(U ad(Zp))
1. □

Theorem 4.3.2. Assume that p ̸= 2 and that the cup product

∪ : H 1(G K , U ad(OE))⊗ F× H 1(G K , U ad(OE))⊗ F→ H 2(G K , Z(U )(F))

is nontrivial.
Let [(c̄, f̄ )]∈H 1(G K ,U (F)) be a characteristic-p cocycle. If [c̄|G K ′

]∈H 1(G K ′,U ad(F)) admits a char-
acteristic-0 lift in H 1(G K ′,U ad(Zp)), then [(c̄, f̄ )] admits a characteristic-0 lift [(c, f )]∈H 1(G K ,U (Zp)).

Proof. We choose a cocycle (c̄, f̄ ) ∈ Z1
LD(U (F)) which defines the cohomology class [(c̄, f̄ )]. Clearly

c̄ ∈ Z1
LD(U ad(F))1. Say [d] ∈ H 1(G K ′, U ad(Zp)) is a lift of [c̄], which is defined by d ∈ Z1

LD(U ad(Zp)).
Write d̄ for the image of d in Z1

LD(U ad(Fp)). By changing d by a coboundary, we can assume d̄ = c̄.
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Lemma 4.3.1 produces (c, f ) ∈ Z1
LD(U (Zp)) such that c ∈ Z1

LD(U ad(Zp))
1. Now the theorem follows

from Lemma 4.1.5. □

Theorem 4.3.2 is saying that when U is a unipotent group of class 2 with one-dimensional center, there
exists a short exact sequence of pointed sets

H 1(G K , U (Zp))→ H 1(G K , U (Fp))
δ
−→ H 2(G K ′, U ad(Zp))

under technical assumptions.
Combining Theorems 4.3.2 and 3.3.1, we have very nice obstruction theory for lifting mod ϖ

cohomology classes in the mildly regular case.

Theorem 4.3.3. Assume p ̸= 2 and Z(U )(OE)=OE . Let r : G K → L(OE) be a fixed continuous group
homomorphism and equip U (Zp) with the G K -action G K

r
−→ L(Zp)→ Aut(U (Zp)). Let K ′/K be a

finite Galois extension of prime-to-p degree such that r |G K ′
is Lyndon–Demushkin and mildly regular.

There is a short exact sequence of pointed sets

H 1(G K , U (Zp))→ H 1(G K , U (Fp))
δ
−→ H 2(G K ′, U ad(Zp)),

where δ has a factorization H 1(G K , U (Fp))
z
−→ H 1(G K , U ad(Fp))→ H 2(G K ′, U ad(Zp)).

Proof. Write 1 for G K /G K ′ . By the moreover part of Theorem 3.3.1, there are two cases to consider.

Case I: the cup product (4-2), H 1(G K , U ad(Zp))⊗F×H 1(G K , U ad(Zp))⊗F→ H 2(G K , Z(U )(Zp))⊗F,
is nontrivial. This is a corollary of Theorem 4.3.2.

Case II: H 2(G K , Z(U )(F))= 0. The short exact sequence 0→Z(U )(OE)→Z(U )(OE)→Z(U )(F)→0
induces a long exact sequence H 2(G K , Z(U )(OE))→ H 2(G K , Z(U )(F))→ 0. By Nakayama’s lemma,
H 2(G K , Z(U )(OE))= 0, and thus H 2(G K , Z(U )(Zp))= 0 by flat base change.

Let [(c̄, f̄ )] ∈ H 1(G K , U (Fp)) be a cohomology class defined by (c̄, f̄ ) ∈ Z1
LD(U (Fp)).

Set δ : H 1(G K , U (Fp))→ H 2(G K ′, U ad(Zp)) to be the composite

H 1(G K , U (Fp))
[(c̄, f̄ )]7→[c̄]
−−−−−−−→ H 1(G K , U ad(Fp))→ H 2(G K ′, U ad(Zp)).

If δ([(c̄, f̄ )]) = 0, then there exists a lift c ∈ Z1
LD(U ad(Zp)) of c̄. By replacing c by the 1-average

of c, we assume c ∈ Z1
LD(U ad(Zp))

1. Since H 2(G K , Z(U )(Zp)) = 0, [c∪ c] = 0 and thus there exists
g ∈C1

LD(Z(U )(Zp))
1 such that c∪c=−d2(g). Write ḡ for the image of g in C1

LD(Z(U )(Fp)). We have
ḡ− f̄ ∈ Z1

LD(Z(U )(Fp))
1. Since H 2(G K , Z(U )(Zp)) = 0, there exists a lift h ∈ Z1

LD(Z(U )(Zp))
1 of

f̄ − ḡ. It is clear that [(c, g+ h)] ∈ H 1(G K , U (Zp)) is a lift of [(c̄, f̄ )]. □

Corollary 4.3.4. Assume p ̸= 2 and Z(U )(OE) = OE . Let r : G K → L(OE) be a continuous group
homomorphism.
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If there exists a finite Galois extension K ′/K of prime-to-p degree such that r |G K ′
is Lyndon–Demushkin

and mildly regular, then there is a short exact sequence of pointed sets

H 1(G K , U (Zp))→ H 1(G K , U (Fp))
δ
−→ H 2(G K , U ad(Zp))

where δ has a factorization H 1(G K , U (Fp))
z
−→ H 1(G K , U ad(Fp))→ H 2(G K , U ad(Zp)).

Proof. This is an immediate consequence of Theorem 4.3.3. □

5. The machinery for lifting nonabelian cocycles

Let K/Qp be a p-adic field. Let E/Qp be the coefficient field with ring of integers OE , residue field F

and uniformizer ϖ .

5.0.1. Emerton–Gee stacks. Let H be a connected reductive group over K which splits over a tame
extension K H/K. Denote by LH the Langlands dual group Ĥ ⋊ Gal(K H/H) where Ĥ is the split
connected reductive group over Z whose root datum is dual to that of H. The reduced Emerton–Gee
stack XLH ,red is a reduced algebraic stack defined over Fp (see [Lin 2023b, Theorem 1]).

Moreover, it is proved in many cases that XK ,LH ,red is equidimensional of dimension [K :Qp]dim Ĥ/BĤ ,
where BĤ is a Borel of Ĥ (see [Lin 2023b]).

5.0.2. Potentially semistable lifting rings. Write L := LH for simplicity. Let r̄ : G K → L(F) be a
mod ϖ Langlands parameter, that is, a continuous group homomorphism such that the composite
G K→

LH(Fp)→Gal(K H/K ) is the canonical quotient map. Let λ be a Hodge type and let τ be a inertial
Galois type (see [Lin 2023c] for the definitions). The potentially semistable deformation ring Rλ,τ,O

r̄ of r̄
of p-adic Hodge type λ is constructed in [Bellovin and Gee 2019, Theorem 3.3.8]. It is an O-flat quotient
of the universal lifting ring, and is equidimensional of dimension (1+ dim Ĥ + [K : Qp] dim Ĥ/BĤ )

when λ is a regular Hodge type.

5.1. A geometric argument of Emerton–Gee.

Definition 5.1.1. Let F be a coherent sheaf over a scheme X=Spec R. We say F is sufficiently generically
regular (SGR) if for each s ≥ 1, the locus

Xs := {x ∈ Spec R | dim κ(x)⊗R F ≥ s}

has codimension ≥ s+ 1 in Spec R.

Theorem 5.1.2. Let X = Spec R with R a complete reduced, Zp-flat local ring that is equidimensional of
dimension (1+ dim L + dimXL ,red). Let runiv

: G K → L(R) be a family of L-parameters on X. Assume
X [1/p] ̸= ∅. Let F : L → GL(V ) be an algebraic representation where V is a vector space scheme
over OE .

Assume H 2(G K , F(runiv)) is SGR over X and is supported on X⊗Zp Fp. Given any [c̄]∈H 1(G K , F(r̄)),
there exists a Zp-point of X giving rise to a Galois representation r◦ : G K → L(Zp), such that the
1-cocycle [c̄] admits a lift [c] ∈ H 1(G K , F(r◦)).
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Remark 5.1.3. Since H 2(G K ,−) (abelian coefficients) is the highest degree cohomology (H i (G K ,−)=0
for i > 2), H 2(G K ,−) commutes with base change. Thus we may view H 2(G K , F(runiv)) as a coherent
sheaf over X.

The proof is almost identical to that of [Emerton and Gee 2023, Theorem 6.3.2].
We would like to explain the main ideas behind the proof, and why we need the sufficiently generically

regular condition.
We have a complex of finitely generated projective modules over R concentrated on degree [0, 2]

C0
→ C1 d

−→ C2

which computes the Galois cohomology H •(G K , F(runiv)). Let Z1
:= ker(d) and B2

:= Im(d). A mod ϖ

cocycle [c̄] is represented by an element c̄ in the kernel of C1/ϖ→C2/ϖ . We fix an arbitrary lift c̃ ∈C1

of c̄. We can do a formal blowup Spec R̃→ Spec R, so that the pullback of B2 on Spec R̃ a locally free
sheaf. To make the exposition short, we simply assume B2 is locally free over Spec R, but we should not
think of Spec R as a local ring anymore, because after formal blow-up, there are more closed points in
the special fiber. Now we have a sequence of locally free sheaves of modules

C1
→ B2

→ C2.

The key here is we want to regard this as a sequence of vector bundles instead of sheaves of modules.
Write V (F) for Spec(SymF∨), the vector bundle associated to the coherent sheaf F . So we have a
sequence of scheme morphisms

V (C1) V (B2) V (C2)

Spec R

f

d

s f ◦s d◦s

The element c̃ of C1 defines a section s : Spec R→ V (C1) such that the section d ◦ s : Spec R→ V (C2)

intersects with the identity section eV (C2) : Spec R→ V (C2).
It turns out c̄ ∈ ker(C1/ϖ →C2/ϖ) admits a lift in Z1, as long as the section f ◦ s intersects with the

identity section eV (B2) of V (B2). The intersection (d ◦ s)∩ eV (C2) should occur above a codimension 1
locus of Spec R. If the support of H 2

=C2/B2 is small (that is, has big codimension), then the intersection
should happen at some point x ∈ Spec R outside of the support of H 2, and we are done.

We include a formal proof here, as suggested by a referee.

Proof. We follow the notation of [Emerton and Gee 2023, Theorem 6.3.2] closely. The Herr complex C •

(supported in degrees [0, 2]) computes H •(G K , F(runiv)). Since B2 equals to C2 over the generic fiber U=
X [1/p], by [Stacks, Tag 0815], there exists a U -admissible blowup π : X̃→ X such that π∗B2 is locally
free. Let C̃ • be the pullback complex π∗(C •). The corresponding 2-coboundaries B̃2

= π∗B2 (since it is
the highest degree coboundary). Thus the 1-cocycles Z̃1 is locally free and [C̃0

→ Z̃1
] is a good complex.

https://stacks.math.columbia.edu/tag/0815
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Lifting the class [c̄] to an element of κ⊗C1 (where κ is the residue field of R) and then to an element c
of C1. c can be thought of as a homomorphism R→C1 whose image under the coboundary lies in m RC2.
The composite b : R c

−→ C1
→ B2 pulls back to a section b̃ : OX̃ → B̃2. By [Emerton and Gee 2023,

Lemma 6.2.7] and the SGR property, b̃ has nonempty zero locus, which contain a point x̃ lying over the
closed point x ∈ X. The section c pulls back to a section c̃ :OX̃ → C̃1, whose valued at the point x̃ lies in
the fiber of Z̃1. In other words, the fiber of c̃ at x̃ defines a 1-cocycle in the complex κ(x̃)⊗[C̃0

→ Z̃1
],

giving rise to a class ē ∈ H 1(κ(x̃)⊗[C̃0
→ Z̃1

]) lifting the original class [c̄].
Since X̃ is Zp-flat, there exists a morphism f̃ : Spec Zp→ X̃ lifting x̃ . The composite f : Spec Zp

f̃
−→

X̃ → X lifts the closed point x ∈ X, and determines an L-parameter r◦ : G K → L(Zp). Since H 2(C̃ •)
is the kernel of the homomorphism of locally free sheaves B̃2 ↪→ C̃2 and is torsion, by [Emerton and
Gee 2023, Lemma 6.2.1] there is an effective Cartier divisor D contained in the special fiber of X̃ with
the property that for any morphism to X̃ that meets D properly, the higher derived pullbacks of H 2(C̃ •)
under this morphism vanish. Since f̃ meets the special fiber of X̃ properly and thus meets D properly,
Li f̃ ∗H 2(C̃ •)= 0 for i > 0. Thus

H 1(G K , F(r◦))= H 1( f̃ ∗C̃ •)= f̃ ∗H 1(C̃ •)= H 1( f̃ ∗[C̃0
→ Z̃1

]).

(See the last two paragraphs of the proof [Emerton and Gee 2023, Theorem 6.3.2] for explanations).
Choose a class e ∈ H 1( f̃ ∗[C̃0

→ Z̃1
]) lifting ē, which corresponds to a 1-cocycle c lifting ē by the

identifications above. □

5.2. A nonabelian lifting theorem.

Theorem 5.2.1. Let U be a unipotent linear algebraic group of class 2 whose center is isomorphic
to Ga . Write Z(U ) for the center of U and U ad for U/Z(U ). Fix an algebraic group homomorphism
φ : L→ Aut(U ) with graded pieces φad

: L→ GL(U ad) and φz
: L→ GL(Z(U )).

Fix a mod ϖ representation r̄ : G K → L(F). Let [c̄] ∈ H 1(G K , U (F)) be a characteristic-p cocycle.
Let Spec R be an irreducible component of a crystalline lifting ring of r̄ . Assume

(1) H 2(G K , φad(runiv)) is SGR and is supported on the special fiber of Spec R;

(2) p ̸= 2;

(3) there exists a finite Galois extension K ′/K of prime-to-p degree such that φ(r̄)|G K ′
is Lyndon–

Demushkin; and

(4) there exists a Zp-point of Spec R which is mildly regular when restricted to G K ′ . (In particular,
Spec R[1/p] ̸= 0.)

Then there exists a Zp-point of Spec R which gives rise to a Galois representation r◦ : G K → L(Zp)

such that if we endow U (Zp) with the G K -action G K
r◦
−→ L(Zp)

φ
−→ Aut(U )(Zp), the cocycle [c̄] has a

characteristic-0 lift [c] ∈ H 1(G K , U (Zp)).

Proof. Take F = φad in Theorem 5.1.2. The theorem follows from Corollary 4.3.4. □
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We explain how the above theorem will be used. Let G be a connected reductive group over OE . Let
ρ̄ : G K → G(F) be a mod ϖ representation. Assume ρ̄ factors through a parabolic P ⊂ G, with Levi
decomposition P = L ⋉U. Denote by φ : L→Aut(U ) the conjugation action. We assume U is unipotent
of class 2, so U ad is an abelian group. Write r̄ for the Levi factor of ρ̄.

P(Fp)

��

G K

ρ̄
<<

r̄
// L(Fp)

Then ρ̄ defines a cohomology class [c̄] ∈ H 1(G K , φ(r̄)), and the theorem above can be used to lift [c̄].

5.3. An unobstructed lifting theorem. The following result will be used in the proof of the main theorem.

Proposition 5.3.1. Let V be a unipotent linear algebraic group such that V (Zp) is equipped with a
continuous G K -action. Let [c̄] ∈ H 1(G K , V (Fp)) be a characteristic-p cocycle. Let Z(V ) be the center
of V, and write V ad for V/Z(V ). The quotient V→ V ad induces a map ad : H 1(G K , V )→ H 1(G K , V ad).
Assume H 2(G K , Z(V )(Fp))= 0.

If ad([c̄]) admits a lift in H 1(G K , V ad(Zp)), then [c̄] admits a lift in H 1(G K , V (Zp)).

Proof. By [Serre 2002, Proposition 43], since Z(V ) is a central normal subgroup of V, there exists a long
exact sequence of pointed sets

H 1(G K , V (Zp))

��

ad
// H 1(G K , V ad(Zp))

δ
//

��

H 2(G K , Z(V )(Zp))

��

H 1(G K , V (Fp))
ad
// H 1(G K , V ad(Fp)) // H 2(G K , Z(V )(Fp))

By Nakayama’s lemma, we have H 2(G K , Z(V )(Zp))=0. In particular, there exists [c′]∈H 1(G K ,V (Zp))

such that ad([c̄]) = ad([c′]) mod ϖ . Write [c̄′] for [c′] mod ϖ . Say [c̄] = [c̄′] + [ f̄ ] for some [ f̄ ] ∈
H 1(G K , Z(V )(Fp)) (recall that H 1(G K , V ) is a H 1(G K , Z(V ))-torsor). Since H 1(G K , Z(V )(Zp))= 0,
there exists a lift [ f ] of f̄ . The cocycle [c] := [c′] + [ f ] is a lift of [c̄]. □

6. Codimension estimates of loci cut out by H2

Assume p > 3. Let K/Qp be a finite extension. Let E/Qp be a finite extension with ring of integers OE ,
uniformizer ϖ , and residue field F.

6.1. The Emerton–Gee stack. We follow the notation of [Emerton and Gee 2023]. For each d > 0,
Emerton and Gee [2023] constructed the moduli stack Xd = XK ,d of projective étale (φ, 0K )-modules of
rank d , which is a finite-type algebraic stack over F.

We prove a mild generalization of [Emerton and Gee 2023, Proposition 5.4.4(1)].
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Let T be a reduced finite-type Fp-scheme. Let f : T → (Xa,red)Fp
× (Xd,red)Fp

be a morphism. There
is a morphism

η : (Xa,red)Fp
× (Xd,red)Fp

→ (Xad,red)Fp

sending a pair of (φ, 0)-modules M, N to their hom module Homφ,0(M, N ), by the moduli interpretation.
The morphism η( f ) corresponds to a family ρ̄T of rank ad Galois representations over T. We assume
H 2(G K , ρ̄η(t)) is of constant rank for all t ∈ T (Fp). By [Emerton and Gee 2023, Lemma 5.4.1], the
coherent sheaf H 2(G K , ρ̄T ) is locally free of rank r as an OE -module.

By [Emerton and Gee 2023, Theorem 5.1.22], we can choose a complex of finite rank locally free
OE -modules

C0
T → C1

T → C2
T

computing H •(G K , ρ̄T ). Since H 2(G K , ρ̄T ) is a locally free sheaf, the truncated complex

C0
T → Z1

T

is again a complex of locally free OT -modules. The vector bundle V (Z1
T ) := Spec(Sym(Z1

T )∨) associated
to the locally free sheaf Z1

T parametrizes all extensions

0→ ρ̄η(t)→?→ Fp→ 0, t ∈ T (Fp)

of the trivial G K -representation Fp by ρ̄η(t). There are two projection morphisms

( )1 : (Xa,red)Fp
× (Xd,red)Fp

→ (Xa,red)Fp
and ( )2 : (Xa,red)Fp

× (Xd,red)Fp
→ (Xd,red)Fp

.

For each t ∈ T (Fp), f (t)1 ∈ (Xa,red)(Fp) corresponds to a rank-a Galois representation ρ̄t1 , and f (t)2 ∈

(Xd,red)(Fp) corresponds to a rank-d Galois representation ρ̄t2 . We have ρ̄η(t) = HomG K (ρ̄t1, ρ̄t2). So we
can also regard V (Z1

T ) is a scheme parametrizing all extensions

0→ ρ̄t1 →?→ ρ̄t2 → 0, t ∈ T (Fp)

and we have a morphism sending extension classes to equivalence classes of G K -representations,

g : V (Z1
T )→ (Xa+d,red)Fp

.

Lemma 6.1.1. Let e denote the dimension of the scheme-theoretic image of T in (Xa,red)Fp
× (Xd,red)Fp

.
Then the scheme-theoretic image of V = V (Z1

T ) in (Xa+d,red)Fp
has dimension at most

e+ r + ad[K :Qp].

Proof. Without loss of generality, we assume T (and hence V ) is irreducible. The proof is a routine
calculation using stacks. We follow the proof of [Emerton and Gee 2023, Proposition 5.4.4] closely.
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Let v ∈ V (Fp). Write t for the composite Spec Fp
v
−→ V → T. Write f (t) for the composite f ◦ t

Write g(v) for the composite g ◦ v. Define

T f (t) := T ×
f,(Xa,red)Fp×(Xd,red)Fp , f (t)

Spec Fp,

Vg(v) := V ×
g,(Xa,red)Fp×(Xd,red)Fp ,g(v)

Spec Fp,

V f (t),g(v) := Vg(v) ×
(Xa,red)Fp×(Xd,red)Fp , f (t)

Spec Fp.

Note that V f (t),g(v)
∼= T f (t)×T Vg(v).

By [Stacks, Tag 0DS4], it suffices to show, for v lying in some dense open subset of V,

dim V f (t),g(v) ≥ dim V − (e+ r + ad[K :Qp]).

Let ρ̄ f (t)1 denote the Galois representation corresponding to f (t)1 : Spec Fp → (Xa,red)Fp
. Let ρ̄ f (t)2

denote the Galois representation corresponding to f (t)2 : Spec Fp→ (Xd,red)Fp
. Say G t1 := Aut(ρ̄ f (t)1),

and G t2 := Aut(ρ̄ f (t)2). The morphism f (t) factors through a monomorphism

[Spec Fp/G t1]× [Spec Fp/G t2] ↪→ (Xa,red)Fp
× (Xd,red)Fp

which induces a monomorphism

([Spec Fp/G t1]× [Spec Fp/G t2]) ×
(Xa,red)Fp×(Xd,red)Fp

Vg(v) ↪→ Vg(v).

So it suffices to show

dim V f (t),g(v) ≥ dim V − (e+ r + ad[K :Qp])+ dim G t1 + dim G t2 (6-1)

for v lying in a dense open of V.
There exists an étale cover S of (T f (t))red such that the pullback family ρ̄S is a trivial family with fiber ρ̄t .
Let C0

S→ Z1
S denote the pullback family of C0

T → Z1
T to S. C0

S→ Z1
S is also the pullback family of

the fiber C0
t → Z1

t to S. Write W for the affine scheme associated to H 1(G K , ρ̄∨f (t)1
⊗ ρ̄ f (t)2). By the

isomorphism

H 1(G K , ρ̄∨f (t)1
⊗ ρ̄ f (t)2)

∼= ExtG K (ρ̄ f (t)1, ρ̄ f (t)2)

there is a morphism W → (Xa+d,red)Fp
. Denote by w the image of v in w. We have

S×T Vg(v) = S×T V ×W Wh(w).

Let V ′ be the kernel of S×T V → S×Fp
W, which is a trivial vector bundle over S. We have

dim V f (t),g(v) = dim S×T Vg(v)

= rank V ′+ dim S+ dim Wh(w)

= rank Z1
T − dim H 1(G K , ρ̄∨f (t)1

⊗ ρ̄ f (t)2)+ dim S+ dim Wh(w).

https://stacks.math.columbia.edu/tag/0DS4
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Note that dim V − dim T = rank Z1
T , and, by the local Euler characteristic,

H 0(G K , ρ̄∨f (t)1
⊗ ρ̄ f (t)2)− H 1(G K , ρ̄∨f (t)1

⊗ ρ̄ f (t)2)+ r =−ad[K :Qp].

We can replace T by a dense open of T where e = dim T − dim T f (t) = dim T − dim S. Combining all
these equalities, (6-1) becomes

dim Wh(w) ≥ dim H 0(G K , ρ̄∨f (t)1
⊗ ρ̄ f (t)2)+ dim G t1 + dim G t2

which follows from the fact that

H 0(G K , ρ̄∨f (t)1
⊗ ρ̄ f (t)2)⋊ (G t1 ×G t2)⊂ Aut(ρ̄w)

and dim Wh(w) ≥ dim Aut(ρ̄w). □

We recall some terminology from [Emerton and Gee 2023]. Denote by urx : Gm → X1 the family
of unramified characters of G K . Let T be a reduced finite-type F-scheme. Let T → X be a morphism,
corresponding to a family ρ̄T of G K -representations over T. We can construct the family of unramified
twisting ρ̄T ⊠urx over T ×Gm . ρ̄T is said to be twistable if whenever ρ̄t ∼= ρ̄t ′⊗ura for t, t ′ ∈ T (Fp) and
a ∈ F×p , we have a = 1. ρ̄T is said to be essentially twistable if for each t ∈ T (Fp), the set of a ̸= 1 for
which ρ̄t ∼= ρ̄t ′ ⊗ ura is finite.

We say ρ̄T is untwistable if ρ̄ is not essentially twistable.
From now on, write X = (X2,red)Fp

for the moduli stack parametrizing (φ, 0)-modules of rank 2.
Let r̄univ be the universal family of (φ, 0)-modules over X .

6.1.2. Remarks on the word use “locus”. Let (P) be a property that can be written as

(P)= (P1)− (P2)

where both (P1) and (P2) are closed conditions.
If X be a moduli stack of finite type over Fp, the locus of objects satisfying property (Pi) is by

definition the scheme-theoretic of a finite-type morphism Y →X such that all objects of X (Fp) satisfying
property (Pi) are in the image of Y (Fp), i = 1, 2.

The locus of objects satisfying property (P) is by definition the locus of objects satisfying (P1) − locus
of objects satisfying (P2).

6.2. Loci cut out by H2(G K , sym3 / det2). Write H 2 for H 2(GK,sym3(r̄univ)/det(r̄univ)2). Let x∈X (Fp)

with corresponding Galois representation r̄x : G K → GL2(Fp).
We are interested in H 2(G K , sym3 / det2) because it is a composition factor of the unipotent radical of

the short root parabolic of the exceptional group G2, regarded as a representation of the corresponding
Levi factor.

Lemma 6.2.1. If r̄x is irreducible, then

h2
x := dimFp

H 2
(

G K ,
sym3(r̄x)

det(r̄x)2

)
≤ 2.
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Proof. An irreducible mod ϖ representation is of the shape IndG K
G K2

χ̄ for some character χ̄ of the degree 2
unramified extension K2 of K. A direct computation shows

sym3(r̄x)= Ind(χ̄3)⊕ Ind(χ̄ det r̄x).

Both

H 2
(

G K ,
Ind(χ̄3)

det(r̄x)2

)
and H 2

(
G K ,

Ind(χ̄ det r̄x)

det(r̄x)2

)
have dimension at most 1. This is because the induction of a character can’t be a direct sum of two
isomorphic characters (when p ̸= 2), by Shapiro’s lemma and local Tate duality. □

Corollary 6.2.2. H 2 is SGR when restricted to the irreducible locus.

Proof. Up to unramified twist, there are only finitely many irreducible representations. By Lemma 6.2.1,
we have h2

x ≤ 2 when r̄x is irreducible.
We first consider the sublocus where h2

x = 2. This sublocus consists of finitely many irreducible
G K -representations. Thus the sublocus in question is the scheme-theoretic union of the scheme-theoretic
images of finitely many morphisms Spec Fp→ X corresponding to the finitely many irreducibles. The
automorphism group of such an irreducible representation is Gm and the morphisms Spec Fp→ X factor
through [Spec Fp/Gm] → X . The sublocus has dimension at most −1.

Then we consider the locus where h2
x ≤ 1. This sublocus consists of the unramified twists of finitely

many irreducible G K -representations. Thus the sublocus in question is the scheme-theoretic union of the
scheme-theoretic images of finitely many morphisms Gm→ [Gm/Gm] → X corresponding to the finitely
many irreducibles, and has dimension at most dim[Gm/Gm] = 0.

In either case, the dimension of the locus is at most [K :Qp] − h2
x . □

Lemma 6.2.3. If r̄x is a nontrivial extension of two characters, then

h2
x := dim H 2

(
G K ,

sym3(r̄x)

det(r̄x)2

)
≤ 1

and when the equality holds, the quotient character of r̄x is a character whose third power is Fp(1).

Proof. This is where we make use of the assumption p > 3. Say r̄x ∼
[

χ̄1 c̄
χ̄2

]
. We claim

sym3(r̄x)∼


χ̄3

1 χ̄2
1 c̄ ∗ ∗

χ̄2
1 χ̄2 2χ̄1χ̄2c̄ ∗

χ̄1χ̄
2
2 3χ̄2

2 c̄

χ̄3
2

 ,

which has a unique G K -invariant quotient line. Let {e1, e2} be a basis of the representation space of r̄x

such that e1 is an invariant line. Then {e3
1, e2

1e2, e1e2
2, e3

2} is a basis of the representation space of sym3(r̄x).
By duality, we only need to show sym3(r̄x) has a unique invariant line. Clearly {e3

1} defines an invariant
line. Assume there is another invariant line span(v). We quotient sym3(r̄x) by span(e3

1). The quotient
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representation has a unique invariant line generated by the image of e2
1e2 (we postpone the explanation to

the next paragraph). So v ∈ span(e3
1, e2

1e2). But then we must have v ∈ span(e3
1), since [c̄] is a nontrivial

extension class.
The quotient representation sym3(r̄x)/ span(e3

1) has a G K -invariant line spanned by the image of e2
1e2.

Say span(u) is another invariant line of sym3(r̄x)/ span(e3
1). We have u ∈ span(e2

1e2, e1e2
2)
∼= χ̄1χ̄2⊗ r̄x .

Thus u ∈ span(e2
1e2) since c̄ is a nontrivial extension. □

Corollary 6.2.4. H 2 is SGR when restricted to the locus where r̄x is a nontrivial extension of two
characters.

Proof. Say r̄x is the extension of β̄ by ᾱ. By Lemma 6.2.3, we have h2
x ≤1 when r̄x is a nontrivial extension

of characters. So the locus where r̄x is a nontrivial extension of characters consists of four subloci:

(i) h2
x = 1 and Ext2(β, α)= 0;

(ii) h2
x = 1 and Ext2(β, α) ̸= 0;

(iii) h2
x = 0 and Ext2(β, α)= 0; and

(iv) h2
x = 0 and Ext2(β, α) ̸= 0.

Let T ⊂ (X1,red)Fp
× (X1,red)Fp

be the locus of the pair (α, β), α, β ∈ X1,red(Fp); say dim T = e, and
dim Ext2(β, α)= r . By Lemma 6.1.1, each sublocus has dimension at most

e+ r + [K :Qp].

In sublocus (i), β has only finitely many choices once α is chosen, so e = −1, r = 0; in sublocus (ii),
both β and α have only finitely many choices, so e = −2, r = 1; in sublocus (iii), both β and α

can vary in a dense open of (X1,red)Fp
, so e = 2 dim(X1,red)Fp

= 0, r = 0; in sublocus (iv), when α

is chosen, β has only finitely many choices, so e = −1, r = 1. We can verify that in each case
e+ r + [K :Qp] ≤ dimX − h2

x = [K :Qp] − h2
x . □

Lemma 6.2.5. If r̄x is a direct sum of distinct characters, then

H 2
(

G K ,
sym3(r̄x)

det(r̄x)2

)
≤ 2.

Proof. Say r̄x ∼
[

χ̄1
χ̄2

]
. We have

sym3(r̄x)

det(r̄)2
∼= χ̄1χ̄

−2
2 ⊕ χ̄−1

2 ⊕ χ̄−1
1 ⊕ χ̄2χ̄

−2
1 .

If χ̄1 ̸= χ̄2, then the multiset {χ̄1χ̄
−2
2 , χ̄−1

2 , χ̄−1
1 , χ̄−2

1 χ̄2} contains at most 2 isomorphic characters. □

Corollary 6.2.6. H 2 is SGR when restricted to the locus where r̄x is a direct sum of distinct characters.

Proof. By Lemma 6.2.5, we have h2
x ≤ 2 when x̄ = α⊕β is a direct sum of distinct characters.
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In the sublocus where h2
x = 2, we must have ±α = ±β = F(−1). The sublocus is the scheme-

theoretic union of the scheme-theoretic image of finitely many Spec Fp×Spec Fp→X and has dimension
0− 2=−2.

In the locus where h2
x = 1, we have one of the following:

(i) α = F(−1), (ii) β = F(−1),

(iii) α = β2(−1), (iv) β = α2(−1).

In each of these cases, the locus has dimension dim Gm − dim Aut(r̄x)= 1− 2=−1.
In the locus where h2

x = 0, both α and β lives in an untwistable family, and the locus has dimension
2 dim Gm − dim Aut(r̄x)= 2− 2= 0. □

Lemma 6.2.7. If r̄x is a direct sum of isomorphic characters, then

H 2
(

G K ,
sym3(r̄x)

det(r̄x)2

)
≤ 4.

Proof. This is trivial because the underlying Fp-vector space is four-dimensional. □

Corollary 6.2.8. H 2 is SGR when restricted to the locus where r̄x is a direct sum of isomorphic characters.

Proof. The automorphism group is four-dimensional. So the locus in the moduli stack has dimension
dim Gm − dim Aut(r̄x)= 1− 4=−3. □

Theorem 6.2.9. The locus of r̄x in X for which

H 2
(

G K ,
sym3(r̄x)

det(r̄x)2

)
≥ r

is of dimension at most [K :Qp] − r .

Proof. This theorem follows immediately from Lemmas 6.2.1, 6.2.3, 6.2.5, 6.2.7, and their corollaries. □

Fix a mod ϖ representation r̄ : G K → GL2(F). Let λ be a Hodge type. Let R be an irreducible
component of the crystalline lifting ring Rcrys,λ,OE

r̄ . Assume Spec R[1/p] ̸=∅. Let runiv be the universal
family of Galois representations on R.

Since H 2(G K , sym3(runiv)/det(runiv)2) is a coherent sheaf, by the semicontinuity theorem, the locus
Xs := {x ∈ Spec R | dim κ(x)⊗R H 2

≥ s} is locally closed, and has a reduced induced scheme structure.

Theorem 6.2.10. Let R be an irreducible component of the crystalline lifting ring of regular labeled
Hodge–Tate weights. If H 2(G K , sym3(runiv)/det(runiv)2) is ϖ -torsion, the locus{

x ∈ Spec R | dim κ(x)⊗R H 2
(

G K ,
sym3(runiv)

det(runiv)2

)
≥ s

}
has codimension ≥ s+ 1 in Spec R for s ≥ 1.

Proof. The proof is identical to that of [Emerton and Gee 2023, Theorem 6.1.1] if we use Theorem 6.2.9
instead of [Emerton and Gee 2023, Theorem 5.5.12]. □
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7. The existence of crystalline lifts for the exceptional group G2

7.1. Parabolics of G2. Let G2 be the Chevalley group over OE of type G2.
Let E/Qp be a finite extension with ring of integers OE , residue field F and uniformizer ϖ .
We remind the reader of the root system of G2:

5π/6 α

β β+α β+2α β+3α

2β+3α

7.1.1. The short root parabolic. Let P ⊂ G2 be the short root parabolic, which admits a Levi decomposi-
tion P = L ⋉U. The Levi factor L is a copy of GL2 and the unipotent radical U is a unipotent group of
class 2. Write U ad for U/Z(U ).

Fix an isomorphism std : L ∼= GL2. We have

• Z(U )∼= Ga; and

• U ad ∼= G⊕4
a .

Write Lie U = Z(U )⊕U ad. The Levi factor acts on U by conjugation. We have an isomorphism of
L-modules

Lie U ∼=
1

det2
sym3(std)⊕

1
det

(7-1)

where det : L→ Gm is the determinant character, and std : L
∼=
−→ GL2 is the fixed isomorphism. The

above short exact sequence can be upgraded to a short exact sequence of groups with L-actions

0→
1

det
→U →

1

det2
sym3(std)→ 0.

For lack of reference, we explain how to get (7-1). By inspecting the root system for G2, we find
that the roots whose root group is contained in U ad lie in a single line. Therefore U ad is an irreducible
L-module, and is thus isomorphic to sym3(std) up to an algebraic character; then computation shows the
character is 1/ det2 (also see the SageMath code on my homepage).

7.1.2. The long root parabolic. Let Q⊂G2 be the long root parabolic, which admits a Levi decomposition
Q = L ′⋉V where L ′ ∼=GL2 and V is a unipotent group of class 3. Fix an isomorphism std : L ′

∼=
−→GL2.

Write det for the composition L ′ std
−→ GL2

det
−→ GL1.

https://sharkoko.space/
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Write U ′ for V/Z(V ). Then U ′ is a unipotent group of class 2 whose center is isomorphic to Ga . The
conjugation action of L ′ on U ′ is given by U ′/Z(U ′)∼= std, and Z(U ′)∼= det, as L ′-modules.

Theorem 7.1.3. Assume p > 3. Let K/Qp be a p-adic field. Let ρ̄ : G K → G2(Fp) be a mod ϖ Galois
representation. Then ρ̄ admits a crystalline lift ρ◦ : G K → G2(Zp) of ρ̄.

Moreover, if ρ̄ factors through a maximal parabolic and the Levi factor r̄ := r̄ρ̄ of ρ̄ admits a Hodge–Tate
regular and crystalline lift r1 such that the adjoint representation φLie(r1) has Hodge–Tate weights slightly
less than 0, then ρ◦ can be chosen such that it factors through the same maximal parabolic and its Levi
factor rρ◦ lies on the same irreducible component of the spectrum of the crystalline lifting ring that r1 does.

Proof. If ρ̄ is irreducible, then ρ̄ admits a crystalline lift by [Lin 2022].
The exceptional group G2 has two maximal parabolic subgroups: the short root parabolic, and the long

root parabolic.
If ρ̄ is reducible, then it factors through either parabolic subgroups.

7.1.4. The short root parabolic case. Let P ⊂ G2 be the short root parabolic. Recall that P has a Levi
decomposition P = L ⋉U. Fix an isomorphism L ∼= GL2.

By Lemma 3.3.2, there exists a finite Galois extension K ′/K, of prime-to-p degree such that r̄ |K ′ is
Lyndon–Demushkin.

Write Z(U ) for center of U, and write U ad for U/Z(U ). Write φ : L→ Aut(U ) for the conjugation
action, with graded pieces φad

: L→ GL(U ad) and φz
: L→ GL(Z(U )). Write φLie for φad

⊕φz.

Lemma 7.1.5. Assume p > 2. There exists a Hodge–Tate regular crystalline lifting r◦ : G K → L(Zp) of
the Levi factor r̄ , such that the adjoint representation φLie(r◦) : G K

r◦
−→ L(Zp)→ GL(Lie U (Zp)) has

labeled Hodge–Tate weights slightly less than 0.

Proof. It is well known Hodge–Tate regular crystalline lifts of r̄ exists since L ∼= GL2. We have

φLie(r◦)=
1

det r◦2
sym3(r◦)⊕

1
det r◦

.

So by replacing r◦ by a Tate twist, we can ensure φLie(r◦) has labeled Hodge–Tate weights slightly less
than 0. □

Let Spec R be an irreducible component (with nonempty generic fiber) of a crystalline lifting ring Rcrys,λ
r̄

of regular labeled Hodge–Tate weights λ such that the labeled Hodge–Tate weights φLie(λ) are slightly
less than 0. By the lemma above, such a Spec R exists.

Let runiv
: G K → L(R) be the universal Galois representation.

The mod ϖ Galois representation r̄ defines a Galois action φ(r̄) : G K → Aut(U (Fp)) on U (Fp). By
Section 4.1.3, the datum of ρ̄ : G K → G2(Fp) is encoded in a nonabelian cocycle [c̄] ∈ H 1(G K , U (Fp)).

The strategy for lifting ρ̄ is as follows. We choose a suitable Zp-point x of Spec R which defines a lift
rx : G K → L(Zp) of r̄ , and endow U (Zp) with the Galois action φ(rx) : G K

rx
−→ L(Zp)→ Aut(U (Zp)).

There is a map of pointed set H 1(G K , U (Zp))→ H 1(G K , U (Fp)). If the cohomology class [c̄] admits a
lift [c] ∈ H 1(G K , U (Zp)), then ρ̄ admits a lift ρ : G K → G2(Zp) whose datum is encoded in [c]. Such
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a lift ρ is crystalline by the main result of [Lin 2019], since φLie(r◦) has labeled Hodge–Tate weights
slightly less than 0.

By Theorem 5.2.1, to lift the nonabelian 1-cocycle [c̄], it suffices to verify the following:

(1) H 2(G K , sym3(runiv)/ det2(runiv)) is SGR and supported on the special fiber of Spec R.

(2) p ̸= 2.

(3) There exists a finite Galois extension K ′/K of prime-to-p degree such that φ(r̄)|G K ′
is Lyndon–

Demushkin.

(4) There exists a Zp-point of Spec R which is mildly regular when restricted to G K ′ .

Item (1) is verified by Theorem 6.2.10. Note that since the Hodge type of Spec R is chosen so that
sym3(rx)/ det(rx)

2 has labeled Hodge–Tate weights slightly less than 0, H 2(G K , sym3(rx)/ det(rx)
2) is

torsion for any characteristic-0 point x of Spec R. Item (3) follows from Lemma 3.3.2, and (4) follows
from Proposition 3.0.5.

7.1.6. The long root parabolic case. Let Q ⊂G2 be the long root parabolic. Q has a Levi decomposition
Q = L ′⋉ V. Fix an isomorphism std : L ′

∼=
−→ GL2. Write det for the composition L ′ std

−→ GL2
det
−→ GL1.

Let {1} = V0 ⊂ V1 ⊂ V2 ⊂ V3 = V be the upper central series of V. Then the conjugation action of L ′

on each graded piece is given by

• V3/V2 ∼= det⊗ std;

• V2/V1 ∼= det;

• V1 ∼= std.

Suppose ρ̄ factors through the long root parabolic Q, but not the short root parabolic P. Then the
Levi factor

r̄ : G K
ρ̄
−→ Q(Fp)→ L ′(Fp)

is necessarily an irreducible representation. If we endow each graded piece of V (Fp) with the Galois
action G K

r̄
−→ L(Zp)→ GL(Vi+1(Fp)/Vi (Fp)), then we have, by local Tate duality,

H 2(G K , V3(Fp)/V2(Fp))= H 2(G K , r̄ ⊗ det r̄)= 0,

H 2(G K , V1(Fp))= H 2(G K , r̄)= 0.

So the only cohomological obstruction occurs in the second graded piece.
The datum of ρ̄ is encoded in a nonabelian cocycle [c̄] ∈ H 1(G K , V (Fp)). Just as is done in the short

root parabolic case, it suffices to lift the cocycle [c̄]. By Proposition 5.3.1, since the only cohomological
obstruction lies in the second graded piece, it suffices to lift ad([c̄]) ∈ H 1(G K , (V/V1)(Fp)).

Write U ′ for V/V1. Recall that U ′ is a unipotent group of class 2 with rank-1 center, and we can
directly appeal to Theorem 5.2.1. We repeat the procedure worked out in the short root case 7.1.4.

Let r◦ be a lift of r̄ such that r◦ is Hodge–Tate regular and crystalline and the Hodge–Tate weights
of r◦ are strictly less than 0.
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Let Spec R be the irreducible component of the crystalline lifting ring of r̄ containing r◦. Write
runiv
: G K → GL2(R) for the universal family.

Write Z(U ′) for the center of U ′, and write U
′ ad for U ′/Z(U ′). Write φad for the conjugate action

L ′→ Aut(U
′ ad) and write φz for the conjugate action L ′→ Aut(Z(U ′)).

Note that φad(runiv)= runiv and φz(runiv)= det runiv.
We have the following checklist:

(1) H 2(G K , det(runiv)runiv) is SGR.

(2) p ̸= 2.

(3) There exists a finite Galois extension K ′/K of prime-to-p degree such that φ(r̄)|G K ′
is Lyndon–

Demushkin.

(4) There exists a Zp-point of Spec R which is mildly regular when restricted to G K ′ .

By the assumption H 2(G K , det(runiv)runiv) = 0. (3) follows from Lemma 3.3.2, and (4) follows from
Proposition 3.0.5. □

Appendix A: Nondegeneracy of mod ϖ cup product for G2

Let F be a finite field of characteristic p > 3. Write G2 for the Chevalley group over F of type G2.
Let P be the short root parabolic of G2. Let P = L⋉U be the Levi decomposition. Let r̄ :G K → L(F)

be a Galois representation which is Lyndon–Demushkin. Since L ∼= GL2, r̄ is the extension of two
trivial characters. Denote by φ : L→ Aut(U ) the conjugation action. G K acts on U via the conjugate
action G K

r◦
−→ L φ

−→ Aut(U ).
We set up a computational framework to prove various claims. Let {x0, . . . , xn, xn+1} be the Demushkin

generators.
Let {e1, e2} be a basis of the representation space of r̄ such that r◦ is upper-triangular with respect to

this basis. Without loss of generality, assume e1 =
[ 1

0

]
, e2 =

[0
1

]
. Say for i = 0, . . . , n+ 1, r̄(xi )=

[1 li
1

]
.

The set {e3
1, e2

1e2, e1e2
2, e3

2} is a basis of the representation space sym3(r̄), which is identified with U ad(F).
The root system of G2 can be found in Section 7.1. In the diagram, α is the short root, and β is the

short root. Each root x generates a root group Ux ⊂U. The short root parabolic P has seven root groups:
the five root groups

{Uβ, Uβ+α, Uβ+2α, Uβ+3α, U2β+3α}

lying above the x-axis generates the unipotent radical U, the two root groups {Uα, U−α} lying on the
x-axis are the root groups of the Levi factor group L . Say under the identification std : L ∼= GL2, the
matrices

[ 0
0
∗

0

]
are identified with the root group Uα. Now we have identifications

span e3
1 ∼Uβ, span e2

1e2 ∼Uβ+α, span e1e2
2 ∼Uβ+2α, span e3

2 ∼Uβ+3α.

For ease of notation, write E0 := e3
1, E1 := e2

1e2, E2 := e1e2
2, E3 := e3

2. A basis of

C1
LD(U ad(OE))∼= {⟨x0, . . . , xn+1⟩ →Uβ(OE)⊕Uβ+α(OE)⊕Uβ+2α(OE)⊕Uβ+3α(OE)}
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is given by

B =


x∗0 E0, x∗1 E0, . . . , x∗n+1 E0,

x∗0 E1, x∗1 E1, . . . , x∗n+1 E1,

x∗0 E2, x∗1 E2, . . . , x∗n+1 E2,

x∗0 E3, x∗1 E3, . . . , x∗n+1 E3

,

where x∗i E j is the cochain c : ⟨x0, . . . , xn+1⟩ such that c(xk)= δik E j , where δik is the Kronecker delta.
For any c ∈ C1

LD(U ad), we can write down the B-coordinates [c]B := (cv)v∈B of c.

Lemma A.0.1. The cup products on cochains

∪F : C1
LD(U ad(F))×C1

LD(U ad(F))→ C2
LD(Z(U )(F))

is nondegenerate.

Ideas. We compute the cup products v∪w for v, w ∈B. The matrix [∪F]B is anti-lower-triangular, (that
is, of the shape 0 0 0 ∗

0 0 ∗ ∗
0 ∗ ∗ ∗
∗ ∗ ∗ ∗


whose antidiagonal blocks are constant invertible matrices), and thus nondegenerate.

To help the reader better understand what’s going on, we attached SageMath code in Appendix B.

Proof. Recall the relator of the Lyndon–Demushkin group is

R = xq
0 (x0, x1)(x2, x3) · · · (xn, xn+1).

Since we are working mod ϖ , we have for any p > 5, any g ∈ G K ′ , φ(r̄(g))p
≡ id mod ϖ (See

Appendix B for the verification). In particular, the relator R reduces to

(x0, x1) . . . (xn, xn+1)

when we compute mod ϖ . (When p = 5, things are still good, and can be confirmed by running the
SageMath code in Appendix B.)

We regard cochains in C1
LD(U ad(F)) as a (U ad(F))-valued function on the free group with generators

{x0, . . . , xn+1},
Now we let c be the “universal” mod ϖ 1-cochain. That is, we let

λ0,0, λ1,0, . . . , λn+1,0,
λ0,1, λ1,1, . . . , λn+1,1,
λ0,2, λ1,2, . . . , λn+1,2,
λ0,3, λ1,3, . . . , λn+1,3


be indeterminants, and set

c :=
∑

λi, j x∗i E j ∈ C1
LD(U ad(F))⊗Z[λi, j ].

The cup product

c∪ c = Q(c) ∈ C2
LD(Z(U )(F))⊗Z[λi, j ] = Z(U )(F)⊗Z[λi, j ] ∼= F[λi, j ]
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will be a quadratic form in variables {λi, j }, and the matrix of this quadratic form is nothing but the
matrix [∪F]B. Recall that c∪ c = Q(c) is defined to be the projection of c̃(R) onto the center of the Lie
algebra Lie U, where c̃ ∈C1

LD(U (F)) is the unique extension of c to a U (F)-valued cochain as is explained
in Section 2.

Write [∪F]B as a block matrix

[∪F]B =


β β+α β+2α β+3α

β M11 M12 M13 M14

β+α M21 M22 M23 M24

β+2α M31 M32 M33 M34

β+3α M41 M42 M43 M44

,

where each Mi j is an (n+ 2)× (n+ 2) matrix. We say the blocks M24, M33, M34, M42, M43, M44 are
strictly below the antidiagonal, and we call M41, M32, M23 and M14 the antidiagonal blocks:


β β+α β+2α β+3α

β

β+α M24

β+2α M33 M34

β+3α M42 M43 M44




β β+α β+2α β+3α

β M14

β+α M23

β+2α M32

β+3α M41


strictly below antidiagonal antidiagonal blocks

Sublemma. Let g = g1g2 . . . gs . Write φi for φ(r̄(g1, . . . , gi−1)). We have

c̃(g)=
∑

φi c̃(gi )+
1
2

∑
i< j

[φi c̃(gi ), φ j c̃(g j )].

Proof. This is an immediate consequence of the Baker–Campbell–Hausdorff formula. □

Note that φ(r̄((xi , x j )))= id, so

c̃(R)= c̃(xq
0 (x0, x1)(x2, x3) · · · (xn, xn+1))

=

∑
c̃((x2k, x2k+1))+

1
2

∑
j<k

[c̃((x2 j , x2 j+1)), c̃((x2k, x2k+1))].

We have

c̃((x2k, x2k+1))=−φ(x−1
2k )(φ(x2k+1)− 1)c̃(x2k)+φ(x−1

2k x−1
2k+1)(φ(x2k)− 1)c̃(x2k+1)+ Zk = Yk + Zk,

where Zk is a sum of Lie brackets (see below), and lies in the center of the Lie U. Note that [Y j , Yk]

only contributes to the part of [∪F]B which lies strictly below the antidiagonal, because (φ(x2k)− 1) and
(φ(x2k+1)− 1) moved the appearance of the indeterminant λi, j from the root group Uβ+ jα to the root
group Uβ+( j+1)α.

So it remains to analyze
∑

Zk . We have

2Zk = [−φ(x−1
2k )c̃(x2k),−φ(x−1

2k x−1
2k+1)c̃(x2k+1)]+[−φ(x−1

2k )c̃(x2k),+φ(x−1
2k x−1

2k+1)c̃(x2k)]

+[−φ(x−1
2k )c̃(x2k),+φ(x−1

2k x−1
2k+1x2k)c̃(x2k+1)]+[−φ(x−1

2k x−1
2k+1)c̃(x2k+1),+φ(x−1

2k x−1
2k+1)c̃(x2k)]

+[−φ(x−1
2k x−1

2k+1)c̃(x2k+1),+φ(x−1
2k x−1

2k+1x2k)c̃(x2k+1)]

+[φ(x−1
2k x−1

2k+1)c̃(x2k),+φ(x−1
2k x−1

2k+1x2k)c̃(x2k+1)]
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Write

2Z ′k := [−c̃(x2k),−c̃(x2k+1)] + [−c̃(x2k), c̃(x2k)] + [−c̃(x2k), c̃(x2k+1)] + [−c̃(x2k+1), c̃(x2k)]

+ [−c̃(x2k+1), c̃(x2k+1)] + [c̃(x2k), c̃(x2k+1)].

Z ′k is obtained by replacing all Galois action in Zk by the trivial action. Zk − Z ′k only contributes to the
part of [∪F]B with lies strictly below the antidiagonal for a similar reason (a “shifting” effect). It is easy
to see that

Z ′k = [c̃(x2k), c̃(x2k+1)] = ±λ2k,0λ2k+1,3± λ2k+1,0λ2k,3± 3λ2k,1λ2k+1,2± 3λ2k+1,2λ2k,1.

As a consequence of these computations, we see that each of the antidiagonal blocks of [∪]B are
constant matrices:

±M41 =±M14 =


[

1/2
−1/2] [

1/2
−1/2]

. . . [
1/2
−1/2]

,

±M32 =±M23 =


[

3/2
−3/2] [

3/2
−3/2]

. . . [
1/2
−1/2]

.

So [∪F]B is an invertible matrix. □

The long root parabolic case is much simpler.

Appendix B: Sagemath code

Proposition B.0.1. Let V ⊂ B be the unipotent radical of the Borel of G2. Let g ∈ V (Zp). If p > 5,
then g p

= id mod ϖ .

Proof. Let P ⊃ B be the short root parabolic. Let P = L ⋉U be the Levi decomposition. Let π : P→ L
be the quotient. Say π(g)=

[ 1
0

l
1

]
. Fix a projection P→U. Also fix a projection U → Z(U ). Say the

projection of g onto U/Z(U )∼= A4 via P→U →U/Z(U ) is (u0, u1, u2, u3). Say the projection of g
onto Z(U )∼= A1 via P→U → Z(U ) is u4.

For simplicity, we write g = (l; u0, u1, u2, u3; u4). We have, for any integer q ,

gq
=

(
ql; qu0,−

1
2q(q − 1)u0l + qu1,−

1
6q(q − 1)(2q − 1)u0l2

+ q(q − 1)u1l + qu2,

−
1
4q2(q − 1)2u0l3

+
1
2q(q − 1)(2q − 1)u1l2

+
3
2q(q − 1)u2l + qu3, qu4;

1
120(q − 1)q(q + 1)(3q2

− 2)u2
0l3
−

1
2(q − 1)q(q + 1)(u2

1+ u0u2)l
)
.
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This can be computed by hand, and can be verified by a computer algebra system. The proposition follows
from the above computation immediately. □

The SageMath source code for computing is on the website sharkoko.space.
If we compute cup_product_mod_p(5,4,4) in SageMath notebook, we’ll get an anti-lower-triangular

matrix in the sense of Lemma A.0.1.

Acknowledgement

I would like to thank David Savitt, for suggesting to me the project of constructing crystalline lifts of
Galois representations valued in general reductive groups, and for his excellent advisoring. I would like
to thank Matthew Emerton for teaching me his work [Emerton and Gee 2023]. I also want to thank the
referees for very careful reading and thank Joel Specter and Xiyuan Wang for helpful discussions.

References

[Bellovin and Gee 2019] R. Bellovin and T. Gee, “G-valued local deformation rings and global lifts”, Algebra Number Theory
13:2 (2019), 333–378. MR Zbl

[Böckle 2003] G. Böckle, “Lifting mod p representations to characteristics p2”, J. Number Theory 101:2 (2003), 310–337. MR
Zbl

[Caruso and Liu 2011] X. Caruso and T. Liu, “Some bounds for ramification of pn-torsion semi-stable representations”, J.
Algebra 325 (2011), 70–96. MR Zbl

[Emerton and Gee 2023] M. Emerton and T. Gee, Moduli stacks of étale (ϕ, 0)-modules and the existence of crystalline lifts,
Ann. of Math. Stud. 215, Princeton Univ. Press, 2023. MR Zbl

[Fakhruddin et al. 2018] N. Fakhruddin, C. Khare, and S. Patrikis, “Lifting irreducible Galois representations”, preprint, 2018.
arXiv 1810.05803

[Gee et al. 2018] T. Gee, F. Herzig, and D. Savitt, “General Serre weight conjectures”, J. Eur. Math. Soc. 20:12 (2018),
2859–2949. MR Zbl

[Koch 2002] H. Koch, Galois theory of p-extensions, Springer, 2002. MR Zbl

[Lin 2019] Z. Lin, “Extensions of crystalline representations valued in general reductive groups”, preprint, 2019, available at
https://sharkoko.space/pdf/unobs.pdf.

[Lin 2022] Z. Lin, “Crystalline lifts and a variant of the Steinberg–Winter theorem”, Doc. Math. 27 (2022), 2441–2468. MR
Zbl

[Lin 2023a] Z. Lin, “A Deligne–Lusztig type correspondence for tame p-adic groups”, preprint, 2023. arXiv 2306.02093

[Lin 2023b] Z. Lin, “The Emerton–Gee stacks for tame groups, I”, preprint, 2023. arXiv 2304.05317

[Lin 2023c] Z. Lin, “The Emerton–Gee stacks for tame groups, II”, preprint, 2023. arXiv 2309.05773

[Lyndon 1950] R. C. Lyndon, “Cohomology theory of groups with a single defining relation”, Ann. of Math. (2) 52:3 (1950),
650–665. MR Zbl

[Muller 2013] A. Muller, Relèvements cristallins de représentations galoisiennes, Ph.D. thesis, Université de Strasbourg, 2013,
available at https://theses.hal.science/tel-00873407.

[Serre 2002] J.-P. Serre, Galois cohomology, Springer, 2002. MR Zbl

[Stacks] “The Stacks project”, electronic reference, available at http://stacks.math.columbia.edu.

Communicated by Frank Calegari
Received 2021-08-25 Revised 2023-12-25 Accepted 2024-03-05

ygwcpoi@gmail.com Northwestern University, Evanston, IL, United States

mathematical sciences publishers msp

https://sharkoko.space
https://doi.org/10.2140/ant.2019.13.333
http://msp.org/idx/mr/3927049
http://msp.org/idx/zbl/1455.11077
https://doi.org/10.1016/S0022-314X(03)00058-1
http://msp.org/idx/mr/1989890
http://msp.org/idx/zbl/1043.11048
https://doi.org/10.1016/j.jalgebra.2010.10.005
http://msp.org/idx/mr/2745530
http://msp.org/idx/zbl/1269.14001
https://doi.org/10.1515/9780691241364
http://msp.org/idx/mr/4529886
http://msp.org/idx/zbl/1529.11003
http://msp.org/idx/arx/1810.05803
https://doi.org/10.4171/JEMS/826
http://msp.org/idx/mr/3871496
http://msp.org/idx/zbl/1456.11093
https://doi.org/10.1007/978-3-662-04967-9
http://msp.org/idx/mr/1930372
http://msp.org/idx/zbl/1023.11002
https://sharkoko.space/pdf/unobs.pdf
https://doi.org/10.25537/dm.2022v27.2441-2468
http://msp.org/idx/mr/4574241
http://msp.org/idx/zbl/1524.11212
http://msp.org/idx/arx/2306.02093
http://msp.org/idx/arx/2304.05317
http://msp.org/idx/arx/2309.05773
https://doi.org/10.2307/1969440
http://msp.org/idx/mr/47046
http://msp.org/idx/zbl/0039.02302
https://theses.hal.science/tel-00873407
https://doi.org/10.1007/978-3-642-59141-9
http://msp.org/idx/mr/1867431
http://msp.org/idx/zbl/1004.12003
http://stacks.math.columbia.edu
mailto:ygwcpoi@gmail.com
http://msp.org


msp
ALGEBRA AND NUMBER THEORY 19:3 (2025)

https://doi.org/10.2140/ant.2025.19.457

Fermat’s last theorem over Q(
√

2,
√

3)
Maleeha Khawaja and Frazer Jarvis

Dedicated to Iffat (Zaman) Khawaja
January 1936 – January 2022

In this paper, we begin the study of the Fermat equation xn
+ yn

= zn over real biquadratic fields. In
particular, we prove that there are no nontrivial solutions to the Fermat equation over Q(

√
2,

√
3) for n ≥ 4.

1. Introduction

Since the groundbreaking work of Wiles [1995] on the resolution of the Fermat equation over Q, the
Fermat equation has been studied extensively over various number fields. Let K be a number field and let
n ≥ 3 be an integer. The Fermat equation over K with exponent n is the equation

xn
+ yn

= zn, x, y, z ∈ K . (1)

We say a solution (a, b, c) to (1) over K is trivial if abc = 0 and nontrivial otherwise.
Wiles’ method of resolving (1) over Q became known as the modular approach. Thereafter, Jarvis

and Meekin [2004] extended this method to prove that there are no nontrivial solutions to (1) over
Q(

√
2) for n ≥ 4. This was followed by work of Freitas and Siksek [2015a; 2015b] who established a

framework on how to resolve (1) (and more general Diophantine equations) over totally real number fields.
Furthermore, Freitas and Siksek [2015b] proved that there are no nontrivial solutions to (1) over Q(

√
d)

for n ≥ 4, where 3 ≤ d ≤ 23, d ̸= 5, 17 is a squarefree integer. When approaching real quadratic fields
with a larger discriminant, they encountered the obstacle of demonstrating the irreducibility of certain
Galois representations and eliminating the number of Hilbert newforms that arose as a result of level
lowering. Michaud-Jacobs [2022] worked around these obstacles by studying quadratic points on certain
modular curves and working directly with Hecke operators. He proved, for most squarefree d in the range
26 ≤ d ≤ 97, that there are no nontrivial solutions to (1) over Q(

√
d) for n ≥ 4. Kraus [2019] provided a

partial resolution of (1) over various totally real number fields of degrees ≤ 8. By a partial resolution we
mean for all prime exponents n = p > BK , where BK is a constant depending only on K . For example
if K is a real cubic field with discriminant 148, 404 or 564, or if K is the cyclic quartic field Q(ζ16)

+

then BK = 5. It is a natural problem then to study (1) over real biquadratic fields. Freitas and Siksek
[2015a] initiated the study of looking at (1) “asymptotically”. As in [Freitas and Siksek 2015a], we say the
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asymptotic Fermat’s last theorem holds over K if there is a constant BK such that there are no nontrivial
solutions to (1) over K for primes p > BK . Freitas, Kraus and Siksek [Freitas et al. 2020] studied the
solutions to certain S-unit equations to prove that the asymptotic Fermat’s last theorem holds for several
infinite families of number fields — including some real biquadratic fields. In this paper, we will prove
the following result and discuss some obstacles that arise over more general real biquadratic fields.

Theorem 1.1. Let K = Q(
√

2,
√

3). There are no nontrivial solutions to (1) over K for n ≥ 4.

We give a brief outline of the paper. In Section 2, we apply and give a brief overview of the modular
approach found in [Freitas and Siksek 2015a; 2015b]. In Section 3, we determine the conductor of
the Frey curve using techniques outlined in [Freitas and Siksek 2015b], as well as Tate’s algorithm
[Silverman 1994, pp. 364–368]. In Section 4, we prove that ρ̄E,p is irreducible for p ≥ 13. For p = 13
and 17, we prove this by studying the explicit modular parametrisation. For p ≥ 19, we use work of
Derickx, Kamienny, Stein and Stoll [Derickx et al. 2023] and David [2011] to get a contradiction if ρ̄E,p

is reducible. In Section 6, we rule out solutions for certain small integer exponents. To treat n = 9 and
n = 6, we study the hyperelliptic curves obtained from the Fermat curve of degree n. We also extend work
of Mordell [1968] to determine all quartic points on the Fermat quartic lying in a quadratic extension
of Q(

√
2). In Section 7, we give a brief overview of some obstacles that arise when extending our method

to more general real biquadratic fields. All supporting computations were performed in Magma; the
scripts are available within the GitHub repository https://github.com/MaleehaKhawaja/Fermat.

2. The modular approach

Let K be a totally real field (until otherwise specified) and let OK denote its ring of integers. Let p ≥ 5
be a prime. Suppose (a, b, c) is a nontrivial solution to (1) over K with exponent p. The traditional Frey
curve associated to (a, b, c) is given by

y2
= x(x − a p)(x + bp).

Our Frey curve will be a quadratic twist of this elliptic curve by a well-chosen unit ε ∈ O∗

K . We write

E = Ea,b,c,ε : y2
= x(x − εa p)(x + εbp). (2)

The reason for allowing twists by units is to reduce the number of possibilities for the conductor of the
Frey curve. Write Nε for the conductor of the Frey curve E above. We denote by ρ̄E,p the mod p Galois
representation associated to E .

The following theorem of Freitas and Siksek is formulated from the combination of the works of
Fujiwara [2006], Jarvis [1999a; 1999b], and Rajaei [2001].

Theorem 2.1 [Freitas and Siksek 2015a, Theorem 7]. Let K be a totally real field. Let p ≥ 5 be a prime.
Suppose Q(ζp)

+ ⊈ K . Let E be an elliptic curve over K with conductor N . Suppose E is modular and
ρ̄E,p is irreducible. Denote by 1q the discriminant for a local minimal model of E at a prime ideal q

https://github.com/MaleehaKhawaja/Fermat
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of K . Let

Mp :=

∏
q∥N ,p|vq(1q)

q, Np :=
N
Mp

.

Suppose the following conditions are satisfied for all prime ideals q | p:

(i) E is semistable at q.

(ii) p | vq(1q).

(iii) The ramification index satisfies e(q/p) < p − 1.

Then, ρ̄E,p ∼ ρ̄f,ϖ , where f is a Hilbert eigenform of parallel weight 2 that is new at level Np and ϖ is a
prime ideal of Qf that lies above p.

We apply Theorem 2.1 to the Frey curve (2) in order to contradict the existence of the putative solution
(a, b, c).

Several advances have been made in the direction of establishing the modularity of elliptic curves over
totally real number fields. For example, the modularity of elliptic curves over real quadratic fields [Freitas
et al. 2015] and totally real cubic fields [Derickx et al. 2020] has been established. Moreover, thanks to
the following result of Box, we now know elliptic curves over most totally real quartic fields are modular.

Theorem 2.2 [Box 2022, Theorem 1.1]. Let K be a totally real quartic field not containing
√

5. Every
elliptic curve over K is modular.

We turn to the question of how to show that conditions (i) and (ii) of Theorem 2.1 are satisfied.
Let H = Cl(K )/ Cl(K )2, where Cl(K ) denotes the class group of K . We can assume, without loss of
generality, that any nontrivial solution (a, b, c) to (1) is integral. By Lemma 3.3 of [Freitas and Siksek
2015b], a, b, c are coprime away from a small set of primes, i.e., gcd(a, b, c) = m · τ 2 for some m ∈ H
and odd prime ideal τ ̸= m. The following result addresses conditions (i) and (ii) above.

Lemma 2.3 [Freitas and Siksek 2015b, Lemma 3.3]. Let K be a totally real field. Let S denote the set of
primes of K above 2. Let q be a prime ideal of K such that q /∈ S ∪ {m}. Then E is semistable at q and
p | vq(1q).

We remark that our Frey curve is a quadratic twist of the usual Frey curve by a unit and thus the set of
primes dividing the conductor remains unchanged away from 2.

The Jacobian of the Fermat curve of degree 5, 7 or 11 has finitely many rational points. Since the
divisor obtained from the formal sum of a point and its Galois conjugates gives a rational divisor, this
allows the study of points on these Fermat curves over fields of low degree. Klassen and Tzermias [1997]
have classified all points on the Fermat quintic defined over number fields of degree at most 6. Building
on this work, Kraus [2018] has provided an algebraic description of the quartic points on the Fermat
quintic. Tzermias [1998] has determined all points on the Fermat septic defined over number fields of
degree at most 5. Gross and Rohrlich [1978] have determined all points on (1) with exponent p = 11
over fields of degree at most 5. We can thus suppose that n = 4, 6, 9, or n = p ≥ 13 is a prime.
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Throughout, unless otherwise specified, let K = Q(
√

2,
√

3) and let OK denote its ring of integers. Let
p ≥ 13 be a prime. Suppose there is a nontrivial solution (a, b, c) to (1) over K with exponent p. Let E
be the Frey curve (2) associated to this solution. By Theorem 2.2, E is modular. We note that K has
class number 1 and thus m = 1 ·OK . Suppose q | p is a prime ideal of K . By Lemma 2.3, assumptions (i)
and (ii) of Theorem 2.1 are satisfied for q. In particular, E is semistable away from 2. Thus, in order to
prove Theorem 1.1, it remains to

(1) determine the reduction type of E at P, where P is the unique prime above 2,

(2) prove that ρ̄E,p is irreducible for p ≥ 13,

(3) eliminate the Hilbert newforms arising as a result of level lowering (Theorem 2.1),

(4) rule out solutions to (1) for n = 4, 6 and 9.

3. Computing the lowered level

Write Nε for the conductor of the Frey curve E above. We note that 2OK =P4 and OK /P= F2. Thus P
divides exactly one of a, b, c, since gcd(a, b, c) = 1. Without loss of generality, we suppose P | b.

Lemma 3.1. Suppose that either p ≥ 17, or p = 13 and ordP(b) ≥ 2. There is some ε ∈ O∗

K such that
one of the following holds:

(i) Either E has multiplicative reduction at P, or

(ii) E has additive potentially multiplicative reduction at P and ordP(Nε) = 4.

Proof. Write c4, c6, 1 and j for the usual invariants attached to the model (2). A straightforward
computation shows that

c4 = ε2
· 16 · (c2p

− a pbp), 1 = ε6
· 16 · (abc)2p, j = c3

4/1.

We recall that P | b. Write t = ordP(b). Then,

ordP( j) = 3 ordP(c4) − ordP(1) = 32 − 2pt. (3)

Under the assumptions of the lemma, we have ordP( j) < 0; thus we have potentially multiplicative
reduction at P (irrespective of the choice of ε).

The rest of the lemma is a consequence of [Freitas and Siksek 2015b, Lemma 4.4]. We give some of
the details. Let

b = P2 ordP(2)+1
= P9.

Consider the natural map
8 : O∗

K → (OK /b)∗/((OK /b)∗)2.

By an explicit computation in Magma, we find that the image of 8 has index 2 in the codomain, and
that λ1 = 1 and λ2 = −1 + 2µ are elements of OK which represent the cokernel, where µ =

√
2 +

√
3.

Let ni = ordP(1(L i/K )), where L i = K (
√

λi ) and 1(L i/K ) is the relative discriminant ideal for the
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extension L i/K . We find that n1 = 0 and n2 = 2. By the aforementioned lemma, there is a unit ε ∈ O∗

K

such that ordP(Nε) = 1 or 4. □

In Lemma 3.1, we determined the conductor of the Frey curve E for all primes p ≥ 17 and a suitable
choice of ε ∈ O∗

K . In particular, we prove that E either has multiplicative reduction or additive potentially
multiplicative reduction at P. This proof fails for p = 13 in the case that ordP(b) = 1, and we treat this
case separately in the rest of the section.

Lemma 3.2. Suppose p = 13 and ordP(b) = 1. Then there is a unit ε ∈ O∗

K and α ∈ OK such that

P6
| (εb13

− εa13
− α2),

where P ∤α.

Proof. Let
θ : O∗

K → U/U 2,

where U = (OK /P6)∗. We checked that θ is surjective using a straightforward computation in Magma.
Let β = b13

−a13. Note that P ∤β. As θ is surjective, there is some γ ∈ O∗

K such that θ(γ ) = βU 2. Thus
β ≡ γα2 (mod P6) for some α ∈ OK \P. Let ε = γ −1

∈ O∗

K . Then εβ ≡ α2 (mod P6), which proves
the lemma. □

Let ε ∈ O∗

K be as in Lemma 3.2. We begin by working with the Frey curve

E13,ε : y2
= x(x − εa13)(x + εb13). (4)

We recall that, by Lemma 2.3, E13,ε is semistable away from P. Thus, in order to determine the conductor
of E13,ε, it remains to determine the reduction type of E13,ε at P.

Lemma 3.3. Suppose ordP(b) = 1. The Frey curve E13,ε has additive potentially good reduction at P.
Moreover, ordP(N ) = 5, where N is the conductor of E13,ε.

Proof. Let α ∈ OK be as in Lemma 3.2. Recall that K has class number 1, and therefore every ideal is
principal. Let π be a generator for P. For example, we can take

π =
µ3

+ µ2
− 9µ − 9
4

,

where µ =
√

2 +
√

3. We make the substitutions

x 7→ π6x, y 7→ απ6x + π9 y.

This yields the model

W : y2
+

2α

π3 xy = x3
+

(εb13
− εa13

− α2)

π6 x2
−

ε2a13b13

π12 x,

which is integral by Lemma 3.2 and has discriminant

1(W ) =
1(E13,ε)

π36 =
16ε6a26b26c26

π36 .
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Note that ordP(1(W )) = 6. Thus W is minimal at P. We use Tate’s algorithm [Silverman 1994, pp. 364–
368] to compute the valuation of the conductor for W . Let a1, . . . , a6 be the usual a-invariants for W
given in the above model, and let b2, . . . , b8 be the corresponding b-invariants

b2 =
4α2

π6 , b4 = −
2ε2a13b13

π12 , b6 = 0, b8 = −
ε4a26b26

π24 .

In particular, P | a3, a4, b2 and P2
| a6, and ordP(b8) = 2. Thus, by Step 4 of Tate’s algorithm, the

reduction type for W at P is III, and the valuation of the conductor at P is

ordP(N ) = ordP(1(W )) − 1 = 5. □

4. Proving irreducibility of ρ̄E, p

We prove that ρ̄E,p is irreducible for p ≥ 13. In particular, we show that a possible consequence of ρ̄E,p

being reducible is that E has a K -rational point of order p. In this instance, by [Derickx et al. 2023,
Theorem 1.2], we obtain a contradiction if p ≥ 19. We thus treat the primes p = 13 and 17 separately.

Since the Frey curve E has full 2-torsion over K , it is sufficient to show that there are no noncuspidal
K -rational points on one of the modular curves X0(p), X0(2p) or X0(4p). We find it convenient to
work with the modular curves X0(26) and X0(34). In particular, we show that X0(26)(K ) = X0(26)(Q)

and X0(34)(K ) = X0(34)(Q). All points in X0(26)(Q) and X0(34)(Q) are cuspidal, thus proving the
irreducibility of ρ̄E,p for p = 13 and 17.

4.1. p = 13. Using the explicit modular parametrisation, we prove that if P ∈ X0(26)(K ) then either
P ∈ X0(26)(Q(

√
3)) or C(Q(

√
3)) is nonempty, where C is a genus 2 hyperelliptic curve. In the first case,

by [Bruin and Najman 2015], P ∈ X0(26)(Q). In the second case, we show that C(Q(
√

3)) is empty.

Lemma 4.1. ρ̄E,13 is irreducible.

Proof. We prove that X0(26)(K ) = X0(26)(Q). We work with the model

X0(26) : y2
= x6

− 8x5
+ 8x4

− 18x3
+ 8x2

− 8x + 1 (5)

given in Magma. Let
E ′

: y2
+ xy + y = x3

− x2
− 3x + 3.

Then E ′ is the elliptic curve with Cremona label 26b1. Suppose P = (a, b) ∈ X0(26)(K ). Note that if
a = 1 then b2

= −16, i.e., P /∈ X0(26)(K ). Suppose from now on that a ̸= 1. Using Magma, we find the
explicit parametrisation

π : X0(26) → E ′, (a, b) 7→

(
−

(a + 1)2

(a − 1)2 ,
−2b + 2a(a − 1)

(a − 1)3

)
.

Let L = Q(
√

3). We checked using Magma that E ′(K ) = E ′(L). It immediately follows that(
a + 1
a − 1

)2

∈ L .
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Let
σ : K → K , σ (

√
2) = −

√
2, σ (

√
3) =

√
3.

Then

σ

(
a + 1
a − 1

)
=

a + 1
a − 1

or σ

(
a + 1
a − 1

)
= −

a + 1
a − 1

.

Thus there are two cases to consider:

(1) (a + 1)/(a − 1) ∈ L .

(2) (a + 1)/(a − 1) ∈
√

2 · L .

Case (1). In this case a ∈ L , and it immediately follows from the parametrisation of π that b ∈ L . Observe
that X0(26) has infinitely many quadratic points of the form (r,

√
f (r)), where r ∈ Q. Such points are

called nonexceptional and all other quadratic points are called exceptional.

Case (1.1). If a ∈ L \ Q then P is an exceptional quadratic point on X0(26). Bruin and Najman [2015,
Table 3] have given an explicit description of all quadratic points on X0(26). They find that all exceptional
quadratic points are defined over Q(

√
d) for d = −1, −3, −11 and −23.

Case (1.2). If a ∈ Q then b2
∈ Q. Then P is a nonexceptional quadratic point on X0(26) defined over L .

Moreover, P corresponds to a rational point on the quadratic twist of X0(26) over Q(
√

3). We denote this
quadratic twist by X3. We checked using Magma that X3 has no points defined over Q3. Thus X3(Q) is
empty.

Case (2). In this case we have (a + 1)/(a − 1) ∈
√

2 · L , i.e.,

a + 1
a − 1

=
√

2α for some α ∈ L . (6)

Note the identity (
a + 1
a − 1

)2

− 1 =
(a + 1)2

− (a − 1)2

(a − 1)2 =
4a

(a − 1)2 =
4a(a − 1)

(a − 1)3 . (7)

From the parametrisation of π and (7), we see that

b
(a − 1)3 ∈ L .

Note the identity

16
(

a6
− 8a5

+ 8a4
− 18a3

+ 8a2
− 8a + 1

(a − 1)6

)
= −4

(
a + 1
a − 1

)6

− 3
(

a + 1
a − 1

)4

+ 10
(

a + 1
a − 1

)2

+ 13. (8)

By combining (5) and (8), we obtain(
4b

(a − 1)3

)2

= −4
(

a + 1
a − 1

)6

− 3
(

a + 1
a − 1

)4

+ 10
(

a + 1
a − 1

)2

+ 13.

After making the substitutions β = 4b/(a − 1)3 and (6), we obtain

β2
= −32α6

− 12α4
+ 20α2

+ 13.
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Thus (α, β) is a L-rational point on the curve

C : y2
= −32x6

− 12x4
+ 20x2

+ 13.

Write OL for the ring of integers of L . Then 13OL = p1p2. We checked using Magma that there are no
points on C defined over the completion of L at p1. Thus C(L) is empty. □

4.2. p = 17. Using the explicit modular parametrisation, we show that if P ∈ X0(34)(K ) then either
P ∈ X0(34)(Q(

√
2)) or C(Q(

√
2)) is nonempty, where C is the quadratic twist of X0(34) over Q(

√
3). In

the first case, by [Ozman and Siksek 2019], P ∈ X0(34)(Q). In the second case, we show that C(Q(
√

2))

is empty.

Lemma 4.2. ρ̄E,17 is irreducible.

Proof. We prove that X0(34)(K ) = X0(34)(Q). We work with the model

X0(34) : x4
− y4

+ x3
+ 3xy2

− 2x2
+ x + 1 = 0 (9)

given in Magma. Making the change of variables x 7→ x , y 7→ y2 yields the curve

C ′
: x4

− y2
+ x3

+ 3xy − 2x2
+ x + 1 = 0.

Since C ′ has genus 1, we can transform it to an elliptic curve:

C ′
→ E ′, (x, y) 7→ (2(x2

− 2x + y), 4x(x2
− 2x + y)), (10)

where
E ′

: y2
+ xy + 2y = x3

− 4x

is the elliptic curve with Cremona label 34a1. We deduce the explicit modular parametrisation

π : X0(34) → E ′, (x, y) 7→ (2(x2
− 2x + y2), 4x(x2

− 2x + y2)).

Let L = Q(
√

2). Using Magma we find that E ′(K ) = E ′(L). Suppose P = (a, b) ∈ X0(34)(K ). Since

2(a2
− 2a + b2), 4a(a2

− 2a + b2) ∈ L ,

it follows that either a2
− 2a + b2

= 0 or a ∈ L . Suppose the former is true, i.e.,

b2
= 2a − a2. (11)

We substitute (11) into (9) to find that
2a3

+ a + 1 = 0

and a /∈ K . Thus a ∈ L , and hence b2
∈ L . Either b ∈ L or b =

√
3β for some β ∈ L . If b ∈ L then

P ∈ X0(34)(L). Ozman and Siksek [2019] have determined the quadratic points on X0(34), and they
found that there are no real quadratic points on X0(34). Thus P ∈ X0(34)(Q).

Suppose b =
√

3β for some β ∈ L . Thus (a, β) is an L-rational point on the curve

C : x4
− 9y4

+ x3
+ 9xy2

− 2x2
+ x + 1 = 0,
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where C is the quadratic twist of X0(34) over Q(
√

3). Note that 3 is inert in L . We checked using Magma
that there are no points on C defined over the completion of L at 3OL . Thus C(L) is empty. □

4.3. p ≥ 19. We let E = Ea,b,c,ε, where ε ∈O∗

K is chosen so that one of the two possibilities in Lemma 3.1
hold. Suppose ρ̄E,p is reducible. Then

ρ̄E,p ∼

(
θ ∗

0 θ ′

)
,

where θ and θ ′ are characters G K → F∗
p. Recall that χp = det(ρ̄E,p) = θθ ′, where χp denotes the mod p

cyclotomic character. We let Nθ and Nθ ′ denote the conductors of θ and θ ′, respectively. We shall require
the following result of Freitas and Siksek.

Lemma 4.3 [Freitas and Siksek 2015b, Lemma 6.3]. Let E be an elliptic curve defined over a number
field K with conductor N . Let p ≥ 5 be a prime, and let q ∤ p be a prime. Let θ and θ ′ be as above. If
ρ̄E,p is reducible then

ordq(Nθ ) = ordq(Nθ ′) =

{
0 if E has good or multiplicative reduction at q,
1
2 ordq(N ) ∈ Z if E has additive reduction at q.

Lemma 4.4. Let p ≥ 19. Then ρ̄E,p is irreducible.

Proof. Suppose ρ̄E,p is reducible. Since p is unramified in K and E has good or multiplicative reduction
at p | p, we have that, for any p | p, precisely one of θ , θ ′ is ramified at p; see [Kraus 1996, Lemma 1].

First suppose that either of θ , θ ′ is unramified at all p | p (and thus the other is ramified at all p | p).
We note that replacing E by a p-isogenous elliptic curve, if necessary, allows us to swap θ and θ ′. Thus
we may suppose that θ is unramified at all the primes above p, and hence θ is unramified away from P.

We shall use Lemma 4.3 to determine Nθ . Suppose we are in case (i) of Lemma 3.1 and E has
multiplicative reduction at P. Then, by Lemma 4.3, we have ordP(Nθ ′) = ordP(Nθ ) = 0. Suppose now
that we are in case (ii) of Lemma 3.1 and E has additive reduction at P. Then, by Lemma 4.3, we have

ordP(Nθ ) = ordp(Nθ ′) =
1
2 ordP(Nε) = 2.

Hence either Nθ = 1 or P2. Let ∞1, . . . ,∞4 denote the four real places of K . Then θ is a character for
the ray class group of the modulus ∞1 · · · ∞4 in the first case, and of the modulus P2

· ∞1 · · · ∞4 in
the second case. Using Magma we find that this ray class group is Z/2Z in either case. Thus the order
of θ divides 2, and θ is either trivial or a quadratic character. In the first case, when θ is trivial, E has a
K -rational point of order p. In the second case, let E ′ be the quadratic twist of E by θ . Then

ρ̄E ′,p ∼

(
θ2

∗

0 θθ ′

)
=

(
1 ∗

0 χp

)
.

Thus E ′ has a K -rational point of order p. In both cases, we obtain an elliptic curve with a point of
order p defined over K (a quartic field). By [Derickx et al. 2023, Theorem 1.2], p ≤ 17. We obtain a
contradiction since p ≥ 19.
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Fix p0 a prime ideal of OK above p. Let G = Gal(K/Q). Then G acts transitively on the primes p | p.
Let S be the set of τ ∈ G such that θ is ramified at τ(p0). We know from above that S is a proper subset
of G, i.e., S ̸= ∅ and S ̸= G. For a prime ideal q of OK , we write Iq for an inertia subgroup of G K

corresponding to q. Thus θ |Iq = 1 for all

q /∈ {P} ∪ {τ(p0) : τ ∈ S}.

By Lemma 3.1, E has potentially multiplicative reduction at P. By the theory of the Tate curve [David
2011, Proposition 1.2], θ2

|IP = 1. Let φ = θ2. Then φ|Iq = 1 for all

q /∈ {τ(p0) : τ ∈ S}.

Recall that θ ′ is unramified at q ∈ {τ(p0) : τ ∈ S}. Since θθ ′
= χp, we conclude that

φ|Iq =

{
χ2

p|Iq, q ∈ {τ(p0) : τ ∈ S},

1 otherwise.
(12)

Let u ∈ O∗

K . We define the twisted norm of u attached to S to be

NS(u) =

∏
τ∈S

(τ (u))2.

By the proof of [David 2011, Proposition 2.6], the existence of φ satisfying (12) ensures that

p0 | (NS(u) − 1).

Let µ =
√

2 +
√

3, and let

u1 = µ, u2 =
1
2(−µ3

+ 9µ + 2), u3 =
1
4(µ3

− µ2
− 9µ + 5);

this is a basis for O∗

K /{±1}. Then p | BS , where

BS = Norm
( 3∑

i=1

(NS(ui ) − 1) ·OK

)
.

We used Magma to compute BS for all nonempty proper subsets S of G = Gal(K/Q). In all cases we
found that if p | BS then p = 2 or 3. Thus we obtain a contradiction. □

5. Eliminating Hilbert newforms

Let

N0 =


P if we are in case (i) of Lemma 3.1,

P4 if we are in case (ii) of Lemma 3.1,

P5 if p = 13 and ordP(b) = 1.

Applying level lowering (i.e., Theorem 2.1), we obtain

ρ̄E,p ∼ ρ̄f,p,
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where f is a Hilbert newform of parallel weight 2 and level N0, and p is some prime above p in Qf, the
Hecke eigenvalue field of f. Using Magma we find that there are no newforms with parallel weight 2 and
level P or level P5, obtaining a contradiction in these cases.

We thus suppose we are in case (ii) of Lemma 3.1. For the level P4, we find that there are two
newforms f1 and f2 and for both the corresponding Hecke eigenvalue field is Q. Let E1/K and E2/K be
the following elliptic curves:

E1 : y2
+ (µ + 1)xy = x3

+
1
4(−µ3

− µ2
− 3µ + 5)x2

+
1
2(−µ3

− 5µ)x +
1
4(µ3

+ 7µ2
− 9µ − 3),

E2 : y2
+

1
4(µ3

+ µ2
+ 3µ + 3)y = x3

+
1
2(−µ2

− 1)x2
+ µ2x +

1
4(−3µ3

− 17µ2
− µ + 1),

where µ=
√

2+
√

3. These elliptic curves have conductors P4 and were found using the Magma command
EllipticCurveSearch. These are nonisogenous, as aq(E1) = 6 and aq(E2) = −6, where 3OK = q2. By the
work of Box [2022], E1 and E2 are modular and thus correspond to the two Hilbert newforms f1 and f2

of parallel weight 2 and level P4. Thus ρ̄E,p ∼ ρ̄Ei ,p, where i = 1 or 2. To obtain a contradiction, we
shall use a standard image of inertia argument; see [Freitas and Siksek 2015a, Lemma 3.5].

Let j be the j-invariant of the Frey curve E . By (3) we have ordP( j) < 0 and p ∤ ordP( j). Thus,
p | #ρ̄E,p(IP) [Silverman 1994, Proposition 6.1, Chapter 5]. However, we find that E1 and E2 have
j-invariants

j1 = 0 and j2 = −853632µ3
+ 7682688µ + 2417472,

respectively. As ordP( ji ) ≥ 0, we have that E1 and E2 have potentially good reduction at P. It follows
that #ρ̄Ei ,p(IP) | 24 from [Kraus 1990, Introduction]. As ρ̄E,p ∼ ρ̄Ei ,p for i = 1 or 2, we obtain p | 24
giving a contradiction.

6. Small integer exponents

We have thus far shown that there are no solutions to (1) over K for primes p ≥ 5. In order to complete
the proof of Theorem 1.1, it remains to rule out solutions to (1) for n = 4, 6, 9. We note in passing that
there are nontrivial solutions to the Fermat cubic over Q(

√
2); see [Jarvis and Meekin 2004, p. 184].

6.1. n = 9. We are very grateful to Samir Siksek for the lengthy discussions and ideas that resulted in
this proof. We first convert the problem of finding K -points on the Fermat curve of degree 9 to finding
the Q(

√
3)-points on a certain hyperelliptic curve C . We then study the Jacobian of C to show that

C(Q(
√

3)) = {∞}, where ∞ denotes the point at infinity on C .

Theorem 6.1. There are no nontrivial solutions to (1) over K for n = 9.

We find it convenient to let

F9 : x9
+ y9

+ z9
= 0.

That is, F9 is the Fermat curve of degree 9. We recall that 2OK = P4 and that K has class number 1.
We will prove that F9(K ) = {(1 : −1 : 0), (1 : 0 : −1), (0 : 1 : −1)}, i.e, F9(K ) consists only of trivial
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solutions. Suppose (α : β : γ ) ∈ F9(K ) is a nontrivial solution. We may suppose that α, β, γ ∈ OK and
that they are coprime. We recall that OK /P = F2 and

F9(F2) = {(1 : 1 : 0), (1 : 0 : 1), (0 : 1 : 1)}.

Hence, by permuting α, β, γ appropriately, we may suppose (α : β : γ ) ≡ (1 : 1 : 0) (mod P). Thus

P | γ, P ∤αβ. (13)

Observe

γ 18
− (α9

− β9)2
= (α9

+ β9)2
− (α9

− β9)2
= 4(αβ)9.

After making the substitutions

u =
αβ

γ 2 , v =
α9

− β9

γ 9 , (14)

we see that Q1 = (u, v) ∈ C1(K ), where

C1 : y2
= −4x9

+ 1.

Let

E1 : y2
= 4x3

+ 1.

This is an elliptic curve. Let

π1 : C1 → E1, (x, y) 7→ (−x3, y).

The elliptic curve E1 has minimal Weierstrass model

E ′

1 : z2
+ z = x3,

which is obtained from E1 by the substitution y = 2z +1. This has Cremona label 27a3. In particular, E ′

1

has good reduction away from 3. Let R1 = π1(Q1) = (−u3, v) ∈ E1(K ). Then R1 corresponds to the
point

S1 =
(
−u3, 1

2(v − 1)
)
∈ E ′

1(K ).

Let σ : K → K be the automorphism satisfying

σ(
√

2) = −
√

2, σ (
√

3) =
√

3.

We note that the fixed field of σ is L = Q(
√

3). Thus S1 + Sσ
1 ∈ E ′

1(L). We checked using Magma that E ′

1

has rank 0 over L , and indeed

E ′

1(L) = {O, (0, 0), (0, −1)} ∼= Z/3Z. (15)

Thus S1 + Sσ
1 is one of these three points. However, ordP(u) < 0 by (13) and (14). It follows that

S1 ≡ O (mod P).

Hence

Sσ
1 ≡ Oσ

= O (mod Pσ ).
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However, P is a totally ramified prime, so Pσ
= P. Thus Sσ

1 ≡ O (mod P), and

S1 + Sσ
1 ≡ O (mod P).

By (15) and the injectivity of torsion upon reduction modulo primes of good reduction (see [Katz 1981,
Appendix]), we conclude that

S1 + Sσ
1 = O.

Hence
R1 + Rσ

1 = O.

Hence
(−u3)σ = −u3, vσ

= −v.

As the only cube root of 1 in K is 1, we have uσ
= u and so u ∈ L . Moreover, v2

= −4u9
+ 1 ∈ L and

vσ
= −v, so v = w/

√
2, where w ∈ L . Hence (u, w) ∈ C(L), where

C : y2
= 2(−4x9

+ 1).

Lemma 6.2. C(L) = {∞}.

Since u = αβ/γ 2, Theorem 6.1 follows from Lemma 6.2. We now prove Lemma 6.2 by studying J (Q),
where J is the Jacobian of C .

Proof. Let
E : y2

= x3
+ 2,

which is the elliptic curve with Cremona label 1728a1. Let

π : C → E, (x, y) 7→ (−2x3, y). (16)

Using Magma we find that E has zero torsion and rank 1 over Q and that, in fact,

E(Q) = Z · (−1, 1).

We write Pic0(E) for the group of rational degree 0 divisors on E/Q modulo linear equivalence and
Pic0(C) for the group of rational degree 0 divisors on C/Q modulo linear equivalence. We recall the
standard isomorphism [Silverman 2009, Proposition III.3.4]

E(Q) ∼= Pic0(E), P 7→ [P − ∞], (17)

where [D] denotes the linear equivalence class of a divisor D. Thus

Pic0(E) = Z ·Q, Q = [(−1, 1) − ∞].

We also recall the standard isomorphism J (Q) ∼= Pic0(C), and we will represent elements of the
Mordell–Weil group J (Q) as elements of Pic0(C). Using Magma we find that J has good reduction away
from the primes 2 and 3. Moreover, a straightforward calculation in Magma returns

J (F5) ∼= Z/6Z × Z/126Z, J (F13) ∼= Z/42997Z.
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As these two groups have coprime orders, we conclude that J has trivial torsion over Q. Moreover, using
Magma, we find that J has 2-Selmer rank 1 over Q, so J has rank at most 1 over Q. The morphism π

in (16) has degree 3 and induces homomorphisms (see [Silverman 2009, Section II.3])

π∗ : Pic0(C) → Pic0(E),

[∑
ai Pi

]
7→

[∑
aiπ(Pi )

]
and

π∗
: Pic0(E) → Pic0(C),

[∑
b j Q j

]
7→

[∑
b j

∑
P∈π−1(Q j )

eπ (P) · P
]
,

where eπ (P) denotes the ramification degree of π at P .
Let

P = π∗(Q) = [(1/
3
√

2, 1) + (ω/
3
√

2, 1) + (ω2/
3
√

2, 1) − 3∞] ∈ Pic0(C) ∼= J (Q),

where ω is a primitive cube root of 1. The point P has infinite order on J (Q). Thus J has rank exactly 1
over Q and no torsion. Therefore J (Q) = Z ·P ′ for some P ′

∈ J (Q) = Pic0(C). Hence

P = kP ′,

where k is a nonzero integer. Applying π∗ to both sides, we obtain

kπ∗(P ′) = π∗(P) = 3Q.

However, π∗(P ′) ∈ Pic0(E) = ZQ, so
π∗(P ′) = ℓ ·Q

for some ℓ ∈ Z. Hence kℓ = 3, so k = ±1 or ±3. Using Magma we checked that the image of P under
the composition

J (Q) → J (F5) → J (F5)/3J (F5)

is nonzero. Thus k ̸= ±3, so k = ±1; hence

J (Q) = Pic0(C) = Z ·P.

Suppose P ∈ C(L). Let τ : L → L be the nontrivial automorphism. Then [P + Pτ
− 2∞] ∈ Pic0(C).

Thus
[P + Pτ

− 2∞] = n ·P = n · π∗(Q) = π∗(n ·Q)

for some integer n. We claim that n = 0. Suppose otherwise; then n · Q ∈ Pic0(E) \ {0} and by the
isomorphism in (17) we have n ·Q = [Q − ∞], where Q ∈ E(Q) \ {O}. Write Q = (a, b) ∈ E(Q) with
a, b ∈ Q. Then

[P + Pτ
− 2∞] = π∗([(a, b) − ∞]) = [D − 3∞],

where
D = P1 + P2 + P3, Pj = (−ω j−1 3

√
a/2, b), j = 1, 2, 3.
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Hence

D ∼ D′, D′
= P + Pτ

+ ∞,

where ∼ denotes linear equivalence on C . Write |D| for the complete linear system of effective divisors
of C linearly equivalent to D. Let r(D) = dim|D|. Note that D′

∈ |D| and D′
̸= D; therefore r(D) ≥ 1.

By Riemann–Roch [Arbarello et al. 1985, p. 13],

r(D) − i(D) = deg(D) − g = −1,

where i(D)≥0 is the so-called index of speciality of D and g =4 is the genus of C . It follows that i(D)>0
and therefore that D is a special divisor. By Clifford’s theorem [Hartshorne 1977, Theorem IV.5.4],

r(D) ≤
1
2 deg(D) =

3
2 .

Hence r(D) = 1. Thus the complete linear system |D| is a g1
3 . As C is hyperelliptic, by [Arbarello et al.

1985, p. 13], |D| = g1
2 + p, where p is a fixed base point of the linear system. In particular, every divisor

in |D| is the sum of p and two points interchanged by the hyperelliptic involution. We apply this to D
itself. Thus two of the points P1, P2, P3 are interchanged by the hyperelliptic involution. However,
they all have the same y-coordinate b, so b = 0. But (a, b) ∈ E(Q), so a ∈ Q and a3

= −2, giving a
contradiction. Hence n = 0, and so

P + Pτ
∼ 2∞.

Thus P and Pτ are interchanged by the hyperelliptic involution. We recall that we want to show that
P = ∞. Suppose otherwise. Then we can write P = (c, d), where c, d ∈ L and cτ

= c, dτ
= −d . Thus

c ∈ Q and d = e/
√

3 with e ∈ Q. Thus P ′
= (c, e) ∈ C ′(Q), where

C ′
: y2

= 6(−4x9
+ 1).

Let J ′ be the Jacobian of C ′ and

E ′
: y2

= 6(4x3
+ 1).

Using Magma, we find that E ′(Q) = Z ·
( 1

2 , 3
)
. Let Q′

=
[(1

2 , 3
)
−∞

]
∈ Pic0(E ′), so Pic0(E ′) = Z ·Q.

Let

π ′
: C ′

→ E ′, (x, y) 7→ (−x3, y).

Using Magma, we find that J ′ has trivial torsion and 2-Selmer rank 1, and, following the same steps as
before, we show that J ′(Q) = Pic0(C) = Z ·P ′, where P ′

= (π ′)∗(Q). Now [P ′
−∞] equals nP ′, where

n is an integer, and must be nonzero as P ′
̸= ∞. Let ( f, g) = n ·

( 1
2 , 3

)
∈ E ′(Q) \ {O}. As before, we

find that

P ′
+ 2∞ ∼ P ′

1 + P ′

2 + P ′

3, P ′

j = (−ω j−1
·

3
√

f , g).

Continuing as before, it follows that g = 0, so f 3
= −

1
4 , contradicting f ∈ Q. We can thus conclude that

if P ∈ C(L) then P = ∞. This completes the proof of Lemma 6.2 and therefore Theorem 6.1. □
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6.2. n = 6. We show that a K -point on the Fermat curve of degree 6 induces a K -point P on a certain
hyperelliptic curve C . Let E be the elliptic curve obtained by taking the quotient of C by a certain
automorphism of C . We find that E(K ) = E(Q) = Z and use this to show that P is defined over a
quadratic subfield of K . This leads to the search of Q-rational points on the twists of C over the quadratic
subfields of K .

Theorem 6.3. There are no nontrivial solutions to (1) over K for n = 6.

Proof. We find it convenient to let
F6 : x6

+ y6
= z6.

That is, F6 is the Fermat curve of degree 6. We will prove that

F6(K ) = {(0 : −1 : 1), (−1 : 0 : 1), (0 : 1 : 1), (1 : 0 : 1)},

i.e., F6(K ) consists only of trivial solutions. Suppose (α : β : γ ) ∈ F6(K ) is a nontrivial solution. We
can assume without loss of generality that α, β, γ are integral and coprime. Similar to the proof of
Theorem 6.1, observe

γ 12
− (α6

− β6)2
= (α6

+ β6)2
− (α6

− β6)2
= 4(αβ)6.

Let

a =
αβ

γ 2 , b =
α6

− β6

γ 6 .

Then P = (a, b) ∈ C(K ), where
C : y2

= −4x6
+ 1.

Let
E : y2

= x3
− 4.

This is the elliptic curve with Cremona label 432b1. Let

π : C → E, (x, y) 7→

(
1
x2 ,

y
x3

)
, (0, ±1) 7→ 0E .

We checked using Magma that E has rank 1 over K (and Q) and that

E(K ) = E(Q) ∼= Z.

Since π(P) ∈ E(Q), it follows that a2
∈ Q and hence b2

∈ Q. If a = 0 then it’s clear that (α : β : γ ) is a
trivial solution. Observe that a and b are necessarily defined over the same quadratic subfield of K since

b
a

∈ Q.

Either a ∈ Q and hence b ∈ Q, or

a =
a′

√
d

, b =
b′

√
d

, for d ∈ {2, 3, 6}, a′, b′
∈ Q.
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If a, b ∈ Q then P ∈ C(Q). The Jacobian of C has rank 1 over Q. Using the Chabauty implementation in
Magma, we find that

C(Q) = {(0, ±1)},

and it immediately follows that (α : β : γ ) is a trivial solution. Thus, (a′, b′d) ∈ Cd(Q) where

Cd : y2
= −4x6

+ d3,

where d ∈ {2, 3, 6}. Suppose d = 3 or 6. We checked using Magma that there are no points on Cd defined
over Q2. Thus C3(Q) = C6(Q) = ∅. It remains to determine C2(Q). We will work with the model

C2 : y2
= −x6

+ 2. (18)

We note that the curve C2 has genus 2 and the rank of the Jacobian of C2 over Q is 2. Thus, we are unable
to determine C2(Q) using Chabauty. Instead, we used the elliptic curve Chabauty method of [Bruin 2003]
to do so as we now demonstrate.

Let θ =
6
√

2, and note that θ is a root of the hyperelliptic polynomial for C2 given in (18). Let L = Q(θ).
Consider the map

ϕ : C2(Q) → L∗/(L∗)2, (x, y) → (x − θ) · (L∗)2.

The method of two-cover descent, due to Bruin and Stoll [2009], uses sieving information to determine a
small finite set containing the image of ϕ. This is implemented in Magma, and applying it we find that

ϕ(C2(Q)) ⊆ {(1 + θ) · (L∗)2, (1 − θ) · (L∗)2
}.

Thus, for a rational point (x, y) ∈ C2(Q), we have

x − θ = (1 ± θ)β2 (19)

with β ∈ L∗. Now let F = Q(
3
√

2), and note that x2
−

3
√

2 = NormL/F (x − θ). Observe that

NormL/F (1 ± θ) = (1 − θ)(1 + θ) = 1 −
3
√

2.

Taking norms in (19) gives

x2
−

3
√

2 = (1 −
3
√

2)w2, w = NormL/F (β) ∈ F∗.

Note the factorisation

C2 : y2
= −x6

+ 2 = −(x2
−

3
√

2)(x4
+

3
√

2x2
+

3
√

2
2
).

Thus, for (x, y) ∈ C2(Q), we have

x4
+

3
√

2x2
+

3
√

2
2
=

−y2

x2 −
3
√

2
=

−1

(1 −
3
√

2)
·

y2

w2 .

Let ϵ = −1/(1 −
3
√

2) = 1 +
3
√

2 +
3
√

2
2
∈ F∗ and z = y/w ∈ F∗. Then, for (x, y) ∈ C2(Q), we have

x4
+

3
√

2x2
+

3
√

2
2
= ϵz2. (20)
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Let
X = ϵx2 and Y = ϵ2xz. (21)

Then (X, Y ) ∈ E2(F), where E2/F is the elliptic curve

E2 : Y 2
= X3

+ ϵ
3
√

2X2
+ ϵ2 3

√
2

2
X.

Using Magma, we found that the Mordell–Weil group is given by

E2(F) = (Z/2Z) · (0, 0) ⊕ Z · (1 +
3
√

2 +
3
√

2
2
, 5 + 4 3

√
2 + 3 3

√
2

2
).

We are interested in points (X, Y ) ∈ E2(F) which satisfy (21), where (x, y) ∈ C2(Q). In particular,
to determine C2(Q), it is enough to find all points Q = (X, Y ) ∈ E2(F) such that f (Q) ∈ Q, where
f (X, Y ) = X/ϵ. The elliptic curve Chabauty method of [Bruin 2003] is one that can sometimes be used
to provably determine all F-points Q on an elliptic curve E defined over a number field F such that
f (Q) ∈ Q for a given nonconstant function f ∈ F(E), provided the degree [F : Q] exceeds the rank
of E over F . In our situation, the degree is [F : Q] = 3 and the rank of E over F is 1. We applied the
implementation of the elliptic curve Chabauty method available in Magma to our E2/F and f . This
succeeded in showing that the only (X, Y ) ∈ E2(F) with X/ε ∈ Q are

(X, Y ) = (0, 0), (1 +
3
√

2 +
3
√

2
2
, 5 + 4 3

√
2 + 3 3

√
2

2
), (1 +

3
√

2 +
3
√

2
2
, −5 − 4 3

√
2 − 3 3

√
2

2
).

Thus X = 0 or ϵ, and hence if (x, y) ∈ C2(Q) then x = 0 or ±1. It immediately follows that

C2(Q) = {(±1, ±1)}.

Thus, (a′, b′) ∈ {(±1, ±1)} and if P = (a, b) ∈ C(K ) then P ∈ {(±1/
√

2, ±1/
√

2)}. Recall that

b =
α6

− β6

γ 6 ,

where (α : β : γ ) ∈ F6(K ). It immediately follows that 1
2(b + 1) is a square in K . For each b, we check

using Magma that 1
2(b + 1) is not a square in K . We have reached a contradiction. □

6.3. n = 4. Quadratic points on the Fermat quartic have been studied by Aigner [1934], Faddeev [1960]
and Mordell [1968]. Mordell starts with the knowledge that there are no nontrivial points on the Fermat
quartic over Q and studies points over all quadratic fields. We generalise his method, observing that we
can also classify points over quadratic extensions of certain quadratic fields. More precisely, if L is any
field for which there are no points on the Fermat quartic, and if the two elliptic curves with Cremona
labels 32a1 and 64a1 have rank 0 over L , then we give a procedure to write down all the points on the
Fermat quartic over quadratic extensions of L .

In an earlier version of this paper, we conjectured that there are no points on the Fermat quartic over
any real biquadratic field. We thank Pedro José Cazorla Garcia for pointing out to us that the point
(
√

3, 2,
√

5) lies on the Fermat quartic over Q(
√

3,
√

5).
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After the completion of this work, we were made aware that Ishitsuka, Ito and Ohshita [Ishitsuka et al.
2020, Theorem 7.3] have previously determined all points on the Fermat quartic lying in a quadratic
extension of Q(ζ8). We thank the authors for making us aware of this. Since Q(

√
2) is contained in Q(ζ8),

this is indeed stronger than the statement of Theorem 6.4. We note that the authors of [Ishitsuka et al.
2020] study the Jacobian of the Fermat quartic over Q(ζ8) and that the proof of Theorem 6.4, extending
work of Mordell [1968], makes use of a different strategy.

Theorem 6.4. The points on the Fermat quartic lying in quadratic extensions of Q(
√

2) lie in one of
Q(

√
2, i), Q(

√
2,

√
−7), Q(

4
√

2) or Q(
4
√

2i).

Proof. Let L = Q(
√

2), and let K be a quadratic extension of L . We will determine all points on the
Fermat quartic F4 : x4

+ y4
= 1 in K , using the same strategy as Mordell (where, of course, Mordell

works with a quadratic extension K of L = Q). Let t = (1 − x2)/y2, so that x2
+ t y2

= 1. This gives a
parametrisation

x2
=

1 − t2

1 + t2 , y2
=

2t
1 + t2 .

We point out that if x, y ∈ K then x2, y2
∈ K and therefore so is t .

Suppose first that t ∈ L . Then x2, y2
∈ L . In order for x and y to lie in the same quadratic extension K

of L , either x ∈ L , y ∈ L or x/y ∈ L . This means that one of

1 − t2

1 + t2 ,
2t

1 + t2 or
2t

1 − t2

is a square in L . Equivalently, (1− t2)(1+ t2), 2t (1+ t2) or 2t (1− t2) is a square in L . These correspond
to L-rational points of one of the curves

u2
= (1 − t2)(1 + t2), u2

= 2t (1 + t2), u2
= 2t (1 − t2).

Both of the first two possibilities are isomorphic to E1 : y2
= x3

+ 4x (the elliptic curve with Cremona
label 32a1) via the maps

(t, u) 7→

(
2t + 2
1 − t

,
u

(1 − t)2

)
and (t, u) 7→ (2t, 2u),

respectively, and the third to E2 : y2
= x3

− 4x (the elliptic curve with Cremona label 64a1) via the map
(t, u) 7→ (−2t, 2u). We checked, using Magma, that E1 and E2 have rank 0 over L . We first consider E1

and find

E1(L) = E1(Q) = {O, (0, 0), (2, ±4)}.

We find that these points correspond on the first curve to t = ±1 and t = 0, and on the second to t = 0,
t = 1 and t = ∞. These values of t correspond to

(x2, y2) = {(1, 0), (−1, 0), (0, 1), (0, −1)},
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corresponding to points on F4 defined over Q or Q(i). Similarly,

E2(L) = {O, (0, 0), (±2, 0)} ∪ {(2 + 2
√

2, ±(4 + 4
√

2), (2 − 2
√

2, ±(4 − 4
√

2)},

and the rational points correspond to t = ±1 and t = 0, and the point at infinity to t = ∞, as before. The
points in E(L) \ E(Q) correspond to t = −1 ±

√
2, and these give

(x2, y2) ∈

{(
1

√
2
,

1
√

2

)
,

(
−

1
√

2
, −

1
√

2

)}
,

corresponding to points on F4 defined over Q(
4
√

2) or Q(
4
√

2i).
We now suppose t ∈ K , t /∈ L . We write F(t) = t2

+ βt + γ for the minimal polynomial of t over L ,
so β, γ ∈ L . We let A = (1 + t2)xy and B = (1 + t2)y, so that

A2
= 2t (1 − t2), B2

= 2t (1 + t2).

Since A2, B2
∈ K and K = L(t), we can write

A = λ + µt, B = λ′
+ µ′t, λ, µ, λ′, µ′

∈ L .

Comparing the two expressions for A yields

(λ + µt)2
= 2t (1 − t2).

In particular, the equation
(λ + µz)2

− 2z(1 − z2) = 0

has a root z = t . As the equation is defined over L , we see the left-hand side is divisible by the minimal
polynomial F(z), and, as this is a cubic, we have

(λ + µz)2
− 2z(1 − z2) = F(z)(ρ + σ z), (M1)

a factorisation over L (so ρ, σ ∈ L). Then z = −ρ/σ is a solution to the left-hand side of (M1) defined
over L . In particular, we have a solution with z ∈ L to

Y 2
= 2z(1 − z2) = −2z3

+ 2z,

where Y =λ+µz ∈ L . Thus we get an L-point on the elliptic curve Y 2
=−2X3

+2X , which is isomorphic
to the elliptic curve E2, and the points in E2(L) correspond to z = ±1, z = 0 and z = −1 ±

√
2. In

exactly the same way, looking at B2, we will get a solution over L to

(λ′
+ µ′z)2

− 2z(1 + z2) = F(z)(ρ ′
+ σ ′z), (M2)

and therefore a solution over L to Y 2
= 2z(1 + z2), which is isomorphic to E1. The points in E2(L)

correspond to z = 0 and z = 1.
We will now consider all these cases, as in Mordell. We write (z1, z2) for the situation where (M1)

is solved by z1 and (M2) is solved by z2. We remark that these calculations are quite involved, and we
therefore omit some details.
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Case 1. (−1, 1) This is Mordell’s case (VI). If z1 = −1 is a root of the left-hand side of (M1) then
λ + µ = 0 and, since −1 must then be a root of the right-hand side of (M1), it follows that ρ + σ = 0.
Similarly, if z1 = 1 is a root of the left-hand side of (M2) then λ′

+µ′
= 2, ρ ′

+σ ′
= 0. Equation (M1) is

λ2(1 + z) − 2z(1 − z) = ρF(z)

(after dividing by 1 − z). We can rewrite the left-hand side of (M2) as (2 − µ′
+ µ′z)2

− 2z − 2z3
=

ρ ′(1 − z)F(z). Thus, after dividing by 1 − z, we get

(M2) : 2(z2
+ z + 2) − 4µ′

+ µ′2(1 − z) = ρ ′F(z).

Both (M1) and (M2) have the same coefficient of z2, so ρ = ρ ′. Comparing constant terms and z terms:

λ2
= (2 − µ′)2, λ2

− 2 = 2 − µ′2,

so either (λ, µ′) = (0, 2) or (λ, µ′) = (±2, 0). In the first case, (M1) becomes −2z(1− z) = ρ · F(z), but
this contradicts the irreducibility of F(z). In the second case,

(M1) : ρF(z) = 4(1 + z) − 2z(1 − z) = 2(z2
+ z + 2),

so F(z) = z2
+ z + 2. Thus, t =

1
2(−1 ±

√
−7) and K = L(

√
−7).

Case 2. (−1, 0) This is Mordell’s case (III). In order for z = −1 to be a root of the left-hand side of (M1),
we need (λ − µ)2

= 0. So λ − µ = 0. Similarly, for z = 0 to be a root of the left-hand side of (M2),
we need λ′

= 0. Then for the left-hand side of (M1) to have −1 as a root, the same will be true of the
right-hand side, so ρ − σ = 0. Equation (M1) is then divisible by (1 + z), and dividing through, we get

(M1) : λ2(1 + z) − 2z(1 − z) = ρ · F(z).

We rewrite this as

(M1) : 2z2
+ (λ2

− 2)z + λ2
= ρ · F(z).

In order for z = 0 to be a root of the left-hand side of (M2), it must be that λ′
= 0, and thus

(M2) : −2z2
+ µ′2z − 2 = σ ′F(z).

The right-hand sides of (M1) and (M2) differ by a constant, and upon comparing the z2 coefficients on
the left-hand sides, we see that they differ by a factor of −1. Then comparing the constant term, we get
λ2

= 2. Thus λ = µ = ±
√

2. The coefficient of z in the first equation is λ2
− 2, and the coefficient of z

in the second is µ′2, so µ′
= 0. Then Y = λ′

+ µ′t = 0. But Y 2
= 2t (1 + t2), so this means that t = 0,

contradicting t /∈ L , or (1 + t2) in which case t = i and K = L(i).
For the remaining pairs (z1, z2), in each case, after performing a similar analysis, we reach a contradic-

tion to the fact λ, µ, λ′, µ′
∈ L , and thus no solutions are found in these cases. □

This completes the proof of Theorem 1.1.
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7. More general real biquadratic fields

We give examples of obstacles that arise in generalising the proof of Theorem 1.1 to more general real
biquadratic fields. As in the proof of Theorem 1.1, we apply level lowering (Theorem 2.1) to the Frey
curve (2) for p ≥ 17 and E13,ϵ for p = 13.

7.1. K = Q(
√

2,
√

5). In order to apply level lowering (Theorem 2.1), one needs to demonstrate the
modularity of the Frey curve over K . It has not yet been proven that elliptic curves over totally real quartic
fields containing

√
5 are modular; see [Box 2022, Section 7.1] for a discussion concerning this problem.

We remark however that establishing the modularity of the Frey curve over this particular field K may be
possible through the use of [Freitas et al. 2015, Theorem 7].

7.2. K = Q(
√

2,
√

7). Write OK for the ring of integers of K . A straightforward computation in Magma
returns that K has class number 1 and 2OK = P4. A straightforward generalisation of Lemmas 3.1,
3.2 and 3.3 returns that the lowered level is Pt , where t = 1, 5, 8 or 16. In particular, the dimension
of Hilbert newforms of parallel weight 2 and level P16 is 40960, making the elimination step currently
computationally infeasible in this case.

7.3. K = Q(
√

2,
√

11). Write OK for the ring of integers of K . A straightforward computation in
Magma returns that K has class number 1 and 2OK = P4. By a direct generalisation of the techniques
outlined in Section 4, it is straightforward to see that ρ̄E,p is irreducible for p ≥ 13.

A straightforward generalisation of Lemmas 3.1, 3.2 and 3.3 returns that the lowered level is Pt , where
t = 1, 4 or 5. As is true for Q(

√
2,

√
3), there are no Hilbert newforms of parallel weight 2 and level P

over K . There are 44 Hilbert newforms of parallel weight 2 and level P4 and 76 Hilbert newforms of
parallel weight 2 and level P5 over K . In order to get a contradiction, we make use of the standard
method of eliminating newforms given by the following lemma.

Lemma 7.1 [Freitas and Siksek 2015b, Lemma 7.1]. Let K be a totally real field, and let p ≥ 5 be a
prime. Let E be an elliptic curve over K of conductor N , and let f be a newform of parallel weight 2 and
level Np. Let t be a positive integer satisfying t | #E(K )tors. Let q ∤ tNp be a prime ideal of OK , and let

Aq = {a ∈ Z : |a| ≤ 2
√

Norm(q), Norm(q) + 1 − a ≡ 0 (mod t)}.

If ρ̄E,p ∼ ρ̄f,ϖ then ϖ divides the principal ideal

Bf,q = Norm(q)((Norm(q) + 1)2
− aq(f)2)

∏
a∈Aq

(a − aq(f)) ·OQf .

We briefly explain how to apply Lemma 7.1. Namely let

Bf =

∑
q∈T

Bf,q,

where T is a small set of primes q ∤ tNp. Let Cf = NormQf/Q(Bf). Then Lemma 7.1 asserts that p | Cf.
We wrote a short program to implement Lemma 7.1 in Magma with Np = P4 or P5, with t = 4 and T
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equal to the set of prime ideals q ̸= P of K with norm less than 90. From this implementation, we found
that if ρ̄E,p ∼ ρ̄f,ϖ , where E is our Frey curve and f is a newform of level Np, then p = 2 or 3.

We remark that the proofs of Theorems 6.1 and 6.3 do not readily generalise to K . In combination
with the remarks made in Section 2, this leads to the following result.

Theorem 7.2. Let K = Q(
√

2,
√

11). There are no nontrivial solutions to (1) over K for all primes n ≥ 5.
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Moments in the Chebotarev density theorem:
general class functions

Régis de la Bretèche, Daniel Fiorilli and Florent Jouve

À la mémoire de Joël Bellaïche

We find lower bounds on higher moments of the error term in the Chebotarev density theorem. Inspired
by the work of Bellaïche, we consider general class functions and prove bounds which depend on norms
associated to these functions. Our bounds also involve the ramification and Galois theoretical information
of the underlying extension L/K . Under a natural condition on class functions (which appeared in
earlier work), we obtain that those moments are at least Gaussian. The key tools in our approach are the
application of positivity in the explicit formula followed by combinatorics on zeros of Artin L-functions
(which generalize previous work), as well as precise bounds on Artin conductors.

1. Introduction

The study of the error term in the Chebotarev density theorem has a long history and is critical in many
applications. If L/K is a Galois extension of number fields, G = Gal(L/K ) and C ⊂ G is a conjugacy
class, then this theorem states that as x → ∞

πC(x; L/K ) :=

∑
p◁OK
Np≤x
ϕp=C

1 ∼
|C |

|G|
Li(x),

where Li(x) :=
∫ x

2 du/log u, and the sum extends to maximal ideals p of the ring of integers OK of K
with associated Frobenius (resp. norm) denoted ϕp (resp. Np); see, e.g., [Martinet 1977, Section 4] for
the general definition of the Frobenius substitution. Equivalently, if t : G → R is a real-valued class
function, then

π(x; L/K , t) :=

∑
p◁OK
Np≤x

t (ϕp)∼ t̂(1)Li(x),

where t̂(1) = (1/|G|)
∑

g∈G t (g). Note that if 1C denotes the indicator function of a given conjugacy
class C of G, then π(x; L/K , 1C) = πC(x; L/K ). As for the error term, which was first bounded
effectively by Lagarias and Odlyzko [1977], Bellaïche [2016] has shown under GRH and Artin’s conjecture
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(denoted by AC throughout the paper; see Section 4 for recollections on Artin L-functions), that in the
case K = Q and for x ≥ 3,

π(x; L/K , t)− t̂(1)Li(x)≪ λ1,1(t)
√

x log(x M |G|),

where M is the product of all primes ramified in L and λ1,1(t) :=
∑

χ∈Irr(G) χ(1)|t̂(χ)|, with Irr(G) being
the set of irreducible characters of G and

t̂(χ) := ⟨t, χ⟩G =
1

|G|

∑
g∈G

χ(g)t (g).

As an example, if t = 1C for some conjugacy class C ⊂ G, then t̂(χ)= (|C |/|G|)χ(C).
Bellaïche’s bound has been generalized and improved in the recent work [Fiorilli and Jouve 2024].

Moreover, [loc. cit.] studies the generic behavior of the error term, in particular its limiting distribution
as x → ∞. Using probabilistic tools, a sufficient condition is obtained for this error term to be Gaussian
[loc. cit., Proposition 5.8]. This generalizes previous work on primes in arithmetic progressions [Hooley
1977; Rubinstein and Sarnak 1994; Fiorilli and Martin 2013]. For example, Hooley has shown that for
(a, q)= 1, the error term

E(x; q, a) :=

∑
n≤x

n≡a mod q

3(n)−
1

φ(q)

∑
n≤x

3(n)

is such that for any fixed r ∈ N,

lim
q→∞

lim
X→∞

φ(q)r/2

(log q)r/2
1

log X

∫ X

2

(E(x; q, a))r

xr/2

dx
x

= µr ,

where

µr :=

{
(2n − 1) · (2n − 3) · · · 1 if r = 2n,
0 otherwise

is the r -th moment of the Gaussian. Hooley’s theorem is conditional on GRH, as well as the assumption
that the multiset of nonnegative nontrivial zeros of Dirichlet L-functions modulo q is linearly independent
over the rationals.

The results which we just described (including a number of results in [Fiorilli and Jouve 2024])
apply to limiting distributions as x → ∞, and thus do not give information on the behavior of the error
term uniformly when q varies with x . In fact, to obtain such explicit information one would need to
significantly strengthen the linear independence hypothesis, that is one would need to assume that integer
linear combinations of L-function zeros are bounded away from zero as a function of q (in the spirit of
[Montgomery and Vaughan 2007, Section 15.3]).

In [de la Bretèche and Fiorilli 2023], a lower bound is established on higher moments of primes in
progressions in a certain range of q in terms of x , assuming only GRH. More precisely, the results of
[loc. cit.] manage to circumvent the linear independence assumption by considering a weighted version
of E(x; q, 1) and applying positivity in the explicit formula.
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The goal of the present paper is to generalize these results in the context of the Chebotarev den-
sity theorem, that is to obtain lower bounds on moments of a weighted version of the error term
π(x; L/K , t)− t̂(1)Li(x) in certain ranges of x depending on the class function t and on invariants of
the extension L/K such as the size of its Galois group and of the root discriminant of L . We stress that
our results do not assume any form of linear independence of the L-function zeros involved.

Before we state our results, we need a few definitions. We let δ > 0 and Sδ ⊂ L1(R) be the set of all
nontrivial differentiable even η : R → R such that, for all t ∈ R,

η(t), η′(t)≪ e−(1/2+δ)|t |,

and moreover for all ξ ∈ R, we have that1

0 ≤ η̂(ξ)≪ (|ξ | + 1)−1(log(|ξ | + 2))−2−δ. (1)

Here, the Fourier transform is defined by

η̂(ξ) :=

∫
R

e−2π iξuη(u) du.

Finally for any h ∈ L1(R) we define

α(h) :=

∫
R

h(t) dt.

In this notation, one of the goals of the paper [de la Bretèche and Fiorilli 2023] is to give lower bounds
on moments of the error term∑

n≥1
n≡1 mod q

3(n)
n1/2 η(log(n/x))−

1
φ(q)

∑
n≥1

(n,q)=1

3(n)
n1/2 η(log(n/x)), (2)

which is a weighted version of ψ(x; q, 1)− (1/φ(q))ψ(x, χ0,q) where χ0,q is the principal character
modulo q .

In this paper we consider L/K a Galois extension of number fields of group G = Gal(L/K ) and we
fix a real-valued class function t : G → R.2 Our goal will be to understand the moments of

ψη(x; L/K , t) :=

∑
p◁OK
m≥1

t (ϕm
p )

log(Np)

Npm/2 η(log(Npm/x)), (3)

which is a direct generalization of (2) (where, disregarding ramified primes, K = Q, L = Q(ζq) and
t = 11 mod q − 1/φ(q)). First, we notice that with this smooth weight, the Chebotarev density theorem

1The upper bound on η̂(ξ) is a quite mild condition given the differentiability of η; going through the proof of the Riemann–
Lebesgue lemma we see for instance that a stronger bound holds as soon as η′ is monotonous. (A stronger bound holds if
η is twice differentiable.) As for the positivity condition, we can take for example η = η1 ⋆ η1 for some smooth and rapidly
decaying η1.

2We will require later the condition t̂ ≥ 0. In particular, the results of our paper also apply to class functions of the form
Re(t), where t : G → C is a class function of nonnegative real part such that t̂ ≥ 0.
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reads

ψη(x; L/K , t)∼ t̂(1)x1/2Lη
( 1

2

)
,

where

Lη(u) :=

∫
R

euxη(x)dx

(note that Lη(u)= Lη(−u)). Secondly, it follows from an analysis as in [Fiorilli and Jouve 2024] (see,
e.g., [loc. cit., Theorem 2.1]) that under GRH, the remainder term ψη(x; L/K , t)− t̂(1)x1/2Lη

( 1
2

)
has

average value equal to η̂(0)z(L/K , t), where we define

z(L/K , t) :=

∑
χ∈Irr(G)

t̂(χ) ords=1/2 L(s, L/K , χ).

With this in mind, we define U to be the set of even nontrivial integrable functions 8 : R → R such
that 8, 8̂≥ 0,3 and we consider for U > 0, 8 ∈ U , n ∈ Z≥1, and η ∈ Sδ the central moment

M̃n(U, L/K ; t,η,8) :=
1

U
∫

∞

0 8

∫
∞

0
8

( u
U

)(
ψη(eu

; L/K , t)−t̂(1)eu/2Lη
(1

2

)
−η̂(0)z(L/K , t)

)n
du.

(4)
We will see that under GRH and AC, this integral converges.

Our main result is a lower bound on the even moments M̃2m(U ; L/K ; t, η,8), which is conditional on
GRH as well as AC. More precisely, if AC holds for a Galois extension L/F where K/F is a subextension,
then we obtain a bound which depends on F . For simplicity one can assume that F = Q; in general, we
expect to obtain the best possible (and in many families asymptotically optimal) bound with this choice.
Our bounds will depend on the root discriminant

rdL := d1/[L:Q]

L , (5)

where dL is the absolute value of the discriminant of L/Q. Our estimates will also involve various norms
relative to the Galois groups G and G+ of the extensions L/K and L/F respectively. For a finite group
G and for a class function t : G → C, these norms are defined as follows:

λ j,k(t) :=

∑
χ∈Irr(G)

χ(1) j
|t̂(χ)|k ( j, k ≥ 0). (6)

Our main results (Theorems 1.1 and 1.4) show that the moments M̃2m(U, L/K ; t, η,8) are asymp-
totically greater than or equal those of a Gaussian of expected variance. The implied variance will be
expressed in terms of zeros of Artin L-functions of a Galois number field extension L/F . More precisely,
denoting t+

:= IndG+

G t , this variance takes the shape

ν(L/F, t+
; η) :=

∑
χ∈Irr(G+)

|t̂+(χ)|2b0(χ; η̂2), (7)

3Note that those conditions imply that 8̂(0) > 0.
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and where χ ∈ Irr(Gal(L/F)),

b0(χ; η̂2) :=

∑
ρχ /∈R

∣∣∣∣η̂(ρχ −
1
2

2π i

)∣∣∣∣2

, (8)

where ρχ is running over the nontrivial zeros of L(s, L/F, χ).

Theorem 1.1. Let L/K/F be a tower of number fields such that L ̸= Q, L/F is Galois, and assume
GRH and AC for the extension L/F.4 Define G := Gal(L/K ), G+

:= Gal(L/F), let η ∈ Sδ, 8 ∈ U , and
assume that t : G → R is a nonzero class function such that t+

:= IndG+

G t , the class function on G+

induced by t , satisfies t̂+ ∈ R≥0.5 For m ∈ N, we have the lower bound

M̃2m(U, L/K ; t, η,8)

≥ µ2mν(L/F, t+
; η)m(1 + Oη(m2m!w4(L/F, t+

; η)))+ O
(
(κη[F : Q]λ1,1(t+) log(rdL))

2m

U

)
, (9)

where κη > 0 is a constant which depends only on η and

w4(L/F, t+
; η) :=

∑
χ∈Irr(G+)|t̂

+(χ)|4b0(χ; η̂2)(∑
χ∈Irr(G+)|t̂+(χ)|2b0(χ; η̂2)

)2 . (10)

In other words, the moments M̃2m(U, L/K ; t, η,8) are at least Gaussian of variance ν(L/F, t+
; η).

Our next main result is an estimation of this variance as well as an upper bound on the error term
w4(L/F, t+

; η).

Remark 1.2. A version of the quantity w4(L/F, t+
; η) has already appeared in the probabilistic study

of the error term in Chebotarev [Fiorilli and Jouve 2024, Section 5.2]. In particular, the condition
w4(L/F, t+

; η)=o(1)was necessary in order to obtain the central limit theorem [loc. cit., Proposition 5.8].
However, there exists class functions for which this condition does not hold: taking for instance t = 1, we
obtain a weighted version of the error term in the prime number theorem which under standard hypotheses
is not Gaussian; this goes back to Wintner [1941]. Another instance of non-Gaussian moments is explored
in [de la Bretèche et al. 2023].

In order to state our bounds on the variance ν(L/F, t+
; η), we define the following quantity attached

to a nontrivial class function t : G → R:6

St := max
1̸=a∈G

∣∣∑
χ∈Irr(G) χ(a)|t̂(χ)|

2
∣∣∑

χ∈Irr(G) χ(1)|t̂(χ)|2
= max

1̸=a∈G

∣∣∑
χ∈Irr(G) χ(a)|t̂(χ)|

2
∣∣

λ1,2(t)
≤ 1. (11)

Remark 1.3. The quantity St is, in a sense, a measure of the size of the support of t̂ . For many groups,
we expect St to be much smaller than 1 as soon as t̂ has a “large” support in Irr(G) (see the example
following Theorem 1.4 as well as Section 2).

4Note that AC for the extension L/F implies AC for the extension L/K .
5See the beginning of Section 4 for recollections on induction. Notice that the condition t̂+ ≥ 0 is weaker than t̂ ≥ 0. Indeed,

by Frobenius reciprocity, we have that t̂+(χ)= t̂(χ |G), and moreover the character χ |G is a sum of irreducible characters of G.
6Note that if G = {1}, then we define St := 0.
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Here and throughout we denote by logk the k-fold iterated logarithm.

Theorem 1.4. With the same notations and assumptions as in Theorem 1.1, we have the following:

• Assume that the weight function η is such that inf{|z − z′
| : z ̸= z′, η̂(z) = η̂(z′) = 0} > 0.7 Then, we

have the bounds
ν(L/F, t+

; η)≍η

∑
χ∈Irr(G+)

|t̂+(χ)|2 log(A(χ)+2),

w4(L/F, t+, η)≪η

∑
χ∈Irr(G+)|t̂

+(χ)|4 log(A(χ)+ 2)(∑
χ∈Irr(G+)|t̂+(χ)|2 log(A(χ)+ 2)

)2 .

Here, A(χ) is the Artin conductor which is defined in (18).

• Assume that St+ ≤ 1−κη(log2(rdL +2))−1 where κη > 0 is a large enough constant which depends only
on η. Then we have the more explicit bounds

1 − St+ − Oη

(
1

log2(rdL +2)

)
≤

ν(L/F, t+
; η)

α(|η̂|2)[F : Q] log(rdL)λ1,2(t+)

≤ 1 + St+ + Oη

(
1

log2(rdL +2)

)
, (12)

as well as8

w4(L/F, t+
; η)[F : Q] log(rdL)≪η

λ1,4(t+)

λ1,2(t+)2

(
1 − St+ − Oη

(
1

log2(rdL +2)

))−2

≪η (log2 rdL)
2.

Remark 1.5. To see why the assumptions made in Theorem 1.4 are important, consider the case where
K = Q and t = t+

= 1, in which St+ = 1. Then we have that

ψη(x; L/K , t)− x1/2Lη
( 1

2

)
=

∑
p

m≥1

log p
pm/2 η(log(pm/x))− x1/2Lη

(1
2

)
,

and the moments of the limiting distribution of this function are much smaller than those of a Gaussian
(in fact the limiting distribution has compact and uniformly bounded support, which does not depend on
the extension L/K ). This does not contradict Theorem 1.1, since in this case w4(L/F, t+, η)≫ 1 (hence
we cannot extract any information from (9)).

Remark 1.6. The norms λ j,k(t) :=
∑

χ∈Irr(G) χ(1)
j
|t̂(χ)|k play a fundamental role in the analysis of

the error term in the Chebotarev density theorem. Bellaïche [2016] coined the term “Littlewood norm”
for λ1,1(t), which he thoroughly studied with applications to the sup norm of the error term in Chebotarev.
The norm λ1,2(t) and its applications to the mean square of the error term in Chebotarev were studied in
[Fiorilli and Jouve 2024].

7More generally, it is sufficient to assume that there exists an interval [T1, T2] where T1 > κ and T2 − T1 ≥ κ(log2(T1))
−1

on which η̂ does not vanish, where κ > 0 is a large enough absolute constant.
8Note that the second bound here shows that w4(L/F, t+; η) is small as soon as the root discriminant is large. However, this

bound is far from optimal, and we expect the quotient λ1,4(t+)/λ1,2(t+)2 to also be small in many cases.
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Remark 1.7. One can generalize the bound (12). If 4⊂ Irr(G+) is a set of irreducible characters, then
one can drop the terms where χ /∈4 in the definition (7) of ν(L/F, t+

; η). Doing so, and assuming that

St+(4) := max
1̸=a∈G

∣∣∑
χ∈4 χ(a)|t̂(χ)|

2
∣∣∑

χ∈4 χ(1)|t̂(χ)|2
≤ 1 − κη(log2(rdL +2))−1,

where κη > 0 is a large enough constant which depends only on η, we deduce the bound

ν(L/F, t+
; η)

α(|η̂|2)[F : Q] log(rdL)λ1,2(t+;4)
≥ 1 − St+(4)− Oη

(
1

log2(rdL +2)

)
,

where λ1,2(t+
;4) :=

∑
χ∈4 χ(1)|t̂(χ)|

2. This generalized bound will be useful in the case G+
= Sn

(see Section 2.5).

The following example illustrates the relevance of introducing the quantities St and St+ in the statement
of Theorem 1.4.

Example. Fix an abelian extension L/K of number fields and let G = Gal(L/K ). Let t be real-valued
with nonnegative Fourier coefficients of constant modulus (e.g., t = 1g, for any g ∈ G), then, since by
orthogonality

∑
χ∈Irr(G) χ(a)=0 for every a ∈ G\{1}, we have St =0. In particular (12) combined with (9)

generalizes the situation considered in [de la Bretèche and Fiorilli 2021, page 7] where t = 11 mod q and
G ≃ (Z/qZ)× is the Galois group of the cyclotomic extension Q(ζq)/Q. For further examples, including
nonabelian extensions, see Section 2.

Remark 1.8. In Theorem 1.1, one might wonder whether it is possible to bound the more familiar
moments

Mn(U, L/K ; t, η,8) :=
1

U
∫

∞

0 8

∫
∞

0
8

( u
U

)(
ψη(eu

; L/K , t)− t̂(1)eu/2Lη
( 1

2

))n du,

rather than M̃n(U, L/K ; t, η,8). This is indeed the case since in Theorem 1.1,

mL/K ;t,η := η̂(0)z(L/K , t)= η̂(0)z(L/F, t+)

(this follows from [Fiorilli and Jouve 2024, Lemma 3.15]), which by our assumptions is nonnegative.
Then, we have that

M2m(U, L/K ; t, η,8)=

2m∑
j=0

(2m
j

)
M̃ j (U ; L/K , t)m2m− j

L/K ;t,η ≥ M̃2m(U, L/K ; t, η,8).

Of course, if we can show that mL/K ;t,η > 0, then the last bound can be improved. As a result, we obtain
the following corollary.

Corollary 1.9. Under the assumptions of Theorem 1.1, the bound (9) holds with M2m(U, L/K ; t, η,8)
in place of M̃2m(U, L/K ; t, η,8).
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We end this section by noting that Theorems 1.1 and 1.4 imply �-results on the classical (unweighted)
prime ideal counting functions

ψ(x; L/K , t) :=

∑
p◁OK
m≥1

t (ϕm
p ) log(Np). (13)

Corollary 1.10. Let L/K be a Galois extension of number fields for which GRH holds. Let F be any
subfield of K (i.e., F ⊂ K ⊂ L ) which is such that L/F is Galois and satisfies AC. Define G := Gal(L/K ),
G+

:= Gal(L/F), and assume that t : G → R is a nonzero class function such that t+
:= IndG+

G t satisfies
t̂+ ∈ R≥0. Assume that St+ ≤ 1 − κ(log2(rdL +2))−1 where κ > 0 is a large enough absolute constant.
Then there exists a sequence of values x = x j;L/K ,t tending to infinity such that

|ψ(x; L/K , t)− t̂(1)x | ≫ x1/2([F : Q] log(rdL)λ1,2(t+))1/2
(

1 − St+ − O
(

1
log2(rdL +2)

))1/2

, (14)

where the implied constant is absolute. More precisely, there exists a large enough absolute constant
κ ′ > 0 such that for any large enough U > 0 (in absolute terms), there exists x > 1 such that (14) holds
with log x ∈ [U,U ·βL ,F,K ,t ] where

βL ,F,K ,t := κ ′
[F : Q]λ1,1(t+)2 log(rdL +2) log2(rdL +2)/λ1,2(t+).

Corollary 1.11. Let L/K with L ̸= Q be a Galois extension of number fields for which GRH holds,
and define G := Gal(L/K ). Then for any large enough U > 0, there exists x > 1 for which log x ∈

[U, κ ′U · log(dL + 2)] and such that

|ψ(x; L/K , |G|1e)− x | ≫ x1/2(log dL)
1/2. (15)

Here, κ ′ is a large enough absolute constant (in absolute terms).

The paper is organized as follows. In Section 2 we state applications of our main results to specific
families of Galois extensions of number fields. The proofs of these statements are postponed to Section 6.
Next, Sections 3 and 4 are dedicated to recollections and preparatory results concerning Artin conductors,
and zeros of Artin L-functions, respectively. We prove our main results as well as Corollaries 1.10
and 1.11 in Section 5.

2. Explicit families of Galois extensions and class functions

In this section we study explicit infinite families of extensions for which Theorems 1.1 and 1.4 apply.
The proofs of these results are contained in Section 6.

2.1. Abelian extensions: moments for prime ideals in ray classes. A natural way to generalize the
questions addressed in [Hooley 1977; de la Bretèche and Fiorilli 2021; 2023] is to consider moments for
the distribution of prime ideals in abelian number field extensions. Indeed, class field theory provides one
with the exact transposition to any relative abelian extension of number fields of the classical approach to
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the study of primes in arithmetic progressions. Let m be a nonzero ideal of the ring of integers OK of a
number field K , denote by vp the valuation on K with respect to a nonzero prime ideal p of OK , and
consider

Im(K )= {fractional ideals a of K : vp(a)= 0 if p |m},

Pm(K )+ = {γOK : γ ∈ K , γ totally positive and γ ≡ 1 mod m}.

The (strict) ray class group attached to K and m is defined as the quotient Clm(K ) := Im(K )/Pm(K )+. The
quotient group Clm(K ) is abelian and finite of order denoted hK ,m (the strict ray class number attached to
K and m). In the case K = Q and m = mZ for a positive integer m, we have

Clm(K )= Gal(Q(ζm)/Q)≃ (Z/mZ)×.

Class field theory asserts that, in general, there exists an (abelian) extension Lm/K such that G =

Gal(Lm/K ) ≃ Clm(K ). In this setting, for any (class) function t : Clm(K ) → C, the prime counting
function we are interested in takes the form

ψη(x; K ,m, t) :=

∑
p◁OK
m≥1

t ([p]m)
log(Np)

Npm/2 η(log(Npm/x)),

where [p] denotes the class of the prime ideal p in Clm(K ). Note that ψη(x; K ,m, t)= ψη(x; Lm/K , t),
and thus this is a particular case of the setting in Theorem 1.1. The Chebotarev density theorem for Lm/K
and t = hK ,m1[a], the (normalized) indicator function of a class [a] ∈ Clm(K ), can be seen as a “prime
number theorem in the ray class field of K corresponding to m”. In this setting, applying Theorem 1.1
gives the following result.

Proposition 2.1. For m a nonzero ideal of the ring of integers OK of a number field K , let Lm/K be the
corresponding ray class field extension, for which we assume that GRH holds. One has for the trivial
class [e] ∈ Clm(K ), any m ≥ 1, any η ∈ Sδ and any 8 ∈ U ,

M̃2m(U, Lm/K ; hK ,m1[e], η,8)≥ µ2m(α(|η̂|
2) log dLm)

m(1 + ordLm→∞(1)),

provided (log dLm)
m/U → 0, where the implied constant in o( · ) depends on m.

By analogy with the case of primes in arithmetic progressions (see [de la Bretèche and Fiorilli 2023,
Theorem 1.3]), we expect that the dependency on the discriminant of Lm can be made explicit in terms of
the norm of m. This is indeed the case, as shown in [Cohen et al. 1998, Theorem 3.3(2)].

2.2. Dihedral extensions. A natural next step after analyzing the abelian case (see Remark 1.3) is to
consider groups having an abelian subgroup of small index. Such is the case of dihedral groups. Let
us start by recalling classical facts (see, e.g., [Serre 1977, Section 5.3]): for an odd integer n ≥ 3, the
dihedral group of order 2n is defined as follows,

Dn = ⟨σ, τ : σ n
= τ 2

= 1, τστ = σ−1
⟩.
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The nontrivial conjugacy classes of Dn are

{σ j , σ− j
}
(
1 ≤ j ≤

1
2(n − 1)

)
, and {τσ k

: 0 ≤ k ≤ n − 1}.

Proposition 2.2. One has the following table of values of St for various choices of central functions
t : Dn → R:

n ≥ 3 ≥ 3 ≥ 5

t |Dn|1e 1{σ,σ−1} 21e + 1{σ,σ−1}

St
1

2n−1
1−2/n

2(1−1/n)
< 2

3

The first column of the table is used to prove the following result.

Proposition 2.3. For n ≥ 3 odd, let L/Q be a Dn-extension of number fields for which GRH holds. One
has for any m ≥ 1, any η ∈ Sδ and any 8 ∈ U ,

M̃2m(U, L/Q; |Dn|1e, η,8)≥ µ2m
(
α(|η̂|2)

(
2 −

1
n

)
log dL

)m
(1 + ordL→∞(1)),

provided (log dL)
m/U → 0, where the implied constant in o(·) depends on n.

2.3. Radical extensions. We consider the following Galois extension studied in [Fiorilli and Jouve 2024,
Section 9.2]. Let a, p be distinct prime numbers such that p ̸= 2 and a p−1

̸≡ 1 mod p2 and let Ka,p be
the splitting field (inside C) of X p

− a ∈ Q[X ]. The Galois group G := Gal(Ka,p/Q) is isomorphic to
the group of affine transformations of A1

Fp
. A convenient way to describe G is the following:

G ≃

{(
c d
0 1

)
: c ∈ F∗

p, d ∈ Fp

}
. (16)

One has |G| = p(p − 1) and G admits a real irreducible character ϑ of degree p − 1 (see Section 6.3).

Proposition 2.4. Let G be as in (16). One has the following table of values for St for various choices of
central functions t : G → R:

t |G|1e ϑ

St
1

p(1−2/p+2/p2)

1
p−1

We deduce the following result on the moments attached to the class functions considered in the table
of Proposition 2.4.

Proposition 2.5. Let a, p be distinct prime numbers such that p ̸= 2 and a p−1
̸≡ 1 mod p2. Let Ka,p/Q

be the Galois extension of group G defined by (16). Assuming that GRH holds for Ka,p, one has for any
m ≥ 1, any η ∈ Sδ and any 8 ∈ U ,

M̃2m(U, Ka,p/Q; |G|1e, η,8)≥ µ2m(α(|η̂|
2)p3 log p)m(1 + op→∞(1)),

M̃2m(U, Ka,p/Q;ϑ, η,8)≥ µ2m(α(|η̂|
2)p log p)m(1 + op→∞(1)),

provided (p log p)m = op→∞(U ).
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Note that in this particular example of Galois extension Ka,p/Q the Artin conductors of the elements
of Irr(G) can be explicitly computed (see [Fiorilli and Jouve 2024, Section 9.2] and [Viviani 2004]),
therefore the last estimates of Theorem 1.4 can also be applied (yielding a weaker bound). Specific
features of moments in the Chebotarev density theorem for Galois extensions of type generalizing the
case of Ka,p/Q are studied in detail in [de la Bretèche et al. 2023].

2.4. Moments for irreducible characters. As already mentioned in Remark 1.3, choosing t such that
t̂(χ)= 0 for many irreducible characters χ of G could lead to a value of St that is close to 1, however
in a longer sum we can hope to have more cancellations (following, e.g., the philosophy of [Iwaniec
and Kowalski 2004, Chapter 12], cancellations in character sums are believed to occur only when the
sums are taken over a sufficiently large index set). However, in some cases where t is nontrivial but has a
Fourier support of minimal size (e.g., when t is a nontrivial irreducible character of G, as in the case of
t = ϑ in Section 2.3), one can still have St < 1 so that our main estimates in Theorem 1.1 and 1.4 apply.
The following statement gives a setup where one can take t to be very close to an irreducible character
and still apply our main results. This result covers the situation lying at the opposite of the generalization
of the bound (12) discussed in Remark 1.7, where one discriminates the irreducible characters appearing
in the Fourier support of the class function t according to the size of their degree.

Proposition 2.6. Let L/K/F be a tower of number fields such that L ̸= Q, L/F is Galois, and assume
GRH and AC for the extension L/F. Define G := Gal(L/K ) and G+

:= Gal(L/F). Let t : G → R be a
class function such that t+

=
1
2(χ +χ) for some irreducible representation ρ of G+ of character χ . Let

η ∈ Sδ and 8 ∈ U . Then St+ < 1 if and only if ρ is faithful and the center Z(G+) of G+ has odd order.9

In particular, if this last condition holds and if rdL is large enough in terms of 1 − St+ , then (12) applies.

Finite groups admitting faithful irreducible characters are classified by a result of Gaschütz; see, e.g.,
[Huppert 1998, Theorem 42.7]. Finally note that even if ρ is not faithful or 2 | |Z(G+)| then we may
apply the first case in Theorem 1.4.

2.5. Sn-extensions. Perhaps what can be seen as the “generic” situation is when L/Q is Galois of group
Sn the symmetric group on n letters. One can obtain explicit lower bounds for ν(L/F, t+

; η) by following
the approach in [Fiorilli and Jouve 2024, Section 7], which involves Roichman’s bound [1996]. For a
large set of class functions t , one can show that St remains bounded away from 1 (where the distance
to 1 is precisely evaluated as a function of n in [loc. cit.]). For instance this applies to the difference of
normalized indicator functions

tC1,C2 = (|G|/|C1|)1C1 − (|G|/|C2|)1C2 (resp. tC = (|G|/|C |)1C)

as soon as C1, C2 are distinct conjugacy classes of Sn , one of which has size at most (resp. C is a
conjugacy class of Sn of size at most) n!

1−(4+ε)/(e log n). Using these ideas, we obtain the following result.

9Recall that a representation ρ : G → GL(V ) is said to be faithful if ρ is an injective group morphism.
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Proposition 2.7. Let n be large enough and assume that L/K is a Galois extension of number fields
for which L/Q is Galois of group Sn and satisfies AC and GRH. Let C1,C2 be conjugacy classes of
Gal(L/K ) for which min(|C+

1 |, |C+

2 |)≤ n!
1−(4+ε)/(e log n), where ε > 0 is fixed. Then for all fixed m ≥ 1

we have the bound

M̃2m(U, L/K ; tC1,C2, η,8)

≥ µ2m

(
cη

log(n!/min(|C+

1 |, |C+

2 |))

log n!

[K : Q] log(rdL)n!
3/2

min(|C+

1 |, |C+

2 |)3/2 p(n)1/2

)m

(1 + ordL→∞(1)),

provided ([K : Q] log(rdL)min(|C+

1 |, |C+

2 |)3 p(n)/n!
3)m/2/U → 0, where cη > 0 depends only on η.

The same bound holds for the class function tC1 = (|G|/|C1|)1C1 , with the convention that in this case,
min(|C+

1 |, |C+

2 |)= |C+

1 |.

Note that the factor log(n!/min(|C+

1 |, |C+

2 |))/log n! ≫θ 1 as soon as min(|C+

1 |, |C+

2 |) ≤ n!
1−θ for

some θ > 0.

3. Artin conductors

Let us first recall a few facts on Artin conductors. Consider a finite Galois extension of number fields
L/K with Galois group G. For p a prime ideal of OK and P a prime ideal of OL lying above p, the
higher ramification groups form a sequence (Gi (P/p))i≥0 of subgroups of G (called filtration of the
inertia group I(P/p)) defined as follows:

Gi (P/p) := {σ ∈ G : ∀z ∈ OL , (σ z − z) ∈ Pi+1
}.

Each Gi (P/p) only depends on p up to conjugation and G0(P/p) = I(P/p) (when conjugation is
unimportant we will simply denote this group I (p)). For clarity let us fix prime ideals p and P as above
and write Gi for Gi (P/p). Given a representation ρ : G → GL(V ) on a complex vector space V , the
subgroups Gi act on V through ρ and we denote by V Gi ⊂ V the subspace of Gi -invariant vectors. Let
χ be the character of ρ and

n(χ, p) :=

∞∑
i=0

|Gi |

|G0|
codim V Gi , (17)

which was shown by Artin to be an integer. The Artin conductor of χ is the ideal of OK

f(L/K , χ) :=

∏
p

pn(χ,p).

Note that the set indexing the above product is finite since only finitely many prime ideals p of OK ramify
in L/K . We set

A(χ) := dχ(1)K NK/Q(f(L/K , χ)), (18)

where dK is the absolute value of the absolute discriminant of the number field K and NK/Q is the relative
ideal norm with respect to K/Q (we will use the slight abuse of notation that identifies the value taken by
this relative norm map with the positive generator of the corresponding ideal).
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We recall the following pointwise bounds on the Artin conductor.

Lemma 3.1 [Fiorilli and Jouve 2024, Lemma 4.1]. Let L/K be a finite Galois extension. For any
nontrivial irreducible character χ of G = Gal(L/K ), one has the bounds

max
(
1, 1

2 [K : Q]
)
χ(1)≤ log A(χ)≤ 2χ(1)[K : Q] log(rdL),

where the root discriminant rdL is defined by (5). The upper bound is unconditional. The lower bound is
unconditional if K/Q is nontrivial and holds assuming AC for the Artin L-function L(s, L/Q, χ).10

We will also use the following average bounds, which generalize [Fiorilli and Jouve 2024, Lemma 4.2].

Lemma 3.2. Let L/K be a Galois extension of number fields, and let G = Gal(L/K ). Let {cχ }χ∈Irr(G) be
a family of nonnegative real numbers. Then we have the bounds

(1 − S(c))
∑

χ∈Irr(G)

χ(1)cχ ≤

∑
χ∈Irr(G)

cχ log A(χ)
[K : Q] log(rdL)

≤ (1 + S(c))
∑

χ∈Irr(G)

χ(1)cχ ,

where S(c) := St (recall (11)) for the choice t =
∑

χ∈Irr(G) cχ ·χ .

Proof. Denoting by χreg the character of the regular representation of G, we have the equality∑
χ∈Irr(G)

cχ

(
χ(1)
|G|

n(χreg, p)− n(χ, p)
)

=
1

|G0|

∑
i≥0

∑
1̸=a∈Gi

∑
χ∈Irr(G)

χ(a)cχ .

Summing over the prime ideals p of OK , we deduce that∣∣∣∣ ∑
χ∈Irr(G)

cχ log A(χ)
[K : Q] log(rdL)

−

∑
χ∈Irr(G)

χ(1)cχ

∣∣∣∣ ≤ S(c)
∑

χ∈Irr(G)

χ(1)|cχ |,

from which the claimed bounds follow. □

We will also use the following bound.

Lemma 3.3. Let L/K be a Galois extension of number fields, and let G = Gal(L/K ). For all χ ∈ Irr(G),
we have

log(A(χ)+ 2)
log2((A(χ)+ 2)3/χ(1)[K :Q])

≪ [K : Q]χ(1)
log(rdL +2)
log2(rdL +2)

.

Proof. This follows form the fact that the function ·/ log · is eventually increasing, combined with the
upper bound in Lemma 3.1. □

4. Sums over zeros of Artin L-functions

The goal of this section is to express the functionψη(x; L/K , t) defined by (3) in terms of a sum over zeros
of Artin L-functions, which will allow us to give a lower bound on the moments M̃2m(U, L/K ; t, η,8)
through an application of positivity. This lower bound will be expressed as a convergent sum over zeros,
which we will evaluate explicitly.

10It actually also holds for the trivial character in this case.
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First we recall a few facts about Artin L-functions. If χ is the character of an irreducible representation
ρ : G = Gal(L/K )→ GL(V ), the corresponding Artin L-function is defined for Re(s) > 1 by the Euler
product

L(s, L/K , χ)=

∏
p◁OK
p prime

Lp(s, χ),
(
Lp(s, χ)= det(Id −Np−sρ(ϕp)|V Ip ), p ◁OK prime

)
,

where V Ip is the subspace of V which is invariant under the inertia group Ip (see Section 3). AC states
that L(s, L/K , χ) can be extended to an entire function (except when χ is the trivial character, in which
case there is a simple pole at s = 1). Following [Artin 1931], we recall the definition of the archimedean
part L(s, χ∞) of the completed L-function associated to the irreducible character χ . Let v be an infinite
place of K (that is, v is a real embedding or a pair of conjugate complex embeddings). Let w be a place
of L over v. For the couple (w, v), the analogue of the decomposition group is a subgroup Gw/v of G
which is trivial if v and w are both real or both complex, and which is the group of order two generated
by complex conjugation otherwise. If we denote

0R(s)= π−s/20
( s

2

)
, 0C(s)= 0R(s)0R(s + 1),

then the Euler factor at v is

γv(χ, s)=

{
0R(s)dim V Gw/v

0R(s + 1)codim V Gw/v if v is real,
0C(s)χ(1) if v is complex.

The Archimedean part of the completed L-function associated to χ is then defined by the formula (recall
the definition (18) of the Artin conductor A(χ))

L(s, χ∞)= A(χ)s/2
∏
v

γv(χ, s). (19)

We are ready to prove the following explicit formula for the function

ψη(x; L/K , χ) :=

∑
p◁OK
m≥1

χ(ϕm
p )

log(Np)

Npm/2 η(log(Npm/x)).

Lemma 4.1. Let L/K be a Galois extension of number fields, denote G = Gal(L/K ), and let χ ∈ Irr(G).
Under AC for L(s, L/K , χ), for any η ∈ Sδ and x ≥ 1 we have the formula

ψη(x; L/K , χ)= x1/2Lη
( 1

2

)
δχ=χ0 −

∑
ρχ

xρχ−
1
2 η̂

(
ρχ −

1
2

2π i

)
+ Oη(x−1/2 log(A(χ)+ 2)),

where ρχ runs through the nontrivial zeros of L(s, L/K , χ).

Proof. Let
γχ (s)= L(s, χ∞)A(χ)−s/2.

Since we assume AC, we can use [Iwaniec and Kowalski 2004, Theorem 5.11] for the test function
ϕ : n 7→ η(log(n/x))/n1/2. Note that our assumptions are weaker than those in [loc. cit., Theorem 5.11],
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however going through the proof one sees that our hypotheses are sufficient for [loc. cit., (5.44)] to apply;
see, e.g., [Montgomery and Vaughan 2007, Theorem 12.13] and [de la Bretèche and Fiorilli 2023]. Let us
recall what is the relevant von Manglodt function 3χ in this case (it should satisfy [Iwaniec and Kowalski
2004, (5.25)]):

3χ (pt)=

∑
f ℓ=t

∑
p | p

f (p/p)= f

log(p f )χ(ϕℓp) (p prime, t ∈ N).

Indeed, by [Martinet 1977, page 11],

−
L ′(s, L/K , χ)
L(s, L/K , χ)

=

∑
p◁OK
p prime

∑
ℓ≥1

χ(ϕℓp) logNp

Npsℓ =

∑
p

∑
f,ℓ≥1

∑
p | p

f (p/p)= f

χ(ϕℓp) log(p f )

psℓ f =

∑
p

∑
t≥1

3χ (pt)

pts .

Then, the first term on the left-hand side of [Iwaniec and Kowalski 2004, (5.44)] is given by∑
n≥1

3χ (n)
η(log(n/x))

n1/2 =

∑
p,t

∑
f ℓ=m

∑
p | p

f (p/p)= f

log(p f )χ(ϕℓp)η(log(pm/x))

pm/2

=

∑
p,m

∑
f ℓ=m

∑
p | p

f (p/p)= f

log(Np)χ(ϕℓp)η(log(Npℓ/x))

Npℓ/2

=

∑
p,ℓ

∑
m≡0 mod ℓ

∑
p | p

f (p/p)=m/ℓ

log(Np)χ(ϕℓp)η(log(Npℓ/x))

Npℓ/2
.

Reindexing the sums, we obtain∑
n≥1

3χ (n)
η(log(n/x))

n1/2 =

∑
p,ℓ

∑
m′≥1

∑
p | p

f (p/p)=m′

log(Np)χ(ϕℓp)η(log(Npℓ/x))

Npℓ/2

=

∑
p,ℓ

∑
p | p

log(Np)χ(ϕℓp)η(log(Npℓ/x))

Npℓ/2

=

∑
p,ℓ

log(Np)χ(ϕℓp)η(log(Npℓ/x))

Npℓ/2
= ψη(x; L/K , χ).

A similar calculation shows that the second term on the left-hand side of [Iwaniec and Kowalski 2004,
(5.44)] is exactly ψη(x−1

; L/K , χ). This translates into the formula

ψη(x; L/K , χ)+ψη(x−1
; L/K , χ)

= η(log(x)) log A(χ)+ δχ=χ0 x1/2Lη
( 1

2

)
+

1
2π

∫
∞

−∞

(
γ ′
χ

( 1
2 + i t

)
γχ

(1
2 + i t

) +
γ ′
χ

( 1
2 − i t

)
γχ

( 1
2 − i t

))
η̂
( t

2π

)
x i t dt −

∑
ρχ

xρχ−
1
2 η̂

(
ρχ −

1
2

2π i

)
+ Oη(x−1/2), (20)

where the error term accounts for possible trivial zeros of L(s, L/K , χ) at s = 0.
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To handle the contribution of the integral of γ -factors we use (19) as well as [Montgomery and
Vaughan 2007, Lemma 12.14] that applies to our case with the choice J (u)= η(2π(u − log x)). Up to
the multiplicative constant χ(1) the contribution of any infinite place v of K is bounded by an analogous
integral where the γ -factor appearing is the Euler 0 function. We can then combine [Montgomery
and Vaughan 2007, Theorem 12.13 and Lemma 12.14] and [de la Bretèche and Fiorilli 2023, proof of
Lemma 2.2] (note that we are using the assumption that η is differentiable here). To conclude, we use the
upper bound [K : Q]χ(1)≪ log(A(χ)) from Lemma 3.1. □

In Section 5, we will apply Lemma 4.1 to approximate M̃n(U, L/K ; t, η,8) (recall (4)). A positivity
argument will then be applied to this approximation producing convergent sums over zeros of the form

b(χ; h) :=

∑
ρχ

h
(
ρχ −

1
2

2π i

)
, b0(χ; h) :=

∑
ρχ /∈R

h
(
ρχ −

1
2

2π i

)
, (21)

where ρχ runs through the nontrivial zeros of L(s, L/K , χ). Note that these sums take into account the
multiplicities of zeros, by convention. As for the involved test function, we will work with Tδ , the set of
nontrivial measurable functions h : R → R having the following properties. We require that ξ 7→ ξh(ξ)
is integrable, and that, for all ξ ∈ R, we have the bounds

0 ≤ h(ξ)≪ (1 + |ξ |)−1(log(2 + |ξ |))−2−2δ.

Moreover, for all t ∈ R, we have that11

ĥ(t), ĥ′(t)≪ e−(1/2+δ/2)|g|.

Note that if η∈Sδ is nontrivial, then hη := η̂2
∈ Tδ . We may extend h to the domain

{
s ∈ C : |Im(s)| ≤ 1

4π

}
by writing

h(s) :=

∫
R

e2π isξ ĥ(ξ) dξ. (22)

Lemma 4.2. Let L/K be a Galois extension of number fields of group G, and let χ ∈ Irr(G). Assume AC
for the extension L/K . Then for any h ∈ Tδ, we have the pointwise estimates

b(χ; h)= ĥ(0) log A(χ)+ Oh(χ(1)[K : Q]),

b(χ; h)≪h log(A(χ)+ 2).
(23)

Proof. To estimate the sum b(χ; h) defined in (21), we set x = 1 and η = ĥ in the explicit formula (20),
resulting in the identity

b(χ; h)= Lη
( 1

2

)
δχ=χ0 + ĥ(0) log A(χ)+ 1

2π

∫
∞

−∞

(
γ ′
χ

(1
2 + i t

)
γχ

(1
2 + i t

) +
γ ′
χ

( 1
2 − i t

)
γχ

( 1
2 − i t

))
h
(

t
2π

)
dt

−ψĥ(1; L/K , χ)−ψĥ(1; L/K , χ)+ Oh(1). (24)

11The integrability of ξ 7→ ξh(ξ) implies that ĥ is differentiable; see [Kolmogorov and Fomin 1989, page 430].
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We have already seen in the proof of Lemma 4.1 that the contribution of the gamma factors is ≪ χ(1).
Moreover, we have the bound

ψĥ(1; L/K , χ)≪h χ(1)
∑
p◁OK
m≥1

log(Np)

Np(1+δ/2)m ≪ χ(1)
∑

p

∑
f ≥1

log(p f )

p f (1+δ/2)

∑
p◁OK
p | p

f (p/p)= f

1 ≪δ χ(1)[K : Q]. (25)

The first claimed bound follows. As for the second, it is a consequence of Odlyzko type bounds; see, e.g.,
[Pizarro-Madariaga 2011, Theorem 3.2]. □

The next step will be to obtain an average bound on b0(χ; η̂2). Precisely if t : G → C is a class function
and η ∈ Sδ (recall the definition involving condition (1)) for some fixed δ > 0, then we analyze in the
following lemma the variance defined in (7).

Lemma 4.3. Assume AC and GRH for the Galois extension of number fields L/K , and let η ∈ Sδ. Then
we have the estimate

ν(L/K , t; η)= α(|η̂|2)
∑

χ∈Irr(G)

|t̂(χ)|2 log A(χ)+ E(L/K , t; η)+ Oη([K : Q]λ1,2(t)), (26)

where12

E(L/K , t; η)≪η min
{
[K : Q]λ1,2(t)

log(rdL +2)
log2(rdL +2)

,

(
max

χ∈Irr(G)

|t̂(χ)|2

χ(1)

)
log(dL + 2)
log2(dL + 2)

}
. (27)

Moreover, we have the bounds

α(|η̂|2)λ1,2(t)
(

1 − St − Oη

(
1

log2(rdL +2)

))
≤

ν(L/K , t; η)
[K : Q] log(rdL)

≤ α(|η̂|2)λ1,2(t)
(

1 + St + Oη

(
1

log2(rdL +2)

))
. (28)

Proof. First observe that by (23), we have the estimate∑
χ∈Irr(G)

|t̂(χ)|2b(χ, |η̂|2)= α(|η̂|2)
∑

χ∈Irr(G)

|t̂(χ)|2 log A(χ)+ Oη([K : Q]λ1,2(t)).

Then, we remove the contribution of real zeros as follows:∑
χ∈Irr(G)

|t̂(χ)|2(b(χ, |η̂|2)− b0(χ, |η̂|
2))≪η

∑
χ∈Irr(G)

|t̂(χ)|2 ords=1/2 L(s, L/K , χ)

≪η

∑
χ∈Irr(G)

|t̂(χ)|2
log(A(χ)+ 2)

log2(A(χ)+ 2)3/(χ(1)[K :Q])
,

12Note that only the first term of this minimum will be used in this paper — the second is present for future reference.
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by [Iwaniec and Kowalski 2004, Proposition 5.21]. The first bound on E(L/K , t; η) then follows directly
from Lemma 3.3. As for the second, we have that∑

χ∈Irr(G)

|t̂(χ)|2(b(χ, |η̂|2)− b0(χ, |η̂|
2))≪η

(
max

χ∈Irr(G)

|t̂(χ)|2

χ(1)

)
· ords=1/2 ζL(s)

≪η

(
max

χ∈Irr(G)

|t̂(χ)|2

χ(1)

)
log(dL + 2)
log2(dL + 2)

,

thanks to the decomposition ζL(s)=
∏
χ∈Irr(G) L(s, L/K , χ)χ(1) and [Iwaniec and Kowalski 2004, Propo-

sition 5.34]. Finally, (28) follows from combining (26) with the bounds in Lemma 3.2. □

In view of (28), one may wonder if we can still produce a lower bound if St is close to 1. In the next
two lemmas we show that in this case we can still estimate b0(χ, h) in terms of log A(χ). The idea here
is that if η̂ does not vanish on an interval containing sufficiently many imaginary parts of L-function
zeros then we can deduce the required estimate. For χ ∈ Irr(Gal(L/K )) we will denote

N (T, χ)= {ρ : 0<Re(ρ) < 1, |Im(ρ)| ≤ T, L(ρ, L/K , χ)= 0} (T ≥ 0).

Lemma 4.4. Assume AC and GRH for the Galois extension of number fields L/K . Let G = Gal(L/K )
and χ ∈ Irr(G). For all T > 0 and all 0< ε ≤ 1 one has

N (T + ε, χ)− N (T, χ)

=
ε

π
log

(
A(χ)

(
T + ε

2πe

)χ(1)[K :Q])
+ O

(
log((A(χ)+ 2)(4T + 1)χ(1)[K :Q])

log2((A(χ)+ 2)3/(χ(1)[K :Q])(4T + 1))
+ [K : Q]χ(1)

)
.

In particular, if ε ≥ κ(log2(T + 3))−1 and

(1 − St)
−1

≤ κ−1ε log2(rdL +2)
(

1 +
[K : Q] log T
log(rdL +2)

)
, (29)

where κ > 0 is a large enough absolute constant, then we have the bound∑
χ∈Irr(G)

|t̂(χ)|2(N (T + ε, χ)− N (T, χ))≥
ε

8π

∑
χ∈Irr(G)

|t̂(χ)|2 log
(

A(χ)
(

T + ε

2πe

)χ(1)[K :Q])
.

In case rdL ≪ 1, then the assumption ε≫ κ(log2(T + 3))−1 is sufficient (i.e., (29) is not required).

Note that the condition ε≫ κ(log2(T + 3))−1 implies that ε or T is large enough, which ensures that
N (T + ε, χ)− N (T, χ) ̸= 0.

Proof. Recalling the definition (19) of L(s, χ∞), we combine Theorem 5 and (4.1) of [Carneiro et al.
2015] to obtain

N (T +ε,χ)−N (T,χ)= 1
π

∫
T<|g|<T +ε

Re
(

L ′

L

(1
2
+i t,χ∞

))
,dt

+O
(

log((A(χ)+2)(4T +1)χ(1)[K :Q])

log2((A(χ)+2)3/(χ(1)[K :Q])(4T +1))

)
+O([K : Q]χ(1)). (30)

To evaluate the main term we use the computations [Iwaniec and Kowalski 2004, (5.35) and (5.36)]
in the context of [Carneiro et al. 2015, (4.1)]. Precisely the factors of L(s, χ∞) have the following
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contribution in the range [T, T + ε] of imaginary parts of critical zeros:

ε

π
log

(
A(χ)

π [K :Q]χ(1)

)
+

[K : Q]χ(1)
π

(
(T + ε) log

T + ε

2
− T log

T
2

− ε

)
+ O([K : Q]χ(1))

=
ε

π
log

(
A(χ)

π [K :Q]χ(1)

)
+

[K : Q]χ(1)
π

ε log
(

T + ε

2e

)
+ O([K : Q]χ(1)),

which leads to the first estimate. In order to prove the second part of the statement, note that∑
χ∈Irr(G)

|t̂(χ)|2
log((A(χ)+2)(4T +1)χ(1)[K :Q])

log2((A(χ)+2)3/(χ(1)[K :Q])(4T +1))

≪

∑
χ∈Irr(G)

|t̂(χ)|2
log(A(χ)+2)

log2((A(χ)+2)3/(χ(1)[K :Q]))
+[K : Q]

∑
χ∈Irr(G)

χ(1)|t̂(χ)|2
log(4T +1)

log2((A(χ)+2)3/(χ(1)[K :Q]))
.

Moreover, Lemma 3.2 implies the bound (recall (11))∑
χ∈Irr(G)

|t̂(χ)|2 log A(χ)≥ (1 − St) log(rdL)λ1,2(t)[K : Q].

The stated lower bound then follows from (30) and from Lemmas 3.3 and 3.1. Indeed the main term
is greater than twice the error term under the stated assumption. Finally note that if 2 ≤ rdL ≪ 1, then
Lemma 3.1 implies that log(A(χ)+2)≍ [K : Q]χ(1) which is sufficient to obtain the stated lower bound.
The only case not covered by this condition, which corresponds to L = K = Q, can be trivially handled
separately. □

Building on Lemma 4.4, we can now deduce an estimate on b0(χ, η̂
2) (recall (8)) in terms of log A(χ)

under a support condition on η̂.

Lemma 4.5. Assume AC and GRH for the Galois extension of number fields L/K . Let G = Gal(L/K )
and let ε, T > 0 be such that T ≥ κ and ε ≥ κ(log2(T + 3))−1, where κ > 0 is absolute and large enough.
Assuming that η̂ does not vanish on [T, T + ε],13 then we have

ν(L/K , t; η)≍η

∑
χ∈Irr(G)

|t̂(χ)|2 log(A(χ)+2). (31)

Proof. By definition, we have the lower bound

b0(χ; η̂2)≥ (N (T + ε, χ)− N (T, χ)) min
|g|∈[T,T +ε]

|η̂|2 ≫η log(A(χ)+ 2),

by Lemma 4.4 and our hypotheses on ε and T , which imply that the main term in this lemma dominates
the error term. As a result,

ν(L/K , t; η)≫η

∑
χ∈Irr(G)

|t̂(χ)|2 log(A(χ)+ 2).

The upper bound follows directly from (23). □
13Recall that in (29) the constant κ > 0 is absolute. Note moreover that if η̂ does not vanish, the condition on η̂ is always

fulfilled with ε = ∞.
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5. Proof of Theorems 1.1 and 1.4: induction and positivity

In this section our main goal is to prove Theorems 1.1 and 1.4. This will be carried out through an
application of positivity in the explicit formula obtained in Lemma 4.1 (positivity will circumvent the
need for the LI hypothesis). Notice however that doing so directly with the Fourier decomposition (recall
the definition (3))

ψη(x; L/K , t)=

∑
χ∈Irr(G)

t̂(χ)ψη(x; L/K , χ)

would yield bounds which we believe not to be optimal (unless K = Q). To obtain conjecturally
optimal bounds, we will first apply the inductive property of Artin L-functions. This is the purpose
of Lemma 5.1. The following step, Lemma 5.2, will consist of approximating the moment we study
M̃n(U, L/K ; t, η,8) by the quantity D̃n(U, L/K ; t, η,8) which involves zeros of Artin L-functions.
A lower bound for D̃n(U, L/K ; t, η,8) will be produced in Lemma 5.7 by combining two preparatory
results: a combinatorial inequality which we believe is of intrinsic interest (Lemma 5.3) and a statement
which is more representation theoretic in nature and deals with L-function zeros relevant to the moment
M̃n(U, L/K ; t, η,8) (Lemma 5.6).

We recall that L/K is a Galois extension of number fields of Galois group G, and t : G → C is a class
function. If F is a subfield of K such that L/F is Galois of group G+, then we form the class function
on G+ induced by t in the following way:

t+
= IndG+

G (t) : G+
→ C, t+(g)=

∑
aG∈G+/G :

a−1ga∈G

t (a−1ga)(g ∈ G+).

The property of invariance of Artin L-functions under induction (see [Artin 1931, (18)]) can be stated, in
our situation, as the equality L(s, L/K , t)= L(s, L/F, t+): it is crucial to our analysis and implies in
particular Lemma 5.1 below.

Through this section, one should keep in mind that if we assume AC for L/Q, then we expect in most
cases to obtain the best bounds by selecting F = Q. On the other extreme, one may always take F = K
and obtain nontrivial bounds.

Lemma 5.1. Let L/K/F be a tower of number fields for which L/F is Galois, let G = Gal(L/K ) and
G+

= Gal(L/F). For η ∈ Sδ and for any class function t : G → C, we have the identity

ψη(x; L/K , t)= ψη(x; L/F, t+). (32)

As a consequence, for any 8 ∈ U we have the identity

M̃n(U, L/K ; t, η,8)= M̃n(U, L/F; t+, η,8). (33)

Proof. The equality (32) is stated and proved in [Fiorilli and Jouve 2024, Proposition 3.11]. As for (33), it is
a consequence of (32) combined with [loc. cit., Lemma 3.15], which asserts that z(L/K , t)= z(L/Q, t+)
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(the limiting expectation involved in (4)), and the equality t̂+(1) = t̂(1), which is a straightforward
application of Frobenius reciprocity. □

We now approximate the moment M̃n(U, L/K ; t, η,8) by a sum over zeros of Artin L-functions. If
L/F is a Galois extension of group G+, then we define for every integer n ≥ 1

D̃n(U, L/F; t, η,8)

:=
(−1)n

2
∫

∞

0 8

∑
χ1,...,χn∈Irr(G+)

( n∏
j=1

t̂(χ j )

) ∑
γχ1 ,...,γχn ̸=0

8̂

(
U
2π
(γχ1 + · · · + γχn )

) n∏
j=1

η̂

(
γχ j

2π

)
, (34)

where γχ1, . . . , γχn run over the imaginary parts of the nontrivial zeros of the Artin L-functions

L(s, L/F, χ1), . . . , L(s, L/F, χn).

Lemma 5.2. Let L/K/F be a tower of number fields in which L/F is a Galois extension satisfying AC
and GRH. Let t : Gal(L/K )→ C be a class function and let t+

:= IndGal(L/F)
Gal(L/K ) t . Then for η ∈ Sδ, 8 ∈ U ,

and n ∈ Z≥1 we have the estimate

M̃n(U, L/K ; t, η,8)= D̃n(U, L/F; t+, η,8)+ O
(
(κη[F : Q]λ1,1(t+) log(rdL +2))n

U

)
,

where κη > 0 is a constant which depends only on η.

Proof. Let G+
= Gal(L/F), and recall that by Lemma 5.1, one has

M̃n(U, L/K ; t, η,8)= M̃n(U, L/F; t+, η,8).

Combining the Fourier decomposition

ψη(eu
; L/F, t+)=

∑
χ∈Irr(G+)

t̂+(χ)ψη(eu
; L/F, χ)

and Lemma 4.1 results in the estimate (recall that Frobenius reciprocity implies t̂+(1)= t̂(1))

ψη(eu
; L/F, t+)

= t̂(1)x1/2Lη
(1

2

)
−

∑
χ∈Irr(G+)

t̂+(χ)
∑
γχ

eiγχu η̂

(
γχ

2π

)
+ Oη

(
e−u/2

∑
χ∈Irr(G+)

|t̂+(χ)| log(A(χ)+2)
)
. (35)

By Lemma 3.1, the error term is ≪η e−u/2
[F : Q] log(rdL)λ1,1(t+). The claimed estimate follows from

substituting this expression in the definition (4) and applying the bound∑
γχ

eiγχu η̂

(
γχ

2π

)
≪η log(A(χ)+ 2),

which is a direct consequence of the Riemann-von Mangoldt formula; see, e.g., [Iwaniec and Kowalski
2004, Theorem 5.8]. □

Our goal will be to apply positivity on the right-hand side of (34). The idea here is that by our conditions
on 8̂, t̂+ and η̂, the quantity D̃n(U, L/F; t+, η,8) is a sum of positive terms. The rapid decay of 8̂
should imply that only the terms where γχ1 + · · · + γχn is very small contribute substantially to the inner
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sum in (34). However, if the zeros enjoy on average the diophantine properties of “random” real numbers,
then we expect this to be the case only when the ρχ j come in conjugate pairs, that is for each j there
exists π( j) such that γχ j = −γχπ( j) . Moreover, we also believe that this should force χ j = χπ( j). Those
two facts follow from an effective version of the linear independence hypothesis for Artin L-functions;
see [Fiorilli and Jouve 2024, Introduction] for the precise statement. The positivity condition will allow
us to circumvent this hypothesis.

Let us first establish the following combinatorial result.

Lemma 5.3. Let 0 ⊂ R>0 be a countable multiset, and let a = {aγ }γ∈0∪−0 be a sequence of complex
numbers such that a−γ = aγ and moreover

∑
γ∈0|aγ |

2 <∞, where by convention sums over γ ∈ 0 take
multiplicities into account. Define

S2ℓ(a) :=

∑
γ1,...,γℓ∈0,γ

′

1,...,γ
′

ℓ∈−0

∀γ∈R,#{ j :γ j =γ }=#{ j :γ ′

j =−γ }

ℓ∏
j=1

aγ j aγ ′

j
.

Then, S2ℓ(a) ∈ R, and moreover for every positive integer ℓ, we have the inequality

S2ℓ(a)≥ ℓ!

(∑
γ∈0

|aγ |2
)ℓ−1

max
{∑
γ∈0

|aγ |2 − ℓ! ℓ(ℓ− 1)M2e1/ℓ, 0
}
, (36)

where M := sup{|aγ | : γ ∈ 0}.

Remark 5.4. For ℓ= 1, note that ℓ! ℓ(ℓ− 1)M2e1/ℓ
= 0. In fact, in this case we have

S2(a)=

∑
γ∈0

mγ |aγ |2 ≥

∑
γ∈0

|aγ |2,

where mγ is the multiplicity of γ in 0. Indeed, by definition m−γ = mγ .

Proof of Lemma 5.3. By Remark 5.4, we may assume that ℓ≥ 2. For any integer r ≥ 1 and any r -tuple
n = (n1, . . . , nr ) ∈ Nr , which is a partition of ℓ in the sense that ni ≤ ni+1 for all i , and

∑
i ni = ℓ, we

denote by s1 the number of indices i ≥ 1 such that ni = n1, and inductively by s j the number of indices i
such that ni = ns j−1+1. Note that if k is the “number of distinct parts” in the partition (n1, . . . , nr ) of ℓ,
in particular sk = #{i : ni = nr }, then one has s1 + · · · + sk = r . We set

c(n)= c(n1, . . . , nr )=

(
ℓ

n1, . . . , nr

) 1
s1! · · · sk !

.

where we recall the definition of the multinomial coefficient(
ℓ

n1, . . . , nr

)
=

ℓ!

n1! · · · nr !
.

In particular c(1, . . . , 1)= 1 since in this case k = 1 and s1 = r = ℓ.
For every γ ∈ 0, let mγ be the multiplicity of γ in 0. On one hand we have the following expansion

(here we use the notation
∑

∗ to denote a sum “without multiplicity”)(∑
γ∈0

|aγ |2
)ℓ

=

(∑∗

γ∈0

mγ |aγ |2
)ℓ

=

∑
n1+···+nr =ℓ
n1≤n2≤···≤nr

c(n)
∑∗

γ1,...,γr ∈0
∀i ̸= j,γi ̸=γ j

r∏
j=1

mn j
γ j |aγ j |

2n j . (37)
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Here, we have used the fact that for a given (n1, . . . , nr ) ∈ Nr such that n1 +· · ·+ nr = ℓ, the number of
permutations of the n j such that n1 ≤ n2 ≤ · · · ≤ nr is exactly s1! · · · sk !.

On the other hand we have

S2ℓ(a)=

∑
n1+···+nr =ℓ
n1≤n2≤···≤nr

c(n)
∑∗

γ1,...,γr ∈0
∀i ̸= j,γi ̸=γ j

r∏
j=1

mn j
γ j a

n j
γ j

∑∗

γ ′

1,...,γ
′

ℓ∈0

∀i,#{ j≤ℓ:γ ′

j =−γi }=ni

ℓ∏
j=1

mn j
γ j a

n j
−γ j
,

=

∑
n1+···+nr =ℓ
n1≤n2≤···≤nr

c(n)
(

ℓ

n1, . . . , nr

) ∑∗

γ1,...,γr ∈0
∀i ̸= j,γi ̸=γ j

r∏
j=1

m2n j
γ j |aγ j |

2n j (38)

which is a real number. The additional factor
(

ℓ
n1,...,nr

)
comes from the number of the sets #{ j ≤ ℓ :

γ ′

j = −γi } = ni . Since the multiplicities mγ are positive integers, the contribution of n = (1, . . . , 1) to
the right-hand side of (38) admits the lower bound

ℓ!
∑∗

γ1,...,γℓ∈0
∀i ̸= j,γi ̸=γ j

ℓ∏
j=1

m2
γ j

|aγ j |
2
≥ ℓ!

∑∗

γ1,...,γℓ∈0
∀i ̸= j,γi ̸=γ j

ℓ∏
j=1

mγ j |aγ j |
2. (39)

Using (37) we see that the lower bound in (39) equals

ℓ!

(∑
γ∈0

|aγ |2
)ℓ

− ℓ!
∑

n1+···+nr =ℓ
n1≤n2≤···≤nr

nr>1

c(n)
∑∗

γ1,...,γr ∈0
∀i ̸= j,γi ̸=γ j

r∏
j=1

mn j
γ j |aγ j |

2n j ,

and therefore we deduce from (38) and (39) that

S2ℓ(a)≥ ℓ!

(∑
γ∈0

|aγ |2
)ℓ

+

∑
n1+···+nr =ℓ
n1≤n2≤···≤nr

nr ≥2

c(n)
∑∗

γ1,...,γr ∈0
∀i ̸= j,γi ̸=γ j

r∏
j=1

mn j
γ j |aγ j |

2n j

((
ℓ

n1, . . . , nr

) r∏
j=1

mn j
γ j − ℓ!

)

≥ ℓ!

(∑
γ∈0

|aγ |2
)ℓ

− ℓ! S′

2ℓ(a), (40)

where we denote

S′

2ℓ(a) :=

∑
n1+···+nr =ℓ
n1≤n2≤···≤nr

nr ≥2

c(n)
∑∗

γ1,...,γr ∈0
∀i ̸= j,γi ̸=γ j∏r

j=1 m
n j
γ j ≤n1!···nr !

r∏
j=1

mn j
γ j |aγ j |

2n j .

Here we emphasize the extra condition
∏r

j=1 mn j
γ j ≤ n1! · · · nr ! appearing in the index set of the inner

sum. This is explained by the fact that r -tuples n such that
∏r

j=1 mn j
γ j > n1! · · · nr ! contribute a positive

term to the second summand in (40).
To obtain an upper bound for S′

2ℓ(a), we write

S′

2ℓ(a)=

∑
2≤nr ≤ℓ

∑
(n1,...,nr−1):

n1+···+nr−1=ℓ−nr
n1≤n2≤···≤nr

c(n)
∑∗

γ1,...,γr ∈0
∀i ̸= j,γi ̸=γ j∏r

j=1 m
n j
γ j ≤n1!···nr !

r∏
j=1

mn j
γ j |aγ j |

2n j .
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Note that (37) can then be used for the partition (n1, . . . , nr−1) of ℓ− nr since we have

c(n)= c(n1, . . . , nr )=

(
ℓ

n1, . . . , nr

) 1
s1! · · · st !

≤ c(n1, . . . , nr−1)
(
ℓ

nr

)
.

We deduce that

S′

2ℓ(a)≤

∑
2≤nr ≤ℓ

(
ℓ

nr

)(∑
γ∈0

|aγ |2
)ℓ−nr

( ∑∗

γ∈0
mnr
γ ≤ℓ!

mnr
γ |aγ |2nr

)
. (41)

Next we use the condition mnr
γ ≤ ℓ! in the index set of the innermost sum of (41) as well as the inequality(

ℓ

nr

)
≤ ℓ(ℓ− 1)

(
ℓ−2
nr −2

)
,

to compute

S′

2ℓ(a)≤ ℓ!
∑

2≤nr ≤ℓ

(
ℓ

nr

)(∑
γ∈0

|aγ |2
)ℓ−nr

(∑
γ∈0

|aγ |2nr

)

≤ ℓ! ℓ(ℓ− 1)M2
∑

2≤nr ≤ℓ

(
ℓ−2
nr −2

)(∑
γ∈0

|aγ |2
)ℓ−nr

M2(nr −2)
(∑
γ∈0

|aγ |2
)

≤ ℓ! ℓ(ℓ− 1)M2
(

M2
+

∑
γ∈0

|aγ |2
)ℓ−1

,

where we have used the upper bound |aγ |2nr ≤ M2nr −2
|aγ |2 and the binomial formula for the last step.

Plugging this into (40) we deduce that

S2ℓ(a)
ℓ!

≥

(∑
γ∈0

|aγ |2
)ℓ

− ℓ! ℓ(ℓ− 1)M2
(

M2
+

∑
γ∈0

|aγ |2
)ℓ−1

. (42)

To conclude, note that if
∑

γ∈0|aγ |
2

≤ ℓ(ℓ− 1)ℓ! M2 then we have obtained a trivial lower bound
since S2ℓ(a)≥ 0 by (38). However if

∑
γ∈0|aγ |

2 > ℓ(ℓ− 1)ℓ! M2 then we have(
M2

+

∑
γ∈0

|aγ |2
)ℓ−1

≤

(∑
γ∈0

|aγ |2
)ℓ−1(

1 +
1

ℓ(ℓ− 1)

)ℓ−1

≤

(∑
γ∈0

|aγ |2
)ℓ−1

e1/ℓ (43)

and therefore (42) yields in both cases the asserted lower bound

S2ℓ(a)
ℓ!

≥

(∑
γ∈0

|aγ |2
)ℓ−1

max
{∑
γ∈0

|aγ |2 − ℓ! ℓ(ℓ− 1)M2e1/ℓ, 0
}
. □

Next we state and prove Lemma 5.6 below, which is an application of Lemma 5.3. It makes use of
the classification of irreducible characters χ of G according to their Frobenius–Schur indicator ϵ2(χ).
In view of its importance, we first recall the definition and properties of this invariant. If χ denotes the
character of a representation ρ of G, the number

ϵ2(χ)=
1

|G|

∑
g∈G

χ(g2)
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is called the Frobenius–Schur indicator of χ . If χ is irreducible, then ϵ2(χ) ∈ {−1, 0, 1} (see [Huppert
1998, Theorem 8.7]), and each of these three possible values has a precise meaning in terms of the
R-rationality of χ and ρ, as we now recall; see, e.g., [Huppert 1998, Theorem 13.1] for a proof.

Theorem 5.5 (Frobenius, Schur). Let G be a finite group, and let χ ∈ Irr(G) be the character of an
irreducible complex representation ρ : G → GL(V ):

(1) If ϵ2(χ) = 0, then χ ̸= χ , χ is not the character of an R[G]-module, and there does not exist a
G-invariant, C-bilinear form ̸= 0 on V . We say that ρ is a unitary representation.

(2) If ϵ2(χ) = 1, then χ = χ is the character of some R[G]-module, and there exists a G-invariant,
C-bilinear form which is symmetric and nonsingular, unique up to factors in C. We say that ρ is an
orthogonal representation.

(3) If ϵ2(χ)= −1, then χ = χ is not the character of any R[G]-module, and there exists a G-invariant,
C-bilinear form which is skew-symmetric and nonsingular, unique up to factors in C. We say that ρ
is a symplectic (or quaternionic) representation.

In the sequel, we will say that a character is unitary (resp. orthogonal, symplectic) if it is the character
of a unitary (resp. orthogonal, symplectic) representation.

Lemma 5.6. Let L/F be a Galois extension of number fields for which AC and GRH hold. Define
G+

:= Gal(L/F), and let t+
: G+

→ R be a class function. For ℓ ∈ N, let η ∈ Sδ, ψ ∈ Irr(G+), and let
χ1, . . . , χ2ℓ ∈ {ψ,ψ}. If ψ is unitary then we have the estimate∑

γχ1 ,...,γχℓ>0
γχℓ+1 ,...,γχ2ℓ<0

∀γ∈R,

#{k≤2ℓ:χk∈{ψ,ψ},γχk =γ }=#{k≤2ℓ:χk∈{ψ,ψ},γχk =−γ }

2ℓ∏
k=1

η̂

(
γχk

2π

)
≥ max

{
ℓ! b0(ψ; |η̂|2)ℓ − Oη(ℓ!

2ℓ(ℓ− 1)b0(ψ; |η̂|2)ℓ−1), 0
}
, (44)

where the γχ j run through the multiset of imaginary parts of the zeros of L(s, L/F, ψ)L(s, L/F, ψ) (with
multiplicity).

If ψ is either orthogonal or symplectic then we have∑
γ1,...,γℓ>0
γ ′

1,...,γ
′

ℓ<0
∀γ∈R,

#{k≤ℓ:γk=γ }=#{k≤ℓ:γ ′

k=−γ }

ℓ∏
k=1

η̂

(
γk

2π

)
η̂

(
γ ′

k

2π

)
≥max

{
2−ℓℓ! b0(ψ; |η̂|2)ℓ−Oη(2−ℓℓ!2ℓ(ℓ−1)b0(ψ; |η̂|2)ℓ−1), 0

}
,

where the γ1, . . . , γℓ, γ
′

1, . . . , γ
′

ℓ run through the imaginary parts of the zeros of L(s, L/F, ψ) (with
multiplicity).

Proof. We will split the proof into two cases, depending on whether ψ is real-valued (orthogonal or
symplectic) or not (unitary). Because of the symmetry properties of zeros of L(s, L/F, ψ), this will lead
to two distinct combinatorial approaches.
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Let us start with the case where ψ is unitary. In this case ψ and ψ are distinct irreducible characters
of G. One of the difficulties comes from the fact that some γ may satisfy L

( 1
2 + iγ, L/F, ψ

)
=

L
( 1

2 + iγ, L/F, ψ
)
= 0. We have

#{k ≤ 2ℓ : χk ∈ {ψ,ψ}, γχk = γ } = #{k ≤ 2ℓ : χk ∈ {ψ,ψ}, γχk = −γ }.

We define the multisets

01(ψ) :=
{
γ > 0 : L

( 1
2 + iγ, L/F, ψ

)
= L

( 1
2 − iγ, L/F, ψ

)
= 0

}
and

02(ψ) :=
{
γ > 0 : L

( 1
2 + iγ, L/F, ψ

)
= 0, L

( 1
2 − iγ, L/F, ψ

)
̸= 0

}
,

so that 01(ψ) ∩ 02(ψ) = ∅, 02(ψ) ∩ 02(ψ) = ∅, and 01(ψ) ∪ 02(ψ) (respectively 01(ψ) ∪ 02(ψ))
is a multiset whose elements are the positive imaginary parts of the nontrivial zeros of L(s, L/F, ψ)
(respectively L(s, L/F, ψ)). In the multiset 01(ψ), we define the multiplicity associated to γ as the sum
of the multiplicity of 1

2 + iγ for L(s, L/F, ψ) and the multiplicity of 1
2 − iγ for L(s, L/F, ψ). Note that

01(ψ)= 01(ψ). Now, among the γχk in the sum on the left-hand side of (44), there are 2r elements in
01(ψ) where 0 ≤ r ≤ ℓ. Thus we can write∑

γχ1 ,...,γχℓ>0
γχℓ+1 ,...,γχ2ℓ<0

∀γ∈R,

#{k≤2ℓ:χk∈{ψ,ψ},γχk =γ }=

#{k≤2ℓ:χk∈{ψ,ψ},γχk =−γ }

2ℓ∏
k=1

η̂

(
γχk

2π

)

=

ℓ∑
r=0

(
ℓ

r

)2
( ∑

γχ1 ,...,γχr ∈01(ψ)

γχr+1 ,...,γχ2r ∈−01(ψ)

∀γ∈R,
#{k≤2r :γχk =γ }=

#{k≤2r :γχk =−γ }

2r∏
k=1

η̂

(
γχk

2π

))( ∑
γχ1 ,...,γχℓ−r ∈02(ψ)∪02(ψ)

γχℓ−r+1 ,...,γχ2ℓ−2r ∈−(02(ψ)∪02(ψ))

∀γ∈R,
#{k≤2ℓ−2r :χk=ψ,γχk =γ }=

#{k≤2ℓ−2r :χk=ψ,γχk =−γ }

2ℓ−2r∏
k=1

η̂

(
γχk

2π

))
. (45)

Here, we use the convention that when r = 0, the first sum is equal to 1 whereas when r = ℓ, the second
sum is equal to 1.

Reindexing the innermost sum in (45), we see that∑
γχ1 ,...,γχℓ−r ∈02(ψ)∪02(ψ)

γχℓ−r+1 ,...,γχ2ℓ−2r ∈−(02(ψ)∪02(ψ))

∀γ∈R,
#{k≤2ℓ−2r :χk=ψ,γχk =γ }=

#{k≤2ℓ−2r :χk=ψ,γχk =−γ }

2ℓ−2r∏
k=1

η̂

(
γχk

2π

)
= S2ℓ−2r (a),

where S2ℓ−2r (a) is defined in Lemma 5.3, with the choices

0 := 02(ψ)∪02(ψ), aγ := η̂

(
γ

2π

)
.
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By Lemma 5.3, it is

≥ max
{
(ℓ− r)! b2(ψ; |η̂|2)ℓ−r

− Oη((ℓ− r)!2(ℓ− r)(ℓ− r − 1)b2(ψ; |η̂|2)ℓ−r−1), 0
}
,

where b2(ψ; |η̂|2) is the contribution of γ ∈ 02(ψ)∪02(ψ) in b0(ψ; |η̂|2) so that

b0(ψ; |η̂|2)+ b0(ψ; |η̂|2)= b1(ψ; |η̂|2)+ b2(ψ; |η̂|2),

with

b1(ψ; |η̂|2)= 2
∑

γ∈01(ψ)

∣∣∣∣η̂( γ

2π

)∣∣∣∣2

, b2(ψ; |η̂|2)= 2
∑

γ∈02(ψ)∪02(ψ)

∣∣∣∣η̂( γ

2π

)∣∣∣∣2

.

In the same fashion, we may estimate the first bracketed sum on the right-hand side of (45) using
Lemma 5.3, with the choices

0 := 01(ψ), aγ := η̂

(
γ

2π

)
.

By the same argument, the first sum is

≥ max{r ! b1(ψ; |η̂|2)r − Oη(r !
2r(r − 1)b1(ψ; |η̂|2)r−1), 0}.

Summing over r yields the claimed estimate.
If ψ is either orthogonal or symplectic, then it is real-valued and thus the combinatorics are simpler in

this case. Indeed, the claimed bound follows at once from Lemma 5.3 with the choices

0 :=
{
γ > 0 : L

( 1
2 + iγ, L/F, ψ

)
= 0

}
, aγ := η̂

(
γ

2π

)
. □

Lemma 5.7. Let L/F be a Galois extension of number fields for which AC and GRH hold. Define
G+

:= Gal(L/F), and let t+
: G+

→ R be a class function. Assume that t̂+
∈ R≥0 and let η ∈ Sδ,8 ∈ U .

For m ∈ N, we have the lower bound

D̃2m(U, L/F; t+, η,8)≥ µ2mν(L/F, t+
; η)m

(
1 + Oη(m2m!w4(L/F, t+

; η))
)
,

where we recall (7) and

w4(L/F, t+
; η) :=

∑
χ∈Irr(G+)|t̂

+(χ)|4b0(χ; η̂2)(∑
χ∈Irr(G+)|t̂+(χ)|2b0(χ; η̂2)

)2 . (46)

Proof. Firstly, in (34), we may replace Irr(G+) by Ct := supp(t̂+)⊂ Irr(G+). For simplicity, let us write
(since t is real-valued)

Ct = {ψ1, ψ2, . . . , ψr1, ψr1+1, ψr1+1, ψr1+2, . . . , ψr1+r2, ψr1+r2},

where ψ1, . . . ψr1 are real and ψr1+1, . . . , ψr1+r2 are complex. Note that Ct depends only on G and t , and
r1 + 2r2 = |Ct |. Given a vector χ = (χ1, . . . χ2m) ∈ (Ct)

2m , define

E j (χ) := {1 ≤ k ≤ 2m : χk ∈ {ψ j , ψ j }} (1 ≤ j ≤ r1 + r2),

ℓ j (χ) := |E j (χ)|. Note that
∑r1+r2

j=1 ℓ j (χ)= 2m.
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Secondly, by positivity of t̂+ and η̂, we may obtain a lower bound on D̃2m(U, L/F; t+, η,8) by restrict-
ing the sum over characters to those χ = (χ1, . . . , χ2m) that are elements of (Ct)

2m and (γχ1, . . . , γχ2m )

for which for any j ≤ r1 + r2 and γ ∈ R we have

|{k ∈ E j (χ) : χk ∈ {ψ j , ψ j }, γχk = γ }| = |{k ∈ E j (χ) : χk ∈ {ψ j , ψ j }, γχk = −γ }|.

Finally, we may further impose that k j (χ) :=
1
2ℓ j (χ) ∈ N, and we may restrict the sum over characters to

the subset Ct,2m of vectors of characters χ = (χ1, . . . , χ2m) ∈ C2m
t which satisfy |{ℓ≤ 2m : χℓ = ψ j }| =

|{ℓ≤ 2m : χℓ =ψ j }|, for every r1 +1 ≤ j ≤ r1 +r2. We will also use the fact that for any j ≤ r1 +r2 and
for all (χ1, . . . , χ2k j ) and (γχ1, . . . , γχ2k j

) appearing in the index set of the double sum (34), we have that

#{ℓ ∈ E j (χ)} =

∑
γ∈R>0

#{ℓ : χℓ ∈ {ψ j , ψ j }, γχℓ = γ } +

∑
γ∈R<0

#{ℓ : χℓ∈ {ψ j , ψ j }, γχℓ = γ }

= 2
∑
γ∈R>0

#{ℓ : χℓ∈ {ψ j , ψ j }, γχℓ = γ }.

As a result, one deduces the following lower bound:

D̃2m(U, L/F; t+, η,8)≥
1

2
∫

∞

0 8

∑
χ=(χ1,...,χ2m)∈Ct,2m

∀ j,k j (χ)∈N

( 2m∏
j=1

t̂+(χ j )

)

×

∑
γχ1 ,...,γχ2m ̸=0

#{k∈E j (χ):χk∈{ψ j ,ψ j },γχk =γ }=

#{k∈E j (χ):χk∈{ψ j ,ψ j },γχk =−γ }

8̂

(
U
2π
(γχ1 + · · · + γχ2m )

) 2m∏
j=1

η̂

(
γχ j

2π

)
.

At this point, we notice that the conditions in the inner sum automatically imply that γχ1 + · · ·+ γχn = 0,
resulting in the bound

D̃2m(U, L/F; t+, η,8)≥

∑
χ=(χ1,...,χ2m)∈Ct,2m

∀ j,k j (χ)∈N

( 2m∏
j=1

t̂+(χ j )

) ∑
γχ1 ,...,γχ2m ̸=0

∀ j≤r1+r2,∀γ∈R,

#{k∈E j (χ):χk∈{ψ j ,ψ j },γχk =γ }=

#{k∈E j (χ):χk∈{ψ j ,ψ j },γχk =−γ }

2m∏
j=1

η̂

(
γχ j

2π

)
.

Next we stratify the first sum according to the values assumed by k j (χ). Given a vector k =

(k1, . . . , kr1+r2) ∈ Nr1+r2 such that k1 + · · · + kr1+r2 = m, we need to evaluate the sum

D(k) :=

∑
χ=(χ1,...,χ2m)∈Ct,2m

∀ j,k j (χ)=k j

( 2m∏
j=1

t̂+(χ j )

) ∑
γχ1 ,...,γχ2m ̸=0

∀ j≤r1+r2,∀γ∈R,

#{k∈E j (χ):χk∈{ψ j ,ψ j },γχk =γ }=

#{k∈E j (χ):χk∈{ψ j ,ψ j },γχk =−γ }

2m∏
j=1

η̂

(
γχ j

2π

)
.

Now, note that since t+ and t̂+ are real-valued, we have that

t̂+(χ)t̂+(χ)= t̂+(χ) ˆ̄t (χ)= (t̂+(χ))2.
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Hence, after reindexing we obtain the identity

D(k)=

( 2m
2k1, . . . , 2kr1+r2

) r1+r2∏
j=1

(
(t̂+(ψ j ))

2k j
∑

(χ1,...,χ2k j )∈Ct,2k j

∀ℓ≤2k j ,χℓ∈{ψ j ,ψ j }

∑
γχ1 ,...,γχ2k j

̸=0

∀γ∈R,
#{k≤2k j :γχk =γ }=

#{k≤2k j :γχk =−γ }

2k j∏
k=1

η̂

(
γχk

2π

))
.

Let us now evaluate the inner sum

σ j (k j ) :=

∑
(χ1,...,χ2k j )∈Ct,2k j

∀ℓ≤2k j ,χℓ∈{ψ j ,ψ j }

∑
γχ1 ,...,γχ2k j

̸=0

∀γ∈R,
#{k≤2k j : γχk =γ }=

#{k≤2k j : γχk =−γ }

2k j∏
k=1

η̂

(
γχk

2π

)
.

Reindexing, we obtain the identity

σ j (k j )=

(2k j

k j

) ∑
γ1,...,γk j>0,γ ′

1,...,γ
′

k j
<0

∀γ∈R,
#{k≤k j :γk=γ }=#{k j<k≤2k j :γ

′

k=−γ }

k j∏
k=1

η̂

(
γk

2π

)
η

(
γ ′

k

2π

)
,

where the γ j and the γ ′

j are running over the positive (respectively negative) imaginary parts of the zeros
of L(s, L/K , ψ j )L(s, L/K , ψ j ). Applying Lemma 5.6, we deduce that for j ≥ r1 +1 (i.e., ψ j is unitary),

σ j (k j )≥ 2k jµ2k j b0(ψ j ; |η̂|2)k j max
{

1 − Oη

(
k j ! k j (k j − 1)
b0(ψ j ; |η̂|2)

)
, 0

}
,

since (2k j

k j

)
k j ! = 2k jµ2k j .

Now, if ψ j is either orthogonal or symplectic (i.e., j ≤ r1), then we may fix the sign of the imaginary
parts γχ j and deduce that

σ j (k j )=

(2k j

k j

) ∑
γ1,...,γk j>0,γ ′

1,...,γ
′

k j
<0

∀γ∈R,
#{k≤k j :γk=γ }=#{k j<k≤2k j :γ

′

k=−γ }

2k j∏
k=1

η̂

(
γχk

2π

)
.

We invoke Lemma 5.6 once more and deduce the bound

σ j (k j )≥ µ2k j b0(ψ j ; |η̂|2)k j max
{

1 − Oη

(
k j ! k j (k j − 1)
b0(ψ j ; |η̂|2)

)
, 0

}
.

Putting everything together, we deduce the overall bound

D̃2m(U, L/F; t+,η,8)≥
∑

k1,...,kr1+r2∈N

k1+···+kr1+r2=m

( 2m
2k1, . . . ,2kr1+r2

) r1∏
ℓ=1

(µ2kℓ t̂
+(ψ j )

2kℓb0(ψℓ; |η̂|
2)kℓ)

×

r1+r2∏
ℓ=r1+1

(2kℓµ2kℓ t̂
+(ψℓ)

2kℓb0(ψℓ; |η̂|
2)kℓ)

r1+r2∏
ℓ=1

max
{

1−Oη

(
kℓ!kℓ(kℓ−1)
b0(ψℓ; |η̂|2)

)
,0

}
. (47)
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Let us first evaluate the main term in this expression. By the identity( 2m
2k1, . . . , 2kr1+r2

) r1+r2∏
j=1

µ2k j =

( m
k1, . . . , kr1+r2

)
µ2m

and the multinomial theorem, the main term is equal to

µ2m

( r1∑
ℓ=1

t̂+(ψℓ)
2b0(ψℓ; |η̂|2)+ 2

r1+r2∑
ℓ=r1

t̂+(ψℓ)
2b0(ψℓ; |η̂|2)

)m

= µ2mν(L/F, t+
; η)m,

which is equal to the claimed main term.
As for the error terms in (47), recall first that they vanish whenever kℓ ∈ {0, 1} (see Remark 5.4). Next

we handle the contribution of indices k j ≥ 2 to the error terms. Using the identity
r1+r2∏
ℓ=1

max{1 − xℓ, 0} ≥ 1 −

r1+r2∑
j=1

x j (xℓ ≥ 0),

we see that we need to multiply the main term in (47) by
r1+r2∏
ℓ=1

max
{

1 + O
(

kℓ! kℓ(kℓ − 1)
b0(ψℓ; |η̂|2)

)
, 0

}
≥ 1 + O

(r1+r2∑
j=1

k j ≥2

k j ! k j (k j − 1)
b0(ψ j ; |η̂|2)

)
.

We obtain an error term which is

≪ µ2m

r1+r2∑
j=1

1
b0(ψ j , |η̂|2)

∑
k1,...,kr1+r2∈N

k1+···+kr1+r2=m
k j ≥2

k j ! k j (k j − 1)
( m

k1, . . . , kr1+r2

)

×

r1∏
ℓ=1

(t̂+(ψℓ)
2kℓb0(ψℓ; |η̂|2)kℓ)

r1+r2∏
ℓ=r1+1

(2kℓ t̂+(ψℓ)
2kℓb0(ψℓ; |η̂|2)kℓ).

Finally, notice that

k j (k j − 1)
( m

k1, . . . , kr1+r2

)
= m(m − 1)

( m−2
k1, . . . , k j −2, . . . , kr1+r2

)
,

and hence the error term above is

≪ m2m!µ2m

(r1+r2∑
j=1

t̂+(ψ j )
4b0(ψ j ; |η̂|

2)

)( r1∑
ℓ=1

t̂+(ψℓ)
2b0(ψℓ; |η̂|

2)+2
r1+r2∑
ℓ=r1

t̂+(ψℓ)
2b0(ψℓ; |η̂|

2)

)m−2

≪µ2mν(L/F, t+
;η)m−2m2m!

(r1+r2∑
j=1

t̂+(ψ j )
4b0(ψ j ; |η̂|

2)

)
. □

Proof of Theorem 1.1. The claimed bound (9) follows from combining Lemmas 5.2 and 5.7. □

Proof of Theorem 1.4. The first part follows from Lemmas 4.2 and 4.5. More precisely, the bound∑
χ∈Irr(G+)

|t̂+(χ)|4b0(χ; η̂2)≪η

∑
χ∈Irr(G+)

|t̂(χ)|4 log(A(χ)+ 2)

follows directly from Lemma 4.2.
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Next (12) follows from Lemma 4.3. We will also apply this lemma to prove the last claimed bound on
w4(L/F, t+

; η). Note that by Lemmas 3.2 and 4.2 we have the upper bound∑
χ∈Irr(G+)

|t̂+(χ)|4b0(χ; η̂2)≪η λ1,4(t+)[F : Q] log(rdL +2).

Lemma 4.3 then implies that

w4(L/F, t+
; η)≪η

1
[F : Q] log(rdL +2)

λ1,4(t+)

λ1,2(t+)2

(
1 − St+ − O

(
1

log2(rdL +2)

))−2

.

Moreover, we have the trivial bound

λ1,4(t+)

λ1,2(t+)2
≤
λ2,4(t+)

λ1,2(t+)2
≤ 1.

The result follows. □

Finally, we prove Corollaries 1.10 and 1.11.

Proof of Corollary 1.10. We will argue by contradiction. Assume otherwise that for all large enough x ,

|ψ(x; L/K , t)− t̂(1)x | ≤ ε(x)x1/2C1/2
F,L ,t+,

where

CF,L ,t+ = [F : Q] log(rdL)λ1,2(t+)

(
1 − St+ −

A
log2(rdL +2)

)
,

A > 0 is an absolute and large enough constant and ε(x) monotonically tends to zero as x tends to ∞.
Let η = η0 ⋆ η0, where η0 is a nontrivial smooth even function supported in [−1, 1]. We then have that
for large enough x ,

ψη(x; L/K , t)− t̂(1)x1/2Lη
( 1

2

)
=

∫
∞

0

η(log(y/x))
y1/2 d(ψ(y; L/K , t)− t̂(1)y)

= −

∫ e2x

e−2x

η′(log(y/x))− 1
2η(log(y/x))

y3/2 (ψ(y; L/K , t)− t̂(1)y) dy

≪ ε(e−2x)C1/2
F,L ,t+ .

Now, for any large enough 0<U1 <U2, this implies the bound∫ U2

U1

(
ψη(eu

; L/K , t)− t̂(1)eu/2Lη
( 1

2

))2du ≪ ε(e−2eU1)2(U2 − U1)CF,L ,t+ .

Moreover, (32) implies that

ψη(eu
; L/K , t)= ψη(eu

; L/F, t+)=

∑
χ∈Irr(G+)

t̂+(χ)ψη(eu
; L/F, χ).
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We may apply Lemma 4.1 in which we can bound the second term on the right-hand side trivially (under
GRH), resulting in the overall bound (recall that t̂(1)= t̂+(1))

ψη(eu
; L/K , t)− t̂(1)eu/2Lη(1

2)≪

∑
χ∈Irr(G+)

|t̂+(χ)| log(A(χ)+ 2)≪ λ1,1(t+)[F : Q] log(rdL +2).

This then implies that∫ U1

0

(
ψη(eu

; L/K , t)− t̂(1)eu/2Lη
( 1

2

))2 du ≪ U1(λ1,1(t+)[F : Q] log(rdL +2))2.

As a result, picking any even integrable function 8 supported in [−1, 1], we deduce that

M2(U2, L/K , t, η,8)≪
U1

U2
(λ1,1(t+)[F : Q] log(rdL))

2
+ ε(e−2eU1)2

U2 − U1

U2
CF,L ,t+ .

Picking for instance U2 = U 2
1 , this will eventually contradict the lower bound in Corollary 1.9 (combined

with Theorem 1.4). Indeed, the bound St+ ≤ 1−κ(log2(rdL +2))−1 implies that rdL is large enough (since
κ itself is large enough), which in turns implies that w4(L/F, t+, η) is small enough by Theorem 1.4.

We now show that there exists a value eU1 ≤ x ≤ eU2 such that

|ψ(x; L/K , t)− t̂(1)x | ≫ x1/2C1/2
F,L ,t+,

where U1 = U and U2 = βL ,F,K ,tU . Assume otherwise that for all ε > 0 and for all extensions L/K and
class functions t , there exists arbitrarily large values of U (depending on ε, L/K and t) for which for all
x ∈ [eU1, eU2],

|ψ(x; L/K , t)− t̂(1)x | ≤ εx1/2C1/2
F,L ,t+ .

One can deduce following the lines above that

M2(e−2U2, L/K , t+, η,8)≪
U1

U2
(λ1,1(t+)[F : Q] log(rdL))

2
+ εCF,L ,t+ .

Once more, this will contradict Corollary 1.9 if

U2 > κ2[F : Q] log(rdL +2) log2(rdL +2)λ1,1(t+)2/λ1,2(t+),

U1 = κ1U2λ1,2(t+)/([F : Q]λ1,1(t+)2 log(rdL +2) log2(rdL +2)),

where κ2 > 0 is large enough and κ1 > 0 is small enough (both in absolute terms). □

Proof of Corollary 1.11. The proof goes along the lines of that of Corollary 1.10. By Lemma 5.1 applied
to the tower L/L/K and Lemma 5.2 applied to the trivial tower L/L/L ,

M̃n(U, L/K ; |G|1e, η,8)= M̃n(U, L/L; 1e, η,8)

= D̃n(U, L/L; 1e, η,8)+ O
(
(κη[K : Q] log(rdL +2))n

U

)
.

Moreover, by Lemma 5.7,

D̃2m(U, L/L; 1e, η,8)≥ µ2mν(L/L , 1e; η)
m(1 + Oη(m2m!w4(L/L , 1e; η))),
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where
ν(L/L , 1e; η)= b0(χ0; η̂

2), w4(L/L , 1e; η)=
1

b0(χ0; η̂2)
.

Now, Lemma 4.2 implies that

b(χ; η̂2)= ĥ(0) log dL + Oη([L : Q])= ĥ(0) log dL

(
1 + O

(
1

log(rdL +2)

))
, (48)

resulting in the overall bound

M̃2m(U, L/K ; |G|1e, η,8)

≥ µ2m(ĥ(0) log dL)
m
(

1 + Oη

(
m

log(rdL +2)
+

m2m!

log(dL + 2)

))
+ O

(
(κη log(dL + 2))2m

U

)
.

The rest of the proof is similar. □

6. Application to specific extensions and class functions: proofs

This section is dedicated to the proofs of our results for specific Galois extensions, which were stated
in Section 2. The statements and their proofs make use of the terminology coming from the classical
representation theory of finite groups and we refer the reader, e.g., to [Huppert 1998] or [Serre 1977] for
recollections on the necessary background.

6.1. Moments for prime ideals in ray class groups. We prove Proposition 2.1.

Proof of Proposition 2.1. We apply Theorem 1.1 for K = F , and L = Lm. In particular we have
G = G+

≃ Clm(K ). For the choice t = hK ,m1[a], where [a] is any fixed class in Clm(K ), one computes
the norms (6) for all positive integers i, j :

λi, j (t)= hK ,m,

since t̂(χ)= χ([a]) for every irreducible character (all of which have degree 1) of Clm(K ). For the same
reason, one has St = 0 (recall (11)), and if [a] = [e], then t̂(χ) is positive (and constant, equal to 1) for
every character χ . Therefore applying Theorem 1.4 yields the upper bound

w4(Lm/K , t; η)≪
1

log dLm

.

As for the variance, Theorem 1.4 gives∣∣∣∣ ν(Lm/K , t; η)
α(|η̂|2) log dLm

− 1
∣∣∣∣ ≪

1
log2(rdLm +2)

.

Putting this together, Theorem 1.1 gives that for fixed m ∈ N,

M̃2m(U, Lm/K ; t, η,8)≥ µ2mν(Lm/K , t; η)m(1 + ordLm→∞(1))

≥ µ2m(α(|η̂|
2) log dLm)

m(1 + ordLm→∞(1)),

provided ((log dLm)
m/U )→ 0 as dLm → ∞. □
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6.2. Dn-examples. In this section, we prove Propositions 2.2 and 2.3. With notation as in these statements,
we recall that among the 1

2(n + 3) isomorphism classes of irreducible representations of Dn , exactly two
have degree 1: the trivial representation and the lift of the nontrivial character of Dn/⟨σ ⟩ which is defined by

ψ(σ j )= 1, ψ(τσ k)= −1.

The remaining 1
2(n − 1) irreducible representations of Dn have degree 2; the associated characters are

given by
χh(σ

j )= 2 cos(2πhj/n), χh(τσ
k)= 0,

(
h ∈

{
1, . . . , 1

2(n − 1)
})
.

Proof of Proposition 2.2. First note the following useful fact: for any integer j such that n ∤ j we have

1
2

(n−1)/2∑
h=1

χh(σ
j )=

(n−1)/2∑
h=1

cos
2πhj

n
=

sin(π j/2 −π j/(2n))
sin(π j/n)

cos
(
π j
2

+
π j
2n

)
= −

1
2
. (49)

(1) If one considers t = |Dn|1e, the indicator function of the neutral element of Dn , then t̂(χ)= χ(1) for
any χ ∈ Irr(Dn) and thus one computes for any a ∈ Dn∑

χ∈Irr(Dn)

χ(a)|t̂(χ)|2 = 1 +ψ(a)+ 4
(n−1)/2∑

h=1

χh(a).

If a = e, this sum equals λ1,2(t)= 2 + 4(n − 1)= 4n − 2. If a is in the conjugacy class of τ , then this
sum vanishes, and finally if a = σ j , then the sum equals −2 by (49). Therefore St = 1/(2n − 1).

(2) Consider the class function t = 1{σ,σ−1} (for which t̂(χ)= χ(σ)/n for any χ ∈ Irr(Dn)). One has for
any a ∈ Dn , ∑

χ∈Irr(Dn)

χ(a)|t̂(χ)|2 =
1 +ψ(a)

n2 +
4
n2

(n−1)/2∑
h=1

χh(a)
(

cos
2πh

n

)2

.

If a is conjugate to τ then this quantity vanishes. Also, for any j ′
∈

{
1, . . . , 1

2(n − 1)
}
, one has

∑
χ∈Irr(Dn)

χ(σ j ′

)|t̂(χ)|2 =
2
n2 +

8
n2

(n−1)/2∑
h=1

cos
2πhj ′

n

(
cos

2πh
n

)2

.

By linearizing the product on the right-hand side, we see that the maximal value of the left-hand side is
attained at j ′

= 2. Using (49) we can compute∑
χ∈Irr(Dn)

χ(σ 2)|t̂(χ)|2 =
2
n2 +

4
n2

(n−1)/2∑
h=1

(
cos

4πh
n

+

(
cos

4πh
n

)2 )
=

n − 2
n2 .

Moreover one has

λ1,2(t)=

∑
χ∈Irr(Dn)

χ(1)|t̂(χ)|2 =
2
n2 +

4
n2

(n−1)/2∑
h=1

(
1 + cos

4πh
n

)
=

2(n − 1)
n2 .

We conclude that St = (1 − 2/n)/(2(1 − 1/n)).
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(3) Finally consider t = 21e + 1{σ,σ−1}. Unlike 1{σ,σ−1}, this class function has nonnegative Fourier
coefficients. Indeed one has

t̂(1)= t̂(ψ)=
2
n
, t̂(χh)=

2
n

(
1 + cos

2πh
n

)
=

4
n

(
cos

4πh
n

)2 (
1 ≤ h ≤

1
2(n − 1)

)
.

Therefore one has for any a ∈ Dn ,

∑
χ∈Irr(Dn)

χ(a)|t̂(χ)|2 =
4(1 +ψ(a))

n2 +
16
n2

(n−1)/2∑
h=1

χh(a)
(

cos
4πh

n

)4

.

Using (49), one finds that this sum equals (2/n)(3 − 4/n) if a = e. If a is in the conjugacy class of τ , the
sum vanishes. If a = σ j and assuming n ≥ 5, applying standard trigonometric identities as well as (49),
we see that this sum is equal to

2
n2 +

32
n2

{1
4

(
−

1
2

· 1 j ̸≡−4 mod n +
n−1

2
· 1 j≡−4 mod n

)
+

1
4

(
−

1
2

· 1 j ̸≡4 mod n +
n−1

2
· 1 j≡4 mod n

)
+

1
16

(
−

1
2

· 1 j ̸≡−8 mod n +
n−1

2
· 1 j≡−8 mod n

)
+

1
16

(
−

1
2

· 1 j ̸≡8 mod n +
n−1

2
· 1 j≡8 mod n

)}
.

Clearly, this quantity is maximized when j = ±4 mod n, in which case it is equal to (2/n)(2 − 4/n).
Overall one concludes that St ≤ (2 − 4/n)/(3 − 4/n) < 2

3 . □

Proof of Proposition 2.3. Set t = |Dn|1e. One has

λ1,1(t)=

∑
χ∈Irr(Dn)

χ(1)2 = |Dn| = 2n, λ1,4(t)=

∑
χ∈Irr(Dn)

χ(1)5 = 2 +
1
2(32(n − 1))= 2(8n − 7).

We apply Theorem 1.4 for K = F = Q and L/Q a Dn-extension. Therefore G+
= G and t+

= t . Moreover
AC holds for L since it is a supersolvable extension of Q. Therefore applying Theorem 1.4 we deduce

w4(L/Q, t; η)≪
1

n log rdL
.

As for the variance, Theorem 1.4 gives∣∣∣∣ ν(L/Q, t; η)
α(|η̂|2)(4n − 2) log rdL

− 1
∣∣∣∣ ≤

1
2n − 1

+ O
(

1
log2(rdL +2)

)
.

Putting this together, Theorem 1.1 gives that for fixed m ∈ N,

M̃2m(U, L/Q; t, η,8)≥ µ2mν(L/K , t; η)m(1 + ordL→∞(1))

≥ µ2m

(
α(|η̂|2)

(
2 −

1
n

)
log dL

)m
(1 + ordL→∞(1)),

as soon as ((log dL)
m/U )→ 0 as dL → ∞. □
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6.3. Example of a radical extension. In this section we prove Propositions 2.4 and 2.5.
Notation is as in Section 2.3. The nontrivial conjugacy classes of G are

U :=

{(
1 ⋆

0 1

)
: ⋆ ̸= 0

}
, Tc :=

{(
c ⋆

0 1

)
⋆ ∈ Fp

}
(c ̸= 1).

One has |U | = p − 1 and |Tc| = p for every c ∈ Fp \ {0, 1}. As for the characters of G, exactly p − 1 of
them have degree 1: these are the lifts of Dirichlet characters χ modulo p

ψχ :

{(
c d
0 1

)
: c ∈ F×

p , d ∈ Fp

}
→ (Z/pZ)×

χ
−→ C×, ψχ

((
c d
0 1

))
= χ(c).

Finally G has a unique irreducible character ϑ of degree > 1. The character table of G summarizes the
information:

{Id} U Tc, c ̸= 1

ψχ 1 1 χ(c)

ϑ p − 1 −1 0

Proof of Proposition 2.4. Take t = |G|1e, so that t̂(χ)= χ(1) for all χ ∈ Irr(G). Then for any a ∈ G, we
have ∑

χ∈Irr(G)

χ(a)|t̂(χ)2| =

∑
χ mod p

χ(a1,1)+ (p − 1)2ϑ(a).

(Here a1,1 denotes the coefficients in position (1, 1) of the matrix a ∈ G.) This sum vanishes at a ∈ Tc for
any c. The value of the sum at a ∈ U is −p(p − 1) and finally, at a = 1, the sum is (p − 1)+ (p − 1)3.
Therefore

St =
1

p(1 − 2/p + 2/p2)
.

Take t = ϑ which is real-valued with t̂ nonnegative. Then∑
χ∈Irr(G)

χ(a)|ϑ̂(χ)|2 = ϑ(a) (a ∈ G).

Therefore Sϑ = 1/(p − 1). □

Proof of Proposition 2.5. One has

λ1,1(|G|1e)=

∑
χ∈Irr(G)

χ(1)2 = p(p − 1), λ1,1(ϑ)= ϑ(1)= p − 1.

Moreover in the course of the proof of Proposition 2.4, we have shown that

λ1,2(|G|1e)= (p − 1)(1 + (p − 1)2), λ1,2(ϑ)= p − 1.

Finally one computes

λ1,4(|G|1e)=

∑
χ∈Irr(G)

χ(1)5 = (p − 1)(1 + (p − 1)4), λ1,4(ϑ)= ϑ(1)= p − 1.
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Let t be either |G|1e or ϑ . We apply Theorem 1.4 for K = F = Q, and L = Ka,p. Therefore G+
= G

and t+
= t . Moreover AC holds for Ka,p since it is a supersolvable extension of Q. Finally one has

dL =|disc(Ka,p/Q)|= p p2
−2a(p−1)2 ; see [Komatsu 1976, end of the proof of the Theorem] and [Westlund

1910, Section 3.I]. Therefore

log dL = p2 log p(1 + op→∞(1)), log rdL = (1 + op→∞(1)) log p.

For every η ∈ Sδ, the last bound of Theorem 1.4 gives

w4(Ka,p/Q, t; η)≪
1

p log rdL
=

1
p log p

(1 + op→∞(1)).

As for the variance, Theorem 1.4 gives∣∣∣∣ ν(Ka,p/Q, t; η)
α(|η̂|2)λ1,2(t) log rdL

− 1
∣∣∣∣ ≤ St + O

(
1

log2(p + 2)

)
.

Next we use the value of St computed in Proposition 2.4: St = op→∞(1). Plugging these bounds into (9),
we conclude the proof. □

6.4. Real parts of characters as class functions. In this section we prove Proposition 2.6. We will need
the following group theoretic preparatory result.

Lemma 6.1. Let G be a finite group and let ρ : G → GL(V ) be an irreducible finite dimensional complex
representation of G. Let χ be the character of ρ and let a ∈ G. We denote by [a] the class of a in G/ ker ρ.
Then we have the following equivalences:

(1) |χ(a)| = χ(1) if and only if [a] lies in the center Z(G/ ker ρ) of G/ ker ρ.

(2) |χ(a)+χ(a)| = 2χ(1) if and only if [a] is an element of order 1 or 2 in Z(G/ ker ρ).

Proof. (1) First assume |χ(a)| = χ(1). Since χ(a) is a sum of χ(1) roots of unity and by the triangle
inequality, we obtain that ρ(a) has a unique root of unity as eigenvalue. Being diagonalizable (since the
separable polynomial X |G|

− 1 vanishes at ρ(a)) we deduce that ρ(a) is a scalar matrix, thus commutes
with every element of End(V ). Since ρ induces a faithful representation of G/ ker ρ with representation
space V , we conclude that the class of a in G/ ker ρ lies in its center. Conversely, assume [a] commutes
with every element of G/ ker ρ. Then ρ(a) commutes with every element of End(V ). Since ρ is
irreducible, Schur’s lemma implies that ρ(a) is a scalar matrix and thus |χ(a)| = χ(1).

(2) Since |χ(a)| ≤ χ(1), the equality |χ(a)+χ(a)| = 2χ(1) is equivalent to χ(a)= ±χ(1). By (1), this
condition on a implies that [a] lies in the center of G/ ker ρ with ρ(a) a scalar matrix of trace ±χ(1). In
other words ρ(a)= ± Id, i.e., ρ(a2)= Id. Since ρ induces a faithful representation of G/ ker ρ this is
in turn equivalent to [a] having order at most 2 in Z(G+/ ker ρ). The converse holds since if [a] is an
element of order at most 2 in Z(G/ ker ρ), then ρ(a)= ± Id and therefore χ(a)= ±χ(1). □

Proof of Proposition 2.6. Since t+
= (χ + χ/2), then t̂+(ψ) =

1
2 if ψ ∈ {χ, χ}, and t̂+(ψ) = 0 for

every other irreducible character of G+. We deduce that St+ = maxa ̸=1|χ(a) + χ(a)|/(2χ(1)). By
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Lemma 6.1(2), we deduce that St+ = 1 if and only if Z(G/ ker ρ) has an element of order 1 or 2. This is
in turn equivalent to ker ρ = {e} and |Z(G+)| odd. □

We see that the particular case where Q = F = K and G+
= Gal(L/Q) admits a faithful irreducible

character χ and where Z(G+) has odd order is precisely that of Section 2.3.

6.5. Sn-extensions. In the section, we prove Proposition 2.7.

Proof of Proposition 2.7. We begin by noting that following [Fiorilli and Jouve 2024, Proof of Lemma 7.4],
one can show that Roichman’s bound [1996] combined with the hook-length formula imply that for any
χ ∈ Irr(Sn),

max
id ̸=π∈Sn

χ(π)

χ(1)
≤

(
max

(
q,

log(kn!/χ(1))+ 2n/e
log n!

))b

, (50)

where 0< q < 1, k ≥ 1 and b > 0 are absolute constants. For simplicity, let us denote t = tC1,C2 . We will
apply the bound (50) on characters for which χ(1)≥ ∥t∥2(4p(n)1/2∥t∥1)

−1. Note that

∥t∥2
2 =

n!

|C1|
+

n!

|C2|
, ∥t∥1 = 2.

We may now apply Theorem 1.4, in the generalized form given in Remark 1.7. Setting

4n;C1,C2 := {χ ∈ Irr(Sn) : χ(1)≥ ∥t∥2(8p(n)1/2)−1
},

it follows that for all large enough n,

St(4n;C1,C2)≤

(
max

(
q,

log(kn!
1/2 min(|C1|, |C2|)

1/2)+ 2n/e
log n!

))b

≤ max
(
θ1,

(
1 −

log(n!/min(|C1|, |C2|))

2 log n!
+

2 + on→∞(1)
e log n

)b )
≤ 1 − θ2

log(n!/min(|C1|, |C2|))

2 log n!
,

where 0< θ1 < 1 and θ2 > 0 are absolute. We now claim that λ1,2(t, 4)≫ λ1,2(t). To see this, we argue
as in [Fiorilli and Jouve 2024, Proposition 4.7]. We have the bound

λ1,2(t, Irr(G) \4)≤
∥t∥2

8p(n)1/2
λ0,2(t)=

∥t∥3
2

8p(n)1/2
,

by Parseval’s identity in the form λ0,2(t)= ∥t∥2
2. Moreover, [Fiorilli and Jouve 2024, (111)] implies that

λ1,2(t)≥
∥t∥3

2

2
√

2p(n)1/2∥t∥1
,

and as a result we deduce that

λ1,2(t;4n;C1,C2)≫
∥t∥3

2

p(n)1/2
.

We can now apply Theorem 1.1 to deduce the claimed bound. For the case t = tC1 , the proof is identical. □



Moments in the Chebotarev density theorem: general class functions 519

Acknowledgements

The work of Jouve was partly funded by the ANR through project FLAIR (ANR-17-CE40-0012). The
authors would like to thank Villa La Stella in Florence for their hospitality and excellent working conditions
during a stay in March 2022 where substantial parts of this work were accomplished. Finally we would
like to thank the referee for the careful reading of our manuscript and for providing numerous helpful
suggestions.

References

[Artin 1931] E. Artin, “Zur Theorie der L-reihen mit allgemeinen Gruppencharakteren”, Abh. Math. Sem. Univ. Hamburg 8:1
(1931), 292–306. MR Zbl

[Bellaïche 2016] J. Bellaïche, “Théorème de Chebotarev et complexité de Littlewood”, Ann. Sci. École Norm. Sup. (4) 49:3
(2016), 579–632. MR Zbl

[de la Bretèche and Fiorilli 2021] R. de la Bretèche and D. Fiorilli, “On a conjecture of Montgomery and Soundararajan”, Math.
Ann. 381:1-2 (2021), 575–591. MR Zbl

[de la Bretèche and Fiorilli 2023] R. de la Bretèche and D. Fiorilli, “Moments of moments of primes in arithmetic progressions”,
Proc. Lond. Math. Soc. (3) 127:1 (2023), 165–220. MR Zbl

[de la Bretèche et al. 2023] R. de la Bretèche, D. Fiorilli, and F. Jouve, “Moments in the Chebotarev density theorem: non-
Gaussian families”, preprint, 2023. arXiv 2301.12826

[Carneiro et al. 2015] E. Carneiro, V. Chandee, and M. B. Milinovich, “A note on the zeros of zeta and L-functions”, Math. Z.
281:1-2 (2015), 315–332. MR Zbl

[Cohen et al. 1998] H. Cohen, F. Diaz y Diaz, and M. Olivier, “Computing ray class groups, conductors and discriminants”,
Math. Comp. 67:222 (1998), 773–795. MR Zbl

[Fiorilli and Jouve 2024] D. Fiorilli and F. Jouve, “Distribution of Frobenius elements in families of Galois extensions”, J. Inst.
Math. Jussieu 23:3 (2024), 1169–1258. MR Zbl

[Fiorilli and Martin 2013] D. Fiorilli and G. Martin, “Inequities in the Shanks–Rényi prime number race: an asymptotic formula
for the densities”, J. Reine Angew. Math. 676 (2013), 121–212. MR Zbl

[Hooley 1977] C. Hooley, “On the Barban–Davenport–Halberstam theorem, VII”, J. Lond. Math. Soc. (2) 16:1 (1977), 1–8.
MR Zbl

[Huppert 1998] B. Huppert, Character theory of finite groups, de Gruyter Expo. Math. 25, de Gruyter, Berlin, 1998. MR Zbl

[Iwaniec and Kowalski 2004] H. Iwaniec and E. Kowalski, Analytic number theory, Amer. Math. Soc. Colloq. Publ. 53, Amer.
Math. Soc., Providence, RI, 2004. MR Zbl

[Kolmogorov and Fomin 1989] A. N. Kolmogorov and S. V. Fomin, Elementy teorii funkcii i funkcionalnogo
analiza, 6th ed., “Nauka”, Moscow, 1989. MR Zbl

[Komatsu 1976] K. Komatsu, “An integral basis of the algebraic number field Q(
√

ta,
√

t1)”, J. Reine Angew. Math. 288 (1976),
152–153. MR Zbl

[Lagarias and Odlyzko 1977] J. C. Lagarias and A. M. Odlyzko, “Effective versions of the Chebotarev density theorem”, pp.
409–464 in Algebraic number fields: L-functions and Galois properties (Durham, 1975), edited by A. Fröhlich, Academic
Press, London, 1977. MR Zbl

[Martinet 1977] J. Martinet, “Character theory and Artin L-functions”, pp. 1–87 in Algebraic number fields: L-functions and
Galois properties (Durham, 1975), edited by A. Fröhlich, Academic Press, London, 1977. MR Zbl

[Montgomery and Vaughan 2007] H. L. Montgomery and R. C. Vaughan, Multiplicative number theory, I: Classical theory,
Cambridge Stud. Adv. Math. 97, Cambridge Univ. Press, 2007. MR Zbl

[Pizarro-Madariaga 2011] A. Pizarro-Madariaga, “Lower bounds for the Artin conductor”, Math. Comp. 80:273 (2011), 539–561.
MR Zbl

https://doi.org/10.1007/BF02941010
http://msp.org/idx/mr/3069563
http://msp.org/idx/zbl/56.0173.02
https://doi.org/10.24033/asens.2291
http://msp.org/idx/mr/3503827
http://msp.org/idx/zbl/1347.11079
https://doi.org/10.1007/s00208-021-02179-6
http://msp.org/idx/mr/4322621
http://msp.org/idx/zbl/1487.11084
https://doi.org/10.1112/plms.12542
http://msp.org/idx/mr/4611407
http://msp.org/idx/zbl/1530.11072
http://msp.org/idx/arx/2301.12826
https://doi.org/10.1007/s00209-015-1485-9
http://msp.org/idx/mr/3384872
http://msp.org/idx/zbl/1332.11078
https://doi.org/10.1090/S0025-5718-98-00912-0
http://msp.org/idx/mr/1443117
http://msp.org/idx/zbl/0929.11064
https://doi.org/10.1017/S1474748023000154
http://msp.org/idx/mr/4742716
http://msp.org/idx/zbl/07851597
https://doi.org/10.1515/crelle.2012.004
https://doi.org/10.1515/crelle.2012.004
http://msp.org/idx/mr/3028758
http://msp.org/idx/zbl/1276.11150
https://doi.org/10.1112/jlms/s2-16.1.1
http://msp.org/idx/mr/506080
http://msp.org/idx/zbl/0377.10023
https://doi.org/10.1515/9783110809237
http://msp.org/idx/mr/1645304
http://msp.org/idx/zbl/0932.20007
https://doi.org/10.1090/coll/053
http://msp.org/idx/mr/2061214
http://msp.org/idx/zbl/1059.11001
http://msp.org/idx/mr/90k:46001
http://msp.org/idx/zbl/0672.46001
https://doi.org/10.1515/crll.1976.288.152
http://msp.org/idx/mr/422201
http://msp.org/idx/zbl/0335.12016
http://msp.org/idx/mr/447191
http://msp.org/idx/zbl/0362.12011
http://msp.org/idx/mr/447187
http://msp.org/idx/zbl/0359.12015
https://doi.org/10.1017/CBO9780511618314
http://msp.org/idx/mr/2378655
http://msp.org/idx/zbl/1142.11001
https://doi.org/10.1090/S0025-5718-2010-02403-2
http://msp.org/idx/mr/2728993
http://msp.org/idx/zbl/1231.11146


520 Régis de la Bretèche, Daniel Fiorilli and Florent Jouve

[Roichman 1996] Y. Roichman, “Upper bound on the characters of the symmetric groups”, Invent. Math. 125:3 (1996), 451–485.
MR Zbl

[Rubinstein and Sarnak 1994] M. Rubinstein and P. Sarnak, “Chebyshev’s bias”, Exp. Math. 3:3 (1994), 173–197. MR Zbl

[Serre 1977] J.-P. Serre, Linear representations of finite groups, Grad. Texts in Math. 42, Springer, 1977. MR Zbl

[Viviani 2004] F. Viviani, “Ramification groups and Artin conductors of radical extensions of Q”, J. Théor. Nombres Bordeaux
16:3 (2004), 779–816. MR Zbl

[Westlund 1910] J. Westlund, “On the fundamental number of the algebraic number-field k( p√m)”, Trans. Amer. Math. Soc.
11:4 (1910), 388–392. MR Zbl

[Wintner 1941] A. Wintner, “On the distribution function of the remainder term of the prime number theorem”, Amer. J. Math.
63 (1941), 233–248. MR Zbl

Communicated by Philippe Michel
Received 2023-02-06 Revised 2023-12-19 Accepted 2024-05-23

regis.de-la-breteche@imj-prg.fr Institut de Mathématiques de Jussieu-Paris Rive Gauche,
Université Paris Cité, Sorbonne Université, CNRS UMR 7586, Paris, France

daniel.fiorilli@universite-paris-saclay.fr Institut de mathématiques d’Orsay, Université Paris Saclay, Orsay, France

florent.jouve@math.u-bordeaux.fr Université de Bordeaux, CNRS UMR 5251, Bordeaux INP, Talence, France

mathematical sciences publishers msp

https://doi.org/10.1007/s002220050083
http://msp.org/idx/mr/1400314
http://msp.org/idx/zbl/0854.20015
https://doi.org/10.1080/10586458.1994.10504289
http://msp.org/idx/mr/1329368
http://msp.org/idx/zbl/0823.11050
https://doi.org/10.1007/978-1-4684-9458-7
http://msp.org/idx/mr/450380
http://msp.org/idx/zbl/0355.20006
https://doi.org/10.5802/jtnb.470
http://msp.org/idx/mr/2144967
http://msp.org/idx/zbl/1075.11073
https://doi.org/10.2307/1988640
http://msp.org/idx/mr/1500870
http://msp.org/idx/zbl/41.0245.02
https://doi.org/10.2307/2371519
http://msp.org/idx/mr/4255
http://msp.org/idx/zbl/0025.10701
mailto:regis.de-la-breteche@imj-prg.fr
mailto:daniel.fiorilli@universite-paris-saclay.fr
mailto:florent.jouve@math.u-bordeaux.fr
http://msp.org


msp
ALGEBRA AND NUMBER THEORY 19:3 (2025)

https://doi.org/10.2140/ant.2025.19.521

Abelian varieties over finite fields
and their groups of rational points

Stefano Marseglia and Caleb Springer

Over a finite field Fq , abelian varieties with commutative endomorphism rings can be described by
using modules over orders in étale algebras. By exploiting this connection, we produce four theorems
regarding groups of rational points and self-duality, along with explicit examples. First, when End(A)
is locally Gorenstein, we show that the group structure of A(Fq) is determined by End(A). In fact, the
same conclusion is attained if End(A) has local Cohen–Macaulay type at most 2, under the additional
assumption that A is ordinary or q is prime, although the conclusion is not true in general. Second, the
description in the Gorenstein case is used to characterize cyclic isogeny classes in terms of conductor
ideals. Third, going in the opposite direction, we characterize squarefree isogeny classes of abelian
varieties with N rational points in which every abelian group of order N is realized as a group of rational
points. Finally, we study when an abelian variety A over Fq and its dual A∨ satisfy or fail to satisfy
several interrelated properties, namely A ∼= A∨, A(Fq)∼= A∨(Fq), and End(A)= End(A∨). In the process,
we exhibit a sufficient condition for A ≇ A∨ involving the local Cohen–Macaulay type of End(A). In
particular, such an abelian variety A is not a Jacobian, or even principally polarizable.

1. Introduction

The groups of rational points of abelian varieties defined over a finite field Fq have recently received a
considerable amount of attention. For example, [Howe and Kedlaya 2021] showed that every positive
integer occurs as the order of the group of rational points of an abelian variety over F2. Van Bommel,
Costa, Li, Poonen and Smith [van Bommel et al. 2021] proved, among other results, a version of this
statement over arbitrary finite fields Fq , although only sufficiently large orders are realizable if q ≥ 7.

These statement are, in fact, results about isogeny classes. Indeed, two abelian varieties A and B
are isogenous over Fq if and only if #A(Fqn )= #B(Fqn ) for all n ≥ 1, or equivalently if h A(x)= hB(x),
where h A, hB ∈ Z[x] are the characteristic polynomials of the Frobenius endomorphisms of A and B,
respectively; see [Tate 1966, Theorem 1 (c)]. Moreover, one has #A(Fq)= h A(1).

The results mentioned above concerning cardinalities were upgraded to statements about finite abelian
groups in [Marseglia and Springer 2023]: for each q in {2, 3, 4, 5}, we showed that every finite abelian
group is isomorphic to the group of rational points of some abelian variety over Fq . This upgrade, however,
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does not work on the level of isogeny classes. Indeed, the group structure of A(Fq) is not uniquely
determined by its isogeny class. This phenomenon is observed even for elliptic curves. In this paper, we
seek to understand and describe this extra level of structure.

Notation and conventions. Before presenting our main results, we set some notation and conventions.
Throughout the paper, all isogenies and morphisms between abelian varieties over Fq are defined over
the base field Fq . In particular, given an abelian variety A over Fq with characteristic polynomial h, we
denote its (Fq -rational) endomorphism ring by End(A) and its (Fq -)isogeny class by Ih . We say that A
and Ih are squarefree if h is a squarefree polynomial. An equivalent definition of squarefree is given by
requiring the endomorphism algebra End(A)⊗Z Q to be commutative; see [Tate 1966, Theorem 2 (c)].
See also [Marseglia and Springer 2023, Lemma 2.3] for a comparison with other notions of squarefree.

Given a squarefree isogeny class Ih over Fq , set K = Q[x]/(h) and let π be the class of x in K .
We will denote by OK the maximal order of K . For every A in the isogeny class, as in [Waterhouse
1969, §3.1], we fix an isomorphism End(A)⊗Z Q ∼= K which sends the Frobenius endomorphism of A
to π . From now on, we will identify End(A) with its image inside K , which is an order. Under this
identification, the Rosati involution of A acts as the complex conjugation x 7→ x̄ in K . Note that π = q/π .
In particular, if End(A)= S ⊂ K then End(A∨)= S, where A∨ denotes the dual abelian variety of A.

1.1. Groups of rational points and endomorphism rings. As noted above, given an abelian variety A
over a finite field Fq , the sequence (#A(Fqn ))n≥1 of point counts is an isogeny invariant, but the group
structure of A(Fq) is not. One well-known refinement of the isogeny classification is given by classifying
the abelian varieties in a given isogeny class according to their endomorphism rings, which are orders in
the endomorphism algebra. When E is an elliptic curve over Fq , the group structure of E(Fqn ) is uniquely
determined for all n ≥ 1 by the endomorphism ring End(E); see [Lenstra 1996, Theorem 1].

In Main Theorem 1, we exhibit a similar result for abelian varieties of arbitrary dimension under certain
hypotheses on the endomorphism ring which are automatically satisfied in the case of elliptic curves. In
particular, we use the notion of the (Cohen–Macaulay) type of an order S at a prime p. This type, denoted
typep(S), is defined as the minimal number of generators of (St)p = St

⊗S Sp, where Sp is the localization
of S at p and St is the trace dual ideal of S. The order S is Gorenstein at p if typep(S)= 1. We say that S
is Gorenstein if it is so at every prime. See Section 2 for definitions and details. Recall that an abelian
variety A over Fq is called ordinary if the coefficient of xdim A in the characteristic polynomial h(x) of A
is coprime to q.

Main Theorem 1. Let A be an abelian variety in a squarefree isogeny class Ih over Fq . Write S =End(A)
and fix n ≥ 1.

(a) If S is Gorenstein at all prime ideals containing (1 −πn), then

A(Fqn )∼=
S

(1−πn)S
are isomorphic as S-modules.
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(b) Assume Ih is ordinary (Ord) or q = p is prime (CS). If typep(S)≤ 2 for every prime p of S above
(1 −πn), then

A(Fqn )∼=
S

(1−πn)S
are isomorphic as Z-modules.

In contrast, in Example 6.7, we show that it is possible to have A(Fq)≇ B(Fq) for isogenous abelian
varieties A and B over Fq , even if End(A)= End(B). This example, like all the others in this paper, has
been computed with the help of Magma [Bosma et al. 1997].

Part (a), appearing in the text as Corollary 3.3, is proven by generalizing the methods of [Lenstra 1996;
Springer 2021]. Specifically, we view the group of rational points A(Fq) of an abelian variety A over Fq

as a module over the endomorphism ring End(A) and use the Gorenstein property to describe the module,
as desired.

For Part (b), we use the additional assumptions to consider the abelian variety A itself to “be” a module
over End(A), as we now explain. Deligne [1969] constructed an equivalence between the category of
ordinary abelian varieties over a finite field Fq and the category of free Z-modules with a “Frobenius”-like
endomorphism. Centeleghe and Stix [2015] extended Deligne’s result, using a different functor, to the
category of abelian varieties over a prime field Fp whose characteristic polynomial does not have real roots.

Given a squarefree isogeny class Ih over Fq , we write Ord for the condition that Ih is ordinary, and CS
for the condition that q = p is prime. Note that, if Ih is squarefree, then the characteristic polynomial h
does not have real roots. If we restrict the functor of Deligne (resp. Centeleghe–Stix) to a particular
squarefree isogeny class Ih satisfying Ord (resp. CS), then the modules in the image of the functor
are precisely the fractional Z[π, π ]-ideals in the endomorphism algebra K = Q[x]/(h). See Section 6
below or [Marseglia 2021] for a detailed account. In particular, this lends itself to another route for
describing groups of rational points in terms of orders and fractional ideals in the endomorphism algebra;
see Theorem 6.2. This description allows us to deduce Main Theorem 1 (b), written as Proposition 6.5.

Beyond Main Theorem 1, the techniques and perspectives introduced in this section continue to be
used extensively throughout the paper. In Section 2, we recall the necessary background and prove some
foundational results regarding orders in étale algebras, which we then use in the remainder of the paper.

1.2. Cyclicity. In Section 4, we study isogeny classes which are cyclic, meaning that every abelian
variety in the isogeny class has a cyclic group of points. A criterion for cyclicity which only involves the
characteristic polynomial was given in [Giangreco-Maidana 2019, Theorem 2.2]. Although this criterion
applies a priori to all isogeny classes, we prove in Theorem 4.3 that an isogeny class over Fq is cyclic
if and only if it contains a variety of the form Asf × A1, where Asf is squarefree and A1 has only one
rational point. Moreover, A1 must be 0-dimensional if q ≥ 5 by the Weil bounds.

We provide a new criterion for cyclicity, written below as Theorem 4.5.

Main Theorem 2. Consider a squarefree isogeny class Ih of abelian varieties over Fq . Let π be the
class of x in the endomorphism algebra K = Q[x]/(h). The isogeny class Ih is cyclic if and only if
(1 −π)Z[π, π ] is coprime to the conductor f = (Z[π, π ] : OK ).
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Rather than relating the property of cyclicity to the coefficients of the characteristic polynomial as in
[Giangreco-Maidana 2019], Main Theorem 2 relates cyclicity to the algebraic properties of orders in the en-
domorphism algebra. In particular, it shows that the property of cyclicity is equivalent to the local maximal-
ity of the order Z[π, π ] generated by Frobenius and Verschiebung at all primes over (1−π). A key ingre-
dient in our proof is Main Theorem 1 (a), applied to abelian varieties A with maximal endomorphism ring.

1.3. Richness and noncyclic groups. In contrast to cyclic isogeny classes, we inspect the opposite
extreme in Section 5. We say that a squarefree isogeny class Ih is rich if every abelian group of
order h(1) occurs as the group of rational points of some abelian variety in Ih . In previous work by the
authors, it was shown that, for each N ≥ 1, there are infinitely many rich squarefree isogeny classes Ih

over F2 with N = h(1); see [Marseglia and Springer 2023, Theorem 5.3]. These isogeny classes are
built from Kedlaya’s infinite sets of simple isogeny classes of abelian varieties over F2 with prescribed
numbers of points; see [Kedlaya 2024, Theorem 1.1]. We must use a different technique to find rich
isogeny classes in general because there are at most finitely many simple abelian varieties over Fq with a
prescribed number of points N when q > 2 [Kadets 2021].

We present a criterion for richness in Main Theorem 3 which is easy to compute using only the
characteristic polynomial. An expanded statement is proved as Theorem 5.7, and we compare the
conditions of cyclicity and richness for abelian varieties of small dimension over small finite fields in
Example 5.9.

Main Theorem 3. Consider a squarefree isogeny class Ih of abelian varieties over Fq of dimension g.
Let K = Q[x]/(h) be the endomorphism algebra, and let π be the class of x. Write

N = h(1)=

s∏
j=1

ℓ
ej
j

for the number of rational points on each abelian variety in Ih . The following are equivalent:

(a) Ih is rich, that is, every abelian group of order N arises as A(Fq) for some A ∈ Ih .

(b) For all 1 ≤ i ≤ 2g, we have
h(i)(1)

i !
· ℓ

i−e1
1 · · · ℓi−es

s ∈ Z.

To obtain this theorem, we first prove Lemma 5.4, generalizing [Giangreco-Maidana 2019, Lemma 2.1]
which was originally used to study cyclicity. We then deduce Main Theorem 3 by applying [Rybakov
2010, Theorem 1.1]. As a consequence, we also prove that a squarefree isogeny class is rich if and only
if its simple factors are rich; see Corollary 5.8.

We conclude Section 5 by proving the existence of certain abelian varieties whose groups of rational
points are noncyclic. In particular, we show in Corollary 5.11 that a squarefree isogeny class Ih over Fq

is noncyclic if q is odd and h(1) is divisible by 4. Finally, we prove the existence of ordinary abelian
varieties over F4 with certain prescribed noncyclic groups of rational points in Theorem 5.13, thereby
improving [Marseglia and Springer 2023, Theorem 3.3].
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1.4. Duality. In Section 7, we turn our attention to the dual A∨ of an abelian variety A. At the June 2019
AMS Mathematical Research Communities meeting Explicit Methods in Arithmetic Geometry in Char-
acteristic p, Bjorn Poonen suggested the problem of finding an abelian variety A defined over a finite
field Fq such that A(Fq)≇ A∨(Fq). In Example 7.2, we find such a variety by using Main Theorem 1 (a).
In this example, we observe that A is geometrically simple and End(A) is a Gorenstein order satisfying
End(A) ̸= End(A∨). In Example 7.3, we show that squarefree examples are not rare. We remark that a
nonsimple squarefree example was produced in [Rybakov 2014, Example 4.2] using a different method.

Section 7 concludes with a further investigation of the relationships between these properties, along
with the properties of being a Jacobian, principally polarizable, or self-dual. More precisely, when A is
squarefree, consider the following well-known implications, which are recalled below in Theorem 7.4:

A(Fq)∼= A∨(Fq)

A ∼= Jac(C) +3 A has a principal polarization +3 A ∼= A∨

08

&.
End(A)= End(A∨)

Examples 7.5, 7.6 and 7.8, which are likely unsurprising to experts, illustrate that none of the reverse
implications are true. Additionally, Example 7.9 exhibits an abelian variety A over F3 such that A(F3)∼=

A∨(F3), but End(A) ̸= End(A∨); hence there is no downward implication on the right side of the diagram.
In each case, there are many suitable examples. On the other hand, it is unknown whether there are
examples where A(Fq)≇ A∨(Fq) and End(A)= End(A∨). Observe that, under the hypotheses of either
part of Main Theorem 1, End(A)= End(A∨) implies that A(Fq)∼= A∨(Fq); see also Proposition 7.1.

Main Theorem 4 provides a sufficient condition for A ≇ A∨ which only depends on the properties of
the orders in the endomorphism algebra. It is a key ingredient for producing Example 7.8 and may be of
independent interest. It is proved in the text as Proposition 7.7.

Main Theorem 4. Let A be an abelian variety in a squarefree isogeny class Ih over Fq , let S be an order
in K = Q[x]/(h) such that S = S, and let p be a prime of S satisfying

p = p̄ and typep(S)= 2.

Assume that A is ordinary (Ord) or that q is prime (CS). If S ⊆ End(A) and Sp = End(A)p, then A ≇ A∨.
In particular, such an A is not principally polarizable and cannot be a Jacobian.

1.5. Related literature. We conclude the introduction by mentioning some additional related results.
There are several papers on the classification of the groups of rational points of elliptic curves; see for
example [Rück 1987; Tsfasman 1985; Tsfasman et al. 2007; Voloch 1988]. The cases of abelian surfaces
and threefolds were studied in [David et al. 2014; Kotelnikova 2019; Rybakov 2015; 2012; Xing 1994;
1996]. Additional results about cyclic isogeny classes can be found in [Berardini and Giangreco-Maidana
2022; Giangreco-Maidana 2020].
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2. Fractional ideals in orders

In this section we recall definitions and properties of orders and their fractional ideals. These concepts
are well known in the context of number fields, but we will work in a more general setting. Additional
details and proofs can be found in [Marseglia 2024, Section 2].

Let Z be a Dedekind domain with field of fractions Q. In practice, for the purpose of this paper, it will
be enough to consider Z = Z and Z = Zp. Let K be a finite étale algebra over Q, that is, a finite product
of finite separable extensions of Q. A Z -lattice L in K is a finitely generated free sub-Z -module of K
such that L ⊗Z Q = K . Given two lattices L1 and L2 in K , we define the colon as

(L1 : L2)= {x ∈ K : x L2 ⊆ L1}.

A Z -order S in K is a subring of K which is also a Z -lattice. Observe that K is the total ring of
quotients of any Z -order S in K . When no confusion can arise, we will drop the base ring Z from the
terminology and simply write lattice and order. When S ⊆ S′ are orders in K , the colon (S : S′) is called
the conductor of S in S′.

A fractional S-ideal I is a finitely generated S-submodule of K which is also a lattice. Given a
lattice L in K , we define its multiplicator ring as (L : L). Observe that (L : L) is an order in K , and
hence L is a fractional (L : L)-ideal.

Given two lattices I and J in K (resp. fractional S-ideals) then the sum I + J , the intersection I ∩ J ,
the product I J , and the colon (I : J ) are lattices in K (resp. fractional S-ideals).

Let S be an order in K . A prime of S is a maximal ideal of S. We denote by Sp the localization of S
at p, and by Ŝp the completion of S at p. For an S-module M , we put Mp = M ⊗S Sp and M̂p = M ⊗S Ŝp.
Observe that Ŝp is a Ẑ p-order, where p is the contraction of p in Z . Also, if I is a fractional S-ideal,
then Îp is a fractional Ŝp-ideal. We will say that I is principal at p if Ip is a principal Sp-module, or,
equivalently, Îp is a principal fractional Ŝp-ideal. A fractional S-ideal I is called invertible if I (S : I )= S,
or equivalently if it is principal at p for every prime p of S. See for example [Marseglia 2024, Lemmas 2.12
and 2.17]. Given orders S ⊆ S′ in K , we can consider S′ as a fractional S-ideal. Lemma 2.1 below tells
us when S′ is principal at a prime p of S.

Lemma 2.1. Let S ⊆ S′ be orders. Given a prime p of S, the following statements are equivalent:

(a) (S : S′)⊆ p.

(b) S′
p is not a principal Sp-module.

(c) Sp ̸= S′
p.

Proof. We first prove that S′
p is a principal Sp-module if and only if Sp = S′

p. One implication is trivial.
For the other, assume that S′

p = αSp. Hence α ∈ S′×

p , which shows that

Sp =
1
α

S′
p = S′

p.

To conclude, observe that Sp⊊ S′
p if and only if (Sp : S′

p)⊊ Sp, which occurs if and only if (S : S′)⊆ p. □
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Later in the paper we will study groups of rational points of abelian varieties over finite fields by
describing them in terms of quotients of fractional ideals. In turn, we describe such quotients locally.

Lemma 2.2. Let J ⊆ I be fractional ideals over an order S. Then we have an isomorphism of S-modules

I
J

≃

⊕
p

( I
J

)
p
,

where the direct sum is over the finitely many primes for which Ip ̸= Jp.

Proof. The quotient I/J is a finitely generated torsion Z -module; see for example [Cohen 2000, Sec-
tion 1.7]. Hence I/J is an Artinian and Noetherian S-module, so the result follows from [Eisenbud 1995,
Theorem 2.13 (b)]. □

Proposition 2.3. Let S ⊊ S′ be orders. If r ∈ S is not a zero-divisor and r S is not coprime to the conductor
f = (S : S′), then the quotient M = S′/r S′ is not a cyclic S-module.

Proof. By assumption there exists a maximal ideal p of S such that

r S + f ⊆ p,

which implies
r S′

+ f ⊆ pS′.

Since p is above the conductor f, by Lemma 2.1, we have that S′
p is not a principal Sp-module, or

equivalently the S/p-vector space S′/pS′ has dimension strictly bigger than 1. Observe that

M
pM

∼=
S′/r S′

pS′/r S′

∼=
S′

pS′
.

Hence the Sp-module Mp is not cyclic. By Lemma 2.2, we conclude that M is not a cyclic S-module. □

The isomorphism class of a quotient of fractional ideals can be deduced from local information at
finitely many primes, as explained in the following lemma.

Lemma 2.4. Let I and J be fractional ideals over an order S, and let r ∈ S be a nonzero divisor. Let S

be the set of primes of S containing r. Assume that we have an Sp-linear isomorphism ϕp : Ip −→∼ Jp for
every p ∈ S . Then there is an S-linear isomorphism

ψ :
I

r I
−→∼

J
r J

such that ψ ⊗ Sp = ϕp ⊗ (S/r S) for every prime p ∈ S .

Proof. Set M = I/r I and N = J/r J . By assumption, we have isomorphisms

ϕp ⊗

( S
r S

)
: Mp −→∼ Np

for each p ∈ S . We now claim that, given a prime p of S, we have Mp ̸= 0 if and only if r ∈ p. If r /∈ p

then (S/r S)p = 0, and hence Mp = (I ⊗S (S/r S))= 0 as well. Conversely, if r ∈ p then r I ⊆ pI , and
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hence we obtain a surjective map Mp → I/pI , which shows that Mp ̸= 0, completing the proof of the
claim. The same is true for the S-module N .

By Lemma 2.2, we have
M ∼=

⊕
p∈S

Mp and N ∼=

⊕
p∈S

Np.

We conclude by setting

ψ =

⊕
p∈S

ϕp ⊗

( S
r S

)
. □

The étale algebra K comes equipped with a trace map

TrK/Q : K → Q

that associates to every element x ∈ K the trace of the matrix representing the multiplication-by-x map
with respect to any Q-basis of K . The existence of such a nondegenerate trace implies that the integral
closure OK of Z in K is an order, called the maximal order, since every other order is contained in OK .
Recall that OK is characterized by the fact that every localization is a principal ideal ring.

The following proposition refines Lemma 2.4, in the sense that we only need local information above
the conductor to understand the isomorphism class.

Proposition 2.5. Let S be an order in K , and let r be a nonzero divisor of K . Assume that r S is coprime
to the conductor f = (S : OK ). Then, for every fractional S-ideal I , we have an S-linear isomorphism

I
r I

∼=
S

r S
.

Proof. Because r S is coprime to the conductor, by Lemma 2.1 we have Sp = OK ,p for any prime p

containing r . This implies that Ip ∼= Sp for every such prime p. We conclude by Lemma 2.4. □

Given a lattice L in K , we define its trace dual as

L t
= {x ∈ K : TrK/Q(x L)⊆ Z}.

In the following lemma, we record some well-known properties of trace duals.

Lemma 2.6. Let L , L1, and L2 be lattices, and let S be an order in K . Then

(a) (L t)t = L ,

(b) (L1 : L2)= (L t
1L2)

t ,

(c) (L1 : L2)= (L t
2 : L t

1),

(d) (L : L)= S if and only if L L t
= St .

Proof. See for example [Voight 2021, Section 15.6]. □

Let S be an order, p be a prime of S, and p its contraction in Z . Denote by Q̂ p the fraction field of Ẑ p

and by K̂p the total ring of quotients of Ŝp. The trace TrK/Q naturally induces a trace TrK̂p/Q̂ p
. It follows
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that taking trace duals commutes with completion. So, given a fractional S-ideal I , the notation Î t
p is not

ambiguous.

Lemma 2.7. Let S be an order and p be a prime of S. For fractional S-ideals I and J , we have Ip ∼= Jp
as Sp-modules if and only if (I t)p ∼= (J t)p.

Proof. By [Eisenbud 1995, Exercise 7.5, p. 203], it is enough to prove the equivalent statement with
completion instead of localization. Assume that Îp ∼= Ĵp, that is, Îp = α Ĵp for some α ∈ K̂ ×

p . Then
Î t
p = α−1 Ĵ t

p . Hence Î t
p

∼= Ĵ t
p , as required. We used here that completions and trace duals commute, as

noted above. The converse direction follows from Lemma 2.6 (a). □

Recall that Lemma 2.4 provides an S-linear isomorphism of quotients of fractional ideals, under certain
local conditions. However, when comparing a fractional ideal and its dual, we can obtain a Z -linear
isomorphism between quotients, regardless of the local behavior.

Lemma 2.8. Let S be an order with fractional ideals I and J , and let r ∈ S be a nonzero divisor. Then
we have a Z-linear isomorphism

I
r I

∼=
I t

r I t .

Proof. This is a special case of [Marseglia 2024, Lemma 2.4 (iv)], which is an application of Matlis
duality; see for example [Ooishi 1976, Theorem 1.7]. □

We now recall some properties of orders that were studied in [Marseglia 2024, Section 3]. The Cohen–
Macaulay type of an order S at a prime p, denoted by typep(S), is the minimal number of generators
of (St)p as an Sp-module. This definition is equivalent to the usual one; see [Marseglia 2024, Section 3].
We say that an order S is Gorenstein at a prime p if its Cohen–Macaulay typep(S) is equal to 1, that is,
if (St)p is a principal Sp-module. We say that S is Gorenstein if it is so at every prime. This definition
of Gorenstein is equivalent to the ones typically used in the literature. For example, a ring with finite
(Krull) dimension is called Gorenstein if it has finite injective dimension. See [Bass 1963, Section 1]
for another equivalent definition, and see [Bass 1963, Theorem 6.3] and [Buchmann and Lenstra 1994,
Proposition 2.7] for the proof of the equivalence with the one used in this paper. In fact, using the latter
reference, one can deduce the following lemma. We give a complete proof for convenience.

Proposition 2.9. Let S be an order and p be prime of S. Then S is Gorenstein at p if and only if every
fractional S-ideal I with (I : I )p = Sp is principal at p.

Proof. Observe that S is Gorenstein at p if and only if Ŝt
p = α Ŝp for some α ∈ K̂ ×

p . Assume now that S
is Gorenstein at p. Pick a fractional S-ideal I with (I : I )p = Sp. By taking the completion we get that
(̂I : I )p = Ŝp. By Lemma 2.6 (d), we obtain Îp Î t

p = Ŝt
p = α Ŝp. Hence, Îp is invertible. Because invertible

fractional Ŝp-ideals are principal, we get that Ip is a principal Sp-module, as required. For the converse, it
is enough to observe that St has multiplicator ring S. □

Similarly to the Gorenstein case, locally, we have a classification of fractional ideals with multiplicator
ring of type 2.
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Proposition 2.10 [Marseglia 2024, Theorem 6.2]. Let S be an order and p a prime of S such that
typep(S)= 2. Then, for every fractional S-ideal I such that (I : I )p = Sp, either Ip ∼= Sp or Ip ∼= (St)p.

We exploit the classifications of Propositions 2.9 and 2.10 to understand quotients of fractional ideals,
as we show in the next proposition. We invite the reader to compare the statement with Proposition 2.5,
where the isomorphism is S-linear, while here we only get a Z -linear isomorphism.

Proposition 2.11. Let r ∈ S be a nonzero divisor. If typep(S)≤ 2 for all primes p of S containing r then,
for any fractional S-ideal I with (I : I )p = Sp, we have a Z-linear isomorphism

I
r I

∼=
S

r S
.

Proof. Fix p containing r . If S is Gorenstein at p then Ip ∼= Sp by Proposition 2.9. If typep(S)= 2 then
Ip ∼= Sp or Ip ∼= (St)p by Proposition 2.10. Set M = I/r I and N = S/r S. If Ip ∼= Sp then we have an
induced Sp-linear isomorphism

Mp
∼= Np.

If Ip ∼= (St)p then first we observe that Îp ∼= Ŝt
p. So we have an induced Ŝp-linear isomorphism

M̂p
∼=

Ŝt
p

r Ŝt
p

,

which combined with Lemma 2.8 gives a Ẑ p-linear isomorphism

M̂p
∼= N̂p.

Since Mp and Np are finitely generated Z p-modules, we obtain a Z p-linear isomorphism

Mp
∼= Np

by [Eisenbud 1995, Exercise 7.5, p. 203].
By Lemma 2.2, we have

M ∼=

⊕
p

Mp and N ∼=

⊕
p

Np,

where the direct sums run over the primes p containing r , since Mp = Np = 0 for all other primes. We
conclude that M ∼= N as Z -modules. □

As previously anticipated, we will apply the results contained in this section to orders in commutative
endomorphism algebras of abelian varieties over finite fields. Such algebras have an automorphism that
corresponds to the Rosati involution and acts as complex conjugation. Putting together previously stated
results with this extra structure, we obtain the following proposition, which will be used to prove that
certain abelian varieties are not self-dual in Proposition 7.7.

Proposition 2.12. Assume that K has an involution x 7→ x̄ which fixes Q pointwise. Let S be an order
in K satisfying S = S. Let p be a prime of S such that typep(S)= 2. Then p= p̄ if and only if all fractional
S-ideals I with (I : I )p = Sp satisfy Ip ≇ (I t)p.
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Proof. Assume that p = p̄. By Proposition 2.10, we have that Ip ∼= Sp or Ip ∼= (St)p. Assume the former.
By Lemma 2.7, we obtain

(I t)p = (I t)p̄ ∼= (St)p̄ = (St)p.

Similarly, if Ip ∼= (St)p then
(I t)p = (I t)p̄ ∼= Sp̄ = Sp.

In both cases, if Ip ∼= (I t)p then St is principal at p, that is, S is Gorenstein at p, which is a contradiction.
Now assume that p ̸= p̄. Let d ∈ K × such that d St

⊆ S and m > 0 such that p̄m Sp̄ ⊆ (d St)p̄. Consider
the fractional S-ideal I defined as

I = d St
+ p̄m .

For every l ̸= p̄, we have
Il = (d St)l + Sl = Sl

and
Ip̄ = (d St)p̄ + p̄m Sp̄ = (d St)p̄.

It follows by Lemma 2.7 that (I t)p ∼= Sp = Sp, which gives us Ip ∼= (I t)p. Moreover, we see that (I : I )= S
by checking the equality locally at every prime. □

Remark 2.13. Note that in the proof of Proposition 2.12 we showed that if p ̸= p̄ then there exists a
fractional ideal I such that Ip ∼= (I t)p with multiplicator ring S = (I : I ) globally not only locally at p.

3. Groups of rational points and Gorenstein orders

Our goal is to understand groups of rational points A(Fq) for abelian varieties A defined over Fq . To
accomplish this goal in practice, it is productive to view A(Fq) as not merely a group, but as a module
over its endomorphism ring EndFq (A). Although requesting a description of the additional structure may
appear to make the problem harder a priori, the module structure can be exploited and cleanly described
in many cases, which allows one to deduce the group structure immediately.

Given a separable endomorphism s : A → A of an abelian variety A over Fq , we denote by A[s] the
Fq -points of the kernel of s.

Proposition 3.1. If A is a squarefree abelian variety over Fq and s is a separable endomorphism of A,
then #A[s] = deg(s)= NK/Q(s), where K = End(A)⊗Z Q.

Proof. Write A ∼ B1 × · · · × Br as the product of simple pairwise nonisogenous varieties. Then

K = End(A)⊗Z Q ∼=

r∏
i=1

Ki

is the product of the number fields Ki = End(Bi )⊗Z Q. Without loss of generality, by [Waterhouse
1969, Theorem 3.13], we can choose each Bi so that End(Bi ) is the maximal order OKi in Ki . Since
End(A) ⊆

∏r
i=1 OKi , we can write s = (s1, . . . , sr ) for si ∈ OKi . It is therefore enough to consider the
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case where A = B1 × · · · × Br . When A is simple, i.e., when r = 1, the statement follows from [Milne
1986, Proposition 12.12]. Therefore, by definition,

NK/Q(s)=

r∏
i=1

NKi/Q(si )=

r∏
i=1

deg(si )= deg(s),

where the final equality follows from the fact that deg(s)= #A[s] and deg(si )= #Bi [si ] by separability. □

Theorem 3.2 and Corollary 3.3 below were proven in the case where A is an elliptic curve in [Lenstra
1996] and generalized to the case of simple abelian varieties in [Springer 2021]. To obtain the same result
for squarefree varieties, we follow the proof method used in the simple case.

Theorem 3.2. Let A be a squarefree abelian variety over Fq , and let s be a separable endomorphism
of A. If End(A) is Gorenstein at the primes containing s, then

A[s] ∼=
End(A)

s · End(A)
is an isomorphism of End(A)-modules.

Proof. Write S = End(A), S0 = S/Ss, and M = A[s]. By the universal property of quotients, if r A[s] = 0,
then r = ts for some t ∈ S. This implies that M is a faithful S0-module.

Moreover, because S is Gorenstein at every prime ideal containing s and s is a nonzero-divisor, we
deduce that S0 is a finite Gorenstein ring by [Matsumura 1986, Example 18.1]. Therefore, M contains a
free S0-submodule N of rank 1 by [Springer 2021, Lemma 2.3]. By Proposition 3.1, and the fact that the
modules are finite, we have

#M = deg s = NK/Q(s)= #(S/Ss)= #S0.

We deduce that M = N ∼= S/Ss, as desired. □

Corollary 3.3. Let A be a squarefree abelian variety over Fq , and let π be the Frobenius endomorphism
of A. If n ≥ 1 and End(A) is Gorenstein at the prime ideals containing 1 − πn , then there is an
isomorphism of End(A)-modules

A(Fqn )∼=
End(A)

(1 −πn)End(A)
.

In particular, B(Fqn ) ∼= A(Fqn ) are isomorphic groups for all abelian varieties B which are isogenous
to A with End(B)= End(A).

Proof. We may apply Theorem 3.2 because A(Fqn )= A[1 −πn
] and 1 −πn is a separable isogeny. □

However, note that these results are not true in general when we remove the assumption that End(A) is
Gorenstein; see Example 6.7.
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4. Cyclic isogeny classes

In this section, we study isogeny classes containing only abelian varieties with cyclic groups of rational
points.

Definition 4.1. We say that an isogeny class is cyclic if every variety A in the isogeny class has a cyclic
group A(Fq) of rational Fq -points.

Any isogeny class of abelian varieties with a single point is trivially cyclic. In Section 4.1, we show
that, except for such trivial factors, every cyclic isogeny class is squarefree. Then, in Section 4.2, we
provide a characterization of precisely which squarefree isogeny classes are cyclic in terms of conductor
ideals.

4.1. Reducing to the squarefree case. In this subsection, we consider abelian varieties whose endo-
morphism algebras are not necessarily commutative. In general, if B is an abelian variety over Fq , then
End(B) is an order in the endomorphism algebra K = End(B)⊗Z Q, that is a subring which is a finitely
generated free module over Z and whose Q-span is the whole algebra K . Observe that this notion of
order specializes to the one introduced in Section 2 in the commutative case.

Proposition 4.2. If B is a simple abelian variety over Fq such that B(Fq) is a nontrivial cyclic group and
End(B) is a maximal order in End(B)⊗Z Q, then End(B) is commutative, that is, B is squarefree.

Proof. Let L be the center of the endomorphism algebra End(B)⊗Z Q. Because B is simple, L = Q(π),
where π is a root in L of the polynomial hB(x); see [Waterhouse and Milne 1971, Theorem 8]. The
center of End(B) is OL by the maximality of End(B). By [Springer 2021, Theorem 1.3 (b)], there is an
isomorphism of OL -modules

B(Fq)∼=

(
OL

(1 −π)OL

)d

,

where d = 2 dim(B)/[L : Q]. In particular, because the group of points is nontrivial and cyclic by
hypothesis, we must have d = 1, which is equivalent to OL = End(B) by [Waterhouse and Milne 1971,
Theorem 8]. □

Theorem 4.3. If A is an abelian variety over Fq whose isogeny class is cyclic, then A ∼ A1 × Asf for
abelian varieties A1 and Asf over Fq , possibly of dimension 0, such that Asf is squarefree and #A1(Fq)= 1.
If q ≥ 5, then A itself is squarefree.

Proof. Decompose the isogeny class A ∼ Be1
1 × · · · × Ber

r into distinct simple factors. By [Waterhouse
1969, Theorem 3.13], we may assume that each End(Bj ) is a maximal order in its endomorphism algebra.

After possibly reordering, let r1 be such that #Bj (Fq)= 1 for all 1 ≤ j ≤ r1 and #Bj (Fq) > 1 for all
r1 < j ≤ r . Define

A1 =

∏
1≤ j≤r1

Bej
j and Asf =

∏
r1< j≤r

Bej
j .
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It suffices to show Asf is squarefree. In this case, ej = 1 for all r1 < j ≤ r because the isogeny class is
cyclic, and Proposition 4.2 shows that

End(Asf)∼=

∏
r1< j≤r

End(Bj )

is commutative, that is, Asf is squarefree. The theorem then follows because the Weil bound states
that #B(Fq) ≥ (

√
q − 1)2 dim(B) for any abelian variety B over Fq ; see [Weil 1948]. Thus #B(Fq) = 1

implies q ≤ 4. □

Remark 4.4. There are infinitely many simple abelian varieties over F2 with a single rational point by
[Madan and Pal 1977]; see also [Kedlaya 2024]. However, there is only one simple isogeny class over
each of F3 and F4 with a single rational point; see [Kadets 2021, Theorem 3.2] and isogeny classes 1.3.ad
and 1.4.ae [LMFDB 2022].

4.2. The cyclicity of squarefree abelian varieties. We will use the same notation as in the previous
sections. Let Ih be a squarefree isogeny class of abelian varieties over Fq . Put K = Q[x]/(h)= Q[π ]

and R = Z[π, π ].

Theorem 4.5. The isogeny class Ih is cyclic if and only if (1 − π)R is coprime to the conductor
f = (R : OK ); that is, (1 −π)R + f = R.

This theorem is a straightforward combination of Proposition 4.7 and Corollary 4.9. We remark that
the following is a simple application of Theorem 4.5.

Corollary 4.6. If h(1) is a squarefree integer, where h(t) is the characteristic polynomial of π , then
(1 −π)R is coprime with f = (R : OK ).

Proof. Because h(1) is squarefree, any finite abelian group of order h(1) is cyclic. Thus, the isogeny class
is cyclic, and we conclude via Theorem 4.5. □

The next proposition proves one direction in Theorem 4.5.

Proposition 4.7. If (1 −π)R is coprime to the conductor f = (R : OK ), then, for every A in Ih , we have
an R-linear isomorphism

A(Fq)∼=
R

(1−π)R
.

In particular, the isogeny class Ih is cyclic.

Proof. Let A be an abelian variety in Ih . Put S = End(A), and note that R ⊆ S. Hence (1 − π)S is
coprime to the conductor (S : OK ) of S in OK . For every prime p of S containing (1 − π), we have
Sp = OK ,p by Lemma 2.1. Therefore S is Gorenstein at p for every p containing (1−π). By Theorem 3.2,
we have that

A(Fq)∼=
S

(1−π)S
.

http://www.lmfdb.org/Variety/Abelian/Fq/1/3/ad
http://www.lmfdb.org/Variety/Abelian/Fq/1/4/ae
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Since S is a fractional R-ideal, Proposition 2.5 gives us an R-linear isomorphism S/(1−π)S ∼= R/(1−π)R.
We conclude by observing that

R
(1 −π)R

∼=
Z[x, y]

(h(1), x − 1, y − q)
∼=

Z

(h(1))
,

which is immediate from the method of the proof of [Marseglia and Springer 2023, Proposition 2.7]. □

We now prove a strong converse to Proposition 4.7.

Proposition 4.8. Let A be a squarefree abelian variety over Fq with Gorenstein endomorphism ring
S = End(A) and Frobenius endomorphism π . If (1 −π)R is not coprime to the conductor f = (R : S),
then A(Fqn ) is a noncyclic R-module for all n ≥ 1. In particular, every abelian variety in the isogeny
class with endomorphism ring S has a noncyclic group of points.

Proof. We have A(Fqn ) ∼= S/(1 −πn)S as S-modules by Corollary 3.3. Observe that (1 −πn)R is not
coprime to f because (1 −πn)= (1 −π)(1 +π + · · · +πn−1) implies

R ⊋ (1 −π)R + f ⊇ (1 −πn)R + f for all n ≥ 1.

Therefore, A(Fqn ) is a noncyclic R-module by Proposition 2.3. □

Corollary 4.9. If (1 − π)R is not coprime to the conductor f = (R : OK ), then A(Fqn ) is a noncyclic
R-module for all n ≥ 1 for every A in Ih with maximal endomorphism ring. In particular, the isogeny
class Ih is noncyclic.

Proof. Observe that OK is the endomorphism ring of an abelian variety in Ih by [Waterhouse 1969,
Theorem 3.13]. Now, apply Proposition 4.8 with S = OK , which is Gorenstein. □

5. Noncyclic groups of rational points

In Section 4, we gave a characterization of isogeny classes in which every abelian variety has a cyclic
group of points. In this section, we go in the opposite direction. In Theorem 5.7, we characterize isogeny
classes Ih in which every abelian group of order h(1) occurs as the group of rational points, and we call
such isogeny classes rich; see Definition 5.3.

There are two main tools which we require to study rich isogeny classes. The first is Lemma 5.4. It
generalizes [Giangreco-Maidana 2019, Lemma 2.1] which was originally used to study cyclic isogeny
classes. We also use a theorem of Rybakov, recalled below as Theorem 5.6, which provides a criterion for
the existence of abelian varieties in a given squarefree isogeny class with a prescribed group of rational
points.

To conclude the section, we use Rybakov’s theorem again to prove in Proposition 5.10 the existence
of ordinary abelian varieties over Fq whose ℓ-primary part has two generators whenever q ≡ 1 mod ℓ.
This allows us to deduce an improved version of [Marseglia and Springer 2023, Theorem 3.3], which we
present below as Theorem 5.13.
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5.1. Lemmas about characteristic polynomials. We provide some basic lemmas concerning minimal
polynomials which we will apply to the polynomial h for a squarefree isogeny class Ih . For an element α
in an étale algebra K over Q, we write hα(x) and mα(x) for the characteristic and minimal polynomials,
respectively, of the Q-linear map on K defined by multiplication by α. Note that if K =

∏t
j=1 K j for

number fields K1, . . . , Kt and α = (α1, . . . , αt), then we have hα(x)=
∏t

j=1 hαi (x). Observe that α is
in the maximal order OK of K if and only if mα(x) has integer coefficients.

For a squarefree isogeny class Ih , the previous notation applied to the étale algebra K = Q[x]/(h)
leads to h(x)= hπ (x)= mπ (x), where π ∈ K corresponds to the Frobenius endomorphism on any abelian
variety in Ih .

Lemma 5.1. Let K be an étale algebra, let α ∈ K ×, and let b, c ∈ Q, with b ̸= 0. Define r = deg hα . Then

hbα+c(x)= br
· hα

( x
b

−
c
b

)
and

h1/α(x)=
xr

hα(0)
· hα

(1
x

)
.

In other words, we recognize h1/α(x) as the reverse of the polynomial hα(x)/hα(0).

Proof. First, we prove the statements when K = Q(α) is a number field. Both

br
· mα

( x
b

−
c
b

)
and

xr

mα(0)
· mα

(1
x

)
are monic, with coefficients in Q, of degree r , and are 0 when evaluated at bα+ c and 1/α, respectively.
They are irreducible since we have isomorphisms Q(α)∼= Q(bα+ c)∼= Q(1/α).

In general, we write K =
∏t

j=1 K j for number fields K1, . . . , Kt , and α = (α1, . . . , αt). Setting
dj = [K j : Q(αj )], we observe that hα(x)=

∏t
j=1 mαj (x)

dj . The claims follow from the previous case:

hbα+c(x)=

t∏
j=1

mbαj +c(x)dj =

t∏
j=1

bdj deg mαj · mαj

( x
b

−
c
b

)dj
= br

· hα
( x

b
−

c
b

)
,

h1/α(x)=

t∏
j=1

m1/αj (x)
dj =

t∏
j=1

xdj deg mαj

mαj (0)
· mαj

(1
x

)dj
=

xr

hα(0)
· hα

(1
x

)
. □

We apply the previous lemma to obtain a formula for the coefficients of the minimal polynomials of
two related algebraic numbers.

Lemma 5.2. Let α be an element of an étale algebra K over Q satisfying 1 − α ∈ K ×, and let d ∈ Q.
The coefficients of hd/(1−α)(x)=

∑r
i=0 ai x i are given by the formula

ai =
(−1)r+i dr−i h(r−i)

α (1)
(r − i)! hα(1)

,

where h(i)α (x) is the i-th derivative of the polynomial hα(x).
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Proof. We will use Lemma 5.1 several times. Let β = (1 −α)/d . We have

hd/(1−α)(x)= h1/β(x)=
xr

hβ(0)
hβ

(1
x

)
, (1)

hβ(x)=

( 1
d

)r
h1−α(dx), (2)

h1−α(x)= (−1)r hα(1 − x). (3)

Using (2) with (3), we get

hβ(0)=

( 1
d

)r
h1−α(0)= (−1)r

( 1
d

)r
hα(1). (4)

Combining (4) and (2) with (1), we obtain

hd/(1−α)(x)=
(−x)r

hα(1)
h1−α

(d
x

)
. (5)

Define h1−α(x)= xr
+ br−1xr−1

+ · · ·+ b1x + b0 and set br = 1. By (3), for every i = 1, . . . , r , we get

bi =
1
i !

h(i)1−α(x)
∣∣∣
x=0

=
1
i !
(−1)r+i h(i)α (1 − x)

∣∣∣
x=0

=
1
i !
(−1)r+i h(i)α (1). (6)

Combining (5) and (6), we obtain

hd/(1−α)(x)=
(−x)r

hα(1)

((d
x

)r
+ br−1

(d
x

)r−1
+ · · · + b1

(d
x

)
+ b0

)
=

r∑
i=0

(−x)r

hα(1)

(d
x

)r−i
br−i

=

r∑
i=0

(−x)r

hα(1)

(d
x

)r−i
·

1
(r − i)!

(−1)i h(r−i)
α (1)=

r∑
i=0

(−1)r+i dr−i h(r−i)
α (1)

(r − i)! hα(1)
x i . □

5.2. Rich isogeny classes. In Section 4, we studied cyclic isogeny classes. Now we study the opposite
extreme.

Definition 5.3. We call an isogeny class Ih rich if every abelian group of order h(1) occurs as the group
of rational points for some abelian variety in Ih .

The following lemma detects the annihilator of the group of rational points in terms of the existence
of certain endomorphisms. It generalizes [Giangreco-Maidana 2019, Lemma 2.1], which was originally
presented for the sake of studying cyclic isogeny classes. We use our generalization to study rich isogeny
classes instead.

Lemma 5.4. Let A be an abelian variety over Fq with N rational points. Denote by π the Frobenius of A.
Let d be a divisor of N . Then the following are equivalent:

(a) d A(Fq)= 0.

(b) A(Fq)⊆ ker([d])(Fq).

(c) There exists ϕ ∈ EndFq (A) such that [d] = ϕ ◦ (1 − π). Moreover, such a ϕ lives in the center of
EndFq (A).
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Proof. The first two statements are clearly equivalent. To show that the second and the third are equivalent,
we first observe that A(Fq)= ker(1 −π)(Fq). In particular, it is clear that the third statement implies the
second. Now, assume that the second statement holds; that is, ker(1 −π)(Fq)⊆ ker([d])(Fq). Then by
the separability of 1 −π , we have also ker(1 −π)⊆ ker([d]). Consider the commutative diagram

A

A // //

[d]

66

1−π
((

A
ker(1−π)

ϕ̃

OO

ι
��

A

where the middle arrow is the canonical projection, ι is the isomorphism induced by 1 −π , and ϕ̃ is the
(unique) map induced by the inclusion ker(1 −π)⊆ ker([d]) via the universal property of the quotient.
Put ϕ = ϕ̃ ◦ ι−1. Therefore

ϕ ◦ (1 −π)= [d].

Since both 1 −π and [d] are in the center and defined over Fq , the same holds for ϕ, as required. □

Given two isogenous abelian varieties A and B over Fq , we will identify the endomorphism algebras
End(A)⊗Z Q ∼= End(B)⊗Z Q with an isomorphism which maps the Frobenius endomorphism of A to
the Frobenius endomorphism of B. We denote this element by π .

Proposition 5.5. Let A be an abelian variety over Fq whose group of rational points A(Fq) is annihilated
by an integer d. For every maximal order O in the endomorphism algebra End(A)⊗Z Q, there is an
abelian variety B which is isogenous to A such that End(B)∼= O . Furthermore, B(Fq) is also annihilated
by d for all B with endomorphism ring End(B)∼= O.

Proof. The existence statement is [Waterhouse 1969, Theorem 13]. Because d kills A(Fq), we see that
d/(1 −π) is an endomorphism of A which lies in the center of its endomorphism algebra by Lemma 5.4.
Because B has maximal endomorphism ring, End(B) contains the maximal order of the center of its
endomorphism algebra. In particular, d/(1−π) is an element of End(B), which implies that d kills B(Fq)

by another application of Lemma 5.4. □

We emphasize the fact that Lemma 5.4 and Proposition 5.5 apply to any abelian variety defined over a
finite field. In the rest of the section, we restrict our attention to the squarefree case.

For a positive integer N , we write rad(N ) for its radical; that is, if N =
∏s

j=1 ℓ
ej
j , then we define

rad(N ) =
∏s

j=1 ℓj . We say that N is the exponent of an abelian group G if N is the smallest positive
integer which annihilates G. The minimal possible exponent for a finite abelian group of order N
is rad(N ), which is achieved by the “least cyclic” group of order N . This notion is made precise by the
following definition.

Let g ≥1 be an integer, and let ℓ be prime. Consider a group H with ℓ-primary part Hℓ=
∏2g

j=1(Z/ℓ
ej Z),

where 0 ≤ e1 ≤ · · · ≤ e2g. The ℓ-Hodge polygon of H is the polygon with vertices
(
i,

∑2g−i
j=1 ej

)
;
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see [Rybakov 2010, Definition 1.1] for details and examples. We will use this notion when H is the group
of rational points of an abelian variety A, in which case g = dim(A). Note that the group (Z/ℓZ) f has
the highest ℓ-Hodge polygon among abelian groups of order ℓ f , while (Z/ℓ f Z) has the lowest.

Given a polynomial h(x)=
∑2g

i=1 ai x i
∈ Z[x] with a0 ̸= 0, the ℓ-Newton polygon of h is the boundary

of the lower convex hull of the points (i, ordℓ(ai )) for 0 ≤ i ≤ 2g. The following theorem of Rybakov
describes the groups of rational points occurring in squarefree isogeny classes by comparing Hodge
polygons and Newton polygons.

Theorem 5.6 [Rybakov 2010, Theorem 1.1]. Given a squarefree isogeny class Ih of abelian varieties
over Fq , a finite abelian group G of order h(1) occurs as the group of rational points of some abelian
variety A in Ih if and only if the ℓ-Hodge polygon of G lies on or below the ℓ-Newton polygon of h(1− t)
for all primes ℓ.

We exploit this theorem to characterize which squarefree isogeny classes are rich.

Theorem 5.7. Consider a squarefree isogeny class Ih of abelian varieties over Fq of dimension g. Let
K = Q[x]/(h) be the endomorphism algebra, and let π be the class of x. Write N = h(1) =

∏s
j=1 ℓ

ej
j

for the number of rational points on each abelian variety in Ih . The following are equivalent:

(a) Ih is rich; that is, every abelian group of order N arises as A(Fq) for some A ∈ Ih .

(b) There is an abelian variety A ∈ Ih whose group of rational points has exponent rad(N ); that is,

A(Fq)∼=

s∏
j=1

(
Z

ℓj Z

)ej
.

(c) The coefficients of the characteristic polynomial hrad(N )/(1−π)(x) are integers.

(d) For all 1 ≤ i ≤ 2g, we have
h(i)(1)

i !
· ℓ

i−e1
1 · · · ℓi−es

s ∈ Z.

If one of the equivalent conditions holds, then A(Fq) has exponent rad(N ) for every A in Ih with maximal
endomorphism ring.

Proof. Trivially, (a) implies (b). The reverse direction is a consequence of Theorem 5.6 because, among
abelian groups of order N , the group of exponent rad(N ) has the highest ℓ-Hodge polygon for every
prime ℓ. If A(Fq) has exponent rad(N ) for some A ∈ Ih , then rad(N )/(1 −π) is an element of End(A)
by Lemma 5.4. In particular, rad(N )/(1 − π) is an integral element, so its minimal polynomial has
integer coefficients. Since K = Q[π ], the characteristic and minimal polynomials hrad(N )/(1−π)(x) =

mrad(N )/(1−π)(x) coincide. It follows that (b) implies (c).
Conversely, assume that the minimal polynomial of rad(N )/(1 − π) has integer coefficients. Then

rad(N )/(1 −π) is contained in the maximal order OK of the endomorphism algebra K = Q[x]/(h). By
[Waterhouse 1969, Theorem 3.13], there is always at least one abelian variety A∈Ih whose endomorphism
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ring End(A) is the maximal order OK in K = End(A)⊗Z Q = Q(π). Therefore, by Lemma 5.4, A(Fq) is
killed by rad(N ), so (c) implies (b).

Recall that h(x) = hπ (x). Applying Lemma 5.2 with d = rad(N ), we see that the polynomial
hrad(N )/(1−π)(x) is in Z[x] if and only if

h(i)(1)
i !

rad(N )i

N
=

h(i)(1)
i !

· ℓ
i−e1
1 · · · ℓi−es

s ∈ Z

for i = 1, . . . , 2g. Hence parts (c) and (d) are also equivalent.
The final claim about varieties with maximal endomorphism ring follows after combining Proposition 5.5

and part (b). □

As an application of Theorem 5.7, we show the following.

Corollary 5.8. A squarefree isogeny class is rich if and only if its simple factors are rich.

Proof. Consider a squarefree isogeny class Ih over Fq whose abelian varieties have N rational points.
Let A be an abelian variety in Ih with maximal endomorphism ring. By Theorem 5.7, the isogeny
class Ih is rich if and only if the exponent of A(Fq) is a squarefree integer, namely rad(N ).

Because End(A) is maximal, End(A)∼=
∏r

j=1 OK j , where K j =Q[x]/(h j ) according to the factorization
h = h1 · · · hr into irreducible polynomials. Moreover, A ∼= A1 × · · ·× Ar , where each Aj is simple and
has maximal endomorphism ring End(Aj )∼= OK j . Observe that the exponent of A(Fq)∼=

∏r
j=1 Aj (Fq) is

the least common multiple of the exponents of Aj (Fq) for 1 ≤ j ≤ r . Therefore, the exponent of A(Fq) is
a squarefree integer if and only if the exponent of Aj (Fq) is a squarefree integer for all 1 ≤ j ≤ r . □

It is now straightforward to determine when a squarefree isogeny class is rich because Theorem 5.7 (d)
provides a criterion which only involves computing the derivatives of the characteristic polynomial.
Although Theorem 4.5 provides a criterion for cyclicity in terms of conductor ideals, it is faster to
use [Giangreco-Maidana 2019, Theorem 2.2], which only requires computing one derivative of the
characteristic polynomial. We exhibit some statistics over small finite fields in the following example.

Example 5.9. Let I sf(g, q) be the set of squarefree isogeny classes of dimension g over Fq , and let
R(g, q) and C (g, q) be the subsets containing the rich and cyclic isogeny classes, respectively. In Table 1,
we collect statistics concerning the cardinalities of these sets for small values of g and q .

An isogeny class is simultaneously rich and cyclic precisely when the properties are trivially satisfied,
namely when the number of rational points N = rad(N ) is squarefree. As a result, the intersection
R(g, q)∩C (g, q) can be considered the set of trivial examples. Asymptotically, the proportion of integers
which are squarefree is 6/π2

≈ 60%.

5.3. Groups with two generators. To conclude this section, we consider the existence of abelian varieties
whose groups of rational points are not cyclic, but are, locally, the product of only two cyclic factors. As
an application, we improve [Marseglia and Springer 2023, Theorem 3.3] in the case of ordinary abelian
varieties over F4.
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Fq g
R \ C C \ R R ∩ C I sf

\ (R ∪ C )

only rich only cyclic both neither

1 0% 20.0% 80.0% 0%
2 3.45% 17.2% 75.9% 3.45%

F2
3 8.66% 18.4% 66.0% 7.02%
4 10.5% 19.8% 61.0% 8.67%
5 10.7% 20.5% 58.6% 10.2%
6 10.0% 21.3% 58.5% 10.2%

1 14.3% 0% 85.8% 0%
2 23.6% 5.45% 67.2% 3.64%

F3 3 21.6% 8.38% 60.9% 9.17%
4 19.4% 9.31% 59.8% 11.5%
5 18.1% 9.83% 60.0% 12.1%

1 0% 28.6% 71.4% 0%

F4
2 11.9% 16.4% 61.2% 10.5%
3 13.1% 14.8% 60.1% 12.0%
4 12.9% 15.8% 60.3% 11.0%

1 11.1% 11.1% 66.6% 11.1%

F5
2 16.8% 9.25% 61.4% 12.6%
3 17.0% 10.4% 59.5% 13.1%
4 16.7% 10.4% 60.0% 12.9%

Table 1. For 2 ≤ q ≤ 5, we count the number of cyclic and rich squarefree isogeny classes of
small dimension g over Fq by applying [Giangreco-Maidana 2019, Theorem 2.2] and Theorem 5.7
to data in [LMFDB 2022]. See also [Dupuy et al. 2021].

Proposition 5.10. Let ℓ be a prime and 1 ≤ s1 ≤ s2. If q ≡ 1 mod ℓs1 is a prime power, then every
squarefree isogeny class Ih over Fq with ordℓ(h(1))= s1 + s2 contains an abelian variety A such that the
ℓ-primary part of the group of rational points is

A(Fq)ℓ ∼= (Z/ℓs1Z)× (Z/ℓs2Z).

Proof. The group (Z/ℓs1Z)× (Z/ℓs2Z) has ℓ-Hodge polygon defined by the points (0, s1 + s2), (1, s1),
and (2, 0). Therefore, using the notation h(1− x)=

∑2g
j=0 bj x j , it is enough show that ordℓ(b0)≥ s1 + s2

and ordℓ(b1)≥ s1 by Theorem 5.6. The first holds by hypothesis because b0 = h(1).
By the q-symmetry of h(x), we write

h(x)=

(g−1∑
j=1

a2g− j (x2g− j
+ qg− j x j )

)
+ agxg.

Because q ≡ 1 mod ℓs1 , we deduce that

2g − j + jqg− j
≡ g(1 + qg− j ) mod ℓs1 for all 0 ≤ j ≤ g − 1.
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Combined with the fact that the polynomial (1 − x) j has linear coefficient − j for any j ≥ 0, we observe

−b1 =

(g−1∑
j=1

a2g− j (2g − j + jqg− j )

)
+ gag ≡

(g−1∑
j=1

ga2g− j (1 + qg− j )

)
+ gag ≡ gh(1) mod ℓs1 .

Thus, ordℓ(b1)≥ s1 because ordℓ(h(1))= s1 + s2, and we are done. □

Corollary 5.11. Let q be an odd prime power. If I is a squarefree cyclic isogeny class over Fq , then its
point count is not divisible by 4.

Proof. If the point count is divisible by 4, then we apply Proposition 5.10 with ℓ= 2 and s1 = 1 to find a
noncyclic variety. □

Corollary 5.12. For every s ≥ 1, the group Z/3Z × Z/3sZ arises as the group of rational points of a
squarefree ordinary abelian variety over F4.

Proof. Apply Proposition 5.10 with ℓ= 3, q = 4, s1 = 1, and s2 = s. The existence of ordinary isogeny
classes with the desired number of points follows from Theorem 1.13 and Remark 1.16 in [van Bommel
et al. 2021]. □

For every N ≥ 1, there is an abelian variety A over F4 with A(F4)∼= (Z/NZ), and A can be taken to
be ordinary if and only if N ̸= 3. In particular, by taking products, this shows that every finite abelian
group arises as the group of rational points of an abelian variety over F4 which is not necessarily ordinary;
see [Marseglia and Springer 2023, Theorem 3.3]. Corollary 5.12 extends that result by proving that the
abelian variety can be taken to be ordinary in additional noncyclic cases. We record the improved theorem
here.

Theorem 5.13. Every finite abelian group G arises as the group of rational points G ∼= A(Fq) for an
abelian variety A over F4. Moreover, A can be taken to be ordinary, except possibly if G = (Z/3Z)n for
an odd integer n.

Proof. It is already established by [Marseglia and Springer 2023, Theorem 3.3] that every finite abelian
group occurs as the group of rational points of an abelian variety over F4, and that the abelian variety can
be taken to be ordinary except possibly when G takes the form (Z/3Z)n1 ×

∏
j>1(Z/3

j Z)n j , where n1 is
odd. Now consider one of the exceptional groups G where additionally ns ≥ 1 for some s > 1. There are
ordinary abelian varieties A1 and A2 over F4 whose groups of rational points are

A1(F4)∼= (Z/3Z)× (Z/3s)

and

A2(F4)∼= (Z/3Z)n1−1
× (Z/3s/Z)ns−1

×

∏
j /∈{1,s}

(Z/3 j Z)n j

by Corollary 5.12 and [Marseglia and Springer 2023, Theorem 3.3], respectively. Therefore, G ∼=

(A1 × A2)(F4), as desired. □
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6. Groups of rational points and categorical equivalences

In this section, we first present Theorem 6.2, which describes groups of rational points by deploying
a categorical equivalence between abelian varieties in certain squarefree isogeny classes and fractional
ideals in étale algebras. In such an isogeny class, we deduce in Proposition 6.5 that every abelian variety A
with endomorphism ring End(A)= S has the same group of rational points if S satisfies a certain local
condition. In Remark 6.6, we compare this result to Corollary 3.3.

Throughout this section we use the usual notation. We denote by Ih a squarefree isogeny class over Fq .
We set K = Q[x]/(h) and R = Z[π, π ], where π is the class of x in K .

Definition 6.1. We say that Ih satisfies

• Ord if Ih is ordinary,

• CS if q is prime.

Theorem 6.2. If Ih satisfies Ord (resp. CS) then there exists a covariant (resp. contravariant) equiva-
lence between Ih and the category of fractional R-ideals (with R-linear morphisms). Denote by F the
functor inducing the equivalence. Let A be an abelian variety in Ih , with dual variety A∨. Put F (A)= I ,
where I is a fractional R-ideal.

(a) We have F (A∨)= I t and End(A∨)= End(A).

(b) There is a Z-linear isomorphism

A(Fqn )∼=
I

(1−πn)I
for all n ≥ 1.

(c) There are Z-linear isomorphisms

A∨(Fqn )∼=
I t

(1 −πn)I t
∼=

I t

(1 −πn)I t
∼=

I
(1 −πn)I

∼=
I

(1 −πn)I
for all n ≥ 1.

Proof. The existence of the equivalence is given by [Deligne 1969] in the Ord case, and by [Centeleghe
and Stix 2015] in the CS case. Part (a) is [Marseglia 2021, Theorem 5.2] in the Ord case, and [Bergström
et al. 2023, Corollary 3.26] in the CS case. Part (b), for n = 1, is [Marseglia 2021, Corollary 4.7] for
both cases, but the proof is identical for n > 1. In the Ord case, the key ingredients are [Howe 1995,
Lemma 4.13 and Proposition 4.14], while the proof in the CS case uses a local argument.

For Part (c), observe that the first Z-linear isomorphism is the combination of Parts (a) and (b), while
the second and fourth are the application of complex conjugation. For the third isomorphism, we use
Lemma 2.8 to deduce

I t

(1 −πn)I t
∼=
(1 −πn)−1 I

I
∼=

I
(1 −πn)I

. □
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Remark 6.3. We emphasize that the hypotheses for Theorem 6.2 only impose conditions on the isogeny
class over the base field Fq . Observe that the property of being squarefree is not stable under base
extension, and the functor we invoke in the CS case requires the base field to be prime. Nevertheless, we
describe A(Fqn ) for all n ≥ 1 because A(Fqn )= ker(1 −πn) is the kernel of an isogeny defined over the
base field Fq .

Remark 6.4. For n = 1, the Z-linear isomorphisms in Theorem 6.2 are trivially R-linear. Indeed, for
part (b), since R is generated over Z by π and π = q/π , and I/(1 − π)I is annihilated by (1 − π),
R-linearity trivially follows from Z-linearity. The same applies for part (c).

Now we show that, in the Ord and CS cases, the group of rational points is uniquely determined by the
endomorphism ring under certain conditions.

Proposition 6.5. Let A be an abelian variety in a squarefree isogeny class Ih over Fq satisfying Ord
or CS. Write S = End(A). For each n ≥ 1, if typep(S)≤ 2 for every prime p of S above (1 −πn), then
the group of Fqn -rational points of A is uniquely determined by S. Specifically,

A(Fqn )∼=
S

(1−πn)S
are isomorphic as Z-modules.

Proof. The statement follows from Proposition 2.11 with Theorem 6.2. □

Remark 6.6. As noted in Section 2, an order S is Gorenstein at a prime p if and only if typep(S)= 1.
Hence Proposition 6.5 is a generalization of Corollary 3.3. As a trade-off, the isomorphism is Z-linear
rather than S-linear, and we need further hypotheses on the isogeny class.

In Proposition 6.5, it is important that the local type of the endomorphism ring is at most 2 at primes
above 1 −πn . Indeed, in Example 6.7, we produce abelian varieties with the same endomorphism ring of
(local) type 3 but nonisomorphic groups of points.

Example 6.7. The polynomial

h = x4
+ 6x2

+ 25 = (x2
− 2x + 5)(x2

+ 2x + 5)

defines an isogeny class Ih of ordinary abelian surfaces over F5, which has LMFDB label 2.5.a_g.
Consider the order S = Z+2OK . This is the unique overorder of R with [OK : S] = [S : R] = 8. Moreover,
S is the unique overorder of R with a prime p with typep(S)= 3. This prime is p = 2OK , which is also
the conductor of S in OK .

Using Theorem 6.2 and algorithms from [Marseglia 2020], we compute that there are 5 isomorphism
classes of abelian varieties with endomorphism ring S, represented by fractional ideals S, I , I t , J , and St .
One has J ∼= J t . Let AS , AI , AI t , AJ , and ASt be the corresponding abelian varieties, respectively; see
Theorem 6.2. We have

AS(F5)∼= ASt (F5)∼= AJ (F5)∼=
Z

2Z
×

Z

2Z
×

Z

8Z
and AI (F5)∼= AI t (F5)∼=

Z

4Z
×

Z

8Z
.

http://www.lmfdb.org/Variety/Abelian/Fq/2/5/a_g
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7. The dual abelian variety

In this section, we study the relationship between an abelian variety and its dual. We use the categorical
equivalences presented in Theorem 6.2 which builds a bridge between abelian varieties and fractional ideals.
In the first part, we will prove that we have an isomorphism A(Fq)∼= A∨(Fq) under certain conditions
on the endomorphism ring End(A) and the fractional ideal associated to A. Clearly, A(Fq) ∼= A∨(Fq)

whenever A is the Jacobian of a curve or, more generally, a principally polarizable abelian variety. In fact,
the implication only uses that A is a self-dual abelian variety, that is, A ∼= A∨.

In the second part of the section, we investigate when an abelian variety fails to be self-dual. In
particular, we prove that A is not self-dual if its endomorphism ring End(A) satisfies a certain local
condition. To conclude, we provide a sequence of examples comparing various properties implying and
implied by self-duality.

In this section, we use the same notation as Section 6. Specifically, we denote by Ih a squarefree
isogeny class over Fq . We set K = Q[x]/(h) and R = Z[π, π ], where π is the class of x in K .

7.1. The group of points of the dual abelian variety. In Proposition 7.1, building on results proven
previously, we give a list of conditions that guarantee the existence of an isomorphism A(Fqn )∼= A∨(Fqn ).
In Example 7.2, we exhibit a geometrically simple ordinary abelian variety A with A(Fq)≇ A∨(Fq). In
Example 7.3, we show that squarefree ordinary examples over Fq always exist in small dimensions for small
finite fields Fq . In [Rybakov 2014, Example 4.2], a nonsimple abelian surface A with A(Fq)≇ A∨(Fq) is
produced using a different method.

Proposition 7.1. Let A be in Ih , and put S = End(A). Fix n ≥ 1. If one of the following assumptions
holds, then A(Fqn )∼= A∨(Fqn ):

(a) S = S and S is Gorenstein at p for every prime p of S above (1 −πn).

(b) Ih satisfies Ord or CS, S = S, and typep(S)≤ 2 for every prime p of S above (1 −πn).

(c) Ih satisfies Ord or CS, and one of the following holds, where F (A)= I :

• For every prime p of R above (1 −πn), we have an R-linear isomorphism Ip ∼= (I )p.
• For every prime p of R above (1 −πn), we have an R-linear isomorphism Ip ∼= (I t)p.

Proof. Part (a) follows from Corollary 3.3 because End(A∨) = S = S. Part (b) follows similarly from
Proposition 6.5. By Theorem 6.2, we have Z-linear isomorphisms

A(Fqn )∼= I ⊗R
R

(1−πn)R
and A∨(Fqn )∼= I ⊗R

R
(1−πn)R

∼= I t
⊗R

R
(1−πn)R

.

Combined with Lemma 2.4, this proves Part (c). □

Example 7.2. Consider the isogeny class Ih of ordinary abelian surfaces over F4 determined by the
polynomial h = x4

+ 2x3
+ x2

+ 8x + 16. According to [LMFDB 2022], this isogeny class, which has
label 2.4.c_b, is geometrically simple and contains a Jacobian. Let OK be the maximal order of K . We
have 2OK = p2p̄2, where p is a prime of OK . Consider the order S = R +p2. It turns out that R has three

http://www.lmfdb.org/Variety/Abelian/Fq/2/4/c_b
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overorders, namely, S, S, and OK , and all of these orders are Gorenstein. Using Theorem 6.2, there is an
abelian variety A with End(A)= S; hence End(A∨)= S. Using Corollary 3.3, one computes that A(F4)

and A∨(F4) are not isomorphic. Indeed, they are

Z

28Z
and

Z

2Z
×

Z

14Z
.

Example 7.3. Consider the following set of pairs of positive integers (g, q):

{(2, q) : 2 ≤ q ≤ 128 is a prime power} ∪ {(3, q) : 2 ≤ q ≤ 9 is a prime power}

∪ {(3, 16), (3, 25)} ∪ {(4, q) : q ∈ {2, 3, 4}} ∪ {(5, 2)}.

For each pair (g, q) in the set above, there is a squarefree ordinary abelian variety A of dimension g
over Fq satisfying

A(Fq)≇ A∨(Fq).

7.2. Self-duality. Recall the following well-known theorem.

Theorem 7.4. If A is an abelian variety over Fq , then each statement below implies the next:

(a) A is a Jacobian variety.

(b) A is a principally polarizable abelian variety.

(c) A ∼= A∨ is self-dual.

(d) A(Fq)∼= A∨(Fq) are isomorphic groups.

When A is squarefree, the following item (d′) is also implied by self-duality (c):

(d′) End(A)= End(A) is stable under complex conjugation.

We already observed in Example 7.2 that properties (d) and (d′) do not always hold. Now we show
that there are counterexamples to all of the reverse implications in Theorem 7.4. For (b) ⇏ (a), see
Example 7.5, and for (c) ⇏ (b), see Example 7.6. In Example 7.8, we show that (d) and (d′) combined
do not imply (c). Moreover, in Example 7.9, we show that (d) ⇏ (d′), which is another exhibition that
(d′) ⇏ (c). Note that we have the implication (d′) ⇒ (d) under certain hypotheses; see Proposition 7.1.

The following example is well known, but we record it for completeness.

Example 7.5 (principally polarizable but not Jacobian). It is easy to find principally polarizable varieties
which are not Jacobians. For example, there are currently 30,079 geometrically simple ordinary isogeny
classes in the LMFDB which contain a principally polarizable abelian variety but no Jacobian varieties
[LMFDB 2022].

Example 7.6 (self-dual but not principally polarizable). If Ih is a simple ordinary isogeny class, then
the class number of the field K = Q[x]/(h) is equal to the number of abelian varieties in Ih whose
endomorphism ring is maximal; see [Waterhouse 1969, Theorem 6.2]. In particular, if K has class
number 1, then any abelian variety A in Ih whose endomorphism ring is End(A)= OK must be self-dual.



Abelian varieties over finite fields and their groups of rational points 547

It is easy to find isogeny classes satisfying this property which do not contain any principally polarizable
abelian varieties by using [Howe 1995, Theorem 1.3], for example. See the LMFDB isogeny class
2.2.ab_ab for a concrete ordinary example, or 4.2.ad_c_f_an for one which is also geometrically simple.

One way to find examples of abelian varieties which are not self-dual is to first use the categorical
equivalence in Theorem 6.2 to compute all isomorphism classes, and then use Theorem 6.2 (a) to determine
which classes are self-dual. Alternatively, one may use the following proposition which only requires
inspecting the local properties of orders in the endomorphism algebra. The latter technique easily finds
Example 7.8.

Proposition 7.7. Let A be any abelian variety in Ih satisfying Ord or CS, let S be an order in K such that
S = S, and let p be a prime of S such that typep(S)= 2 and p = p̄. If S ⊆ End(A) and Sp = End(A)p,
then A is not self-dual. In particular, such an A is not principally polarizable and cannot be a Jacobian.

Proof. This follows from Proposition 2.12 and Theorem 6.2 (a). □

Example 7.8 (same endomorphism ring but not self-dual). We go back to the isogeny class Ih from
Example 6.7. One computes that R has a unique minimal overorder T and [T : R] = 2. Such an order
is then necessarily stable under complex conjugation; that is, T = T . Also, T has a unique prime q

above 2 which also then satisfies q = q̄. This prime is the unique noninvertible prime of T , and we have
typeq(T )= 2. Recall that abelian varieties in Ih with endomorphism ring T exist by Theorem 6.2. By
Proposition 6.5, every abelian variety with endomorphism ring T has group of rational points isomorphic
to T/(1 −π)T . On the other hand, by Proposition 7.7, we see that A ≇ A∨ for every abelian variety A
with endomorphism ring T .

We observe that the non-self-dual abelian variety A found in Example 7.8 also satisfies A(F5)∼= A∨(F5),
thereby exhibiting (d) ⇏ (c) in Theorem 7.4. This is also exhibited in the following example, which
additionally proves (d) ⇏ (d′) in the same theorem.

Example 7.9 (isomorphic groups but different endomorphism ring). Consider the ordinary isogeny
class Ih of abelian surfaces defined over F3 determined by the polynomial

h = x4
− x3

+ 4x2
− 3x + 9 = (x2

− 2x + 3)(x2
+ x + 3).

The order R = Z[π, π ] has index [OK : R] = 9 in the maximal order OK of K . Since h(1) = 10 is
coprime with the conductor (R : OK ), we deduce that Ih is cyclic by Theorem 4.5. Moreover, since 10 is
a squarefree integer, we get that Ih is also trivially rich; see Theorem 5.7.

We observe that R has exactly two primes above the singular rational prime 3. These two primes are
complex conjugates to each other, and we denote them by p and p̄. There are only two orders between R
and OK , both with index 3. These can be realized as the multiplicator rings S = (p : p) and S = (p̄ : p̄). By
Theorem 6.2, we conclude that there is an abelian variety A in Ih such that End(A)= S and End(A∨)= S
are not equal, but A(F3)∼= A∨(F3)∼= Z/10Z.

http://www.lmfdb.org/Variety/Abelian/Fq/2/2/ab_ab
http://www.lmfdb.org/Variety/Abelian/Fq/4/2/ad_c_f_an
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Algebraic cycles and functorial lifts from G2 to PGSp6
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We study instances of Beilinson–Tate conjectures for automorphic representations of PGSp6 whose spin
L-function has a pole at s = 1. We construct algebraic cycles of codimension 3 in the Siegel–Shimura
variety of dimension 6 and we relate its regulator to the residue at s = 1 of the L-function of certain
cuspidal forms of PGSp6. Using the exceptional theta correspondence between the split group of type G2

and PGSp6 and assuming the nonvanishing of a certain archimedean integral, this allows us to confirm a
conjecture of Gross and Savin on rank-7 motives of type G2.
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1. Introduction

We establish a connection between algebraic cycles in Siegel sixfolds and the residue at s = 1 of spin
L-functions of automorphic representations of GSp6, as predicted by conjectures of Beilinson and Tate.
Moreover, we exploit an exceptional theta correspondence between the split group of type G2 and PGSp6

to answer a question of Gross and Savin.
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1.1. Motivation. Let π =π∞⊗π f be a cohomological cuspidal automorphic representation of PGSp6(A),
let M(π f ) denote the spin Chow motive with coefficients in a number field L conjecturally attached to π
and let L(s,M(π f )(3)) be its Hasse–Weil L-function. Let

rH : H 1
M(M(π f )(4))⊕ N (M(π f )(3))→ H 1

H(M(π f )(4))

denote Beilinson–Deligne regulator. Here H 1
M(M(π f )(4)) denotes the first motivic cohomology group

of M(π f )(4), the group N (M(π f )(3)) denotes algebraic cycles in M(π f )(3) up to homological equiva-
lence and H 1

H(M(π f )(4)) denotes the first absolute Hodge cohomology group of M(π f )(4).

Conjecture 1.1 (Beilinson–Tate). (1) The map rH induces an isomorphism

(H 1
M(M(π f )(4))⊕ N (M(π f )(3)))⊗Q R → H 1

H(M(π f )(4)).

(2) ords=0L(s,M(π f )(3))= dimL H 1
M(M(π f )(4)).

(3) −ords=1L(s,M(π f )(3))= dimL N (M(π f )(3)).

(4) det(Im rH)= L∗(1,M(π f )(3))D(M(π f )(4)), where D(M(π f )(4)) denotes the Deligne L-structure
of det(H 1

H(M(π f )(4)).

In [Burgos Gil et al. 2024], we studied the contribution of the motivic cohomology to this conjecture.
This corresponds to the case where L(s,M(π f )(3)) does not have a pole at s = 1. In this article, we
focus on the contribution of algebraic cycles, which corresponds to the case where L(s,M(π f )(3)) has a
simple pole at s = 1.

The ℓ-adic étale realization Mℓ(π f ) of M(π f ) is expected to be a GL8(Qℓ)-valued Galois representation
factoring through the spin representation Spin : Spin7(Qℓ)→ GL8(Qℓ). If L(s,M(π f )(3)) has a pole
at s = 1, Conjecture 1.1(3) implies the existence of an invariant vector in this eight-dimensional Galois
representation. As the stabilizer in Spin7(Qℓ) of a generic vector in the spin representation is the
exceptional group G2(Qℓ), by Langlands reciprocity principle, π should be a functorial lift from a
group G of type G2. In fact, we have Spin|G2

= Std ⊕ 1, where Std denotes the standard representation
of G2 and 1 denotes the trivial representation. Then, if σ is a cuspidal automorphic representation of G(A)
lifting to π , Gross and Savin [1998] conjectured that the motive M(π f ) decomposes as the direct sum
of the rank-7 motive M(σ f ) attached to σ and the rank-1 trivial motive generated by the class given in
Conjecture 1.1. Moreover, inspired by local calculations, they conjectured that this class should arise
from a Hilbert modular threefold.

1.2. Main results. Let F denote a real étale quadratic Q-algebra, i.e., F is either a quadratic extension
of Q or Q × Q. Associated to the totally real étale cubic algebra E = Q × F of Q there is a Hilbert
modular threefold ShH /Q, with underlying reductive group H = {g ∈ ResE/QGL2,E | det(g) ∈ Gm}.
The group H embeds naturally into G = GSp6 and one has a closed embedding ι : ShH ↪→ ShG of
codimension 3 in the Shimura variety attached to G, which is the Siegel variety of dimension 6. Let V λ

be the irreducible algebraic representation of G of highest weight λ= (λ1, λ2, λ3, c) (see Section 2 for
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notation on algebraic representations). The representation V λ contains the trivial H-representation if
and only if c = 0 and λ1 = λ2 + λ3. When this holds ι∗V λ contains λ2 − λ3 + 1 copies of the trivial
representation of H, which we index by the values λ2 ≥ µ ≥ λ3. Then, for any such µ, the cycle ShH

of ShG induces a class

Z [λ,µ]

H,M ∈ H 6
M(ShG,V

λ
M(3)),

where V λ
M is the Chow local system associated to V λ and H 6

M(ShG,V
λ
M(3)) is the motivic cohomology

group of ShG with coefficients in V λ
M(3). We denote by Z [λ,µ]

H,H ∈ H 7
H(ShG,V

λ
H(4)) (resp. Z [λ,µ]

H,B ∈

H 6
B(ShG,V

λ
B (3))) the image of Z [λ,µ]

H,M in absolute Hodge cohomology, (resp. Betti cohomology) (see
Definition 3.11 for the precise definition of Z [λ,µ]

H,H ). Let π be a cuspidal automorphic representation of
PGSp6(A) whose archimedean component belongs to the discrete series L-packet of V λ and has Hodge
type (3, 3). For a cusp form 9 =9∞ ⊗9 f in the space of π , whose archimedean component 9∞ is a
highest weight vector in the minimal K -type of π∞, we have a vector valued harmonic differential form
ω9 whose cohomology class [ω9] is an element of H 6

dR,c(ShG,V
λ

dR). Poincaré duality induces maps

⟨ ·, [ω9]⟩B : H 6
B(ShG,V

λ
B (3))→ C,

⟨ ·, [ω9]⟩H : H 7
H(ShG,V

λ
H(4))→ C.

The pairings ⟨Z [λ,µ]

H,B , [ω9]⟩B and ⟨Z [λ,µ]

H,H , [ω9]⟩H are computed in terms of the residue of a certain adelic
integral of Rankin–Selberg type considered in [Pollack and Shah 2018]. Therein it is shown that, if π
supports certain Fourier coefficients associated to F, then the local factors at unramified places v of this
integral represent the degree 8 local spin L-function L(s, πv,Spin) of πv. The following result gives
evidence for Conjecture 1.1 for the motive associated to π .

Theorem 1.2 (Theorem 5.11). Let π = π∞ ⊗π f be a cuspidal automorphic representation of PGSp6(A)

such that π∞ is a discrete series of Hodge type (3, 3) in the discrete series L-packet of V λ. Then

⟨Z [λ,µ]

H,B , [ω9]⟩B = ⟨Z [λ,µ]

H,H , [ω9]⟩H = C · Ress=1(IS(8,9
[λ,µ], s)L S(s, π,Spin)),

where C is an explicit nonzero constant independent of π , S is a sufficiently large set of places containing
the ramified and archimedean places, 9[λ,µ]

= A[λ,µ]
· 9 for some weight lowering operator A[λ,µ]

defined in Proposition 4.8, 8 is a Schwartz–Bruhat function and IS(8,9
[λ,µ], s) is the integral defined

in Theorem 5.8.

Remark 1.3. We point out that, according to [Gan and Gurevich 2009, Proposition 12.1] there exist a
Schwartz–Bruhat function 8 and a vector 9 ∈ π such that IS(8,9, 1) is nonzero. However we do not
know if this holds for 9∞ in the minimal K -type of π∞. Moreover, one can show that there exists a cusp
form 9̃ ∈ π , which coincides with 9 at the archimedean place and away from S, such that

IS(8, 9̃
[λ,µ], s)= I∞(8∞, 9

[λ,µ]

∞
, s).
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Although we have not been able to calculate it, we expect that for a natural choice of 8∞ the archimedean
integral I∞(8∞, 9

[λ,µ]

∞ , s) is the Gamma factor of the spin motive attached to π by the rule of Serre,
and hence holomorphic and nonzero at s = 1.

As a corollary of this theorem, one can deduce, under the additional assumption that π is the Steinberg
representation at a finite place, a weak version of Conjecture 1.1(1) (Corollary 5.15) and Conjecture 1.1(3)
(Corollary 5.14).

When Ress=1L S(s, π,Spin) is nonzero then (see [Gan and Savin 2020, Theorem 1.1]) π is a weak
functorial lift of a cuspidal automorphic representation σ of an exceptional group of type G2. Moreover
(see Proposition 8.1), we have

Ress=1L S(s, π,Spin)= L S(1, σ,Std)Ress=1ζ
S(s).

Hence, up to controlling the value of the archimedean integral at s = 1, Theorem 1.2 above gives a
cohomological formula for the critical value L S(1, σ,Std).

Our second main result concerns the program of Gross and Savin on rank-7 motives of Galois
type G2. The first step towards the conjecture of Gross and Savin was made in [Kret and Shin 2023],
where the authors constructed GSpin-valued Galois representations associated to cohomological cuspidal
automorphic forms of symplectic groups. Moreover, based on the calculations of [Gross and Savin 1998],
Kret and Shin [2023, Theorem 11.1] verified that, for suitable automorphic representations of PGSp6(A)

in the image of the exceptional theta correspondence from the compact form Gc
2 of type G2, the image

of their Galois representation lies actually in G2(Qℓ). More precisely, let ρπ be the Spin7(Qℓ)-valued
Galois representation attached to π . Assuming that π is a nontrivial small theta lift of σ , we have

Spin ◦ ρπ = Std ◦ ρσ ⊕ 1, (1)

where Std ◦ ρσ is the standard Galois representation attached to σ and 1 denotes the one-dimensional
trivial representation.

Remark 1.4. Technically speaking, only the dual pair (Gc
2,PGSp6) is considered in [Gross and Savin

1998], but their conjecture also applies to the dual pair (G2,PGSp6). Using the results of [Kret and Shin
2023] and the study of the exceptional theta correspondence for (G2,PGSp6) (see Theorem 1.8 below),
we construct (Theorem 8.3), under some assumptions, Galois representations associated to cohomological
cuspidal automorphic representations σ of G2(A), which sit in a decomposition as that of (1).

Theorem 1.5 (Theorem 8.6). Let σ be an irreducible cuspidal automorphic representation of Gc
2(A)

or G2(A) such that the big theta lift 2(σ) to PGSp6(A) has an irreducible subquotient π =
⊗

′

v πv,
which is a cuspidal automorphic representation such that π∞ is cohomological for V as above and πp

is the Steinberg representation for some prime number p. Assume that the integral IS(8,9
[λ,µ], 1) is

nonzero for some 8 and 9[λ,µ] as above. Then, the trivial representation 1 in (1) is generated by the étale
realization of Z [λ,µ]

H,M.
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Remark 1.6. Note that the archimedean part π∞ of π is not necessarily of Hodge type (3, 3). However,
it is one of the main results of [Kret and Shin 2023] that the L-packet of π is stable at infinity. In
particular, there exists a cuspidal automorphic representation π3,3

= π3,3
∞

⊗π f whose archimedean part
is cohomological and of Hodge type (3, 3) and whose nonarchimedean part is equivalent to π f . In the
integral appearing in the statement of Theorem 1.2, the archimedean part of the cusp form 9[λ,µ] is a
suitable vector in the minimal K -type of π3,3

∞
.

Remark 1.7. In Proposition 8.4 we give a list of cases where σ is known to have a small theta lift π =⊗
′

v πv of σ to PGSp6(A) which is a cuspidal automorphic representation such that π∞ is cohomological
for V as above and πp is the Steinberg representation for some prime number p, as in the previous theorem.

We conclude this introduction explaining a result which provides cases where Theorem 1.5 can
be applied and which has its own interest. Indeed, note that a necessary condition for the integral
IS(8,9

[λ,µ], 1) to be nonzero, is that π supports a rank-2 Fourier coefficient associated to F. By a result
of Gan [2005, Theorem 3.1], every cuspidal automorphic representation σ of G2(A) supports a Fourier
coefficient associated to an étale cubic algebra E .

Theorem 1.8 (Theorem 7.2, Proposition 7.13). Let σ be a cuspidal automorphic representation of G2(A).
Assume that

• σ is not globally generic;

• σp is generic at some finite place p.

Then the big theta lift 2(σ) is cuspidal. Moreover 2(σ) supports a rank-2 Fourier coefficient associated
to F (and is in particular nonzero) if and only if σ supports a Fourier coefficient associated to Q × F.

1.3. Overview of the proofs. The main difficulty for calculating the pairing of Theorem 1.2 between
the motivic class and the cohomology class [ω9] resides on the fact that the first class is constructed
from the decomposition into irreducible components of the restriction of V to the subgroup H, while
the test vector is constructed from its restriction to the maximal compact subgroup U(3) of G(R). One
needs to carefully study the relationship between these two different decompositions (Theorem 4.2). As a
consequence we get a formula for the pairing in terms of a period integral (Propositions 4.8 and 4.10).
These adelic integrals are in turn related to the residue of the partial spin L-function of π by means
of the work of Pollack and Shah (Proposition 5.10), which allows to conclude the proof. Theorem 1.5
follows basically from Theorem 1.2 and 1.8. The proof of Theorem 1.8 goes as follows. We first prove
(Theorem 7.2 and Corollary 7.3) that σ lifts to a cuspidal representation using the tower of exceptional
correspondences for G2 studied in [Ginzburg et al. 1997b], which reduces the problem to the vanishing of
certain automorphic period integrals. Finally, we establish (Proposition 7.13) a correspondence between
Fourier coefficients of σ and its theta lift, which in particular implies the nonvanishing of the latter.

1.4. Structure of the manuscript. In Section 2 we fix notation, conventions, and basic results that will
be useful in the body of the article. In particular, we prove that, under some mild assumptions, the
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localization at a maximal ideal of the Hecke algebra of the cohomology of the Siegel sixfold is cuspidal
and concentrated in the middle degree. We also introduce Absolute Hodge cohomology and compute the
dimension of its π f -isotypical component. In Section 3 we explain the construction of the motivic class
Z [λ,µ]

M and its realizations. In Section 4 we construct the harmonic differential form ω9 associated to a
suitable cuspidal form 9 in the space of π and we prove our first main result concerning the calculation of
the pairing between the motivic class and the cohomology class [ω9]. In Section 5, we use the results of
Pollack and Shah to relate the pairing to the residue of the spin L-function. Sections 6 and 7 are devoted
to the study of the exceptional theta correspondence between G2 and PGSp6 and contain the proof of
Theorem 1.8. Finally, in Section 8 we relate the pairing to a critical value of the standard L-function of
G2. We also deduce from the work of Kret and Shin the existence of Galois representations attached to
certain cuspidal representations of G2 and we conclude with a proof of Theorem 1.5.

2. Preliminaries

2.1. Algebraic groups and algebraic representations. Let ψ denote an antisymmetric nondegenerate
bilinear form on a finite-dimensional Q-vector space V. The symplectic group GSp(V, ψ) is the Q-group
scheme defined by

GSp(V, ψ)= {g ∈ GL(V ) | ∀v,w ∈ V, ψ(gv, gw)= ν(g)ψ(v,w), ν(g) ∈ Gm}.

Then ν : GSp(V, ψ)→ Gm is a character. Let In denote the identity matrix of size n. When V is the
Q-vector space Q2n endowed with the bilinear form whose matrix is J =

( 0
−In

In
0

)
, we let GSp2n denote

GSp(Q2n, J ) and we let Sp2n denote ker ν. In this paper, we are mainly interested in the case n = 3.
Hence we will denote by G the group GSp6 and by G0 the group Sp6. Let T ⊂ G denote the maximal
diagonal torus and B ⊂ G denote the standard Borel. We have

T = {diag(α1, α2, α3, α
−1
1 ν, α−1

2 ν, α−1
3 ν), α1, α2, α3, ν ∈ Gm}.

We associate to any 4-tuple (λ1, λ2, λ3, c)∈ Z4 such that c ≡ λ1 +λ2 +λ3 (mod 2) the algebraic character
λ(λ1, λ2, λ3, c) of T defined by

λ(λ1, λ2, λ3, c) : diag(α1, α2, α3, α
−1
1 ν, α−1

2 ν, α−1
3 ν) 7→ α

λ1
1 α

λ2
2 α

λ3
3 ν

1
2 (c−λ1−λ2−λ3).

This defines an isomorphism between the group of 4-tuples

(λ1, λ2, λ3, c) ∈ Z4 such that c ≡ λ1 + λ2 + λ3 (mod 2)

and the group of algebraic characters of T. Let ρ1 = λ(1,−1, 0, 0) and ρ2 = λ(0, 1,−1, 0) denote the
short simple roots and let ρ3 = λ(0, 0, 2, 0) denote the long simple root. The set of roots of T in G is
R = R+

∪ R−, where

R+
= {ρ1, ρ2, ρ1 + ρ2, ρ2 + ρ3, ρ1 + ρ2 + ρ3, ρ1 + 2ρ2 + ρ3, 2ρ1 + 2ρ2 + ρ3, 2ρ2 + ρ3, ρ3}

is the set of positive roots with respect to B and R−
= −R+. A weight λ= λ(λ1, λ2, λ3, c) is dominant

for B if λ1 ≥ λ2 ≥ λ3 ≥ 0. For any such λ, there exists a unique (up to isomorphism) irreducible
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algebraic representation V λ of G of highest weight λ and every irreducible algebraic representation of G
is obtained in this way (up to isomorphism). Similarly, irreducible algebraic representations of GSp4

are classified by their highest weight which is a character of the shape λ(λ1, λ2, c) with λ1 ≥ λ2 ≥ 0
and λ1 + λ2 ≡ c (mod 2) (see for example [Lemma 2017, §2.3] for more details). We will also use the
classification of irreducible algebraic representations of the groups G0 = Sp6 and Sp4. To this end let us
recall that the diagonal maximal torus T0 = T ∩ G0 of G0 is

T0 = {diag(α1, α2, α3, α
−1
1 , α−1

2 , α−1
3 ), α1, α2, α3 ∈ Gm}

and that its group of algebraic characters is isomorphic to Z3 via (λ1, λ2, λ3) 7→ λ(λ1, λ2, λ3), where

λ(λ1, λ2, λ3) : diag(α1, α2, α3, α
−1
1 , α−1

2 , α−1
3 ) 7→ α

λ1
1 α

λ2
2 α

λ3
3 . (2)

A weight λ=λ(λ1, λ2, λ3) is dominant with respect to the standard Borel B0 = B ∩ G0 if λ1 ≥λ2 ≥λ3 ≥ 0
and for any such λ there exists a unique (up to isomorphism) irreducible algebraic representation V λ of G0

of highest weight λ and every irreducible algebraic representation of G0 is obtained in this way (up to
isomorphism). Similarly, irreducible algebraic representations of Sp4 are classified by characters λ(λ1, λ2)

with λ1 ≥ λ2, with obvious notation.

2.2. Compact Lie groups and representations. Let U(n)= {g ∈ GLn(C) |
t gg = In} denote the unitary

group and let K∞ ⊂ G0(R) be the subgroup defined as

K∞ =
{( A

−B
B
A

) ∣∣ AAt
+ B B t

= 1, AB t
= B At}.

We have an isomorphism κ : U(3)≃ K∞ defined by A+ i B 7→
( A

−B
B
A

)
. In fact K∞ is a maximal compact

subgroup of G0(R). Let T∞ ⊂ K∞ denote {κ(diag(z1, z2, z3)), z1, z2, z3 ∈ U(1)}. Then T∞ is Cartan sub-
group of K∞. Its group of algebraic characters is isomorphic to Z3 via (λ1, λ2, λ3) 7→λ′(λ1, λ2, λ3), where

λ′(λ1, λ2, λ3) : κ(diag(z1, z2, z3)) 7→ zλ1
1 zλ2

2 zλ3
3 .

An algebraic character is dominant if λ1 ≥ λ2 ≥ λ3. For any dominant integral weight λ′, there exists a
unique (up to isomorphism) irreducible representation τλ′ of K∞ in a finite-dimensional C-vector space
and every irreducible representation of K∞ is obtained in this way (up to isomorphism). In what follows,
we will simply denote the irreducible representation of highest weight λ′(λ1, λ2, λ3) by τ(λ1,λ2,λ3). Let
us explain the connection between the weights λ of T0 defined by (2) in the previous section and the
weights λ′ defined above. Let J ∈ G0(C) denote the matrix J =

1
√

2

( I3
i I3

i I3
I3

)
. Then we have

J−1κ(diag(z1, z2, z3))J = diag(z1, z2, z3)

and so, for any (λ1, λ2, λ3) ∈ Z3, we have

λ(λ1, λ2, λ3)(J−1κ(z1, z2, z3)J )= λ′(λ1, λ2, λ3)(diag(z1, z2, z3)).

In brief, the character λ′(λ1, λ2, λ3) of T∞ is conjugated to the restriction of λ(λ1, λ2, λ3) to U(1)3 ⊂

C×
× C×

× C×
= T0(C).
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2.3. Lie algebras. Let g0 (resp. k) denote the Lie algebra of G0(R) (resp. K∞) and let g0,C (resp. kC)
denote its complexification. Then

g0 =
{( A

C
B
D

)
∈ M6(R) | B = B t ,C = C t , A = −Dt},

k =
{( A

−B
B
A

)
∈ M6(R) | A = −At , B = B t}.

The Lie algebra k is the 1-eigenspace for the Cartan involution θ(X) = −X t. The (−1)-eigenspace is
p =

{( A
B

B
−A

)
∈ M6(R) | A = At , B = B t

}
. Letting

p±

C
=
{( A

±i A
±i A
−A

)
∈ M6(C) | A = At},

we have pC = p+

C
⊕ p−

C
and one has the Cartan decomposition

g0,C = kC ⊕ p+

C
⊕ p−

C
.

For 1 ≤ j ≤ 3, let D j ∈ M3(C) be the matrix with entry 1 at position ( j, j) and 0 elsewhere. Define
T j =

( 0
−D j

D j
0

)
. Then the Lie algebra h of T∞ is h = R · T1 ⊕ R · T2 ⊕ R · T3. This is a compact Cartan

subalgebra of g0. Let (e1, e2, e3) denote the basis of h∗

C
dual to (−iT1,−iT2,−iT3). A system of positive

roots for (g0,C, hC) is then given by

{e1 ± e2, e1 ± e3, e2 ± e3, 2e1, 2e2, 2e3}.

The simple roots are e1 −e2, e2 −e3 and 2e3. We note that p+

C
is spanned by the root spaces corresponding

to the positive roots of type 2e j and e j + ek . We denote by 1= {±2e j ,±(e j ± ek)} the set of all roots,
1c = {±(e j − ek)} the set of compact roots and 1nc =1−1c the noncompact roots. Finally, we denote
by 1+,1+

c and 1+
nc the set of positive, positive compact and positive noncompact roots, respectively.

2.4. Weyl groups. Recall that the Weyl group of G0 is given by WG0 = {±1}
3 ⋊S3. The reflection σ j

in the hyperplane orthogonal to 2e j simply reverses the sign of e j while leaving the other ek fixed. The
reflection σ jk in the hyperplane orthogonal to e j − ek exchanges e j and ek and leaves the remaining eℓ
fixed. The Weyl group WK∞

of K∞
∼= U (3) is isomorphic to S3 and, via the embedding into G, identifies

with the subgroup of WG0 generated by the σ jk . With the identification WG0 = N (T0)/Z(T0), an explicit
description of WG0 and WK∞

is given as follows. The matrices corresponding to the reflections σ jk

are
( S jk

0
0

−S jk

)
, where S jk is the matrix with entry 1 at places (ℓ, ℓ), ℓ ̸= j, k, (k, j) and ( j, k) and zeroes

elsewhere. The matrices corresponding to the reflection σ j in the hyperplane orthogonal to 2e j are of the
form

( 0
−U j

U j
0

)
, where Uj denotes the diagonal matrix with −1 at the place ( j, j) and ones at the other

entries of the diagonal. This gives an explicit description of the elements of WK∞
and their length:

WK∞
= {1, σ12, σ13, σ23, σ12σ13, σ12σ23}

ℓ(•)
−−→ {0, 1, 1, 1, 2, 2}.

2.5. Discrete series. We recall standard facts on discrete series for G0(R)= Sp6(R) and for PGSp6(R).
For any nonsingular weight 3 define

1+(3) := {α ∈1 | ⟨α,3⟩> 0}, 1+

c (3)=1+(3)∩1c,
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where ⟨ , ⟩ is the standard scalar product on R3. Let λ = (λ1, λ2, λ3) be a weight of T∞ such that
λ1 ≥λ2 ≥λ3 ≥0 and let ρ=

1
2

∑
α∈1+ α= (3, 2, 1). As |WG0/WK∞

|=8, by [Knapp 1986, Theorem 9.20],
the set of equivalence classes of irreducible discrete series representations of G0(R) with Harish-Chandra
parameter λ+ρ contains 8 elements. More precisely, choose representatives {w1, . . . , w8} of WG0/WK∞

of increasing length and such that for any 1 ≤ i ≤ 8. Then the weight wi (λ+ ρ) is dominant for K∞.
The representatives, defined by their action on ρ, are w1(3, 2, 1) = (3, 2, 1), w2(3, 2, 1) = (3, 2,−1),
w3(3, 2, 1)= (3, 1,−2), w4(3, 2, 1)= (2, 1,−3), w5(3, 2, 1)= (3,−1,−2), w6(3, 2, 1)= (2,−1,−3),
w7(3, 2, 1)= (1,−2,−3), w8(3, 2, 1)= (−1,−2,−3). Then, for any 1≤ i ≤8, there exists an irreducible
discrete series π3

∞
, where3=wi (λ+ρ), of Harish-Chandra parameter3 and containing with multiplicity 1

the minimal K∞-type with highest weight 3+ δG0 − 2δK∞
, where δG0 (resp. δK∞

) is the half-sum of
roots (resp. of compact roots) which are positive with respect to the Weyl chamber in which 3 lies, i.e.,
2δG0 :=

∑
α∈1+(3) α (resp. 2δK∞

:=
∑

α∈1+
c (3)

α). Moreover, for i ̸= j, 3=wi (λ+ρ), 3=w j (λ+ρ),
the representations π3

∞
and π3

∞
are not equivalent and any discrete series of G0 is obtained in this way.

Let V λ be the irreducible algebraic representation of G0 of highest weight λ= (λ1, λ2, λ3) (for T0).

Definition 2.1. The discrete series L-packet P(V λ) associated to λ is the set of isomorphism classes of
discrete series of G0(R) whose Harish-Chandra parameter is of the form 3= wi (λ+ ρ) as i varies.

By [Borel and Wallach 1980, Theorem II.5.3], for each π3
∞

∈ P(V λ), the space

HomK∞

(∧6g0,C/kC ⊗ V λ, π3
∞

)
has dimension 1. This is a consequence of the fact (see the proof of [Borel and Wallach 1980, Theo-
rem II.5.3]) that the minimal K∞-type of π3

∞
appears uniquely in

∧6g0,C/kC ⊗ V λ. Using the Cartan
decomposition, we get ∧6g0,C/kC =

⊕
p+q=6

∧pp+

C
⊗C

∧qp−

C
.

Hence, there exists a unique pair (p, q) such that HomK∞

(∧pp+

C
⊗
∧qp−

C
⊗ V λ, π3

∞

)
is nonzero and

hence of dimension 1. We call such a pair (p, q) the Hodge type of π3
∞

.

Lemma 2.2. There exist two elements π3,3
∞,1 and π3,3

∞,1 in P(V λ) of Hodge type (3, 3). They are character-
ized by having Harish-Chandra parameters (λ2 + 2, λ3 + 1,−λ1 − 3) and (λ1 + 3,−λ3 − 1,−λ2 − 2)
and minimal K∞-types τ(λ2+2,λ3+2,−λ1−4) and τ(λ1+4,−λ3−2,−λ2−2) respectively.

Proof. The discrete series π3,3
∞,1 and π3,3

∞,1 correspond to the Weyl representatives w4 and w5. Since
w4λ = (λ2, λ3,−λ1) and w5λ = (λ1,−λ3,−λ2), the Harish-Chandra parameters of π3,3

∞,1 and π3,3
∞,1

are as desired. When 3 = w4(λ+ ρ) (resp. 3 = w5(λ+ ρ)), observe that δG0 is equal to (2, 1,−3)
(resp. (3,−1,−2)), while δK∞

= (1, 0,−1) in both cases. Hence, using the formula above, the minimal
K∞-types of π3,3

∞,1 and π3,3
∞,1 are τ(λ2+2,λ3+2,−λ1−4) and τ(λ1+4,−λ3−2,−λ2−2) respectively.

Recall that, after [Vogan and Zuckerman 1984, Proposition 6.19], the Hodge type of a discrete series
representation of Harish-Chandra parameter 3 is (p, q), where p (resp. q) is the number of positive
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noncompact roots in 1+(3) (resp. 1−(3)). Using this, one easily checks that the Hodge type of π3,3
∞,1

and π3,3
∞,1 is (3, 3). □

The picture for PGSp6(R) is similar, but the set of its Harish-Chandra parameters changes slightly.
This is due to the fact that, since its maximal compact subgroup has two connected components, the
set of parameters has to be considered up to the action of WK∞

and of w8, as the latter, which is the
antidiagonal matrix with all entries −1, now belongs to the connected component away from the identity
of the maximal compact subgroup. Concretely, any parameter µ= (µ1, µ2, µ3) has to be identified with
w8µ= (−µ3,−µ2,−µ1). If λ= (λ1, λ2, λ3) is such that λ1 ≥λ2 ≥λ3 ≥0 and

∑
i λi ≡0 (mod 2), then the

irreducible algebraic G-representation V (λ,0) of highest weight λ(λ1, λ2, λ3, 0) defines a representation of
PGSp6. The corresponding discrete series L-packet P(V (λ,0)) for PGSp6(R) has thus four elements. Any
element π∞ ∈ P(V (λ,0)) of Harish-Chandra parameter µ, viewed as a G(R)-representation, decomposes
when restricted to G0(R) as the direct sum of two discrete series in P(V λ) of Harish-Chandra parametersµ
and w8µ. As a consequence, for any such π∞, the space

H 6(g, KG;π∞ ⊗ V (λ,0))= HomKG

(∧6gC/Lie(KG)C, π∞ ⊗ V (λ,0)),
where g = Lie(G), gC is its complexification and KG = R×

+K∞, is two-dimensional. The discussion
above implies the following.

Lemma 2.3. Let λ = (λ1, λ2, λ3) be a dominant weight for G0 such that
∑

i λi ≡ 0 (mod 2). Then
there exists a unique discrete series π3,3

∞
∈ P(V (λ,0)) of PGSp6(R), with Harish-Chandra parameter

(λ2 + 2, λ3 + 1,−λ1 − 3), such that

π3,3
∞ |G0(R)

= π
3,3
∞,1 ⊕π

3,3
∞,1.

We will refer to π3,3
∞

as the discrete series of PGSp6(R) in P(V (λ,0)) of Hodge type (3, 3).

2.6. Shimura varieties. Let F denote a real étale quadratic Q-algebra, i.e., F is either a totally real
quadratic extension of Q or Q × Q. Denote by GL∗

2,F/Q the subgroup scheme of ResF/Q GL2,F sitting
in the Cartesian diagram

GL∗

2,F
� � //

��

ResF/Q GL2,F

det
��

Gm
� � // ResF/Q Gm,F

For instance, when F = Q × Q, we have

GL∗

2,F = {(g1, g2) ∈ GL2 × GL2 | det(g1)= det(g2)}.

Let H denote the group

H = GL2 ⊠GL∗

2,F = {(g1, g2) ∈ GL2 × GL∗

2,F | det(g1)= det(g2)}. (3)
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We embed H into G as follows. Let us consider the Q × F-module

V := Qe1 ⊕ Fe2 ⊕ Q f1 ⊕ F f2,

where V1 := Qe1 ⊕ Q f1 and V2 := Fe2 ⊕ F f2 are respectively the standard representations of GL2

and GL∗

2,F . We equip V with the Q × F-valued alternating form ψ ′
: V × V → Q × F, such that

ψ ′(e1, f1) = (1, 0), ψ ′(e2, f2) =
(
0, 1

2

)
and V1 is orthogonal to V2. The group H acts naturally on V

and preserves ψ ′ up to a scalar. We can regard V as a six-dimensional Q-vector space with Q-valued
symplectic form ψ := tr(Q×F)/Q ◦ψ ′. Explicitly, we have

ψ(ae1 +αe2, b f1 +β f2)= ab +
1
2 trF/Q(αβ).

This identification defines an embedding H ↪→ GSp(V, ψ). We now identify GSp(V, ψ) with G by
choosing a suitable Q-basis of V. Recall that the set of real quadratic Q-algebras is parametrized by
D ∈ Q×

>0/(Q
×

>0)
2, via D 7→ F = Q ⊕ Q

√
D. Using the decomposition F = Q ⊕ Q

√
D, we consider the

Q-basis of V given by
{e1, e2, e3, f1, f2, f3} :=

{
e1, e2,

√
De2, f1, f2,

1
√

D
f2
}
.

In this basis, ψ is represented by the matrix J =
( 0

−In

In
0

)
; thus we obtain an isomorphism GSp(V, ψ)≃ G

and the embedding
ι : H ↪→ G.

Note that the group

H ′
:= GL2 ⊠GSp4 := {(g1, g2) ∈ GL2 × GSp4 | det(g1)= ν(g2)}

is also naturally embedded in G and ι factors through H ′.
Recall from [Burgos Gil et al. 2024, §2.2] that there is a three-dimensional Shimura variety ShH

associated to the H(R)-conjugacy class of

h : S → H/R, x + iy 7→
(( x

−y
y
x

)
,
( x

−y
y
x

)
,
( x

−y
y
x

))
,

where S = ResC/R Gm/C is the Deligne torus. The associated Shimura datum has reflex field is Q and the
Shimura variety ShH can be described as follows. If V ⊆ H(A f ) is a fiber product (over the similitude
characters) V1 ×A×

f
V2 of sufficiently small subgroups, we have

ShH(V )= ShGL2(V1)×Gm ShGL∗

2,F
(V2),

where ×Gm denotes the fiber product over the zero-dimensional Shimura variety of level W = det(V1)=

det(V2). The connected components are given by

π0(ShH(V )(C))= Ẑ×/W.

Hence, ShH can be thought as the fiber product of a modular curve and a Hilbert–Blumenthal modular
surface. We also recall that the complex points of ShH(V ) are given by

ShH(V )(C)= H(Q)\H(A)/ZH(R)K H,∞V,
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where ZH denotes the center of H and K H,∞ ⊆ H(R) is the maximal compact defined as the product
U(1)× U(1)× U(1).

The embedding ι : H ↪→ G induces a Shimura datum for G whose reflex field is Q. For any
sufficiently small compact open subgroup U of G(A f ), denote by ShG(U ) the associated Shimura variety
of dimension 6. We also write ι : ShH(U ∩ H) ↪→ ShG(U ) the closed embedding of codimension 3
induced by the group homomorphism ι : H ↪→ G.

Remark 2.4. If E/Q is a totally real cubic field extension of Q then one can analogously define
H = {g ∈ ResE/Q GL2,E | det(g) ∈ Gm} and there is a natural embedding ι : H ↪→ G (see [Piatetski-
Shapiro and Rallis 1987, §1] for details) inducing closed embeddings ι : ShH(U ∩ H) ↪→ ShG(U ) for
sufficiently small open compact U. All our results up to Section 5 will hold for any real étale cubic
algebra E over Q. Our main interest in the case E = Q× F for F a real étale quadratic algebra over Q is
motivated by the integral representation of the spin L-function of G of [Pollack and Shah 2018].

2.7. Cohomology of Siegel sixfolds. Let π be a cuspidal automorphic representation of G(A) having
nonzero fixed vectors by a neat compact open group U ⊆ G(A f ). We assume that π has trivial central
character and hence we regard it as a cuspidal automorphic representation of PGSp6(A). Our purpose is
to establish that, under mild assumptions, suitable localizations at π of cuspidal, L2, inner Betti and Betti
cohomologies coincide and are concentrated in the middle degree. The assumptions are the following:

(DS) The archimedean component π∞ is a discrete series representation of PGSp6(R).

(St) At a finite place p the component πp is the Steinberg representation of PGSp6(Qp).

Let us fix for the rest of this section λ = (λ1, λ2, λ3) ∈ Z3 satisfying λ1 ≥ λ2 ≥ λ3 ≥ 0 and
∑
λi ≡

0 (mod 2). We will denote by V, without mentioning λ anymore, the irreducible algebraic representation
of G of highest weight (λ, 0). As V has trivial central character, it will be considered as an irreducible
representation of PGSp6. Then π∞ belongs to the discrete series L-packet P(V ). As a consequence,

H 6(g, KG;π∞ ⊗ V )= HomKG

(∧6gC/Lie(KG)C;π∞ ⊗ V
)
̸= 0,

where KG = R×

+K∞.
There are natural inclusions of spaces of C-valued functions

C∞

cusp(G(Q)\G(A))⊆ C∞

rd (G(Q)\G(A))⊆ C∞

(2)(G(Q)\G(A))⊆ C∞(G(Q)\G(A)),

where these spaces denote, respectively, the space of cuspidal square-integrable functions, rapidly de-
creasing functions, square-integrable functions and smooth functions, and

C∞

c/center(G(Q)\G(A))⊆ C∞

rd (G(Q)\G(A)),

where the first space is the space of compactly supported modulo the center functions (for the precise
definition of these spaces, we refer to [Borel 1981]). Tensoring by V the inclusions above and applying
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the (g, KG)-cohomology functor, we obtain the natural maps

H •

cusp(ShG(U ),VC) // H •

rd(ShG(U ),VC) // H •

(2)(ShG(U ),VC) // H •(ShG(U ),VC)

H •

c (ShG(U ),VC)

OO

where VC is the C-local system associated to V. Let H •

!
(ShG(U ),VC) denote the image of H •

c (ShG(U ),VC)

in H •(ShG(U ),VC). Let N denote the positive integer defined as the product of prime numbers ℓ such
that πℓ is ramified. The fact that π∞ is cohomological implies that there exists a number field L whose
ring of integers OL contains the eigenvalues of the spherical Hecke algebra Hsph,N away from N and with
coefficients in Z acting on

⊗
′

ℓ∤N π
G(Zℓ)
ℓ . Let Hsph,N

L denote the spherical Hecke algebra away from N
with coefficients in L , let θπ : Hsph,N

L → L denote the Hecke character of π and let mπ := ker(θπ ).
Considering the localization at mπ of the above cohomology groups, we have the following result.

Proposition 2.5. Let π satisfy the hypotheses (DS) and (St) above. Then

H •

cusp(ShG(U ),VC)mπ = H •

(2)(ShG(U ),VC)mπ = H •

!
(ShG(U ),VC)mπ = H •(ShG(U ),VC)mπ .

Proof. By [Borel 1981, Theorem 5.3 & Corollary 5.5], the compositions of the horizontal maps

H •

cusp(ShG(U ),VC) ↪→ H •

∗
(ShG(U ),VC),

for ∗ ∈ {rd, (2),∅}, are injections. By [Borel 1981, Theorem 5.2], one has an isomorphism

H •

c (ShG(U ),VC)∼= H •

rd(ShG(U ),VC).

Hence, if the equality H •

cusp(ShG(U ),VC)mπ = H •

(2)(ShG(U ),VC)mπ holds, we have

H •

cusp(ShG(U ),VC)mπ = H •

(2)(ShG(U ),VC)mπ = H •

!
(ShG(U ),VC)mπ .

We show the former equality as follows. By [Borel 1980, §4],

H •

(2)(ShG(U ),VC)=

⊕
σ⊂L2

d

σU
f ⊗ H •(g, KG; σ∞ ⊗ V )m(σ ), (4)

where σ runs over the set of isomorphism classes of automorphic representations appearing in the discrete
spectrum L2

d of L2(Z(A)G(Q)\G(A)). Similarly,

H •

cusp(ShG(U ),VC)=

⊕
σ⊂L2

0

σU
f ⊗ H •(g, KG; σ∞ ⊗ V )m0(σ ),

where σ runs over the set of isomorphism classes of automorphic representations in the cuspidal spectrum
L2

0 ⊂ L2
d . From (4), we can write

H •

(2)(ShG(U ),VC)mπ =

⊕
σ=σ∞ ⊗ σ f

σU
f ⊗ H •(g, KG; σ∞ ⊗ V )m(σ ),
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where σ ∈ L2
d is such that σ G(Zℓ)

ℓ ≃ π
G(Zℓ)
ℓ ̸= 0 at all ℓ ∤N. Notice that the latter implies that σ N

f ≃ π N
f ,

where for any automorphic representation τ we have denoted τ N
f = ⊗ℓ∤N τℓ. By [Kret and Shin 2023,

Lemma 8.1(2)], the Steinberg condition implies that the representation πℓ is tempered and unitary at
each ℓ∤N (as π has trivial central character). Thus, if σ contributes nontrivially to the above sum, its
local component at a finite place ℓ ∤N is tempered. This implies that σ is necessarily cuspidal and thus
appears in H •

cusp(ShG,VC)mπ with multiplicity m0(σ )= m(σ ). This last statement follows from the fact
that any noncuspidal automorphic representation appearing in L2

d is obtained as a residue of an Eisenstein
series and in particular it is nontempered at every place (see [Labesse 1999, Proposition 4.5.4]). We are
left to show that

H •

(2)(ShG(U ),VC)mπ = H •(ShG(U ),VC)mπ .

Recall that Franke’s decreasing filtration on the space of automorphic forms for G(A) (see [Waldspurger
1997, §4.7]) yields a spectral sequence E p,q

1 ⇒ H p+q(ShG(U ),VC), where

E p,q
1 =

⊕
(w,P)∈B(p)
ℓ(w)≤p+q

⊕
σ=σ∞⊗σ f

(IndG(A f )

P(A f )
σ f )

U
⊗ H p+q−ℓ(w)(m, KM ; σ∞ ⊗ Ww(λ+ρ)−ρ),

where, for all p ∈ Z≥0, B(p) denotes a certain subset depending on p of elements (w, P) (see [Wald-
spurger 1997, §4.8]), with w ∈ WG and P = M · UP a standard parabolic subgroup of G, Ww(λ+ρ)−ρ

denotes the irreducible algebraic representation of M of highest weight w(λ+ ρ)− ρ, and σ runs
over the set of isomorphism classes of automorphic representations appearing in the discrete spectrum
of L2(Z M(A)M(Q)\M(A)). By the proof of [Kret and Shin 2023, Lemma 8.1(1)], we have that E p,q

1,mπ
are zero unless when (w, P)= (1, G), in which case there exists a unique p0 ∈ Z≥0, for which

E p,q
1,mπ =

{
H p+q
(2) (ShG(U ),VC)mπ if p = p0,

0 otherwise.

Thus, the spectral sequence for the localization degenerates at the first page and gives

H p0+•

(2) (ShG(U ),VC)mπ = E p0,•

1,mπ = H p0+•(ShG(U ),VC)mπ . □

Proposition 2.6. Let π satisfy the hypotheses (DS) and (St) above. Then

H •(ShG(U ),VC)mπ = H 6(ShG(U ),VC)mπ ̸= 0.

Proof. Suppose that τ f contributes to H i (ShG(U ),VC)mπ . As we noted in the proof of Proposition 2.5, this
implies that, for every ℓ ∤N, τℓ ≃ πℓ is tempered and unitary (see [Kret and Shin 2023, Lemma 8.1(2)]).
Let us fix ℓ∤N ; the action of the Frobenius correspondence on intersection cohomology Frobℓ on
IH i (ShG(U ),VC)[τ f ] and thus on H i (ShG(U ),VC)[τ f ] is pure of weight i , i.e., its eigenvalues all have
absolute value ℓi/2 (see [Morel 2010, Remark 7.2.5]). On the other hand, by the congruence relation
conjectured in [Blasius and Rogawski 1994, §6] and verified in [Wedhorn 2000], Frobℓ is a root of the
Hecke polynomial

Hℓ(T ) := det(T − ℓ3spin(Frℓ⋉ ĝ)),
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which is a polynomial in T whose coefficients are elements in the coordinate ring of the set of Frℓ-
conjugacy classes of semisimple elements of Ĝ(C)= GSpin7(C), for Frℓ a Frobenius element in the Weil
group of Qℓ. By the untwisted Satake isomorphism, we can see Hℓ(T ) as a polynomial with coefficients
in the spherical Hecke algebra H(G(Qℓ)//G(Zℓ),Q) (see [Wedhorn 2000, (2.2.1) & Corollary (2.8)])
and thus we can denote by Hℓ(T ; τℓ) the specialization of Hℓ(T ) to τℓ, i.e.,

Hℓ(T ; τℓ)= det(T − ℓ3spin(φτℓ(Frℓ))),

where φτℓ is the unramified Langlands parameter of τℓ. The congruence relation gives that Hℓ(Frobℓ;τℓ)=0
on IH •(ShG(U ),VC)[τ f ], which implies that the eigenvalues of Frobℓ on IH •(ShG(U ),VC)[τ f ] are a
subset of the ones of ℓ3spin(φτℓ(Frobℓ)). As τℓ is tempered, all the eigenvalues of spin(φτℓ(Frℓ)) have
absolute value equal to 1 (see [Gross 1998, §6]). Hence the eigenvalues of ℓ3spin(φτℓ(Frℓ)), and thus of
Frobℓ, have all absolute value equal to ℓ3. In particular, H i (ShG(U ),VC)[τ f ] is zero unless i = 6. Finally,
notice that H 6(ShG(U ),VC)mπ ̸= 0 as the assumption (DS) implies H 6(ShG(U ),VC)[π f ] ̸= 0. □

Remark 2.7. The proof of Proposition 2.6 is similar to that of [Kret and Shin 2023, Proposition 8.2],
where the proof is carried out with a trace formula argument.

2.8. Hodge theory. We keep the same notation as Section 2.7. In particular, π = π∞ ⊗ π f is a cusp-
idal automorphic representation of G with trivial central character which satisfies (DS) and (St), with
π∞ ∈ P(V ) for some irreducible algebraic representation V of G as above.

Let V denote the Q-local system on ShG(U ) attached to V. We can take the π f -isotypic component
H 6

B,∗[π f ] of H 6
∗
(ShG(U ),VC), where ∗ ∈ {∅, !} and where VC denotes V ⊗Q C. Propositions 2.5

and 2.6 imply
H •

B[π f ] = H •

B,![π f ] = H 6
B,![π f ] ̸= 0. (5)

By [Blasius and Rogawski 1994, (2.3.1)] (see also [Shin and Templier 2014, Proposition 2.15]), if L
is a sufficiently large number field, H 6

B[π f ] appears as a subquotient of H 6
!
(ShG(U ),VL), where VL

denotes V ⊗Q L . In particular, we have a projection

prπ : H 6(ShG(U ),VL)mπ (n)↠ H 6
B[π f ](n).

Since H 6
!
(ShG(U ),VL) is a pure L-Hodge structure of weight 6, we have

H 6
B[π f ] = πU

f (L)⊗ MB(π f ),

with πU
f (L) a realization of πU

f over L and MB(π f ) a pure L-Hodge structure of weight 6. Thus we
have a decomposition

MB(π f )⊗ C =

⊕
p+q=6

H p,q(π f ).

Lemma 2.8. Under the hypotheses (DS) and (St),

dimC H p,q(π f )=

{
1 if p ̸= 3,
2 if p = 3.

In particular, dimL MB(π f )= 8.
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Proof. Thanks to (5), we have that

H 6
B[π f ] ⊗ C = H 6

B,![π f ] ⊗ C = H 6
B,cusp[π f ] ⊗ C;

hence

H 6
B[π f ] ⊗ C = πU

f ⊗

⊕
σ∞

H 6(g, KG; σ∞ ⊗ V )m(σ ),

where σ∞ runs over the elements of the discrete series L-packet P(V ) of PGSp6(R) and m(σ ) denotes
the multiplicity of σ = σ∞ ⊗π f . Notice that H 6(g, KG; σ∞ ⊗ V ) equals

HomK∞

(∧6g0/k, σ
1
∞

⊗ V
)
⊕ HomK∞

(∧6g0/k, σ
1
∞

⊗ V
)
, (6)

where we have denoted σ∞|G0(R)
= σ 1

∞
⊕σ 1

∞
. According to [Borel and Wallach 1980, Theorem II.5.3(b)],

each space in the decomposition above is one-dimensional. Moreover there exists a unique pair of
integers (rσ∞

, sσ∞
) satisfying rσ∞

+ sσ∞
= 6 such that (6) equals

HomK∞

(∧rσ∞p+

C
⊗
∧sσ∞p−

C
, σ 1

∞
⊗ V

)
⊕ HomK∞

(∧sσ∞p+

C
⊗
∧rσ∞p−

C
, σ 1

∞
⊗ V

)
.

As we remarked in Section 2.5, the set P(V ) has four elements and is in bijection with the set of
Hodge types up to conjugation. Since the Hodge structure in H 6

B,cusp[π f ] is induced by this splitting, we
deduce that

dimC H rσ∞ ,sσ∞ (π f )=

{
m(σ ) if rσ∞

̸= 3,
2m(σ ) if rσ∞

= 3.

By [Kret and Shin 2023, Theorem 12.1], the multiplicity of σ is either 0 or 1, while thanks to [Kret
and Shin 2023, Corollaries 8.4 & 12.4] the dimension of MB(π f ) equals 8. Hence m(σ ) = 1 for all
σ∞ ∈ P(V ), which concludes the proof. □

2.9. Absolute Hodge cohomology. Let us first recall some definitions from [Beı̆linson 1986]. A mixed
R-Hodge structure consists of a finite-dimensional R-vector space MR equipped with an increasing finite
filtration W∗ called the weight filtration and a decreasing finite filtration F∗ on MC = MR ⊗R C called the
Hodge filtration, such that each pair (GrW

n MR, (GrW
n MC, F∗)) is a pure R-Hodge structure of weight n

[Deligne 1971, Définition 2.1.10]. The category of mixed R-Hodge structures is an abelian category
[Deligne 1971, Théorème (2.3.5)] and we denote it by MHSR.

Definition 2.9. A real mixed R-Hodge structure is given by a mixed R-Hodge structure such that MR is
equipped with an involution F∗

∞
stabilizing the weight filtration and whose C-antilinear complexification

F∗
∞

= F∗
∞

⊗ c, where c denotes the complex conjugation, defines an involution on MC stabilizing the
Hodge filtration.

We will refer to F∗
∞

as the real Frobenius and to F∗
∞

as the de Rham involution. We denote by MHS+

R

the abelian category of real mixed Hodge R-structures. For any pair of objects M, N ∈ D(MHS+

R ), one
has R HomMHS+

R
(M, N )= R HomMHSR

(M, N )F∗
∞ , since taking invariants by F∗

∞
is an exact functor.
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Definition 2.10. If M = (MR, F∗
∞
) ∈ C(MHS+

R ) is a complex of real mixed R-Hodge structure, its
absolute Hodge cohomology is defined as

R0H(M)= R HomMHSR
(R(0),MR).

Its real absolute Hodge cohomology is defined as

R0H/R(M) := R HomMHS+

R
(R(0),M))= R0H(MR)

F∗
∞ .

The cohomology groups H i
B(ShG(U ),VR), where VR =V⊗Q R, are equipped with a real Frobenius F∗

∞

acting as the complex conjugation on (the complex points) ShG(U ) and on VR, define real mixed R-Hodge
structures. This can be deduced directly from [Deligne 1971] since the cohomology with coefficients is a
direct factor of the cohomology of a fiber product of the universal abelian variety of ShG(U ), or from the
theory of mixed Hodge modules of [Saito 1990]. We let M ∈ C(MHS+

R ) be the complex of real mixed
R-Hodge structures given by

(⊕
i∈N H i

B(ShG(U ),VR)[−i], F∗
∞

)
and we define the absolute real Hodge

cohomology H 7
H(ShG(U )/R,VR(4)) of ShG(U ) and coefficients in VR(4) to be H 1(R0H/R(M(4))).

Then we have the short exact sequence

0 → Ext1MHS+

R

(R(0), H 6
B(ShG(U ),VR(4)))→ H 7

H(ShG(U )/R,VR(4))
→ HomMHS+

R
(R(0), H 7

B(ShG(U ),VR(4)))→ 0.

If π = π∞ ⊗π f is as above, we denote by

H 1
H(M(π f )R(4)) :=

(
H 7

H(ShG(U )/R,VR(4))⊗ L
)
[π f ]

the π f -isotypical component.

Lemma 2.11. Under the hypotheses (DS) and (St), we have a canonical short exact sequence of finite
rank-free R ⊗Q L-modules

0 → F4 H 6
dR[π f ] → H 6

B[π f ]
F⋆∞=−1(3)→ H 1

H(M(π f )R(4))→ 0.

Moreover, we have
dimR⊗Q L H 1

H(M(π f )R(4))= dimC π
U
f .

Proof. It follows from the existence of the short exact sequence above and from Proposition 2.6 that we
have a canonical isomorphism

H 1
H(M(π f )R(4))≃ Ext1MHS+

R

(R(0), H 6
B(ShG(U ),VR(4))[π f ]).

Hence, the first statement of the lemma follows as in [Lemma 2017, Lemma 4.11]. In particular, the map
F4 H 6

dR[π f ] → H 6
B[π f ]

F⋆∞=−1(3) is defined by the composition of

F4 H 6
dR[π f ] → H 6

dR[π f ] ⊗ C ≃ H 6
B(ShG(U ),VC)[π f ],
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of the projection to H 6
B(ShG(U ),VC)[π f ]

F∗
∞=1, where F∗

∞
is the complexification F∗

∞
⊗c, with c denoting

the complex conjugation, and of the projection

H 6
B(ShG(U ),VC)[π f ]

F∗
∞=1

= H 6
B[π f ]

F⋆∞=−1(3)⊕ H 6
B[π f ]

F⋆∞=1(4)→ H 6
B[π f ]

F⋆∞=−1(3).

Finally, by Lemma 2.8, we have that

dimR⊗Q L F4 H 6
dR[π f ] = 3 dimL π

U
f (L)= 3 dimC π

U
f .

On the other hand,
dimR⊗Q L H 6

B[π f ]
F⋆∞=−1(3)= (3 + h3,+) dimC π

U
f ,

where h3,+ is the dimension of the C-vector space {x ∈ H 3,3(π f ) : F∗
∞
(x)= −x} (see [Burgos Gil et al.

2024, §3.4.2]). By the proof of Lemma 2.8, we have h3,+
= 1, which implies the result. □

3. Construction of the motivic class

3.1. Cartan product. Before starting, we briefly recall some properties of the Cartan product of irreducible
representations that will be needed (see [Sun 2017, §2.5] for more details). Let A denote either a connected
compact Lie group or a semisimple algebraic group. Fix a Cartan subgroup of A and an orientation of
the roots. Irreducible algebraic representations of A are parametrized by dominant weights. If λ and σ
are two dominant weights with corresponding representations V λ and V σ, then the representation V λ+σ

appears in V λ
⊗ V σ with multiplicity one. We denote it by V λ

· V σ and we call it the Cartan component
of V λ

⊗ V σ. Clearly, the tensor product of two highest weight vectors maps to a corresponding highest
weight vector. We denote by v⊗w 7→ v ·w the projection from V λ

⊗V σ to its Cartan component V λ
·V σ.

Lemma 3.1 [Sun 2017, Lemma 2.12]. Every nonzero pure tensor in V λ
⊗ V σ projects nontrivially to the

Cartan component.

3.2. Branching laws. In what follows, we fix a totally real field F over which H splits. Since H is split
over F, its finite-dimensional irreducible representations are determined by the highest weight theory and
we can thus use the branching laws for algebraic representations from G to H established in [Cauchi and
Rodrigues Jacinto 2020].

Lemma 3.2. The G-representation V λ over F of highest weight λ= (λ1, λ2, λ3, c) contains the trivial
H-representation if and only if c = 0 and λ1 = λ2 + λ3. When this holds the trivial representation of H
appears in (V λ)|H with multiplicity λ2 − λ3 + 1.

Proof. From [Cauchi and Rodrigues Jacinto 2020, Lemma 2.10], the sum of all irreducible sub-H-
representations of V λ isomorphic (up to a twist) to Sym(k,0,0) for some k ≥ 0 is given by

λ1−λ2+λ3⊕
k=|λ1−λ2−λ3|
k≡|λ| (mod 2)

r · Sym(k,0,0)
⊗ det

1
2 (|λ|−k)
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for r = λ2 − λ3 + 1. From this we deduce that V λ contains the trivial H-representation with multiplicity
r = λ2 − λ3 + 1 if and only if λ1 − λ2 − λ3 = 0. □

It will be useful to construct explicitly generators of the trivial H-representations inside V λ given
by the branching laws. We achieve this by constructing some vectors in the representations V (1,1,0,0)

and V (2,1,1,0) and then by taking their Cartan product. From now on, all the representations are defined
over F. Moreover, since the branching laws are determined by the restriction to the derived subgroups, in
the following we work with the groups

H0 := SL2 × SL2 × SL2 ↪→ H ′

0 := SL2 × Sp4 ↪→ G0 = Sp6.

Recall that we associate to any λ= (λ1, λ2)∈ Z2 such that λ1 ≥ λ2 ≥ 0, the irreducible Sp4-representation
with highest weight λ. Applying the branching laws [Cauchi and Rodrigues Jacinto 2020, Proposition 2.8],
we get the following decompositions of representations of H ′

0:

V (1,1,0)
= (Sym0 ⊠V (0,0))⊕ (Sym0 ⊠V (1,1))⊕ (Sym1 ⊠V (1,0)),

V (2,1,1)
= (Sym0 ⊠V (1,1))⊕ (Sym0 ⊠V (2,0))⊕ (Sym1 ⊠V (1,0))⊕ (Sym1 ⊠V (2,1))⊕ (Sym2 ⊠V (1,1)).

By Lemma 3.2, V (1,1,0) contains two copies of the trivial H0-representation, each of which lies re-
spectively in Sym0 ⊠V (0,0) and Sym0 ⊠V (1,1), while V (2,1,1) contains a unique trivial H0-representation
appearing in Sym0 ⊠V (1,1). Using these facts, we can explicitly define generators of these three trivial
representations of H0.

Let V be the standard representation of G0 with its symplectic basis ⟨e1, e2, e3, f1, f2, f3⟩ given in
Section 2.6. According to our choice of embedding H ′

0 ↪→ G0, ⟨e1, f1⟩ (resp. ⟨e2, e3, f2, f3⟩) defines
a basis of the standard representation of SL2 (resp. Sp4). We first recall how one can realize the
representations V (1,1,0) and V (1,1,1). As explained in [Fulton and Harris 1991, §17.1], V (1,1,0) is realized
inside

∧2V as the complement of the G0-invariant subspace generated by the vector e1∧ f1+e2∧ f2+e3∧ f3

corresponding to the symplectic form or, in other words, as the kernel of the map
∧2V → V sending

v1 ∧ v2 to ψ(v1, v2). By [Fulton and Harris 1991, Theorem 17.5], the irreducible representation V (1,1,1)

is identified with the kernel of the map ϕ :
∧3V → V, v1 ∧ v2 ∧ v3 7→

∑
i< j,k ̸=i, j ψ(vi , v j )(−1)i− j+1vk .

Lemma 3.3. Let F(0) denote the trivial H0-representation. We have

v := e2 ∧ f2 − e3 ∧ f3 ∈ F(0)⊆ Sym0 ⊠V (1,1)
⊆ V (1,1,0),

w := e2 ∧ f2 + e3 ∧ f3 − 2e1 ∧ f1 ∈ F(0)⊆ Sym0 ⊠V (0,0)
⊆ V (1,1,0),

z := z1 − z2 ∈ F(0)⊆ Sym0 ⊠V (1,1)
⊆ V (2,1,1),

where
z1 := e1 · ( f1 ∧ e2 ∧ f2 − f1 ∧ e3 ∧ f3),

z2 := f1 · (e1 ∧ e2 ∧ f2 − e1 ∧ e3 ∧ f3),

and · denotes the Cartan product.
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Proof. The vector v is obtained from the highest weight vector e1 ∧ e2 in V (1,1,0) by applying the
composition X(0,1,−1) ◦ X(0,−2,0) ◦ X(−1,0,1), where X(−1,0,1), X(0,−2,0), X(0,1,−1) ∈ sp6 denote the weight
vectors for λ(−1, 0, 1), λ(0,−2, 0), and λ(0, 1,−1) respectively (see [Fulton and Harris 1991, §16.1] for
the precise description). Moreover, the vector X(−1,0,1)(e1 ∧ e2)= −e2 ∧ e3 is of weight (0, 1, 1), which
appears only in the component Sym0 ⊠V (1,1), and X(0,1,−1), X(0,−2,0) ∈ sp4 ⊆ sp6 so v still lies inside
Sym0 ⊠V (1,1). The vector w is H ′

0-invariant and therefore it generates the only trivial H ′

0-representation
in V (1,1,0). We now explain the definition of z. Note that e1 ∈ V (1,0,0) and f1∧e2∧ f2− f1∧e3∧ f3 ∈ V (1,1,1).
Thus, by the properties of the Cartan product

V (1,0,0)
⊗ V (1,1,1)

= V (1,1,0)
⊕ V (2,1,1)

→ V (2,1,1), v1 ⊗ v2 7→ v1 · v2,

z1 is a nonzero vector in V (2,1,1) by Lemma 3.1. The vector z1 is fixed by {I2} × SL2
2, but not by

SL2 × {I2} × {I2}, however, as it is easy to verify, we have that

z = z1 + h · z1 = z1 − z2 ∈ F(0)⊂ V (2,1,1), with h =
((

−1
1)
, I2, I2

)
,

generates the unique trivial H0-representation of V (2,1,1). □

Lemma 3.4. Let λ= (λ2 + λ3, λ2, λ3, 0) with λ2 ≥ λ3 ≥ 0. For each λ2 ≥ µ≥ λ3, the vector

v[λ,µ]
:= vλ2−µ ·wµ−λ3 · zλ3 ∈ F(0)⊆ (V λ)|H

realizes a distinct copy of the trivial representation F(0) of H inside (V λ)|H .

Proof. For p, q, r ∈ N, we have

v p
·wq

· zr
∈ F(0)⊆ Sym0 ⊠V (p+r,p+r)

⊆ V (p+q+2r,p+q+r,r).

The vectors v,w, z are H-highest weight vectors, and thus v[λ,µ] is too. We are left to show that each of the
vectors is different. This follows from the fact that each v[λ,µ] lies in Sym0 ⊠V (λ2+λ3−µ,λ2+λ3−µ)⊗νµ−λ2−λ3

and these representations are all different as µ varies. □

3.3. The motivic class. As in the section above, we fix a totally real field F such that H splits over F.
For a smooth quasiprojective scheme S over a field of characteristic zero, let CHML(S) denote the
tensor category of relative Chow motives over S with coefficients in a number field L and denote by
M : Var/S → CHML(S) the contravariant functor from the category of smooth projective schemes over S
to the category of relative Chow motives over S (see [Ancona 2015, §2.1]). By [Deninger and Murre
1991, Corollary 3.2], if A/S is an abelian scheme of relative dimension g, there is a decomposition
M(A)=

⊕2g
i=1 hi (A) in CHML(S). Let G temporarily denote one of the groups H or G, and denote by

RepF (G) the category of finite-dimensional algebraic representations of G defined over F. Ancona [2015]
constructed an additive functor

µG
U : RepF (G)→ CHMF (ShG(U )),

where U is a sufficiently small open compact subgroup of G(A f ). We recall some of its properties.
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Proposition 3.5 [Ancona 2015, Théorème 8.6]. The functor µG
U respects duals, tensor products and

satisfies the following properties.

(1) If V is the standard representation of G, then µG
U (V )= h1(AG), where AG is the universal abelian

scheme over ShG(U ).

(2) If ν : G → Gm is the multiplier, then µG
U (ν) is the Lefschetz motive F(−1).

(3) For a G-representation V defined over F, the Betti realization of µG
U (V ) is the local system VF

associated to the vector bundle

G(Q)\(XG × V × (G(A f )/U ))→ ShG(U )(C).

(4) For any prime v of F above ℓ and G-representation V, the v-adic étale realization Vv of µG
U (V ) is

the étale sheaf associated to V ⊗F Fv, with U acting on the left via U ↪→ G(A f )→ G(Qℓ).

Definition 3.6. Let V λ be the finite-dimensional irreducible algebraic representation over Q of G of
highest weight λ. We denote by V λ

F the relative Chow motive associated to V λ
⊗ F.

Let U ⊂ G(A f ) be a sufficiently small compact open subgroup and let U ′
= U ∩ H(A f ). Recall that

we have a closed embedding ι : ShH(U ′) ↪→ ShG(U ) which is of codimension 3. Let V λ the algebraic
representation of G (over F) of highest weight λ = (λ1, λ2, λ3, c) such that λ1 = λ2 + λ3 and c = 0.
Using the branching laws of Lemma 3.2 and [Torzewski 2020, Theorem 1.2], we get the following (see
[Cauchi and Rodrigues Jacinto 2020, Proposition 2.17]).

Proposition 3.7. For any λ2 ≥ µ≥ λ3, we have a Gysin morphism

ι[λ,µ]

∗
: H 0

M(ShH(U ′), F(0))→ H 6
M(ShG(U ),V λ

F (3)),

corresponding to the embedding of F(0)⊂ ι∗V λ given by the H-trivial vector v[λ,µ] of Lemma 3.4.

Definition 3.8. We let Z [λ,µ]

H,M ∈ H 6
M(ShG(U ),V λ

F (3)) be the image by ι[λ,µ]

∗ of

1ShH (U ′) ∈ CH0(ShH(U ′))F = H 0
M(ShH(U ′), F(0)).

3.4. Realizations.

3.4.1. Étale realization. Let l be a prime of F above ℓ. We have an étale cycle class map

clét : H6
M(ShG(U),V λ

F (3))→ H6
ét(ShG(U),Vλl (3))→ H6

ét(ShG(U)Q,V
λ
l (3))

GQ,

where the last arrow is the natural map obtained from the Hochschild–Serre spectral sequence. We define
the following.

Definition 3.9. We let Z [λ,µ]

H,ét := clét(Z
[λ,µ]

H,M) ∈ H6
ét(ShG(U)Q,V

λ
l (3))

GQ .

Remark 3.10. • Notice that Z [λ,µ]

H,ét equals to the image of 1 ∈ H 0
ét(ShH(U ′)Q, Fl(0)) via the étale Gysin

map
ι
[λ,µ]

ét,∗ : H 0
ét(ShH(U ′)Q, Fl(0))→ H 0

ét(ShH(U ′)Q, ι
∗Vλl )→ H 6

ét(ShG(U )Q,V
λ
l (3)).
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• As the representation V λ is self dual, we have a Galois equivariant perfect pairing

H 6
ét,c(ShG(U )Q,V

λ
l (3))× H 6

ét(ShG(U )Q,V
λ
l (3))→ Fl(0).

Hence, by duality, Z [λ,µ]

H,ét determines a map

H 6
ét,c(ShG(U )Q,V

λ
l (3))→ Fl(0).

3.4.2. Betti realizations. As in the previous subsection, we define the class

Z [λ,µ]

H,B ∈ H 6
B(ShG(U )(C),VλF (3))

as the image of Z [λ,µ]

H,M via the Betti cycle class map

clB : H6
M(ShG(U),V λ

F (3))→ H6
B(ShG(U)(C),VλF (3)).

Note that, as F is totally real, the image satisfies

Im(clB)⊂ H6
B(ShG(U)(C),VλR(3))

F⋆∞=1,

where F∗
∞

denotes the composition of the map induced by complex conjugation on the C-points of
ShG(U ) with complex conjugation on the coefficients.

3.4.3. Absolute Hodge realizations. Let H 6
M(ShG(U ),V λ

F (3))
0
= ker(clB) denote the subgroup of homo-

logically trivial classes and let H 6
M(ShG(U ),V λ

F (3))hom denote the quotient

H 6
M(ShG(U ),V λ

F (3))/H 6
M(ShG(U ),V λ

F (3))
0.

Note that when λ2 = λ3 = 0, i.e., the representation V λ is the trivial representation, then

H 6
M(ShG(U ),V λ

F (3))= H 6
M(ShG(U ), F(3))= CH3(ShG(U ))F

is the usual Chow group of 3-codimensional cycles modulo rational equivalence and the space

H 6
M(ShG(U ),V λ

F (3))hom = N3(ShG(U ))F

is the space of 3-codimensional cycles modulo homological equivalence, with coefficients in F. In this
section, we define a natural injective map

H 6
M(ShG(U ),V λ

F (3))hom → H 7
H(ShG(U ),VλR(4)). (7)

The definition is similar to the one for smooth projective varieties (see [Schneider 1988, §5]) and we
recall it for the convenience of the reader. The cycle class map is an injection

clB : H 6
M(ShG(U ),V λ

F (3))hom → H 6
B(ShG(U ),VF (3))F∗

∞=1
∩ H 6

B(ShG(U ),VλC(3))
0,0,

where H 6
B(ShG(U ),VλC(3))

0,0 denotes the subspace of

W0 H 6
B(ShG(U ),VλC(3))= GrW

0 H 6
B(ShG(U ),VλC(3))
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of vectors which have Hodge type (0, 0). The composite of the inclusions

H 6
B(ShG(U ),VF (3))F∗

∞=1
∩ H 6

B(ShG(U ),VλC(3))
0,0

↪→ W0 H 6
dR(ShG(U ),VR(3)) ↪→ W2 H 6

dR(ShG(U ),VR(3))= W0 H 6
dR(ShG(U ),VR(4))

and of the projection

W0 H 6
dR(ShG(U ),VR(4))

→ W0 H 6
B(ShG(U ),VR(4))+\W0 H 6

dR(ShG(U ),VR(4))/F0W0 H 6
dR(ShG(U ),VR(4))

is injective. As the last space above is canonically isomorphic to

Ext1MHS+

R

(R(0), H 6
B(ShG(U ),VR(4))),

we obtain a natural injective map

H 6
M(ShG(U ),V λ

F (3))hom → Ext1MHS+

R

(R(0), H 6
B(ShG(U ),VR(4))).

Composing this map with the canonical injection

Ext1MHS+

R

(R(0), H 6
B(ShG(U ),VR(4)))→ H 7

H(ShG(U ),VλR(4))

we obtain the map (7). We denote by clH : H 6
M(ShG(U ),V λ

F (3))→ H 7
H(ShG(U ),VλR(4)) the composition

of the map (7) with the projection H 6
M(ShG(U ),V λ

F (3))→ H 6
M(ShG(U ),V λ

F (3))hom.

Definition 3.11. We define

Z [λ,µ]

H,H := clH(Z
[λ,µ]

H,M) ∈ H 7
H(ShG(U ),VλR(4)).

Remark 3.12. Let π be a cuspidal automorphic representation of PGSp6(A)which satisfies the hypotheses
of Lemma 2.11 and let S be a finite set of places containing the ramified places of π f and ∞. By the
conjectures of Beilinson and Tate and the local calculations of Gross and Savin [1998], there should exist
a cubic étale algebra E/Q such that the cycle Z [λ,µ]

H,H , with H defined by E/Q, and their Hecke translates
are expected to generate H 1

H(M(π f )R(4)) when ords=1L S(s, π,Spin)= −1. Assuming the nonvanishing
of the archimedean integral, Corollary 5.15 confirms this expectation.

4. Construction of the differential form and pairing with the motivic class

The purpose of this section is to study the Betti and Hodge realizations of the cycle constructed
in Section 3.3 by relating their pairing with a suitable cuspidal harmonic differential form to an
automorphic period.

4.1. Test vectors. Recall that the discrete series L-packets for PGSp6(R) have four elements, each indexed
by a Hodge type (and its conjugate). Let π denote a cuspidal automorphic representation of PGSp6(A)

for which π∞ is the discrete series of Hodge type (3,3) in the L-packet of V λ, where λ= (λ1, λ2, λ3, 0)
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and λ1 = λ2 + λ3. This translates into saying that π is a cuspidal automorphic representation of G(A)
with trivial central character for which

H 6(g, KG;π∞ ⊗ V λ) ̸= 0,

and such that π∞|G0(R) = π
3,3
∞,1 ⊕ π

3,3
∞,1 is the direct sum of the discrete series representations of re-

spective Harish-Chandra parameters (λ2 + 2, λ3 + 1,−λ1 − 3) and (λ1 + 3,−λ3 − 1,−λ2 − 2). Recall
that these discrete series contain with multiplicity one their minimal K∞-types τ(λ2+2,λ3+2,−λ1−4) and
τ(λ1+4,−λ3−2,−λ2−2) respectively. On the other hand, as K∞-representations we have∧6pC ⊇

∧3p+

C
⊗
∧3p−

C
=

⊕
i

τi ⊇ τ(2,2,−4) ⊕ τ(4,−2,−2),

where the equality expresses the decomposition of the tensor product into irreducible K∞-representations.
This fact will be useful to construct an element in

H 6(g, KG;π∞ ⊗ V λ)= HomK∞

(∧6pC, π∞ ⊗ V λ
)
≃ HomK∞

(∧6pC ⊗ V λ, π∞

)
,

where the last equality follows from the fact that V λ is self-dual. Before stating the next result, let us fix
the following data:

• A highest weight vector 9∞ of the minimal K∞-type τ(λ2+2,λ3+2,−λ1−4) of π3,3
∞,1.

• A highest weight vector 9∞ of the minimal K∞-type τ(λ1+4,−λ3−2,−λ2−2) of π3,3
∞,1.

• A highest weight vector X(2,2,−4) of τ(2,2,−4).

• A highest weight vector X(4,−2,−2) of τ(4,−2,−2).

• A highest weight vector vλ
′

of τλ′ ⊆V λ, where τλ′ denotes the irreducible algebraic K∞-representations
of highest weight λ′

= (λ2, λ3,−λ1).

• A highest weight vector vλ
′

of τλ′ ⊆V λ, where τλ′ denotes the irreducible algebraic K∞-representations
of highest weight λ′

= (λ1,−λ3,−λ2).

Lemma 4.1. The spaces HomK∞

(∧6pC ⊗ V λ, π
3,3
∞,1

)
and HomK∞

(∧6pC ⊗ V λ, π
3,3
∞,1

)
are of dimension 1

and the elements

ω9∞
∈ HomK∞

(∧6pC ⊗ V λ, π
3,3
∞,1

)
, ω9∞

∈ HomK∞

(∧6pC ⊗ V λ, π
3,3
∞,1

)
defined by

ω9∞
(X(2,2,−4) ⊗ vλ

′

)=9∞, ω9∞
(X(4,−2,−2) ⊗ vλ

′

)=9∞

are generators of these spaces.

Proof. This is a consequence of [Borel and Wallach 1980, Theorem II.5.3 b)] and its proof. □

4.2. Restriction to H. Let λ= (λ1, λ2, λ3, 0), with λ1 = λ2 + λ3 and let V λ be as above. Let h denote
the Lie algebra of H(R) and kH the maximal compact modulo the center K H . Observe that via the
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embedding ι : H(R) ↪→ G(R), the group K H is isomorphic to T∞. One has a Cartan decomposition
hC = kH,C ⊕ pH,C, where pH,C is six-dimensional and is spanned by the noncompact root spaces. We fix
once and for all a generator X0 of the one-dimensional C-vector space

∧6pH,C ⊆
∧6pC as in [Burgos Gil

et al. 2024, §5.2]. The main result of this section is the following.

Theorem 4.2. Let ω9∞
and ω9∞

be the elements of HomK∞

(∧6pC ⊗ V λ, π∞

)
defined in Lemma 4.1.

Let X0 be as above and let v be any H-invariant vector in V λ. Then

ω9∞
(X0 ⊗ v) ̸= 0, ω9∞

(X0 ⊗ v) ̸= 0.

The proof of Theorem 4.2 will be constructive and occupies the rest of this section. We start by
recalling the following result.

Lemma 4.3 [Burgos Gil et al. 2024, Lemma 5.4]. Let X0 be as above. Then the image of X0 by∧6pH,C →
∧6pC →

∧3p+

C
⊗
∧3p−

C
→ τ(2,2,−4),

where the first map is induced by the embedding H → G and the second and the third maps are the
natural projections, is nonzero.

We next study the interaction between the branching laws of V λ to the subgroup H of G and to
its maximal compact subgroup. More precisely, we show that the H-invariant vectors constructed in
Lemma 3.4 project nontrivially to τλ′ and τλ′ and moreover that their projections form a basis of the
corresponding (0, 0, 0)-weight spaces for the action of T∞.

Lemma 4.4. Let τλ′ and τλ′ be the irreducible algebraic sub-K∞-representations of V λ of highest weight
λ′

= (λ2, λ3,−λ1) and λ′
= (λ1,−λ3,−λ2). Then the weight (0, 0, 0) appears in both τλ′ and τλ′ with

multiplicity λ2 − λ3 + 1.

Proof. Let n0(λ
′) denote the multiplicity of the weight (0, 0, 0) in τλ′ . The Kostant multiplicity formula

reads as
n0(λ

′)=

∑
w∈WK∞

(−1)ℓ(w)P(w(λ′
+ ρK∞

)− ρK∞
),

where ρK∞
=

1
2

∑
α∈1+

c
α = (1, 0,−1) and the function µ 7→ P(µ) calculates the number of ways for

which the weight µ can be expressed as a linear combination

α(e1 − e2)+β(e1 − e3)+ γ (e2 − e3),

with α, β, γ ∈ Z≥0 (see [Fulton and Harris 1991]). Using this formula, it is a tedious but straightforward
calculation to verify that n0(λ

′)= λ2 − λ3 + 1 and the same for λ′
= w8λ

′. □

According to Lemma 4.4, there are λ2 − λ3 + 1 linearly independent vectors of weight (0, 0, 0) in τλ′ .
We now show that these weight vectors correspond one to one to the H-invariant vectors of Lemma 3.2.

Lemma 4.5. Let v,w be the vectors of V (1,1,0) and let z be the vector of V (2,1,1) defined in Lemma 3.3.
The irreducible algebraic representation τ(1,0,−1) (resp. τ(1,1,−2) and τ(2,−1,−1)) appear in the restriction
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of V (1,1,0) (resp. of V (1,1,1)) to K∞ with multiplicity 1. Moreover, we have v,w ∈ τ(1,0,−1) ⊆ V (1,1,0), and
z ∈ τ(1,1,−2) ⊕ τ(2,−1,−1) ⊆ V (1,1,1), with z projecting nontrivially to each factor of this decomposition.

Proof. First observe that v,w ∈ V (1,1,0) and z ∈ V (2,1,1) are vectors of weight (0, 0, 0) both for the
split and the compact tori of G0(R). Indeed these vectors are fixed (up to a constant) by the matrix J
sending the noncompact torus T0 to the compact torus T∞ defined in Section 2.2. Using branching laws
from G0(R) to K∞, we have a decomposition of K∞-representations

V (1,1,0)
= τ(1,1,0) ⊕ τ(1,0,−1) ⊕ τ(0,−1,−1).

The weight (0, 0, 0) appears only in τ(1,0,−1) and with multiplicity 2. Since it has also multiplicity 2
in V (1,1,0), we deduce that {v,w} forms a basis for the (0, 0, 0)-eigenspace of τ(1,0,−1). On the other
hand, we have

V (2,1,1)
= τ(−1,−1,−2)⊕τ(1,−1,−2)⊕τ(1,1,0)⊕τ(1,1,−2)⊕τ(1,0,−1)⊕τ(2,−1,−1)⊕τ(2,1,−1)⊕τ(2,1,1)⊕τ(0,−1,−1).

The weight (0, 0, 0) only appears in τ(1,1,−2) ⊕ τ(1,0,−1) ⊕ τ(2,−1,−1), which implies that

z ∈ τ(1,1,−2) ⊕ τ(1,0,−1) ⊕ τ(2,−1,−1).

Notice that the decomposition of the standard representation of G0

V = τ(1,0,0) ⊕ τ(0,0,−1)

of K∞-representations can be realized by picking the basis {v1, v2, v3, w1, w2, w3}, where vr := er + i fr

and wr := ier + fr . The set {vr }1≤r≤3 (resp. {wr }1≤r≤3) defines a basis for τ(1,0,0) (resp. τ(0,0,−1)). We
now write z in terms of this basis. By using the relations

er =
1
2vr −

i
2wr , fr =

1
2wr −

i
2vr ,

we have that

e1 ⊗ f1 ∧ (e2 ∧ f2 − e3 ∧ f3)− f1 ⊗ e1 ∧ (e2 ∧ f2 − e3 ∧ f3)

is equal to
1
4

(
v1 ⊗w1 ∧ (v2 ∧w2 − v3 ∧w3)−w1 ⊗ v1 ∧ (v2 ∧w2 − v3 ∧w3)

)
.

Thus,

z = z1 − z2 =
1
4

(
v1 ·w1 ∧ (v2 ∧w2 − v3 ∧w3)−w1 · v1 ∧ (v2 ∧w2 − v3 ∧w3)

)
.

Notice that the vector w1 ∧ (v2 ∧ w2 − v3 ∧ w3) ∈ V (1,1,1) is of weight (−1, 0, 0) for T∞, while
v1 ∧ (v2 ∧w2 − v3 ∧w3) ∈ V (1,1,1) is of weight (1, 0, 0) for T∞. As

V (1,1,1)
= τ(1,1,1) ⊕ τ(1,−1,−1) ⊕ τ(1,1,−1) ⊕ τ(−1,−1,−1),

and as the weight (−1, 0, 0) appears only in τ(1,−1,−1) and (1, 0, 0) only in τ(1,1,−1), we have that

w1 ∧ (v2 ∧w2 − v3 ∧w3) ∈ τ(1,−1,−1), v1 ∧ (v2 ∧w2 − v3 ∧w3) ∈ τ(1,1,−1).
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By the properties of the Cartan product, the vector s1 :=v1 ·w1∧(v2∧w2−v3∧w3) is nonzero in τ(2,−1,−1),
while s2 := w1 · v1 ∧ (v2 ∧w2 − v3 ∧w3) is nonzero in τ(1,1,−2). This shows that the vector z ∈ V (2,1,1)

lives in τ(2,−1,−1) ⊕ τ(1,1,−2), thus finishing the proof. □

Proposition 4.6. The set {prτλ′ (v
[λ,µ])}µ (resp. {prτλ′ (v

[λ,µ])}µ) forms a basis of the weight (0, 0, 0)-
eigenspace of τλ′ ⊂ V λ (resp. τλ′ ⊂ V λ).

Proof. Recall that we have defined

v[λ,µ]
:= vλ2−µ ·wµ−λ3 · zλ3 ∈ F(0)⊆ (V λ)|H .

By Lemma 4.5, we have that v,w ∈ τ(1,0,−1) ⊆ V (1,1,0) so that, for any λ3 ≤ µ ≤ λ2, we have
vλ2−µ ⊗ wµ−λ3 ∈ τ

⊗λ2−λ3
(1,0,−1) and we deduce that the projection of vλ2−µ · wµ−λ3 ∈ V (λ2−λ3,λ2−λ3,0) to

τ(λ2−λ3,0,λ3−λ2) coincides with their Cartan product with respect to K∞. Moreover, each of these projections
is nonzero because of Lemma 3.1. Since the vectors

vλ2−µ ·wµ−λ3 ∈ τ(λ2−λ3,0,λ3−λ2)

are all different as they live in different H ′

0 subrepresentations (see the proof of Lemma 3.4), we
conclude that they span the λ2 − λ3 + 1-dimensional weight (0, 0, 0)-eigenspace of τ(λ2−λ3,0,λ3−λ2).
We now show that zλ3 projects nontrivially to both τ(2λ3,−λ3,−λ3) and τ(λ3,λ3,−2λ3). Notice that, as the
weights (2λ3,−λ3,−λ3) and (λ3, λ3,−2λ3) are extremal in V (2λ3,λ3,λ3) and appear uniquely, we have a
commutative diagram

(V (2,1,1))⊗λ3 ·
// //

(pr1,pr′1)
����

V (2λ3,λ3,λ3)

pr2

����

(τ(2,−1,−1))
⊗λ3 ⊕ (τ(1,1,−2))

⊗λ3 ·
// // τ(2λ3,−λ3,−λ3) ⊕ τ(λ3,λ3,−2λ3)

where the horizontal arrows are the Cartan projections and the vertical arrows are the natural projections
given by the decomposition of V (2r,r,r) as K∞-representations. Thanks to the commutativity of the
diagram, we know that the vector z⊗λ3 ∈ (V (2,1,1))⊗λ3 maps to

pr2(z
λ3)= pr1(z)

λ3 + pr′1(z)
λ3 = sλ3

1 + sλ3
2 ,

where s1, s2 are as in Lemma 4.5. This shows, again by Lemma 3.1, that each v[λ,µ] projects nontrivially
to both τλ′ and τλ′ and that each of these projections are different by Lemma 3.4. Indeed,

prτλ′ (v
[λ,µ])= vλ2−µ ·wµ−λ3 · sλ3

1 , prτλ′ (v
[λ,µ])= vλ2−µ ·wµ−λ3 · sλ3

2 .

By Lemma 4.4, this means that {prτλ′ (v
[λ,µ])}µ (resp. {prτλ′ (v

[λ,µ])}µ) defines a basis of the weight
(0, 0, 0)-eigenspace of τλ′ (resp. τλ′). This finishes the proof. □

We can now conclude the proof of Theorem 4.2
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Proof of Theorem 4.2. By construction, the map ω9∞
factors through τλ′+(2,2,−4) ⊆ τ(2,2,−4) ⊗ τλ′ .

Lemma 4.3 shows that the projection of X0 to τ(2,2,−4) is nonzero, while Proposition 4.6 shows that
prτλ′ (v

[λ,µ]) is nonzero. Since τλ′+(2,2,−4) is the Cartan product of τ(2,2,−4) and τλ′ , we deduce from
Lemma 3.1 that the image of the pure tensor prτ(2,2,−4)

(X0)⊗ prτλ′ (v
[λ,µ]) is nonzero. □

4.3. The pairing. Let π denote a cuspidal automorphic representation of PGSp6(A) for which π∞ is the
discrete series of Hodge type (3,3) in the L-packet of V λ with λ= (λ2 +λ3, λ2, λ3, 0). Let 9 =9∞ ⊗9 f

denote a cusp form in π = π∞ ⊗ π f . We assume that 9∞ is a highest weight vector of the minimal
K∞-type τ(λ2+2,λ3+2,−λ1−4) of π∞|G0(R). We let [ω9∞

] ∈ H 6(g, KG;π∞ ⊗ V λ) be the cohomology class
of the harmonic differential form ω9∞

defined in Lemma 4.1. We also assume that9 f ∈ Vπ f is U -invariant.
Then we have [ω9] := [ω9∞

⊗9 f ] ∈ H 6(g, KG;πU
⊗ V λ).

Lemma 4.7. There is a Hecke-equivariant inclusion

H 6(g, KG;πU
⊗ V λ)⊂ H 6

dR,c(ShG(U ),VλC).

Moreover, if πw is the Steinberg representation for some finite place w, such an inclusion is unique.

Proof. Let C∞

rd (G(Q)\G(A)/U, V λ) denote the space of V λ-valued C∞-functions on the double quo-
tient G(Q)\G(A)/U which, together with all their right U(gC)-derivatives, are rapidly decreasing
in the sense of [Harris 1990]. As π is cuspidal and cusp forms are rapidly decreasing, we have
H 6(g, KG;π∞ ⊗ V λ

C
)m(π)⊗πU

f ⊂ H 6(g, KG; C∞

rd (G(Q)\G(A)/U, V λ)). Thus the result follows from
the fact that, according to [Borel 1981, Theorem 5.2] (see also [Harris 1990, Theorem 1.4.1]), there exists a
canonical Hecke equivariant isomorphism H 6

dR,c(ShG(U ),Vλ)≃ H 6(g, KG; C∞

rd (G(Q)\G(A)/U, V λ)).

Finally, if πw is Steinberg at a finite place w, we have, as in Lemma 2.8, that m(π)= 1. □

4.3.1. The pairing in Betti cohomology. Poincaré duality is a perfect pairing

⟨ , ⟩ : H 6
B(ShG(U ),VλF (3))× H 6

B,c(ShG(U ),VλF )→ F(−3),

which is a morphism of mixed F-Hodge structures. Fix the choice of a measure dh on H(A) as follows.
For each finite place p, we take the Haar measure dh p on H(Qp) that assigns volume 1 to H(Zp). For
the archimedean place, we let X0 ∈

∧6pH,C be the generator fixed at the beginning of Section 4.2. The
choice of X0 induces an equivalence between top differential forms on X H = H(R)/K H,∞ and invariant
measures dh∞ on H(R) assigning measure one to K H,∞ (see [Harris 1997, p. 83] for details). We
let dh∞ denote the measure associated in this way to the pullback of ι[λ,µ]∗ω9 to X H and we then define
dh = dh∞

∏
p dh p.

Proposition 4.8. We have

⟨Z [λ,µ]

H,B , [ω9]⟩ =
hU ′

(2π i)3 · vol(U ′)

∫
H(Q)ZG(A)\H(A)

A[λ,µ]
·9(h) dh,

where hU ′ = 4−1
|ZG(Q)\ZG(A f )/(ZG(A f )∩ U ′)| and A[λ,µ]

∈ U (kC) is an element for which A[λ,µ]
·

9∞ = ω9∞
(X0 ⊗ v[λ,µ]).
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Proof. By [Borel 1981, Corollary 5.5], there exists a Vλ-valued rapidly decreasing differential form η of
degree five on ShG(U ) such that ωc := ω9 + dη is compactly supported. We have

⟨Z [λ,µ]

H,B , [ω9]⟩ = ⟨clB(ι
[λ,µ]

∗
1ShH (U ′)), [ωc]⟩

= ⟨ι[λ,µ]

∗
clB(1ShH (U ′)), [ωc]⟩

= ⟨clB(1ShH (U ′)), ι
[λ,µ]∗

[ωc]⟩

=
1

(2π i)3

∫
ShH (U ′)

ι[λ,µ]∗ωc,

where ι[λ,µ]∗
: ι∗V λ

→ F(0) is the H-equivariant projection dual to the inclusion ι[λ,µ]
: F(0)→ ι∗V λ

defined by 1 7→ v[λ,µ]
∈ V λ, where v[λ,µ] is the vector defined in Lemma 3.4. According to [Borel 1981,

§5.6], we have ∫
ShH (U ′)

ι[λ,µ]∗ dη = 0.

Hence, using Theorem 4.2 we have

⟨Z [λ,µ]

H,B , [ω9]⟩ =
1

(2π i)3

∫
ShH (U ′)

ι[λ,µ]∗ω9

=
1

(2π i)3

∫
ShH (U ′)

ω9(X0 ⊗ v[λ,µ])(h) dh

=
1

(2π i)3

∫
H(Q)\H(A)/ZH (R)K H,∞U ′

A[λ,µ]
·9(h) dh

=
hU ′

(2π i)3

∫
H(Q)ZG(A)\H(A)/U ′

A[λ,µ]
·9(h) dh

=
hU ′

(2π i)3 · vol(U ′)

∫
H(Q)ZG(A)\H(A)

A[λ,µ]
·9(h) dh,

where the third equality follows from Theorem 4.2 as ω9∞
(X0 ⊗ v[λ,µ]) is nonzero and thus it is

of the form A[λ,µ]
· 9∞, for some A[λ,µ]

∈ U (kC), because 9∞ is the highest weight vector of the
minimal K∞-type τ(λ2+2,λ3+2,−λ1−4). Moreover, the fourth equality follows from the fact that 9 is
fixed by the center of G, whence, using that |ZH(R)/(ZG ∩ H)(R)| = 4, the constant hU ′ is equal to
4−1

|ZG(Q)\ZG(A f )/(ZG(A f )∩ U ′)|. □

Remark 4.9. In view of Proposition 4.8, we immediately notice that if π is not H-distinguished, namely∫
H(Q)ZG(A)\H(A)

ϕπ (h) dh = 0

for any cusp form ϕπ in the space of π , we have that prπ∨Z [λ,µ]

H,B = 0. As we discuss later in Section 8, the
H-distinguishability is related to the property of π being a (functorial) lift from G2, which is (conjecturally)
equivalent to the fact that the spin L-function of π has a pole at s = 1.
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4.3.2. The pairing in absolute Hodge cohomology. Let

⟨ , ⟩H : H 7
H(ShG(U )/R,VR(4))× H 6

H,c(ShG(U )/R,VR(3))→ R

be the natural pairing between absolute Hodge cohomology and compactly supported cohomology as
constructed in [Beı̆linson 1986, §4.2]. In order to ease notation, we will denote by H∗

B,c(i) and H∗

B(i) the
cohomology groups H∗

B,c(ShG(U ),VF (i)) and H∗

B(ShG(U ),VF (i)), respectively. Recall from Section 2.9
that absolute Hodge cohomology and compactly supported cohomology live in exact sequences

0 → Ext1MHSR
(R(0), H 6

B(4))→ H 7
H(ShG(U ),VR(4))→ HomMHSR

(R(0), H 7
B(4))→ 0, (8)

0 → Ext1MHSR
(R(0), H 5

B,c(3))→ H 6
H,c(ShG(U ),VR(3))→ HomMHSR

(R(0), H 6
B,c(3))→ 0, (9)

which are deduced from the description of absolute Hodge cohomology as a cone of a diagram of complexes
of Hodge structures. Let [ω9]∈ H 6

B,c(ShG(U ),VλR(3)) be the compactly supported cohomology class of the
harmonic differential form ω9 . This class is of Hodge type (3, 3) and hence, since W0 H 6

B,c(3)= H 6
B,c(3),

it naturally lives in the space HomMHSR
(R(0), H 6

B,c(3)) = W0 HB,c(3)∩ F0 HB,c(3)C. Denote by ˜[ω9]

any lift of [ω9] in H 6
H,c(ShG(U ),VR(3)) via the surjection of the exact sequence (9).

Proposition 4.10. The pairing ⟨Z [λ,µ]

H,H ,
˜[ω9]⟩H depends only on [ω9] and not on the choice of lift. We

denote this value by ⟨Z [λ,µ]

H,H , [ω9]⟩H. Moreover, the pairing is given by the natural Poincaré duality
pairing. In particular, we have

⟨Z [λ,µ]

H,H , [ω9]⟩H =
hU ′

(2π i)3 · vol(U ′)

∫
H(Q)ZG(A)\H(A)

A[λ,µ]
·9(h) dh.

Proof. We give a sketch of the proof and we refer to [Beı̆linson 1986] or to [Burgos Gil et al. 2007, §5.1]
for the facts used here. It follows from the description of the pairing between absolute Hodge cohomology
and compactly supported cohomology given in [Beı̆linson 1986, §4.2] that, since our cycle class Z [λ,µ]

H,H
lives in the subspace Ext1MHSR

(R(0), H 6
B(4)) of H 7

H(ShG(U ),VR(4)), the map

⟨[Z [λ,µ]

H,H ],−⟩ : H 6
H,c(ShG(U ),VR(3))→ R

factors through HomMHSR
(R(0), H 6

B,c(3)) and coincides with the natural Poincaré duality pairing

Ext1MHSR
(R(0), H 6

B(4))⊗ HomMHSR
(R(0), H 6

B,c(3))−→ Ext1MHSR
(R(0), H 6

B(4)⊗ H 6
B,c(3))

∪
−→ Ext1MHSR

(R(0), H 12
B,c(7))

Tr
−→ Ext1MHSR

(R(0),R(1))= R.

This shows the first two assertions. The last formula follows from Proposition 4.8. □

5. Integral representation and residue of the spin L-function

In this section, using the result of [Pollack and Shah 2018], we explain the precise connection between
the period integral appearing in the statement of Proposition 4.8 and the residue of the spin L-function
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of π in the case where the cubic totally real étale algebra E over Q defining H is of the form Q × F,
with F a quadratic real étale algebra over Q. We start by recalling well-known analytic properties of
some Eisenstein series for GL2.

5.1. Eisenstein series for GL2. Let T2 denote the maximal diagonal torus of GL2 and let B2 = T2U2

denote the standard Borel. We denote by δ the character of T2 defined by diag(t1, t2) 7→ t1/t2 and
we regard δ as a character of B2 by extending it trivially to the unipotent radical. Let 8 ∈ S(A2) be a
Schwartz–Bruhat function. Following Jacquet, for any s ∈ C, we attach to8 the function f8 ∈ IndGL2(A)

B2(A)
δs

defined by

f8(h, s)= |det(h)|s
∫

A×

8((0, t)h)|t |2s d×t

and the Eisenstein series

E8(h, s)=

∑
γ∈B2(Q)\GL2(Q)

f8(γ h, s).

In the statement of the following lemma, we denote by 8̂(0)=
∫

A2 8(x, y) dx dy the value at 0 of the
Fourier transform of 8.

Lemma 5.1. (1) The Eisenstein series E8(h, s) is absolutely convergent for Re(s) big enough and has a
meromorphic continuation to C.

(2) We have

E8(h, s)=
|det(h)|s−18̂(0)

2(s − 1)
+ R(h, s),

where R(h, s) is an entire function in s for any h ∈ GL2(A).

Proof. Statement (1) is [Jacquet 1972, Proposition 19.2]. According to [Jacquet and Shalika 1981,
Lemma (4.2)] and its proof, we have

E8(h, s)=
c|det(h)|s−18̂(0)

s − 1
+ R(h, s),

where R(h, s) is holomorphic for Re(s) > 0 and c = (s − 1)
∫
|t |≤1 |t |2(s−1) d×t , the integral being over the

set {t ∈ A×/Q×
: |t | ≤ 1}. By Iwasawa–Tate we have c =

1
2 . □

5.2. Fourier coefficients. Here we discuss the definition and basic properties of some Fourier co-
efficients for cusp forms for G, which appear in the integral representation of the spin L-function
of [Pollack and Shah 2018].

5.2.1. The Siegel parabolic. We let Q = L3U3 denote the standard Siegel parabolic subgroup of G, with
Levi L3 ≃ GL3 × GL1. Explicitly,

L3 =
{
m(g, µ)=

( g
µt g−1

)
| g ∈ GL3, µ ∈ GL1

}
,

U3 =
{
n(u)=

( I3 u
I3

)
, u ∈ M3 | ut

= u
}
.
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Denote Sym(3) = {α ∈ M3 | αt
= α}. To each α ∈ Sym(3)(Q), we associate the unitary character

ψα : U3(Q)\U3(A)→ C× by n(u) ∈ U3(A) 7→ e(Tr(αu)), where e : Q\A → C× is the additive character
with e∞(x) := e2π i x for x ∈ R, and conductor 1 at the finite places. For each α ∈ Sym(3)(Q), we define
a Fourier coefficient along U3 for a cuspidal automorphic representation π of G(A) as follows.

Definition 5.2. Let 9 be a cusp form in the space of π . Define

9U3,ψα (g) :=

∫
U3(Q)\U3(A)

ψ−1
α (u)9(ug) du.

We let L3(Q) acts on Sym(3)(Q) via the right action α · m(g, µ)= µ−1gtαg.

Lemma 5.3. Let α, β ∈ Sym(3)(Q). If there exists m ∈ L3(Q) such that β = α · m, then

9U3,ψβ (g)=9U3,ψα (mg).

Proof. Suppose that β = α · m with m = m(g, µ). The result follows from the equality

ψβ(n(u))= e(Tr(µ−1gtαgu))= e(Tr(αguµ−1gt))= ψα(mn(u)m−1). □

In this manuscript, we are interested in Fourier coefficients associated to the set of rank-2 elements
of Sym(3)(Q), which we denote by Symrk2(3)(Q). Let D ∈ Q× and let F denote the étale quadratic
extension Q(

√
D) of Q. If D is not a square then F is a field, else F = Q × Q.

Definition 5.4. We let ψD : U3(Q)\U3(A)→ C× be the unitary character

ψD : n(u) 7→ e(Tr(αDu))= e(u33 − Du22)

associated to αD =
( 0

−D
1

)
∈ Symrk2(3)(Q).

Lemma 5.5. A set of representatives of Symrk2(3)(Q)/∼M3(Q) is given by

{αD : D ∈ Q×/(Q×)2}.

In view of Lemmas 5.3 and 5.5, the set of Fourier coefficients associated to the Siegel parabolic and a
rank-2 symmetric matrix is parametrized by the set of étale quadratic algebras of Q.

5.2.2. Fourier coefficients of type (4 2). We now turn our attention to Fourier coefficients associated
to the unipotent orbit of G associated to the partition (4 2). The corresponding unipotent subgroup is
the unipotent radical subgroup of the nonmaximal standard parabolic P = L P · UP , which arises as the
intersection of the Siegel parabolic Q with the Klingen parabolic. Notice that P has Levi L P = GL2×GL2

1,
given by {( a g

µa−1

µt g−1

)
: a, µ ∈ GL1, g ∈ GL2

}
.

Following [Pollack and Shah 2018, §2.1], we define a unitary character which we still denote

ψD : UP(Q)\UP(A)→ C×
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as follows. Every element of UP/[UP ,UP ] can be expressed as the product of n(v)ñ(u), where

n(v)=


1 v1 v2

1
1

1
−v1 1
−v2 1

∈ G, ñ(u)=

 1
1 u22 u23

1 u23 u33
1

1
1

∈ U3.

We will denote by Nv (resp. Nu) the set of the n(v)’s (resp. ñ(u)’s). If n ≡ n(v)ñ(u) modulo [UP ,UP ],
define

ψD(n) := e(v1 + u33 − Du22)= e(v1)ψD(n(u)).

Let π be a cuspidal automorphic representation of G(A). We define the following Fourier coefficients.

Definition 5.6. Let 9 be a cusp form in the space of π . Define

9UP ,ψD (g) :=

∫
UP (Q)\UP (A)

ψ−1
D (u)9(ug) du.

In the following proposition, we relate these Fourier coefficients to the ones for the Siegel parabolic
associated to rank-2 symmetric matrices.

Proposition 5.7. For a cusp form 9 in the space of π, the following two conditions are equivalent.

(1) 9UP ,ψD (g) ̸≡ 0.

(2) There exists α ∈ Symrk2(3)(Q) with α ∼L(Q) αD such that 9U3,α(g) ̸≡ 0.

Proof. Fourier expand 9U3,ψD (g) over Nv to get

9U3,ψD (g)=

∫
(Q\A)2

9U3,ψD (n(v)g) dv+

∑
γ∈StabL (ψD)(Q)\L(Q)

9UP ,ψD (γ g).

The term∫
(Q\A)2

9U3,ψD (n(v)g) dv =

∫
Nu(Q)\Nu(A)

ψ−1
D (ñ(u))

∫
UK (Q)\UK (A)

9(nk ñ(u)g) dnk dñ(u)

and the inner integral vanishes because of cuspidality of 9 along the unipotent radical UK of the Klingen
parabolic. Thus

9U3,ψD (g)=

∑
γ

9UP ,ψD (γ g).

This relation implies the result as follows. If 9U3,ψD (g) ̸≡ 0, the Fourier coefficient 9UP ,ψD (g) does not
vanish identically. Vice versa, if 9UP ,ψD (g) ̸≡ 0 then there is a character ψ ′ in the L(Q)-orbit of ψD such
that 9U3,ψ ′(g) ̸≡ 0. □

5.3. The spin L-function and its residue at s = 1. Let π denote any cuspidal automorphic representation
of G(A) with trivial central character. Let S denote a finite set of places of Q containing the ones where π
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is ramified and the archimedean place. If Spin : Spin7(C)→ GL(V8) denotes the eight-dimensional spin
representation, the partial spin L-function of π is defined to be

L S(s, π,Spin) :=

∏
ℓ̸∈S

1
det(1 − ℓ−s Spin(sπℓ))

,

where sπℓ denotes the Satake parameter of the unramified local component πℓ. Let H be the group (3)
associated to the étale cubic algebra Q × F, where F = Q(

√
D) with either D ̸≡ 1 ∈ Q×

>0/(Q
×)2, in

which case F is a real quadratic field, or D ≡ 1 mod (Q×)2, in which case F = Q × Q. For any cusp
form 9 ∈ Vπ , Pollack and Shah [2018] gave an integral representation

I(8,9, s)=

∫
Z(A)H(Q)\H(A)

E8(h1, s)9(h) dh

of L S(s, π,Spin). For any8 and9, the integral I(8,9, s) is absolutely convergent for Re(s) big enough
and has a meromorphic continuation to C. According to [Gan and Gurevich 2009, Proposition 7.1], for
Re(s) big enough we have the unfolding

I(8,9, s)=

∫
UBH (A)Z(A)\H(A)

f8(h1, s)9UP ,ψD (h) dh,

where UBH is the unipotent radical of the upper triangular Borel subgroup BH of H and 9UP ,ψD is the
Fourier coefficient of Definition 5.6.

Theorem 5.8 [Pollack and Shah 2018]. For a set 6 of places of Q, denote

I6(8,9, s)=

∫
UBH (Q6)

ZG(Q6)\H(Q6)

f (h1,86, s)9UP ,ψD (h) dh.

Let 9 be a cusp form in the space of π . Then, for any factorizable Schwartz–Bruhat function 8 on A2

and up to enlarging S, we have

I(8,9, s)= IS(8,9, s)L S(s, π,Spin).

Moreover, there exists a cusp form 9̃ in the space of π and a factorizable Schwartz–Bruhat function 8
on A2 such that

I(8, 9̃, s)= I∞(8,9, s)L S(s, π,Spin).

Note that if π does not support a rank-2 Fourier coefficient (for the Siegel parabolic Q) and thus, by
Proposition 5.7, a Fourier coefficient for P, the integral I(8,9, s) is identically zero.

Corollary 5.9 [Pollack and Shah 2018]. Suppose that π supports a rank-2 Fourier coefficient. Then the
partial spin L-function L S(s, π,Spin) has meromorphic continuation in s, is holomorphic outside s = 1,
and has at worst a simple pole at s = 1.

As we explain in later sections, using results of Gan and Gurevich, Pollack and Shah further proved
that when L S(s, π,Spin) has a simple pole at s = 1, π lifts to the split G2 under the exceptional theta



Algebraic cycles and functorial lifts from G2 to PGSp6 585

correspondence. This observation is based on the following key relation between the residue at s = 1
of L S(s, π,Spin) and the automorphic period we have introduced in Section 4.3.

Proposition 5.10. For any factorizable Schwartz–Bruhat function 8 on A2, we have

8̂(0)
2

·

∫
Z(A)H(Q)\H(A)

9(h) dh = Ress=1
(
IS(8,9, s)L S(s, π,Spin)

)
.

Proof. Thanks to Lemma 5.1, the residue at s = 1 of I(8,9, s) equals

8̂(0)
2

·

∫
Z(A)H(Q)\H(A)

9(h) dh.

The result then follows from Theorem 5.8. □

We now state our first main result. Let π denote a cuspidal automorphic representation of PGSp6(A) for
which π∞ is the discrete series of Hodge type (3,3) in the L-packet of V λ with λ= (λ2+λ3, λ2, λ3, 0). Let
Z [λ,µ]

H,B ,Z
[λ,µ]

H,H , and ω9 be as in Sections 3.4 and 4.3. Let 9[λ,µ] denote A[λ,µ]
·9, where A[λ,µ]

∈ U (kC)

is the operator defined in Proposition 4.8.

Theorem 5.11. We have

⟨Z [λ,µ]

H,H , [ω9]⟩H = ⟨Z [λ,µ]

H,B , [ω9]⟩ = C · Ress=1
(
IS(8,9

[λ,µ], s)L S(s, π,Spin)
)
,

where

C =
8̂(0)hU ′

2(2π i)3 · vol(U ′)
.

Proof. By Propositions 4.8 and 4.10, we have that

⟨Z [λ,µ]

H,H , [ω9]⟩H = ⟨Z [λ,µ]

H,B , [ω9]⟩ =
hU ′

(2π i)3 · vol(U ′)

∫
H(Q)ZG(A)\H(A)

9[λ,µ](h) dh,

where U ′
= U ∩ H(A f ) and hU ′ = 4−1

|ZG(Q)\ZG(A f )/(ZG(A f )∩U ′)|. By Proposition 5.10, we have

⟨Z [λ,µ]

H,B , [ω9]⟩ = C · Ress=1
(
IS(8,9

[λ,µ], s)L S(s, π,Spin)
)
,

where

C =
8̂(0)hU ′

2(2π i)3 · vol(U ′)
.

This finishes the proof. □

Let us fix a Schwartz–Bruhat function 8 such that 8̂(0) ̸= 0.

Corollary 5.12. Suppose that π satisfies the following hypotheses:

• IS(8,9
[λ,µ], 1) ̸= 0 for some µ.

• The partial L-function L S(s, π,Spin) has a pole at s = 1.

Then
⟨Z [λ,µ]

H,B , [ω9]⟩ = ⟨Z [λ,µ]

H,H , [ω9]⟩H ̸= 0.
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Proof. By [Pollack and Shah 2018, Theorem 1.3] the function L S(s, π,Spin)= 1 has at most a simple
pole. As a consequence Ress=1L S(s, π,Spin) ̸= 0. By Theorem 5.11, under the assumption that
IS(8,9

[λ,µ], 1) ̸= 0, this implies that ⟨Z [λ,µ]

H,B , [ω9]⟩ ̸= 0. □

Remark 5.13. If the automorphic representation π supports a rank-2 Fourier coefficient and its partial
spin L-function has a (necessarily simple) pole at s = 1, by the results of [Pollack and Shah 2018] it is
H-distinguished, namely the map PH ∈ HomH(A)(π, 1) defined by

9 7→ PH(9) :=

∫
Z(A)H(Q)\H(A)

9(h) dh

is not identically zero. Then, asking IS(8,9
[λ,µ], 1) ̸= 0 for some µ is equivalent to asking that the map

obtained as the composition of PH with an H(R)-equivariant embedding π∞ → π restricts nontrivially
to the minimal K∞-type of π∞.

Denote by H 6
M(ShG(U ),V λ

F (3))hom the F-vector space defined in Section 3.4.3 and denote by
H 6

M(ShG(U ),V λ
F (3))hom[π∨

f ] its π∨

f -isotypical component. This is a finite-dimensional L-vector space,
where L is the number field introduced in Section 2.8. The Tate conjecture for the motive attached to π
(see Conjecture 1.1(3)) predicts the equality

−ords=1L(s, π,Spin)= dimL H 6
M(ShG(U ),V λ

F (3))hom[π∨

f ].

Corollary 5.14. If IS(8,9
[λ,µ], 1) ̸= 0, then

−ords=1L S(s, π,Spin)≤ dimL H 6
M(ShG(U ),V λ

F (3))hom[π∨

f ].

Proof. If L S(s, π,Spin) does not have a pole at s = 1, there is nothing to prove. If not, Corollary 5.12
implies that the projection of Z [λ,µ]

H,B to the π∨

f -isotypical component is nonzero, showing the result. □

The following result verifies a weaker form of Conjecture 1.1(3) for the motive M(π∨

f )(3) at the cost
of supposing that IS(8,9

[λ,µ], 1) is nonzero for some µ.

Corollary 5.15. Suppose that π satisfies the hypotheses of Corollary 5.12 and that (St) holds. Then
prπ∨Z [λ,µ]

H,H and its Hecke translates generate H 1
H(M(π

∨

f )R(4)).

Proof. If πp is the Steinberg representation, it follows from the second statement of Lemma 2.11 and its
proof that H 1

H(M(π
∨

f )R(4)) is a rank-1 module over the full Hecke algebra of level U. Hence the result
follows by Corollary 5.12. □

6. Exceptional theta lifts from G2 to PGSp6

In this section, we discuss the exceptional theta correspondence for the dual reductive pair (G2,PGSp6)

and describe the set of Fourier coefficients associated to the Heisenberg parabolic for cuspidal automorphic
forms of G2(A). Its sole purpose is to fix notation and to recall some well-known results that will be
used later, so the knowledgeable reader might skip it.
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s1 s2 s3 t1 t2 t3 s4 t4

s1 0 –t3 t2 s4 0 0 0 s1

s2 t3 0 –t1 0 s4 0 0 s2

s3 –t2 t1 0 0 0 s4 0 s3

t1 t4 0 0 0 s3 –s2 t1 0
t2 0 t4 0 –s3 0 s1 t2 0
t3 0 0 t4 s2 –s1 0 t3 0
s4 s1 s2 s3 0 0 0 s4 0
t4 0 0 0 t1 t2 t3 0 t4

Table 1. Multiplication table for the basis {s1, s2, s3, s4, t1, t2, t3, t4}.

6.1. Split G2 and E7. In this section we will follow the exposition of the Appendix of [Harris et al.
2023] by Savin.

6.1.1. The group G2. Let H be the algebra of Hamilton quaternions over Q with the usual basis {1, i, j, k}.
The conjugate a of an element a = α0 + α1i + α2 j + α3k ∈ H is a = α0 − α1i − α2 j − α3k. The split
octonion algebra over Q is O = H ⊕ H with multiplication

(a, b) · (c, d)= (ac + db, ad + cb).

Then O is a noncommutative, nonassociative Q-algebra. However it is alternative, which means that for
any x, y ∈ O we have x · (x · y)= (x · x) · y and (x · y) · y = x · (y · y) (see [Jacobson 1958]). If x = (a, b),
let x = (a,−b). Then x 7→ x is a Q-linear involution on O satisfying x · y = y · x . The norm N : O → Q

is the quadratic form defined by x 7→ x · x = x · x . The trace Tr : O → Q is defined by x 7→ x + x . For
any x, y, z ∈ O, the properties

N(x · y)= N(x)N(y),

Tr(x · y)= Tr(y · x),

Tr(x · (y · z))= Tr((x · y) · z)

are satisfied. For x, y ∈ O, we write y ∈ x⊥ if y is orthogonal to x with respect to the bilinear form
(x, y) 7→ Tr(x · y), which means that x · y + y · x = 0.

Let l = (0, 1) ∈ O so that {1, i, j, k, l, li, l j, lk} is a basis of O. From this, one constructs another
useful basis {s1, s2, s3, s4, t1, t2, t3, t4}, where

s1 =
1
2(i + li), s2 =

1
2( j + l j), s3 =

1
2(k + lk), s4 =

1
2(1 + l),

t1 =
1
2(i − li), t2 =

1
2( j − l j), t3 =

1
2(k − lk), t4 =

1
2(1 − l).

See Table 1 for the multiplication table, as given in Table 1 of the Appendix of [Harris et al. 2023].
We define

G2 := {g ∈ GL(O) | g(x · y)= (gx) · (gy),∀x, y ∈ O}.
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to be the group of automorphisms of O. We note that G2 acts transitively on nonzero elements of trace
zero and norm zero. We will denote the set of trace zero octonions by either O0 or V7, where the latter
notation emphasizes that this set defines the standard irreducible seven-dimensional representation of G2

and induces an embedding
G2 ↪→ SO7.

6.1.2. The dual reductive pair. We consider the Albert algebra J over Q, which is the set of matrices

A =

(
d z y
z e x
y x f

)
,

where d, e, f ∈ Q and x, y, z ∈ O. The algebra J is equipped with a cubic form, called the determinant,
which is given by

det(A)= de f − d N (x)− eN (y)− f N (z)+ Tr(zyx).

The group of isogenies of this form is a group of type E6 and its orbits on J are classified by the rank.
We will need to consider the set � of rank-1 elements A ∈ J, i.e., those A ̸= 0 such that A2

= Tr(A) · A.
This condition means that the entries of A satisfy the equalities

N(x)= e f, N(y)= d f, N(z)= de,
dx = y · z, ey = z · x, f z = x · y.

(10)

Let G denote the split adjoint group of type E7, which is constructed from J by the Koecher–Tits
construction (see Section 3 of [Kobayashi and Savin 2015]). The group G has a maximal parabolic
P = MN and its opposite P = M N , with N ≃ J and such that the action under conjugation of the Levi M
on N gives an isomorphism of M and the group of similitudes of the cubic form on J

M ∼= {g ∈ GL(J ) | det(g A)= λ det(A) for some λ ∈ Gm and all A ∈ J }.

The group G2 can be realized as a subgroup of M via its action on J by the rule

g ·

(
d z y
z e x
y x f

)
=

(
d gz gy
gz e gx
gy gx f

)
.

This action has fixed points J3, the Jordan algebra of symmetric 3 × 3 matrices with entries in Q. Note
that the left action of GL3 on J3 ∼= N given by

g · A = det(g)−1g Agt (11)

extends to an action on J preserving the determinant form up to scalar, thus defining an embedding
of GL3 into M. Then GL3 is the centralizer of G2 in M and Q = GL3U3 (which is the Siegel parabolic
of PGSp6) is the centralizer of G2 in P. Similarly, the opposite Q is the centralizer of G2 in P . This
gives the dual reductive pair (G2,PGSp6) in G.

6.2. Fourier coefficients for G2.

6.2.1. Root system and parabolic subgroups. Let T be a (rank-2) maximal split torus over Q in G2 and
let 1 (resp. 1+

⊂1) be the set of roots (resp. a subset of positive roots) for G2. Let a (resp. b) denote
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the long (resp. short) simple root in 1+. Then

1+
= {a, b, a + b, a + 2b, a + 3b, 2a + 3b}.

We let B = T U denote the Borel subgroup of G2 associated to 1+. Other than B, there are two proper
standard parabolic subgroups Pa and Pb of G2, such that Pa ∩ Pb = B. They are characterized by the
following. For any α ∈1+, denote by xα : Ga ↪→ U the one parameter unipotent subgroup associated to α.
Then, for each r ∈ {a, b}, the Levi Lr of Pr is isomorphic to GL2 and contains xr . We fix an isomorphism
GL2 ≃ Lr such that

( 1 u
1

)
7→ xr (u).

Let Ua be the unipotent radical of Pa . It is a 3-step nilpotent group of dimension 5 with filtration

Ua ⊃ U1 ⊃ U2 ⊃ {1},

where Ua/U1 is generated by {xb, xa+b}, U1/U2 is isomorphic to the one parameter unipotent sub-
group xa+2b, and U2 is generated by {xa+3b, x2a+3b}. As representations of La , Ua/U1 is the standard
representation, while U1/U2 is the determinant (see [Gan and Savin 2023, §2.4]).

We denote by H := Pb the so-called Heisenberg parabolic and let L H UH denote its Levi decomposition.
The unipotent radical UH is of dimension 5 and admits the filtration

UH ⊃ [UH ,UH ] ⊃ {1},

with UH/[UH ,UH ] being the four-dimensional abelian unipotent group generated by

{xa, xa+b, xa+2b, xa+3b},

while [UH ,UH ] is isomorphic to the one parameter unipotent subgroup x2a+3b.

6.2.2. An embedding of SL3 into G2. The group G2 acts transitively on the set

0c := {x ∈ O0
| N (x)= −c}.

By [Jacobson 1958, Theorem 4], the stabilizer of an element y0 ∈ 01 is isomorphic to SL3. Choose y0

such that the unipotent radical USL3 of the upper triangular Borel of SL3 is generated by the one-parameter
subgroups

{xa, xa+3b, x2a+3b}.

In terms of the basis chosen in Section 6.1.1, this is achieved by choosing y0 = s4 − t4. In this case,
one shows (see [Rallis and Schiffmann 1989, Lemma 2]) that the stabilizer of y0 leaves invariant the
subspace ⟨s1, s2, s3⟩ and is identified with SL3 = SL(⟨s1, s2, s3⟩).

6.2.3. The Lie algebra of G2. The multiplication map on O induces a map V7 ⊗ V7 → V7 given by
x ⊗ y 7→

1
2(xy − yx). This map is alternating; hence it induces a G2-equivariant map

∧2V7 → V7 which
is surjective. Then the Lie algebra g2 of G2 can be identified with the kernel of this map. Under this
identification, one has an explicit description of the action of g2 on V7, namely

(w∧ x) · v = ⟨x, v⟩w− ⟨w, v⟩x .
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We will also need (see [Fulton and Harris 1991, §22.2]) the decomposition

g2 = sl3 ⊕ Std3 ⊕ Std∗

3, (12)

where Std3 is the standard representation of SL3 with basis {v1, v2, v3} and Std∗

3 is its dual with basis
{δ1, δ2, δ3} and where we denote by Ei j , 1 ≤ i < j ≤ 3 the standard basis vectors of sl3. The identification
between the two descriptions (see [Pollack 2021, §2.2]) of g2 is given by Ei j = t j ∧ si , 1 ≤ i < j ≤ 3,
vi = (s4 − t4)∧ si + ti+1 ∧ ti+2 and δi = (s4 − t4)∧ ti + si+1 ∧ si+2, 1 ≤ i ≤ 3, where indices are taken
modulo 3. Moreover, the component sl3 is the Lie algebra of the copy of SL3 embedded into G2 as above.
In particular, E12, E13 and E23 are root vectors for the roots a, 2a +3b and a +3b respectively. Moreover,
the vectors v1, v2 and δ3 are root vectors for the roots a + b, b and a + 2b, respectively. Via (12), the Lie
algebra uH of UH is

uH = uSL3 ⊕ Qv1 ⊕ Qδ3. (13)

Under (12) the Lie algebra lH of the Levi L H is generated by the Cartan subalgebra and the root
vectors v2, δ2.

6.2.4. Fourier coefficients. We now describe the Fourier coefficients for G2 associated to the Heisenberg
parabolic. We closely follow [Pollack 2021] and refer to it for more details. In order to describe the
Fourier coefficients associated to H, we need to study the L H -representation VH := UH/[UH ,UH ]. As
a GL2-representation, VH is isomorphic to Sym3(Std2)⊗ det−1(Std2), where Std2 denotes the standard
representation of GL2. Under the identification of (13), (a representative of) an element of VH (Q) can be
written as

xa(λ1)xa+b(λ2/3)xa+2b(λ3/3)xa+3b(λ4), with λi ∈ Q,

which corresponds to the binary cubic polynomial

p(x, y)= λ1x3
+ λ2x2 y + λ3xy2

+ λ4 y3,

where x, y form a basis of Std2. Associated to p, there is the cubic Q-algebra R with basis {1, i, j} with
multiplicative table

i j = −ad

i2
= −ac + bi − aj

j2
= −bd + di − cj.

Example 6.1. (1) [Gross and Lucianovic 2009, 3.2] If p(x, y)= x2 y−xy2 then the associated Q-algebra
R is isomorphic to Q3.

(2) [Gross and Lucianovic 2009, 3.3] If p(x, y)= x3
− Dxy2

(
or equivalently p(x, y)= −Dx2 y + y3

using the action of
(0

1
1
0

))
then the associated Q-algebra R is isomorphic to Q ⊕ Q(

√
D).

There is an action of GL2(Q) on the set of bases {1, i, j} of a given cubic algebra R, which makes the
association p(X, Y ) 7→ (R, {1, i, j}) GL2(Q)-equivariant. Since any cubic algebra admits a basis of this
shape, we have the following.
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Proposition 6.2 [Gross and Lucianovic 2009, Proposition 2.1]. There is a bijection between the GL2(Q)-
orbits on VH (Q) and the set of isomorphism classes of cubic Q-algebras. Moreover, each orbit has a
well-defined discriminant in Q×/(Q×)2.

Let e : Q\A → C× be the additive character introduced in Section 5.2.1. Let ⟨ , ⟩ denote the symplectic
pairing on VH defined as follows. If v, v′

∈ VH correspond to p(x, y) and p′(x, y) respectively, then

⟨v, v′
⟩ = λ1λ

′

4 −
1
3λ2λ

′

3 +
1
3λ3λ

′

2 − λ4λ
′

1.

Any character ψ : UH (Q)\UH (A)→ C× factors through VH (A); hence we consider the projection n of
n ∈ UH (A) to VH (A), which, by (13), can be written as

n = xa(λ
′

1)xa+b
1
3λ

′

2xa+2b
1
3λ

′

3xa+3b(λ
′

4).

If v ∈ VH (Q) corresponds to p(x, y), we then define ψv : UH (Q)\UH (A)→ C× by

n 7→ e(⟨v, n⟩)= e
(
λ1λ

′

4 −
1
3λ2λ

′

3 +
1
3λ3λ

′

2 − λ4λ
′

1
)
.

The character ψv is nondegenerate if and only if v corresponds to an étale cubic algebra over Q. In this
manuscript, we are interested in étale cubic algebras of the form Q× F, with F of either the form Q(

√
D)

(with Q×/(Q×)2 ∋ D ̸≡ 1) or Q × Q (with D ≡ 1 mod (Q×)2).

Definition 6.3. Let ψH,D : UH (Q)\UH (A) → C× denote the character associated to Q × F . Given a
cusp form ϕ for G2(A), define

ϕUH ,ψH,D (g) :=

∫
UH (Q)\UH (A)

ψ−1
H,D(n)ϕ(ng) dn.

6.3. The theta lift from G2 to PGSp6. Let5=
⊗

′

v5v denote the restricted tensor product of the minimal
representations 5v of E7(Qv) over all places v of Q. A unitary model of the minimal representation is
given by L2(�), where recall that � denotes the subset of rank-1 elements in J. There is a unique up to a
nonzero scalar embedding

θ :5→ A(E7(Q)\E7(A))

of 5 in the space A(E7(Q)\E7(A)) of automorphic forms of E7 (see [Ginzburg et al. 1997a; Kobayashi
and Savin 2015]). For f ∈5 and ϕ ∈ A(G2(Q)\G2(A)), we define a function 2( f, ϕ) on PGSp6(A) by

2( f, ϕ)(g)=

∫
G2(Q)\G2(A)

θ( f )(g′g)ϕ(g′) dg′.

Definition 6.4. Let σ be a cuspidal automorphic representation of G2(A).

(1) Define 2(σ) to be the span of the functions 2( f, ϕ), where f ∈ 5 and ϕ runs through the cusp
forms in the contragredient σ∨ of σ .

(2) We say that a cuspidal automorphic representation π of PGSp6(A) is a 2-lift of σ if it appears as an
irreducible subquotient of 2(σ).
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If a 2-lift of σ exists, then its local constituents are compatible with the local theta correspondence
between G2 and PGSp6.

Proposition 6.5. Let π be a 2-lift of σ. Then πv is an irreducible subquotient of 2(σv).

Proof. See [Harris et al. 2023, Theorem 1.7(i)]. □

After imposing certain local conditions on σ , in the next section we use one of the main results of
[Ginzburg et al. 1997b] to show that 2(σ) is nonzero and cuspidal, thus proving the existence of a
nontrivial 2-lift of σ . Before doing so, we first recall the properties of the local theta correspondence
needed later.

6.3.1. Discrete series and a conjecture of Gross. Let Tc denote a compact torus in G2(R), which is
contained in the maximal compact subgroup KG2 ≃ (SU2 × SU2)/µ2 of G2(R). We abuse notation
denoting again by a, b the simple positive roots for Tc (with the short root b which we assume to be
compact) and 1+ the resulting set of positive roots. Then, ρ =

1
2

∑
α∈1+ α = 3a +5b. The set of positive

compact roots is given by
1+

c = {b, 2a + 3b},

which, in the notation of [Li 1997], is {2ε2, 2ε1}. The Weyl group WG2 is isomorphic to the dihedral
group D6 of 12 elements and it is generated by wa and wb, where wα denotes the reflections around the
line orthogonal to α. The Weyl group WKG2

≃ (Z/2Z)2 is generated by wb and w2a+3b =wawbwawbwa .
Let γ be a dominant weight for G2 with respect to Tc. The set of equivalence classes of irreducible

discrete series of G2(R) associated to γ has cardinality equal to |WG2/WKG2
|= 3. Choose representatives

{w1, w2, w3} of WG2/WKG2
such that wiρ is dominant for KG2 . Then, for any 1 ≤ i ≤ 3, there exists

an irreducible discrete series σ0
∞

of Harish-Chandra parameter 0 = wi (γ + ρ) and minimal KG2-type
0+δG2−2δKG2

, where δG2 (resp. δKG2
) is the half-sum of roots (resp. compact roots) which are positive with

respect to the Weyl chamber in which 0 lies. Precisely, if we let w1 = id, w2 =wa , and w3 =wbwa , then

w1ρ = ρ = 3ε1 + ε2,

w2ρ = 2a + 5b = 2ε1 + 4ε2,

w3ρ = a + 4b = ε1 + 5ε2.

We let D3,1, D2,4, and D1,5 denote the sets of discrete series of G2(R) whose Harish-Chandra parameter
lies in the Weyl chamber corresponding to w1ρ, w2ρ, and w3ρ respectively. Elements of D3,1 are the
quaternionic discrete series, while elements of D2,4 are the generic discrete series.

Gross has given a precise conjectural description of the entire discrete spectrum of the dual pair
(G2,PGSp6) (see [Li 1997, Conjecture 1.2]). Recall that there are four families of discrete series for
PGSp6(R), indexed by the set of Hodge types up to conjugation. In particular, the discrete series of
PGSp6(R) of Hodge type (4, 2) (resp. (6, 0)) are the generic (resp. holomorphic) discrete series.

Conjecture 6.6 (Gross). Let 5∞ be the minimal representation of E7(R). The discrete spectrum of the
restriction of 5∞ to the dual pair G2(R)×PGSp6(R) is the direct sum of all tensor products σ∞ ⊗θ(σ∞),
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where σ∞ belongs to the discrete series of G2. If σ∞ has infinitesimal character γ + ρ = rε1 + sε2 and
belongs to either D3,1, D2,4, or D1,5, then θ(σ∞) is the discrete series of PGSp6(R) with infinitesimal
character

(
r, 1

2(r + s), 1
2(r − s)

)
and Hodge type (3, 3), (4, 2), or (5, 1) respectively.

Partial results towards the conjecture of Gross were shown by Li for discrete series in D3,1 (see
Section 6.3.2 below) and for the generic family D2,4 by Harris, Khare and Thorne [Harris et al. 2023,
Theorems 1.5 and 1.7(ii)] using the main result of Savin’s appendix to [Harris et al. 2023] and the
nonvanishing of the global theta lift given by [Ginzburg et al. 1997b, Corollary 4.2]. Li [1997, Theorem 4.3]
also gave evidence to the predictions of Gross for a proper subset D′

1,5 of D1,5. We also note that the
remaining equivalence class of holomorphic discrete series of PGSp6(R) (of Hodge type (6, 0)) is realized
in an exceptional theta correspondence studied by Gross and Savin between the compact real form Gc

2(R)

of G2 and PGSp6(R) and moreover this is the only Hodge type that appears in that correspondence (see
[Gross and Savin 1998, Theorem 3.5]).

6.3.2. Quaternionic discrete series and their theta lift. We describe the main result of [Li 1997]. We first
notice that a discrete series σ x,y

∞ of Harish-Chandra parameter xε1 + yε2 lies in the set of quaternionic
discrete series D3,1 if x, y are two nonnegative integers such that x − 3 ≥ y − 1 ≥ 0 and x − y is even.
The minimal KG2-type of σ x,y

∞ ∈ D3,1 is given by

Symx+1(Stdε1)⊠Symy−1(Stdε2),

where Stdε1 (resp. Stdε2) is the standard representation of the SU2 corresponding to the long root ε1

(resp. the short root ε2).

Proposition 6.7. Let 5∞ denote the minimal representation of E7(R). We have

5∞|G2(R)×PGSp6(R)
⊇

⊕
σ

x,y
∞ ∈D3,1

σ x,y
∞

⊗ θ(σ x,y
∞
),

where θ(σ x,y
∞ ) ∈ P(V λ), with λ =

(
x − 3, 1

2(x + y)− 2, 1
2(x − y)− 1, 0

)
, is the discrete series π3,3

∞
of

Hodge type (3, 3) and Harish-Chandra parameter
( 1

2(x + y), 1
2(x − y),−x

)
.

Proof. See [Li 1997, Theorem 1.1; Huang et al. 1996, Theorem 5.4]. □

The set D3,1 contains an important family of discrete series, which were studied by Gross and
Wallach [1994; 1996].

Definition 6.8. For every n ≥ 2, the quaternionic discrete series σn is the element of D3,1 of Harish-
Chandra parameter (2n − 1)ε1 + ε2 and minimal KG2-type

Sym2n(Stdε1)⊠ 1.

A fundamental property of the members of this family is that they admit (unique) models with respect
to the unipotent radical of the Heisenberg parabolic and nondegenerate characters corresponding to totally
real étale cubic algebras. Recall, as in Section 6.2.4, that a nondegenerate character ψ : UH (R)→ C×
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corresponds to a cubic algebra, whose discriminant is either positive or negative. The first type corresponds
to the GL2(R)-orbit on VH (R) given by R3, while the second to the GL2(R)-orbit of R×C. A representative
ψ : UH (R)→ C× of the totally real orbit is given by e2π i f , where f : UH (R)→ R is nonzero on the one
parameter unipotent subgroups xa+b and xa+2b and trivial on xa and xa+3b (see [Gan et al. 2002, §6]). A
special case of the main result of [Wallach 2003] gives the following.

Proposition 6.9. Let ψ be a nondegenerate character of VH (R). There is (at most) a one-dimensional
space of ψ-equivariant linear functionals on σn . Moreover,

dim HomUH (R)(σn, ψ)= 1,

exactly when ψ corresponds to a totally real cubic algebra.

6.3.3. The nonarchimedean theta correspondence. We describe the properties of the nonarchimedean
theta correspondence which will be later needed to study the global theta correspondence. Let σ be
an irreducible admissible representation of G2(Qp). The maximal σ -isotypic quotient of the minimal
representation 5p of E7(Qp) can be expressed as σ ⊠2(σ), with 2(σ) a smooth representation of
PGSp6(Qp) which is called the big theta lift of σ .

Proposition 6.10. For an irreducible admissible representation σ of G2(Qp), 2(σ) has finite length with
unique irreducible quotient (if nonzero) θ(σ ). Moreover, one has the following.

(1) Let σ be an unramified generic representation of G2(Qp) with Satake parameter s. Then π = θ(σ ) is
the unramified representation of PGSp6(Qp) whose Satake parameter is ϕ◦s, where ϕ : G2 ↪→ Spin7

is the map of L-groups.

(2) Let StG2 (resp. StPGSp6
) be the Steinberg representation of G2(Qp) (resp. PGSp6(Qp)). Then

θ(StG2)= StPGSp6
.

Proof. See [Gan and Savin 2023, Theorems 1.2, 15.3(v); Gross and Savin 1998, Proposition 3.1]. □

7. Cuspidality and Fourier coefficients of the global theta lift

In this section, based on [Ginzburg et al. 1997b; Gross and Savin 1998], and the appendix of Savin in
[Harris et al. 2023], we give a criterion on the cuspidality of representations in the image of the exceptional
theta lift and on their possession of Fourier coefficients of type (4 2).

7.1. Cuspidality of the global lift. Let V denote the unipotent subgroup of SL3 (embedded into G2 as in
Section 6.2.2) generated by the roots a+3b and 2a+3b. We further consider the subgroup SL2 embedded
into G2 via the Levi of the “long root” parabolic Pa and denote, for any cusp form ϕ for G2(A),

ϕSL2V (g) :=

∫
SL2(Q)\SL2(A)

∫
V (Q)\V (A)

ϕ(vmg) dv dm.

We will now show that the above period vanishes whenever ϕ is not globally generic. We are thankful to
David Ginzburg for kindly sharing with us a proof of this fact.
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Lemma 7.1. Let σ be a cuspidal automorphic representation of G2(A), which is not globally generic.
For any cusp form ϕ ∈ Vσ and g ∈ G2(A), we have ϕSL2V (g)= 0.

Proof. Let Z denote the unipotent subgroup of G2 generated by the roots a + 2b, a + 3b, and 2a + 3b.
Let ϕ ∈ Vσ . If we Fourier expand the period ϕSL2V (g) along the one-dimensional unipotent subgroup
xa+2b(r) of G2, we get

ϕSL2V (g)= ϕSL2 Z (g)+
∑
ψ

ϕSL2 Z ,ψ(g),

where the sum runs over nontrivial additive characters ψ : Z(Q)\Z(A) → C× supported on the root
a + 2b, ϕSL2 Z (g) is the period of ϕ over [SL2 Z ], and

ϕSL2 Z ,ψ(g) :=

∫
SL2(Q)\SL2(A)

∫
Z(Q)\Z(A)

ϕ(umg)ψ(u) du dm.

By [Ginzburg et al. 1997b, Lemma 2.1], ϕSL2 Z (g)= 0 for all ϕ in σ and g ∈ G2(A). Hence ϕSL2V (g)= 0
if and only if ϕSL2 Z ,ψ(g) = 0 for all nontrivial ψ . We now argue by contradiction. Suppose that
ϕSL2 Z ,ψ(g) ̸= 0 for a certain ψ . We claim that this implies that σ supports Whittaker Fourier coefficients,
thus contradicting our hypothesis.

Let Ua be the unipotent radical of Pa introduced in Section 6.2.1. Since V is normal in Ua , we can
consider the quotient V0 = Ua/V, which is isomorphic to the Heisenberg group in three variables and
it is generated by the roots b, a + b, and a + 2b. The center of V0 is generated by the root a + 2b
and is identified with the quotient Z0 := Z/V. As SL2 is embedded into G2 via the Levi La of Pa , it
acts trivially on the quotient Z0. Therefore, D := SL2V0 is a Jacobi group in the sense of [Ikeda 1994,
Definition on p. 619]. Let

∼D(A) :=
∼SL2(A)V0(A),

with∼SL2(A) denoting the metaplectic cover of SL2(A), and denote by C∞

ψ (D(Q)\
∼D(A)) the space of

functions f on D(Q)\∼D(A) such that f (zvh)= ψ(z) f (vh) for any z ∈ Z0(A), v ∈ V0(A), h ∈
∼SL2(A).

For any Schwartz function 8 ∈ S(A), we let θ8SL2
∈ C∞

ψ (D(Q)\
∼D(A)) be the theta function defined in

[Ikeda 1994, p. 620]. By [Ikeda 1994, Proposition 1.3], if W is a closed subspace of C∞

ψ−1(D(Q)\
∼D(A))

which is invariant under right translation of V0(A), the functions of the form

vh 7→ θ
81
SL2
(vh)

∫
V0(Q)\V0(A)

f (uh)θ82
SL2
(uh) du, (14)

with v ∈ V0(A), h ∈
∼SL2(A), f ∈ W, 81,82 ∈ S(A), generate a dense subspace of W. We apply this to

the space W given by the closure of the subspace generated by the right V0(A)-translations of

ϕZ ,ψ(g) :=

∫
Z(Q)\Z(A)

ϕ(ug)ψ(u) du.

Assume that ϕSL2 Z ,ψ is not identically zero. By considering right translates of ϕ we can assume that
ϕSL2 Z ,ψ(1) is nonzero. This implies that the integral

I1(ϕ,81,82) :=

∫
SL2(Q)\SL2(A)

θ
81
SL2
(m)

∫
V0(Q)\V0(A)

ϕZ ,ψ(um)θ82
SL2
(um) du dm
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is nonzero for some choice of data (81,82). Note that the integral I1(ϕ,81,82) is well-defined because
the functions in (14) are not genuine for our space W. Since θ82

SL2
(zg)= ψ(z)θ82

SL2
(g) for all z ∈ Z0(A),

we can write I1(ϕ,81,82) as∫
SL2(Q)\SL2(A)

∫
(Q\A)5

ϕ(xb(v1)xa+b(v2)xa+2b(r1)xa+3b(r2)x2a+3b(r3)m)

· θ
82
SL2
(xb(v1)xa+b(v2)xa+2b(r1)m)θ

81
SL2
(m) dvi dri dm.

The integral I1(ϕ,81,82) is the residue of the global zeta integral which calculates the standard L-function
for ϕ when ϕ admits Whittaker coefficients. Namely, by the Siegel–Weil formula θ81

SL2
(m) is the residue

at s =
3
4 of an Eisenstein series EisS̃L2

(m, s) (depending on81) on the metaplectic cover of SL2 normalized
as in [Ginzburg 1993, §2]. By [Ginzburg 1993, Theorem 4] I1(ϕ,81,82) is the residue of

I2(ϕ,81,82, s) :=

∫
SL2(Q)\SL2(A)

∫
(Q\A)5

ϕ(xb(v1)xa+b(v2)xa+2b(r1)xa+3b(r2)x2a+3b(r3)m)

· θ
82
SL2
(xb(v1)xa+b(v2)xa+2b(r1)m)EisS̃L2

(m, s) dvi dri dm.

We can now prove our claim. Suppose that ϕSL2 Z ,ψ(1) ̸= 0. Then I1(ϕ,81,82) is not zero for some
choice (81,82). This implies that, for Re(s) large enough, the integral I2(ϕ,81,82, s) is not zero.
By [Ginzburg 1993, Theorem 1], I2(ϕ,81,82, s) unfolds to the Whittaker model and thus contains a
Whittaker coefficient of ϕ as an inner integration. This shows that if ϕSL2 Z ,ψ(1) ̸= 0 for some choice of
data, the Whittaker coefficient for ϕ is nontrivial and thus σ is globally generic. This finishes the proof. □

Theorem 7.2. Let σ be a cuspidal automorphic representation of G2(A). Assume that

(1) σ is not globally generic;

(2) there exists a finite place p such that σp is generic.

Then the big theta lift 2(σ) of σ to PGSp6 is cuspidal.

Proof. We show the result by using the tower of theta lifts from G2 and its properties studied in [Ginzburg
et al. 1997b]. If σ lifts trivially to PGSp6 then there is nothing to prove, so suppose that σ has a nonzero
theta lift π to PGSp6. Then, by [Ginzburg et al. 1997b, Theorem A] π is cuspidal if and only if the lifts
of σ to PGSp4 and PGL3 are both zero. By [Ginzburg et al. 1997b, Theorem 4.1(3)], the lift to PGSp4 is
zero if and only if

ϕSL3(g)=

∫
[SL3]

ϕ(xg) dx = 0 and ϕSU(2,1)(g)=

∫
[SU(2,1)]

ϕ(xg) dx = 0

for any g ∈ G2(A), any ϕ ∈ Vσ∨ . Here, SL3 embeds into G2 as the stabilizer of a norm −1 vector (see
Section 6.2.2), while SU(2, 1) is realized as the stabilizer of a norm −c vector, with c not a square in Q.
We argue by contradiction. Suppose that σ∨ has a nontrivial SU(2, 1)-functional. This implies that, at
every finite v, σv admits one. By Frobenius reciprocity,

HomSU(2,1)(σ
∨

v ,C)= HomG2(c-IndG2
SU(2,1)(C), σv)
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and hence, since σv is irreducible, one deduces that each local component σv of σ is a quotient of
C∞

c (G2(Qv)/SU(2, 1)(Qv)). In particular, σp is identified with such a quotient. This is a contradiction as,
by hypothesis, σp is generic but, by [Gross and Savin 1998, Lemma 4.10], C∞

c (G2(Qp)/SU(2, 1)(Qp))

does not admit a Whittaker functional. The same argument also shows the vanishing of ϕSL3. We claim
finally that the theta lift of σ to PGL3 also vanishes. Since σ is not globally generic, Lemma 7.1 shows
that, for all ϕ ∈ σ , ϕSL2V (g)= 0. We can then apply [Ginzburg et al. 1997b, Theorem 4.1(4)] to deduce
that the theta lift of σ to PGL3 is zero and conclude the proof. □

Corollary 7.3. Let σ be a cuspidal automorphic representation of G2(A). Assume that

(1) σ∞ is a discrete series;

(2) there exists a finite place p such that σp is Steinberg.

Then 2(σ) is cuspidal.

Proof. We distinguish two cases. We first suppose that σ is globally generic. Then we apply [Harris et al.
2023, Theorem 1.7(ii)] to deduce that its theta lift is cuspidal. If, instead, σ is not globally generic, the
result follows from Theorem 7.2 as the Steinberg representation σp = StG2 is generic. □

7.2. Calculation of orbits. This preparatory section presents an elementary but crucial calculation needed
in the proof of Proposition 7.7.

Let e : Q\A → C× be the standard nontrivial character introduced in Section 5.2 and let A ∈ J (Q).
We define the character ψA : N(Q)\N(A)→ C× by ψA(X)= e(Tr(A ◦ X)), where A ◦ X =

1
2(AX + X A)

is the Jordan product. Recall from Section 5.2 that, for any B ∈ J3(Q), we define a character

ψB : U3(Q)\U3(A)→ C×

by ψB(n(X))= e(Tr(B X)). In particular, we have denoted by ψD the character associated to

αD =

(
0

−D
1

)
∈ J3(Q).

Define
ω(Q) := {A ∈�(Q) | ψA|U3(A) = ψD},

i.e., the set of rank-1 matrices in J (Q) inducing the same character as αD on the unipotent radical
of the Siegel parabolic. In the following, we will always see ω(Q) inside N (Q). In particular, if
g ∈ GL3(Q)⊆ M(Q), its action on A is the dual action to (11), namely g · A = det(g)(gt)−1 Ag−1. Finally,
denote by A(x, y, z) the matrix (

0 z y
z −D x
y x 1

)
∈ J.

Lemma 7.4. We have

ω(Q)=
{

A(x, y, z) : Tr(x)= Tr(z)= 0,N(x)= −D,N(z)= 0, z ∈ x⊥, y = −D−1zx
}
.
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Proof. Let

A =

(
d z y
z e x
y x f

)
∈ J.

Similarly to the proof of [Gross and Savin 1998, Lemma 3.4], the condition ψA|U3(A)=ψD is equivalent to

d = 0, e = −D, f = 1,

x = −x, y = −y, z = −z.

This together with the condition that A has rank 1 (equation (10)) give

N(x)= −D, N(y)= N(z)= 0,

yz = 0, zx = −Dy, xy = z.

We claim that these conditions imply that z ∈ x⊥, which means that zx +xz = 0, or equivalently zx = −xz.
Indeed, multiplying z = xy on the left by x and using alternativity, we obtain

xz = x(xy)= (xx)y = Dy = −zx .

Finally, as N(x)= −D and Tr(x)= 0, we have x2
= D and hence x−1

= D−1x , which implies that

y = x−1z = D−1xz.

This shows one inclusion of the statement.
In the other direction let x, z ∈ O be as in the right-hand side of the statement. We have to show that

y := −D−1zx has norm and trace equal to zero and that xy = z. We have

N(y)= (−D)−2 N(z)N(x)= 0 and Tr(y)= −D−1 Tr(zx)= D−1 Tr(zx)= 0

as z ∈ x⊥. Hence Tr(y)= 0. Moreover

xy = −D−1x(zx)= D−1x(xz)= D−1(xx)z = z.

This shows that A ∈ ω(Q) and concludes the proof of the lemma. □

As for any A(x, y, z) ∈ ω(Q), the octonion y = −D−1zx is determined by x and z and we will often
denote A(x, y, z) by A(x, z). Note that there is an action of G2(Q) on the set ω(Q) given by the action
on the coefficients. The following proposition describing the orbits of this action will be essential.

Proposition 7.5. The group G2(Q) acts on ω(Q) with a finite number of orbits. Moreover, representatives
of the orbits and their respective stabilizers are given as follows.

(1) If D is a square in Q×:

(a) A3 = A(x, 0), where x = (s4 − t4)
√

D and StabG2(Q)(A(x, 0))∼= SL3, where SL3 is embedded
into G2 as Section 6.2.2.

(b) A2 = A(x, t3) with StabG2(A2) = SL2V ⊂ SL3, where SL2 and V embed into SL3 as in
Section 7.1.
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(c) A1 = A(x, s3) with StabG2(A1)= SL2V ⊂ SL3, where SL2 is as in (1)(b) and V is the opposite
unipotent subgroup to V.

(d) A0 = A(x, s1 + t3) with StabG2(A0) = UD , where UD denotes the unipotent radical of the
upper-triangular Borel of SL3 (denoted by USL3 in Section 7.1).

(2) If D is not square in Q×:

(a) A1 = A(x, 0) ∈ ω(Q), for any x ̸= 0 for which N (x)= −D, with

StabG2(Q)(A(x, 0))∼= SUD
3 ,

where SUD
3 = SU(x⊥) is the unitary group for the restriction of the norm form to the three-

dimensional Q(
√

D)-subspace of O0 orthogonal to x.1

(b) A0 = A(x, z), for any norm zero z in x⊥, with StabG2(A0)≃UD , where UD denotes the unipotent
radical of the upper-triangular Borel of SUD

3 .

Proof. Step 1. By [Rallis and Schiffmann 1989, Theorem 1], the group G2 acts transitively on the set of
trace zero elements of norm −D and hence on the sets A(x, 0). The description of the stabilizer in (1)(a)
follows from [Jacobson 1958, Theorem 4] or [Rallis and Schiffmann 1989, Lemma 2]. The description
of the stabilizer in (2)(a) follows from [Jacobson 1958, Theorem 3] or [Rallis and Schiffmann 1989,
Lemma 3]. More precisely, according to [Rallis and Schiffmann 1989, Lemma 3] the subspace x⊥ of O0

of elements which are orthogonal to x has the structure of a three-dimensional Q(
√

D)-vector space and
the action of StabG2(x) on x⊥ induces an isomorphism StabG2(x)≃ SUD

3 .

Step 2. We now study the remaining G2-orbits when D is a square in Q. Again, we can assume that
D = 1. Recall from Section 6.2.2 that SL3 embeds into G2 as the stabilizer of s4 − t4. This identification is
explicitly given as follows (see [Rallis and Schiffmann 1989, Lemma 2]). An element of g ∈ SL3 induces
an action on O0 fixing s4 − t4 and given by the left multiplication by g on ⟨s1, s2, s3⟩ and by (gt)−1

on ⟨t1, t2, t3⟩. One verifies that this actions respects multiplication and hence defines an element in G2.
Assume z ̸= 0 is such that A(x, z) ∈ ω(Q). Since z is trace zero and orthogonal to x = s4 − t4 we can
write z = z1 + z2 with z1 =

∑
i αi si and z2 =

∑
i βi ti . Since the group SL3 acts transitively on the nonzero

elements of ⟨s1, s2, s3⟩ and ⟨t1, t2, t3⟩, then the cases where z1 = 0 or z2 = 0 give rise to exactly two orbits.
When z1 = 0, taking z2 = t3 as a generator of this orbit, the corresponding stabilizer is{(

∗ ∗ ∗

∗ ∗ ∗

0 0 1

)}
⊂ SL3,

which coincides with SL2V as in (1)(b). Similarly, when z2 = 0, taking z1 = s3 as the generator of the
orbit, then the stabilizer is {(

∗ ∗ 0
∗ ∗ 0
∗ ∗ 1

)}
⊂ SL3.

1The unitary group SUD
3 is a form of SL3 which splits over Q(

√
D) and which is isomorphic to SU(2, 1) (resp. SL3) if

D < 0 (resp. D > 0) over R.
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This is nothing but SL2V , with SL2 which again embeds in the Levi of the long root parabolic Pa and V
is the opposite unipotent subgroup to V generated by the negative roots −a − 3b, −2a − 3b. Finally we
treat the case z1, z2 ̸= 0. Write

z = α1s1 +α2s2 +α3s3 +β1t1 +β2t2 +β3t3.

The condition N (z)= 0 translates then in

α1β1 +α2β2 +α3β3 = 0. (15)

We can assume that z2 = t3. Then α3 = 0 by (15) and, using the action of the stabilizer of t3, we can
assume that z1 = s1. It is then immediate to check that the stabilizer of A(s4 − t4, s1 + t3) is as in (1)(d).
This concludes the proof of (1).

Step 3. We finally deal with the case where D is not a square in Q. By Witt’s theorem, the group SUD
3

acts transitively on the isotropic vectors of the three-dimensional Q(
√

D) vector space x⊥. We thus have
two orbits for G2(Q) on ω(Q), generated by A(x, 0) and A(x, z), where z is any nonzero vector in x⊥

with zero norm. We are now left with calculating the stabilizer of the latter orbit. The action of SUD
3

on x⊥ is given by its natural action on Q(
√

D)3. More precisely, after extending scalars to Q(
√

D), we
can decompose

x⊥
⊗Q Q(

√
D)= Q(

√
D)⟨s1, s2, s3⟩ ⊕ Q(

√
D)⟨t1, t2, t3⟩.

The projection to the first component induces an isomorphism of Q(
√

D)-vector spaces

x⊥
≃ Q(

√
D)⟨s1, s2, s3⟩

(see [Rallis and Schiffmann 1989, Lemma 3]), with SUD
3 acting naturally on the basis {s1, s2, s3}. Here,

we choose the Hermitian form (with respect to the extension Q(
√

D)/Q) defining SUD
3 given by √

D
−1

1
−

√
D

−1

 ∈ GL3(Q(
√

D)).

We can then suppose that z is sent to s1 and the corresponding stabilizer is given by{(
1 ∗ ∗

0 ∗ ∗

0 ∗ ∗

)}
∩ SUD

3 = UD. □

7.3. Nonvanishing of Fourier coefficients, I. Recall that we have denoted by 5=
⊗

′

v5v the minimal
representation of the group E7. Moreover, in Section 6.3, for f ∈5 and ϕ ∈ A(G2(Q)\G2(A)), we have
defined the function 2( f, ϕ) on PGSp6(A) by

2( f, ϕ)(g)=

∫
G2(Q)\G2(A)

θ( f )(g′g)ϕ(g′) dg′. (16)

For any A ∈ J (Q) and f ∈5, consider the Fourier coefficient

θ( f )A(g)=

∫
N (Q)\N (A)

θ( f )(ng)ψ−1
A (n) dn.
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We then have the Fourier expansion (see [Harris et al. 2023, §A.3])

θ( f )(g)= θ( f )0(g)+
∑

A∈�(Q)

θ( f )A(g), (17)

where �(Q)⊂ J (Q) is the subset of rank-1 elements.
The following lemma will be used in the proof of Proposition 7.7. Its proof is similar to that of

[Gross and Savin 1998, Lemma 4.6] but we give details for the convenience of the reader. Let A0 be
the representative of the open G2-orbit on ω(Q) given in Proposition 7.5. Note that there is no harm
in conjugating A0 ∈ J (Q) by an element of the Levi GL3(Q) of the Siegel parabolic of PGSp6. Thus,
conjugating by diag(n, n, n), A0 gets multiplied by n2 and so we can assume that the entries x, y, z of A0

are in O(Z).

Lemma 7.6. Let S denote a finite number of places containing 2 and ∞, and let f = ⊗
′
v fv ∈5 be such

that, for v /∈ S, we have fv = f 0
v , where f 0

v denotes the spherical vector normalized such that f 0
v (A0)= 1.

Let QS =
∏
v∈S Qv . If g ∈ G2(A), we write g = gSgS where gS ∈ G2(QS) and gS

∈
∏
v /∈S G2(Qv). Then

there exists a nonzero constant cA0 such that for every g ∈ G2(A) we have

θ( f )A0(g)= cA0 fS(g−1
S A0)

∏
v /∈S

χv(gv),

where fS =
⊗

v∈S fv and χv is the characteristic function of UD(Zv)\G2(Zv).

Proof. By uniqueness of local functionals [Harris et al. 2023, Theorem A.4], there exists a nonzero
scalar cA0 such that, for any g ∈ E7(A), we have θ( f )A0(g)= cA0(5(g) f )(A0). For g ∈ G2(A) we have
(5(g) f )(A0) = f (g−1 A0), where g−1 A0 is the result of the natural action of g−1 on the off-diagonal
entries of A0. Hence θ( f )A0(g)= cA0 f (g−1 A0)= cA0

∏
v fv(g−1

v A0) for g ∈ G2(A). Let us prove that
for any p /∈ S, we have f p(g−1

p A0) = χp(gp). So let gp ∈ G2(Qp) be such that f 0
p (g

−1
p A0) ̸= 0 and

let x ′, y′, z′ denote the off-diagonal entries of g−1
p A0. According to [Harris et al. 2023, Theorem A.5]

the spherical vector f 0
p is supported in J (Zp). Hence x ′, y′, z′

∈ O(Zp). Consider O(Fp) the split
octonion algebra over Fp. The projections of (x, y, z) and (x ′, y′, z′) to O(Fp) are G2(Fp)-conjugated
by the proof of Step 1 in Proposition 7.5, which is still valid over the base field Fp as long as p ̸= 2. It
follows from Hensel’s lemma that (x, y, z) and (x ′, y′, z′) are G2(Zp)-conjugated. Therefore the function
gp 7→ f 0

p (g
−1
p A0) is supported in UD(Zp)\G2(Zp)⊂ UD(Qp)\G2(Qp). Since f 0

p is G2(Zp)-invariant,
for gp ∈ G2(Zp) we have f 0

p (g
−1
p A0)= f 0

p (A0)= 1. This completes the proof. □

Proposition 7.7. Let σ be a cuspidal automorphic representation of G2(A) as in Theorem 7.2 and let
ϕ ∈ σ∨ be a cuspidal form. Then the following conditions are equivalent:

(1) 2( f, ϕ)UP ,ψD (1) ̸= 0 for some choice of f .

(2) ϕUD (g) ̸= 0 for some g ∈ G2(A).

In particular, if any of the conditions holds then 2(σ) is nonzero.
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Proof. Recall first that, according to Proposition 5.7, we have 2( f, ϕ)UP ,ψD ̸= 0 if and only if
2( f, ϕ)U3,α ̸= 0 for some α ∈ Symrk2(3)(Q) with α ∼L(Q) αD . We write

2( f, ϕ)U3,ψD (1)=

∫
U3(Q)\U3(A)

2( f, ϕ)(u)ψ−1
D (u) du

=

∫
G2(Q)\G2(A)

∫
U3(Q)\U3(A)

∑
A∈�(Q)

θ( f )A(ug)ϕ(g)ψ−1
D (u) du dg,

where in the second equality we used the definition (16) of 2( f, ϕ) and the Fourier expansion (17)
of θ( f ). Since U3 ⊆ N , we have that θ( f )A(ug)= ψA(u)θ( f )A(g) and∫

U3(Q)\U3(A)

ψA(u)ψ−1
D (u)=

{
vol(U3(Q)\U3(A)) if ψD = ψA|U3(A),

0 otherwise.

Hence
2( f, ϕ)U3,ψD (1)= vol(U3(Q)\U3(A))

∫
G2(Q)\G2(A)

∑
A∈ω(Q)

θ( f )A(g)ϕ(g) dg. (18)

Let (Ai )i be the finite representatives of the orbits of the action of G2(Q) on ω(Q) as given by
Proposition 7.5, and write StabAi for the stabilizers of Ai in G2. The integral on the right-hand side
of (18) becomes∑

i

∫
G2(Q)\G2(A)

∑
g′∈StabAi (Q)\G2(Q)

θ( f )Ai (g
′g)ϕ(g) dg =

∑
i

∫
StabAi (Q)\G2(A)

θ( f )Ai (g)ϕ(g) dg.

Observe now that, by [Harris et al. 2023, Theorem A.4], we have θ( f )Ai (g) = cAi f (g−1 Ai ) for any
g ∈ G2. Hence, since StabAi (A) fixes the matrix Ai , we deduce that the function g 7→ θ( f )Ai (g) is left
StabAi (A)-invariant. Making an inner integration over StabAi (Q)\StabAi (A) in each term of the outer
sum, we deduce that the above equals∑

i

∫
StabAi (A)\G2(A)

θ( f )Ai (g)ϕ
StabAi (g) dg,

where ϕStabAi (g) denotes the period of ϕ over StabAi (Q)\StabAi (A). We now analyze two different
possibilities. If D is not a square in Q, then, by Proposition 7.5(2), G2(Q) acts on ω(Q) with two
orbits, one closed and one open. Let A0, A1 denote representatives of these two orbits with stabilizers
StabA0 = UD and StabA1 = SUD

3 in G2. By the proof of Theorem 7.2, ϕSUD
3 (g) = 0, and hence the

only surviving term is the one corresponding to the orbit represented by A0. If D is a square in Q,
then by Proposition 7.5(1), G2(Q) acts on the set ω(Q) with four orbits, three closed and one open.
Let Ai , 0 ≤ i ≤ 3 denote representatives of those orbits, with A0 representing the open one. The
corresponding stabilizers are UD , SL3, SL2V and its conjugate SL2V . By the proof of Theorem 7.2, we
have ϕSL3(g) = 0. By hypothesis σ (and σ∨) is not globally generic; hence Lemma 7.1 implies that
ϕSL2V (g)= ϕSL2V (g)= 0. From this, we deduce that, for any D,

2( f, ϕ)U3,ψD (1)=

∫
UD(A)\G2(A)

θ( f )A0(g)ϕ
UD (g) dg, (19)
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where ϕUD (g) is the constant term of ϕ along UD . This shows that if 2( f, ϕ)U3,ψD (1) ̸= 0 then ϕUD ̸= 0
since the period appears as an inner integral of the Fourier coefficient.

We now show the converse, i.e., that if ϕUD ̸= 0 then, for some choice of f ∈5, the Fourier coefficient
2( f, ϕ)U3,ψD does not vanish. Let S be as in Lemma 7.6. By enlarging S if necessary, we can assume
that the cusp form ϕ is G2(Zv)-invariant for all v /∈ S. By Lemma 7.6, the integral of (19) equals

cA0 ·

(∫
UD(QS)\G2(QS)

fS(g−1 A0)ϕ
UD (g) dg

)
·

∏
v /∈S

vol(UD(Zv)\G2(Zv), dgv).

It remains to show that, when ϕUD ̸= 0, then for a good choice of f at the places in S, the integral satisfies∫
UD(QS)\G2(QS)

fS(g−1 A0)ϕ
UD (g) dg ̸= 0.

It follows from [Harris et al. 2023, Theorem A.4] that fS can be any smooth compactly supported function
on �(QS). Let g0 ∈ G2(QS) be such that ϕUD (g0) ̸= 0. We can take a nonnegative f supported in a
sufficiently small neighborhood of g0 to ensure the nonvanishing of the integral. This finishes the proof
of the proposition. □

7.4. Nonvanishing of Fourier coefficients, II. The purpose of this section is to prove the following result.

Theorem 7.8. Let F denote a quadratic étale algebra and σ = σ∞ ⊗ σ f be a cuspidal automorphic
representation of G2(A) such that

• σ∞ is a nongeneric discrete series with infinitesimal character rε1 + sε2;

• there exists a finite prime p such that σp is Steinberg;

• the representation σ supports Fourier coefficient associated to the cubic algebra Q × F.

The theta lift2(σ)=⊗
′
v2(σv) is a nonzero cuspidal automorphic representation of PGSp6(A). Moreover,

if π denotes any nonzero irreducible subquotient of 2(σ), then

• π∞ is a discrete series of infinitesimal character
(
r, 1

2(r + s), 1
2(r − s)

)
;

• πp is Steinberg;

• the representation π supports a nontrivial Fourier coefficient of type (4 2) associated to F.

Remark 7.9. As it will follow from the proof, the condition of σ∞ being nongeneric can be replaced
by σ not being locally generic, i.e., that there exists one local component of σv of σ which is not generic.

Let us first fix some notation first. Recall from Section 6.1.2 that the centralizer of G2 in M is GL3

and let
U0 =

{(
1 a b
0 1 0
0 0 1

)}
be the unipotent radical of its Borel subgroup of upper triangular matrices. Note that the unipotent
subgroup U0U3 is the unipotent radical of the parabolic subgroup P of PGSp6 of Levi GL2 × GL2

1

appearing in Section 5.2.2.
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Definition 7.10. Define the character ψ0 : U0(Q)\U0(A)→ C× by sending

ψ0(u)= e(a).

Note that ψ0ψD is the character (simply denoted by ψD) on UP(Q)\UP(A) introduced in Section 5.2.2.
As explained in Section 7.2, we view the space � of rank-1 elements in J inside N so that U0 acts

on � via the natural right action of GL3 ⊆ M on N . Then we let U0 act on the left on ω and hence on the
triples (x, y, z) of off-diagonal terms by the rule

u−1
· (x, y, z)= (x + ay + bz, y, z). (20)

7.4.1. The relation between UP and UH . In what follows, we relate the unipotent subgroup U0 to the
unipotent radical UH of the Heisenberg parabolic. Such a relation will be employed in Proposition 7.13
to establish a relation between Fourier coefficients for the Heisenberg parabolic of G2-cusp forms and
Fourier coefficients of type (4 2) of their theta lifts.

Before stating our result, we make the following comments on the choice of representatives of the
open orbits in Proposition 7.5. First, suppose that D = d2, with d ∈ Q×. There is no harm in assuming
d ∈ Z. Recall that the stabilizer in G2 of the vector s4 − t4 can be identified with SL3 = SL(⟨s1, s2, s3⟩).
Since the Heisenberg parabolic H = L H ·UH is the stabilizer of the flag ⟨s1, t3⟩, its unipotent radical UH

contains UD = StabG2(A0), where

A0 = A(d(s4 − t4), s1 − t3, d(s1 + t3)) ∈ J (Z)

is the representative of the open orbit of the action of G2 on ω(Q) as in Proposition 7.5. Moreover,
UH/UD is two-dimensional and supported on the roots a + b and a + 2b. Let us now suppose that D is
not a square in Q×. The vector x = s2 + Dt2 is a trace zero octonion of norm −D and orthogonal to t3.
We choose the representative of the open orbit to be

A0 = A(s2 + Dt2, s1, t3) ∈ J (Z).

Lemma 7.11. There is a natural surjection p : UH → U0 inducing an isomorphism

UH/UD → U0.

Proof. By the description of the action in (20) and the linear independence of the coordinates (x, y, z) of
the representative of the open orbit, one sees that U0 acts freely on it. Hence, the result follows from
showing that any element in UH acts on the triple (x, y, z) as an element of U0 and vice versa.

Case 1. We start with the case where D is a square in Q×. The action of U0 is given by

u−1
· (d(s4 − t4), s1 − t3, d(s1 + t3))= (d(s4 − t4)+ (a + db)s1 + (db − a)t3, s1 − t3, d(s1 + t3)). (21)

Since any element of UH fixes s1 and t3, it suffices to show that UH acts on (s4 − t4) as an element of U0.
We verify this by studying the action of the Lie algebra. By (13), we know that the Lie algebra of UH is
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generated by the Lie algebra of the unipotent upper-triangular subgroup UD in SL3 and by the vectors v1

and δ3. Using the explicit action of the action of the Lie algebra given in Section 6.2.3, one checks that

Ei j · (s4 − t4)= 0, v1 · (s4 − t4)= s1, δ3 · (s4 − t4)= t3.

The above equations show that, for u1 = xa+b(λ1) and u2 = xa+2b(λ2) for some scalars λ1, λ2, we have

u1 · (d(s4 − t4))= d(s4 − t4 + λ1s1), u2 · (d(s4 − t4))= d(s4 − t4 + λ2t3).

This gives the desired isomorphism: if u ∈ UH/UD is identified with the product of xa+b(λ1)xa+2b(λ2),
then, from (21), we see that it gets sent to the element1 1

2 d(λ1 − λ2)
1
2(λ1 + λ2)

0 1 0
0 0 1

 ∈ U0.

Case 2. We now suppose that D is not a square in Q×. Similarly to Case 1, it suffices to calculate
u · (s2 + Dt2) for any u ∈ UH . As above, one checks that

E12 · (s2 + Dt2)= s1, E23 · (s2 + Dt2)= Dt3, E13 · (s2 + Dt2)= 0,

v1 · (s2 + Dt2)= t3, δ3 · (s2 + Dt2)= −Ds1.

This implies that if u ∈ VH = UH/[UH ,UH ] is equal to xa(λ1)xa+b(λ2)xa+2b(λ3)xa+3b(λ4), then

u · (s2 + Dt2)= s2 + Dt2 + (λ1 − λ3 D)s1 + (λ2 + Dλ4)t3.

In particular, UD embeds into UH as the subgroup of matrices with λ1 = λ3 D and λ2 = −λ4 D, and the
map p : UH/UD → U0 sends u to the element(

1 λ1 − λ3 D λ2 + λ4 D
0 1 0
0 0 1

)
∈ U0. □

Corollary 7.12. Under the isomorphism p : UH/UD → U0, we have

ψH,D = ψ0 ◦ p,

whereψH,D :UH (Q)\UH (A)→C× is the character corresponding to the étale cubic algebra Q×Q(
√

D).

Proof. We start with the case where D is a square in Q×. For simplicity, we can (and do) assume that
D = 1. From Lemma 7.11, if n ∈ UH/UD is identified with the product of xa+b(λ1)xa+2b(λ2), it is sent
via p to (

1 1
2 (λ1 − λ2)

1
2 (λ1 + λ2)

0 1 0
0 0 1

)
∈ U0.

Hence, the character ψ0 ◦ p : UH (Q)\UH (A)→ C× sends n 7→ e
( 1

2(λ1 − λ2)
)
. We now show that this

corresponds to the character ψH,D associated to Q×Q×Q as in Section 6.2.4. Recall that each character
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on UH (Q)\UH (A) is of the form n 7→ e(⟨w, n⟩), where n denotes the projection of n to UH/[UH ,UH ]

and w ∈ UH (Q)/[UH (Q),UH (Q)] corresponds to a binary cubic form

fw(x, y)= λ1x3
+ λ2x2 y + λ3xy2

+ λ4 y3,

with λi ∈ Q. Furthermore, as n = xa(λ
′

1)xa+b(λ
′

2/3)xa+2b(λ
′

3/3)xa+3b(λ
′

4) corresponds to f ′(x, y) =

λ′

1x3
+ λ′

2x2 y + λ′

3xy2
+ λ′

4 y3, the pairing is

⟨w, n⟩ = λ1λ
′

4 −
1
3λ2λ

′

3 +
1
3λ3λ

′

2 − λ4λ
′

1.

Then, the character ψ0 ◦ p corresponds to an element wD for which λ1, λ4 = 0 and λ2, λ3 =
1
2 , namely

the binary cubic polynomial fD(x, y)= 1
2(x

2 y + xy2). The latter is in the L H (Q)-orbit corresponding to
the cubic algebra Q3. Indeed, if we let g =

( 2
−2

)
∈ L H (Q) act on fD , we get

g · fD(x, y)= −
1
4 fD(2x,−2y)=

1
8(8x2 y − 8xy2)= x2 y − xy2,

which corresponds to Q3 by Example 6.1(1).
We now suppose that D is not a square in Q×. Then, by Lemma 7.11, if

n ≡ xa(λ1)xa+b(λ2)xa+2b(λ3)xa+3b(λ4) mod [UH ,UH ],

the character ψ0 ◦ p : UH (Q)\UH (A)→ C× sends n 7→ e(λ1 − λ3 D). This character is associated to the
binary cubic polynomial fD(x, y)= Dx2 y− y3, which corresponds to Q×Q(

√
D) by Example 6.1(2). □

7.4.2. Comparison of Fourier coefficients. The following proposition can be paired with Proposition 7.7
to give three equivalent ways of proving that the theta lift of an automorphic representation of G2 does
not vanish.

Proposition 7.13. Let σ be a cuspidal automorphic representation of G2(A) as in Theorem 7.2 and let
ϕ ∈ σ∨ be a cuspidal form. The following conditions are equivalent:

(1) 2( f, ϕ)UP ,ψD (1) ̸= 0 for some choice of f ∈5.

(2) ϕUH ,ψH,D (g) ̸= 0 for some g ∈ G2(A).

In particular, if any of the conditions holds then 2(σ) is nonzero.

Proof. Decomposing UP = U0U3, we have

2( f, ϕ)UP ,ψD (1)=

∫
U0(Q)\U0(A)

∫
U3(Q)\U3(A)

2( f, ϕ)(uu′)ψ−1
D (u′)ψ−1

U0
(u) du′ du.

As in the proof of Proposition 7.7, this equals∫
U0(Q)\U0(A)

∫
UD(A)\G2(A)

θ( f )A0(ug)ϕUD (g)ψ−1
U0
(u) dg du.

Exchanging integrals and making an inner integration over UD(A)\UH (A), we get∫
UH (A)\G2(A)

∫
UD(A)\UH (A)

(∫
U0(Q)\U0(A)

θ( f )A0(uu′g)ψ−1
U0
(u) du

)
ϕUD (u′g) du′ dg.
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The isomorphism p : UH/UD ∼= U0 of Lemma 7.11 induces

U0(Q)\U0(A)∼= UH (Q)UD(A)\UH (A)

such that ψH,D = ψ0 ◦ p (see Corollary 7.12). Thus, we can write the integral as∫
UH (A)\G2(A)

∫
UD(A)\UH (A)

(∫
UH (Q)UD(A)\UH (A)

θ( f )A0(uu′g)ψ−1
H,D(u) du

)
ϕUD (u′g) du′ dg.

Exchanging integrals, we have∫
UH (A)\G2(A)

∫
UH (Q)UD(A)\UH (A)

(∫
UD(A)\UH (A)

θ( f )A0(uu′g)ϕUD (u′g)du′

)
ψ−1

H,D(u)du dg

=

∫
UH \G2(A)

∫
UH (Q)UD(A)\UH (A)

(∫
UH (Q)UD(A)\UH (A)

∑
γ∈UD\UH (Q)

θ( f )A0(uγ u′g)ϕUD (γ u′g)du′

)
·ψ−1

H,D(u)du dg

=

∫
UH \G2(A)

∫
UH (Q)UD(A)\UH (A)

∑
γ

(∫
UH (Q)UD(A)\UH (A)

θ( f )A0(γ uu′g)ϕUD (γ u′g)du′

)
ψ−1

H,D(u)du dg

Changing variable u′
7→ u′′

= γ uu′
= uγ u′′ in the inner integral, the above becomes∫

UH (A)\G2(A)

∫
UH (Q)UD(A)\UH (A)

(∫
UD(A)\UH (A)

θ( f )A0(u
′′g)ϕUD (u−1u′′g) du′′

)
ψ−1

H,D(u) du dg

which, after rearranging the integrals, is equal to∫
UH (A)\G2(A)

∫
UD(A)\UH (A)

θ( f )A0(u
′′g)ϕUH ,ψH,D (u

′′g) du′′ dg =

∫
UD(A)\G2(A)

θ( f )A0(g)ϕUH ,ψH,D (g) dg.

This shows that (1) implies (2). The proof of the converse is identical as the one given in Proposition 7.7. □

Proof of Theorem 7.8. Let σ be a cuspidal automorphic representation satisfying the hypotheses of the
Theorem. We first apply Corollary 7.3 to deduce that 2(σ) is cuspidal. Moreover, by Proposition 7.13,
the theta lift supports a Fourier coefficient of type (4 2) and, in particular, it is nonzero. Let π be an
irreducible subquotient of 2(σ). Its component at p is the Steinberg representation by the compatibility
between the global and local correspondences (Proposition 6.5) and by Proposition 6.10(2). We are now
left to prove the statement on its archimedean component. As π is unitary, π∞ is a unitarizable Harish-
Chandra module by [Flath 1979, Theorem 4]. Moreover, as σ∞ is a discrete series with infinitesimal
character rε1 +sε2, it follows from the discussion in [Li 1997, p. 204] and by Table 1 on [Li 1999, p. 375]
that 2(σ∞) has infinitesimal character

(
r, 1

2(r + s), 1
2(r − s)

)
, which is strongly regular in the sense of

[Salamanca-Riba 1999, Definition 1.5]. By another application of Proposition 6.5, π∞ is a subquotient
of 2(σ∞), and hence has a strongly regular infinitesimal character. As a consequence, we can apply
[Salamanca-Riba 1999, Theorem 1.8] to deduce that π∞ is cohomological. By [Kret and Shin 2023,
Corollary 2.8], since πp is Steinberg and π∞ is cohomological, π∞ is a discrete series with infinitesimal
character

(
r, 1

2(r + s), 1
2(r − s)

)
. □
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Remark 7.14. Suppose that σ∞ is a discrete series in D3,1. If2(σ∞) admits a unique irreducible quotient
θ(σ∞), then by the results of [Li 1997], θ(σ∞) is a discrete series of Hodge type (3, 3). This implies that
π∞ = θ(σ∞) is a discrete series of Hodge type (3, 3). Although Howe duality conjecture for the pair
(G2,PGSp6) is known at nonarchimedean places [Gan and Savin 2023], the conjecture is still open at the
archimedean place.

8. The cycle class formula and the standard motive for G2

We conclude this article with the arithmetic applications described in the introduction.

8.1. The relation between L-functions of G2 and PGSp6. The dual group of G2 is G2(C), which can
be realized as the intersection SO7(C)∩ Spin7(C). More precisely, we have the commutative diagram

G2(C)
� � //

� _

ζ

��

Std

&&

SO7(C)
� � //

� _

��

GL7(C)� _

��

Spin7(C)
� � //

Spin
88

SO8(C)
� � // GL8(C)

(22)

where Std : G2(C) → GL(V7) is the standard representation given by trace zero octonions, Spin :

Spin7(C) → GL(V8) is the eight-dimensional spin representation, while the embedding ζ is defined
from the fact that the stabilizer in Spin7(C) of a generic vector of V8 is isomorphic to G2(C). From the
commutative diagram, one immediately sees that

V8|G2
= V7 ⊕ 1.

In particular, if πℓ is an unramified smooth representation of PGSp6(Qℓ) with Satake parameter sπℓ
belonging to ζ(G2(C)), then

L(s, πℓ,Spin)= L(s, πℓ,Std)ζℓ(s),

where

L(s, πℓ,Std) :=
1

det(1 − ℓ−s Std(sπℓ))

denotes the Euler factor at ℓ of the seven-dimensional standard L-function for G2.
Let now π be a cuspidal automorphic representation of PGSp6, which is unramified outside a finite set

of places S containing the archimedean place. As a special case of Langlands functoriality, one expects
that if L S(s, π,Spin) has a simple pole at s = 1, then π is a functorial lift from either G2 or Gc

2, recalling
that Gc

2 denotes the form of G2 which is compact at ∞ and split at all finite places of Q. We invite
the reader to consult [Ginzburg and Jiang 2001; Gan and Gurevich 2009; Pollack and Shah 2018; Gan
and Savin 2020] for results in this direction. Moreover, the existence of a pole is usually related to the
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nonvanishing of a certain period. The following result,2 summarizing and complementing known results
in this direction, gives equivalence conditions for π to be a weak functorial lift from G2.

Proposition 8.1. Suppose that π satisfies the hypotheses (DS) and (St) of Section 2.7. Then π is tempered
and the following statements are equivalent:

(1) The partial L-function L S(s, π,Spin) has a simple pole at s = 1.

(2) For almost all ℓ, the Satake parameter sπℓ ∈ ζ(G2(C)).

(3) There exists a cuspidal automorphic representation σ of either G2 or Gc
2 such that π is a weak

functorial lift of σ .

Moreover, if π supports a Fourier coefficient of rank-2 associated to the quadratic extension F these
conditions are equivalent to

(4) π is H-distinguished, with H = GL2 ⊠GL∗

2,F , i.e., that there exists a cusp form 9 in π such that∫
Z(A)H(Q)\H(A)

9(h) dh ̸= 0.

If one of the first three conditions hold, the residue at s = 1 of the partial L-function L S(s, π,Spin) is
given by

Ress=1L S(s, π,Spin)= L S(1, σ,Std)
∏
ℓ∈S

(1 − ℓ−1).

Proof. Since π is cohomological and it is Steinberg at a finite place, we can apply [Kret and Shin 2023,
Lemma 2.7] to deduce that π is essentially tempered at all places. As π has trivial central character, this
is equivalent to being tempered. The equivalence between (2) and (3) and the implication (1) =⇒ (3)
follow from [Gan and Savin 2020, Theorem 1.1]. By [Gan and Gurevich 2009, Proposition 5.2], if π
is H-distinguished then its big theta lift to G2 is nonzero and is contained in the space of cusp forms
on G2. By the compatibility between the local and global theta correspondence, this implies that every
local component πv appears in the local theta correspondence. When v is a finite unramified place for π ,
[Gan and Gurevich 2009, Proposition 5.1] implies that sπv ∈ ζ(G2(C)). This shows (4)=⇒ (3).

We next prove that (1) =⇒ (4), for which we’ll use the hypothesis on the existence of a Fourier
coefficient of rank-2. By [Pollack and Shah 2018, Theorem 2.7] (see Theorem 5.8), given a cusp form 9

in π , there exists a cusp form 9̃ and a Schwartz–Bruhat function 8 such that

I(8, 9̃, s)= I∞(8,9, s)L S(s, π,Spin).

By Proposition 5.10, taking residues at s = 1 on both sides we have

8̂(0)
2

·

∫
Z(A)H(Q)\H(A)

9̃(h) dh = Ress=1
(
I∞(8,9, s)L S(s, π,Spin)

)
,

2We point out that Proposition 8.1 is not really needed in the following (it is cited in the proof of Theorem 8.6, but only to
show that the L-function of the lift from G2 to PGSp6 has a pole at s = 1), but it might be of independent interest.
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where c > 0 is the constant of Lemma 5.1. We now use [Gan and Gurevich 2009, Proposition 12.1] to
deduce that there exists local data 8∞ and 9∞ such that I∞(8,9, 1) ̸= 0. Hence, up to modifying 9
and 8 at ∞, we obtain

8̂(0) ·
∫

Z(A)H(Q)\H(A)
9̃(h) dh = C · Ress=1L S(s, π,Spin),

with C a certain nonzero constant in C. Note finally that we have the freedom to choose 8 such that
8̂(0) ̸= 0. This follows from the fact that, given the two nonzero linear maps

l1 : S(A2)→ C,8 7→ I∞(8,9, 1) and l2 : S(A2)→ C,8 7→ 8̂(0), ker(l1)∪ ker(l2) ̸= S(A2).

This shows that if L S(s, π,Spin) has a simple pole and π supports a Fourier coefficient of rank 2, then π
is H-distinguished.

We finally show the implication (2)=⇒ (1). The commutative diagram (22) implies that

L S(s, π,Spin)= L S(s, π,Std)ζ S(s),

where L S(s, π,Std) is the partial L-function of π associated to the standard seven-dimensional repre-
sentation of Spin7. By [Labesse and Schwermer 2019, Theorem 1.1.1], the restriction to Sp6(A) of π
contains a cuspidal automorphic representation π ♭, such that (up to possibly enlarging S)

L S(s, π,Std)= L S(s, π ♭,Std).

By [Kret and Shin 2023, Corollary 2.2 & Lemma 2.3], there exists a cuspidal automorphic representation π ♯

of GL7(A) such that
L S(s, π ♭,Std)= L S(s, π ♯),

where L S(s, π ♯) denotes the standard L-function of π ♯. We claim that L S(1, π ♯) ̸= 0. By [Jacquet and
Shalika 1976, Theorem (1.3)], L(s, π ♯) ̸= 0 for any s with Re(s)= 1. If we write

L S(s, π ♯)= L(s, π ♯)
∏
ℓ∈S

L(s, π ♯ℓ )
−1,

then our claim follows from the fact that each L(s, π ♯ℓ ) has no pole at s = 1 (see [Rudnick and Sarnak
1996, p. 317]). This implies that

L S(1, π,Std) ̸= 0.

Thus, L S(s, π,Spin) has a simple pole at s = 1. This proves that (2) implies (1).
If now we assume (3), i.e., that π is a weak functorial lift of σ , then (up to possibly enlarging S)

L S(1, σ,Std)= L S(1, π,Std) ̸= 0,

where the first equality is a consequence of the fact that the Satake parameters of σ and π agree almost
everywhere. In particular

Ress=1 L S(s, π,Spin)= L S(1, σ,Std)Ress=1 ζ
S(s)= L S(1, σ,Std)

∏
ℓ∈S

(1 − ℓ−1),

showing the final claim. □
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Remark 8.2. Let π be as in Corollary 5.12. Assuming (St), π is a weak functorial lift of σ as in
Proposition 8.1 and Theorem 5.11 reads as

⟨Z [λ,µ]

H,H , [ω9]⟩H = C · IS(8,9
[λ,µ], 1) ·

∏
ℓ∈S

(1 − ℓ−1) · L S(1, σ,Std).

8.2. Galois representations of G2-type. The following result for the compact form of G2 is shown in [Kret
and Shin 2023, Theorem 11.1 and Corollary 11.3]. The same proof works for the split form of G2 as long
as one has some information on its lift to PGSp6, and we only sketch it for the convenience of the reader.

Theorem 8.3. Let σ be a cuspidal automorphic representation of G2(A) or Gc
2(A) which lifts to a nonzero

cuspidal automorphic representation π of G(A) such that

• π∞ is cohomological,

• πp is the Steinberg representation at some finite prime p.

Then, for each prime ℓ and ι :C∼=Qℓ, there exists a Galois representation ρσ =ρσ,ι :Gal(Q/Q)→ G2(Qℓ)

such that:

• For every finite place v ̸= ℓ where σ is unramified, ρσ is unramified at v. Moreover, the semisimple
part of ρσ (Frobv) is conjugate to the Satake parameter ι(sσv ) in G2(Qℓ).

• ρσℓ is de Rham, and it is crystalline if σ is unramified at ℓ.

• ζ ◦ ρσ = ρπ , where π is a theta lift of σ , and ζ : G2(C)→ Spin7(C) is the embedding appearing
in (22).

• The Zariski closure of the image of ρσ maps onto either the image of a principal SL2 in G2 or
onto G2.

Proof. By [Kret and Shin 2023, Theorem A], there exists a representation ρπ : Gal(Q/Q)→ Spin7(Qℓ)

attached to π . By the proof of [Kret and Shin 2023, Theorem 11.1], one has that the image of ρπ is
contained in G2(Qℓ), and thus we have ρσ such that ζ ◦ ρσ = ρπ for a suitable choice of embedding
ζ : G2(C) → Spin7(C) fitting in the diagram (22). Hence, by [Kret and Shin 2023, Theorem A]
and Proposition 6.10(1), the representation ρσ : Gal(Q/Q) → G2(Qℓ) satisfies the desired first three
properties. Finally, by [Kret and Shin 2023, Theorem A(v)], the Zariski closure of ρπ must map onto
either a principal SL2 in SO7 ∩ G2, or G2. □

In the following proposition, we describe several cases where Theorem 8.3 applies. Before doing that,
we need to introduce some notation. Let ω1, ω2 denote the two fundamental weights for G2, where ω1 is
the highest weight of the standard representation and ω2 of the fourteen-dimensional adjoint representation.
According to our convention on the root system for G2 in Section 6.2.1, ω1 = a + 2b and ω2 = 2a + 3b.

Proposition 8.4. Let σ be a cuspidal automorphic representation of G◦

2(A) with ◦ ∈ {∅, c} such that σ∞

is a discrete series of infinitesimal character (r, s), where r − 3 ≥ s − 1 ≥ 0 and r − s is even
(
if ◦ = c

then σ∞ is the irreducible algebraic representation of Gc
2(R) of highest weight (s−1)ω1+

1
2(r −s−2)ω2

)
and σp is Steinberg at some finite place p. Suppose that one of the following conditions holds.
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(1) We have ◦ = c and there exists α ∈ σ and a quaternion subalgebra D of the nonsplit octonions Oc

such that
PC
α :=

∫
C(Q)\C(A)

α(v) dv ̸= 0,

where C is the centralizer of D in Gc
2.

(2) We have ◦ = ∅ and either σ is globally generic or σ∞ is nongeneric and σ supports a Fourier
coefficient of type (4 2) corresponding to Q × F, where F is a real quadratic étale Q-algebra.

Then there exists a nontrivial small theta lift π of σ to G(A) which is a cuspidal automorphic repre-
sentation, such that π∞ is a discrete series with infinitesimal character

(
r, 1

2(r + s), 1
2(r − s)

)
and πp

is Steinberg.

Proof. Let σ be as in assumption (1). Since the Steinberg representation is generic, then by [Gross
and Savin 1998, Corollary 4.9] the big theta lift of σ to G(A) has a nontrivial cuspidal irreducible
subquotient π , which is unramified at almost all places. The infinitesimal character of its archimedean
component is given in [Gross and Savin 1998, Theorem 3.5], and by Propositions 6.5 and 6.10 we have
that πp is Steinberg. Under the assumption (2), if σ is globally generic, the result follows from [Harris
et al. 2023, Theorem 1.7], and if σ∞ is not generic and σ supports a Fourier coefficient as in the statement,
the result follows from Theorem 7.8. □

By construction, the composition of the Galois representation ρπ (and thus ρσ ) with the spin represen-
tation appears in H 6

ét(ShG,Q,V
λ
ℓ (3)), where the latter denotes the direct limit of the cohomology at level U

in coefficients in the ℓ-adic lisse sheaf associated to an irreducible algebraic representation V λ of G, as U
varies. This direct limit is a smooth admissible Qℓ-representation of G(A f ), endowed with an action of
Gal(Q/Q) commuting with the one of G(A f ). Let σ and π be as in the statement of Theorem 8.3. Choose
an embedding of the rationality field L of π in Qℓ. Then by Lemma 2.8, the π∨

f -isotypic component of
H 6

ét,!(ShG,Q,V
λ
ℓ (3)) is eight-dimensional Qℓ-vector space, and we have

H 6
ét,!(ShG,Q,V

λ
ℓ (3))[π

∨

f ] = VSpin ◦ρπ ⊗π∨

f = VSpin ◦ζ◦ρσ ⊗π∨

f .

If the image of ρσ is Zariski dense in G2(Qℓ), we have Spin ◦ζ ◦ρσ = Std ◦ρσ ⊕ 1, where Std ◦ρσ is the
irreducible “standard” Galois representation attached to σ . If not, by Theorem 8.3, the image of ρσ is
Zariski dense onto a principal ξ : SL2(Qℓ)→ G2(Qℓ). Then the branching law of [Gross 2000, (7.1)]
gives that Spin ◦ζ ◦ρσ = Sym6

◦ρσ ⊕1, where Sym6
◦ρσ is the irreducible symmetric sixth power Galois

representation attached to σ . Denote by Mℓ(π f ) the Galois representation VSpin ◦ρπ and let Mℓ(σ f ) be
either the Galois representation VStd ◦ρσ or VSym6

◦ρσ
. Then we have that Mℓ(σ f )

GQ = 0 and Mℓ(π f )

decomposes as the direct sum
Mℓ(π f )= Mℓ(σ f )⊕ 1, (23)

where 1 denotes the one-dimensional trivial representation.

Remark 8.5. In the case where ρσ is not Zariski dense in G2(Qℓ), the Satake parameter sσp ∈ ξ(SL2(C))

for any unramified prime p. By Langlands reciprocity principle, σ should be the functorial lift of a
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cuspidal automorphic representation τ of PGL2(A), while VSym6
◦ρσ

should be a geometric realization of
the motive of the symmetric sixth power of τ .

8.3. On a question of Gross and Savin. Tate conjecture predicts the existence of a cycle which gives
rise to the trivial representation appearing in the decomposition of (23). Gross and Savin [1998], inspired
by local computations, conjectured that this cycle should come from a Hilbert modular 3-fold inside ShG .
Theorem 8.6 below supports this expectation for certain cuspidal automorphic representations σ of G2

and Gc
2.

Let σ be a cuspidal automorphic representation of G◦

2(A) with ◦ ∈ {∅, c} such that σ∞ is a discrete
series of infinitesimal character (r, s) with r − 3 ≥ s − 1 ≥ 0 and r − s even and σp is Steinberg at some
finite place p and let π be the small theta lift of σ given by Proposition 8.4. Let V λ denote an irreducible
algebraic representation of G of highest weight λ=

(
r −3, 1

2(r + s)−2, 1
2(r − s)−1, 0

)
. Note that V λ

|H

contains the trivial representation by Lemma 3.2. Let U ⊂ G(A f ) denote a neat compact open subgroup
such that πU

f ̸= 0. For any 1
2(r + s)− 2 ≥ µ≥

1
2(r − s)− 1, let

Z [λ,µ]

H,ét := clét(Z
[λ,µ]

H,M) ∈ H6
ét(ShG(U)Q,V

λ
ℓ (3))

GQ

be the étale realization of the motivic class Z [λ,µ]

H,M (see Definition 3.9), where H = GL2 ⊠GL∗

2,F . Fix a
vector 9 f ∈ πU

f . By composing the projection to the π∨

f -isotypic component together with the projection
given by the vector 9 f , we get

Zσ
H,ét :=9 f (prπ∨(Z [λ,µ]

H,ét )) ∈ (Mℓ(σ f )⊕ 1)GQ = 1.

By (the proof of) Lemma 2.8, there exists a cuspidal automorphic representation π3,3
=π3,3

∞
⊗π f of G(A)

whose archimedean component is a discrete series of Hodge type (3, 3) with the same infinitesimal
character of π∞ and whose nonarchimedean part π f is the same as the one of π . Let 9 =9∞ ⊗9 f be
the cusp form in the space of π3,3 such that 9∞ is a highest weight vector of the minimal K∞-type of
π

3,3
∞,1 ⊆ π3,3

∞
|Sp6(R)

. For any µ as above, recall that we denote 9[λ,µ]
= A[λ,µ]

·9∞ ⊗9 f , where A[λ,µ]

is the operator that appeared in Proposition 4.8.

Theorem 8.6. Assume that the integral IS(8,9
[λ,µ], 1) is nonzero for some Schwartz–Bruhat function8.

Then the class Zσ
H,ét generates the trivial subrepresentation 1 of Mℓ(π f ).

Proof. By the comparison theorem between étale and Betti cohomology [SGA 43 1973, Exposé XI,
Theorem 4.4(iii)], Proposition 8.1 and Corollary 5.12, we know that the projection prπ∨Z [λ,µ]

H,ét to
Mℓ(π f )⊗ (πU

f )
∨ generates a one-dimensional subspace, which is trivial for the action of the Galois group.

As we have explained above, the image of ρσ is either dense in G2(Qℓ) or in SL2(Qℓ)→ PGL2(Qℓ) ↪→

G2(Qℓ). In either case, the representation Mℓ(σ f ) is irreducible and the trivial factor 1 in Mℓ(π f ) is
hence generated by the image of Zσ

H,ét. □
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