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Odd moments in the distribution of primes
Vivian Kuperberg

Montgomery and Soundararajan showed that the distribution ofψ(x+H)−ψ(x), for 0≤ x ≤ N, is approx-
imately normal with mean ∼ H and variance ∼ H log(N/H), when N δ

≤ H ≤ N 1−δ. Their work depends
on showing that sums Rk(h) of k-term singular series are µk(−h log h + Ah)k/2 + Ok(hk/2−1/(7k)+ε),
where A is a constant and µk are the Gaussian moment constants. We study lower-order terms in the size
of these moments. We conjecture that when k is odd, Rk(h)≍ h(k−1)/2(log h)(k+1)/2. We prove an upper
bound with the correct power of h when k = 3, and prove analogous upper bounds in the function field
setting when k = 3 and k = 5. We provide further evidence for this conjecture in the form of numerical
computations.
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3. Function field analogs: proof of Theorem 1.3 643
4. The fifth moment of reduced residues in the function field setting 651
5. Numerical evidence for odd moments 662
6. Toy models and open problems 664
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1. Introduction

What is the distribution of primes in short intervals? Cramér [1936] modeled the indicator function of
the sequence of primes by independent random variables Xn , for n ≥ 3, which are 1 (“n is prime”) with
probability 1/log n, and 0 (“n is composite”) with probability 1 − 1/log n. Cramér’s model predicts that
the distribution of ψ(n + h)−ψ(n), a weighted count of the number of primes in an interval of size h
starting at n, follows a Poisson distribution when n varies in [1, N ] and when h ≍ log N. Gallagher [1976]
proved that this follows from a quantitative version of the Hardy–Littlewood prime k-tuple conjecture:
namely, that if D = {d1, d2, . . . , dk} is a set of k distinct integers, then∑

n≤N

k∏
i=1

3(n + di )= (S(D)+ o(1))N ,
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618 Vivian Kuperberg

where S(D) is the singular series, a constant dependent on D given by

S(D)=

∏
p

(
1 −

1
p

)−k(
1 −

νp(D)
p

)
,

where νp(D) denotes the number of distinct residue classes modulo p among the elements of D. The
singular series is also given by the formula

S(D)=

∑
q1,...,qk

1≤qi<∞

( k∏
i=1

µ(qi )

φ(qi )

) ∑
a1,...,ak
1≤ai ≤qi
(ai ,qi )=1∑

ai/qi ∈Z

e
( k∑

i=1

ai di

qi

)
. (1)

The Hardy–Littlewood prime k-tuple conjectures give us a better lens through which to understand
the distribution of primes: by understanding sums of singular series. For example, Gallagher used the
estimate that ∑

D⊂[1,h]

S(D)∼

∑
D⊂[1,h]

1

to prove that the Hardy–Littlewood conjectures imply Poisson behavior in intervals of logarithmic
length. Our concern is the distribution of primes in somewhat longer intervals, namely, those of size H,
where H = o(N ) and H/ log N → ∞ as N → ∞. In this setting, the Cramér model would predict
that the distribution of ψ(n + H)− ψ(n) for n ≤ N is approximately normal, with mean ∼ H and
variance ∼ H log N. However, the Hardy–Littlewood prime k-tuple conjecture gives a different answer in
this case. Montgomery and Soundararajan [2004] provided evidence based on the Hardy–Littlewood prime
k-tuple conjectures that the distribution ought to be approximately normal with variance ∼ H log(N/H).
They consider the K -th moment MK (N ; H) of the distribution of primes in an interval of size H, given by

MK (N ; H)=

N∑
n=1

(ψ(n + H)−ψ(n)− H)K .

They conjecture that these moments should be given by the Gaussian moments

MK (N ; H)= (µK + o(1))N
(

H log N
H

)K/2
,

where µK = 1 ·3 · · · (K −1) if K is even and 0 if K is odd, uniformly for (log N )1+δ
≤ H ≤ N 1−δ. Their

technique relies on more refined estimates of sums of the singular series constants S(D). Instead of the
von Mangoldt function 3(n), they consider sums of 30(n)=3(n)− 1, where the main term has been
subtracted from the beginning. The corresponding form of the Hardy–Littlewood conjecture states that∑

n≤N

k∏
i=1

30(n + di )= (S0(D)+ o(1))N

as N → ∞, where S0(D) is given by

S0(D)=

∑
J⊆D

(−1)|D\J |S(J ),
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and in turn

S(D)=

∑
J⊆D

S0(J ).

We can combine this with (1) to see that

S0(D)=

∑
q1,...,qk

1<qi<∞

( k∏
i=1

µ(qi )

φ(qi )

) ∑
a1,...,ak
1≤ai ≤qi
(ai ,qi )=1∑

ai/qi ∈Z

e
( k∑

i=1

ai di

qi

)
. (2)

Montgomery and Soundararajan considered the sum

Rk(h) :=

∑
d1,...,dk
1≤di ≤h

di distinct

S0(D), (3)

showing that, for any nonnegative integer k, for any h > 1, and for any ε > 0,

Rk(h)= µk(−h log h + Ah)k/2 + Ok(hk/2−1/(7k)+ε), (4)

where A = 2 − γ − log 2π . Their estimate on Rk(h) implies their bound on the moments. For more on
the distribution of primes in short intervals, see for example [Chan 2006; Granville and Lumley 2023;
Montgomery and Soundararajan 2004].

For all k, the optimal error term in (4) is expected to be smaller. In the case of the variance, this was
studied in [Montgomery and Soundararajan 2002]. In this paper, we restrict our attention to the cases when
k is odd. We conjecture the following, which was mentioned in [Lemke Oliver and Soundararajan 2016].

Conjecture 1.1. Let k ≥ 3 be an odd integer, and let h > 1. With Rk(h) defined as above,

Rk(h)≍ h(k−1)/2(log h)(k+1)/2.

The conjectured power of log h here comes from numerical evidence, which we present in Section 5.
For k odd, we do not know, even heuristically, which terms contribute to the main term in Rk(h); for
this reason, we do not know what the constant should be in front of the asymptotic in Conjecture 1.1.
Nevertheless, our goal in this paper is to provide evidence for Conjecture 1.1. When k = 3, we can show
an upper bound with the correct power of h.

Theorem 1.2. For h ≥ 4 and R3 defined in (3),

R3(h)≪ h(log h)5.

Another source of evidence for Conjecture 1.1 is the analog of this problem in the function field setting,
which is also studied in [Keating and Rudnick 2014]. As we discuss in Section 3, we can consider analogous
questions over F[T ], where F is a finite field, instead of over Z. To state the analog, we first revisit the
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techniques of Montgomery and Soundararajan in the integer case. Upon expanding (3) using (2), we get

Rk(h)=

∑
d1,...,dk
1≤di ≤h

di distinct

∑
q1,...,qk

1<qi<∞

( k∏
i=1

µ(qi )

φ(qi )

) ∑
a1,...,ak
1≤ai ≤qi
(ai ,qi )=1∑

ai/qi ∈Z

e
( k∑

i=1

ai di

qi

)
=

∑
q1,...,qk

1<qi<∞

( k∏
i=1

µ(qi )

φ(qi )

) ∑
a1,...,ak
1≤ai ≤qi
(ai ,qi )=1∑

ai/qi ∈Z

k∏
i=1

E
(

ai

qi

)
,

where E(α)=
∑h

m=1 e(mα). The sums E(α) approximately detect when ∥α∥ ≤ 1/h.
This expression for Rk(h) is closely related to a quantity studied by in [Montgomery and Vaughan 1986].

They considered the related problem of the k-th moment of reduced residues modulo a fixed q , given by

mk(q; h)=

q∑
n=1

( ∑
1≤m≤h

(m+n,q)=1

1 − h
φ(q)

q

)k

.

The moment mk satisfies mk(q; h)= q(φ(q)/q)k Vk(q; h), where Vk(q; h) is the “singular series sum”,

Vk(q; h)=

∑
d1,...,dk
1≤di ≤h

∑
q1,...,qk
1<qi | q

( k∏
i=1

µ(qi )

φ(qi )

) ∑
a1,...,ak
1≤ai ≤qi
(ai ,qi )=1∑

ai/qi ∈Z

e
( k∑

i=1

ai di

qi

)
,

which differs from Rk(h) only in that the qi are now constrained to divide a fixed q. In this paper, as
well as in the work of Montgomery and Soundararajan, estimating Vk(q; h) when q is a product of
primes p ≤ hk+1 is a key step towards estimating Rk(h). Similarly, understanding mk(q; h) is closely
related to understanding Rk(h). For example, Conjecture 1.1 predicts that Rk(h)≍ h(k−1)/2(log h)(k+1)/2

when k is odd; this conjecture is closely related to the prediction that when q is a product of primes p ≤ h A

for a fixed power A, and when k is odd, then we should have mk(q; h)≍ q(h/(log h))(k−1)/2. Montgomery
and Vaughan [1986] predicted that mk(q; h)≪ q(h/(log h))(k−1)/2 in this setting. In the function field
setting, we study an analog of the moments mk(q; h).

Let Fq be a finite field with q elements, and let Q be a fixed monic polynomial in Fq [t]. Note that Q
in the function field case serves the same role as q in the integer case, since q now represents the size of
the field. The moment mk(Q; h), an analog of the k-th moment of reduced residues in short intervals
which is defined precisely in (15), is the k-th moment of the distribution of polynomials that are relatively
prime to Q lying in intervals of size qh in the function field Fq [t]. In this case an “interval” of size qh

centered at a polynomial G(t) consists of all polynomials F(t) such that F(t)≡ G(t) mod th. We can
adapt the methods of Montgomery–Vaughan to prove a bound on mk(Q; h) that has the same shape as
the bounds of Montgomery–Vaughan and Montgomery–Soundararajan.

Theorem 1.3. For any fixed k ≥ 3 and for Q ∈ Fq [t] square-free, for h ≥ 2,

mk(Q; h)≪


|Q|(qh)k/2

(
φ(Q)
|Q|

)k/2(
1 + (qh)−1/(k−2)

(
φ(Q)
|Q|

)−2k
+k/2)

if k is even,

|Q|((qh)k/2−1/2
+ (qh)k/2−1/(k−2))

(
φ(Q)
|Q|

)−2k
+k/2

if k is odd.
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The function field exponential sums are cleaner than their integer analogs, making this proof more
streamlined than the proof of Montgomery–Vaughan. As a result, the bound is tighter; in fact, for
k = 3, Theorem 1.3 already yields a bound where the exponent of qh is 1. This is of the same shape as
Theorem 1.2, where the exponent of h is 1.

Using a more involved argument we can achieve a bound on the fifth moment of reduced residues in
short intervals.

Theorem 1.4. Let h ≥ 2 and let
Q =

∏
P irred.
|P|≤q6h

P.

For all ε > 0,
m5(Q; h)≪ |Q|q2h+ε.

As discussed above, Conjecture 1.1 would predict in the integer case that for k odd and q =
∏

p≤h A p,
we have mk(q; h)≍ q(h/(log h))(k−1)/2. In the function field case, we have a polynomial Q(t) in place of
the modulus q , and an interval of size qh instead of one of size h, so the analog of Conjecture 1.1 would
predict that m5(Q; h)≍ |Q|q2h(log qh)−2. In particular, Theorem 1.4 matches the exponent of qh in this
prediction. Our techniques do not quite succeed in proving such a bound for any higher odd moments, as
we note in Section 4. However, we do get as a corollary the following bound on sums of singular series
in function fields. The sum Rk(qh) of singular series in function fields is defined very analogously to the
sum Rk(h) in the integer setting; a precise definition is given in (19).

Corollary 1.5. Let h ≥ 2 and let
Q =

∏
P irred.
|P|≤q6h

P.

Then

R3(qh)≪ V3(Q; h)+ qh
(

|Q|

φ(Q)

)2

≪ qh
(

|Q|

φ(Q)

)8

,

and, for all ε > 0,

R5(qh)≪ V5(Q; h)+
(

|Q|

φ(Q)

)21/2

q2h
≪ q(2+ε)h .

This paper is organized as follows. In Section 2 we prove Theorem 1.2. In Section 3, we discuss
the analogous problem in Fq [T ], and adapt the framework of Montgomery and Vaughan to the function
field setting to prove Theorem 1.3. In Section 4 we prove Theorem 1.4. Finally, in Section 5 we provide
numerical evidence for Conjecture 1.1, and in Section 6 we discuss toy problems, further directions of
inquiry, and possible applications of these questions.

2. Three-term integer sums: proof of Theorem 1.2

Our goal is to bound
R3(h)=

∑
d1,d2,d3
1≤di ≤h

di distinct

S0(D).
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Expanding S0(D) as an exponential sum yields

R3(h)=

∑
d1,d2,d3
1≤di ≤h

di distinct

∑
q1,q2,q3
1<qi<∞

( 3∏
i=1

µ(qi )

φ(qi )

) ∑
a1,a2,a3
1≤ai ≤qi
(ai ,qi )=1∑

ai/qi ∈Z

e
( 3∑

i=1

ai di

qi

)
.

Our argument will follow the same thread as that of [Montgomery and Soundararajan 2004], which in
turn relies on the analysis of [Montgomery and Vaughan 1986] of the distribution of reduced residues.
To that end, we consider V3(q; h), which is approximately the third centered moment of the number of
reduced residues mod q in an interval of length h. Precisely, V3(q; h) is given by

V3(q; h)=

∑
d1,d2,d3
1≤di ≤h

∑
q1,q2,q3
1<qi | q

( 3∏
i=1

µ(qi )

φ(qi )

) ∑
a1,a2,a3
1≤ai ≤qi
(ai ,qi )=1∑

ai/qi ∈Z

e
( 3∑

i=1

ai di

qi

)
. (5)

This is very similar to the above expression for R3(h); the two differences are that the outer sum in R3(h)
is taken over distinct di ’s, whereas the outer sum for V3(q; h) is not, and that the summands qi range
over all integers for R3(h), but are restricted to factors of q for V3(q; h).

Theorem 2.1. Let h ≥ 4 and let q be the product of primes p ≤ h4. Then

V3(q; h)≪ h(log h)5.

We use Theorem 2.1 to establish Theorem 1.2. In order to derive Theorem 1.2, it suffices to show that
terms arising from transforming V3(q; h) into R3(h) do not contribute more than O(h(log h)5); in fact
they contribute on the order of h(log h)2, which is the conjectured asymptotic size of R3(h). We begin
with this derivation of Theorem 1.2 from Theorem 2.1.

To account for terms where d1, d2, d3 are not necessarily distinct, we make the following definition.

Definition 2.2. Let k ≥ 2, and let D = {d1, . . . , dk} be a k-tuple of not necessarily distinct integers, and
fix q a square-free integer. Then the singular series at D with respect to q is given by

S(D; q) :=

∑
q1,...,qk | q

( k∏
i=1

µ(qi )

φ(qi )

) ∑
a1,...,ak
1≤ai ≤qi
(ai ,qi )=1∑

ai/qi ∈Z

e
( k∑

i=1

ai di

qi

)
.

Just as for S(D), one can subtract off the main term of S(D; q) to define

S0(D; q) :=

∑
J⊂D

(−1)|D\J |S(J ; q).

Combining this with the definition for S(D; q) yields the formula

S0(D; q)=

∑
1<q1,...,qk | q

( k∏
i=1

µ(qi )

φ(qi )

) ∑
a1,...,ak
1≤ai ≤qi
(ai ,qi )=1∑

ai/qi ∈Z

e
( k∑

i=1

ai di

qi

)
. (6)
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If the di are not all distinct, this expression converges for any fixed q but not in the q → ∞ limit. The
singular series at D with respect to q is equal to a finite Euler product.

Lemma 2.3. Let k ≥ 2, and let D = {d1, . . . , dk} be a k-tuple of not necessarily distinct integers, and fix
q a square-free integer. Then

S(D; q)=

∏
p | q

(
1 −

1
p

)−k(
1 −

νp(D)
p

)
,

where νp(D) is the number of distinct residue classes mod p occupied by elements of D.

This lemma is proven in [Montgomery and Soundararajan 2004, Lemma 3]; it is stated there for sets with
distinct elements, but their proof holds in this setting as well. They note first that S(D; q) is multiplicative
in q , so that it suffices to check the lemma for primes p. For a given prime p, they express the condition
that

∑k
i=1 ai/qi ∈ Z in terms of additive characters mod p, and then rearrange to get the result.

Consider the following expression for S0, which is [Montgomery and Soundararajan 2004, equa-
tion (45)]. For all y ≥ h,

S0(D)=

∑
q1,q2,q3

qi>1
p | qi ⇒p≤y

3∏
i=1

µ(qi )

φ(qi )
A(q1, q2, q3;D)+ O

(
(log y)

y

)
,

where

A(q1, q2, q3;D)=

∑
a1,a2,a3
1≤ai ≤qi
(ai ,qi )=1∑

ai/qi ∈Z

e
( 3∑

i=1

di ai

qi

)
.

Apply this to R3(h) with y = h4 and q =
∏

p≤y p to get

R3(h)=

∑
q1,q2,q3

qi>1
qi | q

3∏
i=1

µ(qi )

φ(qi )
S(q1, q2, q3; h)+ O(1),

where

S(q1, q2, q3; h) :=

∑
d1,d2,d3
1≤di ≤h

di distinct

A(q1, q2, q3; {d1, d2, d3})=

∑
d1,d2,d3
1≤di ≤h

di distinct

∑
a1,a2,a3
1≤ai ≤qi
(ai ,qi )=1∑

ai/qi ∈Z

e
( 3∑

i=1

di ai

qi

)
.

If the condition that the di should be distinct were omitted, then the main term in R3(h) would be
exactly V3(q; h). So, it suffices to remove this condition.

Put δi, j = 1 if di = d j and 0 otherwise, so that∏
1≤i< j≤3

(1 − δi, j )=

{
1 if the di are all pairwise distinct,
0 otherwise,
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and

S(q1, q2, q3; h)=

∑
d1,d2,d3
1≤di ≤h

( ∏
1≤i< j≤3

(1 − δi, j )

) ∑
a1,a2,a3
1≤ai ≤qi
(ai ,qi )=1∑

ai/qi ∈Z

e
( 3∑

i=1

di ai

qi

)
.

Expanding the product over the δi, j yields

1 − δ1,2 − δ1,3 − δ2,3 + δ1,2δ2,3 + δ1,3δ1,2 + δ2,3δ1,3 − δ1,2δ2,3δ1,3.

Note that the last four terms each require precisely that d1 = d2 = d3 in order to be nonzero; each of these
can be written as δ1,2,3, so that their sum is 2δ1,2,3. The following lemma addresses the contribution of
these last four terms.

Lemma 2.4. Let h ≥ 4 be an integer. Then

2
∑
d≤h

∑
q1,q2,q3

qi>1
qi | q

3∏
i=1

µ(qi )

φ(qi )

∑
a1,a2,a3
1≤ai ≤qi
(ai ,qi )=1∑

ai/qi ∈Z

e
( 3∑

i=1

dai

qi

)
= 2h

(
q
φ(q)

)2

− 6h
q
φ(q)

+ 4h.

Proof. Note that the left-hand expression is precisely 2
∑

d≤h S0({d, d, d}; q). Expanding S0 and
applying Lemma 2.3 yields

2
∑
d≤h

S0({d, d, d}; q)= 2
∑
d≤h

(
S({d, d, d}; q)− 3S({d, d}; q)+ 3S({d}; q)− 1

)
= 2

∑
d≤h

(∏
p | q

(
1 −

1
p

)−2

− 3
∏
p | q

(
1 −

1
p

)−1

+ 2
)

= 2h
q2

φ(q)2
− 6h

q
φ(q)

+ 4h,

as desired. □

Now consider the contribution to R3(h) from the terms −δ1,2, −δ1,3, and −δ2,3. Via relabeling, it
suffices to only consider the term with −δ1,2, which is nonzero when d1 = d2 and otherwise 0.

Lemma 2.5. Let h ≥ 4 be an integer. Then∑
d,d3≤h

∑
q1,q2,q3

qi>1
qi |q

3∏
i=1

µ(qi )

φ(qi )

∑
a1,a2,a3
1≤ai ≤qi
(ai ,qi )=1∑

ai/qi ∈Z

e
(

d
(

a1

q1
+

a2

q2

))
e
(

d3a3

q3

)
=

(
q
φ(q)

−2
)(

h
q
φ(q)

−h logh+Bh+O(h1/2+ε)

)
.

Proof. As in the previous lemma, we note that the left-hand side is
∑

d,d3≤h S0({d, d, d3}; q). We again
expand and apply Lemma 2.3, to get∑

d,d3≤h

S0({d, d, d3}; q)=

∑
d,d3≤h

(S({d, d, d3}; q)− 2S({d, d3}; q)−S({d, d}; q)+ 2)

=

(
q
φ(q)

− 2
)( ∑

d,d3≤h

S({d, d3}; q)− h2
)
.
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By [Montgomery and Soundararajan 2004, Lemma 4],

∑
d,d3≤h

S({d, d3}; q)=

∑
q1 | q

µ(q1)
2

φ(q1)2

∑
1≤a≤q1
(a,q1)=1

∣∣∣∣E(
a
q1

)∣∣∣∣2

= h
q
φ(q)

+ h2
− h log h + Bh + O(h1/2+ε),

with B = 1 − γ − log 2π . Thus our expression becomes

=

(
q
φ(q)

− 2
)(

h
q
φ(q)

− h log h + Bh + O(h1/2+ε)

)
,

as desired. □

Combining these computations yields

R3(h)= V3(q; h)+2h
(

q
φ(q)

)2

−6h
q
φ(q)

+4h−3
(

q
φ(q)

−2
)(

h
q
φ(q)

−h log h+Bh+O(h1/2+ε)

)
= V3(q; h)−h

(
q
φ(q)

)2

+3h log h
q
φ(q)

−3Bh
q
φ(q)

−6h log h+6Bh+4h+O
(

h1/2+ε q
φ(q)

)
.

By Theorem 2.1, V3(q; h)≪ h(log h)5, so R3(h)≪ h(log h)5, which completes the proof of Theorem 1.2.

2.1. Preparing for the proof of Theorem 2.1. The rest of this section will be devoted to the proof of
Theorem 2.1; here we begin by fixing some notation and proving several preparatory lemmas. Specifically,
Lemmas 2.8, 2.9, 2.10, and 2.11 are general results on adding integer reciprocals along hyperplanes.
Lemmas 2.12, 2.13, and 2.14 rely on these general results to prove bounds on specific sums that will
appear in the proof of Theorem 2.1.

We begin with a reparametrization of variables into a system of common divisors. Let (q1, q2, q3) be a
triple in the sum in (5) defining V3(q; h). The contribution of the (q1, q2, q3)-term to V3(q; h) is zero
unless there are nontrivial solutions to

a1

q1
+

a2

q2
+

a3

q3
∈ Z,

or equivalently

a1q2q3 + a2q1q3 + a3q1q2 ≡ 0 mod q1q2q3,

where (ai , qi )= 1 for all i . This implies that q1 | q2q3 (and likewise q2 | q1q3 and q3 | q1q2), since reducing
mod q1 shows that a1q2q3 ≡0 mod q1, and by assumption (a1, q1)=1. Since q is square-free, so are q1, q2,
and q3, so we can reparametrize as follows. Let g =gcd(q1, q2, q3) be the product of all primes dividing all
three qi ’s. Define x = gcd(q2/g, q3/g), y = gcd(q1/g, q3/g), and z = gcd(q1/g, q2/g). Then q1 = gyz,
q2 = gxz, and q3 = gxy, with g, x, y, z pairwise coprime and square-free. This reparametrization is
the same as writing the system of relative greatest common divisors for q1, q2, and q3; see for example
[Elsholtz and Planitzer 2020] for more details.
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Then

V3(q; h)=

∑
g,x,y,z | q

gxy,gxz,gyz>1

µ(g)µ(gxyz)2

φ(g)φ(gxyz)2
∑

a1,a2,a3
0≤a1<gyz,...
(a1,gyz)=···=1

a1/(gyz)+a2/(gxz)+a3/(gxy)∈Z

E
(

a1

gyz

)
E

(
a2

gxz

)
E

(
a3

gxy

)
.

We start by taking absolute values, using the bound that, for all 0 ≤ α < 1, |E(α)| ≤ F(α), where

F(α) := min{h, ∥α∥
−1

}, (7)

so that

V3(q; h)≤

∑
g,x,y,z | q

gxy,gxz,gyz>1

µ(gxyz)2

φ(g)φ(gxyz)2
∑

a1,a2,a3
0≤a1<gyz,...
(a1,gyz)=···=1∑

a1/gyz∈Z

F
(

a1

gyz

)
F

(
a2

gxz

)
F

(
a3

gxy

)
. (8)

We now split the sum V3(q; h) into three different sums, addressed separately. Let T1 consist of all terms
g, x, y, z in (8) with gx ≥ h. Let T2 consist of all terms g, x, y, z in (8) with gx < h, gy < h, and gz < h,
and ∥a2/q2∥, ∥a3/q3∥> 1/h. Finally, let T3 consist of all terms g, x, y, z in (8) with gx < h, gy< h, and
gz < h, as well as the constraints that ∥a1/(gyz)∥ ≤ 2/h, ∥a2/(gxz)∥ ≤ 2/h, and ∥a3/(gxy)∥ ≤ 2/h.

We claim that, after permuting the names of the variables as necessary, each term g, x , y, z, a1, a2, a3

is contained in sums for T1, T2, or T3. Terms where any of gx , gy, or gz are ≥ h are included in a
copy of T1. For remaining terms we have gx < h, gy < h, and gz < h. If two of the three fractions
ai/qi satisfy ∥ai/qi∥ ≤ 1/h (say i = 1, 2), then the third one must satisfy ∥a3/q3∥ ≤ 2/h because
a1/q1 + a2/q2 + a3/q3 ∈ Z; therefore, these terms are included up to permutation of indices in T3. The
remaining terms must be included, up to permuting the indices, in T2. This implies in particular that

V3(q; h)≪ T1 + T2 + T3.

We will show in Lemmas 2.15, 2.16, and 2.17 respectively that T1 ≪ h(log h)5, T2 ≪ h(log h)4(log log h)2,
and T3 ≪ h(log h)4(log log h)2, which completes the proof of Theorem 2.1.

In what follows, it will be helpful for us to approximate fractions a/q by a nearby multiple of 1/h; to
do so, we make the following definition.

Definition 2.6. Fix h ≥ 4. Let q > 1 and let 1 ≤ a < q with (a, q) = 1. If q > h, the h-approximate
numerator n(a, q) is defined as

n(a, q)=

⌈
h
∥∥∥a

q

∥∥∥⌉
=


⌈ha

q

⌉
if a

q
≤

1
2
,

h −

⌊ha
q

⌋
if a

q
>

1
2
.

Meanwhile, if q ≤ h, the h-approximate numerator n(a, q) is defined to be a itself.

For example, if q > h and 1/h < a/q ≤ 2/h, say, then the h-approximate numerator n(a, q) is equal
to 2, so that n(a, q)/(2h) ≤ a/q ≤ n(a, q)/h. The definition is arranged so that n(a, q) is never zero
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when (a, q) = 1; if 0 < a/q ≤ 1/h, then n(a, q) = 1. The key consequence of this definition is the
following property.

Claim 2.7. Let h ≥ 4. For F(α) defined in (7), we have

F
(

a
q

)
≤ 2

∥∥∥∥ n(a, q)
min{q, h}

∥∥∥∥−1

. (9)

Proof. If q ≤ h, then (9) states that ∥a/q∥
−1

≤ 2∥a/q∥
−1, which is true.

For q > h, we restrict to considering the case when a/q ∈
(
0, 1

2

]
, so that ∥a/q∥ = a/q; the case when

a/q ∈
( 1

2 , 1
)

is analogous. Assume first that 0< a/q ≤ 1/h. Then F(a/q)= h and n(a, q)= 1, so that
(9) states that h ≤ 2h, which is true. Finally assume that 1/h < a/q . By definition, n(a, q)= ⌈ha/q⌉ =

ha/q + e, where 0 ≤ e < 1. For any such e,∥∥∥a
q

+
e
h

∥∥∥ ≤

∥∥∥a
q

∥∥∥ +
1
h

≤ 2 a
q
.

Thus (a
q

)−1
≤ 2

∥∥∥a
q

+
e
h

∥∥∥−1
= 2

∥∥∥⌈ha/q⌉

h

∥∥∥−1
,

which is precisely (9) in this case. □

We write q̃ := min{q, h}, so that F(a/q)≤ 2∥n(a, q)/q̃∥
−1. For any fraction a/q, we then have that

a/q ≈ n(a, q)/q̃ in the sense that |a/q − n(a, q)/q̃|< 1/h, since if q ≤ h then a/q = n(a, q)/q̃ , and if
q > h then this follows from the definition of n(a, q).

We are now ready to proceed with several lemmas concerning sums of fractions, sums over quantities
∥a/q∥

−1, and sums of F(α). The following four lemmas are general results on adding integer reciprocals
of points lying close to certain hyperplanes. Loosely speaking, these lemmas will appear in our argument
in the following way. For each of T1, T2, and T3, we will have to evaluate a sum of the form∑

a1,a2,a3
a1/q1+a2/q2+a3/q3∈Z

F
(

a1

q1

)
F

(
a2

q2

)
F

(
a3

q3

)
,

where in practice there will be further constraints on the terms ai and qi . After applying (9) and the
observation that a/q ≈ n(a, q)/q̃ , and dealing with a little casework on the sign of n(ai , qi ), we arrive at
a sum that is roughly of the form

8
3∏

i=1

min{qi , h}

∑
a1,a2,a3

∥n(a1,q1)/q̃1+n(a2,q2)/q̃2+n(a3,q3)/q̃3∥≈0

1
n(a1, q1)n(a2, q2)n(a3, q3)

.

In particular, in order to analyze T1, T2, T3, we will have to understand sums of reciprocals of lattice
points. Understanding the precise sums requires some amount of casework, largely coming from the
cases qi < h versus qi ≥ h and the cases ai/qi ≤

1
2 versus ai/qi >

1
2 . This casework is accomplished by

the Lemmas 2.8, 2.10, and 2.11.
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Lemma 2.8. Let ν2 ≥ ν1 and α1 ≥ 1 be real numbers, and let h ∈ N with h ≥ 4. Then

∑
1≤n1≤h/(2α1)

1≤n2≤h/2
1≤n3≤h/2

−α1n1+n2+n3∈[ν1,ν2]

1
α1n1n2n3

≪


(ν2 − ν1 + 1)

log h
α1

(
2 − ν1

α1
+ 1

)
if ν1 < 0,

(ν2 − ν1 + 1)
log h
α2

1
if ν1 ≥ 0,

where n1, n2, and n3 range over integers.

Proof. Since n2 + n3 ≥ ν1 +α1n1 and n2 + n3 ≥ 2,

1
α1n1n2n3

=
1

α1n1(n2+n3)

(
1
n2

+
1
n3

)
≤

1
α1n1 max{2, ν1+α1n1}

(
1
n2

+
1
n3

)
.

The sum is then bounded by∑
1≤n1≤h/(2α1)

1≤n2≤h/2
1≤n3≤h/2

−α1n1+n2+n3∈[ν1,ν2]

1
α1n1n2n3

≤

∑
1≤n1≤h/(2α1)

1
α1n1 max{ν1+α1n1, 2}

∑
1≤n2≤h/2
1≤n3≤h/2

−α1n1+n2+n3∈[ν1,ν2]

1
n2

+
1
n3

=

∑
1≤n1≤h/(2α1)

1
α1n1 max{ν1+α1n1, 2}

∑
1≤n2≤h/2
1≤n3≤h/2

−α1n1+n2+n3∈[ν1,ν2]

2
n2
,

where equality follows because the roles of n2 and n3 are symmetric. For fixed values of n1 and n2, the
integer n3 must satisfy 1 ≤ n3 ≤ h/2 and n3 ∈ [ν1 + α1n1 − n2, ν2 + α1n1 − n2]; the number of valid
choices of n3 is ≪ ν2 − ν1 + O(1). Thus the sum is

≪ (ν2 − ν1 + 1)
∑

1≤n1≤h/(2α1)

1
α1n1 max{ν1 +α1n1, 2}

∑
1≤n2≤h/2

1
n2

≪ (ν2 − ν1 + 1) log h
∑

1≤n1≤h/(2α1)

1
α1n1 max{ν1 +α1n1, 2}

.

If ν1 ≥ 0, then ν1/α1 + n1 ≥ 1 and the sum is

≪ (ν2 − ν1 + 1) log h
∑

1≤n1≤h/(2α1)

1
α1n1(ν1 +α1n1)

≪ (ν2 − ν1 + 1)
log h
α2

1

∑
1≤n1≤h/(2α1)

1
n1(ν1/α1 + n1)

≪ (ν2 − ν1 + 1)
log h
α2

1
,

since the sum over n1 is bounded by
∑

∞

n=1 1/n2, and thus by a constant. This completes the proof for
this case.
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On the other hand, if ν1 < 0, then the sum is

≪ (ν2 − ν1 + 1) log h
( ∑

1≤n1≤h/(2α1)
n1<(2−ν1)/α1+1

1
α1n1

+

∑
1≤n1≤h/(2α1)
ν1+α1n1≥2+α1

1
α1n1(ν1 +α1n1)

)

≪ (ν2 − ν1 + 1) log h
(

1
α1

(
2 − ν1

α1
+ 1

)
+

1
α2

1

∑
1≤n1≤h/(2α1)

ν1/α1+n1≥2/α1+1

1
n1(ν1/α1 + n1)

)
.

The final sum is bounded by
∑

∞

n=1 1/n2, and thus by a constant. □

Lemma 2.9. Let ν2 ≥ ν1 ≥ 3 and α1 ≥ 1 be real numbers, and let h ∈ N with h ≥ 4. Then∑
1≤n1≤h/(2α1)

1≤n2≤h/2
1≤n3≤h/2

α1n1+n2+n3∈[ν1,ν2]

1
α1n1n2n3

≪
(ν2 − ν1 + 1)

ν1
log min{ν2, h}

(
ν2 − ν1 + 1 +

1
α1

log min{ν1, h}

)
,

where n1, n2, and n3 range over integers.

Proof. The first part of this proof follows along identical lines to those of Lemma 2.8, but with α1 having
opposite signs. By following the first part of the argument of Lemma 2.8, we get that the sum we want to
bound is

≪ (ν2 − ν1 + 1)
∑

1≤n1≤h/(2α1)
n1≤(ν2−2)/α1

1
α1n1 max{ν1 −α1n1, 2}

∑
1≤n2≤h/2

n2≤ν2−α1n1

1
n2

≪ (ν2 − ν1 + 1) log min{ν2, h}

∑
1≤n1≤h/(2α1)
n1≤(ν2−2)/α1

1
α1n1 max{ν1 −α1n1, 2}

.

If max{ν1 −α1n1, 2} = 2, then ν1 − 2< α1n1 ≤ ν2 − 2. The number of such terms is ≪ ν2 − ν1, and
for these terms the summand is 1/(2α1n1)≪ 1/ν1, so these terms provide an overall contribution of size
≪ (ν2 − ν1 + 1) log min{ν2, h}(ν2 − ν1)/ν1. For the remaining terms, α1n1 ≤ ν1 − 2.

We rewrite
1

α1n1(ν1 −α1n1)
=

1
ν1α1n1

+
1

ν1(ν1 −α1n1)
,

so that for the remaining terms we have∑
1≤n1≤h/(2α1)
n1≤(ν1−2)/α1

1
α1n1 max{ν1 −α1n1, 2}

=

∑
1≤n1≤h/(2α1)
n1≤(ν1−2)/α1

(
1

ν1α1n1
+

1
ν1(ν1 −α1n1)

)

≪
1
ν1α1

log min{ν1, h} +
1
ν1

(
1 +

1
α1

log min{ν1, h}

)
. □



630 Vivian Kuperberg

Lemma 2.10. Let α1 ≥ 1 and ν2 ≥ ν1 be ( possibly negative) real numbers, and let h ∈ N with h ≥ 4. Then

∑
1≤n1≤h/(2α1)

1≤n2≤h/2
1≤n3≤h/2

α1n1−n2+n3∈[ν1,ν2]

1
α1n1n2n3

≪ (ν2 − ν1 + 1)
(

log h
α1

+ 1
)

log max{ν1, α1 + 1} + 1
max{ν1, α1} + 1

,

where n1, n2, and n3 range over integers.

Proof. Since α1n1 + n3 ≥ ν1 + n2 and α1n1 + n3 ≥ α1 + 1, we have

1
α1n1n2n3

=
1

n2(α1n1 + n3)

(
1

α1n1
+

1
n3

)
≤

1
n2 max{ν1 + n2, α1 + 1}

(
1

α1n1
+

1
n3

)
.

The sum is then bounded by

∑
1≤n1≤h/(2α1)

1≤n2≤h/2
1≤n3≤h/2

α1n1−n2+n3∈[ν1,ν2]

1
α1n1n2n3

≤

∑
1≤n2≤h/2

1
n2 max{ν1 + n2, α1 + 1}

∑
1≤n1≤h/(2α1)

1≤n3≤h/2
α1n1−n2+n3∈[ν1,ν2]

(
1

α1n1
+

1
n3

)
.

For fixed values of n1 and n2, the integer n3 must satisfy n3 ∈ [ν1 − α1n1 + n2, ν2 − α1n1 + n2] and
1 ≤ n3 ≤ h/2; the number of valid choices of n3 is ≪ ν2 − ν1 + O(1). Thus∑
1≤n2≤h/2

1
n2 max{ν1+n2, α1+1}

∑
1≤n1≤h/(2α1)

1≤n3≤h/2
α1n1−n2+n3∈[ν1,ν2]

1
α1n1

≪
(ν2−ν1+1)

α1
log h

∑
1≤n2≤h/2

1
n2 max{ν1+n2, α1+1}

≪ (ν2−ν1+1)
log h
α1

log max{ν1, α1+1}+1
max{ν1, α1}+1

.

It remains to evaluate the 1/n3-term in the sum. Since n3 ≥ ν1 −α1n1 + n2, we have∑
1≤n2≤h/2

1
n2 max{ν1 + n2, α1 + 1}

∑
1≤n1≤h/(2α1)

1≤n3≤h/2
α1n1−n2+n3∈[ν1,ν2]

1
n3

≪

∑
1≤n2≤h/2

1
n2 max{ν1 + n2, α1 + 1}

∑
1≤n1≤h/(2α1)

ν2 − ν1 + 1
⌈ν1 −α1n1 + n2⌉

≪

∑
1≤n2≤h/2

ν2 − ν1 + 1
n2 max{ν1 + n2, α1 + 1}

(
log h
α1

+ 1
)

≪ (ν2 − ν1 + 1)
(

log h
α1

+ 1
)

log max{ν1, α1 + 1} + 1
max{ν1, α1} + 1

. □

If α1 = 1, we have the following stronger bound.
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Lemma 2.11. There exist absolute constants C and D such that, for all integers ν ≥ 3 and h ≥ 4,∑
1≤n1≤ν−2
1≤n2≤ν−2
1≤n3≤ν−2

n1+n2+n3=ν

1
n1n2n3

≤ C and
∑

1≤n1≤h
1≤n2≤ν+h
1≤n3≤ν+h

n2+n3=ν+n1

1
n1n2n3

≤ D,

where the sum ranges over integer values of n1, n2, n3.

Proof. For real numbers x, x ′
≥ 1 with |x − x ′

| ≤ 1, we have |1/x − 1/x ′
| ≤ 2/x . Thus∑

1≤n1≤h/2
1≤n2≤h/2
1≤n3≤h/2

n1+n2+n3=ν

1
n1n2n3

≤ 8
∫ ν−2

1

∫ ν−x1−1

1

1
x1x2(ν− x1 − x2)

dx2 dx1

= 8
∫ ν−2

1

2 ln(ν− x1 − 1)
x1(ν− x1)

dx1

≤ 16 ln ν
∫ ν−2

1

1
x1(ν− x1)

dx1

= 16 ln ν
2 ln(ν− 1)

ν
= 32

(ln ν)(ln(ν− 1))
ν

.

The function (ln ν)(ln(ν− 1))/ν has a global maximum M ; setting C = 16M completes the proof of the
first claim.

For the second claim, we similarly have∑
1≤n1≤h

1≤n2≤ν+h
1≤n3≤ν+h

n2+n3=ν+n1

1
n1n2n3

≤ 8
∫ h

1

∫ ν+x1−1

1

1
x1x2(ν+ x1 − x2)

dx2 dx1

= 16
∫ h

1

ln(ν+ x1 − 1)
x1(ν+ x1)

dx1

≤ 16D1 + 16
∫ h

10

ln(x1 − 1)
x2

1
dx1

for some constant D1, since ln(x − 1)/x is decreasing for x ≥ 10. The integral converges to a constant as
h → ∞, so setting D = 16D1 + 16

∫
∞

10 ln(x1 − 1)/x2
1 dx1 completes the proof. □

The next two lemmas concern triple sums over ∥a/q∥
−1, which arise because of their role in the

definition of F(α) and make use of the previous four lemmas.

Lemma 2.12. Fix an integer h ≥ 4. Then∑
1≤ni ≤h−1

∥
∑

i ni/h∥≤3/h

∥∥∥∥n1

h

∥∥∥∥−1∥∥∥∥n2

h

∥∥∥∥−1∥∥∥∥n3

h

∥∥∥∥−1

≪ h3,

where n1, n2, and n3 range over integers.

Proof. We will split into cases based on whether ni ≤ h/2 or ni > h/2, i.e., based on the value of ∥ni/h∥.
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Assume first that 1 ≤ ni ≤ h/2 for all i = 1, 2, 3. Then ∥ni/h∥ = ni/h, so we have∑
1≤ni ≤h/2

∥
∑

i ni/h∥≤3/h

∥∥∥∥n1

h

∥∥∥∥−1∥∥∥∥n2

h

∥∥∥∥−1∥∥∥∥n3

h

∥∥∥∥−1

= h3
∑

1≤ni ≤h/2
∥

∑
i ni/h∥≤3/h

1
n1n2n3

.

To satisfy
∥∥∑

i ni/h
∥∥ ≤ 3/h, we must have n1 +n2 +n3 ∈ {3}∪[h −3, h +3]∪[2h −3, 2h +3]∪{3h −3}.

There are finitely many possible integer values for n1 + n2 + n3; for each one, by Lemma 2.11, the sum
over 1/(n1n2n3) is bounded by an absolute constant. Thus the lemma holds in this case.

Now consider terms where h/2<ni ≤h−1 for all i . For each i , define mi =h−ni , so that 1≤mi ≤h/2.
Then ∥ni/h∥ = mi/h, and ∥∥∥∥∑

i

ni

h

∥∥∥∥ =

∥∥∥∥3h −

∑
i

mi

h

∥∥∥∥ =

∥∥∥∥∑
i

mi

h

∥∥∥∥.
Then ∑

h/2<ni ≤h−1
∥

∑
i ni/h∥≤3/h

∥∥∥∥n1

h

∥∥∥∥−1∥∥∥∥n2

h

∥∥∥∥−1∥∥∥∥n3

h

∥∥∥∥−1

≪

∑
1≤mi ≤h/2

∥
∑

i mi/h∥≤3/h

∥∥∥∥m1

h

∥∥∥∥−1∥∥∥∥m2

h

∥∥∥∥−1∥∥∥∥m3

h

∥∥∥∥−1

,

which is precisely the previous case, since 1 ≤ mi ≤ h/2 for all i . Thus this case is also ≪ h3.
Finally consider terms where, for some i , ni ∈ [1, h/2], whereas for others ni ∈ (h/2, h −1]. As in the

previous paragraph, we can always flip all three ni ’s with h −ni . Moreover, the roles of n1, n2, and n3 are
entirely symmetric. Thus it suffices to bound those terms where n2, n3 ∈ [1, h/2] and n1 ∈ (h/2, h − 1].
Set m1 = h − n1. Then∑

h/2<n1≤h−1
1≤n2,n3≤h−1

∥
∑

i ni/h∥≤3/h

∥∥∥∥n1

h

∥∥∥∥−1∥∥∥∥n2

h

∥∥∥∥−1∥∥∥∥n3

h

∥∥∥∥−1

= h3
∑

1≤m1≤h/2
1≤n2,n3≤h/2

∥−m1/h+n2/h+n3/h∥≤3/h

1
m1n2n3

.

Just as before, there are finitely many possible integer values for −m1 + n2 + n3 satisfying the constraint
that

∥∥∑
i ni/h

∥∥ ≤ 3/h. For each value ν, by Lemma 2.11, the sum∑
1≤m1≤h/2

1≤n2,n3≤h/2
−m1+n2+n3=ν

1
m1n2n3

is bounded by a constant, which completes the proof. □

Lemma 2.13. Let h ≥ 4 and 1 ≤ q1 < h be integers. Then∑
1≤n1≤q1−1

1≤n2,n3≤h−1
∥n1/q1+n2/h+n3/h∥≤3/h

∥∥∥∥n1

q1

∥∥∥∥−1∥∥∥∥n2

h

∥∥∥∥−1∥∥∥∥n3

h

∥∥∥∥−1

≪ h2q1(log h),

where n1, n2, and n3 range over integers.
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Proof. We will split into cases based on whether each of n1/q1, n2/h, and n3/h lie in
(
0, 1

2

]
or

( 1
2 , 1

)
;

for each case, we will show that the bound holds. Assume first that all three of n1/q1, n2/h, and n3/h
lie in

(
0, 1

2

]
. Note that

n1

q1
+

n2

h
+

n3

h
≥

1
q1

+
2
h
>

3
h
,

so the constraint that ∥n1/q1 + n2/h + n3/h∥ ≤ 3/h is equivalent to the constraint that

n1

q1
+

n2

h
+

n3

h
∈

[
1 −

3
h
, 1 +

3
h

]
∪

[
2 −

3
h
, 2 +

3
h

]
∪

[
3 −

3
h
, 3

]
⇐⇒

h
q̃1

n1 + n2 + n3 ∈ [h − 3, h + 3] ∪ [2h − 3, 2h + 3] ∪ [3h − 3, 3h].

These are finitely many intervals, each of bounded size. Thus these terms are given by∑
1≤n1≤q1/2

1≤n2,n3≤h/2
∥n1/q1+n2/h+n3/h∥≤3/h

q1h2

n1n2n3
=

∑
[ν1,ν2]∈{[h−3,h+3],

[2h−3,2h+3],[3h−3,3h]}

∑
1≤n1≤q1/2

1≤n2,n3≤h/2
(h/q1)n1+n2+n3∈[h−3,h+3]

h3

(h/q1)n1n2n3
.

We apply Lemma 2.9, with α1 = h/q1 and [ν1, ν2] = [h − 3, h + 3], [2h − 3, 2h + 3], or [3h − 3, 3h],
respectively. By Lemma 2.9, each of these three terms is

≪ h3 1
h

log h
(

1 +
log h
α1

)
≪ h2 log h

(
1 +

q1 log h
h

)
,

which is ≪ h2q1 log h, as desired.
Now assume that all three of n1/q1, n2/h, and n3/h lie in

( 1
2 , 1

)
. Define m1 = q1 − n1, m2 = h − n2,

and m3 = h − n3, so that∑
q1/2<n1≤q1−1

h/2<n2,n3≤h−1
∥n1/q1+n2/h+n3/h∥≤3/h

∥∥∥∥n1

q1

∥∥∥∥−1∥∥∥∥n2

h

∥∥∥∥−1∥∥∥∥n3

h

∥∥∥∥−1

=

∑
1≤m1≤q1/2

1≤m2,m3≤h/2
∥m1/q1+m2/h+m3/h∥≤3/h

h3

(h/q1)m1m2m3
.

This is identical to the previous case, which we have already shown to be ≪ h2q1 log h.
We now tackle the cases where not all fractions lie in the same half of (0, 1). Assume that n1/q1 ∈

( 1
2 , 1

)
but n2/h, n3/h ∈

(
0, 1

2

]
. Define m1 = q1 − n1, so that

∑
q1/2<n1≤q1−1
1≤n2,n3≤h/2

∥n1/q1+n2/h+n3/h∥≤3/h

∥∥∥∥n1

q1

∥∥∥∥−1∥∥∥∥n2

h

∥∥∥∥−1∥∥∥∥n3

h

∥∥∥∥−1

=

∑
1≤m1≤q1/2

1≤n2,n3≤h/2
∥−m1/q1+n2/h+n3/h∥≤3/h

h3

(h/q1)m1n2n3
.

The constraint that ∥∥∥∥−
m1

q1
+

n2

h
+

n3

h

∥∥∥∥ ≤
3
h
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is equivalent to the constraint that −h/q1m1 +n2 +n3 lies in one of the intervals [−3, 3] or [h −3, h +3].
Applying Lemma 2.8 to the sum over m1, n2, n3, with α1 = h/q1 and [ν1, ν2] equal to each of these
intervals respectively, we get that∑

q1/2<n1≤q1−1
1≤n2,n3≤h/2

∥n1/q1+n2/h+n3/h∥≤3/h

∥∥∥∥n1

q1

∥∥∥∥−1∥∥∥∥n2

h

∥∥∥∥−1∥∥∥∥n3

h

∥∥∥∥−1

≪ h3 log h
(h/q1)

(
1 +

1
(h/q1)

)
≪ h2q1 log h.

If n1/q1 ∈
(
0, 1

2

]
but n2/h, n3/h ∈

(1
2 , 1

)
, then we can once again replace n1 by m1 = q1 − n1, n2 by

m2 = h − n2, and n3 by m3 = h − n3 to revert to the previous case.
Finally assume that n1/q1 ∈

(
0, 1

2

]
, n2/h ∈

( 1
2 , 1

)
, and n3/h ∈

(
0, 1

2

]
. The roles of n2 and n3 are

symmetric, and we can always replace all three ni ’s by the corresponding mi -value, so this is the only
remaining case.

Define m2 = h − n2, so that∑
1≤n1≤q1/2

h/2<n2≤h−1
1≤n3≤h/2

∥n1/q1+n2/h+n3/h∥≤3/h

∥∥∥∥n1

q1

∥∥∥∥−1∥∥∥∥n2

h

∥∥∥∥−1∥∥∥∥n3

h

∥∥∥∥−1

=

∑
1≤n1≤q1/2
1≤m2≤h/2
1≤n3≤h/2

∥n1/q1−m2/h+n3/h∥≤3/h

h3

(h/q1)n1m2n3
.

The constraint that ∥n1/q1 −m2/h+n3/h∥ ≤ 3h is equivalent to the constraint that −(h/q1)n1 −m2 +m3

lies in one of the intervals [−3, 3] or [h − 3, h + 3]. Applying Lemma 2.10 to the sum over n1,m2, n3

with α1 = h/q1 and [ν1, ν2] equal to each of these intervals respectively, we get that∑
1≤n1≤q1/2

h/2<n2≤h−1
1≤n3≤h/2

∥n1/q1+n2/h+n3/h∥≤3/h

∥∥∥∥n1

q1

∥∥∥∥−1∥∥∥∥n2

h

∥∥∥∥−1∥∥∥∥n3

h

∥∥∥∥−1

≪ h3
(

q1 log h
h

+ 1
)

q1 log(h/q1 + 1)
h

.

Since log x/x is uniformly bounded for x ≥ 1, we have q1/h log(h/q1) ≪ 1, so these terms are also
≪ h2q1 log h, which completes the proof. □

Finally, the following lemma directly bounds a sum over triple products of F(ai/qi ).

Lemma 2.14. Let h ∈ N with h ≥ 4 and let d1 ≥ 1 and d2 ≥ 2 be positive integers with d1|d2 and d2 < h.
Then ∑

1≤n1<d1
1≤n2<d2

F
(

n1

d1

)
F

(
n2

d2

)
F

(
n1

d1
−

n2

d2

)
≪ hd2

1 + d2
1 d2 log d2,

where n1 and n2 range over integers.

Proof. Write f := d2/d1. Then
n1

d1
−

n2

d2
=

f n1 − n2

d2
.
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Since d2 < h,

F
(

f n1 − n2

d2

)
=

∥∥∥∥ f n1 − n2

d2

∥∥∥∥−1

unless f n1 − n2 = 0. Moreover, in the range where 1 ≤ n1 < d1 and 1 ≤ n2 < d2,

F
(

n1

d1

)
=

∥∥∥∥n1

d1

∥∥∥∥−1

and F
(

n2

d2

)
=

∥∥∥∥n2

d2

∥∥∥∥−1

.

Thus∑
1≤n1<d1
1≤n2<d2

F
(

n1

d1

)
F

(
n2

d2

)
F

(
n1

d1
−

n2

d2

)
=

∑
1≤n1<d1
1≤n2<d2
f n1=n2

h
∥∥∥∥n1

d1

∥∥∥∥−1∥∥∥∥n2

d2

∥∥∥∥−1

+

∑
1≤n1<d1
1≤n2<d2
f n1 ̸=n2

∥∥∥∥n1

d1

∥∥∥∥−1∥∥∥∥n2

d2

∥∥∥∥−1∥∥∥∥ f n1 − n2

d2

∥∥∥∥−1

.

The first sum is bounded by∑
1≤n1<d1
1≤n2<d2
f n1=n2

h
∥∥∥∥n1

d1

∥∥∥∥−1∥∥∥∥n2

d2

∥∥∥∥−1

= h
∑

1≤n1<d1

∥∥∥∥n1

d1

∥∥∥∥−2

≤ 2hd2
1

∑
1≤n1≤d1/2

1
n2

1
≪ hd2

1 .

It remains to bound the second sum. As in the proofs of Lemmas 2.12 and 2.13, we will split into
cases based on whether n1/d1 and n2/d2 are in

(
0, 1

2

]
or

( 1
2 , 1

)
.

Assume first that both n1/d1 and n2/d2 are in
(
0, 1

2

]
, or that both n1/d1 and n2/d2 are in

( 1
2 , 1

)
. In the

latter case, we can substitute m1 = d1 − n1 and m2 = d2 − n2 to revert precisely to the former case, so it
suffices to assume that both n1/d1 and n2/d2 are in

(
0, 1

2

]
. Then∑

1≤n1≤d1/2
1≤n2≤d2/2

f n1 ̸=n2

d1d2

n1n2

∥∥∥∥ f n1 − n2

d2

∥∥∥∥−1

=

∑
1≤n1≤d1/2
1≤n2≤d2/2

f n1>n2

d1d2
2

n1n2( f n1 − n2)
+

∑
1≤n1≤d1/2
1≤n2≤d2/2

f n1<n2

d1d2
2

n1n2(n2 − f n1)
.

By applying Lemma 2.8 with α1 = f and ν1 = ν2 = 0, the first sum is bounded by ≪ d3
2 log d2/ f 2

=

d2
1 d2 log d2. For the second sum, we can achieve a bound that is somewhat stronger than the bound

furnished by Lemma 2.10 in this special case. Specifically we have, writing n3 = n2 − f n1,

d3
2

∑
1≤n1≤d1/2
1≤n2≤d2/2
1≤n3≤d2/2

f n1−n2+n3=0

1
f n1n2n3

= d3
2

∑
1≤n1≤d1/2

1
f n1

∑
f n1≤n2≤d2/2
1≤n3≤d2/2
f n1+n3=n2

1
n2 − n3

(
1
n3

−
1
n2

)

= d3
2

∑
1≤n1≤d1/2

1
( f n1)2

∑
1≤n3≤d2/2− f n1

(
1
n3

−
1

n3 + f n1

)

≪ d3
2

∑
1≤n1≤d1/2

1
( f n1)2

log d2 ≪ d3
2

log d2

f 2 = d2
1 d2 log d2.

Thus in this case, the second sum is ≪ d2
1 d2 log d2.
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Now assume that n1/d1 ∈
( 1

2 , 1
)

but n2/d2 ∈
(
0, 1

2

]
; by swapping both ni ’s with mi = di − ni , this is

the same as the case that n1/d1 ∈
(
0, 1

2

]
but n2/d2 ∈

( 1
2 , 1

)
, so it is our only remaining case.

On substituting m1 = d1 − n1, the sum in this case becomes

∑
1≤m1≤d1/2
1≤n2≤d2/2
f m1+n2<d2

d1d2

m1n2

∥∥∥∥ f m1 + n2

d2

∥∥∥∥−1

=

∑
1≤m1≤d1/2
1≤n2≤d2/2

f m1+n2≤d2/2

d1d2
2

m1n2( f m1 + n2)
+

∑
1≤m1≤d1/2
1≤n2≤d2/2

d2/2< f m1+n2<d2

d1d2
2

m1n2(d2 − n2 − f m1)
.

The first sum is

≤ d1d2
2

∑
1≤m1≤d1/2
1≤n2≤d2/2
f m1+n2<d2

1
f m2

1n2
≪

d1d2
2

f
log d2 = d2

1 d2 log d2.

As for the second sum, setting n3 = d2 − n2 − f m1, we can bound it by applying Lemma 2.9, where
α1 = f and ν1 = ν2 = d2, to get that

d3
2

∑
1≤m1≤d1/2
1≤n2≤d2/2
1≤n3≤d2/2

f m1+n2+n3=d2

1
f m1n2n3

≪ d3
2

1
d2

log d2

(
1 +

log d2

f

)
≪ d2

2 log d2 + d1d2 log d2,

both of which are ≪ d2
1 d2 log d2. □

2.2. Bounding T1: terms with gx ≥ h. Define

T1 =

∑
g,x,y,z | q

gx≥h

µ(gxyz)2

φ(g)3φ(xyz)2
∑

a1,a2,a3
(a1,gyz)=···=1
a1/gyz+···∈Z

F
(

a1

gyz

)
F

(
a2

gxz

)
F

(
a3

gxy

)
. (10)

For these terms, the rough argument that “the probability that each of a2/q2 and a3/q3 are sufficiently
small is about 1/h, making the size of the sum h1+ε instead of h3+ε” can be made precise, although
some of the counting arguments are rather involved, and rely on the lemmas of the previous section.
Nevertheless, we will use this basic idea to prove the following bound.

Lemma 2.15. Let h ≥ 4, let q be the product of primes p ≤ h4, and define T1 by (10). Then

T1 ≪ h(log h)5.

Proof. Recall that q1 = gyz, q2 = gxz, and q3 = gxy. Since gx ≥ h, gxy and gxz (i.e., q2 and q3) must
also both be ≥ h. Recall the notation that q̃i = min{qi , h}, so that q̃2 = q̃3 = h.

Since a1/q1 + a2/q2 + a3/q3 ∈ Z, the sum

n(a1, q1)

q̃1
+

n(a2, q2)

q̃2
+

n(a3, q3)

q̃3
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satisfies ∥∥∥∥n(a1, q1)

q̃1
+

n(a2, q2)

q̃2
+

n(a3, q3)

q̃3

∥∥∥∥ ≤

∥∥∥∥a1

q1
+

a2

q2
+

a3

q3

∥∥∥∥ +

3∑
i=1

∥∥∥∥n(ai , qi )

q̃i
−

ai

qi

∥∥∥∥ ≤
3
h
,

since |a/q − n(a, q)/q̃|< 1/h always. We can then bound the sum by replacing the fractions ai/qi by
their h-approximations n(ai , qi )/qi . Precisely, we have

T1 =

∑
g,x,y,z | q

gx≥h

µ(gxyz)2

φ(g)3φ(xyz)2
∑

a1,a2,a3
(ai ,qi )=1∑

i ai/qi ∈Z

F
(

a1

q1

)
F

(
a2

q2

)
F

(
a3

q3

)

≪

∑
g,x,y,z | q

gx≥h

µ(gxyz)2

φ(g)3φ(xyz)2
∑

a1,a2,a3
(ai ,qi )=1∑

i ai/qi ∈Z

∥∥∥∥n(a1, q1)

q̃1

∥∥∥∥−1∥∥∥∥n(a2, q2)

q̃2

∥∥∥∥−1∥∥∥∥n(a3, q3)

q̃3

∥∥∥∥−1

≪

∑
g,x,y,z | q

gx≥h

µ(gxyz)2

φ(g)3φ(xyz)2
∑

1≤n1,n2,n3≤q̃i −1
∥

∑
i ni/q̃i∥≤3/h

∥∥∥∥n1

q̃1

∥∥∥∥−1∥∥∥∥n2

q̃2

∥∥∥∥−1∥∥∥∥n3

q̃3

∥∥∥∥−1 ∑
a1,a2,a3
(ai ,qi )=1∑

i ai/qi ∈Z

n(ai ,qi )=ni

1.

The inside sum is the number of triplets a1, a2, a3 with n(ai , qi ) = ni for all i , (ai , qi ) = 1, and∑
i ai/qi ∈ Z. The constraint that n(ai , qi ) = ni implies that each ai lies in an interval of length

≪ qi/h + 1; that is, for qi ≥ h, (qi/h)ni ≤ ai ≤ (qi/h)(ni + 1).
The constraint that

∑
i ai/qi ∈ Z, after multiplying out denominators, is equivalent to the constraint

a1x + a2 y + a3z ≡ 0 mod gxyz. (11)

Once the qi ’s (or equivalently g, x , y, and z) are fixed, there are ≪ q1/h + 1 choices of a1 such that
n(a1, q1) = n1. Once a1 is fixed, a2 is determined mod z by (11). Since 1 ≤ a2 ≤ gxz, fixing a2

is equivalent to choosing a congruence class mod gx for a2; there are ≪ gx/h + 1 choices of this
congruence class such that a2 lies within the interval where n(a2, q2)= n2. Since gx ≥ h by assumption,
gx/h + 1 ≪ gx/h. Once a1 and a2 have been fixed, a3 is entirely determined by (11). Thus the total
number of triplets a1, a2, a3 satisfying all constraints is ≪ (q1/h + 1)(gx/h).

Thus T1 is bounded by

T1 ≪

∑
g,x,y,z | q

gx≥h

µ(gxyz)2

φ(g)3φ(xyz)2

(
q1

h
+ 1

)
gx
h

∑
1≤ni ≤q̃i −1

∥
∑

i ni/q̃i∥≤3/h

∥∥∥∥n1

q̃1

∥∥∥∥−1∥∥∥∥n2

h

∥∥∥∥−1∥∥∥∥n3

h

∥∥∥∥−1

.

Consider first those terms where q̃1 = h. Thus q1/h ≫ 1, and by Lemma 2.12, the inside sum is ≪ h3.
This implies that the terms with q̃1 = h are bounded by

≪

∑
g,x,y,z | q

gx≥h

µ(gxyz)2

φ(g)3φ(xyz)2
q1

h
gx
h

h3

≪ h
∑

g,x,y,z, | q
gx≥h

µ(gxyz)2

φ(g)3φ(xyz)2
g2xyz (since q1 = gyz).
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Recalling that q is the product of all primes p ≤ h4, this sum is

≪ h
∏
p≤h4

(
1 +

p2

(p − 1)3
+

3p
(p − 1)2

)
≪ h(log h)4.

The remaining terms are those where q̃1 = q1 < h. By applying Lemma 2.13 to the inside sum, the
terms with q̃1 = q1 < h are bounded by

≪

∑
g,x,y,z | q

gx≥h

µ(gxyz)2

φ(g)3φ(xyz)2
gx
h
(h2q1 log h)

≪ h log h
∑

g,x,y,z | q
gx≥h

µ(gxyz)2g2xyz
φ(g)3φ(xyz)2

(since q1 = gyz)

≪ h(log h)
∏
p≤h4

(
1 +

p2

(p − 1)3
+

3p
(p − 1)2

)
≪ h(log h)5.

Thus T1 ≪ h(log h)4 + h(log h)5 ≪ h(log h)5, as desired. □

2.3. Bounding T2: terms with gx, g y, gz small and a2, a3 large. We now consider T2, which is the
sum of terms in (8) where gx , gy, and gz are all < h and ∥a2/gxz∥ ≥ 1/h, and ∥a3/(gxy)∥ ≥ 1/h. That
is, define

T2 :=

∑
g,x,y,z | q
x,y,z<h/g

µ(gxyz)2

φ(g)3φ(xyz)2
∑

a1,a2,a3
(a1,gyz)=···=1
a1/gyz+···∈Z
∥a2/gxz∥≥1/h
∥a3/gxy∥≥1/h

F
(

a1

gyz

)
F

(
a2

gxz

)
F

(
a3

gxy

)
. (12)

The strategy for bounding T2 is very different from that used to bound T1. Intuitively, since the fractions
a2/(gxz) and a3/(gxy) are far from an integer, we are now considering terms where the values of
F(a2/(gxz)) and F(a3/(gxy)) are relatively small, except perhaps at the boundary where a2/(gxz) and
a3/(gxy) are very close to 1/h. Since the denominators are loosely constrained to be small, there cannot
be too many points on this boundary. We will prove a precise bound in the following lemma.

Lemma 2.16. Let h ≥ 4, let q be the product of primes p ≤ h4, and let T2 be defined as in (12). Then

T2 ≪ h(log h)4(log log h)2.

Proof. We begin by reparametrizing the sum in (12) over a1, a2, a3. For fixed g, x, y, z and fixed a1, a2, a3

satisfying the constraints of the sums in (12), we will fix parameters a, b, c as follows. By the Chinese
remainder theorem, and since g, x , and y are pairwise relatively prime, there exist unique values 1 ≤ a ≤ x
and 1 ≤ b ≤ gy such that

a3

gxy
≡

a
x

−
b

gy
mod 1.
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Similarly, there exist unique values 1 ≤ a′
≤ x and 1 ≤ c ≤ gz such that

a2

gxz
≡

c
gz

−
a′

x
mod 1.

Since a1/(gyz)+ a2/(gxz)+ a3/(gxy) ∈ Z, we have

gyz
(

a2

gxz
+

a3

gxy

)
∈ Z =⇒ gyz

(
a
x

−
b

gy
+

c
gz

−
a′

x

)
∈ Z =⇒ gyz

(a − a′)

x
∈ Z.

Since (gyz, x) = 1, this implies x |(a − a′); thus a = a′. Finally, a1/(gyz)+ a2/(gxz)+ a3/(gxy) ∈ Z

implies that
a1

gyz
≡ −

a2

gxz
−

a3

gxy
≡

b
gy

−
c

gz
mod 1,

so that the triple a1, a2, a3 uniquely determines (and is uniquely determined by) a triple a, b, c with
1 ≤ a ≤ x , 1 ≤ b ≤ gy, and 1 ≤ c ≤ gz such that

a1

gyz
≡

b
gy

−
c

gz
mod 1,

a2

gxz
≡

c
gz

−
a
x

mod 1, and
a3

gxy
≡

a
x

−
b

gy
mod 1.

Upon moving the sums over y and z in (12) inside, we get

T2 =

∑
g,x | q
x<h/g

µ(gx)2

φ(g)3φ(x)2
∑

a
(a,x)=1

S2(g, x, a),

where S2(g, x, a) denotes the sum

S2(g, x, a)=

∑
y,z | q

y,z<h/g

µ(gxyz)2

φ(yz)2
∑
b,c

(b,gy)=(c,gz)=1
∥c/gz−a/x∥≥1/h
∥a/x−b/gy∥≥1/h

F
(

a
x

−
b

gy

)
F

(
b

gy
−

c
gz

)
F

(
c

gz
−

a
x

)
. (13)

Since gy < h and gz < h, the product yz is less than h2, so that

yz
φ(yz)

≪ log log(h2)≪ log log h.

Thus we can replace the expression 1/φ(yz)2 in (13) with (log log h)2/(y2z2).
Let ℓ and m be such that 2ℓ< y ≤ 2ℓ+1 and 2m < z ≤ 2m+1, and further define nℓ and nm to be variables

ranging from 1 to g2ℓ and 1 to g2m respectively.
If

nℓ
g2ℓ+1 ≤

∥∥∥∥a
x

−
b

gy

∥∥∥∥ ≤
nℓ + 1
g2ℓ+1 ,

then

F
(

a
x

−
b

gy

)
≪ F

(
nℓ

g2ℓ+1

)
;
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crucially, this upper bound depends only on ℓ and nℓ, and does not depend on b or y. Similarly, if

nm

g2m+1 ≤

∥∥∥∥ c
gz

−
a
x

∥∥∥∥ ≤
nm + 1
g2m+1 ,

then

F
(

c
gz

−
a
x

)
≪ F

(
nm

g2m+1

)
.

Because of the assumption that ∥a/x − b/(gy)∥ ≥ 1/h, the constraint

nℓ
g2ℓ+1 ≤

∥∥∥∥a
x

−
b

gy

∥∥∥∥ ≤
nℓ + 1
g2ℓ+1

is satisfied for some nℓ with 1 ≤ nℓ ≤ g2ℓ; in particular, the case that nℓ = 0 is ruled out. Similarly, the
case that nm = 0 is ruled out by our assumptions on c/(gz)− a/x .

Thus

S2(g, x, a)≪ (log log h)2
log2(h/g)∑
ℓ,m=1

g2ℓ+1
−1∑

nℓ=1

g2m+1
−1∑

nm=1

1
22ℓ+2m

× F
(

nℓ
g2ℓ+1

)
F

(
nm

g2m+1

)
F

(
nℓ2m

− nm2ℓ

g2ℓ+m+1

) ∑
2ℓ<y≤2ℓ+1

2m<z≤2m+1

nℓ≤g2ℓ+1
∥a/x−b/(gy)∥≤nℓ+1

nm≤g2m+1
∥c/(gz)−a/x∥≤nm+1

1.

Define

Cℓ,nℓ =#
{

b, y :
b
y

∈

(
ga
x

−
nℓ + 1

y
,

ga
x

−
nℓ
y

)
∪

(
ga
x

+
nℓ
y
,

ga
x

+
nℓ + 1

y

)
, 1≤b<g2ℓ+1, 2ℓ< y ≤2ℓ+1

}
,

and define Cm,nm in the same way, so that the inside sum of S2(g, x, a) is Cℓ,nℓCm,nm . The minimum
spacing of two distinct points b1/y1 and b2/y2 with denominators yi ≤ 2ℓ+1 is O(2−2ℓ), so

Cℓ,nℓ ≪
22ℓ

2ℓ
≪ 2ℓ,

and similarly Cm,nm ≪ 2m. This implies that

S2(g, x, a)≪ (log log h)2
log2(h/g)∑
ℓ,m=1

2ℓ+m

22ℓ+2m

g2ℓ+1∑
nℓ=1

g2m+1∑
nm=1

F
(

nℓ
g2ℓ+1

)
F

(
nm

g2m+1

)
F

(
nℓ2m

− nm2ℓ

g2ℓ+m+1

)
.

By the symmetry of ℓ and m, we can restrict the sum to the terms where ℓ≤ m. Applying Lemma 2.14
to the sums over nℓ, nm with d1 = g2ℓ and d2 = g2m gives

S2(g, x, a)≪ (log log h)2
log2(h/g)∑
ℓ,m=1
ℓ≤m

1
2ℓ+m (hg222ℓ

+ g322ℓ+mm)

≪ h(log log h)2g2
log2(h/g)∑
ℓ,m=1
ℓ≤m

1
2m−ℓ

+ (log log h)2g3
log2(h/g)∑
ℓ,m=1
ℓ≤m

m2ℓ ≪ h(log log h)2g2
(

log
h
g

)2

,
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and thus

T2 ≪ h(log log h)2
∑

g,x | q
x<h/g

µ(gx)2

φ(g)3φ(x)2
∑

a
(a,x)=1

g2
(

log
h
g

)2

≪ h(log h)2(log log h)2
∑

g,x | q
x<h/g

µ(gx)2g2

φ(g)3φ(x)

≪ h(log h)2(log log h)2
∏
p≤h4

(
1 +

p2

(p − 1)3
+

1
p − 1

) (
since q =

∏
p≤h4

p
)

≪ h(log h)4(log log h)2. □

2.4. Bounding T3: terms with gx, g y, gz small and each ai small. All that remains is to analyze the
sum T3, which consists of the terms in (8) where gx , gy, and gz < h, and, for each i , ∥ai/qi∥ ≤ 2/h.
Precisely, we define

T3 :=

∑
g,x,y,z | q
x,y,z<h/g

µ(gxyz)2

φ(g)3φ(xyz)2
∑

a1,a2,a3
(a1,gyz)=···=1
a1/gyz+···∈Z
∥a1/gyz∥<2/h
∥a2/gxz∥<2/h
∥a3/gxy∥<2/h

F
(

a1

gyz

)
F

(
a2

gxz

)
F

(
a3

gxy

)
. (14)

Intuitively, there are simply not many triples of fractions ai/qi where the denominators are not too big,
each fraction is close to an integer, and the sum of all three is in Z. We will make this precise in the
following lemma bounding T3, where the key savings come from bounding the number of satisfactory
triples.

Lemma 2.17. Let h ≥ 4, let q be the product of all primes p ≤ h4 and define T3 by (14). Then

T3 ≪ h(log h)4(log log h)2.

Proof. Since ∥a3/(gxy)∥< 2/h, we must have (1/gxy) < 2/h, so if y <
√

h/(2g), then x >
√

h/(2g).
By the same logic with a1 and a2, at most one of x, y, z can be <

√
h/(2g). By relabeling if necessary,

we get that

T3 ≪

∑
g,x,y,z | q
x,y,z<h/g

y,z≥
√

h/(2g)

µ(gxyz)2

φ(g)3φ(xyz)2
∑

a1,a2,a3
(a1,gyz)=···=1
a1/gyz+···∈Z
∥a1/gyz∥<2/h
∥a2/gxz∥<2/h
∥a3/gxy∥<2/h

F
(

a1

gyz

)
F

(
a2

gxz

)
F

(
a3

gxy

)
.

As in the proof of Lemma 2.16, there are unique values a, b, c with

a1

gyz
≡

b
gy

−
c

gz
mod 1,

a2

gxz
≡

c
gz

−
a
x

mod 1, and
a3

gxy
≡

a
x

−
b

gy
mod 1,
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and we can reparametrize T3 in terms of sums over a, b, c instead of a1, a2, a3. Doing so, and moving
the sums over b, y, c, and z inside, we get that

T3 ≪ h3
∑

g,x | q
gx≤h

µ(gx)2

φ(g)3φ(x)2
∑
a≤x

(a,x)=1

S3(g, x, a),

where

S3(g, x, a) :=

∑
√

h/(2g)≤y≤h/(2g)
√

h/(2g)≤z≤h/(2g)

µ(yz)2

φ(yz)2
#
{

b, c :
b

gy
,

c
gz

∈

(
a
x

−
2
h
,

a
x

+
2
h

)}
.

Since y, z ≤ h, the product yz is ≤ h2, and thus

1
φ(yz)2

≪
(log log h)2

y2z2 ,

when this term appears in S3(g, x, a). In order to bound S3(g, x, a), we split the sums over y and z
dyadically, defining ℓ such that 2ℓ < y ≤ 2ℓ+1 and 2m < z ≤ 2m+1.

Then

S3(g, x, a)≪ (log log h)2
log2(h/g)∑

ℓ,m=(log2(h/g))/2

CℓCm

22ℓ22m ,

where

Cℓ := #
{

b, y :
b
y

∈

(
ga
x

−
2g
h
,

ga
x

+
2g
h

)
, 1 ≤ b < y, y ≤ 2ℓ+1

}
,

and Cm is defined identically, with m in place of ℓ. The minimum spacing of two distinct points b1/y1

and b2/y2 with denominators at most 2ℓ+1 is O(1/22ℓ), so Cℓ ≪ 22ℓ(g/h)+ 1. Since ℓ≥
1
2(log2(h/g)),

22ℓ(g/h)≥ 1, so in particular Cℓ ≪ 22ℓ(g/h), and similarly Cm ≪ 22m(g/h).
Plugging this in gives

S3(g, x, a)≪ (log log h)2
log2(h/g)∑

ℓ,m=(log2(h/g))/2

22ℓ22m

22ℓ22m

g2

h2 ≪
g2

h2

(
log

h
g

)2

(log log h)2,

so that

T3 ≪ h(log log h)2
∑

g,x | q
gx≤h

µ(gx)2g2

φ(g)3φ(x)2
∑
a≤x

(a,x)=1

(
log

h
g

)2

≪ h(log h)2(log log h)2
∑

g,x | q
gx≤h

µ(gx)2g2

φ(g)3φ(x)

≪ h(log h)2(log log h)2
∏
p≤h4

(
1 +

p2

(p − 1)3
+

1
p − 1

)
,

recalling that q =
∏

p≤h4 p. Thus T3 ≪ h(log h)4(log log h)2. □

Putting Lemmas 2.15, 2.16, and 2.17 together completes the proof of Theorem 2.1.
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3. Function field analogs: proof of Theorem 1.3

We now turn to considering analogous questions when working in Fq [t] rather than in Z. To begin with,
let us set up the situation in the function field case. Fix a finite field Fq . Rather than primes in N, consider
monic irreducible polynomials in Fq [t].

The norm of a polynomial F ∈ Fq [t] is given by |F | = qdeg F. We consider intervals in norm, where
the interval I (F, h) of degree h is defined as

I (F, h) := {G ∈ Fq [t] : |F − G|< qh
}.

For a fixed monic polynomial Q, we define

C(Q) :=

{
A
Q

∈ Fq [t] : |A|< |Q|

}
,

R(Q) :=

{
A
Q

∈ Fq [t] : |A|< |Q|, (A, Q)= 1
}
.

For Q = 1, we instead for convenience define C(Q)= {1} =R(Q). If deg Q> 0, the set of polynomials F
with deg F < deg Q is a canonical set of representatives of Fq [t]/(Q); in what follows, we will identify
{F ∈ Fq [t] : deg F < deg Q} with Fq [t]/(Q). If Q = 1, we will take 1 to represent the unique equivalence
class of Fq [t]/(Q).

We consider the k-th moment of the distribution of irreducible polynomials in intervals I (F, h). As in
the integer case, we begin by considering the related quantity of the distribution of reduced residues modulo
a square-free monic polynomial Q. That is, for Q a fixed square-free monic polynomial, we consider

mk(Q; h)=

∑
F∈C(Q)

(( ∑
G∈I (F,h)
(G,Q)=1

1
)

−
qhφ(Q)

|Q|

)k

. (15)

Here we are taking the centered moment mk(Q; h) by subtracting qhφ(Q)/|Q|, which is the mean value
of

∑
G∈I (F,h), (G,Q)=1 1.

As in the integer case, we can express the moment mk(Q; h) in terms of exponential sums. For
α = F/G ∈ Fq(t) a rational function, let res(α) denote the coefficient of 1/t when α is written as a
Laurent series with finitely many positive terms. Then define

e(α) := eq(res(α))= exp(2π i · tr(res(α))/p),

where q is a power of the prime p and tr : Fq → Fp is the trace function. This exponential function, like
its integer analog, satisfies the crucial property that, for a monic polynomial F ∈ Fq [t],∑

α∈C(F)

e(α)=

{
1 if F = 1,
0 otherwise.

We then have the following lemma, analogous to [Montgomery and Vaughan 1986, Lemma 2].
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Lemma 3.1. Let Q ∈ Fq [t] be square-free and let h ∈ N≥1. Define mk(Q; h) by (15). Then

mk(Q; h)= |Q|

(
φ(Q)
|Q|

)k

Vk(Q; h),

where

Vk(Q; h) :=

∑
R1,...,Rk | Q

|Ri |>1
Ri monic

k∏
i=1

µ(Ri )

φ(Ri )

∑
ρ1,...,ρk
ρi ∈R(Ri )∑

i ρi/Ri =0

E
(
ρ1

R1

)
· · · E

(
ρk

Rk

)
,

and where, for α ∈ Fq(t) a rational function,

E(α) :=

∑
M∈I (0,h)

e(Mα).

The proof follows that of [Montgomery and Vaughan 1986, Lemma 2] very closely.

Proof. Let κ(R)= 1 when (R, Q)= 1, and κ(R)= 0 otherwise. Then

κ(R)=

∑
S|(R,Q)

µ(S)=

∑
S | Q

µ(S)
|S|

∑
σ∈C(S)

e(Rσ)=

∑
T | Q

( ∑
A∈C(T )
(A,T )=1

e(R A)
)( ∑

T | S | Q

µ(S)
|S|

)
.

Here the second factor is (φ(Q)/|Q|)(µ(T )/|T |). The function κ(R) has mean value φ(Q)/|Q|, so we
subtract φ(Q)/|Q| from both sides, which removes the term when T = 1. We then substitute R = M + N,
and sum over M to see that∑

|M |<qh

(M+N ,Q)=1

1 − h
φ(Q)
|Q|

=
φ(Q)
|Q|

∑
R | Q
|R|>1

µ(R)
φ(R)

∑
A∈C(R)
(A,R)=1

E
(

A
R

)
e
(

N A
R

)
.

The argument is completed upon raising both sides to the k-th power, summing over N, multiplying out
the right-hand side, and appealing to the fact that∑

|N |<qd

e(N (α1 + · · · +αk))=

{
qd if

∑
αi ∈ Z,

0 else. □

One important difference between the integer setting and the function field setting is the behavior of the
sums E(α), which are particularly well-behaved in Fq [t]. These sums have also been studied in [Hayes
1966, Theorem 3.5].

Lemma 3.2. Let α ∈ Fq(t) be a rational function with degα ≤ −1. Then

E(α)=

{
qh if degα <−h,
0 if degα ≥ h.

Proof. Let Ph ⊆ Fq [t] be the set of polynomials of degree less than h. Assume first that degα < −h.
Then, for all M ∈ Ph , deg Mα = deg M + degα ≤ h − 1 − h − 1 = −2, so the Laurent series for Mα has
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no 1/t-term, and thus res(Mα)= 0. But then

E(α)=

∑
M∈Ph

e(Mα)=

∑
M∈Ph

eq(res(Mα))=

∑
M∈Ph

1 = qh .

Now assume that degα ≥ −h. Consider the map resα : Ph → Fq which at a polynomial M returns the
residue of Mα. This map is linear over Fq , so its image is either 0 or all of Fq . Let M = t− degα−1. Since
−h ≤ degα ≤ −1, we have 0 ≤ − degα− 1 ≤ h − 1, so M indeed is a polynomial in Ph . On the other
hand, res(Mα) is precisely the leading coefficient of α, which must be nonzero. Thus the image of resα
is nonzero, so it is all of Fq . In particular, resα(M) takes each value in Fq equally often. Thus

E(α)=

∑
M∈Ph

eq(res(Mα))

is a balanced exponential sum, which has sum 0. □

This fact and other properties of the sums E(α) mean that the analysis in [Montgomery and Vaughan
1986] in the function field setting is more streamlined. In fact, their work automatically gives the analog
of our desired bound for the third moment in the function field case.

3.1. The analog of [Montgomery and Vaughan 1986] in the function field setting. We begin with the
following fundamental lemma, with an identical proof to the integer case.

Lemma 3.3 (Fundamental lemma). Let R1, . . . , Rk ∈ Fq [t] be square-free monic polynomials with
R = [R1, . . . , Rk]. Suppose, for all irreducible P|R, P divides at least two Ri ’s. Let Gi be positive
real-valued function defined on C(Ri ). Then∣∣∣∣ ∑

Ai ∈C(Ri )∑
i Ai/Ri =0

G1

(
A1

R1

)
· · · Gk

(
Ak

Rk

)∣∣∣∣≤ 1
|R|

k∏
i=1

(
|Ri |

∑
Ai ∈C(Ri )

∣∣∣∣Gi

(
Ai

Ri

)∣∣∣∣2)1/2

.

The proof follows [Montgomery and Vaughan 1986] very closely.

Proof. We proceed by induction on k.
Assume first that k = 2. Then we must have R1 = R2 = R. By Cauchy–Schwarz,∣∣∣∣ ∑

|A|<|R|

G1

(
A
R

)
G2

(
A
R

)∣∣∣∣ ≤

( ∑
|A|<|R|

∣∣∣∣G1

(
A
R

)∣∣∣∣2)1/2( ∑
|A|<|R|

∣∣∣∣G2

(
A
R

)∣∣∣∣2)1/2

,

which after a bit of rearranging gives the desired result.
Now assume by induction that the result holds for j ≤ k−1. For arbitrary k, set D = (R1, R2), and write

D = ST, with S|R3 · · · Rk and (T, R3 · · · Rk)= 1. Furthermore, write R1 = DR′

1 and R2 = DR′

2. Consider
any term in the sum. Since

∑
i Ai/Ri = 0, we have T |(A1/R1+ A2/R2). Thus A1/(ST R′

1)+ A2/(ST R′

2)

can be expressed as a fraction A/(R′

1 R′

2S).
By the Chinese remainder theorem,

A1

ST R′

1
=
α1

R′

1
+
β1

ST
and

A2

ST R′

2
=
α2

R′

2
+
β2

ST
,
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where
β2

ST
= −

β1

ST
+
γ

S
because T |(A1/R1 + A2/R2). Thus A1/R1 and A2/R2 can be written as

A1

R1
=

A′

1

R′

1
+
δ

D
and

A2

R2
=

A′

2

R′

2
+
σ

S
−
δ

D
,

with each rational function of degree less than 0.
Let R∗

= R′

1 R′

2S. For each A∗ with |A∗
|< |R∗

|, A∗/R∗ is uniquely of the form

A∗

R∗
=

A′

1

R′

1
+

A′

2

R′

2
+
σ

S
.

Define

G∗

(
A∗

R∗

)
=

∑
δ∈C(D)

G1

(
A′

1

R′

1
+
δ

D

)
G2

(
A′

2

R′

2
+
σ

S
−
δ

D

)
.

Then the sum in question is ∑
A∗

∈C(R∗)
Ai ∈C(Ri )

A∗/R∗
+

∑k
i=3 Ai/Ri =0

G∗

(
A∗

R∗

)
G3

(
A3

R3

)
· · · Gk

(
Ak

Rk

)
.

Via Cauchy–Schwarz as well as the induction hypothesis, the above is

≤
|T |

|R|

(
|R∗

|

∑
A∗

∈C(R∗)

G∗

(
A∗

R∗

)2)1/2 k∏
i=3

(
|Ri |

∑
Ai ∈C(Ri )

Gi

(
Ai

Ri

)2)1/2

.

It remains to bound the sum over G∗ in terms of G1 and G2. By Cauchy–Schwarz,

G∗

(
A∗

R∗

)2

≤

( ∑
δ∈C(D)

G1

(
A′

1

R′

1
+
δ

D

)2)( ∑
δ∈C(D)

G2

(
A′

2

R′

2
+
σ

S
−
δ

D

)2)
,

so summing over A∗ gives∑
A∗∈C(R∗)

G∗

(
A∗

R∗

)2

≤ |S|

( ∑
A1∈C(R1)

G1

(
A1

R1

)2)( ∑
A2∈C(R2)

G2

(
A2

R2

)2)
. □

We now present several preliminary lemmas about the sums E(α). The following lemma is analogous
to [Montgomery and Vaughan 1986, Lemma 4].

Lemma 3.4. For any polynomial R ∈ Fq [t],∑
S∈C(R)

E
(

S
R

)2

= max{q2h, |R|qh
}.

Moreover, for any polynomial R ∈ Fq [t] and any rational function α ∈ Fq(t),∑
S∈C(R)

E
(

S
R

+α

)2 {
= max{q2h, |R|qh

} if |α|< q−h,

≤ |R|qh−1 if |α| ≥ q−h .
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Proof. If deg R ≤ h, then, for all S with 0 ̸= |S|< |R|, we have h ≥ deg R −deg S, and thus E(S/R)2 = 0.
Meanwhile, E(0)2 = q2h, so in this case

∑
S∈C(R) E(S/R)2 = q2h .

Now suppose deg R > h. Then E(S/R) is nonzero if and only if deg S < deg R − h. Thus

∑
S∈C(R)

E
(

S
R

)2

=

∑
S∈C(R)

|S|<|R|/qh

E
(

S
R

)2

=

∑
S∈C(R)

|S|<|R|/qh

q2h
= |R|qh,

which completes the first portion.
Fix a rational function α. For all S/R, E(S/R +α) is unchanged by replacing α with its fractional

part, i.e., subtracting off the polynomial portion of α so that |α|< 1, including the possibility that α = 0.
If a term E(S/R +α) is nonzero, then |S/R +α|< q−h. We’ll split into two cases, when |α|< q−h

and when |α| ≥ qh. First, if |α| < q−h, then |S/R + α| < q−h if and only if |S/R| < q−h. If |R| ≥ qh,
there are |R|/qh values of S satisfying this; if not, there is one value. Thus if |α|< q−h, we have

∑
S∈C(R)

E
(

S
R

+α

)2

E
(

S
R

+α

)
= max(q2h, |R|qh).

Now assume |α| ≥ q−h. If |S/R + α| < q−h, we must have |S/R| = |α| ≥ q−h. Also, the first
degα+ h + 1 terms of S/R are fixed, because they must cancel with the corresponding terms of α to
yield a rational function of small enough degree. Correspondingly, the first degα+ h + 1 terms of S are
determined. Since |S| = |Rα|, there are at most |Rα| · 1/(|α| · |qh+1

|)= |R|q−h−1 nonzero choices of S.
Thus in this case,

∑
S∈C(R) E(S/R +α)2 ≤ |R|qh−1. □

The following lemma corresponds to Lemma 6 of [Montgomery and Vaughan 1986].

Lemma 3.5. Let R ∈ Fq [t] be a polynomial, and let α, β ∈ Fq(t) be rational functions. Then

∑
S∈C(R)

E
(

S
R

+α

)
E

(
S
R

+β

)
≪ E(α−β)q−h

∑
S∈C(R)

E
(

S
R

+α

)2

.

Proof. Again, we split into two cases. Assume first that |α− β| ≥ q−h, so E(α− β) = 0. Then either
|S/R +β| ≥ q−h, or |S/R +α| ≥ q−h. Thus for each S/R, either E(S/R +α)= 0 or E(S/R +β)= 0,
so the product must be 0, and thus the sum is 0.

Now assume that |α−β|<q−h , so E(α−β)= qh. By Lemma 3.2, if |α−β|<q−h, then E(S/R+α)=

E(S/R +β) for all S. This gives the result. □

We are now ready to prove the following lemma, which is analogous to [Montgomery and Vaughan
1986, Lemma 7].

Lemma 3.6. Let k ≥ 3, and let R1, . . . , Rk ∈ Fq [t] be square-free polynomials with |Ri | > 1 for all i .
Let R = [R1, . . . , Rk]. Let D = (R1, R2) and D = ST , with S|R3 · · · Rk and (T, R3 · · · Rk) = 1. Write
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R1 = DR′

1, R2 = DR′

2, and R∗
= R′

1 R′

2S. Define

S(R1, . . . , Rk) :=

∑
Ai ∈R(Ri )∑

i Ai/Ri =0

k∏
i=1

E
(

Ai

Ri

)
.

If , for some i , |Ri | ≤ qh, then S(R1, . . . , Rk)= 0. Otherwise,

S(R1, . . . , Rk)≪ |R1 · · · Rk | · |R|
−1(qh)k/2(X1 + X2 + X3),

where

X1 = q−h/2, X2 =

{
|D|

−1 if |R′

1|> qh,

0 otherwise,
X3 =

{
|S|

−1/2 if R1 = R2,

0 otherwise.

Proof. Assume first that, for some i , |Ri | ≤ qh. Then E(Ai/Ri )= 0 whenever Ai ̸= 0, so in particular
for all Ai with (Ai , Ri )= 1, so the sum is 0. Assume from now on that |Ri |> qh for all i .

We now return to the proof of the fundamental lemma. For A∗/R∗
= A′

1/R′

1 + A′

2/R′

2 + σ/S, define

G∗

(
A∗

R∗

)
=

∑
δ∈C(D)

(D A′

1+δR′

1,R1)=1
(D A′

2+R′

2Tσ−R′

2δ,R2)=1

E
(

A′

1

R′

1
+
δ

D

)
E

(
A′

2

R′

2
+
σ

S
−
δ

D

)
.

For this sum to be nonempty, (A′

1, R′

1)= (A′

2, R′

2)= 1. Then

S(R1, . . . , Rk)≤
|T |

|R|

(
|R∗

|

∑
A∗∈C(R∗)

G∗

(
A∗

R∗

)2)1/2 k∏
i=3

(
|Ri |

∑
Ai ∈R(Ri )

|Ai |<|Ri |/qh

1
)1/2

.

By Lemma 3.4, the product is ≪ |R3 · · · Rk |qhk/2−h. Thus it suffices to show that∑
A∗∈C(R∗)

G∗

(
A∗

R∗

)2

≪ |R1| · |R2| · |S|q2h(X2
1 + X2

2 + X2
3).

By Lemma 3.5,

G∗

(
A∗

R∗

)
≪ E

(
A∗

R∗

)
q−h

∑
δ∈C(D)

E
(
δ

D
+

A′

1

R′

1

)
,

so by Lemma 3.4,

G∗

(
A∗

R∗

)
≪


E

(
A∗

R∗

)
max{qh, |D|} if

∣∣∣∣ A′

1

R′

1

∣∣∣∣< q−h,

E
(

A∗

R∗

)
|D|q−1 if

∣∣∣∣ A′

1

R′

1

∣∣∣∣ ≥ q−h .

Summing over A∗ then gives∑
A∗

∈C(R∗)

G∗

(
A∗

R∗

)2

≪

∑
A∗

∈C(R∗)

|A∗/R∗
|<q−h

|A′

1/R′

1|<q−h

E
(

A∗

R∗

)2

max{q2h, |D|
2
} +

∑
A∗

∈C(R∗)

|A∗/R∗
|<q−h

|A′

1/R′

1|≥q−h

E
(

A∗

R∗

)2

|D|
2. (16)
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Here as in the definition of G∗, for any nonzero term we must have (A′

1, R′

1)= (A′

2, R′

2)= 1. In particular,
A′

1 ≡ 0 mod R′

1 only if R′

1 = 1. We now split into cases based on whether or not |R∗
|> qh and whether

or not |R′

1|> qh.
First assume that |R∗

|> qh and |R′

1|> qh. Then∑
A∗

∈C(R∗)

G∗

(
A∗

R∗

)2

≪ max{q2h, |D|
2
}q2h |R′

1|

qh

|R′

2S|

qh + |D|
2

∑
A∗

∈C(R∗)

|A∗/R∗
|<q−h

|A′

1/R′

1|≥qh

E
(

A∗

R∗

)2

≪ max{q2h, |D|
2
}|R∗

| + |D|
2
|R∗

|qh

≪ |R1| · |R2| · |S|q2h(X2
1 + X2

2).

Now assume that |R∗
|> qh but |R′

1| ≤ qh. The first sum in (16) is empty unless R′

1 = 1 (and A′

1 = 0).
If R′

1 = 1, then R1 = D, so |D|> qh. Equation (16) then becomes∑
A∗

∈C(R∗)

G∗

(
A∗

R∗

)2

≪ q2h
|D|

2
+

|R∗
|

qh q2h
|D|

2
= |R1 R2S|q2h

(
1

|R∗|
+ q−h

)
≪ |R1 R2S|q2h(X2

1).

If R′

1 ̸= 1, then the first sum is empty, so (16) becomes∑
A∗

∈C(R∗)

G∗

(
A∗

R∗

)2

≪
|R∗

|

qh q2h
|D|

2
= |R1 R2S|q2h(X2

1).

Finally, assume that |R∗
| ≤ qh and thus |R′

1| ≤ qh. In this case the only nonzero term in (16) in either
sum is when A∗

= 0, which forces A′

1 = A′

2 = σ = 0. But then since (A′

1, R′

1)= (A′

2, R′

2)= 1, we also
have R′

1 = R′

2 = 1, and thus R1 = R2 = D, which has magnitude > qh. Thus∑
A∗

∈C(R∗)

G∗

(
A∗

R∗

)2

≪ q2h
|D|

2
= |R1 R2S|q2h

· |S|
−1

= |R1 R2S|q2h X2
3. □

We now turn to the proof of Theorem 1.3, which corresponds to [Montgomery and Vaughan 1986,
Lemma 8]. The main strategy here is a careful application of Lemma 3.6, keeping in mind that we can
choose which variables play the roles of R1 and R2.

Lemma 3.7. For any fixed k ≥ 3, for Q ∈ Fq [t] square-free, for h ≥ 1 and mk(Q; h) defined by (15),

mk(Q; h)≪ |Q|(qh)k/2
(
φ(Q)
|Q|

)k/2(
1 + ((qh)−1/2

+ (qh)−1/(k−2))

(
φ(Q)
|Q|

)−2k
+k/2)

.

Proof. We begin with the bound that

mk(Q; h)≪ |Q|

(
φ(Q)
|Q|

)k ∑
R | Q

R monic

∑
Ri | Q

Ri monic
|Ri |>1

[R1,...,Rk ]=R

S(R1, . . . , Rk)

φ(R1) · · ·φ(Rk)
,

where

S(R1, . . . , Rk)=

∑
Ai ∈R(Ri )∑

i Ai/Ri =0

k∏
i=1

E
(

Ai

Ri

)
.
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We apply Lemma 3.6, but while using the fact that we have flexibility in how we label R1, . . . , Rk in our
application of Lemma 3.6. For clarity, we will write R̃1 and R̃2 to be the Ri ’s that serve as the first two in
our application of Lemma 3.6. Choose R̃1 and R̃2 as follows.

If, for any i , |Ri | < qh, then S(R1, . . . , Rk) must be 0, so assume that |Ri | ≥ qh for all i . Let
Ri j = (Ri , R j ). For all i , since Ri |

∏
i ̸= j R j , we have Ri |

∏
i ̸= j Ri j as well. Thus for all i , there exists

j ̸= i such that |Ri j | ≥ |Ri |
1/(k−1). If, for some i, j , |Ri j | ≥ |Ri |

1/(k−1) but Ri ̸= R j , then pick R̃1 and R̃2

to be Ri and R j , respectively.
If no such i exists, then, for each i , there is some j ̸= i with Ri = R j . If there exists any triple

Ri = R j = Rl , then pick R̃1 = Ri , R̃2 = R j . If not, then the Ri ’s must be equal in pairs and otherwise
disjoint, and k must be even. Without loss of generality, say that R1 = R2, R3 = R4, . . . , Rk−1 = Rk .
Write R = U V, where V is the product of all primes dividing at least two R2i ’s, and U is the product of
all primes dividing exactly one R2i . Then

V 2
|

k/2∏
i=1

(
R2i ,

∏
j ̸=i

R2 j

)
,

so there exists some i with
∣∣(R2i ,

∏
j ̸=i R2 j

)∣∣ ≥ |V |
4/k. Take R̃1 and R̃2 to be R2i and R2i−1.

Now we return to our bound on mk(Q; h). We have

mk(Q; h)≪ |Q|

(
φ(Q)
|Q|

)k

(qh)k/2
∑
R | Q

R monic

1
|R|

∑
Ri | Q

Ri monic
|Ri |>1

[R1,...,Rk ]=R

|R1 · · · Rk |

φ(R1) · · ·φ(Rk)
(X1 + X2 + X3),

where the X i arise by use of Lemma 3.6 as described above.
Consider the contribution from each X i . Since X1 = q−h/2, the X1-terms contribute

≪ |Q|

(
φ(Q)
|Q|

)k

(qh)k/2−1/2
∑
R | Q

R monic

1
|R|

∑
Ri | Q

Ri monic
|Ri |≥qh

[R1,...,Rk ]=R

|R1 · · · Rk |

φ(R1) · · ·φ(Rk)

≪ |Q|

(
φ(Q)
|Q|

)k

(qh)k/2−1/2
∏
P | Q

(
1 +

1
|P|

(
2 +

1
|P| − 1

)k )

≪ |Q|(qh)k/2−1/2
(
φ(Q)
|Q|

)−2k
+k

.

Now consider the X2-contribution. If X2 ̸= 0, then |R′

1|> qh, and by our choice of R1, R2, we have
|D| ≥ |R1|

1/(k−1)
= |R′

1 · D|
1/(k−1). But then |D|

−1
≤ q−h/(k−2), so in turn X2 ≤ q−h/(k−2). By the same

logic as for the X1-terms, the X2 terms contribute ≪ |Q|(qh)k/2−1/(k−2)(φ(Q)/|Q|)−2k
+k.

Finally, consider X3. If X3 ̸= 0, then R1 = R2. By our choice of R1 and R2 for the application of
Lemma 3.6, in this case each Ri is equal to some R j . If there exists some Ri = R1 = R2, with i ≥ 3, then
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S = R1 = R2, so |S|> qh, and thus for these terms we get a saving of q−h/2 and the bound for X1 applies.
If not, then k is even and the Ri ’s must be equal in pairs. Let R = U V as above, where U is the product of
irreducibles P dividing exactly one pair of Ri ’s, and V is the product of all other irreducibles P dividing R.
Write Ri = Ui Vi , where Ui = (Ri ,U ) and Vi = (Ri , V ). For fixed U, V, let C(U, V ) be the set of k-tuples
(R1, . . . , Rk) yielding U and V. There are at most τk/2(U ) choices for U2,U4, . . . ,Uk , where τk/2 is
the k/2-fold divisor function. Since Vi | V, there are at most τ(V )k/2 choices for V2, V4, . . . , Vk . Thus
#|C(U, V )| ≤ τk/2(U )d(V )k/2. In our application of Lemma 3.6 we have |S| ≥ |V |

4/k, so∑
U V | Q
monic

1
|U V |

∑
(R1,...,Rk)∈C(U,V )

( k∏
i=1

|Ri |

φ(Ri )

)
X3 ≪

∑
U V | Q
monic

τk/2(U )(|U |/φ(U ))2τ(V )k/2(|V |/φ(V ))k

|U | · |V |1+2/k

=

∏
P | Q

(
1 +

k|P|

2(|P| − 1)2
+

2k/2(|P|/(|P| − 1))k

|P|1+2/k

)

≪

(
φ(Q)
|Q|

)−k/2

,

so the X3-terms contribute ≪ |Q|(qh)k/2(φ(Q)/|Q|)k/2, which completes the proof. □

The final contribution of X3 only arises when k is even, so when k is odd we have the estimate

mk(Q; h)≪ |Q|((qh)k/2−1/2
+ (qh)k/2−1/(k−2))

(
φ(Q)
|Q|

)k−2k

.

For k = 3 this implies that

m3(Q; h)≪ |Q|qh
(
φ(Q)
|Q|

)−5

.

In the case when k = 5, we can bound m5(Q; h) via a more involved argument.

4. The fifth moment of reduced residues in the function field setting

Our goal in this section is to prove Theorem 1.4, which is a stronger bound on m5(Q; h) when Q =∏
|P|≤q6h P. We will also prove Corollary 1.5, bounding R3(qh) and R5(qh) in the ring Fq [t].
Lemma 3.7 already implies a bound on m5(Q; h), showing that m5(Q :h)≪|Q|(qh)13/6(φ(Q)/|Q|)−27.

Our goal is a bound where the power of qh is 2 + ε for all ε > 0; note that Conjecture 1.1 would predict a
bound where the power of qh is 2. In turn, this will allow us to prove Corollary 1.5, that R5(qh)≪ q(2+ε)h.

4.1. Proof of Theorem 1.4. As in the proof of Lemma 3.7, we begin by bounding

m5(Q; h)≪ |Q|

(
φ(Q)

Q

)5 ∑
R | Q

R monic

∑
Ri | Q

Ri monic
|Ri |>1

[R1,...,R5]=R

S(R1, . . . , R5)

φ(R1) · · ·φ(R5)
,

where

S(R1, . . . , R5)=

∑
Ai ∈R(Ri )∑

i Ai/Ri =0

5∏
i=1

E
(

Ai

Ri

)
.
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Our goal is to apply Lemma 3.6 to bound the size of S(R1, . . . , R5). But, when applying this lemma,
we can freely choose which of the Ri ’s plays the roles of R1 and R2. As in the previous section, we will
denote our choice by R̃1 and R̃2. If any Ri satisfies |Ri |< qh, the choice is immaterial, so assume that
|Ri | ≥ qh for all i . If there is any triple Ri , R j , Rℓ with Ri = R j = Rℓ, pick R̃1 = Ri and R̃2 = R j . In
this case X2 will have no contribution, and X3 and X1 will each be ≪ q−h/2, for a total contribution to
m5(Q; h) from these terms (as in the proof of Lemma 3.7) of ≪|Q|q2h(φ(Q)/|Q|)−27. If there is no such
triple, but there exists Ri ̸= R j with either |Ri/(Ri , R j )|<qh, or |Ri/(Ri , R j )|≥qh and |(Ri , R j )|≥qh/2,
then we choose R̃1 = Ri and R̃2 = R j . In this case we have X3 = 0 and X1, X2 each contributing ≪ q−h/2,
and again the total contribution to m5(Q; h) from these terms is ≪ |Q|q2h(φ(Q)/|Q|)−27. So, it remains
to bound what happens in the remaining cases. We first show that in the remaining cases, up to some
reordering, certain factors of R2 and R3 are bounded.

Lemma 4.1. For fixed square-free Q ∈ Fq [t], let (R1, . . . , R5) be a tuple of divisors of Q such that

• |Ri | ≥ qh for all i ,
• no three Ri ’s are equal,
• for any Ri , R j , either Ri = R j , or |Ri/(Ri , R j )| ≥ qh and |(Ri , R j )|< qh/2, and
• R1, R2, and R3 are all distinct.

Then

• |R2/(R1, R2)| ≥ qh, and
• |R3/(R3, R1 R2)| ≥ qh/2.

Loosely, this lemma states that in the cases that we cannot already bound by the tools of the previous
section, prime factors must “spread out” among the first three Ri ’s.

Remark. The bound on |R3/(R3, R1 R2)| above is worse than the bound on |R2/(R1, R2)|. In order
to apply Lemma 4.3 below, we will need both of them to be at least of size qh/2, so the bound on
|R2/(R1, R2)| is better than necessary.

However, the fact that these bounds get worse is precisely what prevents us from applying our technique
to bound higher moments. If instead we applied the same argument to a 7-tuple (R1, . . . , R7) of divisors
of Q, we would not be able to guarantee that |R4/(R4, R1 R2 R3)| ≥ qh/2, even if we weaken the conditions
to allow reordering. This threshold is crucial for our argument, which does not generalize to 7-tuples.

Proof. The fact that |R2/(R1, R2)| ≥ qh, follows directly from the third assumption, since R1 ̸= R2.
For the second conclusion, let R123 = gcd(R1, R2, R3) and let R13 = (R1, R3)/gcd(R1, R2, R3) and

R23 = (R2, R3)/(R1, R2, R3), so that R13 is the product of all primes dividing R1 and R3 but not R2, and
vice versa. Then (R3, R1 R2)= R13 R23 R123. By assumption, |(R2, R3)|< qh/2, so |R23 R123|< qh/2, and
in particular |R23|< qh/2. Now assume by contradiction that |R3/(R3, R1 R2)|< qh/2. Then∣∣∣∣ R3

(R1, R3)

∣∣∣∣ =

∣∣∣∣ R3

R13 R123

∣∣∣∣ =

∣∣∣∣ R3

R13 R23 R123

∣∣∣∣ · |R23|< qh/2
· qh/2

= qh,

which contradicts the third assumption because R1 ̸= R3. □
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The following auxiliary lemma provides a standard bound on τk , the k-fold divisor function, in the
function field setting. We will also use that φ(F)≫ |F |/log log |F | for all F ∈ Fq [t].

Lemma 4.2. Fix k ≥ 1. Let M = maxb≥1(τk(tb))1/b. Then

lim sup
deg F→∞

log τk(F) log log |F |

log |F |
= log M,

and thus, for all ε > 0, we have τk(F)≪ε |F |
ε.

Proof. The proof of the above lemma follows closely along the lines of [Shiu 1980]. We will show one
direction of the statement, adapted to our setting; the other direction also follows very closely, so we omit
it. Note first that

1 ≤ (τk(tb))1/b =

(b+k−1
b

)1/b
<

(
(b + k − 1)e

k − 1

)(k−1)/b

→ 1

as b → ∞, so M exists.
We now show that

lim sup
deg F→∞

log τk(F) log log |F |

log |F |
≥ log M.

Fix b such that τk(tb)= Mb. Let

F =

∏
deg P=d
P irred.

Pb,

so that τk(F)=
∏

deg P=d τk(Pb)= (τk(tb))π(d;Fq ) = Mbπ(d;Fq ). We have that π(d; Fq)∼ qd/d as d → ∞,
so that

log |F | = bd log qπ(d; Fq)∼ bqd log q,

and

log log |F | = d log q + O(1).

Thus as d → ∞,

log τk(F)= bπ(d; Fq) log M ∼ b log M ·
qd

d
∼

log M log |F |

log log |F |
,

so

lim sup
deg F→∞

log τk(F) log log |F |

log |F |
≥ log M.

As mentioned above, the proof that

lim sup
deg F→∞

log τk(F) log log |F |

log |F |
≤ log M

also follows the proof in [Shiu 1980] closely, so we omit it. □
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The above bound implies that, for all ε > 0, τk(F)= |F |
O(1/ log log |F |)

= Oε(|F |
ε).

Here we have a final preparatory lemma before the main proposition leading to the bound on m5(Q; h).
In what follows, our main strategy will be carefully isolating factors of the Ri ’s in order to bound the
number of terms in our sum. In doing so, we will make use of the following bound.

Lemma 4.3. Let Q ∈ Fq [t] be a square-free polynomial, and let n ∈ N≥2. Let I ⊆ Fq(t) be an interval
of size q−h. That is to say, for some rational function α ∈ Fq(t), let I := {β ∈ Fq(t) : |α− β| < q−h

}.
Assume in the following that X i , Yi ∈ Fq [t] for all i . Then, for any ε > 0,

∑
Y1,...,Yn | Q
X i ∈R(Yi )∑

i X i/Yi ∈I
qh/2

≤|
∏

i Yi |≤q2h

µ
(∏

i Yi
)2∏

i φ(Yi )2
≪n,ε q−h(1−ε).

Proof. For given X1, . . . , Xn and Y1, . . . , Yn , let X and Y be defined so that Y =
∏

i Yi and X/Y =∑
i X i/Yi . Then for all tuples considered in the sum, X/Y ∈ I and qh/2

≤ |Y | ≤ q2h. Proceed by counting
the number of possibilities for X/Y satisfying this constraint, which is bounded above by the number of
points in I with denominator smaller than q2h, and finally count the number of ways of splitting Y up
into Y1, . . . , Yn . However, we want to also consider the weighting in the sum of 1/φ(Y )2, so we start by
splitting the sum up into different sizes of Y, and then applying bounds on φ(Y ).

To begin with, we rewrite the sum in terms of X and Y. Note that all Yi in our sum are relatively prime,
because of the Möbius factor. Thus Y is square-free and φ(Y )=

∏
i φ(Yi ). Moreover, a choice of X , Y,

and a decomposition Y = Y1 · · · Yn determines X i for each i by the Chinese remainder theorem. Our sum
is thus equal to ∑

Y | Q
qh/2

≤|Y |≤q2h

∑
X∈R(Y )
X/Y∈I

µ(Y )2

φ(Y )2
#{Y1, . . . , Yn : Y1 · · · Yn = Y }.

Now split the sum up according to |Y |, defining m := deg Y. The sum is then equal to
2h∑

m=h/2

∑
Y | Q

|Y |=qm

∑
X∈R(Y )
X/Y∈I

µ(Y )2

φ(Y )2
τn(Y )≪n,ε

2h∑
m=h/2

(qm)ε/3
∑
Y | Q

|Y |=qm

∑
X∈R(Y )
X/Y∈I

µ(Y )2(log log |Y |)2

|Y |2
,

by Lemma 4.2 and the fact that φ(Y )−2
≪ (|Y |/log log |Y |)−2. We can further relax the condition

that |Y | = qm to the condition that |Y | ≤ qm. The number of X/Y with |Y | ≤ qm in the interval I is
q2m−h

+ O(1); since m ≥ h/2, this is ≪ q2m−h. Thus the sum is

≪n,ε

2h∑
m=h/2

qm(ε/3) (log log(qm))2

q2m q2m−h
≪ q−h

2h∑
m=h/2

qm(2ε/3)
≪ q−h(1−ε),

as desired. □

We now turn to bounding the contribution to the fifth moment m5(Q; h) coming from tuples (R1, . . . , R5)

satisfying the conclusions of Lemma 4.1.



Odd moments in the distribution of primes 655

Proposition 4.4. Fix h ≥1 and let Q∈Fq [t] be square-free. Let S be the set of tuples (R1, . . . , R5) such that

• Ri | Q for all i ,

• qh
≤ |Ri | ≤ q2h for all i ,

• |R2/(R1, R2)| ≥ qh/2, and

• |R3/(R3, R1 R2)| ≥ qh/2.

Then, for all ε > 0, ∑
(R1,...,R5)∈S

5∏
i=1

1
φ(Ri )

∑
Ai ∈R(Ri )

|Ai/Ri |<q−h∑
Ai/Ri =0
1≤i≤5

q5h
≪ q(2+ε)h |Q|

φ(Q)
.

Proof. We begin by sketching an overview of the strategy. For each subset I ⊆ [5], let

RI =

∏
P|Ri ∀i∈I
P∤Ri ∀i ̸∈I

P

be the product of the irreducible factors dividing Ri if and only if i ∈ I . Note that these RI ’s must be
pairwise relatively prime.

We start by using the constraint that |A1/R1| < q−h. We will count the total number of rational
functions in this interval with denominator of degree at most 2h. For each option of A1/R1, we can
decompose R1 =

∏
I∋1 RI , so the number of ways to decompose R1 into these RI -factors is τ2k−1−1(R1),

which we can bound based on the degree of R1. We then also get A1/R1 =
∑

I∋1 AI /RI , where the AI ’s
are determined by the Chinese remainder theorem.

We will then focus on the constraint that |A2/R2|< q−h. However, (R1, R2)=
∏

1,2∈I RI has already
been fixed, so the same analysis as used for R1 applies to the remaining factors of R2. Crucially,
R2/(R1, R2) remains relatively large by assumption, which will ensure that we save enough by doing
this. Finally, the constraint on A3/R3, using our assumption that R3/(R3, R1 R2) is large enough, yields
savings in the same way.

We begin by rewriting our sum in terms of the RI . For each subset I ⊆ [5], and for a fixed R1, . . . , R5,
we again define RI to be the product of all primes P so that P divides Ri for each i ∈ I and P does
not divide R j for all j ̸∈ I . The RI are a system of relative greatest common divisors; see [Elsholtz
and Planitzer 2020] for details. For example, R{1,2} is the product of all primes dividing R1 and R2, but
(R{1,2}, R j )= 1 for j = 3, 4, 5. The polynomials RI must satisfy the following properties, implied by the
constraints on the Ri ’s:

• Each RI divides Q, and, for each I ̸= J ⊆ [5], (RI , RJ )= 1.

• Each irreducible polynomial dividing an Ri must divide at least two of them in order for the sum over
Ai to be nonempty, so RI = 1 unless |I | ≥ 2. We will always assume that |I | ≥ 2.
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• Each choice of Ai is equivalent to a choice of Ai,I for all subsets I containing i , that is, Ai/Ri =∑
I∋i Ai,I /RI .

• The quantity (Ai , Ri ) is equal to 1 for all i if and only if (Ai,I , RI ) is equal to 1 for all I, i .

• The constraint that, for all i , |Ai/Ri |< q−h, implies that, for each index i ,∣∣∣∣∑
I∋i

Ai,I

RI

∣∣∣∣< q−h .

• The constraint that
∑5

i=1 Ai/Ri = 0 implies that, for each subset I ,∑
i∈I

Ai,I = 0.

Finally, define ℓI to be the minimum element of a subset I ⊆ [5]. The requirement that (R1, . . . , R5) ∈ S
implies the following:

• For all i ,

qh
≤

∣∣∣∣∏
I∋i

RI

∣∣∣∣ ≤ q2h .

• Since R2/(R1, R2)=
∏
ℓI =2 RI , and R3/(R1, R2, R3)=

∏
ℓI =3 RI ,∣∣∣∣ ∏

ℓI =2

RI

∣∣∣∣ ≥ qh/2 and
∣∣∣∣ ∏
ℓI =3

RI

∣∣∣∣ ≥ qh/2.

The sum under consideration is then

≪ q5h
∑

RI | Q
I⊆[5]

qh
≤|

∏
I∋i RI |≤q2h

|
∏
ℓI =2 RI |≥qh/2

|
∏
ℓI =3 RI |≥qh/2

µ
(∏

I RI
)2∏

I φ(RI )|I |

∑
I,i∈I

Ai,I ∈R(RI )

∀i,|
∑

I∋i Ai,I /RI |<q−h

∀I,
∑

i∈I Ai,I =0

1.

Note first that if mi is the maximum element of a subset I , then Ami ,I is fully determined by the other
Ai,I and the fact that

∑
i∈I Ai,I = 0. Then for i ∈ I with ℓI < i < m I , we will use the trivial bound on

the number of options for Ai,I ; namely that there are at most RI choices for Ai,I . For the rest of this
bound, we treat Ai,I as fixed when ℓI < i < m I .

We finally consider the number of options for the remaining AℓI ,I , where ℓI is the smallest element
in I , which is where the savings in the argument will come from. We will proceed by ordering the
intervals I in our sum by ℓI ; we will first sum over options for AI when I = {4, 5}, with ℓI = 4, and
then over Ai,I for all I with ℓI = 3, and so on. As we do this, we will need at each step to satisfy the
constraints that, for each i , ∣∣∣∣∑

I∋i

Ai,I

RI

∣∣∣∣< q−h, (17)
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where as we split up the sums over different Ai,I ’s, some of the values in this sum will be fixed and others
will still be free to vary in our sum. But even if some of the terms in the sum above are fixed, the remaining
terms are still constrained to lie in some interval of size q−h, possibly an interval centered at a nonzero
rational function. In particular, the constraints in (17) are equivalent to the constraints that, for all i ,∣∣∣∣Fi +

∑
I⊆[5]

ℓI =i

Ai,I

RI

∣∣∣∣< q−h,

where Fi is a fixed rational function determined by the values of Ai,I when ℓI < i<m I . The bounds we use
are independent Fi , only requiring that the size of the interval is q−h, so we can replace Fi by 0. This yields

≪ q5h
∑

RI | Q
I⊆[5]

qh
≤|

∏
I∋i RI |≤q2h

|
∏
ℓI =2 RI |≥qh/2

|
∏
ℓI =3 RI |≥qh/2

µ
(∏

I RI
)2∏

I φ(RI )|I |

∏
I

φ(RI )
|I |−2

∑
AℓI ,I ∈R(RI )

I⊆[5]

∀i,|
∑
ℓJ =i Ai,J /RJ |<q−h

1. (18)

The only terms Ai,I that remain in (18) are of the form AℓI ,I , and there is only one term for each
subset I , so to simplify our notation we will write AI := AℓI ,I from now on.

Consider subsets I with ℓI = 4. There is only one of these, namely {4, 5}, so we rewrite the sum as

≪ q5h
∑

RI | Q
I⊆[5],I ̸={4,5}

qh
≤|

∏
I∋i RI |≤q2h

|
∏
ℓI =2 RI |≥qh/2

|
∏
ℓI =3 RI |≥qh/2

µ
(∏

I RI
)2∏

I φ(RI )2

∑
AI ∈R(RI )

I⊆[5],I ̸={4,5}

∀i,|
∑
ℓJ =i AJ /RJ |<q−h

∑
R{4,5} | Q

A{4,5}∈R(R{4,5})

1
φ(R{4,5})2

.

In the inside sum, we have dropped the additional constraint that A{4,5}/R{4,5} must lie in an interval of
size q−h, since ignoring it only increases the size of the sum. For each R{4,5}, there are φ(R{4,5}) choices
of A{4,5}, so the inner sum becomes ∑

R{4,5} | Q

1
φ(R{4,5})

=
|Q|

φ(Q)
,

since Q is square-free.
Now consider subsets I with ℓI = 3, i.e., {3, 4}, {3, 4, 5}, and {3, 5}. We first bookkeep by isolating

these terms in the sum, yielding

≪ q5h |Q|

φ(Q)

∑
RI | Q

I⊆[5],ℓI<3
qh

≤|
∏
ℓI =1 RI |≤q2h

qh/2
≤|

∏
ℓI =2 RI |≤q2h

µ
(∏

I RI
)2∏

I φ(RI )2

∑
AI ∈R(RI )
I⊆[5],ℓI<3

∀i,|
∑
ℓJ =i AJ /RJ |<q−h

∑
ℓI =3
RI | Q

AI ∈R(RI )

qh/2
≤|

∏
ℓI =3 RI |≤q2h

|
∑
ℓI =3 AI /RI |<q−h

µ
(∏

ℓI =3 RI
)2∏

ℓI =3 φ(RI )2
.
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We now bound the inner sum using Lemma 4.3. The inner sum comprises three terms RI , so apply
the lemma with n = 3 to get that the inner sum is ≪ q−h(1+ε).

We repeat the process, now considering subsets I with ℓI = 2. Isolating these terms yields

≪ q4h+εh |Q|

φ(Q)

∑
RI | Q

I⊆[5],ℓI =1
qh

≤|
∏
ℓI =1 RI |≤q2h

µ
(∏

ℓI =1 RI
)2∏

ℓI =1 φ(RI )2

∑
AI ∈R(RI )
I⊆[5],ℓI =1

|
∑
ℓI =1 AI /RI |<q−h

∑
ℓI =2
RI | Q

AI ∈R(RI )

qh/2
≤|

∏
ℓI =2 RI |≤q2h

|
∑
ℓI =2 AI /RI |<q−h

µ
(∏

ℓI =2 RI
)2∏

ℓI =2 φ(RI )2
.

Here there are seven RI terms and seven AI terms in the inner sum, so, again applying Lemma 4.3, the
inner sum is ≪ q−h+εh. Lastly, we address the terms with ℓI = 1:

≪ q3hq2εh |Q|

φ(Q)

∑
RI | Q

I⊆[5],ℓI =1
qh

≤|
∏
ℓI =1 RI |≤q2h

µ
(∏

ℓI =1 RI
)2∏

ℓI =1 φ(RI )2

∑
AI ∈R(RI )
I⊆[5],ℓI =1

|
∑
ℓI =1 AI /RI |<q−h

1.

We apply Lemma 4.3 one final time, this time with n = 15, since there are 15 sets I ⊆ [5] with |I | ≥ 2
and ℓI = 1. This yields

≪ q2h+3εh |Q|

φ(Q)
,

as desired. □

We are now ready to prove a general bound on m5(Q; h).

Theorem 4.5. Fix ε > 0 and let Q ∈ Fq [t] be square-free. Define m5(Q; h) by (15). Then

m5(Q; h)≪ |Q|q2h+ε

(
|Q|

φ(Q)

)−4

+ |Q|q2h
(

|Q|

φ(Q)

)27

.

Proof. Using Lemma 3.1, we can express

m5(Q; h)= |Q|

(
φ(Q)
|Q|

)5

V5(Q; h),

where

V5(Q; h)=

∑
R1,...,R5 | Q

|Ri |>1
Ri monic

5∏
i=1

µ(Ri )

φ(Ri )

∑
A1,...,A5∈R(Ri )∑

i Ai/Ri =0

E
(

A1

R1

)
· · · E

(
A5

R5

)
.

Now apply Lemma 3.6 to bound the contribution to V5(Q; h) from many tuples R1, . . . , R5. If |Ri |< qh

for any i , then these terms contribute 0; assume from now on that |Ri | ≥ qh. If for any triple i, j, k we
have Ri = R j = Rk , then we apply Lemma 3.6 with R̃1 = Ri and R̃2 = R j ; in this case X2 = 0 and X1 and
X3 are O(q−h/2), so these terms contribute O(q2h(|Q|/φ(Q))32). If there exist Ri ̸= R j such that either
|Ri/(Ri , R j )|< qh or |(Ri , R j )| ≥ qh/2, then we apply Lemma 3.6 with R̃1 = Ri and R̃2 = R j ; in this
case, X3 = 0, and X1 and X2 are each O(q−h/2), so these terms contribute O(q2h(|Q|/φ(Q))32) as well.
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Assume now that (R1, R2, R3, R4, R5) does not fall into either of the above cases. Then, for all i ,
|Ri |< q2h. To see this, assume that (R1, R2, R3, R4, R5) has no i, j, k with Ri = R j = Rk , and that, for
all Ri ̸= R j , |Ri/(Ri , R j )| ≥ qh and |(Ri , R j )|< qh/2. Assume, relabeling if necessary, that R1 ≥ q2h.
Since R1 |

∏
j ̸=1(R1, R j ), we must have |(R1, R j )| ≥ qh/2 for some j ̸= 1. This cannot be true for

some j with R j ̸= R1, so we have R j = R1. At the same time, there can only be one j ̸= 1 with
R j = R1, so without loss of generality our tuple must be of the form (R1, R1, R3, R4, R5). There cannot
be an additional equal pair among R3, R4, and R5; if there is (without loss of generality R3 = R4), then
R5 | (R1, R5)(R3, R5), so since |R5| ≥ qh either |(R1, R5)| ≥ qh/2 or |(R3, R5)| ≥ qh/2, which along with
the lack of equal triples yields a contradiction. Now consider R3. Note that R3 | (R1, R3)(R4, R3)(R5, R3)

and (R3/(R1, R3)) | (R4, R3)(R5, R3). But by assumption, |R3/(R1, R3)| ≥ qh and |(R4, R3)(R5, R3)|<

(qh/2)2 = qh, which yields a contradiction.
So, the only terms remaining are those with |Ri |< q2h for all i , no equal triple, and either |(Ri , R j )| ≥

qh/2 or |Ri/(Ri , R j )| < qh whenever Ri ̸= R j . By Lemma 4.1, (R1, . . . , R5) satisfies the constraints
of Proposition 4.4. By Proposition 4.4, these terms contribute O(q(2+ε)h

|Q|/φ(Q)) to V5(Q; h) for all
ε > 0. Thus, for all ε > 0,

V5(Q; h)≪ q(2+ε)h |Q|

φ(Q)
+ q2h

(
|Q|

φ(Q)

)32

,

so

m5(Q; h)≪ |Q|q(2+ε)h
(

|Q|

φ(Q)

)−4

+ |Q|q2h
(

|Q|

φ(Q)

)27

. □

As in the integer case, we particularly want to consider Q to be the product of irreducible polynomials P
with |P| ≤ q2h. In this case, |Q|/φ(Q)≪ h, so that we get the following corollary.

Corollary 4.6. Fix ε > 0 and let Q ∈ Fq [t] be given by

Q =

∏
P irred.
|P|≤q2h

P.

Then

m5(Q; h)≪ε |Q|q(2+ε)h .

4.2. Proof of Corollary 1.5: bounds on Rk(qh). In this subsection, we discuss the transition from bounds
on Vk(Q; h), from Theorem 1.4 and Lemma 3.7, to bounds on sums of singular series in function fields,
in order to prove Corollary 1.5. Much of this is similar to the integer case discussion in Section 2.

As in the integer case, for D = {D1, . . . , Dk} a set of distinct polynomials in Fq [T ], we define the
singular series

S(D) :=

∏
P monic, irred.

(1 − νP(D)/|P|)

(1 − 1/|P|)k
=

∑
R1,...,Rk
1≤|Ri |

( k∏
i=1

µ(Ri )

φ(Ri )

) ∑
A1,...,Ak

Ai ∈R(Ri )∑
i Ai/Ri =0

e
( k∑

i=1

Ai Di

Ri

)
,
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where νP(D) is the number of equivalence classes of Fq [T ]/(P) occupied by elements of D. We also
define S0(D), given by S0(D) :=

∑
J⊆D(−1)|D\J |S(J ), and consider

Rk(qh) :=

∑
D1,...,Dk
Di distinct
|Di |≤qh

S0({D1, . . . , Dk}). (19)

Our results on mk(Q; h) (and equivalently Vk(Q; h)) imply bounds on these sums of k-fold singular
series, just as in the integer case in Section 2. We set Q to be the product of all monic irreducible
polynomials of degree at most 2h, so that |Q|/φ(Q)≪q h. Just as in the integer case, we can truncate
the expression for S0(D) to only contain terms dividing Q, with an acceptable error term. In particular,
we get

Rk(h)=

∑
D1,...,Dk
Di distinct
|Di |≤qh

∑
R1,...,Rk
|Ri |>1
Ri | Q

k∏
i=1

µ(Ri )

φ(Ri )

∑
A1,...,Ak

Ai ∈R(Ri )∑
i Ai/Ri =0

e
( k∑

i=1

Di Ai

Ri

)
+ O(1).

It will again be helpful for us to define the singular series of a k-tuple D = (D1, . . . , Dk) relative to the
modulus Q. Here the k-tuple can have repeated elements; since the Euler product is finite, convergence is
not a concern. We define

S(D; Q) :=

∏
P | Q

P monic

(1 − νP(D)/|P|)

(1 − 1/|P|)k
=

∑
R1,...,Rk | Q

Ri monic

( k∏
i=1

µ(Ri )

φ(Ri )

) ∑
A1,...,Ak

Ai ∈R(Ri )∑
i Ai/Ri =0

e
( k∑

i=1

Ai Di

Ri

)
.

If D has a repeated element, so that D = {D, D, D3, . . . , Dk}, then

S(D; Q)=
|Q|

φ(Q)
S({D, D3, . . . , Dk}; Q),

so we can remove repeated elements from D at the expense of a factor of |Q|/φ(Q). We define S0(D; Q)
to be the alternating sum

∑
J⊂D(−1)|D\J |S(J ; Q), so we have

Rk(qh)=

∑
D1,...,Dk
Di distinct
|Di |≤qh

S0({D1, . . . , Dk}; Q)+ O(1).

This is quite close to the quantity Vk(Q; h), except with the added constraint that the Di ’s must be distinct.
It suffices to remove this condition. To do so, we put δi j = 1 if Di = D j and 0 otherwise, so that

∑
D1,...,Dk
Di distinct
|Di |≤qh

S0({D1, . . . , Dk}; Q)=

∑
D1,...,Dk
|Di |≤qh

( ∏
1≤i< j≤k

(1 − δi j )

)
S0({D1, . . . , Dk}; Q).
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We can expand the product and group terms according to which Di ’s are required to be equal, noting that,
for example, δ12δ23 = δ13δ23. We can also combine terms according to symmetry; the term δ12 and the
term δ34 will have identical contributions in the final sum.

Let us now proceed with analyzing R5(qh). After some counting, we get that∑
D1,...,D5
Di distinct
|Di |≤qh

S0({D1, . . . , D5}; Q)=

∑
D1,...,D5
|Di |≤qh

f ((δi, j )i, j∈[5])S0({D1, . . . , D5}; Q),

where

f ((di, j )i, j∈[5])= 1 − 10δ12 + 20δ12δ13 + 15δ12δ34 − 20δ12δ13δ45 − 30δ12δ13δ14 + 24δ12δ13δ14δ15.

We will consider the contribution from each term in f . The term 1 gives us precisely V5(Q; h), which we
have already analyzed. We can then bound each of the remaining six terms by expanding S0 into a sum
of S, removing any repeated terms in the appropriate tuple, and applying Lemma 3.7 to bound Vk(Q; h)
for some k < 5. These computations are summarized in the following lemma.

Lemma 4.7. Using the notation of this section,

(a)
∑

D1,D3,D4,D5
|Di |≤qh

S0({D1, D1, D3, D4, D5}; Q)≪ q2h(|Q|/φ(Q))9,

(b)
∑

D1,D4,D5
|Di |≤qh

S0({D1, D1, D1, D4, D5}; Q)≪ q2h(|Q|/φ(Q))3 + qh(|Q|/φ(Q))10,

(c)
∑

D1,D3,D5
|Di |≤qh

S0({D1, D1, D3, D3, D5}; Q)≪ q2h(|Q|/φ(Q))3 + qh(|Q|/φ(Q))10,

(d)
∑

D1,D4
|Di |≤qh

S0({D1, D1, D1, D4, D4}; Q)≪ q2h(|Q|/φ(Q))3 + qh(|Q|/φ(Q))4,

(e)
∑

D1,D5
|Di |≤qh

S0({D1, D1, D1, D1, D5}; Q)≪ qh(|Q|/φ(Q))4,

(f)
∑

D1
|D1|≤qh

S0({D1, D1, D1, D1, D1}; Q)≪ qh(|Q|/φ(Q))4.

Proof. For the sake of brevity we omit most of these computations, which are very similar, but we will
show that the term corresponding to δ12, in part (a), is ≪ q2h(|Q|/φ(Q))9.

Assume we have a tuple D = {D1, D1, D3, D4, D5}, with one repeated term. As mentioned above,

S(D; Q)=
|Q|

φ(Q)
S({D1, D3, D4, D5}; Q).

Expanding S0 and applying this relation shows that

S0(D; Q)=

(
|Q|

φ(Q)
− 2

)
S0({D1, D3, D4, D5}; Q)+

(
|Q|

φ(Q)
− 1

)
S0({D3, D4, D5}; Q),
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so in this way we can remove repeated elements from our sum. The term we want to bound is∑
D1,D3,D4,D5

|Di |≤qh

S0({D1, D1, D3, D4, D5}; Q)

=

∑
D1,D3,D4,D5

|Di |≤qh

(
|Q|

φ(Q)
− 2

)
S0({D1, D3, D4, D5}; Q)+

(
|Q|

φ(Q)
− 1

)
S0({D3, D4, D5}; Q)

=

((
|Q|

φ(Q)
− 2

)
V4(Q; h)+ qh

(
|Q|

φ(Q)
− 1

)
V3(Q; h)

)
≪

(
|Q|

φ(Q)

)3

q2h
+

(
|Q|

φ(Q)

)9

q2h,

where in the last step the bounds follow from Lemma 3.7. □

This lemma gives the following corollary.

Corollary 4.8. Let
Q =

∏
P irred.
|P|≤q6h

P.

For all ε > 0,

R5(qh)≪ V5(Q; h)+ q2h
(

|Q|

φ(Q)

)9

≪ q(2+ε)h .

Performing the same analysis when k = 3 yields the bound:

Corollary 4.9. Let Q be as above. Then

R3(qh)≪ V3(Q; h)+ qh
(

|Q|

φ(Q)

)2

≪ qh
(

|Q|

φ(Q)

)8

.

5. Numerical evidence for odd moments

Here we present several charts supporting our conjectures on the sizes of the odd moments. To begin
with, we have computed 1

6 R3(h)=
∑

1≤d1<d2<d3≤h S0({d1, d2, d3}). In Figure 1, left, 1
6 R3(h) is plotted

in black. We expect R3(h), and thus also 1
6 R3(h), to be of the shape Ah(log h)2 for some constant A. We

found an experimental best fit value of A = 0.373727, and for this A have plotted Ah(log h)2 alongside
1
6 R3(h), as a dashed gray line.

The fit of the theoretical gray dashed curve is quite close, but there are lower-order fluctuations; in
Figure 1, right, we plot the difference between 1

6 R3(h) and Ah(log h)2.
Our analysis above includes relatively little discussion about the moments of the distribution of primes

themselves. We have computed several third, fifth, and seventh moments of the distribution of primes,
shown in Figures 2–4. Specifically, we have computed

M̃k(N ; N δ)=
1
N

2N∑
n=N

(ψ(n + N δ)−ψ(n)− N δ)k

for each of δ = 0.25, 0.5 and 0.75, and for each of k = 3, 5, 7. For a fixed δ and k, we plot M̃k(N ; N δ)

for values of N ranging from 1 to 107, and growing exponentially.
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Figure 1. Left: 1
6 R3(h) for 3 ≤ h ≤ 20000. Right: 1

6 R3(h)− Ah(log h)2 for 3 ≤ h ≤ 20000.
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Figure 2. Plots of the third moment M3(N ; N δ) for N ≤ 107.
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Figure 3. Plots of the fifth moment M5(N ; N δ) for N ≤ 107.
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Each of the plots in Figures 2–4 is drawn with both x- and y-axes on a logarithmic scale. We expect
the k-th moment to be of size approximately O(H (k−1)/2(log(N/H))(k+1)/2, where H = N δ, so to give a
sense of size, for each plot, N δ(k−1)/2(log N 1−δ)(k+1)/2 is plotted in dashed red. We have also plotted the
reflection of the red dashed curve across the x-axis, since the odd moments are frequently negative.

The fit of the red line is reasonably good in all cases, but not perfect. In every case here we seem to
see that the odd moments are more frequently positive than negative, but still take on negative values.
For δ = 0.25, the odd moments seem to be positive for sufficiently large N ; it is possible that this effect
occurs for all sufficiently large N, where the threshold depends on k and δ.

6. Toy models and open problems

Throughout, we have studied the sum

Rk(h)=

∑
q1,...,qk

1<qi

( k∏
i=1

µ(qi )

φ(qi )

) ∑
a1,...,ak
1≤ai ≤qi
(ai ,qi )=1∑

ai/qi ∈Z

k∏
i=1

E
(

ai

qi

)
,

where E(α) =
∑h

m=1 e(mα). The sums E(α) approximately detect when ∥α∥ ≤ 1/h; the analogous
sum in the function field case precisely detects when α has small degree. As a result, much of our
understanding boils down to answering the following key question.

Question 6.1. Let δ > 0 and let Q > 1/δ. What is

#
{

q1, . . . , qk ∈ [Q, 2Q], ai mod qi :

∥∥∥∥ai

qi

∥∥∥∥ ≤ δ,
∑

i

ai

qi
∈ Z

}
?

We conjecture that the answer to this question is as follows.

Conjecture 6.2. Let δ > 0 and let Q > 1/δ. Let S be the size of the set in Question 6.1. Then for any
ε > 0,

S ≪

{
Qk+εδk/2, k even,
Qk+εδ(k+1)/2, k odd.

As we discussed in the Introduction, Montgomery and Vaughan [1986] considered the related problem
of moments of reduced residues modulo q . Their work depends on the following answer to Question 6.1
above.

Theorem 6.3. Let S be the size of the set in Question 6.1. Then

S ≪


δk/2

∑
Q≤ri ≤2Q
1≤i≤k/2

r2
1 · · · r2

k/2

lcm(ri )
+ δk/2−1/7k

∑
Q≤ri ≤2Q

1≤i≤k

r1 · · · rk

lcm(ri )
, k even,

δk/2−1/7k
∑

Q≤ri ≤2Q
1≤i≤k

r1 · · · rk

lcm(ri )
, k odd.
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The proof of the above theorem is identical to the proof in [Montgomery and Vaughan 1986]. This
agrees with Conjecture 6.2 for the case when k is even, but gives a weaker bound when k is odd.

We can also consider generalizations of Question 6.1. For example, instead of specifying that
∥ai/qi∥ ≤ δ, we may ask that it lie in any specified interval.

Question 6.4. Let Q > 1/δ and let I1, . . . , Ik be k intervals in [0, 1] with |I j | ≥ δ for all j . What is

#
{

q1, . . . , qk ∈ [Q, 2Q], ai mod qi :

∥∥∥∥ai

qi

∥∥∥∥ ∈ Ii ,
∑

i

ai

qi
∈ Z

}
?

Answers to these questions would give us more refined understanding of sums of singular series. The
conjectures above are related to sums over S({h1, . . . , hk}), where each hi lies in the same interval [0, h].
We can instead ask about sums of singular series restricted to arbitrary intervals, or along arithmetic
progressions. We state the following questions using smooth cutoff functions as opposed to intervals.

Question 6.5. Let 81, . . . , 8k be smooth functions with compact support on R, and let H ∈ R>0. What is∑
h1,...,hk∈Z

S0({h1, . . . , hk})81

(
h1

H

)
· · ·8k

(
hk

H

)
?

Question 6.6. Let 81, . . . , 8k be smooth functions with compact support on R, and let H ∈ R>0. For
arithmetic progressions a1 mod q1, . . . , ak mod qk , what is∑

h1,...,hk∈Z
hi ≡ai mod qi

S0({h1, . . . , hk})81

(
h1

H

)
· · ·8k

(
hk

H

)
?

Question 6.5 addresses the correlations of ψ(x + h)−ψ(x) and ψ(x + h1 + h)−ψ(x + h1); in other
words, the correlations of the number of primes in intervals in different places. Question 6.6 addresses
the correlations of the number of primes in distinct arithmetic progressions. For both of these questions,
the main term ought to come from diagonal terms where h1 = h2, for example, thus collapsing the weight
function, whereas the error term ought to arise from off-diagonal contributions.

In the case when k = 2, Question 6.6 has been widely studied in the context of prime number races.
The “Shanks–Rényi prime number race” is the following problem: Let π(x; q, a) denote the number of
primes p ≤ x with p ≡ a mod q. Then, for any n-tuple (a1, . . . , an) of equivalence classes mod q that
are relatively prime to q, will we have the ordering

π(x; q, a1) > π(x; q, a2) > · · ·> π(x; q, an)

for infinitely many integers x? Many aspects of this question have been studied; see for example the
expositions of [Granville and Martin 2006; Ford and Konyagin 2002].

Ford, Harper, and Lamzouri [2019] showed that, although any ordering appears infinitely often, for n
large with respect to q, the prime number races among orderings can exhibit large biases. They rely on
the fact that counts of primes in distinct progressions have negative correlations, which they arrange to
produce a bias. This analysis is also connected to the work of Lemke Oliver and Soundararajan [2016],
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who use averages of two-term singular series in arithmetic progressions to show bias in the distribution of
consecutive primes. It is plausible that a more precise understanding of the questions above would lead to
an extension of the work of Lemke Oliver and Soundararajan.
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Efficient resolution of Thue–Mahler equations
Adela Gherga and Samir Siksek

A Thue–Mahler equation is a Diophantine equation of the form

F(X, Y ) = a · pz1
1 · · · pzv

v , gcd(X, Y ) = 1

where F is an irreducible binary form of degree at least 3 with integer coefficients, a is a nonzero integer
and p1, . . . , pv are rational primes. Existing algorithms for resolving such equations require computations
in the field L = Q(θ, θ ′, θ ′′), where θ , θ ′, θ ′′ are distinct roots of F(X, 1) = 0. We give a new algorithm
that requires computations only in K = Q(θ) making it far more suited for higher degree examples. We
also introduce a lattice sieving technique reminiscent of the Mordell–Weil sieve that makes it practical
to tackle Thue–Mahler equations of higher degree and with larger sets of primes than was previously
possible. We give several examples including one of degree 11.

Let P(m) denote the largest prime divisor of an integer m ≥ 2. As an application of our algorithm we
determine all pairs (X, Y ) of coprime nonnegative integers such that P(X4

− 2Y 4) ≤ 100, finding that
there are precisely 49 such pairs.

1. Introduction

Let
F(X, Y ) = a0 Xd

+ a1 Xd−1Y + · · · + adY d (1)

be a binary form of degree d ≥ 3 with coefficients ai ∈ Z. Suppose F is irreducible over Q. Let a be a
nonzero integer and let p1, . . . , pv be distinct primes such that pi ∤ a. The purpose of this paper is to give
an efficient algorithm to solve the Thue–Mahler equation

F(X, Y ) = a · pz1
1 · · · pzv

v , X, Y ∈ Z, gcd(X, Y ) = 1, (2)

for unknown integers X, Y , and unknown nonnegative integers z1, . . . , zv . The set of solutions is known
to be finite by a famous result of Mahler [1933] which extends classical work of Thue [1909]. Mahler’s
theorem is ineffective. The first effective bounds on the size of the solutions are due to Vinogradov and
Sprindzhuk [1968] and to Coates [1970]. Vastly improved effective bounds have since been given by
Bugeaud and Győry [1996a]. Evertse [1984, Corollary 2] showed that the number of solutions to (2) is at
most 2 × 7d3(2v+3). For d ≥ 6, this has been improved by Bombieri [1987, Main Theorem] who showed
that the number of solutions is at most 16(v + 1)2

· (4d)26(v+1).
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Besides being of independent interest, Thue–Mahler equations frequently arise in a number of contexts:

• The problem of determining all elliptic curves over Q with good reduction outside a given set of primes
algorithmically reduces to the problem of solving certain cubic Thue–Mahler equations (here cubic
means d = 3). The earliest example appears to be due to Agrawal, Coates, Hunt, and van der Poorten
[Agrawal et al. 1980] who used it to determine all elliptic curves over Q of conductor 11. The recent
paper of Bennett, Gherga and Rechnitzer [Bennett et al. 2019] gives a systematic and general treatment
of this approach. In fact, the link between cubic Thue–Mahler equations and elliptic curves can be used
in conjunction with modularity of elliptic curves to give an algorithm for solving cubic Thue–Mahler
equations as in the work of von Känel and Matschke [2023, Section 5] and of Kim [2017].

• Many Diophantine problems naturally reduce to the resolution of Thue–Mahler equations. These
include the Lebesgue–Nagell equations (e.g., [Cangül et al. 2010; Soydan and Tzanakis 2016]), and
Goormaghtigh’s equation (e.g., [Bennett et al. 2020]). The most striking of such applications is the
reduction, due to Bennett and Dahmen [2013], of asymptotic cubic superelliptic equations to cubic
Thue–Mahler equations, via the modularity of Galois representation attached to elliptic curves.

Before the current paper, the only general algorithm for solving Thue–Mahler equations was the one
due to Tzanakis and de Weger [1989]. A modern implementation of this algorithm, due Hambrook [2011],
has been profitably used to solve a number of low degree Thue–Mahler equations, for example in [Cangül
et al. 2010; Soydan and Tzanakis 2016].

Instead of (2), we consider the equation

F(X, Y ) = a · pz1
1 · · · pzv

v , X, Y ∈ Z, gcd(X, Y ) = gcd(a0, Y ) = 1. (3)

Thus we have added the assumption gcd(a0, Y )= 1, where a0 is the leading coefficient of F as in (1). This
is a standard computational simplification in the subject, and is also applied by Tzanakis and de Weger.
There is no loss of generality in adding this assumption in the following sense: an algorithm for solving (3)
yields an algorithm for solving (2). To see this, let (X, Y ) be a solution to (2) and let b = gcd(a0, Y ).
Write Y = bY ′ with Y ′

∈ Z. The possible values for b are the divisors of a0; for each divisor b we need to
solve F(X, bY ′) = a · pz1

1 · · · pzv
v . Note that F(X, bY ′) = bG(X, Y ′) where G has integral coefficients and

leading coefficient a′

0 = a0/b, which satisfies gcd(a′

0, Y ′) = 1. The equation bG(X, Y ′) = a · pz1
1 · · · pzv

v

is impossible unless b/ gcd(a, b) = pw1
1 · · · pwv

v where wi ≥ 0, in which case

G(X, Y ′) = (a/ gcd(a, b)) · pz1−w1
1 · · · pzv−wv

v ,

which is now a Thue–Mahler equation of the form (3).
The approach of Tzanakis and de Weger can be summarized as follows:

(I) First (3) is reduced to a number of ideal equations

(a0 X − θY )OK = a · pn1
1 · · · pns

s . (4)



Efficient resolution of Thue–Mahler equations 669

Here θ is a root of the monic polynomial ad−1
0 F(X/a0, 1), and K = Q(θ). Moreover, a is a fixed ideal

of the ring of integers OK , and p1, . . . , ps are fixed prime ideals of OK . The variables X , Y , n1, . . . , ns

represent the unknowns.

(II) Next, each ideal equation (4) is reduced to a number of equations of the form

a0 X − θY = τ · δ
b1
1 · · · δbr

r (5)

where τ , δ1, . . . , δr ∈ K × are fixed and X , Y , b1, . . . , br are unknowns.

(III) The next step generates a very large upper bound for the exponents b1, . . . , br using the theory of
real, complex, and p-adic linear forms in logarithms. This bound is then considerably reduced using the
LLL algorithm [Lenstra et al. 1982] applied to approximation lattices associated to these linear forms, and
finally, all solutions below this reduced bound are found using the algorithm of Fincke and Pohst [1985].

To compute these approximation lattices alluded to in step (III), the algorithm of Tzanakis and de Weger
relies on extensive computations in the number field K ′

= Q(θ1, θ2, θ3) where θ1, θ2, θ3 are distinct roots
of ad−1

0 F(X/a0, 1), as well as p-adic completions of K ′. The field K ′ typically has degree d(d−1)(d−2),
making their algorithm impractical if the degree d is large. Even if the degree d is small (say d = 3), we
have found that the Tzanakis–de Weger algorithm runs into a combinatorial explosion of cases in step (I)
if the number of primes v is large, and in step (II) if the class number h of K is large.

In this paper, we present an algorithm that builds on many of the powerful ideas in the paper of
Tzanakis and de Weger but avoids computations in number fields other than the field K = Q(θ) of
degree d, and avoids all computations in p-adic fields or their extensions. The algorithm includes a
number of refinements that circumvent the explosion of cases in steps (I) and (II). For example, to each
ideal equation (4) we associate at most one equation (5); by contrast, the algorithm of Tzanakis and
de Weger, typically associates hs−1 equations (5) to each ideal equation (4), where h is the class number
of K . Moreover, inspired by the Mordell–Weil sieve (e.g., [Bruin and Stoll 2008; 2010; Bugeaud et al.
2008]), we introduce a powerful “Dirichlet sieve” that vastly improves the determination of the solutions
to (5) after the LLL step, even if the remaining bound on the exponents bi is large.

We have implemented the algorithm described in this paper in the computer algebra system Magma
[Bosma et al. 1997].1

Below we give four examples of Thue–Mahler equations solved using our implementation. Our
solutions will always be subject to the assumptions

gcd(X, Y ) = gcd(a0, Y ) = 1.

They will be given in the form [X, Y, z1, z2, . . . , zv]. We will revisit these examples later on in the paper
to illustrate the differences between our algorithm and that of Tzanakis and de Weger [1989]. We do
point out that a number of recent papers also make use of our implementation, or the ideas in the present
paper, to solve various Thue–Mahler equations where the degree d , or the number of primes v are large.

1Our implementation is available from https://github.com/adelagherga/ThueMahler/tree/master/Code/TMSolver.

https://github.com/adelagherga/ThueMahler/tree/master/Code/TMSolver
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For example in [Bennett et al. 2020; 2022; Bennett and Siksek 2023a; 2023b], our algorithm is used to
solve Thue–Mahler equations of degrees 5, 20, 7 and 11 respectively.

Example 1.1. An ongoing large-scale computational project, led by Bennett, Cremona, Gherga and
Sutherland, aims to provably compute all elliptic curves of conductor at most 106. The method combines
the approach in [Bennett et al. 2019] with our Thue–Mahler solver described in the current paper. We
give an example to illustrate this application. Consider the problem of computing all elliptic curves E/Q

with trivial 2-torsion and conductor
771456 = 27

· 3 · 72
· 41.

Applying Theorem 1 of [Bennett et al. 2019] results in 13 cubic Thue–Mahler equations of the form

a0 X3
+ a1 X2Y + a2 XY 2

+ a3Y 3
= 3z1 · 7z2 · 41z3, gcd(X, Y ) = 1,

whose resolution algorithmically yields the desired set of elliptic curves. The coefficients (a0, a1, a2, a3)

for these 13 forms are:

(1, 7, 2, −2), (2, 1, 0, 3), (1, 4, 3, 6), (3, 4, 4, 4), (4, 4, 6, 3), (2, 5, 0, 6), (1, 7, 4, 12),

(3, 3, −1, 7), (3, 7, 14, 14), (1, 3, 17, 43), (8, 12, 13, 8), (4, 1, 12, −6), (3, 9, 5, 19)

Our implementation solved all 13 of these Thue–Mahler equations and computed the corresponding
elliptic curves in a total of 5.4 minutes on a single core.2

For illustration, we consider one of these 13 Thue–Mahler equations:

4X3
+ X2Y + 12XY 2

− 6Y 3
= 3z1 · 7z2 · 41z3, gcd(X, Y ) = 1.

Our implementation solved this in 41 seconds. The solutions are

[−3, −7, 1, 0, 1], [−1, −5, 2, 2, 0], [1, −1, 1, 1, 0],

[3, 1, 1, 2, 0], [5, 11, 0, 2, 0], [9, 17, 1, 2, 1], [19, 23, 5, 3, 0].

Of the seven solutions, only (X, Y ) = (1, −1) gives rise to elliptic curves of conductor 771456:

E1 : y2
= x3

− x2
+ 13655x + 2351833,

E2 : y2
= x3

− x2
+ 3414x − 295686.

Example 1.2. Consider the Thue–Mahler equation

7X3
+ X2Y + 29XY 2

− 25Y 3
= 2z1 · 3z2 · 17z3 · 37z4 · 53z5 . (6)

This in fact is one of the Thue–Mahler equations whose resolution, via the method of [Bennett et al.
2019], is needed to determine all elliptic curves of conductor

2α
· 3β

· 17 · 37 · 53, where α ∈ {2, 3, 4, 6, 7} and β ∈ {1, 2}.

2See https://github.com/adelagherga/ThueMahler/tree/master/GhSiData/Example1 for full computational details, as well as a
list of all corresponding elliptic curves.

https://github.com/adelagherga/ThueMahler/tree/master/GhSiData/Example1
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The class number of the cubic field associated to the cubic form in (6) is 33. As we shall see later (at the
end of Section 4), our approach to dealing with the class group requires us to solve only 30 equations of
the form (5), whereas in comparison the method of Tzanakis and de Weger requires the resolution of
approximately 80990 equations of the form (5). For now, we merely point out that our implementation
solved (6) in 2 minutes. The solutions are

[19, −23, 2, 4, 0, 1, 1], [13, −6, 0, 0, 1, 1, 1], [−343, −463, 2, 11, 1, 0, 0],

[79, −8, 0, 2, 2, 2, 0], [37, −13, 2, 1, 1, 0, 2], [1, 1, 2, 1, 0, 0, 0], [3, 4, 0, 0, 1, 0, 0].

Example 1.3. Most explicit examples of the resolution of Thue–Mahler equations (3) found in the
literature involve a relatively small set of primes {p1, . . . , pv}. The following example, aside from being
an interesting Diophantine application in its own right, is intended to illustrate that our algorithm can
cope with a relatively large set of primes.

For a nonzero integer m, let P(m) denote the maximum prime divisor of m (where we take P(1) =

P(−1) = 0). In this example, we solve the inequality

P(X4
− 2Y 4) ≤ 100, gcd(X, Y ) = 1.

Let
F(X, Y ) = X4

− 2Y 4.

We therefore would like to solve (3) with a = ±1 and with p1, . . . , pv being the set of primes ≤ 100 (of
which there are 25). However, it is clear that if 2 is not a fourth power modulo p, then p ∤ (X4

− 2Y 4).
Thus we reduce to the much smaller set of primes p ≤ 100 for which 2 is a fourth power. This is the set

{2, 7, 23, 31, 47, 71, 73, 79, 89}.

Therefore the Thue–Mahler equation we shall consider is

X4
− 2Y 4

= ±2z1 · 7z2 · 23z3 · 31z4 · 47z5 · 71z6 · 73z7 · 79z8 · 89z9, gcd(X, Y ) = 1.

Our implementation took roughly 3.5 days to solve this Thue–Mahler equation. There are 49 solutions
(up to changing the signs of X , Y ):

[0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0],

[1, 3, 0, 1, 1, 0, 0, 0, 0, 0, 0], [1, 4, 0, 1, 0, 0, 0, 0, 1, 0, 0],

[1, 11, 0, 1, 0, 0, 1, 0, 0, 0, 1], [2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],

[2, 3, 1, 0, 0, 0, 0, 0, 1, 0, 0], [2, 27, 1, 1, 0, 2, 0, 0, 0, 1, 0],

[3, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0], [3, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0],

[3, 14, 0, 0, 1, 0, 1, 1, 0, 0, 0], [4, 3, 1, 0, 0, 0, 1, 0, 0, 0, 0],

[4, 5, 1, 1, 0, 0, 0, 1, 0, 0, 0], [5, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1],
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[5, 8, 0, 1, 1, 0, 1, 0, 0, 0, 0], [6, 5, 1, 0, 1, 0, 0, 0, 0, 0, 0],

[6, 19, 1, 0, 0, 1, 1, 0, 0, 0, 1], [8, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1],

[10, 23, 1, 2, 0, 0, 0, 1, 0, 1, 0], [11, 9, 0, 2, 0, 1, 0, 0, 0, 0, 0],

[11, 20, 0, 0, 0, 0, 1, 0, 1, 0, 1], [15, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0],

[15, 13, 0, 0, 0, 0, 0, 0, 1, 0, 1], [16, 21, 1, 0, 1, 0, 0, 0, 0, 1, 1],

[17, 5, 0, 2, 1, 0, 0, 0, 1, 0, 0], [19, 20, 0, 4, 0, 0, 0, 0, 0, 1, 0],

[21, 11, 0, 0, 0, 1, 0, 0, 2, 0, 0], [22, 49, 1, 0, 1, 1, 0, 0, 0, 0, 2],

[33, 13, 0, 1, 0, 0, 2, 0, 1, 0, 0], [37, 19, 0, 0, 1, 2, 0, 0, 1, 0, 0],

[40, 13, 1, 1, 0, 1, 0, 0, 1, 1, 0], [52, 51, 1, 2, 1, 1, 0, 0, 0, 0, 1],

[53, 44, 0, 1, 1, 1, 0, 0, 0, 1, 0], [59, 56, 0, 0, 0, 1, 1, 1, 1, 0, 0],

[61, 48, 0, 1, 0, 0, 0, 1, 1, 0, 1], [66, 101, 1, 0, 2, 1, 0, 0, 1, 1, 0],

[68, 43, 1, 1, 1, 2, 1, 0, 0, 0, 0], [95, 58, 0, 1, 0, 1, 1, 0, 1, 1, 0],

[118, 101, 1, 2, 1, 0, 0, 1, 0, 0, 1], [142, 57, 1, 1, 3, 1, 0, 0, 1, 0, 0],

[162, 137, 1, 2, 0, 0, 2, 0, 1, 0, 0], [181, 124, 0, 0, 1, 0, 1, 0, 0, 2, 1],

[221, 295, 0, 0, 2, 0, 1, 0, 1, 1, 1], [281, 199, 0, 1, 1, 0, 1, 1, 1, 1, 0],

[286, 283, 1, 3, 1, 0, 0, 0, 3, 0, 0], [389, 96, 0, 4, 0, 1, 1, 0, 1, 0, 1],

[420, 437, 1, 0, 0, 1, 3, 0, 1, 0, 1].

Example 1.4. All examples found in the literature are of Thue–Mahler equations where the form F has
the property that the field K ′

= Q(θ1, θ2, θ3) (defined above) have small degree. As indicated above,
a distinguishing feature of our algorithm is that the computations are carried out in the much smaller
extension K = Q(θ) (also defined above). Our last example is intended to illustrate this difference.
Consider the Thue–Mahler equation,

5X11
+ X10Y + 4X9Y 2

+ X8Y 3
+ 6X7Y 4

+ X6Y 5
+ 6X5Y 6

+ 6X3Y 8
+ 4XY 10

− 2Y 11

= 2z1 · 3z2 · 5z3 · 7z4 · 11z5 .

As usual, we let F denote the form on the left-hand side. The Galois group of F is S11, therefore the
field K has degree 11, whereas the field K ′ has degree 11 × 10 × 9 = 990. Our program solved this
Thue–Mahler equation in around 6.8 hours. However this time was almost entirely taken up with the
computation of the class group and the units of K . Once the class group and unit computations were
complete, it took only 3.6 minutes to provably determine the solutions. These are

[0, −1, 1, 0, 0, 0, 0], [1, −1, 1, 1, 1, 0, 0], [1, 1, 5, 0, 0, 0, 0], [1, 2, 0, 3, 0, 1, 1].

1.1. Notation and organization of the paper. As before F ∈Z[X, Y ] will be a binary form of degree d ≥3,
irreducible in Q[X, Y ], and with coefficients a0, . . . , ad as in (1). Let a be a nonzero integer and p1, . . . , pv
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be distinct primes satisfying pi ∤ a. Let

f (x) = ad−1
0 · F(x/a0, 1) = xd

+ a1xd−1
+ a0a2xd−2

+ · · · + ad−1
0 ad .

This is an irreducible monic polynomial with coefficients in Z. Let θ be a root of f and let K = Q(θ).
Note that K is a number field of degree d. Write OK for the ring of integers of K . We can rewrite our
Thue–Mahler equation (3) as

Norm(a0 X − θY ) = ad−1
0 · a · pz1

1 · · · pzv
v . (7)

Note that we do not assume that (a0, pi ) = 1.
The paper is organized as follows:

(a) In Section 2 we consider the decomposition of the ideal (a0 X − θY )OK as a product of prime ideals.
In particular, we introduce an algorithm to compare and restrict the possible valuations of all prime ideals
above each of p1, . . . , pv.

(b) We summarize the results of applying this algorithm in Section 3, wherein we reduce solving (7) to
solving a family of ideal equations of the form (4).

(c) In Section 4, we show that such ideal equations are either impossible due to a class group obstruction,
or reduce to a single equation of the form (5). The remainder of the paper is devoted to solving equations
of the form (5) where the unknowns are coprime integers X , Y and nonnegative integers b1, . . . , br .

(d) In Section 5, we recall key theorems from the theory of lower bounds for linear forms in complex
and p-adic logarithms due to Matveev and to Yu.

(e) In Section 6, with the help of these theorems, we obtain a very large upper bound on the exponents
b1, . . . , br in (5).

(f) In Section 7 we show how an application of close vector algorithms allows us to obtain a substantially
improved bound on the p-adic valuation of a0 X − θY for any prime p. This step avoids the p-adic
logarithms of earlier approaches.

(g) Section 8 uses the real and complex embeddings of K applied to (5) to obtain d − 2 approximate
relations involving the exponents bi . In Section 9, we set up an “approximation lattice” using these d − 2
approximate relations. We explain how close vector algorithms can be used to substantially reduce our
bound for the exponents b1, . . . , br in (5). Earlier approaches used just one of the d − 2 relations to
construct the approximation lattice, but we explain why using just one approximate relation can fail in
certain situations.

(h) Steps (f) and (g) are applied repeatedly until no further improvements in the bounds are possible. In
Section 10 we introduce an analogue of the Mordell–Weil sieve, which we call the “Dirichlet sieve” which
is capable of efficiently sieving for the solutions up to the remaining bounds, thereby finally resolving the
Thue–Mahler equation (3).
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2. The p-part of (a0 X − θY)OK

If c is a fractional ideal of OK , and p is a rational prime, we define the p-part of c to be the fractional ideal∏
p | p

pordp(c).

For each rational prime p ∈ {p1, . . . , pv} of (7), we want to study the p-part of (a0 X − θY )OK coming
from the prime ideals above p. The so-called prime ideal removal lemma in Tzanakis and de Weger
compares the possible valuations of (a0 X − θY )OK at two prime ideals p1, p2 | p to help cut down the
possibilities for the p-part of (a0 X −θY )OK . However if p1 | (a0 X −θY )OK then this restricts the values
of X and Y modulo p. Indeed, any choice of X and Y modulo p affects the valuations of (a0 X − θY )OK

at all primes p | p. So we study all valuations at the same time, not just two of them. This enables us to
give a much smaller list of possibilities for the p-part of (a0 X − θY )OK than in Tzanakis and de Weger,
as we will see in Section 4.

Definition 2.1. Let p be a rational prime. Let L p be a subset of the ideals b supported at the prime ideals
above p. Let Mp be a subset of the set of pairs (b, p) where b is supported at the prime ideals above p,
and p | p is a prime ideal satisfying e(p | p) = f (p | p) = 1, where e(p | p) and f (p | p) are, respectively,
the ramification index and inertial degree of p over p. We call the pair L p, Mp satisfactory if for every
solution (X, Y ) to (3),

(i) either the p-part of (a0 X − θY )OK is in L p, or

(ii) there is a pair (b, p) ∈ Mp and a nonnegative integer l such that the p-part of (a0 X −θY )OK is equal
to bpl .

At this point the definition is perhaps mysterious. Lemma 2.4 and the following remark give an
explanation for the definition and for the existence of finite satisfactory sets L p, Mp. We will give
an algorithm to produce (hopefully small) satisfactory sets L p and Mp. Before that we embark on a
simplification. The expression a0 X − θY is a linear form in two variables X , Y . It is easier to scale so
that we are dealing with a linear expression in just one variable.

For a rational prime p, let
Z(p) = {U ∈ Q : ordp(U ) ≥ 0}.

Definition 2.2. Let p be a rational prime. Let α∈ K and β ∈ K ×. Let L be a subset of the ideals b supported
on the prime ideals of OK above p. Let M be a subset of the set of pairs (b, p) where b is supported on
the prime ideals above p, and where p is a prime ideal above p satisfying e(p | p) = f (p | p) = 1. We
call L , M adequate for (α, β) if for every U ∈ Z(p),

(i) either the p-part of β · (U + α)OK is in L , or

(ii) there is a pair (b, p) ∈ M and a nonnegative integer l such that the p-part of β ·(U +α)OK equals bpl .

Lemma 2.3. Let L , M be adequate for (−θ/a0, a0) and let L p = L ∪ {1 ·OK } and Mp = M. Then the
pair L p, Mp is satisfactory.
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Proof. Recall that gcd(X, Y ) = gcd(a0, Y ) = 1.
If p | Y then ordp(Y ) > 0 for any p above p, and thus

ordp(a0 X − θY ) = 0.

If p ∤ Y , we write

U =
X
Y

, α =
−θ

a0
, β = a0.

Then U ∈ Z(p) and ordp(a0 X − θY ) = ordp(β · (U +α)) for all prime ideals p above p. Thus the p-part
of β · (U + α) is equal to the p-part of ordp(a0 X − θY ).

The lemma follows. □

We now demystify Definitions 2.1 and 2.2.

Lemma 2.4. Let p be a rational prime and γ a generator of K . Then there is a bound B depending only
on p and γ such that the following hold:

(a) For any U ∈ Z(p) and any pair of distinct prime ideals p1, p2 lying over p,

ordp1(U + γ ) ≤ B or ordp2(U + γ ) ≤ B.

(b) For any U ∈ Z(p) and any prime ideal p over p with e(p | p) ̸= 1 or f (p | p) ̸= 1,

ordp(U + γ ) ≤ B.

Proof. Let p be a prime ideal above p, and suppose that ordp(U + γ ) is unbounded for U ∈ Z(p). Thus
there is an infinite sequence {Ui } ⊂ Z(p) such that

lim
i→∞

ordp(Ui + γ ) = ∞.

However, Z(p) ⊂ Zp, where the latter is compact. Thus {Ui } contains an infinite subsequence {Uni }

converging to, say, U ∈ Zp. Write φp : K ↪→ Cp for the embedding of K corresponding to the prime
ideal p. It follows that φp(γ ) = −U ∈ Zp. Recall the assumption that K = Q(γ ). Thus Kp, the topological
closure of φp(K ) in Cp, is in fact Qp. Thus e(p | p) = f (p | p) = 1. This proves (b).

For (a), suppose that there is a pair of distinct primes p1, p2 above p and an infinite sequence {Ui }⊂ Z(p)

such that

lim
i→∞

ordp1(Ui + γ ) = lim
i→∞

ordp2(Ui + γ ) = ∞. (8)

Again, let {Uni } be an infinite subsequence of {Ui } converging to, say, U ∈Zp. Then φp1(γ )=−U =φp2(γ ).
As K = Q(γ ), the embeddings φp1 , φp2 are equal, contradicting p1 ̸= p2. □

Remark. We apply Lemma 2.4 with γ =α as in Lemma 2.3 in order to explain Definitions 2.1 and 2.2. The
valuation of β ·(U +α) can be arbitrarily large only for those p above p that satisfy e(p | p)= f (p | p)= 1,
and if it is sufficiently large for one such p then it is bounded for all others. Thus there must exist finite
adequate sets L , M . We now turn to the task of giving an algorithm to determine such adequate sets L , M .



676 Adela Gherga and Samir Siksek

Lemma 2.5. Let α ∈ K and let p be a rational prime. Let p be a prime ideal of OK above p. Suppose
U ∈ Z(p) and

ordp(U + α) > min{0, ordp(α)}. (9)

Then the following hold:

(i) ordp(α) ≥ 0.

(ii) The image of α in Fp := OK /p belongs to the prime subfield Fp. In particular, there is a unique
u ∈ {0, . . . , p − 1} such that u ≡ −α (mod p).

(iii) With u as in (ii), U = pU ′
+ u where U ′

∈ Z(p).

Proof. Since U ∈ Z(p), we have ordp(U ) ≥ 0. If ordp(α) < 0, it follows that ordp(U + α) = ordp(α),
contradicting (9). Thus ordp(α) ≥ 0, proving (i).

Write α for the image of α in Fp, and suppose this does not belong to the prime subfield Fp. In
particular ordp(α) = 0. However, the image U of U in Fp does belong to Fp. Thus U ̸≡ −α (mod p), or
equivalently ordp(U + α) = 0, contradicting (9). We deduce that α ∈ Fp, and thus (ii) holds.

Now, let u be as in (ii). By (9), we have ordp(U + α) > 0, and thus U = −α = ū. But U , ū ∈ Fp.
Therefore, ordp(U − u) > 0, and so U = pU ′

+ u for some U ′
∈ Z(p). □

Algorithm 2.6. Given p a rational prime, α ∈ K satisfying K = Q(α), and β ∈ K ×, to compute L , M
adequate for (α, β):

Step (a) Let

B = {p | p : ordp(α) ≥ 0 and the image of α in Fp belongs to Fp},

and

b =

∏
p | p

pordp(β)+min{0,ordp(α)}.

Step (b) If B = ∅ then return L = {b}, M = ∅ and terminate the algorithm.

Step (c) If B consists of a single prime ideal p′ satisfying e(p′
| p) = f (p′

| p) = 1 then return L = ∅,
M = {(b, p′)} and terminate the algorithm.

Step (d) Let

U = {0 ≤ u ≤ p − 1 : there is some p ∈ B such that α ≡ −u (mod p)}.

Loop through the elements u ∈ U . For each u, use Algorithm 2.6 to compute adequate Lu , Mu

for the pair ((u + α)/p, pβ).

Step (d1) If U = {0, 1, 2, . . . , p − 1} then return

L =

⋃
u∈U

Lu, M =

⋃
u∈U

Mu, (10)

and terminate the algorithm.
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Step (d2) Else, return

L = {b} ∪

⋃
u∈U

Lu, M =

⋃
u∈U

Mu, (11)

and terminate the algorithm.

Remarks. • Algorithm 2.6 is recursive. If the hypotheses of (b) and (c) fail then the algorithm replaces
the linear form β · (U + α) with a number of linear forms

pβ · (U ′
+ (u + α)/p) = β · (pU ′

+ u + α).

In essence we are replacing Z(p) with a number of the cosets of pZ(p). The algorithm is then applied
to each of these linear forms individually.

• Note that the number of prime ideals p above p is bounded by the degree [K : Q]. In particular,
#U ≤ [K : Q]. Therefore the number of branches at each iteration of the algorithm is bounded
independently of p.

Proposition 2.7. Suppose β ∈ K ×, α ∈ K and moreover, K = Q(α). Then Algorithm 2.6 terminates in
finite time and produces adequate L , M for (α, β).

Proof. Let B and b be as in Step (a). Observe that, for any p above p,

ordp(β · (U + α)) ≥ ordp(β) + min{0, ordp(α)} = ordp(b).

It follows that b divides the p-part of β · (U + α). Lemma 2.5 tells us that

ordp(β · (U + α)) = ordp(β) + min{0, ordp(α)} = ordp(b) (12)

for all prime ideals p lying above p, except possibly for p ∈ B. If B = ∅ (i.e., the hypothesis of (b) is
satisfied), then the p-part of β · (U + α) is b, and hence the pair L = {b}, M = ∅ is adequate for (α, β).
If B = {p′

} where e(p′
| p) = f (p′

| p) = 1 (i.e., the hypothesis of step (c) is satisfied) then the p-part of
β · (U + α) has the form b · p′l for some l ≥ 0. Hence L = ∅, M = {(b, p′)} are adequate for (α, β).

Suppose the hypotheses of steps (b) and (c) fail. Let U be as in step (d). If U ≡ u (mod p) for some
u ∈ U , then U = pU ′

+u for some U ′
∈ Z(p). Thus β · (U +α) = pβ · (U ′

+ (u +α)/p), and so naturally
the p-parts of β · (U +α) and pβ · (U ′

+ (u + α)/p) agree. In (d1), U represents all of the congruence
classes modulo p, and this justifies (10). In (d2), U represents some of the congruence classes. If u /∈ U ,
then by Lemma 2.5, the equality (12) holds for all prime ideals p above p, and hence b is the p-part of
β · (U + α). This justifies (11).

Next we show that the algorithm terminates in finitely many steps. Suppose otherwise. Then there will
be an infinite sequence of ui ∈ {0, 1, . . . , p − 1} and pairs (αi , βi ) with

α0 = α, β0 = β, αi+1 =
ui + αi

p
, βi+1 = pβi .
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Let us denote by Bi the set B for the pair (αi , βi ). It is easy to see from the definition that Bi+1 ⊆ Bi .
Suppose p belongs to infinitely many of the Bi . Then, infinitely often, ordp(αi ) ≥ 0. However,

α = α0 = −u0 − u1 p − u2 p2
− · · · − ui−1 pi−1

+ piαi .

Let µ = −u0 −u1 p −· · · ∈ Zp. Let φp : K ↪→ Cp be the embedding corresponding to p. Then φp(α) = µ.
Since K = Q(α), the embedding φp is determined by the image of α. Since φp ̸= φp′ whenever p ̸= p′,
we see that Bi consists of at most one prime for i sufficiently large. For such a prime, we must have
φp(K ) = Qp so that e(p | p) = f (p | p) = 1. Thus for sufficiently large i the algorithm must terminate at
Step (b) or Step (c), giving a contradiction. □

Following Lemma 2.3, we thus let L p = L ∪{1 ·OK } and Mp = M , where we compute L and M using
Algorithm 2.6 with α = −θ/a0 and β = a0.

Refinements. Let L p, Mp be a satisfactory pair (for example, produced by Algorithm 2.6). We explain
here some obvious refinements that will reduce or simplify these sets, whilst maintaining the satisfactory
property:

• If some pair (b, p) is in Mp then we may replace this with the pair (b′, p) where

b′
=

b

pordp(b)
.

• If some b is contained in L p, and some (b′, p) is contained in Mp with b′
| b and b/b′

= pw for some
w ≥ 0, then we may delete b from L p.

• Suppose p | a0. Observe that if b ∈ L p is the p-part of (a0 X − θY )OK then ordp(Norm(a0 X − θY )) =

ordp(Norm(b)). However, it is clear that ordp(Norm(a0 X − θY )) ≥ (d − 1) ordp(a0). Thus, we may
delete b from L p if ordp(Norm(b)) < (d − 1) ordp(a0).

3. An equation in ideals

Let (X, Y ) be a solution of (3). For every p ∈ P := {p1, . . . , pv} we let L p, Mp be a corresponding
satisfactory pair. From Definition 2.1, we see that there is some partition P = P1 ∪ P2 such that for every
p ∈ P1, the p-part of (a0 X − θY )OK equals bpl for some (b, p) ∈ Mp and l ≥ 0, and for every p ∈ P2, it
equals some b ∈ L p. Let P = P1 ∪ P2 be a partition of P and write

P1 = {q1, . . . , qs}, P2 = {qs+1, . . . , qv}.

Let ZP1,P2 be the set of all pairs (a, S) such that there are (bi , pi ) ∈ Mqi for 1 ≤ i ≤ s, and b j ∈ Lq j for
s + 1 ≤ j ≤ v satisfying

a = b0 · b1b2 · · · bs · bs+1 · · · bv, S = {p1, . . . , ps},
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where b0 denotes an ideal of OK of norm

R =

∣∣∣∣ a · ad−1
0

gcd(Norm(b1 · · · bv), a · ad−1
0 )

∣∣∣∣.
Let

Z :=

⋃
P1⊆P

ZP1,P−P1 .

Proposition 3.1. Let (X, Y ) be a solution to (3). Then there is some (a, S) ∈ Z such that

(a0 X − θY )OK = a · pn1
1 · · · pns

s , (13)

where S = {p1, . . . , ps}, and n1, . . . , ns are nonnegative integers. Moreover, the set S has the following
properties:

(i) e(pi | qi ) = f (pi | qi ) = 1 for 1 ≤ i ≤ s.

(ii) Let 1 ≤ i ≤ s. Let p be the unique rational prime below pi . Then p j ∤ p for all 1 ≤ j ≤ s with j ̸= i .

Proof. The claims follow from the definitions of Z and Mp. □

To solve (3), we will solve (13) for every possible choice of (a, S) ∈ Z .

Remark. Observe that for any (a, S) ∈ Z , there may be several possibilities for b0. Let R denote the set
of all ideals b0 having norm R for some (a, S) ∈ Z. Here, we provide a simple refinement to cut down
the number of ideals in R. In particular, we apply Algorithm 2.6 and Lemma 2.3 to each rational prime p
dividing R, generating the corresponding sets Mp and L p. For each b0 ∈ R, if the p-part of b0 cannot
be made up of any of the elements of Mp or L p, we may remove b0 from R. Moreover, if this process
yields R = ∅, we may remove (a, S) from Z .

4. Making the ideals principal

From now on we fix (a, S) ∈Z and we focus on a solution of (13). The method of Tzanakis and de Weger
[1989] reduces (13) to at most (m/2) · hs S-unit equations, where m is the number of roots of unity and h
is the class number of K . Our method, explained below, gives at most only m/2 S-unit equations.

Given an ideal b of OK , we denote its class in the class group Cl(K ) by [b].

Lemma 4.1. Let

φ : Zs
→ Cl(K ), (m1, . . . , ms) 7→ [p1]

m1 · · · [ps]
ms :

(a) If [a]−1 is not in the image of φ then (13) has no solutions.

(b) Suppose [a]−1
= φ(r), where r = (r1, . . . , rs). Let ζ be a generator of the roots of unity in K , and

suppose it has order m. Let δ1, . . . , δr be a basis for the group of S-units O×

S modulo the torsion
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subgroup ⟨ζ ⟩. Let α be a generator of the principal ideal a · pr1
1 · · · prs

s . Let (X, Y ) satisfy (13). Then,
after possibly replacing (X, Y ) by (−X, −Y ), we have

a0 X − θY = τ · δ
b1
1 · · · δbr

r , (14)

where τ = ζ a
· α with 0 ≤ a ≤

m
2 − 1, and b1, . . . , br ∈ Z.

Proof. Note that if (13) has a solution n = (n1, . . . , ns) then

φ(n) = [a]−1.

This proves (a). For (b), suppose [a]−1
= φ(r1, . . . , rs). Thus a · pr1

1 · · · prs
s is principal and we let α

be a generator. Then the fractional ideal ((a0 X − θY )/α)OK is supported on S = {p1, . . . , ps}. Hence
(a0 X − θY )/α ∈ O×

S . Now ζ, δ1, . . . , δr is a set of generators for the S-unit group, where δ1, . . . , δr

is in fact a basis for O×

S /⟨ζ ⟩. Thus (14) holds for some 0 ≤ a ≤ m − 1, and b1, . . . , br ∈ Z. However
ζ m/2

= −1. Thus we can suppose 0 ≤ a ≤ m/2 − 1 by replacing (X, Y ) by (−X, −Y ) if necessary. □

Lemma 4.2. The denominator of the fractional ideal τOK is supported on the set of prime ideals
S = {p1, . . . , ps}.

Proof. This follows immediately from (14) since δ1, . . . , δr are S-units. □

We have reduced the task of solving our original Thue–Mahler equation (3) to solving equations of the
form

a0 X − θY = τ · δ
b1
1 · · · δbr

r , (15)

subject to the conditions

X, Y ∈ Z, gcd(X, Y ) = 1, gcd(a0, Y ) = 1, bi ∈ Z. (16)

For technical reasons we would like to exclude the case b1 = b2 = · · · = br = 0; of course we can trivially
test if this case leads to a solution. Hence we shall henceforth suppose in addition to (16) that

max{|b1|, . . . , |br |} ≥ 1. (17)

We will tackle each of these equations (15) separately. In [Tzanakis and de Weger 1989], the authors
work in the field generated by three conjugates of θ and its completions. This is fine theoretically but
difficult computationally. We will work with that extension theoretically simply to obtain a bound for

B := max{|b1|, . . . , |br |}. (18)

(The reason for restriction (17) is that in Section 6 we work with log B). To reduce the bound, we will
need to carry out certain computations; these will take place only in K , R, C, but not in extensions of K ,
and certainly not in extensions of Qp.

To obtain our initial bound for B we shall mostly follow ideas found in [Bugeaud and Győry 1996b;
Bugeaud et al. 2008; Gallegos-Ruiz 2011]. However, we have a key advantage that will allow us to obtain
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#Z number of (τ, δ1, . . . , δr ) rank frequencies

Example 1.1 16 16 (1, 2), (2, 6), (3, 6), (4, 2)

Example 1.2 32 30 (2, 8), (3, 12), (4, 8), (5, 2)

Example 1.3 4096 4096 (10, 4096)

Example 1.4 2 2 (9, 1), (10, 1)

Table 1. This table gives the sizes of the set Z and the number of resulting (τ, δ1, . . . , δr ) for
Examples 1.1–1.4. The last column is a list of pairs (r, t) meaning there are t cases where the
S-unit rank is r .

sharper bounds: namely we assume knowledge of the S-unit basis δ1, . . . , δr rather than working with
estimates for the size of a basis.

4.1. Convention on the choice of S-unit basis. As before let ζ be a generator for the roots of unity in
O×

K . We note that the unit group O×

K is a subgroup of the S-unit group O×

S . Moreover, it is saturated in
the sense that the quotient O×

S /O×

K is torsion-free. Hence there is a basis δ1, . . . , δr for O×

S /⟨ζ ⟩ such that
δ1, . . . , δu+v−1 is a basis for O×

K /⟨ζ ⟩, where (u, v) is the signature of K . We shall in fact work with such
a basis.

4.2. Examples continued. Table 1 gives some data for Examples 1.1–1.4. At this stage of the algorithm,
we would like to stress the main difference between our approach and that of Tzanakis and de Weger
[1989]. When dealing with

(a0 X − θY )OK = a · pn1
1 · · · pns

s ,

they write each exponent ni as ni = ki hi + mi , where hi is the order of pi in the class group of OK

and 0 ≤ mi ≤ hi − 1. Now phi
i is principal and we may write it as (βi )OK . It follows from (13) that

a · pm1
1 · · · pms

s is principal. Clearly hi | h and there are at most hs possibilities for this ideal. In the worst
case, we expect around hs−1 ideals to be principal, and so of the form (τ )OK . This results in a huge
explosion of cases when h is nontrivial, as it is often the case that hi = h. For instance, in our Example 1.2,
the class number is 33. There are 32 possibilities for (a, S) in Z . The 32 possible values for s = #S are

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4,

where all possible ideals in S have order 33 in OK . Following the method of Tzanakis and de Weger,
we would need to check 2672672 ideals if they are principal, and this approach leads to approximately
80990 equations of the form (15). With our approach, as we need only to deal with 32 ideal equations,
we expect to deal with at most 32 equations of the form (15). Indeed, in doing so, we obtain merely 30
equations of the form (15).

5. Lower bounds for linear forms in logarithms

In this section, we state theorems of Matveev [2000] and of Yu [2007] for lower bounds for linear forms
in complex and p-adic logarithms. In the next section, we will use these results to obtain bounds for
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b1, . . . , br . We begin by establishing some notation, as well as some key results which we will need for
the lower bound:

L a number field.

D the degree [L : Q].

ML the set of all places of L .

M∞

L the subset of infinite places.

M0
L the subset of finite places.

ν a place of L .

Dν the local degree [Lν : Qν].

| · |ν the usual normalized absolute value associated to ν:
– If ν is infinite and associated to a real or complex embedding σ of L , then |α|ν = |σ(α)|.
– If ν is finite and above the rational prime p, then |p|ν = p−1.

∥ · ∥ν = | · |
Dν
ν .

h( · ) the absolute logarithmic height, defined in (22).

In the above notation, the product formula may be stated as∏
ν∈ML

∥α∥ν = 1 (19)

for all α ∈ L×. In particular, if ν is infinite, corresponding to a real or complex embedding σ of L , then

∥α∥ν =

{
|σ(α)| if σ is real,
|σ(α)|2 if σ is complex.

(20)

If ν is finite, and P is the prime ideal corresponding to ν, then for α ∈ L× we have

∥α∥ν = Norm(P)− ordP(α)
; (21)

this easily follows from Dν = e(P | p) f (P | p), where e(P | p) and f (P | p) are respectively the ramifi-
cation index and the inertial degree of P.

For α ∈ L , we define the absolute logarithmic height h(α) by

h(α) =
1

[L : Q]

∑
ν∈ML

Dν log max{1, |α|ν} =
1

[L : Q]

∑
ν∈ML

log max{1, ∥α∥ν}. (22)

Lemma 5.1. The absolute logarithmic height of an algebraic number α is independent of the number
field L containing α. Moreover, if α and β are Galois conjugates, then h(α) = h(β).

For proofs of the following two lemmata, see [Bugeaud et al. 2008, Lemma 4.1] and [Gallegos-Ruiz
2011, Lemma 3.2].
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Lemma 5.2. For α1, . . . , αn ∈ L we have

h(α1 · · · αn) ≤ h(α1) + · · · + h(αn), h(α1 + · · · +αn) ≤ log n + h(α1) + · · · + h(αn).

For any α ∈ L×, we have h(α) = h(α−1). Moreover, for any place ν ∈ ML ,

log ∥α∥ν ≤ [L : Q] · h(α). (23)

Lemma 5.3. Let L be a number field of degree D. Let S be a finite set of finite places of L. Let ε ∈ O×

S.
Let η ∈ ML be a place of L chosen so that ∥ε∥η is minimal. Then ∥ε∥η ≤ 1 and

h(ε) ≤
(#M∞

L + #S)

D
· log(∥ε−1

∥η).

5.1. Lower bounds for linear forms in P-adic logarithms. Let L be a number field of degree D. Let
P be a prime ideal of OL and let p be the rational prime below P. Let ν ∈ M0

L correspond to P. Let
α1, . . . , αn ∈ L×. Write e = exp(1).

Let

h j := max
{

h(α j ),
1

16e2 D2

}
, j = 1, . . . , n;

c1(n, D) := (16eD)2n+2
· n5/2

· log(2nD) · log(2D),

c2(n,P) := e(P | p)n
·

p f (P | p)

f (P | p) · log p
,

c3(n, D,P, α1, . . . , αn) := c1(n, D) · c2(n,P) · h1 · · · hn.

(24)

We shall make use of the following theorem of Yu [2007].

Theorem 5.4 (K. Yu). Let b1, . . . , bn be rational integers and let

B = max{|b1|, . . . , |bn|},

and suppose B ≥ 3. Let
3 = α

b1
1 · · · αbn

n − 1,

and suppose 3 ̸= 0. Then

log ∥3−1
∥ν < c3(n, D,P, α1, . . . , αn) · log B.

Proof. Let

c4(n, D,P) :=
c1(n, D) · c2(n,P)

n · f (P | p) · log p
.

As stated in [Yu 2007, page 190], a consequence of Yu’s Main Theorem is

ordP(3) < n · c4(n, D,P) · h1 · · · hn · log B.

By (21) we have

log ∥3−1
∥ν = log (Norm(P)) · ordP(3) = f (P | p) · log p · ordP(3).

The theorem follows. □
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5.2. Lower bounds for linear forms in real or complex logarithms. We continue with the above notation.
Let

h′

j =

√
h(α j )

2
+

π2

D2 , j = 1, . . . , n. (25)

The following theorem is a version of Matveev’s bound [2000] for linear forms in logarithms.

Theorem 5.5 (Matveev). Let ν be an infinite place of L. Suppose 3 ̸= 0. Let

c5(n, D, α1, . . . , αn) = 6 · 30n+4
· (n + 1)5.5

· Dn+2
· log(eD) · h′

1 · · · h′

n.

Then

log ∥3−1
∥ν ≤ c5(n, D, α1, . . . , αn) · (log(en) + log B).

Proof. This in fact follows from a version of Matveev’s theorem derived in [Bugeaud et al. 2006]. Let σ

be a real or complex embedding of L corresponding to ν. Let

h′′

j = max{Dh(α j ), |log(σ (α j ))|, 0.16},

where log(σ (α j )) is the principal determination of the logarithm (i.e., the imaginary part of log lies
in (−π, π]). Let

c6(n, D) = 3 · 30n+4
· (n + 1)5.5

· D2
· log(eD).

Then Theorem 9.4 of [Bugeaud et al. 2006] asserts that

log |3|ν ≥ −c6(n, D) · h′′

1 · · · h′′

n · (log(en) + log B).

Since ∥3∥ = |3|
Dν , where Dν is either 1 or 2, we have

log ∥3−1
∥ ≤ 2 · c6(n, D) · h′′

1 · · · h′′

n · (log(en) + log B).

Thus it is sufficient to show that h′′

j ≤ Dh′

j . However,

log(σ (α j )) = log|σ(α j )| + iθ

where −π < θ ≤ π . But by (23) and ∥·∥ν = |·|
Dν
ν , we have

log|σ(α j )| =
1

Dν

log∥α j∥ν ≤ log∥α j∥ν ≤ D · h(α j ).

Thus

|log(σ (α j ))| ≤

√
D2

· h(α j )
2
+ π2

= D · h′

j .

It is now clear that h′′

j ≤ D · h′

j . □

6. The S-unit equation

We now return to the task of studying the solutions of (15) satisfying (16), (17). Here, we use the theorems
of Matveev and Yu (recalled in the previous section) to establish bounds for b1, . . . , br , following the
ideas of [Bugeaud and Győry 1996b; Bugeaud et al. 2008; Gallegos-Ruiz 2011], and taking care to keep
our constants completely explicit and as small as possible.
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We begin by establishing the following notation:

θ , K as defined in Section 1.

d the degree [K : Q] ≥ 3.

S a set {p1, . . . , ps} of prime ideals of K satisfying conditions (a), (b) of Proposition 3.1.

s the cardinality #S of the set S.

δ1, . . . , δr a basis for the S-unit group O×

S modulo torsion, also appearing in (15).

τ a nonzero element of K , appearing in (15).

X , Y , b1, . . . , br a solution to (15) satisfying (16), (17).

ε = δ
b1
1 · · · δbr

r . Thus (15) can be rewritten as a0 X − θY = τ · ε.

µ = τ · ε = a0 X − θY .

B = max{|b1|, . . . , |br |}.

θ1, θ2, θ3 three conjugates of θ chosen below, with θ = θ1.

L the extension Q(θ1, θ2, θ3) ⊇ K .

D the degree [L : Q].

σi the embedding K ↪→ L , θ 7→ θi .

µi , εi , τi , δ j,i the images of µ, ε, τ , δ j under the embedding σi .

ξ1, ξ2, ξ3 defined in (26).

We want to write down an S-unit equation starting with (15). For this we will need to work with three
conjugates of θ . Let d = [K : Q], and let θ1, . . . , θd be the conjugates of θ in some splitting field M ⊇ K .
We shall not need M explicitly, but we assume that we are able to compute the Galois group G of M/Q

as a transitive permutation group on the conjugates θi . From this we are able to list all subgroups (up to
conjugacy), and for each subgroup determine if it fixes at least three conjugates of θ . Let H be a subgroup
of G fixing at least three conjugates of θ with index [G : H ] as small as possible. Let L = M H be the
fixed field of H . Then L = Q(θ1, θ2, θ3) for some three conjugates of θ (after a possible reordering of
conjugates) and it has the property that its degree is minimal amongst all extensions generated by three
conjugates. Write

D := [G : H ] = [L : Q].

Again we shall not need the field L explicitly, but only its degree D, which we can deduce from the
Galois group. We identify θ = θ1, and so can think of K ⊆ L .

Write µ = a0 X − θY . Let ε = δ
b1
1 · · · δbr

r . Then µ = τ · ε. Let µi , εi , τi , δ j,i be the images of µ, ε, τ ,
δ j under the embeddings σi : K ↪→ L , θ 7→ θi . We observe the following Siegel identity:

(θ3 − θ2)µ1 + (θ1 − θ3)µ2 + (θ2 − θ1)µ3 = 0.
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Let
ξ1 = (θ3 − θ2) · τ1, ξ2 = (θ1 − θ3) · τ2, ξ3 = (θ2 − θ1) · τ3. (26)

Then
ξ1ε1 + ξ2ε2 + ξ3ε3 = 0. (27)

Note that ε1 is an S-unit in K and ε2, ε3 are Galois conjugates of ε. This equation will serve as our S-unit
equation. We would like to rewrite (27) in a manner that makes it convenient to apply Theorems 5.4
and 5.5. Observe that (27) can be rewritten as

ξ3ε3

ξ1ε1
=

(
−ξ2

ξ1

)(
ε2

ε1

)
− 1. (28)

Let
α j :=

δ j,2

δ j,1
( j = 1, . . . , r), αr+1 :=

−ξ2
ξ1

, br+1 = 1.

Then
ξ3ε3

ξ1ε1
= 3 (29)

where 3 is the “linear form”
3 := α

b1
1 · · · α

br+1
r+1 − 1.

We assume that we know θ , τ and δ1, . . . , δr explicitly and can therefore compute their absolute logarithmic
heights. We will use this to estimate the heights of other algebraic numbers, such as ξi , α j , without
computing their minimal polynomials. By Lemmas 5.1 and 5.2,

h(ξi ) ≤ c7, c7 := log 2 + 2h(θ) + h(τ ).

Lemma 6.1. Let
c8 := 2Dc7.

Let ν be any place of L. Then

log ∥(ε3/ε1)
−1

∥ν ≤ log ∥3−1
∥ν + c8.

Proof. Note that
log ∥(ε3/ε1)

−1
∥ν = log ∥3−1

∥ν + log ∥ξ3/ξ1∥ν .

By Lemma 5.2
log ∥ξ3/ξ1∥ν ≤ D · h(ξ3/ξ1) ≤ D · (h(ξ3) + h(ξ1)). □

By definition B = max{|b1|, . . . , |br |}. However, by (17), and since br+1 = 1, we have

B = max{|b1|, . . . , |br |, |br+1|}.

We now apply Matveev’s theorem in order to obtain a bound for B.

Lemma 6.2. Let

h∗

j :=

√
4h(δ j )

2
+

π2

D2 for j = 1, . . . , r and h∗

r+1 :=

√
4c2

7 +
π2

D2 .
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Let

c9 = 6 · 30r+5
· (r + 2)5.5

· Dr+3
· log(eD) · h∗

1 · · · h∗

r+1 and c10 = c8 + c9 · log(e(r + 1)).

Let ν be an infinite place of L. Then

log ∥(ε3/ε1)
−1

∥ν ≤ c10 + c9 · log B.

Proof. We will apply Theorem 5.5 with n = r + 1. Observe that

h(α j ) ≤ 2h(δ j ) for j = 1, . . . , r and h(αr+1) ≤ 2c7.

Thus h′

j ≤ h∗

j , where h′

j is defined in (25). By Theorem 5.5,

log ∥3−1
∥ν ≤ c9 · (log(e(r + 1)) + log B).

Lemma 6.1 completes the proof. □

We also apply Yu’s theorem.

Lemma 6.3. Let

h†
j := max

{
2h(δ j ),

1
16e2 D2

}
for j = 1, . . . , r ,

and

h†
r+1 := max

{
2c7,

1
16e2 D2

}
.

Let T be the set of rational primes p below the primes p ∈ S. Let

c11 := max
p∈T

max
{

ur+1
· pv

v · log p
: u, v are positive integers and uv ≤ D/d

}
and

c12 := c1(r + 1, D) · c11 · h†
1 · · · h†

r+1.

Let ν be a finite place of L. Then

log ∥(ε3/ε1)
−1

∥ν ≤ c8 + c12 log B.

Proof. Of course we may suppose that ∥(ε3/ε1)
−1

∥ν ̸= 1. Let P be the prime ideal of OL corresponding
to ν. We will deduce the lemma from Theorem 5.4 combined with Lemma 6.1. For this, it suffices to
show that c3(r + 1, D,P, α1, . . . , αr+1) ≤ c12. Observe that h j ≤ h†

j for j = 1, . . . , r + 1. Thus it is
enough to show that c2(r + 1,P) ≤ c11.

Let Ki = Q(θi ) ⊆ L . Recall that ε is an S-unit and that εi is the image of ε under the map σi : K → Ki ,
θ 7→ θi . As ∥(ε3/ε1)

−1
∥ν ̸= 1, we see that ordP(εi ) ̸= 0 for i = 1 or 3. Thus P must be a prime above

pi := σi (p) of OKi for some p ∈ S, where i = 1 or 3. In particular P is above some rational prime p ∈ T .
However, e(p | p) = f (p | p) = 1 for all p ∈ S. Thus e(P | p) = e(P | pi ) and f (P | p) = f (P | pi ) for
i = 1 or 3. Let u = e(P | p) and v = f (P | p). We see that uv = e(P | pi ) f (P | pi ) ≤ [L : Ki ] = D/d.
Now c2(r + 1,P) ≤ c11 follows from the definitions of c2 and c11. □
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Lemma 6.4. Let

c13 :=
#M∞

K + 2 · #S
d

,

and
c14 := 2h(τ ) + c13 · max(c8, c10), c15 := c13 · max(c9, c12).

Then
h(µ3/µ1) ≤ c14 + c15 · log B.

Proof. Let S be the prime ideals appearing in the support of ε3/ε1. We will show that #S ≤ (2D/d) · #S.
Indeed, εi belongs to Ki = Q(θi ) and its support in Ki is contained in σi (S). Now a prime belonging to
σi (S) has at most [L : Ki ] = D/d primes above it in L . Thus

#S ≤ (D/d) · #σ1(S) + (D/d) · #σ3(S) ≤ (2D/d) · #S

as required. Moreover, since [L : K ] = D/d , we have #M∞

L ≤ (D/d) · #M∞

K .
Let η ∈ ML be the place of L such that ∥ε3/ε1∥η is minimal. By Lemma 5.3

h(ε3/ε1) ≤
#M∞

L + #S
D

· ∥(ε3/ε1)
−1

∥η.

From the above inequalities for #M∞

L and #S, we deduce that

h(ε3/ε1) ≤ c13 · ∥(ε3/ε1)
−1

∥η.

We now apply Lemmas 6.2 and 6.3 to obtain

h(ε3/ε1) ≤ c13 · (max(c8, c10) + max(c9, c12) · log B).

Finally, observe that µ3/µ1 = (τ3/τ1) · (ε3/ε1) and thus

h(µ3/µ1) ≤ 2h(τ ) + h(ε3/ε1). □

We shall henceforth suppose (X, Y ) ̸= (±1, 0). As gcd(X, Y ) = 1, this is equivalent to Y ̸= 0.

Lemma 6.5. Let ν be a place of L. Let

κν =

{
1 if ν ∈ M0

L ,( 1
2

)Dν if ν ∈ M∞

L .

Then
max{∥µ1∥ν, ∥µ3∥ν}

2
≥ κ2

ν · min{1, ∥θ1 − θ3∥ν}
2
· max{1, ∥µ1∥ν} · max{1, ∥µ3∥ν}.

Proof. There is nothing to prove unless, ∥µi∥ν ≤ 1 for both i = 1, 3. In this case, it is enough to show
that

max{∥µ1∥ν, ∥µ3∥ν} ≥ κν · ∥θ1 − θ3∥ν . (30)

Suppose first that ν is finite and let P be the prime ideal of OL corresponding to ν. Then (30) is equivalent
to

min{ordP(µ1), ordP(µ3)} ≤ ordP(θ1 − θ3).
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Let k = min{ordP(µ1), ordP(µ3)}. Then Pk
| µi for i = 1, 3. Recall that µi = a0 X − θi Y . Thus Pk

divides both
(θ1 − θ3)a0 X = θ1µ3 − θ3µ1 and (θ1 − θ3)Y = µ3 − µ1.

However gcd(X, Y ) = gcd(a0, Y ) = 1, thus Pk
| (θ1 − θ3) as desired.

Next suppose ν is infinite. As (θ1 − θ3)Y = µ3 − µ1, and Y ̸= 0 is a rational integer, we have

∥θ1 − θ3∥ν ≤ ∥µ1 − µ3∥ν = |µ1 − µ3|
Dν
ν ≤ 2Dν · max{|µ1|ν, |µ3|ν}

Dν ≤ 2Dν · max{∥µ1∥ν, ∥µ3∥ν}.

This completes the proof. □

Lemma 6.6. Let
c16 := c14 + 2 log 2 + 2h(θ) + h(τ ).

Then
h(ε) ≤ c16 + c15 · log B. (31)

Proof. First note that

h(µ3/µ1) =
1
D

∑
ν∈ML

log max{1, ∥µ3/µ1∥ν}

=
1
D

∑
ν∈ML

log max{1, ∥µ3/µ1∥ν} +
1
D

∑
ν∈ML

log ∥µ1∥ν (from (19))

=
1
D

∑
ν∈ML

log max{∥µ1∥, ∥µ3∥ν}

≥
1
2(h(µ1) + h(µ3)) +

1
D

∑
ν∈ML

(log κν + log min{1, ∥(θ1 − θ3)∥ν})

by Lemma 6.5. However µ1, µ3 are conjugates of µ, thus h(µ1) = h(µ3) = h(µ). Moreover,

1
D

∑
ν∈ML

log κν = −
log 2

D

∑
ν∈M∞

L

Dν = − log 2.

Thus
h(µ) ≤ h(µ3/µ1) + log 2 −

1
D

∑
ν∈ML

log min{1, ∥(θ1 − θ3)∥ν}

= h(µ3/µ1) + log 2 +
1
D

∑
ν∈ML

log max{1, ∥(θ1 − θ3)
−1

∥ν}

= h(µ3/µ1) + log 2 + h((θ1 − θ3)
−1)

≤ h(µ3/µ1) + 2 log 2 + 2h(θ),

by Lemmas 5.1 and 5.2. But ε = τ−1µ, thus

h(ε) ≤ h(µ3/µ1) + 2 log 2 + 2h(θ) + h(τ ).

Applying Lemma 6.4 completes the proof. □
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It is worthwhile to take stock for a moment. The inequality (31) relates the height of ε = δ
b1
1 · · · δbr

r to
B = max{|b1|, . . . , |br |}. The constants c7, . . . , c16 are given explicitly in terms of θ , τ , δ1, . . . , δr (all
belonging to K ), the prime ideals of K belonging to S, the signature of K , and the degree D, which can
be deduced from the Galois group of the minimal polynomial of θ . We do not need the field L explicitly.

Lemma 6.7. Let U be any subset of S ∪ M∞

K of size r . Let M be the r × r-matrix

M = (log ∥δ j∥ν)ν∈U,1≤ j≤r .

The matrix M is invertible. Let c17 be the largest of the absolute values of the entries of M−1. Then

B ≤ 2d · c17 · h(ε).

Proof. The determinant of M is in fact

±

( ∏
ν∈U

Dν

)
· R(δ1, . . . , δr )

where R(δ1, . . . , δr ) is the regulator of system of S-units δ1, . . . , δr , and therefore does not vanish; see
[Bugeaud and Győry 1996b, Section 3]. Consider the vectors b := [b j ] j=1,...,r and u := [log ∥ε∥ν]ν∈U

in Rr . As ε = δ
b1
1 · · · δbr

r we see that u = Mb and so b = M−1u. It follows, for j = 1, . . . , r that

|b j | ≤ c17 ·

∑
ν∈U

|log ∥ε∥ν | ≤ c17 ·

∑
ν∈MK

log max{1, ∥ε∥ν} + log max{1, ∥ε−1
∥ν} = 2d · c17 · h(ε)

as required. □

Remark. Observe that there are r + 1 possibilities for the set U . To compute c17 in practice, we iterate
across all such sets and select c17 as the smallest possible value across each of the associated r + 1
matrices M.

Proposition 6.8. Let

c18 := 2d · c17 · c16, c19 := 2d · c17 · c15, c20 := 2c18 + max{2c19 log c19, 4e2
}.

Then
B ≤ c20. (32)

Proof. Combining Lemma 6.7 with (31) we have

B ≤ 2d · c17 · (c16 + c15 · log B) ≤ c18 + c19 log B.

The proposition follows from a result of Pethő and de Weger [1998, Lemma B.1 in Appendix B]. □

6.1. Example 1.4 continued. We give some further details for Example 1.4. Here a0 = 5 and the minimal
polynomial for θ is

x11
+ x10

+ 20x9
+ 25x8

+ 750x7
+ 625x6

+ 18750x5
+ 468750x3

+ 7812500x − 19531250.

The field K = Q(θ) has degree 11, and signature (1, 5). In this case we have two possibilities for
(τ, δ1, . . . , δr ); one has S-unit rank r = 9 and the other has S-unit rank r = 10. We take a closer look
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at one of these two possibilities, with r = 10. The set S is composed of the following five primes of
ramification degree 1 and inertial degree 1:

p1 = ⟨11, 3 + θ⟩, p2 = ⟨7, 1 + θ⟩, p3 = ⟨5, φ⟩, p4 = ⟨3, 5 + θ⟩, p5 = ⟨2, 1 + θ⟩, (33)

where

φ =
1
59 (4θ10

+ 9θ9
+ 185θ8

+ 425θ7
+ 4625θ6

+ 13750θ5
+ 131250θ4

+ 750000θ3
+ 3203125θ2

+ 26953125θ + 5859375).

The bound for B given by Proposition 6.8 is

B ≤ 1.57 × 10222.

7. Controlling the valuations of a0 X − θY

In this section and the next, we will suppose that we have a bound

B ≤ B∞ (34)

and we will explain a method for replacing this bound with what is hopefully a smaller bound. Our
subsequent constants will depend on B∞. Initially we may take B∞ = c20 by Proposition 6.8. However, if
we succeed in obtaining a smaller bound for B, we may replace B∞ by that bound and repeat the process.

We shall replace the reduction step using linear forms in p-adic logarithms as in the paper of Tzanakis
and de Weger [1989]. In particular we will eliminate all computations with completions of extensions
of K , as these are extremely tedious and error-prone.

7.1. The bounds B∞, B1 and B2. Henceforth B∞, B1 and B2 will denote the known bounds for the
∞-norm, 1-norm and 2-norm of our exponent vector b = [b j ] j=1,...,r :

B := ∥b∥∞ ≤ B∞, ∥b∥1 ≤ B1, ∥b∥2 ≤ B2. (35)

Initially, thanks to Proposition 6.8, we can make the assignments

B∞ = c20, B2 =
√

r ·B∞, B1 = r ·B∞ (initial values for B∞, B1, B2). (36)

However, as we progress in our algorithm, we will update the values of B∞, B1, B2 so that (35) is still
satisfied.

Given a lattice L ⊆ Zr and a vector w ∈ Zr , we denote by D(L , w) the shortest length of a vector
belonging to the coset w + L . This value can be computed using a closest vector algorithm. Indeed, for
v ∈ Zr , write c(L , v) for the closest vector in L to v (if there is more than one at the closest distance,
choose any of them).

Lemma 7.1. D(L , w) = ∥w + c(L , −w)∥2.

Proof. Let l ∈ L and suppose
∥w + l∥2 < ∥w + c(L , −w)∥2.



692 Adela Gherga and Samir Siksek

Then
∥l − (−w)∥2 < ∥c(L , −w) − (−w)∥2.

Thus l is a vector belonging to L that is strictly closer to −w than c(L , −w) giving a contradiction. □

Our first goal is to use the bounds (35) to deduce bounds on the valuations ordp(a0 X − θY ) for p ∈ S.

Proposition 7.2. Let p ∈ S and let p be the rational prime below p. Let k ≥ 1. Then there is some θ0 ∈ Z

such that
θ ≡ θ0 (mod pk).

Write
a := (pOK )/p, τOK = T1/T2, (37)

where T1 and T2 are coprime ideals. The following hold:

(i) If gcd(ak, θ − θ0) ̸= gcd(ak, T1) then

ordp(a0 X − θY ) ≤ k − 1. (38)

Suppose gcd(ak, θ − θ0) = gcd(ak, T1). Let

b := ak/ gcd(ak, T1).

Let

k ′
:= max

q | b

⌈
ordq(b)
e(q | p)

⌉
;

this satisfies b∩ Z = pk′

Z and therefore (Z/pk′

Z)× naturally injects into (OK /b)×. Given u ∈ K × whose
support is coprime with b, denote its image in (OK /b)×/(Z/pk′

Z)× by ū. Let

φ : Zr
→ (OK /b)×/(Z/pk′

Z)×, (n1, . . . , nr ) 7→ δ1
n1 · · · δr

nr .

Write

τ0 :=
(θ0 − θ)

τ
.

Then the support of τ0 is coprime with b:

(ii) If τ0 does not belong to Image(φ) then (38) holds.

(iii) Suppose τ0 = φ(w) for some w ∈ Zr . Let L = Ker(φ) and suppose D(L , w) > B2. Then (38) holds.

Proof. Let p, p, and k be as in the statement of the proposition. We suppose that

ordp(a0 X − θY ) ≥ k (39)

and show that this leads to a contradiction under the hypotheses of any of (i), (ii), (iii). Recall k ≥ 1.
From the proof of Lemma 2.3, we know p ∤ Y .

Since e(p | p) = f (p | p) = 1, we have OK /pk ∼= Z/pk . Thus there is some θ0 ∈ Z such that θ − θ0 ≡

0 (mod pk). However, a0 X − θY ≡ 0 (mod pk) and so therefore a0 X − θ0Y ≡ 0 (mod pk). However
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a0 X − θ0Y ∈ Z. Thus, recalling that e(p | p) = 1, we have a0 X − θ0Y ≡ 0 (mod pk). From (15)

Y (θ0 − θ) ≡ τ · δ
b1
1 · · · δbr

r (mod (pOK )k).

Note that the prime p belongs to the support of the δi . However the other primes p′
| p, p′

̸= p do not
belong to the support of the δi . We now eliminate p; as in the statement of the proposition we take
a := (pOK )/p. Then

Y (θ0 − θ) ≡ τ · δ
b1
1 · · · δbr

r (mod ak).

Observe that a is coprime to the support of the δi and Y . Recall τOK = T1/T2, where T1, T2 are coprime
integral ideals. By Lemma 4.2, the ideal T2 is supported on S and therefore coprime to a. We therefore have
a contradiction if gcd(θ0 − θ, ak) ̸= gcd(T1, a

k). This proves (i). Suppose gcd(θ0 − θ, ak) = gcd(T1, a
k).

Then

Y · τ0 ≡ δ
b1
1 · · · δbr

r (mod b),

where Y , τ0, and δi all have support disjoint from b. As in the proposition, k ′ is the smallest positive integer
such that b | pk′

, and thus (Z/pk′

Z)× is a subgroup of (OK /b)× containing the image of Y . Therefore
Y = 1 and φ(b) = τ0. If τ0 /∈ Image(φ), then we have a contradiction, and so our original assumption (39)
is false. This proves (ii).

Suppose now that τ0 ∈ Image(φ) and write τ0 = φ(w) with w ∈ Zr . Then b ∈ w + L . Thus
∥b∥2 ≥ D(L , w). If D(L , w) > B2 then ∥b∥2 > B2 and we contradict (35). This proves (iii). □

Remarks. • θ0 can be easily computed using Hensel’s lemma.

• To apply the proposition in practice, it is necessary to compute the abelian group structure of (OK /b)×

for ideals b of very large norm (but supported on the primes above p). For this we may apply the
algorithms in [Cohen 2000, Section 4.2].

• c(−w, L) (and therefore D(w, L)) can be computed using a closest vector algorithm such as Fincke
and Pohst [1985].

• To effectively apply Proposition 7.2 in practice, we need to guess a value of k such that D(L , w) > B2.
We expect D(L , w) to be around I 1/r , where I is the index [Zr

: L]. Let us make two simplifying
assumptions: the first is that φ is surjective, and the second is that gcd(ak, T1) = 1 so that b = ak and
k ′

= k. Then

I =
#(OK /ak)×

#(Z/pkZ)×
≈

Norm(a)k

pk = p(d−2)k,

where d is the degree of K . Thus we should expect a contradiction if p(d−2)k/r is much bigger than B2,
or equivalently

k ≫
r logB2

(d − 2) log p
.

This heuristic gives a good guide for which values of k to try.
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7.2. Example 1.4 continued. We continue giving details for Example 1.4, and in particular for the tuple
(τ, δ1, . . . , δ10) alluded to on page 690. In Section 6 we noted that B ≤ 1.57 × 10222. Thus we take

B∞ = 1.57 × 10222, B2 =
√

10 ·B∞ ≈ 4.96 × 10222. (40)

We let p = p1 = ⟨11, 3 + θ⟩ which is a prime above 11. The above heuristic suggests that we choose k to
be larger than

10 logB2

(11 − 2) · log 11
≈ 237.60.

Our program tries k = 238. It turns out (in the notation of Proposition 7.2) that gcd(ak, θ − θ0) =

gcd(ak, T1) = 1, thus b= ak , and moreover k ′
= k = 238. The map φ is surjective, and thus L does indeed

have index

I =
#(OK /ak)×

#(Z/pkZ)×
= 27

× 32
× 5 × 112133

× 61 × 7321 ≈ 5.02 × 102230.

We do not give L as its basis vectors are naturally huge. However, we find that

D(L , w) ≈ 1.14 × 10223.

This is much larger than B2 and we therefore know from Proposition 7.2 that ordp(a0 X −θY )≤ k−1=237.
It is interesting to note that I 1/10

≈ 1.18 × 10223 which is rather close to D(L , w). If instead we take
k = 237, we find that I 1/10

≈ 1.36 × 10222 and D(L , w) ≈ 9.55 × 10221 which is somewhat less than B2.
We have generally found the above heuristic to be remarkably accurate in predicting a good choice for k.

Now let p1, . . . , p5 be the primes of S as in (33), where p1 = p as above. Proposition 7.2 gives upper
bounds 237, 292, 354, 518, 821 for ordp j (a0 X − θY ) with j = 1, . . . , 5 respectively.

8. Linear forms in real logarithms

In this section, we determine bounds on linear forms in logarithms which we will subsequently use in
Section 9 to successively reduce the large upper bound B∞ established in Section 6.

We let s := #S and write
S = {p1, . . . , ps}.

Using Proposition 7.2, we suppose that we have obtained, for 1 ≤ j ≤ s, integers k j such that

ordp j (a0 X − θY ) ≤ k j − 1. (41)

Recall that
δ

b1
1 · · · δbr

r = ε = (a0 X − θY )/τ. (42)

We write k ′

j := ordp j (τ ), and k ′′

j := k j − 1 − k ′

j . We obtain

−k ′

j ≤ ordp j (ε) ≤ k ′′

j . (43)

8.1. Updating B1 and B2. Recall that B∞, B1, B2 are respectively the known bounds for ∥b∥∞, ∥b∥1,
∥b∥2 as in (35). Initially we take these as in (36). In practice, we are often able to update B1 and B2 with
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a smaller bound after each iteration of Proposition 7.2. Let (u, v) be the signature of K . Since r is the
rank of the S-unit group O×

S , we have

r = u + v − 1 + s.

Recall our convention (page 681) on the choice of S-unit basis δ1, . . . , δr : we suppose that the basis is
chosen so that δ1, . . . , δu+v−1 is in fact a basis for the unit group modulo torsion. Thus log∥δi∥ν = 0 for
all ν ∈ M0

K and 1 ≤ i ≤ u + v − 1. Let M0 denote the s × s matrix

M0 = (log ∥δ j∥ν)ν∈S,u+v≤ j≤r .

In Lemma 6.7 let U = {ν1, . . . , νr } where ν1, . . . , νu+v−1 are any u + v − 1 elements of M∞

K and the
remainder are the elements of S. Then, in the notation of Lemma 6.7,

M =

(
∗ ∗

0 M0

)
.

Since M is invertible by Lemma 6.7, it follows that M0 is invertible. We partition our exponent vector b
as

b = [b′
| b′′

], b′
= [bi ]i=1,...,u+v−1, b′′

= [bi ]i=u+v,...,r .

Write u′′
:= [log ∥ε∥ν]ν∈S in Rs . By the above, we have u′′

= M0b′′ and thus b′′
= M−1

0 u′′. That is, for
1 ≤ i ≤ s,

bu+v−1+i = mi1 log∥ε∥p1 + · · · + mis log∥ε∥ps ,

where M−1
0 = [mi j ]. It follows that

|bu+v−1+i | ≤ |mi1| · |log∥ε∥p1 | + · · · + |mis | · |log∥ε∥ps |. (44)

Applying Proposition 7.2 to any p j for 1 ≤ j ≤ s and using (43) and (21), we obtain

|log∥ε∥p j | ≤ log(Norm(p j )) · max{|k ′

j |, |k
′′

j |}.

Write

ρ ′

i :=

s∑
j=1

|mi, j | · log(Norm(p j )) · max{|k ′

j |, |k
′′

j |}, ρi = min{B∞, ρ ′

i }. (45)

From equation (44) it follows that |bu+v−1+i | ≤ ρ ′

i for 1 ≤ i ≤ s. However, max{|bi |}
r
i=1 = ∥b∥∞ ≤ B∞,

so we know that |bu+v−1+i | ≤ B∞. We deduce that

|bu+v−1+i | ≤ ρi , 1 ≤ i ≤ s. (46)

Hence

∥b∥1 = ∥b′
∥1 + ∥b′′

∥1 ≤ (u + v − 1)B∞ + ρ1 + · · · + ρs

and

∥b∥2 =

√
∥b′

∥
2
2 + ∥b′′

∥
2
2 ≤

√
(u + v − 1)B2

∞
+ ρ2

1 + · · · + ρ2
s .
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We now update our values for B1 and B2:

B1 = (u + v − 1)B∞ + ρ1 + · · · + ρs, (47)

B2 =

√
(u + v − 1)B2

∞
+ ρ2

1 + · · · + ρ2
s . (48)

Note, since by (45) we have ρi ≤ B∞, these new values for B1 and B2 are bounded above by the old
values given in (36). In practice we usually find that these give significantly better bounds for ∥b∥1, ∥b∥2.

8.2. Embeddings and improving the initial bound (34). To improve our initial bound (34), we rely on
the inequality B ≤ 2c17 · d · h(ε) furnished by Lemma 6.7. However h(ε) = h(ε−1) and so

B ≤ 2c17
∑

ν∈MK

log max{1, ∥ε−1
∥ν}.

Since ε is an S-unit, for ν /∈ M∞

K ∪ S, we have ∥ε∥ν = 1. Thus

B ≤ 2c17
∑

ν∈M∞

K ∪S

log max{1, ∥ε−1
∥ν}. (49)

Therefore, to obtain a better bound for B, it is enough to gain good control on the contributions to the
sum on the right-hand side of (49).

Lemma 8.1. Let

c21 =

s∑
i=1

max{0, k ′′

i } · log (Norm(pi )).

Then

B ≤ 2c17

(
c21 +

∑
ν∈M∞

K

log max{1, ∥ε−1
∥ν}

)
. (50)

Proof. From (43) and (21) we have ∑
ν∈S

log max{1, ∥ε−1
∥ν} ≤ c21.

The lemma now follows from (49). □

We shall write
M∞

K = MR
K ∪ MC

K ,

where MR
K and MC

K are respectively the sets of real and complex places. Recall that (u, v) denotes the
signature of K . Thus we have embeddings

σ1, . . . , σu, σu+1, . . . , σu+v, σu+1, . . . , σu+v

of K , where σi are real embeddings for 1 ≤ i ≤ u, and σu+i , σu+i are pairs of complex conjugate
embeddings. Let

ER
K := {σ1, . . . , σu}, EC

K := {σu+1, . . . , σu+v}. (51)
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For the membership of EC
K , we are making an arbitrary choice of a member from each pair of conjugate

complex embeddings, but that is unimportant. Note that MR
K is in one-to-one correspondence with ER

K

and MC
K is in one-to-one correspondence with EC

K . We consider the contribution to the sum (50) coming
from ν ∈ MC

K , or equivalently from σ ∈ EC
K .

Let ℑ(z) denote the imaginary part of a complex number z.

Lemma 8.2. Let

c22 = 2
∑
σ∈EC

K

log max
{

1,
|σ(τ)|

|ℑ(σ (θ))|

}
.

Then

B ≤ 2c17

(
c21 + c22 +

∑
σ∈ER

K

log max{1, |σ(ε)|−1
}

)
. (52)

Proof. Note that (50) can be rewritten as

B ≤ 2c17

(
c21 + 2

∑
σ∈EC

K

log max{1, |σ(ε)|−1
} +

∑
σ∈ER

K

log max{1, |σ(ε)|−1
}

)
.

Let σ ∈ EC
K . Then as a0 X − θY = τ · ε, we have

|σ(ε)| =
1

|σ(τ)|
· |σ(a0 X − θY )| ≥

1
|σ(τ)|

· |Y | · |ℑ(σ (θ))| ≥
|ℑ(σ (θ))|

|σ(τ)|
,

because of our assumption |Y | ̸= 0. The lemma follows. □

The following is immediate.

Proposition 8.3. If K is totally imaginary then

B ≤ 2c17(c21 + c22).

8.3. The nontotally complex case. Suppose now that K has one or more real embeddings. Recall that
the signature of K is (u, v). Thus u ≥ 1.

Lemma 8.4. If u = 1 we let c23 := 1. If u ≥ 2 we let

c23 := min
{

|σ(θ) − σ ′(θ)|

|σ(τ)| + |σ ′(τ )|
: σ, σ ′

∈ ER
K , σ ̸= σ ′

}
.

Then there is at most one σ ∈ ER
K such that |σ(ε)| < c23.

Proof. Suppose otherwise. Then there are σ , σ ′
∈ ER

K with σ ̸= σ ′ such that |σ(ε)| < c23 and |σ ′(ε)| < c23.
As a0 X − θY = τ · ε we find that

|a0 X − σ(θ)Y | < c23 · |σ(τ)|, |a0 X − σ ′(θ)Y | < c23 · |σ ′(τ )|.

Thus
|σ(θ) − σ ′(θ)| · |Y | < c23 · (|σ(τ)| + |σ ′(τ )|).

Recall our assumption that Y ̸= 0. This inequality now contradicts our definition of c23. □
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Lemma 8.5. Let

c24 := c21 + c22 + (u − 1) log max{1, c−1
23 }, c25 := exp(c24) and c26 :=

1
2c17

.

Suppose B > 2c17 · c24. Let σ ∈ ER
K be chosen so that |σ(ε)| is minimal. Then

|σ(ε)| ≤ c25 · exp(−c26 · B). (53)

Proof. From Lemma 8.4, we have
|σ ′(ε)| ≥ c23

for all σ ′
∈ ER

K with σ ′
̸= σ . From (52) we deduce that

B ≤ 2c17(c21 +c22 +(u−1) log max{1, c−1
23 }+ log max{1, |σ(ε)|−1

}) = 2c17(c24 + log max{1, |σ(ε)|−1
}).

It follows that
log max{1, |σ(ε)|−1

} ≥
1

2c17
B − c24 = c26 · B − c24.

The hypothesis B > 2c17 · c24 forces the right-hand side to be positive, and so the left-hand side must
simply be log |σ(ε)−1

|. After exponentiating and rearranging, we obtain (53). □

8.4. Approximate relations. As in Lemma 8.5 we shall let σ ∈ ER
K be the real embedding that makes

|σ(ε)| minimal. Recall that the signature of K is (u, v); we keep the assumption that u ≥ 1. Let

n := r + v. (54)

In this section we introduce additional unknown integers br+1, . . . , bn , closely related to the exponents
b1, . . . , br found in (15). We shall use Lemma 8.5 to write down d − 2 linear forms in b1, . . . , bn

with real coefficients, whose values are very small. We shall later give a method, based on standard
ideas originally due to de Weger, that uses these “approximate relations” to reduce our bound for
B = max(|b1|, . . . , |br |, 1).

We label the elements of ER
K and EC

K as in (51), where σ1 = σ . Write

θ j = σ j (θ), τ j = σ j (τ ), ε j = σ j (ε), δi, j = σ j (δi ), 1 ≤ j ≤ u + v, 1 ≤ i ≤ r.

Let 2 ≤ j ≤ u + v and write

z j :=
a0 X − θ1Y
a0 X − θ j Y

.

Observe that
Y (θ1 − θ j ) = (a0 X − θ j Y ) − (a0 X − θ1Y )

= (a0 X − θ j Y ) · (1 − z j )

= τ j · δ
b1
1, j · · · δ

br
r, j · (1 − z j ). (55)

In the following lemma, as always, log denotes the principal determination of the logarithm (i.e., the
imaginary part of log lies in (−π, π]).
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Lemma 8.6. Let

c27 :=
|τ1| · c25

min{|τi | : σi ∈ ER
K , σi ̸= σ } · c23

, c28 :=
|τ1| · c25

min{|ℑ(θi )| : σi ∈ EC
K }

,

and

c29( j) :=

{
|τ1| · c25/(|τ j | · c23) for 2 ≤ j ≤ u,

|τ1| · c25/|ℑ(θ j )| for u + 1 ≤ j ≤ u + v.

Define

c30 := max{2c17 · c24, log (2c27)/c26, log (2c28)/c26}

and suppose B > c30. Then

|log(1 − z j )| ≤ 2c29( j) · exp(−c26 · B) for 2 ≤ j ≤ u + v.

Proof. Let 2 ≤ j ≤ u + v. If σ j ∈ ER
K , Lemma 8.4 yields

|a0 X − θ j Y | = |τ j | · |ε j | ≥ |τ j | · c23.

Conversely, if σ j ∈ EC
K , following the proof of Lemma 8.2, we have

|a0 X − θ j Y | = |τ j | · |ε j | ≥ |ℑ(θ j )|.

Now, by Lemma 8.5 we have

|a0 X − θ1Y | = |τ1| · |ε1| ≤ |τ1| · c25 · exp(−c26 · B);

it is in invoking this lemma that we have made use of the assumption B > 2c17 · c24. Thus

|z j | ≤ c29( j) · exp(−c26 · B).

Our assumption B > c30 ≥ log (2c29( j))/c26 gives |z j | < 1
2 . From the standard Maclaurin expansion for

log(1 − x) we conclude that |log(1 − z j )| ≤ 2 · |z j |, completing the proof. □

To ease notation, let

w := u + v − 2. (56)

We now give our first set of w approximate relations. These only involve our original unknown exponents
b1, . . . , br found in (15).

Lemma 8.7. Suppose B > c30 holds. Let 1 ≤ j ≤ w. Let

β j := log
∣∣∣∣(θ1 − θ2) · τ j+2

(θ1 − θ j+2) · τ2

∣∣∣∣, α1, j := log
∣∣∣∣δ1, j+2

δ1,2

∣∣∣∣, . . . , αr, j := log
∣∣∣∣δr, j+2

δr,2

∣∣∣∣.
Then

|β j + b1α1, j + · · · + brαr, j | ≤ 2(c29(2) + c29( j + 2)) · exp(−c26 · B). (57)
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Proof. From (55),
(θ1 − θ2) · τ j+2

(θ1 − θ j+2) · τ2
·

(
δ1, j+2

δ1,2

)b1

· · ·

(
δr, j+2

δr,2

)br

=
1 − z2

1 − z j+2
.

Taking absolute values and then logs gives

|β j + b1α1, j + · · · + brαr, j | ≤ |log|1 − z2|| + |log|1 − z j+2||.

For a complex number z, we have
|log|z|| ≤ |log z|

since log|z| is the real part of log z. The lemma now follows from Lemma 8.6. □

In essence, in the above lemma, we have made use of the fact that

K ×
→ R, φ 7→ log|σ(φ)| (58)

is a homomorphism for each embedding σ of K , and applied this to the approximate multiplicative
relation (55) to obtain an approximate (additive) relation (57). If σ is complex, then σ and its conjugate σ

induce the same homomorphism (58), and thus we need only consider the embeddings σ1, . . . , σu+v.
Note that although these are u + v embeddings, we have obtained only u + v − 2 approximate relations
so far. That is, we have had to sacrifice embeddings because we wanted to eliminate the two unknowns,
X and Y . For σ real, log|σ(φ)| determines σ(φ) up to signs. However, if σ is complex, then (58) loses
the argument of σ(φ). Thus we should consider another homomorphism

K ×
→ R/Zπ, φ 7→ ℑ(log σ(φ)) (59)

where ℑ(z) denotes the imaginary part of a complex number z. Observe that ℑ(log σ(φ)) denotes the
argument of σ(φ) which naturally lives in R/Z2π , whilst here we use R/Zπ as the codomain. In practice,
we have found that using R/Z2π introduces extra factors but only results in negligible improvements to the
bounds. Applying these homomorphisms to (55) allows us to obtain additional approximate relations. Since
there are v complex embeddings, we obtain an additional v approximate relations. However since these
homomorphism are into R/Zπ , the approximate relations are only valid after shifting by an appropriate
multiple of π ; thus for each complex embedding σu+ j , we will need an additional parameter br+ j .

Recall that w = u + v − 2.

Lemma 8.8. Let 1 ≤ j ≤ v. Let

βw+ j := ℑ

(
log

(
θ1 − θu+ j

τu+ j

))
,

α1,w+ j := −ℑ(log δ1,u+ j ), . . . , αr,w+ j := −ℑ(log δr,u+ j ), αr+ j,w+ j := π.

Suppose B > c30 holds. Then there is some br+ j ∈ Z such that

|βw+ j + b1α1,w+ j + · · · + brαr,w+ j + br+ jαr+ j,w+ j | ≤ 2c29(u + j) · exp(−c26 · B). (60)

Moreover,

|br+ j | ≤ |b1| + · · · + |br | +
π + 1

π
. (61)
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Proof. From (55), and Lemma 8.6,

|log(Y ) + log((θ1 − θu+ j )/τu+ j ) − b1 log δ1,u+ j − · · · − br log δr,u+ j + b′
· π i |

≤ 2c29(u + j) · exp(−c26 · B),

for some b′
∈ Z. Thus

|ℑ(log(Y )) + βw+ j + b1α1,w+ j + · · · + brαr,w+ j + b′π | ≤ 2c29(u + j) · exp(−c26 · B).

Recall that Y ∈ Z \ {0}, so ℑ(log(Y )) is either 0 or π depending on whether Y is positive or negative. We
take br+ j = b′ in the former case and br+ j = b′

+ 1 in the latter case. This gives (60).
It remains to prove (61). Our assumption B > c30 gives

2c29(u + j) · exp(−c26 · B) < 1.

Moreover, |βw+ j | ≤ π and |αi,w+ j | ≤ π for 0 ≤ i ≤ r . From (60),

π · |br+ j | = |αr+ j,w+ j | · |br+ j |

≤ |βw+ j | + |α1,w+ j | · |b1| + · · · + |αr,w+ j | · |br | + 1

≤ π(1 + |b1| + · · · + |br |) + 1.

The lemma follows. □

Summing up, Lemmas 8.7 and 8.8 give us (u + v − 2) + v = d − 2 approximate relations (57), (60) in
integer unknowns b1, . . . , br+v.

9. Reduction of bounds

We do not know which real embedding σ ∈ ER
K makes |σ(ε)| minimal. So the procedure described below

for reducing the bound (34) needs to be repeated for each possible choice of embedding σ in ER
K . Thus,

for every possible choice of σ ∈ ER
K , we let σ1 = σ and we choose an ordering of the other embeddings

as in (51). Given a real number γ , we denote by [γ ] the nearest integer to γ , with the convention that
[k + 1/2] = k + 1 for k ∈ Z. Let n be as in (54) and observe that

n = (s + 1) + d − 2,

where we recall that s = #S. Let C be a positive integer to be chosen later. Let Im and 0i, j be the m × m
identity matrix and i × j zero matrix, respectively. Let M be the n × n matrix

M :=



0w,s+1

[Cα1,1] · · · [Cα1,w]

...
...

[Cαw,1] · · · [Cαw,w]

[Cα1,w+1] · · · [Cα1,d−2]
...

...

[Cαw,w+1] · · · [Cαw,d−2]

Is+1

[Cαw+1,1] · · · [Cαw+1,w]

...
...

[Cαr,1] · · · [Cαr,w]

[Cαw+1,w+1] · · · [Cαw+1,d−2]
...

...

[Cαr,w+1] · · · [Cαr,d−2]

0v,s+1 0v,w [Cπ ] · Iv


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and let L be the sublattice of Zn spanned by the rows of M . Recall that B∞, B1, B2 are respectively the
known bounds for ∥b∥∞, ∥b∥1, ∥b∥2. Let

w := (0, 0, . . . , 0︸ ︷︷ ︸
s+1

, [Cβ1], . . . , [Cβd−2]) ∈ Zn,

A1 :=
1 +B1

2
, A2 :=

2π(1 +B1) + 1
2π

,

B3 :=

w∑
j=1

(c29(2) + c29( j + 2))2
+

v∑
j=1

c29(u + j)2,

B4 := A1

w∑
j=1

(c29(2) + c29( j + 2)) +A2

v∑
j=1

c29(u + j), and

B5 :=

√
B2

2 − wB2
∞

+ wA2
1 + vA2

2.

By (48), we observe that

B2
2 = (w + 1)B2

∞
+ ρ2

1 + · · · + ρ2
s

so that B2
2 − wB2

∞
≥ 0 and thus the argument of the square root in the above definition of B5 is positive.

Write

be := (b1, b2, . . . , br , br+1, . . . , br+v),

where br+1, . . . , br+v are as in Lemma 8.8. We think of this as the “extended exponent vector”. Note
that the number of entries in be is

r + v = u + v + s − 1 + v = d + s − 1 = n. (62)

If be is known, then the solution is known.

Lemma 9.1. ∥be∥2 ≤

√
B2

2 + v

(
B1 +

π + 1
π

)2

.

Proof. This follows immediately from (61) and the definitions of B1,B2. □

Proposition 9.2. Suppose be · M ̸= −w. Let

D :=

{
D(L , w) if w /∈ L ,

minx∈L
x ̸=0

∥x∥2 if w ∈ L .
(63)

Suppose D > B5. Then

B ≤ max
(

c30,
1

c26
· log

(
2C ·B3

√

B3(D2
−B2

5) +B2
4 −B4

))
. (64)

Proof. If B ≤ c30 then (64) holds. We will therefore suppose that B > c30. Thus, inequalities (57) and
(60) hold. Write

w + be · M = (bu+v−1, bu+v, . . . , br , 21, 22, . . . ,2d−2),
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where we take this equality as the definition of 21, . . . ,2d−2. That is, for 1 ≤ j ≤ w,

2 j = [Cβ j ] + b1[Cα1, j ] + · · · + br [Cαr, j ].

Hence, again for 1 ≤ j ≤ w,

|2 j | ≤
1
2 +

1
2 |b1| + · · · +

1
2 |br | + C · |β j + b1α1, j + · · · + brαr, j |

≤
1
2(1 +B1) + 2C · (c29(2) + c29( j + 2)) · exp(−c26 · B)

≤ A1 + (c29(2) + c29( j + 2)) · η,

where the second inequality follows by (34) and (57), and

η := 2C · exp(−c26 · B).

Recall that w = u + v − 2. For 1 ≤ j ≤ v,

2w+ j = [Cβw+ j ] + b1[Cα1,w+ j ] + · · · + br [Cαr,w+ j ] + br+ j [Cπ ].

Thus, for 1 ≤ j ≤ v,

|2w+ j | ≤
1
2 +

1
2 |b1| + · · · +

1
2 |br | +

1
2 |br+ j | + C · |βw+ j + b1α1,w+ j + · · · + brαr,w+ j + br+ jπ |

≤
2π + 1

2π
+B1 + 2C · c29(u + j) · exp(−c26 · B)

≤ A2 + c29(u + j) · η,

where the second inequality follows from (34), (60), and (61).
By assumption, w + be · M ̸= 0; hence

D2
≤ ∥w + be · M∥

2
2

= b2
u+v−1 + · · · + b2

r + 22
1 + · · · +22

d−2

≤ b2
u+v−1 + · · · + b2

r + wA2
1 + vA2

2 + 2B4η +B3η
2.

However, |bu+v−1| ≤ ∥b∥∞ ≤ B∞. Moreover, by (46) we have |bu+v−1+i | ≤ ρi for i = 1, . . . , s, where ρi

is given in (45). It follows that

D2
≤ B2

∞
+ ρ2

1 + · · · + ρ2
s + wA2

1 + vA2
2 + 2B4η +B3η

2

= B2
2 − wB2

∞
+ wA2

1 + vA2
2 + 2B4η +B3η

2 (from (48))

= B2
5 + 2B4η +B3η

2

= B2
5 +B3

(
η +

B4

B3

)2

−
B2

4

B3
.

Recall our assumption that B5 < D. Thus

B2
4

B3
< D2

−B2
5 +

B2
4

B3
≤ B3

(
η +

B4

B3

)2

,
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and so

0 <

√

B3(D2
−B2

5) +B2
4 −B4

B3
≤ η.

However η = 2C · exp(−c26 · B). This yields the bound

B ≤
1

c26
· log

(
2C ·B3

√

B3(D2
−B2

5) +B2
4 −B4

)
,

which gives (64). □

Heuristic. It remains to decide on a reasonable choice for C . We expect that the determinant of the
matrix M is approximately Cd−2. Thus the distance between adjacent vectors in L is expected to be in
the region of C (d−2)/n , and so we anticipate (very roughly) that D ∼ C (d−2)/n . We would like D > B5.
Therefore it is reasonable to choose C ≫ Bn/(d−2)

5 . If, for a particular choice of C , the condition D > B5

fails, then we simply try again with a larger choice of C .

Remarks. Our approach is somewhat unusual in that it uses all d − 2 available approximate relations to
reduce the initial bound. In contrast, it is much more common to use one relation (e.g., [Tzanakis and
de Weger 1989, Section 16]) to reduce the bound. In most examples, we have found that both approaches
give similar reductions in the size of the bound and that there is no advantage in using one over the other.
However in some examples the approach of using only one relation fails spectacularly. Here are two such
scenarios:

(i) Suppose δ1 (say) belongs to a proper subfield K ′ of K . Now let σ2, σ3 be distinct embeddings of K
that agree on K ′. Then, in the notation of Lemma 8.7 we find α1,3 = log|σ3(δ1)/σ2(δ1)| = 0, and so the
coefficient of the unknown b1 is zero in the approximate relation (57). Therefore the one relation (57) on
its own fails to provide any information on the size of b1. In practice, the lattice constructed in [Tzanakis
and de Weger 1989, Section 16] from this one relation will contain the tiny vector (1, 0, . . . , 0), and this
will result in the computational failure of the closest vector algorithm.

(ii) We continue to suppose that δ1 belongs to the proper subfield K ′ as above. Let σu+1 be a complex
embedding of K that extends a real embedding of K ′, and suppose for simplicity that σu+1(δ1) is positive.
Then again, α1,w+1 = 0 in the approximate relation (60), and so that relation on its own fails to control b1.

In the above two examples, we chose to illustrate the possible failure of the approach of using one relation
by imposing δ1 ∈ K ′ where K ′ is a subfield of K . However, a similar failure occurs (and is more difficult
to find) if the S-unit basis δ1, . . . , δr is multiplicatively dependent over K ′, meaning that there is some
nontrivial (c1, . . . , cr ) ∈ Zr such that δ

c1
1 · · · δcr

r ∈ K ′.

In Proposition 9.2, we require be · M ̸= −w. Of course, if M is nonsingular, we can simply check
whether be = −w · M−1 yields a solution, and therefore there is no harm in making this assumption. In
all our examples, M has been nonsingular, and we expect that by choosing C large enough we can ensure
that this happens. However, if M is singular then the equation be · M = −w either has no solutions or the
solutions belong to the translate of a sublattice of Zn whose rank is the corank of the matrix M . A glance
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at the matrix M reveals that this corank is at most w = u +v −2. If this case was to ever arise in practice,
we would need to enumerate all vectors be satisfying be · M = −w and the bound in Lemma 9.1 and test
if they lead to solutions.

9.1. Example 1.4 continued. We continue giving details for the tuple (τ, δ1, . . . , δ10) alluded to on
page 690. The values of B∞ and B2 are given in (40). The set S consists of five primes p1, . . . , p5

given by (33). By applying Proposition 7.2 we had (page 694) obtained bounds 237, 292, 354, 518, 821
for ordp j (a0 X − θY ) with i = 1, . . . , 5 respectively; these are the values denoted k j − 1 in (41). Now
ordp j (τ )= 0, 0, 1, 0, 0 respectively for j = 1, . . . , 5. Letting ε be as in (42), we may take (−k ′

j , k ′′

j ) in (43)
to be (0, 237), (0, 292), (−1, 353), (0, 518), (0, 821) respectively. This allows us to compute the constant
c21 defined in Lemma 8.1. We find that c21 ≈ 2842.79. The field K has signature (u, v) = (1, 5) and thus
there is only one possibility for σ ∈ ER

K . We therefore take σ1 = σ to be the unique real embedding. For
illustration, we give the values of constants appearing in Section 8:

c22 ≈ 30.31, c23 = 1, c24 ≈ 2873.10, c25 ≈ 5.91 × 101247, c26 ≈ 0.35,

c27 ≈ 5.91 × 101247, c28 ≈ 1.40 × 101246, c29(2) ≈ 1.25 × 101246,

c29(3) ≈ 8.30 × 101245, c29(4) ≈ 7.83 × 101245, c29(5) ≈ 9.21 × 101245,

c29(6) ≈ 1.40 × 101246, c30 ≈ 8290.02.

Lemma 8.7 gives w = u + v − 2 = 4 approximate relations and Lemma 8.8 gives another v = 5 relations.
Therefore we have d − 2 = 9 relations altogether, and n = #S + d − 2 = 15. Therefore the matrix M is
15 × 15 and the lattice L belongs to Z15. We find that

B1 ≈ 7.85 × 10222, A1 ≈ 3.92 × 10222, A2 ≈ 7.85 × 10222, B3 ≈ 2.59 × 102493,

B4 ≈ 7.57 × 101469, B5 ≈ 1.93 × 10223.

In accordance with the above heuristic, our program chooses

C = [Bn/(d−2)

5 ] ≈ 1.39 × 10372.

The matrix M and the lattice L are too huge to reproduce here, but we point out that

[Z15
: L] ≈ 2.66 × 103357

; D ≈ 7.23 × 10223.

In this case, w /∈ L so that D is computed using D(L , w). Hence the hypothesis D >B5 of Proposition 9.2
is satisfied. We may therefore apply Proposition 9.2 to obtain a new bound for B given by (64):

B ≤ 9270.82.

We now start again with B∞ = 9270 and repeat the previous steps, first for obtaining bounds for
ordp j (a0 X − θY ) and then for writing down the lattice L and applying Proposition 9.2. Table 2 illustrates
the results.
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Iteration B∞

bounds for ordp j (a0 X − θY )

with 1 ≤ j ≤ 5

0 1.57 × 10222 237 292 354 518 821
1 9270 4 5 8 10 15
2 251 3 3 5 6 10
3 190 2 3 5 6 9
4 180 2 3 5 6 9
5 180 2 3 5 6 9

Table 2. We successively reduce the bounds for B and for ordp j (a0 X − θY ), where j = 1, . . . , 5.

Note that at the fifth iteration we fail to obtain any improvement on the bounds, and so we stop there.
Recall that r = 10 and that B = max(|b1|, . . . , |b10|), where b1, . . . , b10 are the exponents in (15). Our
final bound is B ≤ 180. The set of possible integer tuples (b1, . . . , b10) satisfying this bound has size

(2 × 180 + 1)10
= 36210

≈ 3.86 × 1025.

The huge size of this region does not allow brute force enumeration of the solutions. Instead, one can
reduce the number of tuples to consider by using the bounds we have obtained for ordp j (a0 X − θY ). We
let κ j = 2, 3, 5, 6, 9 for j = 1, . . . , 5, respectively. We know that 0 ≤ ordp j (a0 X −θY ) ≤ κ j , and so there
are κ j + 1 possibilities for the ordp j (a0 X − θY ). Let (k1, . . . , k5) be some tuple of integers satisfying
0 ≤ k j ≤ κ j . The condition ordp j (a0 X − θY ) = k j simply defines a hyperplane of codimension 1 in the
space of possible (b1, . . . , b10). Imposing all five conditions ordp j (a0 X −θY ) = k j with j = 1, . . . , 5 cuts
down the dimension from 10 to 5. Thus we expect that the search region should (very roughly) have size

(κ1 + 1) · · · (κ5 + 1) · 3625
≈ 3.13 × 1016.

This is still way beyond brute force enumeration and motivates our next section.

10. Sieving

In order to resolve the Thue–Mahler equation

F(X, Y ) = a · pz1
1 · · · pzv

v , X, Y ∈ Z, gcd(X, Y ) = gcd(a0, Y ) = 1,

we have first reduced the problem to that of resolving a number of equations of the form (15), subject to
the restrictions (16), (17). Recall that B = max{|b1|, . . . , |br |}, where b = (b1, . . . , br ) ∈ Zr denotes the
vector of unknown exponents to solve for. For each such equation (15), we have used the theory of linear
forms in logarithms to obtain a bound for B, and moreover, we have explained how to repeatedly reduce
this bound. During each of these iterations, we have simultaneously reduced the bounds on the ∞-norm,
the 1-norm, and the 2-norm of b. Let us denote the final bound for the ∞-norm of b by B′

f and write B f

for the final bound on the 2-norm of b. Thus

∥b∥2 ≤ B f , ∥b∥∞ ≤ B′

f . (65)
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We have also explained how to obtain and reduce the bounds on ordp(a0 X − θY ) for p ∈ S. Suppose that
at the end of this process, our bounds are

0 ≤ ordp(a0 X − θY ) ≤ κp for p ∈ S. (66)

Unfortunately, in our high-rank examples (i.e., when the S-unit rank r is large) the final bound B′

f is
often too large to allow for brute force enumeration of solutions. Instead, we shall sieve for solutions
using both the primes p in S, and also rational primes p whose support in OK is disjoint from S. The
objective of the sieve is to show that the solutions b belong to a union of a certain (hopefully small)
number of cosets w + L , where the L are sublattices of Zr . As the sieve progresses, the determinants of
the lattices L will grow. The larger the determinant, the fewer vectors we expect belonging to w + L and
satisfying ∥b∥2 ≤ B f , and the easier it should be to find these vectors using the algorithm of Fincke and
Pohst [1985]. The following lemma is a helpful guide to when Fincke and Pohst should be applied.

Lemma 10.1. Let L be a sublattice of Zr . Suppose λ(L) > 2B f , where λ(L) denotes the length of the
shortest nonzero vector in L. Then there is at most one vector b in the coset w + L satisfying ∥b∥2 ≤ B f .
Moreover, any such b is equal to w + c(L , −w).

Proof. Suppose there are vectors b1, b2 ∈ w + L both satisfying ∥bi∥2 ≤ B f . Then b1 − b2 ∈ L and
∥b1 − b2∥2 ≤ 2B f . As λ(L) > 2B f we see that b1 = b2. The second part follows from Lemma 7.1. □

We continue sieving until the lattices L satisfy λ(L) > 2B f . We then apply the Fincke–Pohst algorithm
to determine c(L , −w) and check whether the vector b = w + c(L , −w) leads to a solution.

10.1. Sieving using the primes of S. To recap, we seek solutions (X, Y, b) to

a0 X − θY = τ · δ
b1
1 · · · δbr

r ,

subject to the conditions

X, Y ∈ Z, gcd(X, Y ) = 1, gcd(a0, Y ) = 1, bi ∈ Z,

and such that

∥b∥2 ≤ B f , and 0 ≤ ordp(a0 X − θY ) ≤ κp for every p ∈ S.

In particular, this last inequality (66) asserts that ordp(a0 X − θY ) belongs to a certain set of values
0, 1, . . . , κp. The following proposition reduces this list somewhat, and for any k in this reduced list,
yields a vector wk and a sublattice Lk of Zr such that b ∈ wk + Lk whenever ordp(a0 X − θY ) = k.

Proposition 10.2. Let p ∈ S. Let θ0 ∈ Z satisfy θ0 ≡ θ (mod pκp). Let a and T1 be as in (37). Define

η : Zr
→ Z, η(n1, . . . , nr ) = n1 ordp(δ1) + · · · + nr ordp(δr ), L ′′

= Ker(η).

Let

K′′
:= (ordp(τ ) + Image(η)) ∩ {0 ≤ k ≤ κp : gcd(ak, θ − θ0) = gcd(ak, T1)}.
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For k ∈ K′′, let w′′

k be any vector in Zr satisfying η(w′′

k ) = k − ordp(τ ). If k ∈ K′′ satisfies k ≥ 1, we will
let φ and τ0 be as in Proposition 7.2 (these depend on k). Let

K′
:=

{
{k ∈ K′′

: τ0 ∈ Image(φ)} if 0 /∈ K′′,

{0} ∪ {k ∈ K′′
: τ0 ∈ Image(φ)} if 0 ∈ K′′.

For k ∈ K′ with k ≥ 1, we let L ′

k = Ker(φ) and w′

k be any vector in Zr satisfying φ(w′

k) = τ0. Let w′

0 = 0,
L ′

0 = Zr , and
K := {k ∈ K′

: (w′′

k + L ′′) ∩ (w′

k + L ′

k) ̸= ∅}.

For k ∈ K, write
Lk := L ′′

∩ L ′

k

and choose any wk ∈ Zr such that

wk + Lk := (w′′

k + L ′′) ∩ (w′

k + L ′

k).

Let k = ordp(a0 X − θY ). Then k ∈ K and b ∈ wk + Lk .

Proof. By (66), the valuation k := ordp(a0 X − θY ) satisfies 0 ≤ k ≤ κp. Moreover, by Proposition 7.2,
part (i), we have gcd(ak, θ − θ0) = gcd(ak, T1). By (15), we know k ∈ ordp(τ ) + η(b) and thus k ∈ K′′

and b ∈ w′′

k + L ′′. In particular, the proposition follows in the case k = 0. We therefore suppose k ≥ 1. By
Proposition 7.2, part (ii) and its proof, it follows that k ∈ K′ and b ∈ w′

k + L ′

k , completing the proof. □

Remark. For each prime p ∈ S, Proposition 10.2 yields a number of cosets wk + Lk and tells us that b
belongs to one of them. Note that L ′′ is a subgroup of Zr of rank r − 1. Moreover, the subgroup L ′

k has
finite index in Zr . Therefore Lk := L ′

k ∩ L ′′ has rank r − 1. From the remarks following Proposition 7.2
(where L ′

k is called L) we expect L ′

k to have index p(d−2)k in Zr . In particular, the larger the value of k,
the larger the index of L ′

k . Of course the number of cosets is bounded above by κp + 1.

10.2. Sieving with other primes. Given a prime ideal q of OK , write Oq for the localization of OK at q,

Oq = {α ∈ K : ordq(α) ≥ 0}.

Now let q be a rational prime. Define

Oq =

⋂
q | q

Oq = {α ∈ K : ordq(α) ≥ 0 for all q | q}.

The group of invertible elements O×
q consists of all α ∈ K such that ordq(α) = 0 for all prime ideals q | q .

Let τ , δ1, . . . , δr be as in (15). Let q be a rational prime coprime to the supports of τ , δ1, . . . , δr . Thus
τ , δ1, . . . , δr all belong to O×

q . Let
Aq := (Oq/qOq)×.

This is canonically isomorphic to (OK /qOK )×. Let

µ : F×

q ↪→ Aq , α + qZ 7→ α + qOq

be the natural map, and let
Bq := Aq/µ(F×

q )
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be the cokernel of µ. We denote the induced homomorphism O×
q → Bq by

πq : O×

q → Bq , β 7→ (β + qOq) · µ(F×

q ).

Define
φq : Zr

→ Bq , (m1, . . . , mr ) 7→ πq(δ1)
m1 · · · πq(δr )

mr .

Proposition 10.3. Let

Rq = {a0u − θ : u ∈ {0, 1, . . . , q − 1}} ∪ {a0} and Sq = {πq(r)/πq(τ ) : r ∈ Rq ∩O×

q } ⊆ Bq .

Let
Tq = Sq ∩ φq(Zr ) and Lq = Ker(φq).

Finally, let Wq ⊂ Zr be a set of size #Tq such that for every t ∈ Tq there is some w ∈ Wq with φq(w) = t .
Then b ∈ Wq + Lq .

Proof. Since τ , δ1, . . . , δr ∈ O×
q , we have a0 X − θY ∈ O×

q . We want to determine the possibilities for
the image of the algebraic integer a0 X − θY in Bq . Since X and Y are coprime, q divides at most one
of X , Y . If q ∤ Y then

a0 X − θY ≡ v · (a0u − θ) (mod qOq)

for some u ∈ {0, 1, . . . , q − 1} and some v ∈ F×
q . If q | Y then q ∤ X and

a0 X − θY ≡ a0v (mod qOq)

for some v ∈ F×
q . We conclude that a0 X − θY ≡ v · r (mod qOq) where v ∈ F×

q and r ∈ Rq . Moreover,
since a0 X − θY ∈ O×

q we see that r ∈ Rq ∩O×
q . Now

πq(a0 X − θY ) = πq(r)πq(v) = πq(r).

It follows that πq(a0 X − θY )/πq(τ ) ∈ Sq . However

φq(b) = πq(δ1)
b1 · · · πq(δr )

br = πq(a0 X − θY )/πq(τ ),

where the first equality follows from the definition of φq and the second from (15). Thus φq(b) = t for
some t ∈ Tq . By definition of Wq , there is some w ∈ Wq with φq(w) = t = φq(b), thus b − w ∈ Lq . □

Heuristic. It is appropriate that we heuristically “measure” the quality of information that Proposition 10.3
gives us about the solutions. A priori, φq(b) could be any element in φq(Zr ) ⊆ Bq . However, the lemma
tells us that φq(b) belongs to Tq . We want to estimate the ratio #Tq/#φq(Zr ); the smaller this ratio is, the
better the information is. It is convenient to suppose that q is unramified in OK . Thus

Oq/qOq ∼= OK /qOK ∼=

⊕
q | q

OK /q.

Each summand OK /q is a finite field of cardinality Norm(q). By definition

Aq := (Oq/qOq)× ∼=

∏
q | q

(OK /q)×.
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Thus

#Aq =

∏
q | q

(Norm(q) − 1), #Bq =
1

q − 1
·

∏
q | q

(Norm(q) − 1).

Moreover
∏

q | q Norm(q)=qd where d =[K :Q] is the degree of the original Thue–Mahler equation. Thus
#Bq ≈ qd−1. However Sq ⊆ φ(Zr ) ⊆ Bq has at most q + 1 elements, and so #Sq/#Bq ⪅ 1/qd−2. Now

#Tq

#φq(Zr )
=

#Sq ∩ φq(Zr )

#φq(Zr )
.

It is reasonable to expect that the elements of Sq are uniformly distributed among the elements of Bq

and so we expect #Tq/#φq(Zr ) ⪅ 1/qd−2.

10.3. The sieve. We will sieve with the primes p ∈ S as in Proposition 10.2 and also with additional
rational primes q as in Proposition 10.3. We would like to choose a suitable set S of such primes q . The
most expensive computation we will need to do for q ∈ S is to compute, for each t ∈ Tq , some w ∈ Zr

such that φq(w) = t . This involves a discrete logarithm computation in the group Bq , and to do this
quickly we need Bq to be a product of cyclic factors that have relatively small order. We therefore like to
avoid those q where there are q | q that have large norm. In all our examples we found it enough to take
S to be the set of primes q ≤ 500, where each q | p satisfies Norm(q) ≤ 1010 and where the support of q
is disjoint from the supports of τ , δ1, . . . , δr .

Procedure 10.4. Solutions(Lc, wc, Sc,Sc).
Input: Lc sublattice of Zr , wc ∈ Zr , Sc ⊆ S, Sc ⊆ S.
Output: Set of solutions (X, Y, b) to (15), (16) satisfying b ∈ wc + Lc and ∥b∥2 ≤ B f .

1. IF λ(Lc) > 2B f or (Sc = ∅ and Sc = ∅) THEN
2. Apply Fincke–Pohst to find all vectors in b ∈ wc + L satisfying ∥b∥2 ≤ B f .
3. Keep only those b that lead to solutions (X, Y ) on (15), (16).
4. RETURN: Set of (X, Y, b).
5. END.
6. ELSE
7. IF Sc ̸= ∅ THEN
8. Choose p ∈ Sc. Let S′

c = Sc \ {p}.
9. Compute K as in Proposition 10.2.
10. For each k ∈ K compute wk , Lk as in Proposition 10.2.
11. Let K∗ be the subset of k ∈ K such that (wk + Lk) ∩ (wc + Lc) ̸= ∅.
12. For each k ∈ K∗ let Lc,k = Lc ∩ Lk .
13. For each k ∈ K∗ choose wc,k ∈ Zr so that wc,k + Lc,k = (wk + Lk) ∩ (wc + Lc).
14. RETURN:

⋃
k∈K∗ Solutions(Lc,k, wc,k, S′

c,Sc).
15. END.
16. ELSE
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17. Choose q ∈ Sc. Let S′
c = Sc \ {q}.

18. Compute Wq , Lq as in Proposition 10.3.
19. Let L ′

c = Lc ∩ Lq .
20. Let W ∗

q = {w1, . . . ,wm} be the subset of w ∈ Wq such that (w + Lq) ∩ (wc + Lc) ̸= ∅.
21. For i = 1, . . . , m choose wc,i such that wc,i + L ′

c = (w + Lq) ∩ (wc + Lc).
22. RETURN:

⋃m
i=1 Solutions(L ′

c, wc,i ,∅,S′
c).

23. END.
24. ENDIF
25. ENDIF

Let us explain how Procedure 10.4 works. The procedure starts with a coset wc+Lc and sets Sc ⊆ S and
Sc ⊆S (the subscript c stands for “cumulative”). The objective is to return all solutions (X, Y, b) to (15),
(16) with b ∈ wc + Lc and satisfying ∥b∥2 ≤ B f . The primes in Sc and Sc are used, via Propositions 10.2
and 10.3, to replace wc + Lc by a union of cosets of sublattices of Lc.

We now explain lines 1–5 of the procedure. If λ(L) > 2B f , then by Lemma 10.1, the coset wc + Lc has
at most one vector b that satisfies ∥b∥2 ≤ B f , and this maybe found by the algorithm of Fincke and Pohst.
If Sc = ∅ and Sc = ∅, then we have run out of sieving primes and we simply apply the Fincke–Pohst
algorithm to determine all b ∈ wc + Lc such that ∥b∥2 ≤ B f . We test all resulting b to see if they lead to
solutions (X, Y, b) and return the set of solutions. We end here. In both these cases, no further branching
of the procedure occurs.

If we have reached line 6, then either Sc is nonempty or Sc is nonempty. We first treat the case where
Sc is nonempty (lines 8–14). We choose p ∈ Sc ⊆ S to sieve with and let S′

c = Sc \ {p}. Here we apply
Proposition 10.2. This gives a finite set K of values k and lattice cosets wk + Lk such that b ∈ wk + Lk for
some k ∈K. However, the b we are interested in belong to wc + Lc. We let K∗ be those values k ∈K such
that (wc + Lc)∩ (wk + Lk) ̸=∅. It is now clear that every b we seek belongs to (wc + Lc)∩ (wk + Lk) for
some k ∈ K∗. However (wc + Lc) ∩ (wk + Lk) = wc,k + Lc,k where Lc,k = Lc ∩ Lk , for a suitable coset
representative wc,k . We apply the procedure to the set (Lc,k, wc,k, S′

c,Sc) for each k ∈ K∗ to compute
those b belonging to wc,k + Lc,k and return the union.

If however Sc = ∅, then (lines 17–22) we choose a prime q ∈ Sc ⊆ S to sieve with, and we let
S′

c = Sc \ {q}. Now we apply Proposition 10.3. This gives a lattice Lq and a finite set Wq such that
b ∈ Wq + Lq . Therefore there is some w ∈ Wq such that b ∈ (w + Lq) ∩ (wc + Lc). We let W ∗

q be
the subset of those w ∈ Wq such that (w + Lq) ∩ (wc + Lc) ̸= ∅, and write W ∗

q = {w1, . . . ,wm}. Now
b ∈ (wi + Lq) ∩ (wc + Lc) for some i = 1, . . . , m. Write L ′

c = Lc ∩ Lq . Then (wi + Lq) ∩ (wc + Lc)

is a coset of L ′
c for i = 1, . . . , m, and we choose wc,i so that wc,i + L ′

c = (wi + Lq) ∩ (wc + Lc). It is
therefore enough to find the b belonging to each one of these wc,i + L ′

c. Thus we apply the procedure to
(L ′

c, wc,i ,∅,S′
q) for i = 1, . . . , m, collect the solutions and return their union (line 22).

Remarks. • To compute the solutions to (15) satisfying (16), it is clearly enough to apply the above
procedure to (Zr , 0, S,S).
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p K det(Lk) with k ∈ K

p1 {0, 1} 1, 6616761038619033600

p2 {0, 1, 2, 3}
1, 2114272224838656, 3442909640611645594437761516544,
5606480875148980721912830543593855583743968256

1, 1, 3800066789376, 14496104390625000000000000,
p3 {0, 1, 2, 3, 4, 5} 55298249781131744384765625000000000000,

210946082233931520022451877593994140625000000000000

1, 504631296, 21722722606780416,
p4 {0, 1, 2, 3, 6} 935091979414469275815936,

54375352676603537816702220559499682956095667933184

p5 {0, 1, 5} 1, 57600, 1062532458645670173081600

Table 3. This table gives the sets K and the determinants of the sublattices Lk ⊂ Z10 with k ∈ K
as in Proposition 10.2. Observe that the sublattices Lk all have rank r − 1 = 9.

• Recall that δ1, . . . , δr is a basis for the S-units (modulo torsion); in particular this allows us to identify
the S-units (modulo torsion) with Zr . Let p ∈ S and η be as in Proposition 10.2. Note that Lk is a
subgroup of finite index in Ker(η). Now Ker(η) itself corresponds to the (S \ {p})-units, and therefore
has rank r − 1. Therefore Lk has rank r − 1. That is, if we apply the procedure to (Zr , 0, S,S), then at
depth #S + 1 (when the set S has been entirely depleted), the lattice Lc will have rank r − #S which is
the unit rank. Beyond this depth, the rank remains constant but the determinant of the lattice grows.

• The reader will note that we have not specified how to choose the next prime p ∈ S or q ∈ S. In our
implementation we order the primes in p ∈ S by the size of their norms; from largest to smallest. The
reason is that the primes p ∈ S of large norm lead to lattices of large determinants and we therefore expect
few short vectors. Once S is exhausted, the choices we make for the next q ∈ S actually depend on the
cumulative lattice Lc. We choose the prime q ∈ Sc that minimizes #Wq/[Lc : Lc ∩ Lq ]. Our justification
for this is that we are replacing one coset of Lc with a union of cosets of Lc ∩ Lq . The number of such
cosets is bounded by #Wq . The function q 7→ #Wq/[Lc : Lc ∩ Lq ] estimates the “relative change in
density” between the old lattice and the new union for that particular choice of q.

10.4. Example 1.4 continued. Recall that B′

f = 180. Following the remark in Section 8, we find that
B f ≈ 402.67. Consider the information given by Proposition 10.2. Recall there are five possibilities
for p ∈ S, ordered as p1, . . . , p5, in order of decreasing norm. Table 2 yields 2, 3, 5, 6, 9 for κp j with
j = 1, . . . , 5, respectively.

We take S to be the set of rational primes q < 200 coprime to the prime ideals in S and such that
every prime ideal factor of qOK has norm ≤ 1010. This is done in order to keep our computations fast, as
previously explained. However, of this set, our program only needs to use the primes 23 and 71, selected
in that order using the heuristic detailed in the above remarks. For q = 23 and q = 71, Proposition 10.3
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gives a lattice Lq ⊂ Z10 (now of rank 10) and a set Wq such that b ∈ Wq + Lq . We find that

[Z10
: L71] = 3253933989048960000 ≈ 3.26 × 1018, with #W71 = 71,

and
[Z10

: L23] = 41191874887680 ≈ 4.12 × 1013, with #W23 = 23.

Observe that in Procedure 10.4 branching occurs at lines 14, 20. Thus we obtain “paths” through the
algorithm depending on the choice of k ∈K∗ (line 14) or the choice of wi ∈ W ∗

q (line 20). A path “dies” if
the criterion of line 1 is satisfied, or if K∗ (defined in line 11) is empty, or if W ∗

q (defined in line 20) is empty.
Our program needs to check a total of 98 paths. Five of these terminate at line 1 with the condition λ(Lc)>

2B f being satisfied, and the remaining 93 paths terminate at line 11 with K∗
= ∅. Of the 5 paths that

terminate at line 1, three of these yield a vector b ∈ Wc + Lc satisfying ∥b∥2 ≤B f . These three vectors are

(−1,−1,−2,0,2,0,3,0,1,1), (0,0,−1,1,1,1,1,1,0,0), and (−1,−1,−2,3,2,5,0,0,0,0).

These vectors respectively lead to the solutions

F(1, 2) = 33
· 7 · 11, F(1, −1) = 2 · 3 · 5, F(1, 1) = 25.
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We classify the automorphism groups of del Pezzo surfaces of degrees 1 and 2 over an algebraically closed
field of characteristic 2. This finishes the classification of automorphism groups of del Pezzo surfaces in
all characteristics.

Introduction 715
1. Notation 716
2. Del Pezzo surfaces of degree ≥ 3 717
3. Del Pezzo surfaces of degree 2 718
4. Automorphism groups of del Pezzo surfaces of degree 2 727
5. Del Pezzo surfaces of degree 1 736
6. Automorphism groups of del Pezzo surfaces of degree 1 745
References 761

Introduction

This is a continuation of our paper [Dolgachev and Martin 2024], where we finished the classification of
the automorphism groups of del Pezzo surfaces over an algebraically closed field of positive characteristic
p ̸= 2. In this paper, we treat the remaining case when the characteristic equals 2.

As we explained in the Introduction to [loc. cit.], the remaining part of the classification concerns
del Pezzo surfaces of degrees 1 and 2. The cases of odd and even positive characteristic are drastically
different since, in the latter case, the anticanonical map (resp. the antibicanonical map) is a separable Artin–
Schreier cover of degree 2 but not a Kummer cover as in the cases of odd characteristic. So, no plane quartic
curves (and no canonical genus-4 curves with vanishing theta characteristic) appear as branch curves.

Instead, in characteristic 2, the branch curve B of the anticanonical (resp. antibicanonical) map is not
necessarily smooth plane conic (resp. a cubic in P3). The ramification curve R is a purely inseparable
cover of B. Theorems 3.4 and 5.6 give normal forms for del Pezzo surfaces of degree 2 and 1 depending
on the singularities of R and B.

Although plane quartics and canonical curves of genus 4 disappear in characteristic 2, their familiar
attributes, like 28 bitangent lines or 120 tritangent planes, persist. We call them fake bitangents and fake
tritangent planes. They are defined to be lines in the plane (resp. planes in the 3-dimensional space) that
split under the anticanonical (resp. antibicanonical) map.
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It is well known that the blow-up of the anticanonical base point on a del Pezzo surface of degree 1
yields a rational elliptic surface with only irreducible fibers and, conversely, the contraction of a section of a
rational elliptic surface with only irreducible fibers yields a del Pezzo surface of degree 1. Thus, the normal
forms of Theorem 5.6 also give normal forms for all rational elliptic surfaces with only irreducible fibers.

Quite surprisingly, in characteristic 2, also every del Pezzo surface of degree 2 has a canonically
associated rational elliptic surface. This surface is obtained by blowing up the base points of the preimage
of the pencil of lines through the strange point of the branch locus B. We study the properties of this
strange fibration in Section 3.4.

Using these geometric observations, we classify the automorphism groups of all del Pezzo surfaces of
degree 2 and 1 in characteristic 2. The following result is proved in Theorems 4.3 and 6.8.

Theorem. A finite group G is realized as the automorphism group Aut(X) of a del Pezzo surface X of
degree 1 or 2 over an algebraically closed field k of characteristic char(k) = 2 if and only if G is listed in,
respectively, Table 9 (page 760) or Table 4 (page 736).

Table 4 (resp. Table 9) also gives the conjugacy classes in W (E7) (resp. W (E8)) of all elements of
Aut(X) for all del Pezzo surfaces X of degree 2 (resp. degree 1). We refer to [Dolgachev and Martin
2024] for a general discussion of the history of the problem and its relationship to the classification of
conjugacy classes of finite subgroups of the planar Cremona group. Also, the reader finds there some
general facts about del Pezzo surfaces, e.g., the relationship with the Weyl groups of roots systems and
some classification results from group theory.

1. Notation

We recall the notation for some finite groups we will encounter in this article. Throughout, p is a prime
number, and q is a power of p. Unless stated otherwise, k denotes an algebraically closed field of
characteristic 2.

• Cn is the cyclic group of order n.

• Sn and An are the symmetric and alternating groups on n letters.

• Q8 is the quaternion group of order 8.

• D2n is the dihedral group of order 2n.

• nk
= (Z/nZ)k. In particular, n = n1

= Z/nZ.

• p1+2n
± is the extra special group. For odd p the sign + (−) defines a group of exponent p (p2). For

p = 2, the sign distinguishes the type of the quadratic forms on 22n
= F2n

2 defined by the extension.

• GLn(q) = GL(n, Fq).

• PGLn(q) = GLn(q)/F∗
q . Its order is N = q1/2n(n−1)(qn

− 1) · · · (q2
− 1).

• SLn(q) = {g ∈ GLn(q) : det(g) = 1}. This is a subgroup of GLn(q) of index (q − 1).

• Ln(q) = PSLn(q) is the image of SLn(q) in PGLn(q). Its order is N/(q − 1, n).
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• For odd n, On(q) is the subgroup of GLn(q) that preserves a nondegenerate quadratic form F.

• For even n, O+
n (q) (resp. O−

n (q)) is the subgroup of GLn(q) that preserves a nondegenerate quadratic
form F of Witt defect 0 (resp. 1).

• SO±

n (q) is the subgroup of O±
n (q) of elements with determinant 1.

• PSO±

n (q) is the quotient of SO±

n (q) by its center.

• Sp2n(q) is the subgroup of SLq(2n) preserving the standard symplectic form on F2n
q . Its order is

qn2
(q2n−1

− 1) · · · (q2
− 1).

• Sp2n(q) = Sp2n(q)/(±1).

• SUn(q2) is the subgroup of SLn(q2) of matrices preserving the hermitian form
∑n

i=1 xq+1
i . Its order is

q(1/2)n(n−1)(qn
− (−1)n)(qn−1

− (−1)n−1) · · · (q3
+ 1)(q2

− 1). We have SU2(q2) = SL2(q).

• PSUn(q2) = SUn(q2)/C, where C is a cyclic group of order (q +1, n) of diagonal Hermitian matrices.
The simple group PSUn(q2) is denoted by Un(q) in [Conway et al. 1985].

• H3(3) is the Heisenberg group of 3 × 3 upper triangular matrices with entries in F3.

• A.B is a group that contains a normal subgroup A with quotient group B.

• A : B is the semidirect product A⋊ B.

2. Del Pezzo surfaces of degree ≥ 3

For the convenience of the reader, we first recall the classification of automorphism groups of del Pezzo
surfaces of degree at least 3.

2.1. Degree ≥ 5. For del Pezzo surfaces of degree at least 5, the description of Aut(X) is characteristic-
free. We refer the reader to [Dolgachev and Martin 2024, Section 3; Dolgachev 2012] for details.

2.2. Quartic del Pezzo surfaces. Starting from degree 4, the classification of automorphism groups
depends on the characteristic. As in the other characteristics, a quartic del Pezzo surface X is a blow-
up of five points in P2 no three of which are colinear. Moreover, the anticanonical linear system
|−K X | = |OP2(3)− p1 − p2 − p3 − p4 − p5| embeds X into P4 as a complete intersection of two quadrics.

Since p = 2, these quadrics cannot be diagonalized. Instead, as shown in [Dolgachev and Duncan
2019], one can choose the normal forms

(ab + b + 1)t2
2 + at2

3 + t2t3 + t3t4 = bt2
1 + (ab + a + 1)t2

2 + t1t3 + t2t4 = 0, (1)

where a, b are parameters such that the binary form 1 = uv(u +v)(u +av)(bu +v) has five distinct roots.
As in the case p ̸= 2, the automorphism group Aut(X) contains a normal subgroup H isomorphic to 24,

and the quotient G = Aut(X)/H is isomorphic to a subgroup of S5. The classification is summarized in
Table 1 on the next page. The first column refers to the values of the parameters a and b in (1) above.
The conjugacy classes of elements of Aut(X) can be obtained by combining [Dolgachev and Duncan
2019, Table 2] and [Carter 1972, Table 5].
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name Aut(X) order id 2A1 4A1 A2 A2+2A1 A3 A3+A1 A4 D4 D4(a1) D5

(φ,φ) 24
:A5 960 1 70 5 80 80 120 384 160 60

(ζ3,ζ3) (same as (φ,φ))
(i, i) (does not exist)
(a,a) 24

: 22 64 1 22 5 24 12
general 24 16 1 10 5

Table 1. Automorphism groups of quartic del Pezzo surfaces; see Section 2.2.

2.3. Cubic surfaces. The classification of automorphism groups of cubic surfaces in characteristic 2 was
achieved in [Dolgachev and Duncan 2019, Table 7]. For the convenience of the reader, we recall it here:

name Aut(X) order id 2A1 4A1 A2 A2+2A1 2A2 3A2 A3+A1 A4 A5+A1 D4 D4(a1) D5 E6 E6(a1) E6(a2)

I / 3C PSU4(2) 25920 1 270 45 240 2160 480 80 3240 5184 1440 1440 540 4320 5760 720
II / 5A (same as V)

III / 12A (same as I)
IV / 3A H3(3) : 2 54 1 9 24 2 18
V / 4B 23

:S4 192 1 30 13 32 72 32 12
VI / 6E (same as V)
VII / 8A (does not exist)

VIII / 3D S3 6 1 3 2
IX / 4A (same as V)
X / 2B 24 16 1 10 5
XI / 2A 2 2 1 1
XII / 1A 1 1 1

3. Del Pezzo surfaces of degree 2

3.1. The anticanonical map. We start by describing the geometry of del Pezzo surfaces of degree d = 2
over an algebraically closed field k of characteristic p = 2. We refer to [Demazure 1980] for the basic facts
from the theory of del Pezzo surfaces over fields of any characteristic. It is known that the anticanonical
linear system |−K X | has no base points and defines a finite morphism f : X → P2 of degree 2.

If p ̸= 2, the map f is automatically separable and its branch curve is a smooth plane quartic. So any
automorphism of X induces an automorphism of the quartic, and, conversely, any automorphism of the
quartic can be lifted to two automorphisms of X that differ by the deck transformation, classically called
the Geiser involution.

If p = 2, the structure of f , being a morphism of degree 2, is more complicated. Nevertheless, as a
first step, we observe that f is still always separable.

Proposition 3.1. The anticanonical linear system |−K X | defines a finite separable morphism f : X → P2

of degree 2.

Proof. Assume that f is not separable. Then, since deg( f ) = 2, f is purely inseparable. Hence, f is a
homeomorphism in the étale topology, which is absurd since H 2

ét(X, Zℓ) has rank 8 (because X is the
blow-up of seven points in the plane), while H 2

ét(P
2, Zℓ) has rank 1. □
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Let
R(X, −K X ) =

∞⊕
n=0

H 0(X,OX (−nK X ))

be the graded anticanonical ring of X . By the Riemann–Roch theorem, dimk R(X, −K X )1 = 3 and
dimk R(X, −K X )2 = 7. One can show that R(X, −K X ) is generated by R(X, −K X )1 and one element
from R(X, −K X )2 that does not belong to the symmetric square of R(X, −K X )1. Let x, y, z be elements
of R(X, −K X )1 and w ∈ R(X, −K X )2, which together generate R(X, −K X ). Then, the relation between
the generators is of the form

w2
+ A(x, y, z)w + B(x, y, z) = 0, (2)

where A and B are homogeneous forms of degree 2 and 4, respectively. In particular, via (2), we can
view X as a surface of degree 4 in the weighted projective space P(1, 1, 1, 2), and the anticanonical map
is the projection of this surface onto the x-, y-, z-coordinates.

If p ̸= 2, we can complete the square, get rid of A, and obtain the standard equation of a del Pezzo
surface of degree 2. The curve V (B(x, y, z)) is the smooth plane quartic we mentioned in the Introduction.
The Geiser involution just negates w.

In our case, when p = 2, we cannot get rid of A, for otherwise the map would become inseparable.
Also, the coefficient B is not uniquely determined, since replacing w with w + Q for any quadratic
form Q changes B to B + AQ + Q2, without changing the isomorphism class of the surface. Taking
Q = A, we obtain the analog of the Geiser involution, so we keep the name for this involution.

The nonuniqueness of B becomes more natural if we take the following different point of view: By
[Ekedahl 1988, Proposition 1.11], the double cover f is a torsor under a group scheme αL,s of order 2
over P2, defined by the exact sequence of fppf-sheaves

0 → αL,s → L φ
−→ L⊗2

→ 0

for some line bundle L and a global section s. The homomorphism of sheaves φ is locally given
by a 7→ a2

U + aU sU , so s cuts out the branch locus of f . By [loc. cit., Proposition 1.7], we have
ωX ∼= f ∗(OP2(−3)⊗L−1); hence L ∼= OP2(2) and s = A. The αL,s-torsor corresponding to f is defined
by a cohomology class in H 1

fppf(P
2, αL,s). Since H 1

fppf(P
2,L) = H 1(P2,L) = 0, we have

H 1
fppf(P

2, αL,s) ∼= H 0(P2,L⊗2)/℘ (H 0(P2,L)),

where ℘ = H 0(φ). The ternary form B is a representative of this space, and hence it is defined only up to
a transformation of the form B 7→ B + Q2

+ AQ, where Q is a quadratic form in x, y, z.
By writing the equation of X locally as w2

U + aU wU + bU , and taking partial derivatives, we see
that the differentials wU daU + dbU restricted to V (A) glue together to define a global section α of
�1

P2 ⊗L⊗2
⊗OV (A). This section vanishes if and only if X is singular. So, in our case, when X is assumed

to be smooth, we obtain the following.
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Proposition 3.2. In (2), the equations A = 0, wAx + Bx = 0, wAy + By = 0, wAz + Bz = 0 have no
common solutions.

3.2. Normal forms. Recall that X is given by an equation of the form w2
+ Aw + B = 0, where A is a

quadratic ternary form and B is quartic ternary form. We say that V (A) is the branch curve of the cover,
and its preimage R = f −1(V (A)) under the anticanonical map f : X → P2 will be called the ramification
curve.

Remark 3.3. We use the notation A2n for singularities of curves whose formal completion is isomorphic
to the unibranched singularity y2

+ x2n+1
= 0. If n = 1, this is an ordinary cusp singularity. These are

exactly the curve singularities that can occur on reduced purely inseparable double covers of smooth
curves in characteristic 2. Indeed, after passing to formal completions, such a double cover is given by an
equation of the form y2

+ uxm, where u ∈ k[[x]] is a unit. Now, we can apply a substitution of the form
y 7→ y + f for a suitable power series f to assume that m is odd and then replace x by λx , where λ is an
m-th root of u−1, which exists by Hensel’s lemma. In other words, the singularity defined by y2

+ uxm is
of type A2n , where 2n + 1 is the smallest odd power of x that occurs in uxm.

The following theorem gives normal forms for the cover f : X → P2. In total, we obtain six normal
forms, corresponding to the six possible combinations of singularities of V (A) and R.

Theorem 3.4. Every del Pezzo surface of degree 2 in characteristic 2 is isomorphic to a quartic surface
in P(1, 1, 1, 2) given by an equation of the form

w2
+ A(x, y, z)w + B(x, y, z),

where (A, B) is one of the forms shown in Table 2. The parameters satisfy the following conditions:

(1a) λ ̸= 0, λ2
+ a + b + c + d + e ̸= 0, b2

+ a ̸= 0, d2
+ e ̸= 0.

(1b) b2
+ a ̸= 0, d2

+ e ̸= 0.

(1c) d2
+ e ̸= 0.

(2a) a ̸= 0, b ̸= 0.

(2b) a ̸= 0.

(3) None.

In terms of these normal forms, the singularities of the irreducible components of Rred are as follows:

(1a) Three A2-singularities, over [0 : 1 : 0], [0 : 0 : 1] and [1 : 1 : 1].

(1b) An A4-singularity over [0 : 0 : 1] and an A2-singularity over [0 : 1 : 0].

(1c) An A6-singularity over [0 : 0 : 1].

(2a) Two A2-singularities, over [1 : 0 : 0] and [0 : 1 : 0].

(2b) Two A2-singularities, over [1 : 0 : 0] and [0 : 0 : 1].

(3) An A2-singularity over [0 : 0 : 1].
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name A B B1 B0 # of parameters

(1a) x2
+yz x B1+B0 λyz(y+z) ay4

+by3z+cy2z2
+dyz3

+ez4 6
(1b) x2

+yz x B1+B0 y2z ay4
+by3z+cy2z2

+dyz3
+ez4 5

(1c) x2
+yz x B1+B0 y3 by3z+cy2z2

+dyz3
+ez4 4

(2a) xy B1+B2
0 xz3

+yz3 ax2
+by2

+cz2
+dxz+eyz 5

(2b) xy B1+B2
0 xz3

+y3z ax2
+cz2

+dxz+eyz 4
(3) x2 x B1+B0 z3

+ayz2 y3z+by2z2
+cz4 3

Table 2. Forms of (A, B) in Theorem 3.4.

Proof. Since f : X → P2 is separable, A is nonzero. Hence, up to projective equivalence, there are
three possibilities for A, corresponding to (1), (2), and (3). Now, we study those cases separately. The
conditions on the parameters will follow from Proposition 3.2 by computing partial derivatives, a task
which we will leave to the reader.

(1) A = x2
+ yz. Applying a substitution of the form w 7→ w+ Q for a suitable quadratic form Q allows

us to assume that B = x B1 + B0 for homogeneous forms B0 and B1 in y and z.
Let x = uv, y = u2, z = v2 define the Veronese isomorphism between V (A) and P1. Substituting

in B, we get that R is isomorphic to the double cover of P1 given by the equation

w2
+ uvB1(u2, v2) + B0(u2, v2) = 0.

By taking the partials, we find that R is singular exactly over the roots of B1.
After applying a suitable substitution that preserves A, we can move these roots to special positions.

Note that the substitution w 7→ w + Q of the first paragraph does not change the position of these
singularities, so we can still assume that B = x B1 + B0.

If the roots are distinct, we get case (a), if there are two distinct roots, we get case (b), and if there is
only a single root, we get case (c). Note that in cases (b) and (c), the substitution y 7→ λy, z 7→ λ−1z
preserves the location of the roots and scales B1, which is why we can assume that x B1 occurs with
coefficient 1. Finally, in case (c), we can apply a substitution of the form z 7→ z +λ2 y, x 7→ x +λy for a
suitable λ to assume that B0(1, 0) = 0.

(2) A = xy. After applying a substitution of the form w 7→ w + Q for a suitable quadratic form Q, we
may assume that B does not contain monomials divisible by xy. This allows us to write

B = (a1x3
+ a2 y3)z + (a3x + a4 y)z3

+ B0(x, y, z)2.

Note that the preimages R1 and R2 of V (x) and V (y) on X are members of |−K X |; hence they must be
reduced.

Restricted to V (x), the equation becomes w2
+ a2 y3z + a4 yz3, so R1 is singular over [0 :

√
a4 :

√
a2].

Similarly, R2 is singular over [
√

a3 : 0 :
√

a1]. Note that these points must be distinct, for otherwise X is
singular over [0 : 0 : 1] by Proposition 3.2.
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If these two points are distinct and different from [0 : 0 : 1], we can apply a suitable substitution that
preserves A to move them to [0 : 1 : 0] and [1 : 0 : 0]. Then, we can repeat the substitution of the first
paragraph and, after rescaling, arrive at case (a).

If the two points are distinct and one of them is [0 : 0 : 1], we can assume without loss of generality that
the other one lies on V (y) and move it to [1 : 0 : 0]. After repeating the substitution of the first paragraph
and rescaling, we may assume that B1 is as in case (b). Finally, after applying a substitution of the form
z 7→ z + λy, w 7→ w + λz2

+ λ2 yz + λ3 y2 for a suitable λ, we may assume that B0(0, 1, 0) = 0.

(3) A = x2. Applying a substitution of the form w 7→ w + Q for a suitable quadratic form Q allows us
to assume that B = x B1 + B0 for homogeneous forms B0 and B1 in y and z.

Let R′ be the preimage of V (x). As in case (2), since R′
∈ |−K X |, R′ must be reduced. Restricted

to V (x), the double cover becomes
w2

+ B0(y, z) = 0;

hence R′ is singular over the common zero of B0,y and B0,z . We can assume that this zero lies at [0 : 0 : 1],
that is, that yz3 does not occur in B0 and y3z occurs with nonzero coefficient. After rescaling, we may
assume that y3z occurs with coefficient 1.

Applying a substitution of the form z 7→ z +λ1x +λ2 y, y 7→ y +λ3x for suitable λi and repeating the
substitution of the first paragraph, we can eliminate the monomials y3 and y2z in B1 and the monomial y4

in B0. Computing partials, we see that X is singular if and only if B1(0, 1) = 0. Hence, after rescaling,
we may assume that B is as claimed. □

3.3. Fake bitangents and odd theta characteristics. It is known that a del Pezzo surface X of degree 2
contains 56 (−1)-curves (see [Dolgachev 2012, Section 8.7], where the proof is characteristic-free). They
come in pairs Ei + E ′

i ∈ |−K X |, with Ei · E ′

i = 2. The Geiser involution γ switches the two curves in a
pair. The image of each pair under any birational morphism π : X → P2 given by the blow-up of seven
points p1, . . . , p7 ∈ P2 is either the union of a line through two points pi , p j and the conic through the
remaining five points, or a cubic passing through p1, . . . , p7 with a double point at some pi (and one
curve of the pair is contracted by π ). The image of Ei + E ′

i under the anticanonical map f is a line ℓ.
If p ̸= 2, each of the resulting 28 lines is a bitangent line to the branch quartic curve and, conversely,

every bitangent to the branch quartic gives rise to a pair of (−1)-curves. A bitangent line intersects the
branch curve at two points, not necessarily distinct, whose sum is an odd theta characteristic of the curve.
It is known that the number of odd theta characteristics on a smooth curve of genus 3 is equal to 28.

For arbitrary p, we still have the following.

Lemma 3.5. The preimage f −1(ℓ) of a line ℓ is a sum of two (−1)-curves if and only if f −1(ℓ) is
reducible.

Proof. Since f has degree 2 and ℓ is integral, the curve f −1(ℓ) is reducible if and only if it has
two irreducible components L1 and L2. These components satisfy L1 + L2 ∈ |−K X |. Since L i maps
birationally to ℓ, we have pa(L i ) = 0; hence L1.L2 = 2 by adjunction. We have L2

1 = L2
2, because the
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two curves are interchanged by the covering involution, so the equality

2 = K 2
X = (L1 + L2)

2
= L2

1 + L2
2 + 2L1.L2

implies that L i is a (−1)-curve. The converse is clear. □

So, even if p = 2, we have 28 splitting lines, which we call fake bitangent lines in analogy with the
situation in the other characteristics. For the rest of this section, we assume p = 2. Since the anticanonical
map is étale outside the branch curve V (A), the intersection Ei ∩ E ′

i lies on the ramification curve R. Let
L = OR(Ei ) ∼= OR(E ′

i ). It is an invertible sheaf on R of degree 2. We have

L⊗2 ∼= OR(Ei + E ′

i )
∼= OR(−K X ).

Since B ∈ |OP2(2)|, we have R ∈ |−2K X |. By the adjunction formula

ωR ∼= OR(−2K X + K X ) ∼= L⊗2.

Invertible sheaves L on R that satisfy this property are called invertible theta characteristics. They are
called even, odd, or vanishing according to whether their space of global sections is even-dimensional,
odd-dimensional, or at least 2-dimensional, respectively. We note that, on singular curves, there can be
theta characteristics which are not invertible; see [Barth 1977; Beauville 1977]. In the following, we will
only discuss invertible theta characteristics, so we drop the “invertible” from the notation.

Let 2(R) be the set of isomorphism classes of theta characteristics on R and let J (R) be the identity
component of the Picard scheme of R, also called the generalized Jacobian of R.

Lemma 3.6. The generalized Jacobian J (R) of R is isomorphic to G3
a .

Proof. Since R is of arithmetic genus 3, J (R) is a commutative group scheme of dimension 3. As
Rred has only unibranched singularities, [Bosch et al. 1990, Propositions 5 and 9] shows that J (R) is
unipotent. Finally, we have a factorization of the absolute Frobenius F : R → V (A) → R. Note that
J (V (A)) is trivial, even if V (A) is nonreduced, since H 1(V (A),OV (A)) = 0. Since F∗ is multiplication
by p on J (R), we obtain that J (R) is p-torsion, and hence isomorphic to G3

a . □

In particular, J (R)(k) is an infinite 2-torsion group and it acts on 2(R) via tensor products. It is easy
to check that 2(R) is a torsor under J (R)(k) via this action. This already shows that the problem of
finding (fake) bitangents using theta characteristics on R in characteristic 2 is much more subtle than it is
in the other characteristics. Let us give an example that further illustrates this point.

Example 3.7. Assume that V (A) is a smooth conic.
Consider π : R → V (A) −→∼ P1. We have π∗OP1(2) = ( f |R)∗OV (A)(1) = (ωX )|R , so L := π∗OP1(1)

is a theta characteristic on R. Moreover, we have h0(R, π∗OP1(1)) = 2, so L is a vanishing theta
characteristic. In fact, this is the unique vanishing theta characteristic on R: Indeed, let L′ be another
vanishing theta characteristic. Then, the Riemann–Roch formula yields

h0(R,L⊗L′) − h0(R, ωR ⊗L−1
⊗L′−1) = 2.
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Since h0(R,L) ≥ 2 and h0(R,L′) ≥ 2, we have h0(R,L ⊗ L′) ≥ 3, so h0(R, ωR ⊗ L−1
⊗ L′−1) ̸= 0.

Since R is integral and ωR ⊗L−1
⊗L′−1 has degree 0, this implies that L ∼= L′.

Next, let ℓ be any line in P2 such that f −1(ℓ) meets R in two distinct smooth points. Then,
f −1(ℓ ∩ V (A))red defines an effective theta characteristic L on R. By the previous paragraph, we
have h0(R,L) = 1; hence all the infinitely many theta characteristics arising in this way are odd. It
would be interesting to find an abstract characterization of the fake bitangent lines among the odd theta
characteristics of R.

Nevertheless, we can find explicit equations of fake bitangent lines using the following result.

Lemma 3.8. Let C → P1 be an Artin–Schreier double cover given by an equation of the form

w2
+ f (u, v)w + g(u, v) = 0,

where f and g are homogeneous polynomials of degree n and 2n, respectively, and f ̸= 0. Then,
C is reducible if and only if there exists a homogeneous polynomial h of degree n with g(u, v) =

f (u, v)h(u, v)+ h(u, v)2.

Proof. If there exists an h as in the assertion, then w2
+ f w+ g = (w+ f +h)(w+h), so C is obviously

reducible.
Conversely, assume that C is reducible. Then, C has exactly two irreducible components and these

components are interchanged by the substitution w 7→ w+ f . In other words, we can write w2
+ f w+g =

h′(h′
+ f ), where h′ is a weighted homogeneous polynomial of degree n. This is only possible if

h′ is of the form h′
= w + h for some h homogeneous of degree n in the variables u and v. Then,

w2
+ f w + g = (w + h)(w + h + f ) = w2

+ f w + h2
+ f h; hence g = f h + h2, as claimed. □

Finally, for later use, we record some simple restrictions on the possible positions of fake bitangent
lines with respect to the singularities of R.

Proposition 3.9. Let ℓ be a fake bitangent line that passes through the image P of a singular point of an
irreducible component of Rred. Then, V (A) is smooth and ℓ is tangent to V (A) at P.

Proof. Write f −1(ℓ) = L1 + L2. Since Rred is singular at f −1(P), L i and R have intersection multiplicity
at least 2 in f −1(P). Since R ∈ |−2K X | and L1 + L2 ∈ |−K X |, we have (L1 + L2).R = 2K 2

X = 4; hence
L1+L2 and R meet only in f −1(P). Therefore, their images in P2 meet only in P. If V (A) is smooth, this
implies that ℓ is tangent to V (A) in P. If V (A) is the union of two lines, this implies that ℓ passes through
their intersection. However, in this case, L i and R have intersection multiplicity at least 3 in f −1(P),
which is absurd. Finally, if V (A) is a double line, then Rred ∈ |−K X | and 2 = K 2

X = (L1 + L2).Rred ≥ 4,
a contradiction. □

Remark 3.10. We note there are del Pezzo surfaces for which fake bitangents satisfying the properties of
Proposition 3.9 exist. See Proposition 5.10 for a classification in terms of the normal forms of Theorem 3.4.
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3.4. Strange elliptic fibrations. To each del Pezzo surface X of degree 2 in characteristic 2 with branch
locus V (A) of the anticanonical map f : X → P2, there is a naturally associated point PX in P2: if V (A)

is smooth, we let PX be the strange point of V (A), if V (A) is the union of two lines, we let PX be their
intersection, and if V (A) is a double line, we let PX be the image of the singular point of f −1(V (A))red.
We call PX the strange point of X and note that the action of Aut(X) fixes PX .

The pencil P of lines through PX is Aut(X)-invariant as well. Its preimage C in X is an Aut(X)-
invariant pencil of curves of arithmetic genus 1 with two base points if V (A) is smooth and with one
base point of multiplicity 2 if V (A) is singular. We let π : Y → X be the blow-up of the two (possibly
infinitely near) base points of C. Then, C defines a relatively minimal genus-1 fibration φ : Y → P1. Since
the map X → P2 is separable and a general line in the pencil is not contained in V (A), its preimage on Y
is a smooth elliptic curve. Thus, the genus-1 fibration is an elliptic fibration. We call it the strange elliptic
fibration associated to X .

By construction, the group Aut(X) lifts to a subgroup of Aut(Y ) and we will use this in Proposition 4.2
to find restrictions on the possible structure of Aut(X). To make the most of this connection, we will now
describe the singular fibers of the elliptic fibration φ : Y → P1. We employ Kodaira’s notation: we say
that a fiber isomorphic to an irreducible cuspidal cubic curve is of type II, a fiber that consists of two
smooth rational curves intersecting nontransversally at one point is of type III, and a fiber that consists of
three smooth rational curves intersecting at one point is of type IV.

We use the normal forms of Theorem 3.4, so that A = x2
+ yz, xy, or x2 and PX = [1 : 0 : 0] in the

first case and PX = [0 : 0 : 1] in the other two cases. In the first case, we let ℓ[t0:t1] be the line V (t0 y + t1z)
and in the other two cases, we let ℓ[t0:t1] be the line V (t0x + t1 y). The fiber of φ corresponding to ℓ[t0:t1]

is denoted by F[t0:t1].

Proposition 3.11. The generic fiber of the strange elliptic fibration associated to X is a supersingular
elliptic curve. Its singular fibers are of type II, III, or IV and its Mordell–Weil group is torsion-free. Namely:

(1) If A = x2
+ yz, then the following hold:

• The fiber F[t0:t1] is smooth if and only if t0 y + t1z ∤ B1.

• The fiber F[t0:t1] is of type III if ℓ[t0:t1] is a fake bitangent and of type II otherwise.

• The line ℓ[1:0] is a fake bitangent if and only if e = 0.

• The line ℓ[0:1] is a fake bitangent if and only if a = 0.

• The line ℓ[1:1] is a fake bitangent if and only if a + b + c + d + e = 0.

(2a) If A = xy and B1 = xz3
+ yz3, then the following hold:

• The fiber F[t0:t1] is smooth if and only if [t0 : t1] ̸= [1 : 0], [0 : 1], [1 : 1].

• F[1:0] and F[0:1] are of type II.

• F[1:1] is of type IV if ℓ[1:1] is a fake bitangent and of type III otherwise.

• The curve ℓ[1:1] is a fake bitangent if and only if c = d2
+ e2.
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(2b) If A = xy and B1 = xz3
+ y3z, then the following hold:

• The fiber F[t0:t1] is smooth if and only if [t0 : t1] ̸= [1 : 0], [0 : 1].

• The curve F[0:1] is of type II.

• The curve F[1:0] is of type III.

(3) If A = x2, then the following hold:

• The fiber F[t0:t1] is smooth if and only if [t0 : t1] ̸= [1 : 0].

• The curve F[1:0] is of type III.

Proof. We study each case separately.

(1) In this case, A = x2
+ yz.

First, consider ℓ[1:t] = V (y + t z). Plugging y = t z into the equation of X , we obtain

w2
+ (x2

+ t z2)w + x B1(t z, z) + (at4
+ bt3

+ ct2
+ dt + e)z4,

with B1(t z, z) ∈ {λt (t +1)z3, t2z3, t3z3
}. If y + t z ∤ B1, then B1(t z, z) ̸= 0, so taking partials with respect

to x and w shows that a singular point must satisfy x = z = 0, which is absurd. If y + t z | B1, then
B1(t z, z) = 0 and F[1:t] is singular over [t : t : 1]. Similarly, one checks that F[0:1] is singular.

The equation
w2

+ (x2
+ t z2)w + x B1(t z, z) + (at4

+ bt3
+ ct2

+ d + e)z4

shows that F[1:t] is a double cover of P1 branched over a single point. Hence, if F[1:t] is smooth, then it is
supersingular, and if it is singular and irreducible, it is a cuspidal cubic.

Finally, consider the curve F[1:0] given by

w2
+ x2w + ez4.

By Lemma 3.8, it is clear that F[1:0] is reducible if and only if e = 0. The calculation for F[1:1] and F[0:1]

is similar.

(2a) In this case, A = xy and B1 = xz3
+ yz3.

First, consider ℓ[1:t] = V (x + t y) with t ̸= 0, 1. Plugging x = t y into the equation of X , we obtain

w2
+ t y2w + (t + 1)yz3

+ B0(t y, y, z)2.

Then, taking partials shows that F[1:t] is smooth. Since it is a double cover of P1 branched over a single
point, it is supersingular.

Next, consider F[1:1], whose image in X is given by

w2
+ y2w + ((a + b)y2

+ (d + e)yz + cz2)2.

This curve is singular over [0 : 0 : 1], so F[1:1] has one irreducible component contracted by Y → X . By
Lemma 3.8, the image of F[1:1] in X is reducible if and only if c = d2

+ e2.
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Finally, the curves F[1:0] and F[0:1] are isomorphic to their images in X and these images are irreducible
and cuspidal by Theorem 3.4.

(2b) In this case, A = xy and B1 = xz3
+ y3z.

First, consider ℓ[1:t] = V (x + t y) with t ̸= 0. Plugging x = t y into the equation of X , we obtain

w2
+ t y2w + t yz3

+ y3z + B0(t y, y, z)2.

As in the previous cases, taking partials shows that F[1:t] is smooth and supersingular.
The curve F[0:1] is isomorphic to its image in X , since f −1(ℓ[0:1]) is smooth over the point [0 : 0 : 1].

Hence, F[0:1] is of type II. On the other hand, the curve F[1:0] is of type III, since its image in X has
multiplicity 2 over [0 : 0 : 1].

(3) In this case A = x2.
First, consider ℓ[t :1] = V (t x + y). Plugging y = t x into the equation of X , we obtain

w2
+ x2w + xz3

+ (bt2
+ at)x2z2

+ cz4.

Then, taking partials shows that F[t :1] is smooth. Since it is a double cover of P1 branched over a single
point, it is supersingular.

The curve F[1:0] is of type III, by the same argument as in the previous case.

The Mordell–Weil group of the fibration is torsion-free by [Oguiso and Shioda 1991, Main Theorem],
since the lattice spanned by fiber components is of rank at most 4 in each case. □

Remark 3.12. The classification of singular fibers of rational elliptic surfaces with a section in character-
istic 2 can be found in [Lang 2000]. Lang shows that in the cases where the general fiber is a supersingular
elliptic curve, the number of singular fibers is at most 3, which agrees with what we observed in the case
of strange elliptic fibrations. Proposition 3.11 shows that the singular fibers that occur on strange genus-1
fibrations are of type 9A, 9B, 10A, 10B, 10C or 11 in Lang’s terminology.

4. Automorphism groups of del Pezzo surfaces of degree 2

4.1. Preliminaries. Recall once more from Section 3.1 that a del Pezzo surface X of degree 2 is a surface
of degree 4 in P(1, 1, 1, 2) given by an equation of the form

w2
+ A(x, y, z)w + B(x, y, z) = 0.

Since this is the anticanonical model of X and ω−n
X admits a natural Aut(X)-linearization for all n, we

obtain that Aut(X) is isomorphic to the subgroup of Aut(P(1, 1, 1, 2)) of automorphisms that preserve X .
The structure of the group Aut(P(1, 1, 1, 2)) is well known. The vector space k[x, y, z]2 of quadratic

forms is a normal subgroup of Aut(P(1, 1, 1, 2)) that acts via (x, y, z, w) 7→ (x, y, z, w + Q). The
quotient by this subgroup is the group of transformations that change (x, y, z) linearly and multiply w

by a scalar. Since the transformation (x, y, z, w) 7→ (λx, λy, λz, λ2w) is the identity, this quotient is
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isomorphic to GL3(k)/µ2(k). Since we are in characteristic 2, the subgroup µ2(k) is trivial. This gives
an isomorphism

Aut(P(1, 1, 1, 2)) ∼= k[x, y, z]2 : GL3(k).

We denote elements of this group by (Q, g)∈k[x, y, z]2×GL3(k) where the semidirect product structure is

(Q, g) ◦ (Q′, g′) = (g∗(Q′) + Q, gg′).

Using this description of Aut(P(1, 1, 1, 2)), it is straightforward to calculate the subgroup of automor-
phisms preserving X . We obtain

Aut(X) ∼= {(Q, g) : g∗(A) = A, g∗(B) = B + AQ + Q2
}.

The kernel of the homomorphism
Aut(X) → GL3(k), (Q, g) 7→ g

is generated by the Geiser involution γ . We let G(X) be the image of Aut(X) in GL3(k).

Lemma 4.1. The homomorphism G(X) → GL3(k) → PGL3(k) is injective.

Proof. Let g ∈ G(X) be in the kernel of this homomorphism. Then, g = λI3 for some λ ∈ k×. On the
other hand, by definition of G(X), we have g∗(A) = A. Since A has degree 2, this implies λ2

= 1. Hence,
λ = 1. □

We recall from [Dolgachev and Martin 2024, Section 1] that a choice of a blow-up X → P2 of seven
points defines an injective homomorphism

ρ : Aut(X) → W (E7). (3)

The image of the Geiser involution is equal to −idE7 . It is known that W (E7) = ⟨−idE7⟩× W (E7)
+, where

W (E7)
+

⊆ W (E7) is the kernel of the determinant map.
In particular, to determine Aut(X), it suffices to determine G(X) and both groups are isomorphic to

subgroups of W (E7) via ρ. This puts severe restrictions on the possible structure of G(X). Finally, we
can use the strange genus-1 fibrations of the previous section to get information on G(X).

Proposition 4.2. Let φ : Y → P1 be the strange elliptic fibration associated to X. Choose an exceptional
curve E of Y → X as the zero section of φ and let C be the second exceptional curve. Then, there is a
homomorphism ϕ : Aut(X) → Aut(Y ) that satisfies the following properties:

(1) ϕ is injective.

(2) ϕ(γ ) preserves every fiber of φ.

(3) If V (A) is smooth, then C is a section of φ. We have ϕ(γ ) = tC ◦ ι, where ι is the negation
automorphism and tC is translation by C.

(4) If V (A) is singular, then C is a component of a reducible fiber of φ. We have ϕ(γ ) = ι and ϕ factors
through the stabilizer of the pair (E, C).
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Proof. The surface Y is obtained by blowing up X at two points that are uniquely determined by V (A), and
hence is stable under the action of Aut(X). This shows existence and injectivity of the homomorphism ϕ.
The fibration φ is induced by the pencil of lines in P2 through the strange point of X . Since γ preserves
these lines, it preserves the fibers of φ.

If V (A) is smooth, then E and C are interchanged by ϕ(γ ). The automorphism t−C ◦ ϕ(γ ) ◦ ι maps
E to E and −C to −C . It is well known that every fixed point of a nontrivial automorphism of an
elliptic curve is a torsion point. On the other hand, by Proposition 3.11, φ has no torsion sections, so
t−C ◦ ϕ(γ ) ◦ ι = id, which yields claim (3).

If V (A) is singular, then C is a (−2)-curve which meets E ; hence it is the identity component of
a reducible fiber of φ. Since ϕ(γ ) is an involution that preserves E , we have ϕ(γ ) = ι and we obtain
claim (4). □

4.2. Classification.

Theorem 4.3. Every del Pezzo surface of degree 2 in characteristic 2 such that, in the decomposition
Aut(X) ∼= 2 × G(X), the group G(X) is nontrivial is isomorphic to a surface of degree 4 in P(1, 1, 1, 2)

given by an equation of the form
w2

+ Aw + B,

where (A, B, G(X)) is one of the forms shown in Table 3. The parameters satisfy the following conditions:

(1ai) λ ̸= 0, λ2
+ c ̸= 0, b2

+ a ̸= 0, (b, c) ̸= (λ, a).

(1aii) λ ̸= 0, λ2
+ a ̸= 0.

(1ci) e ̸= 0.

(2ai) a ̸= 0, (c, d) ̸= (0, 0).

(2aii) a ̸= 0, b ̸= 0, a ̸= b.

(2aiii) a ̸= 0.

(3i) c ̸= 0.

(3ii) None.

Proof. We use the normal forms of Theorem 3.4 and the description of Aut(X) and G(X) given in the
beginning of the current section. We go through the cases of Theorem 4.3.

(1a) Here, X is given by an equation of the form

w2
+ (x2

+ yz)w + λxyz(y + z) + B0,

with
B0 = ay4

+ by3z + cy2z2
+ dyz3

+ ez4

and the cusps lie over [0 : 1 : 0], [0 : 0 : 1], and [1 : 1 : 1]. Let (Q, g) ∈ Aut(X) be an automorphism of X .
Then, g preserves the three points lying under the cusps. Moreover, if g fixes the three cusps, then it fixes
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name A B B1 B0 G(X) # of parameters

(1ai) x2
+yz x B1+B0 λyz(y+z) ay4

+by3z+cy2z2
+byz3

+az4 2 4
(1aii) x2

+yz x B1+B0 λyz(y+z) ay4
+λy3z+ay2z2

+λyz3
+az4 S3 2

(1ci) x2
+yz x B1+B0 y3 by3z+cy2z2

+ez4 23 3
(2ai) xy B1+B2

0 xz3
+yz3 ax2

+ay2
+cz2

+dxz+dyz 2 3
(2aii) xy B1+B2

0 xz3
+yz3 ax2

+by2 3 2
(2aiii) xy B1+B2

0 xz3
+yz3 ax2

+ay2 6 1
(3i) x2 x B1+B0 z3 y3z+cz4 3 1
(3ii) x2 x B1+B0 z3 y3z 9 0

Table 3. Forms of (A, B, G(X)) in Theorem 4.3.

V (A) pointwise; hence g is trivial in PGL3(k), so, by Lemma 4.1, g is the identity and (Q, g) coincides
with the Geiser involution. Hence, G(X) acts faithfully on {[0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1]}.

Note that G(X) contains an involution if and only if X admits an equation where this involution is
given by y ↔ z. This involution is in G(X) if and only if there exists a quadratic form Q such that

Q2
+ (x2

+ yz)Q = g∗B0 + B0. (4)

Since Q2
+(x2

+yz)Q contains a nonzero monomial divisible by x2 as soon as it is nonzero and g∗B0+B0

does not contain such a monomial, we must have Q ∈ {0, x2
+ yz} and (4) holds if and only if a = e and

b = d , as claimed.
Next, note that G(X) contains an automorphism g of order 3 if and only if g is given by x 7→ x + z,

y 7→ z, z 7→ y + z and there exists a quadratic form Q such that

Q2
+ (x2

+ yz)Q = λyz2(y + z) + g∗B0 + B0. (5)

By the same argument as in the previous paragraph, we have Q ∈ {0, x2
+ yz} and (5) holds if and only if

a = c = e and b = d = λ. In particular, note that these conditions imply the conditions of the previous
paragraph in this case; hence G(X) = S3.

(1b) In this case, V (A) is smooth and R has two nonisomorphic singularities. Then, g ∈ G(X) must fix
the images of them on V (A). Since an automorphism of order 2 of P1 has only one fixed point, we may
assume that the order of g is odd. By Proposition 3.9, the line ℓ through the images of the singularities
is not a fake bitangent. Its preimage E in X is an integral curve of arithmetic genus 1 and the Geiser
involution has two fixed points on E . Hence, either E is smooth and ordinary, or nodal. In both cases,
there is no nontrivial automorphism of odd order that commutes with the involution; hence g fixes ℓ

pointwise. Since g also fixes the strange point P on V (A) and the projection from P is inseparable,
g fixes V (A) pointwise; hence g is the identity. We conclude that G(X) = {1}.

(1c) Here, X is given by an equation of the form

w2
+ (x2

+ yz)w + xy3
+ B0,
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with
B0 = by3z + cy2z2

+ dyz3
+ ez4.

The singularity of R lies over [0 : 0 : 1]. An element g ∈ G(X) of odd order has at least two fixed points
on V (A) and then the same argument as in the previous case shows that g is the identity. Therefore,
G(X) is a 2-group that acts on V (A) ∼= P1 with a fixed point. In particular, G(X) is isomorphic to a
subgroup of Ga(k), and hence is isomorphic to 2n for some n ≥ 0.

We may assume that g acts as x 7→ x + αy, y 7→ y, z 7→ z + α2 y. Then g lifts to Aut(X) if and only
if there exists a quadratic form Q such that

(x2
+ yz)Q + Q2

= αy4
+ g∗(B0) + B0.

Since the right-hand side does not contain a monomial divisible by x2, we get, as in the previous cases,
Q = x2

+ yz or Q = 0. Comparing coefficients yields the system of equations

dα2
= 0,

dα4
= 0,

eα8
+ dα6

+ cα4
+ bα2

+ α = 0.

So, if d ̸= 0, then α = 0 and G(X) is trivial. If d = 0, there are eight possibilities for α, one for each root
of ex8

+ cx4
+ bx2

+ x . All the roots are distinct since the derivative of this polynomial is 1. Here, we
also use that e ̸= 0 by Theorem 3.4. Thus G(X) ∼= 23.

(2a) Here, X is given by an equation of the form

w2
+ xyw + xz3

+ yz3
+ B2

0 ,

with
B0 = ax2

+ by2
+ cz2

+ dxz + eyz.

The singularities of the irreducible components of R lie over [1 : 0 : 0] and [0 : 1 : 0]. Let (Q, g) ∈ Aut(X).
Then, g preserves these two points and the intersection of V (x) and V (y). Moreover, by Propositions 4.2
and 3.11, g preserves the line V (x + y).

Assume that g has odd order. Then, g preserves the three lines V (x), V (y), and V (x + y); hence it is
of the form (x, y, z) 7→ (x, y, αz). The quadratic form Q satisfies

Q2
+ xyQ = g∗(B1 + B2

0 ) + B1 + B2
0 .

The right-hand side does not contain monomials divisible by xy; hence Q ∈ {0, xy}. Now, g∗B1 + B1 = 0
implies that α3

= 1, and if α ̸= 1, then g∗B2
0 + B2

0 = 0 holds if and only if c = d = e = 0.
Assume that g has order a power of 2. If g does not swap the points [1 : 0 : 0] and [0 : 1 : 0], then it

acts diagonally; hence it is the identity. Therefore, we may assume that g swaps these two points and
g2

= id. Hence, g acts as x ↔ y. The quadratic form Q satisfies

Q2
+ xyQ = g∗(B1 + B2

0 ) + B1 + B2
0 ,

and hence a = b and d = e.
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(2b) Here, X is given by an equation of the form

w2
+ xyw + xz3

+ y3z + B2
0 ,

with

B0 = ax2
+ cz2

+ dxz + eyz

and the singularities of the irreducible components of R map to [1 :0 :0] and [0 :0 :1]. Let (Q, g)∈Aut(X).
If g has odd order, then there is a g-invariant line ℓ through [1 : 0 : 0] and we may assume that ℓ ̸⊆ V (A).

By the same argument as in case (1b), ℓ is fixed pointwise. Then, every line through [0 : 0 : 1] is g-invariant.
Since g∗ A = A, this means that g acts as (x, y, z) 7→ (x, y, αz). An automorphism of this form satisfies
g∗B1 = B1 if and only if α = 1, so g is trivial.

If g has order a power of 2, then by Proposition 3.11, ϕ((Q, g)) ∈ Aut(Y ) preserves the two singular
fibers of φ : Y → P1; hence ϕ((Q, g)) acts trivially on the base of φ. The 2-Sylow subgroup of
automorphisms of the geometric generic fiber of φ is the quaternion group Q8 and ϕ((Q, g)) commutes
with the unique involution ϕ(γ ) in Q8. This implies that (Q, g) ∈ ⟨γ ⟩, so g is trivial.

(3) If V (A) is a double line, then X is given by an equation of the form

w2
+ x2w + x B1 + B0,

with B1 = z3
+ ayz2 and B0 = y3z + by2z2

+ cz4. The singularity of Rred lies over [0 : 0 : 1]. Let
(Q, g) ∈ Aut(X). Then, g is of the form

(x, y, z) 7→ (x, αx + βy, γ x + δy + ϵz),

with β, ϵ ̸= 0 and Q satisfies the equation

Q2
+ x2 Q = x(g∗B1 + B1) + g∗B0 + B0. (6)

The monomials y3z, xz3, xyz2, xy2z and xy3 do not appear on the left-hand side; hence their
coefficients on the right-hand side must be zero. This yields the conditions

ϵ = β−3, δ = a(β + β6),

β9
= 1, α = a2(1 + β),

γ = a3(1 + β2).

So, the order of g is equal to the order of β in k×; hence it is equal to 1, 3 or 9. Now, we calculate that if
β3

= 1, then g3 acts as

(x, y, z) 7→ (x, y, a3(β + β2)x + z).

Hence, if a ̸= 0, then g is the identity.
So, assume that a = 0, so that, in particular, α = δ = γ = 0. Equation (6) becomes

Q2
+ x2 Q = (ϵ3

+ 1)xz3
+ (β3ϵ + 1)y3z + b(β2ϵ2

+ 1)y2z2
+ c(ϵ4

+ 1)z4.
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On the left-hand side, the coefficients of z4 and y2z2 are the squares of the coefficients of x2z2 and x2 yz,
respectively. Since the latter monomials do not appear on the right-hand side, the coefficients of the
former monomials must vanish. Therefore, we get the four conditions

ϵ3
+ 1 = 0, b(β2ϵ2

+ 1) = 0,

β3ϵ + 1 = 0, c(ϵ4
+ 1) = 0,

Hence, if b ̸= 0, then β = ϵ = 1, so G(X) is trivial. If b = 0 and c ̸= 0, then ϵ = 1 and β3
= 1, and so

G(X) ∼= C3. If b = c = 0, then ϵ = β−3 and β9
= 1; hence G(X) ∼= C9. □

Remark 4.4. With our choice of normal form in Theorem 4.3, the map g 7→ (0, g) defines an explicit
section of the surjection Aut(X) → G(X) in every case.

Remark 4.5. The group 24 that appears in Theorem 4.3 occurs as a group of automorphisms of a del Pezzo
surface of degree 4 in all characteristics [Dolgachev and Duncan 2019]. In characteristic 0, there is a
unique conjugacy class of subgroups isomorphic to 24 in the Cremona group. One can prove, using the
theory of birational links, that in characteristic 2, the two subgroups of Crk(2) are not conjugate.

Remark 4.6. The fact that 2 and 3 are the only primes that divide the order of Aut(X) can be proven
without the classification. It is known that 2, 3, 5, and 7 are the only primes that divide the order of
W (E7). To exclude the primes 5 and 7, one can use the Lefschetz fixed-point formula and the known
traces of elements of W (E7) acting on the root lattice of type E7 to get a contradiction with the possible
structure of the set of fixed points of an element of the group G(X).

4.3. Conjugacy classes and comparison with the classification in characteristic 0. In this section, we
determine the conjugacy classes in W (E7) of the elements of the groups that occur in Theorem 4.3 and,
whenever possible, compare the surfaces in Theorem 4.3 with their counterparts in characteristic 0 (see
[Dolgachev 2012, Table 8.9]). To do this, we use the following result.

Lemma 4.7. Let X be a del Pezzo surface of degree 2 in characteristic 2. Let X ′ be a geometric generic
fiber of a lift of X to characteristic 0 and let sp : Aut(X ′) → Aut(X) be the specialization map. Then, sp
is injective and preserves conjugacy classes.

Proof. Let X → S be a lift of X with geometric generic fiber X ′. The map sp sends an automorphism
g ∈ Aut(X ′) to the special fiber of the closure of g considered as a point of the relative automorphism
scheme AutX/S . To see that this is well-defined, we have to explain why AutX/S is proper over S.

By passing to the anticanonical model of X in PS(1, 1, 1, 2), the scheme AutX/S is identified with the
stabilizer of X under the action of AutPS(1,1,1,2) on the space Hd P2,S of smooth quartic hypersurfaces in
PS(1, 1, 1, 2). To check that this stabilizer is proper, it suffices to show that the shear map

(G3
a : GL3) ×Hd P2 → Hd P2 ×Hd P2,

(Q, g, w2
+ Aw + B) 7→ (w2

+ Aw + B, w2
+ (g∗ A + 2Q)w + g∗B + g∗ AQ + Q2),
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is a proper morphism of schemes over Spec Z. For this, it suffices to check that the individual shear
maps for the G3

a-action and the GL3-action are proper. We check this using the valuative criterion. So,
let R be an arbitrary discrete valuation ring with field of fractions K and let F = w2

+ Aw + B and
F ′

= w2
+ A′w + B ′ be equations of smooth quartics in PR(1, 1, 1, 2) with A, A′

∈ R[x, y, z]2 and
B, B ′

∈ R[x, y, z]4.
Given Q ∈ K [x, y, z]2 sending F to F ′, we have the two conditions

A + 2Q − A′
= 0,

B + AQ + Q2
− B ′

= 0.

Comparing the valuations of the coefficients of Q2 and AQ+B−B ′ in the second equation shows that Q ∈

R[x, y, z]2. This proves the valuative criterion of properness for the shear map of the G3
a-action on Hd P2.

Given g ∈ GL3(K ) sending F to F ′, we have the two conditions

g∗ A = A′, g∗B = B ′.

Replacing g by its Smith normal form, we may assume that g acts as

x 7→ π ex x, y 7→ π ey y, z 7→ π ez z,

where π is a uniformizer of R. Thus, if a monomial x i y j zk appears in A or B with unit coefficient, then
iex + jey + kez = 0. We leave it to the reader to check that, because of the smoothness of F and F ′

modulo π , there are enough such monomials to check that ex = ey = ez , that is, that g ∈ GL3(R). This
is the valuative criterion of properness for the shear map of the GL3-action on Hd P2.

Since H 0(X, TX ) = 0, the scheme AutX/S is discrete; hence the specialization map is injective. As
H 1(X,OX ) = H 2(X,OX ), the relative Picard scheme PicX/S is constant over S. Now, specialization of
line bundles is sp-equivariant and compatible with the intersection pairing; hence sp preserves conjugacy
classes. □

Remark 4.8. It would be interesting to determine all integers a1, . . . , an and d such that the action of
AutP(a1,...,an) on the space Hd of smooth hypersurfaces of degree d in P(a1, . . . , an) is proper. This would
be a generalization of [Katz and Sarnak 1999, Proposition 11.8.2] to the weighted case.

By Theorem 4.3, we have |Aut(X)| ≤ 18, so types I, . . . , V and of [Dolgachev 2012, Table 8.9] do not
have a reduction modulo 2 which is a del Pezzo surface. Similarly, type VII of that table has no analog in
characteristic 2.

The surface of type (3ii) of Theorem 4.3 is a reduction modulo 2 of the surface of type VI in [Dolgachev
2012, Table 8.9]. Hence, we call this surface type VI. Since the conjugacy classes of elements of Aut(X)

are the same as the ones of the lift, the entry for type VI in Table 4 is the same as the one in [Dolgachev
and Martin 2024, Table 7].
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The equations of the surfaces of type (2aiii) of Theorem 4.3 define smooth surfaces in characteristic 0
and the automorphisms x ↔ y and z 7→ ζ3z make sense in characteristic 0. Hence, these surfaces lift to char-
acteristic 0 as del Pezzo surfaces with an action of 2×6. As explained above, del Pezzo surfaces of degree
2 with an automorphism group of order bigger than 18 do not have a smooth reduction modulo 2; hence
these lifts are of type VIII [Dolgachev 2012, Table 8.9], so we also call the surfaces of type (2aiii) type VIII.
As in the previous case, the conjugacy classes are the same as in [Dolgachev and Martin 2024, Table 7].

As for the surfaces of type (1aii), we rewrite their equations using the substitution x 7→ x + y + z as

w2
+ (x2

+ y2
+ z2

− yz)w + λxyz(z − y) + a(y2
+ z2

− yz)2.

This equation defines a lift of X to characteristic 0 and the Aut(X)-action lifts as well, since it is generated
by the Geiser involution γ : w 7→ −w, the involution y ↔ z and the automorphism g of order 3 given by

x 7→ −x, y 7→ z, z 7→ z − y.

Hence, all surfaces of type (1aii) are reductions modulo 2 of surfaces of type IX in [Dolgachev 2012,
Table 8.9]. In particular, we can read off the conjugacy classes of elements of Aut(X) from [Dolgachev
and Martin 2024, Table 7].

The surfaces of type (1ci) are the characteristic-2 analogs of type X from [Dolgachev 2012, Table 8.9].
We claim that every involution on a surface X of type (1ci) which is different from the Geiser involution
is of conjugacy class 3A1/4A1. It suffices to check this for the surface given by

w2
+ (x2

+ yz)w + xy3
+ z4,

where G(X) acts as gα : x 7→ x+αy, z 7→α2x+z, with α8
=α. After using the substitution z 7→αx+y+z,

y 7→ α6x + α6 y, the equation of X becomes

w2
+ (x2

+ xy + y2
+ α6(y + x)z + α4(x2

+ y2))w + α4(x3 y + x2 y2
+ xy3) + α3(x4

+ y4
+ z4)

and the involution gα acts as x ↔ y. Then, the above equation makes sense in characteristic 0 and defines
a lift of X together with the involution gα. In particular, by [Dolgachev and Martin 2024, Table 7], the
conjugacy class of gα is 3A1 or 4A1.

The equations of types (2aii) and (3i) make sense in characteristic 0, where they define a lift of the
surface together with the C3-action. These lifts must be of type XI from [Dolgachev 2012, Table 8.9].

Similarly, the equations of types (1ai) and (2ai) define lifts to characteristic 0 together with the
C2-action. Hence, these lifts are of type XII from [Dolgachev 2012, Table 8.9].

We summarize the classification of automorphism groups of del Pezzo surfaces of degree 2 in Table 4.
In the first column, we give the name of the corresponding family, both in the notation of Theorem 4.3
and in the notation of [Dolgachev 2012, Table 8.9]. The second and third columns give the group Aut(X)

and its size. In the remaining columns, we list the number of elements of a given Carter conjugacy class
in Aut(X).
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name Aut(X) order id 3A1 4A1 7A1 2A2 3A2 2A3 2A3+A1 A5+A2 A6 D4(a1) D4(a1)+A1

I–V (do not exist)
VI / (3ii) 18 18 1 1 2
VII (does not exist)
VIII / (2aiii) 2×6 12 1 1 1 1 2 2
IX / (1aii) 2×S3 12 1 3 3 1 2
X / (1ci) 24 16 1 7 7 1
XI / (2aii), (3i) 6 6 1 1 2
XII / (1ai), (2ai) 22 4 1 1 1 1
XIII 2 2 1 1

name Aut(X) order D5 D5+A1 D6(a2)+A1 E6 E6(a1) E6(a2) E7 E7(a1) E7(a2) E7(a4)

I–V (do not exist)
VI / (3ii) 18 18 6 6 2
VII (does not exist)
VIII / (2aiii) 2×6 12 2 2
IX / (1aii) 2×S3 12 2
X / (1ci) 24 16
XI / (2aii), (3i) 6 6 2
XII / (1ai), (2ai) 22 4
XIII 2 2

Table 4. Automorphism groups of del Pezzo surfaces of degree 2.

5. Del Pezzo surfaces of degree 1

5.1. The antibicanonical map. As in the case of degree 2, we start by describing the geometry of
del Pezzo surfaces of degree d = 1 and we refer to [Demazure 1980] for characteristic-free facts on
del Pezzo surfaces. Recall that the antibicanonical system |−2K X | defines a finite morphism f : X → Q
onto a quadratic cone Q ⊆ P3. As in degree 2, it turns out that this map is always separable, even in
characteristic 2.

Proposition 5.1. The antibicanonical linear system |−2K X | defines a finite separable morphism f :

X → Q of degree 2.

Proof. If f is not separable, then p = 2 and f is purely inseparable. But then f is a homeomorphism in
the étale topology. This is impossible, since H 2

ét(X, Zℓ) has rank 9 (because X is the blow-up of eight
points in the plane), while H 2

ét(Q, Zℓ) has rank 1. □

Let

R(X, −K X ) =

∞⊕
n=0

H 0(X,OX (−nK X ))

be the graded anticanonical ring of X . By the Riemann–Roch theorem, we have

dimk R(X, −K X )1 = 2,

dimk R(X, −K X )2 = 4,

dimk R(X, −K X )3 = 7.
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Thus, we can choose u, v from R(X, −K X )1, x ∈ R(X, −K X )2\S2(R(X, −K X )1), and y ∈ R(X, −K X )3\

S3(R(X, −K X )1)+R(X, −K X )1⊗R(X, −K X )2 and obtain the following relation between the generators:

y2
+ y(a1x + a3) + x3

+ a2x2
+ a4x + a6 = 0, (7)

where ak denotes a binary form of degree k in u and v. In particular, via (7), we can view X as a surface
of degree 6 in the weighted projective space P(1, 1, 2, 3), the anticanonical map is the projection of this
surface onto the u-, v-coordinates, and the antibicanonical map is the projection onto the u2-, uv-, v2-,
x-coordinates.

If p ̸= 2, we can replace y with y +
1
2(a1x + a3) to assume that a1 = a3 = 0. The surface X is a

double cover of a quadratic cone Q ∼= P(1, 1, 2). The branch curve B = V (x3
+ a2x2

+ a4x + a6) is a
curve of degree 6 not passing through the vertex of Q. It is a smooth curve of genus 4 with a vanishing
theta characteristic g1

3 defined by the ruling of Q. If we blow up the vertex of Q, we obtain a surface
isomorphic to the rational minimal ruled surface F2. The preimage of the curve B is a curve in the linear
system |6f+ 3e|, where f and e are the standard generators of Pic(F2), with f2 = 0 and e2

= −2. The
curve B is its canonical model in P3.

In our case, when the characteristic p = 2, the analog of B is the curve V (a1x +a3) in Q. In particular,
Proposition 5.1 tells us that a1x +a3 ̸= 0 and there is no way of removing these terms. Moreover, the curve
B always passes through the vertex of Q and its strict transform on F2 is in |3f| if a1 = 0 and in |3f+ e|

if a1 ̸= 0. The analog of the involution y 7→ −y, classically called the Bertini involution, is the involution
β defined by replacing y with y + a1x + a3. As in the classical case, we call this β Bertini involution.

By calculating the partial derivatives in (7), the smoothness of X yields the following restrictions on
the ai :

Proposition 5.2. In (7), the smoothness of X is equivalent to the condition that the equations

a1x + a3 = 0,

x2
+ a1 y + a4 = 0,

a1,u xy + a3,u y + a2,u x2
+ a4,u x + a6,u = 0,

a1,vxy + a3,v y + a2,vx2
+ a4,vx + a6,v = 0,

with ai,u := ∂ai/∂u and ai,v := ∂ai/∂v have no common solutions on X.

5.2. Normal forms. In this section, we find normal forms for del Pezzo surfaces of degree 1 in character-
istic 2. In total, we will have 14 different normal forms, corresponding to the 14 possible combinations of
singularities of the ramification curve R and the branch curve B. First, we simplify the equations of the
branch curve.

Lemma 5.3. Let X be a del Pezzo surface of degree 1 given by (7). Then, after a suitable change of
coordinates, we may assume that the equation a1x + a3 of B is one of the following:

(1) ux + v3; (2) ux ; (3) uv(u + v); (4) u2v; (5) u3.
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Proof. If a1 ̸= 0, we may assume that a1 = u after applying a linear substitution in u and v. Then, a
substitution of the form x 7→ x + b2 for a suitable binary form b2 of degree 2 in u and v allows us to set
a3 = λv3. Then, rescaling v, we can assume λ ∈ {0, 1}.

If a1 = 0, we get three cases according to the number of distinct roots of a3. The equation can be
normalized by applying a linear substitution in u and v to get cases (3), (4), and (5). □

If we consider P(1, 1, 2) as a quadratic cone Q in P3, these five normal forms for a1x +a3 correspond
to the cases where B is a twisted cubic, a union of a line and a conic, a union of three lines, a union of a
double line and a simple line, or a triple line, respectively. Later, we will use automorphisms of P(1, 1, 2)

that preserve the equation of B and the form of (7) in order to move the images of the singular points of
R to special positions. In the following lemma, we describe this group of automorphisms.

Lemma 5.4. Let H ⊆ Aut(k[u, v, x]) ⊆ Aut(k[u, v, x, y]) be the subgroup of automorphisms that
preserve a1x +a3, act on x as x 7→ x +b2 for some binary quadratic form b2 in u and v, and that map (7)
to one of the same form, with possibly different a2, a4, and a6. Then, H consists of substitutions of the form

u 7→ αu + βv, v 7→ γ u + δv, x 7→ x + b2,

where α, β, γ, δ ∈ k such that αδ + βγ ̸= 0, and:

(1) If a1x+a3 =ux+v3, then α =1, β =0, δ3
=1, b2 =γ 3u2

+γ 2δuv+γ δ2v2. In particular, H ∼=k+
:3.

(2) If a1x + a3 = ux , then α = 1, β = b2 = 0. In particular, H ∼= k+
: k×.

(3) If a1x +a3 = uv(u+v), then αγ (α+γ ) = βδ(β+δ) = 0, α2δ+βγ 2
= αδ2

+β2γ = 1. In particular,
H ∼= k[u, v]2 : (3 ×S3).

(4) If a1x + a3 = u2v, then β = γ = 0, δ = α−2. In particular, H ∼= k[u, v]2 : k×.

(5) If a1x + a3 = u3, then β = 0, α3
= 1. In particular, H ∼= k[u, v]2 : (k : k×

× 3).

For the convenience of the reader, we record the effect of a general substitution on the remaining ai

in (7). The proof is a straightforward calculation.

Lemma 5.5. A substitution of the form

u 7→ αu + βv, x 7→ x + b2,

v 7→ γ u + δv, y 7→ y + b1x + b3,

where α, β, γ, δ ∈ k and bi ∈ k[u, v]i such that αδ + βγ ̸= 0, changes the coefficients (a2, a4, a6) in (7)
as follows:

a2 7→ σ ∗a2 + σ ∗a1b1 + b2
1 + b2,

a4 7→ σ ∗a4 + σ ∗a3b1 + σ ∗a1b1b2 + σ ∗a1b3 + b2
2,

a6 7→ σ ∗a6 + σ ∗a4b2 + σ ∗a3b3 + σ ∗a2b2
2 + σ ∗a1b2b3 + b2

3 + b3
2,

where σ ∗ai := ai (αu + βv, γ u + δv).

Now, we are ready to describe the normal forms for del Pezzo surfaces of degree 1.
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name a1x+a3 a2 a4 a6 # of parameters

(1a) ux+v3 av2 bu4
+cu2v2

+dv4 eu6
+ f u4v2

+gu2v4
+hv6 8

(1b) ux+v3 av2 cu2v2
+dv4 eu6

+ f u4v2
+gu2v4

+hv6 7
(1c) ux+v3 av2 dv4 eu6

+ f u4v2
+gu2v4

+hv6 6
(1d) ux+v3 av2 cu2v2 eu6

+ f u4v2
+gu2v4

+hv6 6
(1e) ux+v3 av2 0 eu6

+ f u4v2
+gu2v4

+hv6 5
(2a) ux av2 v4 bu6

+du4v2
+eu3v3

+ f u2v4
+guv5

+hv6 7
(2b) ux av2 v4 bu6

+du4v2
+ f u2v4

+guv5
+hv6 6

(2c) ux av2 v4 bu6
+du4v2

+eu3v3
+ f u2v4

+hv6 6
(2d) ux av2 v4 cu5v+du4v2

+ f u2v4
+hv6 5

(2e) ux av2 0 bu6
+du4v2

+eu3v3
+ f u2v4

+euv5
+hv6 6

(2f) ux av2 0 bu6
+du4v2

+ f u2v4
+uv5

+hv6 5
(3) uv(u+v) auv bu3v+(b+c)u2v2

+cuv3 du5v+eu3v3
+ f uv5 6

(4) u2v 0 au3v+bu2v2
+cuv3 du5v+eu3v3

+uv5 5
(5) u3 0 au3v+bu2v2

+cuv3 uv5
+dv6 4

Table 5. Forms of (a1, a2, a3, a4, a6) in Theorem 5.6.

Theorem 5.6. Every del Pezzo surface of degree 1 in characteristic 2 is isomorphic to a surface of
degree 6 in P(1, 1, 2, 3) given by an equation of the form

y2
+ y(a1(u, v)x + a3(u, v))+ x3

+ a2(u, v)x2
+ a4(u, v)x + a6(u, v) = 0, (8)

where (a1, a2, a3, a4, a6) is one of the forms shown in Table 5. Moreover, the parameters satisfy the
conditions summarized in Table 6, where

1 := a4
3 + a3

1a3
3 + a4

1(a
2
4 + a1a3a4 + a2a2

3 + a2
1a6).

In Table 6, we also describe the singularities of the irreducible components of the reduction Rred of the
ramification curve R.

Remark 5.7. The conditions on the parameters that guarantee the smoothness of X are equivalent to the
conditions that (8) is the Weierstrass equation of an elliptic fibration with only irreducible fibers. We will
study this fibration later in Section 5.4. The homogeneous polynomial 1 appearing in Theorem 5.6 is the
discriminant of this fibration.

Proof of Theorem 5.6. By Lemma 5.3, there are, up to choice of coordinates, five possible equations for B.
We will now give normal forms in each case.

(1) a1x + a3 = ux + v3. Here, the ramification curve R is given by the two equations

ux + v3
= 0,

y2
+ x3

+ a2x2
+ a4x + a6 = 0.
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name conditions on the parameters singularities of the irreducible components of Rred

(1a) 1 has only simple roots
A2 over [1 : v : v3

] with v8
+ dv6

+ cv4
+ bv2

= 0
v8

+ dv6
+ cv4

+ bv2 has four distinct roots

(1b) 1 has only simple roots, c, d ̸= 0 A4 over [1 : 0 : 0]

2A2 over [1 : v : v3
] with v4

+ dv2
+ c = 0

(1c) 1 has only simple roots, d ̸= 0 A6 over [1 : 0 : 0]

A2 over [1 : d1/2
: d3/2

]

(1d) 1 has only simple roots, c ̸= 0 2A4 over [1 : 0 : 0] and [1 : c1/4
: c3/4

]

(1e) e ̸= 0 A8 over [1 : 0 : 0]

(2a) u−41 has only simple roots, e, g, (g2
+ a + h) ̸= 0 3A2 over [0 : 1 : 1], [1 : 0 : 0] and [g1/2

: e1/2
: 0]

(2b) b, g, (g2
+ a + h) ̸= 0 A4 over [1 : 0 : 0]

A2 over [0 : 1 : 1]

(2c) b, e, (a + h) ̸= 0 3A2 over [0 : 1 : 1], [1 : 0 : 0] and [0 : 1 : 0]

(2d) c, (a + h) ̸= 0 A4 over [0 : 1 : 0]

A2 over [0 : 1 : 1]

(2e) u−61 has only simple roots, e ̸= 0 3A2 over [0 : 1 : 0], [1 : 0 : 0] and [1 : 1 : 0]

(2f) u−61 has only simple roots A4 over [1 : 0 : 0]

A2 over [0 : 1 : 0]

(3) d, f ̸= 0, (d + e + f ) ̸∈ {0, 1} 3A2 over [1 : 0 : 0], [0 : 1 : 0] and [1 : 1 : 0]

(4) d ̸= 0 2A2 over [1.0 : 0] and [0 : 1 : 0]

(5) − A2 over [0 : 1 : 0]

Table 6. Conditions for the parameters in Theorem 5.6.

One checks that the curve R is smooth at the points with u = 0. On the affine chart u = 1, it is given in
A2 by the single equation

y2
+ v9

+ a2(1, v)v6
+ a4(1, v)v3

+ a6(1, v),

so it has singularities over the roots of the derivative F ′ of F :=v9
+a2(1, v)v6

+a4(1, v)v3
+a6(1, v). After

applying an element of H in Lemma 5.4, we may assume that 0 is the root of highest multiplicity of F ′.
Now, substitutions as in Lemma 5.5 that fix u, v, and x do not change the location of the points that lie

under singularities of R and thus, by Lemma 5.5, we can assume that a2 = av2, a4 = bu4
+ cu2v2

+ dv4,
a6 = eu6

+ f u4v2
+ gu2v4

+ hv6. With this notation, the polynomial F ′ becomes v8
+ dv6

+ cv4
+ bv2

and the conditions of Proposition 5.2 boil down to v8
+ dv6

+ cv4
+ bv2 and

1(1, v) = v12
+ v9

+ (d2
+ a)v8

+ dv7
+ hv6

+ cv5
+ (c2

+ g)v4
+ bv3

+ f v2
+ b2

+ e
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not having a common solution. The former is the derivative of the latter; hence we want that the latter
has only simple zeroes.

Now, if F ′ has four distinct roots, we are in case (a). If F ′ has less than four distinct roots, we may
assume b = 0. If F ′ has exactly three roots, then we are in case (b). If b = 0, the polynomial F ′ has
exactly two roots if and only if either c = 0 and d ̸= 0, which is case (c), or d = 0 and c ̸= 0, which is
case (d). Finally, F ′ has a single root if and only if b = c = d = 0, which is case (e).

(2) a1x +a3 = ux . Here, the ramification curve has two components R1 and R2. The curve R1 is given by

u = 0,

y2
+ x3

+ a2x2
+ a4x + a6 = 0.

This curve has a unique singularity, which is of type A2 and located over [0 : 1 : a4(0, 1)1/2
]. Rescaling v,

we may assume that a4(0, 1) ∈ {0, 1}.
The curve R2 is given by

x = 0,

y2
+ a6 = 0.

This curve has singularities over the points [u : v : 0], where the derivatives of a6 by u and v both vanish.
First, assume that a4(0, 1) = 1 and one of the singularities of R2 does not lie over [0 : 1 : 0]. Then, using

a substitution in v as in Lemma 5.4, we can assume that one of them lies over [1 : 0 : 0]. Substitutions
as in Lemma 5.5 which fix u, v, and x do not change the location of these points and, after applying one
of them, we may assume that a2 = av2, a4 = v4, and a6 = bu6

+ du4v2
+ eu3v3

+ f u2v4
+ guv5

+ hv6.
If e, g ̸= 0, this is case (a), if e = 0 and g ̸= 0, this is case (b), and if e ̸= 0 and g = 0, this is case (c).
The conditions of Proposition 5.2 boil down to 1(1, v) = v8

+ hv6
+ gv5

+ f v4
+ ev3

+ dv2
+ b having

only simple roots and g2
̸= a + h. In particular, (e, g) ̸= (0, 0).

If a4(0, 1) = 1, R2 has a unique singularity, and this singularity lies over [0 : 1 : 0], then the only
odd monomial in a6 is u5v. A substitution of the form v 7→ v + µu and substitutions as in the previous
paragraph allow us to assume that a2 = av2, a4 = v4, and a6 = cu5v + du4v2

+ f u2v4
+ hv6. The

conditions of Proposition 5.2 become a + h ̸= 0 and c ̸= 0. This is case (d).
If a4(0, 1) = 0, then Proposition 5.2 implies that R2 is smooth over [0 : 1 : 0]. Hence, we can assume

that one of the singularities of R2 lies over [1 : 0 : 0]. Using a substitution as in Lemma 5.5 which fixes
u, v and x , we may assume that a2 = av2, a4 = 0, and a6 = bu6

+du4v2
+ eu3v3

+ f u2v4
+ guv5

+ hv6.
Since R2 is smooth over [0 : 1 : 0], we have g ̸= 0. If e ̸= 0, we can scale v so that g = e. This is case (e).
If e = 0, we scale v so that g = 1. This is case (f).

(3) a1x + a3 = uv(u + v). The curve B has the three irreducible components B1, B2, and B3, given by
V (u), V (v), and V (u + v), respectively. The corresponding components R1, R2, and R3 of R are given
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by
y2

+ x3
+ a2(0, v)x2

+ a4(0, v)x + a6(0, v),

y2
+ x3

+ a2(u, 0)x2
+ a4(u, 0)x + a6(u, 0),

y2
+ x3

+ a2(u, u)x2
+ a4(u, u)x + a6(u, u),

respectively. The singular points of R1, R2, and R3 lie over [0 : 1 : a4(0, 1)1/2
], [1 : 0 : a4(1, 0)1/2

], and
[1 : 1 : a4(1, 1)1/2

], respectively.
A substitution as in Lemma 5.4 which fixes u and v allows us to set a4(0, 1) = a4(1, 0) = a4(1, 1) = 0,

that is, that a4 = bu3v + (b + c)u2v2
+ cuv3 for some b, c ∈ k. Then, a substitution as in Lemma 5.5

which fixes u, v, and x allows us to set a2 = auv and a6 = du5v + eu3v3
+ f uv5. The conditions of

Proposition 5.2 become d ̸= 0, f ̸= 0 and d + e + f ̸∈ {0, 1}.

(4) a1x + a3 = u2v. The curve B has two irreducible components B1 and B2, given by V (u) and V (v),
respectively. The corresponding components R1 and R2 of R are given by

y2
+ x3

+ a2(0, v)x2
+ a4(0, v)x + a6(0, v),

y2
+ x3

+ a2(u, 0)x2
+ a4(u, 0)x + a6(u, 0),

respectively. The singular points of R1 and R2 lie over [0 : 1 : a4(0, 1)1/2
] and [1 : 0 : a4(1, 0)1/2

],
respectively.

A substitution as in Lemma 5.5, which fixes u and v, allows us to set a4(0, 1) = a4(1, 0) and gives that
a2 is a square. Then, a substitution with b2 = b3 = 0 allows us to eliminate a2. Finally, a substitution
with b1 = b2 = 0 allows us to assume that a6 contains no squares. If we write a6 = du5v + eu3v3

+ f uv5,
then the conditions of Proposition 5.2 becomes d ̸= 0 and f ̸= 0, and we can rescale f to 1.

(5) a1x + a3 = u3. The curve R is given by

y2
+ x3

+ a2(0, v)x2
+ a4(0, v)x + a6(0, v)

and it is singular over [0 : 1 : a4(0, 1)1/2
].

We apply the same substitutions as in the previous case to remove a2. Then, we apply a substitution as
in Lemma 5.5 with b2 = b2

1 to remove the v4-term in a4. Next, using a substitution that fixes u, v, and x
with b1 = 0, we eliminate the squares in a6, write a6 = du5v + eu3v3

+ f uv5, and rescale f to 1. After
that, a substitution of the form v 7→ v+λu, and eliminating the square again, allows us to set d = 0. Next,
a substitution as in Lemma 5.5 which fixes u and v, with b1 = λu, b2 = λ2u2, and b3 = µu3 for suitable λ

and µ allows us to eliminate the u4-term in a4 without changing a6. Finally, we apply a substitution with
b3 = ev3 and rename the parameters to assume that a6 = uv5

+ dv6. The conditions of Proposition 5.2
are fulfilled for every choice of parameters. □

5.3. Fake tritangent planes and odd theta characteristics. It is known that a del Pezzo surface X of
degree 1 contains 240 (−1)-curves (see [Dolgachev 2012, Section 8.7], where the proof is characteristic-
free). They come in pairs Ei + E ′

i ∈ |−2K X | with Ei · E ′

i = 3. The Bertini involution β swaps the two
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curves in a pair. The image of Ei + E ′

i under the antibicanonical map f is a plane section of Q not
passing through the vertex.

If p ̸= 2, each of the resulting 120 planes is a tritangent plane to the branch sextic curve and, conversely,
every tritangent plane to the branch sextic gives rise to a pair of (−1)-curves Ei +E ′

i with Ei +E ′

i ∈|−2K X |.
A tritangent plane intersects the branch curve in twice a positive divisor of degree 3. This divisor is an
odd theta characteristic of the curve. It is known that the number of odd theta characteristics on a smooth
curve of genus 4 is equal to 120.

For arbitrary p, we still have the following.

Lemma 5.8. The preimage f −1(C) of an integral conic C = V (x + b2) is a sum of two (−1)-curves if
and only if it is reducible.

Proof. Since f has degree 2 and C is integral, the curve f −1(C) is reducible if and only if it has two
irreducible components L1 and L2. These components satisfy L1 + L2 ∈ |−2K X |, L1 · L2 = 3, and
L2

1 = L2
2. Via adjunction, this easily implies that L1 and L2 are (−1)-curves. The converse is clear. □

So, even if p = 2, we have 120 splitting conics and we call the corresponding planes in P3 fake
tritangent planes in analogy with the situation in the other characteristics. For the rest of this section, we
assume p = 2.

Since the antibicanonical map is étale outside the branch curve V (A), the intersection Ei ∩ E ′

i lies on
the ramification curve R. Let L = OR(Ei ) ∼= OR(E ′

i ). It is an invertible sheaf on C of degree 2. We have

L⊗2 ∼= OR(Ei + E ′

i )
∼= OR(−2K X ).

Since B ∈ |OP(1,1,2)(3)|, we have R ∈ |−3K X |. By the adjunction formula, we have

ωR ∼= OR(−3K X + K X ) ∼= L⊗2.

As in the case of degree 2, invertible sheaves on R that satisfy this property are called invertible theta
characteristics. Let 2(R) be the set of isomorphism classes of such invertible theta characteristics on R
and let J (R) be the generalized Jacobian of R. As in Lemma 3.6, one can prove that J (R) is a product
of additive groups.

Lemma 5.9. The generalized Jacobian J (R) of R is isomorphic to G4
a .

Thus, as in degree 2, finding fake tritangent planes using theta characteristics on R is subtle in
characteristic 2. We refer to Example 3.7 for an example in degree 2 that further illustrates this point and
leave it to the reader to find a similar example in degree 1.

5.4. Rational elliptic surfaces. Equation (7) can also serve as the Weierstrass equation of the rational
surface with a genus-1 fibration φ : Y → P1 obtained by blowing up the base point p0 of |−K X |. Since X
is a del Pezzo surface, all members of |−K X | are irreducible; hence so are all fibers of φ. The discriminant
of φ is

1 = a4
3 + a3

1a3
3 + a4

1(a
2
4 + a1a3a4 + a2a2

3 + a2
1a6).
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The singular fibers of φ lie over the zeroes of 1. Moreover, the Bertini involution, which is given by
β : y 7→ y + (a1x + a3), induces the inversion on the group structure of each fiber. In particular, for
[u0 : v0] ∈ P1, if a1(u0, v0)x +a3(u0, v0) = 0, the corresponding fiber F of φ is cuspidal, if a1(u0, v0) = 0
and a3(u0, v0) ̸= 0, then F is smooth and supersingular, and in the other cases, F is either nodal, or
smooth and ordinary, according to whether 1(u0, v0) is zero or not. Applying these observations to the
normal forms of Theorem 5.6, we obtain the following information on φ.

Proposition 5.10. Let X be a del Pezzo surface of degree 1 given by one of the normal forms in Theorem 5.6.
Then, the associated genus-1 fibration φ is elliptic and all its fibers are irreducible. The discriminant 1

and the singular fibers of φ are given in Table 7.

Remark 5.11. As in Remark 3.12, we point out the connection to Lang’s classification of singular fibers
on rational elliptic surfaces: our normal forms for del Pezzo surfaces of degree 1 yield normal forms for
all rational elliptic surfaces with a section in characteristic 2 whose fibers are all are irreducible.

name 1 nodal fibers over the cuspidal fibers over

(1a) v12
+u3v9

+(d2
+a)u4v8

+du5v7
+hu6v6

+cu7v5
12 roots of 1 –

+(c2
+g)u8v4

+bu9v3
+ f u10v2

+(b2
+e)u12

(1b) v12
+u3v9

+(d2
+a)u4v8

+du5v7
+hu6v6

+cu7v5
12 roots of 1 –

+(c2
+g)u8v4

+ f u10v2
+eu12

(1c) v12
+u3v9

+(d2
+a)u4v8

+du5v7
+hu6v6

12 roots of 1 –
+gu8v4

+ f u10v2
+eu12

(1d) v12
+u3v9

+au4v8
+hu6v6

+cu7v5
12 roots of 1 –

+(c2
+g)u8v4

+ f u10v2
+eu12

(1e) v12
+u3v9

+au4v8
+hu6v6

+gu8v4
+ f u10v2

+eu12 12 roots of 1 –

(2a) u4(v8
+u2(bu6

+du4v2
+eu3v3

+ f u2v4
+gsv5

+hv6)) 8 roots of u−41 [0 : 1]

(2b) u4(v8
+u2(bu6

+du4v2
+ f u2v4

+gsv5
+hv6)) 8 roots of u−41 [0 : 1]

(2c) u4(v8
+u2(bu6

+du4v2
+eu3v3

+ f u2v4
+hv6)) 8 roots of u−41 [0 : 1]

(2d) u4(v8
+u2(cu5v+du4v2

+ f u2v4
+hv6)) 8 roots of u−41 [0 : 1]

(2e) u6(bu6
+du4v2

+eu3v3
+ f u2v4

+euv5
+hv6)

If h ̸= 0 : 6 roots of u−61
[0 : 1]

if h = 0 : 5 roots of u−71

(2f) u6(bu6
+du4v2

+ f u2v4
+uv5

+hv6)
if h ̸= 0 : 6 roots of u−61

[0 : 1]
if h = 0 : 5 roots of u−71

(3) u4v4(u+v)4 – [1 : 0], [0 : 1], [1 : 1]

(4) u8v4 – [1 : 0], [0 : 1]

(5) u12 – [0 : 1]

Table 7. The discriminant 1 and the singular fibers of φ for Proposition 5.10.
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6. Automorphism groups of del Pezzo surfaces of degree 1

This section consists of three parts. In the first part, we collect various restrictions on the group G(X) =

Aut(X)/⟨β⟩ arising from the geometry of X . In the second part, we give an explicit description of
Aut(X) in terms of (7) and use it to classify all surfaces where G(X) is nontrivial and to determine the
group Aut(X) in every case. In the third part, we compare our classification with the classification in
characteristic 0 from [Dolgachev 2012, Table 8.14] and use this to determine the conjugacy classes of all
elements in Aut(X) (see Table 9 on page 760). Throughout, we assume p = 2.

6.1. Restrictions on G(X). Since the elliptic fibration φ : Y → P1 associated to X is obtained by blowing
up the base point of |−K X |, we can identify Aut(X) with the subgroup of Aut(Y ) preserving a chosen
section. Let r : Aut(X) → Aut(P1) be the natural homomorphism defined by the action of Aut(X) on the
coordinates [u : v] of the base of φ. Since φ is the unique relatively minimal smooth proper model of
its generic fiber Fη, the kernel K = Ker(r) is isomorphic to the group of automorphisms of the elliptic
curve Fη. In particular, K contains the Bertini involution β and it can contain more automorphisms only
if the j-invariant of Fη is equal to 0 = 1728, in which case K is a subgroup of Q8 : 3 ∼= SL2(F3).

Let P be the image of r . Evidently, P is a finite subgroup of Aut(P1) that leaves invariant the set S1

of points p = [ui : vi ] corresponding to the singular fibers. It also leaves invariant the set S2 of the
projections of singular points of the irreducible components of the ramification curve R.

The following proposition shows what kind of groups can be expected to occur for P. We use the
known classification of finite subgroups of Aut(P1) ∼= PGL2(k) ∼= SL2(k) [Dolgachev and Martin 2024,
Theorem 2.5].

Proposition 6.1. The group P is isomorphic to Gξ,A or D2n .

Proof. Since SL2(2) ∼= S3 ∼= D6, it suffices to show that SL2(Fq) ̸⊆ P for q = 2m and m ≥ 2. Since
the set S2 has cardinality at most 4 and P preserves S2, every homogeneous polynomial F with simple
roots along S2 is P-semi-invariant of degree at most 4. On the other hand, by [Neusel and Smith 2002,
Theorem 6.1.8], the ring k[u, v]

SL2(Fq ) is generated over Fq by the Dickson polynomials L and d2,1

of degrees q + 1 and q2
− q, respectively. If SL2(q) ⊆ P, then F is also a semi-invariant polynomial

for SL2(q) and if q ̸= 2, then SL2(Fq) is simple, so F ∈ k[u, v]
SL2(q)

= k[L, d2,1]. Hence, q = 2, as
claimed. □

We recall from [Dolgachev and Martin 2024, Section 1.3] that the image of the Bertini involution β

under the injective homomorphism ρ : Aut(X) → W (E8) is equal to −idE8 . However, in contrast to the
situation in degree 2, the extension W (E8) → W (E8)/(−idE8)

∼= O+

8 (2) does not split. The semidirect
product W (E8) = 2. GO+

8 (2) corresponds to a nontrivial homomorphism O+

8 (2) → C2, whose kernel is a
simple group O8(2), where we use the ATLAS notation.

Therefore, in order to determine Aut(X), it is not enough to determine the image G(X) of the
homomorphism Aut(X) → Aut(X)/⟨β⟩, and thus the calculation of Aut(X) is more complicated than in
the case of del Pezzo surfaces of degree 2.
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Let us summarize the restrictions on Aut(X) and G(X) that we have collected by now.

Theorem 6.2. Let X be a del Pezzo surface of degree 1 in characteristic 2. Let G(X) be the image of
the homomorphism Aut(X) → Aut(P(1, 1, 2)), let K be the kernel of the homomorphism r : Aut(X) →

Aut(P1), let P be the image of r , and let φ : Y → P1 be the elliptic fibration associated to X. Then, the
following hold:

(i) Aut(X) is a central extension of G(X) by ⟨β⟩ ∼= C2.

(ii) Aut(X) is an extension of P by K .

(iii) Aut(X) is a subgroup of W (E8).

(iv) G(X) is a subgroup of O+

8 (2).

(v) K is the automorphism group of the generic fiber of φ.

(vi) P is isomorphic to Gξ,A or D2n .

(vii) P preserves the set S1 of points lying under singular fibers of φ. Moreover, it preserves the
decomposition of S1 into subsets corresponding to isomorphic fibers.

(viii) P preserves the set S2 of points lying under the singularities of R. Moreover, it preserves the
decomposition of S2 into subsets of isomorphic singularities.

(ix) The j-function of φ is P-invariant.

This yields the following preliminary restrictions on Aut(X) and G(X).

Corollary 6.3. Let X be a del Pezzo surface of degree 1 in characteristic 2 given by one of the normal
forms in Theorem 5.6.

(i) In case (1), G(X) is a subgroup of A4.

(ii) In cases (2a), (2b), (2c), and (2d), G(X) is a subgroup of 23.

(iii) In cases (2e) and (2f), G(X) is a subgroup of C5 or C2.

(iv) In case (3), K is a subgroup of SL2(3) and P is a subgroup of S3.

(v) In case (4), K is a subgroup of SL2(3) and P is cyclic of order 1, 3, 5, 7, 9, or 15.

(vi) In case (5) K is a subgroup of SL2(3) and P ∼= Gξ,A, where ξ is a primitive n-th root of unity with
n ∈ {1, 3, 5, 7, 9, 15}.

Proof. In case (1), the generic fiber of φ is ordinary; hence K = ⟨β⟩ and G(X) ∼= P. The fibration φ has
12 nodal fibers; hence the j-function has 12 poles, so |P| | 12. Since P is isomorphic to Gξ,A or D2n

with n odd, this implies that P is isomorphic to a subgroup of A4.
In cases (2a)–(2f), we also have K = ⟨β⟩ and G(X) ∼= P. In cases (2a), (2b), (2c), and (2d), the

fibration φ has eight nodal fibers; hence |P| | 8. This implies that P is elementary abelian of order 1, 2, 4
or 8. In cases (2e) and (2f), the fibration φ has five or six nodal fibers. If it has five nodal fibers, then
|P| | 5; hence P is a subgroup of C5. If it has six nodal fibers, then P is either a subgroup of C2 or
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isomorphic to the dihedral group D6. In the latter case, P acts without fixed point on P1, which is
impossible, since φ admits a unique cuspidal fiber.

In case (3), we have K ⊆ SL2(3), since the generic fiber of φ is supersingular. Since φ has three
singular fibers, P is isomorphic to a subgroup of S3.

In case (4), we also have K ⊆ SL2(3). Since one of the components of R is reduced and the other is
not, P acts trivially on S2, hence with two fixed points on P1. So, P is cyclic of odd order. Moreover, P
is a subgroup of O+

8 (2). In particular, P admits a faithful representation of dimension at most 8. Hence,
if we denote Euler’s totient function by ϕ, then ϕ(|P|) ≤ 8. Thus, P is of order 1, 3, 5, 7, 9 or 15.

In case (5), we have K ⊆ SL2(3) and the action of P on P1 fixes the point lying under the unique
singular fiber of φ; hence P ∼= Gξ,A. The order of ξ can be bounded by the same argument as in the
previous paragraph. □

In particular, we get upper bounds on the size of Aut(X) in every case. Further information on the
2-groups that can occur in case (5) can be obtained using the following remark.

Remark 6.4. Since the maximal powers of 2 that divide |W (E8)| and |W (D8)| are both 214, and since
W (D8) is a subgroup of W (E8), the 2-Sylow subgroups P in W (E8) are isomorphic to the 2-Sylow
subgroups in W (D8) = 27

: S8. Hence, P is isomorphic to 27
: (S8)2, where 27 acts on Z8 by an even

number of sign changes and (S8)2 is a 2-Sylow subgroup of S8 acting as permutations on Z8. The group
(S8)2 is isomorphic to the symmetry group of a binary tree of depth 3, considered as a subgroup of S8

via the permutation it induces on the leaves of the tree. An equivalent description is as the wreath product
D8 ≀ C2, where D8 × D8 is a subgroup of S4 ×S4 ⊂ S8. The Bertini involution β corresponds to the
element (−1, id) that changes all signs. The 2-groups that can occur in Corollary 6.3 are isomorphic to
subgroups of P.

In the following example, we apply this remark to give an explicit description of the group 21+6
+ , which

will occur in our classification.

Example 6.5. With notation as in the previous remark, let G ⊆ P be a subgroup containing β such that
G/⟨β⟩ is an elementary abelian 2-group and such that β ∈ Q8 ⊆ G. Then, each element of G is of the
form (σ, τ ), where ord(τ ) ≤ 2 and either τ preserves the set of coordinates whose sign is changed by σ

and then (σ, τ ) has order 1 or 2, or τ swaps this set with the set of coordinates whose sign is not changed
and then (σ, τ ) has order 4. In particular, in the latter case, τ has cycle type (2, 2, 2, 2). Since Q8 ⊆ G, the
image of G → (S8)2 contains a subgroup H of order 4 generated by involutions of cycle type (2, 2, 2, 2).
The centralizer C of H is of order 8 and its nontrivial elements are involutions of cycle type (2, 2, 2, 2).
The kernel of G → (S8)2 consists of sign changes σ that are compatible with all τ ∈ H in the sense that
(σ, τ )2

∈ ⟨β⟩. One checks that the group N of all such compatible sign changes has order 16 and that all
elements of N are also compatible with C . Then, G is a subgroup of the resulting extension M of C by N.

We have M/⟨β⟩ = 26. This is a quadratic space over F2 with the quadratic form q : M/⟨β⟩ → ⟨β⟩

defined as q(x) = x̃2, where x̃ is a lift of x to M. The subspace N/⟨β⟩ is totally isotropic of dimension 3
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and the description of M in the previous paragraph shows that q is nondegenerate. Hence, by [Aschbacher
2000, (23.10)], M is isomorphic to the extra-special 2-group of 21+6

+ .

6.2. Classification. Recall that X is a hypersurface of degree 6 in P(1, 1, 2, 3) given by (7). An auto-
morphism of P(1, 1, 2, 3) is induced by a substitution of the form

u 7→ αu + βv, x 7→ ϵx + b2,

v 7→ γ u + δv y 7→ ζ y + b1x + b3,

where α, β, γ, δ, ϵ, ζ ∈ k, bi ∈ k[u, v]i , and αδ +βγ, ϵ, ζ ̸= 0. The substitutions that induce the identity
on P(1, 1, 2, 3) are the ones with β, γ, b1, b2, b3 = 0 and γ = α, ϵ = α2, ζ = α3.

Since X is anticanonically embedded into P(1, 1, 2, 3), all automorphisms of X are induced by
the substitutions as above that map (7) to a multiple of itself. Clearly, we can represent every such
automorphism by a substitution with ζ = 1. Then, the substitution does not change the coefficient of y2

in (7); hence ϵ3
= 1. Therefore, we may assume ϵ = 1 as well. In particular, using Lemma 5.5, we obtain

the following description of Aut(X), where we write σ for the substitution

u 7→ αu + βv,

v 7→ γ u + δv,

and σ ∗ai := ai (αu + βv, γ u + δv).

Lemma 6.6. Let X be a del Pezzo surface of degree 1 given by (7). Then, Aut(X) can be identified with
the group of 4-tuples (b1, b2, b3, σ ), where bi ∈ k[u, v]i and σ ∈ GL2(k) such that

σ ∗a1 + a1 = 0,

σ ∗a2 + a2 = a1b1 + b2
1 + b2,

σ ∗a3 + a3 = a1b2,

σ ∗a4 + a4 = a3b1 + a1b3 + b2
2,

σ ∗a6 + a6 = a4b2 + +a3(b3 + b1b2) + a2b2
2 + a1(b2b3 + b1b2

2) + b2
3 + b3

2 + b2
1b2

2

and where the composition is given by

(b1, b2, b3, σ ) ◦ (b′

1, b′

2, b′

3, σ
′) = (σ ′∗b1 + b′

1, σ
′∗b2 + b′

2, σ
′∗b3 + b′

3 + σ ′∗b1b′

2, σ ◦ σ ′)

In particular, there is a homomorphism Aut(X) → H ⊆ Aut(P(1, 1, 2)), where H is the group from
Lemma 5.4.

Lemma 6.7. The kernel of the homomorphism Aut(X) → H is generated by the Bertini involution.

Proof. Let (b1, b2, b3, σ ) be in the kernel. Then, σ = id and b2 = 0. The conditions σ ∗a2 = a2 +a1b1 +b2
1,

σ ∗a4 = a4 +a3b1 +a1b3, and σ ∗a6 = a6 +a3b3 +b2
3 show that (b1, b3) ∈ {(0, 0), (a1, a3)}, so we recover

our explicit description of the Bertini involution. □

Now, we use the normal forms of Theorem 5.6 to classify all del Pezzo surfaces X of degree 1 with
nontrivial G(X).
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name a1x+a3 a2 a4 a6 G(X) Aut(X) # of
parameters

(1ai) ux+v3 av2 bu4
+(b+1)u2v2 eu6

+ f u4v2
+(a+b+b2

+ f )u2v4
+bv6 2 4 4

(1aii) ux+v3 0 bu4 eu6
+hv6 3 6 3

(1aiii) ux+v3 av2 u4 eu6
+au4v2

+v6 22 Q8 2
(1aiv) ux+v3 0 u4 eu6

+v6 A4 SL2(3) 1
(1di) ux+v3 av2 u2v2 eu6

+ f u4v2
+(a+ f )u2v4 2 4 3

(1ei) ux+v3 0 0 eu6
+hv6 3 6 2

(2ai) ux av2 v4 bu6
+(e f g−1

+e3/2g−1/2
+e3g−3)u4v2

+eu3v3
+ f u2v4

+guv5
+e−1/2g3/2v6 2 22 5

(2di) ux av2 v4 cu5v+du4v2
+ f u2v4 23 24 4

(2ei) ux av2 0 bu6
+(e+ f )u4v2

+eu3v3
+ f u2v4

+euv5
+ev6 2 22 4

(2fi) ux 0 0 bu6
+uv5 5 10 1

(3i) uv(u+v) auv bu3v+buv3 du5v+eu3v3
+duv5 2 22 4

(3ii) uv(u+v) auv a1/2u3v+a1/2uv3 (e+e1/2)u5v+eu3v3
+(e+e1/2)uv5 S3 2×S3 2

(3iii) uv(u+v) 0 0 du5v+eu3v3
+duv5 6 2×6 2

(3iv) uv(u+v) 0 bu3v+ζ3bu2v2
+ζ 2

3 buv3 (e+e1/2)u5v+eu3v3
+(e+e1/2)uv5 3 6 2

(3v) uv(u+v) 0 0 (e+e1/2)u5v+eu3v3
+(e+e1/2)uv5 3×S3 6×S3 1

(4i) u2v 0 0 du5v+eu3v3
+uv5 3 6 2

(5i) u3 0 au3v+bu2v2 uv5
+dv6 26 21+6

+ 3
(5ii) u3 0 0 uv5

+dv6 26
: 3 21+6

+ : 3 1
(5iii) u3 0 0 uv5 26

: 15 21+6
+ : 15 0

Table 8. Forms of (a1, a2, a3, a4, a6, G(X), Aut(X)) in Theorem 6.8.

Theorem 6.8. Every del Pezzo surface of degree 1 in characteristic 2 such that G(X) is nontrivial is
isomorphic to a surface of degree 6 in P(1, 1, 2, 3) given by an equation of the form

y2
+ (a1x + a3)y + x3

+ a2x2
+ a4x + a6,

where (a1, a2, a3, a4, a6, G(X), Aut(X)) is one of the forms in Table 8.
Here, S3, D8, Q8, and 21+6

+ , denote the symmetric group on three letters, the dihedral group of order 8,
the quaternion group, and the even extra-special group of order 128, respectively. In each case, the
parameters have to satisfy the conditions of Theorem 5.6 and the obvious genericity conditions that keep
them from specializing to other subcases.

Proof. We use the normal forms of Theorem 5.6 and let H be the group of Lemma 5.4. By Lemma 6.6,
we have G(X) ⊆ H . We apply Lemma 6.6 to calculate Aut(X).

(1a) Let (b2, σ ) ∈ H . If (b2, σ ) ∈ G(X), then σ permutes the roots of the polynomial F ′
:= v8

+ dv6
+

cv4
+ bv2, since these are determined by the singularities of R. We have

σ ∗F ′
= δ2v8

+ dv6
+ δ(γ 2d + c)v4

+ δ2(γ 4d + b)v2
+ γ 8

+ γ 6d + γ 4c + γ 2b.

If d ̸= 0, this is a multiple of F ′ if and only if δ = 1 and γ = 0; hence σ is the identity and G(X) is trivial.
If d = 0, it is a multiple of F ′ if and only if

γ 8
+ γ 4c + γ 2b = 0 (9)

and δ = 1 or c = 0.
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So, assume first that c ̸= 0 and δ = 1. If (b2, σ ) ∈ G(X), then there exist polynomials b1 and b3 such
that σ ∗a2 = a2 + a1b1 + b2

1 + b2 and σ ∗a4 = a4 + a3b1 + a1b3 + b2
2. In our case, this means

0 = γ 2au2
+ ub1 + b2

1 + γ 3u2
+ γ 2uv + γ v2,

0 = γ 2cu4
+ v3b1 + ub3 + γ 6u4

+ γ 4u2v2
+ γ 2v4

;

hence b1 = λu + γ 2t with λ2
+ λ = γ 2a + γ 3 and γ 4

= γ , and b3 = (γ 2c + γ 3)u3
+ γ uv2

+ λv3. If
γ ̸= 0, then γ 4

= γ implies γ 3
= 1. Modifying the equation of X by an element of H , we may assume

that γ = 1. Plugging this into (9), we obtain c = b + 1. Hence, b1 = λu + v with λ2
+ λ = a and

b3 = bu3
+ uv2

+ v3. Plugging this into the equation for σ ∗a6 and comparing coefficients in Lemma 6.6,
we obtain the conditions h = b and g = a + b + b2

+ f . Since γ is uniquely determined by (9), we have
G(X) ∼= C2. The square of any lift of a nontrivial element of G(X) to Aut(X) is the Bertini involution;
hence Aut(X) ∼= C4.

Next, assume that c = 0. If (b2, σ ) ∈ G(X), then there exist polynomials b1 and b3 such that
σ ∗a2 = a2 + a1b1 + b2

1 + b2 and σ ∗a4 = a4 + a3b1 + a1b3 + b2
2. In our case, this means

0 = γ 2au2
+ (1 + δ2)av2

+ ub1 + b2
1 + γ 3u2

+ γ 2δuv + γ δ2v2,

0 = v3b1 + ub3 + γ 6u4
+ γ 4δ2u2v2

+ γ 2δ4v4
;

hence b1 =λu+γ 2δv with λ2
+λ=γ 2a+γ 3 and γ 4

+γ = (1+δ)a, as well as b3 =γ 6u3
+γ 4δ2uv2

+λv3.
First, assume that δ ̸= 1. Then, σ has order 3; hence if (b2, σ ) ∈ G(X), then it fixes one of the four

roots of F ′. After conjugating by a suitable element of H and repeating the substitutions we used in
Theorem 5.6, we may assume that (b2, σ ) fixes [1 : 0 : 0]. This implies that γ = 0; hence (1 + δ)a = 0
implies a = 0. Now, we plug everything into the equation for σ ∗a6 and compare coefficients to obtain the
conditions f = g = 0.

If δ = 1, then γ 4
+γ = 0. Hence, if (b2, σ ) is nontrivial, then γ 3

= 1. Modifying the equation of X by
an element of H , we may assume γ = 1, that is, that (b2, σ ) maps [1 : 0 : 0] to [1 : 1 : 1]. Then, (9) implies
b = 1. Plugging into the equation for σ ∗a6 and comparing coefficients yields g = f + a and h = 1. The
square of both lifts of (b2, σ ) to Aut(X) is the Bertini involution; hence the subgroup generated by these
lifts is isomorphic to C4.

Suppose next that G(X) contains two distinct nontrivial automorphisms with δ = 1. Then, we can
assume that one of them acts as in the previous paragraph, so b = h = 1 and g = f + a. The other one
satisfies γ ̸= 1. Plugging this into the equation for σ ∗a6 and comparing coefficients yields f = a. As in
the previous paragraph, the square of all lifts of these automorphisms is the Bertini involution; hence they
generate a subgroup isomorphic to the quaternion group Q8.

Finally, Corollary 6.3 shows that G(X) acts on the four singular points of R through A4, so if G(X)

contains a nontrivial automorphism with δ = 1 and a nontrivial automorphism with δ ̸= 1, then G(X)∼= A4.
In particular, the previous two paragraphs show that b = h = 1 and g = 0 and f = a, while the above
paragraph for δ ̸= 1 shows a = f = g = 0. In this case, Aut(X) ∼= SL2(3).
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(1b) and (1c) In these cases, the singularity of R over [1 : 0 : 0] is not isomorphic to the other singularities
of R; hence G(X) is a subgroup of C3 acting through the subgroup of H with γ = 0. In particular, G(X)

fixes the points [1 : 0 : 0] and [0 : 1 : 0]. Since the number of singular points of R that lie over points
different from [1 : 0 : 0] and [0 : 1 : 0] is not divisible by 3, G(X) fixes all of them; hence G(X) is trivial.

(1d) In this case, R has singularities over [1 : 0 : 0] and [1 : c1/4
: c3/4

]. An element of H that fixes both
of these points is trivial, and the unique one that swaps the two points is of the form (b2, σ ), where σ

acts as v 7→ v + c1/4u and b2 = c3/4u2
+ c1/2uv + c1/4v2. If such an element lies in G(X), then there

exist polynomials b1 and b3 such that

0 = (ac1/2
+ c3/4)u2

+ ub1 + b2
1 + c1/2uv + c1/4v2,

0 = v3b1 + ub3 + cu2v2
+ c1/2v4

;

hence b1 = λu + c1/2v with λ2
+λ = ac1/2

+ c3/4 and c4
= c, and b3 = λv3

+ cuv2. By Theorem 5.6 we
have c ̸= 0; hence we can apply an element of H to assume that c = 1. Plugging this into the equation
for σ ∗a6 and comparing coefficients in Lemma 6.6, we obtain the conditions h = 0 and g = a + f . The
square of this automorphism (b1, b2, b3, σ ) is the Bertini involution; hence Aut(X) ∼= C4 in this case.

(1e) In this case, we have G(X) ⊆ C3, since G(X) fixes [1 : 0 : 0]. Nontrivial elements of H that fix
[1 : 0 : 0] are of the form (0, σ ), where σ acts as v 7→ δv with δ3

= 1 and δ ̸= 1. Such an automorphism
lifts to X if and only if there exist polynomials b1 and b3 such that

(1 + δ2)av2
= ub1 + b2

1,

0 = v3b1 + ub3,

(1 + δ2) f u4v2
+ (1 + δ)gu2v4

= v3b3 + b2
3.

The first equation implies a = 0 and b1 = λu with λ2
+ λ = 0 and then the second equation implies that

also b3 = λv3. Finally, the third equation shows f = g = 0.

(2a) Here, G(X) ⊆ H fixes the point [0 : 1 : 1]. Moreover, if G(X) fixes the images of the other two
singularities, then, by our description of H , G(X) is trivial. Hence, G(X) ⊆ C2 with equality if and only
if G(X) contains the involution (0, σ ), where σ acts as v 7→ v + e1/2g−1/2u.

If this involution is in G(X), then there exist polynomials b1 and b3 such that

aeg−1u2
= ub1 + b2

1,

e2g−2u4
= ub3;

hence b1 = λu with λ2
+ λ = aeg−1, and b3 = e2g−2u3. Plugging this into the equation for σ ∗a6 and

comparing coefficients in Lemma 6.6, we obtain the conditions

0 = e4
+ he3g + f e2g2

+ deg3,

0 = e1/2(g3/2
+ he1/2).
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Since e ̸= 0 by Theorem 5.6, we have h = e−1/2g3/2 and d = e f g−1
+ e3/2g−1/2

+ e3g−3. Note that both
lifts of (0, σ ) have order 2; hence Aut(X) ∼= 22.

(2b) and (2c) Here, G(X) ⊆ H fixes [0 : 1 : 1] and [1 : 0 : 0], since these are the points that lie under the
singularities of the irreducible components of R, but not under the intersection of the two components
R1 and R2. By our description of H in Lemma 5.4, this implies that G(X) is trivial.

(2d) In this case, G(X) fixes [0 : 1 : 1], but we get no other restrictions from the position of the singularities
of R. Therefore, an element of G(X) ⊆ H is of the form (0, σ ) where σ acts as v 7→ v + γ u for some
γ ∈ k. Such an element is in G(X) if and only if there exist polynomials b1 and b3 such that

aγ 2u2
= ub1 + b2

1,

γ 4u4
= ub3,

(cγ + dγ 2
+ f γ 4

+ hγ 6)u6
+ hγ 4u4v2

+ hγ 2u2v4
= b2

3.

Such b1 and b3 exist if and only if h = 0 and γ 8
+ hγ 6

+ f γ 4
+ dγ 2

+ cγ = 0, and then b1 = λu with
λ2

+λ = aγ 2, and b3 = γ 4u3. By Theorem 5.6, we have c ̸= 0; hence, as soon as h = 0, there are exactly
eight choices for γ . This shows G(X) ∼= 23. Every lift of every nontrivial element in G(X) has order 2;
hence Aut(X) ∼= 24.

(2e) Here, the elements of G(X) ⊆ H fix [0 : 1 : 0] and preserve the pair {[1 : 0 : 0], [1 : 1 : 0]}. Using
our description of γ , it is clear that an element of H that fixes all of these three points is the identity. An
element that swaps [1 : 0 : 0] and [1 : 1 : 0] is of the form (0, σ ), where σ acts as v 7→ v + u. Such an
element is in G(X) if and only if there exist polynomials b1 and b3 such that

au2
= ub1 + b2

1,

0 = ub3,

(d + f + h)u6
+ (e + h)u4v2

+ (e + h)u2v4
= b2

3;

hence if and only if h = e and d = e + f , and then b1 = λu with λ2
+ λ = a and b3 = 0. The square of

the lift of this automorphism to Aut(X) is the identity; hence Aut(X) ∼= 22.

(2f) In this case, G(X) ⊆ H fixes [1 : 0 : 0] and [0 : 1 : 0]. Hence, by our description of H in Lemma 5.4,
every element in G(X) is of the form (0, σ ), where σ acts as v 7→ δv for some δ ∈ k×. A nontrivial
element of this form is in G(X) if and only if there exist b1 and b3 such that

a(1 + δ2)v2
= ub1 + b2

1,

0 = ub3,

d(1 + δ2)u4v2
+ f (1 + δ4)u2v4

+ (1 + δ5)uv5
+ h(1 + δ6) = b2

3.

Hence, we always have b1 = b3 = 0 and δ5
= 1. Since δ ̸= 1 by assumption, we deduce that (0, σ ) lifts

if and only if a = d = f = h = 0.
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(3) Here, the group G(X) ⊆ H fixes [1 : 0 : 0], [0 : 1 : 0], and [1 : 1 : 0]. Hence, every element of G(X)

is of the form (0, σ ) and σ satisfies the conditions of Lemma 5.4 (3).
First, assume that σ has even order and interchanges two components of B. Without loss of generality,

we may assume that σ swaps u and v. Then, (0, σ ) lifts to X if and only if there exist b1 and b3 such that

0 = b2
1,

(b + c)(u3v + uv3) = uv(u + v)b1,

(d + f )(u5v + uv5) = uv(u + v)b3 + b2
3.

This holds if and only if b = c, and then b1 = 0, as well as b3 = λuv(u + v) with λ2
+ λ = 0 and d = f .

The square of both lifts of (0, σ ) is the identity; hence they generate a group isomorphic to 22.
Next, assume that σ is nontrivial and preserves the three components of B. Then, it acts as u 7→ αu,

v 7→ αv, where α3
= 1, α ̸= 1. This automorphism lifts to X if and only if there exist polynomials b1

and b3 such that

a(1 + α−1)uv = b2
1,

(1 + α)(bu3v + (b + c)u2v2
+ cuv3) = uv(u + v)b1,

0 = uv(u + v)b3 + b2
3;

hence if and only if a = b = c = 0.
Finally, assume that σ has odd order and interchanges components of B. Without loss of generality,

we may assume that σ acts as u 7→ βv, v 7→ β(u + v) with β3
= 1. This lifts to X if and only if there

exist b1 and b3 such that
a(1 + β2)uv + aβ2v2

= b2
1,

(b + βc)u3v + (b + c + βb)u2v2
+ (c + β(b + c))uv3

= uv(u + v)b1,

(d + f )u5v + f u4v2
+ eu2v4

+ (d + e)uv5
+ (d + e + f )v6

= uv(u + v)b3 + b2
3.

The third equation implies f =d and d =e+e1/2 and then b3 =λu2v+λuv2
+e1/2v3, where λ2

+λ=e+e1/2.
If β = 1, the first equation implies b1 = a1/2v and the second equation implies b = c = a1/2. If β ̸= 1,
the first equation implies b1 = a = 0 and the second equation implies b = βc.

(4) In this case, the group G(X) ⊆ H fixes [1 : 0 : 0] and [0 : 1 : 0]; hence every element of G(X) is of
the form (b2, σ ), with b2 = λuv for some λ ∈ k and where σ acts as u 7→ αu, v 7→ α−2v with α ∈ k×.

If such an automorphism lifts to X , then the condition σ ∗a2 = a2 + b2
1 + b2 forces b2 = b2

1; hence
b1 = b2 = 0. The other conditions of Lemma 6.6 become

a(1 + α)u3v + b(1 + α−2)u2v2
+ c(1 + α−5)uv3

= 0,

d(1 + α3)u5v + e(1 + α−3)u3v3
+ f (1 + α−9)uv5

= u2vb3 + b2
3.

Since d ̸= 0, the second equation implies α3
= 1. Hence, if σ is nontrivial, then (0, σ ) lifts to X if and

only if a = b = c = 0.
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(5) Here, G(X) ⊆ H fixes [0 : 1 : 0]; hence every element of G(X) is of the form (b2, σ ), with
b2 = λu2

+µuv for some λ, µ ∈ k and where σ acts as u 7→ αu, v 7→ γ u+δv, with α3
= 1, γ ∈ k, δ ∈ k×.

If such an automorphism lifts to X , then there exists b1 with b2
1 + b2 = 0; hence µ = 0 and b1 = λ1/2u.

Comparing coefficients in the equation for σ ∗a4, we obtain

λ2
+ λ1/2

+ aγ + bα2γ 2
+ cαγ 3

= 0, (10)

a + aδ + cαδγ 2
= 0, (11)

b + bα2δ2
+ cαδ2γ = 0, (12)

c + cαδ3
= 0. (13)

The automorphism lifts to X if and only if, additionally, there exists a b3 = λ0u3
+λ1u2v +λ2uv2

+λ3v
3

satisfying the conditions

λ2
0+λ0 = λ3

+(aγ+bα2γ 2
+cαγ 3)λ+αγ 5

+dγ 6,

λ1 = (aδ+cαδγ 2)λ+αδγ 4,

λ2
1+λ2 = (bα2δ2

+cαδ2γ )λ+dδ2γ 4,

λ3 = cαδ3λ, (14)

λ2
2 = αδ4γ+dδ4γ 2,

0 = 1+αδ5, (15)

λ2
3 = d+dδ6. (16)

Equation (15) shows that α = δ−5. In particular, as α3
= 1, we have δ15

= 1.
First, assume that δ = 1; hence α = 1. Then, (16) shows that λ3 = 0. Equation (14) shows cλ = 0 and

(11) shows cγ = 0. Hence, if c ̸= 0, then (b2, σ ) is the identity, so we assume c = 0 in the following.
Let Ga,b,d be the group of lifts of such automorphisms to X . By the description above, these Ga,b,d

form a family Ga,b,d of finite group schemes over Spec k[a, b, d] cut out in Spec k[a, b, d, λ, λ0, γ ] by
the equations

F1 := λ4
+ λ + a2γ 2

+ b2γ 4
= 0, (17)

F2 := a4λ4
+ b2λ2

+ γ + dγ 2
+ d2γ 8

+ γ 16
= 0, (18)

F3 := λ2
0 + λ0 + λ3

+ (aγ + bγ 2)λ + γ 5
+ dγ 6

= 0.

In the following, we show that all geometric fibers of Ga,b,d → Spec k[a, b, d] are reduced of length 128.
In particular, Ga,b,d is étale over Spec k[a, b, d]; hence all the Ga,b,d are isomorphic and we will show
afterwards that Ga,b,d ∼= 21+6

+ .

• If a ̸= 0 and b ̸= a2, we argue as follows: The condition a8 F2
1 + F2

2 +b4/a4 F2 = 0 yields the following
expression for λ:

(a12
+b6)λ2

= b4γ+(a4
+b4d)γ 2

+(a4d2
+b4d2

+a16)γ 4
+(a12b4

+b4d2)γ 8
+(a4d4

+b4)γ 16
+a4γ 32.
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By our assumptions, we can divide by (a12
+b6) and we obtain an expression of λ2 in terms of γ . Plugging

this back into (18), we obtain a polynomial F in γ of the form F =
∑5

i=0 ciγ
2i

of degree 64 with

c0 = 0, c1 =
a12

a12 + b6 , c5 =
a8

(a12 + b6)2 .

Since a ̸= 0, both c1 and c5 are nonzero, so ∂γ F = 1 and F has only simple roots. Hence, there are
exactly 64 choices for γ such that (b2, σ ) lifts and λ is uniquely determined by γ . In particular, Ga,b,d

has order 128 and it acts on the base of the associated elliptic fibration through 26.

• If a ̸= 0 and b = a2, we argue as follows: The condition a8 F2
1 + F2

2 + a4 F2 = 0 becomes

0 = a8γ + (a4
+ a8d)γ 2

+ (a4d2
+ a8d2

+ a16)γ 4
+ (a20

+ a8d2)γ 8
+ (a4d4

+ a8)γ 16
+ a4γ 32

=: F.

Note that, since a ̸= 0, F1 = F2 = 0 holds if and only if F2 = F = 0. There are 32 choices for γ with
F(γ ) = 0 and for each choice of γ , there are exactly two choices for λ such that F2(γ, λ) = 0. As in the
previous case, Ga,b,d has order 128, but in this case, it acts on the base of the associated elliptic fibration
through 25.

• Next, assume that a = 0 and b ̸= 0. We can immediately solve (18) for λ and obtain

b2λ2
= γ + dγ 2

+ d2γ 8
+ γ 16.

Plugging this into the square of (17), we obtain a polynomial F in γ of the form F =
∑5

i=0 ciγ
2i

of
degree 64 with

c0 = 0, c1 = b−2, c5 = b−8.

Hence, there are 64 choices for γ such that (b2, σ ) lifts and λ is uniquely determined by γ . Therefore,
Ga,b,d has order 128 and acts on the base of the associated elliptic fibration through 26.

• Now, assume that a = b = 0. The equations simplify to

λ4
+ λ = 0, λ2

0 + λ0 = λ3
+ γ 5

+ dγ 6, λ1 = γ 4,

λ2 = dγ 4
+ γ 8, γ + dγ 2

+ d2γ 8
+ γ 16

= 0. λ3 = 0,

Hence, there are 16 choices for γ and 4 choices for λ. Hence, Ga,b,d has order 128 and it acts on the
base of the associated elliptic fibration through 24.

It remains to determine the group Ga,b,d . By the last bullet point, the subgroup of G0,0,0 of automor-
phisms that act trivially on the base of the associated elliptic fibration has order 8. Thus, by Corollary 6.3,
it is isomorphic to Q8. Hence, every Ga,b,d contains a quaternion group Q8 with β ∈ Q8. On the other
hand, in the cases where a ̸= 0, b ̸= a2, we have seen that Ga,b,d/⟨β⟩ ∼= 26. Hence, by Example 6.5, we
have Ga,b,d ∼= 21+6

+ .
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Next, assume that δ ̸= 1, δ3
= 1. Then, (11), (12), and (13) show that a = b = c = 0. The remaining

equations become

λ4
+ λ = 0, λ2

0 + λ0 = λ3
+ δγ 5

+ dγ 6, λ1 = δ2γ 4,

λ2 = dδ2γ 4
+ δγ 8, δ2γ 16

+ d2δγ 8
+ dδγ 2

+ δ2γ = 0. λ3 = 0,

We see that if γ = λ = 0, then (b2, σ ) admits a lift to X as an automorphism g of order 3. For a fixed γ ,
there are at most 128 possible choices of (γ, λ). All of them are obtained by composing g with an element
of G0,0,d ; hence all choices are realized.

Finally, assume that δ ̸= 1, δ5
= α = 1. As in the previous paragraph, we have a = b = c = 0. But

in this case, (16) yields the condition d = 0.
So, in summary, if c ̸= 0, then G(X) is trivial and if c = 0, then Aut(X) admits a unique 2-Sylow

subgroup isomorphic to 21+6
+ . If a, b, or c is nonzero, this is the full automorphism group. If a = b = c = 0

and d ̸= 0, then Aut(X)/21+6
+

∼= C3 and if a = b = c = d = 0, then Aut(X)/21+6
+

∼= C15. □

Remark 6.9. The largest order of an automorphism group of a del Pezzo surface of degree 1 over
the complex numbers is equal to 144 and the surface with such a group of automorphisms is unique
[Dolgachev 2012]. In our case, the maximal order is equal to 1920 = 27

· 15 and the surface with such
an automorphism group is also unique. We also see the occurrence of the group G = 24 in case (5). It
is obtained as the preimage in 21+6

+ of a maximal isotropic subspace of F6
2. Since del Pezzo surfaces

of degree 1 are super-rigid (see [Dolgachev and Iskovskikh 2009, Definition 7.10, Corollary 7.11]) and
the corresponding G-surface is minimal, this group is not conjugate in the Cremona group of P2 to the
isomorphic subgroup of the group of automorphisms of del Pezzo surfaces of degree 4 or 2 that appeared
in [Dolgachev and Duncan 2019; Dolgachev and Martin 2024].

6.3. Conjugacy classes and comparison with the classification in characteristic 0. In this section, we
determine the conjugacy classes in W (E8) of the elements of the groups that occur in Theorem 6.8 and,
whenever possible, compare the surfaces in Theorem 6.8 with their counterparts in characteristic 0 (see
[Dolgachev 2012, Table 8.14]).

For a del Pezzo surface X of degree 1, we denoted by NX and PX the kernel and image of the morphism
Aut(X) → Aut(P1) induced by the action of Aut(X) on the base of the associated elliptic pencil.

Lemma 6.10. Let g be a nontrivial element of NX . Then, the conjugacy class of g is either 8A1, 4A2,
2D4(a1), or E8(a8).

Proof. Since g acts trivially on the base of the pencil, it cannot preserve any (−1)-curve on X . Then, the
lemma follows from the classification of conjugacy classes in W (E8) (see, e.g., [Dolgachev and Martin
2024, Table 3]), by checking which of them fix no (−1)-class in E8. □

Corollary 6.11. Let X be a del Pezzo surface of degree 1 in characteristic 2. Let X ′ be a geometric
generic fiber of a lift of X to characteristic 0 and let sp : Aut(X ′) → Aut(X) be the specialization map.

(1) sp is injective and preserves conjugacy classes.
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(2) sp induces morphisms NX ′ → NX and PX ′ → PX .

(3) The kernel H of PX ′ → PX is an elementary 2-group and if g is an element of Aut(X ′) that maps to
a nontrivial element of H , then the conjugacy class of g is 2D4(a1).

Proof. The proof of claim (1), including the existence of sp, is analogous to Lemma 4.7.
The existence of the morphisms in claim (2) is clear, as, for a given lift X → S, the groups that appear

can be defined as fibers of kernel and image of the homomorphism of S-group schemes AutX/S → AutP1
S/S

that describes the action of AutX/S on the anticanonical system.
For claim (3), recall that sp preserves conjugacy classes by claim (1). Therefore, by Lemma 6.10, all

nontrivial elements of H are represented by elements g of Aut(X ′) of conjugacy class 8A1, 4A2, 2D4(a1),
or E8(a8). If g is of class 8A1, then it is the Bertini involution; hence g ∈ NX ′ . If g is of class 4A2, then
it has negative trace on E8, so, by the Lefschetz fixed-point formula, it must act trivially on the base of
the elliptic pencil. Hence, g ∈ NX ′ . If g is of class E8(a8), then, by what we just proved, g2 and g3 are
in NX ′ ; hence g ∈ NX ′ . Thus, g must be of conjugacy class 2D4(a1). Then, g2 is the Bertini involution,
so H is 2-elementary. □

By Theorem 6.8, |Aut(X)| ≤ 36 or |Aut(X)| ∈ {128, 384, 1920}, so types I and II [Dolgachev 2012,
Table 8.14] do not have a reduction modulo 2 which is a del Pezzo surface.

The surfaces of type VI, VII, IX, XII, and XV from that table admit an automorphism of order 2n with
n > 1 acting faithfully on P1, which is impossible in characteristic 2, so by Corollary 6.11 they do not
have good reduction mod 2.

The equation of the surfaces of type (3v) in Theorem 6.8 can be rewritten as

y2
+ uv(u − v)y + x3

+ a(u2
− uv + v2)3

+ bu2v2(u − v)2

for certain a, b ∈ k. This equation makes sense in characteristic 0, and it is stable under the S3-action
generated by (u, v, x, y) 7→ (v, u, x, −y) and (u, v, x, y) 7→ (u −v, −u, x, −y), as well as the C3-action
(u, v, x, y) 7→ (u, v, ζ3x, y), where ζ3 is a primitive third root of unity. Hence, the automorphism group
of has order at least 36; thus it is isomorphic to 6 ×S3. Thus, surfaces of type (3v) are reductions mod 2
of the surfaces of type III from [Dolgachev 2012, Table 8.14]. In particular, we can read off the conjugacy
classes from [Dolgachev and Martin 2024, Table 8].

The equation of type (5iii) makes sense in characteristic 0, where it is isomorphic to

y2
+ x3

+ u(u5
+ v5),

which is the equation of type IV in [Dolgachev 2012, Table 8.14].
The equation of the surfaces of type (3ii) in Theorem 6.8 can be rewritten as

y2
+ uv(u − v)y + x3

+ c(u2
− uv + v2)x2

+ a(u2
− uv + v2)3

+ bu2v2(u − v)2

for certain a, b, c ∈ k. Similar to the case of type (3v) above, these equations are stable under a S3-action,
both in characteristic 0 and in characteristic 2. In characteristic 0, these equations can be simplified to the
normal forms of type X from [Dolgachev 2012, Table 8.14].
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The equation of the surfaces of type (3iii) makes sense in characteristic 0, where it defines a lift of X
together with the action of Aut(X). Both X and the lift admit an automorphism of order 6 that acts
trivially on the base of the elliptic pencil. Hence, these surfaces are reductions mod 2 of the surfaces of
type XI from [Dolgachev 2012, Table 8.14].

The equations of the surfaces of type (2fi) in Theorem 6.8 define a 1-dimensional family of surfaces in
characteristic 0 with an action of C10. These lifts must be of type XIII [Dolgachev 2012, Table 8.14].

The equations of the surfaces of type (4i) in Theorem 6.8 define a 2-dimensional family of surfaces in
characteristic 0 with an action of C6 that is trivial on the base of the elliptic pencil. Hence, these lifts are
of type XVII [Dolgachev 2012, Table 8.14].

Next, consider the equations

y2
+ (aux + bu3

+ cv3)y + x3
+ (du4

+ euv3)x + f u6
+ gu3v3

+ hv6,

where a, b, c, d, e, f, g, h are parameters. In characteristic 0, we can simplify this equation to the normal
form of type XVIII from [Dolgachev 2012, Table 8.14]. In characteristic 2, these equations cover three of
the families of Theorem 6.8: If a, c ̸= 0, we can simplify the equation to the normal form for type (1aii)
which, in turn, specializes to type (1ei) for special values of the parameters. If a = 0 but b, c ̸= 0, we can
simplify the equation to

y2
+ (u3

+ v3)y + x3
+ euv3x + f u6.

This is an alternative normal form for our surfaces of type (3iv).
Finally, consider the equations

y2
+ (a(u + v)x + b(u + v)3

+ cuv(u + v))y + x3
+ (d(u + v)4

+ euv(u + v)2
+ f u2v2)x

+ (g(u + v)6
+ huv(u + v)4

+ iu2v2(u + v)2
+ ju3v3).

In characteristic 0, we can simplify this equation to the normal form of type XX from [Dolgachev 2012,
Table 8.14]. In characteristic 2, these equations cover four of the families of Theorem 6.8:

If a ̸= 0, we can simplify the equation to

y2
+ (u + v)xy + x3

+ cuvx2
+ du2v2x + g(u + v)6

+ huv(u + v)4
+ iu2v2(u + v)2

+ ju3v3.

If d, j ̸= 0, we can rescale one of them to 1 and obtain an alternative normal form for type (2ai). If d ̸= 0
and j = 0, we obtain a normal form for type (2ei). If j ̸= 0 and d = 0, we obtain an alternative normal
form for type (2di). Note that d = j = 0 would lead to a singular surface. Since the family of type (2di)
occurs as a reduction mod 2 of certain surfaces of type XX from [Dolgachev 2012, Table 8.14], we call
them type XX′.

If a = 0 and c ̸= 0, we can simplify the equation to

y2
+ (b(u + v)3

+ uv(u + v))y + x3
+ (euv(u + v)2

+ f u2v2)x + (g(u + v)6
+ ju3v3).

This defines a 4-dimensional family of surfaces with 22-action (one parameter is redundant). By
Theorem 6.8, the corresponding surfaces must be of type (3i).
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The surfaces in the families (1ai), (1aiii), (1aiv), (1di), (5i), (5ii), and (5iii) admit an automorphism of
order 4 and it turns out that writing down integral equations for such automorphisms similar to the ones
above is hard. So, instead, to determine the conjugacy classes of the automorphisms of this family and to
compare with the classification in characteristic 0, we will use the following observation.

Lemma 6.12. Let g be an automorphism of a del Pezzo surface of degree 1. Let m := ord(g) and let n be
the order of the induced automorphism of P1. Assume that m is even. Then, the conjugacy class 0 of g in
W (E8) is one of the following:

(1) If (m, n) = (2, 1), then 0 = 8A1.

(2) If (m, n) = (2, 2), then 0 = 4A1.

(3) If m = 4, then 0 = 2D4(a1).

(4) If (m, n) = (6, 1), then 0 = E8(a8).

(5) If (m, n) = (6, 2), then 0 = E6(a2) + A2.

(6) If (m, n) = (6, 3) and g2 is of class 3A2, then 0 = E7(a4) + A1.

(7) If (m, n) = (6, 3) and g2 is of class 2A2, then 0 = 2D4.

(8) If m = 10, then 0 = E8(a6).

(9) If m = 12, then 0 = E8(a3).

(10) If m = 20, then 0 = E8(a2).

(11) If m = 30, then 0 = E8.

Proof. By Theorem 6.8, we know that the only possible values for m and n are the ones in the statement.
In case (1), g is the Bertini involution; hence 0 = 8A1. In case (2), we may assume that g acts as

u ↔ v. Then, we proved in this section that g lifts to characteristic 0, so by [Dolgachev and Martin 2024,
Table 8], 0 = 4A1. In case (3), g2 is the Bertini involution, because PGL2(k) does not contain elements of
order 4, and it is known (see [loc. cit., Table 3]) that the only conjugacy class of automorphisms of order 4
whose square is the Bertini involution is 2D4(a1). In cases (8) and (11), gm/2 is the Bertini involution
and g2 lifts to characteristic 0; hence g lifts to characteristic 0 and we can read off the conjugacy class 0

from [loc. cit., Table 8]. Then, we deduce case (10) from case (8). In case (9), g2 must be of type E8(a8),
since PGL2(k) does not contain any elements of order 4 or 6. Then, from [loc. cit., Table 3], we see
that 0 = E8(a3). Finally, cases (4), (5), (6), and (7) follow from [loc. cit., Table 3] by comparing the
conjugacy classes of g2 and g3. □

Now, we can complete Table 9 by using the description of Aut(X) in Theorem 6.8. We observe that
the conjugacy classes for types (1ai) and (1di) are the same as for type XIX from [Dolgachev 2012, Table
8.14], the conjugacy classes for type (1aiii) are the same as for type XIV from [loc. cit., Table 8.14], and
the conjugacy classes for type (1aiv) are the same as for type V from [loc. cit., Table 8.14]. The only
groups in Theorem 6.8 that contain D8 are 21+6

+ , 21+6
+ : 3, and 21+6

+ : 15, and the only group that contains an
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automorphism of order 20 is 21+6
+ : 15. Hence, if the types XVI, M, and VIII from [loc. cit., Table 8.14] and

[Dolgachev and Martin 2024, Table 8] have good reduction modulo 2, then they must reduce to our types
(5i) and (5ii), respectively. In each of these cases, we determine the conjugacy classes using Lemma 6.12.

We summarize the classification of automorphism groups of del Pezzo surfaces of degree 1 in Table 9.
In the first column, we give the name of the corresponding family, both in the notation of Theorem 4.3 and
in the notation of [Dolgachev 2012, Table 8.14]. The second and third columns give the group Aut(X)

and its size. In the remaining columns, we list the number of elements of a given Carter conjugacy class
in Aut(X).
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On the D-module of an isolated singularity
Thomas Bitoun

Let Z be the germ of a complex hypersurface isolated singularity of equation f , with Z at least of
dimension 2. We consider the family of analytic D-modules generated by the powers of 1/ f and describe
it in terms of the pole order filtration on the de Rham cohomology of the complement of { f = 0} in the
neighbourhood of the singularity.

1. Introduction

The D-modules generated by powers of a polynomial (or analytic function) f have been the topic of several
noted publications in the last decade, for example, [Bitoun and Schedler 2018; Mustaţă and Olano 2023;
Saito 2021; 2022]. On the one hand, they are elementary objects accessible to beginners in D-module
theory. On the other hand, they relate to analytic invariants and Hodge theory in deep and subtle ways.

This note provides a new, elementary approach to describing these D-modules in the general isolated
singularity case in terms of the pole order filtration on the de Rham cohomology of the algebraic link of
the singularity.

Our results include:

• A new approach to, and a new proof of, Vilonen’s characterization of the intersection cohomology
D-module [Vilonen 1985, Theorem], presented in Theorem 2.2.4 and Remark 2.2.7.

• A new computation of the length of the D-module of meromorphic functions (Theorem 2.2.4).

• An elementary description of the Hodge structure of the D-module of meromorphic functions
(Theorem 2.2.4).

• A full solution to the question of the length of the D-module generated by 1/ f and of the corresponding
Poisson cohomology (see [Bitoun and Schedler 2018; Etingof and Schedler 2014, Conjecture 3.8])
in Corollary 3.0.4.

• Connections between top-forms decompositions with prescribed pole order and the D-modules
generated by a power of 1/ f via generalizations of Vilonen’s theorem, described in Corollary 3.0.1.

• Demonstrating the importance of D-submodules generated by pieces of the Hodge or pole order filtra-
tions, first considered in [Mustaţă and Olano 2023] and studied in Corollary 2.2.6 and Theorem 2.2.8.
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• Explaining the failure of the conjecture from [Bitoun and Schedler 2018] (equivalent in terms of the
Hamiltonian flow to [Etingof and Schedler 2014, Conjecture 3.8]), as first noted in [Mustaţă and
Olano 2023] (see also [Saito 2022]). This is discussed at the end of the introduction.

Finally, we note that our approach has already led to new results; see, e.g., the updates to [Saito 2022].
We now describe the contents in more technical detail. Let f be a complex analytic function in n

variables, n ≥ 3, and assume that Z := { f = 0} is reduced and has an isolated singularity at o. Our main
tool is the product pairing in the neighbourhood of the singularity between the meromorphic functions
with poles along Z and the top regular forms, with values in the n-th de Rham cohomology group H ′ of
the complement of Z .

Let δo be the irreducible D-module supported at o. In Theorem 2.2.4, we show that the pairing can
be interpreted as a D-module map r : O(∗Z)o → δo ⊗ H ′, which is surjective with kernel equal to the
intersection homology D-module Lo. The latter relies on Vilonen’s characterization of that D-module, of
which our result can be viewed as a generalization (e.g., Corollary 3.0.1; see also Remark 2.2.7). The
morphism r is especially convenient to study the D-submodules of O(∗Z)o generated by powers of 1/ f
or by the pieces of Hodge filtration; see Corollaries 2.2.6 and 3.0.1.

Using the above, [Mustaţă and Olano 2023] implies that the dimension of the first piece F0 H ′ of the
Hodge filtration is the reduced genus g of [Bitoun and Schedler 2018], while the length of D(1/ f )/Lo

is dim P0 H ′, where P0 H ′ is the set of classes generated by forms with pole order at most 1 along Z .
However it is well known that the pole order filtration is, in general, strictly greater than the former;
see, e.g., [Dimca 1991, 5.4 ii; Karpishpan 1991, (b) of Theorem 0.3]. This explains the failure of [Bitoun
and Schedler 2018, Conjecture 1.7]. Finally, let us note that even though the natural language of the note is
that of analytic D-modules, we deduce results on length in the algebraic case as well; see Corollary 3.0.4.

2. A morphism of D-modules

2.1. Setup and conventions. Let n ≥ 3. Let X be a complex analytic manifold of dimension n, let Z
be a hypersurface of X that has isolated singularities and let U ⊂ X be the open complement of Z . By
restricting to an open neighbourhood of a singularity we may assume that Z has a unique singularity o,
which we do from now on. By a D-module, we mean a left coherent, analytic DX -module, and by a
Do-module, we mean a finitely generated left module over the stalk of DX at the point o. For a holonomic
D-module M, we let DRl(M) be the l-th cohomology group of the de Rham complex of M. We use the
same notation DRl(N ) for N a holonomic Do-module. We let O(⋆Z) be the D-module of meromorphic
functions on X with poles along Z .

2.2. Construction. Let us first recall standard facts.
Let k be a field, let B be an arbitrary k-algebra and let M be a right (resp. left) B-module. Then for

an arbitrary k-vector space W, the space of k-linear maps L(M, W ) from M to W is a left (resp. right)
B-module, where the action is given by b f (m) := f (mb) (resp. f b(m) := f (bm)), for all b ∈ B, m ∈ M ,
f ∈ L(M, W ). In the following lemma, we apply this to the right D0-module �n

o for k = C.
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Lemma 2.2.1. Let V be a finite-dimensional complex vector space and let o be a point of X. For �n
o

the stalk at o of the sheaf of differential n-forms, the space of linear maps L(�n
o, V ) from the right

Do-module �n
o to V is naturally a Do-module. Moreover the Do-submodule L(�n

o, V )o of linear maps
annihilated by a power of the ideal of o is isomorphic to the Do-module δo⊗C V, where δo is the irreducible
Do-module supported at o.

Proof. Only the last part needs further proof. Under Kashiwara’s equivalence [Björk 1993, Lemma 2.6.18],
a holonomic left D-module M supported at o corresponds to the finite-dimensional vector space M/(mM),
where m is the ideal of o, and M ≃ δo ⊗C M/(mM). Therefore, the D-module L(�n

o, V )o corresponds to
the vector space of linear maps from �n

o/m�n
o ≃ C to V, which is isomorphic to V. Hence the existence

of an isomorphism L(�n
o, V )o ≃ δo ⊗C V . □

We will use the following lemma. For an element λ of L(�n
o, V ), we denote by Im(λ) the image of

the corresponding linear map �n
o → V.

Lemma 2.2.2. Let V be a finite-dimensional complex vector space and let N be a Do-submodule
of L(�n

o, V )o. Assume that for all v ∈ V, there exists an element λv of N such that v ∈ Im(λv). Then
N = L(�n

o, V )o.

Proof. By Lemma 2.2.1 and Kashiwara’s equivalence [Björk 1993, Lemma 2.6.18], N = L(�n
o, V ′)o

for a vector subspace V ′ of V. Thus if v ∈ V \ V ′, then for all λ ∈ N = L(�n
o, V ′)o, v ̸∈ Im(λ). This

contradicts the assumption on N. Hence N = L(�n
o, V )o. □

In our setup 2.1, we denote by L the D-module preimage in O(⋆Z) of the intersection cohomology
D-module LZ ⊆ O(⋆Z)/O associated with Z . We now recall Vilonen’s description of the intersection
homology D-module in terms of residues.

Theorem 2.2.3 (Vilonen). An element s of the stalk O(⋆Z)o is in the stalk Lo if and only if ∀ω′
∈ �n

o, sω′

is exact, i.e.,
Lo = {s ∈ O(⋆Z)o | for all ω′

∈ �n
o, sω′

∈ d(�n−1
o (⋆Z))}.

Proof. This is a reformulation of [Vilonen 1985, Theorem]; see [Björk 1993, 5.7.21] for a textbook
treatment. We include the proof below for the benefit of the reader. Let

V := {s ∈ O(⋆Z)o | for all ω′
∈ �n

o, sω′
∈ d(�n−1

o (⋆Z))}.

It follows by a special case of the argument given in the proof of Theorem 2.2.4 below that V is a
Do-submodule. We want to prove that V = Lo.

Let us first show that Lo ⊆ V. Note that for N ⊆O(⋆Z)o a Do-submodule, N ⊆ V if and only if the image
of DRn(N ) in the de Rham cohomology group DRn(O(⋆Z))o vanishes. But DRn(Lo) = DRn(L)o = 0
by [Björk 1993, Lemma 5.7.18]; hence Lo ⊆ V. Let us now show that Lo = V. The quotient V/Lo

is supported at the singularity since it is the case for O(⋆Z)o/Lo. Therefore V/Lo ≃ δ
j
o for some

j ≥ 0. By the long exact sequence of the DRi ’s applied to the short exact sequence 0 → V →

O(⋆Z)o → O(⋆Z)o/V → 0, we have that the natural map DRn(V ) → DRn(O(⋆Z)o) is an injection,
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because DRn−1(δo) = 0. Hence DRn(V ) = 0 by the definition of V. But using the long exact sequence
of the DRi ’s associated with the short exact sequence 0 → Lo → V → δ

j
o → 0, we deduce from

DRn−1(δo) = DRn+1(Lo) = 0 and DRn(δo) = C that

C j
≃

DRn(V )

DRn(Lo)
.

Since the latter vanishes, we must have j = 0 and Lo = V. □

Let us now prove the main theorems of this note. Note that the de Rham cohomology DRn(O(⋆Z)o)

is endowed with a Hodge structure, which we denote by H ′.

Theorem 2.2.4. Under the hypotheses in Section 2.1, the pairing

O(⋆Z)o × �n
o

B
−→ H ′, (s, ω′) 7→ [sω′

],

where [−] is the cohomology class of a form, induces a surjective homomorphism of Do-modules

O(⋆Z)o
r

−→ L(�n
o, H ′)o, s 7→ B(s, −),

where o is the singularity. This homomorphism is compatible with the Hodge filtrations, where the Hodge
filtration on L(�n

o, H ′)o is the one induced by that of H ′ under Kashiwara’s equivalence for Hodge
D-modules. The kernel of r is the Do-module Lo.

Proof. Let us first show that the map

O(⋆Z)o → L(�n
o, DRn(O(⋆Z)o)), s 7→ (ω′

7→ [sω′
]),

defines a morphism of Do-modules and takes its values in L(�n
o, DRn(O(⋆Z)o))o.

It follows directly from the definitions that the map is O-linear. Moreover, the fact that the class of an
exact form in DRn(O(⋆Z)o) vanishes implies that r is compatible with the actions of derivations. We
may restrict ourselves to verifying it for the action of the partials (∂i )i corresponding to coordinates (xi )i .
Let ω be a volume form in the neighbourhood of o and let ω(i) be an (n−1)-form such that dxi ∧ω(i)

= ω.
Then sω′

= sgω for some holomorphic function g and d(sgω(i)) = ∂i (s)ω + s∂i (g)ω. That is,

∂i s 7→
(
gω 7→ [∂i (s)gω] = −[s∂i (g)ω]

)
.

Hence the map is compatible with the right Do-module action on �n
o . Therefore we have a morphism of

Do-modules O(⋆Z)o → L(�n
o, DRn(O(⋆Z)o)). Note that by Theorem 2.2.3, the kernel of this morphism

is Lo. But O(⋆Z)o/Lo is supported at o; hence r factors through L(�n
o, DRn(O(⋆Z)o))o.

That r is surjective follows directly from Lemma 2.2.2. Finally, the compatibility of r with the Hodge
filtrations is a direct consequence of the construction of the Hodge filtration on the de Rham complex. □

Remark 2.2.5. Letting Z∞ be the Milnor fibre at o, we note that for H := H n−1(Z∞)1 the unipotent
monodromy part of the cohomology group of the Milnor fibre and N the logarithm of the unipotent part
of the monodromy, we have a natural identification of mixed Hodge structures γ : H ′

≃ H/(NH). This
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follows from applying DRn to the short exact sequence 0 → M f ≃L→ M ′′

f ≃O(⋆Z)/O→ M ′′

f /M f → 0
of [Saito 2009, Remarks 3.2i] and using the isomorphisms [Saito 2009, 3.2.5 and 3.2.4].

As a direct corollary, we get the following.

Corollary 2.2.6. The image by r of the D-submodule Do FlO(⋆Z)o generated by the l-th piece of the
Hodge filtration on O(⋆Z)o is L(�n

o, Fl H ′)o, where Fl H ′ is the l-th piece of the Hodge filtration on H ′.
Therefore the length of Do FlO(⋆Z)o/Lo is dimFl H ′.

Proof. Since r is a surjective morphism of Hodge Do-modules by Theorem 2.2.4, we have r(FlO(⋆Z)o) =

6i+ j≤l Giδo ⊗ F j H ′, where G is the good filtration on δo induced by the standard generator of δo and the
usual good filtration of Do; see, e.g., [Saito 2009, 1.5.3]. But the submodules Do(6i+ j≤l Giδo ⊗ F j H ′)

and Do(G0 ⊗ Fl H ′) = L(�n
o, Fl H ′)o are equal. Indeed the Do-module structure on L(�n

o, H ′)o ≃ δ0 ⊗ H ′

is such that Do acts only on the left factor δ0, which is generated by G0δ0. The equality follows. Therefore
r(Do FlO(⋆Z)o) = Dor(FlO(⋆Z)o) = Do(6i+ j≤l Giδo ⊗ F j H ′) = L(�n

o, Fl H ′)o, as stated. □

Remark 2.2.7. We draw the reader’s attention to the fact that Theorem 2.2.4 can be thought of as
providing a new proof of Vilonen’s theorem. Namely, we know that r is surjective. So if we accept the
elementary fact that O(⋆Z)o is of length 1 + dimH ′ [Björk 1993, 5.7.17], we must have that the kernel
of r is Lo. But the kernel of r exactly matches the description in Vilonen’s theorem.

We now consider Do-submodules generated by an Oo-submodule of O(⋆Z)o. For M an Oo-submodule
of O(⋆Z)o, we set �n

o(M) = M ⊗Oo �n
o and let [�n

o(M)] ⊆ DRn(O(⋆Z)o) be the vector subspace of
the corresponding classes of forms, namely the classes that can be represented as mw′, for some m ∈ M
and w′

∈ �n
o .

Theorem 2.2.8. Let M be an Oo-submodule of O(⋆Z)o and let Do M be the Do-submodule of O(⋆Z)o

generated by M. Assume that O(⋆Z)o and Do M agree generically on Z. Then the quotient Do M/Lo is
isomorphic to L(�n

o, [�
n
o(M)])o. Moreover,

Do M = {s ∈ O(⋆Z)o | for all ω′
∈ �n

o, sω′
∈ M ⊗Oo �n

o + d(�n−1
o (⋆Z))}.

Proof. Since Lo is the minimal extension and Do M extends O(⋆Z)o generically on Z , Do M contains Lo.
It thus makes sense to consider the quotient Do M/Lo. We claim that r(Do M) = L(�n

o, [�
n
o(M)])o,

where r is the morphism from Theorem 2.2.4. Indeed, we have M ⊆ r−1(L(�n
o, [�

n
o(M)])o). Therefore

Do M ⊆ r−1(L(�n
o, [�

n
o(M)])o), because r−1(L(�n

o, [�
n
o(M)])o) is a Do-module containing M, and

hence r(Do M) ⊆ L(�n
o, [�

n
o(M)])o. We then note that the equality r(Do M) = L(�n

o, [�
n
o(M)])o follows

immediately from Lemma 2.2.2. □

3. Some corollaries

In what follows, let us consider the filtration P by order of the pole on the de Rham cohomology
DRn(O(⋆Z)o) ≃ H ′. Namely, we let Pl H ′ be the subspace of the classes that can be represented, via the
isomorphism above, by forms having a pole of order at most l + 1 along Z .
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Corollary 3.0.1. Let f be a local equation of Z , and let l ≥ 0. We have the following description of
Do(1/ f l+1), the Do-submodule of O(⋆Z)o generated by 1/ f l+1:

Do
1

f l+1 = {s ∈ O(⋆Z)o | for all ω′
∈ �n

o, sω′
∈ �n

o((l + 1)Z) + d(�n−1
o (⋆Z))}.

It follows that the Do-module length of the quotient Do(1/ f l+1)/Lo is dimC Pl H ′.

Proof. Apply Theorem 2.2.8 to M = Oo/ f l+1. It then follows that the quotient Do(1/ f l+1)/Lo =

Do(Oo/ f l+1)/Lo is isomorphic to

L
(
�n

o,
[
�n

o

( Oo

f l+1

)])
o
= L(�n

o, Pl H ′)o.

Since the latter is isomorphic to δo ⊗C Pl H ′ by Lemma 2.2.1, the length assertion is proved. □

Therefore we deduce the following properties, first proved in [Mustaţă and Olano 2023, Theorems 1.1
and 1.3], from those of the pole order filtration.

Corollary 3.0.2. Recall the hypotheses in Section 2.1.

(1) The Do-module length of the quotient Do(1/ f l+1)/Lo is at least dimC Fl H ′.

(2) If Z is quasihomogeneous, then the inequality from 1 is an equality.

Proof. Since the Do-module length of the quotient Do(1/ f l+1)/Lo is dimC Pl H ′ by Corollary 3.0.1,
assertions (1) and (2) follow from Theorems (b) and (a) of [Karpishpan 1991], respectively. □

Remark 3.0.3. We note that, conversely, any result on the length of Do(1/ f l+1)/Lo transfers by
Corollary 3.0.1 to a statement about the pole order filtration. For example, [Saito 2022, Theorem 1]
describes those lengths in terms of the Gauss–Manin connection (compare with [Karpishpan 1991,
Theorem (c)]). Moreover, [Mustaţă and Olano 2023, §5; Saito 2022, 3.2 Example I] provide new
examples where the Hodge filtration is strictly contained in the pole order filtration.

We also obtain results for algebraic D-modules. Let n ≥ 3 and let g be a complex polynomial in
n variables defining a reduced irreducible hypersurface Y with an isolated singularity at the origin,
i.e., |Y sing

| = 1. Then for all l ≥ 0, we denote by Dalg(1/gl+1) the left Dalg-submodule of R[1/g]

generated by 1/gl+1, where R is the ring of complex polynomials in n variables and Dalg is the n-th
Weyl algebra An(C). We let I C be the Dalg-module preimage in R[1/g] of the intersection cohomology
Dalg-module I CY .

Corollary 3.0.4. The quotient Dalg-module Dalg(1/gl+1)/(I C) is of length dimC Pl H n
d R(B \Y ), where Pl

is the pole order filtration of the de Rham cohomology of the complement of Y in a small analytic ball B
centred at the origin.

Proof. Using the notation of Section 2.1, the analytification functor DCn ⊗Dalg − is an equivalence between
the category of regular holonomic Dalg-modules and a full subcategory of regular DCn -modules [Brylinski
1986, Proposition 7.8]. It follows directly from the definition that the analytification of the regular
holonomic Dalg-module R[1/g] is the sheaf of meromorphic functions O(⋆Y an), and the analytification of
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Dalg(1/gl+1) is DCn (1/gl+1). Moreover, because the analytification is an equivalence, the minimality of
I C and L force them to correspond to each other under the analytification functor. But, as DCn (1/gl+1)/L
is supported at the origin, its length is the same as that of its stalk at the origin. But the natural map from
H n

d R(B \ Y ) to H ′
= DRn(O(⋆Y an))o is an isomorphism for a small enough analytical ball B around o,

and it is compatible with the pole order filtration. Therefore the assertion follows from Corollary 3.0.1. □

Remark 3.0.5. While the corollary is presented with the constraint |Y sing
| = 1 for clarity, the assertion

can be extended to polynomials g with multiple isolated singularities. This would involve introducing a
summation over all singularities.
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Ribbon Schur functors
Keller VandeBogert

We investigate a generalization of the classical notion of a Schur functor associated to a ribbon diagram.
These functors are defined with respect to an arbitrary algebra, and in the case that the underlying algebra
is the symmetric/exterior algebra, we recover the classical definition of Schur/Weyl functors, respectively.
In general, we construct a family of 3-term complexes categorifying the classical concatenation/near-
concatenation identity for symmetric functions, and one of our main results is that the exactness of these
3-term complexes is equivalent to the Koszul property of the underlying algebra A. We further generalize
these ribbon Schur functors to the notion of a multi-Schur functor and construct a canonical filtration of
these objects whose associated graded pieces are described explicitly; one consequence of this filtration is
a complete equivariant description of the syzygies of arbitrary Segre products of Koszul modules over the
Segre product of Koszul algebras. Further applications to the equivariant structure of derived invariants,
symmetric function identities, and Koszulness of certain classes of modules are explored at the end, along
with a characteristic-free computation of the regularity of the Schur functor Sλ applied to the tautological
subbundle on projective space.

1. Introduction

1.1. Ribbon Schur functors. Schur functors are fundamental objects that lie at the intersection of
representation theory, algebraic geometry, combinatorics, and commutative algebra. Representation
theoretically, the Schur functors Sλ corresponding to a partition λ are irreducible GL(V )-representations
in characteristic 0, and (up to twists by the determinant representation) these constitute all irreducible
representations of the general linear group; see, for instance, [Weyman 2003, Chapter 2]. From the
algebro-geometric perspective, Schur functors corresponding to partitions may be constructed via the
famous Borel–Weil theorem (see [Serre 1959; Bott 1957], or [Kempf 1976]), which realizes these objects
as the global sections of canonical line bundles on the complete flag variety. Combinatorially, Schur
functors may be identified with their multigraded characters to obtain Schur polynomials, which are a
fundamental basis for the ring of symmetric functions; see, for instance, [Grinberg and Reiner 2014] for
more on this perspective. Finally, for a commutative algebraist, Schur modules over arbitrary commutative
rings were constructed in the foundational work of Akin, Buchsbaum and Weyman [Akin et al. 1982],
where these objects may be described as the image of a map constructed using the (graded) commutative
Hopf algebra structure on the symmetric/exterior powers.
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772 Keller VandeBogert

Figure 1. The skew shape on the left is not a ribbon, since the bottom two rows have overlap
size 2. The shape on the right is a ribbon.

· = +

Figure 2. The concatenation/near-concatenation identity (here we are identifying the ribbon
diagrams with their corresponding Schur polynomials).

We take the perspective that Schur functors corresponding to ribbon diagrams are “more natural” than
Schur functors corresponding to partitions. A ribbon diagram is a skew shape for which consecutive rows
overlap by exactly one block.

From a representation-theoretic point of view, ribbon Schur functors may seem quite unnatural: they
are highly reducible, even in characteristic 0. However, experts in the theory of symmetric functions
have long known that ribbon Schur polynomials also generate the ring of symmetric functions and are in
many ways much more well-behaved than Schur polynomials corresponding to partitions; see [Lascoux
and Pragacz 1988; Billera et al. 2006; Reiner et al. 2007; Huang 2016]. For example, ribbon Schur
polynomials satisfy a much simpler Pieri-type formula (the concatenation/near-concatenation identity)
than Schur polynomials corresponding to partitions, which require the Littlewood–Richardson rule to
expand in general.

One of the most fundamental reasons ribbon diagrams are desirable is that Schur functors corresponding
to ribbons can be defined solely using the algebra structure on the symmetric algebra S(V ), whereas
Schur functors for partitions almost always need the full Hopf algebra structure; this is immediate from
the work of Akin, Buchsbaum and Weyman [1982], which establishes a canonical, characteristic-free
presentation of Schur modules associated to skew partitions. This means that there is an evident way to
generalize ribbon Schur functors to arbitrary algebras, and the main theme of this paper is that in order
for this theory to work “as it should”, the underlying algebra needs to be Koszul.

Example 1.1. In this example, identify the skew shapes with their corresponding Schur functors. Then

= Ker

S2(V )⊗k S2(V )→
S4(V )
⊕

S3(V )⊗k V

 and = Ker (S2(V )⊗k S2(V )→ S4(V )) .

In the first equality, the map S2(V )⊗k S2(V )→ S3(V )⊗k V is the composition of both comultiplication
and multiplication on the symmetric algebra, whereas the second ribbon diagram is simply the kernel of
the canonical multiplication map S2(V )⊗k S2(V )→ S4(V ).
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1.2. Koszul algebras and Backelin’s theorem. A k-algebra A is Koszul if its residue field k has a
linear homogeneous minimal free resolution over A. Koszul algebras are one method of generalizing
standard graded polynomial rings and make their appearance in a wide range of seemingly disconnected
settings. Topologically, Koszul duality for quadratic algebras can be used to translate between facts
about equivariant and standard cohomology; see [Goresky et al. 1998]. In the context of number theory,
Positselski [2014] has shown that certain classes of Milnor rings are Koszul algebras and relates the
Milnor–Bloch–Kato conjecture to Koszulness of certain quotient rings. Combinatorially, early work
of Backelin [1981] showed that there was an equivalence between Koszul algebras and distributivity
of certain associated subspace lattices, and since then Koszulness of rings associated to combinatorial
objects has been an active and fruitful area of research; see for instance [Yuzvinskiı̆ 2001; Mastroeni and
McCullough 2023].

Suppose for the time being that V is a vector space over a field k; all tensor products will be taken
over k. Recall that a quadratic algebra A is any quotient of the tensor algebra T (V ) by a quadratic ideal
(Q2)⊂ T⩾2(V ), where Q2 ⊂ V ⊗ V . In particular, each graded piece of A is the quotient

An =
V⊗i

Q2⊗ V⊗n−2+ V ⊗ Q2⊗ V⊗n−3+ · · ·+ V⊗n−2⊗ Q2
.

Although Koszulness is often defined in terms of a homological property of the residue field of A, a well-
known result of Backelin establishes the elegant fact that Koszulness has an equivalent formulation in terms
of a purely combinatorial property of the collections Q2⊗ V⊗n−2, V ⊗ Q2⊗ V⊗n−3, . . . , V⊗n−2

⊗ Q2.

Theorem 1.2 ([Backelin 1981], see also [Beilinson et al. 1996]). Let A be a quadratic algebra. Then
A is Koszul if and only if the collection Q2⊗ V⊗n−2, V ⊗ Q2⊗ V⊗n−3, . . . , V⊗n−2

⊗ Q2 generates a
distributive subspace lattice for all n ⩾ 2.

This alternative (equivalent) formulation of Koszulness is surprising because it implies that the Koszul-
ness assumption gives you “more than you bargained for”; the backwards implication of Backelin’s
theorem is evident, but a priori distributivity seems like a much stronger property than Koszulness. In this
paper, we reinterpret this distributivity property as being equivalent to the exactness of a family of 3-term
sequences; see Proposition 3.14. A key observation here is that these 3-term sequences yield a defining
identity for a generalization of ribbon Schur functors to any Koszul algebra.

1.3. Generalized ribbon Schur functors and the concatenation/near-concatenation criterion for Koszul-
ness. Let A be any standard graded quadratic R-algebra and α = (α1, . . . , αn) any sequence of positive
integers.1 Then the ribbon Schur module SαA is defined as the kernel of the map

Aα1 ⊗R Aα2 ⊗R · · · ⊗R Aαn →

n−1⊕
i=1

Aα1 ⊗R · · · ⊗R Aαi+αi+1 ⊗R · · · ⊗R Aαn ,

1The quadratic assumption is unnecessary, but since these objects are most well-behaved when the algebra A is assumed to be
Koszul, we will often be in this setting anyway.
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where each component of the map is induced by the natural multiplication maps Aαi ⊗R Aαi+1→ Aαi+αi+1 .
As mentioned previously, when A = S•(V ) is the symmetric algebra, this definition recovers the Akin,
Buchsbaum and Weyman [1982] definition of the Schur functor associated to the ribbon diagram induced
by α. The importance of using ribbon Schur functors to canonically describe syzygies of modules over
Veronese subalgebras of the polynomial ring was discovered in [Almousa et al. 2024], and the goal of
this paper is to fully expand upon this perspective in a much more general setting.

One of our first main results is the following (for notation, see Definition 4.1). This statement may
be interpreted as saying that the concatenation/near-concatenation identity observed in the classical
theory of Schur polynomials is the shadow of a canonical short exact sequence of functors, and that the
concatenation/near-concatenation identity is actually a defining property of Koszulness.

Theorem 1.3. Let A be any Koszul R-algebra (where R is any commutative ring) and α, β be any two
compositions:

(1) There is a canonical isomorphism of R-modules

(SαA)
∗ ∼= Sα

t

A!,

where (−)! denotes the quadratic dual, αt denotes the transposed ribbon diagram, and (−)∗ :=
HomR(−, R).

(2) There is a canonical short exact sequence

0→ S
α·β

A → SαA⊗R S
β

A→ S
α⊙β

A → 0.

Conversely, this sequence is exact for all compositions if and only if A is Koszul.

This is surprising since, intuitively, the classical concatenation/near-concatenation identity for symmet-
ric functions may seem like a consequence of the combinatorial/representation-theoretic structure on the
symmetric algebra S•(V ). Theorem 1.3 tells us that this additional structure is more of a red herring, and
the classical identity is actually a consequence of a much more fundamental algebraic property.

One could also ask if this equivalent formulation of Koszulness is actually useful for proving classes of
modules are Koszul, and in Section 6.4 we use this criterion to give quick proofs of the existence of large
classes of Koszul modules over arbitrary Koszul algebras A. In the case of the symmetric/exterior algebras,
this criterion for Koszulness gives a very simple proof that a general class of modules parametrized by
arbitrary skew-partitions are Koszul. Previous proofs that these modules were Koszul only worked for
diagrams corresponding to partitions, and resorted to geometric arguments that realized these objects
as arising from taking cohomology of line bundles on flag varieties; see, for instance, [Gao and Raicu
2024, Theorem 2.2]. Our proof is totally characteristic-independent, allows for the algebra to be over any
commutative ring, and requires no machinery coming from algebraic geometry.

We also generalize this definition of Schur functors to allow for module inputs M and N , denoted
by SαM,A,N ; this is a generalization even in the classical case of Schur functors, and allows for elegant
descriptions of the higher derived invariants associated to pairs of Koszul modules.
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Theorem 1.4. Let A be a Koszul algebra and N (resp. M) a left (resp. right) Koszul A-module. Then
there is a canonical isomorphism of A-modules

TorA
i (M, N )= S

(1i )
M,A,N .

If M is instead a left A-module, then there is a canonical isomorphism of A-modules

ExtiA(M, N )= S
(i)
M !,A!,(N∗)! .

If A, M , and N have any ambient group action, then the above isomorphisms are equivariant.

Remark 1.5. Note that there are other places in the literature where generalizations of Schur functors
have been considered, such as the work of Sam and Snowden [2017; 2019] which approaches the problem
from a much more representation-theoretic perspective. These constructions are done in the standard type
ABCD framework and do not apply to arbitrary Koszul algebras like the constructions in this paper do.

1.4. Multi-Schur functors. Let us first motivate the construction of a multi-Schur functor. Segre subalge-
bras of the tensor product of Koszul algebras are well known to be Koszul algebras. Given Koszul algebras
A and B, let A ◦ B denote the Segre product; the homogeneous components of the (dual) quadratic dual
may be computed as the kernel of a map that applies the multiplication on A and B “diagonally”. For
example, there is an equality

((A ◦ B)!)∗3 = Ker

A⊗3
1 ⊗ B⊗3

1 →

A2⊗ A1⊗ B2⊗ B1

⊕

A1⊗ A2⊗ B1⊗ B2.

 .

This is the same thing as applying the defining relations for the Schur modules S
(13)
A and S

(13)
B diagonally,

and leads us directly to the notion of a multi-Schur functor.
A multi-Schur functor S

α

A takes as inputs tuples of compositions and algebras

α = (α1, . . . , αn), A = (A1, . . . , An),

and is defined by taking the kernel of the defining relations of each of the ribbon Schur modules Sα
i

Ai applied
diagonally, exactly as above. Surprisingly, multi-Schur modules satisfy an identical concatenation/near-
concatenation sequence (appropriately generalized; see Lemma 5.8), and we can further extend this
definition to allow for tuples of modules. This gives us a similar clean description of Tor modules over
Segre products.

Theorem 1.6. Consider tuples of the form

A = (A1, . . . , An), N = (N 1, . . . , N n), M = (M1, . . . ,Mn),

where each Ai is a Koszul R-algebra and N i (resp. M i ) is a left (resp. right) Ai -module. Then there is a
canonical isomorphism of A1

◦ · · · ◦ An-modules

TorA1
◦···◦An

i (M1
◦ · · · ◦Mn, N 1

◦ · · · ◦ N n)= S
(1i )
M,A,N .

This isomorphism is natural with respect to morphisms of algebras; in particular it is equivariant if each
of the Koszul algebras has any ambient group action.
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Canonical filtrations. Although Theorem 1.6 is simple to state, it still gives us very little information
about the relationship between a multi-Schur functor (which is a priori a purely formal construction)
and objects that we may better understand. A standard method of trying to understand an object is to
construct a filtration whose associated graded objects are “simple” in the appropriate sense.

As it turns out, multi-Schur functors S
α

M,A,N admit a canonical (that is, totally functorial) filtration
whose associated graded pieces are tensor products of the Schur functors S

β i

M i ,Ai ,N i , where 1 ⩽ i ⩽ n.
The difficult part is determining the poset that parametrizes this filtration, and our main result related to
multi-Schur functors is an explicit description of this parametrization.

Before stating the result, we need to introduce one piece of notation: given a composition α =
(α1, . . . , αℓ) and a subset I ⊂ [ℓ− 1], the notation σI (α) denotes the composition obtained by adding αi

and αi+1 for all i ∈ I . For example

σ{1,2,4,6,7}(2, 1, 3, 5, 3, 6, 5, 3)= (6, 8, 14).

With this notation in hand, we have:

Theorem 1.7. Consider the tuple
α = (α1, . . . , αn),

where each composition αi has a fixed length ℓ. With notation and hypotheses as in Theorem 1.6, the
multi-Schur module S

α

M,A,N admits a canonical filtration with associated graded pieces of the form

S
σI1 (α

1)

M1,A1,N 1 ⊗R S
σI2 (α

2)

M2,A2,N 2 ⊗R · · · ⊗R S
σIn (α

n)

Mn,An,N n ,

where the subsets I1, . . . , In ⊂ [ℓ−1] range over all choices such that I1∩ I2∩· · ·∩ In =∅. This filtration
is equivariant with respect to any kind of ambient group action.

Example 1.8. If in the statement of Theorem 1.7, one has n = 2 and each composition has length 3, the
poset parametrizing the filtration factors has Hasse diagram:

({1, 2},∅) ({1}, {2}) ({2}, {1}) (∅, {1, 2})

({1},∅) ({2},∅) (∅, {1}) (∅, {2})

(∅,∅)

For a concrete example of the explicit filtration factors, see Example 5.25.

1.5. Organization of paper. This paper is organized as follows. In Section 2 we recall some background
on augmented bar complexes and their homogeneous strands. We also establish conventions and notation
that will be used throughout the paper. In Section 3 we recall the notion of distributivity for collections of
arbitrary R-submodules; much of this material is essentially contained in [Polishchuk and Positselski
2005], but since we do not assume the ambient ring is a field, there are some additional details that need
to be checked. We also introduce a collection of modules L I

M1,...,Mn
associated to a distributive collection

of R-submodules that will end up being an equivalent way to define ribbon Schur functors in the setting
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of arbitrary quadratic algebras. Under appropriate assumptions, we also show that distributivity behaves
well with respect to “dualization”.

Sections 4 and 5 develop the theory of ribbon Schur functors associated to arbitrary quadratic
algebras/modules. In Section 4, we define ribbon Schur functors associated to arbitrary quadratic
algebras/modules and prove the concatenation/near-concatenation Koszulness criterion. Section 4.2 is
devoted to giving explicit examples and illustrating the statements for concrete choices of Koszul algebras,
and the main proofs of the results in full generality are given in Section 4.3. We will see that many duality
properties of Schur and Weyl functors in the classical setting as a consequence of Koszul duality for these
more general ribbon Schur functors.

In Section 5 we define multi-Schur functors as described earlier. The beginning of this section explains
how to upgrade all of the statements of Section 4 to this level of generality; it turns out that there is a
large amount of additional bookkeeping needed when doing this. Sections 5.1 and 5.2 prove all of the
results necessary to construct the filtration as stated in Theorem 1.7.

Section 6 is where we get to see the utility of the theory developed in Sections 4 and 5 for giv-
ing canonical descriptions/filtrations to many of the invariants associated to Koszul algebras/modules.
Section 6.1 proves the isomorphisms of Tor and Ext between Koszul modules as stated in Theorem 1.4, and
Sections 6.2 and 6.3 give canonical descriptions of the derived invariants over Veronese/Segre subalgebras
in terms of the original algebra(s), and even deduce an interesting symmetric function identity as a result
taking a character count on the minimal free resolution over a Segre product. In Section 6.4, we construct
a large class of Koszul modules over an arbitrary Koszul algebra and, in the case of symmetric/exterior
algebras, we generalize a construction of Koszul modules associated to Schur functors corresponding to
arbitrary skew partitions. We use this to give a characteristic free computation of the sheaf cohomology
of Sλ(R) on P(V ), where R denotes the tautological subbundle on projective space.

The Appendix recalls the equivalence between Koszulness and distributivity (that is, Backelin’s theorem)
and interprets distributivity in terms of exactness properties of so-called refinement complexes. Again,
much of this material follows from straightforward generalizations of the material in [Polishchuk and
Positselski 2005], but we check the details for sake of completeness. In Section A.1 we first discuss some
generalities and definitions related to general quadratic algebras. The bulk of this appendix is dedicated
to the material of Section A.2, which defines refinement complexes and establishes some important
conventions for these refinement complexes. In Sections A.3 and A.4, we recall Backelin’s theorem along
with the appropriate analogs for Koszul modules and translate these results into statements about the
family of refinement complexes. Finally, in Section A.5 we recall the Priddy complex and some of its
properties in the generality in which we are working.

2. Augmented bar constructions

In this section, we establish some conventions and notation to be used for the remainder of the paper.
We also define one of the most important elements of the paper: the augmented bar complex associated
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to an augmented R-algebra. Unsurprisingly, understanding homogeneous strands of the augmented bar
complex is equivalent to understanding Koszulness of the algebra A.

Definition 2.1. Let R be a commutative Noetherian ring and A any associative unital R-algebra:

(1) The algebra A is (Z-)graded if A =
⊕

i∈Z Ai with Ai · A j ⊂ Ai+ j for all i, j ∈ Z, and 1A ∈ A0.

(2) The algebra A is augmented if A = R⊕ A+, where R = R · 1A and A+ is a two-sided ideal in A.

(3) The algebra A is quadratic if A = T (A1)/(Q A
2 ), where T (−) denotes the tensor algebra functor,

Q A
2 ⊂ A1⊗R A1, and (Q2) denotes the two-sided ideal generated by Q2.

(4) A left A-module M is graded if M =
⊕

i∈Z Mi and Ai M j ⊂ Mi+ j for all i, j ∈ Z.

The notation Aop denotes the opposite algebra of A; that is, the underlying set of Aop is the same as A
but with multiplication defined by a · b := b · a. Any right A-module is equivalently a left Aop-module.

Remark 2.2. For quadratic R-algebras, we will always assume that the grading is induced by the standard
grading on the tensor algebra. In particular, all quadratic algebras are nonnegatively graded.

The following convention is extremely important, and without it most of the arguments given later in
this paper cannot even get off the ground.

Convention 2.3. Throughout this paper, all graded R-algebras A will be assumed to be finitely-generated
flat R-modules in each degree. Similarly, all graded A-modules will be assumed to be finitely-generated
and flat in each degree. Sometimes we will assume that A or M is even R-projective in each degree, but
it is always true that they are at least finitely-generated and flat in each degree.

There are two fundamental operations on algebras that will be particularly interesting for us.

Definition 2.4. Let A and B be graded R-algebras. The d-th Veronese power A(d) of A is defined to be
the subalgebra

A(d) :=
⊕

i≡0 mod d

Ai ⊂ A.

Let M be a graded (left) A-module of initial degree t . Then the d-th Veronese power M (d) is defined to
be the A(d)-module

M (d)
:=

⊕
i≡t mod d

Mi ⊂ M.

The Segre product A ◦ B of A and B is defined to be the subalgebra

A ◦ B :=
⊕
i⩾0

Ai ⊗R Bi ⊂ A⊗R B.

The d-th Segre power A[d] of A is defined to be the iterated Segre product

A ◦ A ◦ · · · ◦ A︸ ︷︷ ︸
d times

⊂ A⊗Rd .
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Given a graded left A (resp. B)-module M (resp. N ) of initial degree s (resp. t), the Segre product M ◦N
is the left A ◦ B module defined as

M ◦ N :=
⊕
i⩾0

Mi+s ⊗R Ni+t .

The Segre product of Koszul right modules is defined identically.
The d-th Segre power M [d] of M is defined to be the Segre product

M ◦ · · · ◦M︸ ︷︷ ︸
d times

.

Remark 2.5. Often one uses the convention that the generators of the Veronese/Segre subalgebras have
been rescaled to have degree 1. We will actually have no need for this convention in the paper as long as
we define an algebra to be Koszul if the associated Priddy complex (see Theorem A.25) is a resolution;
this is equivalent to the distributivity of a certain set of submodules (by Backelin’s theorem), which is
again a condition that still makes sense regardless of the generators having degree 1. That being said,
many of the results stated in this paper will be written as if the generators are in degree 1, but again this
condition is only required “up to rescaling”.

Likewise, the graded dual of an algebra will be useful for describing certain Ext modules. All duals in
this paper are understood to be graded duals; that is

HomA(M, R) :=
⊕
i∈Z

HomR(Mi , R).

Definition 2.6. Let M be a left A-module, where A is any graded R-algebra. Then the graded dual
M∗ := HomA(M, R) is canonically a right A-module via the action

(m∗a)(n) := m∗(an), m∗ ∈ M∗, a ∈ A, n ∈ M.

Moreover, there is a natural isomorphism of Aop-modules (Mop)∗ ∼= (M∗)op.

Recall that modules over (positively) graded algebras satisfy a strong form of Nakayama’s lemma:

Lemma 2.7 (Nakayama’s lemma). Let A be any nonnegatively graded R-algebra and M a graded left
A-module with Mi = 0 for i ≪ 0. If A+M = M , then M = 0.

Now we define the augmented bar complex.

Definition 2.8. Let A be any augmented R-algebra and let A+ := A/A0. Given any left A-module M ,
the augmented Bar complex BarA(M) is the complex of A-modules with

BarA
i (M) := A⊗R A⊗i

+
⊗R M,

with differential

d B(a0⊗a1⊗· · ·⊗ai ⊗m) :=
i−1∑
j=0

(−1) j a0⊗· · ·⊗a j ·a j+1⊗· · ·⊗ai ⊗m+ (−1)i a0⊗· · ·⊗ai−1⊗ai m.
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The augmented cobar complex CobarA(M) on M is the graded R-dual of BarA(M). The bar complex
and cobar complex are both bigraded by the homological and internal degree. In other words

BarA
i (M) j =

⊕
k0+···+ki+ℓ= j

A j1 ⊗R · · · ⊗R A jk ⊗R Mℓ.

With respect to the internal grading, the differential of BarA(M) has degree 0.
The notation BarA(M)n will denote the (internal) degree n strand of the bar complex.

Remark 2.9. For right A-modules M , there is a similar bar complex construction BarA(M)op, where
M appears as the leftmost tensor factor and the differential is defined analogously. This construction is
compatible with taking the opposite algebra in the sense that there is an isomorphism of complexes

BarAop
(M)∼= BarA(M)op,

where M is viewed as a left Aop-module on the left-hand side of this isomorphism. This means that
throughout this section, it is of no loss of generality to assume that M is a left A-module.

Example 2.10. The degree-4 strand (R⊗A BarA(M))4 is the following complex of projective R-modules:

A⊗4
1 →

A2⊗R A⊗2
1

⊕

A1⊗R A2⊗R A1

⊕

A⊗2
1 ⊗R A2

→

A3⊗R A1

⊕

A2⊗R A2

⊕

A1⊗R A3

→ A4.

The following are some fundamental properties of (co)bar constructions that will be useful in later
sections.

Proposition 2.11. Let A be an augmented graded R-algebra and M any left A-module:

(1) The augmented bar complex BarA(M) is a flat resolution of M.

(2) The augmented cobar complex CobarA(A) is an associative DG-algebra via the standard tensor
algebra product. Likewise, the cobar construction CobarA(M) is a right DG-module over BarA(A).

(3) There are isomorphisms

Hi (R⊗A BarA(M))= TorA
i (R,M), H i (BarA(M)∗)= ExtiA(M, R).

(4) For any right A-module N , there are isomorphisms

Hi (N ⊗A BarA(M))= TorA
i (N ,M), TorA

i (N ,M)∗ ∼= ExtiA(M, N ∗),

where N ∗ is a left A-module via the convention of Definition 2.6. If N is instead a left A-module,
there is an isomorphism

H i (HomA(BarA(M), N ))= ExtiA(M, N ).
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Proof. Both (1) and (2) are well known. The statements (3) and (4) follow from the fact that Tor and Ext
may be computed using flat resolutions instead of projective resolutions. □

We conclude this section with a straightforward observation that will be useful to write explicitly, since
it will be cited many times in later sections.

Observation 2.12. Let M be any R-module and

0→ M→ F0→ F1→ · · · → Fn→ 0

any exact complex such that Fi is a flat (resp. projective) R-module for each i = 0, . . . , n. Then M is flat
(resp. projective).

Proof. Proceed by induction on n, where the case n= 0 implies M = F0 is evidently flat (resp. projective).
If n > 0, let C := im(F0→ F1). By the inductive hypothesis, the module C is flat (resp. projective) and
there is a short exact sequence

0→ M→ F0→ C→ 0.

If C is projective, this sequence splits and hence M is also projective. If C is instead flat, apply the
functor −⊗R N for every R-module N and employ the long exact sequence of homology to deduce that
M is flat. □

3. Distributivity and submodule lattices

In this section, we recall a general family of complexes that may be associated to any collection of
R-submodules M1, . . . ,Mn ⊂ M ; see [Polishchuk and Positselski 2005, Chapter 2] for the case over a
field, though the theory is essentially identical here. The exactness properties of these complexes will
be used to define distributivity, and under some additional hypotheses on the collection M1, . . . ,Mn

we will see that distributivity satisfies a simple duality. The purpose of this section is to introduce
the modules L I

M1,...,Mn
of Definition 3.11 and study their flatness/projectivity/duality properties in the

generality established in the previous section.
All modules in this section are assumed to be finitely generated (including all submodules). For

convenience, we recall the definition of a lattice.

Definition 3.1. A poset is a set S equipped with a partial order ⩽. A poset is a lattice if any two pairs of
elements a, b ∈ S have a well-defined meet and join, denoted a ∧ b and a ∨ b, respectively.

Notation 3.2. Let [n] := {1, . . . , n} for some integer n. The j -th degeneracy map s j : [n] → [n− 1] is
defined to be the surjection

s j (i) :=
{

i if i ⩽ j,
i − 1 if i > j.

Likewise, the j -th face map d j : [n− 1] → [n] is defined to be the map

d j (i) :=
{

i if i < j,
i + 1 if i ⩾ j.
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Likewise, given any set I ⊂ [n], the notation sgn( j, I ) for any j /∈ I denotes the sign of the permutation
that reorders the set (I, j) into ascending order.

Remark 3.3. The terminology “face” and “degeneracy” maps is borrowed from the terminology used in
the simplicial category 1.

The following definition associates a lattice to any collection of R-submodules:

Definition 3.4. Let M be any R-module and M1, . . . ,Mn ⊂ M a collection of R-submodules. The
collection of submodules M1, . . . ,Mn generates a lattice with operations

Mi ∧M j := Mi ∩M j , Mi ∨M j := Mi +M j .

The following construction introduces a fundamental family of complexes that can be associated to any
collection of submodules. The terms of these complexes are built by taking “intervals” above elements in
the associated submodule lattices, and the exactness properties of these complexes will be very important
in later sections.

Construction 3.5. Let M be any R-module and M1, . . . ,Mn ⊂ M a collection of R-submodules. Given
any subset I ⊂ J , let ρI,J denote the canonical surjection

ρI,J :
M∨

j∈I M j
→

M∨
j∈J M j

.

Define the (cochain) complex C •(M;M1, . . . ,Mn) via

C i (M;M1, . . . ,Mn) :=
⊕
|I |=i

M∨
j∈I M j

,

with differential

dC•
∣∣

M∨
i∈I Mi

:=

∑
j /∈I

sgn( j, I )ρI∪ j,I .

In the above, we use the convention that C0(M;M1, . . . ,Mn) := M .
Likewise, given any subset I ⊂ J , let ιJ,I denote the natural inclusion

ιJ,I :
∧
i∈J

Mi →
∧
i∈I

Mi .

Define the (chain) complex C•(M;M1, . . . ,Mn) via

Ci (M;M1, . . . ,Mn) :=
⊕
|I |=i

∧
j∈I

M j ,

with differential

dC•
∣∣∧

i∈I Mi
:=

∑
j /∈I

sgn( j, I )ιI,I∪ j .
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If I ⊂ [n] is any subset, define the complex C •I (M;M1, . . . ,Mn) by restricting to all direct summands
of the form

C i
I (M;M1, . . . ,Mn)=

⊕
I⊂J,
|J |−|I |=i

M∨
j∈J M j

.

Likewise, define the complex C I
•
(M;M1, . . . ,Mn) by restricting to all direct summands of the form

C I
i (M;M1, . . . ,Mn) :=

⊕
I⊂J,
|J |−|I |=i

∧
j∈J

M j .

Remark 3.6. Notice that by definition there are equalities

C•(M;M1, . . . ,Mn)= C∅
•
(M;M1, . . . ,Mn),

C •(M;M1, . . . ,Mn)= C •∅(M;M1, . . . ,Mn).

Example 3.7. If M1,M2,M3 is a length 3 collection of R-submodules of M , the associated complexes
of Construction 3.5 are explicitly given by

C•(M;M1,M2,M3) : M1 ∩M2 ∩M3 →

M1 ∩M2

⊕

M1 ∩M3

⊕

M2 ∩M3

→

M1

⊕

M2

⊕

M3

→ M,

C •(M;M1,M2,M3) : M →

M
M1

⊕
M
M2

⊕
M
M3

→

M
M1+M2

⊕
M

M1+M3

⊕
M

M2+M3

→
M

M1+M2+M3
.

In the above, note that C•(M;M1,M2,M3) is homologically indexed, whereas C •(M;M1,M2,M3) is
cohomologically indexed. By construction, both complexes have terms parametrized by the Boolean
poset on {1, 2, 3}.

We can now define the notion of distributivity using the complexes of Construction 3.5.

Definition 3.8. Let M be an R-module and M1, . . . ,Mn a collection of R-submodules of M . The
collection M1, . . . ,Mn is called distributive if the complexes

C I
•
(M;M1, . . . ,Mn) and C •I (M;M1, . . . ,Mn)

are exact in positive (co)homological degrees for all subsets I ⊂ [n].

Remark 3.9. At first glance, this definition of distributive might seem quite different from the definition
in terms of the submodule lattice generated by M1, . . . ,Mn , but it turns out that these definitions are in
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fact equivalent by, for instance, [Polishchuk and Positselski 2005, Chapter 1, Proposition 7.2] (the result
here is stated over a field, but it holds over any commutative ring).

The following is a trivial consequence of the inductive structure of the complexes C •I and C I
•
:

Observation 3.10. If M1, . . . ,Mn⊂M is a distributive collection, then every subcollection of M1, . . . ,Mn

is distributive.

Next, we introduce a collection of subquotients that may be associated to any collection of R-
submodules. In later sections, we will see that all ribbon Schur functors arise as modules of this
form for some appropriate collection of submodules:

Definition 3.11. Let M be an R-module and M1, . . . ,Mn a collection of R-submodules of M . Given an
indexing set I ⊂ [n], define the R-module

L I
M1,...,Mn

:=

∧
i /∈I Mi∨
i∈I Mi

.

Remark 3.12. By convention, we set

L [n]M1,...,Mn
:=

M
M1+ · · ·+Mn

and L∅
M1,...,Mn

:= M1 ∩ · · · ∩Mn.

Moreover, notice that for the sake of conciseness of notation, the notation N/L for two R-submodules
N , L ⊂ M is understood to mean N/(L ∩ N ).

The following observation is proved just by the definition of the complexes of Construction 3.5 and
the equivalence between the exactness of these complexes and distributivity:

Observation 3.13. Let M be an R-module and M1, . . . ,Mn any collection of R-submodules of M . For
every I ⊂ [n] the complexes

C I
•
(M;M1, . . . ,Mn) and C •I (M;M1, . . . ,Mn)

satisfy

H0(C I
•
(M;M1, . . . ,Mn))↠ L [n]\IM1,...,Mn

and L I
M1,...,Mn

↪→ H 0(C •I (M;M1, . . . ,Mn)).

If the collection M1, . . . ,Mn is distributive, then the above surjection/inclusion are equalities.

Proof. By definition, the zeroth homology of C I
•
(M;M1, . . . ,Mn) is the cokernel of the map⊕

j /∈I

∧
ℓ∈I∪ j

Mℓ→

∧
ℓ∈I

Mℓ,

which is precisely the quotient ∧
ℓ∈I Mℓ∑

j /∈I
∧
ℓ∈I∪ j Mℓ

.

There is always a containment ∑
j /∈I

∧
ℓ∈I∪ j

Mℓ ⊂

(∑
j /∈I

M j

)
∩

∧
ℓ∈I

Mℓ,
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and thus there is a natural surjection H0(C I
•
(M;M1, . . . ,Mn))↠ L [n]\IM1,...,Mn

. If the collection M1, . . . ,Mn

is distributive, then the above containment is an equality and thus the surjection is also an equality.
Similarly, the zeroth cohomology of C •I (M;M1, . . . ,Mn) is the kernel of the map

M∨
ℓ∈I Mℓ

→

⊕
j /∈I

M∨
ℓ∈I∪ j Mℓ

.

Again, there is always a containment∧
j /∈I

( ∨
ℓ∈I∪ j

Mℓ

)
⊃

∧
j /∈I

M j +
∨
ℓ∈I

Mℓ

and thus a natural inclusion L I
M1,...,Mn

↪→ H 0(C •I (M;M1, . . . ,Mn)). When the collection M1, . . . ,Mn is
distributive the above containment is an equality in which case the inclusion is also an equality. □

The following proposition gives 3 different equivalent conditions equivalent to distributivity. In
particular, the exactness of C I

•
for all I ⊂ [n] is equivalent to the exactness of C •I , and this exactness is in

turn equivalent to a family of short exact sequences. These short exact sequences will end up modeling
the concatenation/near-concatenation sequences in later sections.

Recall the notation d j and s j for face and degeneracy maps, respectively, of Notation 3.2 in the
statement of the following result:

Proposition 3.14. Let M be any R-module and M1, . . . ,Mn ⊂ M a collection of R-submodules. Then
the following are equivalent:

(1) For all nonempty I ⊂ [n], the sequence

0→ L I\ j
M1,...,Mn

→ Ls j (I\ j)
M1,...,M̂ j ,...,Mn

→ L I
M1,...,Mn

→ 0

is exact.

(2) For all I ⊂ [n], the cochain complex C •I (M;M1, . . . ,Mn) is exact in positive cohomological degrees.

(3) For all I ⊂ [n], the chain complex C I
•
(M;M1, . . . ,Mn) is exact in positive homological degrees.

In other words, to check distributivity it suffices to check exactness of either the complex C I
•
(M;M1, . . . ,Mn)

or C •I (M;M1, . . . ,Mn) for all I ⊂ [n].

Remark 3.15. When |I | = 1 is a singleton set, the sequence above simply reads

0→ M1→ M→ M/M1→ 0.

In general, the sequence

0→ L I\ j
M1,...,Mn

→ Ls j (I\ j)
M1,...,M̂ j ,...,Mn

→ L I
M1,...,Mn

→ 0

is a complex that is exact at the left and rightmost nontrivial terms by definition. This means that
Proposition 3.14 gives equivalent conditions for this sequence to be exact at the middle term.
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Proof. Notice first that there are canonical short exact sequences of complexes (where −̂ denotes omission),
for j ∈ I

0→ C •I (M;M1, . . . ,Mn)[−1]

→ C •I\ j (M;M1, . . . ,Mn)→ C •s j (I\ j)(M;M1, . . . , M̂ j , . . . ,Mn)→ 0, (3.15.1)

and, for j /∈ I ,

0→ C s j (I )
•

(M;M1, . . . ,Mn)→ C I
•
(M;M1, . . . ,Mn)→ C I∪ j

•
(M;M1, . . . ,Mn)[−1] → 0. (3.15.2)

(1)⇐⇒ (2): By induction on n, we may assume that the collection M1, . . . , M̂ j , . . . ,Mn is distributive;
in particular, the complex C •s j (I\ j)(M;M1, . . . , M̂ j , . . . ,Mn) is exact in positive cohomological degrees,
and moreover by a downward induction on |I | (with base case I = [n]) we may also assume that
C •I (M;M1, . . . ,Mn) is exact in positive cohomological degrees.

Employing the long exact sequence of cohomology on the short exact sequence (3.15.1) along with
Observation 3.13 yields

0→ H 0(C •I\ j (M;M1, . . . ,Mn))→ Ls j (I\ j)
M1,...,M̂ j ,...,Mn

→ L I
M1,...,Mn

→ H 1(C •I (M;M1, . . . ,Mn))

→ H 1(C •I\ j (M;M1, . . . ,Mn))→ H 1(C •s j (I\ j)(M;M1, . . . , M̂ j , . . . ,Mn))→ · · · .

The inductive hypothesis immediately implies that

H i (C •I (M;M1, . . . ,Mn))= 0 for all i > 1,

and there is an exact sequence

0→ H 0(C •I\ j (M;M1, . . . ,Mn))→ Ls j (I\ j)
M1,...,M̂ j ,...,Mn

→ L I
M1,...,Mn

→ H 1(C •I (M;M1, . . . ,Mn))→ 0.

Assuming (2), we may employ Observation 3.13 to deduce the short exact sequence of (1). On the other
hand, assuming (1) there is a commutative diagram with exact rows:

0 L I\ j
M1,...,Mn

Ls j (I\ j)
M1,...,M̂ j ,...,Mn

L I
M1,...,Mn

0

0 H 0(C •I (M;M1, . . . ,Mn)) Ls j (I\ j)
M1,...,M̂ j ,...,Mn

L I
M1,...,Mn

H 1(C •I (M;M1, . . . ,Mn))

Since the inner two maps are isomorphisms, both of the outer two inclusions are isomorphisms and thus
C •I\ j (M;M1, . . . ,Mn) is also exact in positive degree for all j ∈ I . It follows that C •I (M;M1, . . . ,Mn)

is exact in positive cohomological degrees for all I if and only if the sequence of (1) is exact for all I .

(1) ⇐⇒ (3): This proof proceeds similarly: by induction on n, we may assume that the collection
M1, . . . , M̂ j , . . . ,Mn is distributive and C s j (I )

• (M;M1, . . . ,Mn) is exact in positive homological degrees,
and likewise by a downward induction on |I | we may assume that H1(C I∪ j

•
(M;M1, . . . ,Mn)) is exact

in positive homological degrees.
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Employing the long exact sequence of homology on the second short exact sequence (3.15.2) along
with Observation 3.13 yields

· · · → H1(C I∪ j
•
(M;M1, . . . ,Mn))→ H1(C s j (I )

•
(M;M1, . . . ,Mn))

→ H1(C I
•
(M;M1, . . . ,Mn))→ L [n]\(I∪ j)

M1,...,Mn
→ L [n−1]\s j (I )

M1,...,M̂ j ,...,Mn
→ L [n]\IM1,...,Mn

→ 0.

Set I ′ := [n]\I and notice that

[n]\(I ∪ j)= I ′\ j and [n− 1]\s j (I )= s j ([n]\(I ∪ j))= s j (I ′\ j).

Again, this at least implies that Hi (C I
•
(M;M1, . . . ,Mn))= 0 for i > 1 and there is an exact sequence

0→ H1(C I
•
(M;M1, . . . ,Mn))→ L I ′\ j

M1,...,Mn
→ Ls j (I ′\ j)

M1,...,M̂ j ,...,Mn
→ H0(C I

•
(M;M1, . . . ,Mn)→ 0.

The result thus follows by identical reasoning as in (1)⇐⇒ (2). □

The following lemma shows that the property of distributivity “dualizes well”. This will be essential to
prove the appropriate analogs of Koszul duality.

Lemma 3.16. Let M be a flat R-module and M1, . . . ,Mn⊂M a sequence of submodules with M/Mi a flat
R-module for all 1⩽ i ⩽n. For a submodule N ⊂M , use the notation N∨ := (M/N )∗ :=HomR(M/N , R).
Then:

(1) Assume that M/
∑

i∈I Mi is a flat R-module for all I ⊂ [n]. Then

the collection M1, . . . ,Mn⊂M is distributive ⇐⇒ the collection M∨1 , . . . ,M∨n ⊂M∗ is distributive

(notice that each M∨i may be viewed as a submodule of M∗ by dualizing the surjection M→ M/Mi ). In
this case, each of the modules L I

M1,...,Mn
are R-flat.

(2) Assume that M1, . . . ,Mn is a distributive collection. Then there are isomorphisms(
M∨

i∈I Mi

)∗
∼=

∧
i∈I

M∨i and
(∧

i∈I

Mi

)∗
∼=

M∗∨
i∈I M∨i

,

where I ⊂ [n].

(3) Assume that M1, . . . ,Mn is a distributive collection. Then there are isomorphisms of complexes

C •I (M;M1, . . . ,Mn)
∗∼=C I

•
(M∗;M∨1 , . . . ,M∨n ) and C I

•
(M;M1, . . . ,Mn)

∗∼=C •I (M
∗
;M∨1 , . . . ,M∨n ).

In particular, for all I ⊂ [n] there is an isomorphism

(L I
M1,...,Mn

)∗ ∼= L [n]\IM∨1 ,...,M
∨
n
.

Proof. The progression of the proof actually follows by first proving (2) and (3), then noting that (1) is an
immediate consequence of (3).
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Proof of (2). Proceed by induction on n, where the base case is for n = 1. In this case, the short exact
sequence

0→ Mi → M→ M/Mi → 0

implies that Mi is a flat R-module for all i , and hence dualizing yields the short exact sequence

0→ (M/Mi )
∗
:= M∨i → M∗→ M∗i → 0.

This implies that M∗i = M∗/M∨i , yielding the base case.
Let n > 1 and consider the complexes C •(M;M1, . . . ,Mn) and C•(M;M1, . . . ,Mn). Each term

of these complexes falls within the inductive hypothesis, in which case we may dualize to obtain the
isomorphisms

C •(M;M1, . . . ,Mn)
∗∼=C•(M∗;M∨1 , . . . ,M∨n ) and C•(M;M1, . . . ,Mn)

∗∼=C •(M∗;M∨1 , . . . ,M∨n ).

Taking zeroth (co)homology of each of the above complexes and employing Proposition 3.14 yields the
isomorphisms (

M∨
i∈[n] Mi

)∗
∼=

∧
i∈[n]

M∨i and
( ∧

i∈[n]

Mi

)∗
∼=

M∗∨
i∈[n] M∨i

.

Proof of (3). Since each term of the complex C •I (M;M1, . . . ,Mn) is of the form M/
∨

i∈J Mi for some
subset J ⊂ [n], dualizing and using part (2) implies that C •I (M;M1, . . . ,Mn)

∗ has terms
∧

i∈J M∨i , and
it is clear that the dualized differentials are the same as those of C I

•
(M∗;M∨1 , . . . ,M∨n ). The proof for

C I
•
(M;M1, . . . ,Mn) is identical and the isomorphism (L I

M1,...,Mn
)∗ ∼= L [n]\IM∨1 ,...,M

∨
n

follows upon taking
zeroth (co)homology and using Proposition 3.14.

Proof of (1). Assume that M1, . . . ,Mn is distributive. The assumption that each quotient M/
∑

i∈I Mi is
flat implies that

∧
i∈I Mi is flat for all I = (i1, . . . , ik)⊂ [n], since each of the augmented complexes∧

i∈I

Mi → C •(M;Mi1, . . . ,Mik )

is exact and by assumption C •(M;Mi1, . . . ,Mik ) is a complex of flat R-modules. Thus
∧

i∈I Mi is flat
by Observation 2.12.

Using this, it follows that for every I ⊂ [n] the chain complex C I
•
(M;M1, . . . ,Mn) is exact in

positive homological degrees and the zeroth homology is a flat R-module. This means that the dual
C I
•
(M;M1, . . . ,Mn)

∗ is a cochain complex with cohomology concentrated in degree 0, and by the
isomorphism of (3) combined with Proposition 3.14, the collection M∨1 , . . . ,M∨n is distributive. This
argument is inherently symmetric in the roles of Mi and M∨i , whence the result follows. □

Corollary 3.17. Let M be any projective R-module and M1, . . . ,Mn ⊂ M a distributive collection of
R-submodules. Assume that

M/
∑
i∈I

Mi
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is a projective R-module for all I ⊂ [n]. Then for all subsets I ⊂ [n], the R-module

L I
M1,...,Mn

is a projective R-submodule.

Proof. By (3) of Lemma 3.16, each of the modules L I
M1,...,Mn

has a right resolution by projective R-
modules given by the complex C •I (M;M1, . . . ,Mn). By Observation 2.12, the R-module L I

M1,...,Mn
must

itself be projective. □

4. A generalization of Schur modules for ribbon diagrams

In this section, we introduce ribbon Schur functors associated to arbitrary Koszul algebra (and module)
inputs. We show that the exactness of the concatenation/near-concatenation sequence is actually equivalent
to Koszulness and establish a set of properties generalizing many well-known properties for classically
defined Schur functors corresponding to ribbon diagrams.

4.1. Standard operations between compositions. Before defining ribbon Schur functors, it will be helpful
to establish multiple conventions and define certain natural operations on the Boolean/refinement posets.
These operations are standard in the combinatorial literature, but for the sake of establishing conventions,
we define things explicitly with examples here.

Definition 4.1 (operations on compositions). Given any integer d > 0, a composition of d is a tuple
α = (α1, . . . , αk) with αi > 0 for each 1 ⩽ i ⩽ k and |α| := α1+· · ·+αk = d . The integer k is the length
of α, denoted ℓ(α).

Given two compositions α and β, the concatenation of α and β, denoted α · β, is defined as the
composition

α ·β := (α1, . . . , αk, β1, . . . , β j ).

The near-concatenation of α and β, denoted α⊙β, is defined as the composition

α⊙β := (α1, . . . , αk−1, αk +β1, β2, . . . , β j ).

Finally, given any integer d > 0, the notation α(d) is defined to be the composition

α(d) := (dα1, . . . , dαk).

Definition 4.2 (ribbon diagrams associated to compositions). Given any composition α, one can associate
the ribbon diagram by building a diagram whose row lengths (read from bottom to top) are given by
α1, . . . , αn , and such that consecutive rows have overlap size precisely 1.

The transpose of a composition, denoted αt , is the composition obtained by transposing the ribbon
diagram associated to α.



790 Keller VandeBogert

Example 4.3. The ribbon diagram associated to the composition (3, 1, 1, 2, 4) is the diagram

The transpose of this shape is given by the shape

and hence, upon reading the row lengths from bottom to top we find

(3, 1, 1, 2, 4)t = (1, 1, 1, 2, 4, 1, 1).

Likewise, if α = (1, 1, 2) and β = (2, 3, 1) then:

α ·β = · = and α⊙β = · =

With the ribbon diagrams, we see that concatenation corresponds to “stacking” the diagrams, and near
concatenation corresponds to merging the diagrams along their rows.

Definition 4.4. Let n ∈ N be any nonnegative integer and C(n) denote the set of compositions of n into
positive parts. Let [n] := {1, . . . , n} with the convention that [0] :=∅, and let [a, b] := {a, a+ 1, . . . , b}.
The set 2[n−1] is a poset with the standard Boolean poset structure, and C(n) is also a poset with the
standard refinement poset structure. Whenever the notation α ⩽ β is used for two compositions α and β,
the partial order ⩽ is understood to be the refinement order.

There is moreover a standard isomorphism of posets

φ : 2[n−1]
→ C(n).

This isomorphism may be given explicitly as follows: given I ⊂ [n− 1], write

I = [a1, b1] ∪ [a1, b2] ∪ · · · ∪ [ak, bk]

for ai < bi and bi < ai+1− 1 for each i . Then

φ(I )= (1a1−1, b1− a1+ 1, 1a2−b1−1, b2− a2+ 1, . . . , bk − ak + 1, n− bk).
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Example 4.5. The following example shows the Boolean poset 2{1,2,3} and the refinement poset C(4)
side by side. The map φ is even a morphism of distributive lattices:

{1, 2, 3} (4)

{1, 2} {1, 3} {2, 3} (3, 1) (2, 2) (1, 3)

{1} {2} {3} (2, 1, 1) (1, 2, 1) (1, 1, 2)

∅ (1, 1, 1, 1)

Observation 4.6. Let α and β be two compositions and I ⊂ [n]. Then

(α ·β)t = β t
⊙αt , (α⊙β)t = β t

·αt and rev(φ(I )t)= φ([n]\I ),

where rev denotes the reversal operator, which simply reverses the order of the entries of a composition.

Definition 4.7 (partitioned compositions). Let α = (α1, . . . , αn) be a composition of some integer d. A
partition of α is any choice of decomposition of α as a concatenation of subcompositions of α. The
composition α is ℓ-partitioned if α is endowed with a partition that decomposes α into ℓ parts.

Given an ℓ-partitioned composition α, the notation pi (α) denotes the i-th piece of partition of α. In
other words, every ℓ-partitioned composition α may be written as the concatenation

α = p1(α) · p2(α) · · · pℓ(α).

Remark 4.8. We will employ a minor abuse of notation when dealing with partitioned compositions,
since the chosen partition will often not be specified. More precisely, the data of a partitioned composition
includes both the data of a composition α and a chosen partition P , which can be encoded by any chosen
subset of [ℓ(α)− 1]. The word “composition” without any adjective will only refer to a composition as
defined in Definition 4.1.

Convention 4.9. By convention, any ℓ-partitioned composition α may be viewed as a j-partitioned
composition for any j < ℓ by concatenating the last ℓ− j pieces of α. In other words, if

α = p1(α) · · · · · pℓ(α),

then α may be viewed as the j-partitioned composition

α = p1(α) · · · · p j−1(α) · (p j (α) · p j+1(α) · · · pℓ(α)).

This convention will become essential when we deal with multi-Schur modules, as defined later.
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Example 4.10. Let α= (2, 2, 1, 4, 3) and consider the 4-partition of α induced by the subset {1, 3, 4}⊂ [4].
This decomposes α as the concatenation

(2) · (2, 1) · (4) · (3).

Via Convention 4.14, α may also be viewed as the 3-partitioned composition

(2) · (2, 1) · (4, 3).

Definition 4.11. Let α be an ℓ-partitioned composition and let I = {i1 < · · ·< ik} ⊂ [ℓ−1] be any subset:

(1) The notation σI (α) denotes the composition obtained by near-concatenating p j (α) and p j+1(α) for
every j ∈ I .

(2) The notation νI (α) denotes the ribbon diagram obtained by disconnecting p j (α) and p j+1(α) for
every j ∈ I .

(3) The notation µI (α) denotes the composition ν[ℓ−1−|I |] ◦ σI (α).

Example 4.12. Let α := (2) · (2, 1) · (4) · (3) be the 4-partitioned shape of Example 4.10. As a ribbon
diagram:

α =

Let I := {1, 3}. Then:

σI (α)= (4, 1) · (7)= (viewed as 2-partitioned)

νI (α)=

µI (α)= ν{1}(σI (α))=

Remark 4.13. The operation µI can be reformulated in words as the operation that near-concatenates all
elements pi (α) and pi+1(α) for i ∈ I , then disconnects everything else.

Convention 4.14. Let α and β be j and k-partitioned compositions, respectively. By convention, the
concatenation α ·β will be viewed as a j + k-partitioned composition with

ps(α ·β)=

{
ps(α) if s ⩽ j,
ps− j (β) if s > j.

Likewise, the near-concatenation α⊙β will be viewed as a j + k− 1-partitioned composition with

ps(α⊙β)=


ps(α) if s < k,
pk(α)⊙ p1(β) if s = k,
ps− j+1(β) if s > k.
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Definition 4.15. Let A be any quadratic R-algebra. The notation Ad for any integer d ∈ Z denotes the
degree d component of A. Given a tuple α = (α1, . . . , αn), use the notation

Aα := Aα1 ⊗R · · · ⊗ Aαn .

Likewise, given a quadratic left (resp. right) A-module N (resp. M), use the notation

(M ⊗R A)α := Mα1 ⊗R Aα2 ⊗R · · · ⊗R Aαn and (A⊗R N )α:= Aα1 ⊗R · · · ⊗R Aαn−1 ⊗R Nαn .

We use the convention that (M ⊗R A)α = Mα1 and (A⊗R N )α := Nα1 if ℓ(α)= 1.
Similarly, for ℓ(α)⩾ 2, use the notation

(M ⊗R A⊗R N )α := Mα1 ⊗R Aα2 ⊗R · · · ⊗R Aαn−1 ⊗R Nαn ,

where we use the convention that (M ⊗R A⊗R N )α = Mα1 ⊗R Nα2 if ℓ(α)= 2.

4.2. Ribbon Schur modules for Koszul algebras. In this subsection, we will hold off on proving the
statements until the next subsection (where the statements will be proved in more generality). This
subsection will mainly be used to illustrate the construction of ribbon Schur functors and their various
properties with examples.

Definition 4.16. Let A be a Koszul A-module and α any composition. Define the ribbon Schur module SαA

as the kernel of the natural map

SαA = Ker
(

Aα→
⊕
α⋖β

Aβ

)
.

where ⋖ denotes the covering relation in the refinement poset.

Remark 4.17. Since the ribbon Schur module SαA is defined only using the algebra structure on A, this
definition is canonical and is well-defined for any Koszul algebra A (in fact, it is well-defined for any
algebra, but the Koszul property will ensure uniformity in the properties of these objects).

Example 4.18. Let α = (3, 2, 1, 3). Then in the refinement poset, α is covered by the compositions

(5, 1, 3), (3, 3, 3) and (3, 2, 4).

Thus for any Koszul algebra S
(3,2,1,3)
A is defined to be the kernel of the map:

A3⊗R A2⊗R A1⊗R A3→

A5⊗R A1⊗R A3

⊕

A3⊗R A3⊗R A3

⊕

A3⊗R A2⊗R A4

The following proposition justifies usage of the terminology “ribbon Schur functor”.
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Proposition 4.19. Formation of the ribbon Schur module SαA is functorial in the ring argument; that is,
given a morphism of R-algebras ψ : A→ B, there is an induced morphism

Sαψ : S
α
A→ SαB .

Example 4.20. When A= S(V ), the symmetric algebra on a free R-module V , the ribbon Schur module
coincides with the classical Schur module definition corresponding to the skew ribbon shape defined by α.

Likewise, for A=
∧
• V the exterior algebra on some free R-module, the ribbon Schur module coincides

with the Weyl module associated to the ribbon diagram of α.
The functoriality of the classical Schur and Weyl functors is precisely that of Proposition 4.19, and

there are isomorphisms of functors

SαS(−) = Sα(−), Sα∧•
(−)
=Wα(−).

Example 4.21. When A= T (V ), the tensor algebra on some flat R-module V , the ribbon Schur modules
are particularly simple:

SαT (V ) =

{
V⊗α1 if ℓ(α)= 1,
0 otherwise.

Example 4.22. If α = (1i ) for some integer i ⩾ 1, then by definition

S
(1i )
A = (A

!)∗i .

Thus the Priddy complex may be reformulated as the complex

· · · → A⊗R S
(1i )
A → A⊗R S

(1i−1)
A → · · · → A⊗R S

(1)
A → A→ 0.

Lemma 4.23. Let A be a Koszul R-algebra. Then:

(1) For all compositions α, the ribbon Schur module SαA is a flat R-module.

(2) For any two compositions α and β there is a canonical short exact sequence of R-modules

0→ S
α·β

A → SαA⊗R S
β

A→ S
α⊙β

A → 0.

Moreover, this sequence is exact for all compositions if and only if A is a Koszul algebra.

(3) There is a canonical isomorphism of R-modules

(SαA)
∗ ∼= Sα

t

A! .

If A is assumed R-projective, then the ribbon Schur module SαA is R-projective for all compositions α.

Remark 4.24. As mentioned in the introduction, in the theory of symmetric functions the short exact
sequence of (2) is an explicit realization of the so-called concatenation/near-concatenation identity.

Remark 4.25. Notice that Observation 4.6 implies that the sequences

0→ S
α·β

A → SαA⊗R S
β

A→ S
α⊙β

A → 0 and 0→ S
β t
·αt

A! → S
β t

A! ⊗R Sα
t

A!→ S
β t
⊙αt

A! → 0

are naturally dual to each other.
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Example 4.26. Let Sα(−) and Wβ(−) denote the classical Schur and Weyl functors corresponding to
the skew ribbon shapes defined by the compositions α and β, respectively. Then by definition, for any
free R-module V there are equalities

Sα(V )= SαS(V ), Wαt
(V ∗)= Sα∧• V ∗ .

The duality mentioned in the statement of Lemma 4.23 is thus a generalization of the well-known
isomorphism

Sα(V )∗ ∼=Wαt
(V ∗).

Next, we introduce a class of complexes whose terms are tensor products of ribbon Schur functors;
this complex generalizes the short exact sequence of Lemma 4.23(2); more defining this complex we
make a simple observation:

Observation 4.27. Recall the operator µI as in Definition 4.11. Let A be a Koszul algebra and α any
ℓ-partitioned composition. Then for all I ⊂ J there is a natural surjection

ρI,J : S
µI (α)
A → S

µJ (α)
A .

This surjection is defined by taking the tensor products of the surjections as in the right map of the short
exact sequence of Lemma 4.23 (as dictated by the subsets I and J ).

Definition 4.28. Let α be any ℓ-partitioned composition. Define the cochain complex (HA(α), δ) whose
i-th term is

Hi
A(α) :=

⊕
I⊆[ℓ−1]:
|I |=i

S
µI (α)
A ,

with differential

dHA
∣∣
SµI (α) :=

∑
j /∈I

sgn( j, I )ρI,I∪ j .

Theorem 4.29. For all ℓ-partitioned compositions α, the complex HA(α) is a cochain complex with

H 0(Hi
A(α))

∼= SαA,

and which is exact in positive cohomological degrees. If A also has a compatible action by a group G,
then the complex H(α) is also G-equivariant.

Remark 4.30. The complexes H•A(α) for an ℓ-partitioned composition α may be viewed as a categorifi-
cation of the Hamel–Goulden identities (see [Hamel and Goulden 1995]) associated to the (horizontal)
ribbon decomposition induced by the partitioning data of α.
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Example 4.31. Let α = (3, 1, 2, 2, 4, 1, 5), viewed as a 4-partitioned composition with p1(α)= (3, 1),
p2(α)= (2, 2), p3(α)= (4), and p4(α)= (1, 5). Then the complex HA(α) takes the following form:

S
(3,1)
A ⊗R S

(2,2)
A ⊗R S

(4)
A ⊗R S

(1,5)
A

S
(3,3,2)
A ⊗R S

(4)
A ⊗R S

(1,5)
A S

(3,1)
A ⊗R S

(2,6)
A ⊗R S

(1,5)
A S

(3,1)
A ⊗R S

(2,2)
A ⊗R S

(5,5)
A

S
(3,3,6)
A ⊗R S

(1,5)
A S

(3,3,2)
A ⊗R S

(5,5)
A S

(3,1)
A ⊗R S

(2,7,5)
A

S
(3,3,7,5)
A

⊕ ⊕

⊕ ⊕

4.3. Ribbon Schur modules with Koszul module inputs. In this section, we generalize the ribbon Schur
functors to allow for Koszul module inputs as well. The same type of concatenation/near-concatenation
sequence may be used to detect Koszulness of modules. In the following, recall the notation established
in Definition 4.15.

Definition 4.32. Let α be any composition and recall the conventions of Definition 4.15. Given a Koszul
left (resp. right) A-module M with initial degree t , define the ribbon Schur module SαA,M (resp. SαM,A) as
the kernel of the natural map

SαA,M := Ker
(
(A⊗R M)α·(t)→

⊕
α·(t)⋖β

(A⊗R M)β

)
,

resp. SαM,A := Ker
(
(M ⊗R A)(t)·α→

⊕
(t)·α⋖β

(M ⊗R A)β

)
.

Given a Koszul left (resp. right) A-module N (resp. M) of initial degree s (resp. t), define the ribbon
Schur module SαM,A,N as the kernel of the natural map

SαM,A,N := Ker
(
(M ⊗R A⊗R N )(t)·α·(s)→

⊕
(t)·α·(s)⋖β

(M ⊗R A⊗R N )β

)
.

Remark 4.33. Notice that if α is the empty partition, we use the convention that

S
()
A,M = Mt , S

()
M,A,N = Mt ⊗R Ns .

Notation 4.34. The definition of SαM,A,N may be extended to disconnected ribbon diagrams by using
the convention that disconnected portions of the diagram correspond to tensor products of the respective
Schur modules. We will use this convention for the remainder of the paper, since it drastically simplifies
notational issues in the following proofs/constructions.
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Example 4.35. Let α := (3, 1, 1) and β = (2, 2). Then by the convention of Notation 4.34, there is an
equality

SA = SA ⊗R SA = S
(3,1,1)
A ⊗R S

(2,2)
A .

Example 4.36. Let A be any Koszul algebra and α a composition. Recall that every truncation of A is
Koszul by Corollary A.21, whence Ar

+
is a Koszul (left and right) A-module for all r ⩾ 0. By definition,

there are equalities
Sα

Ar
+,A,A

r ′
+

= S
(r)·α·(r ′)
A .

The following definition is an evident extension of Definition A.10 to allow for both left and right
A-modules:

Definition 4.37. Given a Koszul left (resp. right) A-module N (resp. M) with initial degrees s and t ,
respectively, define the collection Sn

M,A,N ,1, . . . , Sn
M,A,N ,n−1 ⊂ Mt ⊗R A⊗n−1

1 ⊗R Ns for n ⩾ 2 via

Sn
M,A,N ,i :=


QM

t+1⊗R A⊗n−2
1 ⊗R Ns if i = 1,

QM
t ⊗R A⊗i−3

1 ⊗R Q A
2 ⊗R A⊗n−i+1

1 ⊗R Ns if 2 ⩽ i ⩽ n− 2,
Mt ⊗R A⊗n−2

1 ⊗R QN
s+1 if i = n− 1.

If n = 1, use the convention that S1
M,A,N ,0 := 0.

Recall the notation of µI for a subset I as established in Definition 4.11 in the following:

Definition 4.38. Let A be a Koszul algebra and M any left A-module of initial degree s. Given any
ℓ-partitioned composition α, view the concatenation α · (s) as (ℓ+ 1)-partitioned via Convention 4.14.
Then, for any subset I ⊂ [ℓ] write µI (α · (s)) = α1

∪ · · · ∪ αℓ−|I | as a disjoint union of compositions
α1, . . . , αℓ−|I |, where αℓ−|I | has length g. Then we define

S
µI (α)
A,M := Sα

1

A ⊗R Sα
2

A ⊗R · · · ⊗R S
α
ℓ−|I |
⩽g−1

A,M
⩾αℓ−|I |g +s

.

As a quick example let α = (2, 1) · (3, 4) · (4, 3, 3) be a 3-partitioned composition and I = {1, 3} ⊂ [3].
Then for any Koszul algebra A and left A-module M of initial degree s, there is an equality

S
µI (α)
A,M := S

(2,4,4)
A ⊗R S

(4,3)
A,M⩾3+s

.

Remark 4.39. The slight technicality in defining S
µI (α)
A,M when taking account of a module input stems

from the fact that M has its own initial degree, in which case we should be defining the corresponding
ribbons with respect to the composition α · (s).

The following observation is an immediate consequence of the identification of the ribbon Schur
functors with the modules of Definition 3.11, noted in Observation 4.42.

Observation 4.40. Let A be a Koszul algebra and M any left A-module. Given an ℓ-partitioned compo-
sition α and subsets I ⊂ J ⊂ [ℓ], there is a canonical morphism of R-modules

S
µI (α)
A → S

µJ (α)
A .
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The following observation is a direct consequence of the definition of a ribbon Schur functor, but will
be very useful later on:

Observation 4.41. Let α, β, and γ be any (possibly empty) compositions. Given a Koszul algebra A and
a Koszul left (resp. right) A-module N (resp. M), there is an equality

S
α·β·γ

M,A,N = (S
α·β

M,A⊗R S
γ

A,N )∩ (S
α
M,A⊗R S

β·γ

A,N ),

where the intersection is being viewed as taking place in (M ⊗R A⊗R N )α·β·γ .

Finally, we are able to tie ribbon Schur functors to the modules introduced in Definition 3.11.
This reformulation combined with the equivalence of Proposition 3.14 will yield quick proofs of the
concatenation/near-concatenation formulation of Koszulness.

Observation 4.42. Let α be any composition of length ℓ. Given a Koszul algebra A and a Koszul left
A-module M , there is an isomorphism of R-modules

SαA,M = Lφ
−1(α)

Sn
A,M,1,...,S

n
A,M,n−1

,

where the map φ is the isomorphism of posets of Definition 4.4 and the module L I
M1,...,Mn

is from
Definition 3.11. The analogous statement for right Koszul modules also holds.

Likewise, given a Koszul left (resp. right) A-module N (resp. M), there is an equality

SαM,A,N = Lφ
−1(α)

Sn
M,A,N ,1,...,S

n
M,A,N ,n−1

.

We arrive at the statement and proof of the relevant properties for ribbon Schur functors associated to
Koszul algebras/modules; again, the proof here is deceptively short, but the proof combines all of the
machinery developed thus far. Recall the notation for the reversal operator rev from Observation 4.6.

Lemma 4.43. Let A be a Koszul R-algebra and M (resp. N ) a Koszul right (resp. left) A-module. Then:

(1) For all compositions α, the ribbon Schur module SαA,M (resp. SαN ,A) is a flat R-module. If A and M
are R-projective, then SαA,M (resp. SαN ,A) is also R-projective.

(2) For any two compositions α and β there is a short exact sequence of R-modules

0→ S
α·β

A,M → SαA⊗R S
β

A,M → S
α⊙β

A,M → 0 resp. 0→ S
α·β

N ,A→ SαN ,A⊗R S
β

A→ S
α⊙β

N ,A → 0.

Conversely, if the sequences

0→ S
α·β

A,M⩾d
→ SαA⊗R S

β

A,M⩾d
→ S

α⊙β

A,M⩾d
→ 0 resp. 0→ S

α·β

N⩾d ,A→ SαN⩾d ,A⊗R S
β

A→ S
α⊙β

N⩾d ,A→ 0.

are exact for all integers d ⩾ 0 and compositions α, β, then M (resp. N ) is a Koszul left (resp. right)
A-module.
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(3) There is a canonical isomorphism of R-modules

(SαA,M)
∗ ∼= S

rev(αt )

M !,A! resp. (SαN ,A)
∗ ∼= S

rev(αt )

A!,N ! .

Remark 4.44. There is a convention here that is important to take note of in the short exact sequence
of (2): if the composition β is the empty composition, write α = α′ · (αn); the short exact sequence (2)
then reads

0→ SαA,M → SαA⊗R Mt → Sα
′

A,M⩾t+αn
→ 0.

There is a similar convention in the right module case: if α is empty, write β = (β1) ·β
′. Then the short

exact sequence reads

0→ S
β

N ,A→ Nt ⊗R S
β

A→ S
β ′

N⩾t+β1 ,A
→ 0.

Notice moreover that the reason Lemma 4.23(3) does not have the reversal rev(αt) is because there is by
construction a canonical isomorphism Sα

t

A
∼= S

rev(αt )
A for any composition α.

Proof. Proof of (1). This just combines Lemma 3.16(1), Theorem A.19, and Observation 4.42.

Proof of (2). This is precisely the short exact sequence of Proposition 3.14, so again the result follows
from Theorem A.19 combined with Observation 4.42.

Proof of (3). This just combines Lemma 3.16(3), Theorem A.19, and Observation 4.42. □

The case of having double module inputs in the associated Schur functor has to be treated separately,
since the distributivity criterion cannot be used directly:

Corollary 4.45. Let A be a Koszul R-algebra and N (resp. M) any left (resp. right) Koszul A-module.
Then:

(1) For all compositions α, the ribbon Schur module SαM,A,N is a flat R-module. If A, M , and N are
R-projective, then SαM,A,N is R-projective.

(2) For any two compositions α and β there is a short exact sequence of R-modules

0→ S
α·β

M,A,N → SαM,A⊗R S
β

A,N → S
α⊙β

M,A,N → 0.

(3) There is a canonical isomorphism of R-modules

(SαM,A,N )
∗ ∼= S

rev(αt )

N !,A!,M ! .

Proof. Notice that (3) follows from Lemma 3.16(3) combined with Observation 4.42.

Proof of (2). As noted in Remark 3.15, the sequence

0→ S
α·β

M,A,N → SαM,A⊗R S
β

A,N → S
α⊙β

M,A,N → 0
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is exact at the left and rightmost terms, so it suffices to prove exactness for the middle term. Assume first
that ℓ(α)= 1 and ℓ(β)= 0. Then there is a commutative diagram:

0 0 0

0 S
(α1)
M,A,N S

(α1)
M,A⊗R Ns Mt ⊗R Ns+α1 0

0 Mt ⊗R S
(α1)
A,N Mt ⊗R Aα1 ⊗R Ns Mt ⊗R Ns+α1 0

0 Mt+α1 ⊗R Ns Mt+α1 ⊗R Ns

0 0

The middle row and column is exact by Lemma 4.43(2), and the last row and column are evidently exact.
Let 2 denote the surjection

2 : S
(α1)
M,A⊗R Ns→ Mt ⊗R Ns+α1 .

A quick diagram chase shows that

Ker(2)⊂ (S(α1)
M,A⊗R Ns)∩ (Mt ⊗R S

(α1)
A,N ),

and by Observation 4.41 this intersection is precisely the Schur module S
(α1)
M,A,N . Since the reverse

inclusion evidently holds, the top row is exact.
Assume now that ℓ(α), ℓ(β) > 0. Write β = β ′ · (βk) for some composition β ′ with ℓ(β ′)= ℓ(β)− 1.

Then there is a commutative diagram:

0 0 0

0 S
α·β

M,A,N SαM,A⊗R S
β

A,N S
α⊙β

M,A,N 0

0 S
α·β ′

M,A⊗R S
(βk)

A,N SαM,A⊗R S
β ′

A ⊗R S
(βk)

A,N S
α⊙β ′

M,A ⊗R S
(βk)

A,N 0

0 S
α·β ′⊙(βk)

M,A,N SαM,A⊗R S
β ′⊙(βk)

A.N S
α⊙β ′⊙(βk)

M,A,N 0

0 0 0
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The bottom two rows and the rightmost two columns are exact by induction (combined with the flatness
proved in Lemma 4.43), and an identical diagram chase as above shows that the top row must also be
exact.

Proof of (1). Proceed by induction on the length ℓ(α), where the base cases ℓ(α)= 0 or 1 are evident
since S∅

M,A,N := Mt ⊗R Ns and there is a short exact sequence

0→ S
(α1)
M,A,N → Mt ⊗R S

(α1)
A,N → Mt+α1 ⊗R Ns→ 0.

The latter two terms in this sequence are flat (resp. projective) by Lemma 4.43, so S
(α1)
M,A,N is flat (resp.

projective) by Observation 2.12.
Assuming now that ℓ(α)⩾ 2, write α = β · γ for two compositions β, γ with ℓ(β), ℓ(γ ) > 0. Then

by (2) there is a short exact sequence

0→ SαM,A,N → S
β

M,A⊗R S
γ

A,M → S
β⊙γ

M,A,N → 0.

The latter two terms are flat (resp. projective) by the induction hypothesis, whence Observation 2.12
again implies that SαM,A,N is flat (resp. projective). □

Definition 4.46. Let α be any ℓ-partitioned composition. Given a Koszul algebra A and a Koszul left
A-module M , define the cochain complex (HA,M(α), δ) whose i-th term is

Hi
A(α) :=

⊕
I⊆[ℓ]:
|I |=i

S
µI (α)
A,M ,

with differential

dHA,M
∣∣
SµI (α) :=

∑
j /∈I

sgn( j, I )ρI,I∪ j .

Remark 4.47. Note the difference between the components of the modules for the complex of
Definition 4.46 versus Definition 4.28: in the first case, the direct sums are parametrized by subsets
of [ℓ] because of the additional component coming from the module M , whereas the components of
Definition 4.28 only range over subsets of [ℓ− 1] since there is no additional module M .

Finally, we conclude this section with the analog of the Hamel–Goulden type complexes from
Definition 4.28 for ribbon Schur functors admitting a module input. Recall the notation of Definition 4.38
in the theorem below:

Theorem 4.48. For all ℓ-partitioned composition α, the complex HA,M(α) is a cochain complex with

H 0(HA,M(α))∼= SαA,M ,

and which is exact in positive cohomological degrees.
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Proof. First, observe that the statement that H 0(HA,M(α))∼=SαA,M is evidently true. Proceed by induction
on ℓ, with the base case ℓ= 2. In this case, write α = β · γ ; the complex HA,M(α) simply becomes the
length 1 complex

HA,M(α) : S
β

A⊗R S
γ

A,M → S
β⊙γ

A,M → 0.

These are the last two terms of the short exact sequence from Lemma 4.43(2), so the statement holds.
Assume now that ℓ(α) > 2. Write α = α′ · pℓ(α). Then there is a short exact sequence of complexes:

0→HA,M(α
′
⊙ pℓ(α))[−1] →HA,M(α)→HA(α

′)⊗R S
pℓ(α)
A,M → 0.

By the inductive hypothesis, both of the complexes HA,M(α
′
⊙ pℓ(α)) and HA(α

′)⊗R S
pℓ(α)
A,M are exact in

positive cohomological degrees; taking the long exact sequence of cohomology yields

0→ SαA,M → Sα
′

A ⊗R S
pℓ(α)
A,M → S

α′⊙pℓ(α)
A,M → H 1(HA,M(α))→ 0.

The map Sα
′

A ⊗R S
pℓ(α)
A,M →S

α′⊙pℓ(α)
A,M is precisely the map of Lemma 4.43(2), which is of course surjective.

Thus H 1(HA,M(α))= 0 and the result follows. □

Recall that Example 4.31 gives an explicit example of the complex of Theorem 4.48 when just using
the Schur modules SαA.

Example 4.49. As a more concrete example of Theorem 4.48, let A := S(V ) ∼= k[x1, . . . , xn] be the
symmetric algebra (viewed as a polynomial ring) and m := (x1, . . . , xn) the homogeneous maximal ideal.
Given any composition α and integer d ⩾ 1, notice that by definition there is an equality

SαA,md = S
α·(d)
A .

Consider the composition α := (14) for any integer. Then we can see the difference in the complex of
Theorem 4.48 based on how we view the composition α. Viewed as a 3-partitioned composition, the
complex of Theorem 4.48 yields:

A1⊗R A1⊗ A1⊗R Ad →

A2⊗R A1⊗R Ad

⊕

A1⊗R A2⊗R Ad

⊕

A1⊗R A1⊗R Ad+1

→

A3⊗R Ad

⊕

A2⊗R Ad+1

⊕

A1⊗R Ad+2

→ Ad+3

This is simply the degree d + 3 homogeneous strand of the Bar complex on md . If we instead view α as
2-partitioned via (13)= (12) · (1), we obtain something distinct from a strand of the Bar complex:

S
(12)
A ⊗R A1⊗R Ad →

S
(12)
A ⊗R Ad+1

⊕

S
(1,2)
A ⊗R Ad

→ S
(1,d+2)
A
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Finally, we can also view (13) as 1-partitioned; recalling that S
(13)
A =

∧3 V in this setting, Theorem 4.48
implies that there is a short exact sequence

0→ S(1
3,d)
→

3∧
V ⊗R Sd(V )→ S

(12,d+1)
A → 0.

Note that S
(13,d)
A and S

(12,d+1)
A are equal to the classical defined Schur modules S(d,1

3)(V ) and S(d+1,12)(V ),
respectively, in which case the above short exact sequence recovers the well-known description of hook
Schur modules as arising from homogeneous strands of the Koszul complex; see [Buchsbaum and
Eisenbud 1975]. Thus Theorem 4.48 yields a family of complexes that interpolates between the full
strands of the Bar complex and homogeneous strands of the Koszul complex.

5. Multi-Schur functors

In this section, we define multi-Schur functors. As mentioned in the introduction, the intuition behind
these objects is that they are obtained by taking kernels of the defining ribbon Schur module relations
diagonally; they will be particularly helpful for describing canonical equivariant decompositions of the
derived invariants over Segre subalgebras.

Definition 5.1. Let α1, . . . , αn be a sequence of compositions of fixed length ℓ and A1, . . . , An be a
sequence of Koszul R-algebras. The multi-Schur module S

α1,...,αn

A1,...,An is defined to be the kernel of the
natural map

(A1
⊗R · · · ⊗R An)(α1,...,αn)→

ℓ−1⊕
i=1

(A1
⊗R · · · ⊗R An)(σi (α1),...,σi (αn)).

Given a sequence of Koszul left Ai -modules M i of initial degree t i for 1 ⩽ i ⩽ n, the multi-Schur module
S
α1,...,αn

(A1,M1),...,(An,Mn)
is defined to be the kernel of the natural map

((A1
⊗R M1)⊗R · · · ⊗R (An

⊗R Mn))(α1·(t1),...,αn ·(tn))

→

ℓ−1⊕
i=1

((A1
⊗R M1)⊗R · · · ⊗R (An

⊗R Mn))(σi (α1·(t1)),...,σi (αn ·(tn))).

The definition for a right A-module is analogous. Assume now that ℓ(α1)⩾ 2. Given Koszul right (resp.
left) A-modules M1, . . . ,Mn (resp. N 1, . . . , N n) of initial degrees t i (resp. si ), the multi-Schur module
S
α1,...,αn

(M1,A1,N 1),...,(Mn,An,N n)
is defined to be the kernel of the natural map

((M1
⊗R A1

⊗R N 1)⊗R · · · ⊗R (Mn
⊗R An

⊗R N n))((t1)·α1·(s1),...,(tn)·αn ·(sn))

→

ℓ−1⊕
i=1

((M1
⊗R A1

⊗R N 1)⊗R · · · ⊗R (Mn
⊗R An

⊗R N n))(σi ((t1)·α1·(s1)),...,σi ((tn)·αn ·(sn))).
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In a similar way to the ribbon Schur functors for single inputs, the multi-Schur modules can also be
described as modules of the form L I

M1,...,Mn
for some collection of submodules, but the translation is a

little more subtle.

Construction 5.2. Adopt notation and hypotheses as in Definition 5.1, and recall the notation for the
R-submodules S j

A,N ,i and S j
M,A,N ,i as introduced in Definitions A.18 and 4.37, respectively. For each of

the compositions αi , there are isomorphisms of R-modules

(Ai
⊗R N i )αi ·(si )

∼=
Ai⊗|αi

|

1 ⊗R Nsi∨
j∈φ−1(αi ) S|α

i |
A,N , j

and (M i
⊗R Ai

⊗R N i )(t i )·αi ·(si )
∼=

Mt i ⊗R Ai⊗|αi
|

1 ⊗R Nsi∨
j∈φ−1(αi ) S|α

i |
M,A,N , j

.

By the assumption that each αi has length ℓ, each of the sets

[|αi
| − 1]\φ−1(αi )

has length ℓ−1.2 Let ψαi : [|αi
|−1]\φ−1(αi )→[ℓ−1] denote the unique order-preserving isomorphism

between these two sets and consider the induced collections

SαA,N , j := S|α
1
|

A1,N 1,ψ−1
α1 ( j)
+ S|α

2
|

A2,N 2,ψ−1
α2 ( j)
+ · · ·+ S|α

n
|

An,N n,ψ−1
αn ( j)

⊂ (A1⊗|α1
|

1 ⊗R N 1
s1)⊗R (A

2⊗|α2
|

1 ⊗R N 2
s2)⊗R · · · ⊗R (A

n⊗|αn
|

1 ⊗R N n
sn ),

SαM,A,N , j := S|α
1
|

M1,A1,N 1,ψ−1
α1 ( j)
+ S|α

2
|

M2,A2,N 2,ψ−1
α2 ( j)
+ · · ·+ S|α

n
|

Mn,An,N n,ψ−1
αn ( j)

⊂ (M1
t1 ⊗R A1⊗|α1

|

1 ⊗R N 1
s1)⊗R (M2

t2 ⊗R A2⊗|α2
|

1 ⊗R N 2
s2)⊗R · · · ⊗R (Mn

tn ⊗R An⊗|αn
|

1 ⊗R N n
sn ).

In the above, we are abusing notation for sake of clarity: the module S|α
i
|

Ai ,N i , j is defined as an R-submodule
of Ai⊗|αi

|

1 ⊗R N i
si , but in the above expressions we are viewing each of these submodules as the i-th tensor

factor of

(A1⊗|α1
|

1 ⊗R N 1
s1)⊗R (A

2⊗|α2
|

1 ⊗R N 2
s2)⊗R · · · ⊗R (A

n⊗|αn
|

1 ⊗R N n
sn ).

The running flatness assumption implies that inclusion into the i-th tensor factor is actually a well-defined
injection. The same abuse of notation is used for S|α

i
|

M i ,Ai ,N i , j .

Observation 5.3. Adopt notation and hypotheses as in Construction 5.2. Then there are isomorphisms of
R-modules

S
α1,...,αn

(A1,N 1),...,(An,N n)
∼=

∧
j∈[ℓ−1] S

α

A,M∨
j /∈φ−1(α1) S|α

1|

A1,N 1, j + · · ·+
∨

j /∈φ−1(αn) S|α
n |

An,N n, j

,

S
α1,...,αn

(M1,A1,N 1),...,(Mn,An,N n)
∼=

∧
j∈[ℓ−1] S

α

M,A,M∨
j /∈φ−1(α1) S|α

1|

M1,A1,N 1, j + · · ·+
∨

j /∈φ−1(αn) S|α
n |

Mn,An,N n, j

.

2Put more informally, quotienting by the module Sn
A,i has the effect of deleting the i-th comma in the composition (1|α|) and

replacing it with addition; if α is ℓ-partitioned, that means there are ℓ− 1 commas not deleted from (1|α|).
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An interesting aspect of multi-Schur modules is that one can define the multi-Schur modules when the
input compositions have different sizes; to make sense of this, the inputs need to be ℓ-partitioned into the
same number of parts, instead:

Definition 5.4. Let α1, . . . , αn be a sequence of ℓ-partitioned compositions and A1, . . . , An be a sequence
of Koszul R-algebras. The multi-Schur module S

α1,...,αn

A1,...,An is defined as the kernel of the natural map

S
µ∅(α1)

A1 ⊗R S
µ∅(α2)

A2 ⊗R · · · ⊗R S
µ∅(αn)

An →

ℓ−1⊕
i=1

S
µi (α

1)

A1 ⊗R S
µi (α

2)

A2 ⊗R · · · ⊗R S
µi (α

n)
An .

If α := α1
= α2

= · · · = αn then the more concise notation SαA1,...,An will be used to denote S
α1,...,αn

A1,...,An .

Likewise, given a Koszul left A-module M , define the multi-Schur module S
α1,...,αn

(A1,M1),...,(An,Mn)
as the

kernel of the natural map

S
µ∅(α1)

(A1,M1)
⊗R S

µ∅(α2)

(A2,M2)
⊗R · · · ⊗R S

µ∅(αn)

(An,Mn)→

ℓ⊕
i=1

S
µi (α

1)

(A1,M1)
⊗R S

µi (α
2)

(A2,M2)
⊗R · · · ⊗R S

µi (α
n)

(An,Mn).

Finally, given a Koszul left (resp. right) A-module N (resp. M), define the multi-Schur module

S
α1,...,αn

(M1,A1,N 1),...,(Mn,An,N n)

as the kernel of the natural map

S
µ∅(α1)

(M1,A1,N 1)
⊗R · · · ⊗R S

µ∅(αn)

(Mn,An,N n)→

ℓ⊕
i=1

S
µi (α

1)

(M1,A1,N 1)
⊗R · · · ⊗R S

µi (α
n)

(Mn,An,N n).

The following is the evident analog of Observation 4.41 for multi-Schur modules:

Observation 5.5. Let αi , β i , and γ i be ℓ (resp. j , k)-partitioned partitions. Given a collection of Koszul
algebras Ai and left (resp. right) Koszul Ai -modules Ni (resp. Mi ) for 1 ⩽ i ⩽ n, there is an equality

S
α1
·β1
·γ 1,...,αn

·βn
·γ n

(M1,A1,N 1),...,(Mn,An,N n)
= (S

α1
·β1,...,αn

·βn

(M1,A1,N 1),...,(Mn,An,N n)
⊗R S

γ 1,...,γ n

(M1,A1,N 1),...,(Mn,An,N n)
)

∩ (S
α1,...,αn

(M1,A1,N 1),...,(Mn,An,N n)
⊗R S

β1
·γ 1,...,βn

·γ n

(M1,A1,N 1),...,(Mn,An,N n)
).

The following properties are immediate from the definition of multi-Schur modules:

Proposition 5.6. Let α1, . . . , αn be a sequence of ℓ-partitioned compositions and A1, . . . , An be a
sequence of Koszul R-algebras. Then:

(1) Let τ ∈6n be any permutation of [n]. Then there is a natural isomorphism

S
α1,...,αn

A1,...,An
∼= S

ατ(1),...,ατ(n)

Aτ(1),...,Aτ(n) .

(2) If ℓ= 1, there is an isomorphism

S
α1,...,αn

A1,...,An
∼= Sα

1

A1 ⊗R · · · ⊗R Sα
n

An .
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(3) If each Ai admits the structure of a R[Gi
]-module for some group Gi (where 1 ⩽ i ⩽ n), then the

multi-Schur module S
α1,...,αn

A1,...,An admits the structure of a R[G1
× · · · × Gn

]-module, and all of the
above isomorphisms are G1

× · · ·×Gn-equivariant.

In view of Observation 5.5, the notation for multi-Schur modules can quickly become overwhelming.
For this reason, we introduce the following shorthand notation:

Notation 5.7. Let α1, . . . , αn be a collection of ℓ-partitioned compositions. Given a collection of Koszul
algebras Ai and left (resp. right) Koszul Ai -modules Ni (resp. Mi ) for 1 ⩽ i ⩽ n, use the more concise
notation

S
α

M,A,N := S
α1,...,αn

(M1,A1,N 1),...,(Mn,An,n)
.

For given tuples of compositions α and β, extend the operations of Definitions 4.4 and 4.1 by applying
them coordinatewise to the tuples. With this identification, we have the equalities

α := {α1, . . . , αn
}, M := {M1, . . . ,Mn

}, A := {A1, . . . , An
}, N := {N 1, . . . , N n

}.

The following lemma is the multi-Schur analog of Lemma 4.43, but the proof is actually a little more
subtle due to the added difficulty of allowing compositions of different sizes.

Lemma 5.8. Let α and β be sequences of k-partitioned and ℓ− k-partitioned compositions, respectively,
for some fixed 1 ⩽ k ⩽ ℓ. Let A = {A1, . . . , An

} be a sequence of Koszul R-algebras and M a sequence
of Koszul left A-modules. Then:

(1) Every multi-Schur module is R-flat.

(2) There is a canonical short exact sequence

0→ S
α·β

A,M → S
α

A⊗R S
β

A,M → S
α⊙β

A,M → 0.

If all Koszul algebras/modules are R-projective, then every multi-Schur module S
α

A,M is also R-projective.
The analogous statement for right modules holds as well.

Proof. It suffices to prove (2), since (1) is a consequence of (2) combined with Observation 2.12.

Proof of (2). Let p := max{ℓ(pi (α
j )) | 1 ⩽ i ⩽ k, 1 ⩽ j ⩽ n} and define q := |{i | ℓ(pi (α

j )) = p}|.
The proof is by a double induction on the values p and q. Notice that when p = 1 and q is arbitrary,
recall that A1

⊗R · · ·⊗R An is a Koszul algebra and the tensor product M1
⊗R · · ·⊗R Mn is a left Koszul

module over A1
⊗R · · · ⊗R An by Corollary A.23. By Observation 5.3 combined with Proposition 3.14,

the sequence of (2) is exact.
Assume now that p > 1 and q = 1. This means that there is some element of one of the compositions

α or β whose largest part is strictly greater than 1. Reversing the order of α and β, it is of no loss of
generality to assume that α contains a part of size p. Moreover, for simplicity of notation, let us assume
that the first element of α has size p (the general case is identical but notationally more cumbersome).
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Write α = (a) ·α′, so that by construction α′ has all parts of size < p. There is a commutative diagram:

0 0 0

0 S
α·β

A,M S
α

A⊗R S
β

A,M S
α⊙β

A,M 0

0 S
(a)
A ⊗R S

α′·β

A,M S
(a)
A ⊗R S

α′

A ⊗R S
β

A,M S
(a)
A ⊗R S

α′⊙β

A,M 0

0 S
(a)⊙α′·β
A,M S

(a)⊙α′

A ⊗R S
β

A,M S
(a)⊙α′⊙β
A,M 0

0 0 0

In the above diagram, notice that the bottom two rows and the last two columns are exact by the
inductive hypothesis. We may also assume by induction on p that the map

2 : S
(a)
A ⊗R S

α′·β

A,M → S
(a)⊙α′·β
A,M

is a surjection. We claim that with this information the first column of the above diagram is exact. It is
evident just by definition that the map

S
(a)·α′·β
A,M → S

α

A⊗R S
β

A,M

is always an injection, so it remains to prove exactness at the middle term S
α

A ⊗R S
β

A,M . However, a
diagram chase employing exactness of the middle column shows that

Ker2⊂ (SαA⊗R S
β

A,M)∩ (S
(a)
A ⊗R S

α′·β

A,M),

and this latter intersection is precisely equal to S
α·β

A,M by Observation 5.5. Since the reverse containment
evidently holds, exactness of the first column follows, and hence all columns of the above diagram are
exact. Employing the long exact sequence of homology, it follows that the first row is exact.

For the inductive step on q , the argument is actually identical. After choosing a similar decomposition
of α, there is an identical commutative diagram. By construction, the bottom two rows and rightmost two
columns are exact by induction on q. A verbatim argument works for showing that the first column is
exact, and hence the long exact sequence of homology yields the statement in general. □

Corollary 5.9. Let α and β be a collection of k and ℓ− k-partitioned compositions, respectively. Let Ai

be a collection of Koszul algebras and Ni (resp. Mi ) a collection of left (resp. right) Koszul Ai -modules
for 1 ⩽ i ⩽ n. Then:
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(1) Every multi-Schur module S
α

M,A,N is R-flat.

(2) There is a canonical short exact sequence

0→ S
α·β

M,A,N → S
α

M,A⊗R S
β

A,N → S
α⊙β

M,A,N → 0.

If all the Koszul algebras/modules are R-projective, then every multi-Schur module S
α

A,M is also R-
projective.

Proof. This proof is formally identical to the proof of Corollary 4.45 but with the multi-index notation of
Notation 5.7 used instead. □

Finally, we have the generalization of the complexes H(α) of Definition 4.46 for the multi-Schur
setting.

Definition 5.10. Let α1, . . . , αn be a sequence of ℓ-partitioned compositions. Given Koszul algebras Ai

and left Koszul modules M i for 1 ⩽ i ⩽ n, define the cochain complex H•
(A1,M1),...,(An,Mn)

(α1, . . . , αn)

via

Hi
(A1,M1),...,(An,Mn)

(α1, . . . , αn) :=
⊕
|I |=i

S
µI (α

1),...,µI (α
n)

(A1,M1),...,(An,Mn)

with differential

dH
(A1,M1),...,(An ,Mn )

∣∣
S
µI (α1),...,µI (αn )

A1,...,An

:=

∑
j /∈I

sgn( j, I )ρI,I∪ j .

Corollary 5.11. Let α1, . . . , αn be a sequence of ℓ-partitioned compositions. Given Koszul algebras Ai

and left Koszul modules M i for 1 ⩽ i ⩽ n, the cochain complex H•
(A1,M1),...,(An,Mn)

(α1, . . . , αn) is exact
in positive cohomological degrees and

H 0(H•
(A1,M1),...,(An,Mn)

(α1, . . . , αn))= S
α1,...,αn

A1,...,An .

5.1. Some generalities on filtrations. We now turn our attention to the task of filtering the multi-Schur
modules S

α

M,A,N for given choices of α. This section collects a few general results on “splicing” filtrations
together; these results are essentially trivial, but it will be useful to refer to them explicitly. First, let us
recall the definition of a filtration.

Definition 5.12. Let M be an R-module. A (ascending) filtration of M is a chain of R-submodules

0= F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = M.

The successive quotients Fi/Fi−1 are called the associated graded pieces.

The following observation is likely a common first exercise on properties of filtrations, but we state
and prove it here for completeness. The intuition here is that filtrations whose graded pieces admit further
filtrations may be refined to a single filtration of the larger object with the same graded pieces.
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Observation 5.13. Let M be an R-module equipped with a finite filtration

F : 0= F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = M.

Suppose that for all i ⩾ 1, the i-th graded piece Gi := Fi/Fi−1 admits a finite filtration

F i
: 0= F i

0 ⊂ F i
1 ⊂ · · · ⊂ F i

ni−1 ⊂ F i
ni
= Gi

with graded pieces Gi
j := F i

j/F i
j−1 for each j ⩾ 1. Then the filtration F of M may be refined to a filtration

F ′ of M with associated graded pieces Gi
j for 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ ni .

The above observation may be used to understand how to filter tensor products of modules, each
equipped separately with their own filtrations; this is the content of the following corollary.

Corollary 5.14. Let M1,M2, . . . ,Mℓ be a collection of R-modules equipped with filtrations

F i
: 0= F i

0 ⊂ F i
1 ⊂ · · · ⊂ F i

ni−1 ⊂ F i
ni
= M i ,

and assume that each associated graded piece Gi
j := F i

j/F i
j−1 is a flat R-module. Then each of the

R-modules M i is flat and there is a filtration of M1
⊗R M2

⊗R · · · ⊗R Mℓ with associated graded pieces
of the form

G1
i1
⊗R G2

i2
⊗R · · · ⊗R Gℓ

iℓ,

where 1 ⩽ ik ⩽ nk for each 1 ⩽ k ⩽ ℓ.

Proof. Proceed by induction on ℓ, with the base case ℓ= 1 being vacuous. Assume ℓ > 1 and let F ′ be a
filtration of M1

⊗R M2
⊗R · · · ⊗R Mℓ−1 with associated graded pieces of the form

G1
i1
⊗R · · · ⊗R Gℓ−1

iℓ−1
.

By the flatness assumption, the induced filtration F ′⊗R Mℓ has associated graded pieces of the form

G1
i1
⊗R · · · ⊗R Gℓ−1

iℓ−1
⊗R Mℓ.

Further filtering each graded piece by the filtration Fℓ of Mℓ, we may employ Observation 5.13 to deduce
the result. □

5.2. A canonical filtration of multi-Schur functors. The following short exact sequence, when combined
with some of the other filtration results proved in this subsection, will be the essential ingredient for
proving Theorem 5.20. It will be used to place an object we want to understand in the middle of a short
exact sequence whose outer terms have a well-understood filtration.

Lemma 5.15. Let α1, . . . , αn and β1, . . . , βn be sequences of k-partitioned and ℓ− k-partitioned compo-
sitions, respectively, for some fixed 0 ⩽ k < ℓ. Let A1, . . . , An be a sequence of Koszul R-algebras and
N i (resp. M i ) be Koszul left (resp. right) Ai -modules for 1 ⩽ i ⩽ n. Then there is a canonical short exact
sequence

0→ S
α1
·β1,...,αn−1

·βn−1,αn

M,A,N ⊗R S
βn

Mn,An,N n → S
α1
·β1,...,αn

·βn

M,A,N → S
α1
⊙β1,...,αn−1

⊙βn−1,αn
·βn

M,A,N → 0.
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In the above, the sequences of α1
· β1, . . . , αn−1

· βn−1, αn and α1
⊙ β1, . . . , αn−1

⊙ βn−1, αn
· βn are

being viewed as k and ℓ− 1-partitioned compositions via the convention of Convention 4.14.

Example 5.16. Let A and B be two Koszul R-algebras and α1
= β1

= (13), viewed as a 3-partitioned
composition. Then the short exact sequence of Lemma 5.15 takes the form

S
(13),(12)
A,B ⊗R B1→ S

(13),(13)
A,B → S

(1,2),(13)
A,B → 0.

In the above, (13) is being viewed as the 2-partitioned composition (1) · (12) in the first term of the
sequence, and likewise for the last term in the sequence.

Proof. For simplicity of notation, we will prove the theorem only for Koszul algebra inputs (otherwise
the relevant diagrams are too large to display). The proof follows by examining the commutative diagram
of Figure 3; the base case and the inductive step are outlined in the caption. □

The next lemma can be seen as a “first approximation” of the filtration in Theorem 5.20.

Lemma 5.17. Let α1, . . . , αn be a sequence of ℓ-partitioned compositions and A1, . . . , An be a sequence
of Koszul R-algebras and N i (resp. M i ) be Koszul left (resp. right) Ai -modules for 1 ⩽ i ⩽ n. Then the
multi-Schur module S

α

M,A,N admits a canonical filtration with graded pieces of the form

S
σI (α

1),...,σI (α
n−1)

(M1,A1,N 1),...,(Mn−1,An−1,N n−1)
⊗R S

ν[ℓ]\I (α
n)

(Mn,An,N n),

where I ranges over all subsets of [ℓ− 1].

Proof. Proceed by induction on ℓ, where the base case ℓ= 1 is trivial. Assume now that ℓ > 1 and write
each αi

= β i
· γ i , where γ i

:= pℓ(αi ). By Lemma 5.15 there is a canonical short exact sequence

0→ S
β1
·γ 1,...,βn−1

·γ n−1,βn

M,A,N ⊗R S
γ n

Mn,An,N n → S
β1
·γ 1,...,βn

·γ n

M,A,N → S
β1
⊙γ 1,...,βn−1

⊙γ n−1,βn
·γ n

M,A,N → 0.

By the inductive hypothesis, the multi-Schur module S
β1
·γ 1,...,βn−1

·γ n−1,βn

M,A,N admits a filtration with graded
pieces of the form

S
σI (α

1),...,σI (α
n−1)

(M1,A1,N 1),...,(Mn−1,An−1,N n−1)
⊗R S

ν[ℓ−1]\I (β
n)

(Mn,An,N n),

where I ⊂ [ℓ− 2]. Likewise, the multi-Schur module S
β1
⊙γ 1,...,βn−1

⊙γ n−1,βn
·γ n

M,A,N admits a filtration with
graded pieces of the form

S
σJ (β

1
⊙γ 1),...,σJ (β

n−1
⊙γ n−1)

(M1,A1,N 1),...,(Mn−1,An−1,N n−1)
⊗R S

ν[ℓ−1]\J (β
n
·γ n)

(Mn,An,N n) ,

where J ⊂ [ℓ−2]. Note that ranging over all I ⊂ [ℓ−2] as in the first case is the same as ranging over all
I ⊂ [ℓ− 1] with ℓ− 1 /∈ I , and ranging over all J as in the second case is equivalent to ranging over all
J ⊂ [ℓ− 1] with ℓ− 1 ∈ J . Combining both of these filtrations with Corollary 5.14 yields the result. □
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Lemma 5.18. Let α be any ℓ-partitioned composition. Let A be a Koszul R-algebra and N (resp. N ) any
left (resp. right) Koszul A-module. For any I ⊂ [ℓ− 1], the module S

νI (α)
M,A,N admits a canonical filtration

with associated graded pieces of the form
S
σJ (α)
M,A,N ,

where J ⊂ [ℓ− 1] ranges over all subsets with J ⊆ I .

Proof. Proceed by induction on |I |, with base case I = ∅ being vacuous since there is an equality
S
ν∅(α)
M,A,N = S

σ∅(α)
M,A,N . For |I | > 0, let j ∈ I be the largest element of I . Write α = p< j (α) · p⩾ j (α) and

consider the short exact sequence

0→ S
νI\ j (α)

M,A,N → S
νI (α)
M,A,N → S

νI\ j (p< j (α)⊙p⩾ j (α))

M,A,N → 0.

Let us consider the filtrations of the outer two terms: by the inductive hypothesis, S
νI\ j (α)

M,A,N has a filtration
with graded pieces of the form

S
σK (α)
A ,

where K ⊂ [ℓ− 1] ranges over all subsets with K ⊂ I\ j . Likewise, the term S
νI\ j (p< j (α)⊙p⩾ j (α))

M,A,N has a
filtration with graded pieces of the form

S
σL (p< j (α)⊙p⩾ j (α))

M,A,N ,

where L ⊂ [ℓ− 2] ranges over all subsets L ⊂ s j (I\ j). Notice that p< j (α)⊙ p⩾ j (α)) is the same as
σ j (α), in which case ranging over all K and L as above is the same as just ranging over all subsets
J ⊂ [ℓ− 1] with J ⊂ I . The result thus follows from Corollary 5.14. □

Example 5.19. Let A = S(V ), the symmetric algebra on some free R-module V . Then A is a GL(V )-
representation and Lemma 5.18 implies that there is a GL(V )-equivariant filtration of the tensor power V⊗d

with graded pieces of the form SαA, where α ranges over all compositions of d (since V⊗d
= S

ν[d−1](1d )

S(V ) ).
Assuming R is a field of characteristic 0, the ring R[GL(V )] is semisimple and hence this yields a

GL(V )-equivariant direct sum decompositions

V⊗d
=

⊕
|α|=d

SαA.

Finally, we arrive at the main result of this section; this result furnishes the multi-Schur functors with a
canonical filtration whose associated graded pieces are easily described as tensor products of the ribbon
Schur functors of Section 4.

Theorem 5.20. Let α1, . . . , αn be a sequence of ℓ-partitioned compositions and A1, . . . , An be a sequence
of Koszul R-algebras and N i (resp. M i ) be Koszul left (resp. right) Ai -modules for 1 ⩽ i ⩽ n. Then the
multi-Schur module S

α

M,A,N admits a canonical filtration with graded pieces of the form

S
σI1 (α

1)

(M1,A1,N 1)
⊗R S

σI2 (α
2)

(M2,A2,N 2)
⊗R · · · ⊗R S

σIn (α
n)

(Mn,An,N n),

where the subsets I1, . . . , In ⊂ [ℓ− 1] range over all choices such that I1 ∩ I2 ∩ · · · ∩ In =∅.
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Remark 5.21. Notice that the parametrizing set for the associated graded pieces is inherently symmetric
under permuting the tensor factors, which is expected by the invariance of the multi-Schur module on the
ordering of the inputs.

In general, the number of ways to choose n subsets of [ℓ−1]with no common intersection is (2n
−1)ℓ−1,

so the number of associated graded pieces grows exponentially with respect to both n and ℓ.

Remark 5.22. The adjective “canonical” used in Theorem 5.20 means that this filtration is really true at
the level of functors; in other words, the functor Sα which takes as inputs n-tuples of Koszul R-algebras
and outputs the associated multi-Schur module admits a canonical filtration whose associated graded
pieces are given by the functors of the form

SσI1 (α
1)
⊗R SσI2 (α

2)
⊗R · · · ⊗R SσIn (α

n).

Proof of Theorem 5.20. Proceed by induction on n (the number of Koszul algebras), with base case
n = 2. To prove the base case, we induct on ℓ (where the case ℓ = 1 is vacuous). Let ℓ > 1 and write
α = α′ · pℓ(α) and β = β ′ · pℓ(β). By Lemma 5.15 there is a short exact sequence

0→ S
α,β ′

A,B ⊗R S
pℓ(β)
B → S

α,β

A,B→ S
α′⊙pℓ(α),β
A,B → 0.

By the inductive hypothesis, the outer 2 terms admit filtrations with graded pieces of the correct form.
This establishes the base case.

Assume now that n> 2. By Lemma 5.17 the multi-Schur module S
α1,...,αn

A1,...,An admits a canonical filtration
with associated graded pieces of the form

S
σI (α

1),...,σI (α
n−1)

A1,...,An−1 ⊗R S
ν[ℓ]\I (α

n)

An ,

where I ranges over all subsets of [ℓ−1]. By the inductive hypothesis, each of the modules S
σI (α

1),...,σI (α
n−1)

A1,...,An−1

admits a canonical filtration with associated graded pieces of the form

S
σI1 (α

1)

A1 ⊗R S
σI2 (α

2)

A2 ⊗R · · · ⊗R S
σIn−1 (α

n−1)

An−1 ,

where the above ranges over all choices of I1, . . . , In−1 with I1 ∩ · · · ∩ In−1 = I . On the other hand, the
module S

ν[ℓ−1]\I (α
n)

An admits a canonical filtration with associated graded pieces of the form S
σIn (α

n)

An , where
In ranges over all subsets In ⊂ [ℓ− 1] such that In ∩ I = ∅. This is overall the same thing as ranging
over all choices I1, . . . , In ⊂ [ℓ− 1] such that I1 ∩ · · · ∩ In =∅. □

Example 5.23. Let A and B be Koszul algebras. Let us use the argument of Theorem 5.20 to filter the
multi-Schur module S

(13),(13)
A,B , helping to illustrate the idea of the proof in a concrete setting. Recall by

Example 5.16 that we have the short exact sequence

S
(13),(12)
A,B ⊗R B1→ S

(13),(13)
A,B → S

(1,2),(13)
A,B → 0.
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Iteratively applying this sequence to the outer two terms yields

0→ A3⊗R (B1)
⊗3
→ S

(13),(12)
A,B → S

(2,1)
A ⊗R S

(12)
B ⊗R B1→ 0,

0→ S
(1,2)
A ⊗R B1⊗R S

(12)
A → S

(1,2),(13)
A,B → A3⊗R S

(13)
B → 0.

The terms involving B appearing on the ends of these short exact sequences are precisely the filtra-
tion factors of Lemma 5.17, and are filtered further by Lemma 5.18, yielding the filtration factors of
Theorem 5.20.

Remark 5.24. Let 2[ℓ−1] denote the Boolean poset on n elements. Then the product (2[ℓ−1])×n is naturally
a ranked poset (in fact, isomorphic to the Boolean poset 2[ℓ−1]×[n]), and the set S of all tuples (I1, . . . , In)

with I1 ∩ · · · ∩ In =∅ is a ranked subposet. Choosing any total order < refining the partial order on this
subposet, the filtration of the multi-Schur module S

α1,...,αn

A1,...,An is parametrized by <. In other words, the
filtration is of the form

{F(I1,...,In)}(I1,...,In)∈S,

with

F(I1,...,In)/Fpred(I1,...,In)
∼= S

σI1 (α
1)

A1 ⊗R · · · ⊗R S
σIn (α

n)

An .

In the above, pred denotes the predecessor function (i.e., the largest element strictly smaller with respect
to <).

Example 5.25. Let α = (1, 2) · (2) · (1) and β = (3) · (4, 2) · (2) be two 3-partitioned compositions and
let us compute the composition factors of the multi-Schur module S

α,β

A,B for any two Koszul algebras A
and B. The subposet (in fact, meet semilattice) of (2[2])×2 that parametrizes the filtration factors has
Hasse diagram:

({1, 2},∅) ({1}, {2}) ({2}, {1}) (∅, {1, 2})

({1},∅) ({2},∅) (∅, {1}) (∅, {2})

(∅,∅)

This translates to filtration factors of the following form:

S
(1,5)
A ⊗R S

(3,4,2,2)
B S

(1,4,1)
A ⊗R S

(3,4,4)
B S

(1,2,3)
A ⊗R S

(7,2,2)
B S

(1,2,2,1)
A ⊗R S

(7,4)
B

S
(1,4,1)
A ⊗R S

(3,4,2,2)
B S

(1,2,3)
A ⊗R S

(3,4,2,2)
B S

(1,2,2,1)
A ⊗R S

(7,2,2)
B S

(1,2,2,1)
A ⊗R S

(3,4,4)
B

S
(1,2,2,1)
A ⊗R S

(3,4,2,2)
B
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If for instance A = B = S(V ), the symmetric algebra, then the above filtration is also GL(V )×GL(V )
equivariant (and in characteristic 0 yields a direct sum decomposition).

6. Applications

The following section is the reward for enduring the technical details of Sections 4 and 5; we are able
to arrive at the other end with a rather robust theory that allows us to give elegant and simple closed
form descriptions of higher derived invariants associated to (Veronese/Segre subalgebras of) Koszul
algebras; see also [Bărcănescu and Manolache 1981]. In Section 6.4 we show how to use this theory to
build a large class of Koszul modules over an arbitrary Koszul algebra A, and specialize to the case of
a polynomial ring to prove a uniform, characteristic-free regularity result for certain classes of vector
bundles on projective space.

6.1. Tor and Ext. In this section we prove the following theorem, which gives some concise descriptions
of Tor and Ext between pairs of Koszul modules in terms of ribbon Schur functors.

Theorem 6.1. Let A be a Koszul algebra and M (resp. N ) a Koszul right (resp. left) A-module of initial
degree t (resp. s). Then there is a canonical isomorphism of A-modules

TorA
i (M, N )∼= S

(1i )
M,A,N for all i > 0.

If M is instead a Koszul left A-module, then there is a canonical isomorphism

ExtiA(M, N )∼= S
(i)
M !,A!,(N∗)! for all i > 0.

In particular, both of the above modules are flat R-modules annihilated by A+.

Proof. By the definition of Tor combined with Theorem A.25, the module TorA
i (M, N ) may be computed

by looking at the homology of the complex

· · · → M ⊗R S
(1i+1)
A,N → M ⊗R S

(1i )
A,N → M ⊗R S

(1i−1)
A,N → · · · .

Splitting this complex into graded pieces, there is a commutative diagram:

M j ⊗R S
(1i )
A,N M j+1⊗R S

(1i−1)
A,N

M j ⊗R A1⊗R S
(1i−1)
A.N

S
(1)
M⩾ j ,A⊗R S

(1i−1)
A,N

(di ) j+i+s

This implies that there is an equality

Ker(di )i+ j+s = (M j ⊗R S
(1i )
A,N )∩ (S

(1)
M⩾ j ,A⊗R S

(1i−1)
A,N ).
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By Observation 4.41, this latter intersection is precisely S
(1i )
(M⩾ j ,A,N ). On the other hand, by definition of

the Priddy differential there is also a commutative diagram for all j > s:

M j−1⊗R S
(1i+1)
A,N M j ⊗R S

(1i )
A,N

S
(1i )
M⩾ j ,A,N M j ⊗R A1⊗R S

(1i−1)
A,N

(di+1) j+i+s

This implies that there is also an equality

im(di+1) j+i+s = S
(1i )
M⩾ j ,A,N .

Putting both of the above equalities together, it follows that

TorA
i (M, N )i+ j+s =

{
S
(1i )
M,A,N if j = s,

0 otherwise.

To prove the isomorphism for Ext, recall first that there is a canonical isomorphism

ExtiA(M, N )∼= (TorA
i (N

∗,M))∗.

By Observation A.22, the graded dual N ∗ is a Koszul right A-module, and by the isomorphism just
proved for Tor there is an isomorphism

TorA
i (N

∗,M)∼= S
(1i )
N∗,A,M .

Dualizing and using the isomorphism of Corollary 4.45(3), the result follows immediately. □

Example 6.2. Assume that A is any Koszul algebra and recall that

S
(1i )

A,Ad
+

= S
(1i ,d)
A .

By Theorem A.25, the minimal free resolution of Ad
+

thus has the form

· · · → A⊗R S
(1i ,d)
A → A⊗R S

(1i−1,d)
A → · · · → A⊗R Ad → Ad

+
.

The ribbon Schur module S
(1i ,d)
A may be presented as the cokernel of the composition

(A!)∗i+2⊗R Ad−2→ (A!)∗i+1⊗R A1⊗R Ad−2→ (A!)∗i+1⊗R Ad−1,

in which case we see that there is an isomorphism with the ribbon Schur functor

S
(1i ,d)
A
∼= L A

i−1,d−1,

where the module L A
i+1,d−1 is defined as in [Faber et al. 2021]. Thus Theorem 6.1 at least recovers the

minimal free resolution of powers of the maximal ideal of a Koszul algebra constructed in [loc. cit.].

Corollary 6.3. Let A be any Koszul algebra such that S
(1i )
A = 0 for all i > 1. Then every Koszul module

over A is a flat R-module. If A is R-projective, then every Koszul module over A is R-projective.
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6.2. Veronese subalgebras. Recall the definition of the Veronese subalgebra as in Definition 2.4. The
following observation shows that the operation (−)(d) on compositions as defined in Definition 4.1
interacts functorially with the formation of the ribbon Schur functor:

Observation 6.4. Let A be any Koszul algebra and M (resp. N ) any Koszul right (resp. left) A-module.
For any integer d > 0 and integers i, j ∈ Z there are isomorphisms

SαA(d) = Sα
(d)

A and SαM (d),A(d),N (d)
∼= Sα

(d)

M,A,N .

Combining Theorem 6.1 with Observation 6.4 immediately yields:

Corollary 6.5. Let A be any Koszul algebra and M (resp. N ) any Koszul right (resp. left) A-module. For
any integer d > 0 there is an isomorphism

TorA(d)
i (M (d), N (d))= S

(d i )
M,A,N ,

where t (resp. s) is the initial degree of M (resp. N ). In particular, there are canonical isomorphisms

TorA(d)
i (A(⩾r ,d), A(⩾r ′,d))∼= S

(r,d i ,r ′)
A .

Remark 6.6. The isomorphism

TorA(d)
i (A(⩾r ,d), A(⩾r ′,d))∼= S

(r,d i ,r ′)
A .

was originally proved in the case A = S(V ) (the symmetric algebra) in the work [Almousa et al. 2024].
However, one notices that the original proof of this isomorphism does not invoke anything more than the
Koszulness properties of the symmetric algebra (and its truncations), which leads to the generalization
presented in Corollary 6.5.

6.3. Segre subalgebras. In this subsection, we apply the construction of multi-Schur modules and their
filtrations to study Segre products of Koszul algebras. The following observation is a straightforward
translation of the quadratic dual for a Koszul R-algebra:

Observation 6.7. Let A1, . . . , An be a collection of Koszul algebras and M i a Koszul left Ai -module for
1 ⩽ i ⩽ n. Then there are isomorphisms of R-modules

((A1
◦ · · · ◦ An)!)∗i = S

(1i )

A1,...,An and ((M1
◦ · · · ◦Mn)!)∗i = S

(1i )

(A1,M1),...,(An,Mn)
.

Example 6.8. Let A be any Koszul algebra and consider the filtration of Theorem 5.20 applied to
computing (A[2] !)∗3 = S

(13)
A,A. The poset parametrizing the filtration terms are the same as those of
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Example 5.25, which yields the filtration factors:

S
(3)
A ⊗R S

(13)
A S

(2,1)
A ⊗R S

(1,2)
A S

(1,2)
A ⊗R S

(2,1)
A S

(13)
A ⊗R S

(3)
A

S
(2,1)
A ⊗R S

(13)
A S

(1,2)
A ⊗R S

(13)
A S

(13)
A ⊗R S

(2,1)
A S

(13)
A ⊗R S

(1,2)
A

S
(13)
A ⊗R S

(13)
A

Suppose now that A= S(V ), the symmetric algebra on a vector space V . If R is a field of characteristic 0,
this induces a GL(V )×GL(V )-equivariant direct sum decomposition of (A[2] !)∗3 into irreducibles

(A[2] !)∗3=
( 3∧

V⊗
3∧

V
)
⊕

( 3∧
V⊗R S(2,1)(V )

)⊕4

⊕

( 3∧
V⊗S3(V )

)⊕2

⊕(S(2,1)(V )⊗S(2,1)(V ))⊕2.

Observation 6.9. Let α ∈ C(d) be any composition of some integer d > 0 and A1, . . . , An a sequence of
Koszul R-algebras admitting a compatible Gi -action for each 1 ⩽ i ⩽ n. Assume that M i (resp. N i ) is a
Koszul right (resp. left) Ai -module admitting a compatible Gi -action. Then the multi-Schur module

Sα
(M1,A1,N 1),...,(Mn,An,N n)

admits a G1
× · · ·×Gn-equivariant filtration with associated graded pieces of the form

Sα
1

(M1,A1,N 1)
⊗R · · · ⊗R Sα

n

(Mn,An,N n),

where α1, . . . , αn range over all compositions of |α| satisfying α1
∧ · · · ∧αn

= α.
In particular, if each of the group rings R[Gi

] is semisimple, then there is a G1
×· · ·×Gn-equivariant

decomposition

Sα
(M1,A1,N 1),...,(Mn,An,N n)

∼=

⊕
(α1,...,αn)∈C(d)×n

α1
∧···∧αn

=α

Sα
1

(M1,A1,N 1)
⊗R · · · ⊗R Sα

n

(Mn,An,N n).

Proof. This is just a retranslation of Theorem 5.20 combined with the fact that the refinement poset on
α is isomorphic to the Boolean poset on [ℓ(α)− 1], and the meet operation corresponds to intersection
under this isomorphism. □

Remark 6.10. The appearance of compositions ranging over the refinement poset as filtration factors is
likely related to the connection between Segre products and internal cohomomorphisms as discovered by
Manin [1987; 1991]. Indeed, another perspective on the filtration given in Theorem 5.20 is as a canonical
filtration of the graded pieces of the cohomomorphism algebra.

Next, we use Theorem 5.20 to prove a symmetric function identity; we first need to recall some notation
related to Schur polynomials and establish some multi-index conventions.



Ribbon Schur functors 819

Notation 6.11. Let n ⩾ 1 be any integer and consider sets of indeterminates x1, . . . , xn . Recall that the
Schur polynomial associated to a skew shape λ/µ is the polynomial

sλ/µ(x) :=
∑

T∈SST(λ/µ)

xT ,

where xT denotes the multigraded character of the semistandard tableau T . If α is a composition, the
notation sα(x) denotes the Schur polynomial corresponding to the ribbon shape determined by α. The
complete symmetric polynomial hd(x) is defined to be s(d)(x).

Given a tuple of compositions α = (α1, . . . , αn), use the notation

sα(x) := sα1(x1) · sα2(x2) · · · sαn (xn).

In particular, for a single composition α = (α1, . . . , αn) there is the equality

hα(x)= hα1(x
1) · hα2(x

2) · · · hαn (x
n).

Corollary 6.12. With notation as in Notation 6.11, there is an equality of symmetric polynomials

hdn+α(x)=
d∑

i=1

∑
β1,...,βn

|β1
|=···=|βn

|=i
β1
∧···∧βn

=1i

(−1)i+1h(d−i)n (x) · sβ·α(x).

Remark 6.13. In the statement of Corollary 6.12, if β = (β1, . . . , βn) is a tuple of compositions and
α = (α1, . . . , αn) is a composition, then we use the convention

β ·α := (β1
· (α1), β

2
· (α2), . . . , β

n
· (αn)).

Proof. Assume R = k is a field of characteristic 0 and let A = S(V ) for some vector space V . Note that
A and A⩾d = Ad

+
are polynomial functors for all d ⩾ 1. Taking Segre products, this means that A[n] and

Aα
+
:= Aα1

+ ◦ Aα2
+ ◦ · · · ◦ Aαn

+ are also polynomial functors, and hence there is an equality

Ch(Aα
+
)= Ch(A[n]) ·

∑
i⩾0

(−1)i Ch(TorA[n]
i (Aα

+
, k)), (6.13.1)

where Ch(−) denotes the multigraded character. By definition there are equalities

Ch(Aα
+
)=

∑
d⩾1

hdn+α(x), Ch(A[n])=
∑
d⩾0

hdn (x).

On the other hand, by Theorem 5.20 there is an equality

Ch(TorA[n]
i (Aα

+
, k))=

∑
β1,...,βn

|β1
|=···=|βn

|=i
β1
∧···∧βn

=1i

sβ·α(x).
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Combining all of these expressions and comparing degrees on each side of the equality (6.13.1) yields
the result. □

Remark 6.14. When n = 1, this reduces to the well-known classical character identity

hd+a(x)=
d∑

i=1

(−1)i+1hd−i (x)s(1i ,a)(x).

Moreover, taking s-th Veronese powers of the polynomial ring and performing an identical argument
yields the same identity, but every composition is replaced with its s-th rescaling (i.e., apply the operation
(−)(s) to all compositions).

Example 6.15. Let n= 2, d= 2, and α= (α1, α2) be any composition. Then the identity of Corollary 6.12
reads

h2+α1(x
1)h2+α2(x

2)= hd−1(x1)hd−1(x2)s(1,α1)(x
1)s(1,α2)(x

2)

−s(12,α1)(x
1)s(12,α2)(x

2)− s(12,α1)(x
1)s(2,α2)(x

2)− s(2,α1)(x
1)s(12,α2)(x

2).

Our next corollary is an evident consequence of Theorem 6.1 combined with Observation 6.9 (by
setting α = (1i )).

Corollary 6.16. Let A1, . . . , An a sequence of Koszul R-algebras admitting a compatible Gi -action for
each 1 ⩽ i ⩽ n. Assume that M i (resp. N i ) is a Koszul right (resp. left) Ai -module admitting a compatible
Gi -action. Then the module

TorA1
◦···◦An

i (M1
◦ · · · ◦Mn, N 1

◦ · · · ◦ N n)

admits a G1
× · · ·×Gn-equivariant filtration with associated graded pieces of the form

Sα
1

M1,A1,N 1 ⊗R · · · ⊗R Sα
n

Mn,An,N n ,

where the compositions range over all tuples (α1, . . . , αn) ∈ C(i)×n with α1
∧ · · · ∧αn

= (1i ).
Likewise, the module

Tor(A
1
◦···◦An)(d)

i ((M1
◦ · · · ◦Mn)(d), (N 1

◦ · · · ◦ N n)(d))

admits a G1
× · · ·×Gn-equivariant filtration with associated graded pieces of the form

Sα
1

M1,A1,N 1 ⊗R · · · ⊗R Sα
n

Mn,An,N n ,

where the compositions range over all tuples (α1, . . . , αn) ∈ C(di)×n with α1
∧ · · · ∧αn

= (d i ).

Example 6.17. Let A be any Koszul algebra and let us compute the filtration factors of (A[3]!)∗2 = S
(12)

A[3]

(unfortunately, trying this for S
(13)

A[3] yields 49 filtration factors, which is too big of an example). The poset
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parametrizing the filtration factors is:

({1}, {1},∅) ({1},∅, {1}) (∅, {1}, {1})

({1},∅,∅) (∅, {1},∅) (∅,∅, {1})

(∅,∅,∅)

This yields filtration factors:

S
(2)
A ⊗R S

(2)
A ⊗R S

(12)
A S

(2)
A ⊗R S

(12)
A ⊗R S

(2)
A S

(12)
A ⊗R S

(2)
A ⊗R S

(2)
A

S
(2)
A ⊗R S

(12)
A ⊗R S

(12)
A S

(12)
A ⊗R S

(2)
A ⊗R S

(12)
A S

(12)
A ⊗R S

(12)
A ⊗R S

(2)
A

S
(12)
A ⊗R S

(12)
A ⊗R S

(12)
A

Example 6.18. Let A be any Koszul algebra and let T (V ) denote the tensor algebra on some projective
R-module V . Then by definition the R-module S

(1i )
A,T (V ) admits a filtration with graded pieces of the form

Sα
1

A ⊗R Sα
2

T (V ),

with α1
∧ α2
= (1i ). Note that the only choice of α2 for which Sα

2

T (V ) is nonzero is for α2
= (i). Thus

α1
= (1i ) and we find

S
(1i )
A,T (V ) = S

(1i )
A ⊗R S

(i)
T (V ) = (A

!)∗i ⊗R V⊗i .

In particular, after dualizing and collecting graded pieces, there is an isomorphism of R-algebras

(A ◦ T (V ))! = A! ◦ T (V ∗).

Of course, this could be verified using more direct methods, but the point is to demonstrate the utility of
Theorem 5.20.

Example 6.19. Let A = S(V ), B = S(W ) be symmetric algebras on free R-modules V and W both
of rank 2. Let M = Ar

+
◦ B and N = A ◦ Br ′

+
, viewed as modules over the Segre product A ◦ B. By

Corollary 6.16 there is an equality

TorA◦B
i (M, N )= S

(1i )

(A,Ar
+)◦(B,B

r ′
+ )
.

The module S
(1i )

(A,Ar
+)◦(B,B

r ′
+ )

has a GL(V )×GL(W )-equivariant filtration with associated graded pieces of
the form

SαA,Ar
+
⊗R S

β

B,Br ′
+

,
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where α and β range over all partitions with α∧β = (1i ). Notice that since V and W have rank 2, we are
really only ranging over all partitions α and β such that all parts of αt and β t are at most 2, and such that
αt
∨β t
= (i). Retranslating this in terms of subsets of the Boolean poset, this is asking for all ways to

partition the set [i−1] into the union of two totally disconnected sets Iα ∪ Iβ , where 1 ∈ Iβ and i−1 ∈ Iα .
One quickly sees that there is no such decomposition if i − 1 is odd and only 1 such decomposition when
i − 1 is even:

[i − 1] = {2, 4, . . . , i − 1} ∪ {1, . . . , i − 2}.

Retranslating this in terms of compositions, we find there is a GL(V )×GL(W )-equivariant isomorphism

TorA◦B
i (M, N )=

{
Sr−1(V )⊗R det(V )(i+1)/2

⊗R Sr ′−1(W )⊗R det(W )(i+1)/2 if i > 0 is odd,
0 if i > 0 is even.

6.4. Koszul modules built from ribbons and general skew shapes. In this section we apply the Koszulness
criterion of Lemma 4.43 to deduce that a large class of modules parametrized by ribbons are Koszul
modules. This immediately yields interesting Koszul modules over any Koszul algebra (generalizing
powers of A+), and in the case of the symmetric algebra we are able to give a quick and much more
general proof of the Koszulness of certain classes of modules formed by attaching rows to a fixed Schur
functor associated to a skew-partition. We conclude with an application of these results that allows us to
compute the regularity of the sheaf Sλ(R) in arbitrary characteristic.

Notation 6.20. Let A be any Koszul algebra and α any fixed composition. Define the right A-module
Sα⊙•A via

Sα⊙•A :=

⊕
d⩾0

S
α⊙(d)
A ,

with right A-module action induced by the canonical surjections SαA ⊗R Ad ↠ S
α⊙(d)
A . Similarly, the

right (A!)∗-comodule S
α·(1•)
A is defined via

S
α·(1•)
A :=

⊕
d⩾0

S
α·(1d )
A ,

with comodule action induced by the canonical injections S
α·(1d )
A ↪→ SαA⊗R (A!d)

∗. The left A-modules
S•⊙αA and left (A!)∗-comodules S

(1•)·α
A are defined identically, but with the appropriate concatenation/near-

concatenation appearing on the left.

Example 6.21. If α = (e) is a single integer, then the module S
(e)⊙•
A is simply (A+)e, viewed as a

right A-module. More generally, let �i
⩾ j (R) denote the i-th syzygy of the A-module R,3 truncated past

degree j . Then

�i
⩾ j (R)= S

(1i−1, j)⊙•
A .

3That is, the image of the i-th differential in any A-projective resolution of R.
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Theorem 6.22. Let A be any Koszul algebra and α any composition. Then the right A-module Sα⊙•A is a
Koszul A-module, and the minimal free resolution over A has the form

· · · → S
α·(1i )
A ⊗R A(−i)→ S

α·(1i−1)
A ⊗R A(−i + 1)→ · · · → Sα·(1)⊗R A(−1)→ SαA⊗R A.

In particular, the quadratic dual of Sα⊙•A is precisely the left A!-module S
•⊙rev(αt )

A! .

Proof. Let α be any fixed partition and set M := Sα⊙•A . We use the criterion of Lemma 4.43(2). Let d ⩾ 0
be any integer and observe first that

S
β

M⩾d ,A = S
α⊙d·β
A .

Thus for any compositions β, γ the exactness of the sequence

0→ S
β·γ

M⩾d ,A→ S
β

M⩾d ,A⊗R S
γ

A→ S
β⊙γ

M⩾d ,A→ 0

is equivalent to the exactness of the sequence

0→ S
δ·γ

A → SδA⊗R S
γ

A→ S
δ⊙γ

A → 0,

where δ= α⊙ (d) ·β. This latter sequence is evidently exact, since the algebra A is assumed to be Koszul,
whence the module M is Koszul. The latter statements are trivial consequences of the Priddy complex
associated to a Koszul module (see Theorem A.25). □

The modules Sα⊙•A are constructed in such a way that they are totally compatible with any kind of
ambient group actions, and the naturality of this construction leads one to wonder if there are classes of
Koszul modules in the literature that are “secretly” of the form Sα⊙•A for some α. We pose this question
formally.

Question 6.23. Are there interesting examples of Koszul modules in the literature of the form Sα⊙•A for
some composition α? (One such class of examples arises as in Example 6.21.)

For the remainder of this subsection, we assume that A = S•(V ) (the symmetric algebra) or
∧
• V (the

exterior algebra), where V is any free R-module (R is still assumed to be a commutative ring). In this
setting, we have access to the classically defined Schur functors SD(V ) of Akin, Buchsbaum and Weyman
[1982], where D = λ/µ is a skew partition. For a composition α, the notation D⊙ α will denote the
skew partition obtained by attaching the bottom row of α to the top row of the diagram D. Likewise, the
notation D ·α is defined to be the skew partition obtained by concatenating the ribbon diagram associated
with α to the top row of D.

Example 6.24. Let D = (3, 3, 2)/(1) and α = (2, 2). Then:

D⊙α = and D ·α =
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Remark 6.25. The concatenation/near-concatenation of arbitrary diagrams D and D′ is defined in
[Almousa et al. 2024, Definition 3.4], but we will not need this level of generality here.

Definition 6.26. Let D = λ/µ be a skew-partition. The notation SD⊙•(V ) will denote the S•(V )-module
with

SD⊙•(V ) :=
⊕
d⩾0

SD⊙(d)(V ),

with multiplication induced by the canonical surjections

SD(V )⊗R Sd(V )↠ SD⊙d(V ).

Likewise, the notation SD·(1•)(V ) denotes the
∧
• V -comodule with

SD·(1•)(V ) :=
⊕
d⩾0

SD·(1d )(V )

with comultiplication induced by the natural inclusions

SD·(1d )(V ) ↪→ SD(V )⊗R

d∧
V .

The analogous definitions for SD replaced by the Weyl functors WD will be used, with the tacit knowledge
that the module WD⊙•(V ) is instead a

∧
• V -module. Likewise, the modules S•⊙D(V ) (resp. W•⊙D(V ))

and S(1
•)·D(V ) (resp. W(1•)·D(V )) are defined analogously.

Remark 6.27. A simple way to define the module structure on SD⊙•(V ) is to take advantage of the short
exact sequence, see [Almousa et al. 2024, Proposition 3.6],

0→ SD·(1)(V )→ SD
⊗R V → SD⊙(1)(V )→ 0,

and then define SD⊙•(V ) to be the quadratic S•(V )-module induced by the above short exact sequence,
there is always a standard way to do this; see, for instance, [Polishchuk and Positselski 2005].

Theorem 6.28. Let A := S•(V ), the symmetric algebra on a free R-module V . For any skew partition
D := λ/µ, the S•(V )-module SD⊙•(V ) is Koszul, and the minimal free resolution over A has the form

· · ·→SD·(1i )
⊗R A(−i)→SD·(1i−1)(V )⊗R A(−i +1)→· · ·→SD·(1)(V )⊗R A(−1)→SD(V )⊗R A.

In particular, the quadratic dual of SD⊙•(V ) is precisely the
∧
• V ∗-module W•⊙Dt

(V ). The analogous
statement for the A =

∧
• V -module WD⊙•(V ) also holds.

Proof. Define M := SD⊙•(V ) and notice that by identical reasoning to the proof of Theorem 6.22, for
any integer d ⩾ 0 and composition α there is an equality

SαM⩾d ,A = SD⊙(d)·α(V ),

whence the sequences of Lemma 4.43 read

0→ SD⊙(d)·α·β(V )→ SD⊙(d)·α(V )⊗R S
β

A→ SD⊙(d)·α⊙β(V )→ 0.
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By [Almousa et al. 2024, Proposition 3.6], this sequence is exact; in the notation of [Almousa et al. 2024],
the diagram denoted D is the diagram D⊙ (d) ·α in our notation and D′ is the ribbon diagram associated
to β. By Lemma 4.43(2), the module M is Koszul, and the latter statements are again an immediate
consequence of the Priddy complex (see Theorem A.25). □

As a further application, we conclude this section with a characteristic-free computation of the regularity
of a certain class of vector bundles on projective space by using the resolution of Theorem 6.28.

Notation 6.29. Let V be any k-vector space and P(V ) denote projective space on V . The tautological
subbundle R on P(V ) is the twisted sheaf �(1), where � denotes the cotangent bundle. More concretely,
R is defined via a twist of the Euler sequence

0→R→ V ⊗k OP(V )→OP(V )(1)→ 0.

For convenience, recall that a sheaf F on some variety X is r -regular if

H i (X,F(r − i))= 0

for all i > 0. The regularity of a sheaf F is defined to be the minimal integer r such that F is r -regular.
We conclude our applications with a characteristic-free regularity computation for a canonical class of
vector bundles on projective space.

Theorem 6.30. Let V be a k-vector space and R the tautological subbundle on P(V ). Given any partition
λ= (λ1, . . . , λn) (where n = dim V ), there is an exact sequence of vector bundles of P(V )

· · · → S(λ1,λ)·1i
(V )⊗k OP(V )(−λ1− i)→ · · · → S(λ1,λ)·1(V )⊗k OP(V )(−λ1− 1)

→ S(λ1,λ)(V )⊗k OP(V )(−λ1)→ Sλ(R)→ 0. (6.30.1)

Moreover, writing λt
= (λt

1, . . . , λ
t
m) (where λt

m > 0),4 there is an equality

Hλt
m (P(V ),Sλ(R)(λ1− λ

t
m − 1))= S((λ1−1)λ

t
m+1,λ2,...,λn)(V ).

In particular, the sheaf Sλ(R) has regularity λ1.

Remark 6.31. Theorem 6.30 generalizes a theorem of Gao and Raicu [2024, Theorem 2.2], where the
authors used the Kempf–Weyman geometric technique [Weyman 2003] to construct the above resolution
in the case λ= (a); they used this to prove that the regularity of the sheaf Sa(R) is precisely a.

The subtlety of needing to concatenate the partition λ on the rightmost column was not present in [Gao
and Raicu 2024], since concatenating a column of the left/right of the diagram for the partition (a, a)
yields isomorphic representations.

4In other words, λt
m is the length of the rightmost column of the tableau associated to λ.
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Example 6.32. Consider the partition

λ := (3, 3, 2, 1)=

so that λt
= (4, 3, 2). Then Theorem 6.30 implies that there is a resolution of the form

· · · → ⊗k OP(V )(−5)→ ⊗k OP(V )(−4)→ ⊗k OP(V )(−3)→ S(3,3,2,1)(R),

where in the above complex a Young diagram for shape λ/µ corresponds to the Schur module Sλ/µ(V ).
By stripping off the rightmost column of the shapes appearing in the above complex, Theorem 6.30 also
implies that there is an isomorphism

H 2(P(V ),S(3,3,2,1)(R))= S(2,2,2,2,1)(V ).

This is particularly evident if the ambient vector space V has dimension 4, since the above resolution
becomes the short exact sequence

0→ S(2,2,2,2,1)(V )⊗k det(V )⊗k OP(V )(−4)→ S(3,3,3,2,1)(V )⊗k OP(V )(−3)→ S(3,3,2,1)(R)→ 0.

Proof of Theorem 6.30. The complex (6.30.1) arises by taking sheaves associated to the resolutions of
Theorem 6.28 for the partition λ. The sheaf associated to the module Sλ⊙•(V ) is precisely Sλ(R), whence
the sequence (6.30.1) is indeed an exact sequence of vector bundles.

Observe that it is of no loss of generality to assume that λn = 0, since if λn > 0 we may write

Sλ(R)= det(R)λn ⊗OP(V ) S(λ1−λn,λ2−λn,...,λn−1−λn,0)(R).

Using the fact that det(R) = OP(V )(−1), we see that it indeed suffices to prove the statement of
Theorem 6.30 with λn = 0.

Twist the complex (6.30.1) by λ1− λ
t
m − 1. The cohomology of each of the terms

S(λ1,λ)·1i
(V )⊗k OP(V )(−i − λt

m − 1︸ ︷︷ ︸
=−λ1−i+(λ1−λt

m−1)

)

is 0 unless i = n − λt
m − 1, since if i < n − λt

1 − 1 then 0 > −i − λt
m − 1 > −n and hence the

twists OP(V )(−i − λt
m − 1) have 0 cohomology identically. If i > n− λt

m − 1, then the Schur module

S(λ1,λ)·(1n−λt
m−1)(V ) is identically 0, since the rightmost column has length strictly greater than n (which

is the rank of V ). It follows that

H j (P(V ),S(λ1,λ)·(1n−λt
m−1)(V )⊗k OP(V )(−n))=

{
S(λ1,λ)·1n−λt

m−1
(V )⊗k det(V ∗) if j = n− 1,

0 otherwise.
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Combining the fact that S(λ1,λ)·1n−λt
m−1
(V )= S((λ1−1)λ

t
m+1,λ2,...,λn)(V )⊗k det(V ) with the above equality,

the hypercohomology spectral sequence implies that

H j (P(V ),Sλ(R)(λ1− λ
t
m − 1))=

{
S((λ1−1)λ

t
m+1,λ1−1,λ2,...,λn)(V ) if j = λt

m,

0 otherwise.

The fact that H i (P(V ),Sλ(R)(r − i))= 0 for all r ⩾ λ1 is an immediate consequence of the complex
(6.30.1), since twisting by any s > λ1− λ

t
m − 1 will yield a complex of vector bundles whose terms have

at most global sections. □

Appendix: Koszul algebras and modules over commutative rings

The purpose of this appendix is to define Koszul algebras/modules and their quadratic duals and recall
Backelin’s theorem in the generality established in Section 2. After developing the machinery of refinement
complexes, we relate Backelin’s theorem to the exactness properties of these complexes. Much of
the material in this section follows from straightforward extensions of the material of [Polishchuk and
Positselski 2005], but since we assume that R is an arbitrary commutative ring and our algebras are only flat
R-modules in each homogeneous component, there are some additional details/technicalities to be verified.

A.1. Generalities on quadratic algebras and modules.

Definition A.1. Let A be any quadratic algebra and M any graded (left) A-module M of initial degree t .
There is a canonical multiplication map A⊗d

1 ⊗R Mt → Mt+d for every d ⩾ 0; the kernel of this map will
be denoted QM

t+d .
The module M is called quadratic if

(1) the canonical map A⊗d
1 ⊗R Mt → Mt+d is surjective for all d ⩾ 0, and

(2) for every d ⩾ 0, there is an equality

QM
d+t = Q A

2 ⊗R A⊗d−2
1 ⊗R Mt + · · ·+ A⊗i

1 ⊗R Q A
2 ⊗R A⊗d−i−2

1 ⊗R Mt︸ ︷︷ ︸
(i+1)-th position

+ · · ·+ A⊗d−1
1 ⊗R QM

t+1.

Definition A.2 (quadratic duals). Let A be a quadratic R-algebra and M any quadratic left A-module of
initial degree t . The quadratic dual A! ⊂ Ext•A(R, R) is defined to be the subalgebra⊕

i∈Z

ExtiA(R, R)i ⊂ Ext•A(R, R).

Notice that this is indeed a well-defined subalgebra, since the Yoneda product respects both the cohomo-
logical and internal grading. Viewing ExtiA(M, R) as a right A!-module (via Yoneda composition), define
the quadratic dual M ! ⊂ ExtiA(M, R) to be the A!-submodule⊕

i∈Z

ExtiA(M, R)i+t ⊂ Ext•A(M, R).

The quadratic dual M ! of a right A-module M is defined analogously and is a left A!-module.
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Remark A.3. The above definition is indeed well-defined for right A-modules, since a right A-module is
equivalently a left Aop-module, and it is evident that there is an isomorphism of algebras

Ext•Aop(R, R)∼= Ext•A(R, R)op.

Thus Ext•A(M, R) is a right Ext•A(R, R)op-module, and hence a left Ext•A(R, R)-module.

Remark A.4. The notion of a quadratic dual is typically only reserved for Koszul algebras. The modules
A! and M ! as defined in Definition A.2 are sometimes referred to as diagonal subalgebras and diagonal
submodules of the Ext algebra/module, but in view of the observation below it seems appropriate to use
the name quadratic dual for the general construction.

Observation A.5. Let A be a quadratic R-algebra and M any quadratic left A-module of initial degree t .
Then the quadratic dual A! is a quadratic algebra, and likewise the quadratic dual M ! is a quadratic right
A!-module.

Proof. Dualizing the Bar complex BarA(A), the n-th graded piece of the quadratic dual A! is by definition
defined to be the cokernel of the map

n−1⊕
i=1

A∗⊗i−1
1 ⊗R A∗2⊗R A∗⊗n−i−1

1 → A∗⊗n
1 .

Moreover, the Yoneda product is induced by the tensor algebra product on the cobar construction, in
which case the algebra A! is by definition a quadratic algebra. Similarly, dualizing the bar complex
BarA(M) implies that

M !n := Coker

 M∗t+1⊗R A∗⊗n−t−1
1

⊕⊕n−t−1
i=1 M∗t ⊗R A∗⊗i−1

1 ⊗R A∗2⊗R A∗⊗n−t−i−1
1

→ M∗t ⊗R A∗⊗n−t
1

 .

Again, the right Yoneda module structure is induced by the right tensor algebra structure on the cobar
complex, in which case M ! is a quadratic right A!-module. □

Finally, we conclude this section by defining a Koszul algebra/module:

Definition A.6. Let A be a quadratic R-algebra. The algebra A is Koszul if there is an isomorphism of
R-algebras

A! ∼= Ext•A(R, R).

Likewise, let M be any left A-module. Then the module M is Koszul if there is an isomorphism of right
A!-modules

M ! ∼= Ext•A(M, R).

In other words, the inclusions of Definition A.2 are actually equalities.
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A.2. Refinement complexes. In this section, we recall the notion of refinement complexes; it should be
noted here that the terminology is new, but such complexes (often unnamed) have been studied before;
see for instance [Polishchuk and Positselski 2005, Chapter 2.8]. These complexes may be understood as
(subquotients of) homogeneous strands of the augmented bar complex associated to a quadratic algebra A.

Throughout this section, we will use the notation for compositions and the standard operations between
them established in Section 4.1.

Definition A.7 (refinement complexes). Let α= (α1, . . . , αn) be a composition of some integer d . Define
the refinement (chain) complex R A,M

•
(α) to be the chain complex with

R A,M
i (α)=

⊕
β⩾α

ℓ(β)−ℓ(α)=i

((A!)∗⊗R (M !)∗)β,

and differential induced by the cobar differential on CobarA!(M !). Likewise, define the refinement
(cochain) complex R•A,M(α) to be the cochain complex with

Ri
A,M(α)=

⊕
β⩾α

ℓ(β)−ℓ(α)=i

(A⊗R M)β,

and differential induced by the bar differential on BarA(M). The notation R A
i (α) and R A

i (α) will be
shorthand for R A,A+

i (α) and Ri
A,A+(α), respectively.

Example A.8. If A = S(V ) is the symmetric algebra on some free R-module V , then

RS(V )
•

(3, 2, 4) :
9∧

V →

∧5 V ⊗
∧4 V
⊕∧3 V ⊗

∧6 V
→

3∧
V ⊗

2∧
V ⊗

4∧
V .

Likewise, using the notation of Definition 4.15,

R•A(3, 2, 4, 3) : A(3,2,4,3) →

A(5,4,3)
⊕

A(3,6,3)
⊕

A3,2,7)

→

A(9,3)
⊕

A(5,7)
⊕

A(3,9)

→ A12.

A.3. Koszulness and distributivity. In this section, we recall Backelin’s theorem for Koszul algebras.
For convenience, we state explicitly the following equivalent conditions for Koszulness, which are trivial
retranslations of the definition.

Observation A.9. Let A be any quadratic algebra. Then the following are equivalent:

(1) The algebra A is Koszul.

(2) For all j > i , one has ExtiA(R, R) j = 0.

(3) For all j > i , one has TorA
i (R, R) j = 0.
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Definition A.10. Let A be a quadratic R-algebra. Given positive integers n, i > 0, use the notation

Sn
A,i := A⊗i−1

1 ⊗R Q A
2 ⊗R A⊗n−i−1

1 ⊂ A⊗n
1 .

The following crucial observation ties all the machinery introduced in Section A.2 to the theory of
distributivity developed in Section 3.

Observation A.11. Let A be a Koszul R-algebra with n, i > 0 positive integers. Then there is an
isomorphism of R-modules

A⊗n
1∨

i∈I Sn
A,i

∼= Aφ(I ).

In particular, with notation as in Definition 4.4 and Construction 3.5 there are isomorphisms of complexes

R A
•
(α)= Cφ−1(α)

•
(A⊗|α|1 ; Sn

A,1, . . . , Sn
A,n−1) and R•A(α)= C •

φ−1(α)
(A⊗|α|1 ; Sn

A,1, . . . , Sn
A,n−1).

Finally, we state and prove the generalization of Backelin’s theorem. Notice that the proof is deceptively
short, but relies on the entirety of the material developed thus far in the paper.

Theorem A.12. Let A be any quadratic R-algebra. Then

A is Koszul ⇐⇒ the collection Sn
A,1, . . . , Sn

A,n−1 ⊂ A⊗n
1 is distributive for all n > 0.

In particular, the refinement complexes R•A(α) and R A
•
(α) are exact in positive (co)homological degrees

for all compositions α.

Remark A.13. Notice that it is clear that distributivity implies that A is Koszul, since this means that
the complex R•A(1

d) is in particular exact in positive cohomological degrees. It is not obvious at all
that Koszulness should be sufficient to imply exactness of the refinement complexes for all choices of
compositions.

Proof. This is an immediate consequence of Backelin’s theorem combined with Observation A.11. □

Remark A.14. Notice that with the distributivity perspective of Koszul algebras,

An←→ A!n corresponds to
A⊗n

1

Sn
1,A+ · · ·+ Sn

n−1,A
←→

A∗⊗n
1

Sn
1,A
∨
+ · · ·+ Sn

n−1,A
∨
.

This is another quick way to see that A ∼= (A!)! as R-algebras.

Corollary A.15. Let A be a quadratic R-algebra. Then A is Koszul if and only if A(d) is Koszul for every
d > 0.

Remark A.16. Of course, the nontrivial direction of Corollary A.15 is the fact that A is Koszul implies
that A(d) is Koszul for all d > 0. The distributivity criterion makes this a trivial consequence; it is worth
mentioning that this was originally proved by Barcanescu and Manolache [1981].
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A.4. Koszul modules over Koszul algebras. The following section makes some additional observations
about Koszul modules that will be useful to reference explicitly in earlier sections. We start with an
analogous observation on equivalent conditions for Koszulness of a module:

Observation A.17. Let A be a Koszul algebra and M any quadratic left A-module of initial degree t .
Then the following are equivalent:

(1) The module M is Koszul.

(2) For all j > i , one has ExtiA(M, R)t+ j = 0.

(3) For all j > i , one has TorA
i (M, R)t+ j = 0.

The following submodule collections are the evident analog of the collection in Definition A.10 for
quadratic modules:

Definition A.18. Let A be a quadratic algebra and M any quadratic left A-module of initial degree t .
Given positive integers n, i > 0, use the notation

Sn
A,M,i :=

{
A⊗i−1

1 ⊗R Q2⊗R An−i−2
1 ⊗R Mt if i < n− 1,

A⊗n−1
1 ⊗R QM

t+1 if i = n− 1
⊂ A⊗n−1

1 ⊗R Mt .

The submodules Sn
M,A,i ⊂ Mt ⊗R A⊗n−1

1 for a right A-module M are defined analogously.

Theorem A.19. Let M be a left (resp. right) A-module of initial degree t , where A is a Koszul R-algebra.
Then

M is Koszul ⇐⇒ the collection Sn
A,M,1, . . . , Sn

A,M,n−1 ⊂ A⊗n
1 ⊗R Mt is distributive for all n > 0.

The analogous statement for right A-modules holds as well. In particular, the refinement complexes
R•A,M(α) and R A,M

•
(α) are exact in positive (co)homological degrees for all compositions α.

Proof. The proof is identical to the proof of Theorem A.12. □

The following observation is immediate upon applying−⊗R M to the augmented bar complex BarA(A):

Observation A.20. Let A be a Koszul R-algebra. Then any flat R-module is a Koszul A-module by
viewing the R-module as a left (or right) A-module concentrated in some fixed degree.

Corollary A.21. If M is a Koszul left (resp. right) A-module, then the truncation M⩾d is a Koszul left
(resp. right) A-module for all d ∈ Z.

Proof. Let t denote the initial degree of M , and proceed by induction on the difference d − t . When
d − t = 0, it is by assumption that M⩾t = M is Koszul.

Let d − t > 0. There is a short exact sequence

0→ M⩾d−t → M⩾d−t−1→ Md−t−1→ 0,

where Md−t−1 is a flat R-module viewed as being concentrated in degree d − t − 1. By the inductive
hypothesis, the truncation M⩾d−t−1 is Koszul and by Observation A.20 the A-module Md−t−1 is Koszul.
By the long exact sequence of cohomology, the truncation M⩾d−t must also be Koszul. □
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Observation A.22. If M is a Koszul left A-module over a Koszul algebra A, then the graded dual M∗ is
a Koszul right A-module.

Proof. It is clear by definition that each graded component of M∗ is a flat R-module, so it remains to
prove that Ext•Aop(M∗, R) is generated in minimal internal degree. There is a string of isomorphisms of
algebras

Ext•A(M, R)op ∼= Ext•Aop(R,M)∼= TorAop

•
(R,M∗)∗.

Since Ext•A(M, R) is generated in minimal internal degrees, so is TorAop

•
(R,M∗). This implies that M∗ is

Koszul. □

We conclude this subsection with a statement about the Koszulness of tensor products of Koszul
algebras. This will be most useful when dealing with multi-Schur functors.

Corollary A.23. Let A and B be two Koszul algebras and let M (resp. N ) a left A (resp. B)-module.
Then the tensor product A⊗R B is a Koszul algebra and M ⊗R N is a Koszul left A⊗R B-module.

Proof. Recall that for any (left) A-module M and B-module N , the shuffle product

∇ : BarA(M)⊗R BarB(N )→ BarA⊗R B(M ⊗R N )

is a well-defined morphism of complexes. The complex BarA⊗R B(M⊗R N ) is a flat resolution of M⊗R N ,
and by the assumption that all the modules A, B, M , and N are flat as R-modules the tensor product
BarA(M)⊗R BarB(N ) is also a flat resolution of M ⊗R N . Since R ⊗A BarA(M) and R ⊗B BarB(N )
both have homology concentrated in minimal degrees, so does R⊗A⊗R B BarA⊗R B(M ⊗R N ). □

A.5. The Priddy complex. In this section, we recall the well-known construction of the Priddy complex
(originally proved in the work of Priddy [1970]) for our setting. The definition is identical to that of the orig-
inal definition over fields, but we include the definition along with the relevant properties for completeness.

Construction A.24. Let A be a Koszul R-algebra and M a left Koszul module. For each i ⩾ 0, there is a
canonical inclusion of left A-modules

A⊗R (M !)∗t+i ↪→ A⊗R A⊗i
1 ⊗R Mt = BarA

i (M)i ,

where the left A-module structure on A⊗R (M !)∗ comes from only allowing A to act on the leftmost
tensor factor. This inclusion thus lifts to an inclusion of complexes

A⊗R (M !)∗• ↪→ BarA(M).

The differential on the complex A⊗R (M !)∗• is induced by the Bar complex differential (this is indeed
well-defined).

Theorem A.25. Let A be a quadratic algebra and M any left A-module. Then the following are equivalent:

(1) The left A-module M is Koszul.

(2) The complex A⊗R (M !)∗ is a flat resolution of M over A.
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Proof. (2)=⇒ (1): This implication is clear, since if A⊗R (M !)∗ is a flat resolution of M over A, tensoring
with R over A implies that TorA

i (R,M) is concentrated in degree i + t (recall that Tor may be computed
using flat resolutions).

(1) =⇒ (2): Let ι : A⊗R (M !)∗ be the inclusion of Construction A.24 and consider the mapping cone
Cone(ι). There is the tautological short exact sequence of complexes

0→ R⊗A BarA(M)→ Cone(R⊗A ι)→ (M !)∗[−1] → 0.

The assumption that M is Koszul implies that R⊗A ι is a quasiisomorphism, so that Cone(R⊗A ι) is an
exact complex of flat R-modules. However, this implies by Nakayama’s lemma Cone(ι) must be an exact
complex, whence A⊗R (M !)∗ is an A-flat resolution of M . □
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