Download this article
 Download this article For screen
For printing
Recent Issues

Volume 19
Issue 5, 835–1048
Issue 4, 617–834
Issue 3, 415–616
Issue 2, 213–413
Issue 1, 1–211

Volume 18, 12 issues

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-7833 (online)
ISSN 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
Ribbon Schur functors

Keller VandeBogert

Vol. 19 (2025), No. 4, 771–834
Abstract

We investigate a generalization of the classical notion of a Schur functor associated to a ribbon diagram. These functors are defined with respect to an arbitrary algebra, and in the case that the underlying algebra is the symmetric/exterior algebra, we recover the classical definition of Schur/Weyl functors, respectively. In general, we construct a family of 3-term complexes categorifying the classical concatenation/near-concatenation identity for symmetric functions, and one of our main results is that the exactness of these 3-term complexes is equivalent to the Koszul property of the underlying algebra A. We further generalize these ribbon Schur functors to the notion of a multi-Schur functor and construct a canonical filtration of these objects whose associated graded pieces are described explicitly; one consequence of this filtration is a complete equivariant description of the syzygies of arbitrary Segre products of Koszul modules over the Segre product of Koszul algebras. Further applications to the equivariant structure of derived invariants, symmetric function identities, and Koszulness of certain classes of modules are explored at the end, along with a characteristic-free computation of the regularity of the Schur functor 𝕊λ applied to the tautological subbundle on projective space.

Keywords
Schur functors, Koszul algebras, free resolutions, sheaf cohomology
Mathematical Subject Classification
Primary: 05E40, 13D02, 14F06
Milestones
Received: 12 December 2023
Revised: 6 April 2024
Accepted: 23 May 2024
Published: 24 March 2025
Authors
Keller VandeBogert
Department of Mathematics
University of Notre Dame
Notre Dame, IN
United States

Open Access made possible by participating institutions via Subscribe to Open.