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This work concerns asymptotical stabilisation phenomena occurring in the moduli space of sections of
certain algebraic families over a smooth projective curve, whenever the generic fibre of the family is a
smooth projective Fano variety, or not far from being Fano.

We describe the expected behaviour of the class, in a ring of motivic integration, of the moduli space
of sections of given numerical class. Up to an adequate normalisation, it should converge, when the class
of the sections goes arbitrarily far from the boundary of the dual of the effective cone, to an effective
element given by a motivic Euler product. Such a principle can be seen as an analogue for rational curves
of the Batyrev–Manin–Peyre principle for rational points.

The central tool of this article is the property of equidistribution of curves. We show that this notion
does not depend on the choice of a model of the generic fibre, and that equidistribution of curves holds for
smooth projective split toric varieties. As an application, we study the Batyrev–Manin–Peyre principle for
curves on a certain kind of twisted products.
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Introduction

The aim of this work is to describe the expected behaviour of moduli spaces of morphisms from a smooth
projective curve to a smooth Fano variety when the numerical class of the curves goes to infinity. More
generally, we study sections of a faithfully flat morphism to such a curve. What we consider are the
classes of these moduli spaces in a variant of the Grothendieck ring of varieties.

This is related to the classical subject of homological stability. Recent developments concern homolog-
ical stability for moduli spaces, as described for example by Ellenberg, Venkatesh and Westerland [29].
The underlying philosophy is that given a sequence (Xn) of algebraic varieties defined over the finite
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field Fq of growing dimension with respect to n — for instance, a sequence of moduli spaces — the
quantity |Xn(Fq)|q− dim(Xn) should admit a limit as n→∞ precisely when the cohomology groups of Xn

stabilise [29, Section 1.8]. For example, when the Xn are smooth and geometrically irreducible varieties
of dimension n, Deligne’s proof of the Weil conjecture [25] provides an upper bound on the eigenvalues of
the Frobenius morphism, acting on the étale cohomology groups of Xn , and the Grothendieck–Lefschetz
formula allows one to pass from homological stabilisation to point-counting stabilisation.

The study of the asymptotic behaviour of the number of Fq(t)-rational points of bounded height on Fano
varieties over Fq , in the framework suggested by Manin and his collaborators in the late 1980s, is expected
to be an illustrative instance of this phenomenon: in that case, Fq(t)-points can be interpreted as Fq -points
of the moduli space of morphisms from P1

Fq
to the variety. One of the goals of this article is to formulate a

motivic analogue of this framework which allows “point-counting” in any characteristic (in particular, of
C(t)-points). Actually, the motivic point of view tends to incorporate both the homological approach and
the point-counting approach. Then, techniques coming from arithmetic help one get answers to questions
concerning geometry and topology: dimension, number of components, homological stabilisation, or
even stabilisation of Hodge structures.

Let us now recall that the modern formulation of a Batyrev–Manin–Peyre principle over number fields is
the sum of works carried out by Franke–Manin–Tschinkel [32], Batyrev–Manin [1], Batyrev–Tschinkel [2],
Peyre [51], Salberger [59], Lehmann–Tanimoto [40] and Lehmann–Sengupta–Tanimoto [43], among
many others. This principle admits many variants, for example when one works over a function field of
positive characteristic [52], when one considers integral points [18] or Campana points [55], or counts
rational points on stacks [22; 30].

This literature is a rich source of inspiration for anyone wishing to consider a geometric analogue of
this principle, namely the asymptotic behaviour of rational curves of arbitrarily large degree — which
corresponds to rational points of varieties defined over a function field of arbitrary characteristic. This is
no longer strictly speaking a counting problem if the characteristic is zero, but a quite natural framework
is provided by the theory of motivic integration, introduced by Kontsevich (during his talk in Orsay,
1995) and then developed and expanded by Denef, Loeser [26], Looijenga [45] and their collaborators
[19; 47; 60]. Then counting curves means taking the classes, in the ring of motivic integration, of the
components of the moduli space of rational curves.

Following remarks by Batyrev about the dimension of the moduli space and a question raised by Peyre
in the early 2000s, one may ask whether the class of the moduli space of curves of a given degree stabilises
when the degree, which is an element of the dual of the Picard group of the variety, goes arbitrarily far
away from the boundary of the dual of the effective cone.

Any positive answer to this question for a given class of varieties would be in the spirit of a larger
family of recent stabilisation results in motivic statistics, such as those appearing in several works by
Vakil and Wood concerning moduli of hypersurfaces [64], by Bilu and Howe about moduli of sections of
vector bundles [5], by Bilu, Das and Howe about configuration spaces and Hadamard convergence [6],
and by Landesman, Vakil and Wood regarding low-degree Hurwitz spaces [39], to cite a few of them.
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Until recently, an obstruction to a precise formulation of a geometric or motivic Batyrev–Manin–Peyre
principle was the absence of a sufficiently robust notion of motivic Euler product which would play the role
of Peyre’s adelic constant. A path was opened up by Bourqui [12; 13; 14] in the late 2000s and the notion
reached a certain degree of maturity and robustness quite recently with Bilu’s thesis [3]. In this article we
make extensive use of this notion in order to formulate a motivic Batyrev–Manin–Peyre principle for curves,
as well as a stronger notion of equidistribution of curves. We test the validity of these concepts on smooth
split projective toric varieties and twisted products of toric varieties, in a continuation of [6; 11; 12; 15; 16].

Framework. We fix once and for all a smooth projective and geometrically integral curve C over a base
field k, with function field F = k(C ).

Definition 1. If V is a smooth (irreducible) projective variety over F , we will say that V is a Fano-like
variety if

• V (F) is Zariski dense in V ;

• both cohomology groups H 1(V, OV ) and H 2(V, OV ) are trivial;

• the Picard group of V coincides with its geometric Picard group;

• the geometric Picard group of V has no torsion, and its geometric Brauer group is trivial;

• the class of the anticanonical line bundle of V lies in the interior of the effective cone Eff(V ), which
itself is rational polyhedral: there exists a finite set of effective line bundles spanning it.

In the case of a projective variety V defined over the base field k, F-points of V correspond to
morphisms f : C → V. Such a morphism will be somewhat abusively called a rational curve if C is
the projective line P1

k . In general, we will consider sections of models π : V → C of V. By model, we
mean a separated and faithfully flat morphism of finite type whose generic fibre is isomorphic to V. If
furthermore π is proper, F-points of V will correspond to sections of π . For the sake of conciseness, in
this Introduction we start by assuming that V is actually defined over the base field k.

Multidegrees of curves. If L is a invertible sheaf on V and f : C → V is a morphism, then a relevant
invariant of f is its degree with respect to L , that is, the degree

deg( f ∗L)

of the pull-back of L to C through f . However, except for the canonical sheaf ωV of V, there is no
canonical choice for L , and the canonical degree has no particular reason to be an invariant sharp enough,
as the analogy with the arithmetic setting may suggest (see for example [53, Section 4]). A way of
addressing this issue would be to introduce more invariants.

Our approach consists in taking all the degrees in the following manner: actually, a morphism f :C→V
defines an element of the dual of the Picard group of V

deg f : [L] ∈ Pic(V ) 7→ deg( f ∗L),
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called the multidegree. Given a class δ ∈ Pic(V )∨, one can show that morphisms f : C → V of
multidegree δ are parametrised by a quasiprojective scheme Homδ

k(C , V ) [23, Chapter 2]. The dimension
of Homδ

k(C , V ) admits the lower bound

δ · ω−1
V + dim(V )(1− g(C ))

called the expected dimension.
In this paper, we are interested in the behaviour of this sequence of moduli spaces when δ belongs to

the dual of the effective cone Eff(V ) and goes arbitrarily far from its boundaries. More precisely, we
study the sequence of the corresponding classes in a ring of varieties.

The ring of motivic integration. Let S be a scheme. The Grothendieck group of S-varieties

K0VarS

is defined as the abelian group generated by the isomorphism classes of S-varieties (by this, we mean
S-schemes of finite presentation), together with scissors relations

X − Y −U

whenever X is an S-variety, Y is a closed subscheme of X and U is its open complement in X . The class
of an S-variety X is denoted by [X ]. The class of the affine line A1

S is denoted by LS and when the base
scheme is clear from the context we may drop the index. Any constructible subset X of an S-variety
admits a class [X ] in such a group [19, p. 59]. In our case, a constructible subset is a finite union of
locally closed subsets of an S-variety.

The product [X ][Y ] = [X ×S Y ] defines a ring structure on K0VarS with unit element the class of S
over itself with natural structural map. The localised Grothendieck ring of varieties MS is by definition
the ring K0VarS localised at the class LS of the affine line.

The ring MS admits a decreasing filtration by the virtual dimension: for m ∈ Z, let FmMS be the
subgroup of MS generated by elements of the form

[X ] L−i
S ,

where X is an S-variety and i is an integer such that dimS(X)− i ⩽−m. The completion of MS with
respect to this decreasing dimensional filtration is the projective limit

M̂
dim

S = lim←−MS/FmMS,

which comes with a morphism MS→ M̂
dim

S . The dimensional filtration is one of the filtrations we are
going to use, another one being the filtration by the weight of the Hodge realisation; see Section 2.1.

In positive characteristic, we will work with modified versions of K0VarS and MS (see Section 4.4 of
[19, Chapter 2]). An S-morphism f : X→ Y between S-varieties is called a universal homeomorphism
if for any S-morphism Y ′→ Y the induced morphism X ×Y Y ′→ Y ′ is a homeomorphism. Then the
modified ring of varieties K uh

0 VarS is the quotient of K0VarS by the ideal given by differences [X ]− [Y ]
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of classes of S-varieties such that there exists an S-morphism X→Y which is a universal homeomorphism.
If S is a Q-scheme, this ideal is trivial so that K uh

0 VarS ≃ K0VarS [19, Chapter 2, Corollary 4.4.7].
An equivalent description is given by the quotient of K0VarS by radicial surjective morphisms; see [5,
Remark 2.1.4]. Note that we will systematically drop the “uh” exponent in this article.

Expected asymptotical behaviour. Now we are able to formulate a first version of what could be a motivic
Batyrev–Manin–Peyre principle for curves. Again by analogy with the arithmetical side, one has to take
into account the hypothetical existence of accumulating subsets. A description of these subsets in the
geometric context is given in the works of Lehmann, Tanimoto and Tschinkel [41; 42]. In particular,
we will have to focus on curves intersecting a well-chosen nonempty open subset U of V, denoting by
Homδ

k(C , V )U the corresponding moduli space.
Let Eff(V )∨Z be the subset of Eff(V )∨ consisting of points in Pic(V )∨. In characteristic zero, curves

whose class belongs to this subset are moveable by [8]. With Question 5.4 in [53], Peyre raised the
following question.

Question 1. Assume that V is a Fano-like variety, defined over the base field k. Does the symbol

[Homδ
k(C , V )U ] L−δ ·ω−1

V
k

converge in M̂
dim

k as the class δ ∈ Eff(V )∨Z goes arbitrarily far from the boundaries of Eff(V )∨?

Note that in some cases this formulation is too optimistic, in particular the convergence may only hold
for a filtration by the weight, which is finer than the one by the dimension, as it is the case, for example,
in [3; 4; 31], rather than for the coarser dimensional filtration. We refer to Question 2 on page 917 for a
more accurate version.

In what follows, we will say that V satisfies the motivic Batyrev–Manin–Peyre principle for curves if
the answer to the previous question is positive for V. We now give a few examples for which it is the case.

Example 1. The first and simplest example is given by the projective space of dimension n ⩾ 1. Since its
Picard group is generated by the class of a hyperplane H, the class of a moveable curve is given by a
degree d ∈ N while an anticanonical divisor is (n+ 1)H, so that the normalisation factor is L

(n+1)d
k . One

can easily compute the class of the moduli space Homd
k (P1

k, Pn
k ) in Mk and show that for d ⩾ 1

[Homd
k (P1

k, Pn
k )] L−(n+1)d

k = [Pn
k ](1− L−n

k );
see [53, Proposition 5.5]. The answer to Question 1 is positive in this case.

Example 2. More generally, Question 1 has a positive answer for smooth projective split toric varieties
over any field k. The work of Bourqui [12], together with the unpublished notes [14] only provided the
result in the ring of Chow motives, when k has characteristic zero. Bilu, Das and Howe [6, Section 5]
checked a residue-type result at the level of the ring of varieties and we finally show in Section 5 that
Bourqui’s study actually provides convergence of the normalised class [Homδ

k(P
1
k, V )] L−δ ·ω−1

V
k in M̂

dim
k

(see Theorem B below and Theorem 5.4 on page 930).
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Example 3. Building on previous works by Chambert-Loir and Loeser [15] and Bilu [3], we show in
[31] that the answer to Question 1 is positive for equivariant compactifications of vector spaces, when k
is algebraically closed of characteristic zero and one considers the finer filtration on the ring of motivic
integration given by the weight of the mixed Hodge realisation. See Example 3.9.

Example 4. Bilu and Browning developed in [4] a motivic circle method and applied it to show that the
answer to Question 1 is positive when V ⊂ Pn−1

C
is a hypersurface of degree d ⩾ 3 with n > 2d(d−1), if

one considers the filtration on MC coming from the weight of the mixed Hodge realisation.

Main results and structure of the paper. In this article we show that our motivic Batyrev–Manin–Peyre
principle for curves is compatible with a certain kind of twisted product [17]. A little bit more precisely,
we show:

Theorem A (Theorem 6.9). If B is a Fano-like variety over k satisfying the motivic Batyrev–Manin–
Peyre principle for curves, X is a smooth projective split toric variety over k, with torus T, and T is a
Zariski-locally trivial T -torsor over B, then the twisted product

X = X ×T B

satisfies the motivic Batyrev–Manin–Peyre principle as well: the answer to Question 1 is positive for
rational curves on X .

The proof of this result is to be found in the very last section. It requires two ingredients.

Formulating a Batyrev–Manin–Peyre principle for curves. The first ingredient is presented in Section 3
and consists in a precise formulation of a motivic Batyrev–Manin–Peyre principle in a nonconstant setting,
namely when one considers a proper model V → C of an F-variety V and studies the moduli space of
its sections σ : C → V generically intersecting a convenient open subset U of V, as is done for example
in [3; 15; 31] for equivariant compactifications of vector spaces. Fixing line bundles forming a basis of
Pic(V ) and choosing models of them over V , one is able to define the multidegree of a section, generalising
the previous notion (see Definition 1.5 on page 891). If V is projective over the base field k, we show in the
first section of this article that the corresponding moduli space of sections Homδ

C (C , V )U of multidegree δ

exists as a quasiprojective k-scheme, and formulate a relative geometric Batyrev–Manin–Peyre principle
concerning the behaviour of the class

[Homδ
C (C , V )U ] L−δ ·ω−1

V
k (1)

when the multidegree δ becomes arbitrarily large (see Question 2 on page 917).
Let τ(V ) be the expected limit of (1). We give an explicit description of τ(V ) as a motivic Euler

product, using Bilu’s construction [3] of such an object. This motivic Tamagawa number can be interpreted
as a motivic analogue of Peyre’s constant [51]. For a constant family V = V ×k C , where V is actually
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defined over k, it takes the form

τ(V )= L
(1−g(C )) dim(V )

k

( [Pic0(C )]L−g(C )

k

1− L−1
k

)rk(Pic(V )) ∏
p∈C

(1− L−1
p )rk(Pic(V )) [Vp]

L
dim(V )
p

,

where g(C ) is the genus of the curve C and Pic0(C ) is the connected component of the Picard group
of C . Note that the class (1− L−1

p )rk(Pic(V ))([Vp]/L
dim(V )
p ) can be rewritten as

[TV ] L−(dim(V )+rk(Pic(V ))),

where TV is the1 universal torsor of V.
However, the definition of τ(V ) may require the use of a finer filtration on Mk , namely the filtration

by the weight of the Hodge realisation of V /C , when k is a subfield of C. We refer to Definition 3.2 on
page 915.

Equidistribution of curves and models. The second ingredient is a change-of-model theorem, given by
Theorem C below. Such a result is grounded on the central idea of this article, which is the concept
of equidistribution of curves. This notion, which is presented in Section 4, describes the behaviour of
constrained curves of large multidegree: if S is a zero-dimensional subscheme of the curve C , and
ϕ :S →V a C -morphism, broadly, the equidistribution principle says that the class of the moduli space of
curves of multidegree δ whose restriction to S is ϕ, normalised Lδ ·ω−1

V
k , converges to the restriction of the

product τ(V ) to the complement of the closed points of S. More generally, one considers curves whose re-
striction to S belongs to any constructible subset of HomC (S , V ). In particular, the notion of equidistribu-
tion is much stronger than the Batyrev–Manin–Peyre principle, see Definition 4.3 on page 921. Smooth pro-
jective split toric varieties provide a first example of varieties for which this principle holds (see Section 5).

Theorem B (Theorem 5.6). The principle of equidistribution of curves holds for smooth and projective
split toric varieties defined over any base field k, with respect to the dimensional filtration on Mk .

In particular, for such varieties, the answer to Question 1 is positive.

Our main fundamental result allows us to switch between models, whenever one has equidistribution
of curves on one of them.

Theorem C (Theorem 4.6). Assume that two proper models V /C and V ′/C of the same Fano-like
F-variety V are given, together with models of a Z-basis of Pic(V ) on each of them, defining two
multidegrees δ and δ′, for sections of V and V ′, respectively.

Then there is equidistribution of curves on V with respect to δ if and only if there is equidistribution of
curves on V ′ with respect to δ′.

Convention. In this article, without explicit mention, if R is a discrete valuation ring, we will always
assume that it has equal characteristic.

1Since Pic(V )= Pic(V ), the universal torsor of V is unique up to isomorphism. For more about this alternative definition of
the local factor in a more general framework, see Peyre’s talk [54, around 23′].
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1. Models and moduli spaces of sections

1.1. Global models and degrees. Let C be a smooth projective and geometrically integral curve over
a field k, with function field F, and let V be a smooth F-variety. As in the Introduction, a model of V
over C is a separated, faithfully flat and finite-type C -scheme V whose generic fibre is isomorphic to V.

Example 1.1. Let V ↪→ PN
F be an embedding of V in some projective space. Take V to be the Zariski

closure of V in PN
C . Then the composition V → PN

C → C is a projective model of V.

Remark 1.2. If π : V → C is a proper model, the functors π! and π∗ from the category of sheaves on V

to the ones on C coincide [46, Chapter 6, Section 3]. Since C is integral, by [38, Theorem 4.18.2] there
exists a nonempty Zariski open subset C ′ ⊂ C such that the Picard scheme PicVC ′/C ′ representing the
Picard functor Pic(VC ′/C ′)(fppf) exists and is a disjoint union of open quasiprojective subschemes. Here
we recall that Pic(X/S)(fppf) is the sheaf associated to the functor

(T/S) 7→ Pic(X ×S T )/ Pic(T )

in the fppf (faithfully flat of finite type) topology, given a separated map of finite type X→ S between
locally Noetherian schemes [38, Definition 2.2].

Moreover, we assume that π has (local) sections, so that the Picard functor Pic(VC /C )(fppf) is actually

PicV /C (T )= H 0(T,R1π∗(Gm))

for the Zariski topology [7, p. 204].

Remark 1.3. Assume there exists a closed point p0 ∈ C such that H 1(Vp0, OVp0
)= H 2(Vp0, OVp0

)= 0.
By the semicontinuity theorem [27, (7.7.5-I)], there exists an open neighborhood C ′′ of p0 such
that H 1(Vp, OVp) = H 2(Vp, OVp) = 0 for all p ∈ C ′′. This shows in particular that (R1π!OV )|C ′′ =
(R2π!OV )|C ′′ = 0. By flat base-change [62, Lemma 02KH] applied to the generic fibre

V V

Spec(F) C

π

we have (Riπ!OV )η = H i (V, OV ) for all i and in particular H 1(V, OV )= H 2(V, OV )= 0. Conversely, if
H 1(V, OV ) and H 2(V, OV ) are both trivial, then there exists a nonempty open subset of C above which
R1π!OV and R2π!OV are both trivial. This argument actually shows that the assumptions on the first and
second cohomology groups of the structure sheaf of a Fano-like variety, in Definition 1, can be done
indifferently with respect to V or to a special fibre of V .

Moreover, by [38, Proposition 5.19], PicVC ′/C ′ is smooth over C ′ ∩C ′′ and by [38, Corollary 5.13]
each fibre PicVp/κp above p ∈ C ′∩C ′′ is discrete, given by H 2(Vp, Z). From this point of view, PicVC ′/C ′

is a constructible sheaf on C and can be seen as a variation of mixed Hodge structure; see the proof of
Proposition 2.6 on page 905.

https://stacks.math.columbia.edu/tag/02KH
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Setting 1.4. Let V → C be a proper model of a Fano-like F-variety V. We fix a finite set L1, . . . , Lr of
invertible sheaves on V whose linear classes form a basis of the torsion-free Z-module Pic(V ), as well as
invertible sheaves L1, . . . , Lr on V extending respectively L1, . . . , Lr .

Definition 1.5 (multidegree). Let V →C and L = (L1, . . . , Lr ) be as in Setting 1.4. A section σ :C→V

defines an element degL (σ ) of the dual Pic(V )∨ by sending an effective invertible sheaf of the form
r⊗

i=1

L
⊗

λi
i

to the linear combination of degree
r∑

i=1

λi deg(σ ∗Li ).

This element degL (σ ) is called the multidegree of σ with respect to the model L .

1.2. Moduli spaces of curves. Again, let V → C and L = (L1, . . . , Lr ) be as in Setting 1.4. For every
class δ ∈ Pic(V )∨, we consider the functor

Homδ
C (C , V )

sending a k-scheme T to the set of maps σ ∈ HomSch /T (C ×k T, V ×k T ) such that

πT ◦ σ = idC×k T ,

for all t ∈ T, degL (σt)= δ.

If U is a dense open subset of the generic fibre V, we define

Homδ
C (C , V )U

to be the subfunctor of Homδ
C (C , V ) sending a k-scheme T to the T -families of maps sending the generic

point of C into U (F).
The moduli space of sections of a proper model V → C is well-defined: adapting the ideas of [12,

Lemme 4.1] and [15, Proposition 2.2.2] we get the following general representability lemma. Here we
assume that V is projective over the base field k.

Lemma 1.6. For any nonempty open subset U ⊂V and any class δ ∈Pic(V )∨, the functor Homδ
C (C , V )U

is representable by a quasiprojective scheme.

Proof. Let L be an ample invertible sheaf on V . For every d ⩾ 1, let

Homd
k (C , V )

be the functor of morphisms ς : C → V such that deg(ς∗L )= d and

Homd
C (C , V )

be the functor of sections σ : C → V such that deg(σ ∗L )= d .
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By the existence theorems of Hilbert schemes [34, 4.c], there exists a quasiprojective k-scheme
Homd

k (C , V ) representing Homd
k (C , V ). The condition π ◦σ = idC is closed and thus Homd

C (C , V ) is a
closed subfunctor of Homd

k (C , V ). Therefore it is represented by a quasiprojective scheme Homd
C (C , V ).

Let U be a nonempty open subset of V and let Homd
C (C , V )U be the complement of the closed

subscheme of Homd
C (C , V ) defined by the condition σ(C )⊂|V \U |. This open subscheme Homd

C (C , V )U

parametrises sections σ :C→V such that f (ηC )∈U (F) and deg(σ ∗(L ))=d . It is again a quasiprojective
scheme, since Homd

C (C , V ) is.
The restriction L of L to V is isomorphic to a linear combination

r⊗
i=1

L
⊗

λi
i

of the L i . Let L ′ be the invertible sheaf
r⊗

i=1

L
⊗

λi
i

on V .
Let δ ∈ Pic(V )∨ be a multidegree and σ : C → V a section such that degL (σ )= δ and σ(ηC ) ∈U (F).

Then
deg(σ ∗L )= deg(σ ∗L )− deg(σ ∗L ′)+ deg(σ ∗L ′)

= deg(σ ∗L )− deg(σ ∗L ′)+ δ · L .

Since the restriction of L ⊗ (L ′)−1 to the generic fibre is trivial, there exist vertical divisors E and E ′

such that
L ⊗ (L ′)−1 ≃ OV (E ′− E).

In particular, the difference deg(σ ∗L )− deg(σ ∗L ′) only takes a finite number of values, since σ has
intersection of degree 1 with any fibre of π . Let a be its maximal value. Moreover, by flatness, the
r conditions given by degL = δ are open and closed in the Hilbert scheme of V . Therefore Homδ

C (C , V )U

can be identified with an open subfunctor of∐
0⩽d⩽a+δ · L

Homd
C (C , V )U ,

and hence the lemma. □

1.3. Greenberg schemes and motivic integrals. A reference for this subsection is given by Chapters 4
to 6 of [19].

If R is a complete discrete valuation ring, with field of fractions F and residue field κ such that F
and κ have equal characteristic, then the choice of a uniformiser π of R together with a section of R→ κ

provides a morphism of κ-algebras
κ[[t]] → R, t 7→ π,

which is an isomorphism by Theorem 2 of [10, Chapter IX, Section 3].
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Example 1.7. If p is a closed point of the smooth projective k-curve C , the previous result applies to the
completed local ring Rp = ÔC ,p.

Definition 1.8 (Greenberg schemes). Let R be a complete discrete valuation ring, with maximal ideal m
and residue field κ = R/m. Assume that R has equal characteristic and fix a section of R→ κ .

Let X be an R-variety. For any nonnegative integer m, the Greenberg scheme of order m of X is the
κ-scheme Grm(X ) representing the functor

A 7→ HomR(Spec(Rm ⊗κ A), X )

on the category of κ-algebras [19, Chapter 4, Section 2.1], where Rm = R/mm+1 for all m ⩾ 0. There are
canonical affine projection morphisms

θm+1
m : Grm+1(X )→ Grm(X ),

given by truncation, and the Greenberg scheme is the κ-proscheme

Gr∞(X )= lim←− Grm(X )

(or more concisely Gr(X )) which represents the functor

A 7→ Homκ(Spec(A⊗κ R), X)

on the category of κ-algebras. This scheme carries a canonical projection

θ∞m : Gr∞(X )→ Grm(X )

for every nonnegative integer m, called the truncation of level m.

Example 1.9. If V → C is a model of a projective variety V over F = k(C ), let VRp be the schematic
fibre over the completed local ring Rp = ÔC ,p. If mp is the maximal ideal of Rp, then the κp-points
respectively of Grm(VRp) and Gr(VRp) are in bijection respectively with the sets of points VRp(Rp/m

m+1
p )

and VRp(Rp). Moreover, if V → C is proper, by the valuative criterion of properness the set VRp(Rp) is
in one-to-one correspondence with the set VFp(Fp), where Fp is the completion of F at p.

By [19, Chapter 4, Lemma 4.2.2], the constructible subsets of Gr(X ) are exactly the subsets C of
the form

C = (θ∞m )−1(Cm)

for a certain level m and a constructible subset Cm of Grm(X ). Moreover, if C is Zariski closed,
respectively Zariski open, then Cm can be chosen to be closed, respectively open. Then, a map

f : C→ Z∪ {∞}
on a constructible subset C of Gr(X ) is said to be constructible if f −1(n) is constructible for every n ∈Z.

By [19, Chapter 6, Section 2], there is an additive motivic measure

µX : ConsGr(X )→ M̂
dim

X0
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(where X0 is the special fibre of X ) called the motivic volume or motivic density, which extends to a
countably additive motivic measure µ∗X on a class Cons∗Gr(X ) of measurable subsets of Gr(X ); see [19,
Chapter 6, Section 3]. For example, if X is smooth of pure relative dimension d over R, then

µX (Gr(X ))= [X0] L−d .

If A is a measurable subset of Gr(X ) and f : A→ Z∪ {∞} has measurable fibres (by this we mean that
f −1(n) is measurable for all n ∈ Z) such that the series∑

n∈Z

µ∗X ( f −1(n))L−n

is convergent in M̂
dim

X0
, then the motivic integral of L− f∫

A
L− f dµ∗X =

∑
n∈Z

µ∗X ( f −1(n))L−n

is well-defined.

Remark 1.10. By the quasicompactness of the constructible topology, a constructible function f which
does not reach infinity is bounded and thus only takes a finite number of values. In particular, if f is
bounded constructible, then f is measurable and L− f is integrable; see Example 4.1.3 in [19, Chapter 6].

As explained in [19, Chapter 4, (3.3.7)], one can go from points on X with coordinates in extensions
of R of ramification index 1 to points on the Greenberg schemes of X . For this it is convenient to use the
functors from κ-algebras to rings given by

Rm : A 7→ Rm ⊗κ A

for any nonnegative integer m, which form a system of functors whose limit is

R∞ : A 7→ R ⊗̂κ A = lim← Rm ⊗κ A.

Such functors are represented respectively by Am
k , m ∈ N, and AN

k . If k ′ is a field extension of k, then
R′ =R∞(k ′) is an extension of R with ramification index 1 (the only one up to unique isomorphism if
k ′/k is unramified), by Proposition 2.3.2 of [19, Chapter 4]. Then by the definition of Gr∞(X ) there is a
canonical bijection

Gr∞(X )(k ′)−→∼ X (R∞(k ′))

which is compatible with the truncation morphisms. Thus, if one wants to define functions at the level of
Greenberg schemes, it is enough to define them on R′-points for any extension R′ of ramification index 1
over the complete valuation ring R. This will allow one to use such functions on Greenberg schemes of
weak Néron models later in Section 1.5, thanks to Proposition 1.25 stated a few pages below.
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Definition 1.11 [19, Chapter 5, Section 3.1]. Let f : Y →X be a morphism of flat R-schemes of finite
type and pure relative dimension d . Let R′ be an extension of R and q ∈ Y (R′). Consider the morphism

α(q) : (( f ◦ q)∗�d
X /R′)/(torsion)→ (q∗�d

Y /R′)/(torsion)

of free R′-modules of finite rank induced by f .
The order of the Jacobian of f along q is defined by

ordjacf (q)= lengthR′ coker(α(q)).

This provides a function

ordjacf : Gr(Y )→ N.

Note that by Proposition 3.1.4 of [19, Chapter 5], if Y is smooth over R and the restriction of f to
generic fibres is étale, then ordjacf is constructible and bounded.

Proposition 1.12 (smooth change of variable). Let X and Y be two R-schemes of finite type and
pure relative dimension d, with singular loci respectively Xsing and Ysing. Let f : Y →X be a mor-
phism of R-schemes. Let A and B be constructible subsets respectively of Gr(X ) − Gr(Xsing) and
Gr(Y )−Gr(Ysing). Assume that f induces a bijection

B(κ ′)→ A(κ ′)

for every extension κ ′ of κ , and that B ∩ ordjac−1
f (+∞) is empty.

Let α : A→ Z be a constructible function on A. Then the function

β : y ∈ B 7→ (α ◦Gr( f ))(y)+ ordjacf (y)

is constructible and ∫
A

L−α dµX = f0!
∫

B
L−β dµY

in MX0 .

Proof. See Theorem 1.2.5 in [19, Chapter 6]. □

Remark 1.13. Here the symbol L− ordjacf plays the role of the absolute value of the determinant
|det((∂xi/∂y j )i, j )| in the usual change-of-variable formula.

1.4. Local intersection degrees. Let L be an invertible sheaf on V. A coherent sheaf on V whose
restriction to V is isomorphic to L is called a model of L . In this subsection we define local intersection
degrees on L of a section C → V at a closed point p ∈ C , with respect to a model of L , and study
the difference between the degrees given by two different models of L . This is a reformulation, in the
framework of Greenberg schemes and motivic integration [19], of the p-adic and adelic metrics of [52,
Section 1.2]. Let us first recall the local definition of such metrics.
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Definition 1.14. Let R be a complete discrete valuation ring with fraction field K . Let X be an
R-scheme of pure dimension, X its generic fibre, L an invertible sheaf on X and L a model of L on X

(not necessarily invertible).
For any extension R′ of R, of ramification index 1 over R, with uniformiser ϖ and field of fractions K ′,

we define order functions on X (R′) as follows: let q̃ :Spec(R′)→X be an R′-point of X , q be its restric-
tion to the generic fibre and y a point of the K ′-vector space q∗L = (q̃∗L )⊗R′ K ′. Then we set, if q∗y ̸= 0,

ordq̃(y)=max{n ∈ Z |ϖ−n y ∈ q̃∗L /(torsion)}
(the unique integer ℓ such that ϖ−ℓy is a generator of the R′-lattice q̃∗L /(torsion)), and

ordq̃(y)=∞
if q∗y = 0.

In other words, ordq̃(y) is the valuation of y with respect to the lattice q̃∗L /(torsion): given a generator
y0 of q̃∗L /(torsion),

ordq̃(y)= vR′(y/y0) ∈ Z∪ {∞},
where vR′ is the normalised discrete valuation extended to K ′. In particular, this definition does not
depend on the choice of the uniformiser ϖ nor on the choice of the generator y0.

If s is a section of L on an open set containing q , then

ord ◦s :X (R′)→ Z∪ {∞}
is the function sending q̃ ∈X (R′) to ordq̃(s(q)).

Remark 1.15. We are going to apply the previous definition as follows. Let V be a proper model of a
smooth F-variety V. We fix a closed point p ∈ C and work with the Rp-scheme VRp , identifying the sets
V (Fp) and V (Rp) by properness. We take L to be an invertible sheaf on V and L a model of L on V .

If q is an Fp-point of V, the function ordq̃ is well-defined on Lq(Fp). Of course, any Fp-point of L
belongs to the fibre of a unique Fp-point of V, so that this function extends to a function

ordp : L(Fp)→ Z∪ {∞}, y 7→ ordq̃(y) whenever y ∈ Lq .

If s ∈ 0(U, L) is a section of L above an open subset U ⊂ V, by composition one gets a map

ordp ◦ s :U (Fp)→ Z∪ {∞}, x 7→ ordx̃(s(x)).

If D is a Cartier divisor on V given by a rational section of L and s is the restriction of this
section to V, defined on an open subset U ⊂ V, then ordp(s(x)) coincides with the intersection number
(x, D)p = deg(x̃∗D) for all x ∈U (Fp) not in D . Besides, both take an infinite value whenever x lies in D .

By the product formula, for all x ∈ V (F) the (finite) sum on closed points∑
p∈|C |

ordp(s(x)) ∈ Z
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does not depend on the choice of a local section s of L such that s(x) ̸= 0, and if σ : C → V is the
section of the proper model V given by the point x ∈ V (F), then

deg(σ ∗L )=
∑
p∈|C |

ordp(s(x)).

We go back to the notation of Definition 1.14.

Lemma 1.16. Let X be a model of X and L , L ′ be two models of L , and ord, ord′ the corresponding
order functions given by Definition 1.14. For all x̃ ∈X (R′), the difference

y 7→ ord′x̃(y)− ordx̃(y)

is constant on the stalks of L. This constant value defines a function

εL ′−L : Gr∞(X )→ Z.

Proof. The difference of the two corresponding valuations is

ord′x̃(y)− ordx̃(y)= vR′(y/y′0)− vR′(y/y0)= vR′(y0/y′0)

for every x̃ ∈X (R′) and y ∈ x∗L , where y0 and y′0 are generators respectively of x̃∗L and x̃∗L ′ in x∗L .
Consequently, this difference induces a map

x̃ ∈X (R′) 7→ vR′(y0/y′0)

which does not depend on the choices of the generators y0 and y′0 of x̃∗L and x̃∗L ′, since the quotient of
two generators has valuation zero. □

Remark 1.17. Note that if L , L ′ and L ′′ are three models of L , we have the relation

εL ′′−L = εL ′′−L ′ + εL ′−L .

Remark 1.18. If I is a coherent sheaf of ideals on X , an order function

ordI : Gr∞(X )→ N∪ {+∞}
can be obtained by taking

ordI (x̃)= inf
f ∈Ix̃

vR′( f (x̃))

for all points x̃ ∈X (R′), where vR′( f (x̃))= vR′(x̃∗ f ); see (4.4.3) of [19, Chapter 4]. By Corollary 4.4.8
of [19, Chapter 4] this defines a constructible function Gr∞(X )→ N∪ {+∞}.

The affine local description of this function [19, Chapter 4, Example 4.4.4] shows that ordI (x̃) is given
by the smallest vR′( f (x̃)) for f belonging to a finite set of generators of the ideal corresponding to I . In
particular, if I and I ′ are two coherent sheaves of ideals, with local generators respectively y0 ∈Ix̃ and
y′0 ∈I ′x̃, and whose restrictions I and I ′ to X are invertible and isomorphic, then ordI (x̃)= vR′(x̃∗y0)
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and for all y ∈ Ix ≃ I ′x
ord′x̃(y)− ordx̃(y)= vR′(y/(1/y′0))− vR′(y/(1/y0))= vR′(y′0/y0)

= vR′(x̃∗y′0)− vR′(x̃∗y0)

= ordI ′(x̃)− ordI (x̃).

The (1/y0) here comes from the fact that the ideal sheaf associated to an effective Cartier divisor D on X
is OX (−D).

Lemma 1.19. The difference εL ′−L is a constructible function on Gr∞(X ). By the quasicompactness of
the constructible topology, it takes only finitely many values.

Proof. Let n ∈ Z. Assume first that n ⩾ 0. Then εL ′−L (x̃) > n if and only if y0/y′0 belongs to the
(n+1)-th power of the maximal ideal of R if and only if its class in Rn is zero.

We claim that there exists n0 ∈ Z such that εL ′−L (x̃)⩾ n0 for all x̃ ∈X (R′). We choose generators
y0 and y′0 of x̃∗L and x̃∗L ′. Then the rational section y0/y′0 ∈ K ′ of (L ′)∨⊗L has a vertical divisor of
poles E which is the pull-back of a formal multiple of the closed point of R′, and (L ′)∨⊗L ⊗OX (−E)

is effective. Let z0 be a generator of E ; then z0(y0/y′0) ∈ R′ and

εL ′−L (x̃)= vR′(y0/y′0)= vR′

(
y0z0

y′0
· 1

z0

)
= vR′

(
y0z0

y′0

)
− vR′(z0)⩾−vR′(z0).

We take n0 =−vR′(z0) so that
εL ′−L (x̃)= vR′(ϖ

−n0 y′0/y0)+ n0

for all x̃ . Then for a given n ⩾ n0, one has εL ′−L (x̃) > n if and only if ϖ−n0 y′0/y0 belongs to the
(n−n0+1)-th power of the maximal ideal of R if and only if its class in Rn−n0 is zero. Thus

{ξ ∈ Gr(X ) | εL ′−L (ξ) > n}
is constructible of level ⩽ (n− n0).

Moreover it follows from the definition that εL ′−L does not reach infinity. Thus it takes only a finite
number of values by the quasicompactness of the constructible topology (see for example Theorem 1.2.4
in [19, Appendix A]). □

Remark 1.20. Note that this difference is trivial if L and L ′ are already isomorphic above R. In
particular, if L and L ′ are two different models on V → C of the same L on V, there exists a dense open
subset of C above which they are isomorphic. Its complement S is a finite set of closed points of C and

degL ′ − degL =
∑
p∈S

εL ′Rp−LRp

is bounded.

Definition 1.21 (motivic density associated to a model of the anticanonical sheaf). Let X be an R-scheme
of pure relative dimension n.

Assume that the generic fibre X is smooth over K and take a model LX of the anticanonical sheaf ω−1
X

over X .
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The sheaf �1
X /R of relative differentials of X over R [36, p. 175] is a coherent sheaf of OX -modules

and the dual of its determinant (3n�1
X /R)∨ is a model of ω−1

X .
By Lemma 1.19 the local difference function εLX −(3n�1

X /R)∨ is a constructible function.
Its motivic integral over any measurable subset A avoiding the singular locus of X will be written

µ∗LX
(A)=

∫
A

L
−ε

LX −(3n�1
X /R )∨ dµ∗X

and µ∗LX
will be called motivic density associated to LX .

1.5. Weak Néron models and smoothening. In order to prove our result about invariance by change of
model (see Theorem 4.6 below), we need to collect a few additional definitions and results about weak
Néron models and relations between them. References for this subsection are the third chapter of the book
of Bosch, Lütkebohmert and Raynaud [7], together with the reminder of Section 7.1 in [19, Chapter 7],
as well as Section 3.4 in [19, Chapter 4].

1.5.1. Local models. We keep the notation of the previous subsection, except that we do not need to
assume that R is complete.

Definition 1.22. Let X be a K -variety.
A model for X is a flat separated R-scheme of finite type X together with an isomorphism XK → X .
A weak Néron model2 of X is a model X of X such that X is smooth over R and every K ′-point of

X extends to an R′-point of X for every unramified extension R′ of R with fraction field K ′. Since by
definition X is separated, such an R′-point is unique.

Let Y be a flat separated R-scheme of finite type with smooth generic fibre. A Néron smoothening of Y

is a smooth R-scheme X of finite type together with an R-morphism X → Y inducing an isomorphism
XK → YK and such that X (R′)→ Y (R′) is bijective for every unramified extension R′ of R.

Given X and X ′ two weak Néron models of X , a morphism of weak Néron models is a R-morphism
X ′→X whose restriction to the generic fibre commutes with the isomorphisms with X . In that case
we say that X ′ dominates X .

The following is a short reformulation of Theorem 3 and Corollary 4 of [7, p. 61]:

Theorem 1.23. Every R-scheme of finite type whose generic fibre is smooth over K admits a Néron
smoothening, given by the R-smooth locus of a composition of admissible blow-ups.

Even if the result is formulated in the language of formal schemes, the proof of Proposition 3.4.7 in
[19, Chapter 3], which is a variant of the Néron smoothening algorithm of [7], gives the following useful
proposition.

2We adopt the terminology used by Chambert-Loir, Nicaise and Sebag in [19]. For the comparison of this definition of weak
Néron models with the one given by Bosch, Lütkebohmert and Raynaud in [7], see Remark 7.1.6 in [19, Chapter 7]. The main
difference is a properness assumption.
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Proposition 1.24. Let X be a smooth K -variety. If X ′ and X ′′ are two models of X , then there exists
another model X ′′ of X above X and X ′ whose R-smooth locus (X ′′)◦ is a Néron smoothening of both
models:

(X ′′)◦

X ′′

X X ′

Spec(R)

In the equal characteristic case, we have the following correspondence of points of Greenberg schemes;
see Proposition 3.5.1 of [19, Chapter 4]. It allows one to apply the motivic change of variable formula,
Proposition 1.12, to Néron smoothenings.

Proposition 1.25. Let Y →X be a morphism of separated flat R-schemes of finite type, restricting to an
immersion on generic fibres and such that Y is smooth.

Then Y →X is a Néron smoothening if and only if the induced map

Gr(Y )(κ ′)→ Gr(X )(κ ′)

is a bijection for every separable extension κ ′ of κ .

Proposition 1.26. Let X be an R-model of a smooth K -variety X , of pure relative dimension n, and
f : Y →X a Néron smoothening of X .

Then
ε(�n

Y /R)∨− f ∗(�n
X /R)∨ = ordjacf

on Gr(Y ).

Proof. This is given by the argument of the chain rule (5.2.2) in [19, Chapter 7] and the fact that in
our situation the function ordjacf coincides with the order function of the Jacobian ideal of f . See
Lemma 3.1.3 in [19, Chapter 5] as well. □

1.5.2. From local models to global ones. We will need the following gluing result, which is a variant of
[7, p. 18, Proposition 1].

Proposition 1.27. Let V → C be a model of V above C . Let C0 be a dense open subset of C and
V ′0 , V ′1 , . . . , V ′s be a finite number of models of V respectively over C0 and over the local rings of the
closed points p1, . . . , ps not in C0. Assume that these models dominate respectively the restriction of V to
C0 and to these local rings. In particular, they induce isomorphisms on generic fibres.

Then there exists a model V ′ → C of V extending V0, . . . , Vs , as well as a C -morphism V ′ → V

extending the local ones. If moreover the local models are smooth, then V ′→ C is smooth as well.

Proof. Let Ri be the local ring of C at the point pi ∈ C \C0 for i = 1, . . . , s. The morphism V ′i → VRi

uniquely extends to a Ci -morphism for a certain open neighbourhood Ci of pi by [28, Théorème 8.8.2].
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Since (V ′i )F ≃ (VRi )F ≃ V , such a model coincides with V ′0→C0 above a nonempty open subset C ′0⊂C0.
Then, up to removing a finite number of points of C ′i so that Ci ∩ (C −C ′0)= {si }, we can assume that
they coincide above Ci ∩C ′0 and glue them above each Ci ∩C ′0, obtaining a model extending the starting
data and dominating V → C . □

For us, a weak Néron model of V above C will be a smooth C -scheme V of finite type, together
with an isomorphism VF → V and satisfying the following property concerning étale integral points:
for any closed point p and any étale local OC ,p-algebra R′ with field of fractions F ′, the canonical map
V (R′)→ VF (F ′) is surjective (see p. 7, Definition 1, as well as the end of p. 12, and p. 60–61 in [7]).

Corollary 1.28. Let V and V ′ be two models of V above C . Then there exists a third model V ′′ of V
above C whose C -smooth locus is a Néron smoothening of both V and V ′ above C :

V ′′

V V ′

C

Moreover, if V and V ′ are proper, then V ′′ can be taken proper as well.

Proof. By spreading-out [28, Théorème 8.8.2] applied to the generic point of C , we know the existence
of a nonempty open subset C ′ ⊂ C such that the restrictions of V and V ′ above C ′ are isomorphic as
C ′-schemes:

VC ′ V ′C ′

V C ′ V ′

C

∼

Then, for each closed point p in the complement of C ′, by Proposition 1.24 we can find a weak Néron
model which dominates both restrictions of V and V ′ to Spec(OC ,p). One can use Proposition 1.27
to glue VC ′ together with these models and get the desired new weak Néron model. These operations
preserve properness, by the valuative criterion. □

1.6. Piecewise trivial fibrations. In this subsection S is a Noetherian scheme. We recall definitions and
properties of (classes in K0VarS) of piecewise trivial fibrations, following [19, Chapter 2, Section 2.3].

Definition 1.29. Let F be an S-variety. A piecewise trivial fibration with fibre F is a morphism of schemes
f : X→ Y between two S-varieties such that there exists a finite partition (Yi )i∈I of Y into locally closed
subsets together with an isomorphism of (Yi )red-schemes between (X×Y Yi )red and (F×S Yi )red for all i ∈ I.

Proposition 1.30. Let F be an S-variety and f : X→ Y a piecewise trivial fibration with fibre F. Then

[X ] = [F][Y ]
in K0VarS .
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Proof. See Corollary 1.4.9 and Proposition 2.3.3 of [19, Chapter 2]. □

We will make extensive use of the following criterion.

Proposition 1.31. Let F be an S-variety and f : X → Y a morphism of S-varieties. Then f is a
piecewise trivial fibration with fibre F if and only if , for every point y ∈ Y, the κ(y)-schemes f −1(y)red

and (F ⊗k κ(y))red are isomorphic.

Proof. See Proposition 2.3.4 of [19, Chapter 2] (one proceeds by Noetherian induction and applies [28,
Théorème 8.10.5]). □

2. Motivic Euler products

2.1. The weight filtration. In this S is a variety over a subfield k of the field C of complex numbers. We
fix once and for all an embedding of k in C and consider that S is actually defined over C by extension
of scalars. We briefly recall the construction of a weight filtration on the Grothendieck ring of varieties
over S. We use [49] as a general reference for mixed Hodge modules, as well as the summaries of [3,
Chapter 4] and [19, Chapter 2, Section 3.1–3.3].

2.1.1. Mixed Hodge modules. The category MHMS of mixed Hodge modules over S was introduced
by Saito in [56; 57]. It is an abelian category which provides a cohomological realisation of the
Grothendieck group K0VarS of S-varieties. Its derived category is endowed with a six-functor formalism
à la Grothendieck. When S = Spec(C) is a point, mixed Hodge modules over S coincide with polarisable
Hodge structures as defined by Deligne [24]; see [49, Lemma 14.8].

The Grothendieck group K0(MHMS) of mixed Hodge modules over S is the quotient of the free
abelian group of isomorphism classes of mixed Hodge modules over S by the relations

[E] − [F] + [G]
whenever there is a split exact sequence

0→ E→ F→ G→ 0

for E , F and G objects of MHMS . There is a notion of weight of a mixed Hodge module, morphisms
are strict for the weight filtration and the Grothendieck group K0(MHMS) is generated by the classes of
pure Hodge modules.

The tensor product operation in the bounded derived category of MHMS provides a multiplicative
structure on K0(MHMS) as follows. The Grothendieck group K tri

0 (Db(MHMS)) is defined similarly to
K0(MHMS) by taking distinguished triangles

E •→ F •→ G•→ E •[1]
of complexes as relations, in the place of exact sequences [35, Exposé VIII]. By the theorem of decompo-
sition of mixed Hodge modules [49, Corollary 14.4], there is an isomorphism of groups

K0(MHMS)→ K tri
0 (Db(MHMS))
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sending the class of a mixed Hodge module M to the class of the complex with M in degree zero. Indeed,
the inverse is given by the morphism

[M •] 7→
∑
i∈Z

(−1)i [Hi (M •)]

from K tri
0 (Db(MHMS)) to K0(MHMS). The tensor product on Db(MHMS) induces a ring structure on

K tri
0 (Db(MHMS)) and on K0(MHMS) through the previous isomorphism.
The faithful and exact functor

ratS :MHMS→ PervS

to perverse sheaves on S sends the six-functor formalism of MHMS to the one of the bounded derived
category of constructible sheaves Db

c (S). In order to prove an isomorphism between two mixed Hodge
modules, it will be enough to check it at the level of perverse sheaves. Indeed, a mixed Hodge module M
is given by the data of filtrations on a D-module isomorphic to C⊗Q ratS(M) by the Riemann–Hilbert
correspondence (comparison isomorphism [49, Section 14.1]). Moreover, the Verdier duality functor DS

on Db
c (S) lifts to MHMS so that ratS ◦DS = DS ◦ ratS .

2.1.2. The Hodge realisation of K0VarS . For every integer d we denote by Q
Hdg
S (−d) the complex

of mixed Hodge modules obtained by pulling back to S the Hodge structure Q
Hdg
pt (−d) of type (d, d)

through the structure morphism S→ Spec(C). If p : X → S is an S-variety, let Q
Hdg
X be the complex

p∗QHdg
S of mixed Hodge modules.

Definition 2.1. The Hodge realisation

χ
Hdg
S : K0VarS→ K0 MHMS,

sometimes called the motivic Hodge–Grothendieck characteristic, sends a class [X p−→ S] to

[p!QHdg
X ] =

∑
i∈Z

(−1)i [Hi (p!Q
Hdg
X )],

where the equality comes from the isomorphism

K0(MHMS)−→∼ K tri
0 (Db(MHMS))

described in the previous subsection.

The perverse realisation K0VarS → K0(Db(PervS)) factors through this morphism as ratS ◦χHdg
S

[19, Chapter 2, Proposition 3.3.7]. If S = Spec(C), this is the class, in the Grothendieck group of mixed
Hodge structures, of the cohomology with compact support of X and rational coefficients, together with
its Hodge structure. This homomorphism is well-defined (see [49, Lemma 16.61] or Proposition 3.3.7 in
[19, Chapter 2] for a proof). Since χ

Hdg
S sends LS to [QHdg

S (−1)], which is invertible in K0(MHMS), it
is a morphism of rings compatible with the localisation K0VarS→MS .
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2.1.3. The weight filtration on K0VarS . In this subsection we collect definitions and properties from
[3, Section 4.6] and develop a few useful examples about weights.

Definition 2.2. The weight function wS :MS→ Z is given by the composition of χ
Hdg
S together with the

weight function on mixed Hodge modules.

Proposition 2.3. Let S be a complex variety. The weight function wS :MS→ Z satisfies the following
properties:

(1) wS(0)=−∞.

(2) wS(a+ a′)⩽max(wS(a), wS(a
′)) with equality if wS(a) ̸= wS(a

′) for any a, a′ ∈MS .

(3) If Y → S is a variety over S then

wS(Y )= 2 dimS(Y )+ dim(S).

For proofs of these properties, see Lemmas 4.5.1.3, 4.6.2.1 and 4.6.3.1 of [3, Chapter 4]. This weight
function induces a filtration (W⩽nMS)n∈Z on MS given by

W⩽nMS = {a ∈MS | wS(a)⩽ n}
for all n ∈ Z.

Definition 2.4. The completion of MS with respect to the weight topology is the projective limit

M̂
w

S = lim←−(MS/W⩽nMS).

2.1.4. Useful examples and vanishing properties. Let n be the dimension of the complex variety S aS−→
Spec(C). If S is smooth, the complex Q

Hdg
S of mixed Hodge modules is concentrated in degree n and

HnQ
Hdg
S is given by the pure Hodge module of weight n associated to the constant one-dimensional

variation of Hodge structure on S of weight zero. Furthermore, we have the relation a!S ∼= a∗S(n)[2n], in
particular

Q
Hdg
S (n)[2n] ∼= a!SQ

Hdg
Spec(C).

The class of Ad
S = Ad

C
×C S is sent by χ

Hdg
S to

χ
Hdg
S (Ld

S)= (χ
Hdg
S (LS))

⊗d

= (pr!Q
Hdg
A1

S
)⊗d =Q

Hdg
S (−d).

More generally, we have the following proposition on top-graded parts.

Proposition 2.5 [3, Lemma 4.6.3.4]. Let S be a smooth and connected complex variety of dimension n.
Let p : Y → S and Z → S be two smooth S-varieties with irreducible fibres of dimension d ⩾ 0. Then

wS([Y ] − [Z ])⩽ 2d + n− 1.
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Proof. Since p is smooth, one has p! ≃ p∗(d)[2d] and there is a morphism of mixed Hodge modules

H2d+n(p!Q
Hdg
Y )→H2d+n(Q

Hdg
S (−d)[−2d])

which induces an isomorphism on the (2d+n)-th graded parts [3, Remark 4.1.5.5]. This means that if
Z → S is another smooth S-variety with irreducible fibres of dimension d , the corresponding top-weight
graded parts cancel out and the weight of χ

Hdg
S ([Y ] − [Z ]) is at most 2d + n− 1. □

Proposition 2.6. Let S be a smooth and connected complex variety of dimension n. Let p : Y → S be a
proper smooth morphism whose fibres are smooth projective varieties of dimension dimS(Y )= d. Assume
that

R1 p! OY =R2 p! OY = 0

and that p has local sections.
Then there exists an open subset S′ ⊂ S above which the relative Picard scheme exists, is smooth with

discrete fibres of rank r , and such that the class

χ
Hdg
S′ (Y )−χ

Hdg
S′ (Ld

S′)−χ
Hdg
S′ (rLd−1

S′ )= [p!QHdg
Y|S′ ]−[Q

Hdg
S′ (−d)[−2d]]−[QHdg

S′ (−(d−1))[−2(d−1)]⊕r ]

has S′-weight at most 2d + n− 3.

Proof. Recall that if a complex M is concentrated in degree n, then its shifting

M[k]• = M •+k

is concentrated in degree n′ such that n′+ k = n, that is to say, in degree n− k (in what follows, we will
use this with k =−2d).

Since S is smooth and connected, the complex Q
Hdg
S is concentrated in degree n = dim(S) and

H2d+n(Q
Hdg
S (−d)[−2d])

is a pure Hodge module of weight 2d + n. As complexes, Q
Hdg
Y and Z

Hdg
Y are both concentrated in

degree d + n, which will explain the shift in what follows. The morphism p induces functors p! :
Db(Y ) → Db(S) and p∗ between the bounded derived categories of sheaves respectively over Y

and S, compatible with the ones on mixed Hodge modules. Since p is proper, p∗ and p! coincide. By
[3, Lemma 4.1.4.2], the functor p! : Db(MHMY )→ Db(MHMS) has cohomological amplitude ⩽ d,
which means that the complex p!Q

Hdg
Y only has cohomology in degree at most (d+n)+d = 2d+n. We

deduce that only terms of weight ⩽ 2d + n occur in χ
Hdg
S′ (Y ). Hence, to prove the proposition, we have

to compute the terms of weights 2d+ n, 2d+ n− 1 and 2d+ n− 2. By Proposition 2.5 and its proof, we
already know what is the part of weight 2d + n.

The exponential exact sequence of sheaves of abelian groups over Y

0→ ZY (1)→ Ga,Y → Gm,Y → 0
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gives rise to an exact sequence of cohomology sheaves over S

· · · Hn(p! ZY (1)) Hn(p! OY [−n]) Hn(p! O×Y [−n])

Hn+1(p! ZY (1)) Hn+1(p! OY [−n]) Hn+1(p! O×Y [−n])

Hn+2(p! ZY (1)) Hn+2(p! OY [−n]) · · · (2.1.1)

which on stalks specialises to the well-known exact sequence of abelian groups

0 Z(1) C C∗

H 1(Ys(C), Z(1)) H 1(Ys, OYs ) H 1(Ys, O×Ys
)

H 2(Ys(C), Z(1)) H 2(Ys, OYs ) · · ·
where Z(1) is the Z-Hodge structure with underlying Z-module 2iπZ and Hodge type (−1,−1). Since
Hn+i (p! OY [−n])=Ri p! OY = 0 for i = 1, 2, the map

PicY /S =Hn+1(p! O×Y [−n])→Hn+2(p! ZY (1))

is an isomorphism. In particular, the map it induces on stalks

Pic(Ys)= H 1(Ys, O×Ys
)→ H 2(Ys(C), Z(1))

is an isomorphism. Since we assumed that S and Y → S are smooth, this means that

PicY /S ⊗Q
Hdg
S ≃Hn+2(p!Q

Hdg
Y (1)) (2.1.2)

is a variation of Hodge structure, of rank r , above S.
By surjectivity of the exponential map, the arrow C∗→H 1(Ys(C),Z(1)) is trivial. Thus H 1(Ys(C),Z(1))

injects into H 1(Ys, OYs ), which is trivial by assumption; thus H 1(Ys(C), Z(1)) is trivial as well for all
s ∈ S, which means that Hn+1(p! ZY (1)) is trivial.

We use the exact involutive dual functor

D :MHM→MHMopp

of Verdier duality on mixed Hodge modules, which extends to the derived bounded category Db
c (MHM),

by the formula
DM • =Hom(M •, DQHdg)

in Db
c (MHM), where DQHdg is the dualizing complex. Here since S is smooth,

DSQ
Hdg
S ≃Q

Hdg
S (n)[2n];
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see for example [58, Appendix A]. It sends mixed Hodge modules of weight w to mixed Hodge modules
of weight −w, and interchanges p∗ and p!. In our situation, it gives

DS(p!Q
Hdg
Y )= p∗(DY Q

Hdg
Y )= p! (DY Q

Hdg
Y )= p! (Q

Hdg
Y (n+ d)[2(n+ d)]);

thus
GrW

i H j (p! DY Q
Hdg
Y )= GrW

i H j (p! (Q
Hdg
Y (n+ d)[2(n+ d)]))

= GrW
i+2(n+d) H

j+2(n+d)(p!Q
Hdg
Y ) (2.1.3)

for all integers i and j (recall that the (n+d)-th Tate twist translates into a double shift 2(n+d) of the
weight). On the other hand the decomposition theorem [49, Corollary 14.4]

p!Q
Hdg
Y ≃

⊕
k

Hk(p!Q
Hdg
Y )[−k]

in Db(MHMS) gives
DS(p!Q

Hdg
Y )≃

⊕
k

(DSHk(p!Q
Hdg
Y ))[k].

We apply [57, Proposition 2.6], which says that

DS GrW
i M = GrW

−i DS M

for all M ∈MHMS , which gives

GrW
i+2(n+d) H

j+2(n+d)(p!Q
Hdg
Y )= GrW

i H j (DS(p!Q
Hdg
Y ))

≃ GrW
i DS(H− j p!Q

Hdg
Y )

≃ DS GrW
−i H

− j (p!Q
Hdg
Y ),

(by (2.1.3))

which, in turn, for j ∈ {−(n+ 1),−(n+ 2)} and i = j , specialises to

GrW
n+2d−1 H

n+2d−1(p!Q
Hdg
Y )≃ DS GrW

n+1 H
n+1(p!Q

Hdg
Y ),

GrW
n+2(d−1) H

n+2(d−1)(p!Q
Hdg
Y )≃ DS GrW

n+2 H
n+2(p!Q

Hdg
Y ).

We previously showed (in the paragraph right after (2.1.2)) that Hn+1(p! Z
Hdg
Y (1)) is trivial; we have in

particular
Hn+1(p!Q

Hdg
Y )= 0

and the first line is zero. Finally, since by (2.1.2)

Hn+2(p!Q
Hdg
Y )≃ PicY /S ⊗Q

Hdg
S (−1)

is pure, the local rank of

GrW
n+2(d−1) H

n+2(d−1)(p!Q
Hdg
Y )≃ DS GrW

n+2 H
n+2(p!Q

Hdg
Y )

≃ DS GrW
n+2(PicY /S ⊗Q

Hdg
S (−1))

is given by the one of PicY /S′ ⊗Q
Hdg
S′ above an open subset S′ ⊂ S, and hence the result. □
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2.2. Motivic Euler product. Formal motivic Euler products have been introduced by Margaret Bilu [3],
as a notation generalising the Kapranov zeta function and behaving like a product. For our purpose we
will only need a particular case of this construction, but we will state a few useful properties of this object
in a general framework. We mostly follow the exposition one can find in Sections 3 and 6 of [5].

2.2.1. Symmetric products and configuration spaces. Let S be a k-variety and X an S-variety. The m-th
symmetric product of X relative to S is by definition the quotient

Symm
/S(X)= (X ×S · · · ×S X︸ ︷︷ ︸

m times

)/Sm .

Let X = (X i )i∈I be a family of quasiprojective varieties above X , where I is an arbitrary set. Let
µ= (mi )i∈I ∈ N(I ) be a family of nonnegative integers with finite support, which we call a partition (if
I = N∗, then a partition of a nonnegative integer n is a family (mi )i⩾1 such that

∑
i⩾1 imi = n).3 For

such a partition, we define

Symµ
/S(X)=

∏
i∈I

Symmi
/S (X),

as well as

Symµ
X/S(X )=

∏
i∈I

Symmi
X/S(X i ),

which is a variety over Symµ
/S(X). These constructions extend to elements of K0VarX , using Cauchy

products; for details, see for example [5, Section 6.1.1].
Given a partition µ ∈ N(I ), one can construct the restricted µ-th symmetric product

Symµ
X/S(X )∗

as follows. If we write
(∏

i∈I Xmi
)
∗,X/S for the complement of the diagonal (points having at least

two equal coordinates) in
∏

i∈I Xmi, then the restricted symmetric product

Symµ
/S(X)∗,

sometimes abbreviated

Sµ
/S(X)∗,

is by definition the image of
(∏

i∈I Xmi
)
∗,X/S in Symµ

/S X . Furthermore, there is a Cartesian diagram(∏
i∈I Xmi

i

)
∗,X/S

∏
i∈I Xmi

i

(∏
i∈I Xmi

)
∗,X/S

∏
i∈I Xmi

3Note that such partitions admit holes and that this set N(I ) of generalised partitions is denoted by P(I ) in [5; 6; 37; 64],
while the set of partitions with no hole is written Q(I ). We will adopt the notation P and Q only for partitions of integers, that is
to say, elements of N(N∗).
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defining an open subset
(∏

i∈I Xmi
i

)
∗,X/S of points of

∏
i∈I Xmi

i mapping to points of
∏

i∈I Xmi with
pairwise distinct coordinates. Then one defines4

Sµ
X/S(X )∗ = Symµ

X/S(X )∗ =
(∏

i∈I

Xmi
i

)
∗,X/S

/ ∏
i∈I

Smi ,

that is to say, the image of
(∏

i∈I Xmi
i

)
∗,X/S in Symµ

X/S(X ).

Example 2.7. In the case where I is a singleton, and X = (Y → X), then any partition µ is given by a
nonnegative integer n and Symµ

X/S(X )∗ = Symn
X/S(Y )∗ is the scheme parametrising étale zero-cycles of

degree n above X , with labels in Y .

Example 2.8. If I = Nr \ {0}, then for any n ∈ Nr \ {0} the disjoint union

Symn
X/S(X )∗ =

∐
µ=(nm)∈N((Nr )∗)∑

m nmm=n

Symµ
X/S(X )∗

parametrises r -tuples of zero-cycles of degree n with labels in X .

As well, this construction extends to families of elements of K0VarX and MX [5, Definition 6.1.7]: if
A = (ai )i∈I is such a family, then

Symµ
X/S(A )=⊠i∈I Symmi

X/S(ai ) ∈ K0VarSymµ
/S X

and

Sµ
X/S(A )∗ = Symµ

X/S(A )∗ ∈ K0VarSymµ
/S(X)∗

is the restriction to Sµ
/S(X)∗ = Symµ

/S(X)∗ ⊂ Symµ
/S(X) of Symµ

X/S(A ). More generally, if K is a class
in K0VarSymµ

/S X , we will denote by K∗ its image in K0VarSymµ
/S(X)∗ by the restriction morphism.

2.2.2. Formal and effective motivic Euler products.

Notation 2.9 (formal motivic Euler product). Let X be a variety over S and X = (X i )i∈I be a family
of elements of K0VarX or MX indexed by a set I. Let (ti )i∈I be a family of indeterminates. Then the
product ∏

x∈X/S

(
1+

∑
i∈I

X i,x ti

)
is defined as a notation for the formal series∑

µ∈N(I )

[Symµ
X/S(X )∗] tµ,

where tµ =∏
i∈I tmi

i whenever µ= (mi )i∈I ∈ N(I ).

4Denoted by Sµ(X /S) in [3] and Cµ
X/S(X ) or

(∏
i∈I Symmi Xi

)
∗,X/S in [5; 6].
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Example 2.10 (formal motivic Euler product with one indeterminate over a curve). The simplest kind of
motivic Euler products we are going to use is the following. Assume that I is made of a single element.
Then a family X is given by a single class Y and µ= [1, . . . , 1︸ ︷︷ ︸

m times

] is the only relevant partition type for a
given positive integer m. In this setting, ∏

p∈C
(1+ Y t)

is the formal series ∑
m∈N

[Symm
C (Y )∗] tm,

where Symm
C (Y )∗ = Sym[1,...,1]

C (Y )∗ parametrises étale zero cycles of C of degree m with labels in Y
(whenever Y is a variety).

Proposition 2.11 [3, Section 3.8.1]. The Euler product notation is compatible with the cut-and-paste
relations: if X = U ∪ Y with Y a closed subscheme of X and U its complement, then for any family
X = (X i )i∈I of elements of K0VarX or MX∏

x∈X/S

(
1+

∑
i∈I

X i,x ti

)
=

( ∏
u∈U/S

(
1+

∑
i∈I

X i,u ti

))( ∏
y∈Y/S

(
1+

∑
i∈I

X i,y ti

))
when considering the motivic Euler products of the restrictions

Y = (X i ×X Y )i∈I and U = (X i ×X U )i∈I .

We will need the following generalisation of [3, Proposition 3.9.2.4].

Proposition 2.12. We assume that I is of the form I0 \ {0}, where I0 is a commutative monoid, and that
(ti )i∈I is a collection of indeterminates, such that5

(1) I0 is endowed with a total order < such that p+ q = i , where q ̸= 0, implies p < i ;

(2) for all i ∈ I , the set {p ∈ I | p < i} is finite;

(3) the collection of indeterminates (ti )i∈I satisfies tptq = tp+q .

Let S be a variety, X a variety over S, A = (Ai )i∈I and B = (Bi )i∈I any pair of families of elements
of K0VarX or MX . Then, under the above hypotheses on I and (ti )i∈I ,∏

x∈X/S

((
1+

∑
i∈I

Ai,x ti

)(
1+

∑
i∈I

Bi,x ti

))
=

∏
x∈X/S

(
1+

∑
i∈I

Ai,x ti

) ∏
x∈X/S

(
1+

∑
i∈I

Bi,x ti

)
.

Remark 2.13. In [3, Proposition 3.9.2.4], the family A is assumed to be made of effective elements. In
order to check that the motivic Tamagawa number of a product of two Fano-like varieties is the product
of the two motivic Tamagawa numbers, or, more generally, to compute the motivic Tamagawa number of
a fibration, we need to drop the effectiveness assumption.

5We refer the reader to the notion of algèbre large d’un monoïde in [9, Chapter III, p. 27].
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Proof of Proposition 2.12. I thank Margaret Bilu for having pointed out that it is actually a direct
application of [3, Corollary 3.9.2.5]. One proceeds exactly as in [3, p. 89–90], where Proposition 2.12 is
proved for families of varieties.

Indeed, [3, Corollary 3.9.2.5] tells us that if X ′ is a variety over X , and X ′ = (X ′i )i∈I is a family of
classes in K0VarX ′ , then∏

x∈X/S

( ∏
x ′∈X ′/X

(
1+

∑
i∈I

X ′i,x ′ ti
))

x
=

∏
x ′∈X ′/X

(
1+

∑
i∈I

X ′i,u ti

)
(see [3, Section 3.9.1] for the definition of this double-product notation). Taking X ′ to be the disjoint
union of two copies of X , and A , B to be the restrictions of X respectively to the first and to the second
copies, we get the expected identity. □

Example 2.14 [64, Proposition 3.7]. The Kapranov zeta function of X/S is defined as

ZKapr
X/S (t)=

∑
m∈N

[Symm
/S X ] tm .

If the characteristic of the base field is zero, it can be rewritten

ZKapr
X/S (t)=

∏
x∈X/S

((1− t)−1)

and then by Proposition 2.12
ZKapr

X/S (t)−1 =
∏

x∈X/S

(1− t).

In positive characteristic, this equality only holds in the modified Grothendieck ring K0Varuh
S ; see [5,

Example 6.1.11].

Notation 2.15 (effective motivic Euler product). Let Y be an element of K0VarX or MX . The motivic
Euler product ∏

x∈X/S

(1+ Yx)

is by definition the series ∑
m⩾0

[Symm
X/S(Y )∗].

When this series converges in a convenient completion of K0VarX or MX , its sum is written
∏

x∈X/S(1+Yx)

as well.

Remark 2.16. Since abstract motivic Euler products are compatible with changes of variable of the form
t ′ = Lat [3, Section 3.6.4], this notation can be seen as the specialisation of∏

x∈X/S

(1+ Yx La
x t)=

∑
m⩾0

[Symm
X/S(Y ×X Aa

X )∗] tm =
∑
m⩾0

[Symm
X/S(Y )∗] Lma

S tm

at t = L−a
S for any nonnegative integer a.
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2.2.3. Specialising products. The previous multiplicative property specialises.

Proposition 2.17. Assume that
∏

x∈X/S(1+ Ax) and
∏

x∈X/S(1+ Bx) converge. Then∏
x∈X/S

(1+ Ax)(1+ Bx)

converges and ∏
x∈X/S

(1+ Ax)
∏

x∈X/S

(1+ Bx)=
∏

x∈X/S

(1+ Ax)(1+ Bx).

Proof. Let us consider the two formal motivic Euler products

P(t)=
∏

x∈X/S

(1+ (Ax + Bx + Ax Bx)t2),

P1,2(t1, t2)=
∏

x∈X/S

(1+ t1 Ax)(1+ t2 Bx)=
∏

x∈X/S

(1+ t1 Ax + t2 Bx + t1t2 Ax Bx).

We have to check that

P(1)= P1,2(1, 1).

We introduce the following intermediate Euler product:

P0,1,2(t0, t1, t2)=
∏

x∈X/S

(1+ t0t1 Ax + t0t2 Bx + t1t2 Ax Bx)

=
∏

x∈X/S

(1+ t0(t1 Ax + t2 Bx)+ t1t2 Ax Bx).

Then by Proposition 2.12,

P1,2(t1, t2)=
∏

x∈X/S

(1+ t1 Ax)
∏

x∈X/S

(1+ t2 Bx)

and by [5, Proposition 6.4.5]

P0,1,2(1, t1, t2)=
∏

x∈X/S

(1+ t1 Ax + t2 Bx + t1t2 Ax Bx)= P1,2(t1, t2).

Moreover, by [5, Lemma 6.5.1]

P0,1,2(t, t, t)= P(t).

Taking t = 1 everywhere one gets

P(1)= P0,1,2(1, 1, 1)= P1,2(1, 1)

as expected. □

2.2.4. Convergence criterion with respect to the weight filtration. When k is a subfield of C, we have a
convergence criterion for motivic Euler products of families over a curve C . It is a particular case of [31,
Proposition 2.6], which itself is a multivariable variant of [3, Proposition 4.7.2.1].
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Proposition 2.18. Fix an integer r ⩾ 1 and an r-tuple ρ ∈ (N∗)r . For any tuple m of nonnegative integers,
we write ⟨ρ, m⟩ =∑r

i=1 miρi .
Assume that X = (Xm)m∈(Nr )∗ is a family of elements of MC such that there exist an integer M ⩾ 0

and real numbers α < 1 and β such that

• wC (Xm)⩽ 2⟨ρ, m⟩− 2 whenever 1⩽ ⟨ρ, m⟩⩽ M ;

• wC (Xm)⩽ 2α⟨ρ, m⟩+β − 1 whenever ⟨ρ, m⟩> M.

Then there exists δ ∈ ]0, 1] and δ′ > 0 such that

wC(Symπ
C /k(X )∗ · aρ1m1

1 · · · aρr mr
r )⩽−δ′⟨ρ, m⟩

for all m ∈ (Nr )∗, partitions π of m and elements a1, . . . , ar ∈MC such that w(ai ) <−2+δ−β/(M+1)

for all 1⩽ i ⩽ r .

If we specialise the previous proposition to the polynomial F(T ) = 1 + Y LT and consider the
convergence at T = L−1 we get the following criterion.

Proposition 2.19. Assume that Y ∈MC is such that wC (Y ) ⩽ −2. Then the series
∑

m⩾0[Symm
C (Y )∗]

converges in M̂
w

k and the Euler product ∏
p∈C

(1+ Yp)

is well-defined.

Example 2.20. Recall that wC (L−2
C )=−2 dimC (A2

C )+ dim(C )=−3; thus∏
p∈C

(1− L−2
p )

converges in M̂
w

k . Moreover, one can show that this convergence actually holds in M̂
dim

k for any k.
Let p : Y → C be a smooth C -variety with irreducible fibres of dimension d ⩾ 0. Then,∏

p∈C
(1+ ([Yp] − Ld

p)L
−(d+1)
p )

converges in M̂
w

k , since
wC ([Y ] − Ld

C )⩽ 2d

by Proposition 2.5; thus wC (([Y ] − Ld
C )L
−(d+1)
C )⩽−2.

The following little lemma will help us to explicitly control error terms when studying the case of toric
varieties. One can replace the dimension by the weight or any other filtration compatible with finite sums.

Lemma 2.21. Let (cm)m∈Nr be a family of elements of Mk . Assume that there exists a constant a > 0 such
that

dim(cm)⩽−a|m|
for every m ∈ Nr , where |m| =∑r

i=1 mi .
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Then, for any nonempty subset A ⊂ {1, . . . , r} and nonnegative integer b,

dim
( ∑

m′⩽m−b

cm′ L
m′A−mA

)
⩽− 1

2 min(1, a) min
α∈A

(mα)− 1
2 b min(1, 2|A| − a)

for all m ∈ Nr
⩾b, where mA is the restriction of m to A and b= (b, . . . , b).

Proof. If m′A ⩽̸ 1
2(mA− b) then the coarse upper bound

dim(cm′L
m′A−mA)⩽−a|m′| − b|A|

for m′ ⩽ m− b gives

dim(cm′ L
m′A−mA) <− 1

2a min
α∈A

(mα − b)− b|A| = − 1
2a min

α∈A
(mα)− 1

2 b(2|A| − a),

while if m′A ⩽
1
2(mA− b) then m′A−mA ⩽− 1

2(mA+ bA) and

dim(cm′L
m′A−mA)⩽−a|m′| − 1

2 |mA| − 1
2 b ⩽− 1

2 min
α∈A

(mα)− 1
2 b. □

3. Batyrev–Manin–Peyre principle for curves

3.1. A convergence lemma in characteristic zero. In this subsection we assume that k is a subfield of C

and choose once and for all an embedding k ↪→ C, as in Section 2.1.

Lemma 3.1. Let V → C be a proper model of a Fano-like variety V. Then for any dense open subset
C ′ ⊂ C , the motivic Euler product ∏

p∈C ′

( [Vp]
L

dim(V )
p

(1− L−1
p )rk(Pic(V ))

)
converges in the completion of Mk with respect to the weight filtration.

Proof. By the multiplicative property of motivic Euler products Proposition 2.11, it is enough to find
some dense open subset C ′ ⊂ C such that the product above converges. Let r be the Picard rank of V.
In MC , we have

[V ] L− dimC V
C (1− L−1

C )r = (
1+ ([V ] − L

dimC (V )
C )L

− dimC (V )
C

)(
1+

r∑
k=1

(r
k

)
(−1)kL−k

C

)
= 1+ [V ] − L

dimC (V )
C − rL

dimC (V )−1
C

L
dimC (V )
C

+R,

where

R =−r
[V ] − L

dimC (V )
C

L
dimC (V )+1
C

+ [V ]
L

dimC (V )
C

r∑
k=2

(r
k

)
(−1)kL−k

C .

By Notation 2.15 of the motivic Euler product, we are interested in the series∑
m⩾0

[Sm
∗ (Y )],
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where

Y = [V ] − L
dimC (V )
C − rL

dimC (V )−1
C

L
dimC (V )
C

+R ∈MC

and in order to prove convergence, it is enough to check that wC (Y ) ⩽ −2. Since the motivic Euler
product is compatible with finite products, up to replacing C by a nonempty open subset we can assume
that V → C is smooth with irreducible fibres. Then by Proposition 2.5 we have a first bound on the
weight

wC

(
([V ] − L

dimC (V )
C )L

− dimC (V )−1
C

)
⩽−2

and the expression of R shows that
wC (R)⩽−2

as well. In order to show that wC (Y −R)⩽−2, we use the fact that V is Fano-like. By Remark 1.3, we
are in the situation of Proposition 2.6: up to restricting to an open subset of C , we have a decomposition

χ
Hdg
C ([V ])= (χ

Hdg
C (LC ))dimC (V )+ r(χ

Hdg
C (LC ))dimC (V )−1+W ∈ K0(MHMC ),

with wC (W )⩽ 2(dimC (V )− 1). Hence wC (Y −R)⩽−2 and, by the property of the weight, one has
wC (Y )⩽−2. By the convergence criterion of Proposition 2.19, this shows that the motivic Euler product
we are considering converges in M̂

w

k . □

3.2. Motivic Tamagawa number of a model. Let V be a Fano-like F-variety of dimension n and V a
proper model of V. We are now able to give a precise meaning to the motivic analogue of the Tamagawa
number.

Up to replacing V by a dominating model, we can always assume that it is a good model, that is to
say, a proper model of V whose smooth locus V ◦ is a weak Néron model of V, by Theorem 1.23 and
Proposition 1.27.

Furthermore, we assume that C admits a divisor of degree 1, which is the case for example if k = Fq

by the Lang–Weil estimate, or more trivially if k = C or if C is the projective line.

Definition 3.2. The motivic constant τL (V ) of the proper model V → C with respect to a model L of
ω−1

V is the effective element of M̂
dim

k or M̂
w

k given by the motivic Euler product

L
(1−g) dim(V )

k (rest=L−1
k

ZKapr
C (t))rk(Pic(V ))

∏
p∈C

(1− L−1
p )rk(Pic(V ))µ∗L|VRp

(Gr(V ◦Rp
)),

where the motivic density
µ∗L|VRp

is given by Definition 1.21 and

rest=L−1
k

(ZKapr
C (t))= (

(1− Lk t)ZKapr
C (t)

)
t=L−1

k
,

with ZKapr
C (t) being the Kapranov zeta function of C as defined in Example 2.14.
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If V is a constant model of the form V = V ×k C , with V a nice variety defined over k, L = pr∗1(ω
−1
V )

and π = pr2, then the constant τL (V ) will be written τ(V/C ). If moreover C is clear from the context,
it will be simply written τ(V ).

Remark 3.3. The use of the motivic Euler product notation in this definition is licit. Indeed, there exists
a dense open subset C ′ of C on which π is smooth, (�n

V /C )∨ is invertible and isomorphic to L . For
points p in C ′,

µ∗L (Gr(V ◦Rp
))= µVRp

(Gr(VRp))= [Vκp ] L− dim(V ).

Then the motivic Euler product ∏
p∈C ′

(1− L−1
p )rk(Pic(V )) µVRp

(Gr(VRp))

is obtained by applying Notation 2.15 to the family

(1− L−1
C ′ )

rk(Pic(V ))[VC ′] L− dim(V )
C ′ − 1 ∈MC ′ .

Remark 3.4. By Lemma 3.1, when k is a subfield of C, this class is well-defined in M̂
w

k . When V is a
smooth split projective toric variety, the convergence holds in M̂

dim
k , without any assumption on k (see

Theorem 5.4).

Remark 3.5. Since we assume that C admits a divisor of degree 1, we know that the series

(1− t)(1− Lk t)ZKapr
C (t)

is actually a polynomial PC (t) of degree 2g such that

PC (L−1
k )= [Pic0(C )] L−g

k ;
see, e.g., Section 1.3 in [15, Chapter 6]. Hence in that case

rest=L−1
k

ZKapr
C (t)=

(
PC (t)
1− t

)
t=L−1

k

= [Pic0(C )] L−g
k

1− L−1 .

In general, Daniel Litt showed in [44] that if d is the minimum degree of a divisor on C , then
(1− td)(1− Ld

k td)ZKapr
C (t) is a polynomial. Note that if d > 1, then in general (1− t)(1− Lk t)ZKapr

C (t)
is not a polynomial; see, e.g., Remark 1.3.4 of [15, Chapter 7]. Thus one should modify the previous
definitions according to that fact. This more general situation is beyond the scope of this paper.

It is possible to define variants of the motivic constant τL (V ), related to components of the moduli
space.

Definition 3.6. Let β be a choice of vertical components Eβ of multiplicity 1, that is to say, over a finite
number of closed points p, the choice of an irreducible component of Vp of multiplicity 1.

If E◦βp
= Eβp ∩V ◦ for all p, then

τL (V )β
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is the motivic Tamagawa number

L
(1−g) dim(V )

k

( [Pic0(C )] L−g
k

1− L−1

)rk(Pic(V )) ∏
p∈C

(1− L−1
p )rk(Pic(V ))µ∗L|VRp

(Gr(E◦βp
)).

Note that τL (V ) equals the finite sum of the τL (V )β for β running over the finite set of choices of
vertical components Eβ above each closed point of C .

Definition 3.7. If C ′ is a nonempty open subset of C , we will call restriction of τL (V )β to C ′, written
τL (V )

β

|C ′ , the element

L
(1−g) dim(V )

k (rest=L−1
k

ZC ′(t))rk(Pic(V ))
∏
p∈C ′

(1− L−1
p )rk(Pic(V ))µ∗L|VRp

(Gr(E◦βp
)).

3.3. Motivic Batyrev–Manin–Peyre principle for curves. In order to deal with different good models
of a projective variety V over F, we need a refined version of Question 1. The previous tools make the
adaptation straightforward.

We use the notation introduced in Setting 1.4: we fix a finite set L1, . . . , Lr of invertible sheaves on V
whose linear classes form a Z-basis of Pic(V ), as well as invertible sheaves L1, . . . , Lr on V extending
respectively L1, . . . , Lr .

There exists a unique r -tuple of integers (λ1, . . . , λr ) such that

ω−1
V ≃

r⊗
i=1

L
⊗

λi
i .

Consequently, we have a model of ω−1
V given by

LV =
r⊗

i=1

L
⊗

λi
i . (3.3.4)

For any choice β of irreducible vertical components of multiplicity 1 of V , and for every nonempty
open subset U of V, the space

Hom
degL=δ

C (V , C )
β

U

parametrizing curves of multidegree degL = δ intersecting the components given by β exists as a
quasiprojective scheme, and the space

Hom
degL=δ

C (V , C )U (1.6)

is then the finite disjoint union over β of these subspaces.
Recall that Eff(V )∨Z is the intersection of Eff(V )∨ and Pic(V )∨ in Pic(V )∨⊗Z Q.

Question 2 (relative geometric Batyrev–Manin–Peyre). Let V and L be as in Setting 1.4 on page 891.
Does the symbol

[Hom
degL=δ

C (V , C )U ] L−δ ·ω−1
V

k ∈Mk
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converge to τLV (V ) in M̂
w

k (or even more optimistic, in M̂
dim

k ), as δ ∈ Eff(V )∨Z goes arbitrarily far
away from the boundaries of the dual cone Eff(V )∨?

Remark 3.8. We can refine the previous question as follows: given a choice β of vertical components of
multiplicity 1: does the symbol

[Hom
degL=δ

C (V , C )
β

U ] L
−δ ·ω−1

V
k ∈Mk

converge to τ(V )β in M̂
w

k , or even M̂
dim

k , as δ ∈ Eff(V )∨Z goes arbitrarily far away from the boundaries
of the dual cone Eff(V )∨?

Example 3.9. Starting from previous works by Chambert-Loir and Loeser [15] and Bilu [3], we show in
[31] that the conjecture of Remark 3.8 is true when V is an equivariant compactification of a vector space
and k is algebraically closed with characteristic zero.

Example 3.10. Bilu and Browning show in [4] that the answer to Question 2 is positive whenever C =P1
C

,
V ⊂ Pn−1

C
is a hypersurface of degree d ⩾ 3 such that n > 2d(d − 1), and V = P1

C
×C V.

3.4. Products of Fano-like varieties.

Proposition 3.11. Let V1 and V2 be two Fano-like varieties over F. Let V1 (respectively V2) be a model
of V1 above C and L1 be a model of ω−1

V1
(resp. V2, L2 and ω−1

V2
). Then V1×C V2 is a model of V1×F V2

above C , (pr∗1 L1)⊗ (pr∗2 L2) is a model of (pr∗1 ω−1
V1

)⊗ (pr∗2 ω−1
V2

) and

τ(pr∗1 L1)⊗(pr∗2 L2)(V1×C V2)= τL1(V1)τL2(V2).

Proof. In order to apply Proposition 2.17, we have to check that, for all closed points p ∈ C ,

µ∗(pr∗1 L1)⊗(pr∗2 L2)|(V1×C V2)Rp
(Gr((V1×C V2)

◦
Rp

))= µ∗L1|(V1)Rp
(Gr(V ◦Rp

))µ∗L2|(V2)Rp
(Gr(V ◦Rp

)).

Going back to Definition 1.21, and by the functoriality of Greenberg schemes, it is enough to check that
on Gr((V1×C V2)

◦
Rp

) one has

ε(pr∗1 L1)⊗(pr∗2 L2)−(3n1+n2�1
V1×V2/Rp

)∨ = εL1−(3n1�1
V1/Rp

)∨ + εL2−(3n2�1
V2/Rp

)∨ . (3.4.5)

We can assume that V1 and V2 are Rp-smooth. Let R′p be an unramified extension of Rp, x̃ = (x̃1, x̃2) ∈
(V1×Rp V2)(R′p)≃V1(R′p)×κ(p)′V2(R′p) and take y1, y2, ω1 and ω2 to be generators respectively of x̃∗1L1,
x̃∗2L2, x̃∗1 (3n1�1

V1/Rp
)∨ and x̃∗2 (3n2�1

V2/Rp
)∨. Then y1 y2 is a generator of x̃∗(pr∗1 L1)⊗(pr∗2 L2) and ω1ω2

is a generator of x̃∗(3n1+n2�1
V1×V2/Rp

)∨. Now (3.4.5) applied to x̃ is the identity vR′p(ω1ω2/(y1 y2)) =
vR′p(ω1/y1)+ vR′p(ω2/y2). □

4. Equidistribution of curves

The goals of this section are

• to introduce and provide a definition of the equidistribution principle, which will be done with
Definition 4.3,
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• and then to prove Theorem C, which will be restated as Theorem 4.6, indicating that this principle
does not depend on the choice of models me made in Setting 1.4.

The intuition behind this result is that the equidistribution hypothesis encodes (among many other
things) the information one needs to switch from a multidegree coming from a given model to another
one. Indeed, while the Batyrev–Manin–Peyre principle, Question 2, describes the expected asymptotic
behaviour of the motivic measure of a certain moduli space of sections, the equidistribution principle
describes the asymptotic behaviour of the sequence of motivic measures itself. In particular, it measures
the motivic distribution of sections for which two different models give two different multidegrees.

In this section we assume that

• V → C is a proper model over C of a Fano-like variety V together with a model L = (Li ) of a
family of invertible sheaves (L i ) on V whose classes form a Z-basis of Pic(V ) (see Definition 1 and
Setting 1.4);

• U is a dense open subset of V ;

• the motivic Tamagawa number τLV (V ), see Definition 3.2 and (3.3.4), is well-defined in either
M̂

dim
k or M̂

w

k . The following discussion will not depend on the choice of the filtration.

4.1. First approach. Let S be a zero-dimensional subscheme of the smooth projective curve C , |S | its
set of closed points and C ′ the complement of |S |. This subscheme S is given by a disjoint union of
spectra of the form

Spec(OC ,p/(m
m p+1
p ))≃ Spec(κ(p)[[t]]/tm p+1)

for p ∈ |S |. Its length is

ℓ(S )=
∑

p∈|S |
(m p + 1)[κ(p) : k].

Then for every C -morphism ϕ :S → V and every δ ∈ Pic(V )∨ we define

Hom
degL = δ

C (C , V | ϕ)U

as being the schematic fibre above ϕ of the restriction morphism

resV
S : Hom

degL = δ

C (C , V )U → HomC (S , V ).

We assume temporally that LV is isomorphic to (3n�1
V /C )∨ and that V → C is smooth above an

open subset containing the closed points of S. Then we say that there is weak equidistribution for S if,
for every C -morphism ϕ :S → V , the normalised class

[Hom
degL = δ

C (C , V | ϕ)U ] L−δ ·ω−1
V

k ∈Mk

converges to

τ(V )|C ′ ×
∏

p∈|S |
L
−(m p+1) dim(V )
p ∈ M̂k
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when the multidegree δ tends to infinity — again, by this we will always mean δ ∈ Eff(V )∨Z and
d(δ, ∂ Eff(V )∨)→∞. This definition may be seen as a first extension of Peyre’s definition [53, 5.8] to
nonconstant families V → C .

Remark 4.1. HomS (S , VS ) can be interpreted as the product of spaces of jets∏
p∈|S |

Grm p(VRp).

Since
Grmi (VRp)→ Gr0(VRp)≃ Vp

is a Zariski-locally trivial fibration over Vp with fibre an affine space of dimension m p dim(V ), the class
of the space of m p-jets of VRp in K0VarVp is L

m p dim(V )
p [Vp]. Finally the class

[HomC (S , V )] ∈ K0Var∏
p∈|S | Vp

is sent to the finite product ∏
p∈|S |

[Vp]
L

dim(V )
p

L
(m p+1) dim(V )
p ∈ K0Vark .

Thus weak equidistribution for S implies that

L
−δ ·ω−1

V
k [Hom

degL = δ

C (C , V | ϕ)U ][HomC (S , V )]
tends to τ(V ) when δ→∞.

4.2. Equidistribution and arcs. Actually, the equidistribution hypothesis can be reformulated in terms of
constructible sets of arcs. This reformulation is natural since we already interpreted the local factors of
the motivic Tamagawa number as motivic densities of spaces of arcs. In this subsection S is any finite set
of closed points of C . We drop as well the previous assumption on LV .

The restriction to Spec(ÔC ,p) provides a morphism

resV
S : Hom

degL = δ

C (C , V )→
∏
p∈S

Gr∞(VRp)

for every multidegree δ ∈ Eff(V )∨Z . If ϕ = (ϕp)p∈S is a finite collection of jets such that ϕp ∈ Grm p(VRp)

for every p in S, the schematic fibre of ∏
p∈S

θ∞m p
◦ resV

S

above ϕ is written
Hom

degL = δ

C (C , V | ϕ)U .

Definition 4.2. We say that there is weak equidistribution above S at level (m p)p∈S if, for every collection
ϕ = (ϕp)p∈S ∈∏

p∈S Grm p(VRp) of jets above S, the class

[Hom
degL = δ

C (C , V | ϕ)U ] L−δ ·ω−1
V

k
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tends to the nonzero effective element

τLV (V | ϕ)= τLV (V )|C \S×
∏
p∈S

µ∗L|VRp
((θ∞m p

)−1(ϕp)∩Gr(V ◦Rp
))

of M̂k , when δ becomes arbitrarily large.

This definition is consistent with the previous one since we have the factorisation

resV
S : Homd

C (C , V )
resV

S−−→
∏
p∈S

Gr∞(VRp)−→
∏
p∈S

Grm p(VRp)≃ HomC (S , V )

for every S-tuple (m p)∈NS and corresponding zero-dimensional subscheme S ⊂C with support |S | = S.
More generally, if W is a product

∏
p∈S Wp of constructible subsets Wp of Gr∞(VRp),

Hom
degL = δ

C (C , V |W )U

is defined as the schematic fibre of resV
S over W. Recall that each constructible set Wp of arcs is nothing

else but the preimage by a projection morphism of a certain constructible subset of jets.

Definition 4.3. We will say that there is equidistribution with respect to W =∏
p∈S Wp and the multidegree

degL , where each Wp is a constructible subset of arcs, if

[Hom
degL = δ

C (C , V |W )U ] L−δ ·ω−1
V

k

tends to
τLV (V |W )= τLV (V )|C \S ×

∏
p∈S

µ∗L|VRp
(Wp ∩Gr(V ◦Rp

))

when the multidegree becomes arbitrarily large.
We will say that there is equidistribution of curves, with respect to the multidegree degL if the previous

statement holds for every such W.

Remark 4.4. Note that the notion of equidistribution of curves is stronger that the motivic Batyrev–
Manin–Peyre principle for curves we formulate in Question 2.

Remark 4.5. In Definition 4.3 one may ask if it would be possible to replace constructible by measurable
to get a more general notion of equidistribution, or consider constructible subsets which are not products
over S of constructible sets, as in Theorem 5.6, but this higher level of generality would be mostly useless
in the present work.

4.3. Checking equidistribution pointwise. Let S be a zero-dimensional subscheme of C . Assume that,
for every δ ∈ Pic(V )∨, there exists a k-scheme Fδ (which depends on S ) such that

Hom
degL = δ

C (C , V | ϕ)U ≃ (Fδ ⊗ κ(x))red

for every point x ∈HomC (S , V ) corresponding to a C -morphism ϕ :S → V . Then by Proposition 1.31,
the reduction map

Hom
degL = δ

C (C , V | ϕ)U → HomC (S , V )
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is a piecewise trivial fibration with fibre Fδ and by Proposition 1.30, for every constructible subset W of
HomC (S , V ),

[Hom
degL = δ

C (C , V |W )U ] = [Fδ][W ]
in K0Vark . Hence, if one wishes to show that there is equidistribution of curves on V above S, a strategy
is to prove the existence of such an Fδ and then study the convergence of the normalised class [Fδ] L−δ ·ω−1

V
k .

In general the situation is not as simple, but we use a similar argument in Section 5.5 in order to prove
Theorem B.

4.4. Equidistribution and models. Our goal for the end of this section is to prove the following main
result, which does not depend on the choice of the filtration (dimensional or by the weight) on MC .

Theorem 4.6 (change of model). Let V and V ′ be two proper models over C of the same Fano-like
F-variety V, together with models L = (Li ) and L ′ = (L ′i ), respectively on V and V ′, of a family (L i )

of invertible sheaves forming a Z-basis of Pic(V ), as in Setting 1.4.
Then there is equidistribution of curves for (V , L ), in the sense of Definition 4.3, if and only if there is

equidistribution of curves for (V ′, L ′).

The remainder of this section is devoted to the proof of Theorem 4.6. We take V , L , V ′ and L ′ as
in Setting 1.4. As before, we know the existence of a nonempty open subset C ′ ⊂ C above which we
have an isomorphism of C ′-schemes. By Corollary 1.28, we can find a proper model Ṽ → C of V whose
C -smooth locus is a Néron smoothening of both V ′ and V . Above C ′, the three models are isomorphic:

Ṽ

V V ′

C

f f ′

π̃

π π ′

This diagram induces morphisms

HomC (C , Ṽ )U

HomC (C , V )U HomC (C , V ′)U

f∗ f ′∗

between moduli spaces of sections.
Let L̃i and L̃ ′i be respectively the pull-backs of the sheaves Li and L ′i to Ṽ for all i . Then both L̃i

and L̃ ′i are models of L i on Ṽ . Up to shrinking C ′, we can assume that they are isomorphic above C ′. If
σ̃ is a section of Ṽ and σ = f ◦ σ̃ , one has the relation

deg((σ̃ )∗L̃i )= deg((σ̃ )∗ f ∗Li )= deg(( f ◦ σ̃ )∗Li )= deg(σ ∗Li )

for all i ∈ {1, . . . , r}, so that f∗ bijectively sends points of

Hom
degL̃ = δ

C (C , Ṽ )U
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to points of

Hom
degL = δ

C (C , V )U ,

and similarly for f ′∗ when considering the multidegrees given by L̃ ′ and L ′. By Proposition 1.31 this
implies equality of the corresponding classes in K0Vark .

We are going to compare the multidegrees degL̃ and degL̃ ′ .

4.4.1. Lifting equidistribution. As an application of the change-of-variable formula Proposition 1.12, we
show that equidistribution of curves holds for (V , L ) if and only if it holds for (Ṽ , L̃ ).

Let S be the complement of C ′ in C .

Lemma 4.7. Let W̃ be a finite product of constructible subsets W̃p ⊂ Gr(ṼRp) for p ∈ S, and let W be its
image by f . Then

τL̃V
(Ṽ | W̃ )= τLV (V |W )

and

[Hom
degL̃ = δ

C (C , Ṽ | W̃ )U ] = [Hom
degL = δ

C (C , V |W )U ]

for every δ ∈ Pic(V )∨.
In particular, for every m ∈ Z,

τL̃V
(Ṽ | W̃ )− [Hom

degL̃ = δ

C (C , Ṽ | W̃ )U ] L−δ ·ω−1
V ∈ FmMk

if and only if

τLV (V |W )− [Hom
degL = δ

C (C , V |W )U ] L−δ ·ω−1
V ∈ FmMk .

Proof. Up to shrinking C ′ and adding trivial conditions, one can assume that S is contained in the comple-
ment of C ′. By Theorem 3.2.2 of [19, Chapter 5], the image of W̃p in Gr(VRp) is a constructible subset Wp.
Then f∗ bijectively sends points of HomdegL̃ = δ

C (C , Ṽ | W̃ )U to points of HomdegL = δ
C (C , V |W )U and

by Proposition 1.31,

[Hom
degL̃ = δ

C (C , Ṽ | W̃ )U ] = [Hom
degL = δ

C (C , V |W )U ]

so that the only thing to show is the equality of the motivic Tamagawa numbers.
Up to shrinking C ′ again, we only have to show the equality of local factors

µ∗L|VRp
(Wp ∩Gr(V ◦Rp

))= µ∗
L̃|ṼRp

(W̃p ∩Gr(Ṽ ◦Rp
))

above closed points p ∈ S. By assumption V is smooth and both Ṽ and V are models of V ; thus by
Corollary 3.2.4 of [19, Chapter 5] ordjac fRp

only takes a finite number of values. By the change of variable
formula, Proposition 1.12, applied to the constructible function

εLV −(3n�1
V /Rp

)∨ (see Definition 1.21)
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one has the following relation between local factors:

µ∗L|VRp
(Wp ∩Gr(V ◦Rp

))=
∫

Wp∩Gr(V ◦Rp )

L
−ε

LV −(3n�1
V /Rp

)∨ dµVRp

=
∫

Wp∩Gr(V ◦Rp )

L
− ordLV

+ ord
(3n�1

V /Rp
)∨ dµVRp

=
∫

W̃p∩Gr(Ṽ ◦Rp )

L
− f ∗ ordLV

+ f ∗ ord
(3n�1

V /Rp
)∨ − ordjac f

dµṼRp

=
∫

W̃p∩Gr(Ṽ ◦Rp )

L
− ordL̃V

+ ord
(3n�1

Ṽ /Rp
)∨

dµṼRp
= µ∗

L̃|ṼRp

(W̃p ∩Gr(Ṽ ◦Rp
))

in MVRp
, where we used the relations

ordL̃V
− f ∗ ordLV = 0

and

f ∗ ord(3n�1
V /Rp

)∨ − ord(3n�1
Ṽ /Rp

)∨ = ordjac f (by Proposition 1.26)

above the smooth Rp-locus. Taking the product over S, one gets

τLV (V |W )= τL̃V
(Ṽ | W̃ ),

and hence the lemma. □

4.4.2. Switching the degree. The difference of degrees on Gr(ṼRp) is given by the map

εL̃ ′−L̃ : Gr(ṼRp)→ Pic(V )∨, x 7→
(⊗

i

L
⊗

di
i 7→

r∑
i=1

diεL̃ ′i −L̃i
(x)

)
,

which is trivial for all p /∈ S. For any εp ∈ Pic(V )∨, let

W̃p(εp)= ε−1
L̃ ′−L̃

({εp}).
As a direct consequence of Lemma 1.19, we have the following.

Lemma 4.8. The map εL̃ ′−L̃ is constructible and there is only a finite number of values of εp ∈ Pic(V )∨

for which W̃p(εp) is nonempty.

Now, for every ε = (εs) ∈ (Pic(V )∨)S, let

W̃ (ε)=
∏
s∈S

W̃s(εs)⊂
∏
s∈S

Gr∞(ṼRs )

and let W̃ be any finite product
∏

s∈S W̃s of constructible subsets W̃s ⊂ Gr(ṼRs ). Let W, W ′, Ws and W ′s
be the corresponding images by f and f ′. By the previous lifting lemma, Lemma 4.7,[

Hom
degL̃ = δ

C (C , Ṽ | W̃ ∩ W̃ (ε))U
]

L−δ ·ω−1
V → τL̃V

(Ṽ | W̃ ∩ W̃ (ε))

when δ ∈ Eff(V )∨Z becomes arbitrarily large.
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Let W ′(ε) be the image of W̃ (ε) in
∏

s∈S Gr(V ′Rs
). We decompose our classes as follows:[

Hom
degL ′ = δ′
C (C , V ′ |W ′)]= ∑

ε∈(Pic(V )∨)S

[
Hom

degL ′ = δ′
C (C , V ′ |W ′ ∩W ′(ε))

]
=

∑
ε∈(Pic(V )∨)S

[
Hom

degL̃ ′ = δ′

C (C , Ṽ | W̃ ∩ W̃ (ε))
];

these sums are finite by Lemma 4.8. Normalising, we get

[Hom
degL ′ = δ′
C (C , V ′ |W ′)] L−δ′ ·ω−1

V

=
∑

ε∈(Pic(V )∨)S

[
Hom

degL̃ ′ = δ′

C (C , Ṽ | W̃ ∩ W̃ (ε))
]

L−δ′ ·ω−1
V

=
∑

ε∈(Pic(V )∨)S

[
Hom

degL̃ = δ′−|ε|
C (C , Ṽ | W̃ ∩ W̃ (ε))

]
L−(δ′−|ε|) ·ω−1

V L−|ε| ·ω
−1
V ,

where |ε| stands for
∑

s∈S εs ∈ Pic(V )∨. Then[
Hom

degL ′ = δ′
C (C , V ′ |W ′)] L−δ′ ·ω−1

V

−→
d(δ′,∂ Eff(V )∨)→∞

∑
ε∈(Pic(V )∨)S

τL̃V
(Ṽ | W̃ ∩ W̃ (ε))L−|ε| ·ω

−1
V = τL̃ ′V

(Ṽ | W̃ )= τL ′V (V ′ |W ′)

and Theorem 4.6 is proved.

5. Rational curves on smooth split projective toric varieties

In this section, we prove equidistribution of rational curves on smooth split projective toric varieties over
any base field.

As a warm-up, we start with proving that the motivic Batyrev–Manin–Peyre principle holds for rational
curves on this class of varieties, in line with the works of Bourqui [11; 12], Bilu [3] and Bilu–Das–Howe
[6]; see Theorem 5.4.

Then we generalise this result, by proving equidistribution of rational curves on smooth split projective
toric varieties; see Theorem 5.6.

5.1. Geometric setting. General references for toric varieties are [21; 33; 48]. Let U be a split torus of
dimension n over k. Let

X ∗(U )= Hom(U, Gm)

be its group of characters and X∗(U )= HomZ(X ∗(U ), Z) its dual as a Z-module. Let 6 be a complete
and regular fan of X∗(U ), which defines a smooth projective toric variety V6 over k, with open orbit
isomorphic to U. Let

r = rk(Pic(V6))

be its Picard number, 6(1) the set of rays of the fan 6 and (Dα)α∈6(1) the set of its U -invariant divisors.
Each ray α ∈6(1) admits a minimal generator ρα ∈ X∗(U ) and the map sending a character χ ∈ X ∗(U )
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to the divisor ∑
α∈6(1)

⟨χ, ρα⟩Dα

is part of the exact sequence [21, Theorem 4.1.3]

0→ X ∗(U )→
⊕

α∈6(1)

ZDα→ Pic(V6)→ 0, (5.1.6)

which provides, in particular, the equality

|6(1)| = n+ r.

If σ is an element of the fan 6, let σ(1)⊂6(1) be the subset of rays which are faces of σ .

5.2. Möbius functions. Let B6 ⊂ {0, 1}6(1) be the complement of the image of

6→ {0, 1}6(1), σ 7→ (1σ(1)(α))α∈6(1).

In [12, Section 3.5], this set B6 is described explicitly as

B6 = {n ∈ {0, 1}6(1) | ∀ σ ∈6, ∃α ∈6(1), α /∈ σ(1), and nα = 1}.
It has a geometric interpretation in terms of the effective divisors Dα: it corresponds to the subsets
I ⊂6(1) such that ⋂

α∈I

Dα =∅.

Then, the universal torsor of V6 admits an explicit description which goes back to Salberger [59]:

T6 = A6(1) \
( ⋃

J∈B6

⋂
α∈J

{xα = 0}
)

.

5.2.1. Local Möbius function. Bourqui inductively defines a local Möbius function

µ0
B6
: {0, 1}6(1)→ Z

through the relation
1{0,1}6(1)\B6

(n)=
∑

0⩽n′⩽n

µ0
B6

(n′)

for every n ∈ {0, 1}6(1). It comes with a generating polynomial

PB6
(t)=

∑
n∈{0,1}6(1)

µ0
B6

(n)tn

and a series

Q B6
(t)= PB6

(t)∏
α∈6(1)(1− tα)

.

Let
A(B6)⊂ N6(1)
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be the set of tuples n ∈ N6(1) such that there is no n′ ∈ B6 with n ⩾ n′. In particular, 0 ∈ A(B6). It is
the set of elements of N6(1) not lying above B6 in the sense of [6, Section 4.4]. Let

µB6
: N6(1)→ Z

be the local Möbius function defined by the relation

1A(B6)(n)=
∑

0⩽n′⩽n

µB6
(n′). (5.2.7)

As Bilu, Das and Howe [6, Section 5.2] pointed out, µB6
coincides with µ0

B6
on {0, 1}6(1) and is zero

outside of this set. Hence
Q B6

(t)=
∑

n∈A(B6)

tn.

5.2.2. Global motivic Möbius function. For any e ∈ N6(1), let (P1
k)

e
B6

be the open subset of

Syme
/k(P

1
k)

parametrizing 6(1)-tuples of effective zero-cycles of degree eα having disjoint supports with respect
to B6 . More precisely,

(P1
k)

e
B6
=

{
(Cα) ∈ Syme

/k(P
1
k)

∣∣∣ ⋂
α∈J

Supp(Cα)=∅ for all J ∈ B6

}
.

Up to a tuple of multiplicative factors, this set corresponds to 6(1)-tuples of homogeneous polynomials
P(T0, T1) of degree eα with coefficients in k such that for all J ∈ B6 the polynomials (Pα)α∈J have no
common root in any finite extension of k; see [12, Lemme 5.10].

Then, applying the definition of the motivic Euler product in Bilu’s sense [3], we get∏
p∈P1

k

Q B6
(t)=

∑
d∈N6(1)

[(P1
k)

d
B6
] td .

The formalism of pattern-avoiding zero cycles allowed Bilu, Das and Howe to work with Bilu’s motivic
Euler product and to give a positive answer to a technical question of Bourqui [12, Question 5], which
in turn provides a lift of Bourqui’s main theorem [12, Théorème 1.1] from the localised Grothendieck
ring of Chow motives M

χ

k to the localised Grothendieck ring of varieties Mk ; see [6, Lemma 4.5.4,
Remark 4.5.7]. Indeed, since

Q B6
(t)= PB6

(t)
∏

α∈6(1)

(1− tα)−1,

one obtains, by taking motivic Euler products (in Bilu’s sense)∑
d∈N6(1)

[(P1
k)

d
B6
] td =

∏
p∈P1

k

Q B6
(t)=

∏
p∈P1

k

PB6
(t)×

∏
α∈6(1)

ZP1
k
(tα), (5.2.8)

where ZP1
k
(t) is Kapranov’s zeta function of the projective line

ZP1
k
(t)=

∑
e⩾0

[Syme
/k(P

1
k)] te.
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Bourqui’s construction [12, Section 3.3], applied to the projective line over k and the set B6 , provides a
motivic global Möbius function

µ6 : N6(1)→Mk

given by the relation

[(P1
k)

e
B6
] =

∑
e∈N6(1)

e′⩽e

µ6(e′)[Syme−e′
/k (P1

k)]

for all e ∈ N6(1)1, which is nothing else than what one obtains by considering the coefficient of multide-
gree e in expression (5.2.8).

It follows from the definitions that the motivic global Möbius function is linked to the local one by the
relation ∏

p∈P1
k

( ∑
m∈N6(1)

µB6
(m)tm

)
=

∑
e∈N6(1)

µ6(e)te.

5.3. Motivic Tamagawa number. By the following proposition and remark, the constant τ(V6) is well-
defined in M̂

dim
k .

Proposition 5.1. The motivic Euler product( ∏
p∈P1

k

PB6
(t)

)
(L−1

k )=
∏
p∈P1

k

( ∑
m∈N6(1)

µB6
(m)L−|m|p

)
=

∑
e∈N6(1)

µ6(e)L−|e|k

is well-defined in M̂
dim

k .

Proof. By [12, Lemme 3.8], the valuation of PB6
(T )− 1 is at least equal to 2. Thus by [6, Lemma 4.2.5]

the formal motivic Euler product
∏

p∈P1
k

PB6
(t) converges at t = L−1 for the dimensional filtration. □

Remark 5.2. The local factor of the motivic Euler product above is actually

(PB6
(t))|tα=L−1

p
=

∑
m∈N6(1)

µB6
(m)L−|m|p = [V6 ⊗ κ(p)]

L
dim(V6)
p

(1− L−1
p )rk(Pic(V6)) = [T6 ⊗ κ(p)]

L
|6(1)|
p

.

Indeed, we can interpret [T6 ⊗ κ(p)] L−|6(1)|
p as the motivic density of κ(p)-arcs of A

6(1)
k with origin

in T6 , and L
−|m|
p as the motivic density of the subspace Vm of κ(p)-arcs with 6(1)-tuple of valuations

greater than m:

Vm =
{

x ∈ A
6(1)
k (κ(p)[[t]]) | xα ∈ tmακ(p)[[t]] for all α ∈6(1)

}
.

We consider as well the subspace of arcs with given valuation:

V ◦m =
{

x ∈ A
6(1)
k (κ(p)[[t]]) | xα ∈ tmακ(p)[[t]] and xα /∈ tmα+1κ(p)[[t]] for all α ∈6(1)

}
= Vm \

⋃
α∈6(1)

Vm+1α
.
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The arc-space of T6 is the space of arcs whose 6(1)-tuple of valuations does not lie above B6:

Gr∞(T6 ⊗ κ(p))=
⊔

m∈A(B6)

V ◦m =
⊔

m∈A(B6)

(
Vm \

⋃
α∈6(1)

Vm+1α

)
and thus

[T6 ⊗ κ(p)] L−|6(1)|
p =

∑
m∈A(B6)

µV

(
Vm \

⋃
α∈6(1)

Vm+1α

)
=

∑
m∈A(B6)

∑
J⊂6(1)

(−1)|J |µV

(⋂
α∈J

Vm+1α

)
=

∑
m∈A(B6)

L−|m|p

∏
α∈6(1)

(1− L−1
p )

=
(
(Q B6

(t))
∏

α∈6(1)

(1− tα)

)
|tα=L−1

p

= (PB6
(t))|tα=L−1

p

as expected.
By compatibility of formal motivic Euler products with changes of variables of the form t ′α=La

k tα with a
an integer [3, Section 3.6.4], together with the compatibility with partial specialisation [5, Lemma 6.5.1],
what we get by taking the corresponding motivic Euler product is exactly the motivic Tamagawa number
of V6 given by Definition 3.2 and Notation 2.15:( ∏

p∈P1
k

PB6
(t)

)
|tα=L−1

k

=
( ∏

p∈P1
k

(
1+

( [T6 ⊗ κ(p)]
L
|6(1)|
p

− 1
)

t
))
|t=1
= τ(V6).

5.4. Nonconstrained rational curves. Let

Homδ
k(P

1
k, V6)U

be the quasiprojective scheme parametrizing morphisms P1
k→V6 of multidegree δ ∈ Pic(X)∨ intersecting

the dense open subset U ⊂ V6 (see Definition 1.5 and Lemma 1.6). It is empty whenever δ /∈ Eff(V6)∨Z
(see the remark after Notation 5.4 in [12]), so we will always assume that δ ∈ Eff(V6)∨Z in the remaining
of this section.

Through the injection Pic(V6)∨ ↪→ Z6(1) given by the exact sequence (5.1.6), Eff(V6)∨Z can be see as
the submonoid of tuples (dα)α∈6(1) ∈ N6(1) such that∑

α∈6(1)

dα⟨χ, ρα⟩ = 0

for all χ ∈ X ∗(U ). Note that this submonoid is denoted by N
6(1)
(∗) in Bourqui’s work [12, Notation 5.3].

For every d ∈ Eff(V6)∨Z , let

(̃P1
k)

d
B6

be the inverse image of the open subset

(P1
k)

d
B6
⊂ Symd

/k(P
1
k)≃

∏
α∈6(1)

P
dα

k
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through the G6(1)
m -torsor ∏

α∈6(1)

(A
dα+1
k \ {0})→

∏
α∈6(1)

P
dα

k .

One of Bourqui’s key results is the following proposition.

Proposition 5.3 [12, Proposition 5.14]. For every d ∈ Eff(V6)∨Z ,

(̃P1
k)

d
B6

/TNS

represents the functor Homd
k (P1, V6)U .

Theorem 5.4. The normalised class

[Homδ
k(P

1
k, V6)U ] L

−δ ·ω−1
V6

k

tends to the nonzero effective element

τ(V6)= L
dim(V6)
k

(1− L−1
k )rk(Pic(V6))

∏
p∈P1

k

[V6 ⊗k κ(p)]
L

dim(V6)
p

(1− L−1
p )rk(Pic(V6)) ∈ M̂

dim
k

when δ ∈ Eff(V6)∨Z goes arbitrarily far away from the boundary of the dual of the effective cone of V6 .
Moreover the error term

τ(V6)− [Homδ
k(P

1
k, V6)U ] L

−δ ·ω−1
V6

k

has virtual dimension at most

−1
4 min

α∈6(1)
(δα)+ dim(V6).

Proof. First note that since
∑

α∈6(1) Dα is an anticanonical divisor of V6 , the anticanonical degree of a
curve of multidegree d ∈ Eff(V6)∨Z is |d| =∑

α∈6(1) dα. By Proposition 5.3, we have the relation

[Homd
k (P1

k, V6)U ] = (Lk − 1)dim(V6)[(P1
k)

d
B6
]

for every d ∈ Eff(V6)∨Z . Therefore studying the asymptotic behaviour of [Homd
k (P1

k, V6)U ] L−|d|k when
minα(dα)→∞ goes back to studying the one of [(P1

k)
d
B6
] L−|d|k . Moreover it is convenient to drop the

assumption d ∈ Eff(V6)∨Z .
Then (5.2.8) gives ∑

d∈N6(1)

[(P1
k)

d
B6
] td =

∏
p∈P1

k

PB6
(t)×

∏
α∈6(1)

ZKapr
P1

k
(tα)

and we proceed as in [31, Section 4.1]. First, recall that

ZKapr
P1

k
(t)= (1− t)−1(1− Lk t)−1.

For any A ⊂6(1), set

Z A(t)=
∏
α∈A

(1− tα)−1
∏
α/∈A

(1− Lk tα)−1
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so that ∏
α∈6(1)

ZKapr
P1

k
(tα)=

∏
α∈6(1)

1
1− Lk

(
1

1− tα
− Lk

1− Lk tα

)
=

∑
A⊂6(1)

(−Lk)
|6(1)|−|A|

(1− Lk)|6(1)| Z A(t). (5.4.9)

The coefficient of order d ∈ N6(1) of

Z A(t)×
∏
p∈P1

k

PB6
(t)

for a given A ⊂6(1) is the finite sum∑
e∈N6(1)

e⩽d

µ6(e)L
∑

α∈6(1)\A dα−eα

k = L
|d6(1)\A|
k

∑
e∈N6(1)

e⩽δ

µ6(e)L−|e6(1)\A|
k ,

where we use again the notation of Lemma 2.21 for the restriction of e ∈ N6(1) to a subset of 6(1).
Normalizing by L

|d|
k and writing e6(1)\A = e− eA one gets the sum∑

e∈N6(1)

e⩽d

µ6(e)L−|e|k L
|eA|−|dA|
k . (5.4.10)

If A =∅, this is exactly the d-th partial sum∑
e∈N6(1)

e⩽d

µ6(e)L−|e|k

and when minα∈6(1) dα goes to infinity, we know by Proposition 5.1 that this sum converges to∑
e∈N6(1)

µ6(e)L−|e|k =
∏
p∈P1

k

[V6 ⊗ κ(p)]
Ln

p
(1− L−1

p )r (by Remark 5.2)

in M̂
dim

k . By the proof of [6, Lemma 4.2.5] we have dim(µ6(e)L−|e|k )⩽−1
2 |e| for any e ∈ N6(1). Thus

the error term ∑
e∈N6(1)

e⩽̸d

µ6(e)L−|e|k

has virtual dimension at most − 1
2 minα∈6(1)(dα + 1).

If A ̸= ∅, then by Lemma 2.21 (taking m = e, cm = µ6(e)L−e
k , a = 1

2 and b = 0), the sum (5.4.10)
has virtual dimension at most

−1
4 min

α∈A
(dα);

hence it becomes negligible in comparison with the term given by A =∅ as min(dα)→∞.
Finally, putting everything together, one concludes that the normalised class

[Homδ
k(P

1
k, V6)U ] L

−δ ·ω−1
V6

k

tends to
L

dim(V6)
k

(1− L−1
k )rk(Pic(V6))

∏
p∈P1

k

[V6 ⊗ κ(p)]
L

dim(V6)
p

(1− L−1
p )rk(Pic(V6))
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in M̂
dim

k when δ ∈ Eff(V6)∨Z goes arbitrarily far away from the boundary ∂ Eff(V6)∨, with error term of
virtual dimension bounded by −1

4 minα∈6(1)(δα)+ dim(V6). □

Corollary 5.5. Let
F (t)=

∑
δ∈Eff(V6)∨Z

[Homδ
k(P

1
k, V6)U ] tδ

∏
α∈6(1)

(1− Lk tα).

Then F (t) converges at tα = L−1
k to τP1

k
(V6).

Proof. Let bd be the coefficient of multidegree d of F (t). Since

F (t)
∏

α∈6(1)

(1− Lk tα)−1 =F (t)
∑

d∈N6(1)

L
|d|
k td,

we have the relation
[Homδ

k(P
1
k, V6)U ] =

∑
d+d ′=δ

bdL
|d ′|
k

for every δ ∈ Eff(V6)∨Z , which becomes after normalisation

[Homδ
k(P

1
k, V6)U ] L

−δ ·ω−1
V6

k =
∑
e⩽δ

beL
−|e|
k .

This is exactly the δ-th partial sum of the series F (L−1
k ). Since [Homδ

k(P
1
k, V6)U ] L−δ ·ω−1

V6k converges to
τP1

k
(V6) when min(δα) tends to infinity, the claim follows. □

5.5. Equidistribution. In the remainder of this section, we prove equidistribution of rational curves on
smooth split projective toric varieties.

Theorem 5.6. Let
S =

∐
p∈|S |

Sp

be a zero-dimensional subscheme of P1
k , (m p)p∈|S | nonnegative integers such that

ℓ(Sp)= (m p + 1)[κ(p) : k]
for all p ∈ |S |, and W a constructible subset of Homk(S , V6)≃∏

p∈|S |Grm p(V6 ⊗ κ(p)).
Then, when δ ∈ Eff(V6)∨Z goes arbitrarily far away from the boundary of the dual of the effective cone,

the normalised class
[Homδ

k(P
1
k, V6 |W )U ] L−δ·ω−1

V6k ∈Mk

tends to the nonzero effective element

τ(V6 |W )= L
dim(V6)
k

(1− L−1
k )rk(Pic(V6))

×
∏

p/∈|S |
(1− L−1

p )rk(Pic(V6)) [V6 ⊗ κ(p)]
L

dim(V6)
p

[W ]
∏

p∈|S |
(1− L−1

p )rk(Pic(V6))L
−(m p+1) dim(V6)
p

in the completion M̂
dim

k .
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Moreover, the error term

τ(V6 |W )− [Homδ
k(P

1
k, V6 |W )U ] L

−δ·ω−1
V6

k ∈ M̂
dim

k

has virtual dimension smaller than

− 1
4 min

α∈6(1)
(δα)+ ℓ(S )+ (1− ℓ(S ))(dim(V6)− 1)+ dim(W )

for all δ ∈ Eff(V6)∨Z .

Corollary 5.7. For any nonzero multidegree δ ∈ Eff(V6)∨Z such that

min
α∈6(1)

(δα)⩾ 8ℓ(S )− 4,

the moduli space Homδ
k(P

1
k, V6 |W )U has dimension

δ ·ω−1
V6
+ dim(V6)(1− ℓ(S ))+ dim(W )

as expected.

Remark 5.8. The upper bound on the dimension of the error term we give can be made uniform in the
set W of conditions, since the dimension of W is bounded by ℓ(S ) dim(V6).

The remainder of this section is devoted to the proof of Theorem 5.6. We see A2
k \ {0} as the universal

Gm-torsor

A2
k \ {0} → P1

k .

Given a cocharacter χ : Gm → G6(1)
m , or equivalently a tuple d = (dα) ∈ Z6(1) (we will switch freely

between both notations), we consider the functor from k-schemes to sets

Homχ (A2
k \ {0}, A

6(1)
k ) : S⇝ Homχ

S (A2
S \ {0}, A

6(1)
S )

of χ -equivariant morphisms, as well as its restriction

Homχ (A2
k \ {0}, A

6(1)
k )∗ : S⇝ Homχ

S (A2
S \ {0}, A

6(1)
S )∗

to χ -equivariant morphisms with no trivial coordinate and its second restriction

Homχ (A2
k \ {0}, T6)∗ : S⇝ Homχ

S (A2
S \ {0}, T6 ×k S)∗

to nondegenerate χ-equivariant morphisms with no trivial coordinate. These functors are represented
respectively by the product ∏

α∈6(1)

A
dα+1
k ,

its restriction ∏
α∈6(1)

(A
dα+1
k \ {0}),
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and the open subset

(̃P1
k)

d
B6
⊂

∏
α∈6(1)

(A
dα+1
k \ {0})

(defined on page 930 just before Proposition 5.3).
If χ lies in Eff(V6)∨Z , composition by π : T6→ V6 provides a map of functors

π∗ :Homχ (A2
k \ {0}, T6)∗→Homd

k (P1
k, V6)

and we recover the TNS-torsor

(̃P1
k)

d
B6
→ Homd

k (P1
k, V6)U

of Proposition 5.3.

5.5.1. Restricting to S . Let ι :S ↪→ P1
k be a zero-dimensional subscheme of P1

k . In what follows, we
will work with the restriction to S of the universal torsor A2 \ {0}→P1, defined over any base scheme S
by the following Cartesian square:

(A2
S \ {0})|S A2

S \ {0}

S ×k S P1
S

prS
⌜

ιS

For any cocharacter χ ∈ X∗(G6(1)
m ), we consider the set of χ -equivariant S-morphisms

Homχ

S ((A2
S \ {0})|S , A

6(1)
S ),

as well as its subset of morphisms landing in the universal torsor T6 ⊂ A
6(1)
k

Homχ

S ((A2
S \ {0})|S , T6,S).

The groups G6(1)
m (S) and TNS(S) act on these sets via their action on the target.

Lemma 5.9. For all χ ∈ X∗(G6(1)
m ), the functors

S⇝ Homχ

S ((A2
S \ {0})|S , A

6(1)
S )

and
S⇝ Homχ

S ((A2
S \ {0})|S , T6,S)

are respectively represented by the finite products∏
p∈|S |

Grm p(A
6(1)
κ(p) )

and ∏
p∈|S |

Grm p(T6 ×k κ(p))

of jet schemes.
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Proof. Since the restriction of A2
k \ {0} → P1

k to S is a trivial bundle, we may fix a section s : S →
(A2

k \ {0})|S . Then composition by s induces a map

Homχ

S ((A2
S \ {0})|S , A

6(1)
S )→ A

6(1)
k (S ×k S), f 7→ f ◦ (s, idS),

which is functorial in S.
Now remark that an element of Homχ

S ((A2
S \ {0})|S , A

6(1)
S ) is entirely determined by its restriction to

the image of s: indeed, for all y ∈ (A2
S \ {0})|S (S), one has the relation

f (y)= χ
(
y · (s ◦ prS (y))−1) f (s ◦ prS (y)),

where y · (s ◦ prS (y))−1 ∈ Gm,S (S) is given by the Gm,S -torsor structure. An S ×k S-point of A
6(1)
S is

the datum of such a restriction; hence it provides a unique χ -equivariant morphism. By the definition of
Greenberg schemes, the conclusion follows. □

Composition by s and π : T6→ V6 provides a map (functorial in S)

Homχ

S ((A2
S \ {0})|S , T6,S)→ V6(S ×k S), f 7→ (π, idS) ◦ f ◦ (s, idS).

Two χ -equivariant morphisms ϕ̃, ϕ̃′ : (A2
S \ {0})|S → A

6(1)
S induce the same (S ×k S)-point of V6 if and

only if there is an element a ∈ TNS(S ×k S) such that ϕ̃ = a · ϕ̃′. This map defines a TNS,S -torsor over
Hom(S , V6).

Definition 5.10. For any constructible subset W̃ ⊂ Homχ

S ((A2
S \ {0})|S , A

6(1)
S ), we denote by

Homχ

S (A2
S \ {0}, A

6(1)
S | W̃ )(∗)

the subset of Homχ

S (A2
S \ {0}, A

6(1)
S )(∗) of morphisms whose restriction to (A2

S \ {0})|S belongs to W̃ (in
the sequel the exponent (∗) will be a convenient notation to say that one can restrict to morphisms having
no trivial coordinate).

We will say that a χ -equivariant S-morphism is nondegenerate above S if its pull-back to (A2
S \{0})|S

has image in T6,S ⊂ A
6(1)
S .

This defines subfunctors of Homχ (A2
k \ {0}, A

6(1)
k ).

5.5.2. Euclidean division. Fixing coordinates on A2
k , we can see χ -equivariant morphisms A2

k\{0}→A
6(1)
k

as 6(1)-tuples of homogeneous polynomials in two indeterminates t0 and t1. Let us temporarily choose
a generator ϖ of the ideal defining S in P1

k , that is to say, a nontrivial homogeneous polynomial of
degree ℓ(S ) in two indeterminates. Up to changing coordinates on P1

k we may assume furthermore that
[0 : 1] does not belong to S (that is to say, t0 does not divide ϖ ).

Then, the Euclidean division of a polynomial P(t) of degree at most d by ϖ(t)=ϖ(1, t) is the unique
decomposition of the form

P(t)= Q(t)ϖ(t)+ R(t),
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where Q(t) is of degree at most d − ℓ(S ) and R of degree strictly smaller than ℓ(S ). This provides a
Euclidean division of P(t0, t1)= td

0 P(t1/t0) of the form

P(t0, t1)= td
0 Q(t1/t0)ϖ(t1/t0)+ td

0 R(t1/t0)= Q(t0, t1)ϖ(t0, t1)+ R(t0, t1),

where
Q(t0, t1)= td−ℓ(S )

0 Q(t1/t0),

ϖ(t0, t1)= tℓ(S )
0 ω(t1/t0),

R(t0, t1)= td
0 R(t1/t0).

Note that Q(t0, t1), ϖ(t0, t1) and R(t0, t1) are homogeneous polynomials of degree d and that they do
not depend on the choice of ϖ . The first one uniquely defines an element of

Homd(A2
k \ {0}, A1

k | resS = 0),

while the second one uniquely defines an element of

Homd((A2
k \ {0})|S , A1

k),

since in that case the k-vector space

k[t]/(ϖ(1, t))≃
∏

p∈|S |
A

6(1)
κ(p) (κ(p)[t]/(tm p+1))≃

∏
p∈|S |

Grm p(A
6(1)
κ(p) )(κ(p))

provides a concrete incarnation of such a space of morphisms. Remember as well that taking the restriction
to S is a linear operation.

One can perform this Euclidean division simultaneously for all the coordinates of an element of
Homχ (A2

k \ {0}, A
6(1)
k ). Recall that we fixed a section s :S → (A2 \ {0})|S in Lemma 5.9 so that∏

p∈|S |
Grm p(A

6(1)
κ(p) )

represents the functor S⇝Homχ

S ((A2
S \{0})|S , A

6(1)
S ). We can see elements of this product of arc spaces

as tuples (rα(t))α∈6(1) of polynomials of degree at most ℓ(S )− 1. From these remarks, we deduce the
following lemma.

Lemma 5.11. For every χ ∈ N6(1) ⊂ X∗(G6(1)
m )≃ Z6(1), Euclidean decomposition corresponds to the

exact sequence of vector spaces over k

0 ker(resS ) Homχ (A2
k \ {0}, A

6(1)
k )

Homχ ((A2
k \ {0})|S , A

6(1)
k ) 0

resS

and resS is a piecewise trivial fibration. Moreover the α-th coordinate of resS is surjective if χα⩾ℓ(S )−1,
injective if χα ⩽ ℓ(S )− 1, and nonempty fibres of resS have dimension∑

α∈6(1)

min(0, χα − ℓ(S )+ 1).
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Hence for any constructible subset W̃ ⊂∏
p∈|S |Grm p(A

6(1)
κ(p) ) we have the dimensional upper bound

dimk
(
Homχ (A2

k \ {0}, A
6(1)
k | W̃ )

)
⩽ dim(W̃ )+

∑
α∈6(1)

min(0, χα − ℓ(S )+ 1). (5.5.11)

Assume χ ⩾ ℓ(S )−1. Then for any g ∈ G6(1)
m (S ) and constructible subset W̃ ⊂∏

p∈|S |Grm p(A
6(1)
κ(p) )

there is a commutative diagram

Homχ
(
A2

k \ {0}, A
6(1)
k | W̃ )(∗) Homχ

(
(A2

k \ {0})|S , A
6(1)
k

)

Homχ
(
A2

k \ {0}, A
6(1)
k | g · W̃ )(∗) Homχ

(
(A2

k \ {0})|S , A
6(1)
k

)
resS

τg g ·
resS

in which the vertical arrows are isomorphisms. The first one, τg, sends a morphism of Euclidean
decomposition

(qα, rα)α∈6(1)

to
(qα, gα · rα)α∈6(1).

Up to a multiplicative constant, rational curves of degree d ∈ N in Pn
k are given by (n+1)-tuples

of degree-d homogeneous polynomials with no common factor. Conversely, the parameter space of
(n+1)-tuples of degree-d homogeneous polynomials admits a decomposition into disjoint subspaces
corresponding to the degree of the common factor. The Möbius inversion we performed for nonconstrained
curves generalises this remark.

Definition 5.12. We will say that a zero-cycle avoids S if it has support outside |S |. This terminology
naturally extends to χ -equivariant morphisms by considering their image through the G6(1)

m -torsor

Homχ (A2
k \ {0}, A6(1))∗→

∏
α∈6(1)

P
χα

k ≃ Symχ

/k(P
1
k).

5.5.3. The motivic Möbius inversion in details. Equivariant morphisms with image contained in T6 are
the morphisms A2

k \ {0} → A
6(1)
k with no forbidden zeros, which we also call having no degeneracies. Our

goal now is to adapt the Möbius inversion technique to the context of constrained curves. More precisely,
we provide a relation between the classes of equivariant morphisms and the ones obtained by adding degen-
eracies to nondegenerate morphisms. This relation relies heavily on the following piecewise identification.
Then we specialise this relation to morphisms with constraints. Finally, we approximate it and conclude.

Identification 5.13. Let G = G6(1)
m . We stratify Homχ (A2 \ {0}, A6(1))∗ with respect to the vanishing

order at∞. Each stratum can be viewed as the subspace of tuples of homogeneous polynomials of the form

Pα(T0, T1)= aαT v∞(Pα)
1 Qα(T0, T1),

where aα ∈ k×, v∞(Pα) is the vanishing order of Pα at ∞, and the coefficient of T χα−v∞(Pα)

1 in Qα

is 1; hence Qα can be identified with a zero-cycle avoiding∞. In this decomposition, aα is the leading
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coefficient of Pα(1, T ). Then, each stratum can be identified with G×Symχ−v∞
/k (P1

k \ {∞}) by sending
(Pα) to ((aα), (Qα)). This piecewise correspondence identifies

Homχ (A2
k \ {0}, A

6(1)
k )∗

with

G×k Symχ

/k(P
1
k)≃ Symχ

/G(P1
G),

and

Homχ (A2
k \ {0}, T6)

with

G×k Symχ

P1
k/k

(1A(B6)P
1
k)≃ Symχ

P1
G/G

(1A(B6)P
1
G)

(recall the definition of A(B6) given on page 926).
In particular, tuples such that aα = 1 for every α ∈6(1) deserve to be called unitary and are identified

with their tuple of zero-divisors living in

Symχ

P1
k/k

(P1
k)≃ {1G}×Symχ

P1
k/k

(P1
k)≃ Symχ

P1
G/G

(P1
{1G }).

The proof of the following lemma is left to the reader.

Lemma 5.14. Let S be a scheme, and X , Y be two S-varieties. Assume that there exists a piecewise
isomorphism f = ( f j : X j → Y j ) between X and Y, that is to say, a finite number of pairwise disjoint
locally closed subsets X j and Y j , respectively of X and Y, such that X =⊔

j X j and Y =⊔
j Y j , together

with isomorphisms f j : X j → Y j .
Then

[Z→ Y ] 7→ [ f ∗(Z→ Y )] =
∑

j

[ f ∗j (Z ×Y Y j → Y j )]

defines a ring isomorphism K0VarY ≃ K0VarX .

Notation 5.15. Let W be a constructible subset of Hom(S , V6). Its preimage through the map

Homχ ((A2
S \ {0})|S , T6,S)→ Hom(S , V6)

will be written W̃. It is a Zariski-locally trivial TNS,S -torsor above W.

For every d ∈ N, we fix a section of

Homd(A2
k \ {0}, A1

k)
resS−−→ Im(resS )⊂ Homd((A2

k \ {0})|S , A1
k)

so that we are able to see reduction modulo S as morphisms in Homd(A2
k \ {0}, A1

k).

Remark 5.16. Up to replacing S by S ∪ {[1 : 0]} and W by W × V6 , we can always assume that
[1 : 0] =∞ is a closed point of S.
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Notation 5.17. We will freely use the convenient notation

ḡ−1 = (ḡ−1
α )α∈6(1)

for the inverse of the restriction to S of any χ -equivariant morphism g : A2
k \ {0} → A

6(1)
k avoiding |S |.

Definition 5.18. For any χ, χ ′∈N6(1) such that χ ′⩽χ , let 8
χ

χ ′ the morphism given by the coordinatewise
multiplication

8
χ

χ ′ : Homχ ′(A2
k \ {0}, A

6(1)
k )×Homχ−χ ′(A2

k \ {0}, A
6(1)
k )→ Homχ (A2

k \ {0}, A
6(1)
k ),

(( fα)α∈6(1), (gα)α∈6(1)) 7→ ( fαgα)α∈6(1).

For any (χ −χ ′)-equivariant morphism g, consider the induced map

8χ
g : Homχ ′(A2

k \ {0}, A
6(1)
k )⊗ κ(g)→ Homχ (A2

k \ {0}, A
6(1)
k )⊗ κ(g),

( fα)α∈6(1) 7→ ( fαgα)α∈6(1).

Our goal is to give an interpretation of the motivic Möbius inversion in terms of the 8
χ

χ ′ , in a
way compatible with the stratification and piecewise identification of Homχ (A2 \ {0}, A6(1)) from
Identification 5.13.

As a first step, instead of working over k, we are going to work with zero-cycles on P1
G relative to

G = G6(1)
m . In what follows, we are going to exploit the details of the proof of the multiplicative property

of motivic Euler products as it is done in [3, Section 3.9]. We take I0 = N6(1) and I = I0 \ {0}, but in
general one can take I to be any abelian semigroup and I0 = I ∪ {0}; see [3, Section 3.9.3].

Let X be a variety above a certain base scheme S and take n, n′, n′′ ∈ N6(1) such that

n= n′+ n′′.

Let κ ′ and κ ′′ be partitions respectively of n′ and n′′. The previous relation becomes∑
i∈I

iκ ′i +
∑
i∈I

iκ ′′i = n.

Let γ = (n p,q)( p,q)∈I 2
0 \{0} be a collection of integers such that, for all p, q ∈ I,∑

q∈I0

n p,q = κ ′p,
∑
p∈I0

n p,q = κ ′′q .

Let κ = κ(γ ) be the “overlap partition” of n given by

κi =
∑

p+q=i

n p,q

for all i ∈ I. It is important to note that κ, κ ′ and κ ′′ are entirely determined by γ . Let

Symκ ′
/S(X)∗×γ Symκ ′′

/S(X)∗
be the locally closed subset of

Symκ ′
/S(X)∗×Symκ ′′

/S(X)∗
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given by points whose Sym
κ ′p
/S(X)-component and Sym

κ ′′q
/S(X)-component overlap exactly above an effective

zero-cycle of degree n p,q [3, Section 3.9.6]. One can show by induction [3, Section 3.9.7.3] that there is
a canonical isomorphism

Symκ ′
/S(X)∗×γ Symκ ′′

/S(X)∗ ≃
(∏

i∈I

∏
( p,q)∈I 2

0 \{0}
p+q=i

Symn p,q
/S (X)

)
∗
.

The right-hand side will be denoted by Symγ

/S(X)∗. Then, there is a canonical morphism

8γ : Symκ ′
/S(X)∗×γ Symκ ′′

/S(X)∗ ≃ Symγ

/S(X)∗ −→ Symκ(γ )

/S (X)∗ (5.5.12)

induced by the morphisms ∏
p+q=i

Symn p,q
/S (X)→ Symκi (γ )

/S (X), i ∈ I.

If A = (A p) p∈I and B = (Bq)q∈I are two families of X -varieties, then

Symκ ′(γ )

X/S (A )×γ Symκ ′′(γ )

X/S (B)

is the class above Symκ ′
/S(X)∗×γ Symκ ′′

/S(X)∗ obtained from

Symκ ′(γ )

X/S (A )⊠Symκ ′′(γ )

X/S (B)

by pull-back, while Symγ

/S(A ⊠X B)∗ is defined as(∏
i∈I

∏
p+q=i

Symn p,q
X/S(A p⊠X Bq)

)
∗
.

Example 5.19. Taking S = G and X = P1
G ,

Symκ ′
P1

G/G(P1
G)∗×γ Symκ ′′

P1
G/G(P1

G)∗,
the canonical morphism 8γ

Symκ ′
/G(P1

G)∗×γ Symκ ′′
/G(P1

G)∗ ≃
( ∏

( p,q)∈I0\{0}
Symn p,q

/G (P1
G)

)
∗

8γ−→ Symκ(γ )

/G (P1
G)∗

sends pairs of tuples of zero-cycles to their coordinatewise sum. This is the zero-cycle version of the
map 8

χ

χ ′ we previously defined.

Proposition 5.20 (multiplicativity of motivic Euler products: refined version). Let X be a variety above a
base scheme S. Let A and B be families of varieties above X indexed by I. Let γ = (n p,q)( p,q)∈I 2

0 \{0} be
a collection of integers as above. Then

Symγ

/S(A ⊠X B)∗ = Symκ ′(γ )

X/S (A )∗×γ Symκ ′′(γ )

X/S (B)∗
in K0VarSymκ(γ )

/S (X)
.

Proof. See [3, Section 3.9.7]. □
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In the following remarks, the use of the subscript (∗) means that the claims remain valid when one
takes the restriction of the symmetric products to the complement of the diagonal.

Remark 5.21. Let a be a class in the Grothendieck ring of varieties over a certain S-variety X . Then, for
any k ∈ N∗,

Symk
X/S(2a)(∗) =

∑
k1+k2=k

Symk1,k2(a, a)(∗)

in K0VarSymk
/S(X)(∗) , and more generally, for any k, ℓ ∈ N∗,

Symk
X/S(ℓa)(∗) =

∑
k1+···+kℓ=k

Symk1,...,kℓ

X/S (a, . . . , a)(∗).

It is important to recall that if a= [Y → X ] is an effective class, and Y1, . . . , Yℓ are ℓ copies of Y, these
identities come from the canonical decomposition of

Symk
X/S(Y1⨿ · · · ⨿ Yℓ)(∗)

into the Symk1,...,kℓ

X/S (Y1, . . . , Yℓ)(∗) relative to Symk
/S(X)(∗).

Remark 5.22. Denoting by Q⊂N(N∗) the set of partitions of integers (in the usual sense) without holes,
for any k ∈ N∗ we have the relation

Symk
X/S(−a)(∗) =

∑
κ=(ki )i∈N∈Q∑

i ki=k

(−1)|{i∈N|ki >0}| Symκ
X/S(a)(∗)

above Symk
/S(X)(∗) [5, Example 6.1.4]. Again, it is important to remember where this relation comes from.

If a= [Y → X ] is an effective class in K0VarX , then Symk
X/S(−a) is by definition the degree-k part

of the inverse of (the class of)

Sym•X/S(Y )= (1, Y, Sym2
X/S(Y ), . . . )

viewed above
Sym•/S(X)=

∏
ℓ∈N

Symℓ
/S(X).

Indeed, K0VarSym•/S(X) admits a natural structure of graded K0VarX -algebra for which the product law
is induced by the natural maps

Symi
/S(X)×Symk−i

/S (X)→ Symk
/S(X);

see [5, Section 6.1.1]. Then, one writes

1
Sym•X/S(Y )

= 1
1+ (Sym•X/S(Y )− 1)

=
∞∑

k=0

(−1)k(0, Y, Sym2
X/S(Y ), . . . )k

and takes the degree-k part. This provides an explicit definition of Symk
X/S(−[Y ]) in terms of the classes

of the Symκ
X/S(Y ), for κ ∈Q, partition of k and above Symk

/S(X). In particular, the arrows are explicit:
they are the natural ones.
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Now, starting from the relation

Q B6
(t)= PB6

(t)∏
α∈6(1)(1− tα)

in Z[[t]], that is to say, ∑
n∈N6(1)

1A(B6)(n)tn =
( ∑

n∈N6(1)

tn
)( ∑

n∈N6(1)

µB6
(n)tn

)
(the definition of A(B6) was given on page 926), we take the motivic Euler products associated to the
corresponding P1

G-families

(1A(B6)(n)[P1
G]), (P1

G), (µB6
(n)[P1

{1G }]),
all three of them being indexed by n ∈N6(1) \ {0} (an index we will drop in the following computations).
More precisely, we apply Proposition 5.20 on page 940 to A = (P1

G) and B = (µB6
(n)[P1

{1G }]). If ϖ is
any generalised partition of a certain nonzero tuple n∈N6(1), then one gets the relation in K0VarSymϖ

/G(P1
G)

Symϖ

P1
G/G(1A(B6)[P1

G])∗ =
∑

γ=(n p,q)

κ(γ )=ϖ

Symγ

P1
G/G

(P1
G ⊠P1

G
µB6
[P1
{1G }])

=
∑

γ=(n p,q)

κ(γ )=ϖ

Symκ ′(γ )

P1
G/G

(P1
G)∗×γ Symκ ′′(γ )

/G (µB6
[P1
{1G }])∗.

Each
Symκ ′(γ )

P1
G/G

(P1
G)∗×γ Symκ ′′(γ )

/G (µB6
[P1
{1G }])∗

can be explicitly decomposed above

Symκ ′(γ )

/G (P1
G)∗×γ Symκ ′′(γ )

/G (P1
{1G })∗

as a linear combination of effective classes. Indeed, using the previous two remarks, we get that for all
p ∈ N6(1) \ {0} the class

Sym
κ ′′p(γ )

P1
G/G

(µB6
( p)[P1

{1G }])∗
(which is zero if p /∈ B6) is ∑

k1+···+k|µB6
( p)|=κ ′′p(γ )

Sym
k1,...,k|µB6

( p)|
P1

G/G
(sign(µB6

( p))[P1
{1G }])

above Sym
κ ′′p(γ )

/G (P1
G). If µB6

( p) is negative, we replace

Sym
κ ′′p(γ )

P1
G/G

(−[P1
{1G }])

by its definition ∑
λ=(λι)ι∈N∗∈Q∑

ι λι=κ ′′p(γ )

(−1)|{ι∈N∗|λι>0}|[Symλ
/G(P1

{1G })]
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in the expression above and pull it back to Symk1,...,k|µB6
( p)|

P1
G/G

(P1
{1G }). Finally, as always, one restricts to the

complement of the diagonal. This shows explicitly that

Symκ ′(γ )

P1
G/G

(P1
G)∗×γ Symκ ′′(γ )

/G (µB6
[P1
{1G }])∗

is a linear combination with integer coefficients of restrictions of

Symκ ′(γ )

/G (P1
G)∗×γ Symκ ′′(γ )

P1
G/G

(P1
{1G })∗

8γ−→ Symκ(γ )

/G (P1
G)∗

to constructible subsets of the form

Symκ ′(γ )

/G (P1
G)∗×γ

(∏
p

∏
ι⩾1

Sym
λ p,ι,1,...,λ p,ι,|µB6

( p)|
/G (P1

{1G })
)
∗
,

with ∑
ι

(λ p,ι,1+ · · ·+ λ p,ι,|µB6
( p)|)= κ ′′p(γ )

for all p ∈ I = N6(1) \ {0} and

(λ p,ι,1+ · · ·+ λ p,ι,|µB6
( p)|)ι∈N∗ ∈Q.

When µB6
( p) is positive, as a convention, we will always take

λ p = (λ p,ι,1+ · · ·+ λ p,ι,|µB6
( p)|)ι∈N∗ ∈Q

to be the trivial partition λ p = (κ ′′p(γ ), 0, . . . ) and we will only have to perform a sum over all possible
partitions (in the usual sense) of κ ′′p(γ ) of length µB6

( p).
For all χ , we apply Lemma 5.14 to the G-equivariant piecewise isomorphism between

Homχ (A2 \ {0}, A6(1))∗

and

G×Symχ

/k(P
1
k)≃ Symχ

/G(P1
G)

from Identification 5.13 on page 937. In particular, in

K0VarHomχ (A2
k\{0},A6(1)

k )∗ ≃ K0VarSymχ
/G(P1

G)

we identify the class of the space of unitary χ -equivariant morphisms with the one of

Symχ

/G(P1
{1G })≃ Symχ

/k(P
1
k).

Recall that this induces a piecewise identification between Homχ (A2 \{0}, T6) and Symχ

P1
G/G

(1A(B6)P
1
G).

These piecewise isomorphisms commute with addition of cycles (the 8γ of (5.5.12) on page 940) and
multiplication of the corresponding polynomials (the 8

χ

χ ′ of Definition 5.18 on page 939). Putting all this
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together, we get
[Homχ (A2

k \ {0}, T6)]
=

∑
ϖ partition of χ

γ=(nq, p)
κ(γ )=ϖ

Symκ ′(γ )

P1
G/G

(P1
G)∗×γ Symκ ′′(γ )

/G (µB6
[P1
{1G }])∗

=
∑

ϖ partition of χ
γ=(nq, p)
κ(γ )=ϖ

∑
((λ p,ι)ι∈N∗ )∈Q×{ p∈I |µB6

( p)<0}∑
ι λ p,ι=κ ′′p(γ )

λ p,ι,1+···+λ p,ι,|µB6
( p)|=λ p,ι

(−1)

∑
p∈I, µB6

( p)<0 |{ι∈N∗|λ p,ι>0}|
Symκ ′(γ )

/G (P1
G)∗

×γ

(∏
p∈I

∏
ι⩾1

Sym
λ p,ι,1,...,λ p,ι,|µB6

( p)|
/G (P1

{1G })
)
∗

(5.5.13)

in K0VarHomχ (A2
k\{0},A6(1)

k )∗ ≃ K0VarSymχ
/G(P1

G), with structure morphisms given by the 8γ , seen as restric-
tions of the 8

χ

χ ′ .

Example 5.23. If V = Pn
k , then B6 = {(1, . . . , 1)} = {1} and

µB6
(0)= 1,

µB6
(1)=−1,

µB6
(n)= 0 whenever n /∈ {0, 1},

so in this case (5.5.13) is the sum over all γ = ((nq,0), (nq,1), n0,1) ∈ N(I )×N(I )×N and all possible
partitions λ ∈Q of the number κ ′′(γ )1 = n0,1+∑

q∈I nq,1 of the class

(−1)|{ι∈N∗|λι>0}| Symκ ′(γ )

/G (P1
G)∗×γ Symλ

/G(P1
{1G })∗,

the overlap partition being κ(γ )= (nq,0)+ (nq−1,1). The relation one obtains corresponds to the removal
of certain spaces of common divisors of the coordinates of the morphisms.

Example 5.24. Let V be the blow-up in one point of P2
k . Let L1, L2 and L3 be strict transforms of three

distinct lines such that the intersection of L1 and L3 is the point we blew up and the third one does not
contain it. Let E = L0 be the exceptional line. Since L2 ∩ L0 =∅ and L1 ∩ L3 =∅ are the only empty
possible intersections between two of these four divisors, the minimal elements of B6 are (1, 0, 1, 0) and
(0, 1, 0, 1). Then one checks that

µB6
(0)= 1, µB6

((1, 0, 1, 0))= µB6
((0, 1, 0, 1))=−1,

µB6
(1)= 1, µB6

(n)= 0 otherwise,
and hence ∑

n∈{0,1}4
µB6

(n)tn = 1− (t0t2+ t1t3)+ t0t1t2t3.

Since |µB6
(n)|⩽ 1 for all n, the sets of partitions of the λ p,ι are trivial in (5.5.13). The product over I

becomes ((∏
ι⩾1

(
Symλ(1,0,1,0),ι

/G (P1
{1G })×Symλ(0,1,0,1),ι

/G (P1
{1G })

))
×Sym

κ ′′(1,1,1,1)(γ )

/G (P1
{1G })

)
∗
.
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In general, the combinatorics involved in our computation quickly become complicated, as the following
second example shows. In particular, |µB6

| can take values different from 0 or 1.

Example 5.25. Let V be the blow-up of P2
k in three general points p1, p2 and p3. This case (for which

n + r = 6) was already considered in the arithmetic setting in an unpublished work of Peyre from
1993 [50].

Let L1, L2 and L3 be the exceptional lines in V lying above the three general points, respectively p1,
p2 and p3, and let L4, L5 and L6 be the strict transforms of the lines (p2, p3), (p1, p3) and (p1, p2).

Then µB6
can be more easily computed by considering the so-called graph G of nonintersection of

these six exceptional lines, whose vertices are labelled by the L i ’s, i ∈ {1, . . . , 6} =6(1), and edges are
(L1, L2), (L2, L3), (L3, L1), (L4, L5), (L5, L6), (L6, L4) and (L1, L4), (L2, L5), (L3, L6).

Indeed, the set B6 can be identified with the set of induced subgraphs of G by sending n ∈ B6 to the
subgraph of G induced by {L i | ni = 1}. Actually it is enough to compute the values of µB6

for connected
ones, µB6

being multiplicative for pairs of elements having disjoint supports. For the convenience of
the reader, we include an exhaustive list of these connected subgraphs (for |n| ⩾ 2), together with the
corresponding values of µB6

, in Figure 1. In the end, the polynomial PB6
(t) equals∑

n∈{0,1}6
µB6

(n)tn = 1− (t1t2+ t2t3+ t3t1+ t4t5+ t5t6+ t6t4+ t1t4+ t2t5+ t3t6)

+ 2(t1t2t3+ t4t5t6)

+ (t2t4t5+ t1t4t2+ t1t3t4+ t3t4t6+ t2t3t5+ t3t5t6)

+ (t1t4t5+ t1t2t5+ t1t3t6+ t1t4t6+ t2t3t6+ t2t5t6)

− (t1t2t4t5+ t1t3t4t6+ t2t3t5t6)

− (t1t2t3t6+ t3t4t5t6+ t1t2t3t4+ t1t4t5t6+ t1t2t3t5+ t2t4t5t6)

+ t1t2t3t4t5t6.

In particular, the monomials t1t2t3 and t4t5t6 contribute twice (with a positive coefficient); hence we have
to sum over partitions of κ ′′(1,1,1,0,0,0)(γ ) and κ ′′(0,0,0,1,1,1)(γ ) of length 2.

Taking symmetric products, one gets this sort of exclusion-inclusion relation (5.5.13) between our
class of interest, [Homχ (A2

k \ {0}, T6)], and classes of subspaces of Homχ (A2
k \ {0}, A6

k) consisting of
equivariant morphisms which may take values in some intersection of hyperplanes that is not allowed.

5.5.4. Detwisting. In what follows µ is any partition of χ − χ ′ whose support is contained in B6 .
We identify Symµ

/k(P
1
k)∗ with the space of unitary (χ−χ ′)-equivariant morphisms whose zeros have

multiplicities prescribed by µ. We are going to use the subscript notation

( · · · )W̃

for the preimages of Homχ (A2
k \ {0}, A

6(1)
k | W̃ ) by the 8

χ

χ ′ , as well as the concise notation

Sµ

|̂S | ∗ and Hχ

respectively for Symµ
/k(P

1
k \ |S |)∗ and Homχ, when necessary.
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Figure 1. Values of µB6

for the blow-up of P2
k in three general points.
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Let

(Homχ ′(A2
k \ {0}, A

6(1)
k )∗×Symµ

/k(P
1
k)∗)W̃ = (Homχ ′(A2

k \ {0}, A
6(1)
k )∗×Symµ

/k(P
1
k \ |S |)∗)W̃

= (Hχ ′(A2
k \ {0}, A

6(1)
k )∗×Sµ

|̂S | ∗)W̃

be the preimage of Homχ (A2
k \ {0}, A

6(1)
k | W̃ )∗ by

8χ
µ : Homχ ′(A2

k \ {0}, A
6(1)
k )∗×Symµ

/k(P
1
k)∗

8
χ
χ ′−→ Homχ (A2

k \ {0}, A
6(1)
k )∗,

where the first equality comes from the fact that one cannot add common zeros above S since W̃ is a
constructible subset of Hom(S , T6). The projection onto the second factor endows it with the structure
of a Symµ

/k(P
1
k)∗-variety. We are going to compare its class with the one of

Homχ ′(A2
k \ {0}, A

6(1)
k | W̃ )∗×Symµ

/k(P
1
k \ |S |)∗.

The relation between all the spaces involved is summarised by the following commutative diagram:

(Hχ ′(A2
k\{0},A

6(1)
k )∗×Sµ

|̂S |∗)W̃ Hχ (A2
k\{0},A

6(1)
k | W̃ )∗

Hχ ′(A2
k\{0},A

6(1)
k )∗×Sµ

|̂S |∗ Hχ (A2
k\{0},A

6(1)
k )∗

(Hom(S ,A
6(1)
k )×Sµ

|̂S |∗)W̃ W̃

Hom(S ,A
6(1)
k )×Sµ

|̂S |∗ Hom(S ,A
6(1)
k )

8
χ
µ

(resS ,pr2)

resS
8

χ
µ

(resS ,pr2)
(ϕ,D)7→ϕD

(ϕ,D)7→ϕD

For any point D ∈ Symµ
/k(P

1
k \ |S |)∗, the preimage of Homχ (A2

k \ {0}, A
6(1)
k | W̃ )∗ by 8

χ

D is the
subspace

Homχ ′(A2
κ(D) \ {0}, A

6(1)
κ(D) | D−1W̃ )∗

of χ ′-equivariant morphisms whose reduction modulo S lies in D−1W̃ . Moreover, when χ ′ ⩾ ℓ(S ), this
preimage is isomorphic to

Homχ ′(A2
κ(D) \ {0}, A

6(1)
κ(D) | W̃ )∗,

the isomorphism being explicitly given in Lemma 5.11: it sends an element of Euclidean decomposition
modulo ϖ

(qα, D−1
α wα)α∈6(1),

with (wα) ∈ W̃, to

(qα, wα)α∈6(1).

Now we can prove the following version of the motivic Möbius inversion.
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Proposition 5.26. For all χ ∈ N6(1), we have[
Homχ (A2

k \ {0}, T6 | W̃ )∗
]=∑

χ ′, µ

[
Homχ ′(A2

k \ {0}, A
6(1)
k | W̃ )∗

]
Symµ

P1
k
(µB6

· [P1
k \ |S |])∗+ Eχ

in K0Vark , with the error term Eχ of bounded dimension

dimk(Eχ )⩽− min
α∈6(1)

(χα)+ |χ | + (1− |6(1)|)(ℓ(S )− 1)+ dim(W̃ ).

Proof. First, note that the class Symµ

P1
k
(µB6

· [P1
k \ |S |])∗ is zero if the support of µ is not contained

in B6 . Then, using the decomposition (5.5.13) on page 944 of the motivic Möbius inversion we made
explicit in the previous pages (starting from on page 940 concerning the notation), and pulling it back to
Homχ (A2

k \ {0}, A
6(1)
k | W̃ )∗, we get that [Homχ (A2

k \ {0}, T6 | W̃ )∗] is a linear combination with integer
coefficients of restrictions of the 8γ . More explicitly,

[Homχ (A2
k \ {0}, T6 | W̃ )∗]

=
∑

ϖ partition of χ
γ=(nq, p)
κ(γ )=ϖ

(
Symκ ′(γ )

/G (P1
G)∗×γ Symκ ′′(γ )

P1
G/G

(µB6
[P1
{1G }])∗

)
W̃

=
∑

ϖ partition of χ
γ=(nq, p)
κ(γ )=ϖ

∑
((λ p,ι)ι∈N∗ )∈Q×{ p∈I |µB6

( p)<0}∑
ι λ p,ι=κ ′′p(γ )

λ p,ι,1+···+λ p,ι,|µB6
( p)|=λ p,ι

(−1)

∑
p∈I, µB6

( p)<0 |{ι∈N|λ p,ι>0}|

×
(

Symκ ′(γ )

/G (P1
G)∗×γ

(∏
p∈I

∏
ι⩾1

Sym
λ p,ι,1,...,λ p,ι,|µB6

( p)|
/G (P1

{1G })
)
∗

)
W̃︸ ︷︷ ︸

=
(

Symκ′(γ )

/G (P1
G)∗×γ

(∏
p∈I

∏
ι⩾1 Sym

λ p,ι,1,...,λ p,ι,|µB6
( p)|

/G (P1
{1G }\|S |)

)
∗
)

W̃

. (5.5.14)

For every γ appearing in the first sum, we apply Identification 5.13 to the factors of the locally closed
subsets (

Symκ ′(γ )

/G (P1
G)∗×γ

(∏
p∈I

∏
ι⩾1

Sym
λ p,ι,1,...,λ p,ι,|µB6

( p)|
/G (P1

{1G } \ |S |)
)
∗

)
W̃

of

(Symκ ′(γ )

/G (P1
G)∗×Symκ ′′(γ )

P1
G/G

(P1
{1G })∗)W̃ .

In particular, it is sufficient to approximate the class of(
Homχ ′(A2

k \ {0}, A
6(1)
k )∗×Symκ ′′(γ )

/k (P1
k \ |S |)∗

)
W̃

8
χ

κ′′(γ )−−−→ Homχ (A2
k \ {0}, A

6(1)
k | W̃ )∗ (5.5.15)

whenever κ ′(γ ) is a partition of χ ′, since all the other classes involved are obtained from this one by pull-
back and restriction. Moreover, since we are going to perform a motivic sum over Homχ(A2\{0},A6(1)|W̃ )∗,
we can view (5.5.15) as a variety above Symκ ′′(γ )

/k (P1
k \ |S |)∗ and then take the motivic sum, using the
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commutativity of the following diagram:(
Homχ ′(A2

k \ {0}, A
6(1)
k )∗×Symκ ′′(γ )

/k (P1
k \ |S |)∗

)
W̃ Symκ ′′(γ )

/k (P1
k \ |S |)∗

Homχ (A2
k \ {0}, A

6(1)
k | W̃ )∗ Spec(k)

pr1

8
χ

κ′′(γ )

By [5, Lemma 2.5.5] it is enough to argue fibre by fibre, so that the previous diagram becomes

Homχ ′(A2
κ(D) \ {0}, A

6(1)
κ(D) | D

−1
W̃ )∗ Spec(κ(D))

Homχ (A2
k \ {0}, A

6(1)
k )∗⊗k κ(D) Spec(k)

8
χ
D

and our argument will be entirely compatible with restrictions to constructible subsets of Symκ ′′(γ )

/k (P1
k\|S |)∗

such as
∏

p∈I
∏

ι⩾1 Symλ p,ι,1,...,λ p,ι,|µB6
( p)|

/G (P1
{1G } \ |S |).

We can apply the second part of Lemma 5.11 on page 936 only when χ ′ ⩾ ℓ(S )− 1, which in that
case gives

Homχ ′(A2
κ(D) \ {0}, A

6(1)
κ(D) | D

−1
W̃ )∗

τD
−→∼ Homχ ′(A2

k \ {0}, A
6(1)
k | W̃ )∗⊗ κ(D)

as κ(D)-schemes. In general, we consider the error term

Eχ ′
µ =

[(
Homχ ′(A2

k \ {0}, A
6(1)
k )∗×Symκ ′′(γ )

/k (P1
k \ |S |)∗

)
W̃

]
− [

Homχ ′(A2
k \ {0}, A

6(1)
k | W̃ )∗×Symκ ′′(γ )

/k (P1
k \ |S |)∗

] ∈ K0Var
Symκ′′(γ )

P1
k

(P1
k\|S |)∗

,

as well as its restrictions

Eγ

λ =
[(

Symκ ′(γ )

/G (P1
G)∗×γ

(∏
p∈I

∏
ι⩾1

Sym
λ p,ι,1,...,λ p,ι,|µB6

( p)|
/G (P1

{1G } \ |S |)
)
∗

)
W̃

]

−
[
(Symκ ′(γ )

/G (P1
G)∗)W̃ ×γ

(∏
p∈I

∏
ι⩾1

Sym
λ p,ι,1,...,λ p,ι,|µB6

( p)|
/G (P1

{1G } \ |S |)
)
∗

]
for every (λ p) = ((λ p,ι)ι∈N∗) ∈ Q× I such that

∑
ι λ p,ι = κ ′′p(γ ) and λ p,ι,1 + · · · + λ p,ι,|µB6

( p)| = λ p,ι

(still with the convention that we only consider the trivial partition of κ ′′p(γ ) if µB6
( p) > 0). The previous

argument shows that Eχ ′
µ = 0 if χ ′ ⩾ ℓ(S )− 1. By (5.5.11) of Lemma 5.11, the relative dimension

of Eχ ′
µ (hence also of Eγ

λ ) is bounded by

dim(W̃ )+
∑

α∈6(1)

max(0, χ ′α − ℓ(S )+ 1)

and if χ ′ ⩾̸ ℓ(S )− 1, then there is at least one term of this sum which is equal to zero. Hence under this
assumption it is bounded by

− min
α∈6(1)

(χ ′α)+ ℓ(S )− 1+ |χ ′| + |6(1)|(1− ℓ(S ))+ dim(W̃ ). (5.5.16)
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Now we bound the total dimension of Eχ ′
µ , that is to say,

dimk(Eχ ′
µ )= dimSymµ

P1
k
(P1

k\|S |)∗(Eχ ′
µ )+ dimk(Symµ

P1
k
(P1

k \ |S |)∗).

Since in practice we work with the family µB6
[P1

k], remembering that µB6
(n) = 0 if n /∈ B6 , we can

assume that µ is a partition of the form

µ= (δJ )J∈B6
∈ NB6 .

Let ϕ(δ) ∈ N6(1) ⊂ X∗(G6(1)
m ) be the cocharacter whose α-coordinate is

ϕ(δ)α =
∑
J∋α

δJ .

Then, by (5.5.16) Eχ ′
µ has dimension over k bounded by

− min
α∈6(1)

(χ ′α)+ ℓ(S )− 1+ |χ ′| + |6(1)|(1− ℓ(S ))+ dim(W̃ )+ |δ|
= − min

α∈6(1)
(χα −ϕ(δ)α)+ |χ | − |ϕ(δ)| + |δ| + (|6(1)| − 1)(1− ℓ(S ))+ dim(W̃ )

⩽− min
α∈6(1)

(χα)+ |χ | + (|6(1)| − 1)(1− ℓ(S ))+ dim(W̃ ),

where the first equality is given by

χ = χ ′+ϕ(δ)

and the last inequality comes from the expression

|ϕ(δ)| =
∑

J∈B6

|J |δJ

together with the fact that |J |⩾ 2 for all J ∈ B6; hence

− min
α∈6(1)

(χα −ϕ(δ)α)− |ϕ(δ)|⩽− min
α∈6(1)

(χα)+ max
α∈6(1)

(ϕ(δ)α)− |ϕ(δ)|⩽− min
α∈6(1)

(χα)

and the proposition is finally proved for Eχ =∑
γ,λ Eγ

λ by replacing every(
Symκ ′(γ )

/G (P1
G)∗×γ

(∏
p∈I

∏
ι⩾1

Sym
λ p,ι,1,...,λ p,ι,|µB6

( p)|
/G (P1

{1G } \ |S |)
)
∗

)
W̃

with

(Symκ ′(γ )

/G (P1
G)∗)W̃ ×γ

(∏
p∈I

∏
ι⩾1

Sym
λ p,ι,1,...,λ p,ι,|µB6

( p)|
/G (P1

{1G } \ |S |)
)
∗

in (5.5.14) on page 948. □

Final computation. Let

EW (t)=
∑

χ∈N6(1)

Eχ tχ .
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The previous proposition can be rewritten as∑
d∈N6(1)

[Homd(A2
k \{0}, T6 | W̃ )∗]td=

( ∏
p/∈S

PB6
(t)

)
×

( ∑
d∈N6(1)

[Homd(A2
k \{0}, A

6(1)
k | W̃ )∗] td

)
+EW (t)

in K0Vark[[t]]. We define µ
|S |
6 (e), e ∈ N6(1), to be the coefficients of the motivic Euler product∏

p/∈|S |
PB6

(t).

By the definition of W̃, together with Proposition 5.3 and the equivalent description of the functor
S⇝ Homχ

S (A2
S \ {0}, T6,S)

∗ we gave, we have the relation

(Lk − 1)r [Homd
k (P1

k, V6 |W )U ] = [Homd
k (A2 \ {0}, T6 | W̃ )∗]

as soon as d ∈ Eff(V )∨Z , and by Lemma 5.11

[Homd
k (A2 \ {0}, A6(1) | W̃ )∗] = [W̃ ](L− 1)|6(1)| ∏

α∈6(1)

[Pdα−ℓ(S )
k ]

whenever d ⩾ ℓ(S ). Thus we decompose the following series into two parts:∑
d∈N6(1)

[Homd(A2
k \ {0}, A

6(1)
k | W̃ )] td = [W̃ ](L− 1)|6(1)| ∏

α∈6(1)

tℓ(S )
α ZKapr

P1
k

(tα)+ HW (t),

where
HW (t)=

∑
d∈N6(1)

d⩾̸ℓ(S )

[Homd(A2
k \ {0}, A

6(1)
k | W̃ )∗] td .

Then, we use again the decomposition (5.4.9) given on page 931∏
α∈6(1)

ZKapr
P1

k
(tα)=

∑
A⊂6(1)

(−L)|6(1)|−|A|

(1− L)|6(1)| Z A(t)

of this product of Kapranov zeta functions, where for any A ⊂6(1)

Z A(t)=
∏
α∈A

(1− tα)−1
∏
α/∈A

(1− L tα)−1.

By identification, the coefficient of order d of

tℓ(S )Z A(t)×
∏

p/∈|S |
PB6

(t)

is the sum
sA

d =
∑
e⩽d

µ
|S |
6 (e)L

∑
α/∈A dα−ℓ(S )−eα

whenever d ⩾ ℓ(S ), and zero otherwise.
If A =∅, then after dividing by L−|d| it becomes

sA
d L−|d| = L−|6(1)|ℓ(S )

∑
e⩽d

µ
|S |
6 (e)L−|e|
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which is, up to the factor L−|6(1)|ℓ(S ), the d-th partial sum of
∏

p/∈|S | PB6
(L−1). The corresponding error

term
L−|6(1)|ℓ(S )

∑
e⩽̸d

µ
|S |
6 (e)L−|e|

has virtual dimension at most
−|6(1)|ℓ(S )− 1

2 min
α∈6(1)

(dα + 1).

If A ̸=∅, then one gets instead

L−(|6(1)|−|A|)ℓ(S )
∑
e⩽d

µ
|S |
6 (e)L−|e|L|dA−eA|.

In that case, recalling that dim(µ6(e)L−|e|k )⩽− 1
2 |e| for all e ∈ N6(1), Lemma 2.21 on page 913 gives

dim
(∑

e⩽d

µ
|S |
6 (e)L−|e|L|dA−eA|

)
⩽−1

4 min
α∈A

(dα).

Now we consider the terms coming from HW . The coefficient of order d of

HW (t)×
∏

p/∈|S |
PB6

(t)

is
hd =

∑
e⩽d

d⩾̸ℓ(S )+e

µ
|S |
6 (e)

[
Homd−e(A2

k \ {0}, A
6(1)
k | W̃ )∗

]
.

Dividing by L|d|, we get

hdL−|d| =
∑
e⩽d

d⩾̸ℓ(S )+e

µ
|S |
6 (e)L−|e|

[
Homd−e(A2

k \ {0}, A
6(1)
k | W̃ )∗

]
L−|d−e|.

As for the coefficients of EW (t), we have the dimensional upper bound coming from (5.5.11) of
Lemma 5.11

dim
(
Homd ′(A2

k \ {0}, A
6(1)
k | W̃ )∗

)
⩽ dim(W̃ )+

∑
α∈6(1)

min(0, d ′α − ℓ(S )+ 1).

Given d ′ ∈ N6(1) such that d ′ ⩾̸ ℓ(S ), there exists at least one element α ∈6(1) such that dα < ℓ(S ),
that is to say, such that min(0, d ′α − ℓ(S )+ 1)= 0. Hence the sum∑

α∈6(1)

min(0, d ′α − ℓ(S )+ 1)

is bounded by
|d ′| + |6(1)|(1− ℓ(S ))− min

α∈6(1)
d ′α<|S |

(d ′α)+ ℓ(S )− 1

and the bound on dim
(
Homd ′(A2

k \ {0}, A
6(1)
k | W̃ )∗

)
becomes

dim
(
Homd ′(A2

k \{0}, A
6(1)
k | W̃ )∗

)
⩽dim(W̃ )+|d ′|+|6(1)|(1−ℓ(S ))− min

α∈6(1)
d ′α<|S |

(d ′α)+ℓ(S )−1 (5.5.17)



Motivic distribution of rational curves and twisted products of toric varieties 953

for all d ′ ∈ N6(1) such that d ′ ⩾̸ ℓ(S ). Thus the dimension of[
Homd−e(A2

k \ {0}, A
6(1)
k | W̃ )

]
L−|d−e|

in the expression of hd above is bounded. We can be more precise and argue as we did in the proof of
Lemma 2.21. If 2e⩽ d then 2(d− e)⩾ d and

dim
(
µ
|S |
6 (e)L−|e|

[
Homd−e(A2

k \ {0}, A
6(1)
k | W̃ )∗

]
L−|d−e|)

is at most

−1
2 min

α∈6(1)
(dα)+ dim(W̃ )+ (1− ℓ(S ))(|6(1)| − 1),

while if 2e ⩽̸ d, we use the coarse upper bound deduced from (5.5.17)

dim
([

Homd−e(A2
k \ {0}, A

6(1)
k | W̃ )∗

]
L−|d−e|)⩽ dim(W̃ )+ (1− ℓ(S ))(|6(1)| − 1)

together with

dim(µ
|S |
6 (e)L−|e|)⩽−1

2 |e|<− 1
4 min

α∈6(1)
(dα).

Therefore, for any d we have

dim(hdL−|d|)⩽− 1
4 min

α∈6(1)
(dα)+ dim(W̃ )+ (1− ℓ(S ))(|6(1)| − 1).

Remember from Proposition 5.26 that the d-th term of EW (t) has dimension bounded by

− min
α∈6(1)

(dα)+ |χ | + (6(1)− 1)(1− ℓ(S ))+ dim(W̃ ).

Now we rewrite the motivic density of W̃ as

[W̃ ]L−|6(1)|ℓ(S ) = [W ] L−ℓ(S ) dim(V6)×[TNS,S ] L−rℓ(S ) = [W ]
Lℓ(S ) dim(V6)

∏
p∈|S |

(1− L−1
p )r .

Putting everything together, we get

[Homd
k (P1

k, V6 |W )U ] L−|d|

= (L− 1)−r
(

L|6(1)|[W̃ ]
∑

A⊂6(1)

(−L)−|A|sA
d L−|d|+ hdL−|d|+ edL−|d|

)

= Ldim(V6)

(1− L−1)r [W ] L−ℓ(S ) dim(V6)
∏

p∈|S |
(1− L−1

p )r
∏

p/∈|S |
PB6

(L−1)

+ an error term of dimension at most − 1
4 min

α∈6(1)
(dα)+ (1− ℓ(S ))(dim(V6)− 1)+ dim(W )

for all d ∈ Eff(V6)∨Z . This concludes the proof of Theorem 5.6. □

6. Twisted products of toric varieties

The goal of this section is to apply the notion of equidistribution of (rational) curves to the case of a
certain kind of twisted product. It provides a going-up theorem answering the following question in a
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particular setting: given a fibration, if a Batyrev–Manin–Peyre principle holds for the base and for the
fibres, does it hold for the entire fibration?

First, we recall the construction and geometric properties of such a twisted product, as is done in [17].
Then we study the moduli space of rational curves and apply the change of model Theorem 4.6 to this
context.

6.1. Generalities on twisted products. In this section we adapt the framework of [17] and [63] to the
study of rational curves. Concerning torsors, we will refer to [20].

In this paragraph S is a scheme, G is a linear flat group scheme over S, with connected fibres, and
g :B→ S a flat scheme over S. Recall that a G-torsor over B is a scheme T →B over B which is
faithfully flat and locally of finite presentation, endowed with a G-action τ : G×S T → T over B such
that the induced morphism

(τ, pr2) : G×S T → T ×B T

is an isomorphism. Moreover, in this article we will only consider torsors which are locally trivial for the
Zariski topology.

6.1.1. Twisted products and twisted invertible sheaves. Following [17, Section 2], let f : X→ S be a flat
(quasicompact and quasiseparated) S-scheme endowed with an action of G/S. Let T →B be a G-torsor lo-
cally trivial for the Zariski topology. We construct a fibration π :X =T ×G X→B locally isomorphic to X
over B in the following manner. Let (Ui )i∈I be a Zariski covering of B together with trivialisation φi :G×S

Ui→TUi . For all i, j ∈ I there exists a unique section gi j of G over Ui∩Uj such that φi = gi jφ j on Ui∩Uj .
This data provides a cocycle whose class in H 1(BZar, G) represents the isomorphism class of T as a G-
torsor. Then we set Xi = X×S Ui . The action of G/S on X/S induces an action of gi j over X×S (Ui∩Uj )

and the later yields an isomorphism ϕi j :X j |Ui∩Uj
≃Xi |Ui∩Uj . Gluing via the ϕi j defines π :X →B.

Up to a unique isomorphism, this construction does not depend on the choice of the open sets (Ui ).
There exists a functor ϑ from the category of G-linearised quasicoherent sheaves over X to the category

of quasicoherent sheaves over X [17, Construction 2.1.7] which is compatible with the standard operations
for sheaves (direct sum, tensor product, localisation). It sends a G-linearised quasicoherent sheaf over X
to its twisted version over X , the gluing isomorphisms being given by the ϕi, j . This functor induces a
map on the isomorphism classes. In particular, such a map sends �1

X/S to �1
X /B [17, Proposition 2.1.8].

If X = S then X =B and this functor ϑ is written ηT . It induces a group morphism X ∗(G)→ Pic(B),
also written ηT , sending χ to the (isomorphism class of the) line bundle on B obtained via the gluing
morphisms

(u, t) ∈ (Ui ∩Uj )×S A1
S 7→ (u, χ(gi j )t) ∈ (Uj ∩Ui )×S A1

S,

where (gi j ) ∈ H 1(BZar, G) is the cocycle defined above.
We define PicG(X) to be the group of isomorphism classes of G-linearised invertible sheaves on X . If

X/S and B/S are smooth, the canonical sheaf over X/S is endowed with a canonical G-linearisation and

ωX /S ≃ ϑ(ωX/S)⊗π∗ωB/S
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by [17, Proposition 2.1.8]. The forgetful functor ϖ induces a forgetful morphism

ϖ : PicG(X)→ Pic(X).

Let
ι : X ∗(G)→ PicG(X)

be the group morphism sending χ to the (isomorphism class of the) trivial bundle

X ×S A1
S,

together with the action of G given by

g · (x, t)= (g · x, χ(g)t)

for all (x, t) ∈ X ×S A1
S and g ∈ G.

Putting ι, ηT , ϑ and π∗ together, we get morphisms

X ∗(G)
(ι,−ηT )−−−−→ PicG(X)⊕Pic(B)

and
PicG(X)⊕Pic(B)

ϑ⊗π∗−−→ Pic(X ).

For every character χ , there is a canonical isomorphism of invertible sheaves on X

ϑ(ι(χ))≃ π∗ηT (χ) (6.1.18)

by [17, Proposition 2.1.11].

6.1.2. Twisted products over a field: an exact sequence. Assume that S is the spectrum of a field k, that
B is a smooth proper and geometrically integral variety over k and G is a multiplicative group. Then,
there is an exact sequence [20, (2.0.2), Theorem 1.5.1]

0→ H 1(k, G)→ H 1(B, G)→ Hom(X ∗(G), Pic(B))→ H 2(k, G)→ H 2(B, G).

Assume moreover that B admits an open subset U such that Pic(U ) = 0. Then by [20, Remark 2.2.7,
Proposition 2.2.8], in the previous exact sequence H 2(k, G)→ H 2(B, G) is injective and the resulting
short exact sequence

0→ H 1(k, G)→ H 1(B, G)→ Hom(X ∗(G), Pic(B))→ 0 (6.1.19)

splits. It is the case if the base B has a k-rational point, the splitting being given by the evaluation map
H 1(B, G)→ H 1(k, G) at this point.

6.1.3. H90 multiplicative groups. We again take S to be the spectrum of a field k and G is a linear
connected group over k.

Definition 6.1. We will say that G is an H90 multiplicative algebraic group if

• H 1(k, G) is trivial;

• G is multiplicative and solvable over k.
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If G acts on a projective k-variety V, we will always assume that every line bundle on V admits a
G-linearisation.

Example 6.2. If k has cohomological dimension at most 1 and G is a linear connected group which is
solvable over k, then by [61, Théorème 1′] the first cohomology group H 1(k, G) is trivial.

Example 6.3. If V is a split smooth toric variety and G is its torus, then G is an H90 multiplicative
algebraic group, by Hilbert 90.

6.2. Twisted models of X over P1
k. From now on we assume that X is Fano-like, that G is H90 multiplica-

tive and acts on X , and that B(k) is Zariski dense in B. Moreover, we assume that the Picard groups of B

and X coincide respectively with their geometric Picard group: Pic(B)≃ Pic(B) and Pic(X)≃ Pic(X).
Then the sequence

0−→ X ∗(G)
(ι,−ηT )−−−−→ PicG(X)⊕Pic(B)

ϑ⊗π∗−−→ Pic(X )−→ 0 (6.2.20)

is exact by [17, Théorème 2.2.4]. As a corollary, we get exact sequences

0−→ X ∗(G)
ι−→ PicG(X)

ϖ−→ Pic(X)−→ 0

(by taking B = Spec(k) in (6.2.20)) and

0−→ Pic(B)
π∗−→ Pic(X )

ϖ̃−→ Pic(X)−→ 0. (6.2.21)

The map ϖ̃ : Pic(X )→ Pic(X) above is the map sending the class of a line bundle of the form

ϑ(L)⊗π∗(L ),

with L a line bundle on B and L a G-linearised line bundle on X , to the one of ϖ(L).

6.2.1. Pulling-back. Let f :P1
k→B be a rational curve on B. It induces a morphism deg f : Pic(B)→

Pic(P1
k) ≃ Z. Since in our situation we assume G to be an H90 multiplicative group, type and class

coincide by (6.1.19), so that ηT and the type α ∈ Hom(X ∗(G), Pic(B)) of the G-torsor T → B can
be identified (we refer the interested reader to [20, Section 2] for the precise definition of type). The
pulling-back operation

T f T

P1
k B

⌜

f

induces a G-torsor T f whose type (or class) is given by (deg f ) ◦α ∈ X∗(G), together with functors on
quasicoherent sheaves ϑ f = f ∗X ◦ϑ and ηT f = f ∗ ◦ ηT .
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Then, remark that the pull-back

X f X

P1
k B

fX

⌜

f

only depends on the multidegree of f since it is exactly the twisted product obtained by starting from the
G-torsor T f → P1

k of class f ∗ ◦ ηT = deg( f ) ◦α.
In order to compare degrees of line bundles on models of X above P1

k coming from different f of
the same multidegree δB, we need to find canonical isomorphisms between the Picard groups of these
different models. So we take f and f ′ to be two rational curves P1→B of equal multidegree δB. They
induce pull-backs T f , T f ′ and X f , X f ′ . Since T f and T f ′ have equal types and classes, X f and X f ′

are isomorphic as G-varieties. We get a commutative diagram of exact sequences

0 X ∗(G) PicG(X)⊕Pic(B) Pic(X ) 0

0 X ∗(G) PicG(X)⊕Pic(P1
k) Pic(X f ) 0

0 X ∗(G) PicG(X)⊕Pic(P1
k) Pic(X f ′) 0

(ι,−ηT )

(id,δB)

ϑ⊗π∗

f ∗X

(ι,−ηT f ) ϑ f⊗π∗f
≃∃!

(ι,−ηT f ′ ) ϑ f ′⊗π∗f ′

f ′X
∗

providing a canonical isomorphism Pic(X f )≃ Pic(X f ′).

6.2.2. Multidegrees of sections of X f → P1
k . Assume now that f : P1

k →B comes from a morphism
g : P1

k→X , that is to say, f = π ◦ g. Then we obtain the Cartesian square

X f X

P1
k B

fX

π f
⌜

πgσ

f

in which g induces a unique section σ : P1
k→X f such that g = fX ◦σ . We deduce from this square the

relations on degree maps

deg(g)= deg(σ ) ◦ f ∗X ,

deg( f )= deg(g) ◦π∗ = deg(σ ) ◦ f ∗X ◦π∗,
idPic(P1

k)
= deg(σ ) ◦π∗f .

Setting 6.4. Let L1, . . . , LrX be a family of line bundles on X whose classes form a Z-basis of Pic(X).
We fix a section s : Pic(X)→ PicG(X) by choosing a G-linearisation on each L i .
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From (6.2.20) and (6.2.21) one deduces the commutative diagram of exact sequences

0 Pic(B) Pic(X ) PicG(X)/ι(X ∗(G))≃ Pic(X) 0

0 Pic(P1
k) Pic(X f ) PicG(X)/ι(X ∗(G))≃ Pic(X) 0

π∗

deg( f )

ϖ̃

f ∗X
π∗f ϖ̃ f

where the arrow ϖ̃ f : Pic(X f )→ Pic(X)≃ Z is obtained from ϖ̃ by replacing ϑ by ϑ f and π by π f .
Furthermore deg(σ ) : Pic(X f )→ Pic(P1

k) induces by composition with s : Pic(X)→ PicG(X) and
ϑ f : PicG(X)→ Pic(X f ) a multidegree

δX (σ ) : Pic(X)→ Pic(P1
k)≃ Z

sending the class of a line bundle L on X to

deg(σ ) · (ϑ f ◦ s)([L])= deg(g) · (ϑ ◦ s)([L]).

If σ ′ is another section obtained in this way, that is to say, from another g′ and another f ′ such that
π ◦ g′ = f ′ and deg(g) = deg(g′), then deg( f ) = deg( f ′) = δB, and X f ≃ X f ′ . The following
commutative diagram summarises the situation and shows that δX (σ )= δX (σ ′)= deg(g) ◦ϑ ◦ s, which
is an element of Pic(X)∨ and will be denoted by δX (g):

s

0 Pic(B) Pic(X ) Pic(X) 0

0 Pic(P1
k) Pic(X f ) Pic(X) 0

0 Pic(P1
k) Pic(X f ′) Pic(X) 0

π∗

δB
deg(g)

f ∗X

ϑ◦s

υ f ◦s
π∗f

≃deg(σ )

π∗f ′

deg(σ ′)

f ′X
∗

By duality, from (6.2.20) we get an exact sequence

0−→ Pic(X )∨ (ϑ∨,π∗)−−−−→ PicG(X)∨⊕Pic(B)∨ −→ X∗(G)−→ 0,

which allows us to decompose a multidegree on X .

Lemma 6.5. Let deg(g)= (δG
X (g), δB(g)) viewed in PicG(X)∨⊕Pic(B)∨. Then the morphism

[L] ∈ PicG(X) 7−→ δG
X (g) · [L] − δX (g) · [ϖ(L)] ∈ Pic(P1

k)≃ Z

defines a cocharacter of G given by

χ ∈ X ∗(G) 7→ δB(g) · (ηT ◦ ι)(χ).
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Proof. We use again our favourite exact sequences to get the diagram

0 0

X ∗(G) X ∗(G)

PicG(X)⊕Pic(B) PicG(X)

0 Pic(B) Pic(X ) Pic(X) 0

0 Pic(P1
k) 0 0

(ι,−ηT ) ι

ϑ⊗π∗ ϑ
ϖ

π∗

δB(g)
deg(g)

s

δG
X (g)

δX (g)

from which one reads δX (g)= δG
X (g) ◦ s and δG

X (g)= deg(g) ◦ϑ .
Let L be a G-linearised line bundle on X . Since s is a section of ϖ , there exists a unique character

χ ∈ X ∗(G) such that
[L] = (s ◦ϖ)([L])+ ι(χ)

in PicG(X). Taking intersection degrees, we get

δG
X (g) · [L] = δG

X (g) · (s ◦ϖ)([L])+ δG
X (g) · ι(χ)

= δX (g) · ϖ([L])+deg(g) · (ϑ ◦ ι(χ))

= δX (g) · ϖ([L])+deg(g) · (π∗ ◦ ηT (χ)) (by (6.1.18) on page 955)

= δX (g) · ϖ([L])+ δB(g) · ηT (χ).

Hence
(δG

X (g) · ϑ − δX (g) · ϖ) : [L] 7−→ δB · ηT ([L] − s ◦ϖ [L])
lies in X∗(G). □

We reformulate these remarks in terms of moduli spaces of rational curves in the following section.

6.3. Moduli spaces of morphisms and sections. In what follows U is a dense open subset of B, U is a
dense open subset of X which is stable under the action of G, and Ũ is the intersection of the preimage
of U with T ×G U in X .

Let k ′ be an extension of k and f :P1
k′→Bk′ be a k ′-morphism given by a k ′-point x of Hom(P1

k, B)U .
As before, the morphism f defines pull-backs T f =T × f P1

k′ and X f =P1
k′× f Xk′ over P1

k′ . We fix once
and for all a representative TδB of the isomorphism class of T f , whenever δB = deg( f ) : Pic(Bk′)→
Pic(P1

k′), as well as a corresponding twisted product XδB . We have canonical isomorphisms TδB ≃ T f ,
XδB ≃X f and Pic(XδB)≃ Pic(X f ).
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Lemma 6.6. The schematic fibre Mx of

π∗ : Hom(P1
k, X )Ũ → Hom(P1

k, B)U

over the k ′-point x corresponding to f is canonically isomorphic to

HomP1
k′
(P1

k′, X f )U ≃ HomP1
k′
(P1

k′, XδB)U .

Proof. On the one hand, if we consider T -points of Mk′ , where T is a scheme over k ′, we get T -morphisms
g : T ×k′ P

1
k′→ T ×k′ Xk′ and the following commutative diagram:

XT ×BT P1
T XT

P1
T BT

prXT

pr
P1

T
⌜

πTg
(idT× f )

The product XT ×BT P1
T is the extension of scalars of X f to T, and the previous square is

T ×k′ X f T ×k′ Xk′

T ×k′ P
1
k′ T ×k′ Bk′

pr
P1

T
⌜

(id×πk′ )g∃!
(idT× f )

(6.3.22)

giving the existence of a unique T -section σ : P1
T → T ×k′ X f . On the other hand, such a T -section

defines a unique T -morphism g : P1
T → T ×Xk′ making the bottom right triangle commutative, that is, a

unique T -point of Mk′ . Thus the schematic fibre of π∗ at the k ′-point x corresponding to f : P1
k′→Bk′

is canonically isomorphic to HomP1
k′
(P1

k′, X f ) as a k ′-scheme. □

In particular, the previous argument shows that for every k ′-scheme T there is a map of sets

6δ(T ) : Homδ
k(P

1
k, X )(T )→ HomδG

X ◦s
P1

k
(P1

k, XδB)(T )

sending a T -point g : P1
T →X ×k T of multidegree δ ∈ Pic(X )∨ to the unique T -point σ of

HomP1
k
(P1

k, X f )≃ HomP1
k
(P1

k, XδB)

given by the dashed arrow in (6.3.22). Note that this construction is functorial in T, leading to a morphism
of schemes

6δ : Homδ
k(P

1
k, X )→ HomδG

X ◦s
P1

k
(P1

k, XδB).

From Proposition 1.30 on page 901 we deduce:

Proposition 6.7. Let s : Pic(X)→ PicG(X) be a section of the forgetful morphism ϖ . Then for any class
δ = (δG

X , δB) we have

[HomδX
k (P1

k, X )Ũ ] = [HomδB
k (P1

k, B)U ][HomδG
X ◦s

P1
k

(P1
k, XδB)U ]

in K0Vark .



Motivic distribution of rational curves and twisted products of toric varieties 961

6.4. Asymptotic behaviour. We assume that the motivic constants τP1
k
(X) and τP1

k
(B) are well-defined

in M̂k = M̂
w

k or M̂k = M̂
dim

k .

Lemma 6.8. The symbol τP1
k
(X ) is well-defined and one has

τP1
k
(X )= τP1

k
(X)τP1

k
(B)

in M̂k .

Proof. As abstract series, the equality τP1
k
(X ) = τP1

k
(X)τP1

k
(B) is a consequence of the multiplicative

property of the motivic Euler product given by Proposition 2.12. Indeed, by local triviality of the fibration,
one has the relation [X ×k P1

k] = [X ×k P1
k][B×k P1

k] in MP1
k
. Since τP1

k
(X) and τP1

k
(B) both converge

in M̂k , so does τP1
k
(X ). □

Theorem 6.9. Let X and B be two Fano-like varieties6 defined over the base field k. Assume that G is an
H90-multiplicative group7 acting on X and that every line bundle on X admits a G-linearisation. Let U
and U be dense open subsets respectively of X and B, with U stable under the action of G.

Let T be a G-torsor over B and
X = T ×G X

the twisted product8 of X and T over B. Let Ũ be the intersection of the preimage of U with T ×G U
in X .

Assume that the motivic Batyrev–Manin–Peyre principle for rational curves9 holds both for X and B

for curves generically intersecting U and U respectively, which means that

[HomδX
k (P1

k, X)U ] L−δX ·ω−1
X → τ(X),

[HomδB
k (P1

k, B)U ] L−δB ·ω−1
B → τ(B)

when d(δX , ∂ Eff(X)∨) and d(δB, ∂ Eff(B)∨) both tend to infinity, in M̂k = M̂
w

k or M̂
dim

k .
Assume furthermore that equidistribution of rational curves10 holds for X.
Then for δ ∈ Eff(X )∨Z the normalised class

[Homδ
k(P

1
k, X )Ũ ] L−δ ·ω−1

X

tends to the nonzero effective element

τ(X )= τ(X)τ (B) ∈ M̂k

when the distance d(δ, ∂ Eff(X )∨) goes to infinity.

Together with Theorem 5.6, we get the following.

6See Definition 1 on page 885.
7See Definition 6.1 on page 955. For example, take G to be a split torus.
8See Section 6.1 on page 954.
9See Question 1 on page 887, and more generally Question 2 on page 917.
10See Definition 4.3 on page 921.
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Corollary 6.10. Let X be a smooth projective split toric variety with open orbit U ≃ Gn
m and T →B

a Gn
m-torsor above a Fano-like variety B. Assume that the Batyrev–Manin–Peyre principle holds for

rational curves on B. Then it holds as well for rational curves on the twisted product X = T ×G X.

Proof of Theorem 6.9. Let δX = (δG
X , δB) ∈ Pic(X )∨ viewed in PicG(X)∨⊕Pic(B)∨. Fix a section

s : Pic(X)→ PicG(X)

of the forgetful morphism ϖ as in Setting 6.4. That is to say, fix line bundles L1, . . . , LrX forming a
basis of Pic(X) together with a G-linearisation on each of them.

Given a curve f : P1
k → B, we know from the previous sections that the isomorphism class (as a

scheme over P1
k) of the pull-back X f only depends on its multidegree δB and that it is a twisted model

of X over P1
k . In the beginning of Section 6.3, we chose once and for all a representative XδB of its

isomorphism class:
XδB X

P1
k B

⌜
π

This model comes with functors ϑδB so that ϑδB(L i ) is a twisted model of L i on XδB , and ϑ(s◦ϖ(ω−1
X ))

a model of ω−1
X . We fix δB and consider sections σ of XδB of corresponding multidegree

δG
X ◦ s : [L] 7→ δG

X · s([L])= δ · ϑδB(s([L])).
By Theorem 4.6,

[HomδG
X ◦s

P1
k

(P1
k, XδB)U ] L−(δG

X ◦s) ·ω−1
V

tends to τϑ(s◦ϖ(ω−1
X ))(Xδ) as d(δG

X ◦ s, ∂ Eff(X)∨) → ∞. Note that doing this we obtain a motivic
Tamagawa number with respect to the model ϑ(s ◦ϖ(ω−1

X )) of ω−1
X and that we can apply Lemma 6.5 to

get the relation

τϑ(s◦ϖ(ω−1
X ))(XδB)= L

δB · ηT ([ω−1
V ]−s◦ϖ [ω−1

V ])
k τϑ(ω−1

X )(XδB)= L
δB · ηT ([ω−1

V ]−s◦ϖ [ω−1
V ])

k τ(X).

By Proposition 6.7 we have the equality of classes

[Homδ
k(P

1
k, X )Ũ ] = [HomδB

k (P1
k, B)U ] [HomδG

X ◦s
P1

k
(P1

k, XδB)U ].
Moreover, the expression

ωX = ϑ(ωX )⊗π∗(ωB)

and the projection formula provide the decomposition of anticanonical degrees

δ · ω−1
X = δG

X · ω−1
X + δB · ω−1

B

= (δG
X ◦ s) · ϖ [ω−1

V ] + δB · ηT ([ω−1
V ] − s ◦ϖ [ω−1

V ])+ δB · ω−1
B

so that the normalised class
[Homδ

k(P
1
k, X )Ũ ] L−δ ·ω−1

X
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is the product[
HomδB

k (P1
k, B)U

]
L−δB ·ω−1

B × [
HomδG

X ◦s
P1

k
(P1

k, XδB)U
]

L−(δG
X ◦s) ·ω−1

V L−δB · ηT ([ω−1
V ]−s◦ϖ [ω−1

V ])

of well-normalised classes, as expected.
To conclude the proof, we use [17, Théorème 2.2.9] ensuring that under our assumptions we have

Eff(X )∨Z = ϑ(EffG(X))∨Z ⊕π∗(Eff(B))∨Z

in PicG(X)∨⊕Pic(B)∨. Hence the condition d(δ, ∂ Eff(X )∨)→∞ means

d(δG
X , ∂ EffG(X)∨)→∞ and d(δB, ∂ Eff(X)∨)→∞,

the first of these two conditions implying d(δG
X ◦ s, ∂ Eff(X)∨)→∞ by Lemma 6.5 for δB fixed. The

result follows by continuity of the multiplication. □
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