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We generalise a result of Montgomery and Vaughan regarding exponential sums with multiplicative
coefficients to the setting of Weyl sums. As applications, we establish a joint equidistribution result for

roots of polynomial congruences and polynomial values which generalises a result of Hooley. We also
obtain some new results for mixed character sums.
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1. Introduction

Let A > 1, and let f be a multiplicative function satisfying | f(p)| < A for any prime p and also
>N | £(n)|*> < AN for all natural numbers N. For « € R, set

S(@):= Y fne(an),
1<n<N
where e(x) = exp(2mix).

These sums appear to be considered first by Daboussi [1975], who showed that if |« —a/q| < 1/4°,
(a,q)=1and 3 < g < (N/log N)!/?, then
S —’
@< (loglog ¢)'/?

with the implied constant depending only on A.
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This result was improved by Montgomery and Vaughan [1977, Corollary 1] who show that, assuming
lo —a/q| <1/q* (a,q) =1and2 < R < g < N/R, we have

N N (log R)3/?
n (log R) ' (1)
gN R1/2

S(a) K
lo

We refer the reader to [Montgomery and Vaughan 1977, Section 7] for a demonstration that the term
N/log N is sharp.

The optimal dependence on R in (1) is an open problem and has been the subject of several works (see

for example [Bachman 2003; de la Breteche 1998]), and it is expected the estimate (1) may be improved to

N N

S(Ol) <<@+W. (2)

Recently, de la Breteche and Granville [2022] have studied in detail the sums S(«) on major arcs.

Their estimates suggest the following conjecture (see [de la Bretéche and Granville 2022, Equation 1.4]):

Sa) K€ N + N )

logN = ¢'2(1+|Blx)

We also note that [de la Bretéche and Granville 2022] contains some nice applications to circle method-type

a
(1:5"‘}3, (a’Q):l

problems.

The estimate (1) has important applications to Dirichlet L-functions. Montgomery and Vaughan [1977]
have shown how it may be combined with the generalised Riemann hypothesis (GRH) to obtain a sharp
upper bound for Dirichlet L-functions at the point s = 1. One may also combine (1) with estimates for
short character sums to obtain unconditional variants of Montgomery and Vaughan’s result. We refer the
reader to [Granville and Soundararajan 2007; Hildebrand 1988b; 1988a] for progress in this direction.

Since the work of Montgomery and Vaughan, exponential sums with multiplicative coefficients have
appeared in a number of different contexts, and a variety of techniques have been developed to facilitate
the reduction to bilinear forms. Some examples include work of Karatsuba [2010] on short Kloosterman
sums, which has been refined by Korolév; see for example [Korolév 2018]. Katai [1986] and Indlekofer
and Katai [1989] have considered more general functions in the exponential factor. Bourgain, Sarnak and
Ziegler [Bourgain et al. 2013] have established a finite version of Vinogradov’s bilinear sum inequality.
Gong and Jia [2015] have considered shifted character sums with multiplicative coefficients and Korolév
and Shparlinski [2020] dealt with sums over trace functions with multiplicative coefficients.

In this paper, we revisit the approach of Montgomery and Vaughan and generalise it to the setting of
sums of the form

> fme(F(n)), 3)
n<N
where F is a polynomial with real coefficients and f is a multiplicative function satisfying
fpy=0), Y Ifml=0W), Y |fm=0(NdlogN)*)

n<N n<N
for any A > 0.
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Problems of this sort have previously been considered by Jiang, Lii and Wang [Jiang et al. 2021],
showed that one may replace an assumption on the £, norm,

Yo IfmIP <N,

n<N
with an assumption of the form

h N
lfFINfP+ < —= .
Ig\, ¢ (h) (log N)?
p prime

1551

who

Such a relaxation is significant in the context of GL,, L-functions in the absence of progress towards the

Ramanujan conjectures.

Matthiesen [2018] considered sums of the form (3) over polynomial nilsequences with slightly weaker

conditions on f than Montgomery and Vaughan. These results were later applied to linear correlations of

multiplicative functions [Matthiesen 2020]. We also mention [Matoméki et al. 2023], which considers

exponential sums with multiplicative functions over nilsequences on average over short intervals.

2. Main results
Theorem 1. Let A > 0 and ¢ > 0 be real numbers and f be a multiplicative function satisfying

|f(p)| < C foreach prime p,

> 1fm)l =0,
n<N
Y 1 = O(N(log N)*).

n<N
Let F be a polynomial of degree d > 1 with real coefficients given by
F(x) :ozdxd+~--+a1x.

Let R > 1, and suppose there exist integers £, a and q, with 1 < g < R, 1 <£<d, (a,q)=1and
1

R_q'

Write C = A/(2r). Then, for anyr > d(d + 1), we have

2
cf 4 VG 1/¢51/2
+ (log N) —N[—I-g +(NRV/")=,

a
-2
q

S FmetFm) < N<

1<n<N

1
(log N)!=¢

where the implied constant depends on A and r. In particular, if we suppose that

(log ) < g < — e
s ST Gog Ny

then

Y fme(Fn) <

1<n<N

N
(log N)!=¢~

“)
&)

(6)

(N
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To demonstrate the precision of the above estimate, in Section 10 we prove that, for any polynomial F
and integer N, there exists f = fFr n such that

> f(n)e(F(n))‘

1<n<N

10log N gN

The proof of Theorem 1 follows the outline of [Montgomery and Vaughan 1977] and starts with a
combinatorial decomposition of multiplicative functions based on Mobius inversion. This reduces the
problem to estimating bilinear forms over polynomials with summation restricted to points under the
hyperbola. We then use Montgomery and Vaughan’s partition of the parabola into disjoint rectangles to
which techniques related to the Vinogradov mean value theorem may be applied. It will be fundamental
to develop a version of the Vinogradov mean value theorem for primes in large translated intervals; this is
Lemma 10. We should note that we introduced the general condition (6) with the aim of using Theorem 1
in the proof of Theorem 2.

3. Applications

3.1. Joint equidistribution. As an application of Theorem 1, we prove a joint equidistribution result.
Throughout this section, we let p € Z[x] be irreducible over Q of degree ¢ > 2, and we consider the
ratios v/n, where the v are the roots of the polynomial p modulo #:

p(v) =0 mod n.

Consider the sequence (gx)r>1 of these ratios, defined in such a way that the corresponding denominators
are in ascending order. Hooley [1964, Theorem 2] proved that this sequence is equidistributed in R/Z.
We now let

F(x)=ax+--+agx? e R[x] withd >1
have an irrational coefficient and define

A(F, p) = 8k, F(n)i=1,
where g, is as above and 7 is taken so that
gr=v/n, p)=0modn.
We prove the following result.
Theorem 2. The sequence A(F, p)y is equidistributed in (R/ 7)?.
This indicates that the sequence (F(n)),>1 is somehow not correlated with the sequence (g,),>1-
3.2. Mixed character sums. We next explain how Theorem 1 is related to sums considered in [Enflo

1995; Chang 2010; Heath-Brown and Pierce 2015]. Theorem 1 implies large exponential sums must
correspond to pretentious multiplicative functions.
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Corollary 3. With the notation and conditions as in Theorem 1, suppose further that f is completely
multiplicative. Let r > d(d + 1), and suppose that

N
> f(n)e(F(n))‘ > Tog N) A/

1<n<N

There exists an integer
< (log N)d(4r2+4rA)

and a multiplicative character  mod £ such that

Y fme(Fm) < (og N)* 4 max |3 "y (n) f (n)
1<n<N S
Corollary 3 implies one may bound character sums mixed by polynomials by reducing to pure character
sums; we refer the reader to Section 8 for more precise results. It is worth mentioning that, by combining
Corollary 3 with Haldz’s theorem, it’s possible to show that sums satisfying the conditions of Corollary 3

must be pretentious in the sense of [Granville and Soundararajan 2007].

Corollary 4. Let F(n) be a polynomial of degree d with real coefficients and x a primitive character
modulo q. Suppose that § and € satisfy

max Z Y(n)x(n)| < Ng—¢ provided N > ¢°.
< (logq)'0* 1=
¥ mod £
usN
Then we have N
: 5
Z x(n)e(F(n)) < (log N) - 1/@@+1) provided N > q°. (8)

n<N

In particular, estimate (8) holds under the following conditions:
« for arbitrarily small § assuming the generalised Riemann hypothesis,

e foré = % and an arbitrary integer ¢, which follows from the Burgess bound; see for example [Iwaniec
and Kowalski 2004].

Let &€ > 0 be small. Enflo [1995] has previously established that, if g is prime,

> xme(F(m) < N'™°,  provided N > ¢'/**¢,
n<N
and we refer the reader to [Chang 2010; Heath-Brown and Pierce 2015] for quantitative improvements on
Enflo’s result. Chang [2014] has shown
> xme(Fm) < N'™°,  provided N > ¢*,
n<N
provided q is suitably smooth/powerful.
Corollary 4 provides some new instances where one may bound mixed character sums nontrivially.
We refer the reader to Section 8 for more details.
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4. Preliminary results

4.1. Reduction to bilinear forms. We proceed in a similar fashion to [Montgomery and Vaughan 1977,
Section 2], which reduces the proof of Theorem 1 to bounding bilinear forms under the hyperbola.

Lemma 5. Let f be a multiplicative function satisfying the conditions of Theorem 1, F be any real-valued
function and € > 0. Then, for any integer N, we have

> fme(F@m)

1<n<N

< Y. ff(p)og ple(F(np))|, ©)

1<np<N

(log N)!—¢ log

Proof. We follow the argument from [Montgomery and Vaughan 1977, Section 2] with some modifications
to deal with the condition

S 1P < Nlog M)A,

n<N
Consider
S=Y " f(m)e(F(n)log(N/n).
n<N
Since

S=logN Y fme(F(n)— Y f(n)(ogne(F(n)),

n<N n<N
it is sufficient to show
S < N(log N)* (10)
and
37 faytogmeFm) < | Y f(n)f(p)(iog p)e(F(np))‘ +N(log N)°. (11)
n<N 1<np<N

Let r be a large real number, and apply Holder’s inequality, (5) and (6) to get

2r—2
S < (Z(log(N/n»z’) (Z If(n)lz) (Z If(n)|> < (Z(log(N/n»z’)N”—laog N

n<N n<N n<N n<N
Since )
sl
2r J
D (ogN/m)¥ < 3 ¥ 3 1N - <N,
n<N J N/2it1<ng<N /271 jz1
1S27KN

we obtain (10) after taking r sufficiently large. Since

logn =Y A(d),
din
we have
3" Fmogme(Fm) =Y Am)f(nm)e(F (nm))
n<N nm<N

> A(m)f(n)f(m)e(F(nm))+0( 3 A(m)lf(nm)—f(n)f(m)l)-

mn<N mn<N
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Using (4) and (5),

k
D AGm)f(n) f(m)e(F(nm)) = > (log p) f (p) f (n)e(F (np)) + O(NZ > / (’i )')
mn<N pn<N k=2 pk<N p
= ) (og p) f(p)f(m)e(F (np)) + O(N),
pn<N
where we have used the Cauchy—Schwarz inequality and (6) to estimate
Z Z |f(P )| (ZZ 08k>(2 |f(”)| )20(1).
k=2 pk<N k=2 p
Hence it remains to show
> A@m)|f(m) — f(n) f(m)| = O(N(log N)°). (12)
mn<N
From (5),
DO AmIfam)— ffmI<d D> D> IO+ (P )l
mn<N k=1 pk<N n<N/ p*

pln

YYD UFEEDIHIFEOIFPHDIf )]

k,j>1 pk+j<Nn<N/pk+j
(n,p)=1

k ket
<N Y LFPONFPDI+I1f(p ’)I

pk+j

and after applying the Cauchy—Schwarz inequality, (6) and partial summation over p, k and j as above,
we establish (12) and complete the proof. O

We require a generalisation of [Montgomery and Vaughan 1977, Section 3] for multiplicative functions f
satisfying (6).

Lemma 6. Let the notation and conditions be as in Theorem 1. Suppose s is a parameter and, for each

0<i<log, N, write

Ji=min(i + 1, [logy N| —i + 1, [log, 3(64N/s) |). (13)
We partition the hyperbola into rectangles
; N N .
=(0,2"] x F,E , 0<i<log, N, (14)
and
2i+i pitj+l (k—1)N (2k—1)N . .
S = i 1 Yt J
Rijk (k ’2k—1]x( S ] 0<i<log, N, 1<j<Ji, 27'<k<2l. (15)

Then each R; j x is a rectangle of the form (P, P'l x (N, N'], with P, P', N, N' satisfying
P—P>1, N-N>=i (PP—P)N —N)>s.
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Let £ denote the set of points (p, n) satisfying 1 < pn < N with p prime which do not lie in any of the
rectangles (14) or (15). Then, for any fixed € > 0, we have

Y F(p)(log p) f(me(F(np)) < (log N)*(N + (Ns)"/*log(2N /s) logs).
(p,n)e€
Proof. Our proof is similar to that of [Montgomery and Vaughan 1977, Section 3] with some minor
modifications. Recall that £ denotes the set of points (p, n) satisfying 1 < pn < N with p prime which
do not lie in any of the rectangles (14) or (15). We write the partition

E=EUEUE,
where
N N )
& = (p,n)eE:pngN,F<n<;,],->z+l,
N N .
&= (p,n)eE:pngN,F<n<E,J,-=Llog2NJ—l+l ,
N N 1
&= (P,")€53P”§N’ﬁ<n§5, Ji=L§10g2(64N/S)J )

which allows us to bound

> f(p)og p) f(m)e(F (np))

(p,n)e€

< Y IFWIfllogp+ Y 1fIf@llogp+ > 1£(p)IIfm)logp.

(p,n)e& (p.n)e&r (p.n)e&s

Consider first summation over £;. We apply Holder’s inequality twice; first with the exponents
(2r, 2r/(2r — 1)) and second with the exponents (2r — 1, (2r —2)/(2r — 1)). Together with (4), this gives

2r 2r—2
( > If(p)llf(n)llogp) <<( > If(n)l) ( > If(n)lz)( > (logp)”)

(p,n)e& (p.n)e& (p,n)€e& (p.n)e&
For each prime p,
N
#{n:(p,n)e&} K ?,

so that
)2r

Y (ogp)” < NZ (lo kP «N.
(p.m)e&

For each n e N,
#p:(p,n)e&i} K1,
and hence, by (5) and (6),
DMLY IFWIKN, Y IfmPF <) 1f ) < Ndog N)*.

(p,n)e&; n<N (p.n)e&; n<N
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Taking r sufficiently large, the above estimates combine to give

> 1FIIf(m)]log p < N(log N)©.

(p.ne&

Consider next &. By the Cauchy—Schwarz inequality,

2
( > 1 IIfm)]log p) < Y IfmPF > (ogp).
(p.n)e&s (p.n)e&s (p.n)e&s
If (p,n)e& thenn <K N 172 and, for fixed n, there exists some H such that
{p:(p.,n) €&} C[H, H+N/n?].
Hence, by Holder’s inequality and the Brun—Titchmarsh theorem, we get

fP ) v
Y IfDIIfm)llog p < (N > W> ( > <1ogp)2) .

(p,n)e& n<N1/2 (p,n)e&

Note by (6) and partial summation,

| f(n)? N2 ) 1 N (logt +2)4 1
2 Tiog 4N <</1 (,;,'f ™) >z3<log<4N/r>>2 a <</1 2aog@n/0) I lGog Ny’

n<N1/2

For each p,
#n:(p,n)e&Hkl,
so that

3 (ogp)? < D (log p)? < NlogN.
(p.n)e& p&KN

The above estimates combine to give
Y IfIIfmllogp < N.
(p,n)€&s

Finally consider &. By Holder’s inequality,

2 2r—1 1
(Z If(p)llf(n)llogp> <<( 2. |f<n)|2’/(2’+”logp) ( 2 ng)-

(p.n)e&s (N/V2<n<(Ng) /2 (N/@)'2<p<(Ng)'/? p

If (p, n) € &, then

172
(5) <p < (Ns)'2,
S

and, for each p, there exists some H such that

{n:(p,n)e&) C[H, H+O(Ns)*/p)]
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and, for each n, there exists some H such that
{p:(p.n) €&} C[H, H+O(Ns)?/n)].

Using the Brun-Titchmarsh inequality, we see that

2r
( > If(p)llf(n)llogp>

(p.n)e&s
<<<Ns>”2( > If(n)|2’/<2r+l>M)2r_l( 5 logp).

2
(N/)'2<n<(Ns)12 nlog @Ns/n7) (N/$)'2<p<(Ns)'2 P

We have

lo
Z 0eP < logs,
(N/s)12<p<(Ns)1/2

and Holder’s inequality combined with (5) and (6) gives

( Z | F ()@ D log (2N /n) >2r_1

2
(N /5) e (N1 nlog (2Ns/n?)

2r—2 2
Sl (D DI CL1 R (D S

(N/$)12<n<(Ns)1/2 (N/$)1/2<n<(Ns)l/2
< (log(2N /5))* "' (log N)* (log s)* ",

which, after taking r sufficiently large, results in

Z |f (P fm)|log p < (Ns)!/*(log N)*(log s) log (2N /s). O
(p,n)eé&s

5. Sums over bilinear forms

5.1. The Vinogradov mean value theorem. Given integers r, d and V, we let J, 4(V) count the number
of solutions to the system of equations
1 r U1 2r =Y SIS
with variables satisfying
lgvl,...,vygv.
We will use a consequence of Bourgain, Demeter and Guth’s work on the Vinogradov mean value theorem;

see [Bourgain et al. 2016, Section 5].

Lemma 7. Assume d > 2 andr > d(d + 1). Then we have

Combining Lemma 7 with the fact that the Vinogradov system is translation invariant, we obtain the
following.
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Corollary 8. Letd > 2, r > d(d + 1) be integers and M (k), 1 < k < K, be disjoint intervals satisfying
M(k) = (M'(k), M"(k)], M"(k)—M'(k) <Y.
Then the number of solutions to the system of equations

ni+—nl =0, neMk), 1<k<K, (16)
is bounded by

We will also require an estimate for the number of solutions to the Vinogradov system with prime
variables in translated intervals; here it will be fundamental that the intervals will not be too short. To
obtain such a result we need the following intermediary lemma that follows directly from [Hua 1965,
Theorem 10]. Here it appears clear why it is important that the intervals we work with are quite large
compared to their starting point. For convenience we set L = log P.

Lemma9. Let0 < Q <c1(k)L°, X > 1 and

SX.Py= > e(f(p),

X<p<X+P
p=t mod Q

in which
X

P -
> Tog X)M

forany M > 1 and
fx)= gxk+0t1xk_1 +oto, (hg)=1,

the numbers oy, ..., aq—1 being real. Suppose that L° < q < PkL=°. For arbitrary oy > 0, when
o <2%(op 401+ 1), we always have

IS(X, P)| < Cz(k)w-

This lemma allows us to prove the following estimate for the number of solutions to the Vinogradov
system with prime variables in large translated intervals.

Lemma 10. Let d > 2 be an integer and X, Y > 1. If r > d(d + 1), the number of solutions to the
equation

Pl =ph =0, 1<j<d, Y<p<Y+X X>»

X 2r—d(d+1)/2
0 asE———— I
< (log X)?r )

with the implied constant depending on r and C.

Y .
(log—Y)C’ pi prime,

for any C > 1 is bounded by
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Proof. The result follows in a straightforward way from [Hua 1965, Theorem 16] redefining in part (1)

S, .oy ) = Z e(f(p)), f(X)IOtdxd+---+a1x,

Y<p<Y+X
and introducing the two following changes which account for the translation in the set of primes and
optimising the range of r in Hua’s result: In part (3) of the proof we use our Lemma 9 instead of [Hua
1965, Theorem 10]; this is possible as s; in [Hua 1965, Lemma 10.8] is of arbitrary size. While in part (5)
of the proof we need to substitute [Hua 1965, Theorem 15] with [Bourgain et al. 2016, Theorem 1] for
d > 4 and [Wooley 2016] for d = 3. Doing this we need to be careful to isolate, in [Hua 1965, p. 144],
1S (o, . .., ap)|99tD=¢ instead of |S(a, ..., 1) ! and, in [Hua 1965, p. 145], |S(ax, ..., )" "¢
instead of |S(a, ..., a1)|*". Here € > 0 is chosen so that s = d(d + 1) + 2e. U

5.2. Bounding bilinear forms. It is well known that one may use Lemma 7 to estimate bilinear forms
with Weyl sums over rectangles. We next show how one may obtain sharper results by averaging bilinear
forms over a family of disjoint rectangles.

Lemma 11. Let F € R[X] be a polynomial of degree d > 2 of the form
F(x) =ozdxd+--~+a1x.

Let M and N be integers and a(n) and B(m) two sequences of complex numbers satisfying

Bm) <1
and
D leI <N, Y e’ < N(og N)* (17)
n<N n<N
for A > 0. For 1 <k <K, let
R(k) = L(k) x M(k) (18)

be a rectangle of the form
L(k) = (Q'(k), Q" (k)],  M(k) = (M'(k) x M" (k)]
such that L(k) € (0, Q), with Q > 1, are disjoint and satisfy
0" (k) — Q'(k) < X (19)
or
Q' (k)

(log Q' (k)¢

and M(k) € (0, M] are disjoint and satisfy

< Q"(k)—Q'(k) < X, (20)

M"(k)y—M'(k) <Y, M"(k)<2M'(k)

and K < M. Let I denote the sum

K
I=Y" > amB(pe(Fnp)). 1)

k=1 (p,n)eR(k)
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Let R > 1, and suppose there exists ¢ < R and 1 < € < d such that

1
< — 22
7R (22)

a
oy — —

for some (a,q) = 1. Forr > d(d + 1), we have

X 452 M dd—1)/2 0 dd—1)/2
14}’2 X 1 MQrAM4}’2 - . =
<m(X)(log M) log X 7 X

q 1 1 1
X <XQ£—1YMZ—1 + XQZ—] + Y M1 +c_]>’
where
(log X)* when (19) holds,

m(X) = {
1 when (20) holds,

and the implied constant depends on C.

Proof. Recall
F(x) =agx? +-- +ax,

and define
Sk= Y. ampB(pe(F(np)), (23)
(p,n)€R(Kk)
so that
K
[ = Z Sk. (24)
k=1

Fix some 1 < k < K and consider (23). Recalling (18), by Holder’s inequality, for any integer r > 1,

2r\ 1/(2r)
Skg( ) ) |

1-1/@2r)
|a(n)|2r/(2r—1)) ( Z
neMk) neMk)
2r

> B(p)e(F(np))

peL(k)

After another application of Holder’s inequality,

2r—1
12r < ( Z Z |a(n)|2r/(2rl)) Z Z

1<k<K neM(k) 1<k<K neM(k)

> B(pe(F(np))

peL(k)

Hence, from assumptions on the M (k),

2r—1
IZr < (Z |a(n)|2r/(2r—l)> Z Z

n<M 1<k<K neM(k)

2r

> B(p)e(F(np))

peL(k)

’

which combined with (17) implies that

12}’ < er—l(logM)A Z Z

1<k<K neM(k)

2r

> B(p)e(F(np))

peL(k)
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Write A = (Aq, ..., Ag), and let J; (1) count the number of solutions to
pl4+-—pl =k, 1<j<d, pieLk), p;prime.
Note by assumptions on L(k), if the py, ..., pa € L(k) satisfy
Pl +o - Pér Ajs

then
A< X0
Expanding the 2r-th power and interchanging summation gives
17 < M7 '(log M)A Z Z Je (V)
I<k<K A

Aj<X Qi
1<j<d

Z e(adkdnd+---+a1k1n) .
neM(k)

After another application of Holder’s inequality, we get

2r—2
I*" <« M*"~¥ (log M)Z’A< Z ZJ,J)»)) ( Z Z-Ik()»)Z)

I<k<K A 1<k<K A

2r
X Z Z Z e(ad)»dnd+---+oc1)»1n)
1<k<K )\j<<XQ«f’1 neM(k)
1<j<d
We have
YoM Y P par € LK)

1<k<K A 1<k<K

Since, for each 1 < k < K, L(k) is an interval of length at most X, the Brun—Titchmarsh theorem

implies
> YA < o
1<k<K X
The term
D 2w’
1<k<K A

counts the number of solutions to the system of equations
pl4-—pl =0, 1<j<d, pieLk), p;prime, 1<k<K. (25)
By Corollary 8, ignoring the condition that p; is prime if (19) holds and using Lemma 10 when (20)

DD G < Kmi(X),

I<k<K A

holds, we get

where
X4 —d@d+D/2 \when (19) holds,
mi(X) = { x4r—dd+1)/2

(og X)¥ when (20) holds
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since r > d(d + 1). Combined with the observations above, this implies

4r
4r2 4r2-2r 2rA -2r—1 X IO
I <m(X)M (log M) K (log X) SO (26)
where
2r
Z Z Z e(ad)»dnd+---+alk1n)
1<k<K )»j<<XQj’1 neM(k)
1<j<d
Let
sin T x\
- (22
TX
so that
S(x) = max{0, 1 — |x|} (27)
and

Sy > 1 if x| < L.
There exists a constant ¢y such that

e XX Ts(5es)

1<k<K ) ; <<XQJ 1 ez
1<j<d
j#e

Expanding the 2r-th power and interchanging summation,

Ih < Z Lk(,u)l_[ Z e(ajim;)

2r

Z e(aghgn’ +- -+ a1iin)
neM(k)

’

Ao
Z S<XC;,Z l)e(aewe)

1<k<1§ _] 1 'rxQi-1 reZ
wj<KYNI! J#L
where u = (1, ..., g) and L; () counts the number of solutions to

Using that
Li(n) < Li(0)
and applying Corollary 8, we obtain

Iy < Ky2—d@+n/2 Z 1—[

j=1
u,<<YMf Ve

Z e(ajkuj)

rkX Qi1

CoA
Z N (m)e(az)vﬂe)

rezZ

Combining the inequality above with (26), we have

4r
4r? Ay art( X Iy
I < m(X)(log M) M <10g X) XTdan (28)

where

= X1

pj<ymi—t j=1
J#L

Z e(ojApL;)

rX Qi

1 S( = l)e«xewo

reZ
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In I;, we bound every term trivially except the one with index £ to obtain

e (Y (XY L1 5 S Y
1 M Q XQZ—] Y Mt-1 Xqé—l eAHe))-

nLYM-1 thez

(29)

By Poisson summation,

-1 =10y _
ZS( ng 1>e(am) X0 ZS(XQ (A am)>,

C C
reZ 0 reZ 0

and hence from (27)

=10y _
Z ZS( X0 l>e(azu)»)‘<<XQel Z Zmax{Ol—‘ Q@ OWL)}

C
nLYM-1 ez uLY M- AeZ 0

< XQ€71

There exists some real number 8 such that

1. 100co yme!
uLYM™ ol < | < |1+ .

XQZ 1
YMZ—l
(1 + ) HO SH<q
q
which implies that

n <K YM“:IIozeulléM < HYMZ_1 1+ 1 ,
XQE—I q XQZ—I

oA =1y prl—1 1 1 q
ZS<%)€(WMM) LKXQ0'rm 7= +5 1+XQ5—1 .

reZ

ey - 100c¢q
m <K ol <

XQE—I

100c¢
{0<M<qtllam+ﬂll< }

X Qé—l
Recalling (22),

<YM ) < 2000 | o
1 S =

100co 1 } ‘

ap
q ﬁ” X!

and hence

2.

uLY M1
Combined with (28) and (29), this gives

X 4r? MA\E@d=D/2 0 d(d—1)/2
14}’2 X 1 M 2rAM4r2 o _ =
<K m(X)(log M) log X v X

q 1 1 1
X (XQE—IYM(—I + XQ(Z—I + YME—I +;) 0
6. Proof of Theorem 1

We apply Lemma 5 and Lemma 6 with

_ g/
(log N)*

to get

N 1/6y1/2 i i .
Y fme(F(n) < Gog Nyis T (Va1 > eyt > vy > S

1<n<N 0<i<log, N 0<i<log, N 1<j<J;
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where

log p
Si= ) — P feF(pn)
(p.n)ER;
and

I
Si= > Y 2L i) fmeEpny.

2i-1<k<2i (p,n)€R; jk

Note if (p,n) € R; or (p,n) € R; j « then

lo
f” <1

By Lemma 11, observing that in this case condition (20) holds, we have

. 2
N{gq 1 i 1\ @)

. A/@r) 4=
S; <« (log N)/r i(N‘3+2“+N+q> ,

which implies that
2
i N q 1\
Y ——5 <<ﬁ<1+10gN(—+—) : (30)
—A/@2r) ¢
0<i <logy N log N (log N) r N q
Consider next the sums S; ;. We apply Lemma 11 with parameters

k=27 Mzg’ Q=2 Xx=2"/" y=32N27"

We first focus on the case when j > log i€ for a fixed ¢ >> 1. Here we use Lemma 11 with condition (19),

N g 1 2iNE 1/(4r?)
Sij < W(W T (ﬁ) * ;)

for some ¢; > 1. For fixed i < log, N, recalling that J; is given by (13), we have

N(q 1  (2\ 1\/¢
Z Sij <K ;(W+ﬁ+<ﬁ> +—) )

logic<j<J; q

1 o(q 1 [2)\f 1\/¢D
> (et (3) )

logic<j<J; i<log, N

which easily gives

and hence

' N
YooY s« e N

log N
0<i<log, N g

Write C = A/(2r). We then focus on the case when j <logi¢. Here we use Lemma 11 with condition (20),
which easily gives

1 N AT A T
Sij < (i—j+1)—=C 2j(1d(dl)/(4r2))( Nt T on 2 (N> " Q> ’
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with the implied constant depending on the fixed real number c. For i < log, N, we have

T s e (4 L2y
LJ i1I=C\ N¢ 2L N q ’

1< j<logic

and hence 5
i N g 1 20\t 1\l/¢é
Y oy X <y X (e (3) +)
0<i<log, N IOgN 1< j<logi¢ IOgN i<log, N N 2" N q
<N 1 qllog N)° | (log N)°
(log N)! =€ N¢ q '

Combining the above estimates, we complete the proof.

7. Proof of Corollary 3

Suppose
Fx)=a1x+--- —I—ozdxd.

By Dirichlet’s theorem, for each 1 < ¢ < d, there exists integers r, and sy, with (r¢, s¢) = 1 and
N
such that
r . (log N)4r2+4rA

a —_—
‘ qeN*

S
By Theorem 1, we may suppose, for each 1 < € < d,
5o < (10g N)4r2+4rA‘

By partial summation, we have

>~ fme(Fm)| < (log N+ max T (),
n<N s
with
Tw):=)_ f(me(Fi(n)
n<u
and
Fi(x):= r—dxd+---+r—1x.
Sd S1
Defining k :=lcm(sy, ..., s1), we have
T()=_e(Fi(a))S(a),
a<k
with
Say:=Y_ f.
n<u

n=a mod k
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Let e = (a, k), and write

a = C_l’ kK = ]i’
e e
so that
Say= Y fm= > flen),
n<u n<u/e
n=a mod k n=a’ mod k’

n=0 mod e

which after expanding into multiplicative characters gives

sw= Y fo=22"% g@) Y v,
d)(k) Y mod &’ n<u/e

n<u
n=a mod k
n=0 mod e

where we have used the assumption that f is completely multiplicative. Hence

Yool v fm

¥ mod k' 'n<u/e

1S(a)] <

1
¢ (k')
Thus, observing that

k=lem(sg, ..., s1) < 1_[ si < (log N)d@r+ard)
1<i<d
we conclude the proof. -

8. Short mixed character sums

We next use Corollary 3 to show how one may estimate short mixed character sums assuming GRH.

Corollary 12. Assume the GRH, and let ¢ > 0. Uniformly over all primitive characters x mod q and
polynomials F of degree d with real coefficients, if N satisfies

log N > Blogloggq (31)

for a suitable fixed constant B depending only on ¢, then

> x(n)e(F(n))‘ <3

—.
hor ogN)'—¢

We need the following lemma on convolution of Dirichlet characters, which follows from Theorem 2 in
[Granville and Soundararajan 2001] and Corollary 1.3 in [Hildebrand and Tenenbaum 1993], remembering
that there they have u =logx/log y.

Lemma 13. Let x be a nonprincipal character modulo q. Assuming the GRH, for any x such that

log x
loglogg ~
for a sufficiently large constant B, we have
Jogx
—(1+()(1))w
Z x(n)| K x(loggq) 2(loglog q)

n<x
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We can thus prove Corollary 12 in a similar fashion to [Hildebrand 1988b, Lemma 3] and [Kerr 2020,

Lemma 7].

Proof of Corollary 12. Clearly we may suppose

Zx(n)e(F(n))‘ >3 N

n<N 0g N)l_g ‘
Let k be as in Corollary 3. h

For any i with modulus smaller than or equal to k£, by Lemma 13, we have

log N
—<1+o<1>>logmog(”"glggq)
<K N(logg) 2(loglog )

max
usN

> Y mxm)
n<u

Therefore, by Corollary 3, taking r large enough in terms of ¢,

log N
log N 10g<72 Tog log q) N
2(loglog q)2 <« —. O
(log N)!—¢

—(14o(1))

> x(n)e(F(n))’ < N(logx)* (log g)

n<N
9. On the correlation between roots of polynomial congruences and polynomial values

We now prove Theorem 2. Let p € Z[x] be irreducible over Q of degree ¢ > 2, and consider the ratios v/n,
where v are the roots of the polynomial p modulo n. In particular, v and n satisfy

p() =0 mod n.

Define the sequence (gx)r>1 of these ratios in such a way that the corresponding denominators are in
ascending order.
Hooley [1964, Theorem 1] proved that (gx)x>1 is equidistributed in R/Z. Even stronger than that, he

| hv
im L)y (_)‘ 0 32)
n<x veZ/nZ
p()=0 mod n

showed

for every h € Z\{0}. To prove Theorem 2, by the Weyl equidistribution criteria, it suffices to prove that,
for any (h1, hy) # 0, we have

h
S etmFn) Y e(%):o(N).

n<N veZ/nZ
p(v)=0 mod n

If hy # O this is true by (32). Thus, the only cases that need to be considered are 4y = 0 and h; # 0. If
we let
om)={veZ/nZ: p(v) =0 modn}|, (33)

then the problem is therefore to show that

E o(m)e(F(n)) =o(N).
n<N
We first prove some properties of g.
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Lemma 14. The function o is multiplicative and satisfies the following:
(1) Foralle > 0, o(n) < n® forn — oo.

(2) There exists a constant ). > 0 such that

N
> o) ~AN.

n=1

(3) There exists a constant A > 0 such that

N
Yo’ < Nog N)*
n=1

for N > 2.

(4) There exists a constant D > 1 such that

o(mn) < DPo(m)o(n)
forallm,n € 7.

Proof. The Chinese remainder theorem implies that o is a multiplicative function. From Wirsing’s theorem
[1961, Satz 1] we conclude the second item. The proof of the third item is standard (see, e.g., [Crisan and
Pollack 2020, Lemma 2.7]).

To conclude the fourth item, we observe that o(p®) = o(p) for all primes p, ptdisc(f) and o € Z>;,
and o(p®) < D for all primes p and a constant D > 0 (for a proof, see, e.g., [Crisan and Pollack 2020,
Lemma 2.4]). We also note that if p|disc(f) and o(p®) # O then o(p?) # 0 for all B < «, and we
can conclude the result by factoring m and n in primes. Note this also implies the first item, since if
n=p{" - p* then

Q(n) < Dk < Dlogn/loglogn‘ 0

From now on, we fix r* =2max(d(d +1), A), B= 4r*? + 4r A + 1 and the constants A, D and A as
in Lemma 14.
From Dirichlet’s theorem, we can find ¢; and 1 < ¢; < N /(log N)? coprime integers satisfying

| _ (logN)B
_a| (QogN)f 34
qi gi N
for 1 <i <d. We also let
g =lem(qu, - .., qa).
Proposition 15. If there exists anl € {1, ..., d} such that q; satisfies q; > (log N)? then
3 omeFm) « —
et (log N)172°
Proof. This follows directly from Theorem 1 applied to f = p, r =r* and R = N¢/(log N)5. (Il

We next focus on establishing the following result.
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Proposition 16. Let ¢ > 0, and suppose that q; < (log N)B forall 1 <i < d. Then we

N
Zg(n)e(F(nD < gred@T <’

n=1

where the implied constant depends on €.

Combining Proposition 16 with Proposition 15, one may deduce Theorem 2. Indeed, since at least one
of the «; is irrational, as N — oo, the integers ¢; in (34) must satisfy g; — 0o, which implies

> eme(Fn) = o(N).

n=1
To prove Proposition 16 we will proceed with an algebraic approach. We split the task into four subsections:
First we make some reductions and provide a proof of the proposition, conditional to further analysis of a
different sum. This new sum will be analysed using a Dirichlet series. In the next subsection, we write
the Dirichlet series that we want to analyse in terms of better understood L-functions and in the third
subsection we state some of its properties. At last, we gather all the results and conclude the proof.

9.1. First reductions. We assume g; < (log N)B forall 1 <i <d, and we set, for r g and Q € Z[x],
N

SN, F)y=Y_ o(me(F(n));

n=1
(n,q)=r

we omit » from the notation when the sum is over all integers 1 <n < N.
We can split S(N, F) into two sums as follows:

SINF)=) S(N.F)= > SN.F)+ »  S(N.F). (35)
rla r<q1r/(|¢?(d+1)) r>qlr/<|dq(d+1))

We can bound trivially the second sum of the right-hand side of (35) using Lemma 14. Indeed,

N/r
Y swp|< X z o= T X etn < e 09
rqr>ql/@d+n) rlq
r>q1/(d(d+l)) (n q) r r2q!/@d+) (n, q/r) 1

We turn our attention to S, (N, F) when r < 1/(d(d + 1)). Let

d
Fx)=Y (aj/gpx’ and Q(x)=F(x)—F(x).
j=1
Observe that integration by parts yields

d N
S/(N. F) =e(QN)S(N. F)—2mi Y j; / u~'e(Q))S, (u, F) du, (37)
=t

where B; is defined by

aj
aj =—+p;. (38)
qj
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In particular, from (34),
(log N)*®

39
q;jN/ 59

1Bj1 <

The above reduces to analysing S, (N, F ) instead of S, (N, F).

Observe that, since we are summing over multiples of », we can rewrite e(f (n)) as e(ﬁr (n)), where
Fr (n) := F (rm), so that the latter is a periodic function modulo g /r. We let ¢/r = r’, and we decompose
S, (u, F,) using Dirichlet characters modulo r’ as follows:

Yo oeF)) Y x@) Y. x(molrm).

x mod r’ x mod r’ m<N/r

S(N.F)= Y e(F(x)) Y o(rm)=
x mod r’ m<N/r
(m,r"=1
m=x mod r’

@(r')

We will prove the following.

Proposition 17. Let x be a Dirichlet character mod r'. There exist constants ¢ > 0 and 0 < 8(x) < Ar
such that N
1
S xmolrm) =80~ + O(Ne~eVieN), (40)
m<N/r r

Moreover, if 6(x) # 0 then x has conductor h|disc(p).

We next show that Proposition 17 implies we can conclude the proof of Proposition 16. Indeed, we
obtain

~ N ~ —
SN F) =0 ) eB ) ) XG0 + O(NeeVIEN),

x mod r’ x mod r’

which substituted into (37) and using (39) implies

N d
S/ (N, F) = e(QN)S,(N, F) — cf u(Zm' Zjﬂjuj_l)e(Q(u))du L O(Ne VN,
1

j=1

Y eF () Y x@8(x0).

x mod r’ x mod r’

with
1

- ro(r’)

Note that integrating by parts yields
d

N
/ u(27n' Zjﬂjuj_l>e(Q(u))du &N,
1

j=1
and since if §(x) # 0 then x has conductor A |disc(p), the above implies

S X @e(Frx) + O(Ne~eVREN) @1)

x mod r’

s, Fy <Y
T r @)

for some x with conductor % |disc(p). Recall that

d : d ; ;

~ ~ air! . —1(qa;r! /q;)x’

Fe=Frx=Y ;_ xf:z“ ; iy
J

j=1
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Let ¢’ denote the smallest divisor of ¢ such that the polynomial

d
P(x)= Z(Clajrj/qj')xj

Jj=1
is constant mod ¢ /q’. Note that, for each 1 < j <d,

ari
949" _ 0 mod q/q’.
qj
Since (aj, gj) =1, this implies

d 1/d 1/d
>0 & 4 1)
q > ><l_lr]> >r(d+1)/2>q ,
j=1
provided r < ql/(d(d+1))‘
It follows from [Cochrane and Zheng 1999, Corollary 1.1] and the Chinese remainder theorem that

/ /

Y aweF) < Sg)' M« s
xxjettrix 7 q q1/@d@+Dn)

x mod r’

Combining the above with (41) gives

Sr(N, F) < m provided r < q]/(d(d+l)).

Summing over r < g!'/@@+D) we get
~ N
Z Sr(N, F) < g/ @dd+1)+o(D)”
r<qlr/(lz?(d+1))

Together with (35) and (36) this concludes the proof of Proposition 16. We will now focus on the

proof of Proposition 17. In order to understand the sum

> eltrmx ), (42)

n<N/r

we study the Dirichlet series for x mod r':

o
Dy(s, x) =) ermyx(mn™".

n=1
9.2. Decomposing D, (s, x). Obverse that D, (s, x) is absolutely convergent for Re(s) > 1. Our next
goal is to extend D, (s, x) to the left of Re(s) > 1 so that we can use contour integration to estimate the
sum (42). We will do this by decomposing D, in terms of well-known Artin L-functions. With this in
mind, we fix some notation.

Denote by K ¢ the splitting field of f in C, by G the Galois group of K s over Q and by Q(e(1/r"))

the cyclotomic field generated by r'-roots of unity. Observe that the latter is a Galois extension of @,
with Galois group C,  isomorphic to (Z/r'Z)*.
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We also consider the compositum of K ; and Q(e(1/7’)) and denote it by K f,,» and its Galois group
over () by G,/. Observe that there is a natural injection

Gy —>GxCp>~Gx(Z)r'7)*.

Moreover, observe that, from the extension theorem for field automorphism, it follows that the projections
p1:Gy— Gand py: G, — (Z/r'Z)* are surjective.

We denote by G the finite set of isomorphism classes of complex irreducible representations of G and,
for 7 € G, we write X for the character of 7.

Note that x can be viewed as a character of (Z/r’Z)* and consequently as a character n : C,» — C*.
It is known that n(o,) = x (p) for p{r’ and o, the Frobenius automorphism at p.

So, we consider the representations pi7 = o p; and p5n =no ps of G, and observe that their tensor
product satisfies

tr(pim ® p3n(op)) = Xz (o) x (p) (43)
for ptdisc(f) and p1r'.

Proposition 18. D, (s, x) has an expression

Dr(s’ X) = Fr(s’ Xx) l_[ Er,n(s’ X)(L(S’ Kf,r//@7 PT” ®P;U))m”

reG

for my > 0 an integer and, for any € > 0, F, K¢ q€ and E, ; <K q° for Re(s) > %.
To prove the proposition we will need the following lemma.

Lemma 19. Denote by my the permutation representation of G acting on the set of roots of f in C,

and let
T = @ MmqgT

neG

be its decomposition in irreducible representations, where my > 0 are integers. For all p{disc(f), we have
o(p) =Y _myx - xx(op) (44)
T
for o, € G the Frobenius automorphism at p.

Proof. The proof follows by noting that o(p) is the number of fixed points of the Frobenius automor-
phism o, at p, which is also the character at o, of the permutation representation. (]

Proof of Proposition 18. First we observe that D, can be decomposed as

Di(s, )= Y x(ekalerk) k)™ =Y aler)x(e)e™ Y  x(kokk™,

e|r® (k,r)=1 elr> (k,r)=1

where the notation e |r*> means that e runs over all possible products of powers of the primes that divide r.
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We define
E (s, x)=)_ oler)x(e)e”
elr®
Di(s, )= ) x(koWk™,
(k,r)=1

and, using Lemma 14 and the property o(p") < C for all n > 1 and p prime, we observe that E, (s, x) < r€
uniformly for Re(s) > % and that 5r (s, x) converges absolutely for Re(s) > 1.

To be able to explore the properties of o, we factor the primes that divide the discriminant of f in
D, (s, x) and, since r | g, we also factor the remaining primes that divide ¢g. This yields

Dis,)=Ei .0 [] De@Hxpp™,
pidisc(f) k=0
pla

where E (s, x) is entire and bounded for Re(s) > ‘3—1 by C(e)q°€.
We proceed in a similar manner and factor out the prime powers with exponent larger than 2, obtaining

Dr(s, ) =Evr(s, )Ea(s, ) [] (+emx(pp™) (45)

pidisc(f)
ptq

for E>(s, x) holomorphic and bounded in vertical strips by C(€)g€ for Re(s) > %.
Now we can use Lemma 19 and a further decomposition to write

D (s, x) = Evr(s, )Ea(s, X)Ez (s, ) [ [T+ xx @) x (p) ™)™
reG P
for E3 , holomorphic and uniformly bounded in vertical strips by C (e, f)g€ for Re(s) > %. We now set
F, = E, ,E>E5,. To conclude, we use equality (43) and yet another similar decomposition as before and
obtain
[+ xx @) x(P)P™") = Erx(s, x)L(s., K 1.4/Q. pim ® p3n). O
p

Observe that now we are dealing with Artin L-functions, which are better understood than the original
Dirichlet series. Since p; is surjective and 7 is irreducible, it follows that p is an irreducible represen-
tation. Furthermore, since p37 is of dimension 1, we can conclude that pj7 ® p3n is also an irreducible
representation. Artin’s conjecture states that this L-function is entire except if the representation is trivial —
which can occur if pjr is the inverse of p3n.

To avoid assuming Artin’s conjecture, we will use the Brauer induction theorem instead (see, e.g.,
[Serre 1977, Theorem 19]). It states that, for every subgroup H of G and one-dimensional character
Bu : H — C*, there exist integers ny g, such that

Xr = Z Znﬂ,ﬂy 'IndgﬂH-

H Bu
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Observe that this implies that L(s, K 7, /Q, pjm) can be represented as
L(s, K 14/Q, pim) = L(s, K;/Q.7) = [ [[ [ LGs. K7/Q, Ind§; Br)"n
H Bu

=[1I1LG Kp/Kn, Bu)'=u,

H Bu

where Ky C K is the subfield fixed by H — which implies that H is the Galois group of K ; over K.
We can now introduce the twist by the Dirichlet character. We write H' = pl_l (H) and observe that
we can write

G,
pim = €D nx.p, Indyy (pFBu),
H
and thus

G, G,
P @ pin = P €D nr.py Indyy) (p}Br @ Resyy, pin).
H By

So, defining 6g,, = p{Bu ® Resg’/ P51, we can finally write

L(s, K1g/Q. pix @ psm) =] [ [ LGs. Kyq/Kn. 0p,)" 1,

H Bu
and thus D, has the representation
De(s, x) = Fr(s, ) [ | Ern s O[] [ LG50 Kpg/ K, 0p,)" 0. (46)
ne6 H Bu

Now the L(s, K,/ Ky, 0, )"™#u are Artin L-functions of dimension 1, which we know are entire except
for a pole at s = 1 if 6g,, is the trivial one-dimensional character.

9.3. Bounds on the Artin L-functions near s =1. We denote by g ; the conductor of L(s,Kr,, /K ,0g,)
and observe that we can bound it as follows (see, e.g., [Bushnell and Henniart 1997]):

G, py < cond(p}Br) - cond(Res ! pi) < Mg,

where M = SUp, g, cond(p}Bp). It is well known that L(s, K7, /Ky, 0g,) can have at most one real

zero B in the region
c

1 —
log(qxr,p, (1] +3))

for s = 0 +it € C and ¢ a universal constant; see, e.g., [I[waniec and Kowalski 2004, Theorem 5.35].

(47)

Note that this zero can only exist if 6; is a quadratic character.

To simplify the notation, in what follows we let g = 63, and we omit the field Kr,/Kp. Denote
by B the possible exception in region (47) and let ¢ be the conductor of g. Also, we setr; =1 if g
has an exceptional zero 8, and r; = O otherwise. Analogously, r, = 1 if g is the trivial character and
consequently has a pole at s = 1, and r, = 0 if not.
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Proposition 20. Let s = o + it € C satisfy the conditions

o>1— c , (48)
10log(Mq(|t] +3))
B> 49
5= A1 = 0108 GMg) )
1
ls =1 > ———n——. (50)
20log(3Mq)
We have that
L(s, g) <log(Mgq(|t] +3)), L log(Mq(|t| +3)),
L(s, g)

where the implied constant does not depend on the parameters.
If g is not trivial, condition (50) can be dropped. Condition (49) can be dropped if g has no exceptional

zero.

Proof. We set y (s, g) = n_s/zy(%(s +/<g)), where k, =0 or 1, and let A(s, g) = q*?y (s, g)L(s, g) be
the extended L-function. It is a known fact that A(s, g) is a meromorphic function of order at most 1.
Thus, we can proceed as in [Montgomery and Vaughan 2007, Theorem 11.4] to obtain the proposition. []

9.4. Finishing the proof.

Proof of Proposition 16. To bound the sum an NJr o(rn)x (n) we first smooth it:

N/r 00
3 omxm =3 omxmem + 0@,
np=r p=r

where ¢ is defined as

. ( N/r—x)
¢(x)=min(x, 1,1 + ————
N

for 0<x < N/r + N, and ¢(x)=0forx > N/r + N, with N > 0 to be chosen later. Observe that
Mellin inversion implies that

o0
1 R
Z o(m)x(m¢(n) = — / D, (s, x)p(s) ds
o 2ri J3)
(n.q)=r 1 )
= z_m Fr(s» X) 1_[ Er,r[(s, X)(L(S, Kf,l’//@, pikn’ ® p;n))mn(ﬁ(s) ds
1 < reG
=5 | E6O ] Ens 0 [ 1] 26 Ko/ Ky 0p)" 2 d(s) ds, (51
@ neG H By
where (3) denotes the contour obtained by traversing the straight line {s =3 +i¢, t € R} from t = —00 to

t = +o0.
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Our goal is to shift the contour of integration and use the information on the L-functions

L(S, Kfyq/K}{, 9/311)

to obtain good bounds for S, (s, f,). Observe that we can find %c <0< %c such that all the conditions
of Proposition 20 are satisfied for

| o o
seZ_{s_a+tt,a_1 log(Mq(|t|+3))}'

Moving the contour of integration in (51) to Z, we get

o0

> emxmen)
(rg=r

=i./ D, (5. 1)B(s) ds +aRes(D, (s, 1), 1) - - +a@Res(D, (5. x). B)- N¥,  (52)
2mi =z r

where o = 1 if there is 7 € G for which pim ® p5n is the principal character in K 7, /Q with m, =1,
and o = 0 otherwise. Likewise, @ =1 if L(s, Kf,q/K}{, 0p,,) has an exceptional zero B and n; g, = —1,
and & = 0 otherwise. Note from Proposition 18 that there is at most one trivial character pfmw ® p3n and
one quadratic character 6g,,. Moreover, if p{m ® p3n is the trivial character, then we observe that x must
have a conductor with modulus % that divides disc( f).
We bound each term of the right-hand side of (52) separately. To bound the first term, we note that the
Mellin transform of ¢ satisfies
b(s) = /N+N ()7 Mdz < N min(l, L)
0 |5 |s|N
where o = Re(s); see [Iwaniec and Kowalski 2004, Theorem 5.12]. Thus,
N N . N
/ D, (s, x)p(s)ds <</ Dy (s, x)|— m1n<1, —~> |ds|.
Z Z |s| |s|N

Welet T = N/(rﬁ) and o(T)=1— Q/log(Mq(T + 3)), and we note that the observation above and
Propositions 18 and 20 imply that

/ D, (s, )$(s) ds < N°Tg"e
Z

for a constant Y > 0 that only depends on f.
We now deal with the last term & Res(D, (s, x), B)-N#. Siegel proved (see, e.g., [Iwaniec and Kowalski

2004, Theorem 5.28]) that if the exceptional zero § exists then, for every € > 0, there exists a constant

C(€) > 0 such that

<o) <1 cle)
cond(6;)¢ Mgqg¢

To bound the residue at B we notice that, if 6; g,, is not trivial, we can use Proposition 20 and obtain

p<1

(53)

L (s, Kf»q/K;i’ 0p,) "™ < |log 3Mq||””vﬂH|.
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If 0g,, is trivial then
IL(s, K 7q/ K}y, Op,) "™ L q<Immenl,

and, for the residue given by the L-function with quadratic character, we have

1 1
Res( - , ﬁ) = - .
L(s, Ky.q/Kly: Opy) L(s, Kyq/K}y: Opy)
We can deduce that L'(s, K¢,/K};, 6p,) > 1 from the last part of Theorem 11.4 in [Montgomery and
Vaughan 2007]. Putting everything together, we obtain

Res(D, (s, x), B) - NP < g*N'=C@/a"

Pick T = exp(3+/Iog N). Since g < (log N)?, the considerations above imply that

~ N L flooN
S, (N. Fy) = aRes(D,(s. ). 1) - — + O(Ne c@@ V") (54)
r
for a constant c(¢) and € > O sufficiently small. Since
Y o) <AN
n<N
and the error term in (54) is o(/N), we conclude that
Res(D, (s, x), 1) < Ar. O

10. Sharpness of Theorem 1

Following the approach of [Montgomery and Vaughan 1977], we will construct a completely multiplicative
function f = fu r, with | f(n)| < 1, such that

3 f(n)e(F(n))‘ > N (55)
= “ 10log N’

We first observe that the function G : C — C given by
G =) "We(Fm)+ Y  (1—ze(F(p))
n<N N/2<p<N

is entire and its value at zero satisfies

G(0) = Z 1> LN

~ 10 log N
N/2<p<N

for N sufficiently large. Thus, by the maximum modulus principle, there exists a zg € C, |z9| = 1, such
that |G (zo)| = |G (0)].

Define the completely multiplicative function f by f(p) = zo for p < %N ,and f(p) =e(—F(p)) for
p> %N . To conclude that (55) is satisfied, we just observe that

N
Y fmeFm) =Y zgMe(Fm)+ Y (1—z0e(F(p)) =G(z0) > —.

log N
n<N n<N N/2<p<N g
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