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We generalise a result of Montgomery and Vaughan regarding exponential sums with multiplicative
coefficients to the setting of Weyl sums. As applications, we establish a joint equidistribution result for
roots of polynomial congruences and polynomial values which generalises a result of Hooley. We also
obtain some new results for mixed character sums.
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1. Introduction

Let A ⩾ 1, and let f be a multiplicative function satisfying | f (p)| ⩽ A for any prime p and also∑
n≤N | f (n)|2 ⩽ A2 N for all natural numbers N . For α ∈ R, set

S(α) :=

∑
1⩽n⩽N

f (n)e(αn),

where e(x)= exp(2π i x).
These sums appear to be considered first by Daboussi [1975], who showed that if |α− a/q| ⩽ 1/q2,

(a, q)= 1 and 3 ⩽ q ⩽ (N/ log N )1/2, then

S(α)≪
N

(log log q)1/2
,

with the implied constant depending only on A.
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This result was improved by Montgomery and Vaughan [1977, Corollary 1] who show that, assuming
|α− a/q| ⩽ 1/q2, (a, q)= 1 and 2 ⩽ R ⩽ q ⩽ N/R, we have

S(α)≪
N

log N
+

N (log R)3/2

R1/2 . (1)

We refer the reader to [Montgomery and Vaughan 1977, Section 7] for a demonstration that the term
N/ log N is sharp.

The optimal dependence on R in (1) is an open problem and has been the subject of several works (see
for example [Bachman 2003; de la Bretèche 1998]), and it is expected the estimate (1) may be improved to

S(α)≪
N

log N
+

N
R1/2 . (2)

Recently, de la Bretèche and Granville [2022] have studied in detail the sums S(α) on major arcs.
Their estimates suggest the following conjecture (see [de la Bretèche and Granville 2022, Equation 1.4]):

S(α)≪
N

log N
+

N
q1/2(1 + |β|x)

, α =
a
q

+β, (a, q)= 1.

We also note that [de la Bretèche and Granville 2022] contains some nice applications to circle method-type
problems.

The estimate (1) has important applications to Dirichlet L-functions. Montgomery and Vaughan [1977]
have shown how it may be combined with the generalised Riemann hypothesis (GRH) to obtain a sharp
upper bound for Dirichlet L-functions at the point s = 1. One may also combine (1) with estimates for
short character sums to obtain unconditional variants of Montgomery and Vaughan’s result. We refer the
reader to [Granville and Soundararajan 2007; Hildebrand 1988b; 1988a] for progress in this direction.

Since the work of Montgomery and Vaughan, exponential sums with multiplicative coefficients have
appeared in a number of different contexts, and a variety of techniques have been developed to facilitate
the reduction to bilinear forms. Some examples include work of Karatsuba [2010] on short Kloosterman
sums, which has been refined by Korolëv; see for example [Korolëv 2018]. Kátai [1986] and Indlekofer
and Kátai [1989] have considered more general functions in the exponential factor. Bourgain, Sarnak and
Ziegler [Bourgain et al. 2013] have established a finite version of Vinogradov’s bilinear sum inequality.
Gong and Jia [2015] have considered shifted character sums with multiplicative coefficients and Korolëv
and Shparlinski [2020] dealt with sums over trace functions with multiplicative coefficients.

In this paper, we revisit the approach of Montgomery and Vaughan and generalise it to the setting of
sums of the form ∑

n⩽N

f (n)e(F(n)), (3)

where F is a polynomial with real coefficients and f is a multiplicative function satisfying

f (p)= O(1),
∑
n⩽N

| f (n)| = O(N ),
∑
n⩽N

| f (n)|2 = O(N (log N )A)

for any A ≥ 0.
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Problems of this sort have previously been considered by Jiang, Lü and Wang [Jiang et al. 2021], who
showed that one may replace an assumption on the ℓ2 norm,∑

n⩽N

| f (n)|2 ≪ N ,

with an assumption of the form∑
p⩽N

p prime

| f (p)|| f (p + h)| ≪
h

φ(h)
N

(log N )2
.

Such a relaxation is significant in the context of GLm L-functions in the absence of progress towards the
Ramanujan conjectures.

Matthiesen [2018] considered sums of the form (3) over polynomial nilsequences with slightly weaker
conditions on f than Montgomery and Vaughan. These results were later applied to linear correlations of
multiplicative functions [Matthiesen 2020]. We also mention [Matomäki et al. 2023], which considers
exponential sums with multiplicative functions over nilsequences on average over short intervals.

2. Main results

Theorem 1. Let A > 0 and c > 0 be real numbers and f be a multiplicative function satisfying

| f (p)| ⩽ C for each prime p, (4)∑
n⩽N

| f (n)| = O(N ), (5)

∑
n⩽N

| f (n)|2 = O(N (log N )A). (6)

Let F be a polynomial of degree d ⩾ 1 with real coefficients given by

F(x)= αd xd
+ · · · +α1x .

Let R ⩾ 1, and suppose there exist integers ℓ, a and q , with 1 ⩽ q ⩽ R, 1 ⩽ ℓ⩽ d , (a, q)= 1 and∣∣∣αℓ −
a
q

∣∣∣ ⩽ 1
Rq
.

Write C = A/(2r). Then, for any r > d(d + 1), we have∑
1⩽n⩽N

f (n)e(F(n))≪ N
(

1
(log N )1−C + (log N )C

(
q

N ℓ
+

1
q

)1/(4r2))
+ (N R1/ℓ)1/2,

where the implied constant depends on A and r. In particular, if we suppose that

(log N )4r2
⩽ q ⩽

N ℓ

(log N )4r2 ,

then ∑
1⩽n⩽N

f (n)e(F(n))≪
N

(log N )1−C . (7)
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To demonstrate the precision of the above estimate, in Section 10 we prove that, for any polynomial F
and integer N , there exists f = fF,N such that∣∣∣∣ ∑

1⩽n⩽N

f (n)e(F(n))
∣∣∣∣ ⩾ 1

10
N

log N
.

The proof of Theorem 1 follows the outline of [Montgomery and Vaughan 1977] and starts with a
combinatorial decomposition of multiplicative functions based on Möbius inversion. This reduces the
problem to estimating bilinear forms over polynomials with summation restricted to points under the
hyperbola. We then use Montgomery and Vaughan’s partition of the parabola into disjoint rectangles to
which techniques related to the Vinogradov mean value theorem may be applied. It will be fundamental
to develop a version of the Vinogradov mean value theorem for primes in large translated intervals; this is
Lemma 10. We should note that we introduced the general condition (6) with the aim of using Theorem 1
in the proof of Theorem 2.

3. Applications

3.1. Joint equidistribution. As an application of Theorem 1, we prove a joint equidistribution result.
Throughout this section, we let p ∈ Z[x] be irreducible over Q of degree e ⩾ 2, and we consider the
ratios v/n, where the v are the roots of the polynomial p modulo n:

p(v)≡ 0 mod n.

Consider the sequence (gk)k⩾1 of these ratios, defined in such a way that the corresponding denominators
are in ascending order. Hooley [1964, Theorem 2] proved that this sequence is equidistributed in R/Z.

We now let

F(x)= α1x + · · · +αd xd
∈ R[x] with d ⩾ 1

have an irrational coefficient and define

A(F, p)k = (gk, F(n))k⩾1,

where gk is as above and n is taken so that

gk = v/n, p(v)≡ 0 mod n.

We prove the following result.

Theorem 2. The sequence A(F, p)k is equidistributed in (R/Z)2.

This indicates that the sequence (F(n))n⩾1 is somehow not correlated with the sequence (gn)n⩾1.

3.2. Mixed character sums. We next explain how Theorem 1 is related to sums considered in [Enflo
1995; Chang 2010; Heath-Brown and Pierce 2015]. Theorem 1 implies large exponential sums must
correspond to pretentious multiplicative functions.
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Corollary 3. With the notation and conditions as in Theorem 1, suppose further that f is completely
multiplicative. Let r ⩾ d(d + 1), and suppose that∣∣∣∣ ∑

1⩽n⩽N

f (n)e(F(n))
∣∣∣∣ ≫

N
(log N )1−A/(2r) .

There exists an integer
ℓ⩽ (log N )d(4r2

+4r A)

and a multiplicative character ψ mod ℓ such that∑
1⩽n⩽N

f (n)e(F(n))≪ (log N )4r2
+4r A max

u⩽N

∣∣∣∣∑
n⩽u

ψ(n) f (n)
∣∣∣∣.

Corollary 3 implies one may bound character sums mixed by polynomials by reducing to pure character
sums; we refer the reader to Section 8 for more precise results. It is worth mentioning that, by combining
Corollary 3 with Haláz’s theorem, it’s possible to show that sums satisfying the conditions of Corollary 3
must be pretentious in the sense of [Granville and Soundararajan 2007].

Corollary 4. Let F(n) be a polynomial of degree d with real coefficients and χ a primitive character
modulo q. Suppose that δ and ε satisfy

max
ℓ≪(log q)100d3

ψ mod ℓ
u⩽N

∣∣∣∣∑
n⩽u

ψ(n)χ(n)
∣∣∣∣ ⩽ Nq−ε provided N ⩾ qδ.

Then we have ∑
n⩽N

χ(n)e(F(n))≪
N

(log N )1−1/(d(d+1)) provided N ⩾ qδ. (8)

In particular, estimate (8) holds under the following conditions:

• for arbitrarily small δ assuming the generalised Riemann hypothesis,

• for δ=
1
3 and an arbitrary integer q , which follows from the Burgess bound; see for example [Iwaniec

and Kowalski 2004].

Let ε > 0 be small. Enflo [1995] has previously established that, if q is prime,∑
n⩽N

χ(n)e(F(n))≪ N 1−δ, provided N ⩾ q1/4+ε,

and we refer the reader to [Chang 2010; Heath-Brown and Pierce 2015] for quantitative improvements on
Enflo’s result. Chang [2014] has shown∑

n⩽N

χ(n)e(F(n))≪ N 1−δ, provided N ⩾ qε,

provided q is suitably smooth/powerful.
Corollary 4 provides some new instances where one may bound mixed character sums nontrivially.

We refer the reader to Section 8 for more details.
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4. Preliminary results

4.1. Reduction to bilinear forms. We proceed in a similar fashion to [Montgomery and Vaughan 1977,
Section 2], which reduces the proof of Theorem 1 to bounding bilinear forms under the hyperbola.

Lemma 5. Let f be a multiplicative function satisfying the conditions of Theorem 1, F be any real-valued
function and ϵ > 0. Then, for any integer N , we have∣∣∣∣ ∑

1⩽n⩽N

f (n)e(F(n))
∣∣∣∣ ≪

N
(log N )1−ϵ

+
1

log N

∣∣∣∣ ∑
1⩽np⩽N

f (n) f (p)(log p)e(F(np))
∣∣∣∣. (9)

Proof. We follow the argument from [Montgomery and Vaughan 1977, Section 2] with some modifications
to deal with the condition ∑

n⩽N

| f (n)|2 ≪ N (log N )A.

Consider
S =

∑
n⩽N

f (n)e(F(n)) log(N/n).

Since
S = log N

∑
n⩽N

f (n)e(F(n))−
∑
n⩽N

f (n)(log n)e(F(n)),

it is sufficient to show
S ≪ N (log N )ϵ (10)

and ∑
n⩽N

f (n)(log n)e(F(n))≪

∣∣∣∣ ∑
1⩽np⩽N

f (n) f (p)(log p)e(F(np))
∣∣∣∣ + N (log N )ϵ . (11)

Let r be a large real number, and apply Hölder’s inequality, (5) and (6) to get

|S|
2r

≪

(∑
n⩽N

(log(N/n))2r
)(∑

n⩽N

| f (n)|2
)(∑

n⩽N

| f (n)|
)2r−2

≪

(∑
n⩽N

(log(N/n))2r
)

N 2r−1(log N )A.

Since ∑
n⩽N

(log(N/n))2r
≪

∑
j

1⩽2 j⩽N

j2r
∑

N/2 j+1⩽n⩽N/2 j−1

1 ≪ N
∑
j⩾1

j2r

2 j ≪ N ,

we obtain (10) after taking r sufficiently large. Since

log n =

∑
d |n

3(d),

we have∑
n⩽N

f (n)(log n)e(F(n))=

∑
nm⩽N

3(m) f (nm)e(F(nm))

=

∑
mn⩽N

3(m) f (n) f (m)e(F(nm))+ O
( ∑

mn⩽N

3(m)| f (nm)− f (n) f (m)|
)
.
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Using (4) and (5),∑
mn⩽N

3(m) f (n) f (m)e(F(nm))=

∑
pn⩽N

(log p) f (p) f (n)e(F(np))+ O
(

N
∑
k⩾2

∑
pk⩽N

| f (pk)|

pk

)
=

∑
pn⩽N

(log p) f (p) f (n)e(F(np))+ O(N ),

where we have used the Cauchy–Schwarz inequality and (6) to estimate∑
k⩾2

∑
pk⩽N

| f (pk)|

pk ≪

(∑
k⩾2

∑
p

1
p0.8k

)(∑
n

| f (n)|2

n1.2

)
= O(1).

Hence it remains to show ∑
mn⩽N

3(m)| f (nm)− f (n) f (m)| = O(N (log N )ϵ). (12)

From (5),∑
mn⩽N

3(m)| f (nm)− f (n) f (m)| ≪

∑
k⩾1

∑
pk⩽N

∑
n⩽N/pk

p |n

| f (pk)|| f (n)| + | f (pkn)|

≪

∑
k, j⩾1

∑
pk+ j⩽N

∑
n⩽N/pk+ j

(n,p)=1

(| f (pk+ j )| + | f (pk)|| f (p j )|)| f (n)|

≪ N
∑

k, j⩾1

∑
p

| f (pk)|| f (p j )| + | f (pk+ j )|

pk+ j ,

and after applying the Cauchy–Schwarz inequality, (6) and partial summation over p, k and j as above,
we establish (12) and complete the proof. □

We require a generalisation of [Montgomery and Vaughan 1977, Section 3] for multiplicative functions f
satisfying (6).

Lemma 6. Let the notation and conditions be as in Theorem 1. Suppose s is a parameter and, for each
0 ⩽ i ⩽ log2 N , write

Ji = min
(
i + 1, ⌊log2 N⌋ − i + 1,

⌊
log2

1
2(64N/s)

⌋)
. (13)

We partition the hyperbola into rectangles

Ri = (0, 2i
] ×

(
N

2i+1 ,
N
2i

]
, 0 ⩽ i ⩽ log2 N , (14)

and

Ri, j,k =

(
2i+ j

k
,

2i+ j+1

2k−1

]
×

(
(k−1)N

2i+ j ,
(2k−1)N

2i+ j+1

]
, 0⩽ i ⩽ log2 N , 1⩽ j ⩽ Ji , 2 j−1 ⩽ k ⩽ 2 j . (15)

Then each Ri, j,k is a rectangle of the form (P, P ′
] × (N , N ′

], with P, P ′, N , N ′ satisfying

P ′
− P ⩾ 1

4 , N ′
− N ⩾ 1

4 , (P ′
− P)(N ′

− N )≫ s.
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Let E denote the set of points (p, n) satisfying 1 ⩽ pn ⩽ N with p prime which do not lie in any of the
rectangles (14) or (15). Then, for any fixed ϵ > 0, we have∑

(p,n)∈E

f (p)(log p) f (n)e(F(np))≪ (log N )ϵ(N + (Ns)1/2 log(2N/s) log s).

Proof. Our proof is similar to that of [Montgomery and Vaughan 1977, Section 3] with some minor
modifications. Recall that E denotes the set of points (p, n) satisfying 1 ⩽ pn ⩽ N with p prime which
do not lie in any of the rectangles (14) or (15). We write the partition

E = E1 ∪ E2 ∪ E3,

where

E1 =

{
(p, n) ∈ E : pn ⩽ N ,

N
2i+1 < n ⩽

N
2i , Ji > i + 1

}
,

E2 =

{
(p, n) ∈ E : pn ⩽ N ,

N
2i+1 < n ⩽

N
2i , Ji = ⌊log2 N⌋ − i + 1

}
,

E3 =

{
(p, n) ∈ E : pn ⩽ N ,

N
2i+1 < n ⩽

N
2i , Ji =

⌊1
2 log2(64N/s)

⌋}
,

which allows us to bound∑
(p,n)∈E

f (p)(log p) f (n)e(F(np))

≪

∑
(p,n)∈E1

| f (p)|| f (n)| log p +

∑
(p,n)∈E2

| f (p)|| f (n)| log p +

∑
(p,n)∈E3

| f (p)|| f (n)| log p.

Consider first summation over E1. We apply Hölder’s inequality twice; first with the exponents
(2r, 2r/(2r −1)) and second with the exponents (2r −1, (2r −2)/(2r −1)). Together with (4), this gives( ∑

(p,n)∈E1

| f (p)|| f (n)| log p
)2r

≪

( ∑
(p,n)∈E1

| f (n)|
)2r−2( ∑

(p,n)∈E1

| f (n)|2
)( ∑

(p,n)∈E1

(log p)2r
)
.

For each prime p,

#{n : (p, n) ∈ E1} ≪
N
p2 ,

so that ∑
(p,n)∈E1

(log p)2r
≪ N

∑
p

(log p)2r

p2 ≪ N .

For each n ∈ N,

#{p : (p, n) ∈ E1} ≪ 1,

and hence, by (5) and (6),∑
(p,n)∈E1

| f (n)| ≪

∑
n⩽N

| f (n)| ≪ N ,
∑

(p,n)∈E1

| f (n)|2 ≪

∑
n⩽N

| f (n)|2 ≪ N (log N )A.
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Taking r sufficiently large, the above estimates combine to give∑
(p,n)∈E1

| f (p)|| f (n)| log p ≪ N (log N )ϵ .

Consider next E2. By the Cauchy–Schwarz inequality,( ∑
(p,n)∈E2

| f (p)|| f (n)| log p
)2

≪

∑
(p,n)∈E2

| f (n)|2
∑

(p,n)∈E2

(log p)2.

If (p, n) ∈ E2 then n ≪ N 1/2 and, for fixed n, there exists some H such that

{p : (p, n) ∈ E2} ⊆ [H, H + N/n2
].

Hence, by Hölder’s inequality and the Brun–Titchmarsh theorem, we get∑
(p,n)∈E2

| f (p)|| f (n)| log p ≪

(
N

∑
n⩽N 1/2

| f (n)|2

n2 log (4N/n2)

)1/2( ∑
(p,n)∈E2

(log p)2
)1/2

.

Note by (6) and partial summation,∑
n⩽N 1/2

| f (n)|2

n2 log (4N/n2)
≪

∫ N 1/2

1

(∑
n⩽t

| f (n)|2
)

1
t3(log(4N/t))2

dt ≪

∫ N 1/2

1

(log t + 2)A

t2(log(4N/t))
dt ≪

1
(log N )

.

For each p,

#{n : (p, n) ∈ E2} ≪ 1,

so that ∑
(p,n)∈E2

(log p)2 ≪

∑
p≪N

(log p)2 ≪ N log N .

The above estimates combine to give∑
(p,n)∈E2

| f (p)|| f (n)| log p ≪ N .

Finally consider E3. By Hölder’s inequality,( ∑
(p,n)∈E3

| f (p)|| f (n)| log p
)2r

≪

( ∑
(N/q)1/2⩽n⩽(Nq)1/2

| f (n)|2r/(2r+1) log p
)2r−1( ∑

(N/q)1/2⩽p⩽(Nq)1/2

log p
p

)
.

If (p, n) ∈ E3, then (N
s

)1/2
⩽ p ⩽ (Ns)1/2,

and, for each p, there exists some H such that

{n : (p, n) ∈ E3} ⊆ [H, H + O((Ns)1/2/p)]
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and, for each n, there exists some H such that

{p : (p, n) ∈ E3} ⊆ [H, H + O((Ns)1/2/n)].

Using the Brun–Titchmarsh inequality, we see that( ∑
(p,n)∈E3

| f (p)|| f (n)| log p
)2r

≪ (Ns)1/2
( ∑
(N/s)1/2⩽n⩽(Ns)1/2

| f (n)|2r/(2r+1) log (2N/n)
n log (2Ns/n2)

)2r−1( ∑
(N/s)1/2⩽p⩽(Ns)1/2

log p
p

)
.

We have ∑
(N/s)1/2⩽p⩽(Ns)1/2

log p
p

≪ log s,

and Hölder’s inequality combined with (5) and (6) gives( ∑
(N/s)1/2⩽n⩽(Ns)1/2

| f (n)|2r/(2r+1) log (2N/n)
n log (2Ns/n2)

)2r−1

≪ (log(2N/s))2r−1
( ∑
(N/s)1/2⩽n⩽(Ns)1/2

| f (n)|
n

)2r−2( ∑
(N/s)1/2⩽n⩽(Ns)1/2

| f (n)|2

n

)
≪ (log(2N/s))2r−1(log N )A(log s)2r−1,

which, after taking r sufficiently large, results in∑
(p,n)∈E3

| f (p)|| f (n)| log p ≪ (Ns)1/2(log N )ε(log s) log (2N/s). □

5. Sums over bilinear forms

5.1. The Vinogradov mean value theorem. Given integers r , d and V , we let Jr,d(V ) count the number
of solutions to the system of equations

v
j
1 + · · · + v j

r − v
j
r+1 − · · · − v

j
2r = 0, 1 ⩽ j ⩽ d,

with variables satisfying
1 ⩽ v1, . . . , v2r ⩽ V .

We will use a consequence of Bourgain, Demeter and Guth’s work on the Vinogradov mean value theorem;
see [Bourgain et al. 2016, Section 5].

Lemma 7. Assume d ⩾ 2 and r > d(d + 1). Then we have

Jr,d(V )≪ V 2r−d(d+1)/2.

Combining Lemma 7 with the fact that the Vinogradov system is translation invariant, we obtain the
following.
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Corollary 8. Let d ⩾ 2, r > d(d + 1) be integers and M(k), 1 ⩽ k ⩽ K , be disjoint intervals satisfying

M(k)= (M ′(k),M ′′(k)], M ′′(k)− M ′(k)⩽ Y.

Then the number of solutions to the system of equations

n j
1 + · · · − n j

2r = 0, ni ∈ M(k), 1 ⩽ k ⩽ K , (16)

is bounded by

O(K Y 2r−d(d+1)/2).

We will also require an estimate for the number of solutions to the Vinogradov system with prime
variables in translated intervals; here it will be fundamental that the intervals will not be too short. To
obtain such a result we need the following intermediary lemma that follows directly from [Hua 1965,
Theorem 10]. Here it appears clear why it is important that the intervals we work with are quite large
compared to their starting point. For convenience we set L = log P .

Lemma 9. Let 0< Q ⩽ c1(k)Lσ1 , X ≫ 1 and

S(X, P)=

∑
X<p⩽X+P
p≡t mod Q

e( f (p)),

in which

P ≫
X

(log X)M

for any M ≫ 1 and

f (x)=
h
q

xk
+α1xk−1

+ · · · +αk, (h, q)= 1,

the numbers α1, . . . , αd−1 being real. Suppose that Lσ < q ⩽ Pk L−σ . For arbitrary σ0 > 0, when
σ ⩽ 26k(σ0 + σ1 + 1), we always have

|S(X, P)| ⩽ c2(k)
P

QLσ0−M .

This lemma allows us to prove the following estimate for the number of solutions to the Vinogradov
system with prime variables in large translated intervals.

Lemma 10. Let d ⩾ 2 be an integer and X, Y ≫ 1. If r > d(d + 1), the number of solutions to the
equation

p j
1 + · · · − p j

2r = 0, 1 ⩽ j ⩽ d, Y ⩽ pi ⩽ Y + X, X ≫
Y

(log Y )C
, pi prime,

for any C ≫ 1 is bounded by

O
(

X2r−d(d+1)/2

(log X)2r

)
,

with the implied constant depending on r and C.
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Proof. The result follows in a straightforward way from [Hua 1965, Theorem 16] redefining in part (1)

S(αk, . . . , α1)=

∑
Y⩽p⩽Y+X

e( f (p)), f (x)= αd xd
+ · · · +α1x,

and introducing the two following changes which account for the translation in the set of primes and
optimising the range of r in Hua’s result: In part (3) of the proof we use our Lemma 9 instead of [Hua
1965, Theorem 10]; this is possible as s1 in [Hua 1965, Lemma 10.8] is of arbitrary size. While in part (5)
of the proof we need to substitute [Hua 1965, Theorem 15] with [Bourgain et al. 2016, Theorem 1] for
d ⩾ 4 and [Wooley 2016] for d = 3. Doing this we need to be careful to isolate, in [Hua 1965, p. 144],
|S(αk, . . . , α1)|

d(d+1)−ϵ instead of |S(αk, . . . , α1)|
s0−1 and, in [Hua 1965, p. 145], |S(αk, . . . , α1)|

s−ϵ

instead of |S(αk, . . . , α1)|
s−1. Here ϵ > 0 is chosen so that s = d(d + 1)+ 2ϵ. □

5.2. Bounding bilinear forms. It is well known that one may use Lemma 7 to estimate bilinear forms
with Weyl sums over rectangles. We next show how one may obtain sharper results by averaging bilinear
forms over a family of disjoint rectangles.

Lemma 11. Let F ∈ R[X ] be a polynomial of degree d ⩾ 2 of the form

F(x)= αd xd
+ · · · +α1x .

Let M and N be integers and α(n) and β(m) two sequences of complex numbers satisfying

|β(m)| ⩽ 1

and ∑
n⩽N

|α(n)| ≪ N ,
∑
n⩽N

|α(n)|2 ≪ N (log N )A (17)

for A ⩾ 0. For 1 ⩽ k ⩽ K , let
R(k)= L(k)×M(k) (18)

be a rectangle of the form

L(k)= (Q′(k), Q′′(k)], M(k)= (M ′(k)× M ′′(k)]

such that L(k)⊆ (0, Q), with Q ≫ 1, are disjoint and satisfy

Q′′(k)− Q′(k)⩽ X (19)

or
Q′(k)

(log Q′(k))C
≪ Q′′(k)− Q′(k)≪ X, (20)

and M(k)⊆ (0,M] are disjoint and satisfy

M ′′(k)− M ′(k)⩽ Y, M ′′(k)⩽ 2M ′(k)

and K ≪ M. Let I denote the sum

I =

K∑
k=1

∑
(p,n)∈R(k)

α(n)β(p)e(F(np)). (21)
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Let R ⩾ 1, and suppose there exists q ⩽ R and 1 ⩽ ℓ⩽ d such that∣∣∣∣αℓ −
a
q

∣∣∣∣ ⩽ 1
q R

(22)

for some (a, q)= 1. For r > d(d + 1), we have

I 4r2
≪ m(X)(log M)2r A M4r2

(
X

log X

)4r2(
M
Y

)d(d−1)/2(Q
X

)d(d−1)/2

×

(
q

X Qℓ−1Y Mℓ−1 +
1

X Qℓ−1 +
1

Y Mℓ−1 +
1
q

)
,

where

m(X)=

{
(log X)4r when (19) holds,
1 when (20) holds,

and the implied constant depends on C.

Proof. Recall

F(x)= αd xd
+ · · · +α1x,

and define

Sk =

∑
(p,n)∈R(k)

α(n)β(p)e(F(np)), (23)

so that

I =

K∑
k=1

Sk . (24)

Fix some 1 ⩽ k ⩽ K and consider (23). Recalling (18), by Hölder’s inequality, for any integer r ⩾ 1,

Sk ⩽

( ∑
n∈M(k)

|α(n)|2r/(2r−1)
)1−1/(2r)( ∑

n∈M(k)

∣∣∣∣ ∑
p∈L(k)

β(p)e(F(np))
∣∣∣∣2r)1/(2r)

.

After another application of Hölder’s inequality,

I 2r ⩽

( ∑
1⩽k⩽K

∑
n∈M(k)

|α(n)|2r/(2r−1)
)2r−1 ∑

1⩽k⩽K

∑
n∈M(k)

∣∣∣∣ ∑
p∈L(k)

β(p)e(F(np))
∣∣∣∣2r

.

Hence, from assumptions on the M(k),

I 2r
≪

(∑
n⩽M

|α(n)|2r/(2r−1)
)2r−1 ∑

1⩽k⩽K

∑
n∈M(k)

∣∣∣∣ ∑
p∈L(k)

β(p)e(F(np))
∣∣∣∣2r

,

which combined with (17) implies that

I 2r
≪ M2r−1(log M)A

∑
1⩽k⩽K

∑
n∈M(k)

∣∣∣∣ ∑
p∈L(k)

β(p)e(F(np))
∣∣∣∣2r

.
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Write λ= (λ1, . . . , λd), and let Jk(λ) count the number of solutions to

p j
1 + · · · − p j

2r = λ j , 1 ⩽ j ⩽ d, pi ∈ L(k), pi prime.

Note by assumptions on L(k), if the p1, . . . , p2r ∈ L(k) satisfy

p j
1 + · · · − p j

2r = λ j ,

then
λ j ≪ X Q j−1.

Expanding the 2r -th power and interchanging summation gives

I 2r
≪ M2r−1(log M)A

∑
1⩽k⩽K

∑
λ

λ j ≪X Q j−1

1⩽ j⩽d

Jk(λ)

∣∣∣∣ ∑
n∈M(k)

e(αdλdnd
+ · · · +α1λ1n)

∣∣∣∣.
After another application of Hölder’s inequality, we get

I 4r2
≪ M4r2

−2r (log M)2r A
( ∑

1⩽k⩽K

∑
λ

Jk(λ)

)2r−2( ∑
1⩽k⩽K

∑
λ

Jk(λ)
2
)

×

∑
1⩽k⩽K

∑
λ j ≪X Q j−1

1⩽ j⩽d

∣∣∣∣ ∑
n∈M(k)

e(αdλdnd
+ · · · +α1λ1n)

∣∣∣∣2r

.

We have ∑
1⩽k⩽K

∑
λ

Jk(λ)⩽
∑

1⩽k⩽K

|{p1, . . . , p2r ∈ L(k)}|.

Since, for each 1 ⩽ k ⩽ K , L(k) is an interval of length at most X , the Brun–Titchmarsh theorem
implies ∑

1⩽k⩽K

∑
λ

Jk(λ)≪
K X2r

(log X)2r .

The term ∑
1⩽k⩽K

∑
λ

Jk(λ)
2

counts the number of solutions to the system of equations

p j
1 + · · · − p j

4r = 0, 1 ⩽ j ⩽ d, pi ∈ L(k), pi prime, 1 ⩽ k ⩽ K . (25)

By Corollary 8, ignoring the condition that pi is prime if (19) holds and using Lemma 10 when (20)
holds, we get ∑

1⩽k⩽K

∑
λ

Jk(λ)
2
≪ K m1(X),

where

m1(X)=

X4r−d(d+1)/2 when (19) holds,
X4r−d(d+1)/2

(log X)4r when (20) holds
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since r > d(d + 1). Combined with the observations above, this implies

I 4r2
≪ m(X)M4r2

−2r (log M)2r A K 2r−1
(

X
log X

)4r2
I0

Xd(d+1)/2 , (26)

where

I0 =

∑
1⩽k⩽K

∑
λ j ≪X Q j−1

1⩽ j⩽d

∣∣∣∣ ∑
n∈M(k)

e(αdλdnd
+ · · · +α1λ1n)

∣∣∣∣2r

.

Let

S(x)=

(
sinπx
πx

)2

,

so that
Ŝ(x)= max{0, 1 − |x |} (27)

and
S(x)≫ 1 if |x | ⩽ 1

4 .

There exists a constant c0 such that

I0 ≪

∑
1⩽k⩽K

∑
λ j ≪X Q j−1

1⩽ j⩽d
j ̸=ℓ

∑
λℓ∈Z

S
(

c0λℓ

X Qℓ−1

)∣∣∣∣ ∑
n∈M(k)

e(αdλdnd
+ · · · +α1λ1n)

∣∣∣∣2r

.

Expanding the 2r -th power and interchanging summation,

I0 ≪

∑
1⩽k⩽K

µ j ≪Y N j−1

Lk(µ)

d∏
j=1
j ̸=ℓ

∣∣∣∣ ∑
λ≪X Q j−1

e(α jλµ j )

∣∣∣∣∣∣∣∣∑
λ∈Z

S
(

c0λℓ

X Qℓ−1

)
e(αℓλµℓ)

∣∣∣∣,
where µ= (µ1, . . . , µd) and Lk(µ) counts the number of solutions to

n j
1 + · · · − n j

2r = µ j , ni ∈ M(k), 1 ⩽ k ⩽ K , 1 ⩽ j ⩽ d.

Using that
Lk(µ)⩽ Lk(0)

and applying Corollary 8, we obtain

I0 ≪ K Y 2r−d(d+1)/2
∑
µ

µ j ≪Y M j−1

d∏
j=1
j ̸=ℓ

∣∣∣∣ ∑
λ≪X Q j−1

e(α jλµ j )

∣∣∣∣∣∣∣∣∑
λ∈Z

S
(

c0λ

Xqℓ−1

)
e(αℓλµℓ)

∣∣∣∣.
Combining the inequality above with (26), we have

I 4r2
≪ m(X)(log M)2r A M4r2

(
X

log X

)4r2
I1

(XY )d(d+1)/2 , (28)

where

I1 =

∑
µ j ≪Y M j−1

d∏
j=1
j ̸=ℓ

∣∣∣∣ ∑
λ≪X Q j−1

e(α jλµ j )

∣∣∣∣∣∣∣∣∑
λ∈Z

S
(

c0λ

Xqℓ−1

)
e(αℓλµℓ)

∣∣∣∣.
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In I1, we bound every term trivially except the one with index ℓ to obtain

I1 ≪

(
Y
M

)d(
X
Q

)d

(QM)d(d+1)/2 1
X Qℓ−1

1
Y Mℓ−1

∑
µ≪Y Mℓ−1

∣∣∣∣∑
λ∈Z

S
(

c0λ

Xqℓ−1

)
e(αℓλµℓ)

∣∣∣∣. (29)

By Poisson summation,∑
λ∈Z

S
(

c0λℓ

X Qℓ−1

)
e(αℓµλ)=

X Qℓ−1

c0

∑
λ∈Z

Ŝ
(

X Qℓ−1(λ−αℓµ)

c0

)
,

and hence from (27)∑
µ≪Y Mℓ−1

∣∣∣∣∑
λ∈Z

S
(

c0λℓ

X Qℓ−1

)
e(αℓµλ)

∣∣∣∣ ≪ X Qℓ−1
∑

µ≪Y Mℓ−1

∑
λ∈Z

max
{

0, 1 −

∣∣∣∣ X Qℓ−1(λ−αℓµ)

c0

∣∣∣∣}

≪ X Qℓ−1
∣∣∣∣{µ≪ Y Mℓ−1

: ∥αℓµ∥ ⩽
100c0

X Qℓ−1

}∣∣∣∣.
There exists some real number β such that∣∣∣∣{µ≪ Y Mℓ−1

: ∥αℓµ∥ ⩽
100c0

X Qℓ−1

}∣∣∣∣ ≪

(
1 +

Y Mℓ−1

q

)∣∣∣∣{0 ⩽ µ⩽ q : ∥αℓµ+β∥ ⩽
100c0

X Qℓ−1

}∣∣∣∣.
Recalling (22),∣∣∣∣{µ≪ Y Mℓ−1

: ∥αℓµ∥ ⩽
100c0

X Qℓ−1

}∣∣∣∣ ≪

(
1 +

Y Mℓ−1

q

)∣∣∣∣{0 ⩽ µ⩽ q :

∥∥∥∥aµ
q

+β

∥∥∥∥ ⩽
100c0

X Qℓ−1 +
1
R

}∣∣∣∣,
which implies that∣∣∣∣{µ≪ Y Mℓ−1

: ∥αℓµ∥ ⩽
100c0

X Qℓ−1

}∣∣∣∣ ≪

(
1 +

Y Mℓ−1

q

)(
1 +

q
X Qℓ−1

)
,

and hence ∑
µ≪Y Mℓ−1

∣∣∣∣∑
λ∈Z

S
(

c0λ

Xqℓ−1

)
e(αℓλµℓ)

∣∣∣∣ ≪ X Qℓ−1Y Mℓ−1
(

1
Y Mℓ−1 +

1
q

)(
1 +

q
X Qℓ−1

)
.

Combined with (28) and (29), this gives

I 4r2
≪ m(X)(log M)2r A M4r2

(
X

log X

)4r2(
M
Y

)d(d−1)/2(Q
X

)d(d−1)/2

×

(
q

X Qℓ−1Y Mℓ−1 +
1

X Qℓ−1 +
1

Y Mℓ−1 +
1
q

)
. □

6. Proof of Theorem 1

We apply Lemma 5 and Lemma 6 with

s =
q1/ℓ

(log N )4
to get∑

1⩽n⩽N

f (n)e(F(n))≪
N

(log N )1−ε
+ (Nq1/ℓ)1/2 +

∑
0⩽i⩽log2 N

i
log N

Si +

∑
0⩽i⩽log2 N

i
log N

∑
1⩽ j⩽Ji

Si, j ,
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where

Si =

∑
(p,n)∈Ri

log p
i

f (p) f (n)e(F(pn))

and

Si, j =

∑
2 j−1⩽k⩽2 j

∑
(p,n)∈Ri, j,k

log p
i

f (p) f (n)e(F(pn)).

Note if (p, n) ∈ Ri or (p, n) ∈ Ri, j,k then
log p

i
≪ 1.

By Lemma 11, observing that in this case condition (20) holds, we have

Si ≪ (log N )A/(2r) N
i

(
q

N ℓ
+

1
2ℓi

+
2ℓi

N
+

1
q

)1/(4r2)

,

which implies that ∑
0⩽i⩽log2 N

i
log N

Si ≪
N

(log N )1−A/(2r)

(
1 + log N

(
q

N ℓ
+

1
q

)1/(4r2))
. (30)

Consider next the sums Si, j . We apply Lemma 11 with parameters

K = 2 j−1, M =
N
2i , Q = 2i+1, X = 2i− j+1, Y = 32N2−i− j .

We first focus on the case when j ⩾ log ic for a fixed c ≫ 1. Here we use Lemma 11 with condition (19),
which easily gives

Si, j ≪
N

ic12 j/8

(
q

N ℓ
+

1
2ℓi

+

(
2i

N

)ℓ
+

1
q

)1/(4r2)

for some c1 ≫ 1. For fixed i ⩽ log2 N , recalling that Ji is given by (13), we have

∑
log ic⩽ j⩽Ji

Si, j ≪
N
ic1

(
q

N ℓ
+

1
2ℓi

+

(
2i

N

)ℓ
+

1
q

)1/(4r2)

,

and hence ∑
0⩽i⩽log2 N

i
log N

∑
log ic⩽ j⩽Ji

Si, j ≪
N

log N

∑
i⩽log2 N

1
ic1−1

(
q

N ℓ
+

1
2ℓi

+

(
2i

N

)ℓ
+

1
q

)1/(4r2)

≪ N
(

1
log N

+
q

N ℓ
+

1
q

)
.

Write C = A/(2r). We then focus on the case when j ⩽ log ic. Here we use Lemma 11 with condition (20),
which easily gives

Si, j ≪
1

(i − j + 1)1−C

N
2 j (1−d(d−1)/(4r2))

(
22 j q
N ℓ

+
2 j

2ℓi
+ 2 j

(
2i

N

)ℓ
+

1
q

)1/(4r2)

,
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with the implied constant depending on the fixed real number c. For i ⩽ log2 N , we have

∑
1⩽ j⩽log ic

Si, j ≪
N

i1−C

(
q

N ℓ
+

1
2ℓi

+

(
2i

N

)ℓ
+

1
q

)1/(4r2)

,

and hence ∑
0⩽i⩽log2 N

i
log N

∑
1⩽ j⩽log ic

Si, j ≪
N

log N

∑
i⩽log2 N

iC
(

q
N ℓ

+
1

2ℓi
+

(
2i

N

)ℓ
+

1
q

)1/(4r2)

≪ N
(

1
(log N )1−C +

q(log N )C

N ℓ
+
(log N )C

q

)
.

Combining the above estimates, we complete the proof. □

7. Proof of Corollary 3

Suppose

F(x)= α1x + · · · +αd xd .

By Dirichlet’s theorem, for each 1 ⩽ ℓ⩽ d, there exists integers rℓ and sℓ, with (rℓ, sℓ)= 1 and

rℓ ⩽
N ℓ

(log N )4r2+4r A
,

such that ∣∣∣∣αℓ −
rℓ
sℓ

∣∣∣∣ ⩽ (log N )4r2
+4r A

qℓN ℓ
.

By Theorem 1, we may suppose, for each 1 ⩽ ℓ⩽ d ,

sℓ ⩽ (log N )4r2
+4r A.

By partial summation, we have∣∣∣∣∑
n⩽N

f (n)e(F(n))
∣∣∣∣ ≪ (log N )4r2

+4r A max
u⩽N

T (u),

with

T (u) :=

∑
n⩽u

f (n)e(F1(n))

and

F1(x) :=
rd

sd
xd

+ · · · +
r1

s1
x .

Defining k := lcm(sd , . . . , s1), we have

T (u)=

∑
a⩽k

e(F1(a))S(a),

with

S(a) :=

∑
n⩽u

n≡a mod k

f (n).
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Let e = (a, k), and write

a′
=

a
e
, k ′

=
k
e
,

so that

S(a)=

∑
n⩽u

n≡a mod k
n≡0 mod e

f (n)=

∑
n⩽u/e

n≡a′ mod k′

f (en),

which after expanding into multiplicative characters gives

S(a)=

∑
n⩽u

n≡a mod k
n≡0 mod e

f (n)=
f (e)
φ(k ′)

∑
ψ mod k′

ψ̄(a′)
∑

n⩽u/e

ψ(n) f (n),

where we have used the assumption that f is completely multiplicative. Hence

|S(a)| ⩽
1

φ(k ′)

∑
ψ mod k′

∣∣∣∣ ∑
n⩽u/e

ψ(n) f (n)
∣∣∣∣.

Thus, observing that

k = lcm(sd , . . . , s1)⩽
∏

1⩽i⩽d

si ⩽ (log N )d(4r2
+4r A),

we conclude the proof. □

8. Short mixed character sums

We next use Corollary 3 to show how one may estimate short mixed character sums assuming GRH.

Corollary 12. Assume the GRH, and let ε > 0. Uniformly over all primitive characters χ mod q and
polynomials F of degree d with real coefficients, if N satisfies

log N ⩾ B log log q (31)

for a suitable fixed constant B depending only on ε, then∣∣∣∣∑
n⩽N

χ(n)e(F(n))
∣∣∣∣ ≪

N
(log N )1−ε

.

We need the following lemma on convolution of Dirichlet characters, which follows from Theorem 2 in
[Granville and Soundararajan 2001] and Corollary 1.3 in [Hildebrand and Tenenbaum 1993], remembering
that there they have u = log x/ log y.

Lemma 13. Let χ be a nonprincipal character modulo q. Assuming the GRH, for any x such that
log x

log log q
⩾ B

for a sufficiently large constant B, we have∣∣∣∣∑
n⩽x

χ(n)
∣∣∣∣ ≪ x(log q)

−(1+o(1))
log x log

( log x
2 log log q

)
2(log log q)2 .



1568 Matteo Bordignon, Cynthia Bortolotto and Bryce Kerr

We can thus prove Corollary 12 in a similar fashion to [Hildebrand 1988b, Lemma 3] and [Kerr 2020,
Lemma 7].

Proof of Corollary 12. Clearly we may suppose∣∣∣∣∑
n⩽N

χ(n)e(F(n))
∣∣∣∣ ≫

N
(log N )1−ε

.

Let k be as in Corollary 3.
For any ψ with modulus smaller than or equal to k, by Lemma 13, we have

max
u⩽N

∣∣∣∣∑
n⩽u

ψ(n)χ(n)
∣∣∣∣ ≪ N (log q)

−(1+o(1))
log N log

( log N
2 log log q

)
2(log log q)2 .

Therefore, by Corollary 3, taking r large enough in terms of ε,∣∣∣∣∑
n⩽N

χ(n)e(F(n))
∣∣∣∣ ≪ N (log x)d

5
(log q)

−(1+o(1))
log N log

( log N
2 log log q

)
2(log log q)2 ≪

N
(log N )1−ε

. □

9. On the correlation between roots of polynomial congruences and polynomial values

We now prove Theorem 2. Let p ∈ Z[x] be irreducible over Q of degree e ⩾ 2, and consider the ratios v/n,
where v are the roots of the polynomial p modulo n. In particular, v and n satisfy

p(v)≡ 0 mod n.

Define the sequence (gk)k⩾1 of these ratios in such a way that the corresponding denominators are in
ascending order.

Hooley [1964, Theorem 1] proved that (gk)k⩾1 is equidistributed in R/Z. Even stronger than that, he
showed

lim
x→∞

1
x

∑
n⩽x

∣∣∣∣ ∑
v∈Z/nZ

p(v)≡0 mod n

e
(

hv
n

)∣∣∣∣ = 0 (32)

for every h ∈ Z\{0}. To prove Theorem 2, by the Weyl equidistribution criteria, it suffices to prove that,
for any (h1, h2) ̸= 0, we have ∑

n⩽N

e(h1 F(n))
∑

v∈Z/nZ
p(v)≡0 mod n

e
(

h2v

n

)
= o(N ).

If h2 ̸= 0 this is true by (32). Thus, the only cases that need to be considered are h2 = 0 and h1 ̸= 0. If
we let

ϱ(n)= |{v ∈ Z/nZ : p(v)≡ 0 mod n}|, (33)

then the problem is therefore to show that∑
n⩽N

ϱ(n)e(F(n))= o(N ).

We first prove some properties of ϱ.
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Lemma 14. The function ϱ is multiplicative and satisfies the following:

(1) For all ϵ > 0, ϱ(n)⩽ϵ nϵ for n → ∞.

(2) There exists a constant λ > 0 such that
N∑

n=1

ϱ(n)∼ λN .

(3) There exists a constant A ⩾ 0 such that
N∑

n=1

ϱ(n)2 ≪ N (log N )A

for N ⩾ 2.

(4) There exists a constant D ⩾ 1 such that

ϱ(mn)⩽ Ddisc( f )ϱ(m)ϱ(n)

for all m, n ∈ Z>0.

Proof. The Chinese remainder theorem implies that ϱ is a multiplicative function. From Wirsing’s theorem
[1961, Satz 1] we conclude the second item. The proof of the third item is standard (see, e.g., [Cris,an and
Pollack 2020, Lemma 2.7]).

To conclude the fourth item, we observe that ϱ(pα)= ϱ(p) for all primes p, p ∤disc( f ) and α ∈ Z⩾1,
and ϱ(pα)⩽ D for all primes p and a constant D > 0 (for a proof, see, e.g., [Cris,an and Pollack 2020,
Lemma 2.4]). We also note that if p |disc( f ) and ϱ(pα) ̸= 0 then ϱ(pβ) ̸= 0 for all β ⩽ α, and we
can conclude the result by factoring m and n in primes. Note this also implies the first item, since if
n = pα1

1 · · · pαk
k then

ϱ(n)≪ Dk
≪ Dlog n/log log n. □

From now on, we fix r∗
= 2 max(d(d + 1), A), B = 4r∗2

+ 4r A + 1 and the constants λ, D and A as
in Lemma 14.

From Dirichlet’s theorem, we can find ai and 1 ⩽ qi ⩽ N i/(log N )B coprime integers satisfying∣∣∣∣αi −
ai

qi

∣∣∣∣ ⩽ (log N )B

qi N i (34)

for 1 ⩽ i ⩽ d . We also let

q = lcm(q1, . . . , qd).

Proposition 15. If there exists an l ∈ {1, . . . , d} such that ql satisfies ql ⩾ (log N )B then
N∑

n=1

ϱ(n)e(F(n))≪
N

(log N )1/2
.

Proof. This follows directly from Theorem 1 applied to f = ρ, r = r∗ and R = N ℓ/(log N )B . □

We next focus on establishing the following result.
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Proposition 16. Let ε > 0, and suppose that qi < (log N )B for all 1 ⩽ i ⩽ d. Then we
N∑

n=1

ϱ(n)e(F(n))≪
N

q1/(2d(d+1))−ϵ ,

where the implied constant depends on ϵ.

Combining Proposition 16 with Proposition 15, one may deduce Theorem 2. Indeed, since at least one
of the αi is irrational, as N → ∞, the integers qi in (34) must satisfy qi → ∞, which implies∑

n=1

ϱ(n)e(F(n))= o(N ).

To prove Proposition 16 we will proceed with an algebraic approach. We split the task into four subsections:
First we make some reductions and provide a proof of the proposition, conditional to further analysis of a
different sum. This new sum will be analysed using a Dirichlet series. In the next subsection, we write
the Dirichlet series that we want to analyse in terms of better understood L-functions and in the third
subsection we state some of its properties. At last, we gather all the results and conclude the proof.

9.1. First reductions. We assume qi < (log N )B for all 1 ⩽ i ⩽ d , and we set, for r |q and Q ∈ Z[x],

Sr (N , F)=

N∑
n=1

(n,q)=r

ϱ(n)e(F(n));

we omit r from the notation when the sum is over all integers 1 ⩽ n ⩽ N .
We can split S(N , F) into two sums as follows:

S(N , F)=

∑
r |q

Sr (N , F)=

∑
r |q

r<q1/(d(d+1))

Sr (N , F)+
∑
r |q

r⩾q1/(d(d+1))

Sr (N , F). (35)

We can bound trivially the second sum of the right-hand side of (35) using Lemma 14. Indeed,∣∣∣∣ ∑
rqr⩾q1/(d(d+1))

Sr (N , F)
∣∣∣∣ ⩽ ∑

r |q
r⩾q1/(d(d+1))

N∑
n=1

(n,q)=r

ϱ(n)=

∑
r |q

r⩾q1/(d(d+1))

N/r∑
n=1

(n,q/r)=1

ϱ(rn)≪ϵ

N
q1/(d(d+1))−ϵ . (36)

We turn our attention to Sr (N , F) when r ⩽ 1/(d(d + 1)). Let

F̃(x)=

d∑
j=1

(a j/q j )x j and Q(x)= F(x)− F̃(x).

Observe that integration by parts yields

Sr (N , F)= e(Q(N ))Sr (N , F̃)− 2π i
d∑

j=1

jβ j

∫ N

1
u j−1e(Q(u))Sr (u, F̃) du, (37)

where β j is defined by

α j =
a j

q j
+β j . (38)
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In particular, from (34),

|β j | ⩽
(log N )B

q j N j . (39)

The above reduces to analysing Sr (N , F̃) instead of Sr (N , F).
Observe that, since we are summing over multiples of r , we can rewrite e(F̃(n)) as e(F̃r (n)), where

F̃r (n) := F̃(rn), so that the latter is a periodic function modulo q/r . We let q/r = r ′, and we decompose
Sr (u, F̃r ) using Dirichlet characters modulo r ′ as follows:

Sr (N , F̃)=

∑
x mod r ′

e(F̃r (x))
∑

m⩽N/r
(m,r ′)=1

m≡x mod r ′

ϱ(rm)=
1

ϕ(r ′)

∑
x mod r ′

e(F̃r (x))
∑

χ mod r ′

χ(x)
∑

m⩽N/r

χ(m)ϱ(rm).

We will prove the following.

Proposition 17. Let χ be a Dirichlet character mod r ′. There exist constants c > 0 and 0 ⩽ δ(χ)⩽ λr
such that ∑

m⩽N/r

χ(m)ϱ(rm)= δ(χ)
N
r

+ O(Ne−
1
c
√

log N ). (40)

Moreover, if δ(χ) ̸= 0 then χ has conductor h |disc(p).

We next show that Proposition 17 implies we can conclude the proof of Proposition 16. Indeed, we
obtain

Sr (N , F̃)=
N

rϕ(r ′)

∑
x mod r ′

e(F̃r (x))
∑

χ mod r ′

χ(x)δ(χ)+ O(Ne−
1
c
√

log N ),

which substituted into (37) and using (39) implies

Sr (N , F)= e(Q(N ))Sr (N , F̃)− C
∫ N

1
u
(

2π i
d∑

j=1

jβ j u j−1
)

e(Q(u)) du + O(Ne−
1
c
√

log N ),

with

C =
1

rϕ(r ′)

∑
x mod r ′

e(F̃r (x))
∑

χ mod r ′

χ(x)δ(χ).

Note that integrating by parts yields∫ N

1
u
(

2π i
d∑

j=1

jβ j u j−1
)

e(Q(u)) du ≪ N ,

and since if δ(χ) ̸= 0 then χ has conductor h |disc(p), the above implies

Sr (N , F)≪
N
r

1
φ(r ′)

∑
x mod r ′

χ(x)e(F̃r (x))+ O(Ne−
1
c
√

log N ) (41)

for some χ with conductor h |disc(p). Recall that

F̃r (x)= F̃(r x)=

d∑
j=1

a jr j

q j
x j

=

∑d
j=1(qa jr j/q j )x j

q
.
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Let q ′ denote the smallest divisor of q such that the polynomial

P(x)=

d∑
j=1

(qa jr j/q j )x j

is constant mod q/q ′. Note that, for each 1 ⩽ j ⩽ d ,

qa jr j

q j
≡ 0 mod q/q ′.

Since (a j , q j )= 1, this implies

q ′ >
q j

r j ⩾

( d∏
j=1

q j

r j

)1/d

⩾
q1/d

r (d+1)/2 ⩾ q1/(2d),

provided r ⩽ q1/(d(d+1)).
It follows from [Cochrane and Zheng 1999, Corollary 1.1] and the Chinese remainder theorem that∑

x mod r ′

χ(x)e(F̃r (x))≪
r ′

q ′
(q ′)1−1/d

≪
r ′

q1/(2d(d+1)) .

Combining the above with (41) gives

Sr (N , F)⩽
N

q1/(2d(d+1)) provided r ⩽ q1/(d(d+1)).

Summing over r < q1/(d(d+1)), we get∑
r |q

r<q1/(d(d+1))

Sr (N , F̃)⩽
N

q1/(2d(d+1))+o(1) .

Together with (35) and (36) this concludes the proof of Proposition 16. We will now focus on the
proof of Proposition 17. In order to understand the sum∑

n⩽N/r

ϱ(rn)χ(n), (42)

we study the Dirichlet series for χ mod r ′:

Dr (s, χ)=

∞∑
n=1

ϱ(rn)χ(n)n−s .

9.2. Decomposing Dr(s, χ). Obverse that Dr (s, χ) is absolutely convergent for Re(s) > 1. Our next
goal is to extend Dr (s, χ) to the left of Re(s) > 1 so that we can use contour integration to estimate the
sum (42). We will do this by decomposing Dr in terms of well-known Artin L-functions. With this in
mind, we fix some notation.

Denote by K f the splitting field of f in C, by G the Galois group of K f over Q and by Q(e(1/r ′))

the cyclotomic field generated by r ′-roots of unity. Observe that the latter is a Galois extension of Q,
with Galois group Cr ′ isomorphic to (Z/r ′Z)×.
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We also consider the compositum of K f and Q(e(1/r ′)) and denote it by K f,r ′ and its Galois group
over Q by Gr ′ . Observe that there is a natural injection

Gr ′ → G × Cr ′ ≃ G × (Z/r ′Z)×.

Moreover, observe that, from the extension theorem for field automorphism, it follows that the projections
p1 : Gr ′ → G and p2 : Gr ′ → (Z/r ′Z)× are surjective.

We denote by Ĝ the finite set of isomorphism classes of complex irreducible representations of G and,
for π ∈ Ĝ, we write χπ for the character of π .

Note that χ can be viewed as a character of (Z/r ′Z)× and consequently as a character η : Cr ′ → C×.
It is known that η(σp)= χ(p) for p ∤r ′ and σp the Frobenius automorphism at p.

So, we consider the representations p∗

1π = π ◦ p1 and p∗

2η= η◦ p2 of Gr ′ and observe that their tensor
product satisfies

tr(p∗

1π ⊗ p∗

2η(σp))= χπ (σp)χ(p) (43)

for p ∤disc( f ) and p ∤r ′.

Proposition 18. Dr (s, χ) has an expression

Dr (s, χ)= Fr (s, χ)
∏
π∈Ĝ

Er,π (s, χ)(L(s, K f,r ′/Q, p∗

1π ⊗ p∗

2η))
mπ

for mπ ⩾ 0 an integer and, for any ϵ > 0, Fr ≪ϵ qϵ and Er,π ≪ qϵ for Re(s)⩾ 3
4 .

To prove the proposition we will need the following lemma.

Lemma 19. Denote by π f the permutation representation of G acting on the set of roots of f in C,
and let

π f =

⊕
π∈Ĝ

mππ

be its decomposition in irreducible representations, where mπ ⩾ 0 are integers. For all p ∤disc( f ), we have

ϱ(p)=

∑
π

mπ ·χπ (σp) (44)

for σp ∈ G the Frobenius automorphism at p.

Proof. The proof follows by noting that ϱ(p) is the number of fixed points of the Frobenius automor-
phism σp at p, which is also the character at σp of the permutation representation. □

Proof of Proposition 18. First we observe that Dr can be decomposed as

Dr (s, χ)=

∑
e |r∞

∑
(k,r)=1

χ(ek)ϱ(erk)(ek)−s
=

∑
e |r∞

ϱ(er)χ(e)e−s
∑
(k,r)=1

χ(k)ϱ(k)k−s,

where the notation e |r∞ means that e runs over all possible products of powers of the primes that divide r .
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We define

Er (s, χ)=

∑
e |r∞

ϱ(er)χ(e)e−s

D̃r (s, χ)=

∑
(k,r)=1

χ(k)ϱ(k)k−s,

and, using Lemma 14 and the property ϱ(pn)⩽C for all n ⩾ 1 and p prime, we observe that Er (s, χ)≪ r ϵ

uniformly for Re(s)⩾ 3
4 and that D̃r (s, χ) converges absolutely for Re(s) > 1.

To be able to explore the properties of ϱ, we factor the primes that divide the discriminant of f in
D̃r (s, χ) and, since r |q , we also factor the remaining primes that divide q. This yields

D̃r (s, χ)= E1,r (s, χ)
∏

p ∤disc( f )
p ∤q

∑
k⩾0

ϱ(pk)χ(p)k p−ks,

where E1,r (s, χ) is entire and bounded for Re(s)⩾ 3
4 by C(ϵ)qϵ .

We proceed in a similar manner and factor out the prime powers with exponent larger than 2, obtaining

D̃r (s, χ)= E1,r (s, χ)E2(s, χ)
∏

p ∤disc( f )
p ∤q

(1 + ϱ(p)χ(p)p−s) (45)

for E2(s, χ) holomorphic and bounded in vertical strips by C(ϵ)qϵ for Re(s)⩾ 3
4 .

Now we can use Lemma 19 and a further decomposition to write

D̃r (s, χ)= E1,r (s, χ)E2(s, χ)E3,r (s, χ)
∏
π∈Ĝ

∏
p

(1 +χπ (σp)χ(p)p−s)mπ

for E3,r holomorphic and uniformly bounded in vertical strips by C(ϵ, f )qϵ for Re(s)⩾ 3
4 . We now set

Fr = E1,r E2 E3,r . To conclude, we use equality (43) and yet another similar decomposition as before and
obtain ∏

p

(1 +χπ (σp)χ(p)p−s)= Er,π (s, χ)L(s, K f,q/Q, p∗

1π ⊗ p∗

2η). □

Observe that now we are dealing with Artin L-functions, which are better understood than the original
Dirichlet series. Since p1 is surjective and π is irreducible, it follows that p∗

1π is an irreducible represen-
tation. Furthermore, since p∗

2η is of dimension 1, we can conclude that p∗

1π ⊗ p∗

2η is also an irreducible
representation. Artin’s conjecture states that this L-function is entire except if the representation is trivial —
which can occur if p∗

1π is the inverse of p∗

2η.
To avoid assuming Artin’s conjecture, we will use the Brauer induction theorem instead (see, e.g.,

[Serre 1977, Theorem 19]). It states that, for every subgroup H of G and one-dimensional character
βH : H → C×, there exist integers nπ,βH such that

χπ =

∑
H

∑
βH

nπ,βH · IndG
HβH .
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Observe that this implies that L(s, K f,q/Q, p∗

1π) can be represented as

L(s, K f,q/Q, p∗

1π)= L(s, K f /Q, π)=

∏
H

∏
βH

L(s, K f /Q, IndG
H βH )

nπ,βH

=

∏
H

∏
βH

L(s, K f /K H , βH )
nπ,βH ,

where K H ⊂ K f is the subfield fixed by H — which implies that H is the Galois group of K f over K H .
We can now introduce the twist by the Dirichlet character. We write H ′

= p−1
1 (H) and observe that

we can write

p∗

1π =

⊕
H

nπ,βH IndGr ′

H ′ (p∗

1βH ),

and thus

p∗

1π ⊗ p∗

2η =

⊕
H

⊕
βH

nπ,βH IndGr ′

H ′ (p∗

1βH ⊗ ResGr ′

H ′ p∗

2η).

So, defining θβH = p∗

1βH ⊗ ResGr ′

H ′ p∗

2η, we can finally write

L(s, K f,q/Q, p∗

1χ ⊗ p∗

2η)=

∏
H

∏
βH

L(s, K f,q/K H , θβH )
nπ,βH ,

and thus Dr has the representation

Dr (s, χ)= Fr (s, χ)
∏
π∈Ĝ

Er,π (s, χ)
∏
H

∏
βH

L(s, K f,q/K H , θβH )
nπ,βH . (46)

Now the L(s, K f,q/K H , θβH )
nπ,βH are Artin L-functions of dimension 1, which we know are entire except

for a pole at s = 1 if θβH is the trivial one-dimensional character.

9.3. Bounds on the Artin L-functions near s=1. We denote by qπ,i the conductor of L(s,K f,q/K H ,θβH )

and observe that we can bound it as follows (see, e.g., [Bushnell and Henniart 1997]):

qπ,βH ⩽ cond(p∗

1βH ) · cond(ResGq
H ′ p∗

2η)⩽ Mq,

where M = supπ,βH
cond(p∗

1βH ). It is well known that L(s, K f,q/K H , θβH ) can have at most one real
zero β in the region

σ ⩾ 1 −
c

log(qπ,βH (|t | + 3))
(47)

for s = σ + i t ∈ C and c a universal constant; see, e.g., [Iwaniec and Kowalski 2004, Theorem 5.35].
Note that this zero can only exist if θi is a quadratic character.

To simplify the notation, in what follows we let g = θβH and we omit the field K f,q/K H . Denote
by β the possible exception in region (47) and let q be the conductor of g. Also, we set r1 = 1 if g
has an exceptional zero β, and r1 = 0 otherwise. Analogously, r2 = 1 if g is the trivial character and
consequently has a pole at s = 1, and r2 = 0 if not.
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Proposition 20. Let s = σ + i t ∈ C satisfy the conditions

σ ⩾ 1 −
c

10 log(Mq(|t | + 3))
, (48)

|s −β| ⩾
1

20 log (3Mq)
, (49)

|s − 1| ⩾
1

20 log(3Mq)
. (50)

We have that

L(s, g)≪ log(Mq(|t | + 3)),
1

L(s, g)
≪ log(Mq(|t | + 3)),

where the implied constant does not depend on the parameters.
If g is not trivial, condition (50) can be dropped. Condition (49) can be dropped if g has no exceptional

zero.

Proof. We set γ (s, g)= π−s/2γ
( 1

2(s + κg)
)
, where κg = 0 or 1, and let 3(s, g)= qs/2γ (s, g)L(s, g) be

the extended L-function. It is a known fact that 3(s, g) is a meromorphic function of order at most 1.
Thus, we can proceed as in [Montgomery and Vaughan 2007, Theorem 11.4] to obtain the proposition. □

9.4. Finishing the proof.

Proof of Proposition 16. To bound the sum
∑

n⩽N/r ϱ(rn)χ(n) we first smooth it:

N/r∑
n=1

(n,q)=r

ϱ(n)χ(n)=

∞∑
n=1

(n,q)=r

ϱ(n)χ(n)φ(n)+ O(Ñ ),

where φ is defined as

φ(x)= min
(

x, 1, 1 +
N/r − x

Ñ

)
for 0 ⩽ x ⩽ N/r + Ñ , and φ(x) = 0 for x > N/r + Ñ , with Ñ > 0 to be chosen later. Observe that
Mellin inversion implies that

∞∑
n=1

(n,q)=r

ϱ(n)χ(n)φ(n)=
1

2π i

∫
(3)

Dr (s, χ)φ̂(s) ds

=
1

2π i

∫
(3)

Fr (s, χ)
∏
π∈Ĝ

Er,π (s, χ)(L(s, K f,r ′/Q, p∗

1π ⊗ p∗

2η))
mπ φ̂(s) ds

=
1

2π i

∫
(3)

Fr (s, χ)
∏
π∈Ĝ

Er,π (s, χ)
∏
H

∏
βH

L(s, K f,q/K ′

H , θβH )
nπ,βH φ̂(s) ds, (51)

where (3) denotes the contour obtained by traversing the straight line {s = 3 + i t, t ∈ R} from t = −∞ to
t = +∞.
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Our goal is to shift the contour of integration and use the information on the L-functions

L(s, K f,q/K ′

H , θβH )

to obtain good bounds for Sr (s, F̃r ). Observe that we can find 1
2 c ⩽ Q ⩽ 1

10 c such that all the conditions
of Proposition 20 are satisfied for

s ∈ Z =

{
s = σ + i t, σ = 1 −

Q
log (Mq(|t | + 3))

}
.

Moving the contour of integration in (51) to Z , we get
∞∑

n=1
(n,q)=r

ϱ(n)χ(n)φ(n)

=
1

2π i

∫
Z

Dr (s, χ)φ̂(s) ds +α Res(Dr (s, χ), 1) ·
N
r

+ α̃ Res(Dr (s, χ), β) · Nβ, (52)

where α = 1 if there is π ∈ Ĝ for which p∗

1π ⊗ p∗

2η is the principal character in K f,r ′/Q with mπ = 1,
and α = 0 otherwise. Likewise, α̃ = 1 if L(s, K f,q/K ′

H , θβH ) has an exceptional zero β and nπ,βH = −1,
and α̃ = 0 otherwise. Note from Proposition 18 that there is at most one trivial character p∗

1π ⊗ p∗

2η and
one quadratic character θβH . Moreover, if p∗

1π ⊗ p∗

2η is the trivial character, then we observe that χ must
have a conductor with modulus h that divides disc( f ).

We bound each term of the right-hand side of (52) separately. To bound the first term, we note that the
Mellin transform of φ satisfies

φ̂(s)=

∫ N+Ñ

0
φ(z)zs−1 dz ≪

Nσ

|s|
min

(
1,

N

|s|Ñ

)
,

where σ = Re(s); see [Iwaniec and Kowalski 2004, Theorem 5.12]. Thus,∫
Z

Dr (s, χ)φ̂(s) ds ≪

∫
Z

|Dr (s, χ)|
Nσ

|s|
min

(
1,

N

|s|Ñ

)
|ds|.

We let T = N/(r Ñ ) and σ(T )= 1 − Q/ log(Mq(T + 3)), and we note that the observation above and
Propositions 18 and 20 imply that ∫

Z
Dr (s, χ)φ̂(s) ds ≪ Nσ(T )qY ϵ

for a constant Y > 0 that only depends on f .
We now deal with the last term α̃ Res(Dr (s, χ), β)·Nβ . Siegel proved (see, e.g., [Iwaniec and Kowalski

2004, Theorem 5.28]) that if the exceptional zero β exists then, for every ϵ > 0, there exists a constant
C(ϵ) > 0 such that

β ⩽ 1 −
c(ϵ)

cond(θi )ϵ
⩽ 1 −

c(ϵ)
Mqϵ

. (53)

To bound the residue at β we notice that, if θπ,βH is not trivial, we can use Proposition 20 and obtain

|L(s, K f,q/K ′

H , θβH )|
nπ,i ≪ |log 3Mq|

|nπ,βH |.
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If θβH is trivial then

|L(s, K f,q/K ′

H , θβH )|
nπ,βH ≪ϵ qϵ|nπ,βH |,

and, for the residue given by the L-function with quadratic character, we have

Res
(

1
L(s, K f,q/K ′

H , θβH )
, β

)
=

1
L(s, K f,q/K ′

H , θβH )
.

We can deduce that L ′(s, K f,q/K ′

H , θβH )≫ 1 from the last part of Theorem 11.4 in [Montgomery and
Vaughan 2007]. Putting everything together, we obtain

Res(Dr (s, χ), β) · Nβ ⩽ qϵN 1−C(ϵ)/qϵ .

Pick T = exp
( 1

3
√

log N
)
. Since q ⩽ (log N )B , the considerations above imply that

Sr (N , F̃r )= α Res(Dr (s, χ), 1) ·
N
r

+ O(Ne
−

1
c(ϵ)

√
log N

) (54)

for a constant c(ϵ) and ϵ > 0 sufficiently small. Since∑
n⩽N

ϱ(n)⩽ λN

and the error term in (54) is o(N ), we conclude that

Res(Dr (s, χ), 1)⩽ λr. □

10. Sharpness of Theorem 1

Following the approach of [Montgomery and Vaughan 1977], we will construct a completely multiplicative
function f = fN ,F , with | f (n)| ⩽ 1, such that∣∣∣∣∑

n⩽N

f (n)e(F(n))
∣∣∣∣ ⩾ 1

10
N

log N
. (55)

We first observe that the function G : C → C given by

G(z)=

∑
n⩽N

z�(n)e(F(n))+
∑

N/2<p⩽N

(1 − ze(F(p)))

is entire and its value at zero satisfies

G(0)=

∑
N/2<p⩽N

1 ⩾
1
10

N
log N

for N sufficiently large. Thus, by the maximum modulus principle, there exists a z0 ∈ C, |z0| = 1, such
that |G(z0)| ⩾ |G(0)|.

Define the completely multiplicative function f by f (p)= z0 for p ⩽ 1
2 N , and f (p)= e(−F(p)) for

p > 1
2 N . To conclude that (55) is satisfied, we just observe that∑

n⩽N

f (n)e(F(n))=

∑
n⩽N

z�(n)0 e(F(n))+
∑

N/2<p⩽N

(1 − z0e(F(p)))= G(z0)≫
N

log N
.



Weyl sums with multiplicative coefficients and joint equidistribution 1579

Acknowledgements

We would like to thank Emmanuel Kowalski for his helpful comments and suggestions. We would also
like to thank Alberto Perelli for a useful conversation and his helpful comments.

Matteo Bordignon was supported in part by OP RDE project no. CZ.02.2.69/0.0/0.0/18_053/0016976
International mobility of research, technical and administrative staff at the Charles University, in part by
an Australian Mathematical Society Lift-off Fellowship and in part while a Ph.D. student of the University
of New South Wales Canberra.

Bryce Kerr would like to acknowledge the support of the Max Planck Institute for Mathematics and
the Australian Research Council (DE220100859).

References

[Bachman 2003] G. Bachman, “On exponential sums with multiplicative coefficients, II”, Acta Arith. 106:1 (2003), 41–57. MR
Zbl

[Bourgain et al. 2013] J. Bourgain, P. Sarnak, and T. Ziegler, “Disjointness of Moebius from horocycle flows”, pp. 67–83 in
From Fourier analysis and number theory to Radon transforms and geometry, edited by H. M. Farkas et al., Dev. Math. 28,
Springer, 2013. MR Zbl

[Bourgain et al. 2016] J. Bourgain, C. Demeter, and L. Guth, “Proof of the main conjecture in Vinogradov’s mean value theorem
for degrees higher than three”, Ann. of Math. (2) 184:2 (2016), 633–682. MR Zbl

[de la Bretèche 1998] R. de la Bretèche, “Sommes d’exponentielles et entiers sans grand facteur premier”, Proc. London Math.
Soc. (3) 77:1 (1998), 39–78. MR Zbl

[de la Bretèche and Granville 2022] R. de la Bretèche and A. Granville, “Exponential sums with multiplicative coefficients and
applications”, Trans. Amer. Math. Soc. 375:10 (2022), 6875–6901. MR Zbl

[Bushnell and Henniart 1997] C. J. Bushnell and G. Henniart, “An upper bound on conductors for pairs”, J. Number Theory 65:2
(1997), 183–196. MR Zbl

[Chang 2010] M.-C. Chang, “An estimate of incomplete mixed character sums”, pp. 243–250 in An irregular mind, edited by
I. Bárány and J. Solymosi, Bolyai Soc. Math. Stud. 21, János Bolyai Math. Soc., Budapest, 2010. MR Zbl

[Chang 2014] M.-C. Chang, “Short character sums for composite moduli”, J. Anal. Math. 123 (2014), 1–33. MR Zbl

[Cochrane and Zheng 1999] T. Cochrane and Z. Zheng, “Pure and mixed exponential sums”, Acta Arith. 91:3 (1999), 249–278.
MR Zbl

[Cris,an and Pollack 2020] V. Cris,an and P. Pollack, “The smallest root of a polynomial congruence”, Math. Res. Lett. 27:1
(2020), 43–66. MR Zbl

[Daboussi 1975] H. Daboussi, “Fonctions multiplicatives presque périodiques B”, pp. 321–324 in Journées Arithmétiques de
Bordeaux (Conf., Univ. Bordeaux, 1974), Astérisque 24–25, Société Mathématique de France, Paris, 1975. MR Zbl

[Enflo 1995] P. Enflo, “Some problems in the interface between number theory, harmonic analysis and geometry of Euclidean
space”, Quaestiones Math. 18:1–3 (1995), 309–323. MR Zbl

[Gong and Jia 2015] K. Gong and C. Jia, “Shifted character sums with multiplicative coefficients”, J. Number Theory 153
(2015), 364–371. MR Zbl

[Granville and Soundararajan 2001] A. Granville and K. Soundararajan, “Large character sums”, J. Amer. Math. Soc. 14:2
(2001), 365–397. MR Zbl

[Granville and Soundararajan 2007] A. Granville and K. Soundararajan, “Large character sums: pretentious characters and the
Pólya–Vinogradov theorem”, J. Amer. Math. Soc. 20:2 (2007), 357–384. MR Zbl

[Heath-Brown and Pierce 2015] D. R. Heath-Brown and L. B. Pierce, “Burgess bounds for short mixed character sums”, J. Lond.
Math. Soc. (2) 91:3 (2015), 693–708. MR Zbl

https://doi.org/10.4064/aa106-1-3
http://msp.org/idx/mr/1956974
http://msp.org/idx/zbl/1022.11039
https://doi.org/10.1007/978-1-4614-4075-8_5
http://msp.org/idx/mr/2986954
http://msp.org/idx/zbl/1336.37030
https://doi.org/10.4007/annals.2016.184.2.7
https://doi.org/10.4007/annals.2016.184.2.7
http://msp.org/idx/mr/3548534
http://msp.org/idx/zbl/1408.11083
https://doi.org/10.1112/S0024611598000409
http://msp.org/idx/mr/1625487
http://msp.org/idx/zbl/0893.11039
https://doi.org/10.1090/tran/8625
https://doi.org/10.1090/tran/8625
http://msp.org/idx/mr/4491416
http://msp.org/idx/zbl/1505.11124
https://doi.org/10.1006/jnth.1997.2142
http://msp.org/idx/mr/1462836
http://msp.org/idx/zbl/0884.11049
https://doi.org/10.1007/978-3-642-14444-8_5
http://msp.org/idx/mr/2815604
http://msp.org/idx/zbl/1221.11236
https://doi.org/10.1007/s11854-014-0012-y
http://msp.org/idx/mr/3233573
http://msp.org/idx/zbl/1372.11087
https://doi.org/10.4064/aa-91-3-249-278
http://msp.org/idx/mr/1735676
http://msp.org/idx/zbl/0937.11031
https://doi.org/10.4310/mrl.2020.v27.n1.a4
http://msp.org/idx/mr/4088807
http://msp.org/idx/zbl/1480.11091
http://msp.org/idx/mr/374074
http://msp.org/idx/zbl/0306.10042
https://doi.org/10.1080/16073606.1995.9631803
https://doi.org/10.1080/16073606.1995.9631803
http://msp.org/idx/mr/1340486
http://msp.org/idx/zbl/0845.11031
https://doi.org/10.1016/j.jnt.2015.01.015
http://msp.org/idx/mr/3327581
http://msp.org/idx/zbl/1344.11057
https://doi.org/10.1090/S0894-0347-00-00357-X
http://msp.org/idx/mr/1815216
http://msp.org/idx/zbl/0983.11053
https://doi.org/10.1090/S0894-0347-06-00536-4
https://doi.org/10.1090/S0894-0347-06-00536-4
http://msp.org/idx/mr/2276774
http://msp.org/idx/zbl/1210.11090
https://doi.org/10.1112/jlms/jdv009
http://msp.org/idx/mr/3355121
http://msp.org/idx/zbl/1317.11083


1580 Matteo Bordignon, Cynthia Bortolotto and Bryce Kerr

[Hildebrand 1988a] A. Hildebrand, “Large values of character sums”, J. Number Theory 29:3 (1988), 271–296. MR Zbl

[Hildebrand 1988b] A. Hildebrand, “On the constant in the Pólya–Vinogradov inequality”, Canad. Math. Bull. 31:3 (1988),
347–352. MR Zbl

[Hildebrand and Tenenbaum 1993] A. Hildebrand and G. Tenenbaum, “Integers without large prime factors”, J. Théor. Nombres
Bordeaux 5:2 (1993), 411–484. MR Zbl

[Hooley 1964] C. Hooley, “On the distribution of the roots of polynomial congruences”, Mathematika 11 (1964), 39–49. MR
Zbl

[Hua 1965] L. K. Hua, Additive theory of prime numbers, Translations of Mathematical Monographs Vol. 13, Amer. Math. Soc.,
Providence, RI, 1965. MR Zbl

[Indlekofer and Kátai 1989] K.-H. Indlekofer and I. Kátai, “Exponential sums with multiplicative coefficients”, Acta Math.
Hungar. 54:3-4 (1989), 263–268. MR Zbl

[Iwaniec and Kowalski 2004] H. Iwaniec and E. Kowalski, Analytic number theory, American Mathematical Society Colloquium
Publications 53, Amer. Math. Soc., Providence, RI, 2004. MR Zbl

[Jiang et al. 2021] Y. Jiang, G. Lü, and Z. Wang, “Exponential sums with multiplicative coefficients without the Ramanujan
conjecture”, Math. Ann. 379:1-2 (2021), 589–632. MR Zbl

[Karatsuba 2010] A. A. Karatsuba, “New estimates for short Kloosterman sums”, Mat. Zametki 88:3 (2010), 384–398. MR Zbl

[Kátai 1986] I. Kátai, “A remark on a theorem of H. Daboussi”, Acta Math. Hungar. 47:1-2 (1986), 223–225. MR Zbl

[Kerr 2020] B. Kerr, “On the constant in the Pólya–Vinogradov inequality”, J. Number Theory 212 (2020), 265–284. MR Zbl

[Korolëv 2018] M. A. Korolëv, “Kloosterman sums with multiplicative coefficients”, Izv. Ross. Akad. Nauk Ser. Mat. 82:4
(2018), 3–17. In Russian; translated in Izv. Math. 82:4 (2018), 647–661. MR Zbl

[Korolev and Shparlinski 2020] M. Korolev and I. Shparlinski, “Sums of algebraic trace functions twisted by arithmetic
functions”, Pacific J. Math. 304:2 (2020), 505–522. MR Zbl

[Matomäki et al. 2023] K. Matomäki, M. Radziwiłł, T. Tao, J. Teräväinen, and T. Ziegler, “Higher uniformity of bounded
multiplicative functions in short intervals on average”, Ann. of Math. (2) 197:2 (2023), 739–857. MR Zbl

[Matthiesen 2018] L. Matthiesen, “Generalized Fourier coefficients of multiplicative functions”, Algebra Number Theory 12:6
(2018), 1311–1400. MR Zbl

[Matthiesen 2020] L. Matthiesen, “Linear correlations of multiplicative functions”, Proc. Lond. Math. Soc. (3) 121:2 (2020),
372–425. MR Zbl

[Montgomery and Vaughan 1977] H. L. Montgomery and R. C. Vaughan, “Exponential sums with multiplicative coefficients”,
Invent. Math. 43:1 (1977), 69–82. MR Zbl

[Montgomery and Vaughan 2007] H. L. Montgomery and R. C. Vaughan, Multiplicative number theory, I: Classical theory,
Cambridge Studies in Advanced Mathematics 97, Cambridge Univ. Press, 2007. MR Zbl

[Serre 1977] J.-P. Serre, Linear representations of finite groups, Grad. Texts in Math. 42, Springer, 1977. MR Zbl

[Wirsing 1961] E. Wirsing, “Das asymptotische Verhalten von Summen über multiplikative Funktionen”, Math. Ann. 143 (1961),
75–102. MR Zbl

[Wooley 2016] T. D. Wooley, “The cubic case of the main conjecture in Vinogradov’s mean value theorem”, Adv. Math. 294
(2016), 532–561. MR Zbl

Communicated by Roger Heath-Brown
Received 2023-06-18 Revised 2024-07-21 Accepted 2024-09-03

matteobordignon91@gmail.com Department of Mathematics, KTH Royal Institute of Technology, Stockholm,
Sweden

Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic

cynthia.bortolotto@math.ethz.ch Department of Mathematics, ETH Zürich, Zürich, Switzerland

bryce.kerr@unsw.edu.au University of New South Wales, School of Science, Canberra, Australia

mathematical sciences publishers msp

https://doi.org/10.1016/0022-314X(88)90106-0
http://msp.org/idx/mr/955953
http://msp.org/idx/zbl/0652.10029
https://doi.org/10.4153/CMB-1988-050-1
http://msp.org/idx/mr/956367
http://msp.org/idx/zbl/0612.10033
https://doi.org/10.5802/jtnb.101
http://msp.org/idx/mr/1265913
http://msp.org/idx/zbl/0797.11070
https://doi.org/10.1112/S0025579300003466
http://msp.org/idx/mr/163874
http://msp.org/idx/zbl/0123.25802
http://msp.org/idx/mr/194404
http://msp.org/idx/zbl/0192.39304
https://doi.org/10.1007/BF01952056
http://msp.org/idx/mr/1029088
http://msp.org/idx/zbl/0689.10058
https://doi.org/10.1090/coll/053
http://msp.org/idx/mr/2061214
http://msp.org/idx/zbl/1059.11001
https://doi.org/10.1007/s00208-020-02108-z
https://doi.org/10.1007/s00208-020-02108-z
http://msp.org/idx/mr/4211098
http://msp.org/idx/zbl/1464.11083
https://doi.org/10.1134/S0001434610090075
http://msp.org/idx/mr/2882178
http://msp.org/idx/zbl/1271.11083
https://doi.org/10.1007/BF01949145
http://msp.org/idx/mr/836415
http://msp.org/idx/zbl/0607.10034
https://doi.org/10.1016/j.jnt.2019.11.003
http://msp.org/idx/mr/4080053
http://msp.org/idx/zbl/1439.11194
https://doi.org/10.4213/im8633
https://iopscience.iop.org/article/10.1070/IM8633
http://msp.org/idx/mr/3833472
http://msp.org/idx/zbl/1440.11151
https://doi.org/10.2140/pjm.2020.304.505
https://doi.org/10.2140/pjm.2020.304.505
http://msp.org/idx/mr/4062779
http://msp.org/idx/zbl/1469.11267
https://doi.org/10.4007/annals.2023.197.2.3
https://doi.org/10.4007/annals.2023.197.2.3
http://msp.org/idx/mr/4543441
http://msp.org/idx/zbl/1521.11059
https://doi.org/10.2140/ant.2018.12.1311
http://msp.org/idx/mr/3864201
http://msp.org/idx/zbl/1444.11201
https://doi.org/10.1112/plms.12309
http://msp.org/idx/mr/4093960
http://msp.org/idx/zbl/1459.11187
https://doi.org/10.1007/BF01390204
http://msp.org/idx/mr/457371
http://msp.org/idx/zbl/0362.10036
http://msp.org/idx/mr/2378655
http://msp.org/idx/zbl/1142.11001
https://doi.org/10.1007/978-1-4684-9458-7
http://msp.org/idx/mr/450380
http://msp.org/idx/zbl/0355.20006
https://doi.org/10.1007/BF01351892
http://msp.org/idx/mr/131389
http://msp.org/idx/zbl/0104.04201
https://doi.org/10.1016/j.aim.2016.02.033
http://msp.org/idx/mr/3479572
http://msp.org/idx/zbl/1365.11097
mailto:matteobordignon91@gmail.com
mailto:cynthia.bortolotto@math.ethz.ch
mailto:bryce.kerr@unsw.edu.au
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Antoine Chambert-Loir
Université Paris-Diderot

France

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Jason P. Bell University of Waterloo, Canada

Bhargav Bhatt University of Michigan, USA

Frank Calegari University of Chicago, USA

J-L. Colliot-Thélène CNRS, Université Paris-Saclay, France

Brian D. Conrad Stanford University, USA

Samit Dasgupta Duke University, USA

Hélène Esnault Freie Universität Berlin, Germany

Gavril Farkas Humboldt Universität zu Berlin, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Wee Teck Gan National University of Singapore

Andrew Granville Université de Montréal, Canada

Ben J. Green University of Oxford, UK

Christopher Hacon University of Utah, USA

Roger Heath-Brown Oxford University, UK

János Kollár Princeton University, USA

Michael J. Larsen Indiana University Bloomington, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Martin Olsson University of California, Berkeley, USA

Irena Peeva Cornell University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Bjorn Poonen Massachusetts Institute of Technology, USA

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Michael Singer North Carolina State University, USA

Vasudevan Srinivas SUNY Buffalo, USA

Shunsuke Takagi University of Tokyo, Japan

Pham Huu Tiep Rutgers University, USA

Ravi Vakil Stanford University, USA

Akshay Venkatesh Institute for Advanced Study, USA

Melanie Matchett Wood Harvard University, USA

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2025 is US $565/year for the electronic version, and $820/year (+$70, if shipping outside the US) for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University
of California, Berkeley, CA 94720-3840 is published continuously online.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2025 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 19 No. 8 2025

1463The core of monomial ideals
LOUIZA FOULI, JONATHAN MONTAÑO, CLAUDIA POLINI and BERND ULRICH

1495Pullback formulas for arithmetic cycles on orthogonal Shimura varieties
BENJAMIN HOWARD

1549Weyl sums with multiplicative coefficients and joint equidistribution
MATTEO BORDIGNON, CYNTHIA BORTOLOTTO and BRYCE KERR

1581Rational points of rigid-analytic sets: a Pila–Wilkie-type theorem
GAL BINYAMINI and FUMIHARU KATO

1621Extending the unconditional support in an Iwaniec–Luo–Sarnak family
LUCILE DEVIN, DANIEL FIORILLI and ANDERS SÖDERGREN

1637On the maximum gonality of a curve over a finite field
XANDER FABER, JON GRANTHAM and EVERETT W. HOWE

1663Solvable and nonsolvable finite groups of the same order type
PAWEŁ PIWEK

A
lgebra

&
N

um
ber

Theory
2025

Vol.19,
N

o.8

http://dx.doi.org/10.2140/ant.2025.19.1463
http://dx.doi.org/10.2140/ant.2025.19.1495
http://dx.doi.org/10.2140/ant.2025.19.1549
http://dx.doi.org/10.2140/ant.2025.19.1581
http://dx.doi.org/10.2140/ant.2025.19.1621
http://dx.doi.org/10.2140/ant.2025.19.1637
http://dx.doi.org/10.2140/ant.2025.19.1663

	1. Introduction
	2. Main results
	3. Applications
	3.1. Joint equidistribution
	3.2. Mixed character sums

	4. Preliminary results
	4.1. Reduction to bilinear forms

	5. Sums over bilinear forms
	5.1. The Vinogradov mean value theorem
	5.2. Bounding bilinear forms

	6. Proof of Theorem 1
	7. Proof of Corollary 3
	8. Short mixed character sums
	9. On the correlation between roots of polynomial congruences and polynomial values
	9.1. First reductions
	9.2. Decomposing D_r(s,chi)
	9.3. Bounds on the Artin L-functions near s=1
	9.4. Finishing the proof

	10. Sharpness of Theorem 1
	Acknowledgements
	References
	
	

