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Rigidity of modular morphisms via Fujita decomposition
Giulio Codogni, Víctor González Alonso and Sara Torelli

We prove that the Torelli, Prym and spin-Torelli morphisms, as well as covering maps between moduli
stacks of smooth projective curves, cannot be deformed. The proofs use properties of the Fujita decompo-
sition of the Hodge bundle of families of curves.

1. Introduction

Let M and A be Deligne–Mumford stacks. A nonconstant morphism M → A is globally rigid if it
is the unique nonconstant morphism between M and A, locally rigid if it does not admit nontrivial
local deformations with fixed target and domain, and infinitesimally rigid if it does not admit nontrivial
first-order deformations with fixed target and domain. In particular, global and infinitesimal rigidity both
imply local rigidity. However, they do not imply each other, as certain first-order deformations may not
extend to local deformations, and a discrete set of morphisms may all have no first-order deformations.
From the point of view of the corresponding moduli stack of nonconstant morphisms with fixed target
and domain, global rigidity forces the moduli to be just one point, while infinitesimal rigidity determines
whether the point is reduced.

In Section 3, we prove the following.

Theorem 1.1. For any g ≥ 3 the Torelli morphism τ :Mg →Ag, from the moduli stack of genus g smooth
projective curves Mg to the moduli stack of principally polarized abelian g-folds, is infinitesimally rigid.

Farb [2024a] proved the global rigidity, i.e., uniqueness, for the Torelli morphism for g ≥ 3 in the
category of complex orbifolds (as in [Farb 2024a, Remark 2.1]). Following his proof one obtains also
uniqueness in the category of stacks. Uniqueness as a map between coarse moduli spaces is still open.

Let us recall that the infinitesimal rigidity of Mg is still unknown. To the best of our knowledge, the
most recent work in this direction is by Hacking [2008]: he proved infinitesimal rigidity for the moduli
stack Mg,n of stable curves of arithmetic genus g with n marked points (a result that has been extended
to positive characteristic in [Fantechi and Massarenti 2017]), and leaves the infinitesimal rigidity of Mg,n

as an open question.
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The rigidity of Ag is also open. To best of our knowledge, just the following is known. Let A′
g be

a finite cover of Ag constructed as the moduli space of ppav with a level structure, we choose a level
structure such that there is no difference between the coarse moduli space and the stack. Let A′

g be a
good toroidal compactification of A′

g. Then, building on [Calabi and Vesentini 1960], in [Peters 2017,
Theorem 4.3] it is shown that the pair (A′

g, ∂A′
g) is rigid. From an arithmetic point of view, similar

rigidity results are proven in [Faltings 1984].
Our second result concerns infinitesimal rigidity of the Prym morphism Pr :Rg →Ag−1, from the moduli

stack Rg of pairs (C, η), where C is a smooth projective curve of genus g and η ∈ J (C) is a nontrivial
line bundle on C with η⊗2 ∼= OC . This morphism maps each pair (C, η) to its Prym variety Pr(C, η) (see
Section 4 for some details). It is never an immersion but it is generically injective for g ≥ 7, namely as
soon as the dimension of the target is larger than the dimension of the domain (see, e.g., [Donagi 1992]).

As for Mg, any rigidity for Rg is still unknown. However, the global rigidity of the Prym morphism
was established in [Serván 2022] and answers a question posed in [Farb 2024a]. Again, our result of
infinitesimal rigidity combined with the previous result on global rigidity provides a complete answer to
the problem of rigidity with fixed target and domain. The following theorem is proven in Section 4.

Theorem 1.2. For any g ≥ 3 the Prym morphism Pr :Rg →Ag−1 does not admit any nontrivial first-order
deformation with fixed domain and target.

Our third result concerns the infinitesimal rigidity of the spin-Torelli morphism sτ : Sg →Ng, from the
moduli stack Sg of spin curves of genus g to the moduli stack Ng of pairs (A, 2) of an abelian variety
together with an effective symmetric divisor with h0(OA(2)) = 1. Closed points in Sg are pairs (C, ϑ)

of a smooth projective curve C of genus g together with a theta-characteristic ϑ (i.e., a line bundle such
that ϑ⊗2 ∼= ωC ). The theta-characteristic allows to construct a unique symmetric divisor 2 ⊆ J (C) and
therefore a unique closed point in Ng (see Section 5 for a more detailed description). This construction
defines an injective morphism, the spin-Torelli morphism. We are not aware of any result of rigidity
regarding the moduli stacks Sg or the spin-Torelli morphism; the state of the art about the rigidity of Ng

is analogous to the case of Ag.
The proof of the following theorem is contained in Section 5.

Theorem 1.3. For any g ≥ 3 the spin-Torelli morphism sτ : Sg → Ng does not admit any nontrivial
first-order deformation with fixed domain and target.

We now focus on morphisms between moduli stacks of curves. By [Royden 1971], the only auto-
morphism Mg → Mg is the identity. In [Massarenti 2014], building on [Gibney et al. 2002], it is
shown that the automorphism group of Mg,n is the symmetric group acting on the marked points, except
for some low genera cases explicitly described in [loc. cit.]. These problems are also reviewed in
[Farkas 2009, Question 4.6].

Our next and last result regards infinitesimal rigidity of certain morphisms from Mg to another moduli
stack of curves Mh of some genus h ≥ g constructed as follows.
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Let Xg (resp. Xh) be a closed orientable real surface of genus g (resp. h). An unramified finite
covering p : Xh → Xg gives a map p∗

: Tg → Th between the corresponding Teichmüller spaces by
pulling back the complex structures. The cover p is called characteristic if p∗(π1(Xh)) is a characteristic
subgroup of π1(Xg), i.e., p∗(π1(Xh)) is left invariant by Aut(π1(Xg)). Topologically, these are coverings
such that every homeomorphism of Xg lifts to a homeomorphism of Xh , and the lifting process defines a
homomorphism L p : Aut(π1(Xg)) → Aut(π1(Xh)). Because of this, the map p∗

: Tg → Th defined by a
characteristic cover descends to a morphism p∗

: Mg → Mh (see [Biswas and Nag 1997, III.1 and III.2]
for more details).

The study of the global rigidity of these morphisms is stated as an open question in [Farb 2024b]
(see Question 4.5, attributed to C. McMullen). All these problems extend to the Deligne–Mumford
compactification of Mg given the studies on the augmented Teichmüller space (see [Biswas and Nag
1997; Hu et al. 2021] for details).

Our contribution is to prove infinitesimal rigidity of all the morphisms p∗
: Mg → Mh induced by

characteristic covers p : Xh → Xg.

Theorem 1.4. For any g ≥ 3, the morphism p∗
: Mg → Mh does not admit any nontrivial first-order

deformation with fixed domain and target.

It is natural to ask whether the compositions Mg → Ah of the morphisms p∗
: Mg → Mh with the

Torelli morphisms τ : Mh → Ah are also rigid. The question on global rigidity is raised in [Farb 2024b].
With our techniques, we cannot solve the corresponding question on infinitesimal rigidity for the moment.
The main obstacle is discussed after the proof of Theorem 1.4.

Let us stress that our results are for morphisms between stacks. The situation for the induced morphism
between coarse spaces is discussed in Section 7.

Let us briefly explain the structure of the proofs. We first study the space of sections of the pullback of
the tangent bundle of the target via the investigated morphism. For both smooth Deligne–Mumford stacks
and normal varieties, the vanishing of all these sections suffices to conclude infinitesimal rigidity (see
Lemma 2.1). To prove this vanishing, we study those sections restricted to a complete curve B in Mg

through a general point of Mg and with a general tangent direction (see Lemma 2.3 for details). We
then conclude by relating these sections to the Hodge bundle associated to the family of genus g curves
over B, and using the positivity properties provided by the associated Fujita decomposition [Fujita 1978;
Catanese and Dettweiler 2017]. We explain this in detail in Section 2.2. Notice that such a complete
curve B exists for g ≥ 3 because Mg admits a compactification with boundary of codimension 2, the
Satake compactification (see for instance [Oort 1974]).

In genus g = 2, the moduli space of curves is affine; hence nontrivial sheaves on M2 have plenty of
sections. This indicates that the above results should not hold in this case.

We conclude the introduction with a couple of words about infinitesimal rigidity for moduli spaces of
surfaces. On the one hand, moduli spaces of surfaces might deform [Hacking 2008, Section 6]. On the
other hand, for higher-dimensional varieties, the Torelli map generalizes to period maps. If we consider a
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rigid surface S with strictly positive geometric genus or irregularity, then the domain of the period map is
a point (the local deformation space of S) but the codomain has positive dimension (see, for instance
[Carlson et al. 2017, Sections 4.4 and 4.5, Example 4.4.5]). Hence, in this case the period map admits
nontrivial deformations. Examples of these surfaces are the BCD surfaces constructed by Bauer and
Catanese [2008; 2018] or the surfaces with pg = q = 2 constructed by Polizzi, Rito, and Roulleau [Polizzi
et al. 2020]. We do not know under which hypotheses the period maps of higher-dimensional manifolds
with positive-dimensional moduli are rigid.

2. Preliminaries

We work over the field of complex numbers.

2.1. First-order deformations of morphisms. In this paper, we are concerned about first order infini-
tesimal deformations of certain morphisms of stacks or normal varieties f : X → Y with fixed source and
target. If Y is a smooth variety, it is known that these deformations are classified by the global sections
of f ∗TY [Sernesi 2006, Proposition 3.4.2, page 158]. This fact also holds in quite more general settings.
Since we have not been able to find in the literature the statement in the generality we need, we include here
a short proof (the same proof works in greater generality, but we give the statement only for our set-up).

Lemma 2.1. Let f : X → Y be a morphism of either smooth Deligne–Mumford stacks or of normal
varieties, and let TY denote the tangent sheaf of Y. If H 0(X, f ∗TY ) = 0, then all first-order deformations
of f with fixed source and target are trivial.

Proof. Let D be the spectrum of C[ε]/(ε2), and denote by {o} its closed point. A first order deformation
of f : X → Y is a D-morphism f̂ : X × D → Y × D which, when restricted to the central fiber
Xo := X × {o} ⊂ X × D is equal to f .

Note that the ideal sheaf of the central fiber Xo squares to zero, so that any D-morphism X ×D →Y ×D
is uniquely determined by its restriction to Xo and the restriction of its differential to Xo. Moreover, in
the case of a first-order deformation f̂ , its restriction to the central fiber is given by f ; hence one only
needs to study d f̂|Xo .

Since TX×D = TX ⊞ TD and analogously TY×D = TY ⊞ TD , we have

TX ⊞ TD ∼= TX×D
d f̂

−→ f̂ ∗TY×D ∼= f ∗TY ⊞ TD.

Hence we can describe d f̂|Xo as (
d f v

0 1

)
,

where v := (d f̂ )
( d

dε

)
|Xo

and the 1 in the low-right corner follows from f̂ being a D-morphism.

From the hypothesis H 0(X, f ∗TY ) = 0 follows that v = 0. Thus f̂ has the same differential as
f ×idD : X×D →Y ×D, and by the above remark it follows f̂ = f ×idD is the trivial deformation of f . □
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2.2. Fujita decompositions on the Hodge bundle. Let f : S → B be a fibration from a smooth projective
surface S to a smooth projective curve B, namely a family of projective curves of arithmetic genus g
over a smooth projective curve B whose general fiber is smooth. Denote by q f the relative irregularity
of f , defined as the difference q f = q(S) − q(B) of the irregularities of S and B. To any such f
one can associate a Hodge bundle f∗ωS/B = f∗ωS ⊗ ω∨

B whose general fiber is of rank g isomorphic
to H 0(Cb, ωCb), where Cb = f −1(b).

Theorem 2.2 [Fujita 1978; Catanese and Dettweiler 2017]. The Hodge bundle f∗ωS/B has decompositions
of vector bundles

f∗ωS/B = Oq f
B ⊕V = U ⊕A, (1)

where A is ample and U is unitary flat, which are compatible in the sense that Oq f
B ⊂ U as vector bundle

provides a splitting U = Oq f
B ⊕U ′.

Fujita decompositions are strongly related to the infinitesimal variation of the Hodge structure, namely
with the coboundary morphism θb : H 0(Cb, ωb) → H 1(Cb,OCb) of the short exact sequence attached to
the first order deformation ξb ∈Ext1(ωCb ,OCb)

∼= H 1(TCb) induced by f on the fiber Cb. Suppose that f is
semistable, namely that the relative canonical bundle is f -ample and the singular fibers are reduced with at
most nodal singularities; then if 0 ⊂ B denotes the set of critical values and ϒ = f ∗0, there is a canonical
isomorphism f∗ωS/B ≃ f∗�1

C/B(log ϒ), where the latter bundle is defined by the short exact sequence

0 → f ∗ωB(log 0) → �1
C(log ϒ) → �1

C/B(log ϒ) → 0.

The connecting homomorphism

θ : f∗ωS/B ≃ f∗�1
C/B(log ϒ) → R1 f∗OC ⊗ ωB(log 0) (2)

is a morphism of locally free sheaves which on the fibers over b ̸∈ 0 coincides with θb. The kernel
K = ker θ is a vector subbundle of f∗ωS/B whose fiber over a general b ∈ B is ker θb. There are natural
inclusions U ⊆ K ⊆ f∗ωS/B .

We refer to [González-Alonso and Torelli 2021] for more details on the last paragraph, and a treatment
of the non-semistable case, which requires more care and it is not used in this note.

Lemma 2.3. Let Mg be the moduli stack of stable curves of genus g. A general complete curve
π : B → Mg corresponds to a semistable fibration with U = 0 (more precisely, there exists an open dense
subset U of the tangent bundle T Mg such that if the image of dπ intersects U, then U = 0).

Proof. Curves in Mg correspond by construction to semistable fibrations. For a general smooth curve [Cb]

in Mg and a general direction ξb ∈ T[Cb]Mg ≃ H 1(Cb, TCb) ≃ Ext1(ωCb ,OCb), the induced linear map
θb : H 0(Cb, ωCb) → H 1(Cb,OCb) has maximal rank (see for example [González-Alonso and Torelli 2021;
Lee and Pirola 2016, Lemma 2.4]), so the fiber Kb is zero. As U is locally free and contained in K, we
obtain the statement. □
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2.3. Ample vector bundles on curves.

Lemma 2.4. If A is an ample vector bundle over a smooth projective curve B, then H 0(B, SymnA∨) = 0
for every n > 0.

Proof. Note first that if A is ample, then so is SymnA [Lazarsfeld 2004, Theorem 6.1.15]. In particular
any quotient line bundle SymnA↠ Q is ample on B [Lazarsfeld 2004, Proposition 6.1.2], i.e., deg Q > 0.

Suppose H 0(SymnA∨) ̸= 0 and let σ be a nonzero section, which induces a morphism of sheaves
σ : OB → SymnA∨. Dualizing it we obtain a nonzero map SymnA → OB , whose image is a quotient
of SymnA and a nonzero subsheaf Q ⊆OB . In particular Q is torsion-free, and hence a locally free sheaf
because B is a smooth curve. Moreover deg Q ≤ degOB = 0, contradicting the amplitude of SymnA. □

3. Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1, asserting that the Torelli morphism τ : Mg → Ag does
not admit nontrivial first-order deformations.

Recall that Mg denotes the moduli stack of smooth projective curves of genus g, Ag the moduli stack
of principally polarized abelian varieties of dimension g, and τ : Mg → Ag the Torelli morphism, which
at the level of points maps (the isomorphism class of) a smooth projective curve C to its Jacobian variety
J (C) ∼= H 1(C,OC)/H 1(C, Z) with its natural principal polarization 2C .

The tangent space to Mg at [C] is H 1(C, TC), and the tangent space to Ag at [J (C), 2C ] is

Sym2 H 1(C,OC) ∼= Sym2 H 0(C, ωC)∨ ∼= Homs(H 0(C, ωC), H 1(C,OC)),

where Homs denotes the set of symmetric (i.e., self-dual) linear maps.
Moreover the image of ξ ∈ H 1(C, TC) ∼= T[C]Mg under the differential of τ can be identified (up to

nonzero scalar) with the multiplication map (cup-product followed by contraction)

H 0(C, ωC) → H 1(C,OC), α 7→ ξ · α.

By Lemma 2.1, Theorem 1.1 follows from the following vanishing:

Theorem 3.1. If g ≥ 3, then H 0(Mg, τ
∗TAg ) = 0.

Proof. Since τ ∗TAg is locally free and Mg is reduced, if we show that for every point in a dense subset
of Mg there exists a curve π : B → Mg such that h0(B, π∗τ ∗TAg ) = 0, then h0(Mg, τ

∗TAg ) = 0.
When g ≥ 3, the coarse moduli space of Mg admits a normal projective compactification whose

boundary has codimension two, namely the Satake compactification. In Mg, we can look at the open
subset M0

g of curves with trivial automorphism group, which is represented by a smooth scheme and whose
complement in the Satake compactification has also codimension two. Because of this, for every point
[C] of M0

g and every tangent direction v in T[C]Mg, we can find a smooth projective curve π : B → Mg

passing through [C] and tangent to v.
Consider such a curve B, the corresponding family of curves f : C → B and the Hodge bundle

E = f∗�1
C/B , whose fiber over a point [C] ∈ B is H 0(C, ωC). By the above discussion, the restriction
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of π∗τ ∗TAg to B is naturally isomorphic to Sym2 E∨. Now by Theorem 2.2, E carries a decomposition
E = A ⊕ U with A ample and U unitary flat, and by Lemma 2.3, U is zero for general B and v. By
Lemma 2.4, h0(B, π∗τ ∗TAg ) = 0. □

4. Proof of Theorem 1.2

As already recalled in the introduction, we denote by Rg the moduli stack of pairs (C, η), where C is a
smooth projective curve of genus g, and η ∈ J (C) is a nontrivial line bundle of order two (i.e., η⊗2 ∼=OC ).
By standard theory, such a pair is equivalent to an étale double cover π : C ′

→ C , where C ′ is a connected
smooth projective curve and

π∗OC ′ = OC ⊕ η. (3)

More precisely, since π is finite, there is a trace morphism Tr : π∗OC ′ → OC that splits the structure
morphism OC → π∗OC ′ , and η = ker Tr.

One way to define the Prym variety Pr(C, η) of the pair (C, η) (or the cover π : C ′
→ C) is as the

cokernel of the pull-back map
π∗

: J (C) → J (C ′),

which has dimension dim Pr(C, η) = g(C ′)− g(C) = g − 1 (note that g(C ′) = 2g(C)− 1 by the Hurwitz
formula).

Alternatively Pr(C, η) can be defined as the connected component through [OC ′] of the norm map
Nm : J (C ′) → J (C).

The natural principal polarization of J (C ′) induces twice a principal polarization 4 on Pr(C, η). The
Prym morphism Pr : Rg → Ag−1 is then defined (at the level of C-points) as

[C, η] → [Pr(C, η),4].

Since Rg is an étale cover of Mg (of degree 22g
− 1), the tangent space of Rg at a point [C, η] is

naturally isomorphic to T[C]Mg ∼= H 1(C, TC).
On the other hand, the tangent spaces of the Jacobians J (C) and J (C ′) (at the corresponding neutral

elements) are H 1(C,OC) and H 1(C ′,OC ′). Thus the tangent space of Pr(C, η) is naturally isomorphic to

H 1(C ′,OC ′)/π∗H 1(C,OC) ∼= H 1(C, η).

In the last isomorphism we have combined (3) and the fact that π is a finite morphism to obtain

H 1(C ′,OC ′) ∼= H 1(C, π∗OC ′) ∼= H 1(C,OC) ⊕ H 1(C, η).

Therefore the tangent space of Ag−1 at Pr(C, η) can be naturally identified with

Sym2 T0 Pr(C, η) ∼= Sym2 H 1(C, η) ∼= Homs(H 1(C, η)∨, H 1(C, η))

∼= Homs(H 0(C, ωC ⊗ η), H 1(C, η)),

where the last isomorphism follows from Serre duality and η⊗2 ∼= OC .
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Finally the differential of the Prym morphism at [C, η],

d Pr[C,η] : H 1(C, TC) → Sym2 H 1(C, η) ∼= Homs(H 0(C, ωC ⊗ η), H 1(C, η))

is induced by cup-product (up to a nonzero scalar).
As in the above section, Theorem 1.2 follows from Lemma 2.1 and the following vanishing:

Theorem 4.1. When g ≥ 3, it holds that H 0(Rg, Pr∗ TAg−1) = 0.

Proof. By construction, for a given curve C there are 22g
− 1 choices of η, and indeed this gives a natural

étale morphism ϕ :Rg →Mg of degree 22g
−1. Set R0

g =ϕ−1(M0
g) to be the local chart of Rg correspond-

ing to coverings C ′
→ C , where C has trivial automorphism group. Moreover, since M0

g can be covered
by smooth projective curves, so can R0

g by taking the connected components of the preimages under ϕ.

Let now B ⊆ R0
g be a general smooth curve, which corresponds to a family of coverings f ′

:C′ π
−→C f

−→ B.
The induced morphism π is also a étale double cover of surfaces. The trace of π gives a splitting
π∗OC′

∼= OC ⊕L, where L = ker Tr restricts to η on a fiber C ′
→ C . In particular we also have

R1 f ′

∗
OC′

∼= R1 f∗OC ⊕ R1 f∗L, (4)

and by the above discussion on tangent spaces, there is a natural identification

Pr∗ TAg−1
∼= Sym2(R1 f ′

∗
OC′/R1 f∗OC) ∼= Sym2 R1 f∗L.

By relative duality, equation (4) gives

f ′

∗
�1

C′/B
∼= f∗�1

C/B ⊕ (R1 f∗L)∨

so that (R1 f∗L)∨ is isomorphic to a quotient of the Hodge bundle E ′
= f ′

∗
�1

C′/B of f ′.
We can now adapt the proof of Lemma 2.3 to show that E ′ is ample for a general B, and then Lemma 2.4

concludes the proof of the theorem.
Let C ′

→ C be one of the coverings of the family π , with corresponding η ∈ Pic0(C), and let
ξ ∈ H 1(C, TC) ∼= T[C]M0

g
∼= T[C ′→C] R0

g be a tangent vector to B. Using the decompositions

H 0(C ′, ω′

C) = H 0(C, ωC) ⊕ H 0(C, ωC ⊗ η) and H 1(C ′,OC ′) = H 1(C,OC) ⊕ H 1(C, η)

the infinitesimal variation of Hodge structure C′
→ B at this point is “diagonal”, given by multiplication

with η on each component. By [Lee and Pirola 2016, Lemma 2.4], a general ξ ∈ H 1(C, TC) gives isomor-
phisms in both components. Taking a smooth projective curve in M0

g through [C] with tangent vector ξ ,
and then B the appropriate connected component of its preimage in Rg

0 induces a family f ′
: C′

→ B
with ample Hodge bundle, as wanted. □

5. Proof of Theorem 1.3

Recall from the introduction that Sg is the moduli stack of pairs (C, ϑ) of projective curves of genus g
with a theta characteristic ϑ , i.e., ϑ ∈ Picg−1(C) such that ϑ⊗2 ∼= ωC . Since two theta characteristics
differ by a 2-torsion element of the g-dimensional abelian variety Pic0(C), the natural forgetful morphism
π : Sg → Mg defined on points by (C, ϑ) → C is étale of degree 22g.
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On the other side, Ng denotes the moduli stack of pairs (A, 2), where A is an abelian variety of
dimension g and 2 ⊆ A is a symmetric divisor inducing a principal polarization on A, i.e., −2 = 2

and h0(OA(2)) = 1.
In order to describe the morphism sτ : Sg → Ng, let’s first quickly recall one construction of the

principal polarization on the jacobian variety J (C) = Pic0(C) of a projective curve C of genus g. There
is a natural morphism

ϕ : Cg−1
→ Picg−1(C), (p1, . . . , pg−1) 7→ [OC(p1 + · · · + pg−1)].

By the Riemann parametrization theorem, ϕ is birational onto its image, which is thus a divisor. Moreover,
its image is precisely the set W 0

g−1 = {L ∈ Picg−1(C) | h0(L) > 0}. Any fixed ϑ ∈ Picg−1(C) induces an
isomorphism (of algebraic varieties)

Picg−1(C) → Pic0(C) = J (C), [L] 7→ [L] − [ϑ] := [L ⊗ ϑ∨
].

The image 2ϑ := W 0
g−1 − [ϑ] of W 0

g−1 is thus a divisor in J (C) and induces the principal polarization
used in the Torelli morphism τ . An easy application of Riemann–Roch shows that 2ϑ is symmetric if
and only if ϑ⊗2 ∼= ωC .

The morphism sτ is defined by mapping [S, ϑ] to the pair (J (C), 2ϑ).
The above discussion also shows that the natural principal polarization on J (C) can be represented by

exactly 22g symmetric divisors; hence the forgetful morphism π ′
: Ng → Ag is also étale of degree 22g.

As in the two preceding cases, Theorem 1.3 follows from Lemma 2.1 and the following vanishing:

Theorem 5.1. When g ≥ 3, it holds that H 0(Sg, sτ ∗ TNg ) = 0.

Proof. As in the previous two proofs, it is enough to show that a general point of Sg is contained in a
projective curve B ⊆ Sg such that H 0(B, sτ ∗ TNg ) = 0.

To this aim consider the natural commutative diagram with étale vertical arrows

Sg
sτ //

π

��

Ng

π ′

��

Mg
τ // Ag

Note that TNg = (π ′)∗TAg because π ′ is étale, and thus sτ ∗ TNg = π∗τ ∗TAg .
By the proof of Theorem 1.1, the general point of M0

g is contained in a smooth projective curve B ′
⊆ M0

g

such that the Hodge bundle E ′
= ( f ′)∗�

1
C′/B ′ of the corresponding family of curves f ′

: C′
→ B ′ is

ample. Any connected component B ⊆ π−1(B ′) corresponds to a family of smooth projective curves
f : C → B (with a family of theta characteristics), which is nothing but the pull-back of f ′ by the étale
morphism ϕ = π|B : B ′

→ B. In particular, the Hodge bundle of f ,

E := f∗�1
C/B

∼= ϕ∗E ′,

is also ample.
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Thus a general point of S0
g = π−1(M0

g) is contained in a smooth projective curve B ⊆ S0
g such

that (π∗τ ∗Ag)|B ∼= Sym2 E∨ with ample E . Lemma 2.4 implies that H 0(B, π∗τ ∗Ag) = 0, as wanted. □

Remark 5.2 (super Torelli morphism). It is possible also to define a period map for the moduli space
of Supersymmetric Riemann surfaces. Its target is again Ng. As explained in [Codogni and Viviani
2019], this map is rational and factors through a nonreduced classical stack M (= M+

g /0, in the notation
of [loc. cit.]). The reduced stack underlying M is the irreducible component S+

g of Sg where the spin
structure has an even number of sections. The restriction of the period map to S+

g is the spin-Torelli map
studied also in this note. We do not know if this generalization of the spin-Torelli map is rigid.

6. Proof of Theorem 1.4

Let X be a closed orientable real surface of genus g. An unramified finite covering p : X ′
→ X is called

characteristic if it corresponds to a characteristic subgroup of the fundamental group π1(X), namely π1(X ′)

as a subgroup of π1(X) must be left invariant by every element of Aut(π1(X)). Topologically, these are
coverings such that every homeomorphism of X lifts to a homeomorphism of X ′ and the lifting process
defines a homomorphism L p : Aut(π1(X)) → Aut(π1(X ′)).

The moduli Mi of curves of genus i is realized as the quotient of the Teichmüller space Ti by the
mapping class modular group DMi . Any characteristic cover p : X ′

→ X defines a map Tg → Th (where
g = g(X) and h = g(X ′)). By using L p, such a morphism descends to a morphism p∗

: Mg → Mh

(see [Biswas and Nag 1997, III.1 and III.2] for more details).
The statement of Theorem 1.4 follows now from Lemma 2.1 and the following theorem.

Theorem 6.1. When g ≥ 3, it holds that H 0(Mg, p∗TMh ) = 0.

Proof. We use the same strategy as in the previous proofs. A smooth projective curve B ⊆ Mg

corresponds to a nonisotrivial family π : C → B of smooth projective curves of genus g, and the morphism
τp : Mg → Mh produces a nonisotrivial family π ′

: C′
→ B of curves of genus h such that over b ∈ B

there is covering C ′

b → Cb induced by p. The fiber of p∗TMh over b is H 1(C ′

b, TC ′

b
) (the tangent space

to Mh at C ′

b = τp(Cb)), and hence

p∗TMh |B = R1π ′

∗
TC′/B ∼= (π ′

∗
ω⊗2
C′/B)∨.

By [Esnault and Viehweg 1990, Theorem 3.1], the bundle π ′
∗
ω⊗2
C′/B is ample on B; hence by Lemma 2.4

we have H 0(B, p∗TMh |B) = 0. The proof finishes as in the previous cases, by noticing that Mg can be
covered by such smooth projective curves B and p∗TMh is torsion-free, so that H 0(B, p∗TMh ) = 0 for a
general B implies H 0(Mg, p∗TMh ) = 0 as wanted. □

Composing the above studied map p∗
: Mg → Mh , with the Torelli map Mh → Ah we obtain a

morphism Mg → Ah . Our methods do not apply immediately to the study of its rigidity, one needs a
more sophisticated understanding of the inclusion p∗(Mg) ⊆ Mh and its tangent spaces. More precisely,
to prove the relevant generalization of Lemma 2.3, given a étale covering π : Ch → Cg, it would be
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necessary to understand if a general first order deformation of Ch compatible with π also satisfies the
properties of [Lee and Pirola 2016, Lemma 2.4].

Given a possibly covering π : Ch → Cg as above, one could also consider the generalized Prym variety
Pic0(Ch)/π

∗ Pic0(Cg) (which inherits a polarization of a certain type δ depending on the topological type
of π ) and thus construct a generalized Prym morphism Mg → Aδ

h−g from the moduli stack of curves to
that of (h−g)-dimensional abelian varieties with polarization of type δ. The study of its rigidity presents
the same difficulties of that of Mg → Ah introduced above.

7. Remarks about rigidity of coarse morphisms

Given an (infinitesimally) rigid morphism of stacks F :X →Y , one can ask if the corresponding morphism
of coarse spaces f : X → Y is also (infinitesimally) rigid. The answer in this generality is negative, as
the following example shows.

Example 7.1. Let G be the group Z2, X = BG be the quotient stack of a point by G, and Y the quotient
stack of the affine line by the action of G which maps x to −x . There is a unique morphism F : X → Y ,
which maps BG to the fixed point of the action and is infinitesimally rigid. However, the corresponding
map of coarse spaces does deform. (To make contact with the forthcoming Proposition 7.2, note that in
this case F−1(U ) is the empty set.)

It is natural to wonder if the coarse version of the modular morphisms considered in this paper are
rigid. Concerning infinitesimal rigidity, taking into account the criterion given in Lemma 2.1, we can ask
under which conditions H 0(X , F∗TY) = 0 implies H 0(X, f ∗TY ) = 0.

The following definition will be useful. Let V be a sheaf on a variety X, and T (V ) the torsion subsheaf
of V. The inclusion T (V ) ↪→ V induces an inclusion i : H 0(X, T (V )) ↪→ H 0(X, V ). We say that a
global section of V is a torsion section if it is in the image of i . We have the following partial result.

Proposition 7.2. Let F : X → Y be a morphism of smooth Deligne–Mumford stacks such that
H 0(X , F∗TY) = 0. Let p : X → X and q : Y → Y be the maps to coarse spaces and f : X → Y
the morphism induced by F. Let U ⊆Y be the open subset where q is étale, and assume that F−1(U ) ⊆X
is a big open subset (i.e., its complement has codimension at least 2). Then all sections H 0(X, f ∗TY ) are
torsion sections.

Proof. Over a field of characteristic zero, coarse moduli spaces of DM stacks are good; hence the
adjunction morphism f ∗TY → p∗ p∗ f ∗TY is an isomorphism, and thus

H 0(X, f ∗TY ) = H 0(X, p∗ p∗ f ∗TY ) = H 0(X , p∗ f ∗TY ).

We have p∗ f ∗TY = F∗q∗TY . On U, we have q∗TY = TY . Assume by contradiction that there exists an
element s of H 0(X , p∗ f ∗TY ) which is not torsion. Since it is not torsion, its restriction to F−1(U ) is not
zero; hence H 0(F−1(U ), p∗ f ∗TY |F−1(U )) ̸= 0. Then H 0(F−1(U ), F∗TY |F−1(U )) ̸= 0.

As F−1(U ) is big in X and F∗TY is locally free, we obtain that H 0(X , F∗TY) ̸= 0, contradicting
the hypothesis. □
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Let us check whether the hypotheses of Proposition 7.2 are satisfied in our cases. On the one hand, the
map from the moduli stack of ppav (and its variants discussed in this paper) to its coarse moduli space is
étale over the closed points with automorphism group exactly {±1}. The preimage of this open set via
the various Torelli, spin and Prym maps is the open set of curves without automorphisms, which is big in
the moduli space of smooth curves and its variants when g ≥ 4; see, e.g., [Hacking 2008, Lemma 5.3].

On the other hand, characteristic covers are Galois, so the image of p∗ lies in the locus of genus h curves
with nontrivial automorphisms. This means that Proposition 7.2 cannot be applied to the morphisms
induced by characteristic covers.

Note that torsion sections of f ∗TY might exist even in simple cases, as the following example shows,
so we cannot exclude that the Torelli morphism has infinitesimal deformations.

Example 7.3. Let Y ⊆C3 be a quadratic cone, which has a normal singularity at the vertex. Take as X a line
through the vertex, and f the inclusion. Then f ∗TY is a rank two sheaf on X ∼= C with torsion at the origin
(a direct computation reveals that the torsion subsheaf is a skyscraper sheaf with two-dimensional fiber).

Unfortunately, we do not know of any systematic study of infinitesimal deformations coming from
torsion sections. Let us pose the following general question in deformation theory, whose study goes
beyond the scope of this paper.

Question 7.4. Let f : X → Y be a morphism of normal varieties. If all global sections of f ∗TY are
torsion, is f locally rigid?

A variant of the phenomenon encountered here is studied in [Arbarello and Cornalba 1981, Section 6];
in the spirit of [loc. cit.], we might speculate that the answer to Question 7.4 is positive.

References

[Arbarello and Cornalba 1981] E. Arbarello and M. Cornalba, “Su una congettura di K. Petri”, Comment. Math. Helv. 56:1
(1981), 1–38. MR

[Bauer and Catanese 2008] I. C. Bauer and F. Catanese, “A volume maximizing canonical surface in 3-space”, Comment. Math.
Helv. 83:2 (2008), 387–406. MR

[Bauer and Catanese 2018] I. Bauer and F. Catanese, “On rigid compact complex surfaces and manifolds”, Adv. Math. 333
(2018), 620–669. MR

[Biswas and Nag 1997] I. Biswas and S. Nag, “Weil–Petersson geometry and determinant bundles on inductive limits of moduli
spaces”, pp. 51–80 in Lipa’s legacy (New York, 1995), edited by J. Dodziuk and L. Keen, Contemp. Math. 211, Amer. Math.
Soc., Providence, RI, 1997. MR

[Calabi and Vesentini 1960] E. Calabi and E. Vesentini, “On compact, locally symmetric Kähler manifolds”, Ann. of Math. (2)

71 (1960), 472–507. MR

[Carlson et al. 2017] J. Carlson, S. Müller-Stach, and C. Peters, Period mappings and period domains, 2nd ed., Cambridge
Studies in Advanced Mathematics 168, Cambridge Univ. Press, 2017. MR

[Catanese and Dettweiler 2017] F. Catanese and M. Dettweiler, “Answer to a question by Fujita on variation of Hodge structures”,
pp. 73–102 in Higher dimensional algebraic geometry, edited by K. Oguiso et al., Adv. Stud. Pure Math. 74, Math. Soc. Japan,
Tokyo, 2017. MR

[Codogni and Viviani 2019] G. Codogni and F. Viviani, “Moduli and periods of supersymmetric curves”, Adv. Theor. Math.
Phys. 23:2 (2019), 345–402. MR

https://doi.org/10.1007/BF02566195
http://msp.org/idx/mr/615613
https://doi.org/10.4171/CMH/129
http://msp.org/idx/mr/2390050
https://doi.org/10.1016/j.aim.2018.05.041
http://msp.org/idx/mr/3818088
https://doi.org/10.1090/conm/211/02814
https://doi.org/10.1090/conm/211/02814
http://msp.org/idx/mr/1476981
https://doi.org/10.2307/1969939
http://msp.org/idx/mr/111058
http://msp.org/idx/mr/3727160
https://doi.org/10.2969/aspm/07410073
http://msp.org/idx/mr/3791209
https://doi.org/10.4310/ATMP.2019.v23.n2.a2
http://msp.org/idx/mr/4033354


Rigidity of modular morphisms via Fujita decomposition 1683

[Donagi 1992] R. Donagi, “The fibers of the Prym map”, pp. 55–125 in Curves, Jacobians, and abelian varieties (Amherst, MA,
1990), edited by R. Donagi, Contemp. Math. 136, Amer. Math. Soc., Providence, RI, 1992. MR

[Esnault and Viehweg 1990] H. Esnault and E. Viehweg, “Effective bounds for semipositive sheaves and for the height of points
on curves over complex function fields”, pp. 69–85 in Algebraic geometry (Berlin, 1988), vol. 76, edited by H. Kurke and
J. H. M. Steenbrink, 1990. MR

[Faltings 1984] G. Faltings, “Arithmetic varieties and rigidity”, pp. 63–77 in Seminar on number theory (Paris, 1982/1983),
edited by M.-J. Bertin and C. Goldstein, Progr. Math. 51, Birkhäuser, Boston, MA, 1984. MR

[Fantechi and Massarenti 2017] B. Fantechi and A. Massarenti, “On the rigidity of moduli of curves in arbitrary characteristic”,
Int. Math. Res. Not. 2017:8 (2017), 2431–2463. MR

[Farb 2024a] B. Farb, “Global rigidity of the period mapping”, J. Algebraic Geom. 33:2 (2024), 199–212. MR

[Farb 2024b] B. Farb, “Rigidity of moduli spaces and algebro-geometric constructions”, pp. 31–49 Surv. Differ. Geom. 26,
International Press, Boston, MA, 2024. MR

[Farkas 2009] G. Farkas, “The global geometry of the moduli space of curves”, pp. 125–147 in Algebraic geometry (Seattle,
WA, 2005), edited by D. Abramovich et al., Proc. Sympos. Pure Math. 80, Amer. Math. Soc., Providence, RI, 2009. MR

[Fujita 1978] T. Fujita, “The sheaf of relative canonical forms of a Kähler fiber space over a curve”, Proc. Japan Acad. Ser. A
Math. Sci. 54:7 (1978), 183–184. MR

[Gibney et al. 2002] A. Gibney, S. Keel, and I. Morrison, “Towards the ample cone of Mg,n”, J. Amer. Math. Soc. 15:2 (2002),
273–294. MR

[González-Alonso and Torelli 2021] V. González-Alonso and S. Torelli, “Families of curves with Higgs field of arbitrarily large
kernel”, Bull. Lond. Math. Soc. 53:2 (2021), 493–506. MR

[Hacking 2008] P. Hacking, “The moduli space of curves is rigid”, Algebra Number Theory 2:7 (2008), 809–818. MR

[Hu et al. 2021] G. Hu, H. Miyachi, and Y. Qi, “Universal commensurability augmented Teichmüller space and moduli space”,
Ann. Fenn. Math. 46:2 (2021), 897–907. MR

[Lazarsfeld 2004] R. Lazarsfeld, Positivity in algebraic geometry, II: Positivity for vector bundles, and multiplier ideals,
Ergebnisse der Math. (3) 49, Springer, 2004. MR

[Lee and Pirola 2016] Y. Lee and G. P. Pirola, “On rational maps from the product of two general curves”, Ann. Sc. Norm. Super.
Pisa Cl. Sci. (5) 16:4 (2016), 1139–1152. MR

[Massarenti 2014] A. Massarenti, “The automorphism group of Mg,n”, J. Lond. Math. Soc. (2) 89:1 (2014), 131–150. MR

[Oort 1974] F. Oort, “Subvarieties of moduli spaces”, Invent. Math. 24 (1974), 95–119. MR

[Peters 2017] C. Peters, “On rigidity of locally symmetric spaces”, Münster J. Math. 10:2 (2017), 277–286. MR

[Polizzi et al. 2020] F. Polizzi, C. Rito, and X. Roulleau, “A pair of rigid surfaces with pg = q = 2 and K 2
= 8 whose universal

cover is not the bidisk”, Int. Math. Res. Not. 2020:11 (2020), 3453–3493. MR

[Royden 1971] H. L. Royden, “Automorphisms and isometries of Teichmüller space”, pp. 369–383 in Advances in the Theory of
Riemann Surfaces (Proc. Conf., Stony Brook, NY, 1969), edited by L. V. Ahlfors et al., Ann. of Math. Stud. 66, Princeton Univ.
Press, 1971. MR

[Sernesi 2006] E. Sernesi, Deformations of algebraic schemes, Grundl. Math. Wissen. 334, Springer, 2006. MR

[Serván 2022] C. A. Serván, “On the uniqueness of the Prym map”, 2022. arXiv 2207.01704

Communicated by Gavril Farkas
Received 2023-05-16 Revised 2024-07-11 Accepted 2024-09-13

codogni@mat.uniroma2.it Dipartimento di Matematica, Università di Roma Tor Vergata, Rome, Italy

gonzalez@math.uni-hannover.de Institut für Algebraische Geometrie, Leibniz Universität, Hannover, Germany

sara.torelli@unito.it Department of Mathematics “Giuseppe Peano”, Università di Torino,
Torino, Italy

mathematical sciences publishers msp

https://doi.org/10.1090/conm/136/1188194
http://msp.org/idx/mr/1188194
http://www.numdam.org/item?id=CM_1990__76_1-2_69_0
http://www.numdam.org/item?id=CM_1990__76_1-2_69_0
http://msp.org/idx/mr/1078858
http://msp.org/idx/mr/791585
https://doi.org/10.1093/imrn/rnw105
http://msp.org/idx/mr/3658203
http://msp.org/idx/mr/4705372
http://msp.org/idx/mr/4748488
https://doi.org/10.1090/pspum/080.1/2483934
http://msp.org/idx/mr/2483934
http://projecteuclid.org/euclid.pja/1195517624
http://msp.org/idx/mr/510945
https://doi.org/10.1090/S0894-0347-01-00384-8
http://msp.org/idx/mr/1887636
https://doi.org/10.1112/blms.12437
https://doi.org/10.1112/blms.12437
http://msp.org/idx/mr/4239191
https://doi.org/10.2140/ant.2008.2.809
http://msp.org/idx/mr/2460695
https://doi.org/10.5186/aasfm.2021.4660
http://msp.org/idx/mr/4307008
https://doi.org/10.1007/978-3-642-18808-4
http://msp.org/idx/mr/2095472
http://msp.org/idx/mr/3616329
https://doi.org/10.1112/jlms/jdt057
http://msp.org/idx/mr/3174737
https://doi.org/10.1007/BF01404301
http://msp.org/idx/mr/424813
https://doi.org/10.17879/80299606895
http://msp.org/idx/mr/3725498
https://doi.org/10.1093/imrn/rny107
https://doi.org/10.1093/imrn/rny107
http://msp.org/idx/mr/4123110
http://msp.org/idx/mr/288254
http://msp.org/idx/mr/2247603
http://msp.org/idx/arx/2207.01704
mailto:codogni@mat.uniroma2.it
mailto:gonzalez@math.uni-hannover.de
mailto:sara.torelli@unito.it
http://msp.org




msp
ALGEBRA AND NUMBER THEORY 19:9 (2025)

https://doi.org/10.2140/ant.2025.19.1685

Prismatic G-displays and descent theory
Kazuhiro Ito

For a smooth affine group scheme G over the ring of p-adic integers Zp and a cocharacter µ of G, we
study G-µ-displays over the prismatic site of Bhatt and Scholze. In particular, we obtain several descent
results for them. If G = GLn , then our G-µ-displays can be thought of as Breuil–Kisin modules with
some additional conditions. The relation between our G-µ-displays and prismatic F-gauges introduced
by Drinfeld and Bhatt–Lurie is also discussed.

In fact, our main results are formulated and proved for smooth affine group schemes over the ring of
integers OE of any finite extension E of Qp by using OE -prisms, which are OE -analogues of prisms.

1. Introduction 1685
2. Preliminaries on OE -prisms 1691
3. Displayed Breuil–Kisin modules 1708
4. Display group 1714
5. Prismatic G-µ-displays 1722
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1. Introduction

Bhatt and Scholze [2022] introduced the theory of prisms. The category of (bounded) prisms with the
flat topology is called the absolute prismatic site. It has been observed that prismatic F-crystals on the
absolute prismatic site introduced in [Bhatt and Scholze 2023] play significant roles in various aspects of
arithmetic geometry. For a smooth affine group scheme G over the ring of p-adic integers Zp, we provide
a systematic study of prismatic F-crystals with certain G-actions, which we call prismatic G-µ-displays.
The results obtained here will be used to study the deformation theory of prismatic G-µ-displays in [Ito
2025]. We also discuss the relation between prismatic G-µ-displays and prismatic F-gauges introduced
in [Drinfeld 2024; Bhatt and Lurie 2022a; 2022b; Bhatt 2022].
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1.1. Prismatic Dieudonné crystals. Anschütz and Le Bras [2023] introduced prismatic Dieudonné
crystals, which are prismatic F-crystals with additional conditions, and showed that prismatic Dieudonné
crystals can be used to classify p-divisible groups in mixed characteristic. The notion of prismatic
G-µ-displays can be seen as a generalization of that of prismatic Dieudonné crystals. Before discussing
prismatic G-µ-displays, let us state our main result for prismatic Dieudonné crystals.

Let k be a perfect field of characteristic p > 0 and let W (k) be the ring of p-typical Witt vectors of k.
Let R be a complete regular local ring over W (k) with residue field k. There exists a pair

(A, I )= (W (k)[[t1, . . . , tn]], (E)),

with an isomorphism R ≃ A/I over W (k), where E ∈W (k)[[t1, . . . , tn]] is a formal power series whose
constant term is p. Here A admits a Frobenius endomorphism φ : A→ A such that it acts on W (k) as the
usual Frobenius and sends ti to t p

i for each i . The pair (A, I ) is a typical example of a prism. Let (R)1
be the absolute prismatic site of R (where R is equipped with the p-adic topology). We regard (A, I ) as
an object of (R)1. We will prove (and generalize) the following result.

Theorem 1.1.1 (Proposition 7.1.1). The category of prismatic Dieudonné crystals on (R)1 is equivalent
to the category of minuscule Breuil–Kisin modules over (A, I ).

Anschütz and Le Bras [2023, Theorem 5.12] proved Theorem 1.1.1 when the dimension of R is ≤ 1
(or equivalently n ≤ 1) and stated that their result should be generalized to R of arbitrary dimension.

Remark 1.1.2. A minuscule Breuil–Kisin module over (A, I ) is a free A-module M of finite rank equipped
with an A-linear homomorphism

FM : φ
∗M := A⊗φ,A M→ M

whose cokernel is killed by I. For a prismatic Dieudonné crystal M on (R)1, the value M(A, I )
at (A, I ) ∈ (R)1 is by definition a minuscule Breuil–Kisin module over (A, I ), and the construction
M 7→M(A, I ) induces an equivalence between the two categories in Theorem 1.1.1.

Anschütz and Le Bras [2023, Theorem 4.74] showed that the category of prismatic Dieudonné crystals
on (R)1 is equivalent to the category of p-divisible groups over R. In fact, such an equivalence is obtained
not only for R but also for any quasisyntomic ring (in the sense of [Bhatt et al. 2019, Definition 4.10]),
where we need to replace prismatic Dieudonné crystals by admissible prismatic Dieudonné crystals
[Anschütz and Le Bras 2023, Definition 4.5].

Although (admissible) prismatic Dieudonné crystals are theoretically important, it is difficult to describe
them explicitly in general. Theorem 1.1.1 provides a practical way to study prismatic Dieudonné crystals
on (R)1. For example, this shows that giving a prismatic Dieudonné crystal on (R)1 is equivalent to
giving a minuscule Breuil–Kisin module over (A, I ). The latter can be carried out in a much simpler way
than the former.
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1.2. Prismatic G-µ-displays. Let G be a smooth affine group scheme over Zp and µ : Gm→ GW (k) a
cocharacter defined over W (k), where GW (k) :=G×Spec Zp Spec W (k). We will generalize Theorem 1.1.1
to prismatic G-µ-displays, or equivalently G-Breuil–Kisin modules of type µ, as explained below.

Let (A, I ) be a bounded prism in the sense of [Bhatt and Scholze 2022] such that A is a W (k)-algebra.
A G-Breuil–Kisin module over (A, I ) is a G-torsor P over Spec A with an isomorphism

FP : (φ
∗P)[1/I ] −→∼ P[1/I ]

of G-torsors over Spec A[1/I ], where φ∗P is the base change of P along the Frobenius φ : A→ A. We
say that P is of type µ if, (p, I )-completely étale locally on A, there exists some trivialization P ≃ G A

under which the isomorphism FP is given by g 7→ Xg for an element X in the double coset

G(A)µ(d)G(A)⊂ G(A[1/I ]),

where d ∈ I is a generator. The notion of G-Breuil–Kisin modules of type µ is important in the study of
integral models of (local) Shimura varieties; see Section 1.3.

We will study G-Breuil–Kisin modules of type µ via the theory of higher frames and G-µ-displays
developed in [Lau 2021]. More precisely, we introduce and study the groupoid

G- Dispµ(A, I )

of G-µ-displays over (A, I ). It turns out that G- Dispµ(A, I ) is equivalent to the groupoid of G-Breuil–
Kisin modules of type µ over (A, I ) (Proposition 5.3.8). For a p-adically complete ring R, the groupoid
of prismatic G-µ-displays over R is defined to be

G- Dispµ((R)1) := 2− lim
←−−(A,I )∈(R)1G- Dispµ(A, I ).

The main result of this paper is as follows. Let R be a complete regular local ring over W (k) with
residue field k. As in Section 1.1, there exists a prism (W (k)[[t1, . . . , tn]], (E)) with an isomorphism
R ≃W (k)[[t1, . . . , tn]]/E over W (k).

Theorem 1.2.1 (Theorem 6.1.3). Assume that the cocharacter µ is 1-bounded. Then the following natural
functor is an equivalence:

G- Dispµ((R)1)−→∼ G- Dispµ(W (k)[[t1, . . . , tn]], (E)).

See Definition 4.2.3 for the definition of 1-bounded cocharacters. If G is reductive, then µ is 1-bounded
if and only if µ is minuscule. A minuscule Breuil–Kisin module of rank N over (W (k)[[t1, . . . , tn]], (E))
can be regarded as a GLN -Breuil–Kisin module of type µ over (W (k)[[t1, . . . , tn]], (E)) for a minuscule
cocharacter µ. Theorem 1.1.1 is a special case of Theorem 1.2.1; see Section 7 for details.

We make a few comments on the proof of Theorem 1.2.1. To simplify the notation, we set (A, I ) :=
(W (k)[[t1, . . . , tn]], (E)). As in the proof of [Anschütz and Le Bras 2023, Theorem 5.12], the key part of
the proof is to show that every G-µ-display Q over (A, I ) admits a unique descent datum. More precisely,
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let (A(2), I (2)) be the coproduct of two copies of (A, I ) in (R)1 and let p1, p2 : (A, I )→ (A(2), I (2)) be
the associated morphisms. Then we will prove that there exists a unique isomorphism

ϵ : p∗1Q−→∼ p∗2Q

of G-µ-displays over (A(2), I (2)) satisfying the usual cocycle condition over the coproduct (A(3), I (3)) of
three copies of (A, I ). In the case where G = GLN , the proof of this claim goes along the same lines
as that of [Anschütz and Le Bras 2023], but it requires some additional arguments when n ≥ 2. For
general G, we will use some techniques from the proof of [Lau 2021, Proposition 7.1.5].

We also give some basic definitions and results on prismatic G-µ-displays. In particular, we establish
several descent results for prismatic G-µ-displays, such as flat descent (Proposition 5.2.8) and p-complete
arc-descent (Corollary 5.6.10). We also introduce the Hodge filtration and the underlying G-φ-module of
a prismatic G-µ-display. These notions will be needed in the Grothendieck–Messing deformation theory
for prismatic G-µ-displays studied in [Ito 2025].

Remark 1.2.2. In fact, Theorem 1.2.1 will be formulated and proved for a smooth affine group scheme G
over the ring of integers OE of any finite extension E of Qp. For this, we will use OE -analogues of
prisms, called OE -prisms. This notion was already introduced in [Marks 2023] (in which these objects
are called E-typical prisms). Section 2 is devoted to discussing results analogous to those of [Bhatt and
Scholze 2022, Sections 2 and 3] for OE -prisms. We will define G-µ-displays for bounded OE -prisms
in the same way, and prove the above results for them. As explained in Remark 1.3.3 below, it will be
convenient to establish our results in this generality, but the reader (who is familiar with the theory of
prisms) may assume that OE = Zp and skip Section 2 on a first reading. The arguments for general OE

are the same as for the case where OE = Zp.

Remark 1.2.3. G-Breuil–Kisin modules of type µ may be more familiar to readers than prismatic
G-µ-displays. However, in order to prove Theorems 1.1.1 and 1.2.1, and other descent results (e.g.,
Corollaries 5.3.9 and 5.6.10), it is essential to work with prismatic G-µ-displays.

Remark 1.2.4. We briefly discuss how our results are related to the theory of G-objects in crystalline
Zp-local systems. Here we follow the terminology of [Imai et al. 2024]. Let R = OK be the ring of
integers of a finite totally ramified extension K of W (k)[1/p]. Bhatt and Scholze [2023] proved that the
category of prismatic F-crystals on (OK )1 is equivalent to the category Loccrys

Zp
(K ) of free Zp-modules T

of finite rank with a continuous Gal(K/K )-action such that T [1/p] is crystalline. (Here Gal(K/K ) is
the absolute Galois group of K.) Using this result, together with [Imai et al. 2024], one can prove that
there is an equivalence of groupoids

G- Dispµ((OK )1)−→
∼ G-Loccrys

Zp,µ
(K ) (1-1)

if G is reductive, where G-Loccrys
Zp,µ

(K ) is the groupoid of G-objects in Loccrys
Zp
(K ) having cocharacter µ in

the sense of [Imai et al. 2024]. More specifically, this follows from [loc. cit., Theorem 2, Proposition 3.13]
and [Ito 2025, Proposition 5.1.16]. Let E ∈ W (k)[[t]] be the Eisenstein polynomial of a uniformizer
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ϖ ∈OK . Then (1-1) and Theorem 1.2.1 give an equivalence

G- Dispµ(W (k)[[t]], (E))−→∼ G-Loccrys
Zp,µ

(K ).

A similar result was previously obtained in [Levin 2015, Corollary 4.3.8] by a completely different method.
(The result of [Bhatt and Scholze 2023] was generalized to higher-dimensional smooth p-adic formal
schemes over OK ; see [Du et al. 2024; Guo and Reinecke 2024]. However, since a higher-dimensional
complete regular local ring R as in Theorem 1.2.1 is in general not topologically of finite type over W (k)
with respect to the p-adic topology, we cannot directly apply those results to obtain an analogue of (1-1)
for R. We do not pursue this issue here.)

We will also discuss (in the case where OE = Zp) the relation between prismatic G-µ-displays and
prismatic F-gauges in vector bundles introduced in [Drinfeld 2024; Bhatt and Lurie 2022a; 2022b; Bhatt
2022]. In particular, for a quasisyntomic ring S over W (k), we introduce1 the groupoid

G-F-Gaugeµ(S)

of prismatic G-F-gauges of type µ over S and construct a fully faithful functor

G-F-Gaugeµ(S)→ G- Dispµ((S)1).

See Section 8 for details. This functor can be thought of as a generalization of the fully faithful functor
from the category of admissible prismatic Dieudonné crystals on (S)1 to the category of prismatic
Dieudonné crystals on (S)1 (see Example 8.1.15). If S is a complete regular local ring over W (k) with
residue field k, then the above functor is an equivalence (Corollary 8.2.12). Thus, we can rephrase
Theorem 1.2.1 as follows:

Corollary 1.2.5 (Theorem 6.1.3, Corollary 8.2.12). Let the notation be as in Theorem 1.2.1. Assume that
µ is 1-bounded. Then we have a natural equivalence

G-F-Gaugeµ(R)−→∼ G- Dispµ(W (k)[[t1, . . . , tn]], (E)).

1.3. Motivation. The primary motivation behind this work is to understand some classification results
on p-divisible groups and the local structure of integral local Shimura varieties defined in [Scholze and
Weinstein 2020], by using the theory of prisms. In the following, we explain this in more detail with a
brief review of previous studies.

We first explain the motivation for G =GLN . Let OK be the ring of integers of a finite totally ramified
extension K of W (k)[1/p]. Let E ∈W (k)[[t]] be the Eisenstein polynomial of a uniformizer ϖ ∈OK .

Remark 1.3.1. Anschütz and Le Bras [2023, Theorem 5.12] obtained the equivalence of categories{
p-divisible groups

over OK

}
−→∼

{
minuscule Breuil–Kisin modules

over (W (k)[[t]], (E))

}
(1-2)

1After this work was completed, Gardner and Madapusi [2024] announced that they defined (certain objects which are
essentially equivalent to) prismatic G-F-gauges of type µ for more general p-adically complete rings, using the stacky approach
of Drinfeld and Bhatt–Lurie. See also [Imai et al. 2023] for the relation between our prismatic G-F-gauges of type µ and those
defined in [Gardner and Madapusi 2024].
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by combining the classification theorem [Anschütz and Le Bras 2023, Theorem 4.74] with Theorem 1.1.1
for R =OK . This result was conjectured in [Breuil 1998], proved in [Kisin 2006; 2009] when p ≥ 3, and
proved in [Kim 2012; Liu 2013; Lau 2014] for all p > 0.

We consider the pair (W (k)[[t]]/tn, (E)), which is naturally a bounded prism for every n ≥ 1. Lau
[2014] obtained the equivalence of categories{

p-divisible groups
over OK /ϖ

n

}
−→∼

{
minuscule Breuil–Kisin modules

over (W (k)[[t]]/tn, (E))

}
(1-3)

by a deformation-theoretic argument and then proved (1-2) by taking the limit over n; see [Lau 2014,
Corollary 5.4, Theorem 6.6]. His proof uses the theory of displays, which was initiated by Zink and
developed by many authors, including Zink [2001; 2002] and Lau [2008; 2014]. This classification result
over OK /ϖ

n is important in its own right. For example, this is a key ingredient in the construction
of integral canonical models of Shimura varieties of abelian type with hyperspecial level structure in
characteristic p = 2; see [Kim and Madapusi Pera 2016] for details.

Contrary to Lau’s approach, it is not clear whether the results in [Anschütz and Le Bras 2023] imply
(1-3) since the Grothendieck–Messing deformation theory does not apply directly to prismatic Dieudonné
crystals. This point is discussed in [Ito 2025], where we develop the deformation theory for prismatic
Dieudonné crystals, or more generally for prismatic G-µ-displays when µ is 1-bounded. In [loc. cit.], we
construct universal deformations of prismatic G-µ-displays over k as certain prismatic G-µ-displays over
complete regular local rings of higher dimension, where Theorem 1.2.1 plays a crucial role. As a result,
we can give an alternative proof of the equivalences (1-2) and (1-3).

Remark 1.3.2. In the proof of [Anschütz and Le Bras 2023, Theorem 4.74] (and hence in the proof of
the equivalence (1-2) of that work), they use [Scholze and Weinstein 2013, Theorem B], which says that
for an algebraically closed complete extension C of Qp, the category of p-divisible groups over OC is
equivalent to the category of free Zp-modules T of finite rank together with a C-subspace of T ⊗Zp C . In
[Ito 2025], we also give an alternative proof of this result.

We now explain our motivation for general G. The notion of G-µ-displays (“displays with G-µ-
structures”) was first introduced in [Bültel 2008; Bültel and Pappas 2020] to study Rapoport–Zink spaces
and integral models of Shimura varieties (where G is reductive and µ is minuscule). The theory of
G-µ-displays has been developed in various settings; see for example [Langer and Zink 2019; Pappas
2023; Lau 2021; Daniels 2021; Bartling 2022]. In fact, the notion of G-µ-displays over perfect prisms
was already used in [Bartling 2022]. Bartling used G-µ-displays over perfect prisms to prove the local
representability and the formal smoothness of integral local Shimura varieties with hyperspecial level
structure, under a certain nilpotence assumption (introduced in [Bültel and Pappas 2020, Definition 3.4.2]).
In [Ito 2025], we prove the same assertion without any nilpotence assumptions, by using the universal
deformations of prismatic G-µ-displays over k.
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Remark 1.3.3. In [Ito 2025], we establish the above results not only when G is defined over Zp but also
when G is defined over OE , where E is any finite extension of Qp. For this, it will be convenient to work
with OE -prisms.

The theory of G-µ-displays also has applications to K3 surfaces and related varieties; see [Langer
and Zink 2019; Lau 2021; Inoue 2024]. In a future work, we plan to employ prismatic G-µ-displays to
investigate the deformation theory for these varieties.

1.4. Outline of this paper. This paper is organized as follows. In Section 2, we collect some basic
definitions and facts about OE -prisms. In Section 3, we discuss the notion of displayed Breuil–Kisin
modules (of type µ), which will serve as examples of prismatic G-µ-displays. In Section 4, we introduce
and study the display group Gµ(A, I ), which is used in the definition of prismatic G-µ-displays. The
structural results about Gµ(A, I ) obtained there play crucial roles in the study of prismatic G-µ-displays.

Sections 5 and 6 are the main parts of this paper. In Section 5, we introduce prismatic G-µ-displays,
give some basic definitions (e.g., Hodge filtrations and underlying G-φ-modules), and establish several
descent results. In Section 6, we prove our main result (Theorem 1.2.1).

In Section 7, we make a few remarks on prismatic Dieudonné crystals, and prove Theorem 1.1.1. Finally,
in Section 8, we provide a comparison between prismatic G-µ-displays and prismatic F-gauges. In
particular, we introduce the notion of prismatic G-F-gauges of type µ for quasisyntomic rings over W (k).

Notation. In this paper, all rings are commutative and unital. For a module M over a ring R and a ring
homomorphism f : R→ R′, the tensor product M ⊗R R′ is denoted by MR′ or f ∗M. For a scheme X
over R, the base change X ×Spec R Spec R′ is denoted by X R′ or f ∗X . We use similar notation for the
base change of group schemes, p-divisible groups, etc. Moreover, all actions of groups will be right
actions, unless otherwise stated.

2. Preliminaries on OE-prisms

Throughout this paper, we fix a prime number p. Let E be a finite extension of Qp with ring of integers OE

and residue field Fq . Here Fq is a finite field with q elements. We fix a uniformizer π ∈OE .
In this section, we study an “OE -analogue” of the notion of prisms. Such objects are called OE -prisms

in this paper. This notion was also introduced in [Marks 2023] (in which OE -prisms are called E-typical
prisms). We discuss some properties of OE -prisms which we need in the sequel. We hope that this section
will also help readers unfamiliar with [Bhatt and Scholze 2022] to understand some basic facts about prisms.

2.1. Prisms. We first recall the definition of bounded prisms.
Let A be a Z(p)-algebra. A δ-structure on A is a map δ : A→ A of sets with the following properties:

(1) δ(1)= 0.

(2) δ(xy)= x pδ(y)+ y pδ(x)+ pδ(x)δ(y).

(3) δ(x + y)= δ(x)+ δ(y)+ (x p
+ y p
− (x + y)p)/p.
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A δ-ring is a pair (A, δ) of a Z(p)-algebra A and a δ-structure δ : A→ A. The above equalities imply that

φ : A→ A, x 7→ x p
+ pδ(x),

is a ring homomorphism which is a lift of the Frobenius A/p→ A/p, x 7→ x p.
In the following, for a ring A and an ideal I ⊂ A, we say that an A-module M is I -adically complete

(or x-adically complete if I is generated by an element x ∈ I ) if the natural homomorphism

M→ M̂ := lim
←−−

n
M/I n M

is bijective.

Definition 2.1.1 [Bhatt and Scholze 2022]. A bounded prism is a pair (A, I ) of a δ-ring A and a Cartier
divisor I ⊂ A with the following properties:

(1) A is (p, I )-adically complete.

(2) A/I has bounded p-torsion, i.e., (A/I )[p∞] = (A/I )[pn
] for some integer n > 0.

(3) We have p ∈ (I, φ(I )).

We say that a bounded prism (A, I ) is orientable if I is principal.

Remark 2.1.2. Under the condition that A/I has bounded p∞-torsion, the requirement that A is (p, I )-
adically complete is equivalent to saying that A is derived (p, I )-adically complete; see [Bhatt and
Scholze 2022, Lemma 3.7]. We refer to [loc. cit., Section 1.2] and [Stacks 2005–, Tag 091N] for the
notion of derived complete modules (or complexes). For a ring A and a finitely generated ideal I ⊂ A,
if an A-module M is I -adically complete, then M is derived I -adically complete; see [Stacks 2005–,
Tag 091T] or [Positselski 2023, Lemma 2.3].

2.2. δE-rings. In this subsection, we recall the notion of δE -rings, which is an “OE -analogue” of the
notion of a δ-ring. We define

δOE ,π :OE →OE , x 7→ (x − xq)/π.

Definition 2.2.1 [Marks 2023, Definition 2.2]. (1) Let A be an OE -algebra. A δE -structure on A is a
map δE : A→ A of sets with the following properties:

(a) δE(xy)= xqδE(y)+ yqδE(x)+πδE(x)δE(y).

(b) δE(x + y)= δE(x)+ δE(y)+ (xq
+ yq
− (x + y)q)/π .

(c) δE : A→ A is compatible with δOE ,π , i.e., we have δE(x)= δOE ,π (x) for any x ∈OE .

A δE -ring is a pair (A, δE) of an OE -algebra A and a δE -structure δE : A→ A.

(2) A homomorphism f : (A, δE)→ (A′, δ′E) of δE -rings is a homomorphism f : A→ A′ of OE -algebras
such that f ◦ δE = δ

′

E ◦ f .
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The term (xq
+ yq
− (x + y)q)/π in (b) makes sense since we can write it as

(xq
+ yq
− (x + y)q)/π =−

∑
0<i<q

((q
i

)
/π

)
x i yq−i .

We usually denote a δE -ring (A, δE) simply by A.

Remark 2.2.2. The notion of δE -rings also appeared in [Borger 2011, Remark 1.19; Li 2022] for example.
In the end of the latter work, Li suggests using δE -structures for the study of prismatic sites of higher
level over ramified bases.

Remark 2.2.3. The notion of δE -rings is essentially independent of the choice of π . More precisely, let
π ′ ∈ OE be another uniformizer. We write π = uπ ′ for a unique unit u ∈ O×E . If an OE -algebra A is
equipped with a δE -structure δE : A→ A with respect to π , then it also admits a δE -structure with respect
to π ′, defined by x 7→ uδE(x).

For a δE -ring A, we define

φA : A→ A, x 7→ xq
+πδE(x).

We see that φA is a homomorphism of OE -algebras and is a lift of the q-th power Frobenius A/π→ A/π ,
x 7→ xq. The homomorphism φA is called the Frobenius of the δE -ring A. When there is no ambiguity,
we omit the subscript and simply write φ = φA.

Remark 2.2.4. If A is a π-torsion-free OE -algebra, then the construction δE 7→ φ gives a bijection
between the set of δE -structures on A and the set of homomorphisms φ : A→ A over OE that are lifts of
A/π→ A/π , x 7→ xq.

Example 2.2.5 (free δE -rings). We define an endomorphism φ of the polynomial ring OE [X0, X1, X2, . . . ]

by X i 7→ Xq
i + πX i+1 (i ≥ 0). By Remark 2.2.4, we get the corresponding δE -structure on the ring

OE [X0, X1, X2, . . . ], which sends X i to X i+1. We write

OE {X}

for the resulting δE -ring. As in the proof of [Bhatt and Scholze 2022, Lemma 2.11], one can check
that OE {X} has the following property: For a δE -ring A and an element x ∈ A, there exists a unique
homomorphism f : OE {X} → A of δE -rings with f (X0) = x . In other words, the δE -ring OE {X} is a
free object with basis X := X0 in the category of δE -rings.

The same argument as in the proof of [loc. cit., Lemma 2.11] also shows that the Frobenius φ :
OE {X} →OE {X} is faithfully flat; this fact will be used in Section 2.6.

Lemma 2.2.6. For a δE -ring A, the Frobenius φ : A→ A is a homomorphism of δE -rings.

Proof. Let x ∈ A be an element. We have to show that φ(δE(x)) = δE(φ(x)). Since there exists a
(unique) homomorphism f :OE {X} → A of δE -rings with f (X)= x , it suffices to prove the assertion
for A =OE {X}, which is clear since A is π -torsion-free and φ : A→ A is φ-equivariant. □
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Following [loc. cit., Remark 2.4], we shall give a characterization of δE -rings in terms of ramified Witt
vectors. For an OE -algebra A, let

WOE ,π,2(A)

denote the ring of π -typical Witt vectors of length 2: the underlying set of WOE ,π,2(A) is A× A, and for
(x0, x1), (y0, y1) ∈WOE ,π,2(A), we have

(x0, x1)+ (y0, y1)= (x0+ y0, x1+ y1+ (x
q
0 + yq

0 − (x0+ y0)
q)/π),

(x0, x1) · (y0, y1)= (x0 y0, xq
0 y1+ yq

0 x1+πx1 y1).

If OE = Zp and π = p, then WOE ,π,2(A) is the ring W2(A) of p-typical Witt vectors of length 2. For
a detailed treatment of the rings of π-typical Witt vectors (of any length), we refer to [Schneider 2017,
Section 1.1; Borger 2011].

Remark 2.2.7 (cf. [Bhatt and Scholze 2022, Remark 2.4]). The map

OE →WOE ,π,2(A), x 7→ (x, δOE ,π (x)),

is a ring homomorphism for any OE -algebra A. We regard WOE ,π,2(A) as an OE -algebra by this
homomorphism. Let

ϵ :WOE ,π,2(A)→ A, (x0, x1) 7→ x0,

denote the projection map, which is a homomorphism of OE -algebras. For a δE -structure δE : A→ A,
the map s : A 7→WOE ,π,2(A) defined by x 7→ (x, δE(x)) is a homomorphism of OE -algebras such that
ϵ ◦ s = idA. By this procedure, we obtain a bijection between the set of δE -structures on A and the set of
homomorphisms s : A→WOE ,π,2(A) of OE -algebras satisfying ϵ ◦ s = idA.

Remark 2.2.8 (cf. [Bhatt and Scholze 2022, Remark 2.7]). It follows from Remark 2.2.7 that the category
of δE -rings admits all limits and colimits, and they are preserved by the forgetful functor from the category
of δE -rings to the category of OE -algebras.

The following two lemmas will be used frequently in the sequel.

Lemma 2.2.9. Let A = (A, δE) be a δE -ring and I ⊂ A an ideal. Then I is stable under δE if and only
if A/I admits a δE -structure that is compatible with the one on A. If such a δE -structure on A/I exists,
then it is unique.

Proof. This follows immediately from the definition of δE -structures (see the proof of [Bhatt and Scholze
2022, Lemma 2.9]). □

Lemma 2.2.10. Let A be a δE -ring and let I ⊂ A be a finitely generated ideal containing π . Then, for any
integer n ≥ 1, there exists an integer m ≥ 1 such that, for any x ∈ A, we have δE(x+ I m)⊂ δE(x)+ I n. In
particular, the I -adic completion of A admits a unique δE -structure that is compatible with the one on A.

Proof. The proof is the same as that of [Bhatt and Scholze 2022, Lemma 2.17]. □

We shall discuss some properties of perfect δE -rings, which are defined as follows.
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Definition 2.2.11. We say that a δE -ring A is perfect if the Frobenius φ : A→ A is bijective.

Lemma 2.2.12 [Marks 2023, Lemma 2.11]. A perfect δE -ring A is π -torsion-free.

Proof. This is proved in [Marks 2023, Lemma 2.11], and follows from the same argument as in the proof
of [Bhatt and Scholze 2022, Lemma 2.28]. □

Example 2.2.13. Let R be an Fq-algebra. Assume that R is perfect (i.e., R→ R, x 7→ x p, is bijective).
Let W (R) be the ring of p-typical Witt vectors and we define

WOE (R) :=W (R)⊗W (Fq )OE .

Let φ : WOE (R)→ WOE (R) denote the base change of the q-th power Frobenius of W (R). This is a
lift of the q-th power Frobenius of WOE (R)/π = R. Since WOE (R) is π-torsion-free, we obtain the
corresponding δE -structure on WOE (R). It is clear that WOE (R) is a perfect δE -ring.

Lemma 2.2.14. The functor R 7→WOE (R) from the category of perfect Fq-algebras to the category of
π -adically complete OE -algebras admits a right adjoint given by A 7→ lim

←−−x 7→x p A/π A.

Proof. This is well known in the case where OE =Zp (see [Szamuely and Zábrádi 2018, Proposition 3.12]
for example). The general case follows from this special case. □

Corollary 2.2.15 [Marks 2023, Proposition 2.13]. The following categories are equivalent:

• The category C1 of π -adically complete perfect δE -rings (A, δE).

• The category C2 of π -adically complete and π -torsion-free OE -algebras A such that A/π A is perfect.

• The category C3 of perfect Fq -algebras R.

More precisely, the functors C1→ C2→ C3→ C1, defined by (A, δE) 7→ A, A 7→ A/π , R 7→WOE (R),
respectively, are equivalences.

Proof. Using Lemma 2.2.14, one can prove the assertion in exactly the same way as [Bhatt and Scholze
2022, Corollary 2.31]. □

Corollary 2.2.16. Let A be a perfect δE -ring and B a π -adically complete δE -ring. Then any homomor-
phism A→ B of OE -algebras is a homomorphism of δE -rings.

Proof. We may assume that A is π-adically complete. It then follows from Lemma 2.2.14 and
Corollary 2.2.15 that A → B is φ-equivariant. We recall that φ : B → B is a homomorphism of
δE -rings by Lemma 2.2.6. Let Bperf be a limit of the diagram

B φ
←− B φ

←− B←− · · ·

in the category of δE -rings, which is a perfect δE -ring. Since A is perfect, A→ B factors through a
φ-equivariant homomorphism A→ Bperf of OE -algebras. It follows from the π -torsion-freeness of Bperf

(see Lemma 2.2.12) that A→ Bperf is a homomorphism of δE -rings. Since A→ B is the composition
A→ Bperf

→ B, the assertion follows. □
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2.3. OE-prisms. We now introduce OE -prisms.

Definition 2.3.1 [Marks 2023, Definition 3.1]. (1) An OE -prism is a pair (A, I ) of a δE -ring A and a
Cartier divisor I ⊂ A such that A is derived (π, I )-adically complete and π ∈ I +φ(I )A.

(2) We say that an OE -prism (A, I ) is bounded if A/I has bounded p∞-torsion.

(3) We say that an OE -prism (A, I ) is orientable if I is principal.

(4) An oriented and bounded OE -prism (A, d) is an orientable and bounded OE -prism (A, I ) with a
choice of a generator d ∈ I.

(5) A map f : (A, I ) → (A′, I ′) of OE -prisms is a homomorphism f : A → A′ of δE -rings such
that f (I )⊂ I ′.

If OE = Zp, then bounded OE -prisms are nothing but bounded prisms.

Remark 2.3.2. Let (A, I ) be a bounded OE -prism. By [Tian 2023, Proposition 2.5(1)] (see also
Lemma 2.5.1 below), we see that A is (π, I )-adically complete. Moreover, since A/I is derived π -adically
complete and has bounded p∞-torsion, it follows that A/I is π -adically complete (see [Bhatt et al. 2019,
Lemma 4.7] for example).

Let A be a δE -ring. Following [Bhatt and Scholze 2022, Definition 2.19], we say that an element d ∈ A
is distinguished if δE(d) ∈ A×, i.e., δE(d) is a unit. Since δOE ,π (π)= 1−πq−1

∈O×E , we see that π ∈ A
is distinguished.

Lemma 2.3.3. Let A be a δE -ring and d ∈ A an element. Assume that π is contained in the Jacobson
radical rad(A) of A.

(1) Assume that d = f h for some elements f, h ∈ A with f ∈ rad(A). If d is distinguished, then f is
distinguished and h ∈ A×.

(2) Assume that d ∈ rad(A). Then d is distinguished if and only if π ∈ (d, φ(d)).

Proof. This can be proved exactly in the same way as [Bhatt and Scholze 2022, Lemmas 2.24 and 2.25].
See also [Marks 2023, Lemma 2.9]. □

The following rigidity property plays a fundamental role in the theory of OE -prisms.

Lemma 2.3.4 (cf. [Bhatt and Scholze 2022, Lemma 3.5]). Let (A, I )→ (A′, I ′) be a map of OE -prisms.
Then the natural homomorphism I ⊗A A′→ I A′ is an isomorphism and I A′ = I ′.

Proof. By using [Marks 2023, Lemma 3.4], this follows from the same argument as in the proof of [Bhatt
and Scholze 2022, Lemma 3.5]. We recall the argument in the case where both (A, I ) and (A′, I ′) are
orientable. It follows from Lemma 2.3.3(2) that any generator d ∈ I is distinguished. Let d ′ ∈ I ′ be a
generator. Then Lemma 2.3.3(1) implies that d is mapped to ud ′ for some u ∈ A′×. In particular, the
image of d in A′ is a nonzerodivisor, and we obtain I ⊗A A′ −→∼ I A′ and I A′ = I ′. □

The following lemma will be used several times in this paper.
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Lemma 2.3.5 (cf. the proof of [Bhatt and Scholze 2022, Lemma 4.8]). Let A be a perfect δE -ring and
(B, I ) a bounded OE -prism. Then any homomorphism A→ B/I of OE -algebras lifts uniquely to a
homomorphism A→ B of δE -rings.

Proof. By Corollary 2.2.16, it is enough to check that the homomorphism A→ B/I lifts uniquely to
a homomorphism A→ B of OE -algebras. We may assume that A is π-adically complete, and then
A ≃ WOE (R) for some perfect Fq-algebra R by Corollary 2.2.15. Since B is (π, I )-adically complete
and B/I is π-adically complete, it suffices to prove that, for every integer n ≥ 1, any homomorphism
Wn(R)→ B/(πn, I ) of Wn(Fq)-algebras lifts uniquely to a homomorphism Wn(R)→ B/(πn, I n) of
Wn(Fq)-algebras (here Wn(R) = W (R)/pn). This follows from the fact that the cotangent complex
LWn(R)/Wn(Fq ) is acyclic [Szamuely and Zábrádi 2018, Lemma 3.27(1)]. □

We give some examples of OE -prisms.

Example 2.3.6 (cf. [Bhatt and Scholze 2022, Example 1.3(1)]). Let A be a π-adically complete and
π -torsion-free OE -algebra. Let φ : A→ A be a homomorphism over OE which is a lift of the q-th power
Frobenius of A/π . This homomorphism induces a δE -structure on A, and the pair (A, (π)) is a bounded
OE -prism.

Definition 2.3.7 (OE -prism over O). Let k be a perfect field containing Fq . We will write

O :=W (k)⊗W (Fq )OE

instead of WOE (k). An OE -prism over O is an OE -prism (A, I )with a homomorphism O→ A of δE -rings.

Let O =W (k)⊗W (Fq )OE be as in Definition 2.3.7. Let

SO :=O[[t1, . . . , tn]]

(where n≥0) and let φ :SO→SO be the homomorphism such that φ(ti )= tq
i (1≤ i ≤n) and its restriction

to O agrees with the Frobenius of O. Since SO is π -torsion-free, φ gives rise to a δE -structure on SO.

Proposition 2.3.8 (cf. [Bhatt and Scholze 2022, Example 1.3(3)]). Let E ∈SO be a formal power series
whose constant term is a uniformizer of O. Then the pair (SO, (E)) is a bounded OE -prism over O.

Proof. We shall show that π ∈ (E, φ(E)); the other required conditions are clearly satisfied. It is enough
to check that δE(E) ∈S×O. For this, it suffices to show that the image of δE(E) in SO/(t1, . . . , tn)=O is
a unit, which is clear since the constant term of E is a uniformizer of O. □

We call (SO, (E)) an OE -prism of Breuil–Kisin type in this paper. Here n could be any nonnegative
integer. Such a pair is also considered in [Cheng 2018].

2.4. Perfectoid rings and OE-prisms. The notion of (integral) perfectoid rings in the sense of [Bhatt
et al. 2018, Definition 3.5] plays a central role in the theory of prismatic G-µ-displays. We refer to
[loc. cit., Section 3] and [Česnavičius and Scholze 2024, Section 2] for basic properties of perfectoid
rings. We recall the definition of perfectoid rings and some notation from [Bhatt et al. 2018, Section 3].



1698 Kazuhiro Ito

A ring R is a perfectoid ring if there exists an element ϖ ∈ R such that p ∈ (ϖ)p and R is ϖ -adically
complete, the Frobenius R/p→ R/p, x 7→ x p is surjective, and the kernel of θ :W (R♭)→ R is principal.
Here

R♭ := lim
←−−

x 7→x p
R/p

and θ :W (R♭)→ R is the unique homomorphism whose reduction modulo p is the projection R♭→ R/p,
(x0, x1, . . . ) 7→ x0. The homomorphism θ is the counit of the adjunction given in Lemma 2.2.14 (in the
case where OE = Zp). By [Bhatt et al. 2018, Lemma 3.9], there is an element ϖ ♭

∈ R♭ such that θ([ϖ ♭
])

is a unit multiple of ϖ , where [−] denotes the Teichmüller lift.

Example 2.4.1. (1) An Fp-algebra R is a perfectoid ring if and only if it is perfect; see [Bhatt et al.
2018, Example 3.15].

(2) Let V be a p-adically complete valuation ring with algebraically closed fraction field. Then V is a
perfectoid ring. This follows from [loc. cit., Lemma 3.10].

Let O be as in Definition 2.3.7. If R is a perfectoid ring over O (i.e., R is a perfectoid ring with a
ring homomorphism O→ R), then R♭ is naturally a k-algebra, and WOE (R

♭)=W (R♭)⊗W (Fq )OE is an
O-algebra. Let

θOE :WOE (R
♭)→ R

be the homomorphism induced from θ .

Lemma 2.4.2 (cf. [Fargues and Scholze 2021, Proposition II.1.4]). The kernel Ker θOE of θOE is a
principal ideal. Moreover, any generator of Ker θOE is a nonzerodivisor in WOE (R

♭).

Proof. Let ϖ ∈ R be an element such that R is ϖ -adically complete and p ∈ (ϖ)p. By [Bhatt et al. 2018,
Lemma 3.10(i)], after replacing ϖ by θ([(ϖ ♭)1/pn

]) for some integer n > 0, we have π ∈ (ϖ). Then we
can write π = θ([ϖ ♭

]x) for some element x ∈W (R♭) since θ is surjective. We shall show that π−[ϖ ♭
]x

generates Ker θOE .
Let E(T )∈W(k)[T ] be the (monic) Eisenstein polynomial of π∈O so that we have W(k)[T ]/E(T )−→∼ O,

T 7→π . We see that
WOE (R

♭)/(π − [ϖ ♭
]x)≃W (R♭)[T ]/(E(T ), T − [ϖ ♭

]x)

≃W (R♭)/E([ϖ ♭
]x).

It thus suffices to show that E([ϖ ♭
]x) is a generator of the kernel Ker θ of θ . It is clear that E([ϖ ♭

]x) ∈
Ker θ . Since E([ϖ ♭

]x) is a unit multiple of an element of the form p+[ϖ ♭
]y, the proof of [Bhatt et al.

2018, Lemma 3.10] shows that E([ϖ ♭
]x) ∈ Ker θ is a generator.

It remains to prove that any generator ξ ∈Ker θOE is a nonzerodivisor. We recall that Ker θ is generated
by a nonzerodivisor ξ ′ ∈ W (R♭). Since W (Fq)→ OE is flat, the element ξ ′ is a nonzerodivisor in
WOE (R

♭). This implies that ξ is a nonzerodivisor since we have ξ ′ ∈ (ξ)= Ker θOE . □
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Proposition 2.4.3 (cf. [Bhatt and Scholze 2022, Example 1.3(2)]). Let R be a perfectoid ring over O and
we write IR := Ker θOE . Then the pair

(WOE (R
♭), IR)

is an orientable and bounded OE -prism over O.

Proof. By the proof of Lemma 2.4.2, we know that IR is generated by a nonzerodivisor of the form
ξ = π −[(ϖ ′)♭]b, where ϖ ′ ∈ R is such that R is ϖ ′-adically complete and p ∈ (ϖ ′)p. In order to show
that WOE (R

♭) is (π, ξ)-adically complete, it suffices to show that W (R♭) is (p, [(ϖ ′)♭])-adically complete,
which is easy to check (see also the proof of [Česnavičius and Scholze 2024, Proposition 2.1.11(b)]).
Moreover WOE (R

♭)/ξ = R has bounded p∞-torsion by [Bhatt and Scholze 2022, Lemma 3.8].
It remains to show that π ∈ (ξ, φ(ξ)). It suffices to prove that δE(ξ) ∈WOE (R

♭)×. The image of δE(ξ)

in WOE (R
♭)/[(ϖ ′)♭] is equal to 1−πq−1 (we note that WOE (R

♭)/[(ϖ ′)♭] is π -torsion-free) and hence is
a unit, which in turn implies that δE(ξ) ∈WOE (R

♭)×. □

A homomorphism R→ S of perfectoid rings over O induces a map (WOE (R
♭), IR)→ (WOE (S

♭), IS)

of OE -prisms over O.

Remark 2.4.4. We say that an OE -prism (A, I ) is perfect if the δE -ring A is perfect. By [Marks 2023,
Lemma 3.10], a perfect OE -prism (A, I ) is bounded and orientable. Moreover, in [loc. cit., Theorem 3.18],
it is proved that A/I is a perfectoid ring. These facts, together with Lemma 2.3.5 and Proposition 2.4.3,
imply that the functor (A, I ) 7→ A/I from the category of perfect OE -prisms to that of perfectoid rings
over OE is an equivalence, whose inverse is given by R 7→ (WOE (R

♭), IR). This is an analogue of [Bhatt
and Scholze 2022, Theorem 3.10].

2.5. Prismatic sites. For a ring A, let D(A) denote the derived category of A-modules. Let I ⊂ A be a
finitely generated ideal. We say that a complex M ∈D(A) is I -completely flat (resp. I -completely faithfully
flat) if M ⊗L

A A/I is concentrated in degree 0 and it is a flat (resp. faithfully flat) A/I -module. One can
easily check that this definition is equivalent to the one introduced in [Bhatt and Scholze 2022, Section 1.2].

Lemma 2.5.1. Let (A, I ) be a bounded OE -prism.

(1) For a complex M ∈ D(A), the derived (π, I )-adic completion of M is isomorphic to

R lim
←−−

n
(M ⊗L

A A/(π, I )n).

In particular, if M is (π, I )-completely flat, then the derived (π, I )-adic completion of M is concen-
trated in degree 0.

(2) Let M be an A-module. Assume that M is (π, I )-completely flat and derived (π, I )-adically complete.
Then M is (π, I )-adically complete. Moreover the natural homomorphism M ⊗A I → M is injective
and M/I n M has bounded p∞-torsion for any n.

Proof. (1) The assertion follows from [Tian 2023, Proposition 2.5(1)] or the proof of [Bhatt and Scholze
2022, Lemma 3.7(1)]. This can also be deduced from the results discussed in [Yekutieli 2021]; by
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[Yekutieli 2021, Corollary 3.5, Theorem 3.11], it suffices to prove that the ideal (π, I ) ⊂ A is weakly
proregular in the sense of [loc. cit., Definition 3.2], which follows from the same argument as in the proof
of [loc. cit., Theorem 7.3].

(2) It follows from (1) that M is (π, I )-adically complete. The second statement can be proved in the
same way as [Bhatt and Scholze 2022, Lemma 3.7(2)]. (In [loc. cit.], we should assume that M is derived
(p, I )-adically complete.) □

We say that a map f : (A, I )→ (A′, I ′) of bounded OE -prisms is a ( faithfully) flat map if A→ A′ is
(π, I )-completely (faithfully) flat. If f is a faithfully flat map, then we say that (A′, I ′) is a flat covering
of (A, I ).

Remark 2.5.2. For a map f : (A, I )→ (A′, I ′) of bounded OE -prisms, we have A′⊗L
A A/I ≃ A′/I ′ by

Lemma 2.3.4, which in turn implies that

A′⊗L
A A/(π, I )≃ A′/I ′⊗L

A/I A/(π, I ). (2-1)

In particular f is a (faithfully) flat map if and only if A/I → A′/I ′ is π -completely (faithfully) flat.

Definition 2.5.3. Let R be a π -adically complete OE -algebra. Let

(R)1,OE

denote the category of bounded OE -prisms (A, I ) together with a homomorphism R → A/I of OE -
algebras. The morphisms f : (A, I )→ (A′, I ′) in (R)1,OE are the maps of OE -prisms such that A/I →
A′/I ′ is a homomorphism of R-algebras. We endow the opposite category (R)op

1,OE
with the topology

generated by the faithfully flat maps. This topology is called the flat topology.

We note that (OE)1,OE is just the category of bounded OE -prisms. If OE = Zp, then (R)1,OE is the
category (R)1 introduced in [Bhatt and Scholze 2022, Remark 4.7]. The category (R)1 (or its opposite)
is called the absolute prismatic site of R.

Remark 2.5.4. A diagram

(A2, I2)
g
←− (A1, I1)

f
−→ (A3, I3)

in (R)1,OE such that g is a flat map, admits a colimit (i.e., a pushout). Indeed, by Lemma 2.5.1(1),
the (π, I3)-adic completion A := (A2⊗A1 A3)

∧ is isomorphic to the derived (π, I3)-adic completion of
A2 ⊗

L
A1

A3. In particular A is (π, I3)-completely flat over A3. (Here we use that J -complete flatness
is preserved under base change and taking derived J -adic completions.) It follows from Remark 2.2.8
and Lemma 2.2.10 that A admits a unique δE -structure that is compatible with the δE -structures on A2

and A3. By Lemma 2.5.1(2), we see that (A, I3 A) is a bounded OE -prism. By construction, (A, I3 A) is
a colimit of the above diagram. As a result, it follows that (R)op

1,OE
is indeed a site.

Remark 2.5.5 (cf. [Bhatt and Scholze 2022, Corollary 3.12]). A faithfully flat map (A, I )→ (A′, I ′)
induces faithfully flat homomorphisms A/(π, I )n→ A′/(π, I ′)n and A/(πn, I )→ A′/(πn, I ′) for any n.
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It follows that the functors
O1 : (R)1,OE → Set, (A, I ) 7→ A,

O1̄ : (R)1,OE → Set, (A, I ) 7→ A/I,

form sheaves with respect to the flat topology. Here Set is the category of sets.

More generally, we have the following descent result.

Proposition 2.5.6. The fibered category over (OE)
op
1,OE

which associates to each (A, I ) ∈ (OE)1,OE the
category of finite projective A-modules satisfies descent with respect to the flat topology. The same holds
for finite projective A/I -modules.

Proof. For a ring B and an ideal J ⊂ B such that B is J -adically complete, the natural functor

{finite projective B-modules} −→ 2− lim
←−−n{finite projective B/J n-modules}

is an equivalence; see for example [Bhatt 2016, Lemma 4.11]. The assertions of the proposition follow
from this fact and faithfully flat descent for finite projective modules over A/(π, I )n and A/(πn, I ),
respectively. See also [Anschütz and Le Bras 2023, Lemma A.1, Proposition A.3]. □

Definition 2.5.7. For a bounded OE -prism (A, I ), let

(A, I )1

be the category of bounded OE -prisms (B, J ) with a map (A, I )→ (B, J ). We endow (A, I )op
1 with the

flat topology induced from (OE)
op
1,OE

.

Example 2.5.8. (1) Let O be as in Definition 2.3.7. The category (O)1,OE is the same as the category
of bounded OE -prisms over O by Lemma 2.3.5.

(2) Let R be a perfectoid ring over OE . It follows from Lemma 2.3.5 that (R)1,OE is the same as the
category (WOE (R

♭), IR)1.

Let A→ B be a ring homomorphism and I ⊂ A a finitely generated ideal. We say that A→ B is
I -completely étale if B is derived I -adically complete, B⊗L

A A/I is concentrated in degree 0, and B/I B
is étale over A/I. We write AI -ét for the category of I -completely étale A-algebras. If I = 0, then AI -ét

is just the category Aét of étale A-algebras.

Lemma 2.5.9. Let (A, I ) be a bounded OE -prism.

(1) A ring homomorphism A/I → C is π-completely étale if and only if C is π-adically complete
and C/πn is étale over A/(πn, I ) for every integer n ≥ 1. If this is the case, then C has bounded
p∞-torsion.

(2) A ring homomorphism A→ B is (π, I )-completely étale if and only if B is (π, I )-adically complete
and B/(π, I )n is étale over A/(π, I )n for every n ≥ 1. If this is the case, then B⊗L

A A/I −→∼ B/I B
and A/I → B/I B is π -completely étale.
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(3) The functors

A(π,I )-ét→ (A/I )π -ét→ (A/(π, I ))ét,

where the first one is defined by B 7→ B/I B and the second one is defined by C 7→ C/π , are
equivalences.

Proof. This result is well known to specialists, but we include a proof for the convenience of the reader.

(1) Assume that A/I → C is π -completely étale. Then, since A/I has bounded p∞-torsion, [Bhatt et al.
2019, Lemma 4.7] implies that C is π -adically complete and has bounded p∞-torsion. Since C/πn is flat
over A/(πn, I ) and C/π is étale over A/(π, I ), it follows that C/πn is étale over A/(πn, I ) for any n.

We next prove the “if” direction, so we assume that C is π -adically complete and C/πn is étale over
A/(πn, I ) for any n. We want to show that C ⊗L

A/I A/(π, I ) is concentrated in degree 0. There exists an
étale A/I -algebra C0 such that C0/π ≃ C/π over A/(π, I ); see for example [Arabia 2001, Section 1.1]
or [Stacks 2005–, Tag 04D1] (this is known as a special case of Elkik’s result [1973]). One easily sees
that the derived π-adic completion of C0, the π-adic completion of C0, and C are isomorphic to each
other. Then we obtain

C ⊗L
A/I A/(π, I )≃ C0⊗

L
A/I A/(π, I )≃ C0/π.

This proves the assertion.

(2) Assume that A→ B is (π, I )-completely étale. We easily see that B/(π, I )n is étale over A/(π, I )n.
It follows from Lemma 2.5.1 that B is (π, I )-adically complete and we have B⊗L

A A/I −→∼ B/I B. It is
then clear that A/I → B/I B is π -completely étale.

The “if” direction can be proved by the same argument as in (1). Suppose that B is (π, I )-adically
complete and B/(π, I )n is étale over A/(π, I )n for any n. As above, there exists an étale A-algebra B0

such that the (π, I )-adic completion of B0 is isomorphic to B. It follows from Lemma 2.5.1(1) that B is
isomorphic to the derived (π, I )-adic completion of B0, which in turn implies that B is (π, I )-completely
étale over A.

(3) This follows from the proofs of (1) and (2). □

Lemma 2.5.10 (cf. [Bhatt and Scholze 2022, Lemma 2.18]). Let (A, I ) be a bounded OE -prism and
A→ B a (π, I )-completely étale homomorphism. Then B admits a unique δE -structure compatible with
that on A. Moreover, the pair (B, I B) is a bounded OE -prism.

Proof. It suffices to prove the first statement by Lemma 2.5.1. For this, we proceed as in the proof of
[Bhatt and Scholze 2022, Lemma 2.18].

We regard WOE ,π,2(B) as an A-algebra via the composition A→WOE ,π,2(A)→WOE ,π,2(B), where
A→WOE ,π,2(A) is the homomorphism corresponding to the δE -structure on A (Remark 2.2.7). Then
WOE ,π,2(B) is (π, I )-adically complete. Indeed, we have an exact sequence of A-modules

0−→ φ∗B
V
−→WOE ,π,2(B)

ϵ
−→ B −→ 0,
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where we write φ∗B for B regarded as an A-algebra via the composition A φ
→ A→ B, and V : φ∗B→

WOE ,π,2(B) is defined by x 7→ (0, x). Since B⊗L
A A/(π, I )n is concentrated in degree 0 and both φ∗B

and B are (π, I )-adically complete, we can conclude that WOE ,π,2(B) is (π, I )-adically complete.
As in the proof of Lemma 2.5.9, there exists an étale A-algebra B0 such that the (π, I )-adic completion

of B0 is isomorphic to B. Since WOE ,π,2(B) is (Ker ϵ)-adically complete and A→ B0 is étale, there
exists a unique homomorphism s0 : B0 → WOE ,π,2(B) of A-algebras such that ϵ ◦ s0 coincides with
B0→ B. Then, since WOE ,π,2(B) is (π, I )-adically complete, we see that s0 : B0→WOE ,π,2(B) extends
to a unique homomorphism s : B→WOE ,π,2(B) of A-algebras such that ϵ ◦ s = idB , which corresponds
to a unique δE -structure on B compatible with that on A by virtue of Remark 2.2.7. □

Example 2.5.11. Let R be a perfectoid ring over OE and let R → S be a π-completely étale (or
equivalently, p-completely étale) homomorphism. By [Anschütz and Le Bras 2023, Corollary 2.10] or
[Lau 2018, Lemma 8.11], we see that S is a perfectoid ring. Moreover, the isomorphism (2-1) implies
that WOE (R

♭)→WOE (S
♭) is (π, IR)-completely étale.

Let (A, I ) be a bounded OE -prism. We say that a homomorphism B→ B ′ of (π, I )-completely étale
A-algebras is a (π, I )-completely étale covering if

Spec B ′/(π, I )→ Spec B/(π, I )

is surjective, or equivalently, the homomorphism B→ B ′ is (π, I )-completely faithfully flat. We note
that B→ B ′ is automatically (π, I )-completely étale.

Definition 2.5.12. We write

(A, I )ét

for the category of (π, I )-completely étale A-algebras instead of A(π,I )-ét. We endow the opposite
category (A, I )op

ét with the topology generated by the (π, I )-completely étale coverings, which is called
the (π, I )-completely étale topology.

The category (A, I )op
ét admits fiber products. Indeed, a colimit of the diagram C← B→ D in (A, I )ét

is given by the (π, I )-adic completion of C ⊗B D; see Remark 2.5.4. It follows that (A, I )op
ét is a site.

Remark 2.5.13. Recall that, for a (π, I )-completely étale A-algebra B ∈ (A, I )ét, the pair (B, I B) is
naturally a bounded OE -prism by Lemma 2.5.10. We can regard (A, I )ét as a full subcategory of the
category (A, I )1. The (π, I )-completely étale topology on (A, I )op

ét coincides with the one induced from
the flat topology.

Remark 2.5.14. Any bounded OE -prism (A, I ) admits a (π, I )-completely étale covering A→ B such
that (B, I B) is orientable. Indeed, there exists an étale and faithfully flat homomorphism A→ A′ such
that I A′ is principal. The (π, I )-adic completion B of A′ is a (π, I )-completely étale covering of A (by
Lemma 2.5.1). Since I A′ is principal, the bounded OE -prism (B, I B) is orientable.
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2.6. Prismatic envelopes for regular sequences. The existence and the flatness of prismatic envelopes
for regular sequences are proved in [Bhatt and Scholze 2022, Proposition 3.13]. In this subsection, we
give an analogous result for OE -prisms. We will freely use the formalism of animated rings here. For the
definition and properties of animated rings, see for example [Česnavičius and Scholze 2024, Section 5]
and [Bhatt and Lurie 2022a, Appendix A]. (See also [Lurie 2016, Chapter 25], where animated rings are
called simplicial rings.)

We recall some terminology from [Česnavičius and Scholze 2024; Bhatt and Scholze 2022]. To an
animated ring A, we can attach a graded ring of homotopy groups

⊕
n≥0 πn(A). For an animated ring A,

the derived quotient of A with respect to a sequence x1, . . . , xn ∈ π0(A) is defined by

A/L(x1, . . . , xn) := A⊗L
Z[X1,...,Xn]

Z[X1, . . . , Xn]/(X1, . . . , Xn).

Here Z[X1, . . . , Xn]→A is a morphism such that the induced ring homomorphism Z[X1, . . . , Xn]→π0(A)
is given by X i 7→ xi . In [Bhatt and Scholze 2022], the derived quotient is denoted by Kos(A; x1, . . . , xn).
We say that a morphism A→ B of animated rings is flat (resp. faithfully flat) if π0(B) is flat (resp.
faithfully flat) over π0(A) and we have πn(A)⊗π0(A) π0(B)−→∼ πn(B) for any n ≥ 0.

Before stating the result, let us quickly recall the definition of an OE -PD structure, and its relation to
δE -structures.

Definition 2.6.1 [Hopkins and Gross 1994, Section 10; Faltings 2002, Definition 14]. Let A be an
OE -algebra and I ⊂ A an ideal. An OE -PD structure on I is a map γπ : I → I of sets with the following
properties:

(1) πγπ (x)= xq.

(2) γπ (ax)= aqγπ (x), where a ∈ A.

(3) γπ (x + y)= γπ (x)+ γπ (y)+ (xq
+ yq
− (x + y)q)/π .

Example 2.6.2 [Faltings 2002, Section 7]. Let n ≥ 0 be an integer and let OE [(X i, j )] be the polynomial
ring with variables X i, j indexed by integers i, j with 1≤ i ≤ n and j ≥ 0. We write

OE [X1, . . . , Xn]
PD

for the quotient of OE [(X i, j )] by the ideal generated by the elements Xq
i, j − πX i, j+1 for all i, j . The

image of X i,0 in OE [X1, . . . , Xn]
PD is denoted by X i . We see that OE [X1, . . . , Xn]

PD is canonically
isomorphic to the OE -subalgebra of E[X1, . . . , Xn] generated by Xq j

i /π
1+q+···+q j−1

(1≤ i ≤ n and j ≥ 0).
The ideal I PD

⊂OE [X1, . . . , Xn]
PD generated by the elements X i, j admits an OE -PD structure γπ such

that γπ (X i, j )= X i, j+1. In fact, the pair (OE [X1, . . . , Xn]
PD, I PD) is the OE -PD envelope (in the usual

sense) of the polynomial ring OE [X1, . . . , Xn] with respect to the ideal (X1, . . . , Xn).

Lemma 2.6.3 (cf. [Bhatt and Scholze 2022, Lemma 2.38]). Let B be a π-torsion-free OE -algebra.
Let x1, . . . , xn ∈ B be a sequence such that (B/π)/L(x̄1, . . . , x̄n) is concentrated in degree 0, where
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x̄1, . . . , x̄n ∈ B/π are the images of x1, . . . , xn ∈ B. We set

C := B⊗L
OE [X1,...,Xn]

OE [X1, . . . , Xn]
PD,

where OE [X1, . . . , Xn] → B is defined by X i 7→ xi . Then C is concentrated in degree 0 and π0(C) is
π-torsion-free. Moreover the pair (π0(C), I PDπ0(C)) is the OE -PD envelope of B with respect to the
ideal (x1, . . . , xn).

In the following, we will write

D(x1,...,xn)(B) := π0(C)= B⊗OE [X1,...,Xn]OE [X1, . . . , Xn]
PD.

Proof. The proof is identical to that of [Bhatt and Scholze 2022, Lemma 2.38]. □

We also need the following construction. Let B be a δE -ring. Let d ∈ B be an element and be
x1, . . . , xn ∈ B a sequence. We set B{X} := B⊗OE OE {X} and let

B{X1, . . . , Xn}

be the n-th tensor power of B{X} over B. We consider the diagram of δE -rings

B f
←− B{X1, . . . , Xn}

g
−→ B{Y1, . . . , Yn},

where f is defined by X i 7→ xi and g is defined by X i 7→ dYi . Let

B{x1/d, . . . , xn/d}

denote the pushout of this diagram, which is a δE -ring over B with the following property: For a
homomorphism B → C of δE -rings such that the image of d is a nonzerodivisor in C and xi ∈ dC
for all i , there exists a unique homomorphism B{x1/d, . . . , xn/d} → C of δE -rings over B. We let
xi/d ∈ B{x1/d, . . . , xn/d} denote the image of Yi ∈ B{Y1, . . . , Yn}.

Using this construction, we can relate δE -structures to OE -PD structures.

Lemma 2.6.4 (cf. [Bhatt and Scholze 2022, Lemma 2.36]). We have a natural isomorphism

(OE {X1, . . . , Xn}){φ(X1)/π, . . . , φ(Xn)/π} ≃ D(X1,...,Xn)(OE {X1, . . . , Xn})

of OE {X1, . . . , Xn}-algebras.

Proof. This can be proved in the same way as [Bhatt and Scholze 2022, Lemma 2.36]. We include a
sketch of the proof.

We set B :=OE {X1, . . . , Xn}. Since the Frobenius φ : B→ B is faithfully flat by Example 2.2.5, it
follows that C := B{φ(X1)/π, . . . , φ(Xn)/π} is π -torsion-free. Since φ(X i )/π = Xq

i /π+δE(X i ), C can
be regarded as the smallest δE -subring of B[1/π ] which contains B and Xq

i /π (1≤ i ≤ n). On the other
hand, since D := D(X1,...,Xn)(B) is π-torsion-free by Lemma 2.6.3, we see that D is the OE -subalgebra
of B[1/π ] generated by B and Xq j

i /π
1+q+···+q j−1

(1≤ i ≤ n and j ≥ 1).
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We shall prove that C = D in B[1/π ]. Let us first show that D ⊂ C . For this, it suffices to prove that,
for every 1 ≤ i ≤ n, we have Xq j

i /π
1+q+···+q j−1

∈ C for all j ≥ 1. We proceed by induction on j . The
assertion is clear for j = 1. Assume that the assertion is true for some j ≥ 1. Then we have

δE(X
q j

i /π
1+q+···+q j−1

)= φ(Xq j

i /π
1+q+···+q j−1

)/π − (Xq j

i /π
1+q+···+q j−1

)q/π

= φ(X i )
q j
/π2+q+···+q j−1

− Xq j+1

i /π1+q+···+q j
∈ C.

To prove that Xq j+1

i /π1+q+···+q j
∈ C , it is enough to show that φ(X i )

q j
/π2+q+···+q j−1

∈ C . Since
φ(X i )/π = Xq

i /π + δE(X i ) is contained in C , the assertion now follows from the inequality q j
≥

2+ q + · · ·+ q j−1.
It remains to prove that C ⊂ D. Since φ(X i )/π = Xq

i /π + δE(X i ) is contained in D, the inequality
q j
≥ 2+ q + · · ·+ q j−1 for j ≥ 1 implies that

φ(Xq j

i /π
1+q+···+q j−1

)= φ(X i )
q j
/π1+q+···+q j−1

∈ πD

for j ≥ 1. Since
(Xq j

i /π
1+q+···+q j−1

)q = π(Xq j+1

i /π1+q+···+q j
) ∈ πD,

we see that φ preserves D and that the reduction modulo π of φ : D→ D is the q-th power Frobenius.
This implies that C ⊂ D. □

Corollary 2.6.5 (cf. [Bhatt and Scholze 2022, Corollary 2.39]). Let B be a π-torsion-free δE -ring.
Let x1, . . . , xn ∈ B be a sequence such that (B/π)/L(x̄1, . . . , x̄n) is concentrated in degree 0. We
set D := B ⊗L

OE {X1,...,Xn}
OE {Y1, . . . , Yn} where OE {X1, . . . , Xn} → B is defined by X i 7→ φ(xi ) and

OE {X1, . . . , Xn} → OE {Y1, . . . , Yn} is defined by X i 7→ πYi . Then D is concentrated in degree 0.
Moreover

π0(D)= B{φ(x1)/π, . . . , φ(xn)/π}

is π -torsion-free, and is isomorphic to D(x1,...,xn)(B) as a B-algebra.

Proof. Since φ : OE {X1, . . . , Xn} → OE {X1, . . . , Xn} is faithfully flat by Example 2.2.5, we have an
identification

D = B⊗L
OE {X1,...,Xn}

(OE {X1, . . . , Xn}){φ(X1)/π, . . . , φ(Xn)/π},

where OE {X1, . . . , Xn} → B is defined by X i 7→ xi . Then Lemma 2.6.4 implies that

D ≃ B⊗L
OE {X1,...,Xn}

D(X1,...,Xn)(OE {X1, . . . , Xn}).

By Lemma 2.6.3, we have

D(X1,...,Xn)(OE {X1, . . . , Xn})≃OE {X1, . . . , Xn}⊗
L
OE [X1,...,Xn]

OE [X1, . . . , Xn]
PD

and thus D ≃ B⊗L
OE [X1,...,Xn]

OE [X1, . . . , Xn]
PD. The assertion then follows by applying Lemma 2.6.3

again. □

Now we can state the desired result:
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Proposition 2.6.6 (cf. [Bhatt and Scholze 2022, Proposition 3.13]). Assume that (A, I ) is an orientable
and bounded OE -prism. Let d ∈ I be a generator. Let B be a δE -ring over A. Let x1, . . . , xn ∈ B be a
sequence such that the induced morphism

A/L(π, d)→ B/L(π, d, x1, . . . , xn) (2-2)

of animated rings is flat. (In other words, the sequence x1, . . . , xn ∈ B is (π, I )-completely regular relative
to A in the sense of [Bhatt and Scholze 2022, Definition 2.42].) We set J := (d, x1, . . . , xn)⊂ B. Then
the following assertions hold:

(1) The (π, I )-adic completion B{J/I }∧ of B{x1/d, . . . , xn/d} is (π, I )-completely flat over A. In
particular, the pair

(B{J/I }∧, I B{J/I }∧)

is an orientable and bounded OE -prism. Moreover B{J/I }∧ is (π, I )-completely faithfully flat over A if
the morphism (2-2) is faithfully flat.

(2) For a bounded OE -prism (D, I D) over (A, I ) and a homomorphism B→ D of δE -rings over A such
that J D ⊂ I D, there exists a unique map of OE -prisms

(B{J/I }∧, I B{J/I }∧)→ (D, I D)

over B. Moreover, the formation of B{J/I }∧ commutes with base change along any map (A, I )→
(A′, I ′) of bounded OE -prisms, and also commutes with base change along any (π, I )-completely flat
homomorphism B→ B ′ of δE -rings.

See [Bhatt and Scholze 2022, Proposition 3.13(3)] for the precise meaning of the last statement.

Proof. Let C := B ⊗L
B{X1,...,Xn}

B{Y1, . . . , Yn} be the pushout of the diagram B← B{X1, . . . , Xn} →

B{Y1, . . . , Yn} in the∞-category of animated rings, where the first map is defined by X i 7→ xi and the
second one is defined by X i 7→ dYi . It suffices to prove that if the morphism (2-2) is flat (resp. faithfully
flat), then C is (π, I )-completely flat (resp. (π, I )-completely faithfully flat) over A. Indeed, if this is true,
then the derived (π, I )-adic completion of C is isomorphic to B{J/I }∧, and in particular B{J/I }∧ is
(π, I )-completely flat (resp. (π, I )-completely faithfully flat) over A. It is then easy to see that B{J/I }∧

has the desired properties.
In order to prove that C is (π, I )-completely flat (resp. (π, I )-completely faithfully flat) over A, one

can argue as in the proof of [loc. cit., Proposition 3.13]. (The faithful flatness is not discussed in [loc. cit.],
but the same argument works.) The only difference is that we have to use OE -PD structures, instead of
usual PD structures. Here we need the results established above (e.g., Corollary 2.6.5). The details are
left to the reader. □

The bounded OE -prism (B{J/I }∧, I B{J/I }∧) is called the prismatic envelope of B over (A, I ) with
respect to the ideal J.
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Remark 2.6.7. As in [Bhatt and Scholze 2022, Proposition 3.13], we need to use animated δE -rings in
the proof of Proposition 2.6.6. (For example, in the proof of [loc. cit., Proposition 3.13], the notion of
animated δE -rings is used to obtain the description of the bottom right vertex C ′′ of the diagram appearing
there.) One can define the notion of animated δE -rings in the same way as in [Mao 2024, Section 5] (i.e.,
by animating δE -rings). Alternatively, we can follow the approach employed in [Bhatt and Lurie 2022b,
Appendix A].

3. Displayed Breuil–Kisin modules

In this section, we study Breuil–Kisin modules for bounded OE -prisms. We introduce the notions of a
displayed Breuil–Kisin module and of a minuscule Breuil–Kisin module. These objects serve as examples
of prismatic G-µ-displays introduced in Section 5.

3.1. Displayed Breuil–Kisin modules. We use the following notation. Let A be a ring. For A-modules M
and N, the set of A-linear homomorphisms M→ N is denoted by HomA(M, N ). Let I ⊂ A be a Cartier
divisor. For an integer n ≥ 1, we define I−n

:=HomA(I n, A). We have a natural injection I−n ↪→ I−n−1

for any integer n. We then define
A[1/I ] := lim

−−→
n

I−n,

which is an A-algebra. For an A-module M, we set M[1/I ] := M ⊗A A[1/I ]. If I is generated by a
nonzerodivisor d , then we have A[1/I ] = A[1/d] and I−n

= d−n A.

Lemma 3.1.1. Let M, N be finite projective A-modules and let F : N [1/I ] −→∼ M[1/I ] be an A[1/I ]-
linear isomorphism. For an integer i , we set

Fili (N ) := {x ∈ N | F(x) ∈ M ⊗A I i
},

where we view M ⊗A I i as a subset of M[1/I ]. Let m be an integer. Then the following are equivalent:

(1) Film+1(N )⊂ I N.

(2) M ⊗A I m
⊂ F(N ).

If these equivalent conditions are satisfied, then F restricts to an isomorphism Film(N )−→∼ M⊗A I m, and
in particular Film(N ) is a finite projective A-module.

Proof. The final statement clearly follows from (2). We shall prove that (1) and (2) are equivalent. For
this, we can reduce to the case where I = (d) is principal.

Assume that (1) holds. Let x ∈ M. We want to show that dm x ∈ F(N ). For a large enough integer n,
we have dnx ∈ F(N ). Let y ∈ N be an element such that F(y) = dnx . If n ≥ m + 1, then we have
y ∈ Film+1(N )⊂ I N, which in turn implies that dn−1x ∈ F(N ). From this observation, we can conclude
that dm x ∈ F(N ).

Assume that (2) holds. Let y ∈ Film+1(N ). There exists an element x ∈ M such that F(y)= dm+1x .
The condition (2) implies that dm x = F(z) for some z ∈ N. It then follows that y = dz ∈ I N. □
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Let (A, I ) be a bounded OE -prism.

Definition 3.1.2. A Breuil–Kisin module over (A, I ) is a pair (M, FM) consisting of a finite projective
A-module M and an A[1/I ]-linear isomorphism

FM : (φ
∗M)[1/I ] −→∼ M[1/I ],

where φ∗M := A⊗φ,A M . When there is no possibility of confusion, we simply write M instead of
(M, FM). For an integer i , we set

Fili (φ∗M) := {x ∈ φ∗M | FM(x) ∈ M ⊗A I i
}.

Let P i
⊂ (φ∗M)/I (φ∗M) be the image of Fili (φ∗M). We often write

MdR := (φ
∗M)/I (φ∗M).

Remark 3.1.3. If FM(φ
∗M)⊂M, then we say that M is effective. In this case, the induced homomorphism

φ∗M→ M is again denoted by FM . The cokernel of FM : φ
∗M→ M is killed by some power of I.

Conversely, for a finite projective A-module M and a homomorphism FM : φ
∗M→ M of A-modules

whose cokernel is killed by some power of I, the induced homomorphism (φ∗M)[1/I ] → M[1/I ] is an
isomorphism. Indeed, it is clear that (φ∗M)[1/I ] → M[1/I ] is surjective, which in turn implies that it is
an isomorphism since (the vector bundles on Spec A associated with) φ∗M and M have the same rank.
In particular, it follows that FM : φ

∗M→ M is injective.

Remark 3.1.4. For any integer i , we have I Fili−1(φ∗M)= Fili (φ∗M)∩ I (φ∗M). In other words, the
natural homomorphism Fili (φ∗M)/I Fili−1(φ∗M) → P i is bijective. We have P i

= MdR for small
enough i and P i

= 0 for large enough i .

Definition 3.1.5. Let M be a Breuil–Kisin module over (A, I ). We say that M is displayed if the
A/I -submodule P i

⊂ MdR is a direct summand for every i . In this case, the filtration {P i
}i∈Z is called

the Hodge filtration. We say that M is minuscule if it is displayed, and if we have P i
= MdR for any i ≤ 0

and P i
= 0 for any i ≥ 2.

The following proposition, which is basically a consequence of [Anschütz and Le Bras 2023,
Remark 4.25], shows that the definition of a minuscule Breuil–Kisin module given in Definition 3.1.5
agrees with the usual one employed in the literature (for example in [Kisin 2006, Section 2.2] and
[Anschütz and Le Bras 2023, Definition 4.24]).

Proposition 3.1.6. Let M be a Breuil–Kisin module over (A, I ). The following statements are equivalent:

(1) M is minuscule.

(2) M is effective, and the cokernel Coker FM of FM : φ
∗M→ M is killed by I.

Proof. Assume that (1) holds. It follows from P0
= MdR and Nakayama’s lemma that Fil0(φ∗M)= φ∗M.

Moreover, we have I M ⊂ FM(φ
∗M) by Lemma 3.1.1. This proves that (1) implies (2).
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Assume that (2) holds. It follows from Lemma 3.1.1 that Fil2(φ∗M)⊂ I (φ∗M), and hence P i
= 0 for

any i ≥ 2. Since M is effective, we have P i
= MdR for any i ≤ 0. It remains to prove that P1 is a direct

summand of MdR. For this, it suffices to show that (φ∗M)/Fil1(φ∗M) is projective as an A/I -module.
Since we have the exact sequence of A/I -modules

0→ (φ∗M)/Fil1(φ∗M)→ M/I M→ Coker FM → 0,

it suffices to prove that Coker FM is a projective A/I -module. With Lemma 3.1.7 below, this follows
from the same argument as in [Anschütz and Le Bras 2023, Remark 4.25]. □

Lemma 3.1.7. Let (A, I ) be an OE -prism. For a perfect field k containing Fq and a homomorphism
g : A/I→ k of OE -algebras, there exists a map (A, I )→ (O, (π)) of OE -prisms which induces g, where
O :=W (k)⊗W (Fq )OE .

Proof. Let Aperf := lim
−−→φ

A be a colimit of the diagram A φ
→ A φ

→ A→ · · · , which is a perfect δE -ring.
Since k is perfect, the homomorphism A/π → k induced by the composition A→ A/I → k factors
through a homomorphism Aperf/π→k. This homomorphism lifts uniquely to a homomorphism Aperf→O
of δE -rings by Lemma 2.3.5. The composition A→ Aperf→O gives a map (A, I )→ (O, (π)) which
induces g, as desired. □

We shortly discuss the relation between the notion of minuscule Breuil–Kisin modules and that of
windows introduced by Zink and Lau. We recall the notion of windows, adapted to our context. Let
(A, d) be an oriented and bounded OE -prism.

Definition 3.1.8. A window over (A, d) is a quadruple

N = (N ,Fil1(N ),8,81),

where N is a finite projective A-module, Fil1(N ) ⊂ N is an A-submodule, 8 : N → N and 81 :

Fil1(N )→ N are φ-linear homomorphisms, such that the following conditions hold:

(1) We have d N ⊂ Fil1(N ), and 8(x)=81(dx) for every x ∈ N.

(2) The image P1
⊂ N/d N of Fil1(N ) is a direct summand of N/d N.

(3) The linearization 1⊗81 : φ
∗ Fil1(N )→ N of 81 is an isomorphism.

Proposition 3.1.9 (cf. [Cais and Lau 2017, Lemma 2.1.16; Anschütz and Le Bras 2023, Proposition 4.26]).
For a window N over (A, d), the pair (Fil1(N ), F), where F : φ∗ Fil1(N ) → Fil1(N ) is defined by
F = d(1⊗81), is a minuscule Breuil–Kisin module over (A, (d)). This construction gives an equivalence
between the category of windows over (A, d) and the category of minuscule Breuil–Kisin modules
over (A, (d)).

Proof. By virtue of Proposition 3.1.6, we can use the same argument as in the proof of [Cais and Lau
2017, Lemma 2.1.16]. □

We study the structure of displayed Breuil–Kisin modules. For this, we introduce the following
definition. Let (A, I ) be a bounded OE -prism.
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Definition 3.1.10. Let M be a Breuil–Kisin module over (A, I ). A decomposition φ∗M =
⊕

j∈Z L j

is called a normal decomposition if the isomorphism FM : (φ
∗M)[1/I ] −→∼ M[1/I ] restricts to an

isomorphism ⊕
j∈Z

(L j ⊗A I− j )−→∼ M

of A-modules.

Remark 3.1.11. If φ∗M =
⊕

j∈Z L j is a normal decomposition, then we have

Fili (φ∗M)=
(⊕

j≥i

L j

)
⊕

(⊕
j<i

I i− j L j

)
for every i ∈ Z. In particular, a Breuil–Kisin module over (A, I ) which admits a normal decomposition is
displayed. In the next lemma, we shall prove that the converse is also true.

Lemma 3.1.12. Let M be a displayed Breuil–Kisin module over (A, I ). Then there exists a normal
decomposition φ∗M =

⊕
j∈Z L j .

Proof. We choose a decomposition (φ∗M)/I (φ∗M) =
⊕

j∈Z K j such that P i
=

⊕
j≥i K j for every i .

Since K j is a finite projective A/I -module and A is I -adically complete, there exists a finite projective
A-module L j such that L j/I L j ≃ K j for every j ; see [Stacks 2005–, Tag 0D4A] or [Greco 1968, Theo-
rem 5.1] for example. Moreover we have L j = 0 for all but finitely many j . Since Fili (φ∗M)→ P i is sur-
jective, there exists a homomorphism L i→ Fili (φ∗M) which fits into the following commutative diagram:

L i //

��

Ki

��

Fili (φ∗M) // P i

The induced homomorphism
⊕

j∈Z L j → φ∗M is an isomorphism since it is a lift of the isomorphism⊕
j∈Z K j −→

∼ (φ∗M)/I (φ∗M). We shall prove that, under this isomorphism, Fili (φ∗M) coincides with(⊕
j≥i L j

)
⊕

(⊕
j<i I i− j L j

)
for any i ∈ Z. This implies that

⊕
j∈Z L j is a normal decomposition.

We proceed by induction on i . The assertion clearly holds for small enough i . Let us assume that the
assertion holds for an integer i . Since(⊕

j≥i

I L j

)
⊕

(⊕
j<i

I i+1− j L j

)
= I Fili (φ∗M)⊂ Fili+1(φ∗M)

and
⊕

j≥i+1 L j ⊂ Fili+1(φ∗M) by construction, we obtain( ⊕
j≥i+1

L j

)
⊕

( ⊕
j<i+1

I i+1− j L j

)
⊂ Fili+1(φ∗M).

The left-hand side contains I Fili (φ∗M) and the quotient by I Fili (φ∗M) is equal to P i+1. The same
holds for the right-hand side by Remark 3.1.4. Therefore, this inclusion is actually an equality. □
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Let f : (A, I )→ (A′, I ′) be a map of bounded OE -prisms. For a Breuil–Kisin module (M, FM) over
(A, I ), let FMA′

: (φ∗(MA′))[1/I ′] −→∼ MA′[1/I ′] be the base change of FM , where MA′ := M⊗A A′. We
also write f ∗M for (MA′, FMA′

).

Proposition 3.1.13. Let (M, FM) be a Breuil–Kisin module over (A, I ).

(1) Assume that (M, FM) is displayed. Then (MA′, FMA′
) is a displayed Breuil–Kisin module over

(A′, I ′), and we have Fili (φ∗M)⊗A A′ −→∼ Fili (φ∗(MA′)) for any integer i .

(2) Assume that (MA′, FMA′
) is displayed and f : (A, I )→ (A′, I ′) is a faithfully flat map of OE -prisms.

Then (M, FM) is displayed.

Proof. (1) This follows from Remark 3.1.11, Lemma 3.1.12, and the fact that normal decompositions are
preserved under base change.

(2) We note that Fili (φ∗(MA′)) is a finite projective A′-module for any i by Lemma 3.1.12 and
Remark 3.1.11. Since Fili (φ∗(MA′)) is stable under the natural descent datum of φ∗(MA′) (with respect
to the flat covering (A, I )→ (A′, I ′)) by (1), it follows from Proposition 2.5.6 that there is a descending
filtration {Fili }i∈Z of φ∗M by finite projective A-submodules such that Fili ⊗A A′→ φ∗(MA′) induces an
isomorphism Fili ⊗A A′ −→∼ Fili (φ∗(MA′)) for any i .

Let m be an integer such that M ⊗A I m
⊂ FM(φ

∗M). Then Film = Film(φ∗M) (see Lemma 3.1.1).
Moreover, we have I Fili−1

⊂ Fili for any i , and I Fili−1
= Fili for i ≥ m+ 1. In particular, we obtain

Fili = Fili (φ∗M) for i ≥ m.
Let i be any integer. We claim that the natural homomorphism of A/I -modules

ι : Fili /I Fili−1
→ (φ∗M)/I (φ∗M)

is injective and its cokernel is a finite projective A/I -module. Indeed, it suffices to show that for every
closed point x ∈ Spec A/I, the base change of ι to the residue field k(x) is injective. Since x is contained
in Spec A/(π, I ) and Spec A′/(π, I ′)→ Spec A/(π, I ) is surjective, it is enough to prove that the base
change of ι along A/I → A′/I ′ is injective and its cokernel is a finite projective A′/I ′-module. This
follows from the assumption that (MA′, FMA′

) is displayed.
It follows from the claim that I Fili−1

= I (φ∗M)∩Fili , or equivalently, Fili−1
= φ∗M ∩ (Fili ⊗A I−1).

Since Fili = Fili (φ∗M) for i ≥ m, we can conclude that Fili = Fili (φ∗M) for any i . This, together with
the claim, shows that (M, FM) is displayed. □

Remark 3.1.14. The functor
(OE)1,OE → Set, (B, J ) 7→ B[1/J ],

forms a sheaf (with respect to the flat topology) by Lemma 2.3.4 and Remark 2.5.5. Thus for finite
projective A-modules M,M ′, the functor (A, I )1→ Set which associates to each (B, J ) ∈ (A, I )1 the
set of isomorphisms MB[1/J ] −→∼ M ′B[1/J ] forms a sheaf. This fact, together with Proposition 2.5.6,
implies that the fibered category over (OE)

op
1,OE

which associates to a bounded OE -prism (A, I ) the
category of Breuil–Kisin modules over (A, I ) satisfies descent with respect to the flat topology.
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Corollary 3.1.15. The fibered category over (OE)
op
1,OE

which associates to a bounded OE -prism (A, I ) the
category of displayed Breuil–Kisin modules over (A, I ) satisfies descent with respect to the flat topology.

Proof. This follows from Proposition 3.1.13 and Remark 3.1.14. □

We finish this subsection by giving an example of a Breuil–Kisin module which is not displayed.

Example 3.1.16. Let (A, I ) be an orientable and bounded OE -prism. We assume that A/I is π -torsion-
free and A/I ̸= 0. We set M := A2 and let FM : φ

∗M→ M be the homomorphism defined by the matrix(
π
d

d
d2

)
for a generator d ∈ I. The pair (M, FM) is a Breuil–Kisin module over (A, I ). We claim that

P1/P2 is not π-torsion-free, and thus (M, FM) is not displayed. Indeed, since (d, 1) ∈ Fil1(φ∗M), we
have (0, 1) ∈ P1

⊂ MdR. One can check that the image of (0, 1) in P1/P2 is not zero and is killed by π .

3.2. Breuil–Kisin modules of type µ. Here we introduce the notion of Breuil–Kisin modules of typeµ. Let

µ : Gm→ GLn,O

be a cocharacter defined over O, where O = W (k) ⊗W (Fq ) OE is as in Definition 2.3.7. There is a
unique tuple (m1, . . . ,mn) of integers m1 ≥ · · · ≥ mn such that µ is conjugate to the cocharacter defined
by t 7→ diag (tm1, . . . , tmn ). By abuse of notation, the tuple (m1, . . . ,mn) is also denoted by µ. Let
ri ∈ Z≥0 be the number of occurrences of i in (m1, . . . ,mn). We set L :=On

E and LO := L ⊗OE O. The
cocharacter µ induces an action of Gm on LO. We have the weight decomposition

LO =
⊕
j∈Z

Lµ, j ,

where an element t ∈ Gm(O)=O× acts on Lµ, j by x 7→ t j x for every j ∈ Z. (See for example [Conrad
et al. 2015, Lemma A.8.8] for the existence of the weight decomposition over a ring.) The rank of Lµ, j

is equal to r j .
Let (A, I ) be a bounded OE -prism over O.

Definition 3.2.1. Let M be a displayed Breuil–Kisin module over (A, I ). We say that M is of type µ if,
for the Hodge filtration {P i

}i∈Z, the successive quotient P i/P i+1 is of rank ri (i.e., the corresponding
vector bundle on Spec A/I has constant rank ri ) for every i . We say that M is banal if all successive
quotients P i/P i+1 are free A/I -modules.

We write BKµ(A, I ) (resp. BKµ(A, I )banal) for the category of Breuil–Kisin modules over (A, I ) of
type µ (resp. banal Breuil–Kisin modules over (A, I ) of type µ).

Remark 3.2.2. We set

Filiµ :=
(⊕

j≥i

(Lµ, j )A

)
⊕

(⊕
j<i

I i− j (Lµ, j )A

)
⊂ An,

where (Lµ, j )A := Lµ, j⊗O A. Let M ∈BKµ(A, I )banal. Let φ∗M =
⊕

j∈Z L j be a normal decomposition.
Then, each L j is a free A-module of rank r j . Thus there is an isomorphism An

≃ φ∗M such that the
filtration {Filiµ}i∈Z coincides with {Fili (φ∗M)}i∈Z.
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Remark 3.2.3. Let M be a displayed Breuil–Kisin module over (A, I ). Then there exists a (π, I )-
completely étale covering A→ A1× · · · × Am such that for each 1 ≤ j ≤ m, the base change of M to
the bounded OE -prism (A j , I A j ) (see Lemma 2.5.10) is of type µ for some µ and banal. Indeed, by
Lemma 2.5.9, it suffices to prove that there exists an étale and faithfully flat homomorphism A/(π, I )→
B1×· · ·× Bm such that, for all 1≤ j ≤m and i , the base change P i/P i+1

⊗A/I B j is free over B j , which
is clear.

4. Display group

Let G be a smooth affine group scheme over OE . Let k be a perfect field containing Fq and we set
O :=W (k)⊗W (Fq )OE . Let

µ : Gm→ GO := G×SpecOE SpecO

be a cocharacter defined over O. In this section, we introduce the display group Gµ(A, I ) for an orientable
and bounded OE -prism (A, I ) over O. The display group will be used in the definition of prismatic
G-µ-displays.

4.1. Definition of the display group. Let A be an O-algebra with an ideal I ⊂ A which is generated by a
nonzerodivisor d ∈ A.

Definition 4.1.1. We define

Gµ(A, I ) := {g ∈ G(A) | µ(d)gµ(d)−1 lies in G(A)⊂ G(A[1/I ])}.

The group Gµ(A, I ) is called the display group. We note that Gµ(A, I ) does not depend on the choice of d .

Remark 4.1.2. The definition of the display group given here is a translation of the one given in [Lau
2021] to our setting; see Remark 5.2.3 for details. If G is reductive and µ is minuscule, such a group was
also considered in [Bültel and Pappas 2020].

For the cocharacter µ : Gm→ GO, we endow GO with the action of Gm defined by

GO(R)×Gm(R)→ GO(R), (g, t) 7→ µ(t)−1gµ(t), (4-1)

for every O-algebra R. We note that this action is the inverse of the one used in Definition 4.1.1. We
write G = Spec A′G and AG := A′G ⊗OE O, so that GO = Spec AG . Let

AG =
⊕
i∈Z

AG,i

be the weight decomposition with respect to the action of Gm . An element t ∈ Gm(R) = R× acts on
AG,i ⊗O R by x 7→ t i x .

Remark 4.1.3. Let R be an O-algebra. For any t ∈ Gm(R) and any g ∈ GO(R) with corresponding
homomorphism g∗ : AG→ R, the homomorphism

(µ(t)−1gµ(t))∗ : AG→ R

corresponding to µ(t)−1gµ(t) ∈ GO(R) sends an element x ∈ AG,i to t i g∗(x) ∈ R.
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Lemma 4.1.4. Let g ∈ G(A) be an element. Then g ∈ Gµ(A, I ) if and only if g∗(x) ∈ I i A for every
i > 0 and every x ∈ AG,i .

Proof. This follows from Remark 4.1.3. □

Example 4.1.5. Assume that G = GLn . Let µ : Gm→ GLn,O be a cocharacter and let (m1, . . . ,mn) be
the corresponding tuple of integers m1 ≥ · · · ≥ mn as in Section 3.2. Let {Filiµ}i∈Z be the filtration of
M := An defined as in Remark 3.2.2. Then we have

(GLn)µ(A, I )= {g ∈ GLn(A) | g(Filiµ)= Filiµ for every i ∈ Z}.

Let d ∈ I be a generator. For any g ∈ (GLn)µ(A, I ), the following diagram commutes:

Film1
µ

g
//

≃

��

Film1
µ

≃

��

M
µ(d)gµ(d)−1

// M

where Film1
µ −→
∼ M is defined by d−m1µ(d).

4.2. Properties of the display group. For the cocharacter µ :Gm→GO, we consider the closed subgroup
schemes Pµ,U−µ ⊂ GO over O defined by, for every O-algebra R,

Pµ(R)=
{
g ∈ G(R) | lim

t→0
µ(t)gµ(t)−1 exists

}
,

U−µ (R)=
{
g ∈ G(R) | lim

t→0
µ(t)−1gµ(t)= 1

}
.

(We refer to [Conrad et al. 2015, Lemma 2.1.4] for the definition of limt→0 µ(t)gµ(t)−1.) We see that
Pµ and U−µ are stable under the action of Gm on GO given by (4-1). The group schemes Pµ and U−µ are
smooth over O. Moreover, the multiplication map

U−µ ×SpecO Pµ→ GO

is an open immersion. See [Conrad et al. 2015, Section 2.1], especially Proposition 2.1.8 of that work,
for details.

Remark 4.2.1. We have employed slightly different notation than in [Lau 2021]. For example, in that
work, the subgroup Pµ (resp. U−µ ) is denoted by P− (resp. U+).

Lemma 4.2.2. (1) Let R be an O-algebra and g ∈ GO(R) an element. Then g ∈ Pµ(R) if and only if
g∗(x)= 0 for every i > 0 and every x ∈ AG,i .

(2) We have Pµ(A)⊂ Gµ(A, I ), and the image of Gµ(A, I ) in G(A/I ) under the projection G(A)→
G(A/I ) is contained in Pµ(A/I ). Moreover µ(d)Pµ(A)µ(d)−1 is contained in Pµ(A).

Proof. Remark 4.1.3 immediately implies (1). Assertion (2) follows from (1) and Lemma 4.1.4. □
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Definition 4.2.3 [Lau 2021, Definition 6.3.1]. The action of Gm on GO given in (4-1) induces an action
of Gm on the Lie algebra Lie(GO). Let

Lie(GO)=
⊕
i∈Z

gi

be the weight decomposition with respect to the action of Gm . We say that the cocharacter µ :Gm→ GO

is 1-bounded if gi = 0 for i ≥ 2.

In general, the Lie algebra Lie(U−µ ) of U−µ coincides with
⊕

i≥1 gi . (We also note that Lie(Pµ) =⊕
i≤0 gi .) Thus µ is 1-bounded if and only if Lie(U−µ )= g1.

Remark 4.2.4. If G is a reductive group scheme over OE , then µ is 1-bounded if and only if µ is
minuscule, that is, the equality Lie(GO)= g−1⊕ g0⊕ g1 holds.

Example 4.2.5. Assume that G = GLn . The cocharacter Gm→ GLn,O defined by

t 7→ diag (tm, . . . , tm︸ ︷︷ ︸
s

, tm−1, . . . , tm−1︸ ︷︷ ︸
n−s

)

for some integers m and s (0 ≤ s ≤ n) is 1-bounded. In fact, any 1-bounded cocharacter of GLn,O is
conjugate to a cocharacter of this form.

For a free O-module M of finite rank, we let V (M) denote the group scheme over O defined by
R 7→ M ⊗O R for every O-algebra R.

Lemma 4.2.6. There exists a Gm-equivariant isomorphism

log :U−µ −→∼ V (Lie(U−µ ))

of schemes over O which induces the identity on the Lie algebras. If µ is 1-bounded, then the isomorphism
log is unique, and it is an isomorphism of group schemes over O.

Proof. The same arguments as in the proofs of [Lau 2021, Lemmas 6.1.1 and 6.3.2] work here. □

Remark 4.2.7. (1) An isomorphism log :U−µ −→∼ V (Lie(U−µ )) as in Lemma 4.2.6 induces a bijection

U−µ (A)∩Gµ(A, I )−→∼
⊕
i≥1

I i (gi ⊗O A).

(2) If µ is 1-bounded, then we identify U−µ with V (Lie(U−µ )) by the unique isomorphism log. In
particular, we view Lie(U−µ )⊗O A as a subgroup of G(A). We then obtain

I (Lie(U−µ )⊗O A)= (Lie(U−µ )⊗O A)∩Gµ(A, I ).

Moreover, the following diagram commutes:

I (Lie(U−µ )⊗O A) �
�

//

dv 7→v
��

Gµ(A, I )

g 7→µ(d)gµ(d)−1

��

Lie(U−µ )⊗O A �
�

// G(A)
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Proposition 4.2.8 (cf. [Lau 2021, Lemma 6.2.2]). Assume that A is I -adically complete. Then the
multiplication map

(U−µ (A)∩Gµ(A, I ))× Pµ(A)→ Gµ(A, I ) (4-2)

is bijective.

Proof. Since Pµ(A) ⊂ Gµ(A, I ) by Lemma 4.2.2, the map (4-2) is well-defined. Since the map
U−µ ×SpecO Pµ→ GO is an open immersion, the map (4-2) is injective.

We shall show that the map (4-2) is surjective. Let g ∈ Gµ(A, I ) be an element. By Lemma 4.2.2, the
image of g in G(A/I ) is contained in Pµ(A/I ). Since Pµ is smooth and A is I -adically complete, there
exists an element t ∈ Pµ(A) whose image in Pµ(A/I ) coincides with the image of g. The restriction
of the morphism gt−1

: Spec A→ GO to Spec A/I factors through the open subscheme U−µ ×SpecO Pµ.
Since I ⊂ rad(A), it follows that gt−1

: Spec A→ GO itself factors through U−µ ×SpecO Pµ. In other
words, there are elements u ∈U−µ (A) and t ′ ∈ Pµ(A) such that g = ut ′t . We note that u ∈ Gµ(A, I ). In
conclusion, we have shown that g is contained in the image of the map (4-2). □

Proposition 4.2.9. Assume that µ :Gm→GO is 1-bounded. Assume further that A is I -adically complete.
Then the multiplication map

I (Lie(U−µ )⊗O A)× Pµ(A)→ Gµ(A, I ) (4-3)

is bijective. Moreover Gµ(A, I ) coincides with the inverse image of Pµ(A/I ) in G(A) under the projection
G(A)→ G(A/I ), and we have the bijection

G(A)/Gµ(A, I )−→∼ G(A/I )/Pµ(A/I ). (4-4)

Proof. It follows from Remark 4.2.7 and Proposition 4.2.8 that the map (4-3) is bijective. Let G ′µ ⊂G(A)
be the inverse image of Pµ(A/I ). We have Gµ(A, I ) ⊂ G ′µ. By the same argument as in the proof of
Proposition 4.2.8, one can show that G ′µ ⊂ I (Lie(U−µ )⊗O A)× Pµ(A). Thus, we obtain Gµ(A, I )= G ′µ.

It remains to prove that the map (4-4) is bijective. Since G is smooth and A is I -adically complete, the
projection G(A)→ G(A/I ) is surjective, which in turn implies the surjectivity of (4-4). The injectivity
follows from the equality Gµ(A, I )= G ′µ. □

For an integer m ≥ 0, let G≥m(A) be the kernel of G(A)→ G(A/I m). We set

G≥m
µ (A, I ) := Gµ(A, I )∩G≥m(A).

We record a structural result about the quotient G≥m
µ (A, I )/G≥m+1

µ (A, I ).

Lemma 4.2.10. Assume that A is I -adically complete. Then we have the isomorphisms of groups

G≥m(A)/G≥m+1(A)≃
{

G(A/I ) (m = 0),
Lie(GO)⊗O I m/I m+1 (m ≥ 1),

G≥m
µ (A, I )/G≥m+1

µ (A, I )≃
{

Pµ(A/I ) (m = 0),(⊕
i≤m gi

)
⊗O I m/I m+1 (m ≥ 1).
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Proof. Since A is I -adically complete and G is smooth, the map G(A)→G(A/I m) is surjective. It follows
that G≥m(A)/G≥m+1(A) is isomorphic to the kernel Ker(G(A/I m+1)→ G(A/I m)) of G(A/I m+1)→

G(A/I m). This is equal to G(A/I ) when m = 0. If m ≥ 1, then we have a canonical identification

Ker(G(A/I m+1)→ G(A/I m))= Lie(GO)⊗O I m/I m+1

since I m/I m+1
⊂ A/I m+1 is a square zero ideal. This proves the first assertion.

Since Pµ(A)→ Pµ(A/I ) is surjective (as A is I -adically complete and Pµ is smooth), it follows from
Lemma 4.2.2 that Gµ(A, I )/G≥1

µ (A, I ) ≃ Pµ(A/I ). To prove the second assertion, it then suffices to
show that the image of the natural homomorphism

G≥m
µ (A, I )→ Ker(G(A/I m+1)→ G(A/I m))= Lie(GO)⊗O I m/I m+1

is
(⊕

i≤m gi
)
⊗O I m/I m+1 for any m ≥ 1. By Proposition 4.2.8, we may identify G≥m

µ (A, I ) with

(U−µ (A)∩G≥m
µ (A, I ))× P≥m

µ (A),

where P≥m
µ (A) := Pµ(A)∩G≥m(A). By the same argument as above, we have

P≥m
µ (A)/P≥m+1

µ (A)≃ Lie(Pµ)⊗O I m/I m+1
=

(⊕
i≤0

gi

)
⊗O I m/I m+1.

It now suffices to prove that the image of the natural homomorphism

U−µ (A)∩G≥m
µ (A, I )→ Ker(U−µ (A/I m+1)→U−µ (A/I m))= Lie(U−µ )⊗O I m/I m+1 (4-5)

is
(⊕

1≤i≤m gi
)
⊗O I m/I m+1. For this, we fix an isomorphism log :U−µ −→∼ V (Lie(U−µ )) as in Lemma 4.2.6.

Since log induces the identity on the Lie algebras, the isomorphism

Ker(U−µ (A/I m+1)→U−µ (A/I m))−→∼ Lie(U−µ )⊗O I m/I m+1

induced by log is the same as the one in (4-5). Since log induces

U−µ (A)∩G≥m
µ (A, I )−→∼

( ⊕
1≤i≤m

gi

)
⊗O I m

⊕

( ⊕
i≥m+1

gi

)
⊗O I i ,

by Remark 4.2.7(1), the result follows. □

4.3. Display groups on prismatic sites. In this subsection, for a bounded OE -prism (A, I ) over O, we
define the display group sheaf Gµ,A,I on the site (A, I )op

ét and discuss some basic results on Gµ,A,I -torsors.
Let (A, I ) be a bounded OE -prism over O. We begin with a comparison result between torsors over

Spec A (or Spec A/I ) with respect to the usual étale topology, and torsors on the sites (A, I )op
ét and

(A, I )op
1 from Section 2.5. To an affine scheme X over O (or A), we attach a functor

X1,A : (A, I )1→ Set, (B, J ) 7→ X (B).

This forms a sheaf (with respect to the flat topology) by Remark 2.5.5 since X (B) can be regarded as the
set of homomorphisms R→ B of O-algebras (or A-algebras) where X = Spec R. Similarly, to an affine
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scheme X over O (or A/I ), we attach a sheaf

X1̄,A : (A, I )1→ Set, (B, J ) 7→ X (B/J ).

The restrictions of these sheaves to (A, I )ét are denoted by the same notation (see also Remark 2.5.13).

Proposition 4.3.1. Let H be a smooth affine group scheme over O.

(1) For an HA/I -torsor P over Spec A/I with respect to the étale topology, which is an affine scheme
over A/I, the sheaf P1̄,A on (A, I )op

1 is an H1̄,A-torsor with respect to the flat topology. The functor

P 7→ P1̄,A

is an equivalence from the groupoid of HA/I -torsors over Spec A/I to the groupoid of H1̄,A-torsors
on (A, I )op

1 . The same holds if we replace (A, I )op
1 by (A, I )op

ét .

(2) The construction
P 7→ P1,A

gives an equivalence from the groupoid of HA-torsors over Spec A to the groupoid of H1,A-torsors
on (A, I )op

1 . The same holds if we replace (A, I )op
1 by (A, I )op

ét .

Proof. (1) It follows from Lemma 2.5.9 that P1̄,A is trivialized by a (π, I )-completely étale covering
of A. Thus P1̄,A is an H1̄,A-torsor on both (A, I )op

1 and (A, I )op
ét . It then suffices to prove that the fibered

category over (A, I )op
1 which associates to each (B, J ) ∈ (A, I )1 the groupoid of HB/J -torsors over

Spec B/J is a stack with respect to the flat topology.
It is known that, for any O-algebra R, the groupoid of HR-torsors over Spec R is equivalent to the

groupoid of exact tensor functors RepO(H)→ Vect(R), where RepO(H) is the category of algebraic
representations of H on free O-modules of finite rank, and Vect(R) is the category of finite projective R-
modules; see [Scholze and Weinstein 2020, Theorem 19.5.1] and [Broshi 2013, Theorem 1.2]. (Although
this result is stated only for the case where O = Zp in [Scholze and Weinstein 2020, Theorem 19.5.1],
the proof also works for general O.) Using this Tannakian perspective, the desired claim follows from
Proposition 2.5.6 and the following fact: For a π-completely faithfully flat homomorphism C→ C ′ of
π -adically complete O-algebras, a complex

0→ M1→ M2→ M3→ 0

of finite projective C-modules is exact if the base change

0→ M1⊗C C ′→ M2⊗C C ′→ M3⊗C C ′→ 0

is exact. (This fact follows from the following criterion: A complex 0→ M1→ M2→ M3→ 0 of finite
projective modules over a ring C is exact if for every closed point x ∈ Spec C , its base change to the
residue field k(x) is exact.)

(2) This can be proved in the same way as (1). □
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Definition 4.3.2. Let (A, I )1,ori be the category of orientable and bounded OE -prisms (B, J ) with a
map (A, I )→ (B, J ). We endow (A, I )op

1,ori with the flat topology. If (A, I ) is orientable, then we have
(A, I )1,ori = (A, I )1.

Remark 4.3.3. By Remark 2.5.14, the objects in (A, I )op
1,ori form a basis for (A, I )op

1 . We may identify
sheaves on (A, I )op

1,ori with sheaves on (A, I )op
1 .

Definition 4.3.4. We define the functor

G1,A : (A, I )1→ Set, (B, J ) 7→ G(B).

As explained above, the functor G1,A forms a group sheaf. We also define the functor

Gµ,A,I : (A, I )1,ori→ Set, (B, J ) 7→ Gµ(B, J ).

Since the functor (A, I )1→ Set, (B, J ) 7→ G(B[1/J ]) forms a group sheaf (Remark 3.1.14), it follows
that Gµ,A,I forms a group sheaf. We regard Gµ,A,I as a group sheaf on (A, I )op

1 . The restrictions of G1,A
and Gµ,A,I to (A, I )ét will be denoted by the same notation.

We remark that Proposition 4.3.1 cannot be applied directly to Gµ,A,I -torsors. However, it is still
useful for analyzing Gµ,A,I -torsors in several places below, since we have the following lemma. For the
notation used below, see Lemma 4.2.10.

Lemma 4.3.5. (1) For an integer m ≥ 0, the functor

G=m
µ,A,I : (A, I )1,ori→ Set, (B, J ) 7→ G≥m

µ (B, J )/G≥m+1
µ (B, J ),

forms a group sheaf , and it is isomorphic to (Pµ)1̄,A (resp. V
(⊕

i≤m gi
)
1̄,A) if m = 0 (resp. m ≥ 1).

Moreover, the functor

G<m
µ,A,I : (A, I )1,ori→ Set, (B, J ) 7→ Gµ(B, J )/G≥m

µ (B, J ),

forms a group sheaf.

(2) For a Gµ,A,I -torsor Q on (A, I )op
1 , we write Q<m for the pushout of Q along Gµ,A,I → G<m

µ,A,I (see
Remark 4.3.6 below). Then we have Q−→∼ lim

←−−m Q<m. The same holds for Gµ,A,I -torsors on (A, I )op
ét .

Proof. (1) The statement about G=m
µ,A,I follows from Lemma 4.2.10. Using the exact sequence

1 7→ G=m
µ,A,I (B)→ G<m+1

µ,A,I (B)→ G<m
µ,A,I (B)→ 1,

the statement about G<m
µ,A,I then follows by induction on m.

(2) We may assume that Q is a trivial Gµ,A,I -torsor and (A, I ) is orientable. Then it is enough to prove
that Gµ,A,I −→

∼ lim
←−−m G<m

µ,A,I on (A, I )op
1 . By Proposition 4.2.8, the multiplication map

(U−µ (A)∩Gµ(A, I ))× Pµ(A)→ Gµ(A, I )

is bijective. Note that Gµ(A, I )/G≥m
µ (A, I ) can be identified with the image of Gµ(A, I ) in G(A/I m).

Let U<m be the image of U−µ (A) ∩ Gµ(A, I ) in U−µ (A/I m). Then the multiplication map induces a
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bijection

U<m
× Pµ(A/I m)−→∼ Gµ(A, I )/G≥m

µ (A, I ).

We have Pµ(A)−→∼ lim
←−−

Pµ(A/I m). Moreover, using Lemma 4.2.6, one can check that

U−µ (A)∩Gµ(A, I )−→∼ lim
←−−

U<m .

Thus, we obtain Gµ(A, I ) −→∼ lim
←−−

Gµ(A, I )/G≥m
µ (A, I ). The same assertion holds for any (B, J ) ∈

(A, I )1, and hence Gµ,A,I −→
∼ lim
←−−

G<m
µ,A,I . □

Remark 4.3.6. Let f : H → H ′ be a homomorphism of groups and Q a set with an H -action. We can
attach to Q a set Q f with an H ′-action and an H -equivariant map Q→ Q f with the following universal
property: for any set Q′ with an H ′-action and any H -equivariant map Q→ Q′, the map Q→ Q′ factors
through a unique H ′-equivariant map Q f

→ Q′. Explicitly, we can define Q f as the contracted product

Q f
= (Q× H ′)/H,

where the action of an h ∈ H on Q×H ′ is defined by (x, h′) 7→ (xh, f (h)−1h′). We call Q f the pushout
of Q along f : H → H ′.

Similarly, for a homomorphism f : H → H ′ of group sheaves on a site and a sheaf Q with an action
of H , we can form the pushout Q f with the same properties as above. If Q is an H -torsor, then Q f is an
H ′-torsor.

We will use the following notation. Let us denote the inclusion Gµ,A,I ↪→G1,A by τ . The composition
of τ with the projection map G1,A→ G1̄,A is denoted by τ̄ . (Here G1̄,A := (GO)1̄,A.) By Lemma 4.2.2,
the homomorphism τ̄ factors through a homomorphism τ̄P : Gµ,A,I → (Pµ)1̄,A. In summary, we have
the following commutative diagram of group sheaves on (A, I )op

1 (or on (A, I )op
ét ):

Gµ,A,I
τ
//

τ̄P
��

τ̄

$$

G1,A

��

(Pµ)1̄,A // G1̄,A

(4-6)

Corollary 4.3.7. A Gµ,A,I -torsor Q on (A, I )op
1 is trivial if the pushout of Q along τ̄P :Gµ,A,I→ (Pµ)1̄,A

is trivial as a (Pµ)1̄,A-torsor on (A, I )op
1 . The same holds if we replace (A, I )op

1 by (A, I )op
ét .

Proof. We prove the assertion for (A, I )op
1 ; the argument for (A, I )op

ét is similar. By Lemma 4.3.5(2), it
suffices to show that Q<m is trivial as a G<m

µ,A,I -torsor for any m. We proceed by induction on m. The
assertion is true for m = 1 by our assumption. We assume that Q<m is trivial for an integer m ≥ 1, so that
there exists an element x ∈Q<m(A). The fiber of the morphism Q<m+1

→Q<m at x is a G=m
µ,A,I -torsor.

Lemma 4.3.5(1) shows that G=m
µ,A,I ≃ V

(⊕
i≤m gi

)
1̄,A. By Proposition 4.3.1, the fiber arises from a

V
(⊕

i≤m gi
)

A/I -torsor over Spec A/I, which is trivial since Spec A/I is affine. This implies that the
G<m+1
µ,A,I -torsor Q<m+1 is trivial, as desired. □



1722 Kazuhiro Ito

Corollary 4.3.8. A Gµ,A,I -torsor Q on (A, I )op
1 is trivialized by a (π, I )-completely étale covering

A→ B, i.e., the restriction of Q to (B, I B)op
1 is trivial. Moreover, the restriction functor induces an

equivalence from the groupoid of Gµ,A,I -torsors on (A, I )op
1 to the groupoid of Gµ,A,I -torsors on (A, I )op

ét .

Proof. The first assertion follows from Corollary 4.3.7 since any (Pµ)1̄,A-torsor P on (A, I )op
1 arises

from a (Pµ)A/I -torsor over Spec A/I with respect to the étale topology, which in turn implies that P is
trivialized by a (π, I )-completely étale covering A→ B (see also Lemma 2.5.9). The second assertion is
a formal consequence of the first one. □

Remark 4.3.9. To a Gµ,A,I -torsor Q on (A, I )op
1 , we can associate the G1,A-torsor Qτ and the (Pµ)1̄,A-

torsor Qτ̄P on (A, I )op
1 , and there is a canonical isomorphism between the G1̄,A-torsors associated with

Qτ and Qτ̄P. We assume that µ is 1-bounded. Then, by Proposition 4.2.9, this construction induces an
equivalence from the groupoid of Gµ,A,I -torsors on (A, I )op

1 to the groupoid of triples consisting of a
G1,A-torsor, a (Pµ)1̄,A-torsor, and an isomorphism between the G1̄,A-torsors associated with them. The
same holds if we replace (A, I )op

1 by (A, I )op
ét . Corollaries 4.3.7 and 4.3.8 also follow from this fact and

Proposition 4.3.1 when µ is 1-bounded.

5. Prismatic G-µ-displays

In this section, we come to the heart of this paper, namely prismatic G-µ-displays. We first discuss the
notion of G-Breuil–Kisin modules of type µ in Section 5.1. Then we introduce and study prismatic G-µ-
displays in Sections 5.2–5.7. Our prismatic G-µ-displays are essentially equivalent to G-Breuil–Kisin
modules of type µ, and the latter may be more familiar to readers. Nevertheless, in many cases, such
as the proof of the main result (Theorem 6.1.3) of this paper, it will be crucial to work with prismatic
G-µ-displays.

We retain the notation of Section 4. Recall that G is a smooth affine group scheme over OE and
µ : Gm→ GO is a cocharacter defined over O =W (k)⊗W (Fq )OE .

5.1. G-Breuil–Kisin modules of type µ. Let (A, I ) be a bounded OE -prism over O.

Definition 5.1.1. A G-Breuil–Kisin module over (A, I ) is a pair (P, FP) consisting of a G A-torsor P
over Spec A (with respect to the étale topology) and an isomorphism

FP : (φ
∗P)[1/I ] −→∼ P[1/I ]

of G A[1/I ]-torsors over Spec A[1/I ].

Here, for a G A-torsor P over Spec A, we let φ∗P denote the base change of P along the Frobenius
φ : A→ A. Since φ is OE -linear and G is defined over OE , we have φ∗G A = G A, and hence φ∗P
is a G A-torsor over Spec A. Moreover, we write P[1/I ] := P ×Spec A Spec A[1/I ]. When there is no
ambiguity, we simply write P = (P, FP).

Example 5.1.2. Assume that G=GLn . Let (M, FM) be a Breuil–Kisin module of rank n over (A, I ). Let

P(M) := Isom(An,M)
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be the GLn,A-torsor over Spec A defined by sending an A-algebra B to the set of isomorphisms Bn
≃ MB .

Together with the isomorphism (φ∗P(M))[1/I ] −→∼ P(M)[1/I ] induced by FM , we regard P(M) as a
GLn-Breuil–Kisin module over (A, I ). This construction M 7→P(M) induces an equivalence between the
groupoid of Breuil–Kisin modules of rank n over (A, I ) and the groupoid of GLn-Breuil–Kisin modules
over (A, I ).

Remark 5.1.3. Let P and P ′ be G A-torsors over Spec A. Using that the functor (OE)1,OE → Set,
(B, J ) 7→ B[1/J ], forms a sheaf (see Remark 3.1.14) and that P,P ′ are affine and flat over Spec A, one
can show that the functor (A, I )1→Set which associates to each (B, J )∈ (A, I )1 the set of isomorphisms
PB[1/J ] −→∼ P ′B[1/J ] of G B[1/J ]-torsors forms a sheaf. This, together with Proposition 4.3.1, implies
that the fibered category over (A, I )op

1 which associates to each (B, J ) ∈ (A, I )1 the groupoid of G-
Breuil–Kisin modules over (B, J ) is a stack with respect to the flat topology.

We introduce G-Breuil–Kisin modules of type µ. Recall that for a (π, I )-completely étale A-algebra
B ∈ (A, I )ét, the pair (B, I B) is naturally a bounded OE -prism; see Lemma 2.5.10.

Definition 5.1.4 (G-Breuil–Kisin module of type µ). We say that a G-Breuil–Kisin module (P, FP)

over (A, I ) is of type µ if there exists a (π, I )-completely étale covering A→ B such that (B, I B) is
orientable, the base change PB is a trivial G B-torsor, and via some (and hence any) trivialization PB ≃G B ,
the isomorphism FP is given by g 7→ Y g for an element Y in the double coset

G(B)µ(d)G(B)⊂ G(B[1/I B]),

where d ∈ I B is a generator. If these conditions are satisfied for B = A, then we say that (P, FP) is banal.

We write
G-BKµ(A, I ) and G-BKµ(A, I )banal

for the groupoid of G-Breuil–Kisin modules of type µ over (A, I ) and the groupoid of banal G-Breuil–
Kisin modules of type µ over (A, I ) (when (A, I ) is orientable), respectively.

Remark 5.1.5. By Remark 5.1.3, the fibered category over (A, I )op
ét which associates to each B ∈ (A, I )ét

the groupoid of G-Breuil–Kisin modules of type µ over (B, I B) is a stack with respect to the (π, I )-
completely étale topology. We will prove that the same result holds for the flat topology in Corollary 5.3.9
below, using G-µ-displays introduced in the next subsection.

Example 5.1.6. Let M be a Breuil–Kisin module of rank n over (A, I ) and let P(M) be the associated GLn-
Breuil–Kisin module over (A, I ) (see Example 5.1.2). If P(M) is of typeµ, then M is of typeµ in the sense
of Definition 3.2.1 by Proposition 3.1.13. We will prove that the converse is also true in Example 5.3.10.

5.2. G-µ-displays. We now introduce prismatic G-µ-displays. To an orientable and bounded OE -prism
(A, I ) over O, we attach the display group Gµ(A, I ) as in Definition 4.1.1. Since G is defined over OE ,
the Frobenius φ of A induces a homomorphism φ : G(A)→ G(A). For each generator d ∈ I, we define
the homomorphism

σµ,d : Gµ(A, I )→ G(A), g 7→ φ(µ(d)gµ(d)−1). (5-1)
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We endow G(A) with the following action of Gµ(A, I ):

G(A)×Gµ(A, I )→ G(A), (X, g) 7→ X · g := g−1 Xσµ,d(g). (5-2)

We write G(A) = G(A)d when we regard G(A) as a set with this action of Gµ(A, I ). For another
generator d ′ ∈ I, we have d = ud ′ for a unique element u ∈ A×. The map G(A)d → G(A)d ′ defined by
X 7→ Xφ(µ(u)) is Gµ(A, I )-equivariant. Then we define the set

G(A)I := lim
←−−

d
G(A)d

equipped with a natural action of Gµ(A, I ), where d runs over the set of generators d ∈ I. The projection
map G(A)I → G(A)d is an isomorphism. For an element X ∈ G(A)I , let

Xd ∈ G(A)d

denote the image of X . Although G(A)I depends on the cocharacter µ, we omit it from the notation. We
hope that this will not cause any confusion.

Let (A, I ) be a bounded OE -prism over O. We recall the category (A, I )1,ori from Definition 4.3.2.
We define the functor

G1,A,I : (A, I )1,ori→ Set, (B, J ) 7→ G(B)J .

This forms a sheaf. We regard G1,A,I as a sheaf on (A, I )op
1 (see Remark 4.3.3). The sheaf G1,A,I is

equipped with a natural action of the group sheaf Gµ,A,I on (A, I )op
1 defined in Definition 4.3.4.

The restriction of G1,A,I to (A, I )ét is denoted by the same notation. We define prismatic G-µ-displays,
using the (π, I )-completely étale topology, as follows.

Definition 5.2.1 (G-µ-display). Let (A, I ) be a bounded OE -prism over O.

(1) A G-µ-display over (A, I ) is a pair
(Q, αQ),

where Q is a Gµ,A,I -torsor on (A, I )op
ét and αQ :Q→G1,A,I is a Gµ,A,I -equivariant map of sheaves.

The Gµ,A,I -torsor Q is called the underlying Gµ,A,I -torsor of (Q, αQ). We say that (Q, αQ) is
banal if Q is trivial as a Gµ,A,I -torsor. When there is no possibility of confusion, we write Q instead
of (Q, αQ).

(2) An isomorphism g : (Q, αQ)→ (R, αR) of G-µ-displays over (A, I ) is an isomorphism g :Q−→∼ R
of Gµ,A,I -torsors such that αR ◦ g = αQ.

We write
G- Dispµ(A, I ) and G- Dispµ(A, I )banal

for the groupoid of G-µ-displays over (A, I ) and the groupoid of banal G-µ-displays over (A, I ),
respectively.

Remark 5.2.2. The notion of G-µ-displays was originally introduced in [Bültel 2008; Bültel and Pappas
2020; Lau 2021] in different settings. The definition given here is an adaptation of Lau’s approach to



Prismatic G -displays and descent theory 1725

the context of (OE -)prisms; see also Remark 5.2.3 below. If OE = Zp and µ is 1-bounded, the notion of
G-µ-displays for an oriented perfect prism has already appeared in [Bartling 2022]. He also claimed that
the same construction should work for more general oriented prisms in [loc. cit., Remark 14].

Remark 5.2.3. Assume that (A, I ) is orientable. We consider the graded ring

Rees(I •) :=
(⊕

i≥0

I i t−i
)
⊕

(⊕
i<0

At−i
)
⊂ A[t, t−1

],

where the degree of t is −1. Let τ :Rees(I •)→ A be the homomorphism of A-algebras defined by t 7→ 1.
For a generator d ∈ I, let σd : Rees(I •)→ A be the homomorphism defined by ai t−i

7→ φ(ai d−i ) for any
i ∈ Z. The triple

(Rees(I •), σd , τ )

can be viewed as an analogue of a higher frame introduced in [Lau 2021, Definition 2.0.1]. We note that
by Lemma 4.1.4, the homomorphism τ induces an isomorphism between the display group Gµ(A, I )
and the subgroup

G(Rees(I •))0 ⊂ G(Rees(I •))

consisting of homomorphisms g∗ : AG→ Rees(I •) of graded O-algebras. Under this isomorphism, the
homomorphism σµ,d agrees with the one G(Rees(I •))0→ G(A) induced by σd . Therefore, the action
(5-2) is consistent with the one considered in [loc. cit., (5-2)].

Remark 5.2.4. Let k̃ be a perfect field containing k. We set Õ :=W (k̃)⊗W (Fq )OE . Let µ̃ : Gm→ GÕ
be the base change of µ. Then, for a bounded OE -prism (A, I ) over Õ, a G-µ̃-display over (A, I ) is the
same as a G-µ-display over (A, I ).

We have the following alternative description of banal G-µ-displays, which we will use frequently in
the sequel.

Remark 5.2.5. Assume that (A, I ) is orientable. Let

[G(A)I /Gµ(A, I )]

denote the groupoid whose objects are the elements X ∈ G(A)I and whose morphisms are defined by
Hom(X, X ′)= {g ∈ Gµ(A, I ) | X ′ · g = X}. Here (−) · g denotes the action of g ∈ Gµ(A, I ) on G(A)I .
To each X ∈ G(A)I , we attach a banal G-µ-display

QX := (Gµ,A,I , αX )

over (A, I ), where αX : Gµ,A,I → G1,A,I is given by 1 7→ X . We obtain an equivalence

[G(A)I /Gµ(A, I )] −→∼ G- Dispµ(A, I )banal, X 7→QX ,

of groupoids.

We discuss the notion of base change for G-µ-displays. Let f : (A, I ) → (A′, I ′) be a map of
orientable and bounded OE -prisms over O. We have natural homomorphisms f : G(A)→ G(A′) and
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f : Gµ(A, I )→ Gµ(A′, I ′). Let d ∈ I and d ′ ∈ I ′ be generators and let u ∈ A′× be the unique element
satisfying f (d)= ud ′. Then the composition of Gµ(A, I )-equivariant maps

G(A)I ≃ G(A)d → G(A′)d ′ ≃ G(A′)I ′,

where the second map is defined by X 7→ f (X)φ(µ(u)), is independent of the choices of d and d ′, and is
also denoted by f .

We now consider a map f : (A, I )→ (A′, I ′) of (not necessarily orientable) bounded OE -prisms
over O. The functor (A, I )op

ét → (A′, I ′)op
ét sending B ∈ (A, I )op

ét to the (π, I )-adic completion B ′ of
B⊗A A′ induces a morphism of the associated topoi

f : ((A′, I ′)op
ét )
∼
→ ((A, I )op

ét )
∼

(since it sends (π, I )-completely étale coverings to (π, I ′)-completely étale coverings, sends final objects
to final objects, and commutes with fiber products). We have a natural homomorphism f : f −1Gµ,A,I →

Gµ,A′,I ′ of group sheaves. Moreover, the maps G(A)I → G(A′)I ′ defined in the orientable case glue
together to a morphism f : f −1G1,A,I → G1,A′,I ′ of sheaves.

Definition 5.2.6. Let (Q, αQ) be a G-µ-display over (A, I ). Let f ∗Q be the pushout of the f −1Gµ,A,I -
torsor f −1Q along f : f −1Gµ,A,I → Gµ,A′,I ′ . By the universal property of f ∗Q, the composition

f −1Q f −1(αQ)
−−−−→ f −1G1,A,I → G1,A′,I ′

factors through a unique Gµ,A′,I ′-equivariant map f ∗(αQ) : f ∗Q→G1,A′,I ′ . The base change of (Q, αQ)
along f : (A, I )→ (A′, I ′) is defined to be ( f ∗Q, f ∗(αQ)).

Example 5.2.7. Assume that (A, I ) is orientable. For the banal G-µ-display QX associated with an
element X ∈ G(A)I (see Remark 5.2.5), we have f ∗(QX )=Q f (X).

By definition, it is clear that G-µ-displays form a stack with respect to the (π, I )-completely étale
topology. In fact, we can prove the following flat descent result, which is an analogue of [Lau 2021,
Lemma 5.4.2].

Proposition 5.2.8 (flat descent). The fibered category over (O)op
1,OE

which associates to each (A, I ) ∈
(O)1,OE the groupoid G- Dispµ(A, I ) is a stack with respect to the flat topology.

Proof. It suffices to prove that G- Dispµ(A, I ) is equivalent to the groupoid of pairs (Q, αQ), where Q is a
Gµ,A,I -torsor on (A, I )op

1 (with respect to the flat topology) and αQ :Q→G1,A,I is a Gµ,A,I -equivariant
map of sheaves on (A, I )op

1 . This follows from Corollary 4.3.8. □

5.3. G-µ-displays and G-Breuil–Kisin modules of type µ. Here we shall show that G-µ-displays are
essentially equivalent to G-Breuil–Kisin modules of type µ. Let (A, I ) be a bounded OE -prism over O.

Definition 5.3.1. To a Gµ,A,I -torsor Q on (A, I )op
ét , we attach a G A-torsor QBK over Spec A as follows.

We first assume that (A, I ) is orientable. Let d ∈ I be a generator. Let QBK,d be the pushout of Q along
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the homomorphism
Gµ,A,I ↪→ G1,A, g 7→ µ(d)gµ(d)−1.

Let d ′∈ I be another generator and let u∈ A× be the unique element such that d=ud ′. We define ad(µ(u)) :
G1,A −→∼ G1,A by g 7→ µ(u)gµ(u)−1. The pushout (QBK,d ′)

ad(µ(u)) can be identified with QBK,d . The
composition

QBK,d ′→ (QBK,d ′)
ad(µ(u))

=QBK,d
x 7→x ·µ(u)
−−−−−→QBK,d (5-3)

is an isomorphism of G1,A-torsors. (See Remark 4.3.6 for the first map.) Then we define

QBK := lim
←−−

d
QBK,d ,

where d runs over the set of generators d ∈ I.
In general, the sheaves constructed in the banal case glue together to a G1,A-torsor QBK on (A, I )op

ét .
By Proposition 4.3.1, we regard QBK as a G A-torsor over Spec A.

Remark 5.3.2. Recall that τ :Gµ,A,I ↪→G1,A is the natural inclusion. For a Gµ,A,I -torsor Q on (A, I )op
ét ,

let
QA :=Qτ

be the pushout of Q along τ , regarded as a G A-torsor over Spec A (by Proposition 4.3.1). There exists
a canonical isomorphism

QA[1/I ] −→∼ QBK[1/I ]

of G A[1/I ]-torsors over Spec A[1/I ] obtained as follows. We first assume that (A, I ) is orientable. Let
d ∈ I be a generator. Similarly to (5-3), the composition

QA[1/I ] → (QA[1/I ])ad(µ(d))
=QBK,d [1/I ] x 7→x ·µ(d)

−−−−−→QBK,d [1/I ]

is an isomorphism of G A[1/I ]-torsors, where ad(µ(d)):G A[1/I ]−→
∼ G A[1/I ] is defined by g 7→µ(d)gµ(d)−1.

We then obtain the desired isomorphism as

QA[1/I ] ≃QBK,d [1/I ] ≃QBK[1/I ],

which does not depend on the choice of d ∈ I. By Remark 5.1.3, the isomorphisms in the banal case glue
together to an isomorphism QA[1/I ] −→∼ QBK[1/I ].

Example 5.3.3. Assume that G =GLn . Let the notation be as in Example 4.1.5. Let M be a Breuil–Kisin
module of type µ over (A, I ). Recall the filtration {Fili (φ∗M)}i∈Z of φ∗M from Definition 3.1.2. Let
{Filiµ}i∈Z be the filtration of An defined in Remark 3.2.2. The functor

Q(M) := IsomFil(A
n, φ∗M) : (A, I )ét→ Set

sending B ∈ (A, I )ét to the set of isomorphisms h : Bn
−→∼ (φ∗M)B preserving the filtrations is a

(GLn)µ,A,I -torsor by Remark 3.2.2, Example 4.1.5, and the fact that M is (π, I )-completely étale locally
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on A banal. We note that

Q(M)A = Isom(An, φ∗M).

We set M̃ := Film1(φ∗M)⊗A I−m1. Then we have a canonical identification

Q(M)BK = Isom(An, M̃).

If A is orientable and d ∈ I is a generator, then Q(M)BK,d = Isom(An, M̃) and the natural map Q(M)→
Q(M)BK,d sends h ∈Q(M)(A) to the composition of isomorphisms

An µ(d)−1
−−−→ Film1

µ ⊗A I−m1 h
−→ M̃ .

If d ′ ∈ I is another generator, then the isomorphism Q(M)BK,d ′ −→
∼ Q(M)BK,d from (5-3) is the identity

Isom(An, M̃)→ Isom(An, M̃).
The isomorphism Q(M)A[1/I ]−→∼ Q(M)BK[1/I ] defined in Remark 5.3.2 agrees with the one induced

from the equality (φ∗M)[1/I ] = M̃[1/I ].

To construct G-Breuil–Kisin modules of type µ from G-µ-displays, we use the following proposition,
which also gives an alternative description of G-µ-displays.

Proposition 5.3.4. Let Q be a Gµ,A,I -torsor on (A, I )op
ét . Then there is a natural bijection α 7→ α′ from

the set of Gµ,A,I -equivariant maps α :Q→ G1,A,I to the set of isomorphisms α′ : φ∗(QBK)−→
∼ QA of

G A-torsors over Spec A.

Proof. We shall construct the bijection when (A, I ) is orientable and Q is a trivial Gµ,A,I -torsor; the
general case follows by gluing. Let α :Q→G1,A,I be a Gµ,A,I -equivariant map. We choose a trivialization
Q≃Gµ,A,I . Then α can be regarded as a Gµ,A,I -equivariant map Gµ,A,I →G1,A,I , which is determined
by the image X ∈ G(A)I of 1 ∈ Gµ(A, I ). We may also identify QA with G A. Let d ∈ I be a generator.
Then we may identify QBK with G A by

QBK ≃QBK,d ≃ (Gµ,A,I )BK,d = G A.

(See Definition 5.3.1 for QBK,d .) Via these identifications, we define α′ : φ∗(QBK)−→
∼ QA by

φ∗(QBK)= φ
∗G A = G A −→

∼ G A =QA, g 7→ Xd · g,

where Xd ∈ G(A)= G(A)d is the image of X ∈ G(A)I . One can check that the resulting isomorphism α′

does not depend on the choices of Q≃Gµ,A,I and d ∈ I. It is clear that the map α 7→ α′ is a bijection. □

Remark 5.3.5. By Proposition 5.3.4, a G-µ-display over (A, I ) can be thought of as a pair (Q, α′) of a
Gµ,A,I -torsor Q on (A, I )op

ét and an isomorphism α′ : φ∗(QBK)−→
∼ QA of G A-torsors over Spec A.

Definition 5.3.6. Let (Q, αQ) be a G-µ-display over (A, I ) and let (αQ)′ : φ∗(QBK) −→
∼ QA be the

corresponding isomorphism. We denote by F the composition

(φ∗(QBK))[1/I ] (αQ)
′

−−→QA[1/I ] −→∼ QBK[1/I ],
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where the second isomorphism is constructed in Remark 5.3.2. By construction, we see that QBK, together
with the isomorphism F , is a G-Breuil–Kisin module of type µ. (See also Example 5.3.7 below.) We
have a functor

G- Dispµ(A, I )→ G-BKµ(A, I ), Q 7→QBK. (5-4)

Example 5.3.7. Assume that (A, I ) is orientable and let d ∈ I be a generator. Let QX be the banal
G-µ-display associated with an element X ∈ G(A)I (Remark 5.2.5). The trivial G A-torsor G A with the
isomorphism

(φ∗G A)[1/I ] = G A[1/I ] −→∼ G A[1/I ], g 7→ (µ(d)Xd)g,

is a banal G-Breuil–Kisin module of type µ over (A, I ), which is denoted by PXd . By construction, we
have (QX )BK −→

∼ PXd .

Proposition 5.3.8. Let (A, I ) be a bounded OE -prism over O. The functor (5-4)

G- Dispµ(A, I )→ G-BKµ(A, I ), Q 7→QBK,

is an equivalence.

Proof. By Remark 2.5.14, Remark 5.1.5, and (π, I )-completely étale descent for G-µ-displays, it suffices
to prove that the functor

G- Dispµ(A, I )banal→ G-BKµ(A, I )banal, Q 7→QBK,

is an equivalence when (A, I ) is orientable.
We shall prove that the functor is fully faithful. It suffices to prove that, for all X, X ′ ∈ G(A)I and the

associated banal G-µ-displays QX ,QX ′ over (A, I ), we have

Hom(QX ,QX ′)−→
∼ Hom((QX )BK, (QX ′)BK). (5-5)

We fix a generator d ∈ I. The left-hand side can be identified with

{g ∈ Gµ(A, I ) | g−1 X ′dφ(µ(d)gµ(d)
−1)= Xd}.

(See Remark 5.2.5.) By Example 5.3.7, we have (QX )BK −→
∼ PXd and (QX ′)BK −→

∼ PX ′d . Thus the
right-hand side of (5-5) can be identified with

{h ∈ G(A) | h−1µ(d)X ′dφ(h)= µ(d)Xd}.

The map (5-5) is given by g 7→ µ(d)gµ(d)−1 under these identifications. In particular, the map is
injective. For surjectivity, let h ∈ G(A) be an element such that h−1µ(d)X ′dφ(h) = µ(d)Xd . The
element g := µ(d)−1hµ(d) = X ′dφ(h)X

−1
d belongs to G(A), and hence g ∈ Gµ(A, I ). It follows that

g ∈ Hom(QX ,QX ′), and g is mapped to h.
It remains to prove that the functor is essentially surjective. It is enough to show that a banal G-

Breuil–Kisin module P of type µ over (A, I ), such that P = G A and FP corresponds to an element
Y ∈G(A)µ(d)G(A), is isomorphic to PXd for some X ∈G(A)I . After changing the trivialization P=G A,
we may assume that Y ∈ µ(d)G(A). Then the result is clear. □
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Corollary 5.3.9. The fibered category over (O)op
1,OE

which associates to each (A, I ) ∈ (O)1,OE the
groupoid G-BKµ(A, I ) of G-Breuil–Kisin modules of type µ over (A, I ) is a stack with respect to the flat
topology.

Proof. This follows from Propositions 5.2.8 and 5.3.8. □

Example 5.3.10. Assume that G = GLn . We retain the notation of Example 5.3.3. Let M be a Breuil–
Kisin module of type µ over (A, I ). Since M is of type µ, it follows from Lemma 3.1.1 that FM restricts
to an isomorphism M̃ −→∼ M. The base change φ∗(FM) : φ

∗M̃ −→∼ φ∗M induces an isomorphism

α′ : φ∗(Q(M)BK)−→
∼ Q(M)A

of GLn,A-torsors over Spec A. The (GLn)µ,A,I -torsor Q(M) with α′ is a GLn-µ-display over (A, I ).
By construction, the GLn-Breuil–Kisin module Q(M)BK agrees with the one P(M̃) associated with

the Breuil–Kisin module (M̃, FM̃), where the isomorphism FM̃ is

(φ∗M̃)[1/I ] φ
∗(FM )
−−−→ (φ∗M)[1/I ] = M̃[1/I ].

(See P(M̃) for Example 5.1.2.) We note that FM : M̃ −→∼ M is an isomorphism of Breuil–Kisin modules.
Since Q(M)BK is of type µ, it follows that P(M) is of type µ.

Corollary 5.3.11. Let (A, I ) be a bounded OE -prism over O. We have equivalences of groupoids

BKµ(A, I )≃ −→∼ GLn -BKµ(A, I ), M 7→ P(M),
BKµ(A, I )≃ −→∼ GLn - Dispµ(A, I ), M 7→Q(M).

Here BKµ(A, I )≃ is the groupoid of Breuil–Kisin modules of type µ over (A, I ).

Proof. The first equivalence follows from Examples 5.1.2, 5.1.6, and 5.3.10. We shall prove that the
functor M 7→ Q(M) is an equivalence. It follows from Example 5.3.10 that the composition of this
functor with the functor (5-4) is isomorphic to the functor M 7→ P(M). Since (5-4) is an equivalence by
Proposition 5.3.8, the result follows. □

5.4. Hodge filtrations. We define the Hodge filtrations for G-µ-displays, following [Lau 2021, Sec-
tion 7.4]. Let (A, I ) be a bounded OE -prism over O. We recall the commutative diagram (4-6) from
Section 4.3.

Definition 5.4.1 (Hodge filtration). Let Q be a G-µ-display over (A, I ). We write

QA/I :=Qτ̄ (resp. P(Q)A/I :=Qτ̄P )

for the pushout of the underlying Gµ,A,I -torsor Q on (A, I )op
ét along τ̄ (resp. τ̄P ), which is a G1̄,A-torsor

(resp. a (Pµ)1̄,A-torsor) on (A, I )op
ét . There is a natural (Pµ)1̄,A-equivariant injection

P(Q)A/I ↪→QA/I .

We call P(Q)A/I (or the injection P(Q)A/I ↪→QA/I ) the Hodge filtration of QA/I . If there is no risk of
confusion, we also say that P(Q)A/I is the Hodge filtration of Q.
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Example 5.4.2. Assume that G = GLn and let the notation be as in Example 5.3.3. Let M be a
Breuil–Kisin module over (A, I ) of type µ and let Q = Q(M) be the associated GLn-µ-display over
(A, I ) given in Example 5.3.10. Recall that the filtration {Fili (φ∗M)}i∈Z defines the Hodge filtration
{P i
}i∈Z of MdR = (φ

∗M)/I (φ∗M). Similarly, the filtration {Filiµ}i∈Z of An induces a filtration of (A/I )n.
Let Isom((A/I )n,MdR) (resp. IsomFil((A/I )n,MdR)) be the functor sending B ∈ (A, I )ét to the set of
isomorphisms (B/I B)n−→∼ (MdR)B/I B (resp. the set of isomorphisms (B/I B)n−→∼ (MdR)B/I B preserving
the filtrations). Since M is of type µ, we see that IsomFil((A/I )n,MdR) is naturally a (Pµ)1̄,A-torsor. It
follows that the natural morphism

Q= IsomFil(A
n, φ∗M)→ IsomFil((A/I )n,MdR)

induces an isomorphism

P(Q)A/I −→
∼ IsomFil((A/I )n,MdR).

Similarly, we obtain QA/I −→
∼ Isom((A/I )n,MdR).

Remark 5.4.3. Let Q be a G-µ-display over (A, I ). By Proposition 4.3.1, the G1̄,A-torsor QA/I (resp.
the (Pµ)1̄,A-torsor P(Q)A/I ) corresponds to a G A/I -torsor (resp. a (Pµ)A/I -torsor) over Spec A/I, which
will be denoted by the same symbol.

Example 5.4.4. Assume that (A, I ) is orientable. Let X ∈ G(A)I be an element. Then the Hodge
filtration associated with QX can be identified with the natural inclusion (Pµ)A/I ↪→ G A/I .

Proposition 5.4.5. A G-µ-display Q over (A, I ) is banal if and only if the Hodge filtration P(Q)A/I is a
trivial (Pµ)A/I -torsor over Spec A/I.

Proof. This is a restatement of Corollary 4.3.7 in the current context. □

5.5. Underlying G-φ-modules. Let (A, I ) be a bounded OE -prism over O and let (M, FM) be a Breuil–
Kisin module over (A, I ). Since {Fili (φ∗M)}i∈Z is the filtration of φ∗M, it is sometimes reasonable
to consider φ∗M (rather than M) as “the underlying A-module” of the Breuil–Kisin module (M, FM).
The same applies to G-Breuil–Kisin modules P over (A, I ). In fact, the Frobenius of φ∗P will also be
important. For example, this can be observed in the Grothendieck–Messing deformation theory studied in
[Ito 2025].

It will be convenient to make the following definition. We assume that (A, I ) is orientable for simplicity.
We set A[1/φ(I )] := A[1/φ(d)] for a generator d ∈ I, which does not depend on the choice of d .

Definition 5.5.1. A G-φ-module over (A, I ) is a pair (P, φP) consisting of a G A-torsor P over Spec A
and an isomorphism

φP : (φ
∗P)[1/φ(I )] −→∼ P[1/φ(I )]

of G A[1/φ(I )]-torsors over Spec A[1/φ(I )]. (Here P[1/φ(I )] := P ×Spec A Spec A[1/φ(I )].) If there is
no possibility of confusion, we write P = (P, φP).
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Here we explain how to attach a G-φ-module over (A, I ) to a G-µ-display Q over (A, I ). Recall
QA :=Qτ from Remark 5.3.2, which we regard as a G A-torsor over Spec A. We define

φQA : (φ
∗(QA))[1/φ(I )] −→∼ QA[1/φ(I )]

as the composition

(φ∗(QA))[1/φ(I )] −→∼ (φ∗(QBK))[1/φ(I )] −→∼ QA[1/φ(I )],

where the first isomorphism is the base change of QA[1/I ] −→∼ QBK[1/I ] given in Remark 5.3.2 along
φ : A[1/I ] → A[1/φ(I )], and the second one is the base change of (αQ)′ : φ∗(QBK) −→

∼ QA given in
Proposition 5.3.4 along the natural homomorphism A→ A[1/φ(I )].

Definition 5.5.2 (underlying G-φ-module). Let Q be a G-µ-display over (A, I ). The G-φ-module

Qφ := (QA, φQA)

over (A, I ) is called the underlying G-φ-module of Q.

Example 5.5.3. Let QX be the banal G-µ-display associated with an element X ∈G(A)I . The underlying
G-φ-module (QX )φ of QX is the trivial G A-torsor G A with the isomorphism

(φ∗G A)[1/φ(I )] = G A[1/φ(I )] −→∼ G A[1/φ(I )], g 7→ Xdφ(µ(d))g,

for a generator d ∈ I. We note that the element Xdφ(µ(d)) ∈ G(A[1/φ(I )]) is independent of the choice
of d ∈ I.

Remark 5.5.4. Let Q be a G-µ-display over (A, I ). The base change φ∗(QBK) of the associated G-Breuil–
Kisin module QBK is naturally a G-φ-module over (A, I ). We note that (αQ)′ gives an isomorphism
φ∗(QBK)−→

∼ Qφ of G-φ-modules. Therefore, one can also define the underlying G-φ-module of Q as
φ∗(QBK). However, the construction of Qφ is more natural and will be useful in [Ito 2025].

5.6. G-µ-displays for perfectoid rings. Let R be a perfectoid ring over O. We discuss p-complete
arc-descent results for G-µ-displays over the OE -prism (WOE (R

♭), IR).

Remark 5.6.1. Assume that OE = Zp. In [Bartling 2022], the notion of G-Breuil–Kisin modules over
(W (R♭), IR) of type µ was introduced in a different way; namely, a G-Breuil–Kisin module P over
(W (R♭), IR) is said to be of type µ if for any homomorphism R→ V with V a p-adically complete
valuation ring of rank ≤ 1 whose fraction field is algebraically closed, the base change PW (V ♭) is of type µ
in the sense of Definition 5.1.4. In Proposition 5.6.11 below, we will prove that this notion agrees with
the one introduced in Definition 5.1.4.

Let PerfdR be the category of perfectoid rings over R. We endow Perfdop
R with the topology generated by

the π -complete arc-coverings (or equivalently, the p-complete arc-coverings) in the sense of [Česnavičius
and Scholze 2024, Section 2.2.1]. This topology is called the π -complete arc-topology.
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Remark 5.6.2. We quickly review the notion of a π -complete arc-covering.

(1) We say that a homomorphism R→ S of perfectoid rings over O is a π -complete arc-covering if for
any homomorphism R→ V with V a π-adically complete valuation ring of rank ≤ 1, there exist an
extension V ↪→ W of π-adically complete valuation rings of rank ≤ 1 and a homomorphism S→ W
such that the following diagram commutes:

R //

��

S

��

V // W

(2) The category Perfdop
R admits fiber products; a colimit of the diagram S2← S1→ S3 in PerfdR is

given by the π-adic completion of S2⊗S1 S3 (see [Česnavičius and Scholze 2024, Proposition 2.1.11]).
We see that Perfdop

R is indeed a site.

(3) Let R→ S be a π-completely étale covering. Then S is perfectoid as explained in Example 2.5.11,
and R→ S is a π -complete arc-covering; see [loc. cit., Section 2.2.1].

(4) There exists a π -complete arc-covering of the form R→
∏

i∈I Vi , where Vi are π -adically complete
valuation rings of rank ≤ 1 with algebraically closed fraction fields; see [Česnavičius and Scholze 2024,
Lemma 2.2.3].

Proposition 5.6.3 [Ito 2023, Corollary 4.2]. The fibered category over Perfdop
R which associates to a

perfectoid ring S over R the category of finite projective S-modules satisfies descent with respect to the
π -complete arc-topology. In particular, the functor PerfdR→ Set, S 7→ S, forms a sheaf.

Proof. See [Ito 2023, Corollary 4.2]. The second assertion was previously proved in [Bhatt and Scholze
2022, Proposition 8.10]. □

Remark 5.6.4. In fact, it is proved in [Ito 2023, Theorem 1.2] that the functor on PerfdR associating to each
S ∈ PerfdR the∞-category Perf(S) of perfect complexes over S satisfies π-complete arc-hyperdescent.
Using this, we can prove that for any integer n≥ 1, the functor S 7→Perf(WOE (S

♭)/I n
S ) on PerfdR satisfies

π -complete arc-hyperdescent, by induction on n. This implies that the functor S 7→Perf(WOE (S
♭)) satisfies

π -complete arc-hyperdescent as well. See the discussion in [loc. cit., Section 4.1].

Corollary 5.6.5. The fibered category over Perfdop
R which associates to a perfectoid ring S over R the

category of finite projective WOE (S
♭)-modules satisfies descent with respect to the π -complete arc-topology.

The same holds for finite projective WOE (S
♭)/I n

S -modules.

Proof. By the same argument as in the proof of [loc. cit., Corollary 4.2], we can deduce the assertion
from Remark 5.6.4. □

In particular, the functor PerfdR → Set, S 7→ WOE (S
♭) forms a sheaf. This fact also follows from

[Česnavičius and Scholze 2024, Lemma 4.2.6] or the proof of [Bhatt and Scholze 2022, Proposition 8.10]
(using that W (Fq)→OE is flat).
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Remark 5.6.6. In the case where OE = Zp, the first assertion of Corollary 5.6.5 is proved in [Ito 2023,
Corollary 4.2]. The general case can also be deduced from this special case, using that a module over
WOE (S

♭) is finite projective if and only if it is finite projective over W (S♭).

For an affine scheme X over O (or R), we define a functor X1̄ : PerfdR → Set, S 7→ X (S). By
Proposition 5.6.3, this forms a sheaf. Similarly, for an affine scheme X over O (or WOE (R

♭)), we define
a functor X1 : PerfdR→ Set, S 7→ X (WOE (S

♭)), which forms a sheaf by Corollary 5.6.5. We have the
following analogue of Proposition 4.3.1.

Proposition 5.6.7. Let H be a smooth affine group scheme over O.

(1) The functor P 7→ P1̄ from the groupoid of HR-torsors over Spec R to the groupoid of H1̄-torsors on
Perfdop

R is an equivalence.

(2) The functor P 7→ P1 from the groupoid of HWOE (R
♭)-torsors over Spec WOE (R

♭) to the groupoid of
H1-torsors on Perfdop

R is an equivalence.

Proof. This can be proved by the same argument as in the proof of Proposition 4.3.1, using Proposition 5.6.3
and Corollary 5.6.5. □

Remark 5.6.8. Arguing as in Remark 5.1.3, we see that the fibered category over Perfdop
R which associates

to each S ∈ PerfdR the groupoid of G-Breuil–Kisin modules over (WOE (S
♭), IS) is a stack with respect

to the π -complete arc-topology.

As in Section 5.2, the functors

Gµ,I : PerfdR→ Set, S 7→ Gµ(WOE (S
♭), IS),

G1,I : PerfdR→ Set, S 7→ G(WOE (S
♭))IS ,

form sheaves, and the group sheaf Gµ,I acts on G1,I .

Lemma 5.6.9. Let Q be a Gµ,I -torsor with respect to the π -complete arc-topology. Then Q is trivialized
by a π -completely étale covering R→ S.

Proof. We claim that if the pushout of Q along the homomorphism Gµ,I → (Pµ)1̄ is trivial as a (Pµ)1̄-
torsor, then Q is itself trivial. Indeed, one can prove the analogue of Lemma 4.3.5 for Gµ,I , and then the
argument as in the proof of Corollary 4.3.7 works.

By the claim, it suffices to prove that any (Pµ)1̄-torsor with respect to the π -complete arc-topology can
be trivialized by a π -completely étale covering R→ S. This is a consequence of Proposition 5.6.7. □

Corollary 5.6.10. The fibered category over Perfdop
R which associates to a perfectoid ring S over R the

groupoid of G-µ-displays over (WOE (S
♭), IS) is a stack with respect to the π -complete arc-topology. The

same holds for G-Breuil–Kisin modules of type µ over (WOE (S
♭), IS).

Proof. The first assertion can be deduced from Lemma 5.6.9 by the same argument as in the proof of
Proposition 5.2.8. The second assertion follows from the first one, together with Proposition 5.3.8. □

Now we are ready to prove the following result:
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Proposition 5.6.11. For a G-Breuil–Kisin module P over (WOE (R
♭), IR), the following conditions are

equivalent:

(1) P is of type µ (in the sense of Definition 5.1.4).

(2) There exists a π -complete arc-covering R→ S such that the base change of P along (WOE (R
♭),IR)→

(WOE (S
♭),IS) is of type µ.

(3) For any homomorphism R→ V with V a π-adically complete valuation ring of rank ≤ 1 whose
fraction field is algebraically closed, the base change of P along (WOE (R

♭), IR)→ (WOE (V
♭), IV )

is of type µ.

Proof. It is clear (1) implies (2) and (3). By Remark 5.6.8 and Corollary 5.6.10, we see (2) implies (1).
Assume that the condition (3) is satisfied. We want to show that this implies (2), which will conclude

the proof of the proposition. By Remark 5.6.2(4), there exists a π -complete arc-covering R→ S =
∏

i Vi ,
where Vi are π-adically complete valuation rings of rank ≤ 1 with algebraically closed fraction fields.
Since WOE (V

♭
i ) is strictly henselian, the base change PWOE (V

♭
i )

is a trivial GWOE (V
♭
i )

-torsor. Since PWOE (S
♭)

is affine and WOE (S
♭)=

∏
i WOE (V

♭
i ), it follows that PWOE (S

♭) has a WOE (S
♭)-valued point, and hence

is a trivial GWOE (S
♭)-torsor. We fix a trivialization PWOE (S

♭) ≃ GWOE (S
♭). Let ξ ∈ IS be a generator. The

condition (3) implies that, for each i , the base change of FP along WOE (R
♭)→WOE (V

♭
i ) corresponds

to an element of G(WOE (V
♭

i )[1/ξ ]) which is of the form Ziµ(ξ)Z ′i for some Zi , Z ′i ∈ G(WOE (V
♭

i )), via
the induced trivialization PWOE (V

♭
i )
≃ GWOE (V

♭
i )

. We set

Z := (Zi )i ∈ G(WOE (S
♭))=

∏
i

G(WOE (V
♭

i )),

and similarly let Z ′ := (Z ′i )i ∈ G(WOE (S
♭)). Then the base change of FP along WOE (R

♭)→WOE (S
♭)

corresponds to the element Zµ(ξ)Z ′. This means that the condition (2) is satisfied. □

5.7. Examples. We discuss some examples of G-µ-displays and G-Breuil–Kisin modules of type µ for
certain pairs (G, µ).

We first discuss a pair (G, µ) of Hodge type. Let G be a connected reductive group scheme over OE

and µ : Gm→ GO a cocharacter. We assume that there exists a closed immersion G ↪→ GLn over OE

such that the composition Gm→ GO→ GLn,O is conjugate to the cocharacter defined by

t 7→ diag (t, . . . , t︸ ︷︷ ︸
s

, 1, . . . , 1︸ ︷︷ ︸
n−s

)

for some s. In particular µ is 1-bounded. We set L :=On
E . By [Kisin 2010, Proposition 1.3.2], there exists

a finite set of tensors {sα}α∈3 ⊂ L⊗ such that G ↪→GLn is the pointwise stabilizer of {sα}α∈3, where L⊗

is the direct sum of all OE -modules obtained from L by taking tensor products, duals, symmetric powers,
and exterior powers. Let

LO = Lµ,1⊕ Lµ,0

be the weight decomposition with respect to µ. (Here the composition Gm → GO → GLn,O is also
denoted by µ.)
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Let (A, I ) be a bounded OE -prism over O. Let M be a Breuil–Kisin module of type µ over (A, I ).
We note that M is minuscule in the sense of Definition 3.1.5, and that the rank of the Hodge filtration
P1
⊂ (φ∗M)/I (φ∗M) is s. For a finite set of tensors {sα,M}α∈3 ⊂ M⊗ which are FM -invariant, we say

that the pair (M, {sα,M}α∈3) is G-µ-adapted if there exist a (π, I )-completely étale covering A→ B
and an isomorphism ψ : L B −→

∼ MB such that ψ carries sα to sα,M for each α ∈ 3 and the reduction
modulo I of φ∗ψ identifies (Lµ,1)B/I B ⊂ L B/I B with the Hodge filtration (P1)B/I B .

Proposition 5.7.1. With the notation above, the groupoid G- Dispµ(A, I ) is equivalent to the groupoid of
G-µ-adapted pairs (M, {sα,M}α∈3) over (A, I ).

Proof. We shall construct a functor from the groupoid of G-µ-adapted pairs over (A, I ) to G- Dispµ(A, I ).
Let (M, {sα,M}α∈3) be a G-µ-adapted pair over (A, I ). Let

Q := IsomFil,{sα}(L A, φ
∗M) : (A, I )ét→ Set

be the functor sending B ∈ (A, I )ét to the set of isomorphisms h : L B −→
∼ (φ∗M)B preserving the filtrations

and carrying sα to 1⊗ sα,M for each α ∈ 3. Here L A is equipped with the filtration {Filiµ}i∈Z given
in Remark 3.2.2. We claim that Q is a Gµ,A,I -torsor. For this, we may assume that there exists an
isomorphism ψ : L A −→

∼ M such that ψ carries sα to sα,M for each α ∈3 and the reduction modulo I of
h := φ∗ψ identifies (Lµ,1)A/I with P1. Under the isomorphism h : L A −→

∼ φ∗M, we have

{Filiµ}i∈Z = {Fili (φ∗M)}i∈Z,

which in turn implies that h ∈ Q(A). To see this, it suffices to prove that Fil1µ = Fil1(φ∗M) since M
is minuscule. We observe that Fil1µ and Fil1(φ∗M) are the inverse images of (Lµ,1)A/I ⊂ L A/I and
P1
⊂ (φ∗M)/I (φ∗M), respectively. It then follows that Fil1µ = Fil1(φ∗M).

We define M̃ := Fil1(φ∗M)⊗A I−1. Since M is of type µ, we see that FM restricts to an isomorphism
M̃ −→∼ M, and we may regard {1⊗ sα,M}α∈3 as tensors of M̃ . Similarly to Example 5.3.3, we have

QBK = Isom
{sα}(L A, M̃),

where Isom
{sα}(L A, M̃) is the G A-torsor over Spec A defined by sending an A-algebra B to the set of

isomorphisms L B −→
∼ M̃B carrying sα to 1⊗ sα,M for each α ∈3. Moreover, we have

QA = Isom
{sα}(L A, φ

∗M).

The base change φ∗(FM) : φ
∗M̃ −→∼ φ∗M induces an isomorphism α′ : φ∗(QBK)−→

∼ QA of G A-torsors.
The Gµ,A,I -torsor Q with α′ is a G-µ-display over (A, I ); see Remark 5.3.5. In this way, we obtain a
functor from the groupoid of G-µ-adapted pairs over (A, I ) to G- Dispµ(A, I ).

One can prove that this functor is an equivalence in the same way as in the case of G = GLn; see
Section 5.3. □

Remark 5.7.2. In [Kisin 2010, Proposition 1.3.4], [Kim and Madapusi Pera 2016, Theorem 2.5], and [Imai
et al. 2023], it is observed that G-µ-adapted pairs naturally arise from crystalline Galois representations
associated with integral canonical models of Shimura varieties of Hodge type with hyperspecial level
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structure. The notion of G-µ-adapted pairs plays a central role in the construction of integral canonical
models in [Kisin 2010, Proposition 1.5.8] and [Kim and Madapusi Pera 2016, Section 3].

We include the following two important examples. The details will be presented elsewhere.

Example 5.7.3 (G-shtuka). Let G be a connected reductive group scheme over OE . We assume that k is
an algebraic closure of Fq and let µ :Gm→ GO be a 1-bounded (or equivalently, minuscule) cocharacter.
Let C be an algebraically closed nonarchimedean field over O[1/π ] with ring of integers OC . We consider
the perfectoid space S = Spa(C,OC) and its tilt S♭ = Spa(C♭,O♭

C). We can show that the groupoid of
G-µ-displays over (WOE (O

♭
C), IOC ) is equivalent to the groupoid of G-shtukas over S♭ with one leg at S

which are bounded by µ (or bounded by µ−1, depending on the sign convention) introduced in [Scholze
and Weinstein 2020]. See [Ito 2025, Section 5.1] for details.

Example 5.7.4 (orthogonal Breuil–Kisin module). Let n = 2m be an even positive integer and we set
L :=On

E . We define the quadratic form
Q : L→OE

by (a1, . . . , a2m) 7→
∑m

i=1 ai a2m−i+1. The quadratic form Q is perfect in the sense that the bilinear form
on L defined by (x, y) 7→ Q(x + y)− Q(x)− Q(y) is perfect. Let G := O(Q)⊂GLn be the orthogonal
group of Q, which is a smooth affine group scheme over OE . Let µ :Gm→ G ⊂GLn be the cocharacter
defined by

t 7→ diag (t, 1, . . . , 1, t−1).

Let (A, I ) be a bounded OE -prism. An orthogonal Breuil–Kisin module of type µ over (A, I ) is a
Breuil–Kisin module M of type µ over (A, I ) together with a perfect quadratic form QM : M → A
which is compatible with FM in the sense that for every x ∈ M, we have φ(QM(x))= QM(FM(1⊗ x))
in A[1/I ]. Let

P := IsomQ(L A,M)

be the G A-torsor over Spec A defined by sending an A-algebra B to the set of isomorphisms L B ≃ MB

of quadratic spaces. One can show that P , together with the isomorphism FP : (φ
∗P)[1/I ] −→∼ P[1/I ]

induced by FM , forms a G-Breuil–Kisin module of type µ over (A, I ). This construction gives an
equivalence between the groupoid of orthogonal Breuil–Kisin modules of type µ over (A, I ) and the
groupoid G-BKµ(A, I ). Thus, by Proposition 5.3.8, the groupoid of orthogonal Breuil–Kisin modules
of type µ over (A, I ) is equivalent to the groupoid G- Dispµ(A, I ). The details will be presented in a
forthcoming paper.

Remark 5.7.5. Let the notation be as in Example 5.7.4. Our main result (Theorem 6.1.3) cannot be
applied to Breuil–Kisin modules of type µ since µ is not 1-bounded as a cocharacter of GLn . However,
since µ is 1-bounded as a cocharacter of G =O(Q), the result can be applied to orthogonal Breuil–Kisin
modules of type µ. Such an observation was made in [Lau 2021] in the context of the deformation theory
of K3 surfaces.
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6. Prismatic G-µ-displays over complete regular local rings

In this section, we prove the main result (Theorem 6.1.3) of this paper, which we state in Section 6.1.
The proof will be given in Section 6.5. In Sections 6.2–6.4, we discuss a few technical results that will be
used in the proof.

6.1. G-µ-displays on absolute prismatic sites. In this paper, we use the following definition.

Definition 6.1.1. Let R be a π -adically complete O-algebra. A prismatic G-µ-display over R is defined
to be an object of the groupoid

G- Dispµ((R)1,OE ) := 2− lim
←−−(A,I )∈(R)1,OE

G- Dispµ(A, I ).

Remark 6.1.2. Giving a prismatic G-µ-display Q over R is equivalent to giving a G-µ-display Q(A,I )

over (A, I ) for each (A, I ) ∈ (R)1,OE and an isomorphism

γ f : f ∗(Q(A,I ))−→
∼ Q(A′,I ′)

for each morphism f : (A, I )→ (A′, I ′) in (R)1,OE , such that γ f ′ ◦ ( f ′∗γ f ) = γ f ′◦ f (via the natural
identification f ′∗ ◦ f ∗ ≃ ( f ′ ◦ f )∗) for two morphisms f : (A, I )→ (A′, I ′) and f ′ : (A′, I ′)→ (A′′, I ′′).
We call Q(A,I ) the value of Q at (A, I ) ∈ (R)1,OE .

Assume that R is a complete regular local ring over O with residue field k. Let (O[[t1, . . . , tn]], (E))
be an OE -prism of Breuil–Kisin type with an isomorphism R ≃O[[t1, . . . , tn]]/E over O (where n ≥ 0
is the dimension of R). Such an OE -prism exists; see for example [Cheng 2018, Section 3.3]. We set
SO :=O[[t1, . . . , tn]]. Our goal is to prove the following result.

Theorem 6.1.3. Assume that the cocharacter µ is 1-bounded. Then the functor

G- Dispµ((R)1,OE )→ G- Dispµ(SO, (E)), Q 7→Q(SO,(E)),

given by evaluation at (SO, (E)) is an equivalence.

The rest of this section is devoted to the proof of Theorem 6.1.3.

6.2. Coproducts of Breuil–Kisin prisms. In this subsection, we establish some properties of the object

(SO, (E)) ∈ (R)1,OE .

We begin with the following result.

Proposition 6.2.1. For any (A, I ) ∈ (R)1,OE , there exists a flat covering (A, I )→ (A′, I ′) in (R)1,OE

such that (A′, I ′) admits a morphism (SO, (E))→ (A′, I ′) in (R)1,OE .

Proof. We may assume that (A, I ) is orientable by Remark 2.5.14. Let d ∈ I be a generator. Let
v1, . . . , vn ∈ A be elements such that each vi is a lift of the image of ti ∈ SO under the composition
SO→ R→ A/I. Let B := A⊗O SO. We set

xi := 1⊗ ti − vi ⊗ 1 ∈ B.
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Then the morphism A/L(π, d)→ B/L(π, d, x1, . . . , xn) of animated rings is faithfully flat. Indeed, using
that the natural homomorphism O[t1, . . . , tn]→SO is flat, we see that A/L(π, d)→ B/L(π, d, x1, . . . , xn)

is flat. Since the composition SO→ R→ A/(π, d) induces a homomorphism B/(π, d, x1, . . . , xn)→

A/(π, d) over A/(π, d), it follows that A/L(π, d)→ B/L(π, d, x1, . . . , xn) is faithfully flat.
Let SO,∞ be the (π, E)-adic completion of a colimit lim

−−→φ
SO of the diagram

SO
φ
−→SO

φ
−→SO→ · · · .

Since φ : SO → SO is faithfully flat, we see that SO → SO,∞ is (π, E)-completely faithfully flat.
In fact, it is faithfully flat by [Yekutieli 2018, Theorem 1.5]. We set B ′ := B ⊗SO SO,∞. Then
A/L(π, d)→ B ′/L(π, d, x1, . . . , xn) is faithfully flat as well. Thus, by Proposition 2.6.6, we can consider
the prismatic envelope

(A′, I ′) := (B ′{J/I }∧, I B ′{J/I }∧)

of B ′ over (A, I ) with respect to the ideal J := (d, x1, . . . , xn)⊂ B ′. The map (A, I )→ (A′, I ′) is a flat
covering.

We shall construct a morphism (SO, (E))→ (A′, I ′) in (R)1,OE . We remark that since A′/I ′ is not
necessarily m-adically complete for the maximal ideal m⊂ R, it is not clear that the natural homomorphism
SO → A′ induces a morphism (SO, (E))→ (A′, I ′) in (R)1,OE . Instead, we construct a morphism
(SO, (E))→ (A′, I ′) as follows. Since SO,∞ can be identified with the (π, E)-adic completion of⋃

m≥0

SO[t
1/qm

1 , . . . , t1/qm

n ],

the quotient R∞ :=SO,∞/E is the π-adic completion of
⋃

m≥0 R[t̄1/qm

1 , . . . , t̄1/qm

n ], where t̄i ∈ R is the
image of ti . Here

SO[t
1/qm

1 , . . . , t1/qm

n ] =SO[X1, . . . , Xn]/(X
qm

1 − t1, . . . , Xqm

n − tn)

and similarly for R[t̄1/qm

1 , . . . , t̄1/qm

n ]. The composition R→ A/I → A′/I ′ factors through the homomor-
phism

g : R∞→ A′/I ′

defined by sending t̄1/qm

i to the image of 1⊗ t1/qm

i ∈ A′, which is well-defined since 1⊗ ti = vi ⊗ 1 in
A′/I ′. By Lemma 2.3.5, there exists a unique map (SO,∞, (E))→ (A′, I ′) of bounded OE -prisms which
induces g. By construction, the composition

(SO, (E))→ (SO,∞, (E))→ (A′, I ′)

is a morphism in (R)1,OE . □

Remark 6.2.2. Assume that OE = Zp. In this case, Proposition 6.2.1 is proved in [Bhatt and Scholze
2022, Example 7.13] and [Anschütz and Le Bras 2023, Lemma 5.14], using [Bhatt and Scholze 2022,
Proposition 7.11]. Moreover, if SO =W (k)[[t]] and E ∈W (k)[[t]] is an Eisenstein polynomial, then an
alternative argument using prismatic envelopes is given in [Bhatt and Scholze 2023, Example 2.6]. Our
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argument is similar to the one given there, but we have to modify it slightly in order to treat the case
where A/I is not m-adically complete.

In a similar way, we obtain the following result:

Lemma 6.2.3. Let (A, I ) ∈ (R)1,OE and let f1, f2 : (SO, (E))→ (A, I ) be two morphisms in (R)1,OE .
If f1(ti )= f2(ti ) in A for any i , then we have f = g.

Proof. As in the proof of Proposition 6.2.1, let SO,∞ be the (π, E)-adic completion of lim
−−→φ

SO, which is
faithfully flat over SO. After replacing (A, I ) by a flat covering, we may assume that f1 : (SO, (E))→
(A, I ) factors through a map f̃1 : (SO,∞, (E))→ (A, I ) of OE -prisms. Since SO,∞ is the (π, E)-adic
completion of

⋃
m≥0 SO[t

1/qm

1 , . . . , t1/qm

n ], there exists a map f̃2 :SO,∞→ A extending f2 such that

f̃2(t
1/qm

i )= f̃1(t
1/qm

i )

for all m and i . The map f̃2 preserves the δE -structures by Corollary 2.2.16. It suffices to prove that
f̃1 = f̃2. We note that both f1 and f2 induce the same homomorphism R→ A/I. Since R∞ =SO,∞/E
is the π-adic completion of

⋃
m≥0 R[t̄1/qm

1 , . . . , t̄1/qm

n ], it follows that the homomorphism R∞→ A/I
induced by f̃1 agrees with the one induced by f̃2. Then, by Lemma 2.3.5, we conclude that f̃1 = f̃2. □

We next study a coproduct of two copies of (SO, (E)) in the category (R)1,OE . To simplify the notation,
we write

(A, I ) := (SO, (E))

in the rest of this section. We set

B := A[[x1, . . . , xn]]

and let p′1 : A→ B be the natural homomorphism. There exists a unique δE -structure on B such that p′1
is a homomorphism of δE -rings and the associated Frobenius φ : B→ B sends xi to (xi + ti )q − tq

i for
every i . We consider the prismatic envelope

(A(2), I (2))

of B over (A, I ) with respect to the ideal (E, x1, . . . , xn)⊂ B as in Proposition 2.6.6. Let p1 : (A, I )→
(A(2), I (2)) denote the natural map. We view (A(2), I (2)) as an object of (R)1,OE via the homomorphism
p̄1 : R→ A(2)/I (2) induced by p1.

The homomorphism p′2 : A→ B over O defined by ti 7→ xi + ti is a homomorphism of δE -rings. Let
p2 : A→ A(2) be the composition of p′2 with the natural homomorphism B→ A(2).

Lemma 6.2.4. Let the notation be as above.

(1) We have p2(I )⊂ I (2), and the induced map p2 : (A, I )→ (A(2), I (2)) is a morphism in (R)1,OE .

(2) The object (A(2), I (2)) ∈ (R)1,OE with the morphisms p1, p2 : (A, I )→ (A(2), I (2)) is a coproduct of
two copies of (A, I ) in the category (R)1,OE .
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Proof. (1) It suffices to show that the composition of p2 : A→ A(2) with A(2)→ A(2)/I (2) coincides
with the composition of A→ R with p̄1 : R→ A(2)/I (2). For any h ∈ A, the element p′2(h)− p′1(h) ∈ B
is contained in the ideal (x1, . . . , xn) ⊂ B. Since the image of xi in A(2) is contained in I (2), we have
p2(h)− p1(h) ∈ I (2), which implies the assertion.

(2) We have to show that for any (A′, I ′) ∈ (R)1,OE and two morphisms f1, f2 : (A, I )→ (A′, I ′) in
(R)1,OE , there exists a unique morphism

f : (A(2), I (2))→ (A′, I ′)

in (R)1,OE such that f ◦ p1 = f1 and f ◦ p2 = f2.
We first prove the uniqueness of f . Let f ′ : B→ A′ be the composition of f with B→ A(2). Then we

have f ′ ◦ p′j = f j ( j = 1, 2), and f ′ sends xi = p′2(ti )− p′1(ti ) to

f2(ti )− f1(ti ) ∈ I ′ ⊂ A′

for any i . Since A′ is I ′-adically complete, such a homomorphism f ′ of δE -rings is uniquely determined
(if it exists). The uniqueness of f now follows from the universal property of the prismatic envelope
(A(2), I (2)).

We next prove the existence of f . Since f2(ti )− f1(ti ) ∈ I ′ ⊂ A′ and A′ is I ′-adically complete, there
exists a unique homomorphism f ′ : B→ A′ over O such that f ′ ◦ p′1 = f1 and f ′(xi )= f2(ti )− f1(ti )
for every i .

We claim that f ′ is a homomorphism of δE -rings. Indeed, as in the proof of Proposition 6.2.1, let A∞
be the (π, E)-adic completion of lim

−−→φ
A. Then A∞ is faithfully flat over A. After replacing (A′, I ′) by a

flat covering, we may assume that f j factors through a morphism f̃ j : (A∞, I A∞)→ (A′, I ′) in (R)1,OE

for each j = 1, 2. For an integer m ≥ 0 and i , we set

xi,m := f̃2(t
1/qm

i )− f̃1(t
1/qm

i ) ∈ A′.

Since we have xqm

i,m ∈ (π, I ′), it follows that A′ is (x1,m, . . . , xn,m)-adically complete for every m (see
[Stacks 2005–, Tag 090T] for example). Thus, for each m ≥ 0, there exists a unique homomorphism
f ′(m) : B→ A′ such that f ′(m) ◦ p′1 is the composition

A→ A∞
φ−m
−−→ A∞

f̃1
−→ A′

and f ′(m)(xi ) = xi,m for any i . Since f ′(m) = f ′(m + 1) ◦ φ, they give rise to a homomorphism
f̃ ′ : lim
−−→φ

B→ A′. By Corollary 2.2.16, f̃ ′ is a homomorphism of δE -rings. Since f ′ is the composition
B→ lim

−−→φ
B→ A′, we conclude that f ′ is a homomorphism of δE -rings.

By the universal property of the prismatic envelope (A(2), I (2)), the homomorphism f ′ extends to a
unique morphism f : (A(2), I (2))→ (A′, I ′) in (R)1,OE . By construction, we have f ◦ p1 = f1. It follows
from Lemma 6.2.3 that f ◦ p2 = f2.

The proof of Lemma 6.2.4 is complete. □
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Remark 6.2.5. It might be more natural to expect that the prismatic envelope (C, I C) of A⊗O A over
(A, I ) with respect to the ideal (E⊗1, t1⊗1−1⊗ t1, . . . , tn⊗1−1⊗ tn) is a coproduct of two copies of
(A, I ) in the category (R)1,OE , where we regard A⊗O A as an A-algebra via the homomorphism a 7→a⊗1.
However, this does not seem to be the case in general. For example, it is not clear that the homomorphism
A→C , a 7→ 1⊗a, induces a morphism (A, I )→ (C, I C) in (R)1,OE (see the proof of Proposition 6.2.1).

Let
m : (A(2), I (2))→ (A, I )

be the unique morphism in (R)1,OE such that m◦ p1=m◦ p2= id(A,I ). Let K be the kernel of m : A(2)→ A.
Let d ∈ I (2) be a generator.

Lemma 6.2.6 (cf. [Anschütz and Le Bras 2023, Lemma 5.15]). We have φ(K )⊂ d K.

Proof. It suffices to show that φ(K )⊂ d A(2). Indeed, let x ∈ K, and we assume that φ(x)= dy for some
y ∈ A(2). Then, since m(φ(x))= 0 and m(d) ∈ A is a nonzerodivisor, we have y ∈ K.

We shall prove that φ(K )⊂d A(2). We may assume that d= p1(E). The image p′1(E)∈ B is also denoted
by d. It follows from Proposition 2.6.6 that A(2) can be identified with the (π, d)-adic completion of

C := B{x1/d, . . . , xn/d}.

We write yi := xi/d. The composition C→ A(2)→ A sends δ j
E(yi ) to 0 for any j ≥ 0 and any i . Here

δ
j
E is the j-th iterate of the map δE : C→ C . Since the kernel of the homomorphism B→ A defined by

xi 7→ 0 (1≤ i ≤ n) coincides with (x1, . . . , xn), it follows that the kernel K0 of C→ A is generated by

{δ
j
E(yi )}1≤i≤n, j≥0.

We note that K can be identified with the (π, d)-adic completion of K0. We also note that d A(2) =⋂
l≥0(d A(2)+(π, d)l A(2)) since A(2)/d is π -adically complete (see Remark 2.3.2). It then suffices to show

that φ(δ j
E(yi ))∈d A(2) for any j ≥0 and any i . This can be proved by the same argument as in the first para-

graph of the proof of [Anschütz and Le Bras 2023, Lemma 5.15] when E ∈ A is not contained in π A. A sim-
ilar argument holds when E ∈ π A. We include the argument in this case for the convenience of the reader.

We may assume that E = π . In fact, we prove a more general statement: for any j ≥ 0, we have
φl(δ

j
E(yi ))∈π

l A(2) for any l≥1 and any i . We proceed by induction on j . Let ui := xi+ti =πyi+ti ∈ A(2).
Then we have

φl(xi )= uql

i − tql

i =
∑

0≤h≤ql−1

(ql

h

)
(πyi )

ql
−h th

i ∈ π
l+1 A(2).

Thus, we obtain φl(yi ) ∈ π
l A(2), which proves the assertion in the case where j = 0. Suppose that the

assertion holds for some j ≥ 0. Since

πφl(δ
j+1
E (yi ))= φ

l(πδ
j+1
E (yi ))= φ

l(φ(δ
j
E(yi ))− δ

j
E(yi )

q)= φl+1(δ
j
E(yi ))−φ

l(δ
j
E(yi ))

q ,

the induction hypothesis implies that πφl(δ
j+1
E (yi )) ∈ π

l+1 A(2), whence φl(δ
j+1
E (yi )) ∈ π

l A(2). □
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The following lemma plays a crucial role in the proof of Theorem 6.1.3 (especially in the proof of
Proposition 6.4.1 below). As in the proof of Lemma 6.2.6, we set yi := xi/d ∈ A(2).

Lemma 6.2.7. Let M ⊂ A(2) be the ideal generated by φ(y1)/d, . . . , φ(yn)/d ∈ K. Then we have
inclusions

φ(K )⊂ d M + d(π, d)K and φ(M)⊂ d(t1, . . . , tn)M + d(π, d)K .

The proof of Lemma 6.2.7 will be given in Section 6.3.

Remark 6.2.8. There exists a coproduct (A(3), I (3)) of three copies of (A, I ) in the category (R)1,OE .
Indeed, one can define (A(3), I (3)) as a pushout of the diagram

(A(2), I (2)) p2
←− (A, I ) p1

−→ (A(2), I (2)),

which exists since p1 is a flat map (see Remark 2.5.4). Let q1, q2, q3 : (A, I )→ (A(3), I (3)) denote the
associated three morphisms. For 1≤ i < j ≤ 3, let pi j : (A(2), I (2))→ (A(3), I (3)) be the unique morphism
such that pi j ◦ p1 = qi and pi j ◦ p2 = q j .

Corollary 6.2.9. Let m : (A(3), I (3))→ (A, I ) be the unique morphism in (R)1,OE such that m◦qi = id(A,I )
for i = 1, 2, 3. Let L be the kernel of m : A(3)→ A. Let d ∈ I (3) be a generator. Then the following
assertions hold:

(1) We have φ(L)⊂ d L.

(2) Let N ⊂ A(3) be the ideal generated by {φ(p12(yl))/d, φ(p23(yl))/d}1≤l≤n ⊂ L . Then we have
inclusions

φ(L)⊂ d N + d(π, d)L and φ(N )⊂ d(q1(t1), . . . , q1(tn))N + d(π, d)L .

Proof. We may assume that d is the image of a generator of I (2), again denoted by d, under the
homomorphism p12. As in Remark 6.2.8, we identify A(3) with the (π, d)-adic completion of A(3)0 :=

A(2) ⊗p2,A,p1 A(2). Under this identification, the homomorphism p12 (resp. p23) is induced by the
homomorphism A(2)→ A(3)0 defined by a 7→ a ⊗ 1 (resp. a 7→ 1⊗ a). The kernel L0 of the natural
homomorphism A(3)0 → A coincides with K⊗A A(2)+A(2)⊗A K, and L is the (π, d)-adic completion of L0.

In order to prove the assertion (1), it suffices to show that for any element x ∈ L which lies in the
image of L0→ L , we have φ(x) ∈ d A(3). (Note that A(3)/d is π-adically complete by Remark 2.3.2.)
This follows from Lemma 6.2.6. Similarly, the assertion (2) follows from Lemma 6.2.7. We note here
that, since q j (tl)− qi (tl)= pi j (xl) ∈ d L for 1≤ i < j ≤ 3, the ideal d(q1(t1), . . . , q1(tn))N + d(π, d)L
is unchanged if we replace q1 by qi (1≤ i ≤ 3). □

Remark 6.2.10. Assume that OE =Zp. Under the assumption that n=1 and R is p-torsion-free, Anschütz
and Le Bras [2023, Section 5.2] gave a proof of the analogue of Theorem 6.1.3 for minuscule Breuil–Kisin
modules. (We will come back to this result in Section 7.1.) In the proof, they use that the map K → K,
x 7→φ(x)/d is topologically nilpotent with respect to the (p, d)-adic topology [loc. cit., Lemma 5.15]. This
topological nilpotence may not be true if n ≥ 2 or p = 0 in R. We will use Lemma 6.2.7, Corollary 6.2.9,
and the fact that the local ring A is complete and noetherian to overcome this issue; see Section 6.4.
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6.3. Proof of Lemma 6.2.7. The proof of Lemma 6.2.7 will require some preliminary results. We first
introduce some notation.

If E is not contained in π A, then the image of E in A/π is a nonzerodivisor (since A/π is an integral
domain). In this case, the δE -ring A{φ(E)/π} is π -torsion-free, and is isomorphic to the OE -PD envelope
D(E)(A) of A with respect to the ideal (E); see Corollary 2.6.5. Let A′′ be the π-adic completion of
A{φ(E)/π}, and let g : A→ A′′ be the natural homomorphism. We note that A′′ is also π-torsion-free.
We consider the following pushout squares of δE -rings:

A
p′1
//

φ
��

B //

��

A(2) m
//

��

A
φ
��

A //

g
��

B ′ //

��

A(2)
′

//

��

A
g
��

A′′ // B ′′0 // A(2)
′′

0
// A′′

Let A(2)
′′

be the π -adic completion of A(2)
′′

0 and K ′′ the kernel of the induced homomorphism A(2)
′′

→ A′′.
Since A→ A(2) is flat (by Proposition 2.6.6 and [Yekutieli 2018, Theorem 1.5]), so is A′′→ A(2)

′′

0 . It
follows that A(2)

′′

is π -torsion-free. In the case where E ∈ π A, we set A(2)
′′

:= A(2) and K ′′ := K.

Lemma 6.3.1. Let the notation be as above. Then the following assertions hold:

(1) We have φ(K ′′)⊂ πK ′′.

(2) We have xi ∈ πK ′′ for any 1 ≤ i ≤ n. (Here we denote the image of xi ∈ B in A(2)
′′

again by xi .)
We set wi := xi/π ∈ K ′′. Then K ′′/πK ′′ is generated by the images of {δ j

E(wi )}1≤i≤n, j≥0 as an
A(2)

′′

-module.

Proof. If E ∈ π A, then the assertions follow from Lemma 6.2.6 and its proof. Thus, we may assume that E
is not contained in π A. Let h : A(2)→ A(2)

′′

denote the natural homomorphism. Since g(φ(E))/π ∈ A′′ is a
unit by Lemma 2.3.3(1), it follows that h(d)∈ A(2)

′′

is a unit multiple of π . The kernel K ′′ of A(2)
′′

→ A′′ can
be identified with the π -adic completion of h∗K. Therefore, the assertion (1) follows from Lemma 6.2.6.

Using that the image of g(φ(E)) in B ′′0 is a unit multiple of π , we see that A(2)
′′

agrees with the π -adic
completion of B ′′0 {x1/π, . . . , xn/π}. Since the kernel of B ′′0 → A′′ is generated by x1, . . . , xn , it follows
that the kernel of B ′′0 {x1/π, . . . , xn/π}→ A′′ is generated by {δ j

E(xi/π)}1≤i≤n, j≥0, which implies (2). □

Lemma 6.3.2. We define
φ1 : K ′′→ K ′′, x 7→ φ(x)/π.

The induced φ-linear homomorphism K ′′/πK ′′ → K ′′/πK ′′ is denoted by the same symbol φ1. Let
M ′′ ⊂ K ′′/πK ′′ be the A(2)

′′

-submodule generated by the images of φ1(w1), . . . , φ1(wn) ∈ K ′′. Then we
have inclusions

φ1(K ′′/πK ′′)⊂ M ′′ and φ1(M ′′)⊂ (t1, . . . , tn)M ′′,

where we denote the image of ti ∈ A(2) in A(2)
′′

again by ti .
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Proof. We have xq
= φ(x)−πδE(x) ∈ πK ′′ for every x ∈ K ′′ by Lemma 6.3.1. Let J ⊂ K ′′ be the ideal

generated by {xq/π}x∈K ′′ . For any x ∈ K ′′, we have

φ1(xq/π)= φ(xq/π)/π = φ(x)q/π2
= πq−1(φ1(x)q/π) ∈ π J,

and thus we obtain φ1(J )⊂ π J.
We shall prove that K ′′/(J +πK ′′) is generated by the images of w1, . . . , wn as an A(2)

′′

-module. By
Lemma 6.3.1, it suffices to show that for any j ≥ 0 and any i , the image of δ j

E(wi ) in K ′′/(J +πK ′′) is
contained in the A(2)

′′

-submodule of K ′′/(J +πK ′′) generated by the images of w1, . . . , wn . We proceed
by induction on j . If j = 0, then the assertion holds trivially. Assume that the assertion is true for some
j ≥ 0. Since

φ1(wi )= φ(xi )/π
2
= ((xi + ti )q − tq

i )/π
2
= ((πwi + ti )q − tq

i )/π
2,

we can write φ1(wi ) as
φ1(wi )= π

q−2w
q
i + (q/π)t

q−1
i wi +πbi (6-1)

for some element bi ∈ K ′′. For any x ∈ K ′′, we have δE(x)= φ1(x) in K ′′/J. Thus the image of δ j+1
E (wi )

in K ′′/(J + πK ′′) agrees with the one of φ1(δ
j
E(wi )), which is contained in the A(2)

′′

-submodule of
K ′′/(J +πK ′′) generated by the images of φ1(w1), . . . , φ1(wn) by the induction hypothesis. Then (6-1)
implies the assertion for j + 1.

We have shown that every x ∈ K ′′ can be written as

x =
( ∑

1≤i≤n

aiwi

)
+ b+πc

for some ai ∈ A(2)
′′

(1≤ i ≤ n), b ∈ J, and c ∈ K ′′. Since φ1(b) ∈ π J, the image of φ1(x) in K ′′/πK ′′

coincides with that of
∑

1≤i≤n φ(ai )φ1(wi ). This proves that φ1(K ′′/πK ′′) ⊂ M ′′. Moreover, since
φ1(w

q
i ) = φ(wi )φ1(w

q−1
i ) is contained in πK ′′, it follows from (6-1) that the image of φ1(φ1(wi ))

in K ′′/πK ′′ is equal to that of φ1((q/π)t
q−1
i wi ) = (q/π)t

q(q−1)
i φ1(wi ). This proves that φ1(M ′′) ⊂

(t1, . . . , tn)M ′′. □

We now prove Lemma 6.2.7.

Proof of Lemma 6.2.7. We first treat the case where E ∈ π A. In this case d is a unit multiple of π . Thus,
the assertion follows from Lemma 6.3.2.

We now assume that E is not contained in π A. We define

φ1 : K → K , x 7→ φ(x)/d.

The induced φ-linear homomorphism K/(π, d)K → K/(π, d)K is also denoted by φ1. Let M ⊂
K/(π, d)K be the A(2)-submodule generated by the images of φ1(y1), . . . , φ1(yn) ∈ K . It suffices to
prove that φ1(K/(π, d)K )⊂ M and φ1(M)⊂ (t1, . . . , tn)M.

Let f : A(2)→ A(2)
′

denote the natural homomorphism. Let K ′ be the kernel of the homomorphism
A(2)

′

→ A, which can be identified with f ∗K. We define φ′1 : K ′ → K ′ by x 7→ φ(x)/ f (d), and let
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M ′⊂K ′/(π, f (d))K ′ be the A(2)
′

-submodule generated by the images of φ′1( f (y1)), . . . , φ
′

1( f (yn))∈K ′.
Since φ : A→ A is faithfully flat, so is f . Therefore, in order to prove the assertion, it is enough to prove that

φ′1(K
′/(π, f (d))K ′)⊂ M ′ and φ′1(M

′)⊂ ( f (t1), . . . , f (tn))M ′. (6-2)

The homomorphism A(2)
′

→ A(2)
′′

induced by g : A→ A′′ is again denoted by g. The element g( f (d))
is a unit multiple of π in A(2)

′′

. Thus, for φ1 : K ′′→ K ′′ defined in Lemma 6.3.2, the element g(φ′1(x)) is
a unit multiple of φ1(g(x)) for any x ∈ K ′. Also, the induced homomorphism A(2)

′

/(π, f (d))→ A(2)
′′

/π ,
again denoted by g, sends M ′ into M ′′. It follows from Lemma 6.3.2 that, for any x ∈ K ′/(π, f (d))K ′

(resp. x ∈ M ′), we have

g(φ′1(x)) ∈ M ′′ (resp. g(φ′1(x)) ∈ (g( f (t1)), . . . , g( f (tn)))M ′′). (6-3)

Since A′′/π ≃ D(E)(A)/π , we can find a homomorphism

s : A′′/π→ A/(π, φ(E))

of OE -algebras such that the composition A/(π, φ(E)) g
−→ A′′/π s

−→ A/(π, φ(E)) is the identity; see
Example 2.6.2 and Lemma 2.6.3. We consider the following pushout squares of OE -algebras:

A′′/π //

s
��

A(2)
′′

/π //

s̃
��

A′′/π

s
��

A/(π, φ(E)) // A(2)
′

/(π, f (d)) // A/(π, φ(E))

The homomorphism g : A(2)
′

/(π, f (d))→ A(2)
′′

/π is a section of s̃. We observe that s̃(K ′′/πK ′′) ⊂
K ′/(π, f (d))K ′ and s̃(M ′′)⊂ M ′. It follows from (6-3) that, for any x ∈ K ′/(π, f (d))K ′ (resp. x ∈ M ′),
its image φ′1(x) = s̃(g(φ′1(x))) belongs to M ′ (resp. ( f (t1), . . . , f (tn))M ′). This proves (6-2), and the
proof of Lemma 6.2.7 is now complete. □

6.4. Deformations of isomorphisms. As in Section 6.2, we write (A, I )= (SO, (E)). In this subsection,
as a preparation for the proof of Theorem 6.1.3, we study deformations of isomorphisms of G-µ-displays
over (A, I ) along the morphisms m : (A(2), I (2)) → (A, I ) and m : (A(3), I (3)) → (A, I ) defined in
Section 6.2. Throughout this subsection, we assume that µ is 1-bounded.

Our setup is as follows. Let (A′, I ′) := (A(2), I (2)) (resp. (A′, I ′) := (A(3), I (3))). Let m : (A′, I ′)→
(A, I ) denote m : (A(2), I (2))→ (A, I ) (resp. m : (A(3), I (3))→ (A, I )). Let f1, f2 ∈ {p1, p2} (resp.
f1, f2 ∈ {q1, q2, q3}). We do not exclude the case where f1 = f2.

The purpose of this subsection is to prove the following result:

Proposition 6.4.1. Assume µ is 1-bounded. Let Q1 and Q2 be G-µ-displays over (A, I ). Then the map

m∗ : HomG- Dispµ(A′,I ′)( f ∗1 (Q1), f ∗2 (Q2))→ HomG- Dispµ(A,I )(Q1,Q2) (6-4)

induced by the base change functor m∗ : G- Dispµ(A
′, I ′)→ G- Dispµ(A, I ) is bijective.
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We need some preliminary results for the proof of Proposition 6.4.1. We will use the following notation.
Let H be a group scheme over O. For an ideal J ⊂ A′, we write

H(J ) := Ker(H(A′)→ H(A′/J ))

for the kernel of the homomorphism H(A′)→ H(A′/J ). If H = GO, then we simply write G(J ) :=
GO(J ).

Let K denote the kernel of m : A′→ A. (We note that if A′ = A(3), then this kernel was denoted by L
in Corollary 6.2.9.) Let d ∈ I ′ be a generator.

Lemma 6.4.2. Let J ⊂ A′ be an ideal such that J ⊂ d K and, for any x ∈ J, we have φ(x/d) ∈ J. Then
the homomorphism σµ,d : Gµ(A′, I ′)→ G(A′) (see (5-1)) sends G(J )⊂ Gµ(A′, I ′) into itself.

Proof. We note that, by Proposition 4.2.9, we have G(J )⊂ G(d K )⊂ Gµ(A′, I ′), and the multiplication
map U−µ ×SpecO Pµ→ GO induces a bijection

(Lie(U−µ )⊗O J )× Pµ(J )−→∼ G(J ).

Thus, it suffices to prove that σµ,d(Pµ(J ))⊂ G(J ) and σµ,d(Lie(U−µ )⊗O J )⊂ G(J ).
By Remark 4.1.3 and Lemma 4.2.2, we have µ(d)Pµ(J )µ(d)−1

⊂ Pµ(J ). (In fact, this holds for any
ideal J ⊂ A′.) Since φ(J )⊂ J, we have φ(G(J ))⊂ G(J ). It follows that σµ,d(Pµ(J ))⊂ G(J ).

Since µ is 1-bounded, the homomorphism Gµ(A′, I ′)→ G(A′), g 7→ µ(d)gµ(d)−1, restricts to a
homomorphism

Lie(U−µ )⊗O J → Lie(U−µ )⊗O
1
d

J, v 7→ v/d.

(See Remark 4.2.7.) Since φ((1/d)J )⊂ J, we obtain σµ,d(Lie(U−µ )⊗O J )⊂ G(J ). □

Definition 6.4.3. Let J ⊂ A′ be an ideal as in Lemma 6.4.2. For an element X ∈ G(A′), we define a
homomorphism

Ud,X : G(J )→ G(J ), g 7→ Xσµ,d(g)X−1.

We also define a map of sets
Vd,X : G(J )→ G(J ), g 7→ Ud,X (g)g−1.

Let J2 ⊂ J1 ⊂ A′ be two ideals which satisfy the assumption of Lemma 6.4.2. Then Ud,X : G(J1)→

G(J1) induces a homomorphism

G(J1)/G(J2)→ G(J1)/G(J2),

which we denote by the same symbol Ud,X . Let Vd,X : G(J1)/G(J2)→ G(J1)/G(J2) be the map of sets
defined by g 7→ Ud,X (g)g−1.

By Lemma 6.2.6 and Corollary 6.2.9, we have φ(K ) ⊂ d K. Thus, the ideal d K ⊂ A′ satisfies the
assumption of Lemma 6.4.2. We shall prove (in Proposition 6.4.7 below) that Vd,X : G(d K )→ G(d K )
is bijective for any X ∈ G(A′), from which we will deduce Proposition 6.4.1. For this purpose, we need
the following lemmas.
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Lemma 6.4.4. Let J2 ⊂ J1 ⊂ A′ be two ideals which satisfy the assumption of Lemma 6.4.2. Assume that
for any x ∈ J1, we have φ(x/d) ∈ J2. Then we have

σµ,d(G(J1))⊂ G(J2).

In particular, the map Vd,X : G(J1)/G(J2) → G(J1)/G(J2) is equal to the map g 7→ g−1 for any
X ∈ G(A′).

Proof. The same argument as in the proof of Lemma 6.4.2 shows that σµ,d(G(J1))⊂ G(J2). The second
assertion immediately follows from the first one. □

Lemma 6.4.5. Let J3 ⊂ J2 ⊂ J1 ⊂ A′ be three ideals which satisfy the assumption of Lemma 6.4.2. Let
X ∈ G(A′). If the maps

Vd,X : G(J1)/G(J2)→ G(J1)/G(J2) and Vd,X : G(J2)/G(J3)→ G(J2)/G(J3)

are bijective, then Vd,X : G(J1)/G(J3)→ G(J1)/G(J3) is also bijective.

Proof. Let us prove the surjectivity. Let h∈G(J1)/G(J3) be an element. The image h′∈G(J1)/G(J2) of h
can be written as h′ = Vd,X (g′) for some element g′ ∈ G(J1)/G(J2). We choose some g ∈ G(J1)/G(J3)

which is a lift of g′. Then we see that Ud,X (g)−1hg is contained in G(J2)/G(J3), so that there exists an
element g′′ ∈ G(J2)/G(J3) such that

Vd,X (g′′)= Ud,X (g′′)g′′−1
= Ud,X (g)−1hg.

It follows that h = Vd,X (gg′′). This proves that Vd,X : G(J1)/G(J3)→ G(J1)/G(J3) is surjective. The
proof of the injectivity is similar. □

Lemma 6.4.6. Let l ≥ 0 be an integer. For any X ∈ G(A′), the map

Vd,X : G((π, d)ld K )/G((π, d)l+1d K )→ G((π, d)ld K )/G((π, d)l+1d K )

is bijective.

Proof. Step 1. We set Kl := (π, d)l K. We consider the ideal K− :=K 2
+(π, d)K and let K−l := (π, d)l K−.

All of d Kl , d Kl+1, d K−l satisfy the assumption of Lemma 6.4.2. Since

φ(K 2)⊂ d2K 2
⊂ d(π, d)K ,

we have φ(K−l )⊂d Kl+1. Thus, it follows from Lemma 6.4.4 that Vd,X is bijective for G(d K−l )/G(d Kl+1).
By Lemma 6.4.5, it now suffices to show that Vd,X is bijective for G(d Kl)/G(d K−l ).

Step 2. By Lemma 6.2.7 and Corollary 6.2.9, there exists a finitely generated ideal M ⊂ A′ which is
contained in K such that φ(K ) ⊂ d M + d K− and φ(M) ⊂ (t1, . . . , tn)d M + d K−, where we abuse
notation and denote the image of ti ∈ A under the morphism p1 : A→ A′ (resp. q1 : A→ A′) if A′ = A(2)

(resp. if A′ = A(3)) by the same symbol. We set Ml := (π, d)l M ⊂ Kl . Then we have inclusions

φ(Kl)⊂ d Ml + d K−l and φ(Ml)⊂ (t1, . . . , tn)d Ml + d K−l . (6-5)
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In particular, the ideals d Ml + d K−l ⊂ d Kl satisfy the assumption of Lemma 6.4.4, so that Vd,X is
bijective for G(d Kl)/G(d Ml + d K−l ). By Lemma 6.4.5, it is enough to prove that Vd,X is bijective for
G(d Ml + d K−l )/G(d K−l ).

Step 3. We shall prove that

G(d Ml + d K−l )/G(d K−l )−→
∼ lim
←−−
r≥0

G(d Ml + d K−l )/G((t1, . . . , tn)r d Ml + d K−l ). (6-6)

To simplify the notation, we set C1 := A′/(d Ml + d K−l ) and C2 := A′/d K−l . Let N ⊂ C2 be the image
of d Ml + d K−l . We first claim that

A′ −→∼ lim
←−−
r≥0

A′/d Kr , (6-7)

C2 −→
∼ lim
←−−
r≥0

C2/(t1, . . . , tn)r N . (6-8)

Since d is a nonzerodivisor and K is (π, d)-adically complete, it follows that d K −→∼ lim
←−−r≥0 d K/d Kr .

This implies (6-7). Since N is killed by K, we see that N is a finitely generated module over A′/K −→∼ A.
Since A is noetherian and is (t1, . . . , tn)-adically complete, it follows that N is also (t1, . . . , tn)-adically
complete, which means that N −→∼ lim

←−−r≥0 N/(t1, . . . , tn)r N. This implies (6-8).
We next show that G(A′)→ G(C2) is surjective. Indeed, by (6-7) and the fact that G(A′/d Kr+1)→

G(A′/d Kr ) is surjective (as G is smooth), it follows that G(A′)→ G(A′/d Kr ) is surjective for any r .
Since we have (d K−l )

2
⊂ d Kl+1 ⊂ d K−l , we see that G(A′/d Kl+1)→ G(C2) is surjective (again by the

smoothness of G). Therefore G(A′)→ G(C2) is surjective, as desired. Similarly, it follows from (6-8)
that G(C2)→ G(C2/(t1, . . . , tn)r N ) is surjective.

Using the results obtained in the previous paragraph, we see that

G(d Ml + d K−l )/G(d K−l )−→
∼ Ker(G(C2)→ G(C1)),

G(d Ml + d K−l )/G((t1, . . . , tn)r d Ml + d K−l )−→
∼ Ker(G(C2/(t1, . . . , tn)r N )→ G(C1)).

Now (6-6) follows from (6-8).

Step 4. We claim that Vd,X is bijective for

G((t1, . . . , tn)r d Ml + d K−l )/G((t1, . . . , tn)r+1d Ml + d K−l )

for any r ≥ 0. Indeed, the second inclusion of (6-5) shows that the assumption of Lemma 6.4.4 is satisfied
in this case, and hence the assertion follows.

Using Lemma 6.4.5 repeatedly, we see that Vd,X is bijective for

G(d Ml + d K−l )/G((t1, . . . , tn)r d Ml + d K−l )

for any r ≥ 0. It then follows from (6-6) that Vd,X is bijective for G(d Ml + d K−l )/G(d K−l ) as well. □

Let us now prove the desired result.

Proposition 6.4.7. For any X ∈ G(A′), the map Vd,X : G(d K )→ G(d K ) is bijective.
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Proof. By (6-7) in the proof of Lemma 6.4.6, we have

G(d K )−→∼ lim
←−−
l≥0

G(d K )/G((π, d)ld K ).

In order to show that Vd,X : G(d K )→ G(d K ) is bijective, it suffices to check that

Vd,X : G(d K )/G((π, d)ld K )→ G(d K )/G((π, d)ld K )

is bijective for any l ≥ 0. This follows from Lemma 6.4.6 by using Lemma 6.4.5 repeatedly. □

We also need the following lemma:

Lemma 6.4.8. Let Q be a G-µ-display over (A, I ). Then there exists a finite extension k̃ of k such that the
base change of Q to (AÕ, I AÕ) is banal, where Õ :=W (k̃)⊗W (Fq )OE and AÕ := A⊗OÕ= Õ[[t1, . . . , tn]].

Proof. The Hodge filtration P(Q)A/I = P(Q)R of Q is a (Pµ)R-torsor over Spec R. There exists a finite
extension k̃ of k such that P(Q)R×Spec R Spec k̃ is trivial. Since Pµ is smooth and R⊗O Õ is a complete
local ring, it follows that P(Q)R is trivial over R⊗O Õ. By Proposition 5.4.5, the base change of Q to
(AÕ, I AÕ) is banal. □

Proof of Proposition 6.4.1. By Lemma 6.4.8, there exists a finite Galois extension k̃ of k such that the
base changes of Q1 and Q2 to (AÕ, I AÕ) are banal. Here Õ :=W (k̃)⊗W (Fq )OE and AÕ := A⊗O Õ; we
use the same notation for O-algebras. We can identify (A′Õ, I ′A′Õ) with a coproduct of two (resp. three)
copies of (AÕ, I AÕ) in (RÕ)1,OE if A′ = A(2) (resp. if A′ = A(3)). By Galois descent for G-µ-displays,
it suffices to prove the same statement for banal G-µ-displays over (AÕ, I AÕ). We may thus assume
without loss of generality that Q1 and Q2 are banal G-µ-displays over (A, I ).

If Q1 and Q2 are not isomorphic to each other, then the assertion holds trivially. Thus, we may
assume that Q1 = Q2 = QY for some Y ∈ G(A)I . Let d := f2(E). We have f1(E) = ud for some
u ∈ A′×. With the choice of d ∈ I ′, the G-µ-displays f ∗1 (QY ) and f ∗2 (QY ) correspond to the elements
f1(YE)φ(µ(u)), f2(YE)∈G(A′)d , respectively. Thus we can identify HomG- Dispµ(A′,I ′)( f ∗1 (QY ), f ∗2 (QY ))

with the set
{g ∈ Gµ(A′, I ′) | g−1 f2(YE)σµ,d(g)= f1(YE)φ(µ(u))}.

We set X := f2(YE). We shall prove that the map (6-4) is injective. Let g, h ∈ Gµ(A′, I ′) be two
elements in HomG- Dispµ(A′,I ′)( f ∗1 (Q1), f ∗2 (Q2)) such that m(g)= m(h) in Gµ(A, I ). We set β := gh−1.
Since m(β)= 1, we have µ(d)βµ(d)−1

∈G(K ). It then follows from φ(K )⊂ d K that σµ,d(β)∈G(d K ).
The equalities

g−1 Xσµ,d(g)= f1(YE)φ(µ(u))= h−1 Xσµ,d(h)

imply that β = Xσµ,d(β)X−1. It follows that β ∈ G(d K ), and we have Vd,X (β) = 1 for the map
Vd,X : G(d K )→ G(d K ). Since Vd,X is bijective by Proposition 6.4.7, we obtain β = 1.

It still remains to prove that the map (6-4) is surjective. For this, it is sufficient to prove that
HomG- Dispµ(A′,I ′)( f ∗1 (QY ), f ∗2 (QY )) is not empty. (Once we have obtained an isomorphism g : f ∗1 (QY )−→

∼

f ∗2 (QY ), we can write any isomorphism h : QY −→
∼ QY as m∗( f ∗2 (h ◦m∗(g−1)) ◦ g).) We claim that
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φ(µ(u)) ∈ G(d K ) and γ := f2(YE)
−1 f1(YE) ∈ G(d K ). Indeed, since m(u)= 1, we have µ(u) ∈ G(K ),

which in turn implies that φ(µ(u)) ∈ G(d K ). Since the morphisms f1 and f2 induce the same homo-
morphism R → A′/I ′, we see that γ ∈ G(I ′). Using that I ′ ∩ K = d K, we then obtain γ ∈ G(d K ).
Since Vd,X : G(d K )→ G(d K ) is bijective, there exists an element g ∈ G(d K ) such that Vd,X (g−1)=

Xφ(µ(u))−1γ−1 X−1, or equivalently

g−1 f2(YE)σµ,d(g)= f1(YE)φ(µ(u)).

In other words, the element g gives an isomorphism f ∗1 (QY )−→
∼ f ∗2 (QY ). □

6.5. Proof of Theorem 6.1.3. In this section, we prove Theorem 6.1.3 using our previous results.
As in Section 6.2, we write (A, I )= (SO, (E)). Let

G- DispDD
µ (A, I )

be the groupoid of pairs (Q, ϵ) consisting of a G-µ-display Q over (A, I ) and an isomorphism ϵ :

p∗1Q−→∼ p∗2Q of G-µ-displays over (A(2), I (2)) satisfying the cocycle condition p∗13ϵ = p∗23ϵ ◦ p∗12ϵ. An
isomorphism (Q, ϵ)−→∼ (Q′, ϵ′) is an isomorphism f :Q−→∼ Q′ of G-µ-displays over (A, I ) such that
ϵ′ ◦ (p∗1 f )= (p∗2 f ) ◦ ϵ.

For a prismatic G-µ-display Q over R, we have the associated isomorphism

γpi : p∗i (Q(A,I ))−→
∼ Q(A(2),I (2))

for i = 1, 2. Let ϵ := γ−1
p2
◦ γp1 . Then ϵ satisfies the cocycle condition, so that the pair (Q(A,I ), ϵ) is an

object of DispDD
µ (A, I ). This construction induces a functor

G- Dispµ((R)1,OE )→ G- DispDD
µ (A, I ), Q 7→ (Q(A,I ), ϵ).

Proposition 6.5.1. The functor G- Dispµ((R)1,OE )→ G- DispDD
µ (A, I ) is an equivalence.

Proof. This is a formal consequence of Propositions 5.2.8 and 6.2.1. □

Proof of Theorem 6.1.3. We assume that µ is 1-bounded. By virtue of Proposition 6.5.1, it suffices to
show that the forgetful functor

G- DispDD
µ (A, I )→ G- Dispµ(A, I )

is an equivalence. Let m : (A(2), I (2))→ (A, I ) be the unique morphism in (R)1,OE such that m◦pi = id(A,I )
for i = 1, 2, and let m′ : (A(3), I (3))→ (A, I ) be the unique morphism in (R)1,OE such that m◦qi = id(A,I )
for i = 1, 2, 3. Let Q be a G-µ-display over (A, I ). We claim that an isomorphism ϵ : p∗1Q −→∼ p∗2Q
satisfies the cocycle condition p∗13ϵ = p∗23ϵ ◦ p∗12ϵ if and only if m∗ϵ = idQ. Indeed, since the map

m′∗ : HomG- Dispµ(A(3),I (3))(q
∗

1Q, q∗3Q)→ HomG- Dispµ(A,I )(Q,Q)

is bijective by Proposition 6.4.1, we see that ϵ satisfies the cocycle condition p∗13ϵ = p∗23ϵ ◦ p∗12ϵ if and
only if m∗ϵ = m∗ϵ ◦m∗ϵ, which is equivalent to saying that m∗ϵ = idQ.
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By Proposition 6.4.1, the map

m∗ : HomG- Dispµ(A(2),I (2))(p
∗

1Q, p∗2Q)→ HomG- Dispµ(A,I )(Q,Q)

is bijective. Therefore, for any G-µ-display Q over (A, I ), there exists a unique isomorphism ϵ : p∗1Q−→∼

p∗2Q satisfying the cocycle condition p∗13ϵ = p∗23ϵ ◦ p∗12ϵ, and ϵ is characterized by the condition that
m∗ϵ= idQ. It follows that the forgetful functor G- DispDD

µ (A, I )→G- Dispµ(A, I ) is an equivalence. □

7. p-divisible groups and prismatic Dieudonné crystals

In this section, we make a few remarks on prismatic Dieudonné crystals, which are introduced in [Anschütz
and Le Bras 2023].

7.1. A remark on prismatic Dieudonné crystals. Let R be a π-adically complete OE -algebra. Recall
the sheaf O1 on the site (R)op

1,OE
from Remark 2.5.5.

We say that an O1-module M on (R)op
1,OE

is a prismatic crystal in vector bundles if M(A, I ) is a finite
projective A-module for any (A, I ) ∈ (R)1,OE , and for any morphism (A, I )→ (A′, I ′) in (R)1,OE , the
natural homomorphism

M(A, I )⊗A A′→M(A′, I ′)

is bijective. A prismatic Dieudonné crystal on (R)op
1,OE

(or on (R)1,OE ) is a prismatic crystal M in vector
bundles on (R)op

1,OE
equipped with a φ-linear homomorphism

ϕM :M→M

such that for any (A, I ) ∈ (R)1,OE , the finite projective A-module M(A, I ) with the linearization
1⊗ ϕM : φ∗(M(A, I ))→M(A, I ) is a minuscule Breuil–Kisin module over (A, I ) in the sense of
Definition 3.1.5 (see also Proposition 3.1.6). For a bounded OE -prism (A, I ), let

BKmin(A, I )

be the category of minuscule Breuil–Kisin modules over (A, I ). Then the category of prismatic Dieudonné
crystals on (R)1,OE is equivalent to the category

2− lim
←−−(A,I )∈(R)1,OE

BKmin(A, I ).

As in Section 6, let R be a complete regular local ring over O with residue field k. Let (SO, (E)) be
an OE -prism of Breuil–Kisin type, where SO =O[[t1, . . . , tn]], with an isomorphism R ≃SO/E over O.
By using the results of Section 6, we can prove the following proposition, which is obtained in the proof
of [Anschütz and Le Bras 2023, Theorem 5.12] if n ≤ 1 (and OE = Zp).

Proposition 7.1.1. The functor M 7→M(SO, (E)) from the category of prismatic Dieudonné crystals on
(R)1,OE to the category BKmin(SO, (E)) is an equivalence.

Proof. This follows from Corollary 5.3.11, Theorem 6.1.3, and the following fact: a functor of additive
categories is an equivalence if and only if it induces an equivalence of the associated groupoids. This fact
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follows since homomorphisms f : X→ Y in an additive category can be completely described in terms
of automorphisms of X ⊕ Y by considering

( idX
f

0
idY

)
. □

7.2. Quasisyntomic rings. In the following (and in Section 8 below), we will need the notions of
quasisyntomic rings in the sense of [Bhatt et al. 2019, Definition 4.10] and quasiregular semiperfectoid
rings in the sense of [loc. cit., Definition 4.20]. Let

QSyn

be the category of quasisyntomic rings and let

QRSPerfd⊂ QSyn

be the full subcategory spanned by quasiregular semiperfectoid rings. We endow both QSynop and
QRSPerfdop with the quasisyntomic topology, i.e., the topology generated by the quasisyntomic coverings;
see [loc. cit., Definition 4.10]. We will assume that the reader is familiar with basic properties of QSyn
and QRSPerfd discussed in [loc. cit., Section 4]. Here we just recall that quasiregular semiperfectoid
rings form a basis for QSyn; see [loc. cit., Lemma 4.28].

Example 7.2.1. A p-adically complete regular local ring is a quasisyntomic ring (see [Anschütz and
Le Bras 2023, Example 3.17]). A perfectoid ring is a quasiregular semiperfectoid ring (see [Bhatt et al.
2019, Example 4.24]).

Remark 7.2.2. Let R ∈ QSyn be a quasisyntomic ring. In [Anschütz and Le Bras 2023, Definition 4.5],
Anschütz–Le Bras defined prismatic Dieudonné crystals over R as sheaves on the quasisyntomic site
of R. By virtue of [loc. cit., Proposition 4.4], the category of prismatic Dieudonné crystals on (R)1 in
our sense is equivalent to the category of prismatic Dieudonné crystals over R in the sense of [loc. cit.,
Definition 4.5].

7.3. p-divisible groups and minuscule Breuil-Kisin modules. In this subsection, we consider the case
where OE = Zp. Let R be a p-adically complete ring, and let G be a p-divisible group over Spec R. We
define the functors

G : (R)1→ Set, (A, I ) 7→ G(A/I ),

G[pn
] : (R)1→ Set, (A, I ) 7→ G[pn

](A/I ).

These functors form sheaves on the site (R)op
1 . In [loc. cit., Proposition 4.69], it is proved that the

O1-module
Ext1

(R)1(G,O1)

on (R)op
1 is a prismatic crystal in vector bundles. (Here we simply write Ext1

(R)1(G,O1) rather than
Ext1

(R)op
1

(G,O1).)

Remark 7.3.1. (1) For an integer n ≥ 1, the map [pn
] : G → G induced by multiplication by pn is

surjective. This follows from [loc. cit., Corollary 3.25].
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(2) We have Hom(R)1(G,O1)= 0. Indeed, since [p] : G→ G is surjective and the topos associated with
(R)op

1 is replete in the sense of [Bhatt and Scholze 2015, Definition 3.1.1], the projection lim
←−−[p] G→ G

is surjective. Since O1(A, I ) = A is p-adically complete for any (A, I ) ∈ (R)1, we can conclude that
Hom(R)1(G,O1)= 0. As a consequence, the local-to-global spectral sequence implies that

Ext1(A,I )1(G,O1)−→
∼ Ext1

(R)1(G,O1)(A, I )

for any (A, I ) ∈ (R)1. Here we regard the site (A, I )op
1 as the localization of (R)op

1 at (A, I ), and the
restriction of G to (A, I )op

1 is denoted by the same symbol. In particular Ext1(A,I )1(G,O1) is a finite
projective A-module and its formation commutes with base change along any morphism (A, I )→ (A′, I ′)
in (R)1.

We assume that R is quasisyntomic. In [Anschütz and Le Bras 2023, Theorem 4.71], it is proved
that Ext1

(R)1(G,O1) with the φ-linear homomorphism Ext1
(R)1(G,O1)→ Ext1

(R)1(G,O1) induced by the
Frobenius φ :O1→O1 is a prismatic Dieudonné crystal. More precisely, they showed that Ext1

(R)1(G,O1)
is admissible in the sense of [loc. cit., Definition 4.5]. (See also Remark 7.2.2.) We shall recall the
argument.

Proposition 7.3.2 [Anschütz and Le Bras 2023, Theorem 4.71]. Let R ∈ QSyn and (A, I ) ∈ (R)1. We
write M := Ext1(A,I )1(G,O1). Then M with the induced homomorphism FM : φ

∗M→ M is a minuscule
Breuil–Kisin module over (A, I ).

Proof. By the fact that the formation of Ext1(A,I )1(G,O1) commutes with base change along any morphism
(A, I )→ (A′, I ′) (see Remark 7.3.1) and Corollary 3.1.15, the assertion can be checked (p, I )-completely
flat locally. Let R → R′ be a quasisyntomic covering with R′ a quasiregular semiperfectoid ring.
Applying [Bhatt and Scholze 2022, Proposition 7.11] to the p-adic completion of A/I ⊗R R′, which is
a quasisyntomic covering of A/I, we can find a flat covering (A, I )→ (A′, I ′) in (R)1 such that there
exists a homomorphism R′→ A′/I ′ over R. After replacing R by R′ and replacing (A, I ) by (A′, I ′), we
may assume that R is a quasiregular semiperfectoid ring. Then, by choosing a surjective homomorphism
from a perfectoid ring to R and using [Anschütz and Le Bras 2023, Corollary 2.10, Lemma 4.70], we may
assume that R is a perfectoid ring and (A, I )= (W (R♭), IR). (Here we regard (W (R♭), IR) as an object
of (R)1 via the homomorphism θ :W (R♭)→ R. In [loc. cit.], the composition θ ◦φ−1 is used instead.)

Let ξ ∈ IR be a generator. By Proposition 3.1.6, it suffices to prove that the cokernel of FM is killed
by ξ . By Remark 5.6.2(4) and p-complete arc-descent (Proposition 5.6.3), we may further assume that R
is a p-adically complete valuation ring of rank ≤ 1 with algebraically closed fraction field.

If p = 0 in R, then R is perfect by Example 2.4.1. In this case, the Frobenius FM can be identified
with the homomorphism

Ext1(A,I )1((φ
∗G),O1)→ Ext1(A,I )1(G,O1)

induced by the relative Frobenius G→ φ∗G. Thus, the Verschiebung homomorphism φ∗G→ G induces a
W (R)-linear homomorphism VM : M→ φ∗M such that FM ◦VM = p, which in turn implies the assertion.
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It remains to treat the case where p is a nonzerodivisor in R, so that R is the ring of integers OC of an
algebraically closed nonarchimedean extension C of Qp. We set

Mn := Ext1
(W (O♭

C ),IOC )1
(G[pn

],O1).

By the proof of [Anschütz and Le Bras 2023, Proposition 4.69], the natural homomorphism M→ Mn

induces an isomorphism M/pn
−→∼ Mn for any n ≥ 1. In particular, we obtain

M −→∼ lim
←−−

n
Mn

and Mn is a free Wn(O
♭
C)-module of finite rank. We claim that the cokernel of the Frobenius FMn :

φ∗Mn→ Mn is killed by ξ . Indeed, there is an embedding G[pn
] ↪→ X into an abelian scheme X over

SpecOC ; see [Berthelot et al. 1982, Théorème 3.1.1]. Let Y be the p-adic completion of X , which is a
smooth p-adic formal scheme over SpfOC . It follows from the proofs of [Anschütz and Le Bras 2023,
Theorem 4.62, Proposition 4.66] that there exists a surjection

H 1
1 (Y/W (O♭

C))→ Mn

which is compatible with Frobenius homomorphisms. Here H 1
1 (Y/W (O♭

C)) is the first prismatic co-
homology of Y (with respect to (W (O♭

C), IOC )) defined in [Bhatt and Scholze 2022]. By [loc. cit.,
Theorem 1.8(6)], the cokernel of the Frobenius

φ∗H 1
1 (Y/W (O♭

C))→ H 1
1 (Y/W (O♭

C))

is killed by ξ , which in turn implies the claim. Since the image of ξ in Wn(O
♭
C) is a nonzerodivisor, it fol-

lows that FMn is injective. Since FM = lim
←−−n FMn , we can conclude that the cokernel of FM is killed by ξ . □

Remark 7.3.3. Our proof of Proposition 7.3.2 in the case where A = OC is slightly different from
that given in [Anschütz and Le Bras 2023]. For example, we do not use [Scholze and Weinstein 2020,
Proposition 14.9.4] (see the proof of [Anschütz and Le Bras 2023, Proposition 4.48]).

Finally, we recall the following classification theorem for p-divisible groups given in [Anschütz and
Le Bras 2023]. Let R be a complete regular local ring with perfect residue field k of characteristic p. Let
(S, (E)) be a prism of Breuil–Kisin type, where S :=W (k)[[t1, . . . , tn]], with an isomorphism R ≃S/E
which lifts idk : k→ k.

Theorem 7.3.4 [Anschütz and Le Bras 2023, Theorem 4.74, Theorem 5.12].

(1) The contravariant functor

{p-divisible groups over Spec R} → {prismatic Dieudonné crystals on (R)1}

defined by G 7→ Ext1
(R)1(G,O1) is an antiequivalence of categories.

(2) The contravariant functor

{p-divisible groups over Spec R} → {minuscule Breuil–Kisin modules over (S, (E))}

defined by G 7→ Ext1(S,(E))1(G,O1) is an antiequivalence of categories.
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Proof. (1) This is a consequence of [Anschütz and Le Bras 2023, Theorem 4.74, Proposition 5.10].

(2) The assertion follows from (1) and Proposition 7.1.1. This result was already stated in [loc. cit.,
Theorem 5.12], and the proof was given in the case where n ≤ 1. □

8. Comparison with prismatic F-gauges

For the sake of completeness, we discuss the relation between our prismatic G-µ-displays and prismatic
F-gauges introduced in [Drinfeld 2024, 1.8.1; Bhatt and Lurie 2022a; 2022b; Bhatt 2022, Definition 6.1.1].
For simplicity, we assume that OE = Zp throughout this section, and we restrict ourselves to the case
where base rings R are quasisyntomic. In this case, Guo and Li [2023] studied prismatic F-gauges over
R in a slightly different way, without using the original stacky approach. Here we follow the approach
employed in [Guo and Li 2023]. In Section 8.1, we compare prismatic F-gauges in vector bundles
with displayed Breuil–Kisin modules. In Section 8.2, we introduce prismatic G-F-gauges of type µ and
explain their relation to prismatic G-µ-displays.

We work with the category QSyn of quasisyntomic rings and the full subcategory QRSPerfd⊂ QSyn
spanned by quasiregular semiperfectoid rings (see Section 7.2).

8.1. Prismatic F-gauges in vector bundles. We recall the definition of prismatic F-gauges in vector
bundles over quasisyntomic rings, following [Guo and Li 2023].

Let S∈QRSPerfd be a quasiregular semiperfectoid ring. By [Bhatt and Scholze 2022, Proposition 7.10],
the category (S)1 admits an initial object

(1S, IS) ∈ (S)1.

Moreover the bounded prism (1S, IS) is orientable. We often omit the subscript and simply write I = IS .
Following [loc. cit., Definition 12.1], we define

FiliN (1S) := {x ∈1S | φ(x) ∈ I i1S}

for a nonnegative integer i ≥ 0. For a negative integer i < 0, we set FiliN (1S) =1S . The filtration
{FiliN (1S)}i∈Z is called the Nygaard filtration. We recall the following terminology from [Bhatt 2022,
Section 5.5].

Definition 8.1.1. The extended Rees algebra Rees(Fil•N (1S)) of the Nygaard filtration {FiliN (1S)}i∈Z is
defined by

Rees(Fil•N (1S)) :=
⊕
i∈Z

FiliN (1S)t−i
⊂1S[t, t−1

].

We view Rees(Fil•N (1S)) as a graded ring, where the degree of t is −1. Let

τ : Rees(Fil•N (1S))→1S

be the homomorphism of 1S-algebras defined by t 7→ 1. We consider the graded ring
⊕

i∈Z I i t−i
⊂

1S[1/I ][t, t−1
]. Let

σ : Rees(Fil•N (1S))→
⊕
i∈Z

I i t−i

be the graded homomorphism defined by ai t−i
7→ φ(ai )t−i for any i ∈ Z.
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Remark 8.1.2. For the grading of Rees(Fil•N (1S)), our sign convention is opposite to that of [Bhatt
2022], where the degree of t is defined to be 1. Our grading is chosen to be consistent with the convention
of [Lau 2021].

Definition 8.1.3 (Drinfeld, Bhatt–Lurie). Let S ∈ QRSPerfd. A prismatic F-gauge in vector bundles
over S is a pair (N , FN ) consisting of a graded Rees(Fil•N (1S))-module N which is finite projective as a
Rees(Fil•N (1S))-module, and an isomorphism

FN : (σ
∗N )0 −→∼ τ ∗N

of1S-modules. Here (σ ∗N )0 is the degree-0 part of the graded
⊕

i∈Z I i t−i -module σ ∗N.

Let F-Gaugevect(S) be the category of prismatic F-gauges in vector bundles over S.

Remark 8.1.4. Let M =
⊕

i∈Z Mi be a graded
⊕

i∈Z I i t−i -module. For any i ∈ Z, we have a natural
isomorphism M0⊗1S I i t−i

−→∼ Mi of1S-modules. It follows that the functor M 7→ M0 from the category
of graded

⊕
i∈Z I i t−i -modules to the category of1S-modules is an equivalence, whose inverse is given

by L 7→ L ⊗1S

(⊕
i∈Z I i t−i

)
.

Remark 8.1.5. The notion of prismatic F-gauges in vector bundles is closely related to the notion of
(higher) displays in the sense of [Lau 2021, Definition 3.2.1]. See Remark 8.2.7 for more details.

We collect some useful facts about graded Rees(Fil•N (1S))-modules.

Remark 8.1.6. Let N =
⊕

i∈Z Ni be a graded Rees(Fil•N (1S))-module which is finite projective as a
Rees(Fil•N (1S))-module. Then each degree-i part Ni is a direct summand of a1S-module of the form⊕m

j=1 Fili j
N (1S)t−i j , and in particular Ni is (p, I )-adically complete. This follows from the following

fact: for a graded ring A, a graded A-module N is projective as an A-module if and only if N is projective
in the category of graded A-modules; see [Lau 2021, Lemma 3.0.1].

Let
ρ : Rees(Fil•N (1S))→1S/Fil1N (1S) (8-1)

be the composition of the projection Rees(Fil•N (1S))→1S with the natural homomorphism 1S →

1S/Fil1N (1S). The map ρ is a ring homomorphism. For an integer n ≥ 1, we write

1N
S,n := Rees(Fil•N (1S))⊗1S 1S/(p, I )n.

Let ρ̄ :1N
S,n→1S/(Fil1N (1S)+ (p, I )) be the homomorphism induced by ρ.

Lemma 8.1.7 (cf. [Lau 2021, Lemma 3.1.1, Corollary 3.1.2]).

(1) Let M be a finite graded1N
S,n-module. If ρ̄∗M = 0, then we have M = 0.

(2) Let M and N be finite graded1N
S,n-modules. Assume that N is projective as a1N

S,n-module. Then a
homomorphism f : M→ N of graded1N

S,n-modules is an isomorphism if ρ̄∗ f : ρ̄∗M→ ρ̄∗N is an
isomorphism.
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Proof. (1) By [Anschütz and Le Bras 2023, Lemma 4.28], the pair (1S,Fil1N (1S)) is henselian. In
particular we have Fil1N (1S)⊂ rad(1S). Using this fact, we can prove the assertion by the same argument
as in the proof of [Lau 2021, Lemma 3.1.1].

(2) By (1), we see that f is surjective. Since N is projective as a graded1N
S,n-module (Remark 8.1.6),

we have M ≃ N ⊕Ker f as graded1N
S,n-modules. Thus Ker f is a finite graded1N

S,n-module such that
ρ̄∗Ker f = 0. By (1) again, we have Ker f = 0. □

Corollary 8.1.8. Let N =
⊕

i∈Z Ni be a graded Rees(Fil•N (1S))-module with the following properties:

(1) The degree-i part Ni is (p, I )-adically complete for every i ∈ Z.

(2) N n
:= N/(p, I )n N is a finite projective1N

S,n-module for every n ≥ 1.

Then there exists a graded finite projective1S-module L with an isomorphism

L ⊗1S Rees(Fil•N (1S))≃ N

of graded Rees(Fil•N (1S))-modules. In particular N is a finite projective Rees(Fil•N (1S))-module.

Proof. Since1S is henselian with respect to both ideals Fil1N (1S) and (p, I ), there exists a graded finite
projective1S-module L with an isomorphism

L/(Fil1N (1S)+ (p, I ))L −→∼ ρ̄∗N 1

of graded modules (by [Stacks 2005–, Tag 0D4A] or [Greco 1968, Theorem 5.1]). This isomorphism lifts
to a homomorphism

f : L ⊗1S Rees(Fil•N (1S))→ N

of graded Rees(Fil•N (1S))-modules (see Remark 8.1.6). By Lemma 8.1.7, the reduction modulo (p, I )n

of f is bijective for every n. Since degree-i parts of L ⊗1S Rees(Fil•N (1S)) and N are (p, I )-adically
complete for every i ∈ Z, it follows that f is an isomorphism. □

For a bounded prism (A, I ), let BKdisp(A, I ) be the category of displayed Breuil–Kisin modules over
(A, I ) (see Definition 3.1.5). Prismatic F-gauges in vector bundles over S can be related to displayed
Breuil–Kisin modules over (1S, IS) as follows.

Proposition 8.1.9. Let S ∈ QRSPerfd. There exists a fully faithful functor

F-Gaugevect(S)→ BKdisp(1S, IS)

which is compatible with base change along any homomorphism S→ S′ in QRSPerfd.

Proof. To each (N , FN ) ∈ F-Gaugevect(S), we attach a displayed Breuil–Kisin module (M, FM) over
(1S, I ) as follows. Let M := τ ∗N. The kernel of τ : Rees(Fil•N (1S))→1S is generated by t − 1, so
that M = N/(t − 1)N. It follows that the natural homomorphism Ni → M of1S-modules is injective,
whose image is denoted by Fili (M) ⊂ M. We have Fili+1(M) ⊂ Fili (M), and the corresponding map
Ni+1→ Ni is given by x 7→ t x . Moreover we have M =

⋃
i Fili (M). Let i be a small enough integer
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such that Fili (M)= M. We define φ∗M→ M[1/I ] to be the composition

φ∗M = φ∗ Fili (M)−→∼ φ∗Ni → (σ ∗N )i −→∼ (σ ∗N )0⊗1S I i t−i FN
−→ M ⊗1S I i t−i t 7→1

−−→ M[1/I ].

(For the isomorphism (σ ∗N )i −→∼ (σ ∗N )0⊗1S I i t−i, see Remark 8.1.4.) This homomorphism φ∗M→
M[1/I ] is independent of the choice of i . Let FM : (φ

∗M)[1/I ]→M[1/I ] be the induced homomorphism.
We shall prove that (M, FM) is a displayed Breuil–Kisin module over (1S, I ). By Corollary 8.1.8, we

may assume that
N = L ⊗1S Rees(Fil•N (1S))

for some graded finite projective1S-module L =
⊕

j∈Z L(−1)
j . Then we have M = L and

Fili (M)=
(⊕

j≥i

L(−1)
j

)
⊕

(⊕
j<i

Fili− j
N (1S)L

(−1)
j

)
(8-2)

for every i ∈ Z. We set L j := φ
∗L(−1)

j . By sending t to 1, we obtain (σ ∗N )0 −→∼
⊕

j∈Z(L j ⊗1S I− j ),

and the isomorphism FN can be written as

FN :
⊕
j∈Z

(L j ⊗1S I− j )−→∼ M.

Now FM :
⊕

j∈Z L j [1/I ] → M[1/I ] is the base change of FN . (In particular FM is an isomorphism.)
Recall the filtration {Fili (φ∗M)}i∈Z of φ∗M from Definition 3.1.2. We see that Fili (φ∗M)⊂ φ∗M is the
intersection of φ∗M =

⊕
j∈Z L j with

⊕
j∈Z(L j ⊗1S I i− j ), and thus

Fili (φ∗M)=
(⊕

j≥i

L j

)
⊕

(⊕
j<i

I i− j L j

)
. (8-3)

From this description, we see that (M, FM) is a displayed Breuil–Kisin module. (Moreover φ∗M =⊕
j∈Z L j is a normal decomposition in the sense of Definition 3.1.10.)
We have constructed a functor F-Gaugevect(S)→ BKdisp(1S, IS). The full faithfulness of this functor

follows from [Guo and Li 2023, Corollary 2.53]. The important point is that the filtration {Fili (M)}i∈Z of
M can be recovered from (M, FM). Namely, Fili (M) agrees with the inverse image of M ⊗1S I i under
the composition

M x 7→1⊗x
−−−−→ (φ∗M)[1/I ] FM

−→ M[1/I ].

(Compare (8-2) with (8-3).) Since the full faithfulness of the functor also follows from Example 5.3.10,
Example 8.2.9, and Proposition 8.2.11 below (compare with the argument in the proof of Proposition 7.1.1),
we omit the details here. □

The following result is essential for the definition of prismatic F-gauges in vector bundles over a
quasisyntomic ring.

Proposition 8.1.10. The fibered category over QRSPerfdop which associates to each S ∈ QRSPerfd the
category F-Gaugevect(S) satisfies descent with respect to the quasisyntomic topology.
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Proof. This was originally proved by Bhatt and Lurie (see [Bhatt 2022, Remark 5.5.18]). In [Guo and
Li 2023, Proposition 2.29], this result was obtained by a slightly different method. We briefly recall the
argument given in that proposition.

Let S→ S′ be a quasisyntomic covering in QRSPerfd. By the proof of [loc. cit., Proposition 2.29], the
induced homomorphism1N

S,n→1N
S′,n is faithfully flat for every n ≥ 1, and for a homomorphism S→ S1

in QRSPerfd, the following natural homomorphism of graded rings is an isomorphism:

1N
S′,n ⊗1N

S,n
1N

S1,n −→
∼ 1N

S′⊗̂S S1,n
,

where S′ ⊗̂S S1 ∈ QRSPerfd is the p-adic completion of S′⊗S S1. Using these results, we can prove that
the natural functor from the category of prismatic F-gauges in vector bundles over S to the category
of prismatic F-gauges in vector bundles over S′ with a descent datum (with respect to S→ S′) is an
equivalence. We only prove the essential surjectivity of the functor.

Let (N ′, FN ′)∈ F-Gaugevect(S′) with a descent datum. By the results recalled in the previous paragraph
and by faithfully flat descent, we see that, for every n ≥ 1, the graded1N

S′,n-module N ′/(p, I )n N ′ with
the descent datum arises from a graded1N

S,n-module N n
=

⊕
i∈Z N n

i such that N n is finite projective as a
1N

S,n-module. Let Ni := lim
←−−n N n

i and we define N :=
⊕

i∈Z Ni , which is a graded Rees(Fil•N (1S))-module.
We have N/(p, I )n N = N n for every n ≥ 1. By Corollary 8.1.8, we see that N is a finite projective
Rees(Fil•N (1S))-module. Moreover the natural homomorphism

N ⊗Rees(Fil•N (1S)) Rees(Fil•N (1S′))→ N ′

is an isomorphism (as its reduction modulo (p, I )n is an isomorphism for every n). Since (1S, IS)→

(1S′, IS′) is a faithfully flat map of OE -prisms and the (p, I )-adic completion of1S′⊗1S1S′ is isomorphic
to1S′⊗̂S S′ (see the proof of [Guo and Li 2023, Proposition 2.29]), the isomorphism FN ′ descends to an
isomorphism FN : (σ

∗N )0 −→∼ τ ∗N by Proposition 2.5.6. This shows that (N ′, FN ′) with the descent
datum arises from (N , FN ) ∈ F-Gaugevect(S). □

Proposition 8.1.10, together with [Bhatt et al. 2019, Proposition 4.31], shows that the fibered category
S 7→ F-Gaugevect(S) over QRSPerfdop extends uniquely to a fibered category

R 7→ F-Gaugevect(R)

over the category QSynop that satisfies descent with respect to the quasisyntomic topology.

Definition 8.1.11 (Drinfeld, Bhatt–Lurie, Guo–Li). Let R ∈ QSyn. An object N ∈ F-Gaugevect(R) is
called a prismatic F-gauge in vector bundles over R. For a homomorphism R→ S with S ∈ QRSPerfd,
the image of N in F-Gaugevect(S) is denoted by (NS, FNS ).

A fully faithful functor from F-Gaugevect(R) to the category of prismatic F-crystals on (R)1 (in the
sense of [Bhatt and Scholze 2023]) is obtained in [Guo and Li 2023, Corollary 2.53]. More precisely, we
have the following result.
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Proposition 8.1.12. Let R ∈ QSyn. There exists a fully faithful functor

F-Gaugevect(R)→ 2− lim
←−−(A,I )∈(R)1BKdisp(A, I ). (8-4)

This functor is compatible with base change along any homomorphism R→ R′ in QSyn.

Proof. By Proposition 8.1.10, the left-hand side of (8-4) satisfies quasisyntomic descent. By [Bhatt
and Scholze 2022, Proposition 7.11] and Corollary 3.1.15, the right-hand side of (8-4) also satisfies
quasisyntomic descent; see also the proof of [Bhatt and Scholze 2023, Proposition 2.14]. Thus, the
assertion follows from Proposition 8.1.9. □

As in Section 3.2, let µ = (m1, . . . ,mn) be a tuple of integers m1 ≥ · · · ≥ mn . Let ri ∈ Z≥0 be the
number of occurrences of i in (m1, . . . ,mn). We want to compare prismatic F-gauges in vector bundles
with (displayed) Breuil–Kisin modules of type µ in the sense of Definition 3.2.1.

Remark 8.1.13. Let S ∈ QRSPerfd. By [Bhatt and Scholze 2022, Theorem 12.2], the Frobenius φ :
1S→1S induces an isomorphism

1S/Fil1N (1S)−→
∼ S.

Using this, we regard the homomorphism ρ (see (8-1)) as ρ : Rees(Fil•N (1S))→ S.

Definition 8.1.14. Let R ∈QSyn. Let N ∈ F-Gaugevect(R). We say that N is of type µ if for any R→ S
with S ∈ QRSPerfd, the degree-i part (ρ∗NS)i of the graded S-module ρ∗NS is of rank ri for any i ∈ Z.

Let
F-Gaugeµ(R)⊂ F-Gaugevect(R)

be the full subcategory spanned by those objects of type µ. The property of being of type µ can be
checked locally in the quasisyntomic topology. Thus the fibered category R 7→ F-Gaugeµ(R) over
QSynop satisfies descent with respect to the quasisyntomic topology.

By construction, the functor (8-4) induces a fully faithful functor

F-Gaugeµ(R)→ 2− lim
←−−(A,I )∈(R)1BKµ(A, I ) (8-5)

for any R ∈QSyn. (Recall that BKµ(A, I ) is the category of Breuil–Kisin modules over (A, I ) of type µ.)
We will prove later that the functors (8-4) and (8-5) are equivalences if R is a perfectoid ring or a complete
regular local ring with perfect residue field k of characteristic p; see Corollary 8.2.13 below.

Example 8.1.15. Let R ∈QSyn. Let F-Gaugevect
[0,1](R)⊂ F-Gaugevect(R) be the full subcategory of those

N ∈ F-Gaugevect(R) such that for any homomorphism R→ S with S ∈QRSPerfd, we have (ρ∗NS)i = 0
for all i ̸= 0, 1. The functor (8-4) induces a fully faithful functor

F-Gaugevect
[0,1](R)→ 2− lim

←−−(A,I )∈(R)1BKmin(A, I ).

The right-hand side can be identified with the category of prismatic Dieudonné crystals on (R)1; see
Section 7.1. By [Guo and Li 2023, Theorem 2.54], the essential image of this functor is the full subcategory
of admissible prismatic Dieudonné crystals on (R)1. If R is a perfectoid ring or a complete regular local
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ring with perfect residue field k of characteristic p, then any prismatic Dieudonné crystal on (R)1 is
admissible by [Anschütz and Le Bras 2023, Propositions 4.12 and 5.10], and hence the above functor is
an equivalence in this case. This fact also follows from Corollary 8.2.13.

8.2. Prismatic G-F-gauges of type µ. Let G be a smooth affine group scheme over Zp. Let µ :
Gm → GW (k) be a cocharacter where k is a perfect field of characteristic p. We introduce prismatic
G-F-gauges of type µ in the same way as for prismatic G-µ-displays.

We retain the notation of Section 4. For the cocharacter µ, we have the action (4-1) of Gm on
GW (k) = Spec AG . Let AG =

⊕
i∈Z AG,i be the weight decomposition. We define A(−1)

G,i := (φ
−1)∗AG,i ,

where φ−1
:W (k)→W (k) is the inverse of the Frobenius. Since (φ−1)∗AG = AG , we have

AG =
⊕
i∈Z

A(−1)
G,i .

Let µ(−1)
: Gm → GW (k) be the base change of µ along φ−1. Then AG =

⊕
i∈Z A(−1)

G,i is the weight
decomposition with respect to the action of Gm induced by µ(−1).

Let S be a quasiregular semiperfectoid ring over W (k).

Definition 8.2.1. Let
Gµ,N (S)⊂ G(1S)

be the subgroup consisting of homomorphisms g∗ : AG→1S of W (k)-algebras such that g∗(A(−1)
G,i )⊂

FiliN (1S) for any i ∈ Z. The group Gµ,N (S) is called the gauge group.

Remark 8.2.2. It follows from Lemma 4.1.4 that Gµ,N (S)⊂ G(1S) is the inverse image of the display
group Gµ(1S, IS)⊂ G(1S) under the homomorphism φ : G(1S)→ G(1S).

For a generator d ∈ IS , we have the homomorphism

σµ,N ,d : Gµ,N (S)→ G(1S), g 7→ µ(d)φ(g)µ(d)−1,

by Remark 8.2.2. Let G(1S)N ,d be the set G(1S) together with the following action of Gµ,N (S):

G(1S)×Gµ,N (S)→ G(1S), (X, g) 7→ X · g := g−1 Xσµ,N ,d(g). (8-6)

For another generator d ′ ∈ IS and the unique element u ∈1×S such that d = ud ′, the bijection G(1S)N ,d→

G(1S)N ,d ′ , X 7→ Xµ(u), is Gµ,N (S)-equivariant. Then we set

G(1S)N := lim
←−−

d
G(1S)N ,d ,

which is equipped with a natural action of Gµ,N (S). Here d runs over the set of generators d ∈ IS .
Although G(1S)N depends on µ, we omit it from the notation.

Remark 8.2.3. We recall some notation from [Bhatt and Scholze 2023, Definition 2.9]. Let R be
a quasisyntomic ring. Let (R)QSyn (resp. (R)qrsp) be the category of quasisyntomic rings R′ (resp.
quasiregular semiperfectoid rings R′) with a quasisyntomic map R→ R′. We endow both (R)op

QSyn and
(R)op

qrsp with the quasisyntomic topology. Since quasiregular semiperfectoid rings form a basis for QSyn,
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we may identify sheaves on (R)op
QSyn with sheaves on (R)op

qrsp. On the site (R)op
QSyn, we have the sheaves1•

and I• such that

1•(S)=1S and I•(S)= IS

for each S ∈ (R)qrsp.

Lemma 8.2.4. Let R be a quasisyntomic ring over W (k). The functors

Gµ,N : (R)qrsp→ Set, S 7→ Gµ,N (S),
G1,N : (R)qrsp→ Set, S 7→ G(1S)N ,

form sheaves with respect to the quasisyntomic topology.

Proof. As1• is a sheaf, so is G1,N . Since I• is a sheaf, it follows that the functor S 7→ FiliN (1S) forms a
sheaf for any i ∈ Z. This implies that Gµ,N is a sheaf. □

We regard Gµ,N and G1,N as sheaves on (R)op
QSyn. The sheaf G1,N is equipped with an action of Gµ,N .

Definition 8.2.5 (prismatic G-F-gauge of type µ). Let R be a quasisyntomic ring over W (k). A prismatic
G-F-gauge of type µ over R is a pair

(Q, αQ),

where Q is a Gµ,N -torsor on (R)op
QSyn and αQ : Q→ G1,N is a Gµ,N -equivariant map. We say that

(Q, αQ) is banal if Q is trivial as a Gµ,N -torsor. When there is no possibility of confusion, we write Q

instead of (Q, αQ). An isomorphism of prismatic G-F-gauges of type µ over R is defined in the same
way as in Definition 5.2.1.

Let

G-F-Gaugeµ(R)

be the groupoid of prismatic G-F-gauges of type µ over R. For a homomorphism f : R → R′ of
quasisyntomic rings over W (k), we have a base change functor

f ∗ : G-F-Gaugeµ(R)→ G-F-Gaugeµ(R
′)

defined in the same way as in Definition 5.2.6.

Remark 8.2.6. A “truncated analogue” of the notion of prismatic G-F-gauges of type µ was introduced
by Drinfeld [2023, Appendix C] for a p-adic formal scheme X which is formally of finite type over
Spf Zp, in terms of certain torsors on the syntomification of X in the sense of Drinfeld and Bhatt–Lurie.
It should be possible to define prismatic G-F-gauges of type µ over any p-adic formal scheme by using
certain torsors on syntomifications, but we will not discuss this here.2

Remark 8.2.7. Let S be a quasiregular semiperfectoid ring over W (k). For a generator d ∈ IS , let
σd :Rees(Fil•N (1S))→1S be the homomorphism defined by ai t−i

7→ φ(ai )d−i for any i ∈ Z. Recall the

2After this work was completed, and during the refereeing process, this has been carried out by Gardner and Madapusi [2024].



1764 Kazuhiro Ito

homomorphism τ :Rees(Fil•N (1S))→1S from Definition 8.1.1. Similarly to the triple (Rees(I •), σd , τ )

in Remark 5.2.3, the triple
(Rees(Fil•N (1S)), σd , τ )

is an analogue of a higher frame in the sense of Lau. The homomorphism τ induces an isomorphism

G(Rees(Fil•N (1S)))
0
−→∼ Gµ,N (S),

where G(Rees(Fil•N (1S)))
0 is the group of elements g ∈ G(Rees(Fil•N (1S))) such that

g∗ : AG =
⊕
i∈Z

A(−1)
G,i → Rees(Fil•N (1S))

is a homomorphism of graded W (k)-algebras. Via this isomorphism, the homomorphism σµ,N ,d agrees
with the one induced by σd . Thus, the action (8-6) is consistent with the one considered in [Lau 2021, (5-2)].

Roughly speaking, prismatic F-gauges in vector bundles (resp. prismatic G-F-gauges of type µ) over S
can be considered as displays (resp. G-µ-displays) over the “higher frame” (Rees(Fil•N (1S)), σd , τ ).

On the other hand, displayed Breuil–Kisin modules (resp. prismatic G-µ-displays) over (1S, IS) can
be thought of as displays (resp. G-µ-displays) over the “higher frame” (Rees(I •S), σd , τ ). See also [Lau
2021, Section 3.7] where the relation between displays over higher frames and Frobenius gauges in the
sense of [Fontaine and Jannsen 2021, Section 2.2] is discussed.

Let us discuss the relation between prismatic F-gauges in vector bundles of type µ and prismatic
GLn-F-gauges of type µ.

Example 8.2.8. Let µ :Gm→GLn,W (k) be a cocharacter and let (m1, . . . ,mn) be the corresponding tuple
of integers m1≥ · · ·≥mn as in Section 3.2. We retain the notation of Section 3.2. Let LW (k)=

⊕
j∈Z Lµ, j

be the weight decomposition with respect to the action of Gm on LW (k) =W (k)n induced by µ. We set
L(−1)
µ, j := (φ

−1)∗Lµ, j . By the decomposition LW (k) =
⊕

j∈Z L(−1)
µ, j , we regard LW (k) as a graded module.

Let S be a quasiregular semiperfectoid ring over W (k). Then, via the isomorphism

GLn(Rees(Fil•N (1S)))
0
−→∼ (GLn)µ,N (S)

given in Remark 8.2.7, we may identify (GLn)µ,N (S) with the group of graded automorphisms of
LW (k)⊗W (k) Rees(Fil•N (1S)).

Example 8.2.9. Let the notation be as in Example 8.2.8. Let R be a quasisyntomic ring over W (k). We
shall construct an equivalence

F-Gaugeµ(R)
≃
−→∼ GLn -F-Gaugeµ(R), N 7→Q(N ), (8-7)

where F-Gaugeµ(R)
≃ is the groupoid of prismatic F-gauges in vector bundles of type µ over R. Let

N ∈ F-Gaugeµ(R). We consider the sheaf

Q(N ) : (R)QSyn→ Set

sending S ∈ (R)qrsp to the set of graded isomorphisms

h : LW (k)⊗W (k) Rees(Fil•N (1S))−→
∼ NS.
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Such an isomorphism h exists locally in the quasisyntomic topology by (the proof of) Corollary 8.1.8. By
Example 8.2.8, the sheaf Q(N ) then admits the structure of a (GLn)µ,N -torsor. Let d ∈ IS be a generator.
We fix an isomorphism h as above. Then we have the isomorphisms

(σ ∗N )0 ≃
⊕
j∈Z

(Lµ, j ⊗W (k) I− j
S )≃ L1S ,

where the second isomorphism is given by µ(d). We also have τ ∗N ≃ L1S . Thus, the isomorphism FNS

gives an element α(h)d ∈ GLn(1S) = GLn(1S)N ,d . The element α(h) ∈ GLn(1S)N corresponding to
α(h)d does not depend on the choice of d . In this way, we get a (GLn)µ,N -equivariant map α :Q(N )→
(GLn)1,N , so that the pair (Q(N ), α) belongs to GLn -F-Gaugeµ(R). This construction gives the functor
(8-7). Using quasisyntomic descent, one can check that this functor is an equivalence.

We now compare prismatic G-µ-displays with prismatic G-F-gauges of type µ. We first note the
following result.

Proposition 8.2.10. Let R be a quasisyntomic ring over W (k). The fibered category over (R)op
QSyn which

associates to each R′ ∈ (R)QSyn the groupoid G- Dispµ((R
′)1) is a stack with respect to the quasisyntomic

topology.

Proof. This follows from [Bhatt and Scholze 2022, Proposition 7.11] and Proposition 5.2.8 by a standard
argument. (See also the proof of [Bhatt and Scholze 2023, Proposition 2.14].) □

Proposition 8.2.11. Let R be a quasisyntomic ring over W (k). There exists a fully faithful functor

G-F-Gaugeµ(R)→ G- Dispµ((R)1). (8-8)

This functor is compatible with base change along any homomorphism R→ R′ in QSyn.

Proof. It is clear that the left-hand side of (8-8) satisfies quasisyntomic descent. By Proposition 8.2.10,
the right-hand side of (8-8) also satisfies quasisyntomic descent. It thus suffices to construct, for each
quasiregular semiperfectoid ring S over W (k), a fully faithful functor

G-F-Gaugeµ(S)banal→ G- Dispµ(1S, IS)banal (8-9)

that is compatible with base change along any homomorphism S→ S′ in the subcategory QRSPerfd. Here
G-F-Gaugeµ(S)banal is the groupoid of banal prismatic G-F-gauges of type µ over S. By Remark 5.2.5,
we may identify G- Dispµ(1S, IS)banal with the groupoid [G(1S)IS/Gµ(1S, IS)]. Similarly, we may
identify G-F-Gaugeµ(S)banal with the groupoid

[G(1S)N /Gµ,N (S)]

whose objects are the elements X ∈ G(1S)N and whose morphisms are defined by Hom(X, X ′) =
{g ∈ Gµ,N (S) | X ′ · g = X}. The map φ : G(1S)→ G(1S) induces a map φ : G(1S)N → G(1S)IS

such that, for every X ∈ G(1S)N and every g ∈ Gµ,N (S), we have φ(X · g) = φ(X) · φ(g), where
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φ(g)∈Gµ(1S, IS) is the image of g under the natural homomorphism φ :Gµ,N (S)→Gµ(1S, IS). Then
we define the functor (8-9) as

[G(1S)N /Gµ,N (S)] → [G(1S)IS/Gµ(1S, IS)], X 7→ φ(X). (8-10)

This functor is fully faithful. Indeed, let d ∈ IS be a generator. It suffices to prove that for all X, X ′∈G(1S),
the map

{g ∈ Gµ,N (S) | g−1 X ′σµ,N ,d(g)= X} → {h ∈ Gµ(1S, IS) | h−1φ(X ′)σµ,d(h)= φ(X)}

defined by g 7→φ(g) is bijective. (Recall σµ,N ,d(g)=µ(d)φ(g)µ(d)−1 and σµ,d(h)=φ(µ(d)hµ(d)−1).)
One can check that the map h 7→ X ′µ(d)hµ(d)−1 X−1 gives the inverse of the above map. Indeed, for an
element g ∈ Gµ,N (S) in the left-hand side, we have

X ′µ(d)φ(g)µ(d)−1 X−1
= X ′σµ,N ,d(g)X−1

= g.

Similarly, for an element h ∈ Gµ(1S, IS) in the right-hand side, we have

φ(X ′µ(d)hµ(d)−1 X−1)= φ(X ′)σµ,d(h)φ(X)−1
= h.

The proof of Proposition 8.2.11 is complete. □

Corollary 8.2.12. Let R be a perfectoid ring over W (k) or a complete regular local ring over W (k) with
residue field k. Then the functor (8-8) is an equivalence:

G-F-Gaugeµ(R)−→∼ G- Dispµ((R)1).

Proof. Since we already know that this functor is fully faithful (Proposition 8.2.11), it suffices to prove
the essential surjectivity. The assertion can be checked locally in the quasisyntomic topology.

We first assume that R is a perfectoid ring over W (k). In this case, we have

G- Dispµ((R)1)−→∼ G- Dispµ(W (R♭), IR).

Since every G-µ-display over (W (R♭), IR) is banal over a p-completely étale covering R→ R′ with
R′ a perfectoid ring (Example 2.5.11), it suffices to prove that the functor (8-10) given in the proof of
Proposition 8.2.11 is essentially surjective when S = R. This follows since (1R, IR)≃ (W (R♭), IR) and
the Frobenius φ :W (R♭)→W (R♭) is bijective.

The case where R is a complete regular local ring over W (k) with residue field k follows from the
previous case since there exists a quasisyntomic covering R→ R′ with R′ a perfectoid ring by [Anschütz
and Le Bras 2023, Proposition 5.8]. □

Corollary 8.2.13. The functors (8-4) and (8-5) are equivalences if R is a perfectoid ring or a complete
regular local ring with perfect residue field k of characteristic p.

Proof. We need to prove that (8-4) and (8-5) are essentially surjective. For (8-5), this follows from
Corollary 8.2.12 together with Examples 5.3.10 and 8.2.9. For (8-4), we argue as follows. As in the proof
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of Corollary 8.2.12, it suffices to treat the case where R is a perfectoid ring. Then we have

2− lim
←−−(A,I )∈(R)1BKdisp(A, I )−→∼ BKdisp(W (R♭), IR).

For each M ∈ BKdisp(W (R♭), IR), there exists a p-completely étale covering R→ R1× · · ·× Rm with
R1, . . . , Rm perfectoid rings such that, for any 1≤ i ≤ m, the base change M

(W (R♭i ),IRi )
is of type µ for

some µ; see Example 2.5.11 and Remark 3.2.3. Since (8-5) is essentially surjective, we can conclude that
(8-4) is also essentially surjective by using p-completely étale descent. □

Remark 8.2.14. Let R be a quasisyntomic ring over W (k). For a bounded prism (A, I ) ∈ (R)1, we
defined the groupoid G-BKµ(A, I ) of G-Breuil–Kisin modules of type µ over (A, I ) in Section 5.1 and
showed that it is equivalent to G- Dispµ(A, I ) in Proposition 5.3.8. Thus the fully faithful functor (8-8)
can be written as

G-F-Gaugeµ(R)→ G-BKµ((R)1) := 2− lim
←−−(A,I )∈(R)1G-BKµ(A, I ).

The essential image of this functor consists of those P ∈ G-BKµ((R)1) such that for some quasisyntomic
covering R→ S with S a quasiregular semiperfectoid ring, the image P(1S,IS) ∈ G-BKµ(1S, IS) of P
is a trivial G1S -torsor, and via some trivialization P(1S,IS) ≃ G1S , the isomorphism FP(1S ,IS )

is given by
g 7→ Y g for an element Y in

µ(d)φ(G(1S))⊂ G(1S[1/IS]),

where d ∈ IS is a generator. Therefore, we can simply define a prismatic G-F-gauge of type µ over R as an
object P ∈G-BKµ((R)1) that satisfies the above condition. However, similarly to prismatic G-µ-displays,
it should be more technically convenient to work with the one introduced in Definition 8.2.5.

We shall give an example which shows that the functors (8-4) and (8-8) are not essentially surjec-
tive in general. This also shows that there exists a nonadmissible prismatic Dieudonné crystal (see
Example 8.1.15).

Let OC be the ring of integers of an algebraically closed nonarchimedean extension C of Qp. Then
the quotient S =OC/p is a quasiregular semiperfectoid ring. The natural homomorphism S→1S/IS is
injective, and the Frobenius φ :1S→1S induces an isomorphism1S/Fil1N (1S)−→

∼ S (see [Bhatt and
Scholze 2022, Theorem 12.2]). The Hodge–Tate comparison theorem for the conjugate filtration with
respect to the natural homomorphism OC → S shows that S→1S/IS is not surjective; see [loc. cit.,
Section 12.1]. We fix a generator d ∈ IS .

Example 8.2.15. Let the notation be as above. We assume that G = GL2 and µ : Gm → GL2 is the
1-bounded cocharacter defined by t 7→ diag (t, 1). We choose an element x ∈1S whose image x̄ ∈1S/IS

is not contained in S. Let X ∈G(1S)IS be the element such that Xd =
( 1

x
0
1

)
∈G(1S). We shall show that

X is not contained in the essential image of the functor (8-10). If X is contained in the essential image,
then there are Y ∈ G(1S)N and g ∈ Gµ(1S, IS) such that the equality X · g = φ(Y ) holds in G(1S)IS .
In particular, we see that g−1 Xd belongs to the image of φ : G(1S)→ G(1S). We write

g =
(

g11 g12

g21 g22

)
∈ Gµ(1S, IS).
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By Proposition 4.2.9, we have g21 ∈ IS and g11, g22 ∈1
×

S . By computing the image of g−1 Xd in G(1S/IS)

and using that g−1 Xd ∈ φ(G(1S)), it follows that x̄/ḡ22, 1/ḡ22 ∈1S/IS are contained in S. We thus
have x̄ ∈ S, which leads to a contradiction.
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Arithmetic Siegel–Weil formula on X0(N)
Baiqing Zhu

We establish the arithmetic Siegel–Weil formula on the modular curve X0(N ) for arbitrary level N , i.e.,
we relate the arithmetic degrees of special cycles on X0(N ) to the derivatives of Fourier coefficients of
a genus-2 Eisenstein series. We prove this formula by a precise identity between the local arithmetic
intersection numbers on the Rapoport–Zink space associated to X0(N ) and the derivatives of local
representation densities of quadratic forms. When N is odd and square-free, this gives a different proof
of the main results in work of Sankaran, Shi and Yang. This local identity is proved by relating it to an
identity in one dimension higher, but at hyperspecial level.
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1. Introduction

1.1. Background. The classical Siegel–Weil formula relates certain Siegel Eisenstein series to the
arithmetic of quadratic forms, namely, it expresses special values of these series as theta functions,
generating series of representation numbers of quadratic forms. Kudla initiated an influential program
to establish the arithmetic Siegel–Weil formula relating certain Siegel Eisenstein series to objects in
arithmetic geometry.

In this article, we study the case of modular curves. Let N be a positive integer. The classical modular
curve Y0(N )C over C is defined as the smooth 1-dimensional complex curve

Y0(N )C := GL2(Q) \H±1 ×GL2(A f )/00(N )(Ẑ)≃ 00(N ) \H±1 ,
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where H±1 = C \ R and H+1 = {z = x + iy ∈ C : x ∈ R, y ∈ R>0} is the upper half plane. The group
00(N )(Ẑ) is the open compact subgroup

00(N )(Ẑ)=
{

x =
(

a b
Nc d

)
∈ GL2(Ẑ) : a, b, c, d ∈ Ẑ

}
of GL2(A f ), and 00(N ) = 00(N )(Ẑ)

⋂
GL2(Z). Notice that the determinant of an element in the

group 00(N ) can be either 1 or −1 rather than only 1 in the classical setting because the space H±1 has
two connected components.

The smooth curve Y0(N )C is not proper, its compactification X0(N )C := Y0(N )C∪{cusps} is a smooth
projective curve over C. It is a classical fact that the curve Y0(N )C parameterizes cyclic isogenies between
elliptic curves over C. Here an isogeny π : E→ E ′ between two elliptic curves over C is called cyclic if
ker(π) is a cyclic group.

Katz and Mazur [1985] extended the concept of cyclic isogeny to an arbitrary base scheme: an
isogeny π : E → E ′ between two elliptic curves is called cyclic if ker(π) is a cyclic group scheme
(see Definition 4.1.2). They also defined the 00(N )-level structures on elliptic curves. In this article, we
mainly work on a 2-dimensional regular flat Deligne–Mumford stack X0(N ), defined in [Česnavičius
2017], which is the moduli stack of generalized elliptic curves with 00(N )-level structures and whose
fiber over C is X0(N )C. We define the (arithmetic) special cycles on X0(N ) and study their intersection
numbers. Finally, we prove that these intersection numbers are identified with the derivatives of Fourier
coefficients of certain Siegel Eisenstein series of genus 2.

When N is an odd, square-free positive integer, the relation has already been obtained in the work of
Sankaran, Shi and Yang [Sankaran et al. 2023, Theorem 2.14] by computing both sides explicitly based on
[Yang 1998; Kudla et al. 2006]. In this article, we use a different method and work with arbitrary level N.
We introduce a formal scheme N0(N ) which is the Rapoport–Zink space associated to X0(N ). Via formal
uniformization of the supersingular locus of the stack X0(N ) and its special cycles, we reduce the identity,
which relates intersection numbers on X0(N ) and derivatives of Fourier coefficients of Eisenstein series, to
a local identity between local arithmetic intersection numbers on N0(N ) and derivatives of local densities
of quadratic forms. Now the key observation is that both sides of the local identity, regardless of the
level N, can be related to another intersection problem on Rapoport–Zink space of 1 dimension higher,
but in a hyperspecial level, while the computation of the latter has been done in [Gross and Keating 1993,
Proposition 5.4; Wedhorn 2007, §2.16; Rapoport 2007, Theorem 1.1] (see also [Li and Zhang 2022,
Theorem 1.2.1]).

1.2. Summary of main results.

1.2.A. Arithmetic Siegel–Weil formula on X0(N ). Let 1(N ) be the rank-3 quadratic lattice

1(N )=
{

x =
(
−Na b

c a

)
: a, b, c ∈ Z

}
(1)

over Z, equipped with the quadratic form x 7→ det(x).
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We use v to denote a place of Q. For every finite place v, let 1v(N ) = 1(N )⊗Z Zv be a rank-3
quadratic lattice over Zv. Let A be the ring of adèles over Q. Let V= {Vv} be the incoherent collection
of quadratic spaces of A of rank 3 nearby 1(N ) at∞, i.e.,

Vv =1v(N )⊗Qv if v <∞, and V∞ is positive definite. (2)

Consider a finite place v. Let V f := V⊗A f (resp. Vvf := V⊗Av
f ) be the quadratic space of rank 3

over A f (resp. Av
f ). Let S (V2) (resp. S (V2

f ), S ((Vvf )
2)) be the space of Schwartz functions on V2

(resp. V2
f , (Vvf )

2). Associated to ϕ̃ = ϕ ⊗ ϕ∞ ∈S (V2), where ϕ∞ is the Gaussian function on V2
∞

and
ϕ ∈ S (V2

f ), there is a classical incoherent Eisenstein series E(z, s,ϕ) (see Section 3.4) on the Siegel
upper half plane,

H2 = {z= x+ iy : x ∈ Sym2(R), y ∈ Sym2(R)>0}.

This is essentially the Siegel Eisenstein series associated to a standard Siegel–Weil section of the degenerate
principal series. The Eisenstein series here has a meromorphic continuation and a functional equation
relating s ↔ −s. The central value E(z, s,ϕ) is 0 by the incoherence. We thus consider its central
derivative

∂ Eis(z,ϕ) := d
ds

∣∣∣
s=0

E(z, s,ϕ).

Associated to the standard additive character ψ : A/Q→ C×, it has a decomposition into the central
derivatives of the Fourier coefficients

∂ Eis(z,ϕ)=
∑

T∈Sym2(Q)

∂ EisT (z,ϕ).

On the geometric side, there is a regular integral model of the modular curve Y0(N )C over Z defined
by Katz and Mazur: for any scheme S, the groupoid Y0(N )(S) consists of objects (E π

−→ E ′), where E
and E ′ are elliptic curves over S and π is a cyclic isogeny such that π∨ ◦π = N . They proved that Y0(N )
is a 2-dimensional regular flat Deligne–Mumford stack (see [Katz and Mazur 1985, Theorem 5.1.1]),
but Y0(N ) is not proper. There is a moduli stack X0(N ) defined in [Česnavičius 2017] which serves as
a “compactification” of Y0(N ). It is a proper regular flat 2-dimensional Deligne–Mumford stack which
contains Y0(N ) as an open substack, so we can consider the arithmetic intersection theory on X0(N )
following the lines in [Gillet 2009].

The key concept is that of a special cycle. A typical special cycle is of the form Z(T,ϕ), where T is a
2×2 symmetric matrix and ϕ ∈S (V2

f ) is the characteristic function of some open compact subset of V2
f .

It is a Deligne–Mumford stack finite unramified over X0(N ). For an object (E π
−→ E ′) of Y0(N )(S), the

special cycle Z(T,ϕ) parameterizes pairs of isogenies between E and E ′ with inner product matrix T
and orthogonal to the cyclic isogeny π , along with some level structures given by the Schwartz function ϕ

which is 00(N )(Ẑ)-invariant (cf. Definition 4.3.5). For every nonsingular T ∈ Sym2(Q) and prime
number l, we say T is represented by 1(N )⊗Ql if there exist two vectors x1, x2 ∈ 1(N )⊗Ql such
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that T = 1
2((xi , x j )). Define the difference set

Diff(T,1(N ))= {l is a finite prime : T is not represented by 1(N )⊗Ql}.

Let ĈH2
C(X0(N )) be the codimension-2 arithmetic Chow group with complex coefficients of the regular

flat Deligne–Mumford stack X0(N ). We also construct arithmetic special cycles on the stack X0(N ). They
are elements of the form Ẑ(T, y,ϕ) ∈ ĈH2

C(X0(N )), where T ∈ Sym2(Q) is nonsingular, y ∈ Sym2(R) is
positive definite and ϕ ∈ S (V2

f ) is a Schwartz function. Let ϕ ∈ S (V2
f ) be a T -admissible Schwartz

function, roughly meaning ϕ is invariant under the action of 00(N )(Ẑ) and for every p ∈ Diff(T,1(N )),
ϕ = ϕ p

⊗ϕp, where ϕ p
∈S ((V

p
f )

2) and ϕp = c · 11p(N )2 ∈S (V2
p) for some c ∈ C. Our main goal is

to relate d̂eg(Ẑ(T, y,ϕ)) to derivatives of the Fourier coefficients of a genus-2 Siegel Eisenstein series,
where d̂eg : ĈH2

C(X0(N ))→ C is the arithmetic degree map (see (14)).

Theorem 1.2.1. Let N be a positive integer. Let T ∈ Sym2(Q) be a nonsingular symmetric matrix. Let
ϕ ∈S (V2

f ) be a T -admissible Schwartz function. Then

d̂eg(Ẑ(T, y,ϕ))qT
=
ψ(N )

24
· ∂ EisT (z,ϕ)

for any z= x+ iy ∈ H2. Here ψ(N )= N ·
∏

l|N (1+ l−1) and qT
= e2π i tr(T z).

1.2.B. The local arithmetic Siegel–Weil formula with level N . Fix a prime number p. Let F be the
algebraic closure of Fp. Let W be the integer ring of the completion of the maximal unramified extension
of Qp.

On the geometry side, let X be a p-divisible group over F of dimension 1 and height 2. Let B be the
unique division quaternion algebra over Qp, so End0(X)≃ B as quadratic spaces. The Rapoport–Zink
space associated to X0(N ) is the deformation space N0(N ) such that, for a W-scheme S where p is locally
nilpotent and an element x0 ∈ B such that x∨0 ◦ x0 = N , the set N0(N )(S) consists of elements (X π

−→ X ′)
where X , X ′ are deformations over S of X with certain restrictions on polarizations (see Section 5.1), the
morphism π is a cyclic isogeny deforming x0 and π∨ ◦π = N .

Let W = {x0}
⊥
⊂ B be the subspace of quasi-isogenies which are orthogonal to x0. For any x ∈W,

there is a closed formal subscheme Z(x) of N0(N ) over which the quasi-isogeny x lifts to an isogeny.
This is an example of a special cycle (see Definition 5.2.5) on N0(N ). For a rank-2 lattice M ⊂W, we
choose a Zp-basis {x1, x2} of M, then define the local arithmetic intersection number of M on N0(N )
to be

IntN0(N )(M)= χ
(
N0(N ),OZ(x1)⊗

L
ON0(N )

OZ(x2)

)
.

This number is independent of the choice of the basis {x1, x2} of M.
On the analytic side, for any two integral quadratic Zp-lattices L and M, let RepM,L be the scheme of

integral representations, a Zp-scheme such that for any Zp-algebra R,

RepM,L(R)= QHom(L ⊗Zp R,M ⊗Zp R),
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where QHom denotes the set of quadratic module homomorphisms. The local density of integral repre-
sentations is defined to be

Den(M, L)= lim
d→∞

# RepM,L(Zp/pd)

pd·dim(RepM,L )Qp
.

Let H+2 = Z2
p be the rank-2 quadratic Zp-lattice equipped with the quadratic form qH+2

(x, y) = xy.
For any k ≥ 0, let H+2k := (H

+

2 )
kn be a rank-2k quadratic Zp-lattice. For any Zp-lattice M ⊂W of rank 2,

define the local density of M with level N to be the polynomial Den1p(N )(X,M) such that for all k ≥ 0

Den1p(N )(X,M)
∣∣

X=p−k =


Den(1p(N )k H+2k,M)

Nor+(p−k, 1)
when p | N ,

Den(1p(N )k H+2k,M)

Nor(N ,p)p(p−k, 2)
when p ∤ N ,

(3)

where ( · , · )p is the Hilbert symbol at p, the polynomials Norε(X, n) are normalizing factors defined in
Definition 2.2.6. Then Den1p(N )(1,M)= 0 since M can’t be isometrically embedded into the quadratic
lattice 1p(N ). We define the derived local density of M with level N to be

∂ Den1p(N )(M)=−
d

dX

∣∣∣
X=1

Den1p(N )(X,M).

The local arithmetic Siegel–Weil formula with level N is an exact identity between the two integers
just defined.

Theorem 1.2.2. Let M ⊂W be a Zp-lattice of rank 2. Then

IntN0(N )(M)= ∂ Den1p(N )(M).

We refer to IntN0(N )(M) as the geometric side of the identity (related to the geometry of Rapoport–Zink
spaces and Shimura varieties) and ∂ Den1p(N )(M) as the analytic side (related to the derivatives of
Eisenstein series and L-functions).

1.2.C. Formal uniformization. For any prime p, let X0(N )ss
Fp

be the supersingular locus of the stack X0(N ),
i.e., those F-points of X0(N ) which are isogenous to a supersingular elliptic curve. Let B be the unique
quaternion algebra which ramifies exactly at p and∞. Let X̂0(N )/(X0(N )ss

Fp )
be the completion of the

stack X0(N ) along the closed substack X0(N )ss
Fp

. Let 00(N )(Ẑp) be the group
∏
v ̸=∞,p 00(N )(Zv). We

have the following formal uniformization theorem of the stack X0(N ).

Proposition 1.2.3. There is an isomorphism of formal stacks over W ,

X̂0(N )/(X0(N )ss
Fp )

2X0(N )
−−−−→
∼

B×(Q)0 \
[
N0(N )×GL2(A

p
f )/00(N )(Ẑp)

]
,

where B×(Q)0 is the subgroup of B×(Q) consisting of elements whose norm has p-adic valuation 0.

This proposition was previously known only in the case that N is odd and square-free (see [Kim 2018,
Theorem 4.7] for the case p ∤ N and [Oki 2020, Theorem 6.1] for p | N ). As a corollary, let Ẑss(T,ϕ)
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be the completion of Z(T,ϕ) along its supersingular locus Zss(T,ϕ) := Z(T,ϕ)×X0(N ) X0(N )ss
Fp

. Let
1(N )(p) be the unique quadratic space over Q (up to isometry) such that

(1) it is positive definite at∞;

(2) for finite primes l ̸= p, 1(N )(p)⊗Ql is isometric to 1l(N )⊗Ql ;

(3) 1(N )(p)⊗Qp is isometric to W.

For a pair of vectors x = (x1, x2) ∈ (1(N )(p))2, let T (x)=
( 1

2(xi , x j )
)

be the inner product matrix. We
have the following formal uniformization theorem of the special cycle Z(T,ϕ).

Corollary 1.2.4. Let T ∈ Sym2(Q) be a nonsingular symmetric matrix, and Diff(T,1(N ))= {p}. Let
ϕ ∈S (V2

f ) be a T -admissible Schwartz function. Let K ′0(X̂0(N )/(X0(N )ss
Fp )
) be the Grothendieck group of

coherent sheaves of OX̂0(N )/(X0(N )
ss
Fp
)
-modules. Then we have the identity

Ẑss(T,ϕ)=
∑

x∈B×(Q)0\(1(N )(p))2

T (x)=T

∑
g∈B×x (Q)0\GL2(A

p
f )/00(N )(Ẑp)

ϕ(g−1x) ·2−1
X0(N )(Z(x), g)

in K ′0(X̂0(N )/(X0(N )ss
Fp )
), where B×x ⊂ B× is the stabilizer of x ∈ (1(N )(p))2.

1.3. Strategy of the proof of main results.

1.3.A. Difference formula at the geometric side. Let N be the deformation functor such that, for a
W-scheme S where p is locally nilpotent, the set N (S) consists of elements (X, X ′), where both X and X ′

are deformations over S of X with certain restrictions on polarizations (see Section 5.1). For a nonzero
integral element x ∈ B, i.e., 0≤ νp(x∨ ◦ x) <∞, there is a closed formal subscheme Z♯(x) of N over
which the quasi-isogeny x lifts to an isogeny. This is an example of a special cycle (see Definition 5.2.1)
on N .

For a rank-3 lattice L ⊂ B, we choose a Zp-basis {x1, x2, x3} of L , then define the local arithmetic
intersection number of L on N to be

Int♯(L)= χ
(
N ,OZ♯(x1)⊗

L
ON

OZ♯(x2)⊗
L
ON

OZ♯(x3)

)
.

This number is independent of the choice of the basis {x1, x2, x3} of the lattice L .
The special cycle Z♯(x) is cut out by a single element fx ∈ m = (p, t1, t2) ⊂ W [[t1, t2]], and when

νp(x∨ ◦ x) ≥ 2, we have f p−1x | fx . We define dx = fx/ f p−1x ∈ W [[t1, t2]] when νp(x∨ ◦ x) ≥ 2, and
dx = fx when νp(x∨ ◦ x)= 0 or 1. The divisor

D(x) := Spf W [[t1, t2]]/dx

is called the difference divisor associated to x (see Definition 6.2.1), which was originally introduced
in [Terstiege 2011].
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Fix x0 ∈ B such that x∨0 ◦ x0 = N , recall that we have defined the deformation function N0(N ). In
Theorem 6.2.3, we prove that N0(N ) is identified with the difference divisor D(x0), i.e., there is an
isomorphism of formal schemes

D(x0)−→
∼ N0(N ).

Let xuniv
0 : Xuniv

→ X ′ univ be the universal isogeny deforming x0 over the special cycle Z♯(x0). We
will prove that the base change of xuniv

0 to D(x0) is cyclic, and therefore there is a natural morphism
D(x0)→N0(N ). The natural morphism is an isomorphism because both sides of the morphism are closed
formal subschemes of N and are represented by 2-dimensional regular local rings. The identification of
D(x0) and N0(N ) implies the following difference formula of local arithmetic intersection numbers:

Theorem 1.3.1. For any rank-2 lattice M ⊂W,

IntN0(N )(M)= Int♯(M k Zp · x0)− Int♯(M k Zp · p−1x0).

We refer to this formula as the difference formula at the geometric side.

1.3.B. Difference formula at the analytic side. For any rank-3 quadratic Zp-lattice L ⊂ B, define the
local density of L to be the polynomial Den(X, L) ∈ Z[X ] such that for all k ≥ 0,

Den(X, L)
∣∣

X=p−k =
Den(H+2k+4, L)

Nor+(p−k, 3)
.

Then Den(1, L)= 0 since L can’t be isometrically embedded into the quadratic lattice H+4 . We define
the derived local density of L to be

∂ Den(L) := − d
dX

∣∣∣
X=1

Den(X, L).

Theorem 1.3.2. For any rank-2 lattice M ⊂W, the identity

Den1p(N )(X,M)= Den(X,M k Zp · x0)− X2
·Den(X,M k Zp · p−1x0)

holds. Since the lattice M k Zp · x0 can’t be isometrically embedded into the lattice H+4 ,

∂ Den1p(N )(M)= ∂ Den(M k Zp · x0)− ∂ Den(M k Zp · p−1x0).

The theorem is proved in a more general form in Theorem 7.2.6. We refer to this formula as the
difference formula at the analytic side.

1.3.C. Proof of Theorem 1.2.1. The following local arithmetic Siegel–Weil formula is proved in [Wedhorn
2007, §2.16] (see also [Li and Zhang 2022, Theorem 1.2.1] when p is odd).

Theorem 1.3.3. For any rank-3 lattice L ⊂ B, we have the identity

Int♯(L)= ∂ Den(L).



1778 Baiqing Zhu

For a rank-2 lattice M ⊂W, let L = M k Zp · x0 ⊂ B. The local arithmetic Siegel–Weil formula with
level N in Theorem 1.2.2 follows immediately from Int♯(L)= ∂ Den(L) and two difference formulas we
stated before (Theorems 1.3.1 and 1.3.2).

1.3.D. Proof of Theorem 1.2.2. Let T ∈ Sym2(Q) be a nonsingular matrix. Let ϕ ∈ S (V2
f ) be a

T -admissible function. When T is not positive definite, the arithmetic special cycle Ẑ(T, y,ϕ) is
essentially a (1, 1)-current on the proper smooth complex curve X0(N )C. The number d̂eg(Ẑ(T, y,ϕ))
has been computed explicitly in [Sankaran et al. 2023, Theorem 4.10].

We focus on the case that T is positive definite. In this case, Ẑ(T, y,ϕ) = [(Z(T, ϕ), 0)], where
Z(T,ϕ) is a cycle of codimension 2 on X0(N ). Moreover, Z(T,ϕ) ̸= ∅ only if Diff(T,1(N )) = {p}
for some prime number p; in this case the special cycle Z(T,ϕ) is concentrated in the supersingular
locus of X0(N ) in characteristic p. Suppose that the 2×2 matrix T has diagonal elements t1 and t2, and
ϕ = ϕ1×ϕ2 ∈S (V2

f ), where ϕi ∈S (V f ). We will show that

d̂eg(Ẑ(T, y,ϕ))= χ
(
Z(T,ϕ),OZ(t1,ϕ1)⊗

L OZ(t2,ϕ2)

)
· log(p),

By the formal uniformization of the special cycle Z(T,ϕ) in Corollary 1.2.4, the Euler characteristic
χ(Z(T,ϕ),OZ(t1,ϕ1)⊗

LOZ(t2,ϕ2)) is a weighted linear combination of local arithmetic intersection numbers
on N0(N ). Theorem 1.2.1 follows from the local arithmetic Siegel–Weil formula with level N at the
place p and the classical local Siegel–Weil formula at other places.

1.4. Supplement. By the windows theory developed in [Zink 2001], if νp(N ) ≥ 1, we prove that the
special fiber Z(x0)p of Z(x0) has the following explicit description (cf. Theorem 6.2.6, Corollary 6.2.7):

Z(x0)p ≃ Spf F[[t1, t2]]
/ ( ∏

a+b=n
a,b≥0

(t pa

1 − t pb

2 )

)
.

Based on the isomorphism D(x0)−→
∼ N0(N ), the special fiber N0(N )p of N0(N ) can be described by

N0(N )p ≃ Spf F[[t1, t2]]
/ (

(t1− t pn

2 ) · (t2− t pn

1 ) ·
∏

a+b=n
a,b≥1

(t pa−1

1 − t pb−1

2 )p−1
)
.

Both these two isomorphisms are proved in [Katz and Mazur 1985, Theorems 13.4.6 and 13.4.7] by a
totally different method.

2. Quadratic lattices and local densities

2.1. Notations on quadratic lattices. Let p be a prime number. Let F be a nonarchimedean local field
of residue characteristic p, with ring of integers OF , residue field κ = Fq of size q, and uniformizer π .
Let νπ : F→ Z∪ {∞} be the valuation on F and | · | : F→ R≥0 be the normalized absolute value on F.
Let χF =

(
·

π

)
F : F

×/(F×)2→ {±1, 0} be the quadratic residue symbol.
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A quadratic space (U, qU ) over F is a finite-dimensional vector space U over F equipped with a
quadratic form qU :U → F inducing a symmetric bilinear form given by

( · , · ) :U ×U → F, (x, y) 7→ qU (x + y)− qU (x)− qU (y). (4)

An isometry between two quadratic spaces (U, qU ) and (U ′, qU ′) is a linear isomorphism φ :U →U ′

preserving quadratic forms, i.e., qU ′(φ(x)) = qU (x) for any x ∈ U . In that case, we say U and U ′ are
isometric.

A quadratic lattice (L , qL) is a finite free OF -module equipped with a quadratic form qL : L → F.
The quadratic form qL also induces a symmetric bilinear form L × L (·,·)

−−→ F by a formula similar to (4).
Let L∨ = {x ∈ L⊗OF F : (x, L)⊂OF }. We say a quadratic lattice is integral if qL(x) ∈OF for all x ∈ L ,
and is self-dual if it is integral and L = L∨.

Let’s assume that dimF U = n and the symmetric bilinear form ( · , · ) is nondegenerate. Let {xi }
n
i=1 be

a basis of U , and ti j =
1
2(xi , x j ). We define the discriminant of the quadratic space U to be

disc(U )= (−1)n(n−1)/2 det((ti j )) ∈ F×/(F×)2.

If {xi }
n
i=1 is an orthogonal basis of U then ti j = 0 if i ̸= j and ti i ̸= 0 by the nondegeneracy of ( · , · ).

The Hasse invariant of the quadratic space U is

ϵ(U )=
∏
i< j

(ti i , t j j )F ,

For a quadratic lattice L , we use disc(L) and ϵ(L) to denote the corresponding invariants on the
quadratic space L F = L ⊗OF F. Recall that when p is odd, quadratic spaces U over F are classified by
the three invariants

dimF U, disc(U ), ϵ(U ),

i.e., two quadratic spaces U and U ′ are isometric if and only if the above three invariants for U and U ′

are the same.
For a quadratic space U , define χF (U ) := χF (disc(U )). For a quadratic lattice L , define χ(L) :=

χ(L⊗OF F). When p is odd, the quadratic space U admits a self-dual sublattice if and only if ϵ(U )=+1
and χF (U ) ̸= 0. We use H ε

k to denote the unique self-dual lattice of rank k and

χF (H ε
k )= ε.

When p = 2, let H+2n = (H
+

2 )
kn be a self-dual lattice of rank 2n, where the quadratic form on H+2 =O2

F

is given by (x, y) ∈O2
F 7→ xy.

Example 2.1.1. Let N ∈OF . Let 1F (N ) be the rank-3 quadratic lattice

1F (N )=
{

x =
(
−Na b

c a

)
: a, b, c ∈OF

}
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over OF , equipped with the quadratic form induced by x 7→ det(x). Under the basis

e1 =

(
−N

1

)
, e2 =

(
1
)
, e3 =

(
1

)
of 1F (N ), the quadratic form can be represented by the symmetric matrix

T =

−N 0 0
0 0 −1

2
0 −1

2 0

 .

Therefore, disc(1F (N ))=− 1
4 N ≡−N , ϵ(1F (N ))= (−N ,−1)F . Moreover,

1F (N )∨ =
{

x =
(
−Na b

c a

)
: a ∈ 1

2N
OF , b, c ∈OF

}
.

Therefore, 1F (N )∨/1F (N )≃OF/2N .
Throughout this article, we mainly focus on the case that F =Qp. In this case, we simply use 1p(N )

to denote the lattice 1Qp(N ) (as we did in the introduction).

2.2. Local densities of quadratic lattices.

Definition 2.2.1. Let L ,M be two quadratic OF -lattices. Let RepM,L be the scheme of integral represen-
tations, an OF -scheme such that for any OF -algebra R,

RepM,L(R)= QHom(L ⊗OF R,M ⊗OF R),

where QHom denotes the set of injective module homomorphisms which preserve the quadratic forms.
The local density of integral representations is defined to be

Den(M, L)= lim
d→∞

# RepM,L(OF/π
d)

qd·dim(RepM,L )F
.

Remark 2.2.2. If L ,M have rank n,m, respectively, and the generic fiber (RepM,L)F ̸=∅, then n ≤ m
and

dim(RepM,L)F = dim Om − dim Om−n =

(m
2

)
−

(m−n
2

)
= mn− n(n+1)

2
.

Definition 2.2.3. Let L ,M be two quadratic OF -lattices. Let PRepM,L be the OF -scheme of primitive
integral representations such that for any OF -algebra R,

PRepM,L(R)= {φ ∈ RepM,L(R) : φ is an isomorphism between L R and a direct summand of MR},

where L R (resp. MR) is L ⊗OF R (resp. M ⊗OF R). The primitive local density is defined to be

Pden(M, L)= lim
d→∞

# PRepM,L(OF/π
d)

qd·dim(RepM,L )F
.



Arithmetic Siegel–Weil formula on X0(N) 1781

Remark 2.2.4. For any positive integer d, a homomorphism φ ∈ RepM,L(OF/π
d) or RepM,L(OF ) is

primitive if and only if φ := φ mod π ∈ PRep(OF/π), which is equivalent to

dimFq (φ(L)+π ·M)/π ·M = rankOF (L).

Lemma 2.2.5. Let H be a self-dual quadratic lattice. Let L be a quadratic OF -lattice and k any positive
integer. Then we have the stratification

RepH,L(OF )=
⊔

L⊂L ′⊂L ′∨
PRepH,L ′(OF ).

Proof. This is proved in [Cho and Yamauchi 2020, (3.1)]. □

Definition 2.2.6. Let n ≥ 0. For ε ∈ {±1}, we define the normalizing factors to be

Norε(X, n)=
(

1−
1+ (−1)n+1

2
· εq−(n+1)/2 X

) ∏
1≤i<(n+1)/2

(1− q−2i X2).

It is well known (see [Li and Zhang 2022, §3.4]) that for a quadratic lattice L of rank n, there exists a
polynomial Den(X, L) ∈Q[X ] such that

Den(X, L)|X=q−m =
Den(H+n+1+2k, L)

Nor+(X, n)

for all integers m ≥ 0. If the lattice L can’t be isometrically embedded into the lattice H+n+1, define the
derived local density of L to be

∂ Den(L)=− d
dX

∣∣∣
X=1

Den(X, L).

3. Incoherent Eisenstein series and the main theorem

3.1. Incoherent Eisenstein series. Let W be the standard symplectic space over Q of dimension 4. Let
P = M N ⊂ Sp(W) be the standard Siegel parabolic subgroup, which takes the following form under the
standard basis of W:

M(Q)=
{

m(a)=
(

a 0
0 t a−1

)
: a ∈ GL2(Q)

}
,

N (Q)=
{

n(b)=
(

12 b
0 12

)
: b ∈ Sym2(Q)

}
.

Let A be the adèle ring over Q. Let Mp(WA) be the metaplectic extension

1→ C1
→Mp(WA)→ Sp(W)(A)→ 1

of Sp(W)(A), where C1
= {z ∈ C× : |z| = 1}. There is an isomorphism Mp(WA) −→

∼ Sp(W)(A)×C1

with the multiplication on the latter given by the global Rao cycle. Therefore, we can write an element of
Mp(WA) as (g, t), where g ∈ Sp(W)(A) and t ∈ C1.
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Let P(A)= M(A)N (A) be the standard Siegel parabolic subgroup of Mp(WA), where

M(A)= {(m(a), t) : a ∈ GL2(A), t ∈ C1
},

N (A)= {n(b) : b ∈ Sym2(A)}.

Recall the incoherent collection of rank-3 quadratic spaces V= {Vv} over A we defined in (2),

Vv =1v(N )⊗Qv if v <∞, and V∞ is positive definite.

Then we can verify immediately that
∏
v ϵ(Vv)=−1.

Let χ : A×/Q×→ C× be the quadratic character given by χ(x)=
∏
v≤∞ χv(xv)=

∏
v≤∞(xv,−N )v

for all x = (xv) ∈ A×. Fix the standard additive character ψ : A/Q→ C× such that ψ∞(x)= e2π i x . We
may view χ as a character on M(A) by

χ(m(a), t)= χ(det(a)) · γ (det(a), ψ)−1
· t,

and extend it to P(A) trivially on N (A). Here γ (det(a), ψ) is the Weil index (see [Kudla 1997, p. 548]).
We define the degenerate principal series to be the unnormalized smooth induction

I (s, χ) := IndMp(WA)

P(A) (χ · | · |
s+3/2
Q

), s ∈ C.

For a standard section 8( – , s) ∈ I (s, χ) (i.e., its restriction to the standard maximal compact subgroup
of Mp(WA) is independent of s), we define the associated Siegel Eisenstein series

E(g, s,8)=
∑

γ∈P(Q)\Sp(Q)

8(γ g, s),

which converges for Re(s)≫ 0 and admits meromorphic continuation to s ∈ C.
Recall that S (V2) is the space of Schwartz functions on V2. The fixed choice of χ and ψ gives a Weil

representation ω = ωχ,ψ of Mp(WA)×O(V) on S (V2). For ϕ̃ ∈S (V2), define a function

8ϕ̃(g) := ω(g)ϕ̃(0), g ∈Mp(WA).

Then 8ϕ̃(g) ∈ I (0, χ). Let 8ϕ̃(– , s) ∈ I (s, χ) be the associated standard section, known as the standard
Siegel–Weil section associated to ϕ̃. For ϕ̃ ∈S (V2), we write E(g, s, ϕ̃) := E(g, s,8ϕ̃).

3.2. Fourier coefficients and derivatives. We have a Fourier expansion of the Siegel Eisenstein series
defined above:

E(g, s,8)=
∑

T∈Sym2(Q)

ET (g, s,8),

where
ET (g, s,8)=

∫
Sym2(Q)\Sym2(A)

E(n(b)g, s,8)ψ(− tr(T b)) dn(b).



Arithmetic Siegel–Weil formula on X0(N) 1783

The Haar measure dn(b) is normalized to be self-dual with respect to ψ . When T is nonsingular, for
factorizable 8=⊗v8v, we have a factorization of the Fourier coefficient into a product

ET (g, s,8)=
∏
v

WT,v(gv, s,8v),

where the product ranges over all places v of Q and the local Whittaker function WT,v(gv, s,8v) is
defined by

WT,v(gv, s,8v)=
∫

Sym2(Qv)

8v(w
−1n(b)gv, s) ·ψv(− tr(T b)) dn(b), w =

(
0 12

−12 0

)
. (5)

It has analytic continuation to s ∈ C. Thus we have a decomposition of the derivative of a nonsingular
Fourier coefficient,

E ′T (g, s,8)=
∑
v

E ′T,v(g, s,8),

where

E ′T,v(g, s,8)=W ′T,v(gv, s,8v) ·
∏
v′ ̸=v

WT,v′(gv′, s,8v′). (6)

3.3. Whittaker functions and local densities. Let v be a finite place of Q. Define the local degenerate
principal series to be the unnormalized smooth induction

Iv(s, χv) := IndMp(Wv)

P(Qv)
(χv · | · |

s+3/2
v ), s ∈ C.

The fixed choice of χv and ψv gives a local Weil representation ωv = ωχv,ψv of Mp(Wv)×O(Vv)
on the Schwartz function space S (V2

v). We define the local Whittaker function associated to ϕv and
T ∈ Sym2(Qv) to be

WT,v(gv, s,ϕv) :=WT,v(gv, s,8ϕv ),

where 8ϕv (gv) := ωv(gv)ϕv(0) ∈ Iv(0, χv) and 8ϕv ( – , s) is the associated standard section.
The relationship between Whittaker functions and local densities is encoded in the following proposition.

Proposition 3.3.1. Suppose v ̸= ∞. Let M be an integral Zv-quadratic lattice of rank 3 contained in Vv .
Let L be an integral quadratic Zv-lattice of rank 2. Suppose that the quadratic form of L is represented by
a matrix T ∈ Sym2(Qv) after a choice of Zv-basis of L. We have the identity

WT,v(1, k, 1M2)= |M∨/M |v · γ (Vv)2 · |2|1/2v ·Den(M k H+2k, L), (7)

where the constant γ (Vv) = γ (det(Vv), ψv)−1
· ϵ(Vv) · γ (ψv)

−3, γ (det(Vv), ψv) and γ (ψv) are Weil
indexes [Ranga Rao 1993, Appendix].

Proof. This is proved in [Kudla et al. 2006, Lemma 5.7.1]. □
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3.4. Classical incoherent Eisenstein series. The hermitian symmetric domain for Sp(W) is the Siegel
upper half space

H2 = {z= x+ iy | x ∈ Sym2(R), y ∈ Sym2(R)>0}.

Let z= x+ iy ∈ H2 with x, y ∈ Sym2(R) and y = t a · a positive definite. Define the classical incoherent
Eisenstein series to be

E(z, s, ϕ̃)= χ∞(m(a))−1
|det(m(a))|−3/2

· E(gz, s, ϕ̃), gz = n(x)m(a) ∈Mp(WA).

Notice that E(z, s, ϕ̃) doesn’t depend on the choice of χ . We write the central derivatives as

∂ Eis(z, ϕ̃) := E ′(z, 0, ϕ̃), ∂ EisT (z, ϕ̃) := E ′T (z, 0, ϕ̃). (8)

Then we have a Fourier expansion

∂ Eis(z, ϕ̃)=
∑

T∈Sym2(Q)

∂ EisT (z, ϕ̃).

For the open compact subgroup 00(N )(Ẑ)⊂ GL2(A f ), we choose

ϕ̃ = ϕ⊗ϕ∞ ∈S (V2)

such that ϕ ∈S (V2
f ) is 00(N )(Ẑ)-invariant and ϕ∞ is the Gaussian function

ϕ∞(x)= e−π tr T (x).

For our fixed choice of Gaussian ϕ∞, we write

E(z, s,ϕ)= E(z, s,ϕ⊗ϕ∞), ∂ Eis(z,ϕ)=∂ Eis(z,ϕ⊗ϕ∞), ∂ EisT (z,ϕ)=∂ EisT (z,ϕ⊗ϕ∞), (9)

and so on for short.

4. The modular curve X0(N) and special cycles

4.1. Cyclic group schemes. Let S be a scheme. Let G/S be a finite locally free group scheme over S.
On every connected component of S, the rank of G is a constant, if the rank is a same number N for
every connected component, we say that G has order N .

Let OS be the structure sheaf of the scheme S. Let G/S be a finite locally free group scheme of
order N . Then the structure sheaf OG of G is finite locally free of rank N as an OS-module. Any element
f ∈ OG acts on itself by left multiplication. This defines an OS-linear endomorphism of OG , and the
characteristic polynomial of this endomorphism

det(T − f )= T N
− tr( f )T N−1

+ · · ·+ (−1)N N( f )

is a monic polynomial in OS[T ] of degree N .
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Definition 4.1.1. We say that a set of N not necessarily distinct points {Pi }
N
i=1 in G(S) is a full set of

sections of G/S if the following condition is fulfilled: for any element f ∈OG , the equality

det(T − f )=
N∏

i=1

(T − f (Pi ))

of polynomials with coefficients in OS holds.

Definition 4.1.2. We say a finite locally free group scheme G/S of rank N is cyclic over S if there exists
a section P ∈ G(S) such that {a P}Na=1 forms a full set of sections of G/S. We call P a generator of G
over S. We say G/S is cyclic if GT is cyclic over T after some fppf covering by some scheme T → S.

Remark 4.1.3. The cyclicity of a group scheme is preserved under base change by the definition, i.e., if
G/S is cyclic, then for any morphism S′→ S, the base change group scheme G×S S′/S′ is also cyclic.

Proposition 4.1.4. Let S be a scheme, E/S an elliptic curve over S, and G ⊂ E[N ] a finite locally free
group scheme of order N over S. Then there exists a closed subscheme Scyc

⊂ S which is universal for the
condition “G is cyclic”, in the sense that for any morphism T → S, the base change GT /T is cyclic if
and only if the morphism T → S factors through the closed subscheme Scyc.

Proof. This is proved in [Katz and Mazur 1985, Theorem 6.4.1]. □

Lemma 4.1.5. Let W be a discrete valuation ring with residue characteristic p and uniformizer π . Let
S be a reduced, noetherian, quasiseparated and flat scheme over W . Let G be a finite locally free group
scheme of order pn over S which is also embedded into an elliptic curve E/S. If , for every generic point ξ
of S, Gξ doesn’t factor through the multiplication-by-p morphism of Eξ , then G is a cyclic group scheme.

Proof. Since S is quasiseparated, quasicompact and flat over W , then S[π−1
] is dense in S since the

scheme-theoretic image commutes with flat base change, therefore every generic point ξ lies in the open
dense subscheme S[π−1

]. Let κ(ξ) be the residue field of ξ ; it has characteristic 0.
The group scheme Gξ is of order pn over the characteristic 0 field κ(ξ). Hence Gξ ≃

∏k
i=1 Z/pai Z,

where
∑k

i=1 ai = n. The fact that Gξ doesn’t factor through the multiplication-by-p morphism of Eξ is
equivalent to saying that E[p] ≃ (Z/pZ)2 Ć G. Hence the only possibility is k = 1 and Gξ ≃ Z/pnZ.

Let Scyc be the closed subscheme described by Proposition 4.1.4. We know that every generic point is
contained in the closed subscheme Scyc, and hence Scyc

= S since S is reduced. □

Corollary 4.1.6. Let W be a discrete valuation ring with residue characteristic p and uniformizer π .
Let S be an integral noetherian scheme, quasiseparated and flat over W . Let G be a finite locally free
group scheme of order pn over S which is also embedded into an elliptic curve E/S. If the isogeny
πG : E→ E/G doesn’t factor through the multiplication-by-p morphism of E , then G is a cyclic group
scheme.

Proof. The isogeny πG : E→ E/G factors through the multiplication-by-p morphism of E if and only if
ker([p]E) is contained (as a Cartier divisor on E) in G. This is a closed condition on the base scheme S
by [Katz and Mazur 1985, Lemma 1.3.4]. We use I ̸= 0 (since the morphism πG doesn’t factor through
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the multiplication-by-p morphism of E) to denote the ideal sheaf of this closed subscheme of S; it is
functorial with respect to the base change of S.

Let ξ be the only generic point of S, then Gξ doesn’t factor through the multiplication-by-p morphism
because otherwise Iξ = 0, but the injection I→ Iξ will imply that I = 0, which is a contradiction. Then
the corollary follows from Lemma 4.1.5. □

4.2. 00(N)-structures on elliptic curves. Let S be a scheme. We say a scheme C over S is a smooth
curve over S if the structure morphism C→ S is a smooth proper morphism of relative dimension 1.

Definition 4.2.1. A closed immersion i : D→ C is called an effective Cartier divisor if the following
conditions hold:

(i) The closed subscheme D is flat over S.

(ii) The ideal sheaf I(D) defining D is an invertible OC -module.

Lemma 4.2.2. If C/S is a smooth curve, then any section s ∈ C(S) defines an effective Cartier divisor
on C , denoted by [s].

Proof. This is proved in [Katz and Mazur 1985, Lemma 1.2.2]. □

Given two effective Cartier divisors D and D′ on C/S, we can define their sum D+D′. It is an effective
Cartier divisor on C/S defined locally by the product of the defining equations of D and D′. Explicitly, if
S = Spec R and if over an affine open subscheme Spec A of C , the Cartier divisor D (resp. D′) is defined
by an element f ∈ A (resp. g ∈ A), then the Cartier divisor D+ D′ is defined by the equation f g.

Lemma 4.2.3. Suppose E/S and E ′/S are two elliptic curves over S and π : E → E ′ is an isogeny,
i.e., π is surjective and ker(π) is a finite flat group scheme locally of finite presentation over S. Then
ker(π)→ E is an effective Cartier divisor.

Proof. By the cancellation theorem of morphisms of locally finite presentation, any morphism between
abelian schemes are locally of finite presentation. Hence π is locally of finite presentation, and therefore
ker(π) is also locally of finite presentation over S. Then the lemma follows from [Katz and Mazur 1985,
Lemma 1.2.3]. □

Definition 4.2.4. We say an isogeny π : E → E ′ between two elliptic curves E and E ′ is a cyclic
N -isogeny if π∨ ◦ π = N , and there exists an fppf covering of S by a scheme T → S with a point
P ∈ ker(π)(T ) such that the equality

ker(π)T =
N∑

a=1

[a P]

of Cartier divisors on ET holds. A 00(N )-structure on an elliptic curve E/S is a cyclic N -isogeny E π
−→ E ′.

Lemma 4.2.5. Let π : E→ E ′ be an isogeny between two elliptic curves E and E ′, the isogeny π is an
N-cyclic isogeny if and only if ker(π) is a cyclic group scheme of order N.
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Proof. By [Katz and Mazur 1985, Theorem 1.10.1], the set {a P}Na=1 (where P ∈ ker(π)(S)) forms a full
set of sections of ker(π) if and only if we have the equality

ker(π)=
N∑

a=1

[a P]

of effective Cartier divisors in E/S, which is exactly the definition of the cyclicity of a N -isogeny. □

Example 4.2.6. (a) Suppose τ = x + iy ∈ H+1 . We consider the elliptic curve Eτ = C/Z+Zτ and a
finite subgroup K generated by 1/N inside Eτ . Then π : Eτ → Eτ/K is a cyclic isogeny.

(b) Suppose E/S is an elliptic curve over an Fp-scheme S. Then for any n ≥ 1, the n-th iterated relative
Frobenius

Fn
: E→ E (p

n)

is a cyclic pn-isogeny. The origin P = 0 is a generator of ker(Fn) because ker(Fn) ≃ OS[T ]/(T pn
)

Zariski locally (cf. [Katz and Mazur 1985, Lemma 12.2.1]).

Let Ell be the stack of elliptic curves, i.e., for an arbitrary scheme S, Ell(S) is a groupoid whose
objects are elliptic curves p : E → S and morphisms are isomorphisms of elliptic curves over S. We
use Y0(N ) to denote the stack which consists of all the 00(N )-structures on elliptic curves, i.e., for a
scheme S, Y0(N )(S) is a groupoid whose objects are cyclic N -isogenies (E π

−→ E ′) where E and E ′ are
elliptic curves over S, and a morphism between two cyclic isogenies (E1

π1
−→ E ′1) and (E2

π2
−→ E ′2) is a

pair of isomorphisms of elliptic curves a : E1 −→
∼ E2 and a′ : E ′1 −→

∼ E ′2 such that a′ ◦π1 = π2 ◦ a. We
have functors

s : Y0(N )→ Ell, (E/S π
−→ E ′/S) 7→ E/S.

Lemma 4.2.7. Both Y0(N ) and Ell are 2-dimensional Deligne–Mumford stacks. The above functor
s : Y0(N )→ Ell is finite flat of degree ψ(N )= N ·

∏
l|N (1+ l−1), and representable by schemes. Also, s

is étale over Spec Z[1/N ].

Proof. This is proved in [Katz and Mazur 1985, Theorem 5.1.1]. The key input is that a finite order group
scheme is automatically étale if the order is invertible in the base scheme. □

For a Z(p)-scheme S, a geometric point s̄ of S and an elliptic curve E over S, let Es̄ be the base change
of E to s̄. Let T p(Es̄) (resp. V p(Es̄)) be the integral (resp. rational) Tate module of the elliptic curve Es̄ .
A Z×(p)-isogeny f : E→ E ′ over S is a quasi-isogeny and there exists a prime-to-p number M such that
M ◦ f is an isogeny. Let V p( f ) be the homomorphism on rational Tate modules induced by f .

Lemma 4.2.8. Let Ell(p) be the localization of the stack Ell to Spec Z(p). Then Ell(p) can be described by
the following stack: for every Z(p)-scheme S, Ell(p)(S) is a groupoid whose objects are pairs (E/S, ηp),
where ηp is a π1(S, s̄)-invariant GL2(Ẑ

p)-equivalence class of an isomorphism

ηp
: V p(Es̄)

≃
−→ (A

p
f )

2.
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A morphism between two objects (E/S, ηp) and (E ′/S, η′p) is a Z×(p)-isogeny f : E → E ′ over S such
that ηp = V p( f ) ◦ η′p.

Proof. We temporarily use Ell ′ to denote the stack described in the lemma. It suffices to show that for a
connected scheme S over Spec Z(p), there is a category equivalence between Ell(S) and Ell ′(S). We first
construct a functor F from Ell(S) to Ell ′(S). Given an elliptic curve E over S and a geometric point s̄
of S, we choose an isomorphism

ηp
: T p(Es̄)≃ (Ẑ

p)2.

Then clearly the GL2(Ẑ
p)-orbit of ηp is π1(S, s̄)-invariant (because π1(S, s̄) acts linearly on T p(Es̄)).

We define F(E)= (E, ηp); this functor is independent of the choice of ηp.
Now we prove that this functor is essentially surjective and fully faithful. For essential surjectivity, we

pick an arbitrary object (E/S, ηp) of Ell ′(S). By [Lan 2013, Corollary 1.3.5.4], there is a Z×(p)-isogeny
f : E ′→ E such that η′p = ηp

◦V p( f ) : V p(E ′s̄)
≃
−→ (A

p
f )

2 maps T p(E ′s̄) to (Ẑp)2. Therefore the object
(E/S, ηp) is isomorphic to (E ′/S, η′p), which is the essential image of E ′ ∈ Ob Ell(S).

Next we show that there is an isomorphism

HomEll(S)(E, E ′)≃ HomEll ′(S)((E, ηp), (E ′, η′p)). (10)

This is clearly injective by the above discussion. Now we pick an arbitrary element f from the right-hand
side. Then f is a Z×(p)-isogeny, and η′p = ηp

◦ V p( f ). There exists an integer M prime to p such that
f̃ = M ◦ f is an isogeny from E to E ′. We claim that this isogeny factors through the multiplication-by-M
map, i.e., f itself is an isogeny. By the relation η′p = ηp

◦V p( f ) and the construction above, V p( f )maps
T p(Es̄) isomorphically to T p(E ′s̄), then obviously f̃ maps E ′s̄[M] ≃ E ′[M]s̄ to 0. This holds for every
geometric point s̄ of S, so since S is a Z(p)-scheme and by the rigidity result [Mumford and Fogarty 1982,
Proposition 6.1], we know the isogeny f̃ vanishes on E ′[M]. Hence f itself is an isogeny. Now ker( f )
is a finite flat group scheme over S of order prime to p, but since V p( f ) maps T p(Es̄) isomorphically
to T p(E ′s̄), this group scheme must be trivial, i.e., f is an isomorphism, and therefore it comes from an
element of the left-hand side of (10). □

Remark 4.2.9. We consider the Deligne–Mumford stack

H= Ell ×Z Ell.

For any prime p, we use H(p) to denote the localization of H to Spec Z(p).
There is a similar description of the stack H(p): for any Z(p)-scheme S, the groupoid H(p)(S) consists

of pairs ((E, E ′), (ηp, η′p)), where ηp (resp. η′p) is a π1(S, s̄)-invariant GL2(Ẑ
p)-equivalence class of

an isomorphism V p(Es̄)
≃
−→ (A

p
f )

2 (resp. V p(E ′s̄)
≃
−→ (A

p
f )

2).

For any N ∈ Z>0, let wN be the 2× 2 matrix

wN =

(
N 0
0 1

)
.
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We consider the following stack Y0(N )′(p) over Spec Z(p): for every Z(p)-scheme S, Y0(N )′(p)(S) is a
groupoid whose objects are pairs

(E π
−→ E ′, (ηp, η′p)),

where E π
−→ E ′ is a cyclic N -isogeny and (ηp, η′p) is a pair of π1(S, s̄)-invariant 00(N )(Ẑp)-equivalence

classes (we specify the action of 00(N )(Ẑp) in (12)) of isomorphisms

ηp
: V p(Es̄)

≃
−→ (A

p
f )

2, η′p : V p(E ′s̄)
≃
−→ (A

p
f )

2,

which maps T p(Es̄) and T p(E ′s̄) to (Ẑp)2, and the isomorphism η′p is determined by the commutative
diagram

V p(Es̄)

V p(π)

��

ηp
// (A

p
f )

2

wN

��

V p(E ′s̄)
η′p
// (A

p
f )

2

(11)

A morphism from (E1
π1
−→ E ′1, (η

p
1 , η
′p
1 )) to (E2

π2
−→ E ′2, (η

p
2 , η
′p
2 )) is a pair ( f, f ′) of isomorphisms

f : E1→ E2 and f ′ : E ′1→ E ′2 such that

f ′ ◦π1 = π2 ◦ f and (η
p
1 , η
′p
1 )= (η

p
2 ◦ V p( f ), η′p2 ◦ V p( f ′))

as 00(N )(Ẑp)-orbits. The action of 00(N )(Ẑp) on the pair (ηp, η′p) is given by

g · ((ηp, η′p))= (g ◦ ηp, wN gw−1
N ◦ η

′p). (12)

Lemma 4.2.10. Let Y0(N )(p) be the localization of Y0(N ) to Z(p). Then there is an isomorphism
G : Y0(N )(p)→ Y0(N )′(p) of stacks over Spec Z(p).

Proof. Let S be a scheme over Spec Z(p), and (E π
−→ E ′) an object in the groupoid Y0(N )(p)(S). For

a geometric point s̄ of S, the cyclicity of π implies that πs̄ is also cyclic. Since l is invertible in
Spec κ(s̄) if l ̸= p, there exist isomorphisms ηp

: T p(Es̄) ≃ (Ẑ
p)2 and η′p : T p(E ′s̄) ≃ (Ẑ

p)2 such that
ωN ◦η

p
= η′p◦T p(π). Now we consider a different choice of (ηp, η′p), say (η̃p, η̃′p), satisfying the above

conditions. Then η̃′p differs from ηp by an element g ∈ GL2(Ẑ
p), i.e., η̃p

= g ◦ ηp, and correspondingly
η̃′p = ωN gω−1

N ◦ η
′p. However, ωN gω−1

N ∈ GL2(Ẑ
p) since both η′p and η̃′p give isomorphisms from

T p(Es̄) to (Ẑp)2; therefore, g ∈ GL2(Ẑ
p)∩ω−1

N GL2(Ẑ
p)ωN = 00(N )(Ẑp). Thus the 00(N )(Ẑp)-orbit

(ηp, η′p) is well-defined. We define G((E π
−→ E ′))= ((E π

−→ E ′), (ηp, η′p)). For a pair of isomorphisms
( f, f ′), where f : E1→ E ′1 and f ′ : E2→ E ′2, define G(( f, f ′))= ( f, f ′).

It suffices to show that for a connected scheme S over Spec Z(p), the functor

G(S) : Y0(N )(p)(S)→ Y0(N )(p)(S)

is an equivalence of categories. This functor is essentially surjective by definition; now we show that it is
fully faithful, i.e., the following morphism between sets is bijective:
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HomY0(N )(p)(S)
(
(E1

π1
−→ E ′1), (E2

π2
−→ E ′2)

)
G
−→ HomY0(N )(p)(S)

(
(E1

π1
−→ E ′1, (η

p
1 , η
′p
1 )), (E2

π2
−→ E ′2, (η

p
2 , η
′p
2 ))

)
,

( f, f ′) 7→ ( f, f ′),

but this is clearly bijective by the definition. □

There is a natural morphism from Y0(N )(p) to H(p), i.e., (E π
−→ E ′)→ (E, E ′). By Remark 4.2.9 and

Lemma 4.2.10, we can also describe it as

Y0(N )(p)→H(p), (E π
−→ E ′, (ηp, η′p)) 7→ ((E, E ′), (ηp, η′p)). (13)

4.2.A. Compactification of Y0(N ). Next we introduce the compactification of the moduli stack Y0(N ).
Let S be a scheme. We first introduce the notion of Néron n-gons.

Definition 4.2.11. For any integer n ≥ 1 and a scheme S, the Néron n-gon over S is the coequalizer of⊔
i∈Z/nZ

S ⇒
⊔

i∈Z/nZ

P1
S,

where the top (resp. the bottom) closed immersion includes the i-th copy of S as the 0 (resp.∞) section
of the i-th (resp. (i+1)-st) copy of P1

S .

Definition 4.2.12. A generalized elliptic curve over a scheme S consists of the following data:

• A proper, flat, finitely presented morphism E→ S each of whose geometric fibers is either a smooth
connected curve of genus 1 or a Néron n-gon for some n ≥ 1.

• An S-morphism E sm
×S E +

−→ E that restricts to a commutative S-group scheme structure on E sm

for which + becomes an S-group action such that via the pullback of line bundles the action +
induces the trivial action of E sm on Pic0

E/S .

We use X to denote the moduli stack consisting of generalized elliptic curves whose degenerate fibers
are Néron 1-gons, i.e., for a scheme S, X (S) is a groupoid whose objects are generalized elliptic curves
E over S and whose geometric fibers are either elliptic curves or Néron 1-gons. The following result is
proved in [Česnavičius 2017].

Lemma 4.2.13. X is a proper smooth 2-dimensional Deligne–Mumford stack.

Proof. This is proved in [Česnavičius 2017, Theorem 3.1.6]. □

We have a natural morphism of Deligne–Mumford stacks Ell→ X , which sends an elliptic curve E
over S to itself. This morphism is an open immersion, i.e., the stack Ell is an open substack of X . Recall
that we have a finite flat representable morphism Y0(N )→ Ell by Lemma 4.2.7. Let X0(N ) be the
normalization of Y0(N ) with respect to this morphism. A moduli description of X0(N ) in terms of level
structures on the generalized elliptic curves can be found in [Česnavičius 2017, §5.9]. The stack Y0(N )
can be realized as an open substack of the stack X0(N ) based on this description. We also have the
following theorem:
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Theorem 4.2.14. X0(N ) is a regular proper 2-dimensional Deligne–Mumford stack. It is finite flat over X .

Proof. This is proved in [Česnavičius 2017, Theorem 5.13]. □

4.3. Special cycles on H and X0(N). Let p be a prime number, we first define the special cycles on the
stack H(p).

Definition 4.3.1. For every symmetric n×n matrix T = (Tik), let ϕ̃ p be the characteristic function of an
open compact subset ω̃p of M2(A

p
f )

n invariant under the action of GL2(Ẑ
p)×GL2(Ẑ

p). We consider the
stack Z♯(T, ϕ̃ p), whose fibered category over a Z(p)-scheme S consists of the objects

((E, E ′), (ηp, η′p), j),

where ((E, E ′), (ηp, η′p)) is an object in H(p)(S), j = ( j1, j2, . . . , jn) ∈ (Hom(E, E ′)⊗Z Z(p))
n and

η∗( j) := η′p ◦ V p( j) ◦ (ηp)−1
∈ ω̃p. Moreover,

Tik =
1
2(deg( ji + jk)− deg( ji )− deg( jk))= 1

2( ji ◦ j∨k + jk ◦ j∨i ).

The special cycle Z♯(T, ϕ̃ p) may be empty.

For every symmetric n×n matrix T , we have a natural finite unramified morphism i♯n :Z♯(T, ϕ̃ p)→H(p)

by forgetting the morphisms j of an object ((E, E ′), (ηp, η′p), j) of Z♯(T, ϕ̃ p). We recall the following
definition of generalized Cartier divisor from [Howard and Madapusi 2022, Definition 2.4.1].

Definition 4.3.2. Suppose D→ X is any finite, unramified and relatively representable morphism of
Deligne–Mumford stacks. Then there is an étale cover U → X by a scheme such that the pullback
DU →U is a finite disjoint union

DU =
⊔

i

Di
U

with each map Di
U →U a closed immersion. If each of these closed immersions is an effective Cartier

divisor on U in the usual sense (the corresponding ideal sheaves are invertible), then we call D→ X a
generalized Cartier divisor.

Proposition 4.3.3. Let ϕ̃ p be the characteristic function of an open compact subset ω̃p of M2(A
p
f )

invariant under the action of GL2(Ẑ
p)×GL2(Ẑ

p). For any positive number d ∈Q, the finite unramified
morphism i♯1 : Z

♯(d, ϕ̃ p)→H(p) is a generalized Cartier divisor.

Proof. This is proved in [Howard and Madapusi 2020, Proposition 6.5.2] (see also [Howard and Madapusi
2022, Proposition 2.4.3]). □

Now let’s turn to the special cycles on the stack X0(N )(p) and Y0(N )(p). We first introduce the notion
of special morphisms for the moduli stack Y0(N )(p).

Definition 4.3.4. Let S be a scheme over Spec Z(p). For an object ((E π
−→ E ′), (ηp, η′p)) in Y0(N )(p)(S),

a special morphism of this object is an element j ∈ Hom(E, E ′)⊗Z Z(p) satisfying

j ◦π∨+π ◦ j∨ = 0.

We denote this space by S(E, π).
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Definition 4.3.5. For every symmetric n × n matrix T = (Tik), let ϕ p be the characteristic function
of an open compact subset ωp of (Vp

f )
n invariant under the action of 00(N )(Ẑp). We consider the

stack Z(T,ϕ p), whose fibered category over a Z(p)-scheme S consists of the objects

((E π
−→ E ′), (ηp, η′p), j),

where ((E π
−→ E ′), (ηp, η′p)) is an object in Y0(N )(p)(S), j = ( j1, j2, . . . , jn) ∈ S(E, π)n and η∗( j) :=

η′p ◦ V p( j) ◦ (ηp)−1
∈ ωp. Moreover,

Tik =
1
2(deg( ji + jk)− deg( ji )− deg( jk))= 1

2( ji ◦ j∨k + jk ◦ j∨i ).

The special cycle Z(T,ϕ p) may be empty.

For every symmetric n × n matrix T , we have a natural morphism in : Z(T,ϕ p)→ Y0(N )(p) by
forgetting the special morphisms.

Remark 4.3.6. Let T ∈ Symn(Q). Let ϕ̃ p be the characteristic function of an open compact subset
ω̃p of M2(A

p
f )

n invariant under the action of GL2(Ẑ
p)×GL2(Ẑ

p). Let ϕ p be the restriction of ϕ̃ p to
the subspace (Vp

f )
n of M2(A

p
f )

n . Then ϕ p is the characteristic function of an open compact subset
ωp of (Vp

f )
n invariant under the action of 00(N )(Ẑp), and the special cycle Z(T,ϕ p) is a union of

some connected components of the fiber product Z♯(T, ϕ̃ p)×H(p) Y0(N )(p). Therefore the morphism
in : Z(T,ϕ p)→ Y0(N )(p) is also finite unramified. In particular, for n = 1 and T = d ∈ Q>0, the
morphism i1 : Z(d,ϕ p)→ Y0(N )(p) is a generalized Cartier divisor by Proposition 4.3.3.

We show next that the composite ĩn :Z(T,ϕ p)
in
−→ Y0(N )(p)→ X0(N )(p) is also finite unramified. We

start with the case that n = 1.

Proposition 4.3.7. Let ϕ p be the characteristic function of an open compact subset ωp of V
p
f invariant

under the action of 00(N )(Ẑp). For any positive number d ∈Q, the morphism ĩ1 : Z(d, ϕ p)→ X0(N )(p)
is finite unramified, and Z(d, ϕ p) is a generalized Cartier divisor.

Proof. The morphism ĩ1 is unramified since i1 is unramified and the open immersion Y0(N )(p)→X0(N )(p)
is also unramified. Therefore we only need to show the finiteness of ĩ1.

We first prove that the stack Z(d, ϕ p) is flat over Z(p). Since the morphism Z(d, ϕ p)Y0(N )(p) is a
generalized Cartier divisor by Remark 4.3.6, the flatness of Z(d, ϕ p) is equivalent to the fact that its local
equation is not divisible by p since the stack Y0(N )(p) is flat over Z(p). We assume the converse and
suppose that there exists a point z ∈ Z(d, ϕ p)(Fp) such that the equation of Z(d, ϕ p) in the étale local
ring Oét

Y0(N ),z is divisible by p. Then the stack Z(d, ϕ p) contains an irreducible component of Y0(N )Fp

in an étale neighborhood of z. Let (E π
−→ E ′, (ηp, η′p)) be the object corresponding to the generic point

of this irreducible component. Then End(E) ≃ Z since the j-invariant of E must be transcendental
over Fp (by the description of the stack Y0(N )Fp in [Katz and Mazur 1985, Proposition 13.4.5 and
Theorem 13.4.7]). There also exists an isogeny j ∈ Hom(E, E ′)⊗Z Z(p) such that j∨ ◦π +π∨ ◦ j = 0.
Let α = j−1

◦ π ∈ End◦(E) := End(E) ⊗ Q ≃ Q. Then α2
= −Nd−1 < 0, contradicting the fact

that End◦(E)≃Q.
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Therefore, the stack Z(d, ϕ p) is flat over Z(p), and hence equals the flat closure of its generic fiber
Z(d, ϕ p)Q := Z(d, ϕ p)×Z(p) Q. The stack Z(d, ϕ p)Q consists of finitely many points whose residue
fields are finite extensions of Q. Therefore the structure sheaf OZ(d,ϕ p) of Z(d, ϕ p) is a finite product
of subrings of the integer rings of these residue fields. Hence the stack Z(d, ϕ p) is finite over Z(p), so
ĩ1 : Z(d, ϕ p)→ X0(N )(p) is proper since X0(N )(p) is proper over Z(p). The morphism ĩ1 is obviously
quasifinite by the finiteness of Z(d, ϕ p) over Z(p), and hence ĩ1 is finite.

We already know that the morphism ĩ1 is a generalized Cartier divisor over the open substack Y0(N )(p)
of X0(N )(p). Moreover, étale locally around a cusp point of X0(N )(p), the stack Z(d, ϕ p) is cut out
by 1 since ĩ1 factors through the noncuspidal locus Y0(N )(p). Thus the finite unramified morphism
ĩ1 : Z(d, ϕ p)→ X0(N )(p) is a generalized Cartier divisor on the stack X0(N )(p). □

Corollary 4.3.8. Let ϕ p
=

∏n
i=1 ϕ

p
i be the characteristic function of an open compact subset ωp

of (Vp
f )

n invariant under the action of 00(N )(Ẑp). For any matrix T ∈ Symn(Q)>0, the morphism
ĩn : Z(T,ϕ p)→ X0(N )(p) is finite unramified.

Proof. Suppose the diagonal elements of T are d1, . . . , dn . Proposition 4.3.7 implies that the morphism
Z(d1, ϕ

p
1 )×X0(N )(p) · · ·×X0(N )(p)Z(dn, ϕ

p
n )→X0(N )(p) is finite unramified. The stack Z(T,ϕ p) is a con-

nected component of Z(d1,ϕ
p
1 )×X0(N )(p)· · ·×X0(N )(p)Z(dn,ϕ

p
n ), so the morphism ĩn :Z(T,ϕ p)→X0(N )(p)

is finite unramified. □

We mainly focus on the case that T is a nonsingular 2×2 symmetric matrix with coefficients in Q. For
every such matrix T , recall that we have defined the difference set to be

Diff(T,1(N ))= {l is a finite prime : T is not represented by 1(N )⊗Ql}.

Proposition 4.3.9. Let T ∈ Sym2(Q) be a nonsingular matrix. If Z(T,ϕ p)(Fp) ̸=∅ for some prime p,
then T is positive definite, and

Diff(T,1(N ))= {p}.

Moreover, in this case, the special cycle Z(T,ϕ p) is supported in the supersingular locus of the special
fiber Y0(N )Fp .

Proof. Since Z(T,ϕ p)(Fp) ̸=∅, Corollary 4.3.8 implies that there are two elliptic curves E and E′ over Fp,
a cyclic isogeny π ∈ Hom(E, E′) and two isogenies x1, x2 ∈ Hom(E, E′)(p) such that

T =
( 1

2(xi , x j )
)

and (x1, π)= (x2, π)= 0.

Therefore, T must be positive definite and both E and E′ are supersingular elliptic curves over Fp since
dimQ Hom(E, E′)⊗Q≥ 3. The quadratic space Hom(E, E′)⊗Qp is isometric to the underlying quadratic
space of the unique division quaternion algebra B over Qp.

The isogenies x1, x2 lie in {π}⊥ ⊂ Hom(E, E′)⊗Qp ≃ B, where π∨ ◦ π = N . However, {π}⊥ and
1(N )⊗Qp have the same discriminant −N but opposite Hasse invariants. Therefore p ∈Diff(T,1(N )).
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At the same time, by choosing some level structures on E and E′ away from p, we get that T can be realized
in 1(N )⊗Ql for any finite prime l ̸= p. Therefore p is the only prime in the set Diff(T,1(N )). □

Remark 4.3.10. Proposition 4.3.9 implies that the special cycle Z(T,ϕ p) is also finite unramified over
the stack X0(N )(p) because the scheme-theoretic image Z̃(T,ϕ p) of Z(T,ϕ p) in X0(N )(p) is supported
in the supersingular locus of the special fiber X0(N )Fp , which equals the supersingular locus of the special
fiber Y0(N )Fp . Hence Z̃(T,ϕ p) is contained in Y0(N )(p), and therefore equals the scheme-theoretic
image of Z(T,ϕ p) in Y0(N )(p), over which Z(T,ϕ p) is finite unramified.

For any nonsingular 2×2 symmetric matrix T ∈Sym2(Q), a Schwartz function ϕ=
⊗

v<∞ ϕv ∈S (V2
f )

is called T -admissible if ϕ is invariant under the action of 00(N )(Ẑ), ϕ = ϕ1×ϕ2 for ϕi ∈S (V f ) and

• T is not positive definite, or

• T is positive definite and |Diff(T,1(N ))| ̸= 1, or

• T is positive definite, Diff(T,1(N )) = {p} for some prime number p, and ϕ = ϕ p
⊗ ϕp, where

ϕ p
∈S ((V

p
f )

2) and ϕp = c · 11p(N )2 for some c ∈ C.

Definition 4.3.11. For a nonsingular 2×2 matrix T ∈ Sym2(Q) and a T -admissible Schwartz function
ϕ ∈S (V2

f ) which is also a characteristic function of a 00(N )(Ẑ)-invariant open compact subset ω of V2
f ,

we define a stack finite unramified over X0(N ) as

Z(T,ϕ) := Z(T,ϕ p)→ X0(N )(p) ↪→ X0(N ),

where p ∈ Diff(T,1(N )). If |Diff(T,1(N ))| ̸= 1, we define Z(T,ϕ)=∅.

Remark 4.3.12. By Proposition 4.3.9, Z(T,ϕ) is nonempty only if |Diff(T,1(N ))| = 1, so the above
definition makes sense.

Remark 4.3.13. If we view Z(T,ϕ) as an element in CH2
C(X0(N )), we can drop the restrictions

in Definition 4.3.11 that the Schwartz function ϕ is the characteristic function of an open compact
subset of V2

f . Since any T -admissible Schwartz function ϕ on V2
f is a finite linear combination of

00(N )(Ẑ)-invariant characteristic functions of some open compact subsets, we can define Z(T,ϕ) as the
corresponding linear combination of elements in CH2

C(X0(N )).

4.3.A. Comparison with [Sankaran et al. 2023, §2.2]. Another kind of special cycle of X0(N ) is defined
in [Sankaran et al. 2023, §2.2] as follows,

Definition 4.3.14. For m ∈ Z, let Z(m) denote the moduli stack whose S points, for a base scheme S, are
given by

Z(m)(S) := {(E π
−→ E ′, α)},

where (E π
−→ E ′) ∈ Y0(N )(S) and α ∈ End(E) satisfies the following conditions:

(a) α∨ ◦α = m N and α∨+α = 0.

(b) α ◦π−1
∈ Hom(E ′, E).

(c) π ◦α ◦π−1
∈ End(E ′).
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Lemma 4.3.15. For every prime number p, let Z(m)(p) := Z(m)×Z Z(p). Then we have an isomorphism
of stacks

T : Z(m)(p) −→∼ Z(m, 1
1(N )⊗Ẑp), (E π

−→ E ′, α) 7→ (E π
−→ E ′, (ηp, η′p), (α ◦π−1)∨).

Proof. We first prove that T is well-defined. For any connected Z(p)-scheme S, let s̄ be a geometric point
of S. We can choose trivializations ηp

: V p(Es̄)−→
∼ (A

p
f )

2 and η′p : V p(E ′s̄)−→
∼ (A

p
f )

2 such that T p(Es̄)

and T p(E ′s̄) are mapped isomorphically to (Ẑp)2, and η′p ◦ V p(π) ◦ (ηp)−1
= wN by the cyclicity of π .

Moreover,
(α ◦π−1)∨ ◦π +π∨ ◦ (α ◦π−1)=

1
N
π∨ ◦α∨ ◦π +

1
N
π∨ ◦α ◦π

=
1
N
π∨ ◦ (α∨+α) ◦π = 0.

Hence (α ◦ π−1)∨ ∈ S(E, π), so (b) implies that η′p ◦ V p((α ◦ π−1)∨) ◦ (ηp)−1
∈ 1(N )⊗ Ẑp

⊂ V
p
f .

Therefore (E π
−→ E ′, (ηp, η′p), (α ◦π−1)∨) ∈ Z(m, 1

1(N )⊗Ẑp)(S).
We define the morphism

R : Z(m, 1
1(N )⊗Ẑp)→ Z(m)(p), (E π

−→ E ′, (ηp, η′p), j) 7→ (E π
−→ E ′, j∨ ◦π).

We show that R is well-defined. For any connected Z(p)-scheme S, an object (E π
−→ E ′, (ηp, η′p), j)

being in Z(m, 1
1(N )⊗Ẑp)(S) means that j ∈ Hom(E, E ′) ⊗ Z(p) and j∨ ◦ π + π∨ ◦ j = 0, and the

fact that η′p ◦ V p( j) ◦ (ηp)−1 is in 1(N )⊗ Ẑp implies that j ∈ Hom(E, E ′). Then j∨ ◦ π ∈ End(E),
( j∨ ◦ π)∨ ◦ ( j∨ ◦ π) = π∨ ◦ j ◦ j∨ ◦ π = m N and ( j∨ ◦ π)∨ + j∨ ◦ π = π∨ ◦ j + j∨ ◦ π = 0, which
is exactly (a). Moreover, (b) and (c) are easily verified. Hence (E π

−→ E ′, j∨ ◦ π) ∈ Z(m)(S), so the
morphism R is well-defined. It’s easy to see that T and R are inverse to each other, and therefore the
lemma is proved. □

4.3.B. Arithmetic special cycles on X0(N ). We apply the arithmetic intersection theory developed in
[Gillet 1984; 2009] to the regular proper flat Deligne–Mumford stack X0(N ). We obtain the arithmetic
Chow ring of X0(N ),

ĈH•C(X0(N ))=
2⊕

n=0

ĈHn
C(X0(N )).

Roughly speaking, a class in ĈHn
C(X0(N )) is represented by an arithmetic cycle (Z, gZ), where Z is a

closed substack of X0(N ) of codimension n with C-coefficients, and gZ is a Green current for Z(C), i.e.,
gZ is a current on the proper smooth complex curve X0(N )C of degree (n− 1, n− 1) for which there
exists a smooth ω such that

ddc(g)+ δζ = [ω].

Here [ω] is the current defined by integration against the smooth form ω. The rational arithmetic cycles
are those of the form d̂iv( f ) =

(
div( f ), ι∗[− log(| f̃ |2)]

)
, where f ∈ κ(Z)× is a rational function on a

codimension-(n−1) integral substack ι :Z ↪→ X0(N ), together with classes of the form (0, ∂η+ ∂̄η′). By
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definition, the arithmetic Chow group CHn
C(X0(N )) is the quotient of the space of arithmetic cycles by

the C-subspace spanned by those rational cycles.
Let Z be an irreducible codimension-2 cycle on X0(N ). Then Z is a Deligne–Mumford stack over Fp

for some prime number p and the groupoid Z(Fp) is a singleton with a finite automorphism group Aut(Z).
The rational function field κ(Z) of Z is a finite extension of Fp. Clearly δZ = 0 because Z(C)=∅.

Let (Z, g)=
(∑

i ni [Zi ], g
)

be an arithmetic cycle of codimension 2, where each Zi is an irreducible
codimension-2 cycle on X0(N ). We define the degree map

d̂eg : ĈH2
C(X0(N ))→ C, [(Z, g)] 7→

∑
i

ni ·
log|κ(Zi )|

|Aut(Zi )|
+

1
2

∫
X0(N )(C)

g. (14)

Here the integration
∫
X0(N )C

g is the integration of the constant function 1 on X0(N )C against the (1, 1)-
current g. It is a finite number since the stack X0(N ) is proper. This number is independent of the choice
of representing element (Z, g) as a consequence of the product formula [Kudla et al. 2006, §2.1].

Now we are going to construct Green currents for the special cycle Z(T,ϕ). Let

D= {z ∈1(N )⊗Z C : (z, z)= 0, (z, z̄) < 0} /C∗ ⊂ P(1(N )⊗C).

We have the GL2(R)-equivariant identification

H±1 −→
∼ D, τ 7→ spanC

{(
−Nτ −Nτ 2

1 τ

)}
.

Next, we associate to any nonsingular T ∈ Sym2(Q) and T -admissible Schwartz function ϕ ∈S (V2
f )

an element in ĈH2
C(X0(N )). Let y = t a · a ∈ Sym2(R) be a positive definite matrix, where a ∈ GL2(R).

• For a positive definite T and T -admissible Schwartz function ϕ, we consider the element

Ẑ(T, y,ϕ)= (Z(T,ϕ), 0) ∈ ĈH2
C(X0(N )).

• For another nonsingular T which is not positive definite, we apply the general machine developed
in [Garcia and Sankaran 2019], which is made explicit in [Sankaran et al. 2023]. For any x ∈ V∞

and [z] ∈D, let R(x, [z])=−|(x, z)|2 · (z, z̄)−1. We define an element in S (V2
∞
)⊗A1,1(H±1 ) by letting,

for x = (x1, x2) ∈ V2
∞

and [z] ∈ D,

ν(x, [z])=
(
−π−1

+ 2
2∑

i=1

(R(xi , [z])+ (xi , xi ))

)
exp

(
−2π

2∑
i=1

(
R(xi , [z])+

1
2
(xi , xi )

))
·

dx ∧ dy
y2 .

Then we define a smooth (1, 1)-form g(T, y,ϕ) on D by letting its value at the point [z] ∈ D be

g(T, y,ϕ)([z])=
∑

x∈(1(N )⊗Q)2

T (x)=T

ϕ(x) ·
∞∫

1

ν(t1/2x · t a, [z]) · dt
t
.

The sum converges absolutely, and descends to a smooth (1, 1)-form on the modular curve Y0(N )C.
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Lemma 4.3.16. For nonsingular T ∈ Sym2(R) which is not positive definite, the form g(T, y,ϕ) is
absolutely integrable on X0(N )C. Hence g(T, y,ϕ) defines a (1, 1)-current on X0(N )C.

Proof. This is proved in [Sankaran et al. 2023, Lemma 2.9]. □

To sum up, let T ∈ Sym2(Q) be a nonsingular matrix, y ∈ Sym2(R)>0, and ϕ ∈S (V2
f ) a T -admissible

Schwartz function. We define

Ẑ(T, y,ϕ)=
{
([Z(T,ϕ)], 0) when T is positive definite,
(0, g(T, y,ϕ)) when T is not positive definite.

(15)

It is an element in ĈH2
C(X0(N )).

4.4. Arithmetic Siegel–Weil formula on X0(N). Now we can state the main theorem of this article,
which proves an identity between arithmetic intersection numbers on X0(N ) and derivatives of Fourier
coefficients of Eisenstein series,

Theorem 4.4.1. Let N be a positive integer, T ∈ Sym2(Q) a nonsingular symmetric matrix, and
ϕ ∈S (V2

f ) a T -admissible Schwartz function. Then

d̂eg(Ẑ(T, y,ϕ))qT
=
ψ(N )

24
· ∂ EisT (z,ϕ)

for any z= x+ iy ∈ H2. Here ψ(N )= N ·
∏

l|N (1+ l−1), qT
= e2π i tr(T z).

The article [Sankaran et al. 2023] proves this formula in the case that T is not positive definite without
any restrictions on the level N , and the case that T is positive definite but with the restriction that N is odd
and square-free. We give a proof of the case that T is positive definite and N is arbitrary in Section 8.3.

5. Rapoport–Zink spaces and special cycles

5.1. 00(N)-structures on p-divisible groups. For a prime p, let F be the algebraic closure of Fp, W the
completion of the maximal unramified extension of Qp and NilpW the category of schemes S over
Spec W such that p is locally nilpotent on S. Let S be the closed subscheme of S defined by the ideal
sheaf pOS . For a p-divisible group X , we use X∨ to denote the dual p-divisible group. We introduce
two Rapoport–Zink spaces in this chapter. They are essentially isomorphic to the completed local rings
of supersingular points in characteristic p of the moduli stacks H and X0(N ).

Let X be a p-divisible group over F of dimension 1 and height 2. The associated filtered isocrystal
D(X)Q has pure slope 1

2 , e.g., we can take X to be E[p∞], where E is a supersingular elliptic curve over F.
Let λ0 :X−→

∼ X∨ be a principal polarization. We consider the following functor N on the category NilpW :
for any S ∈ NilpW , the set N (S) is the isomorphism classes of tuples ((X, ρ, λ), (X ′, ρ ′, λ′)), where

(1) X and X ′ are two p-divisible groups over S, and ρ, ρ ′ are two quasi-isogenies between p-divisible
groups ρ : X×F S→ X ×S S, ρ ′ : X×F S→ X ′×S S ;
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(2) λ : X→ X∨, λ′ : X ′→ X ′∨ are two principal polarizations such that Zariski locally on S, we have

ρ∨ ◦ λ ◦ ρ = c(ρ) · λ0, ρ ′∨ ◦ λ ◦ ρ ′ = c(ρ ′) · λ0

for some c(ρ), c(ρ ′) ∈ Z×p .

Proposition 5.1.1. The functor N is represented by the formal scheme Spf W [[t1, t2]] over Spf W .

Proof. When p is odd, this is explained in [Li and Zhang 2022, Example 4.5.3(ii)]. In general, the
deformation space of the supersingular elliptic curve E is isomorphic to Spf W [[t]]. By the Serre–Tate
theorem, this is also the deformation space of the p-divisible group X with certain restrictions on the
polarization, as in the definition of the deformation functor N . Therefore,

N ≃ Spf W [[t1]]×Spf W Spf W [[t2]] ≃ Spf W [[t1, t2]]. □

Let ((Xuniv,ρuniv,λuniv), (X ′ univ,ρ ′ univ,λ′ univ)) be the universal p-divisible group over N=Spf W [[t1,t2]].
By Lemma 6.1.3 below, the category of p-divisible groups over Spf W [[t1, t2]] is equivalent to the category
of p-divisible groups over Spec W [[t1, t2]]. We still use ((Xuniv, ρuniv, λuniv), (X ′ univ, ρ ′ univ, λ′ univ)) to
denote the corresponding p-divisible group over Spec W [[t1, t2]].

Next we fix an N -isogeny x0 : X→ X, i.e., x0 ◦ x∨0 = N . N0(N ) is a contravariant set-valued functor
defined over NilpW . For every S ∈ NilpW , the set N0(N )(S) consists of the isomorphism classes of
elements of the form (X x

−→ X ′, (ρ, ρ ′), (λ, λ′)), where

(1) X and X ′ are two p-divisible groups over S, and ρ, ρ ′ are two quasi-isogenies between p-divisible
groups ρ : X×F S→ X ×S S, ρ ′ : X×F S→ X ′×S S ;

(2) λ : X→ X∨, λ′ : X ′→ X ′∨ are two principal polarizations, such that Zariski locally on S, we have

ρ∨ ◦ λ ◦ ρ = c(ρ) · λ0, ρ ′∨ ◦ λ ◦ ρ ′ = c(ρ ′) · λ0

for some c(ρ), c(ρ ′) ∈ Z×p ;

(3) x : X→ X ′ is a cyclic isogeny (i.e., ker(x) is a cyclic group scheme over S) lifting ρ ′ ◦ x0 ◦ ρ
−1.

We will prove later that the functor N0(N ) is represented by a closed formal subscheme of Spf W [[t1, t2]]
cut out by a single equation (see Theorem 6.2.3).

5.2. Special cycles on N and N0(N). Now we give the definition of special cycles on the formal schemes
N and N0(N ). Recall that ((Xuniv, ρuniv, λuniv), (X ′ univ, ρ ′ univ, λ′ univ)) is the universal p-divisible group
over N , and B≃ End0(X) is the unique division quaternion algebra over Qp, whose Hasse invariant as a
quadratic space is −1.

Definition 5.2.1. For any subset L⊂B, define the special cycle Z♯(L) to be the closed formal subscheme of
N where the groupoid Z♯(L)(S), for an object S∈NilpW , consists of pairs ((X, ρ, λ), (X ′, ρ ′, λ′))∈N (S)
such that the quasi-isogeny ρ ′ ◦ x ◦ ρ−1 is an isogeny from X to X ′.

Remark 5.2.2. The special cycle Z♯(L) only depends on the Zp-linear span of L in B, and is nonempty
only when this span is an integral quadratic Zp-lattice in B.
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Proposition 5.2.3. Let x ∈ B be a nonzero and integral element, i.e., 0≤ νp(x∨ ◦ x) <∞. Then Z♯(x) is
a Cartier divisor on N , i.e., it is defined by a single nonzero element fx ∈W [[t1, t2]]. Moreover, Z♯(x) is
also flat over Spf W , i.e., p ∤ fx .

Proof. When p is odd, the formal scheme N is an example of GSpin Rapoport–Zink space [Li and Zhang
2022, Example 4.5.3(ii)], and the proposition has been proved for every GSpin Rapoport–Zink space in
[Li and Zhang 2022, Proposition 4.10.1]. For all p (especially p = 2), this is proved in [Katz and Mazur
1985, Theorem 6.8.1]. □

Now let’s come to the special cycles on N0(N ). Firstly, we give the definition of the space of special
quasi-isogenies. Recall that we have fixed an N -isogeny x0 when we define the formal scheme N0(N ).

Definition 5.2.4. We call a quasi-isogeny x ∈ B= End0(X) special to x0 if

x ◦ x∨0 + x0 ◦ x∨ = 0.

By definition, the space of quasi-isogenies special to x0 is just the quadratic space W= {x0}
⊥
⊂ B. By

Witt’s theorem, it is a 3-dimensional quadratic space over Qp whose isometric class is independent of the
choice of the N -isogeny x0.

Definition 5.2.5. Let (X̆ x̆
−→ X̆ ′, (ρ̆, ρ̆ ′), (λ̆, λ̆′)) be the universal object over N0(N ). For any subset

M ⊂ W, define the special cycle Z(M) ⊂ N0(N ) to be the closed formal subscheme cut out by the
conditions

ρ̆ ′ ◦ x ◦ ρ̆−1
∈ Hom(X̆ , X̆ ′) for any x ∈ M.

For any subset M ⊂W ⊂ B, we have the Cartesian diagram

Z(M)

��

// N0(N )

��

Z♯(M) // N

5.3. Formal uniformization of X0(N) and the special cycle Z(T, ϕ). Let B be the unique quaternion
algebra over Q ramified exactly at p and∞. Then B⊗Q Qp ≃B is the unique division quaternion algebra
over Qp. Let E be a supersingular elliptic curve over F and X = E[p∞] the p-divisible group of E. Then
B ≃ End0(E) and B≃ End0(X). Suppose x0 ∈ B comes from a cyclic N -isogeny of E under the above
isomorphism End0(E)⊗Q Qp ≃ B.

We first state and explain the formal uniformization theorem of the supersingular locus Hss
Fp

of HFp .
We use Ĥ/(Hss

Fp )
to denote the completion of H along the closed substack Hss

Fp
.

Theorem 5.3.1. There is an isomorphism of formal stacks over W

Ĥ/(Hss
Fp )

2H
−−→
∼

B×(Q)20 \ [N ×GL2(A
p
f )

2/GL2(Ẑ
p)2], (16)

where B×(Q)0 is the subgroup of B×(Q) consisting of elements whose norm has p-adic valuation 0.
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Theorem 5.3.1 is proved in [Rapoport and Zink 1996, Theorem 6.24]. Here we only describe the
isomorphism, especially the group action on the right-hand side of (16). Let ηp

0 : V
p(E)−→∼ (A

p
f )

2 be a
prime-to-p level structure of E. Let Ẽ be a deformation of E to W , and let X̃ := Ẽ[p∞] be the corresponding
deformation of X to W . For some object S ∈ NilpW , we pick an object

((X, ρ, λ), (X ′, ρ ′, λ′), (g, g′)) ∈N (S)×GL2(A
p
f )

2.

The quasi-isogeny ρ (resp. ρ ′) gives rise to a quasi-isogeny ρ̃ : X̃S→ X (resp. ρ̃ ′ : X̃S→ X ′). Then there
exists an elliptic curve E (resp. E ′) up to prime-to-p isogeny over S and a quasi-isogeny ρE : ẼS→ E
(resp. ρE ′ : ẼS→ E ′) such that E[p∞] ≃ X (resp. E ′[p∞] ≃ X ′) and ρE (resp. ρE ′) induces ρ̃ (resp. ρ̃ ′)
under this isomorphism. The object ((X, ρ, λ), (X ′, ρ ′, λ′), (g, g′)) is mapped to(

(E, E ′),
(
g−1η

p
0 ◦ V p(ρ−1

E ), g′−1η
p
0 ◦ V p(ρ−1

E ′ )
))
∈H(S).

The group action is given, for a pair of elements (b, b′) ∈ B×(Q)0× B×(Q)0, by the map

B(Q)→ B(Qp)≃ End0(X)
ρ∗

−→ End0(X) (resp. ρ′∗

−→ End0(X ′)),

and a fixed isomorphism B(Ap
f )≃ GL2(A

p
f ). We obtain another triple

(b, b′)∗
(
((X, ρ, λ), (X ′, ρ ′, λ′), (g, g′))

)
:=

(
(X, ρ ◦ b−1, λ), (X ′, ρ ′ ◦ b′−1, λ′), (bg, b′g′)

)
.

Now let X0(N )ss
Fp

(resp. Y0(N )ss
Fp

) be the supersingular locus of X0(N )Fp (resp. Y0(N )Fp ). Let
X̂ 0(N )/(X0(N )ss

Fp )
(resp. Ŷ0(N )/(Y0(N )ss

Fp )
) be the completion of X0(N ) (resp. Y0(N )) along the closed

substack X0(N )ss
Fp

(resp. Y0(N )ss
Fp

). By the definition of X0(N ), we have X0(N )ss
Fp
= Y0(N )ss

Fp
and

therefore X̂ 0(N )/(X0(N )ss
Fp )
≃ Ŷ0(N )/(Y0(N )ss

Fp )
.

Proposition 5.3.2. There is an isomorphism of formal stacks over W ,

X̂ 0(N )/(X0(N )ss
Fp )

2X0(N )
−−−−→
∼

B×(Q)0 \ [N0(N )×GL2(A
p
f )/00(N )(Ẑp)], (17)

where B×(Q)0 is the subgroup of B×(Q) consisting of elements whose norm has p-adic valuation 0.

Proof. The following diagram is Cartesian, with all arrows closed immersions:

Y0(N )ss
Fp

��

// Hss
Fp

��

Y0(N ) // H

this diagram gives a closed immersion i : X̂ 0(N )/(X0(N )ss
Fp )
≃ Ŷ0(N )/(Y0(N )ss

Fp )
→ Ĥ/(Hss

Fp )
.

Recall that we have the isomorphism

Ĥ/(Hss
Fp )

2H
−−→
∼

B×(Q)20 \ [N ×GL2(A
p
f )

2/GL2(Ẑ
p)2].

Let S be an object in NilpW , and let (z, (g, g′)) ∈ N (S)×GL2(A
p
f )

2 be a point in the closed formal
substack Y0(N )ss

Fp
. Then clearly z ∈N0(N )(S). Suppose z corresponds to a cyclic isogeny E π

−→ E ′ by
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our description of the isomorphism 2H. Then g′ is determined by g by the diagram

V p(Es̄)

V p(π)

��

g−1η
p
0 ◦V

p(ρ−1
E )

// (A
p
f )

2

wN

��

V p(E ′s̄)
g′−1η

p
0 ◦V

p(ρ−1
E ′ )

// (A
p
f )

2

(18)

Thus we only focus on the pair (z, g) ∈N0(N )(S)×GL2(A
p
f ). Consider the morphism

2 :N0(N )×GL2(A
p
f )→ Ĥ/(Hss

Fp )
, (z, g) 7→2−1

H (z, (g, g′)).

The image of 2 lies in the closed formal substack X̂ 0(N )/(X0(N )ss
Fp )

.

Let (z1, g1), (z2, g2)∈N0(N )(S)×GL2(A
p
f ) be two points. Then 2(z1, g1)=2(z2, g2) if and only if

there exist b, b′ ∈ B×(Q)0 and k1, k ′1 ∈ GL2(Ẑ
p) such that (z2, (g2, g′2))= ((b, b′)∗z1, (bg1k1, b′g′1k ′1)).

We still use E π
−→ E ′ to denote the corresponding point of z2 under 2H. Notice that (z2, (g2, g′2)) =

(z2, (bg1, b′g′1)) in the quotient stack [N ×GL2(A
p
f )

2/GL2(Ẑ
p)2]. Therefore

2H(z2, (g2, g′2))=2H(z2, (bg1, b′g′1)) ∈ X̂ 0(N )/(X0(N )ss
Fp )
(S),

and hence both (g2 = bg1k1, g′2 = b′g′1k ′1) and (bg1, b′g′1) satisfy the commutative diagram (18). Then

k ′1 = wN k1w
−1
N .

Since both k1 and k ′1 belongs to GL2(Ẑ
p) :=

∏
v ̸=∞,p GL2(Zv), there exist a, b, c, d ∈ Ẑp such that

k1 =

(
a b

Nc d

)
∈ 00(N )(Ẑp).

Moreover, the element b′ is also determined by b by the diagram (18). Therefore 2(z1, g1)=2(z2, g2)

if and only if there exists b ∈ B×(Q)0 and k ∈ 00(N )(Ẑp) such that (z2, g2)= (b∗z1, bg1k). □

Let Ẑss(T,ϕ) be the completion of Z(T,ϕ) along its supersingular locus

Zss(T,ϕ) := Z(T,ϕ)×X0(N ) X0(N )ss
Fp
.

Let 1(N )(p) be the unique quadratic space over Q (up to isometry) such that

(1) it is positive definite at∞;

(2) for finite prime l ̸= p, 1(N )(p)⊗Ql is isometric to 1l(N )⊗Ql ;

(3) 1(N )(p)⊗Qp is isometric to W.

As a corollary of the formal uniformization of the supersingular locus of X0(N ) (see Proposition 5.3.2),
we have the following formal uniformization of the special cycles on X0(N ).
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Corollary 5.3.3. Let T ∈ Sym2(Q) be a nonsingular symmetric matrix, and Diff(T,1(N ))= {p}. Let
ϕ ∈S (V2

f ) be a T -admissible Schwartz function. Let K ′0(X̂ 0(N )/(X0(N )ss
Fp )
) be the Grothendieck group of

coherent sheaves of OX̂ 0(N )/(X0(N )
ss
Fp
)
-modules. Then in K ′0(X̂ 0(N )/(X0(N )ss

Fp )
) we have the identity

Ẑss(T,ϕ)=
∑

x∈B×(Q)0\(1(N )(p))2

T (x)=T

∑
g∈B×x (Q)0\GL2(A

p
f )/00(N )(Ẑp)

ϕ(g−1x) ·2−1
X0(N )(Z(x), g),

where B×x ⊂ B× is the stabilizer of x ∈ (1(N )(p))2.

Proof. We only need to prove the corollary when ϕ is the characteristic function of some open compact
subset ω of V2

f . Let S be an object in NilpW . Suppose2−1
X0(N )(z, g)∈ Ẑ

ss
(T,ϕ)(S) for some z∈N0(N )(S).

Then z gives rise to a cyclic isogeny E π
−→ E ′, along with two isogenies x1, x2 ∈Hom(E, E ′)(p) such that

T =
( 1

2(xi , x j )
)

and (x1, π)= (x2, π)= 0.

Then x1, x2 and π induce endomorphisms of the corresponding p-divisible groups, and hence endomor-
phisms of X. We still use x1, x2 to denote the endomorphisms of X. Let T (x) :=

(1
2(xi , x j )

)
be the inner

product matrix of x = (x1, x2)). We have

T = T (x) and (x1, x0)= (x2, x0)= 0,

i.e., x1, x2 ∈ {x0}
⊥
=W≃1(N )(p)⊗Q Qp. We can also identify x1 and x2 as elements in 1(N )(p)⊗A

p
f

via the level structures ηp
0 ◦ V p(ρ−1

E ) and ηp
0 ◦ V p(ρ−1

E ′ ) of E and E ′. The positivity assumption on T
makes it embeddable into 1(N )(p)⊗Q R. By carefully choosing the isometry W ≃1(N )(p)⊗Q Qp, we
can find x ∈ (1(N )(p))2 which induces x1 and x2 locally at every place of Q.

Then the condition 2−1
X0(N )(z, g) ∈ Ẑ

ss
(T,ϕ)(S) implies that

z ∈ Z(x) and g−1x ∈ ω (here g ∈ GL2(A f ) with gp = 1),

and this is exactly the meaning of the identity in the theorem. □

6. Difference formula at the geometric side

6.1. p-divisible groups over adic noetherian rings.

Definition 6.1.1. A topological ring R is an adic noetherian ring if it is noetherian as a ring and it has a
topological basis consisting of all translations of the neighborhoods of zero of the form I n (n > 0), where
I ⊂ R is a fixed ideal of R, and R is Hausdorff and complete in that topology. A choice of such an ideal
is said to be the defining ideal of the topological ring R.

Lemma 6.1.2. Let A be an adic noetherian local ring whose defining ideal is the maximal ideal m. Then
any ideal I ⊂ A is complete in the topological ring A, i.e.,

I =
⋂

n

(I +mn).

Moreover, A/I is an adic noetherian ring with defining ideal m/I .
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Proof. Nakayama’s lemma implies that
⋂

n m
n I = 0. Then we can apply [Stacks, Lemma 031B] to

conclude that I is m-adically complete, i.e., I ≃ Î := lim
←−−n I/mn I .

We have the exact sequence
0→ I → A→ A/I → 0.

Since A is noetherian, after taking completion with respect to the maximal ideal m, we get

0→ Î → Â→ Â/I → 0.

However, A = Â and I = Î , and hence Â/I ≃ A/I . We conclude A/I is an adic noetherian ring.
By definition, Â/I = lim

←−−n A/(I +mn). Hence Â/I ≃ A/I implies that I =
⋂

n(I +mn). □

Lemma 6.1.3. Let A be an adic noetherian ring whose defining ideal is I . Then the functor

{category of p-divisible groups over Spec A} → {category of p-divisible groups over Spf(A)},

G = (Gn/A) 7→ (Gk = (Gk(n)= G(n)×A A/I k))k≥1.

is an equivalence.

Proof. This is proved in [de Jong 1995, Lemma 2.4.4]. □

6.2. Difference divisors on N . Recall that for every nonzero integral x ∈B, we define the special divisor
Z♯(x) on N as the closed formal subscheme of N over where x lifts to an isogeny (cf. Definition 5.2.1
and Proposition 5.2.3). It is cut out by an element fx ∈W [[t1, t2]].

For any nonzero x ∈ B such that νp(x∨ ◦ x)≥ 2, there is a closed immersion

i : Z♯(p−1x)→ Z♯(x),

by composing every deformation of p−1x with the multiplication-by-p morphism. Since W [[t1, t2]] is a
unique factorization domain, we get f p−1x | fx . Define dx = fx/ f p−1x ∈W [[t1, t2]] when νp(x∨ ◦ x)≥ 2
and dx = fx when νp(x∨ ◦ x)= 0 or 1.

Definition 6.2.1. Let x ∈ B be a nonzero and integral element. The difference divisor associated to x is

D(x)= Spf W [[t1, t2]]/dx .

The notion of difference divisor was first introduced in [Terstiege 2011]. Proposition 5.2.3 implies
that p ∤ fx , so p ∤ dx . Therefore the difference divisor D(x) is flat over Spf W . The following theorem
asserts that D(x) is regular.

Theorem 6.2.2. Let x ∈ B be a nonzero and integral element. Let m= (p, t1, t2) be the maximal ideal
of W [[t1, t2]]. Then dx ∈m \m

2, i.e., the difference divisor D(x) is regular. Moreover, for any i ≥ 1, dx

and dp−i x are coprime to each other if p−i x is also integral.

Proof. Let n ≥ 0 be the p-adic valuation of x∨ ◦ x . We first prove this result when n = 0. In this case the
result follows from [Li and Zhu 2018, Lemma 3.2.2] (p odd) and [Rapoport 2007, Lemma 3.1] (p = 2),
and W [[t1, t2]]/ fx ≃W [[t]] is even smooth over W .
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Now we suppose n ≥ 1. We can always find an element x ′ ∈B such that x ′∨ ◦ x ′ has p-adic valuation 0
and (x, x ′)= 0. We consider the formal closed subscheme Z♯(x)×N Z♯(x ′). It is cut out by the ideal
( fx , fx ′)⊂m; it is also a formal closed subscheme of Z♯(x ′)≃ Spf W [[t]] cut out by the image f̃x of fx

under the surjective map A→W [[t]]. By [Gross and Keating 1993, (5.10)] (see also [Li and Zhang 2022,
§5.1]), we have the following decomposition of Z♯(x)×N Z♯(x ′) into Cartier divisors on Z♯(x ′):

Z♯(x)×N Z♯(x ′)=
[n/2]∑
i=0

Zi , (19)

with each Zi ≃ SpfOK̆ ,i , where OK̆ ,i is the ring of integers of some nonarchimedean local field. Hence it
is a regular local ring, and they are different from each other. Let di ∈W [[t]] be the function defining the
divisor Zi on Z♯(x ′). Then we have the identity

f̃x = (unit)×
[n/2]∏
i=0

di . (20)

The regularity of OK̆ ,i implies that di ∈ (p, t) \ (p, t)2.
Let d̃p−i x be the image of dp−i x under the surjective map A→ A/( fx ′)≃W [[t]]. By definition we have

fx = (unit)×
∏[n/2]

i=0 dp−i x . Therefore,

f̃x = (unit)×
[n/2]∏
i=0

d̃p−i x . (21)

We induct on n to conclude that d̃x = (unit)× d[n/2] ∈ (p, t) \ (p, t)2. When n = 1, we simply get
d̃x = (unit)× d0 ∈ (p, t) \ (p, t)2. Let’s assume the claim is true for n < m for some m ≥ 2. We prove
the result for n = m. For this, we just need to compare (20) and (21) for p−1x and x .

Therefore we have proved that A/(dx , fx ′) is a regular local ring, and hence we conclude that dx ∈m\m
2

and D(x)≃ Spf A/(dx) is regular. Moreover, since all pieces on the right-hand side of (19) are different
from each other, we conclude that dx and dp−i x are coprime to each other. □

Fix an N -isogeny x0 ∈ B. Recall that we have defined the deformation functor N0(N ) in Section 5.1.
Compare the moduli interpretations of N0(N ) and Z♯(x0). We have a natural functor

i :N0(N )→ Z♯(x0), (X x cyclic
−−−−→ X ′, (ρ, ρ ′), (λ, λ′)) 7→ (X x

−→ X ′, (ρ, ρ ′), (λ, λ′)).

Theorem 6.2.3. The natural functor i is a closed immersion, and induces an isomorphism

N0(N )−→∼ D(x0).

Proof. By Proposition 5.2.3, Z♯(x0) is represented by Spf W [[t1, t2]]/ fx0 . We consider the maximal ideal
m= (p, t1, t2) of W [[t1, t2]] and a projective system of rings lim

←−−n Rn , where Rn =W [[t1, t2]]/( fx0 +mn).
We use (Xn

xn
−→ X ′n, (ρn, ρ

′
n), (λn, λ

′
n)) to denote the corresponding object in Z♯(x0)(Rn) by the natural

morphism W [[t1, t2]]/ fx0 → Rn , which is essentially the base change from Z♯(x0) to Spec Rn of the
universal object

(Xuniv xuniv
0
−−→ X ′ univ, (ρuniv, ρ ′ univ), (λuniv, λ′ univ)).
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The following diagram is commutative:
Xn

xn

��

// Xn+1

xn+1

��

X ′n // X ′n+1

By [de Jong 1995, Lemma 2.4.4], xn fits together to be an isogeny of p-divisible groups xuniv
0 :X

univ
→X ′ univ

over Spec W [[t1, t2]]/ fx0 .
Now we apply the Serre–Tate theorem [Serre 2015] to the projective system lim

←−−n Rn . We obtain a
direct system of elliptic curves En, E ′n over Spec Rn and x̃n ∈ EndRn (En, E ′n) such that

(i) there exist isomorphisms in : En[p∞] ≃ Xn and i ′n : E
′
n[p
∞
] ≃ X ′n ,

(ii) xn = i ′n ◦ x̃n[p∞] ◦ i−1
n .

Since every elliptic curve is equipped with a canonical ample line bundle given by the unit section,
we can apply Grothendieck’s algebraization theorem [Stacks, Theorem 089A, Lemma 0A42] to obtain
a triple (Euniv x̃univ

0
−−→ E ′ univ, (ρuniv, ρ ′ univ), (λuniv, λ′ univ)), where Euniv and E ′ univ are two elliptic curves

over Spec W [[t1, t2]]/ fx0 with the isomorphisms

iuniv
: Euniv

[p∞] ≃ Xuniv, i ′ univ
: E ′ univ

[p∞] ≃ X ′ univ,

and xuniv
0 = i ′ univ

◦ x̃univ
0 [p

∞
] ◦ (iuniv)−1. Then we have

ker(xuniv
0 )≃ ker(x̃univ

[p∞])= ker(x̃univ
0 )[p∞] ↪→ Euniv,

where ker(x̃univ
0 )[p∞] is the p-torsion subgroup scheme of the finite locally free group scheme ker(x̃univ

0 ).
Therefore, the universal kernel ker(xuniv

0 ) is embedded into an elliptic curve. We can apply Proposition 4.1.4
and conclude that there is an ideal Icyc(x0)⊂W [[t1, t2]] containing fx0 such that for S ∈ NilpW and an
object (X x

−→ X ′, (ρ, ρ ′), (λ, λ′))∈Z♯(x0)(S), the isogeny x is a cyclic isogeny if and only if the morphism
S→ Spf W [[t1, t2]]/ fx0 factors through Spf W [[t1, t2]]/Icyc(x0). We conclude from here that N0(N ) is
represented by the formal scheme Spf W [[t1, t2]]/Icyc(x0) and the natural functor i is a closed immersion.

Recall that we use dx0 to denote the equation that cuts out the difference divisor D(x0). In the
following, we use D to denote the difference divisor D(x0). Let xD : XD → X ′D be the base change
of xuniv

0 : Xuniv
→ X ′ univ to D. We first show that xD doesn’t factor through the multiplication-by-p

morphism of XD. Let’s assume the converse, i.e., xD = p ◦ x ′D, where x ′D : XD → X ′D is an isogeny.
Let Dn = Spec W [[t1, t2]]/(dx0 +mn). The base change of x ′D from D to Dn is a deformation of p−1x0,
and hence the natural morphism Dn → Z♯(x0) factors through Z♯(p−1x0) ≃ Spf W [[t1, t2]]/( f p−1x0).
Since W [[t1, t2]]/(dx0) ≃ lim

←−−n W [[t1, t2]]/(dx0 + mn) by Lemma 6.1.2, we get a ring homomorphism
W [[t1, t2]]/( f p−1x0)→ W [[t1, t2]]/(dx0). However, dx0 is coprime to f p−1x0 by Theorem 6.2.2, a contra-
diction. Hence xD doesn’t factor through the multiplication-by-p morphism of XD.

Lemma 4.1.5 and Corollary 4.1.6 imply that ker(xD) is a cyclic group scheme since D is an integral
noetherian scheme which is also separated and flat over W . Hence there exists a natural morphism from
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Spec W [[t1, t2]]/dx0 to Spec W [[t1, t2]]/Icyc(x0). Therefore, we conclude that Icyc(x0)⊂ (dx0)⊂W [[t1, t2]].
This shows that the closed immersion D(x0)→ Z♯(x0) decomposes as

D(x0)→N0(N )→ Z♯(x0).

Therefore, we have an inclusion of ideals ( fx0)⊂ Icyc(x0)⊂ (dx0)∈W [[t1, t2]]. Theorem 6.6.1 of [Katz
and Mazur 1985] (see also their Case II of 5.3.2.1) asserts that W [[t1, t2]]/Icyc(x0) is a 2-dimensional
regular local ring. Recall that we have already proved in Theorem 6.2.2 that W [[t1, t2]]/dx0 is also a
regular local ring. Hence we must have Icyc(x0)= (dx0), i.e., D(x0)≃N0(N ). □

6.2.A. Special Fibers. In this part we use the identification N0(N )−→∼ D(x0) to explicitly describe the
special fiber of the local ring N0(N ). The main results of this part will not be used in the following
calculations, so readers can skip on first reading.

Let a = (t1, t2) ⊂ W [[t1, t2]]. Let ā be the image of a in F[[t1, t2]]. Let An = W [[t1, t2]]/an and
Rn = F[[t1, t2]]/ān , with A0 = W [[t1, t2]] and R0 = F[[t1, t2]]. Equip each An with a morphism σ which
extends the Frobenius morphism on W and maps t1 to t p

1 , t2 to t p
2 . Then An is a frame for Rn in the sense

of [Zink 2001, Definition 1]. For any n ≥ 0, let (M,M1,8) be an An-window in the sense of [Zink 2001,
Definition 2]. Since 8(M1) ⊂ p ·M and p is not a zero-divisor in An , we define 81 : M1→ M to be
p−18. The morphism 81 is σ -linear and induces an isomorphism 8σ1 : M

σ
1 → M because both sides

are free An-modules of the same rank and 8σ1 is surjective by the definition of windows [Zink 2001,
Definition 2(ii)]. Let α be the injective An-morphism

α : M1 ↪→ M
(8σ1 )

−1

−−−−→ Mσ
1 .

Theorem 6.2.4. For any n ≥ 0, we have the category equivalences

{An-window (M,M1,8)}
∼
←→ {formal p-divisible groups over Rn}.

Moreover, both these two categories are equivalent to the category

{pairs (M1, α : M1→ Mσ
1 ) such that Coker(α) is a free Rn-module},

where the functor from An-windows (M,M1,8) to pairs (M1, α :M1→Mσ
1 ) is given by the constructions

above.

Proof. This is proved in [Zink 2001, Theorem 4]. □

Let ((X , ρ, λ), (X ′, ρ ′, λ′)) be the universal object in N (F[[t1, t2]]), i.e., the base change of the uni-
versal object ((Xuniv, ρuniv, λuniv), (X ′ univ, ρ ′ univ, λ′ univ)) over W [[t1, t2]] to F[[t1, t2]]. The corresponding
window can be described as follows. Let D = W · e+W · f be the Dieudonne module of X, where
Fe = V e = f , F f = V f = p · e (F and V are the Frobenius and Verschiebung morphisms on D). Then
we let M = D⊗W W [[t]] and M1 = (W · f + pW · e)⊗W W [[t]]. We still use σ to denote the Frobenius
action on W [[t]] which sends t to t p and extends the Frobenius morphism on W . Let 8 be the σ -linear
map from M to M such that 8(e⊗ 1)= t · (e⊗ 1)+ f ⊗ 1,8( f ⊗ 1)= p · (e⊗ 1). Then (M,M1,8) is
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the W [[t]]-window corresponding to the universal deformation of X over F[[t]] (see [Zink 2002, (86)]).
Let (M ′,M ′1,8

′) be the corresponding window for X′. Then the W [[t1, t2]]-window corresponding to the
universal deformation of X×F X′ over F[[t1, t2]] is given by (M⊕M ′,M1⊕M ′1,8⊕8

′), or (M1⊕M ′1, α),
where under the basis {p · (e⊗ 1), f ⊗ 1, p(e′⊗ 1), f ′⊗ 1}, the map α is given by the matrix

α =


1

p −t1
1

p −t2

 .

Any quasi-isogeny x ∈ B induces the endomorphism

D(x)=


σ(a) −σ(b)
−p · b a

a σ(b)
p · b σ(a)


of the window M1⊕M ′1 of X×F X′ under the basis {p · e, f, p · e′, f ′}, where a, b ∈Qp2 .

Let M1(n)= M1⊗A0 An , M ′1(n)= M ′1⊗A0 An , α(n)= α⊗A0 An . By Theorem 6.2.4, a quasi-isogeny
x lifts to an isogeny over Rn if and only if there exists x(n) ∈ End

(
(M1(n)⊕ M ′1(n), α(n))

)
such that

x(1)= D(x) and the following diagram commutes:

M1(n)⊕M ′1(n)

x(n)
��

α(n)
// M1(n)σ ⊕M ′1(n)

σ

σ(x(n))
��

M1(n)⊕M ′1(n)
α(n)
// M1(n)σ ⊕M ′1(n)

σ

Under the basis {p · (e⊗ 1), f ⊗ 1, p(e′⊗ 1), f ′⊗ 1}, the morphism x(n) has the form

x(n)=
(

A(n) Y (n)
X (n) B(n)

)
,

where X (n), Y (n), A(n), B(n) ∈M2(An) satisfy the equations,

X (n)= p−1U ′(t2) · σ(X (n)) ·U (t1), Y (n)= p−1U ′(t1) · σ(Y (n)) ·U (t2),

A(n)= p−1U ′(t1) · σ(A(n)) ·U (t1), B(n)= p−1U ′(t2) · σ(B(n)) ·U (t2),

where
U (t)=

(
1

p −t

)
and U ′(t)=

(
t 1
p

)
.

Since A(1)= B(1)= 0, we conclude (by comparing degrees of t1 and t2) that A(n)= B(n)= 0.
For any A ∈M2(An ⊗Z Q), the matrix σ(A) is a well-defined element in M2(Apn ⊗Z Q). Therefore,

starting from X (1) and Y (1), we can define successively

X (pl+1)= p−1U ′(t2) · σ(X (pl)) ·U (t1), Y (pl+1)= p−1U ′(t1) · σ(Y (pl)) ·U (t2). (22)
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Since the local ring OZ(x) only depends (up to noncanonical isomorphisms) on the valuation of x , we
take the following specific choice of x and D(x) in the following computations:

• When ordp(x∨ ◦ x)= 2k for some k ≥ 0, we take

X (1)= Y (1)=
(

pk

pk

)
.

By computation based on the recursion formula (22), it turns out that for any l ≥ 1,

X (pl)=
1

pl−k

((
0 (−1)l−1(t1t2)(p

l−1
−1)/(p−1)

(
t pl−1

2 − t pl−1

1

)
0 0

)
+ p ·C

)
,

Y (pl)=
1

pl−k

((
0 (−1)l−1(t1t2)(p

l−1
−1)/(p−1)

(
t pl−1

2 − t pl−1

1

)
0 0

)
+ p · D

)
for some matrices C, D ∈M2(Apl ).

• When ordp(x∨ ◦ x)= 2k+ 1 for some k ≥ 0, we take

X (1)=−Y (1)=
(

pk

pk+1

)
.

By computation based on the recursion formula (22), it turns out that for any l ≥ 1,

X (pl)=
1

pl−k

((
0 (−1)l(t1t2)(p

l
−1)/(p−1)

0 0

)
+ p ·C ′

)
,

Y (pl)=
1

pl−k

((
0 (−1)l−1(t1t2)(p

l
−1)/(p−1)

0 0

)
+ p · D′

)
for some matrices C ′, D′ ∈M2(Apl ).

Proposition 6.2.5. Let x ∈ B be an integral nonzero element which has valuation n and induces X (1)
and Y (1) as described above. Let fx ∈W [[t1, t2]] be the element cutting out Z(x). Then

f̄x := fx mod p = (unit)×

{
(t1t2)(p

n/2
−1)/(p−1)

(
t pn/2

2 − t pn/2

1

)
mod (t1, t2)pn/2+1

when n is even,

(t1t2)(p
(n+1)/2

−1)/(p−1) mod (t1, t2)p(n+1)/2
when n is odd.

(23)

Proof. By the above formula for X (pl) and Y (pl), we can conclude that x can be lifted to an isogeny
over Rp[n/2] but not over Rp[n/2]+1 . Then the formula for X (p[n/2]+1) and Y (p[n/2]+1) imply (23). □

Theorem 6.2.6. Let x ∈ B be an integral nonzero element which has valuation n and induces X (1) and
Y (1) as described above. Let fx ∈W [[t1, t2]] be the element cutting out Z(x). Then f̄x is divisible by

t1− t pa

2 , t pa

1 − t2 for 0≤ a ≤ n and a ≡ n mod 2.

Moreover, f̄x has no other irreducible factors and the multiplicity of t1− t pa

2 , t pa

1 − t2 in f̄x is p(n−a)/2.

Proof. We first prove that t pk1

1 − t pk2

2 divides f̄x , where k1, k2 ≥ 0 and k1 + k2 = n. We prove this by
showing that X (pl), Y (pl) mod (t pk1

1 − t pk2

2 ) ∈M2(Apl/(t pk1

1 − t pk2

2 )) for any l ≥ 0.
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• When n = 2k is even, the recursion formula (22) implies that,

X (pl)= pk−lU ′(t2)U ′(t
p
2 ) · · ·U

′(t pl−1

2 )U (t pl−1

1 ) · · ·U (t p
1 )U (t1),

Y (pl)= pk−lU ′(t1)U ′(t
p
1 ) · · ·U

′(t pl−1

1 )U (t pl−1

2 ) · · ·U (t p
2 )U (t2).

Let’s assume first that k1 ≤ k2. For any 0≤ t ≤ l − k1, we have the relation t pl−t

2 = t pk2−k1+l−t

1 . Hence

U ′(t pl−t

2 )U (t pk2−k1+l−t

1 )= p · I2.

Moreover, when 1≤ t ≤ k2− k1, we have t pl−t

2 = t pk2−k1+l−t

1 = 0. Hence U (t pl−t

2 )=U (0) and we get

X (pl)=U ′(t2)U ′(t
p
2 ) · · ·U

′(t pk2−1

2 )U (t pk1−1

1 ) · · ·U (t p
1 )U (t1) ∈M2(Apl/(t pk1

1 − t pk2

2 )),

Y (pl)=U ′(t1)U ′(t
p
1 ) · · ·U

′(t pk1−1

1 )U (t pk2−1

2 ) · · ·U (t p
2 )U (t2) ∈M2(Apl/(t pk1

1 − t pk2

2 )).

The proof of the case k1 > k2 is similar and we get the same formula for X (pl) and Y (pl) as above.
Therefore, we conclude that t pk1

1 − t pk2

2 divides f̄x when k1, k2 ≥ 0 and k1+ k2 = 2k by Theorem 6.2.4.
Hence f̄x is divisible by the polynomial

(t1− t2)pk
·

k∏
a=1

(
(t1− t p2a

2 )(t2− t p2a

1 )
)pk−a

.

We also know that

(t1− t2)pk
·

k∏
a=1

(
(t1− t p2a

2 )(t2− t p2a

1 )
)pk−a

≡ (t1t2)(p
k
−1)/(p−1)

· (t pk

2 − t pk

1 ) mod (t1, t2)pk+1
.

The lemma follows by comparing this formula with (23).

• When n = 2k+ 1 is odd, the recursion formula (22) implies

X (pl)= pk−lU ′(t2)U ′(t
p
2 ) · · ·U

′(t pl−1

2 )

(
0 1
p 0

)
U (t pl−1

1 ) · · ·U (t p
1 )U (t1),

Y (pl)= pk−lU ′(t1)U ′(t
p
1 ) · · ·U

′(t pl−1

1 )

(
0 1
p 0

)
U (t pl−1

2 ) · · ·U (t p
2 )U (t2).

Let’s assume k1 < k2. For any 0 ≤ t ≤ l − k1, we have the relation t pl−t

2 = t pk2−k1+l−t

1 , and hence
U ′(t pl−t

2 )U (t pk2−k1+l−t

1 )= p · I2. Moreover, when 1 ≤ t ≤ k2 − k1, we have t pl−t

2 = t pk2−k1+l−t

1 = 0. So
U (t pl−t

2 )=U (0), and we get

X (pl)=U ′(t2)U ′(t
p
2 ) · · ·U

′(t pk2−1

2 )U (t pk1−1

1 ) · · ·U (t p
1 )U (t1) ∈M2

(
Apl/(t pk1

1 − t pk2

2 )
)
,

Y (pl)=U ′(t1)U ′(t
p
1 ) · · ·U

′(t pk1−1

1 )U (t pk2−1

2 ) · · ·U (t p
2 )U (t2) ∈M2

(
Apl/(t pk1

1 − t pk2

2 )
)
.

Therefore we conclude that t pk1

1 − t pk2

2 divides f̄x when k1, k2 ≥ 0 and k1+ k2 = 2k+1 by Theorem 6.2.4.
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Hence f̄x is divisible by the polynomial

k∏
a=0

(
(t1− t p2a+1

2 )(t2− t p2a+1

1 )
)pk−a

.

We also know that
∏k

a=0
(
(t1− t p2a+1

2 )(t2− t p2a+1

1 )
)pk−a

≡ (t1t2)(p
k+1
−1)/(p−1) mod (t1, t2)pk+1

. The lemma
follows by comparing this formula with (23). □

Corollary 6.2.7. Let x ∈ B be an integral nonzero element which has valuation n ≥ 1. Let Z(x)p be
special fiber of Z(x). Then

Z(x)p ≃ Spf F[[t1, t2]]
/ ( ∏

a+b=n
a,b≥0

(t pa

1 − t pb

2 )

)
.

Let D(x)p (resp. N0(N )p) be the base change of D(x) (resp. N0(N )) to F[[t1, t2]]. Then

N0(N )p ≃ D(x)p ≃ Spf F[[t1, t2]]
/ (

(t1− t pn

2 ) · (t2− t pn

1 ) ·
∏

a+b=n
a,b≥1

(t pa−1

1 − t pb−1

2 )p−1
)
.

Proof. The statement for Z(x)p follows from Theorem 6.2.6. The statement for D(x)p follows from the
definition of difference divisors. □

Remark 6.2.8. The same formula has been proved in [Katz and Mazur 1985, Theorems 13.4.6 and 13.4.7]
by a totally different method.

6.3. Local arithmetic intersection numbers. Now we give the definition of the local arithmetic intersec-
tion numbers.

Definition 6.3.1. For any rank-3 lattice L ⊂ B, we choose a Zp-basis {x1, x2, x3} of L . Let OZ♯(xi ) be
the structure sheaf of the special cycle Z♯(xi ). Let ON be the structure sheaf of the formal scheme N .
Let – ⊗L

ON
– be the derived tensor product functor in the derived category of coherent sheaves on N .

Define the local arithmetic intersection number of L on N to be

Int♯(L)= χ(N ,OZ♯(x1)⊗
L
ON

OZ♯(x2)⊗
L
ON

OZ♯(x3)).

This number is finite and independent of the choice of the basis {xi }
3
i=1 of L because of the following

result.

Lemma 6.3.2. Let x, y ∈ B be linearly independent. Then the tor sheaves TorON
i (OZ♯(x),OZ♯(y)) vanish

for all i ≥ 1. In particular,

OZ♯(x)⊗
L
ON

OZ♯(y) =OZ♯(x)⊗ON OZ♯(y).

Moreover, the same formula holds if Z♯(x) or Z♯(y) (or both) are replaced by D(x) or D(y), respectively.
Let L ⊂ B be an integral quadratic lattice of rank 3 over Zp with basis {x1, x2, x3}. Then the derived

tensor product OZ♯(x1)⊗
L
ON

OZ♯(x2)⊗
L
ON

OZ♯(x3) is independent of the choice of the basis.
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Proof. This is proved in [Terstiege 2011, Lemma 4.1 and Proposition 4.2]. □

Now let’s come to the local arithmetic intersection numbers on N0(N ). For a fixed N -isogeny x0 of X,
recall that we have defined the space of quasi-isogenies of X special to x0 (see Definition 5.2.4) to be
those x ∈ B such that

x ◦ x∨0 + x0 ◦ x∨ = 0.

Recall that we use W to denote this space.

Definition 6.3.3. For any rank-2 lattice M ⊂W, we choose a Zp-basis {x1, x2} of M. Let OZ(xi ) be the
structure sheaf of the special cycle Z(xi ). Let ON0(N ) be the structure sheaf of the formal scheme N0(N ).
Let –⊗L

ON0(N )
– be the derived tensor product functor in the derived category of coherent sheaves on N0(N ).

Define the local arithmetic intersection number of M on N0(N ) to be

IntN0(N )(M)= χ(N0(N ),OZ(x1)⊗
L
ON0(N )

OZ(x2)).

This number is independent of the choice of the basis {x1, x2} of M because of Lemma 6.3.2 and
Theorem 6.2.3. We relate it to the derivative of the local density of the quadratic lattice M with level N .
The following theorem is the starting point of our calculation.

Theorem 6.3.4. For any prime number p, let L ⊂ B be a Zp-lattice of rank 3. Then

Int♯(L)= ∂ Den(L).

Proof. In [Gross and Keating 1993, §4], the Gross–Keating invariants (a1, a2, a3) of the rank-3 quadratic
lattice L are defined. Then the local arithmetic intersection number Int♯(L) is computed explicitly in
terms of these invariants (see also [Rapoport 2007, Theorem 1.1]). In [Wedhorn 2007, §2.11], the local
density Den+(X, L) is also expressed explicitly in terms of the Gross–Keating invariants (a1, a2, a3),
hence the derived local density ∂ Den+(L). The theorem is proved by comparing the expressions of both
sides in terms of (a1, a2, a3) (see [Wedhorn 2007, §2.16]). See also [Li and Zhang 2022] for a recent new
proof when p is odd. □

6.4. Difference formula of the local arithmetic intersection numbers. Fix an N -isogeny x0 ∈ End(X),
and recall that W = {x0}

⊥
→ B.

Theorem 6.4.1. For any rank-2 lattice M ⊂W, we have the identity

IntN0(N )(M)= Int♯(M k Zp · x0)− Int♯(M k Zp · p−1x0).

Proof. Let {x1, x2} be a basis of M. By Lemma 6.3.2 and the isomorphism D(x0)≃N0(N ), we have the
following isomorphism as complexes of coherent sheaves on N :

ON0(N )⊗
L
ON

OZ♯(x1)⊗
L
ON

OZ♯(x2) ≃OZ(x1)⊗
L
ON

OZ♯(x2)

≃OZ(x1)⊗
L
ON0(N )

OD(x0)⊗
L
ON

OZ♯(x2)

≃OZ(x1)⊗
L
ON0(N )

OZ(x2).
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When νp(N )= 0 or 1, the difference divisor D(x0) is just Z♯(x0). Hence IntN0(N )(M)= Int♯(M kZp ·x0)

and Int♯(M k Zp · p−1x0)= 0 since p−1x0 is not integral, and therefore

IntN0(N )(M)= Int♯(M k Zp · x0)− Int♯(M k Zp · p−1x0).

When νp(N )≥ 2, we have the exact sequence

0→OZ♯(p−1x0)

×dx0
−−−→OZ♯(x0)→OD(x0) ≃ON0(N )→ 0.

Tensoring the above exact sequence with the complex OZ♯(x1)⊗
L
ON

OZ♯(x2) in the derived category of
coherent sheaves on N , we get an exact triangle

OZ♯(p−1x0)⊗
L
ON

OZ♯(x1)⊗
L
ON

OZ♯(x2)→OZ♯(x0)⊗
L
ON

OZ♯(x1)⊗
L
ON

OZ♯(x2)

→ON0(N )⊗
L
ON

OZ♯(x1)⊗
L
ON

OZ♯(x2)→ .

Hence we have the identity

χ(OZ♯(x0)⊗
L
ON

OZ♯(x1)⊗
L
ON

OZ♯(x2))

= χ(OZ♯(p−1x0)⊗
L
ON

OZ♯(x1)⊗
L
ON

OZ♯(x2))+χ(ON0(N )⊗
L
ON

OZ♯(x1)⊗
L
ON

OZ♯(x2)).

We already know that ON0(N )⊗
L
ON

OZ♯(x1)⊗
L
ON

OZ♯(x2) ≃OZ(x1)⊗
L
ON0(N )

OZ(x2) since N0(N )≃ D(x0).
Hence

IntN0(N )(M)= χ(OZ(x1)⊗
L
OD(x0)

OZ(x2))= χ(ON0(N )⊗
L
ON

OZ♯(x1)⊗
L
ON

OZ♯(x2))

= χ(OZ♯(x0)⊗
L
ON

OZ♯(x1)⊗
L
ON

OZ♯(x2))−χ(OZ♯(p−1x0)⊗
L
ON

OZ♯(x1)⊗
L
ON

OZ♯(x2))

= Int♯(M k Zp · x0)− Int♯(M k Zp · p−1x0). □

7. Difference formula at the analytic side

Let p be a prime number. Let F be a nonarchimedean local field of residue characteristic p, with ring of
integers OF , residue field κ = Fq of size q , and uniformizer π .

7.1. Primitive decomposition. Let N ∈ F. Recall that we use (⟨N ⟩, q⟨N ⟩) to denote the rank-1 quadratic
lattice over OF with an OF -generator lN such that q⟨N ⟩(lN )= N . Then ⟨N ⟩ is an integral quadratic lattice
if and only if N ∈OF . Let n = νπ (N ). All the rank-1 integral quadratic lattices L ′ containing ⟨N ⟩ have
the form

L ′ = π−i
⟨N ⟩ ≃ ⟨π−2i N ⟩ for i = 0, 1, . . . ,

[n
2

]
.

Let H be a self-dual quadratic OF -lattice of finite rank. Since qH (x) ∈OF for every x ∈ H, Lemma 2.2.5
gives the decomposition

RepH,⟨N ⟩(OF )=

[n/2]⊔
i=0

PRepH,⟨π−2i N ⟩(OF ).

Now for every 0 ≤ i ≤ [n/2], we pick an arbitrary φ ∈ PRepH,⟨π−2i N ⟩(OF ) and consider the following
sublattice of H :

H(φ) := {x ∈ H : (x, φ(lN ))= 0}.



Arithmetic Siegel–Weil formula on X0(N) 1813

Lemma 7.1.1. The isometric class of H(φ) is independent of the choice of φ ∈ PRepH,⟨π−2i N ⟩(OF ).

Proof. Let φ′ ∈ PRepH,⟨π−2i N ⟩(OF ) be another element. The homomorphisms φ and φ′ are totally
determined by x := φ(lπ−2i N ) and x ′ := φ′(lπ−2i N ). The fact that φ and φ′ are primitive implies that
x /∈ π · H and x ′ /∈ π · H. Therefore,

(x, H)=OF , (x ′, H)=OF ,

where we use ( · , · ) to denote the associated bilinear form on H. Since H is self-dual, then by [Morin-
Strom 1979, Theorem 5.3], there exists ϕ ∈ O(H)(OF ) such that ϕ(x)= x ′. The homomorphism ϕ also
induces an isometry between H(φ) and H(φ′) because H(φ)= x⊥ ∩ H and H(φ′)= x ′⊥ ∩ H. □

Let N ∈ OF be an element of valuation n. For every 0 ≤ i ≤ [n/2] and φ ∈ PRepH,⟨π−2i N ⟩(OF ), we
use H(N , i) to denote the quadratic lattice H(φ).

Example 7.1.2. Let N ∈OF have valuation n. When k > 4, we have an orthogonal decomposition

H ε
k ≃ H+4 k H ε

k−4.

Recall that the symbol H ε
k is understood in the following way: when p is odd, k can be any positive

integer, and ε ∈ {±1} is arbitrary; when p = 2, k is even and ε =+1. The lattice M2(OF ) is equipped
with the quadratic form induced by the determinant; it is self-dual and χF (M2(OF ))= 1, and hence we
can view M2(OF ) as a model lattice for H+4 .

Let’s consider the element φ ∈ PRepH ε
k ,⟨π

−2i N ⟩(OF ) given by

φi : ⟨π
−2i N ⟩ →M2(OF )≃ H+4 ↪→ H ε

k , lπ−2i N 7→

(
π−2i N 0

0 1

)
.

The corresponding element in RepH ε
k ,⟨N ⟩

(OF ) sends

lN 7→

(
π−i N 0

0 π i

)
.

Lemma 7.1.1 implies that the following quadratic lattices are isometric:

H ε
k (N , i)= H ε

k (φi )≃ φi (lπ−2i N )
⊥k H ε

k−4,

where φi (lπ−2i N )
⊥ is the space of elements in M2(OF ) that are orthogonal to φi (lπ−2i N ), it can be described

explicitly as

φi (lπ−2i N )
⊥
=

{
x =

(
−π−2i Na b

c a

)
: a, b, c ∈OF

}
.

It is exactly the lattice 1F (π
−2i N ) defined in Example 2.1.1. Therefore

H ε
k (N , i)≃1F (π

−2i N )k H ε
k−4.
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7.2. Difference formula of local densities.

Theorem 7.2.1. Let H be a self-dual quadratic OF -lattice of finite rank k. Let M be an integral quadratic
OF -lattice of finite rank r. Let N ∈OF be an element of valuation n. Then

Den(H,M k ⟨N ⟩)=
[n/2]∑
i=0

q(2−k+r)i
·Pden(H, ⟨π−2i N ⟩) ·Den(H(N , i),M).

The proof of this theorem is based on the following lemmas.

Lemma 7.2.2. Let H be a self-dual quadratic OF -lattice. Let N ∈OF be an element of valuation n. Then
there is a bijective map

D : RepH,⟨N ⟩(OF/π
d)−→∼

[n/2]⊔
i=0

⊔
x̄∈OF/π i

PRepH,⟨π−2i N+πd−2i x⟩(OF/π
d−i )

when the positive integer d is large enough.

Proof. Let lN be a generator of the rank-1 OF -module ⟨N ⟩ such that q⟨N ⟩(lN ) = N . Any f in
RepH,⟨N ⟩(OF/π

d) is determined by f (lN ) ∈ H/πd H. There is a natural filtration on H/πd H given as

0⊂ πd−1 H/πd H ⊂ πd−2 H/πd H ⊂ · · · ⊂ π2 H/πd H ⊂ πH/πd H ⊂ H/πd H.

Let i be the minimal integer such that f (lN ) ∈ π
i H/πd H. Then 0≤ i ≤ [n/2] since νπ (N )= n. So

there exists l ∈ H such that f (lN )=π i l ∈π i H/πd H ; the image of l in H/πd−i H is uniquely determined
by f . Let q be the quadratic form on H. Then

N mod pid
= q⟨N ⟩(lN )= q̄( f (lN ))= π

2i q̄(l̄)= π2i q(l).

Hence π2i q(l) ≡ π−2i N mod πd−2i . Therefore there exists x ∈ OF such that q(l) = π−2i N +πd−2i x .
Next we show that x̄ ∈OF/π

i is independent of the choice of l ∈ H when d is large enough. Suppose
l ′ is another element of H such that f (lN ) = π i l ′. Then there exists δ ∈ H such that l ′ − l = πd−iδ.
Therefore, when d is large enough,

q(l ′)= q(l +πd−iδ)= q(l)+πd−i (l, δ)+π2d−2i q(δ)≡ q(l) mod πd−i .

Suppose q(l ′)=π−2i N+πd−2i x ′ for some x ′∈OF . The above congruence between q(l) and q(l ′) implies
x ′≡x mod π i. The above construction gives the homomorphism D( f ) in PRepH,⟨π−2i N+πd−2i x⟩(OF/π

d−i )

sending the generator lπ−2i N+πd−2i x of ⟨π−2i N +πd−2i x⟩/πd−i
⟨π−2i N +πd−2i x⟩ to l̄ ∈ H/πd−i H.

Now for any element ϕ ∈ PRepH,⟨π−2i N+πd−2i x⟩(OF/π
d−i ), we consider the morphism

ϕ̃ : ⟨N ⟩/πd
⟨N ⟩ → H/πd H, lN 7→ π iϕ(lπ−2i N+πd−2i x).

Then ϕ̃ ∈ RepH,⟨N ⟩(OF/π
d) because q̄(ϕ̃(lN ))= π2i (π−2i N +πd−2i x)= N mod πd . This construction

gives the inverse map of D. □
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Let M be an integral quadratic OF -lattice of finite rank. Let N ∈OF be an element of valuation n. Let
M♯
= M k ⟨N ⟩ be a quadratic OF -lattice of one rank higher than M. For any positive integer d and any

self-dual quadratic OF -lattice H, there is a natural restriction map

res : RepH,M♯(OF/π
d)→ RepH,⟨N ⟩(OF/π

d),

given by composing any element in the set RepH,M♯(OF/π
d) with the natural inclusion of ⟨N ⟩/πd

⟨N ⟩
in M♯/πd M♯. The next lemma describes the fiber of the map D ◦ res.

Lemma 7.2.3. Let H be a self-dual quadratic OF -lattice and M an integral quadratic OF -lattice of finite
rank r . For N ∈OF an element of valuation n, let M♯

= M k ⟨N ⟩ be a quadratic OF -lattice of rank r +1.
Let 0≤ i ≤ [n/2] be an integer. Given ϕ ∈ PRepH,⟨π−2i N+πd−2i x⟩(OF/π

d−i ), for d large enough we have

#(D ◦ res)−1(ϕ)= q ir
· # RepH(N ,i),M(OF/π

d).

Proof. Let f be an element in RepH,M♯(OF/π
d) such that D ◦ res( f )= ϕ. By the proof of Lemma 7.2.2,

there exists l ′N ∈ H \πH such that f (lN )= π i l ′N , and q(l ′N )= π
−2i N when d is large enough.

Let {ei }
r
i=1 be an OF -basis of M. Then f is determined by {xi := f (ei ) ∈ H/πd H}ri=1. Therefore

(D ◦ res)−1(ϕ) can be described by the set

(D ◦ res)−1(ϕ)=
{
(x1, . . . , xr ) ∈ (H/πd H)r : (xi , π i l ′N )= 0, (xi , x j )= (ei , e j ) for i ̸= j ,

and q̄(xi )= qM(ei ) for every i .
}
. (24)

Let L be the rank-1 sublattice of H generated by l ′N . We have the exact sequence

0→ L ⊕ H(N , i) θ
−→ H → Q := H/L ⊕ H(N , i)→ 0,

where θ is the natural inclusion map. After tensoring the above exact sequence with OF/π
d , we get the

following exact sequence by the flatness of H over OF :

0→ Tor1
OF
(Q,OF/π

d)→ L/πd L ⊕ H(N , i)/πd H(N , i) θ
−→ H/πd H → Q/πd Q→ 0. (25)

Claim. Let K =
{

x ∈ H/πd H : (x, π i l ′N ) = 0
}
. When d is large enough, for every x̄ ∈ K there exists

x ′ ∈ L and x ′′ ∈ H(N , i) such that the image of x ′ + x ′′ ∈ L/πd L ⊕ H(N , i)/πd H(N , i) under θ in
H/πd H is x̄ .

Proof of the claim. We have the decomposition

x = x ′+ x ′′

in the quadratic space V = H ⊗OF F, where x ′ ∈ L F := L ⊗OF F and x ′′ ∈ (L F )
⊥
⊂ V .

The fact that x̄ ∈ K implies that (x ′, lN )= (x, lN ) ∈ (π
d). Therefore x ′ ∈ (πd−n) · lN ∈ L F . It turns

out that x ′ ∈ L ⊂ H when d is large enough, and hence x ′ = x − x ′ ∈ H ∩ {lN }
⊥
= H(N , i). □

We get the following description of the inverse image of the set (D ◦ res)−1(ϕ) under 2 := θ ×· · ·× θ
by (24):

2−1((D ◦ r)−1(ϕ))= (πd+i−n L/πd L)r ×RepH(N ,i),M(OF/π
d). (26)

The claim implies that the map 2−1((D ◦ res)−1(ϕ))
2
−→ (D ◦ res)−1(ϕ) is surjective.
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Now we compute # ker(2), which equals (# ker(θ))r by definition. By the exact sequence (25),
# ker(θ) = # Tor1

OF
(Q,OF/π

d) = #Q/πd Q. Therefore, when d is large enough, Q/πd Q = Q. Since
l ′N /∈ πH, there exists y ∈ H such that (l ′N , y)= 1. The existence of y implies the exact sequence

0→ H(N , i) θ
−→ H → L∨→ 0, x 7→ l(x) : v ∈ L 7→ (x, v).

Therefore, H ≃ L∨⊕ H(N , i) as OF -modules, and Q ≃ L∨/L ≃ π2i−n L/L . Then, by (26),

#(D ◦ res)−1(ϕ)=
qr(n−i)

qr(n−2i) · # RepH(N ,i),M(OF/π
d)= q ir

· # RepH(N ,i),M(OF/π
d). □

Proof of Theorem 7.2.1. By Lemmas 7.2.2 and 7.2.3, we only need to know the size of the set
PRepH,⟨π−2i N+πd−2i x⟩(OF/π

d−i ) when x ∈OF . We first show that when d is large enough,

# PRepH,⟨π−2i N+πd−2i x⟩(OF/π
d−i )= # PRepH,⟨π−2i N ⟩(OF/π

d−i )

holds for any x ∈OF , because when d is large enough, we could find cx ∈O×F such that c−2
x = 1+πd N−1x

mod πd−i ; then for any element l ∈ PRepH,⟨π−2i N+πd−2i x⟩(OF/π
d−i ), cx · l ∈ PRepH,⟨π−2i N ⟩(OF/π

d−i ).
Let M♯

= M k ⟨N ⟩. We have

Den(H,M k ⟨N ⟩)= lim
d→∞

# RepH,M♯(OF/π
d)

qd(k(r+1)−(r+1)(r+2)/2)

= lim
d→∞

[n/2]∑
i=0

q i
·

# PRepH,⟨π−2i N ⟩(OF/π
d−i )

q(d−i)(k−1) ·
q ir

q i(k−1) ·
# RepH(N ,i),M(OF/π

d)

qd((k−1)r−r(r+1)/2)

=

[n/2]∑
i=0

q(2−k+r)i
·Pden(H, ⟨π−2i N ⟩) ·Den(H(N , i),M). □

Remark 7.2.4. When p odd, it has been calculated explicitly (see [Li and Zhang 2022, (3.3.2.1)]) that
for any N ∈OF

Pden(H ε
k , ⟨N ⟩)=


1− q1−k when k is odd and π | N ,
1+ εχF (N )q(1−k)/2 when k is odd and π ∤ N ,
(1− εq−k/2)(1+ εq1−k/2) when k is even and π | N ,
1− εq−k/2 when k is even and π ∤ N .

(27)

When p = 2, the same formula makes sense and holds true only in the case that k is even and ε =+1.

Definition 7.2.5. Let N ∈ OF . Let M be a quadratic lattice of rank r ≥ 2 over OF . Define the local
density of M with level N to be a polynomial Den1F (N )(X,M) satisfying, for m ≥ 0,

Den1F (N )(X,M)
∣∣

X=q−m =


Den(1F (N )k H+2m+r−2,M)

Nor+(q−m, r − 1)
when π | N ,

Den(1F (N )k H+2m+r−2,M)

NorχF (N )(q−m, r)
when π ∤ N .
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Moreover, if the lattice M k ⟨N ⟩ can’t be isometrically embedded into the self-dual lattice H+r+2, define
the derived local density of M with level N to be

∂ Den1F (N )(M)=−
d

dX

∣∣∣
X=1

Den1F (N )(X,M).

Theorem 7.2.6. Let N ∈OF . Let M be a quadratic lattice of rank r ≥ 2 over OF . Then we have

Den1F (N )(X,M)= Den(X,M k ⟨N ⟩)− X2
·Den(X,M k ⟨π−2 N ⟩).

Moreover, if the lattice M k ⟨N ⟩ can’t be isometrically embedded into the self-dual lattice H+r+2, then

∂ Den1F (N )(M)= ∂ Den(M k ⟨N ⟩)− ∂ Den(M k ⟨π−2 N ⟩).

Proof. Recall the definition of the polynomial Norε(X, n) in Definition 2.2.6. We can verify immediately
by formula (27) that, for any x ∈OF ,

Nor+(q−m, r + 1)=
{

Pden(H ε
2m+r+2, ⟨x⟩) ·NorχF (x)(q−m, r) when π ∤ x ,

Pden(H ε
2m+r+2, ⟨x⟩) ·Nor+(q−m, r − 1) when π | x .

Let n = νπ (N ). Theorem 7.2.1 and Example 7.1.2 imply the decomposition

Den(H+2m+r+2,M k ⟨N ⟩)=
[n/2]∑
i=0

q−2mi
·Pden(H+2m+r+2, ⟨π

−2i N ⟩) ·Den(H+2m+r+2(N , i),M)

=

[n/2]∑
i=0

q−2mi
·Pden(H+2m+r+2, ⟨π

−2i N ⟩) ·Den(1F (π
−2i N )k H+2m+r−2,M).

By Definition 7.2.5, when p is odd, we have the formula

Den(X,M k ⟨N ⟩)=
[n/2]∑
i=0

X2i
·Den1F (π−2i N )(X,M). (28)

When n = 0 or 1, Den(X,M k ⟨N ⟩)= Den1F (N )(X,M) and Den(X,M k ⟨π−2 N ⟩)= 0 since π−2 N
is not in OF . Therefore Den1F (N )(X,M)=Den(X,M k⟨N ⟩)−X2

·Den(X,M k⟨π−2 N ⟩). When n≥ 2,
Den1F (N )(X,M)= Den(X,M k ⟨N ⟩)− X2

·Den(X,M k ⟨π−2 N ⟩) follows from the formula (28).
The fact that the lattice M k⟨N ⟩ can’t be isometrically embedded into the quadratic space H+r+2 implies

that Den(1,M k ⟨N ⟩)=Den(1,M k ⟨π−2 N ⟩)= 0. The second formula in the theorem follows from the
first one and the definitions of the symbols ∂ Den1F (N ) and ∂ Den. □

Now we apply Theorem 7.2.6 to the case that we are interested in, i.e., F =Qp and r = 2. Let N ∈ Zp.
We get a difference formula of local density functions:

Den1p(N )(X,M)= Den(X,M k ⟨N ⟩)− X2
·Den(X,M k ⟨p−2 N ⟩). (29)

Note that the lattice M k ⟨N ⟩ is a sublattice of B ≃ End0(X), which is the unique division quaternion
algebra over Qp. Hence the lattice M k ⟨N ⟩ can’t be isometrically embedded into the quadratic space
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H+4 ⊗Qp ≃M2(Qp). Therefore, Theorem 7.2.6 implies the difference formula

∂ Den1p(N )(M)= ∂ Den(M k ⟨N ⟩)− ∂ Den(M k ⟨p−2 N ⟩) (30)

of the derivatives of local densities.

7.3. Examples. Assume p is odd. In the following example, we compute an explicit example of local
densities and compare our formulas with known formulas given in [Wedhorn 2007; Sankaran et al. 2023].

Example 7.3.1. Let N = N0 be a positive integer with νp(N0)= 0 or 1. Let M be a rank-2 Zp-lattice
such that M is isometrically embedded into W and is GL2(Zp)-equivalent to the matrix diag{ε1 p2, ε2 p3

},
where ε1, ε2 ∈ Z×p . Let Nk = p2k N0, where N0 is a positive integer with νp(N0)= 0 or 1 and k ≥ 1 is an
integer. By the formula in [Wedhorn 2007, §2.11],

Den(X,M k ⟨Nk⟩)

= 1+ pX + (p+ p2)X2
+ p2 X3

+ p2 X4
− p2 X2k+1+νp(N0)− p2 X2k+2+νp(N0)

− (p+ p2)X2k+3+νp(N0)− pX2k+4+νp(N0)− X2k+5+νp(N0) when k ≥ 3.

The formula (29) implies

Den1p(Nk)(X,M)= 1+ pX + (p2
+ p− 1)X2

+ (p2
− p)X3

− pX4
− p2 X4

− p2 X5
− p2 X6

when k ≥ 3. Therefore, ∂ Den1p(N0)(M)= 2+ 4p+ 6p2 when k ≥ 3.
We double-check our results by comparing with the formulas of local density given in [Yang 1998,

Theorem 7.1]. The theorem implies that for a sufficiently large positive integer m,

Den(1p(Nk)k H+2m,M)= 1+ R1,k(X)+ R2,k(X)
∣∣

X=p−m ,

where

R1,k(X)=
8∑

i=1

I1,i,k(X) and R2,k(X)= (1− p−1)

8∑
i=1

I2,i,k(X)+ p−1 I2,6,k(X).

I1,i,k(X) and I2,i,k(X) are polynomials explicitly constructed at the beginning of Section 7 of [Yang 1998].
In our case, when k ≥ 3,

I1,1,k(X)= (p− p−1)X + (p2
− 1)X2, I1,2,k(X)=−X3, I1,3,k(X)= 0, I1,4,k =−p2 X4,

I2,1,k(X)= (p2
− 1)X3, I2,3,k(X)= I2,5,k(X)= I2,7,k(X)= 0,

I2,2,k(X)=−pX4
− pX5, I2,4,k(X)=−p2 X5

− p2 X6, I2,6,k(X)= pX7, I2,8,k(X)= pX2
+ p2 X4.

Therefore, when m is sufficiently large,

Den(1p(Nk)k H+2m,M)= 1+ (p− p−1)X + (p2
+ p− 2)X2

+ (p2
− 2p+ p−1

− 1)X3

− (2p− 1)X4
+ (1− p2)X5

+ (p− p2)X6
+ pX7 ∣∣

X=p−m .
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By Definition 7.2.5, when k ≥ 3,

Den1p(Nk)(X,M)
∣∣

X=p−m =
Den(1p(Nk)kH+2m,M)

1−p−m−1

= 1+pX+(p2
+p−1)X2

+(p2
−p)X3

−pX4
−p2 X4

−p2 X5
−p2 X6∣∣

X=p−m .

Hence,

Den1p(Nk)(X,M)= 1+ pX + (p2
+ p− 1)X2

+ (p2
− p)X3

− pX4
− p2 X4

− p2 X5
− p2 X6

when k ≥ 3. This agrees with our previous calculations.

8. Proof of the arithmetic Siegel–Weil formula on X0(N)

8.1. Local arithmetic Siegel–Weil formula with level N. Let p be a prime number. The difference
formulas at the analytic side and the geometric side are combined to prove the following theorem.

Theorem 8.1.1. Let M ⊂W be a Zp-lattice of rank 2. Then

IntN0(N )(M)= ∂ Den1p(N )(M). (31)

Proof. Theorem 6.4.1 gives the difference formula of local arithmetic intersection numbers

IntN0(N )(M)= Int♯(M k Zp · x0)− Int♯(M k Zp · p−1x0).

We also have the difference formula of the derived local densities (see (30))

∂ Den1p(N )(M)= ∂ Den(M k Zp · x0)− ∂ Den(M k Zp · p−1x0).

Theorem 6.3.4 implies that Int♯(L) = ∂ Den(L) for any rank-3 lattice L ⊂ B. Therefore (31) holds by
combining the above two difference formulas. □

8.2. Intersection numbers and Whittaker functions. Let p be a prime number.

Proposition 8.2.1. Let M ⊂W be a Zp-lattice of rank 2. Then

W ′T (1, 0, 11p(N )2)= cp · IntN0(N )(M) · log(p), (32)

where the constant cp is given as

cp =

{
(1− p−1) · (N ,−1)p · |N |p · |2|

3/2
p when p | N ,

(1− p−2) · (N ,−1)p · |N |p · |2|
3/2
p when p ∤ N .

Proof. Recall that 1p(N )∨/1p(N ) ≃ Zp/2NZp (see Example 2.1.1). By Proposition 3.3.1 and the
explicit formula given in the appendix of [Ranga Rao 1993],

WT (1, k, 11p(N )2)= |2N |p · γ (1p(N )⊗Qp)
2
· |2|1/2p ·Den(1p(N )⊕ H+2k,M)

= |N |p · (N ,−1)p · |2|3/2p ·Den(1p(N )⊕ H+2k,M). (33)
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Taking derivatives of both sides of (33),

W ′T (1, 0, 11p(N )2)= cp · ∂ Den1p(N )(M) · log(p).

The formula (32) follows from Theorem 8.1.1. □

8.3. Proof of the main theorem.

Proposition 8.3.1. Let T ∈ Sym2(Q) be a positive definite symmetric matrix. Let ϕ ∈ S (V2
f ) be a

T -admissible Schwartz function. Suppose ϕ = ϕ1×ϕ2, where ϕi ∈S (V f ). Then for any y ∈ Sym2(R)>0,
we have

d̂eg(Ẑ(T, y,ϕ))=
{
χ(Z(T,ϕ),OZ(t1,ϕ1)⊗

L OZ(t2,ϕ2)) · log(p) when Diff(T,1(N ))= {p},
0 when # Diff(T,1(N )) ̸= 1.

Proof. By definition (see (15)), the arithmetic special cycle Ẑ(T, y,ϕ) is ([Z(T,ϕ)], 0). Therefore
d̂eg(Ẑ(T, y,ϕ)) is independent of y. We can assume Diff(T,1(N )) = {p} for some prime number p
since otherwise both sides are 0 since Z(T,ϕ) would be an empty stack.

Let x ∈ Z(T,ϕ)(Fp) be a geometric point. It is contained in Y0(N ) by Corollary 4.3.8, and hence
the special divisors Z(t1, ϕ1) and Z(t2, ϕ2) intersect properly at x because T is nonsingular. Then
χ(Z(T,ϕ),OZ(t1,ϕ1)⊗

LOZ(t2,ϕ2))·log(p) is the sum of the length of local rings OX0(N ),x cut out by these two
divisors times log(p), which is exactly d̂eg(Ẑ(T,y,ϕ)) by definition of the degree homomorphism. □

Proof of Theorem 4.4.1. We first consider the case that T is positive definite. By Proposition 4.3.9, we
only need to consider the case Diff(T,1(N ))= {p} for some prime number p because otherwise both
sides are 0. The same proposition and Corollary 4.3.8 imply that the special cycle Z(T,ϕ) lies in the
supersingular locus of X0(N )Fp . Then by the definition of special cycles and the formal uniformization
of the special cycle Z(T,ϕ) (see Corollary 5.3.3),

χ(Z(T,ϕ),OZ(t1,ϕ1)⊗
L OZ(t2,ϕ2)) · log(p)

=

∑
x∈B×(Q)0\(1(N )(p))2

T (x)=T

∑
g∈B×x (Q)0\GL2(A

p
f )/00(N )(Ẑp)

ϕ(g−1x) · IntN0(N )(x) · log(p).

It is known (see (32)) that

W ′T (1, 0, 11p(N )2)= cp · IntN0(N )(x) · log(p),

with constants cp given by Proposition 8.2.1.
There exists a Haar measure on GL2(A

p
f ) such that∑

x∈B×(Q)0\(1(N )(p))2

T (x)=T

∑
g∈B×x (Q)0\GL2(A

p
f )/00(N )(Ẑp)

ϕ(g−1x)=
1

vol(00(N )(Ẑp))
·

∫
SO(1(N )(p))(A p

f )

ϕ p(g−1x) dg.

By definition, the last integral is a product of “local” integrals∫
SO(1(N )(p))(A p

f )

ϕ p(g−1x) dg =
∏

v ̸=p,∞

∫
SO(1v(N ))(Qv)

ϕv(g−1
v x) dgv.
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By the classical local Siegel–Weil formula, made explicit in [Kudla et al. 2006, Proposition 5.3.3], for
every place v of Q there exists a number dv ∈ R× such that∫

SO(1v(N ))(Qv)

ϕv(g−1
v x) dgv = dv ·WT,v(1, 0,ϕv),

with
∏
v≤∞ dv = 1. Moreover, [Kudla et al. 2006, Lemma 5.3.9] implies

vol(00(N )v, dgv)= dv · γ (1v(N ))2 · |2|3/2v ·

{
(1− v−2) when v ∤ N ,
|N |−1

v (1+ v
−1) when v | N .

It can be checked immediately that

vol(00(N )(Ẑp)) · dpd∞ · cp = 2−1/2ψ(N )−1
·

3
π2 .

Suppose z= x+ iy. It’s a classical result that

WT,∞(gz, 0,83/2
∞
)=−27/2π2

· det(y)3/4qT .

Combining these with the definitions made in previous sections (see (6) and (8)) and Proposition 8.3.1,
we get the formula stated in the theorem.

When T is not positive definite, the equality follows from [Sankaran et al. 2023, §4.2] and our
computations of the volume of vol(00(N )(Ẑ))=

∏
v<∞ vol(00(N )v, dgv) above. □
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Metaplectic cusp forms and the large sieve
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Dedicated to Chantal David on the occasion of her 60th birthday.

We prove a power saving upper bound for the sum of Fourier coefficients ρ f ( · ) of a fixed cubic metaplectic
cusp form f over primes. Our result is the cubic analogue of a celebrated 1990 theorem of Duke and
Iwaniec, and the cuspidal analogue of a theorem due to the author and Radziwiłł for the bias in cubic
Gauss sums.

The proof has two main inputs, both of independent interest. Firstly, we prove a new large sieve
estimate for a bilinear form whose kernel function is ρ f ( · ). The proof of the bilinear estimate uses
a number field version of circle method due to Browning and Vishe, Voronoi summation, and Gauss–
Ramanujan sums. Secondly, we use Voronoi summation and the cubic large sieve of Heath-Brown to
prove an estimate for a linear form involving ρ f ( · ). Our linear estimate overcomes a bottleneck occurring
at level of distribution 2

3 .
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1. Introduction

1.1. Background and statement of results. Arithmetic functions that arise from the Fourier coefficients of
automorphic forms on congruence subgroups of SL2(Z) encode deep arithmetic and analytic information.
A famous example is the modularity theorem for elliptic curves E/Q [Breuil et al. 2001], and its resolution
of the Hasse–Weil conjecture for such curves.
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At a fundamental level, automorphic forms on congruence subgroups of SL2(Z) are nice objects
because there is an “adequate Hecke theory” available. By this, we mean the basic property that the
sequence of Fourier coefficients of an integer weight cusp form restricted to values coprime to the level
can be expressed as a linear combination of multiplicative functions given by the Hecke eigenvalues! It is
well known that a power saving upper bound for the sum of Hecke eigenvalues λg( · ) over primes would
yield a rectangular zero-free region in the critical strip for associated L-function L(s, g) (thanks to the
Euler product). Unfortunately, the proof of such a bound is well out of reach of current technology!

The Fourier coefficients of half-integer weight modular forms also play a key role in arithmetic. An
important example is the use of Dedekind’s η-function

(
holomorphic cusp form of weight 1

2 on SL2(Z)
)

in the proof of Rademacher’s formula [1937] for the partition function p(n). Hecke [1983, p. 639; 1944]
observed that there is not an “adequate Hecke theory” (in the naive sense above) for modular forms of
half-integer weight. Wohlfahrt [1957] confirmed Hecke’s observations and essentially showed that there is
an algebra of Hecke operators C[{Tn2}

∞

n=1] acting on half-integer weight modular forms of weight k such
that Tm2 ◦ Tn2 = Tm2n2 = Tn2 ◦ Tm2 for (m, n)= 1, Tp2a is a polynomial in Tp2 for each a ∈ Z≥1 and odd
prime p, and that each Hecke operator is Hermitian (on cusp forms) with respect to the standard Petersson
inner product. In general, the Fourier coefficients of half-integer weight Hecke eigenforms at general
integer indices are not multiplicative, unless they are squares! In foundational works, Shimura [1973] and
Kohnen and Zagier [1981] studied this phenomenon in more detail. For a comprehensive summary of the
theory, the reader can consult [Koblitz 1984, §4.3].

Duke and Iwaniec [1990] gave striking quantitative evidence that the Fourier coefficients of half-integer
weight holomorphic cusp forms along squarefree integers are not multiplicative (unless their values are
zero). In particular, suppose that g is a holomorphic cusp form on 00(N ) (N ≡ 0 (mod 4)) having weight
k =

1
2 + 2ℓ, ℓ ∈ Z≥2, and Fourier expansion (at ∞)

g(z)=

∞∑
n=1

cg(n)n(k−1)/2e(nx)e−2πny, z = x + iy ∈ H, (1-1)

where cg(n)∈ C, e(x) := e2π i x for all x ∈ R, and H := R×R>0 is the complex upper-half plane. For ε > 0
and A, B ≥ 10, Duke and Iwaniec [1990] proved that∑

a≤A

∑
b≤B

µ2(a)αaβbcg(ab)≪ε,g (AB)ε(B1/2
+ AB1/4)∥α∥2∥β∥2, (1-2)

where α, β are C-valued sequences and ∥ • ∥ denotes the usual ℓ2-norm. Using (1-2) together with
appropriate linear estimates, Duke and Iwaniec [1990] also proved that∑

p≤X
p prime

cg(p)≪ε,g X1−1/156+ε (1-3)

as X → ∞. The result in (1-3) allows for twists by primitive characters of conductor divisible by
N ≡ 0 (mod 4), and so one can restrict to sum to primes in an arithmetic progression (with the implied
constant depending on the modulus).
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The goal of this paper is to generalise the results of Duke and Iwaniec to cusp forms on the cubic
metaplectic cover of GL2 (in the sense of Kubota [1969; 1971]). This is the complementary case to work in
[Dunn and Radziwiłł 2024] on Patterson’s conjecture for the bias of cubic Gauss sums over primes (cubic
Gauss sums are the Fourier coefficients of the cubic theta function [Patterson 1977] which is noncuspidal).
The spectral theory of cubic metaplectic forms have played a key role in [Livné and Patterson 2002;
Louvel 2014], on the distribution of certain cubic exponential sums. In their PhD thesis, Möhring [2004]
numerically investigated the Fourier coefficients of some cuspidal cubic metaplectic forms.

Before stating our results we briefly introduce some notation. Let H3
:= C × R>0 denote hyperbolic

3-space. Let ω = e2π i/3, and Q(ω) denote the Eisenstein quadratic field (class number 1). This number
field has ring of integers Z[ω], discriminant −3, and the unique ramified prime is λ :=

√
−3 = 1 + 2ω.

Let
(

•

c
)

3 denote the cubic symbol over Z[ω], and 3(c) denote the usual von Mangoldt function on Z[ω].
Consider the following congruence subgroups of SL2(C):

0 := SL2(Z[ω]),

01(3) := {γ ∈ 0 : γ ≡ I (mod 3)},

02 := ⟨SL2(Z), 01(3)⟩.

The cubic Kubota [1969; 1971] character χ : 01(3)→ {1, ω, ω2
} is defined by

χ(γ ) :=

{( c
a
)

3 if c ̸= 0,
1 if c = 0,

γ =

(a b
c d

)
∈ 01(3), (1-4)

and extends to a well-defined homomorphism χ :02 →{1, ω, ω2
} when one defines χ |SL2(Z)≡ 1 [Patterson

1977, §2]. The group 02 is the lowest possible level for cubic metaplectic forms. Let f be a cuspidal
cubic metaplectic form on 02, i.e.,

• f vanishes at all cusps of 02;

• f (γw)= χ(γ ) f (w) for all γ ∈ 02 and w ∈ H3;

• f is an eigenfunction of the hyperbolic Laplacian: 1 f = −τ f (2 − τ f ) for some τ f ∈ C.

There is an algebra of Hecke operators C[{Tν3}ν∈Z[ω]\{0}] acting on cubic metaplectic forms such that
Tµ3 ◦ Tν3 = Tµ3ν3 = Tν3 ◦ Tµ3 for (µ, ν) = 1, Tϖ 3a is a polynomial in Tϖ 3 for each a ∈ Z≥1 and prime
ϖ ≡ 1 (mod 3), and that each Hecke operator is Hermitian (on cusp forms) with respect to the standard
Petersson inner product [Proskurin 1998, §0.3.12]. The Fourier expansion of f (at ∞) is given by

f (w)=

∑
ν ̸=0

ν∈λ−3Z[ω]

ρ f (ν)vKτ f −1(4π |ν|v)ě(νz), w = (z, v) ∈ H3, (1-5)

where Kα( · ) is the standard K -Bessel function of order α ∈ C, ě(z) := e2π i(z+z) for z ∈ C, and ρ f (ν)∈ C.

Remark 1.1. The cubic Shimura lift of Patterson [1998, Theorem 3.4] guarantees that one always has
τ f ∈ 1 + iR for cuspidal cubic metaplectic forms f on 02 (see Section 3.2).
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Let K ,M ≥ 1, and WK ,M : (0,∞)→ C be a smooth function with compact support in [1, 2] such that
for each j ∈ Z≥0 we have

W ( j)
K ,M(x)≪ j MK j for all x > 0. (1-6)

If M = 1 then M is omitted from the notation, and we write WK . Let ∥ • ∥q with 1 ≤ q ≤ ∞ denote
the ℓq -norm of a C-valued sequence indexed over elements of Z[ω].

The main sums of interest in this paper are

Pf (X, v, u; WK ) :=

∑
ν∈λ−3Z[ω]

λ3ν≡u (mod v)

ρ f (ν)3(λ
3ν)WK

(
N (ν)

X

)
, (1-7)

Pf (X, v, u) :=

∑
ν∈λ−3Z[ω]

λ3ν≡u (mod v)
N (ν)≤X

ρ f (ν)3(λ
3ν), (1-8)

P̃f (X, v, u) :=

∑
ϖ∈Z[ω]

ϖ prime
ϖ≡u (mod v)
N (λ−3ϖ)≤X

ρ f (λ
−3ϖ) log N (ϖ), (1-9)

where 0 ̸= v ∈ Z[ω] is such that v ≡ 0 (mod 3), and u ∈ Z[ω]/vZ[ω] is such that (u, v) = 1 and
u ≡ 1 (mod 3). It is technically convenient to restrict attention to u ≡ 1 (mod 3). The other congruence
classes modulo 3 can be treated by a mild adaption of the methods of this paper.

Theorem 1.2. Let ε > 0 and the notation be as above. Then

Pf (X, v, u; WK )≪ε, f (XKN (v))εK 8 N (v)4 X1−1/34

as X → ∞.

Corollary 1.3. Let ε > 0. In the notation above we have

Pf (X, v, u)≪ε, f,v X1−1/578+ε, (1-10)

P̃f (X, v, u)≪ε, f,v X1−1/578+ε (1-11)
as X → ∞.

Theorem 1.2 follows from new estimates for linear and bilinear sums which we now describe. A brief
sketch of the new difficulties and ideas that arise in our case (as opposed to the case in [Duke and Iwaniec
1990]) is given in Section 1.2. Let

T f (a, X, v, u; WK ) :=

∑
b∈Z[ω]

ab≡u (mod v)

ρ f (λ
−3ab)WK

(
N (λ−3ab)

X

)
(1-12)

denote the pointwise Type-I sum, where X ≥ 10 and a ∈ Z[ω] with a ≡ 1 (mod 3). Let

A f (α, X, v, u; WK ) :=

∑ ∑
a,b∈Z[ω]

ab≡u (mod v)

µ2(a)αaρ f (λ
−3ab)WK

(
N (λ−3ab)

X

)
(1-13)
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denote the average (over squarefree a) Type-I sum, where A, X ≥ 10 and α := (αa) is a C-valued sequence
supported on a ∈ Z[ω] with a ≡ 1 (mod 3) and N (a)≍ A. Let

B f (α,β, X, v, u; WK ) :=

∑ ∑
a,b∈Z[ω]

ab≡u (mod v)

µ2(a)αaβbρ f (λ
−3ab)WK

(
N (λ−3ab)

X

)
(1-14)

denote the Type-II sum, where A, B ≥ 10, (αa) is as above, and β := (βb) is a C-valued sequence
supported on b ∈ Z[ω] with N (b)≍ B. Note that we necessarily have X ≍ AB in (1-14), otherwise the
double sum is empty.

In Section 9 we use Voronoi summation to prove the following “trivial” pointwise Type-I bound.

Lemma 1.4. Let ε > 0 and the notation be as above. Then

T f (a, X; v, u; WK )≪ε, f (XKN (v))εK 4 N (v)1/2 N (a)1/2.

When T f (a, . . . ) is multiplied by a weight αa and the estimate in Lemma 1.4 is summed trivially
over a ∈ Z[ω] with N (a)≍ A, the resulting bound is acceptable when A ≪ X2/3−ε.

In Section 10 we use the circle method to prove the following new bilinear estimate.

Theorem 1.5. Let ε > 0 and the notation be as above. Then for A, B ≥ 10 and X ≍ AB we have

B f (α,β, X, v, u; WK )≪ε, f (XKN (v))εK 8 N (v)4((AB)1/2 + A3/2 B1/4)∥µ2α∥∞∥β∥2.

Theorem 1.5 is acceptable when ∥µ2α∥∞ ≪ Aε and X2/3+ε
≪ B ≪ X1−ε.

We point out that Lemma 1.4 and Theorem 1.5 together barely misses primes. To overcome the
bottleneck at level of distribution ≍ X2/3, we use Voronoi summation and Heath-Brown’s cubic large
sieve [2000] to prove the following estimate.

Proposition 1.6. Let ε > 0 and the notation be as above. Then for X, A ≥ 10 we have

A f (α, X, v, u; WK )≪ε, f (XKN (v))εK 14/3 N (v)5/6(AX)1/3∥µ2α∥2.

1.2. Brief sketch of the method. We close with a brief outline of the proofs of Theorem 1.5 and
Proposition 1.6. For simplicity, we suppress smooth functions, and ignore both the units of Z[ω] and the
congruence condition u (mod v).

1.2.1. Linear sums. We apply Voronoi summation to the b-sum in (1-13) and perform a computation
with the arithmetic exponential sums that appear on the dual side. We obtain a bilinear form

X
A2

∑
N (a)≍A

∑
N (ν)≪A2/X

µ2(a)g(a)αaρ f (ν)

(
ν

a

)
3
, (1-15)

where g(a) denotes the unnormalised cubic Gauss sum over Z[ω] with modulus a. The use of Heath-
Brown’s cubic large sieve [2000] (with the squarefree condition on one variable relaxed) leads to our
average Type-I estimate.



1828 Alexander Dunn

1.2.2. Bilinear sums. After application of Cauchy–Schwarz in the b-variable to (1-14), the sum of
interest is ∑

N (a1),N (a2)≍A
a1,a2≡1 (mod 3)

µ2(a1)αa1µ
2(a2)αa2

∑
N (b)∼B

ρ f (a1b)ρ f (a2b). (1-16)

The natural approach would be to ignore the averaging over a1 and a2, and estimate each convolution
sum

∑
N (b)∼B ρ f (a1b)ρ f (a2b) directly. Duke and Iwaniec [1990] proved that each convolution sum

is ≪ε δa1=a2 B + (AB)εAB1/2 for the case of holomorphic half-integer weight cusp forms. We explain
below why the additional averaging over a1 and a2 is crucial in the Maass case.

The initial move of [Duke and Iwaniec 1990] is to open one of the Fourier coefficients in terms of
sums of half-integer weight Kloosterman sums that come from writing the holomorphic cusp form as
a finite C-linear combination of Poincaré series. This opening move is not available for Maass forms!
Instead, we separate oscillations using the circle method of Browning and Vishe [2014] to obtain∑

N (b)∼B

ρ f (a1b)ρ f (a2b)≈
1
B

∑
N (ν1),N (ν2)≍AB
ν1≡0 (mod a1)
ν2≡0 (mod a2)

ρ f (ν1)ρ f (ν2)
∑

N (c)∼B1/2

(c,λa1a2)=1

r(ν1/a1 − ν2/a2, c), (1-17)

where r(n, c) denotes the unnormalised Ramanujan sum over Z[ω] with modulus c and shift n. In reality,
one must also consider moduli c that are not coprime to λa1a2. This can be handled with an modification
of the method below with an additional local computation involving cubic Gauss sums with moduli
dividing rad(a1a2)

∞.
We detect the congruence conditions on the ν1, ν2 using additive characters, apply Voronoi summation

to each ν1, ν2 sum, and perform a considerable computation with the exponential sums on the dual side.
This leads to an expression of the shape∑

s1|a1
s2|a2

1
N (s1s2)1/2

∑
N (ν1)≪N (s1)

2/A
N (ν2)≪N (s2)

2/A
(ν1,s1)=1
(ν2,s2)=1

ρ f (ν1)ρ f (ν2)
∑

N (c)∼B1/2

(c,λa1a2)=1

r(s2
2a1ν1 − s2

1a2ν2, c). (1-18)

We highlight that the squarefree property of a1 and a2 simplifies the computations considerably. One
can apply Cauchy–Schwarz and Rankin–Selberg bounds to estimate the off-diagonal (s2

2a1ν1 ̸= s2
1a2ν2)

contribution in (1-18) by (AB)εAB1/2. The diagonal term is more subtle. The diagonal equation
s2

2a1ν1 = s2
1a2ν2 is equivalent to s2(a1/s1)ν1 = s1(a2/s2)ν2. The conditions (ν1, s1) = (ν2, s2) = 1

together with the squarefree hypothesis on a1 and a2 imply that s1 = s2 =: s | (a1, a2). Thus the diagonal
contribution in (1-18) has the shape

B
∑

s|(a1,a2)

1
N (s)

∑
N (ν)≪N (s)3 N ((a1/s,a2/s))/A2

(ν,s)=1

ρ f

(
a2/s

(a1/s, a2/s)
ν

)
ρ f

(
a1/s

(a1/s, a2/s)
ν

)
. (1-19)
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At this point there is no cancellation to be realistically exploited in (1-19), and so we apply the triangle
inequality and place absolute values around the Fourier coefficients. It is tempting to apply a “Deligne-type”
bound for ρ f ( · ) to estimate the diagonal by (AB)ε · B · (N ((a1, a2))/A)2 (which is of acceptable size).
However, no such bound for ρ f ( · ) is known unconditionally, and the author is not aware of any nontrivial
bound for ρ f ( · ) stronger than the bound implied by Rankin–Selberg. There is no “Waldspurger-type”
formula known for the coefficients of cubic metaplectic cusp forms (on GL2). Hence the strategy for
bounding these Fourier coefficients via subconvexity for twisted L-values is not available (this strategy is
used the half-integer weight case; see [Conrey and Iwaniec 2000]). To overcome this, we substitute (1-19)
into (1-16), take absolute values and the supremum norm of the α terms, and exploit the additional
averaging over a1 and a2 using Cauchy–Schwarz and Rankin–Selberg bounds. This yields the acceptable
estimate (AB)εAB∥µ2α∥

2
∞

for the diagonal of the averaged sum. It is interesting to note that an argument
of Nelson [2020] could potentially be adapted to estimate the sparse convolution sum in (1-19). We
refrain from this additional work.

1.3. Conventions. For n ∈ N and N > 0, we use n ∼ N to mean N < n ≤ 2N, and n ≍ N to mean that
there exists constants c1, c2 > 0 such that c1 N ≤ n ≤ c2 N.

Dependence of implied constants on parameters will be indicated in statements of results, but suppressed
throughout the body of the paper (i.e., proofs). Implied constants in the body of the paper are allowed to
depend on f ∈ L2(02\H3, χ, τ ), ε, D > 0 (possibly different in each instance), and the implicit constants
in the statements N (a)≍ A and N (b)≍ B.

Whenever we write r |q with 0 ̸= r, q ∈ Z[ω] and q ≡ 1 (mod 3), it is our convention that r ≡ 1 (mod 3).
For any integer b we let Z≥b := {n ∈ Z : n ≥ b}.

Unless otherwise specified, it should be clear from context whether x means modular inverse (with
respect to an appropriate modulus) or complex conjugation.

Unless otherwise specified, it should be clear from context whether v refers to the modulus of an
arithmetic progression or the real component of a quaternion element w = (z, v).

2. Preliminaries and background

2.1. Eisenstein quadratic field and cubic Gauss sums. We include some brief background on Q(ω) and
cubic Gauss sums. For more details see [Dunn and Radziwiłł 2024; Patterson 1977; Proskurin 1998].

Let Q(ω) be the Eisenstein quadratic number field, where ω is identified with e2π i/3
∈ C. This quadratic

number field has ring of integers Z[ω], discriminant −3, and class number 1. Let N (x):=NQ(ω)/Q(x)=|x |
2

denote the norm form on Q(ω)/Q. The dual of Z[ω] is

Z[ω]
∗
:= {z ∈ C : ě(zz′)= 1 for all z′

∈ Z[ω]} = λ−1Z[ω].

It is well known that any nonzero element of Z[ω] can be uniquely written as ζλkc with ζ ∈ ⟨−ω⟩

a unit (i.e., ζ 6
= 1), λ :=

√
−3 = 1 + 2ω the unique ramified prime in Z[ω], k ∈ Z≥0, and c ∈ Z[ω]

with c ≡ 1 (mod 3). If p ≡ 1 (mod 3) is a rational prime, then p =ϖϖ in Z[ω] with N (ϖ)= p and ϖ
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a prime in Z[ω]. If p ≡ 2 (mod 3) is a rational prime, then p =ϖ is inert in Z[ω], and N (ϖ)= p2. Thus
we have N (ϖ)≡ 1 (mod 3) for all primes ϖ with (ϖ) ̸= (λ).

The cubic Jacobi symbol defined for a ≡ 1 (mod 3) and ϖ ≡ 1 (mod 3) prime is defined by(
a
ϖ

)
3
≡ a(N (ϖ)−1)/3 (modϖ),

and the condition it take values in {1, ω, ω2
}. The cubic symbol is clearly multiplicative in a and can be

extended multiplicatively in b by setting (
a
b

)
3
=

∏
i

(
a
ϖi

)
for any b =

∏
i ϖi with ϖi ≡ 1 (mod 3) primes. The cubic symbol obeys cubic reciprocity: given

a, b ≡ 1 (mod 3) we have (
a
b

)
3
=

(
b
a

)
3
. (2-1)

There are also supplementary laws for units and the ramified prime. Given

d ≡ 1 +α2λ
2
+α3λ

3 (mod 9) with α2, α3 ∈ {−1, 0, 1}, (2-2)

we have (
ω

d

)
3
= ωα2 and

(
λ

d

)
3
= ω−α3 . (2-3)

We follow the standard convention for an empty product,(
a
1

)
3
= 1 for all a ∈ Z[ω]. (2-4)

Let
ě(z) := e2π i TrC/R(z) = e2π i(z+z), z ∈ C.

For µ ∈ Z[ω]
∗

= λ−1Z[ω] and c ∈ Z[ω] with c ≡ 1 (mod 3), the cubic Gauss sum (with shift µ) is
defined by

g(µ, c) :=

∑
d (mod c)

(
d
c

)
3
ě
(
µd
c

)
. (2-5)

We write g(c) := g(1, c) for short. Making a change of variable in the Gauss sum we see that

g(µ, c) :=

(
λ

c

)
3
g(λµ, c), (2-6)

and so for the rest of this section it suffices to consider only µ ∈ Z[ω], which we now assume. We have

g(µ, c)=

(
µ

c

)
3
g(1, c) for (µ, c)= 1. (2-7)

The Chinese remainder theorem implies the twisted multiplicativity property

g(µ, ab)=

(
a
b

)
3
g(µ, a)g(µ, b) for a, b ≡ 1 (mod 3) such that (a, b)= 1. (2-8)
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By (2-7) and (2-8) is suffices to understand g(ϖ k,ϖ ℓ) for ϖ ≡ 1 (mod 3) prime and k, ℓ ∈ Z≥0. A
specialisation of [Proskurin 1998, property (h), p. 7] yields

g(ϖ k,ϖ ℓ)=



1 if ℓ= 0,
ϕ(ϖ ℓ) if 1 ≤ ℓ≤ k, ℓ≡ 0 (mod 3),

−N (ϖ)k if ℓ= k + 1, ℓ≡ 0 (mod 3),
N (ϖ)k g(ϖ) if ℓ= k + 1, ℓ≡ 1 (mod 3),
N (ϖ)k g(ϖ) if ℓ= k + 1, ℓ≡ 2 (mod 3),

0 otherwise.

(2-9)

For ϖ ≡ 1 (mod 3) prime we have the formula for the cube [Hasse 1950, pp. 443–445],

g(ϖ)3 = −ϖ 2ϖ. (2-10)

Observe that (2-7)–(2-9) and (2-10) imply that

|g(c)| = µ2(c)N (c)1/2 (2-11)

for c ≡ 1 (mod 3). We denote the normalised cubic Gauss sum (with shift µ ∈ Z[ω]) by

g̃(µ, c) := N (c)−1/2g(µ, c). (2-12)

The following two lemmas follow directly from combining (2-7)–(2-9).

Lemma 2.1. Let µ ∈ Z[ω] and c ∈ Z[ω] such that c ≡ 1 (mod 3) is squarefree. Then

g(µ, c)= 0 unless (µ, c)= 1.

Lemma 2.2. Let c ∈ Z[ω] with c ≡ 1 (mod 3) and ϖ,µ ∈ Z[ω] be such that ϖ ≡ 1 (mod 3) is prime
and ϖ 2

| c. Then
g(µ, c)= 0 unless ϖ | µ.

The next lemma follows directly from combining (2-7)–(2-9) and (2-11).

Lemma 2.3. Let µ, c ∈ Z[ω] with c ≡ 1 (mod 3). Then

|g(µ, c)| ≤ N (c)1/2 · N ((µ, c))1/2.

Remark 2.4. We emphasise that c ∈ Z[ω] is not necessarily squarefree in Lemma 2.3.

For b ∈ R, and q ∈ Z[ω] with q ≡ 1 (mod 3), let

σb(q) :=

∑
d|q

N (d)b. (2-13)

For a given ε > 0, we have the standard divisor bound

σ0(q)≪ε N (q)ε. (2-14)
The following lemma is immediate.
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Lemma 2.5. Let q ∈ Z[ω] with q ≡ 1 (mod 3) and b ∈ R. Then for Y ≥ 1 we have∑
µ∈Z[ω]

1≤N (µ)≤Y

N ((µ, q))b ≤ Yσb−1(q),

where σb(q) is as given in (2-13).

Lemma 2.6. Let q ∈ Z[ω] with q ≡ 1 (mod 3). Then for X ≥ 1 and ε > 0 we have∑
N (r)≤X

r |rad(q)∞

1 ≪ε (N (q)X)ε. (2-15)

Proof. Without loss of generality we can assume X is an odd half-integer. By Perron’s formula (truncated)
we have ∑

N (r)≤X
r |rad(q)∞

1 =

∫ 2+i(X N (q))100

2−i(X N (q))100
X s

∏
ϖ |rad(q)
ϖ prime

ϖ≡1 (mod 3)

(1 − N (ϖ)−s)−1 ds
s

+ O((X N (q))−50).

The integrand is holomorphic in the half-plane Re(s) > 0. We move the contour Re(s)= ε. Taking the
logarithm of the Euler product and then using the pointwise bound

ω(q)≪
log N (q)

log log N (q)
, (2-16)

we obtain (after exponentiation)∏
ϖ |rad(q)
ϖ prime

ϖ≡1 (mod 3)

(1 − N (ϖ)−s)−1
≪ N (q)ε for Re(s)≥ ε.

The result follows from Cauchy’s residue theorem. □

2.2. Group action on H3 and Laplacian. Let H3 denote the hyperbolic 3-space C × R>0. Embed C

and H3 in the Hamilton quaternions by identifying i =
√

−1 with î and w = (z, v) = (x + iy, v) ∈ H3

with x + yî + vk̂, where 1, î, ĵ, k̂ denote the unit quaternions. The continuous action of SL2(C) on H3

(in quaternion arithmetic) is given by

γw = (aw+ b)(cw+ d)−1, γ =

(a b
c d

)
∈ SL2(C) and w ∈ H3.

The action of SL2(C) on H3 is transitive, and the stabiliser of a point is SU2(C). In coordinates,

γw =

(
(az + b)(cz + d)+ acv2

|cz + d|2 + |c|2v2 ,
v

|cz + d|2 + |c|2v2

)
, w = (z, v). (2-17)

The Laplace operator 1 := v2(∂2/∂x2
+∂2/∂y2

+∂2/∂v2)−v∂/∂v acts on C∞(H3) and commutes with
the action of SL2(C) on C∞(H3).
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Consider the subgroup 0 := SL2(Z[ω]) of SL2(C). It has finite volume (but is not cocompact) with
respect to the SL2(C)-invariant Haar measure v−3 dx dy dv on H3. In what follows, let 0′

⊆ 0 be a
subgroup with [0 : 0′

]<∞. Let P(0′)⊂ Q(ω)∪ {∞} be a complete inequivalent (finite) set of cusps
for 0′. Each cusp of 0′ can be written as σ∞ for some σ ∈ 0, and let

0′

σ := {γ ∈ 0′
: γ σ∞ = σ∞}

denote the stabiliser group of the cusp σ∞ in 0′. We have 0′
σ := σ0′

Iσ
−1

∩0′, and let

3σ :=
{
µ ∈ C : σ

(1
0
µ
1

)
σ−1

∈ 0′
}
,

3∗

σ := {ν ∈ C : Tr(µν) ∈ Z for all µ ∈3σ }.

It is well known that 3σ and 3∗
σ are lattices in C, and that 3∗

σ is dual to 3σ .
A fundamental domain for the action of 0 on H3 is the set

F := {w = (z, v) ∈ H3
: |z|2 + v2 > 1 and z ∈ ±△},

where △ is the interior of the triangle with vertices 0, (1 −ω)−1 and (1 −ω2)−1. The set of cusps for 0
is P(0) := {∞}.

Other congruence subgroups of significance to this paper are given in Section 3.

2.3. Automorphic forms (for general multipliers). We record some facts about automorphic forms
on 0′

\H3 that transform with general unitary character κ : 0′
→ C×. For more details one may consult

[Livné and Patterson 2002; Louvel 2014; Patterson 1998; Proskurin 1998]. We specialise to cubic
metaplectic forms in Section 3.

Let κ : 0′
→ C× be a unitary character that satisfies κ(−I )= 1 if −I ∈ 0′. The function defined by

µ→ κ
(
σ
( 1

0
µ
1

)
σ−1

)
:3σ → C× is a homomorphism on the lattice 3σ . There exists hσ ∈ C such that

κ
(
σ
( 1

0
µ
1

)
σ−1

)
= ě(hσµ) for all µ ∈3σ .

Essential cusps with respect to κ are those σ for which we can take hσ = 0.
Let

A(0′
\H3, κ) := {u : H3

→ C : u(γw)= κ(γ )u(w) for all γ ∈ 0′ and w ∈ H3
}.

We say that u ∈ A(0′
\H3, κ) is an automorphic form under 0′ with character κ if it satisfies the conditions:

• u ∈ C∞(H3) and is an eigenfunction of the Laplacian, i.e.,

1u = −τu(2 − τu)u for some τu ∈ C.

The quantity τu ∈ C is the spectral parameter for u, and is well-defined only up to τu 7→ 2 − τu .
Without loss of generality one can assume that Re(τu)≥ 1.

• u has moderate growth at cusps: there exists a D ∈ R such that

|u(w)|< (v+ (1 + |z|2)v−1)D for all w = (z, v) ∈ H3.
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Let L(0′
\H3, κ, τ ) denote the C-vector space of automorphic forms under 0′ with character κ and spectral

parameter τ . The norm ∥ · ∥2 on L(0′
\H3, κ, τ ) is induced by the standard Petersson inner product

⟨u1, u2⟩ :=

∫
0′\H3

u1(w)u2(w)
dx dy dv
v3 .

Let
L2(0′

\H3, κ, τ ) := {u ∈ L(0′
\H3, κ, τ ) : ∥u∥2 <∞},

denote the finite-dimensional Hilbert space of square integrable automorphic forms having character κ
and spectral parameter τ . We demand that

(
−1

0
0
1

)
act on an automorphic form u by ±1, and we speak

of u being even or odd respectively.
Consulting [Proskurin 1998, Theorem 0.3.1], each u ∈ L(0′

\H3, κ, τ ) has Fourier expansion at the
cusp σ∞ given by

Uσ (w) := u(σw)= cu,σ (v)+
∑
ν ̸=0

ν∈hσ+3∗
σ

ρu,σ (ν)vKτ−1(4π |ν|v)ě(νz), w ∈ H3, (2-18)

where ρu,σ (ν) ∈ C, and

cu,σ (v)=

{
ρu,σ,+(0)vτ + ρu,σ,−(0)v2−τ if τ ̸= 1,
ρσu,σ,+(0)v log v+ ρu,σ,−(0)v if τ = 1,

and ρu,σ,+(0), ρu,σ,−(0) ∈ C. If σ∞ is essential, then one can take hσ = 0. If σ∞ is not essential,
then cu,σ (v)≡ 0 by [Proskurin 1998, Theorem 0.3.1]. By convention, if σ = I then we omit it from the
subscripts on the Fourier coefficients.

If cu,σ (v)≡ 0 for all cusps σ∞, then u is a cusp form (it is necessarily a Maass form since H3 does
not have an invariant complex structure). In particular, all cusp forms have exponential decay at the cusps,
and consequently are square integrable on 0′

\H3.
The following crude Rankin–Selberg bound follows from a standard argument that uses Plancherel’s

theorem. The proof is analogous to that of [Iwaniec 1995, Theorem 3.2], and is omitted.

Lemma 2.7. Let τ ∈ C with Re(τ )≥ 1, u ∈ L2(0′
\H3, κ, τ ) be a cusp form, σ a cusp of 0′, and ε > 0.

Then for all X ≥ 100 we have ∑
ν∈hσ+3∗

σ
N (ν)≤X

|ρu,σ (ν)|
2
≪u,σ,ε X1+ε.

An application of the Cauchy–Schwarz inequality and Lemma 2.7 give the following L1-bound.

Lemma 2.8. In the notation of Lemma 2.7 we have∑
ν∈hσ+3∗

σ
N (ν)≤X

|ρu,σ (ν)| ≪u,σ,ε X1+ε.

The following Wilton-type bound follows from a standard argument using Fourier convolution with
the Dirichlet kernel. The proof is analogous to that of [Epstein et al. 1985, Theorem 3.1] and is omitted.
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Lemma 2.9. Let the notation be as in Lemma 2.7 and suppose that Re(τ )= 1. Then∑
ν∈hσ+3∗

σ
N (ν)≤X

ρu,σ (ν)ě(αν)≪u,σ,ε X1/2+ε

for any α ∈ C. The implied constant is uniform with respect to α.

A direct consequence of partial summation and Lemma 2.9 is the following smoothed Wilton bound.

Lemma 2.10. Let the notation be as in Lemma 2.7, Re(τ )= 1, K ,M ≥ 1, and WK ,M : (0,∞)→ C be a
smooth function with compact support in [1, 2] that satisfies (1-6). Then∑

ν∈hσ+3∗
σ

N (ν)≤X

ρu,σ (ν)ě(αν)WK ,M

(
N (ν)

X

)
≪u,σ,ε MKX1/2+ε

for any α ∈ C. The implied constant is uniform with respect to α.

3. Cubic metaplectic forms

3.1. Cubic Kubota character. Recall that 0 := SL2(Z[ω]). It is well known that 0 = ⟨P, T, E⟩, where

P :=

(
ω 0
0 ω2

)
, T :=

(1 1
0 1

)
, E :=

(0 −1
1 0

)
.

Let 0 ̸= C ∈ Z[ω] satisfy C ≡ 0 (mod 3), and

01(C) := {γ ∈ 0 : γ ≡ I (mod C)}.

Observe that 01(C) is a normal subgroup of 0 since it is the kernel of the reduction modulo C map. Let

02 := ⟨SL2(Z), 01(3)⟩ = SL2(Z)01(3)= 01(3)SL2(Z), (3-1)

where the last two equalities follow because 01(3) is normal in 0. We also have [0 : 02] = 27 (see
[Patterson 1977, §2] for the calculation). Recall that χ : 02 → {1, ω, ω2

} is the cubic Kubota character
defined in Section 1.1. The cusps of 02 are P(02)= {∞, ω, ω2

}, and the only essential cusp of 02 with
respect to χ is ∞.

3.2. Cubic Shimura lift. Suppose 0′
⊆ 02 is a subgroup with [02 : 0′

] < ∞. If h ∈ L(0′
\H3, χ, τ ),

then h is said to be a cubic metaplectic form on 0′ with spectral parameter τ (abbreviated to cubic
metaplectic form). In this section we specialise to the lowest possible level 0′

= 02, and focus on the
finite-dimensional subspace L2(02\H3, χ, τ ) ⊂ L(02\H3, χ, τ ) that contains square integrable cubic
metaplectic forms.

We say that h ∈ L2(02\H3, χ, τ ) is a Hecke eigenform if it is an eigenfunction for all Hecke op-
erators {Tν3}ν∈Z[ω]\{0}, i.e., Tν3h = λ̃h(ν

3)h for some λ̃h(ν
3) ∈ C and all ν ∈ Z[ω] \ {0}. There is an

orthonormal basis (with respect to the Petersson inner product) of L2(02\H3, χ, τ ) consisting of Hecke
eigenforms. Two automorphic forms are identified if they are constant multiples of one another. The
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discrete spectrum of 1 on L2(02\H3, χ) is completely determined via the cubic Shimura correspondence
of Flicker [1980] and Patterson [1998, Theorem 3.4]. In particular, there is a bijective correspondence
between even (resp. odd) Hecke eigenforms h ∈ L2(02\H3, χ, τ ) and even (resp. odd) Hecke eigenforms
g ∈ L2(0\H3, 1, 3τ −2), where in the latter case the Hecke operators are the standard ones {Tν}ν∈Z[ω]\{0}

on the trivial cover of 0, i.e., Tνg = λg(ν)g for some λg(ν) ∈ C and all ν ∈ Z[ω] \ {0}. Under this
correspondence one also has

N (ν3)−1/2λ̃h(ν
3)= N (ν)−1/2λg(ν).

The only noncuspidal Hecke eigenform in L2(02\H3, χ) is the cubic theta function of Patterson [1977],

ϑ3(w) := Ress=4/3 E3(w, s) ∈ L2(02\H3, χ, 4
3

)
,

where E3(w, s) is the Kubota cubic Eisenstein series for 01(3) at the cusp ∞. Its Shimura correspondent is
the constant function 1∈ L2(0\H3, 1, 2). The countably many other Hecke eigenforms hk ∈ L2(02\H3, χ)

are Maass cusp forms, whose Shimura correspondents gk ∈ L2(0\H3, 1) are also Maass cusp forms.
All spectral parameters are nonexceptional, i.e., Re(τhk )= Re(τgk )= 1 for k = 1, 2, . . .. We also have
0 ≤ Im(τ f1)≤ Im(τ f2)≤ . . . , where Im(τhk )→ ∞ as k → ∞.

3.3. Cubic Kloosterman sums. We will encounter cubic Kloosterman sums attached to the cubic Kubota
character in our computations.

Let 0′
⊆ 02 with [02 : 0′

]<∞, and let σ, ξ ∈ SL2(Z[ω]) denote cusps of 0′. Let

C(σ, ξ) :=
{
c ∈ Z[ω] \ {0} : σ

(
∗

c
∗

∗

)
ξ−1

∈ 0′
}

be the set of allowable moduli for the cusp pair (σ, ξ). For m ∈3∗
σ , n ∈3∗

ξ , and c ∈ C(σ, ξ), the cubic
Kloosterman sum is

K0′,σ,ξ (m, n, c) :=

∑
a (mod c3σ )
d (mod c3ξ )

σ
(a

c
∗

d

)
ξ−1

∈0′

χ

(
σ
(a ∗

c d

)
ξ−1

)
ě
(

ma + nd
c

)
, (3-2)

where χ : 02 → {1, ω, ω2
} is the cubic Kubota character. We have the following Weil bound [1948].

Lemma 3.1 [Livné and Patterson 2002, Proposition 5.1; Louvel 2014, (2.6)]. Let the notation be as above.
Then for m, n ∈ Z[ω] and c ∈ C(σ, ξ), we have

|K0′,σ,ξ (m, n, c)| ≤ 2ω(c)N ((m, n, c))N (c)1/2,

where ω(c) denotes the number of distinct prime divisors of c.

Remark 3.2. In [Livné and Patterson 2002, Proposition 5.1] (and propagated in [Louvel 2014, §2]), it
appears the bound in Lemma 3.1 is stated suboptimally with a factor N((m, n, c)) instead of N((m, n, c))1/2.
This makes no difference to us because (m, n, c)= 1 in any instance when Lemma 3.1 is used in this paper.
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Lemma 3.3. Suppose that 0′
= 01(3) and σ =

( 1
0

0
1

)
. Then

K01(3),σ,σ (m, n, c)=

∑
a,d (mod 3c)

a,d≡1 (mod 3)
ad≡1 (mod c)

(
c
d

)
3
ě
(

ma + nd
c

)
, (3-3)

for any c ∈ 3Z[ω] \ {0}, and m, n ∈ λ−3Z[ω].

Proof. Observe that 3σ = 3Z[ω], 3∗
σ = 3−1Z[ω]

∗
= λ−3Z[ω], and C(σ, σ ) = 3Z[ω] \ {0}. Observe

that γ =
(a

c
b
d

)
∈ 01(3) if and only if a ≡ d ≡ 1 (mod 3), b, c ≡ 0 (mod 3), and ad − bc = 1. For

γ =
(a

c
b
d

)
∈ 01(3) with c ̸= 0 we have χ(γ )= (c/a)3 by (1-4). The claim now follows from (3-2), (2-2),

and (2-3). □

Lemma 3.4. Suppose that 0′
= 01(3), σ =

( 1
0

0
1

)
, and ξ =

( 0
1

−1
0

)
. Then

K01(3),σ,ξ (m, n, c)=

∑
a,d (mod 3c)

a,d≡0 (mod 3)
ad≡1 (mod c)

(
d
c

)
3
ě
(

ma + nd
c

)
(3-4)

for any c ∈ Z[ω] such that c ≡ 1 (mod 3), and m, n ∈ λ−3Z[ω].

Proof. Observe that3σ=3ξ=3Z[ω] and that3∗

ξ=3
∗
σ=3−1Z[ω]

∗
=λ−3Z[ω]. Let γ =

(a
c

b
d

)
∈SL2(Z[ω]).

Observe that σγ ξ−1
∈ 01(3) if and only if a ≡ d ≡ 0 (mod 3), c ≡ 1 (mod 3), b ≡ −1 (mod 3), and

ad −bc = 1. After recalling that χ is homomorphism on 02 such that χ |SL2(Z)≡ 1, we see that χ(γ ξ−1)=

χ(ξ−1γ )= (−a/c)3 = (a/c)3 by (1-4) and the convention (2-4). The claim now follows from (3-2). □

4. The cubic large sieve

Implicit in [Heath-Brown 2000] is a version of cubic large sieve where one of the variables is not required
to be squarefree. Here we record the relevant results.

Theorem 4.1. Let ε > 0 be given, M, N ≥
1
2 and 9 = (9c) be a C-valued sequence supported on c ∈ Z[ω]

with c ≡ 1 (mod 3) and N (c)∼ N. Then∑
N (d)∼M

∣∣∣∣ ∑
N (c)∼N

c≡1 (mod 3)

µ2(c)9c

(
c
d

)
3

∣∣∣∣2

≪ε (MN )εM1/3(M + N )∥µ29∥
2
2.

Proof. This follows from [Heath-Brown 2000, (22) (and the display above it), (28) and the second display
on p. 123], □

Corollary 4.2. Let the notation be as in Theorem 4.1 and � = (�d) be a C-valued sequence supported
on d ∈ Z[ω] with N (d)∼ M. Then∑

N (d)∼M

∑
N (c)∼N

c≡1 (mod 3)

�dµ
2(c)9c

(
d
c

)
3
≪ε (MN )εM1/6(M1/2

+ N 1/2)∥�∥2∥µ
29∥2.
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Proof. Application of the Cauchy–Schwarz inequality, unique factorisation in Z[ω], (2-1), and Theorem 4.1
gives∣∣∣∣ ∑

N (d)∼M

∑
N (c)∼N

c≡1 (mod 3)

�dµ
2(c)9c

(
d
c

)
3

∣∣∣∣2

≤ ∥�∥
2
2·

(∑
ζ

∑
k≥0

∑
N (ζλkm)∼M
m≡1 (mod 3)

∣∣∣∣ ∑
N (c)∼N

c≡1 (mod 3)

µ2(c)
(
ζλk

c

)
3
9c

(
c
m

)
3

∣∣∣∣2)

≪ (MN )εM1/3(M+N )∥�∥
2
2∥µ

29∥
2
2,

as required. □

5. The Browning–Vishe circle method for number fields

The proof of our Type-II estimates will use a circle method over number fields due to Browning and
Vishe [2014, Theorem 1.2]. Their work generalises work of Heath-Brown [1996, Theorem 1] (over Q),
and ultimately relies on the δ-function technology of Duke, Friedlander, and Iwaniec [Duke et al. 1993].

Let L/Q be a number field of degree d ≥ 2 with ring of integers OL and unit group O×

L . Let a⊴OL

be an integral ideal, N (a) := #OL/a denote the ideal norm of a, and

δL(a) :=

{
1 if a = (0),
0 otherwise.

Remark 5.1. One obtains an indicator function on OL by restricting to principal ideals, in which case
one writes δL((ν))= δL(ν) for any ν ∈ OL . We also have N ((ν))= N (ν), where the latter is the norm of
an element of OL .

Theorem 5.2 [Browning and Vishe 2014, Theorem 1.2]. Let L/Q be a number field of degree d ≥ 2,
C ≥ 1, and a ⊴ OL be an integral ideal. Then there exists a positive constant kC and an infinitely
differentiable function h(x, y) : (0,∞)× R → R (depending on L/Q) such that

δL(a)=
kC

C2d

∑
(0) ̸=c⊆OL

∑∗

σ (mod c)

σ(a)h
(

N (c)
Cd ,

N (a)
C2d

)
, (5-1)

where the notation 6∗

σ (mod c) means that the sum is taken over primitive additive characters (extended to
ideals) modulo c. The constant kC satisfies

kC = 1 + OL/Q,D(C−D) for any D > 0. (5-2)

Furthermore, we have
h(x, y)≪L/Q x−1 for all y ∈ R, (5-3)

h(x, y) ̸= 0 only if x ≤ max{1, 2|y|}. (5-4)

Remark 5.3. In practice one usually chooses C := X1/(2d) to detect the condition a = (0) for a sequence
of ideals of OL with norm less than or equal to X. This means that for c (see (5-1)) in the generic range
N (c)≍ X1/2 there is no oscillation in the weight function h(x, y).
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Lemma 5.4 [Browning and Vishe 2014, Lemma 3.1]. Let the notation be as in Theorem 5.2. The function
h(x, y) vanishes when x ≥ 1 and |y| ≤ x/2. When x ≤ 1 and |y| ≤ x/2, we have

∂

∂y
h(x, y)= 0. (5-5)

Lemma 5.5 [Browning and Vishe 2014, Lemma 3.2]. Let the notation be as in Theorem 5.2. Then for
i, j, D ∈ Z≥0, we have

∂ i+ j

∂x i∂y j h(x, y)≪L/Q,i, j,D x−i− j−1
(

x D
+ min

{
1,

(
x
|y|

)D})
. (5-6)

The term x D on the right side of (5-6) can be omitted if j ̸= 0.

Corollary 5.6. Let the notation be as in Theorem 5.2. Then for any j ∈ Z≥1 we have

∂ j

∂y j h(x, y)≪L/Q, j 1. (5-7)

Proof. If x ≤ 1 and |y| ≤ x/2, then Lemma 5.4 implies that

∂ j

∂y j h(x, y)= 0

for all j ∈ Z≥1. If x ≤ 1 and |y| ≥ x/2, then Lemma 5.5 (with i = 0 and D = j + 1) gives

∂ j

∂y j h(x, y)≪L/Q, j 1

for all j ∈ Z≥1. If x ≥ 1, then Lemma 5.4 (the vanishing condition on h) and Lemma 5.5 (with i = D = 0)
gives

∂ j

∂y j h(x, y)≪L/Q, j 1,

for all j ∈ Z≥1. Putting all three cases together gives the result. □

6. Vaughan’s identity

Here we record a celebrated identity of Vaughan [1975] adapted to our situation.

Proposition 6.1. Let R, S ≥ 1. Then for any ν ∈ Z[ω] with ν ≡ 1 (mod 3) and N (ν) > S, we have

3(ν)=

∑
a|ν

N (a)≤R

µ(a) log
(

N (ν)
N (a)

)
−

∑ ∑
ab|ν

N (a)≤R
N (b)≤S

µ(a)3(b)+
∑ ∑

ab|ν
N (a)>R
N (b)>S

µ(a)3(b). (6-1)

If N (ν)≤ S, the right side of (6-1) vanishes.

7. Proof of Theorem 1.2 and Corollary 1.3

In this section we prove Theorem 1.2 and Corollary 1.3 assuming the truth of Lemma 1.4 and the main
inputs: Theorem 1.5 and Proposition 1.6.
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Proof of Theorem 1.2 assuming Lemma 1.4, Theorem 1.5, and Proposition 1.6. Recall the definition of the
quantity Pf (X, v, u; WK ) given in (1-7). We apply Proposition 6.1 to (1-7). The parameters R, S ≥ 1
used in our application of Proposition 6.1 will be chosen at a later point in the proof and will satisfy

S <
X

10000
and 10000X < RS < 10000000X say, (7-1)

for all sufficiently large X. Since the support of WK is contained in [1, 2] and S < X/10000 by (7-1),
all summands in Pf (X, v, u; WK ) are automatically supported on the condition N (ν) > S. Note that
the right most sum in (6-1) vanishes since the support of WK is contained in [1, 2] and RS > 10000X
by (7-1). We insert a smooth partition of unity in the a and b variables in the second sum in (6-1), and
then interchange these summations with the ν summation after substitution of (6-1) into (1-7). We obtain

Pf (X, v, u; WK )= P1 f (X, R, v, u; WK )−
∑ ∑
1≪M≪R
1≪N≪S

M,N dyadic

P2 f (X,M, N , v, u; WK ), (7-2)

where

P1 f ( · · · ) :=

∑ ∑
a,b≡1 (mod 3)
ab≡u (mod v)

N (a)≤R

µ(a) log(N (b))ρ f (λ
−3ab)WK

(
N (λ−3ab)

X

)
, (7-3)

P2 f ( · · · ) :=

∑ ∑∑
a,b,c≡1 (mod 3)
abc≡u (mod v)

N (a)≤R
N (b)≤S

µ(a)3(b)ρ f (λ
−3abc)WK

(
N (λ−3abc)

X

)
U

(
N (a)

M

)
U

(
N (b)

N

)
, (7-4)

and U : R → R≥0 is a fixed smooth function with compact support in [1, 2] such that∑
L dyadic

U
(

N (ℓ)
L

)
= 1 for all 0 ̸= ℓ ∈ Z[ω].

7.1. Estimate for P1 f (X, R, v, u; WK ). Rewriting (7-3) using additive characters we obtain
P1 f ( · · · )

=

∑
a≡1 (mod 3)

N (a)≤R

µ(a)
N (av)

∑
j (mod av)

ě
(

−
jη
av

) ∑
ν∈λ−3Z[ω]

ρ f (ν)ě
(

jλ3ν

av

)
log

(
N (ν)

N (λ−3a)

)
WK

(
N (ν)

X

)
, (7-5)

where η ∈ Z[ω] is such that η ≡ u (mod v) and η ≡ 0 (mod a). Applying Lemma 2.10 (while noting
Remark 1.1) to the ν summation and estimating the other sums trivially using the triangle inequality we get

P1 f ( · · · )≪ (RX)εKRX1/2 (7-6)
uniformly in the modulus v.

7.2. Two estimates for P2 f ( · · · ).

7.2.1. First estimate. For the first estimate we treat (7-4) as an average Type-I sum. That is, in (7-4) we
let h = ab,

γ ′

h(M, N ) :=

∑
h=ab

µ(a)3(b)U
(

N (a)
M

)
U

(
N (b)

N

)
, (7-7)
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and interpret c as the “smooth” summation variable. We then decompose

P2 f ( · · · )= P⋆
2 f ( · · · )+ P†

2 f ( · · · ), (7-8)

where P⋆
2 f ( · · · ) and P†

2 f ( · · · ) have the factors µ2(h) and 1 −µ2(h) inserted, respectively. The weight
µ2(h)γ ′

h(M,N ) in P⋆
2( · · · ) is supported on squarefree elements of Z[ω]. We apply Proposition 1.6

(see (1-13)) to obtain

P⋆
2 f ( · · · )≪ (XKN (v))εK 14/3 N (v)5/6(MN )5/6 X1/3. (7-9)

Applying Lemma 1.4 (see (1-12)) to the c-sum in P†( · · · ) we obtain

P†
2 f ( · · · )≪ (XKN (v))εK 4 N (v)1/2(MN )1/2∥(1 − µ2)γ ′(M, N )∥1

≪ (XKN (v))εK 4 N (v)1/2 M3/2 N . (7-10)

Note that the support of the b variable in (7-7) imposed by the weight (1−µ2(h))3(b)= 0 (supported on
prime powers with exponent ≥2) was used to obtain (7-10). Substitution of (7-9) and (7-10) into (7-8) gives

P2 f ( · · · )≪ (XKN (v))ε(K 14/3 N (v)5/6(MN )5/6 X1/3
+ K 4 N (v)1/2 M3/2 N ). (7-11)

7.2.2. Second estimate. For the second estimate we treat (7-4) as a Type-II sum. That is, we let h =bc, and

γh(N , X/MN ) :=

∑
h=bc

3(b)U
(

N (b)
N

)
.

Observe that the weight µ(a)U (N (a)/M) is supported only on squarefree a. Thus we apply Theorem 1.5
(see (1-14)) and obtain

P2 f ( · · · )≪ (XKN (v))εK 8 N (v)4(X M−1/2
+ (M X)3/4). (7-12)

7.3. Conclusion. We use (7-6) to estimate the first term of (7-2). Let 1 ≪ L ≪ R. We use (7-11)
(resp. (7-12)) to estimate the second term in (7-2) when M ≤ L (resp. M ≥ L). The net result is

Pf (X, v, u; WK )≪ (XKN (v))εK 8 N (v)4(RX1/2
+ (L S)5/6 X1/3

+ L3/2S + X L−1/2
+ (RX)3/4) (7-13)

for any R, S ≥ 1 satisfying (7-1) and 1 ≪ L ≪ R. The choice of parameters

R = 1000X5/17, S = 1000X12/17, and L = X1/17,

satisfies (7-1) for all sufficiently large X, and substitution into (7-13) yields

Pf (X, v, u; WK )≪ (XKN (v))εK 8 N (v)4 X1−1/34,

as required. □

We now remove the smoothing.
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Proof of Corollary 1.3. Let 1 := K −1 with K ≥ 2 and suppose that WK : (0,∞)→ R is smooth and
satisfies

supp(WK )⊂
[ 5

4 −1, 7
4 +1

]
, 0 ≤ W (x)≤ 1 for all x > 0,

W (x)= 1 for x ∈
[ 5

4 ,
7
4

]
, and W j (x)≪ j K j .

(7-14)

Then for any Z ≫ 1 we have∑
ν∈λ−3Z[ω]

λ3ν≡u (mod v)
5Z/4<N (ν)≤7Z/4

ρ f (ν)3(λ
3ν)=

∑
ν∈λ−3Z[ω]

λ3ν≡u (mod v)

ρ f (ν)3(λ
3ν)WK

(
N (ν)

Z

)
+ Ov(K −1/2 Z1+ε), (7-15)

where the error term follows by Cauchy–Schwarz, Lemma 2.7, and the support of WK . Applying
Theorem 1.2 to the right side (7-15) gives∑

ν∈λ−3Z[ω]

λ3ν≡u (mod v)
5Z/4<N (ν)≤7Z/4

ρ f (ν)3(λ
3ν)≪v (Z K )ε(K 8 Z1−1/34

+ K −1/2 Z).

We choose K = Z1/289 to obtain ∑
ν∈λ−3Z[ω]

λ3ν≡u (mod v)
5Z/4<N (ν)≤7Z/4

ρ f (ν)3(λ
3ν)≪v Z1−1/578+ε. (7-16)

Summing over intervals [5Z/4, 7Z/4] with 7Z/4 ≤ X yields (1-10).
To prove (1-11) we first observe that

P̃f (X; v, u)− Pf (X; v, u)=

∑ ∑
k∈Z≥2,ϖ∈Z[ω]

ϖ prime
ϖ k

≡u (mod v)
N (λ−3ϖ k)≤X

ρ f (λ
−3ϖ k) log N (ϖ). (7-17)

Applying Cauchy–Schwarz to the double sum in (7-17) shows that the right side of (7-17) is

≪ X1/4+ε

( ∑ ∑
k∈Z≥2,ϖ∈λ−3Z[ω]

ϖ prime
N (λ−3ϖ k)≤X

|ρ f (λ
−3ϖ k)|2

)1/2

≪ X1/4+ε

( ∑
ν∈λ−3Z[ω]

N (λ−3ν)≤X

|ρ f (ν)|
2
)1/2

≪ X3/4+ε, (7-18)

where the last inequality follows from using Lemma 2.7. The result (1-11) now follows. □

The rest of the paper will be dedicated to proving Lemma 1.4, Theorem 1.5, and Proposition 1.6.
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8. Voronoi summation formulae for twists

In this section we develop a Voronoi summation formula for twists of a cusp form f ∈ L2(02\H3, χ) with
spectral parameter τ f ∈1+iR by appropriate non-Archimedean and Archimedean characters. Development
of this formula requires some care because we are working with the group 02 = ⟨SL2(Z), 01(3)⟩ in
0 := SL2(Z[ω]).

8.1. Twists and Dirichlet series. We will need consider cubic metaplectic forms on groups 01(C) with
C ≡ 0 (mod 9), i.e., the spaces L2(01(C)\H3, χ, τ ) for τ ∈ C with Re(τ )≥ 1. To simplify our exposition
we focus on the nonexceptional case, i.e., Re(τ )= 1. Suppose that 9 : λ−1Z[ω] → C is periodic modulo
(λmr)(λ−1Z[ω]). The 9-twist (at ∞) of a cusp form F ∈ L2(01(C)\H3, χ, τ ) is defined by

F(w;9) :=

∑
0̸=ν∈(λC)−1Z[ω]

ρF (ν)9(Cν)vKτ−1(4π |ν|v)ě(νz), w = (z, v) ∈ H3, (8-1)

also denoted by (F ⊗9)(w). By [Proskurin 1998, Theorem 0.3.12] and its proof we have

F( · ;9) ∈ L2(01(λ
2mr2C)\H3, χ, τ ) is a cusp form. (8-2)

Remark 8.1. For the purposes of twisting we view the cusp form f ∈ L2(02\H3, χ) in the larger space
L2(01(λ

4)\H3, χ). This is immaterial in the final results and only involves extra fixed powers of the
prime λ in the formulae.

In what follows it will be instructive to open the definition ě(z) := e(z + z), z ∈ C. We remind the
reader that the function F(w;9) in (8-1) is a function in z, z, and v (although the notation suppresses
this). For n ∈ Z, we define

F(w;9, n) :=
1

(2π i)|n|
·


(
∂

∂z

)n
F(w;9) if n > 0,

F(w;9) if n = 0,(
∂

∂z

)|n|

F(w;9) if n < 0,

w = (z, v) ∈ H3. (8-3)

To complement (8-1), we have the Fourier expansions (at ∞) for n ∈ Z \ {0},

F(w;9, n) :=

∑
0̸=ν∈(λC)−1Z[ω]

{
ρF (ν)ν

n9(Cν)vKτ−1(4π |ν|v)e(νz + νz) if n > 0,
ρF (ν)ν

|n|9(Cν)vKτ−1(4π |ν|v)e(νz + νz) if n < 0.
(8-4)

Suppose thatψ :Z[ω]→C is periodic modulo λmr . The (normalised) Fourier transform ψ̂ :λ−1Z[ω]→C

is given by
ψ̂(x) :=

1
N (λmr)

∑
u (mod λmr)

ψ(u)ě
(

ux
λmr

)
, x ∈ λ−1Z[ω], (8-5)

and is periodic modulo (λmr)(λ−1Z[ω]). Fourier inversion asserts that

ψ(u) :=

∑
x∈λ−1Z[ω]/(λmr)(λ−1Z[ω])

ψ̂(x)ě
(

−
xu
λmr

)
for u ∈ Z[ω]. (8-6)
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For n ∈ Z consider the Dirichlet series

D(s, F;9, n) :=

∑
ν ̸=0

ν∈(λC)−1Z[ω]

ρF (ν)9(Cν)
(
ν
|ν|

)n

N (ν)s
, Re(s) > 1,

and the associated Mellin transform

3(s, F;9, n) :=

∫
∞

0
F(v;9, n)v2s+|n|−2 dv,

where we let v denote (0, v) for v > 0. Let

G∞(s, τ, n) :=
1
4(2π)

−2s−|n|0
(
s +

1
2 |n| −

1
2(τ − 1)

)
0

(
s +

1
2 |n| +

1
2(τ − 1)

)
, s ∈ C. (8-7)

Lemma 8.2. Let τ ∈ C with Re(τ ) = 1, C ∈ Z[ω] with C ≡ 0 (mod 9), F ∈ L2(01(C)\H3, χ, τ ) be a
cusp form, and n ∈ Z. For Re(s) > 1 we have

3(s, F;9, n)= G∞(s, τ, n)D(s, F;9, n),

where G∞(s, τ, n) is given by (8-7)

Proof. The proofs for the cases n > 0, n = 0, and n < 0 are analogous. We give details for the case n > 0.
For Re(s) > 1 and n > 0 we have

3(s, F;9, n)

=

∫
∞

0

∑
ν ̸=0

ν∈(λC)−1Z[ω]

ρF (ν)ν
n9(Cν)Kτ−1(4π |ν|v)v2s+n−1 dv

=
1

(4π)2s+n

∑
ν ̸=0

ν∈(λC)−1Z[ω]

ρF (ν)9(Cν)
(
ν
|ν|

)n

N (ν)s

∫
∞

0
Kτ−1(T )T 2s+n−1 dT

=
1
4(2π)

−2s−n0
(
s +

1
2 n −

1
2(τ − 1)

)
0

(
s +

1
2 n +

1
2(τ − 1)

) ∑
ν ̸=0

ν∈(λC)−1Z[ω]

ρF (ν)9(Cν)
(
ν
|ν|

)n

N (ν)s
. (8-8)

The interchange of summation and integration above for Re(s) > 1 is justified by absolute convergence
(see Lemma 2.8 and [Olver et al. 2018, (10.25.3), (10.45.7)]). Furthermore, (8-8) follows from [Olver
et al. 2018, (10.43.19)]. □

8.2. A special case. Recall that f ∈ L2(02\H3, χ) is a cusp form with spectral parameter τ f ∈ 1 + iR.
For ℓ ∈ Z≥0, q ∈ Z[ω] with q ≡ 1 (mod 3), and η ∈ Z[ω]/λℓqZ[ω], let

f (w; λℓq, η) :=

∑
ν ̸=0

ν∈λ−3Z[ω]

λ3ν≡η (mod λℓq)

ρ f (ν)vKτ f −1(4π |ν|v)ě(νz). (8-9)
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Following (8-1)–(8-4) we also have the functions f (w; λℓq, η, n) and their associated Fourier expansions
for each n ∈ Z. We ultimately need a Voronoi formulae for the Fourier coefficients of f (w; λℓq, η, n).
Consider the Dirichlet series

D(s, f ; λℓq, η, n) :=

∑
ν∈λ−3Z[ω]

λ3ν≡η (mod λℓq)

ρ f (ν)
(
ν
|ν|

)n

N (ν)s
, Re(s) > 1,

and the associated Mellin transform

3(s, f ; λℓq, η, n) :=

∫
∞

0
f (v; λℓq, η, n)v2s+|n|−2 dv.

Then Lemma 8.2 asserts that

3(s, f ; λℓq, η, n)= G∞(s, τ f , n)D(s, f ; λℓq, η, n) for Re(s) > 1, (8-10)

where G∞(s, τ, n) is given by (8-7).
We detect the congruence condition in (8-9) using Fourier transforms. For η∈Z[ω]/λℓqZ[ω], 0≤m ≤ℓ,

and r | q , let

ψλmr (u)η := 1λmr (u) · ě
(

−
ηu
λmr

)
, (8-11)

where 1λmr ( · ) is the principal character modulo λmr . As a shorthand we write ψλmr (u) :=ψλmr (u)0. The
function ψλmr ( · )η is periodic modulo λmr . The Fourier transform is

∧

ψλmr ( · )η(k)=
1

N (λmr)

∑
u (mod λmr)
(u,λmr)=1

ě
(
(k − η)u
λmr

)
, k ∈ λ−1Z[ω]. (8-12)

As a shorthand we write
∧

ψλmr (k) :=
∧

ψλmr ( · )0(k). A straightforward computation shows the following
orthogonality relation.

Lemma 8.3. For ℓ ∈ Z≥0 and k, η ∈ Z[ω]/λℓqZ[ω] we have

1
N (λℓq)

∑
r |q

ℓ∑
m=0

N (λmr)
∧

ψλmr ( · )η(k)= δk≡η (mod λℓq). (8-13)

The following lemma records the standard evaluation of Ramanujan sums.

Lemma 8.4. Let r ∈ Z[ω] satisfy r ≡ 1 (mod 3) and k ∈ Z[ω]. Then we have

ψ̂r (k) :=
1

N (r)

∑
x (mod r)
(x,r)=1

ě
(

kx
r

)
=

1
N (r)

µ

(
r

(r, k)

)
ϕ(r)
ϕ
( r
(r,k)

) ,
where ϕ( · ) is the Euler ϕ-function on Z[ω].

Proof. This follows from the multiplicativity of Ramanujan sums in the modulus r , and the first, fourth,
and eighth cases in the evaluation on [Proskurin 1998, p. 11]. □
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We next prove a straightforward but crucial lemma establishing the “flatness” of Ramanujan sums
when averaged over the modulus.

Lemma 8.5. Let r, k ∈ Z[ω] satisfy r ≡ 1 (mod 3), ψ̂r (k) be the normalised Ramanujan sum as in the
statement of Lemma 8.4, and ε > 0. Then for R ≥ 1 we have∑

r∈Z[ω]

N (r)∼R
r≡1 (mod 3)

|ψ̂r (k)| ≪ε δk=0 · R + δk ̸=0 · (N (k)R)ε. (8-14)

Proof. When k = 0 we have the trivial estimate ≪ R. When k ̸= 0 use Lemma 8.4, Möbius inversion, and
the triangle inequality to obtain∑

r∈Z[ω]

N (r)∼R
r≡1 (mod 3)

|ψ̂r (k)| =

∑
γ |k

γ≡1 (mod 3)

∑
r∈Z[ω]

N (r)∼R
r≡1 (mod 3)
(r,k)=γ

1
N (r)

ϕ(r)
ϕ(r/γ )

≤

∑
γ |k

γ≡1 (mod 3)

∑
n,u∈Z[ω]

N (nu)∼R/N (γ )
nu≡1 (mod 3)

1
N (γ nu)

ϕ(γ nu)
ϕ(nu)

≪ (N (k)R)ε, (8-15)

where the last display follows from standard lower bounds for the Euler ϕ-function and (2-14). □

Recall the convention for twisting a cusp form f ∈ L2(02\H3, χ) in Remark 8.1. We replace the
congruence λ3ν ≡ η (mod λℓq) with the equivalent congruence λ4ν ≡ λη (mod λℓ+1q). We have the
immediate consequence.

Lemma 8.6. Let ℓ ∈ Z≥0, n ∈ Z, q ∈ Z[ω] with q ≡ 1 (mod 3), and η ∈ Z[ω]/λℓqZ[ω]. For Re(s) > 1
we have

D(s, f ; λℓq, η, n)=
1

N (λℓ+1q)

∑
r |q

ℓ+1∑
m=0

N (λmr)D(s, f ;
∧

ψλmr ( · )λη, n),

3(s, f ; λℓq, η, n)=
1

N (λℓ+1q)

∑
r |q

ℓ+1∑
m=0

N (λmr)3(s, f ;
∧

ψλmr ( · )λη, n),

where
∧

ψλmr ( · )η is given in (8-12).

To obtain a functional equation for3(s, f ; λℓq, η, n) under s →1−s it suffices to establish a functional
equation for each 3(s, f ;

∧

ψλmr ( · )η, n). We have two different cases according to whether m ∈ Z≥6

or 0 ≤ m ≤ 5.

8.3. Functional equation 1: m ∈ Z≥6. Suppose that ψ : Z[ω] → C is periodic modulo λmr , where
r ≡ 1 (mod 3).
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Remark 8.7. The version of the functional equation proved in this section uses the automorphy of f ∈

L2(02\H3, χ) directly. It requires m ∈ Z≥6, and is useful for large m.

For each ζ with ζ 6
= 1, let ψ#

ζ : Z[ω] → C be given by

ψ#
ζ (u) :=

1
N (λmr)

∑
a,d (mod λmr)
a,d≡1 (mod 3)

ad≡1 (mod λmr)

ψ(−ζ−1d)
(
ζλm−1r

d

)
3
ě
(

au
ζλmr

)
, u ∈ Z[ω]. (8-16)

The function ψ#
ζ is periodic modulo λmr .

Proposition 8.8. Let f ∈ L2(02\H3, χ) be a cusp form with spectral parameter τ f ∈ 1 + iR, m ∈ Z≥6,
r ∈ Z[ω] with r ≡ 1 (mod 3), and ψ : Z[ω] → C be a periodic function modulo λmr , supported only on
residue classes coprime to λmr . We have

f (w; ψ̂)=

∑
ζ

f
(

−
z

(ζ−1λm−4r)2(|z|2 + v2)
,

v

|λm−4r |2(|z|2 + v2)
;ψ#

ζ−1

)
, w = (z, v) ∈ H3, (8-17)

where ψ̂ and ψ#
ζ are given by (8-5) and (8-16) respectively.

Proof. We open the definition of the Fourier transform to obtain

f (w; ψ̂)=
1

N (λmr)

∑
ζ

∑
d (mod λmr)
d≡1 (mod 3)
(d,r)=1

ψ(−ζd) f
(

z −
d

ζ−1λm−4r
, v

)
. (8-18)

Given ζ−1λm−4r ∈ Z[ω] (with m ∈ Z≥6), and each d ≡ 1 (mod 3) in (8-18) with (d, r)= 1, there exists
a matrix

γ :=

(
d λ4b

−ζ−1λm−4r a

)
∈ 01(3). (8-19)

Note that the determinant equation of this matrix implies that ad ≡ 1 (mod λmr). A straightforward
computation using (2-17) shows that(

z −
d

ζ−1λm−4r
, v

)
= γ

(
a

ζ−1λm−4r
−

z
(ζ−1λm−4r)2(|z|2 + v2)

,
v

|λm−4r |2(|z|2 + v2)

)
. (8-20)

We use the fact that f ∈ L2(02\H3, χ) to obtain

f
(

z −
d

ζ−1λm−4r
, v

)
= χ(γ ) f

(
a

ζ−1λm−4r
−

z
(ζ−1λm−4r)2(|z|2 + v2)

,
v

|λm−4r |2(|z|2 + v2)

)
, (8-21)

where

χ(γ )=

(
−ζ−1λm−4r

d

)
3
=

(
ζ−1λm−1r

d

)
3
. (8-22)

We combine (8-21)–(8-22) in (8-18). We then use the Fourier expansion (1-5) to open f , and then
assemble the sum over d (equivalently a). □
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Corollary 8.9. Let the notation be as in Proposition 8.8 and n ∈ Z. For v > 0 we have

f (v; ψ̂, n)=
(−1)n

N (λm−4r)|n|v2|n|

(
ζ−1λm−4r
ζ−1λm−4r

)−n ∑
ζ

f
(

1
|λm−4r |2v

;ψ#
ζ−1,−n

)
. (8-23)

Proof. Setting z = 0 in Proposition 8.8 (in particular, (8-17)) gives the result for n = 0. If n > 0, we write
|z|2 = zz and apply the operator

1
(2π i)n

(
∂

∂z

)n∣∣∣∣
z=0

to both sides of (8-17). If n < 0, we write |z|2 = zz and apply the operator

1
(2π i)|n|

(
∂

∂z

)|n|
∣∣∣∣
z=0

to both sides of (8-17) A computation with the chain rule yields the result. □

Proposition 8.10. Let the notation be as in Proposition 8.8 and n ∈ Z. The completed Dirichlet series
3(s, f ; ψ̂, n) and 3(s, f ;ψ#

ζ , n) both admit meromorphic continuations to entire functions, and satisfy

(−1)n N (λm−4r)2s−1
(
ζ−1λm−4r
ζ−1λm−4r

)n

3(s, f ; ψ̂, n)=

∑
ζ

3(1 − s, f ;ψ#
ζ−1,−n). (8-24)

Proof. Recall that for Re s > 1 we have

3(s, f ; ψ̂, n)=

∫
∞

0
f (v; ψ̂, n)v2s+|n|−2 dv.

The function f (v; ψ̂, n) has exponential decay at 0 and ∞ by (8-2), (8-3), and termwise differentiation
of (2-18) (with constant term identically zero). Thus 3(s, f ; ψ̂, n) has analytic continuation to an entire
function. The argument for f (v;ψ#

ζ , n) is analogous.
We now prove (8-24). We have

3(s, f ; ψ̂, n)=

∫ N (λm−4r)−1

0
f (v; ψ̂, n)v2s+|n|−2 dv+

∫
∞

N (λm−4r)−1
f (v; ψ̂, n)v2s+|n|−2 dv. (8-25)

After applying Corollary 8.9, interchanging the order of summation and integration, and a change of
variables, we obtain∫ N (λm−4r)−1

0
f (v; ψ̂, n)v2s+|n|−2 dv

=
(−1)n

N (λm−4r)|n|

(
ζ−1λm−4r
ζ−1λm−4r

)−n ∑
ζ

∫ N (λm−4r)−1

0
f
(

1
v|λm−4r |2

;ψ#
ζ−1,−n

)
v2s−|n|−2 dv

= (−1)n N (λm−4r)1−2s
(
ζ−1λm−4r
ζ−1λm−4r

)−n ∑
ζ

∫
∞

1
f (v;ψ#

ζ−1,−n)v−2s+|n| dv (8-26)
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and∫
∞

N (λm−4r)−1
f (v; ψ̂, n)v2s+|n|−2 dv

=
(−1)n

N (λm−4r)|n|

(
ζ−1λm−4r
ζ−1λm−4r

)−n ∑
ζ

∫
∞

N (λm−4r)−1
f
(

1
v|λm−4r |2

;ψ#
ζ−1,−n

)
v2s−|n|−2 dv

= (−1)n N (λm−4r)1−2s
(
ζ−1λm−4r
ζ−1λm−4r

)−n ∑
ζ

∫ 1

0
f (v;ψ#

ζ−1,−n)v−2s+|n| dv. (8-27)

Substituting (8-26) and (8-27) into (8-25) yields the result. □

8.4. Functional equation 2 : m ∈ Z≥0 absolutely bounded (in particular, 0 ≤ m ≤ 5). Let m ∈ Z≥0. The
functional equation we prove in this section is valid for all m ∈ Z≥0, but is really only useful when m is
bounded by an absolute constant.

Recall that 0 := SL2(Z[ω]). Let 0′ be a subgroup of 0 with [0 : 0′
] < ∞ and 0′

⊆ 01(9). Then
by [Proskurin 1998, Theorem 0.3.1] each cusp σ∞ (σ ∈ 0) of 0′ is essential with respect to χ , and if
0′

:= 01(C) with C ≡ 0 (mod 9), then

01(C)σ = CZ[ω] and 01(C)∗σ = (Cλ)−1Z[ω].

Suppose that ψ ′
: Z[ω] → C is periodic modulo λm , and that ψ ′′

: Z[ω] → C is periodic modulo r ,
where r ≡ 1 (mod 3). Let

ψ ′′,⋆(u) :=
1

N (r)

∑
a,d (mod r)

(λ2m+4a)(λ2m+4d)≡1 (mod r)

ψ ′′(−d)
(
λ2m+4d

r

)
3
ě
(

au
r

)
, u ∈ Z[ω]. (8-28)

The function ψ ′′,⋆ is periodic modulo r .
Let γm, j ∈02 for j =1, . . . , [02 :01(λ

2m+4)] be a fixed complete set of representatives for 01(λ
2m+4)\02.

We have the convention that γm,1 := I for all m ∈ Z≥0. For each j = 1, . . . , [02 :01(λ
2m+4)], let

( f ⊗ ψ̂ ′) j (w) := ( f ⊗ ψ̂ ′)(γm, jw), w ∈ H3, (8-29)

each having Fourier expansion

( f ⊗ ψ̂ ′) j (w) :=

∑
ν ̸=0

ν∈λ−2m−3Z[ω]

ρ f ⊗ψ̂ ′, j (ν)vKτ−1(4π |ν|v)ě(νz), w ∈ H3, (8-30)

where ρ f ⊗ψ̂ ′, j (ν) ∈ C.
If g ∈ 02, then

γm, j g = gm, j (g)γm,km, j (g) for some unique gm, j (g) ∈ 01(λ
2m+4) and

1 ≤ km, j (g)≤ [02 : 01(λ
2m+4)]. (8-31)

For any g, h ∈ 02 we have

gm, j (gh)= gm, j (g)gm,km, j (g)(h) and km, j (gh)= km,km, j (g)(h).
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Remark 8.11. Using (8-31) we see that for g ∈ 0 we have

( f ⊗ ψ̂ ′) j (gw)= χ(gm, j (g))( f ⊗ ψ̂ ′)km, j (g)(w), w ∈ H3. (8-32)

Since 01(λ
2m+4) is a normal subgroup of 02 for m ∈ Z≥0 (it is also a normal subgroup of 0) we have

km, j (g)= j for g ∈ 01(λ
2m+4) and all j. (8-33)

Then by [Patterson 1978, Lemma 2.1] we have

χ(γ gγ−1)= χ(g) for g ∈ 01(λ
2m+4) and γ ∈ 02.

Thus for each j we have

( f ⊗ ψ̂ ′) j ∈ L2(01(λ
2m+4)\H3, χ, τ ) is a cusp form. (8-34)

Following (8-1)–(8-4) we also have the functions ( f ⊗ ψ̂ ′) j ( · , 9, n) and their associated Fourier
expansions for each n ∈ Z.

Proposition 8.12. Let f ∈ L2(02\H3, χ) be a cusp form with spectral parameter τ f ∈ 1 + iR, m ∈ Z≥0,
1≤ j ≤[02 :01(λ

2m+4)] an integer, r ∈Z[ω] with r ≡1 (mod 3), andψ ′
:Z[ω]→C (resp.ψ ′′

:Z[ω]→C)
be periodic functions modulo λm (resp. r ). Further assume that ψ ′′ is supported only on residue classes
coprime to r .

Then there exist an integer 1 ≤ c(m, j; r)≤[02 :01(λ
2m+4)] and cube root of unity ω(m, j; r) such that

( f ⊗ ψ̂ ′) j (w; ψ̂ ′′)= ω(m, j; r)( f ⊗ ψ̂ ′)c(m, j;r)

(
−

z
r2(|z|2 + v2)

,
v

|r |2(|z|2 + v2)
;ψ ′′,⋆

)
,

w = (z, v) ∈ H3, (8-35)

where ψ ′′,⋆ is given in (8-28). Both c(m, j; r) and ω(m, j; r) depend only on m ∈ Z≥0, j ∈ Z≥1, and the
residue class r (mod λ2m+4).

Remark 8.13. The reason why the functional equation proved in this section is only useful for m bounded
by an absolute constant is because we use the automorphy for each ( f ⊗ ψ̂ ′) j ∈ L2(01(λ

2m+4)\H3, χ).

Proof. We adapt the proof of [Dunn and Radziwiłł 2024, Lemma 5.2]. We open the definition of the
Fourier transform and obtain

( f ⊗ ψ̂ ′) j (w; ψ̂ ′′)=
1

N (r)

∑
d (mod r)
(d,r)=1

ψ ′′(−d)( f ⊗ ψ̂ ′) j

(
z −

λ2m+4d
r

, v

)
. (8-36)

Given r ≡ 1 (mod 3) and each d ∈ Z[ω] in (8-36), we have (r, λ2m+4d)= 1. Thus there exists a matrix(
r −λ2m+4a

λ2m+4d b

)
∈ 01(3),

and hence there exists

γ :=

(
0 1

−1 0

)(
r −λ2m+4a

λ2m+4d b

)
=

(
λ2m+4d b

−r λ2m+4a

)
∈ 02. (8-37)
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Note that we implicitly we used (3-1) in the above display. Also note we have the determinant equation

λ4m+8ad + br = 1. (8-38)

A straightforward computation using (2-17) shows that(
z −

λ2m+4d
r

, v

)
= γ

(
λ2m+4a

r
−

z
r2(|z|2 + v2)

,
v

|r |2(|z|2 + v2)

)
. (8-39)

We now carefully factorise the γ in (8-37) as a word in P, T and E so that (8-39) and automorphy
of ( f ⊗ ψ̂ ′) j can be used in (8-36). For each x + yω ∈ Z[ω], x, y ∈ Z, let

A(x + yω) := PT −x PT −x+y P =

(
1 x + yω
0 1

)
.

For each r, b ∈ Z[ω] occurring in (8-37), let

S(r, b) := E3 A(r)E A(b)E A(r)=

(
b −1 + br

1 − br 2r − br2

)
∈ 01(3).

Then

S(r, b)Eγ =

(
−λ2m+4d + br + λ2m+4bdr −b − λ2m+4ab + b2r

r + 2λ2m+4dr − br2
− λ2m+4bdr2

−λ2m+4a + 2br + λ2m+4abr − b2r2

)
=: γ̃ .

Using (8-38) we see that γ̃ ∈ 01(λ
2m+4) and we write

γ = E3S(r, b)−1γ̃ . (8-40)

We use (8-39), (8-40), (8-32), and (8-34) to obtain

( f ⊗ψ̂ ′) j

(
z−

λ2m+4d
r

,v

)
=χ(gm, j (E3S(r,b)−1))·χ(γ̃ )( f ⊗ψ̂ ′)km, j (E3 S(r,b)−1)

(
λ2m+4a

r
−

z
r2(|z|2+v2)

,
v

|r |2(|z|2+v2)

)
. (8-41)

By (8-33) the integer km, j (E3S(r, b)−1) depends only on m, j ∈ N and matrix residue class

E3S(r, b)−1
=

(
−1 + br b

−2r + br2
−1 + br

)
(mod λ2m+4).

Thus the integer km, j (E3S(r, b)−1) depends only on m, j ∈ N and the residue class r (mod λ2m+4),
since b (mod λ2m+4) is determined by (8-38). By (8-31) we have

gm, j (E3S(r, b)−1)= γm, j E3S(r, b)−1γ−1
m,km, j (E3 S(r,b)−1)

∈ 01(λ
2m+4),

and each matrix in the product on the right side is an element of 02. Thus

χ(gm, j (E3S(r, b)−1))= χ(γm, j )χ(E3)χ(S(r, b)−1)χ(γ−1
m,km, j (E3 S(r,b)−1)

)= χ(γm, j )χ(γm,km, j (E3 S(r,b)−1)
)

is a cube root of unity depending only on m ∈ Z≥0, j ∈ Z≥1 and the residue class r (mod λ2m+4). For ease
of notation we relabel

c(m, j; r) := km, j (E3S(r, b)−1), (8-42)
ω(m, j; r) := χ(γm, j )χ(γm,km, j (E3 S(r,b)−1)

). (8-43)
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A computation following [Dunn and Radziwiłł 2024, p. 23] establishes that

χ(γ̃ )=

(
λ2m+4d

r

)
3
. (8-44)

We combine (8-41)–(8-44) in (8-36). We then use the Fourier expansion (8-30) to open ( f ⊗ψ̂ ′)c(m, j;r),
and assembling the sum over d (equivalently a) shows that

( f ⊗ ψ̂ ′) j (w; ψ̂ ′′)= ω(m, j; r)( f ⊗ ψ̂ ′)c(m, j;r)

(
−

z
r2(|z|2 + v2)

,
v

|r |2(|z|2 + v2)
;ψ ′′,⋆

)
,

as required. □

Corollary 8.14. Let the notation be as in Proposition 8.12 and n ∈ Z. For v > 0 we have

( f ⊗ ψ̂ ′) j (w; ψ̂ ′′, n)=
(−1)nω(m, j; r)

N (r)|n|v2|n|

(
r
r

)−n

( f ⊗ ψ̂ ′)c(m, j;r)

(
1

|r |2v
;ψ ′′,⋆,−n

)
. (8-45)

The proof is analogous to that of Corollary 8.9 so we omit it.

Proposition 8.15. Let the notation be as in Proposition 8.12 and n ∈ Z. The completed Dirichlet series
3(s, ( f ⊗ ψ̂ ′) j ; ψ̂

′′, n) and 3(s, ( f ⊗ ψ̂ ′) j ;ψ
′′,⋆, n) both admit meromorphic continuation to an entire

function, and satisfy

(−1)n N (r)2s−1
(

r
r

)n

3(s, ( f ⊗ ψ̂ ′) j ; ψ̂
′′, n)= ω(m, j; r)3

(
1 − s, ( f ⊗ ψ̂ ′)c(m, j;r);ψ

′′,⋆,−n
)
. (8-46)

Proposition 8.15 follows from Corollary 8.14, and the proof is analogous to that of Proposition 8.10.
We omit the proof.

8.5. Level aspect Voronoi formula. We now prove a Voronoi summation formula for the Fourier coeffi-
cients for the form f (w; λℓq, η) given in (8-9).

We recall some basic facts concerning the complex Mellin transform. Let C×
:= C\{0}. Let K ,M ≥ 1

and VK ,M ∈ C∞
c (C

×) have compact support contained in the disc of radius 100 (say), and also satisfy

∂ i+ j

∂x i∂x j VK ,M(z)≪i, j MK i+ j for all z ∈ C×. (8-47)

The complex Mellin transform is given by

V̂K ,M(s, n) :=

∫
C×

VK ,M(z)|z|2s(z/|z|)−n d×z (8-48)

for s ∈ C and n ∈ Z, where d×z := |z|−2 dx dy. Note that V̂K ,M(s, n) is entire with respect to s for
each n ∈ Z. After making a change of variables z = re(θ/2) with r ∈ (0,∞) and θ ∈ [0, 2π), we obtain

V̂K ,M(s, n)=

∫
∞

0

∫ 2π

0
VK ,M(re(θ/2))r2s−1e(−nθ/2) dθ dr. (8-49)
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After repeated integration by parts, we obtain

V̂K ,M(s, n)≪ j,k M · min
{

1,
K j+k

|(2s) j |(1 + |n|)k

}
for j, k ∈ Z≥0, s ∈ C in a fixed vertical strip, and n ∈ Z. It follows for D1, D2 ≥ 0, we have

V̂K ,M(s, n)≪D1,D2

MK D1+D2

(1 + |s|)D1(1 + |n|)D2
(8-50)

for s ∈ C in a fixed vertical strip, and n ∈ Z. The complex Mellin inversion formula is given by

VK ,M(z)=
1

2π2i

∑
n∈Z

∫
(σ )

V̂K ,M(s, n)|z|−2s(z/|z|)n ds (8-51)

for σ > 0, z ∈ C, and n ∈ Z.

Remark 8.16. Suppose further that VK ,M is radial, i.e., VK ,M(re(θ))= VK (r) for all θ ∈ R. Then

V̂K ,M(s, n)= δn=02π ·

∫
∞

0
VK ,M(r)r2s−1 dr = δn=02π · V̂K ,M(2s)= δn=0π · Ŵ K ,M(s), (8-52)

where V̂K ,M(s) denotes the usual Mellin transform for functions on (0,∞), and WK ,M is such that
WK ,M(r) = VK ,M(

√
r). Then (8-51) becomes the standard Mellin inversion formula for functions

on (0,∞) after a change of variable in s.

Proposition 8.17. Let f ∈ L2(02\H3, χ) be a cusp form with spectral parameter τ f ∈ 1 + iR, ℓ ∈ Z≥0,
q ∈ Z[ω] with q ≡ 1 (mod 3), η ∈ Z[ω]/λℓqZ[ω], and VK ,M ∈ C∞

c (C
×) be a smooth function with

compact support in the disc of radius 100 satisfying (8-47) for some K ,M ≥ 1. Then for X > 0 we have

∑
ν∈λ−3Z[ω]

λ3ν≡η (mod λℓq)

ρ f (ν)VK ,M(ν/
√

X)=
X

N (λℓ+1q)

∑
r |q

∑
n∈Z

(−1)n
ℓ+1∑
m=0

2∑
p=1

Z p f (X, λmr, η, n; V̇K ,M) (8-53)

where

Z1 f (X, λmr, η, n; V̇K ,M)

:= δ0≤m≤min{5,ℓ+1} · N (λm)

(
r
r

)−n

ω(m, 1; r)

×

∑
ν∈λ−2m−3Z[ω]

ρ f ⊗
∧

ψλm ( · )λη,c(m,1;r)(ν)

(
ν

|ν|

)−n

ψ⋆r ( · )λ2m+1η(λ
2m+4ν)V̇K ,M

(
N (ν)

N (r)2/X
, n

)
, (8-54)

Z2 f (X, λmr, η, n; V̇K ,M)

:= δ6≤m≤ℓ+1 · N (λ4)
∑
ζ

(
ζ−1λm−4r
ζ−1λm−4r

)−n

×

∑
ν∈λ−3Z[ω]

ρ f (ν)

(
ν

|ν|

)−n

ψ#
λmr ( · )λη,ζ−1(λ4ν)V̇K ,M

(
N (ν)

N (λm−4r)2/X
, n

)
, (8-55)
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where ψ#
ζ and ψ⋆ are given in (8-16) and (8-28) (with ψ ′′

→ψ) respectively, V̇K ,M( ·, n) : (0,∞)→ R is
given by

V̇K ,M(Y, n) :=
1

2π2i

∫
(2)

Y −s G∞(s, τ f , n)
G∞(1 − s, τ f , n)

V̂K ,M(1 − s, n) ds, (8-56)

G∞(s, τ, n) is given in (8-7), and ω(m, j, r) and c(m, j, r) are both as in Proposition 8.12.

Remark 8.18. From Remark 8.16 we see that if VK is radial then only n = 0 is relevant on the right side
of (8-53). In this case n is omitted from the notation.

Proof. Recall the definition of the function ψλmr ( · )η in (8-11), and its Fourier transform ψ̂λmr ( · )η

in (8-12). We apply complex Mellin inversion (8-51) to the smooth function VK , Lemma 8.6, and then
interchange of the order of integration and summation by absolute convergence. This yields∑
ν∈λ−3Z[ω]

λ3ν≡η (mod λℓq)

ρ f (ν)VK ,M(ν/
√

X)

=
1

2π2i
1

N (λℓ+1q)

∑
r |q

(min{5,ℓ+1}∑
m=0

+

ℓ+1∑
m=6

)
N (λmr)

∑
n∈Z

∫
(2)̂

VK ,M(s,n)X sD(s, f ;
∧

ψλmr ( ·)λη,n)ds. (8-57)

The Chinese remainder theorem implies that
∧

ψλmr ( · )λη(u)=
∧

ψλm ( · )λη(u)
∧

ψr ( · )λη(u), u ∈ Z[ω], (8-58)

and by a change of variables we have
∧

ψr ( · )λ2m+1η(λ
2mu)=
∧

ψr ( · )λη(u), u ∈ Z[ω]. (8-59)

Recall the definition of twisting (8-1) and the convention in Remark 8.1. Using (8-2) we see that
f ⊗
∧

ψλm ( · )λη ∈ L2(01(λ
2m+4)\H3, χ, τ ) is a cusp form. Using (8-58) and (8-59) we obtain

f (w;
∧

ψλmr ( · )λη, n)= f (w;
∧

ψλm ( · )λη
∧

ψr ( · )λ2m+1η ◦ λ2m, n)

= ( f ⊗
∧

ψλm ( · )λη)(w;
∧

ψr ( · )λ2m+1η, n)

for all 0 ≤ m ≤ ℓ+ 1, r | q , and η ∈ Z[ω]. The analogous Dirichlet series identity reads

D(s, f ;
∧

ψλmr ( · )λη, n)= D(s, f ⊗
∧

ψλm ( · )λη;
∧

ψr ( · )λ2m+1η, n), Re(s) > 1. (8-60)

Substituting (8-60) into (8-57) for 0 ≤ m ≤ min{5, ℓ+1} we see that the right side of (8-57) is equal to

1
2π2i

1
N (λℓ+1q)

∑
r |q

∑
n∈Z

(min{5,ℓ+1}∑
m=0

N (λmr)
∫
(2)̂

VK ,M(s,n)X sD(s, f ⊗
∧

ψλm ( ·)λη;
∧

ψr ( ·)λ2m+1η,n)ds

+

ℓ+1∑
m=6

N (λmr)
∫
(2)

V̂K ,M(s,n)X sD(s, f ;
∧

ψλmr ( ·)λη,n)ds
)
. (8-61)
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Both of the integrands in (8-61) are entire by Propositions 8.10 and 8.15 and Lemma 8.2. We shift
the contour in (8-57) to Re(s) = −1 and then use the functional equations (8-24) and (8-46). We see
that (8-61) is equal to

1
2π2i

1
N (λℓ+1q)

∑
r |q

∑
n∈Z

(−1)n

×

(min{5,ℓ+1}∑
m=0

N (λm)N (r)2
(

r
r

)−n

ω(m, 1; r)
∫
(−1)

V̂K ,M(s, n)
(

X
N (r)2

)s G∞(1 − s, τ f ,−n)
G∞(s, τ f , n)

×D
(
1 − s, ( f ⊗

∧

ψλm ( · )λη)c(m,1;r);ψ
⋆
r ( · )λ2m+1η,−n

)
ds

+

ℓ+1∑
m=6

∑
ζ

N (λ2m−4)N (r)2
(
ζ−1λm−4r
ζ−1λm−4r

)−n∫
(−1)

V̂K ,M(s, n)
(

X
N (λm−4r)2

)s

×
G∞(1 − s, τ f ,−n)

G∞(s, τ f , n)
D(1 − s, f ;ψ#

λmr ( · )λη,ζ−1,−n) ds
)
. (8-62)

We make the change of variable s → 1 − s in both integrals in (8-62), open up both of the Dirichlet
series in the region of absolute convergence, and interchange the order of summation and integration to
obtain (8-53) with the transforms given by (8-54)–(8-56). □

We now compute the Archimedean and non-Archimedean transforms on the dual side of the Voronoi
formula in Proposition 8.17. Recall that K0′,σ,ξ (m, n, c) denotes a cubic Kloosterman attached to the
cusp pair (σ, ξ) of 0′; see (3-2).

Lemma 8.19. Let m ∈ Z≥6, r ∈ Z[ω] with r ≡ 1 (mod 3), η ∈ Z[ω]/λmrZ[ω], ψλmr ( · )η be as in (8-11),
and ζ be such that ζ 6

= 1. Then for ν ∈ λ−3Z[ω] we have

ψ#
λmr ( · )λη,ζ (λ

4ν)=
1

N (λm+3r)
K01(3),σ,σ (λ

3ν, η, ζλm−1r),

where ψ#
ζ is given in (8-16), σ =

( 1
0

0
1

)
, and the cubic Kloosterman sum is given in (3-2).

Proof. We have

ψ#
λmr ( · )λη,ζ (λ

4ν)=
1

N (λmr)

∑
a,d (mod λmr)
a,d≡1 (mod 3)

ad≡1 (mod λmr)

(
ζλm−1r

d

)
3
ě
(

aλ3ν+ dη
ζλm−1r

)

=
1

N (λm+2r)

∑
a,d (mod λm+1r)
a,d≡1 (mod 3)

ad≡1 (mod λmr)

(
ζλm−1r

d

)
3
ě
(

aλ3ν+ dη
ζλm−1r

)

=
1

N (λm+3r)

∑
a,d (mod λm+1r)
a,d≡1 (mod 3)

ad≡1 (mod λm−1r)

(
ζλm−1r

d

)
3
ě
(

aλ3ν+ dη
ζλm−1r

)
, (8-63)

and the result follows from Lemma 3.3. □
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Lemma 8.20. Let the notation be as in Lemma 8.19 and m ∈ Z≥0. Then for ν ∈ λ−2m−3Z[ω] we have

ψ⋆r ( · )λ2m+1η(λ
2m+4ν)=

1
N (r)

K01(3),σ,ξ (λ
2m+3(λ2m+3ν), λ3η, r),

whereψ⋆ is given in (8-28), σ =
( 1

0
0
1

)
, ξ =

( 0
1

−1
0

)
, and λℓ∈Z[ω] is such that λℓλℓ≡1 (mod r) for ℓ∈Z≥0.

Proof. By definition

ψ⋆r ( · )λ2m+1η(λ
2m+4ν)=

1
N (r)

∑
a,d (mod r)

(λ2m+4a)(λ2m+4d)≡1 (mod r)

(
λ2m+4d

r

)
3
ě
(

a(λ2m+4ν)+ d(λ2m+1η)

r

)
. (8-64)

The change of variables a →λ2m+4a (mod r) and d →λ2m+4d (mod r) shows that the right side of (8-64)
is equal to

1
N (r)

∑
a,d (mod r)

ad≡1 (mod r)

(
d
r

)
3
ě
(
λ2m+3a(λ2m+3ν)+ λ3ηd

r

)
, (8-65)

and we can lift this to the sum

1
N (r)

∑
a,d (mod 3r)

a,d≡0 (mod 3)
ad≡1 (mod r)

(
d
r

)
3
ě
(
λ2m+3a(λ2m+3ν)+ λ3ηd

r

)
,

and the result now follows from Lemma 3.4. □

Lemma 8.21. Let K ,M ≥ 1 and VK ,M ∈ C∞
c (C

×) be a smooth function with compact support in
[1, 2] whose derivatives satisfy (8-47). Let τ ∈ 1 + iR, n ∈ Z, G∞(s, τ, n) be as in (8-7), and let
V̇K ,M( ·, n) : (0,∞)→ C be as in (8-56). Then for D1 > 0 and D2 ≥ 0 we have

V̇K ,M(Y, n)≪τ,D1,D2 MK 4(D1+D2)Y −D1(|n| + 1)4D1−4D2−2

for all Y > 0.

Proof. In the definition (8-56) we move the contour to Re(s)= D1. Stirling’s formula [Olver et al. 2018,
(5.11.1)] implies that

G∞(s, τ,−n)
G∞(1 − s, τ, n)

≍
∣∣s +

1
2 |n| −

1
2(τ − 1)

∣∣2D1−1
·
∣∣s +

1
2 |n| +

1
2(τ − 1)

∣∣2D1−1
, (8-66)

as
∣∣Im(s±

1
2(τ−1))

∣∣→∞. Using (8-50) (with D1 → 4D1 and D2 → 4D2) and (8-66) in (8-56) we obtain

V̇K ,M(Y,n)

≪D1,D2 MK 4(D1+D2)Y −D1(1+|n|)−4D2

(∫
(D1)

∣∣s+
1
2 |n|−

1
2(τ−1)

∣∣2D1−1
·
∣∣s+

1
2 |n|+

1
2(τ−1)

∣∣2D1−1

(1+|1−s|)4D1
|ds|

)
≪τ,D1,D2 MK 4(D1+D2)Y −D1(1+|n|)4D1−4D2−2,

as required. □
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8.6. Level aspect Voronoi summation for multiple sums. Here we record a Voronoi formula that is an
iterated version of Proposition 8.17. Let z = (z1, z2)= (x11+iy12, x21+iy22)∈ (C

×)2, x11, y12, x21, y22 ∈R.
Let K ,M ≥ 1, and HK ,M ∈ C∞

c ((C
×)2) be a smooth function with compact support in a ball of radius 100

such that for any i = (i11, i12, i21, i22) ∈ (Z≥0)
4 we have

∂ i HK ,M(z)≪i MK
∑

1≤ j,k≤2 i jk , z ∈ (C×)2. (8-67)

If M = 1 then M is omitted from the notation and we write HK . For each n = (n1, n2) ∈ Z2, consider the
double complex Mellin transform

̂̂H K ,M(s, n) :=

∫∫
(C×)2

HK ,M(z)
( 2∏

i=1

|zi |
2si

(
zi

|zi |

)−ni
)

d×z, s = (s1, s2) ∈ C2, (8-68)

where d×z := dx1 dy1 dx2 dy2/|z1z2|
2. For D := (D11, D12, D21, D22) ∈ (R≥0)

4, repeated integration by
parts using polar coordinates yields the bound

̂̂H K ,M(s, n)≪τ,D MK
∑

1≤i, j≤2 Di j ·

2∏
i=1

(1 + |si |)
−Di1(1 + |ni |)

−Di2 . (8-69)

Consider the function ḦK ,M( ·, n) : (0,∞)2 → R given by

ḦK ,M(Y , n) :=
1

(2π2i)2

∫
(2)

∫
(2)

( 2∏
i=1

Y −si
i

G∞(si , τ f ,−ni )

G∞(1 − si , τ f , ni )

)̂̂H K ,M(1 − s, n) ds,

Y = (Y1, Y2) ∈ (0,∞)2,

(8-70)

where G∞(s, τ, n) is given by (8-7), and ds := ds1 ds2. After moving the contours in (8-70) to Re(s1)=

D11 > 0 and Re(s2)= D21 > 0, observe that (8-66) and (8-69) applied to (8-70) imply that

ḦK ,M(Y , n)≪τ,D MK 4(
∑

1≤i, j≤2 Di j ) ·

2∏
i=1

Y −Di1
i (|ni | + 1)4Di1−4Di2−2, Y ∈ (0,∞)2. (8-71)

Mellin inversion and an iterated application of the functional equation in Proposition 8.17 yields the
following result. We omit the proof for the sake of brevity.

Proposition 8.22. Let f ∈ L2(02\H3, χ) be a cusp form with spectral parameter τ f ∈1+iR, ℓ=(ℓ1,ℓ2)∈

(Z≥0)
2, q =(q1,q2)∈(Z[ω])2 with q1,q2≡1(mod 3), and η=(η1,η2)∈Z[ω]/λℓ1q1Z[ω]×Z[ω]/λℓ2q2Z[ω].

Let HK ,M ∈ C∞
c ((C

×)2) be a smooth function with compact support in the disc of radius 100 satisfy-
ing (8-67) for some K ,M ≥ 1. Then for X = (X1, X2) ∈ (0,∞)2 we have∑

ν∈(λ−3Z[ω])2

∀i :λ3νi ≡ηi (mod λℓi qi )

ρ f (ν1)ρ f (ν2)HK ,M

(
ν1

√
X1
,
ν2

√
X2

)

=
X1 X2

N (λℓ1+1q1)N (λℓ2+1q2)

∑
k∈(Z[ω]/λ14Z[ω])2

∀i :ki ≡1 (mod 3)

∑
m,r

∀i :0≤mi ≤ℓi +1
∀i :ri |qi

∀i :ri ≡ki (mod λ14)

∑
n∈Z2

(−1)n1+n2

4∑
p=1

Dp f (X,λmr,η,n; ḦK ,M), (8-72)
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where

D1 f (X,λmr, η, n; ḦK ,M)

:= δm1∈[0,min{5,ℓ1+1}] · δm2∈[0,min{5,ℓ2+1}] · N (λm1)N (λm2)

(
r1

r1

)−n1
(

r2

r2

)n2

ω(m1; 1, k1)ω(m2, 1, k2)

×

∑
ν1∈λ

−2m1−3Z[ω]

ν2∈λ
−2m2−3Z[ω]

ρ f ⊗
∧

ψλm1 ( · )λη1 ,c(m1,1;k1)
(ν1)ρ f ⊗
∧

ψλm2 ( · )λη2 ,c(m2,1;k2)
(ν2)

(
ν1

|ν1|

)−n1
(
ν2

|ν2|

)−n2

×ψ⋆r1
( · )λ2m1+1η1

(λ2m1+4ν1)ψ⋆r2
( · )λ2m2+1η2

(λ2m2+4ν2)ḦK ,M

(
N (ν1)

N (r1)2/X1
,

N (ν2)

N (r2)2/X2
, n

)
, (8-73)

D2 f (X,λmr, η, n; ḦK ,M);

:= δm1∈[0,min{5,ℓ1+1}] · δm2∈[6,ℓ2+1]N (λm1)N (λ4)

(
r1

r1

)−n1

ω(m1, 1; k1)

×

∑
ν1∈λ

−2m1−3Z[ω]

ν2∈λ
−3Z[ω]

ρ f ⊗
∧

ψλm1 ( · )λη1 ,c(m1,1;k1)
(ν1)ρ f (ν2)

(
ν1

|ν1|

)−n1
(
ν2

|ν2|

)−n2

×

∑
ζ2

(
ζ−1

2 λm2−4r2

ζ−1
2 λm2−4r2

)n2

ψ⋆r1
( · )λ2m1+1η1

(λ2m1+4ν1) ·ψ
#
λm2r2

( · )λη2,ζ
−1
2
(λ4ν2)

× ḦK ,M

(
N (ν1)

N (r1)2/X1
,

N (ν2)

N (λm2−4r2)2/X2
, n

)
, (8-74)

D3 f (X,λmr, η, η; ḦK ,M)

:= δm1∈[6,ℓ1+1] · δm2∈[0,min{5,ℓ2+1}] · N (λ4)N (λm2)

(
r2

r2

)n2

ω(m2, 1; k2)

×

∑
ν1∈λ

−3Z[ω]

ν2∈λ
−2m2−3Z[ω]

ρ f (ν1)ρ f ⊗
∧

ψλm2 ( · )λη2 ,c(m2,1;k2)
(ν2)

(
ν1

|ν1|

)−n1
(
ν2

|ν2|

)−n2

×

∑
ζ1

(
ζ−1

1 λm1−4r1

ζ−1
1 λm1−4r1

)−n1

ψ#
λm1r1

( · )λη1,ζ
−1
1
(λ4ν1) ·ψ⋆r2

( · )λ2m2+1η2
(λ2m2+4ν2)

× ḦK ,M

(
N (ν1)

N (λm1−4r1)2/X1
,

N (ν2)

N (r2)2/X2
, n

)
, (8-75)

D4 f (X,λmr, η, n; ḦK ,M)

:= δm1∈[6,ℓ1+1] · δm2∈[6,ℓ2+1] · N (λ8)
∑

ν∈(λ−3Z[ω])2

ρ f (ν1)ρ f (ν2)

(
ν1

|ν1|

)−n1
(
ν2

|ν2|

)−n2

×

∑
ζ

(
ζ−1

1 λm1−4r1

ζ−1
1 λm1−4r1

)−n1
(
ζ−1

2 λm2−4r2

ζ−1
2 λm2−4r2

)n2

ψ#
λm1r1

( · )λη1,ζ
−1
1
(λ4ν1) ·ψ

#
λm2r2

( · )λη2,ζ
−1
2
(λ4ν2)

× ḦK ,M

(
N (ν1)

N (λm1−4r1)2/X1
,

N (ν2)

N (λm2−4r2)2/X2
, n

)
, (8-76)
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ψ#
ζ and ψ⋆ are given in (8-16) and (8-28) (with ψ ′′

→ ψ) respectively, and ḦK ,M( · , n) : (0,∞)2 → R is
given by (8-70), and ω(m, j, r) and c(m, j, r) are both as in Proposition 8.12.

9. Type-I estimates

Recall the notation from Section 1, in particular (1-12) and (1-13).

Remark 9.1. We can uniquely factorise v = λevζvv0, where ev ∈ Z≥2, ζ 6
v = 1, and v0 ≡ 1 (mod 3).

In view of the congruence condition ab ≡ u (mod v), we can assume without loss of generality that
v = λevv0 with v0 ≡ 1 (mod 3). In particular, since (u, v)= 1 and ab ≡ u (mod v) in (1-12) and (1-13),
we have (a, v)= 1.

Proof of Lemma 1.4. We write (1-12) as

S f (a, X, v, u; WK )=

∑
ν∈λ−3Z[ω]

λ3ν≡0 (mod a)
λ3ν≡u (mod λev v0)

ρ f (ν)WK

(
N (ν)

X

)
. (9-1)

Since (a, λevv0)= 1, we let a ∈ Z[ω] be such that aa ≡ 1 (mod λevv0). The congruence conditions placed
on ν in (9-1) are equivalent to λ3ν ≡ uaa (mod λevv0a) by the Chinese remainder theorem.

9.1. Application of Voronoi summation. Applying Voronoi summation (Proposition 8.17) we obtain

S f (a, X; v, u; WK )=
X

N (λev+1v0a)

∑
k (mod λ14)
k≡1 (mod 3)

∑
m,r,t

0≤m≤ev+1
r |a, t |v0

r t≡k (mod λ14)

2∑
p=1

Z p f (X, λmr t, η, 0; ẆK ), (9-2)

where Z p f ( · · · ) for p = 1, 2 are given in (8-54) and (8-55) respectively. The weight functions involved
are radial, see Remarks 8.16 and 8.18, so only n = 0 occurs on the dual side of Voronoi summation.

9.2. Evaluation and bounds for arithmetic exponential sums. We now consider the arithmetic exponen-
tial sum ψ#

λmr t( · )λη,ζ−1(λ4ν) for ν ∈ λ−3Z[ω] that occurs in Z2 f ( · · · ). Throughout this computation we
will repeatedly use the facts η≡ uaa (mod λevv0a), aa ≡ 1 (mod λevv0), 0 ≤ m ≤ ev+1, r | a, and t | v0,
without further reference. Using Lemma 8.19 we have

ψ#
λmr t( · )λη,ζ−1(λ4ν)=

1
N (λm+3r t)

K01(3),σ,σ (ζ(λ
3ν), ζη, λm−1r t), (9-3)

where σ =
( 1

0
0
1

)
. After opening the cubic Kloosterman sum in (9-3), we then perform a computation

using the Chinese remainder theorem (with coprime moduli λm−1t and r ), (2-1), and (2-7), to obtain

ψ#
λmr t( ·)λη,ζ−1(λ4ν)=

1
N (r)1/2 N (λm+3t)

(
ζ−1λm−1t

r

)
3
g̃(λ3ν,r)K01(3),σ,σ (ζr(λ3ν),ζru,λm−1t). (9-4)

The bound
|ψ#
λmr t( · )λη,ζ−1(λ4ν)| ≪ N (λmr t)−1/2+ε

· N ((λ3ν, r))1/2 (9-5)
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for ν ∈ λ−3Z[ω] and m ∈ Z≥6 follows from using Lemmas 2.3 and 3.1 in (9-4), (2-16), and the fact
(ζr(λ3ν), ζru, λm−1t)= 1.

We now give a similar treatment of the arithmetic sum ψ⋆r t( · )λ2m+1η(λ
2m+4ν) that occurs in Z1 f ( · · · ).

Using Lemma 8.20 we have

ψ⋆r t( · )λ2m+1η(λ
2m+4ν)=

1
N (r t)

K01(3),σ,ξ (λ
2m+3(λ2m+3ν), λ3η, r t), (9-6)

where σ is as above, and ξ :=
(0

1
−1

0

)
. After opening the cubic Kloosterman sum in (9-6), we then perform

a computation using the Chinese remainder theorem (with coprime moduli t and r ) and (2-7), to obtain

ψ⋆r t( ·)λ2m+1η(λ
2m+4ν)=

1
N (r)1/2 N (t)

(
λ2m t

r

)
3
g̃(λ2m+3ν,r)K01(3),σ,ξ (λ

2m+3r(λ2m+3ν),λ3ru, t). (9-7)

The bound
|ψ⋆r t( · )λ2m+1η(λ

2m+4ν)| ≪ N (r t)−1/2+εN ((λ2m+3ν, r))1/2 (9-8)

for ν ∈ λ−2m−3Z[ω] follows from using Lemmas 2.3 and 3.1 in (9-6), (2-16), and the fact

(λ2m+3r(λ2m+3ν), λ3ru, t)= 1.

9.3. Truncations and conclusion. We substitute (9-7) and (9-4) into Z p f ( · · · ) for p = 1, 2 respectively.
We recall Remark 8.18, use Lemma 8.21 (with D1 > 0 large and fixed and D2 = 0) together with
Lemma 2.8 and (9-8) (resp. (9-5)) to truncate the ν-sums in Z p f ( · · · ) for p = 1 (resp. p = 2) to

N (ν)≪ (XKN (v))ε · K 4 N (λmr t)2 X−1
=: P, (9-9)

with negligible error O((XKN (v))−2000). Denote the truncated expressions by Z ′

p f ( · · · , P) for p = 1, 2.
Without loss of generality, we can restrict our attention to the case P ≫ (XKN (v))−ε otherwise
both Z ′

p f ( · · · , P) for p = 1, 2. are O((XKN (v))−2000) by the above argument. Thus

S f (a, X; v, u; WK )

=
X

N (λev+1v0a)

∑
k (mod λ14)
k≡1 (mod 3)

∑
m,r,t

0≤m≤ev+1
r |a, t |v0

r t≡k (mod λ14)
P≫(XKN (v))−ε

2∑
p=1

Z ′

p f ( · · · , P)+ O((XKN (v))−1000). (9-10)

Using the triangle inequality and (9-5), (9-8), and Lemma 8.21 (with D1 = ε and D2 = 0) we obtain

Z ′

1 f ( · · · , P)≪ (XK )εN (λm)1+εN (r t)−1/2+ε
∑

ν∈λ−2m−3Z[ω]

N (ν)≪P

|ρ f ⊗
∧

ψλm ( ·)λu ,c(m,1;k)(ν)|N ((λ
2m+3ν,r))1/2

for 0 ≤ m ≤ min{5,ev+1}, (9-11)

Z ′

2 f ( · · · , P)≪ (XK )εN (λmr t)−1/2+ε
∑

ν∈λ−3Z[ω]

N (ν)≪P

|ρ f (ν)|N ((λ3ν,r))1/2 for 6 ≤ m ≤ ev+1. (9-12)



Metaplectic cusp forms and the large sieve 1861

We now bound (9-11) and (9-12) by applying the Cauchy–Schwarz inequality to the ν-sums, Lemma 2.5,
Lemma 2.7, and (2-14). Substitution of the result into (9-10) gives

S f (a, X; v, u; WK )≪
X (XKN (v))ε

N (λev+1v0a)

∑
m,r,t

0≤m≤ev+1
r |a, t |v0

P≫(XKN (v))−ε

(
N (λmr t)−1/2

·
K 4 N (λmr t)2

X

)
+ (XKN (v))−1000

≪ (XKN (v))εK 4 N (v)1/2 N (a)1/2, (9-13)

as required. □

Proof of Proposition 1.6. We multiply (9-1) by µ2(a)αa and sum over a ∈ Z[ω]. We repeat the same
steps on the ν sum as in the proof of Lemma 1.4 up to the display (9-2). We then insert a smooth dyadic
partition of unity in r variable. We obtain

A f ( · · · )=

∑
1≪R≪A
R dyadic

A f ( · · · , R), (9-14)

where
A f ( · · · , R)

:=
X

N (λev+1v0)

∑
a∈Z[ω]

µ2(a)αa

N (a)

∑
k (mod λ14)
k≡1 (mod 3)

∑
m,r,t

0≤m≤ev+1
r |a, t |v0

r t≡k (mod λ14)

U
(

N (r)
R

) 2∑
p=1

Z p f (X, λmr t, η, 0; ẆK ), (9-15)

where the Z p f ( · · · ) for p = 1, 2 are given by (8-54) and (8-55) respectively. We recall Remark 8.18, use
Lemma 8.21 (with D1 > 0 large and fixed and D2 = 0) together with Lemma 2.8 and (9-8) (resp. (9-5))
to truncate the ν-sums in Z p f ( · · · ) for p = 1 (resp. p = 2) with N (r)∼ R to obtain

N (ν)≪ (XKN (v))ε · K 4 R2 N (λm t)2 X−1
=: P0, (9-16)

with negligible error O((XKN (v))−2000). Denote the truncated expressions by Z ′

p f ( · · · , P0) for p = 1, 2.
Without loss of generality, we can restrict our attention to the case that P0 ≫ (XKN (v))−ε otherwise
both Z ′

p f ( · · · , P0) are O((XKN (v))−2000) by the above argument. Thus (9-15) becomes

A f ( · · · , R)=
X

N (λev+1v0)

∑
a∈Z[ω]

µ2(a)αa

N (a)

∑
k (mod λ14)
k≡1 (mod 3)

∑
m,r,t

0≤m≤ev+1
r |a, t |v0

r t≡k (mod λ14)
P0≫(XKN (v))−ε

U
(

N (r)
R

) 2∑
p=1

Z ′

p f ( · · · , P0)

+O((XKN (v))−1000
∥µ2α∥2). (9-17)

9.4. Further simplification using the squarefree support of α. We further open each Z ′

p f ( · · · , P0) in
(9-17) and manipulate them by further simplifying (9-4) and (9-7) under the assumption that r ≡ 1 (mod 3)
is squarefree (as is the case in (9-17)). For r squarefree and µ ∈ Z[ω], Lemma 2.1 guarantees that
g(µ, r)= 0 unless (µ, r)= 1. When (µ, r)= 1 we note that (2-7) implies that

g̃(µ, r)=

(
µ

r

)
3
g̃(r).
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Thus (9-4) becomes

ψ#
λmr t( · )λη,ζ−1(λ4ν)

=


N (r)−1/2

(
ζ−1λm−1t

r

)
3
g̃(r)

(
λ3ν

r

)
3
· N (λm+3t)−1K01(3),σ,σ (ζr(λ3ν), ζru, λm−1t)

if (λ3ν, r)= 1,

0 otherwise

(9-18)

for all m ∈ Z≥6 and ν ∈ λ−3Z[ω]. Similarly, (9-7) becomes

ψ⋆r t( · )λ2m+1η(λ
2m+4ν)

=


N (r)−1/2

(
λ2m t

r

)
3
g̃(r)

(
λ2m+3ν

r

)
3
· N (t)−1K01(3),σ,ξ (λ

2m+3r(λ2m+3ν), λ3ru, t)

if (λ2m+3ν, r)= 1,

0 otherwise

(9-19)

for all m ∈ Z≥0 and ν ∈ λ−2m−3Z[ω].

9.5. Preparations for the cubic large sieve. We substitute (9-19) and (9-18) into the expressions for
Z ′

p f ( · · · , P0) for p = 1 (resp. p = 2) in (9-17), insert a smooth dyadic partition of unity in the ν variable,
open the transforms ẆK ( · ) with (8-56) and move the resulting contour integral to Re(s) = ε, resolve
the r, λ3ν, λ2m+3ν variables into congruence classes modulo λmax{4,m−1}t , and interchange the order of
summation/integration by absolute convergence (see (8-50) and (8-66)). Then (9-17) becomes

A f ( · · · , R)= A ′

f ( · · · , R)+ A ′′

f ( · · · , R)+ O((XKN (v))−1000
∥µ2α∥2), (9-20)

where

A ′

f ( · · · , R)

:=
X

N (λev+1v0)

∑
m,t

0≤m≤min{5,ev+1}

t |v0
P0≫(XKN (v))−ε

N (λm)

N (t)

∑
k (mod λ14)
k≡1 (mod 3)

ω(m, 1; k)
∑

j∈(Z[ω]/9tZ[ω])2

j1≡1 (mod 3)
( j1,t)=1

(
λ2m t

j1

)
3

× K01(3),σ,ξ (λ
2m+3 j1 j2, λ3 j1u, t) ·

1
2π i

∫
(ε)

G∞(s, τ f , 0)
G∞(1 − s, τ f , 0)

Ŵ K (1 − s)X−s

×

∑
1≪S≪P0
S dyadic

( ∑
ν∈λ−2m−3Z[ω]

λ2m+3ν≡ j2 (mod 9t)
N (ν)∼S

∑
r∈Z[ω]

r≡ j1 (mod 9t)
r t≡k (mod λ14)

N (r)∼R

�′

ν(s, λ
m, k, S)9r (s, R)

(
λ2m+3ν

r

)
3

)
ds; (9-21)
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A ′′

f ( · · · , R)

:=
X

N (λev+1v0)

∑
ζ,m,t

6≤m≤ev+1
t |v0

P0≫(XKN (v))−ε

1
N (λm−1t)

∑
j∈(Z[ω]/λm−1tZ[ω])2

j1≡1 (mod 3)
( j1,t)=1

(
ζ−1λm−1t

j1

)
3

× K01(3),σ,σ (ζ j1 j2, ζ j1u, λm−1t) ·
1

2π i

∫
(ε)

G∞(s, τ f , 0)
G∞(1 − s, τ f , 0)

Ŵ K (1 − s)X−s N (λm−4)2s

×

∑
1≪S≪P0
S dyadic

( ∑
ν∈λ−3Z[ω]

λ3ν≡ j2 (mod λm−1t)
N (ν)∼S

∑
r∈Z[ω]

r≡ j1 (mod λm−1t)
N (r)∼R

�′′

ν(s, S)9r (s, R)
(
λ3ν

r

)
3

)
ds, (9-22)

9r (s, R) := N (r)−1/2 N (r)2s g̃(r)U
(

N (r)
R

) ∑
a≡0 (mod r)

µ2(a)αa

N (a)
;

�′

ν(s, λ
m, k, S) := N (ν)−sU

(
N (ν)

S

)
ρ f ⊗
∧

ψλm ( · )λu ,c(m,1;k)(ν);

�′′

ν(s, S) := N (ν)−sU
(

N (ν)
S

)
ρ f (ν).

(9-23)

Observe that the weights 9r (s, R) in (9-23) are supported on squarefree r (see (2-11)).

9.6. Application of the cubic large sieve and conclusion. Consider the bilinear form in ν and r and in
the last display of (9-21). Using Corollary 4.2 (the cubic large sieve) we obtain

∑
ν∈λ−2m−3Z[ω]

λ2m+3ν≡ j2 (mod 9t)
N (ν)∼S

∑
r∈Z[ω]

r≡ j1 (mod 9t)
r t≡k (mod λ14)

N (r)∼R

�′

ν(s, λ
m, k, S)9r (s, R)

(
λ2m+3ν

r

)
3

≪ (RS)εS1/6(S1/2
+ R1/2)

( ∑
ν∈λ−2m−3Z[ω]

|�′

ν(s, λ
m, k, S)|2

)1/2( ∑
r∈Z[ω]

r≡1 (mod 3)

µ2(r)|9r (s, R)|2
)1/2

, (9-24)

where we dropped some of the congruence conditions in the L2-norms by positivity. Lemma 2.7 gives∑
ν∈λ−2m−3Z[ω]

|�′

ν(s, λ
m, k, S)|2 ≪ S1+ε (9-25)

for each 0 ≤ m ≤ min{5, ev + 1} and S ≫ 1. Using (2-11) and (2-12) we compute

∑
r∈Z[ω]

r≡1 (mod 3)

µ2(r)|9r (s, R)|2 =

∑
r∈Z[ω]

r≡1 (mod 3)

µ2(r)
N (r)1−4 Re(s)

∣∣∣∣U(
N (r)

R

)∣∣∣∣2

·

∣∣∣∣ ∑
a∈Z[ω]

a≡0 (mod r)

µ2(a)αa

N (a)

∣∣∣∣2
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≪ R−1+ε
∑

r∈Z[ω]

r≡1 (mod 3)
N (r)∼R

∣∣∣∣ ∑
a∈Z[ω]

a≡0 (mod r)

µ2(a)αa

N (a)

∣∣∣∣2

≪ A−1 R−2+ε
∑

u,r∈Z[ω]

u,r≡1 (mod 3)

µ2(ur)|αur |
2
≪ (AR)εA−1 R−2

∥µ2α∥
2
2, (9-26)

where the penultimate display follows from the Cauchy–Schwarz inequality, a change of variables, and
the last display follows from (2-14). Substituting (9-25) and (9-26) into (9-24), and summing both sides
of the result inequality over dyadic values of S yields we obtain (for each 0 ≤ m ≤ min{5, ev + 1})∑
1≪S≪P0
S dyadic

∣∣∣∣ ∑
ν∈λ−2m−3Z[ω]

λ2m+3ν≡ j2 (mod 9t)
N (ν)∼S

∑
r∈Z[ω]

r≡ j1 (mod 9t)
r t≡k (mod λ14)

N (r)∼R

�′

ν(s, λ
m, k, S)9r (s, R)

(
λ2m+3ν

r

)
3

∣∣∣∣

≪ (XKN (v))ε(K 14/3 N (t)7/3 R4/3 A−1/2 X−7/6
+ K 8/3 N (t)4/3 R5/6 A−1/2 X−2/3)∥µ2α∥2, (9-27)

where (9-16) was used to obtain the last display. We insert the bound (9-27) into (9-21), and then
use (8-50), (8-66), and Lemma 3.1 to obtain

A ′

f ( · · ·, R)≪ (XKN (v))ε(K 14/3 N (v)5/6 R4/3 A−1/2 X−1/6
+K 8/3 N (v)−1/6 R5/6 A−1/2 X1/3)∥µ2α∥2. (9-28)

An analogous computation shows that A ′′

f ( · · · , R) satisfies the same bound as that in (9-28). After
substituting these bounds into (9-20), we then substitute the result into (9-14) to obtain

A f ( · · · )≪ (XKN (v))ε(K 14/3 N (v)5/6 X−1/6 A5/6
+ K 8/3 N (v)−1/6(AX)1/3)∥µ2α∥2

≪ (XKN (v))εK 14/3 N (v)5/6(AX)1/3∥µ2α∥2, (9-29)

where the last inequality follows since A ≪ X. The result follows. □

10. Type-II estimates via average (homogenous) convolution

Recall the notation from Section 1, in particular (1-14). The first result in this section bounds the Type-II
sum in terms of a homogeneous average convolution problem.

Lemma 10.1. Let the notation be as above and X ≍ AB. Then

|B f (α,β, X, v, u; WK )| ≤ ∥β∥2 ·

(∑
a
µ2(a1)αa1µ

2(a2)αa2L f (a, X, v, u; WK )

)1/2

,

where

L f (a, X,v,u;WK ) :=
∑

b∈Z[ω]

a1b≡u (mod v)
a2b≡u (mod v)

ρ f (λ
−3a1b)ρ f (λ−3a2b)WK

(
N (λ−3a1b)

X

)
WK

(
N (λ−3a2b)

X

)
. (10-1)
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Proof. We apply the Cauchy–Schwarz inequality to the b-sum in (1-14) to obtain

|B f ( · · · )| ≤ ∥β∥2 ·

( ∑
b∈Z[ω]

∣∣∣∣ ∑
a∈Z[ω]

ab≡u (mod v)

µ2(a)αaρ f (λ
−3ab)WK

(
N (λ−3ab)

X

)∣∣∣∣2)1/2

.

The result follows from expanding the square modulus in the above expression and interchanging the
order of summation. □

Proposition 10.2. Let the notation be as above and X ≍ AB. Then∑
a
µ2(a1)αa1µ

2(a2)αa2 L f (a, X, v, u; WK )≪ε, f (XKN (v))εK 16 N (v)8(AB + A3 B1/2)∥µ2α∥
2
∞
.

Remark 10.3. It will be helpful to remember the normalisation in (8-12) throughout the proof. We also
use the same notation and convention as Remark 9.1.

Proof. We begin by separating oscillations using the circle method.

10.1. Application of the circle method. Rewriting (10-1) we obtain

L f (a, . . . )=

∑
ν∈(λ−3Z[ω])2

∀i :λ3νi ≡0 (mod ai )

∀i :λ3νi ≡u (mod λev v0)

ρ f (ν1)ρ f (ν2)WK

(
N (ν1)

X

)
WK

(
N (ν2)

X

)
δQ(ω)

(
λ3ν2

a2
−
λ3ν1

a1

)
. (10-2)

After noting Remark 5.3 we choose C > 0 such that

C4
:= X/A ≍ B. (10-3)

We use Theorem 5.2 and Remark 5.1 to obtain

δQ(ω)

(
λ3ν2

a2
−
λ3ν1

a1

)
=

kC

C4

∑
1≤ℓ≪log C

∑
c∈Z[ω]

c≡1 (mod 3)

N (λℓc)ψ̂λℓc

(
λ3ν2

a2
−
λ3ν1

a1

)
h
(

N (λℓc)
C2 ,

N (λ3ν2/a2 − λ3ν1/a1)

C4

)
(10-4)

for any ν ∈ (λ−3Z[ω])2 such that λ3νi ≡ 0 (mod ai ) for i = 1, 2, and where ψλℓc denotes the principal
character modulo λℓc. Let ℓ0 := max{ℓ, ev}. We substitute (10-4) into (10-2), interchange the order of
summation, and resolve λ3νi into congruence classes (mod λℓ0aiv0c) for i = 1, 2. We obtain

L f (a, . . . )=
kC

C4

∑
1≤ℓ≪log C

∑
c∈Z[ω]

c≡1 (mod 3)

∑
j∈

∏2
i=1 Z[ω]/λℓ0 aiv0cZ[ω]

∀i : ji ≡u (mod λev v0)

N (λℓc)ψ̂λℓc

(
j2
a2

−
j1
a1

)

×

∑
ν∈(λ−3Z[ω])2

∀i :λ3νi ≡ ji (mod λℓ0 aiv0c)

ρ f (ν1)ρ f (ν2)HK ,C2/N (λℓc)

(
ν1

√
X
,
ν2

√
X

)
, (10-5)
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where HK ,C2/N (λℓc)(z) := HK ,C2/N (λℓc)(z; a, λℓc, X,C) is given by

HK ,C2/N (λℓc)(z)= WK (|z1|
2)WK (|z2|

2)h
(

N (λℓc)
C2 ,

X |λ3z1/a1 − λ3z2/a2|
2

C4

)
. (10-6)

We now justify the subscripts for the function HK ,C2/N (λℓc)(z) (see (8-47)). Recall that C4
:= X/A ≍ B,

N (ai )≍ A, and |zi | ≍ 1 for i = 1, 2. Thus

X |λ3z1/a1 − λ3z2/a2|
2/C4

≪ 1. (10-7)

Observe that (10-7) and (5-4) imply that

h
(

N (λℓc)
C2 ,

X |λ3z1/a1 − λ3z2/a2|
2

C4

)
̸= 0 only if N (λℓc)≪ C2. (10-8)

The chain rule, (1-6) (with M = 1), (5-3), Corollary 5.6, (10-8) and the fact that K ≥ 1 together imply
that for any i = (i11, i12, i21, i22) ∈ (Z≥0)

4 we have

∂ i HK ,C2/N (λℓc)(z)≪i
C2

N (λℓc)
· K i11+i12+i21+i22 . (10-9)

10.2. Double application of Voronoi summation. We use (double)-Voronoi summation (Proposition 8.22).
By abuse of notation we denote (X, X) by X. We obtain∑

ν∈(λ−3Z[ω])2

∀i :λ3νi ≡ ji (mod λℓ0 aiv0c)

ρ f (ν1)ρ f (ν2)HK ,C2/N (λℓc)

(
ν1

√
X
,
ν2

√
X

)

=
X2

N (λℓ0+1v0c)2 N (a1a2)

×

∑
k∈(Z[ω]/λ14Z[ω])2

∀i :ki ≡1 (mod 3)

∑
m,r

∀i :0≤mi ≤ℓ0+1
∀i :ri |aiv0c

∀i :ri ≡ki (mod λ14)

∑
n∈Z2

(−1)n1+n2

4∑
p=1

Dp f (X,λmr, j , n; ḦK ,C2/N (λℓc)), (10-10)

where the Dp f ( · · · ) are given by (8-73)–(8-76). We substitute (10-10) into (10-5) to obtain

L f (a, . . . )=

4∑
p=1

Mp f (a, . . . ), (10-11)

where

Mp f (a, . . . ) :=
kC

C4

X2

N (a1a2)N (v0)2

∑
1≤ℓ≪logC

∑
c∈Z[ω]

c≡1 (mod 3)

N (λℓ)
N (λℓ0+1)2

1
N (c)

∑
j∈

∏2
i=1 Z[ω]/λℓ0 aiv0cZ[ω]

∀i : ji ≡0 (mod ai )
∀i : ji ≡u (mod λev v0)

ψ̂λℓc

(
j2
a2

−
j1
a1

)

×

∑
k∈(Z[ω]/λ14Z[ω])2

∀i :ki ≡1 (mod 3)

∑
m,r

∀i :0≤mi ≤ℓ0+1
∀i :ri |aiv0c

∀i :ri ≡ki (mod λ14)

∑
n∈Z2

(−1)n1+n2Dp f (X,λmr, j ,n; ḦK ,C2/N (λℓc)). (10-12)
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We now make a sequence of manipulations to Mp f (a, . . . ) in (10-12). First we make a change of
variable ji → ai ji for i = 1, 2 (the new ji variables run (mod λℓ0v0c)). We then uniquely factorise each
c ∈ Z[ω] with c ≡ 1 (mod 3) as c = tq ′q ′′, where t, q ′, q ′′

∈ Z[ω] satisfy

t, q ′, q ′′
≡ 1 (mod 3), t | rad(v0)

∞, q ′
| rad(a1a2)

∞, and (q ′′, a1a2v0)= 1. (10-13)

Note this factorisation exists and is unique since (v0, a1a2)= 1. We also uniquely factorise each ri | aiv0c
with ri ≡ ki (mod λ14) as ri = tir ′

ir
′′

i , where ti , r ′

i , r
′′

i satisfy

ti , r ′

i , r
′′

i ≡ 1 (mod 3), ti | v0t, r ′

i | ai q ′, r ′′

i | q ′′, and tir ′

ir
′′

i ≡ ki for i = 1, 2. (10-14)

We use the Chinese remainder theorem on the new ji variables (with the pairwise coprime moduli
λℓ0v0t , q ′, and q ′′) and i = 1, 2 to write

j := q ′q ′′q ′q ′′ J + λℓ0v0tq ′′λℓ0v0tq ′′ J ′
+ λℓ0v0tq ′λℓ0v0tq ′ J ′′,

Ji ≡ ai u (mod λevv0) for i = 1, 2,

(10-15)

where ai , q ′q ′′, λℓ0v0tq ′′, λℓ0v0tq ′ ∈ Z[ω] are such that ai ai ≡ 1 (mod λevv0), q ′q ′′q ′q ′′
≡ 1 (mod λℓ0v0t),

λℓ0v0tq ′λℓ0v0tq ′
≡ 1 (mod q ′′), and λℓ0v0tq ′′λℓ0v0tq ′′

≡ 1 (mod q ′). Without loss of generality we may
assume that ev ≥ 14. We further make the change of variable

J → λevv0 J + (Y1u, Y2u) (10-16)

in (10-15), where Yi ∈ Z[ω] is such that Yi ≡ ai (mod λevv0). Observe that the new J1, J2 variables run
(mod λℓ0−ev t). We also use the multiplicativity of Ramanujan sums ψ̂λℓc( · )= ψ̂λℓt( · )ψ̂q ′( · )ψ̂q ′′( · ), and
interchange the order of summation by absolute convergence. The net result is

Mp f (a, . . . )

:=
kC

C4

X2

N (a1a2)N (v0)2

∑
1≤ℓ≪log C

∑
tq ′q ′′

∈Z[ω]

(10-13)

N (λℓ)
N (λℓ0+1)2

1
N (tq ′q ′′)

×

∑
k∈(Z[ω]/λ14Z[ω])2

∀i :ki ≡1 (mod 3)

∑
m,t,r ′,r ′′

∀i :0≤mi ≤ℓ0+1
(10-14)

∑
n∈Z2

(−1)n1+n2 Sp f (a, λℓtq ′q ′′,λm t r ′r ′′, n; ḦK ,C2/N (λℓtq ′q ′′)), (10-17)

where

S1 f ( · · · ) := δm∈[0,min{5,ℓ0+1}]2 N (λm1)N (λm2)

(
r1

r1

)−n1
(

r2

r2

)n2

ω(m1; 1, k1)ω(m2, 1, k2)

×

∑
ν1∈λ

−2m1−3Z[ω]

ν2∈λ
−2m2−3Z[ω]

ρ f ⊗
∧

ψλm1 ( · )λu ,c(m1,1;k1)
(ν1)ρ f ⊗
∧

ψλm2 ( · )λu ,c(m2,1;k2)
(ν2)

(
ν1

|ν1|

)−n1
(
ν2

|ν2|

)−n2

× ḦK ,C2/N (λℓtq ′q ′′)

(
N (ν1)

N (t1r ′

1r ′′

2 )
2/X

,
N (ν2)

N (t2r ′

2r ′′

2 )
2/X

, n
)

× C1(a, ν, λℓtq ′q ′′,λm t r ′r ′′); (10-18)
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S2 f ( · · · ) := δm∈[0,min{5,ℓ0+1}]×[6,ℓ0+1]N (λm1)N (λ4)

(
r1

r1

)−n1

ω(m1; 1, k1)

×

∑
ν1∈λ

−2m1−3Z[ω]

ν2∈λ
−3Z[ω]

ρ f ⊗
∧

ψλm1 ( · )λu ,c(m1,1;k1)
(ν1)ρ f (ν2)

(
ν1

|ν1|

)−n1
(
ν2

|ν2|

)−n2

× ḦK ,C2/N (λℓtq ′q ′′)

(
N (ν1)

N (t1r ′

1r ′′

2 )
2/X

,
N (ν2)

N (λm2−4t2r ′

2r ′′

2 )
2/X

, n
)

× C2(a, ν, λℓtq ′q ′′,λm t r ′r ′′), (10-19)

S3 f ( · · · ) := δm∈[6,ℓ0+1]×[0,min{5,ℓ0+1}]N (λ4)N (λm2)

(
r2

r2

)n2

ω(m2; 1, k2)

×

∑
ν1∈λ

−3Z[ω]

ν2∈λ
−2m2−3Z[ω]

ρ f (ν1)ρ f ⊗
∧

ψλm2 ( · )λu ,c(m2,1;k2)
(ν2)

(
ν1

|ν1|

)−n1
(
ν2

|ν2|

)−n2

× ḦK ,C2/N (λℓtq ′q ′′)

(
N (ν1)

N (λm1−4t1r ′

1r ′′

2 )
2/X

,
N (ν2)

N (t2r ′

2r ′′

2 )
2/X

, n
)

× C3(a, ν, λℓtq ′q ′′,λm t r ′r ′′), (10-20)

S4 f ( · · · ) := δm∈[6,ℓ0+1]2 · N (λ8)

×

∑
ν1,ν2∈λ

−3Z[ω]

ρ f (ν1)ρ f (ν2)

(
ν1

|ν1|

)−n1
(
ν2

|ν2|

)−n2

× ḦK ,C2/N (λℓtq ′q ′′)

(
N (ν1)

N (λm1−4t1r ′

1r ′′

2 )
2/X

,
N (ν2)

N (λm2−4t2r ′

2r ′′

2 )
2/X

, n
)

× C4(a, ν, λℓtq ′q ′′,λm t r ′r ′′), (10-21)

C1( · · · )=

∑
J∈(Z[ω]/λℓ0−ev tZ[ω])2

J ′
∈(Z[ω]/q ′Z[ω])2

J ′′
∈(Z[ω]/q ′′Z[ω])2

ψ̂λℓt(λ
evv0(J2 − J1)+ u(Y2 − Y1))ψ̂q ′(J ′

2 − J ′

1)ψ̂q ′′(J ′′

2 − J ′′

1 )

×ψ⋆t1r ′

1r ′′

1
( · )λ2m1+1a1 j1(λ

2m1+4ν1)ψ
⋆
t2r ′

2r ′′

2
( · )λ2m2+1a2 j2(λ

2m2+4ν2), (10-22)

C2( · · · ) :=

∑
ζ2

(
ζ−1

2 λm2−4r2

ζ−1
2 λm2−4r2

)n2

×

∑
J∈(Z[ω]/λℓ0−ev tZ[ω])2

J ′
∈(Z[ω]/q ′Z[ω])2

J ′′
∈(Z[ω]/q ′′Z[ω])2

ψ̂λℓt(λ
evv0(J2 − J1)+ u(Y2 − Y1))ψ̂q ′(J ′

2 − J ′

1)ψ̂q ′′(J ′′

2 − J ′′

1 )

×ψ⋆t1r ′

1r ′′

1
( · )λ2m1+1a1 j1(λ

2m1+4ν1)ψ
#
λm2 t2r ′

2r ′′

2
( · )λa2 j2,ζ−1

2
(λ4ν2), (10-23)
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C3( · · · ) :=

∑
ζ1

(
ζ−1

1 λm1−4r1

ζ−1
1 λm1−4r1

)−n1

×

∑
J∈(Z[ω]/λℓ0−ev tZ[ω])2

J ′
∈(Z[ω]/q ′Z[ω])2

J ′′
∈(Z[ω]/q ′′Z[ω])2

ψ̂λℓt(λ
evv0(J2 − J1)+ u(Y2 − Y1))ψ̂q ′(J ′

2 − J ′

1)ψ̂q ′′(J ′′

2 − J ′′

1 )

×ψ#
λm1 t1r ′

1r ′′

1
( · )λa1 j1,ζ−1

1
(λ4ν1)ψ

⋆
t2r ′

2r ′′

2
( · )λ2m2+1a2 j2(λ

2m2+4ν2), (10-24)

C4( · · · ) :=

∑
ζ

(
ζ−1

1 λm1−4r1

ζ−1
1 λm1−4r1

)−n1
(
ζ−1

2 λm2−4r2

ζ−1
2 λm2−4r2

)n2

×

∑
J∈(Z[ω]/λℓ0−ev tZ[ω])2

J ′
∈(Z[ω]/q ′Z[ω])2

J ′′
∈(Z[ω]/q ′′Z[ω])2

ψ̂λℓt(λ
evv0(J2 − J1)+ u(Y2 − Y1))ψ̂q ′(J ′

2 − J ′

1)ψ̂q ′′(J ′′

2 − J ′′

1 )

×ψ#
λm1 t1r ′

1r ′′

1
( · )λa1 j1,ζ−1

1
(λ4ν1)ψ

#
λm2 t2r ′

2r ′′

2
( · )λa2 j2,ζ−1

2
(λ4ν2), (10-25)

and j is given by (10-15) with subsequent change of variable (10-16).

Remark 10.4. Recalling (10-11) and recalling the averaging over a we have

∑
a
µ2(a1)αa1µ

2(a2)αa2L f (a, . . . )=

4∑
p=1

∑
a
µ2(a1)αa1µ

2(a2)αa2Mp f (a, . . . ). (10-26)

The following arguments focus on the case p = 4 on the right side of (10-26). The cases p = 1, 2, 3 will
follow mutatis mutandis, and will be omitted for the sake of brevity.

10.3. Evaluation and bounds for arithmetic exponential sums. We first compute and bound C4( · · · )

in (10-25).
A computation using Lemma 8.19, (8-63), (10-15), the Chinese remainder theorem (with pairwise

coprime moduli ζiλ
mi −1ti , r ′

i and r ′′

i for i = 1, 2), cubic reciprocity, and Lemma 3.4 yields

C4( · · · )=

∑
ζ

(
ζ1λm1−4r1

ζ1λm1−4r1

)−n1
(
ζ2λm2−4r2

ζ2λm2−4r2

)n2 3∏
i=1

G4i (a, ν, λℓtq ′q ′′, ζλm t r ′r ′′), (10-27)

where

G41( · · · ) :=
1

N (λm1+3t1)N (λm2+3t2)

∑
J∈(Z[ω]/λℓ0−ev tZ[ω])2

ψ̂λℓt(λ
evv0(J2 − J1)+ u(Y2 − Y1))

× K01(3),σ,σ (r
′

1r ′′

1 (λ
3ν1), r ′

1r ′′

1 (a1λ
ev+1v0 J1 + λa1Y1u), ζ1λ

m1−1t1)

× K01(3),σ,σ (r
′

2r ′′

2 (λ
3ν2), r ′

2r ′′

2 (a2λev+1v0 J2 + λa2Y2u), ζ2λm2−1t2), (10-28)
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G42( · · · ) :=
1

N (r ′

1r ′

2)

∑
J ′∈(Z[ω]/q ′Z[ω])2

ψ̂q ′(J ′

2 − J ′

1)

× K01(3),σ,ξ (ζ1λm1−1t1r ′′

1 (λ
3ν1), ζ1λm1−1t1r ′′

1 (λa1 J ′

1), r
′

1)

× K01(3),σ,ξ (ζ2λm2−1t2r ′′

2 (λ
3ν2), ζ2λm2−1t2r ′′

2 (λa2 J ′

2), r
′

2), (10-29)

G43( · · · ) :=
1

N (r ′′

1 r ′′

2 )

∑
J ′′

∈(Z[ω]/q ′′Z[ω])2

ψ̂q ′′(J ′′

2 − J ′′

1 )

× K01(3),σ,ξ (ζ1λm1−1t1r ′

1(λ
3ν1), ζ1λm1−1t1r ′

1(λa1 J ′′

1 ), r
′′

1 )

× K01(3),σ,ξ (ζ2λm2−1t2r ′

2(λ
3ν2), ζ2λm2−1t2r ′

2(λa2 J ′′

2 ), r
′′

2 ). (10-30)

We now evaluate and bound each (10-28)–(10-30).

10.3.1. Treatment of (10-29). We open the normalised Ramanujan sums and the cubic Kloosterman
sums in (10-29), use orthogonality in J ′, and then reassemble the result to obtain

G42( · · · )

= N (q ′)

( 2∏
i=1

δ(ai q ′/r ′

i ,q
′)=1

1
N (r ′

i )

(
ζiλmi −1tir ′′

i

r ′

1

)
3

(
ζiλ

mi −1tir ′′

i

r ′

2

)
3

)

×

∑
x∈(Z[ω]/r ′

1Z[ω])×(Z[ω]/r ′

2Z[ω])

ζ2λ
m2−1t2r ′′

2 (a1q ′/r ′

1)x2≡

ζ1λ
m1−1t1r ′′

1 (a2q ′/r ′

2)x1 (mod q ′)

(
x1

r ′

1

)
3

(
x2

r ′

2

)
3
ě
(
ζ2λ

m2−1t2r ′′

2λ
3ν1x1

r ′

1
−
ζ1λ

m1−1t1r ′′

1λ
3ν2x2

r ′

2

)
. (10-31)

The delta conditions in (10-31) are nonzero only if q ′
| r ′

i for i = 1, 2. We make the change of variables
r ′

→q ′s′ where s ′

i |ai for i = 1, 2. We detect the congruence with additive characters and reassemble to get

G42( · · · )=
1

N (q ′)

( 2∏
i=1

δ(ai/s′

i ,q
′)=1

1
N (s ′

i )
1/2

(
ζiλmi −1tir ′′

i

q ′s ′

1

)
3

(
ζiλ

mi −1tir ′′

i

q ′s ′

2

)
3

)
×

∑
k (mod q ′)

g̃(y1λ3ν1 + kz1, q ′s ′

1)g̃(y2λ
3ν2 + kz2, q ′s ′

2).

where

y1 = ζ2λ
m2−1t2r ′′

2 , z1 = ζ1λ
m1−1t1r ′′

1 (a2/s ′

2)s
′

1, (10-32)

y2 = ζ1λ
m1−1t1r ′′

1 , z2 = ζ2λ
m2−1t2r ′′

2 (a1/s ′

1)s
′

2. (10-33)

We then factorise q ′s ′

i = q ′(s ′

i , q ′) · (s ′

i/(s
′

i , q ′)). Since ai is squarefree and s ′

i | ai for i = 1, 2, the pair
of moduli q ′(s ′

i , q ′) and s ′

i/(s
′

i , q ′) are coprime. Thus (2-8), Lemma 2.1, and (2-7) imply that
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G42( · · ·)=
1

N (q ′)

( 2∏
i=1

δ(ai/s′

i ,q
′)=1·δ(λ3νi ,s′

i/(s
′

1,q
′))=1

1
N (s ′

i )
1/2

(
ζiλmi −1tir ′′

i

q ′s ′

1

)
3

(
ζiλ

mi −1tir ′′

i

q ′s ′

2

)
3

)

×g̃(s ′

1/(s
′

1,q
′))g̃(s ′

2/(s
′

2,q
′))

(
q ′(s ′

1,q
′)

s ′

1/(s
′

1,q
′)

)
3

(
q ′(s ′

2,q
′)

s ′

2/(s
′

2,q
′)

)
3

(
ζ2λ

m2−1t2r ′′

2λ
3ν1

s ′

1/(s
′

1,q
′)

)
3

×

(
ζ2λm2−1t2r ′′

2λ
3ν2

s ′

2/(s
′

2,q
′)

)
3

∑
k (mod q ′)

g̃(y1λ3ν1+kz1,q ′(s ′

1,q
′))g̃(y2λ

3ν2+kz2,q ′(s ′

2,q
′)). (10-34)

Observe that Lemma 2.2 applied to the last two Gauss sums in the previous display imply that
G42(ν, λ

ℓtq ′q ′′, ζλm tq ′s′r ′′) ̸= 0 only if λ3νi ≡ 0 (mod (s ′

i , q ′)) for i = 1, 2. Thus

G42( · · · )=
1

N (q ′)

( 2∏
i=1

δ(ai/s′

i ,q
′)=1 · δ(λ3νi ,s′

i/(s
′

i ,q
′))=1 · δλ3νi ≡0 (mod (s′

i ,q
′))

×
1

N (s ′

i )
1/2

(
ζiλmi −1tir ′′

i

q ′s ′

1

)
3

(
ζiλ

mi −1tir ′′

i

q ′s ′

2

)
3

)
g̃(s ′

1/(s
′

1, q ′))g̃(s ′

2/(s
′

2, q ′))

×

(
q ′(s ′

1, q ′)

s ′

1/(s
′

1, q ′)

)
3

(
q ′(s ′

2, q ′)

s ′

2/(s
′

2, q ′)

)
3

(
ζ2λ

m2−1t2r ′′

2λ
3ν1

s ′

1/(s
′

1, q ′)

)
3

(
ζ2λm2−1t2r ′′

2λ
3ν2

s ′

2/(s
′

2, q ′)

)
3

×

∑
k (mod q ′)

g̃(y1λ3ν1 + kz1, q ′(s ′

1, q ′))g̃(y2λ
3ν2 + kz2, q ′(s ′

2, q ′)). (10-35)

Using Lemma 2.3 (noting the normalisation in (2-12)) gives∑
k (mod q ′)

|g̃(y1λ
3ν1 + kz1, q ′(s ′

1, q ′))| · |g̃(y2λ
3ν2 + kz2, q ′(s ′

2, q ′))|

≤

( 2∏
i=1

δλ3νi ≡0 (mod (s′

i ,q
′)) · N ((s ′

i , q ′))1/2
)

×

∑
k (mod q ′)

N
((

y1
λ3ν1

(s ′

1, q ′)
+ k

z1

(s ′

1, q ′)
, q ′

))1/2

N
((

y2
λ3ν2

(s ′

2, q ′)
+ k

z2

(s ′

2, q ′)
, q ′

))1/2

≪ N (q ′)1+ε

( 2∏
i=1

δλ3νi ≡0 (mod (s′

i ,q
′)) · N ((s ′

i , q ′))1/2
)
, (10-36)

where the last display follows from using Cauchy–Schwarz in k and then a change of variable to k (mod q ′)

in each resulting braket (the change of variable is valid since (z1/(s ′

1, q ′), q ′) = (z2/(s ′

2, q ′), q ′) = 1).
We use the triangle inequality in (10-34), substitute (10-36), and then change variables back s′

→ (1/q ′)r ′

to obtain

|G42( · · · )|

≪ N (q ′)1+ε

( 2∏
i=1

δ(ai q ′/r ′

i ,q
′)=1 · δ(λ3νi ,(r ′

i /q
′)/(r ′

i /q
′,q ′))=1δλ3νi ≡0 (mod (r ′

i /q
′,q ′))

N ((r ′

i/q
′, q ′))1/2

N (r ′

i )
1/2

)
. (10-37)
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10.3.2. Treatment of (10-30). We open the normalised Ramanujan sums and the cubic Kloosterman
sums in (10-30), use orthogonality in the J ′′

1 , J ′′

2 variables, and by a similar argument to the above we
reassemble the result to obtain

G43( · · · )

:=

( 2∏
i=1

δr ′′

i =q ′′

)
·

(
a1

q ′′

)
3

(
ζ1λ

m1−1t1r ′

1

q ′′

)
3

(
a2

q ′′

)
3

(
ζ2λm2−1t2r ′

2

q ′′

)
3
ψ̂q ′′(P1λ

3ν1 − P2λ
3ν2), (10-38)

where

P1 := (ζ2λ
m2−1t2r ′

2)
2a1 and P2 := (ζ1λ

m1−1t1r ′

1)
2a2. (10-39)

We have the bound

|G43( · · · )| ≤

( 2∏
i=1

δr ′′

i =q ′′

)
· |ψ̂q ′′(P1λ

3ν1 − P2λ
3ν2)|. (10-40)

10.3.3. Treatment of (10-28). Recall that ℓ0 := max{ℓ, ev}. We open the normalised Ramanujan sums
and the cubic Kloosterman sums in (10-28), use orthogonality in the J1, J2 variables, and then reassemble
the result to obtain

G41( · · · )

=
N (λℓ0−ev t)2

N (λℓt)

( 2∏
i=1

1
N (λmi +3ti )

) ∑
k (mod λℓt)
(k,λℓt)=1

ě
(

ku(Y2 − Y1)

λℓt

) ∑
x∈B1(k)×B2(k)

(
ζ1λ

m1−1t1
x1

)
3

(
ζ2λm2−1t2

x2

)
3

× ě
(

r ′

1r ′′

1 (λ
3ν1x1 + λa1Y1ux1)

ζ1λm1−1t1
−

r ′

2r ′′

2 (λ
3ν2x2 + λa2Y2ux2)

ζ2λm2−1t2

)
, (10-41)

where for i = 1, 2 we have

Bi (k) :=
{

xi (mod λmi +1ti ) : (xi , λti )= 1, xi ≡ 1 (mod 3),

r ′

ir
′′

i ζi aiλ
ℓ0−mi +2(v0t/ti )xi ≡ kλℓ0−ℓv0 (mod λℓ0−ev t)

}
. (10-42)

For a given k ∈ Z[ω] with (k, λℓt)= 1, any solution yi (mod λℓ0−ev t) to the congruence

r ′

ir
′′

i ζi aiλ
ℓ0−mi +2(v0t/ti )yi ≡ kλℓ0−ℓv0 (mod λℓ0−ev t) (10-43)

corresponds to N (λmax{0,m1+1−ℓ0+ev})N (ti/(t, ti )) distinct solutions xi (mod λmi +1ti ). The congruence
in (10-43) has a solution yi (mod λℓ0−ev t) if and only if

(r ′

ir
′′

i ζi aiλ
ℓ0−mi +2(v0t/ti ), λℓ0−ev t) | kλℓ0−ℓv0. (10-44)

Since t | rad(v0)
∞, ti | v0t , (r ′

ir
′′

i ζi ai , λv0)= (λ, v0)= 1, we have

(r ′

ir
′′

i ζi aiλ
ℓ0−mi +2(v0t/ti ),λℓ0−ev t)= λmin{ℓ0−mi +2,ℓ0−ev}((v0t/ti ), t)= λmin{ℓ0−mi +2,ℓ0−ev}t (v0, ti )/ti (10-45)
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for i = 1, 2. Observe that (10-45) and the fact (k, λℓt) = 1 (recall that ℓ ≥ 1) imply that (10-44) is
equivalent to the two conditions

t | [v0, ti ] and min{ℓ0 − mi + 2, ℓ0 − ev} ≤ ℓ0 − ℓ (10-46)

for i = 1, 2. Under the restriction 0 ≤ mi ≤ ℓ0 + 1, the conditions in (10-46) are equivalent to

t | [v0, ti ] and 1 ≤ ℓ≤ ev = ℓ0 (10-47)

for i = 1, 2. Thus (10-41) becomes

G41( · · · )= δ1≤ℓ≤ev ·
N (t)2

N (λℓt)
·

( 2∏
i=1

δt |[v0,ti ] ·
1

N (λmi +3ti )

)

×

∑
k (mod λℓt)
(k,λℓt)=1

ě
(

ku(Y2 − Y1)

λℓt

) ∑
x∈B1(k)×B2(k)

(
ζ1λ

m1−1t1
x1

)
3

(
ζ2λm2−1t2

x2

)
3

× ě
(

r ′

1r ′′

1 (λ
3ν1x1 + λa1Y1ux1)

ζ1λm1−1t1
−

r ′

2r ′′

2 (λ
3ν2x2 + λa2Y2ux2)

ζ2λm2−1t2

)
. (10-48)

Furthermore, under the conditions in (10-47) and 0 ≤ mi ≤ ev+1 for i = 1, 2, (10-45) and the sentence
containing (10-43) imply that for each k ∈ Z[ω] with (k, λℓt)= 1 we have

|B1(k)× B2(k)| ≤

( 2∏
i=1

δt |[v0,ti ]N (λ
mi +1)N

(
t (v0, ti )
(t, ti )

))
. (10-49)

Using (10-49), we bound (10-48) trivially by

|G41( · · · )| ≤ δ1≤ℓ≤ev ·

( 2∏
i=1

δt |[v0,ti ] · N
(

t2(v0, ti )
ti (t, ti )

))
≤ δ1≤ℓ≤ev · N (v0)

6
( 2∏

i=1

δt |[v0,ti ]

)
. (10-50)

10.4. Further technical manipulations and insertion of smooth dyadic partitions of unity. We sub-
stitute (10-21) into (10-17) to obtain

M4 f (a, . . . )=
N (λ8)kC

C4

X2

N (a1a2)N (v0)2

∑
1≤ℓ≪log C

∑
tq ′q ′′

∈Z[ω]

(10-13)

N (λℓ)
N (λℓ0+1)2

1
N (tq ′q ′′)

×

∑
k∈(Z[ω]/λ14Z[ω])2

∀i :ki ≡1 (mod 3)

∑
m,t,r ′,r ′′

∀i :6≤mi ≤ℓ0+1
(10-14)

∑
n∈Z2

(−1)n1+n2
∑

ν∈(λ−3Z[ω])2

ρ f (ν1)ρ f (ν2)

(
ν1

|ν1|

)−n1
(
ν2

|ν2|

)−n2

× ḦK ,C2/N (λℓtq ′q ′′)

(
N (ν1)

N (λm1−4t1r ′

1r ′′

2 )
2/X

,
N (ν2)

N (λm2−4t2r ′

2r ′′

2 )
2/X

, n
)

× C4(a, ν, λℓtq ′q ′′,λm t r ′r ′′), (10-51)

where C4( · · · ) is given by (10-25) (and (10-27)). Note that the summands M4 f ( · · · ) do not depend on
the congruence classes ki (mod λ14) (unlike the other Mp( · · · ) for p = 1, 2, 3). Thus the sum over k
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in (10-51), and the last condition in (10-14) can be dropped. Equality (10-27) and the delta conditions
in (10-31) (resp. (10-38)) imply that we can make the change of variable r ′

→ q ′s′ where s ′

i | ai and
(ai/s ′

i , q ′)= 1 (resp. r ′′
→ q ′′ where q ′′

= (q ′′, q ′′)) in (10-51). The delta conditions in (10-48) tells us
that 1 ≤ ℓ≤ ev and t | [v0, ti ]. Thus the multiple summation

∑
m,t,r,r ′′ in (10-51) subject to 6 ≤ mi ≤ ℓ0+1

for i = 1, 2 and (10-14), can be written as
∑

m,t,s′ subject to 6 ≤ mi ≤ ev + 1 for i = 1, 2, and

ti | v0t, t | [v0, ti ], s ′

i | ai , (ai/s ′

i , q ′)= 1 for i = 1, 2. (10-52)

We further note that the delta conditions in (10-35) imply that ν sum in (10-51) is supported on the
conditions

λ3νi ≡ 0 (mod (s ′

i , q ′)) and
(
λ3νi ,

s ′

i

(s ′

i , q ′)

)
= 1 for i = 1, 2. (10-53)

We then insert a smooth partition of unity in the variables t, q ′, and q ′′ in (10-51). Thus

M4 f (a, . . . )=

∑
1≤ℓ≤ev

1/2≤T,Q′,Q′′dyadic
N (λℓ)TQ′ Q′′

≪C2

M4 f (a, . . . , N (λℓ)TQ′Q′′), (10-54)

where

M4 f (a, . . . , N (λℓ)TQ′Q′′)

:=
N (λ8)kC

C4

X2 N (λℓ)
N (a1a2)N (λev+1v0)2

∑
tq ′q ′′

∈Z[ω]

(10-13)

1
N (tq ′q ′′)

U
(

N (t)
T

)
U

(
N (q ′)

Q′

)
U

(
N (q ′′)

Q′′

)

×

∑
m,t,s′

6≤mi ≤ev+1
(10-52)

∑
n∈Z2

(−1)n1+n2
∑

ν∈(λ−3Z[ω])2

(10-53)

ρ f (ν1)ρ f (ν2)

(
ν1

|ν1|

)−n1
(
ν2

|ν2|

)−n2

× ḦK ,C2/N (λℓtq ′q ′′)

(
N (ν1)

N (λm1−4t1s ′

1q ′q ′′)2/X
,

N (ν2)

N (λm2−4t2s ′

2q ′q ′′)2/X
, n

)
× Ci (a, ν, λℓtq ′q ′′,λm tq ′s′q ′′). (10-55)

The restriction
N (λℓ)TQ′Q′′

≪ C2 (10-56)

in (10-54) follows from (10-8).
Using (10-9), (8-71) (with M → C2/(N (λℓ)TQ′Q′′), Di1 = Di2 > 0 large and fixed, and D(i+1)1 =

D(i+1)2 = ε small and fixed), Lemma 2.8, (10-37), (10-40), and (10-50), we truncate the νi -sum
in (10-55) by

N (νi )≪ (XKN (v))εK 8
· (N (λmi ti s ′

i )Q
′Q′′)2 X−1

=:4i , (10-57)

with negligible error O((XKN (v))−2000). Without loss of generality we can restrict our attention to
the case 4i ≫ (XKN (v))−ε, otherwise M4 f (a, . . . , N (λℓ)TQ′Q′′) is a negligible O((XKN (v))−2000).
Observe that (8-71) with D11 = D12 = D21 = D22 = ε > 0 small and fixed, (10-3), (10-56), and (10-57)
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imply that

ḦK ,C2/N (λℓtq ′q ′′)

(
N (ν1)

N (λm1−4t1s ′

1q ′q ′′)2/X
,

N (ν2)

N (λm2−4t2s ′

2q ′q ′′)2/X
, n

)
≪ (XKN (v))ε ·

C2

N (λℓtq ′q ′′)
·

2∏
i=1

(|ni | + 1)−2+ε. (10-58)

We apply the triangle inequality in (10-55), and then use (10-57), (10-27), (10-37), (10-40), (10-50),
and (10-58) to obtain

M4 f (a, . . . , N (λℓ)TQ′Q′′)

≪ (XKN (v))ε ·

(
X N (v0)

2

CATQ′Q′′N (λev+1)

)2

×

∑
tq ′

∈Z[ω]

N (t)∼T,N (q ′)∼Q′

t |rad(v0)
∞

q ′
|rad(a1a2)

∞

∑
ζ ,m,t,s′

6≤mi ≤ev+1
(10-52)

2∏
i=1

N ((s ′

i , q ′))1/2

N (s ′

i )
1/2

∑
ν∈(λ−3Z[ω])2

∀i :N (νi )≪4i
(10-53)

|ρ f (ν1)||ρ f (ν2)|

×

∑
q ′′

∈Z[ω]

q ′′
≡1 (mod 3)

N (q ′′)∼Q′′

(q ′′,a1a2v0)=1

|ψ̂q ′′(P1λ
3ν1 − P2λ

3ν2)| + O((XKN (v))−2000), (10-59)

where

P1 := (ζ2λ
m2−1t2q ′s ′

2)
2a1 and P2 := (ζ1λ

m1−1t1q ′s ′

1)
2a2. (10-60)

We drop the condition (q ′′, a1a2v0)= 1 in (10-59) by positivity, and use Lemma 8.5 to obtain∑
q ′′

∈Z[ω]

q ′′
≡1 (mod 3)

N (q ′′)∼Q′′

|ψ̂q ′′(P1λ
3ν1 − P2λ

3ν2)| ≪ δP1λ3ν1=P2λ3ν2 · Q′′
+ δP1λ3ν1 ̸=P2λ3ν2 · (XKN (v))ε. (10-61)

We substitute the bound (10-61) into (10-59), and obtain

M4 f (a, . . . , N (λℓ)TQ′Q′′)≪ N4 f (a, . . . , N (λℓ)TQ′Q′′)+ E4 f (a, . . . , N (λℓ)TQ′Q′′), (10-62)

where the terms on the right correspond to the diagonal and off-diagonal respectively. Using (10-54)
and (10-62) it suffices to estimate∑

1≤ℓ≤ev
1/2≤T,Q′,Q′′dyadic

N (λℓ)TQ′ Q′′
≪C2

∑
a
µ2(a1)|αa1 |µ

2(a2)|αa2 |N4 f (a, . . . , N (λℓ)TQ′Q′′), (10-63)

∑
1≤ℓ≤ev

1/2≤T,Q′,Q′′dyadic
N (λℓ)TQ′ Q′′

≪C2

∑
a
µ2(a1)|αa1 |µ

2(a2)|αa2 |E4 f (a, . . . , N (λℓ)TQ′Q′′), (10-64)

with C given by (10-3).
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10.5. Off-diagonal: (10-64). We drop the condition P1λ
3ν1 ̸= P2λ

3ν2 and (λ3νi , s ′

i/(s
′

i , q ′)) = 1 for
i =1, 2 (see (10-53)) by positivity, and then use the Cauchy–Schwarz inequality, ρ f (0)=0, and Lemma 2.7
to obtain∑

νi ∈λ
−3Z[ω]

N (νi )≪4i
λ3νi ≡0 (mod (s′

i ,q
′))

|ρ f (νi )| ≤

( ∑
0̸=νi ∈λ

−3Z[ω]

N (νi )≪4i
λ3νi ≡0 (mod (s′

i ,q
′))

1
)1/2( ∑

νi ∈λ
−3Z[ω]

N (νi )≪4i

|ρ f (νi )|
2
)1/2

≪
41+ε

i

N ((s ′

i , q ′))1/2
(10-65)

for i = 1, 2.
We use (10-65), (10-52), and Lemma 2.6 to conclude that

E4 f (a, . . . , N (λℓ)TQ′Q′′)≪ (XKN (v))εK 16 N (v0)
8 N (λev )2 AC−2(TQ′Q′′)2. (10-66)

Substituting (10-66) into (10-64) and using Cauchy–Schwarz we see that (10-64) is

≪ (XKN (v))εK 16 N (v)8 A2 B1/2
∥µ2α∥

2
2

≪ (XKN (v))εK 16 N (v)8 A3 B1/2
∥µ2α∥

2
∞
. (10-67)

10.6. Diagonal: (10-63). Consulting (10-53) we make the change of variable

λ3νi = (s ′

i , q ′)λ3µi such that 0 ̸= µi ∈ λ−3Z[ω] and
(
(s ′

i , q ′)λ3µi ,
s ′

i

(s ′

i , q ′)

)
= 1 (10-68)

for i = 1, 2. Since ai is squarefree and s ′

i | ai , the coprimality condition in (10-68) is equivalent to(
λ3µi ,

s ′

i

(s ′

i , q ′)

)
= 1 (10-69)

for i = 1, 2. The diagonal equation P1λ
3ν1 = P2λ

3ν2 with P1 and P2 given in (10-60) is equivalent to

(ζ2λ
m2−1t2)2

s ′

2

(s ′

2, q ′)

a1

s ′

1
λ3µ1 = (ζ1λ

m1−1t1)2
s ′

1

(s ′, q ′)

a2

s ′

2
λ3µ2, (10-70)

where 0 ̸= λ3µi satisfies (10-69) for i = 1, 2. The hypothesis that the ai are squarefree for i = 1, 2
guarantees that (

s ′

1

(s ′

1, q ′)
, λm2−1t2

a1

s ′

1

)
=

(
s ′

2

(s ′

2, q ′)
, λm1−1t1

a2

s ′

2

)
= 1. (10-71)

Using (10-69) and (10-71) we conclude from (10-70) that

s̃ :=
s ′

1

(s ′

1, q ′)
=

s ′

2

(s ′

2, q ′)
| (a1, a2), (10-72)

and thus (10-70) is equivalent to

(ζ2λ
m2−1t2)2

a1

s ′

1
λ3µ1 = (ζ1λ

m1−1t1)2
a2

s ′

2
λ3µ2, (10-73)

where 0 ̸= λ3µi satisfies (10-69) for i = 1, 2.
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We use (10-68)–(10-73) to rewrite (10-63), set gi := (si , q ′) and release using Möbius inversion, and
then interchange the order of summation. We obtain∑

a
µ2(a1)|αa1 |µ

2(a2)|αa2 |N4 f (a, . . . , N (λℓ)TQ′Q′′)

= (XKN (v))ε ·

(
X N (v0)

2

CATQ′N (λev+1)

)2 1
Q′′

×

∑
ζ ,m,t

∀i :6≤mi ≤ev+1
∀i :ti |rad(v0)

∞

∑
h,d,g,r

∀i :hi ,di ,gi ,ri ≡1 (mod 3)
h1d1=h2d2

µ(h1)µ(h2)

N (h1d1h2d2)1/2
µ2(h1d1g1r1)|αh1d1g1r1 |µ

2(h2d2g2r2)|αh2d2g2r2 |

×

∑
ν∈(λ−3Z[ω])2

∀i :N (νi )≪4′

i
(10-76)
(10-77)

|ρ f (ν1)| · |ρ f (ν2)|
∑

tq ′
∈Z[ω]

N (t)∼T,N (q ′)∼Q′

[t1,t2]|v0t
t |([v0,t1],[v0,t2])

[h1g1,h2g2]|q ′
|rad(h1d1g1h2d2g2)

∞

1, (10-74)

where (see (10-57))

4′

i := (XKN (v))εK 8
· (N (λmi ti hi di gi )Q′Q′′)2 X−1 for i = 1, 2, (10-75)

(λ3νi , hi di )= 1 and λ3νi ≡ 0 (mod gi ) for i = 1, 2, (10-76)

(ζ2λ
m2−1t2)2r1

λ3ν1

g1
= (ζ1λ

m1−1t1)2r2
λ3ν2

g2
. (10-77)

We dyadically partition all of the auxiliary variables, i.e.,

N (hi )∼ Hi , N (di )∼ Di , N (gi )∼ Gi , N (ri )∼ Ri , N (ti )∼ Ti ,

such that
Hi Di Gi Ri ≍ A, Hi Gi ≪ Q′, and Ti ≪ N (v0)T for i = 1, 2. (10-78)

We estimate the sum over t and q ′ in (10-74) by (XKN (v))ε using (2-14) and Lemma 2.6 respectively.
We then apply the bound |µ2(a)αa| ≤ ∥µ2α∥∞. We see that the entirety of (10-74) is

≪ (XKN (v))ε∥µ2α∥
2
∞

·

(
X N (v0)

2

CATQ′N (λev+1)

)2 1
Q′′

×

∑
ζ ,m

∀i :6≤mi ≤ev+1

∑
∀i :Hi ,Di ,Gi ,Ri ,Ti

dyadic
(10-78)

1
(H1 D1 H2 D2)1/2

×

∑
t

∀i :N (ti )∼Ti
ti |rad(v0)

∞

∑
r

∀i :N (ri )∼Ri
ri ≡1 (mod 3)

∑
h,d

h1d1=h2d2
∀i :N (hi )∼Hi
∀i :N (di )∼Di

∀i :hi ,di ≡1 (mod 3)

∑
g

∀i :N (gi )∼Gi
∀i :gi ≡1 (mod 3)

∑
ν∈(λ−3Z[ω])2

∀i :N (νi )≪4′′

i
(10-76)
(10-77)

|ρ f (ν1)| · |ρ f (ν2)|, (10-79)
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where (see (10-75))

4′′

i := (XKN (v))εK 8
· (N (λmi )Ti Hi Di Gi Q′Q′′)2 X−1 (10-80)

for i = 1, 2.
We apply Cauchy–Schwarz to the sum over g and ν in (10-79), and then rearrange the order of sum-

mation to obtain∑
g

∀i :N (gi )∼Gi
∀i :gi ≡1 (mod 3)

∑
ν∈(λ−3Z[ω])2

∀i :N (νi )≪4′′

i
(10-76)
(10-77)

|ρ f (ν1)| · |ρ f (ν2)|

≤

( ∑
ν1∈λ

−3Z[ω]

N (ν1)≪4′′

1
(λ3ν1,h1d1)=1

|ρ f (ν1)|
2

∑
N (g1)∼G1

g1|λ3ν1
g1≡1 (mod 3)

∑
N (g2)∼G2

g2≡1 (mod 3)

∑
ν2∈λ

−3Z[ω]

N (ν2)≪4′′

2
(λ3ν2,h2d2)=1
λ3ν2≡0 (mod g2)

(10-77)

1
)1/2

(10-81)

×

( ∑
ν2∈λ

−3Z[ω]

N (ν2)≪4′′

2
(λ3ν2,h2d2)=1

|ρ f (ν2)|
2

∑
N (g2)∼G2

g2|λ3ν2
g2≡1 (mod 3)

∑
N (g1)∼G1

g1≡1 (mod 3)

∑
ν1∈λ

−3Z[ω]

N (ν1)≪4′′

1
(λ3ν1,h1d1)=1
λ3ν1≡0 (mod g1)

(10-77)

1
)1/2

. (10-82)

Consider the bracketed expression in (10-81). The conditions on the ν2-sum imply that the ν2-sum
is bounded by 1. We then estimate the sum over g2 trivially, and then apply the divisor bound (2-14) to
estimate the sum over g1. Thus the sum over g2, g1 and ν2 satisfies ≪ X εG2. We use this bound, drop the
condition (λ3ν1, h1d1)= 1 by positivity, and then apply Lemma 2.7 to estimate the ν1-sum. We obtain
that the entire bracketed expression in (10-81) satisfies ≪ X εG241. The analogous argument can be
applied to obtain a bound of ≪ X εG142 for the bracketed expression in (10-82). We deduce that∑

g
∀i :N (gi )∼Gi

∀i :gi ≡1 (mod 3)

∑
ν∈(λ−3Z[ω])2

∀i :N (νi )≪4′′

i
(10-76)
(10-77)

|ρ f (ν1)| · |ρ f (ν2)| ≪ X ε(G241)
1/2(G142)

1/2. (10-83)

Substituting (10-83) into (10-79), bounding the remaining sums trivially (using Lemma 2.6 for the t1, t2
sums), and recalling that X ≍ AB we obtain∑

a
µ2(a1)|αa1 |µ

2(a2)|αa2 |N4 f (a, . . . , N (λℓ)TQ′Q′′)

≪ (XKN (v))ε∥µ2α∥
2
∞

K 8 N (v0)
4 X Q′′C−2 A−2T −2

∑
∀i :Hi ,Di ,Gi ,Ri ,Ti

dyadic
(10-78)

(H1 D1 R1T1G3/2
1 H2 D2 R2T2G3/2

2 )

≪ (XKN (v))εK 8 N (v0)
6 ABC−2 Q′Q′′

∥µ2α∥
2
∞
. (10-84)
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Substituting (10-84) into (10-63) we see that (10-63) is

≪ (XKN (v))εK 8 N (v0)
6 AB∥µ2α∥

2
∞
. (10-85)

Combining (10-67) and (10-85), and then using N (v0)≤ N (v), yields the result after recalling (10-26)
and Remark 10.4. □

Proof of Theorem 1.5. This follows immediately from Lemma 10.1 and Proposition 10.2. □
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