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NONCOMMUTATIVE VARIATIONS ON LAPLACE’S EQUATION

JONATHAN ROSENBERG

As a first step toward developing a theory of noncommutative nonlinear elliptic partial differential
equations, we analyze noncommutative analogues of Laplace’s equation and its variants (some of them
nonlinear) over noncommutative tori. Along the way we prove noncommutative analogues of many
results in classical analysis, such as Wiener’s Theorem on functions with absolutely convergent Fourier
series, and standard existence and nonexistence theorems on elliptic functions. We show that many
classical methods, including the maximum principle, the direct method of the calculus of variations, and
the use of the Leray–Schauder Theorem, have analogues in the noncommutative setting.

1. Introduction

Gelfand’s Theorem shows that X  C0(X) sets a contravariant equivalence of categories from the cate-
gory of locally compact (Hausdorff) spaces and proper maps to the category of commutative C∗-algebras
and ∗-homomorphisms. This observation is the key to the whole subject of noncommutative geometry,
which is based on the following dictionary:

Classical Noncommutative

locally compact space ←→ C∗-algebra
compact space ←→ unital C∗-algebra
vector bundle ←→ finitely generated projective module

smooth manifold ←→ C∗-algebra with smooth subalgebra
real-valued function ←→ self-adjoint element

partial derivative ←→ unbounded derivation
integral ←→ tracial state

The object of this paper is to begin to use this dictionary to set up a noncommutative theory of elliptic
partial differential equations, both linear and nonlinear, along with corresponding aspects of the calculus
of variations. Since the theory is still in its infancy, we begin with the very simplest case: Laplace’s
equation and PDEs closely connected to it, and concentrate on the simplest nontrivial example of a
noncommutative manifold, the irrational rotation algebra (or noncommutative 2-torus) Aθ , for θ ∈RrQ.
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A definition of elliptic partial differential operators, along with the study of one example associated with
the irrational rotation algebra, was given in Connes’ fundamental paper [1980], but there the emphasis
was on pseudodifferential calculus and index theory. Here we focus on other things: variational methods,
the maximum principle, an analogue of Wiener’s Theorem, tools for treating nonlinear equations, the
beginnings of a theory of harmonic unitaries, and some aspects of noncommutative complex analysis.

What is the motivation for a noncommutative theory of elliptic PDE? For the most part, it comes from
physics. Many of the classical elliptic PDEs arise from variational problems in Riemannian geometry, and
are also the field equations of physical theories. But the uncertainty principle forces quantum observables
to be noncommutative. There is also increasing evidence, as in [Connes and Lott 1990; Chamseddine
and Connes 1997; Connes et al. 1998; Seiberg and Witten 1999; Mathai and Rosenberg 2005; 2006], that
quantum field theories should allow for the possibility of noncommutative space-times. Noncommutative
sigma-models, for which the very earliest and simplest investigations are in [Da̧browski et al. 2000; 2003],
will require the noncommutative harmonic map equation, which generalizes the Laplace equation studied
in this paper.

We use as our starting point the noncommutative differential geometry of Alain Connes [1980]. This
theory only works well with highly symmetric noncommutative spaces, as the smooth elements are taken
to be the C∞ vectors for an action of a Lie group on a C∗-algebra, but this theory is well adapted to the
case of the irrational rotation algebra, which carries an ergodic gauge action of the 2-torus T2.

The outline of this paper is as follows. We begin in Section 2 with the basic properties of the Laplacian
on Aθ . Included are analogues of Wiener’s theorem (Theorem 2.8) and the maximum principle (Propo-
sition 2.9). In Section 3, we take up the basic properties of Sobolev spaces on Aθ , which are needed
for a deeper analysis of some aspects of noncommutative PDEs. We should point out that some of the
material of this section has already appeared in [Polishchuk 2006, §3] and in [Luef 2006]. The heart of
this paper is contained in Sections 4 and 5, which begin to develop a theory of nonlinear elliptic partial
differential equations, using methods analogous to those traditional in the theory of nonlinear elliptic
PDE. Finally, Section 6 deals with noncommutative complex analysis.

We should mention that another example of noncommutative elliptic PDE and an associated varia-
tional problem on noncommutative tori, namely, noncommutative Yang–Mills theory, has already been
studied by Connes and Rieffel [Connes and Rieffel 1987; Rieffel 1990]. Furthermore, Theorem 2.8
was previously proved by Gröchenig and Leinert [Gröchenig and Leinert 2004] by another method, and
variations on the Gröchenig–Leinert work can be found in [Luef 2006]. In their paper, Gröchenig and
Leinert point out some applications to harmonic analysis and wavelet theory, which go off in a somewhat
different direction than the applications to mathematical physics which we envisage, though obviously
there is some overlap between the two.

2. The linear Laplacian

We will be studying the C∗-algebra Aθ generated by two unitaries U , V satisfying

U V = e2π iθV U.

Aθ is simple with unique trace τ if θ ∈ R r Q. (See for example [Rieffel 1981] for a review of the basic
facts about Aθ .) The torus G = T2 acts by
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α(z1,z2)U = z1U, α(z1,z2)V = z2V, |z1| = |z2| = 1.

The space of C∞ vectors for the action α is the smooth irrational rotation algebra

A∞θ =
{∑

m,n

cm,nU m V n
: cm,n rapidly decreasing

}
.

This should be viewed as a noncommutative deformation of the algebra C∞(T2) of smooth functions
on an ordinary 2-torus, and the decomposition of an element of this algebra in terms of multiples of
U m V n should be viewed as a sort of noncommutative Fourier series decomposition, with cm,n as a sort
of Fourier coefficient. For a ∈ Aθ but not necessarily in A∞θ , the Fourier coefficients cm,n are well
defined and satisfy |cm,n| ≤ ‖a‖, since cm,n = τ(V−nU−ma), but the Fourier series expansion of a is
only a formal expansion, and need not converge in the topology of Aθ , just as one has functions in C(T2)

whose Fourier series do not converge absolutely or even pointwise.
We denote by δ1 and δ2 the infinitesimal generators of the actions of the two T factors in T2 under α.

These are unbounded derivations on Aθ , and map A∞θ to itself. They are given by

δ1(U )= 2π iU, δ2(V )= 2π iV, δ2(U )= δ1(V )= 0.

These derivations δ j obviously commute with the adjoint operation ∗, and play the roles of the partial
derivatives ∂/∂x j in classical analysis on the 2-torus. Since the action α of T2 preserves the tracial state
τ , τ ◦ δ j = 0, j = 1, 2. This fact is the basis for the following Lemma, which we will use many times in
the future.

Lemma 2.1 (Integration by parts). If a, b ∈ A∞θ , then τ(δ j (a)b)=−τ(δ j (b)a), j = 1, 2.

Proof. We have 0= τ(δ j (ab))= τ(δ j (a)b)+ τ(aδ j (b)). �

Definition 2.2. In analogy with the usual notation in analysis, we let

1= δ2
1 + δ

2
2 .

This should be viewed as a noncommutative elliptic partial differential operator. (The notion of ellipticity
was defined rigorously in [Connes 1980, p. 602].) Clearly, 1 is a “negative” operator, and its spectrum
consists of the numbers −4π2(m2

+n2), m, n ∈Z, with eigenfunctions U m V n . Via the noncommutative
Fourier expansion discussed earlier, the pair (A∞θ ,1) is isomorphic to C∞(T2) with the usual Laplacian
1, provided one looks just at the linear structure and forgets the noncommutativity of the multiplication.
(This was already observed in [Connes 1980, p. 602].)

Proposition 2.3. For any λ > 0 (or not of the form −4π2n with n ∈ N), the map −1+ λ : A∞θ → A∞θ
is bijective.

Proof. We have

(−1+ λ)

( ∑
m,n

cm,nU m V n
)
=

∑
m,n

(
4π2(m2

+ n2)+ λ
)

cm,nU m V n.



98 JONATHAN ROSENBERG

It is immediate that −1+ λ has no kernel and has an inverse given by the formula∑
m,n

cm,nU m V n
7→

∑
m,n

1
4π2(m2+ n2)+ λ

cm,nU m V n,

since if cm,n is rapidly decreasing, so are the coefficients on the right. �

It is also easy to characterize the image of 1.

Proposition 2.4. The image of 1 : A∞θ → A∞θ is precisely A∞θ ∩ ker τ , the smooth elements with zero
trace.

Proof. We have 1(
∑

m,n cm,nU m V n)=−4π2 ∑
m,n(m

2
+ n2)cm,nU m V n , and the factor (m2

+ n2) kills
the term with m = n = 0. Thus the image of 1 is contained in the kernel of τ . Conversely, suppose
a =

∑
m,n dm,nU m V n is an arbitrary element of A∞θ ∩ ker τ . That means dm,n is rapidly decreasing and

d0,0 = 0. Then dm,n/(m2
+ n2) is also rapidly decreasing, and∑′

m,n

−dm,n

4π2 (m2+ n2)
U m V n,

where the ′ indicates we omit the term with m=n=0, converges to an element b of A∞θ with1b=a. �

The following consequence is an analogue of a well-known fact about subharmonic functions on compact
manifolds.

Corollary 2.5. If a ∈ A∞θ is subharmonic (i.e., if 1a ≥ 0), then a is constant.

Proof. Suppose a ∈ A∞θ and 1a ≥ 0. By Proposition 2.4, τ(1a) = 0. But τ is a faithful trace, which
means that if b ≥ 0 and τ(b) = 0, then b = 0. Apply this with b = 1a and we see that 1a = 0. This
implies a is a scalar multiple of 1. �

For future use, we are also going to want to study other “function spaces” on the noncommutative
torus. For example, we have the analogue of the Fourier algebra of functions with absolutely convergent
Fourier series.

Definition 2.6. Fix θ ∈ R r Q, and let

Bθ =

{∑
m,n

cm,nU m V n
:

∑
m,n

∣∣cm,n
∣∣<∞}

.

This is obviously a Banach subspace of Aθ with norm ‖ · ‖`1 given by the `1 norm of the coefficients
cm,n . We also obviously have ‖a‖`1 ≥ ‖a‖ for a ∈ Bθ . (‖ · ‖ will for us always denote the C∗-algebra
norm.)

The following lemma, related in spirit to the Sobolev Embedding Theorem [Kazdan 1983, Theorem 1.1],
relates the topology of Bθ to the subject of Propositions 2.3 and 2.4. More details of noncommutative
Sobolev space theory will be taken up in Section 3 below.

Lemma 2.7. Let f ∈ A∞θ . Then there is a constant C > 0 such that (in the notation of Definition 2.6)
‖ f ‖`1 ≤C‖(−1+1) f ‖. In particular, the domain of 1, as an unbounded operator on Aθ , is contained
in Bθ .
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Proof. Suppose f =
∑

m,n cm,nU m V n
∈ A∞θ . Then

‖ f ‖`1 =

∑
m,n

|cm,n| =
∑
m,n

(
1+ 4π2(m2

+ n2)
)

cm,n ·
am,n

1+ 4π2(m2+ n2)
,

where |am,n| = 1. View this as an `2 inner product and estimate it by Cauchy–Schwarz. We obtain

‖ f ‖`1 ≤ C‖(−1+1) f ‖`2,

where ‖ · ‖`2 is the `2 norm of the sequence of Fourier coefficients (this can also be defined by ‖c‖`2 =

τ(c∗c)1/2) and where

C =
∥∥∥{(

1+ 4π2(m2
+ n2)

)−1}
m,n

∥∥∥
`2
=

( ∑
m,n

1(
1+ 4π2(m2+ n2)

)2

)1/2

<∞.

Since the `2 norm is bounded by the C∗-algebra norm, as ‖c‖`2 = τ(c∗c)1/2 ≤ ‖c∗c‖1/2 =‖c‖, the result
follows. �

The next result was proved in [Gröchenig and Leinert 2004], using the theory of symmetric L1-algebras
as developed by Leptin, Ludwig, Hulanicki, et al. We include a brief proof for the sake of completeness.

Theorem 2.8 (Wiener’s Theorem). The Banach space Bθ is a Banach ∗-algebra and is closed under the
holomorphic functional calculus of Aθ . Thus if a ∈Bθ and a is invertible in Aθ , a−1

∈Bθ .

Proof. Suppose a =
∑

cm,nU m V n with the sum absolutely convergent. Then

a∗ =
∑
m,n

cm,nV−nU−m
=

∑
m,n

cm,ne−2π imnθU−m V−n

so a∗ ∈ Bθ . Similarly, if also b =
∑

dm,nU m V n (absolutely convergent sum), then ab has Fourier
coefficients given by twisted convolution of the Fourier coefficients of a and b, and since the twisting
only involves scalars of absolute value 1, the Fourier coefficients of ab are absolutely convergent. More
precisely,

ab =
( ∑

m,n

cm,nU m V n
)(∑

k,l

dk,lU k V l
)
=

∑
m,n,k,l

cm,ndk,lU m V nU k V l

=

∑
m,n,k,l

cm,ndk,le−2π iknθU m+k V n+l
=

∑
p,q

f p,qU pV q ,

where

f p,q =
∑
m,n

cm,ndp−m,q−ne−2π i(p−m)nθ , so that | f p,q | ≤
∑
m,n

|cm,n| |dp−m,q−n| ≤ ‖c‖`1‖d‖`1 .

This confirms that Bθ is a Banach ∗-algebra and of course a ∗-subalgebra of Aθ .
To prove the analogue of Wiener’s Theorem, we unfortunately cannot use the cute proof using the

Gelfand transform, since Bθ is not commutative. We also cannot use another very elementary proof
from [Newman 1975] since this also relies on commutativity. However, Newman’s proof is related to
the fact — implicit in [Connes 1980, Lemma 1] — that A∞θ is closed under the holomorphic functional
calculus of Aθ . To prove this one has to show that if b ∈ A∞θ with b invertible in Aθ , then b−1 also lies in
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A∞θ . To prove this fact, iterate the identity δ j (b−1)=−b−1 δ j (b) b−1 to see that b−1 lies in the domain
of all monomials in δ1 and δ2. One might think that since A∞θ is dense in Bθ , this should be enough to
prove Wiener’s Theorem for the latter, but this doesn’t work, since in general the spectrum and spectral
radius functions are only upper semicontinuous, not continuous, on a noncommutative Banach algebra
[Newburgh 1951].

To prove the theorem, we rely on an observation of Hulanicki [1972, Proposition 2.5], based on
[Raikov 1946, Theorem 5]: if a Banach ∗-algebra B (with isometric involution and a faithful ∗-represen-
tation on a Hilbert space) is embedded in its enveloping C∗-algebra A, then the spectra of self-adjoint
elements of B are the same whether computed in B or in A if and only if B is symmetric (i.e., for
x ∈ B, the spectrum in B of x∗x is contained in [0,∞)). We will apply this with B = Bθ and with
A = Aθ . Hulanicki also showed [Hulanicki 1970] that the L1 algebras of discrete nilpotent groups are
symmetric. In particular, the L1 algebra of the discrete Heisenberg group H (with generators a, b, c,
where c is central and aba−1b−1

= c) is symmetric. Thus Bθ , which is the quotient of L1(H) by the
(self-adjoint) ideal generated by c−e2π iθ , is also symmetric. (If B is a symmetric Banach ∗-algebra and
J is a closed self-adjoint ideal, then B/J is also symmetric, since if ẋ ∈ B/J is the image of x ∈ B, then
the spectrum of ẋ∗ ẋ in B/J is contained in the spectrum of x∗x in B, hence is contained in [0,∞).) So
for x = x∗ ∈ Bθ , by Hulanicki’s observation, if x is invertible in Aθ , x−1

∈ Bθ . Suppose a ∈ Bθ and a
is invertible in Aθ . Then a∗ is also invertible in Aθ , so x = a∗a ∈ Bθ and x is invertible in Aθ . Hence
x−1
= a−1a∗−1

∈Bθ and a−1
= x−1a∗ ∈Bθ . �

In the classical theory of the Laplacian, one of the most useful tools is the maximum principle — see,
for example, [Kazdan 1983, p. 20]. The following is a noncommutative analogue.

Proposition 2.9 (Maximum principle). Let h = h∗ ∈ A∞θ , and let [t0, t1] be the smallest closed interval
containing the spectrum σ(h) of h in Aθ , so that t1 =max{t : t ∈ σ(h)} and t0 =min{t : t ∈ σ(h)}. Then
there exists a state ϕ of Aθ with ϕ(h)= t1, and for such a state, ϕ(1h)≤ 0. Similarly, there exists a state
ψ of Aθ with ψ(h)= t0, and for such a state, ψ(1h)≥ 0.

Proof. The commutative C∗-algebra C∗(h) must have pure states ϕ̃ and ψ̃ with ϕ̃(h) = t1, ψ̃(h) = t0,
since t0, t1 ∈ σ(h). Extend these to states ϕ, ψ of the larger C∗-algebra Aθ . Then for s ∈ G = T2, the
functions s 7→ ϕ(αs(h)) and s 7→ ψ(αs(h)) must have a maximum and a minimum, respectively, at the
identity element of T2. (Recall that α is the gauge action by ∗-automorphisms.) Differentiate twice and
the result follows by the second derivative test. �

Just as in the classical setting, Laplace’s equation arises as the Euler–Lagrange equation of a variational
problem.

Definition 2.10. For a ∈ A∞θ , let

E(a)= 1
2τ

(
δ1(a)2+ δ2(a)2

)
.

This is clearly the noncommutative analogue of the classical energy functional

f 7→
1
2

∫
M
‖∇ f ‖2 dvol

on a compact manifold M .
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Proposition 2.11. The Euler–Lagrange equation for critical points of the energy functional E of Defi-
nition 2.10, restricted to self-adjoint elements of A∞θ , is just Laplace’s equation 1a = 0. Thus the only
critical points are the scalar multiples of the identity, which are the points where E(a)= 0 and are strict
minima for E.

Proof. This works very much like the classical case. If a = a∗ and h = h∗, then

d
dt

∣∣∣∣
t=0

E(a+ th)= 1
2τ

(
δ1(a)δ1(h)+ δ1(h)δ1(a)+ δ2(a)δ2(h)+ δ2(h)δ2(a)

)
.

Because of the trace property, we can write this as τ(δ1(a)δ1(h)+δ2(a)δ2(h)). For a to be a critical point
of E , this must vanish for all choices of h. Integrating by parts using Lemma 2.1, we obtain τ(h1(a))=0
for all h, and since the trace pairing is nondegenerate, we get the Euler–Lagrange equation1a= 0. Since
1 has pure point spectrum with eigenvalues −4π2(m2

+n2) and eigenfunctions U m V n , the equation has
the unique solution a = λ1, λ ∈ R. These are also the points where E takes its minimum value of 0. �

3. Sobolev spaces

In the treatment of Laplace’s equation above, we alluded to the theory of Sobolev spaces. One can develop
this theory in the noncommutative setting in complete analogy with the classical case. To simplify the
treatment, we deal here only with the L2 theory, which gives rise to Hilbert spaces. These spaces are
convenient for applications to nonlinear elliptic PDE, as we will see in the next section.

Definition 3.1. For a ∈ Aθ , we define its L2 norm1 by

‖a‖`2 = τ(a∗a)1/2.

We let L2 or H 0 (this is the Sobolev space of “functions” with 0 derivatives in L2) be the completion of
Aθ in this norm. Obviously this is a Hilbert space, with inner product extending

〈a, b〉 = τ(b∗a)

on Aθ . Also note that the norm of L2 is simply the `2 norm for the Fourier coefficients, since if a ∈ A∞θ
has the Fourier expansion

∑
m,n cm,nU m V n , then

‖a‖2
`2= τ(a∗a)= τ

( ∑
k,l,m,n

(
cm,nU m V n)∗ ck,lU k V l

)
= τ

( ∑
k,l,m,n

cm,n ck,l V−nU−mU k V l
)
=

∑
m,n

|cm,n|
2.

Now let n ∈ N. We define the Sobolev space2 H n of “functions” with n derivatives in L2 to be the
completion of A∞θ in the norm

‖a‖2Hn =

∑
0≤|β|≤n

‖δβ(a)‖2`2 .

(These spaces are also defined, with slightly different notation, in [Polishchuk 2006, §3].) Here β =
β1β2 · · ·β|β| runs over sequences with β j = 1 or 2 and δβ means δβ1 · · · δβ|β| , a partial derivative of order

1This is really the norm for the Hilbert space of the II1 factor representation of Aθ determined by the trace τ .
2Usually this would be called Hn,2, but we are trying to simplify notation.
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|β|. For example,
‖a‖2H1 = ‖a‖2`2 +‖δ1(a)‖2`2 +‖δ2(a)‖2`2 .

The Sobolev space H n is clearly a Hilbert space, and we obviously have norm-decreasing inclusions
H n ↪→ H n−1. Furthermore, it is clear that the Sobolev norms are invariant under taking adjoints and can
easily be expressed in terms of the Fourier coefficients; for example, if a ∈ A∞θ has the Fourier expansion∑

m,n cm,nU m V n , then

‖a‖2H1 =

∑
m,n

(
1+ 4π2(m2

+ n2)
)
|cm,n|

2.

The next result is the exact analogue of the classical Sobolev embedding theorem [Kazdan 1983,
Theorem 1.1] for T2.

Theorem 3.2 (Sobolev embedding). The inclusion H n ↪→ H n−1 is compact. The space H 1 is not con-
tained in Aθ , but H 2 has a compact inclusion into Bθ (and thus into Aθ ).

Proof. Since the Sobolev norms just depend on the decay of the Fourier coefficients, this follows imme-
diately from the classical Sobolev Embedding Theorem in dimension 2. The inclusion of H 2 into Bθ

also follows from the estimate
‖ f ‖`1 ≤ C‖(−1+1) f ‖`2,

in the proof of Lemma 2.7, with the compactness coming from the fact that we can approximate by the
finite rank operators that truncate the Fourier series after finitely many terms. �

4. Nonlinear problems involving the Laplacian

Somewhat more interesting, and certainly more difficult to treat than the situation of Proposition 2.11, are
certain nonlinear problems involving the Laplacian, of the general form1u= f (u). Such problems arise
classically from the problem of prescribing the scalar curvature of a metric eug obtained by conformally
deforming the original metric g on a Riemannian manifold M [Kazdan 1983, Chapters 5, 7]. For example,
if g is the usual flat metric on T2, then the scalar curvature h of the pointwise conformal metric eug solves
the equation 1u =−heu . (This equation is studied in detail in [Kazdan and Warner 1974, §5].) Because
of the Gauss–Bonnet theorem on the torus, h must integrate out to 0, so there are no solutions with h a
constant unless h= 0 and u is a constant. This fact has an exact analogue in our noncommutative setting.

Proposition 4.1. If λ ∈ R, the equation 1u =−λeu has no solution u = u∗ ∈ A∞θ unless λ= 0 and u is
a scalar multiple of 1.

Proof. Suppose u = u∗ ∈ A∞θ . Then eu
≥ 0, so if λ 6= 0, either λeu

≥ 0 or −λeu
≥ 0. Thus if 1u =−λeu ,

either u or −u is subharmonic. The result now follows from Corollary 2.5. �

Alternative proof. Use the maximum principle, Proposition 2.9. Let [a, b] be the smallest closed interval
containing the spectrum of u. Then for any state ϕ of Aθ , a≤ϕ(u)≤b and ϕ(eu)≥ ea >0. If1u=−λeu

and λ > 0, then by Proposition 2.9, there is a state ϕ with ϕ(u)= a and ϕ(1u)≥ 0, while ϕ(−λeu) < 0,
a contradiction. Similarly, if λ < 0 and 1u = −λeu , there is a state ϕ with ϕ(u) = b and ϕ(1u) ≤ 0,
while ϕ(−λeu) > 0, a contradiction. �
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Proposition 4.1 suggests that we consider the equation 1u =− 1
2

(
heu
+euh

)
with h = h∗ not a scalar.

(Note that we have symmetrized the right-hand side to make it self-adjoint, since u = u∗ implies 1u is
self-adjoint.) Once again, a slight variation on the argument of Proposition 4.1 shows that there is no
solution if h ≥ 0 or if h ≤ 0; again this is not surprising since one gets the same result in the classical
case as a consequence of Gauss–Bonnet.

Proposition 4.2. If h≥0 or h≤0 in A∞θ , the equation1u=−1
2

(
heu
+euh

)
has no solution u=u∗ ∈ A∞θ

unless h = 0 and u is a scalar multiple of 1.

Proof. This is just like the proof of Proposition 4.1. If h ≥ 0 and 1u =−1
2

(
heu
+ euh

)
, then applying τ

to both sides, we get
0= τ(1u)=−τ(heu)=−τ

(
h1/2euh1/2) . (4-1)

Since
h1/2euh1/2

=
(
eu/2h1/2)∗ (eu/2h1/2)

≥ 0

and τ is faithful, that implies eu/2h1/2
= 0. Since eu/2 is invertible, it follows that h1/2

= 0 and h = 0.
The case where h ≤ 0 is almost identical; just replace h by −h and change the sign of the right-hand
side of (4-1). �

Unfortunately, the rest of the treatment in [Kazdan and Warner 1974, §5] doesn’t extend to our setting,
since from the calculation

τ(h)= 1
2τ

(
e−uheu

+ h
)
=−τ(e−u1u),

it is not clear if τ(h) < 0 follows. (The problem is that we can’t commute the various factors that arise
from expanding δ j (e−u) after integration by parts.) But since the main purpose of this section is just to
test various techniques and see to what extent they apply to nonlinear noncommutative elliptic PDEs, we
will consider instead the following more tractable equation from [Kazdan 1983, Chapter 5]:

1u = µ eu
− λ, λ, µ ∈ R, λ, µ > 0. (4-2)

Theorem 4.3. The equation (4-2) has the unique solution t0 = ln(λ/µ) in
(

A∞θ
)

s.a..

Proof. Let
L(u)= E(u)+ τ(µ eu

− λu).

Note that for t ∈ R, µ et
− λt has an absolute minimum at t = t0, so µ eu

− λu ≥ λ(1− t0) for u = u∗

and so L(u)≥ λ(1− t0) for u = u∗. Furthermore, the Euler–Lagrange equation for a critical point of L

is precisely (4-2), since

d
dt

∣∣∣∣
t=0

L(u+ th)= τ(δ1(u)δ1(h)+ δ2(u)δ2(h)− λh)+
d
dt

∣∣∣∣
t=0

τ
(
µ eu+th),

via the calculation in the proof of Proposition 2.11. Now

d
dt

∣∣∣∣
t=0

τ
(
eu+th)

=
d
dt

∣∣∣∣
t=0

∞∑
n=0

1
n!
τ
(
(u+ th)n

)
=

∞∑
n=0

1
n!
τ
(
un−1h+ un−2hu+ · · ·+ uhun−2

+ hun−1)
=

∞∑
n=0

n
n!
τ
(
hun−1)

= τ(heu)
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by the invariance of the trace under cyclic permutations of the factors. So applying Lemma 2.1, we see
that

d
dt

∣∣∣∣
t=0

L(u+ th)= τ(−h1(u)− λh+µ heu)=−τ
(
h · (1u+ λ−µ eu)

)
.

So nondegeneracy of the trace pairing gives (4-2) as the Euler–Lagrange equation for a critical point
of L. It is also clear that t0 is an absolute minimum for L and a solution of (4-2). It remains to prove
the uniqueness. Suppose u is a solution of (4-2) and write u = t0 + v. Then v satisfies the equation
1v = λ(ev − 1), and we need to show v = 0. Multiply both sides by v and apply τ . We obtain (using
Lemma 2.1)

−2E(v)= τ(v1v)= λτ(v(ev − 1)).

The left-hand side is ≤ 0, while since λ > 0 and t (et
−1)≥ 0 with equality only at t = 0, the right-hand

side is ≥ 0. Thus E(v)= 0, which implies v is a scalar with v(ev − 1)= 0, i.e., v = 0. �

With techniques reminiscent of [Kazdan 1983, Chapter 5] we can study a slightly more complicated
variant of (4-2).

Theorem 4.4. Let a ≥ 0 be invertible in A∞θ . Then the equation

1u = µ eu
− a, µ ∈ R, µ > 0 (4-3)

has a solution u ∈
(

A∞θ
)

s.a..

Without loss of generality (as a result of replacing u by u − lnµ) we can take µ = 1; that simplifies
the calculations and we make this simplification from now on. Some condition on a beyond the fact that
a ≥ 0, for example at least a 6= 0, is necessary because of Proposition 4.1, and we see that any solution
of (4-3) must satisfy τ(eu)= τ(a) > 0.

Proof. Several methods are available for proving existence, but the simplest seems to be to apply the
Leray–Schauder Theorem ([Leray and Schauder 1934], [Kazdan 1983, Theorem 5.5]). Consider the
family of equations

1u = (1− t) u+ t eu
− a, 0≤ t ≤ 1. (4-4)

When t = 0 this reduces to 1u = u − a, or (−1+ 1) u = a, which by Proposition 2.3 has the unique
solution u = (−1 + 1)−1a. When t = 1, (4-4) reduces to (4-3). We begin by using the maximum
principle, Proposition 2.9, which implies an a priori bound on solutions of (4-4). (Compare the argument
in [Kazdan 1983, pp. 56–57].) Indeed, suppose u satisfies (4-4) for some 0≤ t ≤ 1, and let [c, d] be the
smallest closed interval containing σ(u). We may choose a state ϕ of Aθ with ϕ(u) = d, ϕ(eu) = ed ,
and by Proposition 2.9, ϕ(1u)≤ 0. Since

ϕ
(
(1− t) u+ t eu

− a
)
= (1− t) d + t ed

−ϕ(a)≥ (1− t) d + t ed
−‖a‖,

we get a contradiction if (1− t) d+ t ed
−‖a‖> 0, which is the case if d > ‖a‖. So d ≤ ‖a‖. Similarly,

we may choose a state ψ of Aθ with ψ(u)= c, ψ(eu)= ec, and by Proposition 2.9, ψ(1u)≥ 0. Since

ψ
(
(1− t) u+ t eu

− a
)
= (1− t) c+ t ec

−ψ(a)≤ (1− t) c+ t ec
−

1
‖a−1‖

,
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we get a contradiction if ec
−1/‖a−1

‖< 0. Thus ec
−1/‖a−1

‖ ≥ 0 and c ≥−ln ‖a−1
‖. In other words,

any solution of (4-4), for any 0≤ t ≤ 1, satisfies the a priori estimate

− ln ‖a−1
‖ ≤ u ≤ ‖a‖. (4-5)

Now rewrite (4-4) in the form

u = (−1+ 1)−1(a+ t u− t eu).
The right-hand side is well-defined and continuous in the C∗-algebra norm topology for u = (Aθ )s.a.,
since (−1+1)−1 is bounded by Lemma 2.7. In fact, this Lemma also shows (−1+1)−1 is bounded as
a map Aθ→Bθ , so as a map Aθ→ Aθ , it is a limit of operators of finite rank, namely the restrictions of
the operator to the span of {U m V n

: m2
+ n2
≤ N }, as N →∞. Thus (−1+ 1)−1 is not only bounded,

but also compact. Together with the a priori estimate (4-5) and the fact that there is a solution for t = 0,
this shows that (4-4) satisfies the hypotheses of the Leray–Schauder Theorem. Hence (4-4) has a solution
for all t ∈ [0, 1]. Thus (4-3) (which is the special case of (4-4) for t = 1) has a solution in dom1⊆ Aθ ,
and thus in Bθ by Lemma 2.7.

The last step of the proof is elliptic regularity. In other words, we need to show that a solution to (4-3),
so far only known to be in Bθ , lies in A∞θ . Since a ∈ A∞θ and Bθ is closed under holomorphic functional
calculus (by Theorem 2.8), the right-hand side of (4-3) lies in Bθ , i.e., has absolutely summable Fourier
coefficients. Then (4-3) implies that the Fourier coefficients cm,n of u have even faster decay, namely,∑

m,n

(1+m2
+ n2)|cm,n|<∞.

Now one can iterate this argument. This is a bit tricky, as at each step one needs a new Banach
subalgebra of Aθ to replace B (we drop the subscript θ for simplicity of notation), so we indicate how
this works at the next step, and then sketch how to proceed further. For u ∈B with Fourier coefficients
cm,n , let

‖u‖1 =
∑
m,n

(2+m2
+ n2)|cm,n|,

assuming this converges. We have seen that we know ‖u‖1 < ∞. We claim that ‖ · ‖1 is a Banach
∗-algebra norm. This will follow by the argument in the proof of Theorem 2.8 if we can show that∑

p,q

(2+ p2
+ q2)

∑
m,n

|cm,n| |dp−m,q−n| ≤

( ∑
m,n

(2+m2
+ n2)|cm,n|

)( ∑
l,k

(2+ l2
+ k2)|dl,k |

)
.

Comparing the two sides of this inequality, one sees it is equivalent to proving that

(2+ p2
+ q2)≤ (2+m2

+ n2)(2+ (p−m)2+ (q − n)2),

or with −→v = (m, n) and −→w = (p−m, q − n) vectors in Euclidean 2-space, that(
2+‖−→v +−→w ‖2

)
≤

(
2+‖−→v ‖2

)(
2+‖−→w ‖2

)
.

This inequality in turn follows from the standard inequality

‖
−→v +−→w ‖2 ≤ ‖−→v ‖2+‖−→w ‖2+ 2‖−→v ‖ · ‖−→w ‖ ≤ 2

(
‖
−→v ‖2+‖−→w ‖2

)
.
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This shows the completion of A∞θ in the norm ‖ · ‖1 is a Banach ∗-algebra B1. Since u and a are in B1,
so is eu

− a. By (4-3) again, u has still more rapid decay; its Fourier coefficients satisfy∑
m,n

(m2
+ n2)2|cm,n|<∞.

Now we iterate again using still another Banach ∗-algebra B2 with the norm

‖u‖2 =
∑
m,n

(
8+ (m2

+ n2)2
)
|cm,n|.

Again one has to check that this is a Banach algebra norm, which will follow from the inequalities

8+‖−→v +−→w ‖4 = 8+
(
‖
−→v +−→w ‖2

)2

≤ 8+
(
2
(
‖
−→v ‖2+‖−→w ‖2

))2
≤ 8+ 4

(
‖
−→v ‖4+‖−→w ‖4+ 2‖−→v ‖2 · ‖−→v ‖2

)
≤ 8+ 4

(
2
(
‖
−→v ‖4+‖−→w ‖4

))
≤

(
8+‖−→v ‖4

)(
8+‖−→w ‖4

)
.

Thus B2 is a Banach algebra and eu
− a ∈B2, so that 1u ∈B2 and the Fourier coefficients of u decay

faster than (m2
+n2)3, etc. Repeating in this way, we show by induction that cm,n is rapidly decreasing,

and thus that u ∈ A∞θ . �

Sketch of a second proof. One could also approach this problem using “variational methods.” By the
argument at the beginning of the proof of Theorem 4.3, (4-3) is the Euler–Lagrange equation for critical
points of

L(u)= E(u)+ τ(eu
− u a)= E(u)+ τ(eu

− a1/2ua1/2).

This functional is bounded below since E(u)≥ 0 and τ(eu
−a1/2ua1/2) is bounded below (by a constant

depending only on a). Indeed, for t and λ > 0 real, et
− λt has a global minimum at t = ln λ, so

et
− λt ≥ λ(1− ln λ). If we write u = u+− u− with u+u− = u−u+ = 0 and u+, u− ≥ 0, then

−τ(u a)= τ(u−a)− τ(u+a)=−τ
(
u1/2
+ au1/2

+

)
+ τ

(
u1/2
− au1/2

−

)
≥−τ

(
u1/2
+ ‖a‖u

1/2
+

)
+ 0=−‖a‖ τ(u+).

On the other hand,
τ(eu)= τ

(
eu+ + e−u− − 1

)
≥ τ

(
eu+

)
− 1,

and thus

τ(eu
− u a)≥ τ

(
eu+

)
−‖a‖ τ(u+)− 1= τ

(
eu+ −‖a‖ u+

)
− 1≥ ‖a‖

(
1− ln ‖a‖

)
− 1.

So we will show that L must have a minimum point, which will be a solution of (4-3).
Choose un=u∗n ∈ A∞θ with L(un) decreasing to inf

{
L(u) :u∈

(
A∞θ

)
s.a.

}
. Since E and τ(eu

−a1/2ua1/2)

are separately bounded below, E(un)must remain bounded. That means that ‖δ j (un)‖`2 remains bounded
for j = 1, 2.

We can also assume that ‖un‖`2 remains bounded. To see this, it is easiest to use a trick (cf. [Kazdan
1983, pp. 56–57]). Because of the a priori bound on solutions of (4-3) coming from the maximum
principle (see the first proof above), we can modify the function eu on the right-hand side of the equation
and replace it by some C∞ function that grows linearly for u ≥ ‖a‖ + 1 and decays linearly for u ≤
−1− ln ‖a‖. (This does not affect the maximum principle argument, so the solutions of the modified
equation are the same as for the original one.) This has the effect of changing the term τ(eu) in the
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formula for L to something that outside of a finite interval behaves like a constant times τ(u2), which is
‖u‖2

`2 .
Thus we can assume our minimizing sequence un is bounded in the Sobolev space H 1. Since the

unit ball of a Hilbert space is weakly compact, after passing to a subsequence, we can assume that un

converges weakly in the Hilbert space H 1, and by Theorem 3.2, strongly in H 0
= L2, to some u ∈ H 1

which is a minimizer for L. (Compare the argument in [Kazdan 1983, Theorem 5.2].) This u is a “weak
solution” of our equation and we just need to show it is smooth, i.e., corresponds to a genuine element
of A∞θ . This requires an elliptic regularity argument similar to the one in the first proof. �

5. Harmonic unitaries

In this section, we discuss the noncommutative analogue of the classical problem of studying harmonic
maps M → S1, where M is a compact Riemannian manifold and S1 is given its usual metric. This
problem was studied and solved in [Eells and Sampson 1964, pp. 128–129]. The homotopy classes of
maps M → S1 are classified by H 1(M,Z). For each homotopy class in H 1(M,Z), we can think of it
as an integral class in H 1(M,R), and represent it (by the de Rham and Hodge Theorems) by a unique
harmonic 1-form with integral periods. Integrating this 1-form gives a harmonic map M → S1 in the
given homotopy class. This map is not quite unique since we can compose with an isometry (rotation)
of the circle, but except for this we have uniqueness. (This follows from [Eells and Sampson 1964,
Proposition, p. 123].)

If we dualize a map M→ S1, we obtain a unital ∗-homomorphism C(S1)→C(M), which since C(S1)

is the universal C∗-algebra on a single unitary generator, is basically the same as a choice of a unitary
element u ∈ C(M). This analysis suggests that the noncommutative analogue of a harmonic map to S1

should be a “harmonic” unitary in a noncommutative C∗-algebra A. Each unitary in A defines a class in
the topological K -theory group K1(A), and for A a unital C∗-algebra, every K1 class is represented by
a unitary in Mn(A) for some n, so since we can replace A by Mn(A), the natural problem is to search
for a harmonic representative in a given connected component of U (A) (or, passing to the stable limit,
in a given K1 class).

The next level of complexity up from the case where A = C(M) is commutative is the case where
A = C(M,Mn(C)) for some n. In this case, a unitary in U (A) is the same thing as a map M→ U (n),
and a harmonic unitary should be the same thing as a harmonic map M→U (n). For example, suppose
M = S3 and n = 2. Since there are no maps M→ S1 which are not homotopic to a constant, it is natural
to look first at smooth maps f : S3

→ U (2) with det ◦ f : S3
→ T identically equal to 1, i.e., to look

at maps f : S3
→ SU (2) = S3, with both copies of S3 equipped with the standard round metric. This

problem is treated in [Eells and Sampson 1964, Proposition, pp. 129–131]. For example, the identity map
S3
→ S3

= SU (2) ↪→U (2) is a harmonic map representing the generator of K1(A)=K−1(S3). The study
of harmonic maps in other homotopy classes, even just in the simple case of S3

→ S3, is a complicated
issue (see, e.g., [Eells and Sampson 1964, Proposition, pp. 129–131] and [Schoen and Uhlenbeck 1984]);
however, this is quite tangential to the main theme of this article, so we won’t consider it further.

Instead, we consider now the notion of harmonic unitaries in the case of Aθ . Recall first that K1(Aθ )∼=
Z2, with U and V as generators [Pimsner and Voiculescu 1980, Corollary 2.5], and that the canonical
map U (Aθ )/U (Aθ )0→ K1(Aθ ) is an isomorphism [Rieffel 1987].
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Definition 5.1. If u ∈ A∞θ is unitary, we define the energy of u to be

E(u)= 1
2 τ

(
(δ1(u))∗δ1(u)+ (δ2(u))∗δ2(u)

)
.

Obviously this is constructed so as to be ≥ 0. This definition also coincides with the energy defined in
Definition 2.10, provided we insert the appropriate ∗’s in the latter (which we can do without changing
anything since there we were taking u to be self-adjoint). The unitary u is called harmonic if it is a critical
point for E : U (A∞θ )→ [0,∞). By the discussion above, a harmonic unitary is the noncommutative
analogue of a harmonic circle-valued function on a manifold.

Remark 5.2. Note that in Definition 5.1, E(u) is invariant under multiplication of u by a scalar λ ∈ T.
Thus E descends to a functional on the projective unitary group PU (A∞θ ) and any sort of uniqueness
result for harmonic unitaries can only be up to multiplication of u by a scalar λ ∈ T. This is analogous
to what happens in the case of harmonic maps M→ T, where the associated harmonic 1-form is unique
but the map itself is only defined up to a constant of integration.

Theorem 5.3. If u ∈ A∞θ is unitary, then u is harmonic if and only if it satisfies the Euler–Lagrange
equation

u∗(1u)+ (δ1(u))∗ δ1(u)+ (δ2(u))∗ δ2(u)= 0. (5-1)

Note that this equation is elliptic (if we drop lower-order terms, it reduces to Laplace’s equation1u= 0),
but highly nonlinear.

Proof. First note that for u unitary, since u u∗ = u∗u = 1, we have

δ j (u) u∗+ u (δ j (u))∗ = (δ j (u))∗ u+ u∗ δ j (u)= 0,

j = 1, 2. If u is unitary, then any nearby unitary is of the form uei th , h = h∗, and

d
dt

∣∣∣∣
t=0

E(uei th)= 1
2 τ

(
−iδ1(h)u∗δ1(u)+ iδ1(u)∗uδ1(h) + similar expression with δ2

)
.

We can use the trace property to move all the δ j (h)’s to the front. So u is a critical point if and only if
for all h = h∗,

τ
(
δ1(h) Im

(
u∗δ1(u)

)
+ δ2(h) Im

(
u∗δ2(u)

))
= 0. (5-2)

In (5-2), the Im’s can be omitted since we have seen that u unitary⇒ δ j (u)∗u skew-adjoint. Thus u is
harmonic if and only if

τ
(
δ1(h)

(
u∗δ1(u)

)
+ δ2(h)

(
u∗δ2(u)

))
= 0

for all h = h∗ in A∞θ . Now apply integration by parts (Lemma 2.1). We see that u is harmonic if and
only if

τ
(

h δ1
(
u∗δ1(u)

)
+ h δ2

(
u∗δ2(u)

))
= 0

for all h = h∗ in A∞θ . Since the trace pairing is nondegenerate, the Theorem follows. �

It seems natural to make the following conjecture:

Conjecture 5.4. In each connected component of PU (A∞θ ), the functional E has a unique minimum,
given by scalar multiples of U nV m . These are the only harmonic unitaries in this component.
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Unfortunately, because of the complicated nonlinearity in (5-1), plus complications coming from
noncommutativity, we have not been able to prove the Conjecture 5.4. However, we have the following
partial result. In particular, we see that every connected component in U (A∞θ ) contains a harmonic
unitary which is energy-minimizing.

Theorem 5.5. The scalar multiples of U m V n are harmonic and are strict local minima for E. Any
harmonic unitary u depending on U alone is a scalar multiple of a power of U. Similarly, any harmonic
unitary u depending on V alone is a scalar multiple of a power of V .

Proof. First suppose u depends on U alone. Then δ2(u) = 0. So by the proof of Theorem 5.3, if u is
harmonic, then τ

(
δ1(h) · δ1(u)∗u

)
= 0 for all h = h∗. This must also hold for general h (not necessarily

self-adjoint) since we can split h into its self-adjoint and skew-adjoint parts. Since the range of δ1 contains
U m unless m = 0, τ(δ1(u)∗u U m)=0 for m 6= 0, which means (since δ1(u)∗u depends only on U ) that
δ1(u)∗u is a scalar. Thus u is an eigenfunction for δ1 and so u = eiλU m for some m. The case where u
depends on V alone is obviously similar.

Next let’s examine u =U m V n . Since E(U m V n)= 2π2(m2
+ n2) while

(U m V n)∗1(U m V n)=−4π2(m2
+ n2),

u satisfies (5-1) and is therefore harmonic. We show it is a local minimum for E ; in fact, the minimum
is strict once we pass to PU (A∞θ ). We expand δ j (uei th), with h = h∗, out to second order in t . Note
that with δ = δ1 or δ2,

δ(uei th)= δ(u)+ i t
(
δ(u)h+ uδ(h)

)
−

1
2 t2 (

δ(u) h2
+ u δ(h) h+ u h δ(h)

)
+ O(t3).

We substitute this into the formula for E(uei th). The terms linear in t cancel since u is harmonic, and
we find that

E
(
u ei th)

= 2π2(m2
+ n2)

+ t2 τ
((
δ1(u)h+ uδ1(h)

)∗(
δ1(u)h+ uδ1(h)

)
−

1
2δ1(u)∗

(
δ1(u) h2

+ u δ1(h) h+ u h δ1(h)
)

−
1
2(h

2 δ1(u)∗+ h δ1(h) u∗+ δ1(h) h u∗) δ1(u)+ similar expressions with δ2

)
+ O(t3).

This actually simplifies considerably since u is an eigenvector for both δ1 and δ2, so that δ j (u)∗δ j (u),
δ j (u)∗u, and u∗δ j (u) are all scalars. It turns out that almost everything cancels and one gets

E(ueiht)= 2π2(m2
+ n2)+ 1

2 t2τ
(
δ1(h)2+ δ2(h)2

)
+ O(t3)

= 2π2(m2
+ n2)+ t2 E(h)+ O(t3).

By Proposition 2.11, the term in t2 vanishes exactly when h is a constant, and in that case E(ueiht) =

E(u) = 2π2(m2
+ n2) (exactly). Otherwise, the coefficient of t2 is strictly positive and E(ueiht) has a

strict local minimum at t = 0. �

6. The Laplacian and holomorphic geometry

As we have seen, 1 on Aθ behaves very much like the classical Laplacian on T2. But the Laplacian
in (real) dimension 2 is very closely related to holomorphic geometry in complex dimension 1. That
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suggests that the theory we have developed should be closely related to the Cauchy–Riemann operators
∂ and ∂ on noncommutative elliptic curves, as developed in references like [Polishchuk and Schwarz
2003; Polishchuk 2004].

In classical analysis (in one complex variable), one usually sets ∂ = 1
2

(
∂
∂x1
+ i ∂

∂x2

)
, the Cauchy–

Riemann operator, with ∂ its complex conjugate. Then 1= 4 ∂ ∂ . In our situation, the obvious analogue
is to set ∂ = 1

2

(
δ1+ i δ2

)
.3 Comparable to Proposition 2.4 is:

Proposition 6.1. The operator ∂ : A∞θ → A∞θ has kernel given by scalar multiples of the identity, and
restricts to a bijection on ker τ .

Proof. Immediate from the fact that if a =
∑

m,n cm,nU m V n , then

∂a = π i
∑
m,n

(m+ in) cm,nU m V n,

together with the characterization of elements of A∞θ in terms of rapidly decreasing Fourier series. �

Thus the noncommutative torus admits no nontrivial global holomorphic functions. This is not surprising
since a compact complex manifold admits no nonconstant global holomorphic functions. However,
assuming τ( f ) = 0, we can solve the inhomogeneous Cauchy–Riemann equation ∂u = f , which in the
classical case is related to the proof of the Mittag-Leffler Theorem (see, for example, [Hörmander 1990,
Chapter 1]).

In some situations, one is led to the more complicated equation (∂u) u−1
= f , (similar to the one

above but with ∂ replaced by the logarithmic Cauchy–Riemann operator. This equation can be rewritten
as ∂u = f u. Is was already studied (under an alternative convention about whether one should multiply
on the left or the right) in a (different) noncommutative context in [Bost 1990], and then by Polishchuk:

Theorem 6.2 [Polishchuk 2006]. Let f ∈ Aθ . Then the equation ∂u = f u has a nonzero solution if and
only if τ( f ) ∈ π i(Z+ iZ).

(A slightly different convention is used in the given reference, and in [Polishchuk and Schwarz 2003]:
in those works, ∂ is taken as (x + iy)δ1 + δ2, with y < 0. When x = 0 and y = −1, this is what we
have here, up to a constant factor of −2i . This constant explains why the result looks different. With our
convention, u =U m V n solves ∂u = f u with f = π i(m+ in).)

The relevance of Theorem 6.2 concerns the theory of noncommutative meromorphic functions. While
a compact complex manifold admits no nonconstant global holomorphic functions, it can admit non-
constant meromorphic functions, such as (in the case of an elliptic curve) elliptic functions like the
Weierstraß ℘ function. There are two ways we can view meromorphic functions on a Riemann surface
M . On the one hand, they can be considered as ratios of holomorphic sections of holomorphic line
bundles L of M . On the other hand, they can be considered as formal quotients of functions that satisfy
the Cauchy–Riemann equation.

These points of view, applied to a noncommutative torus, are equivalent via the following reasoning.
A holomorphic vector bundle is defined via its module of (smooth) sections, which is a finitely generated

3We could also study different conformal structures on the torus, by changing the i here to another complex number in the
upper half-plane, but for the problems we will study here, this makes no essential difference.
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projective (right) A∞θ -module. This module must be equipped with an operator ∇ satisfying the basic
axiom

∇(s · a)= ∇(s) · a+ s · ∂(a).

If we assume the module is A∞θ itself (i.e., the vector bundle is of dimension 1, i.e., a line bundle), then
this operator is determined by f = ∇(1), in that for any s,

∇(s)= ∇(1 · s)= f · s+ 1 ∂(s)= ∂(s)+ f s.

A holomorphic section of the bundle is then a solution s of ∂(s)+ f s = 0.
On the other hand, the natural definition of meromorphic functions is the following.

Definition 6.3. A meromorphic function on the noncommutative torus Aθ is a formal quotient u−1v, with
u, v ∈ dom(∂)⊂ Aθ , satisfying the Cauchy–Riemann equation (in the sense to be made precise below).
Here we don’t want to require that u be invertible in Aθ (otherwise u−1v would be holomorphic, hence
constant), so we simply want u to be regular (in the sense of not being either a left or right zero divisor),
and the inverse is to be interpreted in a formal sense (or in the maximal ring of quotients [Berberian
1982], the algebra of unbounded operators affiliated to the hyperfinite II1 factor obtained by completing
Aθ in its trace representation). Then the condition that u−1v be meromorphic is that

0= ∂(u−1v)= ∂(u−1)v+ u−1∂v =−u−1∂(u)u−1v+ u−1∂v,

or (via multiplication by u on the left) that

∂v = f v, ∂u = f u, (6-1)

which says precisely that our meromorphic function is a quotient of two holomorphic sections of a
holomorphic line bundle with ∇ = ∂+ f . In the other direction, if u and v satisfy (6-1) and u is regular,
so that the formal expression u−1v makes sense, then we formally have

∂(u−1v)= ∂(u−1)v+ u−1∂v =−u−1∂(u)u−1v+ u−1∂v

=−u−1 f uu−1v+ u−1 f v =−u−1 f v+ u−1 f v = 0,

and u−1v is meromorphic.

In accordance with the classical existence theorem of Weierstraß for elliptic functions, we have:

Proposition 6.4. There exist nonconstant meromorphic functions on the noncommutative torus Aθ , in
the sense of Definition 6.3.

Proof. This follows immediately from the discussion in [Polishchuk 2006, §3], which shows that there
are choices for f for which the holomorphic connection ∇ is reducible, with a space of holomorphic
sections of dimension bigger than 1, and thus there are solutions of (6-1) with u and v not linearly
dependent. Note that if this is the case, u cannot be invertible ([Polishchuk 2006, Lemma 3.14]—we
also know this independently from Proposition 6.1). But we do require u to be regular, so we need to
check that this can be achieved. For example, suppose e is a proper projection in A∞θ (“proper” means
0 < τ(e) < 1) of trace m + nθ with n relatively prime to both m and 1−m. The trivial rank-one right
A∞θ module splits as eA∞θ ⊕ (1− e)A∞θ , and we can arrange to choose a holomorphic connection on
A∞θ that is reducible in a way compatible with this splitting, so that there are 1-dimensional spaces of
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holomorphic sections on each of eA∞θ and (1 − e)A∞θ . By the explicit formulas in [Polishchuk and
Schwarz 2003, Proposition 2.5], these come from real-analytic functions in S(R), and so it’s evident that
the u that results from putting these together is regular, as by [Berberian 1982], it’s enough to observe
that its left and right support projections are equal to 1. �

On the other hand, there is also a nonexistence result for meromorphic functions on the (classical)
torus: no such nonconstant function exists with only a single simple pole [Ahlfors 1978, Corollary to
Theorem 4, p. 271]. We can find an analogue of this in the noncommutative situation also. To explain
it, first note that in the sense of distributions on the complex plane, ∂

( 1
z

)
is not zero (if it were, 1

z
would have a removable singularity, by elliptic regularity), but rather is equal to π δ, where δ is the
Dirac δ-distribution at 0. Suppose there were a meromorphic function f on T2

= C/(Z+ iZ) with at
worst one simple pole and no other poles. Then f would be locally integrable and, after translation
to move the pole to 0, would define a distribution on T2 with ∂( f ) a multiple of δ. Thus the Fourier
series of ∂( f ) would be a multiple of the Fourier series of δ, which is

∑
m,n U m V n . And in fact Fourier

analysis gives another proof of the nonexistence theorem not using residue calculus. Suppose f were
nonconstant. Since a compact complex manifold admits no nonconstant holomorphic functions, f cannot
be holomorphic, which means that ∂ f must be nonzero in the sense of distributions. Since ∂( f ) is a
multiple of

∑
m,n U m V n , the proportionality constant, which is also the (0, 0) Fourier coefficient of ∂ f ,

must be nonzero. But this is impossible since the Fourier series of any distribution in the image on ∂
must have zero constant term. The noncommutative analogue of all this is the following:

Proposition 6.5. Let f be a distribution in the dual of A∞θ . (The distributions consist of formal Fourier
series

∑
m,n cm,n U m V n with {cm,n} of tempered growth.) Suppose ∂ f is a multiple of

∑
m,n U m V n . Then

f is a constant.

Proof. This follows exactly the lines as the argument above for the classical theorem. If ∂ f has formal
Fourier expansion c

∑
m,n U m V n , then the (m, n) coefficient, c, must be divisible by m+in for all (m, n).

Because of the (0, 0) coefficient, this is only possible if c= 0. But if c= 0, then f is in the distributional
kernel of ∂ , which forces all the Fourier coefficients of f to vanish except for the constant term. �

In fact, essentially the same proof proves a slightly more general statement, which in the classical
case is equivalent to [Ahlfors 1978, Theorem 4, p. 271]. For the analysis above shows that the sum of
the residues of a meromorphic function f on T2, when the function is considered as a distribution4, is
precisely the constant term in the Fourier series of ∂ f , up to a factor of π . The analogue of the sum of
the residues theorem in the noncommutative world is this:

Proposition 6.6. Let f be a distribution in the dual of A∞θ . Then the constant term in the (formal)
Fourier series of ∂ f is zero.

Proof. Essentially the same as before. �

The connection with the main subject of this paper is of course that meromorphic functions w as
studied in this section are singular solutions of Laplace’s equation 1w = 0, since 1 = 4 ∂ ∂ . More
precisely, “singular solution” means classically that as a distribution, 1w is not necessarily 0, but has

4This requires a comment. A meromorphic function with simple poles is locally integrable, thus defines a distribution in the
obvious way. A meromorphic function with higher-order poles is not locally integrable, but can be made into a distribution of
principal value integral type. This distribution is not a measure.
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countable support. In the noncommutative setting, we do not have a notion of support for a distribution,
but the same basic idea applies.
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