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DYNAMICS OF NONLINEAR SCHRODINGER/GROSS-PITAEVSKII
EQUATIONS: MASS TRANSFER IN SYSTEMS WITH SOLITONS
AND DEGENERATE NEUTRAL MODES

ZHOU GANG AND MICHAEL I. WEINSTEIN

Nonlinear Schrédinger/Gross—Pitaevskii equations play a central role in the understanding of nonlinear
optical and macroscopic quantum systems. The large time dynamics of such systems is governed by
interactions of the nonlinear ground state manifold, discrete neutral modes (“‘excited states”) and disper-
sive radiation. Systems with symmetry, in spatial dimensions larger than one, typically have degenerate
neutral modes. Thus, we study the large time dynamics of systems with degenerate neutral modes. This
requires a new normal form (nonlinear matrix Fermi Golden Rule) governing the system’s large time
asymptotic relaxation to the ground state (soliton) manifold.
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1. Introduction

Nonlinear Schrodinger/Gross—Pitaevskii (NLS/GP) equations are a class of dispersive Hamiltonian par-
tial differential equations (PDEs) of the form:

i (x, 1) = =AYy (x, )+ (V) = f(¥ &, D)) (x, 0). (1-1)

Here, ¥ = v (x, t) is a scalar complex-valued function of position, x € R? and time, ¢ € R. The function
V : R? — R denotes a linear potential and f : Ry — R, a nonlinear potential. For example, V can be
taken to be a smooth, nonpositive potential well, with rapid decay as |x| — oo and f (¥ 1?) = —gly|?,
g constant. For g > 0, the nonlinearity is called repulsive or defocusing. For g < 0 it is called attractive
or focusing. In this paper, we focus on spatial dimensions d > 3. Precise hypotheses on V and f
are given below. We are interested in the initial value problem (IVP) for (1-1) with finite energy data
¥ (x, 0) and solutions 1 (x, ¢), which are sufficiently regular and decaying to zero as |x| — oo. A precise
well-posedness result is cited below; see Theorem 3.1.

NLS/GP equations play a central role in the understanding of nonlinear optical [Moloney and Newell
2004; Boyd 2008; Sulem and Sulem 1999] and macroscopic quantum systems [Erd6s and Yau 2001]. A
striking and important feature of NLS/GP is that it can have localized standing waves or nonlinear bound
state solutions, some of which are stable and play a central role in the general dynamics. In particular,
for a wide variety of potentials and nonlinearities there exists an interval $ C R such that for any A € ¢,
(1-1) has nonlinear ground state solutions. These are solutions of the form

Yx, )= et (),

where

—AP" + (V= f(19*17)¢" = —1" (1-2)
with ¢* € H! and ¢* > 0.

The gauge (phase-translation) invariance of (1-1),
s evy,  yel0,2n),

generates a nonlinear ground state or “soliton” ' manifold:

Mg :={e¢*, L e, yel0,2m)). (1-3)

If V is identically zero, then NLS/GP admits a larger group of symmetries and the definition of soliton
manifold (which exists in the focusing case, g < 0) is naturally extended to incorporate these additional
symmetries; see, for example, [Weinstein 1986; Grillakis et al. 1987].

Orbital stability. The soliton manifold MM is said to be orbitally stable if any initial condition vy, which
is close to g in H', gives rise to a solution v/ (), which is H' close for ¢ # 0. There is an extensive
literature on the orbital stability of the soliton manifold. For the case V = 0, orbital stability (stability
modulo spatial and phase translations) of global energy minimizers was proved in [Cazenave and Li-
ons 1982] by compactness arguments. In [Weinstein 1985; 1986], it is shown that positive solutions,

IThe term soliton sometimes refers, more specifically, to particle-like solutions of completely integrable PDEs.
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which are index one critical points (Hessian with one strictly negative eigenvalue) and satisfy the slope
condition:

d
[ 19" P dx >0, (1-4)
R

are H'! orbitally stable. For the focusing case

V=0, f(yH=-glyl’?, g<0,

(1-4) is equivalent to o < 2/d. Orbital stability of solitary waves of NLS/GP for a class of potentials
V was studied by Rose and Weinstein [1988] and, for a semiclassical setting, by Oh [1988]. A general
formulation of a stability/instability theory is presented in [Grillakis et al. 1987].

Asymptotic stability. We say the soliton manifold Mg is asymptotically stable if Yy close to Alg in a
suitable norm implies that ¥ (¢) remains close to and converges to Jlg (in a possibly different norm), as
t tends to infinity.

Are solitary waves asymptotically stable? This is a local variant of the problem of asymptotic resolu-
tion [Tao 2008], that is, whether general initial conditions resolve into stable nonlinear bound states of the
system plus dispersive radiation. A great deal of progress has been made on this problem in recent years.
The study of asymptotic stability of solitary waves was initiated in [Soffer and Weinstein 1990; 1992];
see also [Buslaev and Perel’'man 1992; Pillet and Wayne 1997; Gustafson et al. 2004; Weder 2000].
In the translation invariant case, asymptotic stability was then investigated by [Buslaev and Perel’'man
1995]. Asymptotic stability analysis requires two new analytical features: one dynamical systems and
the other harmonic analysis / spectral theory.

First, since we do not know in advance which nonlinear ground state in Jly emerges in the large
time limit, a decomposition with flexibility allowing for the asymptotic soliton to dynamically emerge is
required®. To this end, the solution is decomposed in terms of a motion along the soliton manifold and
components symplectic orthogonal or biorthogonal to it. Dynamics along the soliton manifold, Jlg, are
governed by modulation equations; see, for example, [Weinstein 1985; Frohlich et al. 2004; Holmer and
Zworski 2007].

Secondly, in order to prove convergence to the soliton manifold Jlg, we need to show that the deviation
of the solution from .ty decays with advancing time. This requires time-decay estimates (L”, weighted
L?(R?) or space-time norms) for the linearized (about the soliton) propagator on the subspace symplectic
orthogonal or biorthogonal to the discrete spectral subspace. The discrete subspace is the union of a zero
frequency mode subspace spanned by infinitesimal generators of the NLS/GP symmetries (translation,
gauge) acting on ¢*, and often a subspace of neutral modes (sometimes called internal modes) with
nonzero frequencies.

Since a typical perturbation of the ground state solitary wave in Jlg excites all discrete spectral com-
ponents, one must understand the mechanisms, due to which these do not interfere with the asymptotic
convergence of ¥ (x, t) to Jlg. In brief: Concerning the zero modes, the choice of modulation equations

2 =—xristhe typical definition of soliton frequency. Therefore the slope condition (1-4) often appears as a rate of change
with respect to u being negative.

3The case of integrable systems, such as one-dimensional NLS V =0, f (| |2)1// =y |21[/ is an important class for which
it is possible to determine the emerging coherent structures from the scattering transform of the initial data.
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“quotients out” the zero modes; perturbations exciting these induce motion along the soliton manifold.
And concerning the nonzero frequency neutral modes, these are shown to damp to zero, as ¢t — oo, due
to the resonant nonlinear coupling of discrete to radiation modes. Related to this is a further dynamical
systems aspect of the analysis. The neutral mode amplitudes are governed by nonlinear oscillator equa-
tions, coupled to a dispersive wave field. Near-identity changes of variables are used to put the system
in an appropriate normal form, wherein the mechanism of energy transfer from the neutral modes to
the evolving soliton and propagating radiation is made explicit. Energy transfer shows up as an explicit
(nonlinear) damping term in the normal form; see the discussion below. The positive damping coefficient
(matrix, in the present work) is a nonlinear variant of Fermi Golden Rule [Cohen-Tannoudji et al. 1992].
See [Buslaev and Perel’'man 1995] regarding the dynamics near solitary waves of the translation invariant
NLS equations and [Soffer and Weinstein 1999] for “breathers” of a class of nonlinear wave equations.
In [Soffer and Weinstein 2004] this mechanism was proved to be responsible for ground state selection
in NLS/GP equations; see also [Weinstein 2006]. Experimental verification of the prediction in [Soffer
and Weinstein 2004; 2005] is reported in [Mandelik et al. 2005]. Related work on resonant radiation
damping appears in [Tsai and Yau 2002b; 2002c; Buslaev and Sulem 2003; Tsai 2003; Cuccagna et al.
2006; Cuccagna and Mizumachi 2008]. The role of the Fermi Golden Rule in the nonpersistence of
coherent structures for nonlinear wave equations was first demonstrated, via Floquet analysis, in [Sigal
1993]. There is a close relation to the perturbation theory of embedded eigenvalues for linear problems
[Reed and Simon 1979; Soffer and Weinstein 1998; Cuccagna et al. 2005].

The above works on nonlinear resonance required that the neutral modes frequencies (a) lie sufficiently
close to the essential spectrum and (b) are of geometric multiplicity one. For example, for the cubic
nonlinearity, f(|¥|*) = —g|¥|?, close means that coupling to radiation modes occurs at order |g|%. The
situation where simple neutral modes are with a large spectral gap has been studied in [Gang and Sigal
2006; 2007; Gang 2007; Cuccagna and Mizumachi 2008; Cuccagna 2008]. Here, coupling of the discrete
to continuous modes occurs at some high order in g. Thus, the normal form expansion gives a damping
term at some even order |g|** with k > 2.

Results of this paper — systems with degenerate neutral modes. An important situation, not covered by
previous results, is the dynamics in the presence of degenerate neutral modes. This case arises naturally
in systems of spatial dimensions d > 2 with symmetry. For example, if the potential is spherically sym-
metric, V = V (|x|), then the first and higher excited states are degenerate, with the degree of degeneracy
related to the order of the associated spherical harmonics. Another interesting class of examples is a
class of multiwell potentials; see Appendix A.

In this paper we prove the asymptotic stability of the ground state / soliton manifold, Jlg, of NLS/GP
when the linearized spectrum has degenerate neutral modes. We show that the solution has three infer-
acting parts:

(i) a modulating soliton, parametrized by the motion along Jilg,
(ii) oscillatory, spatially localized, neutral modes, which decay with time and
(iii) a dispersive part, which decays in a local energy norm.

The neutral modes and dispersive waves decay via transferring their mass to the soliton manifold or to spa-
tial infinity. Additionally, degenerate neutral modes are coupled and exchange mass among themselves
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in addition to with the soliton and radiation. These degenerate modes cannot be viewed as very weakly
coupled “oscillators” [Tsai 2003]. We require instead a new normal form expansion. This is related to
ideas developed in [Kirr and Weinstein 2001], where a parametrically forced linear Hamiltonian PDE
was considered, and a normal form, uniform in discrete eigenvalue spacing, was required.

We outline the perspective we take and give a rough form of the main theorem, Theorem 7.1. Consider
NLS/GP, where —A + V has a ground state &y(x) > 0, whose energy ey < 0, and a degenerate excited
state, whose energy e with ey < e; < 0 is assumed sufficiently close to zero. Typical solutions of the
linear Schrodinger equation, evolving from localized initial data v,

V(1) =exp(—i(=A+ V) )

will be a time-quasiperiodic superposition of spatially localized ground state and time-periodic excited
states, plus a part which disperses to zero, that is, tends to zero as ¢ advances in leoc. This picture emerges
from the spectral decomposition of —A + V in L2, with respect to which the bound state projections
of the solution evolve as independent oscillators and the continuous spectral part of the solution has a
character, qualitatively like a solution to the free Schrédinger equation.

For NLS/GP, for example —g|v|>y with g # 0, the dynamics of discrete and continuous modes are
coupled. We consider an appropriate open set of initial conditions near the soliton manifold. In contrast
to the linear Schrodinger equation, we show that the solution converges to a nonlinear ground state. To
see this, we view NLS/GP as a infinite-dimensional Hamiltonian system comprising two subsystems: (i) a
finite-dimensional system governing dynamics on the soliton manifold Jlg, parametrized by (A(f), y (¢)),
the zero modes amplitudes (a;, a;) and the neutral mode amplitudes z = (z1, 22, . . ., 2,)” ; (ii) an infinite-
dimensional dispersive Schrodinger wave equation. A very detailed analysis of this coupled system (the
bulk of this paper) yields the following (rough) form for the asymptotic behavior of small amplitude
solutions of NLS/GP:

Main Theorem. Consider the initial value problem for NLS/GP. Assume arbitrary localized initial data,
which are sufficiently near a small amplitude nonlinear bound state ¢*°. Then the solution of NLS/GP
evolves as a modulated soliton plus decaying error in the following form:

v (1) =exp(i / A(5) ds ) -exp(i (v (1) + ax(z(0), 1)) - ($HOF1COZ0 4 01200 + R(D)).
0

where A(t) = Aoo, O(|2(¢)]) represents a localized nonspreading decaying part satisfying
2] = C{)~'2,

aj=a;(z,7) =0 (1z|%) and R(t) represents a spreading dispersively decaying part and tends to zero as

t— ooin leoc’ more precisely || (x)""R(t)|l» — 0 withv > 0.

For the precise statement, see Theorem 7.1.

A key part of the proof of this theorem is to show that |z(¢)| tends to zero and that A(¢) has a limiting
value Ao, € 9 as t tends to infinity. We prove the latter by showing 9,A(¢) € L'(RT). We have two
comments on the approach of this article to these issues:
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New normal form. We show that there exist a nonnegative symmetric matrix T'(z,7) = 0(|z|*) and a
skew symmetric matrix A(z,z) =0 (|z|%) (see (7-3) below) such that

dz=—iEM)z—T(2, D2+ A )z +0((1+0727), (1-5)

with § > 0. The matrix I" is defined in terms of the spectral decomposition of the L(A) = J H(}), the
generator of the linearized flow about the nonlinear bound state ¢*; see Section 5. Our analysis requires
that I' = I'(z, z; A) is positive-definite for an open A-interval. A variant of this hypothesis appears in
[Soffer and Weinstein 2004; Tsai and Yau 2002b; 2002c; Buslaev and Sulem 2003; Tsai 2003; Gang
and Sigal 2006; 2007; Cuccagna et al. 2006; Cuccagna and Mizumachi 2008]. It is expected to hold,
in some sense, generically. In Section 6 we state a hypothesis under which positive-definiteness holds
for a class of potentials of multiwell type, constructed in Appendix A. This hypothesis, denoted (FGR)
(see also Theorem 6.1), is a nonlinear variant of the Fermi Golden Rule [Cohen-Tannoudji et al. 1992;
Reed and Simon 1979; Soffer and Weinstein 1998]. We note that for finite-dimensional Hamiltonian
systems a damping term is absent; it would violate phase-volume conservation. This term arises due
to nonlinearity induced by the coupling between discrete and continuous (radiational) spectral modes,
a phenomenon associated with continuous spectra, arising in PDEs on spatially infinite domains; see
[Soffer and Weinstein 1999; Weinstein 2006]. We show that (1-5) and (FGR) imply the bound |z(¢)| =
0 (t~'/?). For the case of multiple simple bound states with well-separated frequencies, a system of type
(1-5) holds with I', a diagonal matrix [Tsai 2003]. Equation (1-5) can be viewed as a new normal form,
a special case of one valid uniformly in neutral mode eigenfrequency-separation.

Choice of basis for the neutral mode subspace. We prove that A(t) approaches some Ao, as t — 00, by
proving that d,;A(¢) is integrable. If there are n simple well-separated neutral modes, one initially finds

n
BA(1) = amlzm| + 073,

m=1

Since we expect |z,,| = O(t~'/?) we can not conclude integrability of 3,A(¢). However, it can be shown
that, after near identity change of variables z — z + 0 (|z|%), we can take a,, = 0; see the normal form
expansion in [Gang and Sigal 2006; 2007; Soffer and Weinstein 2004]. In the degenerate (similarly, not
well-separated) case, A(?) satisfies:

OME) =Y amuzmic + 07
m,k
In the present paper we show very generally that, by appropriate choice of neutral subspace basis, we
can take a, = 0.
Finally, we expect that our techniques can be extended to more complicated situations, for example,
where coupling of neutral to continuum modes occurs at higher order in the nonlinearity.

Outline of the paper. The paper is organized as follows. Section 2 displays notation which is often used.
Section 3 is a brief section outlining structural properties of NLS/GP and gives a statement of a basic
well-posedness result. Section 4 introduces solitary waves (solitons) in the regime of weak nonlinearity.
Section 5 has a detailed discussion of the spectral properties of L(A) = JH(X), the generator of the
linearized dynamics about the soliton: zero energy subspace, degenerate neutral subspace and continuous
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spectral subspace. Projections associated with theses subspaces are defined and decay estimates of the
linearized evolution on the continuous spectral subspace are recalled. In Section 6 the Fermi Golden
Rule matrix I" is introduced explicitly in Theorem 6.1. The detailed calculations, proving the symmetry
and nonnegativity, are given in Appendix B. Note that the main theorem requires positive-definiteness
of I'. Proposition 6.2 is a result reducing the required positive-definiteness to a condition involving the
spectral properties of —A + V. Section 7 contains a statement of the main theorem, Theorem 7.1. In
Section 8 we give a more precise formulation of Theorem 7.1. This formulation makes explicit the
dynamical (modulation) equations for the solitary wave parameters, the neutral mode amplitudes and
the dispersive part. These are proved via normal form methods in Sections 9 and 10. In Section 11 we
prove the reformulated Theorem 7.1 in the setting of Theorem 8.1. Appendix contains some important
calculations used in the body of the paper. Of particular interest is Appendix A, where a class of multiwell
three-dimensional potentials is constructed, to which we apply Theorem 7.1.

2. Notation
(1) oy = max{e, 0} and [t] = max;cz{T < t}.
(2) Nz denotes the real part of z and Iz the imaginary part of z.
(3) Multiindices:
w=wi,...,wy), W=(bi,..., wy)eC,

N
a=(ay,...,ay) eNY, =z 2, lal=lai|+---+lanl,

where z denotes the vector of neutral mode amplitudes, & denotes the vector whose j-th entry &; is
the j-th neutral vector-mode of JL()).

(4) Q.n denotes an expression of the form

N
-b ax — b
Qm,n: E Qa,bZaZ = E qa,bl_[Zkl\Zk k,
k=1

la|=m la|=m
|bl=n |bl=n

(01 _(Ly 0 (0 L.
o () e ) e (2)

(6) 0ess(L) = 0.(L) is the essential (continuous) spectrum and ogisc (L) the discrete spectrum of L.

(7) Riesz projections:
P.(L) =1 — Pyisc(L),

where Pgisc (L) projects to the discrete spectral of L and P,(L) to the continuous spectral of L.

®) (0= [ Feg@idx.
©) nﬂm=ﬁwvawwm 1<p<oc.

(10) ||f||%_1s.v = /Rdi(x)v(l - A)S/Zf(x)|2 dx.
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3. Hamiltonian structure

NLS/GP can be expressed as a Hamiltonian system

Sy, ¥

where the Hamiltonian energy €[-] is defined by

Eyl =€y, 1= f(%w VY +5V@UY — F(Y))) dx
with
Fa=1 [ ree.
Equation (1-1) is a Hamiltonian system on Sobolev space H'!(R?, C) viewed as a real space

H (R R)y® H'(RY, R),
that is,
H'(RY C)s fo Rf3f) e HRY, R @ H (R, R),

with the symplectic form
oY, §) = f‘s/ Vdax.
R4
Equation (1-1) is invariant under time-translation and gauge-translation (phase-translation):

> t+1o, & — pe'’

with y € R, yielding, by Noether’s Theorem, the conservation laws of energy
Ely )] =€y (0)]

and of particle number (optical power)

NIy @®]= N[y (0)]

where

N[w]=/|w|2dx.

Assumptions on the potential V and nonlinearity f

(fA) f(7) is a smooth function satisfying f(r) = O(t) for |x| is small. Thus, the nonlinearity in NLS
is cubic at small amplitudes, that is, f(lglrlz)x// ~ gllﬁlzx//.

(VA) V is smooth and decays exponentially as |x| tends to oo.

To ensure the global well-posedness of the initial value problem for (1-1) we impose:
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(fB) Subcritical nonlinearity for large amplitudes

IFE) <1+

for some B € [0, 2/d) and
If'E)] <c+g1“h

for some « € [0, 2/(d—2)+) where s = max({s, 0}.
The following well-posedness theorem can be found in [Cazenave 2003; Sulem and Sulem 1999].

Theorem 3.1. Assume that the nonlinearity f satisfies the condition (fB), and the potential V satisfies
(VA). Then (1-1) is globally well-posed in H', that is, the Cauchy problem for (1-1) with the initial data
V¥ (0) € H' has a unique solution (t) in the space H', which depends continuously on v (0). Moreover,
the solution (t) satisfies conservation of energy and conservation of particle number.

4. Bifurcation and Lyapunov stability of solitons in the weakly nonlinear regime

In this section we discuss the existence of solitons in the weakly nonlinear regime. The following ar-
guments are similar to those in [Rose and Weinstein 1988; Tsai and Yau 2002c] except that the excited
states are degenerate. We assume that the linear operator —A + V has the following properties:

(Eigy) The linear operator —A + V has two eigenvalues ey < e; < 0 with 2e; > eg. e is the lowest eigen-
value with ground state ¢ji, > 0. The eigenvalue e; is degenerate with multiplicity N and eigenfunctions
}in’ %-%in’ o, jl\i]n‘

Remark. In Appendix A we construct a class of double-well examples V for d =3 and with multiplicity
N=2.

The following result shows that nonlinear bound state solutions (¢”, 1) of NLS/GP (1-2) bifurcate
from the zero state and the linear ground state energy (0, A = —ep).

Proposition 4.1. Suppose —A +V satisfies the conditions in (Eigy). Then there exists a constant 5y > 0
and a nonempty interval $5, C [—eop — 8o, —eo + 8ol such that for any A € $5, (1-1) has solutions of the
form

Vx, 1) =e*pr e L?
with
6" =800 ($in+0GA)),  5W) =0(|r—leol|?)
for |)» - |eo|| small. Moreover, for some ¢ > 0 independent of A,

1" ()] < ce™ M, 329" (x)] < ce™M,

and similarly for the spatial derivatives of ¢* and 9; ¢
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Remark. Suppose f(|¥|2)y¥ = —g|¥|> +o(|¥|?). Then for g > 0 (repulsive case) we have
$s5, = (—eo, —eo + o)

and for g < 0 (attractive case) we have
s, = (—eo — o, —eo).

Finally, we conclude this section by noting that for 8’ < § sufficiently small that soliton manifold s
(see (1-3)) is H'! orbitally stable; see the discussions in the introduction and [Weinstein 1986; Rose and
Weinstein 1988; Grillakis et al. 1987].

5. L(\) = JH()), the linearized operator about ¢*

We now turn to a discussion of the operator obtained by linearization around the soliton and the existence
of neutral modes with nonzero frequencies. Rewrite (1-1) as

oy
o GW),

where the nonlinear map G () is defined by
GW)=—i(=A+r+ V)Y +if (1Y ).
Then the linearization of (1-1) can be written as

dx A
= =dG ,
” (@")x

where d G (¢") is the Fréchet derivative of G () at ¢*. It is computed to be
dG @M x = =i(=A+ 1+ V)x +if (@) 1x +if @@ (x + ).

This operator is real linear but not complex linear. To convert it to a complex linear operator we pass
from complex functions to real vector-functions

- X1
re—i=(")
X2

where x; = Ry and x2 = Jx. Then dG(¢*)x <—> L(1)X where the operator L(A) is given by
LA)=JH) (5-1)

7=(40)

L.(») O
0 L_(V)

where J is a skew-symmetric matrix

and H(}) is a selfadjoint matrix
HQ) = (

with
L_(A):i=—A+xr+V — fl(¢"*
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and
Li()i=—=A+a+V = fI@H1 =21 116>
We extend the operator L(A) to the complex space H 2(RY,C)® H*(R?, C).

5A. The spectrum of L(L). The operator L (1) has neutral modes.

Proposition 5.1. Let L()), or more explicitly, L(A(5), §) denote the linearized operator about the bifur-
cating state ¢*, A = A(8). Note that 1(0) = —eq. Corresponding to the degenerate energy value e; of
— A+ V, the matrix operator

L(A=—ey,6=0)

has degenerate eigenvalues i E(—eg) = %i(e; — eg), each with multiplicity N. For § > 0 and small,

these bifurcate to (possibly degenerate) eigenvalues =i E1 (L), ..., £i En (L) with eigenfunctions
€l & &N
+im) \Ein) " \zinn
with
<§ma 77n> = 5m,n
and

0% lim &; = lim n; espan{i", j=1,2,...,N}c H* forany k > 0.
r—e r—eq J

Moreover, for § sufficiently small 2E;(A) > A for j = 1,2, ..., N (nonlinear coupling of discrete to
continuous spectrum at second order).

For the case of a radial potential V = V (]x|), the neutral modes have the following structure:

Proposition 5.2. If the potential is radial V = V (|x|), then ¢*, hence 9, ¢", is spherically symmetric.

If the degenerate linear excited states S,llin are of the form §]1.in = ~LENn(|x|) for some function ™, then

Y

E; = E forany j =1,2,..., N = d and we can choose §; and n; such that §; = %§(|x|) and
Xj .
nj= mn(|x|)f0r some real functions & and n.

Remark. For d = 3, the hypothesis on the linear excited states says that they are proportional to
glin( x|y "0, ¢) form = —1,0, 1, where Y{" are the spherical harmonics of degree one.

Sketch of proof. If V is spherically symmetric then by the uniqueness of the ground state and the fact
—A + V is invariant under unitary transformations we have ¢*, hence 9; ¢" is spherically symmetric.
We now outline a proof of the existence of §; and n; with desired structure. Define a linear space

ayk — {J e H*, J(x) = f;—llg(|x|)}.

By definition L(A) : Y2 — YO Note that, restricted to Y2, ﬁc—‘lélin(lxD is an eigenfunction of —A +
V of multiplicity one. Applying the bifurcation theory to %2, we prove there exists an eigenfunction
(&1, in1)T € Y? with eigenvalue E;. The other eigenfunctions with the same eigenvalue are obtained by

noting that this computation can be carried out for any x; with j =1,...,d. (]

Based on the above discussion, we assume:
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(SA) Structure of the discrete spectrum of L (1) = JH(}).
(1) o4(L(A)) consists of an eigenvalue at 0 and complex conjugate eigenvalues at i E (A).

(2) The discrete subspace, corresponding to the eigenvalue 0, is spanned by the associated eigenfunc-

tions 0 3"
(o) ()
(3) The discrete subspace, corresponding to the eigenvalue i E (1) with E (1) > 0, is N-dimensional and

is spanned by the (complex) eigenfunctions vy, v, ..., Vy.

(4) Thus, vy, vy, ..., vy are the eigenfunctions which span the discrete subspace corresponding to the
eigenvalue —i E()).

(5) Moreover we observe that Jv, are eigenfunctions of the adjoint operator L(A)* with eigenvalue
—iE(\):
LA Jv, =—=JL\)v, = —i E(L)Jv,.

Concerning the continuous spectrum of L (A), we apply Weyl’s Theorem to the stability of the essential
spectrum for localized perturbations of J(—A) [Hislop and Sigal 1996; Reed and Simon 1979] to obtain
Oess(L(A)) = (—ioo, —iA]U[iA, ic0)
if the potential V in (1-1) decays sufficiently rapidly as |x| tends to infinity.
The end points of the essential spectrum are called threshold energies.

Definition 5.3. Let d > 3. A function £ is called a threshold resonance function of L(1) at u = %i), the
endpoints of the essential spectrum, if & ¢ L?, |h(x)| < c(x)~“=2+ and h is C? and solves the equation
(L) —wh =0.

In this paper we make the following spectral assumption on the thresholds +iA:

(Thresh,) There exists 8’ with 0 < 8’ < & (see Proposition 4.1) such that for A € $5, L(A) has no
threshold resonances at i A.

In the weak amplitude limit, property (Thresh; ) can be referred to the question of whether the scalar
operator —A + V (x) has a threshold (zero energy) resonance. In [Jensen and Kato 1979] it was shown
that —A + V has a zero energy resonance or eigenvector if and only if the operator

I+ (=A+i0)7'V:(x)2L? > (x)’L?

is not invertible. Moreover, this operator is generically invertible. That is, if we replace V by ¢V where
q is a real number, then we have noninvertibility for only a discrete set of g values [Rauch 1978; Jensen
and Kato 1979].

The reduction from the properties of L(A) to those of —A 4 V is seen as follows. Let

I 0 1 (1
7=(o1) = o=5500);

03%(A) = —iU*L(\)U. (5-2)
It follows that i A are threshold resonances of L (A) if and only if =X are threshold resonances of o3 ().

so U*U = 1I. Then,
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We next observe that 039 is a small perturbation of o3(—A+V +21). Indeed, a computation of o3 #())
yields
03¢ = 03(#o + V) + Viman

where
0390 == (—A+1)03,  |Veman| < e ™o(1)

for some ¢ > 0, where o(1) — 0 as |1 — |eo|| — 0.

Therefore, the generic validity of (Thresh, ) follows from the generic absence of zero energy threshold
resonances for —A + V by the following result proved for d = 3 using the results in [Cuccagna et al.
2005]. The proof for general dimensions is similar.

Proposition 5.4. Let d = 3. If the operator
[+ (=A+i0)7'V:(x)2L? - (x)2L?
is invertible, then (Threshy) holds when |A — |eo|| is sufficiently small.
Proof. We begin by proving that the operator
I+ (0390 £ 1 +i0) "' (03V + Vaman) : (x)°L? — (x)°L?

is invertible. Observe that —2A & 2¢ is not an eigenvalue of the operator —A 4V so I +(—A+21)"'V
is invertible. This, together with the hypothesis, implies that I + (03%y £ A 4+ i0)~!o3V is invertible
with a uniformly bounded inverse. On the other hand the norm of the operator (o3%o A +i0) ™! Viman
is small when |eg + A| is small. Hence

1+(03%oE2+i0) " (03 V + Vaman) = (I +(03%H0EA+i0) o3 V) (14 (1+(03H0EA+i0) o3 V) ™! Viman)

is invertible when |A — |eo|| is small. Moreover in [Cuccagna et al. 2005] it is proved that the operator
L(X) has no threshold resonance functions if the operator

I+ (0390 £ A +i0) "' (03V + Vaman) : (1)2L? — (x)?L?
is invertible. This completes the proof. O

Choice of basis for degenerate subspaces. In our analysis, it is important that we choose an appropriate
basis of the degenerate eigenspaces corresponding to +i E(A). We present this choice of basis and its
construction here.

Proposition 5.5. There exist real functions &,, n, forn =1,2, ..., N such that

spani <5;1 )} = span{vy, v2, ..., Un}

and foranym,n € {1,2,..., N},

/ F IO VD Enny — Enm) dx =0 (5-3)

and
(@, &) = (329" 1) =0, (Ens M) = Sy (5-4)
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The proof is given in Appendix D.

Remark. If ¢* is spherically symmetric, then

o= E(xD), = 2n(x])

x| x|
forne{l,2,..., N=d}; see Proposition 5.2). Therefore (5-3) trivially holds because &,,, — &1, = 0.

We conclude this section with the explicit form of the projection Pgisc, whose proof for dimension one
can be found in [Gang and Sigal 2005]. The proof for general dimensions is similar, and hence omitted.
Recall that (&,,, n,) = 0m.n-

Proposition 5.6. For the nonselfadjoint operator L(}), the (Riesz) projection onto the discrete spectrum
subspace of L(X), Pgisc = Paisc(L(A)) = P(fisc, is given by

N . .
L I EE S L= YR RN e
R RN AR, o Nol) 2&=\lim/\ & ~im |\ & |)°
We define the projection onto the continuous spectral subspace of L(X) by
Pe = P(L() = P! =1 — Puice. (5-5)

5B. Estimates of the propagator. We will need estimates of the evolution operator U (¢) := e’V for
A1 € $. Recall that L(X;) has two branches of essential spectrum: [iA;,i0c0) and (—ioco, —il;]. We
denote by P, = Pi‘ and P_ = P" the spectral projections associated with these two branches of the
essential spectrum. Hence, P} = Py + P_.

Theorem 5.7. Let d > 3 and define k := [%] +1andv = #. Assume that 2E (A1) > A so that
+2i E(A1) € 0ess(L(A1)). Then, for any time t > 0 and Ay € $ there exists a constant c such that

()™ (= A+ DU @ (L) £ 25 E(R) —0) " Peh|, < c(1+0)"[(x)" (A + D*?hll,  (5-6)

withn =0, 1, 2. For any time t € (—o0, 00) and \| € $ there exists a constant Cg such that

)™ (= A+ D¥2U (1) Pahllz < Co(1+1t]) "2 (x)" (= A + D k]|, (5-7)
IU (£) Pehllos < CyltI™“|1RlI1, (5-8)

IU (1) Pehlloo < Cy (141t (IRll ge + A1), (5-9)

IU(#) Pihlls < Cy (L4 1)~ (Inll g + 1A 11), (5-10)
1)U (1) Phlly < Co(1+ [t ™2 (|11l + [1A]]2). (5-11)

We refer the proof of the estimates to [Soffer and Weinstein 1999; Gang and Sigal 2007; Tsai and
Yau 2002a; Goldberg and Schlag 2004]. For the constant Cy can be taken uniformly for A; € $, see
[Cuccagna 2001; 2003].
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6. Matrix Fermi Golden Rule

As highlighted in the introduction, the decay of neutral mode components, associated with the linearized
NLS/GP equation, is necessary for asymptotic stability of the soliton manifold Jlg. We shall prove that,
after near-identity transformations, the system governing these neutral mode amplitudes is (1-5):

dz=—iEMWNz-T(z, D24+ A Dz+0((1+072%, §>0,

where =i E (A) are complex conjugate N-fold degenerate neutral eigenfrequencies of L(A) = JH()A), I’
is symmetric and A is skew symmetric. It follows that

dlz()> = =22"T(z, Dz +- - . (6-1)

Our strategy to show that |z(¢)| tends to zero is based on proving that I" is positive-definite and that the
corrections to (6-1) decay sufficiently rapidly as ¢ tends to infinity. If L(X) has a complex conjugate
pair of simple neutral eigenvalues, then I" reduces to a nonnegative scalar. If L(A) has multiple, well-
separated pairs of neutral modes, then I" reduces to a diagonal matrix [Soffer and Weinstein 1999; 2004;
Tsai and Yau 2002a; 2002b; 2002c¢; Tsai 2003; Buslaev and Sulem 2003]. The present case of problem
of degenerate neutral modes is more involved due to coupling among the various discrete modes and
with the continuous spectrum. Our computation yields a nondiagonal FGR matrix, I". In this section, we
display the expression for I" and state a result on its general properties. The detailed derivation of the
expression for I' is carried out in Section 10.

The FGR matrix T'(z, z). To construct I" we must first introduce some notation.
Define vector functions G, fork=1,2,..., N as

Gi(z, x) = (g((iD (6-2)

with the functions B(k) and D (k) defined as

B(k) := —if'[(¢")*1¢™((z - &)ne + (- &),
D(k) :=—f'I(¢M 19" Bz - &)& — (z- M) — 21" 1@ 1) (z - &) &,

N N
&= 2k TNI=) 2l
n=1 n=1

In terms of the column 2-vector G, we define a N x N matrix Z(z, z) as

Z(z,7) = (z%(z,2)), (6-3)

where

for 1 <k,l <N, where
z®D(z,2) = (LA +2EM) —0)" ' PGy, i JGy).

Since P.(L)*J = JP.(L), a consequence of L = JH and H* = H (see (5-1) and Proposition E.1), we
have the more symmetric expression for Z%:

Z®D = (LW + 2 E() — 0) "' PGy, i J P.Gy).
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Finally, we define I'(z, z) as
I'(z,2):= %(Z(z, D+ 2%z, 2)).
Thus,
Tz, 2),=—RALM) +2EQ) —0)" PG, i] P.Gy).

Concerning the properties of I', we have the following general result:

Theorem 6.1 (Matrix nonlinear Fermi Golden Rule). (1) I'(z, z) =T'(z, z; A) is a nonnegative symmet-
ric N x N matrix.

(2) Define

- *T , 2
K. G) = min L1 &8
5,220 |s|?]z]?

where G = (G1,...,Gy) defined in (6-2). Then, K (A, é) depends continuously on A and G (in the
space (x)3L®).

We shall require the following Fermi Golden Rule resonance condition:

(FGR) There exists 8" with 0 < 8’ < § (see Proposition 4.1) and a constant C > 0 such that for any
s=(s1,....,sy) and z=(z1,...,zy)T € CV, we have

s*T(z, z: M)s > Cls|?z),
where A € 9.

Remark. In the weakly nonlinear regime (see Section 5A) E(L) ~ e; — eg, A ~ —eg and therefore the
condition for resonance with the continuous spectrum at second order is

2E()»)—)»"'2(€1—€O)+€0=2€1—eo>0.

Our next result is a reduction of the condition (FGR) for the class of multiwell potentials discussed in
Appendix A to an explicit condition on the operator V.

Proposition 6.2. Let V denote the multiwell potential satisfying condition (Eigy) and constructed ac-
cording to Appendix A. Thus, —A + V has two negative eigenvalues eg < ey < 0 with 2e; — ey > 0. The
excited state eigenvalue e; is degenerate of multiplicity N = 2 with spanning eigenfunctions {& lli“, S;“
Let f(|¢|?) = —g|y|>. Assume the nonnegative matrix
(S(=a+V = @er = e0) = i0) ™ Pginéiel™, ginirel")) (6-4)
1<m,n<2

is positive-definite. Then there exists 8' > 0 such that, for ¢* denotes the soliton of Proposition 4.1, if
|A — |eo|| < &8 then K (A, G) > 0. And the Fermi Golden Rule condition holds by taking

C= inf K(A,G(L) >0
)\.Ev_q'é/

in (FGR). Here $g5 denotes a sufficiently small subinterval of the range of A-values for which the soliton
exists; see Proposition 4.1.
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Remark. Positive-definiteness of the matrix in (6-4) is equivalent to

(A +V — et —ep) —i0) ' Pegpiin(z1E1™ + 226™)%, drin(21E1" + 226™)%) > Cz?,
for all z, zo € C.

Proof of Proposition 6.2. In what follows we sketch the proof, which is very similar to the case N =1
(see [Soffer and Weinstein 1999; Tsai and Yau 2002c]).
Recall the transformation of L()) in (5-2):

(LO)+25EM) —0)~"
= (iUosHU* +2i E(L) — 0)‘1 =—iU(o3H +2EN) +i0)"'U*
= —iU(03(¥o+ V) +2E() +i0) " U*

iU (039 4+ 2E () +i0) " Veman (03 (%o + V) +2E(1) +i0) ' U*
and
-1
” oE - (=A+V—(=A=2E()))) 0 6.
(03(Fo+V)+2E (1) +i0) ( X (CA—QEG)-3—i0)" (6-5)

Furthermore, by Propositions 4.1 and 5.1 we have, in the space H?, that

1 5 1 s ( 1 : 1
— l.s 9 n)
1| IBrinll g2 1l " Ml ||slm||

for some 5,13“ as |A — |e0|| — 0. If the nonlinearity f(tr) = 7° with o > 1, we have

U*P. Zzsz C llunll 3 1(

(ghn %.’iin)

PL¢121?1- l(Z]éhn +Z2$1m)2 ) (1 +0(1))

for some constant ¢ € C.
In considering (6-5), note that —A —2E(A) ~eg—2(e; —ep) <0and 2E(A) — X ~2e; —eg < 0. Thus

S((—A+V+A+2EQ)'F,F)=0
for any F. Furthermore, lle™ ™™ Vman || o is small for some 7 > 0, we have
K (., G) = 18P prinl 32 Ko (1 + 0(1))
with
Ko := (1+0(1))
X J((—A+V +eg—2e1 —i0) ' Pe(@iin) " (215" + 2265™7 (din) 7 1€ + 226™)).

The proof is complete. In Appendix C we have a simpler formula for (FGR) when the potential V is
spherical symmetric. U

The proof of Theorem 6.1 is deferred to Appendix B.
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7. Main theorem

In this section we state precisely the main theorem of this paper. Recall the notations & = (£, ..., £y) and
n =@, ..., nn) for components of the neutrally stable modes of frequencies &i £ (1) of the linearized
operator. Recall the definition of the interval $ in (1-4).

Theorem 7.1. Assume (fA), (fB) on the nonlinearity f (I (page 274), (VA) on the potential V (x)
(p. 274), (SA) on the structure of the discrete spectral subspace of the linearization about ¢* (page 278),
(Threshy) on the absence of threshold resonances (page 278), and (FGR), the nonlinear Fermi Golden
Rule resonance condition (page 282). Fix v > 0 sufficiently large and let k = [%] + 1 where d > 3 denotes
the spatial dimension. Then there exist constants c, €y > 0 such that, if for some Ay € $

inf o — 7 (70 + 012 £ +i(3z) 0 o, = €l2¥) = 0, (7-1)
then there exist smooth functions
M) :RT =9, y@):RT >R, 2(t) : RT = CV, R(x,t):[R{dx[Ri+—>C
such that the solution of NLS evolves in the form:
Y(x, 1) = hAOBIO (@ 4 ay(2,2) " +iar(e, DP* +RZ-E+i3Z-n+R)  (1-2)

where limy_, oo A(t) = Aoo for some Ao € 9, a1(2,7), a2(z,7) :CN xCN - Rand7 —z7:CN xCN — CV
are polynomials of 7 and 7, beginning with terms of order |z|*. Moreover,

(A) |z(t)| < c(1 +1)"Y? and z satisfies the initial value problem
dhz=—iEMWz—T(z, )2+ A, Dz+0((L+1)7"7) (7-3)

where ' (z, 2) is a symmetric, positive-definite matrix defined in (6-3) and A(z, 7) is a skew symmet-
ric matrix.

B) ﬁ(t) = (MR(t), SR())T lies in the essential spectral part of L(\(t)). Equivalently, R(-, t) satisfies
the symplectic orthogonality conditions:
o(R,i¢") = (R, 3,4") =0,
w(R,in,) =w(R,§,) =0, forn=1,2,..., N,

where o(X,Y) =3 [ XY dx and satisfies the decay estimate:
I+ RO < c+D7".

Remark. We conclude this section by stating that all the hypotheses except (FGR) in our main result
apply to the multiwell example of Appendix A; see Proposition 6.2 for a reduction of (FGR) is an explicit
condition on the spectral condition on —A 4 V. We expect (FGR) to hold generically in an appropriate
sense.
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8. Reformulation of the main theorem

In proving Theorem 7.1 we establish more detailed characterization of the perturbation about Jlg.
First, we introduce the following simplying

Notation. We always use z to stand for a complex N-dimensional vector z = (z1, z2, ..., zy) and an
upper case letter or a Greek letter with two subindices, for example, Q,, , to stand for

N
Qm,n()‘) = Z Qa,b()\) 1_[ ZZ"Z,?",
k=1

a,beNN

N lal=m,|b|=n

where |al| := Z ay. We refer to this kind term as (m, n) term.
k=1

Theorem 8.1. The following more precise decomposition of the solution in Theorem 7.1 holds: The
perturbation R in (7-2) can be decomposed as
R= " Run()+R (8-1)
m+n=2

where Ry, , are functions of the form
Ry = (L) +iEQ)(m—n) = 0)" ¢y n,

Pm.n are polynomials of z and z with coefficients being smooth, exponentially decaying functions. The
function R satisfies

8 R=LO)R+ Ma(z, )R+ P-N2(R, 2) + P.$2(z, 2). (8-2)

In this formula, S>(z,7) = 0(|z|) is a polynomial in 7 and 7 with A-dependent coefficients, and each
coefficient can be written as the sum of functions of either of the following two forms:

(L) 42 E() —0)~* Pep 1k (1), (L) —26E}) —0) ™ P (M), (8-3)

where k =0, 1, 2 and the functions ¢ (L) are smooth and decay exponentially fast at co. M»(z, 7) is an
operator defined by

Mi(z,7) i=y Ped + APy + X, (8-4)

where X is a 2 x 2 matrix satisfying the bound | X | < c|z|e~W!, Nz(l_é, 7) can be separated into localized
term and nonlocal term
N, = Loc + NonLoc (8-5)

where Loc consists of terms spatially localized (exponentially) function of x € R? as a factor and satisfies
the estimate

1(x)”(=A + DLoc|l + [|ILoc|l + [[Locllaz < c(1z() + 2] (x) (A + DR|,) (8-6)

and NonLoc is given by
NonLoc := f(R?+ R})JR (8-7)
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and consists of purely nonlinear terms in R with no spatially localized factors. (Here v is the same as in
Theorem 7.1.)
Denote by Remainder(t) any quantity which satisfies the estimate

[Remainder(r)| < [z()|* + [|(x) (= A + DR@I3 + IROIZ, + 1201 1(x) " R(@®)ll2- (8-8)

The functions A, v, z have the following properties:

A = Remainder (), (8-9)
y = Y11 + Remainder(z), (8-10)
dz=—iE(A)z—T(z,2)z+ A(z, 7)z + Remainder(t) (8-11)

where
(¢* (31121 + F1@HP1@H? Iz - 6P+ L £ 1@z -0l 0:07)
(9%, 3r*) ’

['(z, 2) is the N x N positive-definite matrix used in (FGR) and A(z, 7) is skew symmetric.

Tl,l =

(8-12)

9. Modulation equations for z(¢), A(¢), y (¢) and the dispersive part, R(-, )

In this section we derive evolution equations for z, A, y and R.
We decompose the solution as

N N
Y1) = e o HOdseir® (dﬂ +aid) +iag +) (@t p)éa+i Yy (Bt ag)na+ R)

n=1 n=1

= OO (@h 1 a1 +iarg + @+ p)-E+(B+a) 0+ R). 9-1)
Here and going forward let

a=(,....,an)", B=Bi,.... BN E=EL .. EN =G,
Let z=«a +if then
a=3(+2, B=5E—-2).
We seek polynomials in z and z, which are of degree two or higher:
aj=a;(z, ) =00z, po=ps2D=00zP) ¢n=4gu(z.2)=0(z")

where j = 1,2 and n = 1, ..., N. Substituting Ansatz (9-1) into NLS (1-1), we have the system of
equations

- - Al . _
a,E=L(A)ﬁ+yJﬁ—JN(R,z>—< 0.9 (4 + D) )+( - (EQ)(B+q) — @+ p)) )

oMy + diar —ar) —n-(EQ)(@+p)+3(B+9))

o B\ a18§¢k+(a+p)-axé) )
+V<—(a+p)-s> K<azem>k+<ﬂ+q>-am 92
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where

s (R o _ (RN(R.2) S5 SN(R,2) )
i= (i) ¥=(@D) mEa=(GRGD) o

with R; = NR, R, = IR and
SN(R, 2) := fll¢* + I +iBL)P 1 — F1(¢M)2 1,
RN (R, 2) := (f1¢* + I +i L1 1— fI@N2 D" + 1) — 2 1) 1M1,

in which
IL=A1+A+R;, L=B +B+R;

Al=a-&, Ay=a10,0"+p-&,
Bi=B-1, By=ap" +q-n.

From (9-2) and the orthogonality conditions (5-4) we obtain equations for A, y and z,, = o, +1i 8, with
n=1,...,N:

3 (et + pn) — EQ)(Bu +qn) + (SN(R, 2), 1) = Fin, (9-4)
3 (Bu +qn) + EQ) (et + pn) — (RN(R, 2), &) = Fay, (9-5)
. 1 >
V+day —a; — W(%N(R, 2), y1¢") = Fs, (9-6)
. 1 ~nrr T " ]
K-l—@m-i-W(JN(R,Z)Jb ) = Fu, 9-7)

where the scalar functions Fj,, F»,, F3 and Fj4 are defined as
Fio=y((B+q) 0. 1) — ha1 (950", na) — (@ + p) - 0:&. 1) — ¥ (Ra. 1la) + A(R1, 03ma)

Fop ==y {(@+p)-& &) —rax(p), &) — M(B+q) - 8um, &) + 7 (R1, &) + A(Ra, 3:&,),

Fy= it gy (Mo 01 < (R 6) = @+ p) -6+ kst + 18 +.) -5, 00),
Fa= W}—W(MRL ) +7(Ro ") + (7 (B+q) - n—ha1di¢" — @+ p) - 1€, ¢")).
Remarks. (a) Recall the estimate of Remainder in (8-8). By (9-4)—(9-7) we have
A v, 020 + i E(M)z, = 0(|z]%) + Remainder. (9-8)
(b) The functions a;(z, 2), px(z, z) and g,(z, z) for j=1,2andn=1, ..., N will be chosen to eliminate

“nonresonant” terms z"z" with 2 < |m|+ |n| < 3.

Finally, we derive an equation for
R=PYR=P.R,

the continuous spectral part of the solution, relative to the operator L(A(t)). Applying P. = PZW) to (9-2)
and using the commutator identity:

P.3,R =& R — /.9, P.R,
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we obtain
% R=LM@)R—PINR,z)+L; R+ (9-9)
The operator L; ;) and the vector function % are defined as
L.y =r@ P +y PO, (9-10)

G — prD (J}(,3+q)'77—)161_13,@)A —):»(Ol—i-p)'aﬁ)
¢ —y(@+p)-&E—raxd; —A(B+q)-hn )

We now summarize the preceding calculation in

(9-11)

Proposition 9.1 (Reformulation of NLS). Using the Ansatz (9-1)

Y(x, 1) =& OB O (@ 4 a1¢ +iard® + @+ p)-E+(B+q) -1+ R),

NLS can be equivalently expressed as a coupled system of equations (9-4)—(9-7) for modulating solitary
wave parameters A(t) and y(t), neutral mode amplitudes 7,(t) = o, (t) + iB,(t) forn =1,..., N,
together with Equation (9-9) governing “dispersive part” ﬁ(t) which evolves in the continuous spectral
subspace of L(\(t)), that is, PC’W)IQ(I) = 13(1‘); see (5-5). Moreover, the functions a; = a;(z, z) for j =
1,2, (p(z, 2),q(z, Z)) = (Pus Gn)n=1....n are 0(|z|?) polynomials chosen (in what follows) to eliminate
“nonresonant” terms of the form z°z° with 2 < |a| + |b| < 3.

Extracting the O (Iz]%) part of ﬁ(t); proof of (8-2). For fixed z(t) € CV, the equation for ﬁ(t) is forced
by terms of order |z(¢)|?; linear terms are removed due to the equations satisfied by z(t) = «(t) +iB(?).
In our analysis, we need to explicitly extract the quadratic part in z, z of I_é(t).

Thus, we consider the quadratic terms generated by the nonlinearity:

N — N N Vo 21'[(¢")*1¢* A1 B,

2 I =INa NI Mo = ( (B + 20 1@ A2 — [ 19" BY )
(9-12)

where Ay =«a-&, Bi=8-1.

Theorem 9.2. Define R
Ryn = (L) +iEQ)(m —n) —0) " Ped Ny (9-13)

and decompose ﬁ(t) as
R= > Rua+R. (9-14)
m+n=2

The function ﬁ(x, t) satisfies (8-2).
Proof. R, defined in Equation (9-14), satisfies the equation:

WR=LOMR+LG R+ Y LiyRun+9— D> @ Run+iEQ)m —n)Ryn) — PeJNos
m+n=2 m+n=2

where, recall the definitions of I%m,n in (9-13), the definitions of the operator L iy and the term % in
(9-9), and we define
JN.y:=INQR.2)— Y JNpn.
m+n=2
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Next we further decompose J N>2 and find M3, S; and N; in (8-2). We consider the functions J N, ,,
with m 4+ n = 3, the third order terms of JN.»:

Ay G1(A2%, B})B;
>IN ,,_X( > Rmn+< ))+<—GZ(A2,§12)A1> (9-15)
m+n=3 m+n=2
where, recall the definitions of A, By, A; and B, from (9-3),
Gi(A7, BY) := f'[(#M)*1(AT + BD) +2f"[(¢M)*1(¢™)* AT,
G2(AT, BY) = (f' L@+ 21 1M1 (@M) ) (AT + BD) + (21101 + 3 £ 1(¢M*1(¢M)*) AT
and X is a 2 x 2 matrix of order |z| defined as
21'[(¢*)19" By 2f'1@") 19" Ay ) ©-16)
6.f'[(¢")*1¢* +4f”[(¢A)2](¢*)3)A1 —2f'l(p")1¢* By )

We define the linear operator M»(z, Z) as

X=X0,1+X1,o=<_(

My(z,2) =X+ L()},y)

which satisfies (8-4).
The function S, in the statement of Theorem 7.1 is defined as

$2z,0) = Y LipRun+G— Y @Run+iEQ)m—mRun)+ Y JNun.
m+n=2 m-+n=2 m+n=3

By (9-8) and
[0, (LW EIiEQN) —0)"N=0,(LO)LiEQ) —0)"'— (L) LiEMX) —0)"'9,
= ML) EIEQ) — 0" (L) i EQ) LX) £iEQ) —0)7!

we have that S,(z, z) satisfies the estimate in the first part of Theorem 8.1. For the details we refer to
[Gang and Sigal 2007].
Lastly, we define the nonlinear term

Na(R,z) :=—(IN(R,2) — > INua). (9-17)
m+n=23

Using the smoothness of the nonlinearity f[-] and removing O (|z|?) and O(|z|?) terms, we have that
Nz(l_é, z) = Loc + NonLoc (see (8-5)) satisfying (8-6) and (8-7). The computation is straightforward but
tedious and is therefore omitted.

Collecting the various definitions and estimates above we have (8-2). U

z(t) dependence of equations for A(t) and y(t). In this subsection we present the proofs of (8-9) and
(8-10), crucial to controlling the large time behavior.

Here’s the idea. Central to our claim about the large time dynamics of NLS is that the solution settles
into an asymptotic solitary wave ¢*> where A(f) — As. We show this by establishing the integrability
and uniform smallness of . Since we expect the neutral mode amplitudes z(7) to decay with a rate ¢ /2,
we require that there be no 0 (|z(?) ) terms in the (9-7): i(t) +0d;a1(z, ) =. ... The strategy is to choose
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the quadratic part of the polynomial a;(z, z) so as to eliminate all quadratic nonresonant terms. The latter
are terms whose z-behavior is like (zx)? or (zZx)? and are oscillatory with frequencies ~ +2i E(A). But
what about the terms of the form z;Zz,,, which are resonant (nonoscillatory)? This is where we use the
choice of basis for the degenerate subspace; see Appendix D. A consequence of this choice is that there
are no resonant quadratic terms appearing in the equation for A! The calculation is carried out below;
see Lemma 9.4.

In what follows we use the notations Nn;S , and N,;T’n to denote functions satisfying

N«S
( N,z*,,) = Nmn-

We define the polynomials a;, ay and pg, gx fork=1,2,..., N in (9-1) (see also (7-2)) as

aj(z.2):= Y AD,0). pzD= Y PHOW., @GD= Y 0¥.0, (©-18)
m+n7é:2,3 m+n=23 m+n=23
m=n

with j =1,2,k=1,2,..., N, and the explicit forms

2DEMAY) = : ———— (N, #"),  3EMAY =;<N§0’¢A),
(@F, 90%) > I ©-19)
1 i
IE(W)AS) = <¢ka¢k>(<N LM = 5T (2on. ™))
where Y ; is given in (8-12); similarly
—2EMAT)+ A = W(Nﬁ), 00").  —3EMWAT)+ A= m(i\@o, 0, ¢"),
—iEQ)AT) + A} = oy s ") — 311z €, 9,.97)
(9-20)
and
—2EM) P —EM QY = — (NS, ), —20iEQ) QY+ EQ) P i= (N3, &),
—3iEGM)PY) — EG) QY = — (N5 ), —3iE<x>Q‘"’+E<A)P§’3 (NJY, &4,
(9-21)
2EMWP) —2E(0) Q") = <Nf‘2,nn>+z<zv12,sn>+m1ZZk< (s M) — (i &),
k=1
EMQ = (N1 na),  EQP") == (N} &)

G . 2 n) ._ pm) (n) ()
Aa,b T Aa,b’ Pa,b T Pa,b’ Q Q

forj=1,2,a+b=2,3,a#b.
The following is the main result.
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Proposition 9.3. Define the polynomials ay(z, 2), ax(z,2), pn(2,2), qn(z,2) as above. Then, (8-9)—
(8-10) hold and

d;A = Remainder(?), 0;y = Y11 +Remainder(?),

n o —in n (9-22)
0Zn +HIEWMN)z, = —<JN2,1, (_l_'é >>—|— %Tl,l sz<< £ m) , (i;>>+Remainder(t),
n m:l m n

where Y11 is defined in (8-12), and moreover,
[Remainder(n)| S |2()1* + 1(x) ™ (A + DROIZ + 1RO + 1201 - 1(x) " R@)]l>-
Before proving the proposition we state the following key observation.
Lemma 9.4. (Nfgl, o) =
Proof. Recall that
Ai=a-§=3G6+2:6), Bi=p-n=5G n-2-n).

The explicit form of
JNy o+ JN1,1+ JNo2

in (9-12) implies that

N3o+ N7+ Ngy =2f'1(¢")*1¢" A1 By
N N N N
n=1 n=1 m=1 m=1
By taking the relevant terms we have

Nl\w, (¢ ) (Z Znén Z ImMNm — Z Znn Z Zmnm)

— 21_l Z Z 20z fL@H1D Entt — Emiia).

n=1 m=1

which, together with (5-3), yields
| L&
S ) = = MN27( 402 _
W8 =3 3 Pt [ 16 16" @t~ ) =0 0

Proof of Proposition 9.3. Recall the estimate of any term denoted Remainder in (8-8). We put (9-6) and
(9-7) in the matrix form

(Id+M(z, 13, P,q)) <)./ AT ) = Q + Remainder, (9-23)
— 111
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where the matrix 2 is defined as

1 .
—————— (XN, ")+ 5T11{z =D -, ¢M) — By
. <¢Av 8)\¢)\>
= . ) X L 024
————((MN, 0,8™) — 311 (2 +2) - &, 0,0") — Y11 — daz + ay

(@*, 9.9%)

the term Remainder is produced by

i ( —(R1, 3,9") + p(§, 9:9%) )

<¢Aa a)‘(p)») (Ra, ¢A> +Q('7’ ¢)\>

Id is the 2 x 2 identity matrix, M (z, R, P, q) is a vector depending on z, R, p and ¢ and satisfies the
estimate
Mz, R, p,q)|l =0(|z|) + Remainder. (9-25)

Now by the definitions of a; and a, in (9-18), we remove the lower order terms in z, z from
(SN, ¢") = 5011z =) -0, ¢*) and (RN, 3,0") + 3V11((2+2) - £, 0:0™)

to get
Q=D+ D, (9-26)
with R
Dy = 1 ( _<SN - Zm+n:2,3 Nrrfn ¢A> )
(¢)\’ a)‘(ﬁ)‘) (SRN - Zm+n=2,3 N;zl,n’ 8)~¢k>
by Lemma 9.4 and
8 Aspn + i EG)(m — ) Aly),

D2 = .
2 ( 9y AL, +iE()(m —n)AL, )

m+n=23
We claim that
Dy, D, = Remainder. (9-27)
If the claim holds then estimates (8-9) and (8-10) follow from (9-26) and the estimates (9-23), (9-25).
Next we prove the claim (9-27) together with (9-22).

Since we removed all the second and third order terms of J N we obtain D = Remainder. Recall the
estimate of Remainder in (8-8). To estimate D, we have to start with studying the equation for z. By the
fact that

dzn +iE(M)z, = 0(|z|*) + Remainder

in (9-8) we obtain D, = 0(|z|?) + Remainder. Hence,
A = 0(|z|*) + Remainder, y—"11= 0(|z|*) + Remainder, (9-28)
which, together with the expansion of J N in (9-17), yields

B (o + pa) — EQBu+a)+ Y (NJ ) =—57T11((z = 2) - 0. na) + Remainder,
k+1=2,3

0 (Bu+an) + EQ)@n+pu)— Y (ND &) =—=3Y11{(z+2) &, &) + Remainder,
k+1=2,3
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where the real function Y ; is defined in (8-10). Choose p, and g, as in (9-21) to remove the lower
order terms as in the equations for ) and y, which, together with the definition z, = o, + i8,, enables
us to obtain

0:zn HIEA)z, = _<JN2,1 + %Tl,l <lZZ.'§77> ’ (_2’; >> + D3(n) + Remainder

with D3(n) defined as

Dsm)yi=— > (P +ik—DEGMP)) =i D (9,00 +itk—DEM Q).
k+1=2,3 k+1=2,3

We claim that this together with the equations for 4 in (9-23) implies that
|D>|, | D3(n)| = Remainder. (9-29)

Indeed, by (9-8), we have
dzn +iE(M)z, = 0(|z]*) + Remainder,

which, together with the equation for A in (9-28), implies D3 =0 (|zI>) + Remainder. In turn we have
an improved equation for z,, as

dzn = —i E(\)zn +0(|z|) + Remainder.

Using this and repeating the analysis we find there is no 0(|z|?) term in D, and Ds. Hence (9-29) holds
which leads to (9-22) and (9-27). U
10. Proof of the normal form equation (8-11)

Recall the definitions of the functions B(n) and D(n) after (6-2). Then the function JN; o in (9-12)
admits the form

N
INo= 2 (gi?)) . (10-1)
n=1

The following is the result establishing the desired normal form of the differential equation for the
neutral mode amplitudes z(z).

Theorem 10.1. With polynomials a,, ay, p, and g, forn =1,2, ..., N defined in (9-18)—(9-21), (8-11)
holds.

Proof. Recall the definitions of J N, , with m +n = 3 in (9-15). The first two terms on the right-hand
side of (9-22) admit the expansion

5
> Ki(n)
k=1
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Ki(n) = <X0 1R2,0, ( )> = —<R2,o, X001 <_mé >>

where

(k) (k) (1) A
P, P + A; (0
K>(n) .= —{ X1,0 Zk ! (k) + Xo,1 Zk ! z?k;gk (2)(];
Zk_l Qr0Mk + Ay @

Zk:[ Q1 1 Mk

K3<n>:=—%<f[(¢>]+2f”[<¢>](</>>)<<z §)° - (Z‘”)z)(zz ) (

+%< FT@+2f" 1M1 Iz - &7 + 1z - 7 >(

—3i <f”[<¢k)2](¢k>2(z ) (Z (’)") : (_’Z$>>

—_—

ron=s{ (7). ()
K5(n) = —<R1’1, XT,O <_7Zré_ >>

with X defined in (9-16) divided into two terms X = X0+ Xo.1:

X -=< LR UGN prz - &
LOT —GBAI@MNA + 21 1@ @)z if [(¢M)2d 2

Xo1=X10

and the real function Y ; given in (8-10).

—( G @M1 + 3 7"1@H16 ) 2 -§)? (_ZO s) : (_.

w))
)
()

))

).

Next we study K;(n) for j =1,2,3,4,5. We start with the important term, K;(n). Recall the

definition of G, in (6-2). By direct computation we obtain

M\ _ . B(n) .
() =i (2 s

which, together with (9-13) and (10-1), implies that

Ki(n) =

WMz

Define
Z(k,n) :=—((LA) +2EM) —0)"' P.G,,iJ Gy)
and a N x N matrix
I'(z,7) :=[A, D]
with Ak, 1) := L(Z(k, 1) + Z(I, k) for 1 <k, <d.

((LA) +2EML) —0)' PGy, iJG,).

(10-2)

(10-3)
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For the sum of K;(n) through Ks5(n) we claim that it can decomposed into the matrix form
5
ZKj(n)=(S(n, D, S, 2),...,8n,d)z (10-4)
j=2
with S(k, )+ S(, k) = 0. Define a N x N skew symmetric matrix
A(z,2) =[A(, k)]

with A(j, k) := Sk + %(Z(k, [) —Z(l, k)). This together with (9-22) and (10-3) yields the equation for
zin (8-11)

What is left is to prove (10-4). To avoid the tedious but simple computations, we only analyze K, (n)
and K3(n).

(A) Consider the part of K»(n) given by

‘ Aél())a)»(ﬁk Nn
Wy 1(n) = _<X0’1 ( A%qﬁk ' <_i§n>>.

The analysis of the other terms is similar. By (10-2) we rewrite W, 1(n) as

Uy 1 (n) = Asotid® ai (PN 2 _aia s @, D(n)) +4i A% (", B(n))
T A%w )| T TR0 200 B

Equation (9-19) relates <N2h0’ ¢x> and (Nz“o, ™) to Ago and Ag()), which, together with the expression
of J N2, in (10-1), yields

N
Wy i(n) =Y Wn, k) (10-5)
k=1
with
W(n, k) -:;(w(/{) ¢*) (90", D(n)) — (D(k), D;.¢™) (", B(n)))
TTEQ) (9, 8197) ’ ’ ’ ]

+ (B(k), ¢*)(¢", B(n)).

1
E2()(¢*, 9,.4%)

By straightforward computation we have
V(n,k)+W¥k,n)=0. (10-6)

By (10-5) and (10-6) we complete the proof for W; 1 (n).

(B) To simplify the notation we introduce

N N
1 . 1 1
:§ E Znbn, w: :§ :§ E ZnMn-

he)
Il
l\)l'—'
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This implies that

N N N N
IOZZ%ZZnSﬂP’ _%Z @, PP+ wd _%Z n(Enp +nnw), IO —w :%Z n(P&n — wy).
n=1 n=1 n=1 n=1

By the definition of K3(n) it is not hard to get

N
Kin) =z ®(n, k) (10-7)

k=1

where
d(n, k) = (IO T+ 21 1@ (p&k — k). (p&x — i)
+i((f L@ T+ 2, 1@ 1@N)) (@nk + p&K), (@ + PEn))
+i((Bf @M 1M + 2" (M1 DM)*) ok, pEn)
— i3 (M (P™) *onk, ony).
Immediately we have
d(n,k)+ok,n)=0

This together with (10-7) completes the proof for K3(n). U

11. Proof of Theorem 7.1

For simplicity, we present the proof of Theorem 7.1 for the case d = 3; the proof can be easily modified
to cover d > 3. The main difference is that, in controlling || R(?) ||z ocray by [|R(2) || g+ ey for d =3 we
take k = 2 while in general we need k = [d /2] 4 1; see Section 5B.

Estimation strategy. This subsection discusses our strategy for studying the large time behavior of so-
lutions.

We begin by introducing a family of space-time norms for measuring the decay of z(¢) and ﬁ(t) for
0 <t < T with arbitrary T. We then prove that this family of norms satisfies a set of coupled inequalities,
from which we can infer the desired large time asymptotic behavior.

We claim that

To:= || (11-1)
where 7 is defined in Theorem 7.1.
Family of Norms.
Z(T) :=max(Ty+0)! 21z, R (T) :=max(Tp +01x) RO g2

Pa(T) 1= max(Ty +DIROlso. R3(T) := max(Ty + 0" 1(x) " R(0)]l2, (11-2)
o . (M0
Ro(T) = max RO, Rs(T) = max 1= IR

where the constant v is defined in Theorem 7.1.
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Remark on choice of norms. It is clear that a combination of H?, spatially weighted H> and L° norms
of ﬁ(t), as well as a bound on |z(¢)|, are plausible choices of norms to control the large time behavior.
This accounts for the definitions of Z(T'), R (T), Ro(T) and R4(T). Our list of norms also includes
estimation of the time decay of || ﬁ(t) I3, that is, Rs, and the local L* norm of an auxiliary function R(t),
that is, R3. Why these two additional norms? As will be seen, ¢ (¢) = |z(¢)]| satisfies an equation of the
form
¢~ =i 4 e(),

where c(t) consists of various coupling terms (products) involving neutral mode amplitudes z(¢), the
ground state ¢*® and dispersive terms R (t). First, neglecting c(¢), we observe that ¢(¢) ~ =12, To
treat c(¢) as a small perturbation for large #, it is necessary that it decays more rapidly than the term
23(t) ~ 732, Without any further decomposition of ﬁ(t), we find among the coupling terms one is
of order |z(?)| - ||[{x)™" ﬁ(t)”z. The expected decay rate of each factor implies this term is of order
t=3/2 for large t, which is of the same order as ¢3(t). The resolution is to expand ﬁ(t) as a leading
order part consisting of terms R, , = z"z" with m +n = 2 plus a more rapidly decaying correction
Ié(t) with ||(x)‘”1§(t)||2 =079 (8§ > 0); see (8-1). This modification yields an equation with an
improved correction term of order |z(¢)]- || (x)‘”]é(t) Il = =3 (6 > 0), which can be treated as a small
perturbation in the large time dynamics.

Remark on the estimation strategy. See also [Buslaev and Sulem 2003; Soffer and Weinstein 2004].
Estimation of the norms R ;(T') proceeds as follows. We first express R , the solution to Equation (9-2),
in terms of the Duhamel integral equation, relative to the linear operator, L(A1). Here, A =A(T), T >0
is fixed and arbitrary. Namely,

dR=LOMR+--- = §P'R=LO)P" R+ PM (L) — LO.))R+ -
t
— P}‘R(r)ze“WR(O)Jr/ HPNUI () ds.
0

We can therefore apply the time-decay estimates of Theorem 5.7 to obtain bounds on local decay and
L*° norms of PC“R(I). However, we need bounds on R(t) = PCA (”R(t). Since

R(t) = P R(t) + P}l R (1),

disc

it suffices to bound Pdkiécls(t). This is done as follows.

P R=(P" — PR+ PXOR(t) = (PY — PXYR(t)  (because PXVR(t) =0)

disc disc disc disc disc disc disc
_ (pM AME)\ prl A My pA
- (Pdisc - Pdisc )PdiscR(t) + (Pdisc - Pdisc )PC 'R(1),

which implies

disc disc disc disc disc

A A(t) A A At)
(I —(Py, — PP R = (Pyl. — PLYPMR(1).

Therefore,
P

disc

R(t)= (I =80, 1)) '8, M) PMR(1)

and we estimate R(¢) in either a local energy H 2(R4; (x)~° dx) or L®(R?) via

IRMIlx < IPXRO)IIx + 1| P!

disc

R®Ix < IPYR@)llx + | PXR(@)lIx-
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Here 6 (A, A1) = P} — P s of finite rank and of small norm proportional to ftT IX(s)l ds.

disc disc
We now derive the integral equation for P! R, which is the basis for our time-decay estimates. If we

write
L(A()) = L(A1) + L(A(2)) — L(Ay),
then (9-9) for PC’\l ﬁ, which takes the form
% PMR=LOA)P"R+(O—A +y)PVIR+---.

Recall that L()\) has two branches of essential spectrum [iA, ioo) and (—ioco, —iA]. We use Py and P_
to denote the projection operators onto these two branches of the essential spectrum of L(X1).

Lemma 11.1. For any function h and any large constant v > 0, we have
[(x)"(=A+D(PIT —i(Py = P-Dh|, < cll(x) 7 (=A+ Dhlo.

For d =1 the proof of this lemma can be found in [Buslaev and Sulem 2003]; the proof for d > 3 is
similar, hence omitted here.
Equation (9-9) can be rewritten as

8, PM'R=L(h)PM R+i(y+A—x1)(Py — P_)R+P* OR+PM PVG— PM PXOIN(R, 2), (11-3)
where O is the operator defined by
01 :=hPy +LO) =LA +yP T —i(y+1—r)(Py— P). (11-4)

By (11-3) and the observation that the operators Py, P_ and L(A;) commute with each other, we have

t
PM R = L0+t 0(P=F) phi 3 () +/ eU=ILONTaw(P=P) phi (0, R + P2G— PXIN(R, 7)) ds

° (11-5)
with a(t,s) =i f;()}(t) + A(t) — A1) dt. We observe that P, P_ = P_P, =0 and for any #; < ¢, the
operator

et t)(Pr—P_) _ ea(tz’tl)P_,_ te@tp - g2 o g2

is uniformly bounded.
The following result, whose proof is given in the Appendix F, will be used repeatedly in our estimates:

Proposition 11.2. Let Ty > 2. There exists a constant ¢ > 0 such that

! 1 1 c
ds < , e [0, 21, 11-6
/0(1+I—S)3/2(T0+S)" ‘= r ° 0. 7] (11-6)

t
/ (t =) V2(To+s)"Vds < c(Ty + 1)~V log(Ty +1). (11-7)
0

Similar versions can be found in many literature, for example [Soffer and Weinstein 1999; Buslaev and
Sulem 2003].
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Estimate for R1(T) := max;<7(To +1)|| (x)_vﬁ(t) Il -
Proposition 11.3. R < c(Toll(x)" R(O) | 2 + PRy + Z2 + T P (Z3 + ZRy + RuB2)).

With a view toward proving the time decay estimate of Proposition 11.3, we now first give appropriate
norm-estimates of the latter terms in (11-3).
First from the norm definitions (11-2) and Lemma 11.1, we estimate the O R and % terms

1x)" (=A + 1) O, R|l2 < c(To+ 1)~ Z%R,, L)
[(x)"(=A + DGl < c(To+1)722Z3.
Next, we estimate the nonlinear term JN:

Lemma 11.4.
I(—A+DINR, )1+ (—A+1)IN(R, 22 < c(To+1) " RIPRo+Z) +c(To+1) > (ZR1 +RaBRD).
Proof. Recall the definition

Ny(R.2):=—INR.2)+ Y JNun
m+n=2,3

in (9-17) and the decomposition N as the sum of Loc and NonLoc in (8-5). By the fact JN,, , for
m ~+n =2, 3 are localized functions we have the estimate

(=A + 1)(JN(R, z) — NonLoc)||; + [[(=A + 1)(JN(R, z) — NonLoc)||»
< clzl(zl + 1{x) " Rll2) < c(To + 01 Z2 + (To + 1) 2 ZRy).

More challenging is the term NonLoc defined in (8-7), which is purely nonlinear, having no spatially
localized factors. We use the estimate

|l(—A + 1)NonLoc||; 4+ ||(—A + 1)NonLoc]||,
< c(IRI2 IR lloo + RN 2 I RIZ) < e(To + )7 R3Rs + c(To + 1) 7 Ra B3

by the fact f(x?)x is of the order x3 around x = 0 for d = 3. O
Proof of Proposition 11.3. By (11-5) and estimates (5-7), (5-11) for d = 3 we have
()" (=A+ DPH R

< 1) (A + De SV PR R(0) 2

13
+ ‘ /0 ()7 (=A+ D" PR Q| (5)R + PG — P*IN(R, z)) ds

2

<c(1+0)72(x)" (—A+ 1)1?(0>||2+f (141 —5)2(x)"(=A +1)(O, R + PG) ds||»
0

+f (41— (I (=A+ 1D PLINRS), DIl + (=A+ 1) PFIN(R(s), 2)|I2) ds.
0
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Therefore, by the estimates (11-8) and Lemma 11.4 we have
1) (= A+ D P} Rlla < c(140) 72 (x)" (= A+ D RO) I2
F(RIPo+ 22+ T, (2P + 2R +RuB)) /Ot(1+t—s)_3/2(To+s)_1 ds.
Using the time convolution estimate (11-6) we obtain
1) ™ (=A+ D)PHR[2 < e(To+ 0" (Toll(x) " RO) |2 + B3R + Z2 + T, (23 + ZR) + RuBR3)).
This implies Proposition 11.3. U

Estimate for R5(T) :=max,<7(To +1)|| ROl

172

Proposition 11.5. %R < ¢(To(IRO)[l1 + | RO) || g2) + Z2 +R3Ro + Ty 12(Z3 + ZR1 +RD)).

To prove this we use the following result whose proof is very similar to that of Lemma 11.4.
Lemma 11.6.
IPXIN(R, Il + IPXIN(R, 2) |2 < e(To+ 1)~ (Z2 + R3Ra) + ¢(To + 1) V2P + 2R +R).
Proof of Proposition 11.5. By estimate (5-9) for d = 3 and (11-3) we have that
IPFR(0)lloo < lle™™®0 P2 R(0)]]o
<c(+07PRO) L + RO 2)

t
+cf (41— 01(5)R + P6], + [ 01(5)R + PG 2) dis
0

t
+c / (14+1—=5)2(IPXIN(R, D)1 + | P2IN(R, 2)| 1) ds.
0

By the properties of O; (see (11-4)) and 4 (see (9-9)) we have
101(s)R + P G|l + | O1(s)R + PXG|| 2 < c(To + 1) >*(ZR1 + Z°).
This, together with Lemma 11.6, yields

IPA R0 < c(To+ )" (TOI RO) 11 + Toll RO 2 + 22 + R2Ga + Ty 2(Z2 + 2R +RD). O

To+0)V* -
Estimate for R5(T) := ma o+ IR(?)|3@.

15T log(Ty +1)
Proposition 11.7. %5 < c¢(To(|RO)[l1 + | RO) | 2) + Z2 + Ty > @R2Ra + Z° + ZR +R3+RD)).
Lemma 11.8. IIN(R, 2)ll32 < c(To+ 1)1 22+ c(To + 1) 2 RERy + Z° + ZR) + R+ R2).
Proof. As in the proof of Lemma 11.4 we decompose J N into the localized term

JN(13, z) — NonLoc
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and nonlocalized term NonLoc. The estimate of the first term is similar to that of Lemma 11.4 and hence
omitted. The nonlocal term NonLoc defined in (8-7) admits the estimate

- 2/3 - -
INonLoclls2 SC(/ RE) T < clRIBIR oo

By using the definitions of estimating functions on all the terms above we have the lemma. U

Proof of Proposition 11.7. By estimate (5-10) for d = 3 and Lemma 11.4 we have that

t
IPMR(D)|5 < le"-*D P2 R(0)||5 + / =X PR ()R + P26 — PYIN(R, 2))ll3 ds
0
<c(+0)72IRO)[11 + IRO)]| )

t t
—i—c/ (r—s)—‘/2||01(s)R+Pj@||3/2ds+f (t —s) "2 P2IN(R, 2)||32 ds.
0 0

By the properties of O; (see (11-4)) and 4 (see (9-9)) we have
101(5)R+ P}Gl132 < c(To+ 1) >2(ZR) + Z°).
This, together with Lemma 11.6 and (11-7), implies

| P2 Rl

<c(To+07"log(To+1)(Ty 21RO + Toll RO | g2+ Z2° + Ty 2 (@R3P + Z° + ZRy + R +R3)).
This estimate and the definition of %5 yield the proposition. (]
Estimate for 33(T) := max; <7 (T + )51 (x) " R(®)|l2.

Proposition 11.9. Let the constant v the same as that in (5-6) and (5-7) with d = 3. Then

3/2

R < (T3 (1) RO) 2 + 120 P)) + Ty 7

(Z° + ZR3 + ZRy + PR3 + R3R4).
As usual we estimate the nonlinear term Nz(ﬁ, 2).
t
Lemma 11.10. / [(x) " e“=EC PR PN (R, 2) |l ds < c(To+1) Ty U2+ 2R +RI+RIRY).
0

Proof. We start with the function N,. Recall that N, = Loc 4+ NonLoc in (8-5) and the estimate of Loc
after that. The nonlocal term NonLoc defined in (8-7) admits the estimate

INonLocl|; + [[NonLocll2 < c(I[R[3 + |RIZ) < c(IRI3 + I RIZ I RI12).
By the definition of estimating function we have

INonLoc||; 4 [NonLoclly < ¢(To + 1) *(log(To + 1)) *%3 + (To + 1) *R3%,
<c(To+07PT, V@3 4+ R3Ry).
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Finally, by the propagator estimates (5-9) and (5-11), we have

t
/ [[(x) Ve ""IL®) PPN, (R, 2)||2 ds
0

t
50/ (1+¢—s)7"*(]NonLoc(R, 2)|l1 + [NonLoc(R, z)|l2 + [l {x)"Loc|l) ds.
0

This together with the estimates of Loc and NonLoc above yields the lemma.

Proof of Proposition 11.9. By the same techniques as in deriving (11-3) we have

O

O PMR=LOA)PHR+i(y+r—i)(Pr— PO)R+P(z, )R+ P} S)(z,2) + P PANy(R, 2), (11-9)

where the operator P(z, z) is defined as
P(z,%) := PY'My(2,2) —i(y + A — A1) (Py — P_) + P} (L(A) — L(%1))

and the terms P}Nz(ﬁ, 2), $2(z, 2), M»(z, z) are defined in Theorem 8.1.
Rewrite (11-9) in the integral form by the Duhamel principle to obtain

1{x) "V PHR(#) |2 < |[{x) Ve H ) PHR(0)]|

t
+/ | (x) """ OEAD (P (2, D) R+ PM S5(2, 2) + PMPANA(R, 2)) |, ds.
0

For the left-hand side we claim that
1(x) e A PR RO) 12 < (14672 (x)" R(O) |2 + [2(0) ).

Indeed recall that

with R, , defined in (9-13). Therefore, with the time-dependent of R, » and z, we have

(11-10)

(11-11)

1(x) " e E A0 PHRO) I < [1(x) e EE PR RO+ Y 1) Ve E MY PA Ry 1 (0) 2.

m4n=2
By (5-6) and the fact that R,, , is the summation of terms of order |z|? we have
1)) e FAV PRy ()2 < elz(@) (14 1) 72,
This, together with the estimate
|{x) e L0V PAR(O) 12 < e (1467 (x)" R(O) 2,

implies (11-11).
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Use (5-6) on the right-hand side of (11-10) to obtain
/Ol || (x)_”e(t_s)L()‘l)(P(z, 2R+ PC'\‘ S»(z,2)+ IDC)”l P(}Nz(ﬁ, Z)) ||2d5
< /Ota +1 =) (I100)" Pz, DRI2 + IN2(R, D)l + IN2(R, 2)12) ds
+/Ot || (x) e TILCD prig, (7, 7) |2 ds.

We estimate these terms in detail:

(A) By the definition of S»(z, z) in (8-3) and estimate (5-6) with d = 3 we have that

t t
/0 [ (x) " ILOD prig, (2, 7) |2 ds 5cZ3/0 A+t —)(To+5)ds <cZ3(Ty+1)3>.

(B) By the definition of P(z, z7) and the estimate of M>(z, z) in (8-4),
[1(x)" P (z(s), Z(s)R(5)Il2 < clzl - [1{x) " R($)l2 < e(To + )"0 ZR5.

Hence by (11-6),

f<1+t—s>—3/2||<x>”P<z(s>,z<s>>1%||zds
0

1/20

t
< cTol/ZOZQRgf (41 —5) 2 (To+95) 3 ds < Ty 2R3 (To+ 1775,
0

These, together with Lemma 11.10, implies
1(x) ™" P21 Rl
<c(14+072®) " RO + 120 ?) + c(To + )3T, 20 (ZR0 + 2R3 + 22 + B2+ RIRy)
< c(To+ 07T 1x) RO 2 + Ty P12 + Ty (2R + ZR3 + Z° + B3+ R3R)).
which implies the proposition. (]
Proposition 11.11. %3 < |[R(0)|2,, + cTy (R} + 2R + 2R} + RIR).
Before the proof we estimate the nonlinear terms.

Lemma 11.12. [((=A+ D)P}IN(R, 2), (A + DR)| < c(To +1)"2(Z>R) +RIRD).

Proof. As in Lemma 11.4 we decompose J N into the localized term Loc and the nonlocalized NonLoc
defined in (8-7). The Localized part satisfies the estimate

[{(=A+ DLoc, (—A + DR)| < c(lz)* + [[(x) " R|[3).
By the definition of NonLoc in (8-7) we obtain
|((—A + DNonLoc, (—A + D)R)| < c[(—=A + DRI R|I>,.

This together with the definitions of estimating functions implies the lemma. U
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Proof of Proposition 11.11. By (9-9) we have
(—A+ DR, (~A+1R) =(( A+1)d13( A+DR)+({(-=A+ DR, ( A+1)d13 —24:1(
! ’ - dr ’ ™|~ "

with
Ki:=((=A+D@LA)+yDR, (=A+DR)+ (=A+ DR, (=A+ 1)L +yJ)R),
Ky :=i{(~A+1) PR, (~A+DR) +i{(=A+ DR, (—~A+ 1) P R),
K3:=—((—A+1DPIN(R.2). (~A+1DR) = (~A+ DR, (~A+ D)P}IN(R, 2)),
Ky:=((—A+1)P*G, (=A+DR) + (A + R, (—A+1)Pg).

Recall the definition of the operator L(A) in (5-1). By the observation J* = —J and the fact that
JL(}) is selfadjoint we cancel all the nonlocal terms in K:

K1l < ell(x) "Rl < e(To+ 1) 7R,
By observing that |)l| = 0(|z]?) and chﬁ is localized we have that
Kl < clz@P I RO < c(To+ 072 ORT(0).
By the lemma we just prove, we have
|K3| < c(To+1)"2(Z*RI + RIR3).
By the property of P*% in (9-9) we have
Kl < clzPPx) " Rll g < c(To+1) 227,

Collecting all the estimates above, we obtain

CAAH DR, A+ DR = c(Ty +072@0 + 22 + 229+ 957D,
After integrating the equation above from 0 to ¢t we have proposition. O
Estimate for Z(T) = max, <7 (Ty + t)V/*|z(¢)|. Recall that by (FGR)

2@+ 2%z, )z = Clzf.

Proposition 11.13. There exists an order one constant m > 0 such that if m < Ty < |z(0) | =2 then

2/5

Z(T) <1+ TLZ(T)(Z(T) +RIT) +RET) + Z(T)R3(T)).
0

Proof. By (8-11) we have

d
Elzl2 =—7"(Z(z,2) + Z*(z, 2))z + N(zZRemainder(z))
which can be transformed into a Riccati inequality:

3 |2(1)[* < —Clz(1)]* +2|z(1)|[Remainder ()|
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By (8-8),

|z(¢)| [Remainder(t)| < Z(TYWZ(T) +R3(T) +R3(T) + Z(T)R5(T)),

c
(To + t)2+8
where § = 2/5.
Lemma 11.14. Suppose that z(t) is any function satisfying the equation

lz* < —lz*+g1),  2(0) =2z, (11-12)
where g(t) is a function satisfying the estimate
g <cu(To+1)7>7° (11-13)

with the constants cy, § > 0. Then there exists K > 0 independent of Ty and cy such that if C#TO_‘S is
sufficiently small then the function z(t) in (11-12) admits the bound

1+ KeyT,
N < ——— 11-14
20| = —— 77 (11-14)
where k = min{Ty, |zo|~2}.
The proof of this lemma is in Appendix G.
We now chose
m < To < 12(0)|
where m is an order one positive constant. Then,
K
Z(T) =1+ R Z(T)ZT) + FT) + Ro(T) + Z(T)Ra(T)). O
0

Closing the estimates.

Proof of Theorem 7.1. We seek to obtain T -independent bounds on R ;(T') and Z(T) defined in (11-2).
This will be achieved by choosing the parameter Ty in the norm definitions sufficiently large and the data
R(0) sufficiently small with Ty and R(0) related in a manner to be specified.

Define

M(T) =) " Ru(T),  S:=T3 2 (IRO) g2+ 1{x)"R(O)]2)
n#4

where Ty is defined in (11-1). By the conditions in (7-1) we have that %4(0) is small and M (0) and Z(0)
are bounded.

Recall the estimates of R, forn =1, 2, 3,4, 5 and Z in Propositions 11.3, 11.5, 11.9, 11.11, 11.7 and
11.13. By plugging the estimate of Z and %4 in Propositions 11.13, 11.11 into Propositions 11.3, 11.5
and 11.7, we obtain

M(T) < c(S+ 1)+ (Ry(T) + Ty *) P(M(T), Z(T)),

Z(T) < 14Ty " P(M(T), Z(T)), (11-15)

RIT) < |RO)|%, + T, P(M(T), Z(T))
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where P(x,y) > 0 is a polynomial in x and y. Using an implicit-function-theorem type argument (see
below) we have that if S and M (0) are bounded then

MT)+Z(T) <p(S) and Rk 1 (11-16)

where u is a bounded function for § bounded. By the definitions of %R ;(T') and Z(T') there exists some
constant ¢ such that

1) " R@) 2, Rt oo < c(To+1)7", lz(t)| < c(To+1)"'/2, (11-17)

which is statement (B) in Theorem 7.1.
By the bound of Remainder in (8-8) and the estimates (11-17) we have

|Remainder| < ¢(Ty 4 1)~ 1%/

which, together with (8-11), implies statement (A).
The convergence of A comes from (8-9) and the fact that Remainder is integrable at co. U

In the following we prove (11-15) implies (11-16) by using implicit function theorem. For the other
methods we refer to [Soffer and Weinstein 1999; 2004; Tsai and Yau 2002b; 2002¢; Buslaev and Sulem
2003; Tsai 2003; Cuccagna and Mizumachi 2008]. First we transform the inequalities by taking square
root of the third equation of (11-15) and plugging it into the first one, then

M(T) < c(S+ 1)+ (IRO) || 2 + T, *)P(M(T), Z(T)),

Z(T) < 1+ T, P(M(T), Z(T)),

Ra(T) < RO 2+ Ty ' P(M(T), Z(T)).
In what follows we use this equation instead of (11-15). Define a vector function FE,(;(]\;I 4 ) as
Fos(M,Z):=(F)(M,2), FP M, Z), FS) (M, Z))
with
FOM,Z):=c(S+ D)+ @ +e)P(M,Z), FP(M,Z):=1+€P(M,Z), F*) :=8+eP(M,Z).

Immediately we can see that
My=c(1+S), Zy=1, Ry=0

is a solution to the equation
(Mo, Zo, Ro) = Fo,0(Mo, Z).

Define a closed set
Y :=[0,2¢(S+1)] x[0,2] x [0, 1].

Lemma 11.15. There exists 8o > O such that if €, § € [0, 8g] then
(M,Z,R)=F.5(M, Z) (11-18)
has a unique solution in ¥. Moreover, for any continuous functions M, Z, R : Rt — R™, satisfying

(M(0), Z(0), R(0)) < (M, Z,R) and (M(t), Z(t), R(t)) < Fes(M@), Z(1)),
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we have

(M@), Z(t), R(1)) < (M, Z, R). (11-19)
for any time t.

Proof. The proof of existence and uniqueness of the solution is not difficult by observing
|(3s Fe,s(M, Z), 0z Fe s(M, Z), 03 Fe s(M, Z))|| < c(8+¢)

if (M,Z,R) € ¥. Hence by implicit function theorem we have that if c(e + §) < 1/2 there exists a
unique solution to (11-18).

We next prove (11-19) by contradiction. Suppose that (11-19) fails at time . Since (M (¢), Z(t), R(t))
is continuous there exists a time #; < ¢ such that (M(t{), Z(t;), R(t;)) € ¥ and (11-19) does not hold.
Without loss of generality we assume ¢ = ¢t;. Then by subtracting the inequality for (M (¢), Z(¢t), R(t))
by (11-18) we get

M(1) =M < (8 +€)(Ki(M(1) = M) + K2(Z(1) = 2))
and
Z(t)— Z,R(t) — R < e(K3(M(t) — M) + K4(Z (1) — 2))

for some K, with n =1, 2, 3, 4 depending on (M (¢), Z(t), R(¢)) and (M, Z, E). By the fact that
(M, Z,R), (M(t), Z(t), %(1)) € T

and P(x, y) is a polynomial with positive coefficient, we have that K, are positive and bounded. By these
inequalities and the fact 0 < ¢, § <« 1 we derive (11-19). This contradicts our assumption. Thus (11-19)
holds for any time 7 > 0. (]

12. Summary and discussion

We have extended the asymptotic stability / scattering theory of solitary waves of the nonlinear Schrédin-
ger/Gross—Pitaevskii (NLS/GP) equation to the important case where the linearized dynamics about the
Lyapunov stable bound state has degenerate neutral modes. This is the prevalent case in situation where
the equation is invariant under a nontrivial symmetry. We construct a class of multiwell potentials to
which the theory applies. The current theory, as all previous work on soliton scattering in systems with
nontrivial neutral modes, requires a Fermi Golden Rule (FGR) nondegeneracy hypothesis. The analytical
verification of this hypothesis for either specific or generic NLS/GP systems is an open question. Nu-
merical experiments for the time-dependent NLS/GP equations, in which decay rates of neutral modes
are measured, are consistent with the generic validity of the (FGR) nondegeneracy hypothesis.
We conclude by mentioning an interesting direction for further exploration:

Semiclassical limits and higher order nonlinear Fermi Golden Rule. A problem of great interest is
NLS/GP on R? in the semiclassical limit:

iy =—AY + V)Y — F(YDHY,  ¥x, 0) = Yox)

where 0<h < 1. The nonlinearity is taken to be focusing (attractive) but subcritical. Using the Lyapunov—
Schmidt method it has been shown in [Floer and Weinstein 1986; Oh 1988; Ambrosetti et al. 1996] that
for h sufficiently small a soliton concentrated at a nondegenerate critical point of V can be constructed.
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The soliton, constructed in this manner, is soliton of the translation invariant nonlinear Schrodinger
equation, scaled to be highly concentrated about the critical point of V. Therefore, the linearized operator
JH"()) is expected to have spectrum, quite closely related to the linearization about the translation
invariant NLS soliton. If the soliton is concentrated near a minimum of V, then it is Lyapunov stable
[Oh 1988], and therefore the spectrum of J H h(3) is a subset of the imaginary axis. As we have seen
for NLS/GP, there is a two-dimensional generalized eigenspace corresponding to an eigenvalue zero. &
being small implies that the 2 x d zero modes associated with the translation symmetry

Y(x, 1) = ¥ (x+xo,1)
and Galilean symmetry
V(x, 1) > ey (x —2ur, 1)

perturb to d complex conjugate pairs of eigenvalues. Although we expect semiclassical, highly localized
solitons to be asymptotically stable and for the degenerate neutral modes to damp by resonant radiation
damping, as elucidated in this article, we note that for 4 very small, the complex conjugate neutral
modes of J H" (1) are very close to zero and the condition 2E(A) — A > 0, which is necessary (although
not sufficient) for the Fermi Golden Rule resonance condition (FGR) to hold, fails. It remains an open
question to derive the normal form when resonance of discrete modes with the continuum occurs at some
arbitrary order in the coupling parameter g (recall f(|v|*)¢ = —g|¥|*¥ and see also the discussion in
Section 1). For results in this direction, see [Gang 2007; Cuccagna and Mizumachi 2008].

Appendix A. A class of multiwell potentials for which — A + V satisfies condition (Eigy) and L(X)
satisfies (SA) and (Thresh, )

In this section we find an example —A+V in a subspace of L*(R%) satisfying condition (Eigy), motivated
by the study of double well potentials. Define

sd::{f:IR3—>(D|f(—x)=f(x) for any x}.

Observe that o is a self-closed subspace, that is, if f1, f> € o then f1 + f2, f1f2, Afi € d. Hence we
can study (1-1) in the space d N L?(R3) and obtain all the results. The following is the main result

Proposition A.1. There exists a potential V such that the linear operator — A+V acting on the subspace
AN L2(R?) has two eigenvalues eq < ey < 0 with 2e; > eg. ey, the lowest eigenvalue, is simple, and
eigenvalue e is degenerate with multiplicity 2. Moreover the operator

14+ (=A+i0)7 'V (x)2L? - (x)2L?
is invertible.
If the nonlinearity f(x)=x and if |A — |eg|| is sufficiently small and ¢* is the ground state satisfying
—AY* + VP +2d" — (91 =0
then we have the following results for the linearized operator L(A) defined in (5-1).

Proposition A.2. The operator L(\) satisfies the spectral conditions (SA) and (Thresh,).



DYNAMICS OF NONLINEAR SCHRODINGER/GROSS-PITAEVSKII EQUATIONS 309

Proposition A.1 is implied by Proposition A.5 below. Proposition A.2 will be proved at the end of
this section.

As proved in [Albeverio et al. 2005, Theorem 1.1.4 on page 116] the operator —A — g§(x) has only
one eigenfunction, that is, the ground state, for any ¢ > 0. By this observation we have:

Lemma A.3. For any q > 0, there exists a constant X € (0, 00) such that the operators

|x[2 1 3 x|

—A—qk_%e_T, —A—gq)\_ie_T

each have only one eigenfunction in A.
To facilitate later discussions we define
W= q)\_3/2e_|x|2/)\.
We start with constructing a family of operators. Define
Ml :: (m7 07 0)7 M2 :: (07m’0)7 M3 :: (0’ 07 m)7

and
Wi, (x) := 3(W(x + M) + W(x — M) fork=1,2,3.

Lemma A.4. Ifm is sufficiently large then in the subspace 4N L?*(R>) each of the operators —A — W,
and —A — %WMk,for k=1,2,3, has only one eigenfunction.

Proof. We only prove the result for —A — Wy,,. The proof of the other cases is similar, hence omitted.
First we have that if m is sufficiently large then

(== War)(@C + M) +( = M), (- + M) +¢(- — M) <0.

This principle [Reed and Simon 1979] implies that the operator —A — W)y, has at least one eigenstate.
Second the min-max principle implies that any function f L ¢ (- + M), ¢ (- — M) satisfies

(A =Wy f ) =2(((A=W( + M) f, f)+ (—A—=W(- —M))f, f)) = 0.
This, together with the facts
(- +M)—¢(-—M;) LL*(R )N and span{¢(- —M), ¢ (- +M;)}=span{¢(- —M)£p (- +M)},

yields that
(A=Wum)f, f)=0

forany f e dNL*(R¥ and f L (- + M) +¢(- — M)).
Collecting what was proved we have that the operator —A — W), has only one eigenfunction, its
ground state. ([

To prove the main result we define
Vin 1= 3 (Wat, + Wiz, + Wagy).

Proposition A.5. There exists at least one m € [0, 00) such that —A — V,, has all the properties in
Proposition A. 1.
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Proof. We need the following facts:

(A) For any m € [0, 00) the operator —A — V,, has at most three eigenfunctions in s N L?. Recall in
Lemma A.4 we proved that if f L ¢(- + M) +¢(- — M) fork=1,2,3 and f € sd N L? then
(A =Wp,) f, f)=0. Consequently if f L ¢(- +My)+¢(- — M) fork=1,2,3 then

(=A=Vi) [, /) = 5(((A=Wu) f, )+ (A= War) £, )+ (A = W) f, £)) = 0.
The min-max principle [Reed and Simon 1979] implies that there are at most three eigenfunctions.

(B) Ifm is sufficiently large then in the space L*>Nsd the operator — A —V,, has three eigenfunctions and
two eigenvalues: one ground state and two degenerate eigenstates. The fact that —A + V), has three
eigenfunctions follows from the min-max principle. The proof is similar to the case of double-well
potentials [Harrell 1980] and is omitted. We need to prove that these eigenstates are degenerate.
Indeed, as m — oo the three eigenfunctions converge to a linear combination of the functions:

(- +M)+o(- —M) fork=1,2,3.

In particular, the ground state converges to

3
Y o+ M)+ — M.
k=1
Moreover, the ground state is simple and orthogonal to the excited eigenstates. The excited eigen-
states are not invariant under a permutation: (x, X2, X3) = (Xu(1), X2(2), Xn(3)). Since V,, is invariant
under permutation, a second, linearly independent, eigenstate may be obtained from a particular
choice via permutation.

(C) When m =0, —A — V), has only one eigenfunction, the ground state. This is clear since V,,, = W
when m = 0.

(D) For any m > 0, —A —V,,, has at least one eigenfunction with eigenvalue less than some —cy < 0.
Let ¢, be the normalized ground state of —A — %WM2 with eigenvalue —cg < 0. Then we have

(A =V, ) < —co

by the facts ¢, > 0 and W > 0. By the min-max principle —A — Vj,, has a ground state with
eigenvalue < —cy.

The definition of W implies that (—A + KTIW( +2) is analytic in z if k € C\R™'. By [Reed and
Simon 1979] we have that the eigenvalues are analytic functions of z in a suitable subset of C. Since the
eigenvalues of the excited states are degenerate for sufficiently large m (see (B)), they are degenerate for
any m before the excited states disappear into the essential spectrum. Hence there exists at least one m
such that —A — V,,, has one eigenvalue, e, less than —cq (defined in (D)) and two degenerate excited
states with eigenvalue e, sufficiently close to the essential spectrum (see (A), (C)); e; —ep > —e; or
261 —ep > 0.

In the final step we find m and g such that the operator

1+ (=A+i0)7 'V, : (x)?°L? - (x)°L?
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is invertible. Recall that V,, = g V,(m), with V,(m) independent of g by its definition. For a fixed gg
we proved that there exists at least one m = mg such that the eigenvalues of —A — goV>(mp) have the
desired properties. We now consider the family of operators

X(q):=1—q(=A+i0)"'Va(my)

which is analytic in g. Moreover, the operator g(—A +i0) ™!V, (my) : (x)2L? — (x)2L%is compact. By
[Reed and Simon 1979] the operators X (¢) : (x)2L?* — (x)?L? are either invertible everywhere (that is,
no threshold resonance) except for some discrete points or not invertible anywhere. The first case holds
because the operator is invertible when g = 0.

Now we consider —A — g V2 (mg) with g € [go — €, go + €]. Choose € sufficiently small such that
for every g the operator —A — g V,(my) has at least three eigenvectors. On the other hand by what we
proved above it has at most three eigenvectors and two of them must be degenerate. Since 1 —g(—A +
i0)~! V5 (my) is not invertible only at discrete points we obtain the desired result. U

Proof of Proposition A.2. The fact L(A) has no resonances at +iA follows from the invertibility of
I+ (—A+i0)"'V and | A — |eg| | being small.

Next we prove the neutral modes are degenerate. Recall that the potential we constructed is of the
form V = V,,, for some mg. For each m > 0 there are A = A,, and Pr =P satisfying

_Ad))\,m _'_)\"n(ﬁ)\,m + Vm(p)u,m _ (¢k,ln)3 — 0

with A,, and ¢,, analytic in m in some proper neighborhood of positive real axis.

Recall that when m is sufficiently large the neutral modes of —A 4+ V), can be generated by permuting
one of them. Hence the neutral modes of L(X) = L(A, m) are degenerate when m is large. Moreover the
eigenvalues of L(X, m) are analytic in m, thus the neutral modes must be degenerate. U

Appendix B. The Fermi Golden Rule

The proof of Theorem 6.1, given at the end of this section, requires the following:

Proposition B.1. Given smooth functions %, 4 :R? — C?, there exists F = (@1, @2)T and G = (@1, @2)T
(see the definitions below) such that

—R((LAW)+2EQN) —0)'P.F,iJPG)=7(8(—A— QEQ) —\))F2, ) (B-1)
Proof of Proposition B.1. The entries of I" are expressions of the form
—R((LA) +26EQ) —0) ' P.F, iJPG) (B-2)

which we now proceed to simplify. Recall L(}) is of the form

L) =(=A+2) (_01 é) + (82 ‘(/)1)

where V) and V, are real-valued and exponentially decaying as |x| tends to infinity. Introduce the unitary

(1
U‘E(i 1)'

matrix
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Note that
L) =iUcs#WU*, =%

where

~ ~ Vi—Vo —i(Vi+ V) 1 0
H =7 V, #p:=(—A+1)Id = = .
o+ V, Ho:=(-A+1)Id, V <i(V1+V2) Vi—v, ) 0 -1

We now use the unitary transformation U to obtain an expression in terms of the operator o3 ¥:

—((LG)+2EQN) —0)'PF, iJP.G) = —((iU(03%(1) +2EG) +i0)U*) " P.F, iJ P.G)

=((o3%(A) +2E(\) +i0) 'U*P.F, U*J P.)
=((o3%(\) +2E(W) +i0)"'U*P.F, (U*JU)U*P.9)

= —i((03%(A) +2E(L) +i0) 'U*P.F, o3U* P.G)
(B-3)
where we have used that U*JU =ioj.
Next we introduce P.(03%), the projection onto the continuous spectral of o3 and wave operators
W:L*— P.(o3%)L* and Z : P.(03H)L> — L? (see [Cuccagna et al. 2005]), which satisfy

PC(O'3?€)*O’3 = 03PC(O'3%), W*(73 = U3Z, Z*03 = O’3W, 20’3% = 03%02. (B-4)

Now we use the wave operators W and Z to transform the previous expression into one in terms of the
“free operator 03(—A+X). First note that U* P.% lies in the range of P.(03%) and therefore there exists

= (%, %»)T such that WF = U*P, . Similarly, there exists G =(%;,%)7 such that W4 = U*P.%.
Substltutlng into the final express1on in (B-3) and using of the properties (B-4) we have

i((03% (1) +2E() +i0) "' U* P.F, 03U* P.G)
= i{(03% (1) +2EQ) +i0) ' WF, 03 WG) = i((039 (1) +2E(A) +i0) ' WF, Z*03G)

=i(Z(03% (1) +2E() +i0) 'WF, 03%) = i{(03(=A + 1) +2E(A) +i0) ' ZWF, 03G)
=i{(o3(=A+ 1) +2E() +i0)"'F, 03%).
Referring back to (B-2) we recall that we are interested in the real part of this expression:
N i{(03(—A+1) +2EQ) +i0)'F, 03G)
S ((o3(=A+21) +2EQ) +i0)"'F, 039)

o~ (—A+A1+2E0) +i0)"! 0 P
- 0 —(—A+A—2EQ) —i0)t )T
o] CA+FA+2EQ) +i0)7 0 5 g
- 0 (—A 42 —2EQ) —i0)~h)

—QEMN) -2 —i0)7"'F,%,)

3=
n(a( A—QEM) —1)F2,%).
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We uses that
0<2E(A) — A€o (—A), —2E(\) — A ¢ o.(—A)
and the distributional (Plemelj) identity:
Jx—i0) ' =lmI(x —ie) ' = w8(x)
el0
to get the last equality.
Summarizing, we have shown
~R((LA)+25ER) —0)'P.F, iJ PG = (8 (—A — RE(L) — M) T2, G). O

Proof of Theorem 6.1. We use Proposition B.1 with & = G, and ¢ = G, F = Gk and 4 = Gl. By (B-1)
we have
Tiy=7m(8(=A—QEM}) —1)Gy 2, Gi2).

To see that 'y ; is nonnegative, observe that for any s € C we have

N
s*Ts =Y Tissi =m(8(=A - 2QEM) —1)%, %) =0
k=1

where § = Z,I(V | sk(}k 2.
For the second statement we only sketch the proof. Recall the transformation of L(A) in (5-2). Then
for any 2 x 1 vector functions F and G we have

(LG +2EG) — 0 PF, P.G) = —i{(03% () +2E) +i0)'U*P.F, U*P.G)
= —i(KW)(03(Io+ V) +2E() +i0) ' U*P.F, U*P.G)
where K ()) is the operator defined as (1 + Kman)~! with
Koman := (03(0 + V) +2E(A) +i0) ™" Viman.
The operator (03(¥o+ V) +2E() +i O)_1 is well defined since
—A—2E(A) =eg—2(e; —ep)

is not an eigenvalue of —A + V and the operator —A 4 V has no embedded eigenvalues in the essential
spectrum.
Since the operator Kgma : (x)2L>® — (x)2L* has a small norm and is continuous in A we have

00
(1 + Ksrnall)_1 = Z(_Ksmall)n

is continuous in A. This, together with the fact
(03(Ho+ V) +2E(A) +i0) 'U*P.F e (x)2L®

is continuous in A, implies that ((L M) +2EM) —0)"! Pclj" , PCE}> is continuous in A. U
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Appendix C. Fermi Golden Rule for symmetric potentials

In this section we derive the simpler form of the FGR matrix and condition for positivity in the case
where the potential V (x) is a function of |x|. In fact, it is proved in Proposition 5.2 that if the potential
V, hence ¢*, is spherically symmetric then the functions &,, 1, satisfy

X X
g =—&(xD,  ma=n(x)
|x] |x|
for some functions £(|x|) and 1 (|x|). By the assumptions on V, ¢*, & and n; withk=1,2,..., N =d

we have
Gi(z, x) = xx(z - x)G(|x])

for some radial vector function G (|x|).
Before stating the results we define two constants

RZD = —R((LQ) +25EQ) —0) ' PxIG(x)), iJx}G(|x])),
RZG? = —R((LQ) +2EQ) —0) ' PoxixaG(Ix]), i Jx1x2G(|x]) ).

Proposition C.1. (i) Suppose that V, &,, n, satisfy the conditions above. Then the assumption (FGR)
holds provided that

nz!Y >0,  wzl?>o. (C-1)
(ii) From Proposition B.1, it follows that

nz"V=0,  wzy?=o.
And, generically, the strict positivity in (C-1) holds.

Proof. For any vectors s, 8,z € CV, we define
9(s, B 2) i= —R((LA) +2EQ) —0) "' Pe(z - x)(s - )G (Ix]), i T (z- x)(B - x)G(|x]) ).

Note that
9(s, 53 2) = 35°(Z(2,2) + Z*(z, 2))s = Ns* Z(z, 2)s.

Therefore, verifying (FGR) is equivalent to checking that there is a constant C > 0 for which
(s, 53 2) = Cls*|z)?

with s, z € C4.

To simplify 2(s, s; z), first note that since operator L(A) and G(|x]|) are invariant under x — T*x,
where T is a unitary transformations, the value of 9(s, 8; z) is unchanged when x is replaced by T*x.
Therefore,

9, B;2) =2Ts, TB; Tz). (C-2)

Now choose T to be a unitary matrix such that

Tz=lzle; =2/(1,0,...,0)".
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With this choice of T, we have by (C-2) with 8 =,
(s, 532) = —R((LO) +2EQ) —0) "' Pelz|x1(Ts - x)G(|x]), i |zlxi (Ts - x)J G (|x]) ). (C-3)
The following argument will show that
(s, 5:2) = CITs’lz* = ClsPlz],

the latter holding since T is unitary. Therefore, without any loss of generality, consider (C-3) with T set
equal to the identity. Explicitly writing out the inner products and using bilinearity and symmetry, we
have

d
9(s, 5;2) = —|z|25n( D (@) +2EQ) -0 Pexix,G(Ix)), ixlquG(|x|))s,,g)
p.q=1
d
= —|z|2m(z<<L<x>+2iE<x> —0)~! Pex1x, G(|x]), ixlprG<|x|>)|sp|2>
p=1

= — [z Is1PR{(LA) + 20 E(Q) — 0) ' Px{G(Ix)), ix7 JG(|x)))

d
— 1217 Isg PR((LG) + 20 EQ) — 0) ™! Pex1x:2G(Ix)), ix1620 G(|x]) )

q=2
d
1,1 2,2
= |z|2(|s1|2 Nz + " IsgP N2 >)
q=2
> [sP1z)? min(Rz{"V, RZ$P) = ClsP|z)? > 0. O

Appendix D. Choice of basis for the degenerate subspace
In the proof of Proposition 5.5 we need the following lemma.
Lemma D.1. Ifu = <11212> # 0 is an eigenfunction of L(A) with eigenvalue i E()\), E(A) > O then
(uy, us) > 0. (D-1)
Proof. The fact L(M)u =i E(A)u yields
L_(Muy=EMN)uy, Li(Muy = EM)us. (D-2)

Therefore,

(1, uz) = ﬁm@)uz, ).

Equation (D-1) follows from the two claims that L_(X) is a positive-definite selfadjoint operator on
the space {v | v L ¢*} and u, ¢ span{¢”}. The first fact is well known; see for example [Weinstein
1986]. We prove the second by contradiction. Suppose that us = c¢” for some constant ¢ then we have
L_(M)up =0, which, together with (D-2) and the fact E()\) # 0, implies u; = up =0, that is, u = 0. This
contradicts to the fact u # 0. Thus u, ¢ span{¢’}. O
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Proof of Proposition 5.5. We start by constructing N independent vectors u, € span{vy, va, ..., vy} for
n=1,2,..., N such that the vector
10
(63)

(n)

- 1
n = .
(vé’”)

Then the definition of L(A) in (5-1) implies

Ehvin) i‘svin)
() and 1y
l;\SUZ —1 U2

are also eigenfunctions of L (1) with eigenvalues i E()). This, together with the fact

o Sl
, ,n=12,.... Ny={v,, n=1,2,...,N},
{(i?své") —iﬂ%vé") ton }

enables us to choose N independent eigenfunctions u, withn =1,2, ..., N for i E()) such that

10 y
0i)™"
are real vectors.

Using (D-1) and a standard Gram—Schmidt procedure in linear algebra, one can find N pairs of real
functions (§,, n,) forn =1, 2, ..., N such that

is real. Suppose that

span{(j) n=1,2,...,N}=span{v,,,n:1,2,...,N} and (&, M) = On.m-
n

We now turn to the verification of (5-3). The observations
L) =Ly =2f"1@")’1@")’
and
L_(M)n, = EX)&,, Li(A)& =EM)n,
forn=1,2,..., N yield
/ F1@") 1) Emnn — Entim) dx
= 5 ((Ems L)1) = (L1 (W&m, 1) = (Ens L)) + (L (Wén, ) = 0.

Finally (5-4) is seen as follows:

1 by 1 .
(9" 60) = E(A)<¢,L_<x)nn> Emw (9", 1) =0,
(6" 1) = 75 (09" L8 = =5 (9% ) = 0 O
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Appendix E. The identity P.(JH)*J = JP.(JH)
Proposition E.1. L = JH and H = H* imply
P.(L)*J =JP.(L).

Proof. Represent P.(L) as a Riesz projection

1 _
P(L) = =— 7§<zz ~JH) 'dz
2mi
where the contour of the integration is counterclockwise. Moreover, the essential spectrum of L is
(—ioco, —iA]U[iA, io0).
The spectrum associated with the upper branch [i A, ico) is given by
+ _
PT(JH)=5-(A—B),
where
(o.¢] o
A= / (it+0—JH) "dr, B :/ (it—0—JH) 'dr.
A A

We claim that
A*J =—JB, B*J =—JA. (E-1)
This implies
(PTY(JH)*J =JPT(JH), (P.(JH)*J =JP.(JH).

To complete the proof of the proposition, we now prove (E-1). By direct computation using J* = —J
we have

o0
A* = / (—it+0+HJ) 'dr.
A
Therefore,
[o,0) o0
A*J = / (J@Git)J —JO0J —JJHI) LdrJ = / (=Nt —0—JH) Y (=J)dt J =—-JB,
A A
thus proving the first identity in (E-1). The second can be proved similarly. O

Appendix F. Time convolution lemmas

Proof of Proposition 11.2. In what follows we only prove the case o = 1 of (11-6); the other cases and
(11-7) are similar.

! 1 2 1 1
1) = ds < d d
@) /0(1+r—s)3/2T0+s S—(1+§)3/2/0 To+s S+To+%/t/2(1+t—s)3/2 5
<10g(1+2t70) 2
TR
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On the other hand, we also have

/’ 1 1 2
ds < —.
o (14+t—5)32Ty+s Ty
Thus,
(1) <e min{i L}
- T()’ 141
We now claim that for some constant ¢ > 0,

1(t) < .
0= To+1t
It sufficies to find a constant ¢ independent of 7y and ¢ such that
o nl L 1
m(t) = (Top+1) mm{ o H—t} <c.

If ¢ is such that the above minimum is TO_1 then TO_1 < (417! thatis, t < Ty — 1. Therefore,

2Ty — 1
m(t) < T %
If 7 is such that the above minimum is (1 +¢)~! then # > Ty — 1. Therefore,
(e < 201
Ty
since m(t) is decreasing with ¢. Since T > 2, m(t) < 3/2. This completes the proof. O

Appendix G. Bounds on solutions to a weakly perturbed ODE

Proof of Lemma 11.14. Let 8 denote the solution to the differential equation

B> =~1Bol* +5.  1BIP(O) =120 —p
for p > 0. Since

8 (12 = 1By (O) = =z +1B,(I* = =z +18,O1) (12 = 1B, (D)
with the initial condition
20 = 18,(0)> = p > 0.
Thus |z(2)|* < 1Bp (t)|* for all t > 0. Letting p tend to zero, we have
ZOF < 18O
so it suffices to prove the bound:
BO] < (1+KesTy®) (k +0)7'72,

where k = min{7y, |wo| =2} and B(¢) solves the initial value problem

WP =—1BI"+g, IO =wol*. (G-1)
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The proof of (11-14) for g is divided into two cases:

Case |wg| > Tofl/ 2, By local existence of the solutions for the initial value problem (G-1), we have that
for some ¢; > 0

- < |B(t G-2
s S B0 (G-2)
with ¢ € [0, #;]. Then using the assumed bound on g(¢) in (11-13) we have
C# C# 4 4 1 -5 4
Nl < = <2% D" — =c1xT, t
801 = G = o rp oy =2 PO 2 = Ty 1B O)

where ¢4 := 2%c4. It follows from (G-1) that

B> < —(1 — Ty )0 *
or
B2 =1 —ciTy .

Integration over the interval [0, ¢] for t < ¢, yields

1+ cz#TO_‘S
H<———— G-3
BOI = G (G-3)
where co# ~ ¢4 ~ c# and we use that C#TO_6 is sufficiently small. Now set k = min{lwol_z, To} and we
have 5
1+ couTy
Dl <8 < ——°2
0= 1801 =~ =5
for 0 <t < t;. Now let [0, E) denote the maximal subset of Ry, on which the upper bound in (G-3)
holds. If 2 < oo then by continuity and the assumption that |wg| > To_l/ * we have
_ L+ ey 1 1
BE) = s 2 e 2 e
(lwol==+ &) (lwol==+ &) (To+ B)

implying (see (G-2)) that the above argument can be applied beyond ¢t = E, contradicting its maximality.

Case |wo| < T, '/>. Denote by B (t) the solution to (11-12) with the initial condition B;(0) = T;, />,

As shown in the previous case
B1O] < 1+ K exTg ) (To+0)~ 2
Observing that
o (B =181 = =B+ 1BIDUBP = 181D, 1BOP =180 <0,
we have |8(¢)|> < |B1(¢)|* for any time . This, together with the estimate of 81, completes the proof of
the second case. U
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THE PSEUDOSPECTRUM OF SYSTEMS OF SEMICLASSICAL OPERATORS

NILS DENCKER

The pseudospectrum (or spectral instability) of non-self-adjoint operators is a topic of current interest in
applied mathematics. In fact, for non-self-adjoint operators the resolvent could be very large outside the
spectrum, making numerical computation of the complex eigenvalues very hard. This has importance,
for example, in quantum mechanics, random matrix theory and fluid dynamics.

The occurrence of false eigenvalues (or pseudospectrum) of non-self-adjoint semiclassical differential
operators is due to the existence of quasimodes, that is, approximate local solutions to the eigenvalue
problem. For scalar operators, the quasimodes appear generically since the bracket condition on the
principal symbol is not satisfied for topological reasons.

In this paper we shall investigate how these results can be generalized to square systems of semiclas-
sical differential operators of principal type. These are the systems whose principal symbol vanishes of
first order on its kernel. We show that the resolvent blows up as in the scalar case, except in a nowhere
dense set of degenerate values. We also define quasisymmetrizable systems and systems of subelliptic
type, for which we prove estimates on the resolvent.

1. Introduction

In this paper we shall study the pseudospectrum or spectral instability of square non-self-adjoint semi-
classical systems of principal type. Spectral instability of non-self-adjoint operators is currently a topic
of interest in applied mathematics; see [Davies 2002] and [Trefethen and Embree 2005]. It arises from
the fact that, for non-self-adjoint operators, the resolvent could be very large in an open set containing the
spectrum. For semiclassical differential operators, this is due to the bracket condition and is connected
to the problem of solvability. In applications where one needs to compute the spectrum, the spectral
instability has the consequence that discretization and round-off errors give false spectral values, so-
called pseudospectra; see [Trefethen and Embree 2005] and references there.

We shall consider bounded systems P (%) of semiclassical operators given by (2.2), and we shall
generalize the results of the scalar case in [Dencker et al. 2004]. Actually, the study of unbounded
operators can in many cases be reduced to the bounded case; see Proposition 2.20 and Remark 2.21.
We shall also study semiclassical operators with analytic symbols in the case when the symbols can be
extended analytically to a tubular neighborhood of the phase space satisfying (2.3). The operators we
study will be of principal type, which means that the principal symbol vanishes of first order on the
kernel; see Definition 3.1.

The definition of semiclassical pseudospectrum in [Dencker et al. 2004] is essentially the bracket
condition, which is suitable for symbols of principal type. By instead using the definition of (injectivity)

MSC2000: primary 35S05; secondary 58J40, 47G30, 35P05.
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pseudospectrum in [Pravda-Starov 2006a] we obtain a more refined view of the spectral instability; see
Definition 2.27. For example, z is in the pseudospectrum of infinite index for P (%) if for any N the
resolvent norm blows up faster than any power of the semiclassical parameter:

[(P(h)—zId) ' =Cyh™  O0<h«l (1.1)

In [Dencker et al. 2004] it was proved that (1.1) holds almost everywhere in the semiclassical pseu-
dospectrum. We shall generalize this to systems and prove that for systems of principal type, except
for a nowhere dense set of degenerate values, the resolvent blows up as in the scalar case; see Theorem
3.10. The complication is that the eigenvalues don’t have constant multiplicity in general, only almost
everywhere.

At the boundary of the semiclassical pseudospectrum, we obtained in [Dencker et al. 2004] a bound
on the norm of the semiclassical resolvent, under the additional condition of having no unbounded (or
closed) bicharacteristics. In the systems case, the picture is more complicated and it seems to be difficult
to get an estimate on the norm of the resolvent using only information about the eigenvalues, even in the
principal type case; see Example 4.1. In fact, the norm is essentially preserved under multiplication with
elliptic systems, but the eigenvalues are changed. Also, the multiplicities of the eigenvalues could be
changing at all points on the boundary of the eigenvalues; see Example 3.9. We shall instead introduce
quasisymmetrizable systems, which generalize the normal forms of the scalar symbols at the boundary
of the eigenvalues; see Definition 4.5. Quasisymmetrizable systems are of principal type and we obtain
estimates on the resolvent as in the scalar case; see Theorem 4.15.

For boundary points of finite type, we obtained in [Dencker et al. 2004] subelliptic types of estimates
on the semiclassical resolvent. This is the case when one has nonvanishing higher order brackets. For
systems the situation is less clear; there seems to be no general results on the subellipticity for systems. In
fact, the real and imaginary parts do not commute in general, making the bracket condition meaningless.
Even when they do, Example 5.2 shows that the bracket condition is not sufficient for subelliptic types of
estimates. Instead we shall introduce invariant conditions on the order of vanishing of the symbol along
the bicharacteristics of the eigenvalues. For systems, there could be several (limit) bicharacteristics of the
eigenvalues going through a characteristic point; see Example 5.9. Therefore we introduce the approx-
imation property in Definition 5.10 which gives that the all (limit) bicharacteristics of the eigenvalues
are parallel at the characteristics; see Remark 5.11. The general case presently looks too complicated
to handle. We shall generalize the property of being of finite type to systems, introducing systems of
subelliptic type. These are quasisymmetrizable systems satisfying the approximation property, such that
the imaginary part on the kernel vanishes of finite order along the bicharacteristics of the real part of the
eigenvalues. This definition is invariant under multiplication with invertible systems and taking adjoints,
and for these systems we obtain subelliptic types of estimates on the resolvent; see Theorem 5.20.

As an example, we may look at

P(h) =h>Aldy +iK (x)

where A = — 27:1 ij_ is the positive Laplacian, and K (x) € C*°(R") is a symmetric N x N system.
If we assume some conditions of ellipticity at infinity for K (x), we may reduce to the case of bounded
symbols by Proposition 2.20 and Remark 2.21; see Example 2.22. Then we obtain that P (%) has discrete
spectrum in the right half plane {z : Re z > 0}, and in the first quadrant if K (x) > 0, by Proposition 2.19.
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We obtain from Theorem 3.10 that the L? operator norm of the resolvent grows faster than any power
of h as h — 0, thus (1.1) holds for almost all values z such that Re z > 0 and Im z is an eigenvalue of K;
see Example 3.12.

For Re z = 0 and almost all eigenvalues Im z of K, we find from Theorem 5.20 that the norm of the
resolvent is bounded by Ch=2/3; see Example 5.22. In the case K(x) > 0 and K (x) is invertible at
infinity, we find from Theorem 4.15 that the norm of the resolvent is bounded by CA~! for Re z > 0 and
Imz = 0 by Example 4.17. The results in this paper are formulated for operators acting on the trivial
bundle over R". But since our results are mainly local, they can be applied to operators on sections of
fiber bundles.

2. The definitions

We shall consider N x N systems of semiclassical pseudo-differential operators, and use the Weyl quan-
tization:

1 .
PY(x, hDy)u = // P(x”,hg)e“ﬂ@u(y) dy dg @.1)
(27'[)" T*Rn 2
for matrix valued P € C®(T*R", £(CV, CV)). We shall also consider the semiclassical operators
o0
P(h)~> _h/ P (x, hD) (2.2)
j=0

with P; € Ci°(T*R", $(CVN,CN)). Here Cy° is the set of C* functions having all derivatives in L
and Py = o (P(h)) is the principal symbol of P (%). The operator is said to be elliptic if the principal
symbol Py is invertible, and of principal type if Py vanishes of first order on the kernel; see Definition
3.1. Since the results in the paper only depend on the principal symbol, one could also have used the
Kohn—-Nirenberg quantization because the different quantizations only differ in the lower order terms.
We shall also consider operators with analytic symbols; then we shall assume that P;(w) are bounded
and holomorphic in a tubular neighborhood of T*R" satisfying

IPj(z,0)|l < CoC’j7  |Im(z,¢)|<1/C Vj>0 (2.3)

which will give exponentially small errors in the calculus, here || A| is the norm of the matrix A. But the
results hold for more general analytic symbols; see Remarks 3.11 and 4.19. In the following, we shall
use the notation w = (x, §) € T*R".

We shall consider the spectrum Spec P (/) which is the set of values A such that the resolvent (P (h) —
AIdy)~! is a bounded operator, here Idy is the identity in CV. The spectrum of P(h) is essentially
contained in the spectrum of the principal symbol P (w), which is given by

|P(w) —Aldy| =0

where |A] is the determinant of the matrix A. For example, if P(w) = o (P (h)) is bounded and z; is
not an eigenvalue of P(w) for any w = (x, &) (or a limit eigenvalue at infinity) then P(h) — z; Idy is
invertible by Proposition 2.19. When P(w) is an unbounded symbol one needs additional conditions;
see for example Proposition 2.20. We shall mostly restrict our study to bounded symbols, but we can
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reduce to this case if P(h) — z; Idy is invertible, by considering
(P() =21 ld)T (P —221dy) 2 #2

see Remark 2.21. But unless we have conditions on the eigenvalues at infinity, this does not always give
a bounded operator.

Example 2.1. Let
P(S):(g i) £ elR.

Then O is the only eigenvalue of P (§) but

- 1
(P@ —zlan) =17z (o 1
0 1
and (P —zIdy) ™' P¥ = —z~! P¥ is unbounded for any z # 0.

Definition 2.2. Let P € C*°(T*R") be an N x N system. We denote the closure of the set of eigenvalues
of P by

Y(P)={reC:3qweT*R", |P(w)—Arldy| =0}
and the eigenvalues at infinity:
Yoo(P)={reC:Iw; > 00Ju; e CV\0; |P(wj)u; —Auj|/lujl — 0, j— oo}
which is closed in C.

In fact, that X, (P) is closed follows by taking a suitable diagonal sequence. Observe that as in the
scalar case, we could have X, (P) = X (P), for example if P(w) is constant in one direction. It follows
from the definition that A ¢ X, (P) if and only if the resolvent is defined and bounded when |w]| is large
enough:

[(P(w)—2Tdy) M <C  Jw|>1 (2.4)

In fact, if (2.4) does not hold there would exist w; — oo such that ||(P(w;) — A Idy)~ ! — o0, j — oo.
Thus, there would exist u; € CV such that |uj| =1and P(w;)u; — Au; — 0. On the contrary, if (2.4)
holds then | P (w)u — Au| > |u|/C for any u € CN and |w| > 1.

It is clear from the definition that X, (P) contains all finite limits of eigenvalues of P at infinity. In
fact, if P(wj)uj =Ajuj, lujl=1, w; — oo and A; — A then

P(wj)uj —)Luj = (kj _)\.)Mj — 0.
Example 2.1 shows that in general ¥,(P) could be a larger set.

Example 2.3. Let P (&) be given by Example 2.1; then X (P) = {0} but X (P) = C. In fact, for any
A € C we find

|P(&)ug —hug| =2> when uz="(&,1).
We have that |ug| = /|A|> + &2 — 00 50 | P(§)ug — Aug|/|ug| — 0 when |§] — oo.
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For bounded symbols we get equality according to the following proposition.

Proposition 2.4. If P € C;°(T*R") is an N x N system then L (P) is the set of all limits of the
eigenvalues of P at infinity.

Proof. Since X, (P) contains all limits of eigenvalues of P at infinity, we only have to prove the
opposite inclusion. Let A € X (P) then by the definition there exist w; — oo and u; € CV such that
lujl =1and |P(w;)u; — Au;| =¢&; — 0. Then we may choose N x N matrix A; such that [[A;| =¢;
and P(wj)uj = Auj + Aju; thus A is an eigenvalue of P(w;) — A;. Now if A and B are N x N
matrices and d(Eig(A), Eig(B)) is the minimal distance between the sets of eigenvalues of A and B
under permutations, then we have that d(Eig(A), Eig(B)) — 0 when ||A — B|| — 0. In fact, a theorem
of Elsner [1985] gives

d(Eig(A), Big(B)) < Nmax(||A[, IBI)' VA - BN,

Since the matrices P(w;) are uniformly bounded we find that they have an eigenvalue 1 ; such that
lwj—Al < CNajl./N — 0as j — oo, thus A =1lim; . w; is a limit of eigenvalues of P(w) at infinity. [

One problem with studying systems P(w), is that the eigenvalues are not very regular in the parame-
ter w, generally they depend only continuously (and eigenvectors measurably) on w.

Definition 2.5. For an N x N system P € C®°(T*R") we define
kp(w, L) =DimKer(P(w) — AIdy)
Kp(w, A) = max {k : B{p(w, A)=0for j < k}

where p(w, A) = | P(w) — AlIdy]| is the characteristic polynomial. We have kp < Kp with equality for
symmetric systems but in general we need not have equality; see Example 2.7. If

Qi(P)={(w, 1) e T*R" x C: Kp(w, 1) > k} k>1,
then @ = Qn11(P) C QN (P) C--- C Q;(P) and we may define

2(P)=]JoQ;P)
j>1
where 9€2;(P) is the boundary of ©2;(P) in the relative topology of 1 (P).

Clearly, €2;(P) is a closed set for any j > 1. By definition we find that the multiplicity Kp of
the zeros of |P(w) — Aldy| is locally constant on Q{(P) \ E(P). If P(w) is symmetric then kp =
Dim Ker(P (w) — A Idy) also is constant on 21(P) \ E(P). This is not true in general; see Example 3.9.

Remark 2.6. We find that E (P) is closed and nowhere dense in £2; (P) since it is the union of boundaries
of closed sets. We also find that

(w, 1) € E(P) & (w, 1) € E(PY)

since |P* — A 1dy| = |P — Aldy].
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() 1
P (w)_( 0 Az(w))

QP)={(w, V) :A=2;(w), j=1,2}
Q(P) ={(w, 1) : A =A1(w) = A2 (w)},

Example 2.7. If

where Aj(w) € C*, j =1, 2, then

but kxp =1 on Q;(P).
Example 2.8. Let

P(t):(? é) teR.

Then P(¢) has the eigenvalues 4/, and kp = 1 on Q(P).

Example 2.9. If
p— <w1 + wy w3 )
w3 w; — w2

Q(P)={(w; A)) i hj=wi+ (=D/Vwi+wi, j=1, 2}.
We have that Q,(P) = {(wy, 0,0; wy) : w; € R} and kp =2 on Q,(P).

then

Definition 2.10. Let r; be the projections
m(w,A)=w and m(w,XL)=A.
Then we define for A € C the closed sets
Su(P) =m (Qu(P)Nmy ' (W) = {w: |P(w) — A 1dy| =0}
X(P)=m (E(P)) CT*R".

Remark 2.11. Observe that X (P) is nowhere dense in T*R”"” and P(w) has constant characteristics
near wo ¢ X (P). This means that |P(w) —AIdy| = 0if and only if A = A;(w) for j =1, ...k, where
the eigenvalues A j(w) # Ay (w) for j # k when |w — wp| < 1.

In fact, Y(w) is a finite set for any w € T*R" and since the eigenvalues are continuous functions of
the parameters, the relative topology on 21 (P) is generated by 7, Hw)NQ; (P) for open sets w C T*R".

Definition 2.12. For an N x N system P € C*°(T*R") we define the weakly singular eigenvalue set

Tws(P)=m (E(P)) €C
and the strongly singular eigenvalue set

Zs(P) = {r:my ' (MNQIP) S EMP)].

Remark 2.13. It is clear from the definition that X4 (P) C Xy, (P). We have that Xy (P) U X (P) and
Y(P)U X (P) are closed, and X (P) is nowhere dense.
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In fact, if A; — A ¢ X (P), then ﬂz_l(Xj) N 1 (P) is contained in a compact set for j > 1, which
then either intersects E (P) or is contained in E(P). Since Z (P) is closed, these properties are preserved
in the limit.

Also, if A € X (P), then there exists (w;, A;) € E(P) such that A; — A as j — o0o. Since E(P)
is nowhere dense in £ (P), there exists (wjx, Ajx) € 1(P) \ E(P) converging to (w;, A;) as k — o0.
Then X(P) \ Zgs(P) 3 Xj; — A, s0 Zg(P) is nowhere dense. On the other hand, it is possible that
Yws(P) = X (P) by the following example.

Example 2.14. Let P(w) be the system in Example 2.9; then we have
Yws(P)=X(P)=R

and X (P) = @. In fact, the eigenvalues coincide only when w, = w3 = 0 and the eigenvalue A = w;
is also attained at some point where wy # 0. If we multiply P(w) with ws 4+ iws, we obtain that
ws(P) =X (P)=C. If we set P(w;, wp) = P(0, wy, wp) we find that X (P) = Xy (P) = {0}.
Lemma 2.15. Let P € C®°(T*R") be an N x N system. If (wg, Lg) € Q1(P)\ E(P) then there exists a
unique C* function A(w) so that (w, A) € Q1 (P) if and only if A = A(w) in a neighborhood of (wg, Ao).
If Mo € Z(P)\ (Zws(P) U oo (P)) then there is L(w) € C*™ such that (w, L) € Q(P) if and only if
A = A(w) in a neighborhood of ¥;,(P).

We find from Lemma 2.15 that 2 (P) \ E(P) is locally given as a C* manifold over 7*R", and that

the eigenvalues A ;(w) € C* outside X (P). This is not true if we instead assume that «p is constant on
Q1(P); see Example 2.8.

Proof. If (wg, Ag) € Q1(P) \ E(P), then
A— |P(w) —Aldy|
vanishes of exactly order k > 0 on €2{(P) in a neighborhood of (wy, Ag), so
| P(wo) —Aldy| #£0  for A = Ao.

Thus A = A(w) is the unique solution to Bf_l |P(w) — A1dy| = 0 near wy which is C* by the Implicit
Function Theorem.

If Jo € Z(P)\ (Zws(P)UZ(P)) then we obtain this in a neighborhood of any wg € £;,(P) € T*R".
Using a C*° partition of unity we find by uniqueness that A(w) € C* in a neighborhood of %, (P). U

Remark 2.16. Observe that if Ly € Z(P) \ (Zws(P) U Xo(P)) and A(w) € C™ satisfies |P(w) —
A(w) Idy| = 0 near X,,(P) and )»|>:Ao(p) = Mg, then we find by Sard’s Theorem that d Re A and d Im A
are linearly independent on the codimension 2 manifold X, (P) for almost all values u close to Ao. Thus
for n =1 we find that X, (P) is a discrete set for almost all values u close to A.

In fact, since A ¢ Xoo(P) we find that X, (P) — X,,(P) when u — Ag so X, (P) ={w : AM(w) = u}
for |u — Ao K 1.
Definition 2.17. A C® function A(w) is called a germ of eigenvalues at wg for the N x N system P €
C®(T*R™) if
|[P(w) —A(w)Idy| =0 in a neighborhood of wy.
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If this holds in a neighborhood of every point in w € T*R" then we say that A(w) is a germ of eigenvalues
for P on w.

Remark 2.18. If Ay € Z(P) \ (Zs(P) U Xo(P)) then there exists wy € X,,(P) so that (wp, Ao) €
Qi(P)\ E(P). By Lemma 2.15 there exists a C* germ A(w) of eigenvalues at wq for P such that
Mwp) = Ag. If Ag € Z(P) \ (Bws(P) U Lo(P)) then there exists a C*° germ A(w) of eigenvalues
on %,,(P).

As in the scalar case we obtain that the spectrum is essentially discrete outside X, (P).

Proposition 2.19. Assume that the N x N system P(h) is given by (2.2) with principal symbol P €
Coo(T*R™). Let 2 be an open connected set, satisfying

QNY(P)=@ and QNLCX(P) #@.

Then (P(h) — zIdy)™', 0 < h < 1, z € Q, is a meromorphic family of operators with poles of finite
rank. In particular, for h sufficiently small, the spectrum of P(h) is discrete in any such set. When
QN X(P) = we find that Q contains no spectrum of P* (x, hD).

Proof. We shall follow the proof of Proposition 3.3 in [Dencker et al. 2004]. If 2 satisfies the assumptions
of the proposition then there exists C > 0 such that

[(P(w)—zIdy) ' <C ifze Qand lw|>C . (2.5)

In fact, otherwise there would exist w; — oo and z; € €2 such that [(P(w;) —z; Idy)~ ! — o0, j — o0.
Thus, there exists u ; € CV such that luj|=1and P(w;)u;—zju; — 0. Since X (P) € C we obtain after
picking a subsequence that z; — z € QN X (P) = @. The assumption that NCX (p) # @ implies that
for some zp €  we have (P(w) —zoldy)~!' € Coe. Let x € CP(T*R"), 0 < x(w) <l and x(w) =1
when |w| < C, where C is given by (2.5). Let

R(w, 2) = x (w)(P(w) —z0Idy) ™" + (1 — x (w))(P(w) —z1dy) ™" € C°
for z € Q. The symbolic calculus then gives
RY(x,hD,z)(P(h)—zIdy) =1+ hBi(h,z) + K (h, 2)
(P(h) —zIdy)RY(x,hD,z) =1 +hBy(h, z) + K2(h, 2)

where K ;(h, z) are compact operators on L?(R") depending holomorphically on z, vanishing for z = z,
and Bj(h, z) are bounded on L*(RM), j =1,2. By the analytic Fredholm theory we conclude that
(P(h)—zIdy) 'is meromorphic in z € €2 for 4 sufficiently small. When QN X (P) = @ we can choose
R(w, z) = (P(w)—zIdy)~!, then K;=0for j=1,2,and P(h)—zIdy is invertible for small enough 4.

O

We shall show how the reduction to the case of bounded operator can be done in the systems case,
following [Dencker et al. 2004]. Let m(w) be a positive function on 7*R" satisfying

1 <m(w) < C{w—wo)Vm(wp), Yw, wye T*R"
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for some fixed C and N, where (w) = 1 4+ |w|. Then m is an admissible weight function and we can
define the symbol classes P € S(m) by

19, P(w)|| < Cam(w) Ve

Following [Dimassi and Sjostrand 1999] we then define the semiclassical operator P(h) = P"¥(x, hD).
In the analytic case we require that the symbol estimates hold in a tubular neighborhood of 7*R":

10%P(w)|| < Com(Rew)  for |Imw|<1/C  Va 2.6)

One typical example of an admissible weight function is m(x, &) = ((£)2 + (x)P).
Now we make the ellipticity assumption

1P w)| < Com™ (w)  |w|>1 2.7)

and in the analytic case we assume this in a tubular neighborhood of 7*R" as in (2.6). By Leibniz’ rule
we obtain that P~! € S(m ") at infinity, that is,

[02P ' (w)| <C.m™'(w)  |w|> 1.
When z ¢ X (P) U X (P) we find as before that
[(P(w)—zIdy) ' <C  Yuw

since the resolvent is uniformly bounded at infinity. This implies that P(w)(P(w) — zIdy)~! and
(P(w) — zIdy)~! P(w) are bounded. Again by Leibniz’ rule, (2.7) holds with P replaced by P — z Idy
thus (P(w)—zIdy)~' € S(m~"!) and we may define the semiclassical operator ((P —z Idy)"H¥(x, hD).
Since m > 1 we find that P(w) — z1dy € S(m), so by using the calculus we obtain that

(P” = z1dy)((P —zIdy) ™" =1+ hR}
(P —zIdy) ™ H)”(P¥ —zIdy) = 1 +hRY
where R; € S(1), j =1, 2. For small enough h we get invertibility and the following result.

Proposition 2.20. Assume that P € S(m) is an N X N system satisfying (2.7) and that z € Z(P)UX 5 (P).
Then we find that P* — z1dy is invertible for small enough h.

This makes it possible to reduce to the case of operators with bounded symbols.
Remark 2.21. If z; ¢ Spec(P) we may define the operator
Q=P -zldy ' (P-2ldy)  2#z.

The resolvents of Q and P are related by

— -1
©-c1 =1-0  (Poatan(P- R ) T

when (£z1 —22)/(¢ — 1) ¢ Spec(P).
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Example 2.22. Let

P(x,&) = |E]*1dy +iK (x)
where 0 < K (x) € C°; then we find that P € S(m) with m(x, &) =|£)>+1. If 0 ¢ T (K) then K (x) is
invertible for |x| > 1, so Ples (m_l) at infinity. Since Re z >0 in X (P) we find from Proposition 2.20

that P (x, h D)+ 1dy is invertible for small enough & and P* (x, hD)(P¥ (x, hD) +1Idy) ! is bounded
in L? with principal symbol P(w)(P(w)+1dy)~' € C°.

In order to measure the singularities of the solutions, we shall introduce the semiclassical wave front
sets.
Definition 2.23. For u € L*(R") we say that wy ¢ WF,,(u) if there exists a € Cy°(T*R") such that

a(wgp) # 0 and the L? norm
la® (x, hD)u| < Cyh* Vk. 2.8)
We call WF}, (1) the semiclassical wave front set of u.

Observe that this definition is equivalent to Definition (2.5) in [Dencker et al. 2004] which use the FBI
transform 7' given by (4.26): wg ¢ WF;, () if || Tu(w)| =0(h*°) when |w —wg| < 1. We may also define
the analytic semiclassical wave front set by the condition that ||Tu(w)| = O(e~“/") in a neighborhood
of wq for some ¢ > 0; see (2.6) in [Dencker et al. 2004].

Observe thatifu=(u, ..., uy) € L*(R", CV) we may define WF;, (1) = ﬂj WEF),(u;) but this gives no
information about which components of u that are singular. Therefore we shall define the corresponding
vector valued polarization sets.

Definition 2.24. For u € L>(R", CV), we say that (wy, z¢) ¢ WF,lj"l(u) C T*R" x CV if there exists A(h)
given by (2.2) with principal symbol A(w) such that A(wg)zo # 0 and A(h)u satisfies (2.8). We call
WFEOl(u) the semiclassical polarization set of u.

We could similarly define the analytic semiclassical polarization set by using the FBI transform and
analytic pseudodifferential operators.

Remark 2.25. The semiclassical polarization sets are closed, linear in the fiber and has the functorial
properties of the C* polarization sets in [Dencker 1982]. In particular, we find that
1
T (WE" () \ 0) = WF (u) = | WFy (1)
J
if 77 is the projection along the fiber variables: 7 : T*R" x CV > T*R". We also find that
AWE () = {(w, Aw)z) : (w, 2) € WE ()} € WE (A()u)
if A(w) is the principal symbol of A (%), which implies that WF%OI(AM) = A(WFEOI(M)) when A(h) is
elliptic.
This follows from the proofs of Propositions 2.5 and 2.7 in [Dencker 1982].

Example 2.26. Let u = (uy,...,uy) € L*(T*R", CN) where WF;,(u;) = {wo} and WF),(u;) = @ for
j > 1. Then
WE () = {(wo, (z,0,...)) :z € C})
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since | A" (x, hD)u|| = O(h*) if A¥u =)
E we obtain

=1 AJ“?u j and wg € WF;, (u). By taking a suitable invertible

WFEOI(Eu) = {(wo, zv) : z € C}
for any v € CV.

We shall use the following definitions from [Pravda-Starov 2006a], here and in the following || P (h)||
will denote the L? operator norm of P (h).

Definition 2.27. Let P(h), 0 < h <1, be a semiclassical family of operators on L?(R") with domain D.
For u > 0 we define the pseudospectrum of index u as the set

A (P(h)={z€C:¥C >0, Vhg>0,30 <h < ho, | (P(h) —zIdy) ' = Cch )

and the injectivity pseudospectrum of index | as

AS(P(h) ={z€C:VC>0, Vhg>0,30<h <ho, FueD, ul=1, [[(P(h)—zIdy)ul <Ch"}.
We define the pseudospectrum of infinite index as A5 (P (h)) =) . AJ (P (h)) and correspondingly the
injectivity pseudospectrum of infinite index.

Here we use the convention that ||(P(h) — AIdy)~'|| = oo when A is in the spectrum Spec(P (h)).
Observe that we have the obvious inclusion )»ff(P(h)) - Aff(P(h)) for all u. We get equality if, for
example, P (h) is Fredholm of index > 0.

3. The interior case

Recall that the scalar symbol p(x, &) € C*°(T*R") is of principal type if dp # 0 when p = 0. In the
following we let 9, P(w) = (v,d P(w)) for P € CY(T*R") and v € T*R". We shall use the following
definition of systems of principal type, in fact, most of the systems we consider will be of this type. We
shall denote Ker P and Ran P the kernel and range of P.

Definition 3.1. The N x N system P(w) € C*(T*R") is of principal type at wq if
Ker P(wo) 3 u +— 3, P(wo)u € Coker P(wg) = CV/Ran P (w) 3.1

is bijective for some v € T, (T*R"). The operator P (h) given by (2.2) is of principal type if the principal
symbol P = o (P (h)) is of principal type.

Remark 3.2. If P(w) € C* is of principal type and A(w), B(w) € C* are invertible then AP B is of
principal type. We have that P(w) is of principal type if and only if the adjoint P* is of principal type.

In fact, by Leibniz’ rule we have
0(APB)=(0A)PB+A(OP)B+APOB (3.2)

and Ran(APB) = A(Ran P) and Ker(APB) = B~ (Ker P) when A and B are invertible, which gives
the invariance under left and right multiplication. Since Ker P*(wo) = Ran P(wg)* we find that P
satisfies (3.1) if and only if

Ker P(wg) x Ker P*(wgp) 3 (u, v) — (3, P(wp)u, v)
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is a nondegenerate bilinear form. Since (3, P*v, u) = (3, Pu, v) we find that P* is of principal type if
and only if P is.

Observe that if P only has one vanishing eigenvalue A (with multiplicity one) then the condition that
P is of principal type reduces to the condition in the scalar case: dA # 0. In fact, by using the spectral
projection one can find invertible systems A and B so that

A0
arn=(: )

with E invertible (N — 1) x (N — 1) system, and this system is obviously of principal type.

Example 3.3. Consider the system in Example 2.7

_ Al(w) 1
””‘( 0 MWQ

where A ;(w) € C*°, j =1, 2. We find that P(w) — A Id; is not of principal type when A = A1 (w) = Az (w)
since Ker(P (w) — A Idy) = Ran(P(w) — A1dy) = C x {0} is preserved by o P.

Observe that the property of being of principal type is not stable under C' perturbation, not even when
P = P* is symmetric, by the following example.
Example 3.4. The system
mwz(w_wz " )=P%w w= (i, wy)
w»r —w] — W2

is of principal type when w; = w; = 0, but not of principal type when w; # 0 and w; = 0. In fact,

1 0
2= (o _1)

is invertible, and when w, # 0 we have that
Ker P (0, wy) = Ker d,, P(0, wy) ={z(1, 1) : z € C}
which is mapped to Ran P (0, wy) = {z(1, —1) : z € C} by 9, P.

We shall obtain a simple characterization of systems of principal type. Recall kp, Kp and E(P) given
by Definition 2.5.

Proposition 3.5. Assume P(w) € C® is an N x N system and that (wg, Ao) € Q21(P) \ E(P); then
P(w) — xoIdy is of principal type at wy if and only if kp = Kp at (wg, Ao) and d)(wg) # 0 for the C*
germ of eigenvalues A(w) for P at wy satisfying A(wgy) = Ao.

Thus, in the case Ag = 0 ¢ Xys(P) we find that P(w) is of principal type if and only if X is of
principal type and we have no nontrivial Jordan boxes in the normal form. Observe that by the proof of
Lemma 2.15 the C* germ A(w) is the unique solution to afp(w, A) =0 for k= Kp(w, L) — 1 where
p(w, X)) = |P(w) — L1dy| is the characteristic equation. Thus we find that dA(w) # 0 if and only if
Oy 8§ p(w, A) # 0. For symmetric operators we have kp = Kp and we only need this condition when

(wo, Ao) & E(P).
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Example 3.6. The system P(w) in Example 3.4 has eigenvalues —w;, £ v/ w% + w% which are equal
if and only if w; = wy = 0, so {0} = Xys(P). When wy # 0 and w; & 0 the eigenvalue close to
Zero is w%/2w2 + @(w‘l‘) which has vanishing differential at w; = 0. The characteristic equation is
p(w, A) =X2+2kw2—wf, so dyp =0 when w; = A =0.

Proof of Proposition 3.5. Of course, it is no restriction to assume Ay = 0. First we note that P(w) is of
principal type at wy if and only if
05| P(wo)| 0 k=1xp(wo,0) (3.3)

for some v € T(T*R"). Observe that 3/ | P(wg)| = 0 for j < k. In fact, by choosing bases for Ker P (wq)
and Im P (wy) respectively, and extending to bases of CV, we obtain matrices A and B so that

Pi(w) PIZ(W))
Pyi(w) Pp(w)

where | Py (wp)| # 0 and Pj1, Pip and Pp; all vanish at wy. By the invariance, P is of principal type if
and only if 9, Py is invertible for some v, so by expanding the determinant we obtain (3.3).

Since (wy, 0) € 21(P) \ E(P) we find from Lemma 2.15 that we may choose a neighborhood w of
(wo, 0) such that (w, A) € 21(P)Nw if and only if L = A(w) € C*. Then

AP(w)B:(

|P(w) — Aldy| = (A(w) — 1) "e(w, 1)

near wg, where e(w, A) # 0 and m = K p (wq, 0) > kp(wy, 0). Letting A = 0 we obtain that 8,{ |P(wp)| =0
if j <m and 9]}'| P(wo)| = (d,A(wp))™ e(wo, 0). U
Remark 3.7. Proposition 3.5 shows that for a symmetric system the property to be of principal type is
stable outside Z(P): if the symmetric system P (w)—A Idy is of principal type at a point (wg, Ag) ¢ E(P)
then it is in a neighborhood. It follows from Sard’s Theorem that symmetric systems P(w) — A Idy are
of principal type almost everywhere on 21 (P).

In fact, for symmetric systems we have kp = Kp and the differential dA # 0 almost everywhere on
Q(P)\ E(P). For C* germs of eigenvalues we can define the following bracket condition.

Definition 3.8. Let P € C*(T*R") be an N x N system; then we define

AP)=A_(P)UAL(P)
where A (P) is the set of Ag € Z(P) such that there exists wg € X;,,(P) so that (wp, Ag) ¢ E(P) and
+{ReAi,ImA} (wg) >0 (3.4)

for the unique C*° germ A(w) of eigenvalues at wg for P such that A(wg) = Xo.

Observe that AL (P) N Xg(P) = &, and it follows from Proposition 3.5 that P(w) — AgIdy is of
principal type at wg € A+ (P) if and only if kp = Kp at (wp, Ag), since dA(wp) # 0 when (3.4) holds.
Because of the bracket condition (3.4) we find that A (P) is contained in the interior of the values X (P).

Example 3.9. Let

(46 () .
P(x,s>—( - q(x,é)) (x.£) € T°R
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where g(x,&) = £ +ix?> and 0 < x(x) € C®(R) such that x(x) = 0 when x < 0 and x(x) > 0
when x > 0. Then X(P) = {Imz >0}, AL(P) = {Imz >0} and E(P) = &. For ImXA > 0 we find
2. (P) ={(£+ImA, ReA)} and P — A 1d, is of principal type at X, (P) only when x < 0.

Theorem 3.10. Let P € C®°(T*R") be an N x N system; then we have that
A(P)\ (Zws(P)UZoo(P)) S A_(P) (3.5)

when n > 2. Assume that P(h) is given by (2.2) with principal symbol P € C;°(T*R"), and that Lo €
A_(P), 0 # ug € Ker(P(wo) — Agldy) and P(w) — Aldy is of principal type on %, (P) near wq for
A — Aol K 1, for the wy € X,,(P) in Definition 3.8. Then there exists hy > 0 and u(h) € L2(RM),
0 < h < hg, so that |lu(h)|| <1,

(P (h) — ro Idy)u(h)| < Cyh" VN 0<h<hy 3.6)
and WFE01 (u(h)) = {(wy, up)}. There also exists a dense subset of values Ly € A(P) so that
I(P(h) = ldy) ™ = Cyh™™ VN, 3.7

If all the terms P; in the expansion (2.2) are analytic satisfying (2.3) then h*N may be replaced by
exp(Fc/h) in (3.6)—(3.7).

Here we use the convention that ||[(P(h) — AIdy)~!|| = oo when A is in the spectrum Spec(P (h)).
Condition (3.6) means that Aq is in the injectivity pseudospectrum A% (P), and (3.7) means that A is in
the pseudospectrum A% (P).

Remark 3.11. If P(h) is Fredholm of nonnegative index then (3.6) holds for Ay in a dense subset of
A(P). In the analytic case, it follows from the proof that it suffices that P;(w) is analytic satisfying (2.3)
in a fixed complex neighborhood of wg € X, (P) for all j.

In fact, if P(h) is Fredholm of nonnegative index and Ag € Spec(P(h)) then the dimension of
Ker(P (h) — Ao Idy) is positive and (3.6) holds.

Example 3.12. Let
P(x,&) =P Id+iK(x)  (x,&) eT*R"

where K (x) € C*°(R") is symmetric for all x. Then we find that

A_(P)=A(P)={Rez>=0AImz e Z(K)\ (Zes(K) U Zeo(K)) }.

In fact, for any Imz € £ (K) \ (Zs(K) | Lo (K)) there exists a germ of eigenvalues A(x) € C*°(w) for
K (x) in an open set w C R" so that A(xg) = Im z for some xg € w. By Sard’s Theorem, we find that
almost all values of A(x) in w are nonsingular, and if dA # 0 and Re z > 0 we may choose & € R" so
that |£)> = Re z and (&g, d,A) < 0. Then the C™ germ of eigenvalues |£|> + i1 (x) for P satisfies (3.4)
at (xg, &) with the minus sign. Since K (x) is symmetric, we find that P (w) — z Idy is of principal type.

Proof of Theorem 3.10. First we are going to prove (3.5) in the case n > 2. Let

W =X (P)UZXx(P)



THE PSEUDOSPECTRUM OF SYSTEMS OF SEMICLASSICAL OPERATORS 337

which is a closed set by Remark 2.13; then we find that every point in A(P) \ W is a limit point of
(A—(PYUAL(P)\ W = (A_(P)\ W)U (AL(P)\ W).
Thus, we only have to show that A¢ € A_(P) if
2 €AL(P)\W =AL(P)\ (Zws(P)UZeo(P)). (3.8)

By Lemma 2.15 and Remark 2.16 we find from (3.8) that there exists a C° germ of eigenvalues A(w) €
C* so that X, (P) is equal to the level sets {w : A(w) = u} for |u — A9| < 1. By definition we find that
the Poisson bracket {Re A, Im A} does not vanish identically on %;,(P). Now by Remark 2.16, d Re A
and d Im A are linearly independent on X, (P) for almost all x close to A, and then X, (P) is a C*™
manifold of codimension 2. By using Lemma 3.1 of [Dencker et al. 2004] we obtain that {Re A, Im A}
changes sign on X, (P) for almost all values u near Ao, so we find that those values also are in A_(P).
By taking the closure we obtain (3.5).

Next, assume that A € A_(P), it is no restriction to assume A = 0. By the assumptions there exists wg €
Yo(P) and A(w) € C* such that A(wg) =0, {Re 1, Im A} <0 at wg, (wp, 0) ¢ E(P), and P(w)—XIdy is
of principal type on X, (P) near wy when |A| < 1. Then Proposition 3.5 gives that xp = K p is constant
on £1(P) near (wq, Ag), SO

Dim Ker(P(w) —A(w)Idy) =K >0

in a neighborhood of wy. Since the dimension is constant we can construct a base {u(w), ..., ug(w)} €
C*° for Ker(P(w) — A(w) Idy) in a neighborhood of wg. By orthonormalizing it and extending to cV
we obtain orthogonal E(w) € C* so that

k(w) Id]( P12

E*(w)P(w)E(w)=( o po

) = Py(w). (3.9

If P(w) is analytic in a tubular neighborhood of T*R" then E(w) can be chosen analytic in that neigh-
borhood. Since Py is of principal type at wyg by Remark 3.2 and 9 Py(wgp) maps Ker Py(wg) into itself,
we find that Ran Py(wg) N Ker Py(wp) = {0} and thus | Po;(wg)| # 0. In fact, if there exists u” 7 0 such
that Py (wo)u” = 0, then by applying P (wg) on u = (0, u”") ¢ Ker Py(wy) we obtain

0 # Po(wo)u = (Pr2(wo)u”, 0) € Ker Py(wp) NRan Py(wop)

which gives a contradiction. Clearly, the norm of the resolvent P(h)~! only changes with a multiplica-
tive constant under left and right multiplication of P (k) by invertible systems. Now EY(x, hD) and
(E*)¥(x, hD) are invertible in L? for small enough /, and

W w Py Pyp
E P(hHEY =
(E™)"P(h) (P21 Pzz)

where o (P11) = Aldy, P21 =0(h) and Py, (h) is invertible for small 4. By multiplying from the right by

( Idg 0 )
—Py(h) ™' Py (h) Tdy_k
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for small &, we obtain that P>;(h) = 0 and this only changes lower order terms in P;(h). Then by
multiplying from the left by
(IdK —Plz(h)Pzz(h)_l)
0 Idy_x

we obtain that Pjp(h) = 0 without changing Py (h) or Py (h).

Thus, in order to prove (3.6) we may assume N = K and P (w) = A(w) Idx. By conjugating similarly
as in the scalar case (see the proof of Proposition 26.3.1 in Volume IV of [Hérmander 1983-1985]), we
can reduce to the case when P(h) = A% (x, hD)Idg. In fact, let

P(h)=A"(x,hD)Idg + Y _ h’ P}’ (x, hD) (3.10)

Jj=1

A(h) = ijo th;)(x, hD) and B(h) = ijo th}V (x, hD) with By(w) = Ag(w). Then the calculus
gives
P(hW)A(h) — B(h)AV(x,hD) = ZhjE;”(x, hD)
izl
with
Ek=%HA(Ak—l+Bk—1)+P1Ak—1+)\(Ak_Bk)+Rk k>1.

Here H) is the Hamilton vector field of A, Ry only depends on A; and B; for j <k—1and Ry =0. Now
we can choose Ag so that Ay =Idg on Vy = {w : ImA(w) = 0} and %H,\AO + P; A vanishes of infinite
order on V near wy. In fact, since {Re A, Im A} £ 0 we find d Im A 7%= 0 on Vjy, and Vj is noncharacteristic
for Hge,. Thus, the equation determines all derivatives of Ag on Vj, and we may use the Borel Theorem
to obtain a solution. Then, by taking

B —A = (%H)LA()—F P]A()))\._l eC*®

we obtain Eg = 0. Lower order terms are eliminated similarly, by making

%HA(Aj—l +Bj_1)+ PiAj_1 + R;
vanish of infinite order on Vj. Observe that only the difference A;_; — B;_; is determined in the previous
step. Thus we can reduce to the case P = A" (x, 2 D) Id and then the C* result follows from the scalar
case (see Theorem 1.2 in [Dencker et al. 2004]) by using Remark 2.25 and Example 2.26.
The analytic case follows as in the proof of Theorem 1.2" in [Dencker et al. 2004] by applying a
holomorphic WKB construction to P = P;; on the form

o0
u(z, h) ~ NN Ajh! z=x+iyel
j=0

which will be an approximate solution to P(h)u(z, h) = 0. Here P(h) is given by (2.2) with Py(w) =
A(w) Id, P; satisfying (2.3) and P}" (z, hD;) given by the formula (2.1) where the integration may be
deformed to a suitable chosen contour instead of 7*R" (see [Sjostrand 1982, Section 4]). The holo-
morphic phase function ¢ (z) satisfying A(z, d;¢) = 0 is constructed as in [Dencker et al. 2004] so that
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d.¢(x0) = & and Im ¢ (x) > c|x — x0|%, ¢ > 0, and wg = (x9, &). The holomorphic amplitude Ag(z)
satisfies the transport equation

D 00z, d:p(2))Dz; Ao(2) + Pi(z, dp () Ao(2) =0
J

with Ag(xg) # 0. The lower order terms in the expansion solve

30,1z, d:d () D, Ar(2) + Pi(z. do () Ax(2) = Si(2)
J

where S;(z) only depends on A; and P;; for j < k. As in the scalar case, we find from (2.3) that the
solutions satisfy ||Ax(2)| < CoC*k* see Theorem 9.3 in [Sjostrand 1982]. By solving up to k < ¢/ h,
cutting of near xg and restricting to R" we obtain that P(h)u = O(e~¢/™). The details are left to the
reader; see the proof of Theorem 1.2" in [Dencker et al. 2004].

For the last result, we observe that {Rei,ImA} = —{ReA,Im1}, A € £(P) & & € T(P*), P* is
of principal type if and only if P is, and Remark 2.6 gives (w, A) € E(P) < (w, 1) € E(P*). Thus,
A€ A (P) if and only if A € A_(P*) and

I(P(h) — A Tdn) " = |(P*(h) — A dy) .

From the definition, we find that any A¢g € A(P) is an accumulation point of A1 (P), so we obtain the
result from (3.6). O

Remark 3.13. In order to get the estimate (3.6) it suffices that there exists a semibicharacteristic I"
of A — &g through wy such that I x {Xo} N E(P) = &, P(w) — Aldy is of principal type near I" for
A near Ao and that condition (W) is not satisfied on I'; see [Hormander 1983-1985, Definition 26.4.6,
Volume IV]. This means that there exists 0 # g € C* such that I' is a bicharacteristic of Re g( — A¢)
through wg and Im g (A — Ag) changes sign from + to — when going in the positive direction on I".

In fact, once we have reduced to the normal form (3.10), the construction of approximate local solu-
tions in the proof of [Hérmander 1983—-1985, Theorem 26.4.7, Volume IV] can be adapted to this case,
since the principal part is scalar. See also Theorem 1.3 in [Pravda-Starov 2006b, Section 3.2] for a similar
scalar semiclassical estimate.

When P (w) is not of principal type, the reduction in the proof of Theorem 3.10 may not be possible
since Pp; in (3.9) needs not be invertible by the following example.

Example 3.14. Let

P(h) = (Xw(x,hD) 1 )

h AY(x, hD)
where A € C* satisfies the bracket condition (3.4). The principal symbol is

C(w) 1
P(“’)_( 0 k(w))

with eigenvalue A(w) and we have

Ker(P(w) — A(w) Idp) = Ran(P(w) — A(w) Idy) = {(z,0) : z € C} Yw.
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We find that P is not of principal type since d P = dA Id;. Observe that E(P) = & since K p is constant
on 21(P).

When the dimension is equal to one, we have to add some conditions in order to get the inclusion (3.5).

Lemma 3.15. Let P(w) € C*(T*R) be an N x N system. Then for every component Q2 of C\ (Zys(P)U
Y00 (P)) which has nonempty intersection with CZ(P) we find that

QCA_(P). (3.11)

The condition of having nonempty intersection with the complement is necessary even in the scalar
case; see the remark and Lemma 3.2’ on page 394 in [Dencker et al. 2004].

Proof. If i ¢ Yo(P) we find that the index
i=varargV|P(w) — nldy| (3.12)

is well-defined and continuous when y is a positively oriented circle {w : |{w| = R} for R > 1. If X ¢
Yws(P) U X5 (P) then we find from Lemma 2.15 that the characteristic polynomial is equal to

|P(w) — nldy| = (AM(w) — wke(w, )

near wy € X,(P), here A, e € C°, e # 0 and k = Kp(wp). By Remark 2.16 we find for almost all
close to Ag that d ReAAd Im A #0 on A (w) = X, (P), which is then a finite set of points on which the
Poisson bracket is nonvanishing. If i ¢ 3 (P) we find that the index (3.12) vanishes, since one can then
let R — 0. Thus, if a component 2 of C \ (Zys(P) U X (P)) has nonempty intersection with Cz(P),
we obtain that i = 0 in Q2. When g € 2N A(P) we find from the definition that the Poisson bracket
{Re A, Im A} cannot vanish identically on X, (P) for all u close to . Since the index is equal to the
sum of positive multiples of the values of the Poisson brackets at X, (P), we find that the bracket must
be negative at some point wy € X, (P), for almost all i near Ao, which gives (3.11). O

4. The quasisymmetrizable case

First we note that if the system P (w) — z Idy is of principal type near X, (P) for z close to L € X (P) \
(Zws(P)U X (P)) and X, (P) has no closed semibicharacteristics, then one can generalize Theorem 1.3
in [Dencker et al. 2004] to obtain

I[(P(h)—Aldy) Y <C/h  h—0. 4.1)

In fact, by using the reduction in the proof of Theorem 3.10 this follows from the scalar case; see Example
4.12. But then the eigenvalues close to A have constant multiplicity.

Generically, we have that the eigenvalues of the principal symbol P have constant multiplicity almost
everywhere since E(P) is nowhere dense. But at the boundary d % (P) this needs not be the case. For
example, if

P(t,t)=1t1d+iK ()

where C*®° 5 K > 0 is unbounded and 0 € £ (K), then R=0%X(P) C X (P).
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When the multiplicity of the eigenvalues of the principal symbol is not constant the situation is more
complicated. The following example shows that then it is not sufficient to have conditions only on the
eigenvalues in order to obtain the estimate (4.1), not even in the principal type case.

Example 4.1. Let a; (1), a>(t) € C*°(R) be real valued, a>(0) = 0, a5(0) > 0 and let

hD;+a\(1) ax(t) —iai(r)

PY(t, hD;) = <a2(t) +iai(t) —hD;+a;(t)

> — P¥(t, hD,)*.

Then the eigenvalues of P (¢, T) are

r=a(t) £V 2+ a2(1) +d2(t) € R

which coincide if and only if T = a;(¢#) = a>(t) = 0. We have that

1 /1 i 1 1 hD; +iax(t) 0 ~

— P = =P .

2 (1 —i> (i —i) ( 2a, (1) hD; —ia(t) ()
Thus we can construct u;(¢) = (0, u>(t)) so that |u;|| = 1 and ﬁ(h)uh = O(h") for h — 0; see
Theorem 1.2 in [Dencker et al. 2004]. When a, is analytic we may obtain that P (h)u;, = O(exp(—c/h))
by Theorem 1.2’ in [Dencker et al. 2004]. By the invariance, we see that P is of principal type at =7 =0
if and only if a; (0) =0. If @; (0) =0 then X(P) = {0} and when a; # 0 we have that P" is a self-adjoint

diagonalizable system. In the case a;(t) = 0 and a,(¢) = t the eigenvalues of P (¢, hD,) are +=+/2nh,
n € N; see the proof of Proposition 3.6.1 in [Helffer and Sjostrand 1990].

Of course, the problem is that the eigenvalues are not invariant under multiplication with elliptic
systems. To obtain the estimate (4.1) for operators that are not of principal type, it is not even sufficient
that the eigenvalues are real having constant multiplicity.

Example 4.2. Let a(t) € C*°(R) be real valued, a(0) =0, a’(0) > 0 and

hD; a(t)
—ha(t) hD; )"

P(t.7) = (6 “i’))

so the only eigenvalue is 7. Thus E(P) = & but the principal symbol is not diagonalizable, and when
a(t) # 0 the system is not of principal type. We have

1/2 ~12
W20, (h N _ ./ VhD, a(t)
0 —1 0 1 a(t) —«/hD,
thus we obtain that || P¥ (¢, hD,)~'|| = Cyh ™" for all N, when h — 0 by using Example 4.1 with a; =0
and a, = a. When a is analytic we obtain || P(r, hD;)~"|| > exp(c/~/h).

P“(t,hD,) = <

Then the principal symbol is

For nonprincipal type operators, to obtain the estimate (4.1) it is not even sufficient that the principal
symbol has real eigenvalues of multiplicity one.
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Example 4.3. Let a(r) € C*°(R), a(0) =0, a’(0) > 0 and

1 hD,
P = (h iha(t))

(v0)

thus the eigenvalues are 0 and 1, so E(P) = &. Since

10 1 —hD;\ (1 0 /(1 0
(—h 1> P®) (o 1 )_ <0 —h> (o hD,—ia(t))

we obtain as in Example 4.1 that |P(h)~'|| > Cyh~ when h — 0 for all N, and for analytic a(¢)
we obtain ||P (k)7 > Ce’", h — 0. Now 9, P maps Ker P(0) into Ran P (0) so the system is not
of principal type. Observe that this property is not preserved under the multiplications above, since the
systems are not elliptic.

with principal symbol

Instead of using properties of the eigenvalues of the principal symbol, we shall use properties that
are invariant under multiplication with invertible systems. First we consider the scalar case, recall that a
scalar p € C* is of principal type if dp # 0 when p = (0. We have the following normal form for scalar
principal type operators near the boundary 0 X (P). Recall that a semibicharacteristic of p is a nontrivial
bicharacteristic of Re gp, for g # 0.

Example 4.4. Assume that p(x, £) € C*°(T*R") is of principal type and 0 € 90X (p) \ o (p). Then we
find from the proof of Lemma 4.1 in [Dencker et al. 2004] that there exists 0 % g € C* so that

Imgp>0 and dRegp #0

in a neighborhood of wg € Xo(p). In fact, condition (1.7) in that lemma is not needed to obtain a local
preparation. By making a symplectic change of variables and using the Malgrange preparation theorem
we then find that

px, &) =e(x, &) +if (x, &)  &=(51,8) (4.2)

in a neighborhood of wg € £g(p), where e # 0 and f > 0. If there are no closed semibicharacteristics
of p then we obtain this in a neighborhood of X((p) by a partition of unity.

This normal form in the scalar case motivates the following definition.

Definition 4.5. We say that the N x N system P(w) € C*°(T*R") is quasisymmetrizable with respect
to the real C* vector field V in Q C T*R" if 3 N x N system M (w) € C*(T*R") so that in 2 we have

Re(M(V P)u,u) > c|lu|*> — C|| Pul? c>0 4.3)
Im(M Pu, u) > —C|| Pu|? (4.4)

for any u € CV, the system M is called a symmetrizer for P.
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The definition is clearly independent of the choice of coordinates in 7*R" and choice of base in CV.
When P is elliptic, we may take M = i P* as multiplier; then P is quasisymmetrizable with respect to
any vector field because || Pu|| = |ju||. Observe that for a fixed vector field V the set of multipliers M
satisfying (4.3)—(4.4) is a convex cone, a sum of two multipliers is also a multiplier. Thus, given a vector
field V it suffices to make a local choice of multiplier M and then use a partition of unity to get a global
one.

Taylor has studied symmetrizable systems of the type D; Id +i K, for which there exists R > 0 making
RK symmetric (see Definition 4.3.2 in [Taylor 1981]). These systems are quasisymmetrizable with
respect to d; with symmetrizer R. We see from Example 4.4 that the scalar symbol p of principal type
is quasisymmetrizable in neighborhood of any point at 92X (p) \ Zoso(p)-

The invariance properties of quasisymmetrizable systems are partly due to the following simple and
probably well-known result on semibounded matrices. In the following, we shall denote Re A = %(A +
A*)andilmA = %(A — A™*) the symmetric and antisymmetric parts of the matrix A. Also, if U and V
are linear subspaces of CV, thenwelet U+ V ={u+v:ueclU A ve V).

Lemma 4.6. Assume that Q is an N x N matrix such that Im zQ > 0 for some 0 # z € C. Then we find
Ker O = Ker 0* = Ker(Re Q) NKer(Im Q) 4.5)
and Ran Q = Ran(Re Q) 4+ Ran(Im Q) is orthogonal to Ker Q.

Proof. By multiplying with z we may assume that Im Q > 0, clearly the conclusions are invariant under
multiplication with complex numbers. If u € Ker O, then we have (Im Qu, u) =Im(Qu, u) =0. By using
the Cauchy—Schwarz inequality on Im Q > 0 we find that (Im Qu, v) =0 for any v. Thus u € Ker(Im Q)
so Ker Q € Ker O*. We get equality and (4.5) by the rank theorem, since Ker Q* = Ran Q.

For the last statement we observe that Ran Q € Ran(Re Q) + Ran(Im Q) = (Ker Q)=+ by (4.5) where
we also get equality by the rank theorem. O

Proposition 4.7. Assume that P(w) € C®°(T*R") is a quasisymmetrizable system; then we find that P
is of principal type. Also, the symmetrizer M is invertible if Im M P > ¢ P* P for some ¢ > Q.

Observe that by adding i P* to M we may assume that Q = M P satisfies
ImQ>(—C)P*P>P*P>cQ*Q c>0 (4.6)
for o > C + 1, and then the symmetrizer is invertible by Proposition 4.7.

Proof. Assume that (4.3)—(4.4) hold at wg, Ker P (wq) # {0} but (3.1) is not a bijection. Then there exists
0 # u € Ker P(wp) and v € CV such that V P(wq)u = P(wq)v, so (4.3) gives

Re(M P(wo)v, u) = Re(MV P(wpy)u, u) > c||u||2 > 0.

This means that
Ran M P (wo) € Ker P (wp)™ . 4.7)

Let M, = M +ioP* then we have that

Im(M, Pu, u) > (0 — C)|| Pul?
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so for large enough ¢ we have Im M, P > 0. By Lemma 4.6 we find
Ran M, P L Ker M, P.

Since Ker P C Ker M, P and Ran P*P C Ran P*_L Ker P we find that Ran M P | Ker P for any @. This
gives a contradiction to (4.7), thus P is of principal type.

Next, we shall show that M is invertible at wo if InM P > ¢P*P at wg for some ¢ > 0. Then we
find as before from Lemma 4.6 that Ran M P (wg) L Ker M P (wg). By choosing a base for Ker P (wq)
and completing it to a base of C¥ we may assume that

0 Plz(wo))

Pwo) = (0 Py (wo)

where P is (N — K) x (N — K) system, K = Dim Ker P (wgp). Now, by multiplying P from the left
with an orthogonal matrix £ we may assume that Py, (wg) = 0. In fact, this only amounts to choosing an
orthonormal base for Ran P (wg)* and completing to an orthonormal base for CV. Observe that M P is
unchanged if we replace M with M E~!, which is invertible if and only if M is. Since Dim Ker P (wo) = K

we obtain | Py (wp)| # 0. Letting
My, Mu)
M = ,
<M21 M>;

0 0
MP = at wy.
(0 M22P22) 0

we find

In fact, (M P)12(wg) = Mia(wo) Paa(wg) = 0 since Ran M P(wg) = Ker M P(wg)*. We obtain that
M1, (wo) = 0, and by assumption

Im My Pyy > CP2*2 P> at wo,
which gives | Mo, (wo)| # 0. Since Py, P; and My, vanish at wy we find
Re V(M P)11(wo) = Re My (wo)V Pri(wo) > ¢

which gives |[M11(wg)| # 0. Since M3(wo) =0 and | M2 (wq)| 7 0 we obtain that M (wy) is invertible. [

Remark 4.8. The N x N system P € C°°(T*R") is quasisymmetrizable with respect to V if and only
if there exists an invertible symmetrizer M such that Q = M P satisfies

Re((VQ)u,u) > cllul* - C||Qul|*  ¢>0 (4.8)
Im(Qu, u) >0 4.9)

for any u € CV.
In fact, by the Cauchy—Schwarz inequality we find
[((VM)Pu,u)| <ellul|®>+ Ce||Pul|> Ve>0 VueCV.

Since M is invertible, we also have that || Pul|| = || Qu]|.
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Definition 4.9. If the N x N system Q € C*(T*R") satisfies (4.8)—(4.9) then Q is quasisymmetric with
respect to the real C* vector field V.

Proposition 4.10. Let P(w) € C®°(T*R") be an N x N quasisymmetrizable system; then P* is qua-
sisymmetrizable. If A(w) and B(w) € C®°(T*R") are invertible N x N systems then BP A is quasisym-
metrizable.

Proof. Clearly (4.8)-(4.9) are invariant under left multiplication of P with invertible systems E, just
replace M with ME~!. Since we may write BPA = B(A*)"!A*PA it suffices to show that E*PE is
quasisymmetrizable if E is invertible. By Remark 4.8 there exists a symmetrizer M so that Q = M P is
quasisymmetric, that is, satisfies (4.8)—(4.9). It then follows from Proposition 4.11 that

Qr = E*QE = E*M(E*)"'E*PE
also satisfies (4.8) and (4.9), so E* P E is quasisymmetrizable.
Finally, we shall prove that P* is quasisymmetrizable if P is. Since Q = M P is quasisymmetric, we

find from Proposition 4.11 that Q* = P*M* is quasisymmetric. By multiplying with (M*)~! from the
right, we find from the first part of the proof that P* is quasisymmetrizable. U

Proposition 4.11. If Q € C*°(T*R") is quasisymmetric, then Q* is quasisymmetric. If E € C*°(T*R")
is invertible, then E* Q E are quasisymmetric.

Proof. First we note that (4.8) holds if and only if
Re((V Q)u, u) > c|lul|? Yu e Ker QO (4.10)
for some ¢ > 0. In fact, Q*Q has a positive lower bound on the orthogonal complement Ker O+ so that
lul <C|Qu|  foru e Ker Q.
Thus, if u = u’ + u” with u’ € Ker Q and u” € Ker Q- we find that Qu = Qu”,
Re((VQ)u', u"y = —el|u'|I” — Cellu” > = —el|u’|> = CLI Qu> V& >0

and Re((VQ)u", u") > —C|lu”||> > —C'||Qul|>. By choosing & small enough we obtain (4.8) by us-
ing (4.10) on u’.

Next, we note that Im Q* = —Im Q and Re Q* = Re Q, so — Q™ satisfies (4.9) and (4.10) with V re-
placed by —V/, and thus it is quasisymmetric. Finally, we shall show that Qg = E*QE is quasisymmetric
when E is invertible. We obtain from (4.9) that

Im(Qgu,u) =Im(QEu, Eu) >0  VueCV.

Next, we shall show that Qf satisfies (4.10) on Ker Qz = E~!' Ker Q, which will give (4.8). We find
from Leibniz’ rule that VQp = (VE*)QE 4+ E*(VQ)E + E*Q(V E) where (4.10) gives

Re(E*(VQ)Eu,u) > c||[Eull* > '|ul*>  ueKer Qg

since then Eu € Ker Q. Similarly we obtain that ((VE*)QFEu,u) = 0 when u € Ker Qr. Now since
Im Qf > 0 we find from Lemma 4.6 that

Ker Q% =Ker QO
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which gives (E*Q(VE)u, u) = (E""(VE)u, Q7u) =0 when u € Ker Qr = Ker Q.. Thus Qf satis-
fies (4.10) so it is quasisymmetric. U

Example 4.12. Assume that P(w) € C*®° is an N x N system such that z € Z(P) \ (Zws(P) N X (P))
and that P(w) — A Idy is of principal type when |A — z| < 1. By Lemma 2.15 and Proposition 3.5 there
exists a C*° germ of eigenvalues A(w) € C* for P so that Dim Ker(P (w) — A(w) Idy) is constant near
2, (P). By using the spectral projection as in the proof of Proposition 3.5 and making a base change
B(w) € C* we obtain

I
P(w) =B '(w) <)‘(w()) di Pzz(zw)) B(w) 4.11)

in a neighborhood of X,(P), here | P»; — A(w) Id| = 0. We find from Proposition 3.5 that dA # 0 when

A =z, s0 A — z is of principal type. Proposition 4.10 gives that P — z Idy is quasisymmetrizable near
any wg € X,(P) if z € 0¥ (A). In fact, by Example 4.4 there exists g(w) € C* so that

[dReq(A —2)| #0 (4.12)

Img(A—2)>0 (4.13)

and we get the normal form (4.2) for A near X,(P) = {A(w) = z}. One can then take V normal to
Y ={Reqg(A —z) =0} at X,(P) and use

o« f(qldg O
M=B < 0 M22)B

with Mo (w) = (P (w) —zId)~! for example. Then
0=MP—zldy) =g (40~ 0 ) p (4.14)
0 Idy_x

If there are no closed semibicharacteristics of A — z then we also find from Example 4.4 that P —z Idy is
quasisymmetrizable in a neighborhood of %,(P); see the proof of Lemma 4.1 in [Dencker et al. 2004].

Example 4.13. Let
P(x,8) =& Idy +i K (x)

where 0 < K(x) € C*°. When z > 0 we find that P — zIdy is quasisymmetric in a neighborhood of
2. (P) with respect to the exterior normal (£, 9¢) to =.(P) = {|§]* = z}.

For scalar symbols, we find that 0 € dX (p) if and only if p is quasisymmetrizable, see Example 4.4.
But in the system case, this needs not be the case according to the following example.

Example 4.14. Let

wy+iw w
P(w):( 2 : L ) w = (wi, wa, W3),
w1 wy —1lw3

which is quasisymmetrizable with respect to d,,, with symmetrizer

M:(? (1))
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In fact, 9y, M P =1d; and

wi wy —iws

MP(w) = ( ) = (MP(w))*

wr +iw3 wi
so Im M P = 0. Since eigenvalues of P(w) are wy & v wl2 — w% we find that Z(P) =Cso0e€ X(P) is
not a boundary point of the eigenvalues.

For quasisymmetrizable systems we have the following result.

Theorem 4.15. Let the N x N system P(h) be given by (2.2) with principal symbol P € CZ°(T*R").
Assume that 7 ¢ Yo (P) and there exists a real valued function T (w) € C* such that P(w) — z1dy is
quasisymmetrizable with respect to the Hamilton vector field Hy (w) in a neighborhood of ¥,(P). Then
for any K > 0 we have

[t eC: ¢ -zl < Khlog(1/h)} NSpec(P(h)) = @ (4.15)

for0<h <« 1,and
(P(h)y—2)7 ' <C/h O0<h<1. (4.16)

If P is analytic in a tubular neighborhood of T*R" then there exists co > 0 such that
{¢eC: ¢ —z| <co}NSpec(P(h) = 2.

Condition (4.16) means that A ¢ Aj°(P), which is the pseudospectrum of index 1 by Definition 2.27.
The reason for the difference between (4.15) and (4.16) is that we make a change of norm in the proof
that is not uniform in 4. The conditions in Theorem 4.15 give some geometrical information on the
bicharacteristic flow of the eigenvalues according to the following result.

Remark 4.16. The conditions in Theorem 4.15 imply that the limit set at X,(P) of the nontrivial
semibicharacteristics of the eigenvalues close to zero of Q = M(P — zIdy) is a union of compact
curves on which 7 is strictly monotone, thus they cannot form closed orbits.

In fact, locally (w, 1) € Q1(P)\ E(P) if and only if A = A(w) € C* by Lemma 2.15. Since P(w) —
AlIdy is of principal type by Proposition 4.7, we find that Dim Ker(P (w) — A(w) Idy) is constant by
Proposition 3.5. Thus we obtain the normal form (4.14) as in Example 4.12. This shows that the Hamilton
vector field H, of an eigenvalue is determined by (d Qu, u) with 0 # u € Ker(P — v 1dy) for v close to
z=A(w) by the invariance property given by (3.2). Now ((Hy Re Q)u, u) > 0 for 0 £u € Ker(P —z Idy),
and d(Im Qu, u) = 0 for u € Ker M(P — z1dy) by (4.9). Thus by picking subsequences we find that
the limits of nontrivial semibicharacteristics of eigenvalues A of Q close to 0 give curves on which T is
strictly monotone. Since z ¢ X, (P) these limit bicharacteristics are compact and cannot form closed
orbits.

Example 4.17. Consider the system in Example 4.13
P(x,§) = |6 1dy +iK (x)

where 0 < K (x) € C°°. Then for z > 0 we find that P — zIdy is quasisymmetric in a neighborhood of
%, (P) with respect to V = Hr, for T'(x,§) = —(&,x). If K(x) € C;° and 0 ¢ X (K) then we obtain
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from Proposition 2.20, Remark 2.21, Example 2.22 and Theorem 4.15 that
I(P*(x,hD)=2) | <C/h  O0<h<1
since 7 ¢ Xoo(P).

Proof of Theorem 4.15. We shall first consider the Cy° case. We may assume without loss of generality
that z =0, and we shall follow the proof of Theorem 1.3 in [Dencker et al. 2004]. By the conditions, we
find from Definition 4.5, Remark 4.8 and (4.6) that there exists a function 7' (w) € C§° and a multiplier
M (w) € C3°(T*R") so that Q = M P satisfies

Re HrQ >c—CImQ 4.17)
ImQ > c 0*Q (4.18)

for some ¢ > 0 and then M is invertible by Proposition 4.7. In fact, outside a neighborhood of X (P)
we have P*P > c¢p; then we may choose M =i P* so that Q =i P* P and use a partition of unity to get
a global multiplier. Let

Cih <e <Cyh log% (4.19)
where C; > 1 will be chosen large. Let T = T"(x, hD)
Q(h)=M"(x, hD)P(h) = Q" (x, hD) +O(h) (4.20)
T/h T/h £ad o ¥ k
Qc(h) = 11" QU™ " =i Q) ~ | e (adp) (Q ()
k=0

where ady Q(h) =[T (h), Q(h)] = O(h). By the assumption on ¢ and the boundedness of ady /& we find
that the asymptotic expansion makes sense. Since £2 = 0(h) we see that the symbol of Q. () is equal to

Q.= Q+iell, O} +0(h).
Since T is a scalar function, we obtain
ImQ.,=ImQ+¢Re Hr Q +0O(h). 4.21)

Now to simplify notation, we drop the parameter % in the operators Q (k) and P (h), and we shall use the
same letters for operators and the corresponding symbols. Using (4.17) and (4.18) in (4.21), we obtain
for small enough ¢ that

ImQ,>(1—-Ce)ImQ+ce—Ch=>ce—Ch 4.22)

Since the symbol of %(Qs —(Q.)*) is equal to the expression (4.22) modulo O(%), the sharp Géarding
inequality for systems in Proposition A.5 gives

Im(Q.u, u) = (ce — Co) ul* = 5 lull®
for h <« ¢ < 1. By using the Cauchy—Schwarz inequality, we obtain

S lull < 1Qeull. (4.23)
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Since Q = M P the calculus gives

Qe =M.P.+0(h) (4.24)
where P, = e ¢T/hPefT/M and M, = e~ ¢T/"MefT/h = M + O(e) is bounded and invertible for small
enough ¢. For h <« ¢ we obtain from (4.23)—(4.24) that

lull = Sppeu (425)

so P, is injective with closed range. Now — Q* satisfies the conditions (4.3)—(4.4), with T replaced
by —T'. Thus we also obtain the estimate (4.23) for QF = P M} +0(h). Since M} is invertible for small
enough /1 we obtain the estimate (4.25) for P}, thus P, is surjective. Because the conjugation by ecT/h
is uniformly bounded on L? when ¢ < Ch we obtain the estimate (4.16) from (4.25).

Now conjugation with e?7/" is bounded in L? (but not uniformly) also when (4.19) holds. By taking C»
arbitrarily large in (4.19) we find from the estimate (4.25) for P, and P} that
1

D (0, Khlog

) NSpec(P) =0
for any K > 0 when 4 > 0 is sufficiently small.

The analytic case. We assume as before that z =0 and
P(h)~> W PP(x,hD)  Py=P
j=0
where the P; are bounded and holomorphic in a tubular neighborhood of T*R", satisfy (2.3), and
P}” (z, hD,) is defined by the formula (2.1), where we may change the integration to a suitable chosen
contour instead of T*R" (see [Sjostrand 1982, Section 4]). As before, we shall follow the proof of
Theorem 1.3 in [Dencker et al. 2004] and use the theory of the weighted spaces H (A7) developed in
[Helffer and Sjostrand 1990] (see also [Martinez 2002]).

The complexification 7*C" of the symplectic manifold 7*R" is equipped with a complex symplectic
form w¢ giving two natural real symplectic forms Im w¢ and Re wc. We find that T*R” is Lagrangian
with respect to the first form and symplectic with respect to the second. In general, a submanifold
satisfying these two conditions is called an IR-manifold.

Assume that T € C3°(T*R"); then we may associate to it a natural family of IR-manifolds:

Aor ={w+igHr(w): we T*R"} C T*C" with ¢ € R and |o| small

where as before we identify 7 (T*R") with T*R"; see [Dencker et al. 2004, page 391]. Since Im(¢dz)
is closed on A,7,we find that there exists a function G, on A,7 such that

dG, = —Im(Ld2)|n,,
In fact, we can write it down explicitly by parametrizing A,7 by T*R":
Go(z, ) =—(§,0VeT(x,8)) + 0T (x,§) for (z,8)=(x,§)+ioHr(x,§)
The associated spaces H(A,r) are going to be defined by using the FBI transform:

T:L*(R") — LX(T*R")
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given by
Tu(x, €)= cyh™>"4 / et =y )il =y /@)y (1) gy (4.26)

The FBI transform may be continued analytically to A,7 so that T sUEC ®(Agr). Since A,r differs
from T*R" on a compact set only, we find that 7s,,u is square integrable on A,7. The FBI transform
can of course also be defined on u € L?(R") having values in CV, and the spaces H (Apr) are defined
by putting & dependent norms on L?(R"):

2 2 =2 2
el ca, ) = /A | Tagru(z, O17e 2@ M@l y )" 0t = I Ta il o, g

oT

Suppose that P; and P, are bounded and holomorphic N x N systems in a neighbourhood of T*R"
in 7*C" and that u € L?(R", CV). Then we find for ¢ > 0 small enough

(P\"(x, hD)u, Py’ (x, hD)v) (A7)
= ((Pilagr ) Tagrtts (Palayr) T V) 2(0.m) + O Nl a ) 101 H (A -

By taking P; = P, = P and u = v we obtain
1Y (e, RDYu T p s = NP LA ) Tagr I3 gy + O el a1 (4.27)

as in the scalar case; see [Helffer and Sjostrand 1990] or [Martinez 2002].
By Remark 4.8 we may assume that M P = Q satisfies (4.8)—(4.9), with invertible M. The analyticity
of P gives

P(w+ioHr) = P(w)+ioHr P(w) +0(*) ol <1
by Taylor’s formula; thus

Im M (w) P (w +ioHr(w)) = Im Q(w) + o Re M (w) Hy P(w) 4+ 0(0?).

Since we have Re M Hr P > c—C Im Q, ¢ > 0, by (4.8) and Im Q > 0 by (4.9), we obtain for sufficiently
small o > O that

Im M (w)P(w +ioHr (w)) > (1 — Co) Im Q(w) + co + 0(0*) > co/2 (4.28)
which gives by the Cauchy—Schwarz inequality that || P [4,, u|l > c’o||u||. Thus
1P~ 1o, 1= C/e. (4.29)

Now recall that H (A7) is equal to L? as a space and that the norms are equivalent for every fixed / (but
not uniformly). Thus the spectrum of P (h) does not depend on whether the operator is realized on L?
or on H(A,7). We conclude from (4.27) and (4.29) that 0 has an h-independent neighbourhood which
is disjoint from the spectrum of P (h), when £ is small enough. U
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Summing up, we have proved the following result.

Proposition 4.18. Assume that P(h) is an N x N system on the form given by (2.2) with analytic princi-
pal symbol P(w), and that there exists a real valued function T (w) € C®°(T*R") such that P(w) —zIdy
is quasisymmetrizable with respect to Hr in a neighborhood of ¥,(P). Define the IR-manifold

Aor ={w+ioHr(w); we T*R"}
for ¢ > 0 small enough. Then
P(h)—z: H(Apr) —> H(A,7)

has a bounded inverse for h small enough, which gives

Spec(P(h))ND(z,6) =< 0<h<hy
for & small enough.

Remark 4.19. It is clear from the proof of Theorem 4.15 that in the analytic case it suffices that P; is
analytic in a fixed complex neighborhood of ¥,(P) € T*R", j > 0.

5. The subelliptic case

We shall investigate when we have an estimate of the resolvent which is better than the quasisymmetric
estimate, for example the subelliptic type of estimate

I(P(h) —Aldy) Y <Ch™™ h—0

with i < 1, which we obtain in the scalar case under the bracket condition; see Theorem 1.4 in [Dencker
et al. 2004].

Example 5.1. Consider the scalar operator p* = hD; +if"(t, x, hD,) where 0 < f(¢t,x,&) € C>,
(t,x) e RxR"* and 0 € 39X (f). Then we obtain from Theorem 1.4 in [Dencker et al. 2004] the estimate

Rl < Cllpull <1 VueCy (5.1)
if 0 ¢ Yoo (f) and .
> 18] f1 0. (5.2)
J<k

These conditions are also necessary. For example, if | f(¢)] < C|t|* then an easy computation gives
lh Do i full/llull < ch**+Vif u(r) = ¢ (ch="/*+1) with 0 # ¢ (1) € CP(R).

The following example shows that condition (5.2) is not sufficient for systems.
Example 5.2. Let P = hD, Id; +i F(t) where

2 .3
F(t)=<;3 ;)

(2

Then we have
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which gives that
[ Ker F¥)(0) = {0} .

Jj=<3
But by taking u (1) = x (¢t)(¢, —1)" with0# x (¢) € CSO(R), we obtain F(#)u(t) =0sowe find || Pul|/||ull <

ch. Observe that
1 =\ (2 0 1t
F(’)_<z 1)(0 0)(—z 1)'

Thus F (1) = t>B*(¢)I1(t) B(t) where B(t) is invertible and I1(¢) is a projection of rank one.
Example 5.3. Let P = hD, Id; +i F(t) where

2, .8 3 .7 2
“4t° t°—t 1 —t < 0 1 ¢
F(t)_<t3—t7 t4+t6)_(t 1)(0 t6) (—t 1)'
Then we have that

_ s 1 (1 =1\ (hD; +i(1?>+1% 0 1 ¢
P=d+1) (r 1)( 0 th+i(t6+t8)> (—r 1)+©(k)'

Thus we find from the scalar case that 2%7||u| < C||Pu] for h < 1; see [Dencker et al. 2004, Theo-
rem 1.4]. Observe that this operator is, element for element, a higher order perturbation of the operator
of Example 5.2.

Definition 5.4. Let 0 < F(t) € L (R) be an N x N system; then we define

loc

Qs(F) = {t : min (F()u, 1) < 5} 0<s<1

ull=1
which is well-defined almost everywhere and contains Xo(F) = |F |=1(0).

Observe that one can also use this definition in the scalar case, then Qs(f) = f =1([0, 8]) for nonneg-
ative functions f.

Remark 5.5. Observe that if F > 0 and E is invertible then we find that
Qs(E*FE) € Qcs(F)
where C = |[E~12.

Example 5.6. For the scalar symbols p(x, ) =1 +if (¢, x, £) in Example 5.1 we find from Proposition
A.1 that (5.2) is equivalent to

He: f(tx.8) <8} =1Qs(fro)l <C8F 0<s<1 Vx,&,

where foe(1) = £(t, %, €).

Example 5.7. For the matrix F(¢) in Example 5.3 we find from Remark 5.5 that |Q2s(F)| < C8Y%, and
for the matrix in Example 5.2 we find that |Q25(F)| = oo.

We also have examples when the semidefinite imaginary part vanishes of infinite order.
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Example 5.8. Let p(x, &) =t +if(t,x, &) where 0 < f(t,x, &) < Ce~ /"’ & > 0, then we obtain that
126 (fre)| < Collogd|™"7  0<8<«1 Vx,&.

(We owe this example to Y. Morimoto.)

The following example shows that for subelliptic type of estimates it is not sufficient to have condi-
tions only on the vanishing of the symbol, we also need conditions on the semibicharacteristics of the
eigenvalues.

Example 5.9. Let

P =hD,1d; +ah (Dox 0 ) +i(t—Bx)’1dy, (1, x) e R?

—D,
with @, 8 € R. Then we see from the scalar case that P satisfies the estimate (5.1) with u = 2/3 if and
only either =0 or o A0 and 8 # +1/«.

Definition 5.10. Let Q(w) € C*°(T*R") be an N x N system and let wg € ¥ C T*R". We say that Q
satisfies the approximation property on X near wy if there exists a Q invariant C* subbundle V' of CV
over T*R" such that ¥ (wg) = Ker 0" (wg) and

Re(Q(w)v,v) =0 veV(w) weE X (5.3)

near wy. That V" is Q invariant means that Q(w)v € V' (w) for v € V' (w).

Here Ker Q" (wy) is the space of the generalized eigenvectors corresponding to the zero eigenvalue.
The symbol of the system in Example 5.9 satisfies the approximation property on ¥ = {t = 0} if and
only if « = 0.

Let é = Q| then since Imié = Re é we obtain from Lemma 4.6 that Ran QL Ker é on X. Thus
Ker QN =Ker é on X, and since Ker QN(wo) =% (wp) we find that Ker O (wo) =V (wg) = Ker O (wy).
It follows from Example 5.13 that Ker Q C %" near wy.

Remark 5.11. Assume that Q satisfies the approximation property on the C* hypersurface X and is
quasisymmetric with respect to V ¢ TX. Then the limits of the nontrivial semibicharacteristics of the
eigenvalues of Q close to zero coincide with the bicharacteristics of X.

In fact, the approximation property in Definition 5.10 and Example 5.13 give that (Re Qu, u) = 0 for
ueKerQ C ¥V on X. Since Im Q > 0 we find that

(dQu,u) =0 YueKerQ onTX. 54

By Remark 4.16 the limits of the nontrivial semibicharacteristics of the eigenvalues close to zero of Q
are curves with tangents determined by (d Qu, u) for u € Ker Q. Since V Re Q # 0 on Ker Q we find
from (5.4) that the limit curves coincide with the bicharacteristics of X, which are the flow-outs of the
Hamilton vector field.

Example 5.12. Observe that Definition 5.10 is empty if Dim Ker Q" (wg) = 0. If Dim Ker Q% (w) > 0,
then there exists ¢ > 0 and a neighborhood w to wq so that

Tl

M(w) = ZL /| _ (zldy —Qw)) 'dz e C®(w) (5.5)
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is the spectral projection on the (generalized) eigenvectors with eigenvalues having absolute value less
than e. Then Ran IT is a Q invariant bundle over  so that Ran IT(wg) = Ker Q" (wg). Condition (5.3)
with ¥ = Ran IT means that [T* Re QI1 = 0 in w. When Im Q(wg) > 0 we find that I[T*QI1(wgy) = 0O;
then Q satisfies the approximation property on X near wo with ¥ = Ran IT if and only if

d(IT*Re O)ID|rs =0 near wo.

Example 5.13. If Q satisfies the approximation property on X, then by choosing an orthonormal base
for V" and extending it to an orthonormal base for CV we obtain the system on the form

_(9n Qn
Q_< 0 sz) (56)

where Q1] is K x K system such that Q{Vl(wo) =0,Re Qi1 =0on X and |Q2| # 0. By multiplying

from the left with
Idx —01205)
0 Idy_x

we obtain that Q1 = 0 without changing Q1 or Q7.

In fact, the eigenvalues of Q are then eigenvalues of either Q; or Q»,. Since V' (wy) are the (general-
ized) eigenvectors corresponding to the zero eigenvalue of O (wg) we find that all eigenvalues of Q2> (wq)
are nonvanishing, thus Q»; is invertible near wy,

Remark 5.14. If Q satisfies the approximation property on X near wy, then it satisfies the approximation
property on X near wi, for w; sufficiently close to wy.

In fact, let Q1 be the restriction of Q to V" as in Example 5.13, then since Re Q11 =ImiQ;;=00n X
we find from Lemma 4.6 that Ran Q; L Ker O, and Ker Q; = Ker Q?’l on X. Since Q»; is invertible
in (5.6), we find that Ker Q C %". Thus, by using the spectral projection (5.5) of Q) near w; € X for
small enough ¢ we obtain an invariant subbundle ¥ C Y so that °]7(w 1) =Ker 0;1(w;) = Ker ON (wy).

If Q € C*™ satisfies the approximation property and Qr = E*QFE with invertible E € C*, then it
follows from the proof of Proposition 5.18 below that there exist invertible A, B € C* such that AQg
and Q*B satisfy the approximation property.

Definition 5.15. Let P € C*°(T*R") be an N x N system and let ¢ (r) be a positive nondecreasing
function on Ry. We say that P is of subelliptic type ¢ if for any wg € Xy (P) there exists a neighborhood w
of wy, a C* hypersurface X 3 wy, areal C* vector field V ¢ T X and an invertible symmetrizer M € C*™
so that Q = M P is quasisymmetric with respect to V in o and satisfies the approximation property on
% Nw. Also, for every bicharacteristic y of X the arc length

yNQsImQ)Nw| <CPHB) 0<5<K1 (5.7)
| |

We say that z is of subelliptic type ¢ for P € C* if P —zIdy is of subelliptic type ¢. If ¢ (§) = then
we say that the system is of finite type of order u > 0, which generalizes the definition of finite type for
scalar operators in [Dencker et al. 2004].

Recall that the bicharacteristics of a hypersurface in 7*X are the flow-outs of the Hamilton vector
field of . Of course, if P is elliptic then by choosing M =i P~ we obtain Q =i Idy, so P is trivially
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of subelliptic type. If P is of subelliptic type, then it is quasisymmetrizable by definition and thus of
principal type.

Remark 5.16. Observe that we may assume that
m(Qu, u) > cl|Qu||>  YueCV (5.8)
in Definition 5.15.

In fact, by adding io P* to M we obtain (5.8) for large enough ¢ by (4.6), and this only increases
Im Q.

Since Q is in C* the estimate (5.7) cannot be satisfied for any ¢ (§) < & (unless Q is elliptic) and
it is trivially satisfied with ¢ = 1, thus we shall only consider ¢§ < ¢(§) < 1 (or finite type of order
0 < u < 1). Actually, for C* symbols of finite type, the only relevant values in (5.7) are u = 1/k for
even k > 0; see Proposition A.2 in the Appendix.

Actually, the condition that ¢ is nondecreasing is unnecessary, since the left-hand side in (5.7) is non-
decreasing (and upper semicontinuous) in §, we can replace ¢ (8) by inf.~ 5 ¢ (¢) to make it nondecreasing
(and upper semicontinuous).

Example 5.17. Assume that Q is quasisymmetric with respect to the real vector field V, satisfying (5.7)
and the approximation property on . Then by choosing an orthonormal base as in Example 5.13 we

obtain the system on the form
_(9n Q12>
0= ( 0 O»

where Q11 is K x K system such that Q 1(wo) =0, Re Q11 =0 on X and |Q2| # 0. Since Q is
quasisymmetric with respect to V we also obtaln that Q11(wo) =0,Re V Q11 >0,ImQ;; >0for j =1,
2. In fact, then Lemma 4.6 gives that Im QL Ker Q so Ker OV = Ker Q. Since Q satisfies (5.7) and
Qs(Im Q1) € Qs(Im Q) we find that O satisfies (5.7). By multiplying from the left as in Example
5.13 we obtain that Q> = 0 without changing Q) or Q2.

Proposition 5.18. Ifthe N x N system P(w) € C*°(T*R") is of subelliptic type ¢ then P* is of subelliptic
type ¢. If A(w) and B(w) € C®°(T*R"™) are invertible N x N systems, then AP B is of subelliptic type ¢.

Proof. Let M be the symmetrizer in Definition 5.15 so that Q = M P is quasisymmetric with respect to
V. By choosing a suitable base and changing the symmetrizer as in Example 5.17, we may write

_(Qu O
Q‘( 0 sz) (59

where Q1 is K x K system such that Q;(wo) =0, VRe Q11 > 0, Re Q11 =0 on X and that Q) is
invertible. We also have Im Q > 0 and that Q satisfies (5.7). Let V| = {u € CV 1 u; j=0for j > K} and
V)= {ueCV: u;j =0 for j < K}, these are Q invariant bundles such that V" @°l/’2 CN.

First we are going to show that P =APB is of subelliptic type. By taking M=B"'"MA"" we find
that

MP=0=B"'0B
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and it is clear that B_1°Vj are é invariant bundles, j = 1, 2. By choosing bases in B_1°Vj for j =1, 2,
we obtain a base for CV in which Q has a block form:

~ On 0)
Q_< 0 O»
Here éjj : B_1°Vj — B_1°Vj, is given by éjj = Bj_leij with

B;:B"W;sur BueV; j=1,2.

_(BiBi 0
%_( 0 B;B2>

~ o= o~~~ (BIOB 0 _(On 0
Q_%Q_%MP_< 0 B§Q2232>_<0 sz)'

By multiplying é from the left with
we obtain that

It is clear that Im Q > 0, Q1(wo) =0, Re Q1; =0 on =, |Q2] # 0 and V Re Q;; > 0 by Proposition
4.11. Finally, we obtain from Remark 5.5 that

Q5(Im Q) € Qc;(Im Q)

for some C > 0, which proves that P = APB is of subelliptic type. Observe that O = AQp, where
QOp=B*QBand A=®BB ' (B*)"L.

To show that P* also is of subelliptic type, we may assume as before that Q = M P is on the form (5.9)
with Q11(wo) =0, VRe Q11 > 0,Re @11 =0 on X, Oy is invertible, Im Q > 0 and Q satisfies (5.7).

Then we find that
ER Ve * - >1k1 0
0 —-05

satisfies the same conditions with respect to —V/, so it is of subelliptic type with multiplier Idy. By the
first part of the proof we obtain that P* is of subelliptic type. U

Example 5.19. In the scalar case, p € C*°(T*R") is quasisymmetrizable with respect to H; = 9, near wg
if and only if
pt,x;1,8)=qt,x;1,8)(t+if(t,x,§)) near wy (5.10)

with f > 0 and ¢ # 0; see Example 4.4. If 0 ¢ X,.(p) we find by taking ¢~ as symmetrizer that p
in (5.10) is of finite type of order w if and only if = 1/k for an even k such that

Y I3 f1>0
J<k

by Proposition A.1. In fact, the approximation property is trivial since f is real. Thus we obtain the case
in [Dencker et al. 2004, Theorem 1.4]; see Example 5.1.
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Theorem 5.20. Assume that the N x N system P(h) is given by the expansion (2.2) with principal
symbol P € C;°(T*R"). Assume that z € X(P) \ o (P) is of subelliptic type ¢ for P, where ¢ > 0 is
nondecreasing on R,.. Then there exists hy > 0 so that

I(P(h) —z1d\) "' 1 < C/y(h)  O<h<ho (5.11)
where W (h) = 8 is the inverse to h = §¢ (§). It follows that there exists co > 0 such that
fw:lw—z]<coy(W)}No(Ph)=9 0<h <hy.

Theorem 5.20 will be proved in Section 6. Observe that if ¢(§) — ¢ > 0 as § — 0 then ¥ (h) = O(h)
and Theorem 5.20 follows from Theorem 4.15. Thus we shall assume that ¢»(§) — 0 as § — 0, then we
find that 7 = §¢(8) = 0(5) so ¥ (h) > h when h — 0. In the finite type case: ¢(§) = " we find that
8¢ (8) =8 and W (h) = h'/**t!. When = 1/k we find that 1 + pu = (k + 1)/k and v (h) = h¥/*+1,
Thus Theorem 5.20 generalizes Theorem 1.4 in [Dencker et al. 2004] by Example 5.19. Condition (5.11)

with ¥ (h) = h'/#*+! means that A ¢ A?‘; ,+1(P), which is the pseudospectrum of index 1/u + 1.

Example 5.21. Assume that P(w) e C*¥is N x N and z € X(P) \ (Zws(P)U X (P)). Then X, (P) =
{A(w) = u} for u close to z, where A € C* is a germ of eigenvalues for P at X,(P); see Lemma 2.15.
If z € 90X (1) we find from Example 4.12 that P(w) — zIdy is quasisymmetrizable near wg € X,(P)
if P(w) — AlIdy is of principal type when |A — z| < 1. Then P is on the form (4.11) and there exists
q(w) € C™ so that (4.12)—(4.13) hold near ¥,(P). We can then choose the multiplier M so that Q is
on the form (4.14). By taking ¥ = {Re g (A — z) =0} we obtain that P — zIdy is of subelliptic type ¢
if (5.7) is satisfied for Im g (A — z). In fact, by the invariance we find that the approximation property is
trivially satisfied since RegA =0 on X.

Example 5.22. Let
P(x,§) = [ Idy +iK (x) (x,6) e T"R”

where K (x) € C*°(R") is symmetric as in Example 3.12. We find that P — zIdy is of finite type of
order 1/2 when z = i) for almost all L € £ (K) \ (Zws(K) U X (K)) by Example 5.21. In fact, then
7€ X(P)\(Zws(P)NXEs(P)) and the C*° germ of eigenvalues for P near X,(P)is A(x, §)=|& 1>+ik(x),
where «(x) is a C* germ of eigenvalues for K (x) near X, (K) = {x(x) = A}. For almost all values A
we have dk(x) # 0 on X, (K). By taking ¢ = i we obtain for such values that (5.7) is satisfied for
Imi(A(w) —iA) = |&]* with ¢(8) = 8!/2, since Rei(A(w) —id) = A —«(x) =0 on & = I, (K).
If K(x) € Cy° and 0 ¢ To(K) then we may use Theorem 5.20, Proposition 2.20, Remark 2.21 and
Example 2.22 to obtain the estimate

I(P”(x,hD) —zIdy) ' < Ch™??  0<h<«1
on the resolvent.

Example 5.23. Let
P, x;1,8)=tM(@,x,)+iF(t,x,&) e C®

where M > ¢y > 0 and F > O satisfies

Ht  inf (F(,x. )u. ) 55” <Ch©) Vi k. (5.12)
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Then P is quasisymmetrizable with respect to d; with symmetrizer Idy. When T = 0 we obtain that
Re P =0, so by taking V" = Ran IT for the spectral projection I given by (5.5) for F, we find that P
satisfies the approximation property with respect to ¥ = {r =0}. Since Qs(Im P) = Qs(F) we find
from (5.12) that P is of subelliptic type ¢. Observe that if 0 ¢ X, (F) we obtain from Proposition A.2
that (5.12) is satisfied for ¢ (§) = §* if and only if u < 1/k for an even k > 0 so that

S 1 (F @ x, ©u@), u@®) >0 Vi,x,¢
<k

for any 0 # u(t) € C*°(R).

6. Proof of Theorem 5.20

By subtracting z Idy we may assume z = 0. Let wy € X (P); then by Definition 5.15 and Remark 5.16
there exist a C* hypersurface X and a real C* vector field V ¢ T ¥, an invertible symmetrizer M € C*

so that Q = M P satisfies (5.7), the approximation property on X, and
VReQ>c—CImQ 6.1)
ImQ >cQ"Q (6.2)

in a neighborhood w of Wy, here ¢ > 0.

Since (6.1) is stable under small perturbations in V we can replace V with H; for some real t € C*
after shrinking w. By solving the initial value problem H,7 = —1, 7|y =0, and completing to a symplectic

C® coordinate system (¢, T, x, £) we obtain that ¥ = {r = 0} in a neighborhood of wy = (0, 0, wp). We
obtain from Definition 5.15 that

Re(Qu,u)=0 whent=0andu €V (6.3)

near wo. Here ¥ is a Q invariant C* subbundle of CV such that ¥ (i) = Ker Q" (o) = Ker Q (i) by
Lemma 4.6. By condition (5.7) we have that

|2(m Q)N {ltl <c}|<Chp) 0<s<1 (6.4)

when |w — wo| < ¢, here Q,,(¥) = Q(¢, 0, w). Since these are all local conditions, we may assume that
M and Q € Cg°. We shall obtain Theorem 5.20 from the following estimate.

Proposition 6.1. Assume that Q € C;°(T*R") is an N x N system satisfying (6.1)—(6.4) in a neighbor-
hood of wy = (0,0, wg) with V = 9, and nondecreasing ¢(8) — 0 as § — 0. Then there exist hy > 0
and R € C°(T*R") so that Wy ¢ supp R and

Y ull < CUIQ™ (&, x, hDy ull + IRV (t, x, hDy ull +hllul) 0 <h <hg (6.5)

forany u € Cj°(R", CN). Here vy (h) =8 > h is the inverse to h = 8¢ (8).

Let w be a neighborhood of wy such that supp R Nw = &, where R is given by Proposition 6.1. Take
¢ € C{°(w) such that 0 < ¢ < I and ¢ = 1 in a neighborhood of wy. By substituting ¢ (¢, x, hD; y)u
in (6.5) we obtain from the calculus that for any N we have

YW le" (¢, x, hD; Jull < Cy(1Q7 (1, x, hDy @™ (8, x, hDy Jul +hV [ul) — YueC5®  (6.6)
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for small enough % since Ry = 0. Now the commutator
I[Q"™(t,x, hDs ), 9" (t, x, hDy )lull < Chllull  u € Cg.
Since Q = M P the calculus gives
10% (¢, x, hD; Jull < |M™(t, x, hD; ) P(h)ul| 4+ Ch|ull < C'(|P(Wull + hllul) ueC5. (6.7)
The estimates (6.6)—(6.7) give
YW lle” (@, x, hDy Jull < CUIP(W)ull + hllul). (6.8)

Since 0 ¢ X, (P) we obtain by using the Borel Theorem finitely many functions ¢; € Cj°, j=1,..., N,
suchthat0<¢; <1, Zj ¢;j=1o0n Xo(P) and the estimate (6.8) holds with¢p =¢;. Let<z>o:1—zjZl bj;
then since 0 ¢ %o (P) we find that || P~'|| < C on supp ¢o. Thus ¢9 = ¢poP ' P and the calculus gives

g (t, x, hD; ull < C(I|P(Wull +hllull)  ueCq.
By summing up, we obtain
YW ull < CUIPMull +hlull)  ueCq. (6.9)

Since h =8¢ (8) < § we find ¢ (h) =6 > h when h — 0. Thus, we find for small enough 4 that the last
term in the right hand side of (6.9) can be cancelled by changing the constant; then P () is injective with
closed range. Since P*(h) also is of subelliptic type ¢ by Proposition 5.18 we obtain the estimate (6.9)
for P*(h). Thus P*(h) is injective making P (h) is surjective, which together with (6.9) gives Theorem
5.20.

Proof of Proposition 6.1. First we shall prepare the symbol Q locally near wy = (0, 0, wg). Since Im Q >0
we obtain from Lemma 4.6 that Ran Q (@)L Ker Q(wy) which gives Ker Q" (o) = Ker Q(ip). Let
Dim Ker Q(wy) = K then by choosing an orthonormal base and multiplying from the left as in Example

5.17, we may assume that
_(9n O )
Q= ( 0 O»

where Q11 is K x K matrix, Q11(wg) = 0 and |Q2(Wp)| # 0. Also, we find that Q1 satisfies the
conditions (6.1)—(6.4) with V" = CX near .

Now it suffices to prove the estimate with Q replaced by Q1. In fact, by using the ellipticity of Q)
at wo we find

"Il < CAQRU" I+ IRw" I +hllu"l " € CR", CN™F)

where u = (u’, u”) and Wy ¢ supp Ry. Thus, if we have the estimate (6.5) for Q) with R = R», then
since ¥ (h) is bounded we obtain the estimate for Q%:

Yy ull < Coll Q1w Il + 11 Q2u” | + IRV ull + hllull) < Cr(1Q™ull + R ull + hljull)

where W ¢ supp R, R = (Ry, R»).
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Thus, in the following we may assume that Q = Q1] is K x K system satisfying the conditions (6.1)—
(6.4) with ¥ = CX near . Since 3; Re Q > 0 at Wy by (6.1), we find from the matrix version of the
Malgrange Preparation Theorem in [Dencker 1993, Theorem 4.3] that

oG, T,w)=E@¢, t,w)(t Id+Ky(t, w)) near Wy
where E, Ky € C*, and Re E > 0 at wy. By taking M (¢, w) = E(t,0, w) we find Re M > 0 and
o(t, 7, w) = Eo(t, T, w)(TM(t, w) + i K (1, w)) = Eo(t, T, w) Qo(t, T, w)

where Ey(¢, 0, w) = Id. Thus we find that Qy satisfies (6.2), (6.3) and (6.4) when T = 0 near wy. Since
K (0, wo) = 0 we obtain that Im K =0 and K > ¢K? > 0 near (0, wo). We have Re M > 0 and

[(Im Mu, u)| < C(Ku,u)?|u|]l  near (0, wp). (6.10)

In fact, we have
0<ImQ <K +1(ImM +Re(E,K))+ Ct?

where E|(t, w) = 0 E(t, 0, w). Lemma A.7 gives
|(Im Mu, u) +Re(E1Ku, u)| < C(Ku,u)"*||ul|
and since K2 < CK we obtain
IRe(E1Ku, u)| < CllKullull < Co(Ku,u)"/?||u]
which gives (6.10). Now by cutting off when |7| > ¢ > 0 we obtain that
Q" = Ey'Qy + Ry +hRY

where R; € C5° and wy ¢ supp Ro. Thus, it suffices to prove the estimate (6.5) for Q. We may now
reduce to the case when Re M = Id. In fact,

QY = MY (Ad+iMP")hD, +iK")MY  modulo O(h)

where My = (Re M)'/2 is invertible, M} =M and K| = M(;IKM(;I > 0. By changing M, and K and
making K; > 0 outside a neighborhood of (0, wg) we may assume that M, Ky € C° and i K satis-
fies (6.4) for all ¢ > 0 and any w, by the invariance given by Remark 5.5. Observe that condition (6.10)
also is invariant under the mapping Q¢ +— E*QoE.

We shall use the symbol classes f € S(m, g) defined by

k
0, - Oy f1 < Cem [[gp'? Yor...ou Yk
j=1

for constant weight m and metric g, and Op S(m, g) the corresponding Weyl operators f*. We shall
need the following estimate for the model operator Q.

Proposition 6.2. Assume that

Q :Mw(t7x7 hD)C)th‘-"_in(t,xath)a
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where M (t, w) and 0 < K (¢, w) € L (R, C;°(T*R")) are N x N system such that Re M = 1d, Im M
satisfies (6.10) and i K satisfies (6.4) for all w and ¢ > 0 with non-decreasing 0 < ¢ () — 0 as
8 — 0. Then there exists a real valued B(t, w) € L*(R, S(1, Hldwlz/h)) such that hB(t, w)/y(h) €
Lip(R, S(1, H|dw|?/ h)), and

V(W) ||ull?> <Im(Qu, BY(t, x, hDy)u) + Ch?*|| D,u|)? 0<h«l 6.11)

for any u € CgO(R"H, CN). Here the bounds on B(t, w) are uniform, ¥ (h) = 8 > h is the inverse to

h=656¢p()s0o0< H=1\/h/Yyh)Klash— 0.

Observe that H> = h/y(h) = ¢ (¥ (h)) — 0 and h/H = /Y (hW)h < Y (h) — 0 as h — 0, since
0 < ¢(d) is non-decreasing.

To prove Proposition 6.1 we shall cut off where |7| = e4/¥/h. Take xo(r) € Cy°(R) such that
0<yxo<1, xor) =1 when |r| <1 and |r| <2 in supp xo. Then 1 — o = x; where 0 < x; <1 is
supported where |r| > 1. Let ¢; . (r) = x; (hr/e/¥), j =0, 1, for ¢ > 0; then ¢y is supported where
Ir| <2e/¥/h and ¢y ¢ is supported where || > e/ / h. We have that ¢, . (1) € S(1, h*dt?/v), j =0,
1, and u = ¢ (D;)u + ¢1.:(D;)u, where we shall estimate each term separately. Observe that we shall
use the ordinary quantization and not the semiclassical for these operators.

To estimate the first term, we substitute ¢ . (D;)u in (6.11). We find that

U () || o, (D)ul|*> < Im(Qu, ¢o (D) B (1, x, kD)o (Dy)u)
+Im([Q, do.e (D) ]u, B (t, x, hDy)o.e(D)u) +4Ce>yr|ul®  (6.12)

In fact, h||D,¢o. (D;)u|| < 2e+/¥||ul| since it is a Fourier multiplier and |htdo ()| < 264/ . Next we
shall estimate the commutator term. Since Re Q = hD;Id —hd;, Im M"™/2 and Im Q = hIm M" D, +
K" + ho; Im M™/2i we find that [Re Q, ¢ (D;)] € Op S(h,9) and

[0, ¢0.o(D)]=ilIm Q, ¢o.(D)]=i[K", ¢o.e(D;)] = —hd, K ¢ (D;)/ey/ ¥

is a symmetric operator modulo Op S (4, 9), where 4 = dt> +h*dt? /¢ + |dx|* + h?|dE|* and Pre(T) =
x4 (ht/e/¥). In fact, we have that h? /¥ (h) < Ch, h[3; Im M™, ¢ .(D;)] and [Im M™, ¢ (D;)1hD; €
Op S(h,9), since |t| < &4/ /h in supp ¢ (t). Thus, we find that

— 2i Im (¢, (D1) BV [Q, ¢, (D)]) = 2ihe ™" /> Im (o - (D) B, K" ¢,(Dy))
= e~ ™2 (G0 (DOB [0 K", .0 (D)1 + o, (DOIB", 2,6 (D)1 K"
+¢2.6(D)[o.: (D), BY18, K" + ¢2.c(D;) B [0, (Dy), a,Kw]) (6.13)

modulo Op S(h,9). As before, the calculus gives that [¢;.(D;), 3;K"] € Op S(hy~12,%4) for any
J. Since t — hB"/y € Lip(R, Op S(1, 9)) uniformly and ¢; .(7) = Xj(hr/eﬁ) with X]’. € C(R),
Lemma A.4 with k = &/%/ h gives that

H [®.6(D), Bw]||§£(L2(R”+')) = C\/J/g



362 NILS DENCKER

uniformly. If we combine the estimates above we can estimate the commutator term:
| Im([Q. do.c(D)]u, BY(, x, hDx)¢o.o(DDu)| < Chllul> < yMlul® 7 <1 (6.14)

which together with (6.12) will give the estimate for the first term for small enough ¢ and £.
We also have to estimate ¢ .(D;)u; then we shall use that Q is elliptic when || # 0. We have

1. (Doull* = (x"(Dy)u, u)

where x (1) = qblzyg(r) e S(1, h?d7? /) is real with support where |t| > e/ /h. Thus, we may write
x(D;)=0(D,)hD; where o(t) = x(t)/ht € S(W Y2, h?dt? /) by Leibniz’ rule since |t|~! <h/e /¥
in supp 0. Now hD;Id =Re Q + hd; Im M™/2 so we find

(x(Dy)u, u) =Re{o(D;)Qu, u) + g Re(o(D)(3; Im M™)u, u) +1Im(o(D;) Im Qu, u)

where |h Re{o(D;)(0; Im M™)u, u)| < Ch||u||2/sﬁ and
|Re(o(Dy) Qu, u)| < | Qullllo(Dull < || Qull lull/ev/vr

since o(D;) is a Fourier multiplier and |o(t)| < 1/£4/%. We have that

ImQ=K"(t,x,hDy)+hD, ImM"(t,x, hD,) — zﬁiat Im M™ (¢, x, hDy)

where Im M™ (¢, x, hDy) and K¥ (¢, x, hD,) € Op S(1, %9) are symmetric. Since o = x /ht € S(y /%, 9)
is real we find that

Im(o(D,) Im Q) = Im o(D)K"™ +1Im x(D,) Im M"

1
- Z([Q(DZ)9 Kw([vxv th)]+[X(Dt),Ime([,X, th)])

modulo terms in Op S(h/+/¥,%9) € Op S(h/vr, 9). Here the calculus gives
[o(D:), K" (t, x, hDy)] € Op S(h/, )

and similarly we have that

[x(Dy), ImM™(t, x, hD,)] € Op S(h/\/¥, ) C Op S(h/ v, 9)

which gives that |Im{o(D;) Im Qu, u)| < C h|lu||?/y. In fact, since the metric % is constant, it is uni-
formly o temperate for all 2 > 0. We obtain that

Y(Mpr.e(Dull® < Co(v/¥ 1| Qullllull + hllul®)

which together with (6.12) and (6.14) gives the estimate (6.5) for small enough ¢ and 4, since h /¥ (h) — 0
as h — 0. O

Proof of Proposition 6.2. We shall do a second microlocalization in w = (x, §). By making a linear
symplectic change of coordinates (x, &) — (h'2x, h=12&) we see that Q(t, 7, x, h&) is changed into

O, t,h'?w) e S(1,dt>* +dt*> + h|dw|®>)  when |t| <c.
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In these coordinates we find B(h'?w) € S(1, G), G = H|dw|?, if B(w) € S(1, H|dw|*/h). In the
following, we shall use ordinary Weyl quantization in the w variables.

We shall follow an approach similar to the one of [Dencker et al. 2004, Section 5]. To localize the
estimate we take {¢; (w)};, {/;(w)}; € S(1, G) with values in £2, such that 0 < ¢;, 0 < ¢, >, ¢7 =1
and ¢;y; = ¢; for all j. We may also assume that v/; is supported in a G neighborhood of w ;. This can
be done uniformly in H, by taking ¢;(w) = <I>j(H1/2w) and ¥;(w) = lI!j(Hl/zw), with {®;(w)}; and
{W;(w)}; € 1, |[dw|?). Since quf. =1and G = H|dw|? the calculus gives

> oY G, Doul? = CH?|ul* < llul* < D 1Y (x, Doul® + CH? |lul?
J J

for u € Cg°(R"), thus for small enough H we find

D oY G Doull® <20ul* <4 ¥ (x, Doul®  foru € CO(R"). (6.15)
J J

Observe that since ¢; has values in 22 we find that {d);} R;P} ; € OpS(HY, G) also has values in 02 if
R; € S(H", G) uniformly. Such terms will be summable:

D o IrPull* < CH? |lul? (6.16)
J

for {r;}; € S(H", G) with values in £?; see [Hormander 1983-1985, Volume III, page 169]. Now we
fix j and let
Q,t, )= Q(t, T, h"*w;) = M;(t)t +iK;(t)
where M;(t) = M(t, h'/?w;) and K;(t) = K (t, h'?w;) € L*(R). Since K (¢, w) > 0 we find from
Lemma A.7 and (6.10) that
[(Im M (t)u, u)| + |(dw K (t, h'?wj)u, u)| < C(Kj(O)u, u)?|ul  YueCV¥ Vi  (6.17)
and condition (6.4) means that

Ht : inf (K (0w, u) 55}( < Co(5). 6.18)

We shall prove an estimate for the corresponding one-dimensional operator
Qi(t,hD;) =M;(t)hD; +iK;(t)
by using the following result.

Lemma 6.3. Assume that

O, hD;) =M{t)hD,+iK (1)
where M(t) and 0 < K(t) are N x N systems, which are uniformly bounded in L*°(R), such that
Re M =1d, Im M satisfies (6.10) for almost all t and i K satisfies (6.4) for any ¢ > 0 with non-decreasing
¢(8) = 0as § — 0. Then there exists a uniformly bounded real B(t) € L*°(R) so that hB(t)/y¥ (h) €
Lip(R) uniformly and

VW) |lul> + (Ku, u) <Im(Qu, Bu) + Ch?|| D,u|? 0<h«l1 (6.19)
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forany u € Ci°(R, CN). Here vy (h) =8 > h is the inverse to h = 8¢ (8).

Proof. Let 0 < &, () <1 be the characteristic function of the set Q5(K) with 6 = v (h). Since § = v (h)
is the inverse of & = 8¢ (5) we find that ¢ (v (h)) = h/8 = h/y¥r(h). Thus, we obtain from (6.18) that

/ (1) dt = [Q2s(K)| < Ch/yr(h)

Letting

h t
E(t) =exp (#/0 Dy (s) ds),

we find that E and E~! € L%(R) N C°(R) uniformly and E’ = v (h)h~' &, E in 9'(R). We have

E®)Q(t,hD)E~'(t) = Q(t, hD;) + E()h[M (t) Dy, E~' (1)1 1dy
= Q(t, hDy) + iy (W)@, (t) Idy — (h) P (1) Tm M (1) (6.20)

since (E~') = —E’E~2. In the following, we let
F)=K@®+yh)Idy = ¢ (h)Idy .
By definition we have ®,(t) <1 = K(t) > v (h) Idy, so
KO+ y(®p () ldy = 3F ).
Thus by taking the inner product in L?(R) we find from (6.20) that
Im(E()Q(t, hD)E™ " (t)u, u) > (F()u, u) + (Im M()h Dyu, u) — chllull*  u e CP(R, CV)

since Im Q(t, hD;) = K(t) +Im M (¢t)hD; + %8, Im M (¢). Now we may use (6.10) to estimate for any
e>0
[(Im Mh D, u)| < &(Ku, u) + Ce(R*|| Duuel|* + hllu®) — VueCFE®R,CY).  (621)

In fact, u = xo(hDy)u + x1(hDy)u where xo(r) € C;°(R) and |r| > 1 in supp x;. We obtain from (6.10)
for any ¢ > 0 that

|(Im M (£) xo(hT)hTu, u)| < C{K (t)u, u)'/?| xo(hT)ht|l|lull < e(K (t)u, u) + Cell xo(hT)hTu®
so by using Gardings inequality in Proposition A.5 on
eK (1) + Coxd(hD)h> D? +Tm M (1) xo(h D,)h D,
we obtain
[(Im M (1) xo(hD)hDyu, u)| < &(K (t)u, u) + Coh*| Du||* + Cohllul* VYu e CF(R,CY)
since || xo(hD;)hD;u|| < C||hD;u||. The other term is easier to estimate:
|(Im M (£) 1 (hD:)h Dyu, u)| < C\hDyullll 1 (hD)ull < Cih*|| Dyu?
since |x1(ht)| < Clht|. By taking ¢ = 1/6 in (6.21) we obtain
(F(t)u,u) <3Im(E@)Q(t, hD)E~ (t)u, u) + C(h*| Dull® + hllu||?).
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Now hD;Eu = EhD;u — iy (h)®, Eu so we find by substituting E (¢)u that

YW E@ul® + (K E(t)u, E(t)u)
<3Im(Q(t, hD)u, E*(t)u) + C(h*|| Du||* + hllul* + (W) E(t)ul*)

foru € Ci°(R, CM). Since E > ¢, K > 0and h < ¥ (h) < 1 when & — 0 we obtain (6.19) with scalar
B=9pE?foro> land h < 1. O

To finish the proof of Proposition 6.2, we substitute (j)J“.”u in the estimate (6.19) with Q = Q; to obtain
YWY ull® + (K9P u, ¢¥u) <Im(@¥ Q;(t, hDu, B; ()Y u) + ChAI$?" Dl (6.22)

foru € CSO(R”“, CV), since qﬁ}” (x, Dy) and Q(t, hD;) commute. Next, we shall replace the approxi-
mation Q; by the original operator Q. In a G neighborhood of supp ¢; we may use the Taylor expansion
in w to write for almost all ¢

O(t, T, h'?w)y — Qj(t, v) =i(K(t, h'?w) — K; (1)) + (M (t, ' *w) — M;(1))t. (6.23)
We shall start by estimating the last term in (6.23). Since M (¢, w) € C;° we have
|M(t, h'*w) — M) < Ch'*H™Y?  insupp ¢, (6.24)

because then |w —w ;| < cH™'2. Since M(t, h'/?w) € S(1, h|dw|*) and h <« H we find from (6.24) that
M(t, h'?w) — M;(t) € S(h'2H='2, G) in supp ¢; uniformly in . By the Cauchy—Schwarz inequality
we find

(¢} (M™ — Mj)hDyu, Bj(1)¢u)| < Cllx'hDeu||* +hH | u]*) (6.25)
for u € CEO(R*', CV) where x ' = h™'?H'/?¢¥(M"™ — M;) € Op S(1, G) uniformly in ¢ with values
in £2. Thus we find from (6.16) that

D lIxf Dl < ClhDul®  u e CFPR™
J
and for the last terms in (6.25) we have
hH™'Y eul® <2hH - ul? <y Wlul®  h—0  ueCFR™
j

by (6.15). For the first term in the right hand side of (6.23) we find from Taylor’s formula
K(t, h'?w) — K;(t) = h'/2(S;(t), W;(w)) + R;(t, T, w)  insuppe;

where §;(t) = 9, K(t, hl/zwj) € L*(R), R; € S(hH~', G) uniformly for almost all ¢ and W; e
S(h='2, h|dw|?) such that ¢; (W)W, (w) = ¢, (w)(w — w;) = O(H~'/?). Here we could take W;(w) =
x (W2 (w—w i) (w —wyj) for a suitable cut-off function x € C;°. We obtain from the calculus that

PVK (1) = VK"t h2x, h'2 D) — h'PgP(S; (1), W) + R,
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where {ﬁ i} € S(hH —1. G) with values in £> for almost all 7. Thus we may estimate the sum of these
error terms by (6.16) to obtain

Z |<§7u, Bi()¢Yu)| < ChH™'|ul> < ¥ (h)|lu*> ash—0 forue CPMR™, CY). (6.26)
J

Observe that it follows from (6.17) for any « > 0 and almost all ¢ that
(8w, )| < C{K (D, ) |lull < we(Kj@u,u) +Cllul/c - YueC.

Let F;(t) = F(t, hl/ZwJ-) = K ;(t)+v (h) Idy; then by taking k = oH'2h=1/2 we find that for any o >0
there exists i, > 0 so that

RY2HY2(Siu,u)| < oK ju,u) + ChH  ul*/o < o(Fju,u) YueC" 0<h<h, (627)

since hH~' < ¥ (h) when h < 1. Now F ; and S; only depend on #, so by (6.27) we may use Remark
A.6 in the Appendix for fixed ¢ with A = hl/zH_l/sz, B = oF}, u replaced with ¢}”u and v with
BjHY 2¢}” W u. Integration then gives

3
R2IBIOY (S (0, W, ¢ u)| < TLUF; (0 u. ¢ u) +(Fj 009 fu yfu)) — (6.28)
for u € CP(R™, CN), 0 < h < hy, where
Y =B;H'?¢YW cOpS(1,G)  with values in £°.
In fact, since ¢; € S(1, G) and W; € S(h=1/2, h|dw|*) we find that
PV WY = (¢;W;)" modulo Op S(H'?, G).

Also, since |¢p;W;| < CH™'/? we find from Leibniz’ rule that oW, € S(H™'2,G). Now F >
Y (h)Idy > hH~'Idy so by using Proposition A.9 in the Appendix and then integrating in # we find
that

j
We obtain from (6.15) that

Z(F;‘(f)lﬁ}uu, Yiu)<C Z(Fj(t)qﬁ}”u, oY u) ue CPMR, M.
J

YW ul* <2) (Fi)¢Yu, ¢¥u)  ue PR, V).
J
Thus, for any ¢ > 0 we obtain from (6.22) and (6.25)—(6.28) that

(1= Co0) Y (Fi(t)pVu, ¢¥u) <D Im(p¥ Qu, B;j()Yu) + Coh*| Dyl 0 <h <hy.
J Jj

We have that ) j Bj¢j ¢y € S(1,G) is a scalar symmetric operator uniformly in 7. When ¢ = 1/2C
we obtain the estimate (6.11) with B¥ =4 ;B jqﬁ}”qﬁ’.‘), which finishes the proof of Proposition 6.2. [J
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Appendix
We shall first study the condition for the one-dimensional model operator
hD;1dy +i F(2) 0<F(t) e C*(R)

to be of finite type of order w:
1Qs(F)| <C8" 0<dk1 (A.1)

and we shall assume that 0 ¢ ¥, (P). When F(¢) ¢ C*°(R) we may have any i > 0 in (A.1), for example
with F(¢) = |¢t]'/*1dy. But when F € Cg the estimate cannot hold with ;& > 1, and since it trivially
holds for u = 0 the only interesting cases are 0 < pu < 1.
When 0 < F(¢) is diagonalizable for any ¢ with eigenvalues 1;(t) € C*°, j =1, ..., N, then condi-
tion (A.1) is equivalent to
Qs | <cs* Vi 0<sk1

since Qs(F) = j Q2s(A ;). Thus we shall start by studying the scalar case.

Proposition A.1. Assume that 0 < f(t) € C*(R) such that f(t) >c >0 when |t| > 1, thatis,0 ¢ o (f).
We find that f satisfies (A.1) with yu > 0 if and only if © < 1/ k for an even k > 0 so that

Yo rwo1=0 v, (A.2)

Jj<k

t

Simple examples as f(t) =e~ * show that the condition that 0 ¢ Yo (f) is necessary for the conclusion

of Proposition A.1.

Proof. Assume that (A.2) does not hold with k£ < 1/u; then there exists fy such that f (D (1) = 0 for
all integer j < 1/u. Then Taylor’s formula gives that f(¢) < c|t — ok and |Qs(f)| = 8% where
k=1[1/ul+ 1> 1/u, which contradicts condition (A.1).

Assume now that condition (A.2) holds for some k, then f~'(0) consists of finitely many points. In
fact, else there would exist oy where f vanishes of infinite order since f(¢) # 0 when || > 1. Also
note that (s, 2s(f) = f ~1(0), in fact f must have a positive infimum outside any neighborhood of
£~1(0). Thus, in order to estimate |Q2s( f)| for § < 1 we only have to consider a small neighborhood
of tg € £~1(0). Assume that

f)=f(t)=--=fIV V() =0and V1) #0

for some j < k. Since f > 0 we find that j must be even and £ (fy) > 0. Taylor’s formula gives as
before f(t) > c|t — o]/ for |t — o] < 1 and thus we find that

1(f)Nw| <Cs' <csV* 0<s«1

if w is a small neighborhood of #y3. Since f ~1(0) consists of finitely many points we find that (A.1) is
satisfied with u = 1/k for an even k. O

Soif 0 < F € C*®°(R) is C* diagonalizable system and 0 ¢ 3, (P), condition (A.1) is equivalent to

> 10/ (Fu @), u@)l/lu@ > >0 Vi

J=k
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for any 0 # u(t) € C*°(R), since this holds for diagonal matrices and is invariant. This is true also in the
general case by the following proposition.

Proposition A.2. Assume that 0 < F(t) € C*°(R) is an N x N system such that 0 ¢ X (F). We find
that F satisfies (A.1) with u > 0 if and only if u < 1/k for an even k > 0 so that
Zlatj(F(t)u(t),u(l))l/llu(t)||2>0 Vit (A.3)
J<k
forany 0 £ u(t) € C*°(R).
Observe that since 0 ¢ X, (F) it suffices to check condition (A.3) on a compact interval.
Proof. First we assume that (A.1) holds with i > 0, let u(t) € C*®°(R, CV) such that |u(¢)| = 1, and
f@) = (F@®u(),u()) € C*°(R). Then we have Qs(f) C Q2s(F) so (A.1) gives
1Qs(H) <I1Qs(F)] <Cs"  0<sK1.
The first part of the proof of Proposition A.1 then gives (A.3) for some k < 1/p.
For the proof of the sufficiency of (A.3) we need the following simple lemma.

Lemma A.3. Assume that F(t) = F*(t) € CK(R) is an N x N system with eigenvalues Aj(t) € R,
J=1,...,N. Then, for any ty € R, there exist analytic v;(t) € cV, J=1,...,N,so that {v;(tp)} is a
base for CN and

|2 () = (FOv;@), v;1)| <Clt — 1o/ for|t—to] <1

after a renumbering of the eigenvalues.

By a well-known theorem of Rellich, the eigenvalues A(z) € C!'(R) for symmetric F(¢) € C'(R);
see [Kato 1966, Theorem 11.6.8].

Proof. 1t is no restriction to assume fy = 0. By Taylor’s formula
F(t) = Fi(t) + Ri (1)

where Fy and Ry are symmetric, Fy(¢) is a polynomial of degree k — 1 and Ry (¢) = 0(|t|F). Since Fi (1)
is symmetric and holomorphic, it has a base of normalized holomorphic eigenvectors v;(¢) with real
holomorphic eigenvalues Xj (t) by [Kato 1966, Theorem I1.6.1]. Thus Xj (t) = (Fx(t)v;(2), vj(r)) and by
the minimax principle we may renumber the eigenvalues so that

Lj(t) =%, (O] < IR (D)l < Clel* V.
The result then follows since
{(F(t) — F())v; (1), vj ()] = [{Re(H)v; (1), v; (1))] < Cle[* V. U

Assume now that Equation (A.3) holds for some k. As in the scalar case, we have that k is even and
Ns=0 2 (F) = Xo(F) =|F |~1(0). Thus, for small § we only have to consider a small neighborhood of
to € Xo(F). Then by using Lemma A.3 we have after renumbering that for each eigenvalue A(¢) of F(¢)
there exists v(¢) € C* so that |v(¢)| > ¢ > 0 and

IL(t) — (F()v(t), v(t))| < Clt —to/*T"  when |t —1p] < c. (A4)
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Now if ¥o(F) > t; — fo is an accumulation point, then after choosing a subsequence we obtain that
for some eigenvalue Ay we have Ax(¢;) = 0 for all j. Then A; vanishes of infinite order at #,, contra-
dicting (A.3) by (A.4). Thus, we find that Xy(F) is a finite collection of points. By using (A.3) with
u(t) = v(t) we find as in the second part of the proof of Proposition A.1 that
(F(v@®),v(®) =clt =l |1 =1l <1
for some even j < k, which by (A.4) gives that
Moy = clt =t = Clt =o' = e =l -1l < 1.

Thus |Q25(A) Nw| < ¢8'/ if w for § < 1 if w is a small neighborhood of 7y € Zo(F). Since Qs(F) =
Uj Qs(A;), where {A;(¢)}; are the eigenvalues of F(¢), we find by adding up that |Qs(F)| < csl/k,
Thus the largest u satisfying (A.1) must be > 1/k%. U

Let A(t) € Lip(R, £(L*(R"))) be the L*(R") bounded operators which are Lipschitz continuous in
the parameter ¢ € R. This means that

A(s)— A1)

— = B(s,t) € $(L*(R")  uniformly in s and ¢. (A.5)
s —

One example is A(t) = a*(¢, x, D,) where a(t, x, &) € Lip(R, S(1, G)) for a ¢ temperate metric G
which is constant in ¢ such that G/G? < 1.

Lemma A.4. Assume that A(t) € Lip(R, L(L*(R"))) and ¢ (t) € C*®°(R) such that ¢'(t) € Cy°(R). Then
for k > 0 we can estimate the commutator

[[6D: /), AD] | 42 unryy < C

where the constant only depends on ¢ and the bound on A(t) in Lip(R, P(L*(R™))).

Proof. In the following, we shall denote by A(¢, x, y) the distribution kernel of A(¢). Then we find

from (A.5) that
A(s,x,y)—A(t,x,y)=(s—1t)B(s,t,x, ), (A.6)

where B(s, t, x, y) is the kernel for B(s, t) for s, t € R. Then
([ (D1 /1), A@®)]u, v)
= Q)" / T (T /i) (A(s, x, y) — AL, x, Y)u(s, x)v(t, y)drdsdtdx dy (A7)

foru, v e C° (R"*+1), and by using (A.6) we obtain that the commutator has kernel

1

E/e“f—”fd)(r//c)(s—z)B(s,t,x,y)dr = %/ei(’_s)rp(r/K)B(s,t,x,y)dt = Dk (s—1))B(s,1,x,y)

in @(R>"*+2), where p € C°(R). Thus, we may estimate (A.7) by using Cauchy—Schwarz:
/ [0(ks)(B(s +1, Duls +1), v(1)) 2@y | dt ds < Cic ™ lul| ]|

where the norms are in £(L?(R"*!)). U
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We shall need some results about the lower bounds of systems, and we shall use the following version
of the Garding inequality for systems. A convenient way for proving the inequality is to use the Wick
quantization of a € L*°(T*R") given by

aWiCk(x, Dou(x) = / a(y, U)Z;jn(x, Dyu(x)dydn ue PR
T*Rn

using the rank one orthogonal projections X, (x, Dy) in L?*(R") with Weyl symbol
Ty &) =7 " exp (~|x =y — £ — 1)

(see [Dencker 1999, Appendix B] or [Lerner 1997, Section 4]). We find that a™Vik: P(R") — &' (R") is
symmetric on ¥(R") if a is real-valued,

a>0 = (aV*,Du,u) >0 ueP R, (A.8)
1™ @, Do) lgr2@ny < llallsrre),
which is the main advantage with the Wick quantization. If a € S(1, h|dw|?) we find that
aVik = g¥ 4 ¥ (A.9)
where r € S(h, h|d w|2). For a reference; see [Lerner 1997, Proposition 4.2].
Proposition A.5. Let 0 < A € C{°(T*R") be an N x N system, then we find that
(A¥(x, hD)u, u) > —Chllu|? Yue CP[R",CY).

This result is well known (see for example Theorem 18.6.14 in Volume I1I of [Hormander 1983-1985])
but we shall give a short and direct proof.

Proof. By making a L? preserving linear symplectic change of coordinates: (x, &) — (h'/%2x, h=1/2¢)
we may assume that 0 < A € S(1, h|dw|?). Then we find from (A.9) that A¥ = AWk L R¥ where
R € S(h, h|dw|?). Since A > 0 we obtain from (A.8) that

(A%u, u) > (R%u, u) > —Ch|u|? Yu e CPR", C). O
Remark A.6. Assume that A and B are N x N matrices such that £A < B. Then we find
[(Au, v)| < 3 ((Bu, u) + (Bv, v)) Yu, veC
In fact, since B + A > 0 we find by the Cauchy—Schwarz inequality that
2H{(BE A)u, v)| < ((BE£Au,u)+ ((BL A)v, v) Yu, veC"
and 2 |(Bu, v)| < (Bu, u) + (Bv, v). The estimate can then be expanded to give the inequality, since
[{(Au, u)| < (Bu, u) YuelC"

by the assumption.

Lemma A.7. Assume that 0 < F(t) € C2(R) is an N x N system such that F"" € L*®(R). Then we have
[(F'O)u, u)]> < CIF" || (F Oy, ) u)>  YueCV.
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Proof Take u € CN with |u| =1 and let 0 < f(t) = (F(t)u,u) € C*>(R). Then |f"| < |F"|lz~ so
Lemma 7.7.2 in Volume I of [Hormander 1983-1985] gives

| £/ O = [(F'(O)u, u)|* < C|F"|| 1~ £(0) = C|| F"|| Lo (F (O)ut, ). g
Lemma A.8. Assume that F > 0is an N x N matrix and that A is a L* bounded scalar operator. Then
0 < (FAu, Au) < |AlI*(Fu, u)
for any u € Cj°(R", CcM).

Proof. Since F > 0 we can choose an orthonormal base for CV such that (Fu, u) Z =1 filujl 2 for
u=uy,us,...)eCV, where fj = 0 are the eigenvalues of F'. In this base we find

0 < (FAu, Au) Zf,||Au,||<||A|| ijnu,u = | AIP(Fu, u)

for u € C°(R", CV). O

Proposition A.9. Assume that h/H < F € S(1, g) isan N x N system, {¢;} and {y;} € S(1, G) with
values in £* such that Zj o |>>c¢>0and Y is supported in a fixed G neighborhood of w;j € supp ¢,
forall j. Here g = h|dw|? and G = H|dw|? are constant metrics,0 <h < H < 1. If Fi = F(w;) we
find for H < 1 that

Y (FY (x, Dou, ¥ (x, Dou) < C Y (Fjpl (x, Do)u, ¢V (x, Do)u) (A.10)
J J
for any u € Cj°(R", cM).

Proof. Since y = Zj|¢j|2 > ¢ > 0 we find that x ~' € S(1, G). The calculus gives
XYYy =1+r"
J

where r € S(H, G) uniformly in H. Thus, the mapping u — (x ~")* Z ¢w¢wu is a homeomorphism
on L?(R") for small enough H. Now the constant metric G = H |dw|? is tr1V1ally strongly o temperate
according to Definition 7.1 in [Bony and Chemin 1994], so Theorem 7.6 in the same reference gives

B € S(1, G) such that
BROC" 2 0T0] = 2 B -

where Bw = Bw(x_l)“’(t)w € Op S(1, G) uniformly, which gives 1 = Z ¢w % since (Bw)* = B . Now
we shall put

FU(x, Dy) =Y P (x, D) Fjy (x, Dy).
J

Then
GU=>"@UBiF Brer =Y VBV iy By (A.11)
ik

jkl
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Let C%, = B %y}" BY’; then we find from (A.11) that

(Fu,u) =Y (FCY b u. ¢Vu).
Jjki

Let dj; be the H ~!|dw|?* distance between the G neighborhoods in which j and vy are supported.
The usual calculus estimates (see [Hormander 1983-1985, Volume III, page 168] or [Bony and Chemin
1994, Theorem 2.6]) gives that the L? operator norm of C}Ukl can be estimated by

ICH Il < Ch (A +dji +d) ™
for any N. We find by Taylor’s formula, Lemma A.7 and the Cauchy—Schwarz inequality that
((Fj — Fou, u)] < Crlw; — wil(Fiu, w) 22|l + Cohlw; — wePllull® < C(Feu, u)(1+ dj)?
since |w; —wi| < C(djx + H='2yand h < hH™' < F;. Since F; > 0 we obtain that
20(Fpu, v)| < (Fu, u) 2 (Fro, )2 < CCFju, u) 2 (Fro, 0) V(14 djn) (1 dig)
and Lemma A.8 gives

(FkClydiu, FeCllydiu) < 1|C |l (Frgiu, ¢’ u).

Thus we find that

D ARCH ¢, ¢Vu) < Cy Y _(1+dj+du)* N (Fegu, ¢ w)' *(FipPu, ¢Pu)'/?
Jkl Jjkl
<Cv Y _(4di)"™N2A +dp) NP ((FidYu, ¢V u) + (Fegu, o))
Jikl
Since ) j(I+d jk)_N < C for all k for N large enough by [Hérmander 1983—-1985, Volume III, page
168]), we obtain the estimate (A.10) and the result. U
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AN IMPROVED LOWER BOUND ON THE SIZE OF KAKEYA SETS OVER
FINITE FIELDS

SHUBHANGI SARAF AND MADHU SUDAN

In a recent breakthrough, Dvir showed that every Kakeya set in [ must have cardinality at least ¢, |F|",
where ¢, &~ 1/n!. We improve this lower bound to 8"|F|" for a constant § > 0. This pins down the
correct growth of the constant ¢, as a function of n (up to the determination of §).

Let F be a finite field with g elements. A set K C [" is said to be a Kakeya set in F" if, for every
b € ", there exists a point a € [" such that, for every ¢ € [, the point @ + ¢ b lies in K. In other words,
K contains an affine line in every direction.

The question of establishing lower bounds on the size of Kakeya sets was posed in [Wolff 1999]. Till
recently, the best known lower bound on the size of Kakeya sets was of the form ¢*”" for some ¢ < 1. In
a recent breakthrough Dvir [2008] showed that every Kakeya set must have cardinality at least ¢,¢" for
cn = ()L, (Dvir originally achieved a weaker lower bound of ¢, ¢" !, but the paper cited includes the
stronger bound of ¢, ¢", the improvements being attributed to Alon and Tao.) We show:

Theorem 1. There exist constants cgy, c; > 0 such that for all n, if K is a Kakeya set in F"* then |K| >
col(c19)".

Remark. Our proofs give some tradeoffs on the constants cg, c; that are achievable. We comment on
the constants at the end of the paper.

Our improvement shows that ¢, remains bounded from below by g” for some fixed § > 0. While
this improvement in the lower bound on the size of Kakeya sets is quantitatively small (say, compared
to the improvement of Alon and Tao over Dvir’s original bound), it is qualitatively significant in that it
does determine the growth of the leading constant c,, up to the determination of the right constant g. In
particular, it compares well with known upper bounds. Previously, it was known there exists a constant
B < 1 such that there are Kakeya sets of cardinality at most 8"¢", for every odd g. A boundof g <1/ V2
follows from [Mockenhaupt and Tao 2004] and the fact that products of Kakeya sets are Kakeya sets (in
higher dimension). The best known constant has 8 — % due to Dvir (personal communication, 2008).
We include his proof here (see Section 3), complementing it with a similar construction and bound for
the case of even g as well (so now the upper bounds work for all large fields).

Our proof follows the one in [Dvir 2008]. Given a Kakeya set K in [, we show that there exists an
n-variate polynomial, whose degree is bounded from above by some function of | K|, that vanishes at all
of K. Looking at restrictions of this polynomial to lines yields that this polynomial has too many zeroes,
which in turn yields a lower bound on the size of K. Our main difference is that we look for polynomials
that vanish with high multiplicity at each point in K. The requirement of high multiplicity forces the

MSC2000: primary 52C17; secondary 05B25.
Keywords: Kakeya set, finite fields, polynomial method.
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degree of the n-variate polynomial to go up slightly, but yields more zeroes when this polynomial is
restricted to lines. The resulting tradeoff turns out to yield an improved bound. (We note that this is
similar to the techniques used for the improved method of list decoding of Reed-Solomon codes created
by Guruswami and Sudan [1999].)

In the next section we give the preliminaries that will be needed for the proof of Theorem 1. The
actual proof of the theorem appears in Section 2. In Section 3, we give Dvir’s proof for the upper bound
for the size of Kakeya sets.

1. Preliminaries

For x = (x1, ..., x,), let F[x] denote the ring of polynomials in xy, ..., x, with coefficients in F. We
recall the following basic fact on polynomials.

Fact 2. Let P € F[x] be a polynomial of degree at most q — 1 in each variable. If P(a) =0 forall a € F",
then P = 0.

For integer m > 0, let N, (n, m) denote the number of monomials in n variables of total degree less
than m g and of individual degree at most ¢ — 1 in each variable.

We say that a polynomial g € F[x] has a zero of multiplicity m at a point a € [" if the polynomial
ga(x) = g(x + a) has no support on monomials of degree strictly less than m. Note that the coefficients
of g, are (homogeneous) linear forms in the coefficients of g and thus the constraint g has a zero of
multiplicity m at a yields (m—|—:—l) homogeneous linear constraints on the coefficients of g. As a result
we conclude:

Proposition 3. Given a set S C " satisfying (m+::—1) |S| < Ny (n, m), there exists a nonzero polynomial

g € Flx] of total degree less than mq and degree at most ¢ — 1 in each variable such that g has a zero of
multiplicity m at every point a € S.

Proof. The number of possible coefficients for g is N, (n, m) and the number of (homogeneous) linear
mt:’*l) |S| < Ny (n, m). Since the number of constraints is strictly smaller than the number
of unknowns, there is a nontrivial solution. O

constraints is (

For g € F[x] we let g, 5(t) = g(a +t b) denote its restriction to the line {a +¢b | t € F}. We note the
following facts on the restrictions of polynomials to lines.

Proposition 4. If g € Flx] has a root of multiplicity m at some point a + tob then g4 has a root of
multiplicity m at t.

Proof. By definition, the fact that g has a zero of multiplicity m at a + fpb implies that the polynomial
g(x + (a + tpb)) has no support on monomials of degree less than m. Thus, under the homogeneous
substitution x < tb, we get no monomials of degree less than m either, and thus we have " divides
gth + (a + 1ob)) = gla + (t + t9)b) = ga.p(¢t + tp). The final form implies that g, p has a zero of
multiplicity m at #. U

Proposition 5 [Dvir 2008]. Let g € F[x] be a nonzero polynomial of total degree d and let go be the
(unique, nonzero) homogeneous polynomial of degree d such that g = go + g1 for some polynomial g, of
degree strictly less than d. Then gq p(t) = go(b)td + h(t) where h is a polynomial of degree strictly less
than d.
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2. Proof of Theorem 1

Lemma 6. If K is a Kakeya set in ", then for every integer m > 0, |K | > (m+"_1)71Nq (n, m).

n

Proof. Assume for a contradiction that | K| < ("’Jr:_l)_qu (n, m). Let g € F[x] be a nonzero polynomial

of total degree less than mq and degree at most ¢ — 1 in each variable that has a zero of multiplicity m
for each x € K. (Such a polynomial exists by Proposition 3.) Let d < mqg denote the total degree of g
and let g = go + g1 where g¢ is homogeneous of degree d and g; has degree less than d. Note that g is
also nonzero and has degree at most ¢ — 1 in every variable.

Now fix a direction b € [". Since K is a Kakeya set, there exists a € " such that a + tb € K for
every t € F. Now consider the restriction g, p of g to the line through a in direction b; it is a univariate
polynomial of degree at most d < mq. At every point ¢y € [ we have that g, 5 has a zero of multiplicity
m (Proposition 4). Thus counting up the zeroes of g,  we find it has mqg zeroes (m at every #g € ) which
is more than its degree. Thus g, 5 must be identically zero. In particular its leading coefficient must be
zero. By Proposition 5 this leading coefficient is go(b) and so we conclude go(b) = 0.

We conclude that gg is zero on all of " which contradicts the fact (Fact 2) that it is a nonzero
polynomial of degree at most ¢ — 1 in each of its variables. ([

Proof of Theorem 1. The theorem now follows by choosing m appropriately. Using for instance m = n,
we obtain |K| > (2",1_1)71Nq (n, n). It easily follows by the definition of N, (n, m) that N,(n, n) = g",
since there are g choices for the individual degree of every variable in an n variate monomial, and this
already forces total degree to be at most ng. Hence | K| > (Z"rjl)_lq” > (q/4)", establishing the theorem
forco=1and c; = }L.

A better choice is with m = [n/2] < (n + 1)/2. In this case N,(n,m) > %q" (since at least half
the monomials of individual degree at most ¢ — 1 have degree at most nq/2). This leads to a bound of

K| > 1("*)7'q" > L(g/2.6)", yielding the theorem for ¢y = 1/2 and ¢; = 1/2.6. O

To improve the constant ¢y further, one could study the asymptotics of N, (n, m) closer. Let 7, denote
the quantity liminf,, , {liminf, o (1/q) Ny (n, an) 1/} That is, for sufficiently large n and sufficiently
larger g, Ny(n, an) — t,q". Lemma 6 can be reinterpreted in these terms as saying that for every o €
[0, 1], every Kakeya set has size at least co(cqg)"” —0(g™) for some cg > 0, where ¢, — ro,/2(1+°‘)H(1/(1+°‘)
(where H(x) = —xlog, x — (1 —x)log,(1 — x) is the binary entropy function). The best estimate on 7
we were able to obtain does not have a simple closed form expression. As g — o0, 7,/ equals the volume
of the following region in R"*: {(x1, x2, ...x,) € [0, 1]7] Z?:l x; < an}. This volume can be expressed
in terms of Eulerian numbers (See [Marichal and Mossinghoff 2008], §4.3). [Giladi and Keller 1994,
§6] gives some asymptotics for Eulerian numbers and using their estimates o = (0.398, it seems one can
reduce ¢, to something like ﬁ. This still remains bounded away from the best known upper bound

which has ¢; — 1/2.

Remark. While the main theorem only gives the limiting behavior of Kakeya sets for large n and ¢,
Lemma 6 can still be applied to specific choices and get improvements over [Dvir 2008]. For example,
for n = 3, using m = 2 we get a lower bound of 25—4q3 as opposed to the bound of %q3 obtainable from
[Dvir 2008].
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3. An upper bound on Kakeya sets

We include here Dvir’s proof (personal communication, 2008) giving a nontrivial upper bound on the size
of Kakeya sets in fields of odd characteristic. The proof is based on the construction of Mockenhaupt
and Tao [2004]. For the case of even characteristic we complement their results by using a variation
(obtained with Swastik Kopparty) of their construction.

Theorem 7 (Dvir). For every n > 2, and field F, there exists a Kakeya set in F" of cardinality at most
2—(n—1) qn 4 O(qn—l).

Proof. We consider two cases depending on whether [ is of odd or even characteristic.
Odd characteristic: Let

D, ={{1, ..., an_1, B)leti, BEF, o + Bis a square}.

Now let K, = D, U (F*~! x {0}) where F"~! x {0} denotes the set {{a, 0)|a € F"~!}. We claim that K,
is a Kakeya set of the appropriate size.

Consider a direction b= (b, ..., b,). If b, =0, fora = (0, ..., 0) we have thata+1b € F*~! x {0} C
K. The more interesting case is when b,, # 0. In this case let

a={((b1/(2bn)). . ... (ba_1/(2b))*.0).
The point a + tb has coordinates {(«y, ..., «,—1, B) where o; = (bl~/(2bn))2 +1tb; and S =tb,,. We have
a; + B = (bi/(2by) +by)’

which is a square for every i and so @ +tb € D, C K,,. This proves that K, is indeed a Kakeya set.
Finally we verify that the size of K, is as claimed. First note that the size of D, is exactly

Dyl =q ((g+1)/2)" ' =2""Dg"+ 0"

(g choices for B and (g + 1)/2 choices for each «; + 2).
Hence, as claimed, the size of K, is at most

|Kul = Dyl +¢" ' =2"""Dg" + 0" .

Even characteristic: This case is handled similarly with minor variations in the definition of K,,. Specif-
ically, we let

Ky =E,={{@1, ..., a1, B)lai, B € F, 3y; € F such that o; = y” + B}

(As we see below E, contains F”~! x {0} and so there is no need to set K, = E, UF*~! x {0}.)
Now consider direction b = (by, ..., b,). If b, =0, then let @ = 0. We note that

a-+tb={thy,...,thy_1,0) = (Y +Bvi,... ¥+ BVu-1, B)

for f=0and y; = /th; = (tb;)4/%. We conclude that a +tb € E, for every t € [ in this case.
Now consider the case where b, # 0. Let

a=((b1/by)*, ..., (ba_1/bn)*, 0).
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The point a + tb has coordinates (¢, ..., o1, B) where o; = (b[-/b,,)2 +tb; and B =tb,,.

For y; = (bi/Dn),

v+ viB = (bi1/bn) +1b; = ;.
Hence a +th € E,, = K,,.

It remains to compute the size of E,. The number of points of the form (¢, ..., a,—1,0} € E, is
exactly q”‘l. We now determine the size of {(«y, ..., a,_1, B} € E, for fixed 8 # 0. We first claim that
the set {2+ By |y € F} has size exactly ¢ /2. This is so since for every y € F, we have y>+ By =12+ 7
for t =y 4+ B # v, and so the map y — y2 + By is a 2-to-1 map on its image. Thus, for 8 # 0, the
number of points of the form («y, ..., a,—1, B} in E, is exactly (g/ 2)"~1 We conclude that E, has
cardinality

Eal = (g =1 (q/2" " +¢"' =27""Vg" + 0(¢" ™). O

We remark that for the case of odd characteristic, one can also use a recursive construction, replacing
the set F"~! x {0} by K,,_; x {0}. This would reduce the constant in the O (¢"~!) term, but not alter the
leading term. Also we note that the construction used in the even case essentially also works in the odd
characteristic case. Specifically the set E, UF"~! x {0} is a Kakeya set also for odd characteristic. Its
size can also be argued to be 2=~ Dg" + O (g" ).
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