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UNIQUENESS OF GROUND STATES
FOR PSEUDORELATIVISTIC HARTREE EQUATIONS

ENNO LENZMANN

We prove uniqueness of ground states Q ∈ H 1/2(R3) for the pseudorelativistic Hartree equation,√
−1+m2 Q−

(
|x |−1

∗ |Q|2
)
Q =−µQ,

in the regime of Q with sufficiently small L2-mass. This result shows that a uniqueness conjecture by
Lieb and Yau [1987] holds true at least for N =

∫
|Q|2� 1 except for at most countably many N .

Our proof combines variational arguments with a nonrelativistic limit, leading to a certain Hartree-
type equation (also known as the Choquard–Pekard or Schrödinger–Newton equation). Uniqueness of
ground states for this limiting Hartree equation is well-known. Here, as a key ingredient, we prove the so-
called nondegeneracy of its linearization. This nondegeneracy result is also of independent interest, for
it proves a key spectral assumption in a series of papers on effective solitary wave motion and classical
limits for nonrelativistic Hartree equations.

1. Introduction

The pseudorelativistic Hartree energy functional, given (in appropriate units) by

E(ψ)=

∫
R3
ψ
√
−1+m2 ψ −

1
2

∫
R3

(
|x |−1

∗ |ψ |2
)
|ψ |2, (1-1)

arises in the mean-field limit of a quantum system describing many self-gravitating, relativistic bosons
with rest mass m > 0. Such a physical system is often referred to as a boson star, and various models for
these — at least theoretical — objects have attracted a great deal of attention in theoretical and numerical
astrophysics over the past years.

In order to gain some rigorous insight into the theory of boson stars, it is of particular interest to study
ground states (that is, minimizers) for the variational problem

E(N )= inf
{

E(ψ) : ψ ∈ H 1/2(R3) and
∫

R3
|ψ |2 = N

}
, (1-2)

where the parameter N > 0 plays the role of the stellar mass. Provided that problem (1-2) has indeed a
ground state Q ∈ H 1/2(R3), one readily finds that it satisfies the pseudorelativistic Hartree equation,√

−1+m2 Q−
(
|x |−1

∗ |Q|2
)
Q =−µQ, (1-3)

with µ= µ(Q) ∈ R being some Lagrange multiplier.

MSC2000: 35Q55.
Keywords: pseudorelativistic Hartree equation, ground state, uniqueness, boson stars.
Partly supported by NSF Grant DMS–0702492.
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2 ENNO LENZMANN

In fact, the existence of symmetric-decreasing ground states Q = Q∗(|x |) ≥ 0 minimizing (1-2) was
first proven by Lieb and Yau [1987], where the authors also conjectured that uniqueness holds true in the
following sense. For each N > 0, the variational problem (1-2) has at most one symmetric-decreasing
ground state. If true, this result further implies, by strict rearrangement inequalities, that we have indeed
uniqueness of all the ground states of (1-2) for each N > 0, up to phase and translation.

However, the nonlocality of
√
−1+m2 as well as the convolution-type nonlinearity both complicate

the analysis of the pseudorelativistic Hartree equation (1-3) in a substantial way. In particular, the set of
its radial solutions is not amenable to ODE techniques (for example, shooting arguments and comparison
principles) which are key arguments for proving uniqueness of ground states for nonlinear Schrödinger
equations (NLS) with local nonlinearities; see [Peletier and Serrin 1983; McLeod and Serrin 1987;
Kwong 1989; McLeod 1993].

A further complication in the analysis of (1-3) stems from the fact that there are no simple scaling
arguments that relate ground states with different N , due to the presence of m > 0. Indeed, this lack of a
simple scaling mechanism is essential for the existence of a critical stellar mass N∗ > 0; see Theorem 1.

As a first step towards proving uniqueness of ground states for (1-2), we present Theorem 2 below,
which shows that ground states for problem are indeed unique (modulo translation and phase) for all
sufficiently small N > 0 except for at most countably many. Our proof uses variational arguments
combined with a nonrelativistic limit, leading to the nonlinear Hartree equation (also called Choquard–
Pekar or Schrödinger–Newton equation) given by

−
1

2m
1Q∞−

(
|x |−1

∗ |Q∞|2
)
Q∞ =−λQ∞. (1-4)

It is known this equation has a unique radial, positive solution Q∞ ∈ H 1(R3) for λ > 0 given; see [Lieb
1977] and Appendix A.

In the present paper, we prove (as a key ingredient) that Q∞ ∈ H 1(R3) has a nondegenerate lineariza-
tion. By this we mean that the linearization of (1-4) around Q∞ has a nullspace that is entirely due to the
equation’s invariance under phase and translation transformation; see Theorem 4 below and its remarks
for a precise statement. In particular, we show that the linear operator L+ given by

L+ξ =−
1

2m
1ξ + λξ −

(
|x |−1

∗ |Q∞|2
)
ξ − 2Q∞

(
|x |−1

∗ (Q∞ξ)
)

(1-5)

satisfies

ker L+ = span {∂x1 Q∞, ∂x2 Q∞, ∂x3 Q∞}. (1-6)

Furthermore, by a perturbation argument, we conclude an analogous nondegeneracy result for ground
states of the pseudorelativistic Hartree equation (1-3) with sufficiently small L2-mass; see Theorem 3
below.

In addition to being a mere technical key fact proven in this paper, the nondegeneracy result for (1-4)
is also of independent interest. For example, it proves a key spectral assumption in a series of papers on
effective solitary wave motion and classical limits for Hartree equations; see [Fröhlich et al. 2002; 2004;
Jonsson et al. 2006; Abou Salem 2007] and also the remark following Theorem 4. Another very recent
application of the nondegeneracy result (1-6) is presented in [Krieger et al. 2008], where two soliton
solutions to the time-dependent version of (1-4) are constructed.
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In the context of ground states for NLS with local nonlinearities, the nondegeneracy of linearizations
is a well-known fact (see [Weinstein 1985; Chang et al. 2007]) and it plays a central role in the stability
analysis of solitary waves for NLS. However, the arguments for NLS with local nonlinearities make use
of Sturm–Liouville theory, which, by contrast, is not applicable to L+ given by (1-5) due to its nonlocal
character. For more details, we refer to Section 7 below.

Apart from their minimizing property, the ground states for (1-2) also play an important role for the
time-dependent pseudorelativistic Hartree equation,

i∂tψ =
√
−1+m2 ψ −

(
|x |−1

∗ |ψ |2
)
ψ, (1-7)

with the wave field ψ : [0, T )×R3
→ C. Clearly, Equation (1-7) has solitary wave solutions

ψ(t, x)= ei tµQ(x), (1-8)

whenever Q ∈ H 1/2(R3) is a nontrivial solution to (1-3). Let us also mention that the dispersive nonlinear
PDE (1-7) exhibits a rich variety of phenomena, such as stable and unstable traveling solitary waves, as
well as finite-time blowup solutions indicating the “gravitational collapse” of a boson star; see [Fröhlich
et al. 2007a; 2007b; Fröhlich and Lenzmann 2007]. For well-posedness results concerning (1-7) and its
rigorous derivation from many-body quantum mechanics, we refer to [Cho and Ozawa 2006; Lenzmann
2007] and [Elgart and Schlein 2007], respectively.

For the reader’s convenience, we conclude our introduction by summarizing the existence result about
ground states for problem (1-2) along with a list of their basic properties.

Theorem 1 (Existence and properties of ground states). Suppose that m > 0 holds in (1-1). Then there
exists a universal constant N∗ > 4/π (independent of m) such that the following holds.

(i) (Existence) There exists a ground state Q ∈ H 1/2(R3) for problem (1-2) if and only if

0< N < N∗.

Moreover, the function Q satisfies the pseudorelativistic Hartree equation (1-3) in the sense of
distributions with some Lagrange multiplier µ ∈ R.

(ii) (Smoothness and exponential decay) Any ground state Q belongs to H s(Rd) for all s ≥ 0 and
e+δ|x |Q ∈ L∞(R3) for some δ = δ(Q) > 0.

(iii) (Radiality and strict positivity) Any ground state Q is equal to its spherical-symmetric rearrange-
ment Q∗(|x |) up to phase and translation. Moreover, we have Q∗(|x |) > 0 for all x ∈ R3.

Remark. For the proofs of (i) and (ii)–(iii), we refer to [Lieb and Yau 1987] and [Lenzmann 2006;
Fröhlich et al. 2007a], respectively. In physical terms, the constant N∗ > 0 can be regarded as the
“Chandrasekhar limit mass” of a pseudorelativistic boson star.

2. Main results

We now state our first main result concerning the uniqueness of ground states for the pseudorelativistic
Hartree equation (1-3).
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Theorem 2 (Uniqueness of ground states for N � 1). Assume that m > 0 holds in (1-1). Then, for
0< N � 1, we have uniqueness of ground states for problem (1-2) up to phase and translation whenever
E ′(N ) exists. In particular, the symmetric-decreasing ground state Q= Q∗ ∈ H 1/2(R3)minimizing (1-2)
is unique for such N > 0.

Remarks. (1) Since it is known from [Lieb and Yau 1987] that the ground state energy E(N ) is strictly
concave, the derivative E ′(N ) exists for all N ∈ (0, N∗), except on a subset6 which is at most countable.
In particular, it is easy to see that the Lagrange multiplier µ is unique for such N ∈ (0, N∗) \6, in the
sense that µ only depends on Q through N =

∫
|Q|2. Our argument to prove Theorem 2 has to avoid

the “exceptional” set 6. A natural conjecture would be that 6 =∅ holds.

(2) It would be desirable to extend this uniqueness result (whose proof partly relies on perturbative
arguments) to the whole range 0 < N < N∗ of existence; or, more interestingly, to disprove uniqueness
for some N > 0 sufficiently large.

(3) By definition, ground states for the pseudorelativistic Hartree equation (1-2) are always minimizers
for the variational problem (1-2). In principle, we cannot exclude the possibility that (1-3) has a positive
solution without being a minimizer for (1-2).

(4) To the author’s knowledge, this is the first uniqueness result for ground states that solve a nonlinear
pseudo-differential equation in space dimension n > 1. In fact, apart from a very special case arising in
n=1 dimensions for solitary waves solving Benjamin–Ono-type equations (see [Amick and Toland 1991;
Albert 1995]), nothing seems to be known, for instance, about uniqueness of ground states ϕ ∈ H s(Rn)

for nonlinear equations involving the fractional Laplacian (−1)s/2ϕ+ f (ϕ)=−µϕ,where f (ϕ) denotes
some nonlinearity and µ ∈ R is given. The author plans to pursue this question in future work.

(5) If m=0 vanishes, we have existence of ground states for problem (1-2) if and only if N =N∗. In what
follows, we shall exclusively deal with the physically relevant case where m > 0 holds. Nevertheless,
it remains an interesting open question whether uniqueness of ground states also holds for m = 0, since
the methods developed here are clearly not applicable to this limiting case.

Our next result proves a so-called nondegeneracy condition, which was introduced in [Fröhlich et al.
2007b] as a spectral assumption supported by numerical evidence. There, the effective motion of solitary
waves for (1-7) with an slowly varying external potential was studied. Furthermore, the following nonde-
generacy result allows us to give an unconditional proof for the cylindrical symmetry of traveling solitary
waves for the time-dependent pseudorelativistic Hartree equation (1-7); see [Fröhlich et al. 2007b] for
more details. The precise nondegeneracy statement reads as follows.

Theorem 3 (Nondegeneracy of ground states for N � 1). Let m > 0 in (1-1) and suppose that Q = Q∗

is a symmetric-decreasing ground state for problem (1-2) with Lagrange multiplier µ ∈R. Furthermore,
we consider the linear operator L+ given by

L+ξ =
(√
−1+m2+µ

)
ξ −

(
|x |−1

∗ |Q|2
)
ξ − 2Q

(
|x |−1

∗ (Qξ)
)
,

acting on L2(R3) with domain H 1(R3). Then, for 0< N � 1, the operator L+ is nondegenerate, that is,
its kernel satisfies

ker L+ = span
{
∂x1 Q, ∂x2 Q, ∂x3 Q

}
.
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Remarks. (1) This completely characterizes the kernel of the linearization of the pseudorelativistic
Hartree equation (1-3) around ground state Q = Q∗ with

∫
|Q|2 � 1. Note that, due to the pres-

ence of |Q|2 in the nonlinearity, the linearized operator is not C-linear. See also the remark following
Theorem 4 below for more details on the analogous statement for the nonrelativistic equation (1-4).

(2) The nondegeneracy of L+ holds for all N =
∫
|Q|2 � 1. The extra condition that E ′(N ) exists,

which is present in Theorem 2, is not needed here.

In order to prove Theorem 3, we first have to show the nondegeneracy for the linearization around
the ground state Q∞ ∈ H 1(R3) solving the nonrelativistic Hartree equation (1-4). As mentioned before,
this spectral result is of independent interest, since it proves a key assumption in [Fröhlich et al. 2002;
Fröhlich et al. 2004; Jonsson et al. 2006; Abou Salem 2007]. See also [Krieger et al. 2008], where the
following nondegeneracy result is needed. Hence we record this fact about (1-4) as one of our main
results.

Theorem 4 (Nondegeneracy for Q∞). Let m > 0 and λ > 0 be given. Furthermore, suppose that
Q∞ ∈ H 1(R3) is the unique radial, positive solution to the nonrelativistic Hartree equation (1-4). Then
the linear operator L+ given by

L+ξ =−
1

2m
1ξ + λξ −

(
|x |−1

∗ |Q∞|2
)
ξ − 2Q∞

(
|x |−1

∗ (Q∞ξ)
)

(2-1)

acting on L2(R3) with domain H 2(R3), satisfies

ker L+ = span
{
∂x1 Q∞, ∂x2 Q∞, ∂x3 Q∞

}
. (2-2)

Remarks. (1) The linearized operator L for (1-4) at Q∞ is found to be

Lh =− 1
2m
1h+ λh−

(
|x |−1

∗ |Q∞|2
)
h− Q∞

(
|x |−1

∗ (Q∞(h+ h))
)
.

It is convenient to view the operator L (which is not C-linear) as acting on(
Re h
Im h

)
,

so that it can be written as

L =
(

L+ 0
0 L−

)
.

Here L+ is as in Theorem 4 above, and L− is the (local) operator

L− =−
1

2m
1+ λ−

(
|x |−1

∗ |Q∞|2).

It is easy to see that ker L− = span {Q∞} holds. Hence, by Theorem 4, we obtain

ker L = span
{(

∂x1 Q∞
0

)
,

(
∂x2 Q∞

0

)
,

(
∂x2 Q∞

0

)
,

(
0

Q∞

)}
.

(2) The precise knowledge of ker L implies, by well-known arguments along the lines for NLS with
local nonlinearities (given in [Weinstein 1985]), the following coercivity estimate: There is a constant
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δ > 0 such that
〈 f, L+ f 〉+ 〈g, L−g〉 ≥ δ(‖ f ‖2H1 +‖g‖2H1),

when f ⊥ span {Q∞, xi Q∞}3i=1 and g ⊥ span {2Q∞+ r∂r Q∞, ∂xi Q∞}3i=1, which means that ( f, g) is
symplectically orthogonal to the “soliton manifold” generated by Q∞; see, for example, [Fröhlich et al.
2004]. This coercivity estimate plays a central role in the stability analysis of solitary waves for NLS-
type equations and their effective motion in an external potential; see, for example, [Weinstein 1985;
Bronski and Jerrard 2000; Fröhlich et al. 2004; 2007b; Jonsson et al. 2006; Abou Salem 2007; Holmer
and Zworski 2008].

Organization of the paper. This paper is structured as follows. In Section 3, we study the nonrelativistic
limit of ground states for a dimensionalized version of the variational problem (1-2). In Section 4, we
prove a nondegeneracy result for the nonrelativistic ground state Q∞ ∈ H 1(R3) in the radial setting.
Then, in Section 5, we establish a local uniqueness result around Q∞ ∈ H 1(R3) by means of an implicit-
function-type argument.

We prove Theorem 2 in Section 6, and Theorems 3 and 4 in Section 7. Appendices A and B collect
some auxiliary results and we also give a uniqueness proof for the ground state Q∞ ∈ H 1(R3), which
differs from [Lieb 1977] in certain ways.

Notation and conventions. As usual H s(Rn) stands for the inhomogeneous Sobolev space of order s∈R,
equipped with norm ‖ f ‖H s =‖〈∇〉

s f ‖L2 , where 〈∇〉 is defined via its multiplier 〈ξ〉 = (1+ξ 2)1/2 in the
Fourier domain. Also, we shall make use of the space of radial and real-valued functions that belong to
H 1(R3), which we denote by

H 1
r (R

3)= { f : f ∈ H 1(R3), f is radial and real-valued}.

With the usual abuse of notation we shall write both f (x) and f (r), with r =|x |, for radial functions f on
Rn . For any measurable function f :Rn

→C that vanishes at infinity, we denote its symmetric-decreasing
rearrangement by f ∗ = f ∗(r)≥ 0.

Throughout this paper, we assume that the mass parameter m > 0 in (1-1) is strictly positive, which
is the physically relevant case.

For the reader’s orientation, we mention that our definition of E(ψ) in (1-1) differs from the conven-
tions in [Lieb and Yau 1987; Fröhlich et al. 2007a] by an inessential factor of 2 and by the fact that we
use
√
−1+m2 instead of

√
−1+m2−m. Obviously, these slight alterations in our definition of E(ψ)

do not affect any results on (1-2) that are derived or quoted in the present paper.
Finally, we point out that the function Q∞ ∈ H 1

r (R
3), which denotes the unique ground state for

(1-4), appears throughout the paper. However, for the sake of simple notation, we shall also denote all
its rescaled copies aQ∞(b· ), with a > 0 and b > 0, simply by Q∞, whenever there is no source of
confusion.

3. Nonrelativistic limit

As a preliminary step towards the proof of Theorems 2 and 3, we study the nonrelativistic limit of ground
states for the pseudorelativistic Hartree energy functional. More precisely, we reinstall the speed of light
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c > 0 into E(ψ) defined in (1-1), which yields the c-depending Hartree energy functional

Ec(ψ)=

∫
R3
ψ
√
−c21+m2c4 ψ −

1
2

∫
R3

(
|x |−1

∗ |ψ |2
)
|ψ |2. (3-1)

An elementary calculation shows that, for any ψ ∈ H 1/2(R3),

E(ψ)= c−3Ec(ψ̃), with ψ(x)= c−2ψ̃(c−1x). (3-2)

Thus we immediately find the following equivalence.

Lemma 1. Let c> 0 and N > 0. Then Q̃ ∈ H 1/2(R3) minimizes Ec(ψ) subject to
∫
|ψ |2= N if and only

if Q = c−2 Q̃(c−1
· ) minimizes E(ψ) subject to

∫
|ψ |2 = c−1 N.

In particular, we have existence of ground states for Ec(ψ) subject to
∫
|ψ |2 = N if and only if

0< N < cN∗ holds, where N∗ > 4/π denotes the same universal constant as in Theorem 1.

We now study the behavior of ground states Qc for Ec(ψ) as c → ∞ with
∫

R3 |Qc|
2
= N being

fixed. By Lemma 1, this is equivalent (after a suitable rescaling) to studying ground states for E(ψ) with∫
|ψ |2 = N as N → 0. However, the following analysis turns out to be more transparent when working

with c> 0 as a parameter and sending c to infinity. Concerning the nonrelativistic limit c→∞ of ground
states for Ec(ψ), we have the following result.

Proposition 1. Let m > 0 and N > 0 be given, and suppose that cn→∞ as n→∞. Furthermore, we
assume that {Qcn }

∞

n=1 is a sequence of symmetric-decreasing ground states such that
∫

R3 |Qcn |
2
= N for

all n ≥ 1, and each Qcn ∈ H 1/2(R3) minimizes Ecn (ψ) subject to
∫

R3 |ψ |
2
= N. Finally, let {µcn }

∞

n=1
denote the sequence of Lagrange multipliers corresponding to {Qcn }

∞

n=1.
Then the following holds:

Qcn → Q∞ in H 1(R3) as n→∞,

−µcn −mc2
n→−λ as n→∞,

where Q∞ ∈ H 1(R3) is the unique radial, positive solution to

−
1

2m
1Q∞−

(
|x |−1

∗ |Q∞|2
)
Q∞ =−λQ∞, (3-3)

such that
∫

R3 |Q∞|2 = N. Here λ > 0 is determined through Q∞ = Q∗
∞
∈ H 1(R3), which is the unique

symmetric-decreasing minimizer of the variational problem

Enr(N )= inf
{

Enr(ψ) : ψ ∈ H 1(R3) and
∫

R3
|ψ |2 = N

}
, (3-4)

where

Enr(ψ)=
1

2m

∫
R3
|∇ψ |2−

1
2

∫
R3

(
|x |−1

∗ |ψ |2
)
|ψ |2. (3-5)

Remarks. (1) A similar result for the nonrelativistic limit of ground states (and excited states) solving
the Dirac–Fock equations can be found in [Esteban and Séré 2001]. However, unlike the Dirac–Fock
and Hartree–Fock energy functionals in atomic physics treated in [Esteban and Séré 2001], the energy
functional in (3-1) is not weakly lower semicontinuous due to its attractive potential term. Therefore,
an a priori bound on the sequence of Lagrange multipliers µcn (away from the essential spectrum of the
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limiting equation) is not sufficient to conclude strong convergence. To deal with this, we also have to
use the radial symmetry of the Qcn in order to prove strong convergence.

(2) The uniqueness of the symmetric-decreasing ground state for problem (3-4) was proven by Lieb
[1977]. For the reader’s convenience, we provide a (partly different) proof of this fact in Appendix A.

3.1. Proof of Proposition 1. We begin with some auxiliary results.

Lemma 2. Let {µcn }
∞

n=1 be as in Proposition 1. Then there exist constants δ1 > 0 and δ2 > 0 such that

mc2
n − δ1 ≤−µcn ≤ mc2

n − δ2, for all n ≥ n0,

where n0� 1 is some number.

Proof. The existence of δ2 > 0 can be deduced as follows. The Euler–Lagrange equation for Qcn reads√
−c2

n1+m2c4
n Qcn −

(
|x |−1

∗ |Qcn |
2)Qcn =−µcn Qcn , (3-6)

which upon multiplication with Qcn and integration gives us

Ecn (Qcn )−
1
2

∫
R3

(
|x |−1

∗ |Qcn |
2)
|Qcn |

2
=−µcn N . (3-7)

Next, we recall the operator inequality√
−c21+m2c4 ≤−

1
2m
1+mc2,

which directly follows in the Fourier domain and the fact that
√

1+ t ≤ t/2+1 holds for all t ≥ 0. Hence
we have that Ecn (Qcn ) ≤ Enr(Qcn )+ Nmc2

n . Furthermore, since Qcn is a ground state for Ecn (ψ), we
deduce

Ecn (Qcn )≤ Enr(N )+ Nmc2
n,

with Enr(N ) defined in (3-4), so that (3-7) gives us

−µcn N ≤ Enr(N )+ Nmc2
n.

From [Lieb 1977] we know that Enr(N ) < 0 and thus δ2 =−Enr(N )/N > 0 is a legitimate choice.
To prove the existence of δ1 > 0, we observe that each Qcn ≥ 0 is the ground state of the “relativistic”

Schrödinger operator

Hcn =

√
−c2

n1+m2c4
n −

(
|x |−1

∗ |Qcn |
2).

Since all Qcn are radial functions with ‖Qcn‖
2
L2 = N for all n ≥ 1, we can invoke Newton’s theorem to

find ∫
R3

|Qcn (y)|
2

|x − y|
dy ≤

N
|x |
.

By the min-max principle, we infer the lower bound

−µcn ≥ inf σ(H cn )

where
H cn =

√
−c2

n1+m2c4
n −

N
|x |
.
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From [Herbst 1977] and reinstalling the speed of light c > 0 there, we recall that we have inf σ(H cn ) >

−∞ if and only if N < (2/π)cn . Thus H cn is bounded below for n � 1 and, moreover, we have an
explicit lower bound (see [Herbst 1977] again) given by

inf σ(H cn )≥ mc2
n

√
1−

(
πN
2cn

)2

.

Since
√

1− x2 ≥ 1− x2 for |x | ≤ 1, we conclude

−µcn ≥ mc2
n

(
1−

(
πN
2cn

)2)
= mc2

n −
1
4

mπ2 N 2, for all n ≥ n0,

provided that n0� 1. By choosing δ1 =
1
4 mπ2 N 2 > 0, we complete the proof of Lemma 2. �

Next, we derive an a priori bound on the sequence of ground states.

Lemma 3. Let {Qcn }
∞

n=1 be as in Proposition 1. Then there exists a constant M > 0 such that

‖Qcn‖H1 ≤ M, for all n ≥ 1.

Proof. Since ‖Qcn‖
2
L2 = N for all n ≥ 1, we only have to derive a uniform bound for ‖∇Qcn‖L2 which

can be done as follows. From (3-6) we obtain

c2
n‖∇Qcn‖

2
L2 +m2c4

n‖Qcn‖
2
L2

=
〈√
−c2

n1+m2c4
n Qcn ,

√
−c2

n1+m2c4
n Qcn

〉
≤ µ2

cn
〈Qcn , Qcn 〉 + 2|µcn |

〈
Qcn , (|x |

−1
∗|Qcn |

2)Qcn

〉
+
〈
Qcn (|x |

−1
∗|Qcn |

2), (|x |−1
∗|Qcn |

2)Qcn

〉
.

To bound the terms on the right, we notice that Kato’s inequality |x |−1 . |∇| implies

‖|x |−1
∗ |Qcn |

2
‖L∞ . 〈Qcn , |∇|Qcn 〉. ‖Qcn‖L2‖∇Qcn‖L2 .

Using this bound, Hölder’s inequality, and the bound |µcn | ≤ mc2
n for n� 1 from Lemma 2, we obtain

c2
n‖∇Qcn‖

2
L2 . mc2

n N 3/2
‖∇Qcn‖L2 + N 2

‖∇Qcn‖
2
L2,

for n� 1. Since cn→∞ and N is fixed, we conclude that there exists M > 0 such that

‖∇Qcn‖L2 ≤ M

for n� 1. By choosing M > 0 possibly larger, we extend this bound to all n ≥ 1. �

We now come the proof of Proposition 1 itself. By the a priori bound in Lemma 3, we have (after
possibly passing to a subsequence) that

Qcn ⇀ Q∞ in H 1(R3) and Qcn (x)→ Q∞(x) for a. e. x ∈ R3 as n→∞,

for some Q∞ ∈ H 1(R3). By radiality and strict positivity of all the Qcn , it follows that Q∞(|x |) ≥ 0 is
a radial and nonnegative function. Furthermore, since {Qcn }

∞

n=1 forms a sequence of radial functions on
R3 with a uniform H 1-bound, a classical result (see [Strauss 1977]) yields that

Qcn → Q∞ in L p(R3) as n→∞ for any 2< p < 6. (3-8)
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By Lemma 2, we have that {−µcn −mc2
n}
∞

n=1 is a bounded sequence, which is also uniformly bounded
away from 0. Hence extracting a suitable subsequence yields

lim
n→∞

(−µcn −mc2
n)=−λ < 0, (3-9)

for some λ > 0.
Using that Qcn ⇀ Q∞ in H 1 and the strong convergence (3-8), we can pass to the limit in (3-6) and

find that the radial, nonnegative function Q∞ ∈ H 1(R3) satisfies

−
1

2m
1Q∞−

(
|x |−1

∗ |Q∞|2
)
Q∞ =−λQ∞ in H−1(R3). (3-10)

When taking this limit, we use the fact that

lim
n→∞

〈
f,
(√
−c2

n1+m2c4
n −mc2

n +
1

2m
1
)

Qcn

〉
= 0 for all f ∈ H 1(R3),

which is easy to verify for test functions f ∈ C∞0 (R
3) by taking the Fourier transform and using that√

c2
nξ

2+m2c4
n −mc2

n −
ξ 2

2m
→ 0 for every ξ ∈ R3 as cn→∞.

The claim above extends to all f ∈ H 1(R3) by a simple density argument.
Next we prove that in fact

∫
|Q∞|2 = N holds, which a-posteriori would show that Qcn → Q∞

strongly in L2(R3). To prove this claim, we note that Equation (3-6) and its limit (3-10) give us

(−µcn −mc2
n)N =

1
2m

∫
R3
|∇Qcn |

2
−

∫
R3

(
|x |−1

∗ |Qcn |
2)
|Qcn |

2
+ rn, (3-11)

with rn→ 0 as n→∞. Note that the right-hand side is not weakly lower semicontinuous (with respect to
weak H 1-convergence), unlike the case of atomic Hartree and Hartree–Fock energy functionals. To deal
with the non weakly lower semicontinuous part given by the potential energy term, we use (3-8) again
and the Hardy–Littlewood–Sobolev inequality. Then, by the weak lower semicontinuity of the kinetic
energy term in (3-11), we deduce from (3-11) and (3-10) that

−λN ≥ 1
2m

∫
R3
|∇Q∞|2−

∫
R3

(
|x |−1

∗ |Q∞|2
)
|Q∞|2 =−λ

∫
R3
|Q∞|2.

Because of λ> 0, we see that
∫
|Q∞|2 ≥ N must hold. On the other hand, we have N ≥

∫
|Q∞|2 by the

weak L2-convergence. Thus we have
∫
|Q∞|2 = N and, consequently,

Qcn → Q∞ in L2(R3) as n→∞. (3-12)

By Lemma 9 and a simple scaling argument, we see that Q∞ is the unique radial, nonnegative solution
to (3-10) with

∫
|Q∞|2 = N . Here λ > 0 is determined through Q∞, and Q∞ is in fact strictly positive.

It remains to show that
Qcn → Q∞ in H 1(R3) as n→∞. (3-13)

To see this, we verify that {Qcn }
∞

n=1 with
∫
|Qcn |

2
= N furnishes a minimizing sequence for the nonrel-

ativistic Hartree energy Enr(ψ) subject to
∫
|ψ |2 = N , that is, for problem (3-4). Indeed, using (3-11)
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and (3-9) as well as the strong convergence (3-8) to pass to the limit in the potential energy, we deduce
that

Enr(Qcn )→−λN + 1
2

∫
R3

(
|x |−1

∗ |Q∞|2
)
|Q∞|2 as n→∞.

However, this limit for Enr(Qcn ) is equal to Enr(Q∞), as can be seen by multiplying (3-10) with Q∞ and
integrating. Hence {Qcn }

∞

n=1 is a minimizing sequence for problem (3-4). Next, we notice that standard
concentration-compactness methods yield relative compactness in H 1(R3) for any radial minimizing
sequence for problem (3-4), which has a unique radial, nonnegative minimizer Q∞. Therefore (after
possibly passing to another subsequence) we deduce that (3-13) holds.

To conclude the proof of Proposition 1, we note that we have convergence along every subsequence
because of the uniqueness of the limit point Q∞ ∈ H 1(R3). �

4. Radial nondegeneracy of nonrelativistic ground states

We consider the linear operator

L+ξ =−
1

2m
1ξ + λξ −

(
|x |−1

∗ |Q∞|2
)
ξ − 2Q∞

(
|x |−1

∗ (Q∞ξ)
)
, (4-1)

where Q∞ ∈ H 1(R3) is the radial, positive solution taken from Proposition 1. By standard arguments,
it follows that L+ is a self-adjoint operator acting on L2(R3) with domain H 2(R3). In this section, we
study the restriction of L+ acting on L2

rad(R
3) (that is, the radial L2-functions on R3).

As a main result, we prove the so-called nondegeneracy of L+ on L2
rad(R

3); that is, the triviality of its
kernel.

Proposition 2. For the linear operator L+ be given by (4-1), we have

ker L+ = {0} when L+ is restricted to L2
rad(R

3).

Remark. (1) As shown in Section 7 below, we will see that the triviality of the kernel of L+ on L2
rad(R

3)

implies

ker L+ = span
{
∂x1 Q∞, ∂x2 Q∞, ∂x3 Q∞

}
. (4-2)

For linearized operators arising from ground states for NLS with local nonlinearities, this fact is well-
known; see [Chang et al. 2007; Weinstein 1985]. However, the proof given there cannot be adapted to
L+ given by (4-1) due to its nonlocal component. We refer to Section 7 for further details.

(2) Numerical evidence indicating that 0 is not an eigenvalue of L+ when restricted to radial functions
can be found in [Harrison et al. 2003].

4.1. Proof of Proposition 2. Suppose that Q∞ ∈ H 1(R3) is the unique radial, positive solution to (3-3)
with

∫
|Q∞|2 = N for some N > 0 given. In what follows, it will be convenient and without loss of

generality to assume that Q∞ satisfies

−1Q∞−
(
|x |−1

∗ |Q∞|2
)
Q∞ =−Q∞, (4-3)
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which amounts to rescaling Q∞(x) 7→ aQ∞(bx) with suitable a > 0 and b > 0. Likewise, the linear
operator L+ then reads

L+ξ =−1ξ + ξ −
(
|x |−1

∗ |Q∞|2
)
ξ − 2Q∞

(
|x |−1

∗ (Q∞ξ)
)
. (4-4)

Recall that we restrict ourselves to radial ξ ∈ L2
rad(R

3). Therefore, we can rewrite the nonlocal term
in L+ by invoking Newton’s theorem in R3 (see [Lieb and Loss 2001, Theorem 9.7]): For any radial
function ρ = ρ(|x |) such that ρ ∈ L1(R3, (1+ |x |)−1dx), we have

−(|x |−1
∗ ρ)(r)=

∫ r

0
K (r, s)ρ(s) ds−

∫
R3

ρ(|x |)
|x |

, (4-5)

for r = |x | ≥ 0, where K (r, s) is given by

K (r, s)= 4πs
(
1− s

r
)
≥ 0, for r ≥ s. (4-6)

Since the ground state Q∞ is exponentially decaying, we can apply Newton’s theorem to ρ = Q∞ξ for
any ξ ∈ L2

rad(R
3) and obtain the following result.

Lemma 4. For any ξ ∈ L2
rad(R

3), we have

L+ξ = L+ξ − 2Q∞

(∫
R3

Q∞ξ
|x |

)
, (4-7)

where L+ is given by
L+ξ =−1ξ + ξ −

(
|x |−1

∗ |Q∞|2
)
ξ +W ξ, (4-8)

with

(W ξ)(r)= 2Q∞(r)
∫ r

0
K (r, s)Q∞(s)ξ(s) ds. (4-9)

The following auxiliary result shows exponential growth of solutions v to the linear equation L+v= 0.

Lemma 5. Suppose the radial function v = v(r) solves L+v = 0 with v(0) 6= 0 and v′(0) = 0. Then
the function v(r) has no sign change and v(r) grows exponentially as r →∞. More precisely, for any
0< δ < 1, there exist constants C > 0 and R > 0 such that

|v(r)| ≥ Ce+δr , for all r ≥ R.

In particular, we have that v 6∈ L2
rad(R

3).

Proof. Since L+v = 0 is a linear equation, we can assume without loss of generality that v(0) > 0; and
moreover it is convenient to assume that v(0) > Q∞(0) holds. Next, we write L+v = 0 as

v′′(r)+ 2
r
v′(r)= V (r)v(r)+W (r), (4-10)

with

V (r)= 1− (|x |−1
∗ |Q∞|2)(r), (4-11)

W (r)= 2Q∞(r)
∫ r

0
K (r, s)Q∞(s)v(s) ds. (4-12)
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Note that Q∞(r) satisfies (4-10) with W (r) being removed, that is,

Q′′
∞
(r)+ 2

r
Q′
∞
(r)= V (r)Q∞(r). (4-13)

We now compare v(r) and Q∞(r) as follows. An elementary calculation, using equations (4-10) and
(4-13), leads to the “Wronskian-type” identity(

r2(Q∞v′− Q′
∞
v)
)′
= r2 Q∞W, (4-14)

which, by integration, gives us

r2(Q∞v′− Q′
∞
v)(r)=

∫ r

0
s2 Q∞(s)W (s) ds. (4-15)

Hence, while keeping in mind that Q∞(r) > 0, we find

r2
(
v(r)

Q∞(r)

)′
=

1
Q∞(r)2

∫ r

0
s2 Q∞(s)W (s) ds. (4-16)

From this identity we now claim that

v(r) > Q∞(r), for all r ≥ 0. (4-17)

To see this, recall that v(0) > Q∞(0) and, by continuity, we have that v(r) > Q(r) for r > 0 sufficiently
small. Suppose now, on the contrary to (4-17), that there is a first intersection at some positive r = r∗,
say, so that v(r∗)= Q∞(r∗). It is easy to see that the left-hand side of (4-16) (or equivalently (4-15)) has
to be ≤ 0 at r = r∗. On the other hand, since v(r) > Q∞(r) > 0 on [0, r∗), we conclude that the integral
on right-hand side of (4-16) at r = r∗ must be strictly positive. This contradiction shows that (4-17) must
hold. In particular, the function v(r) never changes its sign.

Next, we insert the estimate (4-17) back into (4-16), which yields

r2
(
v(r)
Q(r)

)′
(r)≥

2
Q∞(r)2

∫ r

0
s2 Q∞(s)2

∫ s

0
K (s, t)Q∞(t)2 dt ds. (4-18)

We notice that Q∞(r) > 0 is the unique ground state for the Schrödinger operator

H =−1+ Ṽ , with Ṽ =−|x |−1
∗ |Q∞|2. (4-19)

Since H Q∞=−Q∞ and Ṽ is a continuous function with Ṽ → 0 as |x |→∞, standard arguments show
that, for any ε > 0, there exists a constant Aε > 0 such that

Q∞(r)≤ Aεe−(1−ε)r , for all r ≥ 0. (4-20)

Furthermore, since Q∞(r) > 0 is the ground state of H , we can obtain the following lower bound: For
any ε > 0, there exists a constant Bε > 0 such that

Q∞(r)≥ Bεe−(1+ε)r , for all r ≥ 0. (4-21)

For this classical result on ground states for Schrödinger operators. See, for example, [Carmona and
Simon 1981, Theorem 3.2] where a probabilistic proof is given.
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Now let 0< ε < 1 be given. Inserting the bounds (4-20) and (4-21) into Equation (4-18), we obtain

r2
(
v(r)
Q(r)

)′
(r)≥ Ce(2−2ε)r

∫ r

0
s2e−(2+2ε)s

∫ s

0
K (s, t)e−(2+2ε)t dt ds, (4-22)

with some constant C = Cε > 0 (we drop its dependence on ε henceforth). Since the double integral on
the right-hand side converges as r→∞ to some finite positive value, there exists some a > 0 such that

r2
(
v(r)
Q(r)

)′
(r)≥ Ce(2−2ε)r , for all r ≥ a, (4-23)

with some constant C > 0. Integrating this lower bound and using (4-21) again, we find that

v(r)≥ C
e(1−3ε)r

r2 , for all r ≥ R, (4-24)

with some constants C > 0 and R� 1. Thus, for any 0< δ < 1, we arrive at the claim of Lemma 5 by
taking 0< ε < 1

3(1− δ) and choosing C > 0 appropriately. �

With the help of Lemma 5 we are now able to prove the triviality of the kernel of L+ in the radial
sector.

Lemma 6. For L+ be given by (4-1), we have that L+ξ = 0 with ξ ∈ L2
rad(R

3) implies that ξ ≡ 0.

Proof. Suppose there exists ξ ∈ L2
rad(R

3)with ξ 6≡0 such that L+ξ =0. Then, by Lemma 4, the function ξ
solves the inhomogeneous problem

L+ξ = 2 σQ∞, with σ =
∫

R3

Q∞ξ
|x |

. (4-25)

Therefore,
ξ = v+w, (4-26)

where w is any particular solution to (4-25) and v is some function such that L+v= 0. As shown below,
it suffices to restrict ourselves to smooth v and w.

We shall now construct a smooth w ∈ L2
rad(R

3) as follows. We define the smooth radial function

R = 2Q∞+ r∂r Q∞ ∈ L2
rad(R

3), (4-27)

where a calculation shows that
L+R =−2Q∞. (4-28)

Furthermore, by applying Lemma 4 to R, we find

L+R = 2(τ − 1)Q∞, with τ =
∫

R3

Q∞R
|x |

. (4-29)

Note that τ 6= 1 must hold, for otherwise Lemma 5 with v = R (and v(0) = R(0) = Q(0) > 0 and
v′(0) = R′(0) = 0) would yield that R 6∈ L2

rad(R
3), which is a contradiction. Thus we have found a

smooth particular solution to (4-25) given by

w =
σ

τ − 1
R ∈ L2

rad(R
3). (4-30)
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Further, we notice that ξ ∈ L2
rad(R

3)with L+ξ =0 is smooth by bootstrapping this equation. Therefore, by
(4-26), we conclude that v has to be smooth as well. Suppose that v≡ 0. Then we have ξ =w and σ 6= 0
(since otherwisew=0 6= ξ ). This, however, contradicts that L+ξ =0 and L+w=−2(σ/(τ−1))Q∞ 6=0.

Thus we see that v 6≡ 0 in (4-26), where v′(0) = 0 by smoothness of v. Suppose now that v(0) 6= 0.
Then Lemma 5 yields that v 6∈ L2

rad(R
3), which contradicts (4-26) together with the fact that ξ and w

both belong to L2
rad(R

3). Finally, suppose that v(0) = 0 holds. Then v solves the equation L+v = 0
with initial data v(0) = 0 and v′(0) = 0. However, by a standard fixed point argument, we see that the
linear integro-differential equation L+v = 0 with given initial data v(0) ∈ R and v′(0)= 0 has a unique
solution. So v(0)= 0 and v′(0)= 0 implies that v ≡ 0. Again, we arrive at a contradiction as above. �

Clearly, Lemma 6 completes the proof of Proposition 2. �

5. Local uniqueness around Q∞

Recall that H 1
r (R

3) denotes space of radial and real-valued functions that belong to H 1(R3). By using
Proposition 2, we can now prove the following local uniqueness result for a small neighborhood around
Q∞ in H 1

r (R
3).

Proposition 3. Let m > 0 and N > 0 be given. Furthermore, suppose that Q∞ ∈ H 1
r (R

3) is the unique
radial, positive solution to

−
1

2m
1Q∞−

(
|x |−1

∗ |Q∞|2
)
Q∞ =−λQ∞, (5-1)

with
∫
|Q∞|2 = N , where λ > 0 is determined through Q∞. Then there exist constants c0 � 1, ε > 0,

and δ > 0 such that the following holds. For any (c, µ) with

c ≥ c0, −λ− ε ≤−µ−mc2
≤−λ+ ε,

the equation √
−c21+m2c4 Q−

(
|x |−1

∗ |Q|2
)
Q =−µQ (5-2)

has a unique solution Q ∈ H 1
r (R

3), provided that ‖Q− Q∞‖H1 ≤ δ.

5.1. Proof of Proposition 3. For β ≥ 0 and z > 0, we define the map

G(u, β, z)= u+R(β, z)g(u), (5-3)
where we set

g(u)=−
(
|x |−1

∗ |u|2)u, (5-4)

and, for β ≥ 0 and z > 0, we define the family of resolvents

R(β, z)=

{ (
− (1/2m)1+ z

)−1 if β = 0,(√
−β−21+m2β−4−mβ−2

+ z
)−1 if β > 0.

(5-5)

By an elementary calculation, we verify the following equivalences:

Q ∈ H 1
r (R

3) solves (5-1) if and only if G(Q, 0, λ)= 0; (5-6)

Q ∈ H 1
r (R

3) solves (5-2) if and only if G(Q, c−1, µ+mc2)= 0. (5-7)
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To prove Proposition 3, we now construct an implicit function-type argument for the map

G : H 1
r (R

3)×[0, β0]× [λ− ε, λ+ ε] → H 1
r (R

3), (5-8)

where β0 > 0 and ε > 0 are small constants. To see that indeed G(u, β, z) ∈ H 1
r (R

3) for u ∈ H 1
r (R

3),
we notice that R(β, z) : H 1

r (R
3)→ H 1

r (R
3), as can be seen by using the Fourier transform. That g(u)

maps H 1
r (R

3) into itself follows readily from the Hardy–Littlewood–Sobolev inequality and Sobolev
embeddings. Hence (5-8) is indeed well-defined.

Next, we show that the derivative

∂uG(u, β, z)= 1+R(β, z)∂ug(u) : H 1
r (R

3)→ H 1
r (R

3) (5-9)

depends continuously on (u, β, z). Here ∂ug(u) acting on ξ ∈ H 1
r (R

3) is found to be

∂ug(u)ξ =−
(
|x |−1

∗ |u|2
)
ξ − 2u

(
|x |−1

∗ (uξ)
)
. (5-10)

By using the Hardy–Littlewood–Sobolev inequality and Sobolev embeddings, we obtain that

‖(∂ug(u1)− ∂ug(u2))ξ‖H1 . (‖u1‖H1 +‖u2‖H1)‖u1− u2‖H1‖ξ‖H1; (5-11)

see, for example, [Lenzmann 2007] for similar estimates proving Lipschitz continuity of g(u). Using
this estimate, we find for u1, u2, ξ ∈ H 1

r (R
3), β1, β2 ∈ [0, β0], and z1, z2 > 0,

‖(∂uG(u1, β1, z1)− ∂uG(u2, β2, z2))ξ‖H1

≤ ‖(R(β1, z1)−R(β2, z2))∂ug(u1)ξ‖H1 +‖R(β2, z2)(∂ug(u1)− ∂ug(u2))ξ‖H1

. ‖R(β1, z1)−R(β2, z2)‖L2→L2‖u1‖
2
H1‖ξ‖H1

+‖R(β2, z2)‖L2→L2(‖u1‖H1 +‖u2‖H1)‖u1− u2‖H1‖ξ‖H1, (5-12)

where we also use the fact that ‖R(β, z)‖H s→H s = ‖R(β, z)‖L2→L2 for any s ∈ R, since R(β, z) com-
mutes with 〈∇〉. Moreover, by using the Fourier transform, one verifies

‖R(β1, z1)−R(β2, z2)‖L2→L2 → 0 as (β1, z1)→ (β2, z2), (5-13)

for any β1, β2 ≥ 0 and z1, z2 > 0. (For later use, we record that (5-13) also holds for complex z1, z2 ∈

C \ [0,∞).) Going back to (5-12), we thus find

‖∂uG(u1, β1, z1)− ∂uG(u2, β2, z2)‖H1→H1 → 0

as ‖u1− u2‖H1 → 0 and (β1, z1)→ (β2, z2). Hence ∂uG(u, β, z) depends continuously on (u, β, z).
By Proposition 2 and its following remark, we have that the radial restriction of the linearized operator

L+ around Q∞ has trivial kernel. This implies that the compact operator (−(1/(2m))1+λ)−1∂ug(Q∞)
does not have −1 in its spectrum. Hence the inverse operator(

∂uG(Q∞, 0, λ)
)−1
: H 1

r (R
3)→ H 1

r (R
3) (5-14)

exists. By the continuity of ∂uG(u, β, z) shown above, an appropriate version of an implicit function
theorem (see, for example, [Chang 2005]) implies that, for β0 > 0 and ε > 0 sufficiently small, there
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exists a unique solution Q = Q(β, z) ∈ H 1
r (R

3) such that

G(Q(β, z), β, z)= 0 for β ∈ [0, β0] and z ∈ [λ− ε, λ+ ε] (5-15)
with

‖Q(β, z)− Q∞‖H1 ≤ δ for some δ > 0. (5-16)

Moreover, the map (β, z) 7→ Q(β, z) ∈ H 1
r (R

3) is continuous.
By setting c0 = β

−1
0 and recalling the equivalence (5-7), we complete the proof of Proposition 3. �

6. Proof of Theorem 2

First, we notice that it is sufficient to prove uniqueness of symmetric-decreasing ground states for the
variational problem (1-2), thanks to Theorem 1(iii). Next, we make use of the rescaling correspondence
formulated in Lemma 1, which relates ground states for the dimensionalized and de-dimensionalized
Hartree energy functionals Ec(ψ) and E(ψ) defined in (3-1) and (1-1), respectively.

In what follows, we fix
∫
|Qc|

2
= 1 and we suppose that Qc = Q∗c ∈ H 1/2(R3) is a symmetric-

decreasing ground state for Ec(ψ) subject to
∫
|ψ |2= 1. Recall from Lemma 1 that Qc indeed exists for

c ≥ c0 with c0 being a sufficiently large constant. Let µ(Qc) denote the Lagrange multiplier associated
to Qc for c≥ c0. We now claim that µ only depends on c except for some countable set, that is, we have

µ(Qc)= µ(c), for c ∈ (c0,∞) \4, (6-1)

where 4 is some countable set. To prove (6-1), we argue as follows. By Lemma 1, we see that Q =
c−2 Qc(c−1

· ) is a symmetric-decreasing ground state for E(ψ) subject to
∫
|ψ |2=N =c−1; and moreover

the Lagrange multiplier µ(Q) for Q is found to be

µ(Q)= c−2µ(Qc). (6-2)

Next, we consider the ground state energy E(N ) given by (1-2) for 0 < N < c−1
0 . From [Lieb and

Yau 1987; Fröhlich et al. 2007b] we know that E(N ) is strictly concave. Hence E ′(N ) exists for all
N ∈ (0, c−1

0 ) \6, where is 6 is some countable set, and we readily find that

E ′(N )=−µ(Q), for N ∈ (0, c−1
0 ) \6. (6-3)

Therefore the left-hand side of (6-2) only depends on N = c−1 except when N ∈6, which proves (6-1)
with the countable set 4= {c : c > c0 and c−1

∈6}.
Suppose {cn}

∞

n=1 is a sequence with such that cn→∞ and values in cn ∈ (c0,∞)\4. Correspondingly,
let {Qcn }

∞

n=1 be a sequence of symmetric-decreasing ground states for Ec(ψ) with
∫
|Qcn |

2
= 1 for all

n ≥ 1. By Proposition 1, for any such sequence {Qcn }, we have that Qcn and its corresponding Lagrange
multipliers µcn satisfy the assumption of Proposition 3, provided that n � 1. By the local uniqueness
result stated in Proposition 3 and the fact µcn only depends on cn , we conclude that the symmetric-
decreasing ground state Qc for Ec(ψ) subject to

∫
|ψ |2 = 1 is unique, provided that c ∈ (c0,∞) \4

holds, where c0� 1 is sufficiently large and 4 is some countable set.
Finally, by Lemma 1, we deduce uniqueness of symmetric-decreasing ground states Q for E(ψ)

subject to
∫
|ψ |2 = N , provided that N ∈ (0, N0) \6 holds, where N0 = c−1

0 � 1 is sufficiently small
and 6 denotes some countable set. �
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7. Proof of Theorems 3 and 4

We first prove Theorem 4. By rescaling Q∞(r) 7→ aQ∞(br) with suitable a > 0 and b > 0, we can
assume without loss of generality that Q∞ ∈ H 1

r (R
3) satisfies the normalized equation

−1Q∞−
(
|x |−1

∗ |Q∞|2
)
Q∞ =−Q∞. (7-1)

To complete the proof of Theorem 4, it suffices to prove the following result.

Proposition 4. Let Q∞ ∈ H 1
r (R

3) be the unique radial and positive solution to Equation (7-1). Then the
linearized operator L+ given by

L+ξ =−1ξ + ξ −
(
|x |−1

∗ |Q∞|2
)
ξ − 2Q∞

(
|x |−1

∗ (Q∞ξ)
)
,

acting on L2(R3) with domain H 1(R3), has the kernel

ker L+ = span
{
∂x1 Q∞, ∂x2 Q∞, ∂x3 Q∞

}
.

Remark. For linearized operators L+ arising from ground states Q for NLS with local nonlinearities,
it is a well-known fact that ker L+ = {0} when L+ is restricted to radial functions implies that ker L+ is
spanned by {∂xi Q}3i=1.

The proof, however, involves some Sturm–Liouville theory which is not applicable to L+ given above,
due to the presence of the nonlocal term. (Also, recall that Newton’s theorem is not at our disposal,
since we do not restrict ourselves to radial functions anymore.) To overcome this difficulty, we have
to develop Perron–Frobenius-type arguments for the action of L+ with respect to decomposition into
spherical harmonics.

7.1. Proof of Proposition 4. Since Q∞(r) and |x |−1 are radial functions, the operator L+ commutes
with rotations in R3; that is, we have that (L+ξ(R· ))(x)= (L+ξ)(Rx) for all R ∈ O(3). Therefore, we
decompose any ξ ∈ L2(R3) using spherical harmonics according to

ξ(x)=
∞∑
`=0

∑̀
m=−`

f`m(r)Y`m(�), (7-2)

where x = r� with r = |x | and � ∈ S2. This gives us the direct decomposition

L2(R3)=

∞⊕
`=0

H(`) , (7-3)

so that L+ acts invariantly on each

H(`) = L2(R+, r2dr)⊗Y(`). (7-4)

Here Y(`)= span {Y`m}+`m=−` denotes the (2`+1)-dimensional eigenspace corresponding to the eigenvalue
κ` =−`(`+ 1) of the spherical Laplacian 1S2 acting on L2(S2).

Let us now find an explicit formula for the action of L+ on each H(`). To this end, we recall the
well-known the fact that

−1=−∂2
r −

2
r
∂r +

`(`+ 1)
r2 on H(`), (7-5)
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as well as the multipole expansion

1
|x − x ′|

= 4π
∞∑
`=0

+∑̀
m=−`

1
2`+ 1

r`<
r`+1
>

Y`m(�)Y ∗`m(�
′), (7-6)

where r< = min(|x |, |x ′|) and r> = max(|x |, |x ′|). An elementary calculation leads to the following
equivalence: We have that L+ξ = 0 if and only if

L+,(`) f`m = 0, for `= 0, 1, 2, . . . and m =−`, . . . ,+`, (7-7)

with ξ given by (7-2). Here the operator L+,(`) acting on L2(R+, r2dr) is (formally) given by

(L+,(`) f )(r)=− f ′′(r)−
2
r

f ′(r)+
`(`+ 1)

r2 f (r)+ V (r) f (r)+ (W(`) f )(r), (7-8)

with the local potential
V (r)=−

(
|x |−1

∗ |Q∞|2)(r), (7-9)

and the nonlocal linear operator

(W(`) f )(r)=−
8π

2`+ 1
Q∞(r)

∫
∞

0

r`<
r`+1
>

Q∞(s) f (s) s2 ds, (7-10)

where r< =min(r, s) and r> =max(r, s).
To prove Proposition 4, it suffices to assume henceforth that ` ≥ 1 holds, since L+,(0) f = 0 implies

that f ≡ 0 holds, by Proposition 2 above. Hence any nontrivial elements in the kernel of L+ can only
belong to H(`) with ` ≥ 1. Before we proceed, we show that each L+,(`) enjoys a Perron–Frobenius
property as follows.

Lemma 7. For each ` ≥ 1, the operator L+,(`) is essentially self-adjoint on C∞0 (R+) ⊂ L2(R+, r2dr)
and bounded below. Moreover, each L+,(`) has the Perron–Frobenius property. That is, if e0,(`) denotes
the lowest eigenvalue of L+,(`), then e0,(`) is simple and the corresponding eigenfunction φ0,(`)(r) > 0 is
strictly positive.

Remarks. (1) We have indeed the lower bound L+,(`) ≥ 0 for all `≥ 1. This follows from H(`) ⊥ Q∞
for ` ≥ 1 and the fact that L+|Q⊥∞ ≥ 0, which can be proven in the same way as for ground states for
local NLS; see, for example, [Chang et al. 2007; Weinstein 1985].

(2) It is easy to see that L+,(`) has in fact infinitely many eigenvalues between 0 and 1. Indeed, the lower
bound Q∞(r)≥ Bεe−(1+ε)r (see the proof of Lemma 5) leads, by using Newton’s theorem, to the upper
bound V (r) ≤ −αr−1 with some α > 0. Furthermore, one finds that 〈 f,W (`) f 〉 < 0 for f 6≡ 0. Hence,
we conclude

L+,(`) ≤−∂2
r −

2
r
∂r + 1+

`(`+ 1)
r2 −

α

r
on L2(R+, r2dr). From the well-known spectral properties of the hydrogen atom Hamiltonian, we infer
that the operator on the right has infinitely many eigenvalues below 1, and so does L+,(`) by the min-max
principle.



20 ENNO LENZMANN

Proof of Lemma 7. Since Q∞(r) is exponentially decaying, it is straightforward to verify that W(`) is a
bounded operator. Also, we have that V ∈ L∞ holds. Thus L+,(`) is bounded below (see also the remark
following Lemma 7). Furthermore, it is well-known that

−1(`) =−∂
2
r −

2
r
∂r +

`(`+ 1)
r2 (7-11)

is essentially self-adjoint on C∞0 (R+) provided that ` ≥ 1. In fact, this follows from [Reed and Simon
1980, Theorem X.10 and Example 4] which shows that −∂2

r − (2/r)∂r + `(`+ 1)/r2 is essentially self-
adjoint on C∞0 (R+) if `(` + 1)/r2

≥ 3/4r2. Furthermore, by the Kato–Rellich theorem and the fact
that V and W(`) are bounded and self-adjoint, we deduce that L+,(`) = −1(`)+ V +W(`) is essentially
self-adjoint on C∞0 (R+) as well.

The Perron–Frobenius property of L+,(`) can be shown as follows. First, we consider the kinetic
energy part in L+,(`), where we find that

et1(`) is positivity improving on L2(R+, r2dr) for all t > 0. (7-12)

(Recall that, by definition, this means that et1(`) f > 0 when f ≥ 0 with f 6≡ 0.) Indeed, an argument
given in Appendix B shows that the integral kernel of et1(`) is strictly positive:

et1(`)(r, s)= 1
2t

√
1
rs

e−
r2
+s2
4t I`+1/2

(
rs
2t

)
> 0, for r, s > 0. (7-13)

Here Ik(z) denotes the modified Bessel function of the first kind of order k. For later use, we record that
(7-12) and the formula (by functional calculus)

(−1(`)+µ)
−1
=

∫
∞

0
e−tµet1(`) dt, for µ > 0, (7-14)

immediately show that

(−1(`)+µ)
−1 is positivity improving on L2(R+, r2dr) for all µ > 0. (7-15)

Next, let A(`) denote the bounded self-adjoint operator

A(`) = V +W(`), (7-16)

where V and W(`) are defined in (7-9) and (7-10), respectively. Note that A(`) is nonlocal. Using that
Q∞(r) is strictly positive, we readily find that

−A(`) is positivity improving on L2(R+, r2dr). (7-17)

This leads to the following auxiliary result.

Lemma 8. For µ� 1, the resolvent(
L+,(`)+µ

)−1
=
(
−1(`)+ A(`)+µ

)−1

is positivity improving on L2(R+, r2dr).
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Proof. For µ� 1, we have

1
L+,(`)+µ

=
1

−1(`)+µ

1
1+ A(`)(−1(`)+µ)−1 .

Since A(`) is bounded, we conclude that ‖A(`)(−1(`)+µ)−1
‖L2→L2 < 1 for µ� 1. Thus a Neumann

expansion yields
1

L+,(`)+µ
=

1
−1(`)+µ

∞∑
ν=0

(
−A(`)(−1(`)+µ)−1)ν, (7-18)

provided that µ� 1. Next, we recall from (7-15) that (−1(`) +µ)−1 is positivity improving. By this
fact and (7-17), we deduce from (7-18) that (L+,(`)+µ)−1 must be positivity improving for µ� 1. This
completes the proof of Lemma 8. �

We now return to the proof of Lemma 7, which we complete as follows. Let `≥1 be fixed and suppose
e0,(`) = inf σ(L+,(`)) is the lowest eigenvalue. Furthermore, we choose µ� 1 such that, by Lemma 8,

B =
(
L+,(`)+µ

)−1 (7-19)

is positivity improving on L2(R+, r2dr). Clearly, the operator B is bounded and self-adjoint, and its
largest eigenvalue λ0 = sup σ(B) is given by λ0 = (e(`),0+µ)−1. Also, the corresponding eigenspaces
of L+,(`) and B coincide. Since B is positivity improving (and hence ergodic), we can invoke [Reed and
Simon 1978, Theorem XIII.43] to conclude that λ0 is simple and that the corresponding eigenfunction
φ(`),0(r) is strictly positive on R+. This proof of Lemma 7 is therefore complete. �

Let us now come back to the proof of Proposition 4, stating that ker L+ is spanned by {∂xi Q∞}3i=1.
By differentiating the nonlinear equation satisfied by Q∞, we readily obtain that L+∂xi Q∞ = 0 for
i = 1, 2, 3. Since ∂xi Q∞(r)= Q′

∞
(r)(xi/r) ∈H(1), this show that

L+,(1)Q′∞ = 0. (7-20)

Furthermore, by monotonicity of Q∞(r), we have that Q′
∞
(r)≤ 0. Since L+,(1) is self-adjoint and Q′

∞

is an eigenfunction that does not change its sign, Lemma 7 shows that in fact Q′
∞
(r)=−φ0,(1)(r) holds,

where φ0,(1) > 0 is the strictly positive ground state of L+,(1), with e0,(1) = 0 being its corresponding
eigenvalue. Therefore any ξ ∈H(1) such that L+ξ = 0 must be some linear combination of {∂xi Q∞}3i=1.

To complete the proof of Proposition 4, we now claim that

L+,(`) > 0, for `≥ 2, (7-21)

which in particular shows that L+ξ = 0 with ξ ∈H(`) for some `≥ 2 implies that ξ ≡ 0. To prove (7-21),
let `≥ 2 be fixed and set

e0,(`) = inf σ(L+,(`)). (7-22)

Indeed, by the remark following Lemma 7, we know that e0,(`)< 1 is attained. (If e0,(`) was not attained,
then e0,(`) = inf σess(L+,(`))= 1 and (7-21) follows immediately.) By Lemma 7, the eigenvalue e0,(`) is
simple and its corresponding eigenfunction φ0,(`)(r) > 0 is strictly positive. Next, we notice that

e0 = 〈φ0,(`), L+,(`)φ0,(`)〉 = 〈φ0,(`), L+,(1)φ0,(`)〉+ K(`), (7-23)
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where

K(`) =

∫
∞

0

(`(`+ 1)− 2)
r2 φ0,(`)(r)2 r2 dr

+ 8π
∫
∞

0

∫
∞

0
Q∞(r)φ0,(`)(r)

(1
3

r<
r2
>

−
1

2`+ 1
r`<

r`+1
>

)
Q∞(s)φ0,(`)(s) r2s2 dr ds,

with r< = min(r, s) and r> = max(r, s). Using the strict positivity of Q∞(r) and φ0,(`)(r), we see that
K(`) > 0 holds because of ` ≥ 2 and (r</r>) ≤ 1. Moreover, we recall from the preceding discussion
that L+,(1) ≥ e0,(1) = 0. Therefore, by (7-23),

e0,(`) ≥ K(`) > 0, for all `≥ 2, (7-24)

which proves (7-21), completing the proof of Proposition 4, whence the proof of Theorem 4 follows. �

7.2. Proof of Theorem 3. As in the proof of Theorem 2 above, it is convenient to fix N > 0 and to
consider symmetric-decreasing ground state Qc ∈ H 1

r (R
3) minimizing Ec(ψ) with

∫
|Qc|

2
= N , where

we take c> 0 sufficiently large. In what follows, let µc denote the Lagrange multiplier associated to Qc.
(It is possible that µc depends on Qc and not just on c.)

Recall from Proposition 1 that

‖Qc− Q∞‖H1 ≤ δ1 and | −µc−mc2
+ λ| ≤ δ2, (7-25)

where δ1→ 0 and δ2→ 0 as c→∞. Here Q∞ ∈ H 1
r (R

3) is the unique radial positive solution to (3-3)
with

∫
|Q∞|2= N , where λ> 0 is determined through Q∞. By Theorem 4, the linear operator L+ given

by

L+ξ =−
1

2m
1+ λ−

(
|x |−1

∗ |Q∞|2
)
ξ − 2Q∞

(
|x |−1

∗ (Q∞ξ)
)

(7-26)

has the kernel
ker L+ = span {∂x1 Q∞, ∂x2 Q∞, ∂x3 Q∞}. (7-27)

Next, let L+,c denote the linear operators defined as

L+,cξ =
√
−c21+m2c4 ξ +µcξ −

(
|x |−1

∗ |Qc|
2)ξ − 2Qc

(
|x |−1

∗ (Qcξ)
)
. (7-28)

Again, upon differentiating the Euler–Lagrange equation satisfied by Qc, we see that L+,c∂xi Qc = 0 for
i = 1, 2, 3. Hence

span {∂x1 Qc, ∂x2 Qc, ∂x3 Qc
}
⊆ ker L+,c. (7-29)

By the following perturbation argument, we show that in fact equality holds for c � 1. By standard
arguments, we see that 0∈σ(L+) is an isolated eigenvalue. Thus we can construct the Riesz projection P0

onto ker L+ by

P0 =
1

2π i

∮
0r

(L+− z)−1 dz, (7-30)

where the curve 0r parametrizes the circle {z ∈C : |z| = r}. Here r > 0 is chosen sufficiently small such
that 0 is the only eigenvalue of L+ inside |z| ≤ r . Next, we claim that the projection

P0,c =
1

2π i

∮
0r

(L+,c− z)−1 dz (7-31)
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exists for c� 1 and satisfies

‖P0,c− P0‖L2→L2 → 0 as c→∞. (7-32)

Indeed, by using (7-25) and similar arguments as in the proof of Proposition 3 (see, for example, the
resolvent estimate (5-13)), we conclude that

‖(L+,c− z)−1
‖L2→L2 ≤ C‖(L+− z)−1

‖L2→L2, (7-33)

for all c� 1 and z ∈ 0r , where C > 0 is some constant. Furthermore, we have

‖(L+,c− z)−1
− (L+− z)−1

‖L2→L2 → 0 as c→∞, (7-34)

for all z ∈0r . This shows that P0,c exists for c� 1 and that (7-32) holds. Since rank P0= 3 and the rank
of P0,c remains constant for c� 1, by (7-32), we infer that P0,c has at most 3 eigenvalues (counted with
their multiplicity) inside |z| ≤ r , provided that c� 1. In particular, we conclude that dim ker L+,c ≤ 3
for c� 1. Therefore equality must hold in (7-29) whenever c� 1.

Thus we have found that L+,c has the desired kernel property if c � 1. By a rescaling argument
formulated in Lemma 1, we conclude the analogous statement for the linear operator L+ arising from
the unique symmetric-decreasing ground state Q minimizing E(ψ) subject to

∫
|ψ |2 = N with N � 1.

The proof of Theorem 3 is now complete. �

Appendix A. Uniqueness of Q∞

Suppose that Q∞ ∈ H 1(R3) solves

−
1

2m
1Q∞−

(
|x |−1

∗ |Q∞|2
)
Q∞ =−λQ∞, (A-1)

with m > 0 and λ > 0 given. By rescaling Q∞(r) 7→ aQ∞(br) with suitable a > 0 and b > 0, we can
consider without loss of generality solutions Q∞ ∈ H 1(R3) to the “normalized” equation

−1Q∞−
(
|x |−1

∗ |Q∞|2
)
Q∞ =−Q∞. (A-2)

The following result is due to [Lieb 1977]; see also [Tod and Moroz 1999]. Here we provide a partly
different proof, which is directly based on a comparison argument.

Lemma 9. Equation (A-2) has a unique radial, nonnegative solution Q∈H 1
r (R

3)with Q 6≡0. Moreover,
we have that Q(r) is in fact strictly positive.

Proof. Existence of a nonnegative, nontrivial solution Q∞ ∈ H 1
r (R

3) of (A-2) follows from variational
arguments; see [Lieb 1977].

To prove that any nonnegative Q ∈ H 1(R3), with Q 6≡ 0, solving (A-2) is strictly positive, we can
simply argue as follows. We rewrite (A-2) as

Q(x)=
(
(−1+ 1)−1(V Q)

)
(x)=

1
4π

∫
R3

e−|x−y|

|x − y|
V (y)Q(y) dy (A-3)

with V = |x |−1
∗ |Q|2. Since V ≥ 0 and Q ≥ 0 (with V 6≡ 0 and Q 6≡ 0), Equation (A-3) shows that Q

is strictly positive.
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Let us now prove the claimed uniqueness. Suppose Q ∈ H 1
r (R

3), with Q 6≡ 0, is a solution to (A-2).
Using Newton’s theorem, we find that Q(r) solves (after a suitable rescaling Q(r) 7→ a2 Q(ar) for some
a > 0; see [Lieb 1977]) the initial-value problem

−v′′(r)− 2
r
v′(r)− v(r)+

(∫ r

0
K (r, s)v(s)2 ds

)
v(r)= 0, v(0)= v0, v′(0)= 0, (A-4)

with v0= Q(0)∈R. (Recall that K (r, s)≥ 0 is given by (4-6) above.) By standard fixed point arguments,
we deduce that (A-4) has a unique local C2-solution for given initial data v(0) ∈ R and v′(0) = 0, and
v(r) exists up to some maximal radius R ∈ (0,∞].

Suppose now that Q ∈ H 1
r (R

3) and Q̃ ∈ H 1
r (R

3) are two radial, nonnegative (and nontrivial) solutions
to (A-2) with Q 6≡ Q̃. From the preceding discussion we know that Q and Q̃ are in fact strictly positive,
and (after appropriate rescaling) both satisfy (A-4) with v0 = Q(0) > 0 and v0 = Q̃(0) > 0, respectively.
By uniqueness for (A-4), we conclude that Q(0) 6= Q̃(0) holds, since otherwise Q ≡ Q̃. Therefore, we
can henceforth assume that

Q̃(0) > Q(0). (A-5)

Next, we notice that a calculation (similar to the one in the proof of Lemma 5) yields the integrated
“Wronskian-type” identity

r2(Q(r)Q̃′(r)− Q′(r)Q̃(r))=
∫ r

0
s2 Q(s)Q̃(s)(Ṽ (s)− V (s)) ds. (A-6)

Here,

V (r)=
∫ r

0
K (r, s)Q(s)2 ds and Ṽ (r)=

∫ r

0
K (r, s)Q̃(s)2 ds. (A-7)

By continuity and (A-5), we have Q̃(r) > Q(r) at least initially for r ≥ 0. Next, we conclude, by (A-6),
that in fact

Q̃(r) > Q(r), for all r ≥ 0. (A-8)

To see this, suppose on the contrary that Q̃(r)> 0 intersects Q(r)> 0 for the first time at r = r∗> 0, say.
Then the left-hand side of (A-6) is found to be nonnegative at r = r∗, whereas the right-hand side must
be strictly positive at r = r∗ since Ṽ (r) > V (r) on (0, r∗). This contradiction shows that (A-8) holds.

Finally, we show that (A-8) leads to a contradiction (along the lines of [Lieb 1977]) as follows. To
this end, we consider the Schrödinger operators

H =−1+ V and H̃ =−1+ Ṽ , (A-9)

so that H Q= Q and H̃ Q̃= Q̃. By standard theory of Schrödinger operators, we conclude that Q and Q̃
are (up to a normalization factor) the unique positive ground states (with eigenvalue e= 1) for H and H̃ ,
respectively. Therefore,

〈φ, Hφ〉 ≥ ‖φ‖2L2 and 〈φ, H̃φ〉 ≥ ‖φ‖2L2, for φ ∈ H 1(R3), (A-10)

where equality holds if and only if φ = λQ or φ = λQ̃ for some λ ∈ C, respectively.
Going back to (A-8), we find that Ṽ (r) > V (r) for all r > 0, which leads to

‖Q̃‖2L2 ≤ 〈Q̃, H Q̃〉 = 〈Q̃, H̃ Q̃〉− 〈Q̃, (Ṽ − V )Q̃〉 = ‖Q̃‖2L2 − δ,
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for some δ > 0, which is a contradiction.
Hence (A-2) does not admit two different radial and nonnegative (and nontrivial) solutions Q∈H 1

r (R
3)

and Q̃ ∈ H 1
r (R

3). �

Appendix B. Decomposition of et1 using spherical harmonics

Recall the explicit formula for the heat kernel of the Laplacian 1 on R3:

et1(x, y)=
1

(4π t)3/2
e−|x−y|2/(4t)

=
1

(4π t)3/2
e−(x

2
+y2)/(4t)e(x ·y)/(2t). (B-1)

Moreover, we have the well-known identity

eax ·y
= 4π

∞∑
`=0

+∑̀
m=−`

i`(a |x ||y|)Y`m(�)Y ∗`m(�
′) (B-2)

for a > 0, x = |x |� and y = |y|�′ where �,�′ ∈ S2. Here

i`(z)=
√
π
2z

I`+1/2(z) (B-3)

is the modified spherical Bessel function of the first kind of order `; whereas Ik(z) denotes the modified
Bessel function of the first kind of order k.

Let 1(`) denote the restriction of 1 acting on H(`) (that is, the space of L2(R3) functions whose
“angular momentum” is `≥ 0). From (B-1) and (B-2) we deduce that the integral kernel of et1(`) acting
on L2(R+, r2dr) is given by

et1(`)(r, s)= 1
2t

√
1
rs

e−(r
2
+s2)/(4t) I`+1/2

(rs
2t

)
. (B-4)

An explicit integral representation for Ik(z) shows that I`+1/2(z) > 0 for all z > 0 and `≥ 0.
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RESONANCES FOR NONANALYTIC POTENTIALS

ANDRÉ MARTINEZ, THIERRY RAMOND AND JOHANNES SJÖSTRAND

We consider semiclassical Schrödinger operators on Rn , with C∞ potentials decaying polynomially at
infinity. The usual theories of resonances do not apply in such a nonanalytic framework. Here, under
some additional conditions, we show that resonances are invariantly defined up to any power of their
imaginary part. The theory is based on resolvent estimates for families of approximating distorted
operators with potentials that are holomorphic in narrow complex sectors around Rn .

1. Introduction

The notion of quantum resonance was born around the same time as quantum mechanics itself. Its
introduction was motivated by the behavior of various quantities related to scattering experiments, such
as the scattering cross-section. At certain energies, these quantities present peaks (nowadays called
Breit–Wigner peaks), which were modeled by a Lorentzian-shaped function

wa,b : λ 7→
1
π

b/2
(λ− a)2+ (b/2)2

.

The real numbers a and 2/(πb) > 0 stand for the location of the maximum of the peak and its height.
The number b is the width of the peak (more precisely its width at half its height). Of course for
ρ = a− ib/2 ∈ C, one has

wa,b(λ)=
1
π

Im ρ

|λ− ρ|2
,

and the complex number ρ was called a resonance. Such complex values for energies had also appeared
for example in [Gamow 1928], to explain α-radioactivity.

There is a standard discussion in physics textbooks that may help understand the normalization chosen
for wa,b(λ). Suppose ψ0 is a resonant state (not in L2) corresponding to the resonance ρ = a− ib/2. Its
time evolution should be written

ψ(t)= e−i ta−tb/2ψ0,

so that the probability of survival beyond time t is

p(t)=
|ψ(t)|2

|ψ0|2
= e−bt ,

MSC2000: 35B34, 35P99, 47A10, 81Q20.
Keywords: resonances, Schroedinger operators, Breit–Wigner peaks.
The first author was partly supported by Università di Bologna, Funds for Selected Research Topics and Founds for Agreements
with Foreign Universities.
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and b is the decay rate of that probability. Moreover, the resonant state ψ(t) has an associated energy
space representation

ψ̂(λ)=
1
√

2π

∫
+∞

0
ei t Eψ(t) dt =

1

i
√

2π

ψ0

(a− λ)− ib/2
,

which is interpreted saying that the probability density dσ(λ) of the resonant state is proportional to
|ψ̂(λ)|2 and leads to the following formula if one requires that the total probability is 1:

dσ(λ)=
1

2π
b

(a− λ)2+ (b/2)2
dλ= wa,b(λ) dλ.

However, these complex numbers ρ = a− ib/2 are not defined in a completely exact way, in the sense
that the peaks in the scattering cross section or the above probability distribution do not perceivably
change if these numbers are modified by a quantity much smaller than their imaginary part. Indeed, a
straightforward computation shows that the relative difference between such two peaks wa,b and wa′,b′

satisfies

sup
λ∈R

∣∣∣∣wa,b(λ)−wa′,b′(λ)

wa′,b′(λ)

∣∣∣∣≤ 3
|ρ− ρ ′|

|Im ρ|
+
|ρ− ρ ′|2

|Im ρ|2

where we have also set ρ ′ = a′− ib′/2 and chosen |Im ρ| ≤ |Im ρ ′| to make the formula simpler. As a
consequence, the two peaks become indistinguishable if |ρ − ρ ′| � |Im ρ|, that is, there is no physical
relevance to associate the resonance ρ=a−ib towa,b rather than any other ρ ′ satisfying |ρ−ρ ′|�|Im ρ|.
Notice also that the more the resonance is far from the real line, the more irrelevant this precision
becomes.

On the mathematical side, the more recent theory of resonances for Schrödinger operators has made
it possible to create a rigorous framework and obtain very precise results, in particular on the location
of resonances in relation with the geometry of the underlying classical flow. However, it is based on the
notion of complex scaling, in more and more sophisticated versions that all require analyticity assump-
tions on the potential or its Fourier transform; see, for example, [Aguilar and Combes 1971; Balslev
and Combes 1971; Simon 1979; Sigal 1984; Cycon 1985; Helffer and Sjöstrand 1986; Hunziker 1986;
Nakamura 1989; 1990; Sjöstrand and Zworski 1991]. It is important to notice that these different defini-
tions coincide when their domain of validity overlap [Helffer and Martinez 1987]. In this mathematical
framework, the Breit–Wigner formula for the scattering phase has now been studied by many authors in
different situations, as shape resonances, clouds of resonances, or barrier-top resonances; see for example
[Gérard et al. 1989; Petkov and Zworski 1999; Bruneau and Petkov 2003; Fujiié and Ramond 2003].

There are a small number of works about the definition of resonances for nonanalytic potentials, for
example, [Orth 1990; Gérard and Sigal 1992; Soffer and Weinstein 1998; Cancelier et al. 2005; Jensen
and Nenciu 2006]. In [Orth 1990; Gérard and Sigal 1992; Soffer and Weinstein 1998; Jensen and Nenciu
2006], the point of view is quite different from ours, while in [Cancelier et al. 2005], the definition is
based on the use of an almost-analytic extension of the potential and seems to strongly depend both on
the choice of this extension and on the complex distortion.

Here our purpose is to give a definition that fulfills both the mathematical requirement of being in-
variant with respect to the choices one has to make and the physical requirement of being more accurate



RESONANCES FOR NONANALYTIC POTENTIALS 31

as the resonance become closer to the real (or, equivalently, as the Breit–Wigner peak becomes nar-
rower). Dropping the physically irrelevant precision for the definition of resonances, we can also drop
the spurious assumption on the analyticity of the potential.

More precisely, we associate to a Schrödinger operator P a discrete set3⊂C with certain properties,
such that for any other set3′ with the same properties, there exists a bijection B :3′→3with B(ρ)−ρ=
O(|Im ρ|∞) uniformly. The set of resonances of P is the corresponding equivalence class of3. Of course,
when the potential is dilation analytic at infinity, we recover the usual set of resonances up to the same
error O(|Im ρ|∞).

The properties characterizing 3 basically involve the resonances of a (essentially arbitrary) family of
dilation-analytic operators (Pµ)(0<µ≤µ0), such that

Pµ is dilation-analytic in a complex sector of angle µ around Rn,

‖Pµ− P‖ = O(µ∞) uniformly as µ→ 0+,

and the constructive proof of the existence of the set 3 mainly consists in studying such a family and in
particular, in obtaining resolvent estimates uniform in µ.

In this paper, we address the case of an isolated cluster of resonances whose cardinality is bounded
(with respect to h). We hope to treat the general case elsewhere, as well as to give a detailed description
of the quantum evolution ei t P/h

= ei t Pµ/h
+O(|t |h−1µ∞) in terms of the resonances in 3.

The paper is organized as follows. We give our assumptions and state our main results in Section 2.
Then in Section 3, we give two paradigmatic situations where our constructions apply: the nontrapping
case and the shape resonances case. In Section 4 we present a suitable notion of analytic approximation
of a C∞ function through which we define the operator Pµ. In Section 5 we show that a properly defined
analytic distorted operator Pµθ of the latter satisfies a nice resolvent estimate in the upper half complex
plane even very near to the real axis. Sections 6, 7 and 8 are devoted to the proof of Theorem 2.1,
Theorem 2.2 and Theorem 2.5 respectively. We construct the set of resonances 3 and prove Theorem
2.6 in Section 9. In the last Section 10, we prove our statements concerning the shape resonances. Finally,
we have placed in the Appendix the proofs of two technical lemmas.

2. Notations and main results

We consider the semiclassical Schrödinger operator

P =−h21+ V,

where V = V (x) is a real smooth function of x ∈ Rn , such that

∂αV (x)= O(〈x〉−ν−|α|), (2-1)

for some ν > 0 and for all α ∈ Zn
+

. We also fix ν̃ ∈ (0, ν) once for all, and for any µ > 0 small enough,
we denote by V µ a |x |-analytic (µ, ν̃)-approximation of V in the sense of Section 4. In particular, V µ

is analytic with respect to r = |x | in {r ≥ 1}, it can be extended into a holomorphic function of r in the
sector 6 := {Re r ≥ 1 , |Im r | ≤ 2µRe r}, and it satisfies

V µ(x)− V (x)= O(µ∞〈x〉−ν̃), (2-2)
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uniformly on Rn . (See Section 4 for more properties of V µ.)
Then for any θ ∈ (0, µ], the operator

Pµ := −h21+ V µ, (2-3)

can be distorted analytically into
Pµθ :=Uθ PµU−1

θ , (2-4)

where Uθ is any transformation of the type

Uθϕ(x) := ϕ(x + iθ A(x)), (2-5)

with A(x) := a(|x |)x , a ∈C∞(R+), a= 0 near 0, 0≤ a ≤ 1 everywhere, a(|x |)= 1 for |x | large enough.
The essential spectrum of Pµθ is e−2iθR, and its discrete spectrum σdisc(P

µ
θ ) is included in the lower

half-plane and does not depend on the choice of the function a. Moreover, it does not depend on θ , in
the sense that for any θ0 ∈ (0, µ], and any θ ∈ [θ0, µ], one has

σdisc(P
µ
θ )∩6θ0 = σdisc(P

µ
θ0
)∩6θ0,

where 6θ0 := {z ∈ C ; −2θ0 < arg z ≤ 0} (observe that one also has σdisc(P
µ
θ ) = σdisc(Ũθ PµŨ−1

θ ),
where Ũθϕ(x) :=

√
det(Id+iθ t d A(x))ϕ(x + iθ A(x)) is an analytic distortion more widely used in the

literature).
We denote by

0(Pµ) := σdisc(Pµµ )∩6µ,

the set of resonances of Pµ counted with their multiplicity. In what follows, we also use the following
notation: If E and E ′ are two h-dependent subsets of C, and α= α(h) is a h-dependent positive quantity
that tends to 0 as h tends to 0+, we write

E ′ = E +O(α),

when there exists a constant C > 0 (uniform with respect to all other parameters) and a bijection

b : E ′→ E,
such that

|b(λ)− λ| ≤ Cα

for all h > 0 small enough.
Now, we fix some energy level λ0>0, and a constant δ >0. For any h-dependent numbers µ̃(h), µ(h),

and any h-dependent bounded intervals I (h), J (h), satisfying

0< µ̃(h)≤ µ(h)≤ hδ, (2-6)

I (h)⊂ J (h), diam(J ∪ {λ0})≤ hδ, (2-7)

we consider the following property (see Figure 1):

P(µ̃, µ; I, J ) :


Re(0(Pµ)∩ (J − i[0, λ0µ̃]))⊂ I,

# (0(Pµ)∩ (J − i[0, λ0µ̃]))≤ δ
−1,

dist(I,R \ J )≥ h−δωh(µ̃),
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h−δωh(µ̃)

λ0

I

J

Re z
h−δωh(µ̃)

Im z =−λ0µ̃

Im z =−2λ0µ

Figure 1. The property P(µ̃, µ; I, J ).

where, for θ > 0, we have set

ωh(θ) := θ

(
ln 1
θ
+ h−n

(
ln 1

h

)n+1
)1/2

.

Notice that by (2-7), the property P(µ̃, µ; I, J ) implies ωh(µ̃)≤ h2δ.
In the applications, it will be necessary to check that P(µ̃, µ; I, J ) holds for values of µ̃ that are

essentially of order hν for some ν > n. In that case, of course, the order of the quantity ωh(µ̃) can be
simplified into hν−n/2(ln(1/h))(n+1)/2. However, in the proof of our results, P(µ̃, µ; I, J ) will be also
used as an inductive condition that will permit us to consider arbitrarily small values of µ̃ (including
exponentially small values), and this is why we have to keep the somewhat intriguing above expression
for ωh(θ).

Theorem 2.1. Suppose P(µ̃, µ; I, J ) holds for some µ̃, µ, I and J satisfying (2-6)–(2-7). Then for all
θ ∈ ]0, µ̃], there exists an interval

J ′ = J +O(ωh(θ)),

such that

‖(Pµθ − z)−1
‖ ≤ Cθ−C

∏
ρ∈0(µ̃,µ,J )

|z− ρ|−1,

for all z ∈ J ′+ i[−Cθhn1,Cθhn1]. Here we have set n1 := n+ δ and

0(µ̃, µ, J ) := 0(Pµ)∩ (J − i[0, λ0µ̃]),

and C > 0 is a constant independent of µ̃, µ, θ , I and J .
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Thanks to this result, one can compare the resonances of the operators Pµ for different values of µ:

Theorem 2.2. Let N0 ≥ 1 be a constant. Suppose P(µ̃, µ; I, J ) holds for some µ̃, µ, I and J satisfying
(2-6)–(2-7), and that µ̃ > µN0 . Then for any θ ∈ [µN0, µ̃], there exist an interval

J ′ = J +O(ωh(θ))

and τ ∈ [hn1θ, 2hn1θ ], such that for any constant N1 ≥ 1 and any µ′ ∈ [µN1, µ1/N1] with θ ≤µ′, one has

0(Pµ
′

)∩ (J ′− i[0, τ ])= 0(Pµ)∩ (J ′− i[0, τ ])+O(µ∞).

Remark 2.3. The only properties of V µ used in the proof of this result are that V µ is a holomorphic
function of r in the sector 6 := {Re r ≥ 1 , |Im r | ≤ 2µRe r}, and it satisfies (2-2) and (4-2) for some
ν̃ > 0. In particular, the proof also shows that, up to O(µ∞), the set 0(Pµ) does not depend on any
particular choice of V µ.

Remark 2.4. As we will see in the proof, the condition τ ∈ [hn1θ, 2hn1θ ] can actually be replaced by
τ ∈ [hn1θ, hn1θ + (hn1θ)M

], for any fixed M ≥ 1.

We also show that the validity of P(µ̃, µ; I, J ) persists when decreasing µ̃ and µ suitably, up to a
small change of I and J .

Theorem 2.5. Suppose P(µ̃, µ; I, J ) holds for some µ̃, µ, I and J satisfying (2-6)–(2-7). Assume
furthermore that there is a constant N0 ≥ 1 with µ̃≥ µN0 . Then there exist two intervals

I ′ = I +O(µ∞),

J ′ = J +O(ωh(µ̃)),

such that P(hn1µ′, µ′; I ′, J ′) holds, for any µ′ ∈ (0, µ̃].

Finally, the next result gives a definition of resonances for P , up to any power of their imaginary part.

Theorem 2.6. Suppose P(µ̃, µ; I, J ) holds for some µ̃, µ, I and J satisfying (2-6)–(2-7). Assume
furthermore that there is a constant N0 ≥ 1 with µ̃≥ µN0 . Then there exist

an interval I ′ = I +O(µ∞),

an interval J ′ = J +O(ωh(µ̃)),

a discrete set 3⊂ I ′− i[0, 2h2n1µ̃],

such that
for any µ′ ∈ (0, µ̃], there exists τ ∈ [h2n1µ′, 2h2n1µ′] with

0(Pµ
′

)∩ (J ′− i[0, τ ])=3∩ (J ′− i[0, τ ])+O((µ′)∞).

}
(?)

Moreover, any other set 3̃ ⊂ I ′− i[0, 2h2n1µ̃] satisfying (?), possibly with some other choice of V µ, is
such that there exist τ ′ ∈ [ 12 h2n1µ̃, h2n1µ̃] and a bijection

B :3∩ (J ′− i[0, τ ′])→ 3̃∩ (J ′− i[0, τ ′]), with B(λ)− λ= O(|Im λ|∞).

The set 3 will be called the set of resonances of P in J ′ − i[0, 1
2 h2n1µ̃]. Here we adopt the convention

that real elements of3 are counted with a positive integer multiplicity in the natural way (see Section 9).
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Remark 2.7. The main shortcoming of our condition P(µ̃, µ; I, J ) is that the number of resonances in
the corresponding box has to be bounded. It might be that this restriction could be eliminated by a finer
analysis, based for example on results by P. Stefanov [2003]. We plan to come back to this point in a
forthcoming work.

3. Two examples

Here, we describe two explicit situations where the previous results apply.

3.1. The nontrapping case. We suppose first that the energy λ0 is nontrapping, that is, for any (x, ξ) ∈
p−1(λ0) we have

|exp t Hp(x, ξ)| →∞ as |t | →∞,

where p(x, ξ) := ξ 2
+V (x) is the principal symbol of P , and Hp = ∂ξ p∂x−∂x p∂ξ is the Hamilton field

of p.
Then the result of [Martinez 2002b] can be applied to Pµ with µ = Ch ln(h−1) for any arbitrary

constant C > 0, and tells us that Pµ has no resonances in [λ0 − 2ε, λ0 + 2ε] − i[0, λ0µ] with some
ε > 0 constant. In that case, for any δ > 0, P(hn1µ,µ; I, J ) is satisfied with I = [λ0− hδ, λ0+ hδ] and
J = [λ0− 2hδ, λ0+ 2hδ], and the previous results tell us that P has no resonances in I − i[0, 1

2 h3n1µ]

in the sense of Theorem 2.6.

3.2. The shape resonances. Now we assume instead that, in addition to (2-1), the potential V presents
the geometric configuration of the so-called “point-well in an island”, as described in [Helffer and
Sjöstrand 1986]. More precisely, we suppose

There exist a connected bounded open set Ö⊂ Rn and x0 ∈ Ö, such that

• λ0 := V (x0) > 0 ; V > λ0 on Ö\{x0} ; ∇
2V (x0) > 0 ; V = λ0 on ∂Ö;

• any point of {(x, ξ) ∈ R2n
; x ∈ Rn

\Ö , ξ 2
+ V (x)= λ0} is nontrapping.

 (H)

We denote by (ek)k≥1 the increasing sequence of (possibly multiple) eigenvalues of the harmonic oscil-
lator H0 =−1+

1
2〈V

′′(x0)x, x〉. We have:

Theorem 3.1. Assume (2-1) and (H). Then for any k0 ≥ 1 and any δ > 0, P(µ̃, µ; I, J ) holds with

µ= hδ, µ̃= hmax(n/2,1)+1+δ, I = [λ0+(e1−ε)h, λ0+(ek0+ε)h], J = [λ0, λ0+(ek0+1−ε)h],

where ε > 0 is any fixed number in (0,min(e1/2, (ek0+1− ek0)/3)].

Actually, we prove in Section 10 that any resonance ρ of Pµ in J − i[0, µ̃] is such that there exists
k ≤ k0 with

Re ρ− (λ0+ ekh)= O(h3/2),

Im ρ = O(e−2S1/h),

where S1 > 0 is any number less than the Agmon distance between x0 and ∂Ö. Recall that the Agmon
distance is the pseudo-distance associated to the degenerate metric (V (x)− λ0)+dx2.
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More generally, if µ′ ∈ [e−η/h, µ] with η > 0 small enough, we prove that any resonance ρ of Pµ
′

in
J − i[0, λ0 min(µ′, h2+δ)], satisfies

Re ρ− (λ0+ ekh)= O(h3/2),

for some k ≤ k0, and
Im ρ = O(e−2(S0−η)/h).

Applying Theorem 2.6 with µ′ = e−η/h (0< η < S0), we deduce that the resonances of P in

[λ0, λ0+Ch] − i[0, 1
2 h2n+max(n/2,1)+1+3δ

]

satisfy the same estimates.

4. Preliminaries

In this section, following an idea of [Fujiié et al. 2008], we define and study the notion of analytic
(µ, ν̃)-approximations.

Definition 4.1. For any µ > 0 and ν̃ ∈ (0, ν), we say that a real smooth function V µ on Rn is a |x |-
analytic (µ, ν̃)-approximation of V , if V µ is analytic with respect to r = |x | in {r ≥ 1}, V µ can be
extended into a holomorphic function of r in the sector 6(2µ) := {Re r ≥ 1 , |Im r |< 2µRe r}, and for
any multi-index α, it satisfies

∂α(V µ(x)− V (x))= O(µ∞〈x〉−ν̃−|α|), (4-1)

uniformly with respect to x ∈ Rn and µ > 0 small enough, and

∂αV µ(x)= O(〈Re x〉−ν̃−|α|), (4-2)

uniformly with respect to x ∈6(2µ) and µ > 0 small enough.

Proposition 4.2. Let V = V (x) be a real smooth function of x ∈ Rn satisfying (2-1).

(i) For any µ > 0 and ν̃ ∈ (0, ν), there exists a |x |-analytic (µ, ν̃)-approximation of V .

(ii) If V µ and Wµ are two |x |-analytic (µ, ν̃)-approximations of V , then for all α ∈ Nn , one has

∂α(V µ(x)−Wµ(x))= O(µ∞〈Re x〉−ν̃−|α|),

uniformly with respect to x ∈6(µ) and µ > 0 small enough.

Proof. We denote by Ṽ a smooth function on Cn satisfying the following:

• Ṽ = V on Rn .

• ∂ Ṽ = O
(
(|Im x |/〈Re x〉)∞〈Re x〉−ν

)
, uniformly on {|Im x | ≤ C〈Re x〉}, for any C > 0.

• ∂α Ṽ = O
(
〈Re x〉−ν−|α|

)
, uniformly on {|Im x | ≤ C〈Re x〉}, for any C > 0 and α ∈ Nn .

Note that such a function Ṽ (called an “almost-analytic” extension of V : See, for example, [Melin and
Sjöstrand 1975]) can easily be obtained by taking a resummation of the formal series

Ṽ (x)∼
∑
α∈Nn

i |α|(Im x)α

α!
∂αV (Re x). (4-3)
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Indeed, since we have ∂αV (Re x)= O(〈Re x〉−ν−|α|), the resummation is well defined up to

O
(
(|Im x |/〈Re x〉)∞〈Re x〉−ν

)
,

and the standard procedure of resummation (see, for example, [Dimassi and Sjöstrand 1999; Martinez
2002a]) also gives the required estimates on the derivatives of Ṽ . Conversely, by a Taylor expansion, we
see that any Ṽ satisfying the required conditions is necessarily a resummation of the series (4-3).

Now, if V µ is a |x |-analytic (µ, ν̃)-approximation of V , then for any x = rω ∈6(µ) (ω ∈ Sn−1) and
N ≥ 0, we have

V µ(x)−Ṽ (x)=
N∑

k=0

ik(Im r)k

k!
∂k

r V µ(Re r ·ω)+
(i Im r)N+1

(N + 1)!

∫ 1

0
∂N+1

r
(
V µ((Re r+i t Im r)·ω)

)
dt−Ṽ (x)

=

N∑
k=0

ik(Im r)k

k!
∂k

r
(
V µ(Re x)− V (Re x)

)
+O(µN+1

〈Re x〉−ν̃)

= O(µ∞〈Re x〉−ν̃)+O(µN+1
〈Re x〉−ν̃),

and similarly, for any α ∈ Nn ,

∂α(V µ(x)− Ṽ (x))= O(µ∞〈Re x〉−ν̃−|α|).

In particular, we have proved (ii).
Now, we proceed with the construction of such a V µ.
For x ∈ Rn

\0, we set ω = x/|x |, r = |x |, and s = ln r . In particular, for any t real small enough, the
dilation x 7→ et x becomes (s, ω) 7→ (s+ t, ω) in the new coordinates (s, ω).

For ω ∈ Sn−1 and s ∈ C with |Im s| small enough, we set Ṽ1(s, ω) := Ṽ (esω), where Ṽ is an almost-
analytic extension of V as before. Then for |Im s|< 2µ and Re s ≥−µ, we define

V µ
1 (s, ω) :=

e−ν̃s

2iπ

∫
γ

eν̃s′ Ṽ1(s ′, ω)
s− s ′

ds ′, (4-4)

where γ is the oriented complex contour

γ := ((+∞,−2µ] + 2iµ)∪ (−2µ+ 2i[µ,−µ])∪ ([−2µ,+∞)− 2iµ). (4-5)

By construction, Ṽ1(s ′, ω) = O(e−ν Re s′), so that the previous integral is indeed absolutely convergent.
Therefore, the (s, ω)-smoothness and s-holomorphy of V µ

1 are obvious consequences of Lebesgue’s
dominated convergence theorem. Since γ is symmetric with respect to R, we also have that V µ

1 (s, ω) is
real for s real. Moreover, since |s− s ′| ≥ µ on γ , we see that

V µ
1 (s, ω)=

e−ν̃s

2iπ

∫
γ (s)

eν̃s′ Ṽ1(s ′, ω)
s− s ′

ds ′+O(e−(ν−ν̃)/(2µ)−ν̃ Re s),

where

γ (s) :=
(
γ ∩

{
Re s ′ ≤ Re s+ 1

µ

})
∪

(
Re s+ 1

µ
+ 2i[−µ,µ]

)
.
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In particular, γ (s) is a simple oriented loop around s, and therefore, one obtains

V µ
1 (s, ω)− Ṽ1(s, ω)=

e−ν̃s

2iπ

∫
γ (s)

eν̃s′ Ṽ1(s ′, ω)− eν̃s Ṽ1(s, ω)
s− s ′

ds ′+O(e−(ν−ν̃)/(2µ)−ν̃ Re s). (4-6)

Then writing

eν̃s′ Ṽ1(s ′, ω)− eν̃s Ṽ1(s, ω)= (s− s ′) f (s, s ′, ω)+ (s− s ′)g(s, s ′, ω), (4-7)

with |∂s′ f | + |g| = O(µ∞), by Stokes’ formula, we see that, for Re s ≤ 2/µ and |Im s| ≤ µ, we have

V µ
1 (s, ω)− Ṽ1(s, ω)= O(µ∞e−ν̃ Re s).

When Re s > 2/µ and |Im s| ≤ µ, setting

γ1(s) :=
(
γ ∩

{
Re s ′ ≤ 1

µ

})
∪

(
1
µ
+ 2i[−µ,µ]

)
,

Stokes’ formula directly gives ∫
γ1(s)

eν̃s′ Ṽ1(s ′, ω)
s− s ′

ds ′ = O(µ∞),

and thus, using again that Ṽ1(s ′, ω)= O(e−ν Re s′), in that case we obtain

|V µ
1 (s, ω)| + |Ṽ1(s, ω)| = O(µ∞e−ν̃ Re s).

In particular, in both cases we obtain

V µ
1 (s, ω)− Ṽ1(s, ω)= O(µ∞e−ν̃ Re s), (4-8)

uniformly for Re s ≥−µ, |Im s| ≤ µ and µ > 0 small enough.
Then for α ∈ Nn arbitrary, by differentiating (4-4) and observing that

eν̃s′ Ṽ1(s ′, ω)−
N∑

k=0

1
k!
(s ′− s)k∂k

s
(
eν̃s Ṽ1(s, ω)

)
= (s ′− s)N+1 fN (s, s ′, ω)+ gN (s, s ′, ω),

with |∂s′ fN | + |gN | = O(µ∞), the same procedure gives

∂α(V µ
1 (s, ω)− Ṽ1(s, ω))= O(µ∞e−ν̃ Re s), (4-9)

uniformly for Re s ≥ −µ, |Im s| ≤ µ and µ > 0 small enough. In particular, using the properties of Ṽ1,
on the same set we also obtain

∂αV µ
1 (s, ω)= O(e−ν̃ Re s), (4-10)

uniformly.
Now, let χ1 ∈ C∞(R; [0, 1]) be such that χ1 = 1 on (−∞,−1], and χ1 = 0 on R+. We set

V µ
2 (s, ω) := χ1(s/µ)Ṽ1(s, ω)+ (1−χ1(s/µ))V

µ
1 (s, ω). (4-11)
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In particular, V µ
2 is well defined and smooth on R− ∪ (R++ i[−µ,µ]), and one has

V µ
2 = Ṽ1 for s ∈ (−∞,−µ],

V µ
2 = V µ

1 for s ∈ R++ i[−µ,µ],

∂α(V µ
2 − Ṽ1)= O(µ∞) for s ∈ [−µ,µ].

Finally, setting

V µ(x) := V µ
2

(
ln |x |,

x
|x |

)
, (4-12)

for x 6= 0, and V µ(0) = Ṽ (0), we easily deduce from the previous discussion (in particular (4-8), (4-9)
and (4-10), and the fact that ∂r = r−1∂s), that V µ is a |x |-analytic (µ, ν̃)-approximation of V . �

5. The analytic distortion

In this section, for any θ > 0 small enough, we construct a suitable distortion x 7→ x+ iθ A(x) satisfying
A(x) = x for |x | large enough, and such that for µ ≥ θ , the resolvent (Pµθ − z)−1 of the corresponding
distorted Hamiltonian Pµθ , admits sufficiently good estimates when Im z ≥ hn1θ .

We fix R0 ≥ 1 arbitrarily. In the Appendix we will justify the following lemma by constructing the
function announced in it:

Lemma 5.1. For any λ > 1 large enough, there exists fλ ∈ C∞(R+) such that

(i) supp fλ ⊂ [R0,+∞);

(ii) fλ(r)= λr for r ≥ 2 ln λ;

(iii) 0≤ fλ(r)≤ r f ′λ(r)≤ 2λr everywhere;

(iv) f ′λ+ | f
′′

λ | = O(1+ fλ) uniformly;

(v) for any k ≥ 1, f (k)λ = O(λ) uniformly.

Now, we take λ := h−n1 , and we set

b(r) := 1
λ

fλ(r). (5-1)

By the lemma, b satisfies

• supp b ⊂ [R0,+∞);

• b(r)= r for r ≥ 2n1 ln(1/h);

• 0≤ b(r)≤ rb′(r)≤ 2r everywhere;

• b′+ |b′′| = O(hn1 + b) uniformly;

• For any k ≥ 1, b(k) = O(1) uniformly.

We set
A(x) := b(|x |)

x
|x |
= a(|x |)x,
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where a(r) :=r−1b(r)∈C∞(R+). Forµ≥θ (both small enough), we can define the distorted operator Pµθ
as in (2-4) obtained from Pµ by using the distortion

8θ : R
n
3 x 7→ x + iθ A(x) ∈ Cn. (5-2)

Here we use the fact that |A(x)| ≤ 2|x |, and we also observe that, for any α ∈ Nn with |α| ≥ 1, one has
∂α8θ (x)= O(θ〈x〉1−|α|) uniformly.

Proposition 5.2. If R0 is fixed sufficiently large, then for 0 < θ ≤ µ both small enough, h > 0 small
enough, u ∈ H 2(Rn), and z ∈ C such that Re z ∈ [λ0/2, 2λ0] and Im z ≥ hn1θ , one has

|〈(Pµθ − z)u, u〉L2 | ≥
Im z

2
‖u‖2L2 .

Proof. Setting F := t d A(x)= d A(x), and V µ
θ (x) := V µ(x + iθ A(x)), we have

〈Pµθ u, u〉 =
〈(
(I + iθF(x))−1h Dx

)2u, u
〉
+〈V µ

θ u, u〉

= 〈(1+ iθF(x))−2h Dx u, h Dx u〉

+ ih
〈(
(t∇x)(I + iθF(x))−1)(I + iθF(x))−1h∇x u, u

〉
+〈V µ

θ u, u〉.

Therefore, using Lemma A.1 and the equality

|Im V µ(x)| = O(|Im x |〈Re x〉−ν−1),

valid for x complex, we find

Im〈Pµθ u, u〉 ≤ −θ‖
√

a(|x |)h Dx u‖2+Chθ
∫ (
|b′′| +

b′

|x |
+

b
|x |2

)
|h Dx u| · |u| dx +C0θ

∥∥∥∥
√

b
|x |(ν+1)/2 u

∥∥∥∥2

for some constants C,C0 > 0; moreover C0 is independent of the choice of R0.
Thus, using the properties of b listed after (5-1), we obtain (with some other constant C > 0)

Im〈Pµθ u, u〉 ≤ −θ‖
√

a(|x |)h Dx u‖2+Chθ
∫ (
|b′′| +

b
|x |
+ hn1

)
|h Dx u| · |u| dx

+C0 R−ν0 θ
∥∥√au

∥∥2
. (5-3)

On the other hand for z ∈ C, a similar computation gives

Re〈
√

a(Pµθ − z)u,
√

au〉

= −(Re z)‖
√

au‖2+Re
〈√

a
(
(I + iθF(x))−1h Dx

)2u,
√

au
〉
+Re〈

√
aV µ

θ u,
√

au〉

≤ −(Re z)‖
√

au‖2+ (1− 2θ)−2
‖
√

ah Dx u‖2

+Ch
∫ (
|b′′| +

b
|x |
+ hn1

)
|h Dx u| · |u| dx +C0 R−ν0

∥∥√au
∥∥2
,
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still with C , C0 positive constants, and C0 independent of the choice of R0. Therefore, if Re z≥λ0/2> 0
and R0 is chosen sufficiently large, then for θ small enough, we obtain

‖
√

au‖2 ≤ 4λ−1
0 ‖
√

ah Dx u‖2+ 4Cλ−1
0 h

∫ (
|b′′| +

b
|x |
+ hn1

)
|h Dx u| · |u| dx

+ 4λ−1
0 |〈
√

a(Pµθ − z)u,
√

au〉|. (5-4)

The insertion of this estimate into (5-3) gives

Im〈Pµθ u, u〉 ≤ −(1− 4C0λ
−1
0 R−ν0 )θ‖

√
ah Dx u‖2+C ′hθ

∫ (
|b′′| +

b
|x |
+ hn1

)
|h Dx u| · |u| dx

+C ′θ |〈
√

a(Pµθ − z)u,
√

au〉|, (5-5)

with C ′ > 0 a constant.
Now, for r ≥ 2n1 ln(1/h), by construction we have b′′(r)= 0, while, for r ≤ 2n1 ln(1/h), we have

|b′′(r)| = O(hn1 + b)= O(hn1 + (ln(1/h))a). (5-6)

Then we deduce from (5-5)

Im〈Pµθ u, u〉 ≤ −(1− 4C0λ
−1
0 R−ν0 )θ‖

√
ah Dx u‖2+C ′hθ ln(1/h)‖

√
ah Dx u‖ · ‖

√
au‖

+C ′hn1+1θ‖h Dx u‖ · ‖u‖+C ′θ |〈
√

a(Pµθ − z)u,
√

au〉|, (5-7)

with some other constant C ′ > 0. Using again (5-6), we also deduce from (5-4) that

‖
√

au‖2 = O
(
‖
√

ah Dx u‖2+ |〈
√

a(Pµθ − z)u,
√

au〉| + hn1+1
‖h Dx u‖ · ‖u‖

)
,

uniformly for h > 0 small enough, and thus, by (5-7),

Im〈Pµθ u, u〉 ≤ −
(
1− 4C0λ

−1
0 R−ν0 −Ch ln(1/h)

)
θ‖
√

ah Dx u‖2

+Chn1+1θ‖h Dx u‖ · ‖u‖+Cθ |〈
√

a(Pµθ − z)u,
√

au〉|. (5-8)

Finally, for Re z ≤ 2λ0, we use the (standard) ellipticity of the second-order partial differential operator
Re Pµθ , and the properties of V µ, to obtain

Re〈(Pµθ − z)u, u〉 ≥ 1
C ‖h Dx u‖2−C‖u‖2,

where C is again a new positive constant, independent of µ and θ . Combining with (5-8), and possibly
increasing the value of R0, this leads to

Im〈(Pµθ − z)u, u〉 ≤ (Chn1+1θ − Im z)‖u‖2

+Chn1+1θ |〈(Pµθ − z)u, u〉|1/2‖u‖+Cθ |〈(Pµθ − z)u, u〉|, (5-9)

and thus, for Im z ≥ hn1θ , and for h, θ > 0 small enough, we can deduce

|〈(Pµθ − z)u, u〉| ≥ 3 Im z
4
‖u‖2−Chn1+1θ |〈(Pµθ − z)u, u〉|1/2‖u‖. (5-10)
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Then the result easily follows by solving this second-order inequality where the unknown variable is
|〈(Pµθ − z)u, u〉|1/2, and by using again that Im z� hn1+1θ . �

6. Proof of Theorem 2.1

6.1. The invertible reference operator. The purpose of this section is to introduce an operator without
eigenvalues near λ0, obtained as a finite-rank perturbation of Pµθ , 0 < θ ≤ µ, and for which we have a
nice estimate for the resolvent in the lower half plane. This operator will be used in the next section to
construct a convenient Grushin problem.

Let χ0 ∈ C∞0 (R+; [0, 1]) be equal to 1 on [0, 1+ 2λ0+ sup |V |], and let C0 > sup |∇V |. We set

R = R(h) := 2n1 ln(1/h);

P̃µθ := Pµθ − iC0θχ0(h2 D2
x + R−2x2).

Observe that h2 D2
x+ R−2x2 is unitarily equivalent to h R−1(D2

x+ x2), so the rank of χ0(h2 D2
x + R−2x2)

is O(Rnh−n).
For m ∈R, we denote by S(〈ξ〉m) the set of functions a ∈C∞(R2n) such that for all α ∈N2n , one has

∂αx,ξa(x, ξ)= O(〈ξ〉m) uniformly.

We also denote

OpW
h (a)u(x)=

1
(2πh)n

∫∫
ei(x−y)ξ/ha

( x+y
2
, ξ
)

u(y) dy dξ, (6-1)

the semiclassical Weyl quantization of such a symbol a.
Denoting by p̃µθ ∈ S(〈ξ〉2) the Weyl symbol of P̃µθ , we see that

p̃µθ (x, ξ)=
(
( t d8θ (x))−1ξ

)2
+ V µ(8θ (x))− iC0θχ0(ξ

2
+ R−2x2)+O(hθ〈ξ〉), (6-2)

uniformly with respect to (x, ξ), µ, θ , and h, and where the estimate on the remainder is in the sense of
symbols (that is, one has the same estimate for all the derivatives). In particular, we have

Re p̃µθ (x, ξ)= ξ
2
+ V (x)+O(θ〈ξ〉2). (6-3)

Moreover,

• if |x | ≥ R and |ξ |2 ≥ λ0/2, then

Im p̃µθ (x, ξ)≤−
θ
C
〈ξ〉2+O(θR−ν)≤− θ

2C
〈ξ〉2; (6-4)

• if |x | ≤ R and |ξ |2 ≤ 2λ0+ sup |V |, then

Im p̃µθ ≤−C0θ + θ sup |∇V | +O(hθ)≤− θ
2C
, (6-5)

where C>0 is a constant, and the estimates are valid for h small enough. (For (6-5) we used the inequality
Im
(
( t d8θ (x))−1ξ

)2
≤ 0, due to the particular form of 8θ (x). See Lemma A.1 in the Appendix.)
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Proposition 6.1. There exists a constant C̃ ≥ 1 such that for all µ > 0, for all θ ∈ (0, µ], for all z
satisfying |Re z− λ0| + θ

−1
|Im z| ≤ 4/C̃ , and for all h ∈ (0, 1/C̃], one has

‖(z− P̃µθ )
−1
‖ ≤ C̃θ−1.

Proof. We take two functions ϕ1, ϕ2 ∈ C∞b (R
2n
; [0, 1]) (the space of smooth functions bounded with all

their derivatives), such that

• ϕ2
1 +ϕ

2
2 = 1 on R2n;

• suppϕ1 is included in a small enough neighborhood of {ξ 2
+ V (x)= λ0};

• ϕ1 = 1 near {ξ 2
+ V (x)= λ0}.

In particular, ϕ1 can be chosen in such a way that, on suppϕ1, one has either |x | ≥ R together with
|ξ |2 ≥ λ0/2, or |x | ≤ R together with |ξ |2 ≤ 2λ0+ sup |V |. Therefore, we deduce from (6-4)–(6-5)

1
θ

Im p̃µθ ≤−
1

2C
on suppϕ1,

and thus,

ϕ2
1

1
θ

Im p̃µθ +
1

2C
ϕ2

1 ≤ 0 on R2n. (6-6)

Moreover, it is easy to check that the function (x, ξ) 7→ θ−1 Im p̃µθ is a nice symbol in S(〈ξ〉2), uniformly
with respect to µ and θ , that is, for all α ∈ N2n , one has

∂αx,ξ (θ
−1 Im p̃µθ )(x, ξ)= O(〈ξ〉2) uniformly,

and we see from (6-2) that
θ−1 Im p̃µθ ≤ C R−ν +Ch〈ξ〉,

with some new uniform constant C > 0.
Then setting φ j :=OpW

h (ϕ j ), writing I = φ2
1u+φ2

2u+ hQ where Q is a uniformly bounded pseudo-
differential operator, and using the sharp Gårding inequality, we obtain

〈θ−1 Im P̃µθ u, u〉 = 〈φ1θ
−1 Im P̃µθ φ1u, u〉+ 〈θ−1 Im P̃µθ φ2u, φ2u〉+O(h‖u‖2H1)

≤ −
1

2C
‖φ1u‖2+C R−ν‖φ2u‖2+Ch‖〈h Dx 〉u‖2,

for all u ∈ H 2(Rn), and still for some new uniform constant C > 0. Hence,

|Im〈P̃µθ u, u〉| ≥ θ
2C
‖φ1u‖2−CθR−ν‖φ2u‖2−Chθ‖〈h Dx 〉u‖2. (6-7)

On the other hand since Re p̃µθ − λ0 ∈ S(〈ξ〉2) is uniformly elliptic on suppϕ2, the symbolic calculus
permits us to construct a ∈ S(〈ξ〉−2) (still depending on µ and θ , but with uniform estimates), such that

a ] ( p̃k,θ − λ0)= ϕ2 ] ϕ2+O(h∞) in S(1),

where ] stands for the Weyl composition of symbols. As a consequence, denoting by A the Weyl quan-
tization of a, we obtain

‖〈h Dx 〉φ2u‖2 =
〈
〈h Dx 〉

2 A(P̃µθ − λ0)u, u
〉
+O(h)‖u‖2,
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and thus

‖(P̃µθ − λ0)u‖ · ‖u‖ ≥
1
C
‖〈h Dx 〉φ2u‖2−Ch‖u‖2. (6-8)

Now, if z ∈C is such that |Re z−λ0| ≤ ε and |Im z| ≤ εθ (ε > 0 fixed), we deduce from (6-7)–(6-8) that

‖(P̃µθ − z)u‖ · ‖u‖ ≥ |Im〈(P̃µθ − z)u, u〉| ≥ θ
2C
‖φ1u‖2−CθR−ν‖φ2u‖2−Chθ‖〈h Dx 〉u‖2− εθ‖u‖2,

θ‖(P̃µθ − z)u‖ · ‖u‖ ≥ θ
C
‖〈h Dx 〉φ2u‖2−Chθ‖u‖2− 2εθ‖u‖2,

which yields

(1+ θ)‖(P̃µθ − z)u‖ · ‖u‖ ≥ θ
2C

(
‖φ1u‖2+‖〈h Dx 〉φ2u‖2

)
− θ(2Ch+C R−ν + 3ε)‖〈h Dx 〉u‖2. (6-9)

Moreover, since ξ remains bounded on suppϕ1, the norms ‖〈h Dx 〉u‖ and ‖φ1u‖ + ‖〈h Dx 〉φ2u‖ are
uniformly equivalent, and thus, for ε and h small enough, we deduce from (6-9) that

‖(P̃µθ − z)u‖ · ‖u‖ ≥ θ
4C
‖〈h Dx 〉u‖2,

and the result follows. �

6.2. The Grushin problem. In this section, we reduce the estimate on (Pµθ − z)−1 in Theorem 2.1, to
that of a finite matrix, by means of some convenient Grushin problem (see for example [Sjöstrand 1997]).

Denote by (e1, . . . , eM) an orthonormal basis of the range of the operator

K := C0χ0(h2 D2
x + R−2x2).

In particular, M = M(h) satisfies

M = O(Rnh−n). (6-10)

Let z ∈ C, and consider the two operators

R+ : L2(Rn) → CM

u 7→ (〈u, e j 〉)1≤ j≤M ,

R−(z) : CM
→ L2(Rn)

u− 7→
∑M

j=1 u−j (P̃
µ
θ − z)e j .

Then the Grushin operator

G(z) :=
(

Pµθ − z R−(z)
R+ 0

)
is well defined from H 2(Rn)×CM to L2(Rn)×CM , and for z as in Proposition 6.1, it is easy to show
that G(z) is invertible, and its inverse is given by

G(z)−1
:=

(
E(z) E+(z)

E−(z) E−+(z)

)
,
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where

E(z)= (1− TM)(P̃
µ
θ − z)−1, with TMv :=

M∑
j=1

〈v, e j 〉e j (v ∈ L2),

E+(z)v+ =
M∑

j=1

v+j
(
e j + iθ(1− TM)(P̃

µ
θ − z)−1K e j

)
, (v+ = (v

+

j )1≤ j≤M ∈ CM),

E−(z)v =
(
〈(P̃µθ − z)−1v, e j 〉

)
1≤ j≤M ,

E−+(z)v+ =−v++ iθ
( M∑
`=1

v+` 〈(P̃
µ
θ − z)−1K e`, e j 〉

)
1≤ j≤M

.

Proposition 6.1 gives

‖E(z)‖+‖E−(z)‖ = O(θ−1), (6-11)

‖E+(z)‖+‖E−+(z)‖ = O(1), (6-12)

uniformly for µ > 0, θ ∈ (0, µ], h > 0 small enough, and |Re z− λ0| + θ
−1
|Im z| small enough.

Hence, using the algebraic identity

(Pµθ − z)−1
= E(z)− E+(z)E−+(z)−1 E−(z), (6-13)

we finally obtain:

Proposition 6.2. If z ∈ C is such that |Re z− λ0| ≤ C̃−1 and |Im z| ≤ 2C̃−1θ , and E−+(z) is invertible,
then so is Pµθ − z, and one has

‖(Pµθ − z)−1
‖ = O

(
θ−1(1+‖E−+(z)−1

‖)
)
,

uniformly with respect to µ > 0, θ ∈ (0, µ], h > 0 small enough, and z such that |Re z− λ0| ≤ C̃−1 and
|Im z| ≤ C̃−1θ .

Therefore, we have reduced the study of (Pµθ − z)−1 to that of the M ×M matrix E−+(z)−1.

6.3. Using the Maximum Principle. For z ∈ J + i[−θ/C̃, 2θ/C̃], we define

D(z) := det E−+(z).

Then z 7→ D(z) is holomorphic in J + i[−θ/C̃, 2θ/C̃]. Setting N := # (σ (Pµθ )∩ (J + i[−θ/C̃, 2θ/C̃])
and using (6-13), we see that D(z) can be written as

D(z)= G(z)
N∏
`=1

(z− ρ`),

with G holomorphic in J + i[−θ/C̃, 2θ/C̃], G(z) 6= 0 for all z ∈ J − i[0, C̃−1θ ].
Moreover, using (6-12) and (6-10), we obtain that for some uniform constant C1 > 0,

|D(z)| =
∏

λ∈σ(E−+(z))

|λ| ≤ ‖E−+(z)‖M
≤ C1eC1 Rnh−n

. (6-14)
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Lemma 6.3. For every θ ∈ [0, µ], there exists rθ ∈ [θ/(2C̃), θ/C̃], such that for all z ∈ J − irθ , and for
all `= 1, . . . , N , one has

|z− ρ`| ≥
θ

8C̃ N
.

Proof. By contradiction, if it was not the case, then for all t in [−θ/2C̃,−θ/C̃], there should exist `
such that

|t − Im ρ`|<
θ

8C̃ N
.

Therefore, the interval [−θ/2C̃,−θ/C̃]would be included in
⋃N
`=1[Im ρ`−θ/(8C̃ N ), Im ρ`+θ/(8C̃ N )],

which is impossible because of their respective sizes. �

From now on, we assume P(µ̃, µ; I, J ) and setting

Wθ (J ) := J + i[−rθ , 2θ/C̃],

we deduce from Lemma 6.3 that, for θ ∈ (0, µ̃], z on the boundary of Wθ (J ), and for all `= 1, . . . , N ,

|z− ρ`| ≥
1

C2
θ,

for some constant C2 > 0. As a consequence, using (6-14), on this set we obtain

|G(z)| ≤ θ−C3eC3 Rnh−n
,

with some other uniform constant C3> 0. Then the maximum principle tells us that this estimate remains
valid in the interior of Wθ (J ):

Proposition 6.4. There exists a constant C3 > 0 such that for all µ̃, µ, I and J satisfying (2-6)–(2-7)
such that P(µ̃, µ; I, J ) holds, one has

|G(z)| ≤ θ−C3eC3 Rnh−n
,

for all θ ∈ (0, µ̃], z ∈Wθ (J ), and h ∈ (0, 1/C3].

6.4. Using the Harnack Inequality. Since G(z) 6= 0 on Wθ (J ), we can consider the function

H(z) := C3 Rnh−n
−C3 ln θ − ln |G(z)|.

Then H is harmonic in Wθ (J ), and by Proposition 6.4, it is also nonnegative. Using the algebraic formula

E−+(z)−1
=−R+(P

µ
θ − z)−1 R−(z)

and the fact that (Pµθ − z)−1 R−(z)u− =
∑M

j=1 u j (I − iθ(Pµθ − z)−1K )e j , we deduce from Proposition
5.2 that, for z ∈ [λ0/2, 2λ0] + i[θhn1, 1], one has

‖E−+(z)−1
‖ ≤ 1+ 2C0h−n1 .

As a consequence, for such values of z, we obtain

1
D(z)

= det E−+(z)−1
≤ (1+ 2C0h−n1)M ,
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and thus

|G(z)| = |D(z)|
N∏
`=1

|z− ρ`|−1
≥

1
C4

hn1 M ,

with some uniform constant C4 > 0. In particular, for any λ ∈R such that λ+ iθhn1 ∈Wθ (J ), this gives

H(λ+ iθhn1)≤ C3 Rnh−n
−C3 ln θ + ln C4− n1 M ln h. (6-15)

Now, the Harnack inequality tells us that, for any λ, r , such that

dist(λ,R \ J )≥ C̃−1θ, r ∈ [0, C̃−1θ)

and for any α ∈ R, one has

H(λ+ ihn1θ + reiα)≤
C̃−2θ2

(C̃−1θ − r)2
H(λ+ ihn1θ).

In particular, setting

W̃θ (J ) :=
{
z ∈ C ; dist(Re z,R \ J )≥ C̃−1θ , |Im z| ≤ (2C̃)−1θ

}
and using (6-15), we find

H(z)≤ 5C3 Rnh−n
− 5C3 ln θ + 5 ln C4− 5n1 M ln h,

for all z ∈ W̃θ (J ), that is,

ln |G(z)| ≥ −4C3 Rnh−n
+ 4C3 ln θ − 5 ln C4+ 5n1 M ln h,

or, equivalently,
|G(z)| ≥ C−5

4 θ4C3h5n1 M e−4C3 Rnh−n
. (6-16)

Finally, writing E−+(z)−1
= D(z)−1 Ẽ−+(z), where Ẽ−+(z) stands for the transposed of the comatrix

of E−+(z), we see that

‖E−+(z)−1
‖ ≤ eC M

|G(z)|−1
N∏
`=1

|z− ρ`|−1,

and therefore we deduce from (6-16) and (6-10) that

‖E−+(z)−1
‖ ≤ θ−C h−C Rnh−n

N∏
`=1

|z− ρ`|−1,

with some new uniform constant C ≥ 1. Thus, using Proposition 6.2, and the fact that R = O(|ln h|), we
have proved:

Proposition 6.5. There exists a constant Č > 0 such that for all µ̃, µ, I and J satisfying (2-6)–(2-7)
such that P(µ̃, µ; I, J ) holds, one has

‖(Pµθ − z)−1
‖ ≤ θ−Č h−Č |ln h|nh−n

N∏
`=1

|z− ρ`|−1,

for all θ ∈ (0, µ̃], z ∈ W̃θ (J ), and h ∈ (0, 1/Č].
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6.5. Using the 3-lines theorem. Now, following an idea of [Tang and Zworski 1998], we define

9(z) :=
∫ b

a
e−(z−λ)

2/θ2
dλ,

where
[a, b] :=

{
λ ∈ R ; dist(λ,R \ J )≥ C̃−1θ + Č1/2ωh(θ)

}
.

We have the following:

• If Im z = 2θhn1 , then
|9(z)| ≤ (b− a)e4h2n1

= O(hδ)≤ 1.

• If Im z =−θ/(2C̃), then

|9(z)| ≤ (b− a)e1/4C̃2
= O(hδ)≤ 1.

• If Re z ∈
{
a− Č1/2ωh(θ), b+ Č1/2ωh(θ)

}
and Im z ∈ [−θ/(2C̃), 2θhn1], then

|9(z)| ≤ (b− a)e1/4C̃2
e−Čωh(θ)

2/θ2
= O(hδ)θ Č hČ |ln h|nh−n

≤ θ Č hČ |ln h|nh−n
.

Then for z ∈ W̃θ (J ), we consider the operator-valued function

Q(z) :=9(z)
N∏
`=1

(z− ρ`)(P
µ
θ − z)−1

that is holomorphic on W̃θ (J ) (this can be seen, for example, from (6-13)). Using, Proposition 5.2,
Proposition 6.5, and the previous properties of 9(z), we see that Q(z) satisfies:

• If Im z = 2θhn1 , then
‖Q(z)‖ ≤ θ−1h−n1 .

• If Im z =−θ/(2C̃), then

‖Q(z)‖ ≤ θ−Č h−Č |ln h|nh−n
.

• If Re z ∈ {a− Č1/2ωh(θ), b+ Č1/2ωh(θ)} and Im z ∈ [−θ/(2C̃), 2θhn1], then

‖Q(z)‖ ≤ 1.

Therefore, setting

W̌θ (J ) := [a− Č1/2ωh(θ), b+ Č1/2ωh(θ)] + i[−θ/(2C̃), 2θhn1],

(that is included in W̃θ (J )), we see that the subharmonic function z 7→ ln ‖Q(z)‖ satisfies

ln ‖Q(z)‖ ≤ ψ(z) on ∂W̌θ (J ),

where ψ is the harmonic function defined by

ψ(z) :=
2θhn1 − Im z

2θhn1 + θ/(2C̃)
Č
(
|ln h|n+1h−n

+ |ln θ |
)
+

Im z+ θ/(2C̃)
2θhn1 + θ/(2C̃)

|ln(θhn1)|.
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As a consequence, by the properties of subharmonic functions, we deduce that ln ‖Q(z)‖ ≤ψ(z) every-
where in W̌θ (J ), and in particular, for |Im z| ≤ 2θhn1 , we obtain

ln ‖Q(z)‖ ≤ 8C̃Čhn1
(
|ln h|n+1h−n

+ |ln θ |
)
+ |ln(θhn1)|

Hence, since n1 > n, we have proved the existence of some uniform constant C ≥ 1, such that

ln ‖Q(z)‖ ≤ ln C +C |ln(θhn1)| for z ∈ W̌θ (J ) and h ∈ (0, 1/C].

Coming back to Pµθ , this means that, for z ∈ W̌θ (J ) different from ρ1, . . . , ρN , we have

|9(z)| ‖(Pµθ − z)−1
‖ ≤ C(θhn1)−C

N∏
`=1

|z− ρ`|−1.

On the other hand if dist(Re z,R\ J )≥ 2Č1/2ωh(θ), and |Im z| ≤ 2θhn1 , then writing z= s+ i t , we have

9(z)= θet2/θ2
∫ (b−s)/θ

(a−s)/θ
e−u2

+2i(t/θ)u du.

Now, |t/θ | ≤ 2hn1 → 0 uniformly, and we see that

(a− s)/θ ≤ C̃−1
− Č1/2ωh(θ)/θ ≤ C̃−1

− (h−n
|ln h|)1/2→−∞ uniformly.

In the same way, we have (b− s)/θ→+∞ uniformly as h→ 0+. Therefore, we easily conclude that

|9(z)| ≥ θ
C
,

when h ∈ (0, 1/C], with some new uniform constant C > 0.
As a consequence, using also that θ ≤ hδ, we finally obtain:

Proposition 6.6. There exists a constant C0 ≥ 1, such that for all µ̃, µ, I and J satisfying (2-6)–(2-7),
the property P(µ̃, mu; I, J ) implies

‖(Pµθ − z)−1
‖ ≤ C0θ

−C0

N∏
`=1

|z− ρ`|−1, (6-17)

for all z ∈ J ′+ i[−2θhn1, 2θhn1], and for all h ∈ (0, 1/C0], where

J ′ =
{
λ ∈ R ; dist(λ,R \ J )≥ C0ωh(θ)

}
.

Since J ′ = J +O(ωh(θ)), Theorem 2.1 is proved.

7. Proof of Theorem 2.2

Suppose P(µ̃, µ; I, J ) holds, and µ̃ ≥ µN0 for some constant N0 ≥ 1. Then for any θ ∈ [µN0, µ̃], any
constant N1 ≥ 1, and any µ′ ∈ [max(θ, µN1), µ1/N1], we can write

z− Pµ
′

θ = (z− Pµθ )(1+ (z− Pµθ )
−1W ), (7-1)
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with

W := Pµθ − Pµ
′

θ = V µ(x + i Aθ (x))− V µ′(x + i Aθ (x))= O(µ∞〈x〉−ν), (7-2)

uniformly (see Section 4). Moreover, taking J ′ as in Proposition 6.6, we have:

Lemma 7.1. Let N ≥ 1 be a constant, such that N ≥ #0(µ̃, µ, J ) for all h small enough. Then for any
θ ∈ [µN0, µ̃], there exists τ ∈ [θhn1, 2θhn1], such that

dist
(
∂(J ′+ i[−τ, τ ]), 0(µ̃, µ, J )

)
≥
θhn1

4N
. (7-3)

Here, ∂(J ′+ i[−τ, τ ]) stands for the boundary of J ′+ i[−τ, τ ].

Proof. If it were not the case, using P(µ̃, µ; I, J ), we see that, for all t ∈ [−2θhn1,−θhn1], there should
exist ρ ∈ 0(µ̃, µ, J ), such that

|t − Im ρ| ≤
θhn1

4N
.

That is, we would have

[−2θhn1,−θhn1] ⊂

⋃
ρ∈0(µ̃,µ,J )

[
ρ−

θhn1

4N
, ρ+

θhn1

4N

]
,

which, again, is not possible because of the respective size of these two sets. �

Remark 7.2. With a similar proof, we see that the result of Lemma 7.1 remains valid if one replaces the
interval [θhn1, 2θhn1] by [θhn1, θhn1 + (θhn1)M

], and one substitutes (θhn1)M to θhn1 in (7-3), where
M ≥ 1 is any arbitrary fixed number.

Using Lemma 7.1 and Theorem 2.1, we see that, for any z ∈ ∂(J ′+ i[−τ, τ ]), we have

‖(Pµθ − z)−1
‖ ≤ C1θ

−C1 ≤ C1µ
−C1 N0,

with some new uniform constant C1, and thus, by (7-1) and (7-2), z − Pµ
′

θ is invertible, too, for z ∈
∂(J ′+ i[−τ, τ ]), and the two spectral projectors

5 :=
1

2iπ

∮
∂(J ′+i[−τ,τ ])

(z− Pµθ )
−1 dz, 5′ :=

1
2iπ

∮
∂(J ′+i[−τ,τ ])

(z− Pµ
′

θ )
−1 dz, (7-4)

are well-defined and satisfy

‖5−5′‖ = O(µ∞). (7-5)

In particular, 5 and 5′ have the same rank (≤ N ), and one has

‖Pµθ 5− Pµ
′

θ 5
′
‖ = O(µ∞). (7-6)

Therefore, the two sets σ(Pµ
′

θ ) ∩ (J
′
+ i[−τ, τ ]) and σ(Pµθ ) ∩ (J

′
+ i[−τ, τ ]) coincide up to O(µ∞)

uniformly by standard finite dimensional arguments, and Theorem 2.2 follows.
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8. Proof of Theorem 2.5

Now, for any integer k ≥ 0, we set

µk := hkn1µ̃.

Since P(µ̃, µ; I, J ) holds, we can apply Theorem 2.2 with µ′ ∈ [µ1, µ0], and deduce the existence
of J1 ⊂ J , with J1 = J + O(ωh(µ0)) and I1 ⊃ I with I1 = I + O(µ∞0 ), independent of µ′, such that
P(hn1µ′, µ′; I1, J1) holds. In particular, P(µ1, µ0; I1, J1) holds, and we can apply Theorem 2.2 again,
this time with µ′ ∈ [µ2, µ1]. Iterating the procedure, we see that, for any k ≥ 0, there exists

Ik+1 = Ik +O(µ∞k ), Jk+1 = Jk +O(ωh(µk)),

hence,

Ik+1 = I +O(µ∞0 + · · ·+µ
∞

k ), Jk+1 = J +O(ωh(µ0)+ · · ·+ωh(µk)),

where the O’s are also uniform with respect to k, such that P(hn1µ′, µ′; Ik+1, Jk+1) holds for all µ′ ∈
[µk+1, µk].

Since the two series
∑

k ωh(µk)= O(ωh(µ̃)) and
∑

k µ
M
k = O(µM) (M ≥ 1 arbitrary) are convergent,

one can find I ′ = I +O(µ∞) and J ′ = J +O(ωh(µ̃)), such that

I ′ ⊃
⋃
k≥0

Ik, J ′ ⊂
⋂
k≥0

Jk .

Then by construction, P(hn1µ′, µ′; I ′, J ′) holds for all µ′ ∈ (0, µ̃], and Theorem 2.5 is proved.

9. Proof of Theorem 2.6: the set of resonances

From the proof of Theorem 2.5 (and with the same notation) we learn that, for all k ≥ 0, property
P(µk+1, µk; Ik+1, Jk+1) holds. Therefore, applying Theorem 2.2 with θ = µ′ = µk+1, we see that there
exist τk+2 ∈ [µk+2, 2µk+2], J ′k+1 = Jk+1+O(ωh(µk+1)), and a bijection

bk : 0(Pµk )∩ (J ′k+1− i[0, τk+2])→ 0(Pµk+1)∩ (J ′k+1− i[0, τk+2])

such that

bk(λ)− λ= O(µ∞k ) uniformly. (9-1)

In addition, we deduce from Lemma 7.1 that the τk can be chosen in such a way that

dist
(
∂(J ′k+1+ i[−τk+2, τk+2]

)
, 0(Pµk ))≥

µC
k

C
, (9-2)

for some constant C > 0. We set

3k := 0(Pµk )∩ (J ′k+1− i[0, τk+2]),

where the elements are repeated according to their multiplicity (see Figure 2).
Starting from an arbitrary element λ j of 30 (1≤ j ≤ N := #30 = O(1)), we distinguish two cases.

Case A. For all k ≥ 0, bk ◦ bk−1 ◦ · · · ◦ b0(λ j ) ∈3k+1.
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...

Re z

3k \
⋃
j≥1

3k+ j

3k+1 \
⋃
j≥1

3k+1+ j

3k+2 \
⋃
j≥1

3k+2+ j

Figure 2. Construction of the set of resonances.

In that case, we can consider the sequence defined by

λ j,k := bk ◦ bk−1 ◦ · · · ◦ b0(λ j ), k ≥ 0.

Using (9-1), we see that, for any k > `≥ 0, we have

|λ j,k − λ j,`| ≤

k−1∑
m=`

|λ j,m+1− λ j,m | ≤ C1

k−1∑
m=`

µm+1 ≤ C1µ0
hn1`

1− hn1
,

so that (λ j,k)k≥1 is a Cauchy sequence, and we set

ρ j := lim
k→+∞

λ j,k .

Notice that according to this definition, we have a natural notion of multiplicity of a resonance ρ, namely
the number of sequences ρ j converging to ρ.

Case B. There exists k j ≥0 such that bk−1◦· · ·◦b0(λ j )∈3k for all k≤k j , while bk j ◦· · ·◦b0(λ j ) /∈3k j+1.

(Here, and in the sequel, we use the convention of notation: b−1 ◦ b0 := Id.) We set

ρ j := bk j ◦ · · · ◦ b0(λ j ).

In particular, since, by construction, Re ρ j ∈ Ik j+2 ⊂ Jk j+1, and ρ j /∈ 3k j+1, we see that, necessarily,
Im ρ j ∈ [−τk j+2,−τk j+3).

Moreover, if in Case A, we set k j := +∞, then for any j = 1, . . . , #30 and k ≥ 0, in both cases we
have the equivalence

|Im ρ j | ≤ τk+2 ⇐⇒ k ≤ k j . (9-3)

Now, if µ′ ∈ (0, µ̃], then µ′ ∈ (µk+1, µk] for some k ≥ 0, and Theorem 2.2 tells us that the intersection
0(Pµ

′

)∩ (J ′k+1− i[0, τk+2]) coincides with 3k up to O(µ∞k ) (= O((µ′)∞)). Therefore, setting

3 := {ρ1, . . . , ρN },
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the first part of Theorem 2.6 will be proved if we can show the existence, for any k ≥ 0, of a bijection

b̃k :3∩ (J ′k+1− i[0, τk+2])→3k,

such that b̃k(ρ)−ρ = O(µ∞k ) uniformly. (Actually, we do not necessarily have τk+2 ∈ [h2n1µ′, 2h2n1µ′],
but rather, τk+2 ∈ [h2n1µ′, 2hn1µ′). However, if τk+2 ≥ 2h2n1µ′, an argument similar to that of Lemma
6.3 or Lemma 7.1 gives the result stated in Theorem 2.6.)

By construction, we have

3k = {bk−1 ◦ · · · ◦ b0(λ j ) ; j = 1, . . . , N such that k j ≥ k}.

while, by (9-3),

3∩ (J ′k+1− i[0, τk+2])= {ρ j ; j = 1, . . . , N such that k j ≥ k}.

Then for all j satisfying k j ≥ k, we set

b̃k(ρ j ) := bk−1 ◦ · · · ◦ b0(λ j ),

so that b̃k defines a bijection between 3 ∩ (J ′k+1 − i[0, τk+2]) and 3k . Moreover, in Case A, for any
M ≥ 1, we have

|b̃k(ρ j )− ρ j | = lim
`→+∞

|b` ◦ · · · ◦ bk(b̃k(λ j ))− b̃k(λ j )| ≤

+∞∑
m=k

CMµ
M
m =

CMµ
M
k

1− hn1
,

while, in Case B, we obtain

|b̃k(ρ j )− ρ j | = |bk j ◦ · · · ◦ bk(b̃k(λ j ))− b̃k(λ j )| ≤
∑

k≤m≤k j

CMµ
M
m ≤

CMµ
M
k

1− hn1
,

(with the usual convention
∑

m∈∅ := 0). Therefore, in both cases, for h > 0 small enough, we find

|b̃k(ρ j )− ρ j | ≤ 2CMµ
M
k ,

and this gives the first part of Theorem 2.6.
For the second part of Theorem 2.6, let 3̃ be another set satisfying (?). In particular, for any k≥0, there

exist τk+2, τ̃k+2 ∈ [µk+2, 2µk+2], such that 3̃∩ (J ′k+1− i[0, τ̃k+2]) (respectively 3∩ (J ′k+1− i[0, τk+2]))
coincides with 3̃k := 0(Pµk )∩ (J ′k+1− i[0, τ̃k+2]), (respectively 3k), up to O(µ∞k ).

Therefore, taking k = 0 and using again an argument similar to that of Lemma 6.3 or Lemma 7.1 that
gives the existence of τ ′ ∈ [ 12µ2, µ2] and C > 0 constant such that

dist
(
∂(J ′1+ i[−τ ′, τ ′]), 0(Pµ0)

)
≥
µC

0
C
, (9-4)

we obtain that the two sets 3∩ (J ′1 − i[0, τ ′]) and 3̃∩ (J ′1 − i[0, τ ′]) coincide up to O(µ∞0 ), and thus
have same cardinality. For k ≥ 0, we denote by

Bk :3k → 3∩ (J ′k+1− i[0, τk+2]),

B̃k : 3̃k → 3̃∩ (J ′k+1− i[0, τ̃k+2])
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the corresponding bijections. Then, thanks to (9-4), we can consider the bijection

ϕ0 = B̃0 ◦ B−1
0 |3∩(J ′1−i[0,τ ′]) :3∩ (J

′

1− i[0, τ ′])→ 3̃∩ (J ′1− i[0, τ ′]).

Using (9-2) and the fact that B̃k differ from the identity by O(µ∞k ), we see that, for k ≥ 1,

dist
(
∂(J ′k+1+ i[−τk+2, τk+2]), 3̃

)
≥
µC

k

C
, (9-5)

for some other constant C > 0.
Then setting

E0 :=3∩ {−τ
′
≤ Im z <−τ3},

and for k ≥ 1,
Ek :=3∩ {−τk+2 ≤ Im z <−τk+3},

we see that, for all k ≥ 1, the map

B̃k ◦ B−1
k |Ek : Ek→ 3̃∩ {−τk+2 ≤ Im z <−τk+3} (9-6)

is a bijection.
Finally, for ρ ∈3∩ (J ′1− i[0, τ ′]), we define

• B(ρ)= B̃k ◦ B−1
k (ρ), if ρ ∈ Ek for some k ≥ 0;

• B(ρ)= ρ, if ρ ∈ R.

We first show:

Lemma 9.1. 3∩R= 3̃∩R.

Proof. We only show that any ρ in 3∩R is also in 3̃, the proof of the other inclusion being similar. For
such a ρ, B−1

k (ρ) ∈3k is well defined for all k ≥ 1, and since B−1
k differs from the identity by O(µ∞k ),

we obtain
αk := B−1

k (ρ)→ ρ as k→+∞.

On the other hand since 3k+1 ⊂ 3̃k = B̃−1
k (3̃), there exists some ρ̃k ∈ 3̃ such that αk+1 = B̃−1

k (ρ̃k). By
taking a subsequence, we can assume that ρ̃k admits a limit ρ̃ ∈ 3̃ as k→+∞. Then using that B̃−1

k
differs from the identity by O(µ∞k ), we also obtain

αk+1→ ρ̃ as k→+∞.

Therefore, we deduce that ρ = ρ̃ ∈ 3̃ and the lemma is proved. �

Using Lemma 9.1, we see that the map B is well defined from3∩(J ′1−i[0, τ ′]) to 3̃∩(J ′1−i[0, τ ′]).
Moreover, if ρ ∈ Ek for some k ≥ 0, we have

|B(ρ)− ρ| = |B̃k ◦ B−1
k (ρ)− ρ| = O(µ∞k ),

and since τk+3 ≤ |Im ρ| ≤ τk+2 = O(h2n1), we also have

µk ≤ h−3n1τk+3 ≤ h−3n1 |Im ρ| ≤ C |Im ρ|1/C ,
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where C > 0 is a large enough constant. Thus, we always have

|B(ρ)− ρ| = O(|Im ρ|∞).

Therefore, it just remains to see that B is a bijection, but this is an obvious consequence of (9-6), Lemma
9.1, and the definition of B. Thus Theorem 2.6 is proved.

10. Shape resonances

Here we prove Theorem 3.1. Under the assumptions of Section 3, one can construct, as in [Gérard and
Martinez 1988], a function G1 ∈C∞(R2n), supported near p−1([λ0−2ε, λ0+2ε])\{x0} for some ε > 0,
such that

G1(x, ξ)= x · ξ for x large enough and |p(x, ξ)− λ0| ≤ ε, (10-1)

HpG1(x, ξ)≥ ε for x ∈ Rn
\Ö and |p(x, ξ)− λ0| ≤ ε. (10-2)

We also set
P̃ := P +W,

where W =W (x)∈C∞(Rn) is a nonnegative function, supported in a small enough neighborhood of x0,
and such that W (x0) > 0. In particular, denoting by p̃(x, ξ) = ξ 2

+ V (x)+W (x) the principal symbol
of P̃ , we have p̃−1(λ0)⊂ (R

n
\Ö)×Rn , and thus λ0 is a nontrapping energy for P̃ .

Now, we take µ and µ̃ such that

µ≤ hδ, µ̃≤min(µ, h2+δ)

with δ > 0 arbitrary (so that µ, µ̃ satisfy (2-6)), and we denote by V µ a |x |-analytic (µ, ν̃)-approximation
of V as before. We also set

Pµ =−h21+ V µ, P̃µ = Pµ+W,

and if in (2-5) we take A supported away from supp W , we see that the distorted operators Pµθ and P̃µθ
are well defined for 0< θ ≤ µ̃. Then we set

G(x, ξ) := G1(x, ξ)− A(x) · ξ,

that, by (10-1), is in C∞0 (R
n
;R), and we consider its semiclassical Weyl-quantization GW

= OpW
h (G)

(see (6-1)).
Since θ/h2

≤ µ̃/h2
≤ hδ, a straightforward computation shows that the operator

Rµθ :=
1
θ

Im
(
eθGW /h P̃µθ e−θGW /h)

is a semiclassical pseudodifferential operator, with symbol rµθ satisfying

∂αrµθ = O(〈ξ〉2) for all α ∈ N2n,

rµθ (x, ξ)=−H p̃µ̃(A(x) · ξ +G)+O(hδ)=−HpG1(x, ξ)+O(hδ),

uniformly with respect to θ ∈ (0, µ̃] and h > 0 small enough. As a consequence, using (10-2), we see
that Rµθ is elliptic in a neighborhood of {p(x, ξ)+W (x)= λ0} (uniformly with respect to θ and µ). Then
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by arguments similar to those of Section 6.1, we deduce that the operator

Qµ
θ := eθGW /h P̃µθ e−θGW /h

satisfies
‖(Qµ

θ − z)−1
‖ = O(θ−1),

uniformly for |Re z − λ0| + θ
−1
|Im z| small enough, θ ∈ (0, µ̃], and h > 0 small enough. Since

‖θGW/h‖→ 0 uniformly as h→ 0, this also gives

‖(P̃µθ − z)−1
‖ = O(θ−1),

and from this point, one can follow all the procedure used in [Helffer and Sjöstrand 1986, Sections 9
and 10]. In particular, using the same notation as in that paper, by Agmon-type inequalities we see that
the distribution kernel K(P̃µθ −z)−1 of (P̃µθ − z)−1 satisfies

K(P̃µθ −z)−1(x, y)= Õ(θ−1e−d(x,y)/h)

where d(x, y) is the Agmon distance between x and y (see [Helffer and Sjöstrand 1986, Lemma 9.4]).
Then, assuming θ = µ̃≥ e−η/h for some η > 0 constant small enough and performing a suitable Grushin
problem as in [Helffer and Sjöstrand 1986], we deduce that the resonances of Pµ in [λ0, λ0 + Ch] −
i[0, λ0 min(µ, h2+δ)] (C > 0 an arbitrary constant) are close to the eigenvalues of the Dirichlet realiza-
tion of P on {d(x,Rn

\Ö) ≥ η/3)}, up to O(e−2(S0−η)/h). Since these eigenvalues are real and admit
semiclassical asymptotic expansions of the form

λk ∼ λ0+ ekh+
∑
`≥1

λk,`h1+`/2

(where the ek’s are as in Theorem 3.1), we obtain for the corresponding resonances ρk of Pµ

Re ρk ∼ λ0+ ekh+
∑
`≥1

λk,`h1+`/2, Im ρk = O(e−2(S0−η)/h), (10-3)

uniformly. In particular, taking µ and µ̃ as in Theorem 3.1, the result easily follows. Moreover, since
the previous discussion can be applied to any µ′ ∈ [e−η/h, hδ], application of Theorem 2.6 tells us that
the resonances of P in

[λ0, λ0+Ch] − i[0, 1
2 h2n+max(n/2,1)+1+3δ

]

satisfy the same estimates (10-3).

Appendix

Proof of Lemma 5.1. We denote by χ0 a real smooth function on R satisfying

• χ0(s)= 0 for s ≤ 0;

• χ0(s)= 1 for s ≥ ln 2;

• χ0 is nondecreasing.
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Then for r ≥ 0, we set

G(r) := χ0(r − R0)
(
1−χ0(r − ln λ)

)
er
+ 2λχ0(r − ln λ), g(r) :=

∫ r

0
G(s) ds.

In particular, g satisfies Condition (i) of Lemma 5.1, and we have

• G(r)= χ0(r − R0)er for r ∈ [R0, ln λ];

• G(r)= (1−χ0(r − ln λ))er
+ 2λχ0(r − ln λ) for r ∈ [ln λ, ln 2λ];

• G(r)= 2λ for r ∈ [ln 2λ,+∞).

Thus, g′ = G ≤ 2λ and g′′(r)= G ′(r)≥ 0 on R+ (this is immediate on [R0, ln λ] ∪ [ln 2λ,+∞), while,
on [ln λ, ln 2λ], we compute, G ′(r)= (1−χ0(r − ln λ))er

+χ ′0(r − ln λ)(2λ− er )≥ 0).
Therefore, g is convex on R+, so that Condition (iii) of Lemma 5.1 is satisfied by g, too, while

Condition (v) is obvious.
As for condition (iv), we observe the following:

• On [0, R0+ ln 2], one has g′+ |g′′| = O(1).

• On [R0+ln 2, ln λ], one has g(r)≥
∫ r

R0+ln 2 esds= er
−2eR0 , while g′(r)= g′′(r)= er

≤ g(r)+2eR0 .

• On [ln λ,+∞), one has g(r)≥ g(ln λ)= λ, and thus g′+ |g′′| = O(g).

So, g satisfies Conditions (ii)–(v) of Lemma 5.1.
For r ∈ [ln 2λ,+∞), we have

g(r)= g(ln 2λ)+ 2λ(r − ln 2λ)= 2λr −αλ, (A-1)

where αλ := 2λ ln 2λ− g(ln 2λ), and since

g(ln 2λ)≤
∫ ln λ

0
er dr +

∫ ln 2λ

ln λ
2λ dr = (1+ 2 ln 2)λ,

g(ln 2λ)≥
∫ ln 2λ

R0+ln 2
er dr ≥ 2λ− 2eR0 .

we see that
2λ ln 2λ− (1+ 2 ln 2)λ≤ αλ ≤ 2λ ln 2λ− 2λ+ 2eR0 .

Therefore, for λ large enough, the unique point rλ, solution of g(rλ)= λrλ, is given by

rλ =
αλ
λ
∈ [2 ln λ− 1, 2 ln λ− 2+ 2 ln 2+ 2λ−1eR0] ⊂ [2 ln λ− 1, 2 ln λ− ε0], (A-2)

where ε0 := 1− ln 2> 0.
Now, we fix some real-valued function ϕ0 ∈ C∞(R), such that

• ϕ0(s)= 2s for s ≤−ε0;

• ϕ0(s)= s for s ≥ ε0;

• 1≤ ϕ′0 ≤ 2 everywhere.
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Then using (A-1)–(A-2), we see that the function fλ defined by

• fλ(r) := g(r) for r ∈ [0, ln 2λ];

• fλ(r) := λϕ0(r − rλ)+αλ for r ≥ ln 2λ,

is smooth on R+, and satisfies all the conditions required in Lemma 5.1. �

The distorted Laplacian.

Lemma A.1. If θ > 0 is small enough, the function 8θ defined in (5-2) satisfies

Im
(
( t d8θ (x))−1ξ

)2
≤−θa(|x |)|ξ |2.

for all (x, ξ) ∈ R2n .

Proof. Let F := t d A = d A = (Fi, j )1≤i, j≤n . We compute

Fi, j (x)= a(x)δi, j + a′(|x |)
xi x j

|x |
,

that is, denoting by πx := |x |−2x · t x the orthogonal projection onto Rx , and recalling the notation
b(r)= ra(r),

F(x)= a(|x |)I + a′(|x |)|x |πx = b′(|x |)πx + a(|x |)(I −πx).

In particular, using Lemma 5.1, we obtain

0≤ a(|x |)≤ F(x)≤ 2,

in the sense of self-adjoint matrices. On the other hand we have

(t d8θ (x))2 = (I + iθF(x))2 = Sθ + iTθ ,

with Sθ = I − θ2 F(x)2 and Tθ = 2θF(x). Hence, Tθ ≥ 0, and since Sθ , Tθ and F commute, an easy
computation gives

Im
(
( t d8θ (x))−1ξ

)2
=−Tθ (S2

θ + T 2
θ )
−1ξ · ξ =−2θF(1+ θ2 F2)−2ξ · ξ.

As a consequence, for θ small enough, we find

Im
[
(t d8θ (x))−1ξ

]2
≤−θF(x)ξ · ξ ≤−θa(|x |)|ξ |2. �
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GLOBAL EXISTENCE AND UNIQUENESS RESULTS FOR WEAK SOLUTIONS
OF THE FOCUSING MASS-CRITICAL NONLINEAR SCHRÖDINGER EQUATION

TERENCE TAO

We consider the focusing mass-critical NLS iut +1u =−|u|4/du in high dimensions d ≥ 4, with initial
data u(0) = u0 having finite mass M(u0) =

∫
Rd |u0(x)|2 dx <∞. It is well known that this problem

admits unique (but not global) strong solutions in the Strichartz class C0
t,locL2

x ∩ L2
t,locL2d/(d−2)

x , and also
admits global (but not unique) weak solutions in L∞t L2

x . In this paper we introduce an intermediate class
of solution, which we call a semi-Strichartz class solution, for which one does have global existence
and uniqueness in dimensions d ≥ 4. In dimensions d ≥ 5 and assuming spherical symmetry, we also
show the equivalence of the Strichartz class and the strong solution class (and also of the semi-Strichartz
class and the semi-strong solution class), thus establishing unconditional uniqueness results in the strong
and semi-strong classes. With these assumptions we also characterise these solutions in terms of the
continuity properties of the mass function t 7→ M(u(t)).

1. Introduction

1.1. The focusing mass-critical NLS. This paper deals with low regularity solutions u : I ×Rd
→C to

the initial value problem to the focusing mass-critical nonlinear Schrödinger equation (NLS)

iut +1u = F(u),

u(t0)= u0,
(1)

in high dimensions d ≥ 4, where I ⊂ R is a time interval containing a time t0 ∈ R, F : C → C is
the nonlinearity F(z) := −|z|4/d z, and we assume u0 to merely lie in the class L2

x(R
d) of functions of

finite mass M(u0) :=
∫

R2 |u0(x)|2 dx . The exponent 1+ 4/d in the nonlinearity makes the equation
mass-critical, so that the mass M(u) is invariant under the scaling u(t, x) 7→ (1/λd/2)u(t/λ2, x/λ) of
the equation. The mass is also formally conserved by the flow, thus we formally have M(u(t))= M(u0)

for all t , though it will be important in this paper to bear in mind that this formal mass conservation can
break down if the solution is too weak in nature.

Remark 1.2. The condition d ≥ 4 is assumed in order to ensure that the nonlinearity F(u) is locally
integrable in space for u ∈ L2

x(R
d), so that (1) makes sense distributionally1 for u ∈ L∞t,locL2

x(I ×Rd). It

MSC2000: 35Q30.
Keywords: Strichartz estimates, nonlinear Schrodinger equation, weak solutions, unconditional uniqueness.
The author is supported by NSF grant DMS-0649473 and a grant from the Macarthur Foundation.

1Here and in the sequel, we use the subscript loc to denote boundedness of norms on compact sets, thus for instance
u ∈ L∞t,locL2

x (I ×Rd ) if and only if u ∈ L∞t L2
x (J ×Rd ) for all compact J ⊂ I , with the function space L∞t,locL2

x (I ×Rd ) then
being given the induced Frechet space topology.
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will be clear from our arguments that our results would also apply if F were replaced by any other non-
linearity of growth 1+4/d , whose derivative grew like |z|4/d and which enjoyed the Galilean invariance
F(eiθ z) = eiθ F(z) (in order to formally conserve mass), though in this more general setting, the mass
M(Q) of the ground state would need to be replaced by some unspecified constant εF,d > 0 depending
on the nonlinearity F and the dimension d.

The notion of a distributional solution, by itself, is too weak for applications; for instance, one has
difficulty interpreting what the initial data condition u(0) = u0 means for a distributional solution in
L∞t,locL2

x . In practice, one strengthens the notion of solution at this regularity by working with the integral
formulation2

u(t)= ei(t−t0)1u0+ i
∫ t

t0
ei(t−t ′)1F(u(t ′)) dt ′ (2)

of the equation, where ei t1 is defined via the Fourier transform û(ξ) :=
∫

Rd e−i x ·ξu(x) dx as

êi t1u(ξ) := e−i t |ξ |2 û(ξ),

which is well-defined in the class of tempered distributions.

Remark 1.3. If u0 ∈ L2
x(R

d) and u ∈ L∞t,locL2
x(I ×Rd), then F(u) ∈ L∞t,locL1

x,loc(I ×Rd), and the right
side of Equation (2) makes sense as a tempered distribution in x for each time t . Furthermore, it is easy
to verify (by the standard duality argument) that the right side of (2) is continuous in t in the topology
S(Rd)∗ of tempered distributions.

1.4. Weak, strong, and Strichartz class solutions. With these preparations, we can now introduce the
three standard solution classes for this problem in L2

x(R
d).

Definition 1.5 (Weak, strong, Strichartz solutions). Fix a dimension d ≥ 4, an initial data u0 ∈ L2
x(R

d)

and a time interval I ⊂ R containing a time t0 ∈ R.

• A weak solution (or mild solution) to Equation (1) is a function u ∈ L∞t,locL2
x(I ×Rd) which obeys

(2) in the sense of tempered distributions for almost every3 time t .

• A strong solution to (1) is a weak solution u such that t 7→ u(t) is continuous in the L2
x topology,

thus u lies in C0
t,locL2

x(I ×Rd).

• A Strichartz-class solution to (1) is a strong solution which also lies in L2
t,locL2d/(d−2)

x (I×Rd); thus

u lies in C0
t,locL2

x(I ×Rd)∩ L2
t,locL2d/(d−2)

x (I ×Rd).

Remark 1.6 (Shifting initial data). Because the right side of Equation (2) is continuous in the distribu-
tional topology for any of the above three notions of solutions, we observe that if u is a solution to (1) in
any of the above classes on an interval I , and t1 ∈ I , then u is also a solution to (1) in the same class with
initial time t1 and initial data u(t1) (as defined using the right side of (2)). Thus one may legitimately
discuss solutions to NLS in one of the above three classes without reference to an initial time or initial
data.

2We adopt the usual convention
∫ a

b =−
∫ b

a when a < b.
3By definition of L∞t , weak solutions are only defined for almost every time t , though from Remark 1.3, one can canonically

define u(t) for all t ∈ I .



WEAK SOLUTIONS OF MASS-CRITICAL NLS 63

Remark 1.7. For future reference, we make the trivial remark that if one restricts a solution in any of
the above classes to a subinterval J ⊂ I , then one still obtains a solution in the same class. Conversely,
if one has a family of solutions in the same class on different time intervals In , such that

⋂
n In 6=∅ and

any two solutions agree on their common domain of definition, then one can glue them together to form
a solution in the same class on the union

⋃
n In .

Remark 1.8. From Remark 1.3 we make the important observation that if u ∈ L∞t L2
x(I ×Rd) is a weak

solution to Equation (1), then the map t 7→ u(t) is continuous in the weak topology of L2
x(R

d). In
particular we have the convergence property

lim
t ′→t
〈u(t ′), u(t)〉L2

x (R
d ) = M(u(t)), (3)

for all t ∈ I , which by the cosine rule implies the asymptotic mass decoupling identity

lim
t ′→t

M(u(t ′))−M(u(t ′)− u(t))−M(u(t))= 0. (4)

Thus any L2 discontinuity of u at t can be detected and quantified by the mass function t 7→ M(u(t)); in
particular, the solution t 7→ u(t) is continuous in L2 at precisely those points for which the mass function
t 7→ M(u(t)) is continuous.

In the Strichartz class, one has a satisfactory local existence and uniqueness theory:

Proposition 1.9 (Local existence and uniqueness in the Strichartz class). Let d ≥ 4, u0 ∈ L2
x(R

d), and
t0 ∈ R.

(i) (Local existence) There exists an open interval I containing t0 and a Strichartz class solution u ∈
C0

t,locL2
x(I ×R2)∩ L2

t,locL2d/(d−2)
x (I ×Rd).

(ii) (Uniqueness) If I is an interval containing 0, and u, u′ ∈C0
t,locL2

x(I ×R2)∩ L2
t,locL2d/(d−2)

x (I ×Rd)

are Strichartz class solutions to (1) on I , then u = u′.

(iii) (Mass conservation) If u ∈ C0
t,locL2

x(I ×R2)∩ L2
t,locL2d/(d−2)

x (I ×Rd) is a Strichartz solution, then
the function t 7→ M(u(t)) is constant.

Proof. This is a standard consequence of the endpoint Strichartz estimate4

‖u‖L2
t L2d/(d−2)

x (I×Rd )
+‖u‖C0

t L2
x (I×Rd ) .d ‖u(t0)‖L2

x (R
d )+‖iut +1u‖L2

t L2d/(d+2)
x (I×Rd )

, (5)

from [Keel and Tao 1998]; see [Cazenave and Weissler 1989; Cazenave 2003]. Mass conservation is
obtained in these references by first regularising the data and nonlinearity so that the solution is smooth
(and the formal conservation of mass can be rigorously justified), and then taking limits using (5). �

Because of this proposition (and Remark 1.7), every initial data u0 ∈ L2
x(R

d) and initial time t0 ∈ R

admits a unique maximal Strichartz-class Cauchy development

u ∈ C0
t,locL2

x(I ×R2)∩ L2
t,locL2d/(d−2)

x (I ×Rd),

4Here and in the sequel we use the usual notation X . Y or X = O(Y ) to denote the estimate |X | ≤ CY for some absolute
constant C > 0; if the implied constant C depends on a parameter (such as d), we will indicate this by subscripts, for example,
X .d Y or X = Od (Y ).
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where I is an open interval containing t0, and u is a Strichartz-class solution to (1) which cannot be
extended to any larger time interval.

Unfortunately, the lifespan I of this maximal Strichartz-class Cauchy development need not be global
if the mass M(u0) is large. For instance, if Q is a nontrivial Schwartz-class solution to the ground state
equation

1Q+ |Q|4/d Q = Q, (6)

then as is well known, the function

u(t, x) :=
1
|t |d/2

e−i/t ei |x |2/4t Q(x/t) (7)

is a Strichartz-class solution on (0,+∞)× Rd or (−∞, 0)× Rd but cannot be extended in this class
across the time t = 0. One can also use Glassey’s virial identity [Glassey 1977] to infer indirectly the
nonglobal nature of maximal Strichartz-class Cauchy developments for suitably smooth and decaying
data with negative energy.

Remark 1.10. In the defocusing case F(z)=+|z|4/d z, it is conjectured that all maximal Strichartz-class
Cauchy developments are global. This has recently been established in the spherically symmetric case
[Tao et al. 2006], and is also known for data with additional regularity (for example, energy class) or
decay (for example, xu0 ∈ L2

x(R
d)), or with small mass; see [Tao et al. 2006] and the references therein

for further discussion. In the focusing case, the results of [Killip et al. 2007] give global existence for
spherically symmetric data when the mass M(u0) is strictly less than the mass M(Q) of the ground state;
see [Killip et al. 2008a] for a treatment of the endpoint case M(u0) = M(Q). Again, it is conjectured
that the same results hold without the spherical symmetry assumption, but this remains open.

On the other hand, it is possible to continue solutions in a weak sense beyond the time for which
Strichartz-class solutions blow up. In particular, we have the following standard result:

Proposition 1.11 (Global existence in the weak class). Let d ≥ 4, u0 ∈ L2
x(R

d), and t0 ∈ R. Then there
exists a global weak solution u ∈ L∞t L2

x(R×Rd) to (1). Furthermore we have M(u(t))≤ M(u0) for all
t ∈ R.

Proof. We will prove a stronger result than this shortly, so we only give a sketch of proof here. By
Remark 1.7 and time reversal symmetry, it suffices to build a solution on [t0,+∞). For each ε > 0, one
can easily use parabolic theory to construct a global (strong) solution to the damped NLS iu(ε)t +1u(ε)=
iε1u(ε)+Fε(u(ε)) on [t0,+∞), whose mass is bounded above by M(u0), where Fε is a suitably damped
version of F (for example, Fε(z) := −max(|z|, 1/ε)4/d z); extracting a weakly convergent subsequence
and taking weak limits we obtain the claim. �

Unfortunately, while these weak solutions are global, they are nonunique, as the following standard
example shows.

Example 1.12. Consider the function given by Equation (7) for t ∈ (0,+∞) and by zero for t ∈ (−∞, 0].
This is a global weak solution in the sense of the above proposition (taking t0 to be any positive time,
and setting u0 = u(t0)), but is not unique; if, for instance, one takes u to equal (7) for t ∈ (−∞, 0) rather
than equal to zero, then the new solution is still a global weak solution with the same initial data. Note
that a modification of this example shows that uniqueness of weak solutions can break down even if the
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Strichartz −−−→ strongy y
semi-Strichartz −−−→ semi-strong −−−→ weak

Figure 1. Inclusions between solution classes. In dimensions d≥5 and assuming spher-
ical symmetry, we will show that two horizontal inclusions on the left are in fact equiv-
alences.

initial data is zero, and so one cannot hope to recover uniqueness purely by strengthening the hypotheses
on the initial data.

Remark 1.13. Example 1.12 also shows that mass is not necessarily conserved for weak solutions. On
the other hand, from Equation (4) we see that the function t 7→ M(u(t)) is lower semi-continuous, at
least.

1.14. Semi-Strichartz solutions. To summarise the discussion so far, the Strichartz class of solutions
has uniqueness but no global existence, while the class of weak solutions has global existence but no
uniqueness. It is thus natural to ask whether there is an intermediate class of solutions for which one has
both global existence and uniqueness. To answer this we define some further solution classes.

Definition 1.15 (Semi-strong and semi-Strichartz solutions). Fix a dimension d ≥ 4, an initial data
u0 ∈ L2

x(R
d) and a time interval I ⊂ R containing a time t0 ∈ R. A semi-strong solution (resp. semi-

Strichartz class solution) to Equation (1) is a weak solution u such that for every t ∈ I ∩ [t0,+∞) there
exists ε>0 such that u is a strong solution (resp. Strichartz class solution) when restricted to I∩[t, t+ε),
and for every t ∈ I ∩ (−∞, t0] there exists ε > 0 such that u is a strong solution (resp. Strichartz class
solution) when restricted to I ∩ (t − ε, t].

We summarise the obvious inclusions between the five classes of solution in Figure 1. Note that unlike
the weak, strong, and Strichartz classes, the semi-strong and semi-Strichartz classes of solution depend
on the choice of initial time t0.

Example 1.16. Consider the weak solution u ∈ L∞t L2
x(R×Rd) which is given by Equation (7) for t > 0

and is zero for t ≤ 0, let t0 > 0, and set u0 := u(t0). Then u is a semi-Strichartz class solution (and thus
semi-strong solution) to (1), but is not strong or Strichartz-class. If one redefines u for t < 0 by (7), then
u remains a weak solution, but is no longer semi-strong or semi-Strichartz.

Remark 1.17. The constructions in [Bourgain and Wang 1997], in our notation, yield semi-Strichartz
class solutions which blow up in the Strichartz class at a specified finite set of points in time, and are
equal to a prescribed state in L2

x(R
d) at the final blowup time, in dimensions d = 1, 2.

Our first main result is that the semi-Strichartz solution class enjoys global existence and uniqueness:

Theorem 1.18 (Global existence and uniqueness in the semi-Strichartz solution class). Suppose d ≥ 4,
u0 ∈ L2

x(R
d), and t0 ∈ R. Then there exists a global semi-Strichartz class solution u ∈ L∞t L2

x(R×Rd)

to (1). Furthermore, this solution is unique in the sense that any other semi-Strichartz solution to (1) on
a time interval I containing t0 is the restriction of u to I . Finally, M(u(t)) is monotone nonincreasing
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for t ≥ t0 and monotone nondecreasing for t ≤ t0 (in particular, the only possible discontinuities are
jump discontinuities), and has a jump discontinuity exactly at those times t for which u is not locally a
Strichartz class solution.

Remark 1.19. Informally, the unique semi-Strichartz class solution is formed by solving the equation
in the Strichartz class whenever possible, and deleting any mass that escapes to spatial or frequency
infinity when the solution leaves the Strichartz class. The relationship between this class of solution and
Strichartz class solutions is analogous to the relationship between Ricci flow with surgery and Ricci flow
in the work of Perelman [2007; 2003], though of course the situation here is massively simpler than with
Ricci flow on account of the semilinear and flat nature of our equation. On the other hand, the entropy-
type solutions constructed in Proposition 1.11 do not necessarily converge to the solution in Theorem
1.18. For instance, the arguments in [Merle 1992] can be adapted to show that if one starts with the initial
data of Equation (7) at time t =−1, say, and evolves a parabolically regularised version of Equation (1)
using some viscosity parameter ε, then the solution at t =+1 can converge to an arbitrary phase rotation
of the solution (7) along a subsequence of ε, and in particular these solutions do not converge to the
semi-Strichartz solution (which vanishes after the singularity time). However, it is conceivable that the
entropy solutions do converge to the semi-Strichartz solutions for generic data, although the author does
not know how one would prove this.

Remark 1.20. One can push the global existence result further, to obtain scattering at t =±∞, and can
in fact even push the solution “beyond” t =+∞ and t =−∞ by using the pseudoconformal transform
or lens transform, in the spirit of [Tao 2006]. We omit the details.

Remark 1.21. While the semi-Strichartz class enjoys global existence and uniqueness, it does not enjoy
continuous dependence on the data and is thus not a well-posed class of solutions. Indeed, if one considers
the solution in Example 1.16 for the spherically symmetric ground state Q, and then perturbs the initial
data u0= u(t0) to have slightly smaller mass (while staying spherically symmetric), then from the results
in [Killip et al. 2007] we know that the perturbed solution exists globally in the Strichartz class, and in
particular has mass close to M(Q) for all negative times, in contrast to the original solution in Example
1.16 which has zero mass for all negative times, thus contradicting continuous dependence on the data
in any reasonable topology. Indeed this argument strongly suggests that there is no solution class for
this equation which is globally well-posed in the sense that one simultaneously has global existence,
uniqueness, and continuous dependence of the data, and which is compatible with the Strichartz class of
solutions.

Remark 1.22. In [Merle and Raphaël 2005; Fibich et al. 2006], solutions to Equation (1) are constructed
which are initially in H 1

x (R
d), but at the first blowup time develop a single point of concentration, plus

a residual component u∗ which is not in L p
x (R

d) for any p > 2, and in particular has left H 1
x (R

d).
The semi-Strichartz solution would continue the evolution from u∗ at this time. Thus, we do not have
persistence of regularity for the semi-Strichartz class: a semi-Strichartz solution can exit the space in
finite time. (A similar phenomenon for the supercritical focusing NLS was also obtained in [Merle and
Raphaël 2008]. In contrast, the solution in Example 1.16 has H 1 norm going to infinity as t→ 0+, but
never actually leaves H 1

x (R
d); similarly for the solutions in [Bourgain and Wang 1997]).

Theorem 1.18 is in fact an easy consequence of Proposition 1.9 and is proven in Section 2. One can
be somewhat more precise about the jump discontinuities:
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Theorem 1.23 (Quantisation of mass loss). Let d ≥ 4, u0 ∈ L2
x(R

d), and t0 ∈ R. Let u ∈ L∞t L2
x(R×Rd)

be the unique global semi-Strichartz class solution to Equation (1) given by Theorem 1.18. Then there
exists an absolute constant εd>0 (depending only on d) such that every jump discontinuity of the function
t 7→ M(u(t)) has jump at least εd . If u0 is spherically symmetric, one can take εd to be the mass M(Q)
of the ground state.

Remark 1.24. A closely related result in the spherically symmetric case was established in [Killip et
al. 2008b, Corollary 1.12], in which it was shown that any blowup of a spherically symmetric Strichartz
class solution in two dimensions must concentrate an amount of mass at least equal to the ground state
M(Q); the same result in higher dimensions follows by the same argument together with the results in
[Killip et al. 2007]. Indeed, we will use the results in [Killip et al. 2007] to establish the spherically
symmetric case of this theorem. From Example 1.12 we see that M(Q) cannot be replaced by any larger
quantity in the above theorem.

Theorem 1.23 is of course consistent with the existence of a lower bound εd for mass concentration at
a point [Bourgain 1999; Merle and Vega 1998; Keraani 2006], although neither result seems to directly
imply the other. (The proof of Theorem 1.23 uses global-in-space Strichartz estimates, whereas the mass
concentration result requires more localised tools.)

Theorem 1.23, combined with Theorem 1.18 and Proposition 1.9(iii), has an immediate corollary:

Corollary 1.25. If u is a global semi-Strichartz class solution to Equation (1), the function t 7→M(u(t))
is piecewise constant with at most finitely many jump discontinuities, with u being a Strichartz class
solution on each of the piecewise constant intervals.

We prove Theorem 1.23 in Section 3.

1.26. The spherically symmetric case. Now we turn to the question of whether strong (resp. semi-
strong) solutions are necessarily in the Strichartz class (resp. semi-Strichartz class), which would im-
ply (by Proposition 1.9 and Theorem 1.18) that they are unique. These type of results are known as
unconditional uniqueness (or unconditional well-posedness) results in the literature. For solutions in
higher regularities, such as the energy class, one can obtain unconditional uniqueness by exploiting
Sobolev embedding to obtain additional integrability of the strong solution u [Kato 1995; 1996; Furioli
and Terraneo 2003a; 2003b; Cazenave 2003; Tsutsumi 2007]. Unfortunately at the L2

x(R
d) level of

regularity, for which Sobolev embedding is not available5, it appears to be rather difficult to establish
such an unconditional uniqueness result, although the author tentatively conjectures it to be true. On
the other hand, we were able to establish this uniqueness under the additional simplifying assumption of
spherical symmetry (and assuming very high dimension d ≥ 5), thus replacing the data space L2

x(R
d) by

the subspace L2
rad(R

d) of spherically symmetric functions:

Theorem 1.27 (Unconditional uniqueness for spherically symmetric solutions). Let d≥5, u0∈ L2
rad(R

d),
I be an interval, and t0 ∈R. Let u ∈ L∞t L2

x(I×Rd) be a spherically symmetric weak solution to Equation
(1). Then the following are equivalent:

(i) u is a Strichartz class solution.

5Related to this difficulty is the Galilean invariance of the NLS equation at L2
x (R

d ), which strongly suggests that direct
application of Sobolev or Littlewood–Paley theory is unlikely to be helpful.



68 TERENCE TAO

(ii) u is a strong solution.

(iii) The function t 7→ M(u(t)) is constant.

(iv) The function t 7→ M(u(t)) is continuous.

(v) One has M(u(t)) ≥ lim supt ′→t M(u(t ′))− εd for all t ∈ I , where εd > 0 is a suitably small ab-
solute constant depending only on d. (Note from lower semi-continuity that we automatically have
M(u(t))≤ lim supt ′→t M(u(t ′)).)

Example 1.28. If u is given by Equation (7) for t 6= 0 and a spherically symmetric Q and vanishes for
t = 0, then u is a spherically symmetric weak solution but fails to conserve mass at t = 0, and is thus
not in the Strichartz class in a neighbourhood of t = 0.

Remark 1.29. From Theorem 1.27 and Proposition 1.9(ii), we see that spherically symmetric strong
solutions to (1) are unique. Another quick corollary of Theorem 1.27 is that any spherically symmetric
weak solution whose mass is always strictly smaller than εd is necessarily a Strichartz class solution (and
hence strong solution also), and thus also unique. In view of Theorem 1.23, it is natural to conjecture
that one can take εd to be the mass M(Q) of the ground state, which is the limit of weak uniqueness
thanks to Example 1.12, but our methods do not give this.

Remark 1.30. The above theorem shows that if a weak solution fails to be in the Strichartz class, then
at some time t it must lose at least a fixed amount εd of mass, though it is possible that this mass is then
instantly recovered (consider for instance the solution given by (7) for t 6= 0 and zero for t = 0). On
the other hand, it is conceivable that there exist weak solutions in which the mass function t 7→ M(u(t))
exhibits oscillating singularities rather than jump discontinuities, in which the mass oscillates infinitely
often as one approaches a given time; the above theorem implies that the net oscillation is at least εd but
does not otherwise control the behaviour of this function. If for instance there existed a nontrivial weak
solution on a compact interval I which vanished at both endpoints of the interval [Scheffer 1993], then
one could achieve such an oscillating behaviour by gluing together rescaled, time-translated versions of
this solution. However, we do not know if such weak solutions exist; solutions such as (7) constructed
using the pseudo-conformal transformation only exhibit vanishing at a single time t .

Remark 1.31. Note that we need to assume the solution is spherically symmetric, and not just the initial
data. In the category of weak solutions, at least, it is not necessarily the case that spherically symmetric
data leads to spherically symmetric solutions: consider for instance the weak solution which is equal to
a time-translated version of (7) for t 6= 0 and vanishes for t = 0; this solution is spherically symmetric at
time zero but not at other times.

We prove Theorem 1.27 in Section 6.1, after establishing an important preliminary smoothing estimate
for weak solutions in Section 4. Our main tool here is the in/out decomposition of waves used in [Tao
2004; Killip et al. 2008b], which is particularly powerful for understanding the dispersion of spherically
symmetric waves, and upon which we will rely heavily in order to establish a substantial gain of regularity
for weak solutions. Our arguments only barely fail at d = 4 and it is quite likely that a refinement of the
methods here can be extended to that case, but we do not pursue this matter here.

There is an analogue of Theorem 1.27 for semi-strong and semi-Strichartz class solutions:
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Theorem 1.32 (Characterisation of spherically symmetric semi-Strichartz solution). Suppose d ≥ 5,
u0 ∈ L2

rad(R
d), I be an interval, i and t0 ∈ R. Let u ∈ L∞t L2

x(I ×Rd) be a spherically symmetric weak
solution to Equation (1). Then the following are equivalent:

(i) u is the unique semi-Strichartz solution given by Theorem 1.18 (restricted to I , of course).

(ii) u is a semi-strong solution.

(iii) The function t 7→ M(u(t)) is right-continuous for t ≥ t0 and left-continuous for t ≤ t0, and is
piecewise constant with only finitely many jump discontinuities, with each jump being at least M(Q)
in size.

(iv) The function t 7→ M(u(t)) is right-continuous for t ≥ t0 and left-continuous for t ≤ t0.

(v) M(u(t)) ≥ lim supt ′→t+ M(u(t ′))− εd for all t ≥ t0 and M(u(t)) ≥ lim supt ′→t− M(u(t ′))− εd for
all t ≤ t0, where εd > 0 is a suitably small absolute constant depending only on d.

We prove Theorem 1.32 in Section 6.2, using a minor modification of the argument used to prove
Theorem 1.27.

2. Proof of Theorem 1.18

We first establish uniqueness. Suppose we have two semi-Strichartz class solutions u, u′ ∈ L∞t L2(I×R2)

to (1). Let J be the connected component of {t ∈ I : u(t)= u(t ′)} that contains t0. Since u, u′ are weak
solutions, we see from Remark 1.8 that J is closed. From the uniqueness component of Proposition 1.9,
and Definition 1.15, we also see that J is right-open in I ∩ [t0,+∞) (that is, for each t ∈ J ∩ [t0,+∞)
there exists ε > 0 such that I ∩ [t, t + ε) ⊂ J ) and left-open in I ∩ (−∞, t0]; by connectedness we
conclude that J = I , establishing uniqueness.

Now we establish global existence. It suffices to establish a semi-Strichartz class solution on [t0,+∞),
as by time reversal symmetry we may then obtain a semi-Strichartz class solution and (−∞, t0], and glue
them together to obtain the desired global solution on R.

Let J denote the set of all times T ∈ [t0,+∞) for which there exists a semi-Strichartz class solution
u on [t0, T ] with M(u(t)) monotone nonincreasing on [t0, T ]; thus J is a connected subset of [t0,+∞)
containing t0. By the existence and mass conservation component of Proposition 1.9, we see that J is
right-open. Now we establish that J is closed. If tn is a sequence of times in J increasing to a limit t∗,
then by gluing together all the associated semi-Strichartz class solutions (using uniqueness) we obtain
a semi-Strichartz solution u on [t0, t∗) with M(u(t)) monotone nonincreasing on [t0, t∗); in particular u
lies in L∞t L2

x([t0, t∗)×Rd), and F(u) lies in L∞t L2d/(d+4)
x ([t0, t∗)×Rd). From this we see that the right

side of Equation (2) is continuous all the way up to t∗ in the space of tempered distributions, and so we
can extend u as a weak solution to [t0, t∗]. This is still a semi-Strichartz solution, and by Fatou’s lemma
we see that M(u(t)) is still nondecreasing on [t0, t∗], and so t∗ ∈ J , thus establishing that J is closed. By
connectedness we conclude that J = [t0,+∞), and so we can obtain semi-Strichartz class solutions on
[t0, T ] for any t0 ≤ T <∞. Gluing these solutions together we obtain the desired solution on [t0,+∞),
establishing global existence.

The above argument has also established monotonicity of mass. Whenever u is a Strichartz class
solution in a neighbourhood of a time t1, it follows from Proposition 1.9 that mass is constant near t1, so
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the only remaining task is to show that whenever mass is continuous at a time t1, then u is a Strichartz
class solution in a neighbourhood of t .

The claim is obvious for t1 = t0, so without loss of generality we may take t1 > t0. By hypothesis,
M(u(t)) converges to M(u(t1)) as t→ t1. By Equation (4), we conclude that u(t) converges strongly to
u(t1) in L2

x(R
d).

Let ε > 0 be a small number. By the endpoint Strichartz estimate (5), we have

‖ei(t−t1)1u(t1)‖L2
t L2d/(d−2)

x (R×Rd )
<∞,

so by the monotone convergence theorem we have

‖ei(t−t1)1u(t1)‖L2
t L2d/(d−2)

x (I×Rd )
< ε,

when I is a sufficiently small neighbourhood of t1.
Fix I . Let t2 converge to t1, then by the previous discussion u(t2) converges strongly to u(t1) in L2

x(R
d).

By the continuity (and unitarity) of the Schrödinger propagator, this implies that ei(t2−t1)1u(t2) converges
to u(t1). Applying the endpoint Strichartz estimate (5), we conclude that ei(·−t2)1u(t2) converges in
L2

t L2d/(d−2)
x (I ×Rd) to ei(·−t1)1u(t1). In particular, we have

‖ei(t−t2)1u(t2)‖L2
t L2d/(d−2)

x (I×Rd )
< ε,

for all t2 sufficiently close to t1. On the other hand, we have M(u(t2))≤M(u0). Thus if ε is chosen to be
sufficiently small depending on M(u0), we may apply the standard Picard iteration argument based on
the endpoint Strichartz estimate (5) and construct a Strichartz-class solution to NLS on I which equals
u(t2) at t2. Applying this with t2 slightly smaller than t1 and using the uniqueness of semi-Strichartz
class solutions, we see that u is equal to this Strichartz-class solution on I , and the claim follows.

3. Proof of Theorem 1.23

It is convenient here to use the original nonendpoint Strichartz estimate [Strichartz 1977]:

‖u‖L2(d+2)/d
t,x (I×Rd )

+‖u‖C0
t L2

x (I×Rd ) .d ‖u(t0)‖L2
x (R

d )+‖iut +1u‖L2
t L2(d+2)/(d+4)

x (I×Rd )
. (8)

Let εd > 0 be chosen later, and let u be a semi-Strichartz class solution. Suppose for contradiction
that we had a jump discontinuity at some time t1 of jump less than εd . As before we may assume without
loss of generality that t1 > t0.

Let t approach t1 from below, then M(u(t))−M(u(t1)) converges to a limit less than εd . By Equation
(4), we conclude that ‖u(t)− u(t1)‖L2

x (R
d ) converges to a limit less than εd .

By (8) and monotone convergence as before, we can find a small neighbourhood I of t1 such that

‖ei(t−t1)1u(t1)‖L2(d+2)/d
t,x (I×Rd )

< ε
1/2
d .

If we let t2 approach t1 from below, then for t2 sufficiently close to t1 we thus have

‖ei(t−t2)1u(t1)‖L2(d+2)/d
t,x (I×Rd )

< ε
1/2
d .
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On the other hand, from Equation (8) we have (for t2 sufficiently close to t1) that

‖ei(t−t2)1(u(t1)− u(t2))‖L2(d+2)/d
t,x (I×Rd )

.d ‖u(t2)− u(t1)‖L2
x (R

d ) . ε
1/2
d ,

and thus by the triangle inequality

‖ei(t−t2)1u(t2)‖L2(d+2)/d
t,x (I×Rd )

.d ε
1/2
d .

If εd is sufficiently small depending on d, we can then perform a Picard iteration, using (8) to control
the nonlinear portion u(t)− ei(t−t2)1u(t2) of the solution, to construct a solution in the class

C0
t L2

x ∩ L2(d+2)/d
t,x (I ×Rd)

that equals u(t2) on t2. Applying Strichartz estimates once more, we see that this solution is a Strichartz
solution on I . By uniqueness of semi-Strichartz solutions, we conclude that u is a Strichartz solution on
I and thus has no jump discontinuity at t1, a contradiction.

Now we handle the spherically symmetric case. We will need the following result from [Killip et al.
2007]:

Theorem 3.1 (Scattering below the ground state). Let d ≥ 3. Then for every 0<m < M(Q) there exists
a quantity A(m) <∞ such that whenever t0 ∈ R and u0 ∈ L2

x(R
d) with M(u0) ≤ m, then there exists a

global Strichartz-class solution u to (1) with ‖u‖L2
t L2d/(d−2)

x (R×Rd )
≤ A(m).

Proof. See [Killip et al. 2007, Theorem 1.5]. �

Now suppose for contradiction that we have a global semi-Strichartz class solution from spherically
symmetric initial data u0 which has a mass jump discontinuity of less than M(Q) at some time t1; we
can assume t1 > t0 as before.

Since u0 is spherically symmetric, we see from rotation invariance and uniqueness that u is spherically
symmetric. By arguing as before, we see that as t2 approaches t1 from below, M(u(t2)−u(t1)) converges
to a limit less than M(Q). In particular this limit is less than m for some 0< m < M(Q).

Let ε > 0 be a small number depending on m and M(u0) to be chosen later. By endpoint Strichartz
(5) and monotone convergence as before, we can find a small neighbourhood I of t1 such that

‖ei(t−t1)1u(t1)‖L2
t L2d/(d−2)

x (I×Rd )
< ε,

and thus for t2 sufficiently close to t1

‖ei(t−t2)1u(t1)‖L2
t L2d/(d−2)

x (I×Rd )
< ε. (9)

On the other hand, we also have
M(u(t2)− u(t1)) < m,

for t2 sufficiently close to (and below) t1. By Theorem 3.1, we may thus find a Strichartz-class solution
v on I of mass at most m with v(t2)= u(t2)− u(t1) and

‖v‖L2
t L2d/(d−2)

x (I×Rd )
≤ A(m).
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From this and Equation (9) and standard perturbation theory [Tao et al. 2008, Lemma 3.1], we may thus
find a Strichartz-class solution on I which equals u(t2) at t2. Arguing as before we conclude that u has
no jump discontinuity at t1, a contradiction.

Remark 3.2. It is conjectured that the spherical symmetry assumption can be removed from Theorem
3.1. If this conjecture is true, then it is clear that one can take εd=M(Q) in the nonspherically-symmetric
case of Theorem 1.23 as well.

4. A smoothing effect for spherically symmetric weak solutions

In this section, we establish a preliminary smoothing effect for spherically symmetric weak solutions
that will be needed to prove Theorems 1.27 and 1.32. More precisely, we show

Theorem 4.1 (Smoothing effect). Let d ≥ 4, let I be a compact interval, and let u ∈ L∞t L2
x(I ×Rd) be

a spherically symmetric weak solution to NLS with M(u(t))≤ m for all t ∈ I . Then for every R > 0 one
has the bound

‖u‖L2
t L2d/(d−2)

x (I×(Rd\B(0,R))) .I,m,d R−1
+ 1, (10)

where B(0, R) is the ball of radius R centred at the origin.

Remark 4.2. Theorem 4.1 asserts that a spherically symmetric weak solution behaves like a Strichartz-
class solution away from the spatial origin. The R−1 term on the right side is sharp, as can be seen
by considering a rescaled stationary solution u(t, x) = R−d/2ei t/R2

Q(x/R), where Q is a nontrivial
spherically symmetric solution to Equation (6).

We shall prove this theorem using the method of in/out projections, as used in [Tao 2004; Killip et al.
2008b; 2007]. We first recall some Littlewood–Paley notation.

Let ϕ(ξ) be a radial bump function supported in the ball {ξ ∈ Rd
: |ξ | ≤ 11/10} and equal to 1 on the

ball {ξ ∈ Rd
: |ξ | ≤ 1}. For each number N > 0, we define the Fourier multipliers

P̂≤N f (ξ) := ϕ(ξ/N ) f̂ (ξ),

P̂>N f (ξ) := (1−ϕ(ξ/N )) f̂ (ξ),

P̂N f (ξ) := ψ(ξ/N ) f̂ (ξ) := (ϕ(ξ/N )−ϕ(2ξ/N )) f̂ (ξ).

We similarly define P<N and P≥N . All sums over N will be over integer powers of two unless otherwise
stated.

We now subdivide the Littlewood–Paley projections PN on the spherically symmetric space L2(Rd)rad

into two components, an outgoing projection P+PN and incoming projection P−PN , as described in the
following lemma:

Proposition 4.3 (In/out decomposition). Let d ≥ 1. Then there exist bounded linear operators P+, P− :
L2(Rd)→ L2(Rd) with the following properties:

(i) P+, P− extend to bounded linear operators on L p(Rd) to L p(Rd) for every 1< p <∞.

(ii) P++ P− is the orthogonal linear projection from L2(Rd) to L2(Rd)rad.
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(iii) For any N > 0, |x |& N−1, t & N−2, and choice of sign ±, the integral kernel6
[P±PN e∓i t1

](x, y)
obeys the estimate

|[P±PN e∓i t1
](x, y)|.d (|x ||y|)−(d−1)/2

|t |−1/2,

when |y| − |x | ∼ N |t |, and

|[P±PN e∓i t1
](x, y)|.d,m

N d

(N |x |)(d−1)/2〈N |y|〉(d−1)/2 〈N
2t + N |x | − N |y|〉−m,

for any m ≥ 0 otherwise.

(iii) For any N > 0, |x |& N−1, |t |. N−2, and choice of sign ±, we have

|[P±PN e∓i t1
](x, y)|.d,m

N d

(N |x |)(d−1)/2〈N |y|〉(d−1)/2 〈N |x | − N |y|〉−m,

for any m ≥ 0.

Proof. See [Killip et al. 2008b, Proposition 6.2] (for the d = 2 case) or [Killip et al. 2007, Lemma 4.1,
Lemma 4.2] (for the higher d case). �

Remark 4.4. Heuristically, P−PN ei t1 and P+PN e−i t1 for t > 0 both propagate away from the origin at
speeds ∼ N . The decay (|x ||y|)−(d−1)/2

|t |−1/2 is superior to the standard decay |t |−d/2, which reflects
the additional averaging away from the origin caused by the spherical symmetry. (In the proof of [Killip
et al. 2008b, Proposition 6.2], this additional averaging is captured using the standard asymptotics of
Bessel and Hankel functions.)

Now we prove Theorem 4.1. Fix d, I, u,m, R; we allow implied constants to depend on d, I,m. We
may take R to be a power of 2. By the triangle inequality, we have

‖u‖L2
t L2d/(d−2)

x (I×(Rd\B(0,R))) . ‖P≤1/Ru‖L2
t L2d/(d−2)

x (I×Rd )
+

∑
N>1/R

∑
±

‖P±PN u‖L2
t L2d/(d−2)

x (I×(Rd\B(0,R))).

For the first term, we use Bernstein’s inequality to estimate

‖P≤1/Ru(t)‖L2d/(d−2)
x (Rd )

. R−1
‖u(t)‖L2

x (R
d ) . R−1,

which is acceptable, so we turn to the latter terms. For ease of notation we shall just deal with the
incoming terms ± = −, as the outgoing terms ± = − terms are handled similarly (but using Duhamel
backwards in time instead of forwards).

Write I = [t0, t1], then by Duhamel’s formula we have

P−PN u(t)= P−PN ei(t−t0)1u(t0)− i
∫ t

t0
P−PN ei(t−t ′)1F(u(t ′)) dt ′.

6The integral kernel T (x, y) of a linear operator T is the function for which T f (x) =
∫

Rd K (x, y) f (y) dy for all test
functions f .
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The contribution of the linear term P−PN ei(t−t0)1u(t0) is bounded by∥∥∥∥ ∑
N>1/R

P−PN ei(t−t0)1u(t0)
∥∥∥∥

L2
t L2d/(d−2)

x (I×Rd )

.

∥∥∥∥ ∑
N>1/R

PN ei(t−t0)1u(t0)
∥∥∥∥

L2
t L2d/(d−2)

x (I×Rd )

. ‖ei(t−t0)1u(t0)‖L2
t L2d/(d−2)

x (I×Rd )

. ‖u(t0)‖L2
x (R

d )

. 1,

thanks to Proposition 4.3(i), the boundedness of the Littlewood–Paley projection P>1/R , and the endpoint
Strichartz estimate (5). Thus this contribution is acceptable, and it remains to show that∑

N>1/R

∥∥∥∥∫ t

t0
P−PN ei(t−t ′)1F(u(t ′)) dt ′

∥∥∥∥
L2

t L2d/(d−2)
x (I×(Rd\B(0,R)))

. R−1. (11)

As we are allowed to let implied constants depend on I , it suffices to show that∫ t

t0

∥∥P−PN ei(t−t ′)1F(u(t ′))
∥∥

L2d/(d−2)
x (Rd\B(0,R)) dt ′ . (N R)−c R−1,

for some absolute constant c > 0 and all t ∈ I and N > 1/R. By dyadic decomposition it suffices to
show that ∫ t

t0

∥∥P−PN ei(t−t ′)1F(u(t ′)) dt ′
∥∥

L2d/(d−2)
x (B(0,2m+1 R)\B(0,2m R)) dt ′ . (2m N R)−c R−1,

for all m ≥ 0. Replacing R by 2m R, we thus see that it suffices to show that∫ t

t0

∥∥P−PN ei(t−t ′)1F(u(t ′)) dt ′
∥∥

L2d/(d−2)
x (B(0,2R))\B(0,R) dt ′ . (N R)−c R−1,

whenever R > 0, N > 1/R, and t ∈ I .
From Proposition 4.3 we see that

‖P−PN ei t1 f ‖L∞x (B(0,2R)\B(0,R)) . (R(R+ N |t |))−(d−1)/2
|t |−1/2

‖ f ‖L1
x (R

d ),

for t & N−2, and
‖P−PN ei t1 f ‖L∞x (B(0,2R)\B(0,R)) . R−(d−1)/2 N‖ f ‖L1

x (R
d ),

for 0< t . N−2; we unify these two estimates as

‖P−PN ei t1 f ‖L∞x (B(0,2R)\B(0,R)) . (R(R+ N |t |))−(d−1)/2 N 〈N 2t〉−1/2
‖ f ‖L1

x (R
d ),

for t > 0. On the other hand, as P−, PN , ei t1 are bounded on L2 we have

‖P−PN ei t1 f ‖L2
x (B(0,2R)\B(0,R)) . ‖ f ‖L2

x (R
d ),

and hence by interpolation

‖P−PN ei t1 f ‖L2d/(d−4)
x (B(0,2R)\B(0,R)) . [(R(R+ N |t |))−(d−1)/2 N 〈N 2t〉−1/2

]
4/d
‖ f ‖L2d/(d+4)

x (Rd )
.
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Since
‖F(u(t ′))‖L2d/(d+4)

x (Rd )
. ‖u(t ′)‖1+4/d

L2
x (R

d )
. 1

for all t ′ ∈ I , we thus have

‖P−PN ei(t−t ′)1F(u(t ′))‖L2d/(d−4)
x (B(0,2R)\B(0,R)) . [(R(R+ N |t − t ′|))−(d−1)/2 N 〈N 2(t − t ′)〉−1/2

]
4/d ,

and hence by Hölder’s inequality

‖P−PN ei(t−t ′)1F(u(t ′))‖L2d/(d−2)
x (B(0,2R)\B(0,R)) . R[(R(R+ N |t − t ′|))−(d−1)/2 N 〈N 2(t − t ′)〉−1/2

]
4/d .

We can thus bound the left side of Equation (11) by∫ t

−∞

R[(R(R+ N |t − t ′|))−(d−1)/2 N 〈N 2(t − t ′)〉−1/2
]
4/d dt ′.

The dominant contribution of this integral occurs in the region when |t − t ′| ∼ R/N , and so we obtain a
total contribution of

. R(R/N )(R−(d−1)(R/N )−1/2)4/d = R−1(RN )−(d−2)/d ,

which is acceptable. This proves Theorem 4.1. �

Remark 4.5. One can improve the 1 term on the right side of (10) to R−c for some c > 0, by using
the improved Strichartz estimates in [Shao ≥ 2009] that are available in the spherically symmetric case.
However, we will not need this improvement here.

5. Nearly continuous solutions are Strichartz class

Theorem 4.1 gives Strichartz norm control of a solution away from the spatial origin. When the solution
is sufficiently close in L∞t L2

x to a Strichartz class solution, we can bootstrap Theorem 4.1 to in fact obtain
Strichartz control all the way up to the origin. More precisely, we now show:

Theorem 5.1 (Strichartz class criterion). Let d≥5, let I be a compact interval, and let u∈ L∞t L2
x(I×Rd)

be a spherically symmetric weak solution to NLS. Suppose also that there exists a Strichartz-class solution
v ∈ C0

t L2
x ∩ L2

t L2d/(d−2)
x (I ×R2) such that ‖u − v‖L∞t L2

x (R
d ) ≤ ε. If ε is sufficiently small depending on

d, then u ∈ L2
t L2d/(d−2)

x (I ×Rd).

Remark 5.2. The theorem fails if ε is large, as one can see from the weak solution defined by Equation
(7) for t 6= 0 and vanishing for t = 0. The arguments in fact give an effective upper bound for the
L2

t L2d/(d−2)
x norm of u in terms of the corresponding norm of v. Heuristically, the point is that when u

(or u− v) has small mass, then there are not enough nonlinear effects in play to support persistent mass
concentration (as in the example in Remark 4.2) that would cause the L2

t L2d/(d−2) norm to become large.

We now prove Theorem 5.1. We fix d, I, u, v, ε and allow all implied constants to depend on d. By
shrinking the interval I and using compactness we may assume that

‖v‖L2
t L2d/(d−2)

x (I×R2)
≤ ε. (12)

We write w := u− v, thus
‖w‖L∞t L2

x (I×Rd ) . ε (13)
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and w solves the difference equation

iwt +1w = F(v+w)− F(v) (14)

in the integral sense. From the fundamental theorem of calculus (or mean-value theorem) we have the
elementary inequality

F(v+w)− F(v)= O(|w|(|v| + |w|)4/d). (15)

For each integer k, let ck denote the quantity

ck := ‖w‖L2
t L2d/(d−2)

x (I×(Rd\B(0,2k)))
. (16)

From Theorem 4.1 and the triangle inequality we have

ck .I 2−k
+ 1, (17)

for all k. To prove the theorem, it suffices by the monotone convergence theorem to show that supk ck is
finite. For this we use the following inequality:

Proposition 5.3 (Key inequality). Let d ≥ 4. For every k we have

ck . ε+ ε
4/d
∑
j≤k

2−
d−2

2 (k− j)(c j + c1−4/d
j ).

Proof. Fix k. By the triangle inequality, we have

ck . ‖P≤2−kw(t)‖L2
t L2d/(d−2)

x (I×Rd )
+

∑
±

‖P±P>2−kw(t)‖L2
t L2d/(d−2)

x (I×(Rd\B(0,2k)))
. (18)

Consider the first term on the right side. By (13)–(15) and (5) we have

‖P≤2−kw(t)‖L2
t L2d/(d−2)

x (I×Rd )
. ε+‖P≤2−k O(|w|(|v| + |w|)4/d)‖L2

t L2d/(d+2)
x (I×Rd )

,

so to show that the contribution of this case is acceptable, it suffices to show that∥∥P≤2−k O(|w|(|v| + |w|)4/d)
∥∥

L2
t L2d/(d+2)

x (I×Rd )
. ε4/d

∑
j≤k

2−
d−2

2 (k− j)(c j + c4/d
j ).

By the triangle inequality, we can bound the left side by∥∥P≤2−k O(|w|1Rd\B(0,2−k)(|v| + |w|)
4/d)

∥∥
L2

t L2d/(d+2)
x (I×Rd )

+

∑
j<k

∥∥∥∥P≤2−k O(|w|1B(0,2− j+1)\B(0,2− j )(|v| + |w|)
4/d)

∥∥∥∥
L2

t L2d/(d+2)
x (I×Rd )

. (19)

For the first term of (19), we discard the P≤2−k projection and use Hölder’s inequality to bound this by

.
∥∥w∥∥1−4/d

L2
t L2d/(d+2)

x (I×(Rd\B(0,2−k)))

∥∥v∥∥4/d
L2

t L2d/(d+2)
x (I×Rd )

∥∥w∥∥4/d
L∞t L2

x (I×Rd )

+
∥∥w∥∥L2

t L2d/(d+2)
x (I×(Rd\B(0,2−k)))

∥∥w∥∥4/d
L∞t L2

x (I×Rd )
,
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which by (13), (12), and (16) is bounded by

. ε4/dc1−4/d
k + ε4/dck,

which is acceptable.
For the second term of (19), we observe from the Hölder and Bernstein inequalities that∥∥P≤2−k ( f 1B(0,2− j+1)\B(0,2− j ))

∥∥
L2d/(d+2)

x (Rd )
. 2−

d−2
2 k
∥∥ f 1B(0,2− j+1)\B(0,2− j )

∥∥
L1

x (R
d )

. 2−
d−2

2 (k− j)
‖ f ‖L2d/(d+2)

x (B(0,2− j+1)\B(0,2− j ))
,

for any f . Using this inequality and arguing as before, we see that the second term of (19) is bounded
by

.
∑
j<k

2−
d−2

2 (k− j)(ε4/dc1−4/d
j + ε4/dc j ),

which is acceptable.
Since we have dealt with the first term of (18), it now suffices by the triangle inequality to show that

‖P±P>2−kw(t)‖L2
t L2d/(d−2)

x (I×(Rd\B(0,2m)))
. ε+ ε4/d

∑
j≤k

2−
d−2

2 (k− j)(c j + c1−4/d
j ),

for either choice of sign ±. We shall just do this for the incoming case ±=−: the outgoing case ±=+
is similar but requires one to apply Duhamel’s formula backwards in time.

Write I = [t0, t1]. By Duhamel’s formula and (14), we have

P−P>2−kw(t)= P−P>2−k ei(t−t0)1w(t0)− i
∫ t

t0
P−P>2−k ei(t−t ′)1(F(v+w)− F(v))(t ′) dt ′.

The contribution of the first term is O(ε) by Proposition 4.3(i), Equations (5) and (13), so it suffices to
show that∥∥∥∥∫ t

t0
P−P>2−k ei(t−t ′)1(F(v+w)− F(v))(t ′) dt ′

∥∥∥∥
L2

t L2d/(d−2)
x (I×(Rd\B(0,2k)))

. ε4/d
∑
j≤k

2−
d−2

2 (k− j)(c j + c1−4/d
j ).

We split

F(v+w)− F(v)= (F(v+w)− F(v))1Rd\B(0,2k−1)+

∑
j<k−1

(F(v+w)− F(v))1B(0,2 j+1)\B(0,2 j ).

The contribution of the first term can be estimated using Proposition 4.3(i), Equations (5) and (15) to be

. ‖|w|(|v|4/d + |w|4/d)‖L2
t L2d/(d+2)

x (I×(Rd\B(0,2k−1)))
.

By a slight modification of the calculation used to bound the first term of (19), we can control this
expression by

. ε4/dc1−4/d
k−1 + ε

4/dck−1,
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and so by the triangle inequality it suffices to show that

∑
N>2−k

∥∥∥∥∫ t

t0
P−PN ei(t−t ′)1

[(F(v+w)− F(v))(t ′)1B(0,2 j+1)\B(0,2 j )] dt ′
∥∥∥∥

L2
t L2d/(d−2)

x (I×(Rd\B(0,2k)))

. ε4/d2−
d−2

2 (k− j)(c j + c1−4/d
j ), (20)

for each j < k− 1.
Fix j . By Proposition 4.3(ii), (iii), the integral kernel (P−PN ei(t−t ′)1)(x, y) for x ∈ Rd

\B(0, 2k),
t ′ < t , N > 2−k , and y ∈ B(0, 2 j+1)\B(0, 2 j ) obeys the bounds

|[P−PN ei(t−t ′)1
](x, y)|.

N d

(N |x |)(d−1)/2〈2 j N 〉(d−1)/2 〈N
2(t − t ′)+ N |x |〉−100d

. N d(N |x |)−50d
〈N 2(t − t ′)〉−50d ,

say. From this we obtain the pointwise bound

|P−PN ei(t−t ′)1( f 1B(0,2 j+1)\B(0,2 j ))(x)|. N d(N |x |)−50d
〈N 2(t − t ′)〉−50d

‖ f ‖L1
x (B(0,2 j+1)\B(0,2 j )),

for x ∈ Rd
\B(0, 2k) and any f , which by Hölder’s inequality implies the bounds∥∥P−PN ei(t−t ′)1( f 1B(0,2 j+1)\B(0,2 j ))

∥∥
L2d/(d−2)

x (Rd\B(0,2k))

. 2
d−2

2 k2
d−2

2 j N d(2k N )−50d
〈N 2(t − t ′)〉−50d

‖ f ‖L2d/(d+2)
x (B(0,2 j+1)\B(0,2 j ))

.

By Young’s inequality we conclude that the left side of (20) is bounded by

.
∑

N>2−k

2
d−2

2 k2
d−2

2 j N d−2(2k N )−50d
∥∥F(v+w)− F(v)

∥∥
L2

t L2d/(d+2)
x (I×B(0,2 j+1)\B(0,2 j ))

.

Modifying the computation used to bound the first term of (19), this expression can be controlled by

.
∑

N>2−k

2
d−2

2 k2
d−2

2 j N d−2(2k N )−50d(ε4/dc1−4/d
j + ε4/dc j ),

and on performing the summation in N one obtains the claim (20), and Proposition 5.3 follows. �

From Proposition 5.3 (and using the hypothesis d ≥ 5 to make the decay 2−
d−2

2 (k− j) faster than the
blowup of 2− j ), we see that if we have any bound of the form

ck ≤ A+ B2−k,

for all k and some A, B > 0, then (if ε is sufficiently small, and A is sufficiently large depending on ε),
one can conclude a bound of the form

ck ≤ A+ 1
2 B2−k,

for all k. Iterating this and taking limits, we conclude that

ck ≤ A,
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for all k. Applying this argument starting from Equation (17) we conclude that ck .1 for all k, as desired,
and Theorem 5.1 follows.

6. Proofs of theorems

With Theorem 5.1 in hand, it is now an easy matter to establish Theorems 1.27 and 1.32.

6.1. Proof of Theorem 1.27. It is clear that (i) implies (ii), and that (iii) implies (iv) implies (v). From
Proposition 1.9 we also see that (ii) implies (iii). So the only remaining task is to show that (v) implies
(i). It suffices to do this locally, that is, to show that for any time t for which (v) holds, that u is a
Strichartz class solution in some neighbourhood of t in I .

By the hypothesis (v), one can find a connected neighbourhood J of t in I such that

M(u(t ′))≤ M(u(t))+ εd ,

for all t ′ ∈ J . By Equation (4) (and shrinking J if necessary) we conclude that

‖u(t ′)− u(t)‖2L2
x (R

d ) ≤ 2εd ,

say, for all t ′ ∈ J .
By shrinking J some more, we may apply Proposition 1.9 to find a Strichartz class solution

v ∈ C0
t L2

x ∩ L2
t L2d/(d−2)

x (J ×Rd)

on J with v(t) = u(t). Since v is a strong solution, by shrinking J some more we may assume that
‖v(t ′)− v(t)‖L2

x (R
d ) ≤ ε

1/2
d for all t ′ ∈ J . By the triangle inequality we thus see that

‖u− v‖L∞t L2
x (J×Rd ) . ε

1/2
d .

Applying Theorem 5.1 and taking εd sufficiently small, we conclude that u is a Strichartz class solution
on J as required, and Theorem 1.27 follows.

6.2. Proof of Theorem 1.32. It is clear that (i) implies (ii) and that (iii) implies (iv) implies (v). From
Corollary 1.25 we know that (i) implies (iii), while from Proposition 1.9(iii) and Definition 1.15 we see
that (ii) implies (iv). Thus, as before, the only remaining task is to show that (v) implies (i). Again, it
suffices to establish the local claim that if t ≥ t0 is such that (v) holds, then u is in the Strichartz class for
some [t, t + ε)∩ I , and similarly for t ≤ t0 and (t − ε, t] ∩ I . But this follows by a routine modification
of the arguments in Section 6.1. �
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THE LINEAR PROFILE DECOMPOSITION FOR THE AIRY EQUATION
AND THE EXISTENCE OF MAXIMIZERS FOR

THE AIRY STRICHARTZ INEQUALITY

SHUANGLIN SHAO

We establish the linear profile decomposition for the Airy equation with complex or real initial data in
L2. As an application, we obtain a dichotomy result on the existence of maximizers for the symmetric
Airy Strichartz inequality.

1. Introduction

In this paper, we consider the problem of the linear profile decomposition for the Airy equation with the
L2 initial data {

∂t u+ ∂3
x u = 0, t ∈ R, x ∈ R,

u(0, x)= u0(x) ∈ L2,
(1)

where u : R× R→ R or C. Roughly speaking, the profile decomposition is to investigate the general
structure of a sequence of solutions to the Airy equation with bounded initial data in L2. We expect
that it can be expressed, up to a subsequence, as a sum of a superposition of concentrating waves —
profiles — and a reminder term. The profiles are “almost orthogonal” in the Strichartz space and in L2

while the remainder term is small in the same Strichartz norm and can be negligible in practice. The
profile decomposition is also referred to as the bubble decomposition in the literature; see [Killip and
Visan 2008b, p.35] for an interesting historical discussion.

The same problem in the context of the wave or Schrödinger equations has been intensively studied
recently. For the wave equations, Bahouri and Gérard [1999] established a linear profile decomposition
for the energy critical wave equation in R3 (their argument can be generalized to higher dimensions).
Following [Bahouri and Gérard 1999], Keraani [2001] obtained a linear profile decomposition for en-
ergy critical Schrödinger equations; see also [Shao 2009]. For the mass critical Schrödinger equations,
when d = 2, Merle and Vega [1998] established a linear profile decomposition, similar in spirit to that
in [Bourgain 1998]; Carles and Keraani [2007] treated the d = 1 case, while the higher-dimensional
analogue was obtained by Bégout and Vargas [2007]. In general, a nonlinear profile decomposition
can be achieved from the linear case via a perturbation argument. The first ingredient of the proof of
linear profile decompositions is to start with some refined inequality: the refined Sobolev embedding
or the refined Strichartz inequality. Usually establishing such refinements needs some nontrivial work.
For instance, in the Schrödinger case, the two-dimensional improvement is due to Moyua et al. [1999]
involving the Xq

p spaces; the one-dimensional improvement due to Carles and Keraani [2007] using the

MSC2000: 35Q53.
Keywords: gKdV, mass-critical, profile decomposition, maximizer.
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Hausdorff–Young inequality and the weighted Fefferman–Phong inequality [Fefferman 1983], which
Kenig et al. [2000] first introduced to prove their refined Strichartz inequality (5) for the Airy equation;
the higher-dimensional refinement is due to Bégout and Vargas [2007] based on a new bilinear restriction
estimate for paraboloids by Tao [2003]. Another important ingredient of the arguments is the idea of
the concentration-compactness principle which aims to compensate for the defect of compactness of the
Strichartz inequality, and was exploited in [Bahouri and Gérard 1999; Merle and Vega 1998; Carles and
Keraani 2007; Bégout and Vargas 2007]; also see [Schindler and Tintarev 2001] for an abstract version
of this principle in the Hilbert space. The profile decompositions turn out to be quite useful in nonlinear
dispersive equations. For instance, they can be used to analyze the mass concentration phenomena near
the blow up time for the mass critical Schrödinger equation; see [Merle and Vega 1998; Carles and
Keraani 2007; Bégout and Vargas 2007]. They were also used to show the existence of minimal mass
or energy blow-up solutions for the Schrödinger or wave equations at critical regularity, which is an
important step in establishing the global well-posedness and scattering results for such equations; see
[Kenig and Merle 2006; 2007; Killip et al. 2007; Tao et al. 2007; Killip and Visan 2008a. Shao [2009]
used it to establish the existence of maximizers for the nonendpoint Strichartz and Sobolev–Strichartz
inequalities for the Schrödinger equation.

The discussion above motivates the question of profile decompositions for the Airy equation, which
is the free form of the mass critical generalized Korteweg–de Vries (gKdV) equation{

∂t u+ ∂3
x u± u4∂x u = 0, t ∈ R, x ∈ R,

u(0, x)= u0(x).
(2)

This is one of the (generalized) KdV equations [Tao 2006b] and is the natural analogy to the mass critical
nonlinear Schrödinger equation in one spatial dimension. The KdV equations arise from describing the
waves on shallow water surfaces, and turn out to have connections to many other physical problems.
As is well known, the class of solutions to (1) enjoys a number of symmetries that preserve the mass∫
|u|2dx . We will employ the notations from [Killip et al. 2007] and first discuss the symmetries at the

initial time t = 0.

Definition 1.1 (Mass-preserving symmetry group). For any phase θ ∈ R/2πZ, position x0 ∈ R and
scaling parameter h0 > 0, we define the unitary transform gθ,x0,h0 : L

2
→ L2 by the formula

[gθ,x0,h0 f ](x) :=
1

h1/2
0

eiθ f
( x − x0

h0

)
.

We let G be the collection of such transformations. It is easy to see that G is a group.

Unlike the free Schrödinger equation{
i∂t u−4u = 0, t ∈ R, x ∈ Rd ,

u(0, x)= u0(x),
(3)

two important symmetries are missing for (1), namely, the Galilean symmetry

u(t, x) 7→ ei xξ0+i t |ξ0|
2
u(t, x + 2tξ0),
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and the pseudo-conformal symmetry

u(t, x) 7→ |t |−d/2e−i |x |2/(4t)u(−1/t, x/t).

This lack of symmetries causes difficulties if we try to mimic the existing argument of profile decompo-
sitions for the Schrödinger equations. In this paper, we will show how to compensate for the lack of the
Galilean symmetry when developing the analogous version of linear profile decompositions for the Airy
Equation (1).

Like Schrödinger equations, an important family of inequalities, the Airy Strichartz inequality [Kenig
et al. 1991, Theorem 2.1], is associated with the Airy equation (1). It is invariant under the symmetry
group and asserts that

‖Dαe−t∂3
x u0‖Lq

t Lr
x
. ‖u0‖L2, (4)

if and only if −α+3/q+1/r = 1/2 and −1/2<α ≤ 1/q , where e−t∂3
x u0 and Dα are defined in Section

2. When q = r = 6 and α = 1/6, we also have the following refined Strichartz estimate due to Kenig–
Ponce–Vega, which is the key to establishing the profile decomposition results for the Airy equation in
this paper.

Lemma 1.2 (KPV’s refined Strichartz [Kenig et al. 2000]). Let p > 1. Then∥∥D1/6e−t∂3
x u0
∥∥

L6
t,x
≤ C

(
sup
τ
|τ |

1
2−

1
p ‖û0‖L p(τ )

) 1
3 ‖u0‖

2
3
L2, (5)

where τ denotes an interval of the real line with length |τ |.

In Section 3, we will present a new proof suggested by Terence Tao by using the Whitney decomposition.
As in the Schrödinger case, the Airy Strichartz inequality (4) cannot guarantee the solution map from

the L2 space to the Strichartz space to be compact, namely, every L2-bounded sequence will produce a
convergent subsequence of solutions in the Strichartz space. The particular Strichartz space we are inter-
ested in is equipped with the norm ‖D1/6u‖L6

t,x
. The failure of compactness can be seen explicitly from

creating counter-examples by considering the symmetries in L2 such as the space and time translations,
or scaling symmetry or frequency modulation. Indeed, given x0 ∈ R, t0 ∈ R and h0 ∈ (0,∞), we denote
by τx0 , Sh0 and Rt0 the operators defined by

τx0φ(x) := φ(x − x0), Sh0φ(x) :=
1

h1/2
0

φ
( x

h0

)
, Rt0φ(x) := e−t0∂3

xφ(x).

Let (xn)n≥1, (tn)n≥1 be sequences both going to infinity, and (hn)n≥1 be a sequence going to zero as n
goes to infinity. Then for any nontrivial φ ∈ S, (τxnφ)n≥1, (Shnφ)n≥1 and (Rtnφ)n≥1 weakly converge to
zero in L2. However, their Strichartz norms are all equal to ‖D1/6e−t∂3

xφ‖L6
t,x

, which is nonzero. Hence
these sequences are not relatively compact in the Strichartz spaces. Moreover, the frequency modulation
also exhibits the defect of compactness: for ξ0 ∈ R, we define Mξ0 via

Mξ0φ(x) := ei xξ0φ(x).

Choosing (ξn)n≥1 to be a sequence going to infinity as n goes to infinity, we see that (Mξnφ)n≥1 converges
weakly to zero. However, from Remark 1.7, ‖D1/6e−t∂3

x (ei(·)ξnφ)‖L6
t,x

converges to 3−1/6
‖e−i t∂2

xφ‖L6
t,x

,
which is not zero. This shows that the modulation operator Mξ0 is not compact either.
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It will be clear from the statements of Theorem 1.5 and Theorem 1.6 that these four symmetries
in L2 above are the only obstructions to the compactness of the solution map. Hence the parameter
(h0, ξ0, x0, t0) plays a special role in characterizing this defect of compactness; moreover, a sequence of
such parameters needs to satisfy some orthogonality constraint (the term is used in the sense of Lemma
5.2).

Definition 1.3 (Orthogonality). For j 6= k, two sequences

0 j
n := (h

j
n, ξ

j
n , x j

n , t j
n )n≥1 and 0k

n := (h
k
n, ξ

k
n , xk

n , tk
n )n≥1

in (0,∞)×R3 are orthogonal if one of the following holds:

• limn→∞

(
h j

n

hk
n
+

hk
n

h j
n
+ h j

n|ξ
j

n − ξ
k
n |

)
=∞,

• (h j
n, ξ

j
n )= (hk

n, ξ
k
n ) and

lim
n→∞

(
|tk

n − t j
n |

(h j
n)3
+

3|(tk
n − t j

n )ξ
j

n |

(h j
n)2

+
|x j

n − xk
n + 3(t j

n − tk
n )(ξ

j
n )

2
|

h j
n

)
=∞.

Remark 1.4. For any 0 j
n = (h

j
n, ξ

j
n , x j

n , t j
n )n≥1, it is clear that, up to a subsequence, limn→∞ |h

j
nξ

j
n | is

either finite or infinite. For the former, we can reduce to ξ j
n ≡ 0 for all n by changing profiles; see

Remark 3.6. For the latter, the corresponding profiles exhibit a Schrödinger behavior in some sense; see
Remark 1.7. In view of this, we will group the decompositions accordingly in the statements of our main
theorems below.

Now we are able to state the main theorems. When the initial data to Equation (1) is complex, the
following theorem on the linear Airy profile decomposition is proven in Section 5.

Theorem 1.5 (Complex version). Let (un)n≥1 be a sequence of complex-valued functions satisfying
‖un‖L2 ≤ 1. Then up to a subsequence, there exists a sequence of L2 functions (φ j ) j≥1 : R→ C and a
family of pair-wise orthogonal sequences 0 j

n = (h
j
n, ξ

j
n , x j

n , t j
n ) ∈ (0,∞)×R3 such that, for any l ≥ 1,

there exists an L2 function wl
n : R→ C satisfying

un =
∑

1≤ j≤l, ξ j
n≡0

or |h j
nξ

j
n |→∞

et j
n ∂

3
x g j

n
[
ei(·)h j

nξ
j

n φ j]
+wl

n, (6)

where g j
n := g0,x j

n ,h
j
n
∈ G and

lim
l→∞

lim
n→∞

∥∥D1/6e−t∂3
xwl

n

∥∥
L6

t,x
= 0. (7)

Moreover, for every l ≥ 1,

lim
n→∞

(
‖un‖

2
L2 −

( l∑
j=1

‖φ j
‖

2
L2 +‖w

l
n‖

2
L2

))
= 0. (8)

When the initial sequence is of real-value, we analogously obtain the following real-version profile
decomposition. Note that we can restrict the frequency parameter ξ j

n to be nonnegative.
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Theorem 1.6 (Real version). Let (un)n≥1 be a sequence of real-valued functions satisfying ‖un‖L2 ≤ 1.
Then up to a subsequence there exists a sequence of L2 functions, (φ j ) j≥1: R→ C, and a family of
orthogonal sequences 0 j

n = (h
j
n, ξ

j
n , x j

n , t j
n ) ∈ (0,∞)×[0,∞)×R2 such that, for any l ≥ 1, there exists

an L2 function wl
n: R→ R satisfying

un =
∑

1≤ j≤l, ξ j
n≡0

or |h j
nξ

j
n |→∞

et j
n ∂

3
x g j

n
[
Re(ei(·)h j

nξ
j

n φ j )
]
+wl

n, (9)

where g j
n := g0,x j

n ,h
j
n
∈ G and

lim
l→∞

lim
n→∞

∥∥D1/6e−t∂3
xwl

n(x)
∥∥

L6
t,x
= 0. (10)

Moreover, for every l ≥ 1,

lim
n→∞

(
‖un‖

2
L2 −

( ∑
1≤ j≤l, ξ j

n≡0
or |h j

nξ
j

n |→∞

∥∥Re(ei(·)h j
nξ

j
n φ j )

∥∥2
L2 +‖w

l
n‖

2
L2

))
= 0. (11)

When limn→∞ |h
j
nξ

j
n |=∞ for some 1≤ j ≤ l, the profile will exhibit asymptotic “Schrödinger” behavior.

For simplicity, we just look at the complex case.

Remark 1.7 (Asymptotic Schrödinger behavior). Without loss of generality, we assume φ j
∈S with the

compact Fourier support [−1, 1]. Then

D1/6e−(t−t j
n )∂

3
x g j

n
[
ei(·)h j

nξ
j

n φ j](x)= ∫ ei(x−x j
n )ξ+i(t−t j

n )ξ
3
|ξ |1/6(h j

n)
1/2φ̂ j (h j

n(ξ − ξ
j

n )) dξ

= (h j
n)
−1/2
|ξ j

n |
1/6ei(x−x j

n )ξ
j

n+i(t−t j
n )(ξ

j
n )

3

×

∫
e

i[ η(x−x j
n+3(t−t j

n )(ξ
j

n )
2)

h j
n

+
η3(t−t j

n )

(h j
n )3
+

3η2(t−t j
n )ξ

j
n

(h j
n )2

]
∣∣∣∣1+ η

h j
nξ

j
n

∣∣∣∣1/6φ̂ j (η) dη.

Set x ′ :=
x − x j

n + 3(t − t j
n )(ξ

j
n )

2

h j
n

and t ′ :=
3(t − t j

n )ξ
j

n

(h j
n)2

. Then the dominated convergence theorem yields

∥∥D1/6e−(t−t j
n )∂

3
x g j

n [e
i(·)h j

nξ
j

n φ j
]‖L6

t,x
= 3−1/6

∥∥∥∥∫ ei x ′η+i t ′η2
e

i t ′ η3

3h j
n ξ

j
n

∣∣∣∣1+ η

h j
nξ

j
n

∣∣∣∣1/6φ̂ j dη
∥∥∥∥

L6
t ′,x ′

→n→∞ 3−1/6
‖e−i t ′∂2

xφ j
‖L6

t ′,x ′
,

where e−i t∂2
x denotes the Schrödinger evolution operator defined via

e−i t∂2
x f (x) :=

∫
R

ei xξ+i t |ξ |2 f̂ (ξ) dξ.

Indeed, ∫
ei x ′η+i t ′η2

e
i t ′ η3

3h j
n ξ

j
n

∣∣∣∣1+ η

h j
nξ

j
n

∣∣∣∣1/6φ̂ j dη→ e−i t ′∂2
xφ j (x ′) a.e.,
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and by using [Stein 1993, Corollary, p. 334] or integration by parts,∣∣∣∣∣
∫

ei x ′η+i t ′η2
e

i t ′ η3

3h j
n ξ

j
n |1+

η

h j
nξ

j
n
|
1/6φ̂ j dη

∣∣∣∣∣≤ Cφ j B(t ′, x ′)

for n large enough but still uniform in n. Here

B(t ′, x ′)=

{
(1+ |t ′|)−1/2

≤ C
[
(1+ |x ′|)(1+ |t ′|)

]−1/4 for |x ′| ≤ 6|t ′|,

(1+ |x ′|)−1
≤ C

[
(1+ |x ′|)(1+ |t ′|)

]−1/2 for |x ′|> 6|t ′|.

It is easy to observe that B ∈ L6
t ′,x ′ .

In the next three paragraphs, we outline the proof of Theorem 1.5 in three steps; Theorem 1.6 follows
similarly. Given an L2-bounded sequence (un)n≥1, at the first step, we use the refined Strichartz inequality
(5) and an iteration argument to obtain a preliminary decomposition for (un)n≥1: up to a subsequence

un =

N∑
j=1

f j
n + q N

n ,

where f̂ j
n is supported on an interval (ξ j

n −ρ
j
n , ξ

j
n +ρ

j
n ) and | f̂ j

n | ≤ C(ρ j
n )
−1/2, and e−t∂3

x q N
n is small in

the Strichartz norm. Then we impose the orthogonality condition on (ρ j
n , ξ

j
n ): for j 6= k,

lim
n→∞

(ρ j
n

ρk
n
+
ρk

n

ρ
j
n
+
|ξ

j
n − ξ

k
n |

ρ
j
n

)
=∞,

to regroup the decomposition.
At the second step, for each j ∈ [1, N ], we will perform a further decomposition to f j

n to extract
the space and time parameters. For simplicity, we suppress all the superscripts j and rescale ( fn)n≥1 to
obtain P = (Pn)n≥1 by setting

P̂n(·) := ρ
1/2
n f̂n

(
ρn(· + ρ

−1
n ξn)

)
,

from which we can infer that each P̂n is bounded and supported on a finite interval centered at the origin.
We apply the concentration-compactness argument to (Pn)n≥1 to extract (yαn , sαn ): for any A ≥ 1, up to
a subsequence,

Pn(x)=
A∑
α=1

e−i xρ−1
n ξn esαn ∂

3
x
[
ei(·)ρ−1

n ξnφα(·)
]
(x − yαn )+ P A

n (x). (12)

More precisely, we will investigate the set of weak limits,

W(P) :=
{
w-lim
n→∞

e−i xρ−1
n ξn e−sn∂

3
x
[
ei(·)ρ−1

n ξn Pn(·)
]
(x + yn) in L2

: (yn, sn) ∈ R2},
where the notion w-limn→∞ fn denotes, up to a subsequence, the weak limit of ( fn)n≥1 in L2. Note that
due to the lack of Galilean transform and the additional multiplier weight in the current Strichartz norm,
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it is a slight but necessary modification to the Schrödinger case [Carles and Keraani 2007], where W(P)
is the set

{w-lim
n→∞

eisn∂
2
x Pn(x + yn) in L2

: (yn, sn) ∈ R2
}.

In (12), we impose the orthogonality condition on (yαn , sαn ): for α 6= β,

lim
n→∞

(∣∣∣∣yβn − yαn +
3(sβn − sαn )(ξn)

2

(ρn)2

∣∣∣∣+ ∣∣∣∣3(sβn − sαn )ξn

ρn

∣∣∣∣+ ∣∣sβn − sαn
∣∣)=∞. (13)

The error term P A
:= (P A

n )n≥1 is small in the weak sense that

lim
A→∞

µ(P A) := lim
A→∞

sup{‖φ‖L2 : φ ∈W(P A)} = 0. (14)

Since fn(x)=
√
ρnei xξn Pn(ρnx),

fn(x)=
A∑
α=1

√
ρnesαn ∂

3
x
[
ei(·)ρ−1

n ξnφα(·)
]
(ρnx − yαn )+

√
ρnei xξn P A

n (ρnx).

Let eA
n :=
√
ρnei xξn P A

n (ρnx). Now the major task is to upgrading this weak convergence in (14) to

lim
A→∞

lim
n→∞
‖D1/6e−t∂3

x eA
n ‖L6

t,x
= 0.

To achieve this, we will interpolate L6
t,x between Lq

t,x and L∞t,x for some 4 ≤ q < 6. The Lq
t,x norm

is controlled by some localized restriction estimates and the L∞t,x norm is expected to be controlled
by µ(P A). Unlike the Schrödinger case, we will distinguish the case limn→∞ |ρ

−1
n ξn| = +∞ from

limn→∞ |ρ
−1
n ξn|<+∞ due to the additional multiplier weight in the current Strichartz norm.

The final decomposition is obtained by setting

(h j
n, ξ

j
n , x j

n , t j
n ) :=

(
(ρ j

n )
−1, ξ j

n , (ρ
j
n )
−1 y j

n , (ρ
j
n )
−3s j

n
)
,

and showing two orthogonality results for the profiles.

1.8. The second part of this paper is devoted to applying the linear profile decomposition result to the
problem of the existence of maximizers for the Airy Strichartz inequality. As a corollary of Theorems
1.5 and 1.6, we will establish a dichotomy result. Denote

SC
airy := sup

{∥∥D1/6e−t∂3
x u0
∥∥

L6
t,x
: ‖u0‖L2 = 1

}
, (15)

when u0 is complex-valued; similarly we define SR
airy for real-valued initial data. We are interested in

determining whether there exists a maximizing function u0 with ‖u0‖L2 = 1 for which

‖D1/6e−t∂3
x u0‖L6

t,x
= Sairy‖u0‖L2,

where Sairy represents either SC
airy or SR

airy. The analogous question to the Schrödinger Strichartz inequal-
ities was studied by Kunze [2003], Foschi [2007], Hundertmark and Zharnitsky [2006], Carneiro [2008],
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Bennett et al. [2008] and Shao [2009]. We set

SC
schr := sup

{∥∥e−i t1u0
∥∥

L6
t,x (R×Rd )

: ‖u0‖L2(Rd ) = 1
}
. (16)

The fact SC
schr <∞ is due to Strichartz [1977] which in turn had precursors in [Tomas 1975]. For the

problem of existence of such optimal SC
schr and explicitly characterizing the maximizers, Kunze [2003]

treated the d = 1 case and showed that maximizers exist by an elaborate concentration-compactness
method. Foschi [2007] explicitly determined the best constants when d = 1, 2, and showed that the
only maximizers are Gaussians up to the natural symmetries associated to the Strichartz inequality by
using the sharp Cauchy–Schwarz inequality and the space-time Fourier transform. Hundertmark and
Zharnitsky [2006] independently obtained this result by an interesting representation formula of the
Strichartz inequalities in lower dimensions. Recently, Carneiro [2008] proved a sharp Strichartz-type
inequality by following the arguments in [Hundertmark and Zharnitsky 2006] and found its maximizers,
which derives the same results in [Hundertmark and Zharnitsky 2006] as a corollary when d = 1, 2. Very
recently, Bennett et al. [2008] offered a new proof to determine the best constants by using the method
of heat-flow. Shao [2009] showed that a maximizer exists for all nonendpoint Strichartz inequalities
and in all dimensions by relying on the recent linear profile decomposition results for the Schrödinger
equations. We will continue this approach for (15). Additionally, we will use a simple but beautiful idea
of asymptotic embedding of a NLS solution to an approximate gKdV solution, which was previously
exploited in [Christ et al. 2003; Tao 2007]. This gives that in the complex case, SC

schr ≤ 31/6SC
airy while

in the real case, SC
schr ≤ 21/231/6SR

airy.

Theorem 1.9. We have the following dichotomy on the existence of maximizers for (15) with the complex-
or real-valued initial data, respectively:

• In the complex case, either a maximizer is attained for (15), or there exists φ of complex value
satisfying

‖φ‖L2 = 1 and SC
schr = ‖e

−i t∂2
xφ‖L6

t,x
,

and a sequence (an)n≥1 satisfying limn→∞ |an| =∞ such that

lim
n→∞

∥∥D1/6e−t∂3
x [ei(·)anφ]

∥∥
L6

t,x
= SC

airy, SC
schr = 31/6SC

airy.

• In the real case, a similar statement holds; more precisely, either a maximizer is attained for (15),
or there exists φ of complex value satisfying

SC
schr =

‖e−i t∂2
xφ‖L6

t,x

‖φ‖L2
,

and a positive sequence (an)n≥1 satisfying limn→∞ an =∞ and limn→∞ ‖Re(ei(·)anφ)‖L2 = 1 such
that

lim
n→∞

∥∥D1/6e−t∂3
x Re(ei(·)anφ)

∥∥
L6

t,x
= SR

airy, SC
schr = 21/231/6SR

airy.

Remark 1.10. Note that when SC
schr = 31/6SC

airyor SC
schr = 21/231/6SR

airy, the explicit φ had been uniquely
determined by Foschi [2007] and Hundertmark and Zharnitsky [2006] independently: they are Gaussians
up to the natural symmetries enjoyed by the Strichartz inequality for the Schrödinger equation.
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This paper is organized as follows: in Section 2 we establish some notation. In Section 3, we make
a preliminary decomposition for an L2-bounded sequence (un)n≥1 of complex value. In Section 4, we
obtain similar results for a real sequence. In Section 5, we prove Theorems 1.5 and 1.6. In Section 6,
we prove Theorem 1.9.

2. Notation

We use X . Y , Y & X , or X = O(Y ) to denote the estimate |X | ≤ CY for some constant 0 < C <∞,
which might depend on the dimension but not on the functions. If X . Y and Y . X we will write
X ∼ Y . If the constant C depends on a special parameter, we shall denote it explicitly by subscripts.

We define the space-time norm Lq
t Lr

x of f on R×R by

‖ f ‖Lq
t Lr

x (R×R) :=

(∫
R

(∫
R

| f (t, x)|r dx
)q/r

dt
)1/q

,

with the usual modifications when q or r are equal to infinity, or when the domain R×R is replaced by
a small space-time region. When q = r , we abbreviate it by Lq

t,x . Unless specified, all the space-time
integrations are taken over R×R, and all the spatial integrations over R.

We fix the notation that limn→∞ should be understood as lim supn→∞ throughout this paper.
The spatial Fourier transform is defined via

û0(ξ) :=

∫
R

e−i xξu0(x) dx;

the space-time Fourier transform is defined analogously.
The Airy evolution operator e−t∂3

x is defined via

e−t∂3
x u0(x) :=

∫
R

ei xξ+i tξ3
û0(ξ) dξ.

The spatial derivative ∂k
x , for k a positive integer, is defined via the Fourier transform

∂̂k
x (ξ)= (iξ)

k .

The fractional differentiation operator Dα, α ∈ R, is defined via

Dα f (x) :=
∫

R

ei xξ
|ξ |α f̂ (ξ) dξ.

The inner product 〈·, ·〉L2 in the Hilbert space L2 is defined via

〈 f, g〉L2 :=

∫
R

f (x)g(x) dx,

where g denotes the usual complex conjugate of g in the complex plane C.

3. Preliminary decomposition: complex version

To begin proving Theorems 1.5 and 1.6, we present a new proof of the refined Strichartz inequality (5)
based on the Whitney decomposition. The following notation is taken from [Killip and Visan 2008b].
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Definition 3.1. Given j ∈ Z, we denote by D j the set of all dyadic intervals in R of length 2 j :

D j := {2 j
[k, k+ 1) : k ∈ Z}.

We also write D := ∪ j∈ZD j . Given I ∈ D, we define f I by f̂ I := f̂ 1I where 1I denotes the indicator
function of I .

Then the Whitney decomposition we need is as follows: Given two distinct ξ, ξ ′ ∈ R, there is a unique
maximal pair of dyadic intervals I ∈ D and I ′ ∈ D such that

|I | = |I ′|, dist(I, I ′)≥ 4|I |, (17)

where dist(I, I ′) denotes the distance between I and I ′, and |I | denotes the length of the dyadic interval
I . Let F denote all such pairs as ξ 6= ξ ′ varies over R×R. Then we have∑

(I,I ′)∈F

1I (ξ)1I ′(ξ
′)= 1, for a.e. (ξ, ξ ′) ∈ R×R. (18)

Since I and I ′ are maximal, dist(I, I ′)≤ 10|I |. This shows that for a given I ∈D, there exists a bounded
number of I ′ so that (I, I ′) ∈ F, that is,

#{I ′ : (I, I ′) ∈ F}. 1 for all I ∈ D. (19)

Proof of Lemma 1.2. Given p > 1, we normalize supτ∈R |τ |
1/2−1/p

‖ f̂ ‖L p(τ ) = 1. Then for all dyadic
intervals I ∈ D, ∫

I
| f̂ |pdξ ≤ |I |1−p/2. (20)

We square the left side of (5) and reduce to proving∥∥∥∥∫∫ ei x(ξ−η)+i t (ξ3
−η3)
|ξη|1/6 f̂ (ξ) f̂ (η) dξ dη

∥∥∥∥
L3

t,x

. ‖ f̂ ‖4/3L2 . (21)

We change variables a := ξ − η and b := ξ 3
− η3 and use the Hausdorff–Young inequality in both t and

x , we need to show ∫∫
|ξη|1/4| f̂ (ξ) f̂ (η)|3/2

|ξ + η|1/2|ξ − η|1/2
dξ dη .

∫
| f̂ |2dξ. (22)

By symmetries of this expression, it is sufficient to work in the region {(ξ, η) : ξ ≥ 0, η ≥ 0}. In this
case, |ξη|1/4 . |ξ + η|1/2; so we reduce to proving∫∫

| f̂ (ξ) f̂ (η)|3/2

|ξ − η|1/2
dξdη .

∫
| f̂ |2dξ. (23)

In view of (23), we assume f̂ ≥ 0 from now on. Then we apply the Whitney decomposition to obtain

f̂ (ξ) f̂ (η)=
∑

(I,I ′)∈F

f̂ I (ξ) f̂ I ′(η), for a. e. (ξ, η) ∈ R×R, (24)

and
for all (ξ, η) ∈ I × I ′ with (I, I ′) ∈ F, |ξ − η| ∼ |I |. (25)
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If we choose a slightly larger dyadic interval containing both I and I ′ but still of length comparable to
I , still denoted by I , we reduce to proving

∑
I∈D

(∫
f̂ I

3/2dξ
)2

|I |1/2
.
∫

f̂ 2dξ. (26)

To prove (26) we will make a further decomposition to f I =
∑

n∈Z fn,I : for any n ∈ Z, define fn,I via

f̂n,I := f̂ 1
{ξ : 2n |I |−1/2≤ f̂ (ξ)≤2n+1|I |−1/2}.

By the Cauchy–Schwarz inequality, for any ε > 0,(∫
f̂ I

3/2dξ
)2
=

(∑
n∈Z

∫
f̂n,I

3/2dξ
)2
.ε

∑
n∈Z

2|n|ε
(∫

f̂n,I
3/2dξ

)2
. (27)

Now (26) is an easy consequence of the following claim:

∑
I∈D

(∫
f̂n,I

3/2dξ
)2

|I |1/2
. 2−|n|ε

∫
f̂ 2dξ, for some ε > 0. (28)

By the Cauchy–Schwarz inequality,(∫
f̂n,I

3/2dξ
)2
.
∫

f̂n,I
2dξ

∫
f̂n,I dξ. (29)

On the one hand, when n ≥ 0, by the Chebyshev’s inequality and (20),∫
f̂n,I dξ . 2n

|I |−1/2
|{ξ ∈ I : f̂ (ξ)≥ 2n

|I |−1/2
}|

. 2n
|I |−1/2

∫
I f̂ pdξ

2np|I |−p/2

. 2n(1−p)
|I |−1/2

|I |p/2|I |1−p/2

= 2−|n|(p−1)
|I |1/2,

for any p > 1. On the other hand, when n < 0,∫
f̂n,I dξ . 2n

|I |−1/2
|I | = 2−|n||I |1/2.

Combining these estimates, there exists an ε > 0 such that

∑
I∈D

(∫
f̂n,I

3/2dξ
)2

|I |1/2
. 2−|n|ε

∑
I∈D

∫
f̂n,I

2dξ. (30)
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Interchanging the summation order, we have∑
I∈D

∫
f̂n,I

2 dξ =
∑
j∈Z

∑
I∈D j

∫
f̂ 21

{ξ∈I : f̂∼2n− j/2} dξ =
∫

R

∑
j : f̂∼2n− j/2

f̂ 2 dξ .
∫

f̂ 2 dξ. (31)

Then the claim (28) follows from (30) and (31). Hence the proof of Lemma 1.2 is complete. �

By using this refined Airy Strichartz inequality (5), we extract the scaling and frequency parameters ρ j
n

and ξ j
n following the approach in [Carles and Keraani 2007].

Lemma 3.2 (Complex version: extraction of ρ j
n and ξ j

n ). Let (un)n≥1 be a sequence of complex valued
functions with ‖un‖L2 ≤ 1. Then up to a subsequence, for any δ > 0, there exists N := N (δ), a family
(ρ

j
n , ξ

j
n ) 1≤ j≤N

n≥1
∈ (0,∞)×R and a family ( f j

n ) 1≤ j≤N
n≥1

of L2-bounded sequences such that, if j 6= k,

lim
n→∞

(
ρ

j
n

ρk
n
+
ρk

n

ρ
j
n
+
|ξ

j
n − ξ

k
n |

ρ
j
n

)
=∞, (32)

for every 1≤ j ≤ N , there exists a compact K in R such that√
ρ

j
n | f̂

j
n (ρ

j
n ξ + ξ

j
n )| ≤ Cδ1K (ξ), (33)

and

un =

N∑
j=1

f j
n + q N

n , (34)

which satisfies ∥∥D
1
6 e−t∂3

x q N
n

∥∥
L6

t,x
≤ δ, (35)

and

lim
n→∞

(
‖un‖

2
L2 −

( N∑
j=1

‖ f j
n ‖

2
L2 +‖q N

n ‖
2
L2

))
= 0. (36)

Proof. For γn = (ρn, ξn) ∈ (0,∞)×R, we define Gn : L2
→ L2 by setting

Gn( f )(ξ) :=
√
ρn f (ρnξ + ξn).

We will induct on the Strichartz norm. If ‖D
1
6 e−t∂3

x un‖L6
t,x
≤ δ, then there is nothing to prove. Otherwise,

up to a subsequence, we have

‖D
1
6 e−t∂3

x un‖L6
t,x
> δ.

On the one hand, applying Lemma 1.2 with p = 4/3, we see that there exists a family of intervals
I 1
n := [ξ

1
n − ρ

1
n , ξ

1
n + ρ

1
n ] such that ∫

I 1
n

|ûn|
4/3dξ ≥ C1δ

4(ρ1
n)

1
3 ,
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where C1 only depends on C , the constant in Lemma 1.2; note that we used ‖un‖L2 ≤ 1 here. On the
other hand, for any A > 0, ∫

I 1
n∩{|ûn |>A}

|ûn|
4/3dξ ≤ A−

2
3 ‖ûn‖

2
L2 ≤ A−

2
3 .

Let Cδ := (C1/2)−3/2δ−6. Then from the two considerations above, we have∫
I 1
n∩{|ûn |≤Cδ(ρ1

n )
−1/2}

|ûn|
4/3dξ ≥

C1

2
δ4(ρ1

n)
1/3.

From the Hölder inequality, we have∫
I 1
n∩{|ûn |≤Cδ(ρ1

n )
−1/2}

|ûn|
4
3 dξ ≤ C2

(∫
I 1
n∩{|ûn |≤Cδ(ρ1

n )
−1/2}

|ûn|
2dξ

)2/3
(|I 1

n |)
1/3.

This yields ∫
I 1
n∩{|ûn |≤Cδ(ρ1

n )
−1/2}

|ûn|
2dξ ≥ C ′δ6,

where C ′ > 0 is some constant depending only on C1 and C2. Define v1
n and γ 1

n by

v̂1
n := ûn1I 1

n∩{|ûn |≤Cδ(ρ1
n )
−1/2}, γ

1
n := (ρ

1
n , ξ

1
n ).

Then ‖v1
n‖L2 ≥ (C ′)1/2δ3. Also by the definition of G, we have

|G1
n(v̂

1
n)(ξ)| = |(ρ

1
n)

1/2v̂1
n(ρ

1
nξ + ξ

1
n )| ≤ Cδ1[−1,1](ξ).

Moreover, since the supports are disjoint on the Fourier side, we have

‖un‖
2
L2 = ‖un − v

1
n‖

2
L2 +‖v

1
n‖

2
L2 .

We repeat the same argument with un − v
1
n in place of un . At each step, the L2-norm decreases by at

least (C ′)1/2δ3. Hence after N := N (δ) steps, we obtain (v j
n )1≤ j≤N and (γ j

n )1≤ j≤N , so

un =

N∑
j=1

v j
n + q N

n , ‖un‖
2
L2 =

N∑
j=1

‖v j
n‖

2
L2 +‖q N

n ‖
2
L2,

where the latter equality is due to the disjoint Fourier supports. We have the error term estimate

‖D
1
6 e−t∂3

x q N
n ‖L6

t,x
≤ δ,

which gives (35). The properties we obtain now are almost the case except for the first point of this
lemma (32). To obtain it, we will reorganize the decomposition. We impose the following condition on
γ

j
n := (ρ

j
n , ξ

j
n ): γ

j
n and γ k

n are orthogonal if

lim
n→∞

(ρ j
n

ρk
n
+
ρk

n

ρ
j
n
+
|ξ

j
n − ξ

k
n |

ρ
j
n

)
=∞.

Then we define f 1
n to be a sum of those v j

n whose γ j
n are not orthogonal to γ 1

n . Then taking the least
j0 ∈ [2, N ] such that γ j0

n is orthogonal to γ 1
n , we can define f 2

n to be a sum of those v j
n whose γ j

n are
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orthogonal to γ 1
n but not to γ j0

n . Repeating this argument a finite number of times, we obtain (34). This
decomposition automatically gives (32). Since the supports of the functions are disjoint on the Fourier
side, we also have (36). Finally we want to make sure that, up to a subsequence, (33) holds.

By construction, those v j
n kept in the definition of f 1

n are such that the γ j
n are not orthogonal to γ 1

n ,
that is, for those j , we have

lim
n→∞

ρ
j
n

ρ1
n
+
ρ1

n

ρ
j
n
<∞, lim

n→∞

|ξ
j

n − ξ
1
n |

ρ
j
n

<∞. (37)

To show (33), it is sufficient to show that, up to a subsequence, G1
n(v̂

j
n ) is bounded by a compactly

supported and bounded function, which will imply (33) with j = 1. On the one hand, by construction,

|G j
n(v̂

j
n )| ≤ Cδ1[−1,1].

On the other hand, we observe that

G1
n(v̂

j
n )= G1

n(G
j
n)
−1G j

n(v̂
j
n ), G1

n(G
j
n)
−1 f (ξ)=

√
ρ1

n

ρ
j
n

f
(
ρ1

n

ρ
j
n
ξ +

ξ 1
n − ξ

j
n

ρ
j
n

)
,

which yields the desired estimate for G1
n(v̂

j
n ) by (37). Inductively we obtain (32). Hence the proof of

Lemma 3.2 is complete. �

The following lemma is useful in upgrading the weak convergence of error terms to the strong con-
vergence in the Strichartz norm in Lemma 3.5.

Lemma 3.3. We have the following two localized restriction estimates: for 9/2 < q < 6 and Ĝ ∈
L∞(B(0, R)) for some R > 0, ∥∥D1/6e−t∂3

x G
∥∥

Lq
t,x
≤ Cq,R‖Ĝ‖L∞ . (38)

For the same G, 4≤ q < 6 and |ξ0| ≥ 10R,∥∥e−t∂3
x (ei(·)ξ0 G)

∥∥
Lq

t,x
≤ Cq,R|ξ0|

−1/q
‖Ĝ‖L∞ . (39)

Proof. Let us start with the proof of (38). Let q = 2r with 9/4< r < 3. After squaring, we are reduced
to proving∥∥∥∥∫

B(0,R)

∫
B(0,R)

ei x(ξ1−ξ2)+i t (ξ3
1−ξ

3
2 )|ξ1ξ2|

1/6Ĝ(ξ1) Ĝ (ξ2) dξ1 dξ2

∥∥∥∥
Lr

t,x

≤ Cq,R‖Ĝ‖2L∞(B(0,R)).

Let s1 := ξ1− ξ2 and s2 := ξ
3
1 − ξ

3
2 and denote the resulting image of B(0, R)× B(0, R) by � under this

change of variables. Then by using the Hausdorff–Young inequality since r > 2, we see that the left side
of the inequality above is bounded by

C
(∫

�

∣∣∣|ξ1ξ2|
1/6 Ĝ(ξ1)Ĝ(ξ2)

|ξ 2
1 − ξ

2
2 |

∣∣∣r ′ds1ds2

) 1
r ′

.
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Then if we change variables back, we obtain

C
(∫

B(0,R)×B(0,R)

|ξ1ξ2|
r ′/6

|ξ1+ ξ2|r
′−1|ξ1− ξ2|r

′−1 |Ĝ(ξ1)Ĝ(ξ2)|
r ′dξ1dξ2

) 1
r ′

.

As in the proof of Lemma 1.2, we may assume that ξ1, ξ2 ≥ 0. So we have |ξ1ξ2|
1
2 . |ξ1 + ξ2|, which

leads to (ξ1ξ2)
r ′/6 . (ξ1+ ξ2)

r ′/3 and thus

|ξ1ξ2|
r ′/6

|ξ1+ ξ2|r
′−1|ξ1− ξ2|r

′−1 .
1

|ξ1− ξ2|
5
3 r ′−2
+

1

|ξ1+ ξ2|
5
3 r ′−2

.

Then since |ξ |−
5
3 r ′+2 is locally integrable when 3/2< r ′ < 9/5 and Ĝ ∈ L∞, we obtain (38).

The proof of (39) is similar. Setting q = 2r with 2≤ r < 3 and following the same procedure as above,
we have

‖e−t∂3
x (ei(·)ξ0 G)‖2Lq

t,x
=
∥∥e−t∂3

x (ei(·)ξ0 G)e−t∂3
x (ei(·)ξ0 G)

∥∥
Lr

t,x

=

∥∥∥∥∫ ei x(ξ−η)+i t[(ξ+ξ0)
3
−(η+ξ0)

3
]Ĝ(ξ) Ĝ (η) dξdη

∥∥∥∥
Lr

t,x

.

(∫
|Ĝ(ξ)|r

′

|Ĝ(η)|r
′

|ξ − η|r
′−1|ξ + η+ 2ξ0|r

′−1 dξdη
)1/r ′

.

(∫
|Ĝ(ξ)|r

′

|Ĝ(η)|r
′

|ξ − η|r
′−1|ξ0|r

′−1 dξdη
)1/r ′

≤ Cq,R|ξ0|
−1+1/r ′

‖Ĝ‖2L∞ ≤ Cq,R|ξ0|
−2/q
‖Ĝ‖2L∞,

where we have used |ξ + η+ 2ξ0| ∼ |ξ0| since ξ, η ∈ B(0, R) and |ξ0| ≥ 10R. �

In Lemma 3.2, we have determined the scaling and frequency parameters. Recall that from Section 1,
we are left with extracting the space and time translation parameters. For this purpose, we will apply
the concentration–compactness argument. For simplicity, we present the following lemma of this kind
adapted to Airy evolution but not involving the frequency and scaling parameters. The general case is
similar and will be done in the next lemma.

Lemma 3.4 (Concentration–compactness). Suppose P := (Pn)n≥1 with ‖Pn‖L2 ≤ 1. Then up to a sub-
sequence, there exists a sequence (φα)α≥1 ∈ L2 and a family (yαn , sαn ) ∈ R2 such that they satisfy the
following constraints: for α 6= β,

lim
n→∞

(
|yαn − yβn | + |s

α
n − sβn |

)
=∞, (40)

and for A ≥ 1, there exists P A
n ∈ L2 so that

Pn(x)=
A∑
α=1

esαn ∂
3
xφα(x − yαn )+ P A

n (x), (41)
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and
lim

A→∞
µ(P A)= 0,

where µ(P A) is defined in the argument below; moreover we have the following almost orthogonality
identity: for any A ≥ 1,

lim
n→∞

(
‖Pn‖

2
L2 −

( A∑
α=1

‖φα‖2L2 +‖P A
n ‖

2
L2

))
= 0. (42)

Proof. Let W(P) be the set of weak limits of subsequences of P in L2 after the space and time transla-
tions:

W(P) := {w-lim
n→∞

e−sn∂
3
x Pn(x + yn) in L2

: (yn, sn) ∈ R2)}.

We set µ(P) := sup{‖φ‖L2 : φ ∈W(P)}. Clearly we have

µ(P)≤ lim
n→∞
‖Pn‖L2 .

If µ(P)= 0, then there is nothing to prove. Otherwise µ(P) > 0, then up to a subsequence, there exists
a φ1
∈ L2 and a sequence (y1

n , s1
n)n≥1 ∈ R2 such that

φ1(x)= w-lim
n→∞

e−s1
n∂

3
x Pn(x + y1

n) in L2, (43)

and ‖φ1
‖L2 ≥

1
2µ(P). We set P1

n := Pn − es1
n∂

3
xφ1(x − y1

n). Then since e−t∂3
x is an unitary operator on

L2, we have

‖P1
n ‖

2
L2 = 〈P1

n , P1
n 〉L2

= 〈Pn − es1
n∂

3
xφ1(x − y1

n), Pn − es1
n∂

3
xφ1(x − y1

n)〉L2

= 〈e−s1
n∂

3
x
(
Pn − es1

n∂
3
xφ1(x − y1

n)
)
, e−s1

n∂
3
x
(
Pn − es1

n∂
3
xφ1(x − y1

n)
)
〉L2

= 〈e−s1
n∂

3
x Pn −φ

1(x − y1
n), e−s1

n∂
3
x Pn −φ

1(x − y1
n)〉L2

= 〈e−s1
n∂

3
x Pn(x + y1

n)−φ
1(x), e−s1

n∂
3
x Pn(x + y1

n)−φ
1(x)〉L2

= 〈Pn, Pn〉L2 +〈φ1, φ1
〉L2 −〈e−s1

n∂
3
x Pn(x + y1

n), φ
1
〉L2 −〈φ1, e−s1

n∂
3
x Pn(x + y1

n)〉L2 .

Taking n→∞ and using (43), we see that

lim
n→∞

(
‖Pn‖

2
L2 − (‖φ

1
‖

2
L2 +‖P1

n ‖
2
L2)
)
= 0, e−s1

n∂
3
x P1

n (x + y1
n)→ 0, weakly in L2.

We replace Pn with P1
n and repeat the same process: if µ(P1) > 0, we obtain φ2 and (y2

n , s2
n)n≥1 so that

‖φ2
‖L2 ≥

1
2µ(P

1) and

φ2(x)= w-lim
n→∞

e−s2
n∂

3
x P1

n (x + y2
n) in L2.

Moreover, (y1
n , s1

n)n≥1 and (y2
n , s2

n)n≥1 satisfy (40). Otherwise, up to a subsequence, we may assume that

lim
n→∞

s2
n − s1

n = s0, lim
n→∞

y2
n − y1

n = y0,
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where (s0, y0) ∈ R2. Then for any φ ∈ S,

lim
n→∞

∥∥e−(s
2
n−s1

n )∂
3
xφ(x + (y2

n − y1
n))− e−s0∂

3
xφ(x + y0)

∥∥
L2 = 0.

That is to say, (
e−(s

2
n−s1

n )∂
3
xφ(x + (y2

n − y1
n))
)

n≥1

converges strongly in L2. On the other hand, we rewrite,

e−s2
n∂

3
x P1

n (x + y2
n)= e−(s

2
n−s1

n )∂
3
x (e−s1

n∂
3
x P1

n (x + y1
n))(x + (y

2
n − y1

n)).

Now the strong convergence and weak convergence together yield φ2
= 0, hence µ(P1) = 0, a contra-

diction. Hence (40) holds.
Iterating this argument, a diagonal process produces a family of pairwise orthogonal sequences

(yαn , sαn )α≥1 and (φα)α≥1

satisfying (41) and (42). From (42),
∑

α ‖φ
α
‖

2
L2 is convergent and hence limα→∞ ‖φ

α
‖L2 = 0. This

gives
lim

A→∞
µ(P A)= 0,

since µ(P A)≤ 2‖φA
‖L2 by construction. �

We are ready to extract the space and time parameters of the profiles.

Lemma 3.5 (Complex version: extraction of x j,α
n and s j,α

n ). Suppose an L2-bounded sequence ( fn)n≥1

satisfies
√
ρn| f̂n(ρn(ξ + (ρn)

−1ξn))| ≤ F(ξ),

with F ∈ L∞(K ) for some compact set K in R independent of n. Then up to a subsequence, there exists
a family (yαn , sαn ) ∈ R×R and a sequence (φα)α≥1 of L2 functions such that, if α 6= β,

lim
n→∞

(∣∣∣∣yβn − yαn +
3(sβn − sαn )(ξn)

2

(ρn)2

∣∣∣∣+ ∣∣∣∣3(sβn − sαn )ξn

ρn

∣∣∣∣+ ∣∣sβn − sαn
∣∣)=∞, (44)

and for every A ≥ 1, there exists eA
n ∈ L2,

fn(x)=
A∑
α=1

√
ρnesαn ∂

3
x
[
ei(·)ρ−1

n ξnφα(·)
]
(ρnx − yαn )+ eA

n (x), (45)

and
lim

A→∞
lim

n→∞
‖D

1
6 e−t∂3

x eA
n ‖L6

t,x
= 0, (46)

and for any A ≥ 1,

lim
n→∞

(
‖ fn‖

2
L2 −

( A∑
α=1

‖φα‖2L2 +‖eA
n ‖

2
L2

))
= 0. (47)
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Proof. Setting P := (Pn)n≥1 with P̂n(ξ) :=
√
ρn f̂n(ρn(ξ + (ρn)

−1ξn)). Then

P̂n ∈ L∞(K ).

Let W(P) be the set of weak limits in L2 defined by

W(P) :=
{
w-lim
n→∞

e−i xρ−1
n ξn e−sn∂

3
x
[
ei(·)ρ−1

n ξn Pn(·)
]
(x + yn) in L2

: (yn, sn) ∈ R2},
and µ(P) as in the previous lemma. Then a similar concentration-compactness argument shows that, up
to a subsequence, there exists a family (yαn , sαn )α≥1

n≥1
and (φα)α≥1 ∈ L2 such that (44) holds, and

Pn(x)=
A∑
α=1

e−i xρ−1
n ξn esαn ∂

3
x
[
ei(·)ρ−1

n ξnφα(·)
]
(x − yαn )+ P A

n (x).

As weak limits, each φ̂α has the same support as P̂n , so does P̂ A
n . Furthermore, we may assume that

φ̂α, P̂ A
n ∈ L∞(K ). Setting P A

:= (P A
n )n≥1. Then the sequence (P A)A≥1 satisfies

lim
A→∞

µ(P A)= 0. (48)

For any A ≥ 1, we also have

lim
n→∞

(
‖Pn‖

2
L2 −

( A∑
α=1

‖φα‖2L2 +‖P A
n ‖

2
L2

))
= 0.

Since fn(x)=
√
ρnei xξn Pn(ρnx), the decomposition (45) of fn follows after setting

eA
n (x) :=

√
ρnei xξn P A

n (ρnx).

What remains to show is that

lim
A→∞

lim
n→∞

∥∥D
1
6 e−t∂3

x [
√
ρneiyξn P A

n (ρn y)]
∥∥

L6
t,x
= 0,

which will follow from (48) and the restriction estimates in Lemma 3.3 by an interpolation argument.
Indeed, by scaling, it is equivalent to showing that

lim
A→∞

lim
n→∞

∥∥D1/6e−t∂3
x [ei(·)an P A

n ]
∥∥

L6
t,x
= 0, (49)

where an := (ρn)
−1ξn . Up to a subsequence, we split into two cases according to whether limn→∞ |an| =

∞ or not.
Case 1. limn→∞ |an| = ∞. By using the Hörmander–Mikhlin multiplier theorem [Tao 2006a,

Theorem 4.4], for sufficiently large n, we have∥∥D1/6e−t∂3
x [ei(·)an P A

n ]
∥∥

L6
t,x
. |an|

1/6∥∥e−t∂3
x [ei(·)an P A

n ]
∥∥

L6
t,x
.

We will show that, after taking limits in n, the right hand side is bounded by Cqµ(P A)1−q/6 for some
4 ≤ q < 6. Then limA→∞ µ(P A) = 0 yields the result. We choose a cut-off χn(t, x) := χn,1(t)χn,2(x)
satisfying

χn,2(x) := χ2(x)ei xan , χ2 ∈ S,
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where χ̂2 is compactly supported and χ̂2(ξ) := 1 on the common support K of P̂n , and

χ̂n,1((ξ + an)
3) := χ̂1(ξ

3), χ1 ∈ S,

where χ̂1(ξ
3) := 1 on Supp χ̂2. Let ∗ denote space-time convolution; then

χn ∗ [e−t∂3
x (ei(·)an P A

n )] = e−t∂3
x (ei(·)an P A

n ). (50)

Indeed, the space-time Fourier transform of χn is equal to

χ̂n(τ, ξ) :=

∫
e−i tτ−i xξχn(t, x) dt dx = χ̂2(ξ − an)χ̂n,1(τ ).

On the support of the space-time Fourier transform of e−t∂3
x (ei(·)an P A

n ), we see that

χ̂n(τ, ξ)≡ 1.

This gives (50). Then by the Hölder inequality and the restriction estimate (39) in Lemma 3.3, for
sufficiently large n,∥∥e−t∂3

x (ei(·)an P A
n )
∥∥

L6
t,x
=
∥∥χn ∗ [e−t∂3

x (ei(·)an P A
n )]

∥∥
L6

t,x

.
∥∥χn ∗

[
e−t∂3

x (ei(·)an P A
n )
]∥∥q/6

Lq
t,x

∥∥χn ∗
[
e−t∂3

x (ei(·)an P A
n )
]∥∥1−q/6

L∞t,x

. |an|
−1/6
‖F‖q/6L∞

∥∥χn ∗
[
e−t∂3

x (ei(·)an P A
n )
]∥∥1−q/6

L∞t,x
,

for some 4< q < 6. There exists (tn, yn)n≥1 such that∥∥χn ∗ [e−t∂3
x (ei(·)an P A

n )]
∥∥

L∞t,x
∼

∣∣∣χn ∗ [e−t∂3
x (ei(·)an P A

n )](tn, yn)
∣∣∣ .

We expand the right side out,∣∣∣∣∫∫ χn,1(−t)χn,2(−x)e−t∂3
x [e−tn∂3

x (ei(·)an P A
n )(· + yn)](x) dx dt

∣∣∣∣ .
Setting pn(x)= e−tn∂3

x (ei(·)an P A
n )(x + yn), then it equals∣∣∣∣∫∫ χ̂1(η

3)χ̂2(η)e−i xηdη e−i xan pn(x) dx
∣∣∣∣= ∣∣∣∣∫ χ2(−x) e−i xan pn(x) dx

∣∣∣∣ .
Taking n → ∞, and using the definition of W(P A) followed by the Cauchy–Schwarz inequality, we
obtain

lim
n→∞

∥∥χn ∗ [e−t∂3
x (ei(·)an P A

n )]
∥∥

L∞t,x
. ‖χ2‖L2µ(P A). χ2µ(P A).

Hence the claim (49) follows.
Case 2. limn→∞ |an|<∞. From the Hölder inequality, we have the L6

t,x norm in (49) is bounded by∥∥D1/6e−t∂3
x [ei(·)an P A

n ]
∥∥q/6

Lq
t,x

∥∥D1/6e−t∂3
x [ei(·)an P A

n ]
∥∥1−q/6

L∞t,x
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for some 4< q < 6. On the one hand, since limn→∞ |an| is finite and P̂ A
n ∈ L∞(K ), there exists a large

R > 0 so that
Supp F[ei(·)an P A

n ] ⊂ B(0, R),

where F( f ) denotes the spatial Fourier transform of f . Then from (38) in Lemma 3.3, we see that∥∥D1/6e−t∂3
x [ei(·)an P A

n ]
∥∥

Lq
t,x
≤ Cq,R‖F‖L∞,

which is independent of n. On the other hand, from the Bernstein inequality, we have∥∥D1/6e−t∂3
x [ei(·)an P A

n ]
∥∥

L∞t,x
≤ Cq,R

∥∥e−t∂3
x [ei(·)an P A

n ]
∥∥

L∞t,x
.

Then a similar argument as in Case 1 shows that ‖e−t∂3
x [ei(·)an P A

n ]‖L∞t,x is bounded by µ(P A)c for some
c > 0. Hence (49) follows and the proof of Lemma 3.5 is complete. �

Remark 3.6. In view of the previous lemma, we will make a very useful reduction when limn→∞ ρ
−1
n ξn=

a is finite: we will take ξn ≡ 0. Indeed, we first replace ei(·)ρ−1
n ξnφα with ei(·)aφα by putting the difference

into the error term; then we can reduce it further by regarding ei(·)aφα as a new φα.

Next we will show that the profiles obtained in (45) are strongly decoupled under the orthogonality
condition (44); more general version is in Lemma 5.2. Abusing notation, we define

g̃αn (φ
α)(x) :=

√
ρnesαn ∂

3
x [ei(·)ρ−1

n ξnφα(·)](ρnx − yαn ),

where ξn ≡ 0 when limn→∞ ρ
−1
n ξn is finite.

Corollary 3.7. Under (44), for any α 6= β, we have

lim
n→∞

∣∣〈g̃αn (φα), g̃βn (φβ)
〉
L2

∣∣= 0 (51)

and for any 1≤ α ≤ A,
lim

n→∞

∣∣〈g̃αn (φα), eA
n
〉
L2

∣∣= 0. (52)

Proof. Without loss of generality, we assume that φα and φβ are Schwartz functions with compact Fourier
support. We first prove (51). By changing variables, we have∣∣〈g̃αn (φα), g̃βn (φβ)

〉
L2

∣∣= ∣∣∣〈√ρnesαn ∂
3
x
[
ei(·)ρ−1

n ξnφα(·)
]
(ρnx − yαn ),

√
ρnesβn ∂3

x
[
ei(·)ρ−1

n ξnφβ(·)
]
(ρnx − yβn )

〉
L2

∣∣∣
=

∣∣∣〈e−(sβn−sαn )∂
3
x
[
ei(·)ρ−1

n ξnφα(·)
]
(x + yβn − yαn ), ei xρ−1

n ξnφβ(x)
〉

L2

∣∣∣
≤

〈∣∣∣∫ e
iξ(x+yβn−yαn+3 (s

β
n −sαn )ξ

2
n

ρ2
n

)+iξ3(sβn−sαn )+3iξ2 (s
β
n −sαn )ξn
ρn φ̂α(ξ) dξ

∣∣∣, ∣∣φβ∣∣〉
L2
.

Hence if (44) holds, by using [Stein 1993, Corollary, p. 334] or integration by parts combined with the
dominated convergence theorem, we conclude that this expression goes to zero as n goes to infinity.

To prove (52), we write

eA
n =

B∑
β=A+1

g̃βn (φβ)+ eB
n ,
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for any B > A. Recall
eB

n =
√
ρn
(
ei(·)ρ−1

n ξn P B
n
)
(ρnx).

Then∣∣〈g̃αn (φα), eA
n 〉L2

∣∣≤ B∑
β=A+1

∣∣∣〈g̃αn (φα), g̃βn (φβ)〉L2

∣∣∣+ ∣∣∣〈φα, e−i xρ−1
n ξn e−sαn ∂

3
x (ei(·)ρ−1

n ξn P B
n )(x + yαn )

〉
L2

∣∣∣ .
When n goes to infinity, the first term goes to zero because of (51). The second term is less than
‖φα‖L2µ(P B) by the definitions of W(P B) and µ(P B), and the Cauchy–Schwarz inequality; so it can
be made arbitrarily small if taking B large enough. Hence (52) is obtained by taking B→∞. �

4. Preliminary decomposition: real version

To prove Theorem 1.6, we need the corresponding real version of lemmas in the previous section, es-
pecially of Lemmas 3.2 and 3.5. To develop the real analogue of Lemma 3.2, we recall the following
lemma due to Kenig et al. [2000].

Lemma 4.1. Let u0 ∈ L2 be a real-valued function with ‖u0‖L2 = 1. Then for any δ > 0, there exists a
positive integer N = N (δ), real-valued functions f 1, . . . , f N and eN , intervals τ1, . . . , τN , and a positive
constant Cδ such that

f̂ j (ξ)= f̂ j (−ξ), Supp f̂ j ⊂ τ j ∪ (−τ j ), |τ j | = ρ j , | f̂ j | ≤ Cδρ
−1/2
j ,

and

u0 =

N∑
j=1

f j
+ eN ,

with

‖u0‖
2
L2 =

N∑
j=1

‖ f j
‖

2
L2 +‖eN

‖
2
L2,

∥∥D1/6e−t∂3
x eN

∥∥
L6

t,x
< δ.

The proof of this lemma is similar to that of the previous Lemma 3.2 with the help that, for real function
f , f̂ = f̂ (−ξ). For our purpose, we will do a little more on the decomposition above. Indeed, from the
proof in [Kenig et al. 2000] we know that f̂ j (ξ) = 1

{ξ∈τ j∪(−τ j ): |û0|≤Cδρ
−1/2
j }

û0(ξ) and τ j ⊂ (0,∞). We
can decompose f j further by setting

f j
:= f j,+

+ f j,−,

f̂ j,+ := 1
{ξ∈τ j : |û0|≤Cδρ

−1/2
j }

û0,

f̂ j,− := 1
{ξ∈−τ j : |û0|≤Cδρ

−1/2
j }

û0.

Since u0 is real, we have û0(ξ)= û0(−ξ), which yields

f̂ j,+(ξ)= f̂ j,−(−ξ), and f j,−
= f j,+.

Hence
f j
= 2 Re f j,+.
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Now we return to prove Theorem 1.6. We repeat the process above for each real-valued un to obtain
v1

n, . . . , v
N
n and real-valued eN

n such that

un =

N∑
j=1

2 Re(v j
n )+ eN

n , (53)

with √
ρ

j
n |v̂

j
n (ρ

j
n ξ + ξ

j
n )| ≤ Cδ1K (ξ), with ξ j

n > 0, for some compact K , (54)

and

‖un‖
2
L2 =

N∑
j=1

4
∥∥Re(v j

n )
∥∥2

L2 +
∥∥eN

n

∥∥2
L2 . (55)

Still we define the real version of the orthogonality condition on the sequence (ρ j
n , ξ

j
n )n≥1 ∈ (0,+∞)2

as before: for j 6= k,

lim
n→∞

(ρ j
n

ρk
n
+
ρk

n

ρ
j
n
+
|ξ

j
n − ξ

k
n |

ρ
j
n

)
=∞. (56)

Based on (53) and (54), the basic idea of obtaining the real version is to apply the procedure in the
previous section to v j

n , and then take the real part. The only issue here is to show that the error term
is still small in the Strichartz norm, and the almost orthogonality in L2 norm still holds. We omit the
details.

Lemma 4.2 (Real version: extraction of ρ j
n and ξ j

n ). Let (un)n≥1 be a sequence of real-valued functions
with ‖un‖L2 ≤ 1. Then up to a subsequence, for any δ > 0, there exists N = N (δ), an orthogonal family
(ρ

j
n , ξ

j
n ) 1≤ j≤N

n≥1
∈ (0,∞)2 satisfying (56) and a sequence ( f j

n ) 1≤ j≤N
n≥1
∈ L2 such that, for every 1 ≤ j ≤ N ,

there is a compact set K in R such that√
ρ

j
n | f̂

j
n (ρ

j
n ξ + ξ

j
n )| ≤ Cδ1K (ξ), (57)

and for any N ≥ 1, there exists a real-valued q N
n ∈ L2 such that

un = 2
N∑

j=1

Re( f j
n )+ q N

n , (58)

with
‖D

1
6 e−t∂3

x q N
n ‖L6

t,x
≤ δ, (59)

and for any N ≥ 1,

lim
n→∞

(
‖un‖

2
L2 −

( N∑
j=1

4
∥∥Re( f j

n )
∥∥2

L2 +
∥∥q N

n

∥∥2
L2

))
= 0. (60)

Then we focus on decomposing f j
n further as in Lemma 3.5. Taking real parts automatically produces a

decomposition for Re( f j
n ). We will be sketchy on how to resolve issues of the convergence of the error

term and the almost L2 orthogonality.



THE LINEAR PROFILE DECOMPOSITION FOR THE AIRY EQUATION 105

Lemma 4.3 (Real version: extraction of x j,α
n and s j,α

n ). Let ( fn)n≥1 ∈ L2 be a sequence of real-valued
functions satisfying ‖ fn‖L2 ≤ 1 and

√
ρn
∣∣ f̂n(ρn(ξ + (ρn)

−1ξn))
∣∣≤ F(ξ),

with F ∈ L∞(K ) for some compact set K and ξn > 0. Then up to a subsequence, there exists a family
(yαn , sαn ) ∈ R×R and a sequence of complex-valued functions (φα)α≥1 ∈ L2 such that, if α 6= β,

lim
n→∞

(∣∣∣yβn − yαn +
3(sβn − sαn )(ξn)

2

(ρn)2

∣∣∣+ ∣∣∣3(sβn − sαn )ξn

ρn

∣∣∣+ ∣∣sβn − sαn
∣∣)=∞, (61)

and for each A ≥ 1, there exists eA
n ∈ L2 of complex-value such that

fn(x)=
A∑
α=1

g̃αn (φ
α)(x)+Re(eA

n )(x), (62)

where
g̃αn (φ

α)(x)=
√
ρnesαn ∂

3
x
[
Re(ei(·)ρ−1

n ξnφα)
]
(ρnx − yαn ),

with ξn ≡ 0 when ρ−1
n ξn converges to some finite limit, and

lim
A→∞

lim
n→∞

∥∥D
1
6 e−t∂3

x Re(eA
n )
∥∥

L6
t,x
= 0, (63)

and for any A ≥ 1,

lim
n→∞

(
‖ fn‖

2
L2 −

( A∑
α=1

∥∥Re(ei(·)ρ−1
n ξnφα)

∥∥2
L2 +

∥∥Re(eA
n )
∥∥2

L2

))
= 0. (64)

Moreover, for any α 6= β,

lim
n→∞

∣∣∣〈g̃αn (φα), g̃βn (φβ)〉L2

∣∣∣= 0, (65)

and for any 1≤ α ≤ A,
lim

n→∞

∣∣〈g̃αn (φα),Re(eA
n )〉L2

∣∣= 0. (66)

Proof. We briefly describe how to obtain these identities. Equations (61), (62) follow along similar lines
as in Lemma 3.5. Equation (63) follows from (46) and the pointwise inequality∣∣D 1

6 e−t∂3
x Re(eA

n )(x)
∣∣= ∣∣Re(D

1
6 e−t∂3

x eA
n )(x)

∣∣≤ ∣∣D 1
6 e−t∂3

x eA
n (x)

∣∣.
Equation (64) follows from (65) and (66), which are proven similarly as in Corollary 3.7. �

5. Final decomposition: proof of Theorems 1.5 and 1.6

In this section, we will only prove the complex version Theorem 1.5 by following the approach in [Ker-
aani 2001]; the real version Theorem 1.6 can be obtained similarly. We go back to the decompositions
(34), (45) and set

(h j
n, ξ

j
n , x j,α

n , t j,α
n ) := ((ρ j

n )
−1, ξ j

n , (ρ
j
n )
−1 y j,α

n , (ρ j
n )
−3s j,α

n ).
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Then we use Remark 3.6 and put all the error terms together,

un =
∑

1≤ j≤N , ξ j
n≡0

or |h j
nξ

j
n |→∞

A j∑
α=1

et j,α
n ∂3

x g j,α
n
[
ei(·)h j

nξ
j

n φ j,α]
+ wN ,A1,...,AN

n , (67)

where g j,α
n = g0,x j,α

n ,h j
n
∈ G and

wN ,A1,...,AN
n =

N∑
j=1

e j,A j
n + q N

n . (68)

We enumerate the pairs ( j, α) by ω satisfying

ω( j, α) < ω(k, β) if j +α < k+β or j +α = k+β and j < k. (69)

After relabeling, Equation (67) can be further rewritten as

un =
∑

1≤ j≤l, ξ j
n≡0

or|h j
nξ

j
n |→∞

et j
n ∂

3
x g j

n
[
ei(·)h j

nξ
j

n φ j]
+wl

n, (70)

where wl
n =w

N ,A1,...,AN
n with l =

∑N
j=1 A j . To establish Theorem 1.5, we are thus left with three points

to investigate.

(i) The family 0 j
n = (h

j
n, ξ

j
n , t j

n , x j
n ) is pairwise orthogonal, that is, it satisfies Definition 1.3. In fact,

we have two possibilities:

(a) The two pairs are in the form 0
j
n = (hi

n, ξ
i
n, t i,α

n , x i,α
n ) and 0k

n = (h
m
n , ξ

m
n , tm,β

n , xm,β
n ) with i 6=m.

In this case, the orthogonality follows from

lim
n→∞

(
hi

n

hm
n
+

hm
n

hi
n
+ hi

n|ξ
i
n − ξ

m
n |

)
=∞,

which is (32) in Lemma 3.2.
(b) The two pairs are in form 0

j
n = (hi

n, ξ
i
n, t i,α

n , x i,α
n ) and 0k

n = (h
i
n, ξ

i
n, t i,β

n , x i,β
n ) with α 6= β. In

this case, the orthogonality follows from

lim
n→∞

(
|t i,β

n − t i,α
n |

(hi
n)

3 +
3|t i,β

n − t i,α
n ||ξ

i
n|

(hi
n)

2 +

∣∣∣∣ x i,β
n − x i,α

n + 3(t i,β
n − t i,α

n )(ξ i
n)

2

hi
n

∣∣∣∣)=∞,
which is (44) in Lemma 3.5.
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(ii) The almost orthogonality identity (8) is satisfied. In fact, combining (36) and (47), we obtain that
for any N ≥ 1,

‖un‖
2
L2 =

N∑
j=1

( A j∑
α=1

‖φ j,α
‖

2
L2 +‖e

j,A j
n ‖

2
L2

)
+‖q N

n ‖
2
L2 + on(1)

=

N∑
j=1

( A j∑
α=1

‖φ j,α
‖

2
L2

)
+‖wN ,A1,...,AN

n ‖
2
L2 + on(1)=

l∑
j=1

‖φ j
‖

2
L2 +‖w

l
n‖

2
L2 + on(1),

where limn→∞ on(1)= 0. Note that we have used the fact that

‖wl
n‖

2
L2 = ‖w

N ,A1,...,AN
n ‖

2
L2 =

N∑
j=1

‖e j,A j
n ‖

2
L2 +‖q N

n ‖
2
L2,

which is due to the disjoint supports on the Fourier side.

(iii) The remainder e−t∂3
xωN ,A1,...,AN

n converges to zero in the Strichartz norm. In view of the adapted
enumeration, we have to prove that

lim
n→∞

∥∥D1/6e−t∂3
xωN ,A1,...,AN

n

∥∥
L6

t,x
→ 0, as inf

1≤ j≤N
{N , j + A j } →∞. (71)

Let δ > 0 be an arbitrarily small number. Take N0 such that, for every N ≥ N0,

lim
n→∞

∥∥D1/6e−t∂3
x q N

n

∥∥
L6

t,x
≤ δ/3. (72)

For every N ≥ N0, there exists BN such that, whenever A j ≥ BN ,

lim
n→∞

∥∥D1/6e−t∂3
x e j,A j

n
∥∥

L6
t,x
≤ δ/3N . (73)

The remainder wN ,A1,...,AN
n can be rewritten in the form

wN ,A1,...,AN
n = q N

n +
∑

1≤ j≤N

w
j,A j∨BN
n + SN ,A1,...,AN

n ,

where A j ∨ BN :=max{A j , BN } and

SN ,A1,...,AN
n =

∑
1≤ j≤N
A j<BN

(w
j,A j
n −w j,BN

n ),

that is,
SN ,A1,...,AN

n =

∑
1≤ j≤N
A j<BN

∑
A j<α≤BN

et j,α
n ∂3

x g j,α
n [e

i(·)h j
nξ

j
n φ j,α
],

with ξ j
n ≡ 0 when limn→∞ |h

j
nξ

j
n |<∞. From (72) and (73), it follows that

lim
n→∞

∥∥D1/6e−t∂3
xwN ,A1,...,AN

n

∥∥
L6

t,x
≤ 2δ/3+ lim

n→∞

∥∥D1/6e−t∂3
x SN ,A1,...,AN

n

∥∥
L6

t,x
. (74)
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Now we need the following almost-orthogonality result:

Lemma 5.1. Let 0 j
n = (h

j
n, ξ

j
n , x j

n , t j
n ) be a family of orthogonal sequences. Then for every l ≥ 1,

lim
n→∞

(∥∥∥ l∑
j=1

D1/6e−(t−t j
n )∂

3
x g j

n [e
i(·)h j

nξ
j

n φ j
]

∥∥∥6

L6
t,x

−

l∑
j=1

∥∥∥D1/6e−(t−t j
n )∂

3
x g j

n [e
i(·)h j

nξ
j

n φ j
]

∥∥∥6

L6
t,x

)
= 0, (75)

with ξ j
n ≡ 0 when limn→∞ |h

j
nξ

j
n |<∞.

Suppose this lemma were proven, we show how to conclude the proof of (71). From Lemma 5.1, it
follows that

lim
n→∞

∥∥D1/6e−t∂3
x SN ,A1,...,AN

n

∥∥6
L6

t,x
=

∑
1≤ j≤N
A j<BN

∑
A j<α≤BN

lim
n→∞

∥∥D1/6e−(t−t j,α
n )∂3

x g j,α
n [e

i(·)h j
nξ

j
n φ j,α
]
∥∥6

L6
t,x
. (76)

The Strichartz inequality gives∑
1≤ j≤N
A j<BN

∑
A j<α≤BN

∥∥D1/6e−(t−t j,α
n )∂3

x g j,α
n
[
ei(·)h j

nξ
j

n φ j,α]∥∥6
L6

t,x
.

∑
1≤ j≤N
A j<BN

∑
A j<α≤BN

‖φ j,α
‖

6
L2

≤

∑
j,α

‖φ j,α
‖

6
L2 . (77)

On the other hand,
∑

j,α ‖φ
j,α
‖

2
L2 is convergent; hence the right side of (77) is finite. This shows that( ∑

j,α
α>A j

∥∥∥D1/6e−(t−t j,α
n )∂3

x g j,α
n [e

i(·)h j
nξ

j
n φ j,α
]

∥∥∥6

L6
t,x

)1/6

≤ δ/3 (78)

provided that inf1≤ j≤N {N , j + A j } is large enough. Combining (74), (76) and (78), we obtain

lim
n→∞

∥∥D1/6e−t∂3
xwN ,A1,...,AN

n

∥∥
L6

t,x
= 0 (79)

provided that inf1≤ j≤N {N , j + A j } is large enough. Hence the proof of (71) is complete.

Proof of Lemma 5.1. By using the Hölder inequality, we need to show that for j 6= k, as n goes to infinity,

∥∥D1/6e−(t−t j
n )∂

3
x g j

n
[
ei(·)h j

nξ
j

n φ j]D1/6e−(t−tk
n )∂

3
x gk

n
[
ei(·)hk

nξ
k
n φk]∥∥

L3
t,x
→ 0. (80)

By the pigeonhole principle, we can assume that ξ j
n and ξ k

n are of the same sign if they are not zero;
moreover by a density argument, we also assume that φ j and φk are Schwartz functions with compact
Fourier supports. Evidence in favor of (80) is that, if limn→∞ |hnξn| = ∞, D1/6e−(t−tn)∂3

x gn[ei(·)hnξnφ]

is somehow a Schrödinger wave in the sense of Remark 1.7. For the pairwise orthogonal Schrödinger
waves, however, the analogous result to (80) is true; see [Merle and Vega 1998; Carles and Keraani 2007;
Bégout and Vargas 2007].
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To prove (80) we will have two possibilities. First, the two pairs are in the form 0
j
n = (hi

n, ξ
i
n, t i,α

n , x i,α
n )

and 0k
n = (h

m
n , ξ

m
n , tm,β

n , xm,β
n ) with i 6= m. In this case, the orthogonality is given by

lim
n→∞

( hi
n

hm
n
+

hm
n

hi
n
+ hi

n|ξ
i
n − ξ

m
n |

)
=∞.

So we have two subcases. We begin with the case where limn→∞ hi
n|ξ

i
n − ξ

m
n | =∞; moreover, we may

assume that hi
n = hm

n for all n (when both limits are infinity, the reasoning is similar, using the argument
below). By changing variables, we see that the left side of (80) equals∥∥∥∥D1/6e−t∂3

x
(
ei(·)hi

nξ
i
nφi,α)D1/6e

−(t+ ti,αn −tm,βn
(hi

n )3
)∂3

x (ei(·)hi
nξ

m
n φm,β)(x +

xm,α
n − x i,β

n

hi
n

)∥∥∥∥
L3

t,x

. (81)

The integrand above equals∫∫
ei x[(ξ+hi

nξ
i
n)+(η+hi

nξ
m
n )]+i t[(ξ+hi

nξ
i
n)

3
+(η+hi

nξ
m
n )

3
]
|ξ + hi

nξ
i
n|

1/6
|η+ hi

nξ
m
n |

1/6

× ei(η+hi
nξ

m
n )(x

i,α
n −xm,β

n )/hi
n+i(η+hi

nξ
m
n )

3(t i,α
n −tm,β

n )/(hi
n)

3
φ̂i,α(ξ)φ̂m,β(η) dξ dη.

Applying the change of variables a := (ξ + hi
nξ

i
n)+ (η+ hi

nξ
m
n ) and b := (ξ + hi

nξ
i
n)

3
+ (η+ hi

nξ
m
n )

3,
followed by the Hausdorff–Young inequality, we see that (81) is bounded by

C
(∫∫

|ξ + hi
nξ

i
n|

1/4
|η+ hi

nξ
m
n |

1/4
| φ̂i,α(ξ)φ̂m,β(η)|3/2

|ξ + hi
nξ

i
n + η+ hi

nξ
m
n |

1/2 |ξ − η+ hi
n(ξ

i
n − ξ

m
n )|

1/2 dξdη
)2/3

.

We consider two subcases according to the limits of |hi
nξ

i
n| and |hm

n ξ
m
n |. Note that limn→∞ hi

n|ξ
i
n−ξ

m
n | =

∞, then either both are infinity or only one is.

• In the former case, since ξ i
n and ξm

n are of the same sign, we have

|ξ + hi
nξ

i
n|

1/4
|η+ hi

nξ
m
n |

1/4

|ξ + η+ hi
n(ξ

i
n + ξ

m
n )|

1/2 ∼
|ξ i

nξ
m
n |

1/4

|ξ i
n + ξ

m
n |

1/2 . 1.

Then (81) is further bounded by Cφi,α,φm,β (hi
n|ξ

i
n−ξ

m
n |)
−1/3, which goes to zero as n goes to infinity.

• In the latter case, say limn→∞ |hi
nξ

i
n| =∞, we will have ξm

n = 0. Then

|ξ + hi
nξ

i
n|

1/4
|η+ hi

nξ
m
n |

1/4

|ξ + η+ hi
n(ξ

i
n + ξ

m
n )|

1/2 . |h
i
nξ

i
n|
−1/4.

Then (81) is further bounded by Cφi,α,φm,β |hi
nξ

i
n|
−1/2, which goes to zero as n goes to infinity.

Under the first possibility, we still need to consider the case when

lim
n→∞

(
hi

n

hm
n
+

hm
n

hi
n

)
=∞.

We may assume that limn→∞ |hi
nξ

i
n − hm

n ξ
m
n | <∞. It follows that limn→∞ |hi

nξ
i
n| and limn→∞ |hm

n ξ
m
n |

are finite or infinite simultaneously. We will consider the case where they are both infinite since the other
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follows similarly. Under this consideration, we deduce that∣∣∣∣hm
n ξ

m
n

hi
nξ

i
n

∣∣∣∣∼ 1

for sufficiently large n. To prove (80), we will use the idea of regarding the profile term as a Schrödinger
wave as in Remark 1.7. We recall that

D1/6e−(t−t j
n )∂

3
x g j

n [e
i(·)h j

nξ
j

n φ j
] = (hi

n)
−1/2
|ξ i

n|
1/6eiξ i

n(x−x i,α
n )+i(ξ i

n)
3(t−t i,α

n )

×

∫
e

iξ
[

x−xi,α
n

hi
n
+3(ξ i

n)
2 t−ti,αn

hi
n

]
+iξ3 t−ti,αn

(hi
n )3
+3iξ2ξ i

n
t−ti,αn
(hi

n )2

∣∣∣∣1+ ξ

hi
nξ

i
n

∣∣∣∣1/6φ̂i,αdξ,

Similarly for D1/6e−(t−tk
n )∂

3
x gk

n[e
i(·)hk

nξ
k
n φk
]. For any R > 0, we set

Ai
R :=

{
(t, x) ∈ R×R :

∣∣∣∣3ξ i
n

t − t i,α
n

(hi
n)

2

∣∣∣∣+ ∣∣∣∣ x − x i,α
n

hi
n
+ 3(ξ i

n)
2 t − t i,α

n

hi
n

∣∣∣∣≤ R
}
,

Am
R :=

{
(t, x) ∈ R×R :

∣∣∣∣3ξm
n

t − tm,β
n

(hm
n )

2

∣∣∣∣+ ∣∣∣∣ x − xm,β
n

hm
n
+ 3(ξm

n )
2 t − tm,β

n

hm
n

∣∣∣∣≤ R
}
.

By the Hölder inequality, the Strichartz inequality and Remark 1.7, we only need to show, for a large
R > 0,

lim
n→∞

∥∥∥D1/6e−(t−t i
n)∂

3
x g j

n
[
ei(·)hi

nξ
i
nφ j]D1/6e−(t−tm

n )∂
3
x gk

n
[
ei(·)hm

n ξ
m
n φk]∥∥∥

L3
t,x (A

i
R∩Am

R )
= 0. (82)

Indeed, R2
\ (Ai

R ∩ Am
R)⊂ (R

2
\ Ai

R)∪ (R
2
\ Am

R); here we only consider the integration over the region
R2
\ Ai

R since the other case is similar. By the Hölder inequality and the Strichartz inequality,∥∥D1/6e−(t−t i
n)∂

3
x g j

n [e
i(·)hi

nξ
i
nφ j
]D1/6e−(t−tm

n )∂
3
x gk

n[e
i(·)hm

n ξ
m
n φk
]
∥∥

L3
t,x (R

2\Ai
R)

.
∥∥D1/6e−(t−t i

n)∂
3
x g j

n [e
i(·)hi

nξ
i
nφ j
]
∥∥

L6
t,x (R

2\Ai
R)

∥∥D1/6e−(t−tm
n )∂

3
x gk

n[e
i(·)hm

n ξ
m
n φk
]
∥∥

L6
t,x

. ‖φk
‖L2

∥∥D1/6e−(t−t i
n)∂

3
x g j

n [e
i(·)hi

nξ
i
nφ j
]
∥∥

L6
t,x (R

2\Ai
R)
.

Let

x ′ :=
x − x i,α

n + 3(ξ i
n)

2(t − t i,α
n )

hi
n

and t ′ :=
3ξ i

n(t − t i,α
n )

(hi
n)

2 .

Then a change of variables and similar computations as in Remark 1.7 show that

∥∥D1/6e−(t−t i
n)∂

3
x g j

n [e
i(·)hi

nξ
i
nφ j
]
∥∥

L6
t,x (R

2\Ai
R)
.

∥∥∥∥∫ e
i(x ′ξ+t ′ξ2)+i ξ3t ′

3hi
n ξ

i
n

∣∣∣∣1+ ξ

hi
nξ

i
n

∣∣∣∣1/6φ̂i,α(ξ) dξ
∥∥∥∥

L6
t ′,x ′ (|t

′|+|x ′|≥R)

→‖e−i t ′1φi,α
‖L6

t ′,x ′ (|t
′|+|x ′|≥R)→ 0,

as n→∞ followed by R→∞. Returning to (82), using L∞-bounds for the integrands, we see that it
is bounded by
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C
∥∥D1/6e−(t−t i

n)∂
3
x g j

n [e
i(·)hi

nξ
i
nφ j
]
∥∥

L∞
∥∥D1/6e−(t−tm

n )∂
3
x gk

n[e
i(·)hm

n ξ
m
n φk
]
∥∥

L∞ min
{
|Ai

R|
1/3, |Am

R |
1/3}

≤ CR,φ j ,φk (hi
nhm

n )
−1/2
|ξ i

nξ
m
n |

1/6 min
{
[(hi

n)
3
|ξ i

n|
−1
]
1/3, [(hm

n )
3
|ξm

n |
−1
]
1/3}

≤ CR,φ j ,φk min
{( hi

n

hm
n

)2/3
∣∣∣∣hm

n ξ
m
n

hi
nξ

i
n

∣∣∣∣1/6 , (hm
n

hi
n

)2/3
∣∣∣∣ hi

nξ
i
n

hm
n ξ

m
n

∣∣∣∣1/6}.
Hence (80) holds when limn→∞

(
hi

n/h
m
n + hm

n /h
i
n
)
=∞.

Secondly, the two pairs are in form 0
j
n = (hi

n, ξ
i
n, t i,α

n , x i,α
n ) and 0k

n = (h
i
n, ξ

i
n, t i,β

n , x i,β
n ), with α 6= β.

In this case, the orthogonality is given by

lim
n→∞

(
|t i,β

n − t i,α
n |

(hi
n)

3 +
3|t i,β

n − t i,α
n ||ξ

i
n|

(hi
n)

2 +
|x i,β

n − x i,α
n + 3(t i,β

n − t i,α
n )(ξ i

n)
2
|

hi
n

)
=∞.

We assume limn→∞ |hi
nξ

i
n| =∞ since the other case is similar. We expand the left-hand side of (80) out,

which is equal to

(hi
n)
−

4
3

∥∥∥∥D1/6e
−

t−ti,αn
(hi

n )3
∂3

x
[ei(·)hi

nξ
i
nφi,α
]

( x − x i,α
n

hi
n

)
D1/6e

−
t−tm,βn
(hi

n )3
∂3

x
[ei(·)hi

nξ
i
nφm,β

]

( x − xm,β
n

hi
n

)∥∥∥∥
L3

t,x

=

∣∣ξ i
n

∣∣1/3
hi

n

∥∥∥∥∫ e
i
[
η(x−xi,α

n +3(t−ti,αn )(ξ i
n )

2)

hi
n

+
η3(t−ti,αn )

(hi
n )3
+

3η2(t−ti,αn )ξ i
n

(hi
n )2

] ∣∣∣∣1+ η

hi
nξ

i
n

∣∣∣∣1/6φ̂i,α(η) dη

×

∫
e

i
[
η(x−xi,β

n +3(t−ti,βn )(ξ i
n )

2)

hi
n

+
η3(t−ti,βn )

(hi
n )3
+

3η2(t−ti,βn )ξ i
n

(hi
n )2

] ∣∣∣∣1+ η

hi
nξ

i
n

∣∣∣∣1/6φ̂i,β(η) dη
∥∥∥∥

L3
t,x

Through the change of variables t ′ =
3(t − t i,β

n )ξ i
n

(hi
n)

2 , x ′ =
x − x i,β

n + 3(t − t i,β
n )(ξ i

n)
2

hi
n

, this reduces to

C
∥∥∥∥∫ e

iη
[

x ′+ xi,β
n −xi,α

n +3(ti,βn −ti,αn )(ξ i
n )

2

hi
n

]
+iη3

[
ti,βn −ti,αn
(hi

n )3
+

t ′

3hi
n ξ

i
n

]
+iη2

[
t ′+ 3(ti,βn −ti,αn )ξ i

n
(hi

n )2

]
×

∣∣∣∣1+ η

hi
nξ

i
n

∣∣∣∣1/6φ̂i,α(η) dη
∫

ei x ′η+i t ′η2
e

iη3 t ′

3hi
n ξ

i
n

∣∣∣∣1+ η

hi
nξ

i
n

∣∣∣∣1/6φ̂i,β(η) dη
∥∥∥∥

L3
t ′,x ′

.

Using the Hölder inequality followed by the principle of the stationary phase or integration by parts, we
see that (80) holds. �

Similarly, we can obtain the following generalization of Corollary 3.7 about the orthogonality of profiles
in L2 space. Its proof will be omitted.

Lemma 5.2. Assume 0 j
n = (h

j
n, ξ

j
n , t j

n , x j
n ) and 0k

n = (h
k
n, ξ

k
n , tk

n , xk
n) are pairwise orthogonal. Then

lim
n→∞

〈
et j

n ∂
3
x g j

n [e
i(·)h j

nξ
j

n φ j
], etk

n ∂
3
x gk

n[e
i(·)hk

nξ
k
n φk
]
〉
L2 = 0, (83)

and for 1≤ j ≤ l,
lim

n→∞

〈
et j

n ∂
3
x g j

n [e
i(·)h j

nξ
j

n φ j
], wl

n
〉
L2 = 0, (84)

with ξ j
n ≡ 0 when limn→∞ |h

j
nξ

j
n |<∞.
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6. The existence of maximizers for the symmetric Airy Strichartz inequality

This section is devoted to establishing Theorem 1.9, a dichotomy result on the existence of maximizers
for the symmetric Airy Strichartz inequality. First, we will exploit the idea of asymptotically embedding
a Schrödinger solution into an approximate Airy solution. We will show that the best constant for the
Airy Schrödinger Strichartz bounds that for the symmetric Schrödinger Strichartz inequality up to a
constant. We will follow the approach in [Tao 2007], in which Tao shows that any qualitative scattering
result on the mass critical gKdV equation ∂t u + ∂3

x u ± |u|4∂x u = 0 automatically implies an analogous
scattering result for the mass critical nonlinear Schrödinger equation i∂t u+ ∂2

x u± |u|4u = 0.

Lemma 6.1 (Asymptotic embedding of Schrödinger into Airy). Corresponding to Theorems 1.5 and 1.6,
we have, respectively,

SC
schr ≤ 31/6SC

airy, (85)

SC
schr ≤ 21/231/6SR

airy. (86)

Proof. We first prove (86). Let u0 to a maximizer to (16). Since d=1, from the work in [Foschi 2007], we
can assume that u0 is a standard Gaussian; hence it is even and its Fourier transform is another Gaussian.
Denote

uN (0, x) :=
1

(3N )1/4
Re
(

ei x N u0

( x
√

3N

))
.

Let uN (t, x) solve the Airy Equation (1) with initial data uN (0, x). From the Airy Strichartz inequality,∥∥D1/6uN
∥∥

L6
t,x
≤ SR

airy

∥∥uN (0, x)
∥∥

L2 . (87)

On the one hand, a computation shows that

‖uN (0, x)‖2L2 =
1
2

∫
|u0(x)|2+Re

(
e2
√

3i N 3/2x u2
0(x)

)
dx . (88)

From the Riemann–Lebesgue lemma, we know the second term above rapidly goes to zero as N →∞.
On the other hand,

ûN (0, ξ)=
(3N )1/4

2

(
û0(
√

3N (ξ − N ))+ û0(
√

3N (ξ + N ))
)
,

which yields

D1/6uN (t, x)=
∫

ei xξ+i tξ3
|ξ |1/6ûN (0, ξ) dξ

=
(3N )1/4

2

∫
ei xξ+i tξ3

|ξ |1/6
(
û0(
√

3N (ξ − N ))+ û0(
√

3N (ξ + N ))
)

dξ

= 2−13−1/4 N−1/12ei x N+i t N 3
∫

ei
[
η((3N )−1/2x+

√
3N 3/2t)+tη2

+t (3N )−3/2η3
]

×

∣∣∣1+ η

N
√

3N

∣∣∣1/6(û0(η)+ û0(η+ 2N
√

3N )
)

dη.
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Changing variables x ′ = (3N )−1/2x +
√

3N 3/2t and t ′ = t , we obtain∥∥D1/6uN (t, x)
∥∥

L6
t,x

= 2−13−1/6
∥∥∥∥∫ ei

[
x ′η+t ′η2

+t ′(3N )−3/2η3
]
×

∣∣∣1+ η

N
√

3N

∣∣∣1/6(û0(η)+ û0(η+ 2N
√

3N )
)

dη
∥∥∥∥

L6
t ′,x ′

(89)

Comparing (87), (88), (89) and letting N →∞, as in Remark 1.7, we obtain,

2−13−1/6
∥∥∥∫ ei x ′η+i t ′η2

û0(η) dη
∥∥∥

L6
t ′,x ′

≤ 2−1/2SR
airy‖u0‖L2 . (90)

By the choice of u0, we have
2−13−1/6SC

schr ≤ 2−1/2SR
airy,

that is, SC
schr ≤ 21/231/6SR

airy. Hence (86) follows. To show (85), we choose

φN (x) :=
1

(3N )1/4
ei x N u0

( x
√

3N

)
.

Then
‖φN‖L2 = ‖u0‖L2,

∥∥e−i t∂2
xφN

∥∥
L6

t,x (R×R)
= SC

schr‖u0‖L2 .

Also an easy computation shows that∥∥D1/6e−t∂3
xφN

∥∥
L6

t,x
→ 3−1/6∥∥e−i t∂2

x u0
∥∥

L6
t,x
, as N →∞.

From the Airy Strichartz inequality,∥∥D1/6e−t∂3
xφN

∥∥
L6

t,x
≤ SC

airy‖φN‖L2 = SC
airy‖u0‖L2,

we conclude that (85) follows. �

Now we are ready to prove Theorem 1.9.

Proof of Theorem 1.9. We only prove the complex version by using Theorem 1.5. For the real version,
we use Theorem 1.6 instead but its proof is similar.

We choose a maximizing sequence (un)n≥1 with ‖un‖L2 = 1, and decompose it into the linear profiles
as in Theorem 1.5 to obtain

un =
∑

1≤ j≤l, ξ j
n≡0

or |h j
nξ

j
n |→∞

et j
n ∂

3
x g j

n [e
i(·)h j

nξ
j

n φ j
] +wl

n. (91)

Then from the asymptotically vanishing Strichartz norm (7) and the triangle inequality, we obtain that,
up to a subsequence, for any given ε > 0, there exists n0, for all l ≥ n0 and n ≥ n0,∥∥∥ l∑

j=1

D1/6e−(t−t j
n )∂

3
x g j

n
[
ei(·)h j

nξ
j

n φ j]∥∥∥
L6

t,x

≥ SC
airy− ε,
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with ξ j
n ≡ 0 when limn→∞ |h

j
nξ

j
n |<∞. On the other hand, Lemma 5.1 yields,

∥∥∥ l∑
j=1

D1/6e−(t−t j
n )∂

3
x g j

n
[
ei(·)h j

nξ
j

n φ j]∥∥∥6

L6
t,x

≤

l∑
j=1

∥∥∥D1/6e−(t−t j
n )∂

3
x g j

n
[
ei(·)h j

nξ
j

n φ j]∥∥∥6

L6
t,x

+ on(1). (92)

Then up to a subsequence, there exists n1 such that, for large n ≥ n1 and l ≥ n1,

l∑
j=1

∥∥∥D1/6e−(t−t j
n )∂

3
x g j

n
[
ei(·)h j

nξ
j

n φ j]∥∥∥6

L6
t,x

≥ (SC
airy)

6
− 2ε. (93)

Choosing j0 such that

D1/6e−(t−t
j0

n )∂
3
x g j0

n [e
i(·)h

j0
n ξ

j0
n φ j0]

has the biggest Strichartz norm among 1 ≤ j ≤ l, we see that, by Strichartz and the almost orthogonal
identity (8),

(SC
airy)

6
− 2ε ≤

∥∥∥D1/6e−(t−t
j0

n )∂
3
x g j0

n
[
ei(·)h

j0
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j0
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t,x
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n )∂
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n )∂
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x g j0

n
[
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n ξ
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n φ j0

]∥∥∥4

L6
t,x
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(
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j
‖L2
)2

≤ (SC
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2
∥∥∥D1/6e−(t−t

j0
n )∂

3
x g j0

n
[
ei(·)h

j0
n ξ

j0
n φ j0

]∥∥∥4

L6
t,x

.

This yields,∥∥∥D1/6e−(t−t
j0

n )∂
3
x g j0

n
[
ei(·)h

j0
n ξ

j0
n φ j0

]∥∥∥
L6

t,x

≥

(
(SC

airy)
−2[(SC

airy)
6
− 2ε

])1/4
≥ SC

airy− ε. (94)

Moreover, (8) implies that there exists J > 0 such that

‖φ j
‖L2 ≤ 1/100 for all j > J.

This, together with (94) and the Strichartz inequality∥∥∥D1/6e−(t−t
j0

n )∂
3
x g j0

n
[
ei(·)h

j0
n ξ

j0
n φ j0

]∥∥∥
L6

t,x

≤ SC
airy‖φ

j0‖L2,

shows that, for ε small enough, j0 is between 1 and J ; otherwise SC
airy/2 ≤ SC

airy/100, a contradiction.
Hence j0 does not depend on l, n and ε. So we can freely take ε to zero without changing j0. Now we
consider two cases:

Case I. When h j0
n ξ

j0
n → ξ j0 ∈ R, we can take ξ j0

n ≡ 0. Then∥∥∥D1/6e−(t−t
j0

n )∂
3
x g j0

n (φ
j0)
∥∥∥

L6
t,x

=

∥∥∥D1/6e−t∂3
xφ j0

∥∥∥
L6

t,x

.
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Then we take ε→ 0 in (94) to obtain

‖φ j0‖L2 = 1, SC
airy =

∥∥D1/6e−t∂3
xφ j0

∥∥
L6

t,x
.

This shows that φ j0 is a maximizer for (15).

Case II. When |h j0
n ξ

j0
n | →∞, we take n→∞ in (94) and use Remark 1.7,
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Taking ε→ 0 forces all the inequality signs to be equal. Hence we obtain

‖φ j0‖L2 = 1, SC
airy = 3−1/6SC
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and
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n→∞
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This shows that SC
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∥∥e−i t∂2
xφ j0

∥∥
L6

t,x
; hence φ j0 is a maximizer for (16). Set an := h j0

n ξ
j0

n . Then the
proof of Theorem 1.9 is complete. �
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