RESONANCES FOR NONANALYTIC POTENTIALS

ANDRÉ MARTINEZ, THIERRY RAMOND AND JOHANNES SJÖSTRAND

We consider semiclassical Schrödinger operators on \mathbb{R}^n, with C^∞ potentials decaying polynomially at infinity. The usual theories of resonances do not apply in such a nonanalytic framework. Here, under some additional conditions, we show that resonances are invariantly defined up to any power of their imaginary part. The theory is based on resolvent estimates for families of approximating distorted operators with potentials that are holomorphic in narrow complex sectors around \mathbb{R}^n.

1. Introduction

The notion of quantum resonance was born around the same time as quantum mechanics itself. Its introduction was motivated by the behavior of various quantities related to scattering experiments, such as the scattering cross-section. At certain energies, these quantities present peaks (nowadays called Breit–Wigner peaks), which were modeled by a Lorentzian-shaped function

$$w_{a,b}(\lambda) = \frac{1}{\pi} \frac{b/2}{(\lambda - a)^2 + (b/2)^2}.$$

The real numbers a and $2/(\pi b) > 0$ stand for the location of the maximum of the peak and its height. The number b is the width of the peak (more precisely its width at half its height). Of course for $\rho = a - ib/2 \in \mathbb{C}$, one has

$$w_{a,b}(\rho) = \frac{1}{\pi} \frac{\text{Im} \rho}{|\rho|^2},$$

and the complex number ρ was called a resonance. Such complex values for energies had also appeared for example in [Gamow 1928], to explain α-radioactivity.

There is a standard discussion in physics textbooks that may help understand the normalization chosen for $w_{a,b}(\lambda)$. Suppose ψ_0 is a resonant state (not in L^2) corresponding to the resonance $\rho = a - ib/2$. Its time evolution should be written

$$\psi(t) = e^{-ita - tb/2} \psi_0,$$

so that the probability of survival beyond time t is

$$p(t) = \frac{|\psi(t)|^2}{|\psi_0|^2} = e^{-bt},$$

Keywords: resonances, Schrödinger operators, Breit–Wigner peaks.

The first author was partly supported by Università di Bologna, Funds for Selected Research Topics and Funds for Agreements with Foreign Universities.
and b is the decay rate of that probability. Moreover, the resonant state $\psi(t)$ has an associated energy space representation

$$\hat{\psi}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{0}^{+\infty} e^{i t E} \psi(t) \, dt = \frac{1}{i \sqrt{2\pi}} \frac{\psi_0}{(a - \lambda) - \frac{ib}{2}},$$

which is interpreted saying that the probability density $d\sigma(\lambda)$ of the resonant state is proportional to $|\hat{\psi}(\lambda)|^2$ and leads to the following formula if one requires that the total probability is 1:

$$d\sigma(\lambda) = \frac{1}{2\pi} \frac{b}{(a - \lambda)^2 + (b/2)^2} \, d\lambda = w_{a,b}(\lambda) \, d\lambda.$$

However, these complex numbers $\rho = a - ib/2$ are not defined in a completely exact way, in the sense that the peaks in the scattering cross section or the above probability distribution do not perceptibly change if these numbers are modified by a quantity much smaller than their imaginary part. Indeed, a straightforward computation shows that the relative difference between such two peaks $w_{a,b}$ and $w_{a',b'}$ satisfies

$$\sup_{\lambda \in \mathbb{R}} \left| \frac{w_{a,b}(\lambda) - w_{a',b'}(\lambda)}{w_{a',b'}(\lambda)} \right| \leq 3 \frac{|\rho - \rho'|}{|\text{Im } \rho|} + \frac{|\rho - \rho'|^2}{|\text{Im } \rho|^2},$$

where we have also set $\rho' = a' - ib'/2$ and chosen $|\text{Im } \rho| \leq |\text{Im } \rho'|$ to make the formula simpler. As a consequence, the two peaks become indistinguishable if $|\rho - \rho'| \ll |\text{Im } \rho|$, that is, there is no physical relevance to associate the resonance $\rho = a - ib$ to $w_{a,b}$ rather than any other ρ' satisfying $|\rho - \rho'| \ll |\text{Im } \rho|$. Notice also that the more the resonance is far from the real line, the more irrelevant this precision becomes.

On the mathematical side, the more recent theory of resonances for Schrödinger operators has made it possible to create a rigorous framework and obtain very precise results, in particular on the location of resonances in relation with the geometry of the underlying classical flow. However, it is based on the notion of complex scaling, in more and more sophisticated versions that all require analyticity assumptions on the potential or its Fourier transform; see, for example, [Aguilar and Combes 1971; Balslev and Combes 1971; Simon 1979; Sigal 1984; Cycon 1985; Helffer and Sjöstrand 1986; Hunziker 1986; Nakamura 1989; 1990; Sjöstrand and Zworski 1991]. It is important to notice that these different definitions coincide when their domain of validity overlap [Helffer and Martinez 1987]. In this mathematical framework, the Breit–Wigner formula for the scattering phase has now been studied by many authors in different situations, as shape resonances, clouds of resonances, or barrier-top resonances; see for example [Gérard et al. 1989; Petkov and Zworski 1999; Bruneau and Petkov 2003; Fujiié and Ramond 2003].

There are a small number of works about the definition of resonances for nonanalytic potentials, for example, [Orth 1990; Gérard and Sigal 1992; Soffer and Weinstein 1998; Cancelier et al. 2005; Jensen and Nenciu 2006]. In [Orth 1990; Gérard and Sigal 1992; Soffer and Weinstein 1998; Jensen and Nenciu 2006], the point of view is quite different from ours, while in [Cancelier et al. 2005], the definition is based on the use of an almost-analytic extension of the potential and seems to strongly depend both on the choice of this extension and on the complex distortion.

Here our purpose is to give a definition that fulfills both the mathematical requirement of being invariant with respect to the choices one has to make and the physical requirement of being more accurate
as the resonance become closer to the real (or, equivalently, as the Breit–Wigner peak becomes narrower). Dropping the physically irrelevant precision for the definition of resonances, we can also drop the spurious assumption on the analyticity of the potential.

More precisely, we associate to a Schrödinger operator \(P \) a discrete set \(\Lambda \subset \mathbb{C} \) with certain properties, such that for any other set \(\Lambda' \) with the same properties, there exists a bijection \(B : \Lambda' \to \Lambda \) with \(B(\rho) - \rho = \mathcal{O}(|\text{Im} \rho|^{\infty}) \) uniformly. The set of resonances of \(P \) is the corresponding equivalence class of \(\Lambda \). Of course, when the potential is dilation analytic at infinity, we recover the usual set of resonances up to the same error \(\mathcal{O}(|\text{Im} \rho|^{\infty}) \).

The properties characterizing \(\Lambda \) basically involve the resonances of a (essentially arbitrary) family of dilation-analytic operators \((P^\mu)_{0 < \mu \leq \mu_0} \), such that

\[
P^\mu \text{ is dilation-analytic in a complex sector of angle } \mu \text{ around } \mathbb{R}^n,
\]

\[
\| P^\mu - P \| = \mathcal{O}(\mu^{\infty}) \text{ uniformly as } \mu \to 0_+,
\]

and the constructive proof of the existence of the set \(\Lambda \) mainly consists in studying such a family and in particular, in obtaining resolvent estimates uniform in \(\mu \).

In this paper, we address the case of an isolated cluster of resonances whose cardinality is bounded (with respect to \(\hbar \)). We hope to treat the general case elsewhere, as well as to give a detailed description of the quantum evolution \(e^{itP^\mu/\hbar} = e^{itP^\mu/\hbar} + \mathcal{O}(|t|^{\hbar^{-1}} \mu^{\infty}) \) in terms of the resonances in \(\Lambda \).

The paper is organized as follows. We give our assumptions and state our main results in Section 2. Then in Section 3, we give two paradigmatic situations where our constructions apply: the nontrapping case and the shape resonances case. In Section 4 we present a suitable notion of analytic approximation of a \(C^\infty \) function through which we define the operator \(P^\mu \). In Section 5 we show that a properly defined analytic distorted operator \(P^\mu_\theta \) of the latter satisfies a nice resolvent estimate in the upper half complex plane even very near to the real axis. Sections 6, 7 and 8 are devoted to the proof of Theorem 2.1, Theorem 2.2 and Theorem 2.5 respectively. We construct the set of resonances \(\Lambda \) and prove Theorem 2.6 in Section 9. In the last Section 10, we prove our statements concerning the shape resonances. Finally, we have placed in the Appendix the proofs of two technical lemmas.

2. Notations and main results

We consider the semiclassical Schrödinger operator

\[
P = -\hbar^2 \Delta + V,
\]

where \(V = V(x) \) is a real smooth function of \(x \in \mathbb{R}^n \), such that

\[
\hat{\partial}^\alpha V(x) = \mathcal{O}(\langle x \rangle^{-\nu - |\alpha|}),
\]

for some \(\nu > 0 \) and for all \(\alpha \in \mathbb{Z}^n_+ \). We also fix \(\bar{\nu} \in (0, \nu) \) once for all, and for any \(\mu > 0 \) small enough, we denote by \(V^\mu \) a \(|x| \)-analytic \((\mu, \bar{\nu})\)-approximation of \(V \) in the sense of Section 4. In particular, \(V^\mu \) is analytic with respect to \(r = |x| \) in \(\{ r \geq 1 \} \), it can be extended into a holomorphic function of \(r \) in the sector \(\Sigma := \{ \text{Re } r \geq 1, \ |\text{Im } r| \leq 2\mu \ \text{Re } r \} \), and it satisfies

\[
V^\mu(x) - V(x) = \mathcal{O}(\mu^{\infty} \langle x \rangle^{-\bar{\nu}}),
\]
uniformly on \mathbb{R}^n. (See Section 4 for more properties of V^μ.)

Then for any $\theta \in (0, \mu]$, the operator

$$P^\mu := -h^2 \Delta + V^\mu, \quad (2.3)$$

can be distorted analytically into

$$P^\mu_\theta := U_\theta P^\mu U_\theta^{-1}, \quad (2.4)$$

where U_θ is any transformation of the type

$$U_\theta \varphi(x) := \varphi(x + i\theta A(x)), \quad (2.5)$$

with $A(x) := a(|x|)x$, $a \in C^\infty(\mathbb{R}_+)$, $a = 0$ near 0, $0 \leq a \leq 1$ everywhere, $a(|x|) = 1$ for $|x|$ large enough. The essential spectrum of P^μ_θ is $e^{-2i\theta} \mathbb{R}$, and its discrete spectrum $\sigma_{\text{disc}}(P^\mu_\theta)$ is included in the lower half-plane and does not depend on the choice of the function a. Moreover, it does not depend on θ, in the sense that for any $\theta_0 \in (0, \mu]$, and any $\theta \in [\theta_0, \mu]$, one has

$$\sigma_{\text{disc}}(P^\mu_\theta) \cap \Sigma_{\theta_0} = \sigma_{\text{disc}}(P^\mu_\theta) \cap \Sigma_{\theta_0}, \quad (2.6)$$

where $\Sigma_\theta := \{z \in \mathbb{C} : -2\theta < \arg z \leq 0\}$ (observe that one also has $\sigma_{\text{disc}}(P^\mu_\theta) = \sigma_{\text{disc}}(\tilde{U}_\theta P^\mu \tilde{U}_\theta^{-1})$, where $\tilde{U}_\theta \varphi(x) := \sqrt{\det(\text{Id} + i\theta^* dA(x))}\varphi(x + i\theta A(x))$ is an analytic distortion more widely used in the literature).

We denote by

$$\Gamma(P^\mu) := \sigma_{\text{disc}}(P^\mu) \cap \Sigma_\mu,$$

the set of resonances of P^μ counted with their multiplicity. In what follows, we also use the following notation: If E and E' are two h-dependent subsets of \mathbb{C}, and $\alpha = \alpha(h)$ is a h-dependent positive quantity that tends to 0 as h tends to 0_+, we write

$$E' = E + \mathcal{O}(\alpha),$$

when there exists a constant $C > 0$ (uniform with respect to all other parameters) and a bijection

$$b : E' \to E,$$

such that

$$|b(\lambda) - \lambda| \leq Ca$$

for all $h > 0$ small enough.

Now, we fix some energy level $\lambda_0 > 0$, and a constant $\delta > 0$. For any h-dependent numbers $\tilde{\mu}(h)$, $\mu(h)$, and any h-dependent bounded intervals $I(h)$, $J(h)$, satisfying

$$0 < \tilde{\mu}(h) \leq \mu(h) \leq h^\delta, \quad (2.6)$$

$$I(h) \subset J(h), \quad \text{diam}(J \cup \{\lambda_0\}) \leq h^\delta, \quad (2.7)$$

we consider the following property (see Figure 1):

$$\mathcal{P}(\tilde{\mu}, \mu; I, J) = \begin{cases} \text{Re}(\Gamma(P^\mu) \cap (J - i[0, \lambda_0\tilde{\mu}])) \subset I, \\ \#(\Gamma(P^\mu) \cap (J - i[0, \lambda_0\tilde{\mu}])) \leq \delta^{-1}, \\ \text{dist}(I, \mathbb{R} \setminus J) \geq h^{-\delta} \omega_h(\tilde{\mu}), \end{cases}$$
where, for $\theta > 0$, we have set

$$\omega_h(\theta) := \theta \left(\ln \frac{1}{\theta} + h^{-n} \left(\ln \frac{1}{h} \right)^{n+1} \right)^{1/2}.$$

Notice that by (2-7), the property $\mathcal{P}(\tilde{\mu}, \mu; I, J)$ implies $\omega_h(\tilde{\mu}) \leq h^{2\delta}$.

In the applications, it will be necessary to check that $\mathcal{P}(\tilde{\mu}, \mu; I, J)$ holds for values of $\tilde{\mu}$ that are essentially of order h^v for some $v > n$. In that case, of course, the order of the quantity $\omega_h(\tilde{\mu})$ can be simplified into $h^{v-n/2} (\ln(1/h))^{(n+1)/2}$. However, in the proof of our results, $\mathcal{P}(\tilde{\mu}, \mu; I, J)$ will be also used as an inductive condition that will permit us to consider arbitrarily small values of $\tilde{\mu}$ (including exponentially small values), and this is why we have to keep the somewhat intriguing above expression for $\omega_h(\theta)$.

Theorem 2.1. Suppose $\mathcal{P}(\tilde{\mu}, \mu; I, J)$ holds for some $\tilde{\mu}, \mu, I$ and J satisfying (2-6)–(2-7). Then for all $\theta \in [0, \tilde{\mu}]$, there exists an interval

$$J' = J + C(\omega_h(\theta)),$$

such that

$$\|(P^{\mu}_\theta - z)^{-1}\| \leq C\theta^{-C} \prod_{\rho \in \Gamma(\tilde{\mu}, \mu, J)} |z - \rho|^{-1},$$

for all $z \in J' + i[-C\theta h^{n_1}, C\theta h^{n_1}]$. Here we have set $n_1 := n + \delta$ and

$$\Gamma(\tilde{\mu}, \mu, J) := \Gamma(P^{\mu}) \cap (J - i[0, \lambda_0\tilde{\mu}]),$$

and $C > 0$ is a constant independent of $\tilde{\mu}, \mu, \theta, I$ and J.

Figure 1. The property $\mathcal{P}(\tilde{\mu}, \mu; I, J)$.

RESONANCES FOR NONANALYTIC POTENTIALS

λ_0 - δ - $\omega_h(\tilde{\mu})$ - I - $h^{-\delta} \omega_h(\tilde{\mu})$ - $\text{Re } z$ - $\text{Im } z = -\lambda_0\tilde{\mu}$ - $\text{Im } z = -2\lambda_0\mu$
Thanks to this result, one can compare the resonances of the operators P^μ for different values of μ:

Theorem 2.2. Let $N_0 \geq 1$ be a constant. Suppose $\mathcal{P}(\tilde{\mu}, \mu; I, J)$ holds for some $\tilde{\mu}, \mu, I$ and J satisfying (2-6)–(2-7), and that $\tilde{\mu} > \mu^{N_0}$. Then for any $\theta \in [\mu^{N_0}, \tilde{\mu}]$, there exist an interval

$$J' = J + \mathcal{O}(\omega_h(\theta))$$

and $\tau \in [h^{n_1}\theta, 2h^{n_1}\theta]$, such that for any constant $N_1 \geq 1$ and any $\mu' \in [\mu^{N_1}, \mu^{1/N_1}]$ with $\theta \leq \mu'$, one has

$$\Gamma(P^\mu) \cap (J' - i[0, \tau])) = \Gamma(P^{\mu'}) \cap (J' - i[0, \tau])) + \mathcal{O}(\mu^\infty).$$

Remark 2.3. The only properties of V^μ used in the proof of this result are that V^μ is a holomorphic function of r in the sector $\Sigma := \{\text{Re } r \geq 1, |\text{Im } r| \leq 2\mu \text{Re } r\}$, and it satisfies (2-2) and (4-2) for some $\tilde{\nu} > 0$. In particular, the proof also shows that, up to $\mathcal{O}(\mu^\infty)$, the set $\Gamma(P^\mu)$ does not depend on any particular choice of V^μ.

Remark 2.4. As we will see in the proof, the condition $\tau \in [h^{n_1}\theta, 2h^{n_1}\theta]$ can actually be replaced by $\tau \in [h^{n_1}\theta, h^{n_1}\theta + (h^{n_1}\theta)^M]$, for any fixed $M \geq 1$.

We also show that the validity of $\mathcal{P}(\tilde{\mu}, \mu; I, J)$ persists when decreasing $\tilde{\mu}$ and μ suitably, up to a small change of I and J.

Theorem 2.5. Suppose $\mathcal{P}(\tilde{\mu}, \mu; I, J)$ holds for some $\tilde{\mu}, \mu, I$ and J satisfying (2-6)–(2-7). Assume furthermore that there is a constant $N_0 \geq 1$ with $\tilde{\mu} \geq \mu^{N_0}$. Then there exist two intervals

$$I' = I + \mathcal{O}(\mu^\infty),$$

$$J' = J + \mathcal{O}(\omega_h(\tilde{\mu})),$$

such that $\mathcal{P}(h^{n_1}\mu', \mu'; I', J')$ holds, for any $\mu' \in (0, \tilde{\mu}]$.

Finally, the next result gives a definition of resonances for P, up to any power of their imaginary part.

Theorem 2.6. Suppose $\mathcal{P}(\tilde{\mu}, \mu; I, J)$ holds for some $\tilde{\mu}, \mu, I$ and J satisfying (2-6)–(2-7). Assume furthermore that there is a constant $N_0 \geq 1$ with $\tilde{\mu} \geq \mu^{N_0}$. Then there exist

an interval $I' = I + \mathcal{O}(\mu^\infty)$,

an interval $J' = J + \mathcal{O}(\omega_h(\tilde{\mu}))$,

a discrete set $\Lambda \subset I' - i[0, 2h^{2n_1}\tilde{\mu}]$

such that

for any $\mu' \in (0, \tilde{\mu}]$, there exists $\tau \in [h^{2n_1}\mu', 2h^{2n_1}\mu']$ with

$$\Gamma(P^{\mu'}) \cap (J' - i[0, \tau]) = \Lambda \cap (J' - i[0, \tau]) + \mathcal{O}(\mu'\infty).$$

Moreover, any other set $\tilde{\Lambda} \subset I' - i[0, 2h^{2n_1}\tilde{\mu}]$ satisfying (\ast), possibly with some other choice of V^μ, is such that there exist $\tau' \in [h^{2n_1}\tilde{\mu}, h^{2n_1}\tilde{\mu}]$ and a bijection

$$B : \Lambda \cap (J' - i[0, \tau']) \rightarrow \tilde{\Lambda} \cap (J' - i[0, \tau']),$$

with $B(\lambda) - \lambda = \mathcal{O}(|\text{Im } \lambda|^{\infty})$.

The set Λ will be called the set of resonances of P in $J' - i[0, \frac{1}{2}h^{2n_1}\tilde{\mu}]$. Here we adopt the convention that real elements of Λ are counted with a positive integer multiplicity in the natural way (see Section 9).
Remark 2.7. The main shortcoming of our condition $\mathcal{P}(\bar{\mu}, \mu; I, J)$ is that the number of resonances in the corresponding box has to be bounded. It might be that this restriction could be eliminated by a finer analysis, based for example on results by P. Stefanov [2003]. We plan to come back to this point in a forthcoming work.

3. Two examples

Here, we describe two explicit situations where the previous results apply.

3.1. The nontrapping case. We suppose first that the energy λ_0 is nontrapping, that is, for any $(x, \zeta) \in p^{-1}(\lambda_0)$ we have

$$|\exp tH_p(x, \zeta)| \to \infty \text{ as } |t| \to \infty,$$

where $p(x, \zeta) := \zeta^2 + V(x)$ is the principal symbol of P, and $H_p = \partial_{\zeta} p \partial_x - \partial_x p \partial_{\zeta}$ is the Hamilton field of p.

Then the result of [Martinez 2002b] can be applied to P^μ with $\mu = Ch \ln(h^{-1})$ for any arbitrary constant $C > 0$, and tells us that P^μ has no resonances in $[\lambda_0 - 2\varepsilon, \lambda_0 + 2\varepsilon] - i[0, \lambda_0 \mu]$ with some $\varepsilon > 0$ constant. In that case, for any $\delta > 0$, $\mathcal{P}(h^{n_1} \mu, \mu; I, J)$ is satisfied with $I = [\lambda_0 - h^{\delta}, \lambda_0 + h^{\delta}]$ and $J = [\lambda_0 - 2h^{\delta}, \lambda_0 + 2h^{\delta}]$, and the previous results tell us that P has no resonances in $I - i[0, 1/2h^{3n_1} \mu]$ in the sense of Theorem 2.6.

3.2. The shape resonances. Now we assume instead that, in addition to (2-1), the potential V presents the geometric configuration of the so-called “point-well in an island”, as described in [Helffer and Sjöstrand 1986]. More precisely, we suppose

There exist a connected bounded open set $\bar{\Omega} \subset \mathbb{R}^n$ and $x_0 \in \bar{\Omega}$, such that

$$\begin{align*}
&\lambda_0 := V(x_0) > 0; \ V > \lambda_0 \text{ on } \bar{\Omega} \setminus \{x_0\}; \ \nabla^2 V(x_0) > 0; \ V = \lambda_0 \text{ on } \partial \bar{\Omega}; \\
&\text{any point of } \{(x, \zeta) \in \mathbb{R}^{2n}; \ x \in \mathbb{R}^n \setminus \bar{\Omega}, \ \zeta^2 + V(x) = \lambda_0\} \text{ is nontrapping.}
\end{align*}$$

We denote by $(e_k)_{k \geq 1}$ the increasing sequence of (possibly multiple) eigenvalues of the harmonic oscillator $H_0 = -\Delta + \frac{1}{2}(V''(x_0)x, x)$. We have:

Theorem 3.1. Assume (2-1) and (H). Then for any $k_0 \geq 1$ and any $\delta > 0$, $\mathcal{P}(\bar{\mu}, \mu; I, J)$ holds with

$$\mu = h^\delta, \quad \bar{\mu} = h^{\max(n/2,1)+1+\delta}, \quad I = [\lambda_0 + (e_1 - \varepsilon)h, \ \lambda_0 + (e_{k_0} + \varepsilon)h], \quad J = [\lambda_0, \lambda_0 + (e_{k_0+1} - \varepsilon)h],$$

where $\varepsilon > 0$ is any fixed number in $(0, \min(e_1/2, (e_{k_0+1} - e_{k_0})/3)]$.

Actually, we prove in Section 10 that any resonance ρ of P^μ in $J - i[0, \bar{\mu}]$ is such that there exists $k \leq k_0$ with

$$\text{Re } \rho - (\lambda_0 + e_k h) = O(h^{3/2}),$$

$$\text{Im } \rho = O(e^{-2S_1/h}),$$

where $S_1 > 0$ is any number less than the Agmon distance between x_0 and $\partial \bar{\Omega}$. Recall that the Agmon distance is the pseudo-distance associated to the degenerate metric $(V(x) - \lambda_0)dx^2$.

More generally, if \(\mu' \in [e^{-\eta/h}, \mu] \) with \(\eta > 0 \) small enough, we prove that any resonance \(\rho \) of \(P^{\mu'} \) in \(J - i[0, \lambda_0 \min(\mu', h^{2+\delta})] \), satisfies

\[
\text{Re} \rho - (\lambda_0 + e_k h) = \mathcal{O}(h^{3/2}),
\]

for some \(k \leq k_0 \), and

\[
\text{Im} \rho = \mathcal{O}(e^{-2(S_0-\eta)/h}).
\]

Applying Theorem 2.6 with \(\mu' = e^{-\eta/h} \) (0 < \(\eta < S_0 \)), we deduce that the resonances of \(P \) in

\[
[\lambda_0, \lambda_0 + Ch] - i[0, \frac{1}{2} h^{2n+\max(n/2,1)+1+3\delta}]
\]
satisfy the same estimates.

4. Preliminaries

In this section, following an idea of [Fujiié et al. 2008], we define and study the notion of analytic \((\mu, \tilde{v})\)-approximations.

Definition 4.1. For any \(\mu > 0 \) and \(\tilde{v} \in (0, \nu) \), we say that a real smooth function \(V^{\mu} \) on \(\mathbb{R}^n \) is a \(|x|\)-analytic \((\mu, \tilde{v})\)-approximation of \(V \), if \(V^{\mu} \) is analytic with respect to \(r = |x| \) in \(\{r \geq 1\} \), \(V^{\mu} \) can be extended into a holomorphic function of \(r \) in the sector \(\Sigma(2\mu) := \{\text{Re} r \geq 1, |\text{Im} r| < 2\mu \text{Re} r\} \), and for any multi-index \(\alpha \), it satisfies

\[
\partial^\alpha (V^{\mu}(x) - V(x)) = \mathcal{O}(\mu^\infty (x)^{-\tilde{v} - |\alpha|}),
\]

uniformly with respect to \(x \in \mathbb{R}^n \) and \(\mu > 0 \) small enough, and

\[
\partial^\alpha V^{\mu}(x) = \mathcal{O}((\text{Re} x)^{-\tilde{v} - |\alpha|}),
\]

uniformly with respect to \(x \in \Sigma(2\mu) \) and \(\mu > 0 \) small enough.

Proposition 4.2. Let \(V = V(x) \) be a real smooth function of \(x \in \mathbb{R}^n \) satisfying (2-1).

(i) For any \(\mu > 0 \) and \(\tilde{v} \in (0, \nu) \), there exists a \(|x|\)-analytic \((\mu, \tilde{v})\)-approximation of \(V \).

(ii) If \(V^{\mu} \) and \(W^{\mu} \) are two \(|x|\)-analytic \((\mu, \tilde{v})\)-approximations of \(V \), then for all \(\alpha \in \mathbb{N}^n \), one has

\[
\partial^\alpha (V^{\mu}(x) - W^{\mu}(x)) = \mathcal{O}(\mu^\infty (\text{Re} x)^{-\tilde{v} - |\alpha|}),
\]

uniformly with respect to \(x \in \Sigma(\mu) \) and \(\mu > 0 \) small enough.

Proof. We denote by \(\tilde{V} \) a smooth function on \(\mathbb{C}^n \) satisfying the following:

- \(\tilde{V} = V \) on \(\mathbb{R}^n \).
- \(\partial \tilde{V} = \mathcal{O}\left((|\text{Im} x|/(\text{Re} x))^\infty (\text{Re} x)^{-\nu}\right)\), uniformly on \(\{|\text{Im} x| \leq C(\text{Re} x)\} \), for any \(C > 0 \).
- \(\partial^\alpha \tilde{V} = \mathcal{O}\left((\text{Re} x)^{-\nu-|\alpha|}\right)\), uniformly on \(\{|\text{Im} x| \leq C(\text{Re} x)\} \), for any \(C > 0 \) and \(\alpha \in \mathbb{N}^n \).

Note that such a function \(\tilde{V} \) (called an “almost-analytic” extension of \(V \); See, for example, [Melin and Sjöstrand 1975]) can easily be obtained by taking a resummation of the formal series

\[
\tilde{V}(x) \sim \sum_{\alpha \in \mathbb{N}^n} \frac{i^{|\alpha|}(\text{Im} x)^\alpha}{\alpha!} \partial^\alpha V(\text{Re} x).
\]
Indeed, since we have $\partial^\alpha V(\Re x) = O((\Re x)^{-\nu-|\alpha|})$, the resummation is well defined up to

$$O\left(|\Im x|/(\Re x)\right)^\infty (\Re x)^{-\nu})$$

and the standard procedure of resummation (see, for example, [Dimassi and Sjöstrand 1999; Martinez 2002a]) also gives the required estimates on the derivatives of \tilde{V}. Conversely, by a Taylor expansion, we see that any \tilde{V} satisfying the required conditions is necessarily a resummation of the series (4-3).

Now, if V^μ is a $|x|$-analytic $(\mu, \tilde{\nu})$-approximation of V, then for any $x = r\omega \in \Sigma(\mu)$ ($\omega \in S^{n-1}$) and $N \geq 0$, we have

$$V^\mu(x) - \tilde{V}(x) = \sum_{k=0}^N \frac{i^k(\Im r)^k}{k!} \partial^k_r V^\mu(\Re r, \omega) + \frac{(i \Im r)^{N+1}}{(N+1)!} \int_0^1 \partial_r^{N+1}(V^\mu((\Re r + it \Im r), \omega)) dt - \tilde{V}(x)$$

$$= \sum_{k=0}^N \frac{i^k(\Im r)^k}{k!} \partial^k_r (V^\mu(\Re x) - V(\Re x)) + O(\mu^{N+1}(\Re x)^{-\tilde{\nu}})$$

$$= O(\mu^\infty (\Re x)^{-\tilde{\nu}}) + O(\mu^{N+1}(\Re x)^{-\tilde{\nu}}),$$

and similarly, for any $\alpha \in \mathbb{N}^n$,

$$\tilde{\partial}^\alpha (V^\mu(x) - \tilde{V}(x)) = O(\mu^\infty (\Re x)^{-\tilde{\nu}-|\alpha|}).$$

In particular, we have proved (ii).

Now, we proceed with the construction of such a V^μ.

For $x \in \mathbb{R}^n \setminus \{0\}$, we set $\omega = x/|x|$, $r = |x|$, and $s = \ln r$. In particular, for any t real small enough, the dilation $x \mapsto e^t x$ becomes $(s, \omega) \mapsto (s + t, \omega)$ in the new coordinates (s, ω).

For $\omega \in S^{n-1}$ and $s \in \mathbb{C}$ with $|\Im s|$ small enough, we set $\tilde{V}_1(s, \omega) := \tilde{V}(e^s \omega)$, where \tilde{V} is an almost-analytic extension of V as before. Then for $|\Im s| < 2\mu$ and $\Re s \geq -\mu$, we define

$$V^\mu_1(s, \omega) := e^{-\tilde{\nu}s} \frac{1}{2i\pi} \int_\gamma e^{\tilde{\nu}s'} \tilde{V}_1(s', \omega) \frac{1}{s - s'} ds', \quad (4-4)$$

where γ is the oriented complex contour

$$\gamma := ((+\infty, -2\mu] + 2i\mu) \cup (-2\mu + 2i[\mu, -\mu]) \cup ([-2\mu, +\infty) - 2i\mu). \quad (4-5)$$

By construction, $\tilde{V}_1(s', \omega) = O(e^{-\Re s'})$, so that the previous integral is indeed absolutely convergent. Therefore, the (s, ω)-smoothness and s-holomorphy of V^μ_1 are obvious consequences of Lebesgue’s dominated convergence theorem. Since γ is symmetric with respect to \Re, we also have that $V^\mu_1(s, \omega)$ is real for s real. Moreover, since $|s - s'| \geq \mu$ on γ, we see that

$$V^\mu_1(s, \omega) = e^{-\tilde{\nu}s} \frac{1}{2i\pi} \int_\gamma e^{\tilde{\nu}s'} \tilde{V}_1(s', \omega) \frac{1}{s - s'} ds' + O(e^{-(\nu-\tilde{\nu})/(2\mu) - \tilde{\nu}\Re s}),$$

where

$$\gamma (s) := \left(\gamma \cap \{\Re s' \leq \Re s + \frac{1}{\mu}\}\right) \cup \left(\Re s + \frac{1}{\mu} + 2i[-\mu, \mu]\right).$$
In particular, $\gamma(s)$ is a simple oriented loop around s, and therefore, one obtains
\[
V_1^\mu(s, \omega) - \widetilde{V}_1(s, \omega) = \frac{e^{-\nu s}}{2i\pi} \int_{\gamma(s)} \frac{e^{\nu s'} \widetilde{V}_1(s', \omega) - e^{\nu s} \widetilde{V}_1(s, \omega)}{s - s'} \, ds' + O(e^{-(\nu-\bar{\nu})/2\mu - \nu \Re s}). \tag{4-6}
\]

Then writing
\[
e^{\nu s'} \widetilde{V}_1(s', \omega) - e^{\nu s} \widetilde{V}_1(s, \omega) = (s - s') f(s, s', \omega) + (s - s') g(s, s', \omega), \tag{4-7}
\]
with $|\partial_{s'} f| + |g| = O(\mu^{\infty})$, by Stokes’ formula, we see that, for $\Re s \leq 2/\mu$ and $|\Im s| \leq \mu$, we have
\[
V_1^\mu(s, \omega) - \widetilde{V}_1(s, \omega) = O(\mu^{\infty} e^{-\nu \Re s}).
\]

When $\Re s > 2/\mu$ and $|\Im s| \leq \mu$, setting
\[
\gamma_1(s) := \left(\gamma \cap \left\{ \Re s' \leq \frac{1}{\mu} \right\} \right) \cup \left(\frac{1}{\mu} + 2i[-\mu, \mu] \right),
\]
Stokes’ formula directly gives
\[
\int_{\gamma_1(s)} \frac{e^{\nu s'} \widetilde{V}_1(s', \omega)}{s - s'} \, ds' = O(\mu^{\infty}),
\]
and thus, using again that $\widetilde{V}_1(s', \omega) = O(e^{-\nu \Re s'})$, in that case we obtain
\[
|V_1^\mu(s, \omega)| + |\widetilde{V}_1(s, \omega)| = O(\mu^{\infty} e^{-\nu \Re s}).
\]

In particular, in both cases we obtain
\[
V_1^\mu(s, \omega) - \widetilde{V}_1(s, \omega) = O(\mu^{\infty} e^{-\nu \Re s}), \tag{4-8}
\]
uniformly for $\Re s \geq -\mu$, $|\Im s| \leq \mu$ and $\mu > 0$ small enough.

Then for $\alpha \in \mathbb{N}^n$ arbitrary, by differentiating (4-4) and observing that
\[
e^{\nu s'} \widetilde{V}_1(s', \omega) - \sum_{k=0}^N \frac{1}{k!} (s' - s)^k \partial_{s'}^k(e^{\nu s} \widetilde{V}_1(s, \omega)) = (s' - s)^{N+1} f_N(s, s', \omega) + g_N(s, s', \omega),
\]
with $|\partial_{s'} f_N| + |g_N| = O(\mu^{\infty})$, the same procedure gives
\[
\partial^\alpha(V_1^\mu(s, \omega) - \widetilde{V}_1(s, \omega)) = O(\mu^{\infty} e^{-\nu \Re s}), \tag{4-9}
\]
uniformly for $\Re s \geq -\mu$, $|\Im s| \leq \mu$ and $\mu > 0$ small enough. In particular, using the properties of \widetilde{V}_1, on the same set we also obtain
\[
\partial^\alpha \overline{V}_1^\mu(s, \omega) = O(e^{-\nu \Re s}), \tag{4-10}
\]
uniformly.

Now, let $\chi_1 \in C^\infty(\mathbb{R}; [0, 1])$ be such that $\chi_1 = 1$ on $(-\infty, -1]$, and $\chi_1 = 0$ on \mathbb{R}_+. We set
\[
V_2^\mu(s, \omega) := \chi_1(s/\mu) \widetilde{V}_1(s, \omega) + (1 - \chi_1(s/\mu))V_1^\mu(s, \omega), \tag{4-11}
\]
In particular, V_2^μ is well defined and smooth on $\mathbb{R} \cup (\mathbb{R}_+ + i[-\mu, \mu])$, and one has

$$V_2^\mu = \bar{V}_1 \quad \text{for } s \in (-\infty, -\mu],$$

$$V_2^\mu = V_1^\mu \quad \text{for } s \in \mathbb{R}_+ + i[-\mu, \mu],$$

$$\partial_r (V_2^\mu - \bar{V}_1) = C(\mu^\infty) \quad \text{for } s \in [-\mu, \mu].$$

Finally, setting

$$V_\mu(x) := V_2^\mu \left(\ln |x|, \frac{x}{|x|} \right), \quad (4-12)$$

for $x \neq 0$, and $V_\mu(0) = \bar{V}(0)$, we easily deduce from the previous discussion (in particular (4-8), (4-9), and (4-10), and the fact that $\partial_r = r^{-1} \partial_s$), that V_μ is a $|x|$-analytic $(\mu, \bar{\nu})$-approximation of V. □

5. The analytic distortion

In this section, for any $\theta > 0$ small enough, we construct a suitable distortion $x \mapsto x + i\theta A(x)$ satisfying $A(x) = x$ for $|x|$ large enough, and such that for $\mu \geq \theta$, the resolvent $(P_\theta^\mu - z)^{-1}$ of the corresponding distorted Hamiltonian P_θ^μ, admits sufficiently good estimates when $\text{Im } z \geq h^{n_1}$.

We fix $R_0 \geq 1$ arbitrarily. In the Appendix we will justify the following lemma by constructing the function announced in it:

Lemma 5.1. For any $\lambda > 1$ large enough, there exists $f_\lambda \in C^\infty(\mathbb{R}_+)$ such that

(i) $\text{supp } f_\lambda \subset [R_0, +\infty)$;

(ii) $f_\lambda(r) = \lambda r$ for $r \geq 2 \ln \lambda$;

(iii) $0 \leq f_\lambda(r) \leq r f_\lambda'(r) \leq 2\lambda r$ everywhere;

(iv) $f_\lambda' + |f_\lambda''| = C(1 + f_\lambda)$ uniformly;

(v) for any $k \geq 1$, $f_\lambda^{(k)} = C(\lambda)$ uniformly.

Now, we take $\lambda := h^{-n_1}$, and we set

$$b(r) := \frac{1}{\lambda} f_\lambda(r). \quad (5-1)$$

By the lemma, b satisfies

- $\text{supp } b \subset [R_0, +\infty)$;
- $b(r) = r$ for $r \geq 2n_1 \ln(1/h)$;
- $0 \leq b(r) \leq r b'(r) \leq 2r$ everywhere;
- $b' + |b''| = C(h^{n_1} + b)$ uniformly;
- For any $k \geq 1$, $b^{(k)} = C(1)$ uniformly.

We set

$$A(x) := b(|x|) \frac{x}{|x|} = a(|x|) x,$$
where \(a(r) := r^{-1} b(r) \in C^\infty(\mathbb{R}_+) \). For \(\mu \geq \theta \) (both small enough), we can define the distorted operator \(P^\mu_0 \) as in (2.4) obtained from \(P^\mu \) by using the distortion

\[
\Phi_\theta : \mathbb{R}^n \ni x \mapsto x + i \theta A(x) \in \mathbb{C}^n.
\]

(5.2)

Here we use the fact that \(|A(x)| \leq 2|x|\), and we also observe that, for any \(\alpha \in \mathbb{N}^n \) with \(|\alpha| \geq 1\), one has \(\partial^\alpha \Phi_\theta(x) = O(\theta \langle x \rangle^{1-|\alpha|}) \) uniformly.

Proposition 5.2. If \(R_0 \) is fixed sufficiently large, then for \(0 < \theta \leq \mu \) both small enough, \(h > 0 \) small enough, \(u \in H^2(\mathbb{R}^n) \), and \(z \in \mathbb{C} \) such that \(\Re z \in [\lambda_0/2, 2\lambda_0] \) and \(\Im z \geq h^{1/2} \theta \), one has

\[
|\langle (P^\mu_0 - z)u, u \rangle_{L^2}| \geq \frac{\Im z}{2} \|u\|^2_{L^2}.
\]

Proof. Setting \(F := \mathcal{A} a(x) = a(x) \), and \(V^\mu_0(x) := V^\mu(x + i \theta A(x)) \), we have

\[
\langle P^\mu_0 u, u \rangle = \langle (I + i \theta F(x))^{-1} h D_x^2 u, u \rangle + \langle V^\mu_0 u, u \rangle
\]

\[
= \langle (1 + i \theta F(x))^{-2} h D_x u, h D_x u \rangle
\]

\[
+ i h \langle (\nabla \theta) (I + i \theta F(x))^{-1} (I + i \theta F(x))^{-1} h D_x u, u \rangle + \langle V^\mu_0 u, u \rangle.
\]

Therefore, using Lemma A.1 and the equality

\[
|\Im V^\mu(x)| = O(|\Im x| \langle \Re x \rangle^{-1}),
\]

valid for \(x \) complex, we find

\[
\Im \langle P^\mu_0 u, u \rangle \leq -\theta \| \sqrt{a(|x|)} h D_x u \|^2 + C h \theta \int \left(|b''| + \frac{\sqrt{b}}{|x|} + \frac{b}{|x|^2} \right) |h D_x u| \cdot |u| \, dx + C_0 \theta \left\| \sqrt{b} \right\| \frac{\sqrt{b}}{|x|^{(\nu+1)/2}} u \|^2
\]

for some constants \(C, C_0 > 0 \); moreover \(C_0 \) is independent of the choice of \(R_0 \).

Thus, using the properties of \(b \) listed after (5.1), we obtain (with some other constant \(C > 0 \))

\[
\Im \langle P^\mu_0 u, u \rangle \leq -\theta \| \sqrt{a}(|x|) h D_x u \|^2 + C h \theta \int \left(|b''| + \frac{b}{|x|} + h'' \right) |h D_x u| \cdot |u| \, dx + C_0 R_0^{-\nu} \theta \| \sqrt{a} u \|^2.
\]

(5.3)

On the other hand for \(z \in \mathbb{C} \), a similar computation gives

\[
\Re \langle \sqrt{a} (P^\mu_0 - z)u, \sqrt{a} u \rangle
\]

\[
= -(\Re z) \| \sqrt{a} u \|^2 + \Re \langle \sqrt{a} (I + i \theta F(x))^{-1} h D_x^2 u, \sqrt{a} u \rangle + \Re \langle \sqrt{a} V^\mu_0 u, \sqrt{a} u \rangle
\]

\[
\leq -(\Re z) \| \sqrt{a} u \|^2 + (1 - 2\theta)^{-2} \| \sqrt{a} h D_x u \|^2
\]

\[
+ C h \int \left(|b''| + \frac{b}{|x|} + h'' \right) |h D_x u| \cdot |u| \, dx + C_0 R_0^{-\nu} \| \sqrt{a} u \|^2,
\]
still with \(C, C_0\) positive constants, and \(C_0\) independent of the choice of \(R_0\). Therefore, if \(\text{Re} z \geq \lambda_0/2 > 0\) and \(R_0\) is chosen sufficiently large, then for \(\theta\) small enough, we obtain

\[
\|\sqrt{a}u\| \leq 4\lambda_0^{-1}\|\sqrt{ah D_x} u\|^2 + 4C_0^{-1}h \left(\|b''\| + \frac{b}{|x|} + h\right)h D_x u \cdot |u| \, dx
+ 4\lambda_0^{-1}|\langle \sqrt{a}(P_\theta^\mu z) u, \sqrt{a}u \rangle|.
\]

(5-4)

The insertion of this estimate into (5-3) gives

\[
\text{Im}(P_\theta^\mu u, u) \leq -(1 - 4C_0\lambda_0^{-1}R_0^{-v})\theta\|\sqrt{ah D_x} u\|^2 + C'h \theta \int \left(|b''| + \frac{b}{|x|} + h\right)h D_x u \cdot |u| \, dx
+ C'|\langle \sqrt{a}(P_\theta^\mu z) u, \sqrt{a}u \rangle|,
\]

(5-5)

with \(C' > 0\) a constant.

Now, for \(r \geq 2n_1 \ln(1/h)\), by construction we have \(b''(r) = 0\), while, for \(r \leq 2n_1 \ln(1/h)\), we have

\[
|b''(r)| = C(h^{n_1} + b) = C(h^{n_1} + \theta n_1 a).
\]

(5-6)

Then we deduce from (5-5)

\[
\text{Im}(P_\theta^\mu u, u) \leq -(1 - 4C_0\lambda_0^{-1}R_0^{-v} - C h \ln(1/h))\theta\|\sqrt{ah D_x} u\|^2
+ C' h^{n_1+1}\theta\|h D_x u\| \cdot |u| + C'|\langle \sqrt{a}(P_\theta^\mu z) u, \sqrt{a}u \rangle|,
\]

(5-7)

with some other constant \(C' > 0\). Using again (5-6), we also deduce from (5-4) that

\[
\|\sqrt{a}u\| = C\|\sqrt{ah D_x} u\|^2 + |\langle \sqrt{a}(P_\theta^\mu z) u, \sqrt{a}u \rangle| + h^{n_1+1}\|h D_x u\| \cdot |u|,
\]

uniformly for \(h > 0\) small enough, and thus, by (5-7),

\[
\text{Im}(P_\theta^\mu u, u) \leq -(1 - 4C_0\lambda_0^{-1}R_0^{-v} - C h \ln(1/h))\theta\|\sqrt{ah D_x} u\|^2
+ C h^{n_1+1}\|h D_x u\| \cdot |u| + C'|\langle \sqrt{a}(P_\theta^\mu z) u, \sqrt{a}u \rangle|.
\]

(5-8)

Finally, for \(\text{Re} z \leq 2\lambda_0\), we use the (standard) ellipticity of the second-order partial differential operator \(\text{Re} P_\theta^\mu\), and the properties of \(V^\mu\), to obtain

\[
\text{Re}(\langle (P_\theta^\mu z)u, u \rangle) \geq \frac{1}{\epsilon}\|h D_x u\|^2 - C\|u\|^2,
\]

where \(C\) is again a new positive constant, independent of \(\mu\) and \(\theta\). Combining with (5-8), and possibly increasing the value of \(R_0\), this leads to

\[
\text{Im}(\langle (P_\theta^\mu z)u, u \rangle) \leq (C h^{n_1+1}\theta - \text{Re} z)\|u\|^2
+ C h^{n_1+1}\theta|\langle (P_\theta^\mu z)u, u \rangle|^{1/2}\|u\| + C\theta|\langle (P_\theta^\mu z)u, u \rangle|,
\]

(5-9)

and thus, for \(\text{Im} z \geq h^{n_1}\theta\), and for \(h, \theta > 0\) small enough, we can deduce

\[
|\langle (P_\theta^\mu z)u, u \rangle| \geq \frac{3\text{Im} z}{4}\|u\|^2 - C h^{n_1+1}\theta|\langle (P_\theta^\mu z)u, u \rangle|^{1/2}\|u\|.
\]

(5-10)
Then the result easily follows by solving this second-order inequality where the unknown variable is $|\langle (P_{\theta}^\mu - z)u, u \rangle|^{1/2}$, and by using again that $\text{Im} \, z \gg h^{n+1/2}$.

\section{Proof of Theorem 2.1}

\subsection{The invertible reference operator.}

The purpose of this section is to introduce an operator without eigenvalues near λ_0, obtained as a finite-rank perturbation of P_{θ}^μ, $0 < \theta \leq \mu$, and for which we have a nice estimate for the resolvent in the lower half plane. This operator will be used in the next section to construct a convenient Grushin problem.

Let $\chi_0 \in C_0^\infty(\mathbb{R}^n; [0, 1])$ be equal to 1 on $[0, 1 + 2\lambda_0 + \sup V]$, and let $C_0 > \sup |\nabla V|$. We set

\begin{equation}
R = R(h) := 2n_1 \ln(1/h);
\end{equation}

\begin{equation}
\tilde{P}_{\theta}^\mu := P_{\theta}^\mu - iC_0\theta \chi_0(h^2D_x^2 + R^{-2}x^2).
\end{equation}

Observe that $h^2D_x^2 + R^{-2}x^2$ is unitarily equivalent to $hR^{-1}(D_x^2 + x^2)$, so the rank of $\chi_0(h^2D_x^2 + R^{-2}x^2)$ is $\mathcal{O}(R^nh^{-n})$.

For $m \in \mathbb{R}$, we denote by $S(\langle \xi \rangle^m)$ the set of functions $a \in C^\infty(\mathbb{R}^{2n})$ such that for all $\alpha \in \mathbb{N}^{2n}$, one has

\begin{equation}
\hat{a}_{\alpha, \xi}(x, \xi) = \mathcal{O}(\langle \xi \rangle^m) \text{ uniformly.}
\end{equation}

We also denote

\begin{equation}
\text{Op}_h^W(a)(u(x)) = \frac{1}{(2\pi h)^n} \int \int e^{i(x-y)\xi/h} a \left(\frac{x+y}{2}, \xi \right) u(y) dy \, d\xi,
\end{equation}

the semiclassical Weyl quantization of such a symbol a.

Denoting by $\tilde{p}_{\theta}^\mu \in S(\langle \xi \rangle^2)$ the Weyl symbol of \tilde{P}_{θ}^μ, we see that

\begin{equation}
\tilde{p}_{\theta}^\mu(x, \xi) = \left((\nu d\Phi_{\theta}(x))^{-1} \xi \right)^2 + V^\mu(\Phi_{\theta}(x)) - iC_0\theta \chi_0(\xi^2 + R^{-2}x^2) + \mathcal{O}(h\theta \langle \xi \rangle),
\end{equation}

uniformly with respect to (x, ξ), μ, θ, and h, and where the estimate on the remainder is in the sense of symbols (that is, one has the same estimate for all the derivatives). In particular, we have

\begin{equation}
\text{Re} \, \tilde{p}_{\theta}^\mu(x, \xi) = \xi^2 + V(x) + \mathcal{O}(\theta \langle \xi \rangle^2).
\end{equation}

Moreover,

- if $|x| \geq R$ and $|\xi|^2 \geq \lambda_0/2$, then
 \begin{equation}
 \text{Im} \, \tilde{p}_{\theta}^\mu(x, \xi) \leq -\frac{\theta}{C} \langle \xi \rangle^2 + \mathcal{O}(\theta R^{-1}) \leq -\frac{\theta}{2C} \langle \xi \rangle^2;
 \end{equation}

- if $|x| \leq R$ and $|\xi|^2 \leq 2\lambda_0 + \sup V$, then
 \begin{equation}
 \text{Im} \, \tilde{p}_{\theta}^\mu \leq -C_0\theta + \theta \sup |\nabla V| + \mathcal{O}(h\theta) \leq -\frac{\theta}{2C},
 \end{equation}

where $C > 0$ is a constant, and the estimates are valid for h small enough. (For (6-5) we used the inequality $\text{Im} \,((\nu d\Phi_{\theta}(x))^{-1} \xi)^2 \leq 0$, due to the particular form of $\Phi_{\theta}(x)$. See Lemma A.1 in the Appendix.)
Proposition 6.1. There exists a constant \(\tilde{C} \geq 1 \) such that for all \(\mu > 0 \), for all \(\theta \in (0, \mu) \), for all \(z \) satisfying \(|\text{Re } z - \lambda_0| + \theta^{-1} |\text{Im } z| \leq 4/\tilde{C} \), and for all \(h \in (0, 1/\tilde{C}) \), one has

\[
\| (\xi - \tilde{\varphi}_\theta^\mu)^{-1} \| \leq \tilde{C} \theta^{-1}.
\]

Proof. We take two functions \(\varphi_1, \varphi_2 \in C^\infty_0(\mathbb{R}^{2n}; [0, 1]) \) (the space of smooth functions bounded with all their derivatives), such that

- \(\varphi_1^2 + \varphi_2^2 = 1 \) on \(\mathbb{R}^{2n} \);
- \(\text{supp } \varphi_1 \) is included in a small enough neighborhood of \(\{ \xi^2 + V(x) = \lambda_0 \} \);
- \(\varphi_1 = 1 \) near \(\{ \xi^2 + V(x) = \lambda_0 \} \).

In particular, \(\varphi_1 \) can be chosen in such a way that, on \(\text{supp } \varphi_1 \), one has either \(|x| \geq R \) together with \(|\xi|^2 \geq \lambda_0/2 \), or \(|x| \leq R \) together with \(|\xi|^2 \leq 2 \lambda_0 + \text{sup } |V| \). Therefore, we deduce from (6-4)–(6-5)

\[
\frac{1}{\theta} \text{Im } \tilde{\varphi}_\theta^\mu \leq -\frac{1}{2C} \text{ on supp } \varphi_1,
\]

and thus,

\[
\varphi_1^2 \frac{1}{\theta} \text{Im } \tilde{\varphi}_\theta^\mu + \frac{1}{2C} \varphi_2^2 \leq 0 \text{ on } \mathbb{R}^{2n}.
\] (6-6)

Moreover, it is easy to check that the function \((x, \xi) \mapsto \theta^{-1} \text{Im } \tilde{\varphi}_\theta^\mu \) is a nice symbol in \(S((\xi^2)^2) \), uniformly with respect to \(\mu \) and \(\theta \), that is, for all \(\alpha \in \mathbb{N}^{2n} \), one has

\[
\tilde{\varphi}_{x,\xi}^\alpha (\theta^{-1} \text{Im } \tilde{\varphi}_\theta^\mu)(x, \xi) = \mathcal{C}(\xi^2) \text{ uniformly,}
\]

and we see from (6-2) that

\[
\theta^{-1} \text{Im } \tilde{\varphi}_\theta^\mu \leq CR^{-\nu} + Ch\langle \xi \rangle,
\]

with some new uniform constant \(C > 0 \).

Then setting \(\phi_j := \text{Op}_{\phi_j}^W (\phi_j) \), writing \(I = \phi_1^2 u + \phi_2^2 u + h Q \) where \(Q \) is a uniformly bounded pseudodifferential operator, and using the sharp Gårding inequality, we obtain

\[
(\theta^{-1} \text{Im } \tilde{\varphi}_\theta^\mu, u) = (\phi_1 \theta^{-1} \text{Im } \tilde{\varphi}_\theta^\mu \phi_1 u, u) + (\theta^{-1} \text{Im } \tilde{\varphi}_\theta^\mu \phi_2 u, \phi_2 u) + \mathcal{C}(h\|u\|_{H^1}^2)
\]

\[
\leq -\frac{1}{2C} \|\phi_1 u\|^2 + CR^{-\nu} \|\phi_2 u\|^2 + Ch\|h D_x u\|^2,
\]

for all \(u \in H^2(\mathbb{R}^n) \), and still for some new uniform constant \(C > 0 \). Hence,

\[
|\text{Im } (\tilde{\varphi}_\theta^\mu, u)| \geq \frac{\theta}{2C} \|\phi_1 u\|^2 - CR^{-\nu} \|\phi_2 u\|^2 - Ch\|h D_x u\|^2.
\] (6-7)

On the other hand since \(\text{Re } \tilde{\varphi}_\theta^\mu - \lambda_0 \in S((\xi^2)^2) \) is uniformly elliptic on supp \(\varphi_2 \), the symbolic calculus permits us to construct \(a \in S((\xi^2)^{-2}) \) (still depending on \(\mu \) and \(\theta \), but with uniform estimates), such that

\[
a \sharp (\tilde{\varphi}_{k,\theta} - \lambda_0) = \varphi_2 \sharp \varphi_2 + \mathcal{C}(h^\infty) \text{ in } S(1),
\]

where \(\sharp \) stands for the Weyl composition of symbols. As a consequence, denoting by \(A \) the Weyl quantization of \(a \), we obtain

\[
\|h D_x \phi_2 u\|^2 = \langle h D_x \rangle^2 A (\tilde{\varphi}_\theta^\mu - \lambda_0) u, u \rangle + \mathcal{C}(h)\|u\|^2,
\]
and thus
\[\| (\tilde{P}^\mu - \lambda_0) u \| \cdot \| u \| \geq \frac{1}{C} \| \langle hD_x \rangle \phi_2 u \|^2 - Ch \| u \|^2. \] (6-8)

Now, if \(z \in \mathbb{C} \) is such that \(| \text{Re} \ z - \lambda_0 | \leq \varepsilon \) and \(| \text{Im} \ z | \leq \varepsilon \theta \) (\(\varepsilon > 0 \) fixed), we deduce from (6-7)–(6-8) that
\[\| (\tilde{P}^\mu - z) u \| \cdot \| u \| \geq |\text{Im}(\langle \tilde{P}^\mu - z \rangle u, u)| \geq \frac{\theta}{2C} \| \phi_1 u \|^2 - C \theta R^{-\nu} \| \phi_2 u \|^2 - Ch \| \langle hD_x \rangle u \|^2 - \varepsilon \theta \| u \|^2, \]
\[\theta \| (\tilde{P}^\mu - z) u \| \cdot \| u \| \geq \frac{\theta}{C} \| \langle hD_x \rangle \phi_2 u \|^2 - Ch \theta \| u \|^2 - 2 \varepsilon \theta \| u \|^2, \]
which yields
\[(1 + \theta)(\tilde{P}^\mu - z) u \| \cdot \| u \| \geq \frac{\theta}{2C} \left(\| \phi_1 u \|^2 + \| \langle hD_x \rangle \phi_2 u \|^2 \right) - \theta (2Ch + CR^{-\nu} + 3\varepsilon) \| \langle hD_x \rangle u \|^2. \] (6-9)

Moreover, since \(\xi \) remains bounded on \(\text{supp} \phi_1 \), the norms \(\| \langle hD_x \rangle u \| \) and \(\| \phi_1 u \| + \| \langle hD_x \rangle \phi_2 u \| \) are uniformly equivalent, and thus, for \(\varepsilon \) and \(h \) small enough, we deduce from (6-9) that
\[\| (\tilde{P}^\mu - z) u \| \cdot \| u \| \geq \frac{\theta}{4C} \| \langle hD_x \rangle u \|^2, \]
and the result follows. \(\square \)

6.2. The Grushin problem.

In this section, we reduce the estimate on \((P^\mu_\theta - z)^{-1} \) in Theorem 2.1, to that of a finite matrix, by means of some convenient Grushin problem (see for example [Sjöstrand 1997]).

Denote by \((e_1, \ldots, e_M) \) an orthonormal basis of the range of the operator
\[K := C_0 \mathcal{X}_0 (h^2 D_x^2 + R^{-2} x^2). \]

In particular, \(M = M(h) \) satisfies
\[M = \mathcal{O}(R^n h^{-n}). \] (6-10)

Let \(z \in \mathbb{C} \), and consider the two operators
\[R_+ : L^2(\mathbb{R}^n) \rightarrow \mathbb{C}^M, \quad u \mapsto \langle u, e_j \rangle \] for \(1 \leq j \leq M, \]
\[R_- (z) : \mathbb{C}^M \rightarrow L^2(\mathbb{R}^n), \quad u^- \mapsto \sum_{j=1}^M u_j^- (\tilde{P}^\mu - z) e_j. \]

Then the Grushin operator
\[\mathcal{G}(z) := \begin{pmatrix} P^\mu_\theta - z & R_- (z) \\ R_+ & 0 \end{pmatrix} \]
is well defined from \(H^2(\mathbb{R}^n) \times \mathbb{C}^M \) to \(L^2(\mathbb{R}^n) \times \mathbb{C}^M \), and for \(z \) as in Proposition 6.1, it is easy to show that \(\mathcal{G}(z) \) is invertible, and its inverse is given by
\[\mathcal{G}(z)^{-1} := \begin{pmatrix} E (z) & E^+ (z) \\ E^- (z) & E^{-+} (z) \end{pmatrix}, \]
where

\[E(z) = (1 - T_M)(\tilde{P}_\theta^\mu - z)^{-1}, \quad \text{with } T_Mv := \sum_{j=1}^M \langle v, e_j \rangle e_j \ (v \in L^2), \]

\[E^+(z)v^+ = \sum_{j=1}^M v_j^+ (e_j + i\theta(1 - T_M)(\tilde{P}_\theta^\mu - z)^{-1}Ke_j), \quad (v^+_j = (v_j^+)_{1 \leq j \leq M} \in \mathbb{C}^M), \]

\[E^-(z)v = ((\tilde{P}_\theta^\mu - z)^{-1}v, e_j)_{1 \leq j \leq M}, \]

\[E^{-+}(z)v^+ = -v^+ + i\theta \left(\sum_{j=1}^M v_j^+ ((\tilde{P}_\theta^\mu - z)^{-1}Ke_j, e_j) \right)_{1 \leq j \leq M}. \]

Proposition 6.1 gives

\[\|E(z)\| + \|E^-(z)\| = \mathcal{O}(\theta^{-1}), \quad (6-11) \]

\[\|E^+(z)\| + \|E^{-+}(z)\| = \mathcal{O}(1), \quad (6-12) \]

uniformly for \(\mu > 0, \theta \in (0, \mu], h > 0 \) small enough, and \(|\text{Re } z - \lambda_0| + \theta^{-1}|\text{Im } z| \) small enough.

Hence, using the algebraic identity

\[(P_{\theta}^\mu - z)^{-1} = E(z) - E^{++}(z)E^{-+}(z)^{-1}E^-(z), \quad (6-13) \]

we finally obtain:

Proposition 6.2. If \(z \in \mathbb{C} \) is such that \(|\text{Re } z - \lambda_0| \leq \tilde{C}^{-1} \) and \(|\text{Im } z| \leq 2\tilde{C}^{-1}\theta \), and \(E^{-+}(z) \) is invertible, then so is \(P_{\theta}^\mu - z \), and one has

\[\|(P_{\theta}^\mu - z)^{-1}\| = \mathcal{O}(\theta^{-1}(1 + \|E^{-+}(z)^{-1}\|)), \]

uniformly with respect to \(\mu > 0, \theta \in (0, \mu], h > 0 \) small enough, and \(z \) such that \(|\text{Re } z - \lambda_0| \leq \tilde{C}^{-1} \) and \(|\text{Im } z| \leq \tilde{C}^{-1}\theta \).

Therefore, we have reduced the study of \((P_{\theta}^\mu - z)^{-1} \) to that of the \(M \times M \) matrix \(E^{-+}(z)^{-1} \).

6.3. Using the Maximum Principle. For \(z \in J + i[-\theta/\tilde{C}, 2\theta/\tilde{C}] \), we define

\[D(z) := \det E^{-+}(z). \]

Then \(z \mapsto D(z) \) is holomorphic in \(J + i[-\theta/\tilde{C}, 2\theta/\tilde{C}] \). Setting \(N := \#(\sigma(P_{\theta}^\mu) \cap (J + i[-\theta/\tilde{C}, 2\theta/\tilde{C}]) \) and using (6-13), we see that \(D(z) \) can be written as

\[D(z) = G(z) \prod_{\ell=1}^N (z - \rho_\ell), \]

with \(G \) holomorphic in \(J + i[-\theta/\tilde{C}, 2\theta/\tilde{C}] \), \(G(z) \neq 0 \) for all \(z \in J - i[0, \tilde{C}^{-1}\theta] \).

Moreover, using (6-12) and (6-10), we obtain that for some uniform constant \(C_1 > 0 \),

\[|D(z)| = \prod_{\lambda \in \sigma(E^{-+}(z))} |\lambda| \leq \|E^{-+}(z)\|^M \leq C_1 e^{C_1 R^h h^{-n}}. \quad (6-14) \]
Lemma 6.3. For every \(\theta \in [0, \mu] \), there exists \(r_\theta \in [\theta/(2\tilde{C}), \theta/\tilde{C}] \), such that for all \(z \in J - ir_\theta \), and for all \(\ell = 1, \ldots, N \), one has

\[
|z - \rho_\ell| \geq \frac{\theta}{8CN}.
\]

Proof. By contradiction, if it was not the case, then for all \(t \) in \([-\theta/2\tilde{C}, -\theta/\tilde{C}]\), there should exist \(\ell \) such that

\[
|t - \text{Im} \rho_\ell| < \frac{\theta}{8CN}.
\]

Therefore, the interval \([-\theta/2\tilde{C}, -\theta/\tilde{C}]\) would be included in \(\bigcup_{\ell=1}^{N} [\text{Im} \rho_\ell - \theta/(8\tilde{C}N), \text{Im} \rho_\ell + \theta/(8\tilde{C}N)] \), which is impossible because of their respective sizes.

From now on, we assume \(\mathcal{P}(\tilde{\mu}, \mu; I, J) \) and setting

\[
W_\theta(J) := J + i[-r_\theta, 2\theta/\tilde{C}],
\]

we deduce from Lemma 6.3 that, for \(\theta \in (0, \tilde{\mu}) \), \(z \) on the boundary of \(W_\theta(J) \), and for all \(\ell = 1, \ldots, N \),

\[
|z - \rho_\ell| \geq \frac{1}{C_2 \theta},
\]

for some constant \(C_2 > 0 \). As a consequence, using (6-14), on this set we obtain

\[
|G(z)| \leq \theta^{-C_3} e^{C_3 R^n h^{-n}},
\]

with some other uniform constant \(C_3 > 0 \). Then the maximum principle tells us that this estimate remains valid in the interior of \(W_\theta(J) \):

Proposition 6.4. There exists a constant \(C_3 > 0 \) such that for all \(\tilde{\mu}, \mu, I \) and \(J \) satisfying (2-6)–(2-7) such that \(\mathcal{P}(\tilde{\mu}, \mu; I, J) \) holds, one has

\[
|G(z)| \leq \theta^{-C_3} e^{C_3 R^n h^{-n}},
\]

for all \(\theta \in (0, \tilde{\mu}) \), \(z \in W_\theta(J) \), and \(h \in (0, 1/C_3] \).

6.4. Using the Harnack Inequality. Since \(G(z) \neq 0 \) on \(W_\theta(J) \), we can consider the function

\[
H(z) := C_3 R^n h^{-n} - C_3 \ln \theta - \ln |G(z)|.
\]

Then \(H \) is harmonic in \(W_\theta(J) \), and by Proposition 6.4, it is also nonnegative. Using the algebraic formula

\[
E^{+}(z)^{-1} = -R_+(P_\theta^\mu - z)^{-1}R_-(z)
\]

and the fact that \((P_\theta^\mu - z)^{-1}R_-(z)u^- = \sum_{j=1}^{M} u_j (I - i\theta(P_\theta^\mu - z)^{-1}K) e_j\), we deduce from Proposition 5.2 that, for \(z \in [\lambda_0/2, 2\lambda_0] + i[\theta h^{n_1}, 1] \), one has

\[
\|E^{+}(z)^{-1}\| \leq 1 + 2C_0 h^{-n_1}.
\]

As a consequence, for such values of \(z \), we obtain

\[
\frac{1}{D(z)} = \det E^{+}(z)^{-1} \leq (1 + 2C_0 h^{-n_1})^M,
\]
and thus
\[|G(z)| = |D(z)| \prod_{\ell=1}^{N} |z - \rho_\ell|^{-1} \geq \frac{1}{C_4} h^{n_1M}, \]
with some uniform constant \(C_4 > 0\). In particular, for any \(\lambda \in \mathbb{R}\) such that \(\lambda + i\theta h^{n_1} \in \mathcal{W}_\theta(J)\), this gives
\[H(\lambda + i\theta h^{n_1}) \leq C_3 R^h h^{-n} - C_3 \ln \theta + \ln C_4 - n_1 M \ln h. \] \hfill (6-15)

Now, the Harnack inequality tells us that, for any \(\lambda, r\), such that
\[\text{dist}(\lambda, \mathbb{R} \setminus J) \geq C^{-1} \theta, \quad r \in [0, C^{-1} \theta) \]
and for any \(\alpha \in \mathbb{R}\), one has
\[H(\lambda + i\theta h^{n_1} + r e^{i\alpha}) \leq \frac{C^{-2} \theta^2}{(C^{-1} \theta - r)^2} H(\lambda + i\theta h^{n_1}). \]
In particular, setting
\[\tilde{\mathcal{W}}_\theta(J) := \{ z \in \mathbb{C}; \text{dist}(\Re z, \mathbb{R} \setminus J) \geq \tilde{C}^{-1} \theta, |\Im z| \leq (2\tilde{C})^{-1} \theta \} \]
and using (6-15), we find
\[H(z) \leq 5C_3 R^h h^{-n} - 5C_3 \ln \theta + 5 \ln C_4 - 5n_1 M \ln h, \]
for all \(z \in \tilde{\mathcal{W}}_\theta(J)\), that is,
\[\ln |G(z)| \geq -4C_3 R^h h^{-n} + 4C_3 \ln \theta - 5 \ln C_4 + 5n_1 M \ln h, \]
or, equivalently,
\[|G(z)| \geq C_4^{-5} \theta^4 C_3 h^{5n_1 M} e^{-4C_3 R^h h^{-n}}. \] \hfill (6-16)

Finally, writing \(E^{-+}(z)^{-1} = D(z)^{-1} \tilde{E}^{-+}(z)\), where \(\tilde{E}^{-+}(z)\) stands for the transposed of the comatrix of \(E^{-+}(z)\), we see that
\[\|E^{-+}(z)^{-1}\| \leq e^{CM} |G(z)|^{-1} \prod_{\ell=1}^{N} |z - \rho_\ell|^{-1}, \]
and therefore we deduce from (6-16) and (6-10) that
\[\|E^{-+}(z)^{-1}\| \leq \theta^{-C} h^{-C R^h h^{-n}} \prod_{\ell=1}^{N} |z - \rho_\ell|^{-1}, \]
with some new uniform constant \(C \geq 1\). Thus, using Proposition 6.2, and the fact that \(R = O(|\ln h|)\), we have proved:

Proposition 6.5. There exists a constant \(\tilde{C} > 0\) such that for all \(\tilde{\mu}, \mu, I, J\) satisfying (2-6)--(2-7) such that \(\mathscr{P}(\tilde{\mu}, \mu; I, J)\) holds, one has
\[\|(P_\theta^\mu - z)^{-1}\| \leq \theta^{-\tilde{C} h^{-\tilde{C} |\ln h|^p h^{-n}}} \prod_{\ell=1}^{N} |z - \rho_\ell|^{-1}, \]
for all \(\theta \in (0, \tilde{\mu}], z \in \tilde{\mathcal{W}}_\theta(J), \text{and } h \in (0, 1/\tilde{C}]. \)
6.5. Using the 3-lines theorem. Now, following an idea of [Tang and Zworski 1998], we define
\[\Psi(z) := \int_a^b e^{-(z-\lambda)^2/\theta^2} d\lambda, \]
where
\[[a, b] := \{ \lambda \in \mathbb{R} \mid \text{dist}(\lambda, \mathbb{R} \setminus J) \geq \tilde{C}^{-1} \theta + \tilde{C}^{1/2} \omega_h(\theta) \}. \]

We have the following:
- If $\text{Im } z = 2\theta h^{n_1}$, then
 \[|\Psi(z)| \leq (b-a)e^{4h^{n_1}} = O(h^\delta) \leq 1. \]
- If $\text{Im } z = -\theta/(2\tilde{C})$, then
 \[|\Psi(z)| \leq (b-a)e^{1/4\tilde{C}^2} = O(h^\delta) \leq 1. \]
- If $\text{Re } z \in \{ a - \tilde{C}^{1/2} \omega_h(\theta), b + \tilde{C}^{1/2} \omega_h(\theta) \}$ and $\text{Im } z \in [-\theta/(2\tilde{C}), 2\theta h^{n_1}]$, then
 \[|\Psi(z)| \leq (b-a)e^{1/4\tilde{C}^2}e^{-\tilde{C} \omega_h(\theta)^2/\theta^2} = O(h^\delta)\tilde{C}^{\ln h^n h^{-n}} \leq \theta^{\tilde{C}} h^{\tilde{C} \ln h^n h^{-n}}. \]

Then for $z \in \tilde{W}_\theta(J)$, we consider the operator-valued function
\[Q(z) := \Psi(z) \prod_{\ell=1}^N (z - \rho_\ell)(P^\mu_\rho - z)^{-1} \]
that is holomorphic on $\tilde{W}_\theta(J)$ (this can be seen, for example, from (6-13)). Using, Proposition 5.2, Proposition 6.5, and the previous properties of $\Psi(z)$, we see that $Q(z)$ satisfies:
- If $\text{Im } z = 2\theta h^{n_1}$, then
 \[\|Q(z)\| \leq \theta^{-1} h^{-n_1}. \]
- If $\text{Im } z = -\theta/(2\tilde{C})$, then
 \[\|Q(z)\| \leq \theta^{\tilde{C}} h^{-\tilde{C} \ln h^n h^{-n}}. \]
- If $\text{Re } z \in \{ a - \tilde{C}^{1/2} \omega_h(\theta), b + \tilde{C}^{1/2} \omega_h(\theta) \}$ and $\text{Im } z \in [-\theta/(2\tilde{C}), 2\theta h^{n_1}]$, then
 \[\|Q(z)\| \leq 1. \]

Therefore, setting
\[\tilde{W}_\theta(J) := [a - \tilde{C}^{1/2} \omega_h(\theta), b + \tilde{C}^{1/2} \omega_h(\theta)] + i[-\theta/(2\tilde{C}), 2\theta h^{n_1}], \]
(that is included in $\tilde{W}_\theta(J)$), we see that the subharmonic function $z \mapsto \ln \|Q(z)\|$ satisfies
\[\ln \|Q(z)\| \leq \psi(z) \quad \text{on } \partial \tilde{W}_\theta(J), \]
where ψ is the harmonic function defined by
\[\psi(z) := \frac{2\theta h^{n_1} - \text{Im } z}{2\theta h^{n_1} + \theta/(2\tilde{C})} \tilde{C} \left(\ln h^{n+1} h^{-n} + \ln \theta \right) + \frac{\text{Im } z + \theta/(2\tilde{C})}{2\theta h^{n_1} + \theta/(2\tilde{C})} \ln(\theta h^{n_1}). \]
As a consequence, by the properties of subharmonic functions, we deduce that $\ln \|Q(z)\| \leq \psi(z)$ everywhere in $\tilde{\mathcal{W}}_0(J)$, and in particular, for $|\text{Im} \, z| \leq 2\theta h^{n_1}$, we obtain

$$\ln \|Q(z)\| \leq 8\tilde{C}\tilde{h}^{n_1}(\ln h)^{n_1} + |\ln \theta| + |\ln(\theta h^{n_1})|$$

Hence, since $n_1 > n$, we have proved the existence of some uniform constant $C \geq 1$, such that

$$\ln \|Q(z)\| \leq \ln C + C|\ln(\theta h^{n_1})|$$

for $z \in \tilde{\mathcal{W}}_0(J)$ and $h \in (0, 1/C]$. Coming back to P_μ^ν, this means that, for $z \in \tilde{\mathcal{W}}_0(J)$ different from ρ_1, \ldots, ρ_N, we have

$$\|\Psi(z)\|(P_\mu^\nu - z)^{-1} \leq C(\theta h^{n_1})^{-C} \prod_{\ell=1}^N |z - \rho_\ell|^{-1}.$$

On the other hand if $\text{dist}(\text{Re} \, z, \mathbb{R} \setminus J) \geq 2\tilde{C}^{1/2} \omega_h(\theta) \geq |\text{Im} \, z| \leq 2\theta h^{n_1}$, then writing $z = s + it$, we have

$$\Psi(z) = \theta e^{s^2/\theta^2} \int_{(a-s)/\theta}^{(b-s)/\theta} e^{-u^2 + 2i(t/\theta)u} \, du.$$

Now, $|t/\theta| \leq 2h^n \to 0$ uniformly, and we see that

$$(a-s)/\theta \leq \tilde{C}^{-1} - \tilde{C}^{1/2} \omega_h(\theta)/\theta \leq \tilde{C}^{-1} - (h^{-n}|\text{Im} \, h|)^{1/2} \to -\infty$$

uniformly. In the same way, we have $(b-s)/\theta \to +\infty$ uniformly as $h \to 0_+$. Therefore, we easily conclude that

$$\|\Psi(z)\| \geq \frac{\theta}{C},$$

when $h \in (0, 1/C]$, with some new uniform constant $C > 0$.

As a consequence, using also that $\theta \leq \theta^0$, we finally obtain:

Proposition 6.6. There exists a constant $C_0 \geq 1$, such that for all $\tilde{\mu}$, μ, I and J satisfying (2-6)-(2-7), the property $\mathcal{P}(\tilde{\mu}, \mu; I, J)$ implies

$$\|(P_\mu^\nu - z)^{-1}\| \leq C_0 \theta^{-C_0} \prod_{\ell=1}^N |z - \rho_\ell|^{-1}, \quad (6-17)$$

for all $z \in J' + i[-2\theta h^{n_1}, 2\theta h^{n_1}]$, and for all $h \in (0, 1/C_0]$, where

$$J' = \{ \lambda \in \mathbb{R} : \text{dist}(\lambda, \mathbb{R} \setminus J) \geq C_0 \omega_h(\theta) \}.$$

Since $J' = J + C(\omega_h(\theta))$, Theorem 2.1 is proved.

7. Proof of Theorem 2.2

Suppose $\mathcal{P}(\tilde{\mu}, \mu; I, J)$ holds, and $\tilde{\mu} \geq \mu^{N_0}$ for some constant $N_0 \geq 1$. Then for any $\theta \in [\mu^{N_0}, \tilde{\mu}]$, any constant $N_1 \geq 1$, and any $\mu' \in [\max(\theta, \mu^{N_1}), \mu^{1/N_1}]$, we can write

$$z - P_\mu^\nu = (z - P_\tilde{\mu}^\nu)(1 + (z - P_\mu^\nu)^{-1} W), \quad (7-1)$$
with
\[W := P_0^\mu - P_0^{\mu'} = V^\mu(x + iA_\theta(x)) - V^{\mu'}(x + iA_\theta(x)) = \mathcal{O}(\mu^\infty(x)^{-\nu}), \tag{7-2} \]
uniformly (see Section 4). Moreover, taking \(J' \) as in Proposition 6.6, we have:

Lemma 7.1. Let \(N \geq 1 \) be a constant, such that \(N \geq \# \Gamma(\tilde{\mu}, \mu, J) \) for all \(h \) small enough. Then for any \(\theta \in [\mu^{N_0}, \bar{\mu}] \), there exists \(\tau \in [\theta h^{n_1}, 2\theta h^{n_1}] \), such that
\[\text{dist}(\partial(J' + i[-\tau, \tau]), \Gamma(\tilde{\mu}, \mu, J)) \geq \frac{\theta h^{n_1}}{4N}. \tag{7-3} \]

Here, \(\partial(J' + i[-\tau, \tau]) \) stands for the boundary of \(J' + i[-\tau, \tau] \).

Proof. If it were not the case, using \(\mathcal{P}(\tilde{\mu}, \mu; I, J) \), we see that, for all \(t \in [-2\theta h^{n_1}, -\theta h^{n_1}] \), there should exist \(\rho \in \Gamma(\tilde{\mu}, \mu, J) \), such that
\[|t - \text{Im} \rho| \leq \frac{\theta h^{n_1}}{4N}. \]

That is, we would have
\[[-2\theta h^{n_1}, -\theta h^{n_1}] \subset \bigcup_{\rho \in \Gamma(\tilde{\mu}, \mu, J)} \left[\rho - \frac{\theta h^{n_1}}{4N}, \rho + \frac{\theta h^{n_1}}{4N} \right], \]
which, again, is not possible because of the respective size of these two sets. \(\square \)

Remark 7.2. With a similar proof, we see that the result of Lemma 7.1 remains valid if one replaces the interval \([\theta h^{n_1}, 2\theta h^{n_1}]\) by \([\theta h^{n_1}, \theta h^{n_1} + (\theta h^{n_1})^M]\), and one substitutes \((\theta h^{n_1})^M\) to \(\theta h^{n_1}\) in (7-3), where \(M \geq 1\) is any arbitrary fixed number.

Using Lemma 7.1 and Theorem 2.1, we see that, for any \(z \in \partial(J' + i[-\tau, \tau]) \), we have
\[\|(P_0^\mu - z)^{-1}\| \leq C_1 \theta^{-C_1} \leq C_1 \mu^{-C_1N_0}, \]
with some new uniform constant \(C_1\), and thus, by (7-1) and (7-2), \(z - P_0^{\mu'} \) is invertible, too, for \(z \in \partial(J' + i[-\tau, \tau]) \), and the two spectral projectors
\[\Pi := \frac{1}{2i\pi} \oint_{\partial(J' + i[-\tau, \tau])} (z - P_0^\mu)^{-1} \, dz, \quad \Pi' := \frac{1}{2i\pi} \oint_{\partial(J' + i[-\tau, \tau])} (z - P_0^{\mu'})^{-1} \, dz, \tag{7-4} \]
are well-defined and satisfy
\[\|\Pi - \Pi'\| = \mathcal{O}(\mu^\infty). \tag{7-5} \]
In particular, \(\Pi\) and \(\Pi'\) have the same rank \((\leq N)\), and one has
\[\|P_0^\mu \Pi - P_0^{\mu'} \Pi'\| = \mathcal{O}(\mu^\infty). \tag{7-6} \]
Therefore, the two sets \(\sigma(P_0^\mu) \cap (J' + i[-\tau, \tau])\) and \(\sigma(P_0^{\mu'}) \cap (J' + i[-\tau, \tau])\) coincide up to \(\mathcal{O}(\mu^\infty)\) uniformly by standard finite dimensional arguments, and Theorem 2.2 follows.
8. Proof of Theorem 2.5

Now, for any integer \(k \geq 0 \), we set
\[
\mu_k := h^{k \omega} \tilde{\mu}.
\]
Since \(\mathcal{P}(\tilde{\mu}, \mu; I, J) \) holds, we can apply Theorem 2.2 with \(\mu' \in [\mu_1, \mu_0] \), and deduce the existence of \(J_1 \subset J \), with \(J_1 = J + \mathcal{O}(\omega_h(\mu_0)) \) and \(I_1 \supset I \) with \(I_1 = I + \mathcal{O}(\mu^\infty) \), independent of \(\mu' \), such that \(\mathcal{P}(h^{\omega} \mu', \mu'; I_1, J_1) \) holds. In particular, \(\mathcal{P}(\mu_1, \mu_0; I_1, J_1) \) holds, and we can apply Theorem 2.2 again, this time with \(\mu' \in [\mu_2, \mu_1] \). Iterating the procedure, we see that, for any \(k \geq 0 \), there exists
\[
I_{k+1} = I_k + \mathcal{O}(\mu_k^\infty), \quad J_{k+1} = J_k + \mathcal{O}(\omega_h(\mu_k)),
\]
hence,
\[
I_{k+1} = I + \mathcal{O}(\mu^\infty + \cdots + \mu_k^\infty), \quad J_{k+1} = J + \mathcal{O}(\omega_h(\mu_0) + \cdots + \omega_h(\mu_k)),
\]
where the \(\mathcal{O} \)'s are also uniform with respect to \(k \), such that \(\mathcal{P}(h^{\omega} \mu', \mu'; I_{k+1}, J_{k+1}) \) holds for all \(\mu' \in [\mu_{k+1}, \mu_k] \).

Since the two series \(\sum_k \omega_h(\mu_k) = \mathcal{O}(\omega_h(\tilde{\mu})) \) and \(\sum_k \mu_k^M = \mathcal{O}(M) \) (\(M \geq 1 \) arbitrary) are convergent, one can find \(I' = I + \mathcal{O}(\mu^\infty) \) and \(J' = J + \mathcal{O}(\omega_h(\tilde{\mu})) \), such that
\[
I' \supset \bigcup_{k \geq 0} I_k, \quad J' \subset \bigcap_{k \geq 0} J_k.
\]
Then by construction, \(\mathcal{P}(h^{\omega} \mu', \mu'; I', J') \) holds for all \(\mu' \in (0, \tilde{\mu}] \), and Theorem 2.5 is proved.

9. Proof of Theorem 2.6: the set of resonances

From the proof of Theorem 2.5 (and with the same notation) we learn that, for all \(k \geq 0 \), property \(\mathcal{P}(\mu_{k+1}, \mu_k; I_{k+1}, J_{k+1}) \) holds. Therefore, applying Theorem 2.2 with \(\theta = \mu' = \mu_{k+1} \), we see that there exist \(\tau_{k+2} \in [\mu_{k+2}, 2\mu_{k+2}] \), \(J'_{k+1} = J_{k+1} + \mathcal{O}(\omega_h(\mu_{k+1})) \), and a bijection
\[
b_k : \Gamma(P^{\mu_k}) \cap (J'_{k+1} - i[0, \tau_{k+2}]) \rightarrow \Gamma(P^{\mu_{k+1}}) \cap (J'_{k+1} - i[0, \tau_{k+2}])
\]
such that
\[
b_k(\lambda) - \mu = \mathcal{O}(\mu_k^\infty) \text{ uniformly.}
\] (9-1)
In addition, we deduce from Lemma 7.1 that the \(\tau_k \) can be chosen in such a way that
\[
\text{dist}(\bar{\partial}(J'_{k+1} + i[-\tau_{k+2}, \tau_{k+2}]), \Gamma(P^{\mu_k})) \geq \frac{\mu_k^C}{C},
\] (9-2)
for some constant \(C > 0 \). We set
\[
\Lambda_k := \Gamma(P^{\mu_k}) \cap (J'_{k+1} - i[0, \tau_{k+2}]),
\]
where the elements are repeated according to their multiplicity (see Figure 2).

Starting from an arbitrary element \(\lambda_j \) of \(\Lambda_0 \) (\(1 \leq j \leq N := \# \Lambda_0 = \mathcal{O}(1) \)), we distinguish two cases.

Case A. For all \(k \geq 0 \), \(b_k \circ b_{k-1} \circ \cdots \circ b_0(\lambda_j) \in \Lambda_{k+1} \).
In that case, we can consider the sequence defined by

\[\hat{\lambda}_{j,k} := b_k \circ b_{k-1} \circ \cdots \circ b_0(\lambda_j), \quad k \geq 0. \]

Using (9-1), we see that, for any \(k > \ell \geq 0 \), we have

\[|\hat{\lambda}_{j,k} - \hat{\lambda}_{j,\ell}| \leq \sum_{m=\ell}^{k-1} |\hat{\lambda}_{j,m+1} - \hat{\lambda}_{j,m}| \leq C_1 \sum_{m=\ell}^{k-1} \mu_{m+1} \leq C_1 \mu_0 \frac{h^{n\ell}}{1 - h^n}, \]

so that \((\hat{\lambda}_{j,k})_{k \geq 1}\) is a Cauchy sequence, and we set

\[\rho_j := \lim_{k \to +\infty} \hat{\lambda}_{j,k}. \]

Notice that according to this definition, we have a natural notion of multiplicity of a resonance \(\rho \), namely the number of sequences \(\rho_j \) converging to \(\rho \).

Case B. There exists \(k_j \geq 0 \) such that \(b_{k-1} \circ \cdots \circ b_0(\lambda_j) \in \Lambda_k \) for all \(k \leq k_j \), while \(b_{k_j} \circ \cdots \circ b_0(\lambda_j) \notin \Lambda_{k_j+1} \).

(Here, and in the sequel, we use the convention of notation: \(b_{-1} \circ b_0 := \text{Id.} \)) We set

\[\rho_j := b_{k_j} \circ \cdots \circ b_0(\lambda_j). \]

In particular, since, by construction, \(\text{Re} \rho_j \in I_{k_j+2} \subset J_{k_j+1} \), and \(\rho_j \notin \Lambda_{k_j+1} \), we see that, necessarily, \(\text{Im} \rho_j \in [-\tau_{k_j+2}, -\tau_{k_j+3}] \).

Moreover, if in Case A, we set \(k_j := +\infty \), then for any \(j = 1, \ldots, \#\Lambda_0 \) and \(k \geq 0 \), in both cases we have the equivalence

\[|\text{Im} \rho_j| \leq \tau_{k+2} \iff k \leq k_j. \quad (9-3) \]

Now, if \(\mu' \in (0, \bar{\mu}) \), then \(\mu' \in (\mu_{k+1}, \mu_k) \) for some \(k \geq 0 \), and Theorem 2.2 tells us that the intersection \(\Gamma(P^{\mu'}) \cap (J_{k+1} - i[0, \tau_{k+2}]) \) coincides with \(\Lambda_k \) up to \(\mathcal{C}(\mu_k^\infty) \) \((= \mathcal{C}(\mu^\infty))\). Therefore, setting

\[\Lambda := \{\rho_1, \ldots, \rho_N\}, \]
the first part of Theorem 2.6 will be proved if we can show the existence, for any \(k \geq 0 \), of a bijection

\[\tilde{b}_k : \Lambda \cap (J'_{k+1} - i[0, \tau_{k+2}]) \rightarrow \Lambda_k, \]

such that \(\tilde{b}_k(\rho) - \rho = \mathcal{O}(\mu_k^\infty) \) uniformly. (Actually, we do not necessarily have \(\tau_{k+2} \in [h^{2n_1} \mu', 2h^{2n_1} \mu'] \), but rather, \(\tau_{k+2} \in [h^{2n_1} \mu', 2h^{2n_1} \mu'] \). However, if \(\tau_{k+2} \geq 2h^{2n_1} \mu' \), an argument similar to that of Lemma 6.3 or Lemma 7.1 gives the result stated in Theorem 2.6.)

By construction, we have

\[\Lambda_k = \{b_{j-1} \circ \cdots \circ b_0(\lambda_j) ; j = 1, \ldots, N \text{ such that } k \geq j\}. \]

while, by (9-3),

\[\Lambda \cap (J'_{k+1} - i[0, \tau_{k+2}]) = \{\rho_j ; j = 1, \ldots, N \text{ such that } k \geq j\}. \]

Then for all \(j \) satisfying \(k \geq j \), we set

\[\tilde{b}_k(\rho_j) := b_{j-1} \circ \cdots \circ b_0(\lambda_j), \]

so that \(\tilde{b}_k \) defines a bijection between \(\Lambda \cap (J'_{k+1} - i[0, \tau_{k+2}]) \) and \(\Lambda_k \). Moreover, in Case A, for any \(M \geq 1 \), we have

\[|\tilde{b}_k(\rho_j) - \rho_j| = \lim_{\ell \to +\infty} |b_{\ell} \circ \cdots \circ b_k(\tilde{b}_k(\lambda_j)) - \tilde{b}_k(\lambda_j)| \leq \sum_{m=k}^{+\infty} C_M \mu_m^M \leq \frac{C_M \mu_k^M}{1 - h^{n_1}}, \]

while, in Case B, we obtain

\[|\tilde{b}_k(\rho_j) - \rho_j| = |b_j \circ \cdots \circ b_k(\tilde{b}_k(\lambda_j)) - \tilde{b}_k(\lambda_j)| \leq \sum_{k \leq m \leq j} C_M \mu_m^M \leq \frac{C_M \mu_k^M}{1 - h^{n_1}}, \]

(with the usual convention \(\sum_{m \in \emptyset} := 0 \)). Therefore, in both cases, for \(h > 0 \) small enough, we find

\[|\tilde{b}_k(\rho_j) - \rho_j| \leq 2C_M \mu_k^M, \]

and this gives the first part of Theorem 2.6.

For the second part of Theorem 2.6, let \(\tilde{\Lambda} \) be another set satisfying (\(\ast \)). In particular, for any \(k \geq 0 \), there exist \(\tau_{k+2}, \tilde{\tau}_{k+2} \in [\mu_{k+2}, 2\mu_{k+2}] \), such that \(\tilde{\Lambda} \cap (J'_{k+1} - i[0, \tilde{\tau}_{k+2}]) \) (respectively \(\Lambda \cap (J'_{k+1} - i[0, \tau_{k+2}]) \)) coincides with \(\tilde{\Lambda}_k := \Gamma(P^{\mu_k}) \cap (J'_{k+1} - i[0, \tilde{\tau}_{k+2}]) \), (respectively \(\Lambda_k \)), up to \(\mathcal{O}(\mu_k^\infty) \).

Therefore, taking \(k = 0 \) and using again an argument similar to that of Lemma 6.3 or Lemma 7.1 that gives the existence of \(\tau' \in [\frac{1}{2} \mu_2, \mu_2] \) and \(C > 0 \) constant such that

\[\text{dist}(\partial(J'_1 + i[-\tau', \tau']), \Gamma(P^{\mu_0})) \geq \frac{h_0^C}{C}, \quad (9-4) \]

we obtain that the two sets \(\Lambda \cap (J'_1 - i[0, \tau']) \) and \(\tilde{\Lambda} \cap (J'_1 - i[0, \tau']) \) coincide up to \(\mathcal{O}(\mu_0^\infty) \), and thus have same cardinality. For \(k \geq 0 \), we denote by

\[B_k : \Lambda_k \rightarrow \Lambda \cap (J'_{k+1} - i[0, \tau_{k+2}]), \]

\[\tilde{B}_k : \tilde{\Lambda}_k \rightarrow \tilde{\Lambda} \cap (J'_{k+1} - i[0, \tilde{\tau}_{k+2}]) \]
Using (9-2) and the fact that the corresponding bijections. Then, thanks to (9-4), we can consider the bijection
\[\varphi_0 = \tilde{B}_0 \circ B_0^{-1} \mid_{\Lambda \cap (J'_1 - i[0, \tau'])} : \Lambda \cap (J'_1 - i[0, \tau']) \to \tilde{\Lambda} \cap (J'_1 - i[0, \tau']). \]

Using (9-2) and the fact that \(\tilde{B}_k \) differ from the identity by \(C(\mu_k^\infty) \), we see that, for \(k \geq 1 \),
\[
\text{dist}(\tilde{c}(J'_{k+1} + i[-\tau_{k+2}, \tau_{k+2}]), \tilde{\Lambda}) \geq \frac{\mu_k^C}{C},
\] (9-5)
for some other constant \(C > 0 \).

Then setting
\[
\varepsilon_0 := \Lambda \cap \{-\tau' \leq \text{Im} \, z < -\tau_3\},
\]
and for \(k \geq 1 \),
\[
\varepsilon_k := \Lambda \cap \{-\tau_{k+2} \leq \text{Im} \, z < -\tau_{k+3}\},
\]
we see that, for all \(k \geq 1 \), the map
\[
\tilde{B}_k \circ B_k^{-1} \mid_{\varepsilon_k} : \varepsilon_k \to \tilde{\Lambda} \cap \{-\tau_{k+2} \leq \text{Im} \, z < -\tau_{k+3}\}
\] (9-6)
is a bijection.

Finally, for \(\rho \in \Lambda \cap (J'_1 - i[0, \tau']) \), we define
\[B(\rho) = \tilde{B}_k \circ B_k^{-1}(\rho), \text{ if } \rho \in \varepsilon_k \text{ for some } k \geq 0; \]
\[B(\rho) = \rho, \text{ if } \rho \in \mathbb{R}. \]

We first show:

Lemma 9.1. \(\Lambda \cap \mathbb{R} = \tilde{\Lambda} \cap \mathbb{R} \).

Proof. We only show that any \(\rho \) in \(\Lambda \cap \mathbb{R} \) is also in \(\tilde{\Lambda} \), the proof of the other inclusion being similar. For such a \(\rho \), \(B_k^{-1}(\rho) \in \Lambda_k \) is well defined for all \(k \geq 1 \), and since \(B_k^{-1} \) differs from the identity by \(C(\mu_k^\infty) \), we obtain
\[
\alpha_k := B_k^{-1}(\rho) \to \rho \quad \text{as } k \to +\infty.
\]
On the other hand since \(\Lambda_{k+1} \subset \tilde{\Lambda}_k = \widetilde{B}_k^{-1}(\tilde{\Lambda}) \), there exists some \(\tilde{\rho}_k \in \tilde{\Lambda} \) such that \(\alpha_{k+1} = \widetilde{B}_k^{-1}(\tilde{\rho}_k) \). By taking a subsequence, we can assume that \(\tilde{\rho}_k \) admits a limit \(\tilde{\rho} \in \tilde{\Lambda} \) as \(k \to +\infty \). Then using that \(\tilde{B}_k^{-1} \) differs from the identity by \(C(\mu_k^\infty) \), we also obtain
\[
\alpha_{k+1} \to \tilde{\rho} \quad \text{as } k \to +\infty.
\]
Therefore, we deduce that \(\rho = \tilde{\rho} \in \tilde{\Lambda} \) and the lemma is proved.

Using Lemma 9.1, we see that the map \(B \) is well defined from \(\Lambda \cap (J'_1 - i[0, \tau']) \) to \(\tilde{\Lambda} \cap (J'_1 - i[0, \tau']) \). Moreover, if \(\rho \in \varepsilon_k \) for some \(k \geq 0 \), we have
\[
|B(\rho) - \rho| = |\tilde{B}_k \circ B_k^{-1}(\rho) - \rho| = C(\mu_k^\infty),
\]
and since \(\tau_{k+3} \leq |\text{Im} \, \rho| \leq \tau_{k+2} = O(h^{2n_1}) \), we also have
\[
\mu_k \leq h^{-3n_1} \tau_{k+3} \leq h^{-3n_1} |\text{Im} \, \rho| \leq C|\text{Im} \, \rho|^{1/C},
\]
where $C > 0$ is a large enough constant. Thus, we always have
\[|B(\rho) - \rho| = O(|\text{Im } \rho|^\infty). \]

Therefore, it just remains to see that B is a bijection, but this is an obvious consequence of (9-6), Lemma 9.1, and the definition of B. Thus Theorem 2.6 is proved.

10. Shape resonances

Here we prove Theorem 3.1. Under the assumptions of Section 3, one can construct, as in [Gérard and Martinez 1988], a function $G_1 \in C^\infty(\mathbb{R}^{2n})$, supported near $p^{-1}([\lambda_0 - 2\varepsilon, \lambda_0 + 2\varepsilon]) \setminus \{x_0\}$ for some $\varepsilon > 0$, such that
\[G_1(x, \xi) = x \cdot \xi \text{ for } x \text{ large enough and } |p(x, \xi) - \lambda_0| \leq \varepsilon, \quad (10-1) \]
\[H_p G_1(x, \xi) \geq \varepsilon \quad \text{for } x \in \mathbb{R}^n \setminus \tilde{\Omega} \text{ and } |p(x, \xi) - \lambda_0| \leq \varepsilon. \quad (10-2) \]

We also set
\[\tilde{P} := P + W, \]
where $W = W(x) \in C^\infty(\mathbb{R}^n)$ is a nonnegative function, supported in a small enough neighborhood of x_0, and such that $W(x_0) > 0$. In particular, denoting by $\tilde{p}(x, \xi) = \xi^2 + V(x) + W(x)$ the principal symbol of \tilde{P}, we have $\tilde{p}^{-1}(\lambda_0) \subset (\mathbb{R}^n \setminus \tilde{\Omega}) \times \mathbb{R}^n$, and thus λ_0 is a nontrapping energy for \tilde{P}.

Now, we take μ and $\tilde{\mu}$ such that
\[\mu \leq h^\delta, \quad \tilde{\mu} \leq \min(\mu, h^{2+\delta}) \]
with $\delta > 0$ arbitrary (so that μ, $\tilde{\mu}$ satisfy (2-6)), and we denote by V^{μ} a $|x|$-analytic (μ, \tilde{v})-approximation of V as before. We also set
\[P^{\mu} = -h^2 \Delta + V^{\mu}, \quad \tilde{P}^{\mu} = P^{\mu} + W, \]
and if in (2-5) we take A supported away from supp W, we see that the distorted operators P^{μ}_θ and \tilde{P}^{μ}_θ are well defined for $0 < \theta \leq \tilde{\mu}$. Then we set
\[G(x, \xi) := G_1(x, \xi) - A(x) \cdot \xi, \]
that, by (10-1), is in $C^\infty_0(\mathbb{R}^n; \mathbb{R})$, and we consider its semiclassical Weyl-quantization $G^W = \text{Op}_h^W(G)$ (see (6-1)).

Since $\theta/h^2 \leq \tilde{\mu}/h^2 \leq \mu^\delta$, a straightforward computation shows that the operator
\[R^{\mu}_\theta := \frac{1}{\theta} \text{Im} \left(e^{\theta G^W/h} \tilde{P}^{\mu}_\theta e^{-\theta G^W/h} \right) \]
is a semiclassical pseudo-differential operator, with symbol r^{μ}_θ satisfying
\[\partial^\alpha r^{\mu}_\theta = O((\xi)^2) \text{ for all } \alpha \in \mathbb{N}^{2n}, \]
\[r^{\mu}_\theta(x, \xi) = -H_{\tilde{p}^{\mu}}(A(x) \cdot \xi + G) + O(h^\delta) = -H_p G_1(x, \xi) + O(h^\delta), \]
uniformly with respect to $\theta \in (0, \tilde{\mu}]$ and $h > 0$ small enough. As a consequence, using (10-2), we see that R^{μ}_θ is elliptic in a neighborhood of $\{ p(x, \xi) + W(x) = \lambda_0 \}$ (uniformly with respect to θ and μ). Then
by arguments similar to those of Section 6.1, we deduce that the operator

$$Q^\mu_\theta := e^{\theta G^W / h} \tilde{P}^\mu_\theta e^{-\theta G^W / h}$$

satisfies

$$\| (Q^\mu_\theta - z)^{-1} \| = O(\theta^{-1}),$$

uniformly for $|\text{Re } z - \lambda_0| + \theta^{-1} |\text{Im } z|$ small enough, $\theta \in (0, \tilde{\mu}]$, and $h > 0$ small enough. Since $\| \theta G^W / h \| \to 0$ uniformly as $h \to 0$, this also gives

$$\| (\tilde{P}^\mu_\theta - z)^{-1} \| = O(\theta^{-1}),$$

and from this point, one can follow all the procedure used in [Helffer and Sjöstrand 1986, Sections 9 and 10]. In particular, using the same notation as in that paper, by Agmon-type inequalities we see that the distribution kernel $K((\tilde{P}^\mu_\theta - z)^{-1})$ of $(\tilde{P}^\mu_\theta - z)^{-1}$ satisfies

$$K((\tilde{P}^\mu_\theta - z)^{-1})(x, y) = \tilde{O}(\theta^{-1} e^{-d(x, y) / h})$$

where $d(x, y)$ is the Agmon distance between x and y (see [Helffer and Sjöstrand 1986, Lemma 9.4]). Then, assuming $\theta = \tilde{\mu} \geq e^{-\eta / h}$ for some $\eta > 0$ constant small enough and performing a suitable Grushin problem as in [Helffer and Sjöstrand 1986], we deduce that the resonances of P^μ in $[\lambda_0, \lambda_0 + Ch] - i[0, \lambda_0 \min(\mu, h^{2+\delta})]$ ($C > 0$ an arbitrary constant) are close to the eigenvalues of the Dirichlet realization of P on $\{d(x, \mathbb{R}^n \setminus \overline{O}) \geq \eta / 3\}$, up to $O(e^{-2(S_0 - \eta) / h})$. Since these eigenvalues are real and admit semiclassical asymptotic expansions of the form

$$\lambda_k \sim \lambda_0 + e_k h + \sum_{\ell \geq 1} \hat{\lambda}_{k,\ell} h^{1+\ell/2}$$

(where the e_k's are as in Theorem 3.1), we obtain for the corresponding resonances ρ_k of P^μ

$$\text{Re } \rho_k \sim \lambda_0 + e_k h + \sum_{\ell \geq 1} \hat{\lambda}_{k,\ell} h^{1+\ell/2}, \quad \text{Im } \rho_k = O(e^{-2(S_0 - \eta) / h}), \quad (10-3)$$

uniformly. In particular, taking μ and $\tilde{\mu}$ as in Theorem 3.1, the result easily follows. Moreover, since the previous discussion can be applied to any $\mu' \in [e^{-\eta / h}, h^\delta]$, application of Theorem 2.6 tells us that the resonances of P in

$$[\hat{\lambda}_0, \hat{\lambda}_0 + Ch] - i[0, \frac{1}{2} h^{2n+\max(n/2,1)+1+3\delta}]$$

satisfy the same estimates (10-3).

Appendix

Proof of Lemma 5.1. We denote by χ_0 a real smooth function on \mathbb{R} satisfying

- $\chi_0(s) = 0$ for $s \leq 0$;
- $\chi_0(s) = 1$ for $s \geq \ln 2$;
- χ_0 is nondecreasing.
Then for \(r \geq 0 \), we set
\[
G(r) := \chi_0(r - R_0)(1 - \chi_0(r - \ln \lambda))e^r + 2\lambda \chi_0(r - \ln \lambda), \quad g(r) := \int_0^r G(s) \, ds.
\]

In particular, \(g \) satisfies Condition (i) of Lemma 5.1, and we have

- \(G(r) = \chi_0(r - R_0)e^r \) for \(r \in [R_0, \ln \lambda] \);
- \(G(r) = (1 - \chi_0(r - \ln \lambda))e^r + 2\lambda \chi_0(r - \ln \lambda) \) for \(r \in [\ln \lambda, 2\ln \lambda] \);
- \(G(r) = 2\lambda \) for \(r \in [2\ln \lambda, +\infty) \).

Thus, \(g' = G \leq 2\lambda \) and \(g''(r) = G'(r) \geq 0 \) on \(\mathbb{R}_+ \) (this is immediate on \([R_0, \ln \lambda] \cup [2\ln \lambda, +\infty) \), while, on \([2\ln \lambda, 2\ln \lambda] \), we compute, \(G'(r) = (1 - \chi_0(r - \ln \lambda))e^r + \chi_0'(r - \ln \lambda)(2\lambda - e^r) \geq 0 \).

Therefore, \(g \) is convex on \(\mathbb{R}_+ \), so that Condition (iii) of Lemma 5.1 is satisfied by \(g \), too, while Condition (v) is obvious.

As for condition (iv), we observe the following:

- On \([0, R_0 + \ln 2] \), one has \(g' + |g''| = O(1) \).
- On \([R_0 + \ln 2, \ln \lambda] \), one has \(g(r) \geq \int_{R_0 + \ln 2}^r e^s \, ds = e^r - 2e^{R_0} \), while \(g'(r) = g''(r) = e^r \leq g(r) + 2e^{R_0} \).
- On \([\ln \lambda, +\infty) \), one has \(g(r) \geq g(\ln \lambda) = \lambda \), and thus \(g' + |g''| = O(g) \).

So, \(g \) satisfies Conditions (ii)–(v) of Lemma 5.1.

For \(r \in [2\ln \lambda, +\infty) \), we have
\[
g(r) = g(\ln 2\lambda) + 2\lambda(r - \ln 2\lambda) = 2\lambda r - \alpha_{\lambda}, \quad \text{(A-1)}
\]

where \(\alpha_{\lambda} := 2\lambda \ln 2\lambda - g(\ln 2\lambda) \), and since
\[
g(\ln 2\lambda) \leq \int_0^{\ln \lambda} e^r \, dr + \int_{\ln \lambda}^{2\ln \lambda} 2\lambda \, dr = (1 + 2\ln 2)\lambda,
\]
\[
g(\ln 2\lambda) \geq \int_{R_0 + \ln 2}^{2\ln \lambda} e^r \, dr \geq 2\lambda - 2e^{R_0},
\]
we see that
\[
2\lambda \ln 2\lambda - (1 + 2\ln 2)\lambda \leq \alpha_{\lambda} \leq 2\lambda \ln 2\lambda - 2\lambda + 2e^{R_0}.
\]

Therefore, for \(\lambda \) large enough, the unique point \(r_{\lambda} \), solution of \(g(r_{\lambda}) = \lambda r_{\lambda} \), is given by
\[
r_{\lambda} = \frac{\alpha_{\lambda}}{\lambda} \in [2\ln \lambda - 1, 2\ln \lambda - 2 + 2\ln 2 + 2\lambda^{-1}e^{R_0}] \subset [2\ln \lambda - 1, 2\ln \lambda - \varepsilon_0], \quad \text{(A-2)}
\]

where \(\varepsilon_0 := 1 - \ln 2 > 0 \).

Now, we fix some real-valued function \(\varphi_0 \in C^\infty(\mathbb{R}) \), such that

- \(\varphi_0(s) = 2s \) for \(s \leq -\varepsilon_0 \);
- \(\varphi_0(s) = s \) for \(s \geq \varepsilon_0 \);
- \(1 \leq \varphi_0' \leq 2 \) everywhere.
Then using (A-1)–(A-2), we see that the function \(f_\lambda \) defined by

- \(f_\lambda(r) := g(r) \) for \(r \in [0, \ln 2\lambda] \);
- \(f_\lambda(r) := \lambda \varphi_0(r - r_\lambda) + a_\lambda \) for \(r \geq \ln 2\lambda \),

is smooth on \(\mathbb{R}_+ \), and satisfies all the conditions required in Lemma 5.1.

The distorted Laplacian.

Lemma A.1. If \(\theta > 0 \) is small enough, the function \(\Phi_\theta \) defined in (5-2) satisfies

\[
\text{Im} \left((\prime d \Phi_\theta(x))^{-1} \xi \right)^2 \leq -\theta a(|x|)|\xi|^2.
\]

for all \((x, \xi) \in \mathbb{R}^{2n}\).

Proof. Let \(F := \prime d A = d A = (F_{i,j})_{1 \leq i,j \leq n} \). We compute

\[
F_{i,j}(x) = a(|x|) \delta_{i,j} + a'(|x|) \frac{x_i x_j}{|x|},
\]

that is, denoting by \(\pi_x := |x|^{-2} x \cdot \prime x \) the orthogonal projection onto \(\mathbb{R}x \), and recalling the notation \(b(r) = ra(r) \),

\[
F(x) = a(|x|) I + a'(|x|) |x| \pi_x = b'(|x|) \pi_x + a(|x|)(I - \pi_x).
\]

In particular, using Lemma 5.1, we obtain

\[
0 \leq a(|x|) \leq F(x) \leq 2,
\]

in the sense of self-adjoint matrices. On the other hand we have

\[
(\prime d \Phi_\theta(x))^2 = (I + i\theta F(x))^2 = S_\theta + iT_\theta,
\]

with \(S_\theta = I - \theta^2 F(x)^2 \) and \(T_\theta = 2\theta F(x) \). Hence, \(T_\theta \geq 0 \), and since \(S_\theta \), \(T_\theta \) and \(F \) commute, an easy computation gives

\[
\text{Im} \left((\prime d \Phi_\theta(x))^{-1} \xi \right)^2 = -T_\theta (S_\theta^2 + T_\theta^2)^{-1} \xi \cdot \bar{\xi} = -2\theta F(1 + \theta^2 F^2)^{-2} \xi \cdot \bar{\xi}.
\]

As a consequence, for \(\theta \) small enough, we find

\[
\text{Im} \left[(\prime d \Phi_\theta(x))^{-1} \xi \right]^2 \leq -\theta F(x) \xi \cdot \bar{\xi} \leq -\theta a(|x|)|\xi|^2.
\]

Acknowledgments

We thank the anonymous referee for useful comments, which helped us improve significantly the presentation of this paper. We also thank the Dipartimento di Matematica at Università di Bologna and the Département de Mathématiques d’Orsay at Université Paris Sud 11, for providing us the opportunity to come together and complete this work.
References

André Martinez: martinez@dm.unibo.it

Università di Bologna, Dipartimento di Matematica, Piazza di Porta San Donato 5, 40127 Bologna, Italy

http://www.dm.unibo.it/~martinez/

Thierry Ramond: thierry.ramond@math.u-psud.fr

Département de Mathématiques, Université Paris-Sud 11, UMR CNRS 8628, 91405 Orsay, France

www.math.u-psud.fr/~ramond

Johannes Sjöstrand: johannes.sjostrand@u-bourgogne.fr

IMB (UMR CNRS 5584), Université de Bourgogne, 9 av. A. Savary, BP 47870, 21078 Dijon Cedex, France
Analysis & PDE

pjm.math.berkeley.edu/apde

EDITORS

EDITOR-IN-CHIEF

Maciej Zworski
University of California
Berkeley, USA

BOARD OF EDITORS

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Aizenman</td>
<td>Princeton University, USA</td>
<td>aizenman@math.princeton.edu</td>
</tr>
<tr>
<td>Luis A. Caffarelli</td>
<td>University of Texas, USA</td>
<td>caffareli@math.utexas.edu</td>
</tr>
<tr>
<td>Michael Christ</td>
<td>University of California, Berkeley, USA</td>
<td>mchrist@math.berkeley.edu</td>
</tr>
<tr>
<td>Ursula Hamenstaedt</td>
<td>Universität Bonn, Germany</td>
<td>urwsula@math.uni-bonn.de</td>
</tr>
<tr>
<td>Vaughan Jones</td>
<td>University of California, Berkeley, USA</td>
<td>vfr@math.berkeley.edu</td>
</tr>
<tr>
<td>Izabella Laba</td>
<td>University of British Columbia, Canada</td>
<td>ilaba@math.ubc.ca</td>
</tr>
<tr>
<td>László Lempert</td>
<td>Purdue University, USA</td>
<td>lempert@math.purdue.edu</td>
</tr>
<tr>
<td>Frank Merle</td>
<td>Université de Cergy-Pontoise, France</td>
<td>Frank.Merle@u-cergy.fr</td>
</tr>
<tr>
<td>Werner Müller</td>
<td>Universität Bonn, Germany</td>
<td>mueller@math.uni-bonn.de</td>
</tr>
<tr>
<td>Gilles Pisier</td>
<td>Texas A&M University, and Paris 6</td>
<td>pisier@math.tamu.edu</td>
</tr>
<tr>
<td>Igor Rodnianski</td>
<td>Princeton University, USA</td>
<td>irod@math.princeton.edu</td>
</tr>
<tr>
<td>Sylvia Serfati</td>
<td>New York University, USA</td>
<td>serfati@cims.nyu.edu</td>
</tr>
<tr>
<td>Terence Tao</td>
<td>University of California, Los Angeles, USA</td>
<td>tao@math.ucla.edu</td>
</tr>
<tr>
<td>Gunther Uhlmann</td>
<td>University of Washington, USA</td>
<td>gunther@math.washington.edu</td>
</tr>
<tr>
<td>Dan Virgil Voiculescu</td>
<td>University of California, Berkeley, USA</td>
<td>dvv@math.berkeley.edu</td>
</tr>
<tr>
<td>Nicolas Burq</td>
<td>Université Paris-Sud 11, France</td>
<td>nicolas.burq@math.u-psud.fr</td>
</tr>
<tr>
<td>Sun-Yung Alice Chang</td>
<td>Princeton University, USA</td>
<td>chang@math.princeton.edu</td>
</tr>
<tr>
<td>Charles Fefferman</td>
<td>Princeton University, USA</td>
<td>cf@math.princeton.edu</td>
</tr>
<tr>
<td>Nigel Higson</td>
<td>Pennsylvania State University, USA</td>
<td>higson@math.psu.edu</td>
</tr>
<tr>
<td>Herbert Koch</td>
<td>Universität Bonn, Germany</td>
<td>koch@math.uni-bonn.de</td>
</tr>
<tr>
<td>Gilles Lebeau</td>
<td>Université de Nice Sophia Antipolis, France</td>
<td>lebeau@unice.fr</td>
</tr>
<tr>
<td>Richard B. Melrose</td>
<td>Massachussets Institute of Technology, USA</td>
<td>rbm@math.mit.edu</td>
</tr>
<tr>
<td>William Minicozzi II</td>
<td>Johns Hopkins University, USA</td>
<td>minicozzi@math.jhu.edu</td>
</tr>
<tr>
<td>Yuval Peres</td>
<td>University of California, Berkeley, USA</td>
<td>peres@stat.berkeley.edu</td>
</tr>
<tr>
<td>Tristan Rivièrè</td>
<td>ETH, Switzerland</td>
<td>riviere@math.ethz.ch</td>
</tr>
<tr>
<td>Wilhelm Schlag</td>
<td>University of Chicago, USA</td>
<td>schlag@math.uchicago.edu</td>
</tr>
<tr>
<td>Yum-Tong Siu</td>
<td>Harvard University, USA</td>
<td>siu@math.harvard.edu</td>
</tr>
<tr>
<td>Michael E. Taylor</td>
<td>Univ. of North Carolina, Chapel Hill, USA</td>
<td>met@math.unc.edu</td>
</tr>
<tr>
<td>András Vasy</td>
<td>Stanford University, USA</td>
<td>andras@math.stanford.edu</td>
</tr>
<tr>
<td>Steven Zelditch</td>
<td>Johns Hopkins University, USA</td>
<td>szelditch@math.jhu.edu</td>
</tr>
</tbody>
</table>

PRODUCTION

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paulo Ney de Souza</td>
<td>Production Manager</td>
</tr>
<tr>
<td>Sheila Newbery</td>
<td>Production Editor</td>
</tr>
<tr>
<td>Silvio Levy</td>
<td>Senior Production Editor</td>
</tr>
</tbody>
</table>

See inside back cover or pjm.math.berkeley.edu/apde for submission instructions.

The subscription price for 2009 is US $120/year for the electronic version, and $180/year for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA.

Analysis & PDE, at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

APDE peer-review and production is managed by EditFlow™ from Mathematical Sciences Publishers.

PUBLISHED BY

[mathematical sciences publishers](http://www.mathscipub.org)

A NON-PROFIT CORPORATION

Typeset in **LTEX**

Copyright ©2009 by Mathematical Sciences Publishers
Uniqueness of ground states for pseudorelativistic Hartree equations

Enno Lenzmann

Resonances for nonanalytic potentials

André Martinez, Thierry Ramond and Johannes Sjöstrand

Global existence and uniqueness results for weak solutions of the focusing mass-critical nonlinear Schrödinger equation

Terence Tao

The linear profile decomposition for the Airy equation and the existence of maximizers for the Airy Strichartz inequality

Shuanglin Shao