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UNIQUENESS OF GROUND STATES
FOR PSEUDORELATIVISTIC HARTREE EQUATIONS

ENNO LENZMANN

We prove uniqueness of ground states Q € H'/2(R?) for the pseudorelativistic Hartree equation,

V=A+m2 Q- (xI"" %100 =—10,

in the regime of Q with sufficiently small L?-mass. This result shows that a uniqueness conjecture by
Lieb and Yau [1987] holds true at least for N = [ |Q|*> < 1 except for at most countably many N.

Our proof combines variational arguments with a nonrelativistic limit, leading to a certain Hartree-
type equation (also known as the Choquard—Pekard or Schrodinger—Newton equation). Uniqueness of
ground states for this limiting Hartree equation is well-known. Here, as a key ingredient, we prove the so-
called nondegeneracy of its linearization. This nondegeneracy result is also of independent interest, for
it proves a key spectral assumption in a series of papers on effective solitary wave motion and classical
limits for nonrelativistic Hartree equations.

1. Introduction

The pseudorelativistic Hartree energy functional, given (in appropriate units) by

— 1 _
)= [ w=srmiy = [ el P)ive (1-1)
R3 R3

arises in the mean-field limit of a quantum system describing many self-gravitating, relativistic bosons
with rest mass m > 0. Such a physical system is often referred to as a boson star, and various models for
these — at least theoretical — objects have attracted a great deal of attention in theoretical and numerical
astrophysics over the past years.

In order to gain some rigorous insight into the theory of boson stars, it is of particular interest to study
ground states (that is, minimizers) for the variational problem

E(N) = inf {%z(y/) Ly e HV2(RY) and/ ly|? = N}, (1-2)
R3

where the parameter N > 0 plays the role of the stellar mass. Provided that problem (1-2) has indeed a
ground state Q € H'/?(R3), one readily finds that it satisfies the pseudorelativistic Hartree equation,

V=28+m?Q—(x|"" Q1) 0 = —1Q, (1-3)
with 4 = u(Q) € R being some Lagrange multiplier.

MSC2000: 35Q55.
Keywords: pseudorelativistic Hartree equation, ground state, uniqueness, boson stars.
Partly supported by NSF Grant DMS—-0702492.
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In fact, the existence of symmetric-decreasing ground states Q = Q*(|x|) > 0 minimizing (1-2) was
first proven by Lieb and Yau [1987], where the authors also conjectured that uniqueness holds true in the
following sense. For each N > 0, the variational problem (1-2) has at most one symmetric-decreasing
ground state. If true, this result further implies, by strict rearrangement inequalities, that we have indeed
uniqueness of all the ground states of (1-2) for each N > 0, up to phase and translation.

However, the nonlocality of /— A + m? as well as the convolution-type nonlinearity both complicate
the analysis of the pseudorelativistic Hartree equation (1-3) in a substantial way. In particular, the set of
its radial solutions is not amenable to ODE techniques (for example, shooting arguments and comparison
principles) which are key arguments for proving uniqueness of ground states for nonlinear Schrodinger
equations (NLS) with local nonlinearities; see [Peletier and Serrin 1983; McLeod and Serrin 1987;
Kwong 1989; McLeod 1993].

A further complication in the analysis of (1-3) stems from the fact that there are no simple scaling
arguments that relate ground states with different N, due to the presence of m > 0. Indeed, this lack of a
simple scaling mechanism is essential for the existence of a critical stellar mass N, > 0; see Theorem 1.

As a first step towards proving uniqueness of ground states for (1-2), we present Theorem 2 below,
which shows that ground states for problem are indeed unique (modulo translation and phase) for all
sufficiently small N > 0 except for at most countably many. Our proof uses variational arguments
combined with a nonrelativistic limit, leading to the nonlinear Hartree equation (also called Choquard—
Pekar or Schrodinger—Newton equation) given by

oA Q= (1317 10 ) Qe =~ 0. (1-4)

It is known this equation has a unique radial, positive solution Qn, € H'(R?) for A > 0 given; see [Lieb
1977] and Appendix A.

In the present paper, we prove (as a key ingredient) that Q. € H'(R?) has a nondegenerate lineariza-
tion. By this we mean that the linearization of (1-4) around Q has a nullspace that is entirely due to the
equation’s invariance under phase and translation transformation; see Theorem 4 below and its remarks
for a precise statement. In particular, we show that the linear operator L given by

L& = =5 MG+ 78 — (17 %1 Qul)E =200 (1317 (0 ) (1-5)
satisfies
ker L+ = Span {a)q Qoo: axz Qoo, ax3 Qoo} (1'6)

Furthermore, by a perturbation argument, we conclude an analogous nondegeneracy result for ground
states of the pseudorelativistic Hartree equation (1-3) with sufficiently small L?-mass; see Theorem 3
below.

In addition to being a mere technical key fact proven in this paper, the nondegeneracy result for (1-4)
is also of independent interest. For example, it proves a key spectral assumption in a series of papers on
effective solitary wave motion and classical limits for Hartree equations; see [Frohlich et al. 2002; 2004;
Jonsson et al. 2006; Abou Salem 2007] and also the remark following Theorem 4. Another very recent
application of the nondegeneracy result (1-6) is presented in [Krieger et al. 2008], where two soliton
solutions to the time-dependent version of (1-4) are constructed.
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In the context of ground states for NLS with local nonlinearities, the nondegeneracy of linearizations
is a well-known fact (see [Weinstein 1985; Chang et al. 2007]) and it plays a central role in the stability
analysis of solitary waves for NLS. However, the arguments for NLS with local nonlinearities make use
of Sturm-Liouville theory, which, by contrast, is not applicable to L given by (1-5) due to its nonlocal
character. For more details, we refer to Section 7 below.

Apart from their minimizing property, the ground states for (1-2) also play an important role for the
time-dependent pseudorelativistic Hartree equation,

iopy =V =A+m2y —(1x] +y )y, (1-7)
with the wave field y : [0, T) x R* — C. Clearly, Equation (1-7) has solitary wave solutions

w(t,x) =" Q(x), (1-8)

whenever Q € H'/2(R?) is a nontrivial solution to (1-3). Let us also mention that the dispersive nonlinear
PDE (1-7) exhibits a rich variety of phenomena, such as stable and unstable traveling solitary waves, as
well as finite-time blowup solutions indicating the “gravitational collapse” of a boson star; see [Frohlich
et al. 2007a; 2007b; Frohlich and Lenzmann 2007]. For well-posedness results concerning (1-7) and its
rigorous derivation from many-body quantum mechanics, we refer to [Cho and Ozawa 2006; Lenzmann
2007] and [Elgart and Schlein 2007], respectively.

For the reader’s convenience, we conclude our introduction by summarizing the existence result about
ground states for problem (1-2) along with a list of their basic properties.

Theorem 1 (Existence and properties of ground states). Suppose that m > 0 holds in (1-1). Then there
exists a universal constant N, > 4/ (independent of m) such that the following holds.

(i) (Existence) There exists a ground state Q € H'/>(R®) for problem (1-2) if and only if
0 <N < N,.
Moreover, the function Q satisfies the pseudorelativistic Hartree equation (1-3) in the sense of

distributions with some Lagrange multiplier i € R.

(ii) (Smoothness and exponential decay) Any ground state Q belongs to H*(R?) for all s > 0 and
et 0 e L®(R?) for some d = 5(Q) > 0.

(i) (Radiality and strict positivity) Any ground state Q is equal to its spherical-symmetric rearrange-
ment Q*(|x|) up to phase and translation. Moreover, we have Q*(|x|) > 0 for all x € R>.

Remark. For the proofs of (i) and (ii)—(iii), we refer to [Lieb and Yau 1987] and [Lenzmann 2006;
Frohlich et al. 2007a], respectively. In physical terms, the constant N, > 0 can be regarded as the
“Chandrasekhar limit mass” of a pseudorelativistic boson star.

2. Main results

We now state our first main result concerning the uniqueness of ground states for the pseudorelativistic
Hartree equation (1-3).
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Theorem 2 (Uniqueness of ground states for N < 1). Assume that m > 0 holds in (1-1). Then, for
0 < N < 1, we have uniqueness of ground states for problem (1-2) up to phase and translation whenever
E'(N) exists. In particular, the symmetric-decreasing ground state Q = Q* € H'/*(R>®) minimizing (1-2)
is unique for such N > 0.

Remarks. (1) Since it is known from [Lieb and Yau 1987] that the ground state energy E(N) is strictly
concave, the derivative E’(N) exists for all N € (0, N,), except on a subset X which is at most countable.
In particular, it is easy to see that the Lagrange multiplier # is unique for such N € (0, N,) \ Z, in the
sense that 4 only depends on Q through N = [ |Q|*. Our argument to prove Theorem 2 has to avoid
the “exceptional” set X. A natural conjecture would be that £ = & holds.

(2) It would be desirable to extend this uniqueness result (whose proof partly relies on perturbative
arguments) to the whole range 0 < N < N, of existence; or, more interestingly, to disprove uniqueness
for some N > 0 sufficiently large.

(3) By definition, ground states for the pseudorelativistic Hartree equation (1-2) are always minimizers
for the variational problem (1-2). In principle, we cannot exclude the possibility that (1-3) has a positive
solution without being a minimizer for (1-2).

(4) To the author’s knowledge, this is the first uniqueness result for ground states that solve a nonlinear
pseudo-differential equation in space dimension n > 1. In fact, apart from a very special case arising in
n =1 dimensions for solitary waves solving Benjamin—Ono-type equations (see [Amick and Toland 1991;
Albert 1995]), nothing seems to be known, for instance, about uniqueness of ground states ¢ € H*(R")
for nonlinear equations involving the fractional Laplacian (—A)*/?¢ + f(¢) = — g, where f(¢) denotes
some nonlinearity and u € R is given. The author plans to pursue this question in future work.

(5) It m =0 vanishes, we have existence of ground states for problem (1-2) if and only if N = N,.. In what
follows, we shall exclusively deal with the physically relevant case where m > 0 holds. Nevertheless,
it remains an interesting open question whether uniqueness of ground states also holds for m = 0, since
the methods developed here are clearly not applicable to this limiting case.

Our next result proves a so-called nondegeneracy condition, which was introduced in [Frohlich et al.
2007b] as a spectral assumption supported by numerical evidence. There, the effective motion of solitary
waves for (1-7) with an slowly varying external potential was studied. Furthermore, the following nonde-
generacy result allows us to give an unconditional proof for the cylindrical symmetry of traveling solitary
waves for the time-dependent pseudorelativistic Hartree equation (1-7); see [Frohlich et al. 2007b] for
more details. The precise nondegeneracy statement reads as follows.

Theorem 3 (Nondegeneracy of ground states for N < 1). Let m > 0 in (1-1) and suppose that Q = Q*
is a symmetric-decreasing ground state for problem (1-2) with Lagrange multiplier u € R. Furthermore,
we consider the linear operator L given by

Li&=(V=0+m2+p)é— (IxI7 % 1Q)E —20(1x7 % (Q2)),

acting on L*(R?) with domain H'(R?). Then, for 0 < N < 1, the operator L. is nondegenerate, that is,
its kernel satisfies

ker L4 = span {axl o, Ox, 0, Oxs Q}
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Remarks. (1) This completely characterizes the kernel of the linearization of the pseudorelativistic
Hartree equation (1-3) around ground state Q = Q* with f |0|> <« 1. Note that, due to the pres-
ence of |Q|? in the nonlinearity, the linearized operator is not C-linear. See also the remark following
Theorem 4 below for more details on the analogous statement for the nonrelativistic equation (1-4).

(2) The nondegeneracy of L, holds for all N = f |Q|> < 1. The extra condition that E’(N) exists,
which is present in Theorem 2, is not needed here.

In order to prove Theorem 3, we first have to show the nondegeneracy for the linearization around
the ground state Q, € H'(R?) solving the nonrelativistic Hartree equation (1-4). As mentioned before,
this spectral result is of independent interest, since it proves a key assumption in [Frohlich et al. 2002;
Frohlich et al. 2004; Jonsson et al. 2006; Abou Salem 2007]. See also [Krieger et al. 2008], where the
following nondegeneracy result is needed. Hence we record this fact about (1-4) as one of our main
results.

Theorem 4 (Nondegeneracy for Q). Let m > 0 and . > 0 be given. Furthermore, suppose that
Qoo € H'(R?) is the unique radial, positive solution to the nonrelativistic Hartree equation (1-4). Then
the linear operator L, given by

L& ==L A 428 — (1t %10l =200 (1617 #(Qd) @
acting on L*>(R?) with domain H*(R?), satisfies
ker L = span {8y, Qos, Ox, Qoo, Ox; Qoo }- (2-2)
Remarks. (1) The linearized operator L for (1-4) at O is found to be

Lh= =5 Ah+ 20 = (1x] 7 51 Qo P) = Quc (1xI 7 5 (Qoch 4 ).

It is convenient to view the operator L (which is not C-linear) as acting on
Reh
Imh)’
L,y O
L= .
(7 2)

Here L, is as in Theorem 4 above, and L _ is the (local) operator

1 _
Lo=—5-A+i— (I %1 0wl).

so that it can be written as

It is easy to see that ker L _ = span { O~} holds. Hence, by Theorem 4, we obtain

e (€). (). (+€) ()]
0 0 0 Ooo

(2) The precise knowledge of ker L implies, by well-known arguments along the lines for NLS with
local nonlinearities (given in [Weinstein 1985]), the following coercivity estimate: There is a constant
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o0 > 0 such that
(fLLif)+{g Lg) =3 fI5: +llgl3),

when £ L span{Qcc, % Qoo};_; and g L span{2Qcc + 18r Qo, dx; Qoo}i_;» Which means that (f, g) is
symplectically orthogonal to the “soliton manifold” generated by O; see, for example, [Frohlich et al.
2004]. This coercivity estimate plays a central role in the stability analysis of solitary waves for NLS-
type equations and their effective motion in an external potential; see, for example, [Weinstein 1985;
Bronski and Jerrard 2000; Frohlich et al. 2004; 2007b; Jonsson et al. 2006; Abou Salem 2007; Holmer
and Zworski 2008].

Organization of the paper. This paper is structured as follows. In Section 3, we study the nonrelativistic
limit of ground states for a dimensionalized version of the variational problem (1-2). In Section 4, we
prove a nondegeneracy result for the nonrelativistic ground state Q, € H'(R?) in the radial setting.
Then, in Section 5, we establish a local uniqueness result around Q, € H'(R?) by means of an implicit-
function-type argument.

We prove Theorem 2 in Section 6, and Theorems 3 and 4 in Section 7. Appendices A and B collect
some auxiliary results and we also give a uniqueness proof for the ground state Qo € H'(R?), which
differs from [Lieb 1977] in certain ways.

Notation and conventions. As usual H®(R") stands for the inhomogeneous Sobolev space of order s € R,
equipped with norm || f || gs = | (V)* f || 12, where (V) is defined via its multiplier (¢) = (1 +¢2)'/? in the
Fourier domain. Also, we shall make use of the space of radial and real-valued functions that belong to
H'(R?), which we denote by

H (R ={f:feH' (R, fisradial and real-valued}.

With the usual abuse of notation we shall write both f(x) and f(r), with r = | x|, for radial functions f on
R". For any measurable function f : R* — C that vanishes at infinity, we denote its symmetric-decreasing
rearrangement by f* = f*(r) > 0.

Throughout this paper, we assume that the mass parameter m > 0 in (1-1) is strictly positive, which
is the physically relevant case.

For the reader’s orientation, we mention that our definition of €(y) in (1-1) differs from the conven-
tions in [Lieb and Yau 1987; Frohlich et al. 2007a] by an inessential factor of 2 and by the fact that we
use v/ — A +m? instead of v/—A +m?2 —m. Obviously, these slight alterations in our definition of €(y)
do not affect any results on (1-2) that are derived or quoted in the present paper.

Finally, we point out that the function O € Hr1 (R3), which denotes the unique ground state for
(1-4), appears throughout the paper. However, for the sake of simple notation, we shall also denote all
its rescaled copies a Qoo (b-), with a > 0 and b > 0, simply by Q.,, whenever there is no source of
confusion.

3. Nonrelativistic limit

As a preliminary step towards the proof of Theorems 2 and 3, we study the nonrelativistic limit of ground
states for the pseudorelativistic Hartree energy functional. More precisely, we reinstall the speed of light
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¢ > 0 into €(y) defined in (1-1), which yields the c-depending Hartree energy functional
— 1 -
%c(w)=/ v —c2A+m2c4w—§/ (eI Ly ) Ly 2. (3-1)
R3 R
An elementary calculation shows that, for any y € H'/?(R%),
E(y) = Ec(y),  with y(x) =Py, (3-2)

Thus we immediately find the following equivalence.

Lemmal. Letc>0and N > 0. Then Q € H'/2(R?) minimizes €.(y) subject to S lw|> = N if and only
if Q= c_zé(c_1 -) minimizes €(y) subject to f lw|>=cIN.

In particular, we have existence of ground states for €.(y) subject to f lw|> = N if and only if
0 < N < cN, holds, where N, > 4/ denotes the same universal constant as in Theorem 1.

We now study the behavior of ground states Q. for €.(w) as ¢ — oo with fR3 |Q.)> = N being
fixed. By Lemma 1, this is equivalent (after a suitable rescaling) to studying ground states for € (i) with
i lw|> = N as N — 0. However, the following analysis turns out to be more transparent when working
with ¢ > 0 as a parameter and sending c to infinity. Concerning the nonrelativistic limit ¢ — oo of ground
states for €. (), we have the following result.

Proposition 1. Let m > 0 and N > 0 be given, and suppose that ¢, — 00 as n — o0o. Furthermore, we
assume that { Q. }°2 | is a sequence of symmetric-decreasing ground states such that fR3 |Q¢, 1> = N for
all n > 1, and each Q., € H'/*(R3) minimizes €., (y) subject to Jre |w|> = N. Finally, let {te, 102,
denote the sequence of Lagrange multipliers corresponding to {Q.,}°°

n=1"
Then the following holds:

Q;, = O in H'(R?) as n— oo,

2

.= —A as n— oo,

_lucn —mc
where Qo € H'(R?) is the unique radial, positive solution to
1 _

—5,- 8000 = (Ix|7" [ Qocl’) Qo = =4 Qs (3-3)
such that fR3 |Qool? = N. Here A > 0 is determined through Qo = Qi € H'(R?), which is the unique
symmetric-decreasing minimizer of the variational problem

Ew(N) = int [,y y € H' (B and / WP =n}. (3-4)
R3
where

1 1 -
%m(w)z%/wwmz—z/w (™"l P) . (3-5)

Remarks. (1) A similar result for the nonrelativistic limit of ground states (and excited states) solving
the Dirac—Fock equations can be found in [Esteban and Séré 2001]. However, unlike the Dirac—Fock
and Hartree—Fock energy functionals in atomic physics treated in [Esteban and Séré 2001], the energy
functional in (3-1) is not weakly lower semicontinuous due to its attractive potential term. Therefore,
an a priori bound on the sequence of Lagrange multipliers u., (away from the essential spectrum of the
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limiting equation) is not sufficient to conclude strong convergence. To deal with this, we also have to
use the radial symmetry of the Q. in order to prove strong convergence.

(2) The uniqueness of the symmetric-decreasing ground state for problem (3-4) was proven by Lieb
[1977]. For the reader’s convenience, we provide a (partly different) proof of this fact in Appendix A.

3.1. Proof of Proposition 1. We begin with some auxiliary results.
Lemma 2. Let {u.,};2, be as in Proposition 1. Then there exist constants 61 > 0 and 5, > 0 such that
mcg —01 < —pt, < mcﬁ — 0y, foralln > ny,

where ng > 1 is some number.

Proof. The existence of 6, > 0 can be deduced as follows. The Euler-Lagrange equation for Q. reads

VA +m2ct Qe — (I¥17" %10, 1P) Qc, = —#26, Qe (3-6)

which upon multiplication with Q., and integration gives us

1 _
e, (Qe) = 5 / (7 106,17)1Qe, 1P = —p1e, N (3-7)
R;
Next, we recall the operator inequality
V—=c?A+m?ct < LA +mc?,
2m

which directly follows in the Fourier domain and the fact that /14t <7/2+1 holds for all # > 0. Hence
we have that €., (Q.,) < €u(Q.,) + Nmc2. Furthermore, since Q., is a ground state for €, (), we
deduce

%L‘n (QC,,) =< Enr(N) + chz,

with Ey(N) defined in (3-4), so that (3-7) gives us
—pe,N < En(N) + chi-

From [Lieb 1977] we know that E,;(N) < 0 and thus d, = —E,.(N)/N > 0 is a legitimate choice.
To prove the existence of 6; > 0, we observe that each Q., > 0 is the ground state of the “relativistic”

Schrédinger operator
H. =./—c2A +m%c* — (|x|_1 * |an|2).

Since all Q., are radial functions with | Q,, ||%2 = N for all n > 1, we can invoke Newton’s theorem to

find )
c N
/ Qa P\ N
R |x =yl x|

By the min-max principle, we infer the lower bound

—le, > info (ﬁc,,)

— N
H. =,/ —c2A+m?c}— =0

where
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From [Herbst 1977] and reinstalling the speed of light ¢ > 0 there, we recall that we have info (H,) >
—oo if and only if N < (2/7)c,. Thus H ¢, 1s bounded below for n >> 1 and, moreover, we have an
explicit lower bound (see [Herbst 1977] again) given by

2
. == 2 TN
infe (H.,) > mc, 1—( ) .
2¢,

Since v/1 —x2>1— x2 for |x| <1, we conclude

2

) TN , L5,

— e, =mc, | 1 — =mc, ——-mnr~N*, foralln > ny,
2c, 4

ZNZ? > 0, we complete the proof of Lemma 2. (Il

provided that ng >> 1. By choosing J; = %mn
Next, we derive an a priori bound on the sequence of ground states.
Lemma 3. Let {Q.,},2, be as in Proposition 1. Then there exists a constant M > 0 such that
Qe g <M, foralln>1.

Proof. Since | Q,, ||i2 = N for all n > 1, we only have to derive a uniform bound for |V Q,, ||;> which
can be done as follows. From (3-6) we obtain

IV Qe lI72 +m?c)l O, II3 2
=(V—2A+m2c} Q.,, /—c2A+m2c} Q)
< w2 (Qerr Qc,) + 2l1e, | Qc, (X177 %1006, 1)) Q) + (D, (X7 %1 Qc, 1), (1x17" %1 Q6 1) O, ).

To bound the terms on the right, we notice that Kato’s inequality |x|~! < |V| implies

-1 2
17 % 1Qc, 7l S (Qe,» IVIQe,) S N1Qe, M1221V Qe Nl 12

Using this bound, Holder’s inequality, and the bound |z, | < mcﬁ for n > 1 from Lemma 2, we obtain

allVQe,lI72 S mcg N2V Qg ll 2 + N2V Qe 172,
for n >> 1. Since ¢, — oo and N is fixed, we conclude that there exists M > 0 such that
IVQe,llp2 =M
for n > 1. By choosing M > 0 possibly larger, we extend this bound to all n > 1. ]

We now come the proof of Proposition 1 itself. By the a priori bound in Lemma 3, we have (after
possibly passing to a subsequence) that

0., — Qo in H'(R?) and Q. (x) = Qo (x) fora.e. x € R? as n — oo,

for some Q. € H'(R?). By radiality and strict positivity of all the Q. , it follows that Qo (|x]) > 0 is
a radial and nonnegative function. Furthermore, since {Q.,},Z , forms a sequence of radial functions on
R3 with a uniform H'-bound, a classical result (see [Strauss 1977]) yields that

0., = Qo in L”([R"’) asn—ooforany2 < p <6. (3-3)
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By Lemma 2, we have that {—u., — mcﬁ};’lozl is a bounded sequence, which is also uniformly bounded

away from 0. Hence extracting a suitable subsequence yields

lim (—p., —mc?)=—1 <0, (3-9)

n—oo

for some 4 > 0.
Using that Q. — Q in H' and the strong convergence (3-8), we can pass to the limit in (3-6) and
find that the radial, nonnegative function Qo, € H'(R?) satisfies

oA Qe — (17 510 P) Qo = —A0n in H'(®). (3-10)

When taking this limit, we use the fact that

lim <f, (,/—c%A +m2cﬁ—mc5+LA)Q“n>=O for all f € H'(R?),

n—00 2m

which is easy to verify for test functions f € C8°([R€3) by taking the Fourier transform and using that

2
c2E2 4 m2ct —me? — 2§_m — 0 forevery & e R? as ¢, — 0.

The claim above extends to all f € H'(R?) by a simple density argument.
Next we prove that in fact [ |Qsol?> = N holds, which a-posteriori would show that Q¢ = O
strongly in L2(R?). To prove this claim, we note that Equation (3-6) and its limit (3-10) give us

1 _
(~tte, =meN =3 [ 1900 P~ [ (1617100, 7)100, P 41 G-11)
m Jgr3 R3

with r, — 0 as n — oo. Note that the right-hand side is not weakly lower semicontinuous (with respect to
weak H'-convergence), unlike the case of atomic Hartree and Hartree—Fock energy functionals. To deal
with the non weakly lower semicontinuous part given by the potential energy term, we use (3-8) again
and the Hardy-Littlewood—Sobolev inequality. Then, by the weak lower semicontinuity of the kinetic
energy term in (3-11), we deduce from (3-11) and (3-10) that

1 -
—IN = 5~ |VQOO|2—/ (Ix] ‘*|Qoo|2)|Qoo|2=—A/ |Qol”.
m Jg3 R3 R3

Because of 4 > 0, we see that f |Ooo|?> > N must hold. On the other hand, we have N > f |0ool? by the
weak L2-convergence. Thus we have 1l |Qs|? = N and, consequently,

Q., — Qoo in L>(R%) as n — oo. (3-12)

By Lemma 9 and a simple scaling argument, we see that Q. is the unique radial, nonnegative solution
to (3-10) with f |Qoo|?> = N. Here 1 > 0 is determined through O, and Q« is in fact strictly positive.

It remains to show that
Q., — Qo in H'(R%) as n — 0. (3-13)

To see this, we verify that {Q.,}°7 | with f 1O, |> = N furnishes a minimizing sequence for the nonrel-
ativistic Hartree energy €,.(y) subject to [ |y |> = N, that is, for problem (3-4). Indeed, using (3-11)
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and (3-9) as well as the strong convergence (3-8) to pass to the limit in the potential energy, we deduce
that
1 -
Eu(Qc,) — _m+§/ (Ix17" %1 Qocl?) 1Qocl® a5 1 — o0.
R

3

However, this limit for €,.(Q.,) is equal to €,(Q ), as can be seen by multiplying (3-10) with O, and
integrating. Hence {Q,,}°2, is a minimizing sequence for problem (3-4). Next, we notice that standard
concentration-compactness methods yield relative compactness in H'(R?) for any radial minimizing
sequence for problem (3-4), which has a unique radial, nonnegative minimizer Q. Therefore (after
possibly passing to another subsequence) we deduce that (3-13) holds.

To conclude the proof of Proposition 1, we note that we have convergence along every subsequence

because of the uniqueness of the limit point O, € H'(R?). O

4. Radial nondegeneracy of nonrelativistic ground states

We consider the linear operator
1 - -
Li&=—5A&+2¢ = (617" #Quol’)E = 2000 (IxI7" # (Qucd)), (@-1)

where Qo € H'(R?) is the radial, positive solution taken from Proposition 1. By standard arguments,
it follows that L is a self-adjoint operator acting on L?(R*) with domain H?(R?). In this section, we
study the restriction of L, acting on Lfad R?) (that is, the radial L2-functions on R3).

As a main result, we prove the so-called nondegeneracy of L on Lfad([R{3); that is, the triviality of its

kernel.
Proposition 2. For the linear operator L, be given by (4-1), we have

ker Ly = {0} when L, is restricted to Lf d([R3).

a
Remark. (1) Asshown in Section 7 below, we will see that the triviality of the kernel of L on Lfad([R3)
implies
kerL+ = Span {axl QOO: axz QOO5 aX3 QOO} (4_2)
For linearized operators arising from ground states for NLS with local nonlinearities, this fact is well-

known; see [Chang et al. 2007; Weinstein 1985]. However, the proof given there cannot be adapted to
L given by (4-1) due to its nonlocal component. We refer to Section 7 for further details.

(2) Numerical evidence indicating that O is not an eigenvalue of L, when restricted to radial functions

can be found in [Harrison et al. 2003].

4.1. Proof of Proposition 2. Suppose that O, € H'(R?) is the unique radial, positive solution to (3-3)
with f |Qoo|?> = N for some N > 0 given. In what follows, it will be convenient and without loss of
generality to assume that O satisfies

—AQo — (Ix17" %1000l*) Qo0 = — Qoos 4-3)
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which amounts to rescaling Qo (x) — aQeoo(bx) with suitable @ > 0 and b > 0. Likewise, the linear
operator L then reads

Li&=—NE+E— (117 %000l = 2000 (177" % (Qoe€)). (4-4)

Recall that we restrict ourselves to radial ¢ € Lfad(lR3). Therefore, we can rewrite the nonlocal term

in L, by invoking Newton’s theorem in R? (see [Lieb and Loss 2001, Theorem 9.7]): For any radial
function p = p(|x|) such that p € L'(R?, (1 + |x|)~'dx), we have

_ " (x|
(e )0 = [ K perds— [ ), (45)
0 r3 x|
for r = |x| > 0, where K (r, s) is given by
K, s)=4ns(1—§) >0, forr>s. (4-6)

Since the ground state O, is exponentially decaying, we can apply Newton’s theorem to p = Q¢ for
any ¢ € Lfad([R3) and obtain the following result.

Lemma 4. Forany ¢ € erad(lR3), we have

Lié=%¢— 2Qoo( ng), (4-7)
RS |x]
where ¥ is given by
L& =—AE+E— (IxI7 ] Qul?)E + WE, (4-8)
with -
(WEr) = 2000(r) /0 K (r,5) Qoo (5)E(5) ds. (4-9)

The following auxiliary result shows exponential growth of solutions v to the linear equation ;v =0.

Lemma 5. Suppose the radial function v = v(r) solves £yv = 0 with v(0) # 0 and v'(0) = 0. Then
the function v(r) has no sign change and v (r) grows exponentially as r — 00. More precisely, for any
0 <0 < 1, there exist constants C > 0 and R > 0 such that

lo(r)| = Ce*”,  forallr > R.

In particular, we have that v ¢ L? (R?).

rad

Proof. Since £, v = 0 is a linear equation, we can assume without loss of generality that v (0) > 0; and
moreover it is convenient to assume that v (0) > Q,(0) holds. Next, we write £, v =0 as

0" () + %v’(r) = V() + W), (4-10)
with

V() =1=(x]"" %10 (r), (4-11)
W(r)=20() /’ K(r, s)Qoo(s)v(s)ds. (4-12)
0



UNIQUENESS OF GROUND STATES FOR PSEUDORELATIVISTIC HARTREE EQUATIONS 13
Note that Q. (r) satisfies (4-10) with W (r) being removed, that is,

0L (1) +2 0L () = V() Qocl). (4-13)

We now compare v(r) and Q. (r) as follows. An elementary calculation, using equations (4-10) and
(4-13), leads to the “Wronskian-type” identity

(r2(Qoct’ — Q40)) =1 Qe W, (4-14)

which, by integration, gives us

Q' = )0 = [ 20nW ) ds. 415)
0

Hence, while keeping in mind that Q. (r) > 0, we find

of v
r(Qoo(n) oo ), Sesem e (4-16)

From this identity we now claim that

v(r) > Qeo(r), forallr>0. 4-17)

To see this, recall that v (0) > Q(0) and, by continuity, we have that v (r) > Q(r) for r > 0 sufficiently
small. Suppose now, on the contrary to (4-17), that there is a first intersection at some positive r = r,,
say, so that v (ry) = Qoo (7). It is easy to see that the left-hand side of (4-16) (or equivalently (4-15)) has
to be <0 at r = r,. On the other hand, since v(r) > Qx(r) > 0 on [0, r,), we conclude that the integral
on right-hand side of (4-16) at r = r, must be strictly positive. This contradiction shows that (4-17) must
hold. In particular, the function v () never changes its sign.

Next, we insert the estimate (4-17) back into (4-16), which yields

l)(l") 2 2 ) s 2d N
(Q( ))( )= 0l )2/ 57 Qoo(s) /0 K(s,1)Qoo(t)*dt ds. (4-18)

We notice that Q. (r) > 0 is the unique ground state for the Schrodinger operator

H=—A+V, withV =—[x|"'%|0u% (4-19)

Since H Qoo = — Qo and V is a continuous function with V — 0 as |x| — oo, standard arguments show
that, for any ¢ > 0, there exists a constant A, > 0 such that

Qoo (r) < Age™ 179" forall r > 0. (4-20)

Furthermore, since Q~(r) > 0 is the ground state of H, we can obtain the following lower bound: For
any ¢ > 0, there exists a constant B, > 0 such that

Ooo(r) > Bee 1+ forall r > 0. (4-21)

For this classical result on ground states for Schrodinger operators. See, for example, [Carmona and
Simon 1981, Theorem 3.2] where a probabilistic proof is given.
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Now let 0 < & < 1 be given. Inserting the bounds (4-20) and (4-21) into Equation (4-18), we obtain
r N
(v( ))(r) o Co®- 2£)r/ Sze—(2+2g)s/ K(s. 1)e=C+2 gy ds. (4-22)
o(r) 0 0

with some constant C = C, > 0 (we drop its dependence on ¢ henceforth). Since the double integral on
the right-hand side converges as r — oo to some finite positive value, there exists some a > 0 such that

(u(r) ) (r) > Ce® 2 forall r > a, (4-23)
Q(r)
with some constant C > 0. Integrating this lower bound and using (4-21) again, we find that
6(1736);’
v(r)=C—5—, forallr >R, (4-24)
r

with some constants C > 0 and R > 1. Thus, for any 0 < J < 1, we arrive at the claim of Lemma 5 by
taking 0 < ¢ < %(1 — 0) and choosing C > 0 appropriately. (I

With the help of Lemma 5 we are now able to prove the triviality of the kernel of L in the radial
sector.

Lemma 6. For L. be given by (4-1), we have that L& =0 with & € Lrad(IR3) implies that & = 0.

Proof. Suppose there exists ¢ € erad (R3) with & 20 such that L& =0. Then, by Lemma 4, the function ¢
solves the inhomogeneous problem

Qoof

R x|

FiE=200~, Wwitho = (4-25)

Therefore,
=0t w, (4-26)

where w is any particular solution to (4-25) and v is some function such that £, = 0. As shown below,
it suffices to restrict ourselves to smooth » and w.
We shall now construct a smooth w € L2 d([R{3) as follows. We define the smooth radial function

R=2Q00 +78 Q0o € L2,(R%), (4-27)
where a calculation shows that
LiR=—-20. (4-28)
Furthermore, by applying Lemma 4 to R, we find
R
PR =2(t —1)Qu, withz = Q|°°| (4-29)
R3 X

Note that 7 # 1 must hold, for otherwise Lemma 5 with » = R (and »(0) = R(0) = Q(0) > 0 and
v’(0) = R'(0) = 0) would yield that R ¢ Lrad([RR3), which is a contradiction. Thus we have found a
smooth particular solution to (4-25) given by

w= ﬁR € L2, (RY). (4-30)
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Further, we notice that ¢ € erad([R{?’) with L ¢ =0 is smooth by bootstrapping this equation. Therefore, by

(4-26), we conclude that v has to be smooth as well. Suppose that o =0. Then we have ¢ =w and ¢ #0
(since otherwise w =0 # £). This, however, contradicts that L& =0and L w=—2(c/(t —1)) Qs #0.

Thus we see that v # 0 in (4-26), where v'(0) = 0 by smoothness of ». Suppose now that v(0) £ 0.
Then Lemma 5 yields that v ¢ Lfad([R3), which contradicts (4-26) together with the fact that £ and w
both belong to Lfad(lR3). Finally, suppose that v(0) = 0 holds. Then v solves the equation £, = 0
with initial data v(0) = 0 and v’(0) = 0. However, by a standard fixed point argument, we see that the
linear integro-differential equation £ v = 0 with given initial data » (0) € R and »’(0) = 0 has a unique

solution. So »(0) =0 and v’(0) = 0 implies that » = 0. Again, we arrive at a contradiction as above. [J

Clearly, Lemma 6 completes the proof of Proposition 2. (I

5. Local uniqueness around Q.

Recall that H!(R*) denotes space of radial and real-valued functions that belong to H'(R?). By using
Proposition 2, we can now prove the following local uniqueness result for a small neighborhood around
O in H!(RY).

Proposition 3. Let m > 0 and N > 0 be given. Furthermore, suppose that Qo, € H!(R?) is the unique
radial, positive solution to

3 A — (X7 10 ) Qe = —7 0 (5-1)

with f |Oool?> = N, where A > 0 is determined through Qso. Then there exist constants ¢y > 1, ¢ > 0,
and 0 > 0 such that the following holds. For any (c, p) with

2

c>co, —A—e=<—u—mc"<—Ai+te,

V=ctA+m2ct Q — (1x]7' ¥ 10P°) 0 = —pQ (5-2)

has a unique solution Q € Hrl (R3), provided that | Q — Qo |l y1 < 0.

the equation

5.1. Proof of Proposition 3. For f > 0 and z > 0, we define the map

G(I/l, 18, Z):M—i—g{(ﬁ, Z)g(u)a (5'3)
where we set
gu) =— (x| s |u*)u, (5-4)
and, for f > 0 and z > 0, we define the family of resolvents
-1 .
—(1/2m)A fp=0,
a0 =] (S12MATI) RN (5-5)
(V=B 2A+m2p~4—mp~2+2z)" ifp>0.
By an elementary calculation, we verify the following equivalences:
Q € H!(R?) solves (5-1) if and only if G(Q, 0, 1) = 0; (5-6)

Q € H!(R?) solves (5-2) if and only if G(Q, ¢~!, u +mc?) =0. (5-7)
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To prove Proposition 3, we now construct an implicit function-type argument for the map
G: H'(R) x [0, ol x [A—e, A +¢] > H'(R), (5-8)

where o > 0 and ¢ > 0 are small constants. To see that indeed G (u, B, z) € H!(R?) for u € H!(R%),
we notice that R(f, z) : H!(R?) — H!(R?), as can be seen by using the Fourier transform. That g (u)
maps H!(R?) into itself follows readily from the Hardy-Littlewood—Sobolev inequality and Sobolev
embeddings. Hence (5-8) is indeed well-defined.

Next, we show that the derivative

0uG(u, B,2) =1+ R(B, 2)0,8 ) : H'(R*) - H!(R) (5-9)
depends continuously on (u, 8, z). Here 8, g(u) acting on & € H! (R3) is found to be
Qug ()& = — (x| s u*)E —2u (x| ™" (ud)). (5-10)
By using the Hardy—Littlewood—Sobolev inequality and Sobolev embeddings, we obtain that

1(Gug (1) = 0ug W)l gt < (lurll g + Nzl g )y — uall g 1€ 1 s (5-11)

see, for example, [Lenzmann 2007] for similar estimates proving Lipschitz continuity of g(u). Using
this estimate, we find for uy, u,, & € Hr1 ([R3), P1, P2 €10, pol, and z1, z2 > 0,
(GG (ur, Br, 21) — 0uG (u2, P2, 22))¢ |l
< 1@ (B1, z1) — R(P2, 22))0ug (U )E| g1 + 1R (B2, 22) (Cug (u1) — BugU2))< ||
SNRB1, 21) = R(B2s 22) 2 2w 131 1€ ] i
HIRB2, 22) 2o 2wl g+ Nuall gy — w2l g 1€ g1, (5-12)

where we also use the fact that | R(f, 2)| gs— gs = |R(B, 2)|l ;2 ;2 for any s € R, since R (S, z) com-
mutes with (V). Moreover, by using the Fourier transform, one verifies
IR, 21) = R(B2, 2) 12512 > 0 as (Bi1,21) = (B2, 22), (5-13)

for any S, f» > 0 and z1, z2 > 0. (For later use, we record that (5-13) also holds for complex z;, z2 €
C\ [0, c0).) Going back to (5-12), we thus find

16.G (u1, p1,z21) — 0uG (U2, B2, 22)ll g1 g1 — 0

as |luy —uz||y1 — 0 and (B, z1) = (P2, 22). Hence 6,G (u, f3, 7) depends continuously on (u, S, z).

By Proposition 2 and its following remark, we have that the radial restriction of the linearized operator
L around Q, has trivial kernel. This implies that the compact operator (—(1/(2m))A +21)"18,8(Qx0)
does not have —1 in its spectrum. Hence the inverse operator

(3.G(Qo0, 0, 1)) ' - H!®®) - HI(®) (5-14)

exists. By the continuity of 0,G(u, £, z) shown above, an appropriate version of an implicit function
theorem (see, for example, [Chang 2005]) implies that, for Sy > 0 and ¢ > 0 sufficiently small, there
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exists a unique solution Q = Q(f, z) € Hr1 (R3) such that

G(Q(B,2),B,2)=0 for f€[0,foland z € [A —¢&, A +¢] (5-15)
with
10(B,2) — Qocllyt <6 for some J > 0. (5-16)

Moreover, the map (5, z) — Q(f,z) € Hr1 (R3) is continuous.
By setting c¢o = S, ! and recalling the equivalence (5-7), we complete the proof of Proposition 3. [

6. Proof of Theorem 2

First, we notice that it is sufficient to prove uniqueness of symmetric-decreasing ground states for the
variational problem (1-2), thanks to Theorem 1(iii). Next, we make use of the rescaling correspondence
formulated in Lemma 1, which relates ground states for the dimensionalized and de-dimensionalized
Hartree energy functionals €.(y) and € () defined in (3-1) and (1-1), respectively.

In what follows, we fix f |0c)?> = 1 and we suppose that Q. = QF € H'2(R3) is a symmetric-
decreasing ground state for €.(y) subject to [ |w|? = 1. Recall from Lemma 1 that Q. indeed exists for
¢ > co with ¢ being a sufficiently large constant. Let x(Q.) denote the Lagrange multiplier associated
to Q. for ¢ > cp. We now claim that x only depends on ¢ except for some countable set, that is, we have

/’t(Qc) = ,u(c), forc € (CO’ OO) \ E, (6'1)

where E is some countable set. To prove (6-1), we argue as follows. By Lemma 1, we see that Q =
c72Q.(c ') is a symmetric-decreasing ground state for € () subject to [y |>=N =c"'; and moreover
the Lagrange multiplier u(Q) for Q is found to be

1(Q) =c Qo). (6-2)

Next, we consider the ground state energy E(N) given by (1-2) for 0 < N < ¢, ! From [Lieb and
Yau 1987; Frohlich et al. 2007b] we know that E(N) is strictly concave. Hence E’(N) exists for all
N e 0,c, 1) \ X, where is X is some countable set, and we readily find that

E'(N)=—u(Q), forNe(0,c5)\ 2. (6-3)

Therefore the left-hand side of (6-2) only depends on N = ¢~! except when N € X, which proves (6-1)
with the countable set = ={c:c¢> cpand ¢! € Z}.

Suppose {c,}° | is a sequence with such that ¢, — 00 and values in ¢, € (cp, 00) \ E. Correspondingly,
let {Qc,},2, be a sequence of symmetric-decreasing ground states for €.(y) with f O, |> =1 for all
n > 1. By Proposition 1, for any such sequence {Q.,}, we have that Q., and its corresponding Lagrange
multipliers u., satisfy the assumption of Proposition 3, provided that n > 1. By the local uniqueness
result stated in Proposition 3 and the fact u., only depends on c¢,, we conclude that the symmetric-
decreasing ground state Q. for €.(y) subject to [ |y |> = 1 is unique, provided that ¢ € (cp, o0) \ E
holds, where co > 1 is sufficiently large and = is some countable set.

Finally, by Lemma 1, we deduce uniqueness of symmetric-decreasing ground states Q for €(y)
subject to | lw|> = N, provided that N € (0, No) \ = holds, where Ny = Co T« lis sufficiently small
and X denotes some countable set. U
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7. Proof of Theorems 3 and 4

We first prove Theorem 4. By rescaling Qoo (r) — a Qoo (br) with suitable @ > 0 and b > 0, we can
assume without loss of generality that Qo € H! (R3) satisfies the normalized equation

~AQx — (1217 #[Qo0l*) Qoo = — Ocx. (7-1)
To complete the proof of Theorem 4, it suffices to prove the following result.

Proposition 4. Let Qo € H!(R?) be the unique radial and positive solution to Equation (7-1). Then the
linearized operator L given by

Li&=—AE+E—(1x]7" %]Q00l?)E = 2000 (167" % (Qo0d)),

acting on L>(R?) with domain H'(R?), has the kernel

ker L+ = Span {axl QOO: axz QOO, a)C3 QOO}

Remark. For linearized operators L arising from ground states Q for NLS with local nonlinearities,
it is a well-known fact that ker L. = {0} when L is restricted to radial functions implies that ker L is
spanned by {0, Q}?:l.

The proof, however, involves some Sturm—Liouville theory which is not applicable to L given above,
due to the presence of the nonlocal term. (Also, recall that Newton’s theorem is not at our disposal,
since we do not restrict ourselves to radial functions anymore.) To overcome this difficulty, we have
to develop Perron—Frobenius-type arguments for the action of L with respect to decomposition into
spherical harmonics.

7.1. Proof of Proposition 4. Since Q.. (r) and |x|~! are radial functions, the operator L, commutes
with rotations in R3; that is, we have that (L &(R-))(x) = (L&) (Rx) for all R € O(3). Therefore, we
decompose any & € L?(R?) using spherical harmonics according to

00 4
=D D7 fom()Yeu (), (7-2)

(=0 m=—¢

where x = rQ with r = |x| and Q € S?. This gives us the direct decomposition

o
L*®) =% , (7-3)
=0
so that L acts invariantly on each
Yoy = L* Ry, r*dr) @ Y p). (7-4)

Here ;) =span {Y;, };{;7 , denotes the (2¢+1)-dimensional eigenspace corresponding to the eigenvalue

k¢ = —{(£ + 1) of the spherical Laplacian A acting on L?(S?).
Let us now find an explicit formula for the action of L, on each . To this end, we recall the

well-known the fact that 5 s
—A=-0—"5+ J;)
r r

on %([) , (7'5)
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as well as the multipole expansion

o+
Z Z T +1 7 Vi @Y€, (7-6)
=0 m=

where - = min(|x|, |x|) and r~ = max(|x|, |x|). An elementary calculation leads to the following
equivalence: We have that L& =0 if and only if

Lywyfem=0, fort=0,1,2,...andm=—¢(,...,+C, (7-7)

with ¢ given by (7-2). Here the operator L (¢ acting on L%*(R., r?dr) is (formally) given by

(¢
Ly, NH)=—f"(r)— f( )+ ( + )f(r)-i-V(r)f(r)-i—(W(f)f)(r) (7-8)
with the local potential
V(r)=—(1xI7" %10 (), (7-9)
and the nonlocal linear operator
(Wi ) = = 0r) / Qne(s) £ (5) 5" ds, (3-10)
© 204177 f’+1 >

where r. = min(r, s) and r~ = max(r, s).

To prove Proposition 4, it suffices to assume henceforth that £ > 1 holds, since L () f = 0 implies
that f = 0 holds, by Proposition 2 above. Hence any nontrivial elements in the kernel of L. can only
belong to ) with £ > 1. Before we proceed, we show that each L () enjoys a Perron—Frobenius
property as follows.

Lemma 7. For each { > 1, the operator L () is essentially self-adjoint on C3°(Ry) C L*(Ry., r2dr)
and bounded below. Moreover, each L (¢) has the Perron—Frobenius property. That is, if eq (¢ denotes
the lowest eigenvalue of L (¢), then eg (¢ is simple and the corresponding eigenfunction ¢y ¢y (r) > 0 is
strictly positive.

Remarks. (1) We have indeed the lower bound L () > 0 for all £ > 1. This follows from ¥ ) L QO
for £ > 1 and the fact that L |p. > 0, which can be proven in the same way as for ground states for
local NLS; see, for example, [Chang et al. 2007; Weinstein 1985].

(2) Itis easy to see that L (¢ has in fact infinitely many eigenvalues between 0 and 1. Indeed, the lower
bound Qoo (r) > Bye~17)" (see the proof of Lemma 5) leads, by using Newton’s theorem, to the upper
bound V (r) < —ar~! with some a > 0. Furthermore, one finds that (f, W(© f) < 0 for f 0. Hence,

we conclude
(+1) a

2
Ly <—0;— ~or+ 1+ - .

on L?(R,., r?dr). From the well-known spectral properties of the hydrogen atom Hamiltonian, we infer
that the operator on the right has infinitely many eigenvalues below 1, and so does L (¢) by the min-max
principle.
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Proof of Lemma 7. Since Qo (r) is exponentially decaying, it is straightforward to verify that W) is a
bounded operator. Also, we have that V € L* holds. Thus L () is bounded below (see also the remark
following Lemma 7). Furthermore, it is well-known that

2+

—A(g)=—a,2—;ar+ (7-11)

2
is essentially self-adjoint on C§°(R,) provided that £ > 1. In fact, this follows from [Reed and Simon
1980, Theorem X.10 and Example 4] which shows that —8? — (2/r)d, + £(€ + 1)/r? is essentially self-
adjoint on C3°(Ry) if £(€ + 1)/ r? > 3/4r%. Furthermore, by the Kato—Rellich theorem and the fact
that V and W are bounded and self-adjoint, we deduce that L o) = —As) + V + W) is essentially
self-adjoint on C3°(R ) as well.

The Perron—Frobenius property of L () can be shown as follows. First, we consider the kinetic
energy part in L (,), where we find that

e'20 is positivity improving on L2(R,., r2dr) for all £ > 0. (7-12)

(Recall that, by definition, this means that ¢/2© f > 0 when f > 0 with f = 0.) Indeed, an argument

given in Appendix B shows that the integral kernel of ¢’2® is strictly positive:
O, s) = 1 le_ﬂ;x2 LonlZ)>0, forrs>0 (7-13)
’ 2tV rs T2\ 2 ’ ’ '

Here I (z) denotes the modified Bessel function of the first kind of order k. For later use, we record that
(7-12) and the formula (by functional calculus)

o
(=Aq +u)7! =/ e O dr, for u > 0, (7-14)
0

immediately show that
(=Aw) + w)~! is positivity improving on L?(R,, r2dr) for all x4 > 0. (7-15)
Next, let A,y denote the bounded self-adjoint operator
Aey=V+ Wy, (7-16)

where V and W) are defined in (7-9) and (7-10), respectively. Note that A is nonlocal. Using that
Qoo (r) is strictly positive, we readily find that

—A(p) is positivity improving on L2(R., rdr). (7-17)
This leads to the following auxiliary result.
Lemma 8. For u > 1, the resolvent
-1 -1
(Leo+u) =(=An+An+n)

is positivity improving on L*(R.y, r’dr).
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Proof. For ;1 > 1, we have

1 1 1
Ligoy+u —Ap+pl+Ap(=Ag+p)~ 1

Since A is bounded, we conclude that || A (—A ) + 1)~ 22 < 1 for 4 > 1. Thus a Neumann
expansion yields

1 1 e )
= —Ap(=Ap+w)h’, (7-18)

provided that x > 1. Next, we recall from (7-15) that (—=A ) + w)~! is positivity improving. By this
fact and (7-17), we deduce from (7-18) that (L (o) + )~ must be positivity improving for x> 1. This
completes the proof of Lemma 8. ]

We now return to the proof of Lemma 7, which we complete as follows. Let £ > 1 be fixed and suppose
eo,r) = info (L4 (r)) is the lowest eigenvalue. Furthermore, we choose x >> 1 such that, by Lemma 8,

B=(Ly )+ #)_1 (7-19)

is positivity improving on L?(R,, r2dr). Clearly, the operator B is bounded and self-adjoint, and its
largest eigenvalue 1o = sup o (B) is given by 4o = (e(),0 + #)~!. Also, the corresponding eigenspaces
of Ly () and B coincide. Since B is positivity improving (and hence ergodic), we can invoke [Reed and
Simon 1978, Theorem XIII1.43] to conclude that Aq is simple and that the corresponding eigenfunction
@(¢),0(r) is strictly positive on R.. This proof of Lemma 7 is therefore complete. U

Let us now come back to the proof of Proposition 4, stating that ker L is spanned by {0, Qoo}?zl.
By differentiating the nonlinear equation satisfied by O, we readily obtain that L6, O = O for
i=1,2,3. Since 0y, Qoo (r) = Q4 (r)(x;/r) € ¥ (1), this show that

L0, =0. (7-20)
Furthermore, by monotonicity of Q. (r), we have that O (r) < 0. Since L (1) is self-adjoint and Q'
is an eigenfunction that does not change its sign, Lemma 7 shows that in fact Q7 (r) = —¢o,1)(r) holds,

where ¢o (1) > 0 is the strictly positive ground state of L (1), with e (1) = 0 being its corresponding
eigenvalue. Therefore any ¢ € ¥y such that L ¢ = 0 must be some linear combination of {0, Qoo}?: 1
To complete the proof of Proposition 4, we now claim that

Ly >0, fort=2, (7-21)

which in particular shows that L ¢ =0 with £ € ¥, for some £ > 2 implies that £ = 0. To prove (7-21),
let £ > 2 be fixed and set
60,([) = il’lfO' (L_h(g)). (7-22)

Indeed, by the remark following Lemma 7, we know that eq ) < 1 is attained. (If ep,(s) was not attained,
then eq (1) = inf oess (L4 (7)) = 1 and (7-21) follows immediately.) By Lemma 7, the eigenvalue e, (¢ is
simple and its corresponding eigenfunction ¢ (¢)(r) > 0 is strictly positive. Next, we notice that

eo = (@0,0)> L+,0)®0,0) = (do,0)> L+,(1)P0,0)) + Ko, (7-23)
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where

L[+ 1) ~2)
K(f)—/ —a

@o. [)(l")z r2dr
l

1
+87T/ / Qoo(r)¢0(€)(r)(3 S ;H)Qoo(S)¢0({f)(S)r2s2drds

with r. = min(r, s) and r. = max(r, s). Using the strict positivity of Qo (r) and ¢, (¢)(r), we see that
K > 0 holds because of £ > 2 and (r-/r-) < 1. Moreover, we recall from the preceding discussion
that L1 (1) > eo,(1) = 0. Therefore, by (7-23),

eo, ) = Ky >0, forall£>2, (7-24)
which proves (7-21), completing the proof of Proposition 4, whence the proof of Theorem 4 follows. [

7.2. Proof of Theorem 3. As in the proof of Theorem 2 above, it is convenient to fix N > 0 and to
consider symmetric-decreasing ground state Q. € H.(R?*) minimizing €.(y) with i |Qc|?> = N, where
we take ¢ > 0 sufficiently large. In what follows, let x. denote the Lagrange multiplier associated to Q..
(It is possible that i, depends on Q. and not just on c.)

Recall from Proposition 1 that

1Qc— Qoollgt <01 and | — e —mc*+ 1| < s, (7-25)

where §; — 0 and J, — 0 as ¢ — oo. Here Q € H!(R?) is the unique radial positive solution to (3-3)
with [ Qoo |>= N, where 1 > 0 is determined through Q.. By Theorem 4, the linear operator L given
by

Li&= =50 At = (17 510w P)E = 20u0 (117 5 () (7-26)
has the kernel
ker L4 = span {0y, O oo, Ox, Qo> Ox; Ooo)- (7-27)

Next, let L . denote the linear operators defined as

Lo =V =D +m2c &t e — (Ix|7"#1Qc?)E =20 (Ix1 71+ (Qc8)). (7-28)

Again, upon differentiating the Euler-Lagrange equation satisfied by Q., we see that L .0y, Q. =0 for
i =1,2,3. Hence

Span {axl Qw axz QC5 aX3 QC} g ker L+,C' (7_29)

By the following perturbation argument, we show that in fact equality holds for ¢ > 1. By standard

arguments, we see that 0 € o (L) is an isolated eigenvalue. Thus we can construct the Riesz projection Py
onto ker L by

27”f (L+—z) dz, (7-30)

where the curve I', parametrizes the circle {z € C: |z] =r}. Here r > 0 is chosen sufficiently small such
that O is the only eigenvalue of L inside |z| < r. Next, we claim that the projection

_ 1 _ -l _
Poc=5— 7§rr(L+,C 2) ldz (7-31)
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exists for ¢ > 1 and satisfies
| Po.c— Pollz2s2—> 0 as ¢ — oo. (7-32)

Indeed, by using (7-25) and similar arguments as in the proof of Proposition 3 (see, for example, the
resolvent estimate (5-13)), we conclude that

MLy =) N2 < CIE4 =) s 2, (7-33)
forall ¢ > 1 and z € I',, where C > 0 is some constant. Furthermore, we have
I(Lye—2) " =Ly —2) 2 =0 as ¢ — oo, (7-34)

for all z € I',. This shows that Py . exists for ¢ >> 1 and that (7-32) holds. Since rank Py = 3 and the rank
of Py . remains constant for ¢ >> 1, by (7-32), we infer that P . has at most 3 eigenvalues (counted with
their multiplicity) inside |z| < r, provided that ¢ >> 1. In particular, we conclude that dimker L, . <3
for ¢ > 1. Therefore equality must hold in (7-29) whenever ¢ > 1.

Thus we have found that L . has the desired kernel property if ¢ > 1. By a rescaling argument
formulated in Lemma 1, we conclude the analogous statement for the linear operator L arising from
the unique symmetric-decreasing ground state Q minimizing €(y) subject to [ lw|> =N with N < 1.
The proof of Theorem 3 is now complete. (]

Appendix A. Uniqueness of Q

Suppose that Q.+, € H'(R?) solves

1 ~1 2 _ -
_%AQOO_(|X| *|Q00| )Qoo— lQoo, (A 1)

with m > 0 and 4 > 0 given. By rescaling Q. (r) — a Qo (br) with suitable @ > 0 and b > 0, we can
consider without loss of generality solutions Qo+, € H'(R?) to the “normalized” equation

~AQc — (1% % Q00l*) Qo = — Occ. (A-2)

The following result is due to [Lieb 1977]; see also [Tod and Moroz 1999]. Here we provide a partly
different proof, which is directly based on a comparison argument.

Lemma 9. Equation (A-2) has a unique radial, nonnegative solution Q € H!(R) with Q #0. Moreover,
we have that Q(r) is in fact strictly positive.

Proof. Existence of a nonnegative, nontrivial solution Q, € H!(R?) of (A-2) follows from variational
arguments; see [Lieb 1977].

To prove that any nonnegative Q € H'(R?), with Q # 0, solving (A-2) is strictly positive, we can
simply argue as follows. We rewrite (A-2) as

—lx—yl

1
0w =((A+) V)W =4 / V()00 dy (A-3)

R |x —yl

with V = |x|7!'%|Q|*. Since V >0 and Q > 0 (with V £ 0 and Q # 0), Equation (A-3) shows that Q
is strictly positive.
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Let us now prove the claimed uniqueness. Suppose Q € Hr1 (R3), with Q # 0, is a solution to (A-2).
Using Newton’s theorem, we find that Q(r) solves (after a suitable rescaling Q(r) — a’ Q(ar) for some
a > 0; see [Lieb 1977]) the initial-value problem

—0"(r) — %v/(r) —o(r)+ (/r K (r, s)v(s)? ds)v(r) =0, v(0)=0vg, 0 (0)=0, (A-4)
0

with vg = Q(0) € R. (Recall that K (r, s) > 0 is given by (4-6) above.) By standard fixed point arguments,
we deduce that (A-4) has a unique local C*-solution for given initial data »(0) € R and »’(0) = 0, and
v (r) exists up to some maximal radius R € (0, oo].

Suppose now that Q € H; '(R%) and Q € H, '(R%) are two radial, nonnegatlve (and nontrivial) solutions
to (A-2) with Q # Q. From the preceding discussion we know that Q and Q are in fact strictly positive,
and (after appropriate rescaling) both satisfy (A-4) with vg = Q(0) > 0 and vg = Q(O) > 0, respectively.
By uniqueness for (A-4), we conclude that Q(0) # Q(O) holds, since otherwise Q = é Therefore, we
can henceforth assume that

0(0) > 0(0). (A-5)
Next, we notice that a calculation (similar to the one in the proof of Lemma 5) yields the integrated
“Wronskian-type” identity

r2(Q(r)Q'(r)— Q'(N Q(r) = /0 s20()Q(s)(V(s) — V(5)) ds. (A-6)

Here,
V(r)= / K(r,s)O(s)?ds and V(r)= / K (r, s)O(s)* ds. (A-7)
0 0

By continuity and (A-5), we have é(r) > Q(r) at least initially for » > 0. Next, we conclude, by (A-6),
that in fact
O(r) > O(r), forallr>0. (A-8)

To see this, suppose on the contrary that Q(r) > 0 intersects Q(r) > 0 for the first time at r =r, > 0, say.
Then the left-hand side of (A-6) is found to be nonnegative at r = r,, whereas the right-hand side must
be strictly positive at r = r, since V(r)> V(r) on (0, r+). This contradiction shows that (A-8) holds.

Finally, we show that (A-8) leads to a contradiction (along the lines of [Lieb 1977]) as follows. To
this end, we consider the Schrodinger operators

H=—A+V and H=—-A+V, (A-9)

sothat HQ = Q and H é = é By standard theory of Schrédinger operators, we conclude that Q and Q
are (up to a normalization factor) the unique positive ground states (with eigenvalue e = 1) for H and H,
respectively. Therefore,

(¢, Hp) > |$l3, and (¢, HP) > llpl|2., for ¢ € H'(R?), (A-10)

where equality holds if and only if =10 or ¢ = 4 Q for some 4 € C, respectively.
Going back to (A-8), we find that V (r) > V (r) for all r > 0, which leads to

10113, < (0, HO)=(Q, HO)— (0, (V- V)0) = 0|3, -9,



UNIQUENESS OF GROUND STATES FOR PSEUDORELATIVISTIC HARTREE EQUATIONS 25

for some ¢ > 0, which is a contradiction.
Hence (A-2) does not admit two different radial and nonnegative (and nontrivial) solutions Q € Hr1 (R
and Q € H!(R?). O

Appendix B. Decomposition of e’2 using spherical harmonics

Recall the explicit formula for the heat kernel of the Laplacian A on R?:
1

e (x,y) = me—“—ylz/(‘”) = (4n_t)3/2e—<x2+y2)/<4t)e(x~y>/<zz)_ (B-1)
Moreover, we have the well-known identity
oo 4+
eV =4x > " ig(alx||y) Yem (@)Y, (Q) (B-2)
=0 m=—¢

fora> 0, x = |x|Q and y = |y|Q where Q, Q' € S?. Here

ir(z) = \/ZZZIL’—H/Z(Z) (B-3)

is the modified spherical Bessel function of the first kind of order ¢; whereas I (z) denotes the modified
Bessel function of the first kind of order k.

Let A, denote the restriction of A acting on ¥ (that is, the space of L?(R%) functions whose
“angular momentum” is £ > 0). From (B-1) and (B-2) we deduce that the integral kernel of e’ Aw acting
on L*(Ry, r%dr) is given by

1 1 (2442
N0 (r,5) = ooy e I (2, (B-4)

An explicit integral representation for I;(z) shows that I,1/2(z) > 0 forall z > 0 and £ > 0.
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RESONANCES FOR NONANALYTIC POTENTIALS

ANDRE MARTINEZ, THIERRY RAMOND AND JOHANNES SIOSTRAND

We consider semiclassical Schrodinger operators on R”, with C* potentials decaying polynomially at
infinity. The usual theories of resonances do not apply in such a nonanalytic framework. Here, under
some additional conditions, we show that resonances are invariantly defined up to any power of their
imaginary part. The theory is based on resolvent estimates for families of approximating distorted
operators with potentials that are holomorphic in narrow complex sectors around R”.

1. Introduction

The notion of quantum resonance was born around the same time as quantum mechanics itself. Its
introduction was motivated by the behavior of various quantities related to scattering experiments, such
as the scattering cross-section. At certain energies, these quantities present peaks (nowadays called
Breit—Wigner peaks), which were modeled by a Lorentzian-shaped function

1 b/2
T (A—a)?+ (b/2)*
The real numbers a and 2/(zb) > 0 stand for the location of the maximum of the peak and its height.

The number b is the width of the peak (more precisely its width at half its height). Of course for
p=a—ib/2 e C, one has

Wyp: A

1 Imp
T lh—pl?’
and the complex number p was called a resonance. Such complex values for energies had also appeared
for example in [Gamow 1928], to explain a-radioactivity.

There is a standard discussion in physics textbooks that may help understand the normalization chosen
for w,,,(1). Suppose yy is a resonant state (not in L?) corresponding to the resonance p = a —ib/2. Its
time evolution should be written

wa,b(/l) =

l//(t) — e—im—tb/Q o,

so that the probability of survival beyond time ¢ is

¢ 2
p(t) = [ )2! =
[wol
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and b is the decay rate of that probability. Moreover, the resonant state w () has an associated energy
space representation

A 1 Foo . 1 Wo
)= —— itE —
w (4) «/E/o ey (t)dt Vo @—h)—ibj2’

which is interpreted saying that the probability density do (1) of the resonant state is proportional to
|y (1)|? and leads to the following formula if one requires that the total probability is 1:

1 b

= 2 @ ir v Y

= wap (1) dA.

However, these complex numbers p = a —ib/2 are not defined in a completely exact way, in the sense
that the peaks in the scattering cross section or the above probability distribution do not perceivably
change if these numbers are modified by a quantity much smaller than their imaginary part. Indeed, a
straightforward computation shows that the relative difference between such two peaks w, ; and wq i
satisfies
wap () = way@)| _p=p| | lp—p'P
1€R War by (4) ~ |Imp| [Tm p|?

where we have also set p’ = a’ — ib’/2 and chosen |Im p| < [Im p’| to make the formula simpler. As a
consequence, the two peaks become indistinguishable if |p — p’| < |Im p|, that is, there is no physical
relevance to associate the resonance p =a—ib to w,  rather than any other p’ satisfying |[p—p’| < [Im p|.
Notice also that the more the resonance is far from the real line, the more irrelevant this precision
becomes.

On the mathematical side, the more recent theory of resonances for Schrodinger operators has made
it possible to create a rigorous framework and obtain very precise results, in particular on the location
of resonances in relation with the geometry of the underlying classical flow. However, it is based on the
notion of complex scaling, in more and more sophisticated versions that all require analyticity assump-
tions on the potential or its Fourier transform; see, for example, [Aguilar and Combes 1971; Balslev
and Combes 1971; Simon 1979; Sigal 1984; Cycon 1985; Helffer and Sjostrand 1986; Hunziker 1986;
Nakamura 1989; 1990; Sjostrand and Zworski 1991]. It is important to notice that these different defini-
tions coincide when their domain of validity overlap [Helffer and Martinez 1987]. In this mathematical
framework, the Breit—Wigner formula for the scattering phase has now been studied by many authors in
different situations, as shape resonances, clouds of resonances, or barrier-top resonances; see for example
[Gérard et al. 1989; Petkov and Zworski 1999; Bruneau and Petkov 2003; Fujiié and Ramond 2003].

There are a small number of works about the definition of resonances for nonanalytic potentials, for
example, [Orth 1990; Gérard and Sigal 1992; Soffer and Weinstein 1998; Cancelier et al. 2005; Jensen
and Nenciu 2006]. In [Orth 1990; Gérard and Sigal 1992; Soffer and Weinstein 1998; Jensen and Nenciu
2006], the point of view is quite different from ours, while in [Cancelier et al. 2005], the definition is
based on the use of an almost-analytic extension of the potential and seems to strongly depend both on
the choice of this extension and on the complex distortion.

Here our purpose is to give a definition that fulfills both the mathematical requirement of being in-
variant with respect to the choices one has to make and the physical requirement of being more accurate
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as the resonance become closer to the real (or, equivalently, as the Breit—Wigner peak becomes nar-
rower). Dropping the physically irrelevant precision for the definition of resonances, we can also drop
the spurious assumption on the analyticity of the potential.

More precisely, we associate to a Schrodinger operator P a discrete set A C C with certain properties,
such that for any other set A’ with the same properties, there exists a bijection B: A’ — A with B(p)—p =
O(|Im p|*) uniformly. The set of resonances of P is the corresponding equivalence class of A. Of course,
when the potential is dilation analytic at infinity, we recover the usual set of resonances up to the same
error O(|Im p|*).

The properties characterizing A basically involve the resonances of a (essentially arbitrary) family of
dilation-analytic operators (P*)0<u<u,)» such that

P* is dilation-analytic in a complex sector of angle x around R”,

| P* — P|| = 0(x*) uniformly as u — 0,

and the constructive proof of the existence of the set A mainly consists in studying such a family and in
particular, in obtaining resolvent estimates uniform in x.

In this paper, we address the case of an isolated cluster of resonances whose cardinality is bounded
(with respect to i). We hope to treat the general case elsewhere, as well as to give a detailed description
of the quantum evolution elitP/h = gitP"/h 4 @(ltlh_l,uoo) in terms of the resonances in A.

The paper is organized as follows. We give our assumptions and state our main results in Section 2.
Then in Section 3, we give two paradigmatic situations where our constructions apply: the nontrapping
case and the shape resonances case. In Section 4 we present a suitable notion of analytic approximation
of a C* function through which we define the operator P#. In Section 5 we show that a properly defined
analytic distorted operator Pj of the latter satisfies a nice resolvent estimate in the upper half complex
plane even very near to the real axis. Sections 6, 7 and 8 are devoted to the proof of Theorem 2.1,
Theorem 2.2 and Theorem 2.5 respectively. We construct the set of resonances A and prove Theorem
2.6 in Section 9. In the last Section 10, we prove our statements concerning the shape resonances. Finally,
we have placed in the Appendix the proofs of two technical lemmas.

2. Notations and main results
We consider the semiclassical Schrédinger operator
P=-h*A+V,
where V = V (x) is a real smooth function of x € R”", such that
0"V (x) = O((x) ™71, 2-1)

for some v > 0 and for all a € Z’,. We also fix v € (0, v) once for all, and for any x > 0 small enough,
we denote by V# a |x|-analytic (u, V)-approximation of V in the sense of Section 4. In particular, V#
is analytic with respect to r = |x| in {r > 1}, it can be extended into a holomorphic function of r in the
sector £ :={Rer >1, |Imr| <2u Rer}, and it satisfies

V@) = V(x) =0(u™®(x)™), (2-2)
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uniformly on R". (See Section 4 for more properties of V#.)
Then for any 8 € (0, 1], the operator

Pl i=—h*A+VH, (2-3)
can be distorted analytically into
P} :=U, P U;", (2-4)
where Uy is any transformation of the type
Upp(x) == p(x +i0A(x)), (2-5)

with A(x) :=a(|x|)x,a € C*°(R+),a=0near 0,0 <a <1 everywhere, a(|x|) =1 for |x| large enough.
The essential spectrum of Paﬂ is e 2R, and its discrete spectrum adisc(PQ” ) is included in the lower
half-plane and does not depend on the choice of the function a. Moreover, it does not depend on 4, in
the sense that for any y € (0, 1], and any 8 € [0y, 1], one has

O'disc(Peﬂ) N 290 = Udisc(Pgll;) N 290,

where Xg, :={z € C; —260p < argz < 0} (observe that one also has adisc(PH”) = adisc(ﬁg PH 179_]),
where ﬁggo(x) = /det(Id +i0'd A(x))p(x +i60 A(x)) is an analytic distortion more widely used in the
literature).

We denote by

L(P) = O'disc(PlL/;) N Z,ua

the set of resonances of P# counted with their multiplicity. In what follows, we also use the following
notation: If E and E’ are two h-dependent subsets of C, and o = a(h) is a h-dependent positive quantity
that tends to 0 as 4 tends to 04, we write

E'=E+0(a),
when there exists a constant C > 0 (uniform with respect to all other parameters) and a bijection
b:E - E,

such that
|b(4) — Al < Ca

for all 4 > 0 small enough.
Now, we fix some energy level 4 > 0, and a constant ¢ > 0. For any /-dependent numbers i (h), u(h),
and any h-dependent bounded intervals I (h), J (h), satisfying

0 < fi(h) < u(h) <k, (2-6)
I(h) Cc J(h), diam(J U{lo}) <h®, (2-7)
we consider the following property (see Figure 1):
Re(I'(P*) N (J —i[0, Aof])) C I,
P, w1, 0) #(T (PN (I —il0, doft]) <67,
dist(1, R\ J) = h™°ay (1),
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Figure 1. The property P (i, u; 1, J).

Notice that by (2-7), the property P (i, u; I, J) implies wy, (i) < h?.

In the applications, it will be necessary to check that % (i, u; I, J) holds for values of i that are
essentially of order 4" for some v > n. In that case, of course, the order of the quantity wy (i) can be
simplified into 4"~"/2(In(1/ h))**+D/2. However, in the proof of our results, P (i, u; I, J) will be also
used as an inductive condition that will permit us to consider arbitrarily small values of i (including
exponentially small values), and this is why we have to keep the somewhat intriguing above expression
for wy, (0).

Theorem 2.1. Suppose P (i, u; 1, J) holds for some f, u, I and J satisfying (2-6)—(2-7). Then for all
0 €10, it], there exists an interval

J' =T+ 0(w(9)),
such that

Iy - '=co ] lz—pl™",
pel(p,p,J)

forallz € J' +i[—COh™, COR™ ). Here we have set ny :=n + 0 and
L, w, J) =T PN —il0, lofl),

and C > 0 is a constant independent of i, i, 0, I and J.
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Thanks to this result, one can compare the resonances of the operators P# for different values of u:

Theorem 2.2. Let Ny > 1 be a constant. Suppose P (i, w; 1, J) holds for some (i, u, I and J satisfying
(2-6)—(2-7), and that i > u™o. Then for any 0 € [u™°, [i], there exist an interval

J'=J +0(wy(0))
and t € [h™@, 2h™ 0], such that for any constant Ny > 1 and any p' € [u™', p/M 1 with @ < u’, one has
C(PYYN (I =i[0,7]) = T(P*)N(J —i[0, 7]) + O(u™).

Remark 2.3. The only properties of V# used in the proof of this result are that V# is a holomorphic
function of r in the sector £ := {Rer > 1, |Imr| <2u Rer}, and it satisfies (2-2) and (4-2) for some
v > 0. In particular, the proof also shows that, up to O(u°), the set I'(P#) does not depend on any
particular choice of V#.

Remark 2.4. As we will see in the proof, the condition 7 € [A"'8, 2h™ 8] can actually be replaced by
t € [0, k™0 + (W 0)M], for any fixed M > 1.

We also show that the validity of % (i, u; I, J) persists when decreasing /& and u suitably, up to a
small change of / and J.

Theorem 2.5. Suppose P (i, w; I, J) holds for some f, u, 1 and J satisfying (2-6)—(2-7). Assume
furthermore that there is a constant No > 1 with ji > u™o. Then there exist two intervals

I'=1+0u>),
J =7 +0(wp (),
such that P(W" ', w1’ ', J') holds, for any u’ € (0, i].
Finally, the next result gives a definition of resonances for P, up to any power of their imaginary part.

Theorem 2.6. Suppose P (i, u; I, J) holds for some i, u, I and J satisfying (2-6)—(2-7). Assume
furthermore that there is a constant No > 1 with it > u™o. Then there exist

an interval  I' =1 +0(u®™),
an interval J' = J 4+ 0(w, (i),
a discrete set A C I' —i[0, 2h*" 1],

such that

()

forany ' € (0, fi], there exists T € [h*™ u', 2h*™ 1] with
L(P*)YN (I =il0,7]) = AN (I =i[0, 7]) +O((1)™).

Moreover, any other set A CI'—i[0,2n™ 1] satisfying (), possibly with some other choice of V*, is
such that there exist t’ € [%hz’l1 I, h2m ] and a bijection

B:ANWJ —i[0,7') > AN —i[0,7"]), with B(A)— 4 =0(Im1|®).

The set A will be called the set of resonances of P in J' — i[0, %hz’“ [t]. Here we adopt the convention
that real elements of A are counted with a positive integer multiplicity in the natural way (see Section 9).
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Remark 2.7. The main shortcoming of our condition % (z, u; I, J) is that the number of resonances in
the corresponding box has to be bounded. It might be that this restriction could be eliminated by a finer
analysis, based for example on results by P. Stefanov [2003]. We plan to come back to this point in a
forthcoming work.

3. Two examples

Here, we describe two explicit situations where the previous results apply.

3.1. The nontrapping case. We suppose first that the energy A is nontrapping, that is, for any (x, &) €
»~'(Jo) we have

lexptH,(x, )| — oo as [t] — oo,
where p(x, &) := &2+ V (x) is the principal symbol of P, and H), = 0z pdx — 0, pO¢ is the Hamilton field
of p.

Then the result of [Martinez 2002b] can be applied to P* with 4 = ChIn(h™") for any arbitrary
constant C > 0, and tells us that P# has no resonances in [1g — 2¢, Ao + 2¢] — i[0, o] with some
& > 0 constant. In that case, for any 6 > 0, P(h"™' u, u; 1, J) is satisfied with I = [Ag — ho, Ao+ h°] and
J =[Ao—2h%, Jo + 2h°], and the previous results tell us that P has no resonances in I — i[O, %h3”1 ]
in the sense of Theorem 2.6.

3.2. The shape resonances. Now we assume instead that, in addition to (2-1), the potential V presents
the geometric configuration of the so-called “point-well in an island”, as described in [Helffer and
Sjostrand 1986]. More precisely, we suppose

There exist a connected bounded open set O C R" and x € O, such that
e Ao =V(xg)>0; V> Jlpon 6\{x0} : V2V (x9)>0; V =Jgon 20; (H)
« any point of {(x, &) € R ; x e R"\O, 2+ V(x) = Ag} is nontrapping.

We denote by (ex)r>1 the increasing sequence of (possibly multiple) eigenvalues of the harmonic oscil-
lator Hy = —A + %(V”(xo)x, x). We have:

Theorem 3.1. Assume (2-1) and (H). Then for any kg > 1 and any 6 > 0, P (i, u; I, J) holds with
p=h, p=h"CEDY = ot (er—e)h, Ao+ (ex,+oR], T =[ho, Ao+ (exys1 — )R],
where ¢ > 0 is any fixed number in (0, min(e; /2, (exy+1 — €x,)/3)]-

Actually, we prove in Section 10 that any resonance p of P# in J —i[0, /] is such that there exists
k < ko with

Re p — (Ao +exh) = O(h*?),
Imp = @(e_zsl/h),

where S| > 0 is any number less than the Agmon distance between x¢ and 80. Recall that the Agmon
distance is the pseudo-distance associated to the degenerate metric (V (x) — o)y dx>.
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More generally, if 4’ € [e~"/", 1] with 5 > 0 small enough, we prove that any resonance p of P* in
J —i[0, Ao min(x’, h*9)], satisfies
Re p — (Ao + exh) = 0(h/?),
for some k < kg, and
Imp = @(e—Z(So—ﬂ)/h)'
Applying Theorem 2.6 with u’ = e/ (0 < 5 < Sp), we deduce that the resonances of P in

[AO, AO 4 Ch] _ l[O, %h2n+max(n/2,l)+l+35]

satisfy the same estimates.

4. Preliminaries
In this section, following an idea of [Fujiié et al. 2008], we define and study the notion of analytic
(u, v)-approximations.

Definition 4.1. For any # > 0 and v € (0, v), we say that a real smooth function V# on R" is a |x|-
analytic (u, V)-approximation of V, if V# is analytic with respect to r = |x| in {r > 1}, V# can be
extended into a holomorphic function of r in the sector X (2u) :={Rer > 1, |Imr| <2u Rer}, and for
any multi-index a, it satisfies

O* (VI (x) = V(x)) = O(u™(x) "1, 1)
uniformly with respect to x € R" and g > 0 small enough, and
“V*H*(x) = O((Rex) "~lehy, (4-2)
uniformly with respect to x € X(2x) and u > 0 small enough.
Proposition 4.2. Let V = V (x) be a real smooth function of x € R" satisfying (2-1).
(1) Forany u > 0 andv € (0, v), there exists a |x|-analytic (u, v)-approximation of V.
(i) If V# and W# are two |x|-analytic (u, v)-approximations of V, then for all a € N, one has
O* (VI (x) = W (x)) = 0(1* (Rex) ™71,
uniformly with respect to x € X (u) and u > 0 small enough.
Proof. We denote by V a smooth function on C” satisfying the following:
« V=VonR"
e 0V =0((|Imx|/(Re x))*®(Re x)~"), uniformly on {[Im x| < C(Rex)}, for any C > 0.
« 0%V = @((Rex)‘“““'), uniformly on {|{Imx| < C(Rex)}, for any C > 0 and o € N".

Note that such a function V (called an “almost-analytic” extension of V: See, for example, [Melin and
Sjostrand 1975]) can easily be obtained by taking a resummation of the formal series

- lal a
Vi(x)~ Z I(I—mx)G“V(Rex). (4-3)

|
aeN” -
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Indeed, since we have *V (Re x) = O((Re x) " ~1%l), the resummation is well defined up to
O((IImx|/(Re x))*(Rex) "),

and the standard procedure of resummation (see, for example, [Dimassi and Sjostrand 1999; Martinez
2002a]) also gives the required estimates on the derivatives of V. Conversely, by a Taylor expansion, we
see that any 1% satisfying the required conditions is necessarily a resummation of the series (4-3).

Now, if V# is a |x|-analytic (u, D)-approximation of V, then for any x = rw € X (u) (0 € $"!) and
N >0, we have

N ik k . N+1 1
VA () =V (x) = Z (Imr) LT akviRer- )+%/ N (VA (Rer+it Imr)-e)) di—V (x)
- Jo
N .k k
- Z %ak(w(Rex) —V(Rex)) + 0" Rex)™)

k=0
=0(u®(Rex) ") +0(u" T (Rex)™),

and similarly, for any a € N",
o (V" (x) = V(x)) = 0(u™®(Rex) "1,

In particular, we have proved (ii).

Now, we proceed with the construction of such a V#.

For x € R™"\0, we set w = x/|x|, r = |x|, and s = Inr. In particular, for any ¢ real small enough, the
dilation x > ¢'x becomes (s, w) — (s + ¢, ) in the new coordinates (s, ).

For w € $"~! and s € C with |Im s| small enough, we set Vis, W) = V(esa)), where V is an almost-
analytic extension of V as before. Then for [Ims| < 2u and Res > —u, we define

—Ds GS’V /’
Vs, w) = 62i7r / Vil ) ds’, (4-4)

s —s’

where y is the oriented complex contour
y = (00, =2u]+2i ) U (—2p + 2i[p, — ) U ([—2p, +00) — 2i ). (4-5)

By construction, Vi(s', w) = 0(e " Res"), 50 that the previous integral is indeed absolutely convergent.
Therefore, the (s, w)-smoothness and s-holomorphy of VI” are obvious consequences of Lebesgue’s
dominated convergence theorem. Since y is symmetric with respect to R, we also have that VI” (s, w) is
real for s real. Moreover, since |s —s’| > u on y, we see that

_N N Ead ’
Vﬂ(s w) vs/ evs V](S ,CU) ds/+©(e—(v—ﬁ)/(2,u)—ﬁReS)’
2z Jyy s

where

y(s) = (y N {Res/ §Res+%}) U (Res—l—i—l—%[—y,,u]).
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In particular, y (s) is a simple oriented loop around s, and therefore, one obtains

e~ s ﬁs’f/' /. - ﬁsV , ~ ~
Vlzu (S, a)) V] (S a)) 2 / € 1 (S C’)) f 1 (S a)) ds/ + @(ef(l)*v)/(zﬂ)*v Re S). (4'6)
LT Jy(s) s—S

Then writing
VI, ) — e Vi(s,0) = (s — ) f(s, 5", 0)+ (s —57)g(s, s, w), 4-7)
with [0y f] +|g| = O0(«™), by Stokes’ formula, we see that, for Res <2/u and |Ims| < u, we have
Vs, w) — Vi(s, ) = 0(u>Pe"Res),

When Res > 2/u and |Im s| < u, setting

71(s) = (y N {RGS’ < %}) U (% +2i[—pu, /1]),

Stokes’ formula directly gives

vs’ ‘7 /’
/ VL 0) o g,
71(5) §—5
and thus, using again that Vi(s', w) = O(e " Re%"), in that case we obtain
Vi (5, @) + Vi (s, @)] = 0(u e "),
In particular, in both cases we obtain
VI (s, 0) = Vils, @) = 0(ue "7, (4-8)
uniformly for Res > —u, [Ims| < x and ¢ > 0 small enough.
Then for o € N arbitrary, by differentiating (4-4) and observing that

V(s @) - Z—(s — ) ok (" Vi(s, @) = (5" =)V fv(s, 5 @) + g (5.5 ),

with |8y fv| + |gn| = O(«™), the same procedure gives
0" (V' (s, @) = Vi(s, @) = O(u¥e "R, (4-9)

uniformly for Res > —u, [Ims| < u and 4 > 0 small enough. In particular, using the properties of Vi,
on the same set we also obtain

3"V (s, w) = O(e " Re), (4-10)

uniformly.
Now, let y; € C*°(R; [0, 1]) be such that y; =1 on (—oo, —1], and y; =0 on R;. We set

Vi (s, @) = x1(s/ ) Vi(s, @) + (1= y1(s/ )V (s, w). (4-11)
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In particular, V;* is well defined and smooth on R_ U (R4 +i[—u, u1), and one has
V)= Vi for s € (—oo, —ul,
V2”=V1” fors e Ry +i[—u, 1],
(V3 = Vi) =0(u™)  forse[—u, pl.
Finally, setting
VE(x) = V! (ln Ix], i), (4-12)

x|

for x #20, and V#(0) = V(O), we easily deduce from the previous discussion (in particular (4-8), (4-9)
and (4-10), and the fact that 3, = r~14;), that V# is a |x|-analytic (x, ¥)-approximation of V. (]

5. The analytic distortion

In this section, for any # > 0 small enough, we construct a suitable distortion x — x +i6 A(x) satisfying
A(x) = x for |x| large enough, and such that for x> 6, the resolvent (P, — z)~! of the corresponding
distorted Hamiltonian Pj', admits sufficiently good estimates when Im z > h"16.

We fix Rp > 1 arbitrarily. In the Appendix we will justify the following lemma by constructing the
function announced in it:

Lemma 5.1. For any 1 > 1 large enough, there exists f; € C*°(Ry.) such that
(i) supp f; C [Ro, +00);

(i) fo(r)=Ar forr >2In4;

(iii) 0 < fu(r) <rf,(r) <2ir everywhere;

(iv) f;+1f]1 =00+ f;) uniformly;

(v) foranyk > 1, f)Fk) = O(1) uniformly.

Now, we take A1 := h~"!, and we set

D) =7 (). (5-1)
By the lemma, b satisfies
e suppb C [Ry, +00);
o b(r)=r forr >2n;1In(1/h);
e 0<b(r) <rb'(r) < 2r everywhere;
o b'+|b"| =0(h™ + b) uniformly;
e For any k > 1, b® = 0(1) uniformly.

We set
A(x) = b(|x|>|i—| = a(|x))x,
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where a(r) :=r~'b(r) e C*°(R,). For 1 > @ (both small enough), we can define the distorted operator Pg"
as in (2-4) obtained from P# by using the distortion

®y:R"'>5x—>x+i0A(x) e C". (5-2)

Here we use the fact that |A(x)| < 2|x|, and we also observe that, for any a € N" with |a| > 1, one has
% Dg(x) = 0(6 (x)'~1*!) uniformly.

Proposition 5.2. If Ry is fixed sufficiently large, then for 0 < 8 < u both small enough, h > 0 small
enough, u € H*(R"), and z € C such that Re z € [19/2, 2] and Im z > h™ @, one has

I
(Y =2, uhpa] = 55 ull 7o
Proof. Setting F :="dA(x) = dA(x), and V' (x) := V#(x +i6A(x)), we have

(PYu,uy={(1 +it9F(x))_1th)2u, u)+ (Vy'u, u)
= ((14i0F(x)) 2hDyu, hDyu)
+ih((( V) +i0F ()™ ) +i0F (x)) " hVyu, u)+ (V)'u, u).

Therefore, using Lemma A.1 and the equality
[Im V* ()| = O(|Im x| {Re x) ™),

valid for x complex, we find

’ 2

b b
Im(Pj'u, u) S—QII\/a(|x|)thu||2+Ch9/(Ib”|+ﬁ+—| |2)|thu|-|u|dx+c00
X X

N

|x|(u+1)/2”

for some constants C, Cy > 0; moreover Cy is independent of the choice of Ry.
Thus, using the properties of b listed after (5-1), we obtain (with some other constant C > 0)

b
Im(Pj u, u) 5—6||\/a(|x|)thu||2+Ch9/(lb”|+ﬂ+h”1)|thu|-|u|dx
X
v 2
+ CoR;"0 |Vau|™. (5-3)

On the other hand for z € C, a similar computation gives
Re(v/a(P} —2)u, v/au)

= —(Re 2)|lv/aul® +Re (Va((I +i0F (x)) " hD,)u, vau) + Re(JaV}'u, /au)
< —(Rez)|[Vaul®+ (1 —20)2||/ahD.u|*

b
+Ch / (|b”| + o +h’“)|thu| |uldx 4+ CoRy" |vaul

2

5
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still with C, Cy positive constants, and C¢ independent of the choice of Ry. Therefore, if Rez > 1¢/2> 0
and Ry is chosen sufficiently large, then for § small enough, we obtain

b
Iaul® < 425" | VahD,u|)> +4c,15‘h/(|b”| + 2 +h"‘)|thu| u| dx

x|
+ 425 (Va(P) = 2)u, Vau)|. (5-4)

The insertion of this estimate into (5-3) gives

b
Im(P)'u, u) 5—(1—4C0151R5”)9||¢5h0xu||2+c’h9/(|b”|+ﬁ+h"1)|hnxu|.|u|dx
X

+C'0|(Va(P) —2)u, Vau)|, (5-5)

with C” > 0 a constant.
Now, for r > 2n1 In(1/h), by construction we have b”(r) = 0, while, for r < 2nyIn(1/h), we have

16" (r)| = O(h" 4+ b) = O(h"" + (In(1/ h))a). (5-6)

Then we deduce from (5-5)

Im(Pj'u, u) < —(1 =4Coly" Ry"OIIVahDyul* + C'hf In(1/ h) || /ah Deu] - ||/au|
+ RO Dul - ull + C'O1Va (P — 2)u, Vau)l, (5-7)

with some other constant C’ > 0. Using again (5-6), we also deduce from (5-4) that

IVaull* = 0(|lvah Dxull* + [(Va(P) — 2)u, au)| + " T [RD.ul| - [ul]),
uniformly for & > 0 small enough, and thus, by (5-7),

Im(Pj'u, u) < —(1—4Coly'Ry" — Chin(1/h))0||/ahDyul*
+ CH" Q| hDyul - lull + COlVa (P} — 2)u, au)|. (5-8)

Finally, for Re z < 21(, we use the (standard) ellipticity of the second-order partial differential operator
Re P), and the properties of V¥, to obtain

Re((P)' — 2)u, u) > L||hDul*> — Cllu|?,

1
c
where C is again a new positive constant, independent of x and . Combining with (5-8), and possibly
increasing the value of Ry, this leads to

Im((P)' — 2)u, u) < (CA™ 0 —Imz)||u|?
+ CH" P OI((P) — ), )|V ull + COI((P) — 2)u, u)|, (5-9)

and thus, for Im z > A"'6, and for i, 8 > 0 small enough, we can deduce

3Imz

(Pf =2y, )| = =

lull* — Ch™ T O1(P) — 2)u, u)|"?[|ull. (5-10)
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Then the result easily follows by solving this second-order inequality where the unknown variable is
|((P9” — 2)u, u)|'/?, and by using again that Imz > h"1 714, [l

6. Proof of Theorem 2.1

6.1. The invertible reference operator. The purpose of this section is to introduce an operator without
eigenvalues near A, obtained as a finite-rank perturbation of P,’, 0 < 6 < u, and for which we have a
nice estimate for the resolvent in the lower half plane. This operator will be used in the next section to
construct a convenient Grushin problem.

Let yo € C5°(R4; [0, 1]) be equal to 1 on [0, 14240+ sup |V[], and let Cy > sup |[VV|. We set

R =R(h) :=2n;In(1/h);
P} := P} —iCof yo(h*D? + R2x?).
Observe that 22 D? + R~2x? is unitarily equivalent to AR~ (D? +x?), so the rank of yo(h>D? + R~2x?)
is O(R"h™").
For m € R, we denote by S((&)™) the set of functions a € C°°(R?") such that for all a € N**, one has

oy ca(x, &) = 0({£)™) uniformly.

We also denote

1 .
Op} (@u() = 55 [ e (52 Juiray az, (6-1)

the semiclassical Weyl quantization of such a symbol a.

Denoting by piy € S((£)?) the Weyl symbol of P,', we see that

P, &) = ((FdDy(x))71¢)* + VA(Dy(x)) — iCob 0 (&2 + R™2x2) + O(hB(E)), (6-2)

uniformly with respect to (x, £), i, 6, and h, and where the estimate on the remainder is in the sense of
symbols (that is, one has the same estimate for all the derivatives). In particular, we have

Re pjy (x, &) = E2 4+ V (x) + 0(0(E)?). (6-3)
Moreover,

o if |x| > R and |&|> > /2, then

Im pj (x, &) < —%(é)z +O0@R™) < —%(5)2; (6-4)

o if |x| < R and |&|> < 2A¢ +sup |V, then

_9

2C°
where C > ( is a constant, and the estimates are valid for 7 small enough. (For (6-5) we used the inequality
Im(( Td®y (x))_lf)2 <0, due to the particular form of ®y(x). See Lemma A.1 in the Appendix.)

Im jff < —Cof) +6 sup |VV |+ 0O(h6) < (6-5)
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Proposition 6.1. There exists a constant C > 1 such that for all u > 0, for all 6 € (0, ul, for all z
satisfying |Rez — Aol + 0~ Imz| < 4/C, and for all h € (0, 1/C], one has
=P~ I =Co.

Proof. We take two functions ¢y, 92 € Cp° (R>*; [0, 17) (the space of smooth functions bounded with all
their derivatives), such that

. go]z—i—(p%: 1 on R?";

e supp ¢ is included in a small enough neighborhood of {&% 4+ V (x) = A¢};

e 91 =1 near {&2 4+ V(x) = Ao}

In particular, ¢ can be chosen in such a way that, on supp ¢, one has either |x| > R together with
IE]> > A0/2, or [x| <R together with IE]> <240+ sup |V|. Therefore, we deduce from (6-4)—(6-5)

~ U 1
Im py < —5¢ On Supp oI,

|~

and thus,

(012(% Im pj) + %q)f <0on R>", (6-6)

Moreover, it is easy to check that the function (x, &) — 6~ Im ﬁg is a nice symbol in S((¢)?), uniformly
with respect to ¢ and 0, that is, for all a € N2, one has

8¢ (07" Im ) (x, &) = O((¢)?) uniformly,

and we see from (6-2) that
0~'Impj < CR™ + Ch(¢&),

with some new uniform constant C > 0.
Then setting ¢; := Op,‘f/ (¢;), writing I = (/51214 + ¢>§u + h Q where Q is a uniformly bounded pseudo-
differential operator, and using the sharp Gérding inequality, we obtain

(O Im Plu, u) = (10" Im Py ru, u) + (07" Im Py dou, dou) +O(h|ul%,)

1 _
< =5 lerul® + CR™lidoull” + Chll (A Dy)ul?,
for all u € H*(R"), and still for some new uniform constant C > 0. Hence,

~ 0 _v
M (Pifu, u)| = 5= ligrull® — COR™ ligoul* — ChO| (h Dy )ull”. (6-7)

On the other hand since Re pj — 49 € S((£)?) is uniformly elliptic on supp ¢, the symbolic calculus
permits us to construct a € S((&)~?) (still depending on x and @, but with uniform estimates), such that

at (Pro—r0) = @24 02 +0(h™) in S(1),

where § stands for the Weyl composition of symbols. As a consequence, denoting by A the Weyl quan-
tization of a, we obtain

1Dy )poull* = ((hDx)> A(P) — do)u, u) + O(h) |lull?,
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and thus
jagil} 1
(P — Zo)ull - llull > 5||<th>¢2»¢||2 — Chllu|®. (6-8)

Now, if z € C is such that | Re z — Ag| < & and |Im z| < &6 (¢ > 0O fixed), we deduce from (6-7)—(6-8) that
= = 0 _
I(P) — 2)ull - lull > Im{(P} — 2)u, u)| > inoﬁlunz — COR™ || oull* — ChO||(hDy)ull* — &b |lul?,
~ 0
OI(P) —2ull - llull > E||<hz>x>¢zu||2 — Cho||ull* — 20 ||ul?,
which yields

(40P =2l ull = L= (Il + 11D gaull?) —0QCh +CR™ +30) [ (hDull>. (6-9)

Moreover, since ¢ remains bounded on supp ¢y, the norms | (hDy)u| and ||¢iull + ||{(hDy)¢poull are
uniformly equivalent, and thus, for ¢ and /& small enough, we deduce from (6-9) that

> 0
(P} — 2l - [lul = Rummmnz,

and the result follows. |

6.2. The Grushin problem. In this section, we reduce the estimate on (Pgﬂ —2)~!in Theorem 2.1, to
that of a finite matrix, by means of some convenient Grushin problem (see for example [Sjostrand 1997]).
Denote by (ey, ..., ep) an orthonormal basis of the range of the operator

K := Coyo(h*D? + R™2x?).

In particular, M = M (h) satisfies

M =0(R"h™"). (6-10)
Let z € C, and consider the two operators
Ry: L*®R") — CM R-(2): C¥ — L*R")
u > ((u,e)i<j<m u” > S U (P —2)e;.

Then the Grushin operator
Py —z R_(2)
Y(z) := 0
(2) ( R, 0

is well defined from H?(R") x CM to L?(R") x CM, and for z as in Proposition 6.1, it is easy to show
that %(z) is invertible, and its inverse is given by

. ER) ET(2)
507" =( 7% 540
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where
_ M
EQ)=(—-Ty)(P) —2)7", with Tyv:=> (v,¢;)e; (0 € L?),
j=1
M o~
ET (ot = va(ej +i0(1 —Ty)(P)' —2)"'Kej), (0= (Uj_)lgjsM e CMy,
j=1
E"(2)v = («ﬁ; —2)7, ej))lijiM’
M o~
E_+(z)v+:—v++i¢9(21)zr((P9”—z)_lKeg,ej)) .
- 1<j<M
Proposition 6.1 gives
IE@I+IE-@)II=007"), (6-11)
IEX@)I+IE~ () =0(1), (6-12)

uniformly for u > 0, 8 € (0, 1], h > 0 small enough, and | Re z — Ag| + 6~ |[Im z| small enough.
Hence, using the algebraic identity

(Pf—2) ' =E@-ET@QE @) TE (), (6-13)
we finally obtain:

Proposition 6.2. If z € C is such that |Re z — Ag| < C'and Imz| < 2C~'9, and E—* (z) is invertible,
then so is Peﬂ — z, and one has

1Py —2) =00 A+I1E~T@)'),

uniformly with respect to u > 0,0 € (0, u1, h > 0 small enough, and z such that |Rez — 9| < C~' and
Imz| < C'6.

Therefore, we have reduced the study of (PQ” —2)7! to that of the M x M matrix E~*(z)~".
6.3. Using the Maximum Principle. For z € J +i[—6/ C,20 / C], we define
D(z) :=det E" ().

Then z > D(z) is holomorphic in J +i[—8/C, 26/C]. Setting N :=# (¢ (P}') N (J +i[-0/C,20/C))
and using (6-13), we see that D(z) can be written as

N
D) =GR []@—ro),

(=1
with G holomorphic in J +i[—0/C,20/C], G(z) # 0 forall z € J —i[0, C'0].

Moreover, using (6-12) and (6-10), we obtain that for some uniform constant C; > 0,

D@)I= ] =IET@IM < Ce@F (6-14)
r€a (E~1(2))
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Lemma 6.3. For every 6 € [0, u], there exists rg € [9/(25), 9/5], such that for all z € J —irg, and for
allt =1,..., N, one has

|z — pel SCN
Proof. By contradiction, if it was not the case, then for all 7 in [—6 /25 ,—0/ C], there should exist ¢
such that

0
t —Im < —.
| pel SCN

Therefore, the interval [—0/26, —9/5] would be included in Uévzl [Im pg—@/(S@N), Im p[+9/(86N)],
which is impossible because of their respective sizes. U

From now on, we assume P (i, «; I, J) and setting
Wo(J) = J +i[—rg,20/C],
we deduce from Lemma 6.3 that, for € € (0, ft], z on the boundary of Wy (J), and forall £ =1,..., N,
2= pil = 2.6,
for some constant C, > (0. As a consequence, using (6-14), on this set we obtain
G(2)] <GSR,

with some other uniform constant C3 > 0. Then the maximum principle tells us that this estimate remains
valid in the interior of Wy (J):

Proposition 6.4. There exists a constant Csz > 0 such that for all i, u, I and J satisfying (2-6)—(2-7)
such that P(u, w; 1, J) holds, one has

G(2)| <6 CeSFT,
forall9 € (0, ii], z € Wy(J), and h € (0, 1/C3].
6.4. Using the Harnack Inequality. Since G(z) # 0 on Wy (J), we can consider the function
H(z):=C3R"h™" —C31n0 —1In|G(2)]|.
Then H is harmonic in Wy (J), and by Proposition 6.4, it is also nonnegative. Using the algebraic formula
ET @) ' =—R(Pf —2)'R_(2)

and the fact that (P} —z2)"'R_(2)u™ = Zyzl uj(I —i0(P) —2)7'K)e;, we deduce from Proposition
5.2 that, for z € [1o/2, 240] + i[0h"!, 1], one has

IE~ (@)~ < 14+2Coh™.

As a consequence, for such values of z, we obtain

1
— =detE () < (1 4+2Coh™™)M,
e (@) =( oh™")
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and thus

N
_ 1
IGRI=ID@I[[lz—pel ™" = C—4h"lM,
=1
with some uniform constant C4 > 0. In particular, for any 4 € R such that 1 +i0h"' € Wy (J), this gives

H(A+i0h")y < C3R"h™" —C3In0 +InCy —n M Inh. (6-15)
Now, the Harnack inequality tells us that, for any 4, r, such that
dist(A, R\ J)>C~'9, re[0,C'0)

and for any a € R, one has

Cc20?
G ig_pp AT

H(+ih"0+re") <
In particular, setting
Wo(J):={zeC; dist(Rez, R\ J) > C~'0,|Imz| < 2C) "'}
and using (6-15), we find
H(z) <5C3R"hW™" —5C3In0+5InCy —5n1MInh,
forall z € °Wg(]), that is,
In|G(z)| > —4C3R"h™" +4C3In6 —5InCs+5n 1M Inh,

or, equivalently,
|G(Z)| > C4—594C3h5n1Me—4C3R”h7". (6-16)

Finally, writing E~"(z)~' = D(z)"'E~*(z), where E~*(z) stands for the transposed of the comatrix
of E~"(z), we see that

N
IETT @ <e™MG@I [ lz—pel ™,

(=1
and therefore we deduce from (6-16) and (6-10) that
N
IE=F @) <0 Ch= K [T1z—pel ™",
=1

with some new uniform constant C > 1. Thus, using Proposition 6.2, and the fact that R = O(|In k|), we
have proved:

Proposition 6.5. There exists a constant C > 0 such that for all i, u, I and J satisfying (2-6)—(2-7)
such that P (i, u; I, J) holds, one has

N
1Py =)~ <0~ M Tz = pel
(=1

forall6 € (0, iil, z € Wy(J), and h € (0,1/C].
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6.5. Using the 3-lines theorem. Now, following an idea of [Tang and Zworski 1998], we define

b
¥(2) = / e @ g,
a

where

[a,b]:= {1 € R; dist(2, R\ J) > C'0 + C2w, (9)}.
We have the following:

e If Imz =20h™, then
¥ ()] < (b —a)e*™ =0(r) < 1.
e If Imz = —6/(2C), then
¥ ()] < (b—a)e*C =0 < 1.
e IfRez € {a— C"?w;(0), b+ C'?w;(0)} and Im z € [-0/(2C), 20h™ ], then
(P (2)] < (b —a)e! AT e~ Con@P 19 _ 2)pC pCimhin™ € pClinny=.

Then for z € °Wg(] ), we consider the operator-valued function

N
0@) =Y [[c-poP) —2)"

=1

that is holomorphic on ‘Wg(] ) (this can be seen, for example, from (6-13)). Using, Proposition 5.2,
Proposition 6.5, and the previous properties of ¥ (z), we see that Q(z) satisfies:

e If Imz =260h", then

Q@) <6~ h™".
e If Imz = —0/(2C), then

Q@) < g—Cp—Clnhl"n™"
* IfRezefa— él/zwh(e), b+ Cv’l/za)h(Q)} and Imz € [—9/(25), 20h™], then

1) < 1.

Therefore, setting
Wo(J) :=[a— C%wn©®), b+ C"w@) +i[—0/(2C), 20n™ ],
(that is included in 0Wg(] )), we see that the subharmonic function z — In || Q(z)|| satisfies
Q@) < () ondWy(),

where y is the harmonic function defined by

20n" —Imz - Imz+60/(2C)
p(2) = =

~ C(IInh"'h™ + In0|) + ————L""—2 |In(Oh™)].
20h™ +0/(2C) (Itn 2] ind) 20h"1+0/(2C)| ©r™)]
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As a consequence, by the properties of subharmonic functions, we deduce that In || Q(z)| < w(z) every-
where in Wy (J), and in particular, for |[Imz| < 20h™', we obtain

In | Q)| <8CCh™ (IIn k"™ h™" + |In@]) + [In(@h™)|
Hence, since n; > n, we have proved the existence of some uniform constant C > 1, such that
In||Q@)|| <InC + C|In(@h™)| forze Wg(]) and h € (0, 1/C].

Coming back to P}, this means that, for z € Wy (J) different from py, ..., pn, we have

N
YIRS =) <O [ ]lz—pel ™"
(=1

On the other hand if dist(Re z, R\ J) > 2C"/2w,(0), and [Im z| < 20h™, then writing z = s +it, we have
o (=)0
‘P(Z) — eet /60 / el +2i(t/0)u du.
(a—9)/0
Now, |t/6] <2h™ — 0 uniformly, and we see that
(a—s)/0 <C ' =C"2w,(0)/0 < C~' = (h"|Inh|)"/* > —oco uniformly.

In the same way, we have (b —s5)/0 — o0 uniformly as 7 — 0. Therefore, we easily conclude that

LIOTER.

when /i € (0, 1/C], with some new uniform constant C > 0.
As a consequence, using also that @ < 1%, we finally obtain:

Proposition 6.6. There exists a constant Cy > 1, such that for all i, p, I and J satisfying (2-6)—(2-7),
the property P (i, mu; 1, J) implies

N
1Py =2 < Co0™ [ 1z = pel ™", (6-17)
=1

forall z € J' +i[—20h™ 20h™ ], and for all h € (0, 1/Cy), where
J'={leR; dist(Z2, R\ J) > Cowy,(6)}.

Since J' = J + 0(w;,(@)), Theorem 2.1 is proved.

7. Proof of Theorem 2.2

Suppose P (i, u; I, J) holds, and it > u™ for some constant Ny > 1. Then for any 6 € [u™°, j], any
constant Ny > 1, and any x’ € [max(@, u™), ,u]/N'], we can write

=P =@—PH(1+@E—PH'W), 7-1)



50 ANDRE MARTINEZ, THIERRY RAMOND AND JOHANNES SJOSTRAND
with

W= Pj = P = VA (x +iAp(x)) — V¥ (x +iAg(x) = 0(u*(x)™), (7-2)
uniformly (see Section 4). Moreover, taking J' as in Proposition 6.6, we have:

Lemma 7.1. Let N > 1 be a constant, such that N > #T (i1, i, J) for all h small enough. Then for any
0 e [,uNO, [], there exists T € [@h™, 20h™ ], such that

dist (07" +il—r, 71, TGy 1, 1)) = -3)

T 4N
Here, 0(J' +i[—z, 1)) stands for the boundary of J' +i[—1, T].

Proof. 1If it were not the case, using P (i, u; I, J), we see that, for all t € [—20h"!, —Oh™'], there should
exist p € I'(i, u, J), such that

nj

|t —Imp| <

4N
That is, we would have
Oh™ Onh™
—260h", —Oh™ -
[ , 1< U [p 4N,p+4N},
pel (it,p,J)
which, again, is not possible because of the respective size of these two sets. ]

Remark 7.2. With a similar proof, we see that the result of Lemma 7.1 remains valid if one replaces the
interval [@h"1, 20h"] by [Oh™, Oh™ + (Qh"I)M], and one substitutes (Qh’”)M to @h™ in (7-3), where
M > 1 is any arbitrary fixed number.

Using Lemma 7.1 and Theorem 2.1, we see that, for any z € 0(J' +i[—1, t]), we have
1Py =)' < €107 < Cru=™,
with some new uniform constant C, and thus, by (7-1) and (7-2), z — Pg" / is invertible, too, for z €
0(J' +i[—1, ]), and the two spectral projectors
1

(P — (z— P} 'dz, '
2im Jo(r+vit-r.7))

1

=—— G—PMy 'dz,  (7-4)
2T Jo(rrit—r,7)

are well-defined and satisfy
ITT =TT} = O(u™). (7-5)
In particular, IT and IT" have the same rank (< N), and one has

IP/TI— P T = 0(u®™). (7-6)

Therefore, the two sets a(Pgﬂ/) N(J +i[-z7,1]) and G(Pé‘) N (J' +i[—z, t]) coincide up to O(u>)
uniformly by standard finite dimensional arguments, and Theorem 2.2 follows.
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8. Proof of Theorem 2.5

Now, for any integer k > 0, we set

Uk = hknlﬂ.
Since P (i, p; I, J) holds, we can apply Theorem 2.2 with u" € [u1, o], and deduce the existence
of J; C J, with J; = J + O(w;(uo)) and Iy D I with Iy = I + O(ug”), independent of w', such that

Py, w's Iy, Jy) holds. In particular, P(uy, po; 11, J1) holds, and we can apply Theorem 2.2 again,
this time with u’ € [u2, u1]. Tterating the procedure, we see that, for any k > 0, there exists

D1 = L +0(uy”),  Jiy1 = T+ 0(wn(ur)),
hence,

Lpr =1T4+0ug+- -+ 1), Tk =J +0(op (o) + - - - + on(ur)),

where the O’s are also uniform with respect to k, such that P(h™ u’, p'; Ix41, Jr+1) holds for all u' €

[Ak+15 fie]-
Since the two series >, @, (ur) = O(wy, () and D", u¥ = 0(u™) (M > 1 arbitrary) are convergent,

one can find I’ = I +0(u*>) and J' = J + O(wy, (1)), such that

I/DUIk, J/Cﬂ.]k.

k>0 k>0

Then by construction, P (A" u’, u’; I’, J') holds for all u’ € (0, i], and Theorem 2.5 is proved.

9. Proof of Theorem 2.6: the set of resonances

From the proof of Theorem 2.5 (and with the same notation) we learn that, for all £ > 0, property
Pttt Mk; Ter1, Jea1) holds. Therefore, applying Theorem 2.2 with 6 = u’ = w11, we see that there
exist Te42 € [phr2, 2ur42)s Iy = Jitr1 +O(@n(k+1)), and a bijection

b : T(P*) N (Jgiy —i[0, tes2]) — T (P N (Jpy —il0, tiq2])

such that
br (1) — 4 = 0(u;°) uniformly. 9-1)
In addition, we deduce from Lemma 7.1 that the 7; can be chosen in such a way that
C
dist (0(Jf 1 +il=rir, Tiaal) . T(P1) = 75, 92)

for some constant C > 0. We set
A =T (PN (J; 1 —il0, 7r42]),

where the elements are repeated according to their multiplicity (see Figure 2).
Starting from an arbitrary element 4; of Ay (1 < j < N :=# Ao = 0(1)), we distinguish two cases.

Case A. Forall k >0, byoby_j0--- Ob()(/lj) S Ak+1.
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Rez
X X X X X > A2\ U Apyoqj
j=1
X X
v X X X > Agsr\ U Aksi14)
j=1
X X
X X
% X A\ U At j
X X X j>1
Figure 2. Construction of the set of resonances.
In that case, we can consider the sequence defined by
ﬂj,k2=bkobk_1o-~0b0(ij), k=>0.
Using (9-1), we see that, for any k > £ > 0, we have
k—1 k—1 e
|Ajx—Ajel < Z [4jme1 —Ajml < Cy Z Hm+1 = Cl,uol —
m=_{ m={

so that (4 )k>1 is a Cauchy sequence, and we set

= lim A;y.
Pi k—+00 I

Notice that according to this definition, we have a natural notion of multiplicity of a resonance p, namely
the number of sequences p; converging to p.

Case B. There exists kj >0 such that by_jo- - -0bo(4;) € Ay forall k <kj, while by 0- - -0bo(4 ;) & Ak, +1-

(Here, and in the sequel, we use the convention of notation: b_; o by := 1d.) We set
pPj = bkj O~ Obo(lj).

In particular, since, by construction, Re p; € Ix;+2 C Ji;+1, and p; ¢ Ag;41, we see that, necessarily,
Imp; € [—tk;42, —Tk;+3)-
Moreover, if in Case A, we set k; := +o0, then for any j =1,...,#A¢ and k > 0, in both cases we
have the equivalence
Imp;| < tp42 & k <k;. (9-3)
Now, if u’ € (0, 1], then u’ € (pg+1, i) for some k > 0, and Theorem 2.2 tells us that the intersection
C(P*)N (Ji41 — 110, 7x42]) coincides with A up to O(u°) (= O((1')>)). Therefore, setting

AN:={p1,...,pn},
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the first part of Theorem 2.6 will be proved if we can show the existence, for any k > 0, of a bijection
bt AN (g =110, Tisa]) — Ay,

such that by (p) — p = O(u°) uniformly. (Actually, we do not necessarily have 734, € (W2 w202 1],
but rather, 75 € [h?" u/, 2h™ ). However, if 7542 > 2h>" 4/, an argument similar to that of Lemma
6.3 or Lemma 7.1 gives the result stated in Theorem 2.6.)

By construction, we have

Ax ={bg_10---0bo(4;); j=1,..., N such that k; > k}.
while, by (9-3),
AN (T —il0, ea]) ={pj; j=1,..., N such that k; > k}.
Then for all j satisfying k; > k, we set
bi(pj) :=bx_10---0by(L}),

so that Bk defines a bijection between A N (J,; 41— i0, 7x4+2]) and Ag. Moreover, in Case A, for any
M > 1, we have

+00 M
8 . - ~ Cuu
M k
1Bi(p) = pjl = im_1br o0 bilbi(2;) = bi(A))] < chMum =T
m=
while, in Case B, we obtain
Cuul!

b (pj) — pjl = Ibi; 0 -+ - 0 b (b(4})) — b (2))| < Z CM#nA;ISI

kfmfk_/

—hm’
(with the usual convention ), . := 0). Therefore, in both cases, for 4 > 0 small enough, we find

bi(p) — pjl <2Cyult,

and this gives the first part of Theorem 2.6.

For the second part of Theorem 2.6, let A be another set satisfying (x). In particular, for any k& > 0, there
exist tx42, Tkt2 € [tra2, 21k 2], such that AN (Ji41 — 110, T42]) (respectively AN (Jy; —i[0, 7x42]))
coincides with Ay :=T'(P#)N (J,é+1 —i[0, Tx42]), (respectively Ag), up to O(u;°).

Therefore, taking k£ = 0 and using again an argument similar to that of Lemma 6.3 or Lemma 7.1 that
gives the existence of 7’ € [% o, 12] and C > 0 constant such that

c
dist (0(J; +i[—', 7', T(P*)) = £2, (9-4)
we obtain that the two sets A N (J{ —i[0, 7']) and AN (J{ —i[0, 7']) coincide up to O(ug°), and thus
have same cardinality. For k > 0, we denote by

Bi: Ak = AN (U, —il0, 1i42]),
B : A — AN (‘]IQ—H — 1[0, Tx42])
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the corresponding bijections. Then, thanks to (9-4), we can consider the bijection
Qo = EO (o] B(;l |Aﬂ(]l,—l'[0,‘[’]) AN (Jl/ — l[O, T/]) — 7\ N (Jl/ — 1[0, T/]).
Using (9-2) and the fact that By differ from the identity by O(u;°), we see that, for k > 1,

c
. . ~ u
dist (20511 +il=Tk42, Trsal) A) = “ 2, (9-5)
for some other constant C > 0.
Then setting

€ :=AN{—1t' <Imz < —13},
and for k > 1,
€= AN{—Tr4o <Imz < —1443},

we see that, for all k > 1, the map
BioB ¢, 1 € — AN{—742 <Imz < —1343) (9-6)

is a bijection.

Finally, for p € AN (J] —i[0, z']), we define

e B(p) = Bio Bl:l(p), if p € € for some k > 0;

e B(p)=p,if p eR.
We first show:
Lemma9.1. ANR=ANR

Proof. We only show that any p in ANR is also in A, the proof of the other inclusion being similar. For
such a p, B, Y(p) € Ay is well defined for all k > 1, and since B, ! differs from the identity by O(u®),
we obtain

oy = Bl:l(p)—>p as k — +o0.

On the other hand since Ax1 C Ax = E,;I(T\), there exists some py € A such that Okt] = E,:l(ﬁk). By
taking a subsequence, we can assume that p; admits a limit p € A as k — +o00. Then using that B !
differs from the identity by O(u;°), we also obtain

Ok+1 — p as k —> 4oo0.
Therefore, we deduce that p = p € A and the lemma is proved. (Il

Using Lemma 9.1, we see that the map B is well defined from AN(J{ —i[0, z']) to AN (J{ —i[0, z']).
Moreover, if p € €, for some k > 0, we have

B(p) = pl =1Bio B (p) — pl = O(u),
and since 7413 < [Im p| < 1342 = O(h*™), we also have

pk <h My <h 7" Imp| < Cllmp| V€,
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where C > 0 is a large enough constant. Thus, we always have

|B(p) — pl =0(/Im p|*).
Therefore, it just remains to see that B is a bijection, but this is an obvious consequence of (9-6), Lemma
9.1, and the definition of B. Thus Theorem 2.6 is proved.

10. Shape resonances

Here we prove Theorem 3.1. Under the assumptions of Section 3, one can construct, as in [Gérard and
Martinez 1988], a function G| € C®(R?"), supported near p~ (Ao —2e, Ao+ 2¢])\{xo} for some ¢ > 0,
such that

Gi(x, &) =x - ¢ for x large enough and |p(x, &) — Aol <, (10-1)
H,Gi(x,&) >¢  forx e R"\O and |p(x, &) — Ao| <e. (10-2)
We also set
P:=P+W,

where W = W (x) € C*°(R") is a nonnegative function, supported in a small enough neighborhood of x,
and such that W(xo) > 0. In particular, denoting by p(x, &) = &2 4+ V(x) + W(x) the principal symbol
of P, we have 571 (Ao) c (R"\O) x R, and thus A is a nontrapping energy for P.

Now, we take u and z such that

p<h°, i <min(u, h**)

with ¢ > 0 arbitrary (so that u, z satisfy (2-6)), and we denote by V# a |x|-analytic (u, V)-approximation
of V as before. We also set
PY=—hm’A+VH*, PE=PrLW,

and if in (2-5) we take A supported away from supp W, we see that the distorted operators P}’ and 1’5@#
are well defined for 0 < 8 < i. Then we set

G(x,8):=Gi(x,8) —AX) ¢,

that, by (10-1), is in C;°(R"; R), and we consider its semiclassical Weyl-quantization G" = OpXV (G)
(see (6-1)).
Since 8/ h? < ji/ h* < h°, a straightforward computation shows that the operator

Ry = élm (eHGW/hﬁé‘e_aGW/h)
is a semiclassical pseudodifferential operator, with symbol r)) satisfying
o%r) = 0((&)?) for all a € N?",
rg (x,&) = —Hzi(A(x) - &+ G) +0(h°) = —H, G\ (x, &) + 0(h°),

uniformly with respect to 8 € (0, ¢] and & > 0 small enough. As a consequence, using (10-2), we see
that Rg’ is elliptic in a neighborhood of {p(x, &)+ W (x) = Ao} (uniformly with respect to & and ). Then
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by arguments similar to those of Section 6.1, we deduce that the operator
Qg = eeGW/hﬁéze—aGW/h
satisfies
1005 =)~ I =007,
uniformly for |Rez — Ao| + 6~ '[Imz| small enough, # € (0, iz], and & > O small enough. Since
16G"Y / k|| — 0 uniformly as & — 0, this also gives
1Py =2~ =007,

and from this point, one can follow all the procedure used in [Helffer and Sjostrand 1986, Sections 9
and 10]. In particular, using the same notation as in that paper, by Agmon-type inequalities we see that
the distribution kernel K Bz of (PQ” —z)7! satisfies

Kz (x,y)= 6(0_1e—d(x,y)/h)

where d(x, y) is the Agmon distance between x and y (see [Helffer and Sjostrand 1986, Lemma 9.4]).
Then, assuming 8 = ji > e~ /" for some # > 0 constant small enough and performing a suitable Grushin
problem as in [Helffer and Sjostrand 1986], we deduce that the resonances of P# in [4g, g + Ch] —
i[0, 2o min(u, h2+‘5)] (C > 0 an arbitrary constant) are close to the eigenvalues of the Dirichlet realiza-
tion of P on {d(x, [R{”\(j) > 1/3)}, up to O(e~2S0=/") " Since these eigenvalues are real and admit
semiclassical asymptotic expansions of the form

Ak ~ Ao +exh + Z A ch' 02
=1

(where the ¢;’s are as in Theorem 3.1), we obtain for the corresponding resonances p; of P#
Re pi ~ Ao +ech+ D A e T2, Im pp = O(e 2S00/, (10-3)
{>1

uniformly. In particular, taking # and g as in Theorem 3.1, the result easily follows. Moreover, since
the previous discussion can be applied to any u’ € [e~ /", h?], application of Theorem 2.6 tells us that
the resonances of P in

[AO, iO 4 Ch] _ l[O, %h2n+max(n/2,l)+1+36]

satisfy the same estimates (10-3).

Appendix
Proof of Lemma 5.1. We denote by yq a real smooth function on R satisfying
e yo(s) =0 fors <0;
e yo(s)=1fors>1n2;

e xo is nondecreasing.
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Then for r > 0, we set

G(@r):= yolr — RO)(I — xo(r —In i))e’ +220(r —Ind), g@) :=/O G(s)ds.

In particular, g satisfies Condition (i) of Lemma 5.1, and we have

o G(r) = yo(r — Ro)e" for r € [Ry, In A];

e G(r)=(1—=yo(r —Ind))e" +22yo(r —In 1) for r € [In 1, In21];

o G(r)=2Aforr €[In21, 400).
Thus, ¢’ = G <24 and g”(r) = G'(r) > 0 on Ry (this is immediate on [Rp, In 1] U [In 24, +00), while,
on [In 4, In24], we compute, G'(r) = (1 — yo(r —InA))e" + x\(r —In1)(22 — ") > 0).

Therefore, g is convex on R, so that Condition (iii) of Lemma 5.1 is satisfied by g, too, while

Condition (v) is obvious.
As for condition (iv), we observe the following:

e On [0, Ry +1In2], one has g’ + |g"| = 0(1).
e On[Ryp+In2,In 1], one has g(r) > flgo+ln2 eds =e"—2eR0, while g’ (r)=g"(r)=e" < g(r)+2ef.
e On [In A, +00), one has g(r) > g(In 1) = 4, and thus g’ + |g”| = O(g).
So, g satisfies Conditions (ii)—(v) of Lemma 5.1.
For r € [In24, +00), we have

gr)=g(n21)+21(r —In21) =2ir — a,, (A-1)

where a; :=211n24 — g(In241), and since

InZ In24

g(ln2/l)§/ erdr+/ 22dr =(1+2In2)A,
0 InA
In24

g(n2)) > / e dr >2) —2eR.
Ro+In2
we see that
2421 —(14+2In2)A <a; <2421 — 2] + 2",

Therefore, for 4 large enough, the unique point r,, solution of g(r;) = Ar;, is given by
r,= “7 e2Ini—1,2InA—2+2In2+22"tef]c2Ini—1,2In 24 —¢], (A-2)

where ¢g:=1—1n2 > 0.
Now, we fix some real-valued function gy € C*°(R), such that

e po(s) =2s for s < —ep;
e po(s) =s for s > gp;

e 1 <¢( <2 everywhere.
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Then using (A-1)—(A-2), we see that the function f) defined by

o f2(r):=g(r) forr €[0,In2A];
o f1(r):=Apo(r —r))+a, forr >1In24,

is smooth on R, and satisfies all the conditions required in Lemma 5.1. ]

The distorted Laplacian.

Lemma A.1. If0 > 0 is small enough, the function ®g defined in (5-2) satisfies

Im (("d®p(x))'¢)* < —Ga(x])IE .
forall (x, &) € R?",

Proof. Let F :='dA =dA = (F; j)1<i,j<n. We compute
XiXj
Fi.j(x) = a()dij +a (D725

that is, denoting by 7, := |x|7%x - 'x the orthogonal projection onto Rx, and recalling the notation
b(r) =ra(r),

F(x)=a(lx)I +a'(|x])|x|my = b (|x))7e +a(x N — 7y).
In particular, using Lemma 5.1, we obtain
O=a(x)) = Fx)=2,
in the sense of self-adjoint matrices. On the other hand we have
(dDy(x))? = +i0F (x))* = Sy +iTy,

with Sg = I —6%F(x)? and Ty = 20 F(x). Hence, Ty > 0, and since Sg, Ty and F commute, an easy
computation gives

Im (('d®g(x))"'¢)* = —Ty(S; + T}) ¢ - ¢ = —20F (1 +0°F») 7% . &,
As a consequence, for 6 small enough, we find

Im [((dDy(x)"'¢]* < —0F (x)¢ - & < —Oa(lx])|E. O
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GLOBAL EXISTENCE AND UNIQUENESS RESULTS FOR WEAK SOLUTIONS
OF THE FOCUSING MASS-CRITICAL NONLINEAR SCHRODINGER EQUATION

TERENCE TAO

We consider the focusing mass-critical NLS iu; + Au = —|u|*?u in high dimensions d > 4, with initial
data u(0) = ug having finite mass M (ug) = fRd lug(x)|? dx < oo. It is well known that this problem

admits unique (but not global) strong solutions in the Strichartz class C°, L2 N L? L3

t,Jocbx f.loclex , and also

admits global (but not unique) weak solutions in L™ L?. In this paper we introduce an intermediate class
of solution, which we call a semi-Strichartz class solution, for which one does have global existence
and uniqueness in dimensions d > 4. In dimensions d > 5 and assuming spherical symmetry, we also
show the equivalence of the Strichartz class and the strong solution class (and also of the semi-Strichartz
class and the semi-strong solution class), thus establishing unconditional uniqueness results in the strong
and semi-strong classes. With these assumptions we also characterise these solutions in terms of the
continuity properties of the mass function ¢ — M (u(t)).

1. Introduction

1.1. The focusing mass-critical NLS. This paper deals with low regularity solutions u : I x R¢ — C to
the initial value problem to the focusing mass-critical nonlinear Schrodinger equation (NLS)

iu, + Au=F(u),

u(to) = uo,

ey

in high dimensions d > 4, where I C R is a time interval containing a time #p € R, F : C — C is
the nonlinearity F(z) := —|z|*/?z, and we assume u to merely lie in the class Li (R?) of functions of
finite mass M (ug) := fRZ lug(x)|> dx. The exponent 1 + 4/d in the nonlinearity makes the equation
mass-critical, so that the mass M (u) is invariant under the scaling u(t, x) — (1/2%?)u(t/2%, x /1) of
the equation. The mass is also formally conserved by the flow, thus we formally have M (u(t)) = M (ug)
for all ¢, though it will be important in this paper to bear in mind that this formal mass conservation can
break down if the solution is too weak in nature.

Remark 1.2. The condition d > 4 is assumed in order to ensure that the nonlinearity F () is locally
integrable in space for u € L2(R?), so that (1) makes sense distributionally' for u € L>_L2(I x R%). Tt

t,Joc™—x
MSC2000: 35Q30.
Keywords: Strichartz estimates, nonlinear Schrodinger equation, weak solutions, unconditional uniqueness.
The author is supported by NSF grant DMS-0649473 and a grant from the Macarthur Foundation.
'Here and in the sequel, we use the subscript loc to denote boundedness of norms on compact sets, thus for instance

ue L?ﬁ’ocLi (I x R¥) if and only if u € L;’OL% (J x R9) for all compact J C I, with the function space LZ‘I’OCL)% (I x RY) then

being given the induced Frechet space topology.
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will be clear from our arguments that our results would also apply if F were replaced by any other non-
linearity of growth 14-4/d, whose derivative grew like |z|*/¢ and which enjoyed the Galilean invariance
F(e'?7) = €' F(z) (in order to formally conserve mass), though in this more general setting, the mass
M(Q) of the ground state would need to be replaced by some unspecified constant ¢ 4 > 0 depending
on the nonlinearity F and the dimension d.

The notion of a distributional solution, by itself, is too weak for applications; for instance, one has
difficulty interpreting what the initial data condition u(0) = uy means for a distributional solution in
LX L)ZC. In practice, one strengthens the notion of solution at this regularity by working with the integral

t,loc
formulation? .
u(t) = ei(t_IO)Auo +i / ei(t_’/)AF(u(t/)) dr’ )
fo
of the equation, where ¢’? is defined via the Fourier transform (&) := fRd e ™ Cu(x) dx as

eirthu(@) == e a(),
which is well-defined in the class of tempered distributions.

Remark 1.3. If ug € L(RY) and u € LS L2(I x RY), then F(u) € LS L} |, (I x RY), and the right
side of Equation (2) makes sense as a tempered distribution in x for each time ¢. Furthermore, it is easy
to verify (by the standard duality argument) that the right side of (2) is continuous in ¢ in the topology

P(RY)* of tempered distributions.

1.4. Weak, strong, and Strichartz class solutions. With these preparations, we can now introduce the
three standard solution classes for this problem in L2 (R?).

Definition 1.5 (Weak, strong, Strichartz solutions). Fix a dimension d > 4, an initial data ug € LJZC (RY)
and a time interval I C R containing a time 7y € R.

o A weak solution (or mild solution) to Equation (1) is a function u € L;’j’OCL)Zc (I x R?) which obeys

(2) in the sense of tempered distributions for almost every> time .
o A strong solution to (1) is a weak solution u such that ¢t — u(¢) is continuous in the L)ZC topology,
thus u lies in C°, L2(I x R?).

t,Joc™x
e A Strichartz-class solution to (1) is a strong solution which also lies in L?| 0(;L)z(d/ @=2) (1 x R?); thus
uliesin CO L2(I x ROHNL2, L3I (1 x RY).

t,Jloc™x t,loc™*

Remark 1.6 (Shifting initial data). Because the right side of Equation (2) is continuous in the distribu-
tional topology for any of the above three notions of solutions, we observe that if u is a solution to (1) in
any of the above classes on an interval I, and t; € I, then u is also a solution to (1) in the same class with
initial time #; and initial data u(#;) (as defined using the right side of (2)). Thus one may legitimately
discuss solutions to NLS in one of the above three classes without reference to an initial time or initial
data.

2We adopt the usual convention Jy=- jab whena < b.

3By definition of L°, weak solutions are only defined for almost every time ¢, though from Remark 1.3, one can canonically
define u(r) forallz € 1.
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Remark 1.7. For future reference, we make the trivial remark that if one restricts a solution in any of
the above classes to a subinterval J C I, then one still obtains a solution in the same class. Conversely,
if one has a family of solutions in the same class on different time intervals I,,, such that (), I, # @ and
any two solutions agree on their common domain of definition, then one can glue them together to form
a solution in the same class on the union |J,, I,.

Remark 1.8. From Remark 1.3 we make the important observation that if u € L®L2 (I x R?) is a weak
solution to Equation (1), then the map ¢ +> u(¢) is continuous in the weak topology of L2(R). In
particular we have the convergence property

tl/i_)l'l'lf(l/l(t/), u(t)>L%(Rd) =M(M(l)), (3)
for all ¢ € I, which by the cosine rule implies the asymptotic mass decoupling identity

Lim M(u(t)) = Mu(t') —u(t)) — M(u(t)) = 0. “

Thus any L? discontinuity of u at ¢ can be detected and quantified by the mass function # — M (u(t)); in
particular, the solution 7 — u(t) is continuous in L at precisely those points for which the mass function
t — M(u(t)) is continuous.

In the Strichartz class, one has a satisfactory local existence and uniqueness theory:

Proposition 1.9 (Local existence and uniqueness in the Strichartz class). Let d > 4, ug € L? (RY), and
o € R.

(1) (Local existence) There exists an open interval I containing ty and a Strichartz class solution u €
CO L2(I xRN L2, LD (1 x r),

t,loc t,loc

(i1) (Uniqueness) If I is an interval containing 0, and u, u’ € C?,IOCLJZC (I xR*>)N Ltz’locLid/(dfz)(I x R%)
are Strichartz class solutions to (1) on I, then u = u’'.

(iii) (Mass conservation) If u € CIOIOCLJZC (I xR*)N LtzlocLid/(dfz)(l x RY) is a Strichartz solution, then

the function t — M (u(t)) is constant.

Proof. This is a standard consequence of the endpoint Strichartz estimate®
”M ”LtZLid/(d*z)(lde) + ”u”C?L)ZC(IXRd) Sd ||l/t([0) ”L)%(IR‘[) + ”lut + Au ||L3Lid/(d+2)(1XRd)a (5)

from [Keel and Tao 1998]; see [Cazenave and Weissler 1989; Cazenave 2003]. Mass conservation is
obtained in these references by first regularising the data and nonlinearity so that the solution is smooth
(and the formal conservation of mass can be rigorously justified), and then taking limits using (5). U

Because of this proposition (and Remark 1.7), every initial data ug € Lﬁ (RY) and initial time 7y € R
admits a unique maximal Strichartz-class Cauchy development

0 2 2 2 2d/(d-2 d
€ CPloLiUI x RN LY 0 L3V (1 x RY),
4Here and in the sequel we use the usual notation X < Y or X = O(Y) to denote the estimate |X| < CY for some absolute

constant C > 0; if the implied constant C depends on a parameter (such as d), we will indicate this by subscripts, for example,
X<SgYorX=0407).
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where [ is an open interval containing fy, and u is a Strichartz-class solution to (1) which cannot be
extended to any larger time interval.

Unfortunately, the lifespan [ of this maximal Strichartz-class Cauchy development need not be global
if the mass M (ug) is large. For instance, if Q is a nontrivial Schwartz-class solution to the ground state
equation

AQ+101"0 =0, (6)

then as is well known, the function

1 it il
. —i/t i|x|"/4t
u(t,x) = |t|d/ze e QOx/1) 7
is a Strichartz-class solution on (0, +00) x R? or (—o0, 0) x R? but cannot be extended in this class
across the time + = 0. One can also use Glassey’s virial identity [Glassey 1977] to infer indirectly the
nonglobal nature of maximal Strichartz-class Cauchy developments for suitably smooth and decaying
data with negative energy.

Remark 1.10. In the defocusing case F'(z) = +z|*4z, it is conjectured that all maximal Strichartz-class
Cauchy developments are global. This has recently been established in the spherically symmetric case
[Tao et al. 2006], and is also known for data with additional regularity (for example, energy class) or
decay (for example, xug € L)% (R4 )), or with small mass; see [Tao et al. 2006] and the references therein
for further discussion. In the focusing case, the results of [Killip et al. 2007] give global existence for
spherically symmetric data when the mass M (u¢) is strictly less than the mass M (Q) of the ground state;
see [Killip et al. 2008a] for a treatment of the endpoint case M (ug) = M(Q). Again, it is conjectured
that the same results hold without the spherical symmetry assumption, but this remains open.

On the other hand, it is possible to continue solutions in a weak sense beyond the time for which
Strichartz-class solutions blow up. In particular, we have the following standard result:

Proposition 1.11 (Global existence in the weak class). Let d > 4, ug € LJZC (Rd), and to € R. Then there
exists a global weak solution u € L®L2 (R x RY) to (1). Furthermore we have M (u(t)) < M (uo) for all
telR

Proof. We will prove a stronger result than this shortly, so we only give a sketch of proof here. By
Remark 1.7 and time reversal symmetry, it suffices to build a solution on [#, +00). For each ¢ > 0, one
can easily use parabolic theory to construct a global (strong) solution to the damped NLS iu,(g) +Au'® =
ie Au'® + F,(u®) on [y, +00), whose mass is bounded above by M (i), where F; is a suitably damped
version of F (for example, F,(z) := —max(|z|, 1/&)*9z); extracting a weakly convergent subsequence
and taking weak limits we obtain the claim. O

Unfortunately, while these weak solutions are global, they are nonunique, as the following standard
example shows.

Example 1.12. Consider the function given by Equation (7) for ¢ € (0, +00) and by zero for # € (—o0, 0].
This is a global weak solution in the sense of the above proposition (taking 7o to be any positive time,
and setting ug = u(fp)), but is not unique; if, for instance, one takes u to equal (7) for ¢t € (—oo, 0) rather
than equal to zero, then the new solution is still a global weak solution with the same initial data. Note
that a modification of this example shows that uniqueness of weak solutions can break down even if the
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Strichartz ~——  strong

l !

semi-Strichartz —— semi-strong —— weak

Figure 1. Inclusions between solution classes. In dimensions d > 5 and assuming spher-
ical symmetry, we will show that two horizontal inclusions on the left are in fact equiv-
alences.

initial data is zero, and so one cannot hope to recover uniqueness purely by strengthening the hypotheses
on the initial data.

Remark 1.13. Example 1.12 also shows that mass is not necessarily conserved for weak solutions. On
the other hand, from Equation (4) we see that the function r — M (u(¢)) is lower semi-continuous, at
least.

1.14. Semi-Strichartz solutions. To summarise the discussion so far, the Strichartz class of solutions
has uniqueness but no global existence, while the class of weak solutions has global existence but no
uniqueness. It is thus natural to ask whether there is an intermediate class of solutions for which one has
both global existence and uniqueness. To answer this we define some further solution classes.

Definition 1.15 (Semi-strong and semi-Strichartz solutions). Fix a dimension d > 4, an initial data
ug € L2 (R?) and a time interval I C R containing a time #o € R. A semi-strong solution (resp. semi-
Strichartz class solution) to Equation (1) is a weak solution u such that for every ¢ € I N [#g, +00) there
exists ¢ > 0 such that u is a strong solution (resp. Strichartz class solution) when restricted to / N[z, t +¢),
and for every t € I N (—00, fp] there exists ¢ > 0 such that u is a strong solution (resp. Strichartz class
solution) when restricted to I N (¢t — ¢, ¢].

We summarise the obvious inclusions between the five classes of solution in Figure 1. Note that unlike
the weak, strong, and Strichartz classes, the semi-strong and semi-Strichartz classes of solution depend
on the choice of initial time 7.

Example 1.16. Consider the weak solution u € L®L2 (R x R?) which is given by Equation (7) for t > 0
and is zero for ¢ <0, let #p > 0, and set ug := u(ty). Then u is a semi-Strichartz class solution (and thus
semi-strong solution) to (1), but is not strong or Strichartz-class. If one redefines u for + < 0 by (7), then
u remains a weak solution, but is no longer semi-strong or semi-Strichartz.

Remark 1.17. The constructions in [Bourgain and Wang 1997], in our notation, yield semi-Strichartz
class solutions which blow up in the Strichartz class at a specified finite set of points in time, and are
equal to a prescribed state in L?C (R?) at the final blowup time, in dimensions d = 1, 2.

Our first main result is that the semi-Strichartz solution class enjoys global existence and uniqueness:

Theorem 1.18 (Global existence and uniqueness in the semi-Strichartz solution class). Suppose d > 4,
uo € L2(R?), and ty € R. Then there exists a global semi-Strichartz class solution u € L® L2 (R x RY)
to (1). Furthermore, this solution is unique in the sense that any other semi-Strichartz solution to (1) on
a time interval 1 containing ty is the restriction of u to 1. Finally, M (u(t)) is monotone nonincreasing



66 TERENCE TAO

for t > to and monotone nondecreasing for t < ty (in particular, the only possible discontinuities are
Jjump discontinuities), and has a jump discontinuity exactly at those times t for which u is not locally a
Strichartz class solution.

Remark 1.19. Informally, the unique semi-Strichartz class solution is formed by solving the equation
in the Strichartz class whenever possible, and deleting any mass that escapes to spatial or frequency
infinity when the solution leaves the Strichartz class. The relationship between this class of solution and
Strichartz class solutions is analogous to the relationship between Ricci flow with surgery and Ricci flow
in the work of Perelman [2007; 2003], though of course the situation here is massively simpler than with
Ricci flow on account of the semilinear and flat nature of our equation. On the other hand, the entropy-
type solutions constructed in Proposition 1.11 do not necessarily converge to the solution in Theorem
1.18. For instance, the arguments in [Merle 1992] can be adapted to show that if one starts with the initial
data of Equation (7) at time t = —1, say, and evolves a parabolically regularised version of Equation (1)
using some viscosity parameter ¢, then the solution at # = 4-1 can converge to an arbitrary phase rotation
of the solution (7) along a subsequence of &, and in particular these solutions do not converge to the
semi-Strichartz solution (which vanishes after the singularity time). However, it is conceivable that the
entropy solutions do converge to the semi-Strichartz solutions for generic data, although the author does
not know how one would prove this.

Remark 1.20. One can push the global existence result further, to obtain scattering at t = £00, and can
in fact even push the solution “beyond” t = 400 and ¢t = —oo by using the pseudoconformal transform
or lens transform, in the spirit of [Tao 2006]. We omit the details.

Remark 1.21. While the semi-Strichartz class enjoys global existence and uniqueness, it does not enjoy
continuous dependence on the data and is thus not a well-posed class of solutions. Indeed, if one considers
the solution in Example 1.16 for the spherically symmetric ground state O, and then perturbs the initial
data ug = u(tp) to have slightly smaller mass (while staying spherically symmetric), then from the results
in [Killip et al. 2007] we know that the perturbed solution exists globally in the Strichartz class, and in
particular has mass close to M (Q) for all negative times, in contrast to the original solution in Example
1.16 which has zero mass for all negative times, thus contradicting continuous dependence on the data
in any reasonable topology. Indeed this argument strongly suggests that there is no solution class for
this equation which is globally well-posed in the sense that one simultaneously has global existence,
uniqueness, and continuous dependence of the data, and which is compatible with the Strichartz class of
solutions.

Remark 1.22. In [Merle and Raphaél 2005; Fibich et al. 2006], solutions to Equation (1) are constructed
which are initially in H!(R?), but at the first blowup time develop a single point of concentration, plus
a residual component u* which is not in L{(R?) for any p > 2, and in particular has left H!(R?).
The semi-Strichartz solution would continue the evolution from u* at this time. Thus, we do not have
persistence of regularity for the semi-Strichartz class: a semi-Strichartz solution can exit the space in
finite time. (A similar phenomenon for the supercritical focusing NLS was also obtained in [Merle and
Raphaél 2008]. In contrast, the solution in Example 1.16 has H' norm going to infinity as t — 07, but
never actually leaves H!(R?); similarly for the solutions in [Bourgain and Wang 1997]).

Theorem 1.18 is in fact an easy consequence of Proposition 1.9 and is proven in Section 2. One can
be somewhat more precise about the jump discontinuities:



WEAK SOLUTIONS OF MASS-CRITICAL NLS 67

Theorem 1.23 (Quantisation of mass loss). Letd >4, ug € L2(R?), and ty € R. Letu € L®L2(R x RY)
be the unique global semi-Strichartz class solution to Equation (1) given by Theorem 1.18. Then there
exists an absolute constant g4 > 0 (depending only on d) such that every jump discontinuity of the function
t— Mu(t)) has jump at least eq. If ug is spherically symmetric, one can take 4 to be the mass M(Q)
of the ground state.

Remark 1.24. A closely related result in the spherically symmetric case was established in [Killip et
al. 2008b, Corollary 1.12], in which it was shown that any blowup of a spherically symmetric Strichartz
class solution in two dimensions must concentrate an amount of mass at least equal to the ground state
M (Q); the same result in higher dimensions follows by the same argument together with the results in
[Killip et al. 2007]. Indeed, we will use the results in [Killip et al. 2007] to establish the spherically
symmetric case of this theorem. From Example 1.12 we see that M (Q) cannot be replaced by any larger
quantity in the above theorem.

Theorem 1.23 is of course consistent with the existence of a lower bound ¢, for mass concentration at
a point [Bourgain 1999; Merle and Vega 1998; Keraani 2006], although neither result seems to directly
imply the other. (The proof of Theorem 1.23 uses global-in-space Strichartz estimates, whereas the mass
concentration result requires more localised tools.)

Theorem 1.23, combined with Theorem 1.18 and Proposition 1.9(iii), has an immediate corollary:

Corollary 1.25. Ifu is a global semi-Strichartz class solution to Equation (1), the function t = M (u(t))
is piecewise constant with at most finitely many jump discontinuities, with u being a Strichartz class
solution on each of the piecewise constant intervals.

We prove Theorem 1.23 in Section 3.

1.26. The spherically symmetric case. Now we turn to the question of whether strong (resp. semi-
strong) solutions are necessarily in the Strichartz class (resp. semi-Strichartz class), which would im-
ply (by Proposition 1.9 and Theorem 1.18) that they are unique. These type of results are known as
unconditional uniqueness (or unconditional well-posedness) results in the literature. For solutions in
higher regularities, such as the energy class, one can obtain unconditional uniqueness by exploiting
Sobolev embedding to obtain additional integrability of the strong solution u [Kato 1995; 1996; Furioli
and Terraneo 2003a; 2003b; Cazenave 2003; Tsutsumi 2007]. Unfortunately at the L)zc ([F\Rd) level of
regularity, for which Sobolev embedding is not available®, it appears to be rather difficult to establish
such an unconditional uniqueness result, although the author tentatively conjectures it to be true. On
the other hand, we were able to establish this uniqueness under the additional simplifying assumption of
spherical symmetry (and assuming very high dimension d > 5), thus replacing the data space L)ZC (RY) by
the subspace erad (RY) of spherically symmetric functions:

Theorem 1.27 (Unconditional uniqueness for spherically symmetric solutions). Letd > 5, ug € Lfad (RY),
I be an interval, and to € R. Letu € LY° Lﬁ (I xRY) be a spherically symmetric weak solution to Equation

(1). Then the following are equivalent:

(i) u is a Strichartz class solution.

SRelated to this difficulty is the Galilean invariance of the NLS equation at L% (R4 ), which strongly suggests that direct
application of Sobolev or Littlewood—Paley theory is unlikely to be helpful.
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(i1) u is a strong solution.
(iii) The function t — M (u(t)) is constant.
(iv) The function t — M (u(t)) is continuous.

(V) One has M (u(t)) > limsup,_,, M(u(t')) — eq for all t € I, where ¢4 > 0 is a suitably small ab-
solute constant depending only on d. (Note from lower semi-continuity that we automatically have
M(u(t)) < limsup,._,, M(u(i')).)

Example 1.28. If u is given by Equation (7) for ¢ # 0 and a spherically symmetric Q and vanishes for
t = 0, then u is a spherically symmetric weak solution but fails to conserve mass at t = 0, and is thus
not in the Strichartz class in a neighbourhood of ¢t = 0.

Remark 1.29. From Theorem 1.27 and Proposition 1.9(ii), we see that spherically symmetric strong
solutions to (1) are unique. Another quick corollary of Theorem 1.27 is that any spherically symmetric
weak solution whose mass is always strictly smaller than ¢, is necessarily a Strichartz class solution (and
hence strong solution also), and thus also unique. In view of Theorem 1.23, it is natural to conjecture
that one can take &, to be the mass M (Q) of the ground state, which is the limit of weak uniqueness
thanks to Example 1.12, but our methods do not give this.

Remark 1.30. The above theorem shows that if a weak solution fails to be in the Strichartz class, then
at some time ¢ it must lose at least a fixed amount ¢, of mass, though it is possible that this mass is then
instantly recovered (consider for instance the solution given by (7) for ¢t # 0 and zero for ¢+ = 0). On
the other hand, it is conceivable that there exist weak solutions in which the mass function ¢ — M (u(t))
exhibits oscillating singularities rather than jump discontinuities, in which the mass oscillates infinitely
often as one approaches a given time; the above theorem implies that the net oscillation is at least ¢, but
does not otherwise control the behaviour of this function. If for instance there existed a nontrivial weak
solution on a compact interval / which vanished at both endpoints of the interval [Scheffer 1993], then
one could achieve such an oscillating behaviour by gluing together rescaled, time-translated versions of
this solution. However, we do not know if such weak solutions exist; solutions such as (7) constructed
using the pseudo-conformal transformation only exhibit vanishing at a single time ¢.

Remark 1.31. Note that we need to assume the solution is spherically symmetric, and not just the initial
data. In the category of weak solutions, at least, it is not necessarily the case that spherically symmetric
data leads to spherically symmetric solutions: consider for instance the weak solution which is equal to
a time-translated version of (7) for ¢ # 0 and vanishes for # = 0; this solution is spherically symmetric at
time zero but not at other times.

We prove Theorem 1.27 in Section 6.1, after establishing an important preliminary smoothing estimate
for weak solutions in Section 4. Our main tool here is the in/out decomposition of waves used in [Tao
2004; Killip et al. 2008b], which is particularly powerful for understanding the dispersion of spherically
symmetric waves, and upon which we will rely heavily in order to establish a substantial gain of regularity
for weak solutions. Our arguments only barely fail at d =4 and it is quite likely that a refinement of the
methods here can be extended to that case, but we do not pursue this matter here.

There is an analogue of Theorem 1.27 for semi-strong and semi-Strichartz class solutions:
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Theorem 1.32 (Characterisation of spherically symmetric semi-Strichartz solution). Suppose d > 5,
ug € erad([RRd), I be an interval, i and ty € R. Let u € LfoLi (I x RY) be a spherically symmetric weak

solution to Equation (1). Then the following are equivalent:

(1) u is the unique semi-Strichartz solution given by Theorem 1.18 (restricted to 1, of course).
(i1) u is a semi-strong solution.

(iii) The function t — M u(t)) is right-continuous for t > ty and left-continuous for t < to, and is
piecewise constant with only finitely many jump discontinuities, with each jump being at least M(Q)
in size.

v e function t — u is right-continuous for t > ty and left-continuous for t < 1.

(iv) Th tion t — M (u(t ght-cont t > to and left-cont t<t

(V) M(u(t)) > limsup,_,,+ M(u(t')) —eq forall t > ty and M (u(t)) > limsup,._,,- M(u(t')) — eq for
all t <tg, where ¢4 > 0 is a suitably small absolute constant depending only on d.

We prove Theorem 1.32 in Section 6.2, using a minor modification of the argument used to prove
Theorem 1.27.

2. Proof of Theorem 1.18

We first establish uniqueness. Suppose we have two semi-Strichartz class solutions u, u’ € L?OLZ(I x R?)
to (1). Let J be the connected component of {¢t € I : u(¢) = u(t')} that contains fy. Since u, u’ are weak
solutions, we see from Remark 1.8 that J is closed. From the uniqueness component of Proposition 1.9,
and Definition 1.15, we also see that J is right-open in I N [ty, +00) (that is, for each t € J N [#y, +00)
there exists ¢ > 0 such that 7 N [t,7 4+ ¢) C J) and left-open in I N (—o0, tp]; by connectedness we
conclude that J = I, establishing uniqueness.

Now we establish global existence. It suffices to establish a semi-Strichartz class solution on [#y, 4+00),
as by time reversal symmetry we may then obtain a semi-Strichartz class solution and (—o0, #g], and glue
them together to obtain the desired global solution on R.

Let J denote the set of all times T € [#y, +00) for which there exists a semi-Strichartz class solution
u on [ty, T] with M (u(¢)) monotone nonincreasing on [#y, T]; thus J is a connected subset of [zy, +00)
containing fy. By the existence and mass conservation component of Proposition 1.9, we see that J is
right-open. Now we establish that J is closed. If 7, is a sequence of times in J increasing to a limit ¢,,
then by gluing together all the associated semi-Strichartz class solutions (using uniqueness) we obtain
a semi-Strichartz solution u on [y, t,) with M (u«(¢)) monotone nonincreasing on [fy, ,); in particular u
lies in L}’OLi ([to, 1) x RY), and F (u) lies in L?OL)ZCd/(dH)([to, ty) X R?). From this we see that the right
side of Equation (2) is continuous all the way up to ¢, in the space of tempered distributions, and so we
can extend u as a weak solution to [fg, #,]. This is still a semi-Strichartz solution, and by Fatou’s lemma
we see that M (u(t)) is still nondecreasing on [#, t,], and so t, € J, thus establishing that J is closed. By
connectedness we conclude that J = [y, +00), and so we can obtain semi-Strichartz class solutions on
[to, T] for any #yp < T < oo. Gluing these solutions together we obtain the desired solution on [#, +00),
establishing global existence.

The above argument has also established monotonicity of mass. Whenever u is a Strichartz class
solution in a neighbourhood of a time #1, it follows from Proposition 1.9 that mass is constant near #;, so
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the only remaining task is to show that whenever mass is continuous at a time ¢, then u is a Strichartz
class solution in a neighbourhood of ¢.

The claim is obvious for #; = #p, so without loss of generality we may take #; > #y. By hypothesis,
M (u(t)) converges to M (u(t;)) as t — t1. By Equation (4), we conclude that u(r) converges strongly to
u(ty) in L2(RY).

Let &€ > 0 be a small number. By the endpoint Strichartz estimate (5), we have

e Ay ()| < 00,

L2L2YD (R Rd)

so by the monotone convergence theorem we have
i(t—t1)A
e DR UE) 22002 ) oy < s

when [ is a sufficiently small neighbourhood of #;.

Fix I. Let t, converge to t;, then by the previous discussion u(f,) converges strongly to u(#1) in Li (RY).
By the continuity (and unitarity) of the Schrédinger propagator, this implies that !~y (1,) converges
to u(t;). Applying the endpoint Strichartz estimate (5), we conclude that ¢/C=2)24(z,) converges in
LtzLﬁd/(d_z)(l x RY) to €'~ Ay (1)). In particular, we have

i(t—t)A

||€ u(IZ)”LtZLid/(d*z)(lde) <g,

for all 1, sufficiently close to #;. On the other hand, we have M (u(#;)) < M (up). Thus if ¢ is chosen to be
sufficiently small depending on M (u(), we may apply the standard Picard iteration argument based on
the endpoint Strichartz estimate (5) and construct a Strichartz-class solution to NLS on / which equals
u(ty) at tp. Applying this with #, slightly smaller than #; and using the uniqueness of semi-Strichartz
class solutions, we see that u is equal to this Strichartz-class solution on 7, and the claim follows.

3. Proof of Theorem 1.23

It is convenient here to use the original nonendpoint Strichartz estimate [Strichartz 1977]:
loell 2as2ra g gy Nl o221 xme Sa lu(o)ll 2@y + liwe + Aull 2 2wensan g gy - )]

Let ¢4 > 0 be chosen later, and let u be a semi-Strichartz class solution. Suppose for contradiction
that we had a jump discontinuity at some time #; of jump less than ¢4. As before we may assume without
loss of generality that #; > fg.

Let ¢ approach #; from below, then M (u(¢)) — M (u(t;)) converges to a limit less than ¢;. By Equation
(4), we conclude that [|u(#) — u(f1)ll 2 (rey converges to a limit less than ¢,.

By (8) and monotone convergence as before, we can find a small neighbourhood 7 of #; such that

1/2

[(t—11) A
l(l tl) u(t1)||L’2§{+2)/d(1XRd) <8d

lle

If we let #, approach #; from below, then for #, sufficiently close to #; we thus have

1/2

i(t—1)A
i(t—t) M(II)HL,Z‘(;HZ)M(IXW) <egy

lle
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On the other hand, from Equation (8) we have (for #, sufficiently close to #;) that
i(t—1) A 1/2
lle A (u(e)) — u(@) 2 g oy Sa lu(t2) —u@) 2@y S &)’

and thus by the triangle inequality

i(t—t)A 1/2

lle u(tz) 22 ey Sd &g

If &4 is sufficiently small depending on d, we can then perform a Picard iteration, using (8) to control
the nonlinear portion u(r) — e!*~2)2 4 (1,) of the solution, to construct a solution in the class

COL2N L1 x RY)

t,x

that equals u(#;) on ;. Applying Strichartz estimates once more, we see that this solution is a Strichartz
solution on /. By uniqueness of semi-Strichartz solutions, we conclude that « is a Strichartz solution on
I and thus has no jump discontinuity at ¢1, a contradiction.

Now we handle the spherically symmetric case. We will need the following result from [Killip et al.
2007]:

Theorem 3.1 (Scattering below the ground state). Let d > 3. Then for every 0 <m < M (Q) there exists
a quantity A(m) < oo such that whenever ty € R and ug € Lﬁ (RY) with M (ug) < m, then there exists a
global Strichartz-class solution u to (1) with ||u ||L2L2_d/(d—2)(RXRd) < A(m).

Proof. See [Killip et al. 2007, Theorem 1.5]. (|

Now suppose for contradiction that we have a global semi-Strichartz class solution from spherically
symmetric initial data uy which has a mass jump discontinuity of less than M (Q) at some time #;; we
can assume f; > fg as before.

Since u is spherically symmetric, we see from rotation invariance and uniqueness that « is spherically
symmetric. By arguing as before, we see that as #, approaches ¢ from below, M (u(t;) —u(t1)) converges
to a limit less than M (Q). In particular this limit is less than m for some 0 <m < M(Q).

Let & > 0 be a small number depending on m and M (ug) to be chosen later. By endpoint Strichartz
(5) and monotone convergence as before, we can find a small neighbourhood 7 of #; such that

i(t—t1)A

||€ u(tl)”LtZLid/(d*Z)(lde) <g,

and thus for 1, sufficiently close to #

e’ DRy (zy)| <e. )

L2L27D (1R

On the other hand, we also have
M(u(t2) —u(ty)) <m,

for 1, sufficiently close to (and below) #;. By Theorem 3.1, we may thus find a Strichartz-class solution
v on I of mass at most m with v(¢;) = u(t;) — u(t;) and

[0l 2 20002 oy < AGm).
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From this and Equation (9) and standard perturbation theory [Tao et al. 2008, Lemma 3.1], we may thus
find a Strichartz-class solution on I which equals u(z;) at #,. Arguing as before we conclude that u has
no jump discontinuity at #;, a contradiction.

Remark 3.2. It is conjectured that the spherical symmetry assumption can be removed from Theorem
3.1. If this conjecture is true, then it is clear that one can take £; = M (Q) in the nonspherically-symmetric
case of Theorem 1.23 as well.

4. A smoothing effect for spherically symmetric weak solutions

In this section, we establish a preliminary smoothing effect for spherically symmetric weak solutions
that will be needed to prove Theorems 1.27 and 1.32. More precisely, we show

Theorem 4.1 (Smoothing effect). Let d > 4, let I be a compact interval, and let u € L;’OL)ZC (I x R?) be
a spherically symmetric weak solution to NLS with M (u(t)) < m forall t € 1. Then for every R > 0 one

has the bound
||M ||L,2L§d/(l[72)(lX(Rd\B(O,R))) ,Sl,m,d R_l + 1: (10)
where B(0, R) is the ball of radius R centred at the origin.

Remark 4.2. Theorem 4.1 asserts that a spherically symmetric weak solution behaves like a Strichartz-
class solution away from the spatial origin. The R~! term on the right side is sharp, as can be seen
by considering a rescaled stationary solution u(f, x) = R™4/2¢!"/ RzQ(x /R), where Q is a nontrivial
spherically symmetric solution to Equation (6).

We shall prove this theorem using the method of in/out projections, as used in [Tao 2004; Killip et al.
2008b; 2007]. We first recall some Littlewood—Paley notation.

Let (&) be a radial bump function supported in the ball {¢ € R? : || < 11/10} and equal to 1 on the
ball {¢ € R? : |¢] < 1}. For each number N > 0, we define the Fourier multipliers

Pon (&) = 0E/N)F(©),
Pon(©) =1 —pE&/N)F©),
PyFE) = w(E/N) €)= (p(E/N) —p2E/N)) F(©).

We similarly define P.y and P py. All sums over N will be over integer powers of two unless otherwise
stated.

We now subdivide the Littlewood—Paley projections Py on the spherically symmetric space L?(R).q
into two components, an outgoing projection P, Py and incoming projection P_ Py, as described in the
following lemma:

Proposition 4.3 (In/out decomposition). Let d > 1. Then there exist bounded linear operators Py, P_ :
L2(R?) — L*(R?) with the following properties:

(i) P, P_ extend to bounded linear operators on L (R?) to LP(R?) for every 1 < p < oc.

(ii) Py 4+ P_ is the orthogonal linear projection from L*>(R?) to L*(R?)a.
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(ili) Forany N > 0, |x| > N~', t > N72, and choice of sign %, the integral kernel® [ P+ Pye™'2](x, y)
obeys the estimate

[P Pye™ M(x, y)| Sa (x]ly))~@D21e 712,
when |y| — |x| ~ N|t|, and

Nd
(N|x€@=D/2(N|y[)d=D/2

I[P Pne™ 21, )| Saum (N*t+ Nlx| = Nly})™,

for any m > 0 otherwise.
(ili) Forany N > 0, |x| > N~', |t| < N2, and choice of sign £, we have

Nd
(N|x[)d=D/Z(N|y|)@d=D/2

I[P PyeT 21(x, )| Saum (N|x| = Nlyh™,

for any m > 0.

Proof. See [Killip et al. 2008b, Proposition 6.2] (for the d = 2 case) or [Killip et al. 2007, Lemma 4.1,
Lemma 4.2] (for the higher d case). U

Remark 4.4. Heuristically, P_ Pye!’® and P, Pye "2 for t > 0 both propagate away from the origin at
speeds ~ N. The decay (|x||y|)_(d_1)/2|t|_1/2 is superior to the standard decay |t|~4/2, which reflects
the additional averaging away from the origin caused by the spherical symmetry. (In the proof of [Killip
et al. 2008b, Proposition 6.2], this additional averaging is captured using the standard asymptotics of
Bessel and Hankel functions.)

Now we prove Theorem 4.1. Fix d, I, u, m, R; we allow implied constants to depend on d, I, m. We

may take R to be a power of 2. By the triangle inequality, we have

lll 2200 1 o o,y S NP/ RUN 2120000 gty + D DN PPNl 22000 o g0,y
N>1/R +

For the first term, we use Bernstein’s inequality to estimate
~1 ~1
1 P<1/ru ()l 2012 gay S R @l 2y S R,

which is acceptable, so we turn to the latter terms. For ease of notation we shall just deal with the
incoming terms + = —, as the outgoing terms + = — terms are handled similarly (but using Duhamel
backwards in time instead of forwards).

Write I = [#g, t1], then by Duhamel’s formula we have

t
P_Pyu(r) = P_Pye' "%y (19) — i / P_Pye' "M E(u(t)) dr.

fo

5The integral kernel 7 (x, y) of a linear operator T is the function for which Tf(x) = fRd K(x,y)f(y) dy for all test
functions f.
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The contribution of the linear term P_ PNei(’_’O)Au(to) is bounded by

z P_ PNei(’_ZO)Au(to) Z PNei(I_IO)Au(Zo)

N>1/R N>1/R

A
S e u )l 2, 2

~Y
L2L2@D ([ Ry L2272 (1 Rd)

2/=2) (1
S lluo)ll 22 e
<1,

~

thanks to Proposition 4.3(i), the boundedness of the Littlewood—Paley projection P- /g, and the endpoint
Strichartz estimate (5). Thus this contribution is acceptable, and it remains to show that

2

N>1/R

<RL (11)
L2371 x (RI\B(0,R)))

t
/ P_Pye!COAF(u(t))) di’

As we are allowed to let implied constants depend on /, it suffices to show that

t
/ ” P_ PNel(t_t )AF(u(t/)) ” L2442 (Ra\ B(0, R) dt’' < (NR)_CR_] ,
1o ! ’

for some absolute constant ¢ > 0 and all r € [ and N > 1/R. By dyadic decomposition it suffices to
show that

t
i(t—1")A —C p—
/t H P_ PNel(t ) Fu(t) dt/” L2460 (B0 a1 R)\ B(0.27 R)) dt' <SQ2"NR)™“R 1,
0

for all m > 0. Replacing R by 2™ R, we thus see that it suffices to show that

t
/ | P—Pye OB Ft')) di' | i 5o amypso.my 4 S (NRY R,
fo

whenever R > 0, N > 1/R,and t € I.
From Proposition 4.3 we see that

1P-Pye™ £l (8020080, R) S (R(R + NItD) D211 72| fll 1 ey
for t > N2, and
I1P-Pye™ fllemo2rnso.r) S RTCTVEN| FllL gays
for 0 <t < N~2; we unify these two estimates as
I P_Pye™ flliB02r)0B0,R) S (R(R+ NJt)"“D2N(N?1)~ 1/2||f||Li([R<d),

for r > 0. On the other hand, as P_, Py, ¢!'® are bounded on L? we have

| P- PNeitAf”Lz(B(O 200\BO,R) < N2 meys
and hence by interpolation

1P Pye'™ £l 2 [(R(R+ N1t))" V2NN D21 1 i gy

/) (5(0,2RN\B(O, R)) ~
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Since
14+4/d
| F @D i gy S 1oty S 1

for all ' € I, we thus have
”P_PNei(tft’)A F(“(t/))||Lid/(d*“)(B(O’zR)\B(O’R)) 5 [(R(R + N|t . t/|))*(d71)/2N(N2(t _ t/)>71/2]4/d,
and hence by Holder’s inequality

< RI(R(R+ NIt — 1)) @D N(N?(r — "))~ 1/244.

1P=Pye' D8 F @) 20602 (500 2r0 B0.RY S

We can thus bound the left side of Equation (11) by
t
| RURGR+ NIt =)D PN N = )7 21 ar
—00

The dominant contribution of this integral occurs in the region when |t —¢'| ~ R/N, and so we obtain a
total contribution of

S RR/N)RD(R/N)TI2HE = RTHRN) D,
which is acceptable. This proves Theorem 4.1. 0

Remark 4.5. One can improve the 1 term on the right side of (10) to R™¢ for some ¢ > 0, by using
the improved Strichartz estimates in [Shao > 2009] that are available in the spherically symmetric case.
However, we will not need this improvement here.

5. Nearly continuous solutions are Strichartz class

Theorem 4.1 gives Strichartz norm control of a solution away from the spatial origin. When the solution
is sufficiently close in L>°L2 to a Strichartz class solution, we can bootstrap Theorem 4.1 to in fact obtain
Strichartz control all the way up to the origin. More precisely, we now show:

Theorem 5.1 (Strichartz class criterion). Letd > 5, let I be a compact interval, and let u € L;X’Lz (I xR4 )
be a spherically symmetric weak solution to NLS. Suppose also that there exists a Strichartz-class solution
veClLin L?Lid/(d_2)(l x R?) such that ||u — v 212 mey < &. If € is sufficiently small depending on
d, then u € L?Lid/(d_z)(l x R?). )

Remark 5.2. The theorem fails if ¢ is large, as one can see from the weak solution defined by Equation
(7) for t # 0 and vanishing for + = 0. The arguments in fact give an effective upper bound for the
LtzLﬁd/ @=2) norm of u in terms of the corresponding norm of v. Heuristically, the point is that when u
(or u — v) has small mass, then there are not enough nonlinear effects in play to support persistent mass

concentration (as in the example in Remark 4.2) that would cause the L2124/ @=2) norm to become large.

We now prove Theorem 5.1. We fix d, I, u, v, ¢ and allow all implied constants to depend on d. By
shrinking the interval / and using compactness we may assume that

ol 2y 20002, gy < &- (12)

We write w := u — v, thus
lwll g2 xrey S € (13)
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and w solves the difference equation
iw,+Aw=F(+w)— F() (14)

in the integral sense. From the fundamental theorem of calculus (or mean-value theorem) we have the
elementary inequality

F(+w)— F©) = 0(lw|(jo] + [w)*). (15)

For each integer k, let ¢; denote the quantity

Cg = ”w”L%de/(diz)(lX(Rd\B(O,Zk)))' (16)
From Theorem 4.1 and the triangle inequality we have
1275+ 1, (17)

for all k. To prove the theorem, it suffices by the monotone convergence theorem to show that sup;, ¢ is
finite. For this we use the following inequality:

Proposition 5.3 (Key inequality). Let d > 4. For every k we have

cr Se4etd Z 2‘%("‘-’)(@ n c}*“/d),
<k

Proof. Fix k. By the triangle inequality, we have

Ck S ||P§2’kw(t)”LtZL)z(d/(d_z)(IXRd) + Z ”PiP>27kw(t)”L?Lid/(d_z)(lX(Rd\B(O,Zk)))' (18)
+

Consider the first term on the right side. By (13)—(15) and (5) we have
1P<a-cw (Ol 220002 gty S &+ | P<a+ O (] (0] + [0 DI 2 20052 gy
so to show that the contribution of this case is acceptable, it suffices to show that

_d=2p_ 4/d
[Pz Ol (ol + 10D D 2005 g ey S 644 D275 40 e+,
<k

By the triangle inequality, we can bound the left side by

| Peot 0wl 1ga\ g0 (0] + 10D D | 12 20052 g

2

j<k

(19)

Py O(Jw|1 3o 2-r+1y p0.2-1) ([0] + [w)*9)

L2122 (1 Rd)
For the first term of (19), we discard the P_,« projection and use Holder’s inequality to bound this by

1-4/d 4/d 4/d
S’ “ w “ L%Lid/(‘”z)(lx(Rd\B(O,z—"))) || v ” LtZLJZC‘l/(dJrz)(]X[Rd) || w || LPL2(IxRY)

4/d
+ || w ”LfLid/("*z)(Ix(Rd\B(o,z—k))) ||w ||L/,°°L§(I><Rd)’



WEAK SOLUTIONS OF MASS-CRITICAL NLS 71

which by (13), (12), and (16) is bounded by

1-4/d
< 84/de / ¥,

which is acceptable.
For the second term of (19), we observe from the Holder and Bernstein inequalities that

| Paov (f 1g0.2-r+1y\0.2-1) || 200052 guay S 27T £ g0 10 80,2- 0 1)

< 7= 452 (k- I)||f||L2d/(d+2)(B(o 2-/t1)\B(0,27/))

for any f. Using this inequality and arguing as before, we see that the second term of (19) is bounded
by
< Z 752 (k=) (84/010;_ T ey,
Jj<k
which is acceptable.
Since we have dealt with the first term of (18), it now suffices by the triangle inequality to show that

1-4/d
|| Py Ps - kw(l‘)||L2 20/=2) (1 R\ B(0,27))) O <g4 et ZZ G k- ])(C +c; / ),
i<k
for either choice of sign £. We shall just do this for the incoming case + = —: the outgoing case + = +

is similar but requires one to apply Duhamel’s formula backwards in time.
Write I = [#g, t;]. By Duhamel’s formula and (14), we have

t
P_P_rsw(t) = P_ Py 7020 (19) —i / P_P_y i (F (o +w) — F) () dr.
]

The contribution of the first term is O (e) by Proposition 4.3(i), Equations (5) and (13), so it suffices to
show that

We split

t
/ P_P_yie' AN (F (v +w) — F))(1) dt’
fo

L2132 (1 (RI\ B(0,2%)))

d—2 . —
<Y Z2‘T(k_f)(cj —I—c} o,
i<k

F(+w)— F@)=(F(@+w)— F©))lgapo,x1)+ Z (F(v+w) — F(©)10,27+1)\B(0,2/)-
j<k—1

The contribution of the first term can be estimated using Proposition 4.3(i), Equations (5) and (15) to be

S Mwl (o + w2 20052 @i 0,261y

By a slight modification of the calculation used to bound the first term of (19), we can control this

expression by
< g4 . 1 4/d 4/d

+é& Ck—1»



78 TERENCE TAO

and so by the triangle inequality it suffices to show that

2

N>2-k

t
/ P_Pye'"A(F (0 4 w) — F) () 241y 50.21)] 4’

fo

L2 (1 RO\ B(0.24)))
<M T ED (e + C}—4/d)’ (20)
for each j <k —1.
Fix j. By Proposition 4.3(ii), (iii), the integral kernel (P_ Pye'“=")2)(x, y) for x € R%\B(0, 2¥),
t" <t,N>27% and y € B(0,2/11)\ B(0, 2/) obeys the bounds
i(t—t")A N4 2 100d
1(r—t < 4 —
|[P7PN6 ](x>)7)|N (le|)(d—1)/2<2]N>(d—1)/2<N (t t)+N|X|>
SNUN )N @ — 1)),

say. From this we obtain the pointwise bound
|P_Pne "R (f 10 21y 80.207) )] S NN |x )N (1 — N7 L1 B0,2+ )0\ BO.27))

for x € RY\ B(0, 2¥) and any f, which by Holder’s inequality implies the bounds

| P—Pye' 8 (f 1210\ B0.2) | 200602 o 50,20
d=2 d-2 .
S2TRTINYRIN) TN = 1) TN F 1| s g0 200 50,2y
By Young’s inequality we conclude that the left side of (20) is bounded by

C S PRIy o FO)
N>2-k

2D (1 B(0,2/+1)\ B(0,2/))"

Modifying the computation used to bound the first term of (19), this expression can be controlled by

< Z Z%kz%jNd—z(sz)—SOd(g4/dc}—4/d + 34/dcj),
N>2-k
and on performing the summation in N one obtains the claim (20), and Proposition 5.3 follows. U

-2

From Proposition 5.3 (and using the hypothesis d > 5 to make the decay 2~5*&=) faster than the
blowup of 27/), we see that if we have any bound of the form

c < A+ B27X,

for all k and some A, B > 0, then (if ¢ is sufficiently small, and A is sufficiently large depending on ¢),
one can conclude a bound of the form

ck < A+1B27H,
for all k. Iterating this and taking limits, we conclude that

ck <A,
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for all k. Applying this argument starting from Equation (17) we conclude that ¢; < 1 for all &, as desired,
and Theorem 5.1 follows.

6. Proofs of theorems
With Theorem 5.1 in hand, it is now an easy matter to establish Theorems 1.27 and 1.32.

6.1. Proof of Theorem 1.27. 1t is clear that (i) implies (ii), and that (iii) implies (iv) implies (v). From
Proposition 1.9 we also see that (ii) implies (iii). So the only remaining task is to show that (v) implies
(1). It suffices to do this locally, that is, to show that for any time ¢ for which (v) holds, that u is a
Strichartz class solution in some neighbourhood of # in 7.

By the hypothesis (v), one can find a connected neighbourhood J of ¢ in I such that

M(u(t) < M(u(t)) +&q,
for all #' € J. By Equation (4) (and shrinking J if necessary) we conclude that
(") = ()72 gy < 264,

say, for all t' € J.
By shrinking J some more, we may apply Proposition 1.9 to find a Strichartz class solution

0 e COLZNLAL2V @D (] x RY)

on J with v(¢) = u(¢). Since v is a strong solution, by shrinking J some more we may assume that
o) —v ()l 2@y < ecl/ 2 forallt e J. By the triangle inequality we thus see that
1/2
= oll oz ey S &4
Applying Theorem 5.1 and taking &, sufficiently small, we conclude that u is a Strichartz class solution
on J as required, and Theorem 1.27 follows.

6.2. Proof of Theorem 1.32. It is clear that (i) implies (ii) and that (iii) implies (iv) implies (v). From
Corollary 1.25 we know that (i) implies (iii), while from Proposition 1.9(iii) and Definition 1.15 we see
that (ii) implies (iv). Thus, as before, the only remaining task is to show that (v) implies (i). Again, it
suffices to establish the local claim that if > 7 is such that (v) holds, then « is in the Strichartz class for
some [t, 1+ ¢) N1, and similarly for r <y and (¢ — ¢, t] N 1. But this follows by a routine modification
of the arguments in Section 6.1. U
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THE LINEAR PROFILE DECOMPOSITION FOR THE AIRY EQUATION
AND THE EXISTENCE OF MAXIMIZERS FOR
THE AIRY STRICHARTZ INEQUALITY

SHUANGLIN SHAO

We establish the linear profile decomposition for the Airy equation with complex or real initial data in
L?. As an application, we obtain a dichotomy result on the existence of maximizers for the symmetric
Airy Strichartz inequality.

1. Introduction

In this paper, we consider the problem of the linear profile decomposition for the Airy equation with the
L? initial data

6lu+6;’u=0,te[R,xelR, 0

u(0, x) = uop(x) € L?,

where u : R x R — R or C. Roughly speaking, the profile decomposition is to investigate the general
structure of a sequence of solutions to the Airy equation with bounded initial data in L?. We expect
that it can be expressed, up to a subsequence, as a sum of a superposition of concentrating waves —
profiles —and a reminder term. The profiles are “almost orthogonal” in the Strichartz space and in L?
while the remainder term is small in the same Strichartz norm and can be negligible in practice. The
profile decomposition is also referred to as the bubble decomposition in the literature; see [Killip and
Visan 2008b, p.35] for an interesting historical discussion.

The same problem in the context of the wave or Schrédinger equations has been intensively studied
recently. For the wave equations, Bahouri and Gérard [1999] established a linear profile decomposition
for the energy critical wave equation in R? (their argument can be generalized to higher dimensions).
Following [Bahouri and Gérard 1999], Keraani [2001] obtained a linear profile decomposition for en-
ergy critical Schrodinger equations; see also [Shao 2009]. For the mass critical Schrédinger equations,
when d = 2, Merle and Vega [1998] established a linear profile decomposition, similar in spirit to that
in [Bourgain 1998]; Carles and Keraani [2007] treated the d = 1 case, while the higher-dimensional
analogue was obtained by Bégout and Vargas [2007]. In general, a nonlinear profile decomposition
can be achieved from the linear case via a perturbation argument. The first ingredient of the proof of
linear profile decompositions is to start with some refined inequality: the refined Sobolev embedding
or the refined Strichartz inequality. Usually establishing such refinements needs some nontrivial work.
For instance, in the Schrodinger case, the two-dimensional improvement is due to Moyua et al. [1999]
involving the X} spaces; the one-dimensional improvement due to Carles and Keraani [2007] using the
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Hausdorff—Young inequality and the weighted Fefferman—Phong inequality [Fefferman 1983], which
Kenig et al. [2000] first introduced to prove their refined Strichartz inequality (5) for the Airy equation;
the higher-dimensional refinement is due to Bégout and Vargas [2007] based on a new bilinear restriction
estimate for paraboloids by Tao [2003]. Another important ingredient of the arguments is the idea of
the concentration-compactness principle which aims to compensate for the defect of compactness of the
Strichartz inequality, and was exploited in [Bahouri and Gérard 1999; Merle and Vega 1998; Carles and
Keraani 2007; Bégout and Vargas 2007]; also see [Schindler and Tintarev 2001] for an abstract version
of this principle in the Hilbert space. The profile decompositions turn out to be quite useful in nonlinear
dispersive equations. For instance, they can be used to analyze the mass concentration phenomena near
the blow up time for the mass critical Schrodinger equation; see [Merle and Vega 1998; Carles and
Keraani 2007; Bégout and Vargas 2007]. They were also used to show the existence of minimal mass
or energy blow-up solutions for the Schrodinger or wave equations at critical regularity, which is an
important step in establishing the global well-posedness and scattering results for such equations; see
[Kenig and Merle 2006; 2007; Killip et al. 2007; Tao et al. 2007; Killip and Visan 2008a. Shao [2009]
used it to establish the existence of maximizers for the nonendpoint Strichartz and Sobolev—Strichartz
inequalities for the Schrodinger equation.

The discussion above motivates the question of profile decompositions for the Airy equation, which
is the free form of the mass critical generalized Korteweg—de Vries (gKdV) equation

[ 6,u+6§u:|:u46xu=0,t€[R§,xeR, 2

u(0, x) = up(x).

This is one of the (generalized) KdV equations [Tao 2006b] and is the natural analogy to the mass critical
nonlinear Schrédinger equation in one spatial dimension. The KdV equations arise from describing the
waves on shallow water surfaces, and turn out to have connections to many other physical problems.
As is well known, the class of solutions to (1) enjoys a number of symmetries that preserve the mass
i |u|>dx. We will employ the notations from [Killip et al. 2007] and first discuss the symmetries at the
initial time ¢ = 0.

Definition 1.1 (Mass-preserving symmetry group). For any phase 8 € R/2x Z, position xo € R and
scaling parameter 4 > 0, we define the unitary transform gy, 4, : L> — L? by the formula

X — X0
o )

1 .
[86,x0,0 S 106) 1= 7€ f
hO

We let G be the collection of such transformations. It is easy to see that G is a group.

Unlike the free Schrodinger equation

3

iou—Au=0,teR, x e R,
M(O, X):MO(X),

two important symmetries are missing for (1), namely, the Galilean symmetry

u(t, x) — eixi(’“tlf‘)lzu(t, x +2t&),
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and the pseudo-conformal symmetry
u(t, x) > |t|"V2e D (1 /e, x /1),

This lack of symmetries causes difficulties if we try to mimic the existing argument of profile decompo-
sitions for the Schrodinger equations. In this paper, we will show how to compensate for the lack of the
Galilean symmetry when developing the analogous version of linear profile decompositions for the Airy
Equation (1).

Like Schrodinger equations, an important family of inequalities, the Airy Strichartz inequality [Kenig
et al. 1991, Theorem 2.1], is associated with the Airy equation (1). It is invariant under the symmetry
group and asserts that

| D%~ % ugllpop, < loll 2, @)

if and only if —a+3/g+1/r=1/2and —1/2 <a < 1/q, where ¢™'%uy and D* are defined in Section
2. When g =r =6 and o = 1/6, we also have the following refined Strichartz estimate due to Kenig—
Ponce—Vega, which is the key to establishing the profile decomposition results for the Airy equation in
this paper.

Lemma 1.2 (KPV’s refined Strichartz [Kenig et al. 2000]). Let p > 1. Then
183 11 1 2
| D™ % ug|| 5 < C(suplel> P lld0llLre)* luolls, )
5X T

where Tt denotes an interval of the real line with length |t |.

In Section 3, we will present a new proof suggested by Terence Tao by using the Whitney decomposition.

As in the Schrodinger case, the Airy Strichartz inequality (4) cannot guarantee the solution map from
the L? space to the Strichartz space to be compact, namely, every L?-bounded sequence will produce a
convergent subsequence of solutions in the Strichartz space. The particular Strichartz space we are inter-
ested in is equipped with the norm || D'/u|| 5. The failure of compactness can be seen explicitly from
creating counter-examples by considering the symmetries in L2 such as the space and time translations,
or scaling symmetry or frequency modulation. Indeed, given xo € R, 7y € R and &g € (0, 00), we denote
by 7y,, Sk, and Ry, the operators defined by

Ty (X) =P (x —x0), Spep(x) := #qﬁ(%), Ry (x) = e_t"aigb(x).

Let (x,)n>1, (z2)n>1 be sequences both going to infinity, and (%,),>1 be a sequence going to zero as n
goes to infinity. Then for any nontrivial ¢ € &, (7y,@)n>1, (S, #)n>1 and (R;,¢),>1 weakly converge to
zero in L2. However, their Strichartz norms are all equal to || D/6e~'% || 16 > which is nonzero. Hence
these sequences are not relatively compact in the Strichartz spaces. Moreover, the frequency modulation
also exhibits the defect of compactness: for { € R, we define Mg, via

M, (x) i= ™0 (x).

Choosing (&,),>1 to be a sequence going to infinity as n goes to infinity, we see that (Mg, ¢),> converges

3 g )
weakly to zero. However, from Remark 1.7, || D!/6¢=1% (e’(')€"¢)||Lla converges to 3_1/6||e_”‘7x¢||LF B
which is not zero. This shows that the modulation operator M, is not compact either.
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It will be clear from the statements of Theorem 1.5 and Theorem 1.6 that these four symmetries
in L2 above are the only obstructions to the compactness of the solution map. Hence the parameter
(ho, o, x0, tp) plays a special role in characterizing this defect of compactness; moreover, a sequence of
such parameters needs to satisfy some orthogonality constraint (the term is used in the sense of Lemma
5.2).

Definition 1.3 (Orthogonality). For j # k, two sequences
= (W&ol iD=t and - D= (g &8 ()1

in (0, 0o) x R? are orthogonal if one of the following holds:

hy |
. limn_wo(hk +—+hf|§n é,ﬁ‘l) =

o (h, &) =k, 5,’,‘) and
(|r,f—r,{|+3|(r,’;—r,{)é,{|+|x,{—x,§+3(z,{—r,f)(f,{)2|)_
(h)? (h)? hy -

lim

n—oo
Remark 1.4. For any Il = (h,];, 5,{ , x,{ , t,{ )n>1, it is clear that, up to a subsequence, lim,_, |h£f,{ | is
either finite or infinite. For the former, we can reduce to f,{ = 0 for all n by changing profiles; see
Remark 3.6. For the latter, the corresponding profiles exhibit a Schrodinger behavior in some sense; see
Remark 1.7. In view of this, we will group the decompositions accordingly in the statements of our main
theorems below.

Now we are able to state the main theorems. When the initial data to Equation (1) is complex, the
following theorem on the linear Airy profile decomposition is proven in Section 5.

Theorem 1.5 (Complex version). Let (u,),>1 be a sequence of complex-valued functions satisfying
lunllz2 < 1. Then up to a subsequence, there exists a sequence of L? functions (¢j)j>1 :R—> Canda

family of pair-wise orthogonal sequences T = (), &, xi, 1)) € (0, 00) x R? such that, for any 1 > 1,
there exists an L? function wfl : R — C satisfying

= > UGN g 1wl 6)

1<j<l,&=0
or |hj, fn |—>o00
where g; = 8.1 1) € G and
lim lim HD1/6 wﬁl ”L? =0. (7)
X

[—00n—00

Moreover, for everyl > 1,

nlggo(mum (Z 167132 + 11w Ile)) =0. ®)

When the initial sequence is of real-value, we analogously obtain the following real-version profile
decomposition. Note that we can restrict the frequency parameter &; to be nonnegative.
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Theorem 1.6 (Real version). Let (u,),>1 be a sequence of real-valued functions satisfying |un|| ;2 < 1.
Then up to a subsequence there exists a sequence of L* functions, (¢7) j=1: R— C, and a family of
orthogonal sequences T = (h,];, é,{ , x,{ , t,{ ) € (0, 00) x [0, 00) x R? such that, for any | > 1, there exists
an L? function wfl: R — R satisfying

js3 YT
U, = Z o0 g/ [Re(e’( Yhnéid ¢1)] + wij )
1=j=1,51=0
or |h}&) |—o00
where g,i =800 € G and

lim lim | D% w},(x) o =0. (10)

[—o00on—>0
Moreover, for everyl > 1,

. (YIE N2
nlggo(nunniz - ( Z [Re(e! i gy |} + ||w,i||§2)) =0. (11
1=j<l,&=0

or |hj&]|—o00

When lim,,_, |h‘,£§,{ | = oo for some 1 < j <[, the profile will exhibit asymptotic “Schrodinger” behavior.
For simplicity, we just look at the complex case.

Remark 1.7 (Asymptotic Schrodinger behavior). Without loss of generality, we assume ¢/ € & with the
compact Fourier support [—1, 1]. Then

—(t—tHad i YN N AN T OREPY ) : -~ : :
D1/6€ (t ”)*g,ﬁ[el()h”g”gb"](x)=/e’(x xXi)EFi(t—1)¢ |é|1/6(h{l)1/2¢](h£(é_é{))dé

= (hd)~1/21E | /6 )G+ (=) G’

i[’?(x—xf,l+3(fj*fi{)(€'r{)2)+’73(fj*’3i{)+3’72(’;’£)<'{] n |Ve~
% e hy, (hp) (h) 14+ —— ¢] (7]) d’?
ij
nsn

L ox—xh 3 —HEDE 3 -
= andt::—.

Set x -
hy, (h)?

. Then the dominated convergence theorem yields

3

)
. .0 1t —
/e“‘ T

—1/6) ,—it'd? 4 j
—no00 37 0T Y N
X

C(+—4INA3 i i(Np el _
”D1/6e (t f)a\.gé[el()hné-n¢]]||Lt6!x=3 1/6

1/6

1 ¢idn

1+ hi&]

6
Lr’ x/

where ¢~/% denotes the Schrédinger evolution operator defined via

e—itagf(x) ::/eix§+it|é‘|2f(é) dé
R

Indeed,
1/6

T | Gidyp— e "%pi () ae.,

1+ ——
hai

2 l‘l"i’73
e —
/ezx n+it'n e anlel
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and by using [Stein 1993, Corollary, p. 334] or integration by parts,
|/eix/,7+it’,12€ '5hnCn |1 4+ 1/6¢jd}7 < C¢jB(t X )
ni
for n large enough but still uniform in n. Here

(AT <[+ e+ 1]
B(t s X ) = 1 -1/2
I+ XDt =C[a+ XD +1))]

—1/4
" for x| < 6|7,

for |x'| > 6]7'].
It is easy to observe that B € Lf’/ o

In the next three paragraphs, we outline the proof of Theorem 1.5 in three steps; Theorem 1.6 follows
similarly. Given an L?-bounded sequence (u,,),>1, at the first step, we use the refined Strichartz inequality
(5) and an iteration argument to obtain a preliminary decomposition for (u,),>: up to a subsequence

il +qY,

||Mz

where f;] is supported on an interval (&] — pil, & 4 pi) and | £/ | < C(p])~"/2, and e %" is small in
the Strichartz norm. Then we impose the orthogonality condition on (p;, &) ): for j #k,

_ k

n— 00 J

Pn pn P

to regroup the decomposition.

At the second step, for each j € [1, N], we will perform a further decomposition to fnj to extract
the space and time parameters. For simplicity, we suppress all the superscripts j and rescale (f),>1 to
obtain P = (P,),>1 by setting

PuC) = pL 2 0 (pu 401 'E))

from which we can infer that each P, is bounded and supported on a finite interval centered at the origin.
We apply the concentration-compactness argument to (P,),> to extract (y;, sy ): for any A > 1, up to
a subsequence,

Py(x) = Ze o O[T OP g ()] (x — y) + PA). (12)
More precisely, we will investigate the set of weak limits,

W(P) = {w-lime™"*» G g [ iOpy'np, ()]G +yn) in L2 : (yu, 50) € R?),

n—oo

where the notion w-lim,_, » f,, denotes, up to a subsequence, the weak limit of (f;,),> in L?. Note that
due to the lack of Galilean transform and the additional multiplier weight in the current Strichartz norm,
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it is a slight but necessary modification to the Schrodinger case [Carles and Keraani 2007], where W' (P)
is the set

{u)-lime’.s"ax2 Py(x + y,) in L% : (yn, s) € R?).

n—oo

In (12), we impose the orthogonality condition on (y<, s5): for a # S,

3 B_ 2 3 B
lim ( y,f —yr 4 (s Snz(fn) ‘ (50 = S )< + ‘sf —s,‘ﬂ) = 00. (13)
n—00 (pn) "
The error term P4 := (P2),> is small in the weak sense that
lim u(P%):= lim sup{||¢|l;2: ¢ € W(P?)}=0. (14)
A—00 A—00
Since f,,(x) = /pne™* P,(ppx),
A
an3 (oL -
Fi0) =D /B S [0 4 ()] (pux — ¥2) + /Pme 5 P (pa).
a=1

Lete? := ./ e PA(p,x). Now the major task is to upgrading this weak convergence in (14) to

. . 93
lim lim |DY®e "% e, 6 =0.
A—00 n—>00 X

To achieve this, we will interpolate L?’x between L,q,x and L7 for some 4 < g < 6. The Ltq,x norm
is controlled by some localized restriction estimates and the L7 norm is expected to be controlled
by u(P#*). Unlike the Schrodinger case, we will distinguish the case lim,_ o |p, '&| = +oo from
lim, oo [p, '&| < 400 due to the additional multiplier weight in the current Strichartz norm.

The final decomposition is obtained by setting
(hd, & xl ) = (o)™, &L (oD ™y, (o) 7s)),
and showing two orthogonality results for the profiles.

1.8. The second part of this paper is devoted to applying the linear profile decomposition result to the
problem of the existence of maximizers for the Airy Strichartz inequality. As a corollary of Theorems
1.5 and 1.6, we will establish a dichotomy result. Denote
A3
Sgry = sup{HDl/6e % HL’GX luoll g2 = 1}, (15)
when ug is complex-valued; similarly we define SEW for real-valued initial data. We are interested in
determining whether there exists a maximizing function ug with ||ug||;2 = 1 for which

1/6 ,—td]
||D / e’ Xl/tollLtﬁ’X = Sairy“”O”Lz’

where Sy represents either S;Diry or Sﬁry. The analogous question to the Schrodinger Strichartz inequal-

ities was studied by Kunze [2003], Foschi [2007], Hundertmark and Zharnitsky [2006], Carneiro [2008],
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Bennett et al. [2008] and Shao [2009]. We set

it

S;L;hr = SUP{He_ AMOHL,G,X(RXRQ') Hluoll L2ey = 1}' (16)

The fact S;Ehr < 00 is due to Strichartz [1977] which in turn had precursors in [Tomas 1975]. For the
problem of existence of such optimal S;Ehr and explicitly characterizing the maximizers, Kunze [2003]
treated the d = 1 case and showed that maximizers exist by an elaborate concentration-compactness
method. Foschi [2007] explicitly determined the best constants when d = 1, 2, and showed that the
only maximizers are Gaussians up to the natural symmetries associated to the Strichartz inequality by
using the sharp Cauchy—Schwarz inequality and the space-time Fourier transform. Hundertmark and
Zharnitsky [2006] independently obtained this result by an interesting representation formula of the
Strichartz inequalities in lower dimensions. Recently, Carneiro [2008] proved a sharp Strichartz-type
inequality by following the arguments in [Hundertmark and Zharnitsky 2006] and found its maximizers,
which derives the same results in [Hundertmark and Zharnitsky 2006] as a corollary when d =1, 2. Very
recently, Bennett et al. [2008] offered a new proof to determine the best constants by using the method
of heat-flow. Shao [2009] showed that a maximizer exists for all nonendpoint Strichartz inequalities
and in all dimensions by relying on the recent linear profile decomposition results for the Schrodinger
equations. We will continue this approach for (15). Additionally, we will use a simple but beautiful idea
of asymptotic embedding of a NLS solution to an approximate gKdV solution, which was previously
exploited in [Christ et al. 2003; Tao 2007]. This gives that in the complex case, SC, < 3'/6SC while

schr — airy
. C 1/221/6 ¢R
in the real case, Sechr = 243 Sairy.

Theorem 1.9. We have the following dichotomy on the existence of maximizers for (15) with the complex-
or real-valued initial data, respectively:

o In the complex case, either a maximizer is attained for (15), or there exists ¢ of complex value
satisfying

schr —

C —itd?
Iglle =1 and  SS =lle " plls .

and a sequence (a,),>1 satisfying lim,_, « |a,| = oo such that

_ gC §C _31/64C

airy? schr airy*

lim || D'/Se~"% [ Ong]|

6
n— oo 1,x

o In the real case, a similar statement holds; more precisely, either a maximizer is attained for (15),
or there exists ¢ of complex value satisfying

a2
o Ne @
sehr Il
and a positive sequence (a,),>1 satisfying lim,_, o a, = 00 and lim,_, || Re(e! ()an D)2 =1 such
that
. 1/6 —103 i (-)ap _ R C _ ~l/221/6 ¢R
nli)n;oHD / e % Re(el()a ¢) ||L,6’X - Sairy’ Sschr =2 / 3 / Sairy‘
Remark 1.10. Note that when S;CChr =3V 6S§ryor S;CChr =2l/23Y 6S§ry, the explicit ¢ had been uniquely

determined by Foschi [2007] and Hundertmark and Zharnitsky [2006] independently: they are Gaussians
up to the natural symmetries enjoyed by the Strichartz inequality for the Schrédinger equation.
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This paper is organized as follows: in Section 2 we establish some notation. In Section 3, we make
a preliminary decomposition for an L2-bounded sequence (u,),>1 of complex value. In Section 4, we
obtain similar results for a real sequence. In Section 5, we prove Theorems 1.5 and 1.6. In Section 6,
we prove Theorem 1.9.

2. Notation

Weuse X <Y,Y 2 X,or X = O(Y) to denote the estimate |X| < CY for some constant 0 < C < oo,

which might depend on the dimension but not on the functions. If X <Y and ¥ < X we will write

X ~ Y. If the constant C depends on a special parameter, we shall denote it explicitly by subscripts.
We define the space-time norm L{L” of f on R x R by

I Ls 1 mxry = (/R(/R |f(fax)|rdX>q/rdt)1/q,

with the usual modifications when ¢ or r are equal to infinity, or when the domain R x R is replaced by
a small space-time region. When ¢ = r, we abbreviate it by L?, .- Unless specified, all the space-time
integrations are taken over R x R, and all the spatial integrations over R.

We fix the notation that lim,_, o, should be understood as lim sup,,_, ., throughout this paper.

The spatial Fourier transform is defined via

(&) = / g (x) dx;
R

the space-time Fourier transform is defined analogously.

. . 3. .
The Airy evolution operator e ~*% is defined via

() = [ R de,
The spatial derivative ajg, for k a positive integer, is defined via the Fourier transform
K@) = &),
The fractional differentiation operator D%, a € R, is defined via
D fs)i= [ i T e
The inner product (-, -); > in the Hilbert space L is defined via
o= [ FWEdx,
where g denotes the usual complex conjugate of g in the complex plane C.

3. Preliminary decomposition: complex version

To begin proving Theorems 1.5 and 1.6, we present a new proof of the refined Strichartz inequality (5)
based on the Whitney decomposition. The following notation is taken from [Killip and Visan 2008b].
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Definition 3.1. Given j € Z, we denote by % ; the set of all dyadic intervals in R of length 2/
D= {2k, k+1):k €Z).

We also write 9 := U;cz%;. Given I € %, we define f; by ﬁ = fl ; where 1; denotes the indicator
function of /.

Then the Whitney decomposition we need is as follows: Given two distinct &, &” € R, there is a unique
maximal pair of dyadic intervals I € % and I’ € % such that

[1] = |1'|,dist(1, I') > 4|1, (17)

where dist(/, I’) denotes the distance between I and I’, and |/| denotes the length of the dyadic interval
I. Let & denote all such pairs as & # &’ varies over R x R. Then we have

> LOE) =1, forae. & &) eRxR. (18)

(1,1"eF

Since I and I’ are maximal, dist(Z, ") < 10|7|. This shows that for a given I € 9%, there exists a bounded
number of I’ so that (I, I') € %, that is,

#HI': (1, 1"YeF} <1 forall I €9D. (19)

Proof of Lemma 1.2. Given p > 1, we normalize sup, g |r|1/2_1/P||]/‘\||Lp(T) = 1. Then for all dyadic
intervals I € 9,

/Ifl”df < |1|'7P/2 (20)
I

We square the left side of (5) and reduce to proving

H / / (HEHIE ) 2116 72y T dé dy

~4/3
SIAI. (1)
L3

x

We change variables a := & — 7 and b := &3 — 5® and use the Hausdorff—Young inequality in both ¢ and
x, we need to show

L4172 F()13/2 ~
[ s

By symmetries of this expression, it is sufficient to work in the region {(&, ) : £ > 0, # > 0}. In this
case, |En7)1/* <& + #7]'/2; so we reduce to proving

HEROKS / 2
5 dddn < | |fIPd<. (23)
/ g2
In view of (23), we assume fz 0 from now on. Then we apply the Whitney decomposition to obtain
FOFm= > A& fr@), fora e & neRxR, (24)
(I,1'eF
and

forall (&, ) €I x1'with (I,1I') € F,|E—n|~|I]. (25)
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If we choose a slightly larger dyadic interval containing both I and I’ but still of length comparable to
1, still denoted by I, we reduce to proving

[ 7
Z( |I|1/2 /fzdf (26)

[eD

To prove (26) we will make a further decomposition to f; => ez Jn,1: for any n € Z, define f, ; via

Jot= Fligompmins e ssngey

By the Cauchy—Schwarz inequality, for any ¢ > 0,

(] 77ae) = (= / Foi )’ > 2 (f 7o) @)

Now (26) is an easy consequence of the following claim:

(f fn,\l3/2

N ) 52_“’5/]?251@“, for some & > 0. (28)

1€%

By the Cauchy—Schwarz inequality,

— 2 — —
(] 7orae) < [ Fotac [ Foaac. 29)

On the one hand, when n > 0, by the Chebyshev’s inequality and (20),

/fn 1dE STV E e I F (&) =217

12 JiJ 4s i frd¢

_—
R T

< 2'1(1—17)|]|—1/2|]|P/2|]|1—P/2

— 2—|n|(17—1)|1|1/2,

for any p > 1. On the other hand, when n < 0,

/ﬁ?dfszﬂu1/2|I|=2'"'|1|1/2.

Combining these estimates, there exists an ¢ > 0 such that

o 2
(/ 7rag)
Z 11]1/2 S27 Inla /fnl dg. (30)
1e%

1€9
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Interchanging the summation order, we have

S [Frae=3 3 [ Flecpornde= / > Fracs[Frae o
1€%

JEZ 1€%; f ~n—j/2
Then the claim (28) follows from (30) and (31). Hence the proof of Lemma 1.2 is complete. O

By using this refined Airy Strichartz inequality (5), we extract the scaling and frequency parameters p,{
and &/ following the approach in [Carles and Keraani 2007].

Lemma 3.2 (Complex version: extraction of p,{ and f,{ ). Let (un)n>1 be a sequence of complex valued
functions with |lu,|| > < 1. Then up to a subsequence, for any 6 > 0, there exists N := N(9), a family
(pnsEN1<j<n € (0, 00) x R and a family (f;])1<j<n of L*-bounded sequences such that, if j # k,

n>1 n>1
k
lim(pn—i———i—'f" 5') 0, (32)
=

forevery 1 < j < N, there exists a compact K in R such that

Pl i (piE+ED| < Cs1k (&), (33)
and
N
Z +q, (34)
which satisfies
| Dse g, o <0, (35)
and
N .
lim (nunuiz - (1A + g ||iz)) =0. (36)
j=1

Proof. For y,, = (pn, &) € (0, 00) x R, we define G, : L?—> L? by setting

Gn(f)E) = v/puf (pn€ + &)

103

s . 1 . . .
We will induct on the Strichartz norm. If | Dse™"%u, || 15, < 0, then there is nothing to prove. Otherwise,

up to a subsequence, we have
1 3
L 16
|D¢e Xun”Lté’x > 0.

On the one hand, applying Lemma 1.2 with p = 4/3, we see that there exists a family of intervals
I} :=[&l —pl, &L+ pl] such that

~ 1
/1 1@ 40de = Ciot o)
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where C; only depends on C, the constant in Lemma 1.2; note that we used |u,||;2 < 1 here. On the
other hand, for any A > 0,

~ _2 .~ _2
/ ity |*deE < A5 ||ity |17, < A5,
I'N{juy |> A}

Let Cs := (C1/2)73/267%. Then from the two considerations above, we have

_ C,
/ |un|4/3df > —54(p’i)1/3'
IIN{lin ] <Cs(pH =12} D)

From the Holder inequality, we have

4 . 2/3
/ milae <o RS R TR
LIN{lin | <Cs(p})~1/%) LNl |<Cs(ph)=1/%)

This yields
/ in2dE = €',
LIN{lin | <Cs(pl)~1/%)
where C” > 0 is some constant depending only on C; and C,. Define 0,1 and ynl by
Oy =l ol <Cotph2 Tn = (Pas &)-

Then [|v} |2 > (C")!/26%. Also by the definition of G, we have

G D] =1(p) P04 (paé +ENI < Coli11(©).
Moreover, since the supports are disjoint on the Fourier side, we have
litall 72 = llew = vy 172+ 0y 172
We repeat the same argument with u, — v, in place of u,. At each step, the L?-norm decreases by at
least (C")!/26%. Hence after N := N (J) steps, we obtain (vé)lSjSN and (y,{)lSJ-SN, SO

N

N

2 j N 2 2 12 N2
Uy = Dé +qn s ”Mn”LZ = ”v}Jl”[ﬂ + ”qn ||L2’

j=I

Jj=1
where the latter equality is due to the disjoint Fourier supports. We have the error term estimate
+ —td} N
||D6€ ! an ||Lt6,x S 53

which gives (35). The properties we obtain now are almost the case except for the first point of this
lemma (32). To obtain it, we will reorganize the decomposition. We impose the following condition on
7= (py, &Nyl and y ¥ are orthogonal if

k
lim (pn 4P + & — —&, I)
RNl i

Then we define f! to be a sum of those v,, whose y,, are not orthogonal to y,!. Then takmg the least
jo € [2, N1 such that y,° is orthogonal to y,!, we can define f? to be a sum of those v, whose 7,/ are
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orthogonal to ynl but not to ynjo. Repeating this argument a finite number of times, we obtain (34). This
decomposition automatically gives (32). Since the supports of the functions are disjoint on the Fourier
side, we also have (36). Finally we want to make sure that, up to a subsequence, (33) holds.
By construction, those v,{ kept in the definition of fn1 are such that the y,,j are not orthogonal to y !,
that is, for those j, we have
pn pn . |€Cn 4: |

lim —+— <00, lim < 00. 37
n—>oo po pn n—o00 ,0;4

o~

To show (33), it is sufficient to show that, up to a subsequence, G,ll (v,{) is bounded by a compactly
supported and bounded function, which will imply (33) with j = 1. On the one hand, by construction,

|G’(U | < Csli—1,11-

On the other hand, we observe that
P NP Py S P j py (ph, &l-él
G, () = G,(G;)” G (vn), G, (G)7' f(©) = =\ t+—);
pn

i pi

which yields the desired estimate for G! (v,{) by (37). Inductively we obtain (32). Hence the proof of
Lemma 3.2 is complete. U

The following lemma is useful in upgrading the weak convergence of error terms to the strong con-
vergence in the Strichartz norm in Lemma 3.5.

Lemma 3.3. We have the following two localized restriction estimates: for 9/2 < q < 6 and G e
L*(B(0, R)) for some R > 0,

| DY %G| = CyrlIGl L. (38)
For the same G,4 < q < 6 and |&| > 10R,
183/ i()E — ~
[ (0G| 1y, = Corlé0l G L. (39)

Proof. Let us start with the proof of (38). Let g = 2r with 9/4 < r < 3. After squaring, we are reduced
to proving

=2
< Cq,rIG 180, RY)-
Lf,

[ e )06 ) G e dé déy
B(O,R) J B(O,R)

Lets; :=¢ — & and s := 513 — 523 and denote the resulting image of B(0, R) x B(0, R) by Q under this
change of variables. Then by using the Hausdorff—Young inequality since r > 2, we see that the left side
of the inequality above is bounded by

C(/‘KIHMG(@)G(@)‘ dsds )
Q |61
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Then if we change variables back, we obtain

C( / Ger |6(51)6(@)V’d51d52)
BO.R)xBO.R) 1&1 + &7 E — &7

As in the proof of Lemma 1.2, we may assume that &;, & > 0. So we have |&; le% < | + &, which
leads to (¢18)/0 < (&1 +¢&)"/3 and thus

r'/6
e
IS1+ &l A -Gl & —&137 2 |16+ &1372

Then since |é|_%’”r2 is locally integrable when 3/2 < r’ < 9/5 and G € L™, we obtain (38).
The proof of (39) is similar. Setting ¢ = 2r with 2 <r < 3 and following the same procedure as above,
we have

[ (VDG 2, = e (! O0G)e?

— H/eiX(f—n)+it[(f+§o)3—('7+§o)3]@(5) 5(77) dédy

GO IGI )‘/’/
< déd
”( E—arE+n+ 281

GG )””
< déd
”( e g TG 14e

e —14+1/r A2 -2 ~n2
< Cyrl&ITYTNG 3 < €y RIGITIG 2,

,
Lt

where we have used |& + 5+ 28| ~ |&o| since &, n € B(0, R) and |&| > 10R. O

In Lemma 3.2, we have determined the scaling and frequency parameters. Recall that from Section 1,
we are left with extracting the space and time translation parameters. For this purpose, we will apply
the concentration—compactness argument. For simplicity, we present the following lemma of this kind
adapted to Airy evolution but not involving the frequency and scaling parameters. The general case is
similar and will be done in the next lemma.

Lemma 3.4 (Concentration—compactness). Suppose P := (P,)n>1 with ||Py|l;2 < 1. Then up to a sub-
sequence, there exists a sequence (¢*)y>1 € L* and a family e, st € R? such that they satisfy the
following constraints: for a % f3,

Tim Iy = 1+ Isy = sf1) = o0, (40)

and for A > 1, there exists PnA € L? so that

A
Pu(x) =D %% (x — y&) + PA(x), 1)
a=1
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and
lim u(P*) =0,
A—00

where 1 (P4) is defined in the argument below; moreover we have the following almost orthogonality
identity: for any A > 1,

Jim (|P 72— (Z ||¢“||L2+||PA||L2)) =0. (42)

Proof. Let W (P) be the set of weak limits of subsequences of P in L? after the space and time transla-
tions:
W(P) := {w-lime*s”ag P (x + yn) in L% : (yn, s0) € R?)}.
n—od

We set u(P) :=sup{||@|l;2: ¢ € W(P)}. Clearly we have
p#(P) < lim || Pyllz2.
n—oo

If u(P) =0, then there is nothing to prove. Otherwise u(P) > 0, then up to a subsequence, there exists
a ¢! € L? and a sequence (y,, s!),=1 € R? such that

¢'(x) = w-lime ™% P,(x +y)) in L2, (43)
n—oo
and ||¢'||;2 > %,u(P). We set P! := P, — es'163¢1 (x — yl). Then since e~'% is an unitary operator on
L?, we have
1P 17 = (P), P))p2
sl 3
= (P, — "% (x = y)), Py — " (x = )2
_slgd (153 _lg3 (153
= (7% (Py — "%l (x — y)), €% (Py — e ¢l (x — y1))) 12
_ a3 _ 193
= (NP = (x =), e Py = ¢l (x = y)) 2
— (e~ p 1y _ 41 ~5,0; p 1y _ 41
= (e n(x+y,) —¢ (x),e n (X +y,) — ¢ (X)) 2
S ) —‘163
= (Pu, Pu) 2+ (' @12 — (€% Pu(x +3,), ¢1) 12 — (@, €% P+ yy)) 2.
Taking n — oo and using (43), we see that

Tim (IPally2 = (16" 152 + 1P 172)) =0, e %P (x +y;) — 0, weakly in L

We replace P, with P! and repeat the same process: if u(P'!) > 0, we obtain ¢? and (y2, 52),>1 so that
142112 = 31(P") and
H(x) = w—lime s aJ(P (x —I—yn) in L.

Moreover, (yn, sn)n>1 and (yn, n)n>1 satisfy (40). Otherwise, up to a subsequence, we may assume that

lim s2 —s1 =50, hm yn — yn = y0,
n—oo
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where (5o, yo) € R?. Then for any ¢ € ¥,

lim [[e=C % (x + (y2 — yp)) — e "% p(x + y0) | 1. = 0.

n—o0
[hat is to say, -
(e (sy S,l)ax¢(x + (y,% yr%)))nzl

converges strongly in L. On the other hand, we rewrite,

g (s2—s1\a3 , —s13
e P (x4 ) = e T (e P (x + y) (x + (v — ).

Now the strong convergence and weak convergence together yield ¢> = 0, hence u(P') = 0, a contra-
diction. Hence (40) holds.
Iterating this argument, a diagonal process produces a family of pairwise orthogonal sequences

(y,?, S;,X)azl and (¢a)azl

satisfying (41) and (42). From (42), >, [l¢* %
gives

7> is convergent and hence lim,— [[¢* ;2 = 0. This

lim u(P*) =0,
A—o00
since u(P4) < 2|/¢*|l2 by construction. O

We are ready to extract the space and time parameters of the profiles.

Lemma 3.5 (Complex version: extraction of x,{’a and s,{’a). Suppose an L2-bounded sequence (fy)n>1
satisfies

Pl Fu(pa € + (pa) ' EN] < F(©),

with F € L*°(K) for some compact set K in R independent of n. Then up to a subsequence, there exists
a family (y?, s%) € R x R and a sequence (¢*)q>1 of L? functions such that, if a # B,

. 3(sh —s2)(E)? la(sfi —5)E )
lim By = sE—s, 0, (44)
n—>oo( In Yn (pn)2 Pn ‘ |
and for every A > 1, there exists eg‘ e L2,
fn (x) — Z / n€ n )r l(-)pn_lfnqsa ()](pnx — yg) _|_ e;? (x)’ (45)
and
lim lim |Dée" *e,?IIL;wX =0, (46)

A—ocon—

and for any A > 1,

A
Jim (ufnan (> ||¢“||§2+||e,:‘||iz)) =0. (47)
a=1
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Proof. Setting P := (Py)=1 With P,(&) := \/Bu fu(pu(€ + (o) ~'&)). Then
ﬁ; € L (K).
Let W' (P) be the set of weak limits in L? defined by
W(P) = {Zfl);ho%’l e I5Pn ' g sn 0] [ei(')/’;li” Pn(-)](x +y,)in L2 : (yp, 8,) € Rz},

and u(P) as in the previous lemma. Then a similar concentration-compactness argument shows that, up

to a subsequence, there exists a family (y7, %) o>1 and (¢%*)g>1 € L? such that (44) holds, and
n>1

o

A
P, (X) — Z efixpnflg‘nesn a3 [ei(')p;15'1¢a ()](x i y’(:) + PnA (x)
a=1

As weak limits, each 55.5 has the same support as P,., so does 1/3,17‘. Furthermore, we may assume that
$%, PA € L®(K). Setting P4 := (P*),>1. Then the sequence (P*) 5 satisfies

lim x(P*)=0. (48)
A—00

For any A > 1, we also have

A
Jim (n&niz - (g + ||P,:‘||iz)) =0.
a=1
Since f,(x) = ./pne""fn P, (pnx), the decomposition (45) of f,, follows after setting

ep (x) := /pne o P (pux).

What remains to show is that

lim fim | Dée™ %[ /pne™ P (puy)]| 15 =0,

A— 00 n—00

which will follow from (48) and the restriction estimates in Lemma 3.3 by an interpolation argument.
Indeed, by scaling, it is equivalent to showing that
lim lim | D'/0e~"% [0 pAY| , =0, (49)
A—00n—>00 1,x

where a,, := (pn)_lfn. Up to a subsequence, we split into two cases according to whether lim,,_, o |a,| =
00 or not.

Case 1. lim,_  |a,| = co. By using the Hormander—Mikhlin multiplier theorem [Tao 2006a,
Theorem 4.4], for sufficiently large n, we have

HDl/ﬁe—taf. [ei(~)an PHA]” ” < |an|1/6He—;ag [ei(.)an PnA]

6 -
Lux

We will show that, after taking limits in n, the right hand side is bounded by Cj, u(P4)1=4/6 for some
4 < g < 6. Then limy_, o ,u(PA) = 0 yields the result. We choose a cut-off y,(t, x) := yn,1(t) yn.2(x)
satisfying

ixa,

an2(x) = pa(x)e™ ", e,
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where 3 is compactly supported and ¥>(¢) := 1 on the common support K of P,, and

a1 (E+a)’) =70, e,

where 71(&3) := 1 on Supp 7>. Let % denote space-time convolution; then
s % [T (0% PAY = 713 (o pAy. (50)

Indeed, the space-time Fourier transform of y, is equal to
7l = [ 1) dr dx = FalE — )7 0

On the support of the space-time Fourier transform of e1% (e'O)an P1), we see that

I, &) =1.

This gives (50). Then by the Holder inequality and the restriction estimate (39) in Lemma 3.3, for
sufficiently large n,

e g, =l le™ @O
] e G [ P GO ) [P
S lan TVONF N 2 [ @O P 2,
for some 4 < g < 6. There exists (f,, y,)n>1 such that

—t03/ il —183, i(
||Xn % [e tax (e’()an PnA)]” L;Xi ~ )Xﬂ * [e tax (el()an PnA)]([n’ yn) X

We expand the right side out,

‘/ / K1 (=) gna(—x)e " E [e 7% (FO% PAY (. y,)](x) dx dt

Setting p,(x) = e~ind: (€' PA)Y(x + y,), then it equals

' / / 2T e dn e p, (x) dx

= ‘/Xz(—X)e_ix“”pn(X)dx

Taking n — oo, and using the definition of W (P4) followed by the Cauchy—Schwarz inequality, we
obtain

. —163, i(-
dim [ %7 (@O PO 1 S llp2ll2 (P S pou(PY).

Hence the claim (49) follows.
Case 2. lim,_, » |a,| < co. From the Holder inequality, we have the L?,x norm in (49) is bounded by

HD1/6e—ta§ [¢!an Pf]H%i HDl/ée—zai [¢l Oan Prf‘]”ng%
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for some 4 < g < 6. On the one hand, since lim,,_,  |a;| is finite and ﬁn?‘ € L*°(K), there exists a large
R > 0 so that
Supp F[e' ' PA)  B(0, R),

where %( f) denotes the spatial Fourier transform of f. Then from (38) in Lemma 3.3, we see that
| DYVee~ % [ Om PAY| L < Cyrl Fllz,
which is independent of n. On the other hand, from the Bernstein inequality, we have

H D1/6e_[a§ [ei(-)an P’?] ||L;X; < Cq,R ||€_t6§ [ei(-)lln PnA] || Lto,i’ .

Then a similar argument as in Case 1 shows that ||e_’53 [/ ) Pn"‘] e is bounded by u (P4)¢ for some
¢ > 0. Hence (49) follows and the proof of Lemma 3.5 is complete. ]

Remark 3.6. In view of the previous lemma, we will make a very useful reduction when lim,,_, o p,; g, =
a is finite: we will take &, = 0. Indeed, we first replace e! )P lf"gzﬁ"‘ with ¢/)4¢* by putting the difference
into the error term; then we can reduce it further by regarding ¢'()¢¢* as a new ¢*.

Next we will show that the profiles obtained in (45) are strongly decoupled under the orthogonality
condition (44); more general version is in Lemma 5.2. Abusing notation, we define

~ an3 (yn—L
L) (x) 1= /pre™ [ P g () (pux — ¥,
where &, = 0 when lim,, .« p,; 1 is finite.

Corollary 3.7. Under (44), for any a. £ 5, we have

lim [(g5(6"). g (¢7),2] = 0 (51
and forany 1 <o < A,
Jim [{g7(@™), €;1), | = 0. (52)

Proof. Without loss of generality, we assume that ¢* and ¢” are Schwartz functions with compact Fourier
support. We first prove (51). By changing variables, we have

‘(ég ((ﬁa), g’f((ﬁﬁ))y‘ — ‘(mesﬁﬁ? [ei(')p;15n¢a ()](an _ yzt), pnesé‘aﬁ [ei(')p,jlfn('bﬁ(.)](pnx _ y’f)>L2

B_a\A3 i - L
= |(e= DR[O g ()] (e 9 — ), € P (o)

B0y 2 By
- <‘ /eig“(x+yf—y;‘+3“" p’f)¢'1)+i¢3(sf—s:)+3i§2 (o =51 )
n

L2
’ |¢ﬂ‘>L2'

Hence if (44) holds, by using [Stein 1993, Corollary, p. 334] or integration by parts combined with the
dominated convergence theorem, we conclude that this expression goes to zero as n goes to infinity.
To prove (52), we write

e ga(E) dé

B _
ed= > g@")+ef,

B=A+1
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for any B > A. Recall
sy =1z
ef — /—pn(el()ﬂn g"PnB)(an)-

Then
B ~
~ ~ ivp—lE _gan3 iy —lg
(@@ el el = D (@™, gl @) 2| + [[g7, e e R @O P 4 y)
p=A+1

When n goes to infinity, the first term goes to zero because of (51). The second term is less than
4%l 2. (PB) by the definitions of W (P?) and u(P?), and the Cauchy—Schwarz inequality; so it can
be made arbitrarily small if taking B large enough. Hence (52) is obtained by taking B — oo. U

4. Preliminary decomposition: real version

To prove Theorem 1.6, we need the corresponding real version of lemmas in the previous section, es-
pecially of Lemmas 3.2 and 3.5. To develop the real analogue of Lemma 3.2, we recall the following
lemma due to Kenig et al. [2000].

Lemma 4.1. Let ug € L? be a real-valued function with ||\ug||;2 = 1. Then for any 6 > 0, there exists a
positive integer N = N (), real-valued functions f', ..., fN and eV, intervals 1y, . .., Ty, and a positive
constant Cg such that

=<

. — - 73 —1/2
FI@ =1i(=&), Supp fi Cr;U(=1)).ltjl=p;. |fI1=Cop; "2,
and N
ug = Z fl+eY,

j=1

with N 3
luollfe =D 1152 +1eMl72 [PV % eN] o <o,
j=1

The proof of this lemma is similar to that of the previous Lemma 3.2 with the help that, for real function

f, f = f(—g”). For our purpose, we will do a little more on the decomposition above. Indeed, from the
proof in [Kenig et al. 2000] we know that /(&) = 1, 1/2}@(5) and 7; C (0, 00). We

. ferjU(=1;)): liol<Csp;
can decompose f/ further by setting

fl=frr4 i,
’T,\_'_ L ~
FPT= Nen,: iai=Capy 10>
i = iy
f : 1{ 1720

fe—t;: lig)<Csp;

Since uy is real, we have i1o(&) = iig(—¢), which yields
Fit@)=fr (=), and fi7=[i+,

Hence
fi=2Re f".
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Now we return to prove Theorem 1.6. We repeat the process above for each real-valued u,, to obtain
1

Dy vees ,iv and real-valued ef]v such that
N
un =Y 2Re]) +ep, (53)
j=1
with
pn |vn (pgf + ff)| <Cslg(¢), with é,{ > 0, for some compact K, 54
and
al 12 2
lunllz: = D 4|Re@D [ 12+ flen 2. (55)
j=1

Still we define the real version of the orthogonality condition on the sequence (p,{~ , cf,{ Yu=1 € (0, +00)2
as before: for j #k,
J k

nhnéo( By Lo +|5” ]é ') 0. (56)

T Pn pn Pn
Based on (53) and (54), the basic idea of obtaining the real version is to apply the procedure in the
previous section to v;, and then take the real part. The only issue here is to show that the error term
is still small in the Strichartz norm, and the almost orthogonality in L? norm still holds. We omit the
details.

Lemma 4.2 (Real version: extraction of p,{ and 5,{ ). Let (u,),>1 be a sequence of real-valued functions
with |lu,|l 2 < 1. Then up to a subsequence, for any o > 0, there exists N = N (9), an orthogonal family
(pn ,ED I=j=n € (0, 00)? satisfying (56) and a sequence (fn ) t=j=n € L? such that, for every 1 < j < N,

there is a compact set K in R such that

I (0IE+ED < Colk (©), (57)

and for any N > 1, there exists a real-valued g € L? such that

N
un =2 Re(f)+ql, (58)
Jj=1
with
IDse " %gN 0 <, (59)
and for any N > 1,
lim ( lunll7> — (Z4||Re(f )+ g ||Lz)) =0. (60)

Then we focus on decomposing fnj further as in Lemma 3.5. Taking real parts automatically produces a
decomposition for Re(f;}). We will be sketchy on how to resolve issues of the convergence of the error
term and the almost L? orthogonality.
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Lemma 4.3 (Real version: extraction of x;"* and s7"). Let (f)n=1 € L? be a sequence of real-valued
functions satisfying || full;2 <1 and

VP | Fa(pnE + () 1E))| < F(©),

with F € L*°(K) for some compact set K and &, > 0. Then up to a subsequence, there exists a family
2, s7) € R x R and a sequence of complex-valued functions (¢%)y>1 € L? such that, if a. # f3,

. 3(sh — &N |30k — 5D
nll)ngo( (pn)2 ’ * ‘ Pn

and for each A > 1, there exists efl‘ el? of complex-value such that

yE—ye+

+|sf—s,‘f|) = 00, 61)

A
Fo¥) =D g4(¢")(x) +Re(ef) (x), (62)

a=1

where
(M) () = /pue® % [Re(e! P 414 (pux — ¥,

with &, =0 when p,; L&, converges to some finite limit, and

lim lim | D6e™"% Re(e)] 0 =0, (63)

A— 00 n—00

and for any A > 1,

A
lim. (nfnuiz — (X [Ree O ey |7, + HRe<e::)Hiz)) =o. (64)
a=1

Moreover, for any o # J,

Tim (@ (6%), gh )12 | =0, (69)
and forany 1 <o < A,
lim [(g7(4"). Re(e;)) 12| = 0. (66)

Proof. We briefly describe how to obtain these identities. Equations (61), (62) follow along similar lines
as in Lemma 3.5. Equation (63) follows from (46) and the pointwise inequality

|D%e_tax3 Re(e,f)(x)| = ‘Re(Dée_’agef)(x)‘ < |D%e_’a~‘3‘e,?(x)}.

Equation (64) follows from (65) and (66), which are proven similarly as in Corollary 3.7. O

5. Final decomposition: proof of Theorems 1.5 and 1.6

In this section, we will only prove the complex version Theorem 1.5 by following the approach in [Ker-
aani 2001]; the real version Theorem 1.6 can be obtained similarly. We go back to the decompositions
(34), (45) and set

(ol 1) = (D™ &L DT, (o) 750,
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Then we use Remark 3.6 and put all the error terms together,

U, = Z zetn jot l()/’l Cn¢ja] + U) ..... AN, (67)

1<j<N, &=0 *=1
or W&l |- o0

»
where gy"" =g ja s € G and

N
wy A =" e M g, (68)
j=1
We enumerate the pairs (j, @) by w satisfying
w(j,a) <ok, p)if j+a<k+porj+a=k+fand j <k. (69)

After relabeling, Equation (67) can be further rewritten as

3 soNpd 2]
=3 tna‘grjl[ez()hnfn(ﬁ]]jLw}lw (70)
1<j<l, &=0
orlhié |00

where w!, = w, "4 with [ = Z?’Zl Aj;. To establish Theorem 1.5, we are thus left with three points

to investigate.

(i) The family F,{ = (hf; R t,, , x,,) is pairwise orthogonal, that is, it satisfies Definition 1.3. In fact,
we have two possibilities:

(a) The two pairs are in the form I’} = (hi, &Lt xbeyand TK = (hm, &m, P Py with i # m.
In this case, the orthogonality follows from

hi o hm
lim (h + 2 Al — f’"l)—

n— 00 hl

which is (32) in Lemma 3.2.
(b) The two pairs are in form '}, = (hﬁl ,i, t,’l“, e ) and Fk (h {‘,’,, t,, , xnﬁ) with a # f. In
this case, the orthogonality follows from
)=

b = x4 30" — 1) (&)
h,

P — a3 e

Ii . .
ni”@o( Wy Ty

which is (44) in Lemma 3.5.
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(i) The almost orthogonality identity (8) is satisfied. In fact, combining (36) and (47), we obtain that
for any N > 1,

N 4
. ',A.
7z = Z(Z 167172 + llen f||iz) + g 172 + 0a(1)

j=1 Ya=1
/
= Z(Z Il ||iz) F AN 0, (1) = D Mg 172+ llw) 172 + 0a(1),
= =1 j=1

where lim,_, o 0,(1) = 0. Note that we have used the fact that
al i, A
N,Ai,..,A JAj 2 N2
lwh 1172 = llwp A4 )7, = E lew 1172+ llg, 172

which is due to the disjoint supports on the Fourier side.

(iii) The remainder e'% w," Aty A converges to zero in the Strichartz norm. In view of the adapted

enumeration, we have to prove that

n— oo

lim | D¢ "% @N-AtAV| 0, as inf (N, j+A;} = oo. (71)
= 1<j<N

Let 0 > 0 be an arbitrarily small number. Take Ny such that, for every N > Ny,

lim | DY%e %N s < /3. (72)

n—oo 1,x

For every N > Ny, there exists By such that, whenever A; > By,

133 JA;

lim || D"/6¢™1%%¢;" s, =9/3N. (73)

n—oo

. N,Ay,...,AN : .
The remainder w,, can be rewritten in the form
j A iVBN
NAl, A qn + E J +S,11V’A1’ ,AN,

I<j=<N

where A; Vv By :=max{A;, By} and

N,Ai,...,A JoAj i,B
St =S (g —w ),
I<j<N
Aj<BN

S,IZV’AI’ , z Z ”l ja[ l()/’l Cn¢ja]

I1<j<N Aj<a<By
Aj<BN

that is,

with & = 0 when lim,_, o |h.&/ | < 00. From (72) and (73), it follows that

lim || D"/0e™1% - AtAv | 1, S20/3+ lim | D'/6¢ 108 gN- Ao s, (74)

n—oo
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Now we need the following almost-orthogonality result:

Lemma 5.1. Let F,{ = (hf;, é’n , xn , tn) be a family of orthogonal sequences. Then for everyl > 1,

. 1/6 ,— (1~ t,,)a3 j z()hr;;n J ‘
,};H;O(UZD .

. 2”01/6 (=)0 g [ OE T ‘

) =0, (75)

with & = 0 when lim,,_, o [hiE] | < 00.

Suppose this lemma were proven, we show how to conclude the proof of (71). From Lemma 5.1, it
follows that

nll>ngO||Dl/6 716;51\7 Ai,..., Ay ||L6 — Z Z lim HD1/6 —(t— l‘ )6§g’!l (X[ei(-)hf,lfr{qu,a]”igx. (76)

n—oo
1§]§N Aj<aSBN
Aj <BN

The Strichartz inequality gives

Z Z ||Dl/6e—(t tjaoxg]a[et()h é‘,,¢ja Z Z ||¢ja”6

I<j<N Aj<a=<By 1<j<N Aj<a<By
A_/<BN A_/<BN
j,a 6
N 2 | (77)
j,a

On the other hand, > j.a [l ||%2 is convergent; hence the right side of (77) is finite. This shows that

( 3 “ D6 1=} gt OMAG] yoa]
J,a

a>Aj

6 \1/6
L?‘\‘) <9/3 (78)

provided that infi<;<y{N, j + A} is large enough. Combining (74), (76) and (78), we obtain

3
llm ||D1/6 t&xw’/l\/,Ab...,AN
n—oo

los, =0 (79)

provided that infi<;<y{N, j + A} is large enough. Hence the proof of (71) is complete.

Proof of Lemma 5.1. By using the Holder inequality, we need to show that for j # k, as n goes to infinity,

HD1/6 —(t— z,,)a3 [ i), f,,¢J]D1/6 —(— tk)63g [ez()hﬁf,’quk]HLS' 0. (80)

By the pigeonhole principle, we can assume that é,{ and &* are of the same sign if they are not zero;
moreover by a density argument, we also assume that ¢/ and ¢* are Schwartz functions with compact
Fourier supports. Evidence in favor of (80) is that, if lim,_, o |h,&,| = 0o, DV/6e==1)3; gn[ei(')h"f'l(,z&]
is somehow a Schrodinger wave in the sense of Remark 1.7. For the pairwise orthogonal Schrodinger
waves, however, the analogous result to (80) is true; see [Merle and Vega 1998; Carles and Keraani 2007;
Bégout and Vargas 2007].
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To prove (80) we will have two possibilities. First, the two pairs are in the form T = (hi, &L, 1%, xi-@)
and Tk = (b, &m ¢F 7Py with i £ m. In this case, the orthogonality is given by

nhrgo(}}ll_’%l—i_}}ll_? + 18, —f,',"l) = o0.

So we have two subcases. We begin with the case where lim,,_, 5 hﬁl |f,§ —¢)'| = 00; moreover, we may
assume that 4/ = A" for all n (when both limits are infinity, the reasoning is similar, using the argument
below). By changing variables, we see that the left side of (80) equals

m,o l’ﬂ

i,o m,f
P In _—In . H —
H DVeem123 (ofméh giaa) pi/eg () (et gt (x4 T

M (81)

L?

tx

The integrand above equals

X [(ERLED+ RGN EHRLED + (R Erm)? i zi1/6 i zm1/6
// X E)+(+hy N+ +h,) + (4,67 &4+ R / 4 hiEm| /
5 @ PHRLE Cei=xi Py [ i G e = /(i) B0 (E) B () dé .

Applying the change of variables a := (& + hi &) + (7 + hiEM) and b := (& + hiED3 + (5 + hiEm)3,
followed by the Hausdorff—Young inequality, we see that (81) is bounded by

C(// &+ R Gl In -+ & e o) 2 d{:dn)“
o A R A N R A RSO e '

We consider two subcases according to the limits of |4 & | and [h™E™M|. Note that limy,— o0 bl |ED — EM| =
o0, then either both are infinity or only one is.

o In the former case, since ¢, and &) are of the same sign, we have

[ Rl R s R <
€+ n+hi & HEMIT2 g g2

Then (81) is further bounded by Cyi.a gn.s (hi|&E—¢Em)=1/3, which goes to zero as n goes to infinity.
« In the latter case, say lim,_ |h2§,’;| = 00, we will have " = 0. Then
1€+ Gl o+ i &
€+ R &+ eI

Then (81) is further bounded by Cyia gm.s |hi &l |~1/2, which goes to zero as n goes to infinity.

LA s

Under the first possibility, we still need to consider the case when

hi  hm
Iim { 2 +-2 ) =0cc.
n— 00 hZ1 hz

We may assume that lim,,_, o |h;§,§ — ht & < oo. It follows that lim,—, o |hf1§,l;| and lim,, o |A)'E) |
are finite or infinite simultaneously. We will consider the case where they are both infinite since the other
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follows similarly. Under this consideration, we deduce that
'
huGn

for sufficiently large n. To prove (80), we will use the idea of regarding the profile term as a Schrodinger
wave as in Remark 1.7. We recall that

~1

DV =)00 g [ o1 Ol 77 — (Bl y=1/2| 21 | 1/6i (i )+ (G) (1 =1)
1/6

- | graae,

hé

(hi)3 (hi)2

1+

io . _da _La Lo
e[ 2 3@ T it S s
X e hp Itp

Similarly for Dl/ﬁe_(t_’ﬁ)asgﬁ [e! 11 p*]. For any R > 0, we set

. 1 — 1 — x}e ot —10?
’R::{(t,x)e[RxR:‘%ﬁ (hi;2 4|2 hfn +3(f,i)2h_i" SR},
n n n
B m,p m,p
t—t,'f1 X —Xp =1y
A% = 1(t eRxR: 357 3"y ———| < Rji.
" !(,x) X ‘f,, 2 + o +3() i '_ }

By the Holder inequality, the Strichartz inequality and Remark 1.7, we only need to show, for a large
R >0,

lim HDl/ﬁe—(t—tf,)a;?gi [ei(-)hﬁlé,’;(ﬁj]Dl/6e—(t—z,’1”)afglri [ei(.)hi,"f,i"¢k] ‘ (82)

n—oo

L} (AnAR)

Indeed, R?\ (Alk NA%) C R\ A"R) U (R?\ A'R); here we only consider the integration over the region
R2\ A’IR since the other case is similar. By the Holder inequality and the Strichartz inequality,

1/6 ,—(t—t1)a3 L jr i (VhiEE i y1/6 ,—(—tmad Jkr i(Yhmem (k
| DV gle!OMeng 1DV (D% gLt OB G| o i

< ||D1/6e—(t—t,’;)6gg’{ [ei(.)h;;g;qu]” L6 |D1/6e—(z—z;f)a‘§g£[e;(.)hyg"gék] ”LE’,X

@ |
k 1/6 ,—(t—t)od jr i(Hhiél 4 j
S| DYEe™ T gl ST o o i

Let

X = 3ED2 0 — )

x': and ¢ = —35’2 (t = 1,%)

h, T (hy)?

Then a change of variables and similar computations as in Remark 1.7 show that

/ 6
(Va3 e (RS i1 ED)+i Cls'tgi ¢ Ve
|5 o 5 | [ | e a
1,x R hnin Lf/,x/(‘t/|+|x/|ZR)
— [leT At s qererzr) = 05

as n — oo followed by R — oco. Returning to (82), using L°°-bounds for the integrands, we see that it
is bounded by
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1/6 ,—(t—t! Jr iCRLED 1/6 z'"a‘k hmEM |k . i 11/3 1/3
C | DMV = gl M| | DV T% g1l T G| min| A", 1471

< Crogi gt ()72 18 & YO min{ ()2 10173, [ 1Em~113)
1/6 pm

hl 2/3 hm m 2/3 hl 14
s%wwmﬁGﬁ O ]
hn hnfn hl’l h}’l é:n
Hence (80) holds when lim,,_wo(hfq/hz1 + A /hi) =
Secondly, the two pairs are in form T = (h, & 5% xi:#) and T = (hl t,, ,xnﬁ ), with a # .

n>'n I’l

In this case, the orthogonality is given by

i (1 =3 =G b e 4307 — @)Y
oo\ () (h;)? i

We assume lim,,_, oo |hﬁl§,’;| = oo since the other case is similar. We expand the left-hand side of (80) out,
which is equal to

. /3 m,p
l’ — b
(hi)~3|DVoe” o el l()h’é’qya](#) DV6, ™ x[ KO g ﬂ](#)
h CIA S
i3 G 3D | P | 3R 1/6
|é: ‘ /e’[ HE Ty T e ] '77 . 2 () dn
hl hl é—’;l
BB i 2 if i.f 1/6
[ segheld | Loy | e _
x / LT e rory
h, <&, L3,
. 3(t — 1P x—xbP 3@ =Py
Through the change of variables ¢’ = (—"2)5”, x'= - (. ) ) , this reduces to
(h},) hy,
ip ip_ l(l iLp ia iLf ia .
el e g ol )
e ln ~ n ln
n |6 — , .
. L4 +'t/ l 7 .
T ¢z,a(n)d’7/etxf7 N, %h & T ¢”5(;7)d71
}’lgl’l nfn L?/ X

Using the Holder inequality followed by the principle of the stationary phase or integration by parts, we
see that (80) holds. [l

Similarly, we can obtain the following generalization of Corollary 3.7 about the orthogonality of profiles
in L? space. Its proof will be omitted.

Lemma 5.2. Assume F,g = (h,];, f,{ , t,, , ) and Fk (h &Ktk xX) are pairwise orthogonal. Then

l’l’ n> n

. k )
lim ( o Xg [ i(hiE ¢j etkaxg [el()hnffigék])LZ =0, (83)

n—oo
andfor1 <j<lI,
) I N T
nlggo(eznox glle (i 1, w;)LZ =0, (84)

with & = 0 when lim,_ oo |hE] | < 00
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6. The existence of maximizers for the symmetric Airy Strichartz inequality

This section is devoted to establishing Theorem 1.9, a dichotomy result on the existence of maximizers
for the symmetric Airy Strichartz inequality. First, we will exploit the idea of asymptotically embedding
a Schrodinger solution into an approximate Airy solution. We will show that the best constant for the
Airy Schrodinger Strichartz bounds that for the symmetric Schrodinger Strichartz inequality up to a
constant. We will follow the approach in [Tao 2007], in which Tao shows that any qualitative scattering
result on the mass critical gKdV equation 8,u + &2u =+ |u|*6,u = 0 automatically implies an analogous
scattering result for the mass critical nonlinear Schrddinger equation i, u + 63u + ul*u = 0.

Lemma 6.1 (Asymptotic embedding of Schrodinger into Airy). Corresponding to Theorems 1.5 and 1.6,
we have, respectively,

Seenr < 3"°85» (85)
S < 212310538 . (86)

Proof. We first prove (86). Let u( to a maximizer to (16). Since d=1, from the work in [Foschi 2007], we
can assume that u is a standard Gaussian; hence it is even and its Fourier transform is another Gaussian.

Denote
1 ixN X
(0= WRe(e ”°(¢3—))'

Let un (2, x) solve the Airy Equation (1) with initial data ux (0, x). From the Airy Strichartz inequality,

[ DY unll s, = Siey e @, )] (87)

On the one hand, a computation shows that
1 iN3/2
v O 01 = 5 [ 1o +Re(e ¥ i ) i, (38)

From the Riemann-Lebesgue lemma, we know the second term above rapidly goes to zero as N — oo.
On the other hand,

(3N)1/4

in(0,¢) = (i (V3N(E — N)) + (V3N (& + N))),

which yields
DYoup (1, x) = / (IS 216 (0, &) d

BN

. /eix5+izf3|5|1/6(z?o(~/W(f—N))+b70(m(é‘+N))) d¢

:2131/4NI/IZeixN+itN3/ei[17((3N)‘]/2x+«/§N3/21)+t772+t(3N)‘3/2773]

n
N«3N

1/6
x[1+ | (@0 + @ (n + 2NV3N)) .
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Changing variables x’ = (3N)~"/2x + +/3N3/%¢ and ¢’ = 1, we obtain

DY une. )

s 2 1/6
:2—13—1/6 /el[x n+t ;72+t (BN)~ 3/2 %] ‘1+ n IZE)( )+IZE)( +2N /3N) d (89)
ANl it Jdn 5
Comparing (87), (88), (89) and letting N — oo, as in Remark 1.7, we obtain,
_ _ " LV
25| [ it an] |, <2728 ol (90)
By the choice of ug, we have
2713710sE, <2712
that is, S;CChr < 21/231/6S§ry. Hence (86) follows. To show (85), we choose
P () = e g ()
T GN)IA BN/
Then
A2
ol = luollzs |e™ x| s @) = Ssenelluollz2.
Also an easy computation shows that
[0V ]y — 37V o] . a5 N — oo.
From the Airy Strichartz inequality,
A3
[ DV % pn | 0 < Sqylien il = Sgylluol o,
we conclude that (85) follows. U

Now we are ready to prove Theorem 1.9.

Proof of Theorem 1.9. We only prove the complex version by using Theorem 1.5. For the real version,
we use Theorem 1.6 instead but its proof is similar.

We choose a maximizing sequence (u,),>1 With ||u,||;2 = 1, and decompose it into the linear profiles
as in Theorem 1.5 to obtain

Jo3 i s
U, = Z etnaxgrjl [¢! Vi 1+ wi 1)
1<j<l, &=0

or |hh&l =00

Then from the asymptotically vanishing Strichartz norm (7) and the triangle inequality, we obtain that,
up to a subsequence, for any given ¢ > 0, there exists ng, for all / > ng and n > ny,

SC

airy

L6_

l
HZD1/6 —(—1)3? j '[ z()hngnqy]
j=1
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with 5,{ = (0 when lim,,_, 5 |h,{§,{ | < 0o. On the other hand, Lemma 5.1 yields,

HZ D6~ (=102 g [ o1 Ok Fo,(1).  (92)

6
Lt,x

I
SZ”D1/6 ~=)3 g [ 10N i ¥
j=1

Then up to a subsequence, there exists n; such that, for large n > n; and [ > ny,

l

C(r_4IN\A3
ZHDI/6e (=) g i Ok @M e _( Saiy)® — 22 (93)
j=1

Choosing jo such that
D/ go[ ol OBE oy

has the biggest Strichartz norm among 1 < j </, we see that, by Strichartz and the almost orthogonal
identity (8),

)0 —2¢ < “Dl/f’ =010} o [T G

" ZHDI/(S =t gi e z()h’fnqﬁ]]‘

( airy

L6
JOy A3 . . Jo =Jo . 4 !
“D1/6 —(t—1;,")0? jO[el(')hn & ¢J0] Lo Z( a1ry||¢ ||L2)
_ Joy~3 Jo =Jo
< (s H D'/6= (=112 glo[(i O’ ¢]o]
This yields,
16, =102 o jo [ i WGP 4o 6 4 e
HD n xgn [ n Sn ¢ ] (( alry) [( alry) —28]) > Szury E. (94)

Moreover, (8) implies that there exists J > 0 such that
¢/ |l;2 <1/100 forall j > J.
This, together with (94) and the Strichartz inequality

“ D1/6p—t—1)3 gi[e i(~)h£°¢,{°¢jo]

c .
6 < Salry”¢J0 ”Lz’
t,x

shows that, for ¢ small enough, jj is between 1 and J; otherwise Sgry /2 < alry /100, a contradiction.
Hence jy does not depend on /, n and . So we can freely take ¢ to zero w1thout changing jo. Now we
consider two cases:

Case I. When h°&° — £io ¢ R, we can take &° = 0. Then

Jo
H D/6= =13 go (¢10)

_ HD1/6 —16} ? o

6 °
Ly«
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Then we take ¢ — 0 in (94) to obtain

. A3
I e =1, Sy = | DY/

This shows that ¢j0 is a maximizer for (15).

Case II. When |h°&°| — 0o, we take n — oo in (94) and use Remark 1.7,

SC —¢ < 11m ||Dl/6 (l‘ tn ) ' [ei(.)hloér’{0¢Jo]||L6

airy n— 00

= Jim Do OHL g

n—oo

=370 P s < 37MOSG IR

C .
< Salry ||¢]0 ”L2

Taking & — O forces all the inequality signs to be equal. Hence we obtain

gl 2 =1, S5, =3710SE

airy schr

and
S5 = Jim | Do B [LORL g 50

ary T Lo

This shows that SSchr = ||e*”62¢fO || 6 : hence ¢/ is a maximizer for (16). Set a, := h’oé Then the
proof of Theorem 1.9 is complete. ]
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